1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics TCP target.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/slab.h>
10#include <linux/err.h>
11#include <linux/key.h>
12#include <linux/nvme-tcp.h>
13#include <linux/nvme-keyring.h>
14#include <net/sock.h>
15#include <net/tcp.h>
16#include <net/tls.h>
17#include <net/tls_prot.h>
18#include <net/handshake.h>
19#include <linux/inet.h>
20#include <linux/llist.h>
21#include <crypto/hash.h>
22#include <trace/events/sock.h>
23
24#include "nvmet.h"
25
26#define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE)
27#define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */
28#define NVMET_TCP_BACKLOG 128
29
30static int param_store_val(const char *str, int *val, int min, int max)
31{
32 int ret, new_val;
33
34 ret = kstrtoint(s: str, base: 10, res: &new_val);
35 if (ret)
36 return -EINVAL;
37
38 if (new_val < min || new_val > max)
39 return -EINVAL;
40
41 *val = new_val;
42 return 0;
43}
44
45static int set_params(const char *str, const struct kernel_param *kp)
46{
47 return param_store_val(str, val: kp->arg, min: 0, INT_MAX);
48}
49
50static const struct kernel_param_ops set_param_ops = {
51 .set = set_params,
52 .get = param_get_int,
53};
54
55/* Define the socket priority to use for connections were it is desirable
56 * that the NIC consider performing optimized packet processing or filtering.
57 * A non-zero value being sufficient to indicate general consideration of any
58 * possible optimization. Making it a module param allows for alternative
59 * values that may be unique for some NIC implementations.
60 */
61static int so_priority;
62device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
63MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
64
65/* Define a time period (in usecs) that io_work() shall sample an activated
66 * queue before determining it to be idle. This optional module behavior
67 * can enable NIC solutions that support socket optimized packet processing
68 * using advanced interrupt moderation techniques.
69 */
70static int idle_poll_period_usecs;
71device_param_cb(idle_poll_period_usecs, &set_param_ops,
72 &idle_poll_period_usecs, 0644);
73MODULE_PARM_DESC(idle_poll_period_usecs,
74 "nvmet tcp io_work poll till idle time period in usecs: Default 0");
75
76#ifdef CONFIG_NVME_TARGET_TCP_TLS
77/*
78 * TLS handshake timeout
79 */
80static int tls_handshake_timeout = 10;
81module_param(tls_handshake_timeout, int, 0644);
82MODULE_PARM_DESC(tls_handshake_timeout,
83 "nvme TLS handshake timeout in seconds (default 10)");
84#endif
85
86#define NVMET_TCP_RECV_BUDGET 8
87#define NVMET_TCP_SEND_BUDGET 8
88#define NVMET_TCP_IO_WORK_BUDGET 64
89
90enum nvmet_tcp_send_state {
91 NVMET_TCP_SEND_DATA_PDU,
92 NVMET_TCP_SEND_DATA,
93 NVMET_TCP_SEND_R2T,
94 NVMET_TCP_SEND_DDGST,
95 NVMET_TCP_SEND_RESPONSE
96};
97
98enum nvmet_tcp_recv_state {
99 NVMET_TCP_RECV_PDU,
100 NVMET_TCP_RECV_DATA,
101 NVMET_TCP_RECV_DDGST,
102 NVMET_TCP_RECV_ERR,
103};
104
105enum {
106 NVMET_TCP_F_INIT_FAILED = (1 << 0),
107};
108
109struct nvmet_tcp_cmd {
110 struct nvmet_tcp_queue *queue;
111 struct nvmet_req req;
112
113 struct nvme_tcp_cmd_pdu *cmd_pdu;
114 struct nvme_tcp_rsp_pdu *rsp_pdu;
115 struct nvme_tcp_data_pdu *data_pdu;
116 struct nvme_tcp_r2t_pdu *r2t_pdu;
117
118 u32 rbytes_done;
119 u32 wbytes_done;
120
121 u32 pdu_len;
122 u32 pdu_recv;
123 int sg_idx;
124 char recv_cbuf[CMSG_LEN(sizeof(char))];
125 struct msghdr recv_msg;
126 struct bio_vec *iov;
127 u32 flags;
128
129 struct list_head entry;
130 struct llist_node lentry;
131
132 /* send state */
133 u32 offset;
134 struct scatterlist *cur_sg;
135 enum nvmet_tcp_send_state state;
136
137 __le32 exp_ddgst;
138 __le32 recv_ddgst;
139};
140
141enum nvmet_tcp_queue_state {
142 NVMET_TCP_Q_CONNECTING,
143 NVMET_TCP_Q_TLS_HANDSHAKE,
144 NVMET_TCP_Q_LIVE,
145 NVMET_TCP_Q_DISCONNECTING,
146 NVMET_TCP_Q_FAILED,
147};
148
149struct nvmet_tcp_queue {
150 struct socket *sock;
151 struct nvmet_tcp_port *port;
152 struct work_struct io_work;
153 struct nvmet_cq nvme_cq;
154 struct nvmet_sq nvme_sq;
155 struct kref kref;
156
157 /* send state */
158 struct nvmet_tcp_cmd *cmds;
159 unsigned int nr_cmds;
160 struct list_head free_list;
161 struct llist_head resp_list;
162 struct list_head resp_send_list;
163 int send_list_len;
164 struct nvmet_tcp_cmd *snd_cmd;
165
166 /* recv state */
167 int offset;
168 int left;
169 enum nvmet_tcp_recv_state rcv_state;
170 struct nvmet_tcp_cmd *cmd;
171 union nvme_tcp_pdu pdu;
172
173 /* digest state */
174 bool hdr_digest;
175 bool data_digest;
176 struct ahash_request *snd_hash;
177 struct ahash_request *rcv_hash;
178
179 /* TLS state */
180 key_serial_t tls_pskid;
181 struct delayed_work tls_handshake_tmo_work;
182
183 unsigned long poll_end;
184
185 spinlock_t state_lock;
186 enum nvmet_tcp_queue_state state;
187
188 struct sockaddr_storage sockaddr;
189 struct sockaddr_storage sockaddr_peer;
190 struct work_struct release_work;
191
192 int idx;
193 struct list_head queue_list;
194
195 struct nvmet_tcp_cmd connect;
196
197 struct page_frag_cache pf_cache;
198
199 void (*data_ready)(struct sock *);
200 void (*state_change)(struct sock *);
201 void (*write_space)(struct sock *);
202};
203
204struct nvmet_tcp_port {
205 struct socket *sock;
206 struct work_struct accept_work;
207 struct nvmet_port *nport;
208 struct sockaddr_storage addr;
209 void (*data_ready)(struct sock *);
210};
211
212static DEFINE_IDA(nvmet_tcp_queue_ida);
213static LIST_HEAD(nvmet_tcp_queue_list);
214static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
215
216static struct workqueue_struct *nvmet_tcp_wq;
217static const struct nvmet_fabrics_ops nvmet_tcp_ops;
218static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
219static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
220
221static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
222 struct nvmet_tcp_cmd *cmd)
223{
224 if (unlikely(!queue->nr_cmds)) {
225 /* We didn't allocate cmds yet, send 0xffff */
226 return USHRT_MAX;
227 }
228
229 return cmd - queue->cmds;
230}
231
232static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
233{
234 return nvme_is_write(cmd: cmd->req.cmd) &&
235 cmd->rbytes_done < cmd->req.transfer_len;
236}
237
238static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
239{
240 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
241}
242
243static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
244{
245 return !nvme_is_write(cmd: cmd->req.cmd) &&
246 cmd->req.transfer_len > 0 &&
247 !cmd->req.cqe->status;
248}
249
250static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
251{
252 return nvme_is_write(cmd: cmd->req.cmd) && cmd->pdu_len &&
253 !cmd->rbytes_done;
254}
255
256static inline struct nvmet_tcp_cmd *
257nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
258{
259 struct nvmet_tcp_cmd *cmd;
260
261 cmd = list_first_entry_or_null(&queue->free_list,
262 struct nvmet_tcp_cmd, entry);
263 if (!cmd)
264 return NULL;
265 list_del_init(entry: &cmd->entry);
266
267 cmd->rbytes_done = cmd->wbytes_done = 0;
268 cmd->pdu_len = 0;
269 cmd->pdu_recv = 0;
270 cmd->iov = NULL;
271 cmd->flags = 0;
272 return cmd;
273}
274
275static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
276{
277 if (unlikely(cmd == &cmd->queue->connect))
278 return;
279
280 list_add_tail(new: &cmd->entry, head: &cmd->queue->free_list);
281}
282
283static inline int queue_cpu(struct nvmet_tcp_queue *queue)
284{
285 return queue->sock->sk->sk_incoming_cpu;
286}
287
288static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
289{
290 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
291}
292
293static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
294{
295 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
296}
297
298static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
299 void *pdu, size_t len)
300{
301 struct scatterlist sg;
302
303 sg_init_one(&sg, pdu, len);
304 ahash_request_set_crypt(req: hash, src: &sg, result: pdu + len, nbytes: len);
305 crypto_ahash_digest(req: hash);
306}
307
308static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
309 void *pdu, size_t len)
310{
311 struct nvme_tcp_hdr *hdr = pdu;
312 __le32 recv_digest;
313 __le32 exp_digest;
314
315 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
316 pr_err("queue %d: header digest enabled but no header digest\n",
317 queue->idx);
318 return -EPROTO;
319 }
320
321 recv_digest = *(__le32 *)(pdu + hdr->hlen);
322 nvmet_tcp_hdgst(hash: queue->rcv_hash, pdu, len);
323 exp_digest = *(__le32 *)(pdu + hdr->hlen);
324 if (recv_digest != exp_digest) {
325 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
326 queue->idx, le32_to_cpu(recv_digest),
327 le32_to_cpu(exp_digest));
328 return -EPROTO;
329 }
330
331 return 0;
332}
333
334static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
335{
336 struct nvme_tcp_hdr *hdr = pdu;
337 u8 digest_len = nvmet_tcp_hdgst_len(queue);
338 u32 len;
339
340 len = le32_to_cpu(hdr->plen) - hdr->hlen -
341 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
342
343 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
344 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
345 return -EPROTO;
346 }
347
348 return 0;
349}
350
351static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
352{
353 kfree(objp: cmd->iov);
354 sgl_free(sgl: cmd->req.sg);
355 cmd->iov = NULL;
356 cmd->req.sg = NULL;
357}
358
359static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
360{
361 struct bio_vec *iov = cmd->iov;
362 struct scatterlist *sg;
363 u32 length, offset, sg_offset;
364 int nr_pages;
365
366 length = cmd->pdu_len;
367 nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
368 offset = cmd->rbytes_done;
369 cmd->sg_idx = offset / PAGE_SIZE;
370 sg_offset = offset % PAGE_SIZE;
371 sg = &cmd->req.sg[cmd->sg_idx];
372
373 while (length) {
374 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
375
376 bvec_set_page(bv: iov, page: sg_page(sg), len: iov_len,
377 offset: sg->offset + sg_offset);
378
379 length -= iov_len;
380 sg = sg_next(sg);
381 iov++;
382 sg_offset = 0;
383 }
384
385 iov_iter_bvec(i: &cmd->recv_msg.msg_iter, ITER_DEST, bvec: cmd->iov,
386 nr_segs: nr_pages, count: cmd->pdu_len);
387}
388
389static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
390{
391 queue->rcv_state = NVMET_TCP_RECV_ERR;
392 if (queue->nvme_sq.ctrl)
393 nvmet_ctrl_fatal_error(ctrl: queue->nvme_sq.ctrl);
394 else
395 kernel_sock_shutdown(sock: queue->sock, how: SHUT_RDWR);
396}
397
398static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
399{
400 queue->rcv_state = NVMET_TCP_RECV_ERR;
401 if (status == -EPIPE || status == -ECONNRESET)
402 kernel_sock_shutdown(sock: queue->sock, how: SHUT_RDWR);
403 else
404 nvmet_tcp_fatal_error(queue);
405}
406
407static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
408{
409 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
410 u32 len = le32_to_cpu(sgl->length);
411
412 if (!len)
413 return 0;
414
415 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
416 NVME_SGL_FMT_OFFSET)) {
417 if (!nvme_is_write(cmd: cmd->req.cmd))
418 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
419
420 if (len > cmd->req.port->inline_data_size)
421 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
422 cmd->pdu_len = len;
423 }
424 cmd->req.transfer_len += len;
425
426 cmd->req.sg = sgl_alloc(length: len, GFP_KERNEL, nent_p: &cmd->req.sg_cnt);
427 if (!cmd->req.sg)
428 return NVME_SC_INTERNAL;
429 cmd->cur_sg = cmd->req.sg;
430
431 if (nvmet_tcp_has_data_in(cmd)) {
432 cmd->iov = kmalloc_array(n: cmd->req.sg_cnt,
433 size: sizeof(*cmd->iov), GFP_KERNEL);
434 if (!cmd->iov)
435 goto err;
436 }
437
438 return 0;
439err:
440 nvmet_tcp_free_cmd_buffers(cmd);
441 return NVME_SC_INTERNAL;
442}
443
444static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
445 struct nvmet_tcp_cmd *cmd)
446{
447 ahash_request_set_crypt(req: hash, src: cmd->req.sg,
448 result: (void *)&cmd->exp_ddgst, nbytes: cmd->req.transfer_len);
449 crypto_ahash_digest(req: hash);
450}
451
452static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
453{
454 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
455 struct nvmet_tcp_queue *queue = cmd->queue;
456 u8 hdgst = nvmet_tcp_hdgst_len(queue: cmd->queue);
457 u8 ddgst = nvmet_tcp_ddgst_len(queue: cmd->queue);
458
459 cmd->offset = 0;
460 cmd->state = NVMET_TCP_SEND_DATA_PDU;
461
462 pdu->hdr.type = nvme_tcp_c2h_data;
463 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
464 NVME_TCP_F_DATA_SUCCESS : 0);
465 pdu->hdr.hlen = sizeof(*pdu);
466 pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
467 pdu->hdr.plen =
468 cpu_to_le32(pdu->hdr.hlen + hdgst +
469 cmd->req.transfer_len + ddgst);
470 pdu->command_id = cmd->req.cqe->command_id;
471 pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
472 pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
473
474 if (queue->data_digest) {
475 pdu->hdr.flags |= NVME_TCP_F_DDGST;
476 nvmet_tcp_calc_ddgst(hash: queue->snd_hash, cmd);
477 }
478
479 if (cmd->queue->hdr_digest) {
480 pdu->hdr.flags |= NVME_TCP_F_HDGST;
481 nvmet_tcp_hdgst(hash: queue->snd_hash, pdu, len: sizeof(*pdu));
482 }
483}
484
485static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
486{
487 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
488 struct nvmet_tcp_queue *queue = cmd->queue;
489 u8 hdgst = nvmet_tcp_hdgst_len(queue: cmd->queue);
490
491 cmd->offset = 0;
492 cmd->state = NVMET_TCP_SEND_R2T;
493
494 pdu->hdr.type = nvme_tcp_r2t;
495 pdu->hdr.flags = 0;
496 pdu->hdr.hlen = sizeof(*pdu);
497 pdu->hdr.pdo = 0;
498 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
499
500 pdu->command_id = cmd->req.cmd->common.command_id;
501 pdu->ttag = nvmet_tcp_cmd_tag(queue: cmd->queue, cmd);
502 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
503 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
504 if (cmd->queue->hdr_digest) {
505 pdu->hdr.flags |= NVME_TCP_F_HDGST;
506 nvmet_tcp_hdgst(hash: queue->snd_hash, pdu, len: sizeof(*pdu));
507 }
508}
509
510static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
511{
512 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
513 struct nvmet_tcp_queue *queue = cmd->queue;
514 u8 hdgst = nvmet_tcp_hdgst_len(queue: cmd->queue);
515
516 cmd->offset = 0;
517 cmd->state = NVMET_TCP_SEND_RESPONSE;
518
519 pdu->hdr.type = nvme_tcp_rsp;
520 pdu->hdr.flags = 0;
521 pdu->hdr.hlen = sizeof(*pdu);
522 pdu->hdr.pdo = 0;
523 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
524 if (cmd->queue->hdr_digest) {
525 pdu->hdr.flags |= NVME_TCP_F_HDGST;
526 nvmet_tcp_hdgst(hash: queue->snd_hash, pdu, len: sizeof(*pdu));
527 }
528}
529
530static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
531{
532 struct llist_node *node;
533 struct nvmet_tcp_cmd *cmd;
534
535 for (node = llist_del_all(head: &queue->resp_list); node; node = node->next) {
536 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
537 list_add(new: &cmd->entry, head: &queue->resp_send_list);
538 queue->send_list_len++;
539 }
540}
541
542static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
543{
544 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
545 struct nvmet_tcp_cmd, entry);
546 if (!queue->snd_cmd) {
547 nvmet_tcp_process_resp_list(queue);
548 queue->snd_cmd =
549 list_first_entry_or_null(&queue->resp_send_list,
550 struct nvmet_tcp_cmd, entry);
551 if (unlikely(!queue->snd_cmd))
552 return NULL;
553 }
554
555 list_del_init(entry: &queue->snd_cmd->entry);
556 queue->send_list_len--;
557
558 if (nvmet_tcp_need_data_out(cmd: queue->snd_cmd))
559 nvmet_setup_c2h_data_pdu(cmd: queue->snd_cmd);
560 else if (nvmet_tcp_need_data_in(cmd: queue->snd_cmd))
561 nvmet_setup_r2t_pdu(cmd: queue->snd_cmd);
562 else
563 nvmet_setup_response_pdu(cmd: queue->snd_cmd);
564
565 return queue->snd_cmd;
566}
567
568static void nvmet_tcp_queue_response(struct nvmet_req *req)
569{
570 struct nvmet_tcp_cmd *cmd =
571 container_of(req, struct nvmet_tcp_cmd, req);
572 struct nvmet_tcp_queue *queue = cmd->queue;
573 struct nvme_sgl_desc *sgl;
574 u32 len;
575
576 if (unlikely(cmd == queue->cmd)) {
577 sgl = &cmd->req.cmd->common.dptr.sgl;
578 len = le32_to_cpu(sgl->length);
579
580 /*
581 * Wait for inline data before processing the response.
582 * Avoid using helpers, this might happen before
583 * nvmet_req_init is completed.
584 */
585 if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
586 len && len <= cmd->req.port->inline_data_size &&
587 nvme_is_write(cmd: cmd->req.cmd))
588 return;
589 }
590
591 llist_add(new: &cmd->lentry, head: &queue->resp_list);
592 queue_work_on(cpu: queue_cpu(queue), wq: nvmet_tcp_wq, work: &cmd->queue->io_work);
593}
594
595static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
596{
597 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
598 nvmet_tcp_queue_response(req: &cmd->req);
599 else
600 cmd->req.execute(&cmd->req);
601}
602
603static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
604{
605 struct msghdr msg = {
606 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
607 };
608 struct bio_vec bvec;
609 u8 hdgst = nvmet_tcp_hdgst_len(queue: cmd->queue);
610 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
611 int ret;
612
613 bvec_set_virt(bv: &bvec, vaddr: (void *)cmd->data_pdu + cmd->offset, len: left);
614 iov_iter_bvec(i: &msg.msg_iter, ITER_SOURCE, bvec: &bvec, nr_segs: 1, count: left);
615 ret = sock_sendmsg(sock: cmd->queue->sock, msg: &msg);
616 if (ret <= 0)
617 return ret;
618
619 cmd->offset += ret;
620 left -= ret;
621
622 if (left)
623 return -EAGAIN;
624
625 cmd->state = NVMET_TCP_SEND_DATA;
626 cmd->offset = 0;
627 return 1;
628}
629
630static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
631{
632 struct nvmet_tcp_queue *queue = cmd->queue;
633 int ret;
634
635 while (cmd->cur_sg) {
636 struct msghdr msg = {
637 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
638 };
639 struct page *page = sg_page(sg: cmd->cur_sg);
640 struct bio_vec bvec;
641 u32 left = cmd->cur_sg->length - cmd->offset;
642
643 if ((!last_in_batch && cmd->queue->send_list_len) ||
644 cmd->wbytes_done + left < cmd->req.transfer_len ||
645 queue->data_digest || !queue->nvme_sq.sqhd_disabled)
646 msg.msg_flags |= MSG_MORE;
647
648 bvec_set_page(bv: &bvec, page, len: left, offset: cmd->offset);
649 iov_iter_bvec(i: &msg.msg_iter, ITER_SOURCE, bvec: &bvec, nr_segs: 1, count: left);
650 ret = sock_sendmsg(sock: cmd->queue->sock, msg: &msg);
651 if (ret <= 0)
652 return ret;
653
654 cmd->offset += ret;
655 cmd->wbytes_done += ret;
656
657 /* Done with sg?*/
658 if (cmd->offset == cmd->cur_sg->length) {
659 cmd->cur_sg = sg_next(cmd->cur_sg);
660 cmd->offset = 0;
661 }
662 }
663
664 if (queue->data_digest) {
665 cmd->state = NVMET_TCP_SEND_DDGST;
666 cmd->offset = 0;
667 } else {
668 if (queue->nvme_sq.sqhd_disabled) {
669 cmd->queue->snd_cmd = NULL;
670 nvmet_tcp_put_cmd(cmd);
671 } else {
672 nvmet_setup_response_pdu(cmd);
673 }
674 }
675
676 if (queue->nvme_sq.sqhd_disabled)
677 nvmet_tcp_free_cmd_buffers(cmd);
678
679 return 1;
680
681}
682
683static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
684 bool last_in_batch)
685{
686 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
687 struct bio_vec bvec;
688 u8 hdgst = nvmet_tcp_hdgst_len(queue: cmd->queue);
689 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
690 int ret;
691
692 if (!last_in_batch && cmd->queue->send_list_len)
693 msg.msg_flags |= MSG_MORE;
694 else
695 msg.msg_flags |= MSG_EOR;
696
697 bvec_set_virt(bv: &bvec, vaddr: (void *)cmd->rsp_pdu + cmd->offset, len: left);
698 iov_iter_bvec(i: &msg.msg_iter, ITER_SOURCE, bvec: &bvec, nr_segs: 1, count: left);
699 ret = sock_sendmsg(sock: cmd->queue->sock, msg: &msg);
700 if (ret <= 0)
701 return ret;
702 cmd->offset += ret;
703 left -= ret;
704
705 if (left)
706 return -EAGAIN;
707
708 nvmet_tcp_free_cmd_buffers(cmd);
709 cmd->queue->snd_cmd = NULL;
710 nvmet_tcp_put_cmd(cmd);
711 return 1;
712}
713
714static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
715{
716 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
717 struct bio_vec bvec;
718 u8 hdgst = nvmet_tcp_hdgst_len(queue: cmd->queue);
719 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
720 int ret;
721
722 if (!last_in_batch && cmd->queue->send_list_len)
723 msg.msg_flags |= MSG_MORE;
724 else
725 msg.msg_flags |= MSG_EOR;
726
727 bvec_set_virt(bv: &bvec, vaddr: (void *)cmd->r2t_pdu + cmd->offset, len: left);
728 iov_iter_bvec(i: &msg.msg_iter, ITER_SOURCE, bvec: &bvec, nr_segs: 1, count: left);
729 ret = sock_sendmsg(sock: cmd->queue->sock, msg: &msg);
730 if (ret <= 0)
731 return ret;
732 cmd->offset += ret;
733 left -= ret;
734
735 if (left)
736 return -EAGAIN;
737
738 cmd->queue->snd_cmd = NULL;
739 return 1;
740}
741
742static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
743{
744 struct nvmet_tcp_queue *queue = cmd->queue;
745 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
746 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
747 struct kvec iov = {
748 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
749 .iov_len = left
750 };
751 int ret;
752
753 if (!last_in_batch && cmd->queue->send_list_len)
754 msg.msg_flags |= MSG_MORE;
755 else
756 msg.msg_flags |= MSG_EOR;
757
758 ret = kernel_sendmsg(sock: queue->sock, msg: &msg, vec: &iov, num: 1, len: iov.iov_len);
759 if (unlikely(ret <= 0))
760 return ret;
761
762 cmd->offset += ret;
763 left -= ret;
764
765 if (left)
766 return -EAGAIN;
767
768 if (queue->nvme_sq.sqhd_disabled) {
769 cmd->queue->snd_cmd = NULL;
770 nvmet_tcp_put_cmd(cmd);
771 } else {
772 nvmet_setup_response_pdu(cmd);
773 }
774 return 1;
775}
776
777static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
778 bool last_in_batch)
779{
780 struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
781 int ret = 0;
782
783 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
784 cmd = nvmet_tcp_fetch_cmd(queue);
785 if (unlikely(!cmd))
786 return 0;
787 }
788
789 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
790 ret = nvmet_try_send_data_pdu(cmd);
791 if (ret <= 0)
792 goto done_send;
793 }
794
795 if (cmd->state == NVMET_TCP_SEND_DATA) {
796 ret = nvmet_try_send_data(cmd, last_in_batch);
797 if (ret <= 0)
798 goto done_send;
799 }
800
801 if (cmd->state == NVMET_TCP_SEND_DDGST) {
802 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
803 if (ret <= 0)
804 goto done_send;
805 }
806
807 if (cmd->state == NVMET_TCP_SEND_R2T) {
808 ret = nvmet_try_send_r2t(cmd, last_in_batch);
809 if (ret <= 0)
810 goto done_send;
811 }
812
813 if (cmd->state == NVMET_TCP_SEND_RESPONSE)
814 ret = nvmet_try_send_response(cmd, last_in_batch);
815
816done_send:
817 if (ret < 0) {
818 if (ret == -EAGAIN)
819 return 0;
820 return ret;
821 }
822
823 return 1;
824}
825
826static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
827 int budget, int *sends)
828{
829 int i, ret = 0;
830
831 for (i = 0; i < budget; i++) {
832 ret = nvmet_tcp_try_send_one(queue, last_in_batch: i == budget - 1);
833 if (unlikely(ret < 0)) {
834 nvmet_tcp_socket_error(queue, status: ret);
835 goto done;
836 } else if (ret == 0) {
837 break;
838 }
839 (*sends)++;
840 }
841done:
842 return ret;
843}
844
845static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
846{
847 queue->offset = 0;
848 queue->left = sizeof(struct nvme_tcp_hdr);
849 queue->cmd = NULL;
850 queue->rcv_state = NVMET_TCP_RECV_PDU;
851}
852
853static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
854{
855 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req: queue->rcv_hash);
856
857 ahash_request_free(req: queue->rcv_hash);
858 ahash_request_free(req: queue->snd_hash);
859 crypto_free_ahash(tfm);
860}
861
862static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
863{
864 struct crypto_ahash *tfm;
865
866 tfm = crypto_alloc_ahash(alg_name: "crc32c", type: 0, CRYPTO_ALG_ASYNC);
867 if (IS_ERR(ptr: tfm))
868 return PTR_ERR(ptr: tfm);
869
870 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
871 if (!queue->snd_hash)
872 goto free_tfm;
873 ahash_request_set_callback(req: queue->snd_hash, flags: 0, NULL, NULL);
874
875 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
876 if (!queue->rcv_hash)
877 goto free_snd_hash;
878 ahash_request_set_callback(req: queue->rcv_hash, flags: 0, NULL, NULL);
879
880 return 0;
881free_snd_hash:
882 ahash_request_free(req: queue->snd_hash);
883free_tfm:
884 crypto_free_ahash(tfm);
885 return -ENOMEM;
886}
887
888
889static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
890{
891 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
892 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
893 struct msghdr msg = {};
894 struct kvec iov;
895 int ret;
896
897 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
898 pr_err("bad nvme-tcp pdu length (%d)\n",
899 le32_to_cpu(icreq->hdr.plen));
900 nvmet_tcp_fatal_error(queue);
901 return -EPROTO;
902 }
903
904 if (icreq->pfv != NVME_TCP_PFV_1_0) {
905 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
906 return -EPROTO;
907 }
908
909 if (icreq->hpda != 0) {
910 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
911 icreq->hpda);
912 return -EPROTO;
913 }
914
915 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
916 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
917 if (queue->hdr_digest || queue->data_digest) {
918 ret = nvmet_tcp_alloc_crypto(queue);
919 if (ret)
920 return ret;
921 }
922
923 memset(icresp, 0, sizeof(*icresp));
924 icresp->hdr.type = nvme_tcp_icresp;
925 icresp->hdr.hlen = sizeof(*icresp);
926 icresp->hdr.pdo = 0;
927 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
928 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
929 icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
930 icresp->cpda = 0;
931 if (queue->hdr_digest)
932 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
933 if (queue->data_digest)
934 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
935
936 iov.iov_base = icresp;
937 iov.iov_len = sizeof(*icresp);
938 ret = kernel_sendmsg(sock: queue->sock, msg: &msg, vec: &iov, num: 1, len: iov.iov_len);
939 if (ret < 0) {
940 queue->state = NVMET_TCP_Q_FAILED;
941 return ret; /* queue removal will cleanup */
942 }
943
944 queue->state = NVMET_TCP_Q_LIVE;
945 nvmet_prepare_receive_pdu(queue);
946 return 0;
947}
948
949static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
950 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
951{
952 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
953 int ret;
954
955 /*
956 * This command has not been processed yet, hence we are trying to
957 * figure out if there is still pending data left to receive. If
958 * we don't, we can simply prepare for the next pdu and bail out,
959 * otherwise we will need to prepare a buffer and receive the
960 * stale data before continuing forward.
961 */
962 if (!nvme_is_write(cmd: cmd->req.cmd) || !data_len ||
963 data_len > cmd->req.port->inline_data_size) {
964 nvmet_prepare_receive_pdu(queue);
965 return;
966 }
967
968 ret = nvmet_tcp_map_data(cmd);
969 if (unlikely(ret)) {
970 pr_err("queue %d: failed to map data\n", queue->idx);
971 nvmet_tcp_fatal_error(queue);
972 return;
973 }
974
975 queue->rcv_state = NVMET_TCP_RECV_DATA;
976 nvmet_tcp_build_pdu_iovec(cmd);
977 cmd->flags |= NVMET_TCP_F_INIT_FAILED;
978}
979
980static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
981{
982 struct nvme_tcp_data_pdu *data = &queue->pdu.data;
983 struct nvmet_tcp_cmd *cmd;
984 unsigned int exp_data_len;
985
986 if (likely(queue->nr_cmds)) {
987 if (unlikely(data->ttag >= queue->nr_cmds)) {
988 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
989 queue->idx, data->ttag, queue->nr_cmds);
990 goto err_proto;
991 }
992 cmd = &queue->cmds[data->ttag];
993 } else {
994 cmd = &queue->connect;
995 }
996
997 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
998 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
999 data->ttag, le32_to_cpu(data->data_offset),
1000 cmd->rbytes_done);
1001 goto err_proto;
1002 }
1003
1004 exp_data_len = le32_to_cpu(data->hdr.plen) -
1005 nvmet_tcp_hdgst_len(queue) -
1006 nvmet_tcp_ddgst_len(queue) -
1007 sizeof(*data);
1008
1009 cmd->pdu_len = le32_to_cpu(data->data_length);
1010 if (unlikely(cmd->pdu_len != exp_data_len ||
1011 cmd->pdu_len == 0 ||
1012 cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
1013 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
1014 goto err_proto;
1015 }
1016 cmd->pdu_recv = 0;
1017 nvmet_tcp_build_pdu_iovec(cmd);
1018 queue->cmd = cmd;
1019 queue->rcv_state = NVMET_TCP_RECV_DATA;
1020
1021 return 0;
1022
1023err_proto:
1024 /* FIXME: use proper transport errors */
1025 nvmet_tcp_fatal_error(queue);
1026 return -EPROTO;
1027}
1028
1029static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
1030{
1031 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1032 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1033 struct nvmet_req *req;
1034 int ret;
1035
1036 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1037 if (hdr->type != nvme_tcp_icreq) {
1038 pr_err("unexpected pdu type (%d) before icreq\n",
1039 hdr->type);
1040 nvmet_tcp_fatal_error(queue);
1041 return -EPROTO;
1042 }
1043 return nvmet_tcp_handle_icreq(queue);
1044 }
1045
1046 if (unlikely(hdr->type == nvme_tcp_icreq)) {
1047 pr_err("queue %d: received icreq pdu in state %d\n",
1048 queue->idx, queue->state);
1049 nvmet_tcp_fatal_error(queue);
1050 return -EPROTO;
1051 }
1052
1053 if (hdr->type == nvme_tcp_h2c_data) {
1054 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1055 if (unlikely(ret))
1056 return ret;
1057 return 0;
1058 }
1059
1060 queue->cmd = nvmet_tcp_get_cmd(queue);
1061 if (unlikely(!queue->cmd)) {
1062 /* This should never happen */
1063 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1064 queue->idx, queue->nr_cmds, queue->send_list_len,
1065 nvme_cmd->common.opcode);
1066 nvmet_tcp_fatal_error(queue);
1067 return -ENOMEM;
1068 }
1069
1070 req = &queue->cmd->req;
1071 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1072
1073 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1074 &queue->nvme_sq, &nvmet_tcp_ops))) {
1075 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1076 req->cmd, req->cmd->common.command_id,
1077 req->cmd->common.opcode,
1078 le32_to_cpu(req->cmd->common.dptr.sgl.length));
1079
1080 nvmet_tcp_handle_req_failure(queue, cmd: queue->cmd, req);
1081 return 0;
1082 }
1083
1084 ret = nvmet_tcp_map_data(cmd: queue->cmd);
1085 if (unlikely(ret)) {
1086 pr_err("queue %d: failed to map data\n", queue->idx);
1087 if (nvmet_tcp_has_inline_data(cmd: queue->cmd))
1088 nvmet_tcp_fatal_error(queue);
1089 else
1090 nvmet_req_complete(req, status: ret);
1091 ret = -EAGAIN;
1092 goto out;
1093 }
1094
1095 if (nvmet_tcp_need_data_in(cmd: queue->cmd)) {
1096 if (nvmet_tcp_has_inline_data(cmd: queue->cmd)) {
1097 queue->rcv_state = NVMET_TCP_RECV_DATA;
1098 nvmet_tcp_build_pdu_iovec(cmd: queue->cmd);
1099 return 0;
1100 }
1101 /* send back R2T */
1102 nvmet_tcp_queue_response(req: &queue->cmd->req);
1103 goto out;
1104 }
1105
1106 queue->cmd->req.execute(&queue->cmd->req);
1107out:
1108 nvmet_prepare_receive_pdu(queue);
1109 return ret;
1110}
1111
1112static const u8 nvme_tcp_pdu_sizes[] = {
1113 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu),
1114 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu),
1115 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu),
1116};
1117
1118static inline u8 nvmet_tcp_pdu_size(u8 type)
1119{
1120 size_t idx = type;
1121
1122 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1123 nvme_tcp_pdu_sizes[idx]) ?
1124 nvme_tcp_pdu_sizes[idx] : 0;
1125}
1126
1127static inline bool nvmet_tcp_pdu_valid(u8 type)
1128{
1129 switch (type) {
1130 case nvme_tcp_icreq:
1131 case nvme_tcp_cmd:
1132 case nvme_tcp_h2c_data:
1133 /* fallthru */
1134 return true;
1135 }
1136
1137 return false;
1138}
1139
1140static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1141 struct msghdr *msg, char *cbuf)
1142{
1143 struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1144 u8 ctype, level, description;
1145 int ret = 0;
1146
1147 ctype = tls_get_record_type(sk: queue->sock->sk, msg: cmsg);
1148 switch (ctype) {
1149 case 0:
1150 break;
1151 case TLS_RECORD_TYPE_DATA:
1152 break;
1153 case TLS_RECORD_TYPE_ALERT:
1154 tls_alert_recv(sk: queue->sock->sk, msg, level: &level, description: &description);
1155 if (level == TLS_ALERT_LEVEL_FATAL) {
1156 pr_err("queue %d: TLS Alert desc %u\n",
1157 queue->idx, description);
1158 ret = -ENOTCONN;
1159 } else {
1160 pr_warn("queue %d: TLS Alert desc %u\n",
1161 queue->idx, description);
1162 ret = -EAGAIN;
1163 }
1164 break;
1165 default:
1166 /* discard this record type */
1167 pr_err("queue %d: TLS record %d unhandled\n",
1168 queue->idx, ctype);
1169 ret = -EAGAIN;
1170 break;
1171 }
1172 return ret;
1173}
1174
1175static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1176{
1177 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1178 int len, ret;
1179 struct kvec iov;
1180 char cbuf[CMSG_LEN(sizeof(char))] = {};
1181 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1182
1183recv:
1184 iov.iov_base = (void *)&queue->pdu + queue->offset;
1185 iov.iov_len = queue->left;
1186 if (queue->tls_pskid) {
1187 msg.msg_control = cbuf;
1188 msg.msg_controllen = sizeof(cbuf);
1189 }
1190 len = kernel_recvmsg(sock: queue->sock, msg: &msg, vec: &iov, num: 1,
1191 len: iov.iov_len, flags: msg.msg_flags);
1192 if (unlikely(len < 0))
1193 return len;
1194 if (queue->tls_pskid) {
1195 ret = nvmet_tcp_tls_record_ok(queue, msg: &msg, cbuf);
1196 if (ret < 0)
1197 return ret;
1198 }
1199
1200 queue->offset += len;
1201 queue->left -= len;
1202 if (queue->left)
1203 return -EAGAIN;
1204
1205 if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1206 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1207
1208 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1209 pr_err("unexpected pdu type %d\n", hdr->type);
1210 nvmet_tcp_fatal_error(queue);
1211 return -EIO;
1212 }
1213
1214 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1215 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1216 return -EIO;
1217 }
1218
1219 queue->left = hdr->hlen - queue->offset + hdgst;
1220 goto recv;
1221 }
1222
1223 if (queue->hdr_digest &&
1224 nvmet_tcp_verify_hdgst(queue, pdu: &queue->pdu, len: hdr->hlen)) {
1225 nvmet_tcp_fatal_error(queue); /* fatal */
1226 return -EPROTO;
1227 }
1228
1229 if (queue->data_digest &&
1230 nvmet_tcp_check_ddgst(queue, pdu: &queue->pdu)) {
1231 nvmet_tcp_fatal_error(queue); /* fatal */
1232 return -EPROTO;
1233 }
1234
1235 return nvmet_tcp_done_recv_pdu(queue);
1236}
1237
1238static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1239{
1240 struct nvmet_tcp_queue *queue = cmd->queue;
1241
1242 nvmet_tcp_calc_ddgst(hash: queue->rcv_hash, cmd);
1243 queue->offset = 0;
1244 queue->left = NVME_TCP_DIGEST_LENGTH;
1245 queue->rcv_state = NVMET_TCP_RECV_DDGST;
1246}
1247
1248static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1249{
1250 struct nvmet_tcp_cmd *cmd = queue->cmd;
1251 int len, ret;
1252
1253 while (msg_data_left(msg: &cmd->recv_msg)) {
1254 len = sock_recvmsg(sock: cmd->queue->sock, msg: &cmd->recv_msg,
1255 flags: cmd->recv_msg.msg_flags);
1256 if (len <= 0)
1257 return len;
1258 if (queue->tls_pskid) {
1259 ret = nvmet_tcp_tls_record_ok(queue: cmd->queue,
1260 msg: &cmd->recv_msg, cbuf: cmd->recv_cbuf);
1261 if (ret < 0)
1262 return ret;
1263 }
1264
1265 cmd->pdu_recv += len;
1266 cmd->rbytes_done += len;
1267 }
1268
1269 if (queue->data_digest) {
1270 nvmet_tcp_prep_recv_ddgst(cmd);
1271 return 0;
1272 }
1273
1274 if (cmd->rbytes_done == cmd->req.transfer_len)
1275 nvmet_tcp_execute_request(cmd);
1276
1277 nvmet_prepare_receive_pdu(queue);
1278 return 0;
1279}
1280
1281static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1282{
1283 struct nvmet_tcp_cmd *cmd = queue->cmd;
1284 int ret, len;
1285 char cbuf[CMSG_LEN(sizeof(char))] = {};
1286 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1287 struct kvec iov = {
1288 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1289 .iov_len = queue->left
1290 };
1291
1292 if (queue->tls_pskid) {
1293 msg.msg_control = cbuf;
1294 msg.msg_controllen = sizeof(cbuf);
1295 }
1296 len = kernel_recvmsg(sock: queue->sock, msg: &msg, vec: &iov, num: 1,
1297 len: iov.iov_len, flags: msg.msg_flags);
1298 if (unlikely(len < 0))
1299 return len;
1300 if (queue->tls_pskid) {
1301 ret = nvmet_tcp_tls_record_ok(queue, msg: &msg, cbuf);
1302 if (ret < 0)
1303 return ret;
1304 }
1305
1306 queue->offset += len;
1307 queue->left -= len;
1308 if (queue->left)
1309 return -EAGAIN;
1310
1311 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1312 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1313 queue->idx, cmd->req.cmd->common.command_id,
1314 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1315 le32_to_cpu(cmd->exp_ddgst));
1316 nvmet_req_uninit(req: &cmd->req);
1317 nvmet_tcp_free_cmd_buffers(cmd);
1318 nvmet_tcp_fatal_error(queue);
1319 ret = -EPROTO;
1320 goto out;
1321 }
1322
1323 if (cmd->rbytes_done == cmd->req.transfer_len)
1324 nvmet_tcp_execute_request(cmd);
1325
1326 ret = 0;
1327out:
1328 nvmet_prepare_receive_pdu(queue);
1329 return ret;
1330}
1331
1332static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1333{
1334 int result = 0;
1335
1336 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1337 return 0;
1338
1339 if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1340 result = nvmet_tcp_try_recv_pdu(queue);
1341 if (result != 0)
1342 goto done_recv;
1343 }
1344
1345 if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1346 result = nvmet_tcp_try_recv_data(queue);
1347 if (result != 0)
1348 goto done_recv;
1349 }
1350
1351 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1352 result = nvmet_tcp_try_recv_ddgst(queue);
1353 if (result != 0)
1354 goto done_recv;
1355 }
1356
1357done_recv:
1358 if (result < 0) {
1359 if (result == -EAGAIN)
1360 return 0;
1361 return result;
1362 }
1363 return 1;
1364}
1365
1366static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1367 int budget, int *recvs)
1368{
1369 int i, ret = 0;
1370
1371 for (i = 0; i < budget; i++) {
1372 ret = nvmet_tcp_try_recv_one(queue);
1373 if (unlikely(ret < 0)) {
1374 nvmet_tcp_socket_error(queue, status: ret);
1375 goto done;
1376 } else if (ret == 0) {
1377 break;
1378 }
1379 (*recvs)++;
1380 }
1381done:
1382 return ret;
1383}
1384
1385static void nvmet_tcp_release_queue(struct kref *kref)
1386{
1387 struct nvmet_tcp_queue *queue =
1388 container_of(kref, struct nvmet_tcp_queue, kref);
1389
1390 WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1391 queue_work(wq: nvmet_wq, work: &queue->release_work);
1392}
1393
1394static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1395{
1396 spin_lock_bh(lock: &queue->state_lock);
1397 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1398 /* Socket closed during handshake */
1399 tls_handshake_cancel(sk: queue->sock->sk);
1400 }
1401 if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1402 queue->state = NVMET_TCP_Q_DISCONNECTING;
1403 kref_put(kref: &queue->kref, release: nvmet_tcp_release_queue);
1404 }
1405 spin_unlock_bh(lock: &queue->state_lock);
1406}
1407
1408static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1409{
1410 queue->poll_end = jiffies + usecs_to_jiffies(u: idle_poll_period_usecs);
1411}
1412
1413static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1414 int ops)
1415{
1416 if (!idle_poll_period_usecs)
1417 return false;
1418
1419 if (ops)
1420 nvmet_tcp_arm_queue_deadline(queue);
1421
1422 return !time_after(jiffies, queue->poll_end);
1423}
1424
1425static void nvmet_tcp_io_work(struct work_struct *w)
1426{
1427 struct nvmet_tcp_queue *queue =
1428 container_of(w, struct nvmet_tcp_queue, io_work);
1429 bool pending;
1430 int ret, ops = 0;
1431
1432 do {
1433 pending = false;
1434
1435 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, recvs: &ops);
1436 if (ret > 0)
1437 pending = true;
1438 else if (ret < 0)
1439 return;
1440
1441 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, sends: &ops);
1442 if (ret > 0)
1443 pending = true;
1444 else if (ret < 0)
1445 return;
1446
1447 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1448
1449 /*
1450 * Requeue the worker if idle deadline period is in progress or any
1451 * ops activity was recorded during the do-while loop above.
1452 */
1453 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1454 queue_work_on(cpu: queue_cpu(queue), wq: nvmet_tcp_wq, work: &queue->io_work);
1455}
1456
1457static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1458 struct nvmet_tcp_cmd *c)
1459{
1460 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1461
1462 c->queue = queue;
1463 c->req.port = queue->port->nport;
1464
1465 c->cmd_pdu = page_frag_alloc(nc: &queue->pf_cache,
1466 fragsz: sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1467 if (!c->cmd_pdu)
1468 return -ENOMEM;
1469 c->req.cmd = &c->cmd_pdu->cmd;
1470
1471 c->rsp_pdu = page_frag_alloc(nc: &queue->pf_cache,
1472 fragsz: sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1473 if (!c->rsp_pdu)
1474 goto out_free_cmd;
1475 c->req.cqe = &c->rsp_pdu->cqe;
1476
1477 c->data_pdu = page_frag_alloc(nc: &queue->pf_cache,
1478 fragsz: sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1479 if (!c->data_pdu)
1480 goto out_free_rsp;
1481
1482 c->r2t_pdu = page_frag_alloc(nc: &queue->pf_cache,
1483 fragsz: sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1484 if (!c->r2t_pdu)
1485 goto out_free_data;
1486
1487 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1488 c->recv_msg.msg_control = c->recv_cbuf;
1489 c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1490 }
1491 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1492
1493 list_add_tail(new: &c->entry, head: &queue->free_list);
1494
1495 return 0;
1496out_free_data:
1497 page_frag_free(addr: c->data_pdu);
1498out_free_rsp:
1499 page_frag_free(addr: c->rsp_pdu);
1500out_free_cmd:
1501 page_frag_free(addr: c->cmd_pdu);
1502 return -ENOMEM;
1503}
1504
1505static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1506{
1507 page_frag_free(addr: c->r2t_pdu);
1508 page_frag_free(addr: c->data_pdu);
1509 page_frag_free(addr: c->rsp_pdu);
1510 page_frag_free(addr: c->cmd_pdu);
1511}
1512
1513static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1514{
1515 struct nvmet_tcp_cmd *cmds;
1516 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1517
1518 cmds = kcalloc(n: nr_cmds, size: sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1519 if (!cmds)
1520 goto out;
1521
1522 for (i = 0; i < nr_cmds; i++) {
1523 ret = nvmet_tcp_alloc_cmd(queue, c: cmds + i);
1524 if (ret)
1525 goto out_free;
1526 }
1527
1528 queue->cmds = cmds;
1529
1530 return 0;
1531out_free:
1532 while (--i >= 0)
1533 nvmet_tcp_free_cmd(c: cmds + i);
1534 kfree(objp: cmds);
1535out:
1536 return ret;
1537}
1538
1539static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1540{
1541 struct nvmet_tcp_cmd *cmds = queue->cmds;
1542 int i;
1543
1544 for (i = 0; i < queue->nr_cmds; i++)
1545 nvmet_tcp_free_cmd(c: cmds + i);
1546
1547 nvmet_tcp_free_cmd(c: &queue->connect);
1548 kfree(objp: cmds);
1549}
1550
1551static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1552{
1553 struct socket *sock = queue->sock;
1554
1555 write_lock_bh(&sock->sk->sk_callback_lock);
1556 sock->sk->sk_data_ready = queue->data_ready;
1557 sock->sk->sk_state_change = queue->state_change;
1558 sock->sk->sk_write_space = queue->write_space;
1559 sock->sk->sk_user_data = NULL;
1560 write_unlock_bh(&sock->sk->sk_callback_lock);
1561}
1562
1563static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1564{
1565 struct nvmet_tcp_cmd *cmd = queue->cmds;
1566 int i;
1567
1568 for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1569 if (nvmet_tcp_need_data_in(cmd))
1570 nvmet_req_uninit(req: &cmd->req);
1571 }
1572
1573 if (!queue->nr_cmds && nvmet_tcp_need_data_in(cmd: &queue->connect)) {
1574 /* failed in connect */
1575 nvmet_req_uninit(req: &queue->connect.req);
1576 }
1577}
1578
1579static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1580{
1581 struct nvmet_tcp_cmd *cmd = queue->cmds;
1582 int i;
1583
1584 for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1585 if (nvmet_tcp_need_data_in(cmd))
1586 nvmet_tcp_free_cmd_buffers(cmd);
1587 }
1588
1589 if (!queue->nr_cmds && nvmet_tcp_need_data_in(cmd: &queue->connect))
1590 nvmet_tcp_free_cmd_buffers(cmd: &queue->connect);
1591}
1592
1593static void nvmet_tcp_release_queue_work(struct work_struct *w)
1594{
1595 struct nvmet_tcp_queue *queue =
1596 container_of(w, struct nvmet_tcp_queue, release_work);
1597
1598 mutex_lock(&nvmet_tcp_queue_mutex);
1599 list_del_init(entry: &queue->queue_list);
1600 mutex_unlock(lock: &nvmet_tcp_queue_mutex);
1601
1602 nvmet_tcp_restore_socket_callbacks(queue);
1603 cancel_delayed_work_sync(dwork: &queue->tls_handshake_tmo_work);
1604 cancel_work_sync(work: &queue->io_work);
1605 /* stop accepting incoming data */
1606 queue->rcv_state = NVMET_TCP_RECV_ERR;
1607
1608 nvmet_tcp_uninit_data_in_cmds(queue);
1609 nvmet_sq_destroy(sq: &queue->nvme_sq);
1610 cancel_work_sync(work: &queue->io_work);
1611 nvmet_tcp_free_cmd_data_in_buffers(queue);
1612 /* ->sock will be released by fput() */
1613 fput(queue->sock->file);
1614 nvmet_tcp_free_cmds(queue);
1615 if (queue->hdr_digest || queue->data_digest)
1616 nvmet_tcp_free_crypto(queue);
1617 ida_free(&nvmet_tcp_queue_ida, id: queue->idx);
1618 page_frag_cache_drain(nc: &queue->pf_cache);
1619 kfree(objp: queue);
1620}
1621
1622static void nvmet_tcp_data_ready(struct sock *sk)
1623{
1624 struct nvmet_tcp_queue *queue;
1625
1626 trace_sk_data_ready(sk);
1627
1628 read_lock_bh(&sk->sk_callback_lock);
1629 queue = sk->sk_user_data;
1630 if (likely(queue)) {
1631 if (queue->data_ready)
1632 queue->data_ready(sk);
1633 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1634 queue_work_on(cpu: queue_cpu(queue), wq: nvmet_tcp_wq,
1635 work: &queue->io_work);
1636 }
1637 read_unlock_bh(&sk->sk_callback_lock);
1638}
1639
1640static void nvmet_tcp_write_space(struct sock *sk)
1641{
1642 struct nvmet_tcp_queue *queue;
1643
1644 read_lock_bh(&sk->sk_callback_lock);
1645 queue = sk->sk_user_data;
1646 if (unlikely(!queue))
1647 goto out;
1648
1649 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1650 queue->write_space(sk);
1651 goto out;
1652 }
1653
1654 if (sk_stream_is_writeable(sk)) {
1655 clear_bit(SOCK_NOSPACE, addr: &sk->sk_socket->flags);
1656 queue_work_on(cpu: queue_cpu(queue), wq: nvmet_tcp_wq, work: &queue->io_work);
1657 }
1658out:
1659 read_unlock_bh(&sk->sk_callback_lock);
1660}
1661
1662static void nvmet_tcp_state_change(struct sock *sk)
1663{
1664 struct nvmet_tcp_queue *queue;
1665
1666 read_lock_bh(&sk->sk_callback_lock);
1667 queue = sk->sk_user_data;
1668 if (!queue)
1669 goto done;
1670
1671 switch (sk->sk_state) {
1672 case TCP_FIN_WAIT2:
1673 case TCP_LAST_ACK:
1674 break;
1675 case TCP_FIN_WAIT1:
1676 case TCP_CLOSE_WAIT:
1677 case TCP_CLOSE:
1678 /* FALLTHRU */
1679 nvmet_tcp_schedule_release_queue(queue);
1680 break;
1681 default:
1682 pr_warn("queue %d unhandled state %d\n",
1683 queue->idx, sk->sk_state);
1684 }
1685done:
1686 read_unlock_bh(&sk->sk_callback_lock);
1687}
1688
1689static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1690{
1691 struct socket *sock = queue->sock;
1692 struct inet_sock *inet = inet_sk(sock->sk);
1693 int ret;
1694
1695 ret = kernel_getsockname(sock,
1696 addr: (struct sockaddr *)&queue->sockaddr);
1697 if (ret < 0)
1698 return ret;
1699
1700 ret = kernel_getpeername(sock,
1701 addr: (struct sockaddr *)&queue->sockaddr_peer);
1702 if (ret < 0)
1703 return ret;
1704
1705 /*
1706 * Cleanup whatever is sitting in the TCP transmit queue on socket
1707 * close. This is done to prevent stale data from being sent should
1708 * the network connection be restored before TCP times out.
1709 */
1710 sock_no_linger(sk: sock->sk);
1711
1712 if (so_priority > 0)
1713 sock_set_priority(sk: sock->sk, priority: so_priority);
1714
1715 /* Set socket type of service */
1716 if (inet->rcv_tos > 0)
1717 ip_sock_set_tos(sk: sock->sk, val: inet->rcv_tos);
1718
1719 ret = 0;
1720 write_lock_bh(&sock->sk->sk_callback_lock);
1721 if (sock->sk->sk_state != TCP_ESTABLISHED) {
1722 /*
1723 * If the socket is already closing, don't even start
1724 * consuming it
1725 */
1726 ret = -ENOTCONN;
1727 } else {
1728 sock->sk->sk_user_data = queue;
1729 queue->data_ready = sock->sk->sk_data_ready;
1730 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1731 queue->state_change = sock->sk->sk_state_change;
1732 sock->sk->sk_state_change = nvmet_tcp_state_change;
1733 queue->write_space = sock->sk->sk_write_space;
1734 sock->sk->sk_write_space = nvmet_tcp_write_space;
1735 if (idle_poll_period_usecs)
1736 nvmet_tcp_arm_queue_deadline(queue);
1737 queue_work_on(cpu: queue_cpu(queue), wq: nvmet_tcp_wq, work: &queue->io_work);
1738 }
1739 write_unlock_bh(&sock->sk->sk_callback_lock);
1740
1741 return ret;
1742}
1743
1744#ifdef CONFIG_NVME_TARGET_TCP_TLS
1745static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1746{
1747 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1748 int len, ret;
1749 struct kvec iov = {
1750 .iov_base = (u8 *)&queue->pdu + queue->offset,
1751 .iov_len = sizeof(struct nvme_tcp_hdr),
1752 };
1753 char cbuf[CMSG_LEN(sizeof(char))] = {};
1754 struct msghdr msg = {
1755 .msg_control = cbuf,
1756 .msg_controllen = sizeof(cbuf),
1757 .msg_flags = MSG_PEEK,
1758 };
1759
1760 if (nvmet_port_secure_channel_required(port: queue->port->nport))
1761 return 0;
1762
1763 len = kernel_recvmsg(sock: queue->sock, msg: &msg, vec: &iov, num: 1,
1764 len: iov.iov_len, flags: msg.msg_flags);
1765 if (unlikely(len < 0)) {
1766 pr_debug("queue %d: peek error %d\n",
1767 queue->idx, len);
1768 return len;
1769 }
1770
1771 ret = nvmet_tcp_tls_record_ok(queue, msg: &msg, cbuf);
1772 if (ret < 0)
1773 return ret;
1774
1775 if (len < sizeof(struct nvme_tcp_hdr)) {
1776 pr_debug("queue %d: short read, %d bytes missing\n",
1777 queue->idx, (int)iov.iov_len - len);
1778 return -EAGAIN;
1779 }
1780 pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1781 queue->idx, hdr->type, hdr->hlen, hdr->plen,
1782 (int)sizeof(struct nvme_tcp_icreq_pdu));
1783 if (hdr->type == nvme_tcp_icreq &&
1784 hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1785 hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) {
1786 pr_debug("queue %d: icreq detected\n",
1787 queue->idx);
1788 return len;
1789 }
1790 return 0;
1791}
1792
1793static void nvmet_tcp_tls_handshake_done(void *data, int status,
1794 key_serial_t peerid)
1795{
1796 struct nvmet_tcp_queue *queue = data;
1797
1798 pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1799 queue->idx, peerid, status);
1800 spin_lock_bh(lock: &queue->state_lock);
1801 if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1802 spin_unlock_bh(lock: &queue->state_lock);
1803 return;
1804 }
1805 if (!status) {
1806 queue->tls_pskid = peerid;
1807 queue->state = NVMET_TCP_Q_CONNECTING;
1808 } else
1809 queue->state = NVMET_TCP_Q_FAILED;
1810 spin_unlock_bh(lock: &queue->state_lock);
1811
1812 cancel_delayed_work_sync(dwork: &queue->tls_handshake_tmo_work);
1813 if (status)
1814 nvmet_tcp_schedule_release_queue(queue);
1815 else
1816 nvmet_tcp_set_queue_sock(queue);
1817 kref_put(kref: &queue->kref, release: nvmet_tcp_release_queue);
1818}
1819
1820static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1821{
1822 struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1823 struct nvmet_tcp_queue, tls_handshake_tmo_work);
1824
1825 pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1826 /*
1827 * If tls_handshake_cancel() fails we've lost the race with
1828 * nvmet_tcp_tls_handshake_done() */
1829 if (!tls_handshake_cancel(sk: queue->sock->sk))
1830 return;
1831 spin_lock_bh(lock: &queue->state_lock);
1832 if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1833 spin_unlock_bh(lock: &queue->state_lock);
1834 return;
1835 }
1836 queue->state = NVMET_TCP_Q_FAILED;
1837 spin_unlock_bh(lock: &queue->state_lock);
1838 nvmet_tcp_schedule_release_queue(queue);
1839 kref_put(kref: &queue->kref, release: nvmet_tcp_release_queue);
1840}
1841
1842static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1843{
1844 int ret = -EOPNOTSUPP;
1845 struct tls_handshake_args args;
1846
1847 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1848 pr_warn("cannot start TLS in state %d\n", queue->state);
1849 return -EINVAL;
1850 }
1851
1852 kref_get(kref: &queue->kref);
1853 pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1854 memset(&args, 0, sizeof(args));
1855 args.ta_sock = queue->sock;
1856 args.ta_done = nvmet_tcp_tls_handshake_done;
1857 args.ta_data = queue;
1858 args.ta_keyring = key_serial(key: queue->port->nport->keyring);
1859 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1860
1861 ret = tls_server_hello_psk(args: &args, GFP_KERNEL);
1862 if (ret) {
1863 kref_put(kref: &queue->kref, release: nvmet_tcp_release_queue);
1864 pr_err("failed to start TLS, err=%d\n", ret);
1865 } else {
1866 queue_delayed_work(wq: nvmet_wq, dwork: &queue->tls_handshake_tmo_work,
1867 delay: tls_handshake_timeout * HZ);
1868 }
1869 return ret;
1870}
1871#else
1872static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {}
1873#endif
1874
1875static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1876 struct socket *newsock)
1877{
1878 struct nvmet_tcp_queue *queue;
1879 struct file *sock_file = NULL;
1880 int ret;
1881
1882 queue = kzalloc(size: sizeof(*queue), GFP_KERNEL);
1883 if (!queue) {
1884 ret = -ENOMEM;
1885 goto out_release;
1886 }
1887
1888 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1889 INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1890 kref_init(kref: &queue->kref);
1891 queue->sock = newsock;
1892 queue->port = port;
1893 queue->nr_cmds = 0;
1894 spin_lock_init(&queue->state_lock);
1895 if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1896 NVMF_TCP_SECTYPE_TLS13)
1897 queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1898 else
1899 queue->state = NVMET_TCP_Q_CONNECTING;
1900 INIT_LIST_HEAD(list: &queue->free_list);
1901 init_llist_head(list: &queue->resp_list);
1902 INIT_LIST_HEAD(list: &queue->resp_send_list);
1903
1904 sock_file = sock_alloc_file(sock: queue->sock, O_CLOEXEC, NULL);
1905 if (IS_ERR(ptr: sock_file)) {
1906 ret = PTR_ERR(ptr: sock_file);
1907 goto out_free_queue;
1908 }
1909
1910 queue->idx = ida_alloc(ida: &nvmet_tcp_queue_ida, GFP_KERNEL);
1911 if (queue->idx < 0) {
1912 ret = queue->idx;
1913 goto out_sock;
1914 }
1915
1916 ret = nvmet_tcp_alloc_cmd(queue, c: &queue->connect);
1917 if (ret)
1918 goto out_ida_remove;
1919
1920 ret = nvmet_sq_init(sq: &queue->nvme_sq);
1921 if (ret)
1922 goto out_free_connect;
1923
1924 nvmet_prepare_receive_pdu(queue);
1925
1926 mutex_lock(&nvmet_tcp_queue_mutex);
1927 list_add_tail(new: &queue->queue_list, head: &nvmet_tcp_queue_list);
1928 mutex_unlock(lock: &nvmet_tcp_queue_mutex);
1929
1930 INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1931 nvmet_tcp_tls_handshake_timeout);
1932#ifdef CONFIG_NVME_TARGET_TCP_TLS
1933 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1934 struct sock *sk = queue->sock->sk;
1935
1936 /* Restore the default callbacks before starting upcall */
1937 read_lock_bh(&sk->sk_callback_lock);
1938 sk->sk_user_data = NULL;
1939 sk->sk_data_ready = port->data_ready;
1940 read_unlock_bh(&sk->sk_callback_lock);
1941 if (!nvmet_tcp_try_peek_pdu(queue)) {
1942 if (!nvmet_tcp_tls_handshake(queue))
1943 return;
1944 /* TLS handshake failed, terminate the connection */
1945 goto out_destroy_sq;
1946 }
1947 /* Not a TLS connection, continue with normal processing */
1948 queue->state = NVMET_TCP_Q_CONNECTING;
1949 }
1950#endif
1951
1952 ret = nvmet_tcp_set_queue_sock(queue);
1953 if (ret)
1954 goto out_destroy_sq;
1955
1956 return;
1957out_destroy_sq:
1958 mutex_lock(&nvmet_tcp_queue_mutex);
1959 list_del_init(entry: &queue->queue_list);
1960 mutex_unlock(lock: &nvmet_tcp_queue_mutex);
1961 nvmet_sq_destroy(sq: &queue->nvme_sq);
1962out_free_connect:
1963 nvmet_tcp_free_cmd(c: &queue->connect);
1964out_ida_remove:
1965 ida_free(&nvmet_tcp_queue_ida, id: queue->idx);
1966out_sock:
1967 fput(queue->sock->file);
1968out_free_queue:
1969 kfree(objp: queue);
1970out_release:
1971 pr_err("failed to allocate queue, error %d\n", ret);
1972 if (!sock_file)
1973 sock_release(sock: newsock);
1974}
1975
1976static void nvmet_tcp_accept_work(struct work_struct *w)
1977{
1978 struct nvmet_tcp_port *port =
1979 container_of(w, struct nvmet_tcp_port, accept_work);
1980 struct socket *newsock;
1981 int ret;
1982
1983 while (true) {
1984 ret = kernel_accept(sock: port->sock, newsock: &newsock, O_NONBLOCK);
1985 if (ret < 0) {
1986 if (ret != -EAGAIN)
1987 pr_warn("failed to accept err=%d\n", ret);
1988 return;
1989 }
1990 nvmet_tcp_alloc_queue(port, newsock);
1991 }
1992}
1993
1994static void nvmet_tcp_listen_data_ready(struct sock *sk)
1995{
1996 struct nvmet_tcp_port *port;
1997
1998 trace_sk_data_ready(sk);
1999
2000 read_lock_bh(&sk->sk_callback_lock);
2001 port = sk->sk_user_data;
2002 if (!port)
2003 goto out;
2004
2005 if (sk->sk_state == TCP_LISTEN)
2006 queue_work(wq: nvmet_wq, work: &port->accept_work);
2007out:
2008 read_unlock_bh(&sk->sk_callback_lock);
2009}
2010
2011static int nvmet_tcp_add_port(struct nvmet_port *nport)
2012{
2013 struct nvmet_tcp_port *port;
2014 __kernel_sa_family_t af;
2015 int ret;
2016
2017 port = kzalloc(size: sizeof(*port), GFP_KERNEL);
2018 if (!port)
2019 return -ENOMEM;
2020
2021 switch (nport->disc_addr.adrfam) {
2022 case NVMF_ADDR_FAMILY_IP4:
2023 af = AF_INET;
2024 break;
2025 case NVMF_ADDR_FAMILY_IP6:
2026 af = AF_INET6;
2027 break;
2028 default:
2029 pr_err("address family %d not supported\n",
2030 nport->disc_addr.adrfam);
2031 ret = -EINVAL;
2032 goto err_port;
2033 }
2034
2035 ret = inet_pton_with_scope(net: &init_net, af, src: nport->disc_addr.traddr,
2036 port: nport->disc_addr.trsvcid, addr: &port->addr);
2037 if (ret) {
2038 pr_err("malformed ip/port passed: %s:%s\n",
2039 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2040 goto err_port;
2041 }
2042
2043 port->nport = nport;
2044 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2045 if (port->nport->inline_data_size < 0)
2046 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2047
2048 ret = sock_create(family: port->addr.ss_family, type: SOCK_STREAM,
2049 IPPROTO_TCP, res: &port->sock);
2050 if (ret) {
2051 pr_err("failed to create a socket\n");
2052 goto err_port;
2053 }
2054
2055 port->sock->sk->sk_user_data = port;
2056 port->data_ready = port->sock->sk->sk_data_ready;
2057 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2058 sock_set_reuseaddr(sk: port->sock->sk);
2059 tcp_sock_set_nodelay(sk: port->sock->sk);
2060 if (so_priority > 0)
2061 sock_set_priority(sk: port->sock->sk, priority: so_priority);
2062
2063 ret = kernel_bind(sock: port->sock, addr: (struct sockaddr *)&port->addr,
2064 addrlen: sizeof(port->addr));
2065 if (ret) {
2066 pr_err("failed to bind port socket %d\n", ret);
2067 goto err_sock;
2068 }
2069
2070 ret = kernel_listen(sock: port->sock, NVMET_TCP_BACKLOG);
2071 if (ret) {
2072 pr_err("failed to listen %d on port sock\n", ret);
2073 goto err_sock;
2074 }
2075
2076 nport->priv = port;
2077 pr_info("enabling port %d (%pISpc)\n",
2078 le16_to_cpu(nport->disc_addr.portid), &port->addr);
2079
2080 return 0;
2081
2082err_sock:
2083 sock_release(sock: port->sock);
2084err_port:
2085 kfree(objp: port);
2086 return ret;
2087}
2088
2089static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2090{
2091 struct nvmet_tcp_queue *queue;
2092
2093 mutex_lock(&nvmet_tcp_queue_mutex);
2094 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2095 if (queue->port == port)
2096 kernel_sock_shutdown(sock: queue->sock, how: SHUT_RDWR);
2097 mutex_unlock(lock: &nvmet_tcp_queue_mutex);
2098}
2099
2100static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2101{
2102 struct nvmet_tcp_port *port = nport->priv;
2103
2104 write_lock_bh(&port->sock->sk->sk_callback_lock);
2105 port->sock->sk->sk_data_ready = port->data_ready;
2106 port->sock->sk->sk_user_data = NULL;
2107 write_unlock_bh(&port->sock->sk->sk_callback_lock);
2108 cancel_work_sync(work: &port->accept_work);
2109 /*
2110 * Destroy the remaining queues, which are not belong to any
2111 * controller yet.
2112 */
2113 nvmet_tcp_destroy_port_queues(port);
2114
2115 sock_release(sock: port->sock);
2116 kfree(objp: port);
2117}
2118
2119static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2120{
2121 struct nvmet_tcp_queue *queue;
2122
2123 mutex_lock(&nvmet_tcp_queue_mutex);
2124 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2125 if (queue->nvme_sq.ctrl == ctrl)
2126 kernel_sock_shutdown(sock: queue->sock, how: SHUT_RDWR);
2127 mutex_unlock(lock: &nvmet_tcp_queue_mutex);
2128}
2129
2130static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2131{
2132 struct nvmet_tcp_queue *queue =
2133 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2134
2135 if (sq->qid == 0) {
2136 struct nvmet_tcp_queue *q;
2137 int pending = 0;
2138
2139 /* Check for pending controller teardown */
2140 mutex_lock(&nvmet_tcp_queue_mutex);
2141 list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) {
2142 if (q->nvme_sq.ctrl == sq->ctrl &&
2143 q->state == NVMET_TCP_Q_DISCONNECTING)
2144 pending++;
2145 }
2146 mutex_unlock(lock: &nvmet_tcp_queue_mutex);
2147 if (pending > NVMET_TCP_BACKLOG)
2148 return NVME_SC_CONNECT_CTRL_BUSY;
2149 }
2150
2151 queue->nr_cmds = sq->size * 2;
2152 if (nvmet_tcp_alloc_cmds(queue))
2153 return NVME_SC_INTERNAL;
2154 return 0;
2155}
2156
2157static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2158 struct nvmet_port *nport, char *traddr)
2159{
2160 struct nvmet_tcp_port *port = nport->priv;
2161
2162 if (inet_addr_is_any(addr: (struct sockaddr *)&port->addr)) {
2163 struct nvmet_tcp_cmd *cmd =
2164 container_of(req, struct nvmet_tcp_cmd, req);
2165 struct nvmet_tcp_queue *queue = cmd->queue;
2166
2167 sprintf(buf: traddr, fmt: "%pISc", (struct sockaddr *)&queue->sockaddr);
2168 } else {
2169 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2170 }
2171}
2172
2173static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2174 .owner = THIS_MODULE,
2175 .type = NVMF_TRTYPE_TCP,
2176 .msdbd = 1,
2177 .add_port = nvmet_tcp_add_port,
2178 .remove_port = nvmet_tcp_remove_port,
2179 .queue_response = nvmet_tcp_queue_response,
2180 .delete_ctrl = nvmet_tcp_delete_ctrl,
2181 .install_queue = nvmet_tcp_install_queue,
2182 .disc_traddr = nvmet_tcp_disc_port_addr,
2183};
2184
2185static int __init nvmet_tcp_init(void)
2186{
2187 int ret;
2188
2189 nvmet_tcp_wq = alloc_workqueue(fmt: "nvmet_tcp_wq",
2190 flags: WQ_MEM_RECLAIM | WQ_HIGHPRI, max_active: 0);
2191 if (!nvmet_tcp_wq)
2192 return -ENOMEM;
2193
2194 ret = nvmet_register_transport(ops: &nvmet_tcp_ops);
2195 if (ret)
2196 goto err;
2197
2198 return 0;
2199err:
2200 destroy_workqueue(wq: nvmet_tcp_wq);
2201 return ret;
2202}
2203
2204static void __exit nvmet_tcp_exit(void)
2205{
2206 struct nvmet_tcp_queue *queue;
2207
2208 nvmet_unregister_transport(ops: &nvmet_tcp_ops);
2209
2210 flush_workqueue(nvmet_wq);
2211 mutex_lock(&nvmet_tcp_queue_mutex);
2212 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2213 kernel_sock_shutdown(sock: queue->sock, how: SHUT_RDWR);
2214 mutex_unlock(lock: &nvmet_tcp_queue_mutex);
2215 flush_workqueue(nvmet_wq);
2216
2217 destroy_workqueue(wq: nvmet_tcp_wq);
2218 ida_destroy(ida: &nvmet_tcp_queue_ida);
2219}
2220
2221module_init(nvmet_tcp_init);
2222module_exit(nvmet_tcp_exit);
2223
2224MODULE_DESCRIPTION("NVMe target TCP transport driver");
2225MODULE_LICENSE("GPL v2");
2226MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
2227

source code of linux/drivers/nvme/target/tcp.c