1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/fs.h>
10#include <linux/dlm.h>
11#include <linux/slab.h>
12#include <linux/types.h>
13#include <linux/delay.h>
14#include <linux/gfs2_ondisk.h>
15#include <linux/sched/signal.h>
16
17#include "incore.h"
18#include "glock.h"
19#include "glops.h"
20#include "recovery.h"
21#include "util.h"
22#include "sys.h"
23#include "trace_gfs2.h"
24
25/**
26 * gfs2_update_stats - Update time based stats
27 * @s: The stats to update (local or global)
28 * @index: The index inside @s
29 * @sample: New data to include
30 */
31static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 s64 sample)
33{
34 /*
35 * @delta is the difference between the current rtt sample and the
36 * running average srtt. We add 1/8 of that to the srtt in order to
37 * update the current srtt estimate. The variance estimate is a bit
38 * more complicated. We subtract the current variance estimate from
39 * the abs value of the @delta and add 1/4 of that to the running
40 * total. That's equivalent to 3/4 of the current variance
41 * estimate plus 1/4 of the abs of @delta.
42 *
43 * Note that the index points at the array entry containing the
44 * smoothed mean value, and the variance is always in the following
45 * entry
46 *
47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 * case, they are not scaled fixed point.
50 */
51
52 s64 delta = sample - s->stats[index];
53 s->stats[index] += (delta >> 3);
54 index++;
55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56}
57
58/**
59 * gfs2_update_reply_times - Update locking statistics
60 * @gl: The glock to update
61 *
62 * This assumes that gl->gl_dstamp has been set earlier.
63 *
64 * The rtt (lock round trip time) is an estimate of the time
65 * taken to perform a dlm lock request. We update it on each
66 * reply from the dlm.
67 *
68 * The blocking flag is set on the glock for all dlm requests
69 * which may potentially block due to lock requests from other nodes.
70 * DLM requests where the current lock state is exclusive, the
71 * requested state is null (or unlocked) or where the TRY or
72 * TRY_1CB flags are set are classified as non-blocking. All
73 * other DLM requests are counted as (potentially) blocking.
74 */
75static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76{
77 struct gfs2_pcpu_lkstats *lks;
78 const unsigned gltype = gl->gl_name.ln_type;
79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 s64 rtt;
82
83 preempt_disable();
84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 gfs2_update_stats(s: &gl->gl_stats, index, sample: rtt); /* Local */
87 gfs2_update_stats(s: &lks->lkstats[gltype], index, sample: rtt); /* Global */
88 preempt_enable();
89
90 trace_gfs2_glock_lock_time(gl, tdiff: rtt);
91}
92
93/**
94 * gfs2_update_request_times - Update locking statistics
95 * @gl: The glock to update
96 *
97 * The irt (lock inter-request times) measures the average time
98 * between requests to the dlm. It is updated immediately before
99 * each dlm call.
100 */
101
102static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103{
104 struct gfs2_pcpu_lkstats *lks;
105 const unsigned gltype = gl->gl_name.ln_type;
106 ktime_t dstamp;
107 s64 irt;
108
109 preempt_disable();
110 dstamp = gl->gl_dstamp;
111 gl->gl_dstamp = ktime_get_real();
112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 gfs2_update_stats(s: &gl->gl_stats, index: GFS2_LKS_SIRT, sample: irt); /* Local */
115 gfs2_update_stats(s: &lks->lkstats[gltype], index: GFS2_LKS_SIRT, sample: irt); /* Global */
116 preempt_enable();
117}
118
119static void gdlm_ast(void *arg)
120{
121 struct gfs2_glock *gl = arg;
122 unsigned ret = gl->gl_state;
123
124 gfs2_update_reply_times(gl);
125 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
126
127 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
128 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
129
130 switch (gl->gl_lksb.sb_status) {
131 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
132 if (gl->gl_ops->go_free)
133 gl->gl_ops->go_free(gl);
134 gfs2_glock_free(gl);
135 return;
136 case -DLM_ECANCEL: /* Cancel while getting lock */
137 ret |= LM_OUT_CANCELED;
138 goto out;
139 case -EAGAIN: /* Try lock fails */
140 case -EDEADLK: /* Deadlock detected */
141 goto out;
142 case -ETIMEDOUT: /* Canceled due to timeout */
143 ret |= LM_OUT_ERROR;
144 goto out;
145 case 0: /* Success */
146 break;
147 default: /* Something unexpected */
148 BUG();
149 }
150
151 ret = gl->gl_req;
152 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
153 if (gl->gl_req == LM_ST_SHARED)
154 ret = LM_ST_DEFERRED;
155 else if (gl->gl_req == LM_ST_DEFERRED)
156 ret = LM_ST_SHARED;
157 else
158 BUG();
159 }
160
161 set_bit(nr: GLF_INITIAL, addr: &gl->gl_flags);
162 gfs2_glock_complete(gl, ret);
163 return;
164out:
165 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
166 gl->gl_lksb.sb_lkid = 0;
167 gfs2_glock_complete(gl, ret);
168}
169
170static void gdlm_bast(void *arg, int mode)
171{
172 struct gfs2_glock *gl = arg;
173
174 switch (mode) {
175 case DLM_LOCK_EX:
176 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
177 break;
178 case DLM_LOCK_CW:
179 gfs2_glock_cb(gl, LM_ST_DEFERRED);
180 break;
181 case DLM_LOCK_PR:
182 gfs2_glock_cb(gl, LM_ST_SHARED);
183 break;
184 default:
185 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
186 BUG();
187 }
188}
189
190/* convert gfs lock-state to dlm lock-mode */
191
192static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
193{
194 switch (lmstate) {
195 case LM_ST_UNLOCKED:
196 return DLM_LOCK_NL;
197 case LM_ST_EXCLUSIVE:
198 return DLM_LOCK_EX;
199 case LM_ST_DEFERRED:
200 return DLM_LOCK_CW;
201 case LM_ST_SHARED:
202 return DLM_LOCK_PR;
203 }
204 fs_err(sdp, "unknown LM state %d\n", lmstate);
205 BUG();
206 return -1;
207}
208
209static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
210 const int req)
211{
212 u32 lkf = 0;
213
214 if (gl->gl_lksb.sb_lvbptr)
215 lkf |= DLM_LKF_VALBLK;
216
217 if (gfs_flags & LM_FLAG_TRY)
218 lkf |= DLM_LKF_NOQUEUE;
219
220 if (gfs_flags & LM_FLAG_TRY_1CB) {
221 lkf |= DLM_LKF_NOQUEUE;
222 lkf |= DLM_LKF_NOQUEUEBAST;
223 }
224
225 if (gfs_flags & LM_FLAG_ANY) {
226 if (req == DLM_LOCK_PR)
227 lkf |= DLM_LKF_ALTCW;
228 else if (req == DLM_LOCK_CW)
229 lkf |= DLM_LKF_ALTPR;
230 else
231 BUG();
232 }
233
234 if (gl->gl_lksb.sb_lkid != 0) {
235 lkf |= DLM_LKF_CONVERT;
236 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
237 lkf |= DLM_LKF_QUECVT;
238 }
239
240 return lkf;
241}
242
243static void gfs2_reverse_hex(char *c, u64 value)
244{
245 *c = '0';
246 while (value) {
247 *c-- = hex_asc[value & 0x0f];
248 value >>= 4;
249 }
250}
251
252static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
253 unsigned int flags)
254{
255 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
256 int req;
257 u32 lkf;
258 char strname[GDLM_STRNAME_BYTES] = "";
259 int error;
260
261 req = make_mode(sdp: gl->gl_name.ln_sbd, lmstate: req_state);
262 lkf = make_flags(gl, gfs_flags: flags, req);
263 gfs2_glstats_inc(gl, which: GFS2_LKS_DCOUNT);
264 gfs2_sbstats_inc(gl, which: GFS2_LKS_DCOUNT);
265 if (gl->gl_lksb.sb_lkid) {
266 gfs2_update_request_times(gl);
267 } else {
268 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
269 strname[GDLM_STRNAME_BYTES - 1] = '\0';
270 gfs2_reverse_hex(c: strname + 7, value: gl->gl_name.ln_type);
271 gfs2_reverse_hex(c: strname + 23, value: gl->gl_name.ln_number);
272 gl->gl_dstamp = ktime_get_real();
273 }
274 /*
275 * Submit the actual lock request.
276 */
277
278again:
279 error = dlm_lock(lockspace: ls->ls_dlm, mode: req, lksb: &gl->gl_lksb, flags: lkf, name: strname,
280 GDLM_STRNAME_BYTES - 1, parent_lkid: 0, lockast: gdlm_ast, astarg: gl, bast: gdlm_bast);
281 if (error == -EBUSY) {
282 msleep(msecs: 20);
283 goto again;
284 }
285 return error;
286}
287
288static void gdlm_put_lock(struct gfs2_glock *gl)
289{
290 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
291 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
292 int error;
293
294 if (gl->gl_lksb.sb_lkid == 0)
295 goto out_free;
296
297 clear_bit(nr: GLF_BLOCKING, addr: &gl->gl_flags);
298 gfs2_glstats_inc(gl, which: GFS2_LKS_DCOUNT);
299 gfs2_sbstats_inc(gl, which: GFS2_LKS_DCOUNT);
300 gfs2_update_request_times(gl);
301
302 /* don't want to call dlm if we've unmounted the lock protocol */
303 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
304 goto out_free;
305 /* don't want to skip dlm_unlock writing the lvb when lock has one */
306
307 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
308 !gl->gl_lksb.sb_lvbptr)
309 goto out_free;
310
311again:
312 error = dlm_unlock(lockspace: ls->ls_dlm, lkid: gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
313 NULL, astarg: gl);
314 if (error == -EBUSY) {
315 msleep(msecs: 20);
316 goto again;
317 }
318
319 if (error) {
320 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
321 gl->gl_name.ln_type,
322 (unsigned long long)gl->gl_name.ln_number, error);
323 }
324 return;
325
326out_free:
327 gfs2_glock_free(gl);
328}
329
330static void gdlm_cancel(struct gfs2_glock *gl)
331{
332 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
333 dlm_unlock(lockspace: ls->ls_dlm, lkid: gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, astarg: gl);
334}
335
336/*
337 * dlm/gfs2 recovery coordination using dlm_recover callbacks
338 *
339 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
340 * 1. dlm_controld sees lockspace members change
341 * 2. dlm_controld blocks dlm-kernel locking activity
342 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
343 * 4. dlm_controld starts and finishes its own user level recovery
344 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
345 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
346 * 7. dlm_recoverd does its own lock recovery
347 * 8. dlm_recoverd unblocks dlm-kernel locking activity
348 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
349 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
350 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
351 * 12. gfs2_recover dequeues and recovers journals of failed nodes
352 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
353 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
354 * 15. gfs2_control unblocks normal locking when all journals are recovered
355 *
356 * - failures during recovery
357 *
358 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
359 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
360 * recovering for a prior failure. gfs2_control needs a way to detect
361 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
362 * the recover_block and recover_start values.
363 *
364 * recover_done() provides a new lockspace generation number each time it
365 * is called (step 9). This generation number is saved as recover_start.
366 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
367 * recover_block = recover_start. So, while recover_block is equal to
368 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
369 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
370 *
371 * - more specific gfs2 steps in sequence above
372 *
373 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
374 * 6. recover_slot records any failed jids (maybe none)
375 * 9. recover_done sets recover_start = new generation number
376 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
377 * 12. gfs2_recover does journal recoveries for failed jids identified above
378 * 14. gfs2_control clears control_lock lvb bits for recovered jids
379 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
380 * again) then do nothing, otherwise if recover_start > recover_block
381 * then clear BLOCK_LOCKS.
382 *
383 * - parallel recovery steps across all nodes
384 *
385 * All nodes attempt to update the control_lock lvb with the new generation
386 * number and jid bits, but only the first to get the control_lock EX will
387 * do so; others will see that it's already done (lvb already contains new
388 * generation number.)
389 *
390 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
391 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
392 * . One node gets control_lock first and writes the lvb, others see it's done
393 * . All nodes attempt to recover jids for which they see control_lock bits set
394 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
395 * . All nodes will eventually see all lvb bits clear and unblock locks
396 *
397 * - is there a problem with clearing an lvb bit that should be set
398 * and missing a journal recovery?
399 *
400 * 1. jid fails
401 * 2. lvb bit set for step 1
402 * 3. jid recovered for step 1
403 * 4. jid taken again (new mount)
404 * 5. jid fails (for step 4)
405 * 6. lvb bit set for step 5 (will already be set)
406 * 7. lvb bit cleared for step 3
407 *
408 * This is not a problem because the failure in step 5 does not
409 * require recovery, because the mount in step 4 could not have
410 * progressed far enough to unblock locks and access the fs. The
411 * control_mount() function waits for all recoveries to be complete
412 * for the latest lockspace generation before ever unblocking locks
413 * and returning. The mount in step 4 waits until the recovery in
414 * step 1 is done.
415 *
416 * - special case of first mounter: first node to mount the fs
417 *
418 * The first node to mount a gfs2 fs needs to check all the journals
419 * and recover any that need recovery before other nodes are allowed
420 * to mount the fs. (Others may begin mounting, but they must wait
421 * for the first mounter to be done before taking locks on the fs
422 * or accessing the fs.) This has two parts:
423 *
424 * 1. The mounted_lock tells a node it's the first to mount the fs.
425 * Each node holds the mounted_lock in PR while it's mounted.
426 * Each node tries to acquire the mounted_lock in EX when it mounts.
427 * If a node is granted the mounted_lock EX it means there are no
428 * other mounted nodes (no PR locks exist), and it is the first mounter.
429 * The mounted_lock is demoted to PR when first recovery is done, so
430 * others will fail to get an EX lock, but will get a PR lock.
431 *
432 * 2. The control_lock blocks others in control_mount() while the first
433 * mounter is doing first mount recovery of all journals.
434 * A mounting node needs to acquire control_lock in EX mode before
435 * it can proceed. The first mounter holds control_lock in EX while doing
436 * the first mount recovery, blocking mounts from other nodes, then demotes
437 * control_lock to NL when it's done (others_may_mount/first_done),
438 * allowing other nodes to continue mounting.
439 *
440 * first mounter:
441 * control_lock EX/NOQUEUE success
442 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
443 * set first=1
444 * do first mounter recovery
445 * mounted_lock EX->PR
446 * control_lock EX->NL, write lvb generation
447 *
448 * other mounter:
449 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
450 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
451 * mounted_lock PR/NOQUEUE success
452 * read lvb generation
453 * control_lock EX->NL
454 * set first=0
455 *
456 * - mount during recovery
457 *
458 * If a node mounts while others are doing recovery (not first mounter),
459 * the mounting node will get its initial recover_done() callback without
460 * having seen any previous failures/callbacks.
461 *
462 * It must wait for all recoveries preceding its mount to be finished
463 * before it unblocks locks. It does this by repeating the "other mounter"
464 * steps above until the lvb generation number is >= its mount generation
465 * number (from initial recover_done) and all lvb bits are clear.
466 *
467 * - control_lock lvb format
468 *
469 * 4 bytes generation number: the latest dlm lockspace generation number
470 * from recover_done callback. Indicates the jid bitmap has been updated
471 * to reflect all slot failures through that generation.
472 * 4 bytes unused.
473 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
474 * that jid N needs recovery.
475 */
476
477#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
478
479static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
480 char *lvb_bits)
481{
482 __le32 gen;
483 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
484 memcpy(&gen, lvb_bits, sizeof(__le32));
485 *lvb_gen = le32_to_cpu(gen);
486}
487
488static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
489 char *lvb_bits)
490{
491 __le32 gen;
492 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
493 gen = cpu_to_le32(lvb_gen);
494 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
495}
496
497static int all_jid_bits_clear(char *lvb)
498{
499 return !memchr_inv(p: lvb + JID_BITMAP_OFFSET, c: 0,
500 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
501}
502
503static void sync_wait_cb(void *arg)
504{
505 struct lm_lockstruct *ls = arg;
506 complete(&ls->ls_sync_wait);
507}
508
509static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
510{
511 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
512 int error;
513
514 error = dlm_unlock(lockspace: ls->ls_dlm, lkid: lksb->sb_lkid, flags: 0, lksb, astarg: ls);
515 if (error) {
516 fs_err(sdp, "%s lkid %x error %d\n",
517 name, lksb->sb_lkid, error);
518 return error;
519 }
520
521 wait_for_completion(&ls->ls_sync_wait);
522
523 if (lksb->sb_status != -DLM_EUNLOCK) {
524 fs_err(sdp, "%s lkid %x status %d\n",
525 name, lksb->sb_lkid, lksb->sb_status);
526 return -1;
527 }
528 return 0;
529}
530
531static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
532 unsigned int num, struct dlm_lksb *lksb, char *name)
533{
534 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
535 char strname[GDLM_STRNAME_BYTES];
536 int error, status;
537
538 memset(strname, 0, GDLM_STRNAME_BYTES);
539 snprintf(buf: strname, GDLM_STRNAME_BYTES, fmt: "%8x%16x", LM_TYPE_NONDISK, num);
540
541 error = dlm_lock(lockspace: ls->ls_dlm, mode, lksb, flags,
542 name: strname, GDLM_STRNAME_BYTES - 1,
543 parent_lkid: 0, lockast: sync_wait_cb, astarg: ls, NULL);
544 if (error) {
545 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
546 name, lksb->sb_lkid, flags, mode, error);
547 return error;
548 }
549
550 wait_for_completion(&ls->ls_sync_wait);
551
552 status = lksb->sb_status;
553
554 if (status && status != -EAGAIN) {
555 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
556 name, lksb->sb_lkid, flags, mode, status);
557 }
558
559 return status;
560}
561
562static int mounted_unlock(struct gfs2_sbd *sdp)
563{
564 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
565 return sync_unlock(sdp, lksb: &ls->ls_mounted_lksb, name: "mounted_lock");
566}
567
568static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
569{
570 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
571 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
572 lksb: &ls->ls_mounted_lksb, name: "mounted_lock");
573}
574
575static int control_unlock(struct gfs2_sbd *sdp)
576{
577 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
578 return sync_unlock(sdp, lksb: &ls->ls_control_lksb, name: "control_lock");
579}
580
581static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
582{
583 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
584 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
585 lksb: &ls->ls_control_lksb, name: "control_lock");
586}
587
588/**
589 * remote_withdraw - react to a node withdrawing from the file system
590 * @sdp: The superblock
591 */
592static void remote_withdraw(struct gfs2_sbd *sdp)
593{
594 struct gfs2_jdesc *jd;
595 int ret = 0, count = 0;
596
597 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
598 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
599 continue;
600 ret = gfs2_recover_journal(gfs2_jd: jd, wait: true);
601 if (ret)
602 break;
603 count++;
604 }
605
606 /* Now drop the additional reference we acquired */
607 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
608}
609
610static void gfs2_control_func(struct work_struct *work)
611{
612 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
613 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
614 uint32_t block_gen, start_gen, lvb_gen, flags;
615 int recover_set = 0;
616 int write_lvb = 0;
617 int recover_size;
618 int i, error;
619
620 /* First check for other nodes that may have done a withdraw. */
621 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
622 remote_withdraw(sdp);
623 clear_bit(nr: SDF_REMOTE_WITHDRAW, addr: &sdp->sd_flags);
624 return;
625 }
626
627 spin_lock(lock: &ls->ls_recover_spin);
628 /*
629 * No MOUNT_DONE means we're still mounting; control_mount()
630 * will set this flag, after which this thread will take over
631 * all further clearing of BLOCK_LOCKS.
632 *
633 * FIRST_MOUNT means this node is doing first mounter recovery,
634 * for which recovery control is handled by
635 * control_mount()/control_first_done(), not this thread.
636 */
637 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
638 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
639 spin_unlock(lock: &ls->ls_recover_spin);
640 return;
641 }
642 block_gen = ls->ls_recover_block;
643 start_gen = ls->ls_recover_start;
644 spin_unlock(lock: &ls->ls_recover_spin);
645
646 /*
647 * Equal block_gen and start_gen implies we are between
648 * recover_prep and recover_done callbacks, which means
649 * dlm recovery is in progress and dlm locking is blocked.
650 * There's no point trying to do any work until recover_done.
651 */
652
653 if (block_gen == start_gen)
654 return;
655
656 /*
657 * Propagate recover_submit[] and recover_result[] to lvb:
658 * dlm_recoverd adds to recover_submit[] jids needing recovery
659 * gfs2_recover adds to recover_result[] journal recovery results
660 *
661 * set lvb bit for jids in recover_submit[] if the lvb has not
662 * yet been updated for the generation of the failure
663 *
664 * clear lvb bit for jids in recover_result[] if the result of
665 * the journal recovery is SUCCESS
666 */
667
668 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
669 if (error) {
670 fs_err(sdp, "control lock EX error %d\n", error);
671 return;
672 }
673
674 control_lvb_read(ls, lvb_gen: &lvb_gen, lvb_bits: ls->ls_lvb_bits);
675
676 spin_lock(lock: &ls->ls_recover_spin);
677 if (block_gen != ls->ls_recover_block ||
678 start_gen != ls->ls_recover_start) {
679 fs_info(sdp, "recover generation %u block1 %u %u\n",
680 start_gen, block_gen, ls->ls_recover_block);
681 spin_unlock(lock: &ls->ls_recover_spin);
682 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
683 return;
684 }
685
686 recover_size = ls->ls_recover_size;
687
688 if (lvb_gen <= start_gen) {
689 /*
690 * Clear lvb bits for jids we've successfully recovered.
691 * Because all nodes attempt to recover failed journals,
692 * a journal can be recovered multiple times successfully
693 * in succession. Only the first will really do recovery,
694 * the others find it clean, but still report a successful
695 * recovery. So, another node may have already recovered
696 * the jid and cleared the lvb bit for it.
697 */
698 for (i = 0; i < recover_size; i++) {
699 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
700 continue;
701
702 ls->ls_recover_result[i] = 0;
703
704 if (!test_bit_le(nr: i, addr: ls->ls_lvb_bits + JID_BITMAP_OFFSET))
705 continue;
706
707 __clear_bit_le(nr: i, addr: ls->ls_lvb_bits + JID_BITMAP_OFFSET);
708 write_lvb = 1;
709 }
710 }
711
712 if (lvb_gen == start_gen) {
713 /*
714 * Failed slots before start_gen are already set in lvb.
715 */
716 for (i = 0; i < recover_size; i++) {
717 if (!ls->ls_recover_submit[i])
718 continue;
719 if (ls->ls_recover_submit[i] < lvb_gen)
720 ls->ls_recover_submit[i] = 0;
721 }
722 } else if (lvb_gen < start_gen) {
723 /*
724 * Failed slots before start_gen are not yet set in lvb.
725 */
726 for (i = 0; i < recover_size; i++) {
727 if (!ls->ls_recover_submit[i])
728 continue;
729 if (ls->ls_recover_submit[i] < start_gen) {
730 ls->ls_recover_submit[i] = 0;
731 __set_bit_le(nr: i, addr: ls->ls_lvb_bits + JID_BITMAP_OFFSET);
732 }
733 }
734 /* even if there are no bits to set, we need to write the
735 latest generation to the lvb */
736 write_lvb = 1;
737 } else {
738 /*
739 * we should be getting a recover_done() for lvb_gen soon
740 */
741 }
742 spin_unlock(lock: &ls->ls_recover_spin);
743
744 if (write_lvb) {
745 control_lvb_write(ls, lvb_gen: start_gen, lvb_bits: ls->ls_lvb_bits);
746 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
747 } else {
748 flags = DLM_LKF_CONVERT;
749 }
750
751 error = control_lock(sdp, DLM_LOCK_NL, flags);
752 if (error) {
753 fs_err(sdp, "control lock NL error %d\n", error);
754 return;
755 }
756
757 /*
758 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
759 * and clear a jid bit in the lvb if the recovery is a success.
760 * Eventually all journals will be recovered, all jid bits will
761 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
762 */
763
764 for (i = 0; i < recover_size; i++) {
765 if (test_bit_le(nr: i, addr: ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
766 fs_info(sdp, "recover generation %u jid %d\n",
767 start_gen, i);
768 gfs2_recover_set(sdp, jid: i);
769 recover_set++;
770 }
771 }
772 if (recover_set)
773 return;
774
775 /*
776 * No more jid bits set in lvb, all recovery is done, unblock locks
777 * (unless a new recover_prep callback has occured blocking locks
778 * again while working above)
779 */
780
781 spin_lock(lock: &ls->ls_recover_spin);
782 if (ls->ls_recover_block == block_gen &&
783 ls->ls_recover_start == start_gen) {
784 clear_bit(nr: DFL_BLOCK_LOCKS, addr: &ls->ls_recover_flags);
785 spin_unlock(lock: &ls->ls_recover_spin);
786 fs_info(sdp, "recover generation %u done\n", start_gen);
787 gfs2_glock_thaw(sdp);
788 } else {
789 fs_info(sdp, "recover generation %u block2 %u %u\n",
790 start_gen, block_gen, ls->ls_recover_block);
791 spin_unlock(lock: &ls->ls_recover_spin);
792 }
793}
794
795static int control_mount(struct gfs2_sbd *sdp)
796{
797 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
798 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
799 int mounted_mode;
800 int retries = 0;
801 int error;
802
803 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
804 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
805 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
806 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
807 init_completion(x: &ls->ls_sync_wait);
808
809 set_bit(nr: DFL_BLOCK_LOCKS, addr: &ls->ls_recover_flags);
810
811 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
812 if (error) {
813 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
814 return error;
815 }
816
817 error = mounted_lock(sdp, DLM_LOCK_NL, flags: 0);
818 if (error) {
819 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
820 control_unlock(sdp);
821 return error;
822 }
823 mounted_mode = DLM_LOCK_NL;
824
825restart:
826 if (retries++ && signal_pending(current)) {
827 error = -EINTR;
828 goto fail;
829 }
830
831 /*
832 * We always start with both locks in NL. control_lock is
833 * demoted to NL below so we don't need to do it here.
834 */
835
836 if (mounted_mode != DLM_LOCK_NL) {
837 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
838 if (error)
839 goto fail;
840 mounted_mode = DLM_LOCK_NL;
841 }
842
843 /*
844 * Other nodes need to do some work in dlm recovery and gfs2_control
845 * before the recover_done and control_lock will be ready for us below.
846 * A delay here is not required but often avoids having to retry.
847 */
848
849 msleep_interruptible(msecs: 500);
850
851 /*
852 * Acquire control_lock in EX and mounted_lock in either EX or PR.
853 * control_lock lvb keeps track of any pending journal recoveries.
854 * mounted_lock indicates if any other nodes have the fs mounted.
855 */
856
857 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
858 if (error == -EAGAIN) {
859 goto restart;
860 } else if (error) {
861 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
862 goto fail;
863 }
864
865 /**
866 * If we're a spectator, we don't want to take the lock in EX because
867 * we cannot do the first-mount responsibility it implies: recovery.
868 */
869 if (sdp->sd_args.ar_spectator)
870 goto locks_done;
871
872 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
873 if (!error) {
874 mounted_mode = DLM_LOCK_EX;
875 goto locks_done;
876 } else if (error != -EAGAIN) {
877 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
878 goto fail;
879 }
880
881 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
882 if (!error) {
883 mounted_mode = DLM_LOCK_PR;
884 goto locks_done;
885 } else {
886 /* not even -EAGAIN should happen here */
887 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
888 goto fail;
889 }
890
891locks_done:
892 /*
893 * If we got both locks above in EX, then we're the first mounter.
894 * If not, then we need to wait for the control_lock lvb to be
895 * updated by other mounted nodes to reflect our mount generation.
896 *
897 * In simple first mounter cases, first mounter will see zero lvb_gen,
898 * but in cases where all existing nodes leave/fail before mounting
899 * nodes finish control_mount, then all nodes will be mounting and
900 * lvb_gen will be non-zero.
901 */
902
903 control_lvb_read(ls, lvb_gen: &lvb_gen, lvb_bits: ls->ls_lvb_bits);
904
905 if (lvb_gen == 0xFFFFFFFF) {
906 /* special value to force mount attempts to fail */
907 fs_err(sdp, "control_mount control_lock disabled\n");
908 error = -EINVAL;
909 goto fail;
910 }
911
912 if (mounted_mode == DLM_LOCK_EX) {
913 /* first mounter, keep both EX while doing first recovery */
914 spin_lock(lock: &ls->ls_recover_spin);
915 clear_bit(nr: DFL_BLOCK_LOCKS, addr: &ls->ls_recover_flags);
916 set_bit(nr: DFL_MOUNT_DONE, addr: &ls->ls_recover_flags);
917 set_bit(nr: DFL_FIRST_MOUNT, addr: &ls->ls_recover_flags);
918 spin_unlock(lock: &ls->ls_recover_spin);
919 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
920 return 0;
921 }
922
923 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
924 if (error)
925 goto fail;
926
927 /*
928 * We are not first mounter, now we need to wait for the control_lock
929 * lvb generation to be >= the generation from our first recover_done
930 * and all lvb bits to be clear (no pending journal recoveries.)
931 */
932
933 if (!all_jid_bits_clear(lvb: ls->ls_lvb_bits)) {
934 /* journals need recovery, wait until all are clear */
935 fs_info(sdp, "control_mount wait for journal recovery\n");
936 goto restart;
937 }
938
939 spin_lock(lock: &ls->ls_recover_spin);
940 block_gen = ls->ls_recover_block;
941 start_gen = ls->ls_recover_start;
942 mount_gen = ls->ls_recover_mount;
943
944 if (lvb_gen < mount_gen) {
945 /* wait for mounted nodes to update control_lock lvb to our
946 generation, which might include new recovery bits set */
947 if (sdp->sd_args.ar_spectator) {
948 fs_info(sdp, "Recovery is required. Waiting for a "
949 "non-spectator to mount.\n");
950 msleep_interruptible(msecs: 1000);
951 } else {
952 fs_info(sdp, "control_mount wait1 block %u start %u "
953 "mount %u lvb %u flags %lx\n", block_gen,
954 start_gen, mount_gen, lvb_gen,
955 ls->ls_recover_flags);
956 }
957 spin_unlock(lock: &ls->ls_recover_spin);
958 goto restart;
959 }
960
961 if (lvb_gen != start_gen) {
962 /* wait for mounted nodes to update control_lock lvb to the
963 latest recovery generation */
964 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
965 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
966 lvb_gen, ls->ls_recover_flags);
967 spin_unlock(lock: &ls->ls_recover_spin);
968 goto restart;
969 }
970
971 if (block_gen == start_gen) {
972 /* dlm recovery in progress, wait for it to finish */
973 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
974 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
975 lvb_gen, ls->ls_recover_flags);
976 spin_unlock(lock: &ls->ls_recover_spin);
977 goto restart;
978 }
979
980 clear_bit(nr: DFL_BLOCK_LOCKS, addr: &ls->ls_recover_flags);
981 set_bit(nr: DFL_MOUNT_DONE, addr: &ls->ls_recover_flags);
982 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
983 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
984 spin_unlock(lock: &ls->ls_recover_spin);
985 return 0;
986
987fail:
988 mounted_unlock(sdp);
989 control_unlock(sdp);
990 return error;
991}
992
993static int control_first_done(struct gfs2_sbd *sdp)
994{
995 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
996 uint32_t start_gen, block_gen;
997 int error;
998
999restart:
1000 spin_lock(lock: &ls->ls_recover_spin);
1001 start_gen = ls->ls_recover_start;
1002 block_gen = ls->ls_recover_block;
1003
1004 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1005 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1006 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1007 /* sanity check, should not happen */
1008 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1009 start_gen, block_gen, ls->ls_recover_flags);
1010 spin_unlock(lock: &ls->ls_recover_spin);
1011 control_unlock(sdp);
1012 return -1;
1013 }
1014
1015 if (start_gen == block_gen) {
1016 /*
1017 * Wait for the end of a dlm recovery cycle to switch from
1018 * first mounter recovery. We can ignore any recover_slot
1019 * callbacks between the recover_prep and next recover_done
1020 * because we are still the first mounter and any failed nodes
1021 * have not fully mounted, so they don't need recovery.
1022 */
1023 spin_unlock(lock: &ls->ls_recover_spin);
1024 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1025
1026 wait_on_bit(word: &ls->ls_recover_flags, bit: DFL_DLM_RECOVERY,
1027 TASK_UNINTERRUPTIBLE);
1028 goto restart;
1029 }
1030
1031 clear_bit(nr: DFL_FIRST_MOUNT, addr: &ls->ls_recover_flags);
1032 set_bit(nr: DFL_FIRST_MOUNT_DONE, addr: &ls->ls_recover_flags);
1033 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1034 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1035 spin_unlock(lock: &ls->ls_recover_spin);
1036
1037 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1038 control_lvb_write(ls, lvb_gen: start_gen, lvb_bits: ls->ls_lvb_bits);
1039
1040 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1041 if (error)
1042 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1043
1044 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1045 if (error)
1046 fs_err(sdp, "control_first_done control NL error %d\n", error);
1047
1048 return error;
1049}
1050
1051/*
1052 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1053 * to accommodate the largest slot number. (NB dlm slot numbers start at 1,
1054 * gfs2 jids start at 0, so jid = slot - 1)
1055 */
1056
1057#define RECOVER_SIZE_INC 16
1058
1059static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1060 int num_slots)
1061{
1062 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1063 uint32_t *submit = NULL;
1064 uint32_t *result = NULL;
1065 uint32_t old_size, new_size;
1066 int i, max_jid;
1067
1068 if (!ls->ls_lvb_bits) {
1069 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1070 if (!ls->ls_lvb_bits)
1071 return -ENOMEM;
1072 }
1073
1074 max_jid = 0;
1075 for (i = 0; i < num_slots; i++) {
1076 if (max_jid < slots[i].slot - 1)
1077 max_jid = slots[i].slot - 1;
1078 }
1079
1080 old_size = ls->ls_recover_size;
1081 new_size = old_size;
1082 while (new_size < max_jid + 1)
1083 new_size += RECOVER_SIZE_INC;
1084 if (new_size == old_size)
1085 return 0;
1086
1087 submit = kcalloc(n: new_size, size: sizeof(uint32_t), GFP_NOFS);
1088 result = kcalloc(n: new_size, size: sizeof(uint32_t), GFP_NOFS);
1089 if (!submit || !result) {
1090 kfree(objp: submit);
1091 kfree(objp: result);
1092 return -ENOMEM;
1093 }
1094
1095 spin_lock(lock: &ls->ls_recover_spin);
1096 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1097 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1098 kfree(objp: ls->ls_recover_submit);
1099 kfree(objp: ls->ls_recover_result);
1100 ls->ls_recover_submit = submit;
1101 ls->ls_recover_result = result;
1102 ls->ls_recover_size = new_size;
1103 spin_unlock(lock: &ls->ls_recover_spin);
1104 return 0;
1105}
1106
1107static void free_recover_size(struct lm_lockstruct *ls)
1108{
1109 kfree(objp: ls->ls_lvb_bits);
1110 kfree(objp: ls->ls_recover_submit);
1111 kfree(objp: ls->ls_recover_result);
1112 ls->ls_recover_submit = NULL;
1113 ls->ls_recover_result = NULL;
1114 ls->ls_recover_size = 0;
1115 ls->ls_lvb_bits = NULL;
1116}
1117
1118/* dlm calls before it does lock recovery */
1119
1120static void gdlm_recover_prep(void *arg)
1121{
1122 struct gfs2_sbd *sdp = arg;
1123 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1124
1125 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1126 fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1127 return;
1128 }
1129 spin_lock(lock: &ls->ls_recover_spin);
1130 ls->ls_recover_block = ls->ls_recover_start;
1131 set_bit(nr: DFL_DLM_RECOVERY, addr: &ls->ls_recover_flags);
1132
1133 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1134 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1135 spin_unlock(lock: &ls->ls_recover_spin);
1136 return;
1137 }
1138 set_bit(nr: DFL_BLOCK_LOCKS, addr: &ls->ls_recover_flags);
1139 spin_unlock(lock: &ls->ls_recover_spin);
1140}
1141
1142/* dlm calls after recover_prep has been completed on all lockspace members;
1143 identifies slot/jid of failed member */
1144
1145static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1146{
1147 struct gfs2_sbd *sdp = arg;
1148 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1149 int jid = slot->slot - 1;
1150
1151 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1152 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1153 jid);
1154 return;
1155 }
1156 spin_lock(lock: &ls->ls_recover_spin);
1157 if (ls->ls_recover_size < jid + 1) {
1158 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1159 jid, ls->ls_recover_block, ls->ls_recover_size);
1160 spin_unlock(lock: &ls->ls_recover_spin);
1161 return;
1162 }
1163
1164 if (ls->ls_recover_submit[jid]) {
1165 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1166 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1167 }
1168 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1169 spin_unlock(lock: &ls->ls_recover_spin);
1170}
1171
1172/* dlm calls after recover_slot and after it completes lock recovery */
1173
1174static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1175 int our_slot, uint32_t generation)
1176{
1177 struct gfs2_sbd *sdp = arg;
1178 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1179
1180 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1181 fs_err(sdp, "recover_done ignored due to withdraw.\n");
1182 return;
1183 }
1184 /* ensure the ls jid arrays are large enough */
1185 set_recover_size(sdp, slots, num_slots);
1186
1187 spin_lock(lock: &ls->ls_recover_spin);
1188 ls->ls_recover_start = generation;
1189
1190 if (!ls->ls_recover_mount) {
1191 ls->ls_recover_mount = generation;
1192 ls->ls_jid = our_slot - 1;
1193 }
1194
1195 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1196 queue_delayed_work(wq: gfs2_control_wq, dwork: &sdp->sd_control_work, delay: 0);
1197
1198 clear_bit(nr: DFL_DLM_RECOVERY, addr: &ls->ls_recover_flags);
1199 smp_mb__after_atomic();
1200 wake_up_bit(word: &ls->ls_recover_flags, bit: DFL_DLM_RECOVERY);
1201 spin_unlock(lock: &ls->ls_recover_spin);
1202}
1203
1204/* gfs2_recover thread has a journal recovery result */
1205
1206static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1207 unsigned int result)
1208{
1209 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1210
1211 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1212 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1213 jid);
1214 return;
1215 }
1216 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1217 return;
1218
1219 /* don't care about the recovery of own journal during mount */
1220 if (jid == ls->ls_jid)
1221 return;
1222
1223 spin_lock(lock: &ls->ls_recover_spin);
1224 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1225 spin_unlock(lock: &ls->ls_recover_spin);
1226 return;
1227 }
1228 if (ls->ls_recover_size < jid + 1) {
1229 fs_err(sdp, "recovery_result jid %d short size %d\n",
1230 jid, ls->ls_recover_size);
1231 spin_unlock(lock: &ls->ls_recover_spin);
1232 return;
1233 }
1234
1235 fs_info(sdp, "recover jid %d result %s\n", jid,
1236 result == LM_RD_GAVEUP ? "busy" : "success");
1237
1238 ls->ls_recover_result[jid] = result;
1239
1240 /* GAVEUP means another node is recovering the journal; delay our
1241 next attempt to recover it, to give the other node a chance to
1242 finish before trying again */
1243
1244 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1245 queue_delayed_work(wq: gfs2_control_wq, dwork: &sdp->sd_control_work,
1246 delay: result == LM_RD_GAVEUP ? HZ : 0);
1247 spin_unlock(lock: &ls->ls_recover_spin);
1248}
1249
1250static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1251 .recover_prep = gdlm_recover_prep,
1252 .recover_slot = gdlm_recover_slot,
1253 .recover_done = gdlm_recover_done,
1254};
1255
1256static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1257{
1258 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1259 char cluster[GFS2_LOCKNAME_LEN];
1260 const char *fsname;
1261 uint32_t flags;
1262 int error, ops_result;
1263
1264 /*
1265 * initialize everything
1266 */
1267
1268 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1269 spin_lock_init(&ls->ls_recover_spin);
1270 ls->ls_recover_flags = 0;
1271 ls->ls_recover_mount = 0;
1272 ls->ls_recover_start = 0;
1273 ls->ls_recover_block = 0;
1274 ls->ls_recover_size = 0;
1275 ls->ls_recover_submit = NULL;
1276 ls->ls_recover_result = NULL;
1277 ls->ls_lvb_bits = NULL;
1278
1279 error = set_recover_size(sdp, NULL, num_slots: 0);
1280 if (error)
1281 goto fail;
1282
1283 /*
1284 * prepare dlm_new_lockspace args
1285 */
1286
1287 fsname = strchr(table, ':');
1288 if (!fsname) {
1289 fs_info(sdp, "no fsname found\n");
1290 error = -EINVAL;
1291 goto fail_free;
1292 }
1293 memset(cluster, 0, sizeof(cluster));
1294 memcpy(cluster, table, strlen(table) - strlen(fsname));
1295 fsname++;
1296
1297 flags = DLM_LSFL_NEWEXCL;
1298
1299 /*
1300 * create/join lockspace
1301 */
1302
1303 error = dlm_new_lockspace(name: fsname, cluster, flags, GDLM_LVB_SIZE,
1304 ops: &gdlm_lockspace_ops, ops_arg: sdp, ops_result: &ops_result,
1305 lockspace: &ls->ls_dlm);
1306 if (error) {
1307 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1308 goto fail_free;
1309 }
1310
1311 if (ops_result < 0) {
1312 /*
1313 * dlm does not support ops callbacks,
1314 * old dlm_controld/gfs_controld are used, try without ops.
1315 */
1316 fs_info(sdp, "dlm lockspace ops not used\n");
1317 free_recover_size(ls);
1318 set_bit(nr: DFL_NO_DLM_OPS, addr: &ls->ls_recover_flags);
1319 return 0;
1320 }
1321
1322 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1323 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1324 error = -EINVAL;
1325 goto fail_release;
1326 }
1327
1328 /*
1329 * control_mount() uses control_lock to determine first mounter,
1330 * and for later mounts, waits for any recoveries to be cleared.
1331 */
1332
1333 error = control_mount(sdp);
1334 if (error) {
1335 fs_err(sdp, "mount control error %d\n", error);
1336 goto fail_release;
1337 }
1338
1339 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1340 clear_bit(nr: SDF_NOJOURNALID, addr: &sdp->sd_flags);
1341 smp_mb__after_atomic();
1342 wake_up_bit(word: &sdp->sd_flags, bit: SDF_NOJOURNALID);
1343 return 0;
1344
1345fail_release:
1346 dlm_release_lockspace(lockspace: ls->ls_dlm, force: 2);
1347fail_free:
1348 free_recover_size(ls);
1349fail:
1350 return error;
1351}
1352
1353static void gdlm_first_done(struct gfs2_sbd *sdp)
1354{
1355 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1356 int error;
1357
1358 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1359 return;
1360
1361 error = control_first_done(sdp);
1362 if (error)
1363 fs_err(sdp, "mount first_done error %d\n", error);
1364}
1365
1366static void gdlm_unmount(struct gfs2_sbd *sdp)
1367{
1368 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1369
1370 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1371 goto release;
1372
1373 /* wait for gfs2_control_wq to be done with this mount */
1374
1375 spin_lock(lock: &ls->ls_recover_spin);
1376 set_bit(nr: DFL_UNMOUNT, addr: &ls->ls_recover_flags);
1377 spin_unlock(lock: &ls->ls_recover_spin);
1378 flush_delayed_work(dwork: &sdp->sd_control_work);
1379
1380 /* mounted_lock and control_lock will be purged in dlm recovery */
1381release:
1382 if (ls->ls_dlm) {
1383 dlm_release_lockspace(lockspace: ls->ls_dlm, force: 2);
1384 ls->ls_dlm = NULL;
1385 }
1386
1387 free_recover_size(ls);
1388}
1389
1390static const match_table_t dlm_tokens = {
1391 { Opt_jid, "jid=%d"},
1392 { Opt_id, "id=%d"},
1393 { Opt_first, "first=%d"},
1394 { Opt_nodir, "nodir=%d"},
1395 { Opt_err, NULL },
1396};
1397
1398const struct lm_lockops gfs2_dlm_ops = {
1399 .lm_proto_name = "lock_dlm",
1400 .lm_mount = gdlm_mount,
1401 .lm_first_done = gdlm_first_done,
1402 .lm_recovery_result = gdlm_recovery_result,
1403 .lm_unmount = gdlm_unmount,
1404 .lm_put_lock = gdlm_put_lock,
1405 .lm_lock = gdlm_lock,
1406 .lm_cancel = gdlm_cancel,
1407 .lm_tokens = &dlm_tokens,
1408};
1409
1410

source code of linux/fs/gfs2/lock_dlm.c