1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6#include <linux/pagemap.h>
7#include <linux/sched.h>
8#include <linux/sched/signal.h>
9#include <linux/slab.h>
10#include <linux/math64.h>
11#include <linux/ratelimit.h>
12#include <linux/error-injection.h>
13#include <linux/sched/mm.h>
14#include "ctree.h"
15#include "fs.h"
16#include "messages.h"
17#include "misc.h"
18#include "free-space-cache.h"
19#include "transaction.h"
20#include "disk-io.h"
21#include "extent_io.h"
22#include "space-info.h"
23#include "block-group.h"
24#include "discard.h"
25#include "subpage.h"
26#include "inode-item.h"
27#include "accessors.h"
28#include "file-item.h"
29#include "file.h"
30#include "super.h"
31
32#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
33#define MAX_CACHE_BYTES_PER_GIG SZ_64K
34#define FORCE_EXTENT_THRESHOLD SZ_1M
35
36static struct kmem_cache *btrfs_free_space_cachep;
37static struct kmem_cache *btrfs_free_space_bitmap_cachep;
38
39struct btrfs_trim_range {
40 u64 start;
41 u64 bytes;
42 struct list_head list;
43};
44
45static int link_free_space(struct btrfs_free_space_ctl *ctl,
46 struct btrfs_free_space *info);
47static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
48 struct btrfs_free_space *info, bool update_stat);
49static int search_bitmap(struct btrfs_free_space_ctl *ctl,
50 struct btrfs_free_space *bitmap_info, u64 *offset,
51 u64 *bytes, bool for_alloc);
52static void free_bitmap(struct btrfs_free_space_ctl *ctl,
53 struct btrfs_free_space *bitmap_info);
54static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
55 struct btrfs_free_space *info, u64 offset,
56 u64 bytes, bool update_stats);
57
58static void btrfs_crc32c_final(u32 crc, u8 *result)
59{
60 put_unaligned_le32(val: ~crc, p: result);
61}
62
63static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
64{
65 struct btrfs_free_space *info;
66 struct rb_node *node;
67
68 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
69 info = rb_entry(node, struct btrfs_free_space, offset_index);
70 if (!info->bitmap) {
71 unlink_free_space(ctl, info, update_stat: true);
72 kmem_cache_free(s: btrfs_free_space_cachep, objp: info);
73 } else {
74 free_bitmap(ctl, bitmap_info: info);
75 }
76
77 cond_resched_lock(&ctl->tree_lock);
78 }
79}
80
81static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
82 struct btrfs_path *path,
83 u64 offset)
84{
85 struct btrfs_fs_info *fs_info = root->fs_info;
86 struct btrfs_key key;
87 struct btrfs_key location;
88 struct btrfs_disk_key disk_key;
89 struct btrfs_free_space_header *header;
90 struct extent_buffer *leaf;
91 struct inode *inode = NULL;
92 unsigned nofs_flag;
93 int ret;
94
95 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
96 key.offset = offset;
97 key.type = 0;
98
99 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
100 if (ret < 0)
101 return ERR_PTR(error: ret);
102 if (ret > 0) {
103 btrfs_release_path(p: path);
104 return ERR_PTR(error: -ENOENT);
105 }
106
107 leaf = path->nodes[0];
108 header = btrfs_item_ptr(leaf, path->slots[0],
109 struct btrfs_free_space_header);
110 btrfs_free_space_key(eb: leaf, h: header, key: &disk_key);
111 btrfs_disk_key_to_cpu(cpu_key: &location, disk_key: &disk_key);
112 btrfs_release_path(p: path);
113
114 /*
115 * We are often under a trans handle at this point, so we need to make
116 * sure NOFS is set to keep us from deadlocking.
117 */
118 nofs_flag = memalloc_nofs_save();
119 inode = btrfs_iget_path(s: fs_info->sb, ino: location.objectid, root, path);
120 btrfs_release_path(p: path);
121 memalloc_nofs_restore(flags: nofs_flag);
122 if (IS_ERR(ptr: inode))
123 return inode;
124
125 mapping_set_gfp_mask(m: inode->i_mapping,
126 mask: mapping_gfp_constraint(mapping: inode->i_mapping,
127 gfp_mask: ~(__GFP_FS | __GFP_HIGHMEM)));
128
129 return inode;
130}
131
132struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
133 struct btrfs_path *path)
134{
135 struct btrfs_fs_info *fs_info = block_group->fs_info;
136 struct inode *inode = NULL;
137 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138
139 spin_lock(lock: &block_group->lock);
140 if (block_group->inode)
141 inode = igrab(block_group->inode);
142 spin_unlock(lock: &block_group->lock);
143 if (inode)
144 return inode;
145
146 inode = __lookup_free_space_inode(root: fs_info->tree_root, path,
147 offset: block_group->start);
148 if (IS_ERR(ptr: inode))
149 return inode;
150
151 spin_lock(lock: &block_group->lock);
152 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
153 btrfs_info(fs_info, "Old style space inode found, converting.");
154 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
155 BTRFS_INODE_NODATACOW;
156 block_group->disk_cache_state = BTRFS_DC_CLEAR;
157 }
158
159 if (!test_and_set_bit(nr: BLOCK_GROUP_FLAG_IREF, addr: &block_group->runtime_flags))
160 block_group->inode = igrab(inode);
161 spin_unlock(lock: &block_group->lock);
162
163 return inode;
164}
165
166static int __create_free_space_inode(struct btrfs_root *root,
167 struct btrfs_trans_handle *trans,
168 struct btrfs_path *path,
169 u64 ino, u64 offset)
170{
171 struct btrfs_key key;
172 struct btrfs_disk_key disk_key;
173 struct btrfs_free_space_header *header;
174 struct btrfs_inode_item *inode_item;
175 struct extent_buffer *leaf;
176 /* We inline CRCs for the free disk space cache */
177 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
178 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
179 int ret;
180
181 ret = btrfs_insert_empty_inode(trans, root, path, objectid: ino);
182 if (ret)
183 return ret;
184
185 leaf = path->nodes[0];
186 inode_item = btrfs_item_ptr(leaf, path->slots[0],
187 struct btrfs_inode_item);
188 btrfs_item_key(eb: leaf, disk_key: &disk_key, nr: path->slots[0]);
189 memzero_extent_buffer(eb: leaf, start: (unsigned long)inode_item,
190 len: sizeof(*inode_item));
191 btrfs_set_inode_generation(eb: leaf, s: inode_item, val: trans->transid);
192 btrfs_set_inode_size(eb: leaf, s: inode_item, val: 0);
193 btrfs_set_inode_nbytes(eb: leaf, s: inode_item, val: 0);
194 btrfs_set_inode_uid(eb: leaf, s: inode_item, val: 0);
195 btrfs_set_inode_gid(eb: leaf, s: inode_item, val: 0);
196 btrfs_set_inode_mode(eb: leaf, s: inode_item, S_IFREG | 0600);
197 btrfs_set_inode_flags(eb: leaf, s: inode_item, val: flags);
198 btrfs_set_inode_nlink(eb: leaf, s: inode_item, val: 1);
199 btrfs_set_inode_transid(eb: leaf, s: inode_item, val: trans->transid);
200 btrfs_set_inode_block_group(eb: leaf, s: inode_item, val: offset);
201 btrfs_mark_buffer_dirty(trans, buf: leaf);
202 btrfs_release_path(p: path);
203
204 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
205 key.offset = offset;
206 key.type = 0;
207 ret = btrfs_insert_empty_item(trans, root, path, key: &key,
208 data_size: sizeof(struct btrfs_free_space_header));
209 if (ret < 0) {
210 btrfs_release_path(p: path);
211 return ret;
212 }
213
214 leaf = path->nodes[0];
215 header = btrfs_item_ptr(leaf, path->slots[0],
216 struct btrfs_free_space_header);
217 memzero_extent_buffer(eb: leaf, start: (unsigned long)header, len: sizeof(*header));
218 btrfs_set_free_space_key(eb: leaf, h: header, key: &disk_key);
219 btrfs_mark_buffer_dirty(trans, buf: leaf);
220 btrfs_release_path(p: path);
221
222 return 0;
223}
224
225int create_free_space_inode(struct btrfs_trans_handle *trans,
226 struct btrfs_block_group *block_group,
227 struct btrfs_path *path)
228{
229 int ret;
230 u64 ino;
231
232 ret = btrfs_get_free_objectid(root: trans->fs_info->tree_root, objectid: &ino);
233 if (ret < 0)
234 return ret;
235
236 return __create_free_space_inode(root: trans->fs_info->tree_root, trans, path,
237 ino, offset: block_group->start);
238}
239
240/*
241 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
242 * handles lookup, otherwise it takes ownership and iputs the inode.
243 * Don't reuse an inode pointer after passing it into this function.
244 */
245int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
246 struct inode *inode,
247 struct btrfs_block_group *block_group)
248{
249 struct btrfs_path *path;
250 struct btrfs_key key;
251 int ret = 0;
252
253 path = btrfs_alloc_path();
254 if (!path)
255 return -ENOMEM;
256
257 if (!inode)
258 inode = lookup_free_space_inode(block_group, path);
259 if (IS_ERR(ptr: inode)) {
260 if (PTR_ERR(ptr: inode) != -ENOENT)
261 ret = PTR_ERR(ptr: inode);
262 goto out;
263 }
264 ret = btrfs_orphan_add(trans, inode: BTRFS_I(inode));
265 if (ret) {
266 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
267 goto out;
268 }
269 clear_nlink(inode);
270 /* One for the block groups ref */
271 spin_lock(lock: &block_group->lock);
272 if (test_and_clear_bit(nr: BLOCK_GROUP_FLAG_IREF, addr: &block_group->runtime_flags)) {
273 block_group->inode = NULL;
274 spin_unlock(lock: &block_group->lock);
275 iput(inode);
276 } else {
277 spin_unlock(lock: &block_group->lock);
278 }
279 /* One for the lookup ref */
280 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
281
282 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
283 key.type = 0;
284 key.offset = block_group->start;
285 ret = btrfs_search_slot(trans, root: trans->fs_info->tree_root, key: &key, p: path,
286 ins_len: -1, cow: 1);
287 if (ret) {
288 if (ret > 0)
289 ret = 0;
290 goto out;
291 }
292 ret = btrfs_del_item(trans, root: trans->fs_info->tree_root, path);
293out:
294 btrfs_free_path(p: path);
295 return ret;
296}
297
298int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
299 struct btrfs_block_group *block_group,
300 struct inode *vfs_inode)
301{
302 struct btrfs_truncate_control control = {
303 .inode = BTRFS_I(inode: vfs_inode),
304 .new_size = 0,
305 .ino = btrfs_ino(inode: BTRFS_I(inode: vfs_inode)),
306 .min_type = BTRFS_EXTENT_DATA_KEY,
307 .clear_extent_range = true,
308 };
309 struct btrfs_inode *inode = BTRFS_I(inode: vfs_inode);
310 struct btrfs_root *root = inode->root;
311 struct extent_state *cached_state = NULL;
312 int ret = 0;
313 bool locked = false;
314
315 if (block_group) {
316 struct btrfs_path *path = btrfs_alloc_path();
317
318 if (!path) {
319 ret = -ENOMEM;
320 goto fail;
321 }
322 locked = true;
323 mutex_lock(&trans->transaction->cache_write_mutex);
324 if (!list_empty(head: &block_group->io_list)) {
325 list_del_init(entry: &block_group->io_list);
326
327 btrfs_wait_cache_io(trans, block_group, path);
328 btrfs_put_block_group(cache: block_group);
329 }
330
331 /*
332 * now that we've truncated the cache away, its no longer
333 * setup or written
334 */
335 spin_lock(lock: &block_group->lock);
336 block_group->disk_cache_state = BTRFS_DC_CLEAR;
337 spin_unlock(lock: &block_group->lock);
338 btrfs_free_path(p: path);
339 }
340
341 btrfs_i_size_write(inode, size: 0);
342 truncate_pagecache(inode: vfs_inode, new: 0);
343
344 lock_extent(tree: &inode->io_tree, start: 0, end: (u64)-1, cached: &cached_state);
345 btrfs_drop_extent_map_range(inode, start: 0, end: (u64)-1, skip_pinned: false);
346
347 /*
348 * We skip the throttling logic for free space cache inodes, so we don't
349 * need to check for -EAGAIN.
350 */
351 ret = btrfs_truncate_inode_items(trans, root, control: &control);
352
353 inode_sub_bytes(inode: &inode->vfs_inode, bytes: control.sub_bytes);
354 btrfs_inode_safe_disk_i_size_write(inode, new_i_size: control.last_size);
355
356 unlock_extent(tree: &inode->io_tree, start: 0, end: (u64)-1, cached: &cached_state);
357 if (ret)
358 goto fail;
359
360 ret = btrfs_update_inode(trans, inode);
361
362fail:
363 if (locked)
364 mutex_unlock(lock: &trans->transaction->cache_write_mutex);
365 if (ret)
366 btrfs_abort_transaction(trans, ret);
367
368 return ret;
369}
370
371static void readahead_cache(struct inode *inode)
372{
373 struct file_ra_state ra;
374 unsigned long last_index;
375
376 file_ra_state_init(ra: &ra, mapping: inode->i_mapping);
377 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
378
379 page_cache_sync_readahead(mapping: inode->i_mapping, ra: &ra, NULL, index: 0, req_count: last_index);
380}
381
382static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
383 int write)
384{
385 int num_pages;
386
387 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
388
389 /* Make sure we can fit our crcs and generation into the first page */
390 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
391 return -ENOSPC;
392
393 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
394
395 io_ctl->pages = kcalloc(n: num_pages, size: sizeof(struct page *), GFP_NOFS);
396 if (!io_ctl->pages)
397 return -ENOMEM;
398
399 io_ctl->num_pages = num_pages;
400 io_ctl->fs_info = inode_to_fs_info(inode);
401 io_ctl->inode = inode;
402
403 return 0;
404}
405ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
406
407static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
408{
409 kfree(objp: io_ctl->pages);
410 io_ctl->pages = NULL;
411}
412
413static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
414{
415 if (io_ctl->cur) {
416 io_ctl->cur = NULL;
417 io_ctl->orig = NULL;
418 }
419}
420
421static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
422{
423 ASSERT(io_ctl->index < io_ctl->num_pages);
424 io_ctl->page = io_ctl->pages[io_ctl->index++];
425 io_ctl->cur = page_address(io_ctl->page);
426 io_ctl->orig = io_ctl->cur;
427 io_ctl->size = PAGE_SIZE;
428 if (clear)
429 clear_page(page: io_ctl->cur);
430}
431
432static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
433{
434 int i;
435
436 io_ctl_unmap_page(io_ctl);
437
438 for (i = 0; i < io_ctl->num_pages; i++) {
439 if (io_ctl->pages[i]) {
440 btrfs_folio_clear_checked(fs_info: io_ctl->fs_info,
441 page_folio(io_ctl->pages[i]),
442 start: page_offset(page: io_ctl->pages[i]),
443 PAGE_SIZE);
444 unlock_page(page: io_ctl->pages[i]);
445 put_page(page: io_ctl->pages[i]);
446 }
447 }
448}
449
450static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
451{
452 struct page *page;
453 struct inode *inode = io_ctl->inode;
454 gfp_t mask = btrfs_alloc_write_mask(mapping: inode->i_mapping);
455 int i;
456
457 for (i = 0; i < io_ctl->num_pages; i++) {
458 int ret;
459
460 page = find_or_create_page(mapping: inode->i_mapping, index: i, gfp_mask: mask);
461 if (!page) {
462 io_ctl_drop_pages(io_ctl);
463 return -ENOMEM;
464 }
465
466 ret = set_page_extent_mapped(page);
467 if (ret < 0) {
468 unlock_page(page);
469 put_page(page);
470 io_ctl_drop_pages(io_ctl);
471 return ret;
472 }
473
474 io_ctl->pages[i] = page;
475 if (uptodate && !PageUptodate(page)) {
476 btrfs_read_folio(NULL, page_folio(page));
477 lock_page(page);
478 if (page->mapping != inode->i_mapping) {
479 btrfs_err(BTRFS_I(inode)->root->fs_info,
480 "free space cache page truncated");
481 io_ctl_drop_pages(io_ctl);
482 return -EIO;
483 }
484 if (!PageUptodate(page)) {
485 btrfs_err(BTRFS_I(inode)->root->fs_info,
486 "error reading free space cache");
487 io_ctl_drop_pages(io_ctl);
488 return -EIO;
489 }
490 }
491 }
492
493 for (i = 0; i < io_ctl->num_pages; i++)
494 clear_page_dirty_for_io(page: io_ctl->pages[i]);
495
496 return 0;
497}
498
499static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
500{
501 io_ctl_map_page(io_ctl, clear: 1);
502
503 /*
504 * Skip the csum areas. If we don't check crcs then we just have a
505 * 64bit chunk at the front of the first page.
506 */
507 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
508 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
509
510 put_unaligned_le64(val: generation, p: io_ctl->cur);
511 io_ctl->cur += sizeof(u64);
512}
513
514static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
515{
516 u64 cache_gen;
517
518 /*
519 * Skip the crc area. If we don't check crcs then we just have a 64bit
520 * chunk at the front of the first page.
521 */
522 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
523 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
524
525 cache_gen = get_unaligned_le64(p: io_ctl->cur);
526 if (cache_gen != generation) {
527 btrfs_err_rl(io_ctl->fs_info,
528 "space cache generation (%llu) does not match inode (%llu)",
529 cache_gen, generation);
530 io_ctl_unmap_page(io_ctl);
531 return -EIO;
532 }
533 io_ctl->cur += sizeof(u64);
534 return 0;
535}
536
537static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
538{
539 u32 *tmp;
540 u32 crc = ~(u32)0;
541 unsigned offset = 0;
542
543 if (index == 0)
544 offset = sizeof(u32) * io_ctl->num_pages;
545
546 crc = crc32c(crc, address: io_ctl->orig + offset, PAGE_SIZE - offset);
547 btrfs_crc32c_final(crc, result: (u8 *)&crc);
548 io_ctl_unmap_page(io_ctl);
549 tmp = page_address(io_ctl->pages[0]);
550 tmp += index;
551 *tmp = crc;
552}
553
554static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
555{
556 u32 *tmp, val;
557 u32 crc = ~(u32)0;
558 unsigned offset = 0;
559
560 if (index == 0)
561 offset = sizeof(u32) * io_ctl->num_pages;
562
563 tmp = page_address(io_ctl->pages[0]);
564 tmp += index;
565 val = *tmp;
566
567 io_ctl_map_page(io_ctl, clear: 0);
568 crc = crc32c(crc, address: io_ctl->orig + offset, PAGE_SIZE - offset);
569 btrfs_crc32c_final(crc, result: (u8 *)&crc);
570 if (val != crc) {
571 btrfs_err_rl(io_ctl->fs_info,
572 "csum mismatch on free space cache");
573 io_ctl_unmap_page(io_ctl);
574 return -EIO;
575 }
576
577 return 0;
578}
579
580static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
581 void *bitmap)
582{
583 struct btrfs_free_space_entry *entry;
584
585 if (!io_ctl->cur)
586 return -ENOSPC;
587
588 entry = io_ctl->cur;
589 put_unaligned_le64(val: offset, p: &entry->offset);
590 put_unaligned_le64(val: bytes, p: &entry->bytes);
591 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
592 BTRFS_FREE_SPACE_EXTENT;
593 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
594 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
595
596 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
597 return 0;
598
599 io_ctl_set_crc(io_ctl, index: io_ctl->index - 1);
600
601 /* No more pages to map */
602 if (io_ctl->index >= io_ctl->num_pages)
603 return 0;
604
605 /* map the next page */
606 io_ctl_map_page(io_ctl, clear: 1);
607 return 0;
608}
609
610static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
611{
612 if (!io_ctl->cur)
613 return -ENOSPC;
614
615 /*
616 * If we aren't at the start of the current page, unmap this one and
617 * map the next one if there is any left.
618 */
619 if (io_ctl->cur != io_ctl->orig) {
620 io_ctl_set_crc(io_ctl, index: io_ctl->index - 1);
621 if (io_ctl->index >= io_ctl->num_pages)
622 return -ENOSPC;
623 io_ctl_map_page(io_ctl, clear: 0);
624 }
625
626 copy_page(to: io_ctl->cur, from: bitmap);
627 io_ctl_set_crc(io_ctl, index: io_ctl->index - 1);
628 if (io_ctl->index < io_ctl->num_pages)
629 io_ctl_map_page(io_ctl, clear: 0);
630 return 0;
631}
632
633static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
634{
635 /*
636 * If we're not on the boundary we know we've modified the page and we
637 * need to crc the page.
638 */
639 if (io_ctl->cur != io_ctl->orig)
640 io_ctl_set_crc(io_ctl, index: io_ctl->index - 1);
641 else
642 io_ctl_unmap_page(io_ctl);
643
644 while (io_ctl->index < io_ctl->num_pages) {
645 io_ctl_map_page(io_ctl, clear: 1);
646 io_ctl_set_crc(io_ctl, index: io_ctl->index - 1);
647 }
648}
649
650static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
651 struct btrfs_free_space *entry, u8 *type)
652{
653 struct btrfs_free_space_entry *e;
654 int ret;
655
656 if (!io_ctl->cur) {
657 ret = io_ctl_check_crc(io_ctl, index: io_ctl->index);
658 if (ret)
659 return ret;
660 }
661
662 e = io_ctl->cur;
663 entry->offset = get_unaligned_le64(p: &e->offset);
664 entry->bytes = get_unaligned_le64(p: &e->bytes);
665 *type = e->type;
666 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
667 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
668
669 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
670 return 0;
671
672 io_ctl_unmap_page(io_ctl);
673
674 return 0;
675}
676
677static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
678 struct btrfs_free_space *entry)
679{
680 int ret;
681
682 ret = io_ctl_check_crc(io_ctl, index: io_ctl->index);
683 if (ret)
684 return ret;
685
686 copy_page(to: entry->bitmap, from: io_ctl->cur);
687 io_ctl_unmap_page(io_ctl);
688
689 return 0;
690}
691
692static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
693{
694 struct btrfs_block_group *block_group = ctl->block_group;
695 u64 max_bytes;
696 u64 bitmap_bytes;
697 u64 extent_bytes;
698 u64 size = block_group->length;
699 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
700 u64 max_bitmaps = div64_u64(dividend: size + bytes_per_bg - 1, divisor: bytes_per_bg);
701
702 max_bitmaps = max_t(u64, max_bitmaps, 1);
703
704 if (ctl->total_bitmaps > max_bitmaps)
705 btrfs_err(block_group->fs_info,
706"invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
707 block_group->start, block_group->length,
708 ctl->total_bitmaps, ctl->unit, max_bitmaps,
709 bytes_per_bg);
710 ASSERT(ctl->total_bitmaps <= max_bitmaps);
711
712 /*
713 * We are trying to keep the total amount of memory used per 1GiB of
714 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
715 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
716 * bitmaps, we may end up using more memory than this.
717 */
718 if (size < SZ_1G)
719 max_bytes = MAX_CACHE_BYTES_PER_GIG;
720 else
721 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(dividend: size, SZ_1G);
722
723 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
724
725 /*
726 * we want the extent entry threshold to always be at most 1/2 the max
727 * bytes we can have, or whatever is less than that.
728 */
729 extent_bytes = max_bytes - bitmap_bytes;
730 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
731
732 ctl->extents_thresh =
733 div_u64(dividend: extent_bytes, divisor: sizeof(struct btrfs_free_space));
734}
735
736static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
737 struct btrfs_free_space_ctl *ctl,
738 struct btrfs_path *path, u64 offset)
739{
740 struct btrfs_fs_info *fs_info = root->fs_info;
741 struct btrfs_free_space_header *header;
742 struct extent_buffer *leaf;
743 struct btrfs_io_ctl io_ctl;
744 struct btrfs_key key;
745 struct btrfs_free_space *e, *n;
746 LIST_HEAD(bitmaps);
747 u64 num_entries;
748 u64 num_bitmaps;
749 u64 generation;
750 u8 type;
751 int ret = 0;
752
753 /* Nothing in the space cache, goodbye */
754 if (!i_size_read(inode))
755 return 0;
756
757 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
758 key.offset = offset;
759 key.type = 0;
760
761 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
762 if (ret < 0)
763 return 0;
764 else if (ret > 0) {
765 btrfs_release_path(p: path);
766 return 0;
767 }
768
769 ret = -1;
770
771 leaf = path->nodes[0];
772 header = btrfs_item_ptr(leaf, path->slots[0],
773 struct btrfs_free_space_header);
774 num_entries = btrfs_free_space_entries(eb: leaf, s: header);
775 num_bitmaps = btrfs_free_space_bitmaps(eb: leaf, s: header);
776 generation = btrfs_free_space_generation(eb: leaf, s: header);
777 btrfs_release_path(p: path);
778
779 if (!BTRFS_I(inode)->generation) {
780 btrfs_info(fs_info,
781 "the free space cache file (%llu) is invalid, skip it",
782 offset);
783 return 0;
784 }
785
786 if (BTRFS_I(inode)->generation != generation) {
787 btrfs_err(fs_info,
788 "free space inode generation (%llu) did not match free space cache generation (%llu)",
789 BTRFS_I(inode)->generation, generation);
790 return 0;
791 }
792
793 if (!num_entries)
794 return 0;
795
796 ret = io_ctl_init(io_ctl: &io_ctl, inode, write: 0);
797 if (ret)
798 return ret;
799
800 readahead_cache(inode);
801
802 ret = io_ctl_prepare_pages(io_ctl: &io_ctl, uptodate: true);
803 if (ret)
804 goto out;
805
806 ret = io_ctl_check_crc(io_ctl: &io_ctl, index: 0);
807 if (ret)
808 goto free_cache;
809
810 ret = io_ctl_check_generation(io_ctl: &io_ctl, generation);
811 if (ret)
812 goto free_cache;
813
814 while (num_entries) {
815 e = kmem_cache_zalloc(k: btrfs_free_space_cachep,
816 GFP_NOFS);
817 if (!e) {
818 ret = -ENOMEM;
819 goto free_cache;
820 }
821
822 ret = io_ctl_read_entry(io_ctl: &io_ctl, entry: e, type: &type);
823 if (ret) {
824 kmem_cache_free(s: btrfs_free_space_cachep, objp: e);
825 goto free_cache;
826 }
827
828 if (!e->bytes) {
829 ret = -1;
830 kmem_cache_free(s: btrfs_free_space_cachep, objp: e);
831 goto free_cache;
832 }
833
834 if (type == BTRFS_FREE_SPACE_EXTENT) {
835 spin_lock(lock: &ctl->tree_lock);
836 ret = link_free_space(ctl, info: e);
837 spin_unlock(lock: &ctl->tree_lock);
838 if (ret) {
839 btrfs_err(fs_info,
840 "Duplicate entries in free space cache, dumping");
841 kmem_cache_free(s: btrfs_free_space_cachep, objp: e);
842 goto free_cache;
843 }
844 } else {
845 ASSERT(num_bitmaps);
846 num_bitmaps--;
847 e->bitmap = kmem_cache_zalloc(
848 k: btrfs_free_space_bitmap_cachep, GFP_NOFS);
849 if (!e->bitmap) {
850 ret = -ENOMEM;
851 kmem_cache_free(
852 s: btrfs_free_space_cachep, objp: e);
853 goto free_cache;
854 }
855 spin_lock(lock: &ctl->tree_lock);
856 ret = link_free_space(ctl, info: e);
857 if (ret) {
858 spin_unlock(lock: &ctl->tree_lock);
859 btrfs_err(fs_info,
860 "Duplicate entries in free space cache, dumping");
861 kmem_cache_free(s: btrfs_free_space_cachep, objp: e);
862 goto free_cache;
863 }
864 ctl->total_bitmaps++;
865 recalculate_thresholds(ctl);
866 spin_unlock(lock: &ctl->tree_lock);
867 list_add_tail(new: &e->list, head: &bitmaps);
868 }
869
870 num_entries--;
871 }
872
873 io_ctl_unmap_page(io_ctl: &io_ctl);
874
875 /*
876 * We add the bitmaps at the end of the entries in order that
877 * the bitmap entries are added to the cache.
878 */
879 list_for_each_entry_safe(e, n, &bitmaps, list) {
880 list_del_init(entry: &e->list);
881 ret = io_ctl_read_bitmap(io_ctl: &io_ctl, entry: e);
882 if (ret)
883 goto free_cache;
884 }
885
886 io_ctl_drop_pages(io_ctl: &io_ctl);
887 ret = 1;
888out:
889 io_ctl_free(io_ctl: &io_ctl);
890 return ret;
891free_cache:
892 io_ctl_drop_pages(io_ctl: &io_ctl);
893
894 spin_lock(lock: &ctl->tree_lock);
895 __btrfs_remove_free_space_cache(ctl);
896 spin_unlock(lock: &ctl->tree_lock);
897 goto out;
898}
899
900static int copy_free_space_cache(struct btrfs_block_group *block_group,
901 struct btrfs_free_space_ctl *ctl)
902{
903 struct btrfs_free_space *info;
904 struct rb_node *n;
905 int ret = 0;
906
907 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
908 info = rb_entry(n, struct btrfs_free_space, offset_index);
909 if (!info->bitmap) {
910 const u64 offset = info->offset;
911 const u64 bytes = info->bytes;
912
913 unlink_free_space(ctl, info, update_stat: true);
914 spin_unlock(lock: &ctl->tree_lock);
915 kmem_cache_free(s: btrfs_free_space_cachep, objp: info);
916 ret = btrfs_add_free_space(block_group, bytenr: offset, size: bytes);
917 spin_lock(lock: &ctl->tree_lock);
918 } else {
919 u64 offset = info->offset;
920 u64 bytes = ctl->unit;
921
922 ret = search_bitmap(ctl, bitmap_info: info, offset: &offset, bytes: &bytes, for_alloc: false);
923 if (ret == 0) {
924 bitmap_clear_bits(ctl, info, offset, bytes, update_stats: true);
925 spin_unlock(lock: &ctl->tree_lock);
926 ret = btrfs_add_free_space(block_group, bytenr: offset,
927 size: bytes);
928 spin_lock(lock: &ctl->tree_lock);
929 } else {
930 free_bitmap(ctl, bitmap_info: info);
931 ret = 0;
932 }
933 }
934 cond_resched_lock(&ctl->tree_lock);
935 }
936 return ret;
937}
938
939static struct lock_class_key btrfs_free_space_inode_key;
940
941int load_free_space_cache(struct btrfs_block_group *block_group)
942{
943 struct btrfs_fs_info *fs_info = block_group->fs_info;
944 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
945 struct btrfs_free_space_ctl tmp_ctl = {};
946 struct inode *inode;
947 struct btrfs_path *path;
948 int ret = 0;
949 bool matched;
950 u64 used = block_group->used;
951
952 /*
953 * Because we could potentially discard our loaded free space, we want
954 * to load everything into a temporary structure first, and then if it's
955 * valid copy it all into the actual free space ctl.
956 */
957 btrfs_init_free_space_ctl(block_group, ctl: &tmp_ctl);
958
959 /*
960 * If this block group has been marked to be cleared for one reason or
961 * another then we can't trust the on disk cache, so just return.
962 */
963 spin_lock(lock: &block_group->lock);
964 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
965 spin_unlock(lock: &block_group->lock);
966 return 0;
967 }
968 spin_unlock(lock: &block_group->lock);
969
970 path = btrfs_alloc_path();
971 if (!path)
972 return 0;
973 path->search_commit_root = 1;
974 path->skip_locking = 1;
975
976 /*
977 * We must pass a path with search_commit_root set to btrfs_iget in
978 * order to avoid a deadlock when allocating extents for the tree root.
979 *
980 * When we are COWing an extent buffer from the tree root, when looking
981 * for a free extent, at extent-tree.c:find_free_extent(), we can find
982 * block group without its free space cache loaded. When we find one
983 * we must load its space cache which requires reading its free space
984 * cache's inode item from the root tree. If this inode item is located
985 * in the same leaf that we started COWing before, then we end up in
986 * deadlock on the extent buffer (trying to read lock it when we
987 * previously write locked it).
988 *
989 * It's safe to read the inode item using the commit root because
990 * block groups, once loaded, stay in memory forever (until they are
991 * removed) as well as their space caches once loaded. New block groups
992 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
993 * we will never try to read their inode item while the fs is mounted.
994 */
995 inode = lookup_free_space_inode(block_group, path);
996 if (IS_ERR(ptr: inode)) {
997 btrfs_free_path(p: path);
998 return 0;
999 }
1000
1001 /* We may have converted the inode and made the cache invalid. */
1002 spin_lock(lock: &block_group->lock);
1003 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1004 spin_unlock(lock: &block_group->lock);
1005 btrfs_free_path(p: path);
1006 goto out;
1007 }
1008 spin_unlock(lock: &block_group->lock);
1009
1010 /*
1011 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1012 * free space inodes to prevent false positives related to locks for normal
1013 * inodes.
1014 */
1015 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1016 &btrfs_free_space_inode_key);
1017
1018 ret = __load_free_space_cache(root: fs_info->tree_root, inode, ctl: &tmp_ctl,
1019 path, offset: block_group->start);
1020 btrfs_free_path(p: path);
1021 if (ret <= 0)
1022 goto out;
1023
1024 matched = (tmp_ctl.free_space == (block_group->length - used -
1025 block_group->bytes_super));
1026
1027 if (matched) {
1028 spin_lock(lock: &tmp_ctl.tree_lock);
1029 ret = copy_free_space_cache(block_group, ctl: &tmp_ctl);
1030 spin_unlock(lock: &tmp_ctl.tree_lock);
1031 /*
1032 * ret == 1 means we successfully loaded the free space cache,
1033 * so we need to re-set it here.
1034 */
1035 if (ret == 0)
1036 ret = 1;
1037 } else {
1038 /*
1039 * We need to call the _locked variant so we don't try to update
1040 * the discard counters.
1041 */
1042 spin_lock(lock: &tmp_ctl.tree_lock);
1043 __btrfs_remove_free_space_cache(ctl: &tmp_ctl);
1044 spin_unlock(lock: &tmp_ctl.tree_lock);
1045 btrfs_warn(fs_info,
1046 "block group %llu has wrong amount of free space",
1047 block_group->start);
1048 ret = -1;
1049 }
1050out:
1051 if (ret < 0) {
1052 /* This cache is bogus, make sure it gets cleared */
1053 spin_lock(lock: &block_group->lock);
1054 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1055 spin_unlock(lock: &block_group->lock);
1056 ret = 0;
1057
1058 btrfs_warn(fs_info,
1059 "failed to load free space cache for block group %llu, rebuilding it now",
1060 block_group->start);
1061 }
1062
1063 spin_lock(lock: &ctl->tree_lock);
1064 btrfs_discard_update_discardable(block_group);
1065 spin_unlock(lock: &ctl->tree_lock);
1066 iput(inode);
1067 return ret;
1068}
1069
1070static noinline_for_stack
1071int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1072 struct btrfs_free_space_ctl *ctl,
1073 struct btrfs_block_group *block_group,
1074 int *entries, int *bitmaps,
1075 struct list_head *bitmap_list)
1076{
1077 int ret;
1078 struct btrfs_free_cluster *cluster = NULL;
1079 struct btrfs_free_cluster *cluster_locked = NULL;
1080 struct rb_node *node = rb_first(&ctl->free_space_offset);
1081 struct btrfs_trim_range *trim_entry;
1082
1083 /* Get the cluster for this block_group if it exists */
1084 if (block_group && !list_empty(head: &block_group->cluster_list)) {
1085 cluster = list_entry(block_group->cluster_list.next,
1086 struct btrfs_free_cluster,
1087 block_group_list);
1088 }
1089
1090 if (!node && cluster) {
1091 cluster_locked = cluster;
1092 spin_lock(lock: &cluster_locked->lock);
1093 node = rb_first(&cluster->root);
1094 cluster = NULL;
1095 }
1096
1097 /* Write out the extent entries */
1098 while (node) {
1099 struct btrfs_free_space *e;
1100
1101 e = rb_entry(node, struct btrfs_free_space, offset_index);
1102 *entries += 1;
1103
1104 ret = io_ctl_add_entry(io_ctl, offset: e->offset, bytes: e->bytes,
1105 bitmap: e->bitmap);
1106 if (ret)
1107 goto fail;
1108
1109 if (e->bitmap) {
1110 list_add_tail(new: &e->list, head: bitmap_list);
1111 *bitmaps += 1;
1112 }
1113 node = rb_next(node);
1114 if (!node && cluster) {
1115 node = rb_first(&cluster->root);
1116 cluster_locked = cluster;
1117 spin_lock(lock: &cluster_locked->lock);
1118 cluster = NULL;
1119 }
1120 }
1121 if (cluster_locked) {
1122 spin_unlock(lock: &cluster_locked->lock);
1123 cluster_locked = NULL;
1124 }
1125
1126 /*
1127 * Make sure we don't miss any range that was removed from our rbtree
1128 * because trimming is running. Otherwise after a umount+mount (or crash
1129 * after committing the transaction) we would leak free space and get
1130 * an inconsistent free space cache report from fsck.
1131 */
1132 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1133 ret = io_ctl_add_entry(io_ctl, offset: trim_entry->start,
1134 bytes: trim_entry->bytes, NULL);
1135 if (ret)
1136 goto fail;
1137 *entries += 1;
1138 }
1139
1140 return 0;
1141fail:
1142 if (cluster_locked)
1143 spin_unlock(lock: &cluster_locked->lock);
1144 return -ENOSPC;
1145}
1146
1147static noinline_for_stack int
1148update_cache_item(struct btrfs_trans_handle *trans,
1149 struct btrfs_root *root,
1150 struct inode *inode,
1151 struct btrfs_path *path, u64 offset,
1152 int entries, int bitmaps)
1153{
1154 struct btrfs_key key;
1155 struct btrfs_free_space_header *header;
1156 struct extent_buffer *leaf;
1157 int ret;
1158
1159 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1160 key.offset = offset;
1161 key.type = 0;
1162
1163 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: 0, cow: 1);
1164 if (ret < 0) {
1165 clear_extent_bit(tree: &BTRFS_I(inode)->io_tree, start: 0, end: inode->i_size - 1,
1166 bits: EXTENT_DELALLOC, NULL);
1167 goto fail;
1168 }
1169 leaf = path->nodes[0];
1170 if (ret > 0) {
1171 struct btrfs_key found_key;
1172 ASSERT(path->slots[0]);
1173 path->slots[0]--;
1174 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
1175 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1176 found_key.offset != offset) {
1177 clear_extent_bit(tree: &BTRFS_I(inode)->io_tree, start: 0,
1178 end: inode->i_size - 1, bits: EXTENT_DELALLOC,
1179 NULL);
1180 btrfs_release_path(p: path);
1181 goto fail;
1182 }
1183 }
1184
1185 BTRFS_I(inode)->generation = trans->transid;
1186 header = btrfs_item_ptr(leaf, path->slots[0],
1187 struct btrfs_free_space_header);
1188 btrfs_set_free_space_entries(eb: leaf, s: header, val: entries);
1189 btrfs_set_free_space_bitmaps(eb: leaf, s: header, val: bitmaps);
1190 btrfs_set_free_space_generation(eb: leaf, s: header, val: trans->transid);
1191 btrfs_mark_buffer_dirty(trans, buf: leaf);
1192 btrfs_release_path(p: path);
1193
1194 return 0;
1195
1196fail:
1197 return -1;
1198}
1199
1200static noinline_for_stack int write_pinned_extent_entries(
1201 struct btrfs_trans_handle *trans,
1202 struct btrfs_block_group *block_group,
1203 struct btrfs_io_ctl *io_ctl,
1204 int *entries)
1205{
1206 u64 start, extent_start, extent_end, len;
1207 struct extent_io_tree *unpin = NULL;
1208 int ret;
1209
1210 if (!block_group)
1211 return 0;
1212
1213 /*
1214 * We want to add any pinned extents to our free space cache
1215 * so we don't leak the space
1216 *
1217 * We shouldn't have switched the pinned extents yet so this is the
1218 * right one
1219 */
1220 unpin = &trans->transaction->pinned_extents;
1221
1222 start = block_group->start;
1223
1224 while (start < block_group->start + block_group->length) {
1225 if (!find_first_extent_bit(tree: unpin, start,
1226 start_ret: &extent_start, end_ret: &extent_end,
1227 bits: EXTENT_DIRTY, NULL))
1228 return 0;
1229
1230 /* This pinned extent is out of our range */
1231 if (extent_start >= block_group->start + block_group->length)
1232 return 0;
1233
1234 extent_start = max(extent_start, start);
1235 extent_end = min(block_group->start + block_group->length,
1236 extent_end + 1);
1237 len = extent_end - extent_start;
1238
1239 *entries += 1;
1240 ret = io_ctl_add_entry(io_ctl, offset: extent_start, bytes: len, NULL);
1241 if (ret)
1242 return -ENOSPC;
1243
1244 start = extent_end;
1245 }
1246
1247 return 0;
1248}
1249
1250static noinline_for_stack int
1251write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1252{
1253 struct btrfs_free_space *entry, *next;
1254 int ret;
1255
1256 /* Write out the bitmaps */
1257 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1258 ret = io_ctl_add_bitmap(io_ctl, bitmap: entry->bitmap);
1259 if (ret)
1260 return -ENOSPC;
1261 list_del_init(entry: &entry->list);
1262 }
1263
1264 return 0;
1265}
1266
1267static int flush_dirty_cache(struct inode *inode)
1268{
1269 int ret;
1270
1271 ret = btrfs_wait_ordered_range(inode, start: 0, len: (u64)-1);
1272 if (ret)
1273 clear_extent_bit(tree: &BTRFS_I(inode)->io_tree, start: 0, end: inode->i_size - 1,
1274 bits: EXTENT_DELALLOC, NULL);
1275
1276 return ret;
1277}
1278
1279static void noinline_for_stack
1280cleanup_bitmap_list(struct list_head *bitmap_list)
1281{
1282 struct btrfs_free_space *entry, *next;
1283
1284 list_for_each_entry_safe(entry, next, bitmap_list, list)
1285 list_del_init(entry: &entry->list);
1286}
1287
1288static void noinline_for_stack
1289cleanup_write_cache_enospc(struct inode *inode,
1290 struct btrfs_io_ctl *io_ctl,
1291 struct extent_state **cached_state)
1292{
1293 io_ctl_drop_pages(io_ctl);
1294 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start: 0, end: i_size_read(inode) - 1,
1295 cached: cached_state);
1296}
1297
1298static int __btrfs_wait_cache_io(struct btrfs_root *root,
1299 struct btrfs_trans_handle *trans,
1300 struct btrfs_block_group *block_group,
1301 struct btrfs_io_ctl *io_ctl,
1302 struct btrfs_path *path, u64 offset)
1303{
1304 int ret;
1305 struct inode *inode = io_ctl->inode;
1306
1307 if (!inode)
1308 return 0;
1309
1310 /* Flush the dirty pages in the cache file. */
1311 ret = flush_dirty_cache(inode);
1312 if (ret)
1313 goto out;
1314
1315 /* Update the cache item to tell everyone this cache file is valid. */
1316 ret = update_cache_item(trans, root, inode, path, offset,
1317 entries: io_ctl->entries, bitmaps: io_ctl->bitmaps);
1318out:
1319 if (ret) {
1320 invalidate_inode_pages2(mapping: inode->i_mapping);
1321 BTRFS_I(inode)->generation = 0;
1322 if (block_group)
1323 btrfs_debug(root->fs_info,
1324 "failed to write free space cache for block group %llu error %d",
1325 block_group->start, ret);
1326 }
1327 btrfs_update_inode(trans, inode: BTRFS_I(inode));
1328
1329 if (block_group) {
1330 /* the dirty list is protected by the dirty_bgs_lock */
1331 spin_lock(lock: &trans->transaction->dirty_bgs_lock);
1332
1333 /* the disk_cache_state is protected by the block group lock */
1334 spin_lock(lock: &block_group->lock);
1335
1336 /*
1337 * only mark this as written if we didn't get put back on
1338 * the dirty list while waiting for IO. Otherwise our
1339 * cache state won't be right, and we won't get written again
1340 */
1341 if (!ret && list_empty(head: &block_group->dirty_list))
1342 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1343 else if (ret)
1344 block_group->disk_cache_state = BTRFS_DC_ERROR;
1345
1346 spin_unlock(lock: &block_group->lock);
1347 spin_unlock(lock: &trans->transaction->dirty_bgs_lock);
1348 io_ctl->inode = NULL;
1349 iput(inode);
1350 }
1351
1352 return ret;
1353
1354}
1355
1356int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1357 struct btrfs_block_group *block_group,
1358 struct btrfs_path *path)
1359{
1360 return __btrfs_wait_cache_io(root: block_group->fs_info->tree_root, trans,
1361 block_group, io_ctl: &block_group->io_ctl,
1362 path, offset: block_group->start);
1363}
1364
1365/*
1366 * Write out cached info to an inode.
1367 *
1368 * @inode: freespace inode we are writing out
1369 * @ctl: free space cache we are going to write out
1370 * @block_group: block_group for this cache if it belongs to a block_group
1371 * @io_ctl: holds context for the io
1372 * @trans: the trans handle
1373 *
1374 * This function writes out a free space cache struct to disk for quick recovery
1375 * on mount. This will return 0 if it was successful in writing the cache out,
1376 * or an errno if it was not.
1377 */
1378static int __btrfs_write_out_cache(struct inode *inode,
1379 struct btrfs_free_space_ctl *ctl,
1380 struct btrfs_block_group *block_group,
1381 struct btrfs_io_ctl *io_ctl,
1382 struct btrfs_trans_handle *trans)
1383{
1384 struct extent_state *cached_state = NULL;
1385 LIST_HEAD(bitmap_list);
1386 int entries = 0;
1387 int bitmaps = 0;
1388 int ret;
1389 int must_iput = 0;
1390
1391 if (!i_size_read(inode))
1392 return -EIO;
1393
1394 WARN_ON(io_ctl->pages);
1395 ret = io_ctl_init(io_ctl, inode, write: 1);
1396 if (ret)
1397 return ret;
1398
1399 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1400 down_write(sem: &block_group->data_rwsem);
1401 spin_lock(lock: &block_group->lock);
1402 if (block_group->delalloc_bytes) {
1403 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1404 spin_unlock(lock: &block_group->lock);
1405 up_write(sem: &block_group->data_rwsem);
1406 BTRFS_I(inode)->generation = 0;
1407 ret = 0;
1408 must_iput = 1;
1409 goto out;
1410 }
1411 spin_unlock(lock: &block_group->lock);
1412 }
1413
1414 /* Lock all pages first so we can lock the extent safely. */
1415 ret = io_ctl_prepare_pages(io_ctl, uptodate: false);
1416 if (ret)
1417 goto out_unlock;
1418
1419 lock_extent(tree: &BTRFS_I(inode)->io_tree, start: 0, end: i_size_read(inode) - 1,
1420 cached: &cached_state);
1421
1422 io_ctl_set_generation(io_ctl, generation: trans->transid);
1423
1424 mutex_lock(&ctl->cache_writeout_mutex);
1425 /* Write out the extent entries in the free space cache */
1426 spin_lock(lock: &ctl->tree_lock);
1427 ret = write_cache_extent_entries(io_ctl, ctl,
1428 block_group, entries: &entries, bitmaps: &bitmaps,
1429 bitmap_list: &bitmap_list);
1430 if (ret)
1431 goto out_nospc_locked;
1432
1433 /*
1434 * Some spaces that are freed in the current transaction are pinned,
1435 * they will be added into free space cache after the transaction is
1436 * committed, we shouldn't lose them.
1437 *
1438 * If this changes while we are working we'll get added back to
1439 * the dirty list and redo it. No locking needed
1440 */
1441 ret = write_pinned_extent_entries(trans, block_group, io_ctl, entries: &entries);
1442 if (ret)
1443 goto out_nospc_locked;
1444
1445 /*
1446 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1447 * locked while doing it because a concurrent trim can be manipulating
1448 * or freeing the bitmap.
1449 */
1450 ret = write_bitmap_entries(io_ctl, bitmap_list: &bitmap_list);
1451 spin_unlock(lock: &ctl->tree_lock);
1452 mutex_unlock(lock: &ctl->cache_writeout_mutex);
1453 if (ret)
1454 goto out_nospc;
1455
1456 /* Zero out the rest of the pages just to make sure */
1457 io_ctl_zero_remaining_pages(io_ctl);
1458
1459 /* Everything is written out, now we dirty the pages in the file. */
1460 ret = btrfs_dirty_pages(inode: BTRFS_I(inode), pages: io_ctl->pages,
1461 num_pages: io_ctl->num_pages, pos: 0, write_bytes: i_size_read(inode),
1462 cached: &cached_state, noreserve: false);
1463 if (ret)
1464 goto out_nospc;
1465
1466 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1467 up_write(sem: &block_group->data_rwsem);
1468 /*
1469 * Release the pages and unlock the extent, we will flush
1470 * them out later
1471 */
1472 io_ctl_drop_pages(io_ctl);
1473 io_ctl_free(io_ctl);
1474
1475 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start: 0, end: i_size_read(inode) - 1,
1476 cached: &cached_state);
1477
1478 /*
1479 * at this point the pages are under IO and we're happy,
1480 * The caller is responsible for waiting on them and updating
1481 * the cache and the inode
1482 */
1483 io_ctl->entries = entries;
1484 io_ctl->bitmaps = bitmaps;
1485
1486 ret = btrfs_fdatawrite_range(inode, start: 0, end: (u64)-1);
1487 if (ret)
1488 goto out;
1489
1490 return 0;
1491
1492out_nospc_locked:
1493 cleanup_bitmap_list(bitmap_list: &bitmap_list);
1494 spin_unlock(lock: &ctl->tree_lock);
1495 mutex_unlock(lock: &ctl->cache_writeout_mutex);
1496
1497out_nospc:
1498 cleanup_write_cache_enospc(inode, io_ctl, cached_state: &cached_state);
1499
1500out_unlock:
1501 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1502 up_write(sem: &block_group->data_rwsem);
1503
1504out:
1505 io_ctl->inode = NULL;
1506 io_ctl_free(io_ctl);
1507 if (ret) {
1508 invalidate_inode_pages2(mapping: inode->i_mapping);
1509 BTRFS_I(inode)->generation = 0;
1510 }
1511 btrfs_update_inode(trans, inode: BTRFS_I(inode));
1512 if (must_iput)
1513 iput(inode);
1514 return ret;
1515}
1516
1517int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1518 struct btrfs_block_group *block_group,
1519 struct btrfs_path *path)
1520{
1521 struct btrfs_fs_info *fs_info = trans->fs_info;
1522 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1523 struct inode *inode;
1524 int ret = 0;
1525
1526 spin_lock(lock: &block_group->lock);
1527 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1528 spin_unlock(lock: &block_group->lock);
1529 return 0;
1530 }
1531 spin_unlock(lock: &block_group->lock);
1532
1533 inode = lookup_free_space_inode(block_group, path);
1534 if (IS_ERR(ptr: inode))
1535 return 0;
1536
1537 ret = __btrfs_write_out_cache(inode, ctl, block_group,
1538 io_ctl: &block_group->io_ctl, trans);
1539 if (ret) {
1540 btrfs_debug(fs_info,
1541 "failed to write free space cache for block group %llu error %d",
1542 block_group->start, ret);
1543 spin_lock(lock: &block_group->lock);
1544 block_group->disk_cache_state = BTRFS_DC_ERROR;
1545 spin_unlock(lock: &block_group->lock);
1546
1547 block_group->io_ctl.inode = NULL;
1548 iput(inode);
1549 }
1550
1551 /*
1552 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1553 * to wait for IO and put the inode
1554 */
1555
1556 return ret;
1557}
1558
1559static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1560 u64 offset)
1561{
1562 ASSERT(offset >= bitmap_start);
1563 offset -= bitmap_start;
1564 return (unsigned long)(div_u64(dividend: offset, divisor: unit));
1565}
1566
1567static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1568{
1569 return (unsigned long)(div_u64(dividend: bytes, divisor: unit));
1570}
1571
1572static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1573 u64 offset)
1574{
1575 u64 bitmap_start;
1576 u64 bytes_per_bitmap;
1577
1578 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1579 bitmap_start = offset - ctl->start;
1580 bitmap_start = div64_u64(dividend: bitmap_start, divisor: bytes_per_bitmap);
1581 bitmap_start *= bytes_per_bitmap;
1582 bitmap_start += ctl->start;
1583
1584 return bitmap_start;
1585}
1586
1587static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1588 struct btrfs_free_cluster *cluster,
1589 struct btrfs_free_space *new_entry)
1590{
1591 struct rb_root *root;
1592 struct rb_node **p;
1593 struct rb_node *parent = NULL;
1594
1595 lockdep_assert_held(&ctl->tree_lock);
1596
1597 if (cluster) {
1598 lockdep_assert_held(&cluster->lock);
1599 root = &cluster->root;
1600 } else {
1601 root = &ctl->free_space_offset;
1602 }
1603
1604 p = &root->rb_node;
1605
1606 while (*p) {
1607 struct btrfs_free_space *info;
1608
1609 parent = *p;
1610 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1611
1612 if (new_entry->offset < info->offset) {
1613 p = &(*p)->rb_left;
1614 } else if (new_entry->offset > info->offset) {
1615 p = &(*p)->rb_right;
1616 } else {
1617 /*
1618 * we could have a bitmap entry and an extent entry
1619 * share the same offset. If this is the case, we want
1620 * the extent entry to always be found first if we do a
1621 * linear search through the tree, since we want to have
1622 * the quickest allocation time, and allocating from an
1623 * extent is faster than allocating from a bitmap. So
1624 * if we're inserting a bitmap and we find an entry at
1625 * this offset, we want to go right, or after this entry
1626 * logically. If we are inserting an extent and we've
1627 * found a bitmap, we want to go left, or before
1628 * logically.
1629 */
1630 if (new_entry->bitmap) {
1631 if (info->bitmap) {
1632 WARN_ON_ONCE(1);
1633 return -EEXIST;
1634 }
1635 p = &(*p)->rb_right;
1636 } else {
1637 if (!info->bitmap) {
1638 WARN_ON_ONCE(1);
1639 return -EEXIST;
1640 }
1641 p = &(*p)->rb_left;
1642 }
1643 }
1644 }
1645
1646 rb_link_node(node: &new_entry->offset_index, parent, rb_link: p);
1647 rb_insert_color(&new_entry->offset_index, root);
1648
1649 return 0;
1650}
1651
1652/*
1653 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1654 * searched through the bitmap and figured out the largest ->max_extent_size,
1655 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1656 * allocator the wrong thing, we want to use the actual real max_extent_size
1657 * we've found already if it's larger, or we want to use ->bytes.
1658 *
1659 * This matters because find_free_space() will skip entries who's ->bytes is
1660 * less than the required bytes. So if we didn't search down this bitmap, we
1661 * may pick some previous entry that has a smaller ->max_extent_size than we
1662 * have. For example, assume we have two entries, one that has
1663 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1664 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1665 * call into find_free_space(), and return with max_extent_size == 4K, because
1666 * that first bitmap entry had ->max_extent_size set, but the second one did
1667 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1668 * 8K contiguous range.
1669 *
1670 * Consider the other case, we have 2 8K chunks in that second entry and still
1671 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1672 * allocator comes in it'll fully search our second bitmap, and this time it'll
1673 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1674 * right allocation the next loop through.
1675 */
1676static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1677{
1678 if (entry->bitmap && entry->max_extent_size)
1679 return entry->max_extent_size;
1680 return entry->bytes;
1681}
1682
1683/*
1684 * We want the largest entry to be leftmost, so this is inverted from what you'd
1685 * normally expect.
1686 */
1687static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1688{
1689 const struct btrfs_free_space *entry, *exist;
1690
1691 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1692 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1693 return get_max_extent_size(entry: exist) < get_max_extent_size(entry);
1694}
1695
1696/*
1697 * searches the tree for the given offset.
1698 *
1699 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1700 * want a section that has at least bytes size and comes at or after the given
1701 * offset.
1702 */
1703static struct btrfs_free_space *
1704tree_search_offset(struct btrfs_free_space_ctl *ctl,
1705 u64 offset, int bitmap_only, int fuzzy)
1706{
1707 struct rb_node *n = ctl->free_space_offset.rb_node;
1708 struct btrfs_free_space *entry = NULL, *prev = NULL;
1709
1710 lockdep_assert_held(&ctl->tree_lock);
1711
1712 /* find entry that is closest to the 'offset' */
1713 while (n) {
1714 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1715 prev = entry;
1716
1717 if (offset < entry->offset)
1718 n = n->rb_left;
1719 else if (offset > entry->offset)
1720 n = n->rb_right;
1721 else
1722 break;
1723
1724 entry = NULL;
1725 }
1726
1727 if (bitmap_only) {
1728 if (!entry)
1729 return NULL;
1730 if (entry->bitmap)
1731 return entry;
1732
1733 /*
1734 * bitmap entry and extent entry may share same offset,
1735 * in that case, bitmap entry comes after extent entry.
1736 */
1737 n = rb_next(n);
1738 if (!n)
1739 return NULL;
1740 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1741 if (entry->offset != offset)
1742 return NULL;
1743
1744 WARN_ON(!entry->bitmap);
1745 return entry;
1746 } else if (entry) {
1747 if (entry->bitmap) {
1748 /*
1749 * if previous extent entry covers the offset,
1750 * we should return it instead of the bitmap entry
1751 */
1752 n = rb_prev(&entry->offset_index);
1753 if (n) {
1754 prev = rb_entry(n, struct btrfs_free_space,
1755 offset_index);
1756 if (!prev->bitmap &&
1757 prev->offset + prev->bytes > offset)
1758 entry = prev;
1759 }
1760 }
1761 return entry;
1762 }
1763
1764 if (!prev)
1765 return NULL;
1766
1767 /* find last entry before the 'offset' */
1768 entry = prev;
1769 if (entry->offset > offset) {
1770 n = rb_prev(&entry->offset_index);
1771 if (n) {
1772 entry = rb_entry(n, struct btrfs_free_space,
1773 offset_index);
1774 ASSERT(entry->offset <= offset);
1775 } else {
1776 if (fuzzy)
1777 return entry;
1778 else
1779 return NULL;
1780 }
1781 }
1782
1783 if (entry->bitmap) {
1784 n = rb_prev(&entry->offset_index);
1785 if (n) {
1786 prev = rb_entry(n, struct btrfs_free_space,
1787 offset_index);
1788 if (!prev->bitmap &&
1789 prev->offset + prev->bytes > offset)
1790 return prev;
1791 }
1792 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1793 return entry;
1794 } else if (entry->offset + entry->bytes > offset)
1795 return entry;
1796
1797 if (!fuzzy)
1798 return NULL;
1799
1800 while (1) {
1801 n = rb_next(&entry->offset_index);
1802 if (!n)
1803 return NULL;
1804 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1805 if (entry->bitmap) {
1806 if (entry->offset + BITS_PER_BITMAP *
1807 ctl->unit > offset)
1808 break;
1809 } else {
1810 if (entry->offset + entry->bytes > offset)
1811 break;
1812 }
1813 }
1814 return entry;
1815}
1816
1817static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1818 struct btrfs_free_space *info,
1819 bool update_stat)
1820{
1821 lockdep_assert_held(&ctl->tree_lock);
1822
1823 rb_erase(&info->offset_index, &ctl->free_space_offset);
1824 rb_erase_cached(node: &info->bytes_index, root: &ctl->free_space_bytes);
1825 ctl->free_extents--;
1826
1827 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1828 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1829 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1830 }
1831
1832 if (update_stat)
1833 ctl->free_space -= info->bytes;
1834}
1835
1836static int link_free_space(struct btrfs_free_space_ctl *ctl,
1837 struct btrfs_free_space *info)
1838{
1839 int ret = 0;
1840
1841 lockdep_assert_held(&ctl->tree_lock);
1842
1843 ASSERT(info->bytes || info->bitmap);
1844 ret = tree_insert_offset(ctl, NULL, new_entry: info);
1845 if (ret)
1846 return ret;
1847
1848 rb_add_cached(node: &info->bytes_index, tree: &ctl->free_space_bytes, less: entry_less);
1849
1850 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1851 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1852 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1853 }
1854
1855 ctl->free_space += info->bytes;
1856 ctl->free_extents++;
1857 return ret;
1858}
1859
1860static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1861 struct btrfs_free_space *info)
1862{
1863 ASSERT(info->bitmap);
1864
1865 /*
1866 * If our entry is empty it's because we're on a cluster and we don't
1867 * want to re-link it into our ctl bytes index.
1868 */
1869 if (RB_EMPTY_NODE(&info->bytes_index))
1870 return;
1871
1872 lockdep_assert_held(&ctl->tree_lock);
1873
1874 rb_erase_cached(node: &info->bytes_index, root: &ctl->free_space_bytes);
1875 rb_add_cached(node: &info->bytes_index, tree: &ctl->free_space_bytes, less: entry_less);
1876}
1877
1878static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1879 struct btrfs_free_space *info,
1880 u64 offset, u64 bytes, bool update_stat)
1881{
1882 unsigned long start, count, end;
1883 int extent_delta = -1;
1884
1885 start = offset_to_bit(bitmap_start: info->offset, unit: ctl->unit, offset);
1886 count = bytes_to_bits(bytes, unit: ctl->unit);
1887 end = start + count;
1888 ASSERT(end <= BITS_PER_BITMAP);
1889
1890 bitmap_clear(map: info->bitmap, start, nbits: count);
1891
1892 info->bytes -= bytes;
1893 if (info->max_extent_size > ctl->unit)
1894 info->max_extent_size = 0;
1895
1896 relink_bitmap_entry(ctl, info);
1897
1898 if (start && test_bit(start - 1, info->bitmap))
1899 extent_delta++;
1900
1901 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1902 extent_delta++;
1903
1904 info->bitmap_extents += extent_delta;
1905 if (!btrfs_free_space_trimmed(info)) {
1906 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1907 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1908 }
1909
1910 if (update_stat)
1911 ctl->free_space -= bytes;
1912}
1913
1914static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1915 struct btrfs_free_space *info, u64 offset,
1916 u64 bytes)
1917{
1918 unsigned long start, count, end;
1919 int extent_delta = 1;
1920
1921 start = offset_to_bit(bitmap_start: info->offset, unit: ctl->unit, offset);
1922 count = bytes_to_bits(bytes, unit: ctl->unit);
1923 end = start + count;
1924 ASSERT(end <= BITS_PER_BITMAP);
1925
1926 bitmap_set(map: info->bitmap, start, nbits: count);
1927
1928 /*
1929 * We set some bytes, we have no idea what the max extent size is
1930 * anymore.
1931 */
1932 info->max_extent_size = 0;
1933 info->bytes += bytes;
1934 ctl->free_space += bytes;
1935
1936 relink_bitmap_entry(ctl, info);
1937
1938 if (start && test_bit(start - 1, info->bitmap))
1939 extent_delta--;
1940
1941 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1942 extent_delta--;
1943
1944 info->bitmap_extents += extent_delta;
1945 if (!btrfs_free_space_trimmed(info)) {
1946 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1947 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1948 }
1949}
1950
1951/*
1952 * If we can not find suitable extent, we will use bytes to record
1953 * the size of the max extent.
1954 */
1955static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1956 struct btrfs_free_space *bitmap_info, u64 *offset,
1957 u64 *bytes, bool for_alloc)
1958{
1959 unsigned long found_bits = 0;
1960 unsigned long max_bits = 0;
1961 unsigned long bits, i;
1962 unsigned long next_zero;
1963 unsigned long extent_bits;
1964
1965 /*
1966 * Skip searching the bitmap if we don't have a contiguous section that
1967 * is large enough for this allocation.
1968 */
1969 if (for_alloc &&
1970 bitmap_info->max_extent_size &&
1971 bitmap_info->max_extent_size < *bytes) {
1972 *bytes = bitmap_info->max_extent_size;
1973 return -1;
1974 }
1975
1976 i = offset_to_bit(bitmap_start: bitmap_info->offset, unit: ctl->unit,
1977 max_t(u64, *offset, bitmap_info->offset));
1978 bits = bytes_to_bits(bytes: *bytes, unit: ctl->unit);
1979
1980 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1981 if (for_alloc && bits == 1) {
1982 found_bits = 1;
1983 break;
1984 }
1985 next_zero = find_next_zero_bit(addr: bitmap_info->bitmap,
1986 BITS_PER_BITMAP, offset: i);
1987 extent_bits = next_zero - i;
1988 if (extent_bits >= bits) {
1989 found_bits = extent_bits;
1990 break;
1991 } else if (extent_bits > max_bits) {
1992 max_bits = extent_bits;
1993 }
1994 i = next_zero;
1995 }
1996
1997 if (found_bits) {
1998 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1999 *bytes = (u64)(found_bits) * ctl->unit;
2000 return 0;
2001 }
2002
2003 *bytes = (u64)(max_bits) * ctl->unit;
2004 bitmap_info->max_extent_size = *bytes;
2005 relink_bitmap_entry(ctl, info: bitmap_info);
2006 return -1;
2007}
2008
2009/* Cache the size of the max extent in bytes */
2010static struct btrfs_free_space *
2011find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2012 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2013{
2014 struct btrfs_free_space *entry;
2015 struct rb_node *node;
2016 u64 tmp;
2017 u64 align_off;
2018 int ret;
2019
2020 if (!ctl->free_space_offset.rb_node)
2021 goto out;
2022again:
2023 if (use_bytes_index) {
2024 node = rb_first_cached(&ctl->free_space_bytes);
2025 } else {
2026 entry = tree_search_offset(ctl, offset: offset_to_bitmap(ctl, offset: *offset),
2027 bitmap_only: 0, fuzzy: 1);
2028 if (!entry)
2029 goto out;
2030 node = &entry->offset_index;
2031 }
2032
2033 for (; node; node = rb_next(node)) {
2034 if (use_bytes_index)
2035 entry = rb_entry(node, struct btrfs_free_space,
2036 bytes_index);
2037 else
2038 entry = rb_entry(node, struct btrfs_free_space,
2039 offset_index);
2040
2041 /*
2042 * If we are using the bytes index then all subsequent entries
2043 * in this tree are going to be < bytes, so simply set the max
2044 * extent size and exit the loop.
2045 *
2046 * If we're using the offset index then we need to keep going
2047 * through the rest of the tree.
2048 */
2049 if (entry->bytes < *bytes) {
2050 *max_extent_size = max(get_max_extent_size(entry),
2051 *max_extent_size);
2052 if (use_bytes_index)
2053 break;
2054 continue;
2055 }
2056
2057 /* make sure the space returned is big enough
2058 * to match our requested alignment
2059 */
2060 if (*bytes >= align) {
2061 tmp = entry->offset - ctl->start + align - 1;
2062 tmp = div64_u64(dividend: tmp, divisor: align);
2063 tmp = tmp * align + ctl->start;
2064 align_off = tmp - entry->offset;
2065 } else {
2066 align_off = 0;
2067 tmp = entry->offset;
2068 }
2069
2070 /*
2071 * We don't break here if we're using the bytes index because we
2072 * may have another entry that has the correct alignment that is
2073 * the right size, so we don't want to miss that possibility.
2074 * At worst this adds another loop through the logic, but if we
2075 * broke here we could prematurely ENOSPC.
2076 */
2077 if (entry->bytes < *bytes + align_off) {
2078 *max_extent_size = max(get_max_extent_size(entry),
2079 *max_extent_size);
2080 continue;
2081 }
2082
2083 if (entry->bitmap) {
2084 struct rb_node *old_next = rb_next(node);
2085 u64 size = *bytes;
2086
2087 ret = search_bitmap(ctl, bitmap_info: entry, offset: &tmp, bytes: &size, for_alloc: true);
2088 if (!ret) {
2089 *offset = tmp;
2090 *bytes = size;
2091 return entry;
2092 } else {
2093 *max_extent_size =
2094 max(get_max_extent_size(entry),
2095 *max_extent_size);
2096 }
2097
2098 /*
2099 * The bitmap may have gotten re-arranged in the space
2100 * index here because the max_extent_size may have been
2101 * updated. Start from the beginning again if this
2102 * happened.
2103 */
2104 if (use_bytes_index && old_next != rb_next(node))
2105 goto again;
2106 continue;
2107 }
2108
2109 *offset = tmp;
2110 *bytes = entry->bytes - align_off;
2111 return entry;
2112 }
2113out:
2114 return NULL;
2115}
2116
2117static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2118 struct btrfs_free_space *info, u64 offset)
2119{
2120 info->offset = offset_to_bitmap(ctl, offset);
2121 info->bytes = 0;
2122 info->bitmap_extents = 0;
2123 INIT_LIST_HEAD(list: &info->list);
2124 link_free_space(ctl, info);
2125 ctl->total_bitmaps++;
2126 recalculate_thresholds(ctl);
2127}
2128
2129static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2130 struct btrfs_free_space *bitmap_info)
2131{
2132 /*
2133 * Normally when this is called, the bitmap is completely empty. However,
2134 * if we are blowing up the free space cache for one reason or another
2135 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2136 * we may leave stats on the table.
2137 */
2138 if (bitmap_info->bytes && !btrfs_free_space_trimmed(info: bitmap_info)) {
2139 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2140 bitmap_info->bitmap_extents;
2141 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2142
2143 }
2144 unlink_free_space(ctl, info: bitmap_info, update_stat: true);
2145 kmem_cache_free(s: btrfs_free_space_bitmap_cachep, objp: bitmap_info->bitmap);
2146 kmem_cache_free(s: btrfs_free_space_cachep, objp: bitmap_info);
2147 ctl->total_bitmaps--;
2148 recalculate_thresholds(ctl);
2149}
2150
2151static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2152 struct btrfs_free_space *bitmap_info,
2153 u64 *offset, u64 *bytes)
2154{
2155 u64 end;
2156 u64 search_start, search_bytes;
2157 int ret;
2158
2159again:
2160 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2161
2162 /*
2163 * We need to search for bits in this bitmap. We could only cover some
2164 * of the extent in this bitmap thanks to how we add space, so we need
2165 * to search for as much as it as we can and clear that amount, and then
2166 * go searching for the next bit.
2167 */
2168 search_start = *offset;
2169 search_bytes = ctl->unit;
2170 search_bytes = min(search_bytes, end - search_start + 1);
2171 ret = search_bitmap(ctl, bitmap_info, offset: &search_start, bytes: &search_bytes,
2172 for_alloc: false);
2173 if (ret < 0 || search_start != *offset)
2174 return -EINVAL;
2175
2176 /* We may have found more bits than what we need */
2177 search_bytes = min(search_bytes, *bytes);
2178
2179 /* Cannot clear past the end of the bitmap */
2180 search_bytes = min(search_bytes, end - search_start + 1);
2181
2182 bitmap_clear_bits(ctl, info: bitmap_info, offset: search_start, bytes: search_bytes, update_stat: true);
2183 *offset += search_bytes;
2184 *bytes -= search_bytes;
2185
2186 if (*bytes) {
2187 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2188 if (!bitmap_info->bytes)
2189 free_bitmap(ctl, bitmap_info);
2190
2191 /*
2192 * no entry after this bitmap, but we still have bytes to
2193 * remove, so something has gone wrong.
2194 */
2195 if (!next)
2196 return -EINVAL;
2197
2198 bitmap_info = rb_entry(next, struct btrfs_free_space,
2199 offset_index);
2200
2201 /*
2202 * if the next entry isn't a bitmap we need to return to let the
2203 * extent stuff do its work.
2204 */
2205 if (!bitmap_info->bitmap)
2206 return -EAGAIN;
2207
2208 /*
2209 * Ok the next item is a bitmap, but it may not actually hold
2210 * the information for the rest of this free space stuff, so
2211 * look for it, and if we don't find it return so we can try
2212 * everything over again.
2213 */
2214 search_start = *offset;
2215 search_bytes = ctl->unit;
2216 ret = search_bitmap(ctl, bitmap_info, offset: &search_start,
2217 bytes: &search_bytes, for_alloc: false);
2218 if (ret < 0 || search_start != *offset)
2219 return -EAGAIN;
2220
2221 goto again;
2222 } else if (!bitmap_info->bytes)
2223 free_bitmap(ctl, bitmap_info);
2224
2225 return 0;
2226}
2227
2228static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2229 struct btrfs_free_space *info, u64 offset,
2230 u64 bytes, enum btrfs_trim_state trim_state)
2231{
2232 u64 bytes_to_set = 0;
2233 u64 end;
2234
2235 /*
2236 * This is a tradeoff to make bitmap trim state minimal. We mark the
2237 * whole bitmap untrimmed if at any point we add untrimmed regions.
2238 */
2239 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2240 if (btrfs_free_space_trimmed(info)) {
2241 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2242 info->bitmap_extents;
2243 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2244 }
2245 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2246 }
2247
2248 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2249
2250 bytes_to_set = min(end - offset, bytes);
2251
2252 bitmap_set_bits(ctl, info, offset, bytes: bytes_to_set);
2253
2254 return bytes_to_set;
2255
2256}
2257
2258static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2259 struct btrfs_free_space *info)
2260{
2261 struct btrfs_block_group *block_group = ctl->block_group;
2262 struct btrfs_fs_info *fs_info = block_group->fs_info;
2263 bool forced = false;
2264
2265#ifdef CONFIG_BTRFS_DEBUG
2266 if (btrfs_should_fragment_free_space(block_group))
2267 forced = true;
2268#endif
2269
2270 /* This is a way to reclaim large regions from the bitmaps. */
2271 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2272 return false;
2273
2274 /*
2275 * If we are below the extents threshold then we can add this as an
2276 * extent, and don't have to deal with the bitmap
2277 */
2278 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2279 /*
2280 * If this block group has some small extents we don't want to
2281 * use up all of our free slots in the cache with them, we want
2282 * to reserve them to larger extents, however if we have plenty
2283 * of cache left then go ahead an dadd them, no sense in adding
2284 * the overhead of a bitmap if we don't have to.
2285 */
2286 if (info->bytes <= fs_info->sectorsize * 8) {
2287 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2288 return false;
2289 } else {
2290 return false;
2291 }
2292 }
2293
2294 /*
2295 * The original block groups from mkfs can be really small, like 8
2296 * megabytes, so don't bother with a bitmap for those entries. However
2297 * some block groups can be smaller than what a bitmap would cover but
2298 * are still large enough that they could overflow the 32k memory limit,
2299 * so allow those block groups to still be allowed to have a bitmap
2300 * entry.
2301 */
2302 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2303 return false;
2304
2305 return true;
2306}
2307
2308static const struct btrfs_free_space_op free_space_op = {
2309 .use_bitmap = use_bitmap,
2310};
2311
2312static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2313 struct btrfs_free_space *info)
2314{
2315 struct btrfs_free_space *bitmap_info;
2316 struct btrfs_block_group *block_group = NULL;
2317 int added = 0;
2318 u64 bytes, offset, bytes_added;
2319 enum btrfs_trim_state trim_state;
2320 int ret;
2321
2322 bytes = info->bytes;
2323 offset = info->offset;
2324 trim_state = info->trim_state;
2325
2326 if (!ctl->op->use_bitmap(ctl, info))
2327 return 0;
2328
2329 if (ctl->op == &free_space_op)
2330 block_group = ctl->block_group;
2331again:
2332 /*
2333 * Since we link bitmaps right into the cluster we need to see if we
2334 * have a cluster here, and if so and it has our bitmap we need to add
2335 * the free space to that bitmap.
2336 */
2337 if (block_group && !list_empty(head: &block_group->cluster_list)) {
2338 struct btrfs_free_cluster *cluster;
2339 struct rb_node *node;
2340 struct btrfs_free_space *entry;
2341
2342 cluster = list_entry(block_group->cluster_list.next,
2343 struct btrfs_free_cluster,
2344 block_group_list);
2345 spin_lock(lock: &cluster->lock);
2346 node = rb_first(&cluster->root);
2347 if (!node) {
2348 spin_unlock(lock: &cluster->lock);
2349 goto no_cluster_bitmap;
2350 }
2351
2352 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2353 if (!entry->bitmap) {
2354 spin_unlock(lock: &cluster->lock);
2355 goto no_cluster_bitmap;
2356 }
2357
2358 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2359 bytes_added = add_bytes_to_bitmap(ctl, info: entry, offset,
2360 bytes, trim_state);
2361 bytes -= bytes_added;
2362 offset += bytes_added;
2363 }
2364 spin_unlock(lock: &cluster->lock);
2365 if (!bytes) {
2366 ret = 1;
2367 goto out;
2368 }
2369 }
2370
2371no_cluster_bitmap:
2372 bitmap_info = tree_search_offset(ctl, offset: offset_to_bitmap(ctl, offset),
2373 bitmap_only: 1, fuzzy: 0);
2374 if (!bitmap_info) {
2375 ASSERT(added == 0);
2376 goto new_bitmap;
2377 }
2378
2379 bytes_added = add_bytes_to_bitmap(ctl, info: bitmap_info, offset, bytes,
2380 trim_state);
2381 bytes -= bytes_added;
2382 offset += bytes_added;
2383 added = 0;
2384
2385 if (!bytes) {
2386 ret = 1;
2387 goto out;
2388 } else
2389 goto again;
2390
2391new_bitmap:
2392 if (info && info->bitmap) {
2393 add_new_bitmap(ctl, info, offset);
2394 added = 1;
2395 info = NULL;
2396 goto again;
2397 } else {
2398 spin_unlock(lock: &ctl->tree_lock);
2399
2400 /* no pre-allocated info, allocate a new one */
2401 if (!info) {
2402 info = kmem_cache_zalloc(k: btrfs_free_space_cachep,
2403 GFP_NOFS);
2404 if (!info) {
2405 spin_lock(lock: &ctl->tree_lock);
2406 ret = -ENOMEM;
2407 goto out;
2408 }
2409 }
2410
2411 /* allocate the bitmap */
2412 info->bitmap = kmem_cache_zalloc(k: btrfs_free_space_bitmap_cachep,
2413 GFP_NOFS);
2414 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2415 spin_lock(lock: &ctl->tree_lock);
2416 if (!info->bitmap) {
2417 ret = -ENOMEM;
2418 goto out;
2419 }
2420 goto again;
2421 }
2422
2423out:
2424 if (info) {
2425 if (info->bitmap)
2426 kmem_cache_free(s: btrfs_free_space_bitmap_cachep,
2427 objp: info->bitmap);
2428 kmem_cache_free(s: btrfs_free_space_cachep, objp: info);
2429 }
2430
2431 return ret;
2432}
2433
2434/*
2435 * Free space merging rules:
2436 * 1) Merge trimmed areas together
2437 * 2) Let untrimmed areas coalesce with trimmed areas
2438 * 3) Always pull neighboring regions from bitmaps
2439 *
2440 * The above rules are for when we merge free space based on btrfs_trim_state.
2441 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2442 * same reason: to promote larger extent regions which makes life easier for
2443 * find_free_extent(). Rule 2 enables coalescing based on the common path
2444 * being returning free space from btrfs_finish_extent_commit(). So when free
2445 * space is trimmed, it will prevent aggregating trimmed new region and
2446 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2447 * and provide find_free_extent() with the largest extents possible hoping for
2448 * the reuse path.
2449 */
2450static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2451 struct btrfs_free_space *info, bool update_stat)
2452{
2453 struct btrfs_free_space *left_info = NULL;
2454 struct btrfs_free_space *right_info;
2455 bool merged = false;
2456 u64 offset = info->offset;
2457 u64 bytes = info->bytes;
2458 const bool is_trimmed = btrfs_free_space_trimmed(info);
2459 struct rb_node *right_prev = NULL;
2460
2461 /*
2462 * first we want to see if there is free space adjacent to the range we
2463 * are adding, if there is remove that struct and add a new one to
2464 * cover the entire range
2465 */
2466 right_info = tree_search_offset(ctl, offset: offset + bytes, bitmap_only: 0, fuzzy: 0);
2467 if (right_info)
2468 right_prev = rb_prev(&right_info->offset_index);
2469
2470 if (right_prev)
2471 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2472 else if (!right_info)
2473 left_info = tree_search_offset(ctl, offset: offset - 1, bitmap_only: 0, fuzzy: 0);
2474
2475 /* See try_merge_free_space() comment. */
2476 if (right_info && !right_info->bitmap &&
2477 (!is_trimmed || btrfs_free_space_trimmed(info: right_info))) {
2478 unlink_free_space(ctl, info: right_info, update_stat);
2479 info->bytes += right_info->bytes;
2480 kmem_cache_free(s: btrfs_free_space_cachep, objp: right_info);
2481 merged = true;
2482 }
2483
2484 /* See try_merge_free_space() comment. */
2485 if (left_info && !left_info->bitmap &&
2486 left_info->offset + left_info->bytes == offset &&
2487 (!is_trimmed || btrfs_free_space_trimmed(info: left_info))) {
2488 unlink_free_space(ctl, info: left_info, update_stat);
2489 info->offset = left_info->offset;
2490 info->bytes += left_info->bytes;
2491 kmem_cache_free(s: btrfs_free_space_cachep, objp: left_info);
2492 merged = true;
2493 }
2494
2495 return merged;
2496}
2497
2498static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2499 struct btrfs_free_space *info,
2500 bool update_stat)
2501{
2502 struct btrfs_free_space *bitmap;
2503 unsigned long i;
2504 unsigned long j;
2505 const u64 end = info->offset + info->bytes;
2506 const u64 bitmap_offset = offset_to_bitmap(ctl, offset: end);
2507 u64 bytes;
2508
2509 bitmap = tree_search_offset(ctl, offset: bitmap_offset, bitmap_only: 1, fuzzy: 0);
2510 if (!bitmap)
2511 return false;
2512
2513 i = offset_to_bit(bitmap_start: bitmap->offset, unit: ctl->unit, offset: end);
2514 j = find_next_zero_bit(addr: bitmap->bitmap, BITS_PER_BITMAP, offset: i);
2515 if (j == i)
2516 return false;
2517 bytes = (j - i) * ctl->unit;
2518 info->bytes += bytes;
2519
2520 /* See try_merge_free_space() comment. */
2521 if (!btrfs_free_space_trimmed(info: bitmap))
2522 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2523
2524 bitmap_clear_bits(ctl, info: bitmap, offset: end, bytes, update_stat);
2525
2526 if (!bitmap->bytes)
2527 free_bitmap(ctl, bitmap_info: bitmap);
2528
2529 return true;
2530}
2531
2532static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2533 struct btrfs_free_space *info,
2534 bool update_stat)
2535{
2536 struct btrfs_free_space *bitmap;
2537 u64 bitmap_offset;
2538 unsigned long i;
2539 unsigned long j;
2540 unsigned long prev_j;
2541 u64 bytes;
2542
2543 bitmap_offset = offset_to_bitmap(ctl, offset: info->offset);
2544 /* If we're on a boundary, try the previous logical bitmap. */
2545 if (bitmap_offset == info->offset) {
2546 if (info->offset == 0)
2547 return false;
2548 bitmap_offset = offset_to_bitmap(ctl, offset: info->offset - 1);
2549 }
2550
2551 bitmap = tree_search_offset(ctl, offset: bitmap_offset, bitmap_only: 1, fuzzy: 0);
2552 if (!bitmap)
2553 return false;
2554
2555 i = offset_to_bit(bitmap_start: bitmap->offset, unit: ctl->unit, offset: info->offset) - 1;
2556 j = 0;
2557 prev_j = (unsigned long)-1;
2558 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2559 if (j > i)
2560 break;
2561 prev_j = j;
2562 }
2563 if (prev_j == i)
2564 return false;
2565
2566 if (prev_j == (unsigned long)-1)
2567 bytes = (i + 1) * ctl->unit;
2568 else
2569 bytes = (i - prev_j) * ctl->unit;
2570
2571 info->offset -= bytes;
2572 info->bytes += bytes;
2573
2574 /* See try_merge_free_space() comment. */
2575 if (!btrfs_free_space_trimmed(info: bitmap))
2576 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2577
2578 bitmap_clear_bits(ctl, info: bitmap, offset: info->offset, bytes, update_stat);
2579
2580 if (!bitmap->bytes)
2581 free_bitmap(ctl, bitmap_info: bitmap);
2582
2583 return true;
2584}
2585
2586/*
2587 * We prefer always to allocate from extent entries, both for clustered and
2588 * non-clustered allocation requests. So when attempting to add a new extent
2589 * entry, try to see if there's adjacent free space in bitmap entries, and if
2590 * there is, migrate that space from the bitmaps to the extent.
2591 * Like this we get better chances of satisfying space allocation requests
2592 * because we attempt to satisfy them based on a single cache entry, and never
2593 * on 2 or more entries - even if the entries represent a contiguous free space
2594 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2595 * ends).
2596 */
2597static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2598 struct btrfs_free_space *info,
2599 bool update_stat)
2600{
2601 /*
2602 * Only work with disconnected entries, as we can change their offset,
2603 * and must be extent entries.
2604 */
2605 ASSERT(!info->bitmap);
2606 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2607
2608 if (ctl->total_bitmaps > 0) {
2609 bool stole_end;
2610 bool stole_front = false;
2611
2612 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2613 if (ctl->total_bitmaps > 0)
2614 stole_front = steal_from_bitmap_to_front(ctl, info,
2615 update_stat);
2616
2617 if (stole_end || stole_front)
2618 try_merge_free_space(ctl, info, update_stat);
2619 }
2620}
2621
2622static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2623 u64 offset, u64 bytes,
2624 enum btrfs_trim_state trim_state)
2625{
2626 struct btrfs_fs_info *fs_info = block_group->fs_info;
2627 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2628 struct btrfs_free_space *info;
2629 int ret = 0;
2630 u64 filter_bytes = bytes;
2631
2632 ASSERT(!btrfs_is_zoned(fs_info));
2633
2634 info = kmem_cache_zalloc(k: btrfs_free_space_cachep, GFP_NOFS);
2635 if (!info)
2636 return -ENOMEM;
2637
2638 info->offset = offset;
2639 info->bytes = bytes;
2640 info->trim_state = trim_state;
2641 RB_CLEAR_NODE(&info->offset_index);
2642 RB_CLEAR_NODE(&info->bytes_index);
2643
2644 spin_lock(lock: &ctl->tree_lock);
2645
2646 if (try_merge_free_space(ctl, info, update_stat: true))
2647 goto link;
2648
2649 /*
2650 * There was no extent directly to the left or right of this new
2651 * extent then we know we're going to have to allocate a new extent, so
2652 * before we do that see if we need to drop this into a bitmap
2653 */
2654 ret = insert_into_bitmap(ctl, info);
2655 if (ret < 0) {
2656 goto out;
2657 } else if (ret) {
2658 ret = 0;
2659 goto out;
2660 }
2661link:
2662 /*
2663 * Only steal free space from adjacent bitmaps if we're sure we're not
2664 * going to add the new free space to existing bitmap entries - because
2665 * that would mean unnecessary work that would be reverted. Therefore
2666 * attempt to steal space from bitmaps if we're adding an extent entry.
2667 */
2668 steal_from_bitmap(ctl, info, update_stat: true);
2669
2670 filter_bytes = max(filter_bytes, info->bytes);
2671
2672 ret = link_free_space(ctl, info);
2673 if (ret)
2674 kmem_cache_free(s: btrfs_free_space_cachep, objp: info);
2675out:
2676 btrfs_discard_update_discardable(block_group);
2677 spin_unlock(lock: &ctl->tree_lock);
2678
2679 if (ret) {
2680 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2681 ASSERT(ret != -EEXIST);
2682 }
2683
2684 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2685 btrfs_discard_check_filter(block_group, bytes: filter_bytes);
2686 btrfs_discard_queue_work(discard_ctl: &fs_info->discard_ctl, block_group);
2687 }
2688
2689 return ret;
2690}
2691
2692static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2693 u64 bytenr, u64 size, bool used)
2694{
2695 struct btrfs_space_info *sinfo = block_group->space_info;
2696 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2697 u64 offset = bytenr - block_group->start;
2698 u64 to_free, to_unusable;
2699 int bg_reclaim_threshold = 0;
2700 bool initial = (size == block_group->length);
2701 u64 reclaimable_unusable;
2702
2703 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2704
2705 if (!initial)
2706 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2707
2708 spin_lock(lock: &ctl->tree_lock);
2709 if (!used)
2710 to_free = size;
2711 else if (initial)
2712 to_free = block_group->zone_capacity;
2713 else if (offset >= block_group->alloc_offset)
2714 to_free = size;
2715 else if (offset + size <= block_group->alloc_offset)
2716 to_free = 0;
2717 else
2718 to_free = offset + size - block_group->alloc_offset;
2719 to_unusable = size - to_free;
2720
2721 ctl->free_space += to_free;
2722 /*
2723 * If the block group is read-only, we should account freed space into
2724 * bytes_readonly.
2725 */
2726 if (!block_group->ro)
2727 block_group->zone_unusable += to_unusable;
2728 spin_unlock(lock: &ctl->tree_lock);
2729 if (!used) {
2730 spin_lock(lock: &block_group->lock);
2731 block_group->alloc_offset -= size;
2732 spin_unlock(lock: &block_group->lock);
2733 }
2734
2735 reclaimable_unusable = block_group->zone_unusable -
2736 (block_group->length - block_group->zone_capacity);
2737 /* All the region is now unusable. Mark it as unused and reclaim */
2738 if (block_group->zone_unusable == block_group->length) {
2739 btrfs_mark_bg_unused(bg: block_group);
2740 } else if (bg_reclaim_threshold &&
2741 reclaimable_unusable >=
2742 mult_perc(num: block_group->zone_capacity, percent: bg_reclaim_threshold)) {
2743 btrfs_mark_bg_to_reclaim(bg: block_group);
2744 }
2745
2746 return 0;
2747}
2748
2749int btrfs_add_free_space(struct btrfs_block_group *block_group,
2750 u64 bytenr, u64 size)
2751{
2752 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2753
2754 if (btrfs_is_zoned(fs_info: block_group->fs_info))
2755 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2756 used: true);
2757
2758 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2759 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2760
2761 return __btrfs_add_free_space(block_group, offset: bytenr, bytes: size, trim_state);
2762}
2763
2764int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2765 u64 bytenr, u64 size)
2766{
2767 if (btrfs_is_zoned(fs_info: block_group->fs_info))
2768 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2769 used: false);
2770
2771 return btrfs_add_free_space(block_group, bytenr, size);
2772}
2773
2774/*
2775 * This is a subtle distinction because when adding free space back in general,
2776 * we want it to be added as untrimmed for async. But in the case where we add
2777 * it on loading of a block group, we want to consider it trimmed.
2778 */
2779int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2780 u64 bytenr, u64 size)
2781{
2782 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2783
2784 if (btrfs_is_zoned(fs_info: block_group->fs_info))
2785 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2786 used: true);
2787
2788 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2789 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2790 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2791
2792 return __btrfs_add_free_space(block_group, offset: bytenr, bytes: size, trim_state);
2793}
2794
2795int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2796 u64 offset, u64 bytes)
2797{
2798 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2799 struct btrfs_free_space *info;
2800 int ret;
2801 bool re_search = false;
2802
2803 if (btrfs_is_zoned(fs_info: block_group->fs_info)) {
2804 /*
2805 * This can happen with conventional zones when replaying log.
2806 * Since the allocation info of tree-log nodes are not recorded
2807 * to the extent-tree, calculate_alloc_pointer() failed to
2808 * advance the allocation pointer after last allocated tree log
2809 * node blocks.
2810 *
2811 * This function is called from
2812 * btrfs_pin_extent_for_log_replay() when replaying the log.
2813 * Advance the pointer not to overwrite the tree-log nodes.
2814 */
2815 if (block_group->start + block_group->alloc_offset <
2816 offset + bytes) {
2817 block_group->alloc_offset =
2818 offset + bytes - block_group->start;
2819 }
2820 return 0;
2821 }
2822
2823 spin_lock(lock: &ctl->tree_lock);
2824
2825again:
2826 ret = 0;
2827 if (!bytes)
2828 goto out_lock;
2829
2830 info = tree_search_offset(ctl, offset, bitmap_only: 0, fuzzy: 0);
2831 if (!info) {
2832 /*
2833 * oops didn't find an extent that matched the space we wanted
2834 * to remove, look for a bitmap instead
2835 */
2836 info = tree_search_offset(ctl, offset: offset_to_bitmap(ctl, offset),
2837 bitmap_only: 1, fuzzy: 0);
2838 if (!info) {
2839 /*
2840 * If we found a partial bit of our free space in a
2841 * bitmap but then couldn't find the other part this may
2842 * be a problem, so WARN about it.
2843 */
2844 WARN_ON(re_search);
2845 goto out_lock;
2846 }
2847 }
2848
2849 re_search = false;
2850 if (!info->bitmap) {
2851 unlink_free_space(ctl, info, update_stat: true);
2852 if (offset == info->offset) {
2853 u64 to_free = min(bytes, info->bytes);
2854
2855 info->bytes -= to_free;
2856 info->offset += to_free;
2857 if (info->bytes) {
2858 ret = link_free_space(ctl, info);
2859 WARN_ON(ret);
2860 } else {
2861 kmem_cache_free(s: btrfs_free_space_cachep, objp: info);
2862 }
2863
2864 offset += to_free;
2865 bytes -= to_free;
2866 goto again;
2867 } else {
2868 u64 old_end = info->bytes + info->offset;
2869
2870 info->bytes = offset - info->offset;
2871 ret = link_free_space(ctl, info);
2872 WARN_ON(ret);
2873 if (ret)
2874 goto out_lock;
2875
2876 /* Not enough bytes in this entry to satisfy us */
2877 if (old_end < offset + bytes) {
2878 bytes -= old_end - offset;
2879 offset = old_end;
2880 goto again;
2881 } else if (old_end == offset + bytes) {
2882 /* all done */
2883 goto out_lock;
2884 }
2885 spin_unlock(lock: &ctl->tree_lock);
2886
2887 ret = __btrfs_add_free_space(block_group,
2888 offset: offset + bytes,
2889 bytes: old_end - (offset + bytes),
2890 trim_state: info->trim_state);
2891 WARN_ON(ret);
2892 goto out;
2893 }
2894 }
2895
2896 ret = remove_from_bitmap(ctl, bitmap_info: info, offset: &offset, bytes: &bytes);
2897 if (ret == -EAGAIN) {
2898 re_search = true;
2899 goto again;
2900 }
2901out_lock:
2902 btrfs_discard_update_discardable(block_group);
2903 spin_unlock(lock: &ctl->tree_lock);
2904out:
2905 return ret;
2906}
2907
2908void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2909 u64 bytes)
2910{
2911 struct btrfs_fs_info *fs_info = block_group->fs_info;
2912 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2913 struct btrfs_free_space *info;
2914 struct rb_node *n;
2915 int count = 0;
2916
2917 /*
2918 * Zoned btrfs does not use free space tree and cluster. Just print
2919 * out the free space after the allocation offset.
2920 */
2921 if (btrfs_is_zoned(fs_info)) {
2922 btrfs_info(fs_info, "free space %llu active %d",
2923 block_group->zone_capacity - block_group->alloc_offset,
2924 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2925 &block_group->runtime_flags));
2926 return;
2927 }
2928
2929 spin_lock(lock: &ctl->tree_lock);
2930 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2931 info = rb_entry(n, struct btrfs_free_space, offset_index);
2932 if (info->bytes >= bytes && !block_group->ro)
2933 count++;
2934 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2935 info->offset, info->bytes,
2936 (info->bitmap) ? "yes" : "no");
2937 }
2938 spin_unlock(lock: &ctl->tree_lock);
2939 btrfs_info(fs_info, "block group has cluster?: %s",
2940 list_empty(&block_group->cluster_list) ? "no" : "yes");
2941 btrfs_info(fs_info,
2942 "%d free space entries at or bigger than %llu bytes",
2943 count, bytes);
2944}
2945
2946void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2947 struct btrfs_free_space_ctl *ctl)
2948{
2949 struct btrfs_fs_info *fs_info = block_group->fs_info;
2950
2951 spin_lock_init(&ctl->tree_lock);
2952 ctl->unit = fs_info->sectorsize;
2953 ctl->start = block_group->start;
2954 ctl->block_group = block_group;
2955 ctl->op = &free_space_op;
2956 ctl->free_space_bytes = RB_ROOT_CACHED;
2957 INIT_LIST_HEAD(list: &ctl->trimming_ranges);
2958 mutex_init(&ctl->cache_writeout_mutex);
2959
2960 /*
2961 * we only want to have 32k of ram per block group for keeping
2962 * track of free space, and if we pass 1/2 of that we want to
2963 * start converting things over to using bitmaps
2964 */
2965 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2966}
2967
2968/*
2969 * for a given cluster, put all of its extents back into the free
2970 * space cache. If the block group passed doesn't match the block group
2971 * pointed to by the cluster, someone else raced in and freed the
2972 * cluster already. In that case, we just return without changing anything
2973 */
2974static void __btrfs_return_cluster_to_free_space(
2975 struct btrfs_block_group *block_group,
2976 struct btrfs_free_cluster *cluster)
2977{
2978 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2979 struct rb_node *node;
2980
2981 lockdep_assert_held(&ctl->tree_lock);
2982
2983 spin_lock(lock: &cluster->lock);
2984 if (cluster->block_group != block_group) {
2985 spin_unlock(lock: &cluster->lock);
2986 return;
2987 }
2988
2989 cluster->block_group = NULL;
2990 cluster->window_start = 0;
2991 list_del_init(entry: &cluster->block_group_list);
2992
2993 node = rb_first(&cluster->root);
2994 while (node) {
2995 struct btrfs_free_space *entry;
2996
2997 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2998 node = rb_next(&entry->offset_index);
2999 rb_erase(&entry->offset_index, &cluster->root);
3000 RB_CLEAR_NODE(&entry->offset_index);
3001
3002 if (!entry->bitmap) {
3003 /* Merging treats extents as if they were new */
3004 if (!btrfs_free_space_trimmed(info: entry)) {
3005 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3006 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3007 entry->bytes;
3008 }
3009
3010 try_merge_free_space(ctl, info: entry, update_stat: false);
3011 steal_from_bitmap(ctl, info: entry, update_stat: false);
3012
3013 /* As we insert directly, update these statistics */
3014 if (!btrfs_free_space_trimmed(info: entry)) {
3015 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3016 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3017 entry->bytes;
3018 }
3019 }
3020 tree_insert_offset(ctl, NULL, new_entry: entry);
3021 rb_add_cached(node: &entry->bytes_index, tree: &ctl->free_space_bytes,
3022 less: entry_less);
3023 }
3024 cluster->root = RB_ROOT;
3025 spin_unlock(lock: &cluster->lock);
3026 btrfs_put_block_group(cache: block_group);
3027}
3028
3029void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3030{
3031 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3032 struct btrfs_free_cluster *cluster;
3033 struct list_head *head;
3034
3035 spin_lock(lock: &ctl->tree_lock);
3036 while ((head = block_group->cluster_list.next) !=
3037 &block_group->cluster_list) {
3038 cluster = list_entry(head, struct btrfs_free_cluster,
3039 block_group_list);
3040
3041 WARN_ON(cluster->block_group != block_group);
3042 __btrfs_return_cluster_to_free_space(block_group, cluster);
3043
3044 cond_resched_lock(&ctl->tree_lock);
3045 }
3046 __btrfs_remove_free_space_cache(ctl);
3047 btrfs_discard_update_discardable(block_group);
3048 spin_unlock(lock: &ctl->tree_lock);
3049
3050}
3051
3052/*
3053 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3054 */
3055bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3056{
3057 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3058 struct btrfs_free_space *info;
3059 struct rb_node *node;
3060 bool ret = true;
3061
3062 spin_lock(lock: &ctl->tree_lock);
3063 node = rb_first(&ctl->free_space_offset);
3064
3065 while (node) {
3066 info = rb_entry(node, struct btrfs_free_space, offset_index);
3067
3068 if (!btrfs_free_space_trimmed(info)) {
3069 ret = false;
3070 break;
3071 }
3072
3073 node = rb_next(node);
3074 }
3075
3076 spin_unlock(lock: &ctl->tree_lock);
3077 return ret;
3078}
3079
3080u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3081 u64 offset, u64 bytes, u64 empty_size,
3082 u64 *max_extent_size)
3083{
3084 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3085 struct btrfs_discard_ctl *discard_ctl =
3086 &block_group->fs_info->discard_ctl;
3087 struct btrfs_free_space *entry = NULL;
3088 u64 bytes_search = bytes + empty_size;
3089 u64 ret = 0;
3090 u64 align_gap = 0;
3091 u64 align_gap_len = 0;
3092 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3093 bool use_bytes_index = (offset == block_group->start);
3094
3095 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3096
3097 spin_lock(lock: &ctl->tree_lock);
3098 entry = find_free_space(ctl, offset: &offset, bytes: &bytes_search,
3099 align: block_group->full_stripe_len, max_extent_size,
3100 use_bytes_index);
3101 if (!entry)
3102 goto out;
3103
3104 ret = offset;
3105 if (entry->bitmap) {
3106 bitmap_clear_bits(ctl, info: entry, offset, bytes, update_stat: true);
3107
3108 if (!btrfs_free_space_trimmed(info: entry))
3109 atomic64_add(i: bytes, v: &discard_ctl->discard_bytes_saved);
3110
3111 if (!entry->bytes)
3112 free_bitmap(ctl, bitmap_info: entry);
3113 } else {
3114 unlink_free_space(ctl, info: entry, update_stat: true);
3115 align_gap_len = offset - entry->offset;
3116 align_gap = entry->offset;
3117 align_gap_trim_state = entry->trim_state;
3118
3119 if (!btrfs_free_space_trimmed(info: entry))
3120 atomic64_add(i: bytes, v: &discard_ctl->discard_bytes_saved);
3121
3122 entry->offset = offset + bytes;
3123 WARN_ON(entry->bytes < bytes + align_gap_len);
3124
3125 entry->bytes -= bytes + align_gap_len;
3126 if (!entry->bytes)
3127 kmem_cache_free(s: btrfs_free_space_cachep, objp: entry);
3128 else
3129 link_free_space(ctl, info: entry);
3130 }
3131out:
3132 btrfs_discard_update_discardable(block_group);
3133 spin_unlock(lock: &ctl->tree_lock);
3134
3135 if (align_gap_len)
3136 __btrfs_add_free_space(block_group, offset: align_gap, bytes: align_gap_len,
3137 trim_state: align_gap_trim_state);
3138 return ret;
3139}
3140
3141/*
3142 * given a cluster, put all of its extents back into the free space
3143 * cache. If a block group is passed, this function will only free
3144 * a cluster that belongs to the passed block group.
3145 *
3146 * Otherwise, it'll get a reference on the block group pointed to by the
3147 * cluster and remove the cluster from it.
3148 */
3149void btrfs_return_cluster_to_free_space(
3150 struct btrfs_block_group *block_group,
3151 struct btrfs_free_cluster *cluster)
3152{
3153 struct btrfs_free_space_ctl *ctl;
3154
3155 /* first, get a safe pointer to the block group */
3156 spin_lock(lock: &cluster->lock);
3157 if (!block_group) {
3158 block_group = cluster->block_group;
3159 if (!block_group) {
3160 spin_unlock(lock: &cluster->lock);
3161 return;
3162 }
3163 } else if (cluster->block_group != block_group) {
3164 /* someone else has already freed it don't redo their work */
3165 spin_unlock(lock: &cluster->lock);
3166 return;
3167 }
3168 btrfs_get_block_group(cache: block_group);
3169 spin_unlock(lock: &cluster->lock);
3170
3171 ctl = block_group->free_space_ctl;
3172
3173 /* now return any extents the cluster had on it */
3174 spin_lock(lock: &ctl->tree_lock);
3175 __btrfs_return_cluster_to_free_space(block_group, cluster);
3176 spin_unlock(lock: &ctl->tree_lock);
3177
3178 btrfs_discard_queue_work(discard_ctl: &block_group->fs_info->discard_ctl, block_group);
3179
3180 /* finally drop our ref */
3181 btrfs_put_block_group(cache: block_group);
3182}
3183
3184static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3185 struct btrfs_free_cluster *cluster,
3186 struct btrfs_free_space *entry,
3187 u64 bytes, u64 min_start,
3188 u64 *max_extent_size)
3189{
3190 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3191 int err;
3192 u64 search_start = cluster->window_start;
3193 u64 search_bytes = bytes;
3194 u64 ret = 0;
3195
3196 search_start = min_start;
3197 search_bytes = bytes;
3198
3199 err = search_bitmap(ctl, bitmap_info: entry, offset: &search_start, bytes: &search_bytes, for_alloc: true);
3200 if (err) {
3201 *max_extent_size = max(get_max_extent_size(entry),
3202 *max_extent_size);
3203 return 0;
3204 }
3205
3206 ret = search_start;
3207 bitmap_clear_bits(ctl, info: entry, offset: ret, bytes, update_stat: false);
3208
3209 return ret;
3210}
3211
3212/*
3213 * given a cluster, try to allocate 'bytes' from it, returns 0
3214 * if it couldn't find anything suitably large, or a logical disk offset
3215 * if things worked out
3216 */
3217u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3218 struct btrfs_free_cluster *cluster, u64 bytes,
3219 u64 min_start, u64 *max_extent_size)
3220{
3221 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3222 struct btrfs_discard_ctl *discard_ctl =
3223 &block_group->fs_info->discard_ctl;
3224 struct btrfs_free_space *entry = NULL;
3225 struct rb_node *node;
3226 u64 ret = 0;
3227
3228 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3229
3230 spin_lock(lock: &cluster->lock);
3231 if (bytes > cluster->max_size)
3232 goto out;
3233
3234 if (cluster->block_group != block_group)
3235 goto out;
3236
3237 node = rb_first(&cluster->root);
3238 if (!node)
3239 goto out;
3240
3241 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3242 while (1) {
3243 if (entry->bytes < bytes)
3244 *max_extent_size = max(get_max_extent_size(entry),
3245 *max_extent_size);
3246
3247 if (entry->bytes < bytes ||
3248 (!entry->bitmap && entry->offset < min_start)) {
3249 node = rb_next(&entry->offset_index);
3250 if (!node)
3251 break;
3252 entry = rb_entry(node, struct btrfs_free_space,
3253 offset_index);
3254 continue;
3255 }
3256
3257 if (entry->bitmap) {
3258 ret = btrfs_alloc_from_bitmap(block_group,
3259 cluster, entry, bytes,
3260 min_start: cluster->window_start,
3261 max_extent_size);
3262 if (ret == 0) {
3263 node = rb_next(&entry->offset_index);
3264 if (!node)
3265 break;
3266 entry = rb_entry(node, struct btrfs_free_space,
3267 offset_index);
3268 continue;
3269 }
3270 cluster->window_start += bytes;
3271 } else {
3272 ret = entry->offset;
3273
3274 entry->offset += bytes;
3275 entry->bytes -= bytes;
3276 }
3277
3278 break;
3279 }
3280out:
3281 spin_unlock(lock: &cluster->lock);
3282
3283 if (!ret)
3284 return 0;
3285
3286 spin_lock(lock: &ctl->tree_lock);
3287
3288 if (!btrfs_free_space_trimmed(info: entry))
3289 atomic64_add(i: bytes, v: &discard_ctl->discard_bytes_saved);
3290
3291 ctl->free_space -= bytes;
3292 if (!entry->bitmap && !btrfs_free_space_trimmed(info: entry))
3293 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3294
3295 spin_lock(lock: &cluster->lock);
3296 if (entry->bytes == 0) {
3297 rb_erase(&entry->offset_index, &cluster->root);
3298 ctl->free_extents--;
3299 if (entry->bitmap) {
3300 kmem_cache_free(s: btrfs_free_space_bitmap_cachep,
3301 objp: entry->bitmap);
3302 ctl->total_bitmaps--;
3303 recalculate_thresholds(ctl);
3304 } else if (!btrfs_free_space_trimmed(info: entry)) {
3305 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3306 }
3307 kmem_cache_free(s: btrfs_free_space_cachep, objp: entry);
3308 }
3309
3310 spin_unlock(lock: &cluster->lock);
3311 spin_unlock(lock: &ctl->tree_lock);
3312
3313 return ret;
3314}
3315
3316static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3317 struct btrfs_free_space *entry,
3318 struct btrfs_free_cluster *cluster,
3319 u64 offset, u64 bytes,
3320 u64 cont1_bytes, u64 min_bytes)
3321{
3322 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3323 unsigned long next_zero;
3324 unsigned long i;
3325 unsigned long want_bits;
3326 unsigned long min_bits;
3327 unsigned long found_bits;
3328 unsigned long max_bits = 0;
3329 unsigned long start = 0;
3330 unsigned long total_found = 0;
3331 int ret;
3332
3333 lockdep_assert_held(&ctl->tree_lock);
3334
3335 i = offset_to_bit(bitmap_start: entry->offset, unit: ctl->unit,
3336 max_t(u64, offset, entry->offset));
3337 want_bits = bytes_to_bits(bytes, unit: ctl->unit);
3338 min_bits = bytes_to_bits(bytes: min_bytes, unit: ctl->unit);
3339
3340 /*
3341 * Don't bother looking for a cluster in this bitmap if it's heavily
3342 * fragmented.
3343 */
3344 if (entry->max_extent_size &&
3345 entry->max_extent_size < cont1_bytes)
3346 return -ENOSPC;
3347again:
3348 found_bits = 0;
3349 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3350 next_zero = find_next_zero_bit(addr: entry->bitmap,
3351 BITS_PER_BITMAP, offset: i);
3352 if (next_zero - i >= min_bits) {
3353 found_bits = next_zero - i;
3354 if (found_bits > max_bits)
3355 max_bits = found_bits;
3356 break;
3357 }
3358 if (next_zero - i > max_bits)
3359 max_bits = next_zero - i;
3360 i = next_zero;
3361 }
3362
3363 if (!found_bits) {
3364 entry->max_extent_size = (u64)max_bits * ctl->unit;
3365 return -ENOSPC;
3366 }
3367
3368 if (!total_found) {
3369 start = i;
3370 cluster->max_size = 0;
3371 }
3372
3373 total_found += found_bits;
3374
3375 if (cluster->max_size < found_bits * ctl->unit)
3376 cluster->max_size = found_bits * ctl->unit;
3377
3378 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3379 i = next_zero + 1;
3380 goto again;
3381 }
3382
3383 cluster->window_start = start * ctl->unit + entry->offset;
3384 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3385 rb_erase_cached(node: &entry->bytes_index, root: &ctl->free_space_bytes);
3386
3387 /*
3388 * We need to know if we're currently on the normal space index when we
3389 * manipulate the bitmap so that we know we need to remove and re-insert
3390 * it into the space_index tree. Clear the bytes_index node here so the
3391 * bitmap manipulation helpers know not to mess with the space_index
3392 * until this bitmap entry is added back into the normal cache.
3393 */
3394 RB_CLEAR_NODE(&entry->bytes_index);
3395
3396 ret = tree_insert_offset(ctl, cluster, new_entry: entry);
3397 ASSERT(!ret); /* -EEXIST; Logic error */
3398
3399 trace_btrfs_setup_cluster(block_group, cluster,
3400 size: total_found * ctl->unit, bitmap: 1);
3401 return 0;
3402}
3403
3404/*
3405 * This searches the block group for just extents to fill the cluster with.
3406 * Try to find a cluster with at least bytes total bytes, at least one
3407 * extent of cont1_bytes, and other clusters of at least min_bytes.
3408 */
3409static noinline int
3410setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3411 struct btrfs_free_cluster *cluster,
3412 struct list_head *bitmaps, u64 offset, u64 bytes,
3413 u64 cont1_bytes, u64 min_bytes)
3414{
3415 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3416 struct btrfs_free_space *first = NULL;
3417 struct btrfs_free_space *entry = NULL;
3418 struct btrfs_free_space *last;
3419 struct rb_node *node;
3420 u64 window_free;
3421 u64 max_extent;
3422 u64 total_size = 0;
3423
3424 lockdep_assert_held(&ctl->tree_lock);
3425
3426 entry = tree_search_offset(ctl, offset, bitmap_only: 0, fuzzy: 1);
3427 if (!entry)
3428 return -ENOSPC;
3429
3430 /*
3431 * We don't want bitmaps, so just move along until we find a normal
3432 * extent entry.
3433 */
3434 while (entry->bitmap || entry->bytes < min_bytes) {
3435 if (entry->bitmap && list_empty(head: &entry->list))
3436 list_add_tail(new: &entry->list, head: bitmaps);
3437 node = rb_next(&entry->offset_index);
3438 if (!node)
3439 return -ENOSPC;
3440 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3441 }
3442
3443 window_free = entry->bytes;
3444 max_extent = entry->bytes;
3445 first = entry;
3446 last = entry;
3447
3448 for (node = rb_next(&entry->offset_index); node;
3449 node = rb_next(&entry->offset_index)) {
3450 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3451
3452 if (entry->bitmap) {
3453 if (list_empty(head: &entry->list))
3454 list_add_tail(new: &entry->list, head: bitmaps);
3455 continue;
3456 }
3457
3458 if (entry->bytes < min_bytes)
3459 continue;
3460
3461 last = entry;
3462 window_free += entry->bytes;
3463 if (entry->bytes > max_extent)
3464 max_extent = entry->bytes;
3465 }
3466
3467 if (window_free < bytes || max_extent < cont1_bytes)
3468 return -ENOSPC;
3469
3470 cluster->window_start = first->offset;
3471
3472 node = &first->offset_index;
3473
3474 /*
3475 * now we've found our entries, pull them out of the free space
3476 * cache and put them into the cluster rbtree
3477 */
3478 do {
3479 int ret;
3480
3481 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3482 node = rb_next(&entry->offset_index);
3483 if (entry->bitmap || entry->bytes < min_bytes)
3484 continue;
3485
3486 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3487 rb_erase_cached(node: &entry->bytes_index, root: &ctl->free_space_bytes);
3488 ret = tree_insert_offset(ctl, cluster, new_entry: entry);
3489 total_size += entry->bytes;
3490 ASSERT(!ret); /* -EEXIST; Logic error */
3491 } while (node && entry != last);
3492
3493 cluster->max_size = max_extent;
3494 trace_btrfs_setup_cluster(block_group, cluster, size: total_size, bitmap: 0);
3495 return 0;
3496}
3497
3498/*
3499 * This specifically looks for bitmaps that may work in the cluster, we assume
3500 * that we have already failed to find extents that will work.
3501 */
3502static noinline int
3503setup_cluster_bitmap(struct btrfs_block_group *block_group,
3504 struct btrfs_free_cluster *cluster,
3505 struct list_head *bitmaps, u64 offset, u64 bytes,
3506 u64 cont1_bytes, u64 min_bytes)
3507{
3508 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3509 struct btrfs_free_space *entry = NULL;
3510 int ret = -ENOSPC;
3511 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3512
3513 if (ctl->total_bitmaps == 0)
3514 return -ENOSPC;
3515
3516 /*
3517 * The bitmap that covers offset won't be in the list unless offset
3518 * is just its start offset.
3519 */
3520 if (!list_empty(head: bitmaps))
3521 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3522
3523 if (!entry || entry->offset != bitmap_offset) {
3524 entry = tree_search_offset(ctl, offset: bitmap_offset, bitmap_only: 1, fuzzy: 0);
3525 if (entry && list_empty(head: &entry->list))
3526 list_add(new: &entry->list, head: bitmaps);
3527 }
3528
3529 list_for_each_entry(entry, bitmaps, list) {
3530 if (entry->bytes < bytes)
3531 continue;
3532 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3533 bytes, cont1_bytes, min_bytes);
3534 if (!ret)
3535 return 0;
3536 }
3537
3538 /*
3539 * The bitmaps list has all the bitmaps that record free space
3540 * starting after offset, so no more search is required.
3541 */
3542 return -ENOSPC;
3543}
3544
3545/*
3546 * here we try to find a cluster of blocks in a block group. The goal
3547 * is to find at least bytes+empty_size.
3548 * We might not find them all in one contiguous area.
3549 *
3550 * returns zero and sets up cluster if things worked out, otherwise
3551 * it returns -enospc
3552 */
3553int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3554 struct btrfs_free_cluster *cluster,
3555 u64 offset, u64 bytes, u64 empty_size)
3556{
3557 struct btrfs_fs_info *fs_info = block_group->fs_info;
3558 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3559 struct btrfs_free_space *entry, *tmp;
3560 LIST_HEAD(bitmaps);
3561 u64 min_bytes;
3562 u64 cont1_bytes;
3563 int ret;
3564
3565 /*
3566 * Choose the minimum extent size we'll require for this
3567 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3568 * For metadata, allow allocates with smaller extents. For
3569 * data, keep it dense.
3570 */
3571 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3572 cont1_bytes = bytes + empty_size;
3573 min_bytes = cont1_bytes;
3574 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3575 cont1_bytes = bytes;
3576 min_bytes = fs_info->sectorsize;
3577 } else {
3578 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3579 min_bytes = fs_info->sectorsize;
3580 }
3581
3582 spin_lock(lock: &ctl->tree_lock);
3583
3584 /*
3585 * If we know we don't have enough space to make a cluster don't even
3586 * bother doing all the work to try and find one.
3587 */
3588 if (ctl->free_space < bytes) {
3589 spin_unlock(lock: &ctl->tree_lock);
3590 return -ENOSPC;
3591 }
3592
3593 spin_lock(lock: &cluster->lock);
3594
3595 /* someone already found a cluster, hooray */
3596 if (cluster->block_group) {
3597 ret = 0;
3598 goto out;
3599 }
3600
3601 trace_btrfs_find_cluster(block_group, start: offset, bytes, empty_size,
3602 min_bytes);
3603
3604 ret = setup_cluster_no_bitmap(block_group, cluster, bitmaps: &bitmaps, offset,
3605 bytes: bytes + empty_size,
3606 cont1_bytes, min_bytes);
3607 if (ret)
3608 ret = setup_cluster_bitmap(block_group, cluster, bitmaps: &bitmaps,
3609 offset, bytes: bytes + empty_size,
3610 cont1_bytes, min_bytes);
3611
3612 /* Clear our temporary list */
3613 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3614 list_del_init(entry: &entry->list);
3615
3616 if (!ret) {
3617 btrfs_get_block_group(cache: block_group);
3618 list_add_tail(new: &cluster->block_group_list,
3619 head: &block_group->cluster_list);
3620 cluster->block_group = block_group;
3621 } else {
3622 trace_btrfs_failed_cluster_setup(block_group);
3623 }
3624out:
3625 spin_unlock(lock: &cluster->lock);
3626 spin_unlock(lock: &ctl->tree_lock);
3627
3628 return ret;
3629}
3630
3631/*
3632 * simple code to zero out a cluster
3633 */
3634void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3635{
3636 spin_lock_init(&cluster->lock);
3637 spin_lock_init(&cluster->refill_lock);
3638 cluster->root = RB_ROOT;
3639 cluster->max_size = 0;
3640 cluster->fragmented = false;
3641 INIT_LIST_HEAD(list: &cluster->block_group_list);
3642 cluster->block_group = NULL;
3643}
3644
3645static int do_trimming(struct btrfs_block_group *block_group,
3646 u64 *total_trimmed, u64 start, u64 bytes,
3647 u64 reserved_start, u64 reserved_bytes,
3648 enum btrfs_trim_state reserved_trim_state,
3649 struct btrfs_trim_range *trim_entry)
3650{
3651 struct btrfs_space_info *space_info = block_group->space_info;
3652 struct btrfs_fs_info *fs_info = block_group->fs_info;
3653 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3654 int ret;
3655 int update = 0;
3656 const u64 end = start + bytes;
3657 const u64 reserved_end = reserved_start + reserved_bytes;
3658 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3659 u64 trimmed = 0;
3660
3661 spin_lock(lock: &space_info->lock);
3662 spin_lock(lock: &block_group->lock);
3663 if (!block_group->ro) {
3664 block_group->reserved += reserved_bytes;
3665 space_info->bytes_reserved += reserved_bytes;
3666 update = 1;
3667 }
3668 spin_unlock(lock: &block_group->lock);
3669 spin_unlock(lock: &space_info->lock);
3670
3671 ret = btrfs_discard_extent(fs_info, bytenr: start, num_bytes: bytes, actual_bytes: &trimmed);
3672 if (!ret) {
3673 *total_trimmed += trimmed;
3674 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3675 }
3676
3677 mutex_lock(&ctl->cache_writeout_mutex);
3678 if (reserved_start < start)
3679 __btrfs_add_free_space(block_group, offset: reserved_start,
3680 bytes: start - reserved_start,
3681 trim_state: reserved_trim_state);
3682 if (end < reserved_end)
3683 __btrfs_add_free_space(block_group, offset: end, bytes: reserved_end - end,
3684 trim_state: reserved_trim_state);
3685 __btrfs_add_free_space(block_group, offset: start, bytes, trim_state);
3686 list_del(entry: &trim_entry->list);
3687 mutex_unlock(lock: &ctl->cache_writeout_mutex);
3688
3689 if (update) {
3690 spin_lock(lock: &space_info->lock);
3691 spin_lock(lock: &block_group->lock);
3692 if (block_group->ro)
3693 space_info->bytes_readonly += reserved_bytes;
3694 block_group->reserved -= reserved_bytes;
3695 space_info->bytes_reserved -= reserved_bytes;
3696 spin_unlock(lock: &block_group->lock);
3697 spin_unlock(lock: &space_info->lock);
3698 }
3699
3700 return ret;
3701}
3702
3703/*
3704 * If @async is set, then we will trim 1 region and return.
3705 */
3706static int trim_no_bitmap(struct btrfs_block_group *block_group,
3707 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3708 bool async)
3709{
3710 struct btrfs_discard_ctl *discard_ctl =
3711 &block_group->fs_info->discard_ctl;
3712 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3713 struct btrfs_free_space *entry;
3714 struct rb_node *node;
3715 int ret = 0;
3716 u64 extent_start;
3717 u64 extent_bytes;
3718 enum btrfs_trim_state extent_trim_state;
3719 u64 bytes;
3720 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3721
3722 while (start < end) {
3723 struct btrfs_trim_range trim_entry;
3724
3725 mutex_lock(&ctl->cache_writeout_mutex);
3726 spin_lock(lock: &ctl->tree_lock);
3727
3728 if (ctl->free_space < minlen)
3729 goto out_unlock;
3730
3731 entry = tree_search_offset(ctl, offset: start, bitmap_only: 0, fuzzy: 1);
3732 if (!entry)
3733 goto out_unlock;
3734
3735 /* Skip bitmaps and if async, already trimmed entries */
3736 while (entry->bitmap ||
3737 (async && btrfs_free_space_trimmed(info: entry))) {
3738 node = rb_next(&entry->offset_index);
3739 if (!node)
3740 goto out_unlock;
3741 entry = rb_entry(node, struct btrfs_free_space,
3742 offset_index);
3743 }
3744
3745 if (entry->offset >= end)
3746 goto out_unlock;
3747
3748 extent_start = entry->offset;
3749 extent_bytes = entry->bytes;
3750 extent_trim_state = entry->trim_state;
3751 if (async) {
3752 start = entry->offset;
3753 bytes = entry->bytes;
3754 if (bytes < minlen) {
3755 spin_unlock(lock: &ctl->tree_lock);
3756 mutex_unlock(lock: &ctl->cache_writeout_mutex);
3757 goto next;
3758 }
3759 unlink_free_space(ctl, info: entry, update_stat: true);
3760 /*
3761 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3762 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3763 * X when we come back around. So trim it now.
3764 */
3765 if (max_discard_size &&
3766 bytes >= (max_discard_size +
3767 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3768 bytes = max_discard_size;
3769 extent_bytes = max_discard_size;
3770 entry->offset += max_discard_size;
3771 entry->bytes -= max_discard_size;
3772 link_free_space(ctl, info: entry);
3773 } else {
3774 kmem_cache_free(s: btrfs_free_space_cachep, objp: entry);
3775 }
3776 } else {
3777 start = max(start, extent_start);
3778 bytes = min(extent_start + extent_bytes, end) - start;
3779 if (bytes < minlen) {
3780 spin_unlock(lock: &ctl->tree_lock);
3781 mutex_unlock(lock: &ctl->cache_writeout_mutex);
3782 goto next;
3783 }
3784
3785 unlink_free_space(ctl, info: entry, update_stat: true);
3786 kmem_cache_free(s: btrfs_free_space_cachep, objp: entry);
3787 }
3788
3789 spin_unlock(lock: &ctl->tree_lock);
3790 trim_entry.start = extent_start;
3791 trim_entry.bytes = extent_bytes;
3792 list_add_tail(new: &trim_entry.list, head: &ctl->trimming_ranges);
3793 mutex_unlock(lock: &ctl->cache_writeout_mutex);
3794
3795 ret = do_trimming(block_group, total_trimmed, start, bytes,
3796 reserved_start: extent_start, reserved_bytes: extent_bytes, reserved_trim_state: extent_trim_state,
3797 trim_entry: &trim_entry);
3798 if (ret) {
3799 block_group->discard_cursor = start + bytes;
3800 break;
3801 }
3802next:
3803 start += bytes;
3804 block_group->discard_cursor = start;
3805 if (async && *total_trimmed)
3806 break;
3807
3808 if (fatal_signal_pending(current)) {
3809 ret = -ERESTARTSYS;
3810 break;
3811 }
3812
3813 cond_resched();
3814 }
3815
3816 return ret;
3817
3818out_unlock:
3819 block_group->discard_cursor = btrfs_block_group_end(block_group);
3820 spin_unlock(lock: &ctl->tree_lock);
3821 mutex_unlock(lock: &ctl->cache_writeout_mutex);
3822
3823 return ret;
3824}
3825
3826/*
3827 * If we break out of trimming a bitmap prematurely, we should reset the
3828 * trimming bit. In a rather contrieved case, it's possible to race here so
3829 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3830 *
3831 * start = start of bitmap
3832 * end = near end of bitmap
3833 *
3834 * Thread 1: Thread 2:
3835 * trim_bitmaps(start)
3836 * trim_bitmaps(end)
3837 * end_trimming_bitmap()
3838 * reset_trimming_bitmap()
3839 */
3840static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3841{
3842 struct btrfs_free_space *entry;
3843
3844 spin_lock(lock: &ctl->tree_lock);
3845 entry = tree_search_offset(ctl, offset, bitmap_only: 1, fuzzy: 0);
3846 if (entry) {
3847 if (btrfs_free_space_trimmed(info: entry)) {
3848 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3849 entry->bitmap_extents;
3850 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3851 }
3852 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3853 }
3854
3855 spin_unlock(lock: &ctl->tree_lock);
3856}
3857
3858static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3859 struct btrfs_free_space *entry)
3860{
3861 if (btrfs_free_space_trimming_bitmap(info: entry)) {
3862 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3863 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3864 entry->bitmap_extents;
3865 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3866 }
3867}
3868
3869/*
3870 * If @async is set, then we will trim 1 region and return.
3871 */
3872static int trim_bitmaps(struct btrfs_block_group *block_group,
3873 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3874 u64 maxlen, bool async)
3875{
3876 struct btrfs_discard_ctl *discard_ctl =
3877 &block_group->fs_info->discard_ctl;
3878 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3879 struct btrfs_free_space *entry;
3880 int ret = 0;
3881 int ret2;
3882 u64 bytes;
3883 u64 offset = offset_to_bitmap(ctl, offset: start);
3884 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3885
3886 while (offset < end) {
3887 bool next_bitmap = false;
3888 struct btrfs_trim_range trim_entry;
3889
3890 mutex_lock(&ctl->cache_writeout_mutex);
3891 spin_lock(lock: &ctl->tree_lock);
3892
3893 if (ctl->free_space < minlen) {
3894 block_group->discard_cursor =
3895 btrfs_block_group_end(block_group);
3896 spin_unlock(lock: &ctl->tree_lock);
3897 mutex_unlock(lock: &ctl->cache_writeout_mutex);
3898 break;
3899 }
3900
3901 entry = tree_search_offset(ctl, offset, bitmap_only: 1, fuzzy: 0);
3902 /*
3903 * Bitmaps are marked trimmed lossily now to prevent constant
3904 * discarding of the same bitmap (the reason why we are bound
3905 * by the filters). So, retrim the block group bitmaps when we
3906 * are preparing to punt to the unused_bgs list. This uses
3907 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3908 * which is the only discard index which sets minlen to 0.
3909 */
3910 if (!entry || (async && minlen && start == offset &&
3911 btrfs_free_space_trimmed(info: entry))) {
3912 spin_unlock(lock: &ctl->tree_lock);
3913 mutex_unlock(lock: &ctl->cache_writeout_mutex);
3914 next_bitmap = true;
3915 goto next;
3916 }
3917
3918 /*
3919 * Async discard bitmap trimming begins at by setting the start
3920 * to be key.objectid and the offset_to_bitmap() aligns to the
3921 * start of the bitmap. This lets us know we are fully
3922 * scanning the bitmap rather than only some portion of it.
3923 */
3924 if (start == offset)
3925 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3926
3927 bytes = minlen;
3928 ret2 = search_bitmap(ctl, bitmap_info: entry, offset: &start, bytes: &bytes, for_alloc: false);
3929 if (ret2 || start >= end) {
3930 /*
3931 * We lossily consider a bitmap trimmed if we only skip
3932 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3933 */
3934 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3935 end_trimming_bitmap(ctl, entry);
3936 else
3937 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3938 spin_unlock(lock: &ctl->tree_lock);
3939 mutex_unlock(lock: &ctl->cache_writeout_mutex);
3940 next_bitmap = true;
3941 goto next;
3942 }
3943
3944 /*
3945 * We already trimmed a region, but are using the locking above
3946 * to reset the trim_state.
3947 */
3948 if (async && *total_trimmed) {
3949 spin_unlock(lock: &ctl->tree_lock);
3950 mutex_unlock(lock: &ctl->cache_writeout_mutex);
3951 goto out;
3952 }
3953
3954 bytes = min(bytes, end - start);
3955 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3956 spin_unlock(lock: &ctl->tree_lock);
3957 mutex_unlock(lock: &ctl->cache_writeout_mutex);
3958 goto next;
3959 }
3960
3961 /*
3962 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3963 * If X < @minlen, we won't trim X when we come back around.
3964 * So trim it now. We differ here from trimming extents as we
3965 * don't keep individual state per bit.
3966 */
3967 if (async &&
3968 max_discard_size &&
3969 bytes > (max_discard_size + minlen))
3970 bytes = max_discard_size;
3971
3972 bitmap_clear_bits(ctl, info: entry, offset: start, bytes, update_stat: true);
3973 if (entry->bytes == 0)
3974 free_bitmap(ctl, bitmap_info: entry);
3975
3976 spin_unlock(lock: &ctl->tree_lock);
3977 trim_entry.start = start;
3978 trim_entry.bytes = bytes;
3979 list_add_tail(new: &trim_entry.list, head: &ctl->trimming_ranges);
3980 mutex_unlock(lock: &ctl->cache_writeout_mutex);
3981
3982 ret = do_trimming(block_group, total_trimmed, start, bytes,
3983 reserved_start: start, reserved_bytes: bytes, reserved_trim_state: 0, trim_entry: &trim_entry);
3984 if (ret) {
3985 reset_trimming_bitmap(ctl, offset);
3986 block_group->discard_cursor =
3987 btrfs_block_group_end(block_group);
3988 break;
3989 }
3990next:
3991 if (next_bitmap) {
3992 offset += BITS_PER_BITMAP * ctl->unit;
3993 start = offset;
3994 } else {
3995 start += bytes;
3996 }
3997 block_group->discard_cursor = start;
3998
3999 if (fatal_signal_pending(current)) {
4000 if (start != offset)
4001 reset_trimming_bitmap(ctl, offset);
4002 ret = -ERESTARTSYS;
4003 break;
4004 }
4005
4006 cond_resched();
4007 }
4008
4009 if (offset >= end)
4010 block_group->discard_cursor = end;
4011
4012out:
4013 return ret;
4014}
4015
4016int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4017 u64 *trimmed, u64 start, u64 end, u64 minlen)
4018{
4019 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4020 int ret;
4021 u64 rem = 0;
4022
4023 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4024
4025 *trimmed = 0;
4026
4027 spin_lock(lock: &block_group->lock);
4028 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4029 spin_unlock(lock: &block_group->lock);
4030 return 0;
4031 }
4032 btrfs_freeze_block_group(cache: block_group);
4033 spin_unlock(lock: &block_group->lock);
4034
4035 ret = trim_no_bitmap(block_group, total_trimmed: trimmed, start, end, minlen, async: false);
4036 if (ret)
4037 goto out;
4038
4039 ret = trim_bitmaps(block_group, total_trimmed: trimmed, start, end, minlen, maxlen: 0, async: false);
4040 div64_u64_rem(dividend: end, BITS_PER_BITMAP * ctl->unit, remainder: &rem);
4041 /* If we ended in the middle of a bitmap, reset the trimming flag */
4042 if (rem)
4043 reset_trimming_bitmap(ctl, offset: offset_to_bitmap(ctl, offset: end));
4044out:
4045 btrfs_unfreeze_block_group(cache: block_group);
4046 return ret;
4047}
4048
4049int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4050 u64 *trimmed, u64 start, u64 end, u64 minlen,
4051 bool async)
4052{
4053 int ret;
4054
4055 *trimmed = 0;
4056
4057 spin_lock(lock: &block_group->lock);
4058 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4059 spin_unlock(lock: &block_group->lock);
4060 return 0;
4061 }
4062 btrfs_freeze_block_group(cache: block_group);
4063 spin_unlock(lock: &block_group->lock);
4064
4065 ret = trim_no_bitmap(block_group, total_trimmed: trimmed, start, end, minlen, async);
4066 btrfs_unfreeze_block_group(cache: block_group);
4067
4068 return ret;
4069}
4070
4071int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4072 u64 *trimmed, u64 start, u64 end, u64 minlen,
4073 u64 maxlen, bool async)
4074{
4075 int ret;
4076
4077 *trimmed = 0;
4078
4079 spin_lock(lock: &block_group->lock);
4080 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4081 spin_unlock(lock: &block_group->lock);
4082 return 0;
4083 }
4084 btrfs_freeze_block_group(cache: block_group);
4085 spin_unlock(lock: &block_group->lock);
4086
4087 ret = trim_bitmaps(block_group, total_trimmed: trimmed, start, end, minlen, maxlen,
4088 async);
4089
4090 btrfs_unfreeze_block_group(cache: block_group);
4091
4092 return ret;
4093}
4094
4095bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4096{
4097 return btrfs_super_cache_generation(s: fs_info->super_copy);
4098}
4099
4100static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4101 struct btrfs_trans_handle *trans)
4102{
4103 struct btrfs_block_group *block_group;
4104 struct rb_node *node;
4105 int ret = 0;
4106
4107 btrfs_info(fs_info, "cleaning free space cache v1");
4108
4109 node = rb_first_cached(&fs_info->block_group_cache_tree);
4110 while (node) {
4111 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4112 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4113 if (ret)
4114 goto out;
4115 node = rb_next(node);
4116 }
4117out:
4118 return ret;
4119}
4120
4121int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4122{
4123 struct btrfs_trans_handle *trans;
4124 int ret;
4125
4126 /*
4127 * update_super_roots will appropriately set or unset
4128 * super_copy->cache_generation based on SPACE_CACHE and
4129 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4130 * transaction commit whether we are enabling space cache v1 and don't
4131 * have any other work to do, or are disabling it and removing free
4132 * space inodes.
4133 */
4134 trans = btrfs_start_transaction(root: fs_info->tree_root, num_items: 0);
4135 if (IS_ERR(ptr: trans))
4136 return PTR_ERR(ptr: trans);
4137
4138 if (!active) {
4139 set_bit(nr: BTRFS_FS_CLEANUP_SPACE_CACHE_V1, addr: &fs_info->flags);
4140 ret = cleanup_free_space_cache_v1(fs_info, trans);
4141 if (ret) {
4142 btrfs_abort_transaction(trans, ret);
4143 btrfs_end_transaction(trans);
4144 goto out;
4145 }
4146 }
4147
4148 ret = btrfs_commit_transaction(trans);
4149out:
4150 clear_bit(nr: BTRFS_FS_CLEANUP_SPACE_CACHE_V1, addr: &fs_info->flags);
4151
4152 return ret;
4153}
4154
4155int __init btrfs_free_space_init(void)
4156{
4157 btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4158 if (!btrfs_free_space_cachep)
4159 return -ENOMEM;
4160
4161 btrfs_free_space_bitmap_cachep = kmem_cache_create(name: "btrfs_free_space_bitmap",
4162 PAGE_SIZE, PAGE_SIZE,
4163 flags: 0, NULL);
4164 if (!btrfs_free_space_bitmap_cachep) {
4165 kmem_cache_destroy(s: btrfs_free_space_cachep);
4166 return -ENOMEM;
4167 }
4168
4169 return 0;
4170}
4171
4172void __cold btrfs_free_space_exit(void)
4173{
4174 kmem_cache_destroy(s: btrfs_free_space_cachep);
4175 kmem_cache_destroy(s: btrfs_free_space_bitmap_cachep);
4176}
4177
4178#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4179/*
4180 * Use this if you need to make a bitmap or extent entry specifically, it
4181 * doesn't do any of the merging that add_free_space does, this acts a lot like
4182 * how the free space cache loading stuff works, so you can get really weird
4183 * configurations.
4184 */
4185int test_add_free_space_entry(struct btrfs_block_group *cache,
4186 u64 offset, u64 bytes, bool bitmap)
4187{
4188 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4189 struct btrfs_free_space *info = NULL, *bitmap_info;
4190 void *map = NULL;
4191 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4192 u64 bytes_added;
4193 int ret;
4194
4195again:
4196 if (!info) {
4197 info = kmem_cache_zalloc(k: btrfs_free_space_cachep, GFP_NOFS);
4198 if (!info)
4199 return -ENOMEM;
4200 }
4201
4202 if (!bitmap) {
4203 spin_lock(lock: &ctl->tree_lock);
4204 info->offset = offset;
4205 info->bytes = bytes;
4206 info->max_extent_size = 0;
4207 ret = link_free_space(ctl, info);
4208 spin_unlock(lock: &ctl->tree_lock);
4209 if (ret)
4210 kmem_cache_free(s: btrfs_free_space_cachep, objp: info);
4211 return ret;
4212 }
4213
4214 if (!map) {
4215 map = kmem_cache_zalloc(k: btrfs_free_space_bitmap_cachep, GFP_NOFS);
4216 if (!map) {
4217 kmem_cache_free(s: btrfs_free_space_cachep, objp: info);
4218 return -ENOMEM;
4219 }
4220 }
4221
4222 spin_lock(lock: &ctl->tree_lock);
4223 bitmap_info = tree_search_offset(ctl, offset: offset_to_bitmap(ctl, offset),
4224 bitmap_only: 1, fuzzy: 0);
4225 if (!bitmap_info) {
4226 info->bitmap = map;
4227 map = NULL;
4228 add_new_bitmap(ctl, info, offset);
4229 bitmap_info = info;
4230 info = NULL;
4231 }
4232
4233 bytes_added = add_bytes_to_bitmap(ctl, info: bitmap_info, offset, bytes,
4234 trim_state);
4235
4236 bytes -= bytes_added;
4237 offset += bytes_added;
4238 spin_unlock(lock: &ctl->tree_lock);
4239
4240 if (bytes)
4241 goto again;
4242
4243 if (info)
4244 kmem_cache_free(s: btrfs_free_space_cachep, objp: info);
4245 if (map)
4246 kmem_cache_free(s: btrfs_free_space_bitmap_cachep, objp: map);
4247 return 0;
4248}
4249
4250/*
4251 * Checks to see if the given range is in the free space cache. This is really
4252 * just used to check the absence of space, so if there is free space in the
4253 * range at all we will return 1.
4254 */
4255int test_check_exists(struct btrfs_block_group *cache,
4256 u64 offset, u64 bytes)
4257{
4258 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4259 struct btrfs_free_space *info;
4260 int ret = 0;
4261
4262 spin_lock(lock: &ctl->tree_lock);
4263 info = tree_search_offset(ctl, offset, bitmap_only: 0, fuzzy: 0);
4264 if (!info) {
4265 info = tree_search_offset(ctl, offset: offset_to_bitmap(ctl, offset),
4266 bitmap_only: 1, fuzzy: 0);
4267 if (!info)
4268 goto out;
4269 }
4270
4271have_info:
4272 if (info->bitmap) {
4273 u64 bit_off, bit_bytes;
4274 struct rb_node *n;
4275 struct btrfs_free_space *tmp;
4276
4277 bit_off = offset;
4278 bit_bytes = ctl->unit;
4279 ret = search_bitmap(ctl, bitmap_info: info, offset: &bit_off, bytes: &bit_bytes, for_alloc: false);
4280 if (!ret) {
4281 if (bit_off == offset) {
4282 ret = 1;
4283 goto out;
4284 } else if (bit_off > offset &&
4285 offset + bytes > bit_off) {
4286 ret = 1;
4287 goto out;
4288 }
4289 }
4290
4291 n = rb_prev(&info->offset_index);
4292 while (n) {
4293 tmp = rb_entry(n, struct btrfs_free_space,
4294 offset_index);
4295 if (tmp->offset + tmp->bytes < offset)
4296 break;
4297 if (offset + bytes < tmp->offset) {
4298 n = rb_prev(&tmp->offset_index);
4299 continue;
4300 }
4301 info = tmp;
4302 goto have_info;
4303 }
4304
4305 n = rb_next(&info->offset_index);
4306 while (n) {
4307 tmp = rb_entry(n, struct btrfs_free_space,
4308 offset_index);
4309 if (offset + bytes < tmp->offset)
4310 break;
4311 if (tmp->offset + tmp->bytes < offset) {
4312 n = rb_next(&tmp->offset_index);
4313 continue;
4314 }
4315 info = tmp;
4316 goto have_info;
4317 }
4318
4319 ret = 0;
4320 goto out;
4321 }
4322
4323 if (info->offset == offset) {
4324 ret = 1;
4325 goto out;
4326 }
4327
4328 if (offset > info->offset && offset < info->offset + info->bytes)
4329 ret = 1;
4330out:
4331 spin_unlock(lock: &ctl->tree_lock);
4332 return ret;
4333}
4334#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4335

source code of linux/fs/btrfs/free-space-cache.c