1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36#include <linux/module.h>
37#include <linux/fs.h>
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/bio.h>
41#include <linux/hdreg.h>
42#include <linux/errno.h>
43#include <linux/idr.h>
44#include <linux/interrupt.h>
45#include <linux/init.h>
46#include <linux/blkdev.h>
47#include <linux/blkpg.h>
48#include <linux/blk-pm.h>
49#include <linux/delay.h>
50#include <linux/rw_hint.h>
51#include <linux/major.h>
52#include <linux/mutex.h>
53#include <linux/string_helpers.h>
54#include <linux/slab.h>
55#include <linux/sed-opal.h>
56#include <linux/pm_runtime.h>
57#include <linux/pr.h>
58#include <linux/t10-pi.h>
59#include <linux/uaccess.h>
60#include <asm/unaligned.h>
61
62#include <scsi/scsi.h>
63#include <scsi/scsi_cmnd.h>
64#include <scsi/scsi_dbg.h>
65#include <scsi/scsi_device.h>
66#include <scsi/scsi_driver.h>
67#include <scsi/scsi_eh.h>
68#include <scsi/scsi_host.h>
69#include <scsi/scsi_ioctl.h>
70#include <scsi/scsicam.h>
71#include <scsi/scsi_common.h>
72
73#include "sd.h"
74#include "scsi_priv.h"
75#include "scsi_logging.h"
76
77MODULE_AUTHOR("Eric Youngdale");
78MODULE_DESCRIPTION("SCSI disk (sd) driver");
79MODULE_LICENSE("GPL");
80
81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
96MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
97MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
98MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
99MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
100MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
101
102#define SD_MINORS 16
103
104static void sd_config_discard(struct scsi_disk *, unsigned int);
105static void sd_config_write_same(struct scsi_disk *);
106static int sd_revalidate_disk(struct gendisk *);
107static void sd_unlock_native_capacity(struct gendisk *disk);
108static void sd_shutdown(struct device *);
109static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
110static void scsi_disk_release(struct device *cdev);
111
112static DEFINE_IDA(sd_index_ida);
113
114static mempool_t *sd_page_pool;
115static struct lock_class_key sd_bio_compl_lkclass;
116
117static const char *sd_cache_types[] = {
118 "write through", "none", "write back",
119 "write back, no read (daft)"
120};
121
122static void sd_set_flush_flag(struct scsi_disk *sdkp)
123{
124 bool wc = false, fua = false;
125
126 if (sdkp->WCE) {
127 wc = true;
128 if (sdkp->DPOFUA)
129 fua = true;
130 }
131
132 blk_queue_write_cache(q: sdkp->disk->queue, enabled: wc, fua);
133}
134
135static ssize_t
136cache_type_store(struct device *dev, struct device_attribute *attr,
137 const char *buf, size_t count)
138{
139 int ct, rcd, wce, sp;
140 struct scsi_disk *sdkp = to_scsi_disk(dev);
141 struct scsi_device *sdp = sdkp->device;
142 char buffer[64];
143 char *buffer_data;
144 struct scsi_mode_data data;
145 struct scsi_sense_hdr sshdr;
146 static const char temp[] = "temporary ";
147 int len, ret;
148
149 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
150 /* no cache control on RBC devices; theoretically they
151 * can do it, but there's probably so many exceptions
152 * it's not worth the risk */
153 return -EINVAL;
154
155 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
156 buf += sizeof(temp) - 1;
157 sdkp->cache_override = 1;
158 } else {
159 sdkp->cache_override = 0;
160 }
161
162 ct = sysfs_match_string(sd_cache_types, buf);
163 if (ct < 0)
164 return -EINVAL;
165
166 rcd = ct & 0x01 ? 1 : 0;
167 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
168
169 if (sdkp->cache_override) {
170 sdkp->WCE = wce;
171 sdkp->RCD = rcd;
172 sd_set_flush_flag(sdkp);
173 return count;
174 }
175
176 if (scsi_mode_sense(sdev: sdp, dbd: 0x08, modepage: 8, subpage: 0, buffer, len: sizeof(buffer), SD_TIMEOUT,
177 retries: sdkp->max_retries, data: &data, NULL))
178 return -EINVAL;
179 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
180 data.block_descriptor_length);
181 buffer_data = buffer + data.header_length +
182 data.block_descriptor_length;
183 buffer_data[2] &= ~0x05;
184 buffer_data[2] |= wce << 2 | rcd;
185 sp = buffer_data[0] & 0x80 ? 1 : 0;
186 buffer_data[0] &= ~0x80;
187
188 /*
189 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
190 * received mode parameter buffer before doing MODE SELECT.
191 */
192 data.device_specific = 0;
193
194 ret = scsi_mode_select(sdev: sdp, pf: 1, sp, buffer: buffer_data, len, SD_TIMEOUT,
195 retries: sdkp->max_retries, data: &data, &sshdr);
196 if (ret) {
197 if (ret > 0 && scsi_sense_valid(sshdr: &sshdr))
198 sd_print_sense_hdr(sdkp, sshdr: &sshdr);
199 return -EINVAL;
200 }
201 sd_revalidate_disk(sdkp->disk);
202 return count;
203}
204
205static ssize_t
206manage_start_stop_show(struct device *dev,
207 struct device_attribute *attr, char *buf)
208{
209 struct scsi_disk *sdkp = to_scsi_disk(dev);
210 struct scsi_device *sdp = sdkp->device;
211
212 return sysfs_emit(buf, fmt: "%u\n",
213 sdp->manage_system_start_stop &&
214 sdp->manage_runtime_start_stop &&
215 sdp->manage_shutdown);
216}
217static DEVICE_ATTR_RO(manage_start_stop);
218
219static ssize_t
220manage_system_start_stop_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
222{
223 struct scsi_disk *sdkp = to_scsi_disk(dev);
224 struct scsi_device *sdp = sdkp->device;
225
226 return sysfs_emit(buf, fmt: "%u\n", sdp->manage_system_start_stop);
227}
228
229static ssize_t
230manage_system_start_stop_store(struct device *dev,
231 struct device_attribute *attr,
232 const char *buf, size_t count)
233{
234 struct scsi_disk *sdkp = to_scsi_disk(dev);
235 struct scsi_device *sdp = sdkp->device;
236 bool v;
237
238 if (!capable(CAP_SYS_ADMIN))
239 return -EACCES;
240
241 if (kstrtobool(s: buf, res: &v))
242 return -EINVAL;
243
244 sdp->manage_system_start_stop = v;
245
246 return count;
247}
248static DEVICE_ATTR_RW(manage_system_start_stop);
249
250static ssize_t
251manage_runtime_start_stop_show(struct device *dev,
252 struct device_attribute *attr, char *buf)
253{
254 struct scsi_disk *sdkp = to_scsi_disk(dev);
255 struct scsi_device *sdp = sdkp->device;
256
257 return sysfs_emit(buf, fmt: "%u\n", sdp->manage_runtime_start_stop);
258}
259
260static ssize_t
261manage_runtime_start_stop_store(struct device *dev,
262 struct device_attribute *attr,
263 const char *buf, size_t count)
264{
265 struct scsi_disk *sdkp = to_scsi_disk(dev);
266 struct scsi_device *sdp = sdkp->device;
267 bool v;
268
269 if (!capable(CAP_SYS_ADMIN))
270 return -EACCES;
271
272 if (kstrtobool(s: buf, res: &v))
273 return -EINVAL;
274
275 sdp->manage_runtime_start_stop = v;
276
277 return count;
278}
279static DEVICE_ATTR_RW(manage_runtime_start_stop);
280
281static ssize_t manage_shutdown_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283{
284 struct scsi_disk *sdkp = to_scsi_disk(dev);
285 struct scsi_device *sdp = sdkp->device;
286
287 return sysfs_emit(buf, fmt: "%u\n", sdp->manage_shutdown);
288}
289
290static ssize_t manage_shutdown_store(struct device *dev,
291 struct device_attribute *attr,
292 const char *buf, size_t count)
293{
294 struct scsi_disk *sdkp = to_scsi_disk(dev);
295 struct scsi_device *sdp = sdkp->device;
296 bool v;
297
298 if (!capable(CAP_SYS_ADMIN))
299 return -EACCES;
300
301 if (kstrtobool(s: buf, res: &v))
302 return -EINVAL;
303
304 sdp->manage_shutdown = v;
305
306 return count;
307}
308static DEVICE_ATTR_RW(manage_shutdown);
309
310static ssize_t
311allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
312{
313 struct scsi_disk *sdkp = to_scsi_disk(dev);
314
315 return sprintf(buf, fmt: "%u\n", sdkp->device->allow_restart);
316}
317
318static ssize_t
319allow_restart_store(struct device *dev, struct device_attribute *attr,
320 const char *buf, size_t count)
321{
322 bool v;
323 struct scsi_disk *sdkp = to_scsi_disk(dev);
324 struct scsi_device *sdp = sdkp->device;
325
326 if (!capable(CAP_SYS_ADMIN))
327 return -EACCES;
328
329 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
330 return -EINVAL;
331
332 if (kstrtobool(s: buf, res: &v))
333 return -EINVAL;
334
335 sdp->allow_restart = v;
336
337 return count;
338}
339static DEVICE_ATTR_RW(allow_restart);
340
341static ssize_t
342cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
343{
344 struct scsi_disk *sdkp = to_scsi_disk(dev);
345 int ct = sdkp->RCD + 2*sdkp->WCE;
346
347 return sprintf(buf, fmt: "%s\n", sd_cache_types[ct]);
348}
349static DEVICE_ATTR_RW(cache_type);
350
351static ssize_t
352FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
353{
354 struct scsi_disk *sdkp = to_scsi_disk(dev);
355
356 return sprintf(buf, fmt: "%u\n", sdkp->DPOFUA);
357}
358static DEVICE_ATTR_RO(FUA);
359
360static ssize_t
361protection_type_show(struct device *dev, struct device_attribute *attr,
362 char *buf)
363{
364 struct scsi_disk *sdkp = to_scsi_disk(dev);
365
366 return sprintf(buf, fmt: "%u\n", sdkp->protection_type);
367}
368
369static ssize_t
370protection_type_store(struct device *dev, struct device_attribute *attr,
371 const char *buf, size_t count)
372{
373 struct scsi_disk *sdkp = to_scsi_disk(dev);
374 unsigned int val;
375 int err;
376
377 if (!capable(CAP_SYS_ADMIN))
378 return -EACCES;
379
380 err = kstrtouint(s: buf, base: 10, res: &val);
381
382 if (err)
383 return err;
384
385 if (val <= T10_PI_TYPE3_PROTECTION)
386 sdkp->protection_type = val;
387
388 return count;
389}
390static DEVICE_ATTR_RW(protection_type);
391
392static ssize_t
393protection_mode_show(struct device *dev, struct device_attribute *attr,
394 char *buf)
395{
396 struct scsi_disk *sdkp = to_scsi_disk(dev);
397 struct scsi_device *sdp = sdkp->device;
398 unsigned int dif, dix;
399
400 dif = scsi_host_dif_capable(shost: sdp->host, target_type: sdkp->protection_type);
401 dix = scsi_host_dix_capable(shost: sdp->host, target_type: sdkp->protection_type);
402
403 if (!dix && scsi_host_dix_capable(shost: sdp->host, target_type: T10_PI_TYPE0_PROTECTION)) {
404 dif = 0;
405 dix = 1;
406 }
407
408 if (!dif && !dix)
409 return sprintf(buf, fmt: "none\n");
410
411 return sprintf(buf, fmt: "%s%u\n", dix ? "dix" : "dif", dif);
412}
413static DEVICE_ATTR_RO(protection_mode);
414
415static ssize_t
416app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
417{
418 struct scsi_disk *sdkp = to_scsi_disk(dev);
419
420 return sprintf(buf, fmt: "%u\n", sdkp->ATO);
421}
422static DEVICE_ATTR_RO(app_tag_own);
423
424static ssize_t
425thin_provisioning_show(struct device *dev, struct device_attribute *attr,
426 char *buf)
427{
428 struct scsi_disk *sdkp = to_scsi_disk(dev);
429
430 return sprintf(buf, fmt: "%u\n", sdkp->lbpme);
431}
432static DEVICE_ATTR_RO(thin_provisioning);
433
434/* sysfs_match_string() requires dense arrays */
435static const char *lbp_mode[] = {
436 [SD_LBP_FULL] = "full",
437 [SD_LBP_UNMAP] = "unmap",
438 [SD_LBP_WS16] = "writesame_16",
439 [SD_LBP_WS10] = "writesame_10",
440 [SD_LBP_ZERO] = "writesame_zero",
441 [SD_LBP_DISABLE] = "disabled",
442};
443
444static ssize_t
445provisioning_mode_show(struct device *dev, struct device_attribute *attr,
446 char *buf)
447{
448 struct scsi_disk *sdkp = to_scsi_disk(dev);
449
450 return sprintf(buf, fmt: "%s\n", lbp_mode[sdkp->provisioning_mode]);
451}
452
453static ssize_t
454provisioning_mode_store(struct device *dev, struct device_attribute *attr,
455 const char *buf, size_t count)
456{
457 struct scsi_disk *sdkp = to_scsi_disk(dev);
458 struct scsi_device *sdp = sdkp->device;
459 int mode;
460
461 if (!capable(CAP_SYS_ADMIN))
462 return -EACCES;
463
464 if (sd_is_zoned(sdkp)) {
465 sd_config_discard(sdkp, SD_LBP_DISABLE);
466 return count;
467 }
468
469 if (sdp->type != TYPE_DISK)
470 return -EINVAL;
471
472 mode = sysfs_match_string(lbp_mode, buf);
473 if (mode < 0)
474 return -EINVAL;
475
476 sd_config_discard(sdkp, mode);
477
478 return count;
479}
480static DEVICE_ATTR_RW(provisioning_mode);
481
482/* sysfs_match_string() requires dense arrays */
483static const char *zeroing_mode[] = {
484 [SD_ZERO_WRITE] = "write",
485 [SD_ZERO_WS] = "writesame",
486 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
487 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
488};
489
490static ssize_t
491zeroing_mode_show(struct device *dev, struct device_attribute *attr,
492 char *buf)
493{
494 struct scsi_disk *sdkp = to_scsi_disk(dev);
495
496 return sprintf(buf, fmt: "%s\n", zeroing_mode[sdkp->zeroing_mode]);
497}
498
499static ssize_t
500zeroing_mode_store(struct device *dev, struct device_attribute *attr,
501 const char *buf, size_t count)
502{
503 struct scsi_disk *sdkp = to_scsi_disk(dev);
504 int mode;
505
506 if (!capable(CAP_SYS_ADMIN))
507 return -EACCES;
508
509 mode = sysfs_match_string(zeroing_mode, buf);
510 if (mode < 0)
511 return -EINVAL;
512
513 sdkp->zeroing_mode = mode;
514
515 return count;
516}
517static DEVICE_ATTR_RW(zeroing_mode);
518
519static ssize_t
520max_medium_access_timeouts_show(struct device *dev,
521 struct device_attribute *attr, char *buf)
522{
523 struct scsi_disk *sdkp = to_scsi_disk(dev);
524
525 return sprintf(buf, fmt: "%u\n", sdkp->max_medium_access_timeouts);
526}
527
528static ssize_t
529max_medium_access_timeouts_store(struct device *dev,
530 struct device_attribute *attr, const char *buf,
531 size_t count)
532{
533 struct scsi_disk *sdkp = to_scsi_disk(dev);
534 int err;
535
536 if (!capable(CAP_SYS_ADMIN))
537 return -EACCES;
538
539 err = kstrtouint(s: buf, base: 10, res: &sdkp->max_medium_access_timeouts);
540
541 return err ? err : count;
542}
543static DEVICE_ATTR_RW(max_medium_access_timeouts);
544
545static ssize_t
546max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
547 char *buf)
548{
549 struct scsi_disk *sdkp = to_scsi_disk(dev);
550
551 return sprintf(buf, fmt: "%u\n", sdkp->max_ws_blocks);
552}
553
554static ssize_t
555max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
556 const char *buf, size_t count)
557{
558 struct scsi_disk *sdkp = to_scsi_disk(dev);
559 struct scsi_device *sdp = sdkp->device;
560 unsigned long max;
561 int err;
562
563 if (!capable(CAP_SYS_ADMIN))
564 return -EACCES;
565
566 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
567 return -EINVAL;
568
569 err = kstrtoul(s: buf, base: 10, res: &max);
570
571 if (err)
572 return err;
573
574 if (max == 0)
575 sdp->no_write_same = 1;
576 else if (max <= SD_MAX_WS16_BLOCKS) {
577 sdp->no_write_same = 0;
578 sdkp->max_ws_blocks = max;
579 }
580
581 sd_config_write_same(sdkp);
582
583 return count;
584}
585static DEVICE_ATTR_RW(max_write_same_blocks);
586
587static ssize_t
588zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
589{
590 struct scsi_disk *sdkp = to_scsi_disk(dev);
591
592 if (sdkp->device->type == TYPE_ZBC)
593 return sprintf(buf, fmt: "host-managed\n");
594 if (sdkp->zoned == 1)
595 return sprintf(buf, fmt: "host-aware\n");
596 if (sdkp->zoned == 2)
597 return sprintf(buf, fmt: "drive-managed\n");
598 return sprintf(buf, fmt: "none\n");
599}
600static DEVICE_ATTR_RO(zoned_cap);
601
602static ssize_t
603max_retries_store(struct device *dev, struct device_attribute *attr,
604 const char *buf, size_t count)
605{
606 struct scsi_disk *sdkp = to_scsi_disk(dev);
607 struct scsi_device *sdev = sdkp->device;
608 int retries, err;
609
610 err = kstrtoint(s: buf, base: 10, res: &retries);
611 if (err)
612 return err;
613
614 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
615 sdkp->max_retries = retries;
616 return count;
617 }
618
619 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
620 SD_MAX_RETRIES);
621 return -EINVAL;
622}
623
624static ssize_t
625max_retries_show(struct device *dev, struct device_attribute *attr,
626 char *buf)
627{
628 struct scsi_disk *sdkp = to_scsi_disk(dev);
629
630 return sprintf(buf, fmt: "%d\n", sdkp->max_retries);
631}
632
633static DEVICE_ATTR_RW(max_retries);
634
635static struct attribute *sd_disk_attrs[] = {
636 &dev_attr_cache_type.attr,
637 &dev_attr_FUA.attr,
638 &dev_attr_allow_restart.attr,
639 &dev_attr_manage_start_stop.attr,
640 &dev_attr_manage_system_start_stop.attr,
641 &dev_attr_manage_runtime_start_stop.attr,
642 &dev_attr_manage_shutdown.attr,
643 &dev_attr_protection_type.attr,
644 &dev_attr_protection_mode.attr,
645 &dev_attr_app_tag_own.attr,
646 &dev_attr_thin_provisioning.attr,
647 &dev_attr_provisioning_mode.attr,
648 &dev_attr_zeroing_mode.attr,
649 &dev_attr_max_write_same_blocks.attr,
650 &dev_attr_max_medium_access_timeouts.attr,
651 &dev_attr_zoned_cap.attr,
652 &dev_attr_max_retries.attr,
653 NULL,
654};
655ATTRIBUTE_GROUPS(sd_disk);
656
657static struct class sd_disk_class = {
658 .name = "scsi_disk",
659 .dev_release = scsi_disk_release,
660 .dev_groups = sd_disk_groups,
661};
662
663/*
664 * Don't request a new module, as that could deadlock in multipath
665 * environment.
666 */
667static void sd_default_probe(dev_t devt)
668{
669}
670
671/*
672 * Device no to disk mapping:
673 *
674 * major disc2 disc p1
675 * |............|.............|....|....| <- dev_t
676 * 31 20 19 8 7 4 3 0
677 *
678 * Inside a major, we have 16k disks, however mapped non-
679 * contiguously. The first 16 disks are for major0, the next
680 * ones with major1, ... Disk 256 is for major0 again, disk 272
681 * for major1, ...
682 * As we stay compatible with our numbering scheme, we can reuse
683 * the well-know SCSI majors 8, 65--71, 136--143.
684 */
685static int sd_major(int major_idx)
686{
687 switch (major_idx) {
688 case 0:
689 return SCSI_DISK0_MAJOR;
690 case 1 ... 7:
691 return SCSI_DISK1_MAJOR + major_idx - 1;
692 case 8 ... 15:
693 return SCSI_DISK8_MAJOR + major_idx - 8;
694 default:
695 BUG();
696 return 0; /* shut up gcc */
697 }
698}
699
700#ifdef CONFIG_BLK_SED_OPAL
701static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
702 size_t len, bool send)
703{
704 struct scsi_disk *sdkp = data;
705 struct scsi_device *sdev = sdkp->device;
706 u8 cdb[12] = { 0, };
707 const struct scsi_exec_args exec_args = {
708 .req_flags = BLK_MQ_REQ_PM,
709 };
710 int ret;
711
712 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
713 cdb[1] = secp;
714 put_unaligned_be16(val: spsp, p: &cdb[2]);
715 put_unaligned_be32(val: len, p: &cdb[6]);
716
717 ret = scsi_execute_cmd(sdev, cmd: cdb, opf: send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
718 buffer, bufflen: len, SD_TIMEOUT, retries: sdkp->max_retries,
719 args: &exec_args);
720 return ret <= 0 ? ret : -EIO;
721}
722#endif /* CONFIG_BLK_SED_OPAL */
723
724/*
725 * Look up the DIX operation based on whether the command is read or
726 * write and whether dix and dif are enabled.
727 */
728static unsigned int sd_prot_op(bool write, bool dix, bool dif)
729{
730 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
731 static const unsigned int ops[] = { /* wrt dix dif */
732 SCSI_PROT_NORMAL, /* 0 0 0 */
733 SCSI_PROT_READ_STRIP, /* 0 0 1 */
734 SCSI_PROT_READ_INSERT, /* 0 1 0 */
735 SCSI_PROT_READ_PASS, /* 0 1 1 */
736 SCSI_PROT_NORMAL, /* 1 0 0 */
737 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
738 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
739 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
740 };
741
742 return ops[write << 2 | dix << 1 | dif];
743}
744
745/*
746 * Returns a mask of the protection flags that are valid for a given DIX
747 * operation.
748 */
749static unsigned int sd_prot_flag_mask(unsigned int prot_op)
750{
751 static const unsigned int flag_mask[] = {
752 [SCSI_PROT_NORMAL] = 0,
753
754 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
755 SCSI_PROT_GUARD_CHECK |
756 SCSI_PROT_REF_CHECK |
757 SCSI_PROT_REF_INCREMENT,
758
759 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
760 SCSI_PROT_IP_CHECKSUM,
761
762 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
763 SCSI_PROT_GUARD_CHECK |
764 SCSI_PROT_REF_CHECK |
765 SCSI_PROT_REF_INCREMENT |
766 SCSI_PROT_IP_CHECKSUM,
767
768 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
769 SCSI_PROT_REF_INCREMENT,
770
771 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
772 SCSI_PROT_REF_CHECK |
773 SCSI_PROT_REF_INCREMENT |
774 SCSI_PROT_IP_CHECKSUM,
775
776 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
777 SCSI_PROT_GUARD_CHECK |
778 SCSI_PROT_REF_CHECK |
779 SCSI_PROT_REF_INCREMENT |
780 SCSI_PROT_IP_CHECKSUM,
781 };
782
783 return flag_mask[prot_op];
784}
785
786static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
787 unsigned int dix, unsigned int dif)
788{
789 struct request *rq = scsi_cmd_to_rq(scmd);
790 struct bio *bio = rq->bio;
791 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
792 unsigned int protect = 0;
793
794 if (dix) { /* DIX Type 0, 1, 2, 3 */
795 if (bio_integrity_flagged(bio, flag: BIP_IP_CHECKSUM))
796 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
797
798 if (bio_integrity_flagged(bio, flag: BIP_CTRL_NOCHECK) == false)
799 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
800 }
801
802 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
803 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
804
805 if (bio_integrity_flagged(bio, flag: BIP_CTRL_NOCHECK) == false)
806 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
807 }
808
809 if (dif) { /* DIX/DIF Type 1, 2, 3 */
810 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
811
812 if (bio_integrity_flagged(bio, flag: BIP_DISK_NOCHECK))
813 protect = 3 << 5; /* Disable target PI checking */
814 else
815 protect = 1 << 5; /* Enable target PI checking */
816 }
817
818 scsi_set_prot_op(scmd, op: prot_op);
819 scsi_set_prot_type(scmd, type: dif);
820 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
821
822 return protect;
823}
824
825static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
826{
827 struct request_queue *q = sdkp->disk->queue;
828 unsigned int logical_block_size = sdkp->device->sector_size;
829 unsigned int max_blocks = 0;
830
831 q->limits.discard_alignment =
832 sdkp->unmap_alignment * logical_block_size;
833 q->limits.discard_granularity =
834 max(sdkp->physical_block_size,
835 sdkp->unmap_granularity * logical_block_size);
836 sdkp->provisioning_mode = mode;
837
838 switch (mode) {
839
840 case SD_LBP_FULL:
841 case SD_LBP_DISABLE:
842 blk_queue_max_discard_sectors(q, max_discard_sectors: 0);
843 return;
844
845 case SD_LBP_UNMAP:
846 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
847 (u32)SD_MAX_WS16_BLOCKS);
848 break;
849
850 case SD_LBP_WS16:
851 if (sdkp->device->unmap_limit_for_ws)
852 max_blocks = sdkp->max_unmap_blocks;
853 else
854 max_blocks = sdkp->max_ws_blocks;
855
856 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
857 break;
858
859 case SD_LBP_WS10:
860 if (sdkp->device->unmap_limit_for_ws)
861 max_blocks = sdkp->max_unmap_blocks;
862 else
863 max_blocks = sdkp->max_ws_blocks;
864
865 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
866 break;
867
868 case SD_LBP_ZERO:
869 max_blocks = min_not_zero(sdkp->max_ws_blocks,
870 (u32)SD_MAX_WS10_BLOCKS);
871 break;
872 }
873
874 blk_queue_max_discard_sectors(q, max_discard_sectors: max_blocks * (logical_block_size >> 9));
875}
876
877static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
878{
879 struct page *page;
880
881 page = mempool_alloc(pool: sd_page_pool, GFP_ATOMIC);
882 if (!page)
883 return NULL;
884 clear_highpage(page);
885 bvec_set_page(bv: &rq->special_vec, page, len: data_len, offset: 0);
886 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
887 return bvec_virt(bvec: &rq->special_vec);
888}
889
890static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
891{
892 struct scsi_device *sdp = cmd->device;
893 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
894 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
895 u64 lba = sectors_to_logical(sdev: sdp, sector: blk_rq_pos(rq));
896 u32 nr_blocks = sectors_to_logical(sdev: sdp, sector: blk_rq_sectors(rq));
897 unsigned int data_len = 24;
898 char *buf;
899
900 buf = sd_set_special_bvec(rq, data_len);
901 if (!buf)
902 return BLK_STS_RESOURCE;
903
904 cmd->cmd_len = 10;
905 cmd->cmnd[0] = UNMAP;
906 cmd->cmnd[8] = 24;
907
908 put_unaligned_be16(val: 6 + 16, p: &buf[0]);
909 put_unaligned_be16(val: 16, p: &buf[2]);
910 put_unaligned_be64(val: lba, p: &buf[8]);
911 put_unaligned_be32(val: nr_blocks, p: &buf[16]);
912
913 cmd->allowed = sdkp->max_retries;
914 cmd->transfersize = data_len;
915 rq->timeout = SD_TIMEOUT;
916
917 return scsi_alloc_sgtables(cmd);
918}
919
920static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
921 bool unmap)
922{
923 struct scsi_device *sdp = cmd->device;
924 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
925 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
926 u64 lba = sectors_to_logical(sdev: sdp, sector: blk_rq_pos(rq));
927 u32 nr_blocks = sectors_to_logical(sdev: sdp, sector: blk_rq_sectors(rq));
928 u32 data_len = sdp->sector_size;
929
930 if (!sd_set_special_bvec(rq, data_len))
931 return BLK_STS_RESOURCE;
932
933 cmd->cmd_len = 16;
934 cmd->cmnd[0] = WRITE_SAME_16;
935 if (unmap)
936 cmd->cmnd[1] = 0x8; /* UNMAP */
937 put_unaligned_be64(val: lba, p: &cmd->cmnd[2]);
938 put_unaligned_be32(val: nr_blocks, p: &cmd->cmnd[10]);
939
940 cmd->allowed = sdkp->max_retries;
941 cmd->transfersize = data_len;
942 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
943
944 return scsi_alloc_sgtables(cmd);
945}
946
947static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
948 bool unmap)
949{
950 struct scsi_device *sdp = cmd->device;
951 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
952 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
953 u64 lba = sectors_to_logical(sdev: sdp, sector: blk_rq_pos(rq));
954 u32 nr_blocks = sectors_to_logical(sdev: sdp, sector: blk_rq_sectors(rq));
955 u32 data_len = sdp->sector_size;
956
957 if (!sd_set_special_bvec(rq, data_len))
958 return BLK_STS_RESOURCE;
959
960 cmd->cmd_len = 10;
961 cmd->cmnd[0] = WRITE_SAME;
962 if (unmap)
963 cmd->cmnd[1] = 0x8; /* UNMAP */
964 put_unaligned_be32(val: lba, p: &cmd->cmnd[2]);
965 put_unaligned_be16(val: nr_blocks, p: &cmd->cmnd[7]);
966
967 cmd->allowed = sdkp->max_retries;
968 cmd->transfersize = data_len;
969 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
970
971 return scsi_alloc_sgtables(cmd);
972}
973
974static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
975{
976 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
977 struct scsi_device *sdp = cmd->device;
978 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
979 u64 lba = sectors_to_logical(sdev: sdp, sector: blk_rq_pos(rq));
980 u32 nr_blocks = sectors_to_logical(sdev: sdp, sector: blk_rq_sectors(rq));
981
982 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
983 switch (sdkp->zeroing_mode) {
984 case SD_ZERO_WS16_UNMAP:
985 return sd_setup_write_same16_cmnd(cmd, unmap: true);
986 case SD_ZERO_WS10_UNMAP:
987 return sd_setup_write_same10_cmnd(cmd, unmap: true);
988 }
989 }
990
991 if (sdp->no_write_same) {
992 rq->rq_flags |= RQF_QUIET;
993 return BLK_STS_TARGET;
994 }
995
996 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
997 return sd_setup_write_same16_cmnd(cmd, unmap: false);
998
999 return sd_setup_write_same10_cmnd(cmd, unmap: false);
1000}
1001
1002static void sd_config_write_same(struct scsi_disk *sdkp)
1003{
1004 struct request_queue *q = sdkp->disk->queue;
1005 unsigned int logical_block_size = sdkp->device->sector_size;
1006
1007 if (sdkp->device->no_write_same) {
1008 sdkp->max_ws_blocks = 0;
1009 goto out;
1010 }
1011
1012 /* Some devices can not handle block counts above 0xffff despite
1013 * supporting WRITE SAME(16). Consequently we default to 64k
1014 * blocks per I/O unless the device explicitly advertises a
1015 * bigger limit.
1016 */
1017 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1018 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1019 (u32)SD_MAX_WS16_BLOCKS);
1020 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1021 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1022 (u32)SD_MAX_WS10_BLOCKS);
1023 else {
1024 sdkp->device->no_write_same = 1;
1025 sdkp->max_ws_blocks = 0;
1026 }
1027
1028 if (sdkp->lbprz && sdkp->lbpws)
1029 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1030 else if (sdkp->lbprz && sdkp->lbpws10)
1031 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1032 else if (sdkp->max_ws_blocks)
1033 sdkp->zeroing_mode = SD_ZERO_WS;
1034 else
1035 sdkp->zeroing_mode = SD_ZERO_WRITE;
1036
1037 if (sdkp->max_ws_blocks &&
1038 sdkp->physical_block_size > logical_block_size) {
1039 /*
1040 * Reporting a maximum number of blocks that is not aligned
1041 * on the device physical size would cause a large write same
1042 * request to be split into physically unaligned chunks by
1043 * __blkdev_issue_write_zeroes() even if the caller of this
1044 * functions took care to align the large request. So make sure
1045 * the maximum reported is aligned to the device physical block
1046 * size. This is only an optional optimization for regular
1047 * disks, but this is mandatory to avoid failure of large write
1048 * same requests directed at sequential write required zones of
1049 * host-managed ZBC disks.
1050 */
1051 sdkp->max_ws_blocks =
1052 round_down(sdkp->max_ws_blocks,
1053 bytes_to_logical(sdkp->device,
1054 sdkp->physical_block_size));
1055 }
1056
1057out:
1058 blk_queue_max_write_zeroes_sectors(q, max_write_same_sectors: sdkp->max_ws_blocks *
1059 (logical_block_size >> 9));
1060}
1061
1062static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1063{
1064 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
1065 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
1066
1067 /* flush requests don't perform I/O, zero the S/G table */
1068 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1069
1070 if (cmd->device->use_16_for_sync) {
1071 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1072 cmd->cmd_len = 16;
1073 } else {
1074 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1075 cmd->cmd_len = 10;
1076 }
1077 cmd->transfersize = 0;
1078 cmd->allowed = sdkp->max_retries;
1079
1080 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1081 return BLK_STS_OK;
1082}
1083
1084/**
1085 * sd_group_number() - Compute the GROUP NUMBER field
1086 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1087 * field.
1088 *
1089 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1090 * 0: no relative lifetime.
1091 * 1: shortest relative lifetime.
1092 * 2: second shortest relative lifetime.
1093 * 3 - 0x3d: intermediate relative lifetimes.
1094 * 0x3e: second longest relative lifetime.
1095 * 0x3f: longest relative lifetime.
1096 */
1097static u8 sd_group_number(struct scsi_cmnd *cmd)
1098{
1099 const struct request *rq = scsi_cmd_to_rq(scmd: cmd);
1100 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
1101
1102 if (!sdkp->rscs)
1103 return 0;
1104
1105 return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
1106 0x3fu);
1107}
1108
1109static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1110 sector_t lba, unsigned int nr_blocks,
1111 unsigned char flags, unsigned int dld)
1112{
1113 cmd->cmd_len = SD_EXT_CDB_SIZE;
1114 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1115 cmd->cmnd[6] = sd_group_number(cmd);
1116 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1117 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1118 cmd->cmnd[10] = flags;
1119 cmd->cmnd[11] = dld & 0x07;
1120 put_unaligned_be64(val: lba, p: &cmd->cmnd[12]);
1121 put_unaligned_be32(val: lba, p: &cmd->cmnd[20]); /* Expected Indirect LBA */
1122 put_unaligned_be32(val: nr_blocks, p: &cmd->cmnd[28]);
1123
1124 return BLK_STS_OK;
1125}
1126
1127static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1128 sector_t lba, unsigned int nr_blocks,
1129 unsigned char flags, unsigned int dld)
1130{
1131 cmd->cmd_len = 16;
1132 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1133 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01);
1134 cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1135 cmd->cmnd[15] = 0;
1136 put_unaligned_be64(val: lba, p: &cmd->cmnd[2]);
1137 put_unaligned_be32(val: nr_blocks, p: &cmd->cmnd[10]);
1138
1139 return BLK_STS_OK;
1140}
1141
1142static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1143 sector_t lba, unsigned int nr_blocks,
1144 unsigned char flags)
1145{
1146 cmd->cmd_len = 10;
1147 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1148 cmd->cmnd[1] = flags;
1149 cmd->cmnd[6] = sd_group_number(cmd);
1150 cmd->cmnd[9] = 0;
1151 put_unaligned_be32(val: lba, p: &cmd->cmnd[2]);
1152 put_unaligned_be16(val: nr_blocks, p: &cmd->cmnd[7]);
1153
1154 return BLK_STS_OK;
1155}
1156
1157static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1158 sector_t lba, unsigned int nr_blocks,
1159 unsigned char flags)
1160{
1161 /* Avoid that 0 blocks gets translated into 256 blocks. */
1162 if (WARN_ON_ONCE(nr_blocks == 0))
1163 return BLK_STS_IOERR;
1164
1165 if (unlikely(flags & 0x8)) {
1166 /*
1167 * This happens only if this drive failed 10byte rw
1168 * command with ILLEGAL_REQUEST during operation and
1169 * thus turned off use_10_for_rw.
1170 */
1171 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1172 return BLK_STS_IOERR;
1173 }
1174
1175 cmd->cmd_len = 6;
1176 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1177 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1178 cmd->cmnd[2] = (lba >> 8) & 0xff;
1179 cmd->cmnd[3] = lba & 0xff;
1180 cmd->cmnd[4] = nr_blocks;
1181 cmd->cmnd[5] = 0;
1182
1183 return BLK_STS_OK;
1184}
1185
1186/*
1187 * Check if a command has a duration limit set. If it does, and the target
1188 * device supports CDL and the feature is enabled, return the limit
1189 * descriptor index to use. Return 0 (no limit) otherwise.
1190 */
1191static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1192{
1193 struct scsi_device *sdp = sdkp->device;
1194 int hint;
1195
1196 if (!sdp->cdl_supported || !sdp->cdl_enable)
1197 return 0;
1198
1199 /*
1200 * Use "no limit" if the request ioprio does not specify a duration
1201 * limit hint.
1202 */
1203 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1204 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1205 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1206 return 0;
1207
1208 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1209}
1210
1211static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1212{
1213 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
1214 struct scsi_device *sdp = cmd->device;
1215 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
1216 sector_t lba = sectors_to_logical(sdev: sdp, sector: blk_rq_pos(rq));
1217 sector_t threshold;
1218 unsigned int nr_blocks = sectors_to_logical(sdev: sdp, sector: blk_rq_sectors(rq));
1219 unsigned int mask = logical_to_sectors(sdev: sdp, blocks: 1) - 1;
1220 bool write = rq_data_dir(rq) == WRITE;
1221 unsigned char protect, fua;
1222 unsigned int dld;
1223 blk_status_t ret;
1224 unsigned int dif;
1225 bool dix;
1226
1227 ret = scsi_alloc_sgtables(cmd);
1228 if (ret != BLK_STS_OK)
1229 return ret;
1230
1231 ret = BLK_STS_IOERR;
1232 if (!scsi_device_online(sdev: sdp) || sdp->changed) {
1233 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1234 goto fail;
1235 }
1236
1237 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(disk: rq->q->disk)) {
1238 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1239 goto fail;
1240 }
1241
1242 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1243 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1244 goto fail;
1245 }
1246
1247 /*
1248 * Some SD card readers can't handle accesses which touch the
1249 * last one or two logical blocks. Split accesses as needed.
1250 */
1251 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1252
1253 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1254 if (lba < threshold) {
1255 /* Access up to the threshold but not beyond */
1256 nr_blocks = threshold - lba;
1257 } else {
1258 /* Access only a single logical block */
1259 nr_blocks = 1;
1260 }
1261 }
1262
1263 if (req_op(req: rq) == REQ_OP_ZONE_APPEND) {
1264 ret = sd_zbc_prepare_zone_append(cmd, lba: &lba, nr_blocks);
1265 if (ret)
1266 goto fail;
1267 }
1268
1269 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1270 dix = scsi_prot_sg_count(cmd);
1271 dif = scsi_host_dif_capable(shost: cmd->device->host, target_type: sdkp->protection_type);
1272 dld = sd_cdl_dld(sdkp, scmd: cmd);
1273
1274 if (dif || dix)
1275 protect = sd_setup_protect_cmnd(scmd: cmd, dix, dif);
1276 else
1277 protect = 0;
1278
1279 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1280 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1281 flags: protect | fua, dld);
1282 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1283 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1284 flags: protect | fua, dld);
1285 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1286 sdp->use_10_for_rw || protect || rq->write_hint) {
1287 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1288 flags: protect | fua);
1289 } else {
1290 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1291 flags: protect | fua);
1292 }
1293
1294 if (unlikely(ret != BLK_STS_OK))
1295 goto fail;
1296
1297 /*
1298 * We shouldn't disconnect in the middle of a sector, so with a dumb
1299 * host adapter, it's safe to assume that we can at least transfer
1300 * this many bytes between each connect / disconnect.
1301 */
1302 cmd->transfersize = sdp->sector_size;
1303 cmd->underflow = nr_blocks << 9;
1304 cmd->allowed = sdkp->max_retries;
1305 cmd->sdb.length = nr_blocks * sdp->sector_size;
1306
1307 SCSI_LOG_HLQUEUE(1,
1308 scmd_printk(KERN_INFO, cmd,
1309 "%s: block=%llu, count=%d\n", __func__,
1310 (unsigned long long)blk_rq_pos(rq),
1311 blk_rq_sectors(rq)));
1312 SCSI_LOG_HLQUEUE(2,
1313 scmd_printk(KERN_INFO, cmd,
1314 "%s %d/%u 512 byte blocks.\n",
1315 write ? "writing" : "reading", nr_blocks,
1316 blk_rq_sectors(rq)));
1317
1318 /*
1319 * This indicates that the command is ready from our end to be queued.
1320 */
1321 return BLK_STS_OK;
1322fail:
1323 scsi_free_sgtables(cmd);
1324 return ret;
1325}
1326
1327static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1328{
1329 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
1330
1331 switch (req_op(req: rq)) {
1332 case REQ_OP_DISCARD:
1333 switch (scsi_disk(disk: rq->q->disk)->provisioning_mode) {
1334 case SD_LBP_UNMAP:
1335 return sd_setup_unmap_cmnd(cmd);
1336 case SD_LBP_WS16:
1337 return sd_setup_write_same16_cmnd(cmd, unmap: true);
1338 case SD_LBP_WS10:
1339 return sd_setup_write_same10_cmnd(cmd, unmap: true);
1340 case SD_LBP_ZERO:
1341 return sd_setup_write_same10_cmnd(cmd, unmap: false);
1342 default:
1343 return BLK_STS_TARGET;
1344 }
1345 case REQ_OP_WRITE_ZEROES:
1346 return sd_setup_write_zeroes_cmnd(cmd);
1347 case REQ_OP_FLUSH:
1348 return sd_setup_flush_cmnd(cmd);
1349 case REQ_OP_READ:
1350 case REQ_OP_WRITE:
1351 case REQ_OP_ZONE_APPEND:
1352 return sd_setup_read_write_cmnd(cmd);
1353 case REQ_OP_ZONE_RESET:
1354 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1355 all: false);
1356 case REQ_OP_ZONE_RESET_ALL:
1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1358 all: true);
1359 case REQ_OP_ZONE_OPEN:
1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, all: false);
1361 case REQ_OP_ZONE_CLOSE:
1362 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, all: false);
1363 case REQ_OP_ZONE_FINISH:
1364 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, all: false);
1365 default:
1366 WARN_ON_ONCE(1);
1367 return BLK_STS_NOTSUPP;
1368 }
1369}
1370
1371static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1372{
1373 struct request *rq = scsi_cmd_to_rq(scmd: SCpnt);
1374
1375 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1376 mempool_free(element: rq->special_vec.bv_page, pool: sd_page_pool);
1377}
1378
1379static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1380{
1381 if (sdkp->device->removable || sdkp->write_prot) {
1382 if (disk_check_media_change(disk))
1383 return true;
1384 }
1385
1386 /*
1387 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1388 * nothing to do with partitions, BLKRRPART is used to force a full
1389 * revalidate after things like a format for historical reasons.
1390 */
1391 return test_bit(GD_NEED_PART_SCAN, &disk->state);
1392}
1393
1394/**
1395 * sd_open - open a scsi disk device
1396 * @disk: disk to open
1397 * @mode: open mode
1398 *
1399 * Returns 0 if successful. Returns a negated errno value in case
1400 * of error.
1401 *
1402 * Note: This can be called from a user context (e.g. fsck(1) )
1403 * or from within the kernel (e.g. as a result of a mount(1) ).
1404 * In the latter case @inode and @filp carry an abridged amount
1405 * of information as noted above.
1406 *
1407 * Locking: called with disk->open_mutex held.
1408 **/
1409static int sd_open(struct gendisk *disk, blk_mode_t mode)
1410{
1411 struct scsi_disk *sdkp = scsi_disk(disk);
1412 struct scsi_device *sdev = sdkp->device;
1413 int retval;
1414
1415 if (scsi_device_get(sdev))
1416 return -ENXIO;
1417
1418 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1419
1420 /*
1421 * If the device is in error recovery, wait until it is done.
1422 * If the device is offline, then disallow any access to it.
1423 */
1424 retval = -ENXIO;
1425 if (!scsi_block_when_processing_errors(sdev))
1426 goto error_out;
1427
1428 if (sd_need_revalidate(disk, sdkp))
1429 sd_revalidate_disk(disk);
1430
1431 /*
1432 * If the drive is empty, just let the open fail.
1433 */
1434 retval = -ENOMEDIUM;
1435 if (sdev->removable && !sdkp->media_present &&
1436 !(mode & BLK_OPEN_NDELAY))
1437 goto error_out;
1438
1439 /*
1440 * If the device has the write protect tab set, have the open fail
1441 * if the user expects to be able to write to the thing.
1442 */
1443 retval = -EROFS;
1444 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1445 goto error_out;
1446
1447 /*
1448 * It is possible that the disk changing stuff resulted in
1449 * the device being taken offline. If this is the case,
1450 * report this to the user, and don't pretend that the
1451 * open actually succeeded.
1452 */
1453 retval = -ENXIO;
1454 if (!scsi_device_online(sdev))
1455 goto error_out;
1456
1457 if ((atomic_inc_return(v: &sdkp->openers) == 1) && sdev->removable) {
1458 if (scsi_block_when_processing_errors(sdev))
1459 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1460 }
1461
1462 return 0;
1463
1464error_out:
1465 scsi_device_put(sdev);
1466 return retval;
1467}
1468
1469/**
1470 * sd_release - invoked when the (last) close(2) is called on this
1471 * scsi disk.
1472 * @disk: disk to release
1473 *
1474 * Returns 0.
1475 *
1476 * Note: may block (uninterruptible) if error recovery is underway
1477 * on this disk.
1478 *
1479 * Locking: called with disk->open_mutex held.
1480 **/
1481static void sd_release(struct gendisk *disk)
1482{
1483 struct scsi_disk *sdkp = scsi_disk(disk);
1484 struct scsi_device *sdev = sdkp->device;
1485
1486 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1487
1488 if (atomic_dec_return(v: &sdkp->openers) == 0 && sdev->removable) {
1489 if (scsi_block_when_processing_errors(sdev))
1490 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1491 }
1492
1493 scsi_device_put(sdev);
1494}
1495
1496static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1497{
1498 struct scsi_disk *sdkp = scsi_disk(disk: bdev->bd_disk);
1499 struct scsi_device *sdp = sdkp->device;
1500 struct Scsi_Host *host = sdp->host;
1501 sector_t capacity = logical_to_sectors(sdev: sdp, blocks: sdkp->capacity);
1502 int diskinfo[4];
1503
1504 /* default to most commonly used values */
1505 diskinfo[0] = 0x40; /* 1 << 6 */
1506 diskinfo[1] = 0x20; /* 1 << 5 */
1507 diskinfo[2] = capacity >> 11;
1508
1509 /* override with calculated, extended default, or driver values */
1510 if (host->hostt->bios_param)
1511 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1512 else
1513 scsicam_bios_param(bdev, capacity, ip: diskinfo);
1514
1515 geo->heads = diskinfo[0];
1516 geo->sectors = diskinfo[1];
1517 geo->cylinders = diskinfo[2];
1518 return 0;
1519}
1520
1521/**
1522 * sd_ioctl - process an ioctl
1523 * @bdev: target block device
1524 * @mode: open mode
1525 * @cmd: ioctl command number
1526 * @arg: this is third argument given to ioctl(2) system call.
1527 * Often contains a pointer.
1528 *
1529 * Returns 0 if successful (some ioctls return positive numbers on
1530 * success as well). Returns a negated errno value in case of error.
1531 *
1532 * Note: most ioctls are forward onto the block subsystem or further
1533 * down in the scsi subsystem.
1534 **/
1535static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1536 unsigned int cmd, unsigned long arg)
1537{
1538 struct gendisk *disk = bdev->bd_disk;
1539 struct scsi_disk *sdkp = scsi_disk(disk);
1540 struct scsi_device *sdp = sdkp->device;
1541 void __user *p = (void __user *)arg;
1542 int error;
1543
1544 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1545 "cmd=0x%x\n", disk->disk_name, cmd));
1546
1547 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1548 return -ENOIOCTLCMD;
1549
1550 /*
1551 * If we are in the middle of error recovery, don't let anyone
1552 * else try and use this device. Also, if error recovery fails, it
1553 * may try and take the device offline, in which case all further
1554 * access to the device is prohibited.
1555 */
1556 error = scsi_ioctl_block_when_processing_errors(sdev: sdp, cmd,
1557 ndelay: (mode & BLK_OPEN_NDELAY));
1558 if (error)
1559 return error;
1560
1561 if (is_sed_ioctl(cmd))
1562 return sed_ioctl(dev: sdkp->opal_dev, cmd, ioctl_ptr: p);
1563 return scsi_ioctl(sdev: sdp, open_for_write: mode & BLK_OPEN_WRITE, cmd, arg: p);
1564}
1565
1566static void set_media_not_present(struct scsi_disk *sdkp)
1567{
1568 if (sdkp->media_present)
1569 sdkp->device->changed = 1;
1570
1571 if (sdkp->device->removable) {
1572 sdkp->media_present = 0;
1573 sdkp->capacity = 0;
1574 }
1575}
1576
1577static int media_not_present(struct scsi_disk *sdkp,
1578 struct scsi_sense_hdr *sshdr)
1579{
1580 if (!scsi_sense_valid(sshdr))
1581 return 0;
1582
1583 /* not invoked for commands that could return deferred errors */
1584 switch (sshdr->sense_key) {
1585 case UNIT_ATTENTION:
1586 case NOT_READY:
1587 /* medium not present */
1588 if (sshdr->asc == 0x3A) {
1589 set_media_not_present(sdkp);
1590 return 1;
1591 }
1592 }
1593 return 0;
1594}
1595
1596/**
1597 * sd_check_events - check media events
1598 * @disk: kernel device descriptor
1599 * @clearing: disk events currently being cleared
1600 *
1601 * Returns mask of DISK_EVENT_*.
1602 *
1603 * Note: this function is invoked from the block subsystem.
1604 **/
1605static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1606{
1607 struct scsi_disk *sdkp = disk->private_data;
1608 struct scsi_device *sdp;
1609 int retval;
1610 bool disk_changed;
1611
1612 if (!sdkp)
1613 return 0;
1614
1615 sdp = sdkp->device;
1616 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1617
1618 /*
1619 * If the device is offline, don't send any commands - just pretend as
1620 * if the command failed. If the device ever comes back online, we
1621 * can deal with it then. It is only because of unrecoverable errors
1622 * that we would ever take a device offline in the first place.
1623 */
1624 if (!scsi_device_online(sdev: sdp)) {
1625 set_media_not_present(sdkp);
1626 goto out;
1627 }
1628
1629 /*
1630 * Using TEST_UNIT_READY enables differentiation between drive with
1631 * no cartridge loaded - NOT READY, drive with changed cartridge -
1632 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1633 *
1634 * Drives that auto spin down. eg iomega jaz 1G, will be started
1635 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1636 * sd_revalidate() is called.
1637 */
1638 if (scsi_block_when_processing_errors(sdp)) {
1639 struct scsi_sense_hdr sshdr = { 0, };
1640
1641 retval = scsi_test_unit_ready(sdev: sdp, SD_TIMEOUT, retries: sdkp->max_retries,
1642 sshdr: &sshdr);
1643
1644 /* failed to execute TUR, assume media not present */
1645 if (retval < 0 || host_byte(retval)) {
1646 set_media_not_present(sdkp);
1647 goto out;
1648 }
1649
1650 if (media_not_present(sdkp, sshdr: &sshdr))
1651 goto out;
1652 }
1653
1654 /*
1655 * For removable scsi disk we have to recognise the presence
1656 * of a disk in the drive.
1657 */
1658 if (!sdkp->media_present)
1659 sdp->changed = 1;
1660 sdkp->media_present = 1;
1661out:
1662 /*
1663 * sdp->changed is set under the following conditions:
1664 *
1665 * Medium present state has changed in either direction.
1666 * Device has indicated UNIT_ATTENTION.
1667 */
1668 disk_changed = sdp->changed;
1669 sdp->changed = 0;
1670 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1671}
1672
1673static int sd_sync_cache(struct scsi_disk *sdkp)
1674{
1675 int res;
1676 struct scsi_device *sdp = sdkp->device;
1677 const int timeout = sdp->request_queue->rq_timeout
1678 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1679 /* Leave the rest of the command zero to indicate flush everything. */
1680 const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1681 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1682 struct scsi_sense_hdr sshdr;
1683 struct scsi_failure failure_defs[] = {
1684 {
1685 .allowed = 3,
1686 .result = SCMD_FAILURE_RESULT_ANY,
1687 },
1688 {}
1689 };
1690 struct scsi_failures failures = {
1691 .failure_definitions = failure_defs,
1692 };
1693 const struct scsi_exec_args exec_args = {
1694 .req_flags = BLK_MQ_REQ_PM,
1695 .sshdr = &sshdr,
1696 .failures = &failures,
1697 };
1698
1699 if (!scsi_device_online(sdev: sdp))
1700 return -ENODEV;
1701
1702 res = scsi_execute_cmd(sdev: sdp, cmd, opf: REQ_OP_DRV_IN, NULL, bufflen: 0, timeout,
1703 retries: sdkp->max_retries, args: &exec_args);
1704 if (res) {
1705 sd_print_result(sdkp, msg: "Synchronize Cache(10) failed", result: res);
1706
1707 if (res < 0)
1708 return res;
1709
1710 if (scsi_status_is_check_condition(status: res) &&
1711 scsi_sense_valid(sshdr: &sshdr)) {
1712 sd_print_sense_hdr(sdkp, sshdr: &sshdr);
1713
1714 /* we need to evaluate the error return */
1715 if (sshdr.asc == 0x3a || /* medium not present */
1716 sshdr.asc == 0x20 || /* invalid command */
1717 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */
1718 /* this is no error here */
1719 return 0;
1720 /*
1721 * This drive doesn't support sync and there's not much
1722 * we can do because this is called during shutdown
1723 * or suspend so just return success so those operations
1724 * can proceed.
1725 */
1726 if (sshdr.sense_key == ILLEGAL_REQUEST)
1727 return 0;
1728 }
1729
1730 switch (host_byte(res)) {
1731 /* ignore errors due to racing a disconnection */
1732 case DID_BAD_TARGET:
1733 case DID_NO_CONNECT:
1734 return 0;
1735 /* signal the upper layer it might try again */
1736 case DID_BUS_BUSY:
1737 case DID_IMM_RETRY:
1738 case DID_REQUEUE:
1739 case DID_SOFT_ERROR:
1740 return -EBUSY;
1741 default:
1742 return -EIO;
1743 }
1744 }
1745 return 0;
1746}
1747
1748static void sd_rescan(struct device *dev)
1749{
1750 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1751
1752 sd_revalidate_disk(sdkp->disk);
1753}
1754
1755static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1756 enum blk_unique_id type)
1757{
1758 struct scsi_device *sdev = scsi_disk(disk)->device;
1759 const struct scsi_vpd *vpd;
1760 const unsigned char *d;
1761 int ret = -ENXIO, len;
1762
1763 rcu_read_lock();
1764 vpd = rcu_dereference(sdev->vpd_pg83);
1765 if (!vpd)
1766 goto out_unlock;
1767
1768 ret = -EINVAL;
1769 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1770 /* we only care about designators with LU association */
1771 if (((d[1] >> 4) & 0x3) != 0x00)
1772 continue;
1773 if ((d[1] & 0xf) != type)
1774 continue;
1775
1776 /*
1777 * Only exit early if a 16-byte descriptor was found. Otherwise
1778 * keep looking as one with more entropy might still show up.
1779 */
1780 len = d[3];
1781 if (len != 8 && len != 12 && len != 16)
1782 continue;
1783 ret = len;
1784 memcpy(id, d + 4, len);
1785 if (len == 16)
1786 break;
1787 }
1788out_unlock:
1789 rcu_read_unlock();
1790 return ret;
1791}
1792
1793static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1794{
1795 switch (host_byte(result)) {
1796 case DID_TRANSPORT_MARGINAL:
1797 case DID_TRANSPORT_DISRUPTED:
1798 case DID_BUS_BUSY:
1799 return PR_STS_RETRY_PATH_FAILURE;
1800 case DID_NO_CONNECT:
1801 return PR_STS_PATH_FAILED;
1802 case DID_TRANSPORT_FAILFAST:
1803 return PR_STS_PATH_FAST_FAILED;
1804 }
1805
1806 switch (status_byte(result)) {
1807 case SAM_STAT_RESERVATION_CONFLICT:
1808 return PR_STS_RESERVATION_CONFLICT;
1809 case SAM_STAT_CHECK_CONDITION:
1810 if (!scsi_sense_valid(sshdr))
1811 return PR_STS_IOERR;
1812
1813 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1814 (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1815 return -EINVAL;
1816
1817 fallthrough;
1818 default:
1819 return PR_STS_IOERR;
1820 }
1821}
1822
1823static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1824 unsigned char *data, int data_len)
1825{
1826 struct scsi_disk *sdkp = scsi_disk(disk: bdev->bd_disk);
1827 struct scsi_device *sdev = sdkp->device;
1828 struct scsi_sense_hdr sshdr;
1829 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1830 struct scsi_failure failure_defs[] = {
1831 {
1832 .sense = UNIT_ATTENTION,
1833 .asc = SCMD_FAILURE_ASC_ANY,
1834 .ascq = SCMD_FAILURE_ASCQ_ANY,
1835 .allowed = 5,
1836 .result = SAM_STAT_CHECK_CONDITION,
1837 },
1838 {}
1839 };
1840 struct scsi_failures failures = {
1841 .failure_definitions = failure_defs,
1842 };
1843 const struct scsi_exec_args exec_args = {
1844 .sshdr = &sshdr,
1845 .failures = &failures,
1846 };
1847 int result;
1848
1849 put_unaligned_be16(val: data_len, p: &cmd[7]);
1850
1851 result = scsi_execute_cmd(sdev, cmd, opf: REQ_OP_DRV_IN, buffer: data, bufflen: data_len,
1852 SD_TIMEOUT, retries: sdkp->max_retries, args: &exec_args);
1853 if (scsi_status_is_check_condition(status: result) &&
1854 scsi_sense_valid(sshdr: &sshdr)) {
1855 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1856 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1857 }
1858
1859 if (result <= 0)
1860 return result;
1861
1862 return sd_scsi_to_pr_err(sshdr: &sshdr, result);
1863}
1864
1865static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1866{
1867 int result, i, data_offset, num_copy_keys;
1868 u32 num_keys = keys_info->num_keys;
1869 int data_len = num_keys * 8 + 8;
1870 u8 *data;
1871
1872 data = kzalloc(size: data_len, GFP_KERNEL);
1873 if (!data)
1874 return -ENOMEM;
1875
1876 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1877 if (result)
1878 goto free_data;
1879
1880 keys_info->generation = get_unaligned_be32(p: &data[0]);
1881 keys_info->num_keys = get_unaligned_be32(p: &data[4]) / 8;
1882
1883 data_offset = 8;
1884 num_copy_keys = min(num_keys, keys_info->num_keys);
1885
1886 for (i = 0; i < num_copy_keys; i++) {
1887 keys_info->keys[i] = get_unaligned_be64(p: &data[data_offset]);
1888 data_offset += 8;
1889 }
1890
1891free_data:
1892 kfree(objp: data);
1893 return result;
1894}
1895
1896static int sd_pr_read_reservation(struct block_device *bdev,
1897 struct pr_held_reservation *rsv)
1898{
1899 struct scsi_disk *sdkp = scsi_disk(disk: bdev->bd_disk);
1900 struct scsi_device *sdev = sdkp->device;
1901 u8 data[24] = { };
1902 int result, len;
1903
1904 result = sd_pr_in_command(bdev, READ_RESERVATION, data, data_len: sizeof(data));
1905 if (result)
1906 return result;
1907
1908 len = get_unaligned_be32(p: &data[4]);
1909 if (!len)
1910 return 0;
1911
1912 /* Make sure we have at least the key and type */
1913 if (len < 14) {
1914 sdev_printk(KERN_INFO, sdev,
1915 "READ RESERVATION failed due to short return buffer of %d bytes\n",
1916 len);
1917 return -EINVAL;
1918 }
1919
1920 rsv->generation = get_unaligned_be32(p: &data[0]);
1921 rsv->key = get_unaligned_be64(p: &data[8]);
1922 rsv->type = scsi_pr_type_to_block(type: data[21] & 0x0f);
1923 return 0;
1924}
1925
1926static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1927 u64 sa_key, enum scsi_pr_type type, u8 flags)
1928{
1929 struct scsi_disk *sdkp = scsi_disk(disk: bdev->bd_disk);
1930 struct scsi_device *sdev = sdkp->device;
1931 struct scsi_sense_hdr sshdr;
1932 struct scsi_failure failure_defs[] = {
1933 {
1934 .sense = UNIT_ATTENTION,
1935 .asc = SCMD_FAILURE_ASC_ANY,
1936 .ascq = SCMD_FAILURE_ASCQ_ANY,
1937 .allowed = 5,
1938 .result = SAM_STAT_CHECK_CONDITION,
1939 },
1940 {}
1941 };
1942 struct scsi_failures failures = {
1943 .failure_definitions = failure_defs,
1944 };
1945 const struct scsi_exec_args exec_args = {
1946 .sshdr = &sshdr,
1947 .failures = &failures,
1948 };
1949 int result;
1950 u8 cmd[16] = { 0, };
1951 u8 data[24] = { 0, };
1952
1953 cmd[0] = PERSISTENT_RESERVE_OUT;
1954 cmd[1] = sa;
1955 cmd[2] = type;
1956 put_unaligned_be32(val: sizeof(data), p: &cmd[5]);
1957
1958 put_unaligned_be64(val: key, p: &data[0]);
1959 put_unaligned_be64(val: sa_key, p: &data[8]);
1960 data[20] = flags;
1961
1962 result = scsi_execute_cmd(sdev, cmd, opf: REQ_OP_DRV_OUT, buffer: &data,
1963 bufflen: sizeof(data), SD_TIMEOUT, retries: sdkp->max_retries,
1964 args: &exec_args);
1965
1966 if (scsi_status_is_check_condition(status: result) &&
1967 scsi_sense_valid(sshdr: &sshdr)) {
1968 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1969 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1970 }
1971
1972 if (result <= 0)
1973 return result;
1974
1975 return sd_scsi_to_pr_err(sshdr: &sshdr, result);
1976}
1977
1978static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1979 u32 flags)
1980{
1981 if (flags & ~PR_FL_IGNORE_KEY)
1982 return -EOPNOTSUPP;
1983 return sd_pr_out_command(bdev, sa: (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1984 key: old_key, sa_key: new_key, type: 0,
1985 flags: (1 << 0) /* APTPL */);
1986}
1987
1988static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1989 u32 flags)
1990{
1991 if (flags)
1992 return -EOPNOTSUPP;
1993 return sd_pr_out_command(bdev, sa: 0x01, key, sa_key: 0,
1994 type: block_pr_type_to_scsi(type), flags: 0);
1995}
1996
1997static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1998{
1999 return sd_pr_out_command(bdev, sa: 0x02, key, sa_key: 0,
2000 type: block_pr_type_to_scsi(type), flags: 0);
2001}
2002
2003static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2004 enum pr_type type, bool abort)
2005{
2006 return sd_pr_out_command(bdev, sa: abort ? 0x05 : 0x04, key: old_key, sa_key: new_key,
2007 type: block_pr_type_to_scsi(type), flags: 0);
2008}
2009
2010static int sd_pr_clear(struct block_device *bdev, u64 key)
2011{
2012 return sd_pr_out_command(bdev, sa: 0x03, key, sa_key: 0, type: 0, flags: 0);
2013}
2014
2015static const struct pr_ops sd_pr_ops = {
2016 .pr_register = sd_pr_register,
2017 .pr_reserve = sd_pr_reserve,
2018 .pr_release = sd_pr_release,
2019 .pr_preempt = sd_pr_preempt,
2020 .pr_clear = sd_pr_clear,
2021 .pr_read_keys = sd_pr_read_keys,
2022 .pr_read_reservation = sd_pr_read_reservation,
2023};
2024
2025static void scsi_disk_free_disk(struct gendisk *disk)
2026{
2027 struct scsi_disk *sdkp = scsi_disk(disk);
2028
2029 put_device(dev: &sdkp->disk_dev);
2030}
2031
2032static const struct block_device_operations sd_fops = {
2033 .owner = THIS_MODULE,
2034 .open = sd_open,
2035 .release = sd_release,
2036 .ioctl = sd_ioctl,
2037 .getgeo = sd_getgeo,
2038 .compat_ioctl = blkdev_compat_ptr_ioctl,
2039 .check_events = sd_check_events,
2040 .unlock_native_capacity = sd_unlock_native_capacity,
2041 .report_zones = sd_zbc_report_zones,
2042 .get_unique_id = sd_get_unique_id,
2043 .free_disk = scsi_disk_free_disk,
2044 .pr_ops = &sd_pr_ops,
2045};
2046
2047/**
2048 * sd_eh_reset - reset error handling callback
2049 * @scmd: sd-issued command that has failed
2050 *
2051 * This function is called by the SCSI midlayer before starting
2052 * SCSI EH. When counting medium access failures we have to be
2053 * careful to register it only only once per device and SCSI EH run;
2054 * there might be several timed out commands which will cause the
2055 * 'max_medium_access_timeouts' counter to trigger after the first
2056 * SCSI EH run already and set the device to offline.
2057 * So this function resets the internal counter before starting SCSI EH.
2058 **/
2059static void sd_eh_reset(struct scsi_cmnd *scmd)
2060{
2061 struct scsi_disk *sdkp = scsi_disk(disk: scsi_cmd_to_rq(scmd)->q->disk);
2062
2063 /* New SCSI EH run, reset gate variable */
2064 sdkp->ignore_medium_access_errors = false;
2065}
2066
2067/**
2068 * sd_eh_action - error handling callback
2069 * @scmd: sd-issued command that has failed
2070 * @eh_disp: The recovery disposition suggested by the midlayer
2071 *
2072 * This function is called by the SCSI midlayer upon completion of an
2073 * error test command (currently TEST UNIT READY). The result of sending
2074 * the eh command is passed in eh_disp. We're looking for devices that
2075 * fail medium access commands but are OK with non access commands like
2076 * test unit ready (so wrongly see the device as having a successful
2077 * recovery)
2078 **/
2079static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2080{
2081 struct scsi_disk *sdkp = scsi_disk(disk: scsi_cmd_to_rq(scmd)->q->disk);
2082 struct scsi_device *sdev = scmd->device;
2083
2084 if (!scsi_device_online(sdev) ||
2085 !scsi_medium_access_command(scmd) ||
2086 host_byte(scmd->result) != DID_TIME_OUT ||
2087 eh_disp != SUCCESS)
2088 return eh_disp;
2089
2090 /*
2091 * The device has timed out executing a medium access command.
2092 * However, the TEST UNIT READY command sent during error
2093 * handling completed successfully. Either the device is in the
2094 * process of recovering or has it suffered an internal failure
2095 * that prevents access to the storage medium.
2096 */
2097 if (!sdkp->ignore_medium_access_errors) {
2098 sdkp->medium_access_timed_out++;
2099 sdkp->ignore_medium_access_errors = true;
2100 }
2101
2102 /*
2103 * If the device keeps failing read/write commands but TEST UNIT
2104 * READY always completes successfully we assume that medium
2105 * access is no longer possible and take the device offline.
2106 */
2107 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2108 scmd_printk(KERN_ERR, scmd,
2109 "Medium access timeout failure. Offlining disk!\n");
2110 mutex_lock(&sdev->state_mutex);
2111 scsi_device_set_state(sdev, state: SDEV_OFFLINE);
2112 mutex_unlock(lock: &sdev->state_mutex);
2113
2114 return SUCCESS;
2115 }
2116
2117 return eh_disp;
2118}
2119
2120static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2121{
2122 struct request *req = scsi_cmd_to_rq(scmd);
2123 struct scsi_device *sdev = scmd->device;
2124 unsigned int transferred, good_bytes;
2125 u64 start_lba, end_lba, bad_lba;
2126
2127 /*
2128 * Some commands have a payload smaller than the device logical
2129 * block size (e.g. INQUIRY on a 4K disk).
2130 */
2131 if (scsi_bufflen(cmd: scmd) <= sdev->sector_size)
2132 return 0;
2133
2134 /* Check if we have a 'bad_lba' information */
2135 if (!scsi_get_sense_info_fld(sense_buffer: scmd->sense_buffer,
2136 SCSI_SENSE_BUFFERSIZE,
2137 info_out: &bad_lba))
2138 return 0;
2139
2140 /*
2141 * If the bad lba was reported incorrectly, we have no idea where
2142 * the error is.
2143 */
2144 start_lba = sectors_to_logical(sdev, sector: blk_rq_pos(rq: req));
2145 end_lba = start_lba + bytes_to_logical(sdev, bytes: scsi_bufflen(cmd: scmd));
2146 if (bad_lba < start_lba || bad_lba >= end_lba)
2147 return 0;
2148
2149 /*
2150 * resid is optional but mostly filled in. When it's unused,
2151 * its value is zero, so we assume the whole buffer transferred
2152 */
2153 transferred = scsi_bufflen(cmd: scmd) - scsi_get_resid(cmd: scmd);
2154
2155 /* This computation should always be done in terms of the
2156 * resolution of the device's medium.
2157 */
2158 good_bytes = logical_to_bytes(sdev, blocks: bad_lba - start_lba);
2159
2160 return min(good_bytes, transferred);
2161}
2162
2163/**
2164 * sd_done - bottom half handler: called when the lower level
2165 * driver has completed (successfully or otherwise) a scsi command.
2166 * @SCpnt: mid-level's per command structure.
2167 *
2168 * Note: potentially run from within an ISR. Must not block.
2169 **/
2170static int sd_done(struct scsi_cmnd *SCpnt)
2171{
2172 int result = SCpnt->result;
2173 unsigned int good_bytes = result ? 0 : scsi_bufflen(cmd: SCpnt);
2174 unsigned int sector_size = SCpnt->device->sector_size;
2175 unsigned int resid;
2176 struct scsi_sense_hdr sshdr;
2177 struct request *req = scsi_cmd_to_rq(scmd: SCpnt);
2178 struct scsi_disk *sdkp = scsi_disk(disk: req->q->disk);
2179 int sense_valid = 0;
2180 int sense_deferred = 0;
2181
2182 switch (req_op(req)) {
2183 case REQ_OP_DISCARD:
2184 case REQ_OP_WRITE_ZEROES:
2185 case REQ_OP_ZONE_RESET:
2186 case REQ_OP_ZONE_RESET_ALL:
2187 case REQ_OP_ZONE_OPEN:
2188 case REQ_OP_ZONE_CLOSE:
2189 case REQ_OP_ZONE_FINISH:
2190 if (!result) {
2191 good_bytes = blk_rq_bytes(rq: req);
2192 scsi_set_resid(cmd: SCpnt, resid: 0);
2193 } else {
2194 good_bytes = 0;
2195 scsi_set_resid(cmd: SCpnt, resid: blk_rq_bytes(rq: req));
2196 }
2197 break;
2198 default:
2199 /*
2200 * In case of bogus fw or device, we could end up having
2201 * an unaligned partial completion. Check this here and force
2202 * alignment.
2203 */
2204 resid = scsi_get_resid(cmd: SCpnt);
2205 if (resid & (sector_size - 1)) {
2206 sd_printk(KERN_INFO, sdkp,
2207 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2208 resid, sector_size);
2209 scsi_print_command(SCpnt);
2210 resid = min(scsi_bufflen(SCpnt),
2211 round_up(resid, sector_size));
2212 scsi_set_resid(cmd: SCpnt, resid);
2213 }
2214 }
2215
2216 if (result) {
2217 sense_valid = scsi_command_normalize_sense(cmd: SCpnt, sshdr: &sshdr);
2218 if (sense_valid)
2219 sense_deferred = scsi_sense_is_deferred(sshdr: &sshdr);
2220 }
2221 sdkp->medium_access_timed_out = 0;
2222
2223 if (!scsi_status_is_check_condition(status: result) &&
2224 (!sense_valid || sense_deferred))
2225 goto out;
2226
2227 switch (sshdr.sense_key) {
2228 case HARDWARE_ERROR:
2229 case MEDIUM_ERROR:
2230 good_bytes = sd_completed_bytes(scmd: SCpnt);
2231 break;
2232 case RECOVERED_ERROR:
2233 good_bytes = scsi_bufflen(cmd: SCpnt);
2234 break;
2235 case NO_SENSE:
2236 /* This indicates a false check condition, so ignore it. An
2237 * unknown amount of data was transferred so treat it as an
2238 * error.
2239 */
2240 SCpnt->result = 0;
2241 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2242 break;
2243 case ABORTED_COMMAND:
2244 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2245 good_bytes = sd_completed_bytes(scmd: SCpnt);
2246 break;
2247 case ILLEGAL_REQUEST:
2248 switch (sshdr.asc) {
2249 case 0x10: /* DIX: Host detected corruption */
2250 good_bytes = sd_completed_bytes(scmd: SCpnt);
2251 break;
2252 case 0x20: /* INVALID COMMAND OPCODE */
2253 case 0x24: /* INVALID FIELD IN CDB */
2254 switch (SCpnt->cmnd[0]) {
2255 case UNMAP:
2256 sd_config_discard(sdkp, mode: SD_LBP_DISABLE);
2257 break;
2258 case WRITE_SAME_16:
2259 case WRITE_SAME:
2260 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2261 sd_config_discard(sdkp, mode: SD_LBP_DISABLE);
2262 } else {
2263 sdkp->device->no_write_same = 1;
2264 sd_config_write_same(sdkp);
2265 req->rq_flags |= RQF_QUIET;
2266 }
2267 break;
2268 }
2269 }
2270 break;
2271 default:
2272 break;
2273 }
2274
2275 out:
2276 if (sd_is_zoned(sdkp))
2277 good_bytes = sd_zbc_complete(cmd: SCpnt, good_bytes, sshdr: &sshdr);
2278
2279 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2280 "sd_done: completed %d of %d bytes\n",
2281 good_bytes, scsi_bufflen(SCpnt)));
2282
2283 return good_bytes;
2284}
2285
2286/*
2287 * spinup disk - called only in sd_revalidate_disk()
2288 */
2289static void
2290sd_spinup_disk(struct scsi_disk *sdkp)
2291{
2292 static const u8 cmd[10] = { TEST_UNIT_READY };
2293 unsigned long spintime_expire = 0;
2294 int spintime, sense_valid = 0;
2295 unsigned int the_result;
2296 struct scsi_sense_hdr sshdr;
2297 struct scsi_failure failure_defs[] = {
2298 /* Do not retry Medium Not Present */
2299 {
2300 .sense = UNIT_ATTENTION,
2301 .asc = 0x3A,
2302 .ascq = SCMD_FAILURE_ASCQ_ANY,
2303 .result = SAM_STAT_CHECK_CONDITION,
2304 },
2305 {
2306 .sense = NOT_READY,
2307 .asc = 0x3A,
2308 .ascq = SCMD_FAILURE_ASCQ_ANY,
2309 .result = SAM_STAT_CHECK_CONDITION,
2310 },
2311 /* Retry when scsi_status_is_good would return false 3 times */
2312 {
2313 .result = SCMD_FAILURE_STAT_ANY,
2314 .allowed = 3,
2315 },
2316 {}
2317 };
2318 struct scsi_failures failures = {
2319 .failure_definitions = failure_defs,
2320 };
2321 const struct scsi_exec_args exec_args = {
2322 .sshdr = &sshdr,
2323 .failures = &failures,
2324 };
2325
2326 spintime = 0;
2327
2328 /* Spin up drives, as required. Only do this at boot time */
2329 /* Spinup needs to be done for module loads too. */
2330 do {
2331 bool media_was_present = sdkp->media_present;
2332
2333 scsi_failures_reset_retries(failures: &failures);
2334
2335 the_result = scsi_execute_cmd(sdev: sdkp->device, cmd, opf: REQ_OP_DRV_IN,
2336 NULL, bufflen: 0, SD_TIMEOUT,
2337 retries: sdkp->max_retries, args: &exec_args);
2338
2339
2340 if (the_result > 0) {
2341 /*
2342 * If the drive has indicated to us that it doesn't
2343 * have any media in it, don't bother with any more
2344 * polling.
2345 */
2346 if (media_not_present(sdkp, sshdr: &sshdr)) {
2347 if (media_was_present)
2348 sd_printk(KERN_NOTICE, sdkp,
2349 "Media removed, stopped polling\n");
2350 return;
2351 }
2352 sense_valid = scsi_sense_valid(sshdr: &sshdr);
2353 }
2354
2355 if (!scsi_status_is_check_condition(status: the_result)) {
2356 /* no sense, TUR either succeeded or failed
2357 * with a status error */
2358 if(!spintime && !scsi_status_is_good(status: the_result)) {
2359 sd_print_result(sdkp, msg: "Test Unit Ready failed",
2360 result: the_result);
2361 }
2362 break;
2363 }
2364
2365 /*
2366 * The device does not want the automatic start to be issued.
2367 */
2368 if (sdkp->device->no_start_on_add)
2369 break;
2370
2371 if (sense_valid && sshdr.sense_key == NOT_READY) {
2372 if (sshdr.asc == 4 && sshdr.ascq == 3)
2373 break; /* manual intervention required */
2374 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2375 break; /* standby */
2376 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2377 break; /* unavailable */
2378 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2379 break; /* sanitize in progress */
2380 if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2381 break; /* depopulation in progress */
2382 if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2383 break; /* depopulation restoration in progress */
2384 /*
2385 * Issue command to spin up drive when not ready
2386 */
2387 if (!spintime) {
2388 /* Return immediately and start spin cycle */
2389 const u8 start_cmd[10] = {
2390 [0] = START_STOP,
2391 [1] = 1,
2392 [4] = sdkp->device->start_stop_pwr_cond ?
2393 0x11 : 1,
2394 };
2395
2396 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2397 scsi_execute_cmd(sdev: sdkp->device, cmd: start_cmd,
2398 opf: REQ_OP_DRV_IN, NULL, bufflen: 0,
2399 SD_TIMEOUT, retries: sdkp->max_retries,
2400 args: &exec_args);
2401 spintime_expire = jiffies + 100 * HZ;
2402 spintime = 1;
2403 }
2404 /* Wait 1 second for next try */
2405 msleep(msecs: 1000);
2406 printk(KERN_CONT ".");
2407
2408 /*
2409 * Wait for USB flash devices with slow firmware.
2410 * Yes, this sense key/ASC combination shouldn't
2411 * occur here. It's characteristic of these devices.
2412 */
2413 } else if (sense_valid &&
2414 sshdr.sense_key == UNIT_ATTENTION &&
2415 sshdr.asc == 0x28) {
2416 if (!spintime) {
2417 spintime_expire = jiffies + 5 * HZ;
2418 spintime = 1;
2419 }
2420 /* Wait 1 second for next try */
2421 msleep(msecs: 1000);
2422 } else {
2423 /* we don't understand the sense code, so it's
2424 * probably pointless to loop */
2425 if(!spintime) {
2426 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2427 sd_print_sense_hdr(sdkp, sshdr: &sshdr);
2428 }
2429 break;
2430 }
2431
2432 } while (spintime && time_before_eq(jiffies, spintime_expire));
2433
2434 if (spintime) {
2435 if (scsi_status_is_good(status: the_result))
2436 printk(KERN_CONT "ready\n");
2437 else
2438 printk(KERN_CONT "not responding...\n");
2439 }
2440}
2441
2442/*
2443 * Determine whether disk supports Data Integrity Field.
2444 */
2445static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2446{
2447 struct scsi_device *sdp = sdkp->device;
2448 u8 type;
2449
2450 if (scsi_device_protection(sdev: sdp) == 0 || (buffer[12] & 1) == 0) {
2451 sdkp->protection_type = 0;
2452 return 0;
2453 }
2454
2455 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2456
2457 if (type > T10_PI_TYPE3_PROTECTION) {
2458 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2459 " protection type %u. Disabling disk!\n",
2460 type);
2461 sdkp->protection_type = 0;
2462 return -ENODEV;
2463 }
2464
2465 sdkp->protection_type = type;
2466
2467 return 0;
2468}
2469
2470static void sd_config_protection(struct scsi_disk *sdkp)
2471{
2472 struct scsi_device *sdp = sdkp->device;
2473
2474 sd_dif_config_host(sdkp);
2475
2476 if (!sdkp->protection_type)
2477 return;
2478
2479 if (!scsi_host_dif_capable(shost: sdp->host, target_type: sdkp->protection_type)) {
2480 sd_first_printk(KERN_NOTICE, sdkp,
2481 "Disabling DIF Type %u protection\n",
2482 sdkp->protection_type);
2483 sdkp->protection_type = 0;
2484 }
2485
2486 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2487 sdkp->protection_type);
2488}
2489
2490static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2491 struct scsi_sense_hdr *sshdr, int sense_valid,
2492 int the_result)
2493{
2494 if (sense_valid)
2495 sd_print_sense_hdr(sdkp, sshdr);
2496 else
2497 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2498
2499 /*
2500 * Set dirty bit for removable devices if not ready -
2501 * sometimes drives will not report this properly.
2502 */
2503 if (sdp->removable &&
2504 sense_valid && sshdr->sense_key == NOT_READY)
2505 set_media_not_present(sdkp);
2506
2507 /*
2508 * We used to set media_present to 0 here to indicate no media
2509 * in the drive, but some drives fail read capacity even with
2510 * media present, so we can't do that.
2511 */
2512 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2513}
2514
2515#define RC16_LEN 32
2516#if RC16_LEN > SD_BUF_SIZE
2517#error RC16_LEN must not be more than SD_BUF_SIZE
2518#endif
2519
2520#define READ_CAPACITY_RETRIES_ON_RESET 10
2521
2522static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2523 unsigned char *buffer)
2524{
2525 unsigned char cmd[16];
2526 struct scsi_sense_hdr sshdr;
2527 const struct scsi_exec_args exec_args = {
2528 .sshdr = &sshdr,
2529 };
2530 int sense_valid = 0;
2531 int the_result;
2532 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2533 unsigned int alignment;
2534 unsigned long long lba;
2535 unsigned sector_size;
2536
2537 if (sdp->no_read_capacity_16)
2538 return -EINVAL;
2539
2540 do {
2541 memset(cmd, 0, 16);
2542 cmd[0] = SERVICE_ACTION_IN_16;
2543 cmd[1] = SAI_READ_CAPACITY_16;
2544 cmd[13] = RC16_LEN;
2545 memset(buffer, 0, RC16_LEN);
2546
2547 the_result = scsi_execute_cmd(sdev: sdp, cmd, opf: REQ_OP_DRV_IN,
2548 buffer, RC16_LEN, SD_TIMEOUT,
2549 retries: sdkp->max_retries, args: &exec_args);
2550 if (the_result > 0) {
2551 if (media_not_present(sdkp, sshdr: &sshdr))
2552 return -ENODEV;
2553
2554 sense_valid = scsi_sense_valid(sshdr: &sshdr);
2555 if (sense_valid &&
2556 sshdr.sense_key == ILLEGAL_REQUEST &&
2557 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2558 sshdr.ascq == 0x00)
2559 /* Invalid Command Operation Code or
2560 * Invalid Field in CDB, just retry
2561 * silently with RC10 */
2562 return -EINVAL;
2563 if (sense_valid &&
2564 sshdr.sense_key == UNIT_ATTENTION &&
2565 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2566 /* Device reset might occur several times,
2567 * give it one more chance */
2568 if (--reset_retries > 0)
2569 continue;
2570 }
2571 retries--;
2572
2573 } while (the_result && retries);
2574
2575 if (the_result) {
2576 sd_print_result(sdkp, msg: "Read Capacity(16) failed", result: the_result);
2577 read_capacity_error(sdkp, sdp, sshdr: &sshdr, sense_valid, the_result);
2578 return -EINVAL;
2579 }
2580
2581 sector_size = get_unaligned_be32(p: &buffer[8]);
2582 lba = get_unaligned_be64(p: &buffer[0]);
2583
2584 if (sd_read_protection_type(sdkp, buffer) < 0) {
2585 sdkp->capacity = 0;
2586 return -ENODEV;
2587 }
2588
2589 /* Logical blocks per physical block exponent */
2590 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2591
2592 /* RC basis */
2593 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2594
2595 /* Lowest aligned logical block */
2596 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2597 blk_queue_alignment_offset(q: sdp->request_queue, alignment);
2598 if (alignment && sdkp->first_scan)
2599 sd_printk(KERN_NOTICE, sdkp,
2600 "physical block alignment offset: %u\n", alignment);
2601
2602 if (buffer[14] & 0x80) { /* LBPME */
2603 sdkp->lbpme = 1;
2604
2605 if (buffer[14] & 0x40) /* LBPRZ */
2606 sdkp->lbprz = 1;
2607
2608 sd_config_discard(sdkp, mode: SD_LBP_WS16);
2609 }
2610
2611 sdkp->capacity = lba + 1;
2612 return sector_size;
2613}
2614
2615static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2616 unsigned char *buffer)
2617{
2618 static const u8 cmd[10] = { READ_CAPACITY };
2619 struct scsi_sense_hdr sshdr;
2620 struct scsi_failure failure_defs[] = {
2621 /* Do not retry Medium Not Present */
2622 {
2623 .sense = UNIT_ATTENTION,
2624 .asc = 0x3A,
2625 .result = SAM_STAT_CHECK_CONDITION,
2626 },
2627 {
2628 .sense = NOT_READY,
2629 .asc = 0x3A,
2630 .result = SAM_STAT_CHECK_CONDITION,
2631 },
2632 /* Device reset might occur several times so retry a lot */
2633 {
2634 .sense = UNIT_ATTENTION,
2635 .asc = 0x29,
2636 .allowed = READ_CAPACITY_RETRIES_ON_RESET,
2637 .result = SAM_STAT_CHECK_CONDITION,
2638 },
2639 /* Any other error not listed above retry 3 times */
2640 {
2641 .result = SCMD_FAILURE_RESULT_ANY,
2642 .allowed = 3,
2643 },
2644 {}
2645 };
2646 struct scsi_failures failures = {
2647 .failure_definitions = failure_defs,
2648 };
2649 const struct scsi_exec_args exec_args = {
2650 .sshdr = &sshdr,
2651 .failures = &failures,
2652 };
2653 int sense_valid = 0;
2654 int the_result;
2655 sector_t lba;
2656 unsigned sector_size;
2657
2658 memset(buffer, 0, 8);
2659
2660 the_result = scsi_execute_cmd(sdev: sdp, cmd, opf: REQ_OP_DRV_IN, buffer,
2661 bufflen: 8, SD_TIMEOUT, retries: sdkp->max_retries,
2662 args: &exec_args);
2663
2664 if (the_result > 0) {
2665 sense_valid = scsi_sense_valid(sshdr: &sshdr);
2666
2667 if (media_not_present(sdkp, sshdr: &sshdr))
2668 return -ENODEV;
2669 }
2670
2671 if (the_result) {
2672 sd_print_result(sdkp, msg: "Read Capacity(10) failed", result: the_result);
2673 read_capacity_error(sdkp, sdp, sshdr: &sshdr, sense_valid, the_result);
2674 return -EINVAL;
2675 }
2676
2677 sector_size = get_unaligned_be32(p: &buffer[4]);
2678 lba = get_unaligned_be32(p: &buffer[0]);
2679
2680 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2681 /* Some buggy (usb cardreader) devices return an lba of
2682 0xffffffff when the want to report a size of 0 (with
2683 which they really mean no media is present) */
2684 sdkp->capacity = 0;
2685 sdkp->physical_block_size = sector_size;
2686 return sector_size;
2687 }
2688
2689 sdkp->capacity = lba + 1;
2690 sdkp->physical_block_size = sector_size;
2691 return sector_size;
2692}
2693
2694static int sd_try_rc16_first(struct scsi_device *sdp)
2695{
2696 if (sdp->host->max_cmd_len < 16)
2697 return 0;
2698 if (sdp->try_rc_10_first)
2699 return 0;
2700 if (sdp->scsi_level > SCSI_SPC_2)
2701 return 1;
2702 if (scsi_device_protection(sdev: sdp))
2703 return 1;
2704 return 0;
2705}
2706
2707/*
2708 * read disk capacity
2709 */
2710static void
2711sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2712{
2713 int sector_size;
2714 struct scsi_device *sdp = sdkp->device;
2715
2716 if (sd_try_rc16_first(sdp)) {
2717 sector_size = read_capacity_16(sdkp, sdp, buffer);
2718 if (sector_size == -EOVERFLOW)
2719 goto got_data;
2720 if (sector_size == -ENODEV)
2721 return;
2722 if (sector_size < 0)
2723 sector_size = read_capacity_10(sdkp, sdp, buffer);
2724 if (sector_size < 0)
2725 return;
2726 } else {
2727 sector_size = read_capacity_10(sdkp, sdp, buffer);
2728 if (sector_size == -EOVERFLOW)
2729 goto got_data;
2730 if (sector_size < 0)
2731 return;
2732 if ((sizeof(sdkp->capacity) > 4) &&
2733 (sdkp->capacity > 0xffffffffULL)) {
2734 int old_sector_size = sector_size;
2735 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2736 "Trying to use READ CAPACITY(16).\n");
2737 sector_size = read_capacity_16(sdkp, sdp, buffer);
2738 if (sector_size < 0) {
2739 sd_printk(KERN_NOTICE, sdkp,
2740 "Using 0xffffffff as device size\n");
2741 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2742 sector_size = old_sector_size;
2743 goto got_data;
2744 }
2745 /* Remember that READ CAPACITY(16) succeeded */
2746 sdp->try_rc_10_first = 0;
2747 }
2748 }
2749
2750 /* Some devices are known to return the total number of blocks,
2751 * not the highest block number. Some devices have versions
2752 * which do this and others which do not. Some devices we might
2753 * suspect of doing this but we don't know for certain.
2754 *
2755 * If we know the reported capacity is wrong, decrement it. If
2756 * we can only guess, then assume the number of blocks is even
2757 * (usually true but not always) and err on the side of lowering
2758 * the capacity.
2759 */
2760 if (sdp->fix_capacity ||
2761 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2762 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2763 "from its reported value: %llu\n",
2764 (unsigned long long) sdkp->capacity);
2765 --sdkp->capacity;
2766 }
2767
2768got_data:
2769 if (sector_size == 0) {
2770 sector_size = 512;
2771 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2772 "assuming 512.\n");
2773 }
2774
2775 if (sector_size != 512 &&
2776 sector_size != 1024 &&
2777 sector_size != 2048 &&
2778 sector_size != 4096) {
2779 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2780 sector_size);
2781 /*
2782 * The user might want to re-format the drive with
2783 * a supported sectorsize. Once this happens, it
2784 * would be relatively trivial to set the thing up.
2785 * For this reason, we leave the thing in the table.
2786 */
2787 sdkp->capacity = 0;
2788 /*
2789 * set a bogus sector size so the normal read/write
2790 * logic in the block layer will eventually refuse any
2791 * request on this device without tripping over power
2792 * of two sector size assumptions
2793 */
2794 sector_size = 512;
2795 }
2796 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2797 blk_queue_physical_block_size(sdp->request_queue,
2798 sdkp->physical_block_size);
2799 sdkp->device->sector_size = sector_size;
2800
2801 if (sdkp->capacity > 0xffffffff)
2802 sdp->use_16_for_rw = 1;
2803
2804}
2805
2806/*
2807 * Print disk capacity
2808 */
2809static void
2810sd_print_capacity(struct scsi_disk *sdkp,
2811 sector_t old_capacity)
2812{
2813 int sector_size = sdkp->device->sector_size;
2814 char cap_str_2[10], cap_str_10[10];
2815
2816 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2817 return;
2818
2819 string_get_size(size: sdkp->capacity, blk_size: sector_size,
2820 units: STRING_UNITS_2, buf: cap_str_2, len: sizeof(cap_str_2));
2821 string_get_size(size: sdkp->capacity, blk_size: sector_size,
2822 units: STRING_UNITS_10, buf: cap_str_10, len: sizeof(cap_str_10));
2823
2824 sd_printk(KERN_NOTICE, sdkp,
2825 "%llu %d-byte logical blocks: (%s/%s)\n",
2826 (unsigned long long)sdkp->capacity,
2827 sector_size, cap_str_10, cap_str_2);
2828
2829 if (sdkp->physical_block_size != sector_size)
2830 sd_printk(KERN_NOTICE, sdkp,
2831 "%u-byte physical blocks\n",
2832 sdkp->physical_block_size);
2833}
2834
2835/* called with buffer of length 512 */
2836static inline int
2837sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2838 unsigned char *buffer, int len, struct scsi_mode_data *data,
2839 struct scsi_sense_hdr *sshdr)
2840{
2841 /*
2842 * If we must use MODE SENSE(10), make sure that the buffer length
2843 * is at least 8 bytes so that the mode sense header fits.
2844 */
2845 if (sdkp->device->use_10_for_ms && len < 8)
2846 len = 8;
2847
2848 return scsi_mode_sense(sdev: sdkp->device, dbd, modepage, subpage: 0, buffer, len,
2849 SD_TIMEOUT, retries: sdkp->max_retries, data, sshdr);
2850}
2851
2852/*
2853 * read write protect setting, if possible - called only in sd_revalidate_disk()
2854 * called with buffer of length SD_BUF_SIZE
2855 */
2856static void
2857sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2858{
2859 int res;
2860 struct scsi_device *sdp = sdkp->device;
2861 struct scsi_mode_data data;
2862 int old_wp = sdkp->write_prot;
2863
2864 set_disk_ro(disk: sdkp->disk, read_only: 0);
2865 if (sdp->skip_ms_page_3f) {
2866 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2867 return;
2868 }
2869
2870 if (sdp->use_192_bytes_for_3f) {
2871 res = sd_do_mode_sense(sdkp, dbd: 0, modepage: 0x3F, buffer, len: 192, data: &data, NULL);
2872 } else {
2873 /*
2874 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2875 * We have to start carefully: some devices hang if we ask
2876 * for more than is available.
2877 */
2878 res = sd_do_mode_sense(sdkp, dbd: 0, modepage: 0x3F, buffer, len: 4, data: &data, NULL);
2879
2880 /*
2881 * Second attempt: ask for page 0 When only page 0 is
2882 * implemented, a request for page 3F may return Sense Key
2883 * 5: Illegal Request, Sense Code 24: Invalid field in
2884 * CDB.
2885 */
2886 if (res < 0)
2887 res = sd_do_mode_sense(sdkp, dbd: 0, modepage: 0, buffer, len: 4, data: &data, NULL);
2888
2889 /*
2890 * Third attempt: ask 255 bytes, as we did earlier.
2891 */
2892 if (res < 0)
2893 res = sd_do_mode_sense(sdkp, dbd: 0, modepage: 0x3F, buffer, len: 255,
2894 data: &data, NULL);
2895 }
2896
2897 if (res < 0) {
2898 sd_first_printk(KERN_WARNING, sdkp,
2899 "Test WP failed, assume Write Enabled\n");
2900 } else {
2901 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2902 set_disk_ro(disk: sdkp->disk, read_only: sdkp->write_prot);
2903 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2904 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2905 sdkp->write_prot ? "on" : "off");
2906 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2907 }
2908 }
2909}
2910
2911/*
2912 * sd_read_cache_type - called only from sd_revalidate_disk()
2913 * called with buffer of length SD_BUF_SIZE
2914 */
2915static void
2916sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2917{
2918 int len = 0, res;
2919 struct scsi_device *sdp = sdkp->device;
2920
2921 int dbd;
2922 int modepage;
2923 int first_len;
2924 struct scsi_mode_data data;
2925 struct scsi_sense_hdr sshdr;
2926 int old_wce = sdkp->WCE;
2927 int old_rcd = sdkp->RCD;
2928 int old_dpofua = sdkp->DPOFUA;
2929
2930
2931 if (sdkp->cache_override)
2932 return;
2933
2934 first_len = 4;
2935 if (sdp->skip_ms_page_8) {
2936 if (sdp->type == TYPE_RBC)
2937 goto defaults;
2938 else {
2939 if (sdp->skip_ms_page_3f)
2940 goto defaults;
2941 modepage = 0x3F;
2942 if (sdp->use_192_bytes_for_3f)
2943 first_len = 192;
2944 dbd = 0;
2945 }
2946 } else if (sdp->type == TYPE_RBC) {
2947 modepage = 6;
2948 dbd = 8;
2949 } else {
2950 modepage = 8;
2951 dbd = 0;
2952 }
2953
2954 /* cautiously ask */
2955 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len: first_len,
2956 data: &data, sshdr: &sshdr);
2957
2958 if (res < 0)
2959 goto bad_sense;
2960
2961 if (!data.header_length) {
2962 modepage = 6;
2963 first_len = 0;
2964 sd_first_printk(KERN_ERR, sdkp,
2965 "Missing header in MODE_SENSE response\n");
2966 }
2967
2968 /* that went OK, now ask for the proper length */
2969 len = data.length;
2970
2971 /*
2972 * We're only interested in the first three bytes, actually.
2973 * But the data cache page is defined for the first 20.
2974 */
2975 if (len < 3)
2976 goto bad_sense;
2977 else if (len > SD_BUF_SIZE) {
2978 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2979 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2980 len = SD_BUF_SIZE;
2981 }
2982 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2983 len = 192;
2984
2985 /* Get the data */
2986 if (len > first_len)
2987 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2988 data: &data, sshdr: &sshdr);
2989
2990 if (!res) {
2991 int offset = data.header_length + data.block_descriptor_length;
2992
2993 while (offset < len) {
2994 u8 page_code = buffer[offset] & 0x3F;
2995 u8 spf = buffer[offset] & 0x40;
2996
2997 if (page_code == 8 || page_code == 6) {
2998 /* We're interested only in the first 3 bytes.
2999 */
3000 if (len - offset <= 2) {
3001 sd_first_printk(KERN_ERR, sdkp,
3002 "Incomplete mode parameter "
3003 "data\n");
3004 goto defaults;
3005 } else {
3006 modepage = page_code;
3007 goto Page_found;
3008 }
3009 } else {
3010 /* Go to the next page */
3011 if (spf && len - offset > 3)
3012 offset += 4 + (buffer[offset+2] << 8) +
3013 buffer[offset+3];
3014 else if (!spf && len - offset > 1)
3015 offset += 2 + buffer[offset+1];
3016 else {
3017 sd_first_printk(KERN_ERR, sdkp,
3018 "Incomplete mode "
3019 "parameter data\n");
3020 goto defaults;
3021 }
3022 }
3023 }
3024
3025 sd_first_printk(KERN_WARNING, sdkp,
3026 "No Caching mode page found\n");
3027 goto defaults;
3028
3029 Page_found:
3030 if (modepage == 8) {
3031 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3032 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3033 } else {
3034 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3035 sdkp->RCD = 0;
3036 }
3037
3038 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3039 if (sdp->broken_fua) {
3040 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3041 sdkp->DPOFUA = 0;
3042 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3043 !sdkp->device->use_16_for_rw) {
3044 sd_first_printk(KERN_NOTICE, sdkp,
3045 "Uses READ/WRITE(6), disabling FUA\n");
3046 sdkp->DPOFUA = 0;
3047 }
3048
3049 /* No cache flush allowed for write protected devices */
3050 if (sdkp->WCE && sdkp->write_prot)
3051 sdkp->WCE = 0;
3052
3053 if (sdkp->first_scan || old_wce != sdkp->WCE ||
3054 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3055 sd_printk(KERN_NOTICE, sdkp,
3056 "Write cache: %s, read cache: %s, %s\n",
3057 sdkp->WCE ? "enabled" : "disabled",
3058 sdkp->RCD ? "disabled" : "enabled",
3059 sdkp->DPOFUA ? "supports DPO and FUA"
3060 : "doesn't support DPO or FUA");
3061
3062 return;
3063 }
3064
3065bad_sense:
3066 if (res == -EIO && scsi_sense_valid(sshdr: &sshdr) &&
3067 sshdr.sense_key == ILLEGAL_REQUEST &&
3068 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3069 /* Invalid field in CDB */
3070 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3071 else
3072 sd_first_printk(KERN_ERR, sdkp,
3073 "Asking for cache data failed\n");
3074
3075defaults:
3076 if (sdp->wce_default_on) {
3077 sd_first_printk(KERN_NOTICE, sdkp,
3078 "Assuming drive cache: write back\n");
3079 sdkp->WCE = 1;
3080 } else {
3081 sd_first_printk(KERN_WARNING, sdkp,
3082 "Assuming drive cache: write through\n");
3083 sdkp->WCE = 0;
3084 }
3085 sdkp->RCD = 0;
3086 sdkp->DPOFUA = 0;
3087}
3088
3089static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3090{
3091 u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3092 struct {
3093 struct scsi_stream_status_header h;
3094 struct scsi_stream_status s;
3095 } buf;
3096 struct scsi_device *sdev = sdkp->device;
3097 struct scsi_sense_hdr sshdr;
3098 const struct scsi_exec_args exec_args = {
3099 .sshdr = &sshdr,
3100 };
3101 int res;
3102
3103 put_unaligned_be16(val: stream_id, p: &cdb[4]);
3104 put_unaligned_be32(val: sizeof(buf), p: &cdb[10]);
3105
3106 res = scsi_execute_cmd(sdev, cmd: cdb, opf: REQ_OP_DRV_IN, buffer: &buf, bufflen: sizeof(buf),
3107 SD_TIMEOUT, retries: sdkp->max_retries, args: &exec_args);
3108 if (res < 0)
3109 return false;
3110 if (scsi_status_is_check_condition(status: res) && scsi_sense_valid(sshdr: &sshdr))
3111 sd_print_sense_hdr(sdkp, sshdr: &sshdr);
3112 if (res)
3113 return false;
3114 if (get_unaligned_be32(p: &buf.h.len) < sizeof(struct scsi_stream_status))
3115 return false;
3116 return buf.h.stream_status[0].perm;
3117}
3118
3119static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3120{
3121 struct scsi_device *sdp = sdkp->device;
3122 const struct scsi_io_group_descriptor *desc, *start, *end;
3123 struct scsi_sense_hdr sshdr;
3124 struct scsi_mode_data data;
3125 int res;
3126
3127 res = scsi_mode_sense(sdev: sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3128 /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3129 retries: sdkp->max_retries, data: &data, &sshdr);
3130 if (res < 0)
3131 return;
3132 start = (void *)buffer + data.header_length + 16;
3133 end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3134 sizeof(*end));
3135 /*
3136 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3137 * should assign the lowest numbered stream identifiers to permanent
3138 * streams.
3139 */
3140 for (desc = start; desc < end; desc++)
3141 if (!desc->st_enble || !sd_is_perm_stream(sdkp, stream_id: desc - start))
3142 break;
3143 sdkp->permanent_stream_count = desc - start;
3144 if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3145 sd_printk(KERN_INFO, sdkp,
3146 "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3147 sdkp->permanent_stream_count);
3148 else if (sdkp->permanent_stream_count)
3149 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3150 sdkp->permanent_stream_count);
3151}
3152
3153/*
3154 * The ATO bit indicates whether the DIF application tag is available
3155 * for use by the operating system.
3156 */
3157static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3158{
3159 int res, offset;
3160 struct scsi_device *sdp = sdkp->device;
3161 struct scsi_mode_data data;
3162 struct scsi_sense_hdr sshdr;
3163
3164 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3165 return;
3166
3167 if (sdkp->protection_type == 0)
3168 return;
3169
3170 res = scsi_mode_sense(sdev: sdp, dbd: 1, modepage: 0x0a, subpage: 0, buffer, len: 36, SD_TIMEOUT,
3171 retries: sdkp->max_retries, data: &data, &sshdr);
3172
3173 if (res < 0 || !data.header_length ||
3174 data.length < 6) {
3175 sd_first_printk(KERN_WARNING, sdkp,
3176 "getting Control mode page failed, assume no ATO\n");
3177
3178 if (res == -EIO && scsi_sense_valid(sshdr: &sshdr))
3179 sd_print_sense_hdr(sdkp, sshdr: &sshdr);
3180
3181 return;
3182 }
3183
3184 offset = data.header_length + data.block_descriptor_length;
3185
3186 if ((buffer[offset] & 0x3f) != 0x0a) {
3187 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3188 return;
3189 }
3190
3191 if ((buffer[offset + 5] & 0x80) == 0)
3192 return;
3193
3194 sdkp->ATO = 1;
3195
3196 return;
3197}
3198
3199/**
3200 * sd_read_block_limits - Query disk device for preferred I/O sizes.
3201 * @sdkp: disk to query
3202 */
3203static void sd_read_block_limits(struct scsi_disk *sdkp)
3204{
3205 struct scsi_vpd *vpd;
3206
3207 rcu_read_lock();
3208
3209 vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3210 if (!vpd || vpd->len < 16)
3211 goto out;
3212
3213 sdkp->min_xfer_blocks = get_unaligned_be16(p: &vpd->data[6]);
3214 sdkp->max_xfer_blocks = get_unaligned_be32(p: &vpd->data[8]);
3215 sdkp->opt_xfer_blocks = get_unaligned_be32(p: &vpd->data[12]);
3216
3217 if (vpd->len >= 64) {
3218 unsigned int lba_count, desc_count;
3219
3220 sdkp->max_ws_blocks = (u32)get_unaligned_be64(p: &vpd->data[36]);
3221
3222 if (!sdkp->lbpme)
3223 goto out;
3224
3225 lba_count = get_unaligned_be32(p: &vpd->data[20]);
3226 desc_count = get_unaligned_be32(p: &vpd->data[24]);
3227
3228 if (lba_count && desc_count)
3229 sdkp->max_unmap_blocks = lba_count;
3230
3231 sdkp->unmap_granularity = get_unaligned_be32(p: &vpd->data[28]);
3232
3233 if (vpd->data[32] & 0x80)
3234 sdkp->unmap_alignment =
3235 get_unaligned_be32(p: &vpd->data[32]) & ~(1 << 31);
3236
3237 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3238
3239 if (sdkp->max_unmap_blocks)
3240 sd_config_discard(sdkp, mode: SD_LBP_UNMAP);
3241 else
3242 sd_config_discard(sdkp, mode: SD_LBP_WS16);
3243
3244 } else { /* LBP VPD page tells us what to use */
3245 if (sdkp->lbpu && sdkp->max_unmap_blocks)
3246 sd_config_discard(sdkp, mode: SD_LBP_UNMAP);
3247 else if (sdkp->lbpws)
3248 sd_config_discard(sdkp, mode: SD_LBP_WS16);
3249 else if (sdkp->lbpws10)
3250 sd_config_discard(sdkp, mode: SD_LBP_WS10);
3251 else
3252 sd_config_discard(sdkp, mode: SD_LBP_DISABLE);
3253 }
3254 }
3255
3256 out:
3257 rcu_read_unlock();
3258}
3259
3260/* Parse the Block Limits Extension VPD page (0xb7) */
3261static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3262{
3263 struct scsi_vpd *vpd;
3264
3265 rcu_read_lock();
3266 vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3267 if (vpd && vpd->len >= 2)
3268 sdkp->rscs = vpd->data[5] & 1;
3269 rcu_read_unlock();
3270}
3271
3272/**
3273 * sd_read_block_characteristics - Query block dev. characteristics
3274 * @sdkp: disk to query
3275 */
3276static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3277{
3278 struct request_queue *q = sdkp->disk->queue;
3279 struct scsi_vpd *vpd;
3280 u16 rot;
3281
3282 rcu_read_lock();
3283 vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3284
3285 if (!vpd || vpd->len < 8) {
3286 rcu_read_unlock();
3287 return;
3288 }
3289
3290 rot = get_unaligned_be16(p: &vpd->data[4]);
3291 sdkp->zoned = (vpd->data[8] >> 4) & 3;
3292 rcu_read_unlock();
3293
3294 if (rot == 1) {
3295 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3296 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3297 }
3298
3299
3300#ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3301 if (sdkp->device->type == TYPE_ZBC) {
3302 /*
3303 * Host-managed.
3304 */
3305 disk_set_zoned(disk: sdkp->disk);
3306
3307 /*
3308 * Per ZBC and ZAC specifications, writes in sequential write
3309 * required zones of host-managed devices must be aligned to
3310 * the device physical block size.
3311 */
3312 blk_queue_zone_write_granularity(q, size: sdkp->physical_block_size);
3313 } else {
3314 /*
3315 * Host-aware devices are treated as conventional.
3316 */
3317 WARN_ON_ONCE(blk_queue_is_zoned(q));
3318 }
3319#endif /* CONFIG_BLK_DEV_ZONED */
3320
3321 if (!sdkp->first_scan)
3322 return;
3323
3324 if (blk_queue_is_zoned(q))
3325 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3326 else if (sdkp->zoned == 1)
3327 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3328 else if (sdkp->zoned == 2)
3329 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3330}
3331
3332/**
3333 * sd_read_block_provisioning - Query provisioning VPD page
3334 * @sdkp: disk to query
3335 */
3336static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3337{
3338 struct scsi_vpd *vpd;
3339
3340 if (sdkp->lbpme == 0)
3341 return;
3342
3343 rcu_read_lock();
3344 vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3345
3346 if (!vpd || vpd->len < 8) {
3347 rcu_read_unlock();
3348 return;
3349 }
3350
3351 sdkp->lbpvpd = 1;
3352 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */
3353 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3354 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3355 rcu_read_unlock();
3356}
3357
3358static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3359{
3360 struct scsi_device *sdev = sdkp->device;
3361
3362 if (sdev->host->no_write_same) {
3363 sdev->no_write_same = 1;
3364
3365 return;
3366 }
3367
3368 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, sa: 0) < 0) {
3369 struct scsi_vpd *vpd;
3370
3371 sdev->no_report_opcodes = 1;
3372
3373 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3374 * CODES is unsupported and the device has an ATA
3375 * Information VPD page (SAT).
3376 */
3377 rcu_read_lock();
3378 vpd = rcu_dereference(sdev->vpd_pg89);
3379 if (vpd)
3380 sdev->no_write_same = 1;
3381 rcu_read_unlock();
3382 }
3383
3384 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, sa: 0) == 1)
3385 sdkp->ws16 = 1;
3386
3387 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, sa: 0) == 1)
3388 sdkp->ws10 = 1;
3389}
3390
3391static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3392{
3393 struct scsi_device *sdev = sdkp->device;
3394
3395 if (!sdev->security_supported)
3396 return;
3397
3398 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3399 SECURITY_PROTOCOL_IN, sa: 0) == 1 &&
3400 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3401 SECURITY_PROTOCOL_OUT, sa: 0) == 1)
3402 sdkp->security = 1;
3403}
3404
3405static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3406{
3407 return logical_to_sectors(sdev: sdkp->device, blocks: get_unaligned_be64(p: buf));
3408}
3409
3410/**
3411 * sd_read_cpr - Query concurrent positioning ranges
3412 * @sdkp: disk to query
3413 */
3414static void sd_read_cpr(struct scsi_disk *sdkp)
3415{
3416 struct blk_independent_access_ranges *iars = NULL;
3417 unsigned char *buffer = NULL;
3418 unsigned int nr_cpr = 0;
3419 int i, vpd_len, buf_len = SD_BUF_SIZE;
3420 u8 *desc;
3421
3422 /*
3423 * We need to have the capacity set first for the block layer to be
3424 * able to check the ranges.
3425 */
3426 if (sdkp->first_scan)
3427 return;
3428
3429 if (!sdkp->capacity)
3430 goto out;
3431
3432 /*
3433 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3434 * leading to a maximum page size of 64 + 256*32 bytes.
3435 */
3436 buf_len = 64 + 256*32;
3437 buffer = kmalloc(size: buf_len, GFP_KERNEL);
3438 if (!buffer || scsi_get_vpd_page(sdkp->device, page: 0xb9, buf: buffer, buf_len))
3439 goto out;
3440
3441 /* We must have at least a 64B header and one 32B range descriptor */
3442 vpd_len = get_unaligned_be16(p: &buffer[2]) + 4;
3443 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3444 sd_printk(KERN_ERR, sdkp,
3445 "Invalid Concurrent Positioning Ranges VPD page\n");
3446 goto out;
3447 }
3448
3449 nr_cpr = (vpd_len - 64) / 32;
3450 if (nr_cpr == 1) {
3451 nr_cpr = 0;
3452 goto out;
3453 }
3454
3455 iars = disk_alloc_independent_access_ranges(disk: sdkp->disk, nr_ia_ranges: nr_cpr);
3456 if (!iars) {
3457 nr_cpr = 0;
3458 goto out;
3459 }
3460
3461 desc = &buffer[64];
3462 for (i = 0; i < nr_cpr; i++, desc += 32) {
3463 if (desc[0] != i) {
3464 sd_printk(KERN_ERR, sdkp,
3465 "Invalid Concurrent Positioning Range number\n");
3466 nr_cpr = 0;
3467 break;
3468 }
3469
3470 iars->ia_range[i].sector = sd64_to_sectors(sdkp, buf: desc + 8);
3471 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, buf: desc + 16);
3472 }
3473
3474out:
3475 disk_set_independent_access_ranges(disk: sdkp->disk, iars);
3476 if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3477 sd_printk(KERN_NOTICE, sdkp,
3478 "%u concurrent positioning ranges\n", nr_cpr);
3479 sdkp->nr_actuators = nr_cpr;
3480 }
3481
3482 kfree(objp: buffer);
3483}
3484
3485static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3486{
3487 struct scsi_device *sdp = sdkp->device;
3488 unsigned int min_xfer_bytes =
3489 logical_to_bytes(sdev: sdp, blocks: sdkp->min_xfer_blocks);
3490
3491 if (sdkp->min_xfer_blocks == 0)
3492 return false;
3493
3494 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3495 sd_first_printk(KERN_WARNING, sdkp,
3496 "Preferred minimum I/O size %u bytes not a " \
3497 "multiple of physical block size (%u bytes)\n",
3498 min_xfer_bytes, sdkp->physical_block_size);
3499 sdkp->min_xfer_blocks = 0;
3500 return false;
3501 }
3502
3503 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3504 min_xfer_bytes);
3505 return true;
3506}
3507
3508/*
3509 * Determine the device's preferred I/O size for reads and writes
3510 * unless the reported value is unreasonably small, large, not a
3511 * multiple of the physical block size, or simply garbage.
3512 */
3513static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3514 unsigned int dev_max)
3515{
3516 struct scsi_device *sdp = sdkp->device;
3517 unsigned int opt_xfer_bytes =
3518 logical_to_bytes(sdev: sdp, blocks: sdkp->opt_xfer_blocks);
3519 unsigned int min_xfer_bytes =
3520 logical_to_bytes(sdev: sdp, blocks: sdkp->min_xfer_blocks);
3521
3522 if (sdkp->opt_xfer_blocks == 0)
3523 return false;
3524
3525 if (sdkp->opt_xfer_blocks > dev_max) {
3526 sd_first_printk(KERN_WARNING, sdkp,
3527 "Optimal transfer size %u logical blocks " \
3528 "> dev_max (%u logical blocks)\n",
3529 sdkp->opt_xfer_blocks, dev_max);
3530 return false;
3531 }
3532
3533 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3534 sd_first_printk(KERN_WARNING, sdkp,
3535 "Optimal transfer size %u logical blocks " \
3536 "> sd driver limit (%u logical blocks)\n",
3537 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3538 return false;
3539 }
3540
3541 if (opt_xfer_bytes < PAGE_SIZE) {
3542 sd_first_printk(KERN_WARNING, sdkp,
3543 "Optimal transfer size %u bytes < " \
3544 "PAGE_SIZE (%u bytes)\n",
3545 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3546 return false;
3547 }
3548
3549 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3550 sd_first_printk(KERN_WARNING, sdkp,
3551 "Optimal transfer size %u bytes not a " \
3552 "multiple of preferred minimum block " \
3553 "size (%u bytes)\n",
3554 opt_xfer_bytes, min_xfer_bytes);
3555 return false;
3556 }
3557
3558 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3559 sd_first_printk(KERN_WARNING, sdkp,
3560 "Optimal transfer size %u bytes not a " \
3561 "multiple of physical block size (%u bytes)\n",
3562 opt_xfer_bytes, sdkp->physical_block_size);
3563 return false;
3564 }
3565
3566 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3567 opt_xfer_bytes);
3568 return true;
3569}
3570
3571static void sd_read_block_zero(struct scsi_disk *sdkp)
3572{
3573 unsigned int buf_len = sdkp->device->sector_size;
3574 char *buffer, cmd[10] = { };
3575
3576 buffer = kmalloc(size: buf_len, GFP_KERNEL);
3577 if (!buffer)
3578 return;
3579
3580 cmd[0] = READ_10;
3581 put_unaligned_be32(val: 0, p: &cmd[2]); /* Logical block address 0 */
3582 put_unaligned_be16(val: 1, p: &cmd[7]); /* Transfer 1 logical block */
3583
3584 scsi_execute_cmd(sdev: sdkp->device, cmd, opf: REQ_OP_DRV_IN, buffer, bufflen: buf_len,
3585 SD_TIMEOUT, retries: sdkp->max_retries, NULL);
3586 kfree(objp: buffer);
3587}
3588
3589/**
3590 * sd_revalidate_disk - called the first time a new disk is seen,
3591 * performs disk spin up, read_capacity, etc.
3592 * @disk: struct gendisk we care about
3593 **/
3594static int sd_revalidate_disk(struct gendisk *disk)
3595{
3596 struct scsi_disk *sdkp = scsi_disk(disk);
3597 struct scsi_device *sdp = sdkp->device;
3598 struct request_queue *q = sdkp->disk->queue;
3599 sector_t old_capacity = sdkp->capacity;
3600 unsigned char *buffer;
3601 unsigned int dev_max, rw_max;
3602
3603 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3604 "sd_revalidate_disk\n"));
3605
3606 /*
3607 * If the device is offline, don't try and read capacity or any
3608 * of the other niceties.
3609 */
3610 if (!scsi_device_online(sdev: sdp))
3611 goto out;
3612
3613 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3614 if (!buffer) {
3615 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3616 "allocation failure.\n");
3617 goto out;
3618 }
3619
3620 sd_spinup_disk(sdkp);
3621
3622 /*
3623 * Without media there is no reason to ask; moreover, some devices
3624 * react badly if we do.
3625 */
3626 if (sdkp->media_present) {
3627 sd_read_capacity(sdkp, buffer);
3628 /*
3629 * Some USB/UAS devices return generic values for mode pages
3630 * until the media has been accessed. Trigger a READ operation
3631 * to force the device to populate mode pages.
3632 */
3633 if (sdp->read_before_ms)
3634 sd_read_block_zero(sdkp);
3635 /*
3636 * set the default to rotational. All non-rotational devices
3637 * support the block characteristics VPD page, which will
3638 * cause this to be updated correctly and any device which
3639 * doesn't support it should be treated as rotational.
3640 */
3641 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3642 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3643
3644 if (scsi_device_supports_vpd(sdev: sdp)) {
3645 sd_read_block_provisioning(sdkp);
3646 sd_read_block_limits(sdkp);
3647 sd_read_block_limits_ext(sdkp);
3648 sd_read_block_characteristics(sdkp);
3649 sd_zbc_read_zones(sdkp, buf: buffer);
3650 sd_read_cpr(sdkp);
3651 }
3652
3653 sd_print_capacity(sdkp, old_capacity);
3654
3655 sd_read_write_protect_flag(sdkp, buffer);
3656 sd_read_cache_type(sdkp, buffer);
3657 sd_read_io_hints(sdkp, buffer);
3658 sd_read_app_tag_own(sdkp, buffer);
3659 sd_read_write_same(sdkp, buffer);
3660 sd_read_security(sdkp, buffer);
3661 sd_config_protection(sdkp);
3662 }
3663
3664 /*
3665 * We now have all cache related info, determine how we deal
3666 * with flush requests.
3667 */
3668 sd_set_flush_flag(sdkp);
3669
3670 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3671 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3672
3673 /* Some devices report a maximum block count for READ/WRITE requests. */
3674 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3675 q->limits.max_dev_sectors = logical_to_sectors(sdev: sdp, blocks: dev_max);
3676
3677 if (sd_validate_min_xfer_size(sdkp))
3678 blk_queue_io_min(q: sdkp->disk->queue,
3679 min: logical_to_bytes(sdev: sdp, blocks: sdkp->min_xfer_blocks));
3680 else
3681 blk_queue_io_min(q: sdkp->disk->queue, min: 0);
3682
3683 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3684 q->limits.io_opt = logical_to_bytes(sdev: sdp, blocks: sdkp->opt_xfer_blocks);
3685 rw_max = logical_to_sectors(sdev: sdp, blocks: sdkp->opt_xfer_blocks);
3686 } else {
3687 q->limits.io_opt = 0;
3688 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3689 (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3690 }
3691
3692 /*
3693 * Limit default to SCSI host optimal sector limit if set. There may be
3694 * an impact on performance for when the size of a request exceeds this
3695 * host limit.
3696 */
3697 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3698
3699 /* Do not exceed controller limit */
3700 rw_max = min(rw_max, queue_max_hw_sectors(q));
3701
3702 /*
3703 * Only update max_sectors if previously unset or if the current value
3704 * exceeds the capabilities of the hardware.
3705 */
3706 if (sdkp->first_scan ||
3707 q->limits.max_sectors > q->limits.max_dev_sectors ||
3708 q->limits.max_sectors > q->limits.max_hw_sectors)
3709 q->limits.max_sectors = rw_max;
3710
3711 sdkp->first_scan = 0;
3712
3713 set_capacity_and_notify(disk, size: logical_to_sectors(sdev: sdp, blocks: sdkp->capacity));
3714 sd_config_write_same(sdkp);
3715 kfree(objp: buffer);
3716
3717 /*
3718 * For a zoned drive, revalidating the zones can be done only once
3719 * the gendisk capacity is set. So if this fails, set back the gendisk
3720 * capacity to 0.
3721 */
3722 if (sd_zbc_revalidate_zones(sdkp))
3723 set_capacity_and_notify(disk, size: 0);
3724
3725 out:
3726 return 0;
3727}
3728
3729/**
3730 * sd_unlock_native_capacity - unlock native capacity
3731 * @disk: struct gendisk to set capacity for
3732 *
3733 * Block layer calls this function if it detects that partitions
3734 * on @disk reach beyond the end of the device. If the SCSI host
3735 * implements ->unlock_native_capacity() method, it's invoked to
3736 * give it a chance to adjust the device capacity.
3737 *
3738 * CONTEXT:
3739 * Defined by block layer. Might sleep.
3740 */
3741static void sd_unlock_native_capacity(struct gendisk *disk)
3742{
3743 struct scsi_device *sdev = scsi_disk(disk)->device;
3744
3745 if (sdev->host->hostt->unlock_native_capacity)
3746 sdev->host->hostt->unlock_native_capacity(sdev);
3747}
3748
3749/**
3750 * sd_format_disk_name - format disk name
3751 * @prefix: name prefix - ie. "sd" for SCSI disks
3752 * @index: index of the disk to format name for
3753 * @buf: output buffer
3754 * @buflen: length of the output buffer
3755 *
3756 * SCSI disk names starts at sda. The 26th device is sdz and the
3757 * 27th is sdaa. The last one for two lettered suffix is sdzz
3758 * which is followed by sdaaa.
3759 *
3760 * This is basically 26 base counting with one extra 'nil' entry
3761 * at the beginning from the second digit on and can be
3762 * determined using similar method as 26 base conversion with the
3763 * index shifted -1 after each digit is computed.
3764 *
3765 * CONTEXT:
3766 * Don't care.
3767 *
3768 * RETURNS:
3769 * 0 on success, -errno on failure.
3770 */
3771static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3772{
3773 const int base = 'z' - 'a' + 1;
3774 char *begin = buf + strlen(prefix);
3775 char *end = buf + buflen;
3776 char *p;
3777 int unit;
3778
3779 p = end - 1;
3780 *p = '\0';
3781 unit = base;
3782 do {
3783 if (p == begin)
3784 return -EINVAL;
3785 *--p = 'a' + (index % unit);
3786 index = (index / unit) - 1;
3787 } while (index >= 0);
3788
3789 memmove(begin, p, end - p);
3790 memcpy(buf, prefix, strlen(prefix));
3791
3792 return 0;
3793}
3794
3795/**
3796 * sd_probe - called during driver initialization and whenever a
3797 * new scsi device is attached to the system. It is called once
3798 * for each scsi device (not just disks) present.
3799 * @dev: pointer to device object
3800 *
3801 * Returns 0 if successful (or not interested in this scsi device
3802 * (e.g. scanner)); 1 when there is an error.
3803 *
3804 * Note: this function is invoked from the scsi mid-level.
3805 * This function sets up the mapping between a given
3806 * <host,channel,id,lun> (found in sdp) and new device name
3807 * (e.g. /dev/sda). More precisely it is the block device major
3808 * and minor number that is chosen here.
3809 *
3810 * Assume sd_probe is not re-entrant (for time being)
3811 * Also think about sd_probe() and sd_remove() running coincidentally.
3812 **/
3813static int sd_probe(struct device *dev)
3814{
3815 struct scsi_device *sdp = to_scsi_device(dev);
3816 struct scsi_disk *sdkp;
3817 struct gendisk *gd;
3818 int index;
3819 int error;
3820
3821 scsi_autopm_get_device(sdp);
3822 error = -ENODEV;
3823 if (sdp->type != TYPE_DISK &&
3824 sdp->type != TYPE_ZBC &&
3825 sdp->type != TYPE_MOD &&
3826 sdp->type != TYPE_RBC)
3827 goto out;
3828
3829 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3830 sdev_printk(KERN_WARNING, sdp,
3831 "Unsupported ZBC host-managed device.\n");
3832 goto out;
3833 }
3834
3835 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3836 "sd_probe\n"));
3837
3838 error = -ENOMEM;
3839 sdkp = kzalloc(size: sizeof(*sdkp), GFP_KERNEL);
3840 if (!sdkp)
3841 goto out;
3842
3843 gd = blk_mq_alloc_disk_for_queue(q: sdp->request_queue,
3844 lkclass: &sd_bio_compl_lkclass);
3845 if (!gd)
3846 goto out_free;
3847
3848 index = ida_alloc(ida: &sd_index_ida, GFP_KERNEL);
3849 if (index < 0) {
3850 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3851 goto out_put;
3852 }
3853
3854 error = sd_format_disk_name(prefix: "sd", index, buf: gd->disk_name, DISK_NAME_LEN);
3855 if (error) {
3856 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3857 goto out_free_index;
3858 }
3859
3860 sdkp->device = sdp;
3861 sdkp->disk = gd;
3862 sdkp->index = index;
3863 sdkp->max_retries = SD_MAX_RETRIES;
3864 atomic_set(v: &sdkp->openers, i: 0);
3865 atomic_set(v: &sdkp->device->ioerr_cnt, i: 0);
3866
3867 if (!sdp->request_queue->rq_timeout) {
3868 if (sdp->type != TYPE_MOD)
3869 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3870 else
3871 blk_queue_rq_timeout(sdp->request_queue,
3872 SD_MOD_TIMEOUT);
3873 }
3874
3875 device_initialize(dev: &sdkp->disk_dev);
3876 sdkp->disk_dev.parent = get_device(dev);
3877 sdkp->disk_dev.class = &sd_disk_class;
3878 dev_set_name(dev: &sdkp->disk_dev, name: "%s", dev_name(dev));
3879
3880 error = device_add(dev: &sdkp->disk_dev);
3881 if (error) {
3882 put_device(dev: &sdkp->disk_dev);
3883 goto out;
3884 }
3885
3886 dev_set_drvdata(dev, data: sdkp);
3887
3888 gd->major = sd_major(major_idx: (index & 0xf0) >> 4);
3889 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3890 gd->minors = SD_MINORS;
3891
3892 gd->fops = &sd_fops;
3893 gd->private_data = sdkp;
3894
3895 /* defaults, until the device tells us otherwise */
3896 sdp->sector_size = 512;
3897 sdkp->capacity = 0;
3898 sdkp->media_present = 1;
3899 sdkp->write_prot = 0;
3900 sdkp->cache_override = 0;
3901 sdkp->WCE = 0;
3902 sdkp->RCD = 0;
3903 sdkp->ATO = 0;
3904 sdkp->first_scan = 1;
3905 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3906
3907 sd_revalidate_disk(disk: gd);
3908
3909 if (sdp->removable) {
3910 gd->flags |= GENHD_FL_REMOVABLE;
3911 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3912 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3913 }
3914
3915 blk_pm_runtime_init(q: sdp->request_queue, dev);
3916 if (sdp->rpm_autosuspend) {
3917 pm_runtime_set_autosuspend_delay(dev,
3918 delay: sdp->host->rpm_autosuspend_delay);
3919 }
3920
3921 error = device_add_disk(parent: dev, disk: gd, NULL);
3922 if (error) {
3923 device_unregister(dev: &sdkp->disk_dev);
3924 put_disk(disk: gd);
3925 goto out;
3926 }
3927
3928 if (sdkp->security) {
3929 sdkp->opal_dev = init_opal_dev(data: sdkp, send_recv: &sd_sec_submit);
3930 if (sdkp->opal_dev)
3931 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3932 }
3933
3934 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3935 sdp->removable ? "removable " : "");
3936 scsi_autopm_put_device(sdp);
3937
3938 return 0;
3939
3940 out_free_index:
3941 ida_free(&sd_index_ida, id: index);
3942 out_put:
3943 put_disk(disk: gd);
3944 out_free:
3945 kfree(objp: sdkp);
3946 out:
3947 scsi_autopm_put_device(sdp);
3948 return error;
3949}
3950
3951/**
3952 * sd_remove - called whenever a scsi disk (previously recognized by
3953 * sd_probe) is detached from the system. It is called (potentially
3954 * multiple times) during sd module unload.
3955 * @dev: pointer to device object
3956 *
3957 * Note: this function is invoked from the scsi mid-level.
3958 * This function potentially frees up a device name (e.g. /dev/sdc)
3959 * that could be re-used by a subsequent sd_probe().
3960 * This function is not called when the built-in sd driver is "exit-ed".
3961 **/
3962static int sd_remove(struct device *dev)
3963{
3964 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3965
3966 scsi_autopm_get_device(sdkp->device);
3967
3968 device_del(dev: &sdkp->disk_dev);
3969 del_gendisk(gp: sdkp->disk);
3970 if (!sdkp->suspended)
3971 sd_shutdown(dev);
3972
3973 put_disk(disk: sdkp->disk);
3974 return 0;
3975}
3976
3977static void scsi_disk_release(struct device *dev)
3978{
3979 struct scsi_disk *sdkp = to_scsi_disk(dev);
3980
3981 ida_free(&sd_index_ida, id: sdkp->index);
3982 sd_zbc_free_zone_info(sdkp);
3983 put_device(dev: &sdkp->device->sdev_gendev);
3984 free_opal_dev(dev: sdkp->opal_dev);
3985
3986 kfree(objp: sdkp);
3987}
3988
3989static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3990{
3991 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3992 struct scsi_sense_hdr sshdr;
3993 const struct scsi_exec_args exec_args = {
3994 .sshdr = &sshdr,
3995 .req_flags = BLK_MQ_REQ_PM,
3996 };
3997 struct scsi_device *sdp = sdkp->device;
3998 int res;
3999
4000 if (start)
4001 cmd[4] |= 1; /* START */
4002
4003 if (sdp->start_stop_pwr_cond)
4004 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
4005
4006 if (!scsi_device_online(sdev: sdp))
4007 return -ENODEV;
4008
4009 res = scsi_execute_cmd(sdev: sdp, cmd, opf: REQ_OP_DRV_IN, NULL, bufflen: 0, SD_TIMEOUT,
4010 retries: sdkp->max_retries, args: &exec_args);
4011 if (res) {
4012 sd_print_result(sdkp, msg: "Start/Stop Unit failed", result: res);
4013 if (res > 0 && scsi_sense_valid(sshdr: &sshdr)) {
4014 sd_print_sense_hdr(sdkp, sshdr: &sshdr);
4015 /* 0x3a is medium not present */
4016 if (sshdr.asc == 0x3a)
4017 res = 0;
4018 }
4019 }
4020
4021 /* SCSI error codes must not go to the generic layer */
4022 if (res)
4023 return -EIO;
4024
4025 return 0;
4026}
4027
4028/*
4029 * Send a SYNCHRONIZE CACHE instruction down to the device through
4030 * the normal SCSI command structure. Wait for the command to
4031 * complete.
4032 */
4033static void sd_shutdown(struct device *dev)
4034{
4035 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4036
4037 if (!sdkp)
4038 return; /* this can happen */
4039
4040 if (pm_runtime_suspended(dev))
4041 return;
4042
4043 if (sdkp->WCE && sdkp->media_present) {
4044 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4045 sd_sync_cache(sdkp);
4046 }
4047
4048 if ((system_state != SYSTEM_RESTART &&
4049 sdkp->device->manage_system_start_stop) ||
4050 (system_state == SYSTEM_POWER_OFF &&
4051 sdkp->device->manage_shutdown)) {
4052 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4053 sd_start_stop_device(sdkp, start: 0);
4054 }
4055}
4056
4057static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4058{
4059 return (sdev->manage_system_start_stop && !runtime) ||
4060 (sdev->manage_runtime_start_stop && runtime);
4061}
4062
4063static int sd_suspend_common(struct device *dev, bool runtime)
4064{
4065 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4066 int ret = 0;
4067
4068 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
4069 return 0;
4070
4071 if (sdkp->WCE && sdkp->media_present) {
4072 if (!sdkp->device->silence_suspend)
4073 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4074 ret = sd_sync_cache(sdkp);
4075 /* ignore OFFLINE device */
4076 if (ret == -ENODEV)
4077 return 0;
4078
4079 if (ret)
4080 return ret;
4081 }
4082
4083 if (sd_do_start_stop(sdev: sdkp->device, runtime)) {
4084 if (!sdkp->device->silence_suspend)
4085 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4086 /* an error is not worth aborting a system sleep */
4087 ret = sd_start_stop_device(sdkp, start: 0);
4088 if (!runtime)
4089 ret = 0;
4090 }
4091
4092 if (!ret)
4093 sdkp->suspended = true;
4094
4095 return ret;
4096}
4097
4098static int sd_suspend_system(struct device *dev)
4099{
4100 if (pm_runtime_suspended(dev))
4101 return 0;
4102
4103 return sd_suspend_common(dev, runtime: false);
4104}
4105
4106static int sd_suspend_runtime(struct device *dev)
4107{
4108 return sd_suspend_common(dev, runtime: true);
4109}
4110
4111static int sd_resume(struct device *dev)
4112{
4113 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4114
4115 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4116
4117 if (opal_unlock_from_suspend(dev: sdkp->opal_dev)) {
4118 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4119 return -EIO;
4120 }
4121
4122 return 0;
4123}
4124
4125static int sd_resume_common(struct device *dev, bool runtime)
4126{
4127 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4128 int ret;
4129
4130 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
4131 return 0;
4132
4133 if (!sd_do_start_stop(sdev: sdkp->device, runtime)) {
4134 sdkp->suspended = false;
4135 return 0;
4136 }
4137
4138 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4139 ret = sd_start_stop_device(sdkp, start: 1);
4140 if (!ret) {
4141 sd_resume(dev);
4142 sdkp->suspended = false;
4143 }
4144
4145 return ret;
4146}
4147
4148static int sd_resume_system(struct device *dev)
4149{
4150 if (pm_runtime_suspended(dev)) {
4151 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4152 struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4153
4154 if (sdp && sdp->force_runtime_start_on_system_start)
4155 pm_request_resume(dev);
4156
4157 return 0;
4158 }
4159
4160 return sd_resume_common(dev, runtime: false);
4161}
4162
4163static int sd_resume_runtime(struct device *dev)
4164{
4165 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4166 struct scsi_device *sdp;
4167
4168 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
4169 return 0;
4170
4171 sdp = sdkp->device;
4172
4173 if (sdp->ignore_media_change) {
4174 /* clear the device's sense data */
4175 static const u8 cmd[10] = { REQUEST_SENSE };
4176 const struct scsi_exec_args exec_args = {
4177 .req_flags = BLK_MQ_REQ_PM,
4178 };
4179
4180 if (scsi_execute_cmd(sdev: sdp, cmd, opf: REQ_OP_DRV_IN, NULL, bufflen: 0,
4181 timeout: sdp->request_queue->rq_timeout, retries: 1,
4182 args: &exec_args))
4183 sd_printk(KERN_NOTICE, sdkp,
4184 "Failed to clear sense data\n");
4185 }
4186
4187 return sd_resume_common(dev, runtime: true);
4188}
4189
4190static const struct dev_pm_ops sd_pm_ops = {
4191 .suspend = sd_suspend_system,
4192 .resume = sd_resume_system,
4193 .poweroff = sd_suspend_system,
4194 .restore = sd_resume_system,
4195 .runtime_suspend = sd_suspend_runtime,
4196 .runtime_resume = sd_resume_runtime,
4197};
4198
4199static struct scsi_driver sd_template = {
4200 .gendrv = {
4201 .name = "sd",
4202 .owner = THIS_MODULE,
4203 .probe = sd_probe,
4204 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
4205 .remove = sd_remove,
4206 .shutdown = sd_shutdown,
4207 .pm = &sd_pm_ops,
4208 },
4209 .rescan = sd_rescan,
4210 .resume = sd_resume,
4211 .init_command = sd_init_command,
4212 .uninit_command = sd_uninit_command,
4213 .done = sd_done,
4214 .eh_action = sd_eh_action,
4215 .eh_reset = sd_eh_reset,
4216};
4217
4218/**
4219 * init_sd - entry point for this driver (both when built in or when
4220 * a module).
4221 *
4222 * Note: this function registers this driver with the scsi mid-level.
4223 **/
4224static int __init init_sd(void)
4225{
4226 int majors = 0, i, err;
4227
4228 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4229
4230 for (i = 0; i < SD_MAJORS; i++) {
4231 if (__register_blkdev(major: sd_major(major_idx: i), name: "sd", probe: sd_default_probe))
4232 continue;
4233 majors++;
4234 }
4235
4236 if (!majors)
4237 return -ENODEV;
4238
4239 err = class_register(class: &sd_disk_class);
4240 if (err)
4241 goto err_out;
4242
4243 sd_page_pool = mempool_create_page_pool(min_nr: SD_MEMPOOL_SIZE, order: 0);
4244 if (!sd_page_pool) {
4245 printk(KERN_ERR "sd: can't init discard page pool\n");
4246 err = -ENOMEM;
4247 goto err_out_class;
4248 }
4249
4250 err = scsi_register_driver(&sd_template.gendrv);
4251 if (err)
4252 goto err_out_driver;
4253
4254 return 0;
4255
4256err_out_driver:
4257 mempool_destroy(pool: sd_page_pool);
4258err_out_class:
4259 class_unregister(class: &sd_disk_class);
4260err_out:
4261 for (i = 0; i < SD_MAJORS; i++)
4262 unregister_blkdev(major: sd_major(major_idx: i), name: "sd");
4263 return err;
4264}
4265
4266/**
4267 * exit_sd - exit point for this driver (when it is a module).
4268 *
4269 * Note: this function unregisters this driver from the scsi mid-level.
4270 **/
4271static void __exit exit_sd(void)
4272{
4273 int i;
4274
4275 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4276
4277 scsi_unregister_driver(&sd_template.gendrv);
4278 mempool_destroy(pool: sd_page_pool);
4279
4280 class_unregister(class: &sd_disk_class);
4281
4282 for (i = 0; i < SD_MAJORS; i++)
4283 unregister_blkdev(major: sd_major(major_idx: i), name: "sd");
4284}
4285
4286module_init(init_sd);
4287module_exit(exit_sd);
4288
4289void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4290{
4291 scsi_print_sense_hdr(sdkp->device,
4292 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4293}
4294
4295void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4296{
4297 const char *hb_string = scsi_hostbyte_string(result);
4298
4299 if (hb_string)
4300 sd_printk(KERN_INFO, sdkp,
4301 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4302 hb_string ? hb_string : "invalid",
4303 "DRIVER_OK");
4304 else
4305 sd_printk(KERN_INFO, sdkp,
4306 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4307 msg, host_byte(result), "DRIVER_OK");
4308}
4309

source code of linux/drivers/scsi/sd.c