1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6#include <linux/mm.h>
7#include <linux/rbtree.h>
8#include <trace/events/btrfs.h>
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
15#include "locking.h"
16#include "misc.h"
17#include "tree-mod-log.h"
18#include "fs.h"
19#include "accessors.h"
20#include "extent-tree.h"
21#include "relocation.h"
22#include "tree-checker.h"
23
24/* Just arbitrary numbers so we can be sure one of these happened. */
25#define BACKREF_FOUND_SHARED 6
26#define BACKREF_FOUND_NOT_SHARED 7
27
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 u64 num_bytes;
32 struct extent_inode_elem *next;
33};
34
35static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 const struct btrfs_key *key,
37 const struct extent_buffer *eb,
38 const struct btrfs_file_extent_item *fi,
39 struct extent_inode_elem **eie)
40{
41 const u64 data_len = btrfs_file_extent_num_bytes(eb, s: fi);
42 u64 offset = key->offset;
43 struct extent_inode_elem *e;
44 const u64 *root_ids;
45 int root_count;
46 bool cached;
47
48 if (!ctx->ignore_extent_item_pos &&
49 !btrfs_file_extent_compression(eb, s: fi) &&
50 !btrfs_file_extent_encryption(eb, s: fi) &&
51 !btrfs_file_extent_other_encoding(eb, s: fi)) {
52 u64 data_offset;
53
54 data_offset = btrfs_file_extent_offset(eb, s: fi);
55
56 if (ctx->extent_item_pos < data_offset ||
57 ctx->extent_item_pos >= data_offset + data_len)
58 return 1;
59 offset += ctx->extent_item_pos - data_offset;
60 }
61
62 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63 goto add_inode_elem;
64
65 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66 &root_count);
67 if (!cached)
68 goto add_inode_elem;
69
70 for (int i = 0; i < root_count; i++) {
71 int ret;
72
73 ret = ctx->indirect_ref_iterator(key->objectid, offset,
74 data_len, root_ids[i],
75 ctx->user_ctx);
76 if (ret)
77 return ret;
78 }
79
80add_inode_elem:
81 e = kmalloc(size: sizeof(*e), GFP_NOFS);
82 if (!e)
83 return -ENOMEM;
84
85 e->next = *eie;
86 e->inum = key->objectid;
87 e->offset = offset;
88 e->num_bytes = data_len;
89 *eie = e;
90
91 return 0;
92}
93
94static void free_inode_elem_list(struct extent_inode_elem *eie)
95{
96 struct extent_inode_elem *eie_next;
97
98 for (; eie; eie = eie_next) {
99 eie_next = eie->next;
100 kfree(objp: eie);
101 }
102}
103
104static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105 const struct extent_buffer *eb,
106 struct extent_inode_elem **eie)
107{
108 u64 disk_byte;
109 struct btrfs_key key;
110 struct btrfs_file_extent_item *fi;
111 int slot;
112 int nritems;
113 int extent_type;
114 int ret;
115
116 /*
117 * from the shared data ref, we only have the leaf but we need
118 * the key. thus, we must look into all items and see that we
119 * find one (some) with a reference to our extent item.
120 */
121 nritems = btrfs_header_nritems(eb);
122 for (slot = 0; slot < nritems; ++slot) {
123 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
124 if (key.type != BTRFS_EXTENT_DATA_KEY)
125 continue;
126 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127 extent_type = btrfs_file_extent_type(eb, s: fi);
128 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129 continue;
130 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131 disk_byte = btrfs_file_extent_disk_bytenr(eb, s: fi);
132 if (disk_byte != ctx->bytenr)
133 continue;
134
135 ret = check_extent_in_eb(ctx, key: &key, eb, fi, eie);
136 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137 return ret;
138 }
139
140 return 0;
141}
142
143struct preftree {
144 struct rb_root_cached root;
145 unsigned int count;
146};
147
148#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
149
150struct preftrees {
151 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153 struct preftree indirect_missing_keys;
154};
155
156/*
157 * Checks for a shared extent during backref search.
158 *
159 * The share_count tracks prelim_refs (direct and indirect) having a
160 * ref->count >0:
161 * - incremented when a ref->count transitions to >0
162 * - decremented when a ref->count transitions to <1
163 */
164struct share_check {
165 struct btrfs_backref_share_check_ctx *ctx;
166 struct btrfs_root *root;
167 u64 inum;
168 u64 data_bytenr;
169 u64 data_extent_gen;
170 /*
171 * Counts number of inodes that refer to an extent (different inodes in
172 * the same root or different roots) that we could find. The sharedness
173 * check typically stops once this counter gets greater than 1, so it
174 * may not reflect the total number of inodes.
175 */
176 int share_count;
177 /*
178 * The number of times we found our inode refers to the data extent we
179 * are determining the sharedness. In other words, how many file extent
180 * items we could find for our inode that point to our target data
181 * extent. The value we get here after finishing the extent sharedness
182 * check may be smaller than reality, but if it ends up being greater
183 * than 1, then we know for sure the inode has multiple file extent
184 * items that point to our inode, and we can safely assume it's useful
185 * to cache the sharedness check result.
186 */
187 int self_ref_count;
188 bool have_delayed_delete_refs;
189};
190
191static inline int extent_is_shared(struct share_check *sc)
192{
193 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194}
195
196static struct kmem_cache *btrfs_prelim_ref_cache;
197
198int __init btrfs_prelim_ref_init(void)
199{
200 btrfs_prelim_ref_cache = kmem_cache_create(name: "btrfs_prelim_ref",
201 size: sizeof(struct prelim_ref), align: 0, flags: 0, NULL);
202 if (!btrfs_prelim_ref_cache)
203 return -ENOMEM;
204 return 0;
205}
206
207void __cold btrfs_prelim_ref_exit(void)
208{
209 kmem_cache_destroy(s: btrfs_prelim_ref_cache);
210}
211
212static void free_pref(struct prelim_ref *ref)
213{
214 kmem_cache_free(s: btrfs_prelim_ref_cache, objp: ref);
215}
216
217/*
218 * Return 0 when both refs are for the same block (and can be merged).
219 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
220 * indicates a 'higher' block.
221 */
222static int prelim_ref_compare(struct prelim_ref *ref1,
223 struct prelim_ref *ref2)
224{
225 if (ref1->level < ref2->level)
226 return -1;
227 if (ref1->level > ref2->level)
228 return 1;
229 if (ref1->root_id < ref2->root_id)
230 return -1;
231 if (ref1->root_id > ref2->root_id)
232 return 1;
233 if (ref1->key_for_search.type < ref2->key_for_search.type)
234 return -1;
235 if (ref1->key_for_search.type > ref2->key_for_search.type)
236 return 1;
237 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
238 return -1;
239 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
240 return 1;
241 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
242 return -1;
243 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
244 return 1;
245 if (ref1->parent < ref2->parent)
246 return -1;
247 if (ref1->parent > ref2->parent)
248 return 1;
249
250 return 0;
251}
252
253static void update_share_count(struct share_check *sc, int oldcount,
254 int newcount, struct prelim_ref *newref)
255{
256 if ((!sc) || (oldcount == 0 && newcount < 1))
257 return;
258
259 if (oldcount > 0 && newcount < 1)
260 sc->share_count--;
261 else if (oldcount < 1 && newcount > 0)
262 sc->share_count++;
263
264 if (newref->root_id == sc->root->root_key.objectid &&
265 newref->wanted_disk_byte == sc->data_bytenr &&
266 newref->key_for_search.objectid == sc->inum)
267 sc->self_ref_count += newref->count;
268}
269
270/*
271 * Add @newref to the @root rbtree, merging identical refs.
272 *
273 * Callers should assume that newref has been freed after calling.
274 */
275static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
276 struct preftree *preftree,
277 struct prelim_ref *newref,
278 struct share_check *sc)
279{
280 struct rb_root_cached *root;
281 struct rb_node **p;
282 struct rb_node *parent = NULL;
283 struct prelim_ref *ref;
284 int result;
285 bool leftmost = true;
286
287 root = &preftree->root;
288 p = &root->rb_root.rb_node;
289
290 while (*p) {
291 parent = *p;
292 ref = rb_entry(parent, struct prelim_ref, rbnode);
293 result = prelim_ref_compare(ref1: ref, ref2: newref);
294 if (result < 0) {
295 p = &(*p)->rb_left;
296 } else if (result > 0) {
297 p = &(*p)->rb_right;
298 leftmost = false;
299 } else {
300 /* Identical refs, merge them and free @newref */
301 struct extent_inode_elem *eie = ref->inode_list;
302
303 while (eie && eie->next)
304 eie = eie->next;
305
306 if (!eie)
307 ref->inode_list = newref->inode_list;
308 else
309 eie->next = newref->inode_list;
310 trace_btrfs_prelim_ref_merge(fs_info, oldref: ref, newref,
311 tree_size: preftree->count);
312 /*
313 * A delayed ref can have newref->count < 0.
314 * The ref->count is updated to follow any
315 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
316 */
317 update_share_count(sc, oldcount: ref->count,
318 newcount: ref->count + newref->count, newref);
319 ref->count += newref->count;
320 free_pref(ref: newref);
321 return;
322 }
323 }
324
325 update_share_count(sc, oldcount: 0, newcount: newref->count, newref);
326 preftree->count++;
327 trace_btrfs_prelim_ref_insert(fs_info, oldref: newref, NULL, tree_size: preftree->count);
328 rb_link_node(node: &newref->rbnode, parent, rb_link: p);
329 rb_insert_color_cached(node: &newref->rbnode, root, leftmost);
330}
331
332/*
333 * Release the entire tree. We don't care about internal consistency so
334 * just free everything and then reset the tree root.
335 */
336static void prelim_release(struct preftree *preftree)
337{
338 struct prelim_ref *ref, *next_ref;
339
340 rbtree_postorder_for_each_entry_safe(ref, next_ref,
341 &preftree->root.rb_root, rbnode) {
342 free_inode_elem_list(eie: ref->inode_list);
343 free_pref(ref);
344 }
345
346 preftree->root = RB_ROOT_CACHED;
347 preftree->count = 0;
348}
349
350/*
351 * the rules for all callers of this function are:
352 * - obtaining the parent is the goal
353 * - if you add a key, you must know that it is a correct key
354 * - if you cannot add the parent or a correct key, then we will look into the
355 * block later to set a correct key
356 *
357 * delayed refs
358 * ============
359 * backref type | shared | indirect | shared | indirect
360 * information | tree | tree | data | data
361 * --------------------+--------+----------+--------+----------
362 * parent logical | y | - | - | -
363 * key to resolve | - | y | y | y
364 * tree block logical | - | - | - | -
365 * root for resolving | y | y | y | y
366 *
367 * - column 1: we've the parent -> done
368 * - column 2, 3, 4: we use the key to find the parent
369 *
370 * on disk refs (inline or keyed)
371 * ==============================
372 * backref type | shared | indirect | shared | indirect
373 * information | tree | tree | data | data
374 * --------------------+--------+----------+--------+----------
375 * parent logical | y | - | y | -
376 * key to resolve | - | - | - | y
377 * tree block logical | y | y | y | y
378 * root for resolving | - | y | y | y
379 *
380 * - column 1, 3: we've the parent -> done
381 * - column 2: we take the first key from the block to find the parent
382 * (see add_missing_keys)
383 * - column 4: we use the key to find the parent
384 *
385 * additional information that's available but not required to find the parent
386 * block might help in merging entries to gain some speed.
387 */
388static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
389 struct preftree *preftree, u64 root_id,
390 const struct btrfs_key *key, int level, u64 parent,
391 u64 wanted_disk_byte, int count,
392 struct share_check *sc, gfp_t gfp_mask)
393{
394 struct prelim_ref *ref;
395
396 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
397 return 0;
398
399 ref = kmem_cache_alloc(cachep: btrfs_prelim_ref_cache, flags: gfp_mask);
400 if (!ref)
401 return -ENOMEM;
402
403 ref->root_id = root_id;
404 if (key)
405 ref->key_for_search = *key;
406 else
407 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
408
409 ref->inode_list = NULL;
410 ref->level = level;
411 ref->count = count;
412 ref->parent = parent;
413 ref->wanted_disk_byte = wanted_disk_byte;
414 prelim_ref_insert(fs_info, preftree, newref: ref, sc);
415 return extent_is_shared(sc);
416}
417
418/* direct refs use root == 0, key == NULL */
419static int add_direct_ref(const struct btrfs_fs_info *fs_info,
420 struct preftrees *preftrees, int level, u64 parent,
421 u64 wanted_disk_byte, int count,
422 struct share_check *sc, gfp_t gfp_mask)
423{
424 return add_prelim_ref(fs_info, preftree: &preftrees->direct, root_id: 0, NULL, level,
425 parent, wanted_disk_byte, count, sc, gfp_mask);
426}
427
428/* indirect refs use parent == 0 */
429static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
430 struct preftrees *preftrees, u64 root_id,
431 const struct btrfs_key *key, int level,
432 u64 wanted_disk_byte, int count,
433 struct share_check *sc, gfp_t gfp_mask)
434{
435 struct preftree *tree = &preftrees->indirect;
436
437 if (!key)
438 tree = &preftrees->indirect_missing_keys;
439 return add_prelim_ref(fs_info, preftree: tree, root_id, key, level, parent: 0,
440 wanted_disk_byte, count, sc, gfp_mask);
441}
442
443static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
444{
445 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
446 struct rb_node *parent = NULL;
447 struct prelim_ref *ref = NULL;
448 struct prelim_ref target = {};
449 int result;
450
451 target.parent = bytenr;
452
453 while (*p) {
454 parent = *p;
455 ref = rb_entry(parent, struct prelim_ref, rbnode);
456 result = prelim_ref_compare(ref1: ref, ref2: &target);
457
458 if (result < 0)
459 p = &(*p)->rb_left;
460 else if (result > 0)
461 p = &(*p)->rb_right;
462 else
463 return 1;
464 }
465 return 0;
466}
467
468static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
469 struct btrfs_root *root, struct btrfs_path *path,
470 struct ulist *parents,
471 struct preftrees *preftrees, struct prelim_ref *ref,
472 int level)
473{
474 int ret = 0;
475 int slot;
476 struct extent_buffer *eb;
477 struct btrfs_key key;
478 struct btrfs_key *key_for_search = &ref->key_for_search;
479 struct btrfs_file_extent_item *fi;
480 struct extent_inode_elem *eie = NULL, *old = NULL;
481 u64 disk_byte;
482 u64 wanted_disk_byte = ref->wanted_disk_byte;
483 u64 count = 0;
484 u64 data_offset;
485 u8 type;
486
487 if (level != 0) {
488 eb = path->nodes[level];
489 ret = ulist_add(ulist: parents, val: eb->start, aux: 0, GFP_NOFS);
490 if (ret < 0)
491 return ret;
492 return 0;
493 }
494
495 /*
496 * 1. We normally enter this function with the path already pointing to
497 * the first item to check. But sometimes, we may enter it with
498 * slot == nritems.
499 * 2. We are searching for normal backref but bytenr of this leaf
500 * matches shared data backref
501 * 3. The leaf owner is not equal to the root we are searching
502 *
503 * For these cases, go to the next leaf before we continue.
504 */
505 eb = path->nodes[0];
506 if (path->slots[0] >= btrfs_header_nritems(eb) ||
507 is_shared_data_backref(preftrees, bytenr: eb->start) ||
508 ref->root_id != btrfs_header_owner(eb)) {
509 if (ctx->time_seq == BTRFS_SEQ_LAST)
510 ret = btrfs_next_leaf(root, path);
511 else
512 ret = btrfs_next_old_leaf(root, path, time_seq: ctx->time_seq);
513 }
514
515 while (!ret && count < ref->count) {
516 eb = path->nodes[0];
517 slot = path->slots[0];
518
519 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
520
521 if (key.objectid != key_for_search->objectid ||
522 key.type != BTRFS_EXTENT_DATA_KEY)
523 break;
524
525 /*
526 * We are searching for normal backref but bytenr of this leaf
527 * matches shared data backref, OR
528 * the leaf owner is not equal to the root we are searching for
529 */
530 if (slot == 0 &&
531 (is_shared_data_backref(preftrees, bytenr: eb->start) ||
532 ref->root_id != btrfs_header_owner(eb))) {
533 if (ctx->time_seq == BTRFS_SEQ_LAST)
534 ret = btrfs_next_leaf(root, path);
535 else
536 ret = btrfs_next_old_leaf(root, path, time_seq: ctx->time_seq);
537 continue;
538 }
539 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
540 type = btrfs_file_extent_type(eb, s: fi);
541 if (type == BTRFS_FILE_EXTENT_INLINE)
542 goto next;
543 disk_byte = btrfs_file_extent_disk_bytenr(eb, s: fi);
544 data_offset = btrfs_file_extent_offset(eb, s: fi);
545
546 if (disk_byte == wanted_disk_byte) {
547 eie = NULL;
548 old = NULL;
549 if (ref->key_for_search.offset == key.offset - data_offset)
550 count++;
551 else
552 goto next;
553 if (!ctx->skip_inode_ref_list) {
554 ret = check_extent_in_eb(ctx, key: &key, eb, fi, eie: &eie);
555 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
556 ret < 0)
557 break;
558 }
559 if (ret > 0)
560 goto next;
561 ret = ulist_add_merge_ptr(ulist: parents, val: eb->start,
562 aux: eie, old_aux: (void **)&old, GFP_NOFS);
563 if (ret < 0)
564 break;
565 if (!ret && !ctx->skip_inode_ref_list) {
566 while (old->next)
567 old = old->next;
568 old->next = eie;
569 }
570 eie = NULL;
571 }
572next:
573 if (ctx->time_seq == BTRFS_SEQ_LAST)
574 ret = btrfs_next_item(root, p: path);
575 else
576 ret = btrfs_next_old_item(root, path, time_seq: ctx->time_seq);
577 }
578
579 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
580 free_inode_elem_list(eie);
581 else if (ret > 0)
582 ret = 0;
583
584 return ret;
585}
586
587/*
588 * resolve an indirect backref in the form (root_id, key, level)
589 * to a logical address
590 */
591static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
592 struct btrfs_path *path,
593 struct preftrees *preftrees,
594 struct prelim_ref *ref, struct ulist *parents)
595{
596 struct btrfs_root *root;
597 struct extent_buffer *eb;
598 int ret = 0;
599 int root_level;
600 int level = ref->level;
601 struct btrfs_key search_key = ref->key_for_search;
602
603 /*
604 * If we're search_commit_root we could possibly be holding locks on
605 * other tree nodes. This happens when qgroups does backref walks when
606 * adding new delayed refs. To deal with this we need to look in cache
607 * for the root, and if we don't find it then we need to search the
608 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
609 * here.
610 */
611 if (path->search_commit_root)
612 root = btrfs_get_fs_root_commit_root(fs_info: ctx->fs_info, path, objectid: ref->root_id);
613 else
614 root = btrfs_get_fs_root(fs_info: ctx->fs_info, objectid: ref->root_id, check_ref: false);
615 if (IS_ERR(ptr: root)) {
616 ret = PTR_ERR(ptr: root);
617 goto out_free;
618 }
619
620 if (!path->search_commit_root &&
621 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
622 ret = -ENOENT;
623 goto out;
624 }
625
626 if (btrfs_is_testing(fs_info: ctx->fs_info)) {
627 ret = -ENOENT;
628 goto out;
629 }
630
631 if (path->search_commit_root)
632 root_level = btrfs_header_level(eb: root->commit_root);
633 else if (ctx->time_seq == BTRFS_SEQ_LAST)
634 root_level = btrfs_header_level(eb: root->node);
635 else
636 root_level = btrfs_old_root_level(root, time_seq: ctx->time_seq);
637
638 if (root_level + 1 == level)
639 goto out;
640
641 /*
642 * We can often find data backrefs with an offset that is too large
643 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
644 * subtracting a file's offset with the data offset of its
645 * corresponding extent data item. This can happen for example in the
646 * clone ioctl.
647 *
648 * So if we detect such case we set the search key's offset to zero to
649 * make sure we will find the matching file extent item at
650 * add_all_parents(), otherwise we will miss it because the offset
651 * taken form the backref is much larger then the offset of the file
652 * extent item. This can make us scan a very large number of file
653 * extent items, but at least it will not make us miss any.
654 *
655 * This is an ugly workaround for a behaviour that should have never
656 * existed, but it does and a fix for the clone ioctl would touch a lot
657 * of places, cause backwards incompatibility and would not fix the
658 * problem for extents cloned with older kernels.
659 */
660 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
661 search_key.offset >= LLONG_MAX)
662 search_key.offset = 0;
663 path->lowest_level = level;
664 if (ctx->time_seq == BTRFS_SEQ_LAST)
665 ret = btrfs_search_slot(NULL, root, key: &search_key, p: path, ins_len: 0, cow: 0);
666 else
667 ret = btrfs_search_old_slot(root, key: &search_key, p: path, time_seq: ctx->time_seq);
668
669 btrfs_debug(ctx->fs_info,
670 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
671 ref->root_id, level, ref->count, ret,
672 ref->key_for_search.objectid, ref->key_for_search.type,
673 ref->key_for_search.offset);
674 if (ret < 0)
675 goto out;
676
677 eb = path->nodes[level];
678 while (!eb) {
679 if (WARN_ON(!level)) {
680 ret = 1;
681 goto out;
682 }
683 level--;
684 eb = path->nodes[level];
685 }
686
687 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
688out:
689 btrfs_put_root(root);
690out_free:
691 path->lowest_level = 0;
692 btrfs_release_path(p: path);
693 return ret;
694}
695
696static struct extent_inode_elem *
697unode_aux_to_inode_list(struct ulist_node *node)
698{
699 if (!node)
700 return NULL;
701 return (struct extent_inode_elem *)(uintptr_t)node->aux;
702}
703
704static void free_leaf_list(struct ulist *ulist)
705{
706 struct ulist_node *node;
707 struct ulist_iterator uiter;
708
709 ULIST_ITER_INIT(&uiter);
710 while ((node = ulist_next(ulist, uiter: &uiter)))
711 free_inode_elem_list(eie: unode_aux_to_inode_list(node));
712
713 ulist_free(ulist);
714}
715
716/*
717 * We maintain three separate rbtrees: one for direct refs, one for
718 * indirect refs which have a key, and one for indirect refs which do not
719 * have a key. Each tree does merge on insertion.
720 *
721 * Once all of the references are located, we iterate over the tree of
722 * indirect refs with missing keys. An appropriate key is located and
723 * the ref is moved onto the tree for indirect refs. After all missing
724 * keys are thus located, we iterate over the indirect ref tree, resolve
725 * each reference, and then insert the resolved reference onto the
726 * direct tree (merging there too).
727 *
728 * New backrefs (i.e., for parent nodes) are added to the appropriate
729 * rbtree as they are encountered. The new backrefs are subsequently
730 * resolved as above.
731 */
732static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
733 struct btrfs_path *path,
734 struct preftrees *preftrees,
735 struct share_check *sc)
736{
737 int err;
738 int ret = 0;
739 struct ulist *parents;
740 struct ulist_node *node;
741 struct ulist_iterator uiter;
742 struct rb_node *rnode;
743
744 parents = ulist_alloc(GFP_NOFS);
745 if (!parents)
746 return -ENOMEM;
747
748 /*
749 * We could trade memory usage for performance here by iterating
750 * the tree, allocating new refs for each insertion, and then
751 * freeing the entire indirect tree when we're done. In some test
752 * cases, the tree can grow quite large (~200k objects).
753 */
754 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
755 struct prelim_ref *ref;
756
757 ref = rb_entry(rnode, struct prelim_ref, rbnode);
758 if (WARN(ref->parent,
759 "BUG: direct ref found in indirect tree")) {
760 ret = -EINVAL;
761 goto out;
762 }
763
764 rb_erase_cached(node: &ref->rbnode, root: &preftrees->indirect.root);
765 preftrees->indirect.count--;
766
767 if (ref->count == 0) {
768 free_pref(ref);
769 continue;
770 }
771
772 if (sc && ref->root_id != sc->root->root_key.objectid) {
773 free_pref(ref);
774 ret = BACKREF_FOUND_SHARED;
775 goto out;
776 }
777 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
778 /*
779 * we can only tolerate ENOENT,otherwise,we should catch error
780 * and return directly.
781 */
782 if (err == -ENOENT) {
783 prelim_ref_insert(fs_info: ctx->fs_info, preftree: &preftrees->direct, newref: ref,
784 NULL);
785 continue;
786 } else if (err) {
787 free_pref(ref);
788 ret = err;
789 goto out;
790 }
791
792 /* we put the first parent into the ref at hand */
793 ULIST_ITER_INIT(&uiter);
794 node = ulist_next(ulist: parents, uiter: &uiter);
795 ref->parent = node ? node->val : 0;
796 ref->inode_list = unode_aux_to_inode_list(node);
797
798 /* Add a prelim_ref(s) for any other parent(s). */
799 while ((node = ulist_next(ulist: parents, uiter: &uiter))) {
800 struct prelim_ref *new_ref;
801
802 new_ref = kmem_cache_alloc(cachep: btrfs_prelim_ref_cache,
803 GFP_NOFS);
804 if (!new_ref) {
805 free_pref(ref);
806 ret = -ENOMEM;
807 goto out;
808 }
809 memcpy(new_ref, ref, sizeof(*ref));
810 new_ref->parent = node->val;
811 new_ref->inode_list = unode_aux_to_inode_list(node);
812 prelim_ref_insert(fs_info: ctx->fs_info, preftree: &preftrees->direct,
813 newref: new_ref, NULL);
814 }
815
816 /*
817 * Now it's a direct ref, put it in the direct tree. We must
818 * do this last because the ref could be merged/freed here.
819 */
820 prelim_ref_insert(fs_info: ctx->fs_info, preftree: &preftrees->direct, newref: ref, NULL);
821
822 ulist_reinit(ulist: parents);
823 cond_resched();
824 }
825out:
826 /*
827 * We may have inode lists attached to refs in the parents ulist, so we
828 * must free them before freeing the ulist and its refs.
829 */
830 free_leaf_list(ulist: parents);
831 return ret;
832}
833
834/*
835 * read tree blocks and add keys where required.
836 */
837static int add_missing_keys(struct btrfs_fs_info *fs_info,
838 struct preftrees *preftrees, bool lock)
839{
840 struct prelim_ref *ref;
841 struct extent_buffer *eb;
842 struct preftree *tree = &preftrees->indirect_missing_keys;
843 struct rb_node *node;
844
845 while ((node = rb_first_cached(&tree->root))) {
846 struct btrfs_tree_parent_check check = { 0 };
847
848 ref = rb_entry(node, struct prelim_ref, rbnode);
849 rb_erase_cached(node, root: &tree->root);
850
851 BUG_ON(ref->parent); /* should not be a direct ref */
852 BUG_ON(ref->key_for_search.type);
853 BUG_ON(!ref->wanted_disk_byte);
854
855 check.level = ref->level - 1;
856 check.owner_root = ref->root_id;
857
858 eb = read_tree_block(fs_info, bytenr: ref->wanted_disk_byte, check: &check);
859 if (IS_ERR(ptr: eb)) {
860 free_pref(ref);
861 return PTR_ERR(ptr: eb);
862 }
863 if (!extent_buffer_uptodate(eb)) {
864 free_pref(ref);
865 free_extent_buffer(eb);
866 return -EIO;
867 }
868
869 if (lock)
870 btrfs_tree_read_lock(eb);
871 if (btrfs_header_level(eb) == 0)
872 btrfs_item_key_to_cpu(eb, cpu_key: &ref->key_for_search, nr: 0);
873 else
874 btrfs_node_key_to_cpu(eb, cpu_key: &ref->key_for_search, nr: 0);
875 if (lock)
876 btrfs_tree_read_unlock(eb);
877 free_extent_buffer(eb);
878 prelim_ref_insert(fs_info, preftree: &preftrees->indirect, newref: ref, NULL);
879 cond_resched();
880 }
881 return 0;
882}
883
884/*
885 * add all currently queued delayed refs from this head whose seq nr is
886 * smaller or equal that seq to the list
887 */
888static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
889 struct btrfs_delayed_ref_head *head, u64 seq,
890 struct preftrees *preftrees, struct share_check *sc)
891{
892 struct btrfs_delayed_ref_node *node;
893 struct btrfs_key key;
894 struct rb_node *n;
895 int count;
896 int ret = 0;
897
898 spin_lock(lock: &head->lock);
899 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
900 node = rb_entry(n, struct btrfs_delayed_ref_node,
901 ref_node);
902 if (node->seq > seq)
903 continue;
904
905 switch (node->action) {
906 case BTRFS_ADD_DELAYED_EXTENT:
907 case BTRFS_UPDATE_DELAYED_HEAD:
908 WARN_ON(1);
909 continue;
910 case BTRFS_ADD_DELAYED_REF:
911 count = node->ref_mod;
912 break;
913 case BTRFS_DROP_DELAYED_REF:
914 count = node->ref_mod * -1;
915 break;
916 default:
917 BUG();
918 }
919 switch (node->type) {
920 case BTRFS_TREE_BLOCK_REF_KEY: {
921 /* NORMAL INDIRECT METADATA backref */
922 struct btrfs_delayed_tree_ref *ref;
923 struct btrfs_key *key_ptr = NULL;
924
925 if (head->extent_op && head->extent_op->update_key) {
926 btrfs_disk_key_to_cpu(cpu_key: &key, disk_key: &head->extent_op->key);
927 key_ptr = &key;
928 }
929
930 ref = btrfs_delayed_node_to_tree_ref(node);
931 ret = add_indirect_ref(fs_info, preftrees, root_id: ref->root,
932 key: key_ptr, level: ref->level + 1,
933 wanted_disk_byte: node->bytenr, count, sc,
934 GFP_ATOMIC);
935 break;
936 }
937 case BTRFS_SHARED_BLOCK_REF_KEY: {
938 /* SHARED DIRECT METADATA backref */
939 struct btrfs_delayed_tree_ref *ref;
940
941 ref = btrfs_delayed_node_to_tree_ref(node);
942
943 ret = add_direct_ref(fs_info, preftrees, level: ref->level + 1,
944 parent: ref->parent, wanted_disk_byte: node->bytenr, count,
945 sc, GFP_ATOMIC);
946 break;
947 }
948 case BTRFS_EXTENT_DATA_REF_KEY: {
949 /* NORMAL INDIRECT DATA backref */
950 struct btrfs_delayed_data_ref *ref;
951 ref = btrfs_delayed_node_to_data_ref(node);
952
953 key.objectid = ref->objectid;
954 key.type = BTRFS_EXTENT_DATA_KEY;
955 key.offset = ref->offset;
956
957 /*
958 * If we have a share check context and a reference for
959 * another inode, we can't exit immediately. This is
960 * because even if this is a BTRFS_ADD_DELAYED_REF
961 * reference we may find next a BTRFS_DROP_DELAYED_REF
962 * which cancels out this ADD reference.
963 *
964 * If this is a DROP reference and there was no previous
965 * ADD reference, then we need to signal that when we
966 * process references from the extent tree (through
967 * add_inline_refs() and add_keyed_refs()), we should
968 * not exit early if we find a reference for another
969 * inode, because one of the delayed DROP references
970 * may cancel that reference in the extent tree.
971 */
972 if (sc && count < 0)
973 sc->have_delayed_delete_refs = true;
974
975 ret = add_indirect_ref(fs_info, preftrees, root_id: ref->root,
976 key: &key, level: 0, wanted_disk_byte: node->bytenr, count, sc,
977 GFP_ATOMIC);
978 break;
979 }
980 case BTRFS_SHARED_DATA_REF_KEY: {
981 /* SHARED DIRECT FULL backref */
982 struct btrfs_delayed_data_ref *ref;
983
984 ref = btrfs_delayed_node_to_data_ref(node);
985
986 ret = add_direct_ref(fs_info, preftrees, level: 0, parent: ref->parent,
987 wanted_disk_byte: node->bytenr, count, sc,
988 GFP_ATOMIC);
989 break;
990 }
991 default:
992 WARN_ON(1);
993 }
994 /*
995 * We must ignore BACKREF_FOUND_SHARED until all delayed
996 * refs have been checked.
997 */
998 if (ret && (ret != BACKREF_FOUND_SHARED))
999 break;
1000 }
1001 if (!ret)
1002 ret = extent_is_shared(sc);
1003
1004 spin_unlock(lock: &head->lock);
1005 return ret;
1006}
1007
1008/*
1009 * add all inline backrefs for bytenr to the list
1010 *
1011 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1012 */
1013static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1014 struct btrfs_path *path,
1015 int *info_level, struct preftrees *preftrees,
1016 struct share_check *sc)
1017{
1018 int ret = 0;
1019 int slot;
1020 struct extent_buffer *leaf;
1021 struct btrfs_key key;
1022 struct btrfs_key found_key;
1023 unsigned long ptr;
1024 unsigned long end;
1025 struct btrfs_extent_item *ei;
1026 u64 flags;
1027 u64 item_size;
1028
1029 /*
1030 * enumerate all inline refs
1031 */
1032 leaf = path->nodes[0];
1033 slot = path->slots[0];
1034
1035 item_size = btrfs_item_size(eb: leaf, slot);
1036 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1037
1038 if (ctx->check_extent_item) {
1039 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1040 if (ret)
1041 return ret;
1042 }
1043
1044 flags = btrfs_extent_flags(eb: leaf, s: ei);
1045 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: slot);
1046
1047 ptr = (unsigned long)(ei + 1);
1048 end = (unsigned long)ei + item_size;
1049
1050 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1051 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1052 struct btrfs_tree_block_info *info;
1053
1054 info = (struct btrfs_tree_block_info *)ptr;
1055 *info_level = btrfs_tree_block_level(eb: leaf, s: info);
1056 ptr += sizeof(struct btrfs_tree_block_info);
1057 BUG_ON(ptr > end);
1058 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1059 *info_level = found_key.offset;
1060 } else {
1061 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1062 }
1063
1064 while (ptr < end) {
1065 struct btrfs_extent_inline_ref *iref;
1066 u64 offset;
1067 int type;
1068
1069 iref = (struct btrfs_extent_inline_ref *)ptr;
1070 type = btrfs_get_extent_inline_ref_type(eb: leaf, iref,
1071 is_data: BTRFS_REF_TYPE_ANY);
1072 if (type == BTRFS_REF_TYPE_INVALID)
1073 return -EUCLEAN;
1074
1075 offset = btrfs_extent_inline_ref_offset(eb: leaf, s: iref);
1076
1077 switch (type) {
1078 case BTRFS_SHARED_BLOCK_REF_KEY:
1079 ret = add_direct_ref(fs_info: ctx->fs_info, preftrees,
1080 level: *info_level + 1, parent: offset,
1081 wanted_disk_byte: ctx->bytenr, count: 1, NULL, GFP_NOFS);
1082 break;
1083 case BTRFS_SHARED_DATA_REF_KEY: {
1084 struct btrfs_shared_data_ref *sdref;
1085 int count;
1086
1087 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1088 count = btrfs_shared_data_ref_count(eb: leaf, s: sdref);
1089
1090 ret = add_direct_ref(fs_info: ctx->fs_info, preftrees, level: 0, parent: offset,
1091 wanted_disk_byte: ctx->bytenr, count, sc, GFP_NOFS);
1092 break;
1093 }
1094 case BTRFS_TREE_BLOCK_REF_KEY:
1095 ret = add_indirect_ref(fs_info: ctx->fs_info, preftrees, root_id: offset,
1096 NULL, level: *info_level + 1,
1097 wanted_disk_byte: ctx->bytenr, count: 1, NULL, GFP_NOFS);
1098 break;
1099 case BTRFS_EXTENT_DATA_REF_KEY: {
1100 struct btrfs_extent_data_ref *dref;
1101 int count;
1102 u64 root;
1103
1104 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1105 count = btrfs_extent_data_ref_count(eb: leaf, s: dref);
1106 key.objectid = btrfs_extent_data_ref_objectid(eb: leaf,
1107 s: dref);
1108 key.type = BTRFS_EXTENT_DATA_KEY;
1109 key.offset = btrfs_extent_data_ref_offset(eb: leaf, s: dref);
1110
1111 if (sc && key.objectid != sc->inum &&
1112 !sc->have_delayed_delete_refs) {
1113 ret = BACKREF_FOUND_SHARED;
1114 break;
1115 }
1116
1117 root = btrfs_extent_data_ref_root(eb: leaf, s: dref);
1118
1119 if (!ctx->skip_data_ref ||
1120 !ctx->skip_data_ref(root, key.objectid, key.offset,
1121 ctx->user_ctx))
1122 ret = add_indirect_ref(fs_info: ctx->fs_info, preftrees,
1123 root_id: root, key: &key, level: 0, wanted_disk_byte: ctx->bytenr,
1124 count, sc, GFP_NOFS);
1125 break;
1126 }
1127 case BTRFS_EXTENT_OWNER_REF_KEY:
1128 ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1129 break;
1130 default:
1131 WARN_ON(1);
1132 }
1133 if (ret)
1134 return ret;
1135 ptr += btrfs_extent_inline_ref_size(type);
1136 }
1137
1138 return 0;
1139}
1140
1141/*
1142 * add all non-inline backrefs for bytenr to the list
1143 *
1144 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1145 */
1146static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1147 struct btrfs_root *extent_root,
1148 struct btrfs_path *path,
1149 int info_level, struct preftrees *preftrees,
1150 struct share_check *sc)
1151{
1152 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1153 int ret;
1154 int slot;
1155 struct extent_buffer *leaf;
1156 struct btrfs_key key;
1157
1158 while (1) {
1159 ret = btrfs_next_item(root: extent_root, p: path);
1160 if (ret < 0)
1161 break;
1162 if (ret) {
1163 ret = 0;
1164 break;
1165 }
1166
1167 slot = path->slots[0];
1168 leaf = path->nodes[0];
1169 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
1170
1171 if (key.objectid != ctx->bytenr)
1172 break;
1173 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1174 continue;
1175 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1176 break;
1177
1178 switch (key.type) {
1179 case BTRFS_SHARED_BLOCK_REF_KEY:
1180 /* SHARED DIRECT METADATA backref */
1181 ret = add_direct_ref(fs_info, preftrees,
1182 level: info_level + 1, parent: key.offset,
1183 wanted_disk_byte: ctx->bytenr, count: 1, NULL, GFP_NOFS);
1184 break;
1185 case BTRFS_SHARED_DATA_REF_KEY: {
1186 /* SHARED DIRECT FULL backref */
1187 struct btrfs_shared_data_ref *sdref;
1188 int count;
1189
1190 sdref = btrfs_item_ptr(leaf, slot,
1191 struct btrfs_shared_data_ref);
1192 count = btrfs_shared_data_ref_count(eb: leaf, s: sdref);
1193 ret = add_direct_ref(fs_info, preftrees, level: 0,
1194 parent: key.offset, wanted_disk_byte: ctx->bytenr, count,
1195 sc, GFP_NOFS);
1196 break;
1197 }
1198 case BTRFS_TREE_BLOCK_REF_KEY:
1199 /* NORMAL INDIRECT METADATA backref */
1200 ret = add_indirect_ref(fs_info, preftrees, root_id: key.offset,
1201 NULL, level: info_level + 1, wanted_disk_byte: ctx->bytenr,
1202 count: 1, NULL, GFP_NOFS);
1203 break;
1204 case BTRFS_EXTENT_DATA_REF_KEY: {
1205 /* NORMAL INDIRECT DATA backref */
1206 struct btrfs_extent_data_ref *dref;
1207 int count;
1208 u64 root;
1209
1210 dref = btrfs_item_ptr(leaf, slot,
1211 struct btrfs_extent_data_ref);
1212 count = btrfs_extent_data_ref_count(eb: leaf, s: dref);
1213 key.objectid = btrfs_extent_data_ref_objectid(eb: leaf,
1214 s: dref);
1215 key.type = BTRFS_EXTENT_DATA_KEY;
1216 key.offset = btrfs_extent_data_ref_offset(eb: leaf, s: dref);
1217
1218 if (sc && key.objectid != sc->inum &&
1219 !sc->have_delayed_delete_refs) {
1220 ret = BACKREF_FOUND_SHARED;
1221 break;
1222 }
1223
1224 root = btrfs_extent_data_ref_root(eb: leaf, s: dref);
1225
1226 if (!ctx->skip_data_ref ||
1227 !ctx->skip_data_ref(root, key.objectid, key.offset,
1228 ctx->user_ctx))
1229 ret = add_indirect_ref(fs_info, preftrees, root_id: root,
1230 key: &key, level: 0, wanted_disk_byte: ctx->bytenr,
1231 count, sc, GFP_NOFS);
1232 break;
1233 }
1234 default:
1235 WARN_ON(1);
1236 }
1237 if (ret)
1238 return ret;
1239
1240 }
1241
1242 return ret;
1243}
1244
1245/*
1246 * The caller has joined a transaction or is holding a read lock on the
1247 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1248 * snapshot field changing while updating or checking the cache.
1249 */
1250static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1251 struct btrfs_root *root,
1252 u64 bytenr, int level, bool *is_shared)
1253{
1254 const struct btrfs_fs_info *fs_info = root->fs_info;
1255 struct btrfs_backref_shared_cache_entry *entry;
1256
1257 if (!current->journal_info)
1258 lockdep_assert_held(&fs_info->commit_root_sem);
1259
1260 if (!ctx->use_path_cache)
1261 return false;
1262
1263 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1264 return false;
1265
1266 /*
1267 * Level -1 is used for the data extent, which is not reliable to cache
1268 * because its reference count can increase or decrease without us
1269 * realizing. We cache results only for extent buffers that lead from
1270 * the root node down to the leaf with the file extent item.
1271 */
1272 ASSERT(level >= 0);
1273
1274 entry = &ctx->path_cache_entries[level];
1275
1276 /* Unused cache entry or being used for some other extent buffer. */
1277 if (entry->bytenr != bytenr)
1278 return false;
1279
1280 /*
1281 * We cached a false result, but the last snapshot generation of the
1282 * root changed, so we now have a snapshot. Don't trust the result.
1283 */
1284 if (!entry->is_shared &&
1285 entry->gen != btrfs_root_last_snapshot(s: &root->root_item))
1286 return false;
1287
1288 /*
1289 * If we cached a true result and the last generation used for dropping
1290 * a root changed, we can not trust the result, because the dropped root
1291 * could be a snapshot sharing this extent buffer.
1292 */
1293 if (entry->is_shared &&
1294 entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1295 return false;
1296
1297 *is_shared = entry->is_shared;
1298 /*
1299 * If the node at this level is shared, than all nodes below are also
1300 * shared. Currently some of the nodes below may be marked as not shared
1301 * because we have just switched from one leaf to another, and switched
1302 * also other nodes above the leaf and below the current level, so mark
1303 * them as shared.
1304 */
1305 if (*is_shared) {
1306 for (int i = 0; i < level; i++) {
1307 ctx->path_cache_entries[i].is_shared = true;
1308 ctx->path_cache_entries[i].gen = entry->gen;
1309 }
1310 }
1311
1312 return true;
1313}
1314
1315/*
1316 * The caller has joined a transaction or is holding a read lock on the
1317 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1318 * snapshot field changing while updating or checking the cache.
1319 */
1320static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1321 struct btrfs_root *root,
1322 u64 bytenr, int level, bool is_shared)
1323{
1324 const struct btrfs_fs_info *fs_info = root->fs_info;
1325 struct btrfs_backref_shared_cache_entry *entry;
1326 u64 gen;
1327
1328 if (!current->journal_info)
1329 lockdep_assert_held(&fs_info->commit_root_sem);
1330
1331 if (!ctx->use_path_cache)
1332 return;
1333
1334 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1335 return;
1336
1337 /*
1338 * Level -1 is used for the data extent, which is not reliable to cache
1339 * because its reference count can increase or decrease without us
1340 * realizing. We cache results only for extent buffers that lead from
1341 * the root node down to the leaf with the file extent item.
1342 */
1343 ASSERT(level >= 0);
1344
1345 if (is_shared)
1346 gen = btrfs_get_last_root_drop_gen(fs_info);
1347 else
1348 gen = btrfs_root_last_snapshot(s: &root->root_item);
1349
1350 entry = &ctx->path_cache_entries[level];
1351 entry->bytenr = bytenr;
1352 entry->is_shared = is_shared;
1353 entry->gen = gen;
1354
1355 /*
1356 * If we found an extent buffer is shared, set the cache result for all
1357 * extent buffers below it to true. As nodes in the path are COWed,
1358 * their sharedness is moved to their children, and if a leaf is COWed,
1359 * then the sharedness of a data extent becomes direct, the refcount of
1360 * data extent is increased in the extent item at the extent tree.
1361 */
1362 if (is_shared) {
1363 for (int i = 0; i < level; i++) {
1364 entry = &ctx->path_cache_entries[i];
1365 entry->is_shared = is_shared;
1366 entry->gen = gen;
1367 }
1368 }
1369}
1370
1371/*
1372 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1373 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1374 * indirect refs to their parent bytenr.
1375 * When roots are found, they're added to the roots list
1376 *
1377 * @ctx: Backref walking context object, must be not NULL.
1378 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1379 * shared extent is detected.
1380 *
1381 * Otherwise this returns 0 for success and <0 for an error.
1382 *
1383 * FIXME some caching might speed things up
1384 */
1385static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1386 struct share_check *sc)
1387{
1388 struct btrfs_root *root = btrfs_extent_root(fs_info: ctx->fs_info, bytenr: ctx->bytenr);
1389 struct btrfs_key key;
1390 struct btrfs_path *path;
1391 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1392 struct btrfs_delayed_ref_head *head;
1393 int info_level = 0;
1394 int ret;
1395 struct prelim_ref *ref;
1396 struct rb_node *node;
1397 struct extent_inode_elem *eie = NULL;
1398 struct preftrees preftrees = {
1399 .direct = PREFTREE_INIT,
1400 .indirect = PREFTREE_INIT,
1401 .indirect_missing_keys = PREFTREE_INIT
1402 };
1403
1404 /* Roots ulist is not needed when using a sharedness check context. */
1405 if (sc)
1406 ASSERT(ctx->roots == NULL);
1407
1408 key.objectid = ctx->bytenr;
1409 key.offset = (u64)-1;
1410 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1411 key.type = BTRFS_METADATA_ITEM_KEY;
1412 else
1413 key.type = BTRFS_EXTENT_ITEM_KEY;
1414
1415 path = btrfs_alloc_path();
1416 if (!path)
1417 return -ENOMEM;
1418 if (!ctx->trans) {
1419 path->search_commit_root = 1;
1420 path->skip_locking = 1;
1421 }
1422
1423 if (ctx->time_seq == BTRFS_SEQ_LAST)
1424 path->skip_locking = 1;
1425
1426again:
1427 head = NULL;
1428
1429 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
1430 if (ret < 0)
1431 goto out;
1432 if (ret == 0) {
1433 /*
1434 * Key with offset -1 found, there would have to exist an extent
1435 * item with such offset, but this is out of the valid range.
1436 */
1437 ret = -EUCLEAN;
1438 goto out;
1439 }
1440
1441 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1442 ctx->time_seq != BTRFS_SEQ_LAST) {
1443 /*
1444 * We have a specific time_seq we care about and trans which
1445 * means we have the path lock, we need to grab the ref head and
1446 * lock it so we have a consistent view of the refs at the given
1447 * time.
1448 */
1449 delayed_refs = &ctx->trans->transaction->delayed_refs;
1450 spin_lock(lock: &delayed_refs->lock);
1451 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr: ctx->bytenr);
1452 if (head) {
1453 if (!mutex_trylock(lock: &head->mutex)) {
1454 refcount_inc(r: &head->refs);
1455 spin_unlock(lock: &delayed_refs->lock);
1456
1457 btrfs_release_path(p: path);
1458
1459 /*
1460 * Mutex was contended, block until it's
1461 * released and try again
1462 */
1463 mutex_lock(&head->mutex);
1464 mutex_unlock(lock: &head->mutex);
1465 btrfs_put_delayed_ref_head(head);
1466 goto again;
1467 }
1468 spin_unlock(lock: &delayed_refs->lock);
1469 ret = add_delayed_refs(fs_info: ctx->fs_info, head, seq: ctx->time_seq,
1470 preftrees: &preftrees, sc);
1471 mutex_unlock(lock: &head->mutex);
1472 if (ret)
1473 goto out;
1474 } else {
1475 spin_unlock(lock: &delayed_refs->lock);
1476 }
1477 }
1478
1479 if (path->slots[0]) {
1480 struct extent_buffer *leaf;
1481 int slot;
1482
1483 path->slots[0]--;
1484 leaf = path->nodes[0];
1485 slot = path->slots[0];
1486 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
1487 if (key.objectid == ctx->bytenr &&
1488 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1489 key.type == BTRFS_METADATA_ITEM_KEY)) {
1490 ret = add_inline_refs(ctx, path, info_level: &info_level,
1491 preftrees: &preftrees, sc);
1492 if (ret)
1493 goto out;
1494 ret = add_keyed_refs(ctx, extent_root: root, path, info_level,
1495 preftrees: &preftrees, sc);
1496 if (ret)
1497 goto out;
1498 }
1499 }
1500
1501 /*
1502 * If we have a share context and we reached here, it means the extent
1503 * is not directly shared (no multiple reference items for it),
1504 * otherwise we would have exited earlier with a return value of
1505 * BACKREF_FOUND_SHARED after processing delayed references or while
1506 * processing inline or keyed references from the extent tree.
1507 * The extent may however be indirectly shared through shared subtrees
1508 * as a result from creating snapshots, so we determine below what is
1509 * its parent node, in case we are dealing with a metadata extent, or
1510 * what's the leaf (or leaves), from a fs tree, that has a file extent
1511 * item pointing to it in case we are dealing with a data extent.
1512 */
1513 ASSERT(extent_is_shared(sc) == 0);
1514
1515 /*
1516 * If we are here for a data extent and we have a share_check structure
1517 * it means the data extent is not directly shared (does not have
1518 * multiple reference items), so we have to check if a path in the fs
1519 * tree (going from the root node down to the leaf that has the file
1520 * extent item pointing to the data extent) is shared, that is, if any
1521 * of the extent buffers in the path is referenced by other trees.
1522 */
1523 if (sc && ctx->bytenr == sc->data_bytenr) {
1524 /*
1525 * If our data extent is from a generation more recent than the
1526 * last generation used to snapshot the root, then we know that
1527 * it can not be shared through subtrees, so we can skip
1528 * resolving indirect references, there's no point in
1529 * determining the extent buffers for the path from the fs tree
1530 * root node down to the leaf that has the file extent item that
1531 * points to the data extent.
1532 */
1533 if (sc->data_extent_gen >
1534 btrfs_root_last_snapshot(s: &sc->root->root_item)) {
1535 ret = BACKREF_FOUND_NOT_SHARED;
1536 goto out;
1537 }
1538
1539 /*
1540 * If we are only determining if a data extent is shared or not
1541 * and the corresponding file extent item is located in the same
1542 * leaf as the previous file extent item, we can skip resolving
1543 * indirect references for a data extent, since the fs tree path
1544 * is the same (same leaf, so same path). We skip as long as the
1545 * cached result for the leaf is valid and only if there's only
1546 * one file extent item pointing to the data extent, because in
1547 * the case of multiple file extent items, they may be located
1548 * in different leaves and therefore we have multiple paths.
1549 */
1550 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1551 sc->self_ref_count == 1) {
1552 bool cached;
1553 bool is_shared;
1554
1555 cached = lookup_backref_shared_cache(ctx: sc->ctx, root: sc->root,
1556 bytenr: sc->ctx->curr_leaf_bytenr,
1557 level: 0, is_shared: &is_shared);
1558 if (cached) {
1559 if (is_shared)
1560 ret = BACKREF_FOUND_SHARED;
1561 else
1562 ret = BACKREF_FOUND_NOT_SHARED;
1563 goto out;
1564 }
1565 }
1566 }
1567
1568 btrfs_release_path(p: path);
1569
1570 ret = add_missing_keys(fs_info: ctx->fs_info, preftrees: &preftrees, lock: path->skip_locking == 0);
1571 if (ret)
1572 goto out;
1573
1574 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1575
1576 ret = resolve_indirect_refs(ctx, path, preftrees: &preftrees, sc);
1577 if (ret)
1578 goto out;
1579
1580 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1581
1582 /*
1583 * This walks the tree of merged and resolved refs. Tree blocks are
1584 * read in as needed. Unique entries are added to the ulist, and
1585 * the list of found roots is updated.
1586 *
1587 * We release the entire tree in one go before returning.
1588 */
1589 node = rb_first_cached(&preftrees.direct.root);
1590 while (node) {
1591 ref = rb_entry(node, struct prelim_ref, rbnode);
1592 node = rb_next(&ref->rbnode);
1593 /*
1594 * ref->count < 0 can happen here if there are delayed
1595 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1596 * prelim_ref_insert() relies on this when merging
1597 * identical refs to keep the overall count correct.
1598 * prelim_ref_insert() will merge only those refs
1599 * which compare identically. Any refs having
1600 * e.g. different offsets would not be merged,
1601 * and would retain their original ref->count < 0.
1602 */
1603 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1604 /* no parent == root of tree */
1605 ret = ulist_add(ulist: ctx->roots, val: ref->root_id, aux: 0, GFP_NOFS);
1606 if (ret < 0)
1607 goto out;
1608 }
1609 if (ref->count && ref->parent) {
1610 if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1611 ref->level == 0) {
1612 struct btrfs_tree_parent_check check = { 0 };
1613 struct extent_buffer *eb;
1614
1615 check.level = ref->level;
1616
1617 eb = read_tree_block(fs_info: ctx->fs_info, bytenr: ref->parent,
1618 check: &check);
1619 if (IS_ERR(ptr: eb)) {
1620 ret = PTR_ERR(ptr: eb);
1621 goto out;
1622 }
1623 if (!extent_buffer_uptodate(eb)) {
1624 free_extent_buffer(eb);
1625 ret = -EIO;
1626 goto out;
1627 }
1628
1629 if (!path->skip_locking)
1630 btrfs_tree_read_lock(eb);
1631 ret = find_extent_in_eb(ctx, eb, eie: &eie);
1632 if (!path->skip_locking)
1633 btrfs_tree_read_unlock(eb);
1634 free_extent_buffer(eb);
1635 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1636 ret < 0)
1637 goto out;
1638 ref->inode_list = eie;
1639 /*
1640 * We transferred the list ownership to the ref,
1641 * so set to NULL to avoid a double free in case
1642 * an error happens after this.
1643 */
1644 eie = NULL;
1645 }
1646 ret = ulist_add_merge_ptr(ulist: ctx->refs, val: ref->parent,
1647 aux: ref->inode_list,
1648 old_aux: (void **)&eie, GFP_NOFS);
1649 if (ret < 0)
1650 goto out;
1651 if (!ret && !ctx->skip_inode_ref_list) {
1652 /*
1653 * We've recorded that parent, so we must extend
1654 * its inode list here.
1655 *
1656 * However if there was corruption we may not
1657 * have found an eie, return an error in this
1658 * case.
1659 */
1660 ASSERT(eie);
1661 if (!eie) {
1662 ret = -EUCLEAN;
1663 goto out;
1664 }
1665 while (eie->next)
1666 eie = eie->next;
1667 eie->next = ref->inode_list;
1668 }
1669 eie = NULL;
1670 /*
1671 * We have transferred the inode list ownership from
1672 * this ref to the ref we added to the 'refs' ulist.
1673 * So set this ref's inode list to NULL to avoid
1674 * use-after-free when our caller uses it or double
1675 * frees in case an error happens before we return.
1676 */
1677 ref->inode_list = NULL;
1678 }
1679 cond_resched();
1680 }
1681
1682out:
1683 btrfs_free_path(p: path);
1684
1685 prelim_release(preftree: &preftrees.direct);
1686 prelim_release(preftree: &preftrees.indirect);
1687 prelim_release(preftree: &preftrees.indirect_missing_keys);
1688
1689 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1690 free_inode_elem_list(eie);
1691 return ret;
1692}
1693
1694/*
1695 * Finds all leaves with a reference to the specified combination of
1696 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1697 * added to the ulist at @ctx->refs, and that ulist is allocated by this
1698 * function. The caller should free the ulist with free_leaf_list() if
1699 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1700 * enough.
1701 *
1702 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1703 */
1704int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1705{
1706 int ret;
1707
1708 ASSERT(ctx->refs == NULL);
1709
1710 ctx->refs = ulist_alloc(GFP_NOFS);
1711 if (!ctx->refs)
1712 return -ENOMEM;
1713
1714 ret = find_parent_nodes(ctx, NULL);
1715 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1716 (ret < 0 && ret != -ENOENT)) {
1717 free_leaf_list(ulist: ctx->refs);
1718 ctx->refs = NULL;
1719 return ret;
1720 }
1721
1722 return 0;
1723}
1724
1725/*
1726 * Walk all backrefs for a given extent to find all roots that reference this
1727 * extent. Walking a backref means finding all extents that reference this
1728 * extent and in turn walk the backrefs of those, too. Naturally this is a
1729 * recursive process, but here it is implemented in an iterative fashion: We
1730 * find all referencing extents for the extent in question and put them on a
1731 * list. In turn, we find all referencing extents for those, further appending
1732 * to the list. The way we iterate the list allows adding more elements after
1733 * the current while iterating. The process stops when we reach the end of the
1734 * list.
1735 *
1736 * Found roots are added to @ctx->roots, which is allocated by this function if
1737 * it points to NULL, in which case the caller is responsible for freeing it
1738 * after it's not needed anymore.
1739 * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1740 * ulist to do temporary work, and frees it before returning.
1741 *
1742 * Returns 0 on success, < 0 on error.
1743 */
1744static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1745{
1746 const u64 orig_bytenr = ctx->bytenr;
1747 const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1748 bool roots_ulist_allocated = false;
1749 struct ulist_iterator uiter;
1750 int ret = 0;
1751
1752 ASSERT(ctx->refs == NULL);
1753
1754 ctx->refs = ulist_alloc(GFP_NOFS);
1755 if (!ctx->refs)
1756 return -ENOMEM;
1757
1758 if (!ctx->roots) {
1759 ctx->roots = ulist_alloc(GFP_NOFS);
1760 if (!ctx->roots) {
1761 ulist_free(ulist: ctx->refs);
1762 ctx->refs = NULL;
1763 return -ENOMEM;
1764 }
1765 roots_ulist_allocated = true;
1766 }
1767
1768 ctx->skip_inode_ref_list = true;
1769
1770 ULIST_ITER_INIT(&uiter);
1771 while (1) {
1772 struct ulist_node *node;
1773
1774 ret = find_parent_nodes(ctx, NULL);
1775 if (ret < 0 && ret != -ENOENT) {
1776 if (roots_ulist_allocated) {
1777 ulist_free(ulist: ctx->roots);
1778 ctx->roots = NULL;
1779 }
1780 break;
1781 }
1782 ret = 0;
1783 node = ulist_next(ulist: ctx->refs, uiter: &uiter);
1784 if (!node)
1785 break;
1786 ctx->bytenr = node->val;
1787 cond_resched();
1788 }
1789
1790 ulist_free(ulist: ctx->refs);
1791 ctx->refs = NULL;
1792 ctx->bytenr = orig_bytenr;
1793 ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1794
1795 return ret;
1796}
1797
1798int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1799 bool skip_commit_root_sem)
1800{
1801 int ret;
1802
1803 if (!ctx->trans && !skip_commit_root_sem)
1804 down_read(sem: &ctx->fs_info->commit_root_sem);
1805 ret = btrfs_find_all_roots_safe(ctx);
1806 if (!ctx->trans && !skip_commit_root_sem)
1807 up_read(sem: &ctx->fs_info->commit_root_sem);
1808 return ret;
1809}
1810
1811struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1812{
1813 struct btrfs_backref_share_check_ctx *ctx;
1814
1815 ctx = kzalloc(size: sizeof(*ctx), GFP_KERNEL);
1816 if (!ctx)
1817 return NULL;
1818
1819 ulist_init(ulist: &ctx->refs);
1820
1821 return ctx;
1822}
1823
1824void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1825{
1826 if (!ctx)
1827 return;
1828
1829 ulist_release(ulist: &ctx->refs);
1830 kfree(objp: ctx);
1831}
1832
1833/*
1834 * Check if a data extent is shared or not.
1835 *
1836 * @inode: The inode whose extent we are checking.
1837 * @bytenr: Logical bytenr of the extent we are checking.
1838 * @extent_gen: Generation of the extent (file extent item) or 0 if it is
1839 * not known.
1840 * @ctx: A backref sharedness check context.
1841 *
1842 * btrfs_is_data_extent_shared uses the backref walking code but will short
1843 * circuit as soon as it finds a root or inode that doesn't match the
1844 * one passed in. This provides a significant performance benefit for
1845 * callers (such as fiemap) which want to know whether the extent is
1846 * shared but do not need a ref count.
1847 *
1848 * This attempts to attach to the running transaction in order to account for
1849 * delayed refs, but continues on even when no running transaction exists.
1850 *
1851 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1852 */
1853int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1854 u64 extent_gen,
1855 struct btrfs_backref_share_check_ctx *ctx)
1856{
1857 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1858 struct btrfs_root *root = inode->root;
1859 struct btrfs_fs_info *fs_info = root->fs_info;
1860 struct btrfs_trans_handle *trans;
1861 struct ulist_iterator uiter;
1862 struct ulist_node *node;
1863 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1864 int ret = 0;
1865 struct share_check shared = {
1866 .ctx = ctx,
1867 .root = root,
1868 .inum = btrfs_ino(inode),
1869 .data_bytenr = bytenr,
1870 .data_extent_gen = extent_gen,
1871 .share_count = 0,
1872 .self_ref_count = 0,
1873 .have_delayed_delete_refs = false,
1874 };
1875 int level;
1876 bool leaf_cached;
1877 bool leaf_is_shared;
1878
1879 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1880 if (ctx->prev_extents_cache[i].bytenr == bytenr)
1881 return ctx->prev_extents_cache[i].is_shared;
1882 }
1883
1884 ulist_init(ulist: &ctx->refs);
1885
1886 trans = btrfs_join_transaction_nostart(root);
1887 if (IS_ERR(ptr: trans)) {
1888 if (PTR_ERR(ptr: trans) != -ENOENT && PTR_ERR(ptr: trans) != -EROFS) {
1889 ret = PTR_ERR(ptr: trans);
1890 goto out;
1891 }
1892 trans = NULL;
1893 down_read(sem: &fs_info->commit_root_sem);
1894 } else {
1895 btrfs_get_tree_mod_seq(fs_info, elem: &elem);
1896 walk_ctx.time_seq = elem.seq;
1897 }
1898
1899 ctx->use_path_cache = true;
1900
1901 /*
1902 * We may have previously determined that the current leaf is shared.
1903 * If it is, then we have a data extent that is shared due to a shared
1904 * subtree (caused by snapshotting) and we don't need to check for data
1905 * backrefs. If the leaf is not shared, then we must do backref walking
1906 * to determine if the data extent is shared through reflinks.
1907 */
1908 leaf_cached = lookup_backref_shared_cache(ctx, root,
1909 bytenr: ctx->curr_leaf_bytenr, level: 0,
1910 is_shared: &leaf_is_shared);
1911 if (leaf_cached && leaf_is_shared) {
1912 ret = 1;
1913 goto out_trans;
1914 }
1915
1916 walk_ctx.skip_inode_ref_list = true;
1917 walk_ctx.trans = trans;
1918 walk_ctx.fs_info = fs_info;
1919 walk_ctx.refs = &ctx->refs;
1920
1921 /* -1 means we are in the bytenr of the data extent. */
1922 level = -1;
1923 ULIST_ITER_INIT(&uiter);
1924 while (1) {
1925 const unsigned long prev_ref_count = ctx->refs.nnodes;
1926
1927 walk_ctx.bytenr = bytenr;
1928 ret = find_parent_nodes(ctx: &walk_ctx, sc: &shared);
1929 if (ret == BACKREF_FOUND_SHARED ||
1930 ret == BACKREF_FOUND_NOT_SHARED) {
1931 /* If shared must return 1, otherwise return 0. */
1932 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1933 if (level >= 0)
1934 store_backref_shared_cache(ctx, root, bytenr,
1935 level, is_shared: ret == 1);
1936 break;
1937 }
1938 if (ret < 0 && ret != -ENOENT)
1939 break;
1940 ret = 0;
1941
1942 /*
1943 * More than one extent buffer (bytenr) may have been added to
1944 * the ctx->refs ulist, in which case we have to check multiple
1945 * tree paths in case the first one is not shared, so we can not
1946 * use the path cache which is made for a single path. Multiple
1947 * extent buffers at the current level happen when:
1948 *
1949 * 1) level -1, the data extent: If our data extent was not
1950 * directly shared (without multiple reference items), then
1951 * it might have a single reference item with a count > 1 for
1952 * the same offset, which means there are 2 (or more) file
1953 * extent items that point to the data extent - this happens
1954 * when a file extent item needs to be split and then one
1955 * item gets moved to another leaf due to a b+tree leaf split
1956 * when inserting some item. In this case the file extent
1957 * items may be located in different leaves and therefore
1958 * some of the leaves may be referenced through shared
1959 * subtrees while others are not. Since our extent buffer
1960 * cache only works for a single path (by far the most common
1961 * case and simpler to deal with), we can not use it if we
1962 * have multiple leaves (which implies multiple paths).
1963 *
1964 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1965 * and indirect references on a b+tree node/leaf, so we have
1966 * to check multiple paths, and the extent buffer (the
1967 * current bytenr) may be shared or not. One example is
1968 * during relocation as we may get a shared tree block ref
1969 * (direct ref) and a non-shared tree block ref (indirect
1970 * ref) for the same node/leaf.
1971 */
1972 if ((ctx->refs.nnodes - prev_ref_count) > 1)
1973 ctx->use_path_cache = false;
1974
1975 if (level >= 0)
1976 store_backref_shared_cache(ctx, root, bytenr,
1977 level, is_shared: false);
1978 node = ulist_next(ulist: &ctx->refs, uiter: &uiter);
1979 if (!node)
1980 break;
1981 bytenr = node->val;
1982 if (ctx->use_path_cache) {
1983 bool is_shared;
1984 bool cached;
1985
1986 level++;
1987 cached = lookup_backref_shared_cache(ctx, root, bytenr,
1988 level, is_shared: &is_shared);
1989 if (cached) {
1990 ret = (is_shared ? 1 : 0);
1991 break;
1992 }
1993 }
1994 shared.share_count = 0;
1995 shared.have_delayed_delete_refs = false;
1996 cond_resched();
1997 }
1998
1999 /*
2000 * If the path cache is disabled, then it means at some tree level we
2001 * got multiple parents due to a mix of direct and indirect backrefs or
2002 * multiple leaves with file extent items pointing to the same data
2003 * extent. We have to invalidate the cache and cache only the sharedness
2004 * result for the levels where we got only one node/reference.
2005 */
2006 if (!ctx->use_path_cache) {
2007 int i = 0;
2008
2009 level--;
2010 if (ret >= 0 && level >= 0) {
2011 bytenr = ctx->path_cache_entries[level].bytenr;
2012 ctx->use_path_cache = true;
2013 store_backref_shared_cache(ctx, root, bytenr, level, is_shared: ret);
2014 i = level + 1;
2015 }
2016
2017 for ( ; i < BTRFS_MAX_LEVEL; i++)
2018 ctx->path_cache_entries[i].bytenr = 0;
2019 }
2020
2021 /*
2022 * Cache the sharedness result for the data extent if we know our inode
2023 * has more than 1 file extent item that refers to the data extent.
2024 */
2025 if (ret >= 0 && shared.self_ref_count > 1) {
2026 int slot = ctx->prev_extents_cache_slot;
2027
2028 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2029 ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2030
2031 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2032 ctx->prev_extents_cache_slot = slot;
2033 }
2034
2035out_trans:
2036 if (trans) {
2037 btrfs_put_tree_mod_seq(fs_info, elem: &elem);
2038 btrfs_end_transaction(trans);
2039 } else {
2040 up_read(sem: &fs_info->commit_root_sem);
2041 }
2042out:
2043 ulist_release(ulist: &ctx->refs);
2044 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2045
2046 return ret;
2047}
2048
2049int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2050 u64 start_off, struct btrfs_path *path,
2051 struct btrfs_inode_extref **ret_extref,
2052 u64 *found_off)
2053{
2054 int ret, slot;
2055 struct btrfs_key key;
2056 struct btrfs_key found_key;
2057 struct btrfs_inode_extref *extref;
2058 const struct extent_buffer *leaf;
2059 unsigned long ptr;
2060
2061 key.objectid = inode_objectid;
2062 key.type = BTRFS_INODE_EXTREF_KEY;
2063 key.offset = start_off;
2064
2065 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
2066 if (ret < 0)
2067 return ret;
2068
2069 while (1) {
2070 leaf = path->nodes[0];
2071 slot = path->slots[0];
2072 if (slot >= btrfs_header_nritems(eb: leaf)) {
2073 /*
2074 * If the item at offset is not found,
2075 * btrfs_search_slot will point us to the slot
2076 * where it should be inserted. In our case
2077 * that will be the slot directly before the
2078 * next INODE_REF_KEY_V2 item. In the case
2079 * that we're pointing to the last slot in a
2080 * leaf, we must move one leaf over.
2081 */
2082 ret = btrfs_next_leaf(root, path);
2083 if (ret) {
2084 if (ret >= 1)
2085 ret = -ENOENT;
2086 break;
2087 }
2088 continue;
2089 }
2090
2091 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: slot);
2092
2093 /*
2094 * Check that we're still looking at an extended ref key for
2095 * this particular objectid. If we have different
2096 * objectid or type then there are no more to be found
2097 * in the tree and we can exit.
2098 */
2099 ret = -ENOENT;
2100 if (found_key.objectid != inode_objectid)
2101 break;
2102 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2103 break;
2104
2105 ret = 0;
2106 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2107 extref = (struct btrfs_inode_extref *)ptr;
2108 *ret_extref = extref;
2109 if (found_off)
2110 *found_off = found_key.offset;
2111 break;
2112 }
2113
2114 return ret;
2115}
2116
2117/*
2118 * this iterates to turn a name (from iref/extref) into a full filesystem path.
2119 * Elements of the path are separated by '/' and the path is guaranteed to be
2120 * 0-terminated. the path is only given within the current file system.
2121 * Therefore, it never starts with a '/'. the caller is responsible to provide
2122 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2123 * the start point of the resulting string is returned. this pointer is within
2124 * dest, normally.
2125 * in case the path buffer would overflow, the pointer is decremented further
2126 * as if output was written to the buffer, though no more output is actually
2127 * generated. that way, the caller can determine how much space would be
2128 * required for the path to fit into the buffer. in that case, the returned
2129 * value will be smaller than dest. callers must check this!
2130 */
2131char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2132 u32 name_len, unsigned long name_off,
2133 struct extent_buffer *eb_in, u64 parent,
2134 char *dest, u32 size)
2135{
2136 int slot;
2137 u64 next_inum;
2138 int ret;
2139 s64 bytes_left = ((s64)size) - 1;
2140 struct extent_buffer *eb = eb_in;
2141 struct btrfs_key found_key;
2142 struct btrfs_inode_ref *iref;
2143
2144 if (bytes_left >= 0)
2145 dest[bytes_left] = '\0';
2146
2147 while (1) {
2148 bytes_left -= name_len;
2149 if (bytes_left >= 0)
2150 read_extent_buffer(eb, dst: dest + bytes_left,
2151 start: name_off, len: name_len);
2152 if (eb != eb_in) {
2153 if (!path->skip_locking)
2154 btrfs_tree_read_unlock(eb);
2155 free_extent_buffer(eb);
2156 }
2157 ret = btrfs_find_item(fs_root, path, inum: parent, ioff: 0,
2158 BTRFS_INODE_REF_KEY, found_key: &found_key);
2159 if (ret > 0)
2160 ret = -ENOENT;
2161 if (ret)
2162 break;
2163
2164 next_inum = found_key.offset;
2165
2166 /* regular exit ahead */
2167 if (parent == next_inum)
2168 break;
2169
2170 slot = path->slots[0];
2171 eb = path->nodes[0];
2172 /* make sure we can use eb after releasing the path */
2173 if (eb != eb_in) {
2174 path->nodes[0] = NULL;
2175 path->locks[0] = 0;
2176 }
2177 btrfs_release_path(p: path);
2178 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2179
2180 name_len = btrfs_inode_ref_name_len(eb, s: iref);
2181 name_off = (unsigned long)(iref + 1);
2182
2183 parent = next_inum;
2184 --bytes_left;
2185 if (bytes_left >= 0)
2186 dest[bytes_left] = '/';
2187 }
2188
2189 btrfs_release_path(p: path);
2190
2191 if (ret)
2192 return ERR_PTR(error: ret);
2193
2194 return dest + bytes_left;
2195}
2196
2197/*
2198 * this makes the path point to (logical EXTENT_ITEM *)
2199 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2200 * tree blocks and <0 on error.
2201 */
2202int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2203 struct btrfs_path *path, struct btrfs_key *found_key,
2204 u64 *flags_ret)
2205{
2206 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr: logical);
2207 int ret;
2208 u64 flags;
2209 u64 size = 0;
2210 u32 item_size;
2211 const struct extent_buffer *eb;
2212 struct btrfs_extent_item *ei;
2213 struct btrfs_key key;
2214
2215 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2216 key.type = BTRFS_METADATA_ITEM_KEY;
2217 else
2218 key.type = BTRFS_EXTENT_ITEM_KEY;
2219 key.objectid = logical;
2220 key.offset = (u64)-1;
2221
2222 ret = btrfs_search_slot(NULL, root: extent_root, key: &key, p: path, ins_len: 0, cow: 0);
2223 if (ret < 0)
2224 return ret;
2225 if (ret == 0) {
2226 /*
2227 * Key with offset -1 found, there would have to exist an extent
2228 * item with such offset, but this is out of the valid range.
2229 */
2230 return -EUCLEAN;
2231 }
2232
2233 ret = btrfs_previous_extent_item(root: extent_root, path, min_objectid: 0);
2234 if (ret) {
2235 if (ret > 0)
2236 ret = -ENOENT;
2237 return ret;
2238 }
2239 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: found_key, nr: path->slots[0]);
2240 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2241 size = fs_info->nodesize;
2242 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2243 size = found_key->offset;
2244
2245 if (found_key->objectid > logical ||
2246 found_key->objectid + size <= logical) {
2247 btrfs_debug(fs_info,
2248 "logical %llu is not within any extent", logical);
2249 return -ENOENT;
2250 }
2251
2252 eb = path->nodes[0];
2253 item_size = btrfs_item_size(eb, slot: path->slots[0]);
2254
2255 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2256 flags = btrfs_extent_flags(eb, s: ei);
2257
2258 btrfs_debug(fs_info,
2259 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2260 logical, logical - found_key->objectid, found_key->objectid,
2261 found_key->offset, flags, item_size);
2262
2263 WARN_ON(!flags_ret);
2264 if (flags_ret) {
2265 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2266 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2267 else if (flags & BTRFS_EXTENT_FLAG_DATA)
2268 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
2269 else
2270 BUG();
2271 return 0;
2272 }
2273
2274 return -EIO;
2275}
2276
2277/*
2278 * helper function to iterate extent inline refs. ptr must point to a 0 value
2279 * for the first call and may be modified. it is used to track state.
2280 * if more refs exist, 0 is returned and the next call to
2281 * get_extent_inline_ref must pass the modified ptr parameter to get the
2282 * next ref. after the last ref was processed, 1 is returned.
2283 * returns <0 on error
2284 */
2285static int get_extent_inline_ref(unsigned long *ptr,
2286 const struct extent_buffer *eb,
2287 const struct btrfs_key *key,
2288 const struct btrfs_extent_item *ei,
2289 u32 item_size,
2290 struct btrfs_extent_inline_ref **out_eiref,
2291 int *out_type)
2292{
2293 unsigned long end;
2294 u64 flags;
2295 struct btrfs_tree_block_info *info;
2296
2297 if (!*ptr) {
2298 /* first call */
2299 flags = btrfs_extent_flags(eb, s: ei);
2300 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2301 if (key->type == BTRFS_METADATA_ITEM_KEY) {
2302 /* a skinny metadata extent */
2303 *out_eiref =
2304 (struct btrfs_extent_inline_ref *)(ei + 1);
2305 } else {
2306 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2307 info = (struct btrfs_tree_block_info *)(ei + 1);
2308 *out_eiref =
2309 (struct btrfs_extent_inline_ref *)(info + 1);
2310 }
2311 } else {
2312 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2313 }
2314 *ptr = (unsigned long)*out_eiref;
2315 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2316 return -ENOENT;
2317 }
2318
2319 end = (unsigned long)ei + item_size;
2320 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2321 *out_type = btrfs_get_extent_inline_ref_type(eb, iref: *out_eiref,
2322 is_data: BTRFS_REF_TYPE_ANY);
2323 if (*out_type == BTRFS_REF_TYPE_INVALID)
2324 return -EUCLEAN;
2325
2326 *ptr += btrfs_extent_inline_ref_size(type: *out_type);
2327 WARN_ON(*ptr > end);
2328 if (*ptr == end)
2329 return 1; /* last */
2330
2331 return 0;
2332}
2333
2334/*
2335 * reads the tree block backref for an extent. tree level and root are returned
2336 * through out_level and out_root. ptr must point to a 0 value for the first
2337 * call and may be modified (see get_extent_inline_ref comment).
2338 * returns 0 if data was provided, 1 if there was no more data to provide or
2339 * <0 on error.
2340 */
2341int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2342 struct btrfs_key *key, struct btrfs_extent_item *ei,
2343 u32 item_size, u64 *out_root, u8 *out_level)
2344{
2345 int ret;
2346 int type;
2347 struct btrfs_extent_inline_ref *eiref;
2348
2349 if (*ptr == (unsigned long)-1)
2350 return 1;
2351
2352 while (1) {
2353 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2354 out_eiref: &eiref, out_type: &type);
2355 if (ret < 0)
2356 return ret;
2357
2358 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2359 type == BTRFS_SHARED_BLOCK_REF_KEY)
2360 break;
2361
2362 if (ret == 1)
2363 return 1;
2364 }
2365
2366 /* we can treat both ref types equally here */
2367 *out_root = btrfs_extent_inline_ref_offset(eb, s: eiref);
2368
2369 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2370 struct btrfs_tree_block_info *info;
2371
2372 info = (struct btrfs_tree_block_info *)(ei + 1);
2373 *out_level = btrfs_tree_block_level(eb, s: info);
2374 } else {
2375 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2376 *out_level = (u8)key->offset;
2377 }
2378
2379 if (ret == 1)
2380 *ptr = (unsigned long)-1;
2381
2382 return 0;
2383}
2384
2385static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2386 struct extent_inode_elem *inode_list,
2387 u64 root, u64 extent_item_objectid,
2388 iterate_extent_inodes_t *iterate, void *ctx)
2389{
2390 struct extent_inode_elem *eie;
2391 int ret = 0;
2392
2393 for (eie = inode_list; eie; eie = eie->next) {
2394 btrfs_debug(fs_info,
2395 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2396 extent_item_objectid, eie->inum,
2397 eie->offset, root);
2398 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2399 if (ret) {
2400 btrfs_debug(fs_info,
2401 "stopping iteration for %llu due to ret=%d",
2402 extent_item_objectid, ret);
2403 break;
2404 }
2405 }
2406
2407 return ret;
2408}
2409
2410/*
2411 * calls iterate() for every inode that references the extent identified by
2412 * the given parameters.
2413 * when the iterator function returns a non-zero value, iteration stops.
2414 */
2415int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2416 bool search_commit_root,
2417 iterate_extent_inodes_t *iterate, void *user_ctx)
2418{
2419 int ret;
2420 struct ulist *refs;
2421 struct ulist_node *ref_node;
2422 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2423 struct ulist_iterator ref_uiter;
2424
2425 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2426 ctx->bytenr);
2427
2428 ASSERT(ctx->trans == NULL);
2429 ASSERT(ctx->roots == NULL);
2430
2431 if (!search_commit_root) {
2432 struct btrfs_trans_handle *trans;
2433
2434 trans = btrfs_attach_transaction(root: ctx->fs_info->tree_root);
2435 if (IS_ERR(ptr: trans)) {
2436 if (PTR_ERR(ptr: trans) != -ENOENT &&
2437 PTR_ERR(ptr: trans) != -EROFS)
2438 return PTR_ERR(ptr: trans);
2439 trans = NULL;
2440 }
2441 ctx->trans = trans;
2442 }
2443
2444 if (ctx->trans) {
2445 btrfs_get_tree_mod_seq(fs_info: ctx->fs_info, elem: &seq_elem);
2446 ctx->time_seq = seq_elem.seq;
2447 } else {
2448 down_read(sem: &ctx->fs_info->commit_root_sem);
2449 }
2450
2451 ret = btrfs_find_all_leafs(ctx);
2452 if (ret)
2453 goto out;
2454 refs = ctx->refs;
2455 ctx->refs = NULL;
2456
2457 ULIST_ITER_INIT(&ref_uiter);
2458 while (!ret && (ref_node = ulist_next(ulist: refs, uiter: &ref_uiter))) {
2459 const u64 leaf_bytenr = ref_node->val;
2460 struct ulist_node *root_node;
2461 struct ulist_iterator root_uiter;
2462 struct extent_inode_elem *inode_list;
2463
2464 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2465
2466 if (ctx->cache_lookup) {
2467 const u64 *root_ids;
2468 int root_count;
2469 bool cached;
2470
2471 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2472 &root_ids, &root_count);
2473 if (cached) {
2474 for (int i = 0; i < root_count; i++) {
2475 ret = iterate_leaf_refs(fs_info: ctx->fs_info,
2476 inode_list,
2477 root: root_ids[i],
2478 extent_item_objectid: leaf_bytenr,
2479 iterate,
2480 ctx: user_ctx);
2481 if (ret)
2482 break;
2483 }
2484 continue;
2485 }
2486 }
2487
2488 if (!ctx->roots) {
2489 ctx->roots = ulist_alloc(GFP_NOFS);
2490 if (!ctx->roots) {
2491 ret = -ENOMEM;
2492 break;
2493 }
2494 }
2495
2496 ctx->bytenr = leaf_bytenr;
2497 ret = btrfs_find_all_roots_safe(ctx);
2498 if (ret)
2499 break;
2500
2501 if (ctx->cache_store)
2502 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2503
2504 ULIST_ITER_INIT(&root_uiter);
2505 while (!ret && (root_node = ulist_next(ulist: ctx->roots, uiter: &root_uiter))) {
2506 btrfs_debug(ctx->fs_info,
2507 "root %llu references leaf %llu, data list %#llx",
2508 root_node->val, ref_node->val,
2509 ref_node->aux);
2510 ret = iterate_leaf_refs(fs_info: ctx->fs_info, inode_list,
2511 root: root_node->val, extent_item_objectid: ctx->bytenr,
2512 iterate, ctx: user_ctx);
2513 }
2514 ulist_reinit(ulist: ctx->roots);
2515 }
2516
2517 free_leaf_list(ulist: refs);
2518out:
2519 if (ctx->trans) {
2520 btrfs_put_tree_mod_seq(fs_info: ctx->fs_info, elem: &seq_elem);
2521 btrfs_end_transaction(trans: ctx->trans);
2522 ctx->trans = NULL;
2523 } else {
2524 up_read(sem: &ctx->fs_info->commit_root_sem);
2525 }
2526
2527 ulist_free(ulist: ctx->roots);
2528 ctx->roots = NULL;
2529
2530 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2531 ret = 0;
2532
2533 return ret;
2534}
2535
2536static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2537{
2538 struct btrfs_data_container *inodes = ctx;
2539 const size_t c = 3 * sizeof(u64);
2540
2541 if (inodes->bytes_left >= c) {
2542 inodes->bytes_left -= c;
2543 inodes->val[inodes->elem_cnt] = inum;
2544 inodes->val[inodes->elem_cnt + 1] = offset;
2545 inodes->val[inodes->elem_cnt + 2] = root;
2546 inodes->elem_cnt += 3;
2547 } else {
2548 inodes->bytes_missing += c - inodes->bytes_left;
2549 inodes->bytes_left = 0;
2550 inodes->elem_missed += 3;
2551 }
2552
2553 return 0;
2554}
2555
2556int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2557 struct btrfs_path *path,
2558 void *ctx, bool ignore_offset)
2559{
2560 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2561 int ret;
2562 u64 flags = 0;
2563 struct btrfs_key found_key;
2564 int search_commit_root = path->search_commit_root;
2565
2566 ret = extent_from_logical(fs_info, logical, path, found_key: &found_key, flags_ret: &flags);
2567 btrfs_release_path(p: path);
2568 if (ret < 0)
2569 return ret;
2570 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2571 return -EINVAL;
2572
2573 walk_ctx.bytenr = found_key.objectid;
2574 if (ignore_offset)
2575 walk_ctx.ignore_extent_item_pos = true;
2576 else
2577 walk_ctx.extent_item_pos = logical - found_key.objectid;
2578 walk_ctx.fs_info = fs_info;
2579
2580 return iterate_extent_inodes(ctx: &walk_ctx, search_commit_root,
2581 iterate: build_ino_list, user_ctx: ctx);
2582}
2583
2584static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2585 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2586
2587static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2588{
2589 int ret = 0;
2590 int slot;
2591 u32 cur;
2592 u32 len;
2593 u32 name_len;
2594 u64 parent = 0;
2595 int found = 0;
2596 struct btrfs_root *fs_root = ipath->fs_root;
2597 struct btrfs_path *path = ipath->btrfs_path;
2598 struct extent_buffer *eb;
2599 struct btrfs_inode_ref *iref;
2600 struct btrfs_key found_key;
2601
2602 while (!ret) {
2603 ret = btrfs_find_item(fs_root, path, inum,
2604 ioff: parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2605 found_key: &found_key);
2606
2607 if (ret < 0)
2608 break;
2609 if (ret) {
2610 ret = found ? 0 : -ENOENT;
2611 break;
2612 }
2613 ++found;
2614
2615 parent = found_key.offset;
2616 slot = path->slots[0];
2617 eb = btrfs_clone_extent_buffer(src: path->nodes[0]);
2618 if (!eb) {
2619 ret = -ENOMEM;
2620 break;
2621 }
2622 btrfs_release_path(p: path);
2623
2624 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2625
2626 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2627 name_len = btrfs_inode_ref_name_len(eb, s: iref);
2628 /* path must be released before calling iterate()! */
2629 btrfs_debug(fs_root->fs_info,
2630 "following ref at offset %u for inode %llu in tree %llu",
2631 cur, found_key.objectid,
2632 fs_root->root_key.objectid);
2633 ret = inode_to_path(inum: parent, name_len,
2634 name_off: (unsigned long)(iref + 1), eb, ipath);
2635 if (ret)
2636 break;
2637 len = sizeof(*iref) + name_len;
2638 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2639 }
2640 free_extent_buffer(eb);
2641 }
2642
2643 btrfs_release_path(p: path);
2644
2645 return ret;
2646}
2647
2648static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2649{
2650 int ret;
2651 int slot;
2652 u64 offset = 0;
2653 u64 parent;
2654 int found = 0;
2655 struct btrfs_root *fs_root = ipath->fs_root;
2656 struct btrfs_path *path = ipath->btrfs_path;
2657 struct extent_buffer *eb;
2658 struct btrfs_inode_extref *extref;
2659 u32 item_size;
2660 u32 cur_offset;
2661 unsigned long ptr;
2662
2663 while (1) {
2664 ret = btrfs_find_one_extref(root: fs_root, inode_objectid: inum, start_off: offset, path, ret_extref: &extref,
2665 found_off: &offset);
2666 if (ret < 0)
2667 break;
2668 if (ret) {
2669 ret = found ? 0 : -ENOENT;
2670 break;
2671 }
2672 ++found;
2673
2674 slot = path->slots[0];
2675 eb = btrfs_clone_extent_buffer(src: path->nodes[0]);
2676 if (!eb) {
2677 ret = -ENOMEM;
2678 break;
2679 }
2680 btrfs_release_path(p: path);
2681
2682 item_size = btrfs_item_size(eb, slot);
2683 ptr = btrfs_item_ptr_offset(eb, slot);
2684 cur_offset = 0;
2685
2686 while (cur_offset < item_size) {
2687 u32 name_len;
2688
2689 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2690 parent = btrfs_inode_extref_parent(eb, s: extref);
2691 name_len = btrfs_inode_extref_name_len(eb, s: extref);
2692 ret = inode_to_path(inum: parent, name_len,
2693 name_off: (unsigned long)&extref->name, eb, ipath);
2694 if (ret)
2695 break;
2696
2697 cur_offset += btrfs_inode_extref_name_len(eb, s: extref);
2698 cur_offset += sizeof(*extref);
2699 }
2700 free_extent_buffer(eb);
2701
2702 offset++;
2703 }
2704
2705 btrfs_release_path(p: path);
2706
2707 return ret;
2708}
2709
2710/*
2711 * returns 0 if the path could be dumped (probably truncated)
2712 * returns <0 in case of an error
2713 */
2714static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2715 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2716{
2717 char *fspath;
2718 char *fspath_min;
2719 int i = ipath->fspath->elem_cnt;
2720 const int s_ptr = sizeof(char *);
2721 u32 bytes_left;
2722
2723 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2724 ipath->fspath->bytes_left - s_ptr : 0;
2725
2726 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2727 fspath = btrfs_ref_to_path(fs_root: ipath->fs_root, path: ipath->btrfs_path, name_len,
2728 name_off, eb_in: eb, parent: inum, dest: fspath_min, size: bytes_left);
2729 if (IS_ERR(ptr: fspath))
2730 return PTR_ERR(ptr: fspath);
2731
2732 if (fspath > fspath_min) {
2733 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2734 ++ipath->fspath->elem_cnt;
2735 ipath->fspath->bytes_left = fspath - fspath_min;
2736 } else {
2737 ++ipath->fspath->elem_missed;
2738 ipath->fspath->bytes_missing += fspath_min - fspath;
2739 ipath->fspath->bytes_left = 0;
2740 }
2741
2742 return 0;
2743}
2744
2745/*
2746 * this dumps all file system paths to the inode into the ipath struct, provided
2747 * is has been created large enough. each path is zero-terminated and accessed
2748 * from ipath->fspath->val[i].
2749 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2750 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2751 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2752 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2753 * have been needed to return all paths.
2754 */
2755int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2756{
2757 int ret;
2758 int found_refs = 0;
2759
2760 ret = iterate_inode_refs(inum, ipath);
2761 if (!ret)
2762 ++found_refs;
2763 else if (ret != -ENOENT)
2764 return ret;
2765
2766 ret = iterate_inode_extrefs(inum, ipath);
2767 if (ret == -ENOENT && found_refs)
2768 return 0;
2769
2770 return ret;
2771}
2772
2773struct btrfs_data_container *init_data_container(u32 total_bytes)
2774{
2775 struct btrfs_data_container *data;
2776 size_t alloc_bytes;
2777
2778 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2779 data = kvmalloc(size: alloc_bytes, GFP_KERNEL);
2780 if (!data)
2781 return ERR_PTR(error: -ENOMEM);
2782
2783 if (total_bytes >= sizeof(*data)) {
2784 data->bytes_left = total_bytes - sizeof(*data);
2785 data->bytes_missing = 0;
2786 } else {
2787 data->bytes_missing = sizeof(*data) - total_bytes;
2788 data->bytes_left = 0;
2789 }
2790
2791 data->elem_cnt = 0;
2792 data->elem_missed = 0;
2793
2794 return data;
2795}
2796
2797/*
2798 * allocates space to return multiple file system paths for an inode.
2799 * total_bytes to allocate are passed, note that space usable for actual path
2800 * information will be total_bytes - sizeof(struct inode_fs_paths).
2801 * the returned pointer must be freed with free_ipath() in the end.
2802 */
2803struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2804 struct btrfs_path *path)
2805{
2806 struct inode_fs_paths *ifp;
2807 struct btrfs_data_container *fspath;
2808
2809 fspath = init_data_container(total_bytes);
2810 if (IS_ERR(ptr: fspath))
2811 return ERR_CAST(ptr: fspath);
2812
2813 ifp = kmalloc(size: sizeof(*ifp), GFP_KERNEL);
2814 if (!ifp) {
2815 kvfree(addr: fspath);
2816 return ERR_PTR(error: -ENOMEM);
2817 }
2818
2819 ifp->btrfs_path = path;
2820 ifp->fspath = fspath;
2821 ifp->fs_root = fs_root;
2822
2823 return ifp;
2824}
2825
2826void free_ipath(struct inode_fs_paths *ipath)
2827{
2828 if (!ipath)
2829 return;
2830 kvfree(addr: ipath->fspath);
2831 kfree(objp: ipath);
2832}
2833
2834struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2835{
2836 struct btrfs_backref_iter *ret;
2837
2838 ret = kzalloc(size: sizeof(*ret), GFP_NOFS);
2839 if (!ret)
2840 return NULL;
2841
2842 ret->path = btrfs_alloc_path();
2843 if (!ret->path) {
2844 kfree(objp: ret);
2845 return NULL;
2846 }
2847
2848 /* Current backref iterator only supports iteration in commit root */
2849 ret->path->search_commit_root = 1;
2850 ret->path->skip_locking = 1;
2851 ret->fs_info = fs_info;
2852
2853 return ret;
2854}
2855
2856static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2857{
2858 iter->bytenr = 0;
2859 iter->item_ptr = 0;
2860 iter->cur_ptr = 0;
2861 iter->end_ptr = 0;
2862 btrfs_release_path(p: iter->path);
2863 memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2864}
2865
2866int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2867{
2868 struct btrfs_fs_info *fs_info = iter->fs_info;
2869 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2870 struct btrfs_path *path = iter->path;
2871 struct btrfs_extent_item *ei;
2872 struct btrfs_key key;
2873 int ret;
2874
2875 key.objectid = bytenr;
2876 key.type = BTRFS_METADATA_ITEM_KEY;
2877 key.offset = (u64)-1;
2878 iter->bytenr = bytenr;
2879
2880 ret = btrfs_search_slot(NULL, root: extent_root, key: &key, p: path, ins_len: 0, cow: 0);
2881 if (ret < 0)
2882 return ret;
2883 if (ret == 0) {
2884 /*
2885 * Key with offset -1 found, there would have to exist an extent
2886 * item with such offset, but this is out of the valid range.
2887 */
2888 ret = -EUCLEAN;
2889 goto release;
2890 }
2891 if (path->slots[0] == 0) {
2892 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2893 ret = -EUCLEAN;
2894 goto release;
2895 }
2896 path->slots[0]--;
2897
2898 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
2899 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2900 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2901 ret = -ENOENT;
2902 goto release;
2903 }
2904 memcpy(&iter->cur_key, &key, sizeof(key));
2905 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2906 path->slots[0]);
2907 iter->end_ptr = (u32)(iter->item_ptr +
2908 btrfs_item_size(eb: path->nodes[0], slot: path->slots[0]));
2909 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2910 struct btrfs_extent_item);
2911
2912 /*
2913 * Only support iteration on tree backref yet.
2914 *
2915 * This is an extra precaution for non skinny-metadata, where
2916 * EXTENT_ITEM is also used for tree blocks, that we can only use
2917 * extent flags to determine if it's a tree block.
2918 */
2919 if (btrfs_extent_flags(eb: path->nodes[0], s: ei) & BTRFS_EXTENT_FLAG_DATA) {
2920 ret = -ENOTSUPP;
2921 goto release;
2922 }
2923 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2924
2925 /* If there is no inline backref, go search for keyed backref */
2926 if (iter->cur_ptr >= iter->end_ptr) {
2927 ret = btrfs_next_item(root: extent_root, p: path);
2928
2929 /* No inline nor keyed ref */
2930 if (ret > 0) {
2931 ret = -ENOENT;
2932 goto release;
2933 }
2934 if (ret < 0)
2935 goto release;
2936
2937 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &iter->cur_key,
2938 nr: path->slots[0]);
2939 if (iter->cur_key.objectid != bytenr ||
2940 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2941 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2942 ret = -ENOENT;
2943 goto release;
2944 }
2945 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2946 path->slots[0]);
2947 iter->item_ptr = iter->cur_ptr;
2948 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2949 eb: path->nodes[0], slot: path->slots[0]));
2950 }
2951
2952 return 0;
2953release:
2954 btrfs_backref_iter_release(iter);
2955 return ret;
2956}
2957
2958static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2959{
2960 if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2961 iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2962 return true;
2963 return false;
2964}
2965
2966/*
2967 * Go to the next backref item of current bytenr, can be either inlined or
2968 * keyed.
2969 *
2970 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2971 *
2972 * Return 0 if we get next backref without problem.
2973 * Return >0 if there is no extra backref for this bytenr.
2974 * Return <0 if there is something wrong happened.
2975 */
2976int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2977{
2978 struct extent_buffer *eb = iter->path->nodes[0];
2979 struct btrfs_root *extent_root;
2980 struct btrfs_path *path = iter->path;
2981 struct btrfs_extent_inline_ref *iref;
2982 int ret;
2983 u32 size;
2984
2985 if (btrfs_backref_iter_is_inline_ref(iter)) {
2986 /* We're still inside the inline refs */
2987 ASSERT(iter->cur_ptr < iter->end_ptr);
2988
2989 if (btrfs_backref_has_tree_block_info(iter)) {
2990 /* First tree block info */
2991 size = sizeof(struct btrfs_tree_block_info);
2992 } else {
2993 /* Use inline ref type to determine the size */
2994 int type;
2995
2996 iref = (struct btrfs_extent_inline_ref *)
2997 ((unsigned long)iter->cur_ptr);
2998 type = btrfs_extent_inline_ref_type(eb, s: iref);
2999
3000 size = btrfs_extent_inline_ref_size(type);
3001 }
3002 iter->cur_ptr += size;
3003 if (iter->cur_ptr < iter->end_ptr)
3004 return 0;
3005
3006 /* All inline items iterated, fall through */
3007 }
3008
3009 /* We're at keyed items, there is no inline item, go to the next one */
3010 extent_root = btrfs_extent_root(fs_info: iter->fs_info, bytenr: iter->bytenr);
3011 ret = btrfs_next_item(root: extent_root, p: iter->path);
3012 if (ret)
3013 return ret;
3014
3015 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &iter->cur_key, nr: path->slots[0]);
3016 if (iter->cur_key.objectid != iter->bytenr ||
3017 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
3018 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
3019 return 1;
3020 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3021 path->slots[0]);
3022 iter->cur_ptr = iter->item_ptr;
3023 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(eb: path->nodes[0],
3024 slot: path->slots[0]);
3025 return 0;
3026}
3027
3028void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3029 struct btrfs_backref_cache *cache, bool is_reloc)
3030{
3031 int i;
3032
3033 cache->rb_root = RB_ROOT;
3034 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3035 INIT_LIST_HEAD(list: &cache->pending[i]);
3036 INIT_LIST_HEAD(list: &cache->changed);
3037 INIT_LIST_HEAD(list: &cache->detached);
3038 INIT_LIST_HEAD(list: &cache->leaves);
3039 INIT_LIST_HEAD(list: &cache->pending_edge);
3040 INIT_LIST_HEAD(list: &cache->useless_node);
3041 cache->fs_info = fs_info;
3042 cache->is_reloc = is_reloc;
3043}
3044
3045struct btrfs_backref_node *btrfs_backref_alloc_node(
3046 struct btrfs_backref_cache *cache, u64 bytenr, int level)
3047{
3048 struct btrfs_backref_node *node;
3049
3050 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3051 node = kzalloc(size: sizeof(*node), GFP_NOFS);
3052 if (!node)
3053 return node;
3054
3055 INIT_LIST_HEAD(list: &node->list);
3056 INIT_LIST_HEAD(list: &node->upper);
3057 INIT_LIST_HEAD(list: &node->lower);
3058 RB_CLEAR_NODE(&node->rb_node);
3059 cache->nr_nodes++;
3060 node->level = level;
3061 node->bytenr = bytenr;
3062
3063 return node;
3064}
3065
3066void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3067 struct btrfs_backref_node *node)
3068{
3069 if (node) {
3070 ASSERT(list_empty(&node->list));
3071 ASSERT(list_empty(&node->lower));
3072 ASSERT(node->eb == NULL);
3073 cache->nr_nodes--;
3074 btrfs_put_root(root: node->root);
3075 kfree(objp: node);
3076 }
3077}
3078
3079struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3080 struct btrfs_backref_cache *cache)
3081{
3082 struct btrfs_backref_edge *edge;
3083
3084 edge = kzalloc(size: sizeof(*edge), GFP_NOFS);
3085 if (edge)
3086 cache->nr_edges++;
3087 return edge;
3088}
3089
3090void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3091 struct btrfs_backref_edge *edge)
3092{
3093 if (edge) {
3094 cache->nr_edges--;
3095 kfree(objp: edge);
3096 }
3097}
3098
3099void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3100{
3101 if (node->locked) {
3102 btrfs_tree_unlock(eb: node->eb);
3103 node->locked = 0;
3104 }
3105}
3106
3107void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3108{
3109 if (node->eb) {
3110 btrfs_backref_unlock_node_buffer(node);
3111 free_extent_buffer(eb: node->eb);
3112 node->eb = NULL;
3113 }
3114}
3115
3116/*
3117 * Drop the backref node from cache without cleaning up its children
3118 * edges.
3119 *
3120 * This can only be called on node without parent edges.
3121 * The children edges are still kept as is.
3122 */
3123void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3124 struct btrfs_backref_node *node)
3125{
3126 ASSERT(list_empty(&node->upper));
3127
3128 btrfs_backref_drop_node_buffer(node);
3129 list_del_init(entry: &node->list);
3130 list_del_init(entry: &node->lower);
3131 if (!RB_EMPTY_NODE(&node->rb_node))
3132 rb_erase(&node->rb_node, &tree->rb_root);
3133 btrfs_backref_free_node(cache: tree, node);
3134}
3135
3136/*
3137 * Drop the backref node from cache, also cleaning up all its
3138 * upper edges and any uncached nodes in the path.
3139 *
3140 * This cleanup happens bottom up, thus the node should either
3141 * be the lowest node in the cache or a detached node.
3142 */
3143void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3144 struct btrfs_backref_node *node)
3145{
3146 struct btrfs_backref_node *upper;
3147 struct btrfs_backref_edge *edge;
3148
3149 if (!node)
3150 return;
3151
3152 BUG_ON(!node->lowest && !node->detached);
3153 while (!list_empty(head: &node->upper)) {
3154 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
3155 list[LOWER]);
3156 upper = edge->node[UPPER];
3157 list_del(entry: &edge->list[LOWER]);
3158 list_del(entry: &edge->list[UPPER]);
3159 btrfs_backref_free_edge(cache, edge);
3160
3161 /*
3162 * Add the node to leaf node list if no other child block
3163 * cached.
3164 */
3165 if (list_empty(head: &upper->lower)) {
3166 list_add_tail(new: &upper->lower, head: &cache->leaves);
3167 upper->lowest = 1;
3168 }
3169 }
3170
3171 btrfs_backref_drop_node(tree: cache, node);
3172}
3173
3174/*
3175 * Release all nodes/edges from current cache
3176 */
3177void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3178{
3179 struct btrfs_backref_node *node;
3180 int i;
3181
3182 while (!list_empty(head: &cache->detached)) {
3183 node = list_entry(cache->detached.next,
3184 struct btrfs_backref_node, list);
3185 btrfs_backref_cleanup_node(cache, node);
3186 }
3187
3188 while (!list_empty(head: &cache->leaves)) {
3189 node = list_entry(cache->leaves.next,
3190 struct btrfs_backref_node, lower);
3191 btrfs_backref_cleanup_node(cache, node);
3192 }
3193
3194 cache->last_trans = 0;
3195
3196 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3197 ASSERT(list_empty(&cache->pending[i]));
3198 ASSERT(list_empty(&cache->pending_edge));
3199 ASSERT(list_empty(&cache->useless_node));
3200 ASSERT(list_empty(&cache->changed));
3201 ASSERT(list_empty(&cache->detached));
3202 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3203 ASSERT(!cache->nr_nodes);
3204 ASSERT(!cache->nr_edges);
3205}
3206
3207void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3208 struct btrfs_backref_node *lower,
3209 struct btrfs_backref_node *upper,
3210 int link_which)
3211{
3212 ASSERT(upper && lower && upper->level == lower->level + 1);
3213 edge->node[LOWER] = lower;
3214 edge->node[UPPER] = upper;
3215 if (link_which & LINK_LOWER)
3216 list_add_tail(new: &edge->list[LOWER], head: &lower->upper);
3217 if (link_which & LINK_UPPER)
3218 list_add_tail(new: &edge->list[UPPER], head: &upper->lower);
3219}
3220/*
3221 * Handle direct tree backref
3222 *
3223 * Direct tree backref means, the backref item shows its parent bytenr
3224 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3225 *
3226 * @ref_key: The converted backref key.
3227 * For keyed backref, it's the item key.
3228 * For inlined backref, objectid is the bytenr,
3229 * type is btrfs_inline_ref_type, offset is
3230 * btrfs_inline_ref_offset.
3231 */
3232static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3233 struct btrfs_key *ref_key,
3234 struct btrfs_backref_node *cur)
3235{
3236 struct btrfs_backref_edge *edge;
3237 struct btrfs_backref_node *upper;
3238 struct rb_node *rb_node;
3239
3240 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3241
3242 /* Only reloc root uses backref pointing to itself */
3243 if (ref_key->objectid == ref_key->offset) {
3244 struct btrfs_root *root;
3245
3246 cur->is_reloc_root = 1;
3247 /* Only reloc backref cache cares about a specific root */
3248 if (cache->is_reloc) {
3249 root = find_reloc_root(fs_info: cache->fs_info, bytenr: cur->bytenr);
3250 if (!root)
3251 return -ENOENT;
3252 cur->root = root;
3253 } else {
3254 /*
3255 * For generic purpose backref cache, reloc root node
3256 * is useless.
3257 */
3258 list_add(new: &cur->list, head: &cache->useless_node);
3259 }
3260 return 0;
3261 }
3262
3263 edge = btrfs_backref_alloc_edge(cache);
3264 if (!edge)
3265 return -ENOMEM;
3266
3267 rb_node = rb_simple_search(root: &cache->rb_root, bytenr: ref_key->offset);
3268 if (!rb_node) {
3269 /* Parent node not yet cached */
3270 upper = btrfs_backref_alloc_node(cache, bytenr: ref_key->offset,
3271 level: cur->level + 1);
3272 if (!upper) {
3273 btrfs_backref_free_edge(cache, edge);
3274 return -ENOMEM;
3275 }
3276
3277 /*
3278 * Backrefs for the upper level block isn't cached, add the
3279 * block to pending list
3280 */
3281 list_add_tail(new: &edge->list[UPPER], head: &cache->pending_edge);
3282 } else {
3283 /* Parent node already cached */
3284 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3285 ASSERT(upper->checked);
3286 INIT_LIST_HEAD(list: &edge->list[UPPER]);
3287 }
3288 btrfs_backref_link_edge(edge, lower: cur, upper, LINK_LOWER);
3289 return 0;
3290}
3291
3292/*
3293 * Handle indirect tree backref
3294 *
3295 * Indirect tree backref means, we only know which tree the node belongs to.
3296 * We still need to do a tree search to find out the parents. This is for
3297 * TREE_BLOCK_REF backref (keyed or inlined).
3298 *
3299 * @trans: Transaction handle.
3300 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
3301 * @tree_key: The first key of this tree block.
3302 * @path: A clean (released) path, to avoid allocating path every time
3303 * the function get called.
3304 */
3305static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3306 struct btrfs_backref_cache *cache,
3307 struct btrfs_path *path,
3308 struct btrfs_key *ref_key,
3309 struct btrfs_key *tree_key,
3310 struct btrfs_backref_node *cur)
3311{
3312 struct btrfs_fs_info *fs_info = cache->fs_info;
3313 struct btrfs_backref_node *upper;
3314 struct btrfs_backref_node *lower;
3315 struct btrfs_backref_edge *edge;
3316 struct extent_buffer *eb;
3317 struct btrfs_root *root;
3318 struct rb_node *rb_node;
3319 int level;
3320 bool need_check = true;
3321 int ret;
3322
3323 root = btrfs_get_fs_root(fs_info, objectid: ref_key->offset, check_ref: false);
3324 if (IS_ERR(ptr: root))
3325 return PTR_ERR(ptr: root);
3326 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3327 cur->cowonly = 1;
3328
3329 if (btrfs_root_level(s: &root->root_item) == cur->level) {
3330 /* Tree root */
3331 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3332 /*
3333 * For reloc backref cache, we may ignore reloc root. But for
3334 * general purpose backref cache, we can't rely on
3335 * btrfs_should_ignore_reloc_root() as it may conflict with
3336 * current running relocation and lead to missing root.
3337 *
3338 * For general purpose backref cache, reloc root detection is
3339 * completely relying on direct backref (key->offset is parent
3340 * bytenr), thus only do such check for reloc cache.
3341 */
3342 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3343 btrfs_put_root(root);
3344 list_add(new: &cur->list, head: &cache->useless_node);
3345 } else {
3346 cur->root = root;
3347 }
3348 return 0;
3349 }
3350
3351 level = cur->level + 1;
3352
3353 /* Search the tree to find parent blocks referring to the block */
3354 path->search_commit_root = 1;
3355 path->skip_locking = 1;
3356 path->lowest_level = level;
3357 ret = btrfs_search_slot(NULL, root, key: tree_key, p: path, ins_len: 0, cow: 0);
3358 path->lowest_level = 0;
3359 if (ret < 0) {
3360 btrfs_put_root(root);
3361 return ret;
3362 }
3363 if (ret > 0 && path->slots[level] > 0)
3364 path->slots[level]--;
3365
3366 eb = path->nodes[level];
3367 if (btrfs_node_blockptr(eb, nr: path->slots[level]) != cur->bytenr) {
3368 btrfs_err(fs_info,
3369"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3370 cur->bytenr, level - 1, root->root_key.objectid,
3371 tree_key->objectid, tree_key->type, tree_key->offset);
3372 btrfs_put_root(root);
3373 ret = -ENOENT;
3374 goto out;
3375 }
3376 lower = cur;
3377
3378 /* Add all nodes and edges in the path */
3379 for (; level < BTRFS_MAX_LEVEL; level++) {
3380 if (!path->nodes[level]) {
3381 ASSERT(btrfs_root_bytenr(&root->root_item) ==
3382 lower->bytenr);
3383 /* Same as previous should_ignore_reloc_root() call */
3384 if (btrfs_should_ignore_reloc_root(root) &&
3385 cache->is_reloc) {
3386 btrfs_put_root(root);
3387 list_add(new: &lower->list, head: &cache->useless_node);
3388 } else {
3389 lower->root = root;
3390 }
3391 break;
3392 }
3393
3394 edge = btrfs_backref_alloc_edge(cache);
3395 if (!edge) {
3396 btrfs_put_root(root);
3397 ret = -ENOMEM;
3398 goto out;
3399 }
3400
3401 eb = path->nodes[level];
3402 rb_node = rb_simple_search(root: &cache->rb_root, bytenr: eb->start);
3403 if (!rb_node) {
3404 upper = btrfs_backref_alloc_node(cache, bytenr: eb->start,
3405 level: lower->level + 1);
3406 if (!upper) {
3407 btrfs_put_root(root);
3408 btrfs_backref_free_edge(cache, edge);
3409 ret = -ENOMEM;
3410 goto out;
3411 }
3412 upper->owner = btrfs_header_owner(eb);
3413 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3414 upper->cowonly = 1;
3415
3416 /*
3417 * If we know the block isn't shared we can avoid
3418 * checking its backrefs.
3419 */
3420 if (btrfs_block_can_be_shared(trans, root, buf: eb))
3421 upper->checked = 0;
3422 else
3423 upper->checked = 1;
3424
3425 /*
3426 * Add the block to pending list if we need to check its
3427 * backrefs, we only do this once while walking up a
3428 * tree as we will catch anything else later on.
3429 */
3430 if (!upper->checked && need_check) {
3431 need_check = false;
3432 list_add_tail(new: &edge->list[UPPER],
3433 head: &cache->pending_edge);
3434 } else {
3435 if (upper->checked)
3436 need_check = true;
3437 INIT_LIST_HEAD(list: &edge->list[UPPER]);
3438 }
3439 } else {
3440 upper = rb_entry(rb_node, struct btrfs_backref_node,
3441 rb_node);
3442 ASSERT(upper->checked);
3443 INIT_LIST_HEAD(list: &edge->list[UPPER]);
3444 if (!upper->owner)
3445 upper->owner = btrfs_header_owner(eb);
3446 }
3447 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3448
3449 if (rb_node) {
3450 btrfs_put_root(root);
3451 break;
3452 }
3453 lower = upper;
3454 upper = NULL;
3455 }
3456out:
3457 btrfs_release_path(p: path);
3458 return ret;
3459}
3460
3461/*
3462 * Add backref node @cur into @cache.
3463 *
3464 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3465 * links aren't yet bi-directional. Needs to finish such links.
3466 * Use btrfs_backref_finish_upper_links() to finish such linkage.
3467 *
3468 * @trans: Transaction handle.
3469 * @path: Released path for indirect tree backref lookup
3470 * @iter: Released backref iter for extent tree search
3471 * @node_key: The first key of the tree block
3472 */
3473int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3474 struct btrfs_backref_cache *cache,
3475 struct btrfs_path *path,
3476 struct btrfs_backref_iter *iter,
3477 struct btrfs_key *node_key,
3478 struct btrfs_backref_node *cur)
3479{
3480 struct btrfs_backref_edge *edge;
3481 struct btrfs_backref_node *exist;
3482 int ret;
3483
3484 ret = btrfs_backref_iter_start(iter, bytenr: cur->bytenr);
3485 if (ret < 0)
3486 return ret;
3487 /*
3488 * We skip the first btrfs_tree_block_info, as we don't use the key
3489 * stored in it, but fetch it from the tree block
3490 */
3491 if (btrfs_backref_has_tree_block_info(iter)) {
3492 ret = btrfs_backref_iter_next(iter);
3493 if (ret < 0)
3494 goto out;
3495 /* No extra backref? This means the tree block is corrupted */
3496 if (ret > 0) {
3497 ret = -EUCLEAN;
3498 goto out;
3499 }
3500 }
3501 WARN_ON(cur->checked);
3502 if (!list_empty(head: &cur->upper)) {
3503 /*
3504 * The backref was added previously when processing backref of
3505 * type BTRFS_TREE_BLOCK_REF_KEY
3506 */
3507 ASSERT(list_is_singular(&cur->upper));
3508 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3509 list[LOWER]);
3510 ASSERT(list_empty(&edge->list[UPPER]));
3511 exist = edge->node[UPPER];
3512 /*
3513 * Add the upper level block to pending list if we need check
3514 * its backrefs
3515 */
3516 if (!exist->checked)
3517 list_add_tail(new: &edge->list[UPPER], head: &cache->pending_edge);
3518 } else {
3519 exist = NULL;
3520 }
3521
3522 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3523 struct extent_buffer *eb;
3524 struct btrfs_key key;
3525 int type;
3526
3527 cond_resched();
3528 eb = iter->path->nodes[0];
3529
3530 key.objectid = iter->bytenr;
3531 if (btrfs_backref_iter_is_inline_ref(iter)) {
3532 struct btrfs_extent_inline_ref *iref;
3533
3534 /* Update key for inline backref */
3535 iref = (struct btrfs_extent_inline_ref *)
3536 ((unsigned long)iter->cur_ptr);
3537 type = btrfs_get_extent_inline_ref_type(eb, iref,
3538 is_data: BTRFS_REF_TYPE_BLOCK);
3539 if (type == BTRFS_REF_TYPE_INVALID) {
3540 ret = -EUCLEAN;
3541 goto out;
3542 }
3543 key.type = type;
3544 key.offset = btrfs_extent_inline_ref_offset(eb, s: iref);
3545 } else {
3546 key.type = iter->cur_key.type;
3547 key.offset = iter->cur_key.offset;
3548 }
3549
3550 /*
3551 * Parent node found and matches current inline ref, no need to
3552 * rebuild this node for this inline ref
3553 */
3554 if (exist &&
3555 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3556 exist->owner == key.offset) ||
3557 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3558 exist->bytenr == key.offset))) {
3559 exist = NULL;
3560 continue;
3561 }
3562
3563 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3564 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3565 ret = handle_direct_tree_backref(cache, ref_key: &key, cur);
3566 if (ret < 0)
3567 goto out;
3568 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3569 /*
3570 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3571 * offset means the root objectid. We need to search
3572 * the tree to get its parent bytenr.
3573 */
3574 ret = handle_indirect_tree_backref(trans, cache, path,
3575 ref_key: &key, tree_key: node_key, cur);
3576 if (ret < 0)
3577 goto out;
3578 }
3579 /*
3580 * Unrecognized tree backref items (if it can pass tree-checker)
3581 * would be ignored.
3582 */
3583 }
3584 ret = 0;
3585 cur->checked = 1;
3586 WARN_ON(exist);
3587out:
3588 btrfs_backref_iter_release(iter);
3589 return ret;
3590}
3591
3592/*
3593 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3594 */
3595int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3596 struct btrfs_backref_node *start)
3597{
3598 struct list_head *useless_node = &cache->useless_node;
3599 struct btrfs_backref_edge *edge;
3600 struct rb_node *rb_node;
3601 LIST_HEAD(pending_edge);
3602
3603 ASSERT(start->checked);
3604
3605 /* Insert this node to cache if it's not COW-only */
3606 if (!start->cowonly) {
3607 rb_node = rb_simple_insert(root: &cache->rb_root, bytenr: start->bytenr,
3608 node: &start->rb_node);
3609 if (rb_node)
3610 btrfs_backref_panic(fs_info: cache->fs_info, bytenr: start->bytenr,
3611 error: -EEXIST);
3612 list_add_tail(new: &start->lower, head: &cache->leaves);
3613 }
3614
3615 /*
3616 * Use breadth first search to iterate all related edges.
3617 *
3618 * The starting points are all the edges of this node
3619 */
3620 list_for_each_entry(edge, &start->upper, list[LOWER])
3621 list_add_tail(new: &edge->list[UPPER], head: &pending_edge);
3622
3623 while (!list_empty(head: &pending_edge)) {
3624 struct btrfs_backref_node *upper;
3625 struct btrfs_backref_node *lower;
3626
3627 edge = list_first_entry(&pending_edge,
3628 struct btrfs_backref_edge, list[UPPER]);
3629 list_del_init(entry: &edge->list[UPPER]);
3630 upper = edge->node[UPPER];
3631 lower = edge->node[LOWER];
3632
3633 /* Parent is detached, no need to keep any edges */
3634 if (upper->detached) {
3635 list_del(entry: &edge->list[LOWER]);
3636 btrfs_backref_free_edge(cache, edge);
3637
3638 /* Lower node is orphan, queue for cleanup */
3639 if (list_empty(head: &lower->upper))
3640 list_add(new: &lower->list, head: useless_node);
3641 continue;
3642 }
3643
3644 /*
3645 * All new nodes added in current build_backref_tree() haven't
3646 * been linked to the cache rb tree.
3647 * So if we have upper->rb_node populated, this means a cache
3648 * hit. We only need to link the edge, as @upper and all its
3649 * parents have already been linked.
3650 */
3651 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3652 if (upper->lowest) {
3653 list_del_init(entry: &upper->lower);
3654 upper->lowest = 0;
3655 }
3656
3657 list_add_tail(new: &edge->list[UPPER], head: &upper->lower);
3658 continue;
3659 }
3660
3661 /* Sanity check, we shouldn't have any unchecked nodes */
3662 if (!upper->checked) {
3663 ASSERT(0);
3664 return -EUCLEAN;
3665 }
3666
3667 /* Sanity check, COW-only node has non-COW-only parent */
3668 if (start->cowonly != upper->cowonly) {
3669 ASSERT(0);
3670 return -EUCLEAN;
3671 }
3672
3673 /* Only cache non-COW-only (subvolume trees) tree blocks */
3674 if (!upper->cowonly) {
3675 rb_node = rb_simple_insert(root: &cache->rb_root, bytenr: upper->bytenr,
3676 node: &upper->rb_node);
3677 if (rb_node) {
3678 btrfs_backref_panic(fs_info: cache->fs_info,
3679 bytenr: upper->bytenr, error: -EEXIST);
3680 return -EUCLEAN;
3681 }
3682 }
3683
3684 list_add_tail(new: &edge->list[UPPER], head: &upper->lower);
3685
3686 /*
3687 * Also queue all the parent edges of this uncached node
3688 * to finish the upper linkage
3689 */
3690 list_for_each_entry(edge, &upper->upper, list[LOWER])
3691 list_add_tail(new: &edge->list[UPPER], head: &pending_edge);
3692 }
3693 return 0;
3694}
3695
3696void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3697 struct btrfs_backref_node *node)
3698{
3699 struct btrfs_backref_node *lower;
3700 struct btrfs_backref_node *upper;
3701 struct btrfs_backref_edge *edge;
3702
3703 while (!list_empty(head: &cache->useless_node)) {
3704 lower = list_first_entry(&cache->useless_node,
3705 struct btrfs_backref_node, list);
3706 list_del_init(entry: &lower->list);
3707 }
3708 while (!list_empty(head: &cache->pending_edge)) {
3709 edge = list_first_entry(&cache->pending_edge,
3710 struct btrfs_backref_edge, list[UPPER]);
3711 list_del(entry: &edge->list[UPPER]);
3712 list_del(entry: &edge->list[LOWER]);
3713 lower = edge->node[LOWER];
3714 upper = edge->node[UPPER];
3715 btrfs_backref_free_edge(cache, edge);
3716
3717 /*
3718 * Lower is no longer linked to any upper backref nodes and
3719 * isn't in the cache, we can free it ourselves.
3720 */
3721 if (list_empty(head: &lower->upper) &&
3722 RB_EMPTY_NODE(&lower->rb_node))
3723 list_add(new: &lower->list, head: &cache->useless_node);
3724
3725 if (!RB_EMPTY_NODE(&upper->rb_node))
3726 continue;
3727
3728 /* Add this guy's upper edges to the list to process */
3729 list_for_each_entry(edge, &upper->upper, list[LOWER])
3730 list_add_tail(new: &edge->list[UPPER],
3731 head: &cache->pending_edge);
3732 if (list_empty(head: &upper->upper))
3733 list_add(new: &upper->list, head: &cache->useless_node);
3734 }
3735
3736 while (!list_empty(head: &cache->useless_node)) {
3737 lower = list_first_entry(&cache->useless_node,
3738 struct btrfs_backref_node, list);
3739 list_del_init(entry: &lower->list);
3740 if (lower == node)
3741 node = NULL;
3742 btrfs_backref_drop_node(tree: cache, node: lower);
3743 }
3744
3745 btrfs_backref_cleanup_node(cache, node);
3746 ASSERT(list_empty(&cache->useless_node) &&
3747 list_empty(&cache->pending_edge));
3748}
3749

source code of linux/fs/btrfs/backref.c