1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * eCryptfs: Linux filesystem encryption layer |
4 | * |
5 | * Copyright (C) 1997-2004 Erez Zadok |
6 | * Copyright (C) 2001-2004 Stony Brook University |
7 | * Copyright (C) 2004-2007 International Business Machines Corp. |
8 | * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> |
9 | * Michael C. Thompson <mcthomps@us.ibm.com> |
10 | */ |
11 | |
12 | #include <crypto/hash.h> |
13 | #include <crypto/skcipher.h> |
14 | #include <linux/fs.h> |
15 | #include <linux/mount.h> |
16 | #include <linux/pagemap.h> |
17 | #include <linux/random.h> |
18 | #include <linux/compiler.h> |
19 | #include <linux/key.h> |
20 | #include <linux/namei.h> |
21 | #include <linux/file.h> |
22 | #include <linux/scatterlist.h> |
23 | #include <linux/slab.h> |
24 | #include <linux/unaligned.h> |
25 | #include <linux/kernel.h> |
26 | #include <linux/xattr.h> |
27 | #include "ecryptfs_kernel.h" |
28 | |
29 | #define DECRYPT 0 |
30 | #define ENCRYPT 1 |
31 | |
32 | /** |
33 | * ecryptfs_from_hex |
34 | * @dst: Buffer to take the bytes from src hex; must be at least of |
35 | * size (src_size / 2) |
36 | * @src: Buffer to be converted from a hex string representation to raw value |
37 | * @dst_size: size of dst buffer, or number of hex characters pairs to convert |
38 | */ |
39 | void ecryptfs_from_hex(char *dst, char *src, int dst_size) |
40 | { |
41 | int x; |
42 | char tmp[3] = { 0, }; |
43 | |
44 | for (x = 0; x < dst_size; x++) { |
45 | tmp[0] = src[x * 2]; |
46 | tmp[1] = src[x * 2 + 1]; |
47 | dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); |
48 | } |
49 | } |
50 | |
51 | /** |
52 | * ecryptfs_calculate_md5 - calculates the md5 of @src |
53 | * @dst: Pointer to 16 bytes of allocated memory |
54 | * @crypt_stat: Pointer to crypt_stat struct for the current inode |
55 | * @src: Data to be md5'd |
56 | * @len: Length of @src |
57 | * |
58 | * Uses the allocated crypto context that crypt_stat references to |
59 | * generate the MD5 sum of the contents of src. |
60 | */ |
61 | static int ecryptfs_calculate_md5(char *dst, |
62 | struct ecryptfs_crypt_stat *crypt_stat, |
63 | char *src, int len) |
64 | { |
65 | int rc = crypto_shash_tfm_digest(tfm: crypt_stat->hash_tfm, data: src, len, out: dst); |
66 | |
67 | if (rc) { |
68 | printk(KERN_ERR |
69 | "%s: Error computing crypto hash; rc = [%d]\n", |
70 | __func__, rc); |
71 | goto out; |
72 | } |
73 | out: |
74 | return rc; |
75 | } |
76 | |
77 | static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, |
78 | char *cipher_name, |
79 | char *chaining_modifier) |
80 | { |
81 | int cipher_name_len = strlen(cipher_name); |
82 | int chaining_modifier_len = strlen(chaining_modifier); |
83 | int algified_name_len; |
84 | int rc; |
85 | |
86 | algified_name_len = (chaining_modifier_len + cipher_name_len + 3); |
87 | (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); |
88 | if (!(*algified_name)) { |
89 | rc = -ENOMEM; |
90 | goto out; |
91 | } |
92 | snprintf(buf: (*algified_name), size: algified_name_len, fmt: "%s(%s)", |
93 | chaining_modifier, cipher_name); |
94 | rc = 0; |
95 | out: |
96 | return rc; |
97 | } |
98 | |
99 | /** |
100 | * ecryptfs_derive_iv |
101 | * @iv: destination for the derived iv vale |
102 | * @crypt_stat: Pointer to crypt_stat struct for the current inode |
103 | * @offset: Offset of the extent whose IV we are to derive |
104 | * |
105 | * Generate the initialization vector from the given root IV and page |
106 | * offset. |
107 | * |
108 | * Returns zero on success; non-zero on error. |
109 | */ |
110 | int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, |
111 | loff_t offset) |
112 | { |
113 | int rc = 0; |
114 | char dst[MD5_DIGEST_SIZE]; |
115 | char src[ECRYPTFS_MAX_IV_BYTES + 16]; |
116 | |
117 | if (unlikely(ecryptfs_verbosity > 0)) { |
118 | ecryptfs_printk(KERN_DEBUG, "root iv:\n"); |
119 | ecryptfs_dump_hex(data: crypt_stat->root_iv, bytes: crypt_stat->iv_bytes); |
120 | } |
121 | /* TODO: It is probably secure to just cast the least |
122 | * significant bits of the root IV into an unsigned long and |
123 | * add the offset to that rather than go through all this |
124 | * hashing business. -Halcrow */ |
125 | memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); |
126 | memset((src + crypt_stat->iv_bytes), 0, 16); |
127 | snprintf(buf: (src + crypt_stat->iv_bytes), size: 16, fmt: "%lld", offset); |
128 | if (unlikely(ecryptfs_verbosity > 0)) { |
129 | ecryptfs_printk(KERN_DEBUG, "source:\n"); |
130 | ecryptfs_dump_hex(data: src, bytes: (crypt_stat->iv_bytes + 16)); |
131 | } |
132 | rc = ecryptfs_calculate_md5(dst, crypt_stat, src, |
133 | len: (crypt_stat->iv_bytes + 16)); |
134 | if (rc) { |
135 | ecryptfs_printk(KERN_WARNING, "Error attempting to compute " |
136 | "MD5 while generating IV for a page\n"); |
137 | goto out; |
138 | } |
139 | memcpy(iv, dst, crypt_stat->iv_bytes); |
140 | if (unlikely(ecryptfs_verbosity > 0)) { |
141 | ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); |
142 | ecryptfs_dump_hex(data: iv, bytes: crypt_stat->iv_bytes); |
143 | } |
144 | out: |
145 | return rc; |
146 | } |
147 | |
148 | /** |
149 | * ecryptfs_init_crypt_stat |
150 | * @crypt_stat: Pointer to the crypt_stat struct to initialize. |
151 | * |
152 | * Initialize the crypt_stat structure. |
153 | */ |
154 | int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) |
155 | { |
156 | struct crypto_shash *tfm; |
157 | int rc; |
158 | |
159 | tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, type: 0, mask: 0); |
160 | if (IS_ERR(ptr: tfm)) { |
161 | rc = PTR_ERR(ptr: tfm); |
162 | ecryptfs_printk(KERN_ERR, "Error attempting to " |
163 | "allocate crypto context; rc = [%d]\n", |
164 | rc); |
165 | return rc; |
166 | } |
167 | |
168 | memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); |
169 | INIT_LIST_HEAD(list: &crypt_stat->keysig_list); |
170 | mutex_init(&crypt_stat->keysig_list_mutex); |
171 | mutex_init(&crypt_stat->cs_mutex); |
172 | mutex_init(&crypt_stat->cs_tfm_mutex); |
173 | crypt_stat->hash_tfm = tfm; |
174 | crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; |
175 | |
176 | return 0; |
177 | } |
178 | |
179 | /** |
180 | * ecryptfs_destroy_crypt_stat |
181 | * @crypt_stat: Pointer to the crypt_stat struct to initialize. |
182 | * |
183 | * Releases all memory associated with a crypt_stat struct. |
184 | */ |
185 | void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) |
186 | { |
187 | struct ecryptfs_key_sig *key_sig, *key_sig_tmp; |
188 | |
189 | crypto_free_skcipher(tfm: crypt_stat->tfm); |
190 | crypto_free_shash(tfm: crypt_stat->hash_tfm); |
191 | list_for_each_entry_safe(key_sig, key_sig_tmp, |
192 | &crypt_stat->keysig_list, crypt_stat_list) { |
193 | list_del(entry: &key_sig->crypt_stat_list); |
194 | kmem_cache_free(s: ecryptfs_key_sig_cache, objp: key_sig); |
195 | } |
196 | memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); |
197 | } |
198 | |
199 | void ecryptfs_destroy_mount_crypt_stat( |
200 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
201 | { |
202 | struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; |
203 | |
204 | if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) |
205 | return; |
206 | mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); |
207 | list_for_each_entry_safe(auth_tok, auth_tok_tmp, |
208 | &mount_crypt_stat->global_auth_tok_list, |
209 | mount_crypt_stat_list) { |
210 | list_del(entry: &auth_tok->mount_crypt_stat_list); |
211 | if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) |
212 | key_put(key: auth_tok->global_auth_tok_key); |
213 | kmem_cache_free(s: ecryptfs_global_auth_tok_cache, objp: auth_tok); |
214 | } |
215 | mutex_unlock(lock: &mount_crypt_stat->global_auth_tok_list_mutex); |
216 | memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); |
217 | } |
218 | |
219 | /** |
220 | * virt_to_scatterlist |
221 | * @addr: Virtual address |
222 | * @size: Size of data; should be an even multiple of the block size |
223 | * @sg: Pointer to scatterlist array; set to NULL to obtain only |
224 | * the number of scatterlist structs required in array |
225 | * @sg_size: Max array size |
226 | * |
227 | * Fills in a scatterlist array with page references for a passed |
228 | * virtual address. |
229 | * |
230 | * Returns the number of scatterlist structs in array used |
231 | */ |
232 | int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, |
233 | int sg_size) |
234 | { |
235 | int i = 0; |
236 | struct page *pg; |
237 | int offset; |
238 | int remainder_of_page; |
239 | |
240 | sg_init_table(sg, sg_size); |
241 | |
242 | while (size > 0 && i < sg_size) { |
243 | pg = virt_to_page(addr); |
244 | offset = offset_in_page(addr); |
245 | sg_set_page(sg: &sg[i], page: pg, len: 0, offset); |
246 | remainder_of_page = PAGE_SIZE - offset; |
247 | if (size >= remainder_of_page) { |
248 | sg[i].length = remainder_of_page; |
249 | addr += remainder_of_page; |
250 | size -= remainder_of_page; |
251 | } else { |
252 | sg[i].length = size; |
253 | addr += size; |
254 | size = 0; |
255 | } |
256 | i++; |
257 | } |
258 | if (size > 0) |
259 | return -ENOMEM; |
260 | return i; |
261 | } |
262 | |
263 | /** |
264 | * crypt_scatterlist |
265 | * @crypt_stat: Pointer to the crypt_stat struct to initialize. |
266 | * @dst_sg: Destination of the data after performing the crypto operation |
267 | * @src_sg: Data to be encrypted or decrypted |
268 | * @size: Length of data |
269 | * @iv: IV to use |
270 | * @op: ENCRYPT or DECRYPT to indicate the desired operation |
271 | * |
272 | * Returns the number of bytes encrypted or decrypted; negative value on error |
273 | */ |
274 | static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, |
275 | struct scatterlist *dst_sg, |
276 | struct scatterlist *src_sg, int size, |
277 | unsigned char *iv, int op) |
278 | { |
279 | struct skcipher_request *req = NULL; |
280 | DECLARE_CRYPTO_WAIT(ecr); |
281 | int rc = 0; |
282 | |
283 | if (unlikely(ecryptfs_verbosity > 0)) { |
284 | ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", |
285 | crypt_stat->key_size); |
286 | ecryptfs_dump_hex(data: crypt_stat->key, |
287 | bytes: crypt_stat->key_size); |
288 | } |
289 | |
290 | mutex_lock(&crypt_stat->cs_tfm_mutex); |
291 | req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); |
292 | if (!req) { |
293 | mutex_unlock(lock: &crypt_stat->cs_tfm_mutex); |
294 | rc = -ENOMEM; |
295 | goto out; |
296 | } |
297 | |
298 | skcipher_request_set_callback(req, |
299 | CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
300 | compl: crypto_req_done, data: &ecr); |
301 | /* Consider doing this once, when the file is opened */ |
302 | if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { |
303 | rc = crypto_skcipher_setkey(tfm: crypt_stat->tfm, key: crypt_stat->key, |
304 | keylen: crypt_stat->key_size); |
305 | if (rc) { |
306 | ecryptfs_printk(KERN_ERR, |
307 | "Error setting key; rc = [%d]\n", |
308 | rc); |
309 | mutex_unlock(lock: &crypt_stat->cs_tfm_mutex); |
310 | rc = -EINVAL; |
311 | goto out; |
312 | } |
313 | crypt_stat->flags |= ECRYPTFS_KEY_SET; |
314 | } |
315 | mutex_unlock(lock: &crypt_stat->cs_tfm_mutex); |
316 | skcipher_request_set_crypt(req, src: src_sg, dst: dst_sg, cryptlen: size, iv); |
317 | rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : |
318 | crypto_skcipher_decrypt(req); |
319 | rc = crypto_wait_req(err: rc, wait: &ecr); |
320 | out: |
321 | skcipher_request_free(req); |
322 | return rc; |
323 | } |
324 | |
325 | /* |
326 | * lower_offset_for_page |
327 | * |
328 | * Convert an eCryptfs page index into a lower byte offset |
329 | */ |
330 | static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, |
331 | struct folio *folio) |
332 | { |
333 | return ecryptfs_lower_header_size(crypt_stat) + |
334 | (loff_t)folio->index * PAGE_SIZE; |
335 | } |
336 | |
337 | /** |
338 | * crypt_extent |
339 | * @crypt_stat: crypt_stat containing cryptographic context for the |
340 | * encryption operation |
341 | * @dst_page: The page to write the result into |
342 | * @src_page: The page to read from |
343 | * @page_index: The offset in the file (in units of PAGE_SIZE) |
344 | * @extent_offset: Page extent offset for use in generating IV |
345 | * @op: ENCRYPT or DECRYPT to indicate the desired operation |
346 | * |
347 | * Encrypts or decrypts one extent of data. |
348 | * |
349 | * Return zero on success; non-zero otherwise |
350 | */ |
351 | static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, |
352 | struct page *dst_page, |
353 | struct page *src_page, |
354 | pgoff_t page_index, |
355 | unsigned long extent_offset, int op) |
356 | { |
357 | loff_t extent_base; |
358 | char extent_iv[ECRYPTFS_MAX_IV_BYTES]; |
359 | struct scatterlist src_sg, dst_sg; |
360 | size_t extent_size = crypt_stat->extent_size; |
361 | int rc; |
362 | |
363 | extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); |
364 | rc = ecryptfs_derive_iv(iv: extent_iv, crypt_stat, |
365 | offset: (extent_base + extent_offset)); |
366 | if (rc) { |
367 | ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " |
368 | "extent [0x%.16llx]; rc = [%d]\n", |
369 | (unsigned long long)(extent_base + extent_offset), rc); |
370 | goto out; |
371 | } |
372 | |
373 | sg_init_table(&src_sg, 1); |
374 | sg_init_table(&dst_sg, 1); |
375 | |
376 | sg_set_page(sg: &src_sg, page: src_page, len: extent_size, |
377 | offset: extent_offset * extent_size); |
378 | sg_set_page(sg: &dst_sg, page: dst_page, len: extent_size, |
379 | offset: extent_offset * extent_size); |
380 | |
381 | rc = crypt_scatterlist(crypt_stat, dst_sg: &dst_sg, src_sg: &src_sg, size: extent_size, |
382 | iv: extent_iv, op); |
383 | if (rc < 0) { |
384 | printk(KERN_ERR "%s: Error attempting to crypt page with " |
385 | "page_index = [%ld], extent_offset = [%ld]; " |
386 | "rc = [%d]\n", __func__, page_index, extent_offset, rc); |
387 | goto out; |
388 | } |
389 | rc = 0; |
390 | out: |
391 | return rc; |
392 | } |
393 | |
394 | /** |
395 | * ecryptfs_encrypt_page |
396 | * @folio: Folio mapped from the eCryptfs inode for the file; contains |
397 | * decrypted content that needs to be encrypted (to a temporary |
398 | * page; not in place) and written out to the lower file |
399 | * |
400 | * Encrypt an eCryptfs page. This is done on a per-extent basis. Note |
401 | * that eCryptfs pages may straddle the lower pages -- for instance, |
402 | * if the file was created on a machine with an 8K page size |
403 | * (resulting in an 8K header), and then the file is copied onto a |
404 | * host with a 32K page size, then when reading page 0 of the eCryptfs |
405 | * file, 24K of page 0 of the lower file will be read and decrypted, |
406 | * and then 8K of page 1 of the lower file will be read and decrypted. |
407 | * |
408 | * Returns zero on success; negative on error |
409 | */ |
410 | int ecryptfs_encrypt_page(struct folio *folio) |
411 | { |
412 | struct inode *ecryptfs_inode; |
413 | struct ecryptfs_crypt_stat *crypt_stat; |
414 | char *enc_extent_virt; |
415 | struct page *enc_extent_page = NULL; |
416 | loff_t extent_offset; |
417 | loff_t lower_offset; |
418 | int rc = 0; |
419 | |
420 | ecryptfs_inode = folio->mapping->host; |
421 | crypt_stat = |
422 | &(ecryptfs_inode_to_private(inode: ecryptfs_inode)->crypt_stat); |
423 | BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); |
424 | enc_extent_page = alloc_page(GFP_USER); |
425 | if (!enc_extent_page) { |
426 | rc = -ENOMEM; |
427 | ecryptfs_printk(KERN_ERR, "Error allocating memory for " |
428 | "encrypted extent\n"); |
429 | goto out; |
430 | } |
431 | |
432 | for (extent_offset = 0; |
433 | extent_offset < (PAGE_SIZE / crypt_stat->extent_size); |
434 | extent_offset++) { |
435 | rc = crypt_extent(crypt_stat, dst_page: enc_extent_page, |
436 | folio_page(folio, 0), page_index: folio->index, |
437 | extent_offset, ENCRYPT); |
438 | if (rc) { |
439 | printk(KERN_ERR "%s: Error encrypting extent; " |
440 | "rc = [%d]\n", __func__, rc); |
441 | goto out; |
442 | } |
443 | } |
444 | |
445 | lower_offset = lower_offset_for_page(crypt_stat, folio); |
446 | enc_extent_virt = kmap_local_page(page: enc_extent_page); |
447 | rc = ecryptfs_write_lower(ecryptfs_inode, data: enc_extent_virt, offset: lower_offset, |
448 | PAGE_SIZE); |
449 | kunmap_local(enc_extent_virt); |
450 | if (rc < 0) { |
451 | ecryptfs_printk(KERN_ERR, |
452 | "Error attempting to write lower page; rc = [%d]\n", |
453 | rc); |
454 | goto out; |
455 | } |
456 | rc = 0; |
457 | out: |
458 | if (enc_extent_page) { |
459 | __free_page(enc_extent_page); |
460 | } |
461 | return rc; |
462 | } |
463 | |
464 | /** |
465 | * ecryptfs_decrypt_page |
466 | * @folio: Folio mapped from the eCryptfs inode for the file; data read |
467 | * and decrypted from the lower file will be written into this |
468 | * page |
469 | * |
470 | * Decrypt an eCryptfs page. This is done on a per-extent basis. Note |
471 | * that eCryptfs pages may straddle the lower pages -- for instance, |
472 | * if the file was created on a machine with an 8K page size |
473 | * (resulting in an 8K header), and then the file is copied onto a |
474 | * host with a 32K page size, then when reading page 0 of the eCryptfs |
475 | * file, 24K of page 0 of the lower file will be read and decrypted, |
476 | * and then 8K of page 1 of the lower file will be read and decrypted. |
477 | * |
478 | * Returns zero on success; negative on error |
479 | */ |
480 | int ecryptfs_decrypt_page(struct folio *folio) |
481 | { |
482 | struct inode *ecryptfs_inode; |
483 | struct ecryptfs_crypt_stat *crypt_stat; |
484 | char *page_virt; |
485 | unsigned long extent_offset; |
486 | loff_t lower_offset; |
487 | int rc = 0; |
488 | |
489 | ecryptfs_inode = folio->mapping->host; |
490 | crypt_stat = |
491 | &(ecryptfs_inode_to_private(inode: ecryptfs_inode)->crypt_stat); |
492 | BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); |
493 | |
494 | lower_offset = lower_offset_for_page(crypt_stat, folio); |
495 | page_virt = kmap_local_folio(folio, offset: 0); |
496 | rc = ecryptfs_read_lower(data: page_virt, offset: lower_offset, PAGE_SIZE, |
497 | ecryptfs_inode); |
498 | kunmap_local(page_virt); |
499 | if (rc < 0) { |
500 | ecryptfs_printk(KERN_ERR, |
501 | "Error attempting to read lower page; rc = [%d]\n", |
502 | rc); |
503 | goto out; |
504 | } |
505 | |
506 | for (extent_offset = 0; |
507 | extent_offset < (PAGE_SIZE / crypt_stat->extent_size); |
508 | extent_offset++) { |
509 | struct page *page = folio_page(folio, 0); |
510 | rc = crypt_extent(crypt_stat, dst_page: page, src_page: page, page_index: folio->index, |
511 | extent_offset, DECRYPT); |
512 | if (rc) { |
513 | printk(KERN_ERR "%s: Error decrypting extent; " |
514 | "rc = [%d]\n", __func__, rc); |
515 | goto out; |
516 | } |
517 | } |
518 | out: |
519 | return rc; |
520 | } |
521 | |
522 | #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 |
523 | |
524 | /** |
525 | * ecryptfs_init_crypt_ctx |
526 | * @crypt_stat: Uninitialized crypt stats structure |
527 | * |
528 | * Initialize the crypto context. |
529 | * |
530 | * TODO: Performance: Keep a cache of initialized cipher contexts; |
531 | * only init if needed |
532 | */ |
533 | int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) |
534 | { |
535 | char *full_alg_name; |
536 | int rc = -EINVAL; |
537 | |
538 | ecryptfs_printk(KERN_DEBUG, |
539 | "Initializing cipher [%s]; strlen = [%d]; " |
540 | "key_size_bits = [%zd]\n", |
541 | crypt_stat->cipher, (int)strlen(crypt_stat->cipher), |
542 | crypt_stat->key_size << 3); |
543 | mutex_lock(&crypt_stat->cs_tfm_mutex); |
544 | if (crypt_stat->tfm) { |
545 | rc = 0; |
546 | goto out_unlock; |
547 | } |
548 | rc = ecryptfs_crypto_api_algify_cipher_name(algified_name: &full_alg_name, |
549 | cipher_name: crypt_stat->cipher, chaining_modifier: "cbc"); |
550 | if (rc) |
551 | goto out_unlock; |
552 | crypt_stat->tfm = crypto_alloc_skcipher(alg_name: full_alg_name, type: 0, mask: 0); |
553 | if (IS_ERR(ptr: crypt_stat->tfm)) { |
554 | rc = PTR_ERR(ptr: crypt_stat->tfm); |
555 | crypt_stat->tfm = NULL; |
556 | ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " |
557 | "Error initializing cipher [%s]\n", |
558 | full_alg_name); |
559 | goto out_free; |
560 | } |
561 | crypto_skcipher_set_flags(tfm: crypt_stat->tfm, |
562 | CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); |
563 | rc = 0; |
564 | out_free: |
565 | kfree(objp: full_alg_name); |
566 | out_unlock: |
567 | mutex_unlock(lock: &crypt_stat->cs_tfm_mutex); |
568 | return rc; |
569 | } |
570 | |
571 | static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) |
572 | { |
573 | int extent_size_tmp; |
574 | |
575 | crypt_stat->extent_mask = 0xFFFFFFFF; |
576 | crypt_stat->extent_shift = 0; |
577 | if (crypt_stat->extent_size == 0) |
578 | return; |
579 | extent_size_tmp = crypt_stat->extent_size; |
580 | while ((extent_size_tmp & 0x01) == 0) { |
581 | extent_size_tmp >>= 1; |
582 | crypt_stat->extent_mask <<= 1; |
583 | crypt_stat->extent_shift++; |
584 | } |
585 | } |
586 | |
587 | void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) |
588 | { |
589 | /* Default values; may be overwritten as we are parsing the |
590 | * packets. */ |
591 | crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; |
592 | set_extent_mask_and_shift(crypt_stat); |
593 | crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; |
594 | if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) |
595 | crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; |
596 | else { |
597 | if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) |
598 | crypt_stat->metadata_size = |
599 | ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; |
600 | else |
601 | crypt_stat->metadata_size = PAGE_SIZE; |
602 | } |
603 | } |
604 | |
605 | /* |
606 | * ecryptfs_compute_root_iv |
607 | * |
608 | * On error, sets the root IV to all 0's. |
609 | */ |
610 | int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) |
611 | { |
612 | int rc = 0; |
613 | char dst[MD5_DIGEST_SIZE]; |
614 | |
615 | BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); |
616 | BUG_ON(crypt_stat->iv_bytes <= 0); |
617 | if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { |
618 | rc = -EINVAL; |
619 | ecryptfs_printk(KERN_WARNING, "Session key not valid; " |
620 | "cannot generate root IV\n"); |
621 | goto out; |
622 | } |
623 | rc = ecryptfs_calculate_md5(dst, crypt_stat, src: crypt_stat->key, |
624 | len: crypt_stat->key_size); |
625 | if (rc) { |
626 | ecryptfs_printk(KERN_WARNING, "Error attempting to compute " |
627 | "MD5 while generating root IV\n"); |
628 | goto out; |
629 | } |
630 | memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); |
631 | out: |
632 | if (rc) { |
633 | memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); |
634 | crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; |
635 | } |
636 | return rc; |
637 | } |
638 | |
639 | static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) |
640 | { |
641 | get_random_bytes(buf: crypt_stat->key, len: crypt_stat->key_size); |
642 | crypt_stat->flags |= ECRYPTFS_KEY_VALID; |
643 | ecryptfs_compute_root_iv(crypt_stat); |
644 | if (unlikely(ecryptfs_verbosity > 0)) { |
645 | ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); |
646 | ecryptfs_dump_hex(data: crypt_stat->key, |
647 | bytes: crypt_stat->key_size); |
648 | } |
649 | } |
650 | |
651 | /** |
652 | * ecryptfs_copy_mount_wide_flags_to_inode_flags |
653 | * @crypt_stat: The inode's cryptographic context |
654 | * @mount_crypt_stat: The mount point's cryptographic context |
655 | * |
656 | * This function propagates the mount-wide flags to individual inode |
657 | * flags. |
658 | */ |
659 | static void ecryptfs_copy_mount_wide_flags_to_inode_flags( |
660 | struct ecryptfs_crypt_stat *crypt_stat, |
661 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
662 | { |
663 | if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) |
664 | crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; |
665 | if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) |
666 | crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; |
667 | if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { |
668 | crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; |
669 | if (mount_crypt_stat->flags |
670 | & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) |
671 | crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; |
672 | else if (mount_crypt_stat->flags |
673 | & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) |
674 | crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; |
675 | } |
676 | } |
677 | |
678 | static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( |
679 | struct ecryptfs_crypt_stat *crypt_stat, |
680 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
681 | { |
682 | struct ecryptfs_global_auth_tok *global_auth_tok; |
683 | int rc = 0; |
684 | |
685 | mutex_lock(&crypt_stat->keysig_list_mutex); |
686 | mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); |
687 | |
688 | list_for_each_entry(global_auth_tok, |
689 | &mount_crypt_stat->global_auth_tok_list, |
690 | mount_crypt_stat_list) { |
691 | if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) |
692 | continue; |
693 | rc = ecryptfs_add_keysig(crypt_stat, sig: global_auth_tok->sig); |
694 | if (rc) { |
695 | printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); |
696 | goto out; |
697 | } |
698 | } |
699 | |
700 | out: |
701 | mutex_unlock(lock: &mount_crypt_stat->global_auth_tok_list_mutex); |
702 | mutex_unlock(lock: &crypt_stat->keysig_list_mutex); |
703 | return rc; |
704 | } |
705 | |
706 | /** |
707 | * ecryptfs_set_default_crypt_stat_vals |
708 | * @crypt_stat: The inode's cryptographic context |
709 | * @mount_crypt_stat: The mount point's cryptographic context |
710 | * |
711 | * Default values in the event that policy does not override them. |
712 | */ |
713 | static void ecryptfs_set_default_crypt_stat_vals( |
714 | struct ecryptfs_crypt_stat *crypt_stat, |
715 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
716 | { |
717 | ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, |
718 | mount_crypt_stat); |
719 | ecryptfs_set_default_sizes(crypt_stat); |
720 | strcpy(p: crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); |
721 | crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; |
722 | crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); |
723 | crypt_stat->file_version = ECRYPTFS_FILE_VERSION; |
724 | crypt_stat->mount_crypt_stat = mount_crypt_stat; |
725 | } |
726 | |
727 | /** |
728 | * ecryptfs_new_file_context |
729 | * @ecryptfs_inode: The eCryptfs inode |
730 | * |
731 | * If the crypto context for the file has not yet been established, |
732 | * this is where we do that. Establishing a new crypto context |
733 | * involves the following decisions: |
734 | * - What cipher to use? |
735 | * - What set of authentication tokens to use? |
736 | * Here we just worry about getting enough information into the |
737 | * authentication tokens so that we know that they are available. |
738 | * We associate the available authentication tokens with the new file |
739 | * via the set of signatures in the crypt_stat struct. Later, when |
740 | * the headers are actually written out, we may again defer to |
741 | * userspace to perform the encryption of the session key; for the |
742 | * foreseeable future, this will be the case with public key packets. |
743 | * |
744 | * Returns zero on success; non-zero otherwise |
745 | */ |
746 | int ecryptfs_new_file_context(struct inode *ecryptfs_inode) |
747 | { |
748 | struct ecryptfs_crypt_stat *crypt_stat = |
749 | &ecryptfs_inode_to_private(inode: ecryptfs_inode)->crypt_stat; |
750 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = |
751 | &ecryptfs_superblock_to_private( |
752 | sb: ecryptfs_inode->i_sb)->mount_crypt_stat; |
753 | int cipher_name_len; |
754 | int rc = 0; |
755 | |
756 | ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); |
757 | crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); |
758 | ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, |
759 | mount_crypt_stat); |
760 | rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, |
761 | mount_crypt_stat); |
762 | if (rc) { |
763 | printk(KERN_ERR "Error attempting to copy mount-wide key sigs " |
764 | "to the inode key sigs; rc = [%d]\n", rc); |
765 | goto out; |
766 | } |
767 | cipher_name_len = |
768 | strlen(mount_crypt_stat->global_default_cipher_name); |
769 | memcpy(crypt_stat->cipher, |
770 | mount_crypt_stat->global_default_cipher_name, |
771 | cipher_name_len); |
772 | crypt_stat->cipher[cipher_name_len] = '\0'; |
773 | crypt_stat->key_size = |
774 | mount_crypt_stat->global_default_cipher_key_size; |
775 | ecryptfs_generate_new_key(crypt_stat); |
776 | rc = ecryptfs_init_crypt_ctx(crypt_stat); |
777 | if (rc) |
778 | ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " |
779 | "context for cipher [%s]: rc = [%d]\n", |
780 | crypt_stat->cipher, rc); |
781 | out: |
782 | return rc; |
783 | } |
784 | |
785 | /** |
786 | * ecryptfs_validate_marker - check for the ecryptfs marker |
787 | * @data: The data block in which to check |
788 | * |
789 | * Returns zero if marker found; -EINVAL if not found |
790 | */ |
791 | static int ecryptfs_validate_marker(char *data) |
792 | { |
793 | u32 m_1, m_2; |
794 | |
795 | m_1 = get_unaligned_be32(p: data); |
796 | m_2 = get_unaligned_be32(p: data + 4); |
797 | if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) |
798 | return 0; |
799 | ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " |
800 | "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, |
801 | MAGIC_ECRYPTFS_MARKER); |
802 | ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " |
803 | "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); |
804 | return -EINVAL; |
805 | } |
806 | |
807 | struct ecryptfs_flag_map_elem { |
808 | u32 file_flag; |
809 | u32 local_flag; |
810 | }; |
811 | |
812 | /* Add support for additional flags by adding elements here. */ |
813 | static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { |
814 | {0x00000001, ECRYPTFS_ENABLE_HMAC}, |
815 | {0x00000002, ECRYPTFS_ENCRYPTED}, |
816 | {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, |
817 | {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} |
818 | }; |
819 | |
820 | /** |
821 | * ecryptfs_process_flags |
822 | * @crypt_stat: The cryptographic context |
823 | * @page_virt: Source data to be parsed |
824 | * @bytes_read: Updated with the number of bytes read |
825 | */ |
826 | static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, |
827 | char *page_virt, int *bytes_read) |
828 | { |
829 | int i; |
830 | u32 flags; |
831 | |
832 | flags = get_unaligned_be32(p: page_virt); |
833 | for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) |
834 | if (flags & ecryptfs_flag_map[i].file_flag) { |
835 | crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; |
836 | } else |
837 | crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); |
838 | /* Version is in top 8 bits of the 32-bit flag vector */ |
839 | crypt_stat->file_version = ((flags >> 24) & 0xFF); |
840 | (*bytes_read) = 4; |
841 | } |
842 | |
843 | /** |
844 | * write_ecryptfs_marker |
845 | * @page_virt: The pointer to in a page to begin writing the marker |
846 | * @written: Number of bytes written |
847 | * |
848 | * Marker = 0x3c81b7f5 |
849 | */ |
850 | static void write_ecryptfs_marker(char *page_virt, size_t *written) |
851 | { |
852 | u32 m_1, m_2; |
853 | |
854 | get_random_bytes(buf: &m_1, len: (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); |
855 | m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); |
856 | put_unaligned_be32(val: m_1, p: page_virt); |
857 | page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); |
858 | put_unaligned_be32(val: m_2, p: page_virt); |
859 | (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; |
860 | } |
861 | |
862 | void ecryptfs_write_crypt_stat_flags(char *page_virt, |
863 | struct ecryptfs_crypt_stat *crypt_stat, |
864 | size_t *written) |
865 | { |
866 | u32 flags = 0; |
867 | int i; |
868 | |
869 | for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) |
870 | if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) |
871 | flags |= ecryptfs_flag_map[i].file_flag; |
872 | /* Version is in top 8 bits of the 32-bit flag vector */ |
873 | flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); |
874 | put_unaligned_be32(val: flags, p: page_virt); |
875 | (*written) = 4; |
876 | } |
877 | |
878 | struct ecryptfs_cipher_code_str_map_elem { |
879 | char cipher_str[16]; |
880 | u8 cipher_code; |
881 | }; |
882 | |
883 | /* Add support for additional ciphers by adding elements here. The |
884 | * cipher_code is whatever OpenPGP applications use to identify the |
885 | * ciphers. List in order of probability. */ |
886 | static struct ecryptfs_cipher_code_str_map_elem |
887 | ecryptfs_cipher_code_str_map[] = { |
888 | {"aes",RFC2440_CIPHER_AES_128 }, |
889 | {"blowfish", RFC2440_CIPHER_BLOWFISH}, |
890 | {"des3_ede", RFC2440_CIPHER_DES3_EDE}, |
891 | {"cast5", RFC2440_CIPHER_CAST_5}, |
892 | {"twofish", RFC2440_CIPHER_TWOFISH}, |
893 | {"cast6", RFC2440_CIPHER_CAST_6}, |
894 | {"aes", RFC2440_CIPHER_AES_192}, |
895 | {"aes", RFC2440_CIPHER_AES_256} |
896 | }; |
897 | |
898 | /** |
899 | * ecryptfs_code_for_cipher_string |
900 | * @cipher_name: The string alias for the cipher |
901 | * @key_bytes: Length of key in bytes; used for AES code selection |
902 | * |
903 | * Returns zero on no match, or the cipher code on match |
904 | */ |
905 | u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) |
906 | { |
907 | int i; |
908 | u8 code = 0; |
909 | struct ecryptfs_cipher_code_str_map_elem *map = |
910 | ecryptfs_cipher_code_str_map; |
911 | |
912 | if (strcmp(cipher_name, "aes") == 0) { |
913 | switch (key_bytes) { |
914 | case 16: |
915 | code = RFC2440_CIPHER_AES_128; |
916 | break; |
917 | case 24: |
918 | code = RFC2440_CIPHER_AES_192; |
919 | break; |
920 | case 32: |
921 | code = RFC2440_CIPHER_AES_256; |
922 | } |
923 | } else { |
924 | for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) |
925 | if (strcmp(cipher_name, map[i].cipher_str) == 0) { |
926 | code = map[i].cipher_code; |
927 | break; |
928 | } |
929 | } |
930 | return code; |
931 | } |
932 | |
933 | /** |
934 | * ecryptfs_cipher_code_to_string |
935 | * @str: Destination to write out the cipher name |
936 | * @cipher_code: The code to convert to cipher name string |
937 | * |
938 | * Returns zero on success |
939 | */ |
940 | int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) |
941 | { |
942 | int rc = 0; |
943 | int i; |
944 | |
945 | str[0] = '\0'; |
946 | for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) |
947 | if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) |
948 | strcpy(p: str, q: ecryptfs_cipher_code_str_map[i].cipher_str); |
949 | if (str[0] == '\0') { |
950 | ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " |
951 | "[%d]\n", cipher_code); |
952 | rc = -EINVAL; |
953 | } |
954 | return rc; |
955 | } |
956 | |
957 | int ecryptfs_read_and_validate_header_region(struct inode *inode) |
958 | { |
959 | u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; |
960 | u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; |
961 | int rc; |
962 | |
963 | rc = ecryptfs_read_lower(data: file_size, offset: 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, |
964 | ecryptfs_inode: inode); |
965 | if (rc < 0) |
966 | return rc; |
967 | else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) |
968 | return -EINVAL; |
969 | rc = ecryptfs_validate_marker(data: marker); |
970 | if (!rc) |
971 | ecryptfs_i_size_init(page_virt: file_size, inode); |
972 | return rc; |
973 | } |
974 | |
975 | void |
976 | ecryptfs_write_header_metadata(char *virt, |
977 | struct ecryptfs_crypt_stat *crypt_stat, |
978 | size_t *written) |
979 | { |
980 | u32 header_extent_size; |
981 | u16 num_header_extents_at_front; |
982 | |
983 | header_extent_size = (u32)crypt_stat->extent_size; |
984 | num_header_extents_at_front = |
985 | (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); |
986 | put_unaligned_be32(val: header_extent_size, p: virt); |
987 | virt += 4; |
988 | put_unaligned_be16(val: num_header_extents_at_front, p: virt); |
989 | (*written) = 6; |
990 | } |
991 | |
992 | struct kmem_cache *ecryptfs_header_cache; |
993 | |
994 | /** |
995 | * ecryptfs_write_headers_virt |
996 | * @page_virt: The virtual address to write the headers to |
997 | * @max: The size of memory allocated at page_virt |
998 | * @size: Set to the number of bytes written by this function |
999 | * @crypt_stat: The cryptographic context |
1000 | * @ecryptfs_dentry: The eCryptfs dentry |
1001 | * |
1002 | * Format version: 1 |
1003 | * |
1004 | * Header Extent: |
1005 | * Octets 0-7: Unencrypted file size (big-endian) |
1006 | * Octets 8-15: eCryptfs special marker |
1007 | * Octets 16-19: Flags |
1008 | * Octet 16: File format version number (between 0 and 255) |
1009 | * Octets 17-18: Reserved |
1010 | * Octet 19: Bit 1 (lsb): Reserved |
1011 | * Bit 2: Encrypted? |
1012 | * Bits 3-8: Reserved |
1013 | * Octets 20-23: Header extent size (big-endian) |
1014 | * Octets 24-25: Number of header extents at front of file |
1015 | * (big-endian) |
1016 | * Octet 26: Begin RFC 2440 authentication token packet set |
1017 | * Data Extent 0: |
1018 | * Lower data (CBC encrypted) |
1019 | * Data Extent 1: |
1020 | * Lower data (CBC encrypted) |
1021 | * ... |
1022 | * |
1023 | * Returns zero on success |
1024 | */ |
1025 | static int ecryptfs_write_headers_virt(char *page_virt, size_t max, |
1026 | size_t *size, |
1027 | struct ecryptfs_crypt_stat *crypt_stat, |
1028 | struct dentry *ecryptfs_dentry) |
1029 | { |
1030 | int rc; |
1031 | size_t written; |
1032 | size_t offset; |
1033 | |
1034 | offset = ECRYPTFS_FILE_SIZE_BYTES; |
1035 | write_ecryptfs_marker(page_virt: (page_virt + offset), written: &written); |
1036 | offset += written; |
1037 | ecryptfs_write_crypt_stat_flags(page_virt: (page_virt + offset), crypt_stat, |
1038 | written: &written); |
1039 | offset += written; |
1040 | ecryptfs_write_header_metadata(virt: (page_virt + offset), crypt_stat, |
1041 | written: &written); |
1042 | offset += written; |
1043 | rc = ecryptfs_generate_key_packet_set(dest_base: (page_virt + offset), crypt_stat, |
1044 | ecryptfs_dentry, len: &written, |
1045 | max: max - offset); |
1046 | if (rc) |
1047 | ecryptfs_printk(KERN_WARNING, "Error generating key packet " |
1048 | "set; rc = [%d]\n", rc); |
1049 | if (size) { |
1050 | offset += written; |
1051 | *size = offset; |
1052 | } |
1053 | return rc; |
1054 | } |
1055 | |
1056 | static int |
1057 | ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, |
1058 | char *virt, size_t virt_len) |
1059 | { |
1060 | int rc; |
1061 | |
1062 | rc = ecryptfs_write_lower(ecryptfs_inode, data: virt, |
1063 | offset: 0, size: virt_len); |
1064 | if (rc < 0) |
1065 | printk(KERN_ERR "%s: Error attempting to write header " |
1066 | "information to lower file; rc = [%d]\n", __func__, rc); |
1067 | else |
1068 | rc = 0; |
1069 | return rc; |
1070 | } |
1071 | |
1072 | static int |
1073 | ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, |
1074 | struct inode *ecryptfs_inode, |
1075 | char *page_virt, size_t size) |
1076 | { |
1077 | int rc; |
1078 | struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry: ecryptfs_dentry); |
1079 | struct inode *lower_inode = d_inode(dentry: lower_dentry); |
1080 | |
1081 | if (!(lower_inode->i_opflags & IOP_XATTR)) { |
1082 | rc = -EOPNOTSUPP; |
1083 | goto out; |
1084 | } |
1085 | |
1086 | inode_lock(inode: lower_inode); |
1087 | rc = __vfs_setxattr(&nop_mnt_idmap, lower_dentry, lower_inode, |
1088 | ECRYPTFS_XATTR_NAME, page_virt, size, 0); |
1089 | if (!rc && ecryptfs_inode) |
1090 | fsstack_copy_attr_all(dest: ecryptfs_inode, src: lower_inode); |
1091 | inode_unlock(inode: lower_inode); |
1092 | out: |
1093 | return rc; |
1094 | } |
1095 | |
1096 | static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, |
1097 | unsigned int order) |
1098 | { |
1099 | struct page *page; |
1100 | |
1101 | page = alloc_pages(gfp_mask | __GFP_ZERO, order); |
1102 | if (page) |
1103 | return (unsigned long) page_address(page); |
1104 | return 0; |
1105 | } |
1106 | |
1107 | /** |
1108 | * ecryptfs_write_metadata |
1109 | * @ecryptfs_dentry: The eCryptfs dentry, which should be negative |
1110 | * @ecryptfs_inode: The newly created eCryptfs inode |
1111 | * |
1112 | * Write the file headers out. This will likely involve a userspace |
1113 | * callout, in which the session key is encrypted with one or more |
1114 | * public keys and/or the passphrase necessary to do the encryption is |
1115 | * retrieved via a prompt. Exactly what happens at this point should |
1116 | * be policy-dependent. |
1117 | * |
1118 | * Returns zero on success; non-zero on error |
1119 | */ |
1120 | int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, |
1121 | struct inode *ecryptfs_inode) |
1122 | { |
1123 | struct ecryptfs_crypt_stat *crypt_stat = |
1124 | &ecryptfs_inode_to_private(inode: ecryptfs_inode)->crypt_stat; |
1125 | unsigned int order; |
1126 | char *virt; |
1127 | size_t virt_len; |
1128 | size_t size = 0; |
1129 | int rc = 0; |
1130 | |
1131 | if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { |
1132 | if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { |
1133 | printk(KERN_ERR "Key is invalid; bailing out\n"); |
1134 | rc = -EINVAL; |
1135 | goto out; |
1136 | } |
1137 | } else { |
1138 | printk(KERN_WARNING "%s: Encrypted flag not set\n", |
1139 | __func__); |
1140 | rc = -EINVAL; |
1141 | goto out; |
1142 | } |
1143 | virt_len = crypt_stat->metadata_size; |
1144 | order = get_order(size: virt_len); |
1145 | /* Released in this function */ |
1146 | virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); |
1147 | if (!virt) { |
1148 | printk(KERN_ERR "%s: Out of memory\n", __func__); |
1149 | rc = -ENOMEM; |
1150 | goto out; |
1151 | } |
1152 | /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ |
1153 | rc = ecryptfs_write_headers_virt(page_virt: virt, max: virt_len, size: &size, crypt_stat, |
1154 | ecryptfs_dentry); |
1155 | if (unlikely(rc)) { |
1156 | printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", |
1157 | __func__, rc); |
1158 | goto out_free; |
1159 | } |
1160 | if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) |
1161 | rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, |
1162 | page_virt: virt, size); |
1163 | else |
1164 | rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, |
1165 | virt_len); |
1166 | if (rc) { |
1167 | printk(KERN_ERR "%s: Error writing metadata out to lower file; " |
1168 | "rc = [%d]\n", __func__, rc); |
1169 | goto out_free; |
1170 | } |
1171 | out_free: |
1172 | free_pages(addr: (unsigned long)virt, order); |
1173 | out: |
1174 | return rc; |
1175 | } |
1176 | |
1177 | #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 |
1178 | #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 |
1179 | static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, |
1180 | char *virt, int *bytes_read, |
1181 | int validate_header_size) |
1182 | { |
1183 | int rc = 0; |
1184 | u32 header_extent_size; |
1185 | u16 num_header_extents_at_front; |
1186 | |
1187 | header_extent_size = get_unaligned_be32(p: virt); |
1188 | virt += sizeof(__be32); |
1189 | num_header_extents_at_front = get_unaligned_be16(p: virt); |
1190 | crypt_stat->metadata_size = (((size_t)num_header_extents_at_front |
1191 | * (size_t)header_extent_size)); |
1192 | (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); |
1193 | if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) |
1194 | && (crypt_stat->metadata_size |
1195 | < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { |
1196 | rc = -EINVAL; |
1197 | printk(KERN_WARNING "Invalid header size: [%zd]\n", |
1198 | crypt_stat->metadata_size); |
1199 | } |
1200 | return rc; |
1201 | } |
1202 | |
1203 | /** |
1204 | * set_default_header_data |
1205 | * @crypt_stat: The cryptographic context |
1206 | * |
1207 | * For version 0 file format; this function is only for backwards |
1208 | * compatibility for files created with the prior versions of |
1209 | * eCryptfs. |
1210 | */ |
1211 | static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) |
1212 | { |
1213 | crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; |
1214 | } |
1215 | |
1216 | void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) |
1217 | { |
1218 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat; |
1219 | struct ecryptfs_crypt_stat *crypt_stat; |
1220 | u64 file_size; |
1221 | |
1222 | crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; |
1223 | mount_crypt_stat = |
1224 | &ecryptfs_superblock_to_private(sb: inode->i_sb)->mount_crypt_stat; |
1225 | if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { |
1226 | file_size = i_size_read(inode: ecryptfs_inode_to_lower(inode)); |
1227 | if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) |
1228 | file_size += crypt_stat->metadata_size; |
1229 | } else |
1230 | file_size = get_unaligned_be64(p: page_virt); |
1231 | i_size_write(inode, i_size: (loff_t)file_size); |
1232 | crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; |
1233 | } |
1234 | |
1235 | /** |
1236 | * ecryptfs_read_headers_virt |
1237 | * @page_virt: The virtual address into which to read the headers |
1238 | * @crypt_stat: The cryptographic context |
1239 | * @ecryptfs_dentry: The eCryptfs dentry |
1240 | * @validate_header_size: Whether to validate the header size while reading |
1241 | * |
1242 | * Read/parse the header data. The header format is detailed in the |
1243 | * comment block for the ecryptfs_write_headers_virt() function. |
1244 | * |
1245 | * Returns zero on success |
1246 | */ |
1247 | static int ecryptfs_read_headers_virt(char *page_virt, |
1248 | struct ecryptfs_crypt_stat *crypt_stat, |
1249 | struct dentry *ecryptfs_dentry, |
1250 | int validate_header_size) |
1251 | { |
1252 | int rc = 0; |
1253 | int offset; |
1254 | int bytes_read; |
1255 | |
1256 | ecryptfs_set_default_sizes(crypt_stat); |
1257 | crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( |
1258 | sb: ecryptfs_dentry->d_sb)->mount_crypt_stat; |
1259 | offset = ECRYPTFS_FILE_SIZE_BYTES; |
1260 | rc = ecryptfs_validate_marker(data: page_virt + offset); |
1261 | if (rc) |
1262 | goto out; |
1263 | if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) |
1264 | ecryptfs_i_size_init(page_virt, inode: d_inode(dentry: ecryptfs_dentry)); |
1265 | offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; |
1266 | ecryptfs_process_flags(crypt_stat, page_virt: (page_virt + offset), bytes_read: &bytes_read); |
1267 | if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { |
1268 | ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " |
1269 | "file version [%d] is supported by this " |
1270 | "version of eCryptfs\n", |
1271 | crypt_stat->file_version, |
1272 | ECRYPTFS_SUPPORTED_FILE_VERSION); |
1273 | rc = -EINVAL; |
1274 | goto out; |
1275 | } |
1276 | offset += bytes_read; |
1277 | if (crypt_stat->file_version >= 1) { |
1278 | rc = parse_header_metadata(crypt_stat, virt: (page_virt + offset), |
1279 | bytes_read: &bytes_read, validate_header_size); |
1280 | if (rc) { |
1281 | ecryptfs_printk(KERN_WARNING, "Error reading header " |
1282 | "metadata; rc = [%d]\n", rc); |
1283 | } |
1284 | offset += bytes_read; |
1285 | } else |
1286 | set_default_header_data(crypt_stat); |
1287 | rc = ecryptfs_parse_packet_set(crypt_stat, src: (page_virt + offset), |
1288 | ecryptfs_dentry); |
1289 | out: |
1290 | return rc; |
1291 | } |
1292 | |
1293 | /** |
1294 | * ecryptfs_read_xattr_region |
1295 | * @page_virt: The vitual address into which to read the xattr data |
1296 | * @ecryptfs_inode: The eCryptfs inode |
1297 | * |
1298 | * Attempts to read the crypto metadata from the extended attribute |
1299 | * region of the lower file. |
1300 | * |
1301 | * Returns zero on success; non-zero on error |
1302 | */ |
1303 | int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) |
1304 | { |
1305 | struct dentry *lower_dentry = |
1306 | ecryptfs_inode_to_private(inode: ecryptfs_inode)->lower_file->f_path.dentry; |
1307 | ssize_t size; |
1308 | int rc = 0; |
1309 | |
1310 | size = ecryptfs_getxattr_lower(lower_dentry, |
1311 | lower_inode: ecryptfs_inode_to_lower(inode: ecryptfs_inode), |
1312 | ECRYPTFS_XATTR_NAME, |
1313 | value: page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); |
1314 | if (size < 0) { |
1315 | if (unlikely(ecryptfs_verbosity > 0)) |
1316 | printk(KERN_INFO "Error attempting to read the [%s] " |
1317 | "xattr from the lower file; return value = " |
1318 | "[%zd]\n", ECRYPTFS_XATTR_NAME, size); |
1319 | rc = -EINVAL; |
1320 | goto out; |
1321 | } |
1322 | out: |
1323 | return rc; |
1324 | } |
1325 | |
1326 | int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, |
1327 | struct inode *inode) |
1328 | { |
1329 | u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; |
1330 | u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; |
1331 | int rc; |
1332 | |
1333 | rc = ecryptfs_getxattr_lower(lower_dentry: ecryptfs_dentry_to_lower(dentry), |
1334 | lower_inode: ecryptfs_inode_to_lower(inode), |
1335 | ECRYPTFS_XATTR_NAME, value: file_size, |
1336 | ECRYPTFS_SIZE_AND_MARKER_BYTES); |
1337 | if (rc < 0) |
1338 | return rc; |
1339 | else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) |
1340 | return -EINVAL; |
1341 | rc = ecryptfs_validate_marker(data: marker); |
1342 | if (!rc) |
1343 | ecryptfs_i_size_init(page_virt: file_size, inode); |
1344 | return rc; |
1345 | } |
1346 | |
1347 | /* |
1348 | * ecryptfs_read_metadata |
1349 | * |
1350 | * Common entry point for reading file metadata. From here, we could |
1351 | * retrieve the header information from the header region of the file, |
1352 | * the xattr region of the file, or some other repository that is |
1353 | * stored separately from the file itself. The current implementation |
1354 | * supports retrieving the metadata information from the file contents |
1355 | * and from the xattr region. |
1356 | * |
1357 | * Returns zero if valid headers found and parsed; non-zero otherwise |
1358 | */ |
1359 | int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) |
1360 | { |
1361 | int rc; |
1362 | char *page_virt; |
1363 | struct inode *ecryptfs_inode = d_inode(dentry: ecryptfs_dentry); |
1364 | struct ecryptfs_crypt_stat *crypt_stat = |
1365 | &ecryptfs_inode_to_private(inode: ecryptfs_inode)->crypt_stat; |
1366 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = |
1367 | &ecryptfs_superblock_to_private( |
1368 | sb: ecryptfs_dentry->d_sb)->mount_crypt_stat; |
1369 | |
1370 | ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, |
1371 | mount_crypt_stat); |
1372 | /* Read the first page from the underlying file */ |
1373 | page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); |
1374 | if (!page_virt) { |
1375 | rc = -ENOMEM; |
1376 | goto out; |
1377 | } |
1378 | rc = ecryptfs_read_lower(data: page_virt, offset: 0, size: crypt_stat->extent_size, |
1379 | ecryptfs_inode); |
1380 | if (rc >= 0) |
1381 | rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, |
1382 | ecryptfs_dentry, |
1383 | ECRYPTFS_VALIDATE_HEADER_SIZE); |
1384 | if (rc) { |
1385 | /* metadata is not in the file header, so try xattrs */ |
1386 | memset(page_virt, 0, PAGE_SIZE); |
1387 | rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); |
1388 | if (rc) { |
1389 | printk(KERN_DEBUG "Valid eCryptfs headers not found in " |
1390 | "file header region or xattr region, inode %lu\n", |
1391 | ecryptfs_inode->i_ino); |
1392 | rc = -EINVAL; |
1393 | goto out; |
1394 | } |
1395 | rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, |
1396 | ecryptfs_dentry, |
1397 | ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); |
1398 | if (rc) { |
1399 | printk(KERN_DEBUG "Valid eCryptfs headers not found in " |
1400 | "file xattr region either, inode %lu\n", |
1401 | ecryptfs_inode->i_ino); |
1402 | rc = -EINVAL; |
1403 | } |
1404 | if (crypt_stat->mount_crypt_stat->flags |
1405 | & ECRYPTFS_XATTR_METADATA_ENABLED) { |
1406 | crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; |
1407 | } else { |
1408 | printk(KERN_WARNING "Attempt to access file with " |
1409 | "crypto metadata only in the extended attribute " |
1410 | "region, but eCryptfs was mounted without " |
1411 | "xattr support enabled. eCryptfs will not treat " |
1412 | "this like an encrypted file, inode %lu\n", |
1413 | ecryptfs_inode->i_ino); |
1414 | rc = -EINVAL; |
1415 | } |
1416 | } |
1417 | out: |
1418 | if (page_virt) { |
1419 | memset(page_virt, 0, PAGE_SIZE); |
1420 | kmem_cache_free(s: ecryptfs_header_cache, objp: page_virt); |
1421 | } |
1422 | return rc; |
1423 | } |
1424 | |
1425 | /* |
1426 | * ecryptfs_encrypt_filename - encrypt filename |
1427 | * |
1428 | * CBC-encrypts the filename. We do not want to encrypt the same |
1429 | * filename with the same key and IV, which may happen with hard |
1430 | * links, so we prepend random bits to each filename. |
1431 | * |
1432 | * Returns zero on success; non-zero otherwise |
1433 | */ |
1434 | static int |
1435 | ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, |
1436 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
1437 | { |
1438 | int rc = 0; |
1439 | |
1440 | filename->encrypted_filename = NULL; |
1441 | filename->encrypted_filename_size = 0; |
1442 | if (mount_crypt_stat && (mount_crypt_stat->flags |
1443 | & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { |
1444 | size_t packet_size; |
1445 | size_t remaining_bytes; |
1446 | |
1447 | rc = ecryptfs_write_tag_70_packet( |
1448 | NULL, NULL, |
1449 | packet_size: &filename->encrypted_filename_size, |
1450 | mount_crypt_stat, NULL, |
1451 | filename_size: filename->filename_size); |
1452 | if (rc) { |
1453 | printk(KERN_ERR "%s: Error attempting to get packet " |
1454 | "size for tag 72; rc = [%d]\n", __func__, |
1455 | rc); |
1456 | filename->encrypted_filename_size = 0; |
1457 | goto out; |
1458 | } |
1459 | filename->encrypted_filename = |
1460 | kmalloc(filename->encrypted_filename_size, GFP_KERNEL); |
1461 | if (!filename->encrypted_filename) { |
1462 | rc = -ENOMEM; |
1463 | goto out; |
1464 | } |
1465 | remaining_bytes = filename->encrypted_filename_size; |
1466 | rc = ecryptfs_write_tag_70_packet(dest: filename->encrypted_filename, |
1467 | remaining_bytes: &remaining_bytes, |
1468 | packet_size: &packet_size, |
1469 | mount_crypt_stat, |
1470 | filename: filename->filename, |
1471 | filename_size: filename->filename_size); |
1472 | if (rc) { |
1473 | printk(KERN_ERR "%s: Error attempting to generate " |
1474 | "tag 70 packet; rc = [%d]\n", __func__, |
1475 | rc); |
1476 | kfree(objp: filename->encrypted_filename); |
1477 | filename->encrypted_filename = NULL; |
1478 | filename->encrypted_filename_size = 0; |
1479 | goto out; |
1480 | } |
1481 | filename->encrypted_filename_size = packet_size; |
1482 | } else { |
1483 | printk(KERN_ERR "%s: No support for requested filename " |
1484 | "encryption method in this release\n", __func__); |
1485 | rc = -EOPNOTSUPP; |
1486 | goto out; |
1487 | } |
1488 | out: |
1489 | return rc; |
1490 | } |
1491 | |
1492 | static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, |
1493 | const char *name, size_t name_size) |
1494 | { |
1495 | int rc = 0; |
1496 | |
1497 | (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); |
1498 | if (!(*copied_name)) { |
1499 | rc = -ENOMEM; |
1500 | goto out; |
1501 | } |
1502 | memcpy((void *)(*copied_name), (void *)name, name_size); |
1503 | (*copied_name)[(name_size)] = '\0'; /* Only for convenience |
1504 | * in printing out the |
1505 | * string in debug |
1506 | * messages */ |
1507 | (*copied_name_size) = name_size; |
1508 | out: |
1509 | return rc; |
1510 | } |
1511 | |
1512 | /** |
1513 | * ecryptfs_process_key_cipher - Perform key cipher initialization. |
1514 | * @key_tfm: Crypto context for key material, set by this function |
1515 | * @cipher_name: Name of the cipher |
1516 | * @key_size: Size of the key in bytes |
1517 | * |
1518 | * Returns zero on success. Any crypto_tfm structs allocated here |
1519 | * should be released by other functions, such as on a superblock put |
1520 | * event, regardless of whether this function succeeds for fails. |
1521 | */ |
1522 | static int |
1523 | ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, |
1524 | char *cipher_name, size_t *key_size) |
1525 | { |
1526 | char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; |
1527 | char *full_alg_name = NULL; |
1528 | int rc; |
1529 | |
1530 | *key_tfm = NULL; |
1531 | if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { |
1532 | rc = -EINVAL; |
1533 | printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " |
1534 | "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); |
1535 | goto out; |
1536 | } |
1537 | rc = ecryptfs_crypto_api_algify_cipher_name(algified_name: &full_alg_name, cipher_name, |
1538 | chaining_modifier: "ecb"); |
1539 | if (rc) |
1540 | goto out; |
1541 | *key_tfm = crypto_alloc_skcipher(alg_name: full_alg_name, type: 0, CRYPTO_ALG_ASYNC); |
1542 | if (IS_ERR(ptr: *key_tfm)) { |
1543 | rc = PTR_ERR(ptr: *key_tfm); |
1544 | printk(KERN_ERR "Unable to allocate crypto cipher with name " |
1545 | "[%s]; rc = [%d]\n", full_alg_name, rc); |
1546 | goto out; |
1547 | } |
1548 | crypto_skcipher_set_flags(tfm: *key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); |
1549 | if (*key_size == 0) |
1550 | *key_size = crypto_skcipher_max_keysize(tfm: *key_tfm); |
1551 | get_random_bytes(buf: dummy_key, len: *key_size); |
1552 | rc = crypto_skcipher_setkey(tfm: *key_tfm, key: dummy_key, keylen: *key_size); |
1553 | if (rc) { |
1554 | printk(KERN_ERR "Error attempting to set key of size [%zd] for " |
1555 | "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, |
1556 | rc); |
1557 | rc = -EINVAL; |
1558 | goto out; |
1559 | } |
1560 | out: |
1561 | kfree(objp: full_alg_name); |
1562 | return rc; |
1563 | } |
1564 | |
1565 | struct kmem_cache *ecryptfs_key_tfm_cache; |
1566 | static struct list_head key_tfm_list; |
1567 | DEFINE_MUTEX(key_tfm_list_mutex); |
1568 | |
1569 | int __init ecryptfs_init_crypto(void) |
1570 | { |
1571 | INIT_LIST_HEAD(list: &key_tfm_list); |
1572 | return 0; |
1573 | } |
1574 | |
1575 | /** |
1576 | * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list |
1577 | * |
1578 | * Called only at module unload time |
1579 | */ |
1580 | int ecryptfs_destroy_crypto(void) |
1581 | { |
1582 | struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; |
1583 | |
1584 | mutex_lock(&key_tfm_list_mutex); |
1585 | list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, |
1586 | key_tfm_list) { |
1587 | list_del(entry: &key_tfm->key_tfm_list); |
1588 | crypto_free_skcipher(tfm: key_tfm->key_tfm); |
1589 | kmem_cache_free(s: ecryptfs_key_tfm_cache, objp: key_tfm); |
1590 | } |
1591 | mutex_unlock(lock: &key_tfm_list_mutex); |
1592 | return 0; |
1593 | } |
1594 | |
1595 | int |
1596 | ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, |
1597 | size_t key_size) |
1598 | { |
1599 | struct ecryptfs_key_tfm *tmp_tfm; |
1600 | int rc = 0; |
1601 | |
1602 | BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); |
1603 | |
1604 | tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); |
1605 | if (key_tfm) |
1606 | (*key_tfm) = tmp_tfm; |
1607 | if (!tmp_tfm) { |
1608 | rc = -ENOMEM; |
1609 | goto out; |
1610 | } |
1611 | mutex_init(&tmp_tfm->key_tfm_mutex); |
1612 | strscpy(tmp_tfm->cipher_name, cipher_name); |
1613 | tmp_tfm->key_size = key_size; |
1614 | rc = ecryptfs_process_key_cipher(key_tfm: &tmp_tfm->key_tfm, |
1615 | cipher_name: tmp_tfm->cipher_name, |
1616 | key_size: &tmp_tfm->key_size); |
1617 | if (rc) { |
1618 | printk(KERN_ERR "Error attempting to initialize key TFM " |
1619 | "cipher with name = [%s]; rc = [%d]\n", |
1620 | tmp_tfm->cipher_name, rc); |
1621 | kmem_cache_free(s: ecryptfs_key_tfm_cache, objp: tmp_tfm); |
1622 | if (key_tfm) |
1623 | (*key_tfm) = NULL; |
1624 | goto out; |
1625 | } |
1626 | list_add(new: &tmp_tfm->key_tfm_list, head: &key_tfm_list); |
1627 | out: |
1628 | return rc; |
1629 | } |
1630 | |
1631 | /** |
1632 | * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. |
1633 | * @cipher_name: the name of the cipher to search for |
1634 | * @key_tfm: set to corresponding tfm if found |
1635 | * |
1636 | * Searches for cached key_tfm matching @cipher_name |
1637 | * Must be called with &key_tfm_list_mutex held |
1638 | * Returns 1 if found, with @key_tfm set |
1639 | * Returns 0 if not found, with @key_tfm set to NULL |
1640 | */ |
1641 | int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) |
1642 | { |
1643 | struct ecryptfs_key_tfm *tmp_key_tfm; |
1644 | |
1645 | BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); |
1646 | |
1647 | list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { |
1648 | if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { |
1649 | if (key_tfm) |
1650 | (*key_tfm) = tmp_key_tfm; |
1651 | return 1; |
1652 | } |
1653 | } |
1654 | if (key_tfm) |
1655 | (*key_tfm) = NULL; |
1656 | return 0; |
1657 | } |
1658 | |
1659 | /** |
1660 | * ecryptfs_get_tfm_and_mutex_for_cipher_name |
1661 | * |
1662 | * @tfm: set to cached tfm found, or new tfm created |
1663 | * @tfm_mutex: set to mutex for cached tfm found, or new tfm created |
1664 | * @cipher_name: the name of the cipher to search for and/or add |
1665 | * |
1666 | * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. |
1667 | * Searches for cached item first, and creates new if not found. |
1668 | * Returns 0 on success, non-zero if adding new cipher failed |
1669 | */ |
1670 | int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, |
1671 | struct mutex **tfm_mutex, |
1672 | char *cipher_name) |
1673 | { |
1674 | struct ecryptfs_key_tfm *key_tfm; |
1675 | int rc = 0; |
1676 | |
1677 | (*tfm) = NULL; |
1678 | (*tfm_mutex) = NULL; |
1679 | |
1680 | mutex_lock(&key_tfm_list_mutex); |
1681 | if (!ecryptfs_tfm_exists(cipher_name, key_tfm: &key_tfm)) { |
1682 | rc = ecryptfs_add_new_key_tfm(key_tfm: &key_tfm, cipher_name, key_size: 0); |
1683 | if (rc) { |
1684 | printk(KERN_ERR "Error adding new key_tfm to list; " |
1685 | "rc = [%d]\n", rc); |
1686 | goto out; |
1687 | } |
1688 | } |
1689 | (*tfm) = key_tfm->key_tfm; |
1690 | (*tfm_mutex) = &key_tfm->key_tfm_mutex; |
1691 | out: |
1692 | mutex_unlock(lock: &key_tfm_list_mutex); |
1693 | return rc; |
1694 | } |
1695 | |
1696 | /* 64 characters forming a 6-bit target field */ |
1697 | static unsigned char *portable_filename_chars = ("-.0123456789ABCD" |
1698 | "EFGHIJKLMNOPQRST" |
1699 | "UVWXYZabcdefghij" |
1700 | "klmnopqrstuvwxyz"); |
1701 | |
1702 | /* We could either offset on every reverse map or just pad some 0x00's |
1703 | * at the front here */ |
1704 | static const unsigned char filename_rev_map[256] = { |
1705 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ |
1706 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ |
1707 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ |
1708 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ |
1709 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ |
1710 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ |
1711 | 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ |
1712 | 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ |
1713 | 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ |
1714 | 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ |
1715 | 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ |
1716 | 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ |
1717 | 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ |
1718 | 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ |
1719 | 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ |
1720 | 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ |
1721 | }; |
1722 | |
1723 | /** |
1724 | * ecryptfs_encode_for_filename |
1725 | * @dst: Destination location for encoded filename |
1726 | * @dst_size: Size of the encoded filename in bytes |
1727 | * @src: Source location for the filename to encode |
1728 | * @src_size: Size of the source in bytes |
1729 | */ |
1730 | static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, |
1731 | unsigned char *src, size_t src_size) |
1732 | { |
1733 | size_t num_blocks; |
1734 | size_t block_num = 0; |
1735 | size_t dst_offset = 0; |
1736 | unsigned char last_block[3]; |
1737 | |
1738 | if (src_size == 0) { |
1739 | (*dst_size) = 0; |
1740 | goto out; |
1741 | } |
1742 | num_blocks = (src_size / 3); |
1743 | if ((src_size % 3) == 0) { |
1744 | memcpy(last_block, (&src[src_size - 3]), 3); |
1745 | } else { |
1746 | num_blocks++; |
1747 | last_block[2] = 0x00; |
1748 | switch (src_size % 3) { |
1749 | case 1: |
1750 | last_block[0] = src[src_size - 1]; |
1751 | last_block[1] = 0x00; |
1752 | break; |
1753 | case 2: |
1754 | last_block[0] = src[src_size - 2]; |
1755 | last_block[1] = src[src_size - 1]; |
1756 | } |
1757 | } |
1758 | (*dst_size) = (num_blocks * 4); |
1759 | if (!dst) |
1760 | goto out; |
1761 | while (block_num < num_blocks) { |
1762 | unsigned char *src_block; |
1763 | unsigned char dst_block[4]; |
1764 | |
1765 | if (block_num == (num_blocks - 1)) |
1766 | src_block = last_block; |
1767 | else |
1768 | src_block = &src[block_num * 3]; |
1769 | dst_block[0] = ((src_block[0] >> 2) & 0x3F); |
1770 | dst_block[1] = (((src_block[0] << 4) & 0x30) |
1771 | | ((src_block[1] >> 4) & 0x0F)); |
1772 | dst_block[2] = (((src_block[1] << 2) & 0x3C) |
1773 | | ((src_block[2] >> 6) & 0x03)); |
1774 | dst_block[3] = (src_block[2] & 0x3F); |
1775 | dst[dst_offset++] = portable_filename_chars[dst_block[0]]; |
1776 | dst[dst_offset++] = portable_filename_chars[dst_block[1]]; |
1777 | dst[dst_offset++] = portable_filename_chars[dst_block[2]]; |
1778 | dst[dst_offset++] = portable_filename_chars[dst_block[3]]; |
1779 | block_num++; |
1780 | } |
1781 | out: |
1782 | return; |
1783 | } |
1784 | |
1785 | static size_t ecryptfs_max_decoded_size(size_t encoded_size) |
1786 | { |
1787 | /* Not exact; conservatively long. Every block of 4 |
1788 | * encoded characters decodes into a block of 3 |
1789 | * decoded characters. This segment of code provides |
1790 | * the caller with the maximum amount of allocated |
1791 | * space that @dst will need to point to in a |
1792 | * subsequent call. */ |
1793 | return ((encoded_size + 1) * 3) / 4; |
1794 | } |
1795 | |
1796 | /** |
1797 | * ecryptfs_decode_from_filename |
1798 | * @dst: If NULL, this function only sets @dst_size and returns. If |
1799 | * non-NULL, this function decodes the encoded octets in @src |
1800 | * into the memory that @dst points to. |
1801 | * @dst_size: Set to the size of the decoded string. |
1802 | * @src: The encoded set of octets to decode. |
1803 | * @src_size: The size of the encoded set of octets to decode. |
1804 | */ |
1805 | static void |
1806 | ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, |
1807 | const unsigned char *src, size_t src_size) |
1808 | { |
1809 | u8 current_bit_offset = 0; |
1810 | size_t src_byte_offset = 0; |
1811 | size_t dst_byte_offset = 0; |
1812 | |
1813 | if (!dst) { |
1814 | (*dst_size) = ecryptfs_max_decoded_size(encoded_size: src_size); |
1815 | goto out; |
1816 | } |
1817 | while (src_byte_offset < src_size) { |
1818 | unsigned char src_byte = |
1819 | filename_rev_map[(int)src[src_byte_offset]]; |
1820 | |
1821 | switch (current_bit_offset) { |
1822 | case 0: |
1823 | dst[dst_byte_offset] = (src_byte << 2); |
1824 | current_bit_offset = 6; |
1825 | break; |
1826 | case 6: |
1827 | dst[dst_byte_offset++] |= (src_byte >> 4); |
1828 | dst[dst_byte_offset] = ((src_byte & 0xF) |
1829 | << 4); |
1830 | current_bit_offset = 4; |
1831 | break; |
1832 | case 4: |
1833 | dst[dst_byte_offset++] |= (src_byte >> 2); |
1834 | dst[dst_byte_offset] = (src_byte << 6); |
1835 | current_bit_offset = 2; |
1836 | break; |
1837 | case 2: |
1838 | dst[dst_byte_offset++] |= (src_byte); |
1839 | current_bit_offset = 0; |
1840 | break; |
1841 | } |
1842 | src_byte_offset++; |
1843 | } |
1844 | (*dst_size) = dst_byte_offset; |
1845 | out: |
1846 | return; |
1847 | } |
1848 | |
1849 | /** |
1850 | * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text |
1851 | * @encoded_name: The encrypted name |
1852 | * @encoded_name_size: Length of the encrypted name |
1853 | * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode |
1854 | * @name: The plaintext name |
1855 | * @name_size: The length of the plaintext name |
1856 | * |
1857 | * Encrypts and encodes a filename into something that constitutes a |
1858 | * valid filename for a filesystem, with printable characters. |
1859 | * |
1860 | * We assume that we have a properly initialized crypto context, |
1861 | * pointed to by crypt_stat->tfm. |
1862 | * |
1863 | * Returns zero on success; non-zero on otherwise |
1864 | */ |
1865 | int ecryptfs_encrypt_and_encode_filename( |
1866 | char **encoded_name, |
1867 | size_t *encoded_name_size, |
1868 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat, |
1869 | const char *name, size_t name_size) |
1870 | { |
1871 | size_t encoded_name_no_prefix_size; |
1872 | int rc = 0; |
1873 | |
1874 | (*encoded_name) = NULL; |
1875 | (*encoded_name_size) = 0; |
1876 | if (mount_crypt_stat && (mount_crypt_stat->flags |
1877 | & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { |
1878 | struct ecryptfs_filename *filename; |
1879 | |
1880 | filename = kzalloc(sizeof(*filename), GFP_KERNEL); |
1881 | if (!filename) { |
1882 | rc = -ENOMEM; |
1883 | goto out; |
1884 | } |
1885 | filename->filename = (char *)name; |
1886 | filename->filename_size = name_size; |
1887 | rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); |
1888 | if (rc) { |
1889 | printk(KERN_ERR "%s: Error attempting to encrypt " |
1890 | "filename; rc = [%d]\n", __func__, rc); |
1891 | kfree(objp: filename); |
1892 | goto out; |
1893 | } |
1894 | ecryptfs_encode_for_filename( |
1895 | NULL, dst_size: &encoded_name_no_prefix_size, |
1896 | src: filename->encrypted_filename, |
1897 | src_size: filename->encrypted_filename_size); |
1898 | if (mount_crypt_stat |
1899 | && (mount_crypt_stat->flags |
1900 | & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) |
1901 | (*encoded_name_size) = |
1902 | (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE |
1903 | + encoded_name_no_prefix_size); |
1904 | else |
1905 | (*encoded_name_size) = |
1906 | (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE |
1907 | + encoded_name_no_prefix_size); |
1908 | (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); |
1909 | if (!(*encoded_name)) { |
1910 | rc = -ENOMEM; |
1911 | kfree(objp: filename->encrypted_filename); |
1912 | kfree(objp: filename); |
1913 | goto out; |
1914 | } |
1915 | if (mount_crypt_stat |
1916 | && (mount_crypt_stat->flags |
1917 | & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { |
1918 | memcpy((*encoded_name), |
1919 | ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, |
1920 | ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); |
1921 | ecryptfs_encode_for_filename( |
1922 | dst: ((*encoded_name) |
1923 | + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), |
1924 | dst_size: &encoded_name_no_prefix_size, |
1925 | src: filename->encrypted_filename, |
1926 | src_size: filename->encrypted_filename_size); |
1927 | (*encoded_name_size) = |
1928 | (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE |
1929 | + encoded_name_no_prefix_size); |
1930 | (*encoded_name)[(*encoded_name_size)] = '\0'; |
1931 | } else { |
1932 | rc = -EOPNOTSUPP; |
1933 | } |
1934 | if (rc) { |
1935 | printk(KERN_ERR "%s: Error attempting to encode " |
1936 | "encrypted filename; rc = [%d]\n", __func__, |
1937 | rc); |
1938 | kfree(objp: (*encoded_name)); |
1939 | (*encoded_name) = NULL; |
1940 | (*encoded_name_size) = 0; |
1941 | } |
1942 | kfree(objp: filename->encrypted_filename); |
1943 | kfree(objp: filename); |
1944 | } else { |
1945 | rc = ecryptfs_copy_filename(copied_name: encoded_name, |
1946 | copied_name_size: encoded_name_size, |
1947 | name, name_size); |
1948 | } |
1949 | out: |
1950 | return rc; |
1951 | } |
1952 | |
1953 | /** |
1954 | * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext |
1955 | * @plaintext_name: The plaintext name |
1956 | * @plaintext_name_size: The plaintext name size |
1957 | * @sb: Ecryptfs's super_block |
1958 | * @name: The filename in cipher text |
1959 | * @name_size: The cipher text name size |
1960 | * |
1961 | * Decrypts and decodes the filename. |
1962 | * |
1963 | * Returns zero on error; non-zero otherwise |
1964 | */ |
1965 | int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, |
1966 | size_t *plaintext_name_size, |
1967 | struct super_block *sb, |
1968 | const char *name, size_t name_size) |
1969 | { |
1970 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = |
1971 | &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; |
1972 | char *decoded_name; |
1973 | size_t decoded_name_size; |
1974 | size_t packet_size; |
1975 | int rc = 0; |
1976 | |
1977 | if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && |
1978 | !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { |
1979 | if (is_dot_dotdot(name, len: name_size)) { |
1980 | rc = ecryptfs_copy_filename(copied_name: plaintext_name, |
1981 | copied_name_size: plaintext_name_size, |
1982 | name, name_size); |
1983 | goto out; |
1984 | } |
1985 | |
1986 | if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || |
1987 | strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, |
1988 | ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { |
1989 | rc = -EINVAL; |
1990 | goto out; |
1991 | } |
1992 | |
1993 | name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; |
1994 | name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; |
1995 | ecryptfs_decode_from_filename(NULL, dst_size: &decoded_name_size, |
1996 | src: name, src_size: name_size); |
1997 | decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); |
1998 | if (!decoded_name) { |
1999 | rc = -ENOMEM; |
2000 | goto out; |
2001 | } |
2002 | ecryptfs_decode_from_filename(dst: decoded_name, dst_size: &decoded_name_size, |
2003 | src: name, src_size: name_size); |
2004 | rc = ecryptfs_parse_tag_70_packet(filename: plaintext_name, |
2005 | filename_size: plaintext_name_size, |
2006 | packet_size: &packet_size, |
2007 | mount_crypt_stat, |
2008 | data: decoded_name, |
2009 | max_packet_size: decoded_name_size); |
2010 | if (rc) { |
2011 | ecryptfs_printk(KERN_DEBUG, |
2012 | "%s: Could not parse tag 70 packet from filename\n", |
2013 | __func__); |
2014 | goto out_free; |
2015 | } |
2016 | } else { |
2017 | rc = ecryptfs_copy_filename(copied_name: plaintext_name, |
2018 | copied_name_size: plaintext_name_size, |
2019 | name, name_size); |
2020 | goto out; |
2021 | } |
2022 | out_free: |
2023 | kfree(objp: decoded_name); |
2024 | out: |
2025 | return rc; |
2026 | } |
2027 | |
2028 | #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 |
2029 | |
2030 | int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, |
2031 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
2032 | { |
2033 | struct crypto_skcipher *tfm; |
2034 | struct mutex *tfm_mutex; |
2035 | size_t cipher_blocksize; |
2036 | int rc; |
2037 | |
2038 | if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { |
2039 | (*namelen) = lower_namelen; |
2040 | return 0; |
2041 | } |
2042 | |
2043 | rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(tfm: &tfm, tfm_mutex: &tfm_mutex, |
2044 | cipher_name: mount_crypt_stat->global_default_fn_cipher_name); |
2045 | if (unlikely(rc)) { |
2046 | (*namelen) = 0; |
2047 | return rc; |
2048 | } |
2049 | |
2050 | mutex_lock(tfm_mutex); |
2051 | cipher_blocksize = crypto_skcipher_blocksize(tfm); |
2052 | mutex_unlock(lock: tfm_mutex); |
2053 | |
2054 | /* Return an exact amount for the common cases */ |
2055 | if (lower_namelen == NAME_MAX |
2056 | && (cipher_blocksize == 8 || cipher_blocksize == 16)) { |
2057 | (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; |
2058 | return 0; |
2059 | } |
2060 | |
2061 | /* Return a safe estimate for the uncommon cases */ |
2062 | (*namelen) = lower_namelen; |
2063 | (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; |
2064 | /* Since this is the max decoded size, subtract 1 "decoded block" len */ |
2065 | (*namelen) = ecryptfs_max_decoded_size(encoded_size: *namelen) - 3; |
2066 | (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; |
2067 | (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; |
2068 | /* Worst case is that the filename is padded nearly a full block size */ |
2069 | (*namelen) -= cipher_blocksize - 1; |
2070 | |
2071 | if ((*namelen) < 0) |
2072 | (*namelen) = 0; |
2073 | |
2074 | return 0; |
2075 | } |
2076 |
Definitions
- ecryptfs_from_hex
- ecryptfs_calculate_md5
- ecryptfs_crypto_api_algify_cipher_name
- ecryptfs_derive_iv
- ecryptfs_init_crypt_stat
- ecryptfs_destroy_crypt_stat
- ecryptfs_destroy_mount_crypt_stat
- virt_to_scatterlist
- crypt_scatterlist
- lower_offset_for_page
- crypt_extent
- ecryptfs_encrypt_page
- ecryptfs_decrypt_page
- ecryptfs_init_crypt_ctx
- set_extent_mask_and_shift
- ecryptfs_set_default_sizes
- ecryptfs_compute_root_iv
- ecryptfs_generate_new_key
- ecryptfs_copy_mount_wide_flags_to_inode_flags
- ecryptfs_copy_mount_wide_sigs_to_inode_sigs
- ecryptfs_set_default_crypt_stat_vals
- ecryptfs_new_file_context
- ecryptfs_validate_marker
- ecryptfs_flag_map_elem
- ecryptfs_flag_map
- ecryptfs_process_flags
- write_ecryptfs_marker
- ecryptfs_write_crypt_stat_flags
- ecryptfs_cipher_code_str_map_elem
- ecryptfs_cipher_code_str_map
- ecryptfs_code_for_cipher_string
- ecryptfs_cipher_code_to_string
- ecryptfs_read_and_validate_header_region
- ecryptfs_write_header_metadata
- ecryptfs_header_cache
- ecryptfs_write_headers_virt
- ecryptfs_write_metadata_to_contents
- ecryptfs_write_metadata_to_xattr
- ecryptfs_get_zeroed_pages
- ecryptfs_write_metadata
- parse_header_metadata
- set_default_header_data
- ecryptfs_i_size_init
- ecryptfs_read_headers_virt
- ecryptfs_read_xattr_region
- ecryptfs_read_and_validate_xattr_region
- ecryptfs_read_metadata
- ecryptfs_encrypt_filename
- ecryptfs_copy_filename
- ecryptfs_process_key_cipher
- ecryptfs_key_tfm_cache
- key_tfm_list
- key_tfm_list_mutex
- ecryptfs_init_crypto
- ecryptfs_destroy_crypto
- ecryptfs_add_new_key_tfm
- ecryptfs_tfm_exists
- ecryptfs_get_tfm_and_mutex_for_cipher_name
- portable_filename_chars
- filename_rev_map
- ecryptfs_encode_for_filename
- ecryptfs_max_decoded_size
- ecryptfs_decode_from_filename
- ecryptfs_encrypt_and_encode_filename
- ecryptfs_decode_and_decrypt_filename
Improve your Profiling and Debugging skills
Find out more