1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* Miscellaneous routines. |
3 | * |
4 | * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved. |
5 | * Written by David Howells (dhowells@redhat.com) |
6 | */ |
7 | |
8 | #include <linux/swap.h> |
9 | #include "internal.h" |
10 | |
11 | /** |
12 | * netfs_alloc_folioq_buffer - Allocate buffer space into a folio queue |
13 | * @mapping: Address space to set on the folio (or NULL). |
14 | * @_buffer: Pointer to the folio queue to add to (may point to a NULL; updated). |
15 | * @_cur_size: Current size of the buffer (updated). |
16 | * @size: Target size of the buffer. |
17 | * @gfp: The allocation constraints. |
18 | */ |
19 | int netfs_alloc_folioq_buffer(struct address_space *mapping, |
20 | struct folio_queue **_buffer, |
21 | size_t *_cur_size, ssize_t size, gfp_t gfp) |
22 | { |
23 | struct folio_queue *tail = *_buffer, *p; |
24 | |
25 | size = round_up(size, PAGE_SIZE); |
26 | if (*_cur_size >= size) |
27 | return 0; |
28 | |
29 | if (tail) |
30 | while (tail->next) |
31 | tail = tail->next; |
32 | |
33 | do { |
34 | struct folio *folio; |
35 | int order = 0, slot; |
36 | |
37 | if (!tail || folioq_full(folioq: tail)) { |
38 | p = netfs_folioq_alloc(rreq_id: 0, GFP_NOFS, trace: netfs_trace_folioq_alloc_buffer); |
39 | if (!p) |
40 | return -ENOMEM; |
41 | if (tail) { |
42 | tail->next = p; |
43 | p->prev = tail; |
44 | } else { |
45 | *_buffer = p; |
46 | } |
47 | tail = p; |
48 | } |
49 | |
50 | if (size - *_cur_size > PAGE_SIZE) |
51 | order = umin(ilog2(size - *_cur_size) - PAGE_SHIFT, |
52 | MAX_PAGECACHE_ORDER); |
53 | |
54 | folio = folio_alloc(gfp, order); |
55 | if (!folio && order > 0) |
56 | folio = folio_alloc(gfp, 0); |
57 | if (!folio) |
58 | return -ENOMEM; |
59 | |
60 | folio->mapping = mapping; |
61 | folio->index = *_cur_size / PAGE_SIZE; |
62 | trace_netfs_folio(folio, why: netfs_folio_trace_alloc_buffer); |
63 | slot = folioq_append_mark(folioq: tail, folio); |
64 | *_cur_size += folioq_folio_size(folioq: tail, slot); |
65 | } while (*_cur_size < size); |
66 | |
67 | return 0; |
68 | } |
69 | EXPORT_SYMBOL(netfs_alloc_folioq_buffer); |
70 | |
71 | /** |
72 | * netfs_free_folioq_buffer - Free a folio queue. |
73 | * @fq: The start of the folio queue to free |
74 | * |
75 | * Free up a chain of folio_queues and, if marked, the marked folios they point |
76 | * to. |
77 | */ |
78 | void netfs_free_folioq_buffer(struct folio_queue *fq) |
79 | { |
80 | struct folio_queue *next; |
81 | struct folio_batch fbatch; |
82 | |
83 | folio_batch_init(fbatch: &fbatch); |
84 | |
85 | for (; fq; fq = next) { |
86 | for (int slot = 0; slot < folioq_count(folioq: fq); slot++) { |
87 | struct folio *folio = folioq_folio(folioq: fq, slot); |
88 | |
89 | if (!folio || |
90 | !folioq_is_marked(folioq: fq, slot)) |
91 | continue; |
92 | |
93 | trace_netfs_folio(folio, why: netfs_folio_trace_put); |
94 | if (folio_batch_add(fbatch: &fbatch, folio)) |
95 | folio_batch_release(fbatch: &fbatch); |
96 | } |
97 | |
98 | netfs_stat_d(stat: &netfs_n_folioq); |
99 | next = fq->next; |
100 | kfree(objp: fq); |
101 | } |
102 | |
103 | folio_batch_release(fbatch: &fbatch); |
104 | } |
105 | EXPORT_SYMBOL(netfs_free_folioq_buffer); |
106 | |
107 | /* |
108 | * Reset the subrequest iterator to refer just to the region remaining to be |
109 | * read. The iterator may or may not have been advanced by socket ops or |
110 | * extraction ops to an extent that may or may not match the amount actually |
111 | * read. |
112 | */ |
113 | void netfs_reset_iter(struct netfs_io_subrequest *subreq) |
114 | { |
115 | struct iov_iter *io_iter = &subreq->io_iter; |
116 | size_t remain = subreq->len - subreq->transferred; |
117 | |
118 | if (io_iter->count > remain) |
119 | iov_iter_advance(i: io_iter, bytes: io_iter->count - remain); |
120 | else if (io_iter->count < remain) |
121 | iov_iter_revert(i: io_iter, bytes: remain - io_iter->count); |
122 | iov_iter_truncate(i: &subreq->io_iter, count: remain); |
123 | } |
124 | |
125 | /** |
126 | * netfs_dirty_folio - Mark folio dirty and pin a cache object for writeback |
127 | * @mapping: The mapping the folio belongs to. |
128 | * @folio: The folio being dirtied. |
129 | * |
130 | * Set the dirty flag on a folio and pin an in-use cache object in memory so |
131 | * that writeback can later write to it. This is intended to be called from |
132 | * the filesystem's ->dirty_folio() method. |
133 | * |
134 | * Return: true if the dirty flag was set on the folio, false otherwise. |
135 | */ |
136 | bool netfs_dirty_folio(struct address_space *mapping, struct folio *folio) |
137 | { |
138 | struct inode *inode = mapping->host; |
139 | struct netfs_inode *ictx = netfs_inode(inode); |
140 | struct fscache_cookie *cookie = netfs_i_cookie(ctx: ictx); |
141 | bool need_use = false; |
142 | |
143 | _enter(""); |
144 | |
145 | if (!filemap_dirty_folio(mapping, folio)) |
146 | return false; |
147 | if (!fscache_cookie_valid(cookie)) |
148 | return true; |
149 | |
150 | if (!(inode->i_state & I_PINNING_NETFS_WB)) { |
151 | spin_lock(lock: &inode->i_lock); |
152 | if (!(inode->i_state & I_PINNING_NETFS_WB)) { |
153 | inode->i_state |= I_PINNING_NETFS_WB; |
154 | need_use = true; |
155 | } |
156 | spin_unlock(lock: &inode->i_lock); |
157 | |
158 | if (need_use) |
159 | fscache_use_cookie(cookie, will_modify: true); |
160 | } |
161 | return true; |
162 | } |
163 | EXPORT_SYMBOL(netfs_dirty_folio); |
164 | |
165 | /** |
166 | * netfs_unpin_writeback - Unpin writeback resources |
167 | * @inode: The inode on which the cookie resides |
168 | * @wbc: The writeback control |
169 | * |
170 | * Unpin the writeback resources pinned by netfs_dirty_folio(). This is |
171 | * intended to be called as/by the netfs's ->write_inode() method. |
172 | */ |
173 | int netfs_unpin_writeback(struct inode *inode, struct writeback_control *wbc) |
174 | { |
175 | struct fscache_cookie *cookie = netfs_i_cookie(ctx: netfs_inode(inode)); |
176 | |
177 | if (wbc->unpinned_netfs_wb) |
178 | fscache_unuse_cookie(cookie, NULL, NULL); |
179 | return 0; |
180 | } |
181 | EXPORT_SYMBOL(netfs_unpin_writeback); |
182 | |
183 | /** |
184 | * netfs_clear_inode_writeback - Clear writeback resources pinned by an inode |
185 | * @inode: The inode to clean up |
186 | * @aux: Auxiliary data to apply to the inode |
187 | * |
188 | * Clear any writeback resources held by an inode when the inode is evicted. |
189 | * This must be called before clear_inode() is called. |
190 | */ |
191 | void netfs_clear_inode_writeback(struct inode *inode, const void *aux) |
192 | { |
193 | struct fscache_cookie *cookie = netfs_i_cookie(ctx: netfs_inode(inode)); |
194 | |
195 | if (inode->i_state & I_PINNING_NETFS_WB) { |
196 | loff_t i_size = i_size_read(inode); |
197 | fscache_unuse_cookie(cookie, aux_data: aux, object_size: &i_size); |
198 | } |
199 | } |
200 | EXPORT_SYMBOL(netfs_clear_inode_writeback); |
201 | |
202 | /** |
203 | * netfs_invalidate_folio - Invalidate or partially invalidate a folio |
204 | * @folio: Folio proposed for release |
205 | * @offset: Offset of the invalidated region |
206 | * @length: Length of the invalidated region |
207 | * |
208 | * Invalidate part or all of a folio for a network filesystem. The folio will |
209 | * be removed afterwards if the invalidated region covers the entire folio. |
210 | */ |
211 | void netfs_invalidate_folio(struct folio *folio, size_t offset, size_t length) |
212 | { |
213 | struct netfs_folio *finfo; |
214 | struct netfs_inode *ctx = netfs_inode(inode: folio_inode(folio)); |
215 | size_t flen = folio_size(folio); |
216 | |
217 | _enter("{%lx},%zx,%zx", folio->index, offset, length); |
218 | |
219 | if (offset == 0 && length == flen) { |
220 | unsigned long long i_size = i_size_read(inode: &ctx->inode); |
221 | unsigned long long fpos = folio_pos(folio), end; |
222 | |
223 | end = umin(fpos + flen, i_size); |
224 | if (fpos < i_size && end > ctx->zero_point) |
225 | ctx->zero_point = end; |
226 | } |
227 | |
228 | folio_wait_private_2(folio); /* [DEPRECATED] */ |
229 | |
230 | if (!folio_test_private(folio)) |
231 | return; |
232 | |
233 | finfo = netfs_folio_info(folio); |
234 | |
235 | if (offset == 0 && length >= flen) |
236 | goto erase_completely; |
237 | |
238 | if (finfo) { |
239 | /* We have a partially uptodate page from a streaming write. */ |
240 | unsigned int fstart = finfo->dirty_offset; |
241 | unsigned int fend = fstart + finfo->dirty_len; |
242 | unsigned int iend = offset + length; |
243 | |
244 | if (offset >= fend) |
245 | return; |
246 | if (iend <= fstart) |
247 | return; |
248 | |
249 | /* The invalidation region overlaps the data. If the region |
250 | * covers the start of the data, we either move along the start |
251 | * or just erase the data entirely. |
252 | */ |
253 | if (offset <= fstart) { |
254 | if (iend >= fend) |
255 | goto erase_completely; |
256 | /* Move the start of the data. */ |
257 | finfo->dirty_len = fend - iend; |
258 | finfo->dirty_offset = offset; |
259 | return; |
260 | } |
261 | |
262 | /* Reduce the length of the data if the invalidation region |
263 | * covers the tail part. |
264 | */ |
265 | if (iend >= fend) { |
266 | finfo->dirty_len = offset - fstart; |
267 | return; |
268 | } |
269 | |
270 | /* A partial write was split. The caller has already zeroed |
271 | * it, so just absorb the hole. |
272 | */ |
273 | } |
274 | return; |
275 | |
276 | erase_completely: |
277 | netfs_put_group(netfs_group: netfs_folio_group(folio)); |
278 | folio_detach_private(folio); |
279 | folio_clear_uptodate(folio); |
280 | kfree(objp: finfo); |
281 | return; |
282 | } |
283 | EXPORT_SYMBOL(netfs_invalidate_folio); |
284 | |
285 | /** |
286 | * netfs_release_folio - Try to release a folio |
287 | * @folio: Folio proposed for release |
288 | * @gfp: Flags qualifying the release |
289 | * |
290 | * Request release of a folio and clean up its private state if it's not busy. |
291 | * Returns true if the folio can now be released, false if not |
292 | */ |
293 | bool netfs_release_folio(struct folio *folio, gfp_t gfp) |
294 | { |
295 | struct netfs_inode *ctx = netfs_inode(inode: folio_inode(folio)); |
296 | unsigned long long end; |
297 | |
298 | if (folio_test_dirty(folio)) |
299 | return false; |
300 | |
301 | end = umin(folio_pos(folio) + folio_size(folio), i_size_read(&ctx->inode)); |
302 | if (end > ctx->zero_point) |
303 | ctx->zero_point = end; |
304 | |
305 | if (folio_test_private(folio)) |
306 | return false; |
307 | if (unlikely(folio_test_private_2(folio))) { /* [DEPRECATED] */ |
308 | if (current_is_kswapd() || !(gfp & __GFP_FS)) |
309 | return false; |
310 | folio_wait_private_2(folio); |
311 | } |
312 | fscache_note_page_release(cookie: netfs_i_cookie(ctx)); |
313 | return true; |
314 | } |
315 | EXPORT_SYMBOL(netfs_release_folio); |
316 | |
317 | /* |
318 | * Wake the collection work item. |
319 | */ |
320 | void netfs_wake_collector(struct netfs_io_request *rreq) |
321 | { |
322 | if (test_bit(NETFS_RREQ_OFFLOAD_COLLECTION, &rreq->flags) && |
323 | !test_bit(NETFS_RREQ_RETRYING, &rreq->flags)) { |
324 | queue_work(wq: system_unbound_wq, work: &rreq->work); |
325 | } else { |
326 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_wake_queue); |
327 | wake_up(&rreq->waitq); |
328 | } |
329 | } |
330 | |
331 | /* |
332 | * Mark a subrequest as no longer being in progress and, if need be, wake the |
333 | * collector. |
334 | */ |
335 | void netfs_subreq_clear_in_progress(struct netfs_io_subrequest *subreq) |
336 | { |
337 | struct netfs_io_request *rreq = subreq->rreq; |
338 | struct netfs_io_stream *stream = &rreq->io_streams[subreq->stream_nr]; |
339 | |
340 | clear_bit_unlock(NETFS_SREQ_IN_PROGRESS, addr: &subreq->flags); |
341 | smp_mb__after_atomic(); /* Clear IN_PROGRESS before task state */ |
342 | |
343 | /* If we are at the head of the queue, wake up the collector. */ |
344 | if (list_is_first(list: &subreq->rreq_link, head: &stream->subrequests) || |
345 | test_bit(NETFS_RREQ_RETRYING, &rreq->flags)) |
346 | netfs_wake_collector(rreq); |
347 | } |
348 | |
349 | /* |
350 | * Wait for all outstanding I/O in a stream to quiesce. |
351 | */ |
352 | void netfs_wait_for_in_progress_stream(struct netfs_io_request *rreq, |
353 | struct netfs_io_stream *stream) |
354 | { |
355 | struct netfs_io_subrequest *subreq; |
356 | DEFINE_WAIT(myself); |
357 | |
358 | list_for_each_entry(subreq, &stream->subrequests, rreq_link) { |
359 | if (!test_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags)) |
360 | continue; |
361 | |
362 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_wait_queue); |
363 | for (;;) { |
364 | prepare_to_wait(wq_head: &rreq->waitq, wq_entry: &myself, TASK_UNINTERRUPTIBLE); |
365 | |
366 | if (!test_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags)) |
367 | break; |
368 | |
369 | trace_netfs_sreq(sreq: subreq, what: netfs_sreq_trace_wait_for); |
370 | schedule(); |
371 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_woke_queue); |
372 | } |
373 | } |
374 | |
375 | finish_wait(wq_head: &rreq->waitq, wq_entry: &myself); |
376 | } |
377 | |
378 | /* |
379 | * Perform collection in app thread if not offloaded to workqueue. |
380 | */ |
381 | static int netfs_collect_in_app(struct netfs_io_request *rreq, |
382 | bool (*collector)(struct netfs_io_request *rreq)) |
383 | { |
384 | bool need_collect = false, inactive = true; |
385 | |
386 | for (int i = 0; i < NR_IO_STREAMS; i++) { |
387 | struct netfs_io_subrequest *subreq; |
388 | struct netfs_io_stream *stream = &rreq->io_streams[i]; |
389 | |
390 | if (!stream->active) |
391 | continue; |
392 | inactive = false; |
393 | trace_netfs_collect_stream(wreq: rreq, stream); |
394 | subreq = list_first_entry_or_null(&stream->subrequests, |
395 | struct netfs_io_subrequest, |
396 | rreq_link); |
397 | if (subreq && |
398 | (!test_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags) || |
399 | test_bit(NETFS_SREQ_MADE_PROGRESS, &subreq->flags))) { |
400 | need_collect = true; |
401 | break; |
402 | } |
403 | } |
404 | |
405 | if (!need_collect && !inactive) |
406 | return 0; /* Sleep */ |
407 | |
408 | __set_current_state(TASK_RUNNING); |
409 | if (collector(rreq)) { |
410 | /* Drop the ref from the NETFS_RREQ_IN_PROGRESS flag. */ |
411 | netfs_put_request(rreq, what: netfs_rreq_trace_put_work_ip); |
412 | return 1; /* Done */ |
413 | } |
414 | |
415 | if (inactive) { |
416 | WARN(true, "Failed to collect inactive req R=%08x\n", |
417 | rreq->debug_id); |
418 | cond_resched(); |
419 | } |
420 | return 2; /* Again */ |
421 | } |
422 | |
423 | /* |
424 | * Wait for a request to complete, successfully or otherwise. |
425 | */ |
426 | static ssize_t netfs_wait_for_request(struct netfs_io_request *rreq, |
427 | bool (*collector)(struct netfs_io_request *rreq)) |
428 | { |
429 | DEFINE_WAIT(myself); |
430 | ssize_t ret; |
431 | |
432 | for (;;) { |
433 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_wait_queue); |
434 | prepare_to_wait(wq_head: &rreq->waitq, wq_entry: &myself, TASK_UNINTERRUPTIBLE); |
435 | |
436 | if (!test_bit(NETFS_RREQ_OFFLOAD_COLLECTION, &rreq->flags)) { |
437 | switch (netfs_collect_in_app(rreq, collector)) { |
438 | case 0: |
439 | break; |
440 | case 1: |
441 | goto all_collected; |
442 | case 2: |
443 | continue; |
444 | } |
445 | } |
446 | |
447 | if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags)) |
448 | break; |
449 | |
450 | schedule(); |
451 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_woke_queue); |
452 | } |
453 | |
454 | all_collected: |
455 | finish_wait(wq_head: &rreq->waitq, wq_entry: &myself); |
456 | |
457 | ret = rreq->error; |
458 | if (ret == 0) { |
459 | ret = rreq->transferred; |
460 | switch (rreq->origin) { |
461 | case NETFS_DIO_READ: |
462 | case NETFS_DIO_WRITE: |
463 | case NETFS_READ_SINGLE: |
464 | case NETFS_UNBUFFERED_READ: |
465 | case NETFS_UNBUFFERED_WRITE: |
466 | break; |
467 | default: |
468 | if (rreq->submitted < rreq->len) { |
469 | trace_netfs_failure(rreq, NULL, error: ret, what: netfs_fail_short_read); |
470 | ret = -EIO; |
471 | } |
472 | break; |
473 | } |
474 | } |
475 | |
476 | return ret; |
477 | } |
478 | |
479 | ssize_t netfs_wait_for_read(struct netfs_io_request *rreq) |
480 | { |
481 | return netfs_wait_for_request(rreq, collector: netfs_read_collection); |
482 | } |
483 | |
484 | ssize_t netfs_wait_for_write(struct netfs_io_request *rreq) |
485 | { |
486 | return netfs_wait_for_request(rreq, collector: netfs_write_collection); |
487 | } |
488 | |
489 | /* |
490 | * Wait for a paused operation to unpause or complete in some manner. |
491 | */ |
492 | static void netfs_wait_for_pause(struct netfs_io_request *rreq, |
493 | bool (*collector)(struct netfs_io_request *rreq)) |
494 | { |
495 | DEFINE_WAIT(myself); |
496 | |
497 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_wait_pause); |
498 | |
499 | for (;;) { |
500 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_wait_queue); |
501 | prepare_to_wait(wq_head: &rreq->waitq, wq_entry: &myself, TASK_UNINTERRUPTIBLE); |
502 | |
503 | if (!test_bit(NETFS_RREQ_OFFLOAD_COLLECTION, &rreq->flags)) { |
504 | switch (netfs_collect_in_app(rreq, collector)) { |
505 | case 0: |
506 | break; |
507 | case 1: |
508 | goto all_collected; |
509 | case 2: |
510 | continue; |
511 | } |
512 | } |
513 | |
514 | if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags) || |
515 | !test_bit(NETFS_RREQ_PAUSE, &rreq->flags)) |
516 | break; |
517 | |
518 | schedule(); |
519 | trace_netfs_rreq(rreq, what: netfs_rreq_trace_woke_queue); |
520 | } |
521 | |
522 | all_collected: |
523 | finish_wait(wq_head: &rreq->waitq, wq_entry: &myself); |
524 | } |
525 | |
526 | void netfs_wait_for_paused_read(struct netfs_io_request *rreq) |
527 | { |
528 | return netfs_wait_for_pause(rreq, collector: netfs_read_collection); |
529 | } |
530 | |
531 | void netfs_wait_for_paused_write(struct netfs_io_request *rreq) |
532 | { |
533 | return netfs_wait_for_pause(rreq, collector: netfs_write_collection); |
534 | } |
535 |
Definitions
- netfs_alloc_folioq_buffer
- netfs_free_folioq_buffer
- netfs_reset_iter
- netfs_dirty_folio
- netfs_unpin_writeback
- netfs_clear_inode_writeback
- netfs_invalidate_folio
- netfs_release_folio
- netfs_wake_collector
- netfs_subreq_clear_in_progress
- netfs_wait_for_in_progress_stream
- netfs_collect_in_app
- netfs_wait_for_request
- netfs_wait_for_read
- netfs_wait_for_write
- netfs_wait_for_pause
- netfs_wait_for_paused_read
Improve your Profiling and Debugging skills
Find out more