1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/radix-tree.h>
14#include <linux/vmalloc.h>
15#include <linux/string.h>
16#include <linux/compat.h>
17#include <linux/crc32c.h>
18#include <linux/fsverity.h>
19
20#include "send.h"
21#include "ctree.h"
22#include "backref.h"
23#include "locking.h"
24#include "disk-io.h"
25#include "btrfs_inode.h"
26#include "transaction.h"
27#include "compression.h"
28#include "print-tree.h"
29#include "accessors.h"
30#include "dir-item.h"
31#include "file-item.h"
32#include "ioctl.h"
33#include "verity.h"
34#include "lru_cache.h"
35
36/*
37 * Maximum number of references an extent can have in order for us to attempt to
38 * issue clone operations instead of write operations. This currently exists to
39 * avoid hitting limitations of the backreference walking code (taking a lot of
40 * time and using too much memory for extents with large number of references).
41 */
42#define SEND_MAX_EXTENT_REFS 1024
43
44/*
45 * A fs_path is a helper to dynamically build path names with unknown size.
46 * It reallocates the internal buffer on demand.
47 * It allows fast adding of path elements on the right side (normal path) and
48 * fast adding to the left side (reversed path). A reversed path can also be
49 * unreversed if needed.
50 */
51struct fs_path {
52 union {
53 struct {
54 char *start;
55 char *end;
56
57 char *buf;
58 unsigned short buf_len:15;
59 unsigned short reversed:1;
60 char inline_buf[];
61 };
62 /*
63 * Average path length does not exceed 200 bytes, we'll have
64 * better packing in the slab and higher chance to satisfy
65 * a allocation later during send.
66 */
67 char pad[256];
68 };
69};
70#define FS_PATH_INLINE_SIZE \
71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72
73
74/* reused for each extent */
75struct clone_root {
76 struct btrfs_root *root;
77 u64 ino;
78 u64 offset;
79 u64 num_bytes;
80 bool found_ref;
81};
82
83#define SEND_MAX_NAME_CACHE_SIZE 256
84
85/*
86 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88 * can be satisfied from the kmalloc-192 slab, without wasting any space.
89 * The most common case is to have a single root for cloning, which corresponds
90 * to the send root. Having the user specify more than 16 clone roots is not
91 * common, and in such rare cases we simply don't use caching if the number of
92 * cloning roots that lead down to a leaf is more than 17.
93 */
94#define SEND_MAX_BACKREF_CACHE_ROOTS 17
95
96/*
97 * Max number of entries in the cache.
98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99 * maple tree's internal nodes, is 24K.
100 */
101#define SEND_MAX_BACKREF_CACHE_SIZE 128
102
103/*
104 * A backref cache entry maps a leaf to a list of IDs of roots from which the
105 * leaf is accessible and we can use for clone operations.
106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107 * x86_64).
108 */
109struct backref_cache_entry {
110 struct btrfs_lru_cache_entry entry;
111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 /* Number of valid elements in the root_ids array. */
113 int num_roots;
114};
115
116/* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118
119/*
120 * Max number of entries in the cache that stores directories that were already
121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124 */
125#define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
126
127/*
128 * Max number of entries in the cache that stores directories that were already
129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132 */
133#define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
134
135struct send_ctx {
136 struct file *send_filp;
137 loff_t send_off;
138 char *send_buf;
139 u32 send_size;
140 u32 send_max_size;
141 /*
142 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 * command (since protocol v2, data must be the last attribute).
144 */
145 bool put_data;
146 struct page **send_buf_pages;
147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
148 /* Protocol version compatibility requested */
149 u32 proto;
150
151 struct btrfs_root *send_root;
152 struct btrfs_root *parent_root;
153 struct clone_root *clone_roots;
154 int clone_roots_cnt;
155
156 /* current state of the compare_tree call */
157 struct btrfs_path *left_path;
158 struct btrfs_path *right_path;
159 struct btrfs_key *cmp_key;
160
161 /*
162 * Keep track of the generation of the last transaction that was used
163 * for relocating a block group. This is periodically checked in order
164 * to detect if a relocation happened since the last check, so that we
165 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 * stale disk_bytenr values of file extent items.
167 */
168 u64 last_reloc_trans;
169
170 /*
171 * infos of the currently processed inode. In case of deleted inodes,
172 * these are the values from the deleted inode.
173 */
174 u64 cur_ino;
175 u64 cur_inode_gen;
176 u64 cur_inode_size;
177 u64 cur_inode_mode;
178 u64 cur_inode_rdev;
179 u64 cur_inode_last_extent;
180 u64 cur_inode_next_write_offset;
181 bool cur_inode_new;
182 bool cur_inode_new_gen;
183 bool cur_inode_deleted;
184 bool ignore_cur_inode;
185 bool cur_inode_needs_verity;
186 void *verity_descriptor;
187
188 u64 send_progress;
189
190 struct list_head new_refs;
191 struct list_head deleted_refs;
192
193 struct btrfs_lru_cache name_cache;
194
195 /*
196 * The inode we are currently processing. It's not NULL only when we
197 * need to issue write commands for data extents from this inode.
198 */
199 struct inode *cur_inode;
200 struct file_ra_state ra;
201 u64 page_cache_clear_start;
202 bool clean_page_cache;
203
204 /*
205 * We process inodes by their increasing order, so if before an
206 * incremental send we reverse the parent/child relationship of
207 * directories such that a directory with a lower inode number was
208 * the parent of a directory with a higher inode number, and the one
209 * becoming the new parent got renamed too, we can't rename/move the
210 * directory with lower inode number when we finish processing it - we
211 * must process the directory with higher inode number first, then
212 * rename/move it and then rename/move the directory with lower inode
213 * number. Example follows.
214 *
215 * Tree state when the first send was performed:
216 *
217 * .
218 * |-- a (ino 257)
219 * |-- b (ino 258)
220 * |
221 * |
222 * |-- c (ino 259)
223 * | |-- d (ino 260)
224 * |
225 * |-- c2 (ino 261)
226 *
227 * Tree state when the second (incremental) send is performed:
228 *
229 * .
230 * |-- a (ino 257)
231 * |-- b (ino 258)
232 * |-- c2 (ino 261)
233 * |-- d2 (ino 260)
234 * |-- cc (ino 259)
235 *
236 * The sequence of steps that lead to the second state was:
237 *
238 * mv /a/b/c/d /a/b/c2/d2
239 * mv /a/b/c /a/b/c2/d2/cc
240 *
241 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 * before we move "d", which has higher inode number.
243 *
244 * So we just memorize which move/rename operations must be performed
245 * later when their respective parent is processed and moved/renamed.
246 */
247
248 /* Indexed by parent directory inode number. */
249 struct rb_root pending_dir_moves;
250
251 /*
252 * Reverse index, indexed by the inode number of a directory that
253 * is waiting for the move/rename of its immediate parent before its
254 * own move/rename can be performed.
255 */
256 struct rb_root waiting_dir_moves;
257
258 /*
259 * A directory that is going to be rm'ed might have a child directory
260 * which is in the pending directory moves index above. In this case,
261 * the directory can only be removed after the move/rename of its child
262 * is performed. Example:
263 *
264 * Parent snapshot:
265 *
266 * . (ino 256)
267 * |-- a/ (ino 257)
268 * |-- b/ (ino 258)
269 * |-- c/ (ino 259)
270 * | |-- x/ (ino 260)
271 * |
272 * |-- y/ (ino 261)
273 *
274 * Send snapshot:
275 *
276 * . (ino 256)
277 * |-- a/ (ino 257)
278 * |-- b/ (ino 258)
279 * |-- YY/ (ino 261)
280 * |-- x/ (ino 260)
281 *
282 * Sequence of steps that lead to the send snapshot:
283 * rm -f /a/b/c/foo.txt
284 * mv /a/b/y /a/b/YY
285 * mv /a/b/c/x /a/b/YY
286 * rmdir /a/b/c
287 *
288 * When the child is processed, its move/rename is delayed until its
289 * parent is processed (as explained above), but all other operations
290 * like update utimes, chown, chgrp, etc, are performed and the paths
291 * that it uses for those operations must use the orphanized name of
292 * its parent (the directory we're going to rm later), so we need to
293 * memorize that name.
294 *
295 * Indexed by the inode number of the directory to be deleted.
296 */
297 struct rb_root orphan_dirs;
298
299 struct rb_root rbtree_new_refs;
300 struct rb_root rbtree_deleted_refs;
301
302 struct btrfs_lru_cache backref_cache;
303 u64 backref_cache_last_reloc_trans;
304
305 struct btrfs_lru_cache dir_created_cache;
306 struct btrfs_lru_cache dir_utimes_cache;
307};
308
309struct pending_dir_move {
310 struct rb_node node;
311 struct list_head list;
312 u64 parent_ino;
313 u64 ino;
314 u64 gen;
315 struct list_head update_refs;
316};
317
318struct waiting_dir_move {
319 struct rb_node node;
320 u64 ino;
321 /*
322 * There might be some directory that could not be removed because it
323 * was waiting for this directory inode to be moved first. Therefore
324 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325 */
326 u64 rmdir_ino;
327 u64 rmdir_gen;
328 bool orphanized;
329};
330
331struct orphan_dir_info {
332 struct rb_node node;
333 u64 ino;
334 u64 gen;
335 u64 last_dir_index_offset;
336 u64 dir_high_seq_ino;
337};
338
339struct name_cache_entry {
340 /*
341 * The key in the entry is an inode number, and the generation matches
342 * the inode's generation.
343 */
344 struct btrfs_lru_cache_entry entry;
345 u64 parent_ino;
346 u64 parent_gen;
347 int ret;
348 int need_later_update;
349 int name_len;
350 char name[];
351};
352
353/* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
354static_assert(offsetof(struct name_cache_entry, entry) == 0);
355
356#define ADVANCE 1
357#define ADVANCE_ONLY_NEXT -1
358
359enum btrfs_compare_tree_result {
360 BTRFS_COMPARE_TREE_NEW,
361 BTRFS_COMPARE_TREE_DELETED,
362 BTRFS_COMPARE_TREE_CHANGED,
363 BTRFS_COMPARE_TREE_SAME,
364};
365
366__cold
367static void inconsistent_snapshot_error(struct send_ctx *sctx,
368 enum btrfs_compare_tree_result result,
369 const char *what)
370{
371 const char *result_string;
372
373 switch (result) {
374 case BTRFS_COMPARE_TREE_NEW:
375 result_string = "new";
376 break;
377 case BTRFS_COMPARE_TREE_DELETED:
378 result_string = "deleted";
379 break;
380 case BTRFS_COMPARE_TREE_CHANGED:
381 result_string = "updated";
382 break;
383 case BTRFS_COMPARE_TREE_SAME:
384 ASSERT(0);
385 result_string = "unchanged";
386 break;
387 default:
388 ASSERT(0);
389 result_string = "unexpected";
390 }
391
392 btrfs_err(sctx->send_root->fs_info,
393 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
394 result_string, what, sctx->cmp_key->objectid,
395 sctx->send_root->root_key.objectid,
396 (sctx->parent_root ?
397 sctx->parent_root->root_key.objectid : 0));
398}
399
400__maybe_unused
401static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
402{
403 switch (sctx->proto) {
404 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
405 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
406 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
407 default: return false;
408 }
409}
410
411static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
412
413static struct waiting_dir_move *
414get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
415
416static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
417
418static int need_send_hole(struct send_ctx *sctx)
419{
420 return (sctx->parent_root && !sctx->cur_inode_new &&
421 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
422 S_ISREG(sctx->cur_inode_mode));
423}
424
425static void fs_path_reset(struct fs_path *p)
426{
427 if (p->reversed) {
428 p->start = p->buf + p->buf_len - 1;
429 p->end = p->start;
430 *p->start = 0;
431 } else {
432 p->start = p->buf;
433 p->end = p->start;
434 *p->start = 0;
435 }
436}
437
438static struct fs_path *fs_path_alloc(void)
439{
440 struct fs_path *p;
441
442 p = kmalloc(size: sizeof(*p), GFP_KERNEL);
443 if (!p)
444 return NULL;
445 p->reversed = 0;
446 p->buf = p->inline_buf;
447 p->buf_len = FS_PATH_INLINE_SIZE;
448 fs_path_reset(p);
449 return p;
450}
451
452static struct fs_path *fs_path_alloc_reversed(void)
453{
454 struct fs_path *p;
455
456 p = fs_path_alloc();
457 if (!p)
458 return NULL;
459 p->reversed = 1;
460 fs_path_reset(p);
461 return p;
462}
463
464static void fs_path_free(struct fs_path *p)
465{
466 if (!p)
467 return;
468 if (p->buf != p->inline_buf)
469 kfree(objp: p->buf);
470 kfree(objp: p);
471}
472
473static int fs_path_len(struct fs_path *p)
474{
475 return p->end - p->start;
476}
477
478static int fs_path_ensure_buf(struct fs_path *p, int len)
479{
480 char *tmp_buf;
481 int path_len;
482 int old_buf_len;
483
484 len++;
485
486 if (p->buf_len >= len)
487 return 0;
488
489 if (len > PATH_MAX) {
490 WARN_ON(1);
491 return -ENOMEM;
492 }
493
494 path_len = p->end - p->start;
495 old_buf_len = p->buf_len;
496
497 /*
498 * Allocate to the next largest kmalloc bucket size, to let
499 * the fast path happen most of the time.
500 */
501 len = kmalloc_size_roundup(size: len);
502 /*
503 * First time the inline_buf does not suffice
504 */
505 if (p->buf == p->inline_buf) {
506 tmp_buf = kmalloc(size: len, GFP_KERNEL);
507 if (tmp_buf)
508 memcpy(tmp_buf, p->buf, old_buf_len);
509 } else {
510 tmp_buf = krealloc(objp: p->buf, new_size: len, GFP_KERNEL);
511 }
512 if (!tmp_buf)
513 return -ENOMEM;
514 p->buf = tmp_buf;
515 p->buf_len = len;
516
517 if (p->reversed) {
518 tmp_buf = p->buf + old_buf_len - path_len - 1;
519 p->end = p->buf + p->buf_len - 1;
520 p->start = p->end - path_len;
521 memmove(p->start, tmp_buf, path_len + 1);
522 } else {
523 p->start = p->buf;
524 p->end = p->start + path_len;
525 }
526 return 0;
527}
528
529static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
530 char **prepared)
531{
532 int ret;
533 int new_len;
534
535 new_len = p->end - p->start + name_len;
536 if (p->start != p->end)
537 new_len++;
538 ret = fs_path_ensure_buf(p, len: new_len);
539 if (ret < 0)
540 goto out;
541
542 if (p->reversed) {
543 if (p->start != p->end)
544 *--p->start = '/';
545 p->start -= name_len;
546 *prepared = p->start;
547 } else {
548 if (p->start != p->end)
549 *p->end++ = '/';
550 *prepared = p->end;
551 p->end += name_len;
552 *p->end = 0;
553 }
554
555out:
556 return ret;
557}
558
559static int fs_path_add(struct fs_path *p, const char *name, int name_len)
560{
561 int ret;
562 char *prepared;
563
564 ret = fs_path_prepare_for_add(p, name_len, prepared: &prepared);
565 if (ret < 0)
566 goto out;
567 memcpy(prepared, name, name_len);
568
569out:
570 return ret;
571}
572
573static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
574{
575 int ret;
576 char *prepared;
577
578 ret = fs_path_prepare_for_add(p, name_len: p2->end - p2->start, prepared: &prepared);
579 if (ret < 0)
580 goto out;
581 memcpy(prepared, p2->start, p2->end - p2->start);
582
583out:
584 return ret;
585}
586
587static int fs_path_add_from_extent_buffer(struct fs_path *p,
588 struct extent_buffer *eb,
589 unsigned long off, int len)
590{
591 int ret;
592 char *prepared;
593
594 ret = fs_path_prepare_for_add(p, name_len: len, prepared: &prepared);
595 if (ret < 0)
596 goto out;
597
598 read_extent_buffer(eb, dst: prepared, start: off, len);
599
600out:
601 return ret;
602}
603
604static int fs_path_copy(struct fs_path *p, struct fs_path *from)
605{
606 p->reversed = from->reversed;
607 fs_path_reset(p);
608
609 return fs_path_add_path(p, p2: from);
610}
611
612static void fs_path_unreverse(struct fs_path *p)
613{
614 char *tmp;
615 int len;
616
617 if (!p->reversed)
618 return;
619
620 tmp = p->start;
621 len = p->end - p->start;
622 p->start = p->buf;
623 p->end = p->start + len;
624 memmove(p->start, tmp, len + 1);
625 p->reversed = 0;
626}
627
628static struct btrfs_path *alloc_path_for_send(void)
629{
630 struct btrfs_path *path;
631
632 path = btrfs_alloc_path();
633 if (!path)
634 return NULL;
635 path->search_commit_root = 1;
636 path->skip_locking = 1;
637 path->need_commit_sem = 1;
638 return path;
639}
640
641static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
642{
643 int ret;
644 u32 pos = 0;
645
646 while (pos < len) {
647 ret = kernel_write(filp, buf + pos, len - pos, off);
648 if (ret < 0)
649 return ret;
650 if (ret == 0)
651 return -EIO;
652 pos += ret;
653 }
654
655 return 0;
656}
657
658static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
659{
660 struct btrfs_tlv_header *hdr;
661 int total_len = sizeof(*hdr) + len;
662 int left = sctx->send_max_size - sctx->send_size;
663
664 if (WARN_ON_ONCE(sctx->put_data))
665 return -EINVAL;
666
667 if (unlikely(left < total_len))
668 return -EOVERFLOW;
669
670 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
671 put_unaligned_le16(val: attr, p: &hdr->tlv_type);
672 put_unaligned_le16(val: len, p: &hdr->tlv_len);
673 memcpy(hdr + 1, data, len);
674 sctx->send_size += total_len;
675
676 return 0;
677}
678
679#define TLV_PUT_DEFINE_INT(bits) \
680 static int tlv_put_u##bits(struct send_ctx *sctx, \
681 u##bits attr, u##bits value) \
682 { \
683 __le##bits __tmp = cpu_to_le##bits(value); \
684 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
685 }
686
687TLV_PUT_DEFINE_INT(8)
688TLV_PUT_DEFINE_INT(32)
689TLV_PUT_DEFINE_INT(64)
690
691static int tlv_put_string(struct send_ctx *sctx, u16 attr,
692 const char *str, int len)
693{
694 if (len == -1)
695 len = strlen(str);
696 return tlv_put(sctx, attr, data: str, len);
697}
698
699static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
700 const u8 *uuid)
701{
702 return tlv_put(sctx, attr, data: uuid, BTRFS_UUID_SIZE);
703}
704
705static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
706 struct extent_buffer *eb,
707 struct btrfs_timespec *ts)
708{
709 struct btrfs_timespec bts;
710 read_extent_buffer(eb, dst: &bts, start: (unsigned long)ts, len: sizeof(bts));
711 return tlv_put(sctx, attr, data: &bts, len: sizeof(bts));
712}
713
714
715#define TLV_PUT(sctx, attrtype, data, attrlen) \
716 do { \
717 ret = tlv_put(sctx, attrtype, data, attrlen); \
718 if (ret < 0) \
719 goto tlv_put_failure; \
720 } while (0)
721
722#define TLV_PUT_INT(sctx, attrtype, bits, value) \
723 do { \
724 ret = tlv_put_u##bits(sctx, attrtype, value); \
725 if (ret < 0) \
726 goto tlv_put_failure; \
727 } while (0)
728
729#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
730#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
731#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
732#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
733#define TLV_PUT_STRING(sctx, attrtype, str, len) \
734 do { \
735 ret = tlv_put_string(sctx, attrtype, str, len); \
736 if (ret < 0) \
737 goto tlv_put_failure; \
738 } while (0)
739#define TLV_PUT_PATH(sctx, attrtype, p) \
740 do { \
741 ret = tlv_put_string(sctx, attrtype, p->start, \
742 p->end - p->start); \
743 if (ret < 0) \
744 goto tlv_put_failure; \
745 } while(0)
746#define TLV_PUT_UUID(sctx, attrtype, uuid) \
747 do { \
748 ret = tlv_put_uuid(sctx, attrtype, uuid); \
749 if (ret < 0) \
750 goto tlv_put_failure; \
751 } while (0)
752#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
753 do { \
754 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
755 if (ret < 0) \
756 goto tlv_put_failure; \
757 } while (0)
758
759static int send_header(struct send_ctx *sctx)
760{
761 struct btrfs_stream_header hdr;
762
763 strcpy(p: hdr.magic, BTRFS_SEND_STREAM_MAGIC);
764 hdr.version = cpu_to_le32(sctx->proto);
765 return write_buf(filp: sctx->send_filp, buf: &hdr, len: sizeof(hdr),
766 off: &sctx->send_off);
767}
768
769/*
770 * For each command/item we want to send to userspace, we call this function.
771 */
772static int begin_cmd(struct send_ctx *sctx, int cmd)
773{
774 struct btrfs_cmd_header *hdr;
775
776 if (WARN_ON(!sctx->send_buf))
777 return -EINVAL;
778
779 if (unlikely(sctx->send_size != 0)) {
780 btrfs_err(sctx->send_root->fs_info,
781 "send: command header buffer not empty cmd %d offset %llu",
782 cmd, sctx->send_off);
783 return -EINVAL;
784 }
785
786 sctx->send_size += sizeof(*hdr);
787 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
788 put_unaligned_le16(val: cmd, p: &hdr->cmd);
789
790 return 0;
791}
792
793static int send_cmd(struct send_ctx *sctx)
794{
795 int ret;
796 struct btrfs_cmd_header *hdr;
797 u32 crc;
798
799 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
800 put_unaligned_le32(val: sctx->send_size - sizeof(*hdr), p: &hdr->len);
801 put_unaligned_le32(val: 0, p: &hdr->crc);
802
803 crc = crc32c(crc: 0, address: (unsigned char *)sctx->send_buf, length: sctx->send_size);
804 put_unaligned_le32(val: crc, p: &hdr->crc);
805
806 ret = write_buf(filp: sctx->send_filp, buf: sctx->send_buf, len: sctx->send_size,
807 off: &sctx->send_off);
808
809 sctx->send_size = 0;
810 sctx->put_data = false;
811
812 return ret;
813}
814
815/*
816 * Sends a move instruction to user space
817 */
818static int send_rename(struct send_ctx *sctx,
819 struct fs_path *from, struct fs_path *to)
820{
821 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
822 int ret;
823
824 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
825
826 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_RENAME);
827 if (ret < 0)
828 goto out;
829
830 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
831 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
832
833 ret = send_cmd(sctx);
834
835tlv_put_failure:
836out:
837 return ret;
838}
839
840/*
841 * Sends a link instruction to user space
842 */
843static int send_link(struct send_ctx *sctx,
844 struct fs_path *path, struct fs_path *lnk)
845{
846 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
847 int ret;
848
849 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
850
851 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_LINK);
852 if (ret < 0)
853 goto out;
854
855 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
857
858 ret = send_cmd(sctx);
859
860tlv_put_failure:
861out:
862 return ret;
863}
864
865/*
866 * Sends an unlink instruction to user space
867 */
868static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
869{
870 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
871 int ret;
872
873 btrfs_debug(fs_info, "send_unlink %s", path->start);
874
875 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_UNLINK);
876 if (ret < 0)
877 goto out;
878
879 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
880
881 ret = send_cmd(sctx);
882
883tlv_put_failure:
884out:
885 return ret;
886}
887
888/*
889 * Sends a rmdir instruction to user space
890 */
891static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
892{
893 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
894 int ret;
895
896 btrfs_debug(fs_info, "send_rmdir %s", path->start);
897
898 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_RMDIR);
899 if (ret < 0)
900 goto out;
901
902 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
903
904 ret = send_cmd(sctx);
905
906tlv_put_failure:
907out:
908 return ret;
909}
910
911struct btrfs_inode_info {
912 u64 size;
913 u64 gen;
914 u64 mode;
915 u64 uid;
916 u64 gid;
917 u64 rdev;
918 u64 fileattr;
919 u64 nlink;
920};
921
922/*
923 * Helper function to retrieve some fields from an inode item.
924 */
925static int get_inode_info(struct btrfs_root *root, u64 ino,
926 struct btrfs_inode_info *info)
927{
928 int ret;
929 struct btrfs_path *path;
930 struct btrfs_inode_item *ii;
931 struct btrfs_key key;
932
933 path = alloc_path_for_send();
934 if (!path)
935 return -ENOMEM;
936
937 key.objectid = ino;
938 key.type = BTRFS_INODE_ITEM_KEY;
939 key.offset = 0;
940 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
941 if (ret) {
942 if (ret > 0)
943 ret = -ENOENT;
944 goto out;
945 }
946
947 if (!info)
948 goto out;
949
950 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
951 struct btrfs_inode_item);
952 info->size = btrfs_inode_size(eb: path->nodes[0], s: ii);
953 info->gen = btrfs_inode_generation(eb: path->nodes[0], s: ii);
954 info->mode = btrfs_inode_mode(eb: path->nodes[0], s: ii);
955 info->uid = btrfs_inode_uid(eb: path->nodes[0], s: ii);
956 info->gid = btrfs_inode_gid(eb: path->nodes[0], s: ii);
957 info->rdev = btrfs_inode_rdev(eb: path->nodes[0], s: ii);
958 info->nlink = btrfs_inode_nlink(eb: path->nodes[0], s: ii);
959 /*
960 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
961 * otherwise logically split to 32/32 parts.
962 */
963 info->fileattr = btrfs_inode_flags(eb: path->nodes[0], s: ii);
964
965out:
966 btrfs_free_path(p: path);
967 return ret;
968}
969
970static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
971{
972 int ret;
973 struct btrfs_inode_info info = { 0 };
974
975 ASSERT(gen);
976
977 ret = get_inode_info(root, ino, info: &info);
978 *gen = info.gen;
979 return ret;
980}
981
982typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
983 struct fs_path *p,
984 void *ctx);
985
986/*
987 * Helper function to iterate the entries in ONE btrfs_inode_ref or
988 * btrfs_inode_extref.
989 * The iterate callback may return a non zero value to stop iteration. This can
990 * be a negative value for error codes or 1 to simply stop it.
991 *
992 * path must point to the INODE_REF or INODE_EXTREF when called.
993 */
994static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
995 struct btrfs_key *found_key, int resolve,
996 iterate_inode_ref_t iterate, void *ctx)
997{
998 struct extent_buffer *eb = path->nodes[0];
999 struct btrfs_inode_ref *iref;
1000 struct btrfs_inode_extref *extref;
1001 struct btrfs_path *tmp_path;
1002 struct fs_path *p;
1003 u32 cur = 0;
1004 u32 total;
1005 int slot = path->slots[0];
1006 u32 name_len;
1007 char *start;
1008 int ret = 0;
1009 int num = 0;
1010 int index;
1011 u64 dir;
1012 unsigned long name_off;
1013 unsigned long elem_size;
1014 unsigned long ptr;
1015
1016 p = fs_path_alloc_reversed();
1017 if (!p)
1018 return -ENOMEM;
1019
1020 tmp_path = alloc_path_for_send();
1021 if (!tmp_path) {
1022 fs_path_free(p);
1023 return -ENOMEM;
1024 }
1025
1026
1027 if (found_key->type == BTRFS_INODE_REF_KEY) {
1028 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1029 struct btrfs_inode_ref);
1030 total = btrfs_item_size(eb, slot);
1031 elem_size = sizeof(*iref);
1032 } else {
1033 ptr = btrfs_item_ptr_offset(eb, slot);
1034 total = btrfs_item_size(eb, slot);
1035 elem_size = sizeof(*extref);
1036 }
1037
1038 while (cur < total) {
1039 fs_path_reset(p);
1040
1041 if (found_key->type == BTRFS_INODE_REF_KEY) {
1042 iref = (struct btrfs_inode_ref *)(ptr + cur);
1043 name_len = btrfs_inode_ref_name_len(eb, s: iref);
1044 name_off = (unsigned long)(iref + 1);
1045 index = btrfs_inode_ref_index(eb, s: iref);
1046 dir = found_key->offset;
1047 } else {
1048 extref = (struct btrfs_inode_extref *)(ptr + cur);
1049 name_len = btrfs_inode_extref_name_len(eb, s: extref);
1050 name_off = (unsigned long)&extref->name;
1051 index = btrfs_inode_extref_index(eb, s: extref);
1052 dir = btrfs_inode_extref_parent(eb, s: extref);
1053 }
1054
1055 if (resolve) {
1056 start = btrfs_ref_to_path(fs_root: root, path: tmp_path, name_len,
1057 name_off, eb_in: eb, parent: dir,
1058 dest: p->buf, size: p->buf_len);
1059 if (IS_ERR(ptr: start)) {
1060 ret = PTR_ERR(ptr: start);
1061 goto out;
1062 }
1063 if (start < p->buf) {
1064 /* overflow , try again with larger buffer */
1065 ret = fs_path_ensure_buf(p,
1066 len: p->buf_len + p->buf - start);
1067 if (ret < 0)
1068 goto out;
1069 start = btrfs_ref_to_path(fs_root: root, path: tmp_path,
1070 name_len, name_off,
1071 eb_in: eb, parent: dir,
1072 dest: p->buf, size: p->buf_len);
1073 if (IS_ERR(ptr: start)) {
1074 ret = PTR_ERR(ptr: start);
1075 goto out;
1076 }
1077 if (unlikely(start < p->buf)) {
1078 btrfs_err(root->fs_info,
1079 "send: path ref buffer underflow for key (%llu %u %llu)",
1080 found_key->objectid,
1081 found_key->type,
1082 found_key->offset);
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086 }
1087 p->start = start;
1088 } else {
1089 ret = fs_path_add_from_extent_buffer(p, eb, off: name_off,
1090 len: name_len);
1091 if (ret < 0)
1092 goto out;
1093 }
1094
1095 cur += elem_size + name_len;
1096 ret = iterate(num, dir, index, p, ctx);
1097 if (ret)
1098 goto out;
1099 num++;
1100 }
1101
1102out:
1103 btrfs_free_path(p: tmp_path);
1104 fs_path_free(p);
1105 return ret;
1106}
1107
1108typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1109 const char *name, int name_len,
1110 const char *data, int data_len,
1111 void *ctx);
1112
1113/*
1114 * Helper function to iterate the entries in ONE btrfs_dir_item.
1115 * The iterate callback may return a non zero value to stop iteration. This can
1116 * be a negative value for error codes or 1 to simply stop it.
1117 *
1118 * path must point to the dir item when called.
1119 */
1120static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1121 iterate_dir_item_t iterate, void *ctx)
1122{
1123 int ret = 0;
1124 struct extent_buffer *eb;
1125 struct btrfs_dir_item *di;
1126 struct btrfs_key di_key;
1127 char *buf = NULL;
1128 int buf_len;
1129 u32 name_len;
1130 u32 data_len;
1131 u32 cur;
1132 u32 len;
1133 u32 total;
1134 int slot;
1135 int num;
1136
1137 /*
1138 * Start with a small buffer (1 page). If later we end up needing more
1139 * space, which can happen for xattrs on a fs with a leaf size greater
1140 * then the page size, attempt to increase the buffer. Typically xattr
1141 * values are small.
1142 */
1143 buf_len = PATH_MAX;
1144 buf = kmalloc(size: buf_len, GFP_KERNEL);
1145 if (!buf) {
1146 ret = -ENOMEM;
1147 goto out;
1148 }
1149
1150 eb = path->nodes[0];
1151 slot = path->slots[0];
1152 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1153 cur = 0;
1154 len = 0;
1155 total = btrfs_item_size(eb, slot);
1156
1157 num = 0;
1158 while (cur < total) {
1159 name_len = btrfs_dir_name_len(eb, s: di);
1160 data_len = btrfs_dir_data_len(eb, s: di);
1161 btrfs_dir_item_key_to_cpu(eb, item: di, cpu_key: &di_key);
1162
1163 if (btrfs_dir_ftype(eb, item: di) == BTRFS_FT_XATTR) {
1164 if (name_len > XATTR_NAME_MAX) {
1165 ret = -ENAMETOOLONG;
1166 goto out;
1167 }
1168 if (name_len + data_len >
1169 BTRFS_MAX_XATTR_SIZE(info: root->fs_info)) {
1170 ret = -E2BIG;
1171 goto out;
1172 }
1173 } else {
1174 /*
1175 * Path too long
1176 */
1177 if (name_len + data_len > PATH_MAX) {
1178 ret = -ENAMETOOLONG;
1179 goto out;
1180 }
1181 }
1182
1183 if (name_len + data_len > buf_len) {
1184 buf_len = name_len + data_len;
1185 if (is_vmalloc_addr(x: buf)) {
1186 vfree(addr: buf);
1187 buf = NULL;
1188 } else {
1189 char *tmp = krealloc(objp: buf, new_size: buf_len,
1190 GFP_KERNEL | __GFP_NOWARN);
1191
1192 if (!tmp)
1193 kfree(objp: buf);
1194 buf = tmp;
1195 }
1196 if (!buf) {
1197 buf = kvmalloc(size: buf_len, GFP_KERNEL);
1198 if (!buf) {
1199 ret = -ENOMEM;
1200 goto out;
1201 }
1202 }
1203 }
1204
1205 read_extent_buffer(eb, dst: buf, start: (unsigned long)(di + 1),
1206 len: name_len + data_len);
1207
1208 len = sizeof(*di) + name_len + data_len;
1209 di = (struct btrfs_dir_item *)((char *)di + len);
1210 cur += len;
1211
1212 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1213 data_len, ctx);
1214 if (ret < 0)
1215 goto out;
1216 if (ret) {
1217 ret = 0;
1218 goto out;
1219 }
1220
1221 num++;
1222 }
1223
1224out:
1225 kvfree(addr: buf);
1226 return ret;
1227}
1228
1229static int __copy_first_ref(int num, u64 dir, int index,
1230 struct fs_path *p, void *ctx)
1231{
1232 int ret;
1233 struct fs_path *pt = ctx;
1234
1235 ret = fs_path_copy(p: pt, from: p);
1236 if (ret < 0)
1237 return ret;
1238
1239 /* we want the first only */
1240 return 1;
1241}
1242
1243/*
1244 * Retrieve the first path of an inode. If an inode has more then one
1245 * ref/hardlink, this is ignored.
1246 */
1247static int get_inode_path(struct btrfs_root *root,
1248 u64 ino, struct fs_path *path)
1249{
1250 int ret;
1251 struct btrfs_key key, found_key;
1252 struct btrfs_path *p;
1253
1254 p = alloc_path_for_send();
1255 if (!p)
1256 return -ENOMEM;
1257
1258 fs_path_reset(p: path);
1259
1260 key.objectid = ino;
1261 key.type = BTRFS_INODE_REF_KEY;
1262 key.offset = 0;
1263
1264 ret = btrfs_search_slot_for_read(root, key: &key, p, find_higher: 1, return_any: 0);
1265 if (ret < 0)
1266 goto out;
1267 if (ret) {
1268 ret = 1;
1269 goto out;
1270 }
1271 btrfs_item_key_to_cpu(eb: p->nodes[0], cpu_key: &found_key, nr: p->slots[0]);
1272 if (found_key.objectid != ino ||
1273 (found_key.type != BTRFS_INODE_REF_KEY &&
1274 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1275 ret = -ENOENT;
1276 goto out;
1277 }
1278
1279 ret = iterate_inode_ref(root, path: p, found_key: &found_key, resolve: 1,
1280 iterate: __copy_first_ref, ctx: path);
1281 if (ret < 0)
1282 goto out;
1283 ret = 0;
1284
1285out:
1286 btrfs_free_path(p);
1287 return ret;
1288}
1289
1290struct backref_ctx {
1291 struct send_ctx *sctx;
1292
1293 /* number of total found references */
1294 u64 found;
1295
1296 /*
1297 * used for clones found in send_root. clones found behind cur_objectid
1298 * and cur_offset are not considered as allowed clones.
1299 */
1300 u64 cur_objectid;
1301 u64 cur_offset;
1302
1303 /* may be truncated in case it's the last extent in a file */
1304 u64 extent_len;
1305
1306 /* The bytenr the file extent item we are processing refers to. */
1307 u64 bytenr;
1308 /* The owner (root id) of the data backref for the current extent. */
1309 u64 backref_owner;
1310 /* The offset of the data backref for the current extent. */
1311 u64 backref_offset;
1312};
1313
1314static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1315{
1316 u64 root = (u64)(uintptr_t)key;
1317 const struct clone_root *cr = elt;
1318
1319 if (root < cr->root->root_key.objectid)
1320 return -1;
1321 if (root > cr->root->root_key.objectid)
1322 return 1;
1323 return 0;
1324}
1325
1326static int __clone_root_cmp_sort(const void *e1, const void *e2)
1327{
1328 const struct clone_root *cr1 = e1;
1329 const struct clone_root *cr2 = e2;
1330
1331 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1332 return -1;
1333 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1334 return 1;
1335 return 0;
1336}
1337
1338/*
1339 * Called for every backref that is found for the current extent.
1340 * Results are collected in sctx->clone_roots->ino/offset.
1341 */
1342static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1343 void *ctx_)
1344{
1345 struct backref_ctx *bctx = ctx_;
1346 struct clone_root *clone_root;
1347
1348 /* First check if the root is in the list of accepted clone sources */
1349 clone_root = bsearch(key: (void *)(uintptr_t)root_id, base: bctx->sctx->clone_roots,
1350 num: bctx->sctx->clone_roots_cnt,
1351 size: sizeof(struct clone_root),
1352 cmp: __clone_root_cmp_bsearch);
1353 if (!clone_root)
1354 return 0;
1355
1356 /* This is our own reference, bail out as we can't clone from it. */
1357 if (clone_root->root == bctx->sctx->send_root &&
1358 ino == bctx->cur_objectid &&
1359 offset == bctx->cur_offset)
1360 return 0;
1361
1362 /*
1363 * Make sure we don't consider clones from send_root that are
1364 * behind the current inode/offset.
1365 */
1366 if (clone_root->root == bctx->sctx->send_root) {
1367 /*
1368 * If the source inode was not yet processed we can't issue a
1369 * clone operation, as the source extent does not exist yet at
1370 * the destination of the stream.
1371 */
1372 if (ino > bctx->cur_objectid)
1373 return 0;
1374 /*
1375 * We clone from the inode currently being sent as long as the
1376 * source extent is already processed, otherwise we could try
1377 * to clone from an extent that does not exist yet at the
1378 * destination of the stream.
1379 */
1380 if (ino == bctx->cur_objectid &&
1381 offset + bctx->extent_len >
1382 bctx->sctx->cur_inode_next_write_offset)
1383 return 0;
1384 }
1385
1386 bctx->found++;
1387 clone_root->found_ref = true;
1388
1389 /*
1390 * If the given backref refers to a file extent item with a larger
1391 * number of bytes than what we found before, use the new one so that
1392 * we clone more optimally and end up doing less writes and getting
1393 * less exclusive, non-shared extents at the destination.
1394 */
1395 if (num_bytes > clone_root->num_bytes) {
1396 clone_root->ino = ino;
1397 clone_root->offset = offset;
1398 clone_root->num_bytes = num_bytes;
1399
1400 /*
1401 * Found a perfect candidate, so there's no need to continue
1402 * backref walking.
1403 */
1404 if (num_bytes >= bctx->extent_len)
1405 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1406 }
1407
1408 return 0;
1409}
1410
1411static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1412 const u64 **root_ids_ret, int *root_count_ret)
1413{
1414 struct backref_ctx *bctx = ctx;
1415 struct send_ctx *sctx = bctx->sctx;
1416 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1417 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1418 struct btrfs_lru_cache_entry *raw_entry;
1419 struct backref_cache_entry *entry;
1420
1421 if (sctx->backref_cache.size == 0)
1422 return false;
1423
1424 /*
1425 * If relocation happened since we first filled the cache, then we must
1426 * empty the cache and can not use it, because even though we operate on
1427 * read-only roots, their leaves and nodes may have been reallocated and
1428 * now be used for different nodes/leaves of the same tree or some other
1429 * tree.
1430 *
1431 * We are called from iterate_extent_inodes() while either holding a
1432 * transaction handle or holding fs_info->commit_root_sem, so no need
1433 * to take any lock here.
1434 */
1435 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1436 btrfs_lru_cache_clear(cache: &sctx->backref_cache);
1437 return false;
1438 }
1439
1440 raw_entry = btrfs_lru_cache_lookup(cache: &sctx->backref_cache, key, gen: 0);
1441 if (!raw_entry)
1442 return false;
1443
1444 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1445 *root_ids_ret = entry->root_ids;
1446 *root_count_ret = entry->num_roots;
1447
1448 return true;
1449}
1450
1451static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1452 void *ctx)
1453{
1454 struct backref_ctx *bctx = ctx;
1455 struct send_ctx *sctx = bctx->sctx;
1456 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1457 struct backref_cache_entry *new_entry;
1458 struct ulist_iterator uiter;
1459 struct ulist_node *node;
1460 int ret;
1461
1462 /*
1463 * We're called while holding a transaction handle or while holding
1464 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1465 * NOFS allocation.
1466 */
1467 new_entry = kmalloc(size: sizeof(struct backref_cache_entry), GFP_NOFS);
1468 /* No worries, cache is optional. */
1469 if (!new_entry)
1470 return;
1471
1472 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1473 new_entry->entry.gen = 0;
1474 new_entry->num_roots = 0;
1475 ULIST_ITER_INIT(&uiter);
1476 while ((node = ulist_next(ulist: root_ids, uiter: &uiter)) != NULL) {
1477 const u64 root_id = node->val;
1478 struct clone_root *root;
1479
1480 root = bsearch(key: (void *)(uintptr_t)root_id, base: sctx->clone_roots,
1481 num: sctx->clone_roots_cnt, size: sizeof(struct clone_root),
1482 cmp: __clone_root_cmp_bsearch);
1483 if (!root)
1484 continue;
1485
1486 /* Too many roots, just exit, no worries as caching is optional. */
1487 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1488 kfree(objp: new_entry);
1489 return;
1490 }
1491
1492 new_entry->root_ids[new_entry->num_roots] = root_id;
1493 new_entry->num_roots++;
1494 }
1495
1496 /*
1497 * We may have not added any roots to the new cache entry, which means
1498 * none of the roots is part of the list of roots from which we are
1499 * allowed to clone. Cache the new entry as it's still useful to avoid
1500 * backref walking to determine which roots have a path to the leaf.
1501 *
1502 * Also use GFP_NOFS because we're called while holding a transaction
1503 * handle or while holding fs_info->commit_root_sem.
1504 */
1505 ret = btrfs_lru_cache_store(cache: &sctx->backref_cache, new_entry: &new_entry->entry,
1506 GFP_NOFS);
1507 ASSERT(ret == 0 || ret == -ENOMEM);
1508 if (ret) {
1509 /* Caching is optional, no worries. */
1510 kfree(objp: new_entry);
1511 return;
1512 }
1513
1514 /*
1515 * We are called from iterate_extent_inodes() while either holding a
1516 * transaction handle or holding fs_info->commit_root_sem, so no need
1517 * to take any lock here.
1518 */
1519 if (sctx->backref_cache.size == 1)
1520 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1521}
1522
1523static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1524 const struct extent_buffer *leaf, void *ctx)
1525{
1526 const u64 refs = btrfs_extent_refs(eb: leaf, s: ei);
1527 const struct backref_ctx *bctx = ctx;
1528 const struct send_ctx *sctx = bctx->sctx;
1529
1530 if (bytenr == bctx->bytenr) {
1531 const u64 flags = btrfs_extent_flags(eb: leaf, s: ei);
1532
1533 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1534 return -EUCLEAN;
1535
1536 /*
1537 * If we have only one reference and only the send root as a
1538 * clone source - meaning no clone roots were given in the
1539 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1540 * it's our reference and there's no point in doing backref
1541 * walking which is expensive, so exit early.
1542 */
1543 if (refs == 1 && sctx->clone_roots_cnt == 1)
1544 return -ENOENT;
1545 }
1546
1547 /*
1548 * Backreference walking (iterate_extent_inodes() below) is currently
1549 * too expensive when an extent has a large number of references, both
1550 * in time spent and used memory. So for now just fallback to write
1551 * operations instead of clone operations when an extent has more than
1552 * a certain amount of references.
1553 */
1554 if (refs > SEND_MAX_EXTENT_REFS)
1555 return -ENOENT;
1556
1557 return 0;
1558}
1559
1560static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1561{
1562 const struct backref_ctx *bctx = ctx;
1563
1564 if (ino == bctx->cur_objectid &&
1565 root == bctx->backref_owner &&
1566 offset == bctx->backref_offset)
1567 return true;
1568
1569 return false;
1570}
1571
1572/*
1573 * Given an inode, offset and extent item, it finds a good clone for a clone
1574 * instruction. Returns -ENOENT when none could be found. The function makes
1575 * sure that the returned clone is usable at the point where sending is at the
1576 * moment. This means, that no clones are accepted which lie behind the current
1577 * inode+offset.
1578 *
1579 * path must point to the extent item when called.
1580 */
1581static int find_extent_clone(struct send_ctx *sctx,
1582 struct btrfs_path *path,
1583 u64 ino, u64 data_offset,
1584 u64 ino_size,
1585 struct clone_root **found)
1586{
1587 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1588 int ret;
1589 int extent_type;
1590 u64 logical;
1591 u64 disk_byte;
1592 u64 num_bytes;
1593 struct btrfs_file_extent_item *fi;
1594 struct extent_buffer *eb = path->nodes[0];
1595 struct backref_ctx backref_ctx = { 0 };
1596 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1597 struct clone_root *cur_clone_root;
1598 int compressed;
1599 u32 i;
1600
1601 /*
1602 * With fallocate we can get prealloc extents beyond the inode's i_size,
1603 * so we don't do anything here because clone operations can not clone
1604 * to a range beyond i_size without increasing the i_size of the
1605 * destination inode.
1606 */
1607 if (data_offset >= ino_size)
1608 return 0;
1609
1610 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1611 extent_type = btrfs_file_extent_type(eb, s: fi);
1612 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1613 return -ENOENT;
1614
1615 disk_byte = btrfs_file_extent_disk_bytenr(eb, s: fi);
1616 if (disk_byte == 0)
1617 return -ENOENT;
1618
1619 compressed = btrfs_file_extent_compression(eb, s: fi);
1620 num_bytes = btrfs_file_extent_num_bytes(eb, s: fi);
1621 logical = disk_byte + btrfs_file_extent_offset(eb, s: fi);
1622
1623 /*
1624 * Setup the clone roots.
1625 */
1626 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1627 cur_clone_root = sctx->clone_roots + i;
1628 cur_clone_root->ino = (u64)-1;
1629 cur_clone_root->offset = 0;
1630 cur_clone_root->num_bytes = 0;
1631 cur_clone_root->found_ref = false;
1632 }
1633
1634 backref_ctx.sctx = sctx;
1635 backref_ctx.cur_objectid = ino;
1636 backref_ctx.cur_offset = data_offset;
1637 backref_ctx.bytenr = disk_byte;
1638 /*
1639 * Use the header owner and not the send root's id, because in case of a
1640 * snapshot we can have shared subtrees.
1641 */
1642 backref_ctx.backref_owner = btrfs_header_owner(eb);
1643 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, s: fi);
1644
1645 /*
1646 * The last extent of a file may be too large due to page alignment.
1647 * We need to adjust extent_len in this case so that the checks in
1648 * iterate_backrefs() work.
1649 */
1650 if (data_offset + num_bytes >= ino_size)
1651 backref_ctx.extent_len = ino_size - data_offset;
1652 else
1653 backref_ctx.extent_len = num_bytes;
1654
1655 /*
1656 * Now collect all backrefs.
1657 */
1658 backref_walk_ctx.bytenr = disk_byte;
1659 if (compressed == BTRFS_COMPRESS_NONE)
1660 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, s: fi);
1661 backref_walk_ctx.fs_info = fs_info;
1662 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1663 backref_walk_ctx.cache_store = store_backref_cache;
1664 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1665 backref_walk_ctx.check_extent_item = check_extent_item;
1666 backref_walk_ctx.user_ctx = &backref_ctx;
1667
1668 /*
1669 * If have a single clone root, then it's the send root and we can tell
1670 * the backref walking code to skip our own backref and not resolve it,
1671 * since we can not use it for cloning - the source and destination
1672 * ranges can't overlap and in case the leaf is shared through a subtree
1673 * due to snapshots, we can't use those other roots since they are not
1674 * in the list of clone roots.
1675 */
1676 if (sctx->clone_roots_cnt == 1)
1677 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1678
1679 ret = iterate_extent_inodes(ctx: &backref_walk_ctx, search_commit_root: true, iterate: iterate_backrefs,
1680 user_ctx: &backref_ctx);
1681 if (ret < 0)
1682 return ret;
1683
1684 down_read(sem: &fs_info->commit_root_sem);
1685 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1686 /*
1687 * A transaction commit for a transaction in which block group
1688 * relocation was done just happened.
1689 * The disk_bytenr of the file extent item we processed is
1690 * possibly stale, referring to the extent's location before
1691 * relocation. So act as if we haven't found any clone sources
1692 * and fallback to write commands, which will read the correct
1693 * data from the new extent location. Otherwise we will fail
1694 * below because we haven't found our own back reference or we
1695 * could be getting incorrect sources in case the old extent
1696 * was already reallocated after the relocation.
1697 */
1698 up_read(sem: &fs_info->commit_root_sem);
1699 return -ENOENT;
1700 }
1701 up_read(sem: &fs_info->commit_root_sem);
1702
1703 btrfs_debug(fs_info,
1704 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1705 data_offset, ino, num_bytes, logical);
1706
1707 if (!backref_ctx.found) {
1708 btrfs_debug(fs_info, "no clones found");
1709 return -ENOENT;
1710 }
1711
1712 cur_clone_root = NULL;
1713 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1714 struct clone_root *clone_root = &sctx->clone_roots[i];
1715
1716 if (!clone_root->found_ref)
1717 continue;
1718
1719 /*
1720 * Choose the root from which we can clone more bytes, to
1721 * minimize write operations and therefore have more extent
1722 * sharing at the destination (the same as in the source).
1723 */
1724 if (!cur_clone_root ||
1725 clone_root->num_bytes > cur_clone_root->num_bytes) {
1726 cur_clone_root = clone_root;
1727
1728 /*
1729 * We found an optimal clone candidate (any inode from
1730 * any root is fine), so we're done.
1731 */
1732 if (clone_root->num_bytes >= backref_ctx.extent_len)
1733 break;
1734 }
1735 }
1736
1737 if (cur_clone_root) {
1738 *found = cur_clone_root;
1739 ret = 0;
1740 } else {
1741 ret = -ENOENT;
1742 }
1743
1744 return ret;
1745}
1746
1747static int read_symlink(struct btrfs_root *root,
1748 u64 ino,
1749 struct fs_path *dest)
1750{
1751 int ret;
1752 struct btrfs_path *path;
1753 struct btrfs_key key;
1754 struct btrfs_file_extent_item *ei;
1755 u8 type;
1756 u8 compression;
1757 unsigned long off;
1758 int len;
1759
1760 path = alloc_path_for_send();
1761 if (!path)
1762 return -ENOMEM;
1763
1764 key.objectid = ino;
1765 key.type = BTRFS_EXTENT_DATA_KEY;
1766 key.offset = 0;
1767 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
1768 if (ret < 0)
1769 goto out;
1770 if (ret) {
1771 /*
1772 * An empty symlink inode. Can happen in rare error paths when
1773 * creating a symlink (transaction committed before the inode
1774 * eviction handler removed the symlink inode items and a crash
1775 * happened in between or the subvol was snapshoted in between).
1776 * Print an informative message to dmesg/syslog so that the user
1777 * can delete the symlink.
1778 */
1779 btrfs_err(root->fs_info,
1780 "Found empty symlink inode %llu at root %llu",
1781 ino, root->root_key.objectid);
1782 ret = -EIO;
1783 goto out;
1784 }
1785
1786 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1787 struct btrfs_file_extent_item);
1788 type = btrfs_file_extent_type(eb: path->nodes[0], s: ei);
1789 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1790 ret = -EUCLEAN;
1791 btrfs_crit(root->fs_info,
1792"send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1793 ino, btrfs_root_id(root), type);
1794 goto out;
1795 }
1796 compression = btrfs_file_extent_compression(eb: path->nodes[0], s: ei);
1797 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1798 ret = -EUCLEAN;
1799 btrfs_crit(root->fs_info,
1800"send: found symlink extent with compression, ino %llu root %llu compression type %d",
1801 ino, btrfs_root_id(root), compression);
1802 goto out;
1803 }
1804
1805 off = btrfs_file_extent_inline_start(e: ei);
1806 len = btrfs_file_extent_ram_bytes(eb: path->nodes[0], s: ei);
1807
1808 ret = fs_path_add_from_extent_buffer(p: dest, eb: path->nodes[0], off, len);
1809
1810out:
1811 btrfs_free_path(p: path);
1812 return ret;
1813}
1814
1815/*
1816 * Helper function to generate a file name that is unique in the root of
1817 * send_root and parent_root. This is used to generate names for orphan inodes.
1818 */
1819static int gen_unique_name(struct send_ctx *sctx,
1820 u64 ino, u64 gen,
1821 struct fs_path *dest)
1822{
1823 int ret = 0;
1824 struct btrfs_path *path;
1825 struct btrfs_dir_item *di;
1826 char tmp[64];
1827 int len;
1828 u64 idx = 0;
1829
1830 path = alloc_path_for_send();
1831 if (!path)
1832 return -ENOMEM;
1833
1834 while (1) {
1835 struct fscrypt_str tmp_name;
1836
1837 len = snprintf(buf: tmp, size: sizeof(tmp), fmt: "o%llu-%llu-%llu",
1838 ino, gen, idx);
1839 ASSERT(len < sizeof(tmp));
1840 tmp_name.name = tmp;
1841 tmp_name.len = strlen(tmp);
1842
1843 di = btrfs_lookup_dir_item(NULL, root: sctx->send_root,
1844 path, BTRFS_FIRST_FREE_OBJECTID,
1845 name: &tmp_name, mod: 0);
1846 btrfs_release_path(p: path);
1847 if (IS_ERR(ptr: di)) {
1848 ret = PTR_ERR(ptr: di);
1849 goto out;
1850 }
1851 if (di) {
1852 /* not unique, try again */
1853 idx++;
1854 continue;
1855 }
1856
1857 if (!sctx->parent_root) {
1858 /* unique */
1859 ret = 0;
1860 break;
1861 }
1862
1863 di = btrfs_lookup_dir_item(NULL, root: sctx->parent_root,
1864 path, BTRFS_FIRST_FREE_OBJECTID,
1865 name: &tmp_name, mod: 0);
1866 btrfs_release_path(p: path);
1867 if (IS_ERR(ptr: di)) {
1868 ret = PTR_ERR(ptr: di);
1869 goto out;
1870 }
1871 if (di) {
1872 /* not unique, try again */
1873 idx++;
1874 continue;
1875 }
1876 /* unique */
1877 break;
1878 }
1879
1880 ret = fs_path_add(p: dest, name: tmp, strlen(tmp));
1881
1882out:
1883 btrfs_free_path(p: path);
1884 return ret;
1885}
1886
1887enum inode_state {
1888 inode_state_no_change,
1889 inode_state_will_create,
1890 inode_state_did_create,
1891 inode_state_will_delete,
1892 inode_state_did_delete,
1893};
1894
1895static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1896 u64 *send_gen, u64 *parent_gen)
1897{
1898 int ret;
1899 int left_ret;
1900 int right_ret;
1901 u64 left_gen;
1902 u64 right_gen = 0;
1903 struct btrfs_inode_info info;
1904
1905 ret = get_inode_info(root: sctx->send_root, ino, info: &info);
1906 if (ret < 0 && ret != -ENOENT)
1907 goto out;
1908 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1909 left_gen = info.gen;
1910 if (send_gen)
1911 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1912
1913 if (!sctx->parent_root) {
1914 right_ret = -ENOENT;
1915 } else {
1916 ret = get_inode_info(root: sctx->parent_root, ino, info: &info);
1917 if (ret < 0 && ret != -ENOENT)
1918 goto out;
1919 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1920 right_gen = info.gen;
1921 if (parent_gen)
1922 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1923 }
1924
1925 if (!left_ret && !right_ret) {
1926 if (left_gen == gen && right_gen == gen) {
1927 ret = inode_state_no_change;
1928 } else if (left_gen == gen) {
1929 if (ino < sctx->send_progress)
1930 ret = inode_state_did_create;
1931 else
1932 ret = inode_state_will_create;
1933 } else if (right_gen == gen) {
1934 if (ino < sctx->send_progress)
1935 ret = inode_state_did_delete;
1936 else
1937 ret = inode_state_will_delete;
1938 } else {
1939 ret = -ENOENT;
1940 }
1941 } else if (!left_ret) {
1942 if (left_gen == gen) {
1943 if (ino < sctx->send_progress)
1944 ret = inode_state_did_create;
1945 else
1946 ret = inode_state_will_create;
1947 } else {
1948 ret = -ENOENT;
1949 }
1950 } else if (!right_ret) {
1951 if (right_gen == gen) {
1952 if (ino < sctx->send_progress)
1953 ret = inode_state_did_delete;
1954 else
1955 ret = inode_state_will_delete;
1956 } else {
1957 ret = -ENOENT;
1958 }
1959 } else {
1960 ret = -ENOENT;
1961 }
1962
1963out:
1964 return ret;
1965}
1966
1967static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1968 u64 *send_gen, u64 *parent_gen)
1969{
1970 int ret;
1971
1972 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1973 return 1;
1974
1975 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1976 if (ret < 0)
1977 goto out;
1978
1979 if (ret == inode_state_no_change ||
1980 ret == inode_state_did_create ||
1981 ret == inode_state_will_delete)
1982 ret = 1;
1983 else
1984 ret = 0;
1985
1986out:
1987 return ret;
1988}
1989
1990/*
1991 * Helper function to lookup a dir item in a dir.
1992 */
1993static int lookup_dir_item_inode(struct btrfs_root *root,
1994 u64 dir, const char *name, int name_len,
1995 u64 *found_inode)
1996{
1997 int ret = 0;
1998 struct btrfs_dir_item *di;
1999 struct btrfs_key key;
2000 struct btrfs_path *path;
2001 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2002
2003 path = alloc_path_for_send();
2004 if (!path)
2005 return -ENOMEM;
2006
2007 di = btrfs_lookup_dir_item(NULL, root, path, dir, name: &name_str, mod: 0);
2008 if (IS_ERR_OR_NULL(ptr: di)) {
2009 ret = di ? PTR_ERR(ptr: di) : -ENOENT;
2010 goto out;
2011 }
2012 btrfs_dir_item_key_to_cpu(eb: path->nodes[0], item: di, cpu_key: &key);
2013 if (key.type == BTRFS_ROOT_ITEM_KEY) {
2014 ret = -ENOENT;
2015 goto out;
2016 }
2017 *found_inode = key.objectid;
2018
2019out:
2020 btrfs_free_path(p: path);
2021 return ret;
2022}
2023
2024/*
2025 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2026 * generation of the parent dir and the name of the dir entry.
2027 */
2028static int get_first_ref(struct btrfs_root *root, u64 ino,
2029 u64 *dir, u64 *dir_gen, struct fs_path *name)
2030{
2031 int ret;
2032 struct btrfs_key key;
2033 struct btrfs_key found_key;
2034 struct btrfs_path *path;
2035 int len;
2036 u64 parent_dir;
2037
2038 path = alloc_path_for_send();
2039 if (!path)
2040 return -ENOMEM;
2041
2042 key.objectid = ino;
2043 key.type = BTRFS_INODE_REF_KEY;
2044 key.offset = 0;
2045
2046 ret = btrfs_search_slot_for_read(root, key: &key, p: path, find_higher: 1, return_any: 0);
2047 if (ret < 0)
2048 goto out;
2049 if (!ret)
2050 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &found_key,
2051 nr: path->slots[0]);
2052 if (ret || found_key.objectid != ino ||
2053 (found_key.type != BTRFS_INODE_REF_KEY &&
2054 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2055 ret = -ENOENT;
2056 goto out;
2057 }
2058
2059 if (found_key.type == BTRFS_INODE_REF_KEY) {
2060 struct btrfs_inode_ref *iref;
2061 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_inode_ref);
2063 len = btrfs_inode_ref_name_len(eb: path->nodes[0], s: iref);
2064 ret = fs_path_add_from_extent_buffer(p: name, eb: path->nodes[0],
2065 off: (unsigned long)(iref + 1),
2066 len);
2067 parent_dir = found_key.offset;
2068 } else {
2069 struct btrfs_inode_extref *extref;
2070 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2071 struct btrfs_inode_extref);
2072 len = btrfs_inode_extref_name_len(eb: path->nodes[0], s: extref);
2073 ret = fs_path_add_from_extent_buffer(p: name, eb: path->nodes[0],
2074 off: (unsigned long)&extref->name, len);
2075 parent_dir = btrfs_inode_extref_parent(eb: path->nodes[0], s: extref);
2076 }
2077 if (ret < 0)
2078 goto out;
2079 btrfs_release_path(p: path);
2080
2081 if (dir_gen) {
2082 ret = get_inode_gen(root, ino: parent_dir, gen: dir_gen);
2083 if (ret < 0)
2084 goto out;
2085 }
2086
2087 *dir = parent_dir;
2088
2089out:
2090 btrfs_free_path(p: path);
2091 return ret;
2092}
2093
2094static int is_first_ref(struct btrfs_root *root,
2095 u64 ino, u64 dir,
2096 const char *name, int name_len)
2097{
2098 int ret;
2099 struct fs_path *tmp_name;
2100 u64 tmp_dir;
2101
2102 tmp_name = fs_path_alloc();
2103 if (!tmp_name)
2104 return -ENOMEM;
2105
2106 ret = get_first_ref(root, ino, dir: &tmp_dir, NULL, name: tmp_name);
2107 if (ret < 0)
2108 goto out;
2109
2110 if (dir != tmp_dir || name_len != fs_path_len(p: tmp_name)) {
2111 ret = 0;
2112 goto out;
2113 }
2114
2115 ret = !memcmp(p: tmp_name->start, q: name, size: name_len);
2116
2117out:
2118 fs_path_free(p: tmp_name);
2119 return ret;
2120}
2121
2122/*
2123 * Used by process_recorded_refs to determine if a new ref would overwrite an
2124 * already existing ref. In case it detects an overwrite, it returns the
2125 * inode/gen in who_ino/who_gen.
2126 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2127 * to make sure later references to the overwritten inode are possible.
2128 * Orphanizing is however only required for the first ref of an inode.
2129 * process_recorded_refs does an additional is_first_ref check to see if
2130 * orphanizing is really required.
2131 */
2132static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2133 const char *name, int name_len,
2134 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2135{
2136 int ret;
2137 u64 parent_root_dir_gen;
2138 u64 other_inode = 0;
2139 struct btrfs_inode_info info;
2140
2141 if (!sctx->parent_root)
2142 return 0;
2143
2144 ret = is_inode_existent(sctx, ino: dir, gen: dir_gen, NULL, parent_gen: &parent_root_dir_gen);
2145 if (ret <= 0)
2146 return 0;
2147
2148 /*
2149 * If we have a parent root we need to verify that the parent dir was
2150 * not deleted and then re-created, if it was then we have no overwrite
2151 * and we can just unlink this entry.
2152 *
2153 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2154 * parent root.
2155 */
2156 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2157 parent_root_dir_gen != dir_gen)
2158 return 0;
2159
2160 ret = lookup_dir_item_inode(root: sctx->parent_root, dir, name, name_len,
2161 found_inode: &other_inode);
2162 if (ret == -ENOENT)
2163 return 0;
2164 else if (ret < 0)
2165 return ret;
2166
2167 /*
2168 * Check if the overwritten ref was already processed. If yes, the ref
2169 * was already unlinked/moved, so we can safely assume that we will not
2170 * overwrite anything at this point in time.
2171 */
2172 if (other_inode > sctx->send_progress ||
2173 is_waiting_for_move(sctx, ino: other_inode)) {
2174 ret = get_inode_info(root: sctx->parent_root, ino: other_inode, info: &info);
2175 if (ret < 0)
2176 return ret;
2177
2178 *who_ino = other_inode;
2179 *who_gen = info.gen;
2180 *who_mode = info.mode;
2181 return 1;
2182 }
2183
2184 return 0;
2185}
2186
2187/*
2188 * Checks if the ref was overwritten by an already processed inode. This is
2189 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2190 * thus the orphan name needs be used.
2191 * process_recorded_refs also uses it to avoid unlinking of refs that were
2192 * overwritten.
2193 */
2194static int did_overwrite_ref(struct send_ctx *sctx,
2195 u64 dir, u64 dir_gen,
2196 u64 ino, u64 ino_gen,
2197 const char *name, int name_len)
2198{
2199 int ret;
2200 u64 ow_inode;
2201 u64 ow_gen = 0;
2202 u64 send_root_dir_gen;
2203
2204 if (!sctx->parent_root)
2205 return 0;
2206
2207 ret = is_inode_existent(sctx, ino: dir, gen: dir_gen, send_gen: &send_root_dir_gen, NULL);
2208 if (ret <= 0)
2209 return ret;
2210
2211 /*
2212 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2213 * send root.
2214 */
2215 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2216 return 0;
2217
2218 /* check if the ref was overwritten by another ref */
2219 ret = lookup_dir_item_inode(root: sctx->send_root, dir, name, name_len,
2220 found_inode: &ow_inode);
2221 if (ret == -ENOENT) {
2222 /* was never and will never be overwritten */
2223 return 0;
2224 } else if (ret < 0) {
2225 return ret;
2226 }
2227
2228 if (ow_inode == ino) {
2229 ret = get_inode_gen(root: sctx->send_root, ino: ow_inode, gen: &ow_gen);
2230 if (ret < 0)
2231 return ret;
2232
2233 /* It's the same inode, so no overwrite happened. */
2234 if (ow_gen == ino_gen)
2235 return 0;
2236 }
2237
2238 /*
2239 * We know that it is or will be overwritten. Check this now.
2240 * The current inode being processed might have been the one that caused
2241 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2242 * the current inode being processed.
2243 */
2244 if (ow_inode < sctx->send_progress)
2245 return 1;
2246
2247 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2248 if (ow_gen == 0) {
2249 ret = get_inode_gen(root: sctx->send_root, ino: ow_inode, gen: &ow_gen);
2250 if (ret < 0)
2251 return ret;
2252 }
2253 if (ow_gen == sctx->cur_inode_gen)
2254 return 1;
2255 }
2256
2257 return 0;
2258}
2259
2260/*
2261 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2262 * that got overwritten. This is used by process_recorded_refs to determine
2263 * if it has to use the path as returned by get_cur_path or the orphan name.
2264 */
2265static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2266{
2267 int ret = 0;
2268 struct fs_path *name = NULL;
2269 u64 dir;
2270 u64 dir_gen;
2271
2272 if (!sctx->parent_root)
2273 goto out;
2274
2275 name = fs_path_alloc();
2276 if (!name)
2277 return -ENOMEM;
2278
2279 ret = get_first_ref(root: sctx->parent_root, ino, dir: &dir, dir_gen: &dir_gen, name);
2280 if (ret < 0)
2281 goto out;
2282
2283 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, ino_gen: gen,
2284 name: name->start, name_len: fs_path_len(p: name));
2285
2286out:
2287 fs_path_free(p: name);
2288 return ret;
2289}
2290
2291static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2292 u64 ino, u64 gen)
2293{
2294 struct btrfs_lru_cache_entry *entry;
2295
2296 entry = btrfs_lru_cache_lookup(cache: &sctx->name_cache, key: ino, gen);
2297 if (!entry)
2298 return NULL;
2299
2300 return container_of(entry, struct name_cache_entry, entry);
2301}
2302
2303/*
2304 * Used by get_cur_path for each ref up to the root.
2305 * Returns 0 if it succeeded.
2306 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2307 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2308 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2309 * Returns <0 in case of error.
2310 */
2311static int __get_cur_name_and_parent(struct send_ctx *sctx,
2312 u64 ino, u64 gen,
2313 u64 *parent_ino,
2314 u64 *parent_gen,
2315 struct fs_path *dest)
2316{
2317 int ret;
2318 int nce_ret;
2319 struct name_cache_entry *nce;
2320
2321 /*
2322 * First check if we already did a call to this function with the same
2323 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2324 * return the cached result.
2325 */
2326 nce = name_cache_search(sctx, ino, gen);
2327 if (nce) {
2328 if (ino < sctx->send_progress && nce->need_later_update) {
2329 btrfs_lru_cache_remove(cache: &sctx->name_cache, entry: &nce->entry);
2330 nce = NULL;
2331 } else {
2332 *parent_ino = nce->parent_ino;
2333 *parent_gen = nce->parent_gen;
2334 ret = fs_path_add(p: dest, name: nce->name, name_len: nce->name_len);
2335 if (ret < 0)
2336 goto out;
2337 ret = nce->ret;
2338 goto out;
2339 }
2340 }
2341
2342 /*
2343 * If the inode is not existent yet, add the orphan name and return 1.
2344 * This should only happen for the parent dir that we determine in
2345 * record_new_ref_if_needed().
2346 */
2347 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2348 if (ret < 0)
2349 goto out;
2350
2351 if (!ret) {
2352 ret = gen_unique_name(sctx, ino, gen, dest);
2353 if (ret < 0)
2354 goto out;
2355 ret = 1;
2356 goto out_cache;
2357 }
2358
2359 /*
2360 * Depending on whether the inode was already processed or not, use
2361 * send_root or parent_root for ref lookup.
2362 */
2363 if (ino < sctx->send_progress)
2364 ret = get_first_ref(root: sctx->send_root, ino,
2365 dir: parent_ino, dir_gen: parent_gen, name: dest);
2366 else
2367 ret = get_first_ref(root: sctx->parent_root, ino,
2368 dir: parent_ino, dir_gen: parent_gen, name: dest);
2369 if (ret < 0)
2370 goto out;
2371
2372 /*
2373 * Check if the ref was overwritten by an inode's ref that was processed
2374 * earlier. If yes, treat as orphan and return 1.
2375 */
2376 ret = did_overwrite_ref(sctx, dir: *parent_ino, dir_gen: *parent_gen, ino, ino_gen: gen,
2377 name: dest->start, name_len: dest->end - dest->start);
2378 if (ret < 0)
2379 goto out;
2380 if (ret) {
2381 fs_path_reset(p: dest);
2382 ret = gen_unique_name(sctx, ino, gen, dest);
2383 if (ret < 0)
2384 goto out;
2385 ret = 1;
2386 }
2387
2388out_cache:
2389 /*
2390 * Store the result of the lookup in the name cache.
2391 */
2392 nce = kmalloc(size: sizeof(*nce) + fs_path_len(p: dest) + 1, GFP_KERNEL);
2393 if (!nce) {
2394 ret = -ENOMEM;
2395 goto out;
2396 }
2397
2398 nce->entry.key = ino;
2399 nce->entry.gen = gen;
2400 nce->parent_ino = *parent_ino;
2401 nce->parent_gen = *parent_gen;
2402 nce->name_len = fs_path_len(p: dest);
2403 nce->ret = ret;
2404 strcpy(p: nce->name, q: dest->start);
2405
2406 if (ino < sctx->send_progress)
2407 nce->need_later_update = 0;
2408 else
2409 nce->need_later_update = 1;
2410
2411 nce_ret = btrfs_lru_cache_store(cache: &sctx->name_cache, new_entry: &nce->entry, GFP_KERNEL);
2412 if (nce_ret < 0) {
2413 kfree(objp: nce);
2414 ret = nce_ret;
2415 }
2416
2417out:
2418 return ret;
2419}
2420
2421/*
2422 * Magic happens here. This function returns the first ref to an inode as it
2423 * would look like while receiving the stream at this point in time.
2424 * We walk the path up to the root. For every inode in between, we check if it
2425 * was already processed/sent. If yes, we continue with the parent as found
2426 * in send_root. If not, we continue with the parent as found in parent_root.
2427 * If we encounter an inode that was deleted at this point in time, we use the
2428 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2429 * that were not created yet and overwritten inodes/refs.
2430 *
2431 * When do we have orphan inodes:
2432 * 1. When an inode is freshly created and thus no valid refs are available yet
2433 * 2. When a directory lost all it's refs (deleted) but still has dir items
2434 * inside which were not processed yet (pending for move/delete). If anyone
2435 * tried to get the path to the dir items, it would get a path inside that
2436 * orphan directory.
2437 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2438 * of an unprocessed inode. If in that case the first ref would be
2439 * overwritten, the overwritten inode gets "orphanized". Later when we
2440 * process this overwritten inode, it is restored at a new place by moving
2441 * the orphan inode.
2442 *
2443 * sctx->send_progress tells this function at which point in time receiving
2444 * would be.
2445 */
2446static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2447 struct fs_path *dest)
2448{
2449 int ret = 0;
2450 struct fs_path *name = NULL;
2451 u64 parent_inode = 0;
2452 u64 parent_gen = 0;
2453 int stop = 0;
2454
2455 name = fs_path_alloc();
2456 if (!name) {
2457 ret = -ENOMEM;
2458 goto out;
2459 }
2460
2461 dest->reversed = 1;
2462 fs_path_reset(p: dest);
2463
2464 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2465 struct waiting_dir_move *wdm;
2466
2467 fs_path_reset(p: name);
2468
2469 if (is_waiting_for_rm(sctx, dir_ino: ino, gen)) {
2470 ret = gen_unique_name(sctx, ino, gen, dest: name);
2471 if (ret < 0)
2472 goto out;
2473 ret = fs_path_add_path(p: dest, p2: name);
2474 break;
2475 }
2476
2477 wdm = get_waiting_dir_move(sctx, ino);
2478 if (wdm && wdm->orphanized) {
2479 ret = gen_unique_name(sctx, ino, gen, dest: name);
2480 stop = 1;
2481 } else if (wdm) {
2482 ret = get_first_ref(root: sctx->parent_root, ino,
2483 dir: &parent_inode, dir_gen: &parent_gen, name);
2484 } else {
2485 ret = __get_cur_name_and_parent(sctx, ino, gen,
2486 parent_ino: &parent_inode,
2487 parent_gen: &parent_gen, dest: name);
2488 if (ret)
2489 stop = 1;
2490 }
2491
2492 if (ret < 0)
2493 goto out;
2494
2495 ret = fs_path_add_path(p: dest, p2: name);
2496 if (ret < 0)
2497 goto out;
2498
2499 ino = parent_inode;
2500 gen = parent_gen;
2501 }
2502
2503out:
2504 fs_path_free(p: name);
2505 if (!ret)
2506 fs_path_unreverse(p: dest);
2507 return ret;
2508}
2509
2510/*
2511 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2512 */
2513static int send_subvol_begin(struct send_ctx *sctx)
2514{
2515 int ret;
2516 struct btrfs_root *send_root = sctx->send_root;
2517 struct btrfs_root *parent_root = sctx->parent_root;
2518 struct btrfs_path *path;
2519 struct btrfs_key key;
2520 struct btrfs_root_ref *ref;
2521 struct extent_buffer *leaf;
2522 char *name = NULL;
2523 int namelen;
2524
2525 path = btrfs_alloc_path();
2526 if (!path)
2527 return -ENOMEM;
2528
2529 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2530 if (!name) {
2531 btrfs_free_path(p: path);
2532 return -ENOMEM;
2533 }
2534
2535 key.objectid = send_root->root_key.objectid;
2536 key.type = BTRFS_ROOT_BACKREF_KEY;
2537 key.offset = 0;
2538
2539 ret = btrfs_search_slot_for_read(root: send_root->fs_info->tree_root,
2540 key: &key, p: path, find_higher: 1, return_any: 0);
2541 if (ret < 0)
2542 goto out;
2543 if (ret) {
2544 ret = -ENOENT;
2545 goto out;
2546 }
2547
2548 leaf = path->nodes[0];
2549 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
2550 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2551 key.objectid != send_root->root_key.objectid) {
2552 ret = -ENOENT;
2553 goto out;
2554 }
2555 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2556 namelen = btrfs_root_ref_name_len(eb: leaf, s: ref);
2557 read_extent_buffer(eb: leaf, dst: name, start: (unsigned long)(ref + 1), len: namelen);
2558 btrfs_release_path(p: path);
2559
2560 if (parent_root) {
2561 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_SNAPSHOT);
2562 if (ret < 0)
2563 goto out;
2564 } else {
2565 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_SUBVOL);
2566 if (ret < 0)
2567 goto out;
2568 }
2569
2570 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2571
2572 if (!btrfs_is_empty_uuid(uuid: sctx->send_root->root_item.received_uuid))
2573 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2574 sctx->send_root->root_item.received_uuid);
2575 else
2576 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2577 sctx->send_root->root_item.uuid);
2578
2579 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2580 btrfs_root_ctransid(&sctx->send_root->root_item));
2581 if (parent_root) {
2582 if (!btrfs_is_empty_uuid(uuid: parent_root->root_item.received_uuid))
2583 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2584 parent_root->root_item.received_uuid);
2585 else
2586 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2587 parent_root->root_item.uuid);
2588 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2589 btrfs_root_ctransid(&sctx->parent_root->root_item));
2590 }
2591
2592 ret = send_cmd(sctx);
2593
2594tlv_put_failure:
2595out:
2596 btrfs_free_path(p: path);
2597 kfree(objp: name);
2598 return ret;
2599}
2600
2601static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2602{
2603 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2604 int ret = 0;
2605 struct fs_path *p;
2606
2607 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2608
2609 p = fs_path_alloc();
2610 if (!p)
2611 return -ENOMEM;
2612
2613 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_TRUNCATE);
2614 if (ret < 0)
2615 goto out;
2616
2617 ret = get_cur_path(sctx, ino, gen, dest: p);
2618 if (ret < 0)
2619 goto out;
2620 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2621 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2622
2623 ret = send_cmd(sctx);
2624
2625tlv_put_failure:
2626out:
2627 fs_path_free(p);
2628 return ret;
2629}
2630
2631static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2632{
2633 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2634 int ret = 0;
2635 struct fs_path *p;
2636
2637 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2638
2639 p = fs_path_alloc();
2640 if (!p)
2641 return -ENOMEM;
2642
2643 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_CHMOD);
2644 if (ret < 0)
2645 goto out;
2646
2647 ret = get_cur_path(sctx, ino, gen, dest: p);
2648 if (ret < 0)
2649 goto out;
2650 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2651 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2652
2653 ret = send_cmd(sctx);
2654
2655tlv_put_failure:
2656out:
2657 fs_path_free(p);
2658 return ret;
2659}
2660
2661static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2662{
2663 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2664 int ret = 0;
2665 struct fs_path *p;
2666
2667 if (sctx->proto < 2)
2668 return 0;
2669
2670 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2671
2672 p = fs_path_alloc();
2673 if (!p)
2674 return -ENOMEM;
2675
2676 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_FILEATTR);
2677 if (ret < 0)
2678 goto out;
2679
2680 ret = get_cur_path(sctx, ino, gen, dest: p);
2681 if (ret < 0)
2682 goto out;
2683 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2684 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2685
2686 ret = send_cmd(sctx);
2687
2688tlv_put_failure:
2689out:
2690 fs_path_free(p);
2691 return ret;
2692}
2693
2694static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2695{
2696 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2697 int ret = 0;
2698 struct fs_path *p;
2699
2700 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2701 ino, uid, gid);
2702
2703 p = fs_path_alloc();
2704 if (!p)
2705 return -ENOMEM;
2706
2707 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_CHOWN);
2708 if (ret < 0)
2709 goto out;
2710
2711 ret = get_cur_path(sctx, ino, gen, dest: p);
2712 if (ret < 0)
2713 goto out;
2714 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2715 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2716 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2717
2718 ret = send_cmd(sctx);
2719
2720tlv_put_failure:
2721out:
2722 fs_path_free(p);
2723 return ret;
2724}
2725
2726static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2727{
2728 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2729 int ret = 0;
2730 struct fs_path *p = NULL;
2731 struct btrfs_inode_item *ii;
2732 struct btrfs_path *path = NULL;
2733 struct extent_buffer *eb;
2734 struct btrfs_key key;
2735 int slot;
2736
2737 btrfs_debug(fs_info, "send_utimes %llu", ino);
2738
2739 p = fs_path_alloc();
2740 if (!p)
2741 return -ENOMEM;
2742
2743 path = alloc_path_for_send();
2744 if (!path) {
2745 ret = -ENOMEM;
2746 goto out;
2747 }
2748
2749 key.objectid = ino;
2750 key.type = BTRFS_INODE_ITEM_KEY;
2751 key.offset = 0;
2752 ret = btrfs_search_slot(NULL, root: sctx->send_root, key: &key, p: path, ins_len: 0, cow: 0);
2753 if (ret > 0)
2754 ret = -ENOENT;
2755 if (ret < 0)
2756 goto out;
2757
2758 eb = path->nodes[0];
2759 slot = path->slots[0];
2760 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2761
2762 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_UTIMES);
2763 if (ret < 0)
2764 goto out;
2765
2766 ret = get_cur_path(sctx, ino, gen, dest: p);
2767 if (ret < 0)
2768 goto out;
2769 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2770 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2771 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2772 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2773 if (sctx->proto >= 2)
2774 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2775
2776 ret = send_cmd(sctx);
2777
2778tlv_put_failure:
2779out:
2780 fs_path_free(p);
2781 btrfs_free_path(p: path);
2782 return ret;
2783}
2784
2785/*
2786 * If the cache is full, we can't remove entries from it and do a call to
2787 * send_utimes() for each respective inode, because we might be finishing
2788 * processing an inode that is a directory and it just got renamed, and existing
2789 * entries in the cache may refer to inodes that have the directory in their
2790 * full path - in which case we would generate outdated paths (pre-rename)
2791 * for the inodes that the cache entries point to. Instead of prunning the
2792 * cache when inserting, do it after we finish processing each inode at
2793 * finish_inode_if_needed().
2794 */
2795static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2796{
2797 struct btrfs_lru_cache_entry *entry;
2798 int ret;
2799
2800 entry = btrfs_lru_cache_lookup(cache: &sctx->dir_utimes_cache, key: dir, gen);
2801 if (entry != NULL)
2802 return 0;
2803
2804 /* Caching is optional, don't fail if we can't allocate memory. */
2805 entry = kmalloc(size: sizeof(*entry), GFP_KERNEL);
2806 if (!entry)
2807 return send_utimes(sctx, ino: dir, gen);
2808
2809 entry->key = dir;
2810 entry->gen = gen;
2811
2812 ret = btrfs_lru_cache_store(cache: &sctx->dir_utimes_cache, new_entry: entry, GFP_KERNEL);
2813 ASSERT(ret != -EEXIST);
2814 if (ret) {
2815 kfree(objp: entry);
2816 return send_utimes(sctx, ino: dir, gen);
2817 }
2818
2819 return 0;
2820}
2821
2822static int trim_dir_utimes_cache(struct send_ctx *sctx)
2823{
2824 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2825 struct btrfs_lru_cache_entry *lru;
2826 int ret;
2827
2828 lru = btrfs_lru_cache_lru_entry(cache: &sctx->dir_utimes_cache);
2829 ASSERT(lru != NULL);
2830
2831 ret = send_utimes(sctx, ino: lru->key, gen: lru->gen);
2832 if (ret)
2833 return ret;
2834
2835 btrfs_lru_cache_remove(cache: &sctx->dir_utimes_cache, entry: lru);
2836 }
2837
2838 return 0;
2839}
2840
2841/*
2842 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2843 * a valid path yet because we did not process the refs yet. So, the inode
2844 * is created as orphan.
2845 */
2846static int send_create_inode(struct send_ctx *sctx, u64 ino)
2847{
2848 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2849 int ret = 0;
2850 struct fs_path *p;
2851 int cmd;
2852 struct btrfs_inode_info info;
2853 u64 gen;
2854 u64 mode;
2855 u64 rdev;
2856
2857 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2858
2859 p = fs_path_alloc();
2860 if (!p)
2861 return -ENOMEM;
2862
2863 if (ino != sctx->cur_ino) {
2864 ret = get_inode_info(root: sctx->send_root, ino, info: &info);
2865 if (ret < 0)
2866 goto out;
2867 gen = info.gen;
2868 mode = info.mode;
2869 rdev = info.rdev;
2870 } else {
2871 gen = sctx->cur_inode_gen;
2872 mode = sctx->cur_inode_mode;
2873 rdev = sctx->cur_inode_rdev;
2874 }
2875
2876 if (S_ISREG(mode)) {
2877 cmd = BTRFS_SEND_C_MKFILE;
2878 } else if (S_ISDIR(mode)) {
2879 cmd = BTRFS_SEND_C_MKDIR;
2880 } else if (S_ISLNK(mode)) {
2881 cmd = BTRFS_SEND_C_SYMLINK;
2882 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2883 cmd = BTRFS_SEND_C_MKNOD;
2884 } else if (S_ISFIFO(mode)) {
2885 cmd = BTRFS_SEND_C_MKFIFO;
2886 } else if (S_ISSOCK(mode)) {
2887 cmd = BTRFS_SEND_C_MKSOCK;
2888 } else {
2889 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2890 (int)(mode & S_IFMT));
2891 ret = -EOPNOTSUPP;
2892 goto out;
2893 }
2894
2895 ret = begin_cmd(sctx, cmd);
2896 if (ret < 0)
2897 goto out;
2898
2899 ret = gen_unique_name(sctx, ino, gen, dest: p);
2900 if (ret < 0)
2901 goto out;
2902
2903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2904 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2905
2906 if (S_ISLNK(mode)) {
2907 fs_path_reset(p);
2908 ret = read_symlink(root: sctx->send_root, ino, dest: p);
2909 if (ret < 0)
2910 goto out;
2911 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2912 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2913 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2914 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2915 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2916 }
2917
2918 ret = send_cmd(sctx);
2919 if (ret < 0)
2920 goto out;
2921
2922
2923tlv_put_failure:
2924out:
2925 fs_path_free(p);
2926 return ret;
2927}
2928
2929static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2930{
2931 struct btrfs_lru_cache_entry *entry;
2932 int ret;
2933
2934 /* Caching is optional, ignore any failures. */
2935 entry = kmalloc(size: sizeof(*entry), GFP_KERNEL);
2936 if (!entry)
2937 return;
2938
2939 entry->key = dir;
2940 entry->gen = 0;
2941 ret = btrfs_lru_cache_store(cache: &sctx->dir_created_cache, new_entry: entry, GFP_KERNEL);
2942 if (ret < 0)
2943 kfree(objp: entry);
2944}
2945
2946/*
2947 * We need some special handling for inodes that get processed before the parent
2948 * directory got created. See process_recorded_refs for details.
2949 * This function does the check if we already created the dir out of order.
2950 */
2951static int did_create_dir(struct send_ctx *sctx, u64 dir)
2952{
2953 int ret = 0;
2954 int iter_ret = 0;
2955 struct btrfs_path *path = NULL;
2956 struct btrfs_key key;
2957 struct btrfs_key found_key;
2958 struct btrfs_key di_key;
2959 struct btrfs_dir_item *di;
2960
2961 if (btrfs_lru_cache_lookup(cache: &sctx->dir_created_cache, key: dir, gen: 0))
2962 return 1;
2963
2964 path = alloc_path_for_send();
2965 if (!path)
2966 return -ENOMEM;
2967
2968 key.objectid = dir;
2969 key.type = BTRFS_DIR_INDEX_KEY;
2970 key.offset = 0;
2971
2972 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2973 struct extent_buffer *eb = path->nodes[0];
2974
2975 if (found_key.objectid != key.objectid ||
2976 found_key.type != key.type) {
2977 ret = 0;
2978 break;
2979 }
2980
2981 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2982 btrfs_dir_item_key_to_cpu(eb, item: di, cpu_key: &di_key);
2983
2984 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2985 di_key.objectid < sctx->send_progress) {
2986 ret = 1;
2987 cache_dir_created(sctx, dir);
2988 break;
2989 }
2990 }
2991 /* Catch error found during iteration */
2992 if (iter_ret < 0)
2993 ret = iter_ret;
2994
2995 btrfs_free_path(p: path);
2996 return ret;
2997}
2998
2999/*
3000 * Only creates the inode if it is:
3001 * 1. Not a directory
3002 * 2. Or a directory which was not created already due to out of order
3003 * directories. See did_create_dir and process_recorded_refs for details.
3004 */
3005static int send_create_inode_if_needed(struct send_ctx *sctx)
3006{
3007 int ret;
3008
3009 if (S_ISDIR(sctx->cur_inode_mode)) {
3010 ret = did_create_dir(sctx, dir: sctx->cur_ino);
3011 if (ret < 0)
3012 return ret;
3013 else if (ret > 0)
3014 return 0;
3015 }
3016
3017 ret = send_create_inode(sctx, ino: sctx->cur_ino);
3018
3019 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3020 cache_dir_created(sctx, dir: sctx->cur_ino);
3021
3022 return ret;
3023}
3024
3025struct recorded_ref {
3026 struct list_head list;
3027 char *name;
3028 struct fs_path *full_path;
3029 u64 dir;
3030 u64 dir_gen;
3031 int name_len;
3032 struct rb_node node;
3033 struct rb_root *root;
3034};
3035
3036static struct recorded_ref *recorded_ref_alloc(void)
3037{
3038 struct recorded_ref *ref;
3039
3040 ref = kzalloc(size: sizeof(*ref), GFP_KERNEL);
3041 if (!ref)
3042 return NULL;
3043 RB_CLEAR_NODE(&ref->node);
3044 INIT_LIST_HEAD(list: &ref->list);
3045 return ref;
3046}
3047
3048static void recorded_ref_free(struct recorded_ref *ref)
3049{
3050 if (!ref)
3051 return;
3052 if (!RB_EMPTY_NODE(&ref->node))
3053 rb_erase(&ref->node, ref->root);
3054 list_del(entry: &ref->list);
3055 fs_path_free(p: ref->full_path);
3056 kfree(objp: ref);
3057}
3058
3059static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3060{
3061 ref->full_path = path;
3062 ref->name = (char *)kbasename(path: ref->full_path->start);
3063 ref->name_len = ref->full_path->end - ref->name;
3064}
3065
3066static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3067{
3068 struct recorded_ref *new;
3069
3070 new = recorded_ref_alloc();
3071 if (!new)
3072 return -ENOMEM;
3073
3074 new->dir = ref->dir;
3075 new->dir_gen = ref->dir_gen;
3076 list_add_tail(new: &new->list, head: list);
3077 return 0;
3078}
3079
3080static void __free_recorded_refs(struct list_head *head)
3081{
3082 struct recorded_ref *cur;
3083
3084 while (!list_empty(head)) {
3085 cur = list_entry(head->next, struct recorded_ref, list);
3086 recorded_ref_free(ref: cur);
3087 }
3088}
3089
3090static void free_recorded_refs(struct send_ctx *sctx)
3091{
3092 __free_recorded_refs(head: &sctx->new_refs);
3093 __free_recorded_refs(head: &sctx->deleted_refs);
3094}
3095
3096/*
3097 * Renames/moves a file/dir to its orphan name. Used when the first
3098 * ref of an unprocessed inode gets overwritten and for all non empty
3099 * directories.
3100 */
3101static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3102 struct fs_path *path)
3103{
3104 int ret;
3105 struct fs_path *orphan;
3106
3107 orphan = fs_path_alloc();
3108 if (!orphan)
3109 return -ENOMEM;
3110
3111 ret = gen_unique_name(sctx, ino, gen, dest: orphan);
3112 if (ret < 0)
3113 goto out;
3114
3115 ret = send_rename(sctx, from: path, to: orphan);
3116
3117out:
3118 fs_path_free(p: orphan);
3119 return ret;
3120}
3121
3122static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3123 u64 dir_ino, u64 dir_gen)
3124{
3125 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3126 struct rb_node *parent = NULL;
3127 struct orphan_dir_info *entry, *odi;
3128
3129 while (*p) {
3130 parent = *p;
3131 entry = rb_entry(parent, struct orphan_dir_info, node);
3132 if (dir_ino < entry->ino)
3133 p = &(*p)->rb_left;
3134 else if (dir_ino > entry->ino)
3135 p = &(*p)->rb_right;
3136 else if (dir_gen < entry->gen)
3137 p = &(*p)->rb_left;
3138 else if (dir_gen > entry->gen)
3139 p = &(*p)->rb_right;
3140 else
3141 return entry;
3142 }
3143
3144 odi = kmalloc(size: sizeof(*odi), GFP_KERNEL);
3145 if (!odi)
3146 return ERR_PTR(error: -ENOMEM);
3147 odi->ino = dir_ino;
3148 odi->gen = dir_gen;
3149 odi->last_dir_index_offset = 0;
3150 odi->dir_high_seq_ino = 0;
3151
3152 rb_link_node(node: &odi->node, parent, rb_link: p);
3153 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3154 return odi;
3155}
3156
3157static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3158 u64 dir_ino, u64 gen)
3159{
3160 struct rb_node *n = sctx->orphan_dirs.rb_node;
3161 struct orphan_dir_info *entry;
3162
3163 while (n) {
3164 entry = rb_entry(n, struct orphan_dir_info, node);
3165 if (dir_ino < entry->ino)
3166 n = n->rb_left;
3167 else if (dir_ino > entry->ino)
3168 n = n->rb_right;
3169 else if (gen < entry->gen)
3170 n = n->rb_left;
3171 else if (gen > entry->gen)
3172 n = n->rb_right;
3173 else
3174 return entry;
3175 }
3176 return NULL;
3177}
3178
3179static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3180{
3181 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3182
3183 return odi != NULL;
3184}
3185
3186static void free_orphan_dir_info(struct send_ctx *sctx,
3187 struct orphan_dir_info *odi)
3188{
3189 if (!odi)
3190 return;
3191 rb_erase(&odi->node, &sctx->orphan_dirs);
3192 kfree(objp: odi);
3193}
3194
3195/*
3196 * Returns 1 if a directory can be removed at this point in time.
3197 * We check this by iterating all dir items and checking if the inode behind
3198 * the dir item was already processed.
3199 */
3200static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3201{
3202 int ret = 0;
3203 int iter_ret = 0;
3204 struct btrfs_root *root = sctx->parent_root;
3205 struct btrfs_path *path;
3206 struct btrfs_key key;
3207 struct btrfs_key found_key;
3208 struct btrfs_key loc;
3209 struct btrfs_dir_item *di;
3210 struct orphan_dir_info *odi = NULL;
3211 u64 dir_high_seq_ino = 0;
3212 u64 last_dir_index_offset = 0;
3213
3214 /*
3215 * Don't try to rmdir the top/root subvolume dir.
3216 */
3217 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3218 return 0;
3219
3220 odi = get_orphan_dir_info(sctx, dir_ino: dir, gen: dir_gen);
3221 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3222 return 0;
3223
3224 path = alloc_path_for_send();
3225 if (!path)
3226 return -ENOMEM;
3227
3228 if (!odi) {
3229 /*
3230 * Find the inode number associated with the last dir index
3231 * entry. This is very likely the inode with the highest number
3232 * of all inodes that have an entry in the directory. We can
3233 * then use it to avoid future calls to can_rmdir(), when
3234 * processing inodes with a lower number, from having to search
3235 * the parent root b+tree for dir index keys.
3236 */
3237 key.objectid = dir;
3238 key.type = BTRFS_DIR_INDEX_KEY;
3239 key.offset = (u64)-1;
3240
3241 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
3242 if (ret < 0) {
3243 goto out;
3244 } else if (ret > 0) {
3245 /* Can't happen, the root is never empty. */
3246 ASSERT(path->slots[0] > 0);
3247 if (WARN_ON(path->slots[0] == 0)) {
3248 ret = -EUCLEAN;
3249 goto out;
3250 }
3251 path->slots[0]--;
3252 }
3253
3254 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
3255 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3256 /* No index keys, dir can be removed. */
3257 ret = 1;
3258 goto out;
3259 }
3260
3261 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3262 struct btrfs_dir_item);
3263 btrfs_dir_item_key_to_cpu(eb: path->nodes[0], item: di, cpu_key: &loc);
3264 dir_high_seq_ino = loc.objectid;
3265 if (sctx->cur_ino < dir_high_seq_ino) {
3266 ret = 0;
3267 goto out;
3268 }
3269
3270 btrfs_release_path(p: path);
3271 }
3272
3273 key.objectid = dir;
3274 key.type = BTRFS_DIR_INDEX_KEY;
3275 key.offset = (odi ? odi->last_dir_index_offset : 0);
3276
3277 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3278 struct waiting_dir_move *dm;
3279
3280 if (found_key.objectid != key.objectid ||
3281 found_key.type != key.type)
3282 break;
3283
3284 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3285 struct btrfs_dir_item);
3286 btrfs_dir_item_key_to_cpu(eb: path->nodes[0], item: di, cpu_key: &loc);
3287
3288 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3289 last_dir_index_offset = found_key.offset;
3290
3291 dm = get_waiting_dir_move(sctx, ino: loc.objectid);
3292 if (dm) {
3293 dm->rmdir_ino = dir;
3294 dm->rmdir_gen = dir_gen;
3295 ret = 0;
3296 goto out;
3297 }
3298
3299 if (loc.objectid > sctx->cur_ino) {
3300 ret = 0;
3301 goto out;
3302 }
3303 }
3304 if (iter_ret < 0) {
3305 ret = iter_ret;
3306 goto out;
3307 }
3308 free_orphan_dir_info(sctx, odi);
3309
3310 ret = 1;
3311
3312out:
3313 btrfs_free_path(p: path);
3314
3315 if (ret)
3316 return ret;
3317
3318 if (!odi) {
3319 odi = add_orphan_dir_info(sctx, dir_ino: dir, dir_gen);
3320 if (IS_ERR(ptr: odi))
3321 return PTR_ERR(ptr: odi);
3322
3323 odi->gen = dir_gen;
3324 }
3325
3326 odi->last_dir_index_offset = last_dir_index_offset;
3327 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3328
3329 return 0;
3330}
3331
3332static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3333{
3334 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3335
3336 return entry != NULL;
3337}
3338
3339static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3340{
3341 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3342 struct rb_node *parent = NULL;
3343 struct waiting_dir_move *entry, *dm;
3344
3345 dm = kmalloc(size: sizeof(*dm), GFP_KERNEL);
3346 if (!dm)
3347 return -ENOMEM;
3348 dm->ino = ino;
3349 dm->rmdir_ino = 0;
3350 dm->rmdir_gen = 0;
3351 dm->orphanized = orphanized;
3352
3353 while (*p) {
3354 parent = *p;
3355 entry = rb_entry(parent, struct waiting_dir_move, node);
3356 if (ino < entry->ino) {
3357 p = &(*p)->rb_left;
3358 } else if (ino > entry->ino) {
3359 p = &(*p)->rb_right;
3360 } else {
3361 kfree(objp: dm);
3362 return -EEXIST;
3363 }
3364 }
3365
3366 rb_link_node(node: &dm->node, parent, rb_link: p);
3367 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3368 return 0;
3369}
3370
3371static struct waiting_dir_move *
3372get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3373{
3374 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3375 struct waiting_dir_move *entry;
3376
3377 while (n) {
3378 entry = rb_entry(n, struct waiting_dir_move, node);
3379 if (ino < entry->ino)
3380 n = n->rb_left;
3381 else if (ino > entry->ino)
3382 n = n->rb_right;
3383 else
3384 return entry;
3385 }
3386 return NULL;
3387}
3388
3389static void free_waiting_dir_move(struct send_ctx *sctx,
3390 struct waiting_dir_move *dm)
3391{
3392 if (!dm)
3393 return;
3394 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3395 kfree(objp: dm);
3396}
3397
3398static int add_pending_dir_move(struct send_ctx *sctx,
3399 u64 ino,
3400 u64 ino_gen,
3401 u64 parent_ino,
3402 struct list_head *new_refs,
3403 struct list_head *deleted_refs,
3404 const bool is_orphan)
3405{
3406 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3407 struct rb_node *parent = NULL;
3408 struct pending_dir_move *entry = NULL, *pm;
3409 struct recorded_ref *cur;
3410 int exists = 0;
3411 int ret;
3412
3413 pm = kmalloc(size: sizeof(*pm), GFP_KERNEL);
3414 if (!pm)
3415 return -ENOMEM;
3416 pm->parent_ino = parent_ino;
3417 pm->ino = ino;
3418 pm->gen = ino_gen;
3419 INIT_LIST_HEAD(list: &pm->list);
3420 INIT_LIST_HEAD(list: &pm->update_refs);
3421 RB_CLEAR_NODE(&pm->node);
3422
3423 while (*p) {
3424 parent = *p;
3425 entry = rb_entry(parent, struct pending_dir_move, node);
3426 if (parent_ino < entry->parent_ino) {
3427 p = &(*p)->rb_left;
3428 } else if (parent_ino > entry->parent_ino) {
3429 p = &(*p)->rb_right;
3430 } else {
3431 exists = 1;
3432 break;
3433 }
3434 }
3435
3436 list_for_each_entry(cur, deleted_refs, list) {
3437 ret = dup_ref(ref: cur, list: &pm->update_refs);
3438 if (ret < 0)
3439 goto out;
3440 }
3441 list_for_each_entry(cur, new_refs, list) {
3442 ret = dup_ref(ref: cur, list: &pm->update_refs);
3443 if (ret < 0)
3444 goto out;
3445 }
3446
3447 ret = add_waiting_dir_move(sctx, ino: pm->ino, orphanized: is_orphan);
3448 if (ret)
3449 goto out;
3450
3451 if (exists) {
3452 list_add_tail(new: &pm->list, head: &entry->list);
3453 } else {
3454 rb_link_node(node: &pm->node, parent, rb_link: p);
3455 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3456 }
3457 ret = 0;
3458out:
3459 if (ret) {
3460 __free_recorded_refs(head: &pm->update_refs);
3461 kfree(objp: pm);
3462 }
3463 return ret;
3464}
3465
3466static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3467 u64 parent_ino)
3468{
3469 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3470 struct pending_dir_move *entry;
3471
3472 while (n) {
3473 entry = rb_entry(n, struct pending_dir_move, node);
3474 if (parent_ino < entry->parent_ino)
3475 n = n->rb_left;
3476 else if (parent_ino > entry->parent_ino)
3477 n = n->rb_right;
3478 else
3479 return entry;
3480 }
3481 return NULL;
3482}
3483
3484static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3485 u64 ino, u64 gen, u64 *ancestor_ino)
3486{
3487 int ret = 0;
3488 u64 parent_inode = 0;
3489 u64 parent_gen = 0;
3490 u64 start_ino = ino;
3491
3492 *ancestor_ino = 0;
3493 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3494 fs_path_reset(p: name);
3495
3496 if (is_waiting_for_rm(sctx, dir_ino: ino, gen))
3497 break;
3498 if (is_waiting_for_move(sctx, ino)) {
3499 if (*ancestor_ino == 0)
3500 *ancestor_ino = ino;
3501 ret = get_first_ref(root: sctx->parent_root, ino,
3502 dir: &parent_inode, dir_gen: &parent_gen, name);
3503 } else {
3504 ret = __get_cur_name_and_parent(sctx, ino, gen,
3505 parent_ino: &parent_inode,
3506 parent_gen: &parent_gen, dest: name);
3507 if (ret > 0) {
3508 ret = 0;
3509 break;
3510 }
3511 }
3512 if (ret < 0)
3513 break;
3514 if (parent_inode == start_ino) {
3515 ret = 1;
3516 if (*ancestor_ino == 0)
3517 *ancestor_ino = ino;
3518 break;
3519 }
3520 ino = parent_inode;
3521 gen = parent_gen;
3522 }
3523 return ret;
3524}
3525
3526static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3527{
3528 struct fs_path *from_path = NULL;
3529 struct fs_path *to_path = NULL;
3530 struct fs_path *name = NULL;
3531 u64 orig_progress = sctx->send_progress;
3532 struct recorded_ref *cur;
3533 u64 parent_ino, parent_gen;
3534 struct waiting_dir_move *dm = NULL;
3535 u64 rmdir_ino = 0;
3536 u64 rmdir_gen;
3537 u64 ancestor;
3538 bool is_orphan;
3539 int ret;
3540
3541 name = fs_path_alloc();
3542 from_path = fs_path_alloc();
3543 if (!name || !from_path) {
3544 ret = -ENOMEM;
3545 goto out;
3546 }
3547
3548 dm = get_waiting_dir_move(sctx, ino: pm->ino);
3549 ASSERT(dm);
3550 rmdir_ino = dm->rmdir_ino;
3551 rmdir_gen = dm->rmdir_gen;
3552 is_orphan = dm->orphanized;
3553 free_waiting_dir_move(sctx, dm);
3554
3555 if (is_orphan) {
3556 ret = gen_unique_name(sctx, ino: pm->ino,
3557 gen: pm->gen, dest: from_path);
3558 } else {
3559 ret = get_first_ref(root: sctx->parent_root, ino: pm->ino,
3560 dir: &parent_ino, dir_gen: &parent_gen, name);
3561 if (ret < 0)
3562 goto out;
3563 ret = get_cur_path(sctx, ino: parent_ino, gen: parent_gen,
3564 dest: from_path);
3565 if (ret < 0)
3566 goto out;
3567 ret = fs_path_add_path(p: from_path, p2: name);
3568 }
3569 if (ret < 0)
3570 goto out;
3571
3572 sctx->send_progress = sctx->cur_ino + 1;
3573 ret = path_loop(sctx, name, ino: pm->ino, gen: pm->gen, ancestor_ino: &ancestor);
3574 if (ret < 0)
3575 goto out;
3576 if (ret) {
3577 LIST_HEAD(deleted_refs);
3578 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3579 ret = add_pending_dir_move(sctx, ino: pm->ino, ino_gen: pm->gen, parent_ino: ancestor,
3580 new_refs: &pm->update_refs, deleted_refs: &deleted_refs,
3581 is_orphan);
3582 if (ret < 0)
3583 goto out;
3584 if (rmdir_ino) {
3585 dm = get_waiting_dir_move(sctx, ino: pm->ino);
3586 ASSERT(dm);
3587 dm->rmdir_ino = rmdir_ino;
3588 dm->rmdir_gen = rmdir_gen;
3589 }
3590 goto out;
3591 }
3592 fs_path_reset(p: name);
3593 to_path = name;
3594 name = NULL;
3595 ret = get_cur_path(sctx, ino: pm->ino, gen: pm->gen, dest: to_path);
3596 if (ret < 0)
3597 goto out;
3598
3599 ret = send_rename(sctx, from: from_path, to: to_path);
3600 if (ret < 0)
3601 goto out;
3602
3603 if (rmdir_ino) {
3604 struct orphan_dir_info *odi;
3605 u64 gen;
3606
3607 odi = get_orphan_dir_info(sctx, dir_ino: rmdir_ino, gen: rmdir_gen);
3608 if (!odi) {
3609 /* already deleted */
3610 goto finish;
3611 }
3612 gen = odi->gen;
3613
3614 ret = can_rmdir(sctx, dir: rmdir_ino, dir_gen: gen);
3615 if (ret < 0)
3616 goto out;
3617 if (!ret)
3618 goto finish;
3619
3620 name = fs_path_alloc();
3621 if (!name) {
3622 ret = -ENOMEM;
3623 goto out;
3624 }
3625 ret = get_cur_path(sctx, ino: rmdir_ino, gen, dest: name);
3626 if (ret < 0)
3627 goto out;
3628 ret = send_rmdir(sctx, path: name);
3629 if (ret < 0)
3630 goto out;
3631 }
3632
3633finish:
3634 ret = cache_dir_utimes(sctx, dir: pm->ino, gen: pm->gen);
3635 if (ret < 0)
3636 goto out;
3637
3638 /*
3639 * After rename/move, need to update the utimes of both new parent(s)
3640 * and old parent(s).
3641 */
3642 list_for_each_entry(cur, &pm->update_refs, list) {
3643 /*
3644 * The parent inode might have been deleted in the send snapshot
3645 */
3646 ret = get_inode_info(root: sctx->send_root, ino: cur->dir, NULL);
3647 if (ret == -ENOENT) {
3648 ret = 0;
3649 continue;
3650 }
3651 if (ret < 0)
3652 goto out;
3653
3654 ret = cache_dir_utimes(sctx, dir: cur->dir, gen: cur->dir_gen);
3655 if (ret < 0)
3656 goto out;
3657 }
3658
3659out:
3660 fs_path_free(p: name);
3661 fs_path_free(p: from_path);
3662 fs_path_free(p: to_path);
3663 sctx->send_progress = orig_progress;
3664
3665 return ret;
3666}
3667
3668static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3669{
3670 if (!list_empty(head: &m->list))
3671 list_del(entry: &m->list);
3672 if (!RB_EMPTY_NODE(&m->node))
3673 rb_erase(&m->node, &sctx->pending_dir_moves);
3674 __free_recorded_refs(head: &m->update_refs);
3675 kfree(objp: m);
3676}
3677
3678static void tail_append_pending_moves(struct send_ctx *sctx,
3679 struct pending_dir_move *moves,
3680 struct list_head *stack)
3681{
3682 if (list_empty(head: &moves->list)) {
3683 list_add_tail(new: &moves->list, head: stack);
3684 } else {
3685 LIST_HEAD(list);
3686 list_splice_init(list: &moves->list, head: &list);
3687 list_add_tail(new: &moves->list, head: stack);
3688 list_splice_tail(list: &list, head: stack);
3689 }
3690 if (!RB_EMPTY_NODE(&moves->node)) {
3691 rb_erase(&moves->node, &sctx->pending_dir_moves);
3692 RB_CLEAR_NODE(&moves->node);
3693 }
3694}
3695
3696static int apply_children_dir_moves(struct send_ctx *sctx)
3697{
3698 struct pending_dir_move *pm;
3699 LIST_HEAD(stack);
3700 u64 parent_ino = sctx->cur_ino;
3701 int ret = 0;
3702
3703 pm = get_pending_dir_moves(sctx, parent_ino);
3704 if (!pm)
3705 return 0;
3706
3707 tail_append_pending_moves(sctx, moves: pm, stack: &stack);
3708
3709 while (!list_empty(head: &stack)) {
3710 pm = list_first_entry(&stack, struct pending_dir_move, list);
3711 parent_ino = pm->ino;
3712 ret = apply_dir_move(sctx, pm);
3713 free_pending_move(sctx, m: pm);
3714 if (ret)
3715 goto out;
3716 pm = get_pending_dir_moves(sctx, parent_ino);
3717 if (pm)
3718 tail_append_pending_moves(sctx, moves: pm, stack: &stack);
3719 }
3720 return 0;
3721
3722out:
3723 while (!list_empty(head: &stack)) {
3724 pm = list_first_entry(&stack, struct pending_dir_move, list);
3725 free_pending_move(sctx, m: pm);
3726 }
3727 return ret;
3728}
3729
3730/*
3731 * We might need to delay a directory rename even when no ancestor directory
3732 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3733 * renamed. This happens when we rename a directory to the old name (the name
3734 * in the parent root) of some other unrelated directory that got its rename
3735 * delayed due to some ancestor with higher number that got renamed.
3736 *
3737 * Example:
3738 *
3739 * Parent snapshot:
3740 * . (ino 256)
3741 * |---- a/ (ino 257)
3742 * | |---- file (ino 260)
3743 * |
3744 * |---- b/ (ino 258)
3745 * |---- c/ (ino 259)
3746 *
3747 * Send snapshot:
3748 * . (ino 256)
3749 * |---- a/ (ino 258)
3750 * |---- x/ (ino 259)
3751 * |---- y/ (ino 257)
3752 * |----- file (ino 260)
3753 *
3754 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3755 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3756 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3757 * must issue is:
3758 *
3759 * 1 - rename 259 from 'c' to 'x'
3760 * 2 - rename 257 from 'a' to 'x/y'
3761 * 3 - rename 258 from 'b' to 'a'
3762 *
3763 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3764 * be done right away and < 0 on error.
3765 */
3766static int wait_for_dest_dir_move(struct send_ctx *sctx,
3767 struct recorded_ref *parent_ref,
3768 const bool is_orphan)
3769{
3770 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3771 struct btrfs_path *path;
3772 struct btrfs_key key;
3773 struct btrfs_key di_key;
3774 struct btrfs_dir_item *di;
3775 u64 left_gen;
3776 u64 right_gen;
3777 int ret = 0;
3778 struct waiting_dir_move *wdm;
3779
3780 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3781 return 0;
3782
3783 path = alloc_path_for_send();
3784 if (!path)
3785 return -ENOMEM;
3786
3787 key.objectid = parent_ref->dir;
3788 key.type = BTRFS_DIR_ITEM_KEY;
3789 key.offset = btrfs_name_hash(name: parent_ref->name, len: parent_ref->name_len);
3790
3791 ret = btrfs_search_slot(NULL, root: sctx->parent_root, key: &key, p: path, ins_len: 0, cow: 0);
3792 if (ret < 0) {
3793 goto out;
3794 } else if (ret > 0) {
3795 ret = 0;
3796 goto out;
3797 }
3798
3799 di = btrfs_match_dir_item_name(fs_info, path, name: parent_ref->name,
3800 name_len: parent_ref->name_len);
3801 if (!di) {
3802 ret = 0;
3803 goto out;
3804 }
3805 /*
3806 * di_key.objectid has the number of the inode that has a dentry in the
3807 * parent directory with the same name that sctx->cur_ino is being
3808 * renamed to. We need to check if that inode is in the send root as
3809 * well and if it is currently marked as an inode with a pending rename,
3810 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3811 * that it happens after that other inode is renamed.
3812 */
3813 btrfs_dir_item_key_to_cpu(eb: path->nodes[0], item: di, cpu_key: &di_key);
3814 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3815 ret = 0;
3816 goto out;
3817 }
3818
3819 ret = get_inode_gen(root: sctx->parent_root, ino: di_key.objectid, gen: &left_gen);
3820 if (ret < 0)
3821 goto out;
3822 ret = get_inode_gen(root: sctx->send_root, ino: di_key.objectid, gen: &right_gen);
3823 if (ret < 0) {
3824 if (ret == -ENOENT)
3825 ret = 0;
3826 goto out;
3827 }
3828
3829 /* Different inode, no need to delay the rename of sctx->cur_ino */
3830 if (right_gen != left_gen) {
3831 ret = 0;
3832 goto out;
3833 }
3834
3835 wdm = get_waiting_dir_move(sctx, ino: di_key.objectid);
3836 if (wdm && !wdm->orphanized) {
3837 ret = add_pending_dir_move(sctx,
3838 ino: sctx->cur_ino,
3839 ino_gen: sctx->cur_inode_gen,
3840 parent_ino: di_key.objectid,
3841 new_refs: &sctx->new_refs,
3842 deleted_refs: &sctx->deleted_refs,
3843 is_orphan);
3844 if (!ret)
3845 ret = 1;
3846 }
3847out:
3848 btrfs_free_path(p: path);
3849 return ret;
3850}
3851
3852/*
3853 * Check if inode ino2, or any of its ancestors, is inode ino1.
3854 * Return 1 if true, 0 if false and < 0 on error.
3855 */
3856static int check_ino_in_path(struct btrfs_root *root,
3857 const u64 ino1,
3858 const u64 ino1_gen,
3859 const u64 ino2,
3860 const u64 ino2_gen,
3861 struct fs_path *fs_path)
3862{
3863 u64 ino = ino2;
3864
3865 if (ino1 == ino2)
3866 return ino1_gen == ino2_gen;
3867
3868 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3869 u64 parent;
3870 u64 parent_gen;
3871 int ret;
3872
3873 fs_path_reset(p: fs_path);
3874 ret = get_first_ref(root, ino, dir: &parent, dir_gen: &parent_gen, name: fs_path);
3875 if (ret < 0)
3876 return ret;
3877 if (parent == ino1)
3878 return parent_gen == ino1_gen;
3879 ino = parent;
3880 }
3881 return 0;
3882}
3883
3884/*
3885 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3886 * possible path (in case ino2 is not a directory and has multiple hard links).
3887 * Return 1 if true, 0 if false and < 0 on error.
3888 */
3889static int is_ancestor(struct btrfs_root *root,
3890 const u64 ino1,
3891 const u64 ino1_gen,
3892 const u64 ino2,
3893 struct fs_path *fs_path)
3894{
3895 bool free_fs_path = false;
3896 int ret = 0;
3897 int iter_ret = 0;
3898 struct btrfs_path *path = NULL;
3899 struct btrfs_key key;
3900
3901 if (!fs_path) {
3902 fs_path = fs_path_alloc();
3903 if (!fs_path)
3904 return -ENOMEM;
3905 free_fs_path = true;
3906 }
3907
3908 path = alloc_path_for_send();
3909 if (!path) {
3910 ret = -ENOMEM;
3911 goto out;
3912 }
3913
3914 key.objectid = ino2;
3915 key.type = BTRFS_INODE_REF_KEY;
3916 key.offset = 0;
3917
3918 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3919 struct extent_buffer *leaf = path->nodes[0];
3920 int slot = path->slots[0];
3921 u32 cur_offset = 0;
3922 u32 item_size;
3923
3924 if (key.objectid != ino2)
3925 break;
3926 if (key.type != BTRFS_INODE_REF_KEY &&
3927 key.type != BTRFS_INODE_EXTREF_KEY)
3928 break;
3929
3930 item_size = btrfs_item_size(eb: leaf, slot);
3931 while (cur_offset < item_size) {
3932 u64 parent;
3933 u64 parent_gen;
3934
3935 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3936 unsigned long ptr;
3937 struct btrfs_inode_extref *extref;
3938
3939 ptr = btrfs_item_ptr_offset(leaf, slot);
3940 extref = (struct btrfs_inode_extref *)
3941 (ptr + cur_offset);
3942 parent = btrfs_inode_extref_parent(eb: leaf,
3943 s: extref);
3944 cur_offset += sizeof(*extref);
3945 cur_offset += btrfs_inode_extref_name_len(eb: leaf,
3946 s: extref);
3947 } else {
3948 parent = key.offset;
3949 cur_offset = item_size;
3950 }
3951
3952 ret = get_inode_gen(root, ino: parent, gen: &parent_gen);
3953 if (ret < 0)
3954 goto out;
3955 ret = check_ino_in_path(root, ino1, ino1_gen,
3956 ino2: parent, ino2_gen: parent_gen, fs_path);
3957 if (ret)
3958 goto out;
3959 }
3960 }
3961 ret = 0;
3962 if (iter_ret < 0)
3963 ret = iter_ret;
3964
3965out:
3966 btrfs_free_path(p: path);
3967 if (free_fs_path)
3968 fs_path_free(p: fs_path);
3969 return ret;
3970}
3971
3972static int wait_for_parent_move(struct send_ctx *sctx,
3973 struct recorded_ref *parent_ref,
3974 const bool is_orphan)
3975{
3976 int ret = 0;
3977 u64 ino = parent_ref->dir;
3978 u64 ino_gen = parent_ref->dir_gen;
3979 u64 parent_ino_before, parent_ino_after;
3980 struct fs_path *path_before = NULL;
3981 struct fs_path *path_after = NULL;
3982 int len1, len2;
3983
3984 path_after = fs_path_alloc();
3985 path_before = fs_path_alloc();
3986 if (!path_after || !path_before) {
3987 ret = -ENOMEM;
3988 goto out;
3989 }
3990
3991 /*
3992 * Our current directory inode may not yet be renamed/moved because some
3993 * ancestor (immediate or not) has to be renamed/moved first. So find if
3994 * such ancestor exists and make sure our own rename/move happens after
3995 * that ancestor is processed to avoid path build infinite loops (done
3996 * at get_cur_path()).
3997 */
3998 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3999 u64 parent_ino_after_gen;
4000
4001 if (is_waiting_for_move(sctx, ino)) {
4002 /*
4003 * If the current inode is an ancestor of ino in the
4004 * parent root, we need to delay the rename of the
4005 * current inode, otherwise don't delayed the rename
4006 * because we can end up with a circular dependency
4007 * of renames, resulting in some directories never
4008 * getting the respective rename operations issued in
4009 * the send stream or getting into infinite path build
4010 * loops.
4011 */
4012 ret = is_ancestor(root: sctx->parent_root,
4013 ino1: sctx->cur_ino, ino1_gen: sctx->cur_inode_gen,
4014 ino2: ino, fs_path: path_before);
4015 if (ret)
4016 break;
4017 }
4018
4019 fs_path_reset(p: path_before);
4020 fs_path_reset(p: path_after);
4021
4022 ret = get_first_ref(root: sctx->send_root, ino, dir: &parent_ino_after,
4023 dir_gen: &parent_ino_after_gen, name: path_after);
4024 if (ret < 0)
4025 goto out;
4026 ret = get_first_ref(root: sctx->parent_root, ino, dir: &parent_ino_before,
4027 NULL, name: path_before);
4028 if (ret < 0 && ret != -ENOENT) {
4029 goto out;
4030 } else if (ret == -ENOENT) {
4031 ret = 0;
4032 break;
4033 }
4034
4035 len1 = fs_path_len(p: path_before);
4036 len2 = fs_path_len(p: path_after);
4037 if (ino > sctx->cur_ino &&
4038 (parent_ino_before != parent_ino_after || len1 != len2 ||
4039 memcmp(p: path_before->start, q: path_after->start, size: len1))) {
4040 u64 parent_ino_gen;
4041
4042 ret = get_inode_gen(root: sctx->parent_root, ino, gen: &parent_ino_gen);
4043 if (ret < 0)
4044 goto out;
4045 if (ino_gen == parent_ino_gen) {
4046 ret = 1;
4047 break;
4048 }
4049 }
4050 ino = parent_ino_after;
4051 ino_gen = parent_ino_after_gen;
4052 }
4053
4054out:
4055 fs_path_free(p: path_before);
4056 fs_path_free(p: path_after);
4057
4058 if (ret == 1) {
4059 ret = add_pending_dir_move(sctx,
4060 ino: sctx->cur_ino,
4061 ino_gen: sctx->cur_inode_gen,
4062 parent_ino: ino,
4063 new_refs: &sctx->new_refs,
4064 deleted_refs: &sctx->deleted_refs,
4065 is_orphan);
4066 if (!ret)
4067 ret = 1;
4068 }
4069
4070 return ret;
4071}
4072
4073static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4074{
4075 int ret;
4076 struct fs_path *new_path;
4077
4078 /*
4079 * Our reference's name member points to its full_path member string, so
4080 * we use here a new path.
4081 */
4082 new_path = fs_path_alloc();
4083 if (!new_path)
4084 return -ENOMEM;
4085
4086 ret = get_cur_path(sctx, ino: ref->dir, gen: ref->dir_gen, dest: new_path);
4087 if (ret < 0) {
4088 fs_path_free(p: new_path);
4089 return ret;
4090 }
4091 ret = fs_path_add(p: new_path, name: ref->name, name_len: ref->name_len);
4092 if (ret < 0) {
4093 fs_path_free(p: new_path);
4094 return ret;
4095 }
4096
4097 fs_path_free(p: ref->full_path);
4098 set_ref_path(ref, path: new_path);
4099
4100 return 0;
4101}
4102
4103/*
4104 * When processing the new references for an inode we may orphanize an existing
4105 * directory inode because its old name conflicts with one of the new references
4106 * of the current inode. Later, when processing another new reference of our
4107 * inode, we might need to orphanize another inode, but the path we have in the
4108 * reference reflects the pre-orphanization name of the directory we previously
4109 * orphanized. For example:
4110 *
4111 * parent snapshot looks like:
4112 *
4113 * . (ino 256)
4114 * |----- f1 (ino 257)
4115 * |----- f2 (ino 258)
4116 * |----- d1/ (ino 259)
4117 * |----- d2/ (ino 260)
4118 *
4119 * send snapshot looks like:
4120 *
4121 * . (ino 256)
4122 * |----- d1 (ino 258)
4123 * |----- f2/ (ino 259)
4124 * |----- f2_link/ (ino 260)
4125 * | |----- f1 (ino 257)
4126 * |
4127 * |----- d2 (ino 258)
4128 *
4129 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4130 * cache it in the name cache. Later when we start processing inode 258, when
4131 * collecting all its new references we set a full path of "d1/d2" for its new
4132 * reference with name "d2". When we start processing the new references we
4133 * start by processing the new reference with name "d1", and this results in
4134 * orphanizing inode 259, since its old reference causes a conflict. Then we
4135 * move on the next new reference, with name "d2", and we find out we must
4136 * orphanize inode 260, as its old reference conflicts with ours - but for the
4137 * orphanization we use a source path corresponding to the path we stored in the
4138 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4139 * receiver fail since the path component "d1/" no longer exists, it was renamed
4140 * to "o259-6-0/" when processing the previous new reference. So in this case we
4141 * must recompute the path in the new reference and use it for the new
4142 * orphanization operation.
4143 */
4144static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4145{
4146 char *name;
4147 int ret;
4148
4149 name = kmemdup(p: ref->name, size: ref->name_len, GFP_KERNEL);
4150 if (!name)
4151 return -ENOMEM;
4152
4153 fs_path_reset(p: ref->full_path);
4154 ret = get_cur_path(sctx, ino: ref->dir, gen: ref->dir_gen, dest: ref->full_path);
4155 if (ret < 0)
4156 goto out;
4157
4158 ret = fs_path_add(p: ref->full_path, name, name_len: ref->name_len);
4159 if (ret < 0)
4160 goto out;
4161
4162 /* Update the reference's base name pointer. */
4163 set_ref_path(ref, path: ref->full_path);
4164out:
4165 kfree(objp: name);
4166 return ret;
4167}
4168
4169/*
4170 * This does all the move/link/unlink/rmdir magic.
4171 */
4172static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4173{
4174 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4175 int ret = 0;
4176 struct recorded_ref *cur;
4177 struct recorded_ref *cur2;
4178 LIST_HEAD(check_dirs);
4179 struct fs_path *valid_path = NULL;
4180 u64 ow_inode = 0;
4181 u64 ow_gen;
4182 u64 ow_mode;
4183 int did_overwrite = 0;
4184 int is_orphan = 0;
4185 u64 last_dir_ino_rm = 0;
4186 bool can_rename = true;
4187 bool orphanized_dir = false;
4188 bool orphanized_ancestor = false;
4189
4190 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4191
4192 /*
4193 * This should never happen as the root dir always has the same ref
4194 * which is always '..'
4195 */
4196 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4197 btrfs_err(fs_info,
4198 "send: unexpected inode %llu in process_recorded_refs()",
4199 sctx->cur_ino);
4200 ret = -EINVAL;
4201 goto out;
4202 }
4203
4204 valid_path = fs_path_alloc();
4205 if (!valid_path) {
4206 ret = -ENOMEM;
4207 goto out;
4208 }
4209
4210 /*
4211 * First, check if the first ref of the current inode was overwritten
4212 * before. If yes, we know that the current inode was already orphanized
4213 * and thus use the orphan name. If not, we can use get_cur_path to
4214 * get the path of the first ref as it would like while receiving at
4215 * this point in time.
4216 * New inodes are always orphan at the beginning, so force to use the
4217 * orphan name in this case.
4218 * The first ref is stored in valid_path and will be updated if it
4219 * gets moved around.
4220 */
4221 if (!sctx->cur_inode_new) {
4222 ret = did_overwrite_first_ref(sctx, ino: sctx->cur_ino,
4223 gen: sctx->cur_inode_gen);
4224 if (ret < 0)
4225 goto out;
4226 if (ret)
4227 did_overwrite = 1;
4228 }
4229 if (sctx->cur_inode_new || did_overwrite) {
4230 ret = gen_unique_name(sctx, ino: sctx->cur_ino,
4231 gen: sctx->cur_inode_gen, dest: valid_path);
4232 if (ret < 0)
4233 goto out;
4234 is_orphan = 1;
4235 } else {
4236 ret = get_cur_path(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen,
4237 dest: valid_path);
4238 if (ret < 0)
4239 goto out;
4240 }
4241
4242 /*
4243 * Before doing any rename and link operations, do a first pass on the
4244 * new references to orphanize any unprocessed inodes that may have a
4245 * reference that conflicts with one of the new references of the current
4246 * inode. This needs to happen first because a new reference may conflict
4247 * with the old reference of a parent directory, so we must make sure
4248 * that the path used for link and rename commands don't use an
4249 * orphanized name when an ancestor was not yet orphanized.
4250 *
4251 * Example:
4252 *
4253 * Parent snapshot:
4254 *
4255 * . (ino 256)
4256 * |----- testdir/ (ino 259)
4257 * | |----- a (ino 257)
4258 * |
4259 * |----- b (ino 258)
4260 *
4261 * Send snapshot:
4262 *
4263 * . (ino 256)
4264 * |----- testdir_2/ (ino 259)
4265 * | |----- a (ino 260)
4266 * |
4267 * |----- testdir (ino 257)
4268 * |----- b (ino 257)
4269 * |----- b2 (ino 258)
4270 *
4271 * Processing the new reference for inode 257 with name "b" may happen
4272 * before processing the new reference with name "testdir". If so, we
4273 * must make sure that by the time we send a link command to create the
4274 * hard link "b", inode 259 was already orphanized, since the generated
4275 * path in "valid_path" already contains the orphanized name for 259.
4276 * We are processing inode 257, so only later when processing 259 we do
4277 * the rename operation to change its temporary (orphanized) name to
4278 * "testdir_2".
4279 */
4280 list_for_each_entry(cur, &sctx->new_refs, list) {
4281 ret = get_cur_inode_state(sctx, ino: cur->dir, gen: cur->dir_gen, NULL, NULL);
4282 if (ret < 0)
4283 goto out;
4284 if (ret == inode_state_will_create)
4285 continue;
4286
4287 /*
4288 * Check if this new ref would overwrite the first ref of another
4289 * unprocessed inode. If yes, orphanize the overwritten inode.
4290 * If we find an overwritten ref that is not the first ref,
4291 * simply unlink it.
4292 */
4293 ret = will_overwrite_ref(sctx, dir: cur->dir, dir_gen: cur->dir_gen,
4294 name: cur->name, name_len: cur->name_len,
4295 who_ino: &ow_inode, who_gen: &ow_gen, who_mode: &ow_mode);
4296 if (ret < 0)
4297 goto out;
4298 if (ret) {
4299 ret = is_first_ref(root: sctx->parent_root,
4300 ino: ow_inode, dir: cur->dir, name: cur->name,
4301 name_len: cur->name_len);
4302 if (ret < 0)
4303 goto out;
4304 if (ret) {
4305 struct name_cache_entry *nce;
4306 struct waiting_dir_move *wdm;
4307
4308 if (orphanized_dir) {
4309 ret = refresh_ref_path(sctx, ref: cur);
4310 if (ret < 0)
4311 goto out;
4312 }
4313
4314 ret = orphanize_inode(sctx, ino: ow_inode, gen: ow_gen,
4315 path: cur->full_path);
4316 if (ret < 0)
4317 goto out;
4318 if (S_ISDIR(ow_mode))
4319 orphanized_dir = true;
4320
4321 /*
4322 * If ow_inode has its rename operation delayed
4323 * make sure that its orphanized name is used in
4324 * the source path when performing its rename
4325 * operation.
4326 */
4327 wdm = get_waiting_dir_move(sctx, ino: ow_inode);
4328 if (wdm)
4329 wdm->orphanized = true;
4330
4331 /*
4332 * Make sure we clear our orphanized inode's
4333 * name from the name cache. This is because the
4334 * inode ow_inode might be an ancestor of some
4335 * other inode that will be orphanized as well
4336 * later and has an inode number greater than
4337 * sctx->send_progress. We need to prevent
4338 * future name lookups from using the old name
4339 * and get instead the orphan name.
4340 */
4341 nce = name_cache_search(sctx, ino: ow_inode, gen: ow_gen);
4342 if (nce)
4343 btrfs_lru_cache_remove(cache: &sctx->name_cache,
4344 entry: &nce->entry);
4345
4346 /*
4347 * ow_inode might currently be an ancestor of
4348 * cur_ino, therefore compute valid_path (the
4349 * current path of cur_ino) again because it
4350 * might contain the pre-orphanization name of
4351 * ow_inode, which is no longer valid.
4352 */
4353 ret = is_ancestor(root: sctx->parent_root,
4354 ino1: ow_inode, ino1_gen: ow_gen,
4355 ino2: sctx->cur_ino, NULL);
4356 if (ret > 0) {
4357 orphanized_ancestor = true;
4358 fs_path_reset(p: valid_path);
4359 ret = get_cur_path(sctx, ino: sctx->cur_ino,
4360 gen: sctx->cur_inode_gen,
4361 dest: valid_path);
4362 }
4363 if (ret < 0)
4364 goto out;
4365 } else {
4366 /*
4367 * If we previously orphanized a directory that
4368 * collided with a new reference that we already
4369 * processed, recompute the current path because
4370 * that directory may be part of the path.
4371 */
4372 if (orphanized_dir) {
4373 ret = refresh_ref_path(sctx, ref: cur);
4374 if (ret < 0)
4375 goto out;
4376 }
4377 ret = send_unlink(sctx, path: cur->full_path);
4378 if (ret < 0)
4379 goto out;
4380 }
4381 }
4382
4383 }
4384
4385 list_for_each_entry(cur, &sctx->new_refs, list) {
4386 /*
4387 * We may have refs where the parent directory does not exist
4388 * yet. This happens if the parent directories inum is higher
4389 * than the current inum. To handle this case, we create the
4390 * parent directory out of order. But we need to check if this
4391 * did already happen before due to other refs in the same dir.
4392 */
4393 ret = get_cur_inode_state(sctx, ino: cur->dir, gen: cur->dir_gen, NULL, NULL);
4394 if (ret < 0)
4395 goto out;
4396 if (ret == inode_state_will_create) {
4397 ret = 0;
4398 /*
4399 * First check if any of the current inodes refs did
4400 * already create the dir.
4401 */
4402 list_for_each_entry(cur2, &sctx->new_refs, list) {
4403 if (cur == cur2)
4404 break;
4405 if (cur2->dir == cur->dir) {
4406 ret = 1;
4407 break;
4408 }
4409 }
4410
4411 /*
4412 * If that did not happen, check if a previous inode
4413 * did already create the dir.
4414 */
4415 if (!ret)
4416 ret = did_create_dir(sctx, dir: cur->dir);
4417 if (ret < 0)
4418 goto out;
4419 if (!ret) {
4420 ret = send_create_inode(sctx, ino: cur->dir);
4421 if (ret < 0)
4422 goto out;
4423 cache_dir_created(sctx, dir: cur->dir);
4424 }
4425 }
4426
4427 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4428 ret = wait_for_dest_dir_move(sctx, parent_ref: cur, is_orphan);
4429 if (ret < 0)
4430 goto out;
4431 if (ret == 1) {
4432 can_rename = false;
4433 *pending_move = 1;
4434 }
4435 }
4436
4437 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4438 can_rename) {
4439 ret = wait_for_parent_move(sctx, parent_ref: cur, is_orphan);
4440 if (ret < 0)
4441 goto out;
4442 if (ret == 1) {
4443 can_rename = false;
4444 *pending_move = 1;
4445 }
4446 }
4447
4448 /*
4449 * link/move the ref to the new place. If we have an orphan
4450 * inode, move it and update valid_path. If not, link or move
4451 * it depending on the inode mode.
4452 */
4453 if (is_orphan && can_rename) {
4454 ret = send_rename(sctx, from: valid_path, to: cur->full_path);
4455 if (ret < 0)
4456 goto out;
4457 is_orphan = 0;
4458 ret = fs_path_copy(p: valid_path, from: cur->full_path);
4459 if (ret < 0)
4460 goto out;
4461 } else if (can_rename) {
4462 if (S_ISDIR(sctx->cur_inode_mode)) {
4463 /*
4464 * Dirs can't be linked, so move it. For moved
4465 * dirs, we always have one new and one deleted
4466 * ref. The deleted ref is ignored later.
4467 */
4468 ret = send_rename(sctx, from: valid_path,
4469 to: cur->full_path);
4470 if (!ret)
4471 ret = fs_path_copy(p: valid_path,
4472 from: cur->full_path);
4473 if (ret < 0)
4474 goto out;
4475 } else {
4476 /*
4477 * We might have previously orphanized an inode
4478 * which is an ancestor of our current inode,
4479 * so our reference's full path, which was
4480 * computed before any such orphanizations, must
4481 * be updated.
4482 */
4483 if (orphanized_dir) {
4484 ret = update_ref_path(sctx, ref: cur);
4485 if (ret < 0)
4486 goto out;
4487 }
4488 ret = send_link(sctx, path: cur->full_path,
4489 lnk: valid_path);
4490 if (ret < 0)
4491 goto out;
4492 }
4493 }
4494 ret = dup_ref(ref: cur, list: &check_dirs);
4495 if (ret < 0)
4496 goto out;
4497 }
4498
4499 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4500 /*
4501 * Check if we can already rmdir the directory. If not,
4502 * orphanize it. For every dir item inside that gets deleted
4503 * later, we do this check again and rmdir it then if possible.
4504 * See the use of check_dirs for more details.
4505 */
4506 ret = can_rmdir(sctx, dir: sctx->cur_ino, dir_gen: sctx->cur_inode_gen);
4507 if (ret < 0)
4508 goto out;
4509 if (ret) {
4510 ret = send_rmdir(sctx, path: valid_path);
4511 if (ret < 0)
4512 goto out;
4513 } else if (!is_orphan) {
4514 ret = orphanize_inode(sctx, ino: sctx->cur_ino,
4515 gen: sctx->cur_inode_gen, path: valid_path);
4516 if (ret < 0)
4517 goto out;
4518 is_orphan = 1;
4519 }
4520
4521 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4522 ret = dup_ref(ref: cur, list: &check_dirs);
4523 if (ret < 0)
4524 goto out;
4525 }
4526 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4527 !list_empty(head: &sctx->deleted_refs)) {
4528 /*
4529 * We have a moved dir. Add the old parent to check_dirs
4530 */
4531 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4532 list);
4533 ret = dup_ref(ref: cur, list: &check_dirs);
4534 if (ret < 0)
4535 goto out;
4536 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4537 /*
4538 * We have a non dir inode. Go through all deleted refs and
4539 * unlink them if they were not already overwritten by other
4540 * inodes.
4541 */
4542 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4543 ret = did_overwrite_ref(sctx, dir: cur->dir, dir_gen: cur->dir_gen,
4544 ino: sctx->cur_ino, ino_gen: sctx->cur_inode_gen,
4545 name: cur->name, name_len: cur->name_len);
4546 if (ret < 0)
4547 goto out;
4548 if (!ret) {
4549 /*
4550 * If we orphanized any ancestor before, we need
4551 * to recompute the full path for deleted names,
4552 * since any such path was computed before we
4553 * processed any references and orphanized any
4554 * ancestor inode.
4555 */
4556 if (orphanized_ancestor) {
4557 ret = update_ref_path(sctx, ref: cur);
4558 if (ret < 0)
4559 goto out;
4560 }
4561 ret = send_unlink(sctx, path: cur->full_path);
4562 if (ret < 0)
4563 goto out;
4564 }
4565 ret = dup_ref(ref: cur, list: &check_dirs);
4566 if (ret < 0)
4567 goto out;
4568 }
4569 /*
4570 * If the inode is still orphan, unlink the orphan. This may
4571 * happen when a previous inode did overwrite the first ref
4572 * of this inode and no new refs were added for the current
4573 * inode. Unlinking does not mean that the inode is deleted in
4574 * all cases. There may still be links to this inode in other
4575 * places.
4576 */
4577 if (is_orphan) {
4578 ret = send_unlink(sctx, path: valid_path);
4579 if (ret < 0)
4580 goto out;
4581 }
4582 }
4583
4584 /*
4585 * We did collect all parent dirs where cur_inode was once located. We
4586 * now go through all these dirs and check if they are pending for
4587 * deletion and if it's finally possible to perform the rmdir now.
4588 * We also update the inode stats of the parent dirs here.
4589 */
4590 list_for_each_entry(cur, &check_dirs, list) {
4591 /*
4592 * In case we had refs into dirs that were not processed yet,
4593 * we don't need to do the utime and rmdir logic for these dirs.
4594 * The dir will be processed later.
4595 */
4596 if (cur->dir > sctx->cur_ino)
4597 continue;
4598
4599 ret = get_cur_inode_state(sctx, ino: cur->dir, gen: cur->dir_gen, NULL, NULL);
4600 if (ret < 0)
4601 goto out;
4602
4603 if (ret == inode_state_did_create ||
4604 ret == inode_state_no_change) {
4605 ret = cache_dir_utimes(sctx, dir: cur->dir, gen: cur->dir_gen);
4606 if (ret < 0)
4607 goto out;
4608 } else if (ret == inode_state_did_delete &&
4609 cur->dir != last_dir_ino_rm) {
4610 ret = can_rmdir(sctx, dir: cur->dir, dir_gen: cur->dir_gen);
4611 if (ret < 0)
4612 goto out;
4613 if (ret) {
4614 ret = get_cur_path(sctx, ino: cur->dir,
4615 gen: cur->dir_gen, dest: valid_path);
4616 if (ret < 0)
4617 goto out;
4618 ret = send_rmdir(sctx, path: valid_path);
4619 if (ret < 0)
4620 goto out;
4621 last_dir_ino_rm = cur->dir;
4622 }
4623 }
4624 }
4625
4626 ret = 0;
4627
4628out:
4629 __free_recorded_refs(head: &check_dirs);
4630 free_recorded_refs(sctx);
4631 fs_path_free(p: valid_path);
4632 return ret;
4633}
4634
4635static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4636{
4637 const struct recorded_ref *data = k;
4638 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4639 int result;
4640
4641 if (data->dir > ref->dir)
4642 return 1;
4643 if (data->dir < ref->dir)
4644 return -1;
4645 if (data->dir_gen > ref->dir_gen)
4646 return 1;
4647 if (data->dir_gen < ref->dir_gen)
4648 return -1;
4649 if (data->name_len > ref->name_len)
4650 return 1;
4651 if (data->name_len < ref->name_len)
4652 return -1;
4653 result = strcmp(data->name, ref->name);
4654 if (result > 0)
4655 return 1;
4656 if (result < 0)
4657 return -1;
4658 return 0;
4659}
4660
4661static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4662{
4663 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4664
4665 return rbtree_ref_comp(k: entry, node: parent) < 0;
4666}
4667
4668static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4669 struct fs_path *name, u64 dir, u64 dir_gen,
4670 struct send_ctx *sctx)
4671{
4672 int ret = 0;
4673 struct fs_path *path = NULL;
4674 struct recorded_ref *ref = NULL;
4675
4676 path = fs_path_alloc();
4677 if (!path) {
4678 ret = -ENOMEM;
4679 goto out;
4680 }
4681
4682 ref = recorded_ref_alloc();
4683 if (!ref) {
4684 ret = -ENOMEM;
4685 goto out;
4686 }
4687
4688 ret = get_cur_path(sctx, ino: dir, gen: dir_gen, dest: path);
4689 if (ret < 0)
4690 goto out;
4691 ret = fs_path_add_path(p: path, p2: name);
4692 if (ret < 0)
4693 goto out;
4694
4695 ref->dir = dir;
4696 ref->dir_gen = dir_gen;
4697 set_ref_path(ref, path);
4698 list_add_tail(new: &ref->list, head: refs);
4699 rb_add(node: &ref->node, tree: root, less: rbtree_ref_less);
4700 ref->root = root;
4701out:
4702 if (ret) {
4703 if (path && (!ref || !ref->full_path))
4704 fs_path_free(p: path);
4705 recorded_ref_free(ref);
4706 }
4707 return ret;
4708}
4709
4710static int record_new_ref_if_needed(int num, u64 dir, int index,
4711 struct fs_path *name, void *ctx)
4712{
4713 int ret = 0;
4714 struct send_ctx *sctx = ctx;
4715 struct rb_node *node = NULL;
4716 struct recorded_ref data;
4717 struct recorded_ref *ref;
4718 u64 dir_gen;
4719
4720 ret = get_inode_gen(root: sctx->send_root, ino: dir, gen: &dir_gen);
4721 if (ret < 0)
4722 goto out;
4723
4724 data.dir = dir;
4725 data.dir_gen = dir_gen;
4726 set_ref_path(ref: &data, path: name);
4727 node = rb_find(key: &data, tree: &sctx->rbtree_deleted_refs, cmp: rbtree_ref_comp);
4728 if (node) {
4729 ref = rb_entry(node, struct recorded_ref, node);
4730 recorded_ref_free(ref);
4731 } else {
4732 ret = record_ref_in_tree(root: &sctx->rbtree_new_refs,
4733 refs: &sctx->new_refs, name, dir, dir_gen,
4734 sctx);
4735 }
4736out:
4737 return ret;
4738}
4739
4740static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4741 struct fs_path *name, void *ctx)
4742{
4743 int ret = 0;
4744 struct send_ctx *sctx = ctx;
4745 struct rb_node *node = NULL;
4746 struct recorded_ref data;
4747 struct recorded_ref *ref;
4748 u64 dir_gen;
4749
4750 ret = get_inode_gen(root: sctx->parent_root, ino: dir, gen: &dir_gen);
4751 if (ret < 0)
4752 goto out;
4753
4754 data.dir = dir;
4755 data.dir_gen = dir_gen;
4756 set_ref_path(ref: &data, path: name);
4757 node = rb_find(key: &data, tree: &sctx->rbtree_new_refs, cmp: rbtree_ref_comp);
4758 if (node) {
4759 ref = rb_entry(node, struct recorded_ref, node);
4760 recorded_ref_free(ref);
4761 } else {
4762 ret = record_ref_in_tree(root: &sctx->rbtree_deleted_refs,
4763 refs: &sctx->deleted_refs, name, dir,
4764 dir_gen, sctx);
4765 }
4766out:
4767 return ret;
4768}
4769
4770static int record_new_ref(struct send_ctx *sctx)
4771{
4772 int ret;
4773
4774 ret = iterate_inode_ref(root: sctx->send_root, path: sctx->left_path,
4775 found_key: sctx->cmp_key, resolve: 0, iterate: record_new_ref_if_needed, ctx: sctx);
4776 if (ret < 0)
4777 goto out;
4778 ret = 0;
4779
4780out:
4781 return ret;
4782}
4783
4784static int record_deleted_ref(struct send_ctx *sctx)
4785{
4786 int ret;
4787
4788 ret = iterate_inode_ref(root: sctx->parent_root, path: sctx->right_path,
4789 found_key: sctx->cmp_key, resolve: 0, iterate: record_deleted_ref_if_needed,
4790 ctx: sctx);
4791 if (ret < 0)
4792 goto out;
4793 ret = 0;
4794
4795out:
4796 return ret;
4797}
4798
4799static int record_changed_ref(struct send_ctx *sctx)
4800{
4801 int ret = 0;
4802
4803 ret = iterate_inode_ref(root: sctx->send_root, path: sctx->left_path,
4804 found_key: sctx->cmp_key, resolve: 0, iterate: record_new_ref_if_needed, ctx: sctx);
4805 if (ret < 0)
4806 goto out;
4807 ret = iterate_inode_ref(root: sctx->parent_root, path: sctx->right_path,
4808 found_key: sctx->cmp_key, resolve: 0, iterate: record_deleted_ref_if_needed, ctx: sctx);
4809 if (ret < 0)
4810 goto out;
4811 ret = 0;
4812
4813out:
4814 return ret;
4815}
4816
4817/*
4818 * Record and process all refs at once. Needed when an inode changes the
4819 * generation number, which means that it was deleted and recreated.
4820 */
4821static int process_all_refs(struct send_ctx *sctx,
4822 enum btrfs_compare_tree_result cmd)
4823{
4824 int ret = 0;
4825 int iter_ret = 0;
4826 struct btrfs_root *root;
4827 struct btrfs_path *path;
4828 struct btrfs_key key;
4829 struct btrfs_key found_key;
4830 iterate_inode_ref_t cb;
4831 int pending_move = 0;
4832
4833 path = alloc_path_for_send();
4834 if (!path)
4835 return -ENOMEM;
4836
4837 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4838 root = sctx->send_root;
4839 cb = record_new_ref_if_needed;
4840 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4841 root = sctx->parent_root;
4842 cb = record_deleted_ref_if_needed;
4843 } else {
4844 btrfs_err(sctx->send_root->fs_info,
4845 "Wrong command %d in process_all_refs", cmd);
4846 ret = -EINVAL;
4847 goto out;
4848 }
4849
4850 key.objectid = sctx->cmp_key->objectid;
4851 key.type = BTRFS_INODE_REF_KEY;
4852 key.offset = 0;
4853 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4854 if (found_key.objectid != key.objectid ||
4855 (found_key.type != BTRFS_INODE_REF_KEY &&
4856 found_key.type != BTRFS_INODE_EXTREF_KEY))
4857 break;
4858
4859 ret = iterate_inode_ref(root, path, found_key: &found_key, resolve: 0, iterate: cb, ctx: sctx);
4860 if (ret < 0)
4861 goto out;
4862 }
4863 /* Catch error found during iteration */
4864 if (iter_ret < 0) {
4865 ret = iter_ret;
4866 goto out;
4867 }
4868 btrfs_release_path(p: path);
4869
4870 /*
4871 * We don't actually care about pending_move as we are simply
4872 * re-creating this inode and will be rename'ing it into place once we
4873 * rename the parent directory.
4874 */
4875 ret = process_recorded_refs(sctx, pending_move: &pending_move);
4876out:
4877 btrfs_free_path(p: path);
4878 return ret;
4879}
4880
4881static int send_set_xattr(struct send_ctx *sctx,
4882 struct fs_path *path,
4883 const char *name, int name_len,
4884 const char *data, int data_len)
4885{
4886 int ret = 0;
4887
4888 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_SET_XATTR);
4889 if (ret < 0)
4890 goto out;
4891
4892 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4893 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4894 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4895
4896 ret = send_cmd(sctx);
4897
4898tlv_put_failure:
4899out:
4900 return ret;
4901}
4902
4903static int send_remove_xattr(struct send_ctx *sctx,
4904 struct fs_path *path,
4905 const char *name, int name_len)
4906{
4907 int ret = 0;
4908
4909 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_REMOVE_XATTR);
4910 if (ret < 0)
4911 goto out;
4912
4913 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4914 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4915
4916 ret = send_cmd(sctx);
4917
4918tlv_put_failure:
4919out:
4920 return ret;
4921}
4922
4923static int __process_new_xattr(int num, struct btrfs_key *di_key,
4924 const char *name, int name_len, const char *data,
4925 int data_len, void *ctx)
4926{
4927 int ret;
4928 struct send_ctx *sctx = ctx;
4929 struct fs_path *p;
4930 struct posix_acl_xattr_header dummy_acl;
4931
4932 /* Capabilities are emitted by finish_inode_if_needed */
4933 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4934 return 0;
4935
4936 p = fs_path_alloc();
4937 if (!p)
4938 return -ENOMEM;
4939
4940 /*
4941 * This hack is needed because empty acls are stored as zero byte
4942 * data in xattrs. Problem with that is, that receiving these zero byte
4943 * acls will fail later. To fix this, we send a dummy acl list that
4944 * only contains the version number and no entries.
4945 */
4946 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4947 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4948 if (data_len == 0) {
4949 dummy_acl.a_version =
4950 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4951 data = (char *)&dummy_acl;
4952 data_len = sizeof(dummy_acl);
4953 }
4954 }
4955
4956 ret = get_cur_path(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen, dest: p);
4957 if (ret < 0)
4958 goto out;
4959
4960 ret = send_set_xattr(sctx, path: p, name, name_len, data, data_len);
4961
4962out:
4963 fs_path_free(p);
4964 return ret;
4965}
4966
4967static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4968 const char *name, int name_len,
4969 const char *data, int data_len, void *ctx)
4970{
4971 int ret;
4972 struct send_ctx *sctx = ctx;
4973 struct fs_path *p;
4974
4975 p = fs_path_alloc();
4976 if (!p)
4977 return -ENOMEM;
4978
4979 ret = get_cur_path(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen, dest: p);
4980 if (ret < 0)
4981 goto out;
4982
4983 ret = send_remove_xattr(sctx, path: p, name, name_len);
4984
4985out:
4986 fs_path_free(p);
4987 return ret;
4988}
4989
4990static int process_new_xattr(struct send_ctx *sctx)
4991{
4992 int ret = 0;
4993
4994 ret = iterate_dir_item(root: sctx->send_root, path: sctx->left_path,
4995 iterate: __process_new_xattr, ctx: sctx);
4996
4997 return ret;
4998}
4999
5000static int process_deleted_xattr(struct send_ctx *sctx)
5001{
5002 return iterate_dir_item(root: sctx->parent_root, path: sctx->right_path,
5003 iterate: __process_deleted_xattr, ctx: sctx);
5004}
5005
5006struct find_xattr_ctx {
5007 const char *name;
5008 int name_len;
5009 int found_idx;
5010 char *found_data;
5011 int found_data_len;
5012};
5013
5014static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5015 int name_len, const char *data, int data_len, void *vctx)
5016{
5017 struct find_xattr_ctx *ctx = vctx;
5018
5019 if (name_len == ctx->name_len &&
5020 strncmp(name, ctx->name, name_len) == 0) {
5021 ctx->found_idx = num;
5022 ctx->found_data_len = data_len;
5023 ctx->found_data = kmemdup(p: data, size: data_len, GFP_KERNEL);
5024 if (!ctx->found_data)
5025 return -ENOMEM;
5026 return 1;
5027 }
5028 return 0;
5029}
5030
5031static int find_xattr(struct btrfs_root *root,
5032 struct btrfs_path *path,
5033 struct btrfs_key *key,
5034 const char *name, int name_len,
5035 char **data, int *data_len)
5036{
5037 int ret;
5038 struct find_xattr_ctx ctx;
5039
5040 ctx.name = name;
5041 ctx.name_len = name_len;
5042 ctx.found_idx = -1;
5043 ctx.found_data = NULL;
5044 ctx.found_data_len = 0;
5045
5046 ret = iterate_dir_item(root, path, iterate: __find_xattr, ctx: &ctx);
5047 if (ret < 0)
5048 return ret;
5049
5050 if (ctx.found_idx == -1)
5051 return -ENOENT;
5052 if (data) {
5053 *data = ctx.found_data;
5054 *data_len = ctx.found_data_len;
5055 } else {
5056 kfree(objp: ctx.found_data);
5057 }
5058 return ctx.found_idx;
5059}
5060
5061
5062static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5063 const char *name, int name_len,
5064 const char *data, int data_len,
5065 void *ctx)
5066{
5067 int ret;
5068 struct send_ctx *sctx = ctx;
5069 char *found_data = NULL;
5070 int found_data_len = 0;
5071
5072 ret = find_xattr(root: sctx->parent_root, path: sctx->right_path,
5073 key: sctx->cmp_key, name, name_len, data: &found_data,
5074 data_len: &found_data_len);
5075 if (ret == -ENOENT) {
5076 ret = __process_new_xattr(num, di_key, name, name_len, data,
5077 data_len, ctx);
5078 } else if (ret >= 0) {
5079 if (data_len != found_data_len ||
5080 memcmp(p: data, q: found_data, size: data_len)) {
5081 ret = __process_new_xattr(num, di_key, name, name_len,
5082 data, data_len, ctx);
5083 } else {
5084 ret = 0;
5085 }
5086 }
5087
5088 kfree(objp: found_data);
5089 return ret;
5090}
5091
5092static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5093 const char *name, int name_len,
5094 const char *data, int data_len,
5095 void *ctx)
5096{
5097 int ret;
5098 struct send_ctx *sctx = ctx;
5099
5100 ret = find_xattr(root: sctx->send_root, path: sctx->left_path, key: sctx->cmp_key,
5101 name, name_len, NULL, NULL);
5102 if (ret == -ENOENT)
5103 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5104 data_len, ctx);
5105 else if (ret >= 0)
5106 ret = 0;
5107
5108 return ret;
5109}
5110
5111static int process_changed_xattr(struct send_ctx *sctx)
5112{
5113 int ret = 0;
5114
5115 ret = iterate_dir_item(root: sctx->send_root, path: sctx->left_path,
5116 iterate: __process_changed_new_xattr, ctx: sctx);
5117 if (ret < 0)
5118 goto out;
5119 ret = iterate_dir_item(root: sctx->parent_root, path: sctx->right_path,
5120 iterate: __process_changed_deleted_xattr, ctx: sctx);
5121
5122out:
5123 return ret;
5124}
5125
5126static int process_all_new_xattrs(struct send_ctx *sctx)
5127{
5128 int ret = 0;
5129 int iter_ret = 0;
5130 struct btrfs_root *root;
5131 struct btrfs_path *path;
5132 struct btrfs_key key;
5133 struct btrfs_key found_key;
5134
5135 path = alloc_path_for_send();
5136 if (!path)
5137 return -ENOMEM;
5138
5139 root = sctx->send_root;
5140
5141 key.objectid = sctx->cmp_key->objectid;
5142 key.type = BTRFS_XATTR_ITEM_KEY;
5143 key.offset = 0;
5144 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5145 if (found_key.objectid != key.objectid ||
5146 found_key.type != key.type) {
5147 ret = 0;
5148 break;
5149 }
5150
5151 ret = iterate_dir_item(root, path, iterate: __process_new_xattr, ctx: sctx);
5152 if (ret < 0)
5153 break;
5154 }
5155 /* Catch error found during iteration */
5156 if (iter_ret < 0)
5157 ret = iter_ret;
5158
5159 btrfs_free_path(p: path);
5160 return ret;
5161}
5162
5163static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5164 struct fsverity_descriptor *desc)
5165{
5166 int ret;
5167
5168 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_ENABLE_VERITY);
5169 if (ret < 0)
5170 goto out;
5171
5172 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5173 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5174 le8_to_cpu(desc->hash_algorithm));
5175 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5176 1U << le8_to_cpu(desc->log_blocksize));
5177 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5178 le8_to_cpu(desc->salt_size));
5179 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5180 le32_to_cpu(desc->sig_size));
5181
5182 ret = send_cmd(sctx);
5183
5184tlv_put_failure:
5185out:
5186 return ret;
5187}
5188
5189static int process_verity(struct send_ctx *sctx)
5190{
5191 int ret = 0;
5192 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5193 struct inode *inode;
5194 struct fs_path *p;
5195
5196 inode = btrfs_iget(s: fs_info->sb, ino: sctx->cur_ino, root: sctx->send_root);
5197 if (IS_ERR(ptr: inode))
5198 return PTR_ERR(ptr: inode);
5199
5200 ret = btrfs_get_verity_descriptor(inode, NULL, buf_size: 0);
5201 if (ret < 0)
5202 goto iput;
5203
5204 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5205 ret = -EMSGSIZE;
5206 goto iput;
5207 }
5208 if (!sctx->verity_descriptor) {
5209 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5210 GFP_KERNEL);
5211 if (!sctx->verity_descriptor) {
5212 ret = -ENOMEM;
5213 goto iput;
5214 }
5215 }
5216
5217 ret = btrfs_get_verity_descriptor(inode, buf: sctx->verity_descriptor, buf_size: ret);
5218 if (ret < 0)
5219 goto iput;
5220
5221 p = fs_path_alloc();
5222 if (!p) {
5223 ret = -ENOMEM;
5224 goto iput;
5225 }
5226 ret = get_cur_path(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen, dest: p);
5227 if (ret < 0)
5228 goto free_path;
5229
5230 ret = send_verity(sctx, path: p, desc: sctx->verity_descriptor);
5231 if (ret < 0)
5232 goto free_path;
5233
5234free_path:
5235 fs_path_free(p);
5236iput:
5237 iput(inode);
5238 return ret;
5239}
5240
5241static inline u64 max_send_read_size(const struct send_ctx *sctx)
5242{
5243 return sctx->send_max_size - SZ_16K;
5244}
5245
5246static int put_data_header(struct send_ctx *sctx, u32 len)
5247{
5248 if (WARN_ON_ONCE(sctx->put_data))
5249 return -EINVAL;
5250 sctx->put_data = true;
5251 if (sctx->proto >= 2) {
5252 /*
5253 * Since v2, the data attribute header doesn't include a length,
5254 * it is implicitly to the end of the command.
5255 */
5256 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5257 return -EOVERFLOW;
5258 put_unaligned_le16(val: BTRFS_SEND_A_DATA, p: sctx->send_buf + sctx->send_size);
5259 sctx->send_size += sizeof(__le16);
5260 } else {
5261 struct btrfs_tlv_header *hdr;
5262
5263 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5264 return -EOVERFLOW;
5265 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5266 put_unaligned_le16(val: BTRFS_SEND_A_DATA, p: &hdr->tlv_type);
5267 put_unaligned_le16(val: len, p: &hdr->tlv_len);
5268 sctx->send_size += sizeof(*hdr);
5269 }
5270 return 0;
5271}
5272
5273static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5274{
5275 struct btrfs_root *root = sctx->send_root;
5276 struct btrfs_fs_info *fs_info = root->fs_info;
5277 struct page *page;
5278 pgoff_t index = offset >> PAGE_SHIFT;
5279 pgoff_t last_index;
5280 unsigned pg_offset = offset_in_page(offset);
5281 int ret;
5282
5283 ret = put_data_header(sctx, len);
5284 if (ret)
5285 return ret;
5286
5287 last_index = (offset + len - 1) >> PAGE_SHIFT;
5288
5289 while (index <= last_index) {
5290 unsigned cur_len = min_t(unsigned, len,
5291 PAGE_SIZE - pg_offset);
5292
5293 page = find_lock_page(mapping: sctx->cur_inode->i_mapping, index);
5294 if (!page) {
5295 page_cache_sync_readahead(mapping: sctx->cur_inode->i_mapping,
5296 ra: &sctx->ra, NULL, index,
5297 req_count: last_index + 1 - index);
5298
5299 page = find_or_create_page(mapping: sctx->cur_inode->i_mapping,
5300 index, GFP_KERNEL);
5301 if (!page) {
5302 ret = -ENOMEM;
5303 break;
5304 }
5305 }
5306
5307 if (PageReadahead(page))
5308 page_cache_async_readahead(mapping: sctx->cur_inode->i_mapping,
5309 ra: &sctx->ra, NULL, page_folio(page),
5310 index, req_count: last_index + 1 - index);
5311
5312 if (!PageUptodate(page)) {
5313 btrfs_read_folio(NULL, page_folio(page));
5314 lock_page(page);
5315 if (!PageUptodate(page)) {
5316 unlock_page(page);
5317 btrfs_err(fs_info,
5318 "send: IO error at offset %llu for inode %llu root %llu",
5319 page_offset(page), sctx->cur_ino,
5320 sctx->send_root->root_key.objectid);
5321 put_page(page);
5322 ret = -EIO;
5323 break;
5324 }
5325 }
5326
5327 memcpy_from_page(to: sctx->send_buf + sctx->send_size, page,
5328 offset: pg_offset, len: cur_len);
5329 unlock_page(page);
5330 put_page(page);
5331 index++;
5332 pg_offset = 0;
5333 len -= cur_len;
5334 sctx->send_size += cur_len;
5335 }
5336
5337 return ret;
5338}
5339
5340/*
5341 * Read some bytes from the current inode/file and send a write command to
5342 * user space.
5343 */
5344static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5345{
5346 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5347 int ret = 0;
5348 struct fs_path *p;
5349
5350 p = fs_path_alloc();
5351 if (!p)
5352 return -ENOMEM;
5353
5354 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5355
5356 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_WRITE);
5357 if (ret < 0)
5358 goto out;
5359
5360 ret = get_cur_path(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen, dest: p);
5361 if (ret < 0)
5362 goto out;
5363
5364 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5365 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5366 ret = put_file_data(sctx, offset, len);
5367 if (ret < 0)
5368 goto out;
5369
5370 ret = send_cmd(sctx);
5371
5372tlv_put_failure:
5373out:
5374 fs_path_free(p);
5375 return ret;
5376}
5377
5378/*
5379 * Send a clone command to user space.
5380 */
5381static int send_clone(struct send_ctx *sctx,
5382 u64 offset, u32 len,
5383 struct clone_root *clone_root)
5384{
5385 int ret = 0;
5386 struct fs_path *p;
5387 u64 gen;
5388
5389 btrfs_debug(sctx->send_root->fs_info,
5390 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5391 offset, len, clone_root->root->root_key.objectid,
5392 clone_root->ino, clone_root->offset);
5393
5394 p = fs_path_alloc();
5395 if (!p)
5396 return -ENOMEM;
5397
5398 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_CLONE);
5399 if (ret < 0)
5400 goto out;
5401
5402 ret = get_cur_path(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen, dest: p);
5403 if (ret < 0)
5404 goto out;
5405
5406 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5407 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5408 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5409
5410 if (clone_root->root == sctx->send_root) {
5411 ret = get_inode_gen(root: sctx->send_root, ino: clone_root->ino, gen: &gen);
5412 if (ret < 0)
5413 goto out;
5414 ret = get_cur_path(sctx, ino: clone_root->ino, gen, dest: p);
5415 } else {
5416 ret = get_inode_path(root: clone_root->root, ino: clone_root->ino, path: p);
5417 }
5418 if (ret < 0)
5419 goto out;
5420
5421 /*
5422 * If the parent we're using has a received_uuid set then use that as
5423 * our clone source as that is what we will look for when doing a
5424 * receive.
5425 *
5426 * This covers the case that we create a snapshot off of a received
5427 * subvolume and then use that as the parent and try to receive on a
5428 * different host.
5429 */
5430 if (!btrfs_is_empty_uuid(uuid: clone_root->root->root_item.received_uuid))
5431 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5432 clone_root->root->root_item.received_uuid);
5433 else
5434 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5435 clone_root->root->root_item.uuid);
5436 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5437 btrfs_root_ctransid(&clone_root->root->root_item));
5438 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5439 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5440 clone_root->offset);
5441
5442 ret = send_cmd(sctx);
5443
5444tlv_put_failure:
5445out:
5446 fs_path_free(p);
5447 return ret;
5448}
5449
5450/*
5451 * Send an update extent command to user space.
5452 */
5453static int send_update_extent(struct send_ctx *sctx,
5454 u64 offset, u32 len)
5455{
5456 int ret = 0;
5457 struct fs_path *p;
5458
5459 p = fs_path_alloc();
5460 if (!p)
5461 return -ENOMEM;
5462
5463 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_UPDATE_EXTENT);
5464 if (ret < 0)
5465 goto out;
5466
5467 ret = get_cur_path(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen, dest: p);
5468 if (ret < 0)
5469 goto out;
5470
5471 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5472 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5473 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5474
5475 ret = send_cmd(sctx);
5476
5477tlv_put_failure:
5478out:
5479 fs_path_free(p);
5480 return ret;
5481}
5482
5483static int send_hole(struct send_ctx *sctx, u64 end)
5484{
5485 struct fs_path *p = NULL;
5486 u64 read_size = max_send_read_size(sctx);
5487 u64 offset = sctx->cur_inode_last_extent;
5488 int ret = 0;
5489
5490 /*
5491 * A hole that starts at EOF or beyond it. Since we do not yet support
5492 * fallocate (for extent preallocation and hole punching), sending a
5493 * write of zeroes starting at EOF or beyond would later require issuing
5494 * a truncate operation which would undo the write and achieve nothing.
5495 */
5496 if (offset >= sctx->cur_inode_size)
5497 return 0;
5498
5499 /*
5500 * Don't go beyond the inode's i_size due to prealloc extents that start
5501 * after the i_size.
5502 */
5503 end = min_t(u64, end, sctx->cur_inode_size);
5504
5505 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5506 return send_update_extent(sctx, offset, len: end - offset);
5507
5508 p = fs_path_alloc();
5509 if (!p)
5510 return -ENOMEM;
5511 ret = get_cur_path(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen, dest: p);
5512 if (ret < 0)
5513 goto tlv_put_failure;
5514 while (offset < end) {
5515 u64 len = min(end - offset, read_size);
5516
5517 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_WRITE);
5518 if (ret < 0)
5519 break;
5520 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5521 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5522 ret = put_data_header(sctx, len);
5523 if (ret < 0)
5524 break;
5525 memset(sctx->send_buf + sctx->send_size, 0, len);
5526 sctx->send_size += len;
5527 ret = send_cmd(sctx);
5528 if (ret < 0)
5529 break;
5530 offset += len;
5531 }
5532 sctx->cur_inode_next_write_offset = offset;
5533tlv_put_failure:
5534 fs_path_free(p);
5535 return ret;
5536}
5537
5538static int send_encoded_inline_extent(struct send_ctx *sctx,
5539 struct btrfs_path *path, u64 offset,
5540 u64 len)
5541{
5542 struct btrfs_root *root = sctx->send_root;
5543 struct btrfs_fs_info *fs_info = root->fs_info;
5544 struct inode *inode;
5545 struct fs_path *fspath;
5546 struct extent_buffer *leaf = path->nodes[0];
5547 struct btrfs_key key;
5548 struct btrfs_file_extent_item *ei;
5549 u64 ram_bytes;
5550 size_t inline_size;
5551 int ret;
5552
5553 inode = btrfs_iget(s: fs_info->sb, ino: sctx->cur_ino, root);
5554 if (IS_ERR(ptr: inode))
5555 return PTR_ERR(ptr: inode);
5556
5557 fspath = fs_path_alloc();
5558 if (!fspath) {
5559 ret = -ENOMEM;
5560 goto out;
5561 }
5562
5563 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_ENCODED_WRITE);
5564 if (ret < 0)
5565 goto out;
5566
5567 ret = get_cur_path(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen, dest: fspath);
5568 if (ret < 0)
5569 goto out;
5570
5571 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
5572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5573 ram_bytes = btrfs_file_extent_ram_bytes(eb: leaf, s: ei);
5574 inline_size = btrfs_file_extent_inline_item_len(eb: leaf, nr: path->slots[0]);
5575
5576 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5577 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5578 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5579 min(key.offset + ram_bytes - offset, len));
5580 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5581 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5582 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5583 compress_type: btrfs_file_extent_compression(eb: leaf, s: ei));
5584 if (ret < 0)
5585 goto out;
5586 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5587
5588 ret = put_data_header(sctx, len: inline_size);
5589 if (ret < 0)
5590 goto out;
5591 read_extent_buffer(eb: leaf, dst: sctx->send_buf + sctx->send_size,
5592 start: btrfs_file_extent_inline_start(e: ei), len: inline_size);
5593 sctx->send_size += inline_size;
5594
5595 ret = send_cmd(sctx);
5596
5597tlv_put_failure:
5598out:
5599 fs_path_free(p: fspath);
5600 iput(inode);
5601 return ret;
5602}
5603
5604static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5605 u64 offset, u64 len)
5606{
5607 struct btrfs_root *root = sctx->send_root;
5608 struct btrfs_fs_info *fs_info = root->fs_info;
5609 struct inode *inode;
5610 struct fs_path *fspath;
5611 struct extent_buffer *leaf = path->nodes[0];
5612 struct btrfs_key key;
5613 struct btrfs_file_extent_item *ei;
5614 u64 disk_bytenr, disk_num_bytes;
5615 u32 data_offset;
5616 struct btrfs_cmd_header *hdr;
5617 u32 crc;
5618 int ret;
5619
5620 inode = btrfs_iget(s: fs_info->sb, ino: sctx->cur_ino, root);
5621 if (IS_ERR(ptr: inode))
5622 return PTR_ERR(ptr: inode);
5623
5624 fspath = fs_path_alloc();
5625 if (!fspath) {
5626 ret = -ENOMEM;
5627 goto out;
5628 }
5629
5630 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_ENCODED_WRITE);
5631 if (ret < 0)
5632 goto out;
5633
5634 ret = get_cur_path(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen, dest: fspath);
5635 if (ret < 0)
5636 goto out;
5637
5638 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
5639 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5640 disk_bytenr = btrfs_file_extent_disk_bytenr(eb: leaf, s: ei);
5641 disk_num_bytes = btrfs_file_extent_disk_num_bytes(eb: leaf, s: ei);
5642
5643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5644 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5645 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5646 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5647 len));
5648 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5649 btrfs_file_extent_ram_bytes(leaf, ei));
5650 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5651 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5652 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5653 compress_type: btrfs_file_extent_compression(eb: leaf, s: ei));
5654 if (ret < 0)
5655 goto out;
5656 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5657 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5658
5659 ret = put_data_header(sctx, len: disk_num_bytes);
5660 if (ret < 0)
5661 goto out;
5662
5663 /*
5664 * We want to do I/O directly into the send buffer, so get the next page
5665 * boundary in the send buffer. This means that there may be a gap
5666 * between the beginning of the command and the file data.
5667 */
5668 data_offset = PAGE_ALIGN(sctx->send_size);
5669 if (data_offset > sctx->send_max_size ||
5670 sctx->send_max_size - data_offset < disk_num_bytes) {
5671 ret = -EOVERFLOW;
5672 goto out;
5673 }
5674
5675 /*
5676 * Note that send_buf is a mapping of send_buf_pages, so this is really
5677 * reading into send_buf.
5678 */
5679 ret = btrfs_encoded_read_regular_fill_pages(inode: BTRFS_I(inode), file_offset: offset,
5680 disk_bytenr, disk_io_size: disk_num_bytes,
5681 pages: sctx->send_buf_pages +
5682 (data_offset >> PAGE_SHIFT));
5683 if (ret)
5684 goto out;
5685
5686 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5687 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5688 hdr->crc = 0;
5689 crc = crc32c(crc: 0, address: sctx->send_buf, length: sctx->send_size);
5690 crc = crc32c(crc, address: sctx->send_buf + data_offset, length: disk_num_bytes);
5691 hdr->crc = cpu_to_le32(crc);
5692
5693 ret = write_buf(filp: sctx->send_filp, buf: sctx->send_buf, len: sctx->send_size,
5694 off: &sctx->send_off);
5695 if (!ret) {
5696 ret = write_buf(filp: sctx->send_filp, buf: sctx->send_buf + data_offset,
5697 len: disk_num_bytes, off: &sctx->send_off);
5698 }
5699 sctx->send_size = 0;
5700 sctx->put_data = false;
5701
5702tlv_put_failure:
5703out:
5704 fs_path_free(p: fspath);
5705 iput(inode);
5706 return ret;
5707}
5708
5709static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5710 const u64 offset, const u64 len)
5711{
5712 const u64 end = offset + len;
5713 struct extent_buffer *leaf = path->nodes[0];
5714 struct btrfs_file_extent_item *ei;
5715 u64 read_size = max_send_read_size(sctx);
5716 u64 sent = 0;
5717
5718 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5719 return send_update_extent(sctx, offset, len);
5720
5721 ei = btrfs_item_ptr(leaf, path->slots[0],
5722 struct btrfs_file_extent_item);
5723 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5724 btrfs_file_extent_compression(eb: leaf, s: ei) != BTRFS_COMPRESS_NONE) {
5725 bool is_inline = (btrfs_file_extent_type(eb: leaf, s: ei) ==
5726 BTRFS_FILE_EXTENT_INLINE);
5727
5728 /*
5729 * Send the compressed extent unless the compressed data is
5730 * larger than the decompressed data. This can happen if we're
5731 * not sending the entire extent, either because it has been
5732 * partially overwritten/truncated or because this is a part of
5733 * the extent that we couldn't clone in clone_range().
5734 */
5735 if (is_inline &&
5736 btrfs_file_extent_inline_item_len(eb: leaf,
5737 nr: path->slots[0]) <= len) {
5738 return send_encoded_inline_extent(sctx, path, offset,
5739 len);
5740 } else if (!is_inline &&
5741 btrfs_file_extent_disk_num_bytes(eb: leaf, s: ei) <= len) {
5742 return send_encoded_extent(sctx, path, offset, len);
5743 }
5744 }
5745
5746 if (sctx->cur_inode == NULL) {
5747 struct btrfs_root *root = sctx->send_root;
5748
5749 sctx->cur_inode = btrfs_iget(s: root->fs_info->sb, ino: sctx->cur_ino, root);
5750 if (IS_ERR(ptr: sctx->cur_inode)) {
5751 int err = PTR_ERR(ptr: sctx->cur_inode);
5752
5753 sctx->cur_inode = NULL;
5754 return err;
5755 }
5756 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5757 file_ra_state_init(ra: &sctx->ra, mapping: sctx->cur_inode->i_mapping);
5758
5759 /*
5760 * It's very likely there are no pages from this inode in the page
5761 * cache, so after reading extents and sending their data, we clean
5762 * the page cache to avoid trashing the page cache (adding pressure
5763 * to the page cache and forcing eviction of other data more useful
5764 * for applications).
5765 *
5766 * We decide if we should clean the page cache simply by checking
5767 * if the inode's mapping nrpages is 0 when we first open it, and
5768 * not by using something like filemap_range_has_page() before
5769 * reading an extent because when we ask the readahead code to
5770 * read a given file range, it may (and almost always does) read
5771 * pages from beyond that range (see the documentation for
5772 * page_cache_sync_readahead()), so it would not be reliable,
5773 * because after reading the first extent future calls to
5774 * filemap_range_has_page() would return true because the readahead
5775 * on the previous extent resulted in reading pages of the current
5776 * extent as well.
5777 */
5778 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5779 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5780 }
5781
5782 while (sent < len) {
5783 u64 size = min(len - sent, read_size);
5784 int ret;
5785
5786 ret = send_write(sctx, offset: offset + sent, len: size);
5787 if (ret < 0)
5788 return ret;
5789 sent += size;
5790 }
5791
5792 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5793 /*
5794 * Always operate only on ranges that are a multiple of the page
5795 * size. This is not only to prevent zeroing parts of a page in
5796 * the case of subpage sector size, but also to guarantee we evict
5797 * pages, as passing a range that is smaller than page size does
5798 * not evict the respective page (only zeroes part of its content).
5799 *
5800 * Always start from the end offset of the last range cleared.
5801 * This is because the readahead code may (and very often does)
5802 * reads pages beyond the range we request for readahead. So if
5803 * we have an extent layout like this:
5804 *
5805 * [ extent A ] [ extent B ] [ extent C ]
5806 *
5807 * When we ask page_cache_sync_readahead() to read extent A, it
5808 * may also trigger reads for pages of extent B. If we are doing
5809 * an incremental send and extent B has not changed between the
5810 * parent and send snapshots, some or all of its pages may end
5811 * up being read and placed in the page cache. So when truncating
5812 * the page cache we always start from the end offset of the
5813 * previously processed extent up to the end of the current
5814 * extent.
5815 */
5816 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5817 lstart: sctx->page_cache_clear_start,
5818 lend: end - 1);
5819 sctx->page_cache_clear_start = end;
5820 }
5821
5822 return 0;
5823}
5824
5825/*
5826 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5827 * found, call send_set_xattr function to emit it.
5828 *
5829 * Return 0 if there isn't a capability, or when the capability was emitted
5830 * successfully, or < 0 if an error occurred.
5831 */
5832static int send_capabilities(struct send_ctx *sctx)
5833{
5834 struct fs_path *fspath = NULL;
5835 struct btrfs_path *path;
5836 struct btrfs_dir_item *di;
5837 struct extent_buffer *leaf;
5838 unsigned long data_ptr;
5839 char *buf = NULL;
5840 int buf_len;
5841 int ret = 0;
5842
5843 path = alloc_path_for_send();
5844 if (!path)
5845 return -ENOMEM;
5846
5847 di = btrfs_lookup_xattr(NULL, root: sctx->send_root, path, dir: sctx->cur_ino,
5848 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), mod: 0);
5849 if (!di) {
5850 /* There is no xattr for this inode */
5851 goto out;
5852 } else if (IS_ERR(ptr: di)) {
5853 ret = PTR_ERR(ptr: di);
5854 goto out;
5855 }
5856
5857 leaf = path->nodes[0];
5858 buf_len = btrfs_dir_data_len(eb: leaf, s: di);
5859
5860 fspath = fs_path_alloc();
5861 buf = kmalloc(size: buf_len, GFP_KERNEL);
5862 if (!fspath || !buf) {
5863 ret = -ENOMEM;
5864 goto out;
5865 }
5866
5867 ret = get_cur_path(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen, dest: fspath);
5868 if (ret < 0)
5869 goto out;
5870
5871 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(eb: leaf, s: di);
5872 read_extent_buffer(eb: leaf, dst: buf, start: data_ptr, len: buf_len);
5873
5874 ret = send_set_xattr(sctx, path: fspath, XATTR_NAME_CAPS,
5875 strlen(XATTR_NAME_CAPS), data: buf, data_len: buf_len);
5876out:
5877 kfree(objp: buf);
5878 fs_path_free(p: fspath);
5879 btrfs_free_path(p: path);
5880 return ret;
5881}
5882
5883static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5884 struct clone_root *clone_root, const u64 disk_byte,
5885 u64 data_offset, u64 offset, u64 len)
5886{
5887 struct btrfs_path *path;
5888 struct btrfs_key key;
5889 int ret;
5890 struct btrfs_inode_info info;
5891 u64 clone_src_i_size = 0;
5892
5893 /*
5894 * Prevent cloning from a zero offset with a length matching the sector
5895 * size because in some scenarios this will make the receiver fail.
5896 *
5897 * For example, if in the source filesystem the extent at offset 0
5898 * has a length of sectorsize and it was written using direct IO, then
5899 * it can never be an inline extent (even if compression is enabled).
5900 * Then this extent can be cloned in the original filesystem to a non
5901 * zero file offset, but it may not be possible to clone in the
5902 * destination filesystem because it can be inlined due to compression
5903 * on the destination filesystem (as the receiver's write operations are
5904 * always done using buffered IO). The same happens when the original
5905 * filesystem does not have compression enabled but the destination
5906 * filesystem has.
5907 */
5908 if (clone_root->offset == 0 &&
5909 len == sctx->send_root->fs_info->sectorsize)
5910 return send_extent_data(sctx, path: dst_path, offset, len);
5911
5912 path = alloc_path_for_send();
5913 if (!path)
5914 return -ENOMEM;
5915
5916 /*
5917 * There are inodes that have extents that lie behind its i_size. Don't
5918 * accept clones from these extents.
5919 */
5920 ret = get_inode_info(root: clone_root->root, ino: clone_root->ino, info: &info);
5921 btrfs_release_path(p: path);
5922 if (ret < 0)
5923 goto out;
5924 clone_src_i_size = info.size;
5925
5926 /*
5927 * We can't send a clone operation for the entire range if we find
5928 * extent items in the respective range in the source file that
5929 * refer to different extents or if we find holes.
5930 * So check for that and do a mix of clone and regular write/copy
5931 * operations if needed.
5932 *
5933 * Example:
5934 *
5935 * mkfs.btrfs -f /dev/sda
5936 * mount /dev/sda /mnt
5937 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5938 * cp --reflink=always /mnt/foo /mnt/bar
5939 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5940 * btrfs subvolume snapshot -r /mnt /mnt/snap
5941 *
5942 * If when we send the snapshot and we are processing file bar (which
5943 * has a higher inode number than foo) we blindly send a clone operation
5944 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5945 * a file bar that matches the content of file foo - iow, doesn't match
5946 * the content from bar in the original filesystem.
5947 */
5948 key.objectid = clone_root->ino;
5949 key.type = BTRFS_EXTENT_DATA_KEY;
5950 key.offset = clone_root->offset;
5951 ret = btrfs_search_slot(NULL, root: clone_root->root, key: &key, p: path, ins_len: 0, cow: 0);
5952 if (ret < 0)
5953 goto out;
5954 if (ret > 0 && path->slots[0] > 0) {
5955 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0] - 1);
5956 if (key.objectid == clone_root->ino &&
5957 key.type == BTRFS_EXTENT_DATA_KEY)
5958 path->slots[0]--;
5959 }
5960
5961 while (true) {
5962 struct extent_buffer *leaf = path->nodes[0];
5963 int slot = path->slots[0];
5964 struct btrfs_file_extent_item *ei;
5965 u8 type;
5966 u64 ext_len;
5967 u64 clone_len;
5968 u64 clone_data_offset;
5969 bool crossed_src_i_size = false;
5970
5971 if (slot >= btrfs_header_nritems(eb: leaf)) {
5972 ret = btrfs_next_leaf(root: clone_root->root, path);
5973 if (ret < 0)
5974 goto out;
5975 else if (ret > 0)
5976 break;
5977 continue;
5978 }
5979
5980 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
5981
5982 /*
5983 * We might have an implicit trailing hole (NO_HOLES feature
5984 * enabled). We deal with it after leaving this loop.
5985 */
5986 if (key.objectid != clone_root->ino ||
5987 key.type != BTRFS_EXTENT_DATA_KEY)
5988 break;
5989
5990 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5991 type = btrfs_file_extent_type(eb: leaf, s: ei);
5992 if (type == BTRFS_FILE_EXTENT_INLINE) {
5993 ext_len = btrfs_file_extent_ram_bytes(eb: leaf, s: ei);
5994 ext_len = PAGE_ALIGN(ext_len);
5995 } else {
5996 ext_len = btrfs_file_extent_num_bytes(eb: leaf, s: ei);
5997 }
5998
5999 if (key.offset + ext_len <= clone_root->offset)
6000 goto next;
6001
6002 if (key.offset > clone_root->offset) {
6003 /* Implicit hole, NO_HOLES feature enabled. */
6004 u64 hole_len = key.offset - clone_root->offset;
6005
6006 if (hole_len > len)
6007 hole_len = len;
6008 ret = send_extent_data(sctx, path: dst_path, offset,
6009 len: hole_len);
6010 if (ret < 0)
6011 goto out;
6012
6013 len -= hole_len;
6014 if (len == 0)
6015 break;
6016 offset += hole_len;
6017 clone_root->offset += hole_len;
6018 data_offset += hole_len;
6019 }
6020
6021 if (key.offset >= clone_root->offset + len)
6022 break;
6023
6024 if (key.offset >= clone_src_i_size)
6025 break;
6026
6027 if (key.offset + ext_len > clone_src_i_size) {
6028 ext_len = clone_src_i_size - key.offset;
6029 crossed_src_i_size = true;
6030 }
6031
6032 clone_data_offset = btrfs_file_extent_offset(eb: leaf, s: ei);
6033 if (btrfs_file_extent_disk_bytenr(eb: leaf, s: ei) == disk_byte) {
6034 clone_root->offset = key.offset;
6035 if (clone_data_offset < data_offset &&
6036 clone_data_offset + ext_len > data_offset) {
6037 u64 extent_offset;
6038
6039 extent_offset = data_offset - clone_data_offset;
6040 ext_len -= extent_offset;
6041 clone_data_offset += extent_offset;
6042 clone_root->offset += extent_offset;
6043 }
6044 }
6045
6046 clone_len = min_t(u64, ext_len, len);
6047
6048 if (btrfs_file_extent_disk_bytenr(eb: leaf, s: ei) == disk_byte &&
6049 clone_data_offset == data_offset) {
6050 const u64 src_end = clone_root->offset + clone_len;
6051 const u64 sectorsize = SZ_64K;
6052
6053 /*
6054 * We can't clone the last block, when its size is not
6055 * sector size aligned, into the middle of a file. If we
6056 * do so, the receiver will get a failure (-EINVAL) when
6057 * trying to clone or will silently corrupt the data in
6058 * the destination file if it's on a kernel without the
6059 * fix introduced by commit ac765f83f1397646
6060 * ("Btrfs: fix data corruption due to cloning of eof
6061 * block).
6062 *
6063 * So issue a clone of the aligned down range plus a
6064 * regular write for the eof block, if we hit that case.
6065 *
6066 * Also, we use the maximum possible sector size, 64K,
6067 * because we don't know what's the sector size of the
6068 * filesystem that receives the stream, so we have to
6069 * assume the largest possible sector size.
6070 */
6071 if (src_end == clone_src_i_size &&
6072 !IS_ALIGNED(src_end, sectorsize) &&
6073 offset + clone_len < sctx->cur_inode_size) {
6074 u64 slen;
6075
6076 slen = ALIGN_DOWN(src_end - clone_root->offset,
6077 sectorsize);
6078 if (slen > 0) {
6079 ret = send_clone(sctx, offset, len: slen,
6080 clone_root);
6081 if (ret < 0)
6082 goto out;
6083 }
6084 ret = send_extent_data(sctx, path: dst_path,
6085 offset: offset + slen,
6086 len: clone_len - slen);
6087 } else {
6088 ret = send_clone(sctx, offset, len: clone_len,
6089 clone_root);
6090 }
6091 } else if (crossed_src_i_size && clone_len < len) {
6092 /*
6093 * If we are at i_size of the clone source inode and we
6094 * can not clone from it, terminate the loop. This is
6095 * to avoid sending two write operations, one with a
6096 * length matching clone_len and the final one after
6097 * this loop with a length of len - clone_len.
6098 *
6099 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6100 * was passed to the send ioctl), this helps avoid
6101 * sending an encoded write for an offset that is not
6102 * sector size aligned, in case the i_size of the source
6103 * inode is not sector size aligned. That will make the
6104 * receiver fallback to decompression of the data and
6105 * writing it using regular buffered IO, therefore while
6106 * not incorrect, it's not optimal due decompression and
6107 * possible re-compression at the receiver.
6108 */
6109 break;
6110 } else {
6111 ret = send_extent_data(sctx, path: dst_path, offset,
6112 len: clone_len);
6113 }
6114
6115 if (ret < 0)
6116 goto out;
6117
6118 len -= clone_len;
6119 if (len == 0)
6120 break;
6121 offset += clone_len;
6122 clone_root->offset += clone_len;
6123
6124 /*
6125 * If we are cloning from the file we are currently processing,
6126 * and using the send root as the clone root, we must stop once
6127 * the current clone offset reaches the current eof of the file
6128 * at the receiver, otherwise we would issue an invalid clone
6129 * operation (source range going beyond eof) and cause the
6130 * receiver to fail. So if we reach the current eof, bail out
6131 * and fallback to a regular write.
6132 */
6133 if (clone_root->root == sctx->send_root &&
6134 clone_root->ino == sctx->cur_ino &&
6135 clone_root->offset >= sctx->cur_inode_next_write_offset)
6136 break;
6137
6138 data_offset += clone_len;
6139next:
6140 path->slots[0]++;
6141 }
6142
6143 if (len > 0)
6144 ret = send_extent_data(sctx, path: dst_path, offset, len);
6145 else
6146 ret = 0;
6147out:
6148 btrfs_free_path(p: path);
6149 return ret;
6150}
6151
6152static int send_write_or_clone(struct send_ctx *sctx,
6153 struct btrfs_path *path,
6154 struct btrfs_key *key,
6155 struct clone_root *clone_root)
6156{
6157 int ret = 0;
6158 u64 offset = key->offset;
6159 u64 end;
6160 u64 bs = sctx->send_root->fs_info->sectorsize;
6161
6162 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6163 if (offset >= end)
6164 return 0;
6165
6166 if (clone_root && IS_ALIGNED(end, bs)) {
6167 struct btrfs_file_extent_item *ei;
6168 u64 disk_byte;
6169 u64 data_offset;
6170
6171 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6172 struct btrfs_file_extent_item);
6173 disk_byte = btrfs_file_extent_disk_bytenr(eb: path->nodes[0], s: ei);
6174 data_offset = btrfs_file_extent_offset(eb: path->nodes[0], s: ei);
6175 ret = clone_range(sctx, dst_path: path, clone_root, disk_byte,
6176 data_offset, offset, len: end - offset);
6177 } else {
6178 ret = send_extent_data(sctx, path, offset, len: end - offset);
6179 }
6180 sctx->cur_inode_next_write_offset = end;
6181 return ret;
6182}
6183
6184static int is_extent_unchanged(struct send_ctx *sctx,
6185 struct btrfs_path *left_path,
6186 struct btrfs_key *ekey)
6187{
6188 int ret = 0;
6189 struct btrfs_key key;
6190 struct btrfs_path *path = NULL;
6191 struct extent_buffer *eb;
6192 int slot;
6193 struct btrfs_key found_key;
6194 struct btrfs_file_extent_item *ei;
6195 u64 left_disknr;
6196 u64 right_disknr;
6197 u64 left_offset;
6198 u64 right_offset;
6199 u64 left_offset_fixed;
6200 u64 left_len;
6201 u64 right_len;
6202 u64 left_gen;
6203 u64 right_gen;
6204 u8 left_type;
6205 u8 right_type;
6206
6207 path = alloc_path_for_send();
6208 if (!path)
6209 return -ENOMEM;
6210
6211 eb = left_path->nodes[0];
6212 slot = left_path->slots[0];
6213 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6214 left_type = btrfs_file_extent_type(eb, s: ei);
6215
6216 if (left_type != BTRFS_FILE_EXTENT_REG) {
6217 ret = 0;
6218 goto out;
6219 }
6220 left_disknr = btrfs_file_extent_disk_bytenr(eb, s: ei);
6221 left_len = btrfs_file_extent_num_bytes(eb, s: ei);
6222 left_offset = btrfs_file_extent_offset(eb, s: ei);
6223 left_gen = btrfs_file_extent_generation(eb, s: ei);
6224
6225 /*
6226 * Following comments will refer to these graphics. L is the left
6227 * extents which we are checking at the moment. 1-8 are the right
6228 * extents that we iterate.
6229 *
6230 * |-----L-----|
6231 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6232 *
6233 * |-----L-----|
6234 * |--1--|-2b-|...(same as above)
6235 *
6236 * Alternative situation. Happens on files where extents got split.
6237 * |-----L-----|
6238 * |-----------7-----------|-6-|
6239 *
6240 * Alternative situation. Happens on files which got larger.
6241 * |-----L-----|
6242 * |-8-|
6243 * Nothing follows after 8.
6244 */
6245
6246 key.objectid = ekey->objectid;
6247 key.type = BTRFS_EXTENT_DATA_KEY;
6248 key.offset = ekey->offset;
6249 ret = btrfs_search_slot_for_read(root: sctx->parent_root, key: &key, p: path, find_higher: 0, return_any: 0);
6250 if (ret < 0)
6251 goto out;
6252 if (ret) {
6253 ret = 0;
6254 goto out;
6255 }
6256
6257 /*
6258 * Handle special case where the right side has no extents at all.
6259 */
6260 eb = path->nodes[0];
6261 slot = path->slots[0];
6262 btrfs_item_key_to_cpu(eb, cpu_key: &found_key, nr: slot);
6263 if (found_key.objectid != key.objectid ||
6264 found_key.type != key.type) {
6265 /* If we're a hole then just pretend nothing changed */
6266 ret = (left_disknr) ? 0 : 1;
6267 goto out;
6268 }
6269
6270 /*
6271 * We're now on 2a, 2b or 7.
6272 */
6273 key = found_key;
6274 while (key.offset < ekey->offset + left_len) {
6275 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6276 right_type = btrfs_file_extent_type(eb, s: ei);
6277 if (right_type != BTRFS_FILE_EXTENT_REG &&
6278 right_type != BTRFS_FILE_EXTENT_INLINE) {
6279 ret = 0;
6280 goto out;
6281 }
6282
6283 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6284 right_len = btrfs_file_extent_ram_bytes(eb, s: ei);
6285 right_len = PAGE_ALIGN(right_len);
6286 } else {
6287 right_len = btrfs_file_extent_num_bytes(eb, s: ei);
6288 }
6289
6290 /*
6291 * Are we at extent 8? If yes, we know the extent is changed.
6292 * This may only happen on the first iteration.
6293 */
6294 if (found_key.offset + right_len <= ekey->offset) {
6295 /* If we're a hole just pretend nothing changed */
6296 ret = (left_disknr) ? 0 : 1;
6297 goto out;
6298 }
6299
6300 /*
6301 * We just wanted to see if when we have an inline extent, what
6302 * follows it is a regular extent (wanted to check the above
6303 * condition for inline extents too). This should normally not
6304 * happen but it's possible for example when we have an inline
6305 * compressed extent representing data with a size matching
6306 * the page size (currently the same as sector size).
6307 */
6308 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6309 ret = 0;
6310 goto out;
6311 }
6312
6313 right_disknr = btrfs_file_extent_disk_bytenr(eb, s: ei);
6314 right_offset = btrfs_file_extent_offset(eb, s: ei);
6315 right_gen = btrfs_file_extent_generation(eb, s: ei);
6316
6317 left_offset_fixed = left_offset;
6318 if (key.offset < ekey->offset) {
6319 /* Fix the right offset for 2a and 7. */
6320 right_offset += ekey->offset - key.offset;
6321 } else {
6322 /* Fix the left offset for all behind 2a and 2b */
6323 left_offset_fixed += key.offset - ekey->offset;
6324 }
6325
6326 /*
6327 * Check if we have the same extent.
6328 */
6329 if (left_disknr != right_disknr ||
6330 left_offset_fixed != right_offset ||
6331 left_gen != right_gen) {
6332 ret = 0;
6333 goto out;
6334 }
6335
6336 /*
6337 * Go to the next extent.
6338 */
6339 ret = btrfs_next_item(root: sctx->parent_root, p: path);
6340 if (ret < 0)
6341 goto out;
6342 if (!ret) {
6343 eb = path->nodes[0];
6344 slot = path->slots[0];
6345 btrfs_item_key_to_cpu(eb, cpu_key: &found_key, nr: slot);
6346 }
6347 if (ret || found_key.objectid != key.objectid ||
6348 found_key.type != key.type) {
6349 key.offset += right_len;
6350 break;
6351 }
6352 if (found_key.offset != key.offset + right_len) {
6353 ret = 0;
6354 goto out;
6355 }
6356 key = found_key;
6357 }
6358
6359 /*
6360 * We're now behind the left extent (treat as unchanged) or at the end
6361 * of the right side (treat as changed).
6362 */
6363 if (key.offset >= ekey->offset + left_len)
6364 ret = 1;
6365 else
6366 ret = 0;
6367
6368
6369out:
6370 btrfs_free_path(p: path);
6371 return ret;
6372}
6373
6374static int get_last_extent(struct send_ctx *sctx, u64 offset)
6375{
6376 struct btrfs_path *path;
6377 struct btrfs_root *root = sctx->send_root;
6378 struct btrfs_key key;
6379 int ret;
6380
6381 path = alloc_path_for_send();
6382 if (!path)
6383 return -ENOMEM;
6384
6385 sctx->cur_inode_last_extent = 0;
6386
6387 key.objectid = sctx->cur_ino;
6388 key.type = BTRFS_EXTENT_DATA_KEY;
6389 key.offset = offset;
6390 ret = btrfs_search_slot_for_read(root, key: &key, p: path, find_higher: 0, return_any: 1);
6391 if (ret < 0)
6392 goto out;
6393 ret = 0;
6394 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
6395 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6396 goto out;
6397
6398 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6399out:
6400 btrfs_free_path(p: path);
6401 return ret;
6402}
6403
6404static int range_is_hole_in_parent(struct send_ctx *sctx,
6405 const u64 start,
6406 const u64 end)
6407{
6408 struct btrfs_path *path;
6409 struct btrfs_key key;
6410 struct btrfs_root *root = sctx->parent_root;
6411 u64 search_start = start;
6412 int ret;
6413
6414 path = alloc_path_for_send();
6415 if (!path)
6416 return -ENOMEM;
6417
6418 key.objectid = sctx->cur_ino;
6419 key.type = BTRFS_EXTENT_DATA_KEY;
6420 key.offset = search_start;
6421 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
6422 if (ret < 0)
6423 goto out;
6424 if (ret > 0 && path->slots[0] > 0)
6425 path->slots[0]--;
6426
6427 while (search_start < end) {
6428 struct extent_buffer *leaf = path->nodes[0];
6429 int slot = path->slots[0];
6430 struct btrfs_file_extent_item *fi;
6431 u64 extent_end;
6432
6433 if (slot >= btrfs_header_nritems(eb: leaf)) {
6434 ret = btrfs_next_leaf(root, path);
6435 if (ret < 0)
6436 goto out;
6437 else if (ret > 0)
6438 break;
6439 continue;
6440 }
6441
6442 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
6443 if (key.objectid < sctx->cur_ino ||
6444 key.type < BTRFS_EXTENT_DATA_KEY)
6445 goto next;
6446 if (key.objectid > sctx->cur_ino ||
6447 key.type > BTRFS_EXTENT_DATA_KEY ||
6448 key.offset >= end)
6449 break;
6450
6451 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6452 extent_end = btrfs_file_extent_end(path);
6453 if (extent_end <= start)
6454 goto next;
6455 if (btrfs_file_extent_disk_bytenr(eb: leaf, s: fi) == 0) {
6456 search_start = extent_end;
6457 goto next;
6458 }
6459 ret = 0;
6460 goto out;
6461next:
6462 path->slots[0]++;
6463 }
6464 ret = 1;
6465out:
6466 btrfs_free_path(p: path);
6467 return ret;
6468}
6469
6470static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6471 struct btrfs_key *key)
6472{
6473 int ret = 0;
6474
6475 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6476 return 0;
6477
6478 /*
6479 * Get last extent's end offset (exclusive) if we haven't determined it
6480 * yet (we're processing the first file extent item that is new), or if
6481 * we're at the first slot of a leaf and the last extent's end is less
6482 * than the current extent's offset, because we might have skipped
6483 * entire leaves that contained only file extent items for our current
6484 * inode. These leaves have a generation number smaller (older) than the
6485 * one in the current leaf and the leaf our last extent came from, and
6486 * are located between these 2 leaves.
6487 */
6488 if ((sctx->cur_inode_last_extent == (u64)-1) ||
6489 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6490 ret = get_last_extent(sctx, offset: key->offset - 1);
6491 if (ret)
6492 return ret;
6493 }
6494
6495 if (sctx->cur_inode_last_extent < key->offset) {
6496 ret = range_is_hole_in_parent(sctx,
6497 start: sctx->cur_inode_last_extent,
6498 end: key->offset);
6499 if (ret < 0)
6500 return ret;
6501 else if (ret == 0)
6502 ret = send_hole(sctx, end: key->offset);
6503 else
6504 ret = 0;
6505 }
6506 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6507 return ret;
6508}
6509
6510static int process_extent(struct send_ctx *sctx,
6511 struct btrfs_path *path,
6512 struct btrfs_key *key)
6513{
6514 struct clone_root *found_clone = NULL;
6515 int ret = 0;
6516
6517 if (S_ISLNK(sctx->cur_inode_mode))
6518 return 0;
6519
6520 if (sctx->parent_root && !sctx->cur_inode_new) {
6521 ret = is_extent_unchanged(sctx, left_path: path, ekey: key);
6522 if (ret < 0)
6523 goto out;
6524 if (ret) {
6525 ret = 0;
6526 goto out_hole;
6527 }
6528 } else {
6529 struct btrfs_file_extent_item *ei;
6530 u8 type;
6531
6532 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6533 struct btrfs_file_extent_item);
6534 type = btrfs_file_extent_type(eb: path->nodes[0], s: ei);
6535 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6536 type == BTRFS_FILE_EXTENT_REG) {
6537 /*
6538 * The send spec does not have a prealloc command yet,
6539 * so just leave a hole for prealloc'ed extents until
6540 * we have enough commands queued up to justify rev'ing
6541 * the send spec.
6542 */
6543 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6544 ret = 0;
6545 goto out;
6546 }
6547
6548 /* Have a hole, just skip it. */
6549 if (btrfs_file_extent_disk_bytenr(eb: path->nodes[0], s: ei) == 0) {
6550 ret = 0;
6551 goto out;
6552 }
6553 }
6554 }
6555
6556 ret = find_extent_clone(sctx, path, ino: key->objectid, data_offset: key->offset,
6557 ino_size: sctx->cur_inode_size, found: &found_clone);
6558 if (ret != -ENOENT && ret < 0)
6559 goto out;
6560
6561 ret = send_write_or_clone(sctx, path, key, clone_root: found_clone);
6562 if (ret)
6563 goto out;
6564out_hole:
6565 ret = maybe_send_hole(sctx, path, key);
6566out:
6567 return ret;
6568}
6569
6570static int process_all_extents(struct send_ctx *sctx)
6571{
6572 int ret = 0;
6573 int iter_ret = 0;
6574 struct btrfs_root *root;
6575 struct btrfs_path *path;
6576 struct btrfs_key key;
6577 struct btrfs_key found_key;
6578
6579 root = sctx->send_root;
6580 path = alloc_path_for_send();
6581 if (!path)
6582 return -ENOMEM;
6583
6584 key.objectid = sctx->cmp_key->objectid;
6585 key.type = BTRFS_EXTENT_DATA_KEY;
6586 key.offset = 0;
6587 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6588 if (found_key.objectid != key.objectid ||
6589 found_key.type != key.type) {
6590 ret = 0;
6591 break;
6592 }
6593
6594 ret = process_extent(sctx, path, key: &found_key);
6595 if (ret < 0)
6596 break;
6597 }
6598 /* Catch error found during iteration */
6599 if (iter_ret < 0)
6600 ret = iter_ret;
6601
6602 btrfs_free_path(p: path);
6603 return ret;
6604}
6605
6606static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6607 int *pending_move,
6608 int *refs_processed)
6609{
6610 int ret = 0;
6611
6612 if (sctx->cur_ino == 0)
6613 goto out;
6614 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6615 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6616 goto out;
6617 if (list_empty(head: &sctx->new_refs) && list_empty(head: &sctx->deleted_refs))
6618 goto out;
6619
6620 ret = process_recorded_refs(sctx, pending_move);
6621 if (ret < 0)
6622 goto out;
6623
6624 *refs_processed = 1;
6625out:
6626 return ret;
6627}
6628
6629static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6630{
6631 int ret = 0;
6632 struct btrfs_inode_info info;
6633 u64 left_mode;
6634 u64 left_uid;
6635 u64 left_gid;
6636 u64 left_fileattr;
6637 u64 right_mode;
6638 u64 right_uid;
6639 u64 right_gid;
6640 u64 right_fileattr;
6641 int need_chmod = 0;
6642 int need_chown = 0;
6643 bool need_fileattr = false;
6644 int need_truncate = 1;
6645 int pending_move = 0;
6646 int refs_processed = 0;
6647
6648 if (sctx->ignore_cur_inode)
6649 return 0;
6650
6651 ret = process_recorded_refs_if_needed(sctx, at_end, pending_move: &pending_move,
6652 refs_processed: &refs_processed);
6653 if (ret < 0)
6654 goto out;
6655
6656 /*
6657 * We have processed the refs and thus need to advance send_progress.
6658 * Now, calls to get_cur_xxx will take the updated refs of the current
6659 * inode into account.
6660 *
6661 * On the other hand, if our current inode is a directory and couldn't
6662 * be moved/renamed because its parent was renamed/moved too and it has
6663 * a higher inode number, we can only move/rename our current inode
6664 * after we moved/renamed its parent. Therefore in this case operate on
6665 * the old path (pre move/rename) of our current inode, and the
6666 * move/rename will be performed later.
6667 */
6668 if (refs_processed && !pending_move)
6669 sctx->send_progress = sctx->cur_ino + 1;
6670
6671 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6672 goto out;
6673 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6674 goto out;
6675 ret = get_inode_info(root: sctx->send_root, ino: sctx->cur_ino, info: &info);
6676 if (ret < 0)
6677 goto out;
6678 left_mode = info.mode;
6679 left_uid = info.uid;
6680 left_gid = info.gid;
6681 left_fileattr = info.fileattr;
6682
6683 if (!sctx->parent_root || sctx->cur_inode_new) {
6684 need_chown = 1;
6685 if (!S_ISLNK(sctx->cur_inode_mode))
6686 need_chmod = 1;
6687 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6688 need_truncate = 0;
6689 } else {
6690 u64 old_size;
6691
6692 ret = get_inode_info(root: sctx->parent_root, ino: sctx->cur_ino, info: &info);
6693 if (ret < 0)
6694 goto out;
6695 old_size = info.size;
6696 right_mode = info.mode;
6697 right_uid = info.uid;
6698 right_gid = info.gid;
6699 right_fileattr = info.fileattr;
6700
6701 if (left_uid != right_uid || left_gid != right_gid)
6702 need_chown = 1;
6703 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6704 need_chmod = 1;
6705 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6706 need_fileattr = true;
6707 if ((old_size == sctx->cur_inode_size) ||
6708 (sctx->cur_inode_size > old_size &&
6709 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6710 need_truncate = 0;
6711 }
6712
6713 if (S_ISREG(sctx->cur_inode_mode)) {
6714 if (need_send_hole(sctx)) {
6715 if (sctx->cur_inode_last_extent == (u64)-1 ||
6716 sctx->cur_inode_last_extent <
6717 sctx->cur_inode_size) {
6718 ret = get_last_extent(sctx, offset: (u64)-1);
6719 if (ret)
6720 goto out;
6721 }
6722 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6723 ret = range_is_hole_in_parent(sctx,
6724 start: sctx->cur_inode_last_extent,
6725 end: sctx->cur_inode_size);
6726 if (ret < 0) {
6727 goto out;
6728 } else if (ret == 0) {
6729 ret = send_hole(sctx, end: sctx->cur_inode_size);
6730 if (ret < 0)
6731 goto out;
6732 } else {
6733 /* Range is already a hole, skip. */
6734 ret = 0;
6735 }
6736 }
6737 }
6738 if (need_truncate) {
6739 ret = send_truncate(sctx, ino: sctx->cur_ino,
6740 gen: sctx->cur_inode_gen,
6741 size: sctx->cur_inode_size);
6742 if (ret < 0)
6743 goto out;
6744 }
6745 }
6746
6747 if (need_chown) {
6748 ret = send_chown(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen,
6749 uid: left_uid, gid: left_gid);
6750 if (ret < 0)
6751 goto out;
6752 }
6753 if (need_chmod) {
6754 ret = send_chmod(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen,
6755 mode: left_mode);
6756 if (ret < 0)
6757 goto out;
6758 }
6759 if (need_fileattr) {
6760 ret = send_fileattr(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen,
6761 fileattr: left_fileattr);
6762 if (ret < 0)
6763 goto out;
6764 }
6765
6766 if (proto_cmd_ok(sctx, cmd: BTRFS_SEND_C_ENABLE_VERITY)
6767 && sctx->cur_inode_needs_verity) {
6768 ret = process_verity(sctx);
6769 if (ret < 0)
6770 goto out;
6771 }
6772
6773 ret = send_capabilities(sctx);
6774 if (ret < 0)
6775 goto out;
6776
6777 /*
6778 * If other directory inodes depended on our current directory
6779 * inode's move/rename, now do their move/rename operations.
6780 */
6781 if (!is_waiting_for_move(sctx, ino: sctx->cur_ino)) {
6782 ret = apply_children_dir_moves(sctx);
6783 if (ret)
6784 goto out;
6785 /*
6786 * Need to send that every time, no matter if it actually
6787 * changed between the two trees as we have done changes to
6788 * the inode before. If our inode is a directory and it's
6789 * waiting to be moved/renamed, we will send its utimes when
6790 * it's moved/renamed, therefore we don't need to do it here.
6791 */
6792 sctx->send_progress = sctx->cur_ino + 1;
6793
6794 /*
6795 * If the current inode is a non-empty directory, delay issuing
6796 * the utimes command for it, as it's very likely we have inodes
6797 * with an higher number inside it. We want to issue the utimes
6798 * command only after adding all dentries to it.
6799 */
6800 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6801 ret = cache_dir_utimes(sctx, dir: sctx->cur_ino, gen: sctx->cur_inode_gen);
6802 else
6803 ret = send_utimes(sctx, ino: sctx->cur_ino, gen: sctx->cur_inode_gen);
6804
6805 if (ret < 0)
6806 goto out;
6807 }
6808
6809out:
6810 if (!ret)
6811 ret = trim_dir_utimes_cache(sctx);
6812
6813 return ret;
6814}
6815
6816static void close_current_inode(struct send_ctx *sctx)
6817{
6818 u64 i_size;
6819
6820 if (sctx->cur_inode == NULL)
6821 return;
6822
6823 i_size = i_size_read(inode: sctx->cur_inode);
6824
6825 /*
6826 * If we are doing an incremental send, we may have extents between the
6827 * last processed extent and the i_size that have not been processed
6828 * because they haven't changed but we may have read some of their pages
6829 * through readahead, see the comments at send_extent_data().
6830 */
6831 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6832 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6833 lstart: sctx->page_cache_clear_start,
6834 round_up(i_size, PAGE_SIZE) - 1);
6835
6836 iput(sctx->cur_inode);
6837 sctx->cur_inode = NULL;
6838}
6839
6840static int changed_inode(struct send_ctx *sctx,
6841 enum btrfs_compare_tree_result result)
6842{
6843 int ret = 0;
6844 struct btrfs_key *key = sctx->cmp_key;
6845 struct btrfs_inode_item *left_ii = NULL;
6846 struct btrfs_inode_item *right_ii = NULL;
6847 u64 left_gen = 0;
6848 u64 right_gen = 0;
6849
6850 close_current_inode(sctx);
6851
6852 sctx->cur_ino = key->objectid;
6853 sctx->cur_inode_new_gen = false;
6854 sctx->cur_inode_last_extent = (u64)-1;
6855 sctx->cur_inode_next_write_offset = 0;
6856 sctx->ignore_cur_inode = false;
6857
6858 /*
6859 * Set send_progress to current inode. This will tell all get_cur_xxx
6860 * functions that the current inode's refs are not updated yet. Later,
6861 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6862 */
6863 sctx->send_progress = sctx->cur_ino;
6864
6865 if (result == BTRFS_COMPARE_TREE_NEW ||
6866 result == BTRFS_COMPARE_TREE_CHANGED) {
6867 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6868 sctx->left_path->slots[0],
6869 struct btrfs_inode_item);
6870 left_gen = btrfs_inode_generation(eb: sctx->left_path->nodes[0],
6871 s: left_ii);
6872 } else {
6873 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6874 sctx->right_path->slots[0],
6875 struct btrfs_inode_item);
6876 right_gen = btrfs_inode_generation(eb: sctx->right_path->nodes[0],
6877 s: right_ii);
6878 }
6879 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6880 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6881 sctx->right_path->slots[0],
6882 struct btrfs_inode_item);
6883
6884 right_gen = btrfs_inode_generation(eb: sctx->right_path->nodes[0],
6885 s: right_ii);
6886
6887 /*
6888 * The cur_ino = root dir case is special here. We can't treat
6889 * the inode as deleted+reused because it would generate a
6890 * stream that tries to delete/mkdir the root dir.
6891 */
6892 if (left_gen != right_gen &&
6893 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6894 sctx->cur_inode_new_gen = true;
6895 }
6896
6897 /*
6898 * Normally we do not find inodes with a link count of zero (orphans)
6899 * because the most common case is to create a snapshot and use it
6900 * for a send operation. However other less common use cases involve
6901 * using a subvolume and send it after turning it to RO mode just
6902 * after deleting all hard links of a file while holding an open
6903 * file descriptor against it or turning a RO snapshot into RW mode,
6904 * keep an open file descriptor against a file, delete it and then
6905 * turn the snapshot back to RO mode before using it for a send
6906 * operation. The former is what the receiver operation does.
6907 * Therefore, if we want to send these snapshots soon after they're
6908 * received, we need to handle orphan inodes as well. Moreover, orphans
6909 * can appear not only in the send snapshot but also in the parent
6910 * snapshot. Here are several cases:
6911 *
6912 * Case 1: BTRFS_COMPARE_TREE_NEW
6913 * | send snapshot | action
6914 * --------------------------------
6915 * nlink | 0 | ignore
6916 *
6917 * Case 2: BTRFS_COMPARE_TREE_DELETED
6918 * | parent snapshot | action
6919 * ----------------------------------
6920 * nlink | 0 | as usual
6921 * Note: No unlinks will be sent because there're no paths for it.
6922 *
6923 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6924 * | | parent snapshot | send snapshot | action
6925 * -----------------------------------------------------------------------
6926 * subcase 1 | nlink | 0 | 0 | ignore
6927 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6928 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6929 *
6930 */
6931 if (result == BTRFS_COMPARE_TREE_NEW) {
6932 if (btrfs_inode_nlink(eb: sctx->left_path->nodes[0], s: left_ii) == 0) {
6933 sctx->ignore_cur_inode = true;
6934 goto out;
6935 }
6936 sctx->cur_inode_gen = left_gen;
6937 sctx->cur_inode_new = true;
6938 sctx->cur_inode_deleted = false;
6939 sctx->cur_inode_size = btrfs_inode_size(
6940 eb: sctx->left_path->nodes[0], s: left_ii);
6941 sctx->cur_inode_mode = btrfs_inode_mode(
6942 eb: sctx->left_path->nodes[0], s: left_ii);
6943 sctx->cur_inode_rdev = btrfs_inode_rdev(
6944 eb: sctx->left_path->nodes[0], s: left_ii);
6945 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6946 ret = send_create_inode_if_needed(sctx);
6947 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6948 sctx->cur_inode_gen = right_gen;
6949 sctx->cur_inode_new = false;
6950 sctx->cur_inode_deleted = true;
6951 sctx->cur_inode_size = btrfs_inode_size(
6952 eb: sctx->right_path->nodes[0], s: right_ii);
6953 sctx->cur_inode_mode = btrfs_inode_mode(
6954 eb: sctx->right_path->nodes[0], s: right_ii);
6955 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6956 u32 new_nlinks, old_nlinks;
6957
6958 new_nlinks = btrfs_inode_nlink(eb: sctx->left_path->nodes[0], s: left_ii);
6959 old_nlinks = btrfs_inode_nlink(eb: sctx->right_path->nodes[0], s: right_ii);
6960 if (new_nlinks == 0 && old_nlinks == 0) {
6961 sctx->ignore_cur_inode = true;
6962 goto out;
6963 } else if (new_nlinks == 0 || old_nlinks == 0) {
6964 sctx->cur_inode_new_gen = 1;
6965 }
6966 /*
6967 * We need to do some special handling in case the inode was
6968 * reported as changed with a changed generation number. This
6969 * means that the original inode was deleted and new inode
6970 * reused the same inum. So we have to treat the old inode as
6971 * deleted and the new one as new.
6972 */
6973 if (sctx->cur_inode_new_gen) {
6974 /*
6975 * First, process the inode as if it was deleted.
6976 */
6977 if (old_nlinks > 0) {
6978 sctx->cur_inode_gen = right_gen;
6979 sctx->cur_inode_new = false;
6980 sctx->cur_inode_deleted = true;
6981 sctx->cur_inode_size = btrfs_inode_size(
6982 eb: sctx->right_path->nodes[0], s: right_ii);
6983 sctx->cur_inode_mode = btrfs_inode_mode(
6984 eb: sctx->right_path->nodes[0], s: right_ii);
6985 ret = process_all_refs(sctx,
6986 cmd: BTRFS_COMPARE_TREE_DELETED);
6987 if (ret < 0)
6988 goto out;
6989 }
6990
6991 /*
6992 * Now process the inode as if it was new.
6993 */
6994 if (new_nlinks > 0) {
6995 sctx->cur_inode_gen = left_gen;
6996 sctx->cur_inode_new = true;
6997 sctx->cur_inode_deleted = false;
6998 sctx->cur_inode_size = btrfs_inode_size(
6999 eb: sctx->left_path->nodes[0],
7000 s: left_ii);
7001 sctx->cur_inode_mode = btrfs_inode_mode(
7002 eb: sctx->left_path->nodes[0],
7003 s: left_ii);
7004 sctx->cur_inode_rdev = btrfs_inode_rdev(
7005 eb: sctx->left_path->nodes[0],
7006 s: left_ii);
7007 ret = send_create_inode_if_needed(sctx);
7008 if (ret < 0)
7009 goto out;
7010
7011 ret = process_all_refs(sctx, cmd: BTRFS_COMPARE_TREE_NEW);
7012 if (ret < 0)
7013 goto out;
7014 /*
7015 * Advance send_progress now as we did not get
7016 * into process_recorded_refs_if_needed in the
7017 * new_gen case.
7018 */
7019 sctx->send_progress = sctx->cur_ino + 1;
7020
7021 /*
7022 * Now process all extents and xattrs of the
7023 * inode as if they were all new.
7024 */
7025 ret = process_all_extents(sctx);
7026 if (ret < 0)
7027 goto out;
7028 ret = process_all_new_xattrs(sctx);
7029 if (ret < 0)
7030 goto out;
7031 }
7032 } else {
7033 sctx->cur_inode_gen = left_gen;
7034 sctx->cur_inode_new = false;
7035 sctx->cur_inode_new_gen = false;
7036 sctx->cur_inode_deleted = false;
7037 sctx->cur_inode_size = btrfs_inode_size(
7038 eb: sctx->left_path->nodes[0], s: left_ii);
7039 sctx->cur_inode_mode = btrfs_inode_mode(
7040 eb: sctx->left_path->nodes[0], s: left_ii);
7041 }
7042 }
7043
7044out:
7045 return ret;
7046}
7047
7048/*
7049 * We have to process new refs before deleted refs, but compare_trees gives us
7050 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7051 * first and later process them in process_recorded_refs.
7052 * For the cur_inode_new_gen case, we skip recording completely because
7053 * changed_inode did already initiate processing of refs. The reason for this is
7054 * that in this case, compare_tree actually compares the refs of 2 different
7055 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7056 * refs of the right tree as deleted and all refs of the left tree as new.
7057 */
7058static int changed_ref(struct send_ctx *sctx,
7059 enum btrfs_compare_tree_result result)
7060{
7061 int ret = 0;
7062
7063 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7064 inconsistent_snapshot_error(sctx, result, what: "reference");
7065 return -EIO;
7066 }
7067
7068 if (!sctx->cur_inode_new_gen &&
7069 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7070 if (result == BTRFS_COMPARE_TREE_NEW)
7071 ret = record_new_ref(sctx);
7072 else if (result == BTRFS_COMPARE_TREE_DELETED)
7073 ret = record_deleted_ref(sctx);
7074 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7075 ret = record_changed_ref(sctx);
7076 }
7077
7078 return ret;
7079}
7080
7081/*
7082 * Process new/deleted/changed xattrs. We skip processing in the
7083 * cur_inode_new_gen case because changed_inode did already initiate processing
7084 * of xattrs. The reason is the same as in changed_ref
7085 */
7086static int changed_xattr(struct send_ctx *sctx,
7087 enum btrfs_compare_tree_result result)
7088{
7089 int ret = 0;
7090
7091 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7092 inconsistent_snapshot_error(sctx, result, what: "xattr");
7093 return -EIO;
7094 }
7095
7096 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7097 if (result == BTRFS_COMPARE_TREE_NEW)
7098 ret = process_new_xattr(sctx);
7099 else if (result == BTRFS_COMPARE_TREE_DELETED)
7100 ret = process_deleted_xattr(sctx);
7101 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7102 ret = process_changed_xattr(sctx);
7103 }
7104
7105 return ret;
7106}
7107
7108/*
7109 * Process new/deleted/changed extents. We skip processing in the
7110 * cur_inode_new_gen case because changed_inode did already initiate processing
7111 * of extents. The reason is the same as in changed_ref
7112 */
7113static int changed_extent(struct send_ctx *sctx,
7114 enum btrfs_compare_tree_result result)
7115{
7116 int ret = 0;
7117
7118 /*
7119 * We have found an extent item that changed without the inode item
7120 * having changed. This can happen either after relocation (where the
7121 * disk_bytenr of an extent item is replaced at
7122 * relocation.c:replace_file_extents()) or after deduplication into a
7123 * file in both the parent and send snapshots (where an extent item can
7124 * get modified or replaced with a new one). Note that deduplication
7125 * updates the inode item, but it only changes the iversion (sequence
7126 * field in the inode item) of the inode, so if a file is deduplicated
7127 * the same amount of times in both the parent and send snapshots, its
7128 * iversion becomes the same in both snapshots, whence the inode item is
7129 * the same on both snapshots.
7130 */
7131 if (sctx->cur_ino != sctx->cmp_key->objectid)
7132 return 0;
7133
7134 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7135 if (result != BTRFS_COMPARE_TREE_DELETED)
7136 ret = process_extent(sctx, path: sctx->left_path,
7137 key: sctx->cmp_key);
7138 }
7139
7140 return ret;
7141}
7142
7143static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7144{
7145 int ret = 0;
7146
7147 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7148 if (result == BTRFS_COMPARE_TREE_NEW)
7149 sctx->cur_inode_needs_verity = true;
7150 }
7151 return ret;
7152}
7153
7154static int dir_changed(struct send_ctx *sctx, u64 dir)
7155{
7156 u64 orig_gen, new_gen;
7157 int ret;
7158
7159 ret = get_inode_gen(root: sctx->send_root, ino: dir, gen: &new_gen);
7160 if (ret)
7161 return ret;
7162
7163 ret = get_inode_gen(root: sctx->parent_root, ino: dir, gen: &orig_gen);
7164 if (ret)
7165 return ret;
7166
7167 return (orig_gen != new_gen) ? 1 : 0;
7168}
7169
7170static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7171 struct btrfs_key *key)
7172{
7173 struct btrfs_inode_extref *extref;
7174 struct extent_buffer *leaf;
7175 u64 dirid = 0, last_dirid = 0;
7176 unsigned long ptr;
7177 u32 item_size;
7178 u32 cur_offset = 0;
7179 int ref_name_len;
7180 int ret = 0;
7181
7182 /* Easy case, just check this one dirid */
7183 if (key->type == BTRFS_INODE_REF_KEY) {
7184 dirid = key->offset;
7185
7186 ret = dir_changed(sctx, dir: dirid);
7187 goto out;
7188 }
7189
7190 leaf = path->nodes[0];
7191 item_size = btrfs_item_size(eb: leaf, slot: path->slots[0]);
7192 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7193 while (cur_offset < item_size) {
7194 extref = (struct btrfs_inode_extref *)(ptr +
7195 cur_offset);
7196 dirid = btrfs_inode_extref_parent(eb: leaf, s: extref);
7197 ref_name_len = btrfs_inode_extref_name_len(eb: leaf, s: extref);
7198 cur_offset += ref_name_len + sizeof(*extref);
7199 if (dirid == last_dirid)
7200 continue;
7201 ret = dir_changed(sctx, dir: dirid);
7202 if (ret)
7203 break;
7204 last_dirid = dirid;
7205 }
7206out:
7207 return ret;
7208}
7209
7210/*
7211 * Updates compare related fields in sctx and simply forwards to the actual
7212 * changed_xxx functions.
7213 */
7214static int changed_cb(struct btrfs_path *left_path,
7215 struct btrfs_path *right_path,
7216 struct btrfs_key *key,
7217 enum btrfs_compare_tree_result result,
7218 struct send_ctx *sctx)
7219{
7220 int ret = 0;
7221
7222 /*
7223 * We can not hold the commit root semaphore here. This is because in
7224 * the case of sending and receiving to the same filesystem, using a
7225 * pipe, could result in a deadlock:
7226 *
7227 * 1) The task running send blocks on the pipe because it's full;
7228 *
7229 * 2) The task running receive, which is the only consumer of the pipe,
7230 * is waiting for a transaction commit (for example due to a space
7231 * reservation when doing a write or triggering a transaction commit
7232 * when creating a subvolume);
7233 *
7234 * 3) The transaction is waiting to write lock the commit root semaphore,
7235 * but can not acquire it since it's being held at 1).
7236 *
7237 * Down this call chain we write to the pipe through kernel_write().
7238 * The same type of problem can also happen when sending to a file that
7239 * is stored in the same filesystem - when reserving space for a write
7240 * into the file, we can trigger a transaction commit.
7241 *
7242 * Our caller has supplied us with clones of leaves from the send and
7243 * parent roots, so we're safe here from a concurrent relocation and
7244 * further reallocation of metadata extents while we are here. Below we
7245 * also assert that the leaves are clones.
7246 */
7247 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7248
7249 /*
7250 * We always have a send root, so left_path is never NULL. We will not
7251 * have a leaf when we have reached the end of the send root but have
7252 * not yet reached the end of the parent root.
7253 */
7254 if (left_path->nodes[0])
7255 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7256 &left_path->nodes[0]->bflags));
7257 /*
7258 * When doing a full send we don't have a parent root, so right_path is
7259 * NULL. When doing an incremental send, we may have reached the end of
7260 * the parent root already, so we don't have a leaf at right_path.
7261 */
7262 if (right_path && right_path->nodes[0])
7263 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7264 &right_path->nodes[0]->bflags));
7265
7266 if (result == BTRFS_COMPARE_TREE_SAME) {
7267 if (key->type == BTRFS_INODE_REF_KEY ||
7268 key->type == BTRFS_INODE_EXTREF_KEY) {
7269 ret = compare_refs(sctx, path: left_path, key);
7270 if (!ret)
7271 return 0;
7272 if (ret < 0)
7273 return ret;
7274 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7275 return maybe_send_hole(sctx, path: left_path, key);
7276 } else {
7277 return 0;
7278 }
7279 result = BTRFS_COMPARE_TREE_CHANGED;
7280 ret = 0;
7281 }
7282
7283 sctx->left_path = left_path;
7284 sctx->right_path = right_path;
7285 sctx->cmp_key = key;
7286
7287 ret = finish_inode_if_needed(sctx, at_end: 0);
7288 if (ret < 0)
7289 goto out;
7290
7291 /* Ignore non-FS objects */
7292 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7293 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7294 goto out;
7295
7296 if (key->type == BTRFS_INODE_ITEM_KEY) {
7297 ret = changed_inode(sctx, result);
7298 } else if (!sctx->ignore_cur_inode) {
7299 if (key->type == BTRFS_INODE_REF_KEY ||
7300 key->type == BTRFS_INODE_EXTREF_KEY)
7301 ret = changed_ref(sctx, result);
7302 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7303 ret = changed_xattr(sctx, result);
7304 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7305 ret = changed_extent(sctx, result);
7306 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7307 key->offset == 0)
7308 ret = changed_verity(sctx, result);
7309 }
7310
7311out:
7312 return ret;
7313}
7314
7315static int search_key_again(const struct send_ctx *sctx,
7316 struct btrfs_root *root,
7317 struct btrfs_path *path,
7318 const struct btrfs_key *key)
7319{
7320 int ret;
7321
7322 if (!path->need_commit_sem)
7323 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7324
7325 /*
7326 * Roots used for send operations are readonly and no one can add,
7327 * update or remove keys from them, so we should be able to find our
7328 * key again. The only exception is deduplication, which can operate on
7329 * readonly roots and add, update or remove keys to/from them - but at
7330 * the moment we don't allow it to run in parallel with send.
7331 */
7332 ret = btrfs_search_slot(NULL, root, key, p: path, ins_len: 0, cow: 0);
7333 ASSERT(ret <= 0);
7334 if (ret > 0) {
7335 btrfs_print_tree(c: path->nodes[path->lowest_level], follow: false);
7336 btrfs_err(root->fs_info,
7337"send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7338 key->objectid, key->type, key->offset,
7339 (root == sctx->parent_root ? "parent" : "send"),
7340 root->root_key.objectid, path->lowest_level,
7341 path->slots[path->lowest_level]);
7342 return -EUCLEAN;
7343 }
7344
7345 return ret;
7346}
7347
7348static int full_send_tree(struct send_ctx *sctx)
7349{
7350 int ret;
7351 struct btrfs_root *send_root = sctx->send_root;
7352 struct btrfs_key key;
7353 struct btrfs_fs_info *fs_info = send_root->fs_info;
7354 struct btrfs_path *path;
7355
7356 path = alloc_path_for_send();
7357 if (!path)
7358 return -ENOMEM;
7359 path->reada = READA_FORWARD_ALWAYS;
7360
7361 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7362 key.type = BTRFS_INODE_ITEM_KEY;
7363 key.offset = 0;
7364
7365 down_read(sem: &fs_info->commit_root_sem);
7366 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7367 up_read(sem: &fs_info->commit_root_sem);
7368
7369 ret = btrfs_search_slot_for_read(root: send_root, key: &key, p: path, find_higher: 1, return_any: 0);
7370 if (ret < 0)
7371 goto out;
7372 if (ret)
7373 goto out_finish;
7374
7375 while (1) {
7376 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
7377
7378 ret = changed_cb(left_path: path, NULL, key: &key,
7379 result: BTRFS_COMPARE_TREE_NEW, sctx);
7380 if (ret < 0)
7381 goto out;
7382
7383 down_read(sem: &fs_info->commit_root_sem);
7384 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7385 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7386 up_read(sem: &fs_info->commit_root_sem);
7387 /*
7388 * A transaction used for relocating a block group was
7389 * committed or is about to finish its commit. Release
7390 * our path (leaf) and restart the search, so that we
7391 * avoid operating on any file extent items that are
7392 * stale, with a disk_bytenr that reflects a pre
7393 * relocation value. This way we avoid as much as
7394 * possible to fallback to regular writes when checking
7395 * if we can clone file ranges.
7396 */
7397 btrfs_release_path(p: path);
7398 ret = search_key_again(sctx, root: send_root, path, key: &key);
7399 if (ret < 0)
7400 goto out;
7401 } else {
7402 up_read(sem: &fs_info->commit_root_sem);
7403 }
7404
7405 ret = btrfs_next_item(root: send_root, p: path);
7406 if (ret < 0)
7407 goto out;
7408 if (ret) {
7409 ret = 0;
7410 break;
7411 }
7412 }
7413
7414out_finish:
7415 ret = finish_inode_if_needed(sctx, at_end: 1);
7416
7417out:
7418 btrfs_free_path(p: path);
7419 return ret;
7420}
7421
7422static int replace_node_with_clone(struct btrfs_path *path, int level)
7423{
7424 struct extent_buffer *clone;
7425
7426 clone = btrfs_clone_extent_buffer(src: path->nodes[level]);
7427 if (!clone)
7428 return -ENOMEM;
7429
7430 free_extent_buffer(eb: path->nodes[level]);
7431 path->nodes[level] = clone;
7432
7433 return 0;
7434}
7435
7436static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7437{
7438 struct extent_buffer *eb;
7439 struct extent_buffer *parent = path->nodes[*level];
7440 int slot = path->slots[*level];
7441 const int nritems = btrfs_header_nritems(eb: parent);
7442 u64 reada_max;
7443 u64 reada_done = 0;
7444
7445 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7446 ASSERT(*level != 0);
7447
7448 eb = btrfs_read_node_slot(parent, slot);
7449 if (IS_ERR(ptr: eb))
7450 return PTR_ERR(ptr: eb);
7451
7452 /*
7453 * Trigger readahead for the next leaves we will process, so that it is
7454 * very likely that when we need them they are already in memory and we
7455 * will not block on disk IO. For nodes we only do readahead for one,
7456 * since the time window between processing nodes is typically larger.
7457 */
7458 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7459
7460 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7461 if (btrfs_node_ptr_generation(eb: parent, nr: slot) > reada_min_gen) {
7462 btrfs_readahead_node_child(node: parent, slot);
7463 reada_done += eb->fs_info->nodesize;
7464 }
7465 }
7466
7467 path->nodes[*level - 1] = eb;
7468 path->slots[*level - 1] = 0;
7469 (*level)--;
7470
7471 if (*level == 0)
7472 return replace_node_with_clone(path, level: 0);
7473
7474 return 0;
7475}
7476
7477static int tree_move_next_or_upnext(struct btrfs_path *path,
7478 int *level, int root_level)
7479{
7480 int ret = 0;
7481 int nritems;
7482 nritems = btrfs_header_nritems(eb: path->nodes[*level]);
7483
7484 path->slots[*level]++;
7485
7486 while (path->slots[*level] >= nritems) {
7487 if (*level == root_level) {
7488 path->slots[*level] = nritems - 1;
7489 return -1;
7490 }
7491
7492 /* move upnext */
7493 path->slots[*level] = 0;
7494 free_extent_buffer(eb: path->nodes[*level]);
7495 path->nodes[*level] = NULL;
7496 (*level)++;
7497 path->slots[*level]++;
7498
7499 nritems = btrfs_header_nritems(eb: path->nodes[*level]);
7500 ret = 1;
7501 }
7502 return ret;
7503}
7504
7505/*
7506 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7507 * or down.
7508 */
7509static int tree_advance(struct btrfs_path *path,
7510 int *level, int root_level,
7511 int allow_down,
7512 struct btrfs_key *key,
7513 u64 reada_min_gen)
7514{
7515 int ret;
7516
7517 if (*level == 0 || !allow_down) {
7518 ret = tree_move_next_or_upnext(path, level, root_level);
7519 } else {
7520 ret = tree_move_down(path, level, reada_min_gen);
7521 }
7522
7523 /*
7524 * Even if we have reached the end of a tree, ret is -1, update the key
7525 * anyway, so that in case we need to restart due to a block group
7526 * relocation, we can assert that the last key of the root node still
7527 * exists in the tree.
7528 */
7529 if (*level == 0)
7530 btrfs_item_key_to_cpu(eb: path->nodes[*level], cpu_key: key,
7531 nr: path->slots[*level]);
7532 else
7533 btrfs_node_key_to_cpu(eb: path->nodes[*level], cpu_key: key,
7534 nr: path->slots[*level]);
7535
7536 return ret;
7537}
7538
7539static int tree_compare_item(struct btrfs_path *left_path,
7540 struct btrfs_path *right_path,
7541 char *tmp_buf)
7542{
7543 int cmp;
7544 int len1, len2;
7545 unsigned long off1, off2;
7546
7547 len1 = btrfs_item_size(eb: left_path->nodes[0], slot: left_path->slots[0]);
7548 len2 = btrfs_item_size(eb: right_path->nodes[0], slot: right_path->slots[0]);
7549 if (len1 != len2)
7550 return 1;
7551
7552 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7553 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7554 right_path->slots[0]);
7555
7556 read_extent_buffer(eb: left_path->nodes[0], dst: tmp_buf, start: off1, len: len1);
7557
7558 cmp = memcmp_extent_buffer(eb: right_path->nodes[0], ptrv: tmp_buf, start: off2, len: len1);
7559 if (cmp)
7560 return 1;
7561 return 0;
7562}
7563
7564/*
7565 * A transaction used for relocating a block group was committed or is about to
7566 * finish its commit. Release our paths and restart the search, so that we are
7567 * not using stale extent buffers:
7568 *
7569 * 1) For levels > 0, we are only holding references of extent buffers, without
7570 * any locks on them, which does not prevent them from having been relocated
7571 * and reallocated after the last time we released the commit root semaphore.
7572 * The exception are the root nodes, for which we always have a clone, see
7573 * the comment at btrfs_compare_trees();
7574 *
7575 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7576 * we are safe from the concurrent relocation and reallocation. However they
7577 * can have file extent items with a pre relocation disk_bytenr value, so we
7578 * restart the start from the current commit roots and clone the new leaves so
7579 * that we get the post relocation disk_bytenr values. Not doing so, could
7580 * make us clone the wrong data in case there are new extents using the old
7581 * disk_bytenr that happen to be shared.
7582 */
7583static int restart_after_relocation(struct btrfs_path *left_path,
7584 struct btrfs_path *right_path,
7585 const struct btrfs_key *left_key,
7586 const struct btrfs_key *right_key,
7587 int left_level,
7588 int right_level,
7589 const struct send_ctx *sctx)
7590{
7591 int root_level;
7592 int ret;
7593
7594 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7595
7596 btrfs_release_path(p: left_path);
7597 btrfs_release_path(p: right_path);
7598
7599 /*
7600 * Since keys can not be added or removed to/from our roots because they
7601 * are readonly and we do not allow deduplication to run in parallel
7602 * (which can add, remove or change keys), the layout of the trees should
7603 * not change.
7604 */
7605 left_path->lowest_level = left_level;
7606 ret = search_key_again(sctx, root: sctx->send_root, path: left_path, key: left_key);
7607 if (ret < 0)
7608 return ret;
7609
7610 right_path->lowest_level = right_level;
7611 ret = search_key_again(sctx, root: sctx->parent_root, path: right_path, key: right_key);
7612 if (ret < 0)
7613 return ret;
7614
7615 /*
7616 * If the lowest level nodes are leaves, clone them so that they can be
7617 * safely used by changed_cb() while not under the protection of the
7618 * commit root semaphore, even if relocation and reallocation happens in
7619 * parallel.
7620 */
7621 if (left_level == 0) {
7622 ret = replace_node_with_clone(path: left_path, level: 0);
7623 if (ret < 0)
7624 return ret;
7625 }
7626
7627 if (right_level == 0) {
7628 ret = replace_node_with_clone(path: right_path, level: 0);
7629 if (ret < 0)
7630 return ret;
7631 }
7632
7633 /*
7634 * Now clone the root nodes (unless they happen to be the leaves we have
7635 * already cloned). This is to protect against concurrent snapshotting of
7636 * the send and parent roots (see the comment at btrfs_compare_trees()).
7637 */
7638 root_level = btrfs_header_level(eb: sctx->send_root->commit_root);
7639 if (root_level > 0) {
7640 ret = replace_node_with_clone(path: left_path, level: root_level);
7641 if (ret < 0)
7642 return ret;
7643 }
7644
7645 root_level = btrfs_header_level(eb: sctx->parent_root->commit_root);
7646 if (root_level > 0) {
7647 ret = replace_node_with_clone(path: right_path, level: root_level);
7648 if (ret < 0)
7649 return ret;
7650 }
7651
7652 return 0;
7653}
7654
7655/*
7656 * This function compares two trees and calls the provided callback for
7657 * every changed/new/deleted item it finds.
7658 * If shared tree blocks are encountered, whole subtrees are skipped, making
7659 * the compare pretty fast on snapshotted subvolumes.
7660 *
7661 * This currently works on commit roots only. As commit roots are read only,
7662 * we don't do any locking. The commit roots are protected with transactions.
7663 * Transactions are ended and rejoined when a commit is tried in between.
7664 *
7665 * This function checks for modifications done to the trees while comparing.
7666 * If it detects a change, it aborts immediately.
7667 */
7668static int btrfs_compare_trees(struct btrfs_root *left_root,
7669 struct btrfs_root *right_root, struct send_ctx *sctx)
7670{
7671 struct btrfs_fs_info *fs_info = left_root->fs_info;
7672 int ret;
7673 int cmp;
7674 struct btrfs_path *left_path = NULL;
7675 struct btrfs_path *right_path = NULL;
7676 struct btrfs_key left_key;
7677 struct btrfs_key right_key;
7678 char *tmp_buf = NULL;
7679 int left_root_level;
7680 int right_root_level;
7681 int left_level;
7682 int right_level;
7683 int left_end_reached = 0;
7684 int right_end_reached = 0;
7685 int advance_left = 0;
7686 int advance_right = 0;
7687 u64 left_blockptr;
7688 u64 right_blockptr;
7689 u64 left_gen;
7690 u64 right_gen;
7691 u64 reada_min_gen;
7692
7693 left_path = btrfs_alloc_path();
7694 if (!left_path) {
7695 ret = -ENOMEM;
7696 goto out;
7697 }
7698 right_path = btrfs_alloc_path();
7699 if (!right_path) {
7700 ret = -ENOMEM;
7701 goto out;
7702 }
7703
7704 tmp_buf = kvmalloc(size: fs_info->nodesize, GFP_KERNEL);
7705 if (!tmp_buf) {
7706 ret = -ENOMEM;
7707 goto out;
7708 }
7709
7710 left_path->search_commit_root = 1;
7711 left_path->skip_locking = 1;
7712 right_path->search_commit_root = 1;
7713 right_path->skip_locking = 1;
7714
7715 /*
7716 * Strategy: Go to the first items of both trees. Then do
7717 *
7718 * If both trees are at level 0
7719 * Compare keys of current items
7720 * If left < right treat left item as new, advance left tree
7721 * and repeat
7722 * If left > right treat right item as deleted, advance right tree
7723 * and repeat
7724 * If left == right do deep compare of items, treat as changed if
7725 * needed, advance both trees and repeat
7726 * If both trees are at the same level but not at level 0
7727 * Compare keys of current nodes/leafs
7728 * If left < right advance left tree and repeat
7729 * If left > right advance right tree and repeat
7730 * If left == right compare blockptrs of the next nodes/leafs
7731 * If they match advance both trees but stay at the same level
7732 * and repeat
7733 * If they don't match advance both trees while allowing to go
7734 * deeper and repeat
7735 * If tree levels are different
7736 * Advance the tree that needs it and repeat
7737 *
7738 * Advancing a tree means:
7739 * If we are at level 0, try to go to the next slot. If that's not
7740 * possible, go one level up and repeat. Stop when we found a level
7741 * where we could go to the next slot. We may at this point be on a
7742 * node or a leaf.
7743 *
7744 * If we are not at level 0 and not on shared tree blocks, go one
7745 * level deeper.
7746 *
7747 * If we are not at level 0 and on shared tree blocks, go one slot to
7748 * the right if possible or go up and right.
7749 */
7750
7751 down_read(sem: &fs_info->commit_root_sem);
7752 left_level = btrfs_header_level(eb: left_root->commit_root);
7753 left_root_level = left_level;
7754 /*
7755 * We clone the root node of the send and parent roots to prevent races
7756 * with snapshot creation of these roots. Snapshot creation COWs the
7757 * root node of a tree, so after the transaction is committed the old
7758 * extent can be reallocated while this send operation is still ongoing.
7759 * So we clone them, under the commit root semaphore, to be race free.
7760 */
7761 left_path->nodes[left_level] =
7762 btrfs_clone_extent_buffer(src: left_root->commit_root);
7763 if (!left_path->nodes[left_level]) {
7764 ret = -ENOMEM;
7765 goto out_unlock;
7766 }
7767
7768 right_level = btrfs_header_level(eb: right_root->commit_root);
7769 right_root_level = right_level;
7770 right_path->nodes[right_level] =
7771 btrfs_clone_extent_buffer(src: right_root->commit_root);
7772 if (!right_path->nodes[right_level]) {
7773 ret = -ENOMEM;
7774 goto out_unlock;
7775 }
7776 /*
7777 * Our right root is the parent root, while the left root is the "send"
7778 * root. We know that all new nodes/leaves in the left root must have
7779 * a generation greater than the right root's generation, so we trigger
7780 * readahead for those nodes and leaves of the left root, as we know we
7781 * will need to read them at some point.
7782 */
7783 reada_min_gen = btrfs_header_generation(eb: right_root->commit_root);
7784
7785 if (left_level == 0)
7786 btrfs_item_key_to_cpu(eb: left_path->nodes[left_level],
7787 cpu_key: &left_key, nr: left_path->slots[left_level]);
7788 else
7789 btrfs_node_key_to_cpu(eb: left_path->nodes[left_level],
7790 cpu_key: &left_key, nr: left_path->slots[left_level]);
7791 if (right_level == 0)
7792 btrfs_item_key_to_cpu(eb: right_path->nodes[right_level],
7793 cpu_key: &right_key, nr: right_path->slots[right_level]);
7794 else
7795 btrfs_node_key_to_cpu(eb: right_path->nodes[right_level],
7796 cpu_key: &right_key, nr: right_path->slots[right_level]);
7797
7798 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7799
7800 while (1) {
7801 if (need_resched() ||
7802 rwsem_is_contended(sem: &fs_info->commit_root_sem)) {
7803 up_read(sem: &fs_info->commit_root_sem);
7804 cond_resched();
7805 down_read(sem: &fs_info->commit_root_sem);
7806 }
7807
7808 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7809 ret = restart_after_relocation(left_path, right_path,
7810 left_key: &left_key, right_key: &right_key,
7811 left_level, right_level,
7812 sctx);
7813 if (ret < 0)
7814 goto out_unlock;
7815 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7816 }
7817
7818 if (advance_left && !left_end_reached) {
7819 ret = tree_advance(path: left_path, level: &left_level,
7820 root_level: left_root_level,
7821 allow_down: advance_left != ADVANCE_ONLY_NEXT,
7822 key: &left_key, reada_min_gen);
7823 if (ret == -1)
7824 left_end_reached = ADVANCE;
7825 else if (ret < 0)
7826 goto out_unlock;
7827 advance_left = 0;
7828 }
7829 if (advance_right && !right_end_reached) {
7830 ret = tree_advance(path: right_path, level: &right_level,
7831 root_level: right_root_level,
7832 allow_down: advance_right != ADVANCE_ONLY_NEXT,
7833 key: &right_key, reada_min_gen);
7834 if (ret == -1)
7835 right_end_reached = ADVANCE;
7836 else if (ret < 0)
7837 goto out_unlock;
7838 advance_right = 0;
7839 }
7840
7841 if (left_end_reached && right_end_reached) {
7842 ret = 0;
7843 goto out_unlock;
7844 } else if (left_end_reached) {
7845 if (right_level == 0) {
7846 up_read(sem: &fs_info->commit_root_sem);
7847 ret = changed_cb(left_path, right_path,
7848 key: &right_key,
7849 result: BTRFS_COMPARE_TREE_DELETED,
7850 sctx);
7851 if (ret < 0)
7852 goto out;
7853 down_read(sem: &fs_info->commit_root_sem);
7854 }
7855 advance_right = ADVANCE;
7856 continue;
7857 } else if (right_end_reached) {
7858 if (left_level == 0) {
7859 up_read(sem: &fs_info->commit_root_sem);
7860 ret = changed_cb(left_path, right_path,
7861 key: &left_key,
7862 result: BTRFS_COMPARE_TREE_NEW,
7863 sctx);
7864 if (ret < 0)
7865 goto out;
7866 down_read(sem: &fs_info->commit_root_sem);
7867 }
7868 advance_left = ADVANCE;
7869 continue;
7870 }
7871
7872 if (left_level == 0 && right_level == 0) {
7873 up_read(sem: &fs_info->commit_root_sem);
7874 cmp = btrfs_comp_cpu_keys(k1: &left_key, k2: &right_key);
7875 if (cmp < 0) {
7876 ret = changed_cb(left_path, right_path,
7877 key: &left_key,
7878 result: BTRFS_COMPARE_TREE_NEW,
7879 sctx);
7880 advance_left = ADVANCE;
7881 } else if (cmp > 0) {
7882 ret = changed_cb(left_path, right_path,
7883 key: &right_key,
7884 result: BTRFS_COMPARE_TREE_DELETED,
7885 sctx);
7886 advance_right = ADVANCE;
7887 } else {
7888 enum btrfs_compare_tree_result result;
7889
7890 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7891 ret = tree_compare_item(left_path, right_path,
7892 tmp_buf);
7893 if (ret)
7894 result = BTRFS_COMPARE_TREE_CHANGED;
7895 else
7896 result = BTRFS_COMPARE_TREE_SAME;
7897 ret = changed_cb(left_path, right_path,
7898 key: &left_key, result, sctx);
7899 advance_left = ADVANCE;
7900 advance_right = ADVANCE;
7901 }
7902
7903 if (ret < 0)
7904 goto out;
7905 down_read(sem: &fs_info->commit_root_sem);
7906 } else if (left_level == right_level) {
7907 cmp = btrfs_comp_cpu_keys(k1: &left_key, k2: &right_key);
7908 if (cmp < 0) {
7909 advance_left = ADVANCE;
7910 } else if (cmp > 0) {
7911 advance_right = ADVANCE;
7912 } else {
7913 left_blockptr = btrfs_node_blockptr(
7914 eb: left_path->nodes[left_level],
7915 nr: left_path->slots[left_level]);
7916 right_blockptr = btrfs_node_blockptr(
7917 eb: right_path->nodes[right_level],
7918 nr: right_path->slots[right_level]);
7919 left_gen = btrfs_node_ptr_generation(
7920 eb: left_path->nodes[left_level],
7921 nr: left_path->slots[left_level]);
7922 right_gen = btrfs_node_ptr_generation(
7923 eb: right_path->nodes[right_level],
7924 nr: right_path->slots[right_level]);
7925 if (left_blockptr == right_blockptr &&
7926 left_gen == right_gen) {
7927 /*
7928 * As we're on a shared block, don't
7929 * allow to go deeper.
7930 */
7931 advance_left = ADVANCE_ONLY_NEXT;
7932 advance_right = ADVANCE_ONLY_NEXT;
7933 } else {
7934 advance_left = ADVANCE;
7935 advance_right = ADVANCE;
7936 }
7937 }
7938 } else if (left_level < right_level) {
7939 advance_right = ADVANCE;
7940 } else {
7941 advance_left = ADVANCE;
7942 }
7943 }
7944
7945out_unlock:
7946 up_read(sem: &fs_info->commit_root_sem);
7947out:
7948 btrfs_free_path(p: left_path);
7949 btrfs_free_path(p: right_path);
7950 kvfree(addr: tmp_buf);
7951 return ret;
7952}
7953
7954static int send_subvol(struct send_ctx *sctx)
7955{
7956 int ret;
7957
7958 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7959 ret = send_header(sctx);
7960 if (ret < 0)
7961 goto out;
7962 }
7963
7964 ret = send_subvol_begin(sctx);
7965 if (ret < 0)
7966 goto out;
7967
7968 if (sctx->parent_root) {
7969 ret = btrfs_compare_trees(left_root: sctx->send_root, right_root: sctx->parent_root, sctx);
7970 if (ret < 0)
7971 goto out;
7972 ret = finish_inode_if_needed(sctx, at_end: 1);
7973 if (ret < 0)
7974 goto out;
7975 } else {
7976 ret = full_send_tree(sctx);
7977 if (ret < 0)
7978 goto out;
7979 }
7980
7981out:
7982 free_recorded_refs(sctx);
7983 return ret;
7984}
7985
7986/*
7987 * If orphan cleanup did remove any orphans from a root, it means the tree
7988 * was modified and therefore the commit root is not the same as the current
7989 * root anymore. This is a problem, because send uses the commit root and
7990 * therefore can see inode items that don't exist in the current root anymore,
7991 * and for example make calls to btrfs_iget, which will do tree lookups based
7992 * on the current root and not on the commit root. Those lookups will fail,
7993 * returning a -ESTALE error, and making send fail with that error. So make
7994 * sure a send does not see any orphans we have just removed, and that it will
7995 * see the same inodes regardless of whether a transaction commit happened
7996 * before it started (meaning that the commit root will be the same as the
7997 * current root) or not.
7998 */
7999static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8000{
8001 int i;
8002 struct btrfs_trans_handle *trans = NULL;
8003
8004again:
8005 if (sctx->parent_root &&
8006 sctx->parent_root->node != sctx->parent_root->commit_root)
8007 goto commit_trans;
8008
8009 for (i = 0; i < sctx->clone_roots_cnt; i++)
8010 if (sctx->clone_roots[i].root->node !=
8011 sctx->clone_roots[i].root->commit_root)
8012 goto commit_trans;
8013
8014 if (trans)
8015 return btrfs_end_transaction(trans);
8016
8017 return 0;
8018
8019commit_trans:
8020 /* Use any root, all fs roots will get their commit roots updated. */
8021 if (!trans) {
8022 trans = btrfs_join_transaction(root: sctx->send_root);
8023 if (IS_ERR(ptr: trans))
8024 return PTR_ERR(ptr: trans);
8025 goto again;
8026 }
8027
8028 return btrfs_commit_transaction(trans);
8029}
8030
8031/*
8032 * Make sure any existing dellaloc is flushed for any root used by a send
8033 * operation so that we do not miss any data and we do not race with writeback
8034 * finishing and changing a tree while send is using the tree. This could
8035 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8036 * a send operation then uses the subvolume.
8037 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8038 */
8039static int flush_delalloc_roots(struct send_ctx *sctx)
8040{
8041 struct btrfs_root *root = sctx->parent_root;
8042 int ret;
8043 int i;
8044
8045 if (root) {
8046 ret = btrfs_start_delalloc_snapshot(root, in_reclaim_context: false);
8047 if (ret)
8048 return ret;
8049 btrfs_wait_ordered_extents(root, U64_MAX, range_start: 0, U64_MAX);
8050 }
8051
8052 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8053 root = sctx->clone_roots[i].root;
8054 ret = btrfs_start_delalloc_snapshot(root, in_reclaim_context: false);
8055 if (ret)
8056 return ret;
8057 btrfs_wait_ordered_extents(root, U64_MAX, range_start: 0, U64_MAX);
8058 }
8059
8060 return 0;
8061}
8062
8063static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8064{
8065 spin_lock(lock: &root->root_item_lock);
8066 root->send_in_progress--;
8067 /*
8068 * Not much left to do, we don't know why it's unbalanced and
8069 * can't blindly reset it to 0.
8070 */
8071 if (root->send_in_progress < 0)
8072 btrfs_err(root->fs_info,
8073 "send_in_progress unbalanced %d root %llu",
8074 root->send_in_progress, root->root_key.objectid);
8075 spin_unlock(lock: &root->root_item_lock);
8076}
8077
8078static void dedupe_in_progress_warn(const struct btrfs_root *root)
8079{
8080 btrfs_warn_rl(root->fs_info,
8081"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8082 root->root_key.objectid, root->dedupe_in_progress);
8083}
8084
8085long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8086{
8087 int ret = 0;
8088 struct btrfs_root *send_root = BTRFS_I(inode)->root;
8089 struct btrfs_fs_info *fs_info = send_root->fs_info;
8090 struct btrfs_root *clone_root;
8091 struct send_ctx *sctx = NULL;
8092 u32 i;
8093 u64 *clone_sources_tmp = NULL;
8094 int clone_sources_to_rollback = 0;
8095 size_t alloc_size;
8096 int sort_clone_roots = 0;
8097 struct btrfs_lru_cache_entry *entry;
8098 struct btrfs_lru_cache_entry *tmp;
8099
8100 if (!capable(CAP_SYS_ADMIN))
8101 return -EPERM;
8102
8103 /*
8104 * The subvolume must remain read-only during send, protect against
8105 * making it RW. This also protects against deletion.
8106 */
8107 spin_lock(lock: &send_root->root_item_lock);
8108 if (btrfs_root_readonly(root: send_root) && send_root->dedupe_in_progress) {
8109 dedupe_in_progress_warn(root: send_root);
8110 spin_unlock(lock: &send_root->root_item_lock);
8111 return -EAGAIN;
8112 }
8113 send_root->send_in_progress++;
8114 spin_unlock(lock: &send_root->root_item_lock);
8115
8116 /*
8117 * Userspace tools do the checks and warn the user if it's
8118 * not RO.
8119 */
8120 if (!btrfs_root_readonly(root: send_root)) {
8121 ret = -EPERM;
8122 goto out;
8123 }
8124
8125 /*
8126 * Check that we don't overflow at later allocations, we request
8127 * clone_sources_count + 1 items, and compare to unsigned long inside
8128 * access_ok. Also set an upper limit for allocation size so this can't
8129 * easily exhaust memory. Max number of clone sources is about 200K.
8130 */
8131 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8132 ret = -EINVAL;
8133 goto out;
8134 }
8135
8136 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8137 ret = -EOPNOTSUPP;
8138 goto out;
8139 }
8140
8141 sctx = kzalloc(size: sizeof(struct send_ctx), GFP_KERNEL);
8142 if (!sctx) {
8143 ret = -ENOMEM;
8144 goto out;
8145 }
8146
8147 INIT_LIST_HEAD(list: &sctx->new_refs);
8148 INIT_LIST_HEAD(list: &sctx->deleted_refs);
8149
8150 btrfs_lru_cache_init(cache: &sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8151 btrfs_lru_cache_init(cache: &sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8152 btrfs_lru_cache_init(cache: &sctx->dir_created_cache,
8153 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8154 /*
8155 * This cache is periodically trimmed to a fixed size elsewhere, see
8156 * cache_dir_utimes() and trim_dir_utimes_cache().
8157 */
8158 btrfs_lru_cache_init(cache: &sctx->dir_utimes_cache, max_size: 0);
8159
8160 sctx->pending_dir_moves = RB_ROOT;
8161 sctx->waiting_dir_moves = RB_ROOT;
8162 sctx->orphan_dirs = RB_ROOT;
8163 sctx->rbtree_new_refs = RB_ROOT;
8164 sctx->rbtree_deleted_refs = RB_ROOT;
8165
8166 sctx->flags = arg->flags;
8167
8168 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8169 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8170 ret = -EPROTO;
8171 goto out;
8172 }
8173 /* Zero means "use the highest version" */
8174 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8175 } else {
8176 sctx->proto = 1;
8177 }
8178 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8179 ret = -EINVAL;
8180 goto out;
8181 }
8182
8183 sctx->send_filp = fget(fd: arg->send_fd);
8184 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8185 ret = -EBADF;
8186 goto out;
8187 }
8188
8189 sctx->send_root = send_root;
8190 /*
8191 * Unlikely but possible, if the subvolume is marked for deletion but
8192 * is slow to remove the directory entry, send can still be started
8193 */
8194 if (btrfs_root_dead(root: sctx->send_root)) {
8195 ret = -EPERM;
8196 goto out;
8197 }
8198
8199 sctx->clone_roots_cnt = arg->clone_sources_count;
8200
8201 if (sctx->proto >= 2) {
8202 u32 send_buf_num_pages;
8203
8204 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8205 sctx->send_buf = vmalloc(size: sctx->send_max_size);
8206 if (!sctx->send_buf) {
8207 ret = -ENOMEM;
8208 goto out;
8209 }
8210 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8211 sctx->send_buf_pages = kcalloc(n: send_buf_num_pages,
8212 size: sizeof(*sctx->send_buf_pages),
8213 GFP_KERNEL);
8214 if (!sctx->send_buf_pages) {
8215 ret = -ENOMEM;
8216 goto out;
8217 }
8218 for (i = 0; i < send_buf_num_pages; i++) {
8219 sctx->send_buf_pages[i] =
8220 vmalloc_to_page(addr: sctx->send_buf + (i << PAGE_SHIFT));
8221 }
8222 } else {
8223 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8224 sctx->send_buf = kvmalloc(size: sctx->send_max_size, GFP_KERNEL);
8225 }
8226 if (!sctx->send_buf) {
8227 ret = -ENOMEM;
8228 goto out;
8229 }
8230
8231 sctx->clone_roots = kvcalloc(n: arg->clone_sources_count + 1,
8232 size: sizeof(*sctx->clone_roots),
8233 GFP_KERNEL);
8234 if (!sctx->clone_roots) {
8235 ret = -ENOMEM;
8236 goto out;
8237 }
8238
8239 alloc_size = array_size(sizeof(*arg->clone_sources),
8240 arg->clone_sources_count);
8241
8242 if (arg->clone_sources_count) {
8243 clone_sources_tmp = kvmalloc(size: alloc_size, GFP_KERNEL);
8244 if (!clone_sources_tmp) {
8245 ret = -ENOMEM;
8246 goto out;
8247 }
8248
8249 ret = copy_from_user(to: clone_sources_tmp, from: arg->clone_sources,
8250 n: alloc_size);
8251 if (ret) {
8252 ret = -EFAULT;
8253 goto out;
8254 }
8255
8256 for (i = 0; i < arg->clone_sources_count; i++) {
8257 clone_root = btrfs_get_fs_root(fs_info,
8258 objectid: clone_sources_tmp[i], check_ref: true);
8259 if (IS_ERR(ptr: clone_root)) {
8260 ret = PTR_ERR(ptr: clone_root);
8261 goto out;
8262 }
8263 spin_lock(lock: &clone_root->root_item_lock);
8264 if (!btrfs_root_readonly(root: clone_root) ||
8265 btrfs_root_dead(root: clone_root)) {
8266 spin_unlock(lock: &clone_root->root_item_lock);
8267 btrfs_put_root(root: clone_root);
8268 ret = -EPERM;
8269 goto out;
8270 }
8271 if (clone_root->dedupe_in_progress) {
8272 dedupe_in_progress_warn(root: clone_root);
8273 spin_unlock(lock: &clone_root->root_item_lock);
8274 btrfs_put_root(root: clone_root);
8275 ret = -EAGAIN;
8276 goto out;
8277 }
8278 clone_root->send_in_progress++;
8279 spin_unlock(lock: &clone_root->root_item_lock);
8280
8281 sctx->clone_roots[i].root = clone_root;
8282 clone_sources_to_rollback = i + 1;
8283 }
8284 kvfree(addr: clone_sources_tmp);
8285 clone_sources_tmp = NULL;
8286 }
8287
8288 if (arg->parent_root) {
8289 sctx->parent_root = btrfs_get_fs_root(fs_info, objectid: arg->parent_root,
8290 check_ref: true);
8291 if (IS_ERR(ptr: sctx->parent_root)) {
8292 ret = PTR_ERR(ptr: sctx->parent_root);
8293 goto out;
8294 }
8295
8296 spin_lock(lock: &sctx->parent_root->root_item_lock);
8297 sctx->parent_root->send_in_progress++;
8298 if (!btrfs_root_readonly(root: sctx->parent_root) ||
8299 btrfs_root_dead(root: sctx->parent_root)) {
8300 spin_unlock(lock: &sctx->parent_root->root_item_lock);
8301 ret = -EPERM;
8302 goto out;
8303 }
8304 if (sctx->parent_root->dedupe_in_progress) {
8305 dedupe_in_progress_warn(root: sctx->parent_root);
8306 spin_unlock(lock: &sctx->parent_root->root_item_lock);
8307 ret = -EAGAIN;
8308 goto out;
8309 }
8310 spin_unlock(lock: &sctx->parent_root->root_item_lock);
8311 }
8312
8313 /*
8314 * Clones from send_root are allowed, but only if the clone source
8315 * is behind the current send position. This is checked while searching
8316 * for possible clone sources.
8317 */
8318 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8319 btrfs_grab_root(root: sctx->send_root);
8320
8321 /* We do a bsearch later */
8322 sort(base: sctx->clone_roots, num: sctx->clone_roots_cnt,
8323 size: sizeof(*sctx->clone_roots), cmp_func: __clone_root_cmp_sort,
8324 NULL);
8325 sort_clone_roots = 1;
8326
8327 ret = flush_delalloc_roots(sctx);
8328 if (ret)
8329 goto out;
8330
8331 ret = ensure_commit_roots_uptodate(sctx);
8332 if (ret)
8333 goto out;
8334
8335 ret = send_subvol(sctx);
8336 if (ret < 0)
8337 goto out;
8338
8339 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8340 ret = send_utimes(sctx, ino: entry->key, gen: entry->gen);
8341 if (ret < 0)
8342 goto out;
8343 btrfs_lru_cache_remove(cache: &sctx->dir_utimes_cache, entry);
8344 }
8345
8346 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8347 ret = begin_cmd(sctx, cmd: BTRFS_SEND_C_END);
8348 if (ret < 0)
8349 goto out;
8350 ret = send_cmd(sctx);
8351 if (ret < 0)
8352 goto out;
8353 }
8354
8355out:
8356 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8357 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8358 struct rb_node *n;
8359 struct pending_dir_move *pm;
8360
8361 n = rb_first(&sctx->pending_dir_moves);
8362 pm = rb_entry(n, struct pending_dir_move, node);
8363 while (!list_empty(head: &pm->list)) {
8364 struct pending_dir_move *pm2;
8365
8366 pm2 = list_first_entry(&pm->list,
8367 struct pending_dir_move, list);
8368 free_pending_move(sctx, m: pm2);
8369 }
8370 free_pending_move(sctx, m: pm);
8371 }
8372
8373 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8374 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8375 struct rb_node *n;
8376 struct waiting_dir_move *dm;
8377
8378 n = rb_first(&sctx->waiting_dir_moves);
8379 dm = rb_entry(n, struct waiting_dir_move, node);
8380 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8381 kfree(objp: dm);
8382 }
8383
8384 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8385 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8386 struct rb_node *n;
8387 struct orphan_dir_info *odi;
8388
8389 n = rb_first(&sctx->orphan_dirs);
8390 odi = rb_entry(n, struct orphan_dir_info, node);
8391 free_orphan_dir_info(sctx, odi);
8392 }
8393
8394 if (sort_clone_roots) {
8395 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8396 btrfs_root_dec_send_in_progress(
8397 root: sctx->clone_roots[i].root);
8398 btrfs_put_root(root: sctx->clone_roots[i].root);
8399 }
8400 } else {
8401 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8402 btrfs_root_dec_send_in_progress(
8403 root: sctx->clone_roots[i].root);
8404 btrfs_put_root(root: sctx->clone_roots[i].root);
8405 }
8406
8407 btrfs_root_dec_send_in_progress(root: send_root);
8408 }
8409 if (sctx && !IS_ERR_OR_NULL(ptr: sctx->parent_root)) {
8410 btrfs_root_dec_send_in_progress(root: sctx->parent_root);
8411 btrfs_put_root(root: sctx->parent_root);
8412 }
8413
8414 kvfree(addr: clone_sources_tmp);
8415
8416 if (sctx) {
8417 if (sctx->send_filp)
8418 fput(sctx->send_filp);
8419
8420 kvfree(addr: sctx->clone_roots);
8421 kfree(objp: sctx->send_buf_pages);
8422 kvfree(addr: sctx->send_buf);
8423 kvfree(addr: sctx->verity_descriptor);
8424
8425 close_current_inode(sctx);
8426
8427 btrfs_lru_cache_clear(cache: &sctx->name_cache);
8428 btrfs_lru_cache_clear(cache: &sctx->backref_cache);
8429 btrfs_lru_cache_clear(cache: &sctx->dir_created_cache);
8430 btrfs_lru_cache_clear(cache: &sctx->dir_utimes_cache);
8431
8432 kfree(objp: sctx);
8433 }
8434
8435 return ret;
8436}
8437

source code of linux/fs/btrfs/send.c