1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Mediatek MT7530 DSA Switch driver
4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5 */
6#include <linux/etherdevice.h>
7#include <linux/if_bridge.h>
8#include <linux/iopoll.h>
9#include <linux/mdio.h>
10#include <linux/mfd/syscon.h>
11#include <linux/module.h>
12#include <linux/netdevice.h>
13#include <linux/of_irq.h>
14#include <linux/of_mdio.h>
15#include <linux/of_net.h>
16#include <linux/of_platform.h>
17#include <linux/phylink.h>
18#include <linux/regmap.h>
19#include <linux/regulator/consumer.h>
20#include <linux/reset.h>
21#include <linux/gpio/consumer.h>
22#include <linux/gpio/driver.h>
23#include <net/dsa.h>
24
25#include "mt7530.h"
26
27static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28{
29 return container_of(pcs, struct mt753x_pcs, pcs);
30}
31
32/* String, offset, and register size in bytes if different from 4 bytes */
33static const struct mt7530_mib_desc mt7530_mib[] = {
34 MIB_DESC(1, 0x00, "TxDrop"),
35 MIB_DESC(1, 0x04, "TxCrcErr"),
36 MIB_DESC(1, 0x08, "TxUnicast"),
37 MIB_DESC(1, 0x0c, "TxMulticast"),
38 MIB_DESC(1, 0x10, "TxBroadcast"),
39 MIB_DESC(1, 0x14, "TxCollision"),
40 MIB_DESC(1, 0x18, "TxSingleCollision"),
41 MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 MIB_DESC(1, 0x20, "TxDeferred"),
43 MIB_DESC(1, 0x24, "TxLateCollision"),
44 MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 MIB_DESC(1, 0x2c, "TxPause"),
46 MIB_DESC(1, 0x30, "TxPktSz64"),
47 MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 MIB_DESC(2, 0x48, "TxBytes"),
53 MIB_DESC(1, 0x60, "RxDrop"),
54 MIB_DESC(1, 0x64, "RxFiltering"),
55 MIB_DESC(1, 0x68, "RxUnicast"),
56 MIB_DESC(1, 0x6c, "RxMulticast"),
57 MIB_DESC(1, 0x70, "RxBroadcast"),
58 MIB_DESC(1, 0x74, "RxAlignErr"),
59 MIB_DESC(1, 0x78, "RxCrcErr"),
60 MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 MIB_DESC(1, 0x80, "RxFragErr"),
62 MIB_DESC(1, 0x84, "RxOverSzErr"),
63 MIB_DESC(1, 0x88, "RxJabberErr"),
64 MIB_DESC(1, 0x8c, "RxPause"),
65 MIB_DESC(1, 0x90, "RxPktSz64"),
66 MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 MIB_DESC(2, 0xa8, "RxBytes"),
72 MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 MIB_DESC(1, 0xb8, "RxArlDrop"),
75};
76
77/* Since phy_device has not yet been created and
78 * phy_{read,write}_mmd_indirect is not available, we provide our own
79 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80 * to complete this function.
81 */
82static int
83core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84{
85 struct mii_bus *bus = priv->bus;
86 int value, ret;
87
88 /* Write the desired MMD Devad */
89 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 if (ret < 0)
91 goto err;
92
93 /* Write the desired MMD register address */
94 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 if (ret < 0)
96 goto err;
97
98 /* Select the Function : DATA with no post increment */
99 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 if (ret < 0)
101 goto err;
102
103 /* Read the content of the MMD's selected register */
104 value = bus->read(bus, 0, MII_MMD_DATA);
105
106 return value;
107err:
108 dev_err(&bus->dev, "failed to read mmd register\n");
109
110 return ret;
111}
112
113static int
114core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 int devad, u32 data)
116{
117 struct mii_bus *bus = priv->bus;
118 int ret;
119
120 /* Write the desired MMD Devad */
121 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 if (ret < 0)
123 goto err;
124
125 /* Write the desired MMD register address */
126 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 if (ret < 0)
128 goto err;
129
130 /* Select the Function : DATA with no post increment */
131 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 if (ret < 0)
133 goto err;
134
135 /* Write the data into MMD's selected register */
136 ret = bus->write(bus, 0, MII_MMD_DATA, data);
137err:
138 if (ret < 0)
139 dev_err(&bus->dev,
140 "failed to write mmd register\n");
141 return ret;
142}
143
144static void
145mt7530_mutex_lock(struct mt7530_priv *priv)
146{
147 if (priv->bus)
148 mutex_lock_nested(lock: &priv->bus->mdio_lock, subclass: MDIO_MUTEX_NESTED);
149}
150
151static void
152mt7530_mutex_unlock(struct mt7530_priv *priv)
153{
154 if (priv->bus)
155 mutex_unlock(lock: &priv->bus->mdio_lock);
156}
157
158static void
159core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160{
161 mt7530_mutex_lock(priv);
162
163 core_write_mmd_indirect(priv, prtad: reg, MDIO_MMD_VEND2, data: val);
164
165 mt7530_mutex_unlock(priv);
166}
167
168static void
169core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170{
171 u32 val;
172
173 mt7530_mutex_lock(priv);
174
175 val = core_read_mmd_indirect(priv, prtad: reg, MDIO_MMD_VEND2);
176 val &= ~mask;
177 val |= set;
178 core_write_mmd_indirect(priv, prtad: reg, MDIO_MMD_VEND2, data: val);
179
180 mt7530_mutex_unlock(priv);
181}
182
183static void
184core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185{
186 core_rmw(priv, reg, mask: 0, set: val);
187}
188
189static void
190core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191{
192 core_rmw(priv, reg, mask: val, set: 0);
193}
194
195static int
196mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197{
198 int ret;
199
200 ret = regmap_write(map: priv->regmap, reg, val);
201
202 if (ret < 0)
203 dev_err(priv->dev,
204 "failed to write mt7530 register\n");
205
206 return ret;
207}
208
209static u32
210mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211{
212 int ret;
213 u32 val;
214
215 ret = regmap_read(map: priv->regmap, reg, val: &val);
216 if (ret) {
217 WARN_ON_ONCE(1);
218 dev_err(priv->dev,
219 "failed to read mt7530 register\n");
220 return 0;
221 }
222
223 return val;
224}
225
226static void
227mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228{
229 mt7530_mutex_lock(priv);
230
231 mt7530_mii_write(priv, reg, val);
232
233 mt7530_mutex_unlock(priv);
234}
235
236static u32
237_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238{
239 return mt7530_mii_read(priv: p->priv, reg: p->reg);
240}
241
242static u32
243_mt7530_read(struct mt7530_dummy_poll *p)
244{
245 u32 val;
246
247 mt7530_mutex_lock(priv: p->priv);
248
249 val = mt7530_mii_read(priv: p->priv, reg: p->reg);
250
251 mt7530_mutex_unlock(priv: p->priv);
252
253 return val;
254}
255
256static u32
257mt7530_read(struct mt7530_priv *priv, u32 reg)
258{
259 struct mt7530_dummy_poll p;
260
261 INIT_MT7530_DUMMY_POLL(p: &p, priv, reg);
262 return _mt7530_read(p: &p);
263}
264
265static void
266mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 u32 mask, u32 set)
268{
269 mt7530_mutex_lock(priv);
270
271 regmap_update_bits(map: priv->regmap, reg, mask, val: set);
272
273 mt7530_mutex_unlock(priv);
274}
275
276static void
277mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278{
279 mt7530_rmw(priv, reg, mask: val, set: val);
280}
281
282static void
283mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284{
285 mt7530_rmw(priv, reg, mask: val, set: 0);
286}
287
288static int
289mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290{
291 u32 val;
292 int ret;
293 struct mt7530_dummy_poll p;
294
295 /* Set the command operating upon the MAC address entries */
296 val = ATC_BUSY | ATC_MAT(0) | cmd;
297 mt7530_write(priv, MT7530_ATC, val);
298
299 INIT_MT7530_DUMMY_POLL(p: &p, priv, MT7530_ATC);
300 ret = readx_poll_timeout(_mt7530_read, &p, val,
301 !(val & ATC_BUSY), 20, 20000);
302 if (ret < 0) {
303 dev_err(priv->dev, "reset timeout\n");
304 return ret;
305 }
306
307 /* Additional sanity for read command if the specified
308 * entry is invalid
309 */
310 val = mt7530_read(priv, MT7530_ATC);
311 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 return -EINVAL;
313
314 if (rsp)
315 *rsp = val;
316
317 return 0;
318}
319
320static void
321mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322{
323 u32 reg[3];
324 int i;
325
326 /* Read from ARL table into an array */
327 for (i = 0; i < 3; i++) {
328 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329
330 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 __func__, __LINE__, i, reg[i]);
332 }
333
334 fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344}
345
346static void
347mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 u8 port_mask, const u8 *mac,
349 u8 aging, u8 type)
350{
351 u32 reg[3] = { 0 };
352 int i;
353
354 reg[1] |= vid & CVID_MASK;
355 reg[1] |= ATA2_IVL;
356 reg[1] |= ATA2_FID(FID_BRIDGED);
357 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 /* STATIC_ENT indicate that entry is static wouldn't
360 * be aged out and STATIC_EMP specified as erasing an
361 * entry
362 */
363 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 reg[1] |= mac[5] << MAC_BYTE_5;
365 reg[1] |= mac[4] << MAC_BYTE_4;
366 reg[0] |= mac[3] << MAC_BYTE_3;
367 reg[0] |= mac[2] << MAC_BYTE_2;
368 reg[0] |= mac[1] << MAC_BYTE_1;
369 reg[0] |= mac[0] << MAC_BYTE_0;
370
371 /* Write array into the ARL table */
372 for (i = 0; i < 3; i++)
373 mt7530_write(priv, MT7530_ATA1 + (i * 4), val: reg[i]);
374}
375
376/* Set up switch core clock for MT7530 */
377static void mt7530_pll_setup(struct mt7530_priv *priv)
378{
379 /* Disable core clock */
380 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381
382 /* Disable PLL */
383 core_write(priv, CORE_GSWPLL_GRP1, val: 0);
384
385 /* Set core clock into 500Mhz */
386 core_write(priv, CORE_GSWPLL_GRP2,
387 RG_GSWPLL_POSDIV_500M(1) |
388 RG_GSWPLL_FBKDIV_500M(25));
389
390 /* Enable PLL */
391 core_write(priv, CORE_GSWPLL_GRP1,
392 RG_GSWPLL_EN_PRE |
393 RG_GSWPLL_POSDIV_200M(2) |
394 RG_GSWPLL_FBKDIV_200M(32));
395
396 udelay(20);
397
398 /* Enable core clock */
399 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400}
401
402/* If port 6 is available as a CPU port, always prefer that as the default,
403 * otherwise don't care.
404 */
405static struct dsa_port *
406mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407{
408 struct dsa_port *cpu_dp = dsa_to_port(ds, p: 6);
409
410 if (dsa_port_is_cpu(port: cpu_dp))
411 return cpu_dp;
412
413 return NULL;
414}
415
416/* Setup port 6 interface mode and TRGMII TX circuit */
417static void
418mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
419{
420 struct mt7530_priv *priv = ds->priv;
421 u32 ncpo1, ssc_delta, xtal;
422
423 /* Disable the MT7530 TRGMII clocks */
424 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
425
426 if (interface == PHY_INTERFACE_MODE_RGMII) {
427 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
428 P6_INTF_MODE(0));
429 return;
430 }
431
432 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
433
434 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
435
436 if (xtal == HWTRAP_XTAL_25MHZ)
437 ssc_delta = 0x57;
438 else
439 ssc_delta = 0x87;
440
441 if (priv->id == ID_MT7621) {
442 /* PLL frequency: 125MHz: 1.0GBit */
443 if (xtal == HWTRAP_XTAL_40MHZ)
444 ncpo1 = 0x0640;
445 if (xtal == HWTRAP_XTAL_25MHZ)
446 ncpo1 = 0x0a00;
447 } else { /* PLL frequency: 250MHz: 2.0Gbit */
448 if (xtal == HWTRAP_XTAL_40MHZ)
449 ncpo1 = 0x0c80;
450 if (xtal == HWTRAP_XTAL_25MHZ)
451 ncpo1 = 0x1400;
452 }
453
454 /* Setup the MT7530 TRGMII Tx Clock */
455 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
456 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
457 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
458 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
459 core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
460 RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
461 core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
462 RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
463 core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
464 RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
465
466 /* Enable the MT7530 TRGMII clocks */
467 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
468}
469
470static void
471mt7531_pll_setup(struct mt7530_priv *priv)
472{
473 u32 top_sig;
474 u32 hwstrap;
475 u32 xtal;
476 u32 val;
477
478 val = mt7530_read(priv, MT7531_CREV);
479 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
480 hwstrap = mt7530_read(priv, MT7531_HWTRAP);
481 if ((val & CHIP_REV_M) > 0)
482 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
483 HWTRAP_XTAL_FSEL_25MHZ;
484 else
485 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
486
487 /* Step 1 : Disable MT7531 COREPLL */
488 val = mt7530_read(priv, MT7531_PLLGP_EN);
489 val &= ~EN_COREPLL;
490 mt7530_write(priv, MT7531_PLLGP_EN, val);
491
492 /* Step 2: switch to XTAL output */
493 val = mt7530_read(priv, MT7531_PLLGP_EN);
494 val |= SW_CLKSW;
495 mt7530_write(priv, MT7531_PLLGP_EN, val);
496
497 val = mt7530_read(priv, MT7531_PLLGP_CR0);
498 val &= ~RG_COREPLL_EN;
499 mt7530_write(priv, MT7531_PLLGP_CR0, val);
500
501 /* Step 3: disable PLLGP and enable program PLLGP */
502 val = mt7530_read(priv, MT7531_PLLGP_EN);
503 val |= SW_PLLGP;
504 mt7530_write(priv, MT7531_PLLGP_EN, val);
505
506 /* Step 4: program COREPLL output frequency to 500MHz */
507 val = mt7530_read(priv, MT7531_PLLGP_CR0);
508 val &= ~RG_COREPLL_POSDIV_M;
509 val |= 2 << RG_COREPLL_POSDIV_S;
510 mt7530_write(priv, MT7531_PLLGP_CR0, val);
511 usleep_range(min: 25, max: 35);
512
513 switch (xtal) {
514 case HWTRAP_XTAL_FSEL_25MHZ:
515 val = mt7530_read(priv, MT7531_PLLGP_CR0);
516 val &= ~RG_COREPLL_SDM_PCW_M;
517 val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
518 mt7530_write(priv, MT7531_PLLGP_CR0, val);
519 break;
520 case HWTRAP_XTAL_FSEL_40MHZ:
521 val = mt7530_read(priv, MT7531_PLLGP_CR0);
522 val &= ~RG_COREPLL_SDM_PCW_M;
523 val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
524 mt7530_write(priv, MT7531_PLLGP_CR0, val);
525 break;
526 }
527
528 /* Set feedback divide ratio update signal to high */
529 val = mt7530_read(priv, MT7531_PLLGP_CR0);
530 val |= RG_COREPLL_SDM_PCW_CHG;
531 mt7530_write(priv, MT7531_PLLGP_CR0, val);
532 /* Wait for at least 16 XTAL clocks */
533 usleep_range(min: 10, max: 20);
534
535 /* Step 5: set feedback divide ratio update signal to low */
536 val = mt7530_read(priv, MT7531_PLLGP_CR0);
537 val &= ~RG_COREPLL_SDM_PCW_CHG;
538 mt7530_write(priv, MT7531_PLLGP_CR0, val);
539
540 /* Enable 325M clock for SGMII */
541 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, val: 0xad0000);
542
543 /* Enable 250SSC clock for RGMII */
544 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, val: 0x4f40000);
545
546 /* Step 6: Enable MT7531 PLL */
547 val = mt7530_read(priv, MT7531_PLLGP_CR0);
548 val |= RG_COREPLL_EN;
549 mt7530_write(priv, MT7531_PLLGP_CR0, val);
550
551 val = mt7530_read(priv, MT7531_PLLGP_EN);
552 val |= EN_COREPLL;
553 mt7530_write(priv, MT7531_PLLGP_EN, val);
554 usleep_range(min: 25, max: 35);
555}
556
557static void
558mt7530_mib_reset(struct dsa_switch *ds)
559{
560 struct mt7530_priv *priv = ds->priv;
561
562 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
563 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
564}
565
566static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
567{
568 return mdiobus_read_nested(bus: priv->bus, addr: port, regnum);
569}
570
571static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
572 u16 val)
573{
574 return mdiobus_write_nested(bus: priv->bus, addr: port, regnum, val);
575}
576
577static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
578 int devad, int regnum)
579{
580 return mdiobus_c45_read_nested(bus: priv->bus, addr: port, devad, regnum);
581}
582
583static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
584 int regnum, u16 val)
585{
586 return mdiobus_c45_write_nested(bus: priv->bus, addr: port, devad, regnum, val);
587}
588
589static int
590mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
591 int regnum)
592{
593 struct mt7530_dummy_poll p;
594 u32 reg, val;
595 int ret;
596
597 INIT_MT7530_DUMMY_POLL(p: &p, priv, MT7531_PHY_IAC);
598
599 mt7530_mutex_lock(priv);
600
601 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
602 !(val & MT7531_PHY_ACS_ST), 20, 100000);
603 if (ret < 0) {
604 dev_err(priv->dev, "poll timeout\n");
605 goto out;
606 }
607
608 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
609 MT7531_MDIO_DEV_ADDR(devad) | regnum;
610 mt7530_mii_write(priv, MT7531_PHY_IAC, val: reg | MT7531_PHY_ACS_ST);
611
612 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
613 !(val & MT7531_PHY_ACS_ST), 20, 100000);
614 if (ret < 0) {
615 dev_err(priv->dev, "poll timeout\n");
616 goto out;
617 }
618
619 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
620 MT7531_MDIO_DEV_ADDR(devad);
621 mt7530_mii_write(priv, MT7531_PHY_IAC, val: reg | MT7531_PHY_ACS_ST);
622
623 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
624 !(val & MT7531_PHY_ACS_ST), 20, 100000);
625 if (ret < 0) {
626 dev_err(priv->dev, "poll timeout\n");
627 goto out;
628 }
629
630 ret = val & MT7531_MDIO_RW_DATA_MASK;
631out:
632 mt7530_mutex_unlock(priv);
633
634 return ret;
635}
636
637static int
638mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
639 int regnum, u16 data)
640{
641 struct mt7530_dummy_poll p;
642 u32 val, reg;
643 int ret;
644
645 INIT_MT7530_DUMMY_POLL(p: &p, priv, MT7531_PHY_IAC);
646
647 mt7530_mutex_lock(priv);
648
649 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 if (ret < 0) {
652 dev_err(priv->dev, "poll timeout\n");
653 goto out;
654 }
655
656 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
657 MT7531_MDIO_DEV_ADDR(devad) | regnum;
658 mt7530_mii_write(priv, MT7531_PHY_IAC, val: reg | MT7531_PHY_ACS_ST);
659
660 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
661 !(val & MT7531_PHY_ACS_ST), 20, 100000);
662 if (ret < 0) {
663 dev_err(priv->dev, "poll timeout\n");
664 goto out;
665 }
666
667 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
668 MT7531_MDIO_DEV_ADDR(devad) | data;
669 mt7530_mii_write(priv, MT7531_PHY_IAC, val: reg | MT7531_PHY_ACS_ST);
670
671 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
672 !(val & MT7531_PHY_ACS_ST), 20, 100000);
673 if (ret < 0) {
674 dev_err(priv->dev, "poll timeout\n");
675 goto out;
676 }
677
678out:
679 mt7530_mutex_unlock(priv);
680
681 return ret;
682}
683
684static int
685mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
686{
687 struct mt7530_dummy_poll p;
688 int ret;
689 u32 val;
690
691 INIT_MT7530_DUMMY_POLL(p: &p, priv, MT7531_PHY_IAC);
692
693 mt7530_mutex_lock(priv);
694
695 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
696 !(val & MT7531_PHY_ACS_ST), 20, 100000);
697 if (ret < 0) {
698 dev_err(priv->dev, "poll timeout\n");
699 goto out;
700 }
701
702 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
703 MT7531_MDIO_REG_ADDR(regnum);
704
705 mt7530_mii_write(priv, MT7531_PHY_IAC, val: val | MT7531_PHY_ACS_ST);
706
707 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
708 !(val & MT7531_PHY_ACS_ST), 20, 100000);
709 if (ret < 0) {
710 dev_err(priv->dev, "poll timeout\n");
711 goto out;
712 }
713
714 ret = val & MT7531_MDIO_RW_DATA_MASK;
715out:
716 mt7530_mutex_unlock(priv);
717
718 return ret;
719}
720
721static int
722mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
723 u16 data)
724{
725 struct mt7530_dummy_poll p;
726 int ret;
727 u32 reg;
728
729 INIT_MT7530_DUMMY_POLL(p: &p, priv, MT7531_PHY_IAC);
730
731 mt7530_mutex_lock(priv);
732
733 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
734 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
735 if (ret < 0) {
736 dev_err(priv->dev, "poll timeout\n");
737 goto out;
738 }
739
740 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
741 MT7531_MDIO_REG_ADDR(regnum) | data;
742
743 mt7530_mii_write(priv, MT7531_PHY_IAC, val: reg | MT7531_PHY_ACS_ST);
744
745 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
746 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
747 if (ret < 0) {
748 dev_err(priv->dev, "poll timeout\n");
749 goto out;
750 }
751
752out:
753 mt7530_mutex_unlock(priv);
754
755 return ret;
756}
757
758static int
759mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
760{
761 struct mt7530_priv *priv = bus->priv;
762
763 return priv->info->phy_read_c22(priv, port, regnum);
764}
765
766static int
767mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
768{
769 struct mt7530_priv *priv = bus->priv;
770
771 return priv->info->phy_read_c45(priv, port, devad, regnum);
772}
773
774static int
775mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
776{
777 struct mt7530_priv *priv = bus->priv;
778
779 return priv->info->phy_write_c22(priv, port, regnum, val);
780}
781
782static int
783mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
784 u16 val)
785{
786 struct mt7530_priv *priv = bus->priv;
787
788 return priv->info->phy_write_c45(priv, port, devad, regnum, val);
789}
790
791static void
792mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
793 uint8_t *data)
794{
795 int i;
796
797 if (stringset != ETH_SS_STATS)
798 return;
799
800 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
801 ethtool_puts(data: &data, str: mt7530_mib[i].name);
802}
803
804static void
805mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
806 uint64_t *data)
807{
808 struct mt7530_priv *priv = ds->priv;
809 const struct mt7530_mib_desc *mib;
810 u32 reg, i;
811 u64 hi;
812
813 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
814 mib = &mt7530_mib[i];
815 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
816
817 data[i] = mt7530_read(priv, reg);
818 if (mib->size == 2) {
819 hi = mt7530_read(priv, reg: reg + 4);
820 data[i] |= hi << 32;
821 }
822 }
823}
824
825static int
826mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
827{
828 if (sset != ETH_SS_STATS)
829 return 0;
830
831 return ARRAY_SIZE(mt7530_mib);
832}
833
834static int
835mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
836{
837 struct mt7530_priv *priv = ds->priv;
838 unsigned int secs = msecs / 1000;
839 unsigned int tmp_age_count;
840 unsigned int error = -1;
841 unsigned int age_count;
842 unsigned int age_unit;
843
844 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
845 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
846 return -ERANGE;
847
848 /* iterate through all possible age_count to find the closest pair */
849 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
850 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
851
852 if (tmp_age_unit <= AGE_UNIT_MAX) {
853 unsigned int tmp_error = secs -
854 (tmp_age_count + 1) * (tmp_age_unit + 1);
855
856 /* found a closer pair */
857 if (error > tmp_error) {
858 error = tmp_error;
859 age_count = tmp_age_count;
860 age_unit = tmp_age_unit;
861 }
862
863 /* found the exact match, so break the loop */
864 if (!error)
865 break;
866 }
867 }
868
869 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
870
871 return 0;
872}
873
874static const char *p5_intf_modes(unsigned int p5_interface)
875{
876 switch (p5_interface) {
877 case P5_DISABLED:
878 return "DISABLED";
879 case P5_INTF_SEL_PHY_P0:
880 return "PHY P0";
881 case P5_INTF_SEL_PHY_P4:
882 return "PHY P4";
883 case P5_INTF_SEL_GMAC5:
884 return "GMAC5";
885 default:
886 return "unknown";
887 }
888}
889
890static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
891{
892 struct mt7530_priv *priv = ds->priv;
893 u8 tx_delay = 0;
894 int val;
895
896 mutex_lock(&priv->reg_mutex);
897
898 val = mt7530_read(priv, MT7530_MHWTRAP);
899
900 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
901 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
902
903 switch (priv->p5_intf_sel) {
904 case P5_INTF_SEL_PHY_P0:
905 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
906 val |= MHWTRAP_PHY0_SEL;
907 fallthrough;
908 case P5_INTF_SEL_PHY_P4:
909 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
910 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
911
912 /* Setup the MAC by default for the cpu port */
913 mt7530_write(priv, MT7530_PMCR_P(5), val: 0x56300);
914 break;
915 case P5_INTF_SEL_GMAC5:
916 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
917 val &= ~MHWTRAP_P5_DIS;
918 break;
919 default:
920 break;
921 }
922
923 /* Setup RGMII settings */
924 if (phy_interface_mode_is_rgmii(mode: interface)) {
925 val |= MHWTRAP_P5_RGMII_MODE;
926
927 /* P5 RGMII RX Clock Control: delay setting for 1000M */
928 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
929
930 /* Don't set delay in DSA mode */
931 if (!dsa_is_dsa_port(ds: priv->ds, p: 5) &&
932 (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
933 interface == PHY_INTERFACE_MODE_RGMII_ID))
934 tx_delay = 4; /* n * 0.5 ns */
935
936 /* P5 RGMII TX Clock Control: delay x */
937 mt7530_write(priv, MT7530_P5RGMIITXCR,
938 CSR_RGMII_TXC_CFG(0x10 + tx_delay));
939
940 /* reduce P5 RGMII Tx driving, 8mA */
941 mt7530_write(priv, MT7530_IO_DRV_CR,
942 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
943 }
944
945 mt7530_write(priv, MT7530_MHWTRAP, val);
946
947 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
948 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
949
950 mutex_unlock(lock: &priv->reg_mutex);
951}
952
953/* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
954 * of the Open Systems Interconnection basic reference model (OSI/RM) are
955 * described; the medium access control (MAC) and logical link control (LLC)
956 * sublayers. The MAC sublayer is the one facing the physical layer.
957 *
958 * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
959 * Bridge component comprises a MAC Relay Entity for interconnecting the Ports
960 * of the Bridge, at least two Ports, and higher layer entities with at least a
961 * Spanning Tree Protocol Entity included.
962 *
963 * Each Bridge Port also functions as an end station and shall provide the MAC
964 * Service to an LLC Entity. Each instance of the MAC Service is provided to a
965 * distinct LLC Entity that supports protocol identification, multiplexing, and
966 * demultiplexing, for protocol data unit (PDU) transmission and reception by
967 * one or more higher layer entities.
968 *
969 * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
970 * Entity associated with each Bridge Port is modeled as being directly
971 * connected to the attached Local Area Network (LAN).
972 *
973 * On the switch with CPU port architecture, CPU port functions as Management
974 * Port, and the Management Port functionality is provided by software which
975 * functions as an end station. Software is connected to an IEEE 802 LAN that is
976 * wholly contained within the system that incorporates the Bridge. Software
977 * provides access to the LLC Entity associated with each Bridge Port by the
978 * value of the source port field on the special tag on the frame received by
979 * software.
980 *
981 * We call frames that carry control information to determine the active
982 * topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
983 * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
984 * Protocol Data Units (MVRPDUs), and frames from other link constrained
985 * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
986 * Link Layer Discovery Protocol (LLDP), link-local frames. They are not
987 * forwarded by a Bridge. Permanently configured entries in the filtering
988 * database (FDB) ensure that such frames are discarded by the Forwarding
989 * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
990 *
991 * Each of the reserved MAC addresses specified in Table 8-1
992 * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
993 * permanently configured in the FDB in C-VLAN components and ERs.
994 *
995 * Each of the reserved MAC addresses specified in Table 8-2
996 * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
997 * configured in the FDB in S-VLAN components.
998 *
999 * Each of the reserved MAC addresses specified in Table 8-3
1000 * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
1001 * TPMR components.
1002 *
1003 * The FDB entries for reserved MAC addresses shall specify filtering for all
1004 * Bridge Ports and all VIDs. Management shall not provide the capability to
1005 * modify or remove entries for reserved MAC addresses.
1006 *
1007 * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
1008 * propagation of PDUs within a Bridged Network, as follows:
1009 *
1010 * The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
1011 * conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
1012 * component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
1013 * PDUs transmitted using this destination address, or any other addresses
1014 * that appear in Table 8-1, Table 8-2, and Table 8-3
1015 * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
1016 * therefore travel no further than those stations that can be reached via a
1017 * single individual LAN from the originating station.
1018 *
1019 * The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
1020 * address that no conformant S-VLAN component, C-VLAN component, or MAC
1021 * Bridge can forward; however, this address is relayed by a TPMR component.
1022 * PDUs using this destination address, or any of the other addresses that
1023 * appear in both Table 8-1 and Table 8-2 but not in Table 8-3
1024 * (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
1025 * any TPMRs but will propagate no further than the nearest S-VLAN component,
1026 * C-VLAN component, or MAC Bridge.
1027 *
1028 * The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
1029 * that no conformant C-VLAN component, MAC Bridge can forward; however, it is
1030 * relayed by TPMR components and S-VLAN components. PDUs using this
1031 * destination address, or any of the other addresses that appear in Table 8-1
1032 * but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
1033 * will be relayed by TPMR components and S-VLAN components but will propagate
1034 * no further than the nearest C-VLAN component or MAC Bridge.
1035 *
1036 * Because the LLC Entity associated with each Bridge Port is provided via CPU
1037 * port, we must not filter these frames but forward them to CPU port.
1038 *
1039 * In a Bridge, the transmission Port is majorly decided by ingress and egress
1040 * rules, FDB, and spanning tree Port State functions of the Forwarding Process.
1041 * For link-local frames, only CPU port should be designated as destination port
1042 * in the FDB, and the other functions of the Forwarding Process must not
1043 * interfere with the decision of the transmission Port. We call this process
1044 * trapping frames to CPU port.
1045 *
1046 * Therefore, on the switch with CPU port architecture, link-local frames must
1047 * be trapped to CPU port, and certain link-local frames received by a Port of a
1048 * Bridge comprising a TPMR component or an S-VLAN component must be excluded
1049 * from it.
1050 *
1051 * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
1052 * MAC Relay (TPMR) component as a TPMR component supports only a subset of the
1053 * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
1054 * doesn't count) of this architecture will either function as a standard MAC
1055 * Bridge or a standard VLAN Bridge.
1056 *
1057 * Therefore, a Bridge of this architecture can only comprise S-VLAN components,
1058 * C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
1059 * we don't need to relay PDUs using the destination addresses specified on the
1060 * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
1061 * section where they must be relayed by TPMR components.
1062 *
1063 * One option to trap link-local frames to CPU port is to add static FDB entries
1064 * with CPU port designated as destination port. However, because that
1065 * Independent VLAN Learning (IVL) is being used on every VID, each entry only
1066 * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
1067 * Bridge component or a C-VLAN component, there would have to be 16 times 4096
1068 * entries. This switch intellectual property can only hold a maximum of 2048
1069 * entries. Using this option, there also isn't a mechanism to prevent
1070 * link-local frames from being discarded when the spanning tree Port State of
1071 * the reception Port is discarding.
1072 *
1073 * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
1074 * registers. Whilst this applies to every VID, it doesn't contain all of the
1075 * reserved MAC addresses without affecting the remaining Standard Group MAC
1076 * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
1077 * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
1078 * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
1079 * destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
1080 * The latter option provides better but not complete conformance.
1081 *
1082 * This switch intellectual property also does not provide a mechanism to trap
1083 * link-local frames with specific destination addresses to CPU port by Bridge,
1084 * to conform to the filtering rules for the distinct Bridge components.
1085 *
1086 * Therefore, regardless of the type of the Bridge component, link-local frames
1087 * with these destination addresses will be trapped to CPU port:
1088 *
1089 * 01-80-C2-00-00-[00,01,02,03,0E]
1090 *
1091 * In a Bridge comprising a MAC Bridge component or a C-VLAN component:
1092 *
1093 * Link-local frames with these destination addresses won't be trapped to CPU
1094 * port which won't conform to IEEE Std 802.1Q-2022:
1095 *
1096 * 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
1097 *
1098 * In a Bridge comprising an S-VLAN component:
1099 *
1100 * Link-local frames with these destination addresses will be trapped to CPU
1101 * port which won't conform to IEEE Std 802.1Q-2022:
1102 *
1103 * 01-80-C2-00-00-00
1104 *
1105 * Link-local frames with these destination addresses won't be trapped to CPU
1106 * port which won't conform to IEEE Std 802.1Q-2022:
1107 *
1108 * 01-80-C2-00-00-[04,05,06,07,08,09,0A]
1109 *
1110 * To trap link-local frames to CPU port as conformant as this switch
1111 * intellectual property can allow, link-local frames are made to be regarded as
1112 * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
1113 * property only lets the frames regarded as BPDUs bypass the spanning tree Port
1114 * State function of the Forwarding Process.
1115 *
1116 * The only remaining interference is the ingress rules. When the reception Port
1117 * has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
1118 * There doesn't seem to be a mechanism on the switch intellectual property to
1119 * have link-local frames bypass this function of the Forwarding Process.
1120 */
1121static void
1122mt753x_trap_frames(struct mt7530_priv *priv)
1123{
1124 /* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1125 * VLAN-untagged.
1126 */
1127 mt7530_rmw(priv, MT753X_BPC,
1128 MT753X_PAE_BPDU_FR | MT753X_PAE_EG_TAG_MASK |
1129 MT753X_PAE_PORT_FW_MASK | MT753X_BPDU_EG_TAG_MASK |
1130 MT753X_BPDU_PORT_FW_MASK,
1131 MT753X_PAE_BPDU_FR |
1132 MT753X_PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1133 MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1134 MT753X_BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1135 MT753X_BPDU_CPU_ONLY);
1136
1137 /* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1138 * them VLAN-untagged.
1139 */
1140 mt7530_rmw(priv, MT753X_RGAC1,
1141 MT753X_R02_BPDU_FR | MT753X_R02_EG_TAG_MASK |
1142 MT753X_R02_PORT_FW_MASK | MT753X_R01_BPDU_FR |
1143 MT753X_R01_EG_TAG_MASK | MT753X_R01_PORT_FW_MASK,
1144 MT753X_R02_BPDU_FR |
1145 MT753X_R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1146 MT753X_R02_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1147 MT753X_R01_BPDU_FR |
1148 MT753X_R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1149 MT753X_BPDU_CPU_ONLY);
1150
1151 /* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1152 * them VLAN-untagged.
1153 */
1154 mt7530_rmw(priv, MT753X_RGAC2,
1155 MT753X_R0E_BPDU_FR | MT753X_R0E_EG_TAG_MASK |
1156 MT753X_R0E_PORT_FW_MASK | MT753X_R03_BPDU_FR |
1157 MT753X_R03_EG_TAG_MASK | MT753X_R03_PORT_FW_MASK,
1158 MT753X_R0E_BPDU_FR |
1159 MT753X_R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1160 MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1161 MT753X_R03_BPDU_FR |
1162 MT753X_R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1163 MT753X_BPDU_CPU_ONLY);
1164}
1165
1166static void
1167mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1168{
1169 struct mt7530_priv *priv = ds->priv;
1170
1171 /* Enable Mediatek header mode on the cpu port */
1172 mt7530_write(priv, MT7530_PVC_P(port),
1173 PORT_SPEC_TAG);
1174
1175 /* Enable flooding on the CPU port */
1176 mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1177 UNU_FFP(BIT(port)));
1178
1179 /* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1180 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1181 * is affine to the inbound user port.
1182 */
1183 if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1184 mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1185
1186 /* CPU port gets connected to all user ports of
1187 * the switch.
1188 */
1189 mt7530_write(priv, MT7530_PCR_P(port),
1190 PCR_MATRIX(dsa_user_ports(priv->ds)));
1191
1192 /* Set to fallback mode for independent VLAN learning */
1193 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1194 set: MT7530_PORT_FALLBACK_MODE);
1195}
1196
1197static int
1198mt7530_port_enable(struct dsa_switch *ds, int port,
1199 struct phy_device *phy)
1200{
1201 struct dsa_port *dp = dsa_to_port(ds, p: port);
1202 struct mt7530_priv *priv = ds->priv;
1203
1204 mutex_lock(&priv->reg_mutex);
1205
1206 /* Allow the user port gets connected to the cpu port and also
1207 * restore the port matrix if the port is the member of a certain
1208 * bridge.
1209 */
1210 if (dsa_port_is_user(dp)) {
1211 struct dsa_port *cpu_dp = dp->cpu_dp;
1212
1213 priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1214 }
1215 priv->ports[port].enable = true;
1216 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1217 set: priv->ports[port].pm);
1218
1219 mutex_unlock(lock: &priv->reg_mutex);
1220
1221 return 0;
1222}
1223
1224static void
1225mt7530_port_disable(struct dsa_switch *ds, int port)
1226{
1227 struct mt7530_priv *priv = ds->priv;
1228
1229 mutex_lock(&priv->reg_mutex);
1230
1231 /* Clear up all port matrix which could be restored in the next
1232 * enablement for the port.
1233 */
1234 priv->ports[port].enable = false;
1235 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1236 PCR_MATRIX_CLR);
1237
1238 mutex_unlock(lock: &priv->reg_mutex);
1239}
1240
1241static int
1242mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1243{
1244 struct mt7530_priv *priv = ds->priv;
1245 int length;
1246 u32 val;
1247
1248 /* When a new MTU is set, DSA always set the CPU port's MTU to the
1249 * largest MTU of the user ports. Because the switch only has a global
1250 * RX length register, only allowing CPU port here is enough.
1251 */
1252 if (!dsa_is_cpu_port(ds, p: port))
1253 return 0;
1254
1255 mt7530_mutex_lock(priv);
1256
1257 val = mt7530_mii_read(priv, MT7530_GMACCR);
1258 val &= ~MAX_RX_PKT_LEN_MASK;
1259
1260 /* RX length also includes Ethernet header, MTK tag, and FCS length */
1261 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1262 if (length <= 1522) {
1263 val |= MAX_RX_PKT_LEN_1522;
1264 } else if (length <= 1536) {
1265 val |= MAX_RX_PKT_LEN_1536;
1266 } else if (length <= 1552) {
1267 val |= MAX_RX_PKT_LEN_1552;
1268 } else {
1269 val &= ~MAX_RX_JUMBO_MASK;
1270 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1271 val |= MAX_RX_PKT_LEN_JUMBO;
1272 }
1273
1274 mt7530_mii_write(priv, MT7530_GMACCR, val);
1275
1276 mt7530_mutex_unlock(priv);
1277
1278 return 0;
1279}
1280
1281static int
1282mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1283{
1284 return MT7530_MAX_MTU;
1285}
1286
1287static void
1288mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1289{
1290 struct mt7530_priv *priv = ds->priv;
1291 u32 stp_state;
1292
1293 switch (state) {
1294 case BR_STATE_DISABLED:
1295 stp_state = MT7530_STP_DISABLED;
1296 break;
1297 case BR_STATE_BLOCKING:
1298 stp_state = MT7530_STP_BLOCKING;
1299 break;
1300 case BR_STATE_LISTENING:
1301 stp_state = MT7530_STP_LISTENING;
1302 break;
1303 case BR_STATE_LEARNING:
1304 stp_state = MT7530_STP_LEARNING;
1305 break;
1306 case BR_STATE_FORWARDING:
1307 default:
1308 stp_state = MT7530_STP_FORWARDING;
1309 break;
1310 }
1311
1312 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1313 FID_PST(FID_BRIDGED, stp_state));
1314}
1315
1316static int
1317mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1318 struct switchdev_brport_flags flags,
1319 struct netlink_ext_ack *extack)
1320{
1321 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1322 BR_BCAST_FLOOD))
1323 return -EINVAL;
1324
1325 return 0;
1326}
1327
1328static int
1329mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1330 struct switchdev_brport_flags flags,
1331 struct netlink_ext_ack *extack)
1332{
1333 struct mt7530_priv *priv = ds->priv;
1334
1335 if (flags.mask & BR_LEARNING)
1336 mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1337 set: flags.val & BR_LEARNING ? 0 : SA_DIS);
1338
1339 if (flags.mask & BR_FLOOD)
1340 mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1341 set: flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1342
1343 if (flags.mask & BR_MCAST_FLOOD)
1344 mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1345 set: flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1346
1347 if (flags.mask & BR_BCAST_FLOOD)
1348 mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1349 set: flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1350
1351 return 0;
1352}
1353
1354static int
1355mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1356 struct dsa_bridge bridge, bool *tx_fwd_offload,
1357 struct netlink_ext_ack *extack)
1358{
1359 struct dsa_port *dp = dsa_to_port(ds, p: port), *other_dp;
1360 struct dsa_port *cpu_dp = dp->cpu_dp;
1361 u32 port_bitmap = BIT(cpu_dp->index);
1362 struct mt7530_priv *priv = ds->priv;
1363
1364 mutex_lock(&priv->reg_mutex);
1365
1366 dsa_switch_for_each_user_port(other_dp, ds) {
1367 int other_port = other_dp->index;
1368
1369 if (dp == other_dp)
1370 continue;
1371
1372 /* Add this port to the port matrix of the other ports in the
1373 * same bridge. If the port is disabled, port matrix is kept
1374 * and not being setup until the port becomes enabled.
1375 */
1376 if (!dsa_port_offloads_bridge(dp: other_dp, bridge: &bridge))
1377 continue;
1378
1379 if (priv->ports[other_port].enable)
1380 mt7530_set(priv, MT7530_PCR_P(other_port),
1381 PCR_MATRIX(BIT(port)));
1382 priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1383
1384 port_bitmap |= BIT(other_port);
1385 }
1386
1387 /* Add the all other ports to this port matrix. */
1388 if (priv->ports[port].enable)
1389 mt7530_rmw(priv, MT7530_PCR_P(port),
1390 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1391 priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1392
1393 /* Set to fallback mode for independent VLAN learning */
1394 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1395 set: MT7530_PORT_FALLBACK_MODE);
1396
1397 mutex_unlock(lock: &priv->reg_mutex);
1398
1399 return 0;
1400}
1401
1402static void
1403mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1404{
1405 struct mt7530_priv *priv = ds->priv;
1406 bool all_user_ports_removed = true;
1407 int i;
1408
1409 /* This is called after .port_bridge_leave when leaving a VLAN-aware
1410 * bridge. Don't set standalone ports to fallback mode.
1411 */
1412 if (dsa_port_bridge_dev_get(dp: dsa_to_port(ds, p: port)))
1413 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1414 set: MT7530_PORT_FALLBACK_MODE);
1415
1416 mt7530_rmw(priv, MT7530_PVC_P(port),
1417 VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1418 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1419 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1420 MT7530_VLAN_ACC_ALL);
1421
1422 /* Set PVID to 0 */
1423 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1424 G0_PORT_VID_DEF);
1425
1426 for (i = 0; i < MT7530_NUM_PORTS; i++) {
1427 if (dsa_is_user_port(ds, p: i) &&
1428 dsa_port_is_vlan_filtering(dp: dsa_to_port(ds, p: i))) {
1429 all_user_ports_removed = false;
1430 break;
1431 }
1432 }
1433
1434 /* CPU port also does the same thing until all user ports belonging to
1435 * the CPU port get out of VLAN filtering mode.
1436 */
1437 if (all_user_ports_removed) {
1438 struct dsa_port *dp = dsa_to_port(ds, p: port);
1439 struct dsa_port *cpu_dp = dp->cpu_dp;
1440
1441 mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1442 PCR_MATRIX(dsa_user_ports(priv->ds)));
1443 mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1444 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1445 }
1446}
1447
1448static void
1449mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1450{
1451 struct mt7530_priv *priv = ds->priv;
1452
1453 /* Trapped into security mode allows packet forwarding through VLAN
1454 * table lookup.
1455 */
1456 if (dsa_is_user_port(ds, p: port)) {
1457 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1458 set: MT7530_PORT_SECURITY_MODE);
1459 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1460 G0_PORT_VID(priv->ports[port].pvid));
1461
1462 /* Only accept tagged frames if PVID is not set */
1463 if (!priv->ports[port].pvid)
1464 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1465 set: MT7530_VLAN_ACC_TAGGED);
1466
1467 /* Set the port as a user port which is to be able to recognize
1468 * VID from incoming packets before fetching entry within the
1469 * VLAN table.
1470 */
1471 mt7530_rmw(priv, MT7530_PVC_P(port),
1472 VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1473 VLAN_ATTR(MT7530_VLAN_USER) |
1474 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1475 } else {
1476 /* Also set CPU ports to the "user" VLAN port attribute, to
1477 * allow VLAN classification, but keep the EG_TAG attribute as
1478 * "consistent" (i.o.w. don't change its value) for packets
1479 * received by the switch from the CPU, so that tagged packets
1480 * are forwarded to user ports as tagged, and untagged as
1481 * untagged.
1482 */
1483 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1484 VLAN_ATTR(MT7530_VLAN_USER));
1485 }
1486}
1487
1488static void
1489mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1490 struct dsa_bridge bridge)
1491{
1492 struct dsa_port *dp = dsa_to_port(ds, p: port), *other_dp;
1493 struct dsa_port *cpu_dp = dp->cpu_dp;
1494 struct mt7530_priv *priv = ds->priv;
1495
1496 mutex_lock(&priv->reg_mutex);
1497
1498 dsa_switch_for_each_user_port(other_dp, ds) {
1499 int other_port = other_dp->index;
1500
1501 if (dp == other_dp)
1502 continue;
1503
1504 /* Remove this port from the port matrix of the other ports
1505 * in the same bridge. If the port is disabled, port matrix
1506 * is kept and not being setup until the port becomes enabled.
1507 */
1508 if (!dsa_port_offloads_bridge(dp: other_dp, bridge: &bridge))
1509 continue;
1510
1511 if (priv->ports[other_port].enable)
1512 mt7530_clear(priv, MT7530_PCR_P(other_port),
1513 PCR_MATRIX(BIT(port)));
1514 priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1515 }
1516
1517 /* Set the cpu port to be the only one in the port matrix of
1518 * this port.
1519 */
1520 if (priv->ports[port].enable)
1521 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1522 PCR_MATRIX(BIT(cpu_dp->index)));
1523 priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1524
1525 /* When a port is removed from the bridge, the port would be set up
1526 * back to the default as is at initial boot which is a VLAN-unaware
1527 * port.
1528 */
1529 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1530 set: MT7530_PORT_MATRIX_MODE);
1531
1532 mutex_unlock(lock: &priv->reg_mutex);
1533}
1534
1535static int
1536mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1537 const unsigned char *addr, u16 vid,
1538 struct dsa_db db)
1539{
1540 struct mt7530_priv *priv = ds->priv;
1541 int ret;
1542 u8 port_mask = BIT(port);
1543
1544 mutex_lock(&priv->reg_mutex);
1545 mt7530_fdb_write(priv, vid, port_mask, mac: addr, aging: -1, STATIC_ENT);
1546 ret = mt7530_fdb_cmd(priv, cmd: MT7530_FDB_WRITE, NULL);
1547 mutex_unlock(lock: &priv->reg_mutex);
1548
1549 return ret;
1550}
1551
1552static int
1553mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1554 const unsigned char *addr, u16 vid,
1555 struct dsa_db db)
1556{
1557 struct mt7530_priv *priv = ds->priv;
1558 int ret;
1559 u8 port_mask = BIT(port);
1560
1561 mutex_lock(&priv->reg_mutex);
1562 mt7530_fdb_write(priv, vid, port_mask, mac: addr, aging: -1, STATIC_EMP);
1563 ret = mt7530_fdb_cmd(priv, cmd: MT7530_FDB_WRITE, NULL);
1564 mutex_unlock(lock: &priv->reg_mutex);
1565
1566 return ret;
1567}
1568
1569static int
1570mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1571 dsa_fdb_dump_cb_t *cb, void *data)
1572{
1573 struct mt7530_priv *priv = ds->priv;
1574 struct mt7530_fdb _fdb = { 0 };
1575 int cnt = MT7530_NUM_FDB_RECORDS;
1576 int ret = 0;
1577 u32 rsp = 0;
1578
1579 mutex_lock(&priv->reg_mutex);
1580
1581 ret = mt7530_fdb_cmd(priv, cmd: MT7530_FDB_START, rsp: &rsp);
1582 if (ret < 0)
1583 goto err;
1584
1585 do {
1586 if (rsp & ATC_SRCH_HIT) {
1587 mt7530_fdb_read(priv, fdb: &_fdb);
1588 if (_fdb.port_mask & BIT(port)) {
1589 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1590 data);
1591 if (ret < 0)
1592 break;
1593 }
1594 }
1595 } while (--cnt &&
1596 !(rsp & ATC_SRCH_END) &&
1597 !mt7530_fdb_cmd(priv, cmd: MT7530_FDB_NEXT, rsp: &rsp));
1598err:
1599 mutex_unlock(lock: &priv->reg_mutex);
1600
1601 return 0;
1602}
1603
1604static int
1605mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1606 const struct switchdev_obj_port_mdb *mdb,
1607 struct dsa_db db)
1608{
1609 struct mt7530_priv *priv = ds->priv;
1610 const u8 *addr = mdb->addr;
1611 u16 vid = mdb->vid;
1612 u8 port_mask = 0;
1613 int ret;
1614
1615 mutex_lock(&priv->reg_mutex);
1616
1617 mt7530_fdb_write(priv, vid, port_mask: 0, mac: addr, aging: 0, STATIC_EMP);
1618 if (!mt7530_fdb_cmd(priv, cmd: MT7530_FDB_READ, NULL))
1619 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1620 & PORT_MAP_MASK;
1621
1622 port_mask |= BIT(port);
1623 mt7530_fdb_write(priv, vid, port_mask, mac: addr, aging: -1, STATIC_ENT);
1624 ret = mt7530_fdb_cmd(priv, cmd: MT7530_FDB_WRITE, NULL);
1625
1626 mutex_unlock(lock: &priv->reg_mutex);
1627
1628 return ret;
1629}
1630
1631static int
1632mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1633 const struct switchdev_obj_port_mdb *mdb,
1634 struct dsa_db db)
1635{
1636 struct mt7530_priv *priv = ds->priv;
1637 const u8 *addr = mdb->addr;
1638 u16 vid = mdb->vid;
1639 u8 port_mask = 0;
1640 int ret;
1641
1642 mutex_lock(&priv->reg_mutex);
1643
1644 mt7530_fdb_write(priv, vid, port_mask: 0, mac: addr, aging: 0, STATIC_EMP);
1645 if (!mt7530_fdb_cmd(priv, cmd: MT7530_FDB_READ, NULL))
1646 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1647 & PORT_MAP_MASK;
1648
1649 port_mask &= ~BIT(port);
1650 mt7530_fdb_write(priv, vid, port_mask, mac: addr, aging: -1,
1651 type: port_mask ? STATIC_ENT : STATIC_EMP);
1652 ret = mt7530_fdb_cmd(priv, cmd: MT7530_FDB_WRITE, NULL);
1653
1654 mutex_unlock(lock: &priv->reg_mutex);
1655
1656 return ret;
1657}
1658
1659static int
1660mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1661{
1662 struct mt7530_dummy_poll p;
1663 u32 val;
1664 int ret;
1665
1666 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1667 mt7530_write(priv, MT7530_VTCR, val);
1668
1669 INIT_MT7530_DUMMY_POLL(p: &p, priv, MT7530_VTCR);
1670 ret = readx_poll_timeout(_mt7530_read, &p, val,
1671 !(val & VTCR_BUSY), 20, 20000);
1672 if (ret < 0) {
1673 dev_err(priv->dev, "poll timeout\n");
1674 return ret;
1675 }
1676
1677 val = mt7530_read(priv, MT7530_VTCR);
1678 if (val & VTCR_INVALID) {
1679 dev_err(priv->dev, "read VTCR invalid\n");
1680 return -EINVAL;
1681 }
1682
1683 return 0;
1684}
1685
1686static int
1687mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1688 struct netlink_ext_ack *extack)
1689{
1690 struct dsa_port *dp = dsa_to_port(ds, p: port);
1691 struct dsa_port *cpu_dp = dp->cpu_dp;
1692
1693 if (vlan_filtering) {
1694 /* The port is being kept as VLAN-unaware port when bridge is
1695 * set up with vlan_filtering not being set, Otherwise, the
1696 * port and the corresponding CPU port is required the setup
1697 * for becoming a VLAN-aware port.
1698 */
1699 mt7530_port_set_vlan_aware(ds, port);
1700 mt7530_port_set_vlan_aware(ds, port: cpu_dp->index);
1701 } else {
1702 mt7530_port_set_vlan_unaware(ds, port);
1703 }
1704
1705 return 0;
1706}
1707
1708static void
1709mt7530_hw_vlan_add(struct mt7530_priv *priv,
1710 struct mt7530_hw_vlan_entry *entry)
1711{
1712 struct dsa_port *dp = dsa_to_port(ds: priv->ds, p: entry->port);
1713 u8 new_members;
1714 u32 val;
1715
1716 new_members = entry->old_members | BIT(entry->port);
1717
1718 /* Validate the entry with independent learning, create egress tag per
1719 * VLAN and joining the port as one of the port members.
1720 */
1721 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1722 VLAN_VALID;
1723 mt7530_write(priv, MT7530_VAWD1, val);
1724
1725 /* Decide whether adding tag or not for those outgoing packets from the
1726 * port inside the VLAN.
1727 * CPU port is always taken as a tagged port for serving more than one
1728 * VLANs across and also being applied with egress type stack mode for
1729 * that VLAN tags would be appended after hardware special tag used as
1730 * DSA tag.
1731 */
1732 if (dsa_port_is_cpu(port: dp))
1733 val = MT7530_VLAN_EGRESS_STACK;
1734 else if (entry->untagged)
1735 val = MT7530_VLAN_EGRESS_UNTAG;
1736 else
1737 val = MT7530_VLAN_EGRESS_TAG;
1738 mt7530_rmw(priv, MT7530_VAWD2,
1739 ETAG_CTRL_P_MASK(entry->port),
1740 ETAG_CTRL_P(entry->port, val));
1741}
1742
1743static void
1744mt7530_hw_vlan_del(struct mt7530_priv *priv,
1745 struct mt7530_hw_vlan_entry *entry)
1746{
1747 u8 new_members;
1748 u32 val;
1749
1750 new_members = entry->old_members & ~BIT(entry->port);
1751
1752 val = mt7530_read(priv, MT7530_VAWD1);
1753 if (!(val & VLAN_VALID)) {
1754 dev_err(priv->dev,
1755 "Cannot be deleted due to invalid entry\n");
1756 return;
1757 }
1758
1759 if (new_members) {
1760 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1761 VLAN_VALID;
1762 mt7530_write(priv, MT7530_VAWD1, val);
1763 } else {
1764 mt7530_write(priv, MT7530_VAWD1, val: 0);
1765 mt7530_write(priv, MT7530_VAWD2, val: 0);
1766 }
1767}
1768
1769static void
1770mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1771 struct mt7530_hw_vlan_entry *entry,
1772 mt7530_vlan_op vlan_op)
1773{
1774 u32 val;
1775
1776 /* Fetch entry */
1777 mt7530_vlan_cmd(priv, cmd: MT7530_VTCR_RD_VID, vid);
1778
1779 val = mt7530_read(priv, MT7530_VAWD1);
1780
1781 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1782
1783 /* Manipulate entry */
1784 vlan_op(priv, entry);
1785
1786 /* Flush result to hardware */
1787 mt7530_vlan_cmd(priv, cmd: MT7530_VTCR_WR_VID, vid);
1788}
1789
1790static int
1791mt7530_setup_vlan0(struct mt7530_priv *priv)
1792{
1793 u32 val;
1794
1795 /* Validate the entry with independent learning, keep the original
1796 * ingress tag attribute.
1797 */
1798 val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1799 VLAN_VALID;
1800 mt7530_write(priv, MT7530_VAWD1, val);
1801
1802 return mt7530_vlan_cmd(priv, cmd: MT7530_VTCR_WR_VID, vid: 0);
1803}
1804
1805static int
1806mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1807 const struct switchdev_obj_port_vlan *vlan,
1808 struct netlink_ext_ack *extack)
1809{
1810 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1811 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1812 struct mt7530_hw_vlan_entry new_entry;
1813 struct mt7530_priv *priv = ds->priv;
1814
1815 mutex_lock(&priv->reg_mutex);
1816
1817 mt7530_hw_vlan_entry_init(e: &new_entry, port, untagged);
1818 mt7530_hw_vlan_update(priv, vid: vlan->vid, entry: &new_entry, vlan_op: mt7530_hw_vlan_add);
1819
1820 if (pvid) {
1821 priv->ports[port].pvid = vlan->vid;
1822
1823 /* Accept all frames if PVID is set */
1824 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1825 set: MT7530_VLAN_ACC_ALL);
1826
1827 /* Only configure PVID if VLAN filtering is enabled */
1828 if (dsa_port_is_vlan_filtering(dp: dsa_to_port(ds, p: port)))
1829 mt7530_rmw(priv, MT7530_PPBV1_P(port),
1830 G0_PORT_VID_MASK,
1831 G0_PORT_VID(vlan->vid));
1832 } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1833 /* This VLAN is overwritten without PVID, so unset it */
1834 priv->ports[port].pvid = G0_PORT_VID_DEF;
1835
1836 /* Only accept tagged frames if the port is VLAN-aware */
1837 if (dsa_port_is_vlan_filtering(dp: dsa_to_port(ds, p: port)))
1838 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1839 set: MT7530_VLAN_ACC_TAGGED);
1840
1841 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1842 G0_PORT_VID_DEF);
1843 }
1844
1845 mutex_unlock(lock: &priv->reg_mutex);
1846
1847 return 0;
1848}
1849
1850static int
1851mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1852 const struct switchdev_obj_port_vlan *vlan)
1853{
1854 struct mt7530_hw_vlan_entry target_entry;
1855 struct mt7530_priv *priv = ds->priv;
1856
1857 mutex_lock(&priv->reg_mutex);
1858
1859 mt7530_hw_vlan_entry_init(e: &target_entry, port, untagged: 0);
1860 mt7530_hw_vlan_update(priv, vid: vlan->vid, entry: &target_entry,
1861 vlan_op: mt7530_hw_vlan_del);
1862
1863 /* PVID is being restored to the default whenever the PVID port
1864 * is being removed from the VLAN.
1865 */
1866 if (priv->ports[port].pvid == vlan->vid) {
1867 priv->ports[port].pvid = G0_PORT_VID_DEF;
1868
1869 /* Only accept tagged frames if the port is VLAN-aware */
1870 if (dsa_port_is_vlan_filtering(dp: dsa_to_port(ds, p: port)))
1871 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1872 set: MT7530_VLAN_ACC_TAGGED);
1873
1874 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1875 G0_PORT_VID_DEF);
1876 }
1877
1878
1879 mutex_unlock(lock: &priv->reg_mutex);
1880
1881 return 0;
1882}
1883
1884static int mt753x_mirror_port_get(unsigned int id, u32 val)
1885{
1886 return (id == ID_MT7531 || id == ID_MT7988) ?
1887 MT7531_MIRROR_PORT_GET(val) :
1888 MIRROR_PORT(val);
1889}
1890
1891static int mt753x_mirror_port_set(unsigned int id, u32 val)
1892{
1893 return (id == ID_MT7531 || id == ID_MT7988) ?
1894 MT7531_MIRROR_PORT_SET(val) :
1895 MIRROR_PORT(val);
1896}
1897
1898static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1899 struct dsa_mall_mirror_tc_entry *mirror,
1900 bool ingress, struct netlink_ext_ack *extack)
1901{
1902 struct mt7530_priv *priv = ds->priv;
1903 int monitor_port;
1904 u32 val;
1905
1906 /* Check for existent entry */
1907 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1908 return -EEXIST;
1909
1910 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1911
1912 /* MT7530 only supports one monitor port */
1913 monitor_port = mt753x_mirror_port_get(id: priv->id, val);
1914 if (val & MT753X_MIRROR_EN(priv->id) &&
1915 monitor_port != mirror->to_local_port)
1916 return -EEXIST;
1917
1918 val |= MT753X_MIRROR_EN(priv->id);
1919 val &= ~MT753X_MIRROR_MASK(priv->id);
1920 val |= mt753x_mirror_port_set(id: priv->id, val: mirror->to_local_port);
1921 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1922
1923 val = mt7530_read(priv, MT7530_PCR_P(port));
1924 if (ingress) {
1925 val |= PORT_RX_MIR;
1926 priv->mirror_rx |= BIT(port);
1927 } else {
1928 val |= PORT_TX_MIR;
1929 priv->mirror_tx |= BIT(port);
1930 }
1931 mt7530_write(priv, MT7530_PCR_P(port), val);
1932
1933 return 0;
1934}
1935
1936static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1937 struct dsa_mall_mirror_tc_entry *mirror)
1938{
1939 struct mt7530_priv *priv = ds->priv;
1940 u32 val;
1941
1942 val = mt7530_read(priv, MT7530_PCR_P(port));
1943 if (mirror->ingress) {
1944 val &= ~PORT_RX_MIR;
1945 priv->mirror_rx &= ~BIT(port);
1946 } else {
1947 val &= ~PORT_TX_MIR;
1948 priv->mirror_tx &= ~BIT(port);
1949 }
1950 mt7530_write(priv, MT7530_PCR_P(port), val);
1951
1952 if (!priv->mirror_rx && !priv->mirror_tx) {
1953 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1954 val &= ~MT753X_MIRROR_EN(priv->id);
1955 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1956 }
1957}
1958
1959static enum dsa_tag_protocol
1960mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1961 enum dsa_tag_protocol mp)
1962{
1963 return DSA_TAG_PROTO_MTK;
1964}
1965
1966#ifdef CONFIG_GPIOLIB
1967static inline u32
1968mt7530_gpio_to_bit(unsigned int offset)
1969{
1970 /* Map GPIO offset to register bit
1971 * [ 2: 0] port 0 LED 0..2 as GPIO 0..2
1972 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5
1973 * [10: 8] port 2 LED 0..2 as GPIO 6..8
1974 * [14:12] port 3 LED 0..2 as GPIO 9..11
1975 * [18:16] port 4 LED 0..2 as GPIO 12..14
1976 */
1977 return BIT(offset + offset / 3);
1978}
1979
1980static int
1981mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1982{
1983 struct mt7530_priv *priv = gpiochip_get_data(gc);
1984 u32 bit = mt7530_gpio_to_bit(offset);
1985
1986 return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1987}
1988
1989static void
1990mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1991{
1992 struct mt7530_priv *priv = gpiochip_get_data(gc);
1993 u32 bit = mt7530_gpio_to_bit(offset);
1994
1995 if (value)
1996 mt7530_set(priv, MT7530_LED_GPIO_DATA, val: bit);
1997 else
1998 mt7530_clear(priv, MT7530_LED_GPIO_DATA, val: bit);
1999}
2000
2001static int
2002mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
2003{
2004 struct mt7530_priv *priv = gpiochip_get_data(gc);
2005 u32 bit = mt7530_gpio_to_bit(offset);
2006
2007 return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
2008 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
2009}
2010
2011static int
2012mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
2013{
2014 struct mt7530_priv *priv = gpiochip_get_data(gc);
2015 u32 bit = mt7530_gpio_to_bit(offset);
2016
2017 mt7530_clear(priv, MT7530_LED_GPIO_OE, val: bit);
2018 mt7530_clear(priv, MT7530_LED_GPIO_DIR, val: bit);
2019
2020 return 0;
2021}
2022
2023static int
2024mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
2025{
2026 struct mt7530_priv *priv = gpiochip_get_data(gc);
2027 u32 bit = mt7530_gpio_to_bit(offset);
2028
2029 mt7530_set(priv, MT7530_LED_GPIO_DIR, val: bit);
2030
2031 if (value)
2032 mt7530_set(priv, MT7530_LED_GPIO_DATA, val: bit);
2033 else
2034 mt7530_clear(priv, MT7530_LED_GPIO_DATA, val: bit);
2035
2036 mt7530_set(priv, MT7530_LED_GPIO_OE, val: bit);
2037
2038 return 0;
2039}
2040
2041static int
2042mt7530_setup_gpio(struct mt7530_priv *priv)
2043{
2044 struct device *dev = priv->dev;
2045 struct gpio_chip *gc;
2046
2047 gc = devm_kzalloc(dev, size: sizeof(*gc), GFP_KERNEL);
2048 if (!gc)
2049 return -ENOMEM;
2050
2051 mt7530_write(priv, MT7530_LED_GPIO_OE, val: 0);
2052 mt7530_write(priv, MT7530_LED_GPIO_DIR, val: 0);
2053 mt7530_write(priv, MT7530_LED_IO_MODE, val: 0);
2054
2055 gc->label = "mt7530";
2056 gc->parent = dev;
2057 gc->owner = THIS_MODULE;
2058 gc->get_direction = mt7530_gpio_get_direction;
2059 gc->direction_input = mt7530_gpio_direction_input;
2060 gc->direction_output = mt7530_gpio_direction_output;
2061 gc->get = mt7530_gpio_get;
2062 gc->set = mt7530_gpio_set;
2063 gc->base = -1;
2064 gc->ngpio = 15;
2065 gc->can_sleep = true;
2066
2067 return devm_gpiochip_add_data(dev, gc, priv);
2068}
2069#endif /* CONFIG_GPIOLIB */
2070
2071static irqreturn_t
2072mt7530_irq_thread_fn(int irq, void *dev_id)
2073{
2074 struct mt7530_priv *priv = dev_id;
2075 bool handled = false;
2076 u32 val;
2077 int p;
2078
2079 mt7530_mutex_lock(priv);
2080 val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
2081 mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
2082 mt7530_mutex_unlock(priv);
2083
2084 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2085 if (BIT(p) & val) {
2086 unsigned int irq;
2087
2088 irq = irq_find_mapping(domain: priv->irq_domain, hwirq: p);
2089 handle_nested_irq(irq);
2090 handled = true;
2091 }
2092 }
2093
2094 return IRQ_RETVAL(handled);
2095}
2096
2097static void
2098mt7530_irq_mask(struct irq_data *d)
2099{
2100 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2101
2102 priv->irq_enable &= ~BIT(d->hwirq);
2103}
2104
2105static void
2106mt7530_irq_unmask(struct irq_data *d)
2107{
2108 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2109
2110 priv->irq_enable |= BIT(d->hwirq);
2111}
2112
2113static void
2114mt7530_irq_bus_lock(struct irq_data *d)
2115{
2116 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2117
2118 mt7530_mutex_lock(priv);
2119}
2120
2121static void
2122mt7530_irq_bus_sync_unlock(struct irq_data *d)
2123{
2124 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2125
2126 mt7530_mii_write(priv, MT7530_SYS_INT_EN, val: priv->irq_enable);
2127 mt7530_mutex_unlock(priv);
2128}
2129
2130static struct irq_chip mt7530_irq_chip = {
2131 .name = KBUILD_MODNAME,
2132 .irq_mask = mt7530_irq_mask,
2133 .irq_unmask = mt7530_irq_unmask,
2134 .irq_bus_lock = mt7530_irq_bus_lock,
2135 .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2136};
2137
2138static int
2139mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2140 irq_hw_number_t hwirq)
2141{
2142 irq_set_chip_data(irq, data: domain->host_data);
2143 irq_set_chip_and_handler(irq, chip: &mt7530_irq_chip, handle: handle_simple_irq);
2144 irq_set_nested_thread(irq, nest: true);
2145 irq_set_noprobe(irq);
2146
2147 return 0;
2148}
2149
2150static const struct irq_domain_ops mt7530_irq_domain_ops = {
2151 .map = mt7530_irq_map,
2152 .xlate = irq_domain_xlate_onecell,
2153};
2154
2155static void
2156mt7988_irq_mask(struct irq_data *d)
2157{
2158 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2159
2160 priv->irq_enable &= ~BIT(d->hwirq);
2161 mt7530_mii_write(priv, MT7530_SYS_INT_EN, val: priv->irq_enable);
2162}
2163
2164static void
2165mt7988_irq_unmask(struct irq_data *d)
2166{
2167 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2168
2169 priv->irq_enable |= BIT(d->hwirq);
2170 mt7530_mii_write(priv, MT7530_SYS_INT_EN, val: priv->irq_enable);
2171}
2172
2173static struct irq_chip mt7988_irq_chip = {
2174 .name = KBUILD_MODNAME,
2175 .irq_mask = mt7988_irq_mask,
2176 .irq_unmask = mt7988_irq_unmask,
2177};
2178
2179static int
2180mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2181 irq_hw_number_t hwirq)
2182{
2183 irq_set_chip_data(irq, data: domain->host_data);
2184 irq_set_chip_and_handler(irq, chip: &mt7988_irq_chip, handle: handle_simple_irq);
2185 irq_set_nested_thread(irq, nest: true);
2186 irq_set_noprobe(irq);
2187
2188 return 0;
2189}
2190
2191static const struct irq_domain_ops mt7988_irq_domain_ops = {
2192 .map = mt7988_irq_map,
2193 .xlate = irq_domain_xlate_onecell,
2194};
2195
2196static void
2197mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2198{
2199 struct dsa_switch *ds = priv->ds;
2200 int p;
2201
2202 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2203 if (BIT(p) & ds->phys_mii_mask) {
2204 unsigned int irq;
2205
2206 irq = irq_create_mapping(host: priv->irq_domain, hwirq: p);
2207 ds->user_mii_bus->irq[p] = irq;
2208 }
2209 }
2210}
2211
2212static int
2213mt7530_setup_irq(struct mt7530_priv *priv)
2214{
2215 struct device *dev = priv->dev;
2216 struct device_node *np = dev->of_node;
2217 int ret;
2218
2219 if (!of_property_read_bool(np, propname: "interrupt-controller")) {
2220 dev_info(dev, "no interrupt support\n");
2221 return 0;
2222 }
2223
2224 priv->irq = of_irq_get(dev: np, index: 0);
2225 if (priv->irq <= 0) {
2226 dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2227 return priv->irq ? : -EINVAL;
2228 }
2229
2230 if (priv->id == ID_MT7988)
2231 priv->irq_domain = irq_domain_add_linear(of_node: np, MT7530_NUM_PHYS,
2232 ops: &mt7988_irq_domain_ops,
2233 host_data: priv);
2234 else
2235 priv->irq_domain = irq_domain_add_linear(of_node: np, MT7530_NUM_PHYS,
2236 ops: &mt7530_irq_domain_ops,
2237 host_data: priv);
2238
2239 if (!priv->irq_domain) {
2240 dev_err(dev, "failed to create IRQ domain\n");
2241 return -ENOMEM;
2242 }
2243
2244 /* This register must be set for MT7530 to properly fire interrupts */
2245 if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
2246 mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2247
2248 ret = request_threaded_irq(irq: priv->irq, NULL, thread_fn: mt7530_irq_thread_fn,
2249 IRQF_ONESHOT, KBUILD_MODNAME, dev: priv);
2250 if (ret) {
2251 irq_domain_remove(host: priv->irq_domain);
2252 dev_err(dev, "failed to request IRQ: %d\n", ret);
2253 return ret;
2254 }
2255
2256 return 0;
2257}
2258
2259static void
2260mt7530_free_mdio_irq(struct mt7530_priv *priv)
2261{
2262 int p;
2263
2264 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2265 if (BIT(p) & priv->ds->phys_mii_mask) {
2266 unsigned int irq;
2267
2268 irq = irq_find_mapping(domain: priv->irq_domain, hwirq: p);
2269 irq_dispose_mapping(virq: irq);
2270 }
2271 }
2272}
2273
2274static void
2275mt7530_free_irq_common(struct mt7530_priv *priv)
2276{
2277 free_irq(priv->irq, priv);
2278 irq_domain_remove(host: priv->irq_domain);
2279}
2280
2281static void
2282mt7530_free_irq(struct mt7530_priv *priv)
2283{
2284 struct device_node *mnp, *np = priv->dev->of_node;
2285
2286 mnp = of_get_child_by_name(node: np, name: "mdio");
2287 if (!mnp)
2288 mt7530_free_mdio_irq(priv);
2289 of_node_put(node: mnp);
2290
2291 mt7530_free_irq_common(priv);
2292}
2293
2294static int
2295mt7530_setup_mdio(struct mt7530_priv *priv)
2296{
2297 struct device_node *mnp, *np = priv->dev->of_node;
2298 struct dsa_switch *ds = priv->ds;
2299 struct device *dev = priv->dev;
2300 struct mii_bus *bus;
2301 static int idx;
2302 int ret = 0;
2303
2304 mnp = of_get_child_by_name(node: np, name: "mdio");
2305
2306 if (mnp && !of_device_is_available(device: mnp))
2307 goto out;
2308
2309 bus = devm_mdiobus_alloc(dev);
2310 if (!bus) {
2311 ret = -ENOMEM;
2312 goto out;
2313 }
2314
2315 if (!mnp)
2316 ds->user_mii_bus = bus;
2317
2318 bus->priv = priv;
2319 bus->name = KBUILD_MODNAME "-mii";
2320 snprintf(buf: bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2321 bus->read = mt753x_phy_read_c22;
2322 bus->write = mt753x_phy_write_c22;
2323 bus->read_c45 = mt753x_phy_read_c45;
2324 bus->write_c45 = mt753x_phy_write_c45;
2325 bus->parent = dev;
2326 bus->phy_mask = ~ds->phys_mii_mask;
2327
2328 if (priv->irq && !mnp)
2329 mt7530_setup_mdio_irq(priv);
2330
2331 ret = devm_of_mdiobus_register(dev, mdio: bus, np: mnp);
2332 if (ret) {
2333 dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2334 if (priv->irq && !mnp)
2335 mt7530_free_mdio_irq(priv);
2336 }
2337
2338out:
2339 of_node_put(node: mnp);
2340 return ret;
2341}
2342
2343static int
2344mt7530_setup(struct dsa_switch *ds)
2345{
2346 struct mt7530_priv *priv = ds->priv;
2347 struct device_node *dn = NULL;
2348 struct device_node *phy_node;
2349 struct device_node *mac_np;
2350 struct mt7530_dummy_poll p;
2351 phy_interface_t interface;
2352 struct dsa_port *cpu_dp;
2353 u32 id, val;
2354 int ret, i;
2355
2356 /* The parent node of conduit netdev which holds the common system
2357 * controller also is the container for two GMACs nodes representing
2358 * as two netdev instances.
2359 */
2360 dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2361 dn = cpu_dp->conduit->dev.of_node->parent;
2362 /* It doesn't matter which CPU port is found first,
2363 * their conduits should share the same parent OF node
2364 */
2365 break;
2366 }
2367
2368 if (!dn) {
2369 dev_err(ds->dev, "parent OF node of DSA conduit not found");
2370 return -EINVAL;
2371 }
2372
2373 ds->assisted_learning_on_cpu_port = true;
2374 ds->mtu_enforcement_ingress = true;
2375
2376 if (priv->id == ID_MT7530) {
2377 regulator_set_voltage(regulator: priv->core_pwr, min_uV: 1000000, max_uV: 1000000);
2378 ret = regulator_enable(regulator: priv->core_pwr);
2379 if (ret < 0) {
2380 dev_err(priv->dev,
2381 "Failed to enable core power: %d\n", ret);
2382 return ret;
2383 }
2384
2385 regulator_set_voltage(regulator: priv->io_pwr, min_uV: 3300000, max_uV: 3300000);
2386 ret = regulator_enable(regulator: priv->io_pwr);
2387 if (ret < 0) {
2388 dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2389 ret);
2390 return ret;
2391 }
2392 }
2393
2394 /* Reset whole chip through gpio pin or memory-mapped registers for
2395 * different type of hardware
2396 */
2397 if (priv->mcm) {
2398 reset_control_assert(rstc: priv->rstc);
2399 usleep_range(min: 5000, max: 5100);
2400 reset_control_deassert(rstc: priv->rstc);
2401 } else {
2402 gpiod_set_value_cansleep(desc: priv->reset, value: 0);
2403 usleep_range(min: 5000, max: 5100);
2404 gpiod_set_value_cansleep(desc: priv->reset, value: 1);
2405 }
2406
2407 /* Waiting for MT7530 got to stable */
2408 INIT_MT7530_DUMMY_POLL(p: &p, priv, MT7530_HWTRAP);
2409 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2410 20, 1000000);
2411 if (ret < 0) {
2412 dev_err(priv->dev, "reset timeout\n");
2413 return ret;
2414 }
2415
2416 id = mt7530_read(priv, MT7530_CREV);
2417 id >>= CHIP_NAME_SHIFT;
2418 if (id != MT7530_ID) {
2419 dev_err(priv->dev, "chip %x can't be supported\n", id);
2420 return -ENODEV;
2421 }
2422
2423 if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_20MHZ) {
2424 dev_err(priv->dev,
2425 "MT7530 with a 20MHz XTAL is not supported!\n");
2426 return -EINVAL;
2427 }
2428
2429 /* Reset the switch through internal reset */
2430 mt7530_write(priv, MT7530_SYS_CTRL,
2431 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2432 SYS_CTRL_REG_RST);
2433
2434 /* Lower Tx driving for TRGMII path */
2435 for (i = 0; i < NUM_TRGMII_CTRL; i++)
2436 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2437 TD_DM_DRVP(8) | TD_DM_DRVN(8));
2438
2439 for (i = 0; i < NUM_TRGMII_CTRL; i++)
2440 mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2441 RD_TAP_MASK, RD_TAP(16));
2442
2443 /* Enable port 6 */
2444 val = mt7530_read(priv, MT7530_MHWTRAP);
2445 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2446 val |= MHWTRAP_MANUAL;
2447 mt7530_write(priv, MT7530_MHWTRAP, val);
2448
2449 if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_40MHZ)
2450 mt7530_pll_setup(priv);
2451
2452 mt753x_trap_frames(priv);
2453
2454 /* Enable and reset MIB counters */
2455 mt7530_mib_reset(ds);
2456
2457 for (i = 0; i < MT7530_NUM_PORTS; i++) {
2458 /* Clear link settings and enable force mode to force link down
2459 * on all ports until they're enabled later.
2460 */
2461 mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2462 PMCR_FORCE_MODE, PMCR_FORCE_MODE);
2463
2464 /* Disable forwarding by default on all ports */
2465 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2466 PCR_MATRIX_CLR);
2467
2468 /* Disable learning by default on all ports */
2469 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2470
2471 if (dsa_is_cpu_port(ds, p: i)) {
2472 mt753x_cpu_port_enable(ds, port: i);
2473 } else {
2474 mt7530_port_disable(ds, port: i);
2475
2476 /* Set default PVID to 0 on all user ports */
2477 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2478 G0_PORT_VID_DEF);
2479 }
2480 /* Enable consistent egress tag */
2481 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2482 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2483 }
2484
2485 /* Allow mirroring frames received on the local port (monitor port). */
2486 mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2487
2488 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2489 ret = mt7530_setup_vlan0(priv);
2490 if (ret)
2491 return ret;
2492
2493 /* Setup port 5 */
2494 if (!dsa_is_unused_port(ds, p: 5)) {
2495 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2496 } else {
2497 /* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2498 * Set priv->p5_intf_sel to the appropriate value if PHY muxing
2499 * is detected.
2500 */
2501 for_each_child_of_node(dn, mac_np) {
2502 if (!of_device_is_compatible(device: mac_np,
2503 "mediatek,eth-mac"))
2504 continue;
2505
2506 ret = of_property_read_u32(np: mac_np, propname: "reg", out_value: &id);
2507 if (ret < 0 || id != 1)
2508 continue;
2509
2510 phy_node = of_parse_phandle(np: mac_np, phandle_name: "phy-handle", index: 0);
2511 if (!phy_node)
2512 continue;
2513
2514 if (phy_node->parent == priv->dev->of_node->parent) {
2515 ret = of_get_phy_mode(np: mac_np, interface: &interface);
2516 if (ret && ret != -ENODEV) {
2517 of_node_put(node: mac_np);
2518 of_node_put(node: phy_node);
2519 return ret;
2520 }
2521 id = of_mdio_parse_addr(dev: ds->dev, np: phy_node);
2522 if (id == 0)
2523 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2524 if (id == 4)
2525 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2526 }
2527 of_node_put(node: mac_np);
2528 of_node_put(node: phy_node);
2529 break;
2530 }
2531
2532 if (priv->p5_intf_sel == P5_INTF_SEL_PHY_P0 ||
2533 priv->p5_intf_sel == P5_INTF_SEL_PHY_P4)
2534 mt7530_setup_port5(ds, interface);
2535 }
2536
2537#ifdef CONFIG_GPIOLIB
2538 if (of_property_read_bool(np: priv->dev->of_node, propname: "gpio-controller")) {
2539 ret = mt7530_setup_gpio(priv);
2540 if (ret)
2541 return ret;
2542 }
2543#endif /* CONFIG_GPIOLIB */
2544
2545 /* Flush the FDB table */
2546 ret = mt7530_fdb_cmd(priv, cmd: MT7530_FDB_FLUSH, NULL);
2547 if (ret < 0)
2548 return ret;
2549
2550 return 0;
2551}
2552
2553static int
2554mt7531_setup_common(struct dsa_switch *ds)
2555{
2556 struct mt7530_priv *priv = ds->priv;
2557 int ret, i;
2558
2559 mt753x_trap_frames(priv);
2560
2561 /* Enable and reset MIB counters */
2562 mt7530_mib_reset(ds);
2563
2564 /* Disable flooding on all ports */
2565 mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2566 UNU_FFP_MASK);
2567
2568 for (i = 0; i < MT7530_NUM_PORTS; i++) {
2569 /* Clear link settings and enable force mode to force link down
2570 * on all ports until they're enabled later.
2571 */
2572 mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2573 MT7531_FORCE_MODE, MT7531_FORCE_MODE);
2574
2575 /* Disable forwarding by default on all ports */
2576 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2577 PCR_MATRIX_CLR);
2578
2579 /* Disable learning by default on all ports */
2580 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2581
2582 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2583
2584 if (dsa_is_cpu_port(ds, p: i)) {
2585 mt753x_cpu_port_enable(ds, port: i);
2586 } else {
2587 mt7530_port_disable(ds, port: i);
2588
2589 /* Set default PVID to 0 on all user ports */
2590 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2591 G0_PORT_VID_DEF);
2592 }
2593
2594 /* Enable consistent egress tag */
2595 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2596 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2597 }
2598
2599 /* Allow mirroring frames received on the local port (monitor port). */
2600 mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2601
2602 /* Flush the FDB table */
2603 ret = mt7530_fdb_cmd(priv, cmd: MT7530_FDB_FLUSH, NULL);
2604 if (ret < 0)
2605 return ret;
2606
2607 return 0;
2608}
2609
2610static int
2611mt7531_setup(struct dsa_switch *ds)
2612{
2613 struct mt7530_priv *priv = ds->priv;
2614 struct mt7530_dummy_poll p;
2615 u32 val, id;
2616 int ret, i;
2617
2618 /* Reset whole chip through gpio pin or memory-mapped registers for
2619 * different type of hardware
2620 */
2621 if (priv->mcm) {
2622 reset_control_assert(rstc: priv->rstc);
2623 usleep_range(min: 5000, max: 5100);
2624 reset_control_deassert(rstc: priv->rstc);
2625 } else {
2626 gpiod_set_value_cansleep(desc: priv->reset, value: 0);
2627 usleep_range(min: 5000, max: 5100);
2628 gpiod_set_value_cansleep(desc: priv->reset, value: 1);
2629 }
2630
2631 /* Waiting for MT7530 got to stable */
2632 INIT_MT7530_DUMMY_POLL(p: &p, priv, MT7530_HWTRAP);
2633 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2634 20, 1000000);
2635 if (ret < 0) {
2636 dev_err(priv->dev, "reset timeout\n");
2637 return ret;
2638 }
2639
2640 id = mt7530_read(priv, MT7531_CREV);
2641 id >>= CHIP_NAME_SHIFT;
2642
2643 if (id != MT7531_ID) {
2644 dev_err(priv->dev, "chip %x can't be supported\n", id);
2645 return -ENODEV;
2646 }
2647
2648 /* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2649 * MT7531BE has got only one SGMII unit which is for port 6.
2650 */
2651 val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2652 priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2653
2654 /* Force link down on all ports before internal reset */
2655 for (i = 0; i < MT7530_NUM_PORTS; i++)
2656 mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2657
2658 /* Reset the switch through internal reset */
2659 mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
2660
2661 if (!priv->p5_sgmii) {
2662 mt7531_pll_setup(priv);
2663 } else {
2664 /* Let ds->user_mii_bus be able to access external phy. */
2665 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2666 MT7531_EXT_P_MDC_11);
2667 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2668 MT7531_EXT_P_MDIO_12);
2669 }
2670
2671 if (!dsa_is_unused_port(ds, p: 5))
2672 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2673
2674 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2675 MT7531_GPIO0_INTERRUPT);
2676
2677 /* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
2678 * phy_device has not yet been created provided for
2679 * phy_[read,write]_mmd_indirect is called, we provide our own
2680 * mt7531_ind_mmd_phy_[read,write] to complete this function.
2681 */
2682 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2683 MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2684 val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
2685 val &= ~MT7531_PHY_PLL_OFF;
2686 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2687 CORE_PLL_GROUP4, data: val);
2688
2689 /* Disable EEE advertisement on the switch PHYs. */
2690 for (i = MT753X_CTRL_PHY_ADDR;
2691 i < MT753X_CTRL_PHY_ADDR + MT7530_NUM_PHYS; i++) {
2692 mt7531_ind_c45_phy_write(priv, port: i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2693 data: 0);
2694 }
2695
2696 mt7531_setup_common(ds);
2697
2698 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2699 ret = mt7530_setup_vlan0(priv);
2700 if (ret)
2701 return ret;
2702
2703 ds->assisted_learning_on_cpu_port = true;
2704 ds->mtu_enforcement_ingress = true;
2705
2706 return 0;
2707}
2708
2709static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2710 struct phylink_config *config)
2711{
2712 switch (port) {
2713 /* Ports which are connected to switch PHYs. There is no MII pinout. */
2714 case 0 ... 4:
2715 __set_bit(PHY_INTERFACE_MODE_GMII,
2716 config->supported_interfaces);
2717 break;
2718
2719 /* Port 5 supports rgmii with delays, mii, and gmii. */
2720 case 5:
2721 phy_interface_set_rgmii(intf: config->supported_interfaces);
2722 __set_bit(PHY_INTERFACE_MODE_MII,
2723 config->supported_interfaces);
2724 __set_bit(PHY_INTERFACE_MODE_GMII,
2725 config->supported_interfaces);
2726 break;
2727
2728 /* Port 6 supports rgmii and trgmii. */
2729 case 6:
2730 __set_bit(PHY_INTERFACE_MODE_RGMII,
2731 config->supported_interfaces);
2732 __set_bit(PHY_INTERFACE_MODE_TRGMII,
2733 config->supported_interfaces);
2734 break;
2735 }
2736}
2737
2738static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2739 struct phylink_config *config)
2740{
2741 struct mt7530_priv *priv = ds->priv;
2742
2743 switch (port) {
2744 /* Ports which are connected to switch PHYs. There is no MII pinout. */
2745 case 0 ... 4:
2746 __set_bit(PHY_INTERFACE_MODE_GMII,
2747 config->supported_interfaces);
2748 break;
2749
2750 /* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2751 * MT7531AE.
2752 */
2753 case 5:
2754 if (!priv->p5_sgmii) {
2755 phy_interface_set_rgmii(intf: config->supported_interfaces);
2756 break;
2757 }
2758 fallthrough;
2759
2760 /* Port 6 supports sgmii/802.3z. */
2761 case 6:
2762 __set_bit(PHY_INTERFACE_MODE_SGMII,
2763 config->supported_interfaces);
2764 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
2765 config->supported_interfaces);
2766 __set_bit(PHY_INTERFACE_MODE_2500BASEX,
2767 config->supported_interfaces);
2768
2769 config->mac_capabilities |= MAC_2500FD;
2770 break;
2771 }
2772}
2773
2774static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2775 struct phylink_config *config)
2776{
2777 switch (port) {
2778 /* Ports which are connected to switch PHYs. There is no MII pinout. */
2779 case 0 ... 3:
2780 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2781 config->supported_interfaces);
2782 break;
2783
2784 /* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2785 case 6:
2786 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2787 config->supported_interfaces);
2788 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2789 MAC_10000FD;
2790 }
2791}
2792
2793static void
2794mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2795 phy_interface_t interface)
2796{
2797 struct mt7530_priv *priv = ds->priv;
2798
2799 if (port == 5)
2800 mt7530_setup_port5(ds: priv->ds, interface);
2801 else if (port == 6)
2802 mt7530_setup_port6(ds: priv->ds, interface);
2803}
2804
2805static void mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2806 phy_interface_t interface,
2807 struct phy_device *phydev)
2808{
2809 u32 val;
2810
2811 val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2812 val |= GP_CLK_EN;
2813 val &= ~GP_MODE_MASK;
2814 val |= GP_MODE(MT7531_GP_MODE_RGMII);
2815 val &= ~CLK_SKEW_IN_MASK;
2816 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2817 val &= ~CLK_SKEW_OUT_MASK;
2818 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2819 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2820
2821 /* Do not adjust rgmii delay when vendor phy driver presents. */
2822 if (!phydev || phy_driver_is_genphy(phydev)) {
2823 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2824 switch (interface) {
2825 case PHY_INTERFACE_MODE_RGMII:
2826 val |= TXCLK_NO_REVERSE;
2827 val |= RXCLK_NO_DELAY;
2828 break;
2829 case PHY_INTERFACE_MODE_RGMII_RXID:
2830 val |= TXCLK_NO_REVERSE;
2831 break;
2832 case PHY_INTERFACE_MODE_RGMII_TXID:
2833 val |= RXCLK_NO_DELAY;
2834 break;
2835 case PHY_INTERFACE_MODE_RGMII_ID:
2836 break;
2837 default:
2838 break;
2839 }
2840 }
2841
2842 mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2843}
2844
2845static void
2846mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2847 phy_interface_t interface)
2848{
2849 struct mt7530_priv *priv = ds->priv;
2850 struct phy_device *phydev;
2851 struct dsa_port *dp;
2852
2853 if (phy_interface_mode_is_rgmii(mode: interface)) {
2854 dp = dsa_to_port(ds, p: port);
2855 phydev = dp->user->phydev;
2856 mt7531_rgmii_setup(priv, port, interface, phydev);
2857 }
2858}
2859
2860static struct phylink_pcs *
2861mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2862 phy_interface_t interface)
2863{
2864 struct mt7530_priv *priv = ds->priv;
2865
2866 switch (interface) {
2867 case PHY_INTERFACE_MODE_TRGMII:
2868 return &priv->pcs[port].pcs;
2869 case PHY_INTERFACE_MODE_SGMII:
2870 case PHY_INTERFACE_MODE_1000BASEX:
2871 case PHY_INTERFACE_MODE_2500BASEX:
2872 return priv->ports[port].sgmii_pcs;
2873 default:
2874 return NULL;
2875 }
2876}
2877
2878static void
2879mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2880 const struct phylink_link_state *state)
2881{
2882 struct mt7530_priv *priv = ds->priv;
2883
2884 if ((port == 5 || port == 6) && priv->info->mac_port_config)
2885 priv->info->mac_port_config(ds, port, mode, state->interface);
2886
2887 /* Are we connected to external phy */
2888 if (port == 5 && dsa_is_user_port(ds, p: 5))
2889 mt7530_set(priv, MT7530_PMCR_P(port), PMCR_EXT_PHY);
2890}
2891
2892static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2893 unsigned int mode,
2894 phy_interface_t interface)
2895{
2896 struct mt7530_priv *priv = ds->priv;
2897
2898 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2899}
2900
2901static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2902 unsigned int mode,
2903 phy_interface_t interface,
2904 struct phy_device *phydev,
2905 int speed, int duplex,
2906 bool tx_pause, bool rx_pause)
2907{
2908 struct mt7530_priv *priv = ds->priv;
2909 u32 mcr;
2910
2911 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2912
2913 switch (speed) {
2914 case SPEED_1000:
2915 case SPEED_2500:
2916 case SPEED_10000:
2917 mcr |= PMCR_FORCE_SPEED_1000;
2918 break;
2919 case SPEED_100:
2920 mcr |= PMCR_FORCE_SPEED_100;
2921 break;
2922 }
2923 if (duplex == DUPLEX_FULL) {
2924 mcr |= PMCR_FORCE_FDX;
2925 if (tx_pause)
2926 mcr |= PMCR_TX_FC_EN;
2927 if (rx_pause)
2928 mcr |= PMCR_RX_FC_EN;
2929 }
2930
2931 if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, clk_stop_enable: false) >= 0) {
2932 switch (speed) {
2933 case SPEED_1000:
2934 case SPEED_2500:
2935 mcr |= PMCR_FORCE_EEE1G;
2936 break;
2937 case SPEED_100:
2938 mcr |= PMCR_FORCE_EEE100;
2939 break;
2940 }
2941 }
2942
2943 mt7530_set(priv, MT7530_PMCR_P(port), val: mcr);
2944}
2945
2946static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2947 struct phylink_config *config)
2948{
2949 struct mt7530_priv *priv = ds->priv;
2950
2951 /* This switch only supports full-duplex at 1Gbps */
2952 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2953 MAC_10 | MAC_100 | MAC_1000FD;
2954
2955 priv->info->mac_port_get_caps(ds, port, config);
2956}
2957
2958static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2959 unsigned long *supported,
2960 const struct phylink_link_state *state)
2961{
2962 /* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2963 if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2964 phy_interface_mode_is_8023z(mode: state->interface))
2965 phylink_clear(supported, Autoneg);
2966
2967 return 0;
2968}
2969
2970static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2971 struct phylink_link_state *state)
2972{
2973 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2974 int port = pcs_to_mt753x_pcs(pcs)->port;
2975 u32 pmsr;
2976
2977 pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2978
2979 state->link = (pmsr & PMSR_LINK);
2980 state->an_complete = state->link;
2981 state->duplex = !!(pmsr & PMSR_DPX);
2982
2983 switch (pmsr & PMSR_SPEED_MASK) {
2984 case PMSR_SPEED_10:
2985 state->speed = SPEED_10;
2986 break;
2987 case PMSR_SPEED_100:
2988 state->speed = SPEED_100;
2989 break;
2990 case PMSR_SPEED_1000:
2991 state->speed = SPEED_1000;
2992 break;
2993 default:
2994 state->speed = SPEED_UNKNOWN;
2995 break;
2996 }
2997
2998 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2999 if (pmsr & PMSR_RX_FC)
3000 state->pause |= MLO_PAUSE_RX;
3001 if (pmsr & PMSR_TX_FC)
3002 state->pause |= MLO_PAUSE_TX;
3003}
3004
3005static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3006 phy_interface_t interface,
3007 const unsigned long *advertising,
3008 bool permit_pause_to_mac)
3009{
3010 return 0;
3011}
3012
3013static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3014{
3015}
3016
3017static const struct phylink_pcs_ops mt7530_pcs_ops = {
3018 .pcs_validate = mt753x_pcs_validate,
3019 .pcs_get_state = mt7530_pcs_get_state,
3020 .pcs_config = mt753x_pcs_config,
3021 .pcs_an_restart = mt7530_pcs_an_restart,
3022};
3023
3024static int
3025mt753x_setup(struct dsa_switch *ds)
3026{
3027 struct mt7530_priv *priv = ds->priv;
3028 int ret = priv->info->sw_setup(ds);
3029 int i;
3030
3031 if (ret)
3032 return ret;
3033
3034 ret = mt7530_setup_irq(priv);
3035 if (ret)
3036 return ret;
3037
3038 ret = mt7530_setup_mdio(priv);
3039 if (ret && priv->irq)
3040 mt7530_free_irq_common(priv);
3041
3042 /* Initialise the PCS devices */
3043 for (i = 0; i < priv->ds->num_ports; i++) {
3044 priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3045 priv->pcs[i].pcs.neg_mode = true;
3046 priv->pcs[i].priv = priv;
3047 priv->pcs[i].port = i;
3048 }
3049
3050 if (priv->create_sgmii) {
3051 ret = priv->create_sgmii(priv);
3052 if (ret && priv->irq)
3053 mt7530_free_irq(priv);
3054 }
3055
3056 return ret;
3057}
3058
3059static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3060 struct ethtool_keee *e)
3061{
3062 struct mt7530_priv *priv = ds->priv;
3063 u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3064
3065 e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3066 e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3067
3068 return 0;
3069}
3070
3071static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3072 struct ethtool_keee *e)
3073{
3074 struct mt7530_priv *priv = ds->priv;
3075 u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3076
3077 if (e->tx_lpi_timer > 0xFFF)
3078 return -EINVAL;
3079
3080 set = SET_LPI_THRESH(e->tx_lpi_timer);
3081 if (!e->tx_lpi_enabled)
3082 /* Force LPI Mode without a delay */
3083 set |= LPI_MODE_EN;
3084 mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3085
3086 return 0;
3087}
3088
3089static void
3090mt753x_conduit_state_change(struct dsa_switch *ds,
3091 const struct net_device *conduit,
3092 bool operational)
3093{
3094 struct dsa_port *cpu_dp = conduit->dsa_ptr;
3095 struct mt7530_priv *priv = ds->priv;
3096 int val = 0;
3097 u8 mask;
3098
3099 /* Set the CPU port to trap frames to for MT7530. Trapped frames will be
3100 * forwarded to the numerically smallest CPU port whose conduit
3101 * interface is up.
3102 */
3103 if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
3104 return;
3105
3106 mask = BIT(cpu_dp->index);
3107
3108 if (operational)
3109 priv->active_cpu_ports |= mask;
3110 else
3111 priv->active_cpu_ports &= ~mask;
3112
3113 if (priv->active_cpu_ports)
3114 val = CPU_EN | CPU_PORT(__ffs(priv->active_cpu_ports));
3115
3116 mt7530_rmw(priv, MT7530_MFC, CPU_EN | CPU_PORT_MASK, set: val);
3117}
3118
3119static int mt7988_setup(struct dsa_switch *ds)
3120{
3121 struct mt7530_priv *priv = ds->priv;
3122
3123 /* Reset the switch */
3124 reset_control_assert(rstc: priv->rstc);
3125 usleep_range(min: 20, max: 50);
3126 reset_control_deassert(rstc: priv->rstc);
3127 usleep_range(min: 20, max: 50);
3128
3129 /* Reset the switch PHYs */
3130 mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3131
3132 return mt7531_setup_common(ds);
3133}
3134
3135const struct dsa_switch_ops mt7530_switch_ops = {
3136 .get_tag_protocol = mtk_get_tag_protocol,
3137 .setup = mt753x_setup,
3138 .preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3139 .get_strings = mt7530_get_strings,
3140 .get_ethtool_stats = mt7530_get_ethtool_stats,
3141 .get_sset_count = mt7530_get_sset_count,
3142 .set_ageing_time = mt7530_set_ageing_time,
3143 .port_enable = mt7530_port_enable,
3144 .port_disable = mt7530_port_disable,
3145 .port_change_mtu = mt7530_port_change_mtu,
3146 .port_max_mtu = mt7530_port_max_mtu,
3147 .port_stp_state_set = mt7530_stp_state_set,
3148 .port_pre_bridge_flags = mt7530_port_pre_bridge_flags,
3149 .port_bridge_flags = mt7530_port_bridge_flags,
3150 .port_bridge_join = mt7530_port_bridge_join,
3151 .port_bridge_leave = mt7530_port_bridge_leave,
3152 .port_fdb_add = mt7530_port_fdb_add,
3153 .port_fdb_del = mt7530_port_fdb_del,
3154 .port_fdb_dump = mt7530_port_fdb_dump,
3155 .port_mdb_add = mt7530_port_mdb_add,
3156 .port_mdb_del = mt7530_port_mdb_del,
3157 .port_vlan_filtering = mt7530_port_vlan_filtering,
3158 .port_vlan_add = mt7530_port_vlan_add,
3159 .port_vlan_del = mt7530_port_vlan_del,
3160 .port_mirror_add = mt753x_port_mirror_add,
3161 .port_mirror_del = mt753x_port_mirror_del,
3162 .phylink_get_caps = mt753x_phylink_get_caps,
3163 .phylink_mac_select_pcs = mt753x_phylink_mac_select_pcs,
3164 .phylink_mac_config = mt753x_phylink_mac_config,
3165 .phylink_mac_link_down = mt753x_phylink_mac_link_down,
3166 .phylink_mac_link_up = mt753x_phylink_mac_link_up,
3167 .get_mac_eee = mt753x_get_mac_eee,
3168 .set_mac_eee = mt753x_set_mac_eee,
3169 .conduit_state_change = mt753x_conduit_state_change,
3170};
3171EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3172
3173const struct mt753x_info mt753x_table[] = {
3174 [ID_MT7621] = {
3175 .id = ID_MT7621,
3176 .pcs_ops = &mt7530_pcs_ops,
3177 .sw_setup = mt7530_setup,
3178 .phy_read_c22 = mt7530_phy_read_c22,
3179 .phy_write_c22 = mt7530_phy_write_c22,
3180 .phy_read_c45 = mt7530_phy_read_c45,
3181 .phy_write_c45 = mt7530_phy_write_c45,
3182 .mac_port_get_caps = mt7530_mac_port_get_caps,
3183 .mac_port_config = mt7530_mac_config,
3184 },
3185 [ID_MT7530] = {
3186 .id = ID_MT7530,
3187 .pcs_ops = &mt7530_pcs_ops,
3188 .sw_setup = mt7530_setup,
3189 .phy_read_c22 = mt7530_phy_read_c22,
3190 .phy_write_c22 = mt7530_phy_write_c22,
3191 .phy_read_c45 = mt7530_phy_read_c45,
3192 .phy_write_c45 = mt7530_phy_write_c45,
3193 .mac_port_get_caps = mt7530_mac_port_get_caps,
3194 .mac_port_config = mt7530_mac_config,
3195 },
3196 [ID_MT7531] = {
3197 .id = ID_MT7531,
3198 .pcs_ops = &mt7530_pcs_ops,
3199 .sw_setup = mt7531_setup,
3200 .phy_read_c22 = mt7531_ind_c22_phy_read,
3201 .phy_write_c22 = mt7531_ind_c22_phy_write,
3202 .phy_read_c45 = mt7531_ind_c45_phy_read,
3203 .phy_write_c45 = mt7531_ind_c45_phy_write,
3204 .mac_port_get_caps = mt7531_mac_port_get_caps,
3205 .mac_port_config = mt7531_mac_config,
3206 },
3207 [ID_MT7988] = {
3208 .id = ID_MT7988,
3209 .pcs_ops = &mt7530_pcs_ops,
3210 .sw_setup = mt7988_setup,
3211 .phy_read_c22 = mt7531_ind_c22_phy_read,
3212 .phy_write_c22 = mt7531_ind_c22_phy_write,
3213 .phy_read_c45 = mt7531_ind_c45_phy_read,
3214 .phy_write_c45 = mt7531_ind_c45_phy_write,
3215 .mac_port_get_caps = mt7988_mac_port_get_caps,
3216 },
3217};
3218EXPORT_SYMBOL_GPL(mt753x_table);
3219
3220int
3221mt7530_probe_common(struct mt7530_priv *priv)
3222{
3223 struct device *dev = priv->dev;
3224
3225 priv->ds = devm_kzalloc(dev, size: sizeof(*priv->ds), GFP_KERNEL);
3226 if (!priv->ds)
3227 return -ENOMEM;
3228
3229 priv->ds->dev = dev;
3230 priv->ds->num_ports = MT7530_NUM_PORTS;
3231
3232 /* Get the hardware identifier from the devicetree node.
3233 * We will need it for some of the clock and regulator setup.
3234 */
3235 priv->info = of_device_get_match_data(dev);
3236 if (!priv->info)
3237 return -EINVAL;
3238
3239 /* Sanity check if these required device operations are filled
3240 * properly.
3241 */
3242 if (!priv->info->sw_setup || !priv->info->phy_read_c22 ||
3243 !priv->info->phy_write_c22 || !priv->info->mac_port_get_caps)
3244 return -EINVAL;
3245
3246 priv->id = priv->info->id;
3247 priv->dev = dev;
3248 priv->ds->priv = priv;
3249 priv->ds->ops = &mt7530_switch_ops;
3250 mutex_init(&priv->reg_mutex);
3251 dev_set_drvdata(dev, data: priv);
3252
3253 return 0;
3254}
3255EXPORT_SYMBOL_GPL(mt7530_probe_common);
3256
3257void
3258mt7530_remove_common(struct mt7530_priv *priv)
3259{
3260 if (priv->irq)
3261 mt7530_free_irq(priv);
3262
3263 dsa_unregister_switch(ds: priv->ds);
3264
3265 mutex_destroy(lock: &priv->reg_mutex);
3266}
3267EXPORT_SYMBOL_GPL(mt7530_remove_common);
3268
3269MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3270MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3271MODULE_LICENSE("GPL");
3272

source code of linux/drivers/net/dsa/mt7530.c