1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
4 | * All Rights Reserved. |
5 | */ |
6 | #include <linux/iversion.h> |
7 | |
8 | #include "xfs.h" |
9 | #include "xfs_fs.h" |
10 | #include "xfs_shared.h" |
11 | #include "xfs_format.h" |
12 | #include "xfs_log_format.h" |
13 | #include "xfs_trans_resv.h" |
14 | #include "xfs_mount.h" |
15 | #include "xfs_defer.h" |
16 | #include "xfs_inode.h" |
17 | #include "xfs_dir2.h" |
18 | #include "xfs_attr.h" |
19 | #include "xfs_bit.h" |
20 | #include "xfs_trans_space.h" |
21 | #include "xfs_trans.h" |
22 | #include "xfs_buf_item.h" |
23 | #include "xfs_inode_item.h" |
24 | #include "xfs_iunlink_item.h" |
25 | #include "xfs_ialloc.h" |
26 | #include "xfs_bmap.h" |
27 | #include "xfs_bmap_util.h" |
28 | #include "xfs_errortag.h" |
29 | #include "xfs_error.h" |
30 | #include "xfs_quota.h" |
31 | #include "xfs_filestream.h" |
32 | #include "xfs_trace.h" |
33 | #include "xfs_icache.h" |
34 | #include "xfs_symlink.h" |
35 | #include "xfs_trans_priv.h" |
36 | #include "xfs_log.h" |
37 | #include "xfs_bmap_btree.h" |
38 | #include "xfs_reflink.h" |
39 | #include "xfs_ag.h" |
40 | #include "xfs_log_priv.h" |
41 | #include "xfs_health.h" |
42 | #include "xfs_pnfs.h" |
43 | #include "xfs_parent.h" |
44 | #include "xfs_xattr.h" |
45 | #include "xfs_inode_util.h" |
46 | #include "xfs_metafile.h" |
47 | |
48 | struct kmem_cache *xfs_inode_cache; |
49 | |
50 | /* |
51 | * These two are wrapper routines around the xfs_ilock() routine used to |
52 | * centralize some grungy code. They are used in places that wish to lock the |
53 | * inode solely for reading the extents. The reason these places can't just |
54 | * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to |
55 | * bringing in of the extents from disk for a file in b-tree format. If the |
56 | * inode is in b-tree format, then we need to lock the inode exclusively until |
57 | * the extents are read in. Locking it exclusively all the time would limit |
58 | * our parallelism unnecessarily, though. What we do instead is check to see |
59 | * if the extents have been read in yet, and only lock the inode exclusively |
60 | * if they have not. |
61 | * |
62 | * The functions return a value which should be given to the corresponding |
63 | * xfs_iunlock() call. |
64 | */ |
65 | uint |
66 | xfs_ilock_data_map_shared( |
67 | struct xfs_inode *ip) |
68 | { |
69 | uint lock_mode = XFS_ILOCK_SHARED; |
70 | |
71 | if (xfs_need_iread_extents(&ip->i_df)) |
72 | lock_mode = XFS_ILOCK_EXCL; |
73 | xfs_ilock(ip, lock_mode); |
74 | return lock_mode; |
75 | } |
76 | |
77 | uint |
78 | xfs_ilock_attr_map_shared( |
79 | struct xfs_inode *ip) |
80 | { |
81 | uint lock_mode = XFS_ILOCK_SHARED; |
82 | |
83 | if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) |
84 | lock_mode = XFS_ILOCK_EXCL; |
85 | xfs_ilock(ip, lock_mode); |
86 | return lock_mode; |
87 | } |
88 | |
89 | /* |
90 | * You can't set both SHARED and EXCL for the same lock, |
91 | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, |
92 | * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values |
93 | * to set in lock_flags. |
94 | */ |
95 | static inline void |
96 | xfs_lock_flags_assert( |
97 | uint lock_flags) |
98 | { |
99 | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
100 | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
101 | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
102 | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
103 | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
104 | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
105 | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
106 | ASSERT(lock_flags != 0); |
107 | } |
108 | |
109 | /* |
110 | * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 |
111 | * multi-reader locks: invalidate_lock and the i_lock. This routine allows |
112 | * various combinations of the locks to be obtained. |
113 | * |
114 | * The 3 locks should always be ordered so that the IO lock is obtained first, |
115 | * the mmap lock second and the ilock last in order to prevent deadlock. |
116 | * |
117 | * Basic locking order: |
118 | * |
119 | * i_rwsem -> invalidate_lock -> page_lock -> i_ilock |
120 | * |
121 | * mmap_lock locking order: |
122 | * |
123 | * i_rwsem -> page lock -> mmap_lock |
124 | * mmap_lock -> invalidate_lock -> page_lock |
125 | * |
126 | * The difference in mmap_lock locking order mean that we cannot hold the |
127 | * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths |
128 | * can fault in pages during copy in/out (for buffered IO) or require the |
129 | * mmap_lock in get_user_pages() to map the user pages into the kernel address |
130 | * space for direct IO. Similarly the i_rwsem cannot be taken inside a page |
131 | * fault because page faults already hold the mmap_lock. |
132 | * |
133 | * Hence to serialise fully against both syscall and mmap based IO, we need to |
134 | * take both the i_rwsem and the invalidate_lock. These locks should *only* be |
135 | * both taken in places where we need to invalidate the page cache in a race |
136 | * free manner (e.g. truncate, hole punch and other extent manipulation |
137 | * functions). |
138 | */ |
139 | void |
140 | xfs_ilock( |
141 | xfs_inode_t *ip, |
142 | uint lock_flags) |
143 | { |
144 | trace_xfs_ilock(ip, lock_flags, _RET_IP_); |
145 | |
146 | xfs_lock_flags_assert(lock_flags); |
147 | |
148 | if (lock_flags & XFS_IOLOCK_EXCL) { |
149 | down_write_nested(sem: &VFS_I(ip)->i_rwsem, |
150 | XFS_IOLOCK_DEP(lock_flags)); |
151 | } else if (lock_flags & XFS_IOLOCK_SHARED) { |
152 | down_read_nested(sem: &VFS_I(ip)->i_rwsem, |
153 | XFS_IOLOCK_DEP(lock_flags)); |
154 | } |
155 | |
156 | if (lock_flags & XFS_MMAPLOCK_EXCL) { |
157 | down_write_nested(sem: &VFS_I(ip)->i_mapping->invalidate_lock, |
158 | XFS_MMAPLOCK_DEP(lock_flags)); |
159 | } else if (lock_flags & XFS_MMAPLOCK_SHARED) { |
160 | down_read_nested(sem: &VFS_I(ip)->i_mapping->invalidate_lock, |
161 | XFS_MMAPLOCK_DEP(lock_flags)); |
162 | } |
163 | |
164 | if (lock_flags & XFS_ILOCK_EXCL) |
165 | down_write_nested(sem: &ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
166 | else if (lock_flags & XFS_ILOCK_SHARED) |
167 | down_read_nested(sem: &ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
168 | } |
169 | |
170 | /* |
171 | * This is just like xfs_ilock(), except that the caller |
172 | * is guaranteed not to sleep. It returns 1 if it gets |
173 | * the requested locks and 0 otherwise. If the IO lock is |
174 | * obtained but the inode lock cannot be, then the IO lock |
175 | * is dropped before returning. |
176 | * |
177 | * ip -- the inode being locked |
178 | * lock_flags -- this parameter indicates the inode's locks to be |
179 | * to be locked. See the comment for xfs_ilock() for a list |
180 | * of valid values. |
181 | */ |
182 | int |
183 | xfs_ilock_nowait( |
184 | xfs_inode_t *ip, |
185 | uint lock_flags) |
186 | { |
187 | trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); |
188 | |
189 | xfs_lock_flags_assert(lock_flags); |
190 | |
191 | if (lock_flags & XFS_IOLOCK_EXCL) { |
192 | if (!down_write_trylock(sem: &VFS_I(ip)->i_rwsem)) |
193 | goto out; |
194 | } else if (lock_flags & XFS_IOLOCK_SHARED) { |
195 | if (!down_read_trylock(sem: &VFS_I(ip)->i_rwsem)) |
196 | goto out; |
197 | } |
198 | |
199 | if (lock_flags & XFS_MMAPLOCK_EXCL) { |
200 | if (!down_write_trylock(sem: &VFS_I(ip)->i_mapping->invalidate_lock)) |
201 | goto out_undo_iolock; |
202 | } else if (lock_flags & XFS_MMAPLOCK_SHARED) { |
203 | if (!down_read_trylock(sem: &VFS_I(ip)->i_mapping->invalidate_lock)) |
204 | goto out_undo_iolock; |
205 | } |
206 | |
207 | if (lock_flags & XFS_ILOCK_EXCL) { |
208 | if (!down_write_trylock(sem: &ip->i_lock)) |
209 | goto out_undo_mmaplock; |
210 | } else if (lock_flags & XFS_ILOCK_SHARED) { |
211 | if (!down_read_trylock(sem: &ip->i_lock)) |
212 | goto out_undo_mmaplock; |
213 | } |
214 | return 1; |
215 | |
216 | out_undo_mmaplock: |
217 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
218 | up_write(sem: &VFS_I(ip)->i_mapping->invalidate_lock); |
219 | else if (lock_flags & XFS_MMAPLOCK_SHARED) |
220 | up_read(sem: &VFS_I(ip)->i_mapping->invalidate_lock); |
221 | out_undo_iolock: |
222 | if (lock_flags & XFS_IOLOCK_EXCL) |
223 | up_write(sem: &VFS_I(ip)->i_rwsem); |
224 | else if (lock_flags & XFS_IOLOCK_SHARED) |
225 | up_read(sem: &VFS_I(ip)->i_rwsem); |
226 | out: |
227 | return 0; |
228 | } |
229 | |
230 | /* |
231 | * xfs_iunlock() is used to drop the inode locks acquired with |
232 | * xfs_ilock() and xfs_ilock_nowait(). The caller must pass |
233 | * in the flags given to xfs_ilock() or xfs_ilock_nowait() so |
234 | * that we know which locks to drop. |
235 | * |
236 | * ip -- the inode being unlocked |
237 | * lock_flags -- this parameter indicates the inode's locks to be |
238 | * to be unlocked. See the comment for xfs_ilock() for a list |
239 | * of valid values for this parameter. |
240 | * |
241 | */ |
242 | void |
243 | xfs_iunlock( |
244 | xfs_inode_t *ip, |
245 | uint lock_flags) |
246 | { |
247 | xfs_lock_flags_assert(lock_flags); |
248 | |
249 | if (lock_flags & XFS_IOLOCK_EXCL) |
250 | up_write(sem: &VFS_I(ip)->i_rwsem); |
251 | else if (lock_flags & XFS_IOLOCK_SHARED) |
252 | up_read(sem: &VFS_I(ip)->i_rwsem); |
253 | |
254 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
255 | up_write(sem: &VFS_I(ip)->i_mapping->invalidate_lock); |
256 | else if (lock_flags & XFS_MMAPLOCK_SHARED) |
257 | up_read(sem: &VFS_I(ip)->i_mapping->invalidate_lock); |
258 | |
259 | if (lock_flags & XFS_ILOCK_EXCL) |
260 | up_write(sem: &ip->i_lock); |
261 | else if (lock_flags & XFS_ILOCK_SHARED) |
262 | up_read(sem: &ip->i_lock); |
263 | |
264 | trace_xfs_iunlock(ip, lock_flags, _RET_IP_); |
265 | } |
266 | |
267 | /* |
268 | * give up write locks. the i/o lock cannot be held nested |
269 | * if it is being demoted. |
270 | */ |
271 | void |
272 | xfs_ilock_demote( |
273 | xfs_inode_t *ip, |
274 | uint lock_flags) |
275 | { |
276 | ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); |
277 | ASSERT((lock_flags & |
278 | ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); |
279 | |
280 | if (lock_flags & XFS_ILOCK_EXCL) |
281 | downgrade_write(sem: &ip->i_lock); |
282 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
283 | downgrade_write(sem: &VFS_I(ip)->i_mapping->invalidate_lock); |
284 | if (lock_flags & XFS_IOLOCK_EXCL) |
285 | downgrade_write(sem: &VFS_I(ip)->i_rwsem); |
286 | |
287 | trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); |
288 | } |
289 | |
290 | void |
291 | xfs_assert_ilocked( |
292 | struct xfs_inode *ip, |
293 | uint lock_flags) |
294 | { |
295 | /* |
296 | * Sometimes we assert the ILOCK is held exclusively, but we're in |
297 | * a workqueue, so lockdep doesn't know we're the owner. |
298 | */ |
299 | if (lock_flags & XFS_ILOCK_SHARED) |
300 | rwsem_assert_held(sem: &ip->i_lock); |
301 | else if (lock_flags & XFS_ILOCK_EXCL) |
302 | rwsem_assert_held_write_nolockdep(sem: &ip->i_lock); |
303 | |
304 | if (lock_flags & XFS_MMAPLOCK_SHARED) |
305 | rwsem_assert_held(sem: &VFS_I(ip)->i_mapping->invalidate_lock); |
306 | else if (lock_flags & XFS_MMAPLOCK_EXCL) |
307 | rwsem_assert_held_write(sem: &VFS_I(ip)->i_mapping->invalidate_lock); |
308 | |
309 | if (lock_flags & XFS_IOLOCK_SHARED) |
310 | rwsem_assert_held(sem: &VFS_I(ip)->i_rwsem); |
311 | else if (lock_flags & XFS_IOLOCK_EXCL) |
312 | rwsem_assert_held_write(sem: &VFS_I(ip)->i_rwsem); |
313 | } |
314 | |
315 | /* |
316 | * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when |
317 | * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined |
318 | * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build |
319 | * errors and warnings. |
320 | */ |
321 | #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) |
322 | static bool |
323 | xfs_lockdep_subclass_ok( |
324 | int subclass) |
325 | { |
326 | return subclass < MAX_LOCKDEP_SUBCLASSES; |
327 | } |
328 | #else |
329 | #define xfs_lockdep_subclass_ok(subclass) (true) |
330 | #endif |
331 | |
332 | /* |
333 | * Bump the subclass so xfs_lock_inodes() acquires each lock with a different |
334 | * value. This can be called for any type of inode lock combination, including |
335 | * parent locking. Care must be taken to ensure we don't overrun the subclass |
336 | * storage fields in the class mask we build. |
337 | */ |
338 | static inline uint |
339 | xfs_lock_inumorder( |
340 | uint lock_mode, |
341 | uint subclass) |
342 | { |
343 | uint class = 0; |
344 | |
345 | ASSERT(!(lock_mode & XFS_ILOCK_PARENT)); |
346 | ASSERT(xfs_lockdep_subclass_ok(subclass)); |
347 | |
348 | if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { |
349 | ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); |
350 | class += subclass << XFS_IOLOCK_SHIFT; |
351 | } |
352 | |
353 | if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { |
354 | ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); |
355 | class += subclass << XFS_MMAPLOCK_SHIFT; |
356 | } |
357 | |
358 | if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { |
359 | ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); |
360 | class += subclass << XFS_ILOCK_SHIFT; |
361 | } |
362 | |
363 | return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; |
364 | } |
365 | |
366 | /* |
367 | * The following routine will lock n inodes in exclusive mode. We assume the |
368 | * caller calls us with the inodes in i_ino order. |
369 | * |
370 | * We need to detect deadlock where an inode that we lock is in the AIL and we |
371 | * start waiting for another inode that is locked by a thread in a long running |
372 | * transaction (such as truncate). This can result in deadlock since the long |
373 | * running trans might need to wait for the inode we just locked in order to |
374 | * push the tail and free space in the log. |
375 | * |
376 | * xfs_lock_inodes() can only be used to lock one type of lock at a time - |
377 | * the iolock, the mmaplock or the ilock, but not more than one at a time. If we |
378 | * lock more than one at a time, lockdep will report false positives saying we |
379 | * have violated locking orders. |
380 | */ |
381 | void |
382 | xfs_lock_inodes( |
383 | struct xfs_inode **ips, |
384 | int inodes, |
385 | uint lock_mode) |
386 | { |
387 | int attempts = 0; |
388 | uint i; |
389 | int j; |
390 | bool try_lock; |
391 | struct xfs_log_item *lp; |
392 | |
393 | /* |
394 | * Currently supports between 2 and 5 inodes with exclusive locking. We |
395 | * support an arbitrary depth of locking here, but absolute limits on |
396 | * inodes depend on the type of locking and the limits placed by |
397 | * lockdep annotations in xfs_lock_inumorder. These are all checked by |
398 | * the asserts. |
399 | */ |
400 | ASSERT(ips && inodes >= 2 && inodes <= 5); |
401 | ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | |
402 | XFS_ILOCK_EXCL)); |
403 | ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | |
404 | XFS_ILOCK_SHARED))); |
405 | ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || |
406 | inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); |
407 | ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || |
408 | inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); |
409 | |
410 | if (lock_mode & XFS_IOLOCK_EXCL) { |
411 | ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); |
412 | } else if (lock_mode & XFS_MMAPLOCK_EXCL) |
413 | ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); |
414 | |
415 | again: |
416 | try_lock = false; |
417 | i = 0; |
418 | for (; i < inodes; i++) { |
419 | ASSERT(ips[i]); |
420 | |
421 | if (i && (ips[i] == ips[i - 1])) /* Already locked */ |
422 | continue; |
423 | |
424 | /* |
425 | * If try_lock is not set yet, make sure all locked inodes are |
426 | * not in the AIL. If any are, set try_lock to be used later. |
427 | */ |
428 | if (!try_lock) { |
429 | for (j = (i - 1); j >= 0 && !try_lock; j--) { |
430 | lp = &ips[j]->i_itemp->ili_item; |
431 | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) |
432 | try_lock = true; |
433 | } |
434 | } |
435 | |
436 | /* |
437 | * If any of the previous locks we have locked is in the AIL, |
438 | * we must TRY to get the second and subsequent locks. If |
439 | * we can't get any, we must release all we have |
440 | * and try again. |
441 | */ |
442 | if (!try_lock) { |
443 | xfs_ilock(ip: ips[i], lock_flags: xfs_lock_inumorder(lock_mode, subclass: i)); |
444 | continue; |
445 | } |
446 | |
447 | /* try_lock means we have an inode locked that is in the AIL. */ |
448 | ASSERT(i != 0); |
449 | if (xfs_ilock_nowait(ip: ips[i], lock_flags: xfs_lock_inumorder(lock_mode, subclass: i))) |
450 | continue; |
451 | |
452 | /* |
453 | * Unlock all previous guys and try again. xfs_iunlock will try |
454 | * to push the tail if the inode is in the AIL. |
455 | */ |
456 | attempts++; |
457 | for (j = i - 1; j >= 0; j--) { |
458 | /* |
459 | * Check to see if we've already unlocked this one. Not |
460 | * the first one going back, and the inode ptr is the |
461 | * same. |
462 | */ |
463 | if (j != (i - 1) && ips[j] == ips[j + 1]) |
464 | continue; |
465 | |
466 | xfs_iunlock(ip: ips[j], lock_flags: lock_mode); |
467 | } |
468 | |
469 | if ((attempts % 5) == 0) { |
470 | delay(ticks: 1); /* Don't just spin the CPU */ |
471 | } |
472 | goto again; |
473 | } |
474 | } |
475 | |
476 | /* |
477 | * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and |
478 | * mmaplock must be double-locked separately since we use i_rwsem and |
479 | * invalidate_lock for that. We now support taking one lock EXCL and the |
480 | * other SHARED. |
481 | */ |
482 | void |
483 | xfs_lock_two_inodes( |
484 | struct xfs_inode *ip0, |
485 | uint ip0_mode, |
486 | struct xfs_inode *ip1, |
487 | uint ip1_mode) |
488 | { |
489 | int attempts = 0; |
490 | struct xfs_log_item *lp; |
491 | |
492 | ASSERT(hweight32(ip0_mode) == 1); |
493 | ASSERT(hweight32(ip1_mode) == 1); |
494 | ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); |
495 | ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); |
496 | ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); |
497 | ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); |
498 | ASSERT(ip0->i_ino != ip1->i_ino); |
499 | |
500 | if (ip0->i_ino > ip1->i_ino) { |
501 | swap(ip0, ip1); |
502 | swap(ip0_mode, ip1_mode); |
503 | } |
504 | |
505 | again: |
506 | xfs_ilock(ip: ip0, lock_flags: xfs_lock_inumorder(lock_mode: ip0_mode, subclass: 0)); |
507 | |
508 | /* |
509 | * If the first lock we have locked is in the AIL, we must TRY to get |
510 | * the second lock. If we can't get it, we must release the first one |
511 | * and try again. |
512 | */ |
513 | lp = &ip0->i_itemp->ili_item; |
514 | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { |
515 | if (!xfs_ilock_nowait(ip: ip1, lock_flags: xfs_lock_inumorder(lock_mode: ip1_mode, subclass: 1))) { |
516 | xfs_iunlock(ip: ip0, lock_flags: ip0_mode); |
517 | if ((++attempts % 5) == 0) |
518 | delay(ticks: 1); /* Don't just spin the CPU */ |
519 | goto again; |
520 | } |
521 | } else { |
522 | xfs_ilock(ip: ip1, lock_flags: xfs_lock_inumorder(lock_mode: ip1_mode, subclass: 1)); |
523 | } |
524 | } |
525 | |
526 | /* |
527 | * Lookups up an inode from "name". If ci_name is not NULL, then a CI match |
528 | * is allowed, otherwise it has to be an exact match. If a CI match is found, |
529 | * ci_name->name will point to a the actual name (caller must free) or |
530 | * will be set to NULL if an exact match is found. |
531 | */ |
532 | int |
533 | xfs_lookup( |
534 | struct xfs_inode *dp, |
535 | const struct xfs_name *name, |
536 | struct xfs_inode **ipp, |
537 | struct xfs_name *ci_name) |
538 | { |
539 | xfs_ino_t inum; |
540 | int error; |
541 | |
542 | trace_xfs_lookup(dp, xfs_lookup: name); |
543 | |
544 | if (xfs_is_shutdown(mp: dp->i_mount)) |
545 | return -EIO; |
546 | if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) |
547 | return -EIO; |
548 | |
549 | error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); |
550 | if (error) |
551 | goto out_unlock; |
552 | |
553 | error = xfs_iget(mp: dp->i_mount, NULL, ino: inum, flags: 0, lock_flags: 0, ipp); |
554 | if (error) |
555 | goto out_free_name; |
556 | |
557 | /* |
558 | * Fail if a directory entry in the regular directory tree points to |
559 | * a metadata file. |
560 | */ |
561 | if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) { |
562 | xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR); |
563 | error = -EFSCORRUPTED; |
564 | goto out_irele; |
565 | } |
566 | |
567 | return 0; |
568 | |
569 | out_irele: |
570 | xfs_irele(ip: *ipp); |
571 | out_free_name: |
572 | if (ci_name) |
573 | kfree(objp: ci_name->name); |
574 | out_unlock: |
575 | *ipp = NULL; |
576 | return error; |
577 | } |
578 | |
579 | /* |
580 | * Initialise a newly allocated inode and return the in-core inode to the |
581 | * caller locked exclusively. |
582 | * |
583 | * Caller is responsible for unlocking the inode manually upon return |
584 | */ |
585 | int |
586 | xfs_icreate( |
587 | struct xfs_trans *tp, |
588 | xfs_ino_t ino, |
589 | const struct xfs_icreate_args *args, |
590 | struct xfs_inode **ipp) |
591 | { |
592 | struct xfs_mount *mp = tp->t_mountp; |
593 | struct xfs_inode *ip = NULL; |
594 | int error; |
595 | |
596 | /* |
597 | * Get the in-core inode with the lock held exclusively to prevent |
598 | * others from looking at until we're done. |
599 | */ |
600 | error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, ipp: &ip); |
601 | if (error) |
602 | return error; |
603 | |
604 | ASSERT(ip != NULL); |
605 | xfs_trans_ijoin(tp, ip, 0); |
606 | xfs_inode_init(tp, args, ip); |
607 | |
608 | /* now that we have an i_mode we can setup the inode structure */ |
609 | xfs_setup_inode(ip); |
610 | |
611 | *ipp = ip; |
612 | return 0; |
613 | } |
614 | |
615 | /* Return dquots for the ids that will be assigned to a new file. */ |
616 | int |
617 | xfs_icreate_dqalloc( |
618 | const struct xfs_icreate_args *args, |
619 | struct xfs_dquot **udqpp, |
620 | struct xfs_dquot **gdqpp, |
621 | struct xfs_dquot **pdqpp) |
622 | { |
623 | struct inode *dir = VFS_I(ip: args->pip); |
624 | kuid_t uid = GLOBAL_ROOT_UID; |
625 | kgid_t gid = GLOBAL_ROOT_GID; |
626 | prid_t prid = 0; |
627 | unsigned int flags = XFS_QMOPT_QUOTALL; |
628 | |
629 | if (args->idmap) { |
630 | /* |
631 | * The uid/gid computation code must match what the VFS uses to |
632 | * assign i_[ug]id. INHERIT adjusts the gid computation for |
633 | * setgid/grpid systems. |
634 | */ |
635 | uid = mapped_fsuid(idmap: args->idmap, fs_userns: i_user_ns(inode: dir)); |
636 | gid = mapped_fsgid(idmap: args->idmap, fs_userns: i_user_ns(inode: dir)); |
637 | prid = xfs_get_initial_prid(args->pip); |
638 | flags |= XFS_QMOPT_INHERIT; |
639 | } |
640 | |
641 | *udqpp = *gdqpp = *pdqpp = NULL; |
642 | |
643 | return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp, |
644 | gdqpp, pdqpp); |
645 | } |
646 | |
647 | int |
648 | xfs_create( |
649 | const struct xfs_icreate_args *args, |
650 | struct xfs_name *name, |
651 | struct xfs_inode **ipp) |
652 | { |
653 | struct xfs_inode *dp = args->pip; |
654 | struct xfs_dir_update du = { |
655 | .dp = dp, |
656 | .name = name, |
657 | }; |
658 | struct xfs_mount *mp = dp->i_mount; |
659 | struct xfs_trans *tp = NULL; |
660 | struct xfs_dquot *udqp; |
661 | struct xfs_dquot *gdqp; |
662 | struct xfs_dquot *pdqp; |
663 | struct xfs_trans_res *tres; |
664 | xfs_ino_t ino; |
665 | bool unlock_dp_on_error = false; |
666 | bool is_dir = S_ISDIR(args->mode); |
667 | uint resblks; |
668 | int error; |
669 | |
670 | trace_xfs_create(dp, xfs_create: name); |
671 | |
672 | if (xfs_is_shutdown(mp)) |
673 | return -EIO; |
674 | if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) |
675 | return -EIO; |
676 | |
677 | /* Make sure that we have allocated dquot(s) on disk. */ |
678 | error = xfs_icreate_dqalloc(args, udqpp: &udqp, gdqpp: &gdqp, pdqpp: &pdqp); |
679 | if (error) |
680 | return error; |
681 | |
682 | if (is_dir) { |
683 | resblks = xfs_mkdir_space_res(mp, name->len); |
684 | tres = &M_RES(mp)->tr_mkdir; |
685 | } else { |
686 | resblks = xfs_create_space_res(mp, name->len); |
687 | tres = &M_RES(mp)->tr_create; |
688 | } |
689 | |
690 | error = xfs_parent_start(mp, &du.ppargs); |
691 | if (error) |
692 | goto out_release_dquots; |
693 | |
694 | /* |
695 | * Initially assume that the file does not exist and |
696 | * reserve the resources for that case. If that is not |
697 | * the case we'll drop the one we have and get a more |
698 | * appropriate transaction later. |
699 | */ |
700 | error = xfs_trans_alloc_icreate(mp, resv: tres, udqp, gdqp, pdqp, dblocks: resblks, |
701 | tpp: &tp); |
702 | if (error == -ENOSPC) { |
703 | /* flush outstanding delalloc blocks and retry */ |
704 | xfs_flush_inodes(mp); |
705 | error = xfs_trans_alloc_icreate(mp, resv: tres, udqp, gdqp, pdqp, |
706 | dblocks: resblks, tpp: &tp); |
707 | } |
708 | if (error) |
709 | goto out_parent; |
710 | |
711 | xfs_ilock(ip: dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); |
712 | unlock_dp_on_error = true; |
713 | |
714 | /* |
715 | * A newly created regular or special file just has one directory |
716 | * entry pointing to them, but a directory also the "." entry |
717 | * pointing to itself. |
718 | */ |
719 | error = xfs_dialloc(&tp, args, &ino); |
720 | if (!error) |
721 | error = xfs_icreate(tp, ino, args, ipp: &du.ip); |
722 | if (error) |
723 | goto out_trans_cancel; |
724 | |
725 | /* |
726 | * Now we join the directory inode to the transaction. We do not do it |
727 | * earlier because xfs_dialloc might commit the previous transaction |
728 | * (and release all the locks). An error from here on will result in |
729 | * the transaction cancel unlocking dp so don't do it explicitly in the |
730 | * error path. |
731 | */ |
732 | xfs_trans_ijoin(tp, dp, 0); |
733 | |
734 | error = xfs_dir_create_child(tp, resblks, &du); |
735 | if (error) |
736 | goto out_trans_cancel; |
737 | |
738 | /* |
739 | * If this is a synchronous mount, make sure that the |
740 | * create transaction goes to disk before returning to |
741 | * the user. |
742 | */ |
743 | if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) |
744 | xfs_trans_set_sync(tp); |
745 | |
746 | /* |
747 | * Attach the dquot(s) to the inodes and modify them incore. |
748 | * These ids of the inode couldn't have changed since the new |
749 | * inode has been locked ever since it was created. |
750 | */ |
751 | xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp); |
752 | |
753 | error = xfs_trans_commit(tp); |
754 | if (error) |
755 | goto out_release_inode; |
756 | |
757 | xfs_qm_dqrele(udqp); |
758 | xfs_qm_dqrele(gdqp); |
759 | xfs_qm_dqrele(pdqp); |
760 | |
761 | *ipp = du.ip; |
762 | xfs_iunlock(ip: du.ip, XFS_ILOCK_EXCL); |
763 | xfs_iunlock(ip: dp, XFS_ILOCK_EXCL); |
764 | xfs_parent_finish(mp, du.ppargs); |
765 | return 0; |
766 | |
767 | out_trans_cancel: |
768 | xfs_trans_cancel(tp); |
769 | out_release_inode: |
770 | /* |
771 | * Wait until after the current transaction is aborted to finish the |
772 | * setup of the inode and release the inode. This prevents recursive |
773 | * transactions and deadlocks from xfs_inactive. |
774 | */ |
775 | if (du.ip) { |
776 | xfs_iunlock(ip: du.ip, XFS_ILOCK_EXCL); |
777 | xfs_finish_inode_setup(ip: du.ip); |
778 | xfs_irele(ip: du.ip); |
779 | } |
780 | out_parent: |
781 | xfs_parent_finish(mp, du.ppargs); |
782 | out_release_dquots: |
783 | xfs_qm_dqrele(udqp); |
784 | xfs_qm_dqrele(gdqp); |
785 | xfs_qm_dqrele(pdqp); |
786 | |
787 | if (unlock_dp_on_error) |
788 | xfs_iunlock(ip: dp, XFS_ILOCK_EXCL); |
789 | return error; |
790 | } |
791 | |
792 | int |
793 | xfs_create_tmpfile( |
794 | const struct xfs_icreate_args *args, |
795 | struct xfs_inode **ipp) |
796 | { |
797 | struct xfs_inode *dp = args->pip; |
798 | struct xfs_mount *mp = dp->i_mount; |
799 | struct xfs_inode *ip = NULL; |
800 | struct xfs_trans *tp = NULL; |
801 | struct xfs_dquot *udqp; |
802 | struct xfs_dquot *gdqp; |
803 | struct xfs_dquot *pdqp; |
804 | struct xfs_trans_res *tres; |
805 | xfs_ino_t ino; |
806 | uint resblks; |
807 | int error; |
808 | |
809 | ASSERT(args->flags & XFS_ICREATE_TMPFILE); |
810 | |
811 | if (xfs_is_shutdown(mp)) |
812 | return -EIO; |
813 | |
814 | /* Make sure that we have allocated dquot(s) on disk. */ |
815 | error = xfs_icreate_dqalloc(args, udqpp: &udqp, gdqpp: &gdqp, pdqpp: &pdqp); |
816 | if (error) |
817 | return error; |
818 | |
819 | resblks = XFS_IALLOC_SPACE_RES(mp); |
820 | tres = &M_RES(mp)->tr_create_tmpfile; |
821 | |
822 | error = xfs_trans_alloc_icreate(mp, resv: tres, udqp, gdqp, pdqp, dblocks: resblks, |
823 | tpp: &tp); |
824 | if (error) |
825 | goto out_release_dquots; |
826 | |
827 | error = xfs_dialloc(&tp, args, &ino); |
828 | if (!error) |
829 | error = xfs_icreate(tp, ino, args, ipp: &ip); |
830 | if (error) |
831 | goto out_trans_cancel; |
832 | |
833 | if (xfs_has_wsync(mp)) |
834 | xfs_trans_set_sync(tp); |
835 | |
836 | /* |
837 | * Attach the dquot(s) to the inodes and modify them incore. |
838 | * These ids of the inode couldn't have changed since the new |
839 | * inode has been locked ever since it was created. |
840 | */ |
841 | xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); |
842 | |
843 | error = xfs_iunlink(tp, ip); |
844 | if (error) |
845 | goto out_trans_cancel; |
846 | |
847 | error = xfs_trans_commit(tp); |
848 | if (error) |
849 | goto out_release_inode; |
850 | |
851 | xfs_qm_dqrele(udqp); |
852 | xfs_qm_dqrele(gdqp); |
853 | xfs_qm_dqrele(pdqp); |
854 | |
855 | *ipp = ip; |
856 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
857 | return 0; |
858 | |
859 | out_trans_cancel: |
860 | xfs_trans_cancel(tp); |
861 | out_release_inode: |
862 | /* |
863 | * Wait until after the current transaction is aborted to finish the |
864 | * setup of the inode and release the inode. This prevents recursive |
865 | * transactions and deadlocks from xfs_inactive. |
866 | */ |
867 | if (ip) { |
868 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
869 | xfs_finish_inode_setup(ip); |
870 | xfs_irele(ip); |
871 | } |
872 | out_release_dquots: |
873 | xfs_qm_dqrele(udqp); |
874 | xfs_qm_dqrele(gdqp); |
875 | xfs_qm_dqrele(pdqp); |
876 | |
877 | return error; |
878 | } |
879 | |
880 | int |
881 | xfs_link( |
882 | struct xfs_inode *tdp, |
883 | struct xfs_inode *sip, |
884 | struct xfs_name *target_name) |
885 | { |
886 | struct xfs_dir_update du = { |
887 | .dp = tdp, |
888 | .name = target_name, |
889 | .ip = sip, |
890 | }; |
891 | struct xfs_mount *mp = tdp->i_mount; |
892 | struct xfs_trans *tp; |
893 | int error, nospace_error = 0; |
894 | int resblks; |
895 | |
896 | trace_xfs_link(dp: tdp, xfs_link: target_name); |
897 | |
898 | ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); |
899 | |
900 | if (xfs_is_shutdown(mp)) |
901 | return -EIO; |
902 | if (xfs_ifork_zapped(tdp, XFS_DATA_FORK)) |
903 | return -EIO; |
904 | |
905 | error = xfs_qm_dqattach(sip); |
906 | if (error) |
907 | goto std_return; |
908 | |
909 | error = xfs_qm_dqattach(tdp); |
910 | if (error) |
911 | goto std_return; |
912 | |
913 | error = xfs_parent_start(mp, &du.ppargs); |
914 | if (error) |
915 | goto std_return; |
916 | |
917 | resblks = xfs_link_space_res(mp, target_name->len); |
918 | error = xfs_trans_alloc_dir(dp: tdp, resv: &M_RES(mp)->tr_link, ip: sip, dblocks: &resblks, |
919 | tpp: &tp, nospace_error: &nospace_error); |
920 | if (error) |
921 | goto out_parent; |
922 | |
923 | /* |
924 | * We don't allow reservationless or quotaless hardlinking when parent |
925 | * pointers are enabled because we can't back out if the xattrs must |
926 | * grow. |
927 | */ |
928 | if (du.ppargs && nospace_error) { |
929 | error = nospace_error; |
930 | goto error_return; |
931 | } |
932 | |
933 | /* |
934 | * If we are using project inheritance, we only allow hard link |
935 | * creation in our tree when the project IDs are the same; else |
936 | * the tree quota mechanism could be circumvented. |
937 | */ |
938 | if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && |
939 | tdp->i_projid != sip->i_projid)) { |
940 | /* |
941 | * Project quota setup skips special files which can |
942 | * leave inodes in a PROJINHERIT directory without a |
943 | * project ID set. We need to allow links to be made |
944 | * to these "project-less" inodes because userspace |
945 | * expects them to succeed after project ID setup, |
946 | * but everything else should be rejected. |
947 | */ |
948 | if (!special_file(VFS_I(sip)->i_mode) || |
949 | sip->i_projid != 0) { |
950 | error = -EXDEV; |
951 | goto error_return; |
952 | } |
953 | } |
954 | |
955 | error = xfs_dir_add_child(tp, resblks, &du); |
956 | if (error) |
957 | goto error_return; |
958 | |
959 | /* |
960 | * If this is a synchronous mount, make sure that the |
961 | * link transaction goes to disk before returning to |
962 | * the user. |
963 | */ |
964 | if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) |
965 | xfs_trans_set_sync(tp); |
966 | |
967 | error = xfs_trans_commit(tp); |
968 | xfs_iunlock(ip: tdp, XFS_ILOCK_EXCL); |
969 | xfs_iunlock(ip: sip, XFS_ILOCK_EXCL); |
970 | xfs_parent_finish(mp, du.ppargs); |
971 | return error; |
972 | |
973 | error_return: |
974 | xfs_trans_cancel(tp); |
975 | xfs_iunlock(ip: tdp, XFS_ILOCK_EXCL); |
976 | xfs_iunlock(ip: sip, XFS_ILOCK_EXCL); |
977 | out_parent: |
978 | xfs_parent_finish(mp, du.ppargs); |
979 | std_return: |
980 | if (error == -ENOSPC && nospace_error) |
981 | error = nospace_error; |
982 | return error; |
983 | } |
984 | |
985 | /* Clear the reflink flag and the cowblocks tag if possible. */ |
986 | static void |
987 | xfs_itruncate_clear_reflink_flags( |
988 | struct xfs_inode *ip) |
989 | { |
990 | struct xfs_ifork *dfork; |
991 | struct xfs_ifork *cfork; |
992 | |
993 | if (!xfs_is_reflink_inode(ip)) |
994 | return; |
995 | dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); |
996 | cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); |
997 | if (dfork->if_bytes == 0 && cfork->if_bytes == 0) |
998 | ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; |
999 | if (cfork->if_bytes == 0) |
1000 | xfs_inode_clear_cowblocks_tag(ip); |
1001 | } |
1002 | |
1003 | /* |
1004 | * Free up the underlying blocks past new_size. The new size must be smaller |
1005 | * than the current size. This routine can be used both for the attribute and |
1006 | * data fork, and does not modify the inode size, which is left to the caller. |
1007 | * |
1008 | * The transaction passed to this routine must have made a permanent log |
1009 | * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the |
1010 | * given transaction and start new ones, so make sure everything involved in |
1011 | * the transaction is tidy before calling here. Some transaction will be |
1012 | * returned to the caller to be committed. The incoming transaction must |
1013 | * already include the inode, and both inode locks must be held exclusively. |
1014 | * The inode must also be "held" within the transaction. On return the inode |
1015 | * will be "held" within the returned transaction. This routine does NOT |
1016 | * require any disk space to be reserved for it within the transaction. |
1017 | * |
1018 | * If we get an error, we must return with the inode locked and linked into the |
1019 | * current transaction. This keeps things simple for the higher level code, |
1020 | * because it always knows that the inode is locked and held in the transaction |
1021 | * that returns to it whether errors occur or not. We don't mark the inode |
1022 | * dirty on error so that transactions can be easily aborted if possible. |
1023 | */ |
1024 | int |
1025 | xfs_itruncate_extents_flags( |
1026 | struct xfs_trans **tpp, |
1027 | struct xfs_inode *ip, |
1028 | int whichfork, |
1029 | xfs_fsize_t new_size, |
1030 | int flags) |
1031 | { |
1032 | struct xfs_mount *mp = ip->i_mount; |
1033 | struct xfs_trans *tp = *tpp; |
1034 | xfs_fileoff_t first_unmap_block; |
1035 | int error = 0; |
1036 | |
1037 | xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); |
1038 | if (atomic_read(v: &VFS_I(ip)->i_count)) |
1039 | xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL); |
1040 | ASSERT(new_size <= XFS_ISIZE(ip)); |
1041 | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
1042 | ASSERT(ip->i_itemp != NULL); |
1043 | ASSERT(ip->i_itemp->ili_lock_flags == 0); |
1044 | ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); |
1045 | |
1046 | trace_xfs_itruncate_extents_start(ip, new_size); |
1047 | |
1048 | flags |= xfs_bmapi_aflag(whichfork); |
1049 | |
1050 | /* |
1051 | * Since it is possible for space to become allocated beyond |
1052 | * the end of the file (in a crash where the space is allocated |
1053 | * but the inode size is not yet updated), simply remove any |
1054 | * blocks which show up between the new EOF and the maximum |
1055 | * possible file size. |
1056 | * |
1057 | * We have to free all the blocks to the bmbt maximum offset, even if |
1058 | * the page cache can't scale that far. |
1059 | */ |
1060 | first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); |
1061 | if (!xfs_verify_fileoff(mp, first_unmap_block)) { |
1062 | WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); |
1063 | return 0; |
1064 | } |
1065 | |
1066 | error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block, |
1067 | XFS_MAX_FILEOFF); |
1068 | if (error) |
1069 | goto out; |
1070 | |
1071 | if (whichfork == XFS_DATA_FORK) { |
1072 | /* Remove all pending CoW reservations. */ |
1073 | error = xfs_reflink_cancel_cow_blocks(ip, &tp, |
1074 | first_unmap_block, XFS_MAX_FILEOFF, true); |
1075 | if (error) |
1076 | goto out; |
1077 | |
1078 | xfs_itruncate_clear_reflink_flags(ip); |
1079 | } |
1080 | |
1081 | /* |
1082 | * Always re-log the inode so that our permanent transaction can keep |
1083 | * on rolling it forward in the log. |
1084 | */ |
1085 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
1086 | |
1087 | trace_xfs_itruncate_extents_end(ip, new_size); |
1088 | |
1089 | out: |
1090 | *tpp = tp; |
1091 | return error; |
1092 | } |
1093 | |
1094 | /* |
1095 | * Mark all the buffers attached to this directory stale. In theory we should |
1096 | * never be freeing a directory with any blocks at all, but this covers the |
1097 | * case where we've recovered a directory swap with a "temporary" directory |
1098 | * created by online repair and now need to dump it. |
1099 | */ |
1100 | STATIC void |
1101 | xfs_inactive_dir( |
1102 | struct xfs_inode *dp) |
1103 | { |
1104 | struct xfs_iext_cursor icur; |
1105 | struct xfs_bmbt_irec got; |
1106 | struct xfs_mount *mp = dp->i_mount; |
1107 | struct xfs_da_geometry *geo = mp->m_dir_geo; |
1108 | struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK); |
1109 | xfs_fileoff_t off; |
1110 | |
1111 | /* |
1112 | * Invalidate each directory block. All directory blocks are of |
1113 | * fsbcount length and alignment, so we only need to walk those same |
1114 | * offsets. We hold the only reference to this inode, so we must wait |
1115 | * for the buffer locks. |
1116 | */ |
1117 | for_each_xfs_iext(ifp, &icur, &got) { |
1118 | for (off = round_up(got.br_startoff, geo->fsbcount); |
1119 | off < got.br_startoff + got.br_blockcount; |
1120 | off += geo->fsbcount) { |
1121 | struct xfs_buf *bp = NULL; |
1122 | xfs_fsblock_t fsbno; |
1123 | int error; |
1124 | |
1125 | fsbno = (off - got.br_startoff) + got.br_startblock; |
1126 | error = xfs_buf_incore(mp->m_ddev_targp, |
1127 | XFS_FSB_TO_DADDR(mp, fsbno), |
1128 | XFS_FSB_TO_BB(mp, geo->fsbcount), |
1129 | XBF_LIVESCAN, &bp); |
1130 | if (error) |
1131 | continue; |
1132 | |
1133 | xfs_buf_stale(bp); |
1134 | xfs_buf_relse(bp); |
1135 | } |
1136 | } |
1137 | } |
1138 | |
1139 | /* |
1140 | * xfs_inactive_truncate |
1141 | * |
1142 | * Called to perform a truncate when an inode becomes unlinked. |
1143 | */ |
1144 | STATIC int |
1145 | xfs_inactive_truncate( |
1146 | struct xfs_inode *ip) |
1147 | { |
1148 | struct xfs_mount *mp = ip->i_mount; |
1149 | struct xfs_trans *tp; |
1150 | int error; |
1151 | |
1152 | error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_itruncate, blocks: 0, rtextents: 0, flags: 0, tpp: &tp); |
1153 | if (error) { |
1154 | ASSERT(xfs_is_shutdown(mp)); |
1155 | return error; |
1156 | } |
1157 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
1158 | xfs_trans_ijoin(tp, ip, 0); |
1159 | |
1160 | /* |
1161 | * Log the inode size first to prevent stale data exposure in the event |
1162 | * of a system crash before the truncate completes. See the related |
1163 | * comment in xfs_vn_setattr_size() for details. |
1164 | */ |
1165 | ip->i_disk_size = 0; |
1166 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
1167 | |
1168 | error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); |
1169 | if (error) |
1170 | goto error_trans_cancel; |
1171 | |
1172 | ASSERT(ip->i_df.if_nextents == 0); |
1173 | |
1174 | error = xfs_trans_commit(tp); |
1175 | if (error) |
1176 | goto error_unlock; |
1177 | |
1178 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
1179 | return 0; |
1180 | |
1181 | error_trans_cancel: |
1182 | xfs_trans_cancel(tp); |
1183 | error_unlock: |
1184 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
1185 | return error; |
1186 | } |
1187 | |
1188 | /* |
1189 | * xfs_inactive_ifree() |
1190 | * |
1191 | * Perform the inode free when an inode is unlinked. |
1192 | */ |
1193 | STATIC int |
1194 | xfs_inactive_ifree( |
1195 | struct xfs_inode *ip) |
1196 | { |
1197 | struct xfs_mount *mp = ip->i_mount; |
1198 | struct xfs_trans *tp; |
1199 | int error; |
1200 | |
1201 | /* |
1202 | * We try to use a per-AG reservation for any block needed by the finobt |
1203 | * tree, but as the finobt feature predates the per-AG reservation |
1204 | * support a degraded file system might not have enough space for the |
1205 | * reservation at mount time. In that case try to dip into the reserved |
1206 | * pool and pray. |
1207 | * |
1208 | * Send a warning if the reservation does happen to fail, as the inode |
1209 | * now remains allocated and sits on the unlinked list until the fs is |
1210 | * repaired. |
1211 | */ |
1212 | if (unlikely(mp->m_finobt_nores)) { |
1213 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, |
1214 | XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, |
1215 | &tp); |
1216 | } else { |
1217 | error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_ifree, blocks: 0, rtextents: 0, flags: 0, tpp: &tp); |
1218 | } |
1219 | if (error) { |
1220 | if (error == -ENOSPC) { |
1221 | xfs_warn_ratelimited(mp, |
1222 | "Failed to remove inode(s) from unlinked list. " |
1223 | "Please free space, unmount and run xfs_repair."); |
1224 | } else { |
1225 | ASSERT(xfs_is_shutdown(mp)); |
1226 | } |
1227 | return error; |
1228 | } |
1229 | |
1230 | /* |
1231 | * We do not hold the inode locked across the entire rolling transaction |
1232 | * here. We only need to hold it for the first transaction that |
1233 | * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the |
1234 | * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode |
1235 | * here breaks the relationship between cluster buffer invalidation and |
1236 | * stale inode invalidation on cluster buffer item journal commit |
1237 | * completion, and can result in leaving dirty stale inodes hanging |
1238 | * around in memory. |
1239 | * |
1240 | * We have no need for serialising this inode operation against other |
1241 | * operations - we freed the inode and hence reallocation is required |
1242 | * and that will serialise on reallocating the space the deferops need |
1243 | * to free. Hence we can unlock the inode on the first commit of |
1244 | * the transaction rather than roll it right through the deferops. This |
1245 | * avoids relogging the XFS_ISTALE inode. |
1246 | * |
1247 | * We check that xfs_ifree() hasn't grown an internal transaction roll |
1248 | * by asserting that the inode is still locked when it returns. |
1249 | */ |
1250 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
1251 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
1252 | |
1253 | error = xfs_ifree(tp, ip); |
1254 | xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); |
1255 | if (error) { |
1256 | /* |
1257 | * If we fail to free the inode, shut down. The cancel |
1258 | * might do that, we need to make sure. Otherwise the |
1259 | * inode might be lost for a long time or forever. |
1260 | */ |
1261 | if (!xfs_is_shutdown(mp)) { |
1262 | xfs_notice(mp, "%s: xfs_ifree returned error %d", |
1263 | __func__, error); |
1264 | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); |
1265 | } |
1266 | xfs_trans_cancel(tp); |
1267 | return error; |
1268 | } |
1269 | |
1270 | /* |
1271 | * Credit the quota account(s). The inode is gone. |
1272 | */ |
1273 | xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); |
1274 | |
1275 | return xfs_trans_commit(tp); |
1276 | } |
1277 | |
1278 | /* |
1279 | * Returns true if we need to update the on-disk metadata before we can free |
1280 | * the memory used by this inode. Updates include freeing post-eof |
1281 | * preallocations; freeing COW staging extents; and marking the inode free in |
1282 | * the inobt if it is on the unlinked list. |
1283 | */ |
1284 | bool |
1285 | xfs_inode_needs_inactive( |
1286 | struct xfs_inode *ip) |
1287 | { |
1288 | struct xfs_mount *mp = ip->i_mount; |
1289 | struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); |
1290 | |
1291 | /* |
1292 | * If the inode is already free, then there can be nothing |
1293 | * to clean up here. |
1294 | */ |
1295 | if (VFS_I(ip)->i_mode == 0) |
1296 | return false; |
1297 | |
1298 | /* |
1299 | * If this is a read-only mount, don't do this (would generate I/O) |
1300 | * unless we're in log recovery and cleaning the iunlinked list. |
1301 | */ |
1302 | if (xfs_is_readonly(mp) && !xlog_recovery_needed(log: mp->m_log)) |
1303 | return false; |
1304 | |
1305 | /* If the log isn't running, push inodes straight to reclaim. */ |
1306 | if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) |
1307 | return false; |
1308 | |
1309 | /* Metadata inodes require explicit resource cleanup. */ |
1310 | if (xfs_is_internal_inode(ip)) |
1311 | return false; |
1312 | |
1313 | /* Want to clean out the cow blocks if there are any. */ |
1314 | if (cow_ifp && cow_ifp->if_bytes > 0) |
1315 | return true; |
1316 | |
1317 | /* Unlinked files must be freed. */ |
1318 | if (VFS_I(ip)->i_nlink == 0) |
1319 | return true; |
1320 | |
1321 | /* |
1322 | * This file isn't being freed, so check if there are post-eof blocks |
1323 | * to free. |
1324 | * |
1325 | * Note: don't bother with iolock here since lockdep complains about |
1326 | * acquiring it in reclaim context. We have the only reference to the |
1327 | * inode at this point anyways. |
1328 | */ |
1329 | return xfs_can_free_eofblocks(ip); |
1330 | } |
1331 | |
1332 | /* |
1333 | * Save health status somewhere, if we're dumping an inode with uncorrected |
1334 | * errors and online repair isn't running. |
1335 | */ |
1336 | static inline void |
1337 | xfs_inactive_health( |
1338 | struct xfs_inode *ip) |
1339 | { |
1340 | struct xfs_mount *mp = ip->i_mount; |
1341 | struct xfs_perag *pag; |
1342 | unsigned int sick; |
1343 | unsigned int checked; |
1344 | |
1345 | xfs_inode_measure_sickness(ip, &sick, &checked); |
1346 | if (!sick) |
1347 | return; |
1348 | |
1349 | trace_xfs_inode_unfixed_corruption(ip, flags: sick); |
1350 | |
1351 | if (sick & XFS_SICK_INO_FORGET) |
1352 | return; |
1353 | |
1354 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
1355 | if (!pag) { |
1356 | /* There had better still be a perag structure! */ |
1357 | ASSERT(0); |
1358 | return; |
1359 | } |
1360 | |
1361 | xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES); |
1362 | xfs_perag_put(pag); |
1363 | } |
1364 | |
1365 | /* |
1366 | * xfs_inactive |
1367 | * |
1368 | * This is called when the vnode reference count for the vnode |
1369 | * goes to zero. If the file has been unlinked, then it must |
1370 | * now be truncated. Also, we clear all of the read-ahead state |
1371 | * kept for the inode here since the file is now closed. |
1372 | */ |
1373 | int |
1374 | xfs_inactive( |
1375 | xfs_inode_t *ip) |
1376 | { |
1377 | struct xfs_mount *mp; |
1378 | int error = 0; |
1379 | int truncate = 0; |
1380 | |
1381 | /* |
1382 | * If the inode is already free, then there can be nothing |
1383 | * to clean up here. |
1384 | */ |
1385 | if (VFS_I(ip)->i_mode == 0) { |
1386 | ASSERT(ip->i_df.if_broot_bytes == 0); |
1387 | goto out; |
1388 | } |
1389 | |
1390 | mp = ip->i_mount; |
1391 | ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); |
1392 | |
1393 | xfs_inactive_health(ip); |
1394 | |
1395 | /* |
1396 | * If this is a read-only mount, don't do this (would generate I/O) |
1397 | * unless we're in log recovery and cleaning the iunlinked list. |
1398 | */ |
1399 | if (xfs_is_readonly(mp) && !xlog_recovery_needed(log: mp->m_log)) |
1400 | goto out; |
1401 | |
1402 | /* Metadata inodes require explicit resource cleanup. */ |
1403 | if (xfs_is_internal_inode(ip)) |
1404 | goto out; |
1405 | |
1406 | /* Try to clean out the cow blocks if there are any. */ |
1407 | if (xfs_inode_has_cow_data(ip)) { |
1408 | error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); |
1409 | if (error) |
1410 | goto out; |
1411 | } |
1412 | |
1413 | if (VFS_I(ip)->i_nlink != 0) { |
1414 | /* |
1415 | * Note: don't bother with iolock here since lockdep complains |
1416 | * about acquiring it in reclaim context. We have the only |
1417 | * reference to the inode at this point anyways. |
1418 | */ |
1419 | if (xfs_can_free_eofblocks(ip)) |
1420 | error = xfs_free_eofblocks(ip); |
1421 | |
1422 | goto out; |
1423 | } |
1424 | |
1425 | if (S_ISREG(VFS_I(ip)->i_mode) && |
1426 | (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || |
1427 | xfs_inode_has_filedata(ip))) |
1428 | truncate = 1; |
1429 | |
1430 | if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { |
1431 | /* |
1432 | * If this inode is being inactivated during a quotacheck and |
1433 | * has not yet been scanned by quotacheck, we /must/ remove |
1434 | * the dquots from the inode before inactivation changes the |
1435 | * block and inode counts. Most probably this is a result of |
1436 | * reloading the incore iunlinked list to purge unrecovered |
1437 | * unlinked inodes. |
1438 | */ |
1439 | xfs_qm_dqdetach(ip); |
1440 | } else { |
1441 | error = xfs_qm_dqattach(ip); |
1442 | if (error) |
1443 | goto out; |
1444 | } |
1445 | |
1446 | if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) { |
1447 | xfs_inactive_dir(dp: ip); |
1448 | truncate = 1; |
1449 | } |
1450 | |
1451 | if (S_ISLNK(VFS_I(ip)->i_mode)) |
1452 | error = xfs_inactive_symlink(ip); |
1453 | else if (truncate) |
1454 | error = xfs_inactive_truncate(ip); |
1455 | if (error) |
1456 | goto out; |
1457 | |
1458 | /* |
1459 | * If there are attributes associated with the file then blow them away |
1460 | * now. The code calls a routine that recursively deconstructs the |
1461 | * attribute fork. If also blows away the in-core attribute fork. |
1462 | */ |
1463 | if (xfs_inode_has_attr_fork(ip)) { |
1464 | error = xfs_attr_inactive(ip); |
1465 | if (error) |
1466 | goto out; |
1467 | } |
1468 | |
1469 | ASSERT(ip->i_forkoff == 0); |
1470 | |
1471 | /* |
1472 | * Free the inode. |
1473 | */ |
1474 | error = xfs_inactive_ifree(ip); |
1475 | |
1476 | out: |
1477 | /* |
1478 | * We're done making metadata updates for this inode, so we can release |
1479 | * the attached dquots. |
1480 | */ |
1481 | xfs_qm_dqdetach(ip); |
1482 | return error; |
1483 | } |
1484 | |
1485 | /* |
1486 | * Find an inode on the unlinked list. This does not take references to the |
1487 | * inode as we have existence guarantees by holding the AGI buffer lock and that |
1488 | * only unlinked, referenced inodes can be on the unlinked inode list. If we |
1489 | * don't find the inode in cache, then let the caller handle the situation. |
1490 | */ |
1491 | struct xfs_inode * |
1492 | xfs_iunlink_lookup( |
1493 | struct xfs_perag *pag, |
1494 | xfs_agino_t agino) |
1495 | { |
1496 | struct xfs_inode *ip; |
1497 | |
1498 | rcu_read_lock(); |
1499 | ip = radix_tree_lookup(&pag->pag_ici_root, agino); |
1500 | if (!ip) { |
1501 | /* Caller can handle inode not being in memory. */ |
1502 | rcu_read_unlock(); |
1503 | return NULL; |
1504 | } |
1505 | |
1506 | /* |
1507 | * Inode in RCU freeing limbo should not happen. Warn about this and |
1508 | * let the caller handle the failure. |
1509 | */ |
1510 | if (WARN_ON_ONCE(!ip->i_ino)) { |
1511 | rcu_read_unlock(); |
1512 | return NULL; |
1513 | } |
1514 | ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); |
1515 | rcu_read_unlock(); |
1516 | return ip; |
1517 | } |
1518 | |
1519 | /* |
1520 | * Load the inode @next_agino into the cache and set its prev_unlinked pointer |
1521 | * to @prev_agino. Caller must hold the AGI to synchronize with other changes |
1522 | * to the unlinked list. |
1523 | */ |
1524 | int |
1525 | xfs_iunlink_reload_next( |
1526 | struct xfs_trans *tp, |
1527 | struct xfs_buf *agibp, |
1528 | xfs_agino_t prev_agino, |
1529 | xfs_agino_t next_agino) |
1530 | { |
1531 | struct xfs_perag *pag = agibp->b_pag; |
1532 | struct xfs_mount *mp = pag_mount(pag); |
1533 | struct xfs_inode *next_ip = NULL; |
1534 | int error; |
1535 | |
1536 | ASSERT(next_agino != NULLAGINO); |
1537 | |
1538 | #ifdef DEBUG |
1539 | rcu_read_lock(); |
1540 | next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); |
1541 | ASSERT(next_ip == NULL); |
1542 | rcu_read_unlock(); |
1543 | #endif |
1544 | |
1545 | xfs_info_ratelimited(mp, |
1546 | "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", |
1547 | next_agino, pag_agno(pag)); |
1548 | |
1549 | /* |
1550 | * Use an untrusted lookup just to be cautious in case the AGI has been |
1551 | * corrupted and now points at a free inode. That shouldn't happen, |
1552 | * but we'd rather shut down now since we're already running in a weird |
1553 | * situation. |
1554 | */ |
1555 | error = xfs_iget(mp, tp, ino: xfs_agino_to_ino(pag, next_agino), |
1556 | XFS_IGET_UNTRUSTED, lock_flags: 0, ipp: &next_ip); |
1557 | if (error) { |
1558 | xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); |
1559 | return error; |
1560 | } |
1561 | |
1562 | /* If this is not an unlinked inode, something is very wrong. */ |
1563 | if (VFS_I(ip: next_ip)->i_nlink != 0) { |
1564 | xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); |
1565 | error = -EFSCORRUPTED; |
1566 | goto rele; |
1567 | } |
1568 | |
1569 | next_ip->i_prev_unlinked = prev_agino; |
1570 | trace_xfs_iunlink_reload_next(ip: next_ip); |
1571 | rele: |
1572 | ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); |
1573 | if (xfs_is_quotacheck_running(mp) && next_ip) |
1574 | xfs_iflags_set(ip: next_ip, XFS_IQUOTAUNCHECKED); |
1575 | xfs_irele(ip: next_ip); |
1576 | return error; |
1577 | } |
1578 | |
1579 | /* |
1580 | * Look up the inode number specified and if it is not already marked XFS_ISTALE |
1581 | * mark it stale. We should only find clean inodes in this lookup that aren't |
1582 | * already stale. |
1583 | */ |
1584 | static void |
1585 | xfs_ifree_mark_inode_stale( |
1586 | struct xfs_perag *pag, |
1587 | struct xfs_inode *free_ip, |
1588 | xfs_ino_t inum) |
1589 | { |
1590 | struct xfs_mount *mp = pag_mount(pag); |
1591 | struct xfs_inode_log_item *iip; |
1592 | struct xfs_inode *ip; |
1593 | |
1594 | retry: |
1595 | rcu_read_lock(); |
1596 | ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); |
1597 | |
1598 | /* Inode not in memory, nothing to do */ |
1599 | if (!ip) { |
1600 | rcu_read_unlock(); |
1601 | return; |
1602 | } |
1603 | |
1604 | /* |
1605 | * because this is an RCU protected lookup, we could find a recently |
1606 | * freed or even reallocated inode during the lookup. We need to check |
1607 | * under the i_flags_lock for a valid inode here. Skip it if it is not |
1608 | * valid, the wrong inode or stale. |
1609 | */ |
1610 | spin_lock(lock: &ip->i_flags_lock); |
1611 | if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) |
1612 | goto out_iflags_unlock; |
1613 | |
1614 | /* |
1615 | * Don't try to lock/unlock the current inode, but we _cannot_ skip the |
1616 | * other inodes that we did not find in the list attached to the buffer |
1617 | * and are not already marked stale. If we can't lock it, back off and |
1618 | * retry. |
1619 | */ |
1620 | if (ip != free_ip) { |
1621 | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { |
1622 | spin_unlock(lock: &ip->i_flags_lock); |
1623 | rcu_read_unlock(); |
1624 | delay(ticks: 1); |
1625 | goto retry; |
1626 | } |
1627 | } |
1628 | ip->i_flags |= XFS_ISTALE; |
1629 | |
1630 | /* |
1631 | * If the inode is flushing, it is already attached to the buffer. All |
1632 | * we needed to do here is mark the inode stale so buffer IO completion |
1633 | * will remove it from the AIL. |
1634 | */ |
1635 | iip = ip->i_itemp; |
1636 | if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { |
1637 | ASSERT(!list_empty(&iip->ili_item.li_bio_list)); |
1638 | ASSERT(iip->ili_last_fields); |
1639 | goto out_iunlock; |
1640 | } |
1641 | |
1642 | /* |
1643 | * Inodes not attached to the buffer can be released immediately. |
1644 | * Everything else has to go through xfs_iflush_abort() on journal |
1645 | * commit as the flock synchronises removal of the inode from the |
1646 | * cluster buffer against inode reclaim. |
1647 | */ |
1648 | if (!iip || list_empty(head: &iip->ili_item.li_bio_list)) |
1649 | goto out_iunlock; |
1650 | |
1651 | __xfs_iflags_set(ip, XFS_IFLUSHING); |
1652 | spin_unlock(lock: &ip->i_flags_lock); |
1653 | rcu_read_unlock(); |
1654 | |
1655 | /* we have a dirty inode in memory that has not yet been flushed. */ |
1656 | spin_lock(lock: &iip->ili_lock); |
1657 | iip->ili_last_fields = iip->ili_fields; |
1658 | iip->ili_fields = 0; |
1659 | iip->ili_fsync_fields = 0; |
1660 | spin_unlock(lock: &iip->ili_lock); |
1661 | ASSERT(iip->ili_last_fields); |
1662 | |
1663 | if (ip != free_ip) |
1664 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
1665 | return; |
1666 | |
1667 | out_iunlock: |
1668 | if (ip != free_ip) |
1669 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
1670 | out_iflags_unlock: |
1671 | spin_unlock(lock: &ip->i_flags_lock); |
1672 | rcu_read_unlock(); |
1673 | } |
1674 | |
1675 | /* |
1676 | * A big issue when freeing the inode cluster is that we _cannot_ skip any |
1677 | * inodes that are in memory - they all must be marked stale and attached to |
1678 | * the cluster buffer. |
1679 | */ |
1680 | static int |
1681 | xfs_ifree_cluster( |
1682 | struct xfs_trans *tp, |
1683 | struct xfs_perag *pag, |
1684 | struct xfs_inode *free_ip, |
1685 | struct xfs_icluster *xic) |
1686 | { |
1687 | struct xfs_mount *mp = free_ip->i_mount; |
1688 | struct xfs_ino_geometry *igeo = M_IGEO(mp); |
1689 | struct xfs_buf *bp; |
1690 | xfs_daddr_t blkno; |
1691 | xfs_ino_t inum = xic->first_ino; |
1692 | int nbufs; |
1693 | int i, j; |
1694 | int ioffset; |
1695 | int error; |
1696 | |
1697 | nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; |
1698 | |
1699 | for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { |
1700 | /* |
1701 | * The allocation bitmap tells us which inodes of the chunk were |
1702 | * physically allocated. Skip the cluster if an inode falls into |
1703 | * a sparse region. |
1704 | */ |
1705 | ioffset = inum - xic->first_ino; |
1706 | if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { |
1707 | ASSERT(ioffset % igeo->inodes_per_cluster == 0); |
1708 | continue; |
1709 | } |
1710 | |
1711 | blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), |
1712 | XFS_INO_TO_AGBNO(mp, inum)); |
1713 | |
1714 | /* |
1715 | * We obtain and lock the backing buffer first in the process |
1716 | * here to ensure dirty inodes attached to the buffer remain in |
1717 | * the flushing state while we mark them stale. |
1718 | * |
1719 | * If we scan the in-memory inodes first, then buffer IO can |
1720 | * complete before we get a lock on it, and hence we may fail |
1721 | * to mark all the active inodes on the buffer stale. |
1722 | */ |
1723 | error = xfs_trans_get_buf(tp, target: mp->m_ddev_targp, blkno, |
1724 | numblks: mp->m_bsize * igeo->blocks_per_cluster, flags: 0, bpp: &bp); |
1725 | if (error) |
1726 | return error; |
1727 | |
1728 | /* |
1729 | * This buffer may not have been correctly initialised as we |
1730 | * didn't read it from disk. That's not important because we are |
1731 | * only using to mark the buffer as stale in the log, and to |
1732 | * attach stale cached inodes on it. |
1733 | * |
1734 | * For the inode that triggered the cluster freeing, this |
1735 | * attachment may occur in xfs_inode_item_precommit() after we |
1736 | * have marked this buffer stale. If this buffer was not in |
1737 | * memory before xfs_ifree_cluster() started, it will not be |
1738 | * marked XBF_DONE and this will cause problems later in |
1739 | * xfs_inode_item_precommit() when we trip over a (stale, !done) |
1740 | * buffer to attached to the transaction. |
1741 | * |
1742 | * Hence we have to mark the buffer as XFS_DONE here. This is |
1743 | * safe because we are also marking the buffer as XBF_STALE and |
1744 | * XFS_BLI_STALE. That means it will never be dispatched for |
1745 | * IO and it won't be unlocked until the cluster freeing has |
1746 | * been committed to the journal and the buffer unpinned. If it |
1747 | * is written, we want to know about it, and we want it to |
1748 | * fail. We can acheive this by adding a write verifier to the |
1749 | * buffer. |
1750 | */ |
1751 | bp->b_flags |= XBF_DONE; |
1752 | bp->b_ops = &xfs_inode_buf_ops; |
1753 | |
1754 | /* |
1755 | * Now we need to set all the cached clean inodes as XFS_ISTALE, |
1756 | * too. This requires lookups, and will skip inodes that we've |
1757 | * already marked XFS_ISTALE. |
1758 | */ |
1759 | for (i = 0; i < igeo->inodes_per_cluster; i++) |
1760 | xfs_ifree_mark_inode_stale(pag, free_ip, inum: inum + i); |
1761 | |
1762 | xfs_trans_stale_inode_buf(tp, bp); |
1763 | xfs_trans_binval(tp, bp); |
1764 | } |
1765 | return 0; |
1766 | } |
1767 | |
1768 | /* |
1769 | * This is called to return an inode to the inode free list. The inode should |
1770 | * already be truncated to 0 length and have no pages associated with it. This |
1771 | * routine also assumes that the inode is already a part of the transaction. |
1772 | * |
1773 | * The on-disk copy of the inode will have been added to the list of unlinked |
1774 | * inodes in the AGI. We need to remove the inode from that list atomically with |
1775 | * respect to freeing it here. |
1776 | */ |
1777 | int |
1778 | xfs_ifree( |
1779 | struct xfs_trans *tp, |
1780 | struct xfs_inode *ip) |
1781 | { |
1782 | struct xfs_mount *mp = ip->i_mount; |
1783 | struct xfs_perag *pag; |
1784 | struct xfs_icluster xic = { 0 }; |
1785 | struct xfs_inode_log_item *iip = ip->i_itemp; |
1786 | int error; |
1787 | |
1788 | xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); |
1789 | ASSERT(VFS_I(ip)->i_nlink == 0); |
1790 | ASSERT(ip->i_df.if_nextents == 0); |
1791 | ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); |
1792 | ASSERT(ip->i_nblocks == 0); |
1793 | |
1794 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
1795 | |
1796 | error = xfs_inode_uninit(tp, pag, ip, &xic); |
1797 | if (error) |
1798 | goto out; |
1799 | |
1800 | if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) |
1801 | xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); |
1802 | |
1803 | /* Don't attempt to replay owner changes for a deleted inode */ |
1804 | spin_lock(lock: &iip->ili_lock); |
1805 | iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); |
1806 | spin_unlock(lock: &iip->ili_lock); |
1807 | |
1808 | if (xic.deleted) |
1809 | error = xfs_ifree_cluster(tp, pag, free_ip: ip, xic: &xic); |
1810 | out: |
1811 | xfs_perag_put(pag); |
1812 | return error; |
1813 | } |
1814 | |
1815 | /* |
1816 | * This is called to unpin an inode. The caller must have the inode locked |
1817 | * in at least shared mode so that the buffer cannot be subsequently pinned |
1818 | * once someone is waiting for it to be unpinned. |
1819 | */ |
1820 | static void |
1821 | xfs_iunpin( |
1822 | struct xfs_inode *ip) |
1823 | { |
1824 | xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); |
1825 | |
1826 | trace_xfs_inode_unpin_nowait(ip, _RET_IP_); |
1827 | |
1828 | /* Give the log a push to start the unpinning I/O */ |
1829 | xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); |
1830 | |
1831 | } |
1832 | |
1833 | static void |
1834 | __xfs_iunpin_wait( |
1835 | struct xfs_inode *ip) |
1836 | { |
1837 | wait_queue_head_t *wq = bit_waitqueue(word: &ip->i_flags, __XFS_IPINNED_BIT); |
1838 | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); |
1839 | |
1840 | xfs_iunpin(ip); |
1841 | |
1842 | do { |
1843 | prepare_to_wait(wq_head: wq, wq_entry: &wait.wq_entry, TASK_UNINTERRUPTIBLE); |
1844 | if (xfs_ipincount(ip)) |
1845 | io_schedule(); |
1846 | } while (xfs_ipincount(ip)); |
1847 | finish_wait(wq_head: wq, wq_entry: &wait.wq_entry); |
1848 | } |
1849 | |
1850 | void |
1851 | xfs_iunpin_wait( |
1852 | struct xfs_inode *ip) |
1853 | { |
1854 | if (xfs_ipincount(ip)) |
1855 | __xfs_iunpin_wait(ip); |
1856 | } |
1857 | |
1858 | /* |
1859 | * Removing an inode from the namespace involves removing the directory entry |
1860 | * and dropping the link count on the inode. Removing the directory entry can |
1861 | * result in locking an AGF (directory blocks were freed) and removing a link |
1862 | * count can result in placing the inode on an unlinked list which results in |
1863 | * locking an AGI. |
1864 | * |
1865 | * The big problem here is that we have an ordering constraint on AGF and AGI |
1866 | * locking - inode allocation locks the AGI, then can allocate a new extent for |
1867 | * new inodes, locking the AGF after the AGI. Similarly, freeing the inode |
1868 | * removes the inode from the unlinked list, requiring that we lock the AGI |
1869 | * first, and then freeing the inode can result in an inode chunk being freed |
1870 | * and hence freeing disk space requiring that we lock an AGF. |
1871 | * |
1872 | * Hence the ordering that is imposed by other parts of the code is AGI before |
1873 | * AGF. This means we cannot remove the directory entry before we drop the inode |
1874 | * reference count and put it on the unlinked list as this results in a lock |
1875 | * order of AGF then AGI, and this can deadlock against inode allocation and |
1876 | * freeing. Therefore we must drop the link counts before we remove the |
1877 | * directory entry. |
1878 | * |
1879 | * This is still safe from a transactional point of view - it is not until we |
1880 | * get to xfs_defer_finish() that we have the possibility of multiple |
1881 | * transactions in this operation. Hence as long as we remove the directory |
1882 | * entry and drop the link count in the first transaction of the remove |
1883 | * operation, there are no transactional constraints on the ordering here. |
1884 | */ |
1885 | int |
1886 | xfs_remove( |
1887 | struct xfs_inode *dp, |
1888 | struct xfs_name *name, |
1889 | struct xfs_inode *ip) |
1890 | { |
1891 | struct xfs_dir_update du = { |
1892 | .dp = dp, |
1893 | .name = name, |
1894 | .ip = ip, |
1895 | }; |
1896 | struct xfs_mount *mp = dp->i_mount; |
1897 | struct xfs_trans *tp = NULL; |
1898 | int is_dir = S_ISDIR(VFS_I(ip)->i_mode); |
1899 | int dontcare; |
1900 | int error = 0; |
1901 | uint resblks; |
1902 | |
1903 | trace_xfs_remove(dp, xfs_remove: name); |
1904 | |
1905 | if (xfs_is_shutdown(mp)) |
1906 | return -EIO; |
1907 | if (xfs_ifork_zapped(dp, XFS_DATA_FORK)) |
1908 | return -EIO; |
1909 | |
1910 | error = xfs_qm_dqattach(dp); |
1911 | if (error) |
1912 | goto std_return; |
1913 | |
1914 | error = xfs_qm_dqattach(ip); |
1915 | if (error) |
1916 | goto std_return; |
1917 | |
1918 | error = xfs_parent_start(mp, &du.ppargs); |
1919 | if (error) |
1920 | goto std_return; |
1921 | |
1922 | /* |
1923 | * We try to get the real space reservation first, allowing for |
1924 | * directory btree deletion(s) implying possible bmap insert(s). If we |
1925 | * can't get the space reservation then we use 0 instead, and avoid the |
1926 | * bmap btree insert(s) in the directory code by, if the bmap insert |
1927 | * tries to happen, instead trimming the LAST block from the directory. |
1928 | * |
1929 | * Ignore EDQUOT and ENOSPC being returned via nospace_error because |
1930 | * the directory code can handle a reservationless update and we don't |
1931 | * want to prevent a user from trying to free space by deleting things. |
1932 | */ |
1933 | resblks = xfs_remove_space_res(mp, name->len); |
1934 | error = xfs_trans_alloc_dir(dp, resv: &M_RES(mp)->tr_remove, ip, dblocks: &resblks, |
1935 | tpp: &tp, nospace_error: &dontcare); |
1936 | if (error) { |
1937 | ASSERT(error != -ENOSPC); |
1938 | goto out_parent; |
1939 | } |
1940 | |
1941 | error = xfs_dir_remove_child(tp, resblks, &du); |
1942 | if (error) |
1943 | goto out_trans_cancel; |
1944 | |
1945 | /* |
1946 | * If this is a synchronous mount, make sure that the |
1947 | * remove transaction goes to disk before returning to |
1948 | * the user. |
1949 | */ |
1950 | if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) |
1951 | xfs_trans_set_sync(tp); |
1952 | |
1953 | error = xfs_trans_commit(tp); |
1954 | if (error) |
1955 | goto out_unlock; |
1956 | |
1957 | if (is_dir && xfs_inode_is_filestream(ip)) |
1958 | xfs_filestream_deassociate(ip); |
1959 | |
1960 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
1961 | xfs_iunlock(ip: dp, XFS_ILOCK_EXCL); |
1962 | xfs_parent_finish(mp, du.ppargs); |
1963 | return 0; |
1964 | |
1965 | out_trans_cancel: |
1966 | xfs_trans_cancel(tp); |
1967 | out_unlock: |
1968 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
1969 | xfs_iunlock(ip: dp, XFS_ILOCK_EXCL); |
1970 | out_parent: |
1971 | xfs_parent_finish(mp, du.ppargs); |
1972 | std_return: |
1973 | return error; |
1974 | } |
1975 | |
1976 | static inline void |
1977 | xfs_iunlock_rename( |
1978 | struct xfs_inode **i_tab, |
1979 | int num_inodes) |
1980 | { |
1981 | int i; |
1982 | |
1983 | for (i = num_inodes - 1; i >= 0; i--) { |
1984 | /* Skip duplicate inodes if src and target dps are the same */ |
1985 | if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1])) |
1986 | continue; |
1987 | xfs_iunlock(ip: i_tab[i], XFS_ILOCK_EXCL); |
1988 | } |
1989 | } |
1990 | |
1991 | /* |
1992 | * Enter all inodes for a rename transaction into a sorted array. |
1993 | */ |
1994 | #define __XFS_SORT_INODES 5 |
1995 | STATIC void |
1996 | xfs_sort_for_rename( |
1997 | struct xfs_inode *dp1, /* in: old (source) directory inode */ |
1998 | struct xfs_inode *dp2, /* in: new (target) directory inode */ |
1999 | struct xfs_inode *ip1, /* in: inode of old entry */ |
2000 | struct xfs_inode *ip2, /* in: inode of new entry */ |
2001 | struct xfs_inode *wip, /* in: whiteout inode */ |
2002 | struct xfs_inode **i_tab,/* out: sorted array of inodes */ |
2003 | int *num_inodes) /* in/out: inodes in array */ |
2004 | { |
2005 | int i; |
2006 | |
2007 | ASSERT(*num_inodes == __XFS_SORT_INODES); |
2008 | memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); |
2009 | |
2010 | /* |
2011 | * i_tab contains a list of pointers to inodes. We initialize |
2012 | * the table here & we'll sort it. We will then use it to |
2013 | * order the acquisition of the inode locks. |
2014 | * |
2015 | * Note that the table may contain duplicates. e.g., dp1 == dp2. |
2016 | */ |
2017 | i = 0; |
2018 | i_tab[i++] = dp1; |
2019 | i_tab[i++] = dp2; |
2020 | i_tab[i++] = ip1; |
2021 | if (ip2) |
2022 | i_tab[i++] = ip2; |
2023 | if (wip) |
2024 | i_tab[i++] = wip; |
2025 | *num_inodes = i; |
2026 | |
2027 | xfs_sort_inodes(i_tab, num_inodes: *num_inodes); |
2028 | } |
2029 | |
2030 | void |
2031 | xfs_sort_inodes( |
2032 | struct xfs_inode **i_tab, |
2033 | unsigned int num_inodes) |
2034 | { |
2035 | int i, j; |
2036 | |
2037 | ASSERT(num_inodes <= __XFS_SORT_INODES); |
2038 | |
2039 | /* |
2040 | * Sort the elements via bubble sort. (Remember, there are at |
2041 | * most 5 elements to sort, so this is adequate.) |
2042 | */ |
2043 | for (i = 0; i < num_inodes; i++) { |
2044 | for (j = 1; j < num_inodes; j++) { |
2045 | if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) |
2046 | swap(i_tab[j], i_tab[j - 1]); |
2047 | } |
2048 | } |
2049 | } |
2050 | |
2051 | /* |
2052 | * xfs_rename_alloc_whiteout() |
2053 | * |
2054 | * Return a referenced, unlinked, unlocked inode that can be used as a |
2055 | * whiteout in a rename transaction. We use a tmpfile inode here so that if we |
2056 | * crash between allocating the inode and linking it into the rename transaction |
2057 | * recovery will free the inode and we won't leak it. |
2058 | */ |
2059 | static int |
2060 | xfs_rename_alloc_whiteout( |
2061 | struct mnt_idmap *idmap, |
2062 | struct xfs_name *src_name, |
2063 | struct xfs_inode *dp, |
2064 | struct xfs_inode **wip) |
2065 | { |
2066 | struct xfs_icreate_args args = { |
2067 | .idmap = idmap, |
2068 | .pip = dp, |
2069 | .mode = S_IFCHR | WHITEOUT_MODE, |
2070 | .flags = XFS_ICREATE_TMPFILE, |
2071 | }; |
2072 | struct xfs_inode *tmpfile; |
2073 | struct qstr name; |
2074 | int error; |
2075 | |
2076 | error = xfs_create_tmpfile(iargs: &args, ipp: &tmpfile); |
2077 | if (error) |
2078 | return error; |
2079 | |
2080 | name.name = src_name->name; |
2081 | name.len = src_name->len; |
2082 | error = xfs_inode_init_security(inode: VFS_I(ip: tmpfile), dir: VFS_I(ip: dp), qstr: &name); |
2083 | if (error) { |
2084 | xfs_finish_inode_setup(ip: tmpfile); |
2085 | xfs_irele(ip: tmpfile); |
2086 | return error; |
2087 | } |
2088 | |
2089 | /* |
2090 | * Prepare the tmpfile inode as if it were created through the VFS. |
2091 | * Complete the inode setup and flag it as linkable. nlink is already |
2092 | * zero, so we can skip the drop_nlink. |
2093 | */ |
2094 | xfs_setup_iops(ip: tmpfile); |
2095 | xfs_finish_inode_setup(ip: tmpfile); |
2096 | VFS_I(ip: tmpfile)->i_state |= I_LINKABLE; |
2097 | |
2098 | *wip = tmpfile; |
2099 | return 0; |
2100 | } |
2101 | |
2102 | /* |
2103 | * xfs_rename |
2104 | */ |
2105 | int |
2106 | xfs_rename( |
2107 | struct mnt_idmap *idmap, |
2108 | struct xfs_inode *src_dp, |
2109 | struct xfs_name *src_name, |
2110 | struct xfs_inode *src_ip, |
2111 | struct xfs_inode *target_dp, |
2112 | struct xfs_name *target_name, |
2113 | struct xfs_inode *target_ip, |
2114 | unsigned int flags) |
2115 | { |
2116 | struct xfs_dir_update du_src = { |
2117 | .dp = src_dp, |
2118 | .name = src_name, |
2119 | .ip = src_ip, |
2120 | }; |
2121 | struct xfs_dir_update du_tgt = { |
2122 | .dp = target_dp, |
2123 | .name = target_name, |
2124 | .ip = target_ip, |
2125 | }; |
2126 | struct xfs_dir_update du_wip = { }; |
2127 | struct xfs_mount *mp = src_dp->i_mount; |
2128 | struct xfs_trans *tp; |
2129 | struct xfs_inode *inodes[__XFS_SORT_INODES]; |
2130 | int i; |
2131 | int num_inodes = __XFS_SORT_INODES; |
2132 | bool new_parent = (src_dp != target_dp); |
2133 | bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); |
2134 | int spaceres; |
2135 | bool retried = false; |
2136 | int error, nospace_error = 0; |
2137 | |
2138 | trace_xfs_rename(src_dp, target_dp, src_name, target_name); |
2139 | |
2140 | if ((flags & RENAME_EXCHANGE) && !target_ip) |
2141 | return -EINVAL; |
2142 | |
2143 | /* |
2144 | * If we are doing a whiteout operation, allocate the whiteout inode |
2145 | * we will be placing at the target and ensure the type is set |
2146 | * appropriately. |
2147 | */ |
2148 | if (flags & RENAME_WHITEOUT) { |
2149 | error = xfs_rename_alloc_whiteout(idmap, src_name, dp: target_dp, |
2150 | wip: &du_wip.ip); |
2151 | if (error) |
2152 | return error; |
2153 | |
2154 | /* setup target dirent info as whiteout */ |
2155 | src_name->type = XFS_DIR3_FT_CHRDEV; |
2156 | } |
2157 | |
2158 | xfs_sort_for_rename(dp1: src_dp, dp2: target_dp, ip1: src_ip, ip2: target_ip, wip: du_wip.ip, |
2159 | i_tab: inodes, num_inodes: &num_inodes); |
2160 | |
2161 | error = xfs_parent_start(mp, &du_src.ppargs); |
2162 | if (error) |
2163 | goto out_release_wip; |
2164 | |
2165 | if (du_wip.ip) { |
2166 | error = xfs_parent_start(mp, &du_wip.ppargs); |
2167 | if (error) |
2168 | goto out_src_ppargs; |
2169 | } |
2170 | |
2171 | if (target_ip) { |
2172 | error = xfs_parent_start(mp, &du_tgt.ppargs); |
2173 | if (error) |
2174 | goto out_wip_ppargs; |
2175 | } |
2176 | |
2177 | retry: |
2178 | nospace_error = 0; |
2179 | spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL, |
2180 | target_name->len, du_wip.ip != NULL); |
2181 | error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_rename, blocks: spaceres, rtextents: 0, flags: 0, tpp: &tp); |
2182 | if (error == -ENOSPC) { |
2183 | nospace_error = error; |
2184 | spaceres = 0; |
2185 | error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_rename, blocks: 0, rtextents: 0, flags: 0, |
2186 | tpp: &tp); |
2187 | } |
2188 | if (error) |
2189 | goto out_tgt_ppargs; |
2190 | |
2191 | /* |
2192 | * We don't allow reservationless renaming when parent pointers are |
2193 | * enabled because we can't back out if the xattrs must grow. |
2194 | */ |
2195 | if (du_src.ppargs && nospace_error) { |
2196 | error = nospace_error; |
2197 | xfs_trans_cancel(tp); |
2198 | goto out_tgt_ppargs; |
2199 | } |
2200 | |
2201 | /* |
2202 | * Attach the dquots to the inodes |
2203 | */ |
2204 | error = xfs_qm_vop_rename_dqattach(inodes); |
2205 | if (error) { |
2206 | xfs_trans_cancel(tp); |
2207 | goto out_tgt_ppargs; |
2208 | } |
2209 | |
2210 | /* |
2211 | * Lock all the participating inodes. Depending upon whether |
2212 | * the target_name exists in the target directory, and |
2213 | * whether the target directory is the same as the source |
2214 | * directory, we can lock from 2 to 5 inodes. |
2215 | */ |
2216 | xfs_lock_inodes(ips: inodes, inodes: num_inodes, XFS_ILOCK_EXCL); |
2217 | |
2218 | /* |
2219 | * Join all the inodes to the transaction. |
2220 | */ |
2221 | xfs_trans_ijoin(tp, src_dp, 0); |
2222 | if (new_parent) |
2223 | xfs_trans_ijoin(tp, target_dp, 0); |
2224 | xfs_trans_ijoin(tp, src_ip, 0); |
2225 | if (target_ip) |
2226 | xfs_trans_ijoin(tp, target_ip, 0); |
2227 | if (du_wip.ip) |
2228 | xfs_trans_ijoin(tp, du_wip.ip, 0); |
2229 | |
2230 | /* |
2231 | * If we are using project inheritance, we only allow renames |
2232 | * into our tree when the project IDs are the same; else the |
2233 | * tree quota mechanism would be circumvented. |
2234 | */ |
2235 | if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && |
2236 | target_dp->i_projid != src_ip->i_projid)) { |
2237 | error = -EXDEV; |
2238 | goto out_trans_cancel; |
2239 | } |
2240 | |
2241 | /* RENAME_EXCHANGE is unique from here on. */ |
2242 | if (flags & RENAME_EXCHANGE) { |
2243 | error = xfs_dir_exchange_children(tp, &du_src, &du_tgt, |
2244 | spaceres); |
2245 | if (error) |
2246 | goto out_trans_cancel; |
2247 | goto out_commit; |
2248 | } |
2249 | |
2250 | /* |
2251 | * Try to reserve quota to handle an expansion of the target directory. |
2252 | * We'll allow the rename to continue in reservationless mode if we hit |
2253 | * a space usage constraint. If we trigger reservationless mode, save |
2254 | * the errno if there isn't any free space in the target directory. |
2255 | */ |
2256 | if (spaceres != 0) { |
2257 | error = xfs_trans_reserve_quota_nblks(tp, ip: target_dp, dblocks: spaceres, |
2258 | rblocks: 0, force: false); |
2259 | if (error == -EDQUOT || error == -ENOSPC) { |
2260 | if (!retried) { |
2261 | xfs_trans_cancel(tp); |
2262 | xfs_iunlock_rename(i_tab: inodes, num_inodes); |
2263 | xfs_blockgc_free_quota(ip: target_dp, iwalk_flags: 0); |
2264 | retried = true; |
2265 | goto retry; |
2266 | } |
2267 | |
2268 | nospace_error = error; |
2269 | spaceres = 0; |
2270 | error = 0; |
2271 | } |
2272 | if (error) |
2273 | goto out_trans_cancel; |
2274 | } |
2275 | |
2276 | /* |
2277 | * We don't allow quotaless renaming when parent pointers are enabled |
2278 | * because we can't back out if the xattrs must grow. |
2279 | */ |
2280 | if (du_src.ppargs && nospace_error) { |
2281 | error = nospace_error; |
2282 | goto out_trans_cancel; |
2283 | } |
2284 | |
2285 | /* |
2286 | * Lock the AGI buffers we need to handle bumping the nlink of the |
2287 | * whiteout inode off the unlinked list and to handle dropping the |
2288 | * nlink of the target inode. Per locking order rules, do this in |
2289 | * increasing AG order and before directory block allocation tries to |
2290 | * grab AGFs because we grab AGIs before AGFs. |
2291 | * |
2292 | * The (vfs) caller must ensure that if src is a directory then |
2293 | * target_ip is either null or an empty directory. |
2294 | */ |
2295 | for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { |
2296 | if (inodes[i] == du_wip.ip || |
2297 | (inodes[i] == target_ip && |
2298 | (VFS_I(ip: target_ip)->i_nlink == 1 || src_is_directory))) { |
2299 | struct xfs_perag *pag; |
2300 | struct xfs_buf *bp; |
2301 | |
2302 | pag = xfs_perag_get(mp, |
2303 | XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); |
2304 | error = xfs_read_agi(pag, tp, 0, &bp); |
2305 | xfs_perag_put(pag); |
2306 | if (error) |
2307 | goto out_trans_cancel; |
2308 | } |
2309 | } |
2310 | |
2311 | error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres, |
2312 | &du_wip); |
2313 | if (error) |
2314 | goto out_trans_cancel; |
2315 | |
2316 | if (du_wip.ip) { |
2317 | /* |
2318 | * Now we have a real link, clear the "I'm a tmpfile" state |
2319 | * flag from the inode so it doesn't accidentally get misused in |
2320 | * future. |
2321 | */ |
2322 | VFS_I(ip: du_wip.ip)->i_state &= ~I_LINKABLE; |
2323 | } |
2324 | |
2325 | out_commit: |
2326 | /* |
2327 | * If this is a synchronous mount, make sure that the rename |
2328 | * transaction goes to disk before returning to the user. |
2329 | */ |
2330 | if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) |
2331 | xfs_trans_set_sync(tp); |
2332 | |
2333 | error = xfs_trans_commit(tp); |
2334 | nospace_error = 0; |
2335 | goto out_unlock; |
2336 | |
2337 | out_trans_cancel: |
2338 | xfs_trans_cancel(tp); |
2339 | out_unlock: |
2340 | xfs_iunlock_rename(i_tab: inodes, num_inodes); |
2341 | out_tgt_ppargs: |
2342 | xfs_parent_finish(mp, du_tgt.ppargs); |
2343 | out_wip_ppargs: |
2344 | xfs_parent_finish(mp, du_wip.ppargs); |
2345 | out_src_ppargs: |
2346 | xfs_parent_finish(mp, du_src.ppargs); |
2347 | out_release_wip: |
2348 | if (du_wip.ip) |
2349 | xfs_irele(ip: du_wip.ip); |
2350 | if (error == -ENOSPC && nospace_error) |
2351 | error = nospace_error; |
2352 | return error; |
2353 | } |
2354 | |
2355 | static int |
2356 | xfs_iflush( |
2357 | struct xfs_inode *ip, |
2358 | struct xfs_buf *bp) |
2359 | { |
2360 | struct xfs_inode_log_item *iip = ip->i_itemp; |
2361 | struct xfs_dinode *dip; |
2362 | struct xfs_mount *mp = ip->i_mount; |
2363 | int error; |
2364 | |
2365 | xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); |
2366 | ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); |
2367 | ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || |
2368 | ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
2369 | ASSERT(iip->ili_item.li_buf == bp); |
2370 | |
2371 | dip = xfs_buf_offset(bp, offset: ip->i_imap.im_boffset); |
2372 | |
2373 | /* |
2374 | * We don't flush the inode if any of the following checks fail, but we |
2375 | * do still update the log item and attach to the backing buffer as if |
2376 | * the flush happened. This is a formality to facilitate predictable |
2377 | * error handling as the caller will shutdown and fail the buffer. |
2378 | */ |
2379 | error = -EFSCORRUPTED; |
2380 | if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), |
2381 | mp, XFS_ERRTAG_IFLUSH_1)) { |
2382 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2383 | "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, |
2384 | __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); |
2385 | goto flush_out; |
2386 | } |
2387 | if (ip->i_df.if_format == XFS_DINODE_FMT_META_BTREE) { |
2388 | if (!S_ISREG(VFS_I(ip)->i_mode) || |
2389 | !(ip->i_diflags2 & XFS_DIFLAG2_METADATA)) { |
2390 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2391 | "%s: Bad %s meta btree inode %Lu, ptr "PTR_FMT, |
2392 | __func__, xfs_metafile_type_str(ip->i_metatype), |
2393 | ip->i_ino, ip); |
2394 | goto flush_out; |
2395 | } |
2396 | } else if (S_ISREG(VFS_I(ip)->i_mode)) { |
2397 | if (XFS_TEST_ERROR( |
2398 | ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && |
2399 | ip->i_df.if_format != XFS_DINODE_FMT_BTREE, |
2400 | mp, XFS_ERRTAG_IFLUSH_3)) { |
2401 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2402 | "%s: Bad regular inode %llu, ptr "PTR_FMT, |
2403 | __func__, ip->i_ino, ip); |
2404 | goto flush_out; |
2405 | } |
2406 | } else if (S_ISDIR(VFS_I(ip)->i_mode)) { |
2407 | if (XFS_TEST_ERROR( |
2408 | ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && |
2409 | ip->i_df.if_format != XFS_DINODE_FMT_BTREE && |
2410 | ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, |
2411 | mp, XFS_ERRTAG_IFLUSH_4)) { |
2412 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2413 | "%s: Bad directory inode %llu, ptr "PTR_FMT, |
2414 | __func__, ip->i_ino, ip); |
2415 | goto flush_out; |
2416 | } |
2417 | } |
2418 | if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > |
2419 | ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { |
2420 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2421 | "%s: detected corrupt incore inode %llu, " |
2422 | "total extents = %llu nblocks = %lld, ptr "PTR_FMT, |
2423 | __func__, ip->i_ino, |
2424 | ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), |
2425 | ip->i_nblocks, ip); |
2426 | goto flush_out; |
2427 | } |
2428 | if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, |
2429 | mp, XFS_ERRTAG_IFLUSH_6)) { |
2430 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2431 | "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, |
2432 | __func__, ip->i_ino, ip->i_forkoff, ip); |
2433 | goto flush_out; |
2434 | } |
2435 | |
2436 | if (xfs_inode_has_attr_fork(ip) && |
2437 | ip->i_af.if_format == XFS_DINODE_FMT_META_BTREE) { |
2438 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
2439 | "%s: meta btree in inode %Lu attr fork, ptr "PTR_FMT, |
2440 | __func__, ip->i_ino, ip); |
2441 | goto flush_out; |
2442 | } |
2443 | |
2444 | /* |
2445 | * Inode item log recovery for v2 inodes are dependent on the flushiter |
2446 | * count for correct sequencing. We bump the flush iteration count so |
2447 | * we can detect flushes which postdate a log record during recovery. |
2448 | * This is redundant as we now log every change and hence this can't |
2449 | * happen but we need to still do it to ensure backwards compatibility |
2450 | * with old kernels that predate logging all inode changes. |
2451 | */ |
2452 | if (!xfs_has_v3inodes(mp)) |
2453 | ip->i_flushiter++; |
2454 | |
2455 | /* |
2456 | * If there are inline format data / attr forks attached to this inode, |
2457 | * make sure they are not corrupt. |
2458 | */ |
2459 | if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && |
2460 | xfs_ifork_verify_local_data(ip)) |
2461 | goto flush_out; |
2462 | if (xfs_inode_has_attr_fork(ip) && |
2463 | ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && |
2464 | xfs_ifork_verify_local_attr(ip)) |
2465 | goto flush_out; |
2466 | |
2467 | /* |
2468 | * Copy the dirty parts of the inode into the on-disk inode. We always |
2469 | * copy out the core of the inode, because if the inode is dirty at all |
2470 | * the core must be. |
2471 | */ |
2472 | xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); |
2473 | |
2474 | /* Wrap, we never let the log put out DI_MAX_FLUSH */ |
2475 | if (!xfs_has_v3inodes(mp)) { |
2476 | if (ip->i_flushiter == DI_MAX_FLUSH) |
2477 | ip->i_flushiter = 0; |
2478 | } |
2479 | |
2480 | xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); |
2481 | if (xfs_inode_has_attr_fork(ip)) |
2482 | xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); |
2483 | |
2484 | /* |
2485 | * We've recorded everything logged in the inode, so we'd like to clear |
2486 | * the ili_fields bits so we don't log and flush things unnecessarily. |
2487 | * However, we can't stop logging all this information until the data |
2488 | * we've copied into the disk buffer is written to disk. If we did we |
2489 | * might overwrite the copy of the inode in the log with all the data |
2490 | * after re-logging only part of it, and in the face of a crash we |
2491 | * wouldn't have all the data we need to recover. |
2492 | * |
2493 | * What we do is move the bits to the ili_last_fields field. When |
2494 | * logging the inode, these bits are moved back to the ili_fields field. |
2495 | * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since |
2496 | * we know that the information those bits represent is permanently on |
2497 | * disk. As long as the flush completes before the inode is logged |
2498 | * again, then both ili_fields and ili_last_fields will be cleared. |
2499 | */ |
2500 | error = 0; |
2501 | flush_out: |
2502 | spin_lock(lock: &iip->ili_lock); |
2503 | iip->ili_last_fields = iip->ili_fields; |
2504 | iip->ili_fields = 0; |
2505 | iip->ili_fsync_fields = 0; |
2506 | set_bit(XFS_LI_FLUSHING, addr: &iip->ili_item.li_flags); |
2507 | spin_unlock(lock: &iip->ili_lock); |
2508 | |
2509 | /* |
2510 | * Store the current LSN of the inode so that we can tell whether the |
2511 | * item has moved in the AIL from xfs_buf_inode_iodone(). |
2512 | */ |
2513 | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
2514 | &iip->ili_item.li_lsn); |
2515 | |
2516 | /* generate the checksum. */ |
2517 | xfs_dinode_calc_crc(mp, dip); |
2518 | if (error) |
2519 | xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); |
2520 | return error; |
2521 | } |
2522 | |
2523 | /* |
2524 | * Non-blocking flush of dirty inode metadata into the backing buffer. |
2525 | * |
2526 | * The caller must have a reference to the inode and hold the cluster buffer |
2527 | * locked. The function will walk across all the inodes on the cluster buffer it |
2528 | * can find and lock without blocking, and flush them to the cluster buffer. |
2529 | * |
2530 | * On successful flushing of at least one inode, the caller must write out the |
2531 | * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and |
2532 | * the caller needs to release the buffer. On failure, the filesystem will be |
2533 | * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED |
2534 | * will be returned. |
2535 | */ |
2536 | int |
2537 | xfs_iflush_cluster( |
2538 | struct xfs_buf *bp) |
2539 | { |
2540 | struct xfs_mount *mp = bp->b_mount; |
2541 | struct xfs_log_item *lip, *n; |
2542 | struct xfs_inode *ip; |
2543 | struct xfs_inode_log_item *iip; |
2544 | int clcount = 0; |
2545 | int error = 0; |
2546 | |
2547 | /* |
2548 | * We must use the safe variant here as on shutdown xfs_iflush_abort() |
2549 | * will remove itself from the list. |
2550 | */ |
2551 | list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { |
2552 | iip = (struct xfs_inode_log_item *)lip; |
2553 | ip = iip->ili_inode; |
2554 | |
2555 | /* |
2556 | * Quick and dirty check to avoid locks if possible. |
2557 | */ |
2558 | if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) |
2559 | continue; |
2560 | if (xfs_ipincount(ip)) |
2561 | continue; |
2562 | |
2563 | /* |
2564 | * The inode is still attached to the buffer, which means it is |
2565 | * dirty but reclaim might try to grab it. Check carefully for |
2566 | * that, and grab the ilock while still holding the i_flags_lock |
2567 | * to guarantee reclaim will not be able to reclaim this inode |
2568 | * once we drop the i_flags_lock. |
2569 | */ |
2570 | spin_lock(lock: &ip->i_flags_lock); |
2571 | ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); |
2572 | if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { |
2573 | spin_unlock(lock: &ip->i_flags_lock); |
2574 | continue; |
2575 | } |
2576 | |
2577 | /* |
2578 | * ILOCK will pin the inode against reclaim and prevent |
2579 | * concurrent transactions modifying the inode while we are |
2580 | * flushing the inode. If we get the lock, set the flushing |
2581 | * state before we drop the i_flags_lock. |
2582 | */ |
2583 | if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { |
2584 | spin_unlock(lock: &ip->i_flags_lock); |
2585 | continue; |
2586 | } |
2587 | __xfs_iflags_set(ip, XFS_IFLUSHING); |
2588 | spin_unlock(lock: &ip->i_flags_lock); |
2589 | |
2590 | /* |
2591 | * Abort flushing this inode if we are shut down because the |
2592 | * inode may not currently be in the AIL. This can occur when |
2593 | * log I/O failure unpins the inode without inserting into the |
2594 | * AIL, leaving a dirty/unpinned inode attached to the buffer |
2595 | * that otherwise looks like it should be flushed. |
2596 | */ |
2597 | if (xlog_is_shutdown(log: mp->m_log)) { |
2598 | xfs_iunpin_wait(ip); |
2599 | xfs_iflush_abort(ip); |
2600 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
2601 | error = -EIO; |
2602 | continue; |
2603 | } |
2604 | |
2605 | /* don't block waiting on a log force to unpin dirty inodes */ |
2606 | if (xfs_ipincount(ip)) { |
2607 | xfs_iflags_clear(ip, XFS_IFLUSHING); |
2608 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
2609 | continue; |
2610 | } |
2611 | |
2612 | if (!xfs_inode_clean(ip)) |
2613 | error = xfs_iflush(ip, bp); |
2614 | else |
2615 | xfs_iflags_clear(ip, XFS_IFLUSHING); |
2616 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
2617 | if (error) |
2618 | break; |
2619 | clcount++; |
2620 | } |
2621 | |
2622 | if (error) { |
2623 | /* |
2624 | * Shutdown first so we kill the log before we release this |
2625 | * buffer. If it is an INODE_ALLOC buffer and pins the tail |
2626 | * of the log, failing it before the _log_ is shut down can |
2627 | * result in the log tail being moved forward in the journal |
2628 | * on disk because log writes can still be taking place. Hence |
2629 | * unpinning the tail will allow the ICREATE intent to be |
2630 | * removed from the log an recovery will fail with uninitialised |
2631 | * inode cluster buffers. |
2632 | */ |
2633 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
2634 | bp->b_flags |= XBF_ASYNC; |
2635 | xfs_buf_ioend_fail(bp); |
2636 | return error; |
2637 | } |
2638 | |
2639 | if (!clcount) |
2640 | return -EAGAIN; |
2641 | |
2642 | XFS_STATS_INC(mp, xs_icluster_flushcnt); |
2643 | XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); |
2644 | return 0; |
2645 | |
2646 | } |
2647 | |
2648 | /* Release an inode. */ |
2649 | void |
2650 | xfs_irele( |
2651 | struct xfs_inode *ip) |
2652 | { |
2653 | trace_xfs_irele(ip, _RET_IP_); |
2654 | iput(VFS_I(ip)); |
2655 | } |
2656 | |
2657 | /* |
2658 | * Ensure all commited transactions touching the inode are written to the log. |
2659 | */ |
2660 | int |
2661 | xfs_log_force_inode( |
2662 | struct xfs_inode *ip) |
2663 | { |
2664 | xfs_csn_t seq = 0; |
2665 | |
2666 | xfs_ilock(ip, XFS_ILOCK_SHARED); |
2667 | if (xfs_ipincount(ip)) |
2668 | seq = ip->i_itemp->ili_commit_seq; |
2669 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
2670 | |
2671 | if (!seq) |
2672 | return 0; |
2673 | return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); |
2674 | } |
2675 | |
2676 | /* |
2677 | * Grab the exclusive iolock for a data copy from src to dest, making sure to |
2678 | * abide vfs locking order (lowest pointer value goes first) and breaking the |
2679 | * layout leases before proceeding. The loop is needed because we cannot call |
2680 | * the blocking break_layout() with the iolocks held, and therefore have to |
2681 | * back out both locks. |
2682 | */ |
2683 | static int |
2684 | xfs_iolock_two_inodes_and_break_layout( |
2685 | struct inode *src, |
2686 | struct inode *dest) |
2687 | { |
2688 | int error; |
2689 | |
2690 | if (src > dest) |
2691 | swap(src, dest); |
2692 | |
2693 | retry: |
2694 | /* Wait to break both inodes' layouts before we start locking. */ |
2695 | error = break_layout(inode: src, wait: true); |
2696 | if (error) |
2697 | return error; |
2698 | if (src != dest) { |
2699 | error = break_layout(inode: dest, wait: true); |
2700 | if (error) |
2701 | return error; |
2702 | } |
2703 | |
2704 | /* Lock one inode and make sure nobody got in and leased it. */ |
2705 | inode_lock(inode: src); |
2706 | error = break_layout(inode: src, wait: false); |
2707 | if (error) { |
2708 | inode_unlock(inode: src); |
2709 | if (error == -EWOULDBLOCK) |
2710 | goto retry; |
2711 | return error; |
2712 | } |
2713 | |
2714 | if (src == dest) |
2715 | return 0; |
2716 | |
2717 | /* Lock the other inode and make sure nobody got in and leased it. */ |
2718 | inode_lock_nested(inode: dest, subclass: I_MUTEX_NONDIR2); |
2719 | error = break_layout(inode: dest, wait: false); |
2720 | if (error) { |
2721 | inode_unlock(inode: src); |
2722 | inode_unlock(inode: dest); |
2723 | if (error == -EWOULDBLOCK) |
2724 | goto retry; |
2725 | return error; |
2726 | } |
2727 | |
2728 | return 0; |
2729 | } |
2730 | |
2731 | static int |
2732 | xfs_mmaplock_two_inodes_and_break_dax_layout( |
2733 | struct xfs_inode *ip1, |
2734 | struct xfs_inode *ip2) |
2735 | { |
2736 | int error; |
2737 | |
2738 | if (ip1->i_ino > ip2->i_ino) |
2739 | swap(ip1, ip2); |
2740 | |
2741 | again: |
2742 | /* Lock the first inode */ |
2743 | xfs_ilock(ip: ip1, XFS_MMAPLOCK_EXCL); |
2744 | error = xfs_break_dax_layouts(inode: VFS_I(ip: ip1)); |
2745 | if (error) { |
2746 | xfs_iunlock(ip: ip1, XFS_MMAPLOCK_EXCL); |
2747 | return error; |
2748 | } |
2749 | |
2750 | if (ip1 == ip2) |
2751 | return 0; |
2752 | |
2753 | /* Nested lock the second inode */ |
2754 | xfs_ilock(ip: ip2, lock_flags: xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, subclass: 1)); |
2755 | /* |
2756 | * We cannot use xfs_break_dax_layouts() directly here because it may |
2757 | * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable |
2758 | * for this nested lock case. |
2759 | */ |
2760 | error = dax_break_layout(inode: VFS_I(ip: ip2), start: 0, end: -1, NULL); |
2761 | if (error) { |
2762 | xfs_iunlock(ip: ip2, XFS_MMAPLOCK_EXCL); |
2763 | xfs_iunlock(ip: ip1, XFS_MMAPLOCK_EXCL); |
2764 | goto again; |
2765 | } |
2766 | |
2767 | return 0; |
2768 | } |
2769 | |
2770 | /* |
2771 | * Lock two inodes so that userspace cannot initiate I/O via file syscalls or |
2772 | * mmap activity. |
2773 | */ |
2774 | int |
2775 | xfs_ilock2_io_mmap( |
2776 | struct xfs_inode *ip1, |
2777 | struct xfs_inode *ip2) |
2778 | { |
2779 | int ret; |
2780 | |
2781 | ret = xfs_iolock_two_inodes_and_break_layout(src: VFS_I(ip: ip1), dest: VFS_I(ip: ip2)); |
2782 | if (ret) |
2783 | return ret; |
2784 | |
2785 | if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { |
2786 | ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); |
2787 | if (ret) { |
2788 | inode_unlock(inode: VFS_I(ip: ip2)); |
2789 | if (ip1 != ip2) |
2790 | inode_unlock(inode: VFS_I(ip: ip1)); |
2791 | return ret; |
2792 | } |
2793 | } else |
2794 | filemap_invalidate_lock_two(mapping1: VFS_I(ip: ip1)->i_mapping, |
2795 | mapping2: VFS_I(ip: ip2)->i_mapping); |
2796 | |
2797 | return 0; |
2798 | } |
2799 | |
2800 | /* Unlock both inodes to allow IO and mmap activity. */ |
2801 | void |
2802 | xfs_iunlock2_io_mmap( |
2803 | struct xfs_inode *ip1, |
2804 | struct xfs_inode *ip2) |
2805 | { |
2806 | if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { |
2807 | xfs_iunlock(ip: ip2, XFS_MMAPLOCK_EXCL); |
2808 | if (ip1 != ip2) |
2809 | xfs_iunlock(ip: ip1, XFS_MMAPLOCK_EXCL); |
2810 | } else |
2811 | filemap_invalidate_unlock_two(mapping1: VFS_I(ip: ip1)->i_mapping, |
2812 | mapping2: VFS_I(ip: ip2)->i_mapping); |
2813 | |
2814 | inode_unlock(inode: VFS_I(ip: ip2)); |
2815 | if (ip1 != ip2) |
2816 | inode_unlock(inode: VFS_I(ip: ip1)); |
2817 | } |
2818 | |
2819 | /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */ |
2820 | void |
2821 | xfs_iunlock2_remapping( |
2822 | struct xfs_inode *ip1, |
2823 | struct xfs_inode *ip2) |
2824 | { |
2825 | xfs_iflags_clear(ip: ip1, XFS_IREMAPPING); |
2826 | |
2827 | if (ip1 != ip2) |
2828 | xfs_iunlock(ip: ip1, XFS_MMAPLOCK_SHARED); |
2829 | xfs_iunlock(ip: ip2, XFS_MMAPLOCK_EXCL); |
2830 | |
2831 | if (ip1 != ip2) |
2832 | inode_unlock_shared(inode: VFS_I(ip: ip1)); |
2833 | inode_unlock(inode: VFS_I(ip: ip2)); |
2834 | } |
2835 | |
2836 | /* |
2837 | * Reload the incore inode list for this inode. Caller should ensure that |
2838 | * the link count cannot change, either by taking ILOCK_SHARED or otherwise |
2839 | * preventing other threads from executing. |
2840 | */ |
2841 | int |
2842 | xfs_inode_reload_unlinked_bucket( |
2843 | struct xfs_trans *tp, |
2844 | struct xfs_inode *ip) |
2845 | { |
2846 | struct xfs_mount *mp = tp->t_mountp; |
2847 | struct xfs_buf *agibp; |
2848 | struct xfs_agi *agi; |
2849 | struct xfs_perag *pag; |
2850 | xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
2851 | xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
2852 | xfs_agino_t prev_agino, next_agino; |
2853 | unsigned int bucket; |
2854 | bool foundit = false; |
2855 | int error; |
2856 | |
2857 | /* Grab the first inode in the list */ |
2858 | pag = xfs_perag_get(mp, agno); |
2859 | error = xfs_ialloc_read_agi(pag, tp, 0, &agibp); |
2860 | xfs_perag_put(pag); |
2861 | if (error) |
2862 | return error; |
2863 | |
2864 | /* |
2865 | * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the |
2866 | * incore unlinked list pointers for this inode. Check once more to |
2867 | * see if we raced with anyone else to reload the unlinked list. |
2868 | */ |
2869 | if (!xfs_inode_unlinked_incomplete(ip)) { |
2870 | foundit = true; |
2871 | goto out_agibp; |
2872 | } |
2873 | |
2874 | bucket = agino % XFS_AGI_UNLINKED_BUCKETS; |
2875 | agi = agibp->b_addr; |
2876 | |
2877 | trace_xfs_inode_reload_unlinked_bucket(ip); |
2878 | |
2879 | xfs_info_ratelimited(mp, |
2880 | "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", |
2881 | agino, agno); |
2882 | |
2883 | prev_agino = NULLAGINO; |
2884 | next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); |
2885 | while (next_agino != NULLAGINO) { |
2886 | struct xfs_inode *next_ip = NULL; |
2887 | |
2888 | /* Found this caller's inode, set its backlink. */ |
2889 | if (next_agino == agino) { |
2890 | next_ip = ip; |
2891 | next_ip->i_prev_unlinked = prev_agino; |
2892 | foundit = true; |
2893 | goto next_inode; |
2894 | } |
2895 | |
2896 | /* Try in-memory lookup first. */ |
2897 | next_ip = xfs_iunlink_lookup(pag, next_agino); |
2898 | if (next_ip) |
2899 | goto next_inode; |
2900 | |
2901 | /* Inode not in memory, try reloading it. */ |
2902 | error = xfs_iunlink_reload_next(tp, agibp, prev_agino, |
2903 | next_agino); |
2904 | if (error) |
2905 | break; |
2906 | |
2907 | /* Grab the reloaded inode. */ |
2908 | next_ip = xfs_iunlink_lookup(pag, next_agino); |
2909 | if (!next_ip) { |
2910 | /* No incore inode at all? We reloaded it... */ |
2911 | ASSERT(next_ip != NULL); |
2912 | error = -EFSCORRUPTED; |
2913 | break; |
2914 | } |
2915 | |
2916 | next_inode: |
2917 | prev_agino = next_agino; |
2918 | next_agino = next_ip->i_next_unlinked; |
2919 | } |
2920 | |
2921 | out_agibp: |
2922 | xfs_trans_brelse(tp, agibp); |
2923 | /* Should have found this inode somewhere in the iunlinked bucket. */ |
2924 | if (!error && !foundit) |
2925 | error = -EFSCORRUPTED; |
2926 | return error; |
2927 | } |
2928 | |
2929 | /* Decide if this inode is missing its unlinked list and reload it. */ |
2930 | int |
2931 | xfs_inode_reload_unlinked( |
2932 | struct xfs_inode *ip) |
2933 | { |
2934 | struct xfs_trans *tp; |
2935 | int error; |
2936 | |
2937 | error = xfs_trans_alloc_empty(mp: ip->i_mount, tpp: &tp); |
2938 | if (error) |
2939 | return error; |
2940 | |
2941 | xfs_ilock(ip, XFS_ILOCK_SHARED); |
2942 | if (xfs_inode_unlinked_incomplete(ip)) |
2943 | error = xfs_inode_reload_unlinked_bucket(tp, ip); |
2944 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
2945 | xfs_trans_cancel(tp); |
2946 | |
2947 | return error; |
2948 | } |
2949 | |
2950 | /* Has this inode fork been zapped by repair? */ |
2951 | bool |
2952 | xfs_ifork_zapped( |
2953 | const struct xfs_inode *ip, |
2954 | int whichfork) |
2955 | { |
2956 | unsigned int datamask = 0; |
2957 | |
2958 | switch (whichfork) { |
2959 | case XFS_DATA_FORK: |
2960 | switch (ip->i_vnode.i_mode & S_IFMT) { |
2961 | case S_IFDIR: |
2962 | datamask = XFS_SICK_INO_DIR_ZAPPED; |
2963 | break; |
2964 | case S_IFLNK: |
2965 | datamask = XFS_SICK_INO_SYMLINK_ZAPPED; |
2966 | break; |
2967 | } |
2968 | return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask); |
2969 | case XFS_ATTR_FORK: |
2970 | return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED; |
2971 | default: |
2972 | return false; |
2973 | } |
2974 | } |
2975 | |
2976 | /* Compute the number of data and realtime blocks used by a file. */ |
2977 | void |
2978 | xfs_inode_count_blocks( |
2979 | struct xfs_trans *tp, |
2980 | struct xfs_inode *ip, |
2981 | xfs_filblks_t *dblocks, |
2982 | xfs_filblks_t *rblocks) |
2983 | { |
2984 | struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); |
2985 | |
2986 | *rblocks = 0; |
2987 | if (XFS_IS_REALTIME_INODE(ip)) |
2988 | xfs_bmap_count_leaves(ifp, rblocks); |
2989 | *dblocks = ip->i_nblocks - *rblocks; |
2990 | } |
2991 | |
2992 | static void |
2993 | xfs_wait_dax_page( |
2994 | struct inode *inode) |
2995 | { |
2996 | struct xfs_inode *ip = XFS_I(inode); |
2997 | |
2998 | xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); |
2999 | schedule(); |
3000 | xfs_ilock(ip, XFS_MMAPLOCK_EXCL); |
3001 | } |
3002 | |
3003 | int |
3004 | xfs_break_dax_layouts( |
3005 | struct inode *inode) |
3006 | { |
3007 | xfs_assert_ilocked(ip: XFS_I(inode), XFS_MMAPLOCK_EXCL); |
3008 | |
3009 | return dax_break_layout_inode(inode, cb: xfs_wait_dax_page); |
3010 | } |
3011 | |
3012 | int |
3013 | xfs_break_layouts( |
3014 | struct inode *inode, |
3015 | uint *iolock, |
3016 | enum layout_break_reason reason) |
3017 | { |
3018 | bool retry; |
3019 | int error; |
3020 | |
3021 | xfs_assert_ilocked(ip: XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL); |
3022 | |
3023 | do { |
3024 | retry = false; |
3025 | switch (reason) { |
3026 | case BREAK_UNMAP: |
3027 | error = xfs_break_dax_layouts(inode); |
3028 | if (error) |
3029 | break; |
3030 | fallthrough; |
3031 | case BREAK_WRITE: |
3032 | error = xfs_break_leased_layouts(inode, iolock, did_unlock: &retry); |
3033 | break; |
3034 | default: |
3035 | WARN_ON_ONCE(1); |
3036 | error = -EINVAL; |
3037 | } |
3038 | } while (error == 0 && retry); |
3039 | |
3040 | return error; |
3041 | } |
3042 | |
3043 | /* Returns the size of fundamental allocation unit for a file, in bytes. */ |
3044 | unsigned int |
3045 | xfs_inode_alloc_unitsize( |
3046 | struct xfs_inode *ip) |
3047 | { |
3048 | unsigned int blocks = 1; |
3049 | |
3050 | if (XFS_IS_REALTIME_INODE(ip)) |
3051 | blocks = ip->i_mount->m_sb.sb_rextsize; |
3052 | |
3053 | return XFS_FSB_TO_B(ip->i_mount, blocks); |
3054 | } |
3055 | |
3056 | /* Should we always be using copy on write for file writes? */ |
3057 | bool |
3058 | xfs_is_always_cow_inode( |
3059 | const struct xfs_inode *ip) |
3060 | { |
3061 | return xfs_is_zoned_inode(ip) || |
3062 | (ip->i_mount->m_always_cow && xfs_has_reflink(mp: ip->i_mount)); |
3063 | } |
3064 |
Definitions
- xfs_inode_cache
- xfs_ilock_data_map_shared
- xfs_ilock_attr_map_shared
- xfs_lock_flags_assert
- xfs_ilock
- xfs_ilock_nowait
- xfs_iunlock
- xfs_ilock_demote
- xfs_assert_ilocked
- xfs_lockdep_subclass_ok
- xfs_lock_inumorder
- xfs_lock_inodes
- xfs_lock_two_inodes
- xfs_lookup
- xfs_icreate
- xfs_icreate_dqalloc
- xfs_create
- xfs_create_tmpfile
- xfs_link
- xfs_itruncate_clear_reflink_flags
- xfs_itruncate_extents_flags
- xfs_inactive_dir
- xfs_inactive_truncate
- xfs_inactive_ifree
- xfs_inode_needs_inactive
- xfs_inactive_health
- xfs_inactive
- xfs_iunlink_lookup
- xfs_iunlink_reload_next
- xfs_ifree_mark_inode_stale
- xfs_ifree_cluster
- xfs_ifree
- xfs_iunpin
- __xfs_iunpin_wait
- xfs_iunpin_wait
- xfs_remove
- xfs_iunlock_rename
- xfs_sort_for_rename
- xfs_sort_inodes
- xfs_rename_alloc_whiteout
- xfs_rename
- xfs_iflush
- xfs_iflush_cluster
- xfs_irele
- xfs_log_force_inode
- xfs_iolock_two_inodes_and_break_layout
- xfs_mmaplock_two_inodes_and_break_dax_layout
- xfs_ilock2_io_mmap
- xfs_iunlock2_io_mmap
- xfs_iunlock2_remapping
- xfs_inode_reload_unlinked_bucket
- xfs_inode_reload_unlinked
- xfs_ifork_zapped
- xfs_inode_count_blocks
- xfs_wait_dax_page
- xfs_break_dax_layouts
- xfs_break_layouts
- xfs_inode_alloc_unitsize
Improve your Profiling and Debugging skills
Find out more