| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Marvell NAND flash controller driver |
| 4 | * |
| 5 | * Copyright (C) 2017 Marvell |
| 6 | * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> |
| 7 | * |
| 8 | * |
| 9 | * This NAND controller driver handles two versions of the hardware, |
| 10 | * one is called NFCv1 and is available on PXA SoCs and the other is |
| 11 | * called NFCv2 and is available on Armada SoCs. |
| 12 | * |
| 13 | * The main visible difference is that NFCv1 only has Hamming ECC |
| 14 | * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA |
| 15 | * is not used with NFCv2. |
| 16 | * |
| 17 | * The ECC layouts are depicted in details in Marvell AN-379, but here |
| 18 | * is a brief description. |
| 19 | * |
| 20 | * When using Hamming, the data is split in 512B chunks (either 1, 2 |
| 21 | * or 4) and each chunk will have its own ECC "digest" of 6B at the |
| 22 | * beginning of the OOB area and eventually the remaining free OOB |
| 23 | * bytes (also called "spare" bytes in the driver). This engine |
| 24 | * corrects up to 1 bit per chunk and detects reliably an error if |
| 25 | * there are at most 2 bitflips. Here is the page layout used by the |
| 26 | * controller when Hamming is chosen: |
| 27 | * |
| 28 | * +-------------------------------------------------------------+ |
| 29 | * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | |
| 30 | * +-------------------------------------------------------------+ |
| 31 | * |
| 32 | * When using the BCH engine, there are N identical (data + free OOB + |
| 33 | * ECC) sections and potentially an extra one to deal with |
| 34 | * configurations where the chosen (data + free OOB + ECC) sizes do |
| 35 | * not align with the page (data + OOB) size. ECC bytes are always |
| 36 | * 30B per ECC chunk. Here is the page layout used by the controller |
| 37 | * when BCH is chosen: |
| 38 | * |
| 39 | * +----------------------------------------- |
| 40 | * | Data 1 | Free OOB bytes 1 | ECC 1 | ... |
| 41 | * +----------------------------------------- |
| 42 | * |
| 43 | * ------------------------------------------- |
| 44 | * ... | Data N | Free OOB bytes N | ECC N | |
| 45 | * ------------------------------------------- |
| 46 | * |
| 47 | * --------------------------------------------+ |
| 48 | * Last Data | Last Free OOB bytes | Last ECC | |
| 49 | * --------------------------------------------+ |
| 50 | * |
| 51 | * In both cases, the layout seen by the user is always: all data |
| 52 | * first, then all free OOB bytes and finally all ECC bytes. With BCH, |
| 53 | * ECC bytes are 30B long and are padded with 0xFF to align on 32 |
| 54 | * bytes. |
| 55 | * |
| 56 | * The controller has certain limitations that are handled by the |
| 57 | * driver: |
| 58 | * - It can only read 2k at a time. To overcome this limitation, the |
| 59 | * driver issues data cycles on the bus, without issuing new |
| 60 | * CMD + ADDR cycles. The Marvell term is "naked" operations. |
| 61 | * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 |
| 62 | * bits. What can be tuned is the ECC block size as long as it |
| 63 | * stays between 512B and 2kiB. It's usually chosen based on the |
| 64 | * chip ECC requirements. For instance, using 2kiB ECC chunks |
| 65 | * provides 4b/512B correctability. |
| 66 | * - The controller will always treat data bytes, free OOB bytes |
| 67 | * and ECC bytes in that order, no matter what the real layout is |
| 68 | * (which is usually all data then all OOB bytes). The |
| 69 | * marvell_nfc_layouts array below contains the currently |
| 70 | * supported layouts. |
| 71 | * - Because of these weird layouts, the Bad Block Markers can be |
| 72 | * located in data section. In this case, the NAND_BBT_NO_OOB_BBM |
| 73 | * option must be set to prevent scanning/writing bad block |
| 74 | * markers. |
| 75 | */ |
| 76 | |
| 77 | #include <linux/module.h> |
| 78 | #include <linux/clk.h> |
| 79 | #include <linux/mtd/rawnand.h> |
| 80 | #include <linux/of.h> |
| 81 | #include <linux/iopoll.h> |
| 82 | #include <linux/interrupt.h> |
| 83 | #include <linux/platform_device.h> |
| 84 | #include <linux/slab.h> |
| 85 | #include <linux/mfd/syscon.h> |
| 86 | #include <linux/regmap.h> |
| 87 | #include <linux/unaligned.h> |
| 88 | |
| 89 | #include <linux/dmaengine.h> |
| 90 | #include <linux/dma-mapping.h> |
| 91 | #include <linux/dma/pxa-dma.h> |
| 92 | #include <linux/platform_data/mtd-nand-pxa3xx.h> |
| 93 | |
| 94 | /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ |
| 95 | #define FIFO_DEPTH 8 |
| 96 | #define FIFO_REP(x) (x / sizeof(u32)) |
| 97 | #define BCH_SEQ_READS (32 / FIFO_DEPTH) |
| 98 | /* NFC does not support transfers of larger chunks at a time */ |
| 99 | #define MAX_CHUNK_SIZE 2112 |
| 100 | /* NFCv1 cannot read more that 7 bytes of ID */ |
| 101 | #define NFCV1_READID_LEN 7 |
| 102 | /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ |
| 103 | #define POLL_PERIOD 0 |
| 104 | #define POLL_TIMEOUT 100000 |
| 105 | /* Interrupt maximum wait period in ms */ |
| 106 | #define IRQ_TIMEOUT 1000 |
| 107 | /* Latency in clock cycles between SoC pins and NFC logic */ |
| 108 | #define MIN_RD_DEL_CNT 3 |
| 109 | /* Maximum number of contiguous address cycles */ |
| 110 | #define MAX_ADDRESS_CYC_NFCV1 5 |
| 111 | #define MAX_ADDRESS_CYC_NFCV2 7 |
| 112 | /* System control registers/bits to enable the NAND controller on some SoCs */ |
| 113 | #define GENCONF_SOC_DEVICE_MUX 0x208 |
| 114 | #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) |
| 115 | #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) |
| 116 | #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) |
| 117 | #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) |
| 118 | #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27) |
| 119 | #define GENCONF_CLK_GATING_CTRL 0x220 |
| 120 | #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) |
| 121 | #define GENCONF_ND_CLK_CTRL 0x700 |
| 122 | #define GENCONF_ND_CLK_CTRL_EN BIT(0) |
| 123 | |
| 124 | /* NAND controller data flash control register */ |
| 125 | #define NDCR 0x00 |
| 126 | #define NDCR_ALL_INT GENMASK(11, 0) |
| 127 | #define NDCR_CS1_CMDDM BIT(7) |
| 128 | #define NDCR_CS0_CMDDM BIT(8) |
| 129 | #define NDCR_RDYM BIT(11) |
| 130 | #define NDCR_ND_ARB_EN BIT(12) |
| 131 | #define NDCR_RA_START BIT(15) |
| 132 | #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) |
| 133 | #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) |
| 134 | #define NDCR_DWIDTH_M BIT(26) |
| 135 | #define NDCR_DWIDTH_C BIT(27) |
| 136 | #define NDCR_ND_RUN BIT(28) |
| 137 | #define NDCR_DMA_EN BIT(29) |
| 138 | #define NDCR_ECC_EN BIT(30) |
| 139 | #define NDCR_SPARE_EN BIT(31) |
| 140 | #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ |
| 141 | NDCR_DWIDTH_M | NDCR_DWIDTH_C)) |
| 142 | |
| 143 | /* NAND interface timing parameter 0 register */ |
| 144 | #define NDTR0 0x04 |
| 145 | #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) |
| 146 | #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) |
| 147 | #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) |
| 148 | #define NDTR0_SEL_NRE_EDGE BIT(7) |
| 149 | #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) |
| 150 | #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) |
| 151 | #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) |
| 152 | #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) |
| 153 | #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) |
| 154 | #define NDTR0_SELCNTR BIT(26) |
| 155 | #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) |
| 156 | |
| 157 | /* NAND interface timing parameter 1 register */ |
| 158 | #define NDTR1 0x0C |
| 159 | #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) |
| 160 | #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) |
| 161 | #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) |
| 162 | #define NDTR1_PRESCALE BIT(14) |
| 163 | #define NDTR1_WAIT_MODE BIT(15) |
| 164 | #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) |
| 165 | |
| 166 | /* NAND controller status register */ |
| 167 | #define NDSR 0x14 |
| 168 | #define NDSR_WRCMDREQ BIT(0) |
| 169 | #define NDSR_RDDREQ BIT(1) |
| 170 | #define NDSR_WRDREQ BIT(2) |
| 171 | #define NDSR_CORERR BIT(3) |
| 172 | #define NDSR_UNCERR BIT(4) |
| 173 | #define NDSR_CMDD(cs) BIT(8 - cs) |
| 174 | #define NDSR_RDY(rb) BIT(11 + rb) |
| 175 | #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) |
| 176 | |
| 177 | /* NAND ECC control register */ |
| 178 | #define NDECCCTRL 0x28 |
| 179 | #define NDECCCTRL_BCH_EN BIT(0) |
| 180 | |
| 181 | /* NAND controller data buffer register */ |
| 182 | #define NDDB 0x40 |
| 183 | |
| 184 | /* NAND controller command buffer 0 register */ |
| 185 | #define NDCB0 0x48 |
| 186 | #define NDCB0_CMD1(x) ((x & 0xFF) << 0) |
| 187 | #define NDCB0_CMD2(x) ((x & 0xFF) << 8) |
| 188 | #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) |
| 189 | #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) |
| 190 | #define NDCB0_DBC BIT(19) |
| 191 | #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) |
| 192 | #define NDCB0_CSEL BIT(24) |
| 193 | #define NDCB0_RDY_BYP BIT(27) |
| 194 | #define NDCB0_LEN_OVRD BIT(28) |
| 195 | #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) |
| 196 | |
| 197 | /* NAND controller command buffer 1 register */ |
| 198 | #define NDCB1 0x4C |
| 199 | #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) |
| 200 | #define NDCB1_ADDRS_PAGE(x) (x << 16) |
| 201 | |
| 202 | /* NAND controller command buffer 2 register */ |
| 203 | #define NDCB2 0x50 |
| 204 | #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) |
| 205 | #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) |
| 206 | |
| 207 | /* NAND controller command buffer 3 register */ |
| 208 | #define NDCB3 0x54 |
| 209 | #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) |
| 210 | #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) |
| 211 | |
| 212 | /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ |
| 213 | #define TYPE_READ 0 |
| 214 | #define TYPE_WRITE 1 |
| 215 | #define TYPE_ERASE 2 |
| 216 | #define TYPE_READ_ID 3 |
| 217 | #define TYPE_STATUS 4 |
| 218 | #define TYPE_RESET 5 |
| 219 | #define TYPE_NAKED_CMD 6 |
| 220 | #define TYPE_NAKED_ADDR 7 |
| 221 | #define TYPE_MASK 7 |
| 222 | #define XTYPE_MONOLITHIC_RW 0 |
| 223 | #define XTYPE_LAST_NAKED_RW 1 |
| 224 | #define XTYPE_FINAL_COMMAND 3 |
| 225 | #define XTYPE_READ 4 |
| 226 | #define XTYPE_WRITE_DISPATCH 4 |
| 227 | #define XTYPE_NAKED_RW 5 |
| 228 | #define XTYPE_COMMAND_DISPATCH 6 |
| 229 | #define XTYPE_MASK 7 |
| 230 | |
| 231 | /** |
| 232 | * struct marvell_hw_ecc_layout - layout of Marvell ECC |
| 233 | * |
| 234 | * Marvell ECC engine works differently than the others, in order to limit the |
| 235 | * size of the IP, hardware engineers chose to set a fixed strength at 16 bits |
| 236 | * per subpage, and depending on a the desired strength needed by the NAND chip, |
| 237 | * a particular layout mixing data/spare/ecc is defined, with a possible last |
| 238 | * chunk smaller that the others. |
| 239 | * |
| 240 | * @writesize: Full page size on which the layout applies |
| 241 | * @chunk: Desired ECC chunk size on which the layout applies |
| 242 | * @strength: Desired ECC strength (per chunk size bytes) on which the |
| 243 | * layout applies |
| 244 | * @nchunks: Total number of chunks |
| 245 | * @full_chunk_cnt: Number of full-sized chunks, which is the number of |
| 246 | * repetitions of the pattern: |
| 247 | * (data_bytes + spare_bytes + ecc_bytes). |
| 248 | * @data_bytes: Number of data bytes per chunk |
| 249 | * @spare_bytes: Number of spare bytes per chunk |
| 250 | * @ecc_bytes: Number of ecc bytes per chunk |
| 251 | * @last_data_bytes: Number of data bytes in the last chunk |
| 252 | * @last_spare_bytes: Number of spare bytes in the last chunk |
| 253 | * @last_ecc_bytes: Number of ecc bytes in the last chunk |
| 254 | */ |
| 255 | struct marvell_hw_ecc_layout { |
| 256 | /* Constraints */ |
| 257 | int writesize; |
| 258 | int chunk; |
| 259 | int strength; |
| 260 | /* Corresponding layout */ |
| 261 | int nchunks; |
| 262 | int full_chunk_cnt; |
| 263 | int data_bytes; |
| 264 | int spare_bytes; |
| 265 | int ecc_bytes; |
| 266 | int last_data_bytes; |
| 267 | int last_spare_bytes; |
| 268 | int last_ecc_bytes; |
| 269 | }; |
| 270 | |
| 271 | #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ |
| 272 | { \ |
| 273 | .writesize = ws, \ |
| 274 | .chunk = dc, \ |
| 275 | .strength = ds, \ |
| 276 | .nchunks = nc, \ |
| 277 | .full_chunk_cnt = fcc, \ |
| 278 | .data_bytes = db, \ |
| 279 | .spare_bytes = sb, \ |
| 280 | .ecc_bytes = eb, \ |
| 281 | .last_data_bytes = ldb, \ |
| 282 | .last_spare_bytes = lsb, \ |
| 283 | .last_ecc_bytes = leb, \ |
| 284 | } |
| 285 | |
| 286 | /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ |
| 287 | static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { |
| 288 | MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), |
| 289 | MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), |
| 290 | MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), |
| 291 | MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), |
| 292 | MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,64, 30), |
| 293 | MARVELL_LAYOUT( 2048, 512, 16, 4, 4, 512, 0, 30, 0, 32, 30), |
| 294 | MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), |
| 295 | MARVELL_LAYOUT( 4096, 512, 8, 4, 4, 1024, 0, 30, 0, 64, 30), |
| 296 | MARVELL_LAYOUT( 4096, 512, 16, 8, 8, 512, 0, 30, 0, 32, 30), |
| 297 | MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), |
| 298 | MARVELL_LAYOUT( 8192, 512, 8, 8, 8, 1024, 0, 30, 0, 160, 30), |
| 299 | MARVELL_LAYOUT( 8192, 512, 16, 16, 16, 512, 0, 30, 0, 32, 30), |
| 300 | }; |
| 301 | |
| 302 | /** |
| 303 | * struct marvell_nand_chip_sel - CS line description |
| 304 | * |
| 305 | * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection |
| 306 | * is made by a field in NDCB0 register, and in another field in NDCB2 register. |
| 307 | * The datasheet describes the logic with an error: ADDR5 field is once |
| 308 | * declared at the beginning of NDCB2, and another time at its end. Because the |
| 309 | * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical |
| 310 | * to use the last bit of this field instead of the first ones. |
| 311 | * |
| 312 | * @cs: Wanted CE lane. |
| 313 | * @ndcb0_csel: Value of the NDCB0 register with or without the flag |
| 314 | * selecting the wanted CE lane. This is set once when |
| 315 | * the Device Tree is probed. |
| 316 | * @rb: Ready/Busy pin for the flash chip |
| 317 | */ |
| 318 | struct marvell_nand_chip_sel { |
| 319 | unsigned int cs; |
| 320 | u32 ndcb0_csel; |
| 321 | unsigned int rb; |
| 322 | }; |
| 323 | |
| 324 | /** |
| 325 | * struct marvell_nand_chip - stores NAND chip device related information |
| 326 | * |
| 327 | * @chip: Base NAND chip structure |
| 328 | * @node: Used to store NAND chips into a list |
| 329 | * @layout: NAND layout when using hardware ECC |
| 330 | * @ndcr: Controller register value for this NAND chip |
| 331 | * @ndtr0: Timing registers 0 value for this NAND chip |
| 332 | * @ndtr1: Timing registers 1 value for this NAND chip |
| 333 | * @addr_cyc: Amount of cycles needed to pass column address |
| 334 | * @selected_die: Current active CS |
| 335 | * @nsels: Number of CS lines required by the NAND chip |
| 336 | * @sels: Array of CS lines descriptions |
| 337 | */ |
| 338 | struct marvell_nand_chip { |
| 339 | struct nand_chip chip; |
| 340 | struct list_head node; |
| 341 | const struct marvell_hw_ecc_layout *layout; |
| 342 | u32 ndcr; |
| 343 | u32 ndtr0; |
| 344 | u32 ndtr1; |
| 345 | int addr_cyc; |
| 346 | int selected_die; |
| 347 | unsigned int nsels; |
| 348 | struct marvell_nand_chip_sel sels[] __counted_by(nsels); |
| 349 | }; |
| 350 | |
| 351 | static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) |
| 352 | { |
| 353 | return container_of(chip, struct marvell_nand_chip, chip); |
| 354 | } |
| 355 | |
| 356 | static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip |
| 357 | *nand) |
| 358 | { |
| 359 | return &nand->sels[nand->selected_die]; |
| 360 | } |
| 361 | |
| 362 | /** |
| 363 | * struct marvell_nfc_caps - NAND controller capabilities for distinction |
| 364 | * between compatible strings |
| 365 | * |
| 366 | * @max_cs_nb: Number of Chip Select lines available |
| 367 | * @max_rb_nb: Number of Ready/Busy lines available |
| 368 | * @need_system_controller: Indicates if the SoC needs to have access to the |
| 369 | * system controller (ie. to enable the NAND controller) |
| 370 | * @legacy_of_bindings: Indicates if DT parsing must be done using the old |
| 371 | * fashion way |
| 372 | * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. |
| 373 | * BCH error detection and correction algorithm, |
| 374 | * NDCB3 register has been added |
| 375 | * @use_dma: Use dma for data transfers |
| 376 | * @max_mode_number: Maximum timing mode supported by the controller |
| 377 | */ |
| 378 | struct marvell_nfc_caps { |
| 379 | unsigned int max_cs_nb; |
| 380 | unsigned int max_rb_nb; |
| 381 | bool need_system_controller; |
| 382 | bool legacy_of_bindings; |
| 383 | bool is_nfcv2; |
| 384 | bool use_dma; |
| 385 | unsigned int max_mode_number; |
| 386 | }; |
| 387 | |
| 388 | /** |
| 389 | * struct marvell_nfc - stores Marvell NAND controller information |
| 390 | * |
| 391 | * @controller: Base controller structure |
| 392 | * @dev: Parent device (used to print error messages) |
| 393 | * @regs: NAND controller registers |
| 394 | * @core_clk: Core clock |
| 395 | * @reg_clk: Registers clock |
| 396 | * @complete: Completion object to wait for NAND controller events |
| 397 | * @assigned_cs: Bitmask describing already assigned CS lines |
| 398 | * @chips: List containing all the NAND chips attached to |
| 399 | * this NAND controller |
| 400 | * @selected_chip: Currently selected target chip |
| 401 | * @caps: NAND controller capabilities for each compatible string |
| 402 | * @use_dma: Whetner DMA is used |
| 403 | * @dma_chan: DMA channel (NFCv1 only) |
| 404 | * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) |
| 405 | */ |
| 406 | struct marvell_nfc { |
| 407 | struct nand_controller controller; |
| 408 | struct device *dev; |
| 409 | void __iomem *regs; |
| 410 | struct clk *core_clk; |
| 411 | struct clk *reg_clk; |
| 412 | struct completion complete; |
| 413 | unsigned long assigned_cs; |
| 414 | struct list_head chips; |
| 415 | struct nand_chip *selected_chip; |
| 416 | const struct marvell_nfc_caps *caps; |
| 417 | |
| 418 | /* DMA (NFCv1 only) */ |
| 419 | bool use_dma; |
| 420 | struct dma_chan *dma_chan; |
| 421 | u8 *dma_buf; |
| 422 | }; |
| 423 | |
| 424 | static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) |
| 425 | { |
| 426 | return container_of(ctrl, struct marvell_nfc, controller); |
| 427 | } |
| 428 | |
| 429 | /** |
| 430 | * struct marvell_nfc_timings - NAND controller timings expressed in NAND |
| 431 | * Controller clock cycles |
| 432 | * |
| 433 | * @tRP: ND_nRE pulse width |
| 434 | * @tRH: ND_nRE high duration |
| 435 | * @tWP: ND_nWE pulse time |
| 436 | * @tWH: ND_nWE high duration |
| 437 | * @tCS: Enable signal setup time |
| 438 | * @tCH: Enable signal hold time |
| 439 | * @tADL: Address to write data delay |
| 440 | * @tAR: ND_ALE low to ND_nRE low delay |
| 441 | * @tWHR: ND_nWE high to ND_nRE low for status read |
| 442 | * @tRHW: ND_nRE high duration, read to write delay |
| 443 | * @tR: ND_nWE high to ND_nRE low for read |
| 444 | */ |
| 445 | struct marvell_nfc_timings { |
| 446 | /* NDTR0 fields */ |
| 447 | unsigned int tRP; |
| 448 | unsigned int tRH; |
| 449 | unsigned int tWP; |
| 450 | unsigned int tWH; |
| 451 | unsigned int tCS; |
| 452 | unsigned int tCH; |
| 453 | unsigned int tADL; |
| 454 | /* NDTR1 fields */ |
| 455 | unsigned int tAR; |
| 456 | unsigned int tWHR; |
| 457 | unsigned int tRHW; |
| 458 | unsigned int tR; |
| 459 | }; |
| 460 | |
| 461 | /** |
| 462 | * TO_CYCLES() - Derives a duration in numbers of clock cycles. |
| 463 | * |
| 464 | * @ps: Duration in pico-seconds |
| 465 | * @period_ns: Clock period in nano-seconds |
| 466 | * |
| 467 | * Convert the duration in nano-seconds, then divide by the period and |
| 468 | * return the number of clock periods. |
| 469 | */ |
| 470 | #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) |
| 471 | #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ |
| 472 | period_ns)) |
| 473 | |
| 474 | /** |
| 475 | * struct marvell_nfc_op - filled during the parsing of the ->exec_op() |
| 476 | * subop subset of instructions. |
| 477 | * |
| 478 | * @ndcb: Array of values written to NDCBx registers |
| 479 | * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle |
| 480 | * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin |
| 481 | * @rdy_delay_ns: Optional delay after waiting for the RB pin |
| 482 | * @data_delay_ns: Optional delay after the data xfer |
| 483 | * @data_instr_idx: Index of the data instruction in the subop |
| 484 | * @data_instr: Pointer to the data instruction in the subop |
| 485 | */ |
| 486 | struct marvell_nfc_op { |
| 487 | u32 ndcb[4]; |
| 488 | unsigned int cle_ale_delay_ns; |
| 489 | unsigned int rdy_timeout_ms; |
| 490 | unsigned int rdy_delay_ns; |
| 491 | unsigned int data_delay_ns; |
| 492 | unsigned int data_instr_idx; |
| 493 | const struct nand_op_instr *data_instr; |
| 494 | }; |
| 495 | |
| 496 | /* |
| 497 | * Internal helper to conditionnally apply a delay (from the above structure, |
| 498 | * most of the time). |
| 499 | */ |
| 500 | static void cond_delay(unsigned int ns) |
| 501 | { |
| 502 | if (!ns) |
| 503 | return; |
| 504 | |
| 505 | if (ns < 10000) |
| 506 | ndelay(ns); |
| 507 | else |
| 508 | udelay(DIV_ROUND_UP(ns, 1000)); |
| 509 | } |
| 510 | |
| 511 | /* |
| 512 | * The controller has many flags that could generate interrupts, most of them |
| 513 | * are disabled and polling is used. For the very slow signals, using interrupts |
| 514 | * may relax the CPU charge. |
| 515 | */ |
| 516 | static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) |
| 517 | { |
| 518 | u32 reg; |
| 519 | |
| 520 | /* Writing 1 disables the interrupt */ |
| 521 | reg = readl_relaxed(nfc->regs + NDCR); |
| 522 | writel_relaxed(reg | int_mask, nfc->regs + NDCR); |
| 523 | } |
| 524 | |
| 525 | static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) |
| 526 | { |
| 527 | u32 reg; |
| 528 | |
| 529 | /* Writing 0 enables the interrupt */ |
| 530 | reg = readl_relaxed(nfc->regs + NDCR); |
| 531 | writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); |
| 532 | } |
| 533 | |
| 534 | static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) |
| 535 | { |
| 536 | u32 reg; |
| 537 | |
| 538 | reg = readl_relaxed(nfc->regs + NDSR); |
| 539 | writel_relaxed(int_mask, nfc->regs + NDSR); |
| 540 | |
| 541 | return reg & int_mask; |
| 542 | } |
| 543 | |
| 544 | static void marvell_nfc_force_byte_access(struct nand_chip *chip, |
| 545 | bool force_8bit) |
| 546 | { |
| 547 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 548 | u32 ndcr; |
| 549 | |
| 550 | /* |
| 551 | * Callers of this function do not verify if the NAND is using a 16-bit |
| 552 | * an 8-bit bus for normal operations, so we need to take care of that |
| 553 | * here by leaving the configuration unchanged if the NAND does not have |
| 554 | * the NAND_BUSWIDTH_16 flag set. |
| 555 | */ |
| 556 | if (!(chip->options & NAND_BUSWIDTH_16)) |
| 557 | return; |
| 558 | |
| 559 | ndcr = readl_relaxed(nfc->regs + NDCR); |
| 560 | |
| 561 | if (force_8bit) |
| 562 | ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); |
| 563 | else |
| 564 | ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; |
| 565 | |
| 566 | writel_relaxed(ndcr, nfc->regs + NDCR); |
| 567 | } |
| 568 | |
| 569 | static int marvell_nfc_wait_ndrun(struct nand_chip *chip) |
| 570 | { |
| 571 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 572 | u32 val; |
| 573 | int ret; |
| 574 | |
| 575 | /* |
| 576 | * The command is being processed, wait for the ND_RUN bit to be |
| 577 | * cleared by the NFC. If not, we must clear it by hand. |
| 578 | */ |
| 579 | ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, |
| 580 | (val & NDCR_ND_RUN) == 0, |
| 581 | POLL_PERIOD, POLL_TIMEOUT); |
| 582 | if (ret) { |
| 583 | dev_err(nfc->dev, "Timeout on NAND controller run mode\n" ); |
| 584 | writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, |
| 585 | nfc->regs + NDCR); |
| 586 | return ret; |
| 587 | } |
| 588 | |
| 589 | return 0; |
| 590 | } |
| 591 | |
| 592 | /* |
| 593 | * Any time a command has to be sent to the controller, the following sequence |
| 594 | * has to be followed: |
| 595 | * - call marvell_nfc_prepare_cmd() |
| 596 | * -> activate the ND_RUN bit that will kind of 'start a job' |
| 597 | * -> wait the signal indicating the NFC is waiting for a command |
| 598 | * - send the command (cmd and address cycles) |
| 599 | * - enventually send or receive the data |
| 600 | * - call marvell_nfc_end_cmd() with the corresponding flag |
| 601 | * -> wait the flag to be triggered or cancel the job with a timeout |
| 602 | * |
| 603 | * The following helpers are here to factorize the code a bit so that |
| 604 | * specialized functions responsible for executing the actual NAND |
| 605 | * operations do not have to replicate the same code blocks. |
| 606 | */ |
| 607 | static int marvell_nfc_prepare_cmd(struct nand_chip *chip) |
| 608 | { |
| 609 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 610 | u32 ndcr, val; |
| 611 | int ret; |
| 612 | |
| 613 | /* Poll ND_RUN and clear NDSR before issuing any command */ |
| 614 | ret = marvell_nfc_wait_ndrun(chip); |
| 615 | if (ret) { |
| 616 | dev_err(nfc->dev, "Last operation did not succeed\n" ); |
| 617 | return ret; |
| 618 | } |
| 619 | |
| 620 | ndcr = readl_relaxed(nfc->regs + NDCR); |
| 621 | writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); |
| 622 | |
| 623 | /* Assert ND_RUN bit and wait the NFC to be ready */ |
| 624 | writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); |
| 625 | ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, |
| 626 | val & NDSR_WRCMDREQ, |
| 627 | POLL_PERIOD, POLL_TIMEOUT); |
| 628 | if (ret) { |
| 629 | dev_err(nfc->dev, "Timeout on WRCMDRE\n" ); |
| 630 | return -ETIMEDOUT; |
| 631 | } |
| 632 | |
| 633 | /* Command may be written, clear WRCMDREQ status bit */ |
| 634 | writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); |
| 635 | |
| 636 | return 0; |
| 637 | } |
| 638 | |
| 639 | static void marvell_nfc_send_cmd(struct nand_chip *chip, |
| 640 | struct marvell_nfc_op *nfc_op) |
| 641 | { |
| 642 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| 643 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 644 | |
| 645 | dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" |
| 646 | "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n" , |
| 647 | (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], |
| 648 | nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); |
| 649 | |
| 650 | writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], |
| 651 | nfc->regs + NDCB0); |
| 652 | writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); |
| 653 | writel(val: nfc_op->ndcb[2], addr: nfc->regs + NDCB0); |
| 654 | |
| 655 | /* |
| 656 | * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 |
| 657 | * fields are used (only available on NFCv2). |
| 658 | */ |
| 659 | if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || |
| 660 | NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { |
| 661 | if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) |
| 662 | writel(val: nfc_op->ndcb[3], addr: nfc->regs + NDCB0); |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, |
| 667 | const char *label) |
| 668 | { |
| 669 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 670 | u32 val; |
| 671 | int ret; |
| 672 | |
| 673 | ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, |
| 674 | val & flag, |
| 675 | POLL_PERIOD, POLL_TIMEOUT); |
| 676 | |
| 677 | if (ret) { |
| 678 | dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n" , |
| 679 | label, val); |
| 680 | if (nfc->dma_chan) |
| 681 | dmaengine_terminate_all(chan: nfc->dma_chan); |
| 682 | return ret; |
| 683 | } |
| 684 | |
| 685 | /* |
| 686 | * DMA function uses this helper to poll on CMDD bits without wanting |
| 687 | * them to be cleared. |
| 688 | */ |
| 689 | if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) |
| 690 | return 0; |
| 691 | |
| 692 | writel_relaxed(flag, nfc->regs + NDSR); |
| 693 | |
| 694 | return 0; |
| 695 | } |
| 696 | |
| 697 | static int marvell_nfc_wait_cmdd(struct nand_chip *chip) |
| 698 | { |
| 699 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| 700 | int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); |
| 701 | |
| 702 | return marvell_nfc_end_cmd(chip, flag: cs_flag, label: "CMDD" ); |
| 703 | } |
| 704 | |
| 705 | static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, |
| 706 | u32 expected_val, unsigned long timeout_ms) |
| 707 | { |
| 708 | unsigned long limit; |
| 709 | u32 st; |
| 710 | |
| 711 | limit = jiffies + msecs_to_jiffies(m: timeout_ms); |
| 712 | do { |
| 713 | st = readl_relaxed(nfc->regs + NDSR); |
| 714 | if (st & NDSR_RDY(1)) |
| 715 | st |= NDSR_RDY(0); |
| 716 | |
| 717 | if ((st & mask) == expected_val) |
| 718 | return 0; |
| 719 | |
| 720 | cpu_relax(); |
| 721 | } while (time_after(limit, jiffies)); |
| 722 | |
| 723 | return -ETIMEDOUT; |
| 724 | } |
| 725 | |
| 726 | static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) |
| 727 | { |
| 728 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 729 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 730 | u32 pending; |
| 731 | int ret; |
| 732 | |
| 733 | /* Timeout is expressed in ms */ |
| 734 | if (!timeout_ms) |
| 735 | timeout_ms = IRQ_TIMEOUT; |
| 736 | |
| 737 | if (mtd->oops_panic_write) { |
| 738 | ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), |
| 739 | NDSR_RDY(0), |
| 740 | timeout_ms); |
| 741 | } else { |
| 742 | init_completion(x: &nfc->complete); |
| 743 | |
| 744 | marvell_nfc_enable_int(nfc, NDCR_RDYM); |
| 745 | ret = wait_for_completion_timeout(x: &nfc->complete, |
| 746 | timeout: msecs_to_jiffies(m: timeout_ms)); |
| 747 | marvell_nfc_disable_int(nfc, NDCR_RDYM); |
| 748 | } |
| 749 | pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); |
| 750 | |
| 751 | /* |
| 752 | * In case the interrupt was not served in the required time frame, |
| 753 | * check if the ISR was not served or if something went actually wrong. |
| 754 | */ |
| 755 | if (!ret && !pending) { |
| 756 | dev_err(nfc->dev, "Timeout waiting for RB signal\n" ); |
| 757 | return -ETIMEDOUT; |
| 758 | } |
| 759 | |
| 760 | return 0; |
| 761 | } |
| 762 | |
| 763 | static void marvell_nfc_select_target(struct nand_chip *chip, |
| 764 | unsigned int die_nr) |
| 765 | { |
| 766 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| 767 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 768 | u32 ndcr_generic; |
| 769 | |
| 770 | /* |
| 771 | * Reset the NDCR register to a clean state for this particular chip, |
| 772 | * also clear ND_RUN bit. |
| 773 | */ |
| 774 | ndcr_generic = readl_relaxed(nfc->regs + NDCR) & |
| 775 | NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; |
| 776 | writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); |
| 777 | |
| 778 | /* Also reset the interrupt status register */ |
| 779 | marvell_nfc_clear_int(nfc, NDCR_ALL_INT); |
| 780 | |
| 781 | if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) |
| 782 | return; |
| 783 | |
| 784 | writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); |
| 785 | writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); |
| 786 | |
| 787 | nfc->selected_chip = chip; |
| 788 | marvell_nand->selected_die = die_nr; |
| 789 | } |
| 790 | |
| 791 | static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) |
| 792 | { |
| 793 | struct marvell_nfc *nfc = dev_id; |
| 794 | u32 st = readl_relaxed(nfc->regs + NDSR); |
| 795 | u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; |
| 796 | |
| 797 | /* |
| 798 | * RDY interrupt mask is one bit in NDCR while there are two status |
| 799 | * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). |
| 800 | */ |
| 801 | if (st & NDSR_RDY(1)) |
| 802 | st |= NDSR_RDY(0); |
| 803 | |
| 804 | if (!(st & ien)) |
| 805 | return IRQ_NONE; |
| 806 | |
| 807 | marvell_nfc_disable_int(nfc, int_mask: st & NDCR_ALL_INT); |
| 808 | |
| 809 | if (st & (NDSR_RDY(0) | NDSR_RDY(1))) |
| 810 | complete(&nfc->complete); |
| 811 | |
| 812 | return IRQ_HANDLED; |
| 813 | } |
| 814 | |
| 815 | /* HW ECC related functions */ |
| 816 | static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) |
| 817 | { |
| 818 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 819 | u32 ndcr = readl_relaxed(nfc->regs + NDCR); |
| 820 | |
| 821 | if (!(ndcr & NDCR_ECC_EN)) { |
| 822 | writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); |
| 823 | |
| 824 | /* |
| 825 | * When enabling BCH, set threshold to 0 to always know the |
| 826 | * number of corrected bitflips. |
| 827 | */ |
| 828 | if (chip->ecc.algo == NAND_ECC_ALGO_BCH) |
| 829 | writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) |
| 834 | { |
| 835 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 836 | u32 ndcr = readl_relaxed(nfc->regs + NDCR); |
| 837 | |
| 838 | if (ndcr & NDCR_ECC_EN) { |
| 839 | writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); |
| 840 | if (chip->ecc.algo == NAND_ECC_ALGO_BCH) |
| 841 | writel_relaxed(0, nfc->regs + NDECCCTRL); |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | /* DMA related helpers */ |
| 846 | static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) |
| 847 | { |
| 848 | u32 reg; |
| 849 | |
| 850 | reg = readl_relaxed(nfc->regs + NDCR); |
| 851 | writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); |
| 852 | } |
| 853 | |
| 854 | static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) |
| 855 | { |
| 856 | u32 reg; |
| 857 | |
| 858 | reg = readl_relaxed(nfc->regs + NDCR); |
| 859 | writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); |
| 860 | } |
| 861 | |
| 862 | /* Read/write PIO/DMA accessors */ |
| 863 | static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, |
| 864 | enum dma_data_direction direction, |
| 865 | unsigned int len) |
| 866 | { |
| 867 | unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); |
| 868 | struct dma_async_tx_descriptor *tx; |
| 869 | struct scatterlist sg; |
| 870 | dma_cookie_t cookie; |
| 871 | int ret; |
| 872 | |
| 873 | marvell_nfc_enable_dma(nfc); |
| 874 | /* Prepare the DMA transfer */ |
| 875 | sg_init_one(&sg, nfc->dma_buf, dma_len); |
| 876 | ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); |
| 877 | if (!ret) { |
| 878 | dev_err(nfc->dev, "Could not map DMA S/G list\n" ); |
| 879 | return -ENXIO; |
| 880 | } |
| 881 | |
| 882 | tx = dmaengine_prep_slave_sg(chan: nfc->dma_chan, sgl: &sg, sg_len: 1, |
| 883 | dir: direction == DMA_FROM_DEVICE ? |
| 884 | DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, |
| 885 | flags: DMA_PREP_INTERRUPT); |
| 886 | if (!tx) { |
| 887 | dev_err(nfc->dev, "Could not prepare DMA S/G list\n" ); |
| 888 | dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); |
| 889 | return -ENXIO; |
| 890 | } |
| 891 | |
| 892 | /* Do the task and wait for it to finish */ |
| 893 | cookie = dmaengine_submit(desc: tx); |
| 894 | ret = dma_submit_error(cookie); |
| 895 | if (ret) |
| 896 | return -EIO; |
| 897 | |
| 898 | dma_async_issue_pending(chan: nfc->dma_chan); |
| 899 | ret = marvell_nfc_wait_cmdd(chip: nfc->selected_chip); |
| 900 | dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); |
| 901 | marvell_nfc_disable_dma(nfc); |
| 902 | if (ret) { |
| 903 | dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n" , |
| 904 | dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); |
| 905 | dmaengine_terminate_all(chan: nfc->dma_chan); |
| 906 | return -ETIMEDOUT; |
| 907 | } |
| 908 | |
| 909 | return 0; |
| 910 | } |
| 911 | |
| 912 | static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, |
| 913 | unsigned int len) |
| 914 | { |
| 915 | unsigned int last_len = len % FIFO_DEPTH; |
| 916 | unsigned int last_full_offset = round_down(len, FIFO_DEPTH); |
| 917 | int i; |
| 918 | |
| 919 | for (i = 0; i < last_full_offset; i += FIFO_DEPTH) |
| 920 | ioread32_rep(port: nfc->regs + NDDB, buf: in + i, FIFO_REP(FIFO_DEPTH)); |
| 921 | |
| 922 | if (last_len) { |
| 923 | u8 tmp_buf[FIFO_DEPTH]; |
| 924 | |
| 925 | ioread32_rep(port: nfc->regs + NDDB, buf: tmp_buf, FIFO_REP(FIFO_DEPTH)); |
| 926 | memcpy(in + last_full_offset, tmp_buf, last_len); |
| 927 | } |
| 928 | |
| 929 | return 0; |
| 930 | } |
| 931 | |
| 932 | static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, |
| 933 | unsigned int len) |
| 934 | { |
| 935 | unsigned int last_len = len % FIFO_DEPTH; |
| 936 | unsigned int last_full_offset = round_down(len, FIFO_DEPTH); |
| 937 | int i; |
| 938 | |
| 939 | for (i = 0; i < last_full_offset; i += FIFO_DEPTH) |
| 940 | iowrite32_rep(port: nfc->regs + NDDB, buf: out + i, FIFO_REP(FIFO_DEPTH)); |
| 941 | |
| 942 | if (last_len) { |
| 943 | u8 tmp_buf[FIFO_DEPTH]; |
| 944 | |
| 945 | memcpy(tmp_buf, out + last_full_offset, last_len); |
| 946 | iowrite32_rep(port: nfc->regs + NDDB, buf: tmp_buf, FIFO_REP(FIFO_DEPTH)); |
| 947 | } |
| 948 | |
| 949 | return 0; |
| 950 | } |
| 951 | |
| 952 | static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, |
| 953 | u8 *data, int data_len, |
| 954 | u8 *spare, int spare_len, |
| 955 | u8 *ecc, int ecc_len, |
| 956 | unsigned int *max_bitflips) |
| 957 | { |
| 958 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 959 | int bf; |
| 960 | |
| 961 | /* |
| 962 | * Blank pages (all 0xFF) that have not been written may be recognized |
| 963 | * as bad if bitflips occur, so whenever an uncorrectable error occurs, |
| 964 | * check if the entire page (with ECC bytes) is actually blank or not. |
| 965 | */ |
| 966 | if (!data) |
| 967 | data_len = 0; |
| 968 | if (!spare) |
| 969 | spare_len = 0; |
| 970 | if (!ecc) |
| 971 | ecc_len = 0; |
| 972 | |
| 973 | bf = nand_check_erased_ecc_chunk(data, datalen: data_len, ecc, ecclen: ecc_len, |
| 974 | extraoob: spare, extraooblen: spare_len, threshold: chip->ecc.strength); |
| 975 | if (bf < 0) { |
| 976 | mtd->ecc_stats.failed++; |
| 977 | return; |
| 978 | } |
| 979 | |
| 980 | /* Update the stats and max_bitflips */ |
| 981 | mtd->ecc_stats.corrected += bf; |
| 982 | *max_bitflips = max_t(unsigned int, *max_bitflips, bf); |
| 983 | } |
| 984 | |
| 985 | /* |
| 986 | * Check if a chunk is correct or not according to the hardware ECC engine. |
| 987 | * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however |
| 988 | * mtd->ecc_stats.failure is not, the function will instead return a non-zero |
| 989 | * value indicating that a check on the emptyness of the subpage must be |
| 990 | * performed before actually declaring the subpage as "corrupted". |
| 991 | */ |
| 992 | static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, |
| 993 | unsigned int *max_bitflips) |
| 994 | { |
| 995 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 996 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 997 | int bf = 0; |
| 998 | u32 ndsr; |
| 999 | |
| 1000 | ndsr = readl_relaxed(nfc->regs + NDSR); |
| 1001 | |
| 1002 | /* Check uncorrectable error flag */ |
| 1003 | if (ndsr & NDSR_UNCERR) { |
| 1004 | writel_relaxed(ndsr, nfc->regs + NDSR); |
| 1005 | |
| 1006 | /* |
| 1007 | * Do not increment ->ecc_stats.failed now, instead, return a |
| 1008 | * non-zero value to indicate that this chunk was apparently |
| 1009 | * bad, and it should be check to see if it empty or not. If |
| 1010 | * the chunk (with ECC bytes) is not declared empty, the calling |
| 1011 | * function must increment the failure count. |
| 1012 | */ |
| 1013 | return -EBADMSG; |
| 1014 | } |
| 1015 | |
| 1016 | /* Check correctable error flag */ |
| 1017 | if (ndsr & NDSR_CORERR) { |
| 1018 | writel_relaxed(ndsr, nfc->regs + NDSR); |
| 1019 | |
| 1020 | if (chip->ecc.algo == NAND_ECC_ALGO_BCH) |
| 1021 | bf = NDSR_ERRCNT(ndsr); |
| 1022 | else |
| 1023 | bf = 1; |
| 1024 | } |
| 1025 | |
| 1026 | /* Update the stats and max_bitflips */ |
| 1027 | mtd->ecc_stats.corrected += bf; |
| 1028 | *max_bitflips = max_t(unsigned int, *max_bitflips, bf); |
| 1029 | |
| 1030 | return 0; |
| 1031 | } |
| 1032 | |
| 1033 | /* Hamming read helpers */ |
| 1034 | static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, |
| 1035 | u8 *data_buf, u8 *oob_buf, |
| 1036 | bool raw, int page) |
| 1037 | { |
| 1038 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| 1039 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 1040 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| 1041 | struct marvell_nfc_op nfc_op = { |
| 1042 | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | |
| 1043 | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
| 1044 | NDCB0_DBC | |
| 1045 | NDCB0_CMD1(NAND_CMD_READ0) | |
| 1046 | NDCB0_CMD2(NAND_CMD_READSTART), |
| 1047 | .ndcb[1] = NDCB1_ADDRS_PAGE(page), |
| 1048 | .ndcb[2] = NDCB2_ADDR5_PAGE(page), |
| 1049 | }; |
| 1050 | unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); |
| 1051 | int ret; |
| 1052 | |
| 1053 | /* NFCv2 needs more information about the operation being executed */ |
| 1054 | if (nfc->caps->is_nfcv2) |
| 1055 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); |
| 1056 | |
| 1057 | ret = marvell_nfc_prepare_cmd(chip); |
| 1058 | if (ret) |
| 1059 | return ret; |
| 1060 | |
| 1061 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
| 1062 | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
| 1063 | label: "RDDREQ while draining FIFO (data/oob)" ); |
| 1064 | if (ret) |
| 1065 | return ret; |
| 1066 | |
| 1067 | /* |
| 1068 | * Read the page then the OOB area. Unlike what is shown in current |
| 1069 | * documentation, spare bytes are protected by the ECC engine, and must |
| 1070 | * be at the beginning of the OOB area or running this driver on legacy |
| 1071 | * systems will prevent the discovery of the BBM/BBT. |
| 1072 | */ |
| 1073 | if (nfc->use_dma) { |
| 1074 | marvell_nfc_xfer_data_dma(nfc, direction: DMA_FROM_DEVICE, |
| 1075 | len: lt->data_bytes + oob_bytes); |
| 1076 | memcpy(data_buf, nfc->dma_buf, lt->data_bytes); |
| 1077 | memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); |
| 1078 | } else { |
| 1079 | marvell_nfc_xfer_data_in_pio(nfc, in: data_buf, len: lt->data_bytes); |
| 1080 | marvell_nfc_xfer_data_in_pio(nfc, in: oob_buf, len: oob_bytes); |
| 1081 | } |
| 1082 | |
| 1083 | ret = marvell_nfc_wait_cmdd(chip); |
| 1084 | return ret; |
| 1085 | } |
| 1086 | |
| 1087 | static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, |
| 1088 | int oob_required, int page) |
| 1089 | { |
| 1090 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
| 1091 | return marvell_nfc_hw_ecc_hmg_do_read_page(chip, data_buf: buf, oob_buf: chip->oob_poi, |
| 1092 | raw: true, page); |
| 1093 | } |
| 1094 | |
| 1095 | static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, |
| 1096 | int oob_required, int page) |
| 1097 | { |
| 1098 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| 1099 | unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; |
| 1100 | int max_bitflips = 0, ret; |
| 1101 | u8 *raw_buf; |
| 1102 | |
| 1103 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
| 1104 | marvell_nfc_enable_hw_ecc(chip); |
| 1105 | marvell_nfc_hw_ecc_hmg_do_read_page(chip, data_buf: buf, oob_buf: chip->oob_poi, raw: false, |
| 1106 | page); |
| 1107 | ret = marvell_nfc_hw_ecc_check_bitflips(chip, max_bitflips: &max_bitflips); |
| 1108 | marvell_nfc_disable_hw_ecc(chip); |
| 1109 | |
| 1110 | if (!ret) |
| 1111 | return max_bitflips; |
| 1112 | |
| 1113 | /* |
| 1114 | * When ECC failures are detected, check if the full page has been |
| 1115 | * written or not. Ignore the failure if it is actually empty. |
| 1116 | */ |
| 1117 | raw_buf = kmalloc(full_sz, GFP_KERNEL); |
| 1118 | if (!raw_buf) |
| 1119 | return -ENOMEM; |
| 1120 | |
| 1121 | marvell_nfc_hw_ecc_hmg_do_read_page(chip, data_buf: raw_buf, oob_buf: raw_buf + |
| 1122 | lt->data_bytes, raw: true, page); |
| 1123 | marvell_nfc_check_empty_chunk(chip, data: raw_buf, data_len: full_sz, NULL, spare_len: 0, NULL, ecc_len: 0, |
| 1124 | max_bitflips: &max_bitflips); |
| 1125 | kfree(objp: raw_buf); |
| 1126 | |
| 1127 | return max_bitflips; |
| 1128 | } |
| 1129 | |
| 1130 | /* |
| 1131 | * Spare area in Hamming layouts is not protected by the ECC engine (even if |
| 1132 | * it appears before the ECC bytes when reading), the ->read_oob_raw() function |
| 1133 | * also stands for ->read_oob(). |
| 1134 | */ |
| 1135 | static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) |
| 1136 | { |
| 1137 | u8 *buf = nand_get_data_buf(chip); |
| 1138 | |
| 1139 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
| 1140 | return marvell_nfc_hw_ecc_hmg_do_read_page(chip, data_buf: buf, oob_buf: chip->oob_poi, |
| 1141 | raw: true, page); |
| 1142 | } |
| 1143 | |
| 1144 | /* Hamming write helpers */ |
| 1145 | static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, |
| 1146 | const u8 *data_buf, |
| 1147 | const u8 *oob_buf, bool raw, |
| 1148 | int page) |
| 1149 | { |
| 1150 | const struct nand_sdr_timings *sdr = |
| 1151 | nand_get_sdr_timings(conf: nand_get_interface_config(chip)); |
| 1152 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| 1153 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 1154 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| 1155 | struct marvell_nfc_op nfc_op = { |
| 1156 | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | |
| 1157 | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
| 1158 | NDCB0_CMD1(NAND_CMD_SEQIN) | |
| 1159 | NDCB0_CMD2(NAND_CMD_PAGEPROG) | |
| 1160 | NDCB0_DBC, |
| 1161 | .ndcb[1] = NDCB1_ADDRS_PAGE(page), |
| 1162 | .ndcb[2] = NDCB2_ADDR5_PAGE(page), |
| 1163 | }; |
| 1164 | unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); |
| 1165 | u8 status; |
| 1166 | int ret; |
| 1167 | |
| 1168 | /* NFCv2 needs more information about the operation being executed */ |
| 1169 | if (nfc->caps->is_nfcv2) |
| 1170 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); |
| 1171 | |
| 1172 | ret = marvell_nfc_prepare_cmd(chip); |
| 1173 | if (ret) |
| 1174 | return ret; |
| 1175 | |
| 1176 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
| 1177 | ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, |
| 1178 | label: "WRDREQ while loading FIFO (data)" ); |
| 1179 | if (ret) |
| 1180 | return ret; |
| 1181 | |
| 1182 | /* Write the page then the OOB area */ |
| 1183 | if (nfc->use_dma) { |
| 1184 | memcpy(nfc->dma_buf, data_buf, lt->data_bytes); |
| 1185 | memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); |
| 1186 | marvell_nfc_xfer_data_dma(nfc, direction: DMA_TO_DEVICE, len: lt->data_bytes + |
| 1187 | lt->ecc_bytes + lt->spare_bytes); |
| 1188 | } else { |
| 1189 | marvell_nfc_xfer_data_out_pio(nfc, out: data_buf, len: lt->data_bytes); |
| 1190 | marvell_nfc_xfer_data_out_pio(nfc, out: oob_buf, len: oob_bytes); |
| 1191 | } |
| 1192 | |
| 1193 | ret = marvell_nfc_wait_cmdd(chip); |
| 1194 | if (ret) |
| 1195 | return ret; |
| 1196 | |
| 1197 | ret = marvell_nfc_wait_op(chip, |
| 1198 | PSEC_TO_MSEC(sdr->tPROG_max)); |
| 1199 | if (ret) |
| 1200 | return ret; |
| 1201 | |
| 1202 | /* Check write status on the chip side */ |
| 1203 | ret = nand_status_op(chip, status: &status); |
| 1204 | if (ret) |
| 1205 | return ret; |
| 1206 | |
| 1207 | if (status & NAND_STATUS_FAIL) |
| 1208 | return -EIO; |
| 1209 | |
| 1210 | return 0; |
| 1211 | } |
| 1212 | |
| 1213 | static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, |
| 1214 | const u8 *buf, |
| 1215 | int oob_required, int page) |
| 1216 | { |
| 1217 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
| 1218 | return marvell_nfc_hw_ecc_hmg_do_write_page(chip, data_buf: buf, oob_buf: chip->oob_poi, |
| 1219 | raw: true, page); |
| 1220 | } |
| 1221 | |
| 1222 | static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, |
| 1223 | const u8 *buf, |
| 1224 | int oob_required, int page) |
| 1225 | { |
| 1226 | int ret; |
| 1227 | |
| 1228 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
| 1229 | marvell_nfc_enable_hw_ecc(chip); |
| 1230 | ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, data_buf: buf, oob_buf: chip->oob_poi, |
| 1231 | raw: false, page); |
| 1232 | marvell_nfc_disable_hw_ecc(chip); |
| 1233 | |
| 1234 | return ret; |
| 1235 | } |
| 1236 | |
| 1237 | /* |
| 1238 | * Spare area in Hamming layouts is not protected by the ECC engine (even if |
| 1239 | * it appears before the ECC bytes when reading), the ->write_oob_raw() function |
| 1240 | * also stands for ->write_oob(). |
| 1241 | */ |
| 1242 | static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, |
| 1243 | int page) |
| 1244 | { |
| 1245 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1246 | u8 *buf = nand_get_data_buf(chip); |
| 1247 | |
| 1248 | memset(buf, 0xFF, mtd->writesize); |
| 1249 | |
| 1250 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
| 1251 | return marvell_nfc_hw_ecc_hmg_do_write_page(chip, data_buf: buf, oob_buf: chip->oob_poi, |
| 1252 | raw: true, page); |
| 1253 | } |
| 1254 | |
| 1255 | /* BCH read helpers */ |
| 1256 | static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, |
| 1257 | int oob_required, int page) |
| 1258 | { |
| 1259 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1260 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| 1261 | u8 *oob = chip->oob_poi; |
| 1262 | int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; |
| 1263 | int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + |
| 1264 | lt->last_spare_bytes; |
| 1265 | int data_len = lt->data_bytes; |
| 1266 | int spare_len = lt->spare_bytes; |
| 1267 | int ecc_len = lt->ecc_bytes; |
| 1268 | int chunk; |
| 1269 | |
| 1270 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
| 1271 | |
| 1272 | if (oob_required) |
| 1273 | memset(chip->oob_poi, 0xFF, mtd->oobsize); |
| 1274 | |
| 1275 | nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0); |
| 1276 | |
| 1277 | for (chunk = 0; chunk < lt->nchunks; chunk++) { |
| 1278 | /* Update last chunk length */ |
| 1279 | if (chunk >= lt->full_chunk_cnt) { |
| 1280 | data_len = lt->last_data_bytes; |
| 1281 | spare_len = lt->last_spare_bytes; |
| 1282 | ecc_len = lt->last_ecc_bytes; |
| 1283 | } |
| 1284 | |
| 1285 | /* Read data bytes*/ |
| 1286 | nand_change_read_column_op(chip, offset_in_page: chunk * chunk_size, |
| 1287 | buf: buf + (lt->data_bytes * chunk), |
| 1288 | len: data_len, force_8bit: false); |
| 1289 | |
| 1290 | /* Read spare bytes */ |
| 1291 | nand_read_data_op(chip, buf: oob + (lt->spare_bytes * chunk), |
| 1292 | len: spare_len, force_8bit: false, check_only: false); |
| 1293 | |
| 1294 | /* Read ECC bytes */ |
| 1295 | nand_read_data_op(chip, buf: oob + ecc_offset + |
| 1296 | (ALIGN(lt->ecc_bytes, 32) * chunk), |
| 1297 | len: ecc_len, force_8bit: false, check_only: false); |
| 1298 | } |
| 1299 | |
| 1300 | return 0; |
| 1301 | } |
| 1302 | |
| 1303 | static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, |
| 1304 | u8 *data, unsigned int data_len, |
| 1305 | u8 *spare, unsigned int spare_len, |
| 1306 | int page) |
| 1307 | { |
| 1308 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| 1309 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 1310 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| 1311 | int i, ret; |
| 1312 | struct marvell_nfc_op nfc_op = { |
| 1313 | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | |
| 1314 | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
| 1315 | NDCB0_LEN_OVRD, |
| 1316 | .ndcb[1] = NDCB1_ADDRS_PAGE(page), |
| 1317 | .ndcb[2] = NDCB2_ADDR5_PAGE(page), |
| 1318 | .ndcb[3] = data_len + spare_len, |
| 1319 | }; |
| 1320 | |
| 1321 | ret = marvell_nfc_prepare_cmd(chip); |
| 1322 | if (ret) |
| 1323 | return; |
| 1324 | |
| 1325 | if (chunk == 0) |
| 1326 | nfc_op.ndcb[0] |= NDCB0_DBC | |
| 1327 | NDCB0_CMD1(NAND_CMD_READ0) | |
| 1328 | NDCB0_CMD2(NAND_CMD_READSTART); |
| 1329 | |
| 1330 | /* |
| 1331 | * Trigger the monolithic read on the first chunk, then naked read on |
| 1332 | * intermediate chunks and finally a last naked read on the last chunk. |
| 1333 | */ |
| 1334 | if (chunk == 0) |
| 1335 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); |
| 1336 | else if (chunk < lt->nchunks - 1) |
| 1337 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); |
| 1338 | else |
| 1339 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
| 1340 | |
| 1341 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
| 1342 | |
| 1343 | /* |
| 1344 | * According to the datasheet, when reading from NDDB |
| 1345 | * with BCH enabled, after each 32 bytes reads, we |
| 1346 | * have to make sure that the NDSR.RDDREQ bit is set. |
| 1347 | * |
| 1348 | * Drain the FIFO, 8 32-bit reads at a time, and skip |
| 1349 | * the polling on the last read. |
| 1350 | * |
| 1351 | * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. |
| 1352 | */ |
| 1353 | for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { |
| 1354 | marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
| 1355 | label: "RDDREQ while draining FIFO (data)" ); |
| 1356 | marvell_nfc_xfer_data_in_pio(nfc, in: data, |
| 1357 | FIFO_DEPTH * BCH_SEQ_READS); |
| 1358 | data += FIFO_DEPTH * BCH_SEQ_READS; |
| 1359 | } |
| 1360 | |
| 1361 | for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { |
| 1362 | marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
| 1363 | label: "RDDREQ while draining FIFO (OOB)" ); |
| 1364 | marvell_nfc_xfer_data_in_pio(nfc, in: spare, |
| 1365 | FIFO_DEPTH * BCH_SEQ_READS); |
| 1366 | spare += FIFO_DEPTH * BCH_SEQ_READS; |
| 1367 | } |
| 1368 | } |
| 1369 | |
| 1370 | static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, |
| 1371 | u8 *buf, int oob_required, |
| 1372 | int page) |
| 1373 | { |
| 1374 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1375 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| 1376 | int data_len = lt->data_bytes, spare_len = lt->spare_bytes; |
| 1377 | u8 *data = buf, *spare = chip->oob_poi; |
| 1378 | int max_bitflips = 0; |
| 1379 | u32 failure_mask = 0; |
| 1380 | int chunk, ret; |
| 1381 | |
| 1382 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
| 1383 | |
| 1384 | /* |
| 1385 | * With BCH, OOB is not fully used (and thus not read entirely), not |
| 1386 | * expected bytes could show up at the end of the OOB buffer if not |
| 1387 | * explicitly erased. |
| 1388 | */ |
| 1389 | if (oob_required) |
| 1390 | memset(chip->oob_poi, 0xFF, mtd->oobsize); |
| 1391 | |
| 1392 | marvell_nfc_enable_hw_ecc(chip); |
| 1393 | |
| 1394 | for (chunk = 0; chunk < lt->nchunks; chunk++) { |
| 1395 | /* Update length for the last chunk */ |
| 1396 | if (chunk >= lt->full_chunk_cnt) { |
| 1397 | data_len = lt->last_data_bytes; |
| 1398 | spare_len = lt->last_spare_bytes; |
| 1399 | } |
| 1400 | |
| 1401 | /* Read the chunk and detect number of bitflips */ |
| 1402 | marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, |
| 1403 | spare, spare_len, page); |
| 1404 | ret = marvell_nfc_hw_ecc_check_bitflips(chip, max_bitflips: &max_bitflips); |
| 1405 | if (ret) |
| 1406 | failure_mask |= BIT(chunk); |
| 1407 | |
| 1408 | data += data_len; |
| 1409 | spare += spare_len; |
| 1410 | } |
| 1411 | |
| 1412 | marvell_nfc_disable_hw_ecc(chip); |
| 1413 | |
| 1414 | if (!failure_mask) |
| 1415 | return max_bitflips; |
| 1416 | |
| 1417 | /* |
| 1418 | * Please note that dumping the ECC bytes during a normal read with OOB |
| 1419 | * area would add a significant overhead as ECC bytes are "consumed" by |
| 1420 | * the controller in normal mode and must be re-read in raw mode. To |
| 1421 | * avoid dropping the performances, we prefer not to include them. The |
| 1422 | * user should re-read the page in raw mode if ECC bytes are required. |
| 1423 | */ |
| 1424 | |
| 1425 | /* |
| 1426 | * In case there is any subpage read error, we usually re-read only ECC |
| 1427 | * bytes in raw mode and check if the whole page is empty. In this case, |
| 1428 | * it is normal that the ECC check failed and we just ignore the error. |
| 1429 | * |
| 1430 | * However, it has been empirically observed that for some layouts (e.g |
| 1431 | * 2k page, 8b strength per 512B chunk), the controller tries to correct |
| 1432 | * bits and may create itself bitflips in the erased area. To overcome |
| 1433 | * this strange behavior, the whole page is re-read in raw mode, not |
| 1434 | * only the ECC bytes. |
| 1435 | */ |
| 1436 | for (chunk = 0; chunk < lt->nchunks; chunk++) { |
| 1437 | int data_off_in_page, spare_off_in_page, ecc_off_in_page; |
| 1438 | int data_off, spare_off, ecc_off; |
| 1439 | int data_len, spare_len, ecc_len; |
| 1440 | |
| 1441 | /* No failure reported for this chunk, move to the next one */ |
| 1442 | if (!(failure_mask & BIT(chunk))) |
| 1443 | continue; |
| 1444 | |
| 1445 | data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + |
| 1446 | lt->ecc_bytes); |
| 1447 | spare_off_in_page = data_off_in_page + |
| 1448 | (chunk < lt->full_chunk_cnt ? lt->data_bytes : |
| 1449 | lt->last_data_bytes); |
| 1450 | ecc_off_in_page = spare_off_in_page + |
| 1451 | (chunk < lt->full_chunk_cnt ? lt->spare_bytes : |
| 1452 | lt->last_spare_bytes); |
| 1453 | |
| 1454 | data_off = chunk * lt->data_bytes; |
| 1455 | spare_off = chunk * lt->spare_bytes; |
| 1456 | ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + |
| 1457 | lt->last_spare_bytes + |
| 1458 | (chunk * (lt->ecc_bytes + 2)); |
| 1459 | |
| 1460 | data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : |
| 1461 | lt->last_data_bytes; |
| 1462 | spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : |
| 1463 | lt->last_spare_bytes; |
| 1464 | ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : |
| 1465 | lt->last_ecc_bytes; |
| 1466 | |
| 1467 | /* |
| 1468 | * Only re-read the ECC bytes, unless we are using the 2k/8b |
| 1469 | * layout which is buggy in the sense that the ECC engine will |
| 1470 | * try to correct data bytes anyway, creating bitflips. In this |
| 1471 | * case, re-read the entire page. |
| 1472 | */ |
| 1473 | if (lt->writesize == 2048 && lt->strength == 8) { |
| 1474 | nand_change_read_column_op(chip, offset_in_page: data_off_in_page, |
| 1475 | buf: buf + data_off, len: data_len, |
| 1476 | force_8bit: false); |
| 1477 | nand_change_read_column_op(chip, offset_in_page: spare_off_in_page, |
| 1478 | buf: chip->oob_poi + spare_off, len: spare_len, |
| 1479 | force_8bit: false); |
| 1480 | } |
| 1481 | |
| 1482 | nand_change_read_column_op(chip, offset_in_page: ecc_off_in_page, |
| 1483 | buf: chip->oob_poi + ecc_off, len: ecc_len, |
| 1484 | force_8bit: false); |
| 1485 | |
| 1486 | /* Check the entire chunk (data + spare + ecc) for emptyness */ |
| 1487 | marvell_nfc_check_empty_chunk(chip, data: buf + data_off, data_len, |
| 1488 | spare: chip->oob_poi + spare_off, spare_len, |
| 1489 | ecc: chip->oob_poi + ecc_off, ecc_len, |
| 1490 | max_bitflips: &max_bitflips); |
| 1491 | } |
| 1492 | |
| 1493 | return max_bitflips; |
| 1494 | } |
| 1495 | |
| 1496 | static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) |
| 1497 | { |
| 1498 | u8 *buf = nand_get_data_buf(chip); |
| 1499 | |
| 1500 | return chip->ecc.read_page_raw(chip, buf, true, page); |
| 1501 | } |
| 1502 | |
| 1503 | static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) |
| 1504 | { |
| 1505 | u8 *buf = nand_get_data_buf(chip); |
| 1506 | |
| 1507 | return chip->ecc.read_page(chip, buf, true, page); |
| 1508 | } |
| 1509 | |
| 1510 | /* BCH write helpers */ |
| 1511 | static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, |
| 1512 | const u8 *buf, |
| 1513 | int oob_required, int page) |
| 1514 | { |
| 1515 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| 1516 | int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; |
| 1517 | int data_len = lt->data_bytes; |
| 1518 | int spare_len = lt->spare_bytes; |
| 1519 | int ecc_len = lt->ecc_bytes; |
| 1520 | int spare_offset = 0; |
| 1521 | int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + |
| 1522 | lt->last_spare_bytes; |
| 1523 | int chunk; |
| 1524 | |
| 1525 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
| 1526 | |
| 1527 | nand_prog_page_begin_op(chip, page, offset_in_page: 0, NULL, len: 0); |
| 1528 | |
| 1529 | for (chunk = 0; chunk < lt->nchunks; chunk++) { |
| 1530 | if (chunk >= lt->full_chunk_cnt) { |
| 1531 | data_len = lt->last_data_bytes; |
| 1532 | spare_len = lt->last_spare_bytes; |
| 1533 | ecc_len = lt->last_ecc_bytes; |
| 1534 | } |
| 1535 | |
| 1536 | /* Point to the column of the next chunk */ |
| 1537 | nand_change_write_column_op(chip, offset_in_page: chunk * full_chunk_size, |
| 1538 | NULL, len: 0, force_8bit: false); |
| 1539 | |
| 1540 | /* Write the data */ |
| 1541 | nand_write_data_op(chip, buf: buf + (chunk * lt->data_bytes), |
| 1542 | len: data_len, force_8bit: false); |
| 1543 | |
| 1544 | if (!oob_required) |
| 1545 | continue; |
| 1546 | |
| 1547 | /* Write the spare bytes */ |
| 1548 | if (spare_len) |
| 1549 | nand_write_data_op(chip, buf: chip->oob_poi + spare_offset, |
| 1550 | len: spare_len, force_8bit: false); |
| 1551 | |
| 1552 | /* Write the ECC bytes */ |
| 1553 | if (ecc_len) |
| 1554 | nand_write_data_op(chip, buf: chip->oob_poi + ecc_offset, |
| 1555 | len: ecc_len, force_8bit: false); |
| 1556 | |
| 1557 | spare_offset += spare_len; |
| 1558 | ecc_offset += ALIGN(ecc_len, 32); |
| 1559 | } |
| 1560 | |
| 1561 | return nand_prog_page_end_op(chip); |
| 1562 | } |
| 1563 | |
| 1564 | static int |
| 1565 | marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, |
| 1566 | const u8 *data, unsigned int data_len, |
| 1567 | const u8 *spare, unsigned int spare_len, |
| 1568 | int page) |
| 1569 | { |
| 1570 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| 1571 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 1572 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| 1573 | u32 xtype; |
| 1574 | int ret; |
| 1575 | struct marvell_nfc_op nfc_op = { |
| 1576 | .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, |
| 1577 | .ndcb[3] = data_len + spare_len, |
| 1578 | }; |
| 1579 | |
| 1580 | /* |
| 1581 | * First operation dispatches the CMD_SEQIN command, issue the address |
| 1582 | * cycles and asks for the first chunk of data. |
| 1583 | * All operations in the middle (if any) will issue a naked write and |
| 1584 | * also ask for data. |
| 1585 | * Last operation (if any) asks for the last chunk of data through a |
| 1586 | * last naked write. |
| 1587 | */ |
| 1588 | if (chunk == 0) { |
| 1589 | if (lt->nchunks == 1) |
| 1590 | xtype = XTYPE_MONOLITHIC_RW; |
| 1591 | else |
| 1592 | xtype = XTYPE_WRITE_DISPATCH; |
| 1593 | |
| 1594 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | |
| 1595 | NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | |
| 1596 | NDCB0_CMD1(NAND_CMD_SEQIN); |
| 1597 | nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); |
| 1598 | nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); |
| 1599 | } else if (chunk < lt->nchunks - 1) { |
| 1600 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); |
| 1601 | } else { |
| 1602 | nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
| 1603 | } |
| 1604 | |
| 1605 | /* Always dispatch the PAGEPROG command on the last chunk */ |
| 1606 | if (chunk == lt->nchunks - 1) |
| 1607 | nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; |
| 1608 | |
| 1609 | ret = marvell_nfc_prepare_cmd(chip); |
| 1610 | if (ret) |
| 1611 | return ret; |
| 1612 | |
| 1613 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
| 1614 | ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, |
| 1615 | label: "WRDREQ while loading FIFO (data)" ); |
| 1616 | if (ret) |
| 1617 | return ret; |
| 1618 | |
| 1619 | /* Transfer the contents */ |
| 1620 | iowrite32_rep(port: nfc->regs + NDDB, buf: data, FIFO_REP(data_len)); |
| 1621 | iowrite32_rep(port: nfc->regs + NDDB, buf: spare, FIFO_REP(spare_len)); |
| 1622 | |
| 1623 | return 0; |
| 1624 | } |
| 1625 | |
| 1626 | static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, |
| 1627 | const u8 *buf, |
| 1628 | int oob_required, int page) |
| 1629 | { |
| 1630 | const struct nand_sdr_timings *sdr = |
| 1631 | nand_get_sdr_timings(conf: nand_get_interface_config(chip)); |
| 1632 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1633 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| 1634 | const u8 *data = buf; |
| 1635 | const u8 *spare = chip->oob_poi; |
| 1636 | int data_len = lt->data_bytes; |
| 1637 | int spare_len = lt->spare_bytes; |
| 1638 | int chunk, ret; |
| 1639 | u8 status; |
| 1640 | |
| 1641 | marvell_nfc_select_target(chip, die_nr: chip->cur_cs); |
| 1642 | |
| 1643 | /* Spare data will be written anyway, so clear it to avoid garbage */ |
| 1644 | if (!oob_required) |
| 1645 | memset(chip->oob_poi, 0xFF, mtd->oobsize); |
| 1646 | |
| 1647 | marvell_nfc_enable_hw_ecc(chip); |
| 1648 | |
| 1649 | for (chunk = 0; chunk < lt->nchunks; chunk++) { |
| 1650 | if (chunk >= lt->full_chunk_cnt) { |
| 1651 | data_len = lt->last_data_bytes; |
| 1652 | spare_len = lt->last_spare_bytes; |
| 1653 | } |
| 1654 | |
| 1655 | marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, |
| 1656 | spare, spare_len, page); |
| 1657 | data += data_len; |
| 1658 | spare += spare_len; |
| 1659 | |
| 1660 | /* |
| 1661 | * Waiting only for CMDD or PAGED is not enough, ECC are |
| 1662 | * partially written. No flag is set once the operation is |
| 1663 | * really finished but the ND_RUN bit is cleared, so wait for it |
| 1664 | * before stepping into the next command. |
| 1665 | */ |
| 1666 | marvell_nfc_wait_ndrun(chip); |
| 1667 | } |
| 1668 | |
| 1669 | ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); |
| 1670 | |
| 1671 | marvell_nfc_disable_hw_ecc(chip); |
| 1672 | |
| 1673 | if (ret) |
| 1674 | return ret; |
| 1675 | |
| 1676 | /* Check write status on the chip side */ |
| 1677 | ret = nand_status_op(chip, status: &status); |
| 1678 | if (ret) |
| 1679 | return ret; |
| 1680 | |
| 1681 | if (status & NAND_STATUS_FAIL) |
| 1682 | return -EIO; |
| 1683 | |
| 1684 | return 0; |
| 1685 | } |
| 1686 | |
| 1687 | static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, |
| 1688 | int page) |
| 1689 | { |
| 1690 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1691 | u8 *buf = nand_get_data_buf(chip); |
| 1692 | |
| 1693 | memset(buf, 0xFF, mtd->writesize); |
| 1694 | |
| 1695 | return chip->ecc.write_page_raw(chip, buf, true, page); |
| 1696 | } |
| 1697 | |
| 1698 | static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) |
| 1699 | { |
| 1700 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1701 | u8 *buf = nand_get_data_buf(chip); |
| 1702 | |
| 1703 | memset(buf, 0xFF, mtd->writesize); |
| 1704 | |
| 1705 | return chip->ecc.write_page(chip, buf, true, page); |
| 1706 | } |
| 1707 | |
| 1708 | /* NAND framework ->exec_op() hooks and related helpers */ |
| 1709 | static void marvell_nfc_parse_instructions(struct nand_chip *chip, |
| 1710 | const struct nand_subop *subop, |
| 1711 | struct marvell_nfc_op *nfc_op) |
| 1712 | { |
| 1713 | const struct nand_op_instr *instr = NULL; |
| 1714 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 1715 | bool first_cmd = true; |
| 1716 | unsigned int op_id; |
| 1717 | int i; |
| 1718 | |
| 1719 | /* Reset the input structure as most of its fields will be OR'ed */ |
| 1720 | memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); |
| 1721 | |
| 1722 | for (op_id = 0; op_id < subop->ninstrs; op_id++) { |
| 1723 | unsigned int offset, naddrs; |
| 1724 | const u8 *addrs; |
| 1725 | int len; |
| 1726 | |
| 1727 | instr = &subop->instrs[op_id]; |
| 1728 | |
| 1729 | switch (instr->type) { |
| 1730 | case NAND_OP_CMD_INSTR: |
| 1731 | if (first_cmd) |
| 1732 | nfc_op->ndcb[0] |= |
| 1733 | NDCB0_CMD1(instr->ctx.cmd.opcode); |
| 1734 | else |
| 1735 | nfc_op->ndcb[0] |= |
| 1736 | NDCB0_CMD2(instr->ctx.cmd.opcode) | |
| 1737 | NDCB0_DBC; |
| 1738 | |
| 1739 | nfc_op->cle_ale_delay_ns = instr->delay_ns; |
| 1740 | first_cmd = false; |
| 1741 | break; |
| 1742 | |
| 1743 | case NAND_OP_ADDR_INSTR: |
| 1744 | offset = nand_subop_get_addr_start_off(subop, op_id); |
| 1745 | naddrs = nand_subop_get_num_addr_cyc(subop, op_id); |
| 1746 | addrs = &instr->ctx.addr.addrs[offset]; |
| 1747 | |
| 1748 | nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); |
| 1749 | |
| 1750 | for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) |
| 1751 | nfc_op->ndcb[1] |= addrs[i] << (8 * i); |
| 1752 | |
| 1753 | if (naddrs >= 5) |
| 1754 | nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); |
| 1755 | if (naddrs >= 6) |
| 1756 | nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); |
| 1757 | if (naddrs == 7) |
| 1758 | nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); |
| 1759 | |
| 1760 | nfc_op->cle_ale_delay_ns = instr->delay_ns; |
| 1761 | break; |
| 1762 | |
| 1763 | case NAND_OP_DATA_IN_INSTR: |
| 1764 | nfc_op->data_instr = instr; |
| 1765 | nfc_op->data_instr_idx = op_id; |
| 1766 | nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); |
| 1767 | if (nfc->caps->is_nfcv2) { |
| 1768 | nfc_op->ndcb[0] |= |
| 1769 | NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | |
| 1770 | NDCB0_LEN_OVRD; |
| 1771 | len = nand_subop_get_data_len(subop, op_id); |
| 1772 | nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); |
| 1773 | } |
| 1774 | nfc_op->data_delay_ns = instr->delay_ns; |
| 1775 | break; |
| 1776 | |
| 1777 | case NAND_OP_DATA_OUT_INSTR: |
| 1778 | nfc_op->data_instr = instr; |
| 1779 | nfc_op->data_instr_idx = op_id; |
| 1780 | nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); |
| 1781 | if (nfc->caps->is_nfcv2) { |
| 1782 | nfc_op->ndcb[0] |= |
| 1783 | NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | |
| 1784 | NDCB0_LEN_OVRD; |
| 1785 | len = nand_subop_get_data_len(subop, op_id); |
| 1786 | nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); |
| 1787 | } |
| 1788 | nfc_op->data_delay_ns = instr->delay_ns; |
| 1789 | break; |
| 1790 | |
| 1791 | case NAND_OP_WAITRDY_INSTR: |
| 1792 | nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; |
| 1793 | nfc_op->rdy_delay_ns = instr->delay_ns; |
| 1794 | break; |
| 1795 | } |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, |
| 1800 | const struct nand_subop *subop, |
| 1801 | struct marvell_nfc_op *nfc_op) |
| 1802 | { |
| 1803 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 1804 | const struct nand_op_instr *instr = nfc_op->data_instr; |
| 1805 | unsigned int op_id = nfc_op->data_instr_idx; |
| 1806 | unsigned int len = nand_subop_get_data_len(subop, op_id); |
| 1807 | unsigned int offset = nand_subop_get_data_start_off(subop, op_id); |
| 1808 | bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); |
| 1809 | int ret; |
| 1810 | |
| 1811 | if (instr->ctx.data.force_8bit) |
| 1812 | marvell_nfc_force_byte_access(chip, force_8bit: true); |
| 1813 | |
| 1814 | if (reading) { |
| 1815 | u8 *in = instr->ctx.data.buf.in + offset; |
| 1816 | |
| 1817 | ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); |
| 1818 | } else { |
| 1819 | const u8 *out = instr->ctx.data.buf.out + offset; |
| 1820 | |
| 1821 | ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); |
| 1822 | } |
| 1823 | |
| 1824 | if (instr->ctx.data.force_8bit) |
| 1825 | marvell_nfc_force_byte_access(chip, force_8bit: false); |
| 1826 | |
| 1827 | return ret; |
| 1828 | } |
| 1829 | |
| 1830 | static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, |
| 1831 | const struct nand_subop *subop) |
| 1832 | { |
| 1833 | struct marvell_nfc_op nfc_op; |
| 1834 | bool reading; |
| 1835 | int ret; |
| 1836 | |
| 1837 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
| 1838 | reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); |
| 1839 | |
| 1840 | ret = marvell_nfc_prepare_cmd(chip); |
| 1841 | if (ret) |
| 1842 | return ret; |
| 1843 | |
| 1844 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
| 1845 | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, |
| 1846 | label: "RDDREQ/WRDREQ while draining raw data" ); |
| 1847 | if (ret) |
| 1848 | return ret; |
| 1849 | |
| 1850 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
| 1851 | |
| 1852 | if (reading) { |
| 1853 | if (nfc_op.rdy_timeout_ms) { |
| 1854 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
| 1855 | if (ret) |
| 1856 | return ret; |
| 1857 | } |
| 1858 | |
| 1859 | cond_delay(ns: nfc_op.rdy_delay_ns); |
| 1860 | } |
| 1861 | |
| 1862 | marvell_nfc_xfer_data_pio(chip, subop, nfc_op: &nfc_op); |
| 1863 | ret = marvell_nfc_wait_cmdd(chip); |
| 1864 | if (ret) |
| 1865 | return ret; |
| 1866 | |
| 1867 | cond_delay(ns: nfc_op.data_delay_ns); |
| 1868 | |
| 1869 | if (!reading) { |
| 1870 | if (nfc_op.rdy_timeout_ms) { |
| 1871 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
| 1872 | if (ret) |
| 1873 | return ret; |
| 1874 | } |
| 1875 | |
| 1876 | cond_delay(ns: nfc_op.rdy_delay_ns); |
| 1877 | } |
| 1878 | |
| 1879 | /* |
| 1880 | * NDCR ND_RUN bit should be cleared automatically at the end of each |
| 1881 | * operation but experience shows that the behavior is buggy when it |
| 1882 | * comes to writes (with LEN_OVRD). Clear it by hand in this case. |
| 1883 | */ |
| 1884 | if (!reading) { |
| 1885 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 1886 | |
| 1887 | writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, |
| 1888 | nfc->regs + NDCR); |
| 1889 | } |
| 1890 | |
| 1891 | return 0; |
| 1892 | } |
| 1893 | |
| 1894 | static int marvell_nfc_naked_access_exec(struct nand_chip *chip, |
| 1895 | const struct nand_subop *subop) |
| 1896 | { |
| 1897 | struct marvell_nfc_op nfc_op; |
| 1898 | int ret; |
| 1899 | |
| 1900 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
| 1901 | |
| 1902 | /* |
| 1903 | * Naked access are different in that they need to be flagged as naked |
| 1904 | * by the controller. Reset the controller registers fields that inform |
| 1905 | * on the type and refill them according to the ongoing operation. |
| 1906 | */ |
| 1907 | nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | |
| 1908 | NDCB0_CMD_XTYPE(XTYPE_MASK)); |
| 1909 | switch (subop->instrs[0].type) { |
| 1910 | case NAND_OP_CMD_INSTR: |
| 1911 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); |
| 1912 | break; |
| 1913 | case NAND_OP_ADDR_INSTR: |
| 1914 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); |
| 1915 | break; |
| 1916 | case NAND_OP_DATA_IN_INSTR: |
| 1917 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | |
| 1918 | NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
| 1919 | break; |
| 1920 | case NAND_OP_DATA_OUT_INSTR: |
| 1921 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | |
| 1922 | NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); |
| 1923 | break; |
| 1924 | default: |
| 1925 | /* This should never happen */ |
| 1926 | break; |
| 1927 | } |
| 1928 | |
| 1929 | ret = marvell_nfc_prepare_cmd(chip); |
| 1930 | if (ret) |
| 1931 | return ret; |
| 1932 | |
| 1933 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
| 1934 | |
| 1935 | if (!nfc_op.data_instr) { |
| 1936 | ret = marvell_nfc_wait_cmdd(chip); |
| 1937 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
| 1938 | return ret; |
| 1939 | } |
| 1940 | |
| 1941 | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, |
| 1942 | label: "RDDREQ/WRDREQ while draining raw data" ); |
| 1943 | if (ret) |
| 1944 | return ret; |
| 1945 | |
| 1946 | marvell_nfc_xfer_data_pio(chip, subop, nfc_op: &nfc_op); |
| 1947 | ret = marvell_nfc_wait_cmdd(chip); |
| 1948 | if (ret) |
| 1949 | return ret; |
| 1950 | |
| 1951 | /* |
| 1952 | * NDCR ND_RUN bit should be cleared automatically at the end of each |
| 1953 | * operation but experience shows that the behavior is buggy when it |
| 1954 | * comes to writes (with LEN_OVRD). Clear it by hand in this case. |
| 1955 | */ |
| 1956 | if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { |
| 1957 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 1958 | |
| 1959 | writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, |
| 1960 | nfc->regs + NDCR); |
| 1961 | } |
| 1962 | |
| 1963 | return 0; |
| 1964 | } |
| 1965 | |
| 1966 | static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, |
| 1967 | const struct nand_subop *subop) |
| 1968 | { |
| 1969 | struct marvell_nfc_op nfc_op; |
| 1970 | int ret; |
| 1971 | |
| 1972 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
| 1973 | |
| 1974 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
| 1975 | cond_delay(ns: nfc_op.rdy_delay_ns); |
| 1976 | |
| 1977 | return ret; |
| 1978 | } |
| 1979 | |
| 1980 | static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, |
| 1981 | const struct nand_subop *subop) |
| 1982 | { |
| 1983 | struct marvell_nfc_op nfc_op; |
| 1984 | int ret; |
| 1985 | |
| 1986 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
| 1987 | nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); |
| 1988 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); |
| 1989 | |
| 1990 | ret = marvell_nfc_prepare_cmd(chip); |
| 1991 | if (ret) |
| 1992 | return ret; |
| 1993 | |
| 1994 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
| 1995 | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
| 1996 | label: "RDDREQ while reading ID" ); |
| 1997 | if (ret) |
| 1998 | return ret; |
| 1999 | |
| 2000 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
| 2001 | |
| 2002 | if (nfc_op.rdy_timeout_ms) { |
| 2003 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
| 2004 | if (ret) |
| 2005 | return ret; |
| 2006 | } |
| 2007 | |
| 2008 | cond_delay(ns: nfc_op.rdy_delay_ns); |
| 2009 | |
| 2010 | marvell_nfc_xfer_data_pio(chip, subop, nfc_op: &nfc_op); |
| 2011 | ret = marvell_nfc_wait_cmdd(chip); |
| 2012 | if (ret) |
| 2013 | return ret; |
| 2014 | |
| 2015 | cond_delay(ns: nfc_op.data_delay_ns); |
| 2016 | |
| 2017 | return 0; |
| 2018 | } |
| 2019 | |
| 2020 | static int marvell_nfc_read_status_exec(struct nand_chip *chip, |
| 2021 | const struct nand_subop *subop) |
| 2022 | { |
| 2023 | struct marvell_nfc_op nfc_op; |
| 2024 | int ret; |
| 2025 | |
| 2026 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
| 2027 | nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); |
| 2028 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); |
| 2029 | |
| 2030 | ret = marvell_nfc_prepare_cmd(chip); |
| 2031 | if (ret) |
| 2032 | return ret; |
| 2033 | |
| 2034 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
| 2035 | ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, |
| 2036 | label: "RDDREQ while reading status" ); |
| 2037 | if (ret) |
| 2038 | return ret; |
| 2039 | |
| 2040 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
| 2041 | |
| 2042 | if (nfc_op.rdy_timeout_ms) { |
| 2043 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
| 2044 | if (ret) |
| 2045 | return ret; |
| 2046 | } |
| 2047 | |
| 2048 | cond_delay(ns: nfc_op.rdy_delay_ns); |
| 2049 | |
| 2050 | marvell_nfc_xfer_data_pio(chip, subop, nfc_op: &nfc_op); |
| 2051 | ret = marvell_nfc_wait_cmdd(chip); |
| 2052 | if (ret) |
| 2053 | return ret; |
| 2054 | |
| 2055 | cond_delay(ns: nfc_op.data_delay_ns); |
| 2056 | |
| 2057 | return 0; |
| 2058 | } |
| 2059 | |
| 2060 | static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, |
| 2061 | const struct nand_subop *subop) |
| 2062 | { |
| 2063 | struct marvell_nfc_op nfc_op; |
| 2064 | int ret; |
| 2065 | |
| 2066 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
| 2067 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); |
| 2068 | |
| 2069 | ret = marvell_nfc_prepare_cmd(chip); |
| 2070 | if (ret) |
| 2071 | return ret; |
| 2072 | |
| 2073 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
| 2074 | ret = marvell_nfc_wait_cmdd(chip); |
| 2075 | if (ret) |
| 2076 | return ret; |
| 2077 | |
| 2078 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
| 2079 | |
| 2080 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
| 2081 | if (ret) |
| 2082 | return ret; |
| 2083 | |
| 2084 | cond_delay(ns: nfc_op.rdy_delay_ns); |
| 2085 | |
| 2086 | return 0; |
| 2087 | } |
| 2088 | |
| 2089 | static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, |
| 2090 | const struct nand_subop *subop) |
| 2091 | { |
| 2092 | struct marvell_nfc_op nfc_op; |
| 2093 | int ret; |
| 2094 | |
| 2095 | marvell_nfc_parse_instructions(chip, subop, nfc_op: &nfc_op); |
| 2096 | nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); |
| 2097 | |
| 2098 | ret = marvell_nfc_prepare_cmd(chip); |
| 2099 | if (ret) |
| 2100 | return ret; |
| 2101 | |
| 2102 | marvell_nfc_send_cmd(chip, nfc_op: &nfc_op); |
| 2103 | ret = marvell_nfc_wait_cmdd(chip); |
| 2104 | if (ret) |
| 2105 | return ret; |
| 2106 | |
| 2107 | cond_delay(ns: nfc_op.cle_ale_delay_ns); |
| 2108 | |
| 2109 | ret = marvell_nfc_wait_op(chip, timeout_ms: nfc_op.rdy_timeout_ms); |
| 2110 | if (ret) |
| 2111 | return ret; |
| 2112 | |
| 2113 | cond_delay(ns: nfc_op.rdy_delay_ns); |
| 2114 | |
| 2115 | return 0; |
| 2116 | } |
| 2117 | |
| 2118 | static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( |
| 2119 | /* Monolithic reads/writes */ |
| 2120 | NAND_OP_PARSER_PATTERN( |
| 2121 | marvell_nfc_monolithic_access_exec, |
| 2122 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| 2123 | NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), |
| 2124 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| 2125 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
| 2126 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), |
| 2127 | NAND_OP_PARSER_PATTERN( |
| 2128 | marvell_nfc_monolithic_access_exec, |
| 2129 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| 2130 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), |
| 2131 | NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), |
| 2132 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| 2133 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), |
| 2134 | /* Naked commands */ |
| 2135 | NAND_OP_PARSER_PATTERN( |
| 2136 | marvell_nfc_naked_access_exec, |
| 2137 | NAND_OP_PARSER_PAT_CMD_ELEM(false)), |
| 2138 | NAND_OP_PARSER_PATTERN( |
| 2139 | marvell_nfc_naked_access_exec, |
| 2140 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), |
| 2141 | NAND_OP_PARSER_PATTERN( |
| 2142 | marvell_nfc_naked_access_exec, |
| 2143 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), |
| 2144 | NAND_OP_PARSER_PATTERN( |
| 2145 | marvell_nfc_naked_access_exec, |
| 2146 | NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), |
| 2147 | NAND_OP_PARSER_PATTERN( |
| 2148 | marvell_nfc_naked_waitrdy_exec, |
| 2149 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| 2150 | ); |
| 2151 | |
| 2152 | static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( |
| 2153 | /* Naked commands not supported, use a function for each pattern */ |
| 2154 | NAND_OP_PARSER_PATTERN( |
| 2155 | marvell_nfc_read_id_type_exec, |
| 2156 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| 2157 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), |
| 2158 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), |
| 2159 | NAND_OP_PARSER_PATTERN( |
| 2160 | marvell_nfc_erase_cmd_type_exec, |
| 2161 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| 2162 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), |
| 2163 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| 2164 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| 2165 | NAND_OP_PARSER_PATTERN( |
| 2166 | marvell_nfc_read_status_exec, |
| 2167 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| 2168 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), |
| 2169 | NAND_OP_PARSER_PATTERN( |
| 2170 | marvell_nfc_reset_cmd_type_exec, |
| 2171 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
| 2172 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| 2173 | NAND_OP_PARSER_PATTERN( |
| 2174 | marvell_nfc_naked_waitrdy_exec, |
| 2175 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| 2176 | ); |
| 2177 | |
| 2178 | static int marvell_nfc_exec_op(struct nand_chip *chip, |
| 2179 | const struct nand_operation *op, |
| 2180 | bool check_only) |
| 2181 | { |
| 2182 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 2183 | |
| 2184 | if (!check_only) |
| 2185 | marvell_nfc_select_target(chip, die_nr: op->cs); |
| 2186 | |
| 2187 | if (nfc->caps->is_nfcv2) |
| 2188 | return nand_op_parser_exec_op(chip, parser: &marvell_nfcv2_op_parser, |
| 2189 | op, check_only); |
| 2190 | else |
| 2191 | return nand_op_parser_exec_op(chip, parser: &marvell_nfcv1_op_parser, |
| 2192 | op, check_only); |
| 2193 | } |
| 2194 | |
| 2195 | /* |
| 2196 | * Layouts were broken in old pxa3xx_nand driver, these are supposed to be |
| 2197 | * usable. |
| 2198 | */ |
| 2199 | static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| 2200 | struct mtd_oob_region *oobregion) |
| 2201 | { |
| 2202 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 2203 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| 2204 | |
| 2205 | if (section) |
| 2206 | return -ERANGE; |
| 2207 | |
| 2208 | oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + |
| 2209 | lt->last_ecc_bytes; |
| 2210 | oobregion->offset = mtd->oobsize - oobregion->length; |
| 2211 | |
| 2212 | return 0; |
| 2213 | } |
| 2214 | |
| 2215 | static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, |
| 2216 | struct mtd_oob_region *oobregion) |
| 2217 | { |
| 2218 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 2219 | const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; |
| 2220 | |
| 2221 | if (section) |
| 2222 | return -ERANGE; |
| 2223 | |
| 2224 | /* |
| 2225 | * Bootrom looks in bytes 0 & 5 for bad blocks for the |
| 2226 | * 4KB page / 4bit BCH combination. |
| 2227 | */ |
| 2228 | if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) |
| 2229 | oobregion->offset = 6; |
| 2230 | else |
| 2231 | oobregion->offset = 2; |
| 2232 | |
| 2233 | oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + |
| 2234 | lt->last_spare_bytes - oobregion->offset; |
| 2235 | |
| 2236 | return 0; |
| 2237 | } |
| 2238 | |
| 2239 | static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { |
| 2240 | .ecc = marvell_nand_ooblayout_ecc, |
| 2241 | .free = marvell_nand_ooblayout_free, |
| 2242 | }; |
| 2243 | |
| 2244 | static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, |
| 2245 | struct nand_ecc_ctrl *ecc) |
| 2246 | { |
| 2247 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 2248 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 2249 | const struct marvell_hw_ecc_layout *l; |
| 2250 | int i; |
| 2251 | |
| 2252 | if (!nfc->caps->is_nfcv2 && |
| 2253 | (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { |
| 2254 | dev_err(nfc->dev, |
| 2255 | "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n" , |
| 2256 | mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); |
| 2257 | return -ENOTSUPP; |
| 2258 | } |
| 2259 | |
| 2260 | to_marvell_nand(chip)->layout = NULL; |
| 2261 | for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { |
| 2262 | l = &marvell_nfc_layouts[i]; |
| 2263 | if (mtd->writesize == l->writesize && |
| 2264 | ecc->size == l->chunk && ecc->strength == l->strength) { |
| 2265 | to_marvell_nand(chip)->layout = l; |
| 2266 | break; |
| 2267 | } |
| 2268 | } |
| 2269 | |
| 2270 | if (!to_marvell_nand(chip)->layout || |
| 2271 | (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { |
| 2272 | dev_err(nfc->dev, |
| 2273 | "ECC strength %d at page size %d is not supported\n" , |
| 2274 | ecc->strength, mtd->writesize); |
| 2275 | return -ENOTSUPP; |
| 2276 | } |
| 2277 | |
| 2278 | /* Special care for the layout 2k/8-bit/512B */ |
| 2279 | if (l->writesize == 2048 && l->strength == 8) { |
| 2280 | if (mtd->oobsize < 128) { |
| 2281 | dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n" ); |
| 2282 | return -ENOTSUPP; |
| 2283 | } else { |
| 2284 | chip->bbt_options |= NAND_BBT_NO_OOB_BBM; |
| 2285 | } |
| 2286 | } |
| 2287 | |
| 2288 | mtd_set_ooblayout(mtd, ooblayout: &marvell_nand_ooblayout_ops); |
| 2289 | ecc->steps = l->nchunks; |
| 2290 | ecc->size = l->data_bytes; |
| 2291 | |
| 2292 | if (ecc->strength == 1) { |
| 2293 | chip->ecc.algo = NAND_ECC_ALGO_HAMMING; |
| 2294 | ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; |
| 2295 | ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; |
| 2296 | ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; |
| 2297 | ecc->read_oob = ecc->read_oob_raw; |
| 2298 | ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; |
| 2299 | ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; |
| 2300 | ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; |
| 2301 | ecc->write_oob = ecc->write_oob_raw; |
| 2302 | } else { |
| 2303 | chip->ecc.algo = NAND_ECC_ALGO_BCH; |
| 2304 | ecc->strength = 16; |
| 2305 | ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; |
| 2306 | ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; |
| 2307 | ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; |
| 2308 | ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; |
| 2309 | ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; |
| 2310 | ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; |
| 2311 | ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; |
| 2312 | ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; |
| 2313 | } |
| 2314 | |
| 2315 | return 0; |
| 2316 | } |
| 2317 | |
| 2318 | static int marvell_nand_ecc_init(struct mtd_info *mtd, |
| 2319 | struct nand_ecc_ctrl *ecc) |
| 2320 | { |
| 2321 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 2322 | const struct nand_ecc_props *requirements = |
| 2323 | nanddev_get_ecc_requirements(nand: &chip->base); |
| 2324 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 2325 | int ret; |
| 2326 | |
| 2327 | if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && |
| 2328 | (!ecc->size || !ecc->strength)) { |
| 2329 | if (requirements->step_size && requirements->strength) { |
| 2330 | ecc->size = requirements->step_size; |
| 2331 | ecc->strength = requirements->strength; |
| 2332 | } else { |
| 2333 | dev_info(nfc->dev, |
| 2334 | "No minimum ECC strength, using 1b/512B\n" ); |
| 2335 | ecc->size = 512; |
| 2336 | ecc->strength = 1; |
| 2337 | } |
| 2338 | } |
| 2339 | |
| 2340 | switch (ecc->engine_type) { |
| 2341 | case NAND_ECC_ENGINE_TYPE_ON_HOST: |
| 2342 | ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); |
| 2343 | if (ret) |
| 2344 | return ret; |
| 2345 | break; |
| 2346 | case NAND_ECC_ENGINE_TYPE_NONE: |
| 2347 | case NAND_ECC_ENGINE_TYPE_SOFT: |
| 2348 | case NAND_ECC_ENGINE_TYPE_ON_DIE: |
| 2349 | if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && |
| 2350 | mtd->writesize != SZ_2K) { |
| 2351 | dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n" , |
| 2352 | mtd->writesize); |
| 2353 | return -EINVAL; |
| 2354 | } |
| 2355 | break; |
| 2356 | default: |
| 2357 | return -EINVAL; |
| 2358 | } |
| 2359 | |
| 2360 | return 0; |
| 2361 | } |
| 2362 | |
| 2363 | static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; |
| 2364 | static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; |
| 2365 | |
| 2366 | static struct nand_bbt_descr bbt_main_descr = { |
| 2367 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| 2368 | NAND_BBT_2BIT | NAND_BBT_VERSION, |
| 2369 | .offs = 8, |
| 2370 | .len = 6, |
| 2371 | .veroffs = 14, |
| 2372 | .maxblocks = 8, /* Last 8 blocks in each chip */ |
| 2373 | .pattern = bbt_pattern |
| 2374 | }; |
| 2375 | |
| 2376 | static struct nand_bbt_descr bbt_mirror_descr = { |
| 2377 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| 2378 | NAND_BBT_2BIT | NAND_BBT_VERSION, |
| 2379 | .offs = 8, |
| 2380 | .len = 6, |
| 2381 | .veroffs = 14, |
| 2382 | .maxblocks = 8, /* Last 8 blocks in each chip */ |
| 2383 | .pattern = bbt_mirror_pattern |
| 2384 | }; |
| 2385 | |
| 2386 | static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, |
| 2387 | const struct nand_interface_config *conf) |
| 2388 | { |
| 2389 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| 2390 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 2391 | unsigned int period_ns = 1000000000 / clk_get_rate(clk: nfc->core_clk) * 2; |
| 2392 | const struct nand_sdr_timings *sdr; |
| 2393 | struct marvell_nfc_timings nfc_tmg; |
| 2394 | int read_delay; |
| 2395 | |
| 2396 | sdr = nand_get_sdr_timings(conf); |
| 2397 | if (IS_ERR(ptr: sdr)) |
| 2398 | return PTR_ERR(ptr: sdr); |
| 2399 | |
| 2400 | if (nfc->caps->max_mode_number && nfc->caps->max_mode_number < conf->timings.mode) |
| 2401 | return -EOPNOTSUPP; |
| 2402 | |
| 2403 | /* |
| 2404 | * SDR timings are given in pico-seconds while NFC timings must be |
| 2405 | * expressed in NAND controller clock cycles, which is half of the |
| 2406 | * frequency of the accessible ECC clock retrieved by clk_get_rate(). |
| 2407 | * This is not written anywhere in the datasheet but was observed |
| 2408 | * with an oscilloscope. |
| 2409 | * |
| 2410 | * NFC datasheet gives equations from which thoses calculations |
| 2411 | * are derived, they tend to be slightly more restrictives than the |
| 2412 | * given core timings and may improve the overall speed. |
| 2413 | */ |
| 2414 | nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; |
| 2415 | nfc_tmg.tRH = nfc_tmg.tRP; |
| 2416 | nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; |
| 2417 | nfc_tmg.tWH = nfc_tmg.tWP; |
| 2418 | nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); |
| 2419 | nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; |
| 2420 | nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); |
| 2421 | /* |
| 2422 | * Read delay is the time of propagation from SoC pins to NFC internal |
| 2423 | * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In |
| 2424 | * EDO mode, an additional delay of tRH must be taken into account so |
| 2425 | * the data is sampled on the falling edge instead of the rising edge. |
| 2426 | */ |
| 2427 | read_delay = sdr->tRC_min >= 30000 ? |
| 2428 | MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; |
| 2429 | |
| 2430 | nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); |
| 2431 | /* |
| 2432 | * tWHR and tRHW are supposed to be read to write delays (and vice |
| 2433 | * versa) but in some cases, ie. when doing a change column, they must |
| 2434 | * be greater than that to be sure tCCS delay is respected. |
| 2435 | */ |
| 2436 | nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), |
| 2437 | period_ns) - 2; |
| 2438 | nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), |
| 2439 | period_ns); |
| 2440 | |
| 2441 | /* |
| 2442 | * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. |
| 2443 | * NFCv1: No WAIT_MODE, tR must be maximal. |
| 2444 | */ |
| 2445 | if (nfc->caps->is_nfcv2) { |
| 2446 | nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); |
| 2447 | } else { |
| 2448 | nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, |
| 2449 | period_ns); |
| 2450 | if (nfc_tmg.tR + 3 > nfc_tmg.tCH) |
| 2451 | nfc_tmg.tR = nfc_tmg.tCH - 3; |
| 2452 | else |
| 2453 | nfc_tmg.tR = 0; |
| 2454 | } |
| 2455 | |
| 2456 | if (chipnr < 0) |
| 2457 | return 0; |
| 2458 | |
| 2459 | marvell_nand->ndtr0 = |
| 2460 | NDTR0_TRP(nfc_tmg.tRP) | |
| 2461 | NDTR0_TRH(nfc_tmg.tRH) | |
| 2462 | NDTR0_ETRP(nfc_tmg.tRP) | |
| 2463 | NDTR0_TWP(nfc_tmg.tWP) | |
| 2464 | NDTR0_TWH(nfc_tmg.tWH) | |
| 2465 | NDTR0_TCS(nfc_tmg.tCS) | |
| 2466 | NDTR0_TCH(nfc_tmg.tCH); |
| 2467 | |
| 2468 | marvell_nand->ndtr1 = |
| 2469 | NDTR1_TAR(nfc_tmg.tAR) | |
| 2470 | NDTR1_TWHR(nfc_tmg.tWHR) | |
| 2471 | NDTR1_TR(nfc_tmg.tR); |
| 2472 | |
| 2473 | if (nfc->caps->is_nfcv2) { |
| 2474 | marvell_nand->ndtr0 |= |
| 2475 | NDTR0_RD_CNT_DEL(read_delay) | |
| 2476 | NDTR0_SELCNTR | |
| 2477 | NDTR0_TADL(nfc_tmg.tADL); |
| 2478 | |
| 2479 | marvell_nand->ndtr1 |= |
| 2480 | NDTR1_TRHW(nfc_tmg.tRHW) | |
| 2481 | NDTR1_WAIT_MODE; |
| 2482 | } |
| 2483 | |
| 2484 | /* |
| 2485 | * Reset nfc->selected_chip so the next command will cause the timing |
| 2486 | * registers to be updated in marvell_nfc_select_target(). |
| 2487 | */ |
| 2488 | nfc->selected_chip = NULL; |
| 2489 | |
| 2490 | return 0; |
| 2491 | } |
| 2492 | |
| 2493 | static int marvell_nand_attach_chip(struct nand_chip *chip) |
| 2494 | { |
| 2495 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 2496 | struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); |
| 2497 | struct marvell_nfc *nfc = to_marvell_nfc(ctrl: chip->controller); |
| 2498 | struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev: nfc->dev); |
| 2499 | int ret; |
| 2500 | |
| 2501 | if (pdata && pdata->flash_bbt) |
| 2502 | chip->bbt_options |= NAND_BBT_USE_FLASH; |
| 2503 | |
| 2504 | if (chip->bbt_options & NAND_BBT_USE_FLASH) { |
| 2505 | /* |
| 2506 | * We'll use a bad block table stored in-flash and don't |
| 2507 | * allow writing the bad block marker to the flash. |
| 2508 | */ |
| 2509 | chip->bbt_options |= NAND_BBT_NO_OOB_BBM; |
| 2510 | chip->bbt_td = &bbt_main_descr; |
| 2511 | chip->bbt_md = &bbt_mirror_descr; |
| 2512 | } |
| 2513 | |
| 2514 | /* Save the chip-specific fields of NDCR */ |
| 2515 | marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); |
| 2516 | if (chip->options & NAND_BUSWIDTH_16) |
| 2517 | marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; |
| 2518 | |
| 2519 | /* |
| 2520 | * On small page NANDs, only one cycle is needed to pass the |
| 2521 | * column address. |
| 2522 | */ |
| 2523 | if (mtd->writesize <= 512) { |
| 2524 | marvell_nand->addr_cyc = 1; |
| 2525 | } else { |
| 2526 | marvell_nand->addr_cyc = 2; |
| 2527 | marvell_nand->ndcr |= NDCR_RA_START; |
| 2528 | } |
| 2529 | |
| 2530 | /* |
| 2531 | * Now add the number of cycles needed to pass the row |
| 2532 | * address. |
| 2533 | * |
| 2534 | * Addressing a chip using CS 2 or 3 should also need the third row |
| 2535 | * cycle but due to inconsistance in the documentation and lack of |
| 2536 | * hardware to test this situation, this case is not supported. |
| 2537 | */ |
| 2538 | if (chip->options & NAND_ROW_ADDR_3) |
| 2539 | marvell_nand->addr_cyc += 3; |
| 2540 | else |
| 2541 | marvell_nand->addr_cyc += 2; |
| 2542 | |
| 2543 | if (pdata) { |
| 2544 | chip->ecc.size = pdata->ecc_step_size; |
| 2545 | chip->ecc.strength = pdata->ecc_strength; |
| 2546 | } |
| 2547 | |
| 2548 | ret = marvell_nand_ecc_init(mtd, ecc: &chip->ecc); |
| 2549 | if (ret) { |
| 2550 | dev_err(nfc->dev, "ECC init failed: %d\n" , ret); |
| 2551 | return ret; |
| 2552 | } |
| 2553 | |
| 2554 | if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { |
| 2555 | /* |
| 2556 | * Subpage write not available with hardware ECC, prohibit also |
| 2557 | * subpage read as in userspace subpage access would still be |
| 2558 | * allowed and subpage write, if used, would lead to numerous |
| 2559 | * uncorrectable ECC errors. |
| 2560 | */ |
| 2561 | chip->options |= NAND_NO_SUBPAGE_WRITE; |
| 2562 | } |
| 2563 | |
| 2564 | if (pdata || nfc->caps->legacy_of_bindings) { |
| 2565 | /* |
| 2566 | * We keep the MTD name unchanged to avoid breaking platforms |
| 2567 | * where the MTD cmdline parser is used and the bootloader |
| 2568 | * has not been updated to use the new naming scheme. |
| 2569 | */ |
| 2570 | mtd->name = "pxa3xx_nand-0" ; |
| 2571 | } else if (!mtd->name) { |
| 2572 | /* |
| 2573 | * If the new bindings are used and the bootloader has not been |
| 2574 | * updated to pass a new mtdparts parameter on the cmdline, you |
| 2575 | * should define the following property in your NAND node, ie: |
| 2576 | * |
| 2577 | * label = "main-storage"; |
| 2578 | * |
| 2579 | * This way, mtd->name will be set by the core when |
| 2580 | * nand_set_flash_node() is called. |
| 2581 | */ |
| 2582 | mtd->name = devm_kasprintf(dev: nfc->dev, GFP_KERNEL, |
| 2583 | fmt: "%s:nand.%d" , dev_name(dev: nfc->dev), |
| 2584 | marvell_nand->sels[0].cs); |
| 2585 | if (!mtd->name) { |
| 2586 | dev_err(nfc->dev, "Failed to allocate mtd->name\n" ); |
| 2587 | return -ENOMEM; |
| 2588 | } |
| 2589 | } |
| 2590 | |
| 2591 | return 0; |
| 2592 | } |
| 2593 | |
| 2594 | static const struct nand_controller_ops marvell_nand_controller_ops = { |
| 2595 | .attach_chip = marvell_nand_attach_chip, |
| 2596 | .exec_op = marvell_nfc_exec_op, |
| 2597 | .setup_interface = marvell_nfc_setup_interface, |
| 2598 | }; |
| 2599 | |
| 2600 | static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, |
| 2601 | struct device_node *np) |
| 2602 | { |
| 2603 | struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); |
| 2604 | struct marvell_nand_chip *marvell_nand; |
| 2605 | struct mtd_info *mtd; |
| 2606 | struct nand_chip *chip; |
| 2607 | int nsels, ret, i; |
| 2608 | u32 cs, rb; |
| 2609 | |
| 2610 | /* |
| 2611 | * The legacy "num-cs" property indicates the number of CS on the only |
| 2612 | * chip connected to the controller (legacy bindings does not support |
| 2613 | * more than one chip). The CS and RB pins are always the #0. |
| 2614 | * |
| 2615 | * When not using legacy bindings, a couple of "reg" and "nand-rb" |
| 2616 | * properties must be filled. For each chip, expressed as a subnode, |
| 2617 | * "reg" points to the CS lines and "nand-rb" to the RB line. |
| 2618 | */ |
| 2619 | if (pdata || nfc->caps->legacy_of_bindings) { |
| 2620 | nsels = 1; |
| 2621 | } else { |
| 2622 | nsels = of_property_count_elems_of_size(np, propname: "reg" , elem_size: sizeof(u32)); |
| 2623 | if (nsels <= 0) { |
| 2624 | dev_err(dev, "missing/invalid reg property\n" ); |
| 2625 | return -EINVAL; |
| 2626 | } |
| 2627 | } |
| 2628 | |
| 2629 | /* Alloc the nand chip structure */ |
| 2630 | marvell_nand = devm_kzalloc(dev, |
| 2631 | struct_size(marvell_nand, sels, nsels), |
| 2632 | GFP_KERNEL); |
| 2633 | if (!marvell_nand) { |
| 2634 | dev_err(dev, "could not allocate chip structure\n" ); |
| 2635 | return -ENOMEM; |
| 2636 | } |
| 2637 | |
| 2638 | marvell_nand->nsels = nsels; |
| 2639 | marvell_nand->selected_die = -1; |
| 2640 | |
| 2641 | for (i = 0; i < nsels; i++) { |
| 2642 | if (pdata || nfc->caps->legacy_of_bindings) { |
| 2643 | /* |
| 2644 | * Legacy bindings use the CS lines in natural |
| 2645 | * order (0, 1, ...) |
| 2646 | */ |
| 2647 | cs = i; |
| 2648 | } else { |
| 2649 | /* Retrieve CS id */ |
| 2650 | ret = of_property_read_u32_index(np, propname: "reg" , index: i, out_value: &cs); |
| 2651 | if (ret) { |
| 2652 | dev_err(dev, "could not retrieve reg property: %d\n" , |
| 2653 | ret); |
| 2654 | return ret; |
| 2655 | } |
| 2656 | } |
| 2657 | |
| 2658 | if (cs >= nfc->caps->max_cs_nb) { |
| 2659 | dev_err(dev, "invalid reg value: %u (max CS = %d)\n" , |
| 2660 | cs, nfc->caps->max_cs_nb); |
| 2661 | return -EINVAL; |
| 2662 | } |
| 2663 | |
| 2664 | if (test_and_set_bit(nr: cs, addr: &nfc->assigned_cs)) { |
| 2665 | dev_err(dev, "CS %d already assigned\n" , cs); |
| 2666 | return -EINVAL; |
| 2667 | } |
| 2668 | |
| 2669 | /* |
| 2670 | * The cs variable represents the chip select id, which must be |
| 2671 | * converted in bit fields for NDCB0 and NDCB2 to select the |
| 2672 | * right chip. Unfortunately, due to a lack of information on |
| 2673 | * the subject and incoherent documentation, the user should not |
| 2674 | * use CS1 and CS3 at all as asserting them is not supported in |
| 2675 | * a reliable way (due to multiplexing inside ADDR5 field). |
| 2676 | */ |
| 2677 | marvell_nand->sels[i].cs = cs; |
| 2678 | switch (cs) { |
| 2679 | case 0: |
| 2680 | case 2: |
| 2681 | marvell_nand->sels[i].ndcb0_csel = 0; |
| 2682 | break; |
| 2683 | case 1: |
| 2684 | case 3: |
| 2685 | marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; |
| 2686 | break; |
| 2687 | default: |
| 2688 | return -EINVAL; |
| 2689 | } |
| 2690 | |
| 2691 | /* Retrieve RB id */ |
| 2692 | if (pdata || nfc->caps->legacy_of_bindings) { |
| 2693 | /* Legacy bindings always use RB #0 */ |
| 2694 | rb = 0; |
| 2695 | } else { |
| 2696 | ret = of_property_read_u32_index(np, propname: "nand-rb" , index: i, |
| 2697 | out_value: &rb); |
| 2698 | if (ret) { |
| 2699 | dev_err(dev, |
| 2700 | "could not retrieve RB property: %d\n" , |
| 2701 | ret); |
| 2702 | return ret; |
| 2703 | } |
| 2704 | } |
| 2705 | |
| 2706 | if (rb >= nfc->caps->max_rb_nb) { |
| 2707 | dev_err(dev, "invalid reg value: %u (max RB = %d)\n" , |
| 2708 | rb, nfc->caps->max_rb_nb); |
| 2709 | return -EINVAL; |
| 2710 | } |
| 2711 | |
| 2712 | marvell_nand->sels[i].rb = rb; |
| 2713 | } |
| 2714 | |
| 2715 | chip = &marvell_nand->chip; |
| 2716 | chip->controller = &nfc->controller; |
| 2717 | nand_set_flash_node(chip, np); |
| 2718 | |
| 2719 | if (of_property_read_bool(np, propname: "marvell,nand-keep-config" )) |
| 2720 | chip->options |= NAND_KEEP_TIMINGS; |
| 2721 | |
| 2722 | mtd = nand_to_mtd(chip); |
| 2723 | mtd->dev.parent = dev; |
| 2724 | |
| 2725 | /* |
| 2726 | * Save a reference value for timing registers before |
| 2727 | * ->setup_interface() is called. |
| 2728 | */ |
| 2729 | marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); |
| 2730 | marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); |
| 2731 | |
| 2732 | chip->options |= NAND_BUSWIDTH_AUTO; |
| 2733 | |
| 2734 | ret = nand_scan(chip, max_chips: marvell_nand->nsels); |
| 2735 | if (ret) { |
| 2736 | dev_err(dev, "could not scan the nand chip\n" ); |
| 2737 | return ret; |
| 2738 | } |
| 2739 | |
| 2740 | if (pdata) |
| 2741 | /* Legacy bindings support only one chip */ |
| 2742 | ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); |
| 2743 | else |
| 2744 | ret = mtd_device_register(mtd, NULL, 0); |
| 2745 | if (ret) { |
| 2746 | dev_err(dev, "failed to register mtd device: %d\n" , ret); |
| 2747 | nand_cleanup(chip); |
| 2748 | return ret; |
| 2749 | } |
| 2750 | |
| 2751 | list_add_tail(new: &marvell_nand->node, head: &nfc->chips); |
| 2752 | |
| 2753 | return 0; |
| 2754 | } |
| 2755 | |
| 2756 | static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) |
| 2757 | { |
| 2758 | struct marvell_nand_chip *entry, *temp; |
| 2759 | struct nand_chip *chip; |
| 2760 | int ret; |
| 2761 | |
| 2762 | list_for_each_entry_safe(entry, temp, &nfc->chips, node) { |
| 2763 | chip = &entry->chip; |
| 2764 | ret = mtd_device_unregister(master: nand_to_mtd(chip)); |
| 2765 | WARN_ON(ret); |
| 2766 | nand_cleanup(chip); |
| 2767 | list_del(entry: &entry->node); |
| 2768 | } |
| 2769 | } |
| 2770 | |
| 2771 | static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) |
| 2772 | { |
| 2773 | struct device_node *np = dev->of_node; |
| 2774 | int max_cs = nfc->caps->max_cs_nb; |
| 2775 | int nchips; |
| 2776 | int ret; |
| 2777 | |
| 2778 | if (!np) |
| 2779 | nchips = 1; |
| 2780 | else |
| 2781 | nchips = of_get_child_count(np); |
| 2782 | |
| 2783 | if (nchips > max_cs) { |
| 2784 | dev_err(dev, "too many NAND chips: %d (max = %d CS)\n" , nchips, |
| 2785 | max_cs); |
| 2786 | return -EINVAL; |
| 2787 | } |
| 2788 | |
| 2789 | /* |
| 2790 | * Legacy bindings do not use child nodes to exhibit NAND chip |
| 2791 | * properties and layout. Instead, NAND properties are mixed with the |
| 2792 | * controller ones, and partitions are defined as direct subnodes of the |
| 2793 | * NAND controller node. |
| 2794 | */ |
| 2795 | if (nfc->caps->legacy_of_bindings) { |
| 2796 | ret = marvell_nand_chip_init(dev, nfc, np); |
| 2797 | return ret; |
| 2798 | } |
| 2799 | |
| 2800 | for_each_child_of_node_scoped(np, nand_np) { |
| 2801 | ret = marvell_nand_chip_init(dev, nfc, np: nand_np); |
| 2802 | if (ret) { |
| 2803 | marvell_nand_chips_cleanup(nfc); |
| 2804 | return ret; |
| 2805 | } |
| 2806 | } |
| 2807 | |
| 2808 | return 0; |
| 2809 | } |
| 2810 | |
| 2811 | static int marvell_nfc_init_dma(struct marvell_nfc *nfc) |
| 2812 | { |
| 2813 | struct platform_device *pdev = container_of(nfc->dev, |
| 2814 | struct platform_device, |
| 2815 | dev); |
| 2816 | struct dma_slave_config config = {}; |
| 2817 | struct resource *r; |
| 2818 | int ret; |
| 2819 | |
| 2820 | if (!IS_ENABLED(CONFIG_PXA_DMA)) { |
| 2821 | dev_warn(nfc->dev, |
| 2822 | "DMA not enabled in configuration\n" ); |
| 2823 | return -ENOTSUPP; |
| 2824 | } |
| 2825 | |
| 2826 | ret = dma_set_mask_and_coherent(dev: nfc->dev, DMA_BIT_MASK(32)); |
| 2827 | if (ret) |
| 2828 | return ret; |
| 2829 | |
| 2830 | nfc->dma_chan = dma_request_chan(dev: nfc->dev, name: "data" ); |
| 2831 | if (IS_ERR(ptr: nfc->dma_chan)) { |
| 2832 | ret = PTR_ERR(ptr: nfc->dma_chan); |
| 2833 | nfc->dma_chan = NULL; |
| 2834 | return dev_err_probe(dev: nfc->dev, err: ret, fmt: "DMA channel request failed\n" ); |
| 2835 | } |
| 2836 | |
| 2837 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 2838 | if (!r) { |
| 2839 | ret = -ENXIO; |
| 2840 | goto release_channel; |
| 2841 | } |
| 2842 | |
| 2843 | config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 2844 | config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 2845 | config.src_addr = r->start + NDDB; |
| 2846 | config.dst_addr = r->start + NDDB; |
| 2847 | config.src_maxburst = 32; |
| 2848 | config.dst_maxburst = 32; |
| 2849 | ret = dmaengine_slave_config(chan: nfc->dma_chan, config: &config); |
| 2850 | if (ret < 0) { |
| 2851 | dev_err(nfc->dev, "Failed to configure DMA channel\n" ); |
| 2852 | goto release_channel; |
| 2853 | } |
| 2854 | |
| 2855 | /* |
| 2856 | * DMA must act on length multiple of 32 and this length may be |
| 2857 | * bigger than the destination buffer. Use this buffer instead |
| 2858 | * for DMA transfers and then copy the desired amount of data to |
| 2859 | * the provided buffer. |
| 2860 | */ |
| 2861 | nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); |
| 2862 | if (!nfc->dma_buf) { |
| 2863 | ret = -ENOMEM; |
| 2864 | goto release_channel; |
| 2865 | } |
| 2866 | |
| 2867 | nfc->use_dma = true; |
| 2868 | |
| 2869 | return 0; |
| 2870 | |
| 2871 | release_channel: |
| 2872 | dma_release_channel(chan: nfc->dma_chan); |
| 2873 | nfc->dma_chan = NULL; |
| 2874 | |
| 2875 | return ret; |
| 2876 | } |
| 2877 | |
| 2878 | static void marvell_nfc_reset(struct marvell_nfc *nfc) |
| 2879 | { |
| 2880 | /* |
| 2881 | * ECC operations and interruptions are only enabled when specifically |
| 2882 | * needed. ECC shall not be activated in the early stages (fails probe). |
| 2883 | * Arbiter flag, even if marked as "reserved", must be set (empirical). |
| 2884 | * SPARE_EN bit must always be set or ECC bytes will not be at the same |
| 2885 | * offset in the read page and this will fail the protection. |
| 2886 | */ |
| 2887 | writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | |
| 2888 | NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); |
| 2889 | writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); |
| 2890 | writel_relaxed(0, nfc->regs + NDECCCTRL); |
| 2891 | } |
| 2892 | |
| 2893 | static int marvell_nfc_init(struct marvell_nfc *nfc) |
| 2894 | { |
| 2895 | struct device_node *np = nfc->dev->of_node; |
| 2896 | |
| 2897 | /* |
| 2898 | * Some SoCs like A7k/A8k need to enable manually the NAND |
| 2899 | * controller, gated clocks and reset bits to avoid being bootloader |
| 2900 | * dependent. This is done through the use of the System Functions |
| 2901 | * registers. |
| 2902 | */ |
| 2903 | if (nfc->caps->need_system_controller) { |
| 2904 | struct regmap *sysctrl_base = |
| 2905 | syscon_regmap_lookup_by_phandle(np, |
| 2906 | property: "marvell,system-controller" ); |
| 2907 | |
| 2908 | if (IS_ERR(ptr: sysctrl_base)) |
| 2909 | return PTR_ERR(ptr: sysctrl_base); |
| 2910 | |
| 2911 | regmap_write(map: sysctrl_base, GENCONF_SOC_DEVICE_MUX, |
| 2912 | GENCONF_SOC_DEVICE_MUX_NFC_EN | |
| 2913 | GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | |
| 2914 | GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | |
| 2915 | GENCONF_SOC_DEVICE_MUX_NFC_INT_EN | |
| 2916 | GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN); |
| 2917 | |
| 2918 | regmap_update_bits(map: sysctrl_base, GENCONF_CLK_GATING_CTRL, |
| 2919 | GENCONF_CLK_GATING_CTRL_ND_GATE, |
| 2920 | GENCONF_CLK_GATING_CTRL_ND_GATE); |
| 2921 | } |
| 2922 | |
| 2923 | /* Configure the DMA if appropriate */ |
| 2924 | if (!nfc->caps->is_nfcv2) |
| 2925 | marvell_nfc_init_dma(nfc); |
| 2926 | |
| 2927 | marvell_nfc_reset(nfc); |
| 2928 | |
| 2929 | return 0; |
| 2930 | } |
| 2931 | |
| 2932 | static int marvell_nfc_probe(struct platform_device *pdev) |
| 2933 | { |
| 2934 | struct device *dev = &pdev->dev; |
| 2935 | struct marvell_nfc *nfc; |
| 2936 | int ret; |
| 2937 | int irq; |
| 2938 | |
| 2939 | nfc = devm_kzalloc(dev: &pdev->dev, size: sizeof(struct marvell_nfc), |
| 2940 | GFP_KERNEL); |
| 2941 | if (!nfc) |
| 2942 | return -ENOMEM; |
| 2943 | |
| 2944 | nfc->dev = dev; |
| 2945 | nand_controller_init(nfc: &nfc->controller); |
| 2946 | nfc->controller.ops = &marvell_nand_controller_ops; |
| 2947 | INIT_LIST_HEAD(list: &nfc->chips); |
| 2948 | |
| 2949 | nfc->regs = devm_platform_ioremap_resource(pdev, index: 0); |
| 2950 | if (IS_ERR(ptr: nfc->regs)) |
| 2951 | return PTR_ERR(ptr: nfc->regs); |
| 2952 | |
| 2953 | irq = platform_get_irq(pdev, 0); |
| 2954 | if (irq < 0) |
| 2955 | return irq; |
| 2956 | |
| 2957 | nfc->core_clk = devm_clk_get(dev: &pdev->dev, id: "core" ); |
| 2958 | |
| 2959 | /* Managed the legacy case (when the first clock was not named) */ |
| 2960 | if (nfc->core_clk == ERR_PTR(error: -ENOENT)) |
| 2961 | nfc->core_clk = devm_clk_get(dev: &pdev->dev, NULL); |
| 2962 | |
| 2963 | if (IS_ERR(ptr: nfc->core_clk)) |
| 2964 | return PTR_ERR(ptr: nfc->core_clk); |
| 2965 | |
| 2966 | ret = clk_prepare_enable(clk: nfc->core_clk); |
| 2967 | if (ret) |
| 2968 | return ret; |
| 2969 | |
| 2970 | nfc->reg_clk = devm_clk_get(dev: &pdev->dev, id: "reg" ); |
| 2971 | if (IS_ERR(ptr: nfc->reg_clk)) { |
| 2972 | if (PTR_ERR(ptr: nfc->reg_clk) != -ENOENT) { |
| 2973 | ret = PTR_ERR(ptr: nfc->reg_clk); |
| 2974 | goto unprepare_core_clk; |
| 2975 | } |
| 2976 | |
| 2977 | nfc->reg_clk = NULL; |
| 2978 | } |
| 2979 | |
| 2980 | ret = clk_prepare_enable(clk: nfc->reg_clk); |
| 2981 | if (ret) |
| 2982 | goto unprepare_core_clk; |
| 2983 | |
| 2984 | marvell_nfc_disable_int(nfc, NDCR_ALL_INT); |
| 2985 | marvell_nfc_clear_int(nfc, NDCR_ALL_INT); |
| 2986 | ret = devm_request_irq(dev, irq, handler: marvell_nfc_isr, |
| 2987 | irqflags: 0, devname: "marvell-nfc" , dev_id: nfc); |
| 2988 | if (ret) |
| 2989 | goto unprepare_reg_clk; |
| 2990 | |
| 2991 | /* Get NAND controller capabilities */ |
| 2992 | if (pdev->id_entry) |
| 2993 | nfc->caps = (void *)pdev->id_entry->driver_data; |
| 2994 | else |
| 2995 | nfc->caps = of_device_get_match_data(dev: &pdev->dev); |
| 2996 | |
| 2997 | if (!nfc->caps) { |
| 2998 | dev_err(dev, "Could not retrieve NFC caps\n" ); |
| 2999 | ret = -EINVAL; |
| 3000 | goto unprepare_reg_clk; |
| 3001 | } |
| 3002 | |
| 3003 | /* Init the controller and then probe the chips */ |
| 3004 | ret = marvell_nfc_init(nfc); |
| 3005 | if (ret) |
| 3006 | goto unprepare_reg_clk; |
| 3007 | |
| 3008 | platform_set_drvdata(pdev, data: nfc); |
| 3009 | |
| 3010 | ret = marvell_nand_chips_init(dev, nfc); |
| 3011 | if (ret) |
| 3012 | goto release_dma; |
| 3013 | |
| 3014 | return 0; |
| 3015 | |
| 3016 | release_dma: |
| 3017 | if (nfc->use_dma) |
| 3018 | dma_release_channel(chan: nfc->dma_chan); |
| 3019 | unprepare_reg_clk: |
| 3020 | clk_disable_unprepare(clk: nfc->reg_clk); |
| 3021 | unprepare_core_clk: |
| 3022 | clk_disable_unprepare(clk: nfc->core_clk); |
| 3023 | |
| 3024 | return ret; |
| 3025 | } |
| 3026 | |
| 3027 | static void marvell_nfc_remove(struct platform_device *pdev) |
| 3028 | { |
| 3029 | struct marvell_nfc *nfc = platform_get_drvdata(pdev); |
| 3030 | |
| 3031 | marvell_nand_chips_cleanup(nfc); |
| 3032 | |
| 3033 | if (nfc->use_dma) { |
| 3034 | dmaengine_terminate_all(chan: nfc->dma_chan); |
| 3035 | dma_release_channel(chan: nfc->dma_chan); |
| 3036 | } |
| 3037 | |
| 3038 | clk_disable_unprepare(clk: nfc->reg_clk); |
| 3039 | clk_disable_unprepare(clk: nfc->core_clk); |
| 3040 | } |
| 3041 | |
| 3042 | static int __maybe_unused marvell_nfc_suspend(struct device *dev) |
| 3043 | { |
| 3044 | struct marvell_nfc *nfc = dev_get_drvdata(dev); |
| 3045 | struct marvell_nand_chip *chip; |
| 3046 | |
| 3047 | list_for_each_entry(chip, &nfc->chips, node) |
| 3048 | marvell_nfc_wait_ndrun(chip: &chip->chip); |
| 3049 | |
| 3050 | clk_disable_unprepare(clk: nfc->reg_clk); |
| 3051 | clk_disable_unprepare(clk: nfc->core_clk); |
| 3052 | |
| 3053 | return 0; |
| 3054 | } |
| 3055 | |
| 3056 | static int __maybe_unused marvell_nfc_resume(struct device *dev) |
| 3057 | { |
| 3058 | struct marvell_nfc *nfc = dev_get_drvdata(dev); |
| 3059 | int ret; |
| 3060 | |
| 3061 | ret = clk_prepare_enable(clk: nfc->core_clk); |
| 3062 | if (ret < 0) |
| 3063 | return ret; |
| 3064 | |
| 3065 | ret = clk_prepare_enable(clk: nfc->reg_clk); |
| 3066 | if (ret < 0) { |
| 3067 | clk_disable_unprepare(clk: nfc->core_clk); |
| 3068 | return ret; |
| 3069 | } |
| 3070 | |
| 3071 | /* |
| 3072 | * Reset nfc->selected_chip so the next command will cause the timing |
| 3073 | * registers to be restored in marvell_nfc_select_target(). |
| 3074 | */ |
| 3075 | nfc->selected_chip = NULL; |
| 3076 | |
| 3077 | /* Reset registers that have lost their contents */ |
| 3078 | marvell_nfc_reset(nfc); |
| 3079 | |
| 3080 | return 0; |
| 3081 | } |
| 3082 | |
| 3083 | static const struct dev_pm_ops marvell_nfc_pm_ops = { |
| 3084 | SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) |
| 3085 | }; |
| 3086 | |
| 3087 | static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { |
| 3088 | .max_cs_nb = 4, |
| 3089 | .max_rb_nb = 2, |
| 3090 | .need_system_controller = true, |
| 3091 | .is_nfcv2 = true, |
| 3092 | }; |
| 3093 | |
| 3094 | static const struct marvell_nfc_caps marvell_ac5_caps = { |
| 3095 | .max_cs_nb = 2, |
| 3096 | .max_rb_nb = 1, |
| 3097 | .is_nfcv2 = true, |
| 3098 | .max_mode_number = 3, |
| 3099 | }; |
| 3100 | |
| 3101 | static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { |
| 3102 | .max_cs_nb = 4, |
| 3103 | .max_rb_nb = 2, |
| 3104 | .is_nfcv2 = true, |
| 3105 | }; |
| 3106 | |
| 3107 | static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { |
| 3108 | .max_cs_nb = 2, |
| 3109 | .max_rb_nb = 1, |
| 3110 | .use_dma = true, |
| 3111 | }; |
| 3112 | |
| 3113 | static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { |
| 3114 | .max_cs_nb = 4, |
| 3115 | .max_rb_nb = 2, |
| 3116 | .need_system_controller = true, |
| 3117 | .legacy_of_bindings = true, |
| 3118 | .is_nfcv2 = true, |
| 3119 | }; |
| 3120 | |
| 3121 | static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { |
| 3122 | .max_cs_nb = 4, |
| 3123 | .max_rb_nb = 2, |
| 3124 | .legacy_of_bindings = true, |
| 3125 | .is_nfcv2 = true, |
| 3126 | }; |
| 3127 | |
| 3128 | static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { |
| 3129 | .max_cs_nb = 2, |
| 3130 | .max_rb_nb = 1, |
| 3131 | .legacy_of_bindings = true, |
| 3132 | .use_dma = true, |
| 3133 | }; |
| 3134 | |
| 3135 | static const struct platform_device_id marvell_nfc_platform_ids[] = { |
| 3136 | { |
| 3137 | .name = "pxa3xx-nand" , |
| 3138 | .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, |
| 3139 | }, |
| 3140 | { /* sentinel */ }, |
| 3141 | }; |
| 3142 | MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); |
| 3143 | |
| 3144 | static const struct of_device_id marvell_nfc_of_ids[] = { |
| 3145 | { |
| 3146 | .compatible = "marvell,armada-8k-nand-controller" , |
| 3147 | .data = &marvell_armada_8k_nfc_caps, |
| 3148 | }, |
| 3149 | { |
| 3150 | .compatible = "marvell,ac5-nand-controller" , |
| 3151 | .data = &marvell_ac5_caps, |
| 3152 | }, |
| 3153 | { |
| 3154 | .compatible = "marvell,armada370-nand-controller" , |
| 3155 | .data = &marvell_armada370_nfc_caps, |
| 3156 | }, |
| 3157 | { |
| 3158 | .compatible = "marvell,pxa3xx-nand-controller" , |
| 3159 | .data = &marvell_pxa3xx_nfc_caps, |
| 3160 | }, |
| 3161 | /* Support for old/deprecated bindings: */ |
| 3162 | { |
| 3163 | .compatible = "marvell,armada-8k-nand" , |
| 3164 | .data = &marvell_armada_8k_nfc_legacy_caps, |
| 3165 | }, |
| 3166 | { |
| 3167 | .compatible = "marvell,armada370-nand" , |
| 3168 | .data = &marvell_armada370_nfc_legacy_caps, |
| 3169 | }, |
| 3170 | { |
| 3171 | .compatible = "marvell,pxa3xx-nand" , |
| 3172 | .data = &marvell_pxa3xx_nfc_legacy_caps, |
| 3173 | }, |
| 3174 | { /* sentinel */ }, |
| 3175 | }; |
| 3176 | MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); |
| 3177 | |
| 3178 | static struct platform_driver marvell_nfc_driver = { |
| 3179 | .driver = { |
| 3180 | .name = "marvell-nfc" , |
| 3181 | .of_match_table = marvell_nfc_of_ids, |
| 3182 | .pm = &marvell_nfc_pm_ops, |
| 3183 | }, |
| 3184 | .id_table = marvell_nfc_platform_ids, |
| 3185 | .probe = marvell_nfc_probe, |
| 3186 | .remove = marvell_nfc_remove, |
| 3187 | }; |
| 3188 | module_platform_driver(marvell_nfc_driver); |
| 3189 | |
| 3190 | MODULE_LICENSE("GPL" ); |
| 3191 | MODULE_DESCRIPTION("Marvell NAND controller driver" ); |
| 3192 | |