1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015, Sony Mobile Communications AB.
4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5 */
6
7#include <linux/hwspinlock.h>
8#include <linux/io.h>
9#include <linux/module.h>
10#include <linux/of.h>
11#include <linux/of_address.h>
12#include <linux/of_reserved_mem.h>
13#include <linux/platform_device.h>
14#include <linux/sizes.h>
15#include <linux/slab.h>
16#include <linux/soc/qcom/smem.h>
17#include <linux/soc/qcom/socinfo.h>
18
19/*
20 * The Qualcomm shared memory system is a allocate only heap structure that
21 * consists of one of more memory areas that can be accessed by the processors
22 * in the SoC.
23 *
24 * All systems contains a global heap, accessible by all processors in the SoC,
25 * with a table of contents data structure (@smem_header) at the beginning of
26 * the main shared memory block.
27 *
28 * The global header contains meta data for allocations as well as a fixed list
29 * of 512 entries (@smem_global_entry) that can be initialized to reference
30 * parts of the shared memory space.
31 *
32 *
33 * In addition to this global heap a set of "private" heaps can be set up at
34 * boot time with access restrictions so that only certain processor pairs can
35 * access the data.
36 *
37 * These partitions are referenced from an optional partition table
38 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
39 * partition table entries (@smem_ptable_entry) lists the involved processors
40 * (or hosts) and their location in the main shared memory region.
41 *
42 * Each partition starts with a header (@smem_partition_header) that identifies
43 * the partition and holds properties for the two internal memory regions. The
44 * two regions are cached and non-cached memory respectively. Each region
45 * contain a link list of allocation headers (@smem_private_entry) followed by
46 * their data.
47 *
48 * Items in the non-cached region are allocated from the start of the partition
49 * while items in the cached region are allocated from the end. The free area
50 * is hence the region between the cached and non-cached offsets. The header of
51 * cached items comes after the data.
52 *
53 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
54 * for the global heap. A new global partition is created from the global heap
55 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
56 * set by the bootloader.
57 *
58 * To synchronize allocations in the shared memory heaps a remote spinlock must
59 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
60 * platforms.
61 *
62 */
63
64/*
65 * The version member of the smem header contains an array of versions for the
66 * various software components in the SoC. We verify that the boot loader
67 * version is a valid version as a sanity check.
68 */
69#define SMEM_MASTER_SBL_VERSION_INDEX 7
70#define SMEM_GLOBAL_HEAP_VERSION 11
71#define SMEM_GLOBAL_PART_VERSION 12
72
73/*
74 * The first 8 items are only to be allocated by the boot loader while
75 * initializing the heap.
76 */
77#define SMEM_ITEM_LAST_FIXED 8
78
79/* Highest accepted item number, for both global and private heaps */
80#define SMEM_ITEM_COUNT 512
81
82/* Processor/host identifier for the application processor */
83#define SMEM_HOST_APPS 0
84
85/* Processor/host identifier for the global partition */
86#define SMEM_GLOBAL_HOST 0xfffe
87
88/* Max number of processors/hosts in a system */
89#define SMEM_HOST_COUNT 20
90
91/**
92 * struct smem_proc_comm - proc_comm communication struct (legacy)
93 * @command: current command to be executed
94 * @status: status of the currently requested command
95 * @params: parameters to the command
96 */
97struct smem_proc_comm {
98 __le32 command;
99 __le32 status;
100 __le32 params[2];
101};
102
103/**
104 * struct smem_global_entry - entry to reference smem items on the heap
105 * @allocated: boolean to indicate if this entry is used
106 * @offset: offset to the allocated space
107 * @size: size of the allocated space, 8 byte aligned
108 * @aux_base: base address for the memory region used by this unit, or 0 for
109 * the default region. bits 0,1 are reserved
110 */
111struct smem_global_entry {
112 __le32 allocated;
113 __le32 offset;
114 __le32 size;
115 __le32 aux_base; /* bits 1:0 reserved */
116};
117#define AUX_BASE_MASK 0xfffffffc
118
119/**
120 * struct smem_header - header found in beginning of primary smem region
121 * @proc_comm: proc_comm communication interface (legacy)
122 * @version: array of versions for the various subsystems
123 * @initialized: boolean to indicate that smem is initialized
124 * @free_offset: index of the first unallocated byte in smem
125 * @available: number of bytes available for allocation
126 * @reserved: reserved field, must be 0
127 * @toc: array of references to items
128 */
129struct smem_header {
130 struct smem_proc_comm proc_comm[4];
131 __le32 version[32];
132 __le32 initialized;
133 __le32 free_offset;
134 __le32 available;
135 __le32 reserved;
136 struct smem_global_entry toc[SMEM_ITEM_COUNT];
137};
138
139/**
140 * struct smem_ptable_entry - one entry in the @smem_ptable list
141 * @offset: offset, within the main shared memory region, of the partition
142 * @size: size of the partition
143 * @flags: flags for the partition (currently unused)
144 * @host0: first processor/host with access to this partition
145 * @host1: second processor/host with access to this partition
146 * @cacheline: alignment for "cached" entries
147 * @reserved: reserved entries for later use
148 */
149struct smem_ptable_entry {
150 __le32 offset;
151 __le32 size;
152 __le32 flags;
153 __le16 host0;
154 __le16 host1;
155 __le32 cacheline;
156 __le32 reserved[7];
157};
158
159/**
160 * struct smem_ptable - partition table for the private partitions
161 * @magic: magic number, must be SMEM_PTABLE_MAGIC
162 * @version: version of the partition table
163 * @num_entries: number of partitions in the table
164 * @reserved: for now reserved entries
165 * @entry: list of @smem_ptable_entry for the @num_entries partitions
166 */
167struct smem_ptable {
168 u8 magic[4];
169 __le32 version;
170 __le32 num_entries;
171 __le32 reserved[5];
172 struct smem_ptable_entry entry[];
173};
174
175static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
176
177/**
178 * struct smem_partition_header - header of the partitions
179 * @magic: magic number, must be SMEM_PART_MAGIC
180 * @host0: first processor/host with access to this partition
181 * @host1: second processor/host with access to this partition
182 * @size: size of the partition
183 * @offset_free_uncached: offset to the first free byte of uncached memory in
184 * this partition
185 * @offset_free_cached: offset to the first free byte of cached memory in this
186 * partition
187 * @reserved: for now reserved entries
188 */
189struct smem_partition_header {
190 u8 magic[4];
191 __le16 host0;
192 __le16 host1;
193 __le32 size;
194 __le32 offset_free_uncached;
195 __le32 offset_free_cached;
196 __le32 reserved[3];
197};
198
199/**
200 * struct smem_partition - describes smem partition
201 * @virt_base: starting virtual address of partition
202 * @phys_base: starting physical address of partition
203 * @cacheline: alignment for "cached" entries
204 * @size: size of partition
205 */
206struct smem_partition {
207 void __iomem *virt_base;
208 phys_addr_t phys_base;
209 size_t cacheline;
210 size_t size;
211};
212
213static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
214
215/**
216 * struct smem_private_entry - header of each item in the private partition
217 * @canary: magic number, must be SMEM_PRIVATE_CANARY
218 * @item: identifying number of the smem item
219 * @size: size of the data, including padding bytes
220 * @padding_data: number of bytes of padding of data
221 * @padding_hdr: number of bytes of padding between the header and the data
222 * @reserved: for now reserved entry
223 */
224struct smem_private_entry {
225 u16 canary; /* bytes are the same so no swapping needed */
226 __le16 item;
227 __le32 size; /* includes padding bytes */
228 __le16 padding_data;
229 __le16 padding_hdr;
230 __le32 reserved;
231};
232#define SMEM_PRIVATE_CANARY 0xa5a5
233
234/**
235 * struct smem_info - smem region info located after the table of contents
236 * @magic: magic number, must be SMEM_INFO_MAGIC
237 * @size: size of the smem region
238 * @base_addr: base address of the smem region
239 * @reserved: for now reserved entry
240 * @num_items: highest accepted item number
241 */
242struct smem_info {
243 u8 magic[4];
244 __le32 size;
245 __le32 base_addr;
246 __le32 reserved;
247 __le16 num_items;
248};
249
250static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
251
252/**
253 * struct smem_region - representation of a chunk of memory used for smem
254 * @aux_base: identifier of aux_mem base
255 * @virt_base: virtual base address of memory with this aux_mem identifier
256 * @size: size of the memory region
257 */
258struct smem_region {
259 phys_addr_t aux_base;
260 void __iomem *virt_base;
261 size_t size;
262};
263
264/**
265 * struct qcom_smem - device data for the smem device
266 * @dev: device pointer
267 * @hwlock: reference to a hwspinlock
268 * @ptable: virtual base of partition table
269 * @global_partition: describes for global partition when in use
270 * @partitions: list of partitions of current processor/host
271 * @item_count: max accepted item number
272 * @socinfo: platform device pointer
273 * @num_regions: number of @regions
274 * @regions: list of the memory regions defining the shared memory
275 */
276struct qcom_smem {
277 struct device *dev;
278
279 struct hwspinlock *hwlock;
280
281 u32 item_count;
282 struct platform_device *socinfo;
283 struct smem_ptable *ptable;
284 struct smem_partition global_partition;
285 struct smem_partition partitions[SMEM_HOST_COUNT];
286
287 unsigned num_regions;
288 struct smem_region regions[] __counted_by(num_regions);
289};
290
291static void *
292phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
293{
294 void *p = phdr;
295
296 return p + le32_to_cpu(phdr->offset_free_uncached);
297}
298
299static struct smem_private_entry *
300phdr_to_first_cached_entry(struct smem_partition_header *phdr,
301 size_t cacheline)
302{
303 void *p = phdr;
304 struct smem_private_entry *e;
305
306 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
307}
308
309static void *
310phdr_to_last_cached_entry(struct smem_partition_header *phdr)
311{
312 void *p = phdr;
313
314 return p + le32_to_cpu(phdr->offset_free_cached);
315}
316
317static struct smem_private_entry *
318phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
319{
320 void *p = phdr;
321
322 return p + sizeof(*phdr);
323}
324
325static struct smem_private_entry *
326uncached_entry_next(struct smem_private_entry *e)
327{
328 void *p = e;
329
330 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
331 le32_to_cpu(e->size);
332}
333
334static struct smem_private_entry *
335cached_entry_next(struct smem_private_entry *e, size_t cacheline)
336{
337 void *p = e;
338
339 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
340}
341
342static void *uncached_entry_to_item(struct smem_private_entry *e)
343{
344 void *p = e;
345
346 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
347}
348
349static void *cached_entry_to_item(struct smem_private_entry *e)
350{
351 void *p = e;
352
353 return p - le32_to_cpu(e->size);
354}
355
356/* Pointer to the one and only smem handle */
357static struct qcom_smem *__smem;
358
359/* Timeout (ms) for the trylock of remote spinlocks */
360#define HWSPINLOCK_TIMEOUT 1000
361
362/**
363 * qcom_smem_is_available() - Check if SMEM is available
364 *
365 * Return: true if SMEM is available, false otherwise.
366 */
367bool qcom_smem_is_available(void)
368{
369 return !!__smem;
370}
371EXPORT_SYMBOL_GPL(qcom_smem_is_available);
372
373static int qcom_smem_alloc_private(struct qcom_smem *smem,
374 struct smem_partition *part,
375 unsigned item,
376 size_t size)
377{
378 struct smem_private_entry *hdr, *end;
379 struct smem_partition_header *phdr;
380 size_t alloc_size;
381 void *cached;
382 void *p_end;
383
384 phdr = (struct smem_partition_header __force *)part->virt_base;
385 p_end = (void *)phdr + part->size;
386
387 hdr = phdr_to_first_uncached_entry(phdr);
388 end = phdr_to_last_uncached_entry(phdr);
389 cached = phdr_to_last_cached_entry(phdr);
390
391 if (WARN_ON((void *)end > p_end || cached > p_end))
392 return -EINVAL;
393
394 while (hdr < end) {
395 if (hdr->canary != SMEM_PRIVATE_CANARY)
396 goto bad_canary;
397 if (le16_to_cpu(hdr->item) == item)
398 return -EEXIST;
399
400 hdr = uncached_entry_next(e: hdr);
401 }
402
403 if (WARN_ON((void *)hdr > p_end))
404 return -EINVAL;
405
406 /* Check that we don't grow into the cached region */
407 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
408 if ((void *)hdr + alloc_size > cached) {
409 dev_err(smem->dev, "Out of memory\n");
410 return -ENOSPC;
411 }
412
413 hdr->canary = SMEM_PRIVATE_CANARY;
414 hdr->item = cpu_to_le16(item);
415 hdr->size = cpu_to_le32(ALIGN(size, 8));
416 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
417 hdr->padding_hdr = 0;
418
419 /*
420 * Ensure the header is written before we advance the free offset, so
421 * that remote processors that does not take the remote spinlock still
422 * gets a consistent view of the linked list.
423 */
424 wmb();
425 le32_add_cpu(var: &phdr->offset_free_uncached, val: alloc_size);
426
427 return 0;
428bad_canary:
429 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
430 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
431
432 return -EINVAL;
433}
434
435static int qcom_smem_alloc_global(struct qcom_smem *smem,
436 unsigned item,
437 size_t size)
438{
439 struct smem_global_entry *entry;
440 struct smem_header *header;
441
442 header = smem->regions[0].virt_base;
443 entry = &header->toc[item];
444 if (entry->allocated)
445 return -EEXIST;
446
447 size = ALIGN(size, 8);
448 if (WARN_ON(size > le32_to_cpu(header->available)))
449 return -ENOMEM;
450
451 entry->offset = header->free_offset;
452 entry->size = cpu_to_le32(size);
453
454 /*
455 * Ensure the header is consistent before we mark the item allocated,
456 * so that remote processors will get a consistent view of the item
457 * even though they do not take the spinlock on read.
458 */
459 wmb();
460 entry->allocated = cpu_to_le32(1);
461
462 le32_add_cpu(var: &header->free_offset, val: size);
463 le32_add_cpu(var: &header->available, val: -size);
464
465 return 0;
466}
467
468/**
469 * qcom_smem_alloc() - allocate space for a smem item
470 * @host: remote processor id, or -1
471 * @item: smem item handle
472 * @size: number of bytes to be allocated
473 *
474 * Allocate space for a given smem item of size @size, given that the item is
475 * not yet allocated.
476 */
477int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
478{
479 struct smem_partition *part;
480 unsigned long flags;
481 int ret;
482
483 if (!__smem)
484 return -EPROBE_DEFER;
485
486 if (item < SMEM_ITEM_LAST_FIXED) {
487 dev_err(__smem->dev,
488 "Rejecting allocation of static entry %d\n", item);
489 return -EINVAL;
490 }
491
492 if (WARN_ON(item >= __smem->item_count))
493 return -EINVAL;
494
495 ret = hwspin_lock_timeout_irqsave(hwlock: __smem->hwlock,
496 HWSPINLOCK_TIMEOUT,
497 flags: &flags);
498 if (ret)
499 return ret;
500
501 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
502 part = &__smem->partitions[host];
503 ret = qcom_smem_alloc_private(smem: __smem, part, item, size);
504 } else if (__smem->global_partition.virt_base) {
505 part = &__smem->global_partition;
506 ret = qcom_smem_alloc_private(smem: __smem, part, item, size);
507 } else {
508 ret = qcom_smem_alloc_global(smem: __smem, item, size);
509 }
510
511 hwspin_unlock_irqrestore(hwlock: __smem->hwlock, flags: &flags);
512
513 return ret;
514}
515EXPORT_SYMBOL_GPL(qcom_smem_alloc);
516
517static void *qcom_smem_get_global(struct qcom_smem *smem,
518 unsigned item,
519 size_t *size)
520{
521 struct smem_header *header;
522 struct smem_region *region;
523 struct smem_global_entry *entry;
524 u64 entry_offset;
525 u32 e_size;
526 u32 aux_base;
527 unsigned i;
528
529 header = smem->regions[0].virt_base;
530 entry = &header->toc[item];
531 if (!entry->allocated)
532 return ERR_PTR(error: -ENXIO);
533
534 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
535
536 for (i = 0; i < smem->num_regions; i++) {
537 region = &smem->regions[i];
538
539 if ((u32)region->aux_base == aux_base || !aux_base) {
540 e_size = le32_to_cpu(entry->size);
541 entry_offset = le32_to_cpu(entry->offset);
542
543 if (WARN_ON(e_size + entry_offset > region->size))
544 return ERR_PTR(error: -EINVAL);
545
546 if (size != NULL)
547 *size = e_size;
548
549 return region->virt_base + entry_offset;
550 }
551 }
552
553 return ERR_PTR(error: -ENOENT);
554}
555
556static void *qcom_smem_get_private(struct qcom_smem *smem,
557 struct smem_partition *part,
558 unsigned item,
559 size_t *size)
560{
561 struct smem_private_entry *e, *end;
562 struct smem_partition_header *phdr;
563 void *item_ptr, *p_end;
564 u32 padding_data;
565 u32 e_size;
566
567 phdr = (struct smem_partition_header __force *)part->virt_base;
568 p_end = (void *)phdr + part->size;
569
570 e = phdr_to_first_uncached_entry(phdr);
571 end = phdr_to_last_uncached_entry(phdr);
572
573 while (e < end) {
574 if (e->canary != SMEM_PRIVATE_CANARY)
575 goto invalid_canary;
576
577 if (le16_to_cpu(e->item) == item) {
578 if (size != NULL) {
579 e_size = le32_to_cpu(e->size);
580 padding_data = le16_to_cpu(e->padding_data);
581
582 if (WARN_ON(e_size > part->size || padding_data > e_size))
583 return ERR_PTR(error: -EINVAL);
584
585 *size = e_size - padding_data;
586 }
587
588 item_ptr = uncached_entry_to_item(e);
589 if (WARN_ON(item_ptr > p_end))
590 return ERR_PTR(error: -EINVAL);
591
592 return item_ptr;
593 }
594
595 e = uncached_entry_next(e);
596 }
597
598 if (WARN_ON((void *)e > p_end))
599 return ERR_PTR(error: -EINVAL);
600
601 /* Item was not found in the uncached list, search the cached list */
602
603 e = phdr_to_first_cached_entry(phdr, cacheline: part->cacheline);
604 end = phdr_to_last_cached_entry(phdr);
605
606 if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end))
607 return ERR_PTR(error: -EINVAL);
608
609 while (e > end) {
610 if (e->canary != SMEM_PRIVATE_CANARY)
611 goto invalid_canary;
612
613 if (le16_to_cpu(e->item) == item) {
614 if (size != NULL) {
615 e_size = le32_to_cpu(e->size);
616 padding_data = le16_to_cpu(e->padding_data);
617
618 if (WARN_ON(e_size > part->size || padding_data > e_size))
619 return ERR_PTR(error: -EINVAL);
620
621 *size = e_size - padding_data;
622 }
623
624 item_ptr = cached_entry_to_item(e);
625 if (WARN_ON(item_ptr < (void *)phdr))
626 return ERR_PTR(error: -EINVAL);
627
628 return item_ptr;
629 }
630
631 e = cached_entry_next(e, cacheline: part->cacheline);
632 }
633
634 if (WARN_ON((void *)e < (void *)phdr))
635 return ERR_PTR(error: -EINVAL);
636
637 return ERR_PTR(error: -ENOENT);
638
639invalid_canary:
640 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
641 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
642
643 return ERR_PTR(error: -EINVAL);
644}
645
646/**
647 * qcom_smem_get() - resolve ptr of size of a smem item
648 * @host: the remote processor, or -1
649 * @item: smem item handle
650 * @size: pointer to be filled out with size of the item
651 *
652 * Looks up smem item and returns pointer to it. Size of smem
653 * item is returned in @size.
654 */
655void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
656{
657 struct smem_partition *part;
658 void *ptr = ERR_PTR(error: -EPROBE_DEFER);
659
660 if (!__smem)
661 return ptr;
662
663 if (WARN_ON(item >= __smem->item_count))
664 return ERR_PTR(error: -EINVAL);
665
666 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
667 part = &__smem->partitions[host];
668 ptr = qcom_smem_get_private(smem: __smem, part, item, size);
669 } else if (__smem->global_partition.virt_base) {
670 part = &__smem->global_partition;
671 ptr = qcom_smem_get_private(smem: __smem, part, item, size);
672 } else {
673 ptr = qcom_smem_get_global(smem: __smem, item, size);
674 }
675
676 return ptr;
677}
678EXPORT_SYMBOL_GPL(qcom_smem_get);
679
680/**
681 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
682 * @host: the remote processor identifying a partition, or -1
683 *
684 * To be used by smem clients as a quick way to determine if any new
685 * allocations has been made.
686 */
687int qcom_smem_get_free_space(unsigned host)
688{
689 struct smem_partition *part;
690 struct smem_partition_header *phdr;
691 struct smem_header *header;
692 unsigned ret;
693
694 if (!__smem)
695 return -EPROBE_DEFER;
696
697 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
698 part = &__smem->partitions[host];
699 phdr = part->virt_base;
700 ret = le32_to_cpu(phdr->offset_free_cached) -
701 le32_to_cpu(phdr->offset_free_uncached);
702
703 if (ret > le32_to_cpu(part->size))
704 return -EINVAL;
705 } else if (__smem->global_partition.virt_base) {
706 part = &__smem->global_partition;
707 phdr = part->virt_base;
708 ret = le32_to_cpu(phdr->offset_free_cached) -
709 le32_to_cpu(phdr->offset_free_uncached);
710
711 if (ret > le32_to_cpu(part->size))
712 return -EINVAL;
713 } else {
714 header = __smem->regions[0].virt_base;
715 ret = le32_to_cpu(header->available);
716
717 if (ret > __smem->regions[0].size)
718 return -EINVAL;
719 }
720
721 return ret;
722}
723EXPORT_SYMBOL_GPL(qcom_smem_get_free_space);
724
725static bool addr_in_range(void __iomem *base, size_t size, void *addr)
726{
727 return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size);
728}
729
730/**
731 * qcom_smem_virt_to_phys() - return the physical address associated
732 * with an smem item pointer (previously returned by qcom_smem_get()
733 * @p: the virtual address to convert
734 *
735 * Returns 0 if the pointer provided is not within any smem region.
736 */
737phys_addr_t qcom_smem_virt_to_phys(void *p)
738{
739 struct smem_partition *part;
740 struct smem_region *area;
741 u64 offset;
742 u32 i;
743
744 for (i = 0; i < SMEM_HOST_COUNT; i++) {
745 part = &__smem->partitions[i];
746
747 if (addr_in_range(base: part->virt_base, size: part->size, addr: p)) {
748 offset = p - part->virt_base;
749
750 return (phys_addr_t)part->phys_base + offset;
751 }
752 }
753
754 part = &__smem->global_partition;
755
756 if (addr_in_range(base: part->virt_base, size: part->size, addr: p)) {
757 offset = p - part->virt_base;
758
759 return (phys_addr_t)part->phys_base + offset;
760 }
761
762 for (i = 0; i < __smem->num_regions; i++) {
763 area = &__smem->regions[i];
764
765 if (addr_in_range(base: area->virt_base, size: area->size, addr: p)) {
766 offset = p - area->virt_base;
767
768 return (phys_addr_t)area->aux_base + offset;
769 }
770 }
771
772 return 0;
773}
774EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys);
775
776/**
777 * qcom_smem_get_soc_id() - return the SoC ID
778 * @id: On success, we return the SoC ID here.
779 *
780 * Look up SoC ID from HW/SW build ID and return it.
781 *
782 * Return: 0 on success, negative errno on failure.
783 */
784int qcom_smem_get_soc_id(u32 *id)
785{
786 struct socinfo *info;
787
788 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL);
789 if (IS_ERR(ptr: info))
790 return PTR_ERR(ptr: info);
791
792 *id = __le32_to_cpu(info->id);
793
794 return 0;
795}
796EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id);
797
798static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
799{
800 struct smem_header *header;
801 __le32 *versions;
802
803 header = smem->regions[0].virt_base;
804 versions = header->version;
805
806 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
807}
808
809static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
810{
811 struct smem_ptable *ptable;
812 u32 version;
813
814 ptable = smem->ptable;
815 if (memcmp(p: ptable->magic, q: SMEM_PTABLE_MAGIC, size: sizeof(ptable->magic)))
816 return ERR_PTR(error: -ENOENT);
817
818 version = le32_to_cpu(ptable->version);
819 if (version != 1) {
820 dev_err(smem->dev,
821 "Unsupported partition header version %d\n", version);
822 return ERR_PTR(error: -EINVAL);
823 }
824 return ptable;
825}
826
827static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
828{
829 struct smem_ptable *ptable;
830 struct smem_info *info;
831
832 ptable = qcom_smem_get_ptable(smem);
833 if (IS_ERR_OR_NULL(ptr: ptable))
834 return SMEM_ITEM_COUNT;
835
836 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
837 if (memcmp(p: info->magic, q: SMEM_INFO_MAGIC, size: sizeof(info->magic)))
838 return SMEM_ITEM_COUNT;
839
840 return le16_to_cpu(info->num_items);
841}
842
843/*
844 * Validate the partition header for a partition whose partition
845 * table entry is supplied. Returns a pointer to its header if
846 * valid, or a null pointer otherwise.
847 */
848static struct smem_partition_header *
849qcom_smem_partition_header(struct qcom_smem *smem,
850 struct smem_ptable_entry *entry, u16 host0, u16 host1)
851{
852 struct smem_partition_header *header;
853 u32 phys_addr;
854 u32 size;
855
856 phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset);
857 header = devm_ioremap_wc(dev: smem->dev, offset: phys_addr, le32_to_cpu(entry->size));
858
859 if (!header)
860 return NULL;
861
862 if (memcmp(p: header->magic, q: SMEM_PART_MAGIC, size: sizeof(header->magic))) {
863 dev_err(smem->dev, "bad partition magic %4ph\n", header->magic);
864 return NULL;
865 }
866
867 if (host0 != le16_to_cpu(header->host0)) {
868 dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
869 host0, le16_to_cpu(header->host0));
870 return NULL;
871 }
872 if (host1 != le16_to_cpu(header->host1)) {
873 dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
874 host1, le16_to_cpu(header->host1));
875 return NULL;
876 }
877
878 size = le32_to_cpu(header->size);
879 if (size != le32_to_cpu(entry->size)) {
880 dev_err(smem->dev, "bad partition size (%u != %u)\n",
881 size, le32_to_cpu(entry->size));
882 return NULL;
883 }
884
885 if (le32_to_cpu(header->offset_free_uncached) > size) {
886 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
887 le32_to_cpu(header->offset_free_uncached), size);
888 return NULL;
889 }
890
891 return header;
892}
893
894static int qcom_smem_set_global_partition(struct qcom_smem *smem)
895{
896 struct smem_partition_header *header;
897 struct smem_ptable_entry *entry;
898 struct smem_ptable *ptable;
899 bool found = false;
900 int i;
901
902 if (smem->global_partition.virt_base) {
903 dev_err(smem->dev, "Already found the global partition\n");
904 return -EINVAL;
905 }
906
907 ptable = qcom_smem_get_ptable(smem);
908 if (IS_ERR(ptr: ptable))
909 return PTR_ERR(ptr: ptable);
910
911 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
912 entry = &ptable->entry[i];
913 if (!le32_to_cpu(entry->offset))
914 continue;
915 if (!le32_to_cpu(entry->size))
916 continue;
917
918 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
919 continue;
920
921 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
922 found = true;
923 break;
924 }
925 }
926
927 if (!found) {
928 dev_err(smem->dev, "Missing entry for global partition\n");
929 return -EINVAL;
930 }
931
932 header = qcom_smem_partition_header(smem, entry,
933 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
934 if (!header)
935 return -EINVAL;
936
937 smem->global_partition.virt_base = (void __iomem *)header;
938 smem->global_partition.phys_base = smem->regions[0].aux_base +
939 le32_to_cpu(entry->offset);
940 smem->global_partition.size = le32_to_cpu(entry->size);
941 smem->global_partition.cacheline = le32_to_cpu(entry->cacheline);
942
943 return 0;
944}
945
946static int
947qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
948{
949 struct smem_partition_header *header;
950 struct smem_ptable_entry *entry;
951 struct smem_ptable *ptable;
952 u16 remote_host;
953 u16 host0, host1;
954 int i;
955
956 ptable = qcom_smem_get_ptable(smem);
957 if (IS_ERR(ptr: ptable))
958 return PTR_ERR(ptr: ptable);
959
960 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
961 entry = &ptable->entry[i];
962 if (!le32_to_cpu(entry->offset))
963 continue;
964 if (!le32_to_cpu(entry->size))
965 continue;
966
967 host0 = le16_to_cpu(entry->host0);
968 host1 = le16_to_cpu(entry->host1);
969 if (host0 == local_host)
970 remote_host = host1;
971 else if (host1 == local_host)
972 remote_host = host0;
973 else
974 continue;
975
976 if (remote_host >= SMEM_HOST_COUNT) {
977 dev_err(smem->dev, "bad host %u\n", remote_host);
978 return -EINVAL;
979 }
980
981 if (smem->partitions[remote_host].virt_base) {
982 dev_err(smem->dev, "duplicate host %u\n", remote_host);
983 return -EINVAL;
984 }
985
986 header = qcom_smem_partition_header(smem, entry, host0, host1);
987 if (!header)
988 return -EINVAL;
989
990 smem->partitions[remote_host].virt_base = (void __iomem *)header;
991 smem->partitions[remote_host].phys_base = smem->regions[0].aux_base +
992 le32_to_cpu(entry->offset);
993 smem->partitions[remote_host].size = le32_to_cpu(entry->size);
994 smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline);
995 }
996
997 return 0;
998}
999
1000static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region)
1001{
1002 u32 ptable_start;
1003
1004 /* map starting 4K for smem header */
1005 region->virt_base = devm_ioremap_wc(dev: smem->dev, offset: region->aux_base, SZ_4K);
1006 ptable_start = region->aux_base + region->size - SZ_4K;
1007 /* map last 4k for toc */
1008 smem->ptable = devm_ioremap_wc(dev: smem->dev, offset: ptable_start, SZ_4K);
1009
1010 if (!region->virt_base || !smem->ptable)
1011 return -ENOMEM;
1012
1013 return 0;
1014}
1015
1016static int qcom_smem_map_global(struct qcom_smem *smem, u32 size)
1017{
1018 u32 phys_addr;
1019
1020 phys_addr = smem->regions[0].aux_base;
1021
1022 smem->regions[0].size = size;
1023 smem->regions[0].virt_base = devm_ioremap_wc(dev: smem->dev, offset: phys_addr, size);
1024
1025 if (!smem->regions[0].virt_base)
1026 return -ENOMEM;
1027
1028 return 0;
1029}
1030
1031static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name,
1032 struct smem_region *region)
1033{
1034 struct device *dev = smem->dev;
1035 struct device_node *np;
1036 struct resource r;
1037 int ret;
1038
1039 np = of_parse_phandle(np: dev->of_node, phandle_name: name, index: 0);
1040 if (!np) {
1041 dev_err(dev, "No %s specified\n", name);
1042 return -EINVAL;
1043 }
1044
1045 ret = of_address_to_resource(dev: np, index: 0, r: &r);
1046 of_node_put(node: np);
1047 if (ret)
1048 return ret;
1049
1050 region->aux_base = r.start;
1051 region->size = resource_size(res: &r);
1052
1053 return 0;
1054}
1055
1056static int qcom_smem_probe(struct platform_device *pdev)
1057{
1058 struct smem_header *header;
1059 struct reserved_mem *rmem;
1060 struct qcom_smem *smem;
1061 unsigned long flags;
1062 int num_regions;
1063 int hwlock_id;
1064 u32 version;
1065 u32 size;
1066 int ret;
1067 int i;
1068
1069 num_regions = 1;
1070 if (of_property_present(np: pdev->dev.of_node, propname: "qcom,rpm-msg-ram"))
1071 num_regions++;
1072
1073 smem = devm_kzalloc(dev: &pdev->dev, struct_size(smem, regions, num_regions),
1074 GFP_KERNEL);
1075 if (!smem)
1076 return -ENOMEM;
1077
1078 smem->dev = &pdev->dev;
1079 smem->num_regions = num_regions;
1080
1081 rmem = of_reserved_mem_lookup(np: pdev->dev.of_node);
1082 if (rmem) {
1083 smem->regions[0].aux_base = rmem->base;
1084 smem->regions[0].size = rmem->size;
1085 } else {
1086 /*
1087 * Fall back to the memory-region reference, if we're not a
1088 * reserved-memory node.
1089 */
1090 ret = qcom_smem_resolve_mem(smem, name: "memory-region", region: &smem->regions[0]);
1091 if (ret)
1092 return ret;
1093 }
1094
1095 if (num_regions > 1) {
1096 ret = qcom_smem_resolve_mem(smem, name: "qcom,rpm-msg-ram", region: &smem->regions[1]);
1097 if (ret)
1098 return ret;
1099 }
1100
1101
1102 ret = qcom_smem_map_toc(smem, region: &smem->regions[0]);
1103 if (ret)
1104 return ret;
1105
1106 for (i = 1; i < num_regions; i++) {
1107 smem->regions[i].virt_base = devm_ioremap_wc(dev: &pdev->dev,
1108 offset: smem->regions[i].aux_base,
1109 size: smem->regions[i].size);
1110 if (!smem->regions[i].virt_base) {
1111 dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base);
1112 return -ENOMEM;
1113 }
1114 }
1115
1116 header = smem->regions[0].virt_base;
1117 if (le32_to_cpu(header->initialized) != 1 ||
1118 le32_to_cpu(header->reserved)) {
1119 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
1120 return -EINVAL;
1121 }
1122
1123 hwlock_id = of_hwspin_lock_get_id(np: pdev->dev.of_node, index: 0);
1124 if (hwlock_id < 0) {
1125 if (hwlock_id != -EPROBE_DEFER)
1126 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
1127 return hwlock_id;
1128 }
1129
1130 smem->hwlock = hwspin_lock_request_specific(id: hwlock_id);
1131 if (!smem->hwlock)
1132 return -ENXIO;
1133
1134 ret = hwspin_lock_timeout_irqsave(hwlock: smem->hwlock, HWSPINLOCK_TIMEOUT, flags: &flags);
1135 if (ret)
1136 return ret;
1137 size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset);
1138 hwspin_unlock_irqrestore(hwlock: smem->hwlock, flags: &flags);
1139
1140 version = qcom_smem_get_sbl_version(smem);
1141 /*
1142 * smem header mapping is required only in heap version scheme, so unmap
1143 * it here. It will be remapped in qcom_smem_map_global() when whole
1144 * partition is mapped again.
1145 */
1146 devm_iounmap(dev: smem->dev, addr: smem->regions[0].virt_base);
1147 switch (version >> 16) {
1148 case SMEM_GLOBAL_PART_VERSION:
1149 ret = qcom_smem_set_global_partition(smem);
1150 if (ret < 0)
1151 return ret;
1152 smem->item_count = qcom_smem_get_item_count(smem);
1153 break;
1154 case SMEM_GLOBAL_HEAP_VERSION:
1155 qcom_smem_map_global(smem, size);
1156 smem->item_count = SMEM_ITEM_COUNT;
1157 break;
1158 default:
1159 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
1160 return -EINVAL;
1161 }
1162
1163 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
1164 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
1165 if (ret < 0 && ret != -ENOENT)
1166 return ret;
1167
1168 __smem = smem;
1169
1170 smem->socinfo = platform_device_register_data(parent: &pdev->dev, name: "qcom-socinfo",
1171 PLATFORM_DEVID_NONE, NULL,
1172 size: 0);
1173 if (IS_ERR(ptr: smem->socinfo))
1174 dev_dbg(&pdev->dev, "failed to register socinfo device\n");
1175
1176 return 0;
1177}
1178
1179static void qcom_smem_remove(struct platform_device *pdev)
1180{
1181 platform_device_unregister(__smem->socinfo);
1182
1183 hwspin_lock_free(hwlock: __smem->hwlock);
1184 __smem = NULL;
1185}
1186
1187static const struct of_device_id qcom_smem_of_match[] = {
1188 { .compatible = "qcom,smem" },
1189 {}
1190};
1191MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
1192
1193static struct platform_driver qcom_smem_driver = {
1194 .probe = qcom_smem_probe,
1195 .remove_new = qcom_smem_remove,
1196 .driver = {
1197 .name = "qcom-smem",
1198 .of_match_table = qcom_smem_of_match,
1199 .suppress_bind_attrs = true,
1200 },
1201};
1202
1203static int __init qcom_smem_init(void)
1204{
1205 return platform_driver_register(&qcom_smem_driver);
1206}
1207arch_initcall(qcom_smem_init);
1208
1209static void __exit qcom_smem_exit(void)
1210{
1211 platform_driver_unregister(&qcom_smem_driver);
1212}
1213module_exit(qcom_smem_exit)
1214
1215MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1216MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1217MODULE_LICENSE("GPL v2");
1218

source code of linux/drivers/soc/qcom/smem.c