1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40#include <linux/kernel.h>
41#include <linux/module.h>
42#include <linux/pci.h>
43#include <linux/pci-ecam.h>
44#include <linux/delay.h>
45#include <linux/semaphore.h>
46#include <linux/irq.h>
47#include <linux/msi.h>
48#include <linux/hyperv.h>
49#include <linux/refcount.h>
50#include <linux/irqdomain.h>
51#include <linux/acpi.h>
52#include <linux/sizes.h>
53#include <linux/of_irq.h>
54#include <asm/mshyperv.h>
55
56/*
57 * Protocol versions. The low word is the minor version, the high word the
58 * major version.
59 */
60
61#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
62#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
63#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
64
65enum pci_protocol_version_t {
66 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
67 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
68 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */
69 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */
70};
71
72#define CPU_AFFINITY_ALL -1ULL
73
74/*
75 * Supported protocol versions in the order of probing - highest go
76 * first.
77 */
78static enum pci_protocol_version_t pci_protocol_versions[] = {
79 PCI_PROTOCOL_VERSION_1_4,
80 PCI_PROTOCOL_VERSION_1_3,
81 PCI_PROTOCOL_VERSION_1_2,
82 PCI_PROTOCOL_VERSION_1_1,
83};
84
85#define PCI_CONFIG_MMIO_LENGTH 0x2000
86#define CFG_PAGE_OFFSET 0x1000
87#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
88
89#define MAX_SUPPORTED_MSI_MESSAGES 0x400
90
91#define STATUS_REVISION_MISMATCH 0xC0000059
92
93/* space for 32bit serial number as string */
94#define SLOT_NAME_SIZE 11
95
96/*
97 * Size of requestor for VMbus; the value is based on the observation
98 * that having more than one request outstanding is 'rare', and so 64
99 * should be generous in ensuring that we don't ever run out.
100 */
101#define HV_PCI_RQSTOR_SIZE 64
102
103/*
104 * Message Types
105 */
106
107enum pci_message_type {
108 /*
109 * Version 1.1
110 */
111 PCI_MESSAGE_BASE = 0x42490000,
112 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
113 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
114 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
115 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
116 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
117 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
118 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
119 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
120 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
121 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
122 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
123 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
124 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
125 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
126 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
127 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
128 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
129 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
130 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
131 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
132 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
133 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
134 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
135 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19,
136 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A,
137 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B,
138 PCI_MESSAGE_MAXIMUM
139};
140
141/*
142 * Structures defining the virtual PCI Express protocol.
143 */
144
145union pci_version {
146 struct {
147 u16 minor_version;
148 u16 major_version;
149 } parts;
150 u32 version;
151} __packed;
152
153/*
154 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
155 * which is all this driver does. This representation is the one used in
156 * Windows, which is what is expected when sending this back and forth with
157 * the Hyper-V parent partition.
158 */
159union win_slot_encoding {
160 struct {
161 u32 dev:5;
162 u32 func:3;
163 u32 reserved:24;
164 } bits;
165 u32 slot;
166} __packed;
167
168/*
169 * Pretty much as defined in the PCI Specifications.
170 */
171struct pci_function_description {
172 u16 v_id; /* vendor ID */
173 u16 d_id; /* device ID */
174 u8 rev;
175 u8 prog_intf;
176 u8 subclass;
177 u8 base_class;
178 u32 subsystem_id;
179 union win_slot_encoding win_slot;
180 u32 ser; /* serial number */
181} __packed;
182
183enum pci_device_description_flags {
184 HV_PCI_DEVICE_FLAG_NONE = 0x0,
185 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1,
186};
187
188struct pci_function_description2 {
189 u16 v_id; /* vendor ID */
190 u16 d_id; /* device ID */
191 u8 rev;
192 u8 prog_intf;
193 u8 subclass;
194 u8 base_class;
195 u32 subsystem_id;
196 union win_slot_encoding win_slot;
197 u32 ser; /* serial number */
198 u32 flags;
199 u16 virtual_numa_node;
200 u16 reserved;
201} __packed;
202
203/**
204 * struct hv_msi_desc
205 * @vector: IDT entry
206 * @delivery_mode: As defined in Intel's Programmer's
207 * Reference Manual, Volume 3, Chapter 8.
208 * @vector_count: Number of contiguous entries in the
209 * Interrupt Descriptor Table that are
210 * occupied by this Message-Signaled
211 * Interrupt. For "MSI", as first defined
212 * in PCI 2.2, this can be between 1 and
213 * 32. For "MSI-X," as first defined in PCI
214 * 3.0, this must be 1, as each MSI-X table
215 * entry would have its own descriptor.
216 * @reserved: Empty space
217 * @cpu_mask: All the target virtual processors.
218 */
219struct hv_msi_desc {
220 u8 vector;
221 u8 delivery_mode;
222 u16 vector_count;
223 u32 reserved;
224 u64 cpu_mask;
225} __packed;
226
227/**
228 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
229 * @vector: IDT entry
230 * @delivery_mode: As defined in Intel's Programmer's
231 * Reference Manual, Volume 3, Chapter 8.
232 * @vector_count: Number of contiguous entries in the
233 * Interrupt Descriptor Table that are
234 * occupied by this Message-Signaled
235 * Interrupt. For "MSI", as first defined
236 * in PCI 2.2, this can be between 1 and
237 * 32. For "MSI-X," as first defined in PCI
238 * 3.0, this must be 1, as each MSI-X table
239 * entry would have its own descriptor.
240 * @processor_count: number of bits enabled in array.
241 * @processor_array: All the target virtual processors.
242 */
243struct hv_msi_desc2 {
244 u8 vector;
245 u8 delivery_mode;
246 u16 vector_count;
247 u16 processor_count;
248 u16 processor_array[32];
249} __packed;
250
251/*
252 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
253 * Everything is the same as in 'hv_msi_desc2' except that the size of the
254 * 'vector' field is larger to support bigger vector values. For ex: LPI
255 * vectors on ARM.
256 */
257struct hv_msi_desc3 {
258 u32 vector;
259 u8 delivery_mode;
260 u8 reserved;
261 u16 vector_count;
262 u16 processor_count;
263 u16 processor_array[32];
264} __packed;
265
266/**
267 * struct tran_int_desc
268 * @reserved: unused, padding
269 * @vector_count: same as in hv_msi_desc
270 * @data: This is the "data payload" value that is
271 * written by the device when it generates
272 * a message-signaled interrupt, either MSI
273 * or MSI-X.
274 * @address: This is the address to which the data
275 * payload is written on interrupt
276 * generation.
277 */
278struct tran_int_desc {
279 u16 reserved;
280 u16 vector_count;
281 u32 data;
282 u64 address;
283} __packed;
284
285/*
286 * A generic message format for virtual PCI.
287 * Specific message formats are defined later in the file.
288 */
289
290struct pci_message {
291 u32 type;
292} __packed;
293
294struct pci_child_message {
295 struct pci_message message_type;
296 union win_slot_encoding wslot;
297} __packed;
298
299struct pci_incoming_message {
300 struct vmpacket_descriptor hdr;
301 struct pci_message message_type;
302} __packed;
303
304struct pci_response {
305 struct vmpacket_descriptor hdr;
306 s32 status; /* negative values are failures */
307} __packed;
308
309struct pci_packet {
310 void (*completion_func)(void *context, struct pci_response *resp,
311 int resp_packet_size);
312 void *compl_ctxt;
313};
314
315/*
316 * Specific message types supporting the PCI protocol.
317 */
318
319/*
320 * Version negotiation message. Sent from the guest to the host.
321 * The guest is free to try different versions until the host
322 * accepts the version.
323 *
324 * pci_version: The protocol version requested.
325 * is_last_attempt: If TRUE, this is the last version guest will request.
326 * reservedz: Reserved field, set to zero.
327 */
328
329struct pci_version_request {
330 struct pci_message message_type;
331 u32 protocol_version;
332} __packed;
333
334/*
335 * Bus D0 Entry. This is sent from the guest to the host when the virtual
336 * bus (PCI Express port) is ready for action.
337 */
338
339struct pci_bus_d0_entry {
340 struct pci_message message_type;
341 u32 reserved;
342 u64 mmio_base;
343} __packed;
344
345struct pci_bus_relations {
346 struct pci_incoming_message incoming;
347 u32 device_count;
348 struct pci_function_description func[];
349} __packed;
350
351struct pci_bus_relations2 {
352 struct pci_incoming_message incoming;
353 u32 device_count;
354 struct pci_function_description2 func[];
355} __packed;
356
357struct pci_q_res_req_response {
358 struct vmpacket_descriptor hdr;
359 s32 status; /* negative values are failures */
360 u32 probed_bar[PCI_STD_NUM_BARS];
361} __packed;
362
363struct pci_set_power {
364 struct pci_message message_type;
365 union win_slot_encoding wslot;
366 u32 power_state; /* In Windows terms */
367 u32 reserved;
368} __packed;
369
370struct pci_set_power_response {
371 struct vmpacket_descriptor hdr;
372 s32 status; /* negative values are failures */
373 union win_slot_encoding wslot;
374 u32 resultant_state; /* In Windows terms */
375 u32 reserved;
376} __packed;
377
378struct pci_resources_assigned {
379 struct pci_message message_type;
380 union win_slot_encoding wslot;
381 u8 memory_range[0x14][6]; /* not used here */
382 u32 msi_descriptors;
383 u32 reserved[4];
384} __packed;
385
386struct pci_resources_assigned2 {
387 struct pci_message message_type;
388 union win_slot_encoding wslot;
389 u8 memory_range[0x14][6]; /* not used here */
390 u32 msi_descriptor_count;
391 u8 reserved[70];
392} __packed;
393
394struct pci_create_interrupt {
395 struct pci_message message_type;
396 union win_slot_encoding wslot;
397 struct hv_msi_desc int_desc;
398} __packed;
399
400struct pci_create_int_response {
401 struct pci_response response;
402 u32 reserved;
403 struct tran_int_desc int_desc;
404} __packed;
405
406struct pci_create_interrupt2 {
407 struct pci_message message_type;
408 union win_slot_encoding wslot;
409 struct hv_msi_desc2 int_desc;
410} __packed;
411
412struct pci_create_interrupt3 {
413 struct pci_message message_type;
414 union win_slot_encoding wslot;
415 struct hv_msi_desc3 int_desc;
416} __packed;
417
418struct pci_delete_interrupt {
419 struct pci_message message_type;
420 union win_slot_encoding wslot;
421 struct tran_int_desc int_desc;
422} __packed;
423
424/*
425 * Note: the VM must pass a valid block id, wslot and bytes_requested.
426 */
427struct pci_read_block {
428 struct pci_message message_type;
429 u32 block_id;
430 union win_slot_encoding wslot;
431 u32 bytes_requested;
432} __packed;
433
434struct pci_read_block_response {
435 struct vmpacket_descriptor hdr;
436 u32 status;
437 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
438} __packed;
439
440/*
441 * Note: the VM must pass a valid block id, wslot and byte_count.
442 */
443struct pci_write_block {
444 struct pci_message message_type;
445 u32 block_id;
446 union win_slot_encoding wslot;
447 u32 byte_count;
448 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
449} __packed;
450
451struct pci_dev_inval_block {
452 struct pci_incoming_message incoming;
453 union win_slot_encoding wslot;
454 u64 block_mask;
455} __packed;
456
457struct pci_dev_incoming {
458 struct pci_incoming_message incoming;
459 union win_slot_encoding wslot;
460} __packed;
461
462struct pci_eject_response {
463 struct pci_message message_type;
464 union win_slot_encoding wslot;
465 u32 status;
466} __packed;
467
468static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K);
469
470/*
471 * Driver specific state.
472 */
473
474enum hv_pcibus_state {
475 hv_pcibus_init = 0,
476 hv_pcibus_probed,
477 hv_pcibus_installed,
478 hv_pcibus_removing,
479 hv_pcibus_maximum
480};
481
482struct hv_pcibus_device {
483#ifdef CONFIG_X86
484 struct pci_sysdata sysdata;
485#elif defined(CONFIG_ARM64)
486 struct pci_config_window sysdata;
487#endif
488 struct pci_host_bridge *bridge;
489 struct fwnode_handle *fwnode;
490 /* Protocol version negotiated with the host */
491 enum pci_protocol_version_t protocol_version;
492
493 struct mutex state_lock;
494 enum hv_pcibus_state state;
495
496 struct hv_device *hdev;
497 resource_size_t low_mmio_space;
498 resource_size_t high_mmio_space;
499 struct resource *mem_config;
500 struct resource *low_mmio_res;
501 struct resource *high_mmio_res;
502 struct completion *survey_event;
503 struct pci_bus *pci_bus;
504 spinlock_t config_lock; /* Avoid two threads writing index page */
505 spinlock_t device_list_lock; /* Protect lists below */
506 void __iomem *cfg_addr;
507
508 struct list_head children;
509 struct list_head dr_list;
510
511 struct msi_domain_info msi_info;
512 struct irq_domain *irq_domain;
513
514 struct workqueue_struct *wq;
515
516 /* Highest slot of child device with resources allocated */
517 int wslot_res_allocated;
518 bool use_calls; /* Use hypercalls to access mmio cfg space */
519};
520
521/*
522 * Tracks "Device Relations" messages from the host, which must be both
523 * processed in order and deferred so that they don't run in the context
524 * of the incoming packet callback.
525 */
526struct hv_dr_work {
527 struct work_struct wrk;
528 struct hv_pcibus_device *bus;
529};
530
531struct hv_pcidev_description {
532 u16 v_id; /* vendor ID */
533 u16 d_id; /* device ID */
534 u8 rev;
535 u8 prog_intf;
536 u8 subclass;
537 u8 base_class;
538 u32 subsystem_id;
539 union win_slot_encoding win_slot;
540 u32 ser; /* serial number */
541 u32 flags;
542 u16 virtual_numa_node;
543};
544
545struct hv_dr_state {
546 struct list_head list_entry;
547 u32 device_count;
548 struct hv_pcidev_description func[] __counted_by(device_count);
549};
550
551struct hv_pci_dev {
552 /* List protected by pci_rescan_remove_lock */
553 struct list_head list_entry;
554 refcount_t refs;
555 struct pci_slot *pci_slot;
556 struct hv_pcidev_description desc;
557 bool reported_missing;
558 struct hv_pcibus_device *hbus;
559 struct work_struct wrk;
560
561 void (*block_invalidate)(void *context, u64 block_mask);
562 void *invalidate_context;
563
564 /*
565 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
566 * read it back, for each of the BAR offsets within config space.
567 */
568 u32 probed_bar[PCI_STD_NUM_BARS];
569};
570
571struct hv_pci_compl {
572 struct completion host_event;
573 s32 completion_status;
574};
575
576static void hv_pci_onchannelcallback(void *context);
577
578#ifdef CONFIG_X86
579#define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED
580#define FLOW_HANDLER handle_edge_irq
581#define FLOW_NAME "edge"
582
583static int hv_pci_irqchip_init(void)
584{
585 return 0;
586}
587
588static struct irq_domain *hv_pci_get_root_domain(void)
589{
590 return x86_vector_domain;
591}
592
593static unsigned int hv_msi_get_int_vector(struct irq_data *data)
594{
595 struct irq_cfg *cfg = irqd_cfg(irq_data: data);
596
597 return cfg->vector;
598}
599
600#define hv_msi_prepare pci_msi_prepare
601
602/**
603 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
604 * affinity.
605 * @data: Describes the IRQ
606 *
607 * Build new a destination for the MSI and make a hypercall to
608 * update the Interrupt Redirection Table. "Device Logical ID"
609 * is built out of this PCI bus's instance GUID and the function
610 * number of the device.
611 */
612static void hv_arch_irq_unmask(struct irq_data *data)
613{
614 struct msi_desc *msi_desc = irq_data_get_msi_desc(d: data);
615 struct hv_retarget_device_interrupt *params;
616 struct tran_int_desc *int_desc;
617 struct hv_pcibus_device *hbus;
618 const struct cpumask *dest;
619 cpumask_var_t tmp;
620 struct pci_bus *pbus;
621 struct pci_dev *pdev;
622 unsigned long flags;
623 u32 var_size = 0;
624 int cpu, nr_bank;
625 u64 res;
626
627 dest = irq_data_get_effective_affinity_mask(d: data);
628 pdev = msi_desc_to_pci_dev(desc: msi_desc);
629 pbus = pdev->bus;
630 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
631 int_desc = data->chip_data;
632 if (!int_desc) {
633 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
634 __func__, data->irq);
635 return;
636 }
637
638 local_irq_save(flags);
639
640 params = *this_cpu_ptr(hyperv_pcpu_input_arg);
641 memset(params, 0, sizeof(*params));
642 params->partition_id = HV_PARTITION_ID_SELF;
643 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
644 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
645 params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
646 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
647 (hbus->hdev->dev_instance.b[4] << 16) |
648 (hbus->hdev->dev_instance.b[7] << 8) |
649 (hbus->hdev->dev_instance.b[6] & 0xf8) |
650 PCI_FUNC(pdev->devfn);
651 params->int_target.vector = hv_msi_get_int_vector(data);
652
653 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
654 /*
655 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
656 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
657 * with >64 VP support.
658 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
659 * is not sufficient for this hypercall.
660 */
661 params->int_target.flags |=
662 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
663
664 if (!alloc_cpumask_var(mask: &tmp, GFP_ATOMIC)) {
665 res = 1;
666 goto out;
667 }
668
669 cpumask_and(dstp: tmp, src1p: dest, cpu_online_mask);
670 nr_bank = cpumask_to_vpset(vpset: &params->int_target.vp_set, cpus: tmp);
671 free_cpumask_var(mask: tmp);
672
673 if (nr_bank <= 0) {
674 res = 1;
675 goto out;
676 }
677
678 /*
679 * var-sized hypercall, var-size starts after vp_mask (thus
680 * vp_set.format does not count, but vp_set.valid_bank_mask
681 * does).
682 */
683 var_size = 1 + nr_bank;
684 } else {
685 for_each_cpu_and(cpu, dest, cpu_online_mask) {
686 params->int_target.vp_mask |=
687 (1ULL << hv_cpu_number_to_vp_number(cpu_number: cpu));
688 }
689 }
690
691 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
692 inputaddr: params, NULL);
693
694out:
695 local_irq_restore(flags);
696
697 /*
698 * During hibernation, when a CPU is offlined, the kernel tries
699 * to move the interrupt to the remaining CPUs that haven't
700 * been offlined yet. In this case, the below hv_do_hypercall()
701 * always fails since the vmbus channel has been closed:
702 * refer to cpu_disable_common() -> fixup_irqs() ->
703 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
704 *
705 * Suppress the error message for hibernation because the failure
706 * during hibernation does not matter (at this time all the devices
707 * have been frozen). Note: the correct affinity info is still updated
708 * into the irqdata data structure in migrate_one_irq() ->
709 * irq_do_set_affinity(), so later when the VM resumes,
710 * hv_pci_restore_msi_state() is able to correctly restore the
711 * interrupt with the correct affinity.
712 */
713 if (!hv_result_success(status: res) && hbus->state != hv_pcibus_removing)
714 dev_err(&hbus->hdev->device,
715 "%s() failed: %#llx", __func__, res);
716}
717#elif defined(CONFIG_ARM64)
718/*
719 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
720 * of room at the start to allow for SPIs to be specified through ACPI and
721 * starting with a power of two to satisfy power of 2 multi-MSI requirement.
722 */
723#define HV_PCI_MSI_SPI_START 64
724#define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START)
725#define DELIVERY_MODE 0
726#define FLOW_HANDLER NULL
727#define FLOW_NAME NULL
728#define hv_msi_prepare NULL
729
730struct hv_pci_chip_data {
731 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
732 struct mutex map_lock;
733};
734
735/* Hyper-V vPCI MSI GIC IRQ domain */
736static struct irq_domain *hv_msi_gic_irq_domain;
737
738/* Hyper-V PCI MSI IRQ chip */
739static struct irq_chip hv_arm64_msi_irq_chip = {
740 .name = "MSI",
741 .irq_set_affinity = irq_chip_set_affinity_parent,
742 .irq_eoi = irq_chip_eoi_parent,
743 .irq_mask = irq_chip_mask_parent,
744 .irq_unmask = irq_chip_unmask_parent
745};
746
747static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
748{
749 return irqd->parent_data->hwirq;
750}
751
752/*
753 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from
754 * the bitmap.
755 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from
756 * the parent domain.
757 */
758static void hv_pci_vec_irq_free(struct irq_domain *domain,
759 unsigned int virq,
760 unsigned int nr_bm_irqs,
761 unsigned int nr_dom_irqs)
762{
763 struct hv_pci_chip_data *chip_data = domain->host_data;
764 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
765 int first = d->hwirq - HV_PCI_MSI_SPI_START;
766 int i;
767
768 mutex_lock(&chip_data->map_lock);
769 bitmap_release_region(chip_data->spi_map,
770 first,
771 get_count_order(nr_bm_irqs));
772 mutex_unlock(&chip_data->map_lock);
773 for (i = 0; i < nr_dom_irqs; i++) {
774 if (i)
775 d = irq_domain_get_irq_data(domain, virq + i);
776 irq_domain_reset_irq_data(d);
777 }
778
779 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
780}
781
782static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
783 unsigned int virq,
784 unsigned int nr_irqs)
785{
786 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
787}
788
789static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
790 unsigned int nr_irqs,
791 irq_hw_number_t *hwirq)
792{
793 struct hv_pci_chip_data *chip_data = domain->host_data;
794 int index;
795
796 /* Find and allocate region from the SPI bitmap */
797 mutex_lock(&chip_data->map_lock);
798 index = bitmap_find_free_region(chip_data->spi_map,
799 HV_PCI_MSI_SPI_NR,
800 get_count_order(nr_irqs));
801 mutex_unlock(&chip_data->map_lock);
802 if (index < 0)
803 return -ENOSPC;
804
805 *hwirq = index + HV_PCI_MSI_SPI_START;
806
807 return 0;
808}
809
810static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
811 unsigned int virq,
812 irq_hw_number_t hwirq)
813{
814 struct irq_fwspec fwspec;
815 struct irq_data *d;
816 int ret;
817
818 fwspec.fwnode = domain->parent->fwnode;
819 if (is_of_node(fwspec.fwnode)) {
820 /* SPI lines for OF translations start at offset 32 */
821 fwspec.param_count = 3;
822 fwspec.param[0] = 0;
823 fwspec.param[1] = hwirq - 32;
824 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
825 } else {
826 fwspec.param_count = 2;
827 fwspec.param[0] = hwirq;
828 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
829 }
830
831 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
832 if (ret)
833 return ret;
834
835 /*
836 * Since the interrupt specifier is not coming from ACPI or DT, the
837 * trigger type will need to be set explicitly. Otherwise, it will be
838 * set to whatever is in the GIC configuration.
839 */
840 d = irq_domain_get_irq_data(domain->parent, virq);
841
842 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
843}
844
845static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
846 unsigned int virq, unsigned int nr_irqs,
847 void *args)
848{
849 irq_hw_number_t hwirq;
850 unsigned int i;
851 int ret;
852
853 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
854 if (ret)
855 return ret;
856
857 for (i = 0; i < nr_irqs; i++) {
858 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
859 hwirq + i);
860 if (ret) {
861 hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
862 return ret;
863 }
864
865 irq_domain_set_hwirq_and_chip(domain, virq + i,
866 hwirq + i,
867 &hv_arm64_msi_irq_chip,
868 domain->host_data);
869 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
870 }
871
872 return 0;
873}
874
875/*
876 * Pick the first cpu as the irq affinity that can be temporarily used for
877 * composing MSI from the hypervisor. GIC will eventually set the right
878 * affinity for the irq and the 'unmask' will retarget the interrupt to that
879 * cpu.
880 */
881static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
882 struct irq_data *irqd, bool reserve)
883{
884 int cpu = cpumask_first(cpu_present_mask);
885
886 irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
887
888 return 0;
889}
890
891static const struct irq_domain_ops hv_pci_domain_ops = {
892 .alloc = hv_pci_vec_irq_domain_alloc,
893 .free = hv_pci_vec_irq_domain_free,
894 .activate = hv_pci_vec_irq_domain_activate,
895};
896
897#ifdef CONFIG_OF
898
899static struct irq_domain *hv_pci_of_irq_domain_parent(void)
900{
901 struct device_node *parent;
902 struct irq_domain *domain;
903
904 parent = of_irq_find_parent(hv_get_vmbus_root_device()->of_node);
905 if (!parent)
906 return NULL;
907 domain = irq_find_host(parent);
908 of_node_put(parent);
909
910 return domain;
911}
912
913#endif
914
915#ifdef CONFIG_ACPI
916
917static struct irq_domain *hv_pci_acpi_irq_domain_parent(void)
918{
919 acpi_gsi_domain_disp_fn gsi_domain_disp_fn;
920
921 gsi_domain_disp_fn = acpi_get_gsi_dispatcher();
922 if (!gsi_domain_disp_fn)
923 return NULL;
924 return irq_find_matching_fwnode(gsi_domain_disp_fn(0),
925 DOMAIN_BUS_ANY);
926}
927
928#endif
929
930static int hv_pci_irqchip_init(void)
931{
932 static struct hv_pci_chip_data *chip_data;
933 struct fwnode_handle *fn = NULL;
934 struct irq_domain *irq_domain_parent = NULL;
935 int ret = -ENOMEM;
936
937 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
938 if (!chip_data)
939 return ret;
940
941 mutex_init(&chip_data->map_lock);
942 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
943 if (!fn)
944 goto free_chip;
945
946 /*
947 * IRQ domain once enabled, should not be removed since there is no
948 * way to ensure that all the corresponding devices are also gone and
949 * no interrupts will be generated.
950 */
951#ifdef CONFIG_ACPI
952 if (!acpi_disabled)
953 irq_domain_parent = hv_pci_acpi_irq_domain_parent();
954#endif
955#ifdef CONFIG_OF
956 if (!irq_domain_parent)
957 irq_domain_parent = hv_pci_of_irq_domain_parent();
958#endif
959 if (!irq_domain_parent) {
960 WARN_ONCE(1, "Invalid firmware configuration for VMBus interrupts\n");
961 ret = -EINVAL;
962 goto free_chip;
963 }
964
965 hv_msi_gic_irq_domain = irq_domain_create_hierarchy(irq_domain_parent, 0,
966 HV_PCI_MSI_SPI_NR,
967 fn, &hv_pci_domain_ops,
968 chip_data);
969
970 if (!hv_msi_gic_irq_domain) {
971 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
972 goto free_chip;
973 }
974
975 return 0;
976
977free_chip:
978 kfree(chip_data);
979 if (fn)
980 irq_domain_free_fwnode(fn);
981
982 return ret;
983}
984
985static struct irq_domain *hv_pci_get_root_domain(void)
986{
987 return hv_msi_gic_irq_domain;
988}
989
990/*
991 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
992 * registers which Hyper-V already supports, so no hypercall needed.
993 */
994static void hv_arch_irq_unmask(struct irq_data *data) { }
995#endif /* CONFIG_ARM64 */
996
997/**
998 * hv_pci_generic_compl() - Invoked for a completion packet
999 * @context: Set up by the sender of the packet.
1000 * @resp: The response packet
1001 * @resp_packet_size: Size in bytes of the packet
1002 *
1003 * This function is used to trigger an event and report status
1004 * for any message for which the completion packet contains a
1005 * status and nothing else.
1006 */
1007static void hv_pci_generic_compl(void *context, struct pci_response *resp,
1008 int resp_packet_size)
1009{
1010 struct hv_pci_compl *comp_pkt = context;
1011
1012 comp_pkt->completion_status = resp->status;
1013 complete(&comp_pkt->host_event);
1014}
1015
1016static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1017 u32 wslot);
1018
1019static void get_pcichild(struct hv_pci_dev *hpdev)
1020{
1021 refcount_inc(r: &hpdev->refs);
1022}
1023
1024static void put_pcichild(struct hv_pci_dev *hpdev)
1025{
1026 if (refcount_dec_and_test(r: &hpdev->refs))
1027 kfree(objp: hpdev);
1028}
1029
1030/*
1031 * There is no good way to get notified from vmbus_onoffer_rescind(),
1032 * so let's use polling here, since this is not a hot path.
1033 */
1034static int wait_for_response(struct hv_device *hdev,
1035 struct completion *comp)
1036{
1037 while (true) {
1038 if (hdev->channel->rescind) {
1039 dev_warn_once(&hdev->device, "The device is gone.\n");
1040 return -ENODEV;
1041 }
1042
1043 if (wait_for_completion_timeout(x: comp, HZ / 10))
1044 break;
1045 }
1046
1047 return 0;
1048}
1049
1050/**
1051 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
1052 * @devfn: The Linux representation of PCI slot
1053 *
1054 * Windows uses a slightly different representation of PCI slot.
1055 *
1056 * Return: The Windows representation
1057 */
1058static u32 devfn_to_wslot(int devfn)
1059{
1060 union win_slot_encoding wslot;
1061
1062 wslot.slot = 0;
1063 wslot.bits.dev = PCI_SLOT(devfn);
1064 wslot.bits.func = PCI_FUNC(devfn);
1065
1066 return wslot.slot;
1067}
1068
1069/**
1070 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1071 * @wslot: The Windows representation of PCI slot
1072 *
1073 * Windows uses a slightly different representation of PCI slot.
1074 *
1075 * Return: The Linux representation
1076 */
1077static int wslot_to_devfn(u32 wslot)
1078{
1079 union win_slot_encoding slot_no;
1080
1081 slot_no.slot = wslot;
1082 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1083}
1084
1085static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1086{
1087 struct hv_mmio_read_input *in;
1088 struct hv_mmio_read_output *out;
1089 u64 ret;
1090
1091 /*
1092 * Must be called with interrupts disabled so it is safe
1093 * to use the per-cpu input argument page. Use it for
1094 * both input and output.
1095 */
1096 in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1097 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1098 in->gpa = gpa;
1099 in->size = size;
1100
1101 ret = hv_do_hypercall(HVCALL_MMIO_READ, inputaddr: in, outputaddr: out);
1102 if (hv_result_success(status: ret)) {
1103 switch (size) {
1104 case 1:
1105 *val = *(u8 *)(out->data);
1106 break;
1107 case 2:
1108 *val = *(u16 *)(out->data);
1109 break;
1110 default:
1111 *val = *(u32 *)(out->data);
1112 break;
1113 }
1114 } else
1115 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1116 ret, gpa, size);
1117}
1118
1119static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1120{
1121 struct hv_mmio_write_input *in;
1122 u64 ret;
1123
1124 /*
1125 * Must be called with interrupts disabled so it is safe
1126 * to use the per-cpu input argument memory.
1127 */
1128 in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1129 in->gpa = gpa;
1130 in->size = size;
1131 switch (size) {
1132 case 1:
1133 *(u8 *)(in->data) = val;
1134 break;
1135 case 2:
1136 *(u16 *)(in->data) = val;
1137 break;
1138 default:
1139 *(u32 *)(in->data) = val;
1140 break;
1141 }
1142
1143 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, inputaddr: in, NULL);
1144 if (!hv_result_success(status: ret))
1145 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1146 ret, gpa, size);
1147}
1148
1149/*
1150 * PCI Configuration Space for these root PCI buses is implemented as a pair
1151 * of pages in memory-mapped I/O space. Writing to the first page chooses
1152 * the PCI function being written or read. Once the first page has been
1153 * written to, the following page maps in the entire configuration space of
1154 * the function.
1155 */
1156
1157/**
1158 * _hv_pcifront_read_config() - Internal PCI config read
1159 * @hpdev: The PCI driver's representation of the device
1160 * @where: Offset within config space
1161 * @size: Size of the transfer
1162 * @val: Pointer to the buffer receiving the data
1163 */
1164static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1165 int size, u32 *val)
1166{
1167 struct hv_pcibus_device *hbus = hpdev->hbus;
1168 struct device *dev = &hbus->hdev->device;
1169 int offset = where + CFG_PAGE_OFFSET;
1170 unsigned long flags;
1171
1172 /*
1173 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1174 */
1175 if (where + size <= PCI_COMMAND) {
1176 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1177 } else if (where >= PCI_CLASS_REVISION && where + size <=
1178 PCI_CACHE_LINE_SIZE) {
1179 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1180 PCI_CLASS_REVISION, size);
1181 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1182 PCI_ROM_ADDRESS) {
1183 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1184 PCI_SUBSYSTEM_VENDOR_ID, size);
1185 } else if (where >= PCI_ROM_ADDRESS && where + size <=
1186 PCI_CAPABILITY_LIST) {
1187 /* ROM BARs are unimplemented */
1188 *val = 0;
1189 } else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) ||
1190 (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) {
1191 /*
1192 * Interrupt Line and Interrupt PIN are hard-wired to zero
1193 * because this front-end only supports message-signaled
1194 * interrupts.
1195 */
1196 *val = 0;
1197 } else if (where + size <= CFG_PAGE_SIZE) {
1198
1199 spin_lock_irqsave(&hbus->config_lock, flags);
1200 if (hbus->use_calls) {
1201 phys_addr_t addr = hbus->mem_config->start + offset;
1202
1203 hv_pci_write_mmio(dev, gpa: hbus->mem_config->start, size: 4,
1204 val: hpdev->desc.win_slot.slot);
1205 hv_pci_read_mmio(dev, gpa: addr, size, val);
1206 } else {
1207 void __iomem *addr = hbus->cfg_addr + offset;
1208
1209 /* Choose the function to be read. (See comment above) */
1210 writel(val: hpdev->desc.win_slot.slot, addr: hbus->cfg_addr);
1211 /* Make sure the function was chosen before reading. */
1212 mb();
1213 /* Read from that function's config space. */
1214 switch (size) {
1215 case 1:
1216 *val = readb(addr);
1217 break;
1218 case 2:
1219 *val = readw(addr);
1220 break;
1221 default:
1222 *val = readl(addr);
1223 break;
1224 }
1225 /*
1226 * Make sure the read was done before we release the
1227 * spinlock allowing consecutive reads/writes.
1228 */
1229 mb();
1230 }
1231 spin_unlock_irqrestore(lock: &hbus->config_lock, flags);
1232 } else {
1233 dev_err(dev, "Attempt to read beyond a function's config space.\n");
1234 }
1235}
1236
1237static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1238{
1239 struct hv_pcibus_device *hbus = hpdev->hbus;
1240 struct device *dev = &hbus->hdev->device;
1241 u32 val;
1242 u16 ret;
1243 unsigned long flags;
1244
1245 spin_lock_irqsave(&hbus->config_lock, flags);
1246
1247 if (hbus->use_calls) {
1248 phys_addr_t addr = hbus->mem_config->start +
1249 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1250
1251 hv_pci_write_mmio(dev, gpa: hbus->mem_config->start, size: 4,
1252 val: hpdev->desc.win_slot.slot);
1253 hv_pci_read_mmio(dev, gpa: addr, size: 2, val: &val);
1254 ret = val; /* Truncates to 16 bits */
1255 } else {
1256 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1257 PCI_VENDOR_ID;
1258 /* Choose the function to be read. (See comment above) */
1259 writel(val: hpdev->desc.win_slot.slot, addr: hbus->cfg_addr);
1260 /* Make sure the function was chosen before we start reading. */
1261 mb();
1262 /* Read from that function's config space. */
1263 ret = readw(addr);
1264 /*
1265 * mb() is not required here, because the
1266 * spin_unlock_irqrestore() is a barrier.
1267 */
1268 }
1269
1270 spin_unlock_irqrestore(lock: &hbus->config_lock, flags);
1271
1272 return ret;
1273}
1274
1275/**
1276 * _hv_pcifront_write_config() - Internal PCI config write
1277 * @hpdev: The PCI driver's representation of the device
1278 * @where: Offset within config space
1279 * @size: Size of the transfer
1280 * @val: The data being transferred
1281 */
1282static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1283 int size, u32 val)
1284{
1285 struct hv_pcibus_device *hbus = hpdev->hbus;
1286 struct device *dev = &hbus->hdev->device;
1287 int offset = where + CFG_PAGE_OFFSET;
1288 unsigned long flags;
1289
1290 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1291 where + size <= PCI_CAPABILITY_LIST) {
1292 /* SSIDs and ROM BARs are read-only */
1293 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1294 spin_lock_irqsave(&hbus->config_lock, flags);
1295
1296 if (hbus->use_calls) {
1297 phys_addr_t addr = hbus->mem_config->start + offset;
1298
1299 hv_pci_write_mmio(dev, gpa: hbus->mem_config->start, size: 4,
1300 val: hpdev->desc.win_slot.slot);
1301 hv_pci_write_mmio(dev, gpa: addr, size, val);
1302 } else {
1303 void __iomem *addr = hbus->cfg_addr + offset;
1304
1305 /* Choose the function to write. (See comment above) */
1306 writel(val: hpdev->desc.win_slot.slot, addr: hbus->cfg_addr);
1307 /* Make sure the function was chosen before writing. */
1308 wmb();
1309 /* Write to that function's config space. */
1310 switch (size) {
1311 case 1:
1312 writeb(val, addr);
1313 break;
1314 case 2:
1315 writew(val, addr);
1316 break;
1317 default:
1318 writel(val, addr);
1319 break;
1320 }
1321 /*
1322 * Make sure the write was done before we release the
1323 * spinlock allowing consecutive reads/writes.
1324 */
1325 mb();
1326 }
1327 spin_unlock_irqrestore(lock: &hbus->config_lock, flags);
1328 } else {
1329 dev_err(dev, "Attempt to write beyond a function's config space.\n");
1330 }
1331}
1332
1333/**
1334 * hv_pcifront_read_config() - Read configuration space
1335 * @bus: PCI Bus structure
1336 * @devfn: Device/function
1337 * @where: Offset from base
1338 * @size: Byte/word/dword
1339 * @val: Value to be read
1340 *
1341 * Return: PCIBIOS_SUCCESSFUL on success
1342 * PCIBIOS_DEVICE_NOT_FOUND on failure
1343 */
1344static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1345 int where, int size, u32 *val)
1346{
1347 struct hv_pcibus_device *hbus =
1348 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1349 struct hv_pci_dev *hpdev;
1350
1351 hpdev = get_pcichild_wslot(hbus, wslot: devfn_to_wslot(devfn));
1352 if (!hpdev)
1353 return PCIBIOS_DEVICE_NOT_FOUND;
1354
1355 _hv_pcifront_read_config(hpdev, where, size, val);
1356
1357 put_pcichild(hpdev);
1358 return PCIBIOS_SUCCESSFUL;
1359}
1360
1361/**
1362 * hv_pcifront_write_config() - Write configuration space
1363 * @bus: PCI Bus structure
1364 * @devfn: Device/function
1365 * @where: Offset from base
1366 * @size: Byte/word/dword
1367 * @val: Value to be written to device
1368 *
1369 * Return: PCIBIOS_SUCCESSFUL on success
1370 * PCIBIOS_DEVICE_NOT_FOUND on failure
1371 */
1372static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1373 int where, int size, u32 val)
1374{
1375 struct hv_pcibus_device *hbus =
1376 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1377 struct hv_pci_dev *hpdev;
1378
1379 hpdev = get_pcichild_wslot(hbus, wslot: devfn_to_wslot(devfn));
1380 if (!hpdev)
1381 return PCIBIOS_DEVICE_NOT_FOUND;
1382
1383 _hv_pcifront_write_config(hpdev, where, size, val);
1384
1385 put_pcichild(hpdev);
1386 return PCIBIOS_SUCCESSFUL;
1387}
1388
1389/* PCIe operations */
1390static struct pci_ops hv_pcifront_ops = {
1391 .read = hv_pcifront_read_config,
1392 .write = hv_pcifront_write_config,
1393};
1394
1395/*
1396 * Paravirtual backchannel
1397 *
1398 * Hyper-V SR-IOV provides a backchannel mechanism in software for
1399 * communication between a VF driver and a PF driver. These
1400 * "configuration blocks" are similar in concept to PCI configuration space,
1401 * but instead of doing reads and writes in 32-bit chunks through a very slow
1402 * path, packets of up to 128 bytes can be sent or received asynchronously.
1403 *
1404 * Nearly every SR-IOV device contains just such a communications channel in
1405 * hardware, so using this one in software is usually optional. Using the
1406 * software channel, however, allows driver implementers to leverage software
1407 * tools that fuzz the communications channel looking for vulnerabilities.
1408 *
1409 * The usage model for these packets puts the responsibility for reading or
1410 * writing on the VF driver. The VF driver sends a read or a write packet,
1411 * indicating which "block" is being referred to by number.
1412 *
1413 * If the PF driver wishes to initiate communication, it can "invalidate" one or
1414 * more of the first 64 blocks. This invalidation is delivered via a callback
1415 * supplied to the VF driver by this driver.
1416 *
1417 * No protocol is implied, except that supplied by the PF and VF drivers.
1418 */
1419
1420struct hv_read_config_compl {
1421 struct hv_pci_compl comp_pkt;
1422 void *buf;
1423 unsigned int len;
1424 unsigned int bytes_returned;
1425};
1426
1427/**
1428 * hv_pci_read_config_compl() - Invoked when a response packet
1429 * for a read config block operation arrives.
1430 * @context: Identifies the read config operation
1431 * @resp: The response packet itself
1432 * @resp_packet_size: Size in bytes of the response packet
1433 */
1434static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1435 int resp_packet_size)
1436{
1437 struct hv_read_config_compl *comp = context;
1438 struct pci_read_block_response *read_resp =
1439 (struct pci_read_block_response *)resp;
1440 unsigned int data_len, hdr_len;
1441
1442 hdr_len = offsetof(struct pci_read_block_response, bytes);
1443 if (resp_packet_size < hdr_len) {
1444 comp->comp_pkt.completion_status = -1;
1445 goto out;
1446 }
1447
1448 data_len = resp_packet_size - hdr_len;
1449 if (data_len > 0 && read_resp->status == 0) {
1450 comp->bytes_returned = min(comp->len, data_len);
1451 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1452 } else {
1453 comp->bytes_returned = 0;
1454 }
1455
1456 comp->comp_pkt.completion_status = read_resp->status;
1457out:
1458 complete(&comp->comp_pkt.host_event);
1459}
1460
1461/**
1462 * hv_read_config_block() - Sends a read config block request to
1463 * the back-end driver running in the Hyper-V parent partition.
1464 * @pdev: The PCI driver's representation for this device.
1465 * @buf: Buffer into which the config block will be copied.
1466 * @len: Size in bytes of buf.
1467 * @block_id: Identifies the config block which has been requested.
1468 * @bytes_returned: Size which came back from the back-end driver.
1469 *
1470 * Return: 0 on success, -errno on failure
1471 */
1472static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1473 unsigned int len, unsigned int block_id,
1474 unsigned int *bytes_returned)
1475{
1476 struct hv_pcibus_device *hbus =
1477 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1478 sysdata);
1479 struct {
1480 struct pci_packet pkt;
1481 char buf[sizeof(struct pci_read_block)];
1482 } pkt;
1483 struct hv_read_config_compl comp_pkt;
1484 struct pci_read_block *read_blk;
1485 int ret;
1486
1487 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1488 return -EINVAL;
1489
1490 init_completion(x: &comp_pkt.comp_pkt.host_event);
1491 comp_pkt.buf = buf;
1492 comp_pkt.len = len;
1493
1494 memset(&pkt, 0, sizeof(pkt));
1495 pkt.pkt.completion_func = hv_pci_read_config_compl;
1496 pkt.pkt.compl_ctxt = &comp_pkt;
1497 read_blk = (struct pci_read_block *)pkt.buf;
1498 read_blk->message_type.type = PCI_READ_BLOCK;
1499 read_blk->wslot.slot = devfn_to_wslot(devfn: pdev->devfn);
1500 read_blk->block_id = block_id;
1501 read_blk->bytes_requested = len;
1502
1503 ret = vmbus_sendpacket(channel: hbus->hdev->channel, buffer: read_blk,
1504 bufferLen: sizeof(*read_blk), requestid: (unsigned long)&pkt.pkt,
1505 type: VM_PKT_DATA_INBAND,
1506 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1507 if (ret)
1508 return ret;
1509
1510 ret = wait_for_response(hdev: hbus->hdev, comp: &comp_pkt.comp_pkt.host_event);
1511 if (ret)
1512 return ret;
1513
1514 if (comp_pkt.comp_pkt.completion_status != 0 ||
1515 comp_pkt.bytes_returned == 0) {
1516 dev_err(&hbus->hdev->device,
1517 "Read Config Block failed: 0x%x, bytes_returned=%d\n",
1518 comp_pkt.comp_pkt.completion_status,
1519 comp_pkt.bytes_returned);
1520 return -EIO;
1521 }
1522
1523 *bytes_returned = comp_pkt.bytes_returned;
1524 return 0;
1525}
1526
1527/**
1528 * hv_pci_write_config_compl() - Invoked when a response packet for a write
1529 * config block operation arrives.
1530 * @context: Identifies the write config operation
1531 * @resp: The response packet itself
1532 * @resp_packet_size: Size in bytes of the response packet
1533 */
1534static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1535 int resp_packet_size)
1536{
1537 struct hv_pci_compl *comp_pkt = context;
1538
1539 comp_pkt->completion_status = resp->status;
1540 complete(&comp_pkt->host_event);
1541}
1542
1543/**
1544 * hv_write_config_block() - Sends a write config block request to the
1545 * back-end driver running in the Hyper-V parent partition.
1546 * @pdev: The PCI driver's representation for this device.
1547 * @buf: Buffer from which the config block will be copied.
1548 * @len: Size in bytes of buf.
1549 * @block_id: Identifies the config block which is being written.
1550 *
1551 * Return: 0 on success, -errno on failure
1552 */
1553static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1554 unsigned int len, unsigned int block_id)
1555{
1556 struct hv_pcibus_device *hbus =
1557 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1558 sysdata);
1559 struct {
1560 struct pci_packet pkt;
1561 char buf[sizeof(struct pci_write_block)];
1562 u32 reserved;
1563 } pkt;
1564 struct hv_pci_compl comp_pkt;
1565 struct pci_write_block *write_blk;
1566 u32 pkt_size;
1567 int ret;
1568
1569 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1570 return -EINVAL;
1571
1572 init_completion(x: &comp_pkt.host_event);
1573
1574 memset(&pkt, 0, sizeof(pkt));
1575 pkt.pkt.completion_func = hv_pci_write_config_compl;
1576 pkt.pkt.compl_ctxt = &comp_pkt;
1577 write_blk = (struct pci_write_block *)pkt.buf;
1578 write_blk->message_type.type = PCI_WRITE_BLOCK;
1579 write_blk->wslot.slot = devfn_to_wslot(devfn: pdev->devfn);
1580 write_blk->block_id = block_id;
1581 write_blk->byte_count = len;
1582 memcpy(write_blk->bytes, buf, len);
1583 pkt_size = offsetof(struct pci_write_block, bytes) + len;
1584 /*
1585 * This quirk is required on some hosts shipped around 2018, because
1586 * these hosts don't check the pkt_size correctly (new hosts have been
1587 * fixed since early 2019). The quirk is also safe on very old hosts
1588 * and new hosts, because, on them, what really matters is the length
1589 * specified in write_blk->byte_count.
1590 */
1591 pkt_size += sizeof(pkt.reserved);
1592
1593 ret = vmbus_sendpacket(channel: hbus->hdev->channel, buffer: write_blk, bufferLen: pkt_size,
1594 requestid: (unsigned long)&pkt.pkt, type: VM_PKT_DATA_INBAND,
1595 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1596 if (ret)
1597 return ret;
1598
1599 ret = wait_for_response(hdev: hbus->hdev, comp: &comp_pkt.host_event);
1600 if (ret)
1601 return ret;
1602
1603 if (comp_pkt.completion_status != 0) {
1604 dev_err(&hbus->hdev->device,
1605 "Write Config Block failed: 0x%x\n",
1606 comp_pkt.completion_status);
1607 return -EIO;
1608 }
1609
1610 return 0;
1611}
1612
1613/**
1614 * hv_register_block_invalidate() - Invoked when a config block invalidation
1615 * arrives from the back-end driver.
1616 * @pdev: The PCI driver's representation for this device.
1617 * @context: Identifies the device.
1618 * @block_invalidate: Identifies all of the blocks being invalidated.
1619 *
1620 * Return: 0 on success, -errno on failure
1621 */
1622static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1623 void (*block_invalidate)(void *context,
1624 u64 block_mask))
1625{
1626 struct hv_pcibus_device *hbus =
1627 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1628 sysdata);
1629 struct hv_pci_dev *hpdev;
1630
1631 hpdev = get_pcichild_wslot(hbus, wslot: devfn_to_wslot(devfn: pdev->devfn));
1632 if (!hpdev)
1633 return -ENODEV;
1634
1635 hpdev->block_invalidate = block_invalidate;
1636 hpdev->invalidate_context = context;
1637
1638 put_pcichild(hpdev);
1639 return 0;
1640
1641}
1642
1643/* Interrupt management hooks */
1644static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1645 struct tran_int_desc *int_desc)
1646{
1647 struct pci_delete_interrupt *int_pkt;
1648 struct {
1649 struct pci_packet pkt;
1650 u8 buffer[sizeof(struct pci_delete_interrupt)];
1651 } ctxt;
1652
1653 if (!int_desc->vector_count) {
1654 kfree(objp: int_desc);
1655 return;
1656 }
1657 memset(&ctxt, 0, sizeof(ctxt));
1658 int_pkt = (struct pci_delete_interrupt *)ctxt.buffer;
1659 int_pkt->message_type.type =
1660 PCI_DELETE_INTERRUPT_MESSAGE;
1661 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1662 int_pkt->int_desc = *int_desc;
1663 vmbus_sendpacket(channel: hpdev->hbus->hdev->channel, buffer: int_pkt, bufferLen: sizeof(*int_pkt),
1664 requestid: 0, type: VM_PKT_DATA_INBAND, flags: 0);
1665 kfree(objp: int_desc);
1666}
1667
1668/**
1669 * hv_msi_free() - Free the MSI.
1670 * @domain: The interrupt domain pointer
1671 * @info: Extra MSI-related context
1672 * @irq: Identifies the IRQ.
1673 *
1674 * The Hyper-V parent partition and hypervisor are tracking the
1675 * messages that are in use, keeping the interrupt redirection
1676 * table up to date. This callback sends a message that frees
1677 * the IRT entry and related tracking nonsense.
1678 */
1679static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1680 unsigned int irq)
1681{
1682 struct hv_pcibus_device *hbus;
1683 struct hv_pci_dev *hpdev;
1684 struct pci_dev *pdev;
1685 struct tran_int_desc *int_desc;
1686 struct irq_data *irq_data = irq_domain_get_irq_data(domain, virq: irq);
1687 struct msi_desc *msi = irq_data_get_msi_desc(d: irq_data);
1688
1689 pdev = msi_desc_to_pci_dev(desc: msi);
1690 hbus = info->data;
1691 int_desc = irq_data_get_irq_chip_data(d: irq_data);
1692 if (!int_desc)
1693 return;
1694
1695 irq_data->chip_data = NULL;
1696 hpdev = get_pcichild_wslot(hbus, wslot: devfn_to_wslot(devfn: pdev->devfn));
1697 if (!hpdev) {
1698 kfree(objp: int_desc);
1699 return;
1700 }
1701
1702 hv_int_desc_free(hpdev, int_desc);
1703 put_pcichild(hpdev);
1704}
1705
1706static void hv_irq_mask(struct irq_data *data)
1707{
1708 pci_msi_mask_irq(data);
1709 if (data->parent_data->chip->irq_mask)
1710 irq_chip_mask_parent(data);
1711}
1712
1713static void hv_irq_unmask(struct irq_data *data)
1714{
1715 hv_arch_irq_unmask(data);
1716
1717 if (data->parent_data->chip->irq_unmask)
1718 irq_chip_unmask_parent(data);
1719 pci_msi_unmask_irq(data);
1720}
1721
1722struct compose_comp_ctxt {
1723 struct hv_pci_compl comp_pkt;
1724 struct tran_int_desc int_desc;
1725};
1726
1727static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1728 int resp_packet_size)
1729{
1730 struct compose_comp_ctxt *comp_pkt = context;
1731 struct pci_create_int_response *int_resp =
1732 (struct pci_create_int_response *)resp;
1733
1734 if (resp_packet_size < sizeof(*int_resp)) {
1735 comp_pkt->comp_pkt.completion_status = -1;
1736 goto out;
1737 }
1738 comp_pkt->comp_pkt.completion_status = resp->status;
1739 comp_pkt->int_desc = int_resp->int_desc;
1740out:
1741 complete(&comp_pkt->comp_pkt.host_event);
1742}
1743
1744static u32 hv_compose_msi_req_v1(
1745 struct pci_create_interrupt *int_pkt,
1746 u32 slot, u8 vector, u16 vector_count)
1747{
1748 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1749 int_pkt->wslot.slot = slot;
1750 int_pkt->int_desc.vector = vector;
1751 int_pkt->int_desc.vector_count = vector_count;
1752 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1753
1754 /*
1755 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1756 * hv_irq_unmask().
1757 */
1758 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1759
1760 return sizeof(*int_pkt);
1761}
1762
1763/*
1764 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1765 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1766 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1767 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1768 * not irrelevant because Hyper-V chooses the physical CPU to handle the
1769 * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1770 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1771 * but assigning too many vPCI device interrupts to the same pCPU can cause a
1772 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1773 * to spread out the pCPUs that it selects.
1774 *
1775 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1776 * to always return the same dummy vCPU, because a second call to
1777 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1778 * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1779 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1780 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1781 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1782 * the same pCPU, even though the vCPUs will be spread out by later calls
1783 * to hv_irq_unmask(), but that is the best we can do now.
1784 *
1785 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1786 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1787 * enhancement is planned for a future version. With that enhancement, the
1788 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1789 * device will be spread across multiple pCPUs.
1790 */
1791
1792/*
1793 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1794 * by subsequent retarget in hv_irq_unmask().
1795 */
1796static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1797{
1798 return cpumask_first_and(srcp1: affinity, cpu_online_mask);
1799}
1800
1801/*
1802 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1803 */
1804static int hv_compose_multi_msi_req_get_cpu(void)
1805{
1806 static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1807
1808 /* -1 means starting with CPU 0 */
1809 static int cpu_next = -1;
1810
1811 unsigned long flags;
1812 int cpu;
1813
1814 spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1815
1816 cpu_next = cpumask_next_wrap(n: cpu_next, cpu_online_mask);
1817 cpu = cpu_next;
1818
1819 spin_unlock_irqrestore(lock: &multi_msi_cpu_lock, flags);
1820
1821 return cpu;
1822}
1823
1824static u32 hv_compose_msi_req_v2(
1825 struct pci_create_interrupt2 *int_pkt, int cpu,
1826 u32 slot, u8 vector, u16 vector_count)
1827{
1828 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1829 int_pkt->wslot.slot = slot;
1830 int_pkt->int_desc.vector = vector;
1831 int_pkt->int_desc.vector_count = vector_count;
1832 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1833 int_pkt->int_desc.processor_array[0] =
1834 hv_cpu_number_to_vp_number(cpu_number: cpu);
1835 int_pkt->int_desc.processor_count = 1;
1836
1837 return sizeof(*int_pkt);
1838}
1839
1840static u32 hv_compose_msi_req_v3(
1841 struct pci_create_interrupt3 *int_pkt, int cpu,
1842 u32 slot, u32 vector, u16 vector_count)
1843{
1844 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1845 int_pkt->wslot.slot = slot;
1846 int_pkt->int_desc.vector = vector;
1847 int_pkt->int_desc.reserved = 0;
1848 int_pkt->int_desc.vector_count = vector_count;
1849 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1850 int_pkt->int_desc.processor_array[0] =
1851 hv_cpu_number_to_vp_number(cpu_number: cpu);
1852 int_pkt->int_desc.processor_count = 1;
1853
1854 return sizeof(*int_pkt);
1855}
1856
1857/**
1858 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1859 * @data: Everything about this MSI
1860 * @msg: Buffer that is filled in by this function
1861 *
1862 * This function unpacks the IRQ looking for target CPU set, IDT
1863 * vector and mode and sends a message to the parent partition
1864 * asking for a mapping for that tuple in this partition. The
1865 * response supplies a data value and address to which that data
1866 * should be written to trigger that interrupt.
1867 */
1868static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1869{
1870 struct hv_pcibus_device *hbus;
1871 struct vmbus_channel *channel;
1872 struct hv_pci_dev *hpdev;
1873 struct pci_bus *pbus;
1874 struct pci_dev *pdev;
1875 const struct cpumask *dest;
1876 struct compose_comp_ctxt comp;
1877 struct tran_int_desc *int_desc;
1878 struct msi_desc *msi_desc;
1879 /*
1880 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1881 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1882 */
1883 u16 vector_count;
1884 u32 vector;
1885 struct {
1886 struct pci_packet pci_pkt;
1887 union {
1888 struct pci_create_interrupt v1;
1889 struct pci_create_interrupt2 v2;
1890 struct pci_create_interrupt3 v3;
1891 } int_pkts;
1892 } __packed ctxt;
1893 bool multi_msi;
1894 u64 trans_id;
1895 u32 size;
1896 int ret;
1897 int cpu;
1898
1899 msi_desc = irq_data_get_msi_desc(d: data);
1900 multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1901 msi_desc->nvec_used > 1;
1902
1903 /* Reuse the previous allocation */
1904 if (data->chip_data && multi_msi) {
1905 int_desc = data->chip_data;
1906 msg->address_hi = int_desc->address >> 32;
1907 msg->address_lo = int_desc->address & 0xffffffff;
1908 msg->data = int_desc->data;
1909 return;
1910 }
1911
1912 pdev = msi_desc_to_pci_dev(desc: msi_desc);
1913 dest = irq_data_get_effective_affinity_mask(d: data);
1914 pbus = pdev->bus;
1915 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1916 channel = hbus->hdev->channel;
1917 hpdev = get_pcichild_wslot(hbus, wslot: devfn_to_wslot(devfn: pdev->devfn));
1918 if (!hpdev)
1919 goto return_null_message;
1920
1921 /* Free any previous message that might have already been composed. */
1922 if (data->chip_data && !multi_msi) {
1923 int_desc = data->chip_data;
1924 data->chip_data = NULL;
1925 hv_int_desc_free(hpdev, int_desc);
1926 }
1927
1928 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1929 if (!int_desc)
1930 goto drop_reference;
1931
1932 if (multi_msi) {
1933 /*
1934 * If this is not the first MSI of Multi MSI, we already have
1935 * a mapping. Can exit early.
1936 */
1937 if (msi_desc->irq != data->irq) {
1938 data->chip_data = int_desc;
1939 int_desc->address = msi_desc->msg.address_lo |
1940 (u64)msi_desc->msg.address_hi << 32;
1941 int_desc->data = msi_desc->msg.data +
1942 (data->irq - msi_desc->irq);
1943 msg->address_hi = msi_desc->msg.address_hi;
1944 msg->address_lo = msi_desc->msg.address_lo;
1945 msg->data = int_desc->data;
1946 put_pcichild(hpdev);
1947 return;
1948 }
1949 /*
1950 * The vector we select here is a dummy value. The correct
1951 * value gets sent to the hypervisor in unmask(). This needs
1952 * to be aligned with the count, and also not zero. Multi-msi
1953 * is powers of 2 up to 32, so 32 will always work here.
1954 */
1955 vector = 32;
1956 vector_count = msi_desc->nvec_used;
1957 cpu = hv_compose_multi_msi_req_get_cpu();
1958 } else {
1959 vector = hv_msi_get_int_vector(data);
1960 vector_count = 1;
1961 cpu = hv_compose_msi_req_get_cpu(affinity: dest);
1962 }
1963
1964 /*
1965 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1966 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1967 * for better readability.
1968 */
1969 memset(&ctxt, 0, sizeof(ctxt));
1970 init_completion(x: &comp.comp_pkt.host_event);
1971 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1972 ctxt.pci_pkt.compl_ctxt = &comp;
1973
1974 switch (hbus->protocol_version) {
1975 case PCI_PROTOCOL_VERSION_1_1:
1976 size = hv_compose_msi_req_v1(int_pkt: &ctxt.int_pkts.v1,
1977 slot: hpdev->desc.win_slot.slot,
1978 vector: (u8)vector,
1979 vector_count);
1980 break;
1981
1982 case PCI_PROTOCOL_VERSION_1_2:
1983 case PCI_PROTOCOL_VERSION_1_3:
1984 size = hv_compose_msi_req_v2(int_pkt: &ctxt.int_pkts.v2,
1985 cpu,
1986 slot: hpdev->desc.win_slot.slot,
1987 vector: (u8)vector,
1988 vector_count);
1989 break;
1990
1991 case PCI_PROTOCOL_VERSION_1_4:
1992 size = hv_compose_msi_req_v3(int_pkt: &ctxt.int_pkts.v3,
1993 cpu,
1994 slot: hpdev->desc.win_slot.slot,
1995 vector,
1996 vector_count);
1997 break;
1998
1999 default:
2000 /* As we only negotiate protocol versions known to this driver,
2001 * this path should never hit. However, this is it not a hot
2002 * path so we print a message to aid future updates.
2003 */
2004 dev_err(&hbus->hdev->device,
2005 "Unexpected vPCI protocol, update driver.");
2006 goto free_int_desc;
2007 }
2008
2009 ret = vmbus_sendpacket_getid(channel: hpdev->hbus->hdev->channel, buffer: &ctxt.int_pkts,
2010 bufferLen: size, requestid: (unsigned long)&ctxt.pci_pkt,
2011 trans_id: &trans_id, type: VM_PKT_DATA_INBAND,
2012 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2013 if (ret) {
2014 dev_err(&hbus->hdev->device,
2015 "Sending request for interrupt failed: 0x%x",
2016 comp.comp_pkt.completion_status);
2017 goto free_int_desc;
2018 }
2019
2020 /*
2021 * Prevents hv_pci_onchannelcallback() from running concurrently
2022 * in the tasklet.
2023 */
2024 tasklet_disable_in_atomic(t: &channel->callback_event);
2025
2026 /*
2027 * Since this function is called with IRQ locks held, can't
2028 * do normal wait for completion; instead poll.
2029 */
2030 while (!try_wait_for_completion(x: &comp.comp_pkt.host_event)) {
2031 unsigned long flags;
2032
2033 /* 0xFFFF means an invalid PCI VENDOR ID. */
2034 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
2035 dev_err_once(&hbus->hdev->device,
2036 "the device has gone\n");
2037 goto enable_tasklet;
2038 }
2039
2040 /*
2041 * Make sure that the ring buffer data structure doesn't get
2042 * freed while we dereference the ring buffer pointer. Test
2043 * for the channel's onchannel_callback being NULL within a
2044 * sched_lock critical section. See also the inline comments
2045 * in vmbus_reset_channel_cb().
2046 */
2047 spin_lock_irqsave(&channel->sched_lock, flags);
2048 if (unlikely(channel->onchannel_callback == NULL)) {
2049 spin_unlock_irqrestore(lock: &channel->sched_lock, flags);
2050 goto enable_tasklet;
2051 }
2052 hv_pci_onchannelcallback(context: hbus);
2053 spin_unlock_irqrestore(lock: &channel->sched_lock, flags);
2054
2055 udelay(usec: 100);
2056 }
2057
2058 tasklet_enable(t: &channel->callback_event);
2059
2060 if (comp.comp_pkt.completion_status < 0) {
2061 dev_err(&hbus->hdev->device,
2062 "Request for interrupt failed: 0x%x",
2063 comp.comp_pkt.completion_status);
2064 goto free_int_desc;
2065 }
2066
2067 /*
2068 * Record the assignment so that this can be unwound later. Using
2069 * irq_set_chip_data() here would be appropriate, but the lock it takes
2070 * is already held.
2071 */
2072 *int_desc = comp.int_desc;
2073 data->chip_data = int_desc;
2074
2075 /* Pass up the result. */
2076 msg->address_hi = comp.int_desc.address >> 32;
2077 msg->address_lo = comp.int_desc.address & 0xffffffff;
2078 msg->data = comp.int_desc.data;
2079
2080 put_pcichild(hpdev);
2081 return;
2082
2083enable_tasklet:
2084 tasklet_enable(t: &channel->callback_event);
2085 /*
2086 * The completion packet on the stack becomes invalid after 'return';
2087 * remove the ID from the VMbus requestor if the identifier is still
2088 * mapped to/associated with the packet. (The identifier could have
2089 * been 're-used', i.e., already removed and (re-)mapped.)
2090 *
2091 * Cf. hv_pci_onchannelcallback().
2092 */
2093 vmbus_request_addr_match(channel, trans_id, rqst_addr: (unsigned long)&ctxt.pci_pkt);
2094free_int_desc:
2095 kfree(objp: int_desc);
2096drop_reference:
2097 put_pcichild(hpdev);
2098return_null_message:
2099 msg->address_hi = 0;
2100 msg->address_lo = 0;
2101 msg->data = 0;
2102}
2103
2104/* HW Interrupt Chip Descriptor */
2105static struct irq_chip hv_msi_irq_chip = {
2106 .name = "Hyper-V PCIe MSI",
2107 .irq_compose_msi_msg = hv_compose_msi_msg,
2108 .irq_set_affinity = irq_chip_set_affinity_parent,
2109#ifdef CONFIG_X86
2110 .irq_ack = irq_chip_ack_parent,
2111 .flags = IRQCHIP_MOVE_DEFERRED,
2112#elif defined(CONFIG_ARM64)
2113 .irq_eoi = irq_chip_eoi_parent,
2114#endif
2115 .irq_mask = hv_irq_mask,
2116 .irq_unmask = hv_irq_unmask,
2117};
2118
2119static struct msi_domain_ops hv_msi_ops = {
2120 .msi_prepare = hv_msi_prepare,
2121 .msi_free = hv_msi_free,
2122};
2123
2124/**
2125 * hv_pcie_init_irq_domain() - Initialize IRQ domain
2126 * @hbus: The root PCI bus
2127 *
2128 * This function creates an IRQ domain which will be used for
2129 * interrupts from devices that have been passed through. These
2130 * devices only support MSI and MSI-X, not line-based interrupts
2131 * or simulations of line-based interrupts through PCIe's
2132 * fabric-layer messages. Because interrupts are remapped, we
2133 * can support multi-message MSI here.
2134 *
2135 * Return: '0' on success and error value on failure
2136 */
2137static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2138{
2139 hbus->msi_info.chip = &hv_msi_irq_chip;
2140 hbus->msi_info.ops = &hv_msi_ops;
2141 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2142 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2143 MSI_FLAG_PCI_MSIX);
2144 hbus->msi_info.handler = FLOW_HANDLER;
2145 hbus->msi_info.handler_name = FLOW_NAME;
2146 hbus->msi_info.data = hbus;
2147 hbus->irq_domain = pci_msi_create_irq_domain(fwnode: hbus->fwnode,
2148 info: &hbus->msi_info,
2149 parent: hv_pci_get_root_domain());
2150 if (!hbus->irq_domain) {
2151 dev_err(&hbus->hdev->device,
2152 "Failed to build an MSI IRQ domain\n");
2153 return -ENODEV;
2154 }
2155
2156 dev_set_msi_domain(dev: &hbus->bridge->dev, d: hbus->irq_domain);
2157
2158 return 0;
2159}
2160
2161/**
2162 * get_bar_size() - Get the address space consumed by a BAR
2163 * @bar_val: Value that a BAR returned after -1 was written
2164 * to it.
2165 *
2166 * This function returns the size of the BAR, rounded up to 1
2167 * page. It has to be rounded up because the hypervisor's page
2168 * table entry that maps the BAR into the VM can't specify an
2169 * offset within a page. The invariant is that the hypervisor
2170 * must place any BARs of smaller than page length at the
2171 * beginning of a page.
2172 *
2173 * Return: Size in bytes of the consumed MMIO space.
2174 */
2175static u64 get_bar_size(u64 bar_val)
2176{
2177 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2178 PAGE_SIZE);
2179}
2180
2181/**
2182 * survey_child_resources() - Total all MMIO requirements
2183 * @hbus: Root PCI bus, as understood by this driver
2184 */
2185static void survey_child_resources(struct hv_pcibus_device *hbus)
2186{
2187 struct hv_pci_dev *hpdev;
2188 resource_size_t bar_size = 0;
2189 unsigned long flags;
2190 struct completion *event;
2191 u64 bar_val;
2192 int i;
2193
2194 /* If nobody is waiting on the answer, don't compute it. */
2195 event = xchg(&hbus->survey_event, NULL);
2196 if (!event)
2197 return;
2198
2199 /* If the answer has already been computed, go with it. */
2200 if (hbus->low_mmio_space || hbus->high_mmio_space) {
2201 complete(event);
2202 return;
2203 }
2204
2205 spin_lock_irqsave(&hbus->device_list_lock, flags);
2206
2207 /*
2208 * Due to an interesting quirk of the PCI spec, all memory regions
2209 * for a child device are a power of 2 in size and aligned in memory,
2210 * so it's sufficient to just add them up without tracking alignment.
2211 */
2212 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2213 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2214 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2215 dev_err(&hbus->hdev->device,
2216 "There's an I/O BAR in this list!\n");
2217
2218 if (hpdev->probed_bar[i] != 0) {
2219 /*
2220 * A probed BAR has all the upper bits set that
2221 * can be changed.
2222 */
2223
2224 bar_val = hpdev->probed_bar[i];
2225 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2226 bar_val |=
2227 ((u64)hpdev->probed_bar[++i] << 32);
2228 else
2229 bar_val |= 0xffffffff00000000ULL;
2230
2231 bar_size = get_bar_size(bar_val);
2232
2233 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2234 hbus->high_mmio_space += bar_size;
2235 else
2236 hbus->low_mmio_space += bar_size;
2237 }
2238 }
2239 }
2240
2241 spin_unlock_irqrestore(lock: &hbus->device_list_lock, flags);
2242 complete(event);
2243}
2244
2245/**
2246 * prepopulate_bars() - Fill in BARs with defaults
2247 * @hbus: Root PCI bus, as understood by this driver
2248 *
2249 * The core PCI driver code seems much, much happier if the BARs
2250 * for a device have values upon first scan. So fill them in.
2251 * The algorithm below works down from large sizes to small,
2252 * attempting to pack the assignments optimally. The assumption,
2253 * enforced in other parts of the code, is that the beginning of
2254 * the memory-mapped I/O space will be aligned on the largest
2255 * BAR size.
2256 */
2257static void prepopulate_bars(struct hv_pcibus_device *hbus)
2258{
2259 resource_size_t high_size = 0;
2260 resource_size_t low_size = 0;
2261 resource_size_t high_base = 0;
2262 resource_size_t low_base = 0;
2263 resource_size_t bar_size;
2264 struct hv_pci_dev *hpdev;
2265 unsigned long flags;
2266 u64 bar_val;
2267 u32 command;
2268 bool high;
2269 int i;
2270
2271 if (hbus->low_mmio_space) {
2272 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2273 low_base = hbus->low_mmio_res->start;
2274 }
2275
2276 if (hbus->high_mmio_space) {
2277 high_size = 1ULL <<
2278 (63 - __builtin_clzll(hbus->high_mmio_space));
2279 high_base = hbus->high_mmio_res->start;
2280 }
2281
2282 spin_lock_irqsave(&hbus->device_list_lock, flags);
2283
2284 /*
2285 * Clear the memory enable bit, in case it's already set. This occurs
2286 * in the suspend path of hibernation, where the device is suspended,
2287 * resumed and suspended again: see hibernation_snapshot() and
2288 * hibernation_platform_enter().
2289 *
2290 * If the memory enable bit is already set, Hyper-V silently ignores
2291 * the below BAR updates, and the related PCI device driver can not
2292 * work, because reading from the device register(s) always returns
2293 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2294 */
2295 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2296 _hv_pcifront_read_config(hpdev, PCI_COMMAND, size: 2, val: &command);
2297 command &= ~PCI_COMMAND_MEMORY;
2298 _hv_pcifront_write_config(hpdev, PCI_COMMAND, size: 2, val: command);
2299 }
2300
2301 /* Pick addresses for the BARs. */
2302 do {
2303 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2304 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2305 bar_val = hpdev->probed_bar[i];
2306 if (bar_val == 0)
2307 continue;
2308 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2309 if (high) {
2310 bar_val |=
2311 ((u64)hpdev->probed_bar[i + 1]
2312 << 32);
2313 } else {
2314 bar_val |= 0xffffffffULL << 32;
2315 }
2316 bar_size = get_bar_size(bar_val);
2317 if (high) {
2318 if (high_size != bar_size) {
2319 i++;
2320 continue;
2321 }
2322 _hv_pcifront_write_config(hpdev,
2323 PCI_BASE_ADDRESS_0 + (4 * i),
2324 size: 4,
2325 val: (u32)(high_base & 0xffffff00));
2326 i++;
2327 _hv_pcifront_write_config(hpdev,
2328 PCI_BASE_ADDRESS_0 + (4 * i),
2329 size: 4, val: (u32)(high_base >> 32));
2330 high_base += bar_size;
2331 } else {
2332 if (low_size != bar_size)
2333 continue;
2334 _hv_pcifront_write_config(hpdev,
2335 PCI_BASE_ADDRESS_0 + (4 * i),
2336 size: 4,
2337 val: (u32)(low_base & 0xffffff00));
2338 low_base += bar_size;
2339 }
2340 }
2341 if (high_size <= 1 && low_size <= 1) {
2342 /*
2343 * No need to set the PCI_COMMAND_MEMORY bit as
2344 * the core PCI driver doesn't require the bit
2345 * to be pre-set. Actually here we intentionally
2346 * keep the bit off so that the PCI BAR probing
2347 * in the core PCI driver doesn't cause Hyper-V
2348 * to unnecessarily unmap/map the virtual BARs
2349 * from/to the physical BARs multiple times.
2350 * This reduces the VM boot time significantly
2351 * if the BAR sizes are huge.
2352 */
2353 break;
2354 }
2355 }
2356
2357 high_size >>= 1;
2358 low_size >>= 1;
2359 } while (high_size || low_size);
2360
2361 spin_unlock_irqrestore(lock: &hbus->device_list_lock, flags);
2362}
2363
2364/*
2365 * Assign entries in sysfs pci slot directory.
2366 *
2367 * Note that this function does not need to lock the children list
2368 * because it is called from pci_devices_present_work which
2369 * is serialized with hv_eject_device_work because they are on the
2370 * same ordered workqueue. Therefore hbus->children list will not change
2371 * even when pci_create_slot sleeps.
2372 */
2373static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2374{
2375 struct hv_pci_dev *hpdev;
2376 char name[SLOT_NAME_SIZE];
2377 int slot_nr;
2378
2379 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2380 if (hpdev->pci_slot)
2381 continue;
2382
2383 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2384 snprintf(buf: name, SLOT_NAME_SIZE, fmt: "%u", hpdev->desc.ser);
2385 hpdev->pci_slot = pci_create_slot(parent: hbus->bridge->bus, slot_nr,
2386 name, NULL);
2387 if (IS_ERR(ptr: hpdev->pci_slot)) {
2388 pr_warn("pci_create slot %s failed\n", name);
2389 hpdev->pci_slot = NULL;
2390 }
2391 }
2392}
2393
2394/*
2395 * Remove entries in sysfs pci slot directory.
2396 */
2397static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2398{
2399 struct hv_pci_dev *hpdev;
2400
2401 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2402 if (!hpdev->pci_slot)
2403 continue;
2404 pci_destroy_slot(slot: hpdev->pci_slot);
2405 hpdev->pci_slot = NULL;
2406 }
2407}
2408
2409/*
2410 * Set NUMA node for the devices on the bus
2411 */
2412static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2413{
2414 struct pci_dev *dev;
2415 struct pci_bus *bus = hbus->bridge->bus;
2416 struct hv_pci_dev *hv_dev;
2417
2418 list_for_each_entry(dev, &bus->devices, bus_list) {
2419 hv_dev = get_pcichild_wslot(hbus, wslot: devfn_to_wslot(devfn: dev->devfn));
2420 if (!hv_dev)
2421 continue;
2422
2423 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2424 hv_dev->desc.virtual_numa_node < num_possible_nodes())
2425 /*
2426 * The kernel may boot with some NUMA nodes offline
2427 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2428 * "numa=off". In those cases, adjust the host provided
2429 * NUMA node to a valid NUMA node used by the kernel.
2430 */
2431 set_dev_node(dev: &dev->dev,
2432 numa_map_to_online_node(
2433 hv_dev->desc.virtual_numa_node));
2434
2435 put_pcichild(hpdev: hv_dev);
2436 }
2437}
2438
2439/**
2440 * create_root_hv_pci_bus() - Expose a new root PCI bus
2441 * @hbus: Root PCI bus, as understood by this driver
2442 *
2443 * Return: 0 on success, -errno on failure
2444 */
2445static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2446{
2447 int error;
2448 struct pci_host_bridge *bridge = hbus->bridge;
2449
2450 bridge->dev.parent = &hbus->hdev->device;
2451 bridge->sysdata = &hbus->sysdata;
2452 bridge->ops = &hv_pcifront_ops;
2453
2454 error = pci_scan_root_bus_bridge(bridge);
2455 if (error)
2456 return error;
2457
2458 pci_lock_rescan_remove();
2459 hv_pci_assign_numa_node(hbus);
2460 pci_bus_assign_resources(bus: bridge->bus);
2461 hv_pci_assign_slots(hbus);
2462 pci_bus_add_devices(bus: bridge->bus);
2463 pci_unlock_rescan_remove();
2464 hbus->state = hv_pcibus_installed;
2465 return 0;
2466}
2467
2468struct q_res_req_compl {
2469 struct completion host_event;
2470 struct hv_pci_dev *hpdev;
2471};
2472
2473/**
2474 * q_resource_requirements() - Query Resource Requirements
2475 * @context: The completion context.
2476 * @resp: The response that came from the host.
2477 * @resp_packet_size: The size in bytes of resp.
2478 *
2479 * This function is invoked on completion of a Query Resource
2480 * Requirements packet.
2481 */
2482static void q_resource_requirements(void *context, struct pci_response *resp,
2483 int resp_packet_size)
2484{
2485 struct q_res_req_compl *completion = context;
2486 struct pci_q_res_req_response *q_res_req =
2487 (struct pci_q_res_req_response *)resp;
2488 s32 status;
2489 int i;
2490
2491 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2492 if (status < 0) {
2493 dev_err(&completion->hpdev->hbus->hdev->device,
2494 "query resource requirements failed: %x\n",
2495 status);
2496 } else {
2497 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2498 completion->hpdev->probed_bar[i] =
2499 q_res_req->probed_bar[i];
2500 }
2501 }
2502
2503 complete(&completion->host_event);
2504}
2505
2506/**
2507 * new_pcichild_device() - Create a new child device
2508 * @hbus: The internal struct tracking this root PCI bus.
2509 * @desc: The information supplied so far from the host
2510 * about the device.
2511 *
2512 * This function creates the tracking structure for a new child
2513 * device and kicks off the process of figuring out what it is.
2514 *
2515 * Return: Pointer to the new tracking struct
2516 */
2517static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2518 struct hv_pcidev_description *desc)
2519{
2520 struct hv_pci_dev *hpdev;
2521 struct pci_child_message *res_req;
2522 struct q_res_req_compl comp_pkt;
2523 struct {
2524 struct pci_packet init_packet;
2525 u8 buffer[sizeof(struct pci_child_message)];
2526 } pkt;
2527 unsigned long flags;
2528 int ret;
2529
2530 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2531 if (!hpdev)
2532 return NULL;
2533
2534 hpdev->hbus = hbus;
2535
2536 memset(&pkt, 0, sizeof(pkt));
2537 init_completion(x: &comp_pkt.host_event);
2538 comp_pkt.hpdev = hpdev;
2539 pkt.init_packet.compl_ctxt = &comp_pkt;
2540 pkt.init_packet.completion_func = q_resource_requirements;
2541 res_req = (struct pci_child_message *)pkt.buffer;
2542 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2543 res_req->wslot.slot = desc->win_slot.slot;
2544
2545 ret = vmbus_sendpacket(channel: hbus->hdev->channel, buffer: res_req,
2546 bufferLen: sizeof(struct pci_child_message),
2547 requestid: (unsigned long)&pkt.init_packet,
2548 type: VM_PKT_DATA_INBAND,
2549 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2550 if (ret)
2551 goto error;
2552
2553 if (wait_for_response(hdev: hbus->hdev, comp: &comp_pkt.host_event))
2554 goto error;
2555
2556 hpdev->desc = *desc;
2557 refcount_set(r: &hpdev->refs, n: 1);
2558 get_pcichild(hpdev);
2559 spin_lock_irqsave(&hbus->device_list_lock, flags);
2560
2561 list_add_tail(new: &hpdev->list_entry, head: &hbus->children);
2562 spin_unlock_irqrestore(lock: &hbus->device_list_lock, flags);
2563 return hpdev;
2564
2565error:
2566 kfree(objp: hpdev);
2567 return NULL;
2568}
2569
2570/**
2571 * get_pcichild_wslot() - Find device from slot
2572 * @hbus: Root PCI bus, as understood by this driver
2573 * @wslot: Location on the bus
2574 *
2575 * This function looks up a PCI device and returns the internal
2576 * representation of it. It acquires a reference on it, so that
2577 * the device won't be deleted while somebody is using it. The
2578 * caller is responsible for calling put_pcichild() to release
2579 * this reference.
2580 *
2581 * Return: Internal representation of a PCI device
2582 */
2583static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2584 u32 wslot)
2585{
2586 unsigned long flags;
2587 struct hv_pci_dev *iter, *hpdev = NULL;
2588
2589 spin_lock_irqsave(&hbus->device_list_lock, flags);
2590 list_for_each_entry(iter, &hbus->children, list_entry) {
2591 if (iter->desc.win_slot.slot == wslot) {
2592 hpdev = iter;
2593 get_pcichild(hpdev);
2594 break;
2595 }
2596 }
2597 spin_unlock_irqrestore(lock: &hbus->device_list_lock, flags);
2598
2599 return hpdev;
2600}
2601
2602/**
2603 * pci_devices_present_work() - Handle new list of child devices
2604 * @work: Work struct embedded in struct hv_dr_work
2605 *
2606 * "Bus Relations" is the Windows term for "children of this
2607 * bus." The terminology is preserved here for people trying to
2608 * debug the interaction between Hyper-V and Linux. This
2609 * function is called when the parent partition reports a list
2610 * of functions that should be observed under this PCI Express
2611 * port (bus).
2612 *
2613 * This function updates the list, and must tolerate being
2614 * called multiple times with the same information. The typical
2615 * number of child devices is one, with very atypical cases
2616 * involving three or four, so the algorithms used here can be
2617 * simple and inefficient.
2618 *
2619 * It must also treat the omission of a previously observed device as
2620 * notification that the device no longer exists.
2621 *
2622 * Note that this function is serialized with hv_eject_device_work(),
2623 * because both are pushed to the ordered workqueue hbus->wq.
2624 */
2625static void pci_devices_present_work(struct work_struct *work)
2626{
2627 u32 child_no;
2628 bool found;
2629 struct hv_pcidev_description *new_desc;
2630 struct hv_pci_dev *hpdev;
2631 struct hv_pcibus_device *hbus;
2632 struct list_head removed;
2633 struct hv_dr_work *dr_wrk;
2634 struct hv_dr_state *dr = NULL;
2635 unsigned long flags;
2636
2637 dr_wrk = container_of(work, struct hv_dr_work, wrk);
2638 hbus = dr_wrk->bus;
2639 kfree(objp: dr_wrk);
2640
2641 INIT_LIST_HEAD(list: &removed);
2642
2643 /* Pull this off the queue and process it if it was the last one. */
2644 spin_lock_irqsave(&hbus->device_list_lock, flags);
2645 while (!list_empty(head: &hbus->dr_list)) {
2646 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2647 list_entry);
2648 list_del(entry: &dr->list_entry);
2649
2650 /* Throw this away if the list still has stuff in it. */
2651 if (!list_empty(head: &hbus->dr_list)) {
2652 kfree(objp: dr);
2653 continue;
2654 }
2655 }
2656 spin_unlock_irqrestore(lock: &hbus->device_list_lock, flags);
2657
2658 if (!dr)
2659 return;
2660
2661 mutex_lock(&hbus->state_lock);
2662
2663 /* First, mark all existing children as reported missing. */
2664 spin_lock_irqsave(&hbus->device_list_lock, flags);
2665 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2666 hpdev->reported_missing = true;
2667 }
2668 spin_unlock_irqrestore(lock: &hbus->device_list_lock, flags);
2669
2670 /* Next, add back any reported devices. */
2671 for (child_no = 0; child_no < dr->device_count; child_no++) {
2672 found = false;
2673 new_desc = &dr->func[child_no];
2674
2675 spin_lock_irqsave(&hbus->device_list_lock, flags);
2676 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2677 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2678 (hpdev->desc.v_id == new_desc->v_id) &&
2679 (hpdev->desc.d_id == new_desc->d_id) &&
2680 (hpdev->desc.ser == new_desc->ser)) {
2681 hpdev->reported_missing = false;
2682 found = true;
2683 }
2684 }
2685 spin_unlock_irqrestore(lock: &hbus->device_list_lock, flags);
2686
2687 if (!found) {
2688 hpdev = new_pcichild_device(hbus, desc: new_desc);
2689 if (!hpdev)
2690 dev_err(&hbus->hdev->device,
2691 "couldn't record a child device.\n");
2692 }
2693 }
2694
2695 /* Move missing children to a list on the stack. */
2696 spin_lock_irqsave(&hbus->device_list_lock, flags);
2697 do {
2698 found = false;
2699 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2700 if (hpdev->reported_missing) {
2701 found = true;
2702 put_pcichild(hpdev);
2703 list_move_tail(list: &hpdev->list_entry, head: &removed);
2704 break;
2705 }
2706 }
2707 } while (found);
2708 spin_unlock_irqrestore(lock: &hbus->device_list_lock, flags);
2709
2710 /* Delete everything that should no longer exist. */
2711 while (!list_empty(head: &removed)) {
2712 hpdev = list_first_entry(&removed, struct hv_pci_dev,
2713 list_entry);
2714 list_del(entry: &hpdev->list_entry);
2715
2716 if (hpdev->pci_slot)
2717 pci_destroy_slot(slot: hpdev->pci_slot);
2718
2719 put_pcichild(hpdev);
2720 }
2721
2722 switch (hbus->state) {
2723 case hv_pcibus_installed:
2724 /*
2725 * Tell the core to rescan bus
2726 * because there may have been changes.
2727 */
2728 pci_lock_rescan_remove();
2729 pci_scan_child_bus(bus: hbus->bridge->bus);
2730 hv_pci_assign_numa_node(hbus);
2731 hv_pci_assign_slots(hbus);
2732 pci_unlock_rescan_remove();
2733 break;
2734
2735 case hv_pcibus_init:
2736 case hv_pcibus_probed:
2737 survey_child_resources(hbus);
2738 break;
2739
2740 default:
2741 break;
2742 }
2743
2744 mutex_unlock(lock: &hbus->state_lock);
2745
2746 kfree(objp: dr);
2747}
2748
2749/**
2750 * hv_pci_start_relations_work() - Queue work to start device discovery
2751 * @hbus: Root PCI bus, as understood by this driver
2752 * @dr: The list of children returned from host
2753 *
2754 * Return: 0 on success, -errno on failure
2755 */
2756static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2757 struct hv_dr_state *dr)
2758{
2759 struct hv_dr_work *dr_wrk;
2760 unsigned long flags;
2761 bool pending_dr;
2762
2763 if (hbus->state == hv_pcibus_removing) {
2764 dev_info(&hbus->hdev->device,
2765 "PCI VMBus BUS_RELATIONS: ignored\n");
2766 return -ENOENT;
2767 }
2768
2769 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2770 if (!dr_wrk)
2771 return -ENOMEM;
2772
2773 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2774 dr_wrk->bus = hbus;
2775
2776 spin_lock_irqsave(&hbus->device_list_lock, flags);
2777 /*
2778 * If pending_dr is true, we have already queued a work,
2779 * which will see the new dr. Otherwise, we need to
2780 * queue a new work.
2781 */
2782 pending_dr = !list_empty(head: &hbus->dr_list);
2783 list_add_tail(new: &dr->list_entry, head: &hbus->dr_list);
2784 spin_unlock_irqrestore(lock: &hbus->device_list_lock, flags);
2785
2786 if (pending_dr)
2787 kfree(objp: dr_wrk);
2788 else
2789 queue_work(wq: hbus->wq, work: &dr_wrk->wrk);
2790
2791 return 0;
2792}
2793
2794/**
2795 * hv_pci_devices_present() - Handle list of new children
2796 * @hbus: Root PCI bus, as understood by this driver
2797 * @relations: Packet from host listing children
2798 *
2799 * Process a new list of devices on the bus. The list of devices is
2800 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2801 * whenever a new list of devices for this bus appears.
2802 */
2803static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2804 struct pci_bus_relations *relations)
2805{
2806 struct hv_dr_state *dr;
2807 int i;
2808
2809 dr = kzalloc(struct_size(dr, func, relations->device_count),
2810 GFP_NOWAIT);
2811 if (!dr)
2812 return;
2813
2814 dr->device_count = relations->device_count;
2815 for (i = 0; i < dr->device_count; i++) {
2816 dr->func[i].v_id = relations->func[i].v_id;
2817 dr->func[i].d_id = relations->func[i].d_id;
2818 dr->func[i].rev = relations->func[i].rev;
2819 dr->func[i].prog_intf = relations->func[i].prog_intf;
2820 dr->func[i].subclass = relations->func[i].subclass;
2821 dr->func[i].base_class = relations->func[i].base_class;
2822 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2823 dr->func[i].win_slot = relations->func[i].win_slot;
2824 dr->func[i].ser = relations->func[i].ser;
2825 }
2826
2827 if (hv_pci_start_relations_work(hbus, dr))
2828 kfree(objp: dr);
2829}
2830
2831/**
2832 * hv_pci_devices_present2() - Handle list of new children
2833 * @hbus: Root PCI bus, as understood by this driver
2834 * @relations: Packet from host listing children
2835 *
2836 * This function is the v2 version of hv_pci_devices_present()
2837 */
2838static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2839 struct pci_bus_relations2 *relations)
2840{
2841 struct hv_dr_state *dr;
2842 int i;
2843
2844 dr = kzalloc(struct_size(dr, func, relations->device_count),
2845 GFP_NOWAIT);
2846 if (!dr)
2847 return;
2848
2849 dr->device_count = relations->device_count;
2850 for (i = 0; i < dr->device_count; i++) {
2851 dr->func[i].v_id = relations->func[i].v_id;
2852 dr->func[i].d_id = relations->func[i].d_id;
2853 dr->func[i].rev = relations->func[i].rev;
2854 dr->func[i].prog_intf = relations->func[i].prog_intf;
2855 dr->func[i].subclass = relations->func[i].subclass;
2856 dr->func[i].base_class = relations->func[i].base_class;
2857 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2858 dr->func[i].win_slot = relations->func[i].win_slot;
2859 dr->func[i].ser = relations->func[i].ser;
2860 dr->func[i].flags = relations->func[i].flags;
2861 dr->func[i].virtual_numa_node =
2862 relations->func[i].virtual_numa_node;
2863 }
2864
2865 if (hv_pci_start_relations_work(hbus, dr))
2866 kfree(objp: dr);
2867}
2868
2869/**
2870 * hv_eject_device_work() - Asynchronously handles ejection
2871 * @work: Work struct embedded in internal device struct
2872 *
2873 * This function handles ejecting a device. Windows will
2874 * attempt to gracefully eject a device, waiting 60 seconds to
2875 * hear back from the guest OS that this completed successfully.
2876 * If this timer expires, the device will be forcibly removed.
2877 */
2878static void hv_eject_device_work(struct work_struct *work)
2879{
2880 struct pci_eject_response *ejct_pkt;
2881 struct hv_pcibus_device *hbus;
2882 struct hv_pci_dev *hpdev;
2883 struct pci_dev *pdev;
2884 unsigned long flags;
2885 int wslot;
2886 struct {
2887 struct pci_packet pkt;
2888 u8 buffer[sizeof(struct pci_eject_response)];
2889 } ctxt;
2890
2891 hpdev = container_of(work, struct hv_pci_dev, wrk);
2892 hbus = hpdev->hbus;
2893
2894 mutex_lock(&hbus->state_lock);
2895
2896 /*
2897 * Ejection can come before or after the PCI bus has been set up, so
2898 * attempt to find it and tear down the bus state, if it exists. This
2899 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2900 * because hbus->bridge->bus may not exist yet.
2901 */
2902 wslot = wslot_to_devfn(wslot: hpdev->desc.win_slot.slot);
2903 pdev = pci_get_domain_bus_and_slot(domain: hbus->bridge->domain_nr, bus: 0, devfn: wslot);
2904 if (pdev) {
2905 pci_lock_rescan_remove();
2906 pci_stop_and_remove_bus_device(dev: pdev);
2907 pci_dev_put(dev: pdev);
2908 pci_unlock_rescan_remove();
2909 }
2910
2911 spin_lock_irqsave(&hbus->device_list_lock, flags);
2912 list_del(entry: &hpdev->list_entry);
2913 spin_unlock_irqrestore(lock: &hbus->device_list_lock, flags);
2914
2915 if (hpdev->pci_slot)
2916 pci_destroy_slot(slot: hpdev->pci_slot);
2917
2918 memset(&ctxt, 0, sizeof(ctxt));
2919 ejct_pkt = (struct pci_eject_response *)ctxt.buffer;
2920 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2921 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2922 vmbus_sendpacket(channel: hbus->hdev->channel, buffer: ejct_pkt,
2923 bufferLen: sizeof(*ejct_pkt), requestid: 0,
2924 type: VM_PKT_DATA_INBAND, flags: 0);
2925
2926 /* For the get_pcichild() in hv_pci_eject_device() */
2927 put_pcichild(hpdev);
2928 /* For the two refs got in new_pcichild_device() */
2929 put_pcichild(hpdev);
2930 put_pcichild(hpdev);
2931 /* hpdev has been freed. Do not use it any more. */
2932
2933 mutex_unlock(lock: &hbus->state_lock);
2934}
2935
2936/**
2937 * hv_pci_eject_device() - Handles device ejection
2938 * @hpdev: Internal device tracking struct
2939 *
2940 * This function is invoked when an ejection packet arrives. It
2941 * just schedules work so that we don't re-enter the packet
2942 * delivery code handling the ejection.
2943 */
2944static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2945{
2946 struct hv_pcibus_device *hbus = hpdev->hbus;
2947 struct hv_device *hdev = hbus->hdev;
2948
2949 if (hbus->state == hv_pcibus_removing) {
2950 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2951 return;
2952 }
2953
2954 get_pcichild(hpdev);
2955 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2956 queue_work(wq: hbus->wq, work: &hpdev->wrk);
2957}
2958
2959/**
2960 * hv_pci_onchannelcallback() - Handles incoming packets
2961 * @context: Internal bus tracking struct
2962 *
2963 * This function is invoked whenever the host sends a packet to
2964 * this channel (which is private to this root PCI bus).
2965 */
2966static void hv_pci_onchannelcallback(void *context)
2967{
2968 const int packet_size = 0x100;
2969 int ret;
2970 struct hv_pcibus_device *hbus = context;
2971 struct vmbus_channel *chan = hbus->hdev->channel;
2972 u32 bytes_recvd;
2973 u64 req_id, req_addr;
2974 struct vmpacket_descriptor *desc;
2975 unsigned char *buffer;
2976 int bufferlen = packet_size;
2977 struct pci_packet *comp_packet;
2978 struct pci_response *response;
2979 struct pci_incoming_message *new_message;
2980 struct pci_bus_relations *bus_rel;
2981 struct pci_bus_relations2 *bus_rel2;
2982 struct pci_dev_inval_block *inval;
2983 struct pci_dev_incoming *dev_message;
2984 struct hv_pci_dev *hpdev;
2985 unsigned long flags;
2986
2987 buffer = kmalloc(bufferlen, GFP_ATOMIC);
2988 if (!buffer)
2989 return;
2990
2991 while (1) {
2992 ret = vmbus_recvpacket_raw(channel: chan, buffer, bufferlen,
2993 buffer_actual_len: &bytes_recvd, requestid: &req_id);
2994
2995 if (ret == -ENOBUFS) {
2996 kfree(objp: buffer);
2997 /* Handle large packet */
2998 bufferlen = bytes_recvd;
2999 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
3000 if (!buffer)
3001 return;
3002 continue;
3003 }
3004
3005 /* Zero length indicates there are no more packets. */
3006 if (ret || !bytes_recvd)
3007 break;
3008
3009 /*
3010 * All incoming packets must be at least as large as a
3011 * response.
3012 */
3013 if (bytes_recvd <= sizeof(struct pci_response))
3014 continue;
3015 desc = (struct vmpacket_descriptor *)buffer;
3016
3017 switch (desc->type) {
3018 case VM_PKT_COMP:
3019
3020 lock_requestor(chan, flags);
3021 req_addr = __vmbus_request_addr_match(channel: chan, trans_id: req_id,
3022 VMBUS_RQST_ADDR_ANY);
3023 if (req_addr == VMBUS_RQST_ERROR) {
3024 unlock_requestor(channel: chan, flags);
3025 dev_err(&hbus->hdev->device,
3026 "Invalid transaction ID %llx\n",
3027 req_id);
3028 break;
3029 }
3030 comp_packet = (struct pci_packet *)req_addr;
3031 response = (struct pci_response *)buffer;
3032 /*
3033 * Call ->completion_func() within the critical section to make
3034 * sure that the packet pointer is still valid during the call:
3035 * here 'valid' means that there's a task still waiting for the
3036 * completion, and that the packet data is still on the waiting
3037 * task's stack. Cf. hv_compose_msi_msg().
3038 */
3039 comp_packet->completion_func(comp_packet->compl_ctxt,
3040 response,
3041 bytes_recvd);
3042 unlock_requestor(channel: chan, flags);
3043 break;
3044
3045 case VM_PKT_DATA_INBAND:
3046
3047 new_message = (struct pci_incoming_message *)buffer;
3048 switch (new_message->message_type.type) {
3049 case PCI_BUS_RELATIONS:
3050
3051 bus_rel = (struct pci_bus_relations *)buffer;
3052 if (bytes_recvd < sizeof(*bus_rel) ||
3053 bytes_recvd <
3054 struct_size(bus_rel, func,
3055 bus_rel->device_count)) {
3056 dev_err(&hbus->hdev->device,
3057 "bus relations too small\n");
3058 break;
3059 }
3060
3061 hv_pci_devices_present(hbus, relations: bus_rel);
3062 break;
3063
3064 case PCI_BUS_RELATIONS2:
3065
3066 bus_rel2 = (struct pci_bus_relations2 *)buffer;
3067 if (bytes_recvd < sizeof(*bus_rel2) ||
3068 bytes_recvd <
3069 struct_size(bus_rel2, func,
3070 bus_rel2->device_count)) {
3071 dev_err(&hbus->hdev->device,
3072 "bus relations v2 too small\n");
3073 break;
3074 }
3075
3076 hv_pci_devices_present2(hbus, relations: bus_rel2);
3077 break;
3078
3079 case PCI_EJECT:
3080
3081 dev_message = (struct pci_dev_incoming *)buffer;
3082 if (bytes_recvd < sizeof(*dev_message)) {
3083 dev_err(&hbus->hdev->device,
3084 "eject message too small\n");
3085 break;
3086 }
3087 hpdev = get_pcichild_wslot(hbus,
3088 wslot: dev_message->wslot.slot);
3089 if (hpdev) {
3090 hv_pci_eject_device(hpdev);
3091 put_pcichild(hpdev);
3092 }
3093 break;
3094
3095 case PCI_INVALIDATE_BLOCK:
3096
3097 inval = (struct pci_dev_inval_block *)buffer;
3098 if (bytes_recvd < sizeof(*inval)) {
3099 dev_err(&hbus->hdev->device,
3100 "invalidate message too small\n");
3101 break;
3102 }
3103 hpdev = get_pcichild_wslot(hbus,
3104 wslot: inval->wslot.slot);
3105 if (hpdev) {
3106 if (hpdev->block_invalidate) {
3107 hpdev->block_invalidate(
3108 hpdev->invalidate_context,
3109 inval->block_mask);
3110 }
3111 put_pcichild(hpdev);
3112 }
3113 break;
3114
3115 default:
3116 dev_warn(&hbus->hdev->device,
3117 "Unimplemented protocol message %x\n",
3118 new_message->message_type.type);
3119 break;
3120 }
3121 break;
3122
3123 default:
3124 dev_err(&hbus->hdev->device,
3125 "unhandled packet type %d, tid %llx len %d\n",
3126 desc->type, req_id, bytes_recvd);
3127 break;
3128 }
3129 }
3130
3131 kfree(objp: buffer);
3132}
3133
3134/**
3135 * hv_pci_protocol_negotiation() - Set up protocol
3136 * @hdev: VMBus's tracking struct for this root PCI bus.
3137 * @version: Array of supported channel protocol versions in
3138 * the order of probing - highest go first.
3139 * @num_version: Number of elements in the version array.
3140 *
3141 * This driver is intended to support running on Windows 10
3142 * (server) and later versions. It will not run on earlier
3143 * versions, as they assume that many of the operations which
3144 * Linux needs accomplished with a spinlock held were done via
3145 * asynchronous messaging via VMBus. Windows 10 increases the
3146 * surface area of PCI emulation so that these actions can take
3147 * place by suspending a virtual processor for their duration.
3148 *
3149 * This function negotiates the channel protocol version,
3150 * failing if the host doesn't support the necessary protocol
3151 * level.
3152 */
3153static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3154 enum pci_protocol_version_t version[],
3155 int num_version)
3156{
3157 struct hv_pcibus_device *hbus = hv_get_drvdata(dev: hdev);
3158 struct pci_version_request *version_req;
3159 struct hv_pci_compl comp_pkt;
3160 struct pci_packet *pkt;
3161 int ret;
3162 int i;
3163
3164 /*
3165 * Initiate the handshake with the host and negotiate
3166 * a version that the host can support. We start with the
3167 * highest version number and go down if the host cannot
3168 * support it.
3169 */
3170 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3171 if (!pkt)
3172 return -ENOMEM;
3173
3174 init_completion(x: &comp_pkt.host_event);
3175 pkt->completion_func = hv_pci_generic_compl;
3176 pkt->compl_ctxt = &comp_pkt;
3177 version_req = (struct pci_version_request *)(pkt + 1);
3178 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3179
3180 for (i = 0; i < num_version; i++) {
3181 version_req->protocol_version = version[i];
3182 ret = vmbus_sendpacket(channel: hdev->channel, buffer: version_req,
3183 bufferLen: sizeof(struct pci_version_request),
3184 requestid: (unsigned long)pkt, type: VM_PKT_DATA_INBAND,
3185 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3186 if (!ret)
3187 ret = wait_for_response(hdev, comp: &comp_pkt.host_event);
3188
3189 if (ret) {
3190 dev_err(&hdev->device,
3191 "PCI Pass-through VSP failed to request version: %d",
3192 ret);
3193 goto exit;
3194 }
3195
3196 if (comp_pkt.completion_status >= 0) {
3197 hbus->protocol_version = version[i];
3198 dev_info(&hdev->device,
3199 "PCI VMBus probing: Using version %#x\n",
3200 hbus->protocol_version);
3201 goto exit;
3202 }
3203
3204 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3205 dev_err(&hdev->device,
3206 "PCI Pass-through VSP failed version request: %#x",
3207 comp_pkt.completion_status);
3208 ret = -EPROTO;
3209 goto exit;
3210 }
3211
3212 reinit_completion(x: &comp_pkt.host_event);
3213 }
3214
3215 dev_err(&hdev->device,
3216 "PCI pass-through VSP failed to find supported version");
3217 ret = -EPROTO;
3218
3219exit:
3220 kfree(objp: pkt);
3221 return ret;
3222}
3223
3224/**
3225 * hv_pci_free_bridge_windows() - Release memory regions for the
3226 * bus
3227 * @hbus: Root PCI bus, as understood by this driver
3228 */
3229static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3230{
3231 /*
3232 * Set the resources back to the way they looked when they
3233 * were allocated by setting IORESOURCE_BUSY again.
3234 */
3235
3236 if (hbus->low_mmio_space && hbus->low_mmio_res) {
3237 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3238 vmbus_free_mmio(start: hbus->low_mmio_res->start,
3239 size: resource_size(res: hbus->low_mmio_res));
3240 }
3241
3242 if (hbus->high_mmio_space && hbus->high_mmio_res) {
3243 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3244 vmbus_free_mmio(start: hbus->high_mmio_res->start,
3245 size: resource_size(res: hbus->high_mmio_res));
3246 }
3247}
3248
3249/**
3250 * hv_pci_allocate_bridge_windows() - Allocate memory regions
3251 * for the bus
3252 * @hbus: Root PCI bus, as understood by this driver
3253 *
3254 * This function calls vmbus_allocate_mmio(), which is itself a
3255 * bit of a compromise. Ideally, we might change the pnp layer
3256 * in the kernel such that it comprehends either PCI devices
3257 * which are "grandchildren of ACPI," with some intermediate bus
3258 * node (in this case, VMBus) or change it such that it
3259 * understands VMBus. The pnp layer, however, has been declared
3260 * deprecated, and not subject to change.
3261 *
3262 * The workaround, implemented here, is to ask VMBus to allocate
3263 * MMIO space for this bus. VMBus itself knows which ranges are
3264 * appropriate by looking at its own ACPI objects. Then, after
3265 * these ranges are claimed, they're modified to look like they
3266 * would have looked if the ACPI and pnp code had allocated
3267 * bridge windows. These descriptors have to exist in this form
3268 * in order to satisfy the code which will get invoked when the
3269 * endpoint PCI function driver calls request_mem_region() or
3270 * request_mem_region_exclusive().
3271 *
3272 * Return: 0 on success, -errno on failure
3273 */
3274static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3275{
3276 resource_size_t align;
3277 int ret;
3278
3279 if (hbus->low_mmio_space) {
3280 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3281 ret = vmbus_allocate_mmio(new: &hbus->low_mmio_res, device_obj: hbus->hdev, min: 0,
3282 max: (u64)(u32)0xffffffff,
3283 size: hbus->low_mmio_space,
3284 align, fb_overlap_ok: false);
3285 if (ret) {
3286 dev_err(&hbus->hdev->device,
3287 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3288 hbus->low_mmio_space);
3289 return ret;
3290 }
3291
3292 /* Modify this resource to become a bridge window. */
3293 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3294 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3295 pci_add_resource(resources: &hbus->bridge->windows, res: hbus->low_mmio_res);
3296 }
3297
3298 if (hbus->high_mmio_space) {
3299 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3300 ret = vmbus_allocate_mmio(new: &hbus->high_mmio_res, device_obj: hbus->hdev,
3301 min: 0x100000000, max: -1,
3302 size: hbus->high_mmio_space, align,
3303 fb_overlap_ok: false);
3304 if (ret) {
3305 dev_err(&hbus->hdev->device,
3306 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3307 hbus->high_mmio_space);
3308 goto release_low_mmio;
3309 }
3310
3311 /* Modify this resource to become a bridge window. */
3312 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3313 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3314 pci_add_resource(resources: &hbus->bridge->windows, res: hbus->high_mmio_res);
3315 }
3316
3317 return 0;
3318
3319release_low_mmio:
3320 if (hbus->low_mmio_res) {
3321 vmbus_free_mmio(start: hbus->low_mmio_res->start,
3322 size: resource_size(res: hbus->low_mmio_res));
3323 }
3324
3325 return ret;
3326}
3327
3328/**
3329 * hv_allocate_config_window() - Find MMIO space for PCI Config
3330 * @hbus: Root PCI bus, as understood by this driver
3331 *
3332 * This function claims memory-mapped I/O space for accessing
3333 * configuration space for the functions on this bus.
3334 *
3335 * Return: 0 on success, -errno on failure
3336 */
3337static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3338{
3339 int ret;
3340
3341 /*
3342 * Set up a region of MMIO space to use for accessing configuration
3343 * space.
3344 */
3345 ret = vmbus_allocate_mmio(new: &hbus->mem_config, device_obj: hbus->hdev, min: 0, max: -1,
3346 PCI_CONFIG_MMIO_LENGTH, align: 0x1000, fb_overlap_ok: false);
3347 if (ret)
3348 return ret;
3349
3350 /*
3351 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3352 * resource claims (those which cannot be overlapped) and the ranges
3353 * which are valid for the children of this bus, which are intended
3354 * to be overlapped by those children. Set the flag on this claim
3355 * meaning that this region can't be overlapped.
3356 */
3357
3358 hbus->mem_config->flags |= IORESOURCE_BUSY;
3359
3360 return 0;
3361}
3362
3363static void hv_free_config_window(struct hv_pcibus_device *hbus)
3364{
3365 vmbus_free_mmio(start: hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3366}
3367
3368static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3369
3370/**
3371 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3372 * @hdev: VMBus's tracking struct for this root PCI bus
3373 *
3374 * Return: 0 on success, -errno on failure
3375 */
3376static int hv_pci_enter_d0(struct hv_device *hdev)
3377{
3378 struct hv_pcibus_device *hbus = hv_get_drvdata(dev: hdev);
3379 struct pci_bus_d0_entry *d0_entry;
3380 struct hv_pci_compl comp_pkt;
3381 struct pci_packet *pkt;
3382 bool retry = true;
3383 int ret;
3384
3385enter_d0_retry:
3386 /*
3387 * Tell the host that the bus is ready to use, and moved into the
3388 * powered-on state. This includes telling the host which region
3389 * of memory-mapped I/O space has been chosen for configuration space
3390 * access.
3391 */
3392 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3393 if (!pkt)
3394 return -ENOMEM;
3395
3396 init_completion(x: &comp_pkt.host_event);
3397 pkt->completion_func = hv_pci_generic_compl;
3398 pkt->compl_ctxt = &comp_pkt;
3399 d0_entry = (struct pci_bus_d0_entry *)(pkt + 1);
3400 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3401 d0_entry->mmio_base = hbus->mem_config->start;
3402
3403 ret = vmbus_sendpacket(channel: hdev->channel, buffer: d0_entry, bufferLen: sizeof(*d0_entry),
3404 requestid: (unsigned long)pkt, type: VM_PKT_DATA_INBAND,
3405 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3406 if (!ret)
3407 ret = wait_for_response(hdev, comp: &comp_pkt.host_event);
3408
3409 if (ret)
3410 goto exit;
3411
3412 /*
3413 * In certain case (Kdump) the pci device of interest was
3414 * not cleanly shut down and resource is still held on host
3415 * side, the host could return invalid device status.
3416 * We need to explicitly request host to release the resource
3417 * and try to enter D0 again.
3418 */
3419 if (comp_pkt.completion_status < 0 && retry) {
3420 retry = false;
3421
3422 dev_err(&hdev->device, "Retrying D0 Entry\n");
3423
3424 /*
3425 * Hv_pci_bus_exit() calls hv_send_resource_released()
3426 * to free up resources of its child devices.
3427 * In the kdump kernel we need to set the
3428 * wslot_res_allocated to 255 so it scans all child
3429 * devices to release resources allocated in the
3430 * normal kernel before panic happened.
3431 */
3432 hbus->wslot_res_allocated = 255;
3433
3434 ret = hv_pci_bus_exit(hdev, keep_devs: true);
3435
3436 if (ret == 0) {
3437 kfree(objp: pkt);
3438 goto enter_d0_retry;
3439 }
3440 dev_err(&hdev->device,
3441 "Retrying D0 failed with ret %d\n", ret);
3442 }
3443
3444 if (comp_pkt.completion_status < 0) {
3445 dev_err(&hdev->device,
3446 "PCI Pass-through VSP failed D0 Entry with status %x\n",
3447 comp_pkt.completion_status);
3448 ret = -EPROTO;
3449 goto exit;
3450 }
3451
3452 ret = 0;
3453
3454exit:
3455 kfree(objp: pkt);
3456 return ret;
3457}
3458
3459/**
3460 * hv_pci_query_relations() - Ask host to send list of child
3461 * devices
3462 * @hdev: VMBus's tracking struct for this root PCI bus
3463 *
3464 * Return: 0 on success, -errno on failure
3465 */
3466static int hv_pci_query_relations(struct hv_device *hdev)
3467{
3468 struct hv_pcibus_device *hbus = hv_get_drvdata(dev: hdev);
3469 struct pci_message message;
3470 struct completion comp;
3471 int ret;
3472
3473 /* Ask the host to send along the list of child devices */
3474 init_completion(x: &comp);
3475 if (cmpxchg(&hbus->survey_event, NULL, &comp))
3476 return -ENOTEMPTY;
3477
3478 memset(&message, 0, sizeof(message));
3479 message.type = PCI_QUERY_BUS_RELATIONS;
3480
3481 ret = vmbus_sendpacket(channel: hdev->channel, buffer: &message, bufferLen: sizeof(message),
3482 requestid: 0, type: VM_PKT_DATA_INBAND, flags: 0);
3483 if (!ret)
3484 ret = wait_for_response(hdev, comp: &comp);
3485
3486 /*
3487 * In the case of fast device addition/removal, it's possible that
3488 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
3489 * already got a PCI_BUS_RELATIONS* message from the host and the
3490 * channel callback already scheduled a work to hbus->wq, which can be
3491 * running pci_devices_present_work() -> survey_child_resources() ->
3492 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3493 * exits and the stack variable 'comp' is no longer valid; as a result,
3494 * a hang or a page fault may happen when the complete() calls
3495 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3496 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3497 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3498 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3499 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3500 * channel->rescind = true.
3501 */
3502 flush_workqueue(hbus->wq);
3503
3504 return ret;
3505}
3506
3507/**
3508 * hv_send_resources_allocated() - Report local resource choices
3509 * @hdev: VMBus's tracking struct for this root PCI bus
3510 *
3511 * The host OS is expecting to be sent a request as a message
3512 * which contains all the resources that the device will use.
3513 * The response contains those same resources, "translated"
3514 * which is to say, the values which should be used by the
3515 * hardware, when it delivers an interrupt. (MMIO resources are
3516 * used in local terms.) This is nice for Windows, and lines up
3517 * with the FDO/PDO split, which doesn't exist in Linux. Linux
3518 * is deeply expecting to scan an emulated PCI configuration
3519 * space. So this message is sent here only to drive the state
3520 * machine on the host forward.
3521 *
3522 * Return: 0 on success, -errno on failure
3523 */
3524static int hv_send_resources_allocated(struct hv_device *hdev)
3525{
3526 struct hv_pcibus_device *hbus = hv_get_drvdata(dev: hdev);
3527 struct pci_resources_assigned *res_assigned;
3528 struct pci_resources_assigned2 *res_assigned2;
3529 struct hv_pci_compl comp_pkt;
3530 struct hv_pci_dev *hpdev;
3531 struct pci_packet *pkt;
3532 size_t size_res;
3533 int wslot;
3534 int ret;
3535
3536 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3537 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
3538
3539 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3540 if (!pkt)
3541 return -ENOMEM;
3542
3543 ret = 0;
3544
3545 for (wslot = 0; wslot < 256; wslot++) {
3546 hpdev = get_pcichild_wslot(hbus, wslot);
3547 if (!hpdev)
3548 continue;
3549
3550 memset(pkt, 0, sizeof(*pkt) + size_res);
3551 init_completion(x: &comp_pkt.host_event);
3552 pkt->completion_func = hv_pci_generic_compl;
3553 pkt->compl_ctxt = &comp_pkt;
3554
3555 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3556 res_assigned =
3557 (struct pci_resources_assigned *)(pkt + 1);
3558 res_assigned->message_type.type =
3559 PCI_RESOURCES_ASSIGNED;
3560 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3561 } else {
3562 res_assigned2 =
3563 (struct pci_resources_assigned2 *)(pkt + 1);
3564 res_assigned2->message_type.type =
3565 PCI_RESOURCES_ASSIGNED2;
3566 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3567 }
3568 put_pcichild(hpdev);
3569
3570 ret = vmbus_sendpacket(channel: hdev->channel, buffer: pkt + 1,
3571 bufferLen: size_res, requestid: (unsigned long)pkt,
3572 type: VM_PKT_DATA_INBAND,
3573 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3574 if (!ret)
3575 ret = wait_for_response(hdev, comp: &comp_pkt.host_event);
3576 if (ret)
3577 break;
3578
3579 if (comp_pkt.completion_status < 0) {
3580 ret = -EPROTO;
3581 dev_err(&hdev->device,
3582 "resource allocated returned 0x%x",
3583 comp_pkt.completion_status);
3584 break;
3585 }
3586
3587 hbus->wslot_res_allocated = wslot;
3588 }
3589
3590 kfree(objp: pkt);
3591 return ret;
3592}
3593
3594/**
3595 * hv_send_resources_released() - Report local resources
3596 * released
3597 * @hdev: VMBus's tracking struct for this root PCI bus
3598 *
3599 * Return: 0 on success, -errno on failure
3600 */
3601static int hv_send_resources_released(struct hv_device *hdev)
3602{
3603 struct hv_pcibus_device *hbus = hv_get_drvdata(dev: hdev);
3604 struct pci_child_message pkt;
3605 struct hv_pci_dev *hpdev;
3606 int wslot;
3607 int ret;
3608
3609 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3610 hpdev = get_pcichild_wslot(hbus, wslot);
3611 if (!hpdev)
3612 continue;
3613
3614 memset(&pkt, 0, sizeof(pkt));
3615 pkt.message_type.type = PCI_RESOURCES_RELEASED;
3616 pkt.wslot.slot = hpdev->desc.win_slot.slot;
3617
3618 put_pcichild(hpdev);
3619
3620 ret = vmbus_sendpacket(channel: hdev->channel, buffer: &pkt, bufferLen: sizeof(pkt), requestid: 0,
3621 type: VM_PKT_DATA_INBAND, flags: 0);
3622 if (ret)
3623 return ret;
3624
3625 hbus->wslot_res_allocated = wslot - 1;
3626 }
3627
3628 hbus->wslot_res_allocated = -1;
3629
3630 return 0;
3631}
3632
3633#define HVPCI_DOM_MAP_SIZE (64 * 1024)
3634static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3635
3636/*
3637 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3638 * as invalid for passthrough PCI devices of this driver.
3639 */
3640#define HVPCI_DOM_INVALID 0
3641
3642/**
3643 * hv_get_dom_num() - Get a valid PCI domain number
3644 * Check if the PCI domain number is in use, and return another number if
3645 * it is in use.
3646 *
3647 * @dom: Requested domain number
3648 *
3649 * return: domain number on success, HVPCI_DOM_INVALID on failure
3650 */
3651static u16 hv_get_dom_num(u16 dom)
3652{
3653 unsigned int i;
3654
3655 if (test_and_set_bit(nr: dom, addr: hvpci_dom_map) == 0)
3656 return dom;
3657
3658 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3659 if (test_and_set_bit(nr: i, addr: hvpci_dom_map) == 0)
3660 return i;
3661 }
3662
3663 return HVPCI_DOM_INVALID;
3664}
3665
3666/**
3667 * hv_put_dom_num() - Mark the PCI domain number as free
3668 * @dom: Domain number to be freed
3669 */
3670static void hv_put_dom_num(u16 dom)
3671{
3672 clear_bit(nr: dom, addr: hvpci_dom_map);
3673}
3674
3675/**
3676 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3677 * @hdev: VMBus's tracking struct for this root PCI bus
3678 * @dev_id: Identifies the device itself
3679 *
3680 * Return: 0 on success, -errno on failure
3681 */
3682static int hv_pci_probe(struct hv_device *hdev,
3683 const struct hv_vmbus_device_id *dev_id)
3684{
3685 struct pci_host_bridge *bridge;
3686 struct hv_pcibus_device *hbus;
3687 u16 dom_req, dom;
3688 char *name;
3689 int ret;
3690
3691 bridge = devm_pci_alloc_host_bridge(dev: &hdev->device, priv: 0);
3692 if (!bridge)
3693 return -ENOMEM;
3694
3695 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
3696 if (!hbus)
3697 return -ENOMEM;
3698
3699 hbus->bridge = bridge;
3700 mutex_init(&hbus->state_lock);
3701 hbus->state = hv_pcibus_init;
3702 hbus->wslot_res_allocated = -1;
3703
3704 /*
3705 * The PCI bus "domain" is what is called "segment" in ACPI and other
3706 * specs. Pull it from the instance ID, to get something usually
3707 * unique. In rare cases of collision, we will find out another number
3708 * not in use.
3709 *
3710 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3711 * together with this guest driver can guarantee that (1) The only
3712 * domain used by Gen1 VMs for something that looks like a physical
3713 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3714 * (2) There will be no overlap between domains (after fixing possible
3715 * collisions) in the same VM.
3716 */
3717 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3718 dom = hv_get_dom_num(dom: dom_req);
3719
3720 if (dom == HVPCI_DOM_INVALID) {
3721 dev_err(&hdev->device,
3722 "Unable to use dom# 0x%x or other numbers", dom_req);
3723 ret = -EINVAL;
3724 goto free_bus;
3725 }
3726
3727 if (dom != dom_req)
3728 dev_info(&hdev->device,
3729 "PCI dom# 0x%x has collision, using 0x%x",
3730 dom_req, dom);
3731
3732 hbus->bridge->domain_nr = dom;
3733#ifdef CONFIG_X86
3734 hbus->sysdata.domain = dom;
3735 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3736#elif defined(CONFIG_ARM64)
3737 /*
3738 * Set the PCI bus parent to be the corresponding VMbus
3739 * device. Then the VMbus device will be assigned as the
3740 * ACPI companion in pcibios_root_bridge_prepare() and
3741 * pci_dma_configure() will propagate device coherence
3742 * information to devices created on the bus.
3743 */
3744 hbus->sysdata.parent = hdev->device.parent;
3745 hbus->use_calls = false;
3746#endif
3747
3748 hbus->hdev = hdev;
3749 INIT_LIST_HEAD(list: &hbus->children);
3750 INIT_LIST_HEAD(list: &hbus->dr_list);
3751 spin_lock_init(&hbus->config_lock);
3752 spin_lock_init(&hbus->device_list_lock);
3753 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3754 hbus->bridge->domain_nr);
3755 if (!hbus->wq) {
3756 ret = -ENOMEM;
3757 goto free_dom;
3758 }
3759
3760 hdev->channel->next_request_id_callback = vmbus_next_request_id;
3761 hdev->channel->request_addr_callback = vmbus_request_addr;
3762 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3763
3764 ret = vmbus_open(channel: hdev->channel, send_ringbuffersize: pci_ring_size, recv_ringbuffersize: pci_ring_size, NULL, userdatalen: 0,
3765 onchannel_callback: hv_pci_onchannelcallback, context: hbus);
3766 if (ret)
3767 goto destroy_wq;
3768
3769 hv_set_drvdata(dev: hdev, data: hbus);
3770
3771 ret = hv_pci_protocol_negotiation(hdev, version: pci_protocol_versions,
3772 ARRAY_SIZE(pci_protocol_versions));
3773 if (ret)
3774 goto close;
3775
3776 ret = hv_allocate_config_window(hbus);
3777 if (ret)
3778 goto close;
3779
3780 hbus->cfg_addr = ioremap(offset: hbus->mem_config->start,
3781 PCI_CONFIG_MMIO_LENGTH);
3782 if (!hbus->cfg_addr) {
3783 dev_err(&hdev->device,
3784 "Unable to map a virtual address for config space\n");
3785 ret = -ENOMEM;
3786 goto free_config;
3787 }
3788
3789 name = kasprintf(GFP_KERNEL, fmt: "%pUL", &hdev->dev_instance);
3790 if (!name) {
3791 ret = -ENOMEM;
3792 goto unmap;
3793 }
3794
3795 hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3796 kfree(objp: name);
3797 if (!hbus->fwnode) {
3798 ret = -ENOMEM;
3799 goto unmap;
3800 }
3801
3802 ret = hv_pcie_init_irq_domain(hbus);
3803 if (ret)
3804 goto free_fwnode;
3805
3806 ret = hv_pci_query_relations(hdev);
3807 if (ret)
3808 goto free_irq_domain;
3809
3810 mutex_lock(&hbus->state_lock);
3811
3812 ret = hv_pci_enter_d0(hdev);
3813 if (ret)
3814 goto release_state_lock;
3815
3816 ret = hv_pci_allocate_bridge_windows(hbus);
3817 if (ret)
3818 goto exit_d0;
3819
3820 ret = hv_send_resources_allocated(hdev);
3821 if (ret)
3822 goto free_windows;
3823
3824 prepopulate_bars(hbus);
3825
3826 hbus->state = hv_pcibus_probed;
3827
3828 ret = create_root_hv_pci_bus(hbus);
3829 if (ret)
3830 goto free_windows;
3831
3832 mutex_unlock(lock: &hbus->state_lock);
3833 return 0;
3834
3835free_windows:
3836 hv_pci_free_bridge_windows(hbus);
3837exit_d0:
3838 (void) hv_pci_bus_exit(hdev, keep_devs: true);
3839release_state_lock:
3840 mutex_unlock(lock: &hbus->state_lock);
3841free_irq_domain:
3842 irq_domain_remove(domain: hbus->irq_domain);
3843free_fwnode:
3844 irq_domain_free_fwnode(fwnode: hbus->fwnode);
3845unmap:
3846 iounmap(addr: hbus->cfg_addr);
3847free_config:
3848 hv_free_config_window(hbus);
3849close:
3850 vmbus_close(channel: hdev->channel);
3851destroy_wq:
3852 destroy_workqueue(wq: hbus->wq);
3853free_dom:
3854 hv_put_dom_num(dom: hbus->bridge->domain_nr);
3855free_bus:
3856 kfree(objp: hbus);
3857 return ret;
3858}
3859
3860static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3861{
3862 struct hv_pcibus_device *hbus = hv_get_drvdata(dev: hdev);
3863 struct vmbus_channel *chan = hdev->channel;
3864 struct {
3865 struct pci_packet teardown_packet;
3866 u8 buffer[sizeof(struct pci_message)];
3867 } pkt;
3868 struct pci_message *msg;
3869 struct hv_pci_compl comp_pkt;
3870 struct hv_pci_dev *hpdev, *tmp;
3871 unsigned long flags;
3872 u64 trans_id;
3873 int ret;
3874
3875 /*
3876 * After the host sends the RESCIND_CHANNEL message, it doesn't
3877 * access the per-channel ringbuffer any longer.
3878 */
3879 if (chan->rescind)
3880 return 0;
3881
3882 if (!keep_devs) {
3883 struct list_head removed;
3884
3885 /* Move all present children to the list on stack */
3886 INIT_LIST_HEAD(list: &removed);
3887 spin_lock_irqsave(&hbus->device_list_lock, flags);
3888 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3889 list_move_tail(list: &hpdev->list_entry, head: &removed);
3890 spin_unlock_irqrestore(lock: &hbus->device_list_lock, flags);
3891
3892 /* Remove all children in the list */
3893 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3894 list_del(entry: &hpdev->list_entry);
3895 if (hpdev->pci_slot)
3896 pci_destroy_slot(slot: hpdev->pci_slot);
3897 /* For the two refs got in new_pcichild_device() */
3898 put_pcichild(hpdev);
3899 put_pcichild(hpdev);
3900 }
3901 }
3902
3903 ret = hv_send_resources_released(hdev);
3904 if (ret) {
3905 dev_err(&hdev->device,
3906 "Couldn't send resources released packet(s)\n");
3907 return ret;
3908 }
3909
3910 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3911 init_completion(x: &comp_pkt.host_event);
3912 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3913 pkt.teardown_packet.compl_ctxt = &comp_pkt;
3914 msg = (struct pci_message *)pkt.buffer;
3915 msg->type = PCI_BUS_D0EXIT;
3916
3917 ret = vmbus_sendpacket_getid(channel: chan, buffer: msg, bufferLen: sizeof(*msg),
3918 requestid: (unsigned long)&pkt.teardown_packet,
3919 trans_id: &trans_id, type: VM_PKT_DATA_INBAND,
3920 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3921 if (ret)
3922 return ret;
3923
3924 if (wait_for_completion_timeout(x: &comp_pkt.host_event, timeout: 10 * HZ) == 0) {
3925 /*
3926 * The completion packet on the stack becomes invalid after
3927 * 'return'; remove the ID from the VMbus requestor if the
3928 * identifier is still mapped to/associated with the packet.
3929 *
3930 * Cf. hv_pci_onchannelcallback().
3931 */
3932 vmbus_request_addr_match(channel: chan, trans_id,
3933 rqst_addr: (unsigned long)&pkt.teardown_packet);
3934 return -ETIMEDOUT;
3935 }
3936
3937 return 0;
3938}
3939
3940/**
3941 * hv_pci_remove() - Remove routine for this VMBus channel
3942 * @hdev: VMBus's tracking struct for this root PCI bus
3943 */
3944static void hv_pci_remove(struct hv_device *hdev)
3945{
3946 struct hv_pcibus_device *hbus;
3947
3948 hbus = hv_get_drvdata(dev: hdev);
3949 if (hbus->state == hv_pcibus_installed) {
3950 tasklet_disable(t: &hdev->channel->callback_event);
3951 hbus->state = hv_pcibus_removing;
3952 tasklet_enable(t: &hdev->channel->callback_event);
3953 destroy_workqueue(wq: hbus->wq);
3954 hbus->wq = NULL;
3955 /*
3956 * At this point, no work is running or can be scheduled
3957 * on hbus-wq. We can't race with hv_pci_devices_present()
3958 * or hv_pci_eject_device(), it's safe to proceed.
3959 */
3960
3961 /* Remove the bus from PCI's point of view. */
3962 pci_lock_rescan_remove();
3963 pci_stop_root_bus(bus: hbus->bridge->bus);
3964 hv_pci_remove_slots(hbus);
3965 pci_remove_root_bus(bus: hbus->bridge->bus);
3966 pci_unlock_rescan_remove();
3967 }
3968
3969 hv_pci_bus_exit(hdev, keep_devs: false);
3970
3971 vmbus_close(channel: hdev->channel);
3972
3973 iounmap(addr: hbus->cfg_addr);
3974 hv_free_config_window(hbus);
3975 hv_pci_free_bridge_windows(hbus);
3976 irq_domain_remove(domain: hbus->irq_domain);
3977 irq_domain_free_fwnode(fwnode: hbus->fwnode);
3978
3979 hv_put_dom_num(dom: hbus->bridge->domain_nr);
3980
3981 kfree(objp: hbus);
3982}
3983
3984static int hv_pci_suspend(struct hv_device *hdev)
3985{
3986 struct hv_pcibus_device *hbus = hv_get_drvdata(dev: hdev);
3987 enum hv_pcibus_state old_state;
3988 int ret;
3989
3990 /*
3991 * hv_pci_suspend() must make sure there are no pending work items
3992 * before calling vmbus_close(), since it runs in a process context
3993 * as a callback in dpm_suspend(). When it starts to run, the channel
3994 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3995 * context, can be still running concurrently and scheduling new work
3996 * items onto hbus->wq in hv_pci_devices_present() and
3997 * hv_pci_eject_device(), and the work item handlers can access the
3998 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3999 * the work item handler pci_devices_present_work() ->
4000 * new_pcichild_device() writes to the vmbus channel.
4001 *
4002 * To eliminate the race, hv_pci_suspend() disables the channel
4003 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
4004 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
4005 * it knows that no new work item can be scheduled, and then it flushes
4006 * hbus->wq and safely closes the vmbus channel.
4007 */
4008 tasklet_disable(t: &hdev->channel->callback_event);
4009
4010 /* Change the hbus state to prevent new work items. */
4011 old_state = hbus->state;
4012 if (hbus->state == hv_pcibus_installed)
4013 hbus->state = hv_pcibus_removing;
4014
4015 tasklet_enable(t: &hdev->channel->callback_event);
4016
4017 if (old_state != hv_pcibus_installed)
4018 return -EINVAL;
4019
4020 flush_workqueue(hbus->wq);
4021
4022 ret = hv_pci_bus_exit(hdev, keep_devs: true);
4023 if (ret)
4024 return ret;
4025
4026 vmbus_close(channel: hdev->channel);
4027
4028 return 0;
4029}
4030
4031static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
4032{
4033 struct irq_data *irq_data;
4034 struct msi_desc *entry;
4035
4036 if (!pdev->msi_enabled && !pdev->msix_enabled)
4037 return 0;
4038
4039 guard(msi_descs_lock)(l: &pdev->dev);
4040 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
4041 irq_data = irq_get_irq_data(irq: entry->irq);
4042 if (WARN_ON_ONCE(!irq_data))
4043 return -EINVAL;
4044 hv_compose_msi_msg(data: irq_data, msg: &entry->msg);
4045 }
4046 return 0;
4047}
4048
4049/*
4050 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg()
4051 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
4052 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
4053 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
4054 * Table entries.
4055 */
4056static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
4057{
4058 pci_walk_bus(top: hbus->bridge->bus, cb: hv_pci_restore_msi_msg, NULL);
4059}
4060
4061static int hv_pci_resume(struct hv_device *hdev)
4062{
4063 struct hv_pcibus_device *hbus = hv_get_drvdata(dev: hdev);
4064 enum pci_protocol_version_t version[1];
4065 int ret;
4066
4067 hbus->state = hv_pcibus_init;
4068
4069 hdev->channel->next_request_id_callback = vmbus_next_request_id;
4070 hdev->channel->request_addr_callback = vmbus_request_addr;
4071 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4072
4073 ret = vmbus_open(channel: hdev->channel, send_ringbuffersize: pci_ring_size, recv_ringbuffersize: pci_ring_size, NULL, userdatalen: 0,
4074 onchannel_callback: hv_pci_onchannelcallback, context: hbus);
4075 if (ret)
4076 return ret;
4077
4078 /* Only use the version that was in use before hibernation. */
4079 version[0] = hbus->protocol_version;
4080 ret = hv_pci_protocol_negotiation(hdev, version, num_version: 1);
4081 if (ret)
4082 goto out;
4083
4084 ret = hv_pci_query_relations(hdev);
4085 if (ret)
4086 goto out;
4087
4088 mutex_lock(&hbus->state_lock);
4089
4090 ret = hv_pci_enter_d0(hdev);
4091 if (ret)
4092 goto release_state_lock;
4093
4094 ret = hv_send_resources_allocated(hdev);
4095 if (ret)
4096 goto release_state_lock;
4097
4098 prepopulate_bars(hbus);
4099
4100 hv_pci_restore_msi_state(hbus);
4101
4102 hbus->state = hv_pcibus_installed;
4103 mutex_unlock(lock: &hbus->state_lock);
4104 return 0;
4105
4106release_state_lock:
4107 mutex_unlock(lock: &hbus->state_lock);
4108out:
4109 vmbus_close(channel: hdev->channel);
4110 return ret;
4111}
4112
4113static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4114 /* PCI Pass-through Class ID */
4115 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4116 { HV_PCIE_GUID, },
4117 { },
4118};
4119
4120MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4121
4122static struct hv_driver hv_pci_drv = {
4123 .name = "hv_pci",
4124 .id_table = hv_pci_id_table,
4125 .probe = hv_pci_probe,
4126 .remove = hv_pci_remove,
4127 .suspend = hv_pci_suspend,
4128 .resume = hv_pci_resume,
4129};
4130
4131static void __exit exit_hv_pci_drv(void)
4132{
4133 vmbus_driver_unregister(hv_driver: &hv_pci_drv);
4134
4135 hvpci_block_ops.read_block = NULL;
4136 hvpci_block_ops.write_block = NULL;
4137 hvpci_block_ops.reg_blk_invalidate = NULL;
4138}
4139
4140static int __init init_hv_pci_drv(void)
4141{
4142 int ret;
4143
4144 if (!hv_is_hyperv_initialized())
4145 return -ENODEV;
4146
4147 ret = hv_pci_irqchip_init();
4148 if (ret)
4149 return ret;
4150
4151 /* Set the invalid domain number's bit, so it will not be used */
4152 set_bit(HVPCI_DOM_INVALID, addr: hvpci_dom_map);
4153
4154 /* Initialize PCI block r/w interface */
4155 hvpci_block_ops.read_block = hv_read_config_block;
4156 hvpci_block_ops.write_block = hv_write_config_block;
4157 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4158
4159 return vmbus_driver_register(&hv_pci_drv);
4160}
4161
4162module_init(init_hv_pci_drv);
4163module_exit(exit_hv_pci_drv);
4164
4165MODULE_DESCRIPTION("Hyper-V PCI");
4166MODULE_LICENSE("GPL v2");
4167

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/drivers/pci/controller/pci-hyperv.c