1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com |
4 | * Written by Alex Tomas <alex@clusterfs.com> |
5 | */ |
6 | |
7 | |
8 | /* |
9 | * mballoc.c contains the multiblocks allocation routines |
10 | */ |
11 | |
12 | #include "ext4_jbd2.h" |
13 | #include "mballoc.h" |
14 | #include <linux/log2.h> |
15 | #include <linux/module.h> |
16 | #include <linux/slab.h> |
17 | #include <linux/nospec.h> |
18 | #include <linux/backing-dev.h> |
19 | #include <linux/freezer.h> |
20 | #include <trace/events/ext4.h> |
21 | #include <kunit/static_stub.h> |
22 | |
23 | /* |
24 | * MUSTDO: |
25 | * - test ext4_ext_search_left() and ext4_ext_search_right() |
26 | * - search for metadata in few groups |
27 | * |
28 | * TODO v4: |
29 | * - normalization should take into account whether file is still open |
30 | * - discard preallocations if no free space left (policy?) |
31 | * - don't normalize tails |
32 | * - quota |
33 | * - reservation for superuser |
34 | * |
35 | * TODO v3: |
36 | * - bitmap read-ahead (proposed by Oleg Drokin aka green) |
37 | * - track min/max extents in each group for better group selection |
38 | * - mb_mark_used() may allocate chunk right after splitting buddy |
39 | * - tree of groups sorted by number of free blocks |
40 | * - error handling |
41 | */ |
42 | |
43 | /* |
44 | * The allocation request involve request for multiple number of blocks |
45 | * near to the goal(block) value specified. |
46 | * |
47 | * During initialization phase of the allocator we decide to use the |
48 | * group preallocation or inode preallocation depending on the size of |
49 | * the file. The size of the file could be the resulting file size we |
50 | * would have after allocation, or the current file size, which ever |
51 | * is larger. If the size is less than sbi->s_mb_stream_request we |
52 | * select to use the group preallocation. The default value of |
53 | * s_mb_stream_request is 16 blocks. This can also be tuned via |
54 | * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in |
55 | * terms of number of blocks. |
56 | * |
57 | * The main motivation for having small file use group preallocation is to |
58 | * ensure that we have small files closer together on the disk. |
59 | * |
60 | * First stage the allocator looks at the inode prealloc list, |
61 | * ext4_inode_info->i_prealloc_list, which contains list of prealloc |
62 | * spaces for this particular inode. The inode prealloc space is |
63 | * represented as: |
64 | * |
65 | * pa_lstart -> the logical start block for this prealloc space |
66 | * pa_pstart -> the physical start block for this prealloc space |
67 | * pa_len -> length for this prealloc space (in clusters) |
68 | * pa_free -> free space available in this prealloc space (in clusters) |
69 | * |
70 | * The inode preallocation space is used looking at the _logical_ start |
71 | * block. If only the logical file block falls within the range of prealloc |
72 | * space we will consume the particular prealloc space. This makes sure that |
73 | * we have contiguous physical blocks representing the file blocks |
74 | * |
75 | * The important thing to be noted in case of inode prealloc space is that |
76 | * we don't modify the values associated to inode prealloc space except |
77 | * pa_free. |
78 | * |
79 | * If we are not able to find blocks in the inode prealloc space and if we |
80 | * have the group allocation flag set then we look at the locality group |
81 | * prealloc space. These are per CPU prealloc list represented as |
82 | * |
83 | * ext4_sb_info.s_locality_groups[smp_processor_id()] |
84 | * |
85 | * The reason for having a per cpu locality group is to reduce the contention |
86 | * between CPUs. It is possible to get scheduled at this point. |
87 | * |
88 | * The locality group prealloc space is used looking at whether we have |
89 | * enough free space (pa_free) within the prealloc space. |
90 | * |
91 | * If we can't allocate blocks via inode prealloc or/and locality group |
92 | * prealloc then we look at the buddy cache. The buddy cache is represented |
93 | * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets |
94 | * mapped to the buddy and bitmap information regarding different |
95 | * groups. The buddy information is attached to buddy cache inode so that |
96 | * we can access them through the page cache. The information regarding |
97 | * each group is loaded via ext4_mb_load_buddy. The information involve |
98 | * block bitmap and buddy information. The information are stored in the |
99 | * inode as: |
100 | * |
101 | * { page } |
102 | * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... |
103 | * |
104 | * |
105 | * one block each for bitmap and buddy information. So for each group we |
106 | * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / |
107 | * blocksize) blocks. So it can have information regarding groups_per_page |
108 | * which is blocks_per_page/2 |
109 | * |
110 | * The buddy cache inode is not stored on disk. The inode is thrown |
111 | * away when the filesystem is unmounted. |
112 | * |
113 | * We look for count number of blocks in the buddy cache. If we were able |
114 | * to locate that many free blocks we return with additional information |
115 | * regarding rest of the contiguous physical block available |
116 | * |
117 | * Before allocating blocks via buddy cache we normalize the request |
118 | * blocks. This ensure we ask for more blocks that we needed. The extra |
119 | * blocks that we get after allocation is added to the respective prealloc |
120 | * list. In case of inode preallocation we follow a list of heuristics |
121 | * based on file size. This can be found in ext4_mb_normalize_request. If |
122 | * we are doing a group prealloc we try to normalize the request to |
123 | * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is |
124 | * dependent on the cluster size; for non-bigalloc file systems, it is |
125 | * 512 blocks. This can be tuned via |
126 | * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in |
127 | * terms of number of blocks. If we have mounted the file system with -O |
128 | * stripe=<value> option the group prealloc request is normalized to the |
129 | * smallest multiple of the stripe value (sbi->s_stripe) which is |
130 | * greater than the default mb_group_prealloc. |
131 | * |
132 | * If "mb_optimize_scan" mount option is set, we maintain in memory group info |
133 | * structures in two data structures: |
134 | * |
135 | * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) |
136 | * |
137 | * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) |
138 | * |
139 | * This is an array of lists where the index in the array represents the |
140 | * largest free order in the buddy bitmap of the participating group infos of |
141 | * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total |
142 | * number of buddy bitmap orders possible) number of lists. Group-infos are |
143 | * placed in appropriate lists. |
144 | * |
145 | * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) |
146 | * |
147 | * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) |
148 | * |
149 | * This is an array of lists where in the i-th list there are groups with |
150 | * average fragment size >= 2^i and < 2^(i+1). The average fragment size |
151 | * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. |
152 | * Note that we don't bother with a special list for completely empty groups |
153 | * so we only have MB_NUM_ORDERS(sb) lists. |
154 | * |
155 | * When "mb_optimize_scan" mount option is set, mballoc consults the above data |
156 | * structures to decide the order in which groups are to be traversed for |
157 | * fulfilling an allocation request. |
158 | * |
159 | * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order |
160 | * >= the order of the request. We directly look at the largest free order list |
161 | * in the data structure (1) above where largest_free_order = order of the |
162 | * request. If that list is empty, we look at remaining list in the increasing |
163 | * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED |
164 | * lookup in O(1) time. |
165 | * |
166 | * At CR_GOAL_LEN_FAST, we only consider groups where |
167 | * average fragment size > request size. So, we lookup a group which has average |
168 | * fragment size just above or equal to request size using our average fragment |
169 | * size group lists (data structure 2) in O(1) time. |
170 | * |
171 | * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied |
172 | * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in |
173 | * CR_GOAL_LEN_FAST suggests that there is no BG that has avg |
174 | * fragment size > goal length. So before falling to the slower |
175 | * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and |
176 | * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big |
177 | * enough average fragment size. This increases the chances of finding a |
178 | * suitable block group in O(1) time and results in faster allocation at the |
179 | * cost of reduced size of allocation. |
180 | * |
181 | * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in |
182 | * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and |
183 | * CR_GOAL_LEN_FAST phase. |
184 | * |
185 | * The regular allocator (using the buddy cache) supports a few tunables. |
186 | * |
187 | * /sys/fs/ext4/<partition>/mb_min_to_scan |
188 | * /sys/fs/ext4/<partition>/mb_max_to_scan |
189 | * /sys/fs/ext4/<partition>/mb_order2_req |
190 | * /sys/fs/ext4/<partition>/mb_max_linear_groups |
191 | * |
192 | * The regular allocator uses buddy scan only if the request len is power of |
193 | * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The |
194 | * value of s_mb_order2_reqs can be tuned via |
195 | * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to |
196 | * stripe size (sbi->s_stripe), we try to search for contiguous block in |
197 | * stripe size. This should result in better allocation on RAID setups. If |
198 | * not, we search in the specific group using bitmap for best extents. The |
199 | * tunable min_to_scan and max_to_scan control the behaviour here. |
200 | * min_to_scan indicate how long the mballoc __must__ look for a best |
201 | * extent and max_to_scan indicates how long the mballoc __can__ look for a |
202 | * best extent in the found extents. Searching for the blocks starts with |
203 | * the group specified as the goal value in allocation context via |
204 | * ac_g_ex. Each group is first checked based on the criteria whether it |
205 | * can be used for allocation. ext4_mb_good_group explains how the groups are |
206 | * checked. |
207 | * |
208 | * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not |
209 | * get traversed linearly. That may result in subsequent allocations being not |
210 | * close to each other. And so, the underlying device may get filled up in a |
211 | * non-linear fashion. While that may not matter on non-rotational devices, for |
212 | * rotational devices that may result in higher seek times. "mb_max_linear_groups" |
213 | * tells mballoc how many groups mballoc should search linearly before |
214 | * performing consulting above data structures for more efficient lookups. For |
215 | * non rotational devices, this value defaults to 0 and for rotational devices |
216 | * this is set to MB_DEFAULT_LINEAR_LIMIT. |
217 | * |
218 | * Both the prealloc space are getting populated as above. So for the first |
219 | * request we will hit the buddy cache which will result in this prealloc |
220 | * space getting filled. The prealloc space is then later used for the |
221 | * subsequent request. |
222 | */ |
223 | |
224 | /* |
225 | * mballoc operates on the following data: |
226 | * - on-disk bitmap |
227 | * - in-core buddy (actually includes buddy and bitmap) |
228 | * - preallocation descriptors (PAs) |
229 | * |
230 | * there are two types of preallocations: |
231 | * - inode |
232 | * assiged to specific inode and can be used for this inode only. |
233 | * it describes part of inode's space preallocated to specific |
234 | * physical blocks. any block from that preallocated can be used |
235 | * independent. the descriptor just tracks number of blocks left |
236 | * unused. so, before taking some block from descriptor, one must |
237 | * make sure corresponded logical block isn't allocated yet. this |
238 | * also means that freeing any block within descriptor's range |
239 | * must discard all preallocated blocks. |
240 | * - locality group |
241 | * assigned to specific locality group which does not translate to |
242 | * permanent set of inodes: inode can join and leave group. space |
243 | * from this type of preallocation can be used for any inode. thus |
244 | * it's consumed from the beginning to the end. |
245 | * |
246 | * relation between them can be expressed as: |
247 | * in-core buddy = on-disk bitmap + preallocation descriptors |
248 | * |
249 | * this mean blocks mballoc considers used are: |
250 | * - allocated blocks (persistent) |
251 | * - preallocated blocks (non-persistent) |
252 | * |
253 | * consistency in mballoc world means that at any time a block is either |
254 | * free or used in ALL structures. notice: "any time" should not be read |
255 | * literally -- time is discrete and delimited by locks. |
256 | * |
257 | * to keep it simple, we don't use block numbers, instead we count number of |
258 | * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. |
259 | * |
260 | * all operations can be expressed as: |
261 | * - init buddy: buddy = on-disk + PAs |
262 | * - new PA: buddy += N; PA = N |
263 | * - use inode PA: on-disk += N; PA -= N |
264 | * - discard inode PA buddy -= on-disk - PA; PA = 0 |
265 | * - use locality group PA on-disk += N; PA -= N |
266 | * - discard locality group PA buddy -= PA; PA = 0 |
267 | * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap |
268 | * is used in real operation because we can't know actual used |
269 | * bits from PA, only from on-disk bitmap |
270 | * |
271 | * if we follow this strict logic, then all operations above should be atomic. |
272 | * given some of them can block, we'd have to use something like semaphores |
273 | * killing performance on high-end SMP hardware. let's try to relax it using |
274 | * the following knowledge: |
275 | * 1) if buddy is referenced, it's already initialized |
276 | * 2) while block is used in buddy and the buddy is referenced, |
277 | * nobody can re-allocate that block |
278 | * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has |
279 | * bit set and PA claims same block, it's OK. IOW, one can set bit in |
280 | * on-disk bitmap if buddy has same bit set or/and PA covers corresponded |
281 | * block |
282 | * |
283 | * so, now we're building a concurrency table: |
284 | * - init buddy vs. |
285 | * - new PA |
286 | * blocks for PA are allocated in the buddy, buddy must be referenced |
287 | * until PA is linked to allocation group to avoid concurrent buddy init |
288 | * - use inode PA |
289 | * we need to make sure that either on-disk bitmap or PA has uptodate data |
290 | * given (3) we care that PA-=N operation doesn't interfere with init |
291 | * - discard inode PA |
292 | * the simplest way would be to have buddy initialized by the discard |
293 | * - use locality group PA |
294 | * again PA-=N must be serialized with init |
295 | * - discard locality group PA |
296 | * the simplest way would be to have buddy initialized by the discard |
297 | * - new PA vs. |
298 | * - use inode PA |
299 | * i_data_sem serializes them |
300 | * - discard inode PA |
301 | * discard process must wait until PA isn't used by another process |
302 | * - use locality group PA |
303 | * some mutex should serialize them |
304 | * - discard locality group PA |
305 | * discard process must wait until PA isn't used by another process |
306 | * - use inode PA |
307 | * - use inode PA |
308 | * i_data_sem or another mutex should serializes them |
309 | * - discard inode PA |
310 | * discard process must wait until PA isn't used by another process |
311 | * - use locality group PA |
312 | * nothing wrong here -- they're different PAs covering different blocks |
313 | * - discard locality group PA |
314 | * discard process must wait until PA isn't used by another process |
315 | * |
316 | * now we're ready to make few consequences: |
317 | * - PA is referenced and while it is no discard is possible |
318 | * - PA is referenced until block isn't marked in on-disk bitmap |
319 | * - PA changes only after on-disk bitmap |
320 | * - discard must not compete with init. either init is done before |
321 | * any discard or they're serialized somehow |
322 | * - buddy init as sum of on-disk bitmap and PAs is done atomically |
323 | * |
324 | * a special case when we've used PA to emptiness. no need to modify buddy |
325 | * in this case, but we should care about concurrent init |
326 | * |
327 | */ |
328 | |
329 | /* |
330 | * Logic in few words: |
331 | * |
332 | * - allocation: |
333 | * load group |
334 | * find blocks |
335 | * mark bits in on-disk bitmap |
336 | * release group |
337 | * |
338 | * - use preallocation: |
339 | * find proper PA (per-inode or group) |
340 | * load group |
341 | * mark bits in on-disk bitmap |
342 | * release group |
343 | * release PA |
344 | * |
345 | * - free: |
346 | * load group |
347 | * mark bits in on-disk bitmap |
348 | * release group |
349 | * |
350 | * - discard preallocations in group: |
351 | * mark PAs deleted |
352 | * move them onto local list |
353 | * load on-disk bitmap |
354 | * load group |
355 | * remove PA from object (inode or locality group) |
356 | * mark free blocks in-core |
357 | * |
358 | * - discard inode's preallocations: |
359 | */ |
360 | |
361 | /* |
362 | * Locking rules |
363 | * |
364 | * Locks: |
365 | * - bitlock on a group (group) |
366 | * - object (inode/locality) (object) |
367 | * - per-pa lock (pa) |
368 | * - cr_power2_aligned lists lock (cr_power2_aligned) |
369 | * - cr_goal_len_fast lists lock (cr_goal_len_fast) |
370 | * |
371 | * Paths: |
372 | * - new pa |
373 | * object |
374 | * group |
375 | * |
376 | * - find and use pa: |
377 | * pa |
378 | * |
379 | * - release consumed pa: |
380 | * pa |
381 | * group |
382 | * object |
383 | * |
384 | * - generate in-core bitmap: |
385 | * group |
386 | * pa |
387 | * |
388 | * - discard all for given object (inode, locality group): |
389 | * object |
390 | * pa |
391 | * group |
392 | * |
393 | * - discard all for given group: |
394 | * group |
395 | * pa |
396 | * group |
397 | * object |
398 | * |
399 | * - allocation path (ext4_mb_regular_allocator) |
400 | * group |
401 | * cr_power2_aligned/cr_goal_len_fast |
402 | */ |
403 | static struct kmem_cache *ext4_pspace_cachep; |
404 | static struct kmem_cache *ext4_ac_cachep; |
405 | static struct kmem_cache *ext4_free_data_cachep; |
406 | |
407 | /* We create slab caches for groupinfo data structures based on the |
408 | * superblock block size. There will be one per mounted filesystem for |
409 | * each unique s_blocksize_bits */ |
410 | #define NR_GRPINFO_CACHES 8 |
411 | static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; |
412 | |
413 | static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { |
414 | "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", |
415 | "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", |
416 | "ext4_groupinfo_64k", "ext4_groupinfo_128k" |
417 | }; |
418 | |
419 | static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, |
420 | ext4_group_t group); |
421 | static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); |
422 | |
423 | static bool ext4_mb_good_group(struct ext4_allocation_context *ac, |
424 | ext4_group_t group, enum criteria cr); |
425 | |
426 | static int ext4_try_to_trim_range(struct super_block *sb, |
427 | struct ext4_buddy *e4b, ext4_grpblk_t start, |
428 | ext4_grpblk_t max, ext4_grpblk_t minblocks); |
429 | |
430 | /* |
431 | * The algorithm using this percpu seq counter goes below: |
432 | * 1. We sample the percpu discard_pa_seq counter before trying for block |
433 | * allocation in ext4_mb_new_blocks(). |
434 | * 2. We increment this percpu discard_pa_seq counter when we either allocate |
435 | * or free these blocks i.e. while marking those blocks as used/free in |
436 | * mb_mark_used()/mb_free_blocks(). |
437 | * 3. We also increment this percpu seq counter when we successfully identify |
438 | * that the bb_prealloc_list is not empty and hence proceed for discarding |
439 | * of those PAs inside ext4_mb_discard_group_preallocations(). |
440 | * |
441 | * Now to make sure that the regular fast path of block allocation is not |
442 | * affected, as a small optimization we only sample the percpu seq counter |
443 | * on that cpu. Only when the block allocation fails and when freed blocks |
444 | * found were 0, that is when we sample percpu seq counter for all cpus using |
445 | * below function ext4_get_discard_pa_seq_sum(). This happens after making |
446 | * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. |
447 | */ |
448 | static DEFINE_PER_CPU(u64, discard_pa_seq); |
449 | static inline u64 ext4_get_discard_pa_seq_sum(void) |
450 | { |
451 | int __cpu; |
452 | u64 __seq = 0; |
453 | |
454 | for_each_possible_cpu(__cpu) |
455 | __seq += per_cpu(discard_pa_seq, __cpu); |
456 | return __seq; |
457 | } |
458 | |
459 | static inline void *mb_correct_addr_and_bit(int *bit, void *addr) |
460 | { |
461 | #if BITS_PER_LONG == 64 |
462 | *bit += ((unsigned long) addr & 7UL) << 3; |
463 | addr = (void *) ((unsigned long) addr & ~7UL); |
464 | #elif BITS_PER_LONG == 32 |
465 | *bit += ((unsigned long) addr & 3UL) << 3; |
466 | addr = (void *) ((unsigned long) addr & ~3UL); |
467 | #else |
468 | #error "how many bits you are?!" |
469 | #endif |
470 | return addr; |
471 | } |
472 | |
473 | static inline int mb_test_bit(int bit, void *addr) |
474 | { |
475 | /* |
476 | * ext4_test_bit on architecture like powerpc |
477 | * needs unsigned long aligned address |
478 | */ |
479 | addr = mb_correct_addr_and_bit(bit: &bit, addr); |
480 | return ext4_test_bit(nr: bit, addr); |
481 | } |
482 | |
483 | static inline void mb_set_bit(int bit, void *addr) |
484 | { |
485 | addr = mb_correct_addr_and_bit(bit: &bit, addr); |
486 | ext4_set_bit(nr: bit, addr); |
487 | } |
488 | |
489 | static inline void mb_clear_bit(int bit, void *addr) |
490 | { |
491 | addr = mb_correct_addr_and_bit(bit: &bit, addr); |
492 | ext4_clear_bit(nr: bit, addr); |
493 | } |
494 | |
495 | static inline int mb_test_and_clear_bit(int bit, void *addr) |
496 | { |
497 | addr = mb_correct_addr_and_bit(bit: &bit, addr); |
498 | return ext4_test_and_clear_bit(nr: bit, addr); |
499 | } |
500 | |
501 | static inline int mb_find_next_zero_bit(void *addr, int max, int start) |
502 | { |
503 | int fix = 0, ret, tmpmax; |
504 | addr = mb_correct_addr_and_bit(bit: &fix, addr); |
505 | tmpmax = max + fix; |
506 | start += fix; |
507 | |
508 | ret = ext4_find_next_zero_bit(addr, size: tmpmax, offset: start) - fix; |
509 | if (ret > max) |
510 | return max; |
511 | return ret; |
512 | } |
513 | |
514 | static inline int mb_find_next_bit(void *addr, int max, int start) |
515 | { |
516 | int fix = 0, ret, tmpmax; |
517 | addr = mb_correct_addr_and_bit(bit: &fix, addr); |
518 | tmpmax = max + fix; |
519 | start += fix; |
520 | |
521 | ret = ext4_find_next_bit(addr, size: tmpmax, offset: start) - fix; |
522 | if (ret > max) |
523 | return max; |
524 | return ret; |
525 | } |
526 | |
527 | static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) |
528 | { |
529 | char *bb; |
530 | |
531 | BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); |
532 | BUG_ON(max == NULL); |
533 | |
534 | if (order > e4b->bd_blkbits + 1) { |
535 | *max = 0; |
536 | return NULL; |
537 | } |
538 | |
539 | /* at order 0 we see each particular block */ |
540 | if (order == 0) { |
541 | *max = 1 << (e4b->bd_blkbits + 3); |
542 | return e4b->bd_bitmap; |
543 | } |
544 | |
545 | bb = e4b->bd_buddy + EXT4_SB(sb: e4b->bd_sb)->s_mb_offsets[order]; |
546 | *max = EXT4_SB(sb: e4b->bd_sb)->s_mb_maxs[order]; |
547 | |
548 | return bb; |
549 | } |
550 | |
551 | #ifdef DOUBLE_CHECK |
552 | static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, |
553 | int first, int count) |
554 | { |
555 | int i; |
556 | struct super_block *sb = e4b->bd_sb; |
557 | |
558 | if (unlikely(e4b->bd_info->bb_bitmap == NULL)) |
559 | return; |
560 | assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); |
561 | for (i = 0; i < count; i++) { |
562 | if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { |
563 | ext4_fsblk_t blocknr; |
564 | |
565 | blocknr = ext4_group_first_block_no(sb, e4b->bd_group); |
566 | blocknr += EXT4_C2B(EXT4_SB(sb), first + i); |
567 | ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, |
568 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
569 | ext4_grp_locked_error(sb, e4b->bd_group, |
570 | inode ? inode->i_ino : 0, |
571 | blocknr, |
572 | "freeing block already freed " |
573 | "(bit %u)", |
574 | first + i); |
575 | } |
576 | mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); |
577 | } |
578 | } |
579 | |
580 | static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) |
581 | { |
582 | int i; |
583 | |
584 | if (unlikely(e4b->bd_info->bb_bitmap == NULL)) |
585 | return; |
586 | assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); |
587 | for (i = 0; i < count; i++) { |
588 | BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); |
589 | mb_set_bit(first + i, e4b->bd_info->bb_bitmap); |
590 | } |
591 | } |
592 | |
593 | static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) |
594 | { |
595 | if (unlikely(e4b->bd_info->bb_bitmap == NULL)) |
596 | return; |
597 | if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { |
598 | unsigned char *b1, *b2; |
599 | int i; |
600 | b1 = (unsigned char *) e4b->bd_info->bb_bitmap; |
601 | b2 = (unsigned char *) bitmap; |
602 | for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { |
603 | if (b1[i] != b2[i]) { |
604 | ext4_msg(e4b->bd_sb, KERN_ERR, |
605 | "corruption in group %u " |
606 | "at byte %u(%u): %x in copy != %x " |
607 | "on disk/prealloc", |
608 | e4b->bd_group, i, i * 8, b1[i], b2[i]); |
609 | BUG(); |
610 | } |
611 | } |
612 | } |
613 | } |
614 | |
615 | static void mb_group_bb_bitmap_alloc(struct super_block *sb, |
616 | struct ext4_group_info *grp, ext4_group_t group) |
617 | { |
618 | struct buffer_head *bh; |
619 | |
620 | grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); |
621 | if (!grp->bb_bitmap) |
622 | return; |
623 | |
624 | bh = ext4_read_block_bitmap(sb, group); |
625 | if (IS_ERR_OR_NULL(bh)) { |
626 | kfree(grp->bb_bitmap); |
627 | grp->bb_bitmap = NULL; |
628 | return; |
629 | } |
630 | |
631 | memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); |
632 | put_bh(bh); |
633 | } |
634 | |
635 | static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) |
636 | { |
637 | kfree(grp->bb_bitmap); |
638 | } |
639 | |
640 | #else |
641 | static inline void mb_free_blocks_double(struct inode *inode, |
642 | struct ext4_buddy *e4b, int first, int count) |
643 | { |
644 | return; |
645 | } |
646 | static inline void mb_mark_used_double(struct ext4_buddy *e4b, |
647 | int first, int count) |
648 | { |
649 | return; |
650 | } |
651 | static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) |
652 | { |
653 | return; |
654 | } |
655 | |
656 | static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, |
657 | struct ext4_group_info *grp, ext4_group_t group) |
658 | { |
659 | return; |
660 | } |
661 | |
662 | static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) |
663 | { |
664 | return; |
665 | } |
666 | #endif |
667 | |
668 | #ifdef AGGRESSIVE_CHECK |
669 | |
670 | #define MB_CHECK_ASSERT(assert) \ |
671 | do { \ |
672 | if (!(assert)) { \ |
673 | printk(KERN_EMERG \ |
674 | "Assertion failure in %s() at %s:%d: \"%s\"\n", \ |
675 | function, file, line, # assert); \ |
676 | BUG(); \ |
677 | } \ |
678 | } while (0) |
679 | |
680 | static void __mb_check_buddy(struct ext4_buddy *e4b, char *file, |
681 | const char *function, int line) |
682 | { |
683 | struct super_block *sb = e4b->bd_sb; |
684 | int order = e4b->bd_blkbits + 1; |
685 | int max; |
686 | int max2; |
687 | int i; |
688 | int j; |
689 | int k; |
690 | int count; |
691 | struct ext4_group_info *grp; |
692 | int fragments = 0; |
693 | int fstart; |
694 | struct list_head *cur; |
695 | void *buddy; |
696 | void *buddy2; |
697 | |
698 | if (e4b->bd_info->bb_check_counter++ % 10) |
699 | return; |
700 | |
701 | while (order > 1) { |
702 | buddy = mb_find_buddy(e4b, order, &max); |
703 | MB_CHECK_ASSERT(buddy); |
704 | buddy2 = mb_find_buddy(e4b, order - 1, &max2); |
705 | MB_CHECK_ASSERT(buddy2); |
706 | MB_CHECK_ASSERT(buddy != buddy2); |
707 | MB_CHECK_ASSERT(max * 2 == max2); |
708 | |
709 | count = 0; |
710 | for (i = 0; i < max; i++) { |
711 | |
712 | if (mb_test_bit(i, buddy)) { |
713 | /* only single bit in buddy2 may be 0 */ |
714 | if (!mb_test_bit(i << 1, buddy2)) { |
715 | MB_CHECK_ASSERT( |
716 | mb_test_bit((i<<1)+1, buddy2)); |
717 | } |
718 | continue; |
719 | } |
720 | |
721 | /* both bits in buddy2 must be 1 */ |
722 | MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); |
723 | MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); |
724 | |
725 | for (j = 0; j < (1 << order); j++) { |
726 | k = (i * (1 << order)) + j; |
727 | MB_CHECK_ASSERT( |
728 | !mb_test_bit(k, e4b->bd_bitmap)); |
729 | } |
730 | count++; |
731 | } |
732 | MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); |
733 | order--; |
734 | } |
735 | |
736 | fstart = -1; |
737 | buddy = mb_find_buddy(e4b, 0, &max); |
738 | for (i = 0; i < max; i++) { |
739 | if (!mb_test_bit(i, buddy)) { |
740 | MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); |
741 | if (fstart == -1) { |
742 | fragments++; |
743 | fstart = i; |
744 | } |
745 | continue; |
746 | } |
747 | fstart = -1; |
748 | /* check used bits only */ |
749 | for (j = 0; j < e4b->bd_blkbits + 1; j++) { |
750 | buddy2 = mb_find_buddy(e4b, j, &max2); |
751 | k = i >> j; |
752 | MB_CHECK_ASSERT(k < max2); |
753 | MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); |
754 | } |
755 | } |
756 | MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); |
757 | MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); |
758 | |
759 | grp = ext4_get_group_info(sb, e4b->bd_group); |
760 | if (!grp) |
761 | return; |
762 | list_for_each(cur, &grp->bb_prealloc_list) { |
763 | ext4_group_t groupnr; |
764 | struct ext4_prealloc_space *pa; |
765 | pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); |
766 | ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); |
767 | MB_CHECK_ASSERT(groupnr == e4b->bd_group); |
768 | for (i = 0; i < pa->pa_len; i++) |
769 | MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); |
770 | } |
771 | } |
772 | #undef MB_CHECK_ASSERT |
773 | #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ |
774 | __FILE__, __func__, __LINE__) |
775 | #else |
776 | #define mb_check_buddy(e4b) |
777 | #endif |
778 | |
779 | /* |
780 | * Divide blocks started from @first with length @len into |
781 | * smaller chunks with power of 2 blocks. |
782 | * Clear the bits in bitmap which the blocks of the chunk(s) covered, |
783 | * then increase bb_counters[] for corresponded chunk size. |
784 | */ |
785 | static void ext4_mb_mark_free_simple(struct super_block *sb, |
786 | void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, |
787 | struct ext4_group_info *grp) |
788 | { |
789 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
790 | ext4_grpblk_t min; |
791 | ext4_grpblk_t max; |
792 | ext4_grpblk_t chunk; |
793 | unsigned int border; |
794 | |
795 | BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); |
796 | |
797 | border = 2 << sb->s_blocksize_bits; |
798 | |
799 | while (len > 0) { |
800 | /* find how many blocks can be covered since this position */ |
801 | max = ffs(first | border) - 1; |
802 | |
803 | /* find how many blocks of power 2 we need to mark */ |
804 | min = fls(x: len) - 1; |
805 | |
806 | if (max < min) |
807 | min = max; |
808 | chunk = 1 << min; |
809 | |
810 | /* mark multiblock chunks only */ |
811 | grp->bb_counters[min]++; |
812 | if (min > 0) |
813 | mb_clear_bit(bit: first >> min, |
814 | addr: buddy + sbi->s_mb_offsets[min]); |
815 | |
816 | len -= chunk; |
817 | first += chunk; |
818 | } |
819 | } |
820 | |
821 | static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) |
822 | { |
823 | int order; |
824 | |
825 | /* |
826 | * We don't bother with a special lists groups with only 1 block free |
827 | * extents and for completely empty groups. |
828 | */ |
829 | order = fls(x: len) - 2; |
830 | if (order < 0) |
831 | return 0; |
832 | if (order == MB_NUM_ORDERS(sb)) |
833 | order--; |
834 | if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb))) |
835 | order = MB_NUM_ORDERS(sb) - 1; |
836 | return order; |
837 | } |
838 | |
839 | /* Move group to appropriate avg_fragment_size list */ |
840 | static void |
841 | mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) |
842 | { |
843 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
844 | int new_order; |
845 | |
846 | if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0) |
847 | return; |
848 | |
849 | new_order = mb_avg_fragment_size_order(sb, |
850 | len: grp->bb_free / grp->bb_fragments); |
851 | if (new_order == grp->bb_avg_fragment_size_order) |
852 | return; |
853 | |
854 | if (grp->bb_avg_fragment_size_order != -1) { |
855 | write_lock(&sbi->s_mb_avg_fragment_size_locks[ |
856 | grp->bb_avg_fragment_size_order]); |
857 | list_del(entry: &grp->bb_avg_fragment_size_node); |
858 | write_unlock(&sbi->s_mb_avg_fragment_size_locks[ |
859 | grp->bb_avg_fragment_size_order]); |
860 | } |
861 | grp->bb_avg_fragment_size_order = new_order; |
862 | write_lock(&sbi->s_mb_avg_fragment_size_locks[ |
863 | grp->bb_avg_fragment_size_order]); |
864 | list_add_tail(new: &grp->bb_avg_fragment_size_node, |
865 | head: &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); |
866 | write_unlock(&sbi->s_mb_avg_fragment_size_locks[ |
867 | grp->bb_avg_fragment_size_order]); |
868 | } |
869 | |
870 | /* |
871 | * Choose next group by traversing largest_free_order lists. Updates *new_cr if |
872 | * cr level needs an update. |
873 | */ |
874 | static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, |
875 | enum criteria *new_cr, ext4_group_t *group) |
876 | { |
877 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
878 | struct ext4_group_info *iter; |
879 | int i; |
880 | |
881 | if (ac->ac_status == AC_STATUS_FOUND) |
882 | return; |
883 | |
884 | if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) |
885 | atomic_inc(v: &sbi->s_bal_p2_aligned_bad_suggestions); |
886 | |
887 | for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { |
888 | if (list_empty(head: &sbi->s_mb_largest_free_orders[i])) |
889 | continue; |
890 | read_lock(&sbi->s_mb_largest_free_orders_locks[i]); |
891 | if (list_empty(head: &sbi->s_mb_largest_free_orders[i])) { |
892 | read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); |
893 | continue; |
894 | } |
895 | list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], |
896 | bb_largest_free_order_node) { |
897 | if (sbi->s_mb_stats) |
898 | atomic64_inc(v: &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); |
899 | if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { |
900 | *group = iter->bb_group; |
901 | ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; |
902 | read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); |
903 | return; |
904 | } |
905 | } |
906 | read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); |
907 | } |
908 | |
909 | /* Increment cr and search again if no group is found */ |
910 | *new_cr = CR_GOAL_LEN_FAST; |
911 | } |
912 | |
913 | /* |
914 | * Find a suitable group of given order from the average fragments list. |
915 | */ |
916 | static struct ext4_group_info * |
917 | ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) |
918 | { |
919 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
920 | struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; |
921 | rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; |
922 | struct ext4_group_info *grp = NULL, *iter; |
923 | enum criteria cr = ac->ac_criteria; |
924 | |
925 | if (list_empty(head: frag_list)) |
926 | return NULL; |
927 | read_lock(frag_list_lock); |
928 | if (list_empty(head: frag_list)) { |
929 | read_unlock(frag_list_lock); |
930 | return NULL; |
931 | } |
932 | list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { |
933 | if (sbi->s_mb_stats) |
934 | atomic64_inc(v: &sbi->s_bal_cX_groups_considered[cr]); |
935 | if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { |
936 | grp = iter; |
937 | break; |
938 | } |
939 | } |
940 | read_unlock(frag_list_lock); |
941 | return grp; |
942 | } |
943 | |
944 | /* |
945 | * Choose next group by traversing average fragment size list of suitable |
946 | * order. Updates *new_cr if cr level needs an update. |
947 | */ |
948 | static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, |
949 | enum criteria *new_cr, ext4_group_t *group) |
950 | { |
951 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
952 | struct ext4_group_info *grp = NULL; |
953 | int i; |
954 | |
955 | if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { |
956 | if (sbi->s_mb_stats) |
957 | atomic_inc(v: &sbi->s_bal_goal_fast_bad_suggestions); |
958 | } |
959 | |
960 | for (i = mb_avg_fragment_size_order(sb: ac->ac_sb, len: ac->ac_g_ex.fe_len); |
961 | i < MB_NUM_ORDERS(ac->ac_sb); i++) { |
962 | grp = ext4_mb_find_good_group_avg_frag_lists(ac, order: i); |
963 | if (grp) { |
964 | *group = grp->bb_group; |
965 | ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; |
966 | return; |
967 | } |
968 | } |
969 | |
970 | /* |
971 | * CR_BEST_AVAIL_LEN works based on the concept that we have |
972 | * a larger normalized goal len request which can be trimmed to |
973 | * a smaller goal len such that it can still satisfy original |
974 | * request len. However, allocation request for non-regular |
975 | * files never gets normalized. |
976 | * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). |
977 | */ |
978 | if (ac->ac_flags & EXT4_MB_HINT_DATA) |
979 | *new_cr = CR_BEST_AVAIL_LEN; |
980 | else |
981 | *new_cr = CR_GOAL_LEN_SLOW; |
982 | } |
983 | |
984 | /* |
985 | * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment |
986 | * order we have and proactively trim the goal request length to that order to |
987 | * find a suitable group faster. |
988 | * |
989 | * This optimizes allocation speed at the cost of slightly reduced |
990 | * preallocations. However, we make sure that we don't trim the request too |
991 | * much and fall to CR_GOAL_LEN_SLOW in that case. |
992 | */ |
993 | static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, |
994 | enum criteria *new_cr, ext4_group_t *group) |
995 | { |
996 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
997 | struct ext4_group_info *grp = NULL; |
998 | int i, order, min_order; |
999 | unsigned long num_stripe_clusters = 0; |
1000 | |
1001 | if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { |
1002 | if (sbi->s_mb_stats) |
1003 | atomic_inc(v: &sbi->s_bal_best_avail_bad_suggestions); |
1004 | } |
1005 | |
1006 | /* |
1007 | * mb_avg_fragment_size_order() returns order in a way that makes |
1008 | * retrieving back the length using (1 << order) inaccurate. Hence, use |
1009 | * fls() instead since we need to know the actual length while modifying |
1010 | * goal length. |
1011 | */ |
1012 | order = fls(x: ac->ac_g_ex.fe_len) - 1; |
1013 | if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb))) |
1014 | order = MB_NUM_ORDERS(ac->ac_sb); |
1015 | min_order = order - sbi->s_mb_best_avail_max_trim_order; |
1016 | if (min_order < 0) |
1017 | min_order = 0; |
1018 | |
1019 | if (sbi->s_stripe > 0) { |
1020 | /* |
1021 | * We are assuming that stripe size is always a multiple of |
1022 | * cluster ratio otherwise __ext4_fill_super exists early. |
1023 | */ |
1024 | num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); |
1025 | if (1 << min_order < num_stripe_clusters) |
1026 | /* |
1027 | * We consider 1 order less because later we round |
1028 | * up the goal len to num_stripe_clusters |
1029 | */ |
1030 | min_order = fls(x: num_stripe_clusters) - 1; |
1031 | } |
1032 | |
1033 | if (1 << min_order < ac->ac_o_ex.fe_len) |
1034 | min_order = fls(x: ac->ac_o_ex.fe_len); |
1035 | |
1036 | for (i = order; i >= min_order; i--) { |
1037 | int frag_order; |
1038 | /* |
1039 | * Scale down goal len to make sure we find something |
1040 | * in the free fragments list. Basically, reduce |
1041 | * preallocations. |
1042 | */ |
1043 | ac->ac_g_ex.fe_len = 1 << i; |
1044 | |
1045 | if (num_stripe_clusters > 0) { |
1046 | /* |
1047 | * Try to round up the adjusted goal length to |
1048 | * stripe size (in cluster units) multiple for |
1049 | * efficiency. |
1050 | */ |
1051 | ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, |
1052 | num_stripe_clusters); |
1053 | } |
1054 | |
1055 | frag_order = mb_avg_fragment_size_order(sb: ac->ac_sb, |
1056 | len: ac->ac_g_ex.fe_len); |
1057 | |
1058 | grp = ext4_mb_find_good_group_avg_frag_lists(ac, order: frag_order); |
1059 | if (grp) { |
1060 | *group = grp->bb_group; |
1061 | ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; |
1062 | return; |
1063 | } |
1064 | } |
1065 | |
1066 | /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ |
1067 | ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; |
1068 | *new_cr = CR_GOAL_LEN_SLOW; |
1069 | } |
1070 | |
1071 | static inline int should_optimize_scan(struct ext4_allocation_context *ac) |
1072 | { |
1073 | if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) |
1074 | return 0; |
1075 | if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) |
1076 | return 0; |
1077 | if (!ext4_test_inode_flag(inode: ac->ac_inode, bit: EXT4_INODE_EXTENTS)) |
1078 | return 0; |
1079 | return 1; |
1080 | } |
1081 | |
1082 | /* |
1083 | * Return next linear group for allocation. |
1084 | */ |
1085 | static ext4_group_t |
1086 | next_linear_group(ext4_group_t group, ext4_group_t ngroups) |
1087 | { |
1088 | /* |
1089 | * Artificially restricted ngroups for non-extent |
1090 | * files makes group > ngroups possible on first loop. |
1091 | */ |
1092 | return group + 1 >= ngroups ? 0 : group + 1; |
1093 | } |
1094 | |
1095 | /* |
1096 | * ext4_mb_choose_next_group: choose next group for allocation. |
1097 | * |
1098 | * @ac Allocation Context |
1099 | * @new_cr This is an output parameter. If the there is no good group |
1100 | * available at current CR level, this field is updated to indicate |
1101 | * the new cr level that should be used. |
1102 | * @group This is an input / output parameter. As an input it indicates the |
1103 | * next group that the allocator intends to use for allocation. As |
1104 | * output, this field indicates the next group that should be used as |
1105 | * determined by the optimization functions. |
1106 | * @ngroups Total number of groups |
1107 | */ |
1108 | static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, |
1109 | enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) |
1110 | { |
1111 | *new_cr = ac->ac_criteria; |
1112 | |
1113 | if (!should_optimize_scan(ac)) { |
1114 | *group = next_linear_group(group: *group, ngroups); |
1115 | return; |
1116 | } |
1117 | |
1118 | /* |
1119 | * Optimized scanning can return non adjacent groups which can cause |
1120 | * seek overhead for rotational disks. So try few linear groups before |
1121 | * trying optimized scan. |
1122 | */ |
1123 | if (ac->ac_groups_linear_remaining) { |
1124 | *group = next_linear_group(group: *group, ngroups); |
1125 | ac->ac_groups_linear_remaining--; |
1126 | return; |
1127 | } |
1128 | |
1129 | if (*new_cr == CR_POWER2_ALIGNED) { |
1130 | ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group); |
1131 | } else if (*new_cr == CR_GOAL_LEN_FAST) { |
1132 | ext4_mb_choose_next_group_goal_fast(ac, new_cr, group); |
1133 | } else if (*new_cr == CR_BEST_AVAIL_LEN) { |
1134 | ext4_mb_choose_next_group_best_avail(ac, new_cr, group); |
1135 | } else { |
1136 | /* |
1137 | * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an |
1138 | * rb tree sorted by bb_free. But until that happens, we should |
1139 | * never come here. |
1140 | */ |
1141 | WARN_ON(1); |
1142 | } |
1143 | } |
1144 | |
1145 | /* |
1146 | * Cache the order of the largest free extent we have available in this block |
1147 | * group. |
1148 | */ |
1149 | static void |
1150 | mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) |
1151 | { |
1152 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
1153 | int i; |
1154 | |
1155 | for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) |
1156 | if (grp->bb_counters[i] > 0) |
1157 | break; |
1158 | /* No need to move between order lists? */ |
1159 | if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || |
1160 | i == grp->bb_largest_free_order) { |
1161 | grp->bb_largest_free_order = i; |
1162 | return; |
1163 | } |
1164 | |
1165 | if (grp->bb_largest_free_order >= 0) { |
1166 | write_lock(&sbi->s_mb_largest_free_orders_locks[ |
1167 | grp->bb_largest_free_order]); |
1168 | list_del_init(entry: &grp->bb_largest_free_order_node); |
1169 | write_unlock(&sbi->s_mb_largest_free_orders_locks[ |
1170 | grp->bb_largest_free_order]); |
1171 | } |
1172 | grp->bb_largest_free_order = i; |
1173 | if (grp->bb_largest_free_order >= 0 && grp->bb_free) { |
1174 | write_lock(&sbi->s_mb_largest_free_orders_locks[ |
1175 | grp->bb_largest_free_order]); |
1176 | list_add_tail(new: &grp->bb_largest_free_order_node, |
1177 | head: &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); |
1178 | write_unlock(&sbi->s_mb_largest_free_orders_locks[ |
1179 | grp->bb_largest_free_order]); |
1180 | } |
1181 | } |
1182 | |
1183 | static noinline_for_stack |
1184 | void ext4_mb_generate_buddy(struct super_block *sb, |
1185 | void *buddy, void *bitmap, ext4_group_t group, |
1186 | struct ext4_group_info *grp) |
1187 | { |
1188 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
1189 | ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); |
1190 | ext4_grpblk_t i = 0; |
1191 | ext4_grpblk_t first; |
1192 | ext4_grpblk_t len; |
1193 | unsigned free = 0; |
1194 | unsigned fragments = 0; |
1195 | unsigned long long period = get_cycles(); |
1196 | |
1197 | /* initialize buddy from bitmap which is aggregation |
1198 | * of on-disk bitmap and preallocations */ |
1199 | i = mb_find_next_zero_bit(addr: bitmap, max, start: 0); |
1200 | grp->bb_first_free = i; |
1201 | while (i < max) { |
1202 | fragments++; |
1203 | first = i; |
1204 | i = mb_find_next_bit(addr: bitmap, max, start: i); |
1205 | len = i - first; |
1206 | free += len; |
1207 | if (len > 1) |
1208 | ext4_mb_mark_free_simple(sb, buddy, first, len, grp); |
1209 | else |
1210 | grp->bb_counters[0]++; |
1211 | if (i < max) |
1212 | i = mb_find_next_zero_bit(addr: bitmap, max, start: i); |
1213 | } |
1214 | grp->bb_fragments = fragments; |
1215 | |
1216 | if (free != grp->bb_free) { |
1217 | ext4_grp_locked_error(sb, group, 0, 0, |
1218 | "block bitmap and bg descriptor " |
1219 | "inconsistent: %u vs %u free clusters", |
1220 | free, grp->bb_free); |
1221 | /* |
1222 | * If we intend to continue, we consider group descriptor |
1223 | * corrupt and update bb_free using bitmap value |
1224 | */ |
1225 | grp->bb_free = free; |
1226 | ext4_mark_group_bitmap_corrupted(sb, block_group: group, |
1227 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
1228 | } |
1229 | mb_set_largest_free_order(sb, grp); |
1230 | mb_update_avg_fragment_size(sb, grp); |
1231 | |
1232 | clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, addr: &(grp->bb_state)); |
1233 | |
1234 | period = get_cycles() - period; |
1235 | atomic_inc(v: &sbi->s_mb_buddies_generated); |
1236 | atomic64_add(i: period, v: &sbi->s_mb_generation_time); |
1237 | } |
1238 | |
1239 | static void mb_regenerate_buddy(struct ext4_buddy *e4b) |
1240 | { |
1241 | int count; |
1242 | int order = 1; |
1243 | void *buddy; |
1244 | |
1245 | while ((buddy = mb_find_buddy(e4b, order: order++, max: &count))) |
1246 | mb_set_bits(bm: buddy, cur: 0, len: count); |
1247 | |
1248 | e4b->bd_info->bb_fragments = 0; |
1249 | memset(e4b->bd_info->bb_counters, 0, |
1250 | sizeof(*e4b->bd_info->bb_counters) * |
1251 | (e4b->bd_sb->s_blocksize_bits + 2)); |
1252 | |
1253 | ext4_mb_generate_buddy(sb: e4b->bd_sb, buddy: e4b->bd_buddy, |
1254 | bitmap: e4b->bd_bitmap, group: e4b->bd_group, grp: e4b->bd_info); |
1255 | } |
1256 | |
1257 | /* The buddy information is attached the buddy cache inode |
1258 | * for convenience. The information regarding each group |
1259 | * is loaded via ext4_mb_load_buddy. The information involve |
1260 | * block bitmap and buddy information. The information are |
1261 | * stored in the inode as |
1262 | * |
1263 | * { page } |
1264 | * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... |
1265 | * |
1266 | * |
1267 | * one block each for bitmap and buddy information. |
1268 | * So for each group we take up 2 blocks. A page can |
1269 | * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. |
1270 | * So it can have information regarding groups_per_page which |
1271 | * is blocks_per_page/2 |
1272 | * |
1273 | * Locking note: This routine takes the block group lock of all groups |
1274 | * for this page; do not hold this lock when calling this routine! |
1275 | */ |
1276 | |
1277 | static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp) |
1278 | { |
1279 | ext4_group_t ngroups; |
1280 | unsigned int blocksize; |
1281 | int blocks_per_page; |
1282 | int groups_per_page; |
1283 | int err = 0; |
1284 | int i; |
1285 | ext4_group_t first_group, group; |
1286 | int first_block; |
1287 | struct super_block *sb; |
1288 | struct buffer_head *bhs; |
1289 | struct buffer_head **bh = NULL; |
1290 | struct inode *inode; |
1291 | char *data; |
1292 | char *bitmap; |
1293 | struct ext4_group_info *grinfo; |
1294 | |
1295 | inode = folio->mapping->host; |
1296 | sb = inode->i_sb; |
1297 | ngroups = ext4_get_groups_count(sb); |
1298 | blocksize = i_blocksize(node: inode); |
1299 | blocks_per_page = PAGE_SIZE / blocksize; |
1300 | |
1301 | mb_debug(sb, "init folio %lu\n", folio->index); |
1302 | |
1303 | groups_per_page = blocks_per_page >> 1; |
1304 | if (groups_per_page == 0) |
1305 | groups_per_page = 1; |
1306 | |
1307 | /* allocate buffer_heads to read bitmaps */ |
1308 | if (groups_per_page > 1) { |
1309 | i = sizeof(struct buffer_head *) * groups_per_page; |
1310 | bh = kzalloc(i, gfp); |
1311 | if (bh == NULL) |
1312 | return -ENOMEM; |
1313 | } else |
1314 | bh = &bhs; |
1315 | |
1316 | first_group = folio->index * blocks_per_page / 2; |
1317 | |
1318 | /* read all groups the folio covers into the cache */ |
1319 | for (i = 0, group = first_group; i < groups_per_page; i++, group++) { |
1320 | if (group >= ngroups) |
1321 | break; |
1322 | |
1323 | grinfo = ext4_get_group_info(sb, group); |
1324 | if (!grinfo) |
1325 | continue; |
1326 | /* |
1327 | * If page is uptodate then we came here after online resize |
1328 | * which added some new uninitialized group info structs, so |
1329 | * we must skip all initialized uptodate buddies on the folio, |
1330 | * which may be currently in use by an allocating task. |
1331 | */ |
1332 | if (folio_test_uptodate(folio) && |
1333 | !EXT4_MB_GRP_NEED_INIT(grinfo)) { |
1334 | bh[i] = NULL; |
1335 | continue; |
1336 | } |
1337 | bh[i] = ext4_read_block_bitmap_nowait(sb, block_group: group, ignore_locked: false); |
1338 | if (IS_ERR(ptr: bh[i])) { |
1339 | err = PTR_ERR(ptr: bh[i]); |
1340 | bh[i] = NULL; |
1341 | goto out; |
1342 | } |
1343 | mb_debug(sb, "read bitmap for group %u\n", group); |
1344 | } |
1345 | |
1346 | /* wait for I/O completion */ |
1347 | for (i = 0, group = first_group; i < groups_per_page; i++, group++) { |
1348 | int err2; |
1349 | |
1350 | if (!bh[i]) |
1351 | continue; |
1352 | err2 = ext4_wait_block_bitmap(sb, block_group: group, bh: bh[i]); |
1353 | if (!err) |
1354 | err = err2; |
1355 | } |
1356 | |
1357 | first_block = folio->index * blocks_per_page; |
1358 | for (i = 0; i < blocks_per_page; i++) { |
1359 | group = (first_block + i) >> 1; |
1360 | if (group >= ngroups) |
1361 | break; |
1362 | |
1363 | if (!bh[group - first_group]) |
1364 | /* skip initialized uptodate buddy */ |
1365 | continue; |
1366 | |
1367 | if (!buffer_verified(bh: bh[group - first_group])) |
1368 | /* Skip faulty bitmaps */ |
1369 | continue; |
1370 | err = 0; |
1371 | |
1372 | /* |
1373 | * data carry information regarding this |
1374 | * particular group in the format specified |
1375 | * above |
1376 | * |
1377 | */ |
1378 | data = folio_address(folio) + (i * blocksize); |
1379 | bitmap = bh[group - first_group]->b_data; |
1380 | |
1381 | /* |
1382 | * We place the buddy block and bitmap block |
1383 | * close together |
1384 | */ |
1385 | grinfo = ext4_get_group_info(sb, group); |
1386 | if (!grinfo) { |
1387 | err = -EFSCORRUPTED; |
1388 | goto out; |
1389 | } |
1390 | if ((first_block + i) & 1) { |
1391 | /* this is block of buddy */ |
1392 | BUG_ON(incore == NULL); |
1393 | mb_debug(sb, "put buddy for group %u in folio %lu/%x\n", |
1394 | group, folio->index, i * blocksize); |
1395 | trace_ext4_mb_buddy_bitmap_load(sb, group); |
1396 | grinfo->bb_fragments = 0; |
1397 | memset(grinfo->bb_counters, 0, |
1398 | sizeof(*grinfo->bb_counters) * |
1399 | (MB_NUM_ORDERS(sb))); |
1400 | /* |
1401 | * incore got set to the group block bitmap below |
1402 | */ |
1403 | ext4_lock_group(sb, group); |
1404 | /* init the buddy */ |
1405 | memset(data, 0xff, blocksize); |
1406 | ext4_mb_generate_buddy(sb, buddy: data, bitmap: incore, group, grp: grinfo); |
1407 | ext4_unlock_group(sb, group); |
1408 | incore = NULL; |
1409 | } else { |
1410 | /* this is block of bitmap */ |
1411 | BUG_ON(incore != NULL); |
1412 | mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n", |
1413 | group, folio->index, i * blocksize); |
1414 | trace_ext4_mb_bitmap_load(sb, group); |
1415 | |
1416 | /* see comments in ext4_mb_put_pa() */ |
1417 | ext4_lock_group(sb, group); |
1418 | memcpy(data, bitmap, blocksize); |
1419 | |
1420 | /* mark all preallocated blks used in in-core bitmap */ |
1421 | ext4_mb_generate_from_pa(sb, bitmap: data, group); |
1422 | WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); |
1423 | ext4_unlock_group(sb, group); |
1424 | |
1425 | /* set incore so that the buddy information can be |
1426 | * generated using this |
1427 | */ |
1428 | incore = data; |
1429 | } |
1430 | } |
1431 | folio_mark_uptodate(folio); |
1432 | |
1433 | out: |
1434 | if (bh) { |
1435 | for (i = 0; i < groups_per_page; i++) |
1436 | brelse(bh: bh[i]); |
1437 | if (bh != &bhs) |
1438 | kfree(objp: bh); |
1439 | } |
1440 | return err; |
1441 | } |
1442 | |
1443 | /* |
1444 | * Lock the buddy and bitmap pages. This make sure other parallel init_group |
1445 | * on the same buddy page doesn't happen whild holding the buddy page lock. |
1446 | * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap |
1447 | * are on the same page e4b->bd_buddy_folio is NULL and return value is 0. |
1448 | */ |
1449 | static int ext4_mb_get_buddy_page_lock(struct super_block *sb, |
1450 | ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) |
1451 | { |
1452 | struct inode *inode = EXT4_SB(sb)->s_buddy_cache; |
1453 | int block, pnum, poff; |
1454 | int blocks_per_page; |
1455 | struct folio *folio; |
1456 | |
1457 | e4b->bd_buddy_folio = NULL; |
1458 | e4b->bd_bitmap_folio = NULL; |
1459 | |
1460 | blocks_per_page = PAGE_SIZE / sb->s_blocksize; |
1461 | /* |
1462 | * the buddy cache inode stores the block bitmap |
1463 | * and buddy information in consecutive blocks. |
1464 | * So for each group we need two blocks. |
1465 | */ |
1466 | block = group * 2; |
1467 | pnum = block / blocks_per_page; |
1468 | poff = block % blocks_per_page; |
1469 | folio = __filemap_get_folio(mapping: inode->i_mapping, index: pnum, |
1470 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); |
1471 | if (IS_ERR(ptr: folio)) |
1472 | return PTR_ERR(ptr: folio); |
1473 | BUG_ON(folio->mapping != inode->i_mapping); |
1474 | e4b->bd_bitmap_folio = folio; |
1475 | e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize); |
1476 | |
1477 | if (blocks_per_page >= 2) { |
1478 | /* buddy and bitmap are on the same page */ |
1479 | return 0; |
1480 | } |
1481 | |
1482 | /* blocks_per_page == 1, hence we need another page for the buddy */ |
1483 | folio = __filemap_get_folio(mapping: inode->i_mapping, index: block + 1, |
1484 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); |
1485 | if (IS_ERR(ptr: folio)) |
1486 | return PTR_ERR(ptr: folio); |
1487 | BUG_ON(folio->mapping != inode->i_mapping); |
1488 | e4b->bd_buddy_folio = folio; |
1489 | return 0; |
1490 | } |
1491 | |
1492 | static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) |
1493 | { |
1494 | if (e4b->bd_bitmap_folio) { |
1495 | folio_unlock(folio: e4b->bd_bitmap_folio); |
1496 | folio_put(folio: e4b->bd_bitmap_folio); |
1497 | } |
1498 | if (e4b->bd_buddy_folio) { |
1499 | folio_unlock(folio: e4b->bd_buddy_folio); |
1500 | folio_put(folio: e4b->bd_buddy_folio); |
1501 | } |
1502 | } |
1503 | |
1504 | /* |
1505 | * Locking note: This routine calls ext4_mb_init_cache(), which takes the |
1506 | * block group lock of all groups for this page; do not hold the BG lock when |
1507 | * calling this routine! |
1508 | */ |
1509 | static noinline_for_stack |
1510 | int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) |
1511 | { |
1512 | |
1513 | struct ext4_group_info *this_grp; |
1514 | struct ext4_buddy e4b; |
1515 | struct folio *folio; |
1516 | int ret = 0; |
1517 | |
1518 | might_sleep(); |
1519 | mb_debug(sb, "init group %u\n", group); |
1520 | this_grp = ext4_get_group_info(sb, group); |
1521 | if (!this_grp) |
1522 | return -EFSCORRUPTED; |
1523 | |
1524 | /* |
1525 | * This ensures that we don't reinit the buddy cache |
1526 | * page which map to the group from which we are already |
1527 | * allocating. If we are looking at the buddy cache we would |
1528 | * have taken a reference using ext4_mb_load_buddy and that |
1529 | * would have pinned buddy page to page cache. |
1530 | * The call to ext4_mb_get_buddy_page_lock will mark the |
1531 | * page accessed. |
1532 | */ |
1533 | ret = ext4_mb_get_buddy_page_lock(sb, group, e4b: &e4b, gfp); |
1534 | if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { |
1535 | /* |
1536 | * somebody initialized the group |
1537 | * return without doing anything |
1538 | */ |
1539 | goto err; |
1540 | } |
1541 | |
1542 | folio = e4b.bd_bitmap_folio; |
1543 | ret = ext4_mb_init_cache(folio, NULL, gfp); |
1544 | if (ret) |
1545 | goto err; |
1546 | if (!folio_test_uptodate(folio)) { |
1547 | ret = -EIO; |
1548 | goto err; |
1549 | } |
1550 | |
1551 | if (e4b.bd_buddy_folio == NULL) { |
1552 | /* |
1553 | * If both the bitmap and buddy are in |
1554 | * the same page we don't need to force |
1555 | * init the buddy |
1556 | */ |
1557 | ret = 0; |
1558 | goto err; |
1559 | } |
1560 | /* init buddy cache */ |
1561 | folio = e4b.bd_buddy_folio; |
1562 | ret = ext4_mb_init_cache(folio, incore: e4b.bd_bitmap, gfp); |
1563 | if (ret) |
1564 | goto err; |
1565 | if (!folio_test_uptodate(folio)) { |
1566 | ret = -EIO; |
1567 | goto err; |
1568 | } |
1569 | err: |
1570 | ext4_mb_put_buddy_page_lock(e4b: &e4b); |
1571 | return ret; |
1572 | } |
1573 | |
1574 | /* |
1575 | * Locking note: This routine calls ext4_mb_init_cache(), which takes the |
1576 | * block group lock of all groups for this page; do not hold the BG lock when |
1577 | * calling this routine! |
1578 | */ |
1579 | static noinline_for_stack int |
1580 | ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, |
1581 | struct ext4_buddy *e4b, gfp_t gfp) |
1582 | { |
1583 | int blocks_per_page; |
1584 | int block; |
1585 | int pnum; |
1586 | int poff; |
1587 | struct folio *folio; |
1588 | int ret; |
1589 | struct ext4_group_info *grp; |
1590 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
1591 | struct inode *inode = sbi->s_buddy_cache; |
1592 | |
1593 | might_sleep(); |
1594 | mb_debug(sb, "load group %u\n", group); |
1595 | |
1596 | blocks_per_page = PAGE_SIZE / sb->s_blocksize; |
1597 | grp = ext4_get_group_info(sb, group); |
1598 | if (!grp) |
1599 | return -EFSCORRUPTED; |
1600 | |
1601 | e4b->bd_blkbits = sb->s_blocksize_bits; |
1602 | e4b->bd_info = grp; |
1603 | e4b->bd_sb = sb; |
1604 | e4b->bd_group = group; |
1605 | e4b->bd_buddy_folio = NULL; |
1606 | e4b->bd_bitmap_folio = NULL; |
1607 | |
1608 | if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { |
1609 | /* |
1610 | * we need full data about the group |
1611 | * to make a good selection |
1612 | */ |
1613 | ret = ext4_mb_init_group(sb, group, gfp); |
1614 | if (ret) |
1615 | return ret; |
1616 | } |
1617 | |
1618 | /* |
1619 | * the buddy cache inode stores the block bitmap |
1620 | * and buddy information in consecutive blocks. |
1621 | * So for each group we need two blocks. |
1622 | */ |
1623 | block = group * 2; |
1624 | pnum = block / blocks_per_page; |
1625 | poff = block % blocks_per_page; |
1626 | |
1627 | /* Avoid locking the folio in the fast path ... */ |
1628 | folio = __filemap_get_folio(mapping: inode->i_mapping, index: pnum, FGP_ACCESSED, gfp: 0); |
1629 | if (IS_ERR(ptr: folio) || !folio_test_uptodate(folio)) { |
1630 | if (!IS_ERR(ptr: folio)) |
1631 | /* |
1632 | * drop the folio reference and try |
1633 | * to get the folio with lock. If we |
1634 | * are not uptodate that implies |
1635 | * somebody just created the folio but |
1636 | * is yet to initialize it. So |
1637 | * wait for it to initialize. |
1638 | */ |
1639 | folio_put(folio); |
1640 | folio = __filemap_get_folio(mapping: inode->i_mapping, index: pnum, |
1641 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); |
1642 | if (!IS_ERR(ptr: folio)) { |
1643 | if (WARN_RATELIMIT(folio->mapping != inode->i_mapping, |
1644 | "ext4: bitmap's mapping != inode->i_mapping\n")) { |
1645 | /* should never happen */ |
1646 | folio_unlock(folio); |
1647 | ret = -EINVAL; |
1648 | goto err; |
1649 | } |
1650 | if (!folio_test_uptodate(folio)) { |
1651 | ret = ext4_mb_init_cache(folio, NULL, gfp); |
1652 | if (ret) { |
1653 | folio_unlock(folio); |
1654 | goto err; |
1655 | } |
1656 | mb_cmp_bitmaps(e4b, bitmap: folio_address(folio) + |
1657 | (poff * sb->s_blocksize)); |
1658 | } |
1659 | folio_unlock(folio); |
1660 | } |
1661 | } |
1662 | if (IS_ERR(ptr: folio)) { |
1663 | ret = PTR_ERR(ptr: folio); |
1664 | goto err; |
1665 | } |
1666 | if (!folio_test_uptodate(folio)) { |
1667 | ret = -EIO; |
1668 | goto err; |
1669 | } |
1670 | |
1671 | /* Folios marked accessed already */ |
1672 | e4b->bd_bitmap_folio = folio; |
1673 | e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize); |
1674 | |
1675 | block++; |
1676 | pnum = block / blocks_per_page; |
1677 | poff = block % blocks_per_page; |
1678 | |
1679 | folio = __filemap_get_folio(mapping: inode->i_mapping, index: pnum, FGP_ACCESSED, gfp: 0); |
1680 | if (IS_ERR(ptr: folio) || !folio_test_uptodate(folio)) { |
1681 | if (!IS_ERR(ptr: folio)) |
1682 | folio_put(folio); |
1683 | folio = __filemap_get_folio(mapping: inode->i_mapping, index: pnum, |
1684 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); |
1685 | if (!IS_ERR(ptr: folio)) { |
1686 | if (WARN_RATELIMIT(folio->mapping != inode->i_mapping, |
1687 | "ext4: buddy bitmap's mapping != inode->i_mapping\n")) { |
1688 | /* should never happen */ |
1689 | folio_unlock(folio); |
1690 | ret = -EINVAL; |
1691 | goto err; |
1692 | } |
1693 | if (!folio_test_uptodate(folio)) { |
1694 | ret = ext4_mb_init_cache(folio, incore: e4b->bd_bitmap, |
1695 | gfp); |
1696 | if (ret) { |
1697 | folio_unlock(folio); |
1698 | goto err; |
1699 | } |
1700 | } |
1701 | folio_unlock(folio); |
1702 | } |
1703 | } |
1704 | if (IS_ERR(ptr: folio)) { |
1705 | ret = PTR_ERR(ptr: folio); |
1706 | goto err; |
1707 | } |
1708 | if (!folio_test_uptodate(folio)) { |
1709 | ret = -EIO; |
1710 | goto err; |
1711 | } |
1712 | |
1713 | /* Folios marked accessed already */ |
1714 | e4b->bd_buddy_folio = folio; |
1715 | e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize); |
1716 | |
1717 | return 0; |
1718 | |
1719 | err: |
1720 | if (!IS_ERR_OR_NULL(ptr: folio)) |
1721 | folio_put(folio); |
1722 | if (e4b->bd_bitmap_folio) |
1723 | folio_put(folio: e4b->bd_bitmap_folio); |
1724 | |
1725 | e4b->bd_buddy = NULL; |
1726 | e4b->bd_bitmap = NULL; |
1727 | return ret; |
1728 | } |
1729 | |
1730 | static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, |
1731 | struct ext4_buddy *e4b) |
1732 | { |
1733 | return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); |
1734 | } |
1735 | |
1736 | static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) |
1737 | { |
1738 | if (e4b->bd_bitmap_folio) |
1739 | folio_put(folio: e4b->bd_bitmap_folio); |
1740 | if (e4b->bd_buddy_folio) |
1741 | folio_put(folio: e4b->bd_buddy_folio); |
1742 | } |
1743 | |
1744 | |
1745 | static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) |
1746 | { |
1747 | int order = 1, max; |
1748 | void *bb; |
1749 | |
1750 | BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); |
1751 | BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); |
1752 | |
1753 | while (order <= e4b->bd_blkbits + 1) { |
1754 | bb = mb_find_buddy(e4b, order, max: &max); |
1755 | if (!mb_test_bit(bit: block >> order, addr: bb)) { |
1756 | /* this block is part of buddy of order 'order' */ |
1757 | return order; |
1758 | } |
1759 | order++; |
1760 | } |
1761 | return 0; |
1762 | } |
1763 | |
1764 | static void mb_clear_bits(void *bm, int cur, int len) |
1765 | { |
1766 | __u32 *addr; |
1767 | |
1768 | len = cur + len; |
1769 | while (cur < len) { |
1770 | if ((cur & 31) == 0 && (len - cur) >= 32) { |
1771 | /* fast path: clear whole word at once */ |
1772 | addr = bm + (cur >> 3); |
1773 | *addr = 0; |
1774 | cur += 32; |
1775 | continue; |
1776 | } |
1777 | mb_clear_bit(bit: cur, addr: bm); |
1778 | cur++; |
1779 | } |
1780 | } |
1781 | |
1782 | /* clear bits in given range |
1783 | * will return first found zero bit if any, -1 otherwise |
1784 | */ |
1785 | static int mb_test_and_clear_bits(void *bm, int cur, int len) |
1786 | { |
1787 | __u32 *addr; |
1788 | int zero_bit = -1; |
1789 | |
1790 | len = cur + len; |
1791 | while (cur < len) { |
1792 | if ((cur & 31) == 0 && (len - cur) >= 32) { |
1793 | /* fast path: clear whole word at once */ |
1794 | addr = bm + (cur >> 3); |
1795 | if (*addr != (__u32)(-1) && zero_bit == -1) |
1796 | zero_bit = cur + mb_find_next_zero_bit(addr, max: 32, start: 0); |
1797 | *addr = 0; |
1798 | cur += 32; |
1799 | continue; |
1800 | } |
1801 | if (!mb_test_and_clear_bit(bit: cur, addr: bm) && zero_bit == -1) |
1802 | zero_bit = cur; |
1803 | cur++; |
1804 | } |
1805 | |
1806 | return zero_bit; |
1807 | } |
1808 | |
1809 | void mb_set_bits(void *bm, int cur, int len) |
1810 | { |
1811 | __u32 *addr; |
1812 | |
1813 | len = cur + len; |
1814 | while (cur < len) { |
1815 | if ((cur & 31) == 0 && (len - cur) >= 32) { |
1816 | /* fast path: set whole word at once */ |
1817 | addr = bm + (cur >> 3); |
1818 | *addr = 0xffffffff; |
1819 | cur += 32; |
1820 | continue; |
1821 | } |
1822 | mb_set_bit(bit: cur, addr: bm); |
1823 | cur++; |
1824 | } |
1825 | } |
1826 | |
1827 | static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) |
1828 | { |
1829 | if (mb_test_bit(bit: *bit + side, addr: bitmap)) { |
1830 | mb_clear_bit(bit: *bit, addr: bitmap); |
1831 | (*bit) -= side; |
1832 | return 1; |
1833 | } |
1834 | else { |
1835 | (*bit) += side; |
1836 | mb_set_bit(bit: *bit, addr: bitmap); |
1837 | return -1; |
1838 | } |
1839 | } |
1840 | |
1841 | static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) |
1842 | { |
1843 | int max; |
1844 | int order = 1; |
1845 | void *buddy = mb_find_buddy(e4b, order, max: &max); |
1846 | |
1847 | while (buddy) { |
1848 | void *buddy2; |
1849 | |
1850 | /* Bits in range [first; last] are known to be set since |
1851 | * corresponding blocks were allocated. Bits in range |
1852 | * (first; last) will stay set because they form buddies on |
1853 | * upper layer. We just deal with borders if they don't |
1854 | * align with upper layer and then go up. |
1855 | * Releasing entire group is all about clearing |
1856 | * single bit of highest order buddy. |
1857 | */ |
1858 | |
1859 | /* Example: |
1860 | * --------------------------------- |
1861 | * | 1 | 1 | 1 | 1 | |
1862 | * --------------------------------- |
1863 | * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
1864 | * --------------------------------- |
1865 | * 0 1 2 3 4 5 6 7 |
1866 | * \_____________________/ |
1867 | * |
1868 | * Neither [1] nor [6] is aligned to above layer. |
1869 | * Left neighbour [0] is free, so mark it busy, |
1870 | * decrease bb_counters and extend range to |
1871 | * [0; 6] |
1872 | * Right neighbour [7] is busy. It can't be coaleasced with [6], so |
1873 | * mark [6] free, increase bb_counters and shrink range to |
1874 | * [0; 5]. |
1875 | * Then shift range to [0; 2], go up and do the same. |
1876 | */ |
1877 | |
1878 | |
1879 | if (first & 1) |
1880 | e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(bit: &first, bitmap: buddy, side: -1); |
1881 | if (!(last & 1)) |
1882 | e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(bit: &last, bitmap: buddy, side: 1); |
1883 | if (first > last) |
1884 | break; |
1885 | order++; |
1886 | |
1887 | buddy2 = mb_find_buddy(e4b, order, max: &max); |
1888 | if (!buddy2) { |
1889 | mb_clear_bits(bm: buddy, cur: first, len: last - first + 1); |
1890 | e4b->bd_info->bb_counters[order - 1] += last - first + 1; |
1891 | break; |
1892 | } |
1893 | first >>= 1; |
1894 | last >>= 1; |
1895 | buddy = buddy2; |
1896 | } |
1897 | } |
1898 | |
1899 | static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, |
1900 | int first, int count) |
1901 | { |
1902 | int left_is_free = 0; |
1903 | int right_is_free = 0; |
1904 | int block; |
1905 | int last = first + count - 1; |
1906 | struct super_block *sb = e4b->bd_sb; |
1907 | |
1908 | if (WARN_ON(count == 0)) |
1909 | return; |
1910 | BUG_ON(last >= (sb->s_blocksize << 3)); |
1911 | assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); |
1912 | /* Don't bother if the block group is corrupt. */ |
1913 | if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) |
1914 | return; |
1915 | |
1916 | mb_check_buddy(e4b); |
1917 | mb_free_blocks_double(inode, e4b, first, count); |
1918 | |
1919 | /* access memory sequentially: check left neighbour, |
1920 | * clear range and then check right neighbour |
1921 | */ |
1922 | if (first != 0) |
1923 | left_is_free = !mb_test_bit(bit: first - 1, addr: e4b->bd_bitmap); |
1924 | block = mb_test_and_clear_bits(bm: e4b->bd_bitmap, cur: first, len: count); |
1925 | if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) |
1926 | right_is_free = !mb_test_bit(bit: last + 1, addr: e4b->bd_bitmap); |
1927 | |
1928 | if (unlikely(block != -1)) { |
1929 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
1930 | ext4_fsblk_t blocknr; |
1931 | |
1932 | /* |
1933 | * Fastcommit replay can free already freed blocks which |
1934 | * corrupts allocation info. Regenerate it. |
1935 | */ |
1936 | if (sbi->s_mount_state & EXT4_FC_REPLAY) { |
1937 | mb_regenerate_buddy(e4b); |
1938 | goto check; |
1939 | } |
1940 | |
1941 | blocknr = ext4_group_first_block_no(sb, group_no: e4b->bd_group); |
1942 | blocknr += EXT4_C2B(sbi, block); |
1943 | ext4_mark_group_bitmap_corrupted(sb, block_group: e4b->bd_group, |
1944 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
1945 | ext4_grp_locked_error(sb, e4b->bd_group, |
1946 | inode ? inode->i_ino : 0, blocknr, |
1947 | "freeing already freed block (bit %u); block bitmap corrupt.", |
1948 | block); |
1949 | return; |
1950 | } |
1951 | |
1952 | this_cpu_inc(discard_pa_seq); |
1953 | e4b->bd_info->bb_free += count; |
1954 | if (first < e4b->bd_info->bb_first_free) |
1955 | e4b->bd_info->bb_first_free = first; |
1956 | |
1957 | /* let's maintain fragments counter */ |
1958 | if (left_is_free && right_is_free) |
1959 | e4b->bd_info->bb_fragments--; |
1960 | else if (!left_is_free && !right_is_free) |
1961 | e4b->bd_info->bb_fragments++; |
1962 | |
1963 | /* buddy[0] == bd_bitmap is a special case, so handle |
1964 | * it right away and let mb_buddy_mark_free stay free of |
1965 | * zero order checks. |
1966 | * Check if neighbours are to be coaleasced, |
1967 | * adjust bitmap bb_counters and borders appropriately. |
1968 | */ |
1969 | if (first & 1) { |
1970 | first += !left_is_free; |
1971 | e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; |
1972 | } |
1973 | if (!(last & 1)) { |
1974 | last -= !right_is_free; |
1975 | e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; |
1976 | } |
1977 | |
1978 | if (first <= last) |
1979 | mb_buddy_mark_free(e4b, first: first >> 1, last: last >> 1); |
1980 | |
1981 | mb_set_largest_free_order(sb, grp: e4b->bd_info); |
1982 | mb_update_avg_fragment_size(sb, grp: e4b->bd_info); |
1983 | check: |
1984 | mb_check_buddy(e4b); |
1985 | } |
1986 | |
1987 | static int mb_find_extent(struct ext4_buddy *e4b, int block, |
1988 | int needed, struct ext4_free_extent *ex) |
1989 | { |
1990 | int max, order, next; |
1991 | void *buddy; |
1992 | |
1993 | assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); |
1994 | BUG_ON(ex == NULL); |
1995 | |
1996 | buddy = mb_find_buddy(e4b, order: 0, max: &max); |
1997 | BUG_ON(buddy == NULL); |
1998 | BUG_ON(block >= max); |
1999 | if (mb_test_bit(bit: block, addr: buddy)) { |
2000 | ex->fe_len = 0; |
2001 | ex->fe_start = 0; |
2002 | ex->fe_group = 0; |
2003 | return 0; |
2004 | } |
2005 | |
2006 | /* find actual order */ |
2007 | order = mb_find_order_for_block(e4b, block); |
2008 | |
2009 | ex->fe_len = (1 << order) - (block & ((1 << order) - 1)); |
2010 | ex->fe_start = block; |
2011 | ex->fe_group = e4b->bd_group; |
2012 | |
2013 | block = block >> order; |
2014 | |
2015 | while (needed > ex->fe_len && |
2016 | mb_find_buddy(e4b, order, max: &max)) { |
2017 | |
2018 | if (block + 1 >= max) |
2019 | break; |
2020 | |
2021 | next = (block + 1) * (1 << order); |
2022 | if (mb_test_bit(bit: next, addr: e4b->bd_bitmap)) |
2023 | break; |
2024 | |
2025 | order = mb_find_order_for_block(e4b, block: next); |
2026 | |
2027 | block = next >> order; |
2028 | ex->fe_len += 1 << order; |
2029 | } |
2030 | |
2031 | if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { |
2032 | /* Should never happen! (but apparently sometimes does?!?) */ |
2033 | WARN_ON(1); |
2034 | ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, |
2035 | "corruption or bug in mb_find_extent " |
2036 | "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", |
2037 | block, order, needed, ex->fe_group, ex->fe_start, |
2038 | ex->fe_len, ex->fe_logical); |
2039 | ex->fe_len = 0; |
2040 | ex->fe_start = 0; |
2041 | ex->fe_group = 0; |
2042 | } |
2043 | return ex->fe_len; |
2044 | } |
2045 | |
2046 | static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) |
2047 | { |
2048 | int ord; |
2049 | int mlen = 0; |
2050 | int max = 0; |
2051 | int start = ex->fe_start; |
2052 | int len = ex->fe_len; |
2053 | unsigned ret = 0; |
2054 | int len0 = len; |
2055 | void *buddy; |
2056 | int ord_start, ord_end; |
2057 | |
2058 | BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); |
2059 | BUG_ON(e4b->bd_group != ex->fe_group); |
2060 | assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); |
2061 | mb_check_buddy(e4b); |
2062 | mb_mark_used_double(e4b, first: start, count: len); |
2063 | |
2064 | this_cpu_inc(discard_pa_seq); |
2065 | e4b->bd_info->bb_free -= len; |
2066 | if (e4b->bd_info->bb_first_free == start) |
2067 | e4b->bd_info->bb_first_free += len; |
2068 | |
2069 | /* let's maintain fragments counter */ |
2070 | if (start != 0) |
2071 | mlen = !mb_test_bit(bit: start - 1, addr: e4b->bd_bitmap); |
2072 | if (start + len < EXT4_SB(sb: e4b->bd_sb)->s_mb_maxs[0]) |
2073 | max = !mb_test_bit(bit: start + len, addr: e4b->bd_bitmap); |
2074 | if (mlen && max) |
2075 | e4b->bd_info->bb_fragments++; |
2076 | else if (!mlen && !max) |
2077 | e4b->bd_info->bb_fragments--; |
2078 | |
2079 | /* let's maintain buddy itself */ |
2080 | while (len) { |
2081 | ord = mb_find_order_for_block(e4b, block: start); |
2082 | |
2083 | if (((start >> ord) << ord) == start && len >= (1 << ord)) { |
2084 | /* the whole chunk may be allocated at once! */ |
2085 | mlen = 1 << ord; |
2086 | buddy = mb_find_buddy(e4b, order: ord, max: &max); |
2087 | BUG_ON((start >> ord) >= max); |
2088 | mb_set_bit(bit: start >> ord, addr: buddy); |
2089 | e4b->bd_info->bb_counters[ord]--; |
2090 | start += mlen; |
2091 | len -= mlen; |
2092 | BUG_ON(len < 0); |
2093 | continue; |
2094 | } |
2095 | |
2096 | /* store for history */ |
2097 | if (ret == 0) |
2098 | ret = len | (ord << 16); |
2099 | |
2100 | BUG_ON(ord <= 0); |
2101 | buddy = mb_find_buddy(e4b, order: ord, max: &max); |
2102 | mb_set_bit(bit: start >> ord, addr: buddy); |
2103 | e4b->bd_info->bb_counters[ord]--; |
2104 | |
2105 | ord_start = (start >> ord) << ord; |
2106 | ord_end = ord_start + (1 << ord); |
2107 | /* first chunk */ |
2108 | if (start > ord_start) |
2109 | ext4_mb_mark_free_simple(sb: e4b->bd_sb, buddy: e4b->bd_buddy, |
2110 | first: ord_start, len: start - ord_start, |
2111 | grp: e4b->bd_info); |
2112 | |
2113 | /* last chunk */ |
2114 | if (start + len < ord_end) { |
2115 | ext4_mb_mark_free_simple(sb: e4b->bd_sb, buddy: e4b->bd_buddy, |
2116 | first: start + len, |
2117 | len: ord_end - (start + len), |
2118 | grp: e4b->bd_info); |
2119 | break; |
2120 | } |
2121 | len = start + len - ord_end; |
2122 | start = ord_end; |
2123 | } |
2124 | mb_set_largest_free_order(sb: e4b->bd_sb, grp: e4b->bd_info); |
2125 | |
2126 | mb_update_avg_fragment_size(sb: e4b->bd_sb, grp: e4b->bd_info); |
2127 | mb_set_bits(bm: e4b->bd_bitmap, cur: ex->fe_start, len: len0); |
2128 | mb_check_buddy(e4b); |
2129 | |
2130 | return ret; |
2131 | } |
2132 | |
2133 | /* |
2134 | * Must be called under group lock! |
2135 | */ |
2136 | static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, |
2137 | struct ext4_buddy *e4b) |
2138 | { |
2139 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
2140 | int ret; |
2141 | |
2142 | BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); |
2143 | BUG_ON(ac->ac_status == AC_STATUS_FOUND); |
2144 | |
2145 | ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); |
2146 | ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; |
2147 | ret = mb_mark_used(e4b, ex: &ac->ac_b_ex); |
2148 | |
2149 | /* preallocation can change ac_b_ex, thus we store actually |
2150 | * allocated blocks for history */ |
2151 | ac->ac_f_ex = ac->ac_b_ex; |
2152 | |
2153 | ac->ac_status = AC_STATUS_FOUND; |
2154 | ac->ac_tail = ret & 0xffff; |
2155 | ac->ac_buddy = ret >> 16; |
2156 | |
2157 | /* |
2158 | * take the page reference. We want the page to be pinned |
2159 | * so that we don't get a ext4_mb_init_cache_call for this |
2160 | * group until we update the bitmap. That would mean we |
2161 | * double allocate blocks. The reference is dropped |
2162 | * in ext4_mb_release_context |
2163 | */ |
2164 | ac->ac_bitmap_folio = e4b->bd_bitmap_folio; |
2165 | folio_get(folio: ac->ac_bitmap_folio); |
2166 | ac->ac_buddy_folio = e4b->bd_buddy_folio; |
2167 | folio_get(folio: ac->ac_buddy_folio); |
2168 | /* store last allocated for subsequent stream allocation */ |
2169 | if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { |
2170 | spin_lock(lock: &sbi->s_md_lock); |
2171 | sbi->s_mb_last_group = ac->ac_f_ex.fe_group; |
2172 | sbi->s_mb_last_start = ac->ac_f_ex.fe_start; |
2173 | spin_unlock(lock: &sbi->s_md_lock); |
2174 | } |
2175 | /* |
2176 | * As we've just preallocated more space than |
2177 | * user requested originally, we store allocated |
2178 | * space in a special descriptor. |
2179 | */ |
2180 | if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) |
2181 | ext4_mb_new_preallocation(ac); |
2182 | |
2183 | } |
2184 | |
2185 | static void ext4_mb_check_limits(struct ext4_allocation_context *ac, |
2186 | struct ext4_buddy *e4b, |
2187 | int finish_group) |
2188 | { |
2189 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
2190 | struct ext4_free_extent *bex = &ac->ac_b_ex; |
2191 | struct ext4_free_extent *gex = &ac->ac_g_ex; |
2192 | |
2193 | if (ac->ac_status == AC_STATUS_FOUND) |
2194 | return; |
2195 | /* |
2196 | * We don't want to scan for a whole year |
2197 | */ |
2198 | if (ac->ac_found > sbi->s_mb_max_to_scan && |
2199 | !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { |
2200 | ac->ac_status = AC_STATUS_BREAK; |
2201 | return; |
2202 | } |
2203 | |
2204 | /* |
2205 | * Haven't found good chunk so far, let's continue |
2206 | */ |
2207 | if (bex->fe_len < gex->fe_len) |
2208 | return; |
2209 | |
2210 | if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) |
2211 | ext4_mb_use_best_found(ac, e4b); |
2212 | } |
2213 | |
2214 | /* |
2215 | * The routine checks whether found extent is good enough. If it is, |
2216 | * then the extent gets marked used and flag is set to the context |
2217 | * to stop scanning. Otherwise, the extent is compared with the |
2218 | * previous found extent and if new one is better, then it's stored |
2219 | * in the context. Later, the best found extent will be used, if |
2220 | * mballoc can't find good enough extent. |
2221 | * |
2222 | * The algorithm used is roughly as follows: |
2223 | * |
2224 | * * If free extent found is exactly as big as goal, then |
2225 | * stop the scan and use it immediately |
2226 | * |
2227 | * * If free extent found is smaller than goal, then keep retrying |
2228 | * upto a max of sbi->s_mb_max_to_scan times (default 200). After |
2229 | * that stop scanning and use whatever we have. |
2230 | * |
2231 | * * If free extent found is bigger than goal, then keep retrying |
2232 | * upto a max of sbi->s_mb_min_to_scan times (default 10) before |
2233 | * stopping the scan and using the extent. |
2234 | * |
2235 | * |
2236 | * FIXME: real allocation policy is to be designed yet! |
2237 | */ |
2238 | static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, |
2239 | struct ext4_free_extent *ex, |
2240 | struct ext4_buddy *e4b) |
2241 | { |
2242 | struct ext4_free_extent *bex = &ac->ac_b_ex; |
2243 | struct ext4_free_extent *gex = &ac->ac_g_ex; |
2244 | |
2245 | BUG_ON(ex->fe_len <= 0); |
2246 | BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); |
2247 | BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); |
2248 | BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); |
2249 | |
2250 | ac->ac_found++; |
2251 | ac->ac_cX_found[ac->ac_criteria]++; |
2252 | |
2253 | /* |
2254 | * The special case - take what you catch first |
2255 | */ |
2256 | if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { |
2257 | *bex = *ex; |
2258 | ext4_mb_use_best_found(ac, e4b); |
2259 | return; |
2260 | } |
2261 | |
2262 | /* |
2263 | * Let's check whether the chuck is good enough |
2264 | */ |
2265 | if (ex->fe_len == gex->fe_len) { |
2266 | *bex = *ex; |
2267 | ext4_mb_use_best_found(ac, e4b); |
2268 | return; |
2269 | } |
2270 | |
2271 | /* |
2272 | * If this is first found extent, just store it in the context |
2273 | */ |
2274 | if (bex->fe_len == 0) { |
2275 | *bex = *ex; |
2276 | return; |
2277 | } |
2278 | |
2279 | /* |
2280 | * If new found extent is better, store it in the context |
2281 | */ |
2282 | if (bex->fe_len < gex->fe_len) { |
2283 | /* if the request isn't satisfied, any found extent |
2284 | * larger than previous best one is better */ |
2285 | if (ex->fe_len > bex->fe_len) |
2286 | *bex = *ex; |
2287 | } else if (ex->fe_len > gex->fe_len) { |
2288 | /* if the request is satisfied, then we try to find |
2289 | * an extent that still satisfy the request, but is |
2290 | * smaller than previous one */ |
2291 | if (ex->fe_len < bex->fe_len) |
2292 | *bex = *ex; |
2293 | } |
2294 | |
2295 | ext4_mb_check_limits(ac, e4b, finish_group: 0); |
2296 | } |
2297 | |
2298 | static noinline_for_stack |
2299 | void ext4_mb_try_best_found(struct ext4_allocation_context *ac, |
2300 | struct ext4_buddy *e4b) |
2301 | { |
2302 | struct ext4_free_extent ex = ac->ac_b_ex; |
2303 | ext4_group_t group = ex.fe_group; |
2304 | int max; |
2305 | int err; |
2306 | |
2307 | BUG_ON(ex.fe_len <= 0); |
2308 | err = ext4_mb_load_buddy(sb: ac->ac_sb, group, e4b); |
2309 | if (err) |
2310 | return; |
2311 | |
2312 | ext4_lock_group(sb: ac->ac_sb, group); |
2313 | if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) |
2314 | goto out; |
2315 | |
2316 | max = mb_find_extent(e4b, block: ex.fe_start, needed: ex.fe_len, ex: &ex); |
2317 | |
2318 | if (max > 0) { |
2319 | ac->ac_b_ex = ex; |
2320 | ext4_mb_use_best_found(ac, e4b); |
2321 | } |
2322 | |
2323 | out: |
2324 | ext4_unlock_group(sb: ac->ac_sb, group); |
2325 | ext4_mb_unload_buddy(e4b); |
2326 | } |
2327 | |
2328 | static noinline_for_stack |
2329 | int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, |
2330 | struct ext4_buddy *e4b) |
2331 | { |
2332 | ext4_group_t group = ac->ac_g_ex.fe_group; |
2333 | int max; |
2334 | int err; |
2335 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
2336 | struct ext4_group_info *grp = ext4_get_group_info(sb: ac->ac_sb, group); |
2337 | struct ext4_free_extent ex; |
2338 | |
2339 | if (!grp) |
2340 | return -EFSCORRUPTED; |
2341 | if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) |
2342 | return 0; |
2343 | if (grp->bb_free == 0) |
2344 | return 0; |
2345 | |
2346 | err = ext4_mb_load_buddy(sb: ac->ac_sb, group, e4b); |
2347 | if (err) |
2348 | return err; |
2349 | |
2350 | ext4_lock_group(sb: ac->ac_sb, group); |
2351 | if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) |
2352 | goto out; |
2353 | |
2354 | max = mb_find_extent(e4b, block: ac->ac_g_ex.fe_start, |
2355 | needed: ac->ac_g_ex.fe_len, ex: &ex); |
2356 | ex.fe_logical = 0xDEADFA11; /* debug value */ |
2357 | |
2358 | if (max >= ac->ac_g_ex.fe_len && |
2359 | ac->ac_g_ex.fe_len == EXT4_NUM_B2C(sbi, sbi->s_stripe)) { |
2360 | ext4_fsblk_t start; |
2361 | |
2362 | start = ext4_grp_offs_to_block(sb: ac->ac_sb, fex: &ex); |
2363 | /* use do_div to get remainder (would be 64-bit modulo) */ |
2364 | if (do_div(start, sbi->s_stripe) == 0) { |
2365 | ac->ac_found++; |
2366 | ac->ac_b_ex = ex; |
2367 | ext4_mb_use_best_found(ac, e4b); |
2368 | } |
2369 | } else if (max >= ac->ac_g_ex.fe_len) { |
2370 | BUG_ON(ex.fe_len <= 0); |
2371 | BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); |
2372 | BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); |
2373 | ac->ac_found++; |
2374 | ac->ac_b_ex = ex; |
2375 | ext4_mb_use_best_found(ac, e4b); |
2376 | } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { |
2377 | /* Sometimes, caller may want to merge even small |
2378 | * number of blocks to an existing extent */ |
2379 | BUG_ON(ex.fe_len <= 0); |
2380 | BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); |
2381 | BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); |
2382 | ac->ac_found++; |
2383 | ac->ac_b_ex = ex; |
2384 | ext4_mb_use_best_found(ac, e4b); |
2385 | } |
2386 | out: |
2387 | ext4_unlock_group(sb: ac->ac_sb, group); |
2388 | ext4_mb_unload_buddy(e4b); |
2389 | |
2390 | return 0; |
2391 | } |
2392 | |
2393 | /* |
2394 | * The routine scans buddy structures (not bitmap!) from given order |
2395 | * to max order and tries to find big enough chunk to satisfy the req |
2396 | */ |
2397 | static noinline_for_stack |
2398 | void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, |
2399 | struct ext4_buddy *e4b) |
2400 | { |
2401 | struct super_block *sb = ac->ac_sb; |
2402 | struct ext4_group_info *grp = e4b->bd_info; |
2403 | void *buddy; |
2404 | int i; |
2405 | int k; |
2406 | int max; |
2407 | |
2408 | BUG_ON(ac->ac_2order <= 0); |
2409 | for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { |
2410 | if (grp->bb_counters[i] == 0) |
2411 | continue; |
2412 | |
2413 | buddy = mb_find_buddy(e4b, order: i, max: &max); |
2414 | if (WARN_RATELIMIT(buddy == NULL, |
2415 | "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) |
2416 | continue; |
2417 | |
2418 | k = mb_find_next_zero_bit(addr: buddy, max, start: 0); |
2419 | if (k >= max) { |
2420 | ext4_mark_group_bitmap_corrupted(sb: ac->ac_sb, |
2421 | block_group: e4b->bd_group, |
2422 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
2423 | ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, |
2424 | "%d free clusters of order %d. But found 0", |
2425 | grp->bb_counters[i], i); |
2426 | break; |
2427 | } |
2428 | ac->ac_found++; |
2429 | ac->ac_cX_found[ac->ac_criteria]++; |
2430 | |
2431 | ac->ac_b_ex.fe_len = 1 << i; |
2432 | ac->ac_b_ex.fe_start = k << i; |
2433 | ac->ac_b_ex.fe_group = e4b->bd_group; |
2434 | |
2435 | ext4_mb_use_best_found(ac, e4b); |
2436 | |
2437 | BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); |
2438 | |
2439 | if (EXT4_SB(sb)->s_mb_stats) |
2440 | atomic_inc(v: &EXT4_SB(sb)->s_bal_2orders); |
2441 | |
2442 | break; |
2443 | } |
2444 | } |
2445 | |
2446 | /* |
2447 | * The routine scans the group and measures all found extents. |
2448 | * In order to optimize scanning, caller must pass number of |
2449 | * free blocks in the group, so the routine can know upper limit. |
2450 | */ |
2451 | static noinline_for_stack |
2452 | void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, |
2453 | struct ext4_buddy *e4b) |
2454 | { |
2455 | struct super_block *sb = ac->ac_sb; |
2456 | void *bitmap = e4b->bd_bitmap; |
2457 | struct ext4_free_extent ex; |
2458 | int i, j, freelen; |
2459 | int free; |
2460 | |
2461 | free = e4b->bd_info->bb_free; |
2462 | if (WARN_ON(free <= 0)) |
2463 | return; |
2464 | |
2465 | i = e4b->bd_info->bb_first_free; |
2466 | |
2467 | while (free && ac->ac_status == AC_STATUS_CONTINUE) { |
2468 | i = mb_find_next_zero_bit(addr: bitmap, |
2469 | EXT4_CLUSTERS_PER_GROUP(sb), start: i); |
2470 | if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { |
2471 | /* |
2472 | * IF we have corrupt bitmap, we won't find any |
2473 | * free blocks even though group info says we |
2474 | * have free blocks |
2475 | */ |
2476 | ext4_mark_group_bitmap_corrupted(sb, block_group: e4b->bd_group, |
2477 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
2478 | ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, |
2479 | "%d free clusters as per " |
2480 | "group info. But bitmap says 0", |
2481 | free); |
2482 | break; |
2483 | } |
2484 | |
2485 | if (!ext4_mb_cr_expensive(cr: ac->ac_criteria)) { |
2486 | /* |
2487 | * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are |
2488 | * sure that this group will have a large enough |
2489 | * continuous free extent, so skip over the smaller free |
2490 | * extents |
2491 | */ |
2492 | j = mb_find_next_bit(addr: bitmap, |
2493 | EXT4_CLUSTERS_PER_GROUP(sb), start: i); |
2494 | freelen = j - i; |
2495 | |
2496 | if (freelen < ac->ac_g_ex.fe_len) { |
2497 | i = j; |
2498 | free -= freelen; |
2499 | continue; |
2500 | } |
2501 | } |
2502 | |
2503 | mb_find_extent(e4b, block: i, needed: ac->ac_g_ex.fe_len, ex: &ex); |
2504 | if (WARN_ON(ex.fe_len <= 0)) |
2505 | break; |
2506 | if (free < ex.fe_len) { |
2507 | ext4_mark_group_bitmap_corrupted(sb, block_group: e4b->bd_group, |
2508 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
2509 | ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, |
2510 | "%d free clusters as per " |
2511 | "group info. But got %d blocks", |
2512 | free, ex.fe_len); |
2513 | /* |
2514 | * The number of free blocks differs. This mostly |
2515 | * indicate that the bitmap is corrupt. So exit |
2516 | * without claiming the space. |
2517 | */ |
2518 | break; |
2519 | } |
2520 | ex.fe_logical = 0xDEADC0DE; /* debug value */ |
2521 | ext4_mb_measure_extent(ac, ex: &ex, e4b); |
2522 | |
2523 | i += ex.fe_len; |
2524 | free -= ex.fe_len; |
2525 | } |
2526 | |
2527 | ext4_mb_check_limits(ac, e4b, finish_group: 1); |
2528 | } |
2529 | |
2530 | /* |
2531 | * This is a special case for storages like raid5 |
2532 | * we try to find stripe-aligned chunks for stripe-size-multiple requests |
2533 | */ |
2534 | static noinline_for_stack |
2535 | void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, |
2536 | struct ext4_buddy *e4b) |
2537 | { |
2538 | struct super_block *sb = ac->ac_sb; |
2539 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
2540 | void *bitmap = e4b->bd_bitmap; |
2541 | struct ext4_free_extent ex; |
2542 | ext4_fsblk_t first_group_block; |
2543 | ext4_fsblk_t a; |
2544 | ext4_grpblk_t i, stripe; |
2545 | int max; |
2546 | |
2547 | BUG_ON(sbi->s_stripe == 0); |
2548 | |
2549 | /* find first stripe-aligned block in group */ |
2550 | first_group_block = ext4_group_first_block_no(sb, group_no: e4b->bd_group); |
2551 | |
2552 | a = first_group_block + sbi->s_stripe - 1; |
2553 | do_div(a, sbi->s_stripe); |
2554 | i = (a * sbi->s_stripe) - first_group_block; |
2555 | |
2556 | stripe = EXT4_NUM_B2C(sbi, sbi->s_stripe); |
2557 | i = EXT4_B2C(sbi, i); |
2558 | while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { |
2559 | if (!mb_test_bit(bit: i, addr: bitmap)) { |
2560 | max = mb_find_extent(e4b, block: i, needed: stripe, ex: &ex); |
2561 | if (max >= stripe) { |
2562 | ac->ac_found++; |
2563 | ac->ac_cX_found[ac->ac_criteria]++; |
2564 | ex.fe_logical = 0xDEADF00D; /* debug value */ |
2565 | ac->ac_b_ex = ex; |
2566 | ext4_mb_use_best_found(ac, e4b); |
2567 | break; |
2568 | } |
2569 | } |
2570 | i += stripe; |
2571 | } |
2572 | } |
2573 | |
2574 | /* |
2575 | * This is also called BEFORE we load the buddy bitmap. |
2576 | * Returns either 1 or 0 indicating that the group is either suitable |
2577 | * for the allocation or not. |
2578 | */ |
2579 | static bool ext4_mb_good_group(struct ext4_allocation_context *ac, |
2580 | ext4_group_t group, enum criteria cr) |
2581 | { |
2582 | ext4_grpblk_t free, fragments; |
2583 | int flex_size = ext4_flex_bg_size(sbi: EXT4_SB(sb: ac->ac_sb)); |
2584 | struct ext4_group_info *grp = ext4_get_group_info(sb: ac->ac_sb, group); |
2585 | |
2586 | BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); |
2587 | |
2588 | if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) |
2589 | return false; |
2590 | |
2591 | free = grp->bb_free; |
2592 | if (free == 0) |
2593 | return false; |
2594 | |
2595 | fragments = grp->bb_fragments; |
2596 | if (fragments == 0) |
2597 | return false; |
2598 | |
2599 | switch (cr) { |
2600 | case CR_POWER2_ALIGNED: |
2601 | BUG_ON(ac->ac_2order == 0); |
2602 | |
2603 | /* Avoid using the first bg of a flexgroup for data files */ |
2604 | if ((ac->ac_flags & EXT4_MB_HINT_DATA) && |
2605 | (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && |
2606 | ((group % flex_size) == 0)) |
2607 | return false; |
2608 | |
2609 | if (free < ac->ac_g_ex.fe_len) |
2610 | return false; |
2611 | |
2612 | if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) |
2613 | return true; |
2614 | |
2615 | if (grp->bb_largest_free_order < ac->ac_2order) |
2616 | return false; |
2617 | |
2618 | return true; |
2619 | case CR_GOAL_LEN_FAST: |
2620 | case CR_BEST_AVAIL_LEN: |
2621 | if ((free / fragments) >= ac->ac_g_ex.fe_len) |
2622 | return true; |
2623 | break; |
2624 | case CR_GOAL_LEN_SLOW: |
2625 | if (free >= ac->ac_g_ex.fe_len) |
2626 | return true; |
2627 | break; |
2628 | case CR_ANY_FREE: |
2629 | return true; |
2630 | default: |
2631 | BUG(); |
2632 | } |
2633 | |
2634 | return false; |
2635 | } |
2636 | |
2637 | /* |
2638 | * This could return negative error code if something goes wrong |
2639 | * during ext4_mb_init_group(). This should not be called with |
2640 | * ext4_lock_group() held. |
2641 | * |
2642 | * Note: because we are conditionally operating with the group lock in |
2643 | * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this |
2644 | * function using __acquire and __release. This means we need to be |
2645 | * super careful before messing with the error path handling via "goto |
2646 | * out"! |
2647 | */ |
2648 | static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, |
2649 | ext4_group_t group, enum criteria cr) |
2650 | { |
2651 | struct ext4_group_info *grp = ext4_get_group_info(sb: ac->ac_sb, group); |
2652 | struct super_block *sb = ac->ac_sb; |
2653 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
2654 | bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; |
2655 | ext4_grpblk_t free; |
2656 | int ret = 0; |
2657 | |
2658 | if (!grp) |
2659 | return -EFSCORRUPTED; |
2660 | if (sbi->s_mb_stats) |
2661 | atomic64_inc(v: &sbi->s_bal_cX_groups_considered[ac->ac_criteria]); |
2662 | if (should_lock) { |
2663 | ext4_lock_group(sb, group); |
2664 | __release(ext4_group_lock_ptr(sb, group)); |
2665 | } |
2666 | free = grp->bb_free; |
2667 | if (free == 0) |
2668 | goto out; |
2669 | /* |
2670 | * In all criterias except CR_ANY_FREE we try to avoid groups that |
2671 | * can't possibly satisfy the full goal request due to insufficient |
2672 | * free blocks. |
2673 | */ |
2674 | if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) |
2675 | goto out; |
2676 | if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) |
2677 | goto out; |
2678 | if (should_lock) { |
2679 | __acquire(ext4_group_lock_ptr(sb, group)); |
2680 | ext4_unlock_group(sb, group); |
2681 | } |
2682 | |
2683 | /* We only do this if the grp has never been initialized */ |
2684 | if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { |
2685 | struct ext4_group_desc *gdp = |
2686 | ext4_get_group_desc(sb, block_group: group, NULL); |
2687 | int ret; |
2688 | |
2689 | /* |
2690 | * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic |
2691 | * search to find large good chunks almost for free. If buddy |
2692 | * data is not ready, then this optimization makes no sense. But |
2693 | * we never skip the first block group in a flex_bg, since this |
2694 | * gets used for metadata block allocation, and we want to make |
2695 | * sure we locate metadata blocks in the first block group in |
2696 | * the flex_bg if possible. |
2697 | */ |
2698 | if (!ext4_mb_cr_expensive(cr) && |
2699 | (!sbi->s_log_groups_per_flex || |
2700 | ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && |
2701 | !(ext4_has_group_desc_csum(sb) && |
2702 | (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) |
2703 | return 0; |
2704 | ret = ext4_mb_init_group(sb, group, GFP_NOFS); |
2705 | if (ret) |
2706 | return ret; |
2707 | } |
2708 | |
2709 | if (should_lock) { |
2710 | ext4_lock_group(sb, group); |
2711 | __release(ext4_group_lock_ptr(sb, group)); |
2712 | } |
2713 | ret = ext4_mb_good_group(ac, group, cr); |
2714 | out: |
2715 | if (should_lock) { |
2716 | __acquire(ext4_group_lock_ptr(sb, group)); |
2717 | ext4_unlock_group(sb, group); |
2718 | } |
2719 | return ret; |
2720 | } |
2721 | |
2722 | /* |
2723 | * Start prefetching @nr block bitmaps starting at @group. |
2724 | * Return the next group which needs to be prefetched. |
2725 | */ |
2726 | ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, |
2727 | unsigned int nr, int *cnt) |
2728 | { |
2729 | ext4_group_t ngroups = ext4_get_groups_count(sb); |
2730 | struct buffer_head *bh; |
2731 | struct blk_plug plug; |
2732 | |
2733 | blk_start_plug(&plug); |
2734 | while (nr-- > 0) { |
2735 | struct ext4_group_desc *gdp = ext4_get_group_desc(sb, block_group: group, |
2736 | NULL); |
2737 | struct ext4_group_info *grp = ext4_get_group_info(sb, group); |
2738 | |
2739 | /* |
2740 | * Prefetch block groups with free blocks; but don't |
2741 | * bother if it is marked uninitialized on disk, since |
2742 | * it won't require I/O to read. Also only try to |
2743 | * prefetch once, so we avoid getblk() call, which can |
2744 | * be expensive. |
2745 | */ |
2746 | if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && |
2747 | EXT4_MB_GRP_NEED_INIT(grp) && |
2748 | ext4_free_group_clusters(sb, bg: gdp) > 0 ) { |
2749 | bh = ext4_read_block_bitmap_nowait(sb, block_group: group, ignore_locked: true); |
2750 | if (bh && !IS_ERR(ptr: bh)) { |
2751 | if (!buffer_uptodate(bh) && cnt) |
2752 | (*cnt)++; |
2753 | brelse(bh); |
2754 | } |
2755 | } |
2756 | if (++group >= ngroups) |
2757 | group = 0; |
2758 | } |
2759 | blk_finish_plug(&plug); |
2760 | return group; |
2761 | } |
2762 | |
2763 | /* |
2764 | * Prefetching reads the block bitmap into the buffer cache; but we |
2765 | * need to make sure that the buddy bitmap in the page cache has been |
2766 | * initialized. Note that ext4_mb_init_group() will block if the I/O |
2767 | * is not yet completed, or indeed if it was not initiated by |
2768 | * ext4_mb_prefetch did not start the I/O. |
2769 | * |
2770 | * TODO: We should actually kick off the buddy bitmap setup in a work |
2771 | * queue when the buffer I/O is completed, so that we don't block |
2772 | * waiting for the block allocation bitmap read to finish when |
2773 | * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). |
2774 | */ |
2775 | void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, |
2776 | unsigned int nr) |
2777 | { |
2778 | struct ext4_group_desc *gdp; |
2779 | struct ext4_group_info *grp; |
2780 | |
2781 | while (nr-- > 0) { |
2782 | if (!group) |
2783 | group = ext4_get_groups_count(sb); |
2784 | group--; |
2785 | gdp = ext4_get_group_desc(sb, block_group: group, NULL); |
2786 | grp = ext4_get_group_info(sb, group); |
2787 | |
2788 | if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && |
2789 | ext4_free_group_clusters(sb, bg: gdp) > 0) { |
2790 | if (ext4_mb_init_group(sb, group, GFP_NOFS)) |
2791 | break; |
2792 | } |
2793 | } |
2794 | } |
2795 | |
2796 | static noinline_for_stack int |
2797 | ext4_mb_regular_allocator(struct ext4_allocation_context *ac) |
2798 | { |
2799 | ext4_group_t prefetch_grp = 0, ngroups, group, i; |
2800 | enum criteria new_cr, cr = CR_GOAL_LEN_FAST; |
2801 | int err = 0, first_err = 0; |
2802 | unsigned int nr = 0, prefetch_ios = 0; |
2803 | struct ext4_sb_info *sbi; |
2804 | struct super_block *sb; |
2805 | struct ext4_buddy e4b; |
2806 | int lost; |
2807 | |
2808 | sb = ac->ac_sb; |
2809 | sbi = EXT4_SB(sb); |
2810 | ngroups = ext4_get_groups_count(sb); |
2811 | /* non-extent files are limited to low blocks/groups */ |
2812 | if (!(ext4_test_inode_flag(inode: ac->ac_inode, bit: EXT4_INODE_EXTENTS))) |
2813 | ngroups = sbi->s_blockfile_groups; |
2814 | |
2815 | BUG_ON(ac->ac_status == AC_STATUS_FOUND); |
2816 | |
2817 | /* first, try the goal */ |
2818 | err = ext4_mb_find_by_goal(ac, e4b: &e4b); |
2819 | if (err || ac->ac_status == AC_STATUS_FOUND) |
2820 | goto out; |
2821 | |
2822 | if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) |
2823 | goto out; |
2824 | |
2825 | /* |
2826 | * ac->ac_2order is set only if the fe_len is a power of 2 |
2827 | * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED |
2828 | * so that we try exact allocation using buddy. |
2829 | */ |
2830 | i = fls(x: ac->ac_g_ex.fe_len); |
2831 | ac->ac_2order = 0; |
2832 | /* |
2833 | * We search using buddy data only if the order of the request |
2834 | * is greater than equal to the sbi_s_mb_order2_reqs |
2835 | * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req |
2836 | * We also support searching for power-of-two requests only for |
2837 | * requests upto maximum buddy size we have constructed. |
2838 | */ |
2839 | if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { |
2840 | if (is_power_of_2(n: ac->ac_g_ex.fe_len)) |
2841 | ac->ac_2order = array_index_nospec(i - 1, |
2842 | MB_NUM_ORDERS(sb)); |
2843 | } |
2844 | |
2845 | /* if stream allocation is enabled, use global goal */ |
2846 | if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { |
2847 | /* TBD: may be hot point */ |
2848 | spin_lock(lock: &sbi->s_md_lock); |
2849 | ac->ac_g_ex.fe_group = sbi->s_mb_last_group; |
2850 | ac->ac_g_ex.fe_start = sbi->s_mb_last_start; |
2851 | spin_unlock(lock: &sbi->s_md_lock); |
2852 | } |
2853 | |
2854 | /* |
2855 | * Let's just scan groups to find more-less suitable blocks We |
2856 | * start with CR_GOAL_LEN_FAST, unless it is power of 2 |
2857 | * aligned, in which case let's do that faster approach first. |
2858 | */ |
2859 | if (ac->ac_2order) |
2860 | cr = CR_POWER2_ALIGNED; |
2861 | repeat: |
2862 | for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { |
2863 | ac->ac_criteria = cr; |
2864 | /* |
2865 | * searching for the right group start |
2866 | * from the goal value specified |
2867 | */ |
2868 | group = ac->ac_g_ex.fe_group; |
2869 | ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; |
2870 | prefetch_grp = group; |
2871 | nr = 0; |
2872 | |
2873 | for (i = 0, new_cr = cr; i < ngroups; i++, |
2874 | ext4_mb_choose_next_group(ac, new_cr: &new_cr, group: &group, ngroups)) { |
2875 | int ret = 0; |
2876 | |
2877 | cond_resched(); |
2878 | if (new_cr != cr) { |
2879 | cr = new_cr; |
2880 | goto repeat; |
2881 | } |
2882 | |
2883 | /* |
2884 | * Batch reads of the block allocation bitmaps |
2885 | * to get multiple READs in flight; limit |
2886 | * prefetching at inexpensive CR, otherwise mballoc |
2887 | * can spend a lot of time loading imperfect groups |
2888 | */ |
2889 | if ((prefetch_grp == group) && |
2890 | (ext4_mb_cr_expensive(cr) || |
2891 | prefetch_ios < sbi->s_mb_prefetch_limit)) { |
2892 | nr = sbi->s_mb_prefetch; |
2893 | if (ext4_has_feature_flex_bg(sb)) { |
2894 | nr = 1 << sbi->s_log_groups_per_flex; |
2895 | nr -= group & (nr - 1); |
2896 | nr = min(nr, sbi->s_mb_prefetch); |
2897 | } |
2898 | prefetch_grp = ext4_mb_prefetch(sb, group, |
2899 | nr, cnt: &prefetch_ios); |
2900 | } |
2901 | |
2902 | /* This now checks without needing the buddy page */ |
2903 | ret = ext4_mb_good_group_nolock(ac, group, cr); |
2904 | if (ret <= 0) { |
2905 | if (!first_err) |
2906 | first_err = ret; |
2907 | continue; |
2908 | } |
2909 | |
2910 | err = ext4_mb_load_buddy(sb, group, e4b: &e4b); |
2911 | if (err) |
2912 | goto out; |
2913 | |
2914 | ext4_lock_group(sb, group); |
2915 | |
2916 | /* |
2917 | * We need to check again after locking the |
2918 | * block group |
2919 | */ |
2920 | ret = ext4_mb_good_group(ac, group, cr); |
2921 | if (ret == 0) { |
2922 | ext4_unlock_group(sb, group); |
2923 | ext4_mb_unload_buddy(e4b: &e4b); |
2924 | continue; |
2925 | } |
2926 | |
2927 | ac->ac_groups_scanned++; |
2928 | if (cr == CR_POWER2_ALIGNED) |
2929 | ext4_mb_simple_scan_group(ac, e4b: &e4b); |
2930 | else { |
2931 | bool is_stripe_aligned = |
2932 | (sbi->s_stripe >= |
2933 | sbi->s_cluster_ratio) && |
2934 | !(ac->ac_g_ex.fe_len % |
2935 | EXT4_NUM_B2C(sbi, sbi->s_stripe)); |
2936 | |
2937 | if ((cr == CR_GOAL_LEN_FAST || |
2938 | cr == CR_BEST_AVAIL_LEN) && |
2939 | is_stripe_aligned) |
2940 | ext4_mb_scan_aligned(ac, e4b: &e4b); |
2941 | |
2942 | if (ac->ac_status == AC_STATUS_CONTINUE) |
2943 | ext4_mb_complex_scan_group(ac, e4b: &e4b); |
2944 | } |
2945 | |
2946 | ext4_unlock_group(sb, group); |
2947 | ext4_mb_unload_buddy(e4b: &e4b); |
2948 | |
2949 | if (ac->ac_status != AC_STATUS_CONTINUE) |
2950 | break; |
2951 | } |
2952 | /* Processed all groups and haven't found blocks */ |
2953 | if (sbi->s_mb_stats && i == ngroups) |
2954 | atomic64_inc(v: &sbi->s_bal_cX_failed[cr]); |
2955 | |
2956 | if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) |
2957 | /* Reset goal length to original goal length before |
2958 | * falling into CR_GOAL_LEN_SLOW */ |
2959 | ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; |
2960 | } |
2961 | |
2962 | if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && |
2963 | !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { |
2964 | /* |
2965 | * We've been searching too long. Let's try to allocate |
2966 | * the best chunk we've found so far |
2967 | */ |
2968 | ext4_mb_try_best_found(ac, e4b: &e4b); |
2969 | if (ac->ac_status != AC_STATUS_FOUND) { |
2970 | /* |
2971 | * Someone more lucky has already allocated it. |
2972 | * The only thing we can do is just take first |
2973 | * found block(s) |
2974 | */ |
2975 | lost = atomic_inc_return(v: &sbi->s_mb_lost_chunks); |
2976 | mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", |
2977 | ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, |
2978 | ac->ac_b_ex.fe_len, lost); |
2979 | |
2980 | ac->ac_b_ex.fe_group = 0; |
2981 | ac->ac_b_ex.fe_start = 0; |
2982 | ac->ac_b_ex.fe_len = 0; |
2983 | ac->ac_status = AC_STATUS_CONTINUE; |
2984 | ac->ac_flags |= EXT4_MB_HINT_FIRST; |
2985 | cr = CR_ANY_FREE; |
2986 | goto repeat; |
2987 | } |
2988 | } |
2989 | |
2990 | if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) |
2991 | atomic64_inc(v: &sbi->s_bal_cX_hits[ac->ac_criteria]); |
2992 | out: |
2993 | if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) |
2994 | err = first_err; |
2995 | |
2996 | mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", |
2997 | ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, |
2998 | ac->ac_flags, cr, err); |
2999 | |
3000 | if (nr) |
3001 | ext4_mb_prefetch_fini(sb, group: prefetch_grp, nr); |
3002 | |
3003 | return err; |
3004 | } |
3005 | |
3006 | static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) |
3007 | { |
3008 | struct super_block *sb = pde_data(inode: file_inode(f: seq->file)); |
3009 | ext4_group_t group; |
3010 | |
3011 | if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) |
3012 | return NULL; |
3013 | group = *pos + 1; |
3014 | return (void *) ((unsigned long) group); |
3015 | } |
3016 | |
3017 | static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) |
3018 | { |
3019 | struct super_block *sb = pde_data(inode: file_inode(f: seq->file)); |
3020 | ext4_group_t group; |
3021 | |
3022 | ++*pos; |
3023 | if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) |
3024 | return NULL; |
3025 | group = *pos + 1; |
3026 | return (void *) ((unsigned long) group); |
3027 | } |
3028 | |
3029 | static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) |
3030 | { |
3031 | struct super_block *sb = pde_data(inode: file_inode(f: seq->file)); |
3032 | ext4_group_t group = (ext4_group_t) ((unsigned long) v); |
3033 | int i, err; |
3034 | char nbuf[16]; |
3035 | struct ext4_buddy e4b; |
3036 | struct ext4_group_info *grinfo; |
3037 | unsigned char blocksize_bits = min_t(unsigned char, |
3038 | sb->s_blocksize_bits, |
3039 | EXT4_MAX_BLOCK_LOG_SIZE); |
3040 | DEFINE_RAW_FLEX(struct ext4_group_info, sg, bb_counters, |
3041 | EXT4_MAX_BLOCK_LOG_SIZE + 2); |
3042 | |
3043 | group--; |
3044 | if (group == 0) |
3045 | seq_puts(m: seq, s: "#group: free frags first [" |
3046 | " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " |
3047 | " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); |
3048 | |
3049 | i = (blocksize_bits + 2) * sizeof(sg->bb_counters[0]) + |
3050 | sizeof(struct ext4_group_info); |
3051 | |
3052 | grinfo = ext4_get_group_info(sb, group); |
3053 | if (!grinfo) |
3054 | return 0; |
3055 | /* Load the group info in memory only if not already loaded. */ |
3056 | if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { |
3057 | err = ext4_mb_load_buddy(sb, group, e4b: &e4b); |
3058 | if (err) { |
3059 | seq_printf(m: seq, fmt: "#%-5u: %s\n", group, ext4_decode_error(NULL, errno: err, nbuf)); |
3060 | return 0; |
3061 | } |
3062 | ext4_mb_unload_buddy(e4b: &e4b); |
3063 | } |
3064 | |
3065 | /* |
3066 | * We care only about free space counters in the group info and |
3067 | * these are safe to access even after the buddy has been unloaded |
3068 | */ |
3069 | memcpy(sg, grinfo, i); |
3070 | seq_printf(m: seq, fmt: "#%-5u: %-5u %-5u %-5u [", group, sg->bb_free, |
3071 | sg->bb_fragments, sg->bb_first_free); |
3072 | for (i = 0; i <= 13; i++) |
3073 | seq_printf(m: seq, fmt: " %-5u", i <= blocksize_bits + 1 ? |
3074 | sg->bb_counters[i] : 0); |
3075 | seq_puts(m: seq, s: " ]"); |
3076 | if (EXT4_MB_GRP_BBITMAP_CORRUPT(sg)) |
3077 | seq_puts(m: seq, s: " Block bitmap corrupted!"); |
3078 | seq_putc(m: seq, c: '\n'); |
3079 | return 0; |
3080 | } |
3081 | |
3082 | static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) |
3083 | { |
3084 | } |
3085 | |
3086 | const struct seq_operations ext4_mb_seq_groups_ops = { |
3087 | .start = ext4_mb_seq_groups_start, |
3088 | .next = ext4_mb_seq_groups_next, |
3089 | .stop = ext4_mb_seq_groups_stop, |
3090 | .show = ext4_mb_seq_groups_show, |
3091 | }; |
3092 | |
3093 | int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) |
3094 | { |
3095 | struct super_block *sb = seq->private; |
3096 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
3097 | |
3098 | seq_puts(m: seq, s: "mballoc:\n"); |
3099 | if (!sbi->s_mb_stats) { |
3100 | seq_puts(m: seq, s: "\tmb stats collection turned off.\n"); |
3101 | seq_puts( |
3102 | m: seq, |
3103 | s: "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); |
3104 | return 0; |
3105 | } |
3106 | seq_printf(m: seq, fmt: "\treqs: %u\n", atomic_read(v: &sbi->s_bal_reqs)); |
3107 | seq_printf(m: seq, fmt: "\tsuccess: %u\n", atomic_read(v: &sbi->s_bal_success)); |
3108 | |
3109 | seq_printf(m: seq, fmt: "\tgroups_scanned: %u\n", |
3110 | atomic_read(v: &sbi->s_bal_groups_scanned)); |
3111 | |
3112 | /* CR_POWER2_ALIGNED stats */ |
3113 | seq_puts(m: seq, s: "\tcr_p2_aligned_stats:\n"); |
3114 | seq_printf(m: seq, fmt: "\t\thits: %llu\n", |
3115 | atomic64_read(v: &sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); |
3116 | seq_printf( |
3117 | m: seq, fmt: "\t\tgroups_considered: %llu\n", |
3118 | atomic64_read( |
3119 | v: &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); |
3120 | seq_printf(m: seq, fmt: "\t\textents_scanned: %u\n", |
3121 | atomic_read(v: &sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); |
3122 | seq_printf(m: seq, fmt: "\t\tuseless_loops: %llu\n", |
3123 | atomic64_read(v: &sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); |
3124 | seq_printf(m: seq, fmt: "\t\tbad_suggestions: %u\n", |
3125 | atomic_read(v: &sbi->s_bal_p2_aligned_bad_suggestions)); |
3126 | |
3127 | /* CR_GOAL_LEN_FAST stats */ |
3128 | seq_puts(m: seq, s: "\tcr_goal_fast_stats:\n"); |
3129 | seq_printf(m: seq, fmt: "\t\thits: %llu\n", |
3130 | atomic64_read(v: &sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); |
3131 | seq_printf(m: seq, fmt: "\t\tgroups_considered: %llu\n", |
3132 | atomic64_read( |
3133 | v: &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); |
3134 | seq_printf(m: seq, fmt: "\t\textents_scanned: %u\n", |
3135 | atomic_read(v: &sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); |
3136 | seq_printf(m: seq, fmt: "\t\tuseless_loops: %llu\n", |
3137 | atomic64_read(v: &sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); |
3138 | seq_printf(m: seq, fmt: "\t\tbad_suggestions: %u\n", |
3139 | atomic_read(v: &sbi->s_bal_goal_fast_bad_suggestions)); |
3140 | |
3141 | /* CR_BEST_AVAIL_LEN stats */ |
3142 | seq_puts(m: seq, s: "\tcr_best_avail_stats:\n"); |
3143 | seq_printf(m: seq, fmt: "\t\thits: %llu\n", |
3144 | atomic64_read(v: &sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); |
3145 | seq_printf( |
3146 | m: seq, fmt: "\t\tgroups_considered: %llu\n", |
3147 | atomic64_read( |
3148 | v: &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); |
3149 | seq_printf(m: seq, fmt: "\t\textents_scanned: %u\n", |
3150 | atomic_read(v: &sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); |
3151 | seq_printf(m: seq, fmt: "\t\tuseless_loops: %llu\n", |
3152 | atomic64_read(v: &sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); |
3153 | seq_printf(m: seq, fmt: "\t\tbad_suggestions: %u\n", |
3154 | atomic_read(v: &sbi->s_bal_best_avail_bad_suggestions)); |
3155 | |
3156 | /* CR_GOAL_LEN_SLOW stats */ |
3157 | seq_puts(m: seq, s: "\tcr_goal_slow_stats:\n"); |
3158 | seq_printf(m: seq, fmt: "\t\thits: %llu\n", |
3159 | atomic64_read(v: &sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); |
3160 | seq_printf(m: seq, fmt: "\t\tgroups_considered: %llu\n", |
3161 | atomic64_read( |
3162 | v: &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); |
3163 | seq_printf(m: seq, fmt: "\t\textents_scanned: %u\n", |
3164 | atomic_read(v: &sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); |
3165 | seq_printf(m: seq, fmt: "\t\tuseless_loops: %llu\n", |
3166 | atomic64_read(v: &sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); |
3167 | |
3168 | /* CR_ANY_FREE stats */ |
3169 | seq_puts(m: seq, s: "\tcr_any_free_stats:\n"); |
3170 | seq_printf(m: seq, fmt: "\t\thits: %llu\n", |
3171 | atomic64_read(v: &sbi->s_bal_cX_hits[CR_ANY_FREE])); |
3172 | seq_printf( |
3173 | m: seq, fmt: "\t\tgroups_considered: %llu\n", |
3174 | atomic64_read(v: &sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); |
3175 | seq_printf(m: seq, fmt: "\t\textents_scanned: %u\n", |
3176 | atomic_read(v: &sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); |
3177 | seq_printf(m: seq, fmt: "\t\tuseless_loops: %llu\n", |
3178 | atomic64_read(v: &sbi->s_bal_cX_failed[CR_ANY_FREE])); |
3179 | |
3180 | /* Aggregates */ |
3181 | seq_printf(m: seq, fmt: "\textents_scanned: %u\n", |
3182 | atomic_read(v: &sbi->s_bal_ex_scanned)); |
3183 | seq_printf(m: seq, fmt: "\t\tgoal_hits: %u\n", atomic_read(v: &sbi->s_bal_goals)); |
3184 | seq_printf(m: seq, fmt: "\t\tlen_goal_hits: %u\n", |
3185 | atomic_read(v: &sbi->s_bal_len_goals)); |
3186 | seq_printf(m: seq, fmt: "\t\t2^n_hits: %u\n", atomic_read(v: &sbi->s_bal_2orders)); |
3187 | seq_printf(m: seq, fmt: "\t\tbreaks: %u\n", atomic_read(v: &sbi->s_bal_breaks)); |
3188 | seq_printf(m: seq, fmt: "\t\tlost: %u\n", atomic_read(v: &sbi->s_mb_lost_chunks)); |
3189 | seq_printf(m: seq, fmt: "\tbuddies_generated: %u/%u\n", |
3190 | atomic_read(v: &sbi->s_mb_buddies_generated), |
3191 | ext4_get_groups_count(sb)); |
3192 | seq_printf(m: seq, fmt: "\tbuddies_time_used: %llu\n", |
3193 | atomic64_read(v: &sbi->s_mb_generation_time)); |
3194 | seq_printf(m: seq, fmt: "\tpreallocated: %u\n", |
3195 | atomic_read(v: &sbi->s_mb_preallocated)); |
3196 | seq_printf(m: seq, fmt: "\tdiscarded: %u\n", atomic_read(v: &sbi->s_mb_discarded)); |
3197 | return 0; |
3198 | } |
3199 | |
3200 | static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) |
3201 | { |
3202 | struct super_block *sb = pde_data(inode: file_inode(f: seq->file)); |
3203 | unsigned long position; |
3204 | |
3205 | if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) |
3206 | return NULL; |
3207 | position = *pos + 1; |
3208 | return (void *) ((unsigned long) position); |
3209 | } |
3210 | |
3211 | static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) |
3212 | { |
3213 | struct super_block *sb = pde_data(inode: file_inode(f: seq->file)); |
3214 | unsigned long position; |
3215 | |
3216 | ++*pos; |
3217 | if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) |
3218 | return NULL; |
3219 | position = *pos + 1; |
3220 | return (void *) ((unsigned long) position); |
3221 | } |
3222 | |
3223 | static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) |
3224 | { |
3225 | struct super_block *sb = pde_data(inode: file_inode(f: seq->file)); |
3226 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
3227 | unsigned long position = ((unsigned long) v); |
3228 | struct ext4_group_info *grp; |
3229 | unsigned int count; |
3230 | |
3231 | position--; |
3232 | if (position >= MB_NUM_ORDERS(sb)) { |
3233 | position -= MB_NUM_ORDERS(sb); |
3234 | if (position == 0) |
3235 | seq_puts(m: seq, s: "avg_fragment_size_lists:\n"); |
3236 | |
3237 | count = 0; |
3238 | read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); |
3239 | list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], |
3240 | bb_avg_fragment_size_node) |
3241 | count++; |
3242 | read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); |
3243 | seq_printf(m: seq, fmt: "\tlist_order_%u_groups: %u\n", |
3244 | (unsigned int)position, count); |
3245 | return 0; |
3246 | } |
3247 | |
3248 | if (position == 0) { |
3249 | seq_printf(m: seq, fmt: "optimize_scan: %d\n", |
3250 | test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); |
3251 | seq_puts(m: seq, s: "max_free_order_lists:\n"); |
3252 | } |
3253 | count = 0; |
3254 | read_lock(&sbi->s_mb_largest_free_orders_locks[position]); |
3255 | list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], |
3256 | bb_largest_free_order_node) |
3257 | count++; |
3258 | read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); |
3259 | seq_printf(m: seq, fmt: "\tlist_order_%u_groups: %u\n", |
3260 | (unsigned int)position, count); |
3261 | |
3262 | return 0; |
3263 | } |
3264 | |
3265 | static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) |
3266 | { |
3267 | } |
3268 | |
3269 | const struct seq_operations ext4_mb_seq_structs_summary_ops = { |
3270 | .start = ext4_mb_seq_structs_summary_start, |
3271 | .next = ext4_mb_seq_structs_summary_next, |
3272 | .stop = ext4_mb_seq_structs_summary_stop, |
3273 | .show = ext4_mb_seq_structs_summary_show, |
3274 | }; |
3275 | |
3276 | static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) |
3277 | { |
3278 | int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; |
3279 | struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; |
3280 | |
3281 | BUG_ON(!cachep); |
3282 | return cachep; |
3283 | } |
3284 | |
3285 | /* |
3286 | * Allocate the top-level s_group_info array for the specified number |
3287 | * of groups |
3288 | */ |
3289 | int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) |
3290 | { |
3291 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
3292 | unsigned size; |
3293 | struct ext4_group_info ***old_groupinfo, ***new_groupinfo; |
3294 | |
3295 | size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> |
3296 | EXT4_DESC_PER_BLOCK_BITS(sb); |
3297 | if (size <= sbi->s_group_info_size) |
3298 | return 0; |
3299 | |
3300 | size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); |
3301 | new_groupinfo = kvzalloc(size, GFP_KERNEL); |
3302 | if (!new_groupinfo) { |
3303 | ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); |
3304 | return -ENOMEM; |
3305 | } |
3306 | rcu_read_lock(); |
3307 | old_groupinfo = rcu_dereference(sbi->s_group_info); |
3308 | if (old_groupinfo) |
3309 | memcpy(new_groupinfo, old_groupinfo, |
3310 | sbi->s_group_info_size * sizeof(*sbi->s_group_info)); |
3311 | rcu_read_unlock(); |
3312 | rcu_assign_pointer(sbi->s_group_info, new_groupinfo); |
3313 | sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); |
3314 | if (old_groupinfo) |
3315 | ext4_kvfree_array_rcu(to_free: old_groupinfo); |
3316 | ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", |
3317 | sbi->s_group_info_size); |
3318 | return 0; |
3319 | } |
3320 | |
3321 | /* Create and initialize ext4_group_info data for the given group. */ |
3322 | int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, |
3323 | struct ext4_group_desc *desc) |
3324 | { |
3325 | int i; |
3326 | int metalen = 0; |
3327 | int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); |
3328 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
3329 | struct ext4_group_info **meta_group_info; |
3330 | struct kmem_cache *cachep = get_groupinfo_cache(blocksize_bits: sb->s_blocksize_bits); |
3331 | |
3332 | /* |
3333 | * First check if this group is the first of a reserved block. |
3334 | * If it's true, we have to allocate a new table of pointers |
3335 | * to ext4_group_info structures |
3336 | */ |
3337 | if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { |
3338 | metalen = sizeof(*meta_group_info) << |
3339 | EXT4_DESC_PER_BLOCK_BITS(sb); |
3340 | meta_group_info = kmalloc(metalen, GFP_NOFS); |
3341 | if (meta_group_info == NULL) { |
3342 | ext4_msg(sb, KERN_ERR, "can't allocate mem " |
3343 | "for a buddy group"); |
3344 | return -ENOMEM; |
3345 | } |
3346 | rcu_read_lock(); |
3347 | rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; |
3348 | rcu_read_unlock(); |
3349 | } |
3350 | |
3351 | meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); |
3352 | i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); |
3353 | |
3354 | meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); |
3355 | if (meta_group_info[i] == NULL) { |
3356 | ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); |
3357 | goto exit_group_info; |
3358 | } |
3359 | set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, |
3360 | addr: &(meta_group_info[i]->bb_state)); |
3361 | |
3362 | /* |
3363 | * initialize bb_free to be able to skip |
3364 | * empty groups without initialization |
3365 | */ |
3366 | if (ext4_has_group_desc_csum(sb) && |
3367 | (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { |
3368 | meta_group_info[i]->bb_free = |
3369 | ext4_free_clusters_after_init(sb, block_group: group, gdp: desc); |
3370 | } else { |
3371 | meta_group_info[i]->bb_free = |
3372 | ext4_free_group_clusters(sb, bg: desc); |
3373 | } |
3374 | |
3375 | INIT_LIST_HEAD(list: &meta_group_info[i]->bb_prealloc_list); |
3376 | init_rwsem(&meta_group_info[i]->alloc_sem); |
3377 | meta_group_info[i]->bb_free_root = RB_ROOT; |
3378 | INIT_LIST_HEAD(list: &meta_group_info[i]->bb_largest_free_order_node); |
3379 | INIT_LIST_HEAD(list: &meta_group_info[i]->bb_avg_fragment_size_node); |
3380 | meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ |
3381 | meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ |
3382 | meta_group_info[i]->bb_group = group; |
3383 | |
3384 | mb_group_bb_bitmap_alloc(sb, grp: meta_group_info[i], group); |
3385 | return 0; |
3386 | |
3387 | exit_group_info: |
3388 | /* If a meta_group_info table has been allocated, release it now */ |
3389 | if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { |
3390 | struct ext4_group_info ***group_info; |
3391 | |
3392 | rcu_read_lock(); |
3393 | group_info = rcu_dereference(sbi->s_group_info); |
3394 | kfree(objp: group_info[idx]); |
3395 | group_info[idx] = NULL; |
3396 | rcu_read_unlock(); |
3397 | } |
3398 | return -ENOMEM; |
3399 | } /* ext4_mb_add_groupinfo */ |
3400 | |
3401 | static int ext4_mb_init_backend(struct super_block *sb) |
3402 | { |
3403 | ext4_group_t ngroups = ext4_get_groups_count(sb); |
3404 | ext4_group_t i; |
3405 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
3406 | int err; |
3407 | struct ext4_group_desc *desc; |
3408 | struct ext4_group_info ***group_info; |
3409 | struct kmem_cache *cachep; |
3410 | |
3411 | err = ext4_mb_alloc_groupinfo(sb, ngroups); |
3412 | if (err) |
3413 | return err; |
3414 | |
3415 | sbi->s_buddy_cache = new_inode(sb); |
3416 | if (sbi->s_buddy_cache == NULL) { |
3417 | ext4_msg(sb, KERN_ERR, "can't get new inode"); |
3418 | goto err_freesgi; |
3419 | } |
3420 | /* To avoid potentially colliding with an valid on-disk inode number, |
3421 | * use EXT4_BAD_INO for the buddy cache inode number. This inode is |
3422 | * not in the inode hash, so it should never be found by iget(), but |
3423 | * this will avoid confusion if it ever shows up during debugging. */ |
3424 | sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; |
3425 | EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; |
3426 | for (i = 0; i < ngroups; i++) { |
3427 | cond_resched(); |
3428 | desc = ext4_get_group_desc(sb, block_group: i, NULL); |
3429 | if (desc == NULL) { |
3430 | ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); |
3431 | goto err_freebuddy; |
3432 | } |
3433 | if (ext4_mb_add_groupinfo(sb, group: i, desc) != 0) |
3434 | goto err_freebuddy; |
3435 | } |
3436 | |
3437 | if (ext4_has_feature_flex_bg(sb)) { |
3438 | /* a single flex group is supposed to be read by a single IO. |
3439 | * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is |
3440 | * unsigned integer, so the maximum shift is 32. |
3441 | */ |
3442 | if (sbi->s_es->s_log_groups_per_flex >= 32) { |
3443 | ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); |
3444 | goto err_freebuddy; |
3445 | } |
3446 | sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, |
3447 | BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); |
3448 | sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ |
3449 | } else { |
3450 | sbi->s_mb_prefetch = 32; |
3451 | } |
3452 | if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) |
3453 | sbi->s_mb_prefetch = ext4_get_groups_count(sb); |
3454 | /* |
3455 | * now many real IOs to prefetch within a single allocation at |
3456 | * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related |
3457 | * optimization we shouldn't try to load too many groups, at some point |
3458 | * we should start to use what we've got in memory. |
3459 | * with an average random access time 5ms, it'd take a second to get |
3460 | * 200 groups (* N with flex_bg), so let's make this limit 4 |
3461 | */ |
3462 | sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; |
3463 | if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) |
3464 | sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); |
3465 | |
3466 | return 0; |
3467 | |
3468 | err_freebuddy: |
3469 | cachep = get_groupinfo_cache(blocksize_bits: sb->s_blocksize_bits); |
3470 | while (i-- > 0) { |
3471 | struct ext4_group_info *grp = ext4_get_group_info(sb, group: i); |
3472 | |
3473 | if (grp) |
3474 | kmem_cache_free(s: cachep, objp: grp); |
3475 | } |
3476 | i = sbi->s_group_info_size; |
3477 | rcu_read_lock(); |
3478 | group_info = rcu_dereference(sbi->s_group_info); |
3479 | while (i-- > 0) |
3480 | kfree(objp: group_info[i]); |
3481 | rcu_read_unlock(); |
3482 | iput(sbi->s_buddy_cache); |
3483 | err_freesgi: |
3484 | rcu_read_lock(); |
3485 | kvfree(rcu_dereference(sbi->s_group_info)); |
3486 | rcu_read_unlock(); |
3487 | return -ENOMEM; |
3488 | } |
3489 | |
3490 | static void ext4_groupinfo_destroy_slabs(void) |
3491 | { |
3492 | int i; |
3493 | |
3494 | for (i = 0; i < NR_GRPINFO_CACHES; i++) { |
3495 | kmem_cache_destroy(s: ext4_groupinfo_caches[i]); |
3496 | ext4_groupinfo_caches[i] = NULL; |
3497 | } |
3498 | } |
3499 | |
3500 | static int ext4_groupinfo_create_slab(size_t size) |
3501 | { |
3502 | static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); |
3503 | int slab_size; |
3504 | int blocksize_bits = order_base_2(size); |
3505 | int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; |
3506 | struct kmem_cache *cachep; |
3507 | |
3508 | if (cache_index >= NR_GRPINFO_CACHES) |
3509 | return -EINVAL; |
3510 | |
3511 | if (unlikely(cache_index < 0)) |
3512 | cache_index = 0; |
3513 | |
3514 | mutex_lock(&ext4_grpinfo_slab_create_mutex); |
3515 | if (ext4_groupinfo_caches[cache_index]) { |
3516 | mutex_unlock(lock: &ext4_grpinfo_slab_create_mutex); |
3517 | return 0; /* Already created */ |
3518 | } |
3519 | |
3520 | slab_size = offsetof(struct ext4_group_info, |
3521 | bb_counters[blocksize_bits + 2]); |
3522 | |
3523 | cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], |
3524 | slab_size, 0, SLAB_RECLAIM_ACCOUNT, |
3525 | NULL); |
3526 | |
3527 | ext4_groupinfo_caches[cache_index] = cachep; |
3528 | |
3529 | mutex_unlock(lock: &ext4_grpinfo_slab_create_mutex); |
3530 | if (!cachep) { |
3531 | printk(KERN_EMERG |
3532 | "EXT4-fs: no memory for groupinfo slab cache\n"); |
3533 | return -ENOMEM; |
3534 | } |
3535 | |
3536 | return 0; |
3537 | } |
3538 | |
3539 | static void ext4_discard_work(struct work_struct *work) |
3540 | { |
3541 | struct ext4_sb_info *sbi = container_of(work, |
3542 | struct ext4_sb_info, s_discard_work); |
3543 | struct super_block *sb = sbi->s_sb; |
3544 | struct ext4_free_data *fd, *nfd; |
3545 | struct ext4_buddy e4b; |
3546 | LIST_HEAD(discard_list); |
3547 | ext4_group_t grp, load_grp; |
3548 | int err = 0; |
3549 | |
3550 | spin_lock(lock: &sbi->s_md_lock); |
3551 | list_splice_init(list: &sbi->s_discard_list, head: &discard_list); |
3552 | spin_unlock(lock: &sbi->s_md_lock); |
3553 | |
3554 | load_grp = UINT_MAX; |
3555 | list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { |
3556 | /* |
3557 | * If filesystem is umounting or no memory or suffering |
3558 | * from no space, give up the discard |
3559 | */ |
3560 | if ((sb->s_flags & SB_ACTIVE) && !err && |
3561 | !atomic_read(v: &sbi->s_retry_alloc_pending)) { |
3562 | grp = fd->efd_group; |
3563 | if (grp != load_grp) { |
3564 | if (load_grp != UINT_MAX) |
3565 | ext4_mb_unload_buddy(e4b: &e4b); |
3566 | |
3567 | err = ext4_mb_load_buddy(sb, group: grp, e4b: &e4b); |
3568 | if (err) { |
3569 | kmem_cache_free(s: ext4_free_data_cachep, objp: fd); |
3570 | load_grp = UINT_MAX; |
3571 | continue; |
3572 | } else { |
3573 | load_grp = grp; |
3574 | } |
3575 | } |
3576 | |
3577 | ext4_lock_group(sb, group: grp); |
3578 | ext4_try_to_trim_range(sb, e4b: &e4b, start: fd->efd_start_cluster, |
3579 | max: fd->efd_start_cluster + fd->efd_count - 1, minblocks: 1); |
3580 | ext4_unlock_group(sb, group: grp); |
3581 | } |
3582 | kmem_cache_free(s: ext4_free_data_cachep, objp: fd); |
3583 | } |
3584 | |
3585 | if (load_grp != UINT_MAX) |
3586 | ext4_mb_unload_buddy(e4b: &e4b); |
3587 | } |
3588 | |
3589 | int ext4_mb_init(struct super_block *sb) |
3590 | { |
3591 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
3592 | unsigned i, j; |
3593 | unsigned offset, offset_incr; |
3594 | unsigned max; |
3595 | int ret; |
3596 | |
3597 | i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); |
3598 | |
3599 | sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); |
3600 | if (sbi->s_mb_offsets == NULL) { |
3601 | ret = -ENOMEM; |
3602 | goto out; |
3603 | } |
3604 | |
3605 | i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); |
3606 | sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); |
3607 | if (sbi->s_mb_maxs == NULL) { |
3608 | ret = -ENOMEM; |
3609 | goto out; |
3610 | } |
3611 | |
3612 | ret = ext4_groupinfo_create_slab(size: sb->s_blocksize); |
3613 | if (ret < 0) |
3614 | goto out; |
3615 | |
3616 | /* order 0 is regular bitmap */ |
3617 | sbi->s_mb_maxs[0] = sb->s_blocksize << 3; |
3618 | sbi->s_mb_offsets[0] = 0; |
3619 | |
3620 | i = 1; |
3621 | offset = 0; |
3622 | offset_incr = 1 << (sb->s_blocksize_bits - 1); |
3623 | max = sb->s_blocksize << 2; |
3624 | do { |
3625 | sbi->s_mb_offsets[i] = offset; |
3626 | sbi->s_mb_maxs[i] = max; |
3627 | offset += offset_incr; |
3628 | offset_incr = offset_incr >> 1; |
3629 | max = max >> 1; |
3630 | i++; |
3631 | } while (i < MB_NUM_ORDERS(sb)); |
3632 | |
3633 | sbi->s_mb_avg_fragment_size = |
3634 | kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), |
3635 | GFP_KERNEL); |
3636 | if (!sbi->s_mb_avg_fragment_size) { |
3637 | ret = -ENOMEM; |
3638 | goto out; |
3639 | } |
3640 | sbi->s_mb_avg_fragment_size_locks = |
3641 | kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), |
3642 | GFP_KERNEL); |
3643 | if (!sbi->s_mb_avg_fragment_size_locks) { |
3644 | ret = -ENOMEM; |
3645 | goto out; |
3646 | } |
3647 | for (i = 0; i < MB_NUM_ORDERS(sb); i++) { |
3648 | INIT_LIST_HEAD(list: &sbi->s_mb_avg_fragment_size[i]); |
3649 | rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); |
3650 | } |
3651 | sbi->s_mb_largest_free_orders = |
3652 | kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), |
3653 | GFP_KERNEL); |
3654 | if (!sbi->s_mb_largest_free_orders) { |
3655 | ret = -ENOMEM; |
3656 | goto out; |
3657 | } |
3658 | sbi->s_mb_largest_free_orders_locks = |
3659 | kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), |
3660 | GFP_KERNEL); |
3661 | if (!sbi->s_mb_largest_free_orders_locks) { |
3662 | ret = -ENOMEM; |
3663 | goto out; |
3664 | } |
3665 | for (i = 0; i < MB_NUM_ORDERS(sb); i++) { |
3666 | INIT_LIST_HEAD(list: &sbi->s_mb_largest_free_orders[i]); |
3667 | rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); |
3668 | } |
3669 | |
3670 | spin_lock_init(&sbi->s_md_lock); |
3671 | sbi->s_mb_free_pending = 0; |
3672 | INIT_LIST_HEAD(list: &sbi->s_freed_data_list[0]); |
3673 | INIT_LIST_HEAD(list: &sbi->s_freed_data_list[1]); |
3674 | INIT_LIST_HEAD(list: &sbi->s_discard_list); |
3675 | INIT_WORK(&sbi->s_discard_work, ext4_discard_work); |
3676 | atomic_set(v: &sbi->s_retry_alloc_pending, i: 0); |
3677 | |
3678 | sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; |
3679 | sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; |
3680 | sbi->s_mb_stats = MB_DEFAULT_STATS; |
3681 | sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; |
3682 | sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; |
3683 | sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; |
3684 | |
3685 | /* |
3686 | * The default group preallocation is 512, which for 4k block |
3687 | * sizes translates to 2 megabytes. However for bigalloc file |
3688 | * systems, this is probably too big (i.e, if the cluster size |
3689 | * is 1 megabyte, then group preallocation size becomes half a |
3690 | * gigabyte!). As a default, we will keep a two megabyte |
3691 | * group pralloc size for cluster sizes up to 64k, and after |
3692 | * that, we will force a minimum group preallocation size of |
3693 | * 32 clusters. This translates to 8 megs when the cluster |
3694 | * size is 256k, and 32 megs when the cluster size is 1 meg, |
3695 | * which seems reasonable as a default. |
3696 | */ |
3697 | sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> |
3698 | sbi->s_cluster_bits, 32); |
3699 | /* |
3700 | * If there is a s_stripe > 1, then we set the s_mb_group_prealloc |
3701 | * to the lowest multiple of s_stripe which is bigger than |
3702 | * the s_mb_group_prealloc as determined above. We want |
3703 | * the preallocation size to be an exact multiple of the |
3704 | * RAID stripe size so that preallocations don't fragment |
3705 | * the stripes. |
3706 | */ |
3707 | if (sbi->s_stripe > 1) { |
3708 | sbi->s_mb_group_prealloc = roundup( |
3709 | sbi->s_mb_group_prealloc, EXT4_NUM_B2C(sbi, sbi->s_stripe)); |
3710 | } |
3711 | |
3712 | sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); |
3713 | if (sbi->s_locality_groups == NULL) { |
3714 | ret = -ENOMEM; |
3715 | goto out; |
3716 | } |
3717 | for_each_possible_cpu(i) { |
3718 | struct ext4_locality_group *lg; |
3719 | lg = per_cpu_ptr(sbi->s_locality_groups, i); |
3720 | mutex_init(&lg->lg_mutex); |
3721 | for (j = 0; j < PREALLOC_TB_SIZE; j++) |
3722 | INIT_LIST_HEAD(list: &lg->lg_prealloc_list[j]); |
3723 | spin_lock_init(&lg->lg_prealloc_lock); |
3724 | } |
3725 | |
3726 | if (bdev_nonrot(bdev: sb->s_bdev)) |
3727 | sbi->s_mb_max_linear_groups = 0; |
3728 | else |
3729 | sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; |
3730 | /* init file for buddy data */ |
3731 | ret = ext4_mb_init_backend(sb); |
3732 | if (ret != 0) |
3733 | goto out_free_locality_groups; |
3734 | |
3735 | return 0; |
3736 | |
3737 | out_free_locality_groups: |
3738 | free_percpu(pdata: sbi->s_locality_groups); |
3739 | sbi->s_locality_groups = NULL; |
3740 | out: |
3741 | kfree(objp: sbi->s_mb_avg_fragment_size); |
3742 | kfree(objp: sbi->s_mb_avg_fragment_size_locks); |
3743 | kfree(objp: sbi->s_mb_largest_free_orders); |
3744 | kfree(objp: sbi->s_mb_largest_free_orders_locks); |
3745 | kfree(objp: sbi->s_mb_offsets); |
3746 | sbi->s_mb_offsets = NULL; |
3747 | kfree(objp: sbi->s_mb_maxs); |
3748 | sbi->s_mb_maxs = NULL; |
3749 | return ret; |
3750 | } |
3751 | |
3752 | /* need to called with the ext4 group lock held */ |
3753 | static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) |
3754 | { |
3755 | struct ext4_prealloc_space *pa; |
3756 | struct list_head *cur, *tmp; |
3757 | int count = 0; |
3758 | |
3759 | list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { |
3760 | pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); |
3761 | list_del(entry: &pa->pa_group_list); |
3762 | count++; |
3763 | kmem_cache_free(s: ext4_pspace_cachep, objp: pa); |
3764 | } |
3765 | return count; |
3766 | } |
3767 | |
3768 | void ext4_mb_release(struct super_block *sb) |
3769 | { |
3770 | ext4_group_t ngroups = ext4_get_groups_count(sb); |
3771 | ext4_group_t i; |
3772 | int num_meta_group_infos; |
3773 | struct ext4_group_info *grinfo, ***group_info; |
3774 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
3775 | struct kmem_cache *cachep = get_groupinfo_cache(blocksize_bits: sb->s_blocksize_bits); |
3776 | int count; |
3777 | |
3778 | if (test_opt(sb, DISCARD)) { |
3779 | /* |
3780 | * wait the discard work to drain all of ext4_free_data |
3781 | */ |
3782 | flush_work(work: &sbi->s_discard_work); |
3783 | WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); |
3784 | } |
3785 | |
3786 | if (sbi->s_group_info) { |
3787 | for (i = 0; i < ngroups; i++) { |
3788 | cond_resched(); |
3789 | grinfo = ext4_get_group_info(sb, group: i); |
3790 | if (!grinfo) |
3791 | continue; |
3792 | mb_group_bb_bitmap_free(grp: grinfo); |
3793 | ext4_lock_group(sb, group: i); |
3794 | count = ext4_mb_cleanup_pa(grp: grinfo); |
3795 | if (count) |
3796 | mb_debug(sb, "mballoc: %d PAs left\n", |
3797 | count); |
3798 | ext4_unlock_group(sb, group: i); |
3799 | kmem_cache_free(s: cachep, objp: grinfo); |
3800 | } |
3801 | num_meta_group_infos = (ngroups + |
3802 | EXT4_DESC_PER_BLOCK(sb) - 1) >> |
3803 | EXT4_DESC_PER_BLOCK_BITS(sb); |
3804 | rcu_read_lock(); |
3805 | group_info = rcu_dereference(sbi->s_group_info); |
3806 | for (i = 0; i < num_meta_group_infos; i++) |
3807 | kfree(objp: group_info[i]); |
3808 | kvfree(addr: group_info); |
3809 | rcu_read_unlock(); |
3810 | } |
3811 | kfree(objp: sbi->s_mb_avg_fragment_size); |
3812 | kfree(objp: sbi->s_mb_avg_fragment_size_locks); |
3813 | kfree(objp: sbi->s_mb_largest_free_orders); |
3814 | kfree(objp: sbi->s_mb_largest_free_orders_locks); |
3815 | kfree(objp: sbi->s_mb_offsets); |
3816 | kfree(objp: sbi->s_mb_maxs); |
3817 | iput(sbi->s_buddy_cache); |
3818 | if (sbi->s_mb_stats) { |
3819 | ext4_msg(sb, KERN_INFO, |
3820 | "mballoc: %u blocks %u reqs (%u success)", |
3821 | atomic_read(&sbi->s_bal_allocated), |
3822 | atomic_read(&sbi->s_bal_reqs), |
3823 | atomic_read(&sbi->s_bal_success)); |
3824 | ext4_msg(sb, KERN_INFO, |
3825 | "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " |
3826 | "%u 2^N hits, %u breaks, %u lost", |
3827 | atomic_read(&sbi->s_bal_ex_scanned), |
3828 | atomic_read(&sbi->s_bal_groups_scanned), |
3829 | atomic_read(&sbi->s_bal_goals), |
3830 | atomic_read(&sbi->s_bal_2orders), |
3831 | atomic_read(&sbi->s_bal_breaks), |
3832 | atomic_read(&sbi->s_mb_lost_chunks)); |
3833 | ext4_msg(sb, KERN_INFO, |
3834 | "mballoc: %u generated and it took %llu", |
3835 | atomic_read(&sbi->s_mb_buddies_generated), |
3836 | atomic64_read(&sbi->s_mb_generation_time)); |
3837 | ext4_msg(sb, KERN_INFO, |
3838 | "mballoc: %u preallocated, %u discarded", |
3839 | atomic_read(&sbi->s_mb_preallocated), |
3840 | atomic_read(&sbi->s_mb_discarded)); |
3841 | } |
3842 | |
3843 | free_percpu(pdata: sbi->s_locality_groups); |
3844 | } |
3845 | |
3846 | static inline int ext4_issue_discard(struct super_block *sb, |
3847 | ext4_group_t block_group, ext4_grpblk_t cluster, int count) |
3848 | { |
3849 | ext4_fsblk_t discard_block; |
3850 | |
3851 | discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + |
3852 | ext4_group_first_block_no(sb, group_no: block_group)); |
3853 | count = EXT4_C2B(EXT4_SB(sb), count); |
3854 | trace_ext4_discard_blocks(sb, |
3855 | blk: (unsigned long long) discard_block, count); |
3856 | |
3857 | return sb_issue_discard(sb, block: discard_block, nr_blocks: count, GFP_NOFS, flags: 0); |
3858 | } |
3859 | |
3860 | static void ext4_free_data_in_buddy(struct super_block *sb, |
3861 | struct ext4_free_data *entry) |
3862 | { |
3863 | struct ext4_buddy e4b; |
3864 | struct ext4_group_info *db; |
3865 | int err, count = 0; |
3866 | |
3867 | mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", |
3868 | entry->efd_count, entry->efd_group, entry); |
3869 | |
3870 | err = ext4_mb_load_buddy(sb, group: entry->efd_group, e4b: &e4b); |
3871 | /* we expect to find existing buddy because it's pinned */ |
3872 | BUG_ON(err != 0); |
3873 | |
3874 | spin_lock(lock: &EXT4_SB(sb)->s_md_lock); |
3875 | EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; |
3876 | spin_unlock(lock: &EXT4_SB(sb)->s_md_lock); |
3877 | |
3878 | db = e4b.bd_info; |
3879 | /* there are blocks to put in buddy to make them really free */ |
3880 | count += entry->efd_count; |
3881 | ext4_lock_group(sb, group: entry->efd_group); |
3882 | /* Take it out of per group rb tree */ |
3883 | rb_erase(&entry->efd_node, &(db->bb_free_root)); |
3884 | mb_free_blocks(NULL, e4b: &e4b, first: entry->efd_start_cluster, count: entry->efd_count); |
3885 | |
3886 | /* |
3887 | * Clear the trimmed flag for the group so that the next |
3888 | * ext4_trim_fs can trim it. |
3889 | */ |
3890 | EXT4_MB_GRP_CLEAR_TRIMMED(db); |
3891 | |
3892 | if (!db->bb_free_root.rb_node) { |
3893 | /* No more items in the per group rb tree |
3894 | * balance refcounts from ext4_mb_free_metadata() |
3895 | */ |
3896 | folio_put(folio: e4b.bd_buddy_folio); |
3897 | folio_put(folio: e4b.bd_bitmap_folio); |
3898 | } |
3899 | ext4_unlock_group(sb, group: entry->efd_group); |
3900 | ext4_mb_unload_buddy(e4b: &e4b); |
3901 | |
3902 | mb_debug(sb, "freed %d blocks in 1 structures\n", count); |
3903 | } |
3904 | |
3905 | /* |
3906 | * This function is called by the jbd2 layer once the commit has finished, |
3907 | * so we know we can free the blocks that were released with that commit. |
3908 | */ |
3909 | void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) |
3910 | { |
3911 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
3912 | struct ext4_free_data *entry, *tmp; |
3913 | LIST_HEAD(freed_data_list); |
3914 | struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1]; |
3915 | bool wake; |
3916 | |
3917 | list_replace_init(old: s_freed_head, new: &freed_data_list); |
3918 | |
3919 | list_for_each_entry(entry, &freed_data_list, efd_list) |
3920 | ext4_free_data_in_buddy(sb, entry); |
3921 | |
3922 | if (test_opt(sb, DISCARD)) { |
3923 | spin_lock(lock: &sbi->s_md_lock); |
3924 | wake = list_empty(head: &sbi->s_discard_list); |
3925 | list_splice_tail(list: &freed_data_list, head: &sbi->s_discard_list); |
3926 | spin_unlock(lock: &sbi->s_md_lock); |
3927 | if (wake) |
3928 | queue_work(wq: system_unbound_wq, work: &sbi->s_discard_work); |
3929 | } else { |
3930 | list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) |
3931 | kmem_cache_free(s: ext4_free_data_cachep, objp: entry); |
3932 | } |
3933 | } |
3934 | |
3935 | int __init ext4_init_mballoc(void) |
3936 | { |
3937 | ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, |
3938 | SLAB_RECLAIM_ACCOUNT); |
3939 | if (ext4_pspace_cachep == NULL) |
3940 | goto out; |
3941 | |
3942 | ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, |
3943 | SLAB_RECLAIM_ACCOUNT); |
3944 | if (ext4_ac_cachep == NULL) |
3945 | goto out_pa_free; |
3946 | |
3947 | ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, |
3948 | SLAB_RECLAIM_ACCOUNT); |
3949 | if (ext4_free_data_cachep == NULL) |
3950 | goto out_ac_free; |
3951 | |
3952 | return 0; |
3953 | |
3954 | out_ac_free: |
3955 | kmem_cache_destroy(s: ext4_ac_cachep); |
3956 | out_pa_free: |
3957 | kmem_cache_destroy(s: ext4_pspace_cachep); |
3958 | out: |
3959 | return -ENOMEM; |
3960 | } |
3961 | |
3962 | void ext4_exit_mballoc(void) |
3963 | { |
3964 | /* |
3965 | * Wait for completion of call_rcu()'s on ext4_pspace_cachep |
3966 | * before destroying the slab cache. |
3967 | */ |
3968 | rcu_barrier(); |
3969 | kmem_cache_destroy(s: ext4_pspace_cachep); |
3970 | kmem_cache_destroy(s: ext4_ac_cachep); |
3971 | kmem_cache_destroy(s: ext4_free_data_cachep); |
3972 | ext4_groupinfo_destroy_slabs(); |
3973 | } |
3974 | |
3975 | #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001 |
3976 | #define EXT4_MB_SYNC_UPDATE 0x0002 |
3977 | static int |
3978 | ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state, |
3979 | ext4_group_t group, ext4_grpblk_t blkoff, |
3980 | ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed) |
3981 | { |
3982 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
3983 | struct buffer_head *bitmap_bh = NULL; |
3984 | struct ext4_group_desc *gdp; |
3985 | struct buffer_head *gdp_bh; |
3986 | int err; |
3987 | unsigned int i, already, changed = len; |
3988 | |
3989 | KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context, |
3990 | handle, sb, state, group, blkoff, len, |
3991 | flags, ret_changed); |
3992 | |
3993 | if (ret_changed) |
3994 | *ret_changed = 0; |
3995 | bitmap_bh = ext4_read_block_bitmap(sb, block_group: group); |
3996 | if (IS_ERR(ptr: bitmap_bh)) |
3997 | return PTR_ERR(ptr: bitmap_bh); |
3998 | |
3999 | if (handle) { |
4000 | BUFFER_TRACE(bitmap_bh, "getting write access"); |
4001 | err = ext4_journal_get_write_access(handle, sb, bitmap_bh, |
4002 | EXT4_JTR_NONE); |
4003 | if (err) |
4004 | goto out_err; |
4005 | } |
4006 | |
4007 | err = -EIO; |
4008 | gdp = ext4_get_group_desc(sb, block_group: group, bh: &gdp_bh); |
4009 | if (!gdp) |
4010 | goto out_err; |
4011 | |
4012 | if (handle) { |
4013 | BUFFER_TRACE(gdp_bh, "get_write_access"); |
4014 | err = ext4_journal_get_write_access(handle, sb, gdp_bh, |
4015 | EXT4_JTR_NONE); |
4016 | if (err) |
4017 | goto out_err; |
4018 | } |
4019 | |
4020 | ext4_lock_group(sb, group); |
4021 | if (ext4_has_group_desc_csum(sb) && |
4022 | (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { |
4023 | gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); |
4024 | ext4_free_group_clusters_set(sb, bg: gdp, |
4025 | count: ext4_free_clusters_after_init(sb, block_group: group, gdp)); |
4026 | } |
4027 | |
4028 | if (flags & EXT4_MB_BITMAP_MARKED_CHECK) { |
4029 | already = 0; |
4030 | for (i = 0; i < len; i++) |
4031 | if (mb_test_bit(bit: blkoff + i, addr: bitmap_bh->b_data) == |
4032 | state) |
4033 | already++; |
4034 | changed = len - already; |
4035 | } |
4036 | |
4037 | if (state) { |
4038 | mb_set_bits(bm: bitmap_bh->b_data, cur: blkoff, len); |
4039 | ext4_free_group_clusters_set(sb, bg: gdp, |
4040 | count: ext4_free_group_clusters(sb, bg: gdp) - changed); |
4041 | } else { |
4042 | mb_clear_bits(bm: bitmap_bh->b_data, cur: blkoff, len); |
4043 | ext4_free_group_clusters_set(sb, bg: gdp, |
4044 | count: ext4_free_group_clusters(sb, bg: gdp) + changed); |
4045 | } |
4046 | |
4047 | ext4_block_bitmap_csum_set(sb, gdp, bh: bitmap_bh); |
4048 | ext4_group_desc_csum_set(sb, group, gdp); |
4049 | ext4_unlock_group(sb, group); |
4050 | if (ret_changed) |
4051 | *ret_changed = changed; |
4052 | |
4053 | if (sbi->s_log_groups_per_flex) { |
4054 | ext4_group_t flex_group = ext4_flex_group(sbi, block_group: group); |
4055 | struct flex_groups *fg = sbi_array_rcu_deref(sbi, |
4056 | s_flex_groups, flex_group); |
4057 | |
4058 | if (state) |
4059 | atomic64_sub(i: changed, v: &fg->free_clusters); |
4060 | else |
4061 | atomic64_add(i: changed, v: &fg->free_clusters); |
4062 | } |
4063 | |
4064 | err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); |
4065 | if (err) |
4066 | goto out_err; |
4067 | err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); |
4068 | if (err) |
4069 | goto out_err; |
4070 | |
4071 | if (flags & EXT4_MB_SYNC_UPDATE) { |
4072 | sync_dirty_buffer(bh: bitmap_bh); |
4073 | sync_dirty_buffer(bh: gdp_bh); |
4074 | } |
4075 | |
4076 | out_err: |
4077 | brelse(bh: bitmap_bh); |
4078 | return err; |
4079 | } |
4080 | |
4081 | /* |
4082 | * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps |
4083 | * Returns 0 if success or error code |
4084 | */ |
4085 | static noinline_for_stack int |
4086 | ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, |
4087 | handle_t *handle, unsigned int reserv_clstrs) |
4088 | { |
4089 | struct ext4_group_desc *gdp; |
4090 | struct ext4_sb_info *sbi; |
4091 | struct super_block *sb; |
4092 | ext4_fsblk_t block; |
4093 | int err, len; |
4094 | int flags = 0; |
4095 | ext4_grpblk_t changed; |
4096 | |
4097 | BUG_ON(ac->ac_status != AC_STATUS_FOUND); |
4098 | BUG_ON(ac->ac_b_ex.fe_len <= 0); |
4099 | |
4100 | sb = ac->ac_sb; |
4101 | sbi = EXT4_SB(sb); |
4102 | |
4103 | gdp = ext4_get_group_desc(sb, block_group: ac->ac_b_ex.fe_group, NULL); |
4104 | if (!gdp) |
4105 | return -EIO; |
4106 | ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, |
4107 | ext4_free_group_clusters(sb, gdp)); |
4108 | |
4109 | block = ext4_grp_offs_to_block(sb, fex: &ac->ac_b_ex); |
4110 | len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); |
4111 | if (!ext4_inode_block_valid(inode: ac->ac_inode, start_blk: block, count: len)) { |
4112 | ext4_error(sb, "Allocating blocks %llu-%llu which overlap " |
4113 | "fs metadata", block, block+len); |
4114 | /* File system mounted not to panic on error |
4115 | * Fix the bitmap and return EFSCORRUPTED |
4116 | * We leak some of the blocks here. |
4117 | */ |
4118 | err = ext4_mb_mark_context(handle, sb, state: true, |
4119 | group: ac->ac_b_ex.fe_group, |
4120 | blkoff: ac->ac_b_ex.fe_start, |
4121 | len: ac->ac_b_ex.fe_len, |
4122 | flags: 0, NULL); |
4123 | if (!err) |
4124 | err = -EFSCORRUPTED; |
4125 | return err; |
4126 | } |
4127 | |
4128 | #ifdef AGGRESSIVE_CHECK |
4129 | flags |= EXT4_MB_BITMAP_MARKED_CHECK; |
4130 | #endif |
4131 | err = ext4_mb_mark_context(handle, sb, state: true, group: ac->ac_b_ex.fe_group, |
4132 | blkoff: ac->ac_b_ex.fe_start, len: ac->ac_b_ex.fe_len, |
4133 | flags, ret_changed: &changed); |
4134 | |
4135 | if (err && changed == 0) |
4136 | return err; |
4137 | |
4138 | #ifdef AGGRESSIVE_CHECK |
4139 | BUG_ON(changed != ac->ac_b_ex.fe_len); |
4140 | #endif |
4141 | percpu_counter_sub(fbc: &sbi->s_freeclusters_counter, amount: ac->ac_b_ex.fe_len); |
4142 | /* |
4143 | * Now reduce the dirty block count also. Should not go negative |
4144 | */ |
4145 | if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) |
4146 | /* release all the reserved blocks if non delalloc */ |
4147 | percpu_counter_sub(fbc: &sbi->s_dirtyclusters_counter, |
4148 | amount: reserv_clstrs); |
4149 | |
4150 | return err; |
4151 | } |
4152 | |
4153 | /* |
4154 | * Idempotent helper for Ext4 fast commit replay path to set the state of |
4155 | * blocks in bitmaps and update counters. |
4156 | */ |
4157 | void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, |
4158 | int len, bool state) |
4159 | { |
4160 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
4161 | ext4_group_t group; |
4162 | ext4_grpblk_t blkoff; |
4163 | int err = 0; |
4164 | unsigned int clen, thisgrp_len; |
4165 | |
4166 | while (len > 0) { |
4167 | ext4_get_group_no_and_offset(sb, blocknr: block, blockgrpp: &group, offsetp: &blkoff); |
4168 | |
4169 | /* |
4170 | * Check to see if we are freeing blocks across a group |
4171 | * boundary. |
4172 | * In case of flex_bg, this can happen that (block, len) may |
4173 | * span across more than one group. In that case we need to |
4174 | * get the corresponding group metadata to work with. |
4175 | * For this we have goto again loop. |
4176 | */ |
4177 | thisgrp_len = min_t(unsigned int, (unsigned int)len, |
4178 | EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); |
4179 | clen = EXT4_NUM_B2C(sbi, thisgrp_len); |
4180 | |
4181 | if (!ext4_sb_block_valid(sb, NULL, start_blk: block, count: thisgrp_len)) { |
4182 | ext4_error(sb, "Marking blocks in system zone - " |
4183 | "Block = %llu, len = %u", |
4184 | block, thisgrp_len); |
4185 | break; |
4186 | } |
4187 | |
4188 | err = ext4_mb_mark_context(NULL, sb, state, |
4189 | group, blkoff, len: clen, |
4190 | EXT4_MB_BITMAP_MARKED_CHECK | |
4191 | EXT4_MB_SYNC_UPDATE, |
4192 | NULL); |
4193 | if (err) |
4194 | break; |
4195 | |
4196 | block += thisgrp_len; |
4197 | len -= thisgrp_len; |
4198 | BUG_ON(len < 0); |
4199 | } |
4200 | } |
4201 | |
4202 | /* |
4203 | * here we normalize request for locality group |
4204 | * Group request are normalized to s_mb_group_prealloc, which goes to |
4205 | * s_strip if we set the same via mount option. |
4206 | * s_mb_group_prealloc can be configured via |
4207 | * /sys/fs/ext4/<partition>/mb_group_prealloc |
4208 | * |
4209 | * XXX: should we try to preallocate more than the group has now? |
4210 | */ |
4211 | static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) |
4212 | { |
4213 | struct super_block *sb = ac->ac_sb; |
4214 | struct ext4_locality_group *lg = ac->ac_lg; |
4215 | |
4216 | BUG_ON(lg == NULL); |
4217 | ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; |
4218 | mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); |
4219 | } |
4220 | |
4221 | /* |
4222 | * This function returns the next element to look at during inode |
4223 | * PA rbtree walk. We assume that we have held the inode PA rbtree lock |
4224 | * (ei->i_prealloc_lock) |
4225 | * |
4226 | * new_start The start of the range we want to compare |
4227 | * cur_start The existing start that we are comparing against |
4228 | * node The node of the rb_tree |
4229 | */ |
4230 | static inline struct rb_node* |
4231 | ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) |
4232 | { |
4233 | if (new_start < cur_start) |
4234 | return node->rb_left; |
4235 | else |
4236 | return node->rb_right; |
4237 | } |
4238 | |
4239 | static inline void |
4240 | ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, |
4241 | ext4_lblk_t start, loff_t end) |
4242 | { |
4243 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
4244 | struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); |
4245 | struct ext4_prealloc_space *tmp_pa; |
4246 | ext4_lblk_t tmp_pa_start; |
4247 | loff_t tmp_pa_end; |
4248 | struct rb_node *iter; |
4249 | |
4250 | read_lock(&ei->i_prealloc_lock); |
4251 | for (iter = ei->i_prealloc_node.rb_node; iter; |
4252 | iter = ext4_mb_pa_rb_next_iter(new_start: start, cur_start: tmp_pa_start, node: iter)) { |
4253 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
4254 | pa_node.inode_node); |
4255 | tmp_pa_start = tmp_pa->pa_lstart; |
4256 | tmp_pa_end = pa_logical_end(sbi, pa: tmp_pa); |
4257 | |
4258 | spin_lock(lock: &tmp_pa->pa_lock); |
4259 | if (tmp_pa->pa_deleted == 0) |
4260 | BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); |
4261 | spin_unlock(lock: &tmp_pa->pa_lock); |
4262 | } |
4263 | read_unlock(&ei->i_prealloc_lock); |
4264 | } |
4265 | |
4266 | /* |
4267 | * Given an allocation context "ac" and a range "start", "end", check |
4268 | * and adjust boundaries if the range overlaps with any of the existing |
4269 | * preallocatoins stored in the corresponding inode of the allocation context. |
4270 | * |
4271 | * Parameters: |
4272 | * ac allocation context |
4273 | * start start of the new range |
4274 | * end end of the new range |
4275 | */ |
4276 | static inline void |
4277 | ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, |
4278 | ext4_lblk_t *start, loff_t *end) |
4279 | { |
4280 | struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); |
4281 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
4282 | struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; |
4283 | struct rb_node *iter; |
4284 | ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; |
4285 | loff_t new_end, tmp_pa_end, left_pa_end = -1; |
4286 | |
4287 | new_start = *start; |
4288 | new_end = *end; |
4289 | |
4290 | /* |
4291 | * Adjust the normalized range so that it doesn't overlap with any |
4292 | * existing preallocated blocks(PAs). Make sure to hold the rbtree lock |
4293 | * so it doesn't change underneath us. |
4294 | */ |
4295 | read_lock(&ei->i_prealloc_lock); |
4296 | |
4297 | /* Step 1: find any one immediate neighboring PA of the normalized range */ |
4298 | for (iter = ei->i_prealloc_node.rb_node; iter; |
4299 | iter = ext4_mb_pa_rb_next_iter(new_start: ac->ac_o_ex.fe_logical, |
4300 | cur_start: tmp_pa_start, node: iter)) { |
4301 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
4302 | pa_node.inode_node); |
4303 | tmp_pa_start = tmp_pa->pa_lstart; |
4304 | tmp_pa_end = pa_logical_end(sbi, pa: tmp_pa); |
4305 | |
4306 | /* PA must not overlap original request */ |
4307 | spin_lock(lock: &tmp_pa->pa_lock); |
4308 | if (tmp_pa->pa_deleted == 0) |
4309 | BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || |
4310 | ac->ac_o_ex.fe_logical < tmp_pa_start)); |
4311 | spin_unlock(lock: &tmp_pa->pa_lock); |
4312 | } |
4313 | |
4314 | /* |
4315 | * Step 2: check if the found PA is left or right neighbor and |
4316 | * get the other neighbor |
4317 | */ |
4318 | if (tmp_pa) { |
4319 | if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { |
4320 | struct rb_node *tmp; |
4321 | |
4322 | left_pa = tmp_pa; |
4323 | tmp = rb_next(&left_pa->pa_node.inode_node); |
4324 | if (tmp) { |
4325 | right_pa = rb_entry(tmp, |
4326 | struct ext4_prealloc_space, |
4327 | pa_node.inode_node); |
4328 | } |
4329 | } else { |
4330 | struct rb_node *tmp; |
4331 | |
4332 | right_pa = tmp_pa; |
4333 | tmp = rb_prev(&right_pa->pa_node.inode_node); |
4334 | if (tmp) { |
4335 | left_pa = rb_entry(tmp, |
4336 | struct ext4_prealloc_space, |
4337 | pa_node.inode_node); |
4338 | } |
4339 | } |
4340 | } |
4341 | |
4342 | /* Step 3: get the non deleted neighbors */ |
4343 | if (left_pa) { |
4344 | for (iter = &left_pa->pa_node.inode_node;; |
4345 | iter = rb_prev(iter)) { |
4346 | if (!iter) { |
4347 | left_pa = NULL; |
4348 | break; |
4349 | } |
4350 | |
4351 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
4352 | pa_node.inode_node); |
4353 | left_pa = tmp_pa; |
4354 | spin_lock(lock: &tmp_pa->pa_lock); |
4355 | if (tmp_pa->pa_deleted == 0) { |
4356 | spin_unlock(lock: &tmp_pa->pa_lock); |
4357 | break; |
4358 | } |
4359 | spin_unlock(lock: &tmp_pa->pa_lock); |
4360 | } |
4361 | } |
4362 | |
4363 | if (right_pa) { |
4364 | for (iter = &right_pa->pa_node.inode_node;; |
4365 | iter = rb_next(iter)) { |
4366 | if (!iter) { |
4367 | right_pa = NULL; |
4368 | break; |
4369 | } |
4370 | |
4371 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
4372 | pa_node.inode_node); |
4373 | right_pa = tmp_pa; |
4374 | spin_lock(lock: &tmp_pa->pa_lock); |
4375 | if (tmp_pa->pa_deleted == 0) { |
4376 | spin_unlock(lock: &tmp_pa->pa_lock); |
4377 | break; |
4378 | } |
4379 | spin_unlock(lock: &tmp_pa->pa_lock); |
4380 | } |
4381 | } |
4382 | |
4383 | if (left_pa) { |
4384 | left_pa_end = pa_logical_end(sbi, pa: left_pa); |
4385 | BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); |
4386 | } |
4387 | |
4388 | if (right_pa) { |
4389 | right_pa_start = right_pa->pa_lstart; |
4390 | BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); |
4391 | } |
4392 | |
4393 | /* Step 4: trim our normalized range to not overlap with the neighbors */ |
4394 | if (left_pa) { |
4395 | if (left_pa_end > new_start) |
4396 | new_start = left_pa_end; |
4397 | } |
4398 | |
4399 | if (right_pa) { |
4400 | if (right_pa_start < new_end) |
4401 | new_end = right_pa_start; |
4402 | } |
4403 | read_unlock(&ei->i_prealloc_lock); |
4404 | |
4405 | /* XXX: extra loop to check we really don't overlap preallocations */ |
4406 | ext4_mb_pa_assert_overlap(ac, start: new_start, end: new_end); |
4407 | |
4408 | *start = new_start; |
4409 | *end = new_end; |
4410 | } |
4411 | |
4412 | /* |
4413 | * Normalization means making request better in terms of |
4414 | * size and alignment |
4415 | */ |
4416 | static noinline_for_stack void |
4417 | ext4_mb_normalize_request(struct ext4_allocation_context *ac, |
4418 | struct ext4_allocation_request *ar) |
4419 | { |
4420 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
4421 | struct ext4_super_block *es = sbi->s_es; |
4422 | int bsbits, max; |
4423 | loff_t size, start_off, end; |
4424 | loff_t orig_size __maybe_unused; |
4425 | ext4_lblk_t start; |
4426 | |
4427 | /* do normalize only data requests, metadata requests |
4428 | do not need preallocation */ |
4429 | if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) |
4430 | return; |
4431 | |
4432 | /* sometime caller may want exact blocks */ |
4433 | if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) |
4434 | return; |
4435 | |
4436 | /* caller may indicate that preallocation isn't |
4437 | * required (it's a tail, for example) */ |
4438 | if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) |
4439 | return; |
4440 | |
4441 | if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { |
4442 | ext4_mb_normalize_group_request(ac); |
4443 | return ; |
4444 | } |
4445 | |
4446 | bsbits = ac->ac_sb->s_blocksize_bits; |
4447 | |
4448 | /* first, let's learn actual file size |
4449 | * given current request is allocated */ |
4450 | size = extent_logical_end(sbi, fex: &ac->ac_o_ex); |
4451 | size = size << bsbits; |
4452 | if (size < i_size_read(inode: ac->ac_inode)) |
4453 | size = i_size_read(inode: ac->ac_inode); |
4454 | orig_size = size; |
4455 | |
4456 | /* max size of free chunks */ |
4457 | max = 2 << bsbits; |
4458 | |
4459 | #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ |
4460 | (req <= (size) || max <= (chunk_size)) |
4461 | |
4462 | /* first, try to predict filesize */ |
4463 | /* XXX: should this table be tunable? */ |
4464 | start_off = 0; |
4465 | if (size <= 16 * 1024) { |
4466 | size = 16 * 1024; |
4467 | } else if (size <= 32 * 1024) { |
4468 | size = 32 * 1024; |
4469 | } else if (size <= 64 * 1024) { |
4470 | size = 64 * 1024; |
4471 | } else if (size <= 128 * 1024) { |
4472 | size = 128 * 1024; |
4473 | } else if (size <= 256 * 1024) { |
4474 | size = 256 * 1024; |
4475 | } else if (size <= 512 * 1024) { |
4476 | size = 512 * 1024; |
4477 | } else if (size <= 1024 * 1024) { |
4478 | size = 1024 * 1024; |
4479 | } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { |
4480 | start_off = ((loff_t)ac->ac_o_ex.fe_logical >> |
4481 | (21 - bsbits)) << 21; |
4482 | size = 2 * 1024 * 1024; |
4483 | } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { |
4484 | start_off = ((loff_t)ac->ac_o_ex.fe_logical >> |
4485 | (22 - bsbits)) << 22; |
4486 | size = 4 * 1024 * 1024; |
4487 | } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), |
4488 | (8<<20)>>bsbits, max, 8 * 1024)) { |
4489 | start_off = ((loff_t)ac->ac_o_ex.fe_logical >> |
4490 | (23 - bsbits)) << 23; |
4491 | size = 8 * 1024 * 1024; |
4492 | } else { |
4493 | start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; |
4494 | size = (loff_t) EXT4_C2B(sbi, |
4495 | ac->ac_o_ex.fe_len) << bsbits; |
4496 | } |
4497 | size = size >> bsbits; |
4498 | start = start_off >> bsbits; |
4499 | |
4500 | /* |
4501 | * For tiny groups (smaller than 8MB) the chosen allocation |
4502 | * alignment may be larger than group size. Make sure the |
4503 | * alignment does not move allocation to a different group which |
4504 | * makes mballoc fail assertions later. |
4505 | */ |
4506 | start = max(start, rounddown(ac->ac_o_ex.fe_logical, |
4507 | (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); |
4508 | |
4509 | /* avoid unnecessary preallocation that may trigger assertions */ |
4510 | if (start + size > EXT_MAX_BLOCKS) |
4511 | size = EXT_MAX_BLOCKS - start; |
4512 | |
4513 | /* don't cover already allocated blocks in selected range */ |
4514 | if (ar->pleft && start <= ar->lleft) { |
4515 | size -= ar->lleft + 1 - start; |
4516 | start = ar->lleft + 1; |
4517 | } |
4518 | if (ar->pright && start + size - 1 >= ar->lright) |
4519 | size -= start + size - ar->lright; |
4520 | |
4521 | /* |
4522 | * Trim allocation request for filesystems with artificially small |
4523 | * groups. |
4524 | */ |
4525 | if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) |
4526 | size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); |
4527 | |
4528 | end = start + size; |
4529 | |
4530 | ext4_mb_pa_adjust_overlap(ac, start: &start, end: &end); |
4531 | |
4532 | size = end - start; |
4533 | |
4534 | /* |
4535 | * In this function "start" and "size" are normalized for better |
4536 | * alignment and length such that we could preallocate more blocks. |
4537 | * This normalization is done such that original request of |
4538 | * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and |
4539 | * "size" boundaries. |
4540 | * (Note fe_len can be relaxed since FS block allocation API does not |
4541 | * provide gurantee on number of contiguous blocks allocation since that |
4542 | * depends upon free space left, etc). |
4543 | * In case of inode pa, later we use the allocated blocks |
4544 | * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated |
4545 | * range of goal/best blocks [start, size] to put it at the |
4546 | * ac_o_ex.fe_logical extent of this inode. |
4547 | * (See ext4_mb_use_inode_pa() for more details) |
4548 | */ |
4549 | if (start + size <= ac->ac_o_ex.fe_logical || |
4550 | start > ac->ac_o_ex.fe_logical) { |
4551 | ext4_msg(ac->ac_sb, KERN_ERR, |
4552 | "start %lu, size %lu, fe_logical %lu", |
4553 | (unsigned long) start, (unsigned long) size, |
4554 | (unsigned long) ac->ac_o_ex.fe_logical); |
4555 | BUG(); |
4556 | } |
4557 | BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); |
4558 | |
4559 | /* now prepare goal request */ |
4560 | |
4561 | /* XXX: is it better to align blocks WRT to logical |
4562 | * placement or satisfy big request as is */ |
4563 | ac->ac_g_ex.fe_logical = start; |
4564 | ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); |
4565 | ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; |
4566 | |
4567 | /* define goal start in order to merge */ |
4568 | if (ar->pright && (ar->lright == (start + size)) && |
4569 | ar->pright >= size && |
4570 | ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { |
4571 | /* merge to the right */ |
4572 | ext4_get_group_no_and_offset(sb: ac->ac_sb, blocknr: ar->pright - size, |
4573 | blockgrpp: &ac->ac_g_ex.fe_group, |
4574 | offsetp: &ac->ac_g_ex.fe_start); |
4575 | ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; |
4576 | } |
4577 | if (ar->pleft && (ar->lleft + 1 == start) && |
4578 | ar->pleft + 1 < ext4_blocks_count(es)) { |
4579 | /* merge to the left */ |
4580 | ext4_get_group_no_and_offset(sb: ac->ac_sb, blocknr: ar->pleft + 1, |
4581 | blockgrpp: &ac->ac_g_ex.fe_group, |
4582 | offsetp: &ac->ac_g_ex.fe_start); |
4583 | ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; |
4584 | } |
4585 | |
4586 | mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, |
4587 | orig_size, start); |
4588 | } |
4589 | |
4590 | static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) |
4591 | { |
4592 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
4593 | |
4594 | if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { |
4595 | atomic_inc(v: &sbi->s_bal_reqs); |
4596 | atomic_add(i: ac->ac_b_ex.fe_len, v: &sbi->s_bal_allocated); |
4597 | if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) |
4598 | atomic_inc(v: &sbi->s_bal_success); |
4599 | |
4600 | atomic_add(i: ac->ac_found, v: &sbi->s_bal_ex_scanned); |
4601 | for (int i=0; i<EXT4_MB_NUM_CRS; i++) { |
4602 | atomic_add(i: ac->ac_cX_found[i], v: &sbi->s_bal_cX_ex_scanned[i]); |
4603 | } |
4604 | |
4605 | atomic_add(i: ac->ac_groups_scanned, v: &sbi->s_bal_groups_scanned); |
4606 | if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && |
4607 | ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) |
4608 | atomic_inc(v: &sbi->s_bal_goals); |
4609 | /* did we allocate as much as normalizer originally wanted? */ |
4610 | if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) |
4611 | atomic_inc(v: &sbi->s_bal_len_goals); |
4612 | |
4613 | if (ac->ac_found > sbi->s_mb_max_to_scan) |
4614 | atomic_inc(v: &sbi->s_bal_breaks); |
4615 | } |
4616 | |
4617 | if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) |
4618 | trace_ext4_mballoc_alloc(ac); |
4619 | else |
4620 | trace_ext4_mballoc_prealloc(ac); |
4621 | } |
4622 | |
4623 | /* |
4624 | * Called on failure; free up any blocks from the inode PA for this |
4625 | * context. We don't need this for MB_GROUP_PA because we only change |
4626 | * pa_free in ext4_mb_release_context(), but on failure, we've already |
4627 | * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. |
4628 | */ |
4629 | static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) |
4630 | { |
4631 | struct ext4_prealloc_space *pa = ac->ac_pa; |
4632 | struct ext4_buddy e4b; |
4633 | int err; |
4634 | |
4635 | if (pa == NULL) { |
4636 | if (ac->ac_f_ex.fe_len == 0) |
4637 | return; |
4638 | err = ext4_mb_load_buddy(sb: ac->ac_sb, group: ac->ac_f_ex.fe_group, e4b: &e4b); |
4639 | if (WARN_RATELIMIT(err, |
4640 | "ext4: mb_load_buddy failed (%d)", err)) |
4641 | /* |
4642 | * This should never happen since we pin the |
4643 | * pages in the ext4_allocation_context so |
4644 | * ext4_mb_load_buddy() should never fail. |
4645 | */ |
4646 | return; |
4647 | ext4_lock_group(sb: ac->ac_sb, group: ac->ac_f_ex.fe_group); |
4648 | mb_free_blocks(inode: ac->ac_inode, e4b: &e4b, first: ac->ac_f_ex.fe_start, |
4649 | count: ac->ac_f_ex.fe_len); |
4650 | ext4_unlock_group(sb: ac->ac_sb, group: ac->ac_f_ex.fe_group); |
4651 | ext4_mb_unload_buddy(e4b: &e4b); |
4652 | return; |
4653 | } |
4654 | if (pa->pa_type == MB_INODE_PA) { |
4655 | spin_lock(lock: &pa->pa_lock); |
4656 | pa->pa_free += ac->ac_b_ex.fe_len; |
4657 | spin_unlock(lock: &pa->pa_lock); |
4658 | } |
4659 | } |
4660 | |
4661 | /* |
4662 | * use blocks preallocated to inode |
4663 | */ |
4664 | static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, |
4665 | struct ext4_prealloc_space *pa) |
4666 | { |
4667 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
4668 | ext4_fsblk_t start; |
4669 | ext4_fsblk_t end; |
4670 | int len; |
4671 | |
4672 | /* found preallocated blocks, use them */ |
4673 | start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); |
4674 | end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), |
4675 | start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); |
4676 | len = EXT4_NUM_B2C(sbi, end - start); |
4677 | ext4_get_group_no_and_offset(sb: ac->ac_sb, blocknr: start, blockgrpp: &ac->ac_b_ex.fe_group, |
4678 | offsetp: &ac->ac_b_ex.fe_start); |
4679 | ac->ac_b_ex.fe_len = len; |
4680 | ac->ac_status = AC_STATUS_FOUND; |
4681 | ac->ac_pa = pa; |
4682 | |
4683 | BUG_ON(start < pa->pa_pstart); |
4684 | BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); |
4685 | BUG_ON(pa->pa_free < len); |
4686 | BUG_ON(ac->ac_b_ex.fe_len <= 0); |
4687 | pa->pa_free -= len; |
4688 | |
4689 | mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); |
4690 | } |
4691 | |
4692 | /* |
4693 | * use blocks preallocated to locality group |
4694 | */ |
4695 | static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, |
4696 | struct ext4_prealloc_space *pa) |
4697 | { |
4698 | unsigned int len = ac->ac_o_ex.fe_len; |
4699 | |
4700 | ext4_get_group_no_and_offset(sb: ac->ac_sb, blocknr: pa->pa_pstart, |
4701 | blockgrpp: &ac->ac_b_ex.fe_group, |
4702 | offsetp: &ac->ac_b_ex.fe_start); |
4703 | ac->ac_b_ex.fe_len = len; |
4704 | ac->ac_status = AC_STATUS_FOUND; |
4705 | ac->ac_pa = pa; |
4706 | |
4707 | /* we don't correct pa_pstart or pa_len here to avoid |
4708 | * possible race when the group is being loaded concurrently |
4709 | * instead we correct pa later, after blocks are marked |
4710 | * in on-disk bitmap -- see ext4_mb_release_context() |
4711 | * Other CPUs are prevented from allocating from this pa by lg_mutex |
4712 | */ |
4713 | mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", |
4714 | pa->pa_lstart, len, pa); |
4715 | } |
4716 | |
4717 | /* |
4718 | * Return the prealloc space that have minimal distance |
4719 | * from the goal block. @cpa is the prealloc |
4720 | * space that is having currently known minimal distance |
4721 | * from the goal block. |
4722 | */ |
4723 | static struct ext4_prealloc_space * |
4724 | ext4_mb_check_group_pa(ext4_fsblk_t goal_block, |
4725 | struct ext4_prealloc_space *pa, |
4726 | struct ext4_prealloc_space *cpa) |
4727 | { |
4728 | ext4_fsblk_t cur_distance, new_distance; |
4729 | |
4730 | if (cpa == NULL) { |
4731 | atomic_inc(v: &pa->pa_count); |
4732 | return pa; |
4733 | } |
4734 | cur_distance = abs(goal_block - cpa->pa_pstart); |
4735 | new_distance = abs(goal_block - pa->pa_pstart); |
4736 | |
4737 | if (cur_distance <= new_distance) |
4738 | return cpa; |
4739 | |
4740 | /* drop the previous reference */ |
4741 | atomic_dec(v: &cpa->pa_count); |
4742 | atomic_inc(v: &pa->pa_count); |
4743 | return pa; |
4744 | } |
4745 | |
4746 | /* |
4747 | * check if found pa meets EXT4_MB_HINT_GOAL_ONLY |
4748 | */ |
4749 | static bool |
4750 | ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, |
4751 | struct ext4_prealloc_space *pa) |
4752 | { |
4753 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
4754 | ext4_fsblk_t start; |
4755 | |
4756 | if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) |
4757 | return true; |
4758 | |
4759 | /* |
4760 | * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted |
4761 | * in ext4_mb_normalize_request and will keep same with ac_o_ex |
4762 | * from ext4_mb_initialize_context. Choose ac_g_ex here to keep |
4763 | * consistent with ext4_mb_find_by_goal. |
4764 | */ |
4765 | start = pa->pa_pstart + |
4766 | (ac->ac_g_ex.fe_logical - pa->pa_lstart); |
4767 | if (ext4_grp_offs_to_block(sb: ac->ac_sb, fex: &ac->ac_g_ex) != start) |
4768 | return false; |
4769 | |
4770 | if (ac->ac_g_ex.fe_len > pa->pa_len - |
4771 | EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) |
4772 | return false; |
4773 | |
4774 | return true; |
4775 | } |
4776 | |
4777 | /* |
4778 | * search goal blocks in preallocated space |
4779 | */ |
4780 | static noinline_for_stack bool |
4781 | ext4_mb_use_preallocated(struct ext4_allocation_context *ac) |
4782 | { |
4783 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
4784 | int order, i; |
4785 | struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); |
4786 | struct ext4_locality_group *lg; |
4787 | struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; |
4788 | struct rb_node *iter; |
4789 | ext4_fsblk_t goal_block; |
4790 | |
4791 | /* only data can be preallocated */ |
4792 | if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) |
4793 | return false; |
4794 | |
4795 | /* |
4796 | * first, try per-file preallocation by searching the inode pa rbtree. |
4797 | * |
4798 | * Here, we can't do a direct traversal of the tree because |
4799 | * ext4_mb_discard_group_preallocation() can paralelly mark the pa |
4800 | * deleted and that can cause direct traversal to skip some entries. |
4801 | */ |
4802 | read_lock(&ei->i_prealloc_lock); |
4803 | |
4804 | if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { |
4805 | goto try_group_pa; |
4806 | } |
4807 | |
4808 | /* |
4809 | * Step 1: Find a pa with logical start immediately adjacent to the |
4810 | * original logical start. This could be on the left or right. |
4811 | * |
4812 | * (tmp_pa->pa_lstart never changes so we can skip locking for it). |
4813 | */ |
4814 | for (iter = ei->i_prealloc_node.rb_node; iter; |
4815 | iter = ext4_mb_pa_rb_next_iter(new_start: ac->ac_o_ex.fe_logical, |
4816 | cur_start: tmp_pa->pa_lstart, node: iter)) { |
4817 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
4818 | pa_node.inode_node); |
4819 | } |
4820 | |
4821 | /* |
4822 | * Step 2: The adjacent pa might be to the right of logical start, find |
4823 | * the left adjacent pa. After this step we'd have a valid tmp_pa whose |
4824 | * logical start is towards the left of original request's logical start |
4825 | */ |
4826 | if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { |
4827 | struct rb_node *tmp; |
4828 | tmp = rb_prev(&tmp_pa->pa_node.inode_node); |
4829 | |
4830 | if (tmp) { |
4831 | tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, |
4832 | pa_node.inode_node); |
4833 | } else { |
4834 | /* |
4835 | * If there is no adjacent pa to the left then finding |
4836 | * an overlapping pa is not possible hence stop searching |
4837 | * inode pa tree |
4838 | */ |
4839 | goto try_group_pa; |
4840 | } |
4841 | } |
4842 | |
4843 | BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); |
4844 | |
4845 | /* |
4846 | * Step 3: If the left adjacent pa is deleted, keep moving left to find |
4847 | * the first non deleted adjacent pa. After this step we should have a |
4848 | * valid tmp_pa which is guaranteed to be non deleted. |
4849 | */ |
4850 | for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { |
4851 | if (!iter) { |
4852 | /* |
4853 | * no non deleted left adjacent pa, so stop searching |
4854 | * inode pa tree |
4855 | */ |
4856 | goto try_group_pa; |
4857 | } |
4858 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
4859 | pa_node.inode_node); |
4860 | spin_lock(lock: &tmp_pa->pa_lock); |
4861 | if (tmp_pa->pa_deleted == 0) { |
4862 | /* |
4863 | * We will keep holding the pa_lock from |
4864 | * this point on because we don't want group discard |
4865 | * to delete this pa underneath us. Since group |
4866 | * discard is anyways an ENOSPC operation it |
4867 | * should be okay for it to wait a few more cycles. |
4868 | */ |
4869 | break; |
4870 | } else { |
4871 | spin_unlock(lock: &tmp_pa->pa_lock); |
4872 | } |
4873 | } |
4874 | |
4875 | BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); |
4876 | BUG_ON(tmp_pa->pa_deleted == 1); |
4877 | |
4878 | /* |
4879 | * Step 4: We now have the non deleted left adjacent pa. Only this |
4880 | * pa can possibly satisfy the request hence check if it overlaps |
4881 | * original logical start and stop searching if it doesn't. |
4882 | */ |
4883 | if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, pa: tmp_pa)) { |
4884 | spin_unlock(lock: &tmp_pa->pa_lock); |
4885 | goto try_group_pa; |
4886 | } |
4887 | |
4888 | /* non-extent files can't have physical blocks past 2^32 */ |
4889 | if (!(ext4_test_inode_flag(inode: ac->ac_inode, bit: EXT4_INODE_EXTENTS)) && |
4890 | (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > |
4891 | EXT4_MAX_BLOCK_FILE_PHYS)) { |
4892 | /* |
4893 | * Since PAs don't overlap, we won't find any other PA to |
4894 | * satisfy this. |
4895 | */ |
4896 | spin_unlock(lock: &tmp_pa->pa_lock); |
4897 | goto try_group_pa; |
4898 | } |
4899 | |
4900 | if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { |
4901 | atomic_inc(v: &tmp_pa->pa_count); |
4902 | ext4_mb_use_inode_pa(ac, pa: tmp_pa); |
4903 | spin_unlock(lock: &tmp_pa->pa_lock); |
4904 | read_unlock(&ei->i_prealloc_lock); |
4905 | return true; |
4906 | } else { |
4907 | /* |
4908 | * We found a valid overlapping pa but couldn't use it because |
4909 | * it had no free blocks. This should ideally never happen |
4910 | * because: |
4911 | * |
4912 | * 1. When a new inode pa is added to rbtree it must have |
4913 | * pa_free > 0 since otherwise we won't actually need |
4914 | * preallocation. |
4915 | * |
4916 | * 2. An inode pa that is in the rbtree can only have it's |
4917 | * pa_free become zero when another thread calls: |
4918 | * ext4_mb_new_blocks |
4919 | * ext4_mb_use_preallocated |
4920 | * ext4_mb_use_inode_pa |
4921 | * |
4922 | * 3. Further, after the above calls make pa_free == 0, we will |
4923 | * immediately remove it from the rbtree in: |
4924 | * ext4_mb_new_blocks |
4925 | * ext4_mb_release_context |
4926 | * ext4_mb_put_pa |
4927 | * |
4928 | * 4. Since the pa_free becoming 0 and pa_free getting removed |
4929 | * from tree both happen in ext4_mb_new_blocks, which is always |
4930 | * called with i_data_sem held for data allocations, we can be |
4931 | * sure that another process will never see a pa in rbtree with |
4932 | * pa_free == 0. |
4933 | */ |
4934 | WARN_ON_ONCE(tmp_pa->pa_free == 0); |
4935 | } |
4936 | spin_unlock(lock: &tmp_pa->pa_lock); |
4937 | try_group_pa: |
4938 | read_unlock(&ei->i_prealloc_lock); |
4939 | |
4940 | /* can we use group allocation? */ |
4941 | if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) |
4942 | return false; |
4943 | |
4944 | /* inode may have no locality group for some reason */ |
4945 | lg = ac->ac_lg; |
4946 | if (lg == NULL) |
4947 | return false; |
4948 | order = fls(x: ac->ac_o_ex.fe_len) - 1; |
4949 | if (order > PREALLOC_TB_SIZE - 1) |
4950 | /* The max size of hash table is PREALLOC_TB_SIZE */ |
4951 | order = PREALLOC_TB_SIZE - 1; |
4952 | |
4953 | goal_block = ext4_grp_offs_to_block(sb: ac->ac_sb, fex: &ac->ac_g_ex); |
4954 | /* |
4955 | * search for the prealloc space that is having |
4956 | * minimal distance from the goal block. |
4957 | */ |
4958 | for (i = order; i < PREALLOC_TB_SIZE; i++) { |
4959 | rcu_read_lock(); |
4960 | list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], |
4961 | pa_node.lg_list) { |
4962 | spin_lock(lock: &tmp_pa->pa_lock); |
4963 | if (tmp_pa->pa_deleted == 0 && |
4964 | tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { |
4965 | |
4966 | cpa = ext4_mb_check_group_pa(goal_block, |
4967 | pa: tmp_pa, cpa); |
4968 | } |
4969 | spin_unlock(lock: &tmp_pa->pa_lock); |
4970 | } |
4971 | rcu_read_unlock(); |
4972 | } |
4973 | if (cpa) { |
4974 | ext4_mb_use_group_pa(ac, pa: cpa); |
4975 | return true; |
4976 | } |
4977 | return false; |
4978 | } |
4979 | |
4980 | /* |
4981 | * the function goes through all preallocation in this group and marks them |
4982 | * used in in-core bitmap. buddy must be generated from this bitmap |
4983 | * Need to be called with ext4 group lock held |
4984 | */ |
4985 | static noinline_for_stack |
4986 | void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, |
4987 | ext4_group_t group) |
4988 | { |
4989 | struct ext4_group_info *grp = ext4_get_group_info(sb, group); |
4990 | struct ext4_prealloc_space *pa; |
4991 | struct list_head *cur; |
4992 | ext4_group_t groupnr; |
4993 | ext4_grpblk_t start; |
4994 | int preallocated = 0; |
4995 | int len; |
4996 | |
4997 | if (!grp) |
4998 | return; |
4999 | |
5000 | /* all form of preallocation discards first load group, |
5001 | * so the only competing code is preallocation use. |
5002 | * we don't need any locking here |
5003 | * notice we do NOT ignore preallocations with pa_deleted |
5004 | * otherwise we could leave used blocks available for |
5005 | * allocation in buddy when concurrent ext4_mb_put_pa() |
5006 | * is dropping preallocation |
5007 | */ |
5008 | list_for_each(cur, &grp->bb_prealloc_list) { |
5009 | pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); |
5010 | spin_lock(lock: &pa->pa_lock); |
5011 | ext4_get_group_no_and_offset(sb, blocknr: pa->pa_pstart, |
5012 | blockgrpp: &groupnr, offsetp: &start); |
5013 | len = pa->pa_len; |
5014 | spin_unlock(lock: &pa->pa_lock); |
5015 | if (unlikely(len == 0)) |
5016 | continue; |
5017 | BUG_ON(groupnr != group); |
5018 | mb_set_bits(bm: bitmap, cur: start, len); |
5019 | preallocated += len; |
5020 | } |
5021 | mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); |
5022 | } |
5023 | |
5024 | static void ext4_mb_mark_pa_deleted(struct super_block *sb, |
5025 | struct ext4_prealloc_space *pa) |
5026 | { |
5027 | struct ext4_inode_info *ei; |
5028 | |
5029 | if (pa->pa_deleted) { |
5030 | ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", |
5031 | pa->pa_type, pa->pa_pstart, pa->pa_lstart, |
5032 | pa->pa_len); |
5033 | return; |
5034 | } |
5035 | |
5036 | pa->pa_deleted = 1; |
5037 | |
5038 | if (pa->pa_type == MB_INODE_PA) { |
5039 | ei = EXT4_I(pa->pa_inode); |
5040 | atomic_dec(v: &ei->i_prealloc_active); |
5041 | } |
5042 | } |
5043 | |
5044 | static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) |
5045 | { |
5046 | BUG_ON(!pa); |
5047 | BUG_ON(atomic_read(&pa->pa_count)); |
5048 | BUG_ON(pa->pa_deleted == 0); |
5049 | kmem_cache_free(s: ext4_pspace_cachep, objp: pa); |
5050 | } |
5051 | |
5052 | static void ext4_mb_pa_callback(struct rcu_head *head) |
5053 | { |
5054 | struct ext4_prealloc_space *pa; |
5055 | |
5056 | pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); |
5057 | ext4_mb_pa_free(pa); |
5058 | } |
5059 | |
5060 | /* |
5061 | * drops a reference to preallocated space descriptor |
5062 | * if this was the last reference and the space is consumed |
5063 | */ |
5064 | static void ext4_mb_put_pa(struct ext4_allocation_context *ac, |
5065 | struct super_block *sb, struct ext4_prealloc_space *pa) |
5066 | { |
5067 | ext4_group_t grp; |
5068 | ext4_fsblk_t grp_blk; |
5069 | struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); |
5070 | |
5071 | /* in this short window concurrent discard can set pa_deleted */ |
5072 | spin_lock(lock: &pa->pa_lock); |
5073 | if (!atomic_dec_and_test(v: &pa->pa_count) || pa->pa_free != 0) { |
5074 | spin_unlock(lock: &pa->pa_lock); |
5075 | return; |
5076 | } |
5077 | |
5078 | if (pa->pa_deleted == 1) { |
5079 | spin_unlock(lock: &pa->pa_lock); |
5080 | return; |
5081 | } |
5082 | |
5083 | ext4_mb_mark_pa_deleted(sb, pa); |
5084 | spin_unlock(lock: &pa->pa_lock); |
5085 | |
5086 | grp_blk = pa->pa_pstart; |
5087 | /* |
5088 | * If doing group-based preallocation, pa_pstart may be in the |
5089 | * next group when pa is used up |
5090 | */ |
5091 | if (pa->pa_type == MB_GROUP_PA) |
5092 | grp_blk--; |
5093 | |
5094 | grp = ext4_get_group_number(sb, block: grp_blk); |
5095 | |
5096 | /* |
5097 | * possible race: |
5098 | * |
5099 | * P1 (buddy init) P2 (regular allocation) |
5100 | * find block B in PA |
5101 | * copy on-disk bitmap to buddy |
5102 | * mark B in on-disk bitmap |
5103 | * drop PA from group |
5104 | * mark all PAs in buddy |
5105 | * |
5106 | * thus, P1 initializes buddy with B available. to prevent this |
5107 | * we make "copy" and "mark all PAs" atomic and serialize "drop PA" |
5108 | * against that pair |
5109 | */ |
5110 | ext4_lock_group(sb, group: grp); |
5111 | list_del(entry: &pa->pa_group_list); |
5112 | ext4_unlock_group(sb, group: grp); |
5113 | |
5114 | if (pa->pa_type == MB_INODE_PA) { |
5115 | write_lock(pa->pa_node_lock.inode_lock); |
5116 | rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); |
5117 | write_unlock(pa->pa_node_lock.inode_lock); |
5118 | ext4_mb_pa_free(pa); |
5119 | } else { |
5120 | spin_lock(lock: pa->pa_node_lock.lg_lock); |
5121 | list_del_rcu(entry: &pa->pa_node.lg_list); |
5122 | spin_unlock(lock: pa->pa_node_lock.lg_lock); |
5123 | call_rcu(head: &(pa)->u.pa_rcu, func: ext4_mb_pa_callback); |
5124 | } |
5125 | } |
5126 | |
5127 | static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) |
5128 | { |
5129 | struct rb_node **iter = &root->rb_node, *parent = NULL; |
5130 | struct ext4_prealloc_space *iter_pa, *new_pa; |
5131 | ext4_lblk_t iter_start, new_start; |
5132 | |
5133 | while (*iter) { |
5134 | iter_pa = rb_entry(*iter, struct ext4_prealloc_space, |
5135 | pa_node.inode_node); |
5136 | new_pa = rb_entry(new, struct ext4_prealloc_space, |
5137 | pa_node.inode_node); |
5138 | iter_start = iter_pa->pa_lstart; |
5139 | new_start = new_pa->pa_lstart; |
5140 | |
5141 | parent = *iter; |
5142 | if (new_start < iter_start) |
5143 | iter = &((*iter)->rb_left); |
5144 | else |
5145 | iter = &((*iter)->rb_right); |
5146 | } |
5147 | |
5148 | rb_link_node(node: new, parent, rb_link: iter); |
5149 | rb_insert_color(new, root); |
5150 | } |
5151 | |
5152 | /* |
5153 | * creates new preallocated space for given inode |
5154 | */ |
5155 | static noinline_for_stack void |
5156 | ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) |
5157 | { |
5158 | struct super_block *sb = ac->ac_sb; |
5159 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
5160 | struct ext4_prealloc_space *pa; |
5161 | struct ext4_group_info *grp; |
5162 | struct ext4_inode_info *ei; |
5163 | |
5164 | /* preallocate only when found space is larger then requested */ |
5165 | BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); |
5166 | BUG_ON(ac->ac_status != AC_STATUS_FOUND); |
5167 | BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); |
5168 | BUG_ON(ac->ac_pa == NULL); |
5169 | |
5170 | pa = ac->ac_pa; |
5171 | |
5172 | if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { |
5173 | struct ext4_free_extent ex = { |
5174 | .fe_logical = ac->ac_g_ex.fe_logical, |
5175 | .fe_len = ac->ac_orig_goal_len, |
5176 | }; |
5177 | loff_t orig_goal_end = extent_logical_end(sbi, fex: &ex); |
5178 | loff_t o_ex_end = extent_logical_end(sbi, fex: &ac->ac_o_ex); |
5179 | |
5180 | /* |
5181 | * We can't allocate as much as normalizer wants, so we try |
5182 | * to get proper lstart to cover the original request, except |
5183 | * when the goal doesn't cover the original request as below: |
5184 | * |
5185 | * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048 |
5186 | * best_ex:0/200(200) -> adjusted: 1848/2048(200) |
5187 | */ |
5188 | BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); |
5189 | BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); |
5190 | |
5191 | /* |
5192 | * Use the below logic for adjusting best extent as it keeps |
5193 | * fragmentation in check while ensuring logical range of best |
5194 | * extent doesn't overflow out of goal extent: |
5195 | * |
5196 | * 1. Check if best ex can be kept at end of goal (before |
5197 | * cr_best_avail trimmed it) and still cover original start |
5198 | * 2. Else, check if best ex can be kept at start of goal and |
5199 | * still cover original end |
5200 | * 3. Else, keep the best ex at start of original request. |
5201 | */ |
5202 | ex.fe_len = ac->ac_b_ex.fe_len; |
5203 | |
5204 | ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); |
5205 | if (ac->ac_o_ex.fe_logical >= ex.fe_logical) |
5206 | goto adjust_bex; |
5207 | |
5208 | ex.fe_logical = ac->ac_g_ex.fe_logical; |
5209 | if (o_ex_end <= extent_logical_end(sbi, fex: &ex)) |
5210 | goto adjust_bex; |
5211 | |
5212 | ex.fe_logical = ac->ac_o_ex.fe_logical; |
5213 | adjust_bex: |
5214 | ac->ac_b_ex.fe_logical = ex.fe_logical; |
5215 | |
5216 | BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); |
5217 | BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); |
5218 | } |
5219 | |
5220 | pa->pa_lstart = ac->ac_b_ex.fe_logical; |
5221 | pa->pa_pstart = ext4_grp_offs_to_block(sb, fex: &ac->ac_b_ex); |
5222 | pa->pa_len = ac->ac_b_ex.fe_len; |
5223 | pa->pa_free = pa->pa_len; |
5224 | spin_lock_init(&pa->pa_lock); |
5225 | INIT_LIST_HEAD(list: &pa->pa_group_list); |
5226 | pa->pa_deleted = 0; |
5227 | pa->pa_type = MB_INODE_PA; |
5228 | |
5229 | mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, |
5230 | pa->pa_len, pa->pa_lstart); |
5231 | trace_ext4_mb_new_inode_pa(ac, pa); |
5232 | |
5233 | atomic_add(i: pa->pa_free, v: &sbi->s_mb_preallocated); |
5234 | ext4_mb_use_inode_pa(ac, pa); |
5235 | |
5236 | ei = EXT4_I(ac->ac_inode); |
5237 | grp = ext4_get_group_info(sb, group: ac->ac_b_ex.fe_group); |
5238 | if (!grp) |
5239 | return; |
5240 | |
5241 | pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; |
5242 | pa->pa_inode = ac->ac_inode; |
5243 | |
5244 | list_add(new: &pa->pa_group_list, head: &grp->bb_prealloc_list); |
5245 | |
5246 | write_lock(pa->pa_node_lock.inode_lock); |
5247 | ext4_mb_pa_rb_insert(root: &ei->i_prealloc_node, new: &pa->pa_node.inode_node); |
5248 | write_unlock(pa->pa_node_lock.inode_lock); |
5249 | atomic_inc(v: &ei->i_prealloc_active); |
5250 | } |
5251 | |
5252 | /* |
5253 | * creates new preallocated space for locality group inodes belongs to |
5254 | */ |
5255 | static noinline_for_stack void |
5256 | ext4_mb_new_group_pa(struct ext4_allocation_context *ac) |
5257 | { |
5258 | struct super_block *sb = ac->ac_sb; |
5259 | struct ext4_locality_group *lg; |
5260 | struct ext4_prealloc_space *pa; |
5261 | struct ext4_group_info *grp; |
5262 | |
5263 | /* preallocate only when found space is larger then requested */ |
5264 | BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); |
5265 | BUG_ON(ac->ac_status != AC_STATUS_FOUND); |
5266 | BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); |
5267 | BUG_ON(ac->ac_pa == NULL); |
5268 | |
5269 | pa = ac->ac_pa; |
5270 | |
5271 | pa->pa_pstart = ext4_grp_offs_to_block(sb, fex: &ac->ac_b_ex); |
5272 | pa->pa_lstart = pa->pa_pstart; |
5273 | pa->pa_len = ac->ac_b_ex.fe_len; |
5274 | pa->pa_free = pa->pa_len; |
5275 | spin_lock_init(&pa->pa_lock); |
5276 | INIT_LIST_HEAD(list: &pa->pa_node.lg_list); |
5277 | INIT_LIST_HEAD(list: &pa->pa_group_list); |
5278 | pa->pa_deleted = 0; |
5279 | pa->pa_type = MB_GROUP_PA; |
5280 | |
5281 | mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, |
5282 | pa->pa_len, pa->pa_lstart); |
5283 | trace_ext4_mb_new_group_pa(ac, pa); |
5284 | |
5285 | ext4_mb_use_group_pa(ac, pa); |
5286 | atomic_add(i: pa->pa_free, v: &EXT4_SB(sb)->s_mb_preallocated); |
5287 | |
5288 | grp = ext4_get_group_info(sb, group: ac->ac_b_ex.fe_group); |
5289 | if (!grp) |
5290 | return; |
5291 | lg = ac->ac_lg; |
5292 | BUG_ON(lg == NULL); |
5293 | |
5294 | pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; |
5295 | pa->pa_inode = NULL; |
5296 | |
5297 | list_add(new: &pa->pa_group_list, head: &grp->bb_prealloc_list); |
5298 | |
5299 | /* |
5300 | * We will later add the new pa to the right bucket |
5301 | * after updating the pa_free in ext4_mb_release_context |
5302 | */ |
5303 | } |
5304 | |
5305 | static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) |
5306 | { |
5307 | if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) |
5308 | ext4_mb_new_group_pa(ac); |
5309 | else |
5310 | ext4_mb_new_inode_pa(ac); |
5311 | } |
5312 | |
5313 | /* |
5314 | * finds all unused blocks in on-disk bitmap, frees them in |
5315 | * in-core bitmap and buddy. |
5316 | * @pa must be unlinked from inode and group lists, so that |
5317 | * nobody else can find/use it. |
5318 | * the caller MUST hold group/inode locks. |
5319 | * TODO: optimize the case when there are no in-core structures yet |
5320 | */ |
5321 | static noinline_for_stack void |
5322 | ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, |
5323 | struct ext4_prealloc_space *pa) |
5324 | { |
5325 | struct super_block *sb = e4b->bd_sb; |
5326 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
5327 | unsigned int end; |
5328 | unsigned int next; |
5329 | ext4_group_t group; |
5330 | ext4_grpblk_t bit; |
5331 | unsigned long long grp_blk_start; |
5332 | int free = 0; |
5333 | |
5334 | BUG_ON(pa->pa_deleted == 0); |
5335 | ext4_get_group_no_and_offset(sb, blocknr: pa->pa_pstart, blockgrpp: &group, offsetp: &bit); |
5336 | grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); |
5337 | BUG_ON(group != e4b->bd_group && pa->pa_len != 0); |
5338 | end = bit + pa->pa_len; |
5339 | |
5340 | while (bit < end) { |
5341 | bit = mb_find_next_zero_bit(addr: bitmap_bh->b_data, max: end, start: bit); |
5342 | if (bit >= end) |
5343 | break; |
5344 | next = mb_find_next_bit(addr: bitmap_bh->b_data, max: end, start: bit); |
5345 | mb_debug(sb, "free preallocated %u/%u in group %u\n", |
5346 | (unsigned) ext4_group_first_block_no(sb, group) + bit, |
5347 | (unsigned) next - bit, (unsigned) group); |
5348 | free += next - bit; |
5349 | |
5350 | trace_ext4_mballoc_discard(sb, NULL, group, start: bit, len: next - bit); |
5351 | trace_ext4_mb_release_inode_pa(pa, block: (grp_blk_start + |
5352 | EXT4_C2B(sbi, bit)), |
5353 | count: next - bit); |
5354 | mb_free_blocks(inode: pa->pa_inode, e4b, first: bit, count: next - bit); |
5355 | bit = next + 1; |
5356 | } |
5357 | if (free != pa->pa_free) { |
5358 | ext4_msg(e4b->bd_sb, KERN_CRIT, |
5359 | "pa %p: logic %lu, phys. %lu, len %d", |
5360 | pa, (unsigned long) pa->pa_lstart, |
5361 | (unsigned long) pa->pa_pstart, |
5362 | pa->pa_len); |
5363 | ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", |
5364 | free, pa->pa_free); |
5365 | /* |
5366 | * pa is already deleted so we use the value obtained |
5367 | * from the bitmap and continue. |
5368 | */ |
5369 | } |
5370 | atomic_add(i: free, v: &sbi->s_mb_discarded); |
5371 | } |
5372 | |
5373 | static noinline_for_stack void |
5374 | ext4_mb_release_group_pa(struct ext4_buddy *e4b, |
5375 | struct ext4_prealloc_space *pa) |
5376 | { |
5377 | struct super_block *sb = e4b->bd_sb; |
5378 | ext4_group_t group; |
5379 | ext4_grpblk_t bit; |
5380 | |
5381 | trace_ext4_mb_release_group_pa(sb, pa); |
5382 | BUG_ON(pa->pa_deleted == 0); |
5383 | ext4_get_group_no_and_offset(sb, blocknr: pa->pa_pstart, blockgrpp: &group, offsetp: &bit); |
5384 | if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { |
5385 | ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", |
5386 | e4b->bd_group, group, pa->pa_pstart); |
5387 | return; |
5388 | } |
5389 | mb_free_blocks(inode: pa->pa_inode, e4b, first: bit, count: pa->pa_len); |
5390 | atomic_add(i: pa->pa_len, v: &EXT4_SB(sb)->s_mb_discarded); |
5391 | trace_ext4_mballoc_discard(sb, NULL, group, start: bit, len: pa->pa_len); |
5392 | } |
5393 | |
5394 | /* |
5395 | * releases all preallocations in given group |
5396 | * |
5397 | * first, we need to decide discard policy: |
5398 | * - when do we discard |
5399 | * 1) ENOSPC |
5400 | * - how many do we discard |
5401 | * 1) how many requested |
5402 | */ |
5403 | static noinline_for_stack int |
5404 | ext4_mb_discard_group_preallocations(struct super_block *sb, |
5405 | ext4_group_t group, int *busy) |
5406 | { |
5407 | struct ext4_group_info *grp = ext4_get_group_info(sb, group); |
5408 | struct buffer_head *bitmap_bh = NULL; |
5409 | struct ext4_prealloc_space *pa, *tmp; |
5410 | LIST_HEAD(list); |
5411 | struct ext4_buddy e4b; |
5412 | struct ext4_inode_info *ei; |
5413 | int err; |
5414 | int free = 0; |
5415 | |
5416 | if (!grp) |
5417 | return 0; |
5418 | mb_debug(sb, "discard preallocation for group %u\n", group); |
5419 | if (list_empty(head: &grp->bb_prealloc_list)) |
5420 | goto out_dbg; |
5421 | |
5422 | bitmap_bh = ext4_read_block_bitmap(sb, block_group: group); |
5423 | if (IS_ERR(ptr: bitmap_bh)) { |
5424 | err = PTR_ERR(ptr: bitmap_bh); |
5425 | ext4_error_err(sb, -err, |
5426 | "Error %d reading block bitmap for %u", |
5427 | err, group); |
5428 | goto out_dbg; |
5429 | } |
5430 | |
5431 | err = ext4_mb_load_buddy(sb, group, e4b: &e4b); |
5432 | if (err) { |
5433 | ext4_warning(sb, "Error %d loading buddy information for %u", |
5434 | err, group); |
5435 | put_bh(bh: bitmap_bh); |
5436 | goto out_dbg; |
5437 | } |
5438 | |
5439 | ext4_lock_group(sb, group); |
5440 | list_for_each_entry_safe(pa, tmp, |
5441 | &grp->bb_prealloc_list, pa_group_list) { |
5442 | spin_lock(lock: &pa->pa_lock); |
5443 | if (atomic_read(v: &pa->pa_count)) { |
5444 | spin_unlock(lock: &pa->pa_lock); |
5445 | *busy = 1; |
5446 | continue; |
5447 | } |
5448 | if (pa->pa_deleted) { |
5449 | spin_unlock(lock: &pa->pa_lock); |
5450 | continue; |
5451 | } |
5452 | |
5453 | /* seems this one can be freed ... */ |
5454 | ext4_mb_mark_pa_deleted(sb, pa); |
5455 | |
5456 | if (!free) |
5457 | this_cpu_inc(discard_pa_seq); |
5458 | |
5459 | /* we can trust pa_free ... */ |
5460 | free += pa->pa_free; |
5461 | |
5462 | spin_unlock(lock: &pa->pa_lock); |
5463 | |
5464 | list_del(entry: &pa->pa_group_list); |
5465 | list_add(new: &pa->u.pa_tmp_list, head: &list); |
5466 | } |
5467 | |
5468 | /* now free all selected PAs */ |
5469 | list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { |
5470 | |
5471 | /* remove from object (inode or locality group) */ |
5472 | if (pa->pa_type == MB_GROUP_PA) { |
5473 | spin_lock(lock: pa->pa_node_lock.lg_lock); |
5474 | list_del_rcu(entry: &pa->pa_node.lg_list); |
5475 | spin_unlock(lock: pa->pa_node_lock.lg_lock); |
5476 | } else { |
5477 | write_lock(pa->pa_node_lock.inode_lock); |
5478 | ei = EXT4_I(pa->pa_inode); |
5479 | rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); |
5480 | write_unlock(pa->pa_node_lock.inode_lock); |
5481 | } |
5482 | |
5483 | list_del(entry: &pa->u.pa_tmp_list); |
5484 | |
5485 | if (pa->pa_type == MB_GROUP_PA) { |
5486 | ext4_mb_release_group_pa(e4b: &e4b, pa); |
5487 | call_rcu(head: &(pa)->u.pa_rcu, func: ext4_mb_pa_callback); |
5488 | } else { |
5489 | ext4_mb_release_inode_pa(e4b: &e4b, bitmap_bh, pa); |
5490 | ext4_mb_pa_free(pa); |
5491 | } |
5492 | } |
5493 | |
5494 | ext4_unlock_group(sb, group); |
5495 | ext4_mb_unload_buddy(e4b: &e4b); |
5496 | put_bh(bh: bitmap_bh); |
5497 | out_dbg: |
5498 | mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", |
5499 | free, group, grp->bb_free); |
5500 | return free; |
5501 | } |
5502 | |
5503 | /* |
5504 | * releases all non-used preallocated blocks for given inode |
5505 | * |
5506 | * It's important to discard preallocations under i_data_sem |
5507 | * We don't want another block to be served from the prealloc |
5508 | * space when we are discarding the inode prealloc space. |
5509 | * |
5510 | * FIXME!! Make sure it is valid at all the call sites |
5511 | */ |
5512 | void ext4_discard_preallocations(struct inode *inode) |
5513 | { |
5514 | struct ext4_inode_info *ei = EXT4_I(inode); |
5515 | struct super_block *sb = inode->i_sb; |
5516 | struct buffer_head *bitmap_bh = NULL; |
5517 | struct ext4_prealloc_space *pa, *tmp; |
5518 | ext4_group_t group = 0; |
5519 | LIST_HEAD(list); |
5520 | struct ext4_buddy e4b; |
5521 | struct rb_node *iter; |
5522 | int err; |
5523 | |
5524 | if (!S_ISREG(inode->i_mode)) |
5525 | return; |
5526 | |
5527 | if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) |
5528 | return; |
5529 | |
5530 | mb_debug(sb, "discard preallocation for inode %lu\n", |
5531 | inode->i_ino); |
5532 | trace_ext4_discard_preallocations(inode, |
5533 | len: atomic_read(v: &ei->i_prealloc_active)); |
5534 | |
5535 | repeat: |
5536 | /* first, collect all pa's in the inode */ |
5537 | write_lock(&ei->i_prealloc_lock); |
5538 | for (iter = rb_first(&ei->i_prealloc_node); iter; |
5539 | iter = rb_next(iter)) { |
5540 | pa = rb_entry(iter, struct ext4_prealloc_space, |
5541 | pa_node.inode_node); |
5542 | BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); |
5543 | |
5544 | spin_lock(lock: &pa->pa_lock); |
5545 | if (atomic_read(v: &pa->pa_count)) { |
5546 | /* this shouldn't happen often - nobody should |
5547 | * use preallocation while we're discarding it */ |
5548 | spin_unlock(lock: &pa->pa_lock); |
5549 | write_unlock(&ei->i_prealloc_lock); |
5550 | ext4_msg(sb, KERN_ERR, |
5551 | "uh-oh! used pa while discarding"); |
5552 | WARN_ON(1); |
5553 | schedule_timeout_uninterruptible(HZ); |
5554 | goto repeat; |
5555 | |
5556 | } |
5557 | if (pa->pa_deleted == 0) { |
5558 | ext4_mb_mark_pa_deleted(sb, pa); |
5559 | spin_unlock(lock: &pa->pa_lock); |
5560 | rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); |
5561 | list_add(new: &pa->u.pa_tmp_list, head: &list); |
5562 | continue; |
5563 | } |
5564 | |
5565 | /* someone is deleting pa right now */ |
5566 | spin_unlock(lock: &pa->pa_lock); |
5567 | write_unlock(&ei->i_prealloc_lock); |
5568 | |
5569 | /* we have to wait here because pa_deleted |
5570 | * doesn't mean pa is already unlinked from |
5571 | * the list. as we might be called from |
5572 | * ->clear_inode() the inode will get freed |
5573 | * and concurrent thread which is unlinking |
5574 | * pa from inode's list may access already |
5575 | * freed memory, bad-bad-bad */ |
5576 | |
5577 | /* XXX: if this happens too often, we can |
5578 | * add a flag to force wait only in case |
5579 | * of ->clear_inode(), but not in case of |
5580 | * regular truncate */ |
5581 | schedule_timeout_uninterruptible(HZ); |
5582 | goto repeat; |
5583 | } |
5584 | write_unlock(&ei->i_prealloc_lock); |
5585 | |
5586 | list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { |
5587 | BUG_ON(pa->pa_type != MB_INODE_PA); |
5588 | group = ext4_get_group_number(sb, block: pa->pa_pstart); |
5589 | |
5590 | err = ext4_mb_load_buddy_gfp(sb, group, e4b: &e4b, |
5591 | GFP_NOFS|__GFP_NOFAIL); |
5592 | if (err) { |
5593 | ext4_error_err(sb, -err, "Error %d loading buddy information for %u", |
5594 | err, group); |
5595 | continue; |
5596 | } |
5597 | |
5598 | bitmap_bh = ext4_read_block_bitmap(sb, block_group: group); |
5599 | if (IS_ERR(ptr: bitmap_bh)) { |
5600 | err = PTR_ERR(ptr: bitmap_bh); |
5601 | ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", |
5602 | err, group); |
5603 | ext4_mb_unload_buddy(e4b: &e4b); |
5604 | continue; |
5605 | } |
5606 | |
5607 | ext4_lock_group(sb, group); |
5608 | list_del(entry: &pa->pa_group_list); |
5609 | ext4_mb_release_inode_pa(e4b: &e4b, bitmap_bh, pa); |
5610 | ext4_unlock_group(sb, group); |
5611 | |
5612 | ext4_mb_unload_buddy(e4b: &e4b); |
5613 | put_bh(bh: bitmap_bh); |
5614 | |
5615 | list_del(entry: &pa->u.pa_tmp_list); |
5616 | ext4_mb_pa_free(pa); |
5617 | } |
5618 | } |
5619 | |
5620 | static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) |
5621 | { |
5622 | struct ext4_prealloc_space *pa; |
5623 | |
5624 | BUG_ON(ext4_pspace_cachep == NULL); |
5625 | pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); |
5626 | if (!pa) |
5627 | return -ENOMEM; |
5628 | atomic_set(v: &pa->pa_count, i: 1); |
5629 | ac->ac_pa = pa; |
5630 | return 0; |
5631 | } |
5632 | |
5633 | static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) |
5634 | { |
5635 | struct ext4_prealloc_space *pa = ac->ac_pa; |
5636 | |
5637 | BUG_ON(!pa); |
5638 | ac->ac_pa = NULL; |
5639 | WARN_ON(!atomic_dec_and_test(&pa->pa_count)); |
5640 | /* |
5641 | * current function is only called due to an error or due to |
5642 | * len of found blocks < len of requested blocks hence the PA has not |
5643 | * been added to grp->bb_prealloc_list. So we don't need to lock it |
5644 | */ |
5645 | pa->pa_deleted = 1; |
5646 | ext4_mb_pa_free(pa); |
5647 | } |
5648 | |
5649 | #ifdef CONFIG_EXT4_DEBUG |
5650 | static inline void ext4_mb_show_pa(struct super_block *sb) |
5651 | { |
5652 | ext4_group_t i, ngroups; |
5653 | |
5654 | if (ext4_emergency_state(sb)) |
5655 | return; |
5656 | |
5657 | ngroups = ext4_get_groups_count(sb); |
5658 | mb_debug(sb, "groups: "); |
5659 | for (i = 0; i < ngroups; i++) { |
5660 | struct ext4_group_info *grp = ext4_get_group_info(sb, group: i); |
5661 | struct ext4_prealloc_space *pa; |
5662 | ext4_grpblk_t start; |
5663 | struct list_head *cur; |
5664 | |
5665 | if (!grp) |
5666 | continue; |
5667 | ext4_lock_group(sb, group: i); |
5668 | list_for_each(cur, &grp->bb_prealloc_list) { |
5669 | pa = list_entry(cur, struct ext4_prealloc_space, |
5670 | pa_group_list); |
5671 | spin_lock(lock: &pa->pa_lock); |
5672 | ext4_get_group_no_and_offset(sb, blocknr: pa->pa_pstart, |
5673 | NULL, offsetp: &start); |
5674 | spin_unlock(lock: &pa->pa_lock); |
5675 | mb_debug(sb, "PA:%u:%d:%d\n", i, start, |
5676 | pa->pa_len); |
5677 | } |
5678 | ext4_unlock_group(sb, group: i); |
5679 | mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, |
5680 | grp->bb_fragments); |
5681 | } |
5682 | } |
5683 | |
5684 | static void ext4_mb_show_ac(struct ext4_allocation_context *ac) |
5685 | { |
5686 | struct super_block *sb = ac->ac_sb; |
5687 | |
5688 | if (ext4_emergency_state(sb)) |
5689 | return; |
5690 | |
5691 | mb_debug(sb, "Can't allocate:" |
5692 | " Allocation context details:"); |
5693 | mb_debug(sb, "status %u flags 0x%x", |
5694 | ac->ac_status, ac->ac_flags); |
5695 | mb_debug(sb, "orig %lu/%lu/%lu@%lu, " |
5696 | "goal %lu/%lu/%lu@%lu, " |
5697 | "best %lu/%lu/%lu@%lu cr %d", |
5698 | (unsigned long)ac->ac_o_ex.fe_group, |
5699 | (unsigned long)ac->ac_o_ex.fe_start, |
5700 | (unsigned long)ac->ac_o_ex.fe_len, |
5701 | (unsigned long)ac->ac_o_ex.fe_logical, |
5702 | (unsigned long)ac->ac_g_ex.fe_group, |
5703 | (unsigned long)ac->ac_g_ex.fe_start, |
5704 | (unsigned long)ac->ac_g_ex.fe_len, |
5705 | (unsigned long)ac->ac_g_ex.fe_logical, |
5706 | (unsigned long)ac->ac_b_ex.fe_group, |
5707 | (unsigned long)ac->ac_b_ex.fe_start, |
5708 | (unsigned long)ac->ac_b_ex.fe_len, |
5709 | (unsigned long)ac->ac_b_ex.fe_logical, |
5710 | (int)ac->ac_criteria); |
5711 | mb_debug(sb, "%u found", ac->ac_found); |
5712 | mb_debug(sb, "used pa: %s, ", str_yes_no(ac->ac_pa)); |
5713 | if (ac->ac_pa) |
5714 | mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? |
5715 | "group pa": "inode pa"); |
5716 | ext4_mb_show_pa(sb); |
5717 | } |
5718 | #else |
5719 | static inline void ext4_mb_show_pa(struct super_block *sb) |
5720 | { |
5721 | } |
5722 | static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) |
5723 | { |
5724 | ext4_mb_show_pa(ac->ac_sb); |
5725 | } |
5726 | #endif |
5727 | |
5728 | /* |
5729 | * We use locality group preallocation for small size file. The size of the |
5730 | * file is determined by the current size or the resulting size after |
5731 | * allocation which ever is larger |
5732 | * |
5733 | * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req |
5734 | */ |
5735 | static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) |
5736 | { |
5737 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
5738 | int bsbits = ac->ac_sb->s_blocksize_bits; |
5739 | loff_t size, isize; |
5740 | bool inode_pa_eligible, group_pa_eligible; |
5741 | |
5742 | if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) |
5743 | return; |
5744 | |
5745 | if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) |
5746 | return; |
5747 | |
5748 | group_pa_eligible = sbi->s_mb_group_prealloc > 0; |
5749 | inode_pa_eligible = true; |
5750 | size = extent_logical_end(sbi, fex: &ac->ac_o_ex); |
5751 | isize = (i_size_read(inode: ac->ac_inode) + ac->ac_sb->s_blocksize - 1) |
5752 | >> bsbits; |
5753 | |
5754 | /* No point in using inode preallocation for closed files */ |
5755 | if ((size == isize) && !ext4_fs_is_busy(sbi) && |
5756 | !inode_is_open_for_write(inode: ac->ac_inode)) |
5757 | inode_pa_eligible = false; |
5758 | |
5759 | size = max(size, isize); |
5760 | /* Don't use group allocation for large files */ |
5761 | if (size > sbi->s_mb_stream_request) |
5762 | group_pa_eligible = false; |
5763 | |
5764 | if (!group_pa_eligible) { |
5765 | if (inode_pa_eligible) |
5766 | ac->ac_flags |= EXT4_MB_STREAM_ALLOC; |
5767 | else |
5768 | ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; |
5769 | return; |
5770 | } |
5771 | |
5772 | BUG_ON(ac->ac_lg != NULL); |
5773 | /* |
5774 | * locality group prealloc space are per cpu. The reason for having |
5775 | * per cpu locality group is to reduce the contention between block |
5776 | * request from multiple CPUs. |
5777 | */ |
5778 | ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); |
5779 | |
5780 | /* we're going to use group allocation */ |
5781 | ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; |
5782 | |
5783 | /* serialize all allocations in the group */ |
5784 | mutex_lock(&ac->ac_lg->lg_mutex); |
5785 | } |
5786 | |
5787 | static noinline_for_stack void |
5788 | ext4_mb_initialize_context(struct ext4_allocation_context *ac, |
5789 | struct ext4_allocation_request *ar) |
5790 | { |
5791 | struct super_block *sb = ar->inode->i_sb; |
5792 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
5793 | struct ext4_super_block *es = sbi->s_es; |
5794 | ext4_group_t group; |
5795 | unsigned int len; |
5796 | ext4_fsblk_t goal; |
5797 | ext4_grpblk_t block; |
5798 | |
5799 | /* we can't allocate > group size */ |
5800 | len = ar->len; |
5801 | |
5802 | /* just a dirty hack to filter too big requests */ |
5803 | if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) |
5804 | len = EXT4_CLUSTERS_PER_GROUP(sb); |
5805 | |
5806 | /* start searching from the goal */ |
5807 | goal = ar->goal; |
5808 | if (goal < le32_to_cpu(es->s_first_data_block) || |
5809 | goal >= ext4_blocks_count(es)) |
5810 | goal = le32_to_cpu(es->s_first_data_block); |
5811 | ext4_get_group_no_and_offset(sb, blocknr: goal, blockgrpp: &group, offsetp: &block); |
5812 | |
5813 | /* set up allocation goals */ |
5814 | ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); |
5815 | ac->ac_status = AC_STATUS_CONTINUE; |
5816 | ac->ac_sb = sb; |
5817 | ac->ac_inode = ar->inode; |
5818 | ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; |
5819 | ac->ac_o_ex.fe_group = group; |
5820 | ac->ac_o_ex.fe_start = block; |
5821 | ac->ac_o_ex.fe_len = len; |
5822 | ac->ac_g_ex = ac->ac_o_ex; |
5823 | ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; |
5824 | ac->ac_flags = ar->flags; |
5825 | |
5826 | /* we have to define context: we'll work with a file or |
5827 | * locality group. this is a policy, actually */ |
5828 | ext4_mb_group_or_file(ac); |
5829 | |
5830 | mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " |
5831 | "left: %u/%u, right %u/%u to %swritable\n", |
5832 | (unsigned) ar->len, (unsigned) ar->logical, |
5833 | (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, |
5834 | (unsigned) ar->lleft, (unsigned) ar->pleft, |
5835 | (unsigned) ar->lright, (unsigned) ar->pright, |
5836 | inode_is_open_for_write(ar->inode) ? "": "non-"); |
5837 | } |
5838 | |
5839 | static noinline_for_stack void |
5840 | ext4_mb_discard_lg_preallocations(struct super_block *sb, |
5841 | struct ext4_locality_group *lg, |
5842 | int order, int total_entries) |
5843 | { |
5844 | ext4_group_t group = 0; |
5845 | struct ext4_buddy e4b; |
5846 | LIST_HEAD(discard_list); |
5847 | struct ext4_prealloc_space *pa, *tmp; |
5848 | |
5849 | mb_debug(sb, "discard locality group preallocation\n"); |
5850 | |
5851 | spin_lock(lock: &lg->lg_prealloc_lock); |
5852 | list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], |
5853 | pa_node.lg_list, |
5854 | lockdep_is_held(&lg->lg_prealloc_lock)) { |
5855 | spin_lock(lock: &pa->pa_lock); |
5856 | if (atomic_read(v: &pa->pa_count)) { |
5857 | /* |
5858 | * This is the pa that we just used |
5859 | * for block allocation. So don't |
5860 | * free that |
5861 | */ |
5862 | spin_unlock(lock: &pa->pa_lock); |
5863 | continue; |
5864 | } |
5865 | if (pa->pa_deleted) { |
5866 | spin_unlock(lock: &pa->pa_lock); |
5867 | continue; |
5868 | } |
5869 | /* only lg prealloc space */ |
5870 | BUG_ON(pa->pa_type != MB_GROUP_PA); |
5871 | |
5872 | /* seems this one can be freed ... */ |
5873 | ext4_mb_mark_pa_deleted(sb, pa); |
5874 | spin_unlock(lock: &pa->pa_lock); |
5875 | |
5876 | list_del_rcu(entry: &pa->pa_node.lg_list); |
5877 | list_add(new: &pa->u.pa_tmp_list, head: &discard_list); |
5878 | |
5879 | total_entries--; |
5880 | if (total_entries <= 5) { |
5881 | /* |
5882 | * we want to keep only 5 entries |
5883 | * allowing it to grow to 8. This |
5884 | * mak sure we don't call discard |
5885 | * soon for this list. |
5886 | */ |
5887 | break; |
5888 | } |
5889 | } |
5890 | spin_unlock(lock: &lg->lg_prealloc_lock); |
5891 | |
5892 | list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { |
5893 | int err; |
5894 | |
5895 | group = ext4_get_group_number(sb, block: pa->pa_pstart); |
5896 | err = ext4_mb_load_buddy_gfp(sb, group, e4b: &e4b, |
5897 | GFP_NOFS|__GFP_NOFAIL); |
5898 | if (err) { |
5899 | ext4_error_err(sb, -err, "Error %d loading buddy information for %u", |
5900 | err, group); |
5901 | continue; |
5902 | } |
5903 | ext4_lock_group(sb, group); |
5904 | list_del(entry: &pa->pa_group_list); |
5905 | ext4_mb_release_group_pa(e4b: &e4b, pa); |
5906 | ext4_unlock_group(sb, group); |
5907 | |
5908 | ext4_mb_unload_buddy(e4b: &e4b); |
5909 | list_del(entry: &pa->u.pa_tmp_list); |
5910 | call_rcu(head: &(pa)->u.pa_rcu, func: ext4_mb_pa_callback); |
5911 | } |
5912 | } |
5913 | |
5914 | /* |
5915 | * We have incremented pa_count. So it cannot be freed at this |
5916 | * point. Also we hold lg_mutex. So no parallel allocation is |
5917 | * possible from this lg. That means pa_free cannot be updated. |
5918 | * |
5919 | * A parallel ext4_mb_discard_group_preallocations is possible. |
5920 | * which can cause the lg_prealloc_list to be updated. |
5921 | */ |
5922 | |
5923 | static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) |
5924 | { |
5925 | int order, added = 0, lg_prealloc_count = 1; |
5926 | struct super_block *sb = ac->ac_sb; |
5927 | struct ext4_locality_group *lg = ac->ac_lg; |
5928 | struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; |
5929 | |
5930 | order = fls(x: pa->pa_free) - 1; |
5931 | if (order > PREALLOC_TB_SIZE - 1) |
5932 | /* The max size of hash table is PREALLOC_TB_SIZE */ |
5933 | order = PREALLOC_TB_SIZE - 1; |
5934 | /* Add the prealloc space to lg */ |
5935 | spin_lock(lock: &lg->lg_prealloc_lock); |
5936 | list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], |
5937 | pa_node.lg_list, |
5938 | lockdep_is_held(&lg->lg_prealloc_lock)) { |
5939 | spin_lock(lock: &tmp_pa->pa_lock); |
5940 | if (tmp_pa->pa_deleted) { |
5941 | spin_unlock(lock: &tmp_pa->pa_lock); |
5942 | continue; |
5943 | } |
5944 | if (!added && pa->pa_free < tmp_pa->pa_free) { |
5945 | /* Add to the tail of the previous entry */ |
5946 | list_add_tail_rcu(new: &pa->pa_node.lg_list, |
5947 | head: &tmp_pa->pa_node.lg_list); |
5948 | added = 1; |
5949 | /* |
5950 | * we want to count the total |
5951 | * number of entries in the list |
5952 | */ |
5953 | } |
5954 | spin_unlock(lock: &tmp_pa->pa_lock); |
5955 | lg_prealloc_count++; |
5956 | } |
5957 | if (!added) |
5958 | list_add_tail_rcu(new: &pa->pa_node.lg_list, |
5959 | head: &lg->lg_prealloc_list[order]); |
5960 | spin_unlock(lock: &lg->lg_prealloc_lock); |
5961 | |
5962 | /* Now trim the list to be not more than 8 elements */ |
5963 | if (lg_prealloc_count > 8) |
5964 | ext4_mb_discard_lg_preallocations(sb, lg, |
5965 | order, total_entries: lg_prealloc_count); |
5966 | } |
5967 | |
5968 | /* |
5969 | * release all resource we used in allocation |
5970 | */ |
5971 | static void ext4_mb_release_context(struct ext4_allocation_context *ac) |
5972 | { |
5973 | struct ext4_sb_info *sbi = EXT4_SB(sb: ac->ac_sb); |
5974 | struct ext4_prealloc_space *pa = ac->ac_pa; |
5975 | if (pa) { |
5976 | if (pa->pa_type == MB_GROUP_PA) { |
5977 | /* see comment in ext4_mb_use_group_pa() */ |
5978 | spin_lock(lock: &pa->pa_lock); |
5979 | pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); |
5980 | pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); |
5981 | pa->pa_free -= ac->ac_b_ex.fe_len; |
5982 | pa->pa_len -= ac->ac_b_ex.fe_len; |
5983 | spin_unlock(lock: &pa->pa_lock); |
5984 | |
5985 | /* |
5986 | * We want to add the pa to the right bucket. |
5987 | * Remove it from the list and while adding |
5988 | * make sure the list to which we are adding |
5989 | * doesn't grow big. |
5990 | */ |
5991 | if (likely(pa->pa_free)) { |
5992 | spin_lock(lock: pa->pa_node_lock.lg_lock); |
5993 | list_del_rcu(entry: &pa->pa_node.lg_list); |
5994 | spin_unlock(lock: pa->pa_node_lock.lg_lock); |
5995 | ext4_mb_add_n_trim(ac); |
5996 | } |
5997 | } |
5998 | |
5999 | ext4_mb_put_pa(ac, sb: ac->ac_sb, pa); |
6000 | } |
6001 | if (ac->ac_bitmap_folio) |
6002 | folio_put(folio: ac->ac_bitmap_folio); |
6003 | if (ac->ac_buddy_folio) |
6004 | folio_put(folio: ac->ac_buddy_folio); |
6005 | if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) |
6006 | mutex_unlock(lock: &ac->ac_lg->lg_mutex); |
6007 | ext4_mb_collect_stats(ac); |
6008 | } |
6009 | |
6010 | static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) |
6011 | { |
6012 | ext4_group_t i, ngroups = ext4_get_groups_count(sb); |
6013 | int ret; |
6014 | int freed = 0, busy = 0; |
6015 | int retry = 0; |
6016 | |
6017 | trace_ext4_mb_discard_preallocations(sb, needed); |
6018 | |
6019 | if (needed == 0) |
6020 | needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; |
6021 | repeat: |
6022 | for (i = 0; i < ngroups && needed > 0; i++) { |
6023 | ret = ext4_mb_discard_group_preallocations(sb, group: i, busy: &busy); |
6024 | freed += ret; |
6025 | needed -= ret; |
6026 | cond_resched(); |
6027 | } |
6028 | |
6029 | if (needed > 0 && busy && ++retry < 3) { |
6030 | busy = 0; |
6031 | goto repeat; |
6032 | } |
6033 | |
6034 | return freed; |
6035 | } |
6036 | |
6037 | static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, |
6038 | struct ext4_allocation_context *ac, u64 *seq) |
6039 | { |
6040 | int freed; |
6041 | u64 seq_retry = 0; |
6042 | bool ret = false; |
6043 | |
6044 | freed = ext4_mb_discard_preallocations(sb, needed: ac->ac_o_ex.fe_len); |
6045 | if (freed) { |
6046 | ret = true; |
6047 | goto out_dbg; |
6048 | } |
6049 | seq_retry = ext4_get_discard_pa_seq_sum(); |
6050 | if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { |
6051 | ac->ac_flags |= EXT4_MB_STRICT_CHECK; |
6052 | *seq = seq_retry; |
6053 | ret = true; |
6054 | } |
6055 | |
6056 | out_dbg: |
6057 | mb_debug(sb, "freed %d, retry ? %s\n", freed, str_yes_no(ret)); |
6058 | return ret; |
6059 | } |
6060 | |
6061 | /* |
6062 | * Simple allocator for Ext4 fast commit replay path. It searches for blocks |
6063 | * linearly starting at the goal block and also excludes the blocks which |
6064 | * are going to be in use after fast commit replay. |
6065 | */ |
6066 | static ext4_fsblk_t |
6067 | ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) |
6068 | { |
6069 | struct buffer_head *bitmap_bh; |
6070 | struct super_block *sb = ar->inode->i_sb; |
6071 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
6072 | ext4_group_t group, nr; |
6073 | ext4_grpblk_t blkoff; |
6074 | ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); |
6075 | ext4_grpblk_t i = 0; |
6076 | ext4_fsblk_t goal, block; |
6077 | struct ext4_super_block *es = sbi->s_es; |
6078 | |
6079 | goal = ar->goal; |
6080 | if (goal < le32_to_cpu(es->s_first_data_block) || |
6081 | goal >= ext4_blocks_count(es)) |
6082 | goal = le32_to_cpu(es->s_first_data_block); |
6083 | |
6084 | ar->len = 0; |
6085 | ext4_get_group_no_and_offset(sb, blocknr: goal, blockgrpp: &group, offsetp: &blkoff); |
6086 | for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { |
6087 | bitmap_bh = ext4_read_block_bitmap(sb, block_group: group); |
6088 | if (IS_ERR(ptr: bitmap_bh)) { |
6089 | *errp = PTR_ERR(ptr: bitmap_bh); |
6090 | pr_warn("Failed to read block bitmap\n"); |
6091 | return 0; |
6092 | } |
6093 | |
6094 | while (1) { |
6095 | i = mb_find_next_zero_bit(addr: bitmap_bh->b_data, max, |
6096 | start: blkoff); |
6097 | if (i >= max) |
6098 | break; |
6099 | if (ext4_fc_replay_check_excluded(sb, |
6100 | block: ext4_group_first_block_no(sb, group_no: group) + |
6101 | EXT4_C2B(sbi, i))) { |
6102 | blkoff = i + 1; |
6103 | } else |
6104 | break; |
6105 | } |
6106 | brelse(bh: bitmap_bh); |
6107 | if (i < max) |
6108 | break; |
6109 | |
6110 | if (++group >= ext4_get_groups_count(sb)) |
6111 | group = 0; |
6112 | |
6113 | blkoff = 0; |
6114 | } |
6115 | |
6116 | if (i >= max) { |
6117 | *errp = -ENOSPC; |
6118 | return 0; |
6119 | } |
6120 | |
6121 | block = ext4_group_first_block_no(sb, group_no: group) + EXT4_C2B(sbi, i); |
6122 | ext4_mb_mark_bb(sb, block, len: 1, state: true); |
6123 | ar->len = 1; |
6124 | |
6125 | *errp = 0; |
6126 | return block; |
6127 | } |
6128 | |
6129 | /* |
6130 | * Main entry point into mballoc to allocate blocks |
6131 | * it tries to use preallocation first, then falls back |
6132 | * to usual allocation |
6133 | */ |
6134 | ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, |
6135 | struct ext4_allocation_request *ar, int *errp) |
6136 | { |
6137 | struct ext4_allocation_context *ac = NULL; |
6138 | struct ext4_sb_info *sbi; |
6139 | struct super_block *sb; |
6140 | ext4_fsblk_t block = 0; |
6141 | unsigned int inquota = 0; |
6142 | unsigned int reserv_clstrs = 0; |
6143 | int retries = 0; |
6144 | u64 seq; |
6145 | |
6146 | might_sleep(); |
6147 | sb = ar->inode->i_sb; |
6148 | sbi = EXT4_SB(sb); |
6149 | |
6150 | trace_ext4_request_blocks(ar); |
6151 | if (sbi->s_mount_state & EXT4_FC_REPLAY) |
6152 | return ext4_mb_new_blocks_simple(ar, errp); |
6153 | |
6154 | /* Allow to use superuser reservation for quota file */ |
6155 | if (ext4_is_quota_file(inode: ar->inode)) |
6156 | ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; |
6157 | |
6158 | if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { |
6159 | /* Without delayed allocation we need to verify |
6160 | * there is enough free blocks to do block allocation |
6161 | * and verify allocation doesn't exceed the quota limits. |
6162 | */ |
6163 | while (ar->len && |
6164 | ext4_claim_free_clusters(sbi, nclusters: ar->len, flags: ar->flags)) { |
6165 | |
6166 | /* let others to free the space */ |
6167 | cond_resched(); |
6168 | ar->len = ar->len >> 1; |
6169 | } |
6170 | if (!ar->len) { |
6171 | ext4_mb_show_pa(sb); |
6172 | *errp = -ENOSPC; |
6173 | return 0; |
6174 | } |
6175 | reserv_clstrs = ar->len; |
6176 | if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { |
6177 | dquot_alloc_block_nofail(inode: ar->inode, |
6178 | EXT4_C2B(sbi, ar->len)); |
6179 | } else { |
6180 | while (ar->len && |
6181 | dquot_alloc_block(inode: ar->inode, |
6182 | EXT4_C2B(sbi, ar->len))) { |
6183 | |
6184 | ar->flags |= EXT4_MB_HINT_NOPREALLOC; |
6185 | ar->len--; |
6186 | } |
6187 | } |
6188 | inquota = ar->len; |
6189 | if (ar->len == 0) { |
6190 | *errp = -EDQUOT; |
6191 | goto out; |
6192 | } |
6193 | } |
6194 | |
6195 | ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); |
6196 | if (!ac) { |
6197 | ar->len = 0; |
6198 | *errp = -ENOMEM; |
6199 | goto out; |
6200 | } |
6201 | |
6202 | ext4_mb_initialize_context(ac, ar); |
6203 | |
6204 | ac->ac_op = EXT4_MB_HISTORY_PREALLOC; |
6205 | seq = this_cpu_read(discard_pa_seq); |
6206 | if (!ext4_mb_use_preallocated(ac)) { |
6207 | ac->ac_op = EXT4_MB_HISTORY_ALLOC; |
6208 | ext4_mb_normalize_request(ac, ar); |
6209 | |
6210 | *errp = ext4_mb_pa_alloc(ac); |
6211 | if (*errp) |
6212 | goto errout; |
6213 | repeat: |
6214 | /* allocate space in core */ |
6215 | *errp = ext4_mb_regular_allocator(ac); |
6216 | /* |
6217 | * pa allocated above is added to grp->bb_prealloc_list only |
6218 | * when we were able to allocate some block i.e. when |
6219 | * ac->ac_status == AC_STATUS_FOUND. |
6220 | * And error from above mean ac->ac_status != AC_STATUS_FOUND |
6221 | * So we have to free this pa here itself. |
6222 | */ |
6223 | if (*errp) { |
6224 | ext4_mb_pa_put_free(ac); |
6225 | ext4_discard_allocated_blocks(ac); |
6226 | goto errout; |
6227 | } |
6228 | if (ac->ac_status == AC_STATUS_FOUND && |
6229 | ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) |
6230 | ext4_mb_pa_put_free(ac); |
6231 | } |
6232 | if (likely(ac->ac_status == AC_STATUS_FOUND)) { |
6233 | *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); |
6234 | if (*errp) { |
6235 | ext4_discard_allocated_blocks(ac); |
6236 | goto errout; |
6237 | } else { |
6238 | block = ext4_grp_offs_to_block(sb, fex: &ac->ac_b_ex); |
6239 | ar->len = ac->ac_b_ex.fe_len; |
6240 | } |
6241 | } else { |
6242 | if (++retries < 3 && |
6243 | ext4_mb_discard_preallocations_should_retry(sb, ac, seq: &seq)) |
6244 | goto repeat; |
6245 | /* |
6246 | * If block allocation fails then the pa allocated above |
6247 | * needs to be freed here itself. |
6248 | */ |
6249 | ext4_mb_pa_put_free(ac); |
6250 | *errp = -ENOSPC; |
6251 | } |
6252 | |
6253 | if (*errp) { |
6254 | errout: |
6255 | ac->ac_b_ex.fe_len = 0; |
6256 | ar->len = 0; |
6257 | ext4_mb_show_ac(ac); |
6258 | } |
6259 | ext4_mb_release_context(ac); |
6260 | kmem_cache_free(s: ext4_ac_cachep, objp: ac); |
6261 | out: |
6262 | if (inquota && ar->len < inquota) |
6263 | dquot_free_block(inode: ar->inode, EXT4_C2B(sbi, inquota - ar->len)); |
6264 | if (!ar->len) { |
6265 | if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) |
6266 | /* release all the reserved blocks if non delalloc */ |
6267 | percpu_counter_sub(fbc: &sbi->s_dirtyclusters_counter, |
6268 | amount: reserv_clstrs); |
6269 | } |
6270 | |
6271 | trace_ext4_allocate_blocks(ar, block: (unsigned long long)block); |
6272 | |
6273 | return block; |
6274 | } |
6275 | |
6276 | /* |
6277 | * We can merge two free data extents only if the physical blocks |
6278 | * are contiguous, AND the extents were freed by the same transaction, |
6279 | * AND the blocks are associated with the same group. |
6280 | */ |
6281 | static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, |
6282 | struct ext4_free_data *entry, |
6283 | struct ext4_free_data *new_entry, |
6284 | struct rb_root *entry_rb_root) |
6285 | { |
6286 | if ((entry->efd_tid != new_entry->efd_tid) || |
6287 | (entry->efd_group != new_entry->efd_group)) |
6288 | return; |
6289 | if (entry->efd_start_cluster + entry->efd_count == |
6290 | new_entry->efd_start_cluster) { |
6291 | new_entry->efd_start_cluster = entry->efd_start_cluster; |
6292 | new_entry->efd_count += entry->efd_count; |
6293 | } else if (new_entry->efd_start_cluster + new_entry->efd_count == |
6294 | entry->efd_start_cluster) { |
6295 | new_entry->efd_count += entry->efd_count; |
6296 | } else |
6297 | return; |
6298 | spin_lock(lock: &sbi->s_md_lock); |
6299 | list_del(entry: &entry->efd_list); |
6300 | spin_unlock(lock: &sbi->s_md_lock); |
6301 | rb_erase(&entry->efd_node, entry_rb_root); |
6302 | kmem_cache_free(s: ext4_free_data_cachep, objp: entry); |
6303 | } |
6304 | |
6305 | static noinline_for_stack void |
6306 | ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, |
6307 | struct ext4_free_data *new_entry) |
6308 | { |
6309 | ext4_group_t group = e4b->bd_group; |
6310 | ext4_grpblk_t cluster; |
6311 | ext4_grpblk_t clusters = new_entry->efd_count; |
6312 | struct ext4_free_data *entry; |
6313 | struct ext4_group_info *db = e4b->bd_info; |
6314 | struct super_block *sb = e4b->bd_sb; |
6315 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
6316 | struct rb_node **n = &db->bb_free_root.rb_node, *node; |
6317 | struct rb_node *parent = NULL, *new_node; |
6318 | |
6319 | BUG_ON(!ext4_handle_valid(handle)); |
6320 | BUG_ON(e4b->bd_bitmap_folio == NULL); |
6321 | BUG_ON(e4b->bd_buddy_folio == NULL); |
6322 | |
6323 | new_node = &new_entry->efd_node; |
6324 | cluster = new_entry->efd_start_cluster; |
6325 | |
6326 | if (!*n) { |
6327 | /* first free block exent. We need to |
6328 | protect buddy cache from being freed, |
6329 | * otherwise we'll refresh it from |
6330 | * on-disk bitmap and lose not-yet-available |
6331 | * blocks */ |
6332 | folio_get(folio: e4b->bd_buddy_folio); |
6333 | folio_get(folio: e4b->bd_bitmap_folio); |
6334 | } |
6335 | while (*n) { |
6336 | parent = *n; |
6337 | entry = rb_entry(parent, struct ext4_free_data, efd_node); |
6338 | if (cluster < entry->efd_start_cluster) |
6339 | n = &(*n)->rb_left; |
6340 | else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) |
6341 | n = &(*n)->rb_right; |
6342 | else { |
6343 | ext4_grp_locked_error(sb, group, 0, |
6344 | ext4_group_first_block_no(sb, group) + |
6345 | EXT4_C2B(sbi, cluster), |
6346 | "Block already on to-be-freed list"); |
6347 | kmem_cache_free(s: ext4_free_data_cachep, objp: new_entry); |
6348 | return; |
6349 | } |
6350 | } |
6351 | |
6352 | rb_link_node(node: new_node, parent, rb_link: n); |
6353 | rb_insert_color(new_node, &db->bb_free_root); |
6354 | |
6355 | /* Now try to see the extent can be merged to left and right */ |
6356 | node = rb_prev(new_node); |
6357 | if (node) { |
6358 | entry = rb_entry(node, struct ext4_free_data, efd_node); |
6359 | ext4_try_merge_freed_extent(sbi, entry, new_entry, |
6360 | entry_rb_root: &(db->bb_free_root)); |
6361 | } |
6362 | |
6363 | node = rb_next(new_node); |
6364 | if (node) { |
6365 | entry = rb_entry(node, struct ext4_free_data, efd_node); |
6366 | ext4_try_merge_freed_extent(sbi, entry, new_entry, |
6367 | entry_rb_root: &(db->bb_free_root)); |
6368 | } |
6369 | |
6370 | spin_lock(lock: &sbi->s_md_lock); |
6371 | list_add_tail(new: &new_entry->efd_list, head: &sbi->s_freed_data_list[new_entry->efd_tid & 1]); |
6372 | sbi->s_mb_free_pending += clusters; |
6373 | spin_unlock(lock: &sbi->s_md_lock); |
6374 | } |
6375 | |
6376 | static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, |
6377 | unsigned long count) |
6378 | { |
6379 | struct super_block *sb = inode->i_sb; |
6380 | ext4_group_t group; |
6381 | ext4_grpblk_t blkoff; |
6382 | |
6383 | ext4_get_group_no_and_offset(sb, blocknr: block, blockgrpp: &group, offsetp: &blkoff); |
6384 | ext4_mb_mark_context(NULL, sb, state: false, group, blkoff, len: count, |
6385 | EXT4_MB_BITMAP_MARKED_CHECK | |
6386 | EXT4_MB_SYNC_UPDATE, |
6387 | NULL); |
6388 | } |
6389 | |
6390 | /** |
6391 | * ext4_mb_clear_bb() -- helper function for freeing blocks. |
6392 | * Used by ext4_free_blocks() |
6393 | * @handle: handle for this transaction |
6394 | * @inode: inode |
6395 | * @block: starting physical block to be freed |
6396 | * @count: number of blocks to be freed |
6397 | * @flags: flags used by ext4_free_blocks |
6398 | */ |
6399 | static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, |
6400 | ext4_fsblk_t block, unsigned long count, |
6401 | int flags) |
6402 | { |
6403 | struct super_block *sb = inode->i_sb; |
6404 | struct ext4_group_info *grp; |
6405 | unsigned int overflow; |
6406 | ext4_grpblk_t bit; |
6407 | ext4_group_t block_group; |
6408 | struct ext4_sb_info *sbi; |
6409 | struct ext4_buddy e4b; |
6410 | unsigned int count_clusters; |
6411 | int err = 0; |
6412 | int mark_flags = 0; |
6413 | ext4_grpblk_t changed; |
6414 | |
6415 | sbi = EXT4_SB(sb); |
6416 | |
6417 | if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && |
6418 | !ext4_inode_block_valid(inode, start_blk: block, count)) { |
6419 | ext4_error(sb, "Freeing blocks in system zone - " |
6420 | "Block = %llu, count = %lu", block, count); |
6421 | /* err = 0. ext4_std_error should be a no op */ |
6422 | goto error_out; |
6423 | } |
6424 | flags |= EXT4_FREE_BLOCKS_VALIDATED; |
6425 | |
6426 | do_more: |
6427 | overflow = 0; |
6428 | ext4_get_group_no_and_offset(sb, blocknr: block, blockgrpp: &block_group, offsetp: &bit); |
6429 | |
6430 | grp = ext4_get_group_info(sb, group: block_group); |
6431 | if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) |
6432 | return; |
6433 | |
6434 | /* |
6435 | * Check to see if we are freeing blocks across a group |
6436 | * boundary. |
6437 | */ |
6438 | if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { |
6439 | overflow = EXT4_C2B(sbi, bit) + count - |
6440 | EXT4_BLOCKS_PER_GROUP(sb); |
6441 | count -= overflow; |
6442 | /* The range changed so it's no longer validated */ |
6443 | flags &= ~EXT4_FREE_BLOCKS_VALIDATED; |
6444 | } |
6445 | count_clusters = EXT4_NUM_B2C(sbi, count); |
6446 | trace_ext4_mballoc_free(sb, inode, group: block_group, start: bit, len: count_clusters); |
6447 | |
6448 | /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ |
6449 | err = ext4_mb_load_buddy_gfp(sb, group: block_group, e4b: &e4b, |
6450 | GFP_NOFS|__GFP_NOFAIL); |
6451 | if (err) |
6452 | goto error_out; |
6453 | |
6454 | if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && |
6455 | !ext4_inode_block_valid(inode, start_blk: block, count)) { |
6456 | ext4_error(sb, "Freeing blocks in system zone - " |
6457 | "Block = %llu, count = %lu", block, count); |
6458 | /* err = 0. ext4_std_error should be a no op */ |
6459 | goto error_clean; |
6460 | } |
6461 | |
6462 | #ifdef AGGRESSIVE_CHECK |
6463 | mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK; |
6464 | #endif |
6465 | err = ext4_mb_mark_context(handle, sb, state: false, group: block_group, blkoff: bit, |
6466 | len: count_clusters, flags: mark_flags, ret_changed: &changed); |
6467 | |
6468 | |
6469 | if (err && changed == 0) |
6470 | goto error_clean; |
6471 | |
6472 | #ifdef AGGRESSIVE_CHECK |
6473 | BUG_ON(changed != count_clusters); |
6474 | #endif |
6475 | |
6476 | /* |
6477 | * We need to make sure we don't reuse the freed block until after the |
6478 | * transaction is committed. We make an exception if the inode is to be |
6479 | * written in writeback mode since writeback mode has weak data |
6480 | * consistency guarantees. |
6481 | */ |
6482 | if (ext4_handle_valid(handle) && |
6483 | ((flags & EXT4_FREE_BLOCKS_METADATA) || |
6484 | !ext4_should_writeback_data(inode))) { |
6485 | struct ext4_free_data *new_entry; |
6486 | /* |
6487 | * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed |
6488 | * to fail. |
6489 | */ |
6490 | new_entry = kmem_cache_alloc(ext4_free_data_cachep, |
6491 | GFP_NOFS|__GFP_NOFAIL); |
6492 | new_entry->efd_start_cluster = bit; |
6493 | new_entry->efd_group = block_group; |
6494 | new_entry->efd_count = count_clusters; |
6495 | new_entry->efd_tid = handle->h_transaction->t_tid; |
6496 | |
6497 | ext4_lock_group(sb, group: block_group); |
6498 | ext4_mb_free_metadata(handle, e4b: &e4b, new_entry); |
6499 | } else { |
6500 | if (test_opt(sb, DISCARD)) { |
6501 | err = ext4_issue_discard(sb, block_group, cluster: bit, |
6502 | count: count_clusters); |
6503 | /* |
6504 | * Ignore EOPNOTSUPP error. This is consistent with |
6505 | * what happens when using journal. |
6506 | */ |
6507 | if (err == -EOPNOTSUPP) |
6508 | err = 0; |
6509 | if (err) |
6510 | ext4_msg(sb, KERN_WARNING, "discard request in" |
6511 | " group:%u block:%d count:%lu failed" |
6512 | " with %d", block_group, bit, count, |
6513 | err); |
6514 | } |
6515 | |
6516 | EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); |
6517 | |
6518 | ext4_lock_group(sb, group: block_group); |
6519 | mb_free_blocks(inode, e4b: &e4b, first: bit, count: count_clusters); |
6520 | } |
6521 | |
6522 | ext4_unlock_group(sb, group: block_group); |
6523 | |
6524 | /* |
6525 | * on a bigalloc file system, defer the s_freeclusters_counter |
6526 | * update to the caller (ext4_remove_space and friends) so they |
6527 | * can determine if a cluster freed here should be rereserved |
6528 | */ |
6529 | if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { |
6530 | if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) |
6531 | dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); |
6532 | percpu_counter_add(fbc: &sbi->s_freeclusters_counter, |
6533 | amount: count_clusters); |
6534 | } |
6535 | |
6536 | if (overflow && !err) { |
6537 | block += count; |
6538 | count = overflow; |
6539 | ext4_mb_unload_buddy(e4b: &e4b); |
6540 | /* The range changed so it's no longer validated */ |
6541 | flags &= ~EXT4_FREE_BLOCKS_VALIDATED; |
6542 | goto do_more; |
6543 | } |
6544 | |
6545 | error_clean: |
6546 | ext4_mb_unload_buddy(e4b: &e4b); |
6547 | error_out: |
6548 | ext4_std_error(sb, err); |
6549 | } |
6550 | |
6551 | /** |
6552 | * ext4_free_blocks() -- Free given blocks and update quota |
6553 | * @handle: handle for this transaction |
6554 | * @inode: inode |
6555 | * @bh: optional buffer of the block to be freed |
6556 | * @block: starting physical block to be freed |
6557 | * @count: number of blocks to be freed |
6558 | * @flags: flags used by ext4_free_blocks |
6559 | */ |
6560 | void ext4_free_blocks(handle_t *handle, struct inode *inode, |
6561 | struct buffer_head *bh, ext4_fsblk_t block, |
6562 | unsigned long count, int flags) |
6563 | { |
6564 | struct super_block *sb = inode->i_sb; |
6565 | unsigned int overflow; |
6566 | struct ext4_sb_info *sbi; |
6567 | |
6568 | sbi = EXT4_SB(sb); |
6569 | |
6570 | if (bh) { |
6571 | if (block) |
6572 | BUG_ON(block != bh->b_blocknr); |
6573 | else |
6574 | block = bh->b_blocknr; |
6575 | } |
6576 | |
6577 | if (sbi->s_mount_state & EXT4_FC_REPLAY) { |
6578 | ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); |
6579 | return; |
6580 | } |
6581 | |
6582 | might_sleep(); |
6583 | |
6584 | if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && |
6585 | !ext4_inode_block_valid(inode, start_blk: block, count)) { |
6586 | ext4_error(sb, "Freeing blocks not in datazone - " |
6587 | "block = %llu, count = %lu", block, count); |
6588 | return; |
6589 | } |
6590 | flags |= EXT4_FREE_BLOCKS_VALIDATED; |
6591 | |
6592 | ext4_debug("freeing block %llu\n", block); |
6593 | trace_ext4_free_blocks(inode, block, count, flags); |
6594 | |
6595 | if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { |
6596 | BUG_ON(count > 1); |
6597 | |
6598 | ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, |
6599 | inode, bh, block); |
6600 | } |
6601 | |
6602 | /* |
6603 | * If the extent to be freed does not begin on a cluster |
6604 | * boundary, we need to deal with partial clusters at the |
6605 | * beginning and end of the extent. Normally we will free |
6606 | * blocks at the beginning or the end unless we are explicitly |
6607 | * requested to avoid doing so. |
6608 | */ |
6609 | overflow = EXT4_PBLK_COFF(sbi, block); |
6610 | if (overflow) { |
6611 | if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { |
6612 | overflow = sbi->s_cluster_ratio - overflow; |
6613 | block += overflow; |
6614 | if (count > overflow) |
6615 | count -= overflow; |
6616 | else |
6617 | return; |
6618 | } else { |
6619 | block -= overflow; |
6620 | count += overflow; |
6621 | } |
6622 | /* The range changed so it's no longer validated */ |
6623 | flags &= ~EXT4_FREE_BLOCKS_VALIDATED; |
6624 | } |
6625 | overflow = EXT4_LBLK_COFF(sbi, count); |
6626 | if (overflow) { |
6627 | if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { |
6628 | if (count > overflow) |
6629 | count -= overflow; |
6630 | else |
6631 | return; |
6632 | } else |
6633 | count += sbi->s_cluster_ratio - overflow; |
6634 | /* The range changed so it's no longer validated */ |
6635 | flags &= ~EXT4_FREE_BLOCKS_VALIDATED; |
6636 | } |
6637 | |
6638 | if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { |
6639 | int i; |
6640 | int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; |
6641 | |
6642 | for (i = 0; i < count; i++) { |
6643 | cond_resched(); |
6644 | if (is_metadata) |
6645 | bh = sb_find_get_block_nonatomic(sb: inode->i_sb, |
6646 | block: block + i); |
6647 | ext4_forget(handle, is_metadata, inode, bh, block + i); |
6648 | } |
6649 | } |
6650 | |
6651 | ext4_mb_clear_bb(handle, inode, block, count, flags); |
6652 | } |
6653 | |
6654 | /** |
6655 | * ext4_group_add_blocks() -- Add given blocks to an existing group |
6656 | * @handle: handle to this transaction |
6657 | * @sb: super block |
6658 | * @block: start physical block to add to the block group |
6659 | * @count: number of blocks to free |
6660 | * |
6661 | * This marks the blocks as free in the bitmap and buddy. |
6662 | */ |
6663 | int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, |
6664 | ext4_fsblk_t block, unsigned long count) |
6665 | { |
6666 | ext4_group_t block_group; |
6667 | ext4_grpblk_t bit; |
6668 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
6669 | struct ext4_buddy e4b; |
6670 | int err = 0; |
6671 | ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); |
6672 | ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); |
6673 | unsigned long cluster_count = last_cluster - first_cluster + 1; |
6674 | ext4_grpblk_t changed; |
6675 | |
6676 | ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); |
6677 | |
6678 | if (cluster_count == 0) |
6679 | return 0; |
6680 | |
6681 | ext4_get_group_no_and_offset(sb, blocknr: block, blockgrpp: &block_group, offsetp: &bit); |
6682 | /* |
6683 | * Check to see if we are freeing blocks across a group |
6684 | * boundary. |
6685 | */ |
6686 | if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { |
6687 | ext4_warning(sb, "too many blocks added to group %u", |
6688 | block_group); |
6689 | err = -EINVAL; |
6690 | goto error_out; |
6691 | } |
6692 | |
6693 | err = ext4_mb_load_buddy(sb, group: block_group, e4b: &e4b); |
6694 | if (err) |
6695 | goto error_out; |
6696 | |
6697 | if (!ext4_sb_block_valid(sb, NULL, start_blk: block, count)) { |
6698 | ext4_error(sb, "Adding blocks in system zones - " |
6699 | "Block = %llu, count = %lu", |
6700 | block, count); |
6701 | err = -EINVAL; |
6702 | goto error_clean; |
6703 | } |
6704 | |
6705 | err = ext4_mb_mark_context(handle, sb, state: false, group: block_group, blkoff: bit, |
6706 | len: cluster_count, EXT4_MB_BITMAP_MARKED_CHECK, |
6707 | ret_changed: &changed); |
6708 | if (err && changed == 0) |
6709 | goto error_clean; |
6710 | |
6711 | if (changed != cluster_count) |
6712 | ext4_error(sb, "bit already cleared in group %u", block_group); |
6713 | |
6714 | ext4_lock_group(sb, group: block_group); |
6715 | mb_free_blocks(NULL, e4b: &e4b, first: bit, count: cluster_count); |
6716 | ext4_unlock_group(sb, group: block_group); |
6717 | percpu_counter_add(fbc: &sbi->s_freeclusters_counter, |
6718 | amount: changed); |
6719 | |
6720 | error_clean: |
6721 | ext4_mb_unload_buddy(e4b: &e4b); |
6722 | error_out: |
6723 | ext4_std_error(sb, err); |
6724 | return err; |
6725 | } |
6726 | |
6727 | /** |
6728 | * ext4_trim_extent -- function to TRIM one single free extent in the group |
6729 | * @sb: super block for the file system |
6730 | * @start: starting block of the free extent in the alloc. group |
6731 | * @count: number of blocks to TRIM |
6732 | * @e4b: ext4 buddy for the group |
6733 | * |
6734 | * Trim "count" blocks starting at "start" in the "group". To assure that no |
6735 | * one will allocate those blocks, mark it as used in buddy bitmap. This must |
6736 | * be called with under the group lock. |
6737 | */ |
6738 | static int ext4_trim_extent(struct super_block *sb, |
6739 | int start, int count, struct ext4_buddy *e4b) |
6740 | __releases(bitlock) |
6741 | __acquires(bitlock) |
6742 | { |
6743 | struct ext4_free_extent ex; |
6744 | ext4_group_t group = e4b->bd_group; |
6745 | int ret = 0; |
6746 | |
6747 | trace_ext4_trim_extent(sb, group, start, len: count); |
6748 | |
6749 | assert_spin_locked(ext4_group_lock_ptr(sb, group)); |
6750 | |
6751 | ex.fe_start = start; |
6752 | ex.fe_group = group; |
6753 | ex.fe_len = count; |
6754 | |
6755 | /* |
6756 | * Mark blocks used, so no one can reuse them while |
6757 | * being trimmed. |
6758 | */ |
6759 | mb_mark_used(e4b, ex: &ex); |
6760 | ext4_unlock_group(sb, group); |
6761 | ret = ext4_issue_discard(sb, block_group: group, cluster: start, count); |
6762 | ext4_lock_group(sb, group); |
6763 | mb_free_blocks(NULL, e4b, first: start, count: ex.fe_len); |
6764 | return ret; |
6765 | } |
6766 | |
6767 | static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, |
6768 | ext4_group_t grp) |
6769 | { |
6770 | unsigned long nr_clusters_in_group; |
6771 | |
6772 | if (grp < (ext4_get_groups_count(sb) - 1)) |
6773 | nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); |
6774 | else |
6775 | nr_clusters_in_group = (ext4_blocks_count(es: EXT4_SB(sb)->s_es) - |
6776 | ext4_group_first_block_no(sb, group_no: grp)) |
6777 | >> EXT4_CLUSTER_BITS(sb); |
6778 | |
6779 | return nr_clusters_in_group - 1; |
6780 | } |
6781 | |
6782 | static bool ext4_trim_interrupted(void) |
6783 | { |
6784 | return fatal_signal_pending(current) || freezing(current); |
6785 | } |
6786 | |
6787 | static int ext4_try_to_trim_range(struct super_block *sb, |
6788 | struct ext4_buddy *e4b, ext4_grpblk_t start, |
6789 | ext4_grpblk_t max, ext4_grpblk_t minblocks) |
6790 | __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) |
6791 | __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) |
6792 | { |
6793 | ext4_grpblk_t next, count, free_count, last, origin_start; |
6794 | bool set_trimmed = false; |
6795 | void *bitmap; |
6796 | |
6797 | if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) |
6798 | return 0; |
6799 | |
6800 | last = ext4_last_grp_cluster(sb, grp: e4b->bd_group); |
6801 | bitmap = e4b->bd_bitmap; |
6802 | if (start == 0 && max >= last) |
6803 | set_trimmed = true; |
6804 | origin_start = start; |
6805 | start = max(e4b->bd_info->bb_first_free, start); |
6806 | count = 0; |
6807 | free_count = 0; |
6808 | |
6809 | while (start <= max) { |
6810 | start = mb_find_next_zero_bit(addr: bitmap, max: max + 1, start); |
6811 | if (start > max) |
6812 | break; |
6813 | |
6814 | next = mb_find_next_bit(addr: bitmap, max: last + 1, start); |
6815 | if (origin_start == 0 && next >= last) |
6816 | set_trimmed = true; |
6817 | |
6818 | if ((next - start) >= minblocks) { |
6819 | int ret = ext4_trim_extent(sb, start, count: next - start, e4b); |
6820 | |
6821 | if (ret && ret != -EOPNOTSUPP) |
6822 | return count; |
6823 | count += next - start; |
6824 | } |
6825 | free_count += next - start; |
6826 | start = next + 1; |
6827 | |
6828 | if (ext4_trim_interrupted()) |
6829 | return count; |
6830 | |
6831 | if (need_resched()) { |
6832 | ext4_unlock_group(sb, group: e4b->bd_group); |
6833 | cond_resched(); |
6834 | ext4_lock_group(sb, group: e4b->bd_group); |
6835 | } |
6836 | |
6837 | if ((e4b->bd_info->bb_free - free_count) < minblocks) |
6838 | break; |
6839 | } |
6840 | |
6841 | if (set_trimmed) |
6842 | EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); |
6843 | |
6844 | return count; |
6845 | } |
6846 | |
6847 | /** |
6848 | * ext4_trim_all_free -- function to trim all free space in alloc. group |
6849 | * @sb: super block for file system |
6850 | * @group: group to be trimmed |
6851 | * @start: first group block to examine |
6852 | * @max: last group block to examine |
6853 | * @minblocks: minimum extent block count |
6854 | * |
6855 | * ext4_trim_all_free walks through group's block bitmap searching for free |
6856 | * extents. When the free extent is found, mark it as used in group buddy |
6857 | * bitmap. Then issue a TRIM command on this extent and free the extent in |
6858 | * the group buddy bitmap. |
6859 | */ |
6860 | static ext4_grpblk_t |
6861 | ext4_trim_all_free(struct super_block *sb, ext4_group_t group, |
6862 | ext4_grpblk_t start, ext4_grpblk_t max, |
6863 | ext4_grpblk_t minblocks) |
6864 | { |
6865 | struct ext4_buddy e4b; |
6866 | int ret; |
6867 | |
6868 | trace_ext4_trim_all_free(sb, group, start, len: max); |
6869 | |
6870 | ret = ext4_mb_load_buddy(sb, group, e4b: &e4b); |
6871 | if (ret) { |
6872 | ext4_warning(sb, "Error %d loading buddy information for %u", |
6873 | ret, group); |
6874 | return ret; |
6875 | } |
6876 | |
6877 | ext4_lock_group(sb, group); |
6878 | |
6879 | if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || |
6880 | minblocks < EXT4_SB(sb)->s_last_trim_minblks) |
6881 | ret = ext4_try_to_trim_range(sb, e4b: &e4b, start, max, minblocks); |
6882 | else |
6883 | ret = 0; |
6884 | |
6885 | ext4_unlock_group(sb, group); |
6886 | ext4_mb_unload_buddy(e4b: &e4b); |
6887 | |
6888 | ext4_debug("trimmed %d blocks in the group %d\n", |
6889 | ret, group); |
6890 | |
6891 | return ret; |
6892 | } |
6893 | |
6894 | /** |
6895 | * ext4_trim_fs() -- trim ioctl handle function |
6896 | * @sb: superblock for filesystem |
6897 | * @range: fstrim_range structure |
6898 | * |
6899 | * start: First Byte to trim |
6900 | * len: number of Bytes to trim from start |
6901 | * minlen: minimum extent length in Bytes |
6902 | * ext4_trim_fs goes through all allocation groups containing Bytes from |
6903 | * start to start+len. For each such a group ext4_trim_all_free function |
6904 | * is invoked to trim all free space. |
6905 | */ |
6906 | int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) |
6907 | { |
6908 | unsigned int discard_granularity = bdev_discard_granularity(bdev: sb->s_bdev); |
6909 | struct ext4_group_info *grp; |
6910 | ext4_group_t group, first_group, last_group; |
6911 | ext4_grpblk_t cnt = 0, first_cluster, last_cluster; |
6912 | uint64_t start, end, minlen, trimmed = 0; |
6913 | ext4_fsblk_t first_data_blk = |
6914 | le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); |
6915 | ext4_fsblk_t max_blks = ext4_blocks_count(es: EXT4_SB(sb)->s_es); |
6916 | int ret = 0; |
6917 | |
6918 | start = range->start >> sb->s_blocksize_bits; |
6919 | end = start + (range->len >> sb->s_blocksize_bits) - 1; |
6920 | minlen = EXT4_NUM_B2C(EXT4_SB(sb), |
6921 | range->minlen >> sb->s_blocksize_bits); |
6922 | |
6923 | if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || |
6924 | start >= max_blks || |
6925 | range->len < sb->s_blocksize) |
6926 | return -EINVAL; |
6927 | /* No point to try to trim less than discard granularity */ |
6928 | if (range->minlen < discard_granularity) { |
6929 | minlen = EXT4_NUM_B2C(EXT4_SB(sb), |
6930 | discard_granularity >> sb->s_blocksize_bits); |
6931 | if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) |
6932 | goto out; |
6933 | } |
6934 | if (end >= max_blks - 1) |
6935 | end = max_blks - 1; |
6936 | if (end <= first_data_blk) |
6937 | goto out; |
6938 | if (start < first_data_blk) |
6939 | start = first_data_blk; |
6940 | |
6941 | /* Determine first and last group to examine based on start and end */ |
6942 | ext4_get_group_no_and_offset(sb, blocknr: (ext4_fsblk_t) start, |
6943 | blockgrpp: &first_group, offsetp: &first_cluster); |
6944 | ext4_get_group_no_and_offset(sb, blocknr: (ext4_fsblk_t) end, |
6945 | blockgrpp: &last_group, offsetp: &last_cluster); |
6946 | |
6947 | /* end now represents the last cluster to discard in this group */ |
6948 | end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; |
6949 | |
6950 | for (group = first_group; group <= last_group; group++) { |
6951 | if (ext4_trim_interrupted()) |
6952 | break; |
6953 | grp = ext4_get_group_info(sb, group); |
6954 | if (!grp) |
6955 | continue; |
6956 | /* We only do this if the grp has never been initialized */ |
6957 | if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { |
6958 | ret = ext4_mb_init_group(sb, group, GFP_NOFS); |
6959 | if (ret) |
6960 | break; |
6961 | } |
6962 | |
6963 | /* |
6964 | * For all the groups except the last one, last cluster will |
6965 | * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to |
6966 | * change it for the last group, note that last_cluster is |
6967 | * already computed earlier by ext4_get_group_no_and_offset() |
6968 | */ |
6969 | if (group == last_group) |
6970 | end = last_cluster; |
6971 | if (grp->bb_free >= minlen) { |
6972 | cnt = ext4_trim_all_free(sb, group, start: first_cluster, |
6973 | max: end, minblocks: minlen); |
6974 | if (cnt < 0) { |
6975 | ret = cnt; |
6976 | break; |
6977 | } |
6978 | trimmed += cnt; |
6979 | } |
6980 | |
6981 | /* |
6982 | * For every group except the first one, we are sure |
6983 | * that the first cluster to discard will be cluster #0. |
6984 | */ |
6985 | first_cluster = 0; |
6986 | } |
6987 | |
6988 | if (!ret) |
6989 | EXT4_SB(sb)->s_last_trim_minblks = minlen; |
6990 | |
6991 | out: |
6992 | range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; |
6993 | return ret; |
6994 | } |
6995 | |
6996 | /* Iterate all the free extents in the group. */ |
6997 | int |
6998 | ext4_mballoc_query_range( |
6999 | struct super_block *sb, |
7000 | ext4_group_t group, |
7001 | ext4_grpblk_t first, |
7002 | ext4_grpblk_t end, |
7003 | ext4_mballoc_query_range_fn meta_formatter, |
7004 | ext4_mballoc_query_range_fn formatter, |
7005 | void *priv) |
7006 | { |
7007 | void *bitmap; |
7008 | ext4_grpblk_t start, next; |
7009 | struct ext4_buddy e4b; |
7010 | int error; |
7011 | |
7012 | error = ext4_mb_load_buddy(sb, group, e4b: &e4b); |
7013 | if (error) |
7014 | return error; |
7015 | bitmap = e4b.bd_bitmap; |
7016 | |
7017 | ext4_lock_group(sb, group); |
7018 | |
7019 | start = max(e4b.bd_info->bb_first_free, first); |
7020 | if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) |
7021 | end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; |
7022 | if (meta_formatter && start != first) { |
7023 | if (start > end) |
7024 | start = end; |
7025 | ext4_unlock_group(sb, group); |
7026 | error = meta_formatter(sb, group, first, start - first, |
7027 | priv); |
7028 | if (error) |
7029 | goto out_unload; |
7030 | ext4_lock_group(sb, group); |
7031 | } |
7032 | while (start <= end) { |
7033 | start = mb_find_next_zero_bit(addr: bitmap, max: end + 1, start); |
7034 | if (start > end) |
7035 | break; |
7036 | next = mb_find_next_bit(addr: bitmap, max: end + 1, start); |
7037 | |
7038 | ext4_unlock_group(sb, group); |
7039 | error = formatter(sb, group, start, next - start, priv); |
7040 | if (error) |
7041 | goto out_unload; |
7042 | ext4_lock_group(sb, group); |
7043 | |
7044 | start = next + 1; |
7045 | } |
7046 | |
7047 | ext4_unlock_group(sb, group); |
7048 | out_unload: |
7049 | ext4_mb_unload_buddy(e4b: &e4b); |
7050 | |
7051 | return error; |
7052 | } |
7053 | |
7054 | #ifdef CONFIG_EXT4_KUNIT_TESTS |
7055 | #include "mballoc-test.c" |
7056 | #endif |
7057 |
Definitions
- ext4_pspace_cachep
- ext4_ac_cachep
- ext4_free_data_cachep
- ext4_groupinfo_caches
- ext4_groupinfo_slab_names
- discard_pa_seq
- ext4_get_discard_pa_seq_sum
- mb_correct_addr_and_bit
- mb_test_bit
- mb_set_bit
- mb_clear_bit
- mb_test_and_clear_bit
- mb_find_next_zero_bit
- mb_find_next_bit
- mb_find_buddy
- mb_free_blocks_double
- mb_mark_used_double
- mb_cmp_bitmaps
- mb_group_bb_bitmap_alloc
- mb_group_bb_bitmap_free
- ext4_mb_mark_free_simple
- mb_avg_fragment_size_order
- mb_update_avg_fragment_size
- ext4_mb_choose_next_group_p2_aligned
- ext4_mb_find_good_group_avg_frag_lists
- ext4_mb_choose_next_group_goal_fast
- ext4_mb_choose_next_group_best_avail
- should_optimize_scan
- next_linear_group
- ext4_mb_choose_next_group
- mb_set_largest_free_order
- ext4_mb_generate_buddy
- mb_regenerate_buddy
- ext4_mb_init_cache
- ext4_mb_get_buddy_page_lock
- ext4_mb_put_buddy_page_lock
- ext4_mb_init_group
- ext4_mb_load_buddy_gfp
- ext4_mb_load_buddy
- ext4_mb_unload_buddy
- mb_find_order_for_block
- mb_clear_bits
- mb_test_and_clear_bits
- mb_set_bits
- mb_buddy_adjust_border
- mb_buddy_mark_free
- mb_free_blocks
- mb_find_extent
- mb_mark_used
- ext4_mb_use_best_found
- ext4_mb_check_limits
- ext4_mb_measure_extent
- ext4_mb_try_best_found
- ext4_mb_find_by_goal
- ext4_mb_simple_scan_group
- ext4_mb_complex_scan_group
- ext4_mb_scan_aligned
- ext4_mb_good_group
- ext4_mb_good_group_nolock
- ext4_mb_prefetch
- ext4_mb_prefetch_fini
- ext4_mb_regular_allocator
- ext4_mb_seq_groups_start
- ext4_mb_seq_groups_next
- ext4_mb_seq_groups_show
- ext4_mb_seq_groups_stop
- ext4_mb_seq_groups_ops
- ext4_seq_mb_stats_show
- ext4_mb_seq_structs_summary_start
- ext4_mb_seq_structs_summary_next
- ext4_mb_seq_structs_summary_show
- ext4_mb_seq_structs_summary_stop
- ext4_mb_seq_structs_summary_ops
- get_groupinfo_cache
- ext4_mb_alloc_groupinfo
- ext4_mb_add_groupinfo
- ext4_mb_init_backend
- ext4_groupinfo_destroy_slabs
- ext4_groupinfo_create_slab
- ext4_discard_work
- ext4_mb_init
- ext4_mb_cleanup_pa
- ext4_mb_release
- ext4_issue_discard
- ext4_free_data_in_buddy
- ext4_process_freed_data
- ext4_init_mballoc
- ext4_exit_mballoc
- ext4_mb_mark_context
- ext4_mb_mark_diskspace_used
- ext4_mb_mark_bb
- ext4_mb_normalize_group_request
- ext4_mb_pa_rb_next_iter
- ext4_mb_pa_assert_overlap
- ext4_mb_pa_adjust_overlap
- ext4_mb_normalize_request
- ext4_mb_collect_stats
- ext4_discard_allocated_blocks
- ext4_mb_use_inode_pa
- ext4_mb_use_group_pa
- ext4_mb_check_group_pa
- ext4_mb_pa_goal_check
- ext4_mb_use_preallocated
- ext4_mb_generate_from_pa
- ext4_mb_mark_pa_deleted
- ext4_mb_pa_free
- ext4_mb_pa_callback
- ext4_mb_put_pa
- ext4_mb_pa_rb_insert
- ext4_mb_new_inode_pa
- ext4_mb_new_group_pa
- ext4_mb_new_preallocation
- ext4_mb_release_inode_pa
- ext4_mb_release_group_pa
- ext4_mb_discard_group_preallocations
- ext4_discard_preallocations
- ext4_mb_pa_alloc
- ext4_mb_pa_put_free
- ext4_mb_show_pa
- ext4_mb_show_ac
- ext4_mb_group_or_file
- ext4_mb_initialize_context
- ext4_mb_discard_lg_preallocations
- ext4_mb_add_n_trim
- ext4_mb_release_context
- ext4_mb_discard_preallocations
- ext4_mb_discard_preallocations_should_retry
- ext4_mb_new_blocks_simple
- ext4_mb_new_blocks
- ext4_try_merge_freed_extent
- ext4_mb_free_metadata
- ext4_free_blocks_simple
- ext4_mb_clear_bb
- ext4_free_blocks
- ext4_group_add_blocks
- ext4_trim_extent
- ext4_last_grp_cluster
- ext4_trim_interrupted
- ext4_try_to_trim_range
- ext4_trim_all_free
- ext4_trim_fs
Improve your Profiling and Debugging skills
Find out more