1 | // SPDX-License-Identifier: GPL-2.0-or-later |
2 | /* |
3 | * AppliedMicro X-Gene Multi-purpose PHY driver |
4 | * |
5 | * Copyright (c) 2014, Applied Micro Circuits Corporation |
6 | * Author: Loc Ho <lho@apm.com> |
7 | * Tuan Phan <tphan@apm.com> |
8 | * Suman Tripathi <stripathi@apm.com> |
9 | * |
10 | * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes. |
11 | * The first PLL clock macro is used for internal reference clock. The second |
12 | * PLL clock macro is used to generate the clock for the PHY. This driver |
13 | * configures the first PLL CMU, the second PLL CMU, and programs the PHY to |
14 | * operate according to the mode of operation. The first PLL CMU is only |
15 | * required if internal clock is enabled. |
16 | * |
17 | * Logical Layer Out Of HW module units: |
18 | * |
19 | * ----------------- |
20 | * | Internal | |------| |
21 | * | Ref PLL CMU |----| | ------------- --------- |
22 | * ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes| |
23 | * | | | | --------- |
24 | * External Clock ------| | ------------- |
25 | * |------| |
26 | * |
27 | * The Ref PLL CMU CSR (Configuration System Registers) is accessed |
28 | * indirectly from the SDS offset at 0x2000. It is only required for |
29 | * internal reference clock. |
30 | * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000. |
31 | * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400. |
32 | * |
33 | * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP |
34 | * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP, |
35 | * it is located outside the PHY IP. This is the case for the PHY located |
36 | * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required |
37 | * to located the SDS/Ref PLL CMU module and its clock for that IP enabled. |
38 | * |
39 | * Currently, this driver only supports Gen3 SATA mode with external clock. |
40 | */ |
41 | #include <linux/module.h> |
42 | #include <linux/of.h> |
43 | #include <linux/platform_device.h> |
44 | #include <linux/io.h> |
45 | #include <linux/delay.h> |
46 | #include <linux/phy/phy.h> |
47 | #include <linux/clk.h> |
48 | |
49 | /* Max 2 lanes per a PHY unit */ |
50 | #define MAX_LANE 2 |
51 | |
52 | /* Register offset inside the PHY */ |
53 | #define SERDES_PLL_INDIRECT_OFFSET 0x0000 |
54 | #define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000 |
55 | #define SERDES_INDIRECT_OFFSET 0x0400 |
56 | #define SERDES_LANE_STRIDE 0x0200 |
57 | |
58 | /* Some default Serdes parameters */ |
59 | #define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e } |
60 | #define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 } |
61 | #define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa } |
62 | #define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 } |
63 | #define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 } |
64 | #define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 } |
65 | #define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 } |
66 | #define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa } |
67 | |
68 | #define SATA_SPD_SEL_GEN3 0x7 |
69 | #define SATA_SPD_SEL_GEN2 0x3 |
70 | #define SATA_SPD_SEL_GEN1 0x1 |
71 | |
72 | #define SSC_DISABLE 0 |
73 | #define SSC_ENABLE 1 |
74 | |
75 | #define FBDIV_VAL_50M 0x77 |
76 | #define REFDIV_VAL_50M 0x1 |
77 | #define FBDIV_VAL_100M 0x3B |
78 | #define REFDIV_VAL_100M 0x0 |
79 | |
80 | /* SATA Clock/Reset CSR */ |
81 | #define SATACLKENREG 0x00000000 |
82 | #define SATA0_CORE_CLKEN 0x00000002 |
83 | #define SATA1_CORE_CLKEN 0x00000004 |
84 | #define SATASRESETREG 0x00000004 |
85 | #define SATA_MEM_RESET_MASK 0x00000020 |
86 | #define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5) |
87 | #define SATA_SDS_RESET_MASK 0x00000004 |
88 | #define SATA_CSR_RESET_MASK 0x00000001 |
89 | #define SATA_CORE_RESET_MASK 0x00000002 |
90 | #define SATA_PMCLK_RESET_MASK 0x00000010 |
91 | #define SATA_PCLK_RESET_MASK 0x00000008 |
92 | |
93 | /* SDS CSR used for PHY Indirect access */ |
94 | #define SATA_ENET_SDS_PCS_CTL0 0x00000000 |
95 | #define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \ |
96 | (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000)) |
97 | #define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \ |
98 | (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000)) |
99 | #define SATA_ENET_SDS_CTL0 0x0000000c |
100 | #define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \ |
101 | (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff)) |
102 | #define SATA_ENET_SDS_CTL1 0x00000010 |
103 | #define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \ |
104 | (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f)) |
105 | #define SATA_ENET_SDS_RST_CTL 0x00000024 |
106 | #define SATA_ENET_SDS_IND_CMD_REG 0x0000003c |
107 | #define CFG_IND_WR_CMD_MASK 0x00000001 |
108 | #define CFG_IND_RD_CMD_MASK 0x00000002 |
109 | #define CFG_IND_CMD_DONE_MASK 0x00000004 |
110 | #define CFG_IND_ADDR_SET(dst, src) \ |
111 | (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0)) |
112 | #define SATA_ENET_SDS_IND_RDATA_REG 0x00000040 |
113 | #define SATA_ENET_SDS_IND_WDATA_REG 0x00000044 |
114 | #define SATA_ENET_CLK_MACRO_REG 0x0000004c |
115 | #define I_RESET_B_SET(dst, src) \ |
116 | (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001)) |
117 | #define I_PLL_FBDIV_SET(dst, src) \ |
118 | (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000)) |
119 | #define I_CUSTOMEROV_SET(dst, src) \ |
120 | (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80)) |
121 | #define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30) |
122 | #define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31) |
123 | |
124 | /* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */ |
125 | #define CMU_REG0 0x00000 |
126 | #define CMU_REG0_PLL_REF_SEL_MASK 0x00002000 |
127 | #define CMU_REG0_PLL_REF_SEL_SET(dst, src) \ |
128 | (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000)) |
129 | #define CMU_REG0_PDOWN_MASK 0x00004000 |
130 | #define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \ |
131 | (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0)) |
132 | #define CMU_REG1 0x00002 |
133 | #define CMU_REG1_PLL_CP_SET(dst, src) \ |
134 | (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00)) |
135 | #define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \ |
136 | (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) |
137 | #define CMU_REG1_PLL_CP_SEL_SET(dst, src) \ |
138 | (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0)) |
139 | #define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001 |
140 | #define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \ |
141 | (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) |
142 | #define CMU_REG2 0x00004 |
143 | #define CMU_REG2_PLL_REFDIV_SET(dst, src) \ |
144 | (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) |
145 | #define CMU_REG2_PLL_LFRES_SET(dst, src) \ |
146 | (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e)) |
147 | #define CMU_REG2_PLL_FBDIV_SET(dst, src) \ |
148 | (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0)) |
149 | #define CMU_REG3 0x00006 |
150 | #define CMU_REG3_VCOVARSEL_SET(dst, src) \ |
151 | (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f)) |
152 | #define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \ |
153 | (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) |
154 | #define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \ |
155 | (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) |
156 | #define CMU_REG4 0x00008 |
157 | #define CMU_REG5 0x0000a |
158 | #define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \ |
159 | (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) |
160 | #define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \ |
161 | (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e)) |
162 | #define CMU_REG5_PLL_LFCAP_SET(dst, src) \ |
163 | (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000)) |
164 | #define CMU_REG5_PLL_RESETB_MASK 0x00000001 |
165 | #define CMU_REG6 0x0000c |
166 | #define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \ |
167 | (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600)) |
168 | #define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \ |
169 | (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) |
170 | #define CMU_REG7 0x0000e |
171 | #define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14) |
172 | #define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10) |
173 | #define CMU_REG8 0x00010 |
174 | #define CMU_REG9 0x00012 |
175 | #define CMU_REG9_WORD_LEN_8BIT 0x000 |
176 | #define CMU_REG9_WORD_LEN_10BIT 0x001 |
177 | #define CMU_REG9_WORD_LEN_16BIT 0x002 |
178 | #define CMU_REG9_WORD_LEN_20BIT 0x003 |
179 | #define CMU_REG9_WORD_LEN_32BIT 0x004 |
180 | #define CMU_REG9_WORD_LEN_40BIT 0x005 |
181 | #define CMU_REG9_WORD_LEN_64BIT 0x006 |
182 | #define CMU_REG9_WORD_LEN_66BIT 0x007 |
183 | #define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \ |
184 | (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380)) |
185 | #define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \ |
186 | (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070)) |
187 | #define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \ |
188 | (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) |
189 | #define CMU_REG9_VBG_BYPASSB_SET(dst, src) \ |
190 | (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) |
191 | #define CMU_REG9_IGEN_BYPASS_SET(dst, src) \ |
192 | (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) |
193 | #define CMU_REG10 0x00014 |
194 | #define CMU_REG10_VREG_REFSEL_SET(dst, src) \ |
195 | (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) |
196 | #define CMU_REG11 0x00016 |
197 | #define CMU_REG12 0x00018 |
198 | #define CMU_REG12_STATE_DELAY9_SET(dst, src) \ |
199 | (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) |
200 | #define CMU_REG13 0x0001a |
201 | #define CMU_REG14 0x0001c |
202 | #define CMU_REG15 0x0001e |
203 | #define CMU_REG16 0x00020 |
204 | #define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001 |
205 | #define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002 |
206 | #define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \ |
207 | (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c)) |
208 | #define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \ |
209 | (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) |
210 | #define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \ |
211 | (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) |
212 | #define CMU_REG17 0x00022 |
213 | #define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \ |
214 | (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00)) |
215 | #define CMU_REG17_RESERVED_7_SET(dst, src) \ |
216 | (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0)) |
217 | #define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000 |
218 | #define CMU_REG18 0x00024 |
219 | #define CMU_REG19 0x00026 |
220 | #define CMU_REG20 0x00028 |
221 | #define CMU_REG21 0x0002a |
222 | #define CMU_REG22 0x0002c |
223 | #define CMU_REG23 0x0002e |
224 | #define CMU_REG24 0x00030 |
225 | #define CMU_REG25 0x00032 |
226 | #define CMU_REG26 0x00034 |
227 | #define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \ |
228 | (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) |
229 | #define CMU_REG27 0x00036 |
230 | #define CMU_REG28 0x00038 |
231 | #define CMU_REG29 0x0003a |
232 | #define CMU_REG30 0x0003c |
233 | #define CMU_REG30_LOCK_COUNT_SET(dst, src) \ |
234 | (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) |
235 | #define CMU_REG30_PCIE_MODE_SET(dst, src) \ |
236 | (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) |
237 | #define CMU_REG31 0x0003e |
238 | #define CMU_REG32 0x00040 |
239 | #define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000 |
240 | #define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \ |
241 | (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) |
242 | #define CMU_REG32_IREF_ADJ_SET(dst, src) \ |
243 | (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180)) |
244 | #define CMU_REG33 0x00042 |
245 | #define CMU_REG34 0x00044 |
246 | #define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \ |
247 | (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f)) |
248 | #define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \ |
249 | (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00)) |
250 | #define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \ |
251 | (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) |
252 | #define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \ |
253 | (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000)) |
254 | #define CMU_REG35 0x00046 |
255 | #define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \ |
256 | (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00)) |
257 | #define CMU_REG36 0x00048 |
258 | #define CMU_REG36_PLL_SSC_EN_SET(dst, src) \ |
259 | (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010)) |
260 | #define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \ |
261 | (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0)) |
262 | #define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \ |
263 | (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) |
264 | #define CMU_REG37 0x0004a |
265 | #define CMU_REG38 0x0004c |
266 | #define CMU_REG39 0x0004e |
267 | |
268 | /* PHY lane CSR accessing from SDS indirectly */ |
269 | #define RXTX_REG0 0x000 |
270 | #define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \ |
271 | (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) |
272 | #define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \ |
273 | (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) |
274 | #define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \ |
275 | (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) |
276 | #define RXTX_REG1 0x002 |
277 | #define RXTX_REG1_RXACVCM_SET(dst, src) \ |
278 | (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000)) |
279 | #define RXTX_REG1_CTLE_EQ_SET(dst, src) \ |
280 | (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80)) |
281 | #define RXTX_REG1_RXVREG1_SET(dst, src) \ |
282 | (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060)) |
283 | #define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \ |
284 | (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) |
285 | #define RXTX_REG2 0x004 |
286 | #define RXTX_REG2_VTT_ENA_SET(dst, src) \ |
287 | (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) |
288 | #define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \ |
289 | (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) |
290 | #define RXTX_REG2_VTT_SEL_SET(dst, src) \ |
291 | (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0)) |
292 | #define RXTX_REG4 0x008 |
293 | #define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040 |
294 | #define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \ |
295 | (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) |
296 | #define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \ |
297 | (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) |
298 | #define RXTX_REG5 0x00a |
299 | #define RXTX_REG5_TX_CN1_SET(dst, src) \ |
300 | (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) |
301 | #define RXTX_REG5_TX_CP1_SET(dst, src) \ |
302 | (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0)) |
303 | #define RXTX_REG5_TX_CN2_SET(dst, src) \ |
304 | (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f)) |
305 | #define RXTX_REG6 0x00c |
306 | #define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \ |
307 | (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780)) |
308 | #define RXTX_REG6_TXAMP_ENA_SET(dst, src) \ |
309 | (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) |
310 | #define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \ |
311 | (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) |
312 | #define RXTX_REG6_TX_IDLE_SET(dst, src) \ |
313 | (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) |
314 | #define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \ |
315 | (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) |
316 | #define RXTX_REG7 0x00e |
317 | #define RXTX_REG7_RESETB_RXD_MASK 0x00000100 |
318 | #define RXTX_REG7_RESETB_RXA_MASK 0x00000080 |
319 | #define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \ |
320 | (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) |
321 | #define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \ |
322 | (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) |
323 | #define RXTX_REG8 0x010 |
324 | #define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \ |
325 | (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000)) |
326 | #define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \ |
327 | (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800)) |
328 | #define RXTX_REG8_SSC_ENABLE_SET(dst, src) \ |
329 | (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200)) |
330 | #define RXTX_REG8_SD_VREF_SET(dst, src) \ |
331 | (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) |
332 | #define RXTX_REG8_SD_DISABLE_SET(dst, src) \ |
333 | (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) |
334 | #define RXTX_REG7 0x00e |
335 | #define RXTX_REG7_RESETB_RXD_SET(dst, src) \ |
336 | (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) |
337 | #define RXTX_REG7_RESETB_RXA_SET(dst, src) \ |
338 | (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080)) |
339 | #define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000 |
340 | #define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \ |
341 | (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000)) |
342 | #define RXTX_REG11 0x016 |
343 | #define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \ |
344 | (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) |
345 | #define RXTX_REG12 0x018 |
346 | #define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \ |
347 | (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000)) |
348 | #define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \ |
349 | (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) |
350 | #define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002 |
351 | #define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \ |
352 | (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) |
353 | #define RXTX_REG13 0x01a |
354 | #define RXTX_REG14 0x01c |
355 | #define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \ |
356 | (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f)) |
357 | #define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \ |
358 | (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) |
359 | #define RXTX_REG26 0x034 |
360 | #define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \ |
361 | (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) |
362 | #define RXTX_REG26_BLWC_ENA_SET(dst, src) \ |
363 | (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) |
364 | #define RXTX_REG21 0x02a |
365 | #define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) |
366 | #define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) |
367 | #define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src))) |
368 | #define RXTX_REG22 0x02c |
369 | #define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) |
370 | #define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) |
371 | #define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src))) |
372 | #define RXTX_REG23 0x02e |
373 | #define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) |
374 | #define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) |
375 | #define RXTX_REG24 0x030 |
376 | #define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) |
377 | #define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) |
378 | #define RXTX_REG27 0x036 |
379 | #define RXTX_REG28 0x038 |
380 | #define RXTX_REG31 0x03e |
381 | #define RXTX_REG38 0x04c |
382 | #define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \ |
383 | (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe)) |
384 | #define RXTX_REG39 0x04e |
385 | #define RXTX_REG40 0x050 |
386 | #define RXTX_REG41 0x052 |
387 | #define RXTX_REG42 0x054 |
388 | #define RXTX_REG43 0x056 |
389 | #define RXTX_REG44 0x058 |
390 | #define RXTX_REG45 0x05a |
391 | #define RXTX_REG46 0x05c |
392 | #define RXTX_REG47 0x05e |
393 | #define RXTX_REG48 0x060 |
394 | #define RXTX_REG49 0x062 |
395 | #define RXTX_REG50 0x064 |
396 | #define RXTX_REG51 0x066 |
397 | #define RXTX_REG52 0x068 |
398 | #define RXTX_REG53 0x06a |
399 | #define RXTX_REG54 0x06c |
400 | #define RXTX_REG55 0x06e |
401 | #define RXTX_REG61 0x07a |
402 | #define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \ |
403 | (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010)) |
404 | #define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \ |
405 | (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) |
406 | #define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \ |
407 | (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0)) |
408 | #define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \ |
409 | (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00)) |
410 | #define RXTX_REG62 0x07c |
411 | #define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \ |
412 | (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) |
413 | #define RXTX_REG81 0x0a2 |
414 | #define RXTX_REG89_MU_TH7_SET(dst, src) \ |
415 | (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) |
416 | #define RXTX_REG89_MU_TH8_SET(dst, src) \ |
417 | (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) |
418 | #define RXTX_REG89_MU_TH9_SET(dst, src) \ |
419 | (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) |
420 | #define RXTX_REG96 0x0c0 |
421 | #define RXTX_REG96_MU_FREQ1_SET(dst, src) \ |
422 | (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) |
423 | #define RXTX_REG96_MU_FREQ2_SET(dst, src) \ |
424 | (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) |
425 | #define RXTX_REG96_MU_FREQ3_SET(dst, src) \ |
426 | (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) |
427 | #define RXTX_REG99 0x0c6 |
428 | #define RXTX_REG99_MU_PHASE1_SET(dst, src) \ |
429 | (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) |
430 | #define RXTX_REG99_MU_PHASE2_SET(dst, src) \ |
431 | (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) |
432 | #define RXTX_REG99_MU_PHASE3_SET(dst, src) \ |
433 | (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) |
434 | #define RXTX_REG102 0x0cc |
435 | #define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \ |
436 | (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060)) |
437 | #define RXTX_REG114 0x0e4 |
438 | #define RXTX_REG121 0x0f2 |
439 | #define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1) |
440 | #define RXTX_REG125 0x0fa |
441 | #define RXTX_REG125_PQ_REG_SET(dst, src) \ |
442 | (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00)) |
443 | #define RXTX_REG125_SIGN_PQ_SET(dst, src) \ |
444 | (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) |
445 | #define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \ |
446 | (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080)) |
447 | #define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \ |
448 | (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c)) |
449 | #define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \ |
450 | (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) |
451 | #define RXTX_REG127 0x0fe |
452 | #define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002 |
453 | #define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004 |
454 | #define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \ |
455 | (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) |
456 | #define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \ |
457 | (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) |
458 | #define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \ |
459 | (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) |
460 | #define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \ |
461 | (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) |
462 | #define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \ |
463 | (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) |
464 | #define RXTX_REG128 0x100 |
465 | #define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \ |
466 | (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c)) |
467 | #define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \ |
468 | (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) |
469 | #define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \ |
470 | (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) |
471 | #define RXTX_REG129 0x102 |
472 | #define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \ |
473 | (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) |
474 | #define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \ |
475 | (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) |
476 | #define RXTX_REG130 0x104 |
477 | #define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \ |
478 | (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) |
479 | #define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \ |
480 | (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) |
481 | #define RXTX_REG145 0x122 |
482 | #define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \ |
483 | (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) |
484 | #define RXTX_REG145_RXES_ENA_SET(dst, src) \ |
485 | (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) |
486 | #define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \ |
487 | (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) |
488 | #define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \ |
489 | (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) |
490 | #define RXTX_REG147 0x126 |
491 | #define RXTX_REG148 0x128 |
492 | |
493 | /* Clock macro type */ |
494 | enum cmu_type_t { |
495 | REF_CMU = 0, /* Clock macro is the internal reference clock */ |
496 | PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */ |
497 | }; |
498 | |
499 | enum mux_type_t { |
500 | MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */ |
501 | MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */ |
502 | }; |
503 | |
504 | enum clk_type_t { |
505 | CLK_EXT_DIFF = 0, /* External differential */ |
506 | CLK_INT_DIFF = 1, /* Internal differential */ |
507 | CLK_INT_SING = 2, /* Internal single ended */ |
508 | }; |
509 | |
510 | enum xgene_phy_mode { |
511 | MODE_SATA = 0, /* List them for simple reference */ |
512 | MODE_SGMII = 1, |
513 | MODE_PCIE = 2, |
514 | MODE_USB = 3, |
515 | MODE_XFI = 4, |
516 | MODE_MAX |
517 | }; |
518 | |
519 | struct xgene_sata_override_param { |
520 | u32 speed[MAX_LANE]; /* Index for override parameter per lane */ |
521 | u32 txspeed[3]; /* Tx speed */ |
522 | u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */ |
523 | u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */ |
524 | u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */ |
525 | u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */ |
526 | u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */ |
527 | u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */ |
528 | u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */ |
529 | }; |
530 | |
531 | struct xgene_phy_ctx { |
532 | struct device *dev; |
533 | struct phy *phy; |
534 | enum xgene_phy_mode mode; /* Mode of operation */ |
535 | enum clk_type_t clk_type; /* Input clock selection */ |
536 | void __iomem *sds_base; /* PHY CSR base addr */ |
537 | struct clk *clk; /* Optional clock */ |
538 | |
539 | /* Override Serdes parameters */ |
540 | struct xgene_sata_override_param sata_param; |
541 | }; |
542 | |
543 | /* |
544 | * For chip earlier than A3 version, enable this flag. |
545 | * To enable, pass boot argument phy_xgene.preA3Chip=1 |
546 | */ |
547 | static int preA3Chip; |
548 | MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)" ); |
549 | module_param_named(preA3Chip, preA3Chip, int, 0444); |
550 | |
551 | static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg, |
552 | u32 indirect_data_reg, u32 addr, u32 data) |
553 | { |
554 | unsigned long deadline = jiffies + HZ; |
555 | u32 val; |
556 | u32 cmd; |
557 | |
558 | cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK; |
559 | cmd = CFG_IND_ADDR_SET(cmd, addr); |
560 | writel(val: data, addr: csr_base + indirect_data_reg); |
561 | readl(addr: csr_base + indirect_data_reg); /* Force a barrier */ |
562 | writel(val: cmd, addr: csr_base + indirect_cmd_reg); |
563 | readl(addr: csr_base + indirect_cmd_reg); /* Force a barrier */ |
564 | do { |
565 | val = readl(addr: csr_base + indirect_cmd_reg); |
566 | } while (!(val & CFG_IND_CMD_DONE_MASK) && |
567 | time_before(jiffies, deadline)); |
568 | if (!(val & CFG_IND_CMD_DONE_MASK)) |
569 | pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n" , |
570 | csr_base + indirect_cmd_reg, addr, data); |
571 | } |
572 | |
573 | static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg, |
574 | u32 indirect_data_reg, u32 addr, u32 *data) |
575 | { |
576 | unsigned long deadline = jiffies + HZ; |
577 | u32 val; |
578 | u32 cmd; |
579 | |
580 | cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK; |
581 | cmd = CFG_IND_ADDR_SET(cmd, addr); |
582 | writel(val: cmd, addr: csr_base + indirect_cmd_reg); |
583 | readl(addr: csr_base + indirect_cmd_reg); /* Force a barrier */ |
584 | do { |
585 | val = readl(addr: csr_base + indirect_cmd_reg); |
586 | } while (!(val & CFG_IND_CMD_DONE_MASK) && |
587 | time_before(jiffies, deadline)); |
588 | *data = readl(addr: csr_base + indirect_data_reg); |
589 | if (!(val & CFG_IND_CMD_DONE_MASK)) |
590 | pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n" , |
591 | csr_base + indirect_cmd_reg, addr, *data); |
592 | } |
593 | |
594 | static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, |
595 | u32 reg, u32 data) |
596 | { |
597 | void __iomem *sds_base = ctx->sds_base; |
598 | u32 val; |
599 | |
600 | if (cmu_type == REF_CMU) |
601 | reg += SERDES_PLL_REF_INDIRECT_OFFSET; |
602 | else |
603 | reg += SERDES_PLL_INDIRECT_OFFSET; |
604 | sds_wr(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG, |
605 | SATA_ENET_SDS_IND_WDATA_REG, addr: reg, data); |
606 | sds_rd(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG, |
607 | SATA_ENET_SDS_IND_RDATA_REG, addr: reg, data: &val); |
608 | pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n" , reg, data, val); |
609 | } |
610 | |
611 | static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, |
612 | u32 reg, u32 *data) |
613 | { |
614 | void __iomem *sds_base = ctx->sds_base; |
615 | |
616 | if (cmu_type == REF_CMU) |
617 | reg += SERDES_PLL_REF_INDIRECT_OFFSET; |
618 | else |
619 | reg += SERDES_PLL_INDIRECT_OFFSET; |
620 | sds_rd(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG, |
621 | SATA_ENET_SDS_IND_RDATA_REG, addr: reg, data); |
622 | pr_debug("CMU RD addr 0x%X value 0x%08X\n" , reg, *data); |
623 | } |
624 | |
625 | static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, |
626 | u32 reg, u32 bits) |
627 | { |
628 | u32 val; |
629 | |
630 | cmu_rd(ctx, cmu_type, reg, data: &val); |
631 | val |= bits; |
632 | cmu_wr(ctx, cmu_type, reg, data: val); |
633 | cmu_rd(ctx, cmu_type, reg, data: &val); |
634 | val &= ~bits; |
635 | cmu_wr(ctx, cmu_type, reg, data: val); |
636 | } |
637 | |
638 | static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, |
639 | u32 reg, u32 bits) |
640 | { |
641 | u32 val; |
642 | |
643 | cmu_rd(ctx, cmu_type, reg, data: &val); |
644 | val &= ~bits; |
645 | cmu_wr(ctx, cmu_type, reg, data: val); |
646 | } |
647 | |
648 | static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, |
649 | u32 reg, u32 bits) |
650 | { |
651 | u32 val; |
652 | |
653 | cmu_rd(ctx, cmu_type, reg, data: &val); |
654 | val |= bits; |
655 | cmu_wr(ctx, cmu_type, reg, data: val); |
656 | } |
657 | |
658 | static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data) |
659 | { |
660 | void __iomem *sds_base = ctx->sds_base; |
661 | u32 val; |
662 | |
663 | reg += SERDES_INDIRECT_OFFSET; |
664 | reg += lane * SERDES_LANE_STRIDE; |
665 | sds_wr(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG, |
666 | SATA_ENET_SDS_IND_WDATA_REG, addr: reg, data); |
667 | sds_rd(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG, |
668 | SATA_ENET_SDS_IND_RDATA_REG, addr: reg, data: &val); |
669 | pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n" , reg, data, |
670 | val); |
671 | } |
672 | |
673 | static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data) |
674 | { |
675 | void __iomem *sds_base = ctx->sds_base; |
676 | |
677 | reg += SERDES_INDIRECT_OFFSET; |
678 | reg += lane * SERDES_LANE_STRIDE; |
679 | sds_rd(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG, |
680 | SATA_ENET_SDS_IND_RDATA_REG, addr: reg, data); |
681 | pr_debug("SERDES RD addr 0x%X value 0x%08X\n" , reg, *data); |
682 | } |
683 | |
684 | static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, |
685 | u32 bits) |
686 | { |
687 | u32 val; |
688 | |
689 | serdes_rd(ctx, lane, reg, data: &val); |
690 | val &= ~bits; |
691 | serdes_wr(ctx, lane, reg, data: val); |
692 | } |
693 | |
694 | static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, |
695 | u32 bits) |
696 | { |
697 | u32 val; |
698 | |
699 | serdes_rd(ctx, lane, reg, data: &val); |
700 | val |= bits; |
701 | serdes_wr(ctx, lane, reg, data: val); |
702 | } |
703 | |
704 | static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx, |
705 | enum cmu_type_t cmu_type, |
706 | enum clk_type_t clk_type) |
707 | { |
708 | u32 val; |
709 | |
710 | /* Set the reset sequence delay for TX ready assertion */ |
711 | cmu_rd(ctx, cmu_type, CMU_REG12, data: &val); |
712 | val = CMU_REG12_STATE_DELAY9_SET(val, 0x1); |
713 | cmu_wr(ctx, cmu_type, CMU_REG12, data: val); |
714 | /* Set the programmable stage delays between various enable stages */ |
715 | cmu_wr(ctx, cmu_type, CMU_REG13, data: 0x0222); |
716 | cmu_wr(ctx, cmu_type, CMU_REG14, data: 0x2225); |
717 | |
718 | /* Configure clock type */ |
719 | if (clk_type == CLK_EXT_DIFF) { |
720 | /* Select external clock mux */ |
721 | cmu_rd(ctx, cmu_type, CMU_REG0, data: &val); |
722 | val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0); |
723 | cmu_wr(ctx, cmu_type, CMU_REG0, data: val); |
724 | /* Select CMOS as reference clock */ |
725 | cmu_rd(ctx, cmu_type, CMU_REG1, data: &val); |
726 | val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); |
727 | cmu_wr(ctx, cmu_type, CMU_REG1, data: val); |
728 | dev_dbg(ctx->dev, "Set external reference clock\n" ); |
729 | } else if (clk_type == CLK_INT_DIFF) { |
730 | /* Select internal clock mux */ |
731 | cmu_rd(ctx, cmu_type, CMU_REG0, data: &val); |
732 | val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1); |
733 | cmu_wr(ctx, cmu_type, CMU_REG0, data: val); |
734 | /* Select CMOS as reference clock */ |
735 | cmu_rd(ctx, cmu_type, CMU_REG1, data: &val); |
736 | val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); |
737 | cmu_wr(ctx, cmu_type, CMU_REG1, data: val); |
738 | dev_dbg(ctx->dev, "Set internal reference clock\n" ); |
739 | } else if (clk_type == CLK_INT_SING) { |
740 | /* |
741 | * NOTE: This clock type is NOT support for controller |
742 | * whose internal clock shared in the PCIe controller |
743 | * |
744 | * Select internal clock mux |
745 | */ |
746 | cmu_rd(ctx, cmu_type, CMU_REG1, data: &val); |
747 | val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); |
748 | cmu_wr(ctx, cmu_type, CMU_REG1, data: val); |
749 | /* Select CML as reference clock */ |
750 | cmu_rd(ctx, cmu_type, CMU_REG1, data: &val); |
751 | val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); |
752 | cmu_wr(ctx, cmu_type, CMU_REG1, data: val); |
753 | dev_dbg(ctx->dev, |
754 | "Set internal single ended reference clock\n" ); |
755 | } |
756 | } |
757 | |
758 | static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx, |
759 | enum cmu_type_t cmu_type, |
760 | enum clk_type_t clk_type) |
761 | { |
762 | u32 val; |
763 | int ref_100MHz; |
764 | |
765 | if (cmu_type == REF_CMU) { |
766 | /* Set VCO calibration voltage threshold */ |
767 | cmu_rd(ctx, cmu_type, CMU_REG34, data: &val); |
768 | val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7); |
769 | val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc); |
770 | val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3); |
771 | val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8); |
772 | cmu_wr(ctx, cmu_type, CMU_REG34, data: val); |
773 | } |
774 | |
775 | /* Set the VCO calibration counter */ |
776 | cmu_rd(ctx, cmu_type, CMU_REG0, data: &val); |
777 | if (cmu_type == REF_CMU || preA3Chip) |
778 | val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4); |
779 | else |
780 | val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7); |
781 | cmu_wr(ctx, cmu_type, CMU_REG0, data: val); |
782 | |
783 | /* Configure PLL for calibration */ |
784 | cmu_rd(ctx, cmu_type, CMU_REG1, data: &val); |
785 | val = CMU_REG1_PLL_CP_SET(val, 0x1); |
786 | if (cmu_type == REF_CMU || preA3Chip) |
787 | val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5); |
788 | else |
789 | val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3); |
790 | if (cmu_type == REF_CMU) |
791 | val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); |
792 | else |
793 | val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1); |
794 | cmu_wr(ctx, cmu_type, CMU_REG1, data: val); |
795 | |
796 | if (cmu_type != REF_CMU) |
797 | cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); |
798 | |
799 | /* Configure the PLL for either 100MHz or 50MHz */ |
800 | cmu_rd(ctx, cmu_type, CMU_REG2, data: &val); |
801 | if (cmu_type == REF_CMU) { |
802 | val = CMU_REG2_PLL_LFRES_SET(val, 0xa); |
803 | ref_100MHz = 1; |
804 | } else { |
805 | val = CMU_REG2_PLL_LFRES_SET(val, 0x3); |
806 | if (clk_type == CLK_EXT_DIFF) |
807 | ref_100MHz = 0; |
808 | else |
809 | ref_100MHz = 1; |
810 | } |
811 | if (ref_100MHz) { |
812 | val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M); |
813 | val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M); |
814 | } else { |
815 | val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M); |
816 | val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M); |
817 | } |
818 | cmu_wr(ctx, cmu_type, CMU_REG2, data: val); |
819 | |
820 | /* Configure the VCO */ |
821 | cmu_rd(ctx, cmu_type, CMU_REG3, data: &val); |
822 | if (cmu_type == REF_CMU) { |
823 | val = CMU_REG3_VCOVARSEL_SET(val, 0x3); |
824 | val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10); |
825 | } else { |
826 | val = CMU_REG3_VCOVARSEL_SET(val, 0xF); |
827 | if (preA3Chip) |
828 | val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15); |
829 | else |
830 | val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a); |
831 | val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15); |
832 | } |
833 | cmu_wr(ctx, cmu_type, CMU_REG3, data: val); |
834 | |
835 | /* Disable force PLL lock */ |
836 | cmu_rd(ctx, cmu_type, CMU_REG26, data: &val); |
837 | val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0); |
838 | cmu_wr(ctx, cmu_type, CMU_REG26, data: val); |
839 | |
840 | /* Setup PLL loop filter */ |
841 | cmu_rd(ctx, cmu_type, CMU_REG5, data: &val); |
842 | val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3); |
843 | val = CMU_REG5_PLL_LFCAP_SET(val, 0x3); |
844 | if (cmu_type == REF_CMU || !preA3Chip) |
845 | val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7); |
846 | else |
847 | val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4); |
848 | cmu_wr(ctx, cmu_type, CMU_REG5, data: val); |
849 | |
850 | /* Enable or disable manual calibration */ |
851 | cmu_rd(ctx, cmu_type, CMU_REG6, data: &val); |
852 | val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2); |
853 | val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0); |
854 | cmu_wr(ctx, cmu_type, CMU_REG6, data: val); |
855 | |
856 | /* Configure lane for 20-bits */ |
857 | if (cmu_type == PHY_CMU) { |
858 | cmu_rd(ctx, cmu_type, CMU_REG9, data: &val); |
859 | val = CMU_REG9_TX_WORD_MODE_CH1_SET(val, |
860 | CMU_REG9_WORD_LEN_20BIT); |
861 | val = CMU_REG9_TX_WORD_MODE_CH0_SET(val, |
862 | CMU_REG9_WORD_LEN_20BIT); |
863 | val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1); |
864 | if (!preA3Chip) { |
865 | val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0); |
866 | val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0); |
867 | } |
868 | cmu_wr(ctx, cmu_type, CMU_REG9, data: val); |
869 | |
870 | if (!preA3Chip) { |
871 | cmu_rd(ctx, cmu_type, CMU_REG10, data: &val); |
872 | val = CMU_REG10_VREG_REFSEL_SET(val, 0x1); |
873 | cmu_wr(ctx, cmu_type, CMU_REG10, data: val); |
874 | } |
875 | } |
876 | |
877 | cmu_rd(ctx, cmu_type, CMU_REG16, data: &val); |
878 | val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1); |
879 | val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1); |
880 | if (cmu_type == REF_CMU || preA3Chip) |
881 | val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4); |
882 | else |
883 | val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); |
884 | cmu_wr(ctx, cmu_type, CMU_REG16, data: val); |
885 | |
886 | /* Configure for SATA */ |
887 | cmu_rd(ctx, cmu_type, CMU_REG30, data: &val); |
888 | val = CMU_REG30_PCIE_MODE_SET(val, 0x0); |
889 | val = CMU_REG30_LOCK_COUNT_SET(val, 0x3); |
890 | cmu_wr(ctx, cmu_type, CMU_REG30, data: val); |
891 | |
892 | /* Disable state machine bypass */ |
893 | cmu_wr(ctx, cmu_type, CMU_REG31, data: 0xF); |
894 | |
895 | cmu_rd(ctx, cmu_type, CMU_REG32, data: &val); |
896 | val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3); |
897 | if (cmu_type == REF_CMU || preA3Chip) |
898 | val = CMU_REG32_IREF_ADJ_SET(val, 0x3); |
899 | else |
900 | val = CMU_REG32_IREF_ADJ_SET(val, 0x1); |
901 | cmu_wr(ctx, cmu_type, CMU_REG32, data: val); |
902 | |
903 | /* Set VCO calibration threshold */ |
904 | if (cmu_type != REF_CMU && preA3Chip) |
905 | cmu_wr(ctx, cmu_type, CMU_REG34, data: 0x8d27); |
906 | else |
907 | cmu_wr(ctx, cmu_type, CMU_REG34, data: 0x873c); |
908 | |
909 | /* Set CTLE Override and override waiting from state machine */ |
910 | cmu_wr(ctx, cmu_type, CMU_REG37, data: 0xF00F); |
911 | } |
912 | |
913 | static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx, |
914 | enum cmu_type_t cmu_type) |
915 | { |
916 | u32 val; |
917 | |
918 | /* Set SSC modulation value */ |
919 | cmu_rd(ctx, cmu_type, CMU_REG35, data: &val); |
920 | val = CMU_REG35_PLL_SSC_MOD_SET(val, 98); |
921 | cmu_wr(ctx, cmu_type, CMU_REG35, data: val); |
922 | |
923 | /* Enable SSC, set vertical step and DSM value */ |
924 | cmu_rd(ctx, cmu_type, CMU_REG36, data: &val); |
925 | val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30); |
926 | val = CMU_REG36_PLL_SSC_EN_SET(val, 1); |
927 | val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1); |
928 | cmu_wr(ctx, cmu_type, CMU_REG36, data: val); |
929 | |
930 | /* Reset the PLL */ |
931 | cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); |
932 | cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); |
933 | |
934 | /* Force VCO calibration to restart */ |
935 | cmu_toggle1to0(ctx, cmu_type, CMU_REG32, |
936 | CMU_REG32_FORCE_VCOCAL_START_MASK); |
937 | } |
938 | |
939 | static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx) |
940 | { |
941 | u32 val; |
942 | u32 reg; |
943 | int i; |
944 | int lane; |
945 | |
946 | for (lane = 0; lane < MAX_LANE; lane++) { |
947 | serdes_wr(ctx, lane, RXTX_REG147, data: 0x6); |
948 | |
949 | /* Set boost control for quarter, half, and full rate */ |
950 | serdes_rd(ctx, lane, RXTX_REG0, data: &val); |
951 | val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10); |
952 | val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10); |
953 | val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10); |
954 | serdes_wr(ctx, lane, RXTX_REG0, data: val); |
955 | |
956 | /* Set boost control value */ |
957 | serdes_rd(ctx, lane, RXTX_REG1, data: &val); |
958 | val = RXTX_REG1_RXACVCM_SET(val, 0x7); |
959 | val = RXTX_REG1_CTLE_EQ_SET(val, |
960 | ctx->sata_param.txboostgain[lane * 3 + |
961 | ctx->sata_param.speed[lane]]); |
962 | serdes_wr(ctx, lane, RXTX_REG1, data: val); |
963 | |
964 | /* Latch VTT value based on the termination to ground and |
965 | * enable TX FIFO |
966 | */ |
967 | serdes_rd(ctx, lane, RXTX_REG2, data: &val); |
968 | val = RXTX_REG2_VTT_ENA_SET(val, 0x1); |
969 | val = RXTX_REG2_VTT_SEL_SET(val, 0x1); |
970 | val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1); |
971 | serdes_wr(ctx, lane, RXTX_REG2, data: val); |
972 | |
973 | /* Configure Tx for 20-bits */ |
974 | serdes_rd(ctx, lane, RXTX_REG4, data: &val); |
975 | val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); |
976 | serdes_wr(ctx, lane, RXTX_REG4, data: val); |
977 | |
978 | if (!preA3Chip) { |
979 | serdes_rd(ctx, lane, RXTX_REG1, data: &val); |
980 | val = RXTX_REG1_RXVREG1_SET(val, 0x2); |
981 | val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2); |
982 | serdes_wr(ctx, lane, RXTX_REG1, data: val); |
983 | } |
984 | |
985 | /* Set pre-emphasis first 1 and 2, and post-emphasis values */ |
986 | serdes_rd(ctx, lane, RXTX_REG5, data: &val); |
987 | val = RXTX_REG5_TX_CN1_SET(val, |
988 | ctx->sata_param.txprecursor_cn1[lane * 3 + |
989 | ctx->sata_param.speed[lane]]); |
990 | val = RXTX_REG5_TX_CP1_SET(val, |
991 | ctx->sata_param.txpostcursor_cp1[lane * 3 + |
992 | ctx->sata_param.speed[lane]]); |
993 | val = RXTX_REG5_TX_CN2_SET(val, |
994 | ctx->sata_param.txprecursor_cn2[lane * 3 + |
995 | ctx->sata_param.speed[lane]]); |
996 | serdes_wr(ctx, lane, RXTX_REG5, data: val); |
997 | |
998 | /* Set TX amplitude value */ |
999 | serdes_rd(ctx, lane, RXTX_REG6, data: &val); |
1000 | val = RXTX_REG6_TXAMP_CNTL_SET(val, |
1001 | ctx->sata_param.txamplitude[lane * 3 + |
1002 | ctx->sata_param.speed[lane]]); |
1003 | val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1); |
1004 | val = RXTX_REG6_TX_IDLE_SET(val, 0x0); |
1005 | val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0); |
1006 | val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0); |
1007 | serdes_wr(ctx, lane, RXTX_REG6, data: val); |
1008 | |
1009 | /* Configure Rx for 20-bits */ |
1010 | serdes_rd(ctx, lane, RXTX_REG7, data: &val); |
1011 | val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0); |
1012 | val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); |
1013 | serdes_wr(ctx, lane, RXTX_REG7, data: val); |
1014 | |
1015 | /* Set CDR and LOS values and enable Rx SSC */ |
1016 | serdes_rd(ctx, lane, RXTX_REG8, data: &val); |
1017 | val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1); |
1018 | val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0); |
1019 | val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1); |
1020 | val = RXTX_REG8_SD_DISABLE_SET(val, 0x0); |
1021 | val = RXTX_REG8_SD_VREF_SET(val, 0x4); |
1022 | serdes_wr(ctx, lane, RXTX_REG8, data: val); |
1023 | |
1024 | /* Set phase adjust upper/lower limits */ |
1025 | serdes_rd(ctx, lane, RXTX_REG11, data: &val); |
1026 | val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0); |
1027 | serdes_wr(ctx, lane, RXTX_REG11, data: val); |
1028 | |
1029 | /* Enable Latch Off; disable SUMOS and Tx termination */ |
1030 | serdes_rd(ctx, lane, RXTX_REG12, data: &val); |
1031 | val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1); |
1032 | val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0); |
1033 | val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0); |
1034 | serdes_wr(ctx, lane, RXTX_REG12, data: val); |
1035 | |
1036 | /* Set period error latch to 512T and enable BWL */ |
1037 | serdes_rd(ctx, lane, RXTX_REG26, data: &val); |
1038 | val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0); |
1039 | val = RXTX_REG26_BLWC_ENA_SET(val, 0x1); |
1040 | serdes_wr(ctx, lane, RXTX_REG26, data: val); |
1041 | |
1042 | serdes_wr(ctx, lane, RXTX_REG28, data: 0x0); |
1043 | |
1044 | /* Set DFE loop preset value */ |
1045 | serdes_wr(ctx, lane, RXTX_REG31, data: 0x0); |
1046 | |
1047 | /* Set Eye Monitor counter width to 12-bit */ |
1048 | serdes_rd(ctx, lane, RXTX_REG61, data: &val); |
1049 | val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1); |
1050 | val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0); |
1051 | val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0); |
1052 | serdes_wr(ctx, lane, RXTX_REG61, data: val); |
1053 | |
1054 | serdes_rd(ctx, lane, RXTX_REG62, data: &val); |
1055 | val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0); |
1056 | serdes_wr(ctx, lane, RXTX_REG62, data: val); |
1057 | |
1058 | /* Set BW select tap X for DFE loop */ |
1059 | for (i = 0; i < 9; i++) { |
1060 | reg = RXTX_REG81 + i * 2; |
1061 | serdes_rd(ctx, lane, reg, data: &val); |
1062 | val = RXTX_REG89_MU_TH7_SET(val, 0xe); |
1063 | val = RXTX_REG89_MU_TH8_SET(val, 0xe); |
1064 | val = RXTX_REG89_MU_TH9_SET(val, 0xe); |
1065 | serdes_wr(ctx, lane, reg, data: val); |
1066 | } |
1067 | |
1068 | /* Set BW select tap X for frequency adjust loop */ |
1069 | for (i = 0; i < 3; i++) { |
1070 | reg = RXTX_REG96 + i * 2; |
1071 | serdes_rd(ctx, lane, reg, data: &val); |
1072 | val = RXTX_REG96_MU_FREQ1_SET(val, 0x10); |
1073 | val = RXTX_REG96_MU_FREQ2_SET(val, 0x10); |
1074 | val = RXTX_REG96_MU_FREQ3_SET(val, 0x10); |
1075 | serdes_wr(ctx, lane, reg, data: val); |
1076 | } |
1077 | |
1078 | /* Set BW select tap X for phase adjust loop */ |
1079 | for (i = 0; i < 3; i++) { |
1080 | reg = RXTX_REG99 + i * 2; |
1081 | serdes_rd(ctx, lane, reg, data: &val); |
1082 | val = RXTX_REG99_MU_PHASE1_SET(val, 0x7); |
1083 | val = RXTX_REG99_MU_PHASE2_SET(val, 0x7); |
1084 | val = RXTX_REG99_MU_PHASE3_SET(val, 0x7); |
1085 | serdes_wr(ctx, lane, reg, data: val); |
1086 | } |
1087 | |
1088 | serdes_rd(ctx, lane, RXTX_REG102, data: &val); |
1089 | val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0); |
1090 | serdes_wr(ctx, lane, RXTX_REG102, data: val); |
1091 | |
1092 | serdes_wr(ctx, lane, RXTX_REG114, data: 0xffe0); |
1093 | |
1094 | serdes_rd(ctx, lane, RXTX_REG125, data: &val); |
1095 | val = RXTX_REG125_SIGN_PQ_SET(val, |
1096 | ctx->sata_param.txeyedirection[lane * 3 + |
1097 | ctx->sata_param.speed[lane]]); |
1098 | val = RXTX_REG125_PQ_REG_SET(val, |
1099 | ctx->sata_param.txeyetuning[lane * 3 + |
1100 | ctx->sata_param.speed[lane]]); |
1101 | val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1); |
1102 | serdes_wr(ctx, lane, RXTX_REG125, data: val); |
1103 | |
1104 | serdes_rd(ctx, lane, RXTX_REG127, data: &val); |
1105 | val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0); |
1106 | serdes_wr(ctx, lane, RXTX_REG127, data: val); |
1107 | |
1108 | serdes_rd(ctx, lane, RXTX_REG128, data: &val); |
1109 | val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3); |
1110 | serdes_wr(ctx, lane, RXTX_REG128, data: val); |
1111 | |
1112 | serdes_rd(ctx, lane, RXTX_REG145, data: &val); |
1113 | val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3); |
1114 | val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0); |
1115 | if (preA3Chip) { |
1116 | val = RXTX_REG145_RXES_ENA_SET(val, 0x1); |
1117 | val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1); |
1118 | } else { |
1119 | val = RXTX_REG145_RXES_ENA_SET(val, 0x0); |
1120 | val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0); |
1121 | } |
1122 | serdes_wr(ctx, lane, RXTX_REG145, data: val); |
1123 | |
1124 | /* |
1125 | * Set Rx LOS filter clock rate, sample rate, and threshold |
1126 | * windows |
1127 | */ |
1128 | for (i = 0; i < 4; i++) { |
1129 | reg = RXTX_REG148 + i * 2; |
1130 | serdes_wr(ctx, lane, reg, data: 0xFFFF); |
1131 | } |
1132 | } |
1133 | } |
1134 | |
1135 | static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx, |
1136 | enum cmu_type_t cmu_type, |
1137 | enum clk_type_t clk_type) |
1138 | { |
1139 | void __iomem *csr_serdes = ctx->sds_base; |
1140 | int loop; |
1141 | u32 val; |
1142 | |
1143 | /* Release PHY main reset */ |
1144 | writel(val: 0xdf, addr: csr_serdes + SATA_ENET_SDS_RST_CTL); |
1145 | readl(addr: csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ |
1146 | |
1147 | if (cmu_type != REF_CMU) { |
1148 | cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); |
1149 | /* |
1150 | * As per PHY design spec, the PLL reset requires a minimum |
1151 | * of 800us. |
1152 | */ |
1153 | usleep_range(min: 800, max: 1000); |
1154 | |
1155 | cmu_rd(ctx, cmu_type, CMU_REG1, data: &val); |
1156 | val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); |
1157 | cmu_wr(ctx, cmu_type, CMU_REG1, data: val); |
1158 | /* |
1159 | * As per PHY design spec, the PLL auto calibration requires |
1160 | * a minimum of 800us. |
1161 | */ |
1162 | usleep_range(min: 800, max: 1000); |
1163 | |
1164 | cmu_toggle1to0(ctx, cmu_type, CMU_REG32, |
1165 | CMU_REG32_FORCE_VCOCAL_START_MASK); |
1166 | /* |
1167 | * As per PHY design spec, the PLL requires a minimum of |
1168 | * 800us to settle. |
1169 | */ |
1170 | usleep_range(min: 800, max: 1000); |
1171 | } |
1172 | |
1173 | if (!preA3Chip) |
1174 | goto skip_manual_cal; |
1175 | |
1176 | /* |
1177 | * Configure the termination resister calibration |
1178 | * The serial receive pins, RXP/RXN, have TERMination resistor |
1179 | * that is required to be calibrated. |
1180 | */ |
1181 | cmu_rd(ctx, cmu_type, CMU_REG17, data: &val); |
1182 | val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12); |
1183 | val = CMU_REG17_RESERVED_7_SET(val, 0x0); |
1184 | cmu_wr(ctx, cmu_type, CMU_REG17, data: val); |
1185 | cmu_toggle1to0(ctx, cmu_type, CMU_REG17, |
1186 | CMU_REG17_PVT_TERM_MAN_ENA_MASK); |
1187 | /* |
1188 | * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN |
1189 | * resistors that are required to the calibrated. |
1190 | * Configure the pull DOWN calibration |
1191 | */ |
1192 | cmu_rd(ctx, cmu_type, CMU_REG17, data: &val); |
1193 | val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29); |
1194 | val = CMU_REG17_RESERVED_7_SET(val, 0x0); |
1195 | cmu_wr(ctx, cmu_type, CMU_REG17, data: val); |
1196 | cmu_toggle1to0(ctx, cmu_type, CMU_REG16, |
1197 | CMU_REG16_PVT_DN_MAN_ENA_MASK); |
1198 | /* Configure the pull UP calibration */ |
1199 | cmu_rd(ctx, cmu_type, CMU_REG17, data: &val); |
1200 | val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28); |
1201 | val = CMU_REG17_RESERVED_7_SET(val, 0x0); |
1202 | cmu_wr(ctx, cmu_type, CMU_REG17, data: val); |
1203 | cmu_toggle1to0(ctx, cmu_type, CMU_REG16, |
1204 | CMU_REG16_PVT_UP_MAN_ENA_MASK); |
1205 | |
1206 | skip_manual_cal: |
1207 | /* Poll the PLL calibration completion status for at least 1 ms */ |
1208 | loop = 100; |
1209 | do { |
1210 | cmu_rd(ctx, cmu_type, CMU_REG7, data: &val); |
1211 | if (CMU_REG7_PLL_CALIB_DONE_RD(val)) |
1212 | break; |
1213 | /* |
1214 | * As per PHY design spec, PLL calibration status requires |
1215 | * a minimum of 10us to be updated. |
1216 | */ |
1217 | usleep_range(min: 10, max: 100); |
1218 | } while (--loop > 0); |
1219 | |
1220 | cmu_rd(ctx, cmu_type, CMU_REG7, data: &val); |
1221 | dev_dbg(ctx->dev, "PLL calibration %s\n" , |
1222 | CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed" ); |
1223 | if (CMU_REG7_VCO_CAL_FAIL_RD(val)) { |
1224 | dev_err(ctx->dev, |
1225 | "PLL calibration failed due to VCO failure\n" ); |
1226 | return -1; |
1227 | } |
1228 | dev_dbg(ctx->dev, "PLL calibration successful\n" ); |
1229 | |
1230 | cmu_rd(ctx, cmu_type, CMU_REG15, data: &val); |
1231 | dev_dbg(ctx->dev, "PHY Tx is %sready\n" , val & 0x300 ? "" : "not " ); |
1232 | return 0; |
1233 | } |
1234 | |
1235 | static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx, |
1236 | enum cmu_type_t cmu_type, |
1237 | enum clk_type_t clk_type) |
1238 | { |
1239 | u32 val; |
1240 | |
1241 | dev_dbg(ctx->dev, "Reset VCO and re-start again\n" ); |
1242 | if (cmu_type == PHY_CMU) { |
1243 | cmu_rd(ctx, cmu_type, CMU_REG16, data: &val); |
1244 | val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); |
1245 | cmu_wr(ctx, cmu_type, CMU_REG16, data: val); |
1246 | } |
1247 | |
1248 | cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK); |
1249 | cmu_toggle1to0(ctx, cmu_type, CMU_REG32, |
1250 | CMU_REG32_FORCE_VCOCAL_START_MASK); |
1251 | } |
1252 | |
1253 | static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx, |
1254 | enum clk_type_t clk_type, int ssc_enable) |
1255 | { |
1256 | void __iomem *sds_base = ctx->sds_base; |
1257 | u32 val; |
1258 | int i; |
1259 | |
1260 | /* Configure the PHY for operation */ |
1261 | dev_dbg(ctx->dev, "Reset PHY\n" ); |
1262 | /* Place PHY into reset */ |
1263 | writel(val: 0x0, addr: sds_base + SATA_ENET_SDS_RST_CTL); |
1264 | val = readl(addr: sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ |
1265 | /* Release PHY lane from reset (active high) */ |
1266 | writel(val: 0x20, addr: sds_base + SATA_ENET_SDS_RST_CTL); |
1267 | readl(addr: sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ |
1268 | /* Release all PHY module out of reset except PHY main reset */ |
1269 | writel(val: 0xde, addr: sds_base + SATA_ENET_SDS_RST_CTL); |
1270 | readl(addr: sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ |
1271 | |
1272 | /* Set the operation speed */ |
1273 | val = readl(addr: sds_base + SATA_ENET_SDS_CTL1); |
1274 | val = CFG_I_SPD_SEL_CDR_OVR1_SET(val, |
1275 | ctx->sata_param.txspeed[ctx->sata_param.speed[0]]); |
1276 | writel(val, addr: sds_base + SATA_ENET_SDS_CTL1); |
1277 | |
1278 | dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n" ); |
1279 | val = readl(addr: sds_base + SATA_ENET_SDS_CTL0); |
1280 | val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421); |
1281 | writel(val, addr: sds_base + SATA_ENET_SDS_CTL0); |
1282 | |
1283 | /* Configure the clock macro unit (CMU) clock type */ |
1284 | xgene_phy_cfg_cmu_clk_type(ctx, cmu_type: PHY_CMU, clk_type); |
1285 | |
1286 | /* Configure the clock macro */ |
1287 | xgene_phy_sata_cfg_cmu_core(ctx, cmu_type: PHY_CMU, clk_type); |
1288 | |
1289 | /* Enable SSC if enabled */ |
1290 | if (ssc_enable) |
1291 | xgene_phy_ssc_enable(ctx, cmu_type: PHY_CMU); |
1292 | |
1293 | /* Configure PHY lanes */ |
1294 | xgene_phy_sata_cfg_lanes(ctx); |
1295 | |
1296 | /* Set Rx/Tx 20-bit */ |
1297 | val = readl(addr: sds_base + SATA_ENET_SDS_PCS_CTL0); |
1298 | val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3); |
1299 | val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3); |
1300 | writel(val, addr: sds_base + SATA_ENET_SDS_PCS_CTL0); |
1301 | |
1302 | /* Start PLL calibration and try for three times */ |
1303 | i = 10; |
1304 | do { |
1305 | if (!xgene_phy_cal_rdy_chk(ctx, cmu_type: PHY_CMU, clk_type)) |
1306 | break; |
1307 | /* If failed, toggle the VCO power signal and start again */ |
1308 | xgene_phy_pdwn_force_vco(ctx, cmu_type: PHY_CMU, clk_type); |
1309 | } while (--i > 0); |
1310 | /* Even on failure, allow to continue any way */ |
1311 | if (i <= 0) |
1312 | dev_err(ctx->dev, "PLL calibration failed\n" ); |
1313 | |
1314 | return 0; |
1315 | } |
1316 | |
1317 | static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx, |
1318 | enum clk_type_t clk_type, |
1319 | int ssc_enable) |
1320 | { |
1321 | int rc; |
1322 | |
1323 | dev_dbg(ctx->dev, "PHY init clk type %d\n" , clk_type); |
1324 | |
1325 | if (ctx->mode == MODE_SATA) { |
1326 | rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable); |
1327 | if (rc) |
1328 | return rc; |
1329 | } else { |
1330 | dev_err(ctx->dev, "Un-supported customer pin mode %d\n" , |
1331 | ctx->mode); |
1332 | return -ENODEV; |
1333 | } |
1334 | |
1335 | return 0; |
1336 | } |
1337 | |
1338 | /* |
1339 | * Receiver Offset Calibration: |
1340 | * |
1341 | * Calibrate the receiver signal path offset in two steps - summar and |
1342 | * latch calibrations |
1343 | */ |
1344 | static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane) |
1345 | { |
1346 | int i; |
1347 | static const struct { |
1348 | u32 reg; |
1349 | u32 val; |
1350 | } serdes_reg[] = { |
1351 | {RXTX_REG38, 0x0}, |
1352 | {RXTX_REG39, 0xff00}, |
1353 | {RXTX_REG40, 0xffff}, |
1354 | {RXTX_REG41, 0xffff}, |
1355 | {RXTX_REG42, 0xffff}, |
1356 | {RXTX_REG43, 0xffff}, |
1357 | {RXTX_REG44, 0xffff}, |
1358 | {RXTX_REG45, 0xffff}, |
1359 | {RXTX_REG46, 0xffff}, |
1360 | {RXTX_REG47, 0xfffc}, |
1361 | {RXTX_REG48, 0x0}, |
1362 | {RXTX_REG49, 0x0}, |
1363 | {RXTX_REG50, 0x0}, |
1364 | {RXTX_REG51, 0x0}, |
1365 | {RXTX_REG52, 0x0}, |
1366 | {RXTX_REG53, 0x0}, |
1367 | {RXTX_REG54, 0x0}, |
1368 | {RXTX_REG55, 0x0}, |
1369 | }; |
1370 | |
1371 | /* Start SUMMER calibration */ |
1372 | serdes_setbits(ctx, lane, RXTX_REG127, |
1373 | RXTX_REG127_FORCE_SUM_CAL_START_MASK); |
1374 | /* |
1375 | * As per PHY design spec, the Summer calibration requires a minimum |
1376 | * of 100us to complete. |
1377 | */ |
1378 | usleep_range(min: 100, max: 500); |
1379 | serdes_clrbits(ctx, lane, RXTX_REG127, |
1380 | RXTX_REG127_FORCE_SUM_CAL_START_MASK); |
1381 | /* |
1382 | * As per PHY design spec, the auto calibration requires a minimum |
1383 | * of 100us to complete. |
1384 | */ |
1385 | usleep_range(min: 100, max: 500); |
1386 | |
1387 | /* Start latch calibration */ |
1388 | serdes_setbits(ctx, lane, RXTX_REG127, |
1389 | RXTX_REG127_FORCE_LAT_CAL_START_MASK); |
1390 | /* |
1391 | * As per PHY design spec, the latch calibration requires a minimum |
1392 | * of 100us to complete. |
1393 | */ |
1394 | usleep_range(min: 100, max: 500); |
1395 | serdes_clrbits(ctx, lane, RXTX_REG127, |
1396 | RXTX_REG127_FORCE_LAT_CAL_START_MASK); |
1397 | |
1398 | /* Configure the PHY lane for calibration */ |
1399 | serdes_wr(ctx, lane, RXTX_REG28, data: 0x7); |
1400 | serdes_wr(ctx, lane, RXTX_REG31, data: 0x7e00); |
1401 | serdes_clrbits(ctx, lane, RXTX_REG4, |
1402 | RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK); |
1403 | serdes_clrbits(ctx, lane, RXTX_REG7, |
1404 | RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK); |
1405 | for (i = 0; i < ARRAY_SIZE(serdes_reg); i++) |
1406 | serdes_wr(ctx, lane, reg: serdes_reg[i].reg, |
1407 | data: serdes_reg[i].val); |
1408 | } |
1409 | |
1410 | static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane) |
1411 | { |
1412 | /* Reset digital Rx */ |
1413 | serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); |
1414 | /* As per PHY design spec, the reset requires a minimum of 100us. */ |
1415 | usleep_range(min: 100, max: 150); |
1416 | serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); |
1417 | } |
1418 | |
1419 | static int xgene_phy_get_avg(int accum, int samples) |
1420 | { |
1421 | return (accum + (samples / 2)) / samples; |
1422 | } |
1423 | |
1424 | static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane) |
1425 | { |
1426 | int max_loop = 10; |
1427 | int avg_loop = 0; |
1428 | int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0; |
1429 | int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0; |
1430 | int sum_cal = 0; |
1431 | int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr; |
1432 | int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr; |
1433 | int sum_cal_itr; |
1434 | int fail_even; |
1435 | int fail_odd; |
1436 | u32 val; |
1437 | |
1438 | dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n" , |
1439 | lane); |
1440 | |
1441 | /* Enable RX Hi-Z termination */ |
1442 | serdes_setbits(ctx, lane, RXTX_REG12, |
1443 | RXTX_REG12_RX_DET_TERM_ENABLE_MASK); |
1444 | /* Turn off DFE */ |
1445 | serdes_wr(ctx, lane, RXTX_REG28, data: 0x0000); |
1446 | /* DFE Presets to zero */ |
1447 | serdes_wr(ctx, lane, RXTX_REG31, data: 0x0000); |
1448 | |
1449 | /* |
1450 | * Receiver Offset Calibration: |
1451 | * Calibrate the receiver signal path offset in two steps - summar |
1452 | * and latch calibration. |
1453 | * Runs the "Receiver Offset Calibration multiple times to determine |
1454 | * the average value to use. |
1455 | */ |
1456 | while (avg_loop < max_loop) { |
1457 | /* Start the calibration */ |
1458 | xgene_phy_force_lat_summer_cal(ctx, lane); |
1459 | |
1460 | serdes_rd(ctx, lane, RXTX_REG21, data: &val); |
1461 | lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val); |
1462 | lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val); |
1463 | fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val); |
1464 | |
1465 | serdes_rd(ctx, lane, RXTX_REG22, data: &val); |
1466 | lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val); |
1467 | lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val); |
1468 | fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val); |
1469 | |
1470 | serdes_rd(ctx, lane, RXTX_REG23, data: &val); |
1471 | lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val); |
1472 | lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val); |
1473 | |
1474 | serdes_rd(ctx, lane, RXTX_REG24, data: &val); |
1475 | lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val); |
1476 | lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val); |
1477 | |
1478 | serdes_rd(ctx, lane, RXTX_REG121, data: &val); |
1479 | sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val); |
1480 | |
1481 | /* Check for failure. If passed, sum them for averaging */ |
1482 | if ((fail_even == 0 || fail_even == 1) && |
1483 | (fail_odd == 0 || fail_odd == 1)) { |
1484 | lat_do += lat_do_itr; |
1485 | lat_xo += lat_xo_itr; |
1486 | lat_eo += lat_eo_itr; |
1487 | lat_so += lat_so_itr; |
1488 | lat_de += lat_de_itr; |
1489 | lat_xe += lat_xe_itr; |
1490 | lat_ee += lat_ee_itr; |
1491 | lat_se += lat_se_itr; |
1492 | sum_cal += sum_cal_itr; |
1493 | |
1494 | dev_dbg(ctx->dev, "Iteration %d:\n" , avg_loop); |
1495 | dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n" , |
1496 | lat_do_itr, lat_xo_itr, lat_eo_itr, |
1497 | lat_so_itr); |
1498 | dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n" , |
1499 | lat_de_itr, lat_xe_itr, lat_ee_itr, |
1500 | lat_se_itr); |
1501 | dev_dbg(ctx->dev, "SUM 0x%x\n" , sum_cal_itr); |
1502 | ++avg_loop; |
1503 | } else { |
1504 | dev_err(ctx->dev, |
1505 | "Receiver calibration failed at %d loop\n" , |
1506 | avg_loop); |
1507 | } |
1508 | xgene_phy_reset_rxd(ctx, lane); |
1509 | } |
1510 | |
1511 | /* Update latch manual calibration with average value */ |
1512 | serdes_rd(ctx, lane, RXTX_REG127, data: &val); |
1513 | val = RXTX_REG127_DO_LATCH_MANCAL_SET(val, |
1514 | xgene_phy_get_avg(lat_do, max_loop)); |
1515 | val = RXTX_REG127_XO_LATCH_MANCAL_SET(val, |
1516 | xgene_phy_get_avg(lat_xo, max_loop)); |
1517 | serdes_wr(ctx, lane, RXTX_REG127, data: val); |
1518 | |
1519 | serdes_rd(ctx, lane, RXTX_REG128, data: &val); |
1520 | val = RXTX_REG128_EO_LATCH_MANCAL_SET(val, |
1521 | xgene_phy_get_avg(lat_eo, max_loop)); |
1522 | val = RXTX_REG128_SO_LATCH_MANCAL_SET(val, |
1523 | xgene_phy_get_avg(lat_so, max_loop)); |
1524 | serdes_wr(ctx, lane, RXTX_REG128, data: val); |
1525 | |
1526 | serdes_rd(ctx, lane, RXTX_REG129, data: &val); |
1527 | val = RXTX_REG129_DE_LATCH_MANCAL_SET(val, |
1528 | xgene_phy_get_avg(lat_de, max_loop)); |
1529 | val = RXTX_REG129_XE_LATCH_MANCAL_SET(val, |
1530 | xgene_phy_get_avg(lat_xe, max_loop)); |
1531 | serdes_wr(ctx, lane, RXTX_REG129, data: val); |
1532 | |
1533 | serdes_rd(ctx, lane, RXTX_REG130, data: &val); |
1534 | val = RXTX_REG130_EE_LATCH_MANCAL_SET(val, |
1535 | xgene_phy_get_avg(lat_ee, max_loop)); |
1536 | val = RXTX_REG130_SE_LATCH_MANCAL_SET(val, |
1537 | xgene_phy_get_avg(lat_se, max_loop)); |
1538 | serdes_wr(ctx, lane, RXTX_REG130, data: val); |
1539 | |
1540 | /* Update SUMMER calibration with average value */ |
1541 | serdes_rd(ctx, lane, RXTX_REG14, data: &val); |
1542 | val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val, |
1543 | xgene_phy_get_avg(sum_cal, max_loop)); |
1544 | serdes_wr(ctx, lane, RXTX_REG14, data: val); |
1545 | |
1546 | dev_dbg(ctx->dev, "Average Value:\n" ); |
1547 | dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n" , |
1548 | xgene_phy_get_avg(lat_do, max_loop), |
1549 | xgene_phy_get_avg(lat_xo, max_loop), |
1550 | xgene_phy_get_avg(lat_eo, max_loop), |
1551 | xgene_phy_get_avg(lat_so, max_loop)); |
1552 | dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n" , |
1553 | xgene_phy_get_avg(lat_de, max_loop), |
1554 | xgene_phy_get_avg(lat_xe, max_loop), |
1555 | xgene_phy_get_avg(lat_ee, max_loop), |
1556 | xgene_phy_get_avg(lat_se, max_loop)); |
1557 | dev_dbg(ctx->dev, "SUM 0x%x\n" , |
1558 | xgene_phy_get_avg(sum_cal, max_loop)); |
1559 | |
1560 | serdes_rd(ctx, lane, RXTX_REG14, data: &val); |
1561 | val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1); |
1562 | serdes_wr(ctx, lane, RXTX_REG14, data: val); |
1563 | dev_dbg(ctx->dev, "Enable Manual Summer calibration\n" ); |
1564 | |
1565 | serdes_rd(ctx, lane, RXTX_REG127, data: &val); |
1566 | val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1); |
1567 | dev_dbg(ctx->dev, "Enable Manual Latch calibration\n" ); |
1568 | serdes_wr(ctx, lane, RXTX_REG127, data: val); |
1569 | |
1570 | /* Disable RX Hi-Z termination */ |
1571 | serdes_rd(ctx, lane, RXTX_REG12, data: &val); |
1572 | val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0); |
1573 | serdes_wr(ctx, lane, RXTX_REG12, data: val); |
1574 | /* Turn on DFE */ |
1575 | serdes_wr(ctx, lane, RXTX_REG28, data: 0x0007); |
1576 | /* Set DFE preset */ |
1577 | serdes_wr(ctx, lane, RXTX_REG31, data: 0x7e00); |
1578 | } |
1579 | |
1580 | static int xgene_phy_hw_init(struct phy *phy) |
1581 | { |
1582 | struct xgene_phy_ctx *ctx = phy_get_drvdata(phy); |
1583 | int rc; |
1584 | int i; |
1585 | |
1586 | rc = xgene_phy_hw_initialize(ctx, clk_type: CLK_EXT_DIFF, SSC_DISABLE); |
1587 | if (rc) { |
1588 | dev_err(ctx->dev, "PHY initialize failed %d\n" , rc); |
1589 | return rc; |
1590 | } |
1591 | |
1592 | /* Setup clock properly after PHY configuration */ |
1593 | if (!IS_ERR(ptr: ctx->clk)) { |
1594 | /* HW requires an toggle of the clock */ |
1595 | clk_prepare_enable(clk: ctx->clk); |
1596 | clk_disable_unprepare(clk: ctx->clk); |
1597 | clk_prepare_enable(clk: ctx->clk); |
1598 | } |
1599 | |
1600 | /* Compute average value */ |
1601 | for (i = 0; i < MAX_LANE; i++) |
1602 | xgene_phy_gen_avg_val(ctx, lane: i); |
1603 | |
1604 | dev_dbg(ctx->dev, "PHY initialized\n" ); |
1605 | return 0; |
1606 | } |
1607 | |
1608 | static const struct phy_ops xgene_phy_ops = { |
1609 | .init = xgene_phy_hw_init, |
1610 | .owner = THIS_MODULE, |
1611 | }; |
1612 | |
1613 | static struct phy *xgene_phy_xlate(struct device *dev, |
1614 | const struct of_phandle_args *args) |
1615 | { |
1616 | struct xgene_phy_ctx *ctx = dev_get_drvdata(dev); |
1617 | |
1618 | if (args->args_count <= 0) |
1619 | return ERR_PTR(error: -EINVAL); |
1620 | if (args->args[0] >= MODE_MAX) |
1621 | return ERR_PTR(error: -EINVAL); |
1622 | |
1623 | ctx->mode = args->args[0]; |
1624 | return ctx->phy; |
1625 | } |
1626 | |
1627 | static void xgene_phy_get_param(struct platform_device *pdev, |
1628 | const char *name, u32 *buffer, |
1629 | int count, u32 *default_val, |
1630 | u32 conv_factor) |
1631 | { |
1632 | int i; |
1633 | |
1634 | if (!of_property_read_u32_array(np: pdev->dev.of_node, propname: name, out_values: buffer, |
1635 | sz: count)) { |
1636 | for (i = 0; i < count; i++) |
1637 | buffer[i] /= conv_factor; |
1638 | return; |
1639 | } |
1640 | /* Does not exist, load default */ |
1641 | for (i = 0; i < count; i++) |
1642 | buffer[i] = default_val[i % 3]; |
1643 | } |
1644 | |
1645 | static int xgene_phy_probe(struct platform_device *pdev) |
1646 | { |
1647 | struct phy_provider *phy_provider; |
1648 | struct xgene_phy_ctx *ctx; |
1649 | u32 default_spd[] = DEFAULT_SATA_SPD_SEL; |
1650 | u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN; |
1651 | u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION; |
1652 | u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING; |
1653 | u32 default_txamp[] = DEFAULT_SATA_TXAMP; |
1654 | u32 default_txcn1[] = DEFAULT_SATA_TXCN1; |
1655 | u32 default_txcn2[] = DEFAULT_SATA_TXCN2; |
1656 | u32 default_txcp1[] = DEFAULT_SATA_TXCP1; |
1657 | int i; |
1658 | |
1659 | ctx = devm_kzalloc(dev: &pdev->dev, size: sizeof(*ctx), GFP_KERNEL); |
1660 | if (!ctx) |
1661 | return -ENOMEM; |
1662 | |
1663 | ctx->dev = &pdev->dev; |
1664 | |
1665 | ctx->sds_base = devm_platform_ioremap_resource(pdev, index: 0); |
1666 | if (IS_ERR(ptr: ctx->sds_base)) |
1667 | return PTR_ERR(ptr: ctx->sds_base); |
1668 | |
1669 | /* Retrieve optional clock */ |
1670 | ctx->clk = clk_get(dev: &pdev->dev, NULL); |
1671 | |
1672 | /* Load override paramaters */ |
1673 | xgene_phy_get_param(pdev, name: "apm,tx-eye-tuning" , |
1674 | buffer: ctx->sata_param.txeyetuning, count: 6, default_val: default_txeye_tuning, conv_factor: 1); |
1675 | xgene_phy_get_param(pdev, name: "apm,tx-eye-direction" , |
1676 | buffer: ctx->sata_param.txeyedirection, count: 6, default_val: default_txeye_direction, conv_factor: 1); |
1677 | xgene_phy_get_param(pdev, name: "apm,tx-boost-gain" , |
1678 | buffer: ctx->sata_param.txboostgain, count: 6, default_val: default_txboost_gain, conv_factor: 1); |
1679 | xgene_phy_get_param(pdev, name: "apm,tx-amplitude" , |
1680 | buffer: ctx->sata_param.txamplitude, count: 6, default_val: default_txamp, conv_factor: 13300); |
1681 | xgene_phy_get_param(pdev, name: "apm,tx-pre-cursor1" , |
1682 | buffer: ctx->sata_param.txprecursor_cn1, count: 6, default_val: default_txcn1, conv_factor: 18200); |
1683 | xgene_phy_get_param(pdev, name: "apm,tx-pre-cursor2" , |
1684 | buffer: ctx->sata_param.txprecursor_cn2, count: 6, default_val: default_txcn2, conv_factor: 18200); |
1685 | xgene_phy_get_param(pdev, name: "apm,tx-post-cursor" , |
1686 | buffer: ctx->sata_param.txpostcursor_cp1, count: 6, default_val: default_txcp1, conv_factor: 18200); |
1687 | xgene_phy_get_param(pdev, name: "apm,tx-speed" , |
1688 | buffer: ctx->sata_param.txspeed, count: 3, default_val: default_spd, conv_factor: 1); |
1689 | for (i = 0; i < MAX_LANE; i++) |
1690 | ctx->sata_param.speed[i] = 2; /* Default to Gen3 */ |
1691 | |
1692 | platform_set_drvdata(pdev, data: ctx); |
1693 | |
1694 | ctx->phy = devm_phy_create(dev: ctx->dev, NULL, ops: &xgene_phy_ops); |
1695 | if (IS_ERR(ptr: ctx->phy)) { |
1696 | dev_dbg(&pdev->dev, "Failed to create PHY\n" ); |
1697 | return PTR_ERR(ptr: ctx->phy); |
1698 | } |
1699 | phy_set_drvdata(phy: ctx->phy, data: ctx); |
1700 | |
1701 | phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate); |
1702 | return PTR_ERR_OR_ZERO(ptr: phy_provider); |
1703 | } |
1704 | |
1705 | static const struct of_device_id xgene_phy_of_match[] = { |
1706 | {.compatible = "apm,xgene-phy" ,}, |
1707 | {}, |
1708 | }; |
1709 | MODULE_DEVICE_TABLE(of, xgene_phy_of_match); |
1710 | |
1711 | static struct platform_driver xgene_phy_driver = { |
1712 | .probe = xgene_phy_probe, |
1713 | .driver = { |
1714 | .name = "xgene-phy" , |
1715 | .of_match_table = xgene_phy_of_match, |
1716 | }, |
1717 | }; |
1718 | module_platform_driver(xgene_phy_driver); |
1719 | |
1720 | MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver" ); |
1721 | MODULE_AUTHOR("Loc Ho <lho@apm.com>" ); |
1722 | MODULE_LICENSE("GPL v2" ); |
1723 | MODULE_VERSION("0.1" ); |
1724 | |