1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH On-Chip RTC Support
4 *
5 * Copyright (C) 2006 - 2009 Paul Mundt
6 * Copyright (C) 2006 Jamie Lenehan
7 * Copyright (C) 2008 Angelo Castello
8 *
9 * Based on the old arch/sh/kernel/cpu/rtc.c by:
10 *
11 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
12 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
13 */
14#include <linux/module.h>
15#include <linux/mod_devicetable.h>
16#include <linux/kernel.h>
17#include <linux/bcd.h>
18#include <linux/rtc.h>
19#include <linux/init.h>
20#include <linux/platform_device.h>
21#include <linux/seq_file.h>
22#include <linux/interrupt.h>
23#include <linux/spinlock.h>
24#include <linux/io.h>
25#include <linux/log2.h>
26#include <linux/clk.h>
27#include <linux/slab.h>
28#ifdef CONFIG_SUPERH
29#include <asm/rtc.h>
30#else
31/* Default values for RZ/A RTC */
32#define rtc_reg_size sizeof(u16)
33#define RTC_BIT_INVERTED 0 /* no chip bugs */
34#define RTC_CAP_4_DIGIT_YEAR (1 << 0)
35#define RTC_DEF_CAPABILITIES RTC_CAP_4_DIGIT_YEAR
36#endif
37
38#define DRV_NAME "sh-rtc"
39
40#define RTC_REG(r) ((r) * rtc_reg_size)
41
42#define R64CNT RTC_REG(0)
43
44#define RSECCNT RTC_REG(1) /* RTC sec */
45#define RMINCNT RTC_REG(2) /* RTC min */
46#define RHRCNT RTC_REG(3) /* RTC hour */
47#define RWKCNT RTC_REG(4) /* RTC week */
48#define RDAYCNT RTC_REG(5) /* RTC day */
49#define RMONCNT RTC_REG(6) /* RTC month */
50#define RYRCNT RTC_REG(7) /* RTC year */
51#define RSECAR RTC_REG(8) /* ALARM sec */
52#define RMINAR RTC_REG(9) /* ALARM min */
53#define RHRAR RTC_REG(10) /* ALARM hour */
54#define RWKAR RTC_REG(11) /* ALARM week */
55#define RDAYAR RTC_REG(12) /* ALARM day */
56#define RMONAR RTC_REG(13) /* ALARM month */
57#define RCR1 RTC_REG(14) /* Control */
58#define RCR2 RTC_REG(15) /* Control */
59
60/*
61 * Note on RYRAR and RCR3: Up until this point most of the register
62 * definitions are consistent across all of the available parts. However,
63 * the placement of the optional RYRAR and RCR3 (the RYRAR control
64 * register used to control RYRCNT/RYRAR compare) varies considerably
65 * across various parts, occasionally being mapped in to a completely
66 * unrelated address space. For proper RYRAR support a separate resource
67 * would have to be handed off, but as this is purely optional in
68 * practice, we simply opt not to support it, thereby keeping the code
69 * quite a bit more simplified.
70 */
71
72/* ALARM Bits - or with BCD encoded value */
73#define AR_ENB 0x80 /* Enable for alarm cmp */
74
75/* Period Bits */
76#define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
77#define PF_COUNT 0x200 /* Half periodic counter */
78#define PF_OXS 0x400 /* Periodic One x Second */
79#define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
80#define PF_MASK 0xf00
81
82/* RCR1 Bits */
83#define RCR1_CF 0x80 /* Carry Flag */
84#define RCR1_CIE 0x10 /* Carry Interrupt Enable */
85#define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
86#define RCR1_AF 0x01 /* Alarm Flag */
87
88/* RCR2 Bits */
89#define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
90#define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
91#define RCR2_RTCEN 0x08 /* ENable RTC */
92#define RCR2_ADJ 0x04 /* ADJustment (30-second) */
93#define RCR2_RESET 0x02 /* Reset bit */
94#define RCR2_START 0x01 /* Start bit */
95
96struct sh_rtc {
97 void __iomem *regbase;
98 unsigned long regsize;
99 struct resource *res;
100 int alarm_irq;
101 int periodic_irq;
102 int carry_irq;
103 struct clk *clk;
104 struct rtc_device *rtc_dev;
105 spinlock_t lock;
106 unsigned long capabilities; /* See asm/rtc.h for cap bits */
107 unsigned short periodic_freq;
108};
109
110static int __sh_rtc_interrupt(struct sh_rtc *rtc)
111{
112 unsigned int tmp, pending;
113
114 tmp = readb(addr: rtc->regbase + RCR1);
115 pending = tmp & RCR1_CF;
116 tmp &= ~RCR1_CF;
117 writeb(val: tmp, addr: rtc->regbase + RCR1);
118
119 /* Users have requested One x Second IRQ */
120 if (pending && rtc->periodic_freq & PF_OXS)
121 rtc_update_irq(rtc: rtc->rtc_dev, num: 1, RTC_UF | RTC_IRQF);
122
123 return pending;
124}
125
126static int __sh_rtc_alarm(struct sh_rtc *rtc)
127{
128 unsigned int tmp, pending;
129
130 tmp = readb(addr: rtc->regbase + RCR1);
131 pending = tmp & RCR1_AF;
132 tmp &= ~(RCR1_AF | RCR1_AIE);
133 writeb(val: tmp, addr: rtc->regbase + RCR1);
134
135 if (pending)
136 rtc_update_irq(rtc: rtc->rtc_dev, num: 1, RTC_AF | RTC_IRQF);
137
138 return pending;
139}
140
141static int __sh_rtc_periodic(struct sh_rtc *rtc)
142{
143 unsigned int tmp, pending;
144
145 tmp = readb(addr: rtc->regbase + RCR2);
146 pending = tmp & RCR2_PEF;
147 tmp &= ~RCR2_PEF;
148 writeb(val: tmp, addr: rtc->regbase + RCR2);
149
150 if (!pending)
151 return 0;
152
153 /* Half period enabled than one skipped and the next notified */
154 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
155 rtc->periodic_freq &= ~PF_COUNT;
156 else {
157 if (rtc->periodic_freq & PF_HP)
158 rtc->periodic_freq |= PF_COUNT;
159 rtc_update_irq(rtc: rtc->rtc_dev, num: 1, RTC_PF | RTC_IRQF);
160 }
161
162 return pending;
163}
164
165static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
166{
167 struct sh_rtc *rtc = dev_id;
168 int ret;
169
170 spin_lock(lock: &rtc->lock);
171 ret = __sh_rtc_interrupt(rtc);
172 spin_unlock(lock: &rtc->lock);
173
174 return IRQ_RETVAL(ret);
175}
176
177static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
178{
179 struct sh_rtc *rtc = dev_id;
180 int ret;
181
182 spin_lock(lock: &rtc->lock);
183 ret = __sh_rtc_alarm(rtc);
184 spin_unlock(lock: &rtc->lock);
185
186 return IRQ_RETVAL(ret);
187}
188
189static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
190{
191 struct sh_rtc *rtc = dev_id;
192 int ret;
193
194 spin_lock(lock: &rtc->lock);
195 ret = __sh_rtc_periodic(rtc);
196 spin_unlock(lock: &rtc->lock);
197
198 return IRQ_RETVAL(ret);
199}
200
201static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
202{
203 struct sh_rtc *rtc = dev_id;
204 int ret;
205
206 spin_lock(lock: &rtc->lock);
207 ret = __sh_rtc_interrupt(rtc);
208 ret |= __sh_rtc_alarm(rtc);
209 ret |= __sh_rtc_periodic(rtc);
210 spin_unlock(lock: &rtc->lock);
211
212 return IRQ_RETVAL(ret);
213}
214
215static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
216{
217 struct sh_rtc *rtc = dev_get_drvdata(dev);
218 unsigned int tmp;
219
220 spin_lock_irq(lock: &rtc->lock);
221
222 tmp = readb(addr: rtc->regbase + RCR1);
223
224 if (enable)
225 tmp |= RCR1_AIE;
226 else
227 tmp &= ~RCR1_AIE;
228
229 writeb(val: tmp, addr: rtc->regbase + RCR1);
230
231 spin_unlock_irq(lock: &rtc->lock);
232}
233
234static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
235{
236 struct sh_rtc *rtc = dev_get_drvdata(dev);
237 unsigned int tmp;
238
239 tmp = readb(addr: rtc->regbase + RCR1);
240 seq_printf(m: seq, fmt: "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
241
242 tmp = readb(addr: rtc->regbase + RCR2);
243 seq_printf(m: seq, fmt: "periodic_IRQ\t: %s\n",
244 (tmp & RCR2_PESMASK) ? "yes" : "no");
245
246 return 0;
247}
248
249static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
250{
251 struct sh_rtc *rtc = dev_get_drvdata(dev);
252 unsigned int tmp;
253
254 spin_lock_irq(lock: &rtc->lock);
255
256 tmp = readb(addr: rtc->regbase + RCR1);
257
258 if (!enable)
259 tmp &= ~RCR1_CIE;
260 else
261 tmp |= RCR1_CIE;
262
263 writeb(val: tmp, addr: rtc->regbase + RCR1);
264
265 spin_unlock_irq(lock: &rtc->lock);
266}
267
268static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
269{
270 sh_rtc_setaie(dev, enable: enabled);
271 return 0;
272}
273
274static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
275{
276 struct sh_rtc *rtc = dev_get_drvdata(dev);
277 unsigned int sec128, sec2, yr, yr100, cf_bit;
278
279 if (!(readb(addr: rtc->regbase + RCR2) & RCR2_RTCEN))
280 return -EINVAL;
281
282 do {
283 unsigned int tmp;
284
285 spin_lock_irq(lock: &rtc->lock);
286
287 tmp = readb(addr: rtc->regbase + RCR1);
288 tmp &= ~RCR1_CF; /* Clear CF-bit */
289 tmp |= RCR1_CIE;
290 writeb(val: tmp, addr: rtc->regbase + RCR1);
291
292 sec128 = readb(addr: rtc->regbase + R64CNT);
293
294 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT));
295 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT));
296 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT));
297 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT));
298 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT));
299 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
300
301 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
302 yr = readw(addr: rtc->regbase + RYRCNT);
303 yr100 = bcd2bin(yr >> 8);
304 yr &= 0xff;
305 } else {
306 yr = readb(addr: rtc->regbase + RYRCNT);
307 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
308 }
309
310 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
311
312 sec2 = readb(addr: rtc->regbase + R64CNT);
313 cf_bit = readb(addr: rtc->regbase + RCR1) & RCR1_CF;
314
315 spin_unlock_irq(lock: &rtc->lock);
316 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
317
318#if RTC_BIT_INVERTED != 0
319 if ((sec128 & RTC_BIT_INVERTED))
320 tm->tm_sec--;
321#endif
322
323 /* only keep the carry interrupt enabled if UIE is on */
324 if (!(rtc->periodic_freq & PF_OXS))
325 sh_rtc_setcie(dev, enable: 0);
326
327 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
328 "mday=%d, mon=%d, year=%d, wday=%d\n",
329 __func__,
330 tm->tm_sec, tm->tm_min, tm->tm_hour,
331 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
332
333 return 0;
334}
335
336static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
337{
338 struct sh_rtc *rtc = dev_get_drvdata(dev);
339 unsigned int tmp;
340 int year;
341
342 spin_lock_irq(lock: &rtc->lock);
343
344 /* Reset pre-scaler & stop RTC */
345 tmp = readb(addr: rtc->regbase + RCR2);
346 tmp |= RCR2_RESET;
347 tmp &= ~RCR2_START;
348 writeb(val: tmp, addr: rtc->regbase + RCR2);
349
350 writeb(bin2bcd(tm->tm_sec), addr: rtc->regbase + RSECCNT);
351 writeb(bin2bcd(tm->tm_min), addr: rtc->regbase + RMINCNT);
352 writeb(bin2bcd(tm->tm_hour), addr: rtc->regbase + RHRCNT);
353 writeb(bin2bcd(tm->tm_wday), addr: rtc->regbase + RWKCNT);
354 writeb(bin2bcd(tm->tm_mday), addr: rtc->regbase + RDAYCNT);
355 writeb(bin2bcd(tm->tm_mon + 1), addr: rtc->regbase + RMONCNT);
356
357 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
358 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
359 bin2bcd(tm->tm_year % 100);
360 writew(val: year, addr: rtc->regbase + RYRCNT);
361 } else {
362 year = tm->tm_year % 100;
363 writeb(bin2bcd(year), addr: rtc->regbase + RYRCNT);
364 }
365
366 /* Start RTC */
367 tmp = readb(addr: rtc->regbase + RCR2);
368 tmp &= ~RCR2_RESET;
369 tmp |= RCR2_RTCEN | RCR2_START;
370 writeb(val: tmp, addr: rtc->regbase + RCR2);
371
372 spin_unlock_irq(lock: &rtc->lock);
373
374 return 0;
375}
376
377static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
378{
379 unsigned int byte;
380 int value = -1; /* return -1 for ignored values */
381
382 byte = readb(addr: rtc->regbase + reg_off);
383 if (byte & AR_ENB) {
384 byte &= ~AR_ENB; /* strip the enable bit */
385 value = bcd2bin(byte);
386 }
387
388 return value;
389}
390
391static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
392{
393 struct sh_rtc *rtc = dev_get_drvdata(dev);
394 struct rtc_time *tm = &wkalrm->time;
395
396 spin_lock_irq(lock: &rtc->lock);
397
398 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
399 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
400 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
401 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
402 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
403 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
404 if (tm->tm_mon > 0)
405 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
406
407 wkalrm->enabled = (readb(addr: rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
408
409 spin_unlock_irq(lock: &rtc->lock);
410
411 return 0;
412}
413
414static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
415 int value, int reg_off)
416{
417 /* < 0 for a value that is ignored */
418 if (value < 0)
419 writeb(val: 0, addr: rtc->regbase + reg_off);
420 else
421 writeb(bin2bcd(value) | AR_ENB, addr: rtc->regbase + reg_off);
422}
423
424static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
425{
426 struct sh_rtc *rtc = dev_get_drvdata(dev);
427 unsigned int rcr1;
428 struct rtc_time *tm = &wkalrm->time;
429 int mon;
430
431 spin_lock_irq(lock: &rtc->lock);
432
433 /* disable alarm interrupt and clear the alarm flag */
434 rcr1 = readb(addr: rtc->regbase + RCR1);
435 rcr1 &= ~(RCR1_AF | RCR1_AIE);
436 writeb(val: rcr1, addr: rtc->regbase + RCR1);
437
438 /* set alarm time */
439 sh_rtc_write_alarm_value(rtc, value: tm->tm_sec, RSECAR);
440 sh_rtc_write_alarm_value(rtc, value: tm->tm_min, RMINAR);
441 sh_rtc_write_alarm_value(rtc, value: tm->tm_hour, RHRAR);
442 sh_rtc_write_alarm_value(rtc, value: tm->tm_wday, RWKAR);
443 sh_rtc_write_alarm_value(rtc, value: tm->tm_mday, RDAYAR);
444 mon = tm->tm_mon;
445 if (mon >= 0)
446 mon += 1;
447 sh_rtc_write_alarm_value(rtc, value: mon, RMONAR);
448
449 if (wkalrm->enabled) {
450 rcr1 |= RCR1_AIE;
451 writeb(val: rcr1, addr: rtc->regbase + RCR1);
452 }
453
454 spin_unlock_irq(lock: &rtc->lock);
455
456 return 0;
457}
458
459static const struct rtc_class_ops sh_rtc_ops = {
460 .read_time = sh_rtc_read_time,
461 .set_time = sh_rtc_set_time,
462 .read_alarm = sh_rtc_read_alarm,
463 .set_alarm = sh_rtc_set_alarm,
464 .proc = sh_rtc_proc,
465 .alarm_irq_enable = sh_rtc_alarm_irq_enable,
466};
467
468static int __init sh_rtc_probe(struct platform_device *pdev)
469{
470 struct sh_rtc *rtc;
471 struct resource *res;
472 char clk_name[14];
473 int clk_id, ret;
474
475 rtc = devm_kzalloc(dev: &pdev->dev, size: sizeof(*rtc), GFP_KERNEL);
476 if (unlikely(!rtc))
477 return -ENOMEM;
478
479 spin_lock_init(&rtc->lock);
480
481 /* get periodic/carry/alarm irqs */
482 ret = platform_get_irq(pdev, 0);
483 if (unlikely(ret <= 0)) {
484 dev_err(&pdev->dev, "No IRQ resource\n");
485 return -ENOENT;
486 }
487
488 rtc->periodic_irq = ret;
489 rtc->carry_irq = platform_get_irq(pdev, 1);
490 rtc->alarm_irq = platform_get_irq(pdev, 2);
491
492 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
493 if (!res)
494 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
495 if (unlikely(res == NULL)) {
496 dev_err(&pdev->dev, "No IO resource\n");
497 return -ENOENT;
498 }
499
500 rtc->regsize = resource_size(res);
501
502 rtc->res = devm_request_mem_region(&pdev->dev, res->start,
503 rtc->regsize, pdev->name);
504 if (unlikely(!rtc->res))
505 return -EBUSY;
506
507 rtc->regbase = devm_ioremap(dev: &pdev->dev, offset: rtc->res->start, size: rtc->regsize);
508 if (unlikely(!rtc->regbase))
509 return -EINVAL;
510
511 if (!pdev->dev.of_node) {
512 clk_id = pdev->id;
513 /* With a single device, the clock id is still "rtc0" */
514 if (clk_id < 0)
515 clk_id = 0;
516
517 snprintf(buf: clk_name, size: sizeof(clk_name), fmt: "rtc%d", clk_id);
518 } else
519 snprintf(buf: clk_name, size: sizeof(clk_name), fmt: "fck");
520
521 rtc->clk = devm_clk_get(dev: &pdev->dev, id: clk_name);
522 if (IS_ERR(ptr: rtc->clk)) {
523 /*
524 * No error handling for rtc->clk intentionally, not all
525 * platforms will have a unique clock for the RTC, and
526 * the clk API can handle the struct clk pointer being
527 * NULL.
528 */
529 rtc->clk = NULL;
530 }
531
532 rtc->rtc_dev = devm_rtc_allocate_device(dev: &pdev->dev);
533 if (IS_ERR(ptr: rtc->rtc_dev))
534 return PTR_ERR(ptr: rtc->rtc_dev);
535
536 clk_enable(clk: rtc->clk);
537
538 rtc->capabilities = RTC_DEF_CAPABILITIES;
539
540#ifdef CONFIG_SUPERH
541 if (dev_get_platdata(&pdev->dev)) {
542 struct sh_rtc_platform_info *pinfo =
543 dev_get_platdata(&pdev->dev);
544
545 /*
546 * Some CPUs have special capabilities in addition to the
547 * default set. Add those in here.
548 */
549 rtc->capabilities |= pinfo->capabilities;
550 }
551#endif
552
553 if (rtc->carry_irq <= 0) {
554 /* register shared periodic/carry/alarm irq */
555 ret = devm_request_irq(dev: &pdev->dev, irq: rtc->periodic_irq,
556 handler: sh_rtc_shared, irqflags: 0, devname: "sh-rtc", dev_id: rtc);
557 if (unlikely(ret)) {
558 dev_err(&pdev->dev,
559 "request IRQ failed with %d, IRQ %d\n", ret,
560 rtc->periodic_irq);
561 goto err_unmap;
562 }
563 } else {
564 /* register periodic/carry/alarm irqs */
565 ret = devm_request_irq(dev: &pdev->dev, irq: rtc->periodic_irq,
566 handler: sh_rtc_periodic, irqflags: 0, devname: "sh-rtc period", dev_id: rtc);
567 if (unlikely(ret)) {
568 dev_err(&pdev->dev,
569 "request period IRQ failed with %d, IRQ %d\n",
570 ret, rtc->periodic_irq);
571 goto err_unmap;
572 }
573
574 ret = devm_request_irq(dev: &pdev->dev, irq: rtc->carry_irq,
575 handler: sh_rtc_interrupt, irqflags: 0, devname: "sh-rtc carry", dev_id: rtc);
576 if (unlikely(ret)) {
577 dev_err(&pdev->dev,
578 "request carry IRQ failed with %d, IRQ %d\n",
579 ret, rtc->carry_irq);
580 goto err_unmap;
581 }
582
583 ret = devm_request_irq(dev: &pdev->dev, irq: rtc->alarm_irq,
584 handler: sh_rtc_alarm, irqflags: 0, devname: "sh-rtc alarm", dev_id: rtc);
585 if (unlikely(ret)) {
586 dev_err(&pdev->dev,
587 "request alarm IRQ failed with %d, IRQ %d\n",
588 ret, rtc->alarm_irq);
589 goto err_unmap;
590 }
591 }
592
593 platform_set_drvdata(pdev, data: rtc);
594
595 /* everything disabled by default */
596 sh_rtc_setaie(dev: &pdev->dev, enable: 0);
597 sh_rtc_setcie(dev: &pdev->dev, enable: 0);
598
599 rtc->rtc_dev->ops = &sh_rtc_ops;
600 rtc->rtc_dev->max_user_freq = 256;
601
602 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
603 rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_1900;
604 rtc->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
605 } else {
606 rtc->rtc_dev->range_min = mktime64(year: 1999, mon: 1, day: 1, hour: 0, min: 0, sec: 0);
607 rtc->rtc_dev->range_max = mktime64(year: 2098, mon: 12, day: 31, hour: 23, min: 59, sec: 59);
608 }
609
610 ret = devm_rtc_register_device(rtc->rtc_dev);
611 if (ret)
612 goto err_unmap;
613
614 device_init_wakeup(dev: &pdev->dev, enable: 1);
615 return 0;
616
617err_unmap:
618 clk_disable(clk: rtc->clk);
619
620 return ret;
621}
622
623static void __exit sh_rtc_remove(struct platform_device *pdev)
624{
625 struct sh_rtc *rtc = platform_get_drvdata(pdev);
626
627 sh_rtc_setaie(dev: &pdev->dev, enable: 0);
628 sh_rtc_setcie(dev: &pdev->dev, enable: 0);
629
630 clk_disable(clk: rtc->clk);
631}
632
633static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
634{
635 struct sh_rtc *rtc = dev_get_drvdata(dev);
636
637 irq_set_irq_wake(irq: rtc->periodic_irq, on: enabled);
638
639 if (rtc->carry_irq > 0) {
640 irq_set_irq_wake(irq: rtc->carry_irq, on: enabled);
641 irq_set_irq_wake(irq: rtc->alarm_irq, on: enabled);
642 }
643}
644
645static int __maybe_unused sh_rtc_suspend(struct device *dev)
646{
647 if (device_may_wakeup(dev))
648 sh_rtc_set_irq_wake(dev, enabled: 1);
649
650 return 0;
651}
652
653static int __maybe_unused sh_rtc_resume(struct device *dev)
654{
655 if (device_may_wakeup(dev))
656 sh_rtc_set_irq_wake(dev, enabled: 0);
657
658 return 0;
659}
660
661static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
662
663static const struct of_device_id sh_rtc_of_match[] = {
664 { .compatible = "renesas,sh-rtc", },
665 { /* sentinel */ }
666};
667MODULE_DEVICE_TABLE(of, sh_rtc_of_match);
668
669/*
670 * sh_rtc_remove() lives in .exit.text. For drivers registered via
671 * module_platform_driver_probe() this is ok because they cannot get unbound at
672 * runtime. So mark the driver struct with __refdata to prevent modpost
673 * triggering a section mismatch warning.
674 */
675static struct platform_driver sh_rtc_platform_driver __refdata = {
676 .driver = {
677 .name = DRV_NAME,
678 .pm = &sh_rtc_pm_ops,
679 .of_match_table = sh_rtc_of_match,
680 },
681 .remove_new = __exit_p(sh_rtc_remove),
682};
683
684module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
685
686MODULE_DESCRIPTION("SuperH on-chip RTC driver");
687MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
688 "Jamie Lenehan <lenehan@twibble.org>, "
689 "Angelo Castello <angelo.castello@st.com>");
690MODULE_LICENSE("GPL v2");
691MODULE_ALIAS("platform:" DRV_NAME);
692

source code of linux/drivers/rtc/rtc-sh.c