| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* Miscellaneous routines. |
| 3 | * |
| 4 | * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved. |
| 5 | * Written by David Howells (dhowells@redhat.com) |
| 6 | */ |
| 7 | |
| 8 | #include <linux/swap.h> |
| 9 | #include "internal.h" |
| 10 | |
| 11 | /** |
| 12 | * netfs_alloc_folioq_buffer - Allocate buffer space into a folio queue |
| 13 | * @mapping: Address space to set on the folio (or NULL). |
| 14 | * @_buffer: Pointer to the folio queue to add to (may point to a NULL; updated). |
| 15 | * @_cur_size: Current size of the buffer (updated). |
| 16 | * @size: Target size of the buffer. |
| 17 | * @gfp: The allocation constraints. |
| 18 | */ |
| 19 | int netfs_alloc_folioq_buffer(struct address_space *mapping, |
| 20 | struct folio_queue **_buffer, |
| 21 | size_t *_cur_size, ssize_t size, gfp_t gfp) |
| 22 | { |
| 23 | struct folio_queue *tail = *_buffer, *p; |
| 24 | |
| 25 | size = round_up(size, PAGE_SIZE); |
| 26 | if (*_cur_size >= size) |
| 27 | return 0; |
| 28 | |
| 29 | if (tail) |
| 30 | while (tail->next) |
| 31 | tail = tail->next; |
| 32 | |
| 33 | do { |
| 34 | struct folio *folio; |
| 35 | int order = 0, slot; |
| 36 | |
| 37 | if (!tail || folioq_full(folioq: tail)) { |
| 38 | p = netfs_folioq_alloc(rreq_id: 0, GFP_NOFS, trace: netfs_trace_folioq_alloc_buffer); |
| 39 | if (!p) |
| 40 | return -ENOMEM; |
| 41 | if (tail) { |
| 42 | tail->next = p; |
| 43 | p->prev = tail; |
| 44 | } else { |
| 45 | *_buffer = p; |
| 46 | } |
| 47 | tail = p; |
| 48 | } |
| 49 | |
| 50 | if (size - *_cur_size > PAGE_SIZE) |
| 51 | order = umin(ilog2(size - *_cur_size) - PAGE_SHIFT, |
| 52 | MAX_PAGECACHE_ORDER); |
| 53 | |
| 54 | folio = folio_alloc(gfp, order); |
| 55 | if (!folio && order > 0) |
| 56 | folio = folio_alloc(gfp, 0); |
| 57 | if (!folio) |
| 58 | return -ENOMEM; |
| 59 | |
| 60 | folio->mapping = mapping; |
| 61 | folio->index = *_cur_size / PAGE_SIZE; |
| 62 | trace_netfs_folio(folio, why: netfs_folio_trace_alloc_buffer); |
| 63 | slot = folioq_append_mark(folioq: tail, folio); |
| 64 | *_cur_size += folioq_folio_size(folioq: tail, slot); |
| 65 | } while (*_cur_size < size); |
| 66 | |
| 67 | return 0; |
| 68 | } |
| 69 | EXPORT_SYMBOL(netfs_alloc_folioq_buffer); |
| 70 | |
| 71 | /** |
| 72 | * netfs_free_folioq_buffer - Free a folio queue. |
| 73 | * @fq: The start of the folio queue to free |
| 74 | * |
| 75 | * Free up a chain of folio_queues and, if marked, the marked folios they point |
| 76 | * to. |
| 77 | */ |
| 78 | void netfs_free_folioq_buffer(struct folio_queue *fq) |
| 79 | { |
| 80 | struct folio_queue *next; |
| 81 | struct folio_batch fbatch; |
| 82 | |
| 83 | folio_batch_init(fbatch: &fbatch); |
| 84 | |
| 85 | for (; fq; fq = next) { |
| 86 | for (int slot = 0; slot < folioq_count(folioq: fq); slot++) { |
| 87 | struct folio *folio = folioq_folio(folioq: fq, slot); |
| 88 | |
| 89 | if (!folio || |
| 90 | !folioq_is_marked(folioq: fq, slot)) |
| 91 | continue; |
| 92 | |
| 93 | trace_netfs_folio(folio, why: netfs_folio_trace_put); |
| 94 | if (folio_batch_add(fbatch: &fbatch, folio)) |
| 95 | folio_batch_release(fbatch: &fbatch); |
| 96 | } |
| 97 | |
| 98 | netfs_stat_d(stat: &netfs_n_folioq); |
| 99 | next = fq->next; |
| 100 | kfree(objp: fq); |
| 101 | } |
| 102 | |
| 103 | folio_batch_release(fbatch: &fbatch); |
| 104 | } |
| 105 | EXPORT_SYMBOL(netfs_free_folioq_buffer); |
| 106 | |
| 107 | /* |
| 108 | * Reset the subrequest iterator to refer just to the region remaining to be |
| 109 | * read. The iterator may or may not have been advanced by socket ops or |
| 110 | * extraction ops to an extent that may or may not match the amount actually |
| 111 | * read. |
| 112 | */ |
| 113 | void netfs_reset_iter(struct netfs_io_subrequest *subreq) |
| 114 | { |
| 115 | struct iov_iter *io_iter = &subreq->io_iter; |
| 116 | size_t remain = subreq->len - subreq->transferred; |
| 117 | |
| 118 | if (io_iter->count > remain) |
| 119 | iov_iter_advance(i: io_iter, bytes: io_iter->count - remain); |
| 120 | else if (io_iter->count < remain) |
| 121 | iov_iter_revert(i: io_iter, bytes: remain - io_iter->count); |
| 122 | iov_iter_truncate(i: &subreq->io_iter, count: remain); |
| 123 | } |
| 124 | |
| 125 | /** |
| 126 | * netfs_dirty_folio - Mark folio dirty and pin a cache object for writeback |
| 127 | * @mapping: The mapping the folio belongs to. |
| 128 | * @folio: The folio being dirtied. |
| 129 | * |
| 130 | * Set the dirty flag on a folio and pin an in-use cache object in memory so |
| 131 | * that writeback can later write to it. This is intended to be called from |
| 132 | * the filesystem's ->dirty_folio() method. |
| 133 | * |
| 134 | * Return: true if the dirty flag was set on the folio, false otherwise. |
| 135 | */ |
| 136 | bool netfs_dirty_folio(struct address_space *mapping, struct folio *folio) |
| 137 | { |
| 138 | struct inode *inode = mapping->host; |
| 139 | struct netfs_inode *ictx = netfs_inode(inode); |
| 140 | struct fscache_cookie *cookie = netfs_i_cookie(ctx: ictx); |
| 141 | bool need_use = false; |
| 142 | |
| 143 | _enter("" ); |
| 144 | |
| 145 | if (!filemap_dirty_folio(mapping, folio)) |
| 146 | return false; |
| 147 | if (!fscache_cookie_valid(cookie)) |
| 148 | return true; |
| 149 | |
| 150 | if (!(inode->i_state & I_PINNING_NETFS_WB)) { |
| 151 | spin_lock(lock: &inode->i_lock); |
| 152 | if (!(inode->i_state & I_PINNING_NETFS_WB)) { |
| 153 | inode->i_state |= I_PINNING_NETFS_WB; |
| 154 | need_use = true; |
| 155 | } |
| 156 | spin_unlock(lock: &inode->i_lock); |
| 157 | |
| 158 | if (need_use) |
| 159 | fscache_use_cookie(cookie, will_modify: true); |
| 160 | } |
| 161 | return true; |
| 162 | } |
| 163 | EXPORT_SYMBOL(netfs_dirty_folio); |
| 164 | |
| 165 | /** |
| 166 | * netfs_unpin_writeback - Unpin writeback resources |
| 167 | * @inode: The inode on which the cookie resides |
| 168 | * @wbc: The writeback control |
| 169 | * |
| 170 | * Unpin the writeback resources pinned by netfs_dirty_folio(). This is |
| 171 | * intended to be called as/by the netfs's ->write_inode() method. |
| 172 | */ |
| 173 | int netfs_unpin_writeback(struct inode *inode, struct writeback_control *wbc) |
| 174 | { |
| 175 | struct fscache_cookie *cookie = netfs_i_cookie(ctx: netfs_inode(inode)); |
| 176 | |
| 177 | if (wbc->unpinned_netfs_wb) |
| 178 | fscache_unuse_cookie(cookie, NULL, NULL); |
| 179 | return 0; |
| 180 | } |
| 181 | EXPORT_SYMBOL(netfs_unpin_writeback); |
| 182 | |
| 183 | /** |
| 184 | * netfs_clear_inode_writeback - Clear writeback resources pinned by an inode |
| 185 | * @inode: The inode to clean up |
| 186 | * @aux: Auxiliary data to apply to the inode |
| 187 | * |
| 188 | * Clear any writeback resources held by an inode when the inode is evicted. |
| 189 | * This must be called before clear_inode() is called. |
| 190 | */ |
| 191 | void netfs_clear_inode_writeback(struct inode *inode, const void *aux) |
| 192 | { |
| 193 | struct fscache_cookie *cookie = netfs_i_cookie(ctx: netfs_inode(inode)); |
| 194 | |
| 195 | if (inode->i_state & I_PINNING_NETFS_WB) { |
| 196 | loff_t i_size = i_size_read(inode); |
| 197 | fscache_unuse_cookie(cookie, aux_data: aux, object_size: &i_size); |
| 198 | } |
| 199 | } |
| 200 | EXPORT_SYMBOL(netfs_clear_inode_writeback); |
| 201 | |
| 202 | /** |
| 203 | * netfs_invalidate_folio - Invalidate or partially invalidate a folio |
| 204 | * @folio: Folio proposed for release |
| 205 | * @offset: Offset of the invalidated region |
| 206 | * @length: Length of the invalidated region |
| 207 | * |
| 208 | * Invalidate part or all of a folio for a network filesystem. The folio will |
| 209 | * be removed afterwards if the invalidated region covers the entire folio. |
| 210 | */ |
| 211 | void netfs_invalidate_folio(struct folio *folio, size_t offset, size_t length) |
| 212 | { |
| 213 | struct netfs_folio *finfo; |
| 214 | struct netfs_inode *ctx = netfs_inode(inode: folio_inode(folio)); |
| 215 | size_t flen = folio_size(folio); |
| 216 | |
| 217 | _enter("{%lx},%zx,%zx" , folio->index, offset, length); |
| 218 | |
| 219 | if (offset == 0 && length == flen) { |
| 220 | unsigned long long i_size = i_size_read(inode: &ctx->inode); |
| 221 | unsigned long long fpos = folio_pos(folio), end; |
| 222 | |
| 223 | end = umin(fpos + flen, i_size); |
| 224 | if (fpos < i_size && end > ctx->zero_point) |
| 225 | ctx->zero_point = end; |
| 226 | } |
| 227 | |
| 228 | folio_wait_private_2(folio); /* [DEPRECATED] */ |
| 229 | |
| 230 | if (!folio_test_private(folio)) |
| 231 | return; |
| 232 | |
| 233 | finfo = netfs_folio_info(folio); |
| 234 | |
| 235 | if (offset == 0 && length >= flen) |
| 236 | goto erase_completely; |
| 237 | |
| 238 | if (finfo) { |
| 239 | /* We have a partially uptodate page from a streaming write. */ |
| 240 | unsigned int fstart = finfo->dirty_offset; |
| 241 | unsigned int fend = fstart + finfo->dirty_len; |
| 242 | unsigned int iend = offset + length; |
| 243 | |
| 244 | if (offset >= fend) |
| 245 | return; |
| 246 | if (iend <= fstart) |
| 247 | return; |
| 248 | |
| 249 | /* The invalidation region overlaps the data. If the region |
| 250 | * covers the start of the data, we either move along the start |
| 251 | * or just erase the data entirely. |
| 252 | */ |
| 253 | if (offset <= fstart) { |
| 254 | if (iend >= fend) |
| 255 | goto erase_completely; |
| 256 | /* Move the start of the data. */ |
| 257 | finfo->dirty_len = fend - iend; |
| 258 | finfo->dirty_offset = offset; |
| 259 | return; |
| 260 | } |
| 261 | |
| 262 | /* Reduce the length of the data if the invalidation region |
| 263 | * covers the tail part. |
| 264 | */ |
| 265 | if (iend >= fend) { |
| 266 | finfo->dirty_len = offset - fstart; |
| 267 | return; |
| 268 | } |
| 269 | |
| 270 | /* A partial write was split. The caller has already zeroed |
| 271 | * it, so just absorb the hole. |
| 272 | */ |
| 273 | } |
| 274 | return; |
| 275 | |
| 276 | erase_completely: |
| 277 | netfs_put_group(netfs_group: netfs_folio_group(folio)); |
| 278 | folio_detach_private(folio); |
| 279 | folio_clear_uptodate(folio); |
| 280 | kfree(objp: finfo); |
| 281 | return; |
| 282 | } |
| 283 | EXPORT_SYMBOL(netfs_invalidate_folio); |
| 284 | |
| 285 | /** |
| 286 | * netfs_release_folio - Try to release a folio |
| 287 | * @folio: Folio proposed for release |
| 288 | * @gfp: Flags qualifying the release |
| 289 | * |
| 290 | * Request release of a folio and clean up its private state if it's not busy. |
| 291 | * Returns true if the folio can now be released, false if not |
| 292 | */ |
| 293 | bool netfs_release_folio(struct folio *folio, gfp_t gfp) |
| 294 | { |
| 295 | struct netfs_inode *ctx = netfs_inode(inode: folio_inode(folio)); |
| 296 | unsigned long long end; |
| 297 | |
| 298 | if (folio_test_dirty(folio)) |
| 299 | return false; |
| 300 | |
| 301 | end = umin(folio_pos(folio) + folio_size(folio), i_size_read(&ctx->inode)); |
| 302 | if (end > ctx->zero_point) |
| 303 | ctx->zero_point = end; |
| 304 | |
| 305 | if (folio_test_private(folio)) |
| 306 | return false; |
| 307 | if (unlikely(folio_test_private_2(folio))) { /* [DEPRECATED] */ |
| 308 | if (current_is_kswapd() || !(gfp & __GFP_FS)) |
| 309 | return false; |
| 310 | folio_wait_private_2(folio); |
| 311 | } |
| 312 | fscache_note_page_release(cookie: netfs_i_cookie(ctx)); |
| 313 | return true; |
| 314 | } |
| 315 | EXPORT_SYMBOL(netfs_release_folio); |
| 316 | |
| 317 | /* |
| 318 | * Wake the collection work item. |
| 319 | */ |
| 320 | void netfs_wake_collector(struct netfs_io_request *rreq) |
| 321 | { |
| 322 | if (test_bit(NETFS_RREQ_OFFLOAD_COLLECTION, &rreq->flags) && |
| 323 | !test_bit(NETFS_RREQ_RETRYING, &rreq->flags)) { |
| 324 | queue_work(wq: system_unbound_wq, work: &rreq->work); |
| 325 | } else { |
| 326 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_wake_queue); |
| 327 | wake_up(&rreq->waitq); |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | /* |
| 332 | * Mark a subrequest as no longer being in progress and, if need be, wake the |
| 333 | * collector. |
| 334 | */ |
| 335 | void netfs_subreq_clear_in_progress(struct netfs_io_subrequest *subreq) |
| 336 | { |
| 337 | struct netfs_io_request *rreq = subreq->rreq; |
| 338 | struct netfs_io_stream *stream = &rreq->io_streams[subreq->stream_nr]; |
| 339 | |
| 340 | clear_bit_unlock(NETFS_SREQ_IN_PROGRESS, addr: &subreq->flags); |
| 341 | smp_mb__after_atomic(); /* Clear IN_PROGRESS before task state */ |
| 342 | |
| 343 | /* If we are at the head of the queue, wake up the collector. */ |
| 344 | if (list_is_first(list: &subreq->rreq_link, head: &stream->subrequests) || |
| 345 | test_bit(NETFS_RREQ_RETRYING, &rreq->flags)) |
| 346 | netfs_wake_collector(rreq); |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * Wait for all outstanding I/O in a stream to quiesce. |
| 351 | */ |
| 352 | void netfs_wait_for_in_progress_stream(struct netfs_io_request *rreq, |
| 353 | struct netfs_io_stream *stream) |
| 354 | { |
| 355 | struct netfs_io_subrequest *subreq; |
| 356 | DEFINE_WAIT(myself); |
| 357 | |
| 358 | list_for_each_entry(subreq, &stream->subrequests, rreq_link) { |
| 359 | if (!test_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags)) |
| 360 | continue; |
| 361 | |
| 362 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_wait_queue); |
| 363 | for (;;) { |
| 364 | prepare_to_wait(wq_head: &rreq->waitq, wq_entry: &myself, TASK_UNINTERRUPTIBLE); |
| 365 | |
| 366 | if (!test_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags)) |
| 367 | break; |
| 368 | |
| 369 | trace_netfs_sreq(sreq: subreq, what: netfs_sreq_trace_wait_for); |
| 370 | schedule(); |
| 371 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_woke_queue); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | finish_wait(wq_head: &rreq->waitq, wq_entry: &myself); |
| 376 | } |
| 377 | |
| 378 | /* |
| 379 | * Perform collection in app thread if not offloaded to workqueue. |
| 380 | */ |
| 381 | static int netfs_collect_in_app(struct netfs_io_request *rreq, |
| 382 | bool (*collector)(struct netfs_io_request *rreq)) |
| 383 | { |
| 384 | bool need_collect = false, inactive = true; |
| 385 | |
| 386 | for (int i = 0; i < NR_IO_STREAMS; i++) { |
| 387 | struct netfs_io_subrequest *subreq; |
| 388 | struct netfs_io_stream *stream = &rreq->io_streams[i]; |
| 389 | |
| 390 | if (!stream->active) |
| 391 | continue; |
| 392 | inactive = false; |
| 393 | trace_netfs_collect_stream(wreq: rreq, stream); |
| 394 | subreq = list_first_entry_or_null(&stream->subrequests, |
| 395 | struct netfs_io_subrequest, |
| 396 | rreq_link); |
| 397 | if (subreq && |
| 398 | (!test_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags) || |
| 399 | test_bit(NETFS_SREQ_MADE_PROGRESS, &subreq->flags))) { |
| 400 | need_collect = true; |
| 401 | break; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | if (!need_collect && !inactive) |
| 406 | return 0; /* Sleep */ |
| 407 | |
| 408 | __set_current_state(TASK_RUNNING); |
| 409 | if (collector(rreq)) { |
| 410 | /* Drop the ref from the NETFS_RREQ_IN_PROGRESS flag. */ |
| 411 | netfs_put_request(rreq, what: netfs_rreq_trace_put_work_ip); |
| 412 | return 1; /* Done */ |
| 413 | } |
| 414 | |
| 415 | if (inactive) { |
| 416 | WARN(true, "Failed to collect inactive req R=%08x\n" , |
| 417 | rreq->debug_id); |
| 418 | cond_resched(); |
| 419 | } |
| 420 | return 2; /* Again */ |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | * Wait for a request to complete, successfully or otherwise. |
| 425 | */ |
| 426 | static ssize_t netfs_wait_for_request(struct netfs_io_request *rreq, |
| 427 | bool (*collector)(struct netfs_io_request *rreq)) |
| 428 | { |
| 429 | DEFINE_WAIT(myself); |
| 430 | ssize_t ret; |
| 431 | |
| 432 | for (;;) { |
| 433 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_wait_queue); |
| 434 | prepare_to_wait(wq_head: &rreq->waitq, wq_entry: &myself, TASK_UNINTERRUPTIBLE); |
| 435 | |
| 436 | if (!test_bit(NETFS_RREQ_OFFLOAD_COLLECTION, &rreq->flags)) { |
| 437 | switch (netfs_collect_in_app(rreq, collector)) { |
| 438 | case 0: |
| 439 | break; |
| 440 | case 1: |
| 441 | goto all_collected; |
| 442 | case 2: |
| 443 | continue; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags)) |
| 448 | break; |
| 449 | |
| 450 | schedule(); |
| 451 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_woke_queue); |
| 452 | } |
| 453 | |
| 454 | all_collected: |
| 455 | finish_wait(wq_head: &rreq->waitq, wq_entry: &myself); |
| 456 | |
| 457 | ret = rreq->error; |
| 458 | if (ret == 0) { |
| 459 | ret = rreq->transferred; |
| 460 | switch (rreq->origin) { |
| 461 | case NETFS_DIO_READ: |
| 462 | case NETFS_DIO_WRITE: |
| 463 | case NETFS_READ_SINGLE: |
| 464 | case NETFS_UNBUFFERED_READ: |
| 465 | case NETFS_UNBUFFERED_WRITE: |
| 466 | break; |
| 467 | default: |
| 468 | if (rreq->submitted < rreq->len) { |
| 469 | trace_netfs_failure(rreq, NULL, error: ret, what: netfs_fail_short_read); |
| 470 | ret = -EIO; |
| 471 | } |
| 472 | break; |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | return ret; |
| 477 | } |
| 478 | |
| 479 | ssize_t netfs_wait_for_read(struct netfs_io_request *rreq) |
| 480 | { |
| 481 | return netfs_wait_for_request(rreq, collector: netfs_read_collection); |
| 482 | } |
| 483 | |
| 484 | ssize_t netfs_wait_for_write(struct netfs_io_request *rreq) |
| 485 | { |
| 486 | return netfs_wait_for_request(rreq, collector: netfs_write_collection); |
| 487 | } |
| 488 | |
| 489 | /* |
| 490 | * Wait for a paused operation to unpause or complete in some manner. |
| 491 | */ |
| 492 | static void netfs_wait_for_pause(struct netfs_io_request *rreq, |
| 493 | bool (*collector)(struct netfs_io_request *rreq)) |
| 494 | { |
| 495 | DEFINE_WAIT(myself); |
| 496 | |
| 497 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_wait_pause); |
| 498 | |
| 499 | for (;;) { |
| 500 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_wait_queue); |
| 501 | prepare_to_wait(wq_head: &rreq->waitq, wq_entry: &myself, TASK_UNINTERRUPTIBLE); |
| 502 | |
| 503 | if (!test_bit(NETFS_RREQ_OFFLOAD_COLLECTION, &rreq->flags)) { |
| 504 | switch (netfs_collect_in_app(rreq, collector)) { |
| 505 | case 0: |
| 506 | break; |
| 507 | case 1: |
| 508 | goto all_collected; |
| 509 | case 2: |
| 510 | continue; |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags) || |
| 515 | !test_bit(NETFS_RREQ_PAUSE, &rreq->flags)) |
| 516 | break; |
| 517 | |
| 518 | schedule(); |
| 519 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_woke_queue); |
| 520 | } |
| 521 | |
| 522 | all_collected: |
| 523 | finish_wait(wq_head: &rreq->waitq, wq_entry: &myself); |
| 524 | } |
| 525 | |
| 526 | void netfs_wait_for_paused_read(struct netfs_io_request *rreq) |
| 527 | { |
| 528 | return netfs_wait_for_pause(rreq, collector: netfs_read_collection); |
| 529 | } |
| 530 | |
| 531 | void netfs_wait_for_paused_write(struct netfs_io_request *rreq) |
| 532 | { |
| 533 | return netfs_wait_for_pause(rreq, collector: netfs_write_collection); |
| 534 | } |
| 535 | |