1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * Marvell NAND flash controller driver |
4 | * |
5 | * Copyright (C) 2017 Marvell |
6 | * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> |
7 | * |
8 | * |
9 | * This NAND controller driver handles two versions of the hardware, |
10 | * one is called NFCv1 and is available on PXA SoCs and the other is |
11 | * called NFCv2 and is available on Armada SoCs. |
12 | * |
13 | * The main visible difference is that NFCv1 only has Hamming ECC |
14 | * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA |
15 | * is not used with NFCv2. |
16 | * |
17 | * The ECC layouts are depicted in details in Marvell AN-379, but here |
18 | * is a brief description. |
19 | * |
20 | * When using Hamming, the data is split in 512B chunks (either 1, 2 |
21 | * or 4) and each chunk will have its own ECC "digest" of 6B at the |
22 | * beginning of the OOB area and eventually the remaining free OOB |
23 | * bytes (also called "spare" bytes in the driver). This engine |
24 | * corrects up to 1 bit per chunk and detects reliably an error if |
25 | * there are at most 2 bitflips. Here is the page layout used by the |
26 | * controller when Hamming is chosen: |
27 | * |
28 | * +-------------------------------------------------------------+ |
29 | * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | |
30 | * +-------------------------------------------------------------+ |
31 | * |
32 | * When using the BCH engine, there are N identical (data + free OOB + |
33 | * ECC) sections and potentially an extra one to deal with |
34 | * configurations where the chosen (data + free OOB + ECC) sizes do |
35 | * not align with the page (data + OOB) size. ECC bytes are always |
36 | * 30B per ECC chunk. Here is the page layout used by the controller |
37 | * when BCH is chosen: |
38 | * |
39 | * +----------------------------------------- |
40 | * | Data 1 | Free OOB bytes 1 | ECC 1 | ... |
41 | * +----------------------------------------- |
42 | * |
43 | * ------------------------------------------- |
44 | * ... | Data N | Free OOB bytes N | ECC N | |
45 | * ------------------------------------------- |
46 | * |
47 | * --------------------------------------------+ |
48 | * Last Data | Last Free OOB bytes | Last ECC | |
49 | * --------------------------------------------+ |
50 | * |
51 | * In both cases, the layout seen by the user is always: all data |
52 | * first, then all free OOB bytes and finally all ECC bytes. With BCH, |
53 | * ECC bytes are 30B long and are padded with 0xFF to align on 32 |
54 | * bytes. |
55 | * |
56 | * The controller has certain limitations that are handled by the |
57 | * driver: |
58 | * - It can only read 2k at a time. To overcome this limitation, the |
59 | * driver issues data cycles on the bus, without issuing new |
60 | * CMD + ADDR cycles. The Marvell term is "naked" operations. |
61 | * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 |
62 | * bits. What can be tuned is the ECC block size as long as it |
63 | * stays between 512B and 2kiB. It's usually chosen based on the |
64 | * chip ECC requirements. For instance, using 2kiB ECC chunks |
65 | * provides 4b/512B correctability. |
66 | * - The controller will always treat data bytes, free OOB bytes |
67 | * and ECC bytes in that order, no matter what the real layout is |
68 | * (which is usually all data then all OOB bytes). The |
69 | * marvell_nfc_layouts array below contains the currently |
70 | * supported layouts. |
71 | * - Because of these weird layouts, the Bad Block Markers can be |
72 | * located in data section. In this case, the NAND_BBT_NO_OOB_BBM |
73 | * option must be set to prevent scanning/writing bad block |
74 | * markers. |
75 | */ |
76 | |
77 | #include <linux/module.h> |
78 | #include <linux/clk.h> |
79 | #include <linux/mtd/rawnand.h> |
80 | #include <linux/of.h> |
81 | #include <linux/iopoll.h> |
82 | #include <linux/interrupt.h> |
83 | #include <linux/platform_device.h> |
84 | #include <linux/slab.h> |
85 | #include <linux/mfd/syscon.h> |
86 | #include <linux/regmap.h> |
87 | #include <asm/unaligned.h> |
88 | |
89 | #include <linux/dmaengine.h> |
90 | #include <linux/dma-mapping.h> |
91 | #include <linux/dma/pxa-dma.h> |
92 | #include <linux/platform_data/mtd-nand-pxa3xx.h> |
93 | |
94 | /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ |
95 | #define FIFO_DEPTH 8 |
96 | #define FIFO_REP(x) (x / sizeof(u32)) |
97 | #define BCH_SEQ_READS (32 / FIFO_DEPTH) |
98 | /* NFC does not support transfers of larger chunks at a time */ |
99 | #define MAX_CHUNK_SIZE 2112 |
100 | /* NFCv1 cannot read more that 7 bytes of ID */ |
101 | #define NFCV1_READID_LEN 7 |
102 | /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ |
103 | #define POLL_PERIOD 0 |
104 | #define POLL_TIMEOUT 100000 |
105 | /* Interrupt maximum wait period in ms */ |
106 | #define IRQ_TIMEOUT 1000 |
107 | /* Latency in clock cycles between SoC pins and NFC logic */ |
108 | #define MIN_RD_DEL_CNT 3 |
109 | /* Maximum number of contiguous address cycles */ |
110 | #define MAX_ADDRESS_CYC_NFCV1 5 |
111 | #define MAX_ADDRESS_CYC_NFCV2 7 |
112 | /* System control registers/bits to enable the NAND controller on some SoCs */ |
113 | #define GENCONF_SOC_DEVICE_MUX 0x208 |
114 | #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) |
115 | #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) |
116 | #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) |
117 | #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) |
118 | #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27) |
119 | #define GENCONF_CLK_GATING_CTRL 0x220 |
120 | #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) |
121 | #define GENCONF_ND_CLK_CTRL 0x700 |
122 | #define GENCONF_ND_CLK_CTRL_EN BIT(0) |
123 | |
124 | /* NAND controller data flash control register */ |
125 | #define NDCR 0x00 |
126 | #define NDCR_ALL_INT GENMASK(11, 0) |
127 | #define NDCR_CS1_CMDDM BIT(7) |
128 | #define NDCR_CS0_CMDDM BIT(8) |
129 | #define NDCR_RDYM BIT(11) |
130 | #define NDCR_ND_ARB_EN BIT(12) |
131 | #define NDCR_RA_START BIT(15) |
132 | #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) |
133 | #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) |
134 | #define NDCR_DWIDTH_M BIT(26) |
135 | #define NDCR_DWIDTH_C BIT(27) |
136 | #define NDCR_ND_RUN BIT(28) |
137 | #define NDCR_DMA_EN BIT(29) |
138 | #define NDCR_ECC_EN BIT(30) |
139 | #define NDCR_SPARE_EN BIT(31) |
140 | #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ |
141 | NDCR_DWIDTH_M | NDCR_DWIDTH_C)) |
142 | |
143 | /* NAND interface timing parameter 0 register */ |
144 | #define NDTR0 0x04 |
145 | #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) |
146 | #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) |
147 | #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) |
148 | #define NDTR0_SEL_NRE_EDGE BIT(7) |
149 | #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) |
150 | #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) |
151 | #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) |
152 | #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) |
153 | #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) |
154 | #define NDTR0_SELCNTR BIT(26) |
155 | #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) |
156 | |
157 | /* NAND interface timing parameter 1 register */ |
158 | #define NDTR1 0x0C |
159 | #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) |
160 | #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) |
161 | #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) |
162 | #define NDTR1_PRESCALE BIT(14) |
163 | #define NDTR1_WAIT_MODE BIT(15) |
164 | #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) |
165 | |
166 | /* NAND controller status register */ |
167 | #define NDSR 0x14 |
168 | #define NDSR_WRCMDREQ BIT(0) |
169 | #define NDSR_RDDREQ BIT(1) |
170 | #define NDSR_WRDREQ BIT(2) |
171 | #define NDSR_CORERR BIT(3) |
172 | #define NDSR_UNCERR BIT(4) |
173 | #define NDSR_CMDD(cs) BIT(8 - cs) |
174 | #define NDSR_RDY(rb) BIT(11 + rb) |
175 | #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) |
176 | |
177 | /* NAND ECC control register */ |
178 | #define NDECCCTRL 0x28 |
179 | #define NDECCCTRL_BCH_EN BIT(0) |
180 | |
181 | /* NAND controller data buffer register */ |
182 | #define NDDB 0x40 |
183 | |
184 | /* NAND controller command buffer 0 register */ |
185 | #define NDCB0 0x48 |
186 | #define NDCB0_CMD1(x) ((x & 0xFF) << 0) |
187 | #define NDCB0_CMD2(x) ((x & 0xFF) << 8) |
188 | #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) |
189 | #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) |
190 | #define NDCB0_DBC BIT(19) |
191 | #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) |
192 | #define NDCB0_CSEL BIT(24) |
193 | #define NDCB0_RDY_BYP BIT(27) |
194 | #define NDCB0_LEN_OVRD BIT(28) |
195 | #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) |
196 | |
197 | /* NAND controller command buffer 1 register */ |
198 | #define NDCB1 0x4C |
199 | #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) |
200 | #define NDCB1_ADDRS_PAGE(x) (x << 16) |
201 | |
202 | /* NAND controller command buffer 2 register */ |
203 | #define NDCB2 0x50 |
204 | #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) |
205 | #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) |
206 | |
207 | /* NAND controller command buffer 3 register */ |
208 | #define NDCB3 0x54 |
209 | #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) |
210 | #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) |
211 | |
212 | /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ |
213 | #define TYPE_READ 0 |
214 | #define TYPE_WRITE 1 |
215 | #define TYPE_ERASE 2 |
216 | #define TYPE_READ_ID 3 |
217 | #define TYPE_STATUS 4 |
218 | #define TYPE_RESET 5 |
219 | #define TYPE_NAKED_CMD 6 |
220 | #define TYPE_NAKED_ADDR 7 |
221 | #define TYPE_MASK 7 |
222 | #define XTYPE_MONOLITHIC_RW 0 |
223 | #define XTYPE_LAST_NAKED_RW 1 |
224 | #define XTYPE_FINAL_COMMAND 3 |
225 | #define XTYPE_READ 4 |
226 | #define XTYPE_WRITE_DISPATCH 4 |
227 | #define XTYPE_NAKED_RW 5 |
228 | #define XTYPE_COMMAND_DISPATCH 6 |
229 | #define XTYPE_MASK 7 |
230 | |
231 | /** |
232 | * struct marvell_hw_ecc_layout - layout of Marvell ECC |
233 | * |
234 | * Marvell ECC engine works differently than the others, in order to limit the |
235 | * size of the IP, hardware engineers chose to set a fixed strength at 16 bits |
236 | * per subpage, and depending on a the desired strength needed by the NAND chip, |
237 | * a particular layout mixing data/spare/ecc is defined, with a possible last |
238 | * chunk smaller that the others. |
239 | * |
240 | * @writesize: Full page size on which the layout applies |
241 | * @chunk: Desired ECC chunk size on which the layout applies |
242 | * @strength: Desired ECC strength (per chunk size bytes) on which the |
243 | * layout applies |
244 | * @nchunks: Total number of chunks |
245 | * @full_chunk_cnt: Number of full-sized chunks, which is the number of |
246 | * repetitions of the pattern: |
247 | * (data_bytes + spare_bytes + ecc_bytes). |
248 | * @data_bytes: Number of data bytes per chunk |
249 | * @spare_bytes: Number of spare bytes per chunk |
250 | * @ecc_bytes: Number of ecc bytes per chunk |
251 | * @last_data_bytes: Number of data bytes in the last chunk |
252 | * @last_spare_bytes: Number of spare bytes in the last chunk |
253 | * @last_ecc_bytes: Number of ecc bytes in the last chunk |
254 | */ |
255 | struct marvell_hw_ecc_layout { |
256 | /* Constraints */ |
257 | int writesize; |
258 | int chunk; |
259 | int strength; |
260 | /* Corresponding layout */ |
261 | int nchunks; |
262 | int full_chunk_cnt; |
263 | int data_bytes; |
264 | int spare_bytes; |
265 | int ecc_bytes; |
266 | int last_data_bytes; |
267 | int last_spare_bytes; |
268 | int last_ecc_bytes; |
269 | }; |
270 | |
271 | #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ |
272 | { \ |
273 | .writesize = ws, \ |
274 | .chunk = dc, \ |
275 | .strength = ds, \ |
276 | .nchunks = nc, \ |
277 | .full_chunk_cnt = fcc, \ |
278 | .data_bytes = db, \ |
279 | .spare_bytes = sb, \ |
280 | .ecc_bytes = eb, \ |
281 | .last_data_bytes = ldb, \ |
282 | .last_spare_bytes = lsb, \ |
283 | .last_ecc_bytes = leb, \ |
284 | } |
285 | |
286 | /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ |
287 | static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { |
288 | MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), |
289 | MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), |
290 | MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), |
291 | MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), |
292 | MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,64, 30), |
293 | MARVELL_LAYOUT( 2048, 512, 16, 4, 4, 512, 0, 30, 0, 32, 30), |
294 | MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), |
295 | MARVELL_LAYOUT( 4096, 512, 8, 4, 4, 1024, 0, 30, 0, 64, 30), |
296 | MARVELL_LAYOUT( 4096, 512, 16, 8, 8, 512, 0, 30, 0, 32, 30), |
297 | MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), |
298 | MARVELL_LAYOUT( 8192, 512, 8, 8, 8, 1024, 0, 30, 0, 160, 30), |
299 | MARVELL_LAYOUT( 8192, 512, 16, 16, 16, 512, 0, 30, 0, 32, 30), |
300 | }; |
301 | |
302 | /** |
303 | * struct marvell_nand_chip_sel - CS line description |
304 | * |
305 | * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection |
306 | * is made by a field in NDCB0 register, and in another field in NDCB2 register. |
307 | * The datasheet describes the logic with an error: ADDR5 field is once |
308 | * declared at the beginning of NDCB2, and another time at its end. Because the |
309 | * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical |
310 | * to use the last bit of this field instead of the first ones. |
311 | * |
312 | * @cs: Wanted CE lane. |
313 | * @ndcb0_csel: Value of the NDCB0 register with or without the flag |
314 | * selecting the wanted CE lane. This is set once when |
315 | * the Device Tree is probed. |
316 | * @rb: Ready/Busy pin for the flash chip |
317 | */ |
318 | struct marvell_nand_chip_sel { |
319 | unsigned int cs; |
320 | u32 ndcb0_csel; |
321 | unsigned int rb; |
322 | }; |
323 | |
324 | /** |
325 | * struct marvell_nand_chip - stores NAND chip device related information |
326 | * |
327 | * @chip: Base NAND chip structure |
328 | * @node: Used to store NAND chips into a list |
329 | * @layout: NAND layout when using hardware ECC |
330 | * @ndcr: Controller register value for this NAND chip |
331 | * @ndtr0: Timing registers 0 value for this NAND chip |
332 | * @ndtr1: Timing registers 1 value for this NAND chip |
333 | * @addr_cyc: Amount of cycles needed to pass column address |
334 | * @selected_die: Current active CS |
335 | * @nsels: Number of CS lines required by the NAND chip |
336 | * @sels: Array of CS lines descriptions |
337 | */ |
338 | struct marvell_nand_chip { |
339 | struct nand_chip chip; |
340 | struct list_head node; |
341 | const struct marvell_hw_ecc_layout *layout; |
342 | u32 ndcr; |
343 | u32 ndtr0; |
344 | u32 ndtr1; |
345 | int addr_cyc; |
346 | int selected_die; |
347 | unsigned int nsels; |
348 | struct marvell_nand_chip_sel sels[] __counted_by(nsels); |
349 | }; |
350 | |
351 | static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) |
352 | { |
353 | return container_of(chip, struct marvell_nand_chip, chip); |
354 | } |
355 | |
356 | static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip |
357 | *nand) |
358 | { |
359 | return &nand->sels[nand->selected_die]; |
360 | } |
361 | |
362 | /** |
363 | * struct marvell_nfc_caps - NAND controller capabilities for distinction |
364 | * between compatible strings |
365 | * |
366 | * @max_cs_nb: Number of Chip Select lines available |
367 | * @max_rb_nb: Number of Ready/Busy lines available |
368 | * @need_system_controller: Indicates if the SoC needs to have access to the |
369 | * system controller (ie. to enable the NAND controller) |
370 | * @legacy_of_bindings: Indicates if DT parsing must be done using the old |
371 | * fashion way |
372 | * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. |
373 | * BCH error detection and correction algorithm, |
374 | * NDCB3 register has been added |
375 | * @use_dma: Use dma for data transfers |
376 | * @max_mode_number: Maximum timing mode supported by the controller |
377 | */ |
378 | struct marvell_nfc_caps { |
379 | unsigned int max_cs_nb; |
380 | unsigned int max_rb_nb; |
381 | bool need_system_controller; |
382 | bool legacy_of_bindings; |
383 | bool is_nfcv2; |
384 | bool use_dma; |
385 | unsigned int max_mode_number; |
386 | }; |
387 | |
388 | /** |
389 | * struct marvell_nfc - stores Marvell NAND controller information |
390 | * |
391 | * @controller: Base controller structure |
392 | * @dev: Parent device (used to print error messages) |
393 | * @regs: NAND controller registers |
394 | * @core_clk: Core clock |
395 | * @reg_clk: Registers clock |
396 | * @complete: Completion object to wait for NAND controller events |
397 | * @assigned_cs: Bitmask describing already assigned CS lines |
398 | * @chips: List containing all the NAND chips attached to |
399 | * this NAND controller |
400 | * @selected_chip: Currently selected target chip |
401 | * @caps: NAND controller capabilities for each compatible string |
402 | * @use_dma: Whetner DMA is used |
403 | * @dma_chan: DMA channel (NFCv1 only) |
404 | * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) |
405 | */ |
406 | struct marvell_nfc { |
407 | struct nand_controller controller; |
408 | struct device *dev; |
409 | void __iomem *regs; |
410 | struct clk *core_clk; |
411 | struct clk *reg_clk; |
412 | struct completion complete; |
413 | unsigned long assigned_cs; |
414 | struct list_head chips; |
415 | struct nand_chip *selected_chip; |
416 | const struct marvell_nfc_caps *caps; |
417 | |
418 | /* DMA (NFCv1 only) */ |
419 | bool use_dma; |
420 | struct dma_chan *dma_chan; |
421 | u8 *dma_buf; |
422 | }; |
423 | |
424 | static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) |
425 | { |
426 | return container_of(ctrl, struct marvell_nfc, controller); |
427 | } |
428 | |
429 | /** |
430 | * struct marvell_nfc_timings - NAND controller timings expressed in NAND |
431 | * Controller clock cycles |
432 | * |
433 | * @tRP: ND_nRE pulse width |
434 | * @tRH: ND_nRE high duration |
435 | * @tWP: ND_nWE pulse time |
436 | * @tWH: ND_nWE high duration |
437 | * @tCS: Enable signal setup time |
438 | * @tCH: Enable signal hold time |
439 | * @tADL: Address to write data delay |
440 | * @tAR: ND_ALE low to ND_nRE low delay |
441 | * @tWHR: ND_nWE high to ND_nRE low for status read |
442 | * @tRHW: ND_nRE high duration, read to write delay |
443 | * @tR: ND_nWE high to ND_nRE low for read |
444 | */ |
445 | struct marvell_nfc_timings { |
446 | /* NDTR0 fields */ |
447 | unsigned int tRP; |
448 | unsigned int tRH; |
449 | unsigned int tWP; |
450 | unsigned int tWH; |
451 | unsigned int tCS; |
452 | unsigned int tCH; |
453 | unsigned int tADL; |
454 | /* NDTR1 fields */ |
455 | unsigned int tAR; |
456 | unsigned int tWHR; |
457 | unsigned int tRHW; |
458 | unsigned int tR; |
459 | }; |
460 | |
461 | /** |
462 | * TO_CYCLES() - Derives a duration in numbers of clock cycles. |
463 | * |
464 | * @ps: Duration in pico-seconds |
465 | * @period_ns: Clock period in nano-seconds |
466 | * |
467 | * Convert the duration in nano-seconds, then divide by the period and |
468 | * return the number of clock periods. |
469 | */ |
470 | #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) |
471 | #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ |
472 | period_ns)) |
473 | |
474 | /** |
475 | * struct marvell_nfc_op - filled during the parsing of the ->exec_op() |
476 | * subop subset of instructions. |
477 | * |
478 | * @ndcb: Array of values written to NDCBx registers |
479 | * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle |
480 | * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin |
481 | * @rdy_delay_ns: Optional delay after waiting for the RB pin |
482 | * @data_delay_ns: Optional delay after the data xfer |
483 | * @data_instr_idx: Index of the data instruction in the subop |
484 | * @data_instr: Pointer to the data instruction in the subop |
485 | */ |
486 | struct marvell_nfc_op { |
487 | u32 ndcb[4]; |
488 | unsigned int cle_ale_delay_ns; |
489 | unsigned int rdy_timeout_ms; |
490 | unsigned int rdy_delay_ns; |
491 | unsigned int data_delay_ns; |
492 | unsigned int data_instr_idx; |
493 | const struct nand_op_instr *data_instr; |
494 | }; |
495 | |
496 | /* |
497 | * Internal helper to conditionnally apply a delay (from the above structure, |
498 | * most of the time). |
499 | */ |
500 | static void cond_delay(unsigned int ns) |
501 | { |
502 | if (!ns) |
503 | return; |
504 | |
505 | if (ns < 10000) |
506 | ndelay(ns); |
507 | else |
508 | udelay(DIV_ROUND_UP(ns, 1000)); |
509 | } |
510 | |
511 | /* |
512 | * The controller has many flags that could generate interrupts, most of them |
513 | * are disabled and polling is used. For the very slow signals, using interrupts |
514 | * may relax the CPU charge. |
515 | */ |
516 | static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) |
517 | { |
518 | u32 reg; |
519 | |
520 | /* Writing 1 disables the interrupt */ |
521 | reg = readl_relaxed(nfc->regs + NDCR); |
522 | writel_relaxed(reg | int_mask, nfc->regs + NDCR); |
523 | } |
524 | |
525 | static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) |
526 | { |
527 | u32 reg; |
528 | |
529 | /* Writing 0 enables the interrupt */ |
530 | reg = readl_relaxed(nfc->regs + NDCR); |
531 | writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); |
532 | } |
533 | |
534 | static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) |
535 | { |
536 | u32 reg; |
537 | |
538 | reg = readl_relaxed(nfc->regs + NDSR); |
539 | writel_relaxed(int_mask, nfc->regs + NDSR); |
540 | |
541 | return reg & int_mask; |
542 | } |
543 | |
544 | static void marvell_nfc_force_byte_access(struct nand_chip *chip, |
545 | bool force_8bit) |
546 | { |
547 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
548 | u32 ndcr; |
549 | |
550 | /* |
551 | * Callers of this function do not verify if the NAND is using a 16-bit |
552 | * an 8-bit bus for normal operations, so we need to take care of that |
553 | * here by leaving the configuration unchanged if the NAND does not have |
554 | * the NAND_BUSWIDTH_16 flag set. |
555 | */ |
556 | if (!(chip->options & NAND_BUSWIDTH_16)) |
557 | return; |
558 | |
559 | ndcr = readl_relaxed(nfc->regs + NDCR); |
560 | |
561 | if (force_8bit) |
562 | ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); |
563 | else |
564 | ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; |
565 | |
566 | writel_relaxed(ndcr, nfc->regs + NDCR); |
567 | } |
568 | |
569 | static int marvell_nfc_wait_ndrun(struct nand_chip *chip) |
570 | { |
571 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
572 | u32 val; |
573 | int ret; |
574 | |
575 | /* |
576 | * The command is being processed, wait for the ND_RUN bit to be |
577 | * cleared by the NFC. If not, we must clear it by hand. |
578 | */ |
579 | ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, |
580 | (val & NDCR_ND_RUN) == 0, |
581 | POLL_PERIOD, POLL_TIMEOUT); |
582 | if (ret) { |
583 | dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); |
584 | writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, |
585 | nfc->regs + NDCR); |
586 | return ret; |
587 | } |
588 | |
589 | return 0; |
590 | } |
591 | |
592 | /* |
593 | * Any time a command has to be sent to the controller, the following sequence |
594 | * has to be followed: |
595 | * - call marvell_nfc_prepare_cmd() |
596 | * -> activate the ND_RUN bit that will kind of 'start a job' |
597 | * -> wait the signal indicating the NFC is waiting for a command |
598 | * - send the command (cmd and address cycles) |
599 | * - enventually send or receive the data |
600 | * - call marvell_nfc_end_cmd() with the corresponding flag |
601 | * -> wait the flag to be triggered or cancel the job with a timeout |
602 | * |
603 | * The following helpers are here to factorize the code a bit so that |
604 | * specialized functions responsible for executing the actual NAND |
605 | * operations do not have to replicate the same code blocks. |
606 | */ |
607 | static int marvell_nfc_prepare_cmd(struct nand_chip *chip) |
608 | { |
609 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
610 | u32 ndcr, val; |
611 | int ret; |
612 | |
613 | /* Poll ND_RUN and clear NDSR before issuing any command */ |
614 | ret = marvell_nfc_wait_ndrun(chip); |
615 | if (ret) { |
616 | dev_err(nfc->dev, "Last operation did not succeed\n"); |
617 | return ret; |
618 | } |
619 | |
620 | ndcr = readl_relaxed(nfc->regs + NDCR); |
621 | writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); |
622 | |
623 | /* Assert ND_RUN bit and wait the NFC to be ready */ |
624 | writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); |
625 | ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, |
626 | val & NDSR_WRCMDREQ, |
627 | POLL_PERIOD, POLL_TIMEOUT); |
628 | if (ret) { |
629 | dev_err(nfc->dev, "Timeout on WRCMDRE\n"); |
630 | return -ETIMEDOUT; |
631 | } |
632 | |
633 | /* Command may be written, clear WRCMDREQ status bit */ |
634 | writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); |
635 | |
636 | return 0; |
637 | } |
638 | |
639 | static void marvell_nfc_send_cmd(struct nand_chip *chip, |
640 | struct marvell_nfc_op *nfc_op) |
641 | { |
642 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
643 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
644 | |
645 | dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" |
646 | "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", |
647 | (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], |
648 | nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); |
649 | |
650 | writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], |
651 | nfc->regs + NDCB0); |
652 | writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); |
653 | writel(val: nfc_op->ndcb[2], addr: nfc->regs + NDCB0); |
654 | |
655 | /* |
656 | * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 |
657 | * fields are used (only available on NFCv2). |
658 | */ |
659 | if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || |
660 | NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { |
661 | if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) |
662 | writel(val: nfc_op->ndcb[3], addr: nfc->regs + NDCB0); |
663 | } |
664 | } |
665 | |
666 | static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, |
667 | const char *label) |
668 | { |
669 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
670 | u32 val; |
671 | int ret; |
672 | |
673 | ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, |
674 | val & flag, |
675 | POLL_PERIOD, POLL_TIMEOUT); |
676 | |
677 | if (ret) { |
678 | dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", |
679 | label, val); |
680 | if (nfc->dma_chan) |
681 | dmaengine_terminate_all(chan: nfc->dma_chan); |
682 | return ret; |
683 | } |
684 | |
685 | /* |
686 | * DMA function uses this helper to poll on CMDD bits without wanting |
687 | * them to be cleared. |
688 | */ |
689 | if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) |
690 | return 0; |
691 | |
692 | writel_relaxed(flag, nfc->regs + NDSR); |
693 | |
694 | return 0; |
695 | } |
696 | |
697 | static int marvell_nfc_wait_cmdd(struct nand_chip *chip) |
698 | { |
699 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
700 | int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); |
701 | |
702 | return marvell_nfc_end_cmd(chip, flag: cs_flag, label: "CMDD"); |
703 | } |
704 | |
705 | static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, |
706 | u32 expected_val, unsigned long timeout_ms) |
707 | { |
708 | unsigned long limit; |
709 | u32 st; |
710 | |
711 | limit = jiffies + msecs_to_jiffies(m: timeout_ms); |
712 | do { |
713 | st = readl_relaxed(nfc->regs + NDSR); |
714 | if (st & NDSR_RDY(1)) |
715 | st |= NDSR_RDY(0); |
716 | |
717 | if ((st & mask) == expected_val) |
718 | return 0; |
719 | |
720 | cpu_relax(); |
721 | } while (time_after(limit, jiffies)); |
722 | |
723 | return -ETIMEDOUT; |
724 | } |
725 | |
726 | static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) |
727 | { |
728 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
729 | struct mtd_info *mtd = nand_to_mtd(chip); |
730 | u32 pending; |
731 | int ret; |
732 | |
733 | /* Timeout is expressed in ms */ |
734 | if (!timeout_ms) |
735 | timeout_ms = IRQ_TIMEOUT; |
736 | |
737 | if (mtd->oops_panic_write) { |
738 | ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), |
739 | NDSR_RDY(0), |
740 | timeout_ms); |
741 | } else { |
742 | init_completion(x: &nfc->complete); |
743 | |
744 | marvell_nfc_enable_int(nfc, NDCR_RDYM); |
745 | ret = wait_for_completion_timeout(x: &nfc->complete, |
746 | timeout: msecs_to_jiffies(m: timeout_ms)); |
747 | marvell_nfc_disable_int(nfc, NDCR_RDYM); |
748 | } |
749 | pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); |
750 | |
751 | /* |
752 | * In case the interrupt was not served in the required time frame, |
753 | * check if the ISR was not served or if something went actually wrong. |
754 | */ |
755 | if (!ret && !pending) { |
756 | dev_err(nfc->dev, "Timeout waiting for RB signal\n"); |
757 | return -ETIMEDOUT; |
758 | } |
759 | |
760 | return 0; |
761 | } |
762 | |
763 | static void marvell_nfc_select_target(struct nand_chip *chip, |
764 | unsigned int die_nr) |
765 | { |
766 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
767 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
768 | u32 ndcr_generic; |
769 | |
770 | /* |
771 | * Reset the NDCR register to a clean state for this particular chip, |
772 | * also clear ND_RUN bit. |
773 | */ |
774 | ndcr_generic = readl_relaxed(nfc->regs + NDCR) & |
775 | NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; |
776 | writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); |
777 | |
778 | /* Also reset the interrupt status register */ |
779 | marvell_nfc_clear_int(nfc, NDCR_ALL_INT); |
780 | |
781 | if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) |
782 | return; |
783 | |
784 | writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); |
785 | writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); |
786 | |
787 | nfc->selected_chip = chip; |
788 | marvell_nand->selected_die = die_nr; |
789 | } |
790 | |
791 | static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) |
792 | { |
793 | struct marvell_nfc *nfc = dev_id; |
794 | u32 st = readl_relaxed(nfc->regs + NDSR); |
795 | u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; |
796 | |
797 | /* |
798 | * RDY interrupt mask is one bit in NDCR while there are two status |
799 | * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). |
800 | */ |
801 | if (st & NDSR_RDY(1)) |
802 | st |= NDSR_RDY(0); |
803 | |
804 | if (!(st & ien)) |
805 | return IRQ_NONE; |
806 | |
807 | marvell_nfc_disable_int(nfc, int_mask: st & NDCR_ALL_INT); |
808 | |
809 | if (st & (NDSR_RDY(0) | NDSR_RDY(1))) |
810 | complete(&nfc->complete); |
811 | |
812 | return IRQ_HANDLED; |
813 | } |
814 | |
815 | /* HW ECC related functions */ |
816 | static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) |
817 | { |
818 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
819 | u32 ndcr = readl_relaxed(nfc->regs + NDCR); |
820 | |
821 | if (!(ndcr & NDCR_ECC_EN)) { |
822 | writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); |
823 | |
824 | /* |
825 | * When enabling BCH, set threshold to 0 to always know the |
826 | * number of corrected bitflips. |
827 | */ |
828 | if (chip->ecc.algo == NAND_ECC_ALGO_BCH) |
829 | writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); |
830 | } |
831 | } |
832 | |
833 | static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) |
834 | { |
835 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
836 | u32 ndcr = readl_relaxed(nfc->regs + NDCR); |
837 | |
838 | if (ndcr & NDCR_ECC_EN) { |
839 | writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); |
840 | if (chip->ecc.algo == NAND_ECC_ALGO_BCH) |
841 | writel_relaxed(0, nfc->regs + NDECCCTRL); |
842 | } |
843 | } |
844 | |
845 | /* DMA related helpers */ |
846 | static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) |
847 | { |
848 | u32 reg; |
849 | |
850 | reg = readl_relaxed(nfc->regs + NDCR); |
851 | writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); |
852 | } |
853 | |
854 | static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) |
855 | { |
856 | u32 reg; |
857 | |
858 | reg = readl_relaxed(nfc->regs + NDCR); |
859 | writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); |
860 | } |
861 | |
862 | /* Read/write PIO/DMA accessors */ |
863 | static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, |
864 | enum dma_data_direction direction, |
865 | unsigned int len) |
866 | { |
867 | unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); |
868 | struct dma_async_tx_descriptor *tx; |
869 | struct scatterlist sg; |
870 | dma_cookie_t cookie; |
871 | int ret; |
872 | |
873 | marvell_nfc_enable_dma(nfc); |
874 | /* Prepare the DMA transfer */ |
875 | sg_init_one(&sg, nfc->dma_buf, dma_len); |
876 | ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); |
877 | if (!ret) { |
878 | dev_err(nfc->dev, "Could not map DMA S/G list\n"); |
879 | return -ENXIO; |
880 | } |
881 | |
882 | tx = dmaengine_prep_slave_sg(chan: nfc->dma_chan, sgl: &sg, sg_len: 1, |
883 | dir: direction == DMA_FROM_DEVICE ? |
884 | DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, |
885 | flags: DMA_PREP_INTERRUPT); |
886 | if (!tx) { |
887 | dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); |
888 | dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); |
889 | return -ENXIO; |
890 | } |
891 | |
892 | /* Do the task and wait for it to finish */ |
893 | cookie = dmaengine_submit(desc: tx); |
894 | ret = dma_submit_error(cookie); |
895 | if (ret) |
896 | return -EIO; |
897 | |
898 | dma_async_issue_pending(chan: nfc->dma_chan); |
899 | ret = marvell_nfc_wait_cmdd(chip: nfc->selected_chip); |
900 | dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); |
901 | marvell_nfc_disable_dma(nfc); |
902 | if (ret) { |
903 | dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", |
904 | dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); |
905 | dmaengine_terminate_all(chan: nfc->dma_chan); |
906 | return -ETIMEDOUT; |
907 | } |
908 | |
909 | return 0; |
910 | } |
911 | |
912 | static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, |
913 | unsigned int len) |
914 | { |
915 | unsigned int last_len = len % FIFO_DEPTH; |
916 | unsigned int last_full_offset = round_down(len, FIFO_DEPTH); |
917 | int i; |
918 | |
919 | for (i = 0; i < last_full_offset; i += FIFO_DEPTH) |
920 | ioread32_rep(port: nfc->regs + NDDB, buf: in + i, FIFO_REP(FIFO_DEPTH)); |
921 | |
922 | if (last_len) { |
923 | u8 tmp_buf[FIFO_DEPTH]; |
924 | |
925 | ioread32_rep(port: nfc->regs + NDDB, buf: tmp_buf, FIFO_REP(FIFO_DEPTH)); |
926 | memcpy(in + last_full_offset, tmp_buf, last_len); |
927 | } |
928 | |
929 | return 0; |
930 | } |
931 | |
932 | static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, |
933 | unsigned int len) |
934 | { |
935 | unsigned int last_len = len % FIFO_DEPTH; |
936 | unsigned int last_full_offset = round_down(len, FIFO_DEPTH); |
937 | int i; |
938 | |
939 | for (i = 0; i < last_full_offset; i += FIFO_DEPTH) |
940 | iowrite32_rep(port: nfc->regs + NDDB, buf: out + i, FIFO_REP(FIFO_DEPTH)); |
941 | |
942 | if (last_len) { |
943 | u8 tmp_buf[FIFO_DEPTH]; |
944 | |
945 | memcpy(tmp_buf, out + last_full_offset, last_len); |
946 | iowrite32_rep(port: nfc->regs + NDDB, buf: tmp_buf, FIFO_REP(FIFO_DEPTH)); |
947 | } |
948 | |
949 | return 0; |
950 | } |
951 | |
952 | static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, |
953 | u8 *data, int data_len, |
954 | u8 *spare, int spare_len, |
955 | u8 *ecc, int ecc_len, |
956 | unsigned int *max_bitflips) |
957 | { |
958 | struct mtd_info *mtd = nand_to_mtd(chip); |
959 | int bf; |
960 | |
961 | /* |
962 | * Blank pages (all 0xFF) that have not been written may be recognized |
963 | * as bad if bitflips occur, so whenever an uncorrectable error occurs, |
964 | * check if the entire page (with ECC bytes) is actually blank or not. |
965 | */ |
966 | if (!data) |
967 | data_len = 0; |
968 | if (!spare) |
969 | spare_len = 0; |
970 | if (!ecc) |
971 | ecc_len = 0; |
972 | |
973 | bf = nand_check_erased_ecc_chunk(data, datalen: data_len, ecc, ecclen: ecc_len, |
974 | extraoob: spare, extraooblen: spare_len, threshold: chip->ecc.strength); |
975 | if (bf < 0) { |
976 | mtd->ecc_stats.failed++; |
977 | return; |
978 | } |
979 | |
980 | /* Update the stats and max_bitflips */ |
981 | mtd->ecc_stats.corrected += bf; |
982 | *max_bitflips = max_t(unsigned int, *max_bitflips, bf); |
983 | } |
984 | |
985 | /* |
986 | * Check if a chunk is correct or not according to the hardware ECC engine. |
987 | * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however |
988 | * mtd->ecc_stats.failure is not, the function will instead return a non-zero |
989 | * value indicating that a check on the emptyness of the subpage must be |
990 | * performed before actually declaring the subpage as "corrupted". |
991 | */ |
992 | static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, |
993 | unsigned int *max_bitflips) |
994 | { |
995 | struct mtd_info *mtd = nand_to_mtd(chip); |
996 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
997 | int bf = 0; |
998 | u32 ndsr; |
999 | |
1000 | ndsr = readl_relaxed(nfc->regs + NDSR); |
1001 | |
1002 | /* Check uncorrectable error flag */ |
1003 | if (ndsr & NDSR_UNCERR) { |
1004 | writel_relaxed(ndsr, nfc->regs + NDSR); |
1005 | |
1006 | /* |
1007 | * Do not increment ->ecc_stats.failed now, instead, return a |
1008 | * non-zero value to indicate that this chunk was apparently |
1009 | * bad, and it should be check to see if it empty or not. If |
1010 | * the chunk (with ECC bytes) is not declared empty, the calling |
1011 | * function must increment the failure count. |
1012 | */ |
1013 | return -EBADMSG; |
1014 | } |
1015 | |
1016 | /* Check correctable error flag */ |
1017 | if (ndsr & NDSR_CORERR) { |
1018 | writel_relaxed(ndsr, nfc->regs + NDSR); |
1019 | |
1020 | if (chip->ecc.algo == NAND_ECC_ALGO_BCH) |
1021 | bf = NDSR_ERRCNT(ndsr); |
1022 | else |
1023 | bf = 1; |
1024 | } |
1025 | |
1026 | /* Update the stats and max_bitflips */ |
1027 | mtd->ecc_stats.corrected += bf; |
1028 | *max_bitflips = max_t(unsigned int, *max_bitflips, bf); |
1029 | |
1030 | return 0; |
1031 | } |
1032 | |
1033 | /* Hamming read helpers */ |
1034 | static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, |
1035 | u8 *data_buf, u8 *oob_buf, |
1036 | bool raw, int page) |
1037 | { |
1038 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
1039 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
1040 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
1041 | struct marvell_nfc_op nfc_op = { |
1042 | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | |
1043 | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
1044 | NDCB0_DBC | |
1045 | NDCB0_CMD1(NAND_CMD_READ0) | |
1046 | NDCB0_CMD2(NAND_CMD_READSTART), |
1047 | .ndcb[1] = NDCB1_ADDRS_PAGE(page), |
1048 | .ndcb[2] = NDCB2_ADDR5_PAGE(page), |
1049 | }; |
1050 | unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); |
1051 | int ret; |
1052 | |
1053 | /* NFCv2 needs more information about the operation being executed */ |
1054 | if (nfc->caps->is_nfcv2) |
1055 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); |
1056 | |
1057 | ret = marvell_nfc_prepare_cmd(chip); |
1058 | if (ret) |
1059 | return ret; |
1060 | |
1061 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
1062 | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
1063 | label: "RDDREQ while draining FIFO (data/oob)"); |
1064 | if (ret) |
1065 | return ret; |
1066 | |
1067 | /* |
1068 | * Read the page then the OOB area. Unlike what is shown in current |
1069 | * documentation, spare bytes are protected by the ECC engine, and must |
1070 | * be at the beginning of the OOB area or running this driver on legacy |
1071 | * systems will prevent the discovery of the BBM/BBT. |
1072 | */ |
1073 | if (nfc->use_dma) { |
1074 | marvell_nfc_xfer_data_dma(nfc, direction: DMA_FROM_DEVICE, |
1075 | len: lt->data_bytes + oob_bytes); |
1076 | memcpy(data_buf, nfc->dma_buf, lt->data_bytes); |
1077 | memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); |
1078 | } else { |
1079 | marvell_nfc_xfer_data_in_pio(nfc, in: data_buf, len: lt->data_bytes); |
1080 | marvell_nfc_xfer_data_in_pio(nfc, in: oob_buf, len: oob_bytes); |
1081 | } |
1082 | |
1083 | ret = marvell_nfc_wait_cmdd(chip); |
1084 | return ret; |
1085 | } |
1086 | |
1087 | static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, |
1088 | int oob_required, int page) |
1089 | { |
1090 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
1091 | return marvell_nfc_hw_ecc_hmg_do_read_page(chip, data_buf: buf, oob_buf: chip->oob_poi, |
1092 | raw: true, page); |
1093 | } |
1094 | |
1095 | static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, |
1096 | int oob_required, int page) |
1097 | { |
1098 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
1099 | unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; |
1100 | int max_bitflips = 0, ret; |
1101 | u8 *raw_buf; |
1102 | |
1103 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
1104 | marvell_nfc_enable_hw_ecc(chip); |
1105 | marvell_nfc_hw_ecc_hmg_do_read_page(chip, data_buf: buf, oob_buf: chip->oob_poi, raw: false, |
1106 | page); |
1107 | ret = marvell_nfc_hw_ecc_check_bitflips(chip, max_bitflips: &max_bitflips); |
1108 | marvell_nfc_disable_hw_ecc(chip); |
1109 | |
1110 | if (!ret) |
1111 | return max_bitflips; |
1112 | |
1113 | /* |
1114 | * When ECC failures are detected, check if the full page has been |
1115 | * written or not. Ignore the failure if it is actually empty. |
1116 | */ |
1117 | raw_buf = kmalloc(size: full_sz, GFP_KERNEL); |
1118 | if (!raw_buf) |
1119 | return -ENOMEM; |
1120 | |
1121 | marvell_nfc_hw_ecc_hmg_do_read_page(chip, data_buf: raw_buf, oob_buf: raw_buf + |
1122 | lt->data_bytes, raw: true, page); |
1123 | marvell_nfc_check_empty_chunk(chip, data: raw_buf, data_len: full_sz, NULL, spare_len: 0, NULL, ecc_len: 0, |
1124 | max_bitflips: &max_bitflips); |
1125 | kfree(objp: raw_buf); |
1126 | |
1127 | return max_bitflips; |
1128 | } |
1129 | |
1130 | /* |
1131 | * Spare area in Hamming layouts is not protected by the ECC engine (even if |
1132 | * it appears before the ECC bytes when reading), the ->read_oob_raw() function |
1133 | * also stands for ->read_oob(). |
1134 | */ |
1135 | static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) |
1136 | { |
1137 | u8 *buf = nand_get_data_buf(chip); |
1138 | |
1139 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
1140 | return marvell_nfc_hw_ecc_hmg_do_read_page(chip, data_buf: buf, oob_buf: chip->oob_poi, |
1141 | raw: true, page); |
1142 | } |
1143 | |
1144 | /* Hamming write helpers */ |
1145 | static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, |
1146 | const u8 *data_buf, |
1147 | const u8 *oob_buf, bool raw, |
1148 | int page) |
1149 | { |
1150 | const struct nand_sdr_timings *sdr = |
1151 | nand_get_sdr_timings(conf: nand_get_interface_config(chip)); |
1152 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
1153 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
1154 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
1155 | struct marvell_nfc_op nfc_op = { |
1156 | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | |
1157 | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
1158 | NDCB0_CMD1(NAND_CMD_SEQIN) | |
1159 | NDCB0_CMD2(NAND_CMD_PAGEPROG) | |
1160 | NDCB0_DBC, |
1161 | .ndcb[1] = NDCB1_ADDRS_PAGE(page), |
1162 | .ndcb[2] = NDCB2_ADDR5_PAGE(page), |
1163 | }; |
1164 | unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); |
1165 | u8 status; |
1166 | int ret; |
1167 | |
1168 | /* NFCv2 needs more information about the operation being executed */ |
1169 | if (nfc->caps->is_nfcv2) |
1170 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); |
1171 | |
1172 | ret = marvell_nfc_prepare_cmd(chip); |
1173 | if (ret) |
1174 | return ret; |
1175 | |
1176 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
1177 | ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, |
1178 | label: "WRDREQ while loading FIFO (data)"); |
1179 | if (ret) |
1180 | return ret; |
1181 | |
1182 | /* Write the page then the OOB area */ |
1183 | if (nfc->use_dma) { |
1184 | memcpy(nfc->dma_buf, data_buf, lt->data_bytes); |
1185 | memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); |
1186 | marvell_nfc_xfer_data_dma(nfc, direction: DMA_TO_DEVICE, len: lt->data_bytes + |
1187 | lt->ecc_bytes + lt->spare_bytes); |
1188 | } else { |
1189 | marvell_nfc_xfer_data_out_pio(nfc, out: data_buf, len: lt->data_bytes); |
1190 | marvell_nfc_xfer_data_out_pio(nfc, out: oob_buf, len: oob_bytes); |
1191 | } |
1192 | |
1193 | ret = marvell_nfc_wait_cmdd(chip); |
1194 | if (ret) |
1195 | return ret; |
1196 | |
1197 | ret = marvell_nfc_wait_op(chip, |
1198 | PSEC_TO_MSEC(sdr->tPROG_max)); |
1199 | if (ret) |
1200 | return ret; |
1201 | |
1202 | /* Check write status on the chip side */ |
1203 | ret = nand_status_op(chip, status: &status); |
1204 | if (ret) |
1205 | return ret; |
1206 | |
1207 | if (status & NAND_STATUS_FAIL) |
1208 | return -EIO; |
1209 | |
1210 | return 0; |
1211 | } |
1212 | |
1213 | static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, |
1214 | const u8 *buf, |
1215 | int oob_required, int page) |
1216 | { |
1217 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
1218 | return marvell_nfc_hw_ecc_hmg_do_write_page(chip, data_buf: buf, oob_buf: chip->oob_poi, |
1219 | raw: true, page); |
1220 | } |
1221 | |
1222 | static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, |
1223 | const u8 *buf, |
1224 | int oob_required, int page) |
1225 | { |
1226 | int ret; |
1227 | |
1228 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
1229 | marvell_nfc_enable_hw_ecc(chip); |
1230 | ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, data_buf: buf, oob_buf: chip->oob_poi, |
1231 | raw: false, page); |
1232 | marvell_nfc_disable_hw_ecc(chip); |
1233 | |
1234 | return ret; |
1235 | } |
1236 | |
1237 | /* |
1238 | * Spare area in Hamming layouts is not protected by the ECC engine (even if |
1239 | * it appears before the ECC bytes when reading), the ->write_oob_raw() function |
1240 | * also stands for ->write_oob(). |
1241 | */ |
1242 | static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, |
1243 | int page) |
1244 | { |
1245 | struct mtd_info *mtd = nand_to_mtd(chip); |
1246 | u8 *buf = nand_get_data_buf(chip); |
1247 | |
1248 | memset(buf, 0xFF, mtd->writesize); |
1249 | |
1250 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
1251 | return marvell_nfc_hw_ecc_hmg_do_write_page(chip, data_buf: buf, oob_buf: chip->oob_poi, |
1252 | raw: true, page); |
1253 | } |
1254 | |
1255 | /* BCH read helpers */ |
1256 | static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, |
1257 | int oob_required, int page) |
1258 | { |
1259 | struct mtd_info *mtd = nand_to_mtd(chip); |
1260 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
1261 | u8 *oob = chip->oob_poi; |
1262 | int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; |
1263 | int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + |
1264 | lt->last_spare_bytes; |
1265 | int data_len = lt->data_bytes; |
1266 | int spare_len = lt->spare_bytes; |
1267 | int ecc_len = lt->ecc_bytes; |
1268 | int chunk; |
1269 | |
1270 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
1271 | |
1272 | if (oob_required) |
1273 | memset(chip->oob_poi, 0xFF, mtd->oobsize); |
1274 | |
1275 | nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0); |
1276 | |
1277 | for (chunk = 0; chunk < lt->nchunks; chunk++) { |
1278 | /* Update last chunk length */ |
1279 | if (chunk >= lt->full_chunk_cnt) { |
1280 | data_len = lt->last_data_bytes; |
1281 | spare_len = lt->last_spare_bytes; |
1282 | ecc_len = lt->last_ecc_bytes; |
1283 | } |
1284 | |
1285 | /* Read data bytes*/ |
1286 | nand_change_read_column_op(chip, offset_in_page: chunk * chunk_size, |
1287 | buf: buf + (lt->data_bytes * chunk), |
1288 | len: data_len, force_8bit: false); |
1289 | |
1290 | /* Read spare bytes */ |
1291 | nand_read_data_op(chip, buf: oob + (lt->spare_bytes * chunk), |
1292 | len: spare_len, force_8bit: false, check_only: false); |
1293 | |
1294 | /* Read ECC bytes */ |
1295 | nand_read_data_op(chip, buf: oob + ecc_offset + |
1296 | (ALIGN(lt->ecc_bytes, 32) * chunk), |
1297 | len: ecc_len, force_8bit: false, check_only: false); |
1298 | } |
1299 | |
1300 | return 0; |
1301 | } |
1302 | |
1303 | static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, |
1304 | u8 *data, unsigned int data_len, |
1305 | u8 *spare, unsigned int spare_len, |
1306 | int page) |
1307 | { |
1308 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
1309 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
1310 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
1311 | int i, ret; |
1312 | struct marvell_nfc_op nfc_op = { |
1313 | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | |
1314 | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
1315 | NDCB0_LEN_OVRD, |
1316 | .ndcb[1] = NDCB1_ADDRS_PAGE(page), |
1317 | .ndcb[2] = NDCB2_ADDR5_PAGE(page), |
1318 | .ndcb[3] = data_len + spare_len, |
1319 | }; |
1320 | |
1321 | ret = marvell_nfc_prepare_cmd(chip); |
1322 | if (ret) |
1323 | return; |
1324 | |
1325 | if (chunk == 0) |
1326 | nfc_op.ndcb[0] |= NDCB0_DBC | |
1327 | NDCB0_CMD1(NAND_CMD_READ0) | |
1328 | NDCB0_CMD2(NAND_CMD_READSTART); |
1329 | |
1330 | /* |
1331 | * Trigger the monolithic read on the first chunk, then naked read on |
1332 | * intermediate chunks and finally a last naked read on the last chunk. |
1333 | */ |
1334 | if (chunk == 0) |
1335 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); |
1336 | else if (chunk < lt->nchunks - 1) |
1337 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); |
1338 | else |
1339 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
1340 | |
1341 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
1342 | |
1343 | /* |
1344 | * According to the datasheet, when reading from NDDB |
1345 | * with BCH enabled, after each 32 bytes reads, we |
1346 | * have to make sure that the NDSR.RDDREQ bit is set. |
1347 | * |
1348 | * Drain the FIFO, 8 32-bit reads at a time, and skip |
1349 | * the polling on the last read. |
1350 | * |
1351 | * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. |
1352 | */ |
1353 | for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { |
1354 | marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
1355 | label: "RDDREQ while draining FIFO (data)"); |
1356 | marvell_nfc_xfer_data_in_pio(nfc, in: data, |
1357 | FIFO_DEPTH * BCH_SEQ_READS); |
1358 | data += FIFO_DEPTH * BCH_SEQ_READS; |
1359 | } |
1360 | |
1361 | for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { |
1362 | marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
1363 | label: "RDDREQ while draining FIFO (OOB)"); |
1364 | marvell_nfc_xfer_data_in_pio(nfc, in: spare, |
1365 | FIFO_DEPTH * BCH_SEQ_READS); |
1366 | spare += FIFO_DEPTH * BCH_SEQ_READS; |
1367 | } |
1368 | } |
1369 | |
1370 | static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, |
1371 | u8 *buf, int oob_required, |
1372 | int page) |
1373 | { |
1374 | struct mtd_info *mtd = nand_to_mtd(chip); |
1375 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
1376 | int data_len = lt->data_bytes, spare_len = lt->spare_bytes; |
1377 | u8 *data = buf, *spare = chip->oob_poi; |
1378 | int max_bitflips = 0; |
1379 | u32 failure_mask = 0; |
1380 | int chunk, ret; |
1381 | |
1382 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
1383 | |
1384 | /* |
1385 | * With BCH, OOB is not fully used (and thus not read entirely), not |
1386 | * expected bytes could show up at the end of the OOB buffer if not |
1387 | * explicitly erased. |
1388 | */ |
1389 | if (oob_required) |
1390 | memset(chip->oob_poi, 0xFF, mtd->oobsize); |
1391 | |
1392 | marvell_nfc_enable_hw_ecc(chip); |
1393 | |
1394 | for (chunk = 0; chunk < lt->nchunks; chunk++) { |
1395 | /* Update length for the last chunk */ |
1396 | if (chunk >= lt->full_chunk_cnt) { |
1397 | data_len = lt->last_data_bytes; |
1398 | spare_len = lt->last_spare_bytes; |
1399 | } |
1400 | |
1401 | /* Read the chunk and detect number of bitflips */ |
1402 | marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, |
1403 | spare, spare_len, page); |
1404 | ret = marvell_nfc_hw_ecc_check_bitflips(chip, max_bitflips: &max_bitflips); |
1405 | if (ret) |
1406 | failure_mask |= BIT(chunk); |
1407 | |
1408 | data += data_len; |
1409 | spare += spare_len; |
1410 | } |
1411 | |
1412 | marvell_nfc_disable_hw_ecc(chip); |
1413 | |
1414 | if (!failure_mask) |
1415 | return max_bitflips; |
1416 | |
1417 | /* |
1418 | * Please note that dumping the ECC bytes during a normal read with OOB |
1419 | * area would add a significant overhead as ECC bytes are "consumed" by |
1420 | * the controller in normal mode and must be re-read in raw mode. To |
1421 | * avoid dropping the performances, we prefer not to include them. The |
1422 | * user should re-read the page in raw mode if ECC bytes are required. |
1423 | */ |
1424 | |
1425 | /* |
1426 | * In case there is any subpage read error, we usually re-read only ECC |
1427 | * bytes in raw mode and check if the whole page is empty. In this case, |
1428 | * it is normal that the ECC check failed and we just ignore the error. |
1429 | * |
1430 | * However, it has been empirically observed that for some layouts (e.g |
1431 | * 2k page, 8b strength per 512B chunk), the controller tries to correct |
1432 | * bits and may create itself bitflips in the erased area. To overcome |
1433 | * this strange behavior, the whole page is re-read in raw mode, not |
1434 | * only the ECC bytes. |
1435 | */ |
1436 | for (chunk = 0; chunk < lt->nchunks; chunk++) { |
1437 | int data_off_in_page, spare_off_in_page, ecc_off_in_page; |
1438 | int data_off, spare_off, ecc_off; |
1439 | int data_len, spare_len, ecc_len; |
1440 | |
1441 | /* No failure reported for this chunk, move to the next one */ |
1442 | if (!(failure_mask & BIT(chunk))) |
1443 | continue; |
1444 | |
1445 | data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + |
1446 | lt->ecc_bytes); |
1447 | spare_off_in_page = data_off_in_page + |
1448 | (chunk < lt->full_chunk_cnt ? lt->data_bytes : |
1449 | lt->last_data_bytes); |
1450 | ecc_off_in_page = spare_off_in_page + |
1451 | (chunk < lt->full_chunk_cnt ? lt->spare_bytes : |
1452 | lt->last_spare_bytes); |
1453 | |
1454 | data_off = chunk * lt->data_bytes; |
1455 | spare_off = chunk * lt->spare_bytes; |
1456 | ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + |
1457 | lt->last_spare_bytes + |
1458 | (chunk * (lt->ecc_bytes + 2)); |
1459 | |
1460 | data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : |
1461 | lt->last_data_bytes; |
1462 | spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : |
1463 | lt->last_spare_bytes; |
1464 | ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : |
1465 | lt->last_ecc_bytes; |
1466 | |
1467 | /* |
1468 | * Only re-read the ECC bytes, unless we are using the 2k/8b |
1469 | * layout which is buggy in the sense that the ECC engine will |
1470 | * try to correct data bytes anyway, creating bitflips. In this |
1471 | * case, re-read the entire page. |
1472 | */ |
1473 | if (lt->writesize == 2048 && lt->strength == 8) { |
1474 | nand_change_read_column_op(chip, offset_in_page: data_off_in_page, |
1475 | buf: buf + data_off, len: data_len, |
1476 | force_8bit: false); |
1477 | nand_change_read_column_op(chip, offset_in_page: spare_off_in_page, |
1478 | buf: chip->oob_poi + spare_off, len: spare_len, |
1479 | force_8bit: false); |
1480 | } |
1481 | |
1482 | nand_change_read_column_op(chip, offset_in_page: ecc_off_in_page, |
1483 | buf: chip->oob_poi + ecc_off, len: ecc_len, |
1484 | force_8bit: false); |
1485 | |
1486 | /* Check the entire chunk (data + spare + ecc) for emptyness */ |
1487 | marvell_nfc_check_empty_chunk(chip, data: buf + data_off, data_len, |
1488 | spare: chip->oob_poi + spare_off, spare_len, |
1489 | ecc: chip->oob_poi + ecc_off, ecc_len, |
1490 | max_bitflips: &max_bitflips); |
1491 | } |
1492 | |
1493 | return max_bitflips; |
1494 | } |
1495 | |
1496 | static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) |
1497 | { |
1498 | u8 *buf = nand_get_data_buf(chip); |
1499 | |
1500 | return chip->ecc.read_page_raw(chip, buf, true, page); |
1501 | } |
1502 | |
1503 | static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) |
1504 | { |
1505 | u8 *buf = nand_get_data_buf(chip); |
1506 | |
1507 | return chip->ecc.read_page(chip, buf, true, page); |
1508 | } |
1509 | |
1510 | /* BCH write helpers */ |
1511 | static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, |
1512 | const u8 *buf, |
1513 | int oob_required, int page) |
1514 | { |
1515 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
1516 | int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; |
1517 | int data_len = lt->data_bytes; |
1518 | int spare_len = lt->spare_bytes; |
1519 | int ecc_len = lt->ecc_bytes; |
1520 | int spare_offset = 0; |
1521 | int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + |
1522 | lt->last_spare_bytes; |
1523 | int chunk; |
1524 | |
1525 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
1526 | |
1527 | nand_prog_page_begin_op(chip, page, offset_in_page: 0, NULL, len: 0); |
1528 | |
1529 | for (chunk = 0; chunk < lt->nchunks; chunk++) { |
1530 | if (chunk >= lt->full_chunk_cnt) { |
1531 | data_len = lt->last_data_bytes; |
1532 | spare_len = lt->last_spare_bytes; |
1533 | ecc_len = lt->last_ecc_bytes; |
1534 | } |
1535 | |
1536 | /* Point to the column of the next chunk */ |
1537 | nand_change_write_column_op(chip, offset_in_page: chunk * full_chunk_size, |
1538 | NULL, len: 0, force_8bit: false); |
1539 | |
1540 | /* Write the data */ |
1541 | nand_write_data_op(chip, buf: buf + (chunk * lt->data_bytes), |
1542 | len: data_len, force_8bit: false); |
1543 | |
1544 | if (!oob_required) |
1545 | continue; |
1546 | |
1547 | /* Write the spare bytes */ |
1548 | if (spare_len) |
1549 | nand_write_data_op(chip, buf: chip->oob_poi + spare_offset, |
1550 | len: spare_len, force_8bit: false); |
1551 | |
1552 | /* Write the ECC bytes */ |
1553 | if (ecc_len) |
1554 | nand_write_data_op(chip, buf: chip->oob_poi + ecc_offset, |
1555 | len: ecc_len, force_8bit: false); |
1556 | |
1557 | spare_offset += spare_len; |
1558 | ecc_offset += ALIGN(ecc_len, 32); |
1559 | } |
1560 | |
1561 | return nand_prog_page_end_op(chip); |
1562 | } |
1563 | |
1564 | static int |
1565 | marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, |
1566 | const u8 *data, unsigned int data_len, |
1567 | const u8 *spare, unsigned int spare_len, |
1568 | int page) |
1569 | { |
1570 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
1571 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
1572 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
1573 | u32 xtype; |
1574 | int ret; |
1575 | struct marvell_nfc_op nfc_op = { |
1576 | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, |
1577 | .ndcb[3] = data_len + spare_len, |
1578 | }; |
1579 | |
1580 | /* |
1581 | * First operation dispatches the CMD_SEQIN command, issue the address |
1582 | * cycles and asks for the first chunk of data. |
1583 | * All operations in the middle (if any) will issue a naked write and |
1584 | * also ask for data. |
1585 | * Last operation (if any) asks for the last chunk of data through a |
1586 | * last naked write. |
1587 | */ |
1588 | if (chunk == 0) { |
1589 | if (lt->nchunks == 1) |
1590 | xtype = XTYPE_MONOLITHIC_RW; |
1591 | else |
1592 | xtype = XTYPE_WRITE_DISPATCH; |
1593 | |
1594 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | |
1595 | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
1596 | NDCB0_CMD1(NAND_CMD_SEQIN); |
1597 | nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); |
1598 | nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); |
1599 | } else if (chunk < lt->nchunks - 1) { |
1600 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); |
1601 | } else { |
1602 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
1603 | } |
1604 | |
1605 | /* Always dispatch the PAGEPROG command on the last chunk */ |
1606 | if (chunk == lt->nchunks - 1) |
1607 | nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; |
1608 | |
1609 | ret = marvell_nfc_prepare_cmd(chip); |
1610 | if (ret) |
1611 | return ret; |
1612 | |
1613 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
1614 | ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, |
1615 | label: "WRDREQ while loading FIFO (data)"); |
1616 | if (ret) |
1617 | return ret; |
1618 | |
1619 | /* Transfer the contents */ |
1620 | iowrite32_rep(port: nfc->regs + NDDB, buf: data, FIFO_REP(data_len)); |
1621 | iowrite32_rep(port: nfc->regs + NDDB, buf: spare, FIFO_REP(spare_len)); |
1622 | |
1623 | return 0; |
1624 | } |
1625 | |
1626 | static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, |
1627 | const u8 *buf, |
1628 | int oob_required, int page) |
1629 | { |
1630 | const struct nand_sdr_timings *sdr = |
1631 | nand_get_sdr_timings(conf: nand_get_interface_config(chip)); |
1632 | struct mtd_info *mtd = nand_to_mtd(chip); |
1633 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
1634 | const u8 *data = buf; |
1635 | const u8 *spare = chip->oob_poi; |
1636 | int data_len = lt->data_bytes; |
1637 | int spare_len = lt->spare_bytes; |
1638 | int chunk, ret; |
1639 | u8 status; |
1640 | |
1641 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
1642 | |
1643 | /* Spare data will be written anyway, so clear it to avoid garbage */ |
1644 | if (!oob_required) |
1645 | memset(chip->oob_poi, 0xFF, mtd->oobsize); |
1646 | |
1647 | marvell_nfc_enable_hw_ecc(chip); |
1648 | |
1649 | for (chunk = 0; chunk < lt->nchunks; chunk++) { |
1650 | if (chunk >= lt->full_chunk_cnt) { |
1651 | data_len = lt->last_data_bytes; |
1652 | spare_len = lt->last_spare_bytes; |
1653 | } |
1654 | |
1655 | marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, |
1656 | spare, spare_len, page); |
1657 | data += data_len; |
1658 | spare += spare_len; |
1659 | |
1660 | /* |
1661 | * Waiting only for CMDD or PAGED is not enough, ECC are |
1662 | * partially written. No flag is set once the operation is |
1663 | * really finished but the ND_RUN bit is cleared, so wait for it |
1664 | * before stepping into the next command. |
1665 | */ |
1666 | marvell_nfc_wait_ndrun(chip); |
1667 | } |
1668 | |
1669 | ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); |
1670 | |
1671 | marvell_nfc_disable_hw_ecc(chip); |
1672 | |
1673 | if (ret) |
1674 | return ret; |
1675 | |
1676 | /* Check write status on the chip side */ |
1677 | ret = nand_status_op(chip, status: &status); |
1678 | if (ret) |
1679 | return ret; |
1680 | |
1681 | if (status & NAND_STATUS_FAIL) |
1682 | return -EIO; |
1683 | |
1684 | return 0; |
1685 | } |
1686 | |
1687 | static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, |
1688 | int page) |
1689 | { |
1690 | struct mtd_info *mtd = nand_to_mtd(chip); |
1691 | u8 *buf = nand_get_data_buf(chip); |
1692 | |
1693 | memset(buf, 0xFF, mtd->writesize); |
1694 | |
1695 | return chip->ecc.write_page_raw(chip, buf, true, page); |
1696 | } |
1697 | |
1698 | static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) |
1699 | { |
1700 | struct mtd_info *mtd = nand_to_mtd(chip); |
1701 | u8 *buf = nand_get_data_buf(chip); |
1702 | |
1703 | memset(buf, 0xFF, mtd->writesize); |
1704 | |
1705 | return chip->ecc.write_page(chip, buf, true, page); |
1706 | } |
1707 | |
1708 | /* NAND framework ->exec_op() hooks and related helpers */ |
1709 | static void marvell_nfc_parse_instructions(struct nand_chip *chip, |
1710 | const struct nand_subop *subop, |
1711 | struct marvell_nfc_op *nfc_op) |
1712 | { |
1713 | const struct nand_op_instr *instr = NULL; |
1714 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
1715 | bool first_cmd = true; |
1716 | unsigned int op_id; |
1717 | int i; |
1718 | |
1719 | /* Reset the input structure as most of its fields will be OR'ed */ |
1720 | memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); |
1721 | |
1722 | for (op_id = 0; op_id < subop->ninstrs; op_id++) { |
1723 | unsigned int offset, naddrs; |
1724 | const u8 *addrs; |
1725 | int len; |
1726 | |
1727 | instr = &subop->instrs[op_id]; |
1728 | |
1729 | switch (instr->type) { |
1730 | case NAND_OP_CMD_INSTR: |
1731 | if (first_cmd) |
1732 | nfc_op->ndcb[0] |= |
1733 | NDCB0_CMD1(instr->ctx.cmd.opcode); |
1734 | else |
1735 | nfc_op->ndcb[0] |= |
1736 | NDCB0_CMD2(instr->ctx.cmd.opcode) | |
1737 | NDCB0_DBC; |
1738 | |
1739 | nfc_op->cle_ale_delay_ns = instr->delay_ns; |
1740 | first_cmd = false; |
1741 | break; |
1742 | |
1743 | case NAND_OP_ADDR_INSTR: |
1744 | offset = nand_subop_get_addr_start_off(subop, op_id); |
1745 | naddrs = nand_subop_get_num_addr_cyc(subop, op_id); |
1746 | addrs = &instr->ctx.addr.addrs[offset]; |
1747 | |
1748 | nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); |
1749 | |
1750 | for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) |
1751 | nfc_op->ndcb[1] |= addrs[i] << (8 * i); |
1752 | |
1753 | if (naddrs >= 5) |
1754 | nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); |
1755 | if (naddrs >= 6) |
1756 | nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); |
1757 | if (naddrs == 7) |
1758 | nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); |
1759 | |
1760 | nfc_op->cle_ale_delay_ns = instr->delay_ns; |
1761 | break; |
1762 | |
1763 | case NAND_OP_DATA_IN_INSTR: |
1764 | nfc_op->data_instr = instr; |
1765 | nfc_op->data_instr_idx = op_id; |
1766 | nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); |
1767 | if (nfc->caps->is_nfcv2) { |
1768 | nfc_op->ndcb[0] |= |
1769 | NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | |
1770 | NDCB0_LEN_OVRD; |
1771 | len = nand_subop_get_data_len(subop, op_id); |
1772 | nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); |
1773 | } |
1774 | nfc_op->data_delay_ns = instr->delay_ns; |
1775 | break; |
1776 | |
1777 | case NAND_OP_DATA_OUT_INSTR: |
1778 | nfc_op->data_instr = instr; |
1779 | nfc_op->data_instr_idx = op_id; |
1780 | nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); |
1781 | if (nfc->caps->is_nfcv2) { |
1782 | nfc_op->ndcb[0] |= |
1783 | NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | |
1784 | NDCB0_LEN_OVRD; |
1785 | len = nand_subop_get_data_len(subop, op_id); |
1786 | nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); |
1787 | } |
1788 | nfc_op->data_delay_ns = instr->delay_ns; |
1789 | break; |
1790 | |
1791 | case NAND_OP_WAITRDY_INSTR: |
1792 | nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; |
1793 | nfc_op->rdy_delay_ns = instr->delay_ns; |
1794 | break; |
1795 | } |
1796 | } |
1797 | } |
1798 | |
1799 | static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, |
1800 | const struct nand_subop *subop, |
1801 | struct marvell_nfc_op *nfc_op) |
1802 | { |
1803 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
1804 | const struct nand_op_instr *instr = nfc_op->data_instr; |
1805 | unsigned int op_id = nfc_op->data_instr_idx; |
1806 | unsigned int len = nand_subop_get_data_len(subop, op_id); |
1807 | unsigned int offset = nand_subop_get_data_start_off(subop, op_id); |
1808 | bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); |
1809 | int ret; |
1810 | |
1811 | if (instr->ctx.data.force_8bit) |
1812 | marvell_nfc_force_byte_access(chip, force_8bit: true); |
1813 | |
1814 | if (reading) { |
1815 | u8 *in = instr->ctx.data.buf.in + offset; |
1816 | |
1817 | ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); |
1818 | } else { |
1819 | const u8 *out = instr->ctx.data.buf.out + offset; |
1820 | |
1821 | ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); |
1822 | } |
1823 | |
1824 | if (instr->ctx.data.force_8bit) |
1825 | marvell_nfc_force_byte_access(chip, force_8bit: false); |
1826 | |
1827 | return ret; |
1828 | } |
1829 | |
1830 | static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, |
1831 | const struct nand_subop *subop) |
1832 | { |
1833 | struct marvell_nfc_op nfc_op; |
1834 | bool reading; |
1835 | int ret; |
1836 | |
1837 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
1838 | reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); |
1839 | |
1840 | ret = marvell_nfc_prepare_cmd(chip); |
1841 | if (ret) |
1842 | return ret; |
1843 | |
1844 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
1845 | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, |
1846 | label: "RDDREQ/WRDREQ while draining raw data"); |
1847 | if (ret) |
1848 | return ret; |
1849 | |
1850 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
1851 | |
1852 | if (reading) { |
1853 | if (nfc_op.rdy_timeout_ms) { |
1854 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
1855 | if (ret) |
1856 | return ret; |
1857 | } |
1858 | |
1859 | cond_delay(ns: nfc_op.rdy_delay_ns); |
1860 | } |
1861 | |
1862 | marvell_nfc_xfer_data_pio(chip, subop, nfc_op: &nfc_op); |
1863 | ret = marvell_nfc_wait_cmdd(chip); |
1864 | if (ret) |
1865 | return ret; |
1866 | |
1867 | cond_delay(ns: nfc_op.data_delay_ns); |
1868 | |
1869 | if (!reading) { |
1870 | if (nfc_op.rdy_timeout_ms) { |
1871 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
1872 | if (ret) |
1873 | return ret; |
1874 | } |
1875 | |
1876 | cond_delay(ns: nfc_op.rdy_delay_ns); |
1877 | } |
1878 | |
1879 | /* |
1880 | * NDCR ND_RUN bit should be cleared automatically at the end of each |
1881 | * operation but experience shows that the behavior is buggy when it |
1882 | * comes to writes (with LEN_OVRD). Clear it by hand in this case. |
1883 | */ |
1884 | if (!reading) { |
1885 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
1886 | |
1887 | writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, |
1888 | nfc->regs + NDCR); |
1889 | } |
1890 | |
1891 | return 0; |
1892 | } |
1893 | |
1894 | static int marvell_nfc_naked_access_exec(struct nand_chip *chip, |
1895 | const struct nand_subop *subop) |
1896 | { |
1897 | struct marvell_nfc_op nfc_op; |
1898 | int ret; |
1899 | |
1900 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
1901 | |
1902 | /* |
1903 | * Naked access are different in that they need to be flagged as naked |
1904 | * by the controller. Reset the controller registers fields that inform |
1905 | * on the type and refill them according to the ongoing operation. |
1906 | */ |
1907 | nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | |
1908 | NDCB0_CMD_XTYPE(XTYPE_MASK)); |
1909 | switch (subop->instrs[0].type) { |
1910 | case NAND_OP_CMD_INSTR: |
1911 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); |
1912 | break; |
1913 | case NAND_OP_ADDR_INSTR: |
1914 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); |
1915 | break; |
1916 | case NAND_OP_DATA_IN_INSTR: |
1917 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | |
1918 | NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
1919 | break; |
1920 | case NAND_OP_DATA_OUT_INSTR: |
1921 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | |
1922 | NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
1923 | break; |
1924 | default: |
1925 | /* This should never happen */ |
1926 | break; |
1927 | } |
1928 | |
1929 | ret = marvell_nfc_prepare_cmd(chip); |
1930 | if (ret) |
1931 | return ret; |
1932 | |
1933 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
1934 | |
1935 | if (!nfc_op.data_instr) { |
1936 | ret = marvell_nfc_wait_cmdd(chip); |
1937 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
1938 | return ret; |
1939 | } |
1940 | |
1941 | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, |
1942 | label: "RDDREQ/WRDREQ while draining raw data"); |
1943 | if (ret) |
1944 | return ret; |
1945 | |
1946 | marvell_nfc_xfer_data_pio(chip, subop, nfc_op: &nfc_op); |
1947 | ret = marvell_nfc_wait_cmdd(chip); |
1948 | if (ret) |
1949 | return ret; |
1950 | |
1951 | /* |
1952 | * NDCR ND_RUN bit should be cleared automatically at the end of each |
1953 | * operation but experience shows that the behavior is buggy when it |
1954 | * comes to writes (with LEN_OVRD). Clear it by hand in this case. |
1955 | */ |
1956 | if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { |
1957 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
1958 | |
1959 | writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, |
1960 | nfc->regs + NDCR); |
1961 | } |
1962 | |
1963 | return 0; |
1964 | } |
1965 | |
1966 | static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, |
1967 | const struct nand_subop *subop) |
1968 | { |
1969 | struct marvell_nfc_op nfc_op; |
1970 | int ret; |
1971 | |
1972 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
1973 | |
1974 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
1975 | cond_delay(ns: nfc_op.rdy_delay_ns); |
1976 | |
1977 | return ret; |
1978 | } |
1979 | |
1980 | static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, |
1981 | const struct nand_subop *subop) |
1982 | { |
1983 | struct marvell_nfc_op nfc_op; |
1984 | int ret; |
1985 | |
1986 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
1987 | nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); |
1988 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); |
1989 | |
1990 | ret = marvell_nfc_prepare_cmd(chip); |
1991 | if (ret) |
1992 | return ret; |
1993 | |
1994 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
1995 | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
1996 | label: "RDDREQ while reading ID"); |
1997 | if (ret) |
1998 | return ret; |
1999 | |
2000 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
2001 | |
2002 | if (nfc_op.rdy_timeout_ms) { |
2003 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
2004 | if (ret) |
2005 | return ret; |
2006 | } |
2007 | |
2008 | cond_delay(ns: nfc_op.rdy_delay_ns); |
2009 | |
2010 | marvell_nfc_xfer_data_pio(chip, subop, nfc_op: &nfc_op); |
2011 | ret = marvell_nfc_wait_cmdd(chip); |
2012 | if (ret) |
2013 | return ret; |
2014 | |
2015 | cond_delay(ns: nfc_op.data_delay_ns); |
2016 | |
2017 | return 0; |
2018 | } |
2019 | |
2020 | static int marvell_nfc_read_status_exec(struct nand_chip *chip, |
2021 | const struct nand_subop *subop) |
2022 | { |
2023 | struct marvell_nfc_op nfc_op; |
2024 | int ret; |
2025 | |
2026 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
2027 | nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); |
2028 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); |
2029 | |
2030 | ret = marvell_nfc_prepare_cmd(chip); |
2031 | if (ret) |
2032 | return ret; |
2033 | |
2034 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
2035 | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
2036 | label: "RDDREQ while reading status"); |
2037 | if (ret) |
2038 | return ret; |
2039 | |
2040 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
2041 | |
2042 | if (nfc_op.rdy_timeout_ms) { |
2043 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
2044 | if (ret) |
2045 | return ret; |
2046 | } |
2047 | |
2048 | cond_delay(ns: nfc_op.rdy_delay_ns); |
2049 | |
2050 | marvell_nfc_xfer_data_pio(chip, subop, nfc_op: &nfc_op); |
2051 | ret = marvell_nfc_wait_cmdd(chip); |
2052 | if (ret) |
2053 | return ret; |
2054 | |
2055 | cond_delay(ns: nfc_op.data_delay_ns); |
2056 | |
2057 | return 0; |
2058 | } |
2059 | |
2060 | static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, |
2061 | const struct nand_subop *subop) |
2062 | { |
2063 | struct marvell_nfc_op nfc_op; |
2064 | int ret; |
2065 | |
2066 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
2067 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); |
2068 | |
2069 | ret = marvell_nfc_prepare_cmd(chip); |
2070 | if (ret) |
2071 | return ret; |
2072 | |
2073 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
2074 | ret = marvell_nfc_wait_cmdd(chip); |
2075 | if (ret) |
2076 | return ret; |
2077 | |
2078 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
2079 | |
2080 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
2081 | if (ret) |
2082 | return ret; |
2083 | |
2084 | cond_delay(ns: nfc_op.rdy_delay_ns); |
2085 | |
2086 | return 0; |
2087 | } |
2088 | |
2089 | static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, |
2090 | const struct nand_subop *subop) |
2091 | { |
2092 | struct marvell_nfc_op nfc_op; |
2093 | int ret; |
2094 | |
2095 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
2096 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); |
2097 | |
2098 | ret = marvell_nfc_prepare_cmd(chip); |
2099 | if (ret) |
2100 | return ret; |
2101 | |
2102 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
2103 | ret = marvell_nfc_wait_cmdd(chip); |
2104 | if (ret) |
2105 | return ret; |
2106 | |
2107 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
2108 | |
2109 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
2110 | if (ret) |
2111 | return ret; |
2112 | |
2113 | cond_delay(ns: nfc_op.rdy_delay_ns); |
2114 | |
2115 | return 0; |
2116 | } |
2117 | |
2118 | static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( |
2119 | /* Monolithic reads/writes */ |
2120 | NAND_OP_PARSER_PATTERN( |
2121 | marvell_nfc_monolithic_access_exec, |
2122 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
2123 | NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), |
2124 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
2125 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
2126 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), |
2127 | NAND_OP_PARSER_PATTERN( |
2128 | marvell_nfc_monolithic_access_exec, |
2129 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
2130 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), |
2131 | NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), |
2132 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
2133 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), |
2134 | /* Naked commands */ |
2135 | NAND_OP_PARSER_PATTERN( |
2136 | marvell_nfc_naked_access_exec, |
2137 | NAND_OP_PARSER_PAT_CMD_ELEM(false)), |
2138 | NAND_OP_PARSER_PATTERN( |
2139 | marvell_nfc_naked_access_exec, |
2140 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), |
2141 | NAND_OP_PARSER_PATTERN( |
2142 | marvell_nfc_naked_access_exec, |
2143 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), |
2144 | NAND_OP_PARSER_PATTERN( |
2145 | marvell_nfc_naked_access_exec, |
2146 | NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), |
2147 | NAND_OP_PARSER_PATTERN( |
2148 | marvell_nfc_naked_waitrdy_exec, |
2149 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
2150 | ); |
2151 | |
2152 | static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( |
2153 | /* Naked commands not supported, use a function for each pattern */ |
2154 | NAND_OP_PARSER_PATTERN( |
2155 | marvell_nfc_read_id_type_exec, |
2156 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
2157 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), |
2158 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), |
2159 | NAND_OP_PARSER_PATTERN( |
2160 | marvell_nfc_erase_cmd_type_exec, |
2161 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
2162 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), |
2163 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
2164 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
2165 | NAND_OP_PARSER_PATTERN( |
2166 | marvell_nfc_read_status_exec, |
2167 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
2168 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), |
2169 | NAND_OP_PARSER_PATTERN( |
2170 | marvell_nfc_reset_cmd_type_exec, |
2171 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
2172 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
2173 | NAND_OP_PARSER_PATTERN( |
2174 | marvell_nfc_naked_waitrdy_exec, |
2175 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
2176 | ); |
2177 | |
2178 | static int marvell_nfc_exec_op(struct nand_chip *chip, |
2179 | const struct nand_operation *op, |
2180 | bool check_only) |
2181 | { |
2182 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
2183 | |
2184 | if (!check_only) |
2185 | marvell_nfc_select_target(chip, die_nr: op->cs); |
2186 | |
2187 | if (nfc->caps->is_nfcv2) |
2188 | return nand_op_parser_exec_op(chip, parser: &marvell_nfcv2_op_parser, |
2189 | op, check_only); |
2190 | else |
2191 | return nand_op_parser_exec_op(chip, parser: &marvell_nfcv1_op_parser, |
2192 | op, check_only); |
2193 | } |
2194 | |
2195 | /* |
2196 | * Layouts were broken in old pxa3xx_nand driver, these are supposed to be |
2197 | * usable. |
2198 | */ |
2199 | static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
2200 | struct mtd_oob_region *oobregion) |
2201 | { |
2202 | struct nand_chip *chip = mtd_to_nand(mtd); |
2203 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
2204 | |
2205 | if (section) |
2206 | return -ERANGE; |
2207 | |
2208 | oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + |
2209 | lt->last_ecc_bytes; |
2210 | oobregion->offset = mtd->oobsize - oobregion->length; |
2211 | |
2212 | return 0; |
2213 | } |
2214 | |
2215 | static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, |
2216 | struct mtd_oob_region *oobregion) |
2217 | { |
2218 | struct nand_chip *chip = mtd_to_nand(mtd); |
2219 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
2220 | |
2221 | if (section) |
2222 | return -ERANGE; |
2223 | |
2224 | /* |
2225 | * Bootrom looks in bytes 0 & 5 for bad blocks for the |
2226 | * 4KB page / 4bit BCH combination. |
2227 | */ |
2228 | if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) |
2229 | oobregion->offset = 6; |
2230 | else |
2231 | oobregion->offset = 2; |
2232 | |
2233 | oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + |
2234 | lt->last_spare_bytes - oobregion->offset; |
2235 | |
2236 | return 0; |
2237 | } |
2238 | |
2239 | static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { |
2240 | .ecc = marvell_nand_ooblayout_ecc, |
2241 | .free = marvell_nand_ooblayout_free, |
2242 | }; |
2243 | |
2244 | static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, |
2245 | struct nand_ecc_ctrl *ecc) |
2246 | { |
2247 | struct nand_chip *chip = mtd_to_nand(mtd); |
2248 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
2249 | const struct marvell_hw_ecc_layout *l; |
2250 | int i; |
2251 | |
2252 | if (!nfc->caps->is_nfcv2 && |
2253 | (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { |
2254 | dev_err(nfc->dev, |
2255 | "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", |
2256 | mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); |
2257 | return -ENOTSUPP; |
2258 | } |
2259 | |
2260 | to_marvell_nand(chip)->layout = NULL; |
2261 | for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { |
2262 | l = &marvell_nfc_layouts[i]; |
2263 | if (mtd->writesize == l->writesize && |
2264 | ecc->size == l->chunk && ecc->strength == l->strength) { |
2265 | to_marvell_nand(chip)->layout = l; |
2266 | break; |
2267 | } |
2268 | } |
2269 | |
2270 | if (!to_marvell_nand(chip)->layout || |
2271 | (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { |
2272 | dev_err(nfc->dev, |
2273 | "ECC strength %d at page size %d is not supported\n", |
2274 | ecc->strength, mtd->writesize); |
2275 | return -ENOTSUPP; |
2276 | } |
2277 | |
2278 | /* Special care for the layout 2k/8-bit/512B */ |
2279 | if (l->writesize == 2048 && l->strength == 8) { |
2280 | if (mtd->oobsize < 128) { |
2281 | dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); |
2282 | return -ENOTSUPP; |
2283 | } else { |
2284 | chip->bbt_options |= NAND_BBT_NO_OOB_BBM; |
2285 | } |
2286 | } |
2287 | |
2288 | mtd_set_ooblayout(mtd, ooblayout: &marvell_nand_ooblayout_ops); |
2289 | ecc->steps = l->nchunks; |
2290 | ecc->size = l->data_bytes; |
2291 | |
2292 | if (ecc->strength == 1) { |
2293 | chip->ecc.algo = NAND_ECC_ALGO_HAMMING; |
2294 | ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; |
2295 | ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; |
2296 | ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; |
2297 | ecc->read_oob = ecc->read_oob_raw; |
2298 | ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; |
2299 | ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; |
2300 | ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; |
2301 | ecc->write_oob = ecc->write_oob_raw; |
2302 | } else { |
2303 | chip->ecc.algo = NAND_ECC_ALGO_BCH; |
2304 | ecc->strength = 16; |
2305 | ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; |
2306 | ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; |
2307 | ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; |
2308 | ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; |
2309 | ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; |
2310 | ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; |
2311 | ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; |
2312 | ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; |
2313 | } |
2314 | |
2315 | return 0; |
2316 | } |
2317 | |
2318 | static int marvell_nand_ecc_init(struct mtd_info *mtd, |
2319 | struct nand_ecc_ctrl *ecc) |
2320 | { |
2321 | struct nand_chip *chip = mtd_to_nand(mtd); |
2322 | const struct nand_ecc_props *requirements = |
2323 | nanddev_get_ecc_requirements(nand: &chip->base); |
2324 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
2325 | int ret; |
2326 | |
2327 | if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && |
2328 | (!ecc->size || !ecc->strength)) { |
2329 | if (requirements->step_size && requirements->strength) { |
2330 | ecc->size = requirements->step_size; |
2331 | ecc->strength = requirements->strength; |
2332 | } else { |
2333 | dev_info(nfc->dev, |
2334 | "No minimum ECC strength, using 1b/512B\n"); |
2335 | ecc->size = 512; |
2336 | ecc->strength = 1; |
2337 | } |
2338 | } |
2339 | |
2340 | switch (ecc->engine_type) { |
2341 | case NAND_ECC_ENGINE_TYPE_ON_HOST: |
2342 | ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); |
2343 | if (ret) |
2344 | return ret; |
2345 | break; |
2346 | case NAND_ECC_ENGINE_TYPE_NONE: |
2347 | case NAND_ECC_ENGINE_TYPE_SOFT: |
2348 | case NAND_ECC_ENGINE_TYPE_ON_DIE: |
2349 | if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && |
2350 | mtd->writesize != SZ_2K) { |
2351 | dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", |
2352 | mtd->writesize); |
2353 | return -EINVAL; |
2354 | } |
2355 | break; |
2356 | default: |
2357 | return -EINVAL; |
2358 | } |
2359 | |
2360 | return 0; |
2361 | } |
2362 | |
2363 | static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; |
2364 | static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; |
2365 | |
2366 | static struct nand_bbt_descr bbt_main_descr = { |
2367 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
2368 | NAND_BBT_2BIT | NAND_BBT_VERSION, |
2369 | .offs = 8, |
2370 | .len = 6, |
2371 | .veroffs = 14, |
2372 | .maxblocks = 8, /* Last 8 blocks in each chip */ |
2373 | .pattern = bbt_pattern |
2374 | }; |
2375 | |
2376 | static struct nand_bbt_descr bbt_mirror_descr = { |
2377 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
2378 | NAND_BBT_2BIT | NAND_BBT_VERSION, |
2379 | .offs = 8, |
2380 | .len = 6, |
2381 | .veroffs = 14, |
2382 | .maxblocks = 8, /* Last 8 blocks in each chip */ |
2383 | .pattern = bbt_mirror_pattern |
2384 | }; |
2385 | |
2386 | static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, |
2387 | const struct nand_interface_config *conf) |
2388 | { |
2389 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
2390 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
2391 | unsigned int period_ns = 1000000000 / clk_get_rate(clk: nfc->core_clk) * 2; |
2392 | const struct nand_sdr_timings *sdr; |
2393 | struct marvell_nfc_timings nfc_tmg; |
2394 | int read_delay; |
2395 | |
2396 | sdr = nand_get_sdr_timings(conf); |
2397 | if (IS_ERR(ptr: sdr)) |
2398 | return PTR_ERR(ptr: sdr); |
2399 | |
2400 | if (nfc->caps->max_mode_number && nfc->caps->max_mode_number < conf->timings.mode) |
2401 | return -EOPNOTSUPP; |
2402 | |
2403 | /* |
2404 | * SDR timings are given in pico-seconds while NFC timings must be |
2405 | * expressed in NAND controller clock cycles, which is half of the |
2406 | * frequency of the accessible ECC clock retrieved by clk_get_rate(). |
2407 | * This is not written anywhere in the datasheet but was observed |
2408 | * with an oscilloscope. |
2409 | * |
2410 | * NFC datasheet gives equations from which thoses calculations |
2411 | * are derived, they tend to be slightly more restrictives than the |
2412 | * given core timings and may improve the overall speed. |
2413 | */ |
2414 | nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; |
2415 | nfc_tmg.tRH = nfc_tmg.tRP; |
2416 | nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; |
2417 | nfc_tmg.tWH = nfc_tmg.tWP; |
2418 | nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); |
2419 | nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; |
2420 | nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); |
2421 | /* |
2422 | * Read delay is the time of propagation from SoC pins to NFC internal |
2423 | * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In |
2424 | * EDO mode, an additional delay of tRH must be taken into account so |
2425 | * the data is sampled on the falling edge instead of the rising edge. |
2426 | */ |
2427 | read_delay = sdr->tRC_min >= 30000 ? |
2428 | MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; |
2429 | |
2430 | nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); |
2431 | /* |
2432 | * tWHR and tRHW are supposed to be read to write delays (and vice |
2433 | * versa) but in some cases, ie. when doing a change column, they must |
2434 | * be greater than that to be sure tCCS delay is respected. |
2435 | */ |
2436 | nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), |
2437 | period_ns) - 2; |
2438 | nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), |
2439 | period_ns); |
2440 | |
2441 | /* |
2442 | * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. |
2443 | * NFCv1: No WAIT_MODE, tR must be maximal. |
2444 | */ |
2445 | if (nfc->caps->is_nfcv2) { |
2446 | nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); |
2447 | } else { |
2448 | nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, |
2449 | period_ns); |
2450 | if (nfc_tmg.tR + 3 > nfc_tmg.tCH) |
2451 | nfc_tmg.tR = nfc_tmg.tCH - 3; |
2452 | else |
2453 | nfc_tmg.tR = 0; |
2454 | } |
2455 | |
2456 | if (chipnr < 0) |
2457 | return 0; |
2458 | |
2459 | marvell_nand->ndtr0 = |
2460 | NDTR0_TRP(nfc_tmg.tRP) | |
2461 | NDTR0_TRH(nfc_tmg.tRH) | |
2462 | NDTR0_ETRP(nfc_tmg.tRP) | |
2463 | NDTR0_TWP(nfc_tmg.tWP) | |
2464 | NDTR0_TWH(nfc_tmg.tWH) | |
2465 | NDTR0_TCS(nfc_tmg.tCS) | |
2466 | NDTR0_TCH(nfc_tmg.tCH); |
2467 | |
2468 | marvell_nand->ndtr1 = |
2469 | NDTR1_TAR(nfc_tmg.tAR) | |
2470 | NDTR1_TWHR(nfc_tmg.tWHR) | |
2471 | NDTR1_TR(nfc_tmg.tR); |
2472 | |
2473 | if (nfc->caps->is_nfcv2) { |
2474 | marvell_nand->ndtr0 |= |
2475 | NDTR0_RD_CNT_DEL(read_delay) | |
2476 | NDTR0_SELCNTR | |
2477 | NDTR0_TADL(nfc_tmg.tADL); |
2478 | |
2479 | marvell_nand->ndtr1 |= |
2480 | NDTR1_TRHW(nfc_tmg.tRHW) | |
2481 | NDTR1_WAIT_MODE; |
2482 | } |
2483 | |
2484 | /* |
2485 | * Reset nfc->selected_chip so the next command will cause the timing |
2486 | * registers to be updated in marvell_nfc_select_target(). |
2487 | */ |
2488 | nfc->selected_chip = NULL; |
2489 | |
2490 | return 0; |
2491 | } |
2492 | |
2493 | static int marvell_nand_attach_chip(struct nand_chip *chip) |
2494 | { |
2495 | struct mtd_info *mtd = nand_to_mtd(chip); |
2496 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
2497 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
2498 | struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev: nfc->dev); |
2499 | int ret; |
2500 | |
2501 | if (pdata && pdata->flash_bbt) |
2502 | chip->bbt_options |= NAND_BBT_USE_FLASH; |
2503 | |
2504 | if (chip->bbt_options & NAND_BBT_USE_FLASH) { |
2505 | /* |
2506 | * We'll use a bad block table stored in-flash and don't |
2507 | * allow writing the bad block marker to the flash. |
2508 | */ |
2509 | chip->bbt_options |= NAND_BBT_NO_OOB_BBM; |
2510 | chip->bbt_td = &bbt_main_descr; |
2511 | chip->bbt_md = &bbt_mirror_descr; |
2512 | } |
2513 | |
2514 | /* Save the chip-specific fields of NDCR */ |
2515 | marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); |
2516 | if (chip->options & NAND_BUSWIDTH_16) |
2517 | marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; |
2518 | |
2519 | /* |
2520 | * On small page NANDs, only one cycle is needed to pass the |
2521 | * column address. |
2522 | */ |
2523 | if (mtd->writesize <= 512) { |
2524 | marvell_nand->addr_cyc = 1; |
2525 | } else { |
2526 | marvell_nand->addr_cyc = 2; |
2527 | marvell_nand->ndcr |= NDCR_RA_START; |
2528 | } |
2529 | |
2530 | /* |
2531 | * Now add the number of cycles needed to pass the row |
2532 | * address. |
2533 | * |
2534 | * Addressing a chip using CS 2 or 3 should also need the third row |
2535 | * cycle but due to inconsistance in the documentation and lack of |
2536 | * hardware to test this situation, this case is not supported. |
2537 | */ |
2538 | if (chip->options & NAND_ROW_ADDR_3) |
2539 | marvell_nand->addr_cyc += 3; |
2540 | else |
2541 | marvell_nand->addr_cyc += 2; |
2542 | |
2543 | if (pdata) { |
2544 | chip->ecc.size = pdata->ecc_step_size; |
2545 | chip->ecc.strength = pdata->ecc_strength; |
2546 | } |
2547 | |
2548 | ret = marvell_nand_ecc_init(mtd, ecc: &chip->ecc); |
2549 | if (ret) { |
2550 | dev_err(nfc->dev, "ECC init failed: %d\n", ret); |
2551 | return ret; |
2552 | } |
2553 | |
2554 | if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { |
2555 | /* |
2556 | * Subpage write not available with hardware ECC, prohibit also |
2557 | * subpage read as in userspace subpage access would still be |
2558 | * allowed and subpage write, if used, would lead to numerous |
2559 | * uncorrectable ECC errors. |
2560 | */ |
2561 | chip->options |= NAND_NO_SUBPAGE_WRITE; |
2562 | } |
2563 | |
2564 | if (pdata || nfc->caps->legacy_of_bindings) { |
2565 | /* |
2566 | * We keep the MTD name unchanged to avoid breaking platforms |
2567 | * where the MTD cmdline parser is used and the bootloader |
2568 | * has not been updated to use the new naming scheme. |
2569 | */ |
2570 | mtd->name = "pxa3xx_nand-0"; |
2571 | } else if (!mtd->name) { |
2572 | /* |
2573 | * If the new bindings are used and the bootloader has not been |
2574 | * updated to pass a new mtdparts parameter on the cmdline, you |
2575 | * should define the following property in your NAND node, ie: |
2576 | * |
2577 | * label = "main-storage"; |
2578 | * |
2579 | * This way, mtd->name will be set by the core when |
2580 | * nand_set_flash_node() is called. |
2581 | */ |
2582 | mtd->name = devm_kasprintf(dev: nfc->dev, GFP_KERNEL, |
2583 | fmt: "%s:nand.%d", dev_name(dev: nfc->dev), |
2584 | marvell_nand->sels[0].cs); |
2585 | if (!mtd->name) { |
2586 | dev_err(nfc->dev, "Failed to allocate mtd->name\n"); |
2587 | return -ENOMEM; |
2588 | } |
2589 | } |
2590 | |
2591 | return 0; |
2592 | } |
2593 | |
2594 | static const struct nand_controller_ops marvell_nand_controller_ops = { |
2595 | .attach_chip = marvell_nand_attach_chip, |
2596 | .exec_op = marvell_nfc_exec_op, |
2597 | .setup_interface = marvell_nfc_setup_interface, |
2598 | }; |
2599 | |
2600 | static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, |
2601 | struct device_node *np) |
2602 | { |
2603 | struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); |
2604 | struct marvell_nand_chip *marvell_nand; |
2605 | struct mtd_info *mtd; |
2606 | struct nand_chip *chip; |
2607 | int nsels, ret, i; |
2608 | u32 cs, rb; |
2609 | |
2610 | /* |
2611 | * The legacy "num-cs" property indicates the number of CS on the only |
2612 | * chip connected to the controller (legacy bindings does not support |
2613 | * more than one chip). The CS and RB pins are always the #0. |
2614 | * |
2615 | * When not using legacy bindings, a couple of "reg" and "nand-rb" |
2616 | * properties must be filled. For each chip, expressed as a subnode, |
2617 | * "reg" points to the CS lines and "nand-rb" to the RB line. |
2618 | */ |
2619 | if (pdata || nfc->caps->legacy_of_bindings) { |
2620 | nsels = 1; |
2621 | } else { |
2622 | nsels = of_property_count_elems_of_size(np, propname: "reg", elem_size: sizeof(u32)); |
2623 | if (nsels <= 0) { |
2624 | dev_err(dev, "missing/invalid reg property\n"); |
2625 | return -EINVAL; |
2626 | } |
2627 | } |
2628 | |
2629 | /* Alloc the nand chip structure */ |
2630 | marvell_nand = devm_kzalloc(dev, |
2631 | struct_size(marvell_nand, sels, nsels), |
2632 | GFP_KERNEL); |
2633 | if (!marvell_nand) { |
2634 | dev_err(dev, "could not allocate chip structure\n"); |
2635 | return -ENOMEM; |
2636 | } |
2637 | |
2638 | marvell_nand->nsels = nsels; |
2639 | marvell_nand->selected_die = -1; |
2640 | |
2641 | for (i = 0; i < nsels; i++) { |
2642 | if (pdata || nfc->caps->legacy_of_bindings) { |
2643 | /* |
2644 | * Legacy bindings use the CS lines in natural |
2645 | * order (0, 1, ...) |
2646 | */ |
2647 | cs = i; |
2648 | } else { |
2649 | /* Retrieve CS id */ |
2650 | ret = of_property_read_u32_index(np, propname: "reg", index: i, out_value: &cs); |
2651 | if (ret) { |
2652 | dev_err(dev, "could not retrieve reg property: %d\n", |
2653 | ret); |
2654 | return ret; |
2655 | } |
2656 | } |
2657 | |
2658 | if (cs >= nfc->caps->max_cs_nb) { |
2659 | dev_err(dev, "invalid reg value: %u (max CS = %d)\n", |
2660 | cs, nfc->caps->max_cs_nb); |
2661 | return -EINVAL; |
2662 | } |
2663 | |
2664 | if (test_and_set_bit(nr: cs, addr: &nfc->assigned_cs)) { |
2665 | dev_err(dev, "CS %d already assigned\n", cs); |
2666 | return -EINVAL; |
2667 | } |
2668 | |
2669 | /* |
2670 | * The cs variable represents the chip select id, which must be |
2671 | * converted in bit fields for NDCB0 and NDCB2 to select the |
2672 | * right chip. Unfortunately, due to a lack of information on |
2673 | * the subject and incoherent documentation, the user should not |
2674 | * use CS1 and CS3 at all as asserting them is not supported in |
2675 | * a reliable way (due to multiplexing inside ADDR5 field). |
2676 | */ |
2677 | marvell_nand->sels[i].cs = cs; |
2678 | switch (cs) { |
2679 | case 0: |
2680 | case 2: |
2681 | marvell_nand->sels[i].ndcb0_csel = 0; |
2682 | break; |
2683 | case 1: |
2684 | case 3: |
2685 | marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; |
2686 | break; |
2687 | default: |
2688 | return -EINVAL; |
2689 | } |
2690 | |
2691 | /* Retrieve RB id */ |
2692 | if (pdata || nfc->caps->legacy_of_bindings) { |
2693 | /* Legacy bindings always use RB #0 */ |
2694 | rb = 0; |
2695 | } else { |
2696 | ret = of_property_read_u32_index(np, propname: "nand-rb", index: i, |
2697 | out_value: &rb); |
2698 | if (ret) { |
2699 | dev_err(dev, |
2700 | "could not retrieve RB property: %d\n", |
2701 | ret); |
2702 | return ret; |
2703 | } |
2704 | } |
2705 | |
2706 | if (rb >= nfc->caps->max_rb_nb) { |
2707 | dev_err(dev, "invalid reg value: %u (max RB = %d)\n", |
2708 | rb, nfc->caps->max_rb_nb); |
2709 | return -EINVAL; |
2710 | } |
2711 | |
2712 | marvell_nand->sels[i].rb = rb; |
2713 | } |
2714 | |
2715 | chip = &marvell_nand->chip; |
2716 | chip->controller = &nfc->controller; |
2717 | nand_set_flash_node(chip, np); |
2718 | |
2719 | if (of_property_read_bool(np, propname: "marvell,nand-keep-config")) |
2720 | chip->options |= NAND_KEEP_TIMINGS; |
2721 | |
2722 | mtd = nand_to_mtd(chip); |
2723 | mtd->dev.parent = dev; |
2724 | |
2725 | /* |
2726 | * Save a reference value for timing registers before |
2727 | * ->setup_interface() is called. |
2728 | */ |
2729 | marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); |
2730 | marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); |
2731 | |
2732 | chip->options |= NAND_BUSWIDTH_AUTO; |
2733 | |
2734 | ret = nand_scan(chip, max_chips: marvell_nand->nsels); |
2735 | if (ret) { |
2736 | dev_err(dev, "could not scan the nand chip\n"); |
2737 | return ret; |
2738 | } |
2739 | |
2740 | if (pdata) |
2741 | /* Legacy bindings support only one chip */ |
2742 | ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); |
2743 | else |
2744 | ret = mtd_device_register(mtd, NULL, 0); |
2745 | if (ret) { |
2746 | dev_err(dev, "failed to register mtd device: %d\n", ret); |
2747 | nand_cleanup(chip); |
2748 | return ret; |
2749 | } |
2750 | |
2751 | list_add_tail(new: &marvell_nand->node, head: &nfc->chips); |
2752 | |
2753 | return 0; |
2754 | } |
2755 | |
2756 | static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) |
2757 | { |
2758 | struct marvell_nand_chip *entry, *temp; |
2759 | struct nand_chip *chip; |
2760 | int ret; |
2761 | |
2762 | list_for_each_entry_safe(entry, temp, &nfc->chips, node) { |
2763 | chip = &entry->chip; |
2764 | ret = mtd_device_unregister(master: nand_to_mtd(chip)); |
2765 | WARN_ON(ret); |
2766 | nand_cleanup(chip); |
2767 | list_del(entry: &entry->node); |
2768 | } |
2769 | } |
2770 | |
2771 | static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) |
2772 | { |
2773 | struct device_node *np = dev->of_node; |
2774 | struct device_node *nand_np; |
2775 | int max_cs = nfc->caps->max_cs_nb; |
2776 | int nchips; |
2777 | int ret; |
2778 | |
2779 | if (!np) |
2780 | nchips = 1; |
2781 | else |
2782 | nchips = of_get_child_count(np); |
2783 | |
2784 | if (nchips > max_cs) { |
2785 | dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, |
2786 | max_cs); |
2787 | return -EINVAL; |
2788 | } |
2789 | |
2790 | /* |
2791 | * Legacy bindings do not use child nodes to exhibit NAND chip |
2792 | * properties and layout. Instead, NAND properties are mixed with the |
2793 | * controller ones, and partitions are defined as direct subnodes of the |
2794 | * NAND controller node. |
2795 | */ |
2796 | if (nfc->caps->legacy_of_bindings) { |
2797 | ret = marvell_nand_chip_init(dev, nfc, np); |
2798 | return ret; |
2799 | } |
2800 | |
2801 | for_each_child_of_node(np, nand_np) { |
2802 | ret = marvell_nand_chip_init(dev, nfc, np: nand_np); |
2803 | if (ret) { |
2804 | of_node_put(node: nand_np); |
2805 | goto cleanup_chips; |
2806 | } |
2807 | } |
2808 | |
2809 | return 0; |
2810 | |
2811 | cleanup_chips: |
2812 | marvell_nand_chips_cleanup(nfc); |
2813 | |
2814 | return ret; |
2815 | } |
2816 | |
2817 | static int marvell_nfc_init_dma(struct marvell_nfc *nfc) |
2818 | { |
2819 | struct platform_device *pdev = container_of(nfc->dev, |
2820 | struct platform_device, |
2821 | dev); |
2822 | struct dma_slave_config config = {}; |
2823 | struct resource *r; |
2824 | int ret; |
2825 | |
2826 | if (!IS_ENABLED(CONFIG_PXA_DMA)) { |
2827 | dev_warn(nfc->dev, |
2828 | "DMA not enabled in configuration\n"); |
2829 | return -ENOTSUPP; |
2830 | } |
2831 | |
2832 | ret = dma_set_mask_and_coherent(dev: nfc->dev, DMA_BIT_MASK(32)); |
2833 | if (ret) |
2834 | return ret; |
2835 | |
2836 | nfc->dma_chan = dma_request_chan(dev: nfc->dev, name: "data"); |
2837 | if (IS_ERR(ptr: nfc->dma_chan)) { |
2838 | ret = PTR_ERR(ptr: nfc->dma_chan); |
2839 | nfc->dma_chan = NULL; |
2840 | return dev_err_probe(dev: nfc->dev, err: ret, fmt: "DMA channel request failed\n"); |
2841 | } |
2842 | |
2843 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
2844 | if (!r) { |
2845 | ret = -ENXIO; |
2846 | goto release_channel; |
2847 | } |
2848 | |
2849 | config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
2850 | config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
2851 | config.src_addr = r->start + NDDB; |
2852 | config.dst_addr = r->start + NDDB; |
2853 | config.src_maxburst = 32; |
2854 | config.dst_maxburst = 32; |
2855 | ret = dmaengine_slave_config(chan: nfc->dma_chan, config: &config); |
2856 | if (ret < 0) { |
2857 | dev_err(nfc->dev, "Failed to configure DMA channel\n"); |
2858 | goto release_channel; |
2859 | } |
2860 | |
2861 | /* |
2862 | * DMA must act on length multiple of 32 and this length may be |
2863 | * bigger than the destination buffer. Use this buffer instead |
2864 | * for DMA transfers and then copy the desired amount of data to |
2865 | * the provided buffer. |
2866 | */ |
2867 | nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); |
2868 | if (!nfc->dma_buf) { |
2869 | ret = -ENOMEM; |
2870 | goto release_channel; |
2871 | } |
2872 | |
2873 | nfc->use_dma = true; |
2874 | |
2875 | return 0; |
2876 | |
2877 | release_channel: |
2878 | dma_release_channel(chan: nfc->dma_chan); |
2879 | nfc->dma_chan = NULL; |
2880 | |
2881 | return ret; |
2882 | } |
2883 | |
2884 | static void marvell_nfc_reset(struct marvell_nfc *nfc) |
2885 | { |
2886 | /* |
2887 | * ECC operations and interruptions are only enabled when specifically |
2888 | * needed. ECC shall not be activated in the early stages (fails probe). |
2889 | * Arbiter flag, even if marked as "reserved", must be set (empirical). |
2890 | * SPARE_EN bit must always be set or ECC bytes will not be at the same |
2891 | * offset in the read page and this will fail the protection. |
2892 | */ |
2893 | writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | |
2894 | NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); |
2895 | writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); |
2896 | writel_relaxed(0, nfc->regs + NDECCCTRL); |
2897 | } |
2898 | |
2899 | static int marvell_nfc_init(struct marvell_nfc *nfc) |
2900 | { |
2901 | struct device_node *np = nfc->dev->of_node; |
2902 | |
2903 | /* |
2904 | * Some SoCs like A7k/A8k need to enable manually the NAND |
2905 | * controller, gated clocks and reset bits to avoid being bootloader |
2906 | * dependent. This is done through the use of the System Functions |
2907 | * registers. |
2908 | */ |
2909 | if (nfc->caps->need_system_controller) { |
2910 | struct regmap *sysctrl_base = |
2911 | syscon_regmap_lookup_by_phandle(np, |
2912 | property: "marvell,system-controller"); |
2913 | |
2914 | if (IS_ERR(ptr: sysctrl_base)) |
2915 | return PTR_ERR(ptr: sysctrl_base); |
2916 | |
2917 | regmap_write(map: sysctrl_base, GENCONF_SOC_DEVICE_MUX, |
2918 | GENCONF_SOC_DEVICE_MUX_NFC_EN | |
2919 | GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | |
2920 | GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | |
2921 | GENCONF_SOC_DEVICE_MUX_NFC_INT_EN | |
2922 | GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN); |
2923 | |
2924 | regmap_update_bits(map: sysctrl_base, GENCONF_CLK_GATING_CTRL, |
2925 | GENCONF_CLK_GATING_CTRL_ND_GATE, |
2926 | GENCONF_CLK_GATING_CTRL_ND_GATE); |
2927 | } |
2928 | |
2929 | /* Configure the DMA if appropriate */ |
2930 | if (!nfc->caps->is_nfcv2) |
2931 | marvell_nfc_init_dma(nfc); |
2932 | |
2933 | marvell_nfc_reset(nfc); |
2934 | |
2935 | return 0; |
2936 | } |
2937 | |
2938 | static int marvell_nfc_probe(struct platform_device *pdev) |
2939 | { |
2940 | struct device *dev = &pdev->dev; |
2941 | struct marvell_nfc *nfc; |
2942 | int ret; |
2943 | int irq; |
2944 | |
2945 | nfc = devm_kzalloc(dev: &pdev->dev, size: sizeof(struct marvell_nfc), |
2946 | GFP_KERNEL); |
2947 | if (!nfc) |
2948 | return -ENOMEM; |
2949 | |
2950 | nfc->dev = dev; |
2951 | nand_controller_init(nfc: &nfc->controller); |
2952 | nfc->controller.ops = &marvell_nand_controller_ops; |
2953 | INIT_LIST_HEAD(list: &nfc->chips); |
2954 | |
2955 | nfc->regs = devm_platform_ioremap_resource(pdev, index: 0); |
2956 | if (IS_ERR(ptr: nfc->regs)) |
2957 | return PTR_ERR(ptr: nfc->regs); |
2958 | |
2959 | irq = platform_get_irq(pdev, 0); |
2960 | if (irq < 0) |
2961 | return irq; |
2962 | |
2963 | nfc->core_clk = devm_clk_get(dev: &pdev->dev, id: "core"); |
2964 | |
2965 | /* Managed the legacy case (when the first clock was not named) */ |
2966 | if (nfc->core_clk == ERR_PTR(error: -ENOENT)) |
2967 | nfc->core_clk = devm_clk_get(dev: &pdev->dev, NULL); |
2968 | |
2969 | if (IS_ERR(ptr: nfc->core_clk)) |
2970 | return PTR_ERR(ptr: nfc->core_clk); |
2971 | |
2972 | ret = clk_prepare_enable(clk: nfc->core_clk); |
2973 | if (ret) |
2974 | return ret; |
2975 | |
2976 | nfc->reg_clk = devm_clk_get(dev: &pdev->dev, id: "reg"); |
2977 | if (IS_ERR(ptr: nfc->reg_clk)) { |
2978 | if (PTR_ERR(ptr: nfc->reg_clk) != -ENOENT) { |
2979 | ret = PTR_ERR(ptr: nfc->reg_clk); |
2980 | goto unprepare_core_clk; |
2981 | } |
2982 | |
2983 | nfc->reg_clk = NULL; |
2984 | } |
2985 | |
2986 | ret = clk_prepare_enable(clk: nfc->reg_clk); |
2987 | if (ret) |
2988 | goto unprepare_core_clk; |
2989 | |
2990 | marvell_nfc_disable_int(nfc, NDCR_ALL_INT); |
2991 | marvell_nfc_clear_int(nfc, NDCR_ALL_INT); |
2992 | ret = devm_request_irq(dev, irq, handler: marvell_nfc_isr, |
2993 | irqflags: 0, devname: "marvell-nfc", dev_id: nfc); |
2994 | if (ret) |
2995 | goto unprepare_reg_clk; |
2996 | |
2997 | /* Get NAND controller capabilities */ |
2998 | if (pdev->id_entry) |
2999 | nfc->caps = (void *)pdev->id_entry->driver_data; |
3000 | else |
3001 | nfc->caps = of_device_get_match_data(dev: &pdev->dev); |
3002 | |
3003 | if (!nfc->caps) { |
3004 | dev_err(dev, "Could not retrieve NFC caps\n"); |
3005 | ret = -EINVAL; |
3006 | goto unprepare_reg_clk; |
3007 | } |
3008 | |
3009 | /* Init the controller and then probe the chips */ |
3010 | ret = marvell_nfc_init(nfc); |
3011 | if (ret) |
3012 | goto unprepare_reg_clk; |
3013 | |
3014 | platform_set_drvdata(pdev, data: nfc); |
3015 | |
3016 | ret = marvell_nand_chips_init(dev, nfc); |
3017 | if (ret) |
3018 | goto release_dma; |
3019 | |
3020 | return 0; |
3021 | |
3022 | release_dma: |
3023 | if (nfc->use_dma) |
3024 | dma_release_channel(chan: nfc->dma_chan); |
3025 | unprepare_reg_clk: |
3026 | clk_disable_unprepare(clk: nfc->reg_clk); |
3027 | unprepare_core_clk: |
3028 | clk_disable_unprepare(clk: nfc->core_clk); |
3029 | |
3030 | return ret; |
3031 | } |
3032 | |
3033 | static void marvell_nfc_remove(struct platform_device *pdev) |
3034 | { |
3035 | struct marvell_nfc *nfc = platform_get_drvdata(pdev); |
3036 | |
3037 | marvell_nand_chips_cleanup(nfc); |
3038 | |
3039 | if (nfc->use_dma) { |
3040 | dmaengine_terminate_all(chan: nfc->dma_chan); |
3041 | dma_release_channel(chan: nfc->dma_chan); |
3042 | } |
3043 | |
3044 | clk_disable_unprepare(clk: nfc->reg_clk); |
3045 | clk_disable_unprepare(clk: nfc->core_clk); |
3046 | } |
3047 | |
3048 | static int __maybe_unused marvell_nfc_suspend(struct device *dev) |
3049 | { |
3050 | struct marvell_nfc *nfc = dev_get_drvdata(dev); |
3051 | struct marvell_nand_chip *chip; |
3052 | |
3053 | list_for_each_entry(chip, &nfc->chips, node) |
3054 | marvell_nfc_wait_ndrun(chip: &chip->chip); |
3055 | |
3056 | clk_disable_unprepare(clk: nfc->reg_clk); |
3057 | clk_disable_unprepare(clk: nfc->core_clk); |
3058 | |
3059 | return 0; |
3060 | } |
3061 | |
3062 | static int __maybe_unused marvell_nfc_resume(struct device *dev) |
3063 | { |
3064 | struct marvell_nfc *nfc = dev_get_drvdata(dev); |
3065 | int ret; |
3066 | |
3067 | ret = clk_prepare_enable(clk: nfc->core_clk); |
3068 | if (ret < 0) |
3069 | return ret; |
3070 | |
3071 | ret = clk_prepare_enable(clk: nfc->reg_clk); |
3072 | if (ret < 0) { |
3073 | clk_disable_unprepare(clk: nfc->core_clk); |
3074 | return ret; |
3075 | } |
3076 | |
3077 | /* |
3078 | * Reset nfc->selected_chip so the next command will cause the timing |
3079 | * registers to be restored in marvell_nfc_select_target(). |
3080 | */ |
3081 | nfc->selected_chip = NULL; |
3082 | |
3083 | /* Reset registers that have lost their contents */ |
3084 | marvell_nfc_reset(nfc); |
3085 | |
3086 | return 0; |
3087 | } |
3088 | |
3089 | static const struct dev_pm_ops marvell_nfc_pm_ops = { |
3090 | SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) |
3091 | }; |
3092 | |
3093 | static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { |
3094 | .max_cs_nb = 4, |
3095 | .max_rb_nb = 2, |
3096 | .need_system_controller = true, |
3097 | .is_nfcv2 = true, |
3098 | }; |
3099 | |
3100 | static const struct marvell_nfc_caps marvell_ac5_caps = { |
3101 | .max_cs_nb = 2, |
3102 | .max_rb_nb = 1, |
3103 | .is_nfcv2 = true, |
3104 | .max_mode_number = 3, |
3105 | }; |
3106 | |
3107 | static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { |
3108 | .max_cs_nb = 4, |
3109 | .max_rb_nb = 2, |
3110 | .is_nfcv2 = true, |
3111 | }; |
3112 | |
3113 | static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { |
3114 | .max_cs_nb = 2, |
3115 | .max_rb_nb = 1, |
3116 | .use_dma = true, |
3117 | }; |
3118 | |
3119 | static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { |
3120 | .max_cs_nb = 4, |
3121 | .max_rb_nb = 2, |
3122 | .need_system_controller = true, |
3123 | .legacy_of_bindings = true, |
3124 | .is_nfcv2 = true, |
3125 | }; |
3126 | |
3127 | static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { |
3128 | .max_cs_nb = 4, |
3129 | .max_rb_nb = 2, |
3130 | .legacy_of_bindings = true, |
3131 | .is_nfcv2 = true, |
3132 | }; |
3133 | |
3134 | static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { |
3135 | .max_cs_nb = 2, |
3136 | .max_rb_nb = 1, |
3137 | .legacy_of_bindings = true, |
3138 | .use_dma = true, |
3139 | }; |
3140 | |
3141 | static const struct platform_device_id marvell_nfc_platform_ids[] = { |
3142 | { |
3143 | .name = "pxa3xx-nand", |
3144 | .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, |
3145 | }, |
3146 | { /* sentinel */ }, |
3147 | }; |
3148 | MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); |
3149 | |
3150 | static const struct of_device_id marvell_nfc_of_ids[] = { |
3151 | { |
3152 | .compatible = "marvell,armada-8k-nand-controller", |
3153 | .data = &marvell_armada_8k_nfc_caps, |
3154 | }, |
3155 | { |
3156 | .compatible = "marvell,ac5-nand-controller", |
3157 | .data = &marvell_ac5_caps, |
3158 | }, |
3159 | { |
3160 | .compatible = "marvell,armada370-nand-controller", |
3161 | .data = &marvell_armada370_nfc_caps, |
3162 | }, |
3163 | { |
3164 | .compatible = "marvell,pxa3xx-nand-controller", |
3165 | .data = &marvell_pxa3xx_nfc_caps, |
3166 | }, |
3167 | /* Support for old/deprecated bindings: */ |
3168 | { |
3169 | .compatible = "marvell,armada-8k-nand", |
3170 | .data = &marvell_armada_8k_nfc_legacy_caps, |
3171 | }, |
3172 | { |
3173 | .compatible = "marvell,armada370-nand", |
3174 | .data = &marvell_armada370_nfc_legacy_caps, |
3175 | }, |
3176 | { |
3177 | .compatible = "marvell,pxa3xx-nand", |
3178 | .data = &marvell_pxa3xx_nfc_legacy_caps, |
3179 | }, |
3180 | { /* sentinel */ }, |
3181 | }; |
3182 | MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); |
3183 | |
3184 | static struct platform_driver marvell_nfc_driver = { |
3185 | .driver = { |
3186 | .name = "marvell-nfc", |
3187 | .of_match_table = marvell_nfc_of_ids, |
3188 | .pm = &marvell_nfc_pm_ops, |
3189 | }, |
3190 | .id_table = marvell_nfc_platform_ids, |
3191 | .probe = marvell_nfc_probe, |
3192 | .remove_new = marvell_nfc_remove, |
3193 | }; |
3194 | module_platform_driver(marvell_nfc_driver); |
3195 | |
3196 | MODULE_LICENSE("GPL"); |
3197 | MODULE_DESCRIPTION("Marvell NAND controller driver"); |
3198 |
Definitions
- marvell_hw_ecc_layout
- marvell_nfc_layouts
- marvell_nand_chip_sel
- marvell_nand_chip
- to_marvell_nand
- to_nand_sel
- marvell_nfc_caps
- marvell_nfc
- to_marvell_nfc
- marvell_nfc_timings
- marvell_nfc_op
- cond_delay
- marvell_nfc_disable_int
- marvell_nfc_enable_int
- marvell_nfc_clear_int
- marvell_nfc_force_byte_access
- marvell_nfc_wait_ndrun
- marvell_nfc_prepare_cmd
- marvell_nfc_send_cmd
- marvell_nfc_end_cmd
- marvell_nfc_wait_cmdd
- marvell_nfc_poll_status
- marvell_nfc_wait_op
- marvell_nfc_select_target
- marvell_nfc_isr
- marvell_nfc_enable_hw_ecc
- marvell_nfc_disable_hw_ecc
- marvell_nfc_enable_dma
- marvell_nfc_disable_dma
- marvell_nfc_xfer_data_dma
- marvell_nfc_xfer_data_in_pio
- marvell_nfc_xfer_data_out_pio
- marvell_nfc_check_empty_chunk
- marvell_nfc_hw_ecc_check_bitflips
- marvell_nfc_hw_ecc_hmg_do_read_page
- marvell_nfc_hw_ecc_hmg_read_page_raw
- marvell_nfc_hw_ecc_hmg_read_page
- marvell_nfc_hw_ecc_hmg_read_oob_raw
- marvell_nfc_hw_ecc_hmg_do_write_page
- marvell_nfc_hw_ecc_hmg_write_page_raw
- marvell_nfc_hw_ecc_hmg_write_page
- marvell_nfc_hw_ecc_hmg_write_oob_raw
- marvell_nfc_hw_ecc_bch_read_page_raw
- marvell_nfc_hw_ecc_bch_read_chunk
- marvell_nfc_hw_ecc_bch_read_page
- marvell_nfc_hw_ecc_bch_read_oob_raw
- marvell_nfc_hw_ecc_bch_read_oob
- marvell_nfc_hw_ecc_bch_write_page_raw
- marvell_nfc_hw_ecc_bch_write_chunk
- marvell_nfc_hw_ecc_bch_write_page
- marvell_nfc_hw_ecc_bch_write_oob_raw
- marvell_nfc_hw_ecc_bch_write_oob
- marvell_nfc_parse_instructions
- marvell_nfc_xfer_data_pio
- marvell_nfc_monolithic_access_exec
- marvell_nfc_naked_access_exec
- marvell_nfc_naked_waitrdy_exec
- marvell_nfc_read_id_type_exec
- marvell_nfc_read_status_exec
- marvell_nfc_reset_cmd_type_exec
- marvell_nfc_erase_cmd_type_exec
- marvell_nfcv2_op_parser
- marvell_nfcv1_op_parser
- marvell_nfc_exec_op
- marvell_nand_ooblayout_ecc
- marvell_nand_ooblayout_free
- marvell_nand_ooblayout_ops
- marvell_nand_hw_ecc_controller_init
- marvell_nand_ecc_init
- bbt_pattern
- bbt_mirror_pattern
- bbt_main_descr
- bbt_mirror_descr
- marvell_nfc_setup_interface
- marvell_nand_attach_chip
- marvell_nand_controller_ops
- marvell_nand_chip_init
- marvell_nand_chips_cleanup
- marvell_nand_chips_init
- marvell_nfc_init_dma
- marvell_nfc_reset
- marvell_nfc_init
- marvell_nfc_probe
- marvell_nfc_remove
- marvell_nfc_suspend
- marvell_nfc_resume
- marvell_nfc_pm_ops
- marvell_armada_8k_nfc_caps
- marvell_ac5_caps
- marvell_armada370_nfc_caps
- marvell_pxa3xx_nfc_caps
- marvell_armada_8k_nfc_legacy_caps
- marvell_armada370_nfc_legacy_caps
- marvell_pxa3xx_nfc_legacy_caps
- marvell_nfc_platform_ids
- marvell_nfc_of_ids
Improve your Profiling and Debugging skills
Find out more