1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
4 *
5 * Derived from Intel e1000 driver
6 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
7 */
8#include <linux/pci.h>
9#include <linux/delay.h>
10#include <linux/mii.h>
11#include <linux/crc32.h>
12
13#include "atl1c.h"
14
15/*
16 * check_eeprom_exist
17 * return 1 if eeprom exist
18 */
19int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
20{
21 u32 data;
22
23 AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
24 if (data & TWSI_DEBUG_DEV_EXIST)
25 return 1;
26
27 AT_READ_REG(hw, REG_MASTER_CTRL, &data);
28 if (data & MASTER_CTRL_OTP_SEL)
29 return 1;
30 return 0;
31}
32
33void atl1c_hw_set_mac_addr(struct atl1c_hw *hw, u8 *mac_addr)
34{
35 u32 value;
36 /*
37 * 00-0B-6A-F6-00-DC
38 * 0: 6AF600DC 1: 000B
39 * low dword
40 */
41 value = mac_addr[2] << 24 |
42 mac_addr[3] << 16 |
43 mac_addr[4] << 8 |
44 mac_addr[5];
45 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
46 /* hight dword */
47 value = mac_addr[0] << 8 |
48 mac_addr[1];
49 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
50}
51
52/* read mac address from hardware register */
53static bool atl1c_read_current_addr(struct atl1c_hw *hw, u8 *eth_addr)
54{
55 u32 addr[2];
56
57 AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
58 AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
59
60 *(u32 *) &eth_addr[2] = htonl(addr[0]);
61 *(u16 *) &eth_addr[0] = htons((u16)addr[1]);
62
63 return is_valid_ether_addr(addr: eth_addr);
64}
65
66/*
67 * atl1c_get_permanent_address
68 * return 0 if get valid mac address,
69 */
70static int atl1c_get_permanent_address(struct atl1c_hw *hw)
71{
72 u32 i;
73 u32 otp_ctrl_data;
74 u32 twsi_ctrl_data;
75 u16 phy_data;
76 bool raise_vol = false;
77
78 /* MAC-address from BIOS is the 1st priority */
79 if (atl1c_read_current_addr(hw, eth_addr: hw->perm_mac_addr))
80 return 0;
81
82 /* init */
83 AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
84 if (atl1c_check_eeprom_exist(hw)) {
85 if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) {
86 /* Enable OTP CLK */
87 if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
88 otp_ctrl_data |= OTP_CTRL_CLK_EN;
89 AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
90 AT_WRITE_FLUSH(hw);
91 msleep(msecs: 1);
92 }
93 }
94 /* raise voltage temporally for l2cb */
95 if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
96 atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, phy_data: &phy_data);
97 phy_data &= ~ANACTRL_HB_EN;
98 atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
99 atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data: &phy_data);
100 phy_data |= VOLT_CTRL_SWLOWEST;
101 atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
102 udelay(20);
103 raise_vol = true;
104 }
105
106 AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
107 twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
108 AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
109 for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
110 msleep(msecs: 10);
111 AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
112 if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
113 break;
114 }
115 if (i >= AT_TWSI_EEPROM_TIMEOUT)
116 return -1;
117 }
118 /* Disable OTP_CLK */
119 if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) {
120 otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
121 AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
122 msleep(msecs: 1);
123 }
124 if (raise_vol) {
125 atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, phy_data: &phy_data);
126 phy_data |= ANACTRL_HB_EN;
127 atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
128 atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data: &phy_data);
129 phy_data &= ~VOLT_CTRL_SWLOWEST;
130 atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
131 udelay(20);
132 }
133
134 if (atl1c_read_current_addr(hw, eth_addr: hw->perm_mac_addr))
135 return 0;
136
137 return -1;
138}
139
140bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
141{
142 int i;
143 bool ret = false;
144 u32 otp_ctrl_data;
145 u32 control;
146 u32 data;
147
148 if (offset & 3)
149 return ret; /* address do not align */
150
151 AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
152 if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
153 AT_WRITE_REG(hw, REG_OTP_CTRL,
154 (otp_ctrl_data | OTP_CTRL_CLK_EN));
155
156 AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
157 control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
158 AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
159
160 for (i = 0; i < 10; i++) {
161 udelay(100);
162 AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
163 if (control & EEPROM_CTRL_RW)
164 break;
165 }
166 if (control & EEPROM_CTRL_RW) {
167 AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
168 AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
169 data = data & 0xFFFF;
170 *p_value = swab32((data << 16) | (*p_value >> 16));
171 ret = true;
172 }
173 if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
174 AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
175
176 return ret;
177}
178/*
179 * Reads the adapter's MAC address from the EEPROM
180 *
181 * hw - Struct containing variables accessed by shared code
182 */
183int atl1c_read_mac_addr(struct atl1c_hw *hw)
184{
185 int err = 0;
186
187 err = atl1c_get_permanent_address(hw);
188 if (err)
189 eth_random_addr(addr: hw->perm_mac_addr);
190
191 memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
192 return err;
193}
194
195/*
196 * atl1c_hash_mc_addr
197 * purpose
198 * set hash value for a multicast address
199 * hash calcu processing :
200 * 1. calcu 32bit CRC for multicast address
201 * 2. reverse crc with MSB to LSB
202 */
203u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
204{
205 u32 crc32;
206 u32 value = 0;
207 int i;
208
209 crc32 = ether_crc_le(6, mc_addr);
210 for (i = 0; i < 32; i++)
211 value |= (((crc32 >> i) & 1) << (31 - i));
212
213 return value;
214}
215
216/*
217 * Sets the bit in the multicast table corresponding to the hash value.
218 * hw - Struct containing variables accessed by shared code
219 * hash_value - Multicast address hash value
220 */
221void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
222{
223 u32 hash_bit, hash_reg;
224 u32 mta;
225
226 /*
227 * The HASH Table is a register array of 2 32-bit registers.
228 * It is treated like an array of 64 bits. We want to set
229 * bit BitArray[hash_value]. So we figure out what register
230 * the bit is in, read it, OR in the new bit, then write
231 * back the new value. The register is determined by the
232 * upper bit of the hash value and the bit within that
233 * register are determined by the lower 5 bits of the value.
234 */
235 hash_reg = (hash_value >> 31) & 0x1;
236 hash_bit = (hash_value >> 26) & 0x1F;
237
238 mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
239
240 mta |= (1 << hash_bit);
241
242 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
243}
244
245/*
246 * wait mdio module be idle
247 * return true: idle
248 * false: still busy
249 */
250bool atl1c_wait_mdio_idle(struct atl1c_hw *hw)
251{
252 u32 val;
253 int i;
254
255 for (i = 0; i < MDIO_MAX_AC_TO; i++) {
256 AT_READ_REG(hw, REG_MDIO_CTRL, &val);
257 if (!(val & (MDIO_CTRL_BUSY | MDIO_CTRL_START)))
258 break;
259 udelay(10);
260 }
261
262 return i != MDIO_MAX_AC_TO;
263}
264
265void atl1c_stop_phy_polling(struct atl1c_hw *hw)
266{
267 if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
268 return;
269
270 AT_WRITE_REG(hw, REG_MDIO_CTRL, 0);
271 atl1c_wait_mdio_idle(hw);
272}
273
274void atl1c_start_phy_polling(struct atl1c_hw *hw, u16 clk_sel)
275{
276 u32 val;
277
278 if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
279 return;
280
281 val = MDIO_CTRL_SPRES_PRMBL |
282 FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
283 FIELDX(MDIO_CTRL_REG, 1) |
284 MDIO_CTRL_START |
285 MDIO_CTRL_OP_READ;
286 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
287 atl1c_wait_mdio_idle(hw);
288 val |= MDIO_CTRL_AP_EN;
289 val &= ~MDIO_CTRL_START;
290 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
291 udelay(30);
292}
293
294
295/*
296 * atl1c_read_phy_core
297 * core function to read register in PHY via MDIO control register.
298 * ext: extension register (see IEEE 802.3)
299 * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
300 * reg: reg to read
301 */
302int atl1c_read_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
303 u16 reg, u16 *phy_data)
304{
305 u32 val;
306 u16 clk_sel = MDIO_CTRL_CLK_25_4;
307
308 atl1c_stop_phy_polling(hw);
309
310 *phy_data = 0;
311
312 /* only l2c_b2 & l1d_2 could use slow clock */
313 if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
314 hw->hibernate)
315 clk_sel = MDIO_CTRL_CLK_25_128;
316 if (ext) {
317 val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
318 AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
319 val = MDIO_CTRL_SPRES_PRMBL |
320 FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
321 MDIO_CTRL_START |
322 MDIO_CTRL_MODE_EXT |
323 MDIO_CTRL_OP_READ;
324 } else {
325 val = MDIO_CTRL_SPRES_PRMBL |
326 FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
327 FIELDX(MDIO_CTRL_REG, reg) |
328 MDIO_CTRL_START |
329 MDIO_CTRL_OP_READ;
330 }
331 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
332
333 if (!atl1c_wait_mdio_idle(hw))
334 return -1;
335
336 AT_READ_REG(hw, REG_MDIO_CTRL, &val);
337 *phy_data = (u16)FIELD_GETX(val, MDIO_CTRL_DATA);
338
339 atl1c_start_phy_polling(hw, clk_sel);
340
341 return 0;
342}
343
344/*
345 * atl1c_write_phy_core
346 * core function to write to register in PHY via MDIO control register.
347 * ext: extension register (see IEEE 802.3)
348 * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
349 * reg: reg to write
350 */
351int atl1c_write_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
352 u16 reg, u16 phy_data)
353{
354 u32 val;
355 u16 clk_sel = MDIO_CTRL_CLK_25_4;
356
357 atl1c_stop_phy_polling(hw);
358
359
360 /* only l2c_b2 & l1d_2 could use slow clock */
361 if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
362 hw->hibernate)
363 clk_sel = MDIO_CTRL_CLK_25_128;
364
365 if (ext) {
366 val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
367 AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
368 val = MDIO_CTRL_SPRES_PRMBL |
369 FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
370 FIELDX(MDIO_CTRL_DATA, phy_data) |
371 MDIO_CTRL_START |
372 MDIO_CTRL_MODE_EXT;
373 } else {
374 val = MDIO_CTRL_SPRES_PRMBL |
375 FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
376 FIELDX(MDIO_CTRL_DATA, phy_data) |
377 FIELDX(MDIO_CTRL_REG, reg) |
378 MDIO_CTRL_START;
379 }
380 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
381
382 if (!atl1c_wait_mdio_idle(hw))
383 return -1;
384
385 atl1c_start_phy_polling(hw, clk_sel);
386
387 return 0;
388}
389
390/*
391 * Reads the value from a PHY register
392 * hw - Struct containing variables accessed by shared code
393 * reg_addr - address of the PHY register to read
394 */
395int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
396{
397 return atl1c_read_phy_core(hw, ext: false, dev: 0, reg: reg_addr, phy_data);
398}
399
400/*
401 * Writes a value to a PHY register
402 * hw - Struct containing variables accessed by shared code
403 * reg_addr - address of the PHY register to write
404 * data - data to write to the PHY
405 */
406int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
407{
408 return atl1c_write_phy_core(hw, ext: false, dev: 0, reg: reg_addr, phy_data);
409}
410
411/* read from PHY extension register */
412int atl1c_read_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
413 u16 reg_addr, u16 *phy_data)
414{
415 return atl1c_read_phy_core(hw, ext: true, dev: dev_addr, reg: reg_addr, phy_data);
416}
417
418/* write to PHY extension register */
419int atl1c_write_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
420 u16 reg_addr, u16 phy_data)
421{
422 return atl1c_write_phy_core(hw, ext: true, dev: dev_addr, reg: reg_addr, phy_data);
423}
424
425int atl1c_read_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
426{
427 int err;
428
429 err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, phy_data: reg_addr);
430 if (unlikely(err))
431 return err;
432 else
433 err = atl1c_read_phy_reg(hw, MII_DBG_DATA, phy_data);
434
435 return err;
436}
437
438int atl1c_write_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 phy_data)
439{
440 int err;
441
442 err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, phy_data: reg_addr);
443 if (unlikely(err))
444 return err;
445 else
446 err = atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
447
448 return err;
449}
450
451/*
452 * Configures PHY autoneg and flow control advertisement settings
453 *
454 * hw - Struct containing variables accessed by shared code
455 */
456static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
457{
458 u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_ALL;
459 u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
460 ~GIGA_CR_1000T_SPEED_MASK;
461
462 if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
463 mii_adv_data |= ADVERTISE_10HALF;
464 if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
465 mii_adv_data |= ADVERTISE_10FULL;
466 if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
467 mii_adv_data |= ADVERTISE_100HALF;
468 if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
469 mii_adv_data |= ADVERTISE_100FULL;
470
471 if (hw->autoneg_advertised & ADVERTISED_Autoneg)
472 mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
473 ADVERTISE_100HALF | ADVERTISE_100FULL;
474
475 if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) {
476 if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
477 mii_giga_ctrl_data |= ADVERTISE_1000HALF;
478 if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
479 mii_giga_ctrl_data |= ADVERTISE_1000FULL;
480 if (hw->autoneg_advertised & ADVERTISED_Autoneg)
481 mii_giga_ctrl_data |= ADVERTISE_1000HALF |
482 ADVERTISE_1000FULL;
483 }
484
485 if (atl1c_write_phy_reg(hw, MII_ADVERTISE, phy_data: mii_adv_data) != 0 ||
486 atl1c_write_phy_reg(hw, MII_CTRL1000, phy_data: mii_giga_ctrl_data) != 0)
487 return -1;
488 return 0;
489}
490
491void atl1c_phy_disable(struct atl1c_hw *hw)
492{
493 atl1c_power_saving(hw, wufc: 0);
494}
495
496
497int atl1c_phy_reset(struct atl1c_hw *hw)
498{
499 struct atl1c_adapter *adapter = hw->adapter;
500 struct pci_dev *pdev = adapter->pdev;
501 u16 phy_data;
502 u32 phy_ctrl_data, lpi_ctrl;
503 int err;
504
505 /* reset PHY core */
506 AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl_data);
507 phy_ctrl_data &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_PHY_IDDQ |
508 GPHY_CTRL_GATE_25M_EN | GPHY_CTRL_PWDOWN_HW | GPHY_CTRL_CLS);
509 phy_ctrl_data |= GPHY_CTRL_SEL_ANA_RST;
510 if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE))
511 phy_ctrl_data |= (GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
512 else
513 phy_ctrl_data &= ~(GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
514 AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
515 AT_WRITE_FLUSH(hw);
516 udelay(10);
517 AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data | GPHY_CTRL_EXT_RESET);
518 AT_WRITE_FLUSH(hw);
519 udelay(10 * GPHY_CTRL_EXT_RST_TO); /* delay 800us */
520
521 /* switch clock */
522 if (hw->nic_type == athr_l2c_b) {
523 atl1c_read_phy_dbg(hw, MIIDBG_CFGLPSPD, phy_data: &phy_data);
524 atl1c_write_phy_dbg(hw, MIIDBG_CFGLPSPD,
525 phy_data: phy_data & ~CFGLPSPD_RSTCNT_CLK125SW);
526 }
527
528 /* tx-half amplitude issue fix */
529 if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
530 atl1c_read_phy_dbg(hw, MIIDBG_CABLE1TH_DET, phy_data: &phy_data);
531 phy_data |= CABLE1TH_DET_EN;
532 atl1c_write_phy_dbg(hw, MIIDBG_CABLE1TH_DET, phy_data);
533 }
534
535 /* clear bit3 of dbgport 3B to lower voltage */
536 if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) {
537 if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
538 atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data: &phy_data);
539 phy_data &= ~VOLT_CTRL_SWLOWEST;
540 atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
541 }
542 /* power saving config */
543 phy_data =
544 hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ?
545 L1D_LEGCYPS_DEF : L1C_LEGCYPS_DEF;
546 atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data);
547 /* hib */
548 atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
549 SYSMODCTRL_IECHOADJ_DEF);
550 } else {
551 /* disable pws */
552 atl1c_read_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data: &phy_data);
553 atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS,
554 phy_data: phy_data & ~LEGCYPS_EN);
555 /* disable hibernate */
556 atl1c_read_phy_dbg(hw, MIIDBG_HIBNEG, phy_data: &phy_data);
557 atl1c_write_phy_dbg(hw, MIIDBG_HIBNEG,
558 phy_data: phy_data & HIBNEG_PSHIB_EN);
559 }
560 /* disable AZ(EEE) by default */
561 if (hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ||
562 hw->nic_type == athr_l2c_b2) {
563 AT_READ_REG(hw, REG_LPI_CTRL, &lpi_ctrl);
564 AT_WRITE_REG(hw, REG_LPI_CTRL, lpi_ctrl & ~LPI_CTRL_EN);
565 atl1c_write_phy_ext(hw, MIIEXT_ANEG, MIIEXT_LOCAL_EEEADV, phy_data: 0);
566 atl1c_write_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL3,
567 L2CB_CLDCTRL3);
568 }
569
570 /* other debug port to set */
571 atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, ANACTRL_DEF);
572 atl1c_write_phy_dbg(hw, MIIDBG_SRDSYSMOD, SRDSYSMOD_DEF);
573 atl1c_write_phy_dbg(hw, MIIDBG_TST10BTCFG, TST10BTCFG_DEF);
574 /* UNH-IOL test issue, set bit7 */
575 atl1c_write_phy_dbg(hw, MIIDBG_TST100BTCFG,
576 TST100BTCFG_DEF | TST100BTCFG_LITCH_EN);
577
578 /* set phy interrupt mask */
579 phy_data = IER_LINK_UP | IER_LINK_DOWN;
580 err = atl1c_write_phy_reg(hw, MII_IER, phy_data);
581 if (err) {
582 if (netif_msg_hw(adapter))
583 dev_err(&pdev->dev,
584 "Error enable PHY linkChange Interrupt\n");
585 return err;
586 }
587 return 0;
588}
589
590int atl1c_phy_init(struct atl1c_hw *hw)
591{
592 struct atl1c_adapter *adapter = hw->adapter;
593 struct pci_dev *pdev = adapter->pdev;
594 int ret_val;
595 u16 mii_bmcr_data = BMCR_RESET;
596
597 if (hw->nic_type == athr_mt) {
598 hw->phy_configured = true;
599 return 0;
600 }
601
602 if ((atl1c_read_phy_reg(hw, MII_PHYSID1, phy_data: &hw->phy_id1) != 0) ||
603 (atl1c_read_phy_reg(hw, MII_PHYSID2, phy_data: &hw->phy_id2) != 0)) {
604 dev_err(&pdev->dev, "Error get phy ID\n");
605 return -1;
606 }
607 switch (hw->media_type) {
608 case MEDIA_TYPE_AUTO_SENSOR:
609 ret_val = atl1c_phy_setup_adv(hw);
610 if (ret_val) {
611 if (netif_msg_link(adapter))
612 dev_err(&pdev->dev,
613 "Error Setting up Auto-Negotiation\n");
614 return ret_val;
615 }
616 mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
617 break;
618 case MEDIA_TYPE_100M_FULL:
619 mii_bmcr_data |= BMCR_SPEED100 | BMCR_FULLDPLX;
620 break;
621 case MEDIA_TYPE_100M_HALF:
622 mii_bmcr_data |= BMCR_SPEED100;
623 break;
624 case MEDIA_TYPE_10M_FULL:
625 mii_bmcr_data |= BMCR_FULLDPLX;
626 break;
627 case MEDIA_TYPE_10M_HALF:
628 break;
629 default:
630 if (netif_msg_link(adapter))
631 dev_err(&pdev->dev, "Wrong Media type %d\n",
632 hw->media_type);
633 return -1;
634 }
635
636 ret_val = atl1c_write_phy_reg(hw, MII_BMCR, phy_data: mii_bmcr_data);
637 if (ret_val)
638 return ret_val;
639 hw->phy_configured = true;
640
641 return 0;
642}
643
644bool atl1c_get_link_status(struct atl1c_hw *hw)
645{
646 u16 phy_data;
647
648 if (hw->nic_type == athr_mt) {
649 u32 spd;
650
651 AT_READ_REG(hw, REG_MT_SPEED, &spd);
652 return !!spd;
653 }
654
655 /* MII_BMSR must be read twice */
656 atl1c_read_phy_reg(hw, MII_BMSR, phy_data: &phy_data);
657 atl1c_read_phy_reg(hw, MII_BMSR, phy_data: &phy_data);
658 return !!(phy_data & BMSR_LSTATUS);
659}
660
661/*
662 * Detects the current speed and duplex settings of the hardware.
663 *
664 * hw - Struct containing variables accessed by shared code
665 * speed - Speed of the connection
666 * duplex - Duplex setting of the connection
667 */
668int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
669{
670 int err;
671 u16 phy_data;
672
673 if (hw->nic_type == athr_mt) {
674 u32 spd;
675
676 AT_READ_REG(hw, REG_MT_SPEED, &spd);
677 *speed = spd;
678 *duplex = FULL_DUPLEX;
679 return 0;
680 }
681
682 /* Read PHY Specific Status Register (17) */
683 err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, phy_data: &phy_data);
684 if (err)
685 return err;
686
687 if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
688 return -1;
689
690 switch (phy_data & GIGA_PSSR_SPEED) {
691 case GIGA_PSSR_1000MBS:
692 *speed = SPEED_1000;
693 break;
694 case GIGA_PSSR_100MBS:
695 *speed = SPEED_100;
696 break;
697 case GIGA_PSSR_10MBS:
698 *speed = SPEED_10;
699 break;
700 default:
701 return -1;
702 }
703
704 if (phy_data & GIGA_PSSR_DPLX)
705 *duplex = FULL_DUPLEX;
706 else
707 *duplex = HALF_DUPLEX;
708
709 return 0;
710}
711
712/* select one link mode to get lower power consumption */
713int atl1c_phy_to_ps_link(struct atl1c_hw *hw)
714{
715 struct atl1c_adapter *adapter = hw->adapter;
716 struct pci_dev *pdev = adapter->pdev;
717 int ret = 0;
718 u16 autoneg_advertised = ADVERTISED_10baseT_Half;
719 u16 save_autoneg_advertised;
720 u16 mii_lpa_data;
721 u16 speed = SPEED_0;
722 u16 duplex = FULL_DUPLEX;
723 int i;
724
725 if (atl1c_get_link_status(hw)) {
726 atl1c_read_phy_reg(hw, MII_LPA, phy_data: &mii_lpa_data);
727 if (mii_lpa_data & LPA_10FULL)
728 autoneg_advertised = ADVERTISED_10baseT_Full;
729 else if (mii_lpa_data & LPA_10HALF)
730 autoneg_advertised = ADVERTISED_10baseT_Half;
731 else if (mii_lpa_data & LPA_100HALF)
732 autoneg_advertised = ADVERTISED_100baseT_Half;
733 else if (mii_lpa_data & LPA_100FULL)
734 autoneg_advertised = ADVERTISED_100baseT_Full;
735
736 save_autoneg_advertised = hw->autoneg_advertised;
737 hw->phy_configured = false;
738 hw->autoneg_advertised = autoneg_advertised;
739 if (atl1c_restart_autoneg(hw) != 0) {
740 dev_dbg(&pdev->dev, "phy autoneg failed\n");
741 ret = -1;
742 }
743 hw->autoneg_advertised = save_autoneg_advertised;
744
745 if (mii_lpa_data) {
746 for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
747 mdelay(100);
748 if (atl1c_get_link_status(hw)) {
749 if (atl1c_get_speed_and_duplex(hw, speed: &speed,
750 duplex: &duplex) != 0)
751 dev_dbg(&pdev->dev,
752 "get speed and duplex failed\n");
753 break;
754 }
755 }
756 }
757 } else {
758 speed = SPEED_10;
759 duplex = HALF_DUPLEX;
760 }
761 adapter->link_speed = speed;
762 adapter->link_duplex = duplex;
763
764 return ret;
765}
766
767int atl1c_restart_autoneg(struct atl1c_hw *hw)
768{
769 int err = 0;
770 u16 mii_bmcr_data = BMCR_RESET;
771
772 err = atl1c_phy_setup_adv(hw);
773 if (err)
774 return err;
775 mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
776
777 return atl1c_write_phy_reg(hw, MII_BMCR, phy_data: mii_bmcr_data);
778}
779
780int atl1c_power_saving(struct atl1c_hw *hw, u32 wufc)
781{
782 struct atl1c_adapter *adapter = hw->adapter;
783 struct pci_dev *pdev = adapter->pdev;
784 u32 master_ctrl, mac_ctrl, phy_ctrl;
785 u32 wol_ctrl, speed;
786 u16 phy_data;
787
788 wol_ctrl = 0;
789 speed = adapter->link_speed == SPEED_1000 ?
790 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100;
791
792 AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl);
793 AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl);
794 AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl);
795
796 master_ctrl &= ~MASTER_CTRL_CLK_SEL_DIS;
797 mac_ctrl = FIELD_SETX(mac_ctrl, MAC_CTRL_SPEED, speed);
798 mac_ctrl &= ~(MAC_CTRL_DUPLX | MAC_CTRL_RX_EN | MAC_CTRL_TX_EN);
799 if (adapter->link_duplex == FULL_DUPLEX)
800 mac_ctrl |= MAC_CTRL_DUPLX;
801 phy_ctrl &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_CLS);
802 phy_ctrl |= GPHY_CTRL_SEL_ANA_RST | GPHY_CTRL_HIB_PULSE |
803 GPHY_CTRL_HIB_EN;
804 if (!wufc) { /* without WoL */
805 master_ctrl |= MASTER_CTRL_CLK_SEL_DIS;
806 phy_ctrl |= GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PWDOWN_HW;
807 AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
808 AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
809 AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
810 AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
811 hw->phy_configured = false; /* re-init PHY when resume */
812 return 0;
813 }
814 phy_ctrl |= GPHY_CTRL_EXT_RESET;
815 if (wufc & AT_WUFC_MAG) {
816 mac_ctrl |= MAC_CTRL_RX_EN | MAC_CTRL_BC_EN;
817 wol_ctrl |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
818 if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V11)
819 wol_ctrl |= WOL_PATTERN_EN | WOL_PATTERN_PME_EN;
820 }
821 if (wufc & AT_WUFC_LNKC) {
822 wol_ctrl |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
823 if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) {
824 dev_dbg(&pdev->dev, "%s: write phy MII_IER failed.\n",
825 atl1c_driver_name);
826 }
827 }
828 /* clear PHY interrupt */
829 atl1c_read_phy_reg(hw, MII_ISR, phy_data: &phy_data);
830
831 dev_dbg(&pdev->dev, "%s: suspend MAC=%x,MASTER=%x,PHY=0x%x,WOL=%x\n",
832 atl1c_driver_name, mac_ctrl, master_ctrl, phy_ctrl, wol_ctrl);
833 AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
834 AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
835 AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
836 AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl);
837
838 return 0;
839}
840
841
842/* configure phy after Link change Event */
843void atl1c_post_phy_linkchg(struct atl1c_hw *hw, u16 link_speed)
844{
845 u16 phy_val;
846 bool adj_thresh = false;
847
848 if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2 ||
849 hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2)
850 adj_thresh = true;
851
852 if (link_speed != SPEED_0) { /* link up */
853 /* az with brcm, half-amp */
854 if (hw->nic_type == athr_l1d_2) {
855 atl1c_read_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL6,
856 phy_data: &phy_val);
857 phy_val = FIELD_GETX(phy_val, CLDCTRL6_CAB_LEN);
858 phy_val = phy_val > CLDCTRL6_CAB_LEN_SHORT ?
859 AZ_ANADECT_LONG : AZ_ANADECT_DEF;
860 atl1c_write_phy_dbg(hw, MIIDBG_AZ_ANADECT, phy_data: phy_val);
861 }
862 /* threshold adjust */
863 if (adj_thresh && link_speed == SPEED_100 && hw->msi_lnkpatch) {
864 atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB, L1D_MSE16DB_UP);
865 atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
866 L1D_SYSMODCTRL_IECHOADJ_DEF);
867 }
868 } else { /* link down */
869 if (adj_thresh && hw->msi_lnkpatch) {
870 atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
871 SYSMODCTRL_IECHOADJ_DEF);
872 atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB,
873 L1D_MSE16DB_DOWN);
874 }
875 }
876}
877

source code of linux/drivers/net/ethernet/atheros/atl1c/atl1c_hw.c