1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
7#include <uapi/linux/types.h>
8#include <linux/seq_file.h>
9#include <linux/compiler.h>
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/slab.h>
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
17#include <linux/idr.h>
18#include <linux/sort.h>
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
21#include <linux/btf_ids.h>
22#include <linux/bpf.h>
23#include <linux/bpf_lsm.h>
24#include <linux/skmsg.h>
25#include <linux/perf_event.h>
26#include <linux/bsearch.h>
27#include <linux/kobject.h>
28#include <linux/sysfs.h>
29
30#include <net/netfilter/nf_bpf_link.h>
31
32#include <net/sock.h>
33#include <net/xdp.h>
34#include "../tools/lib/bpf/relo_core.h"
35
36/* BTF (BPF Type Format) is the meta data format which describes
37 * the data types of BPF program/map. Hence, it basically focus
38 * on the C programming language which the modern BPF is primary
39 * using.
40 *
41 * ELF Section:
42 * ~~~~~~~~~~~
43 * The BTF data is stored under the ".BTF" ELF section
44 *
45 * struct btf_type:
46 * ~~~~~~~~~~~~~~~
47 * Each 'struct btf_type' object describes a C data type.
48 * Depending on the type it is describing, a 'struct btf_type'
49 * object may be followed by more data. F.e.
50 * To describe an array, 'struct btf_type' is followed by
51 * 'struct btf_array'.
52 *
53 * 'struct btf_type' and any extra data following it are
54 * 4 bytes aligned.
55 *
56 * Type section:
57 * ~~~~~~~~~~~~~
58 * The BTF type section contains a list of 'struct btf_type' objects.
59 * Each one describes a C type. Recall from the above section
60 * that a 'struct btf_type' object could be immediately followed by extra
61 * data in order to describe some particular C types.
62 *
63 * type_id:
64 * ~~~~~~~
65 * Each btf_type object is identified by a type_id. The type_id
66 * is implicitly implied by the location of the btf_type object in
67 * the BTF type section. The first one has type_id 1. The second
68 * one has type_id 2...etc. Hence, an earlier btf_type has
69 * a smaller type_id.
70 *
71 * A btf_type object may refer to another btf_type object by using
72 * type_id (i.e. the "type" in the "struct btf_type").
73 *
74 * NOTE that we cannot assume any reference-order.
75 * A btf_type object can refer to an earlier btf_type object
76 * but it can also refer to a later btf_type object.
77 *
78 * For example, to describe "const void *". A btf_type
79 * object describing "const" may refer to another btf_type
80 * object describing "void *". This type-reference is done
81 * by specifying type_id:
82 *
83 * [1] CONST (anon) type_id=2
84 * [2] PTR (anon) type_id=0
85 *
86 * The above is the btf_verifier debug log:
87 * - Each line started with "[?]" is a btf_type object
88 * - [?] is the type_id of the btf_type object.
89 * - CONST/PTR is the BTF_KIND_XXX
90 * - "(anon)" is the name of the type. It just
91 * happens that CONST and PTR has no name.
92 * - type_id=XXX is the 'u32 type' in btf_type
93 *
94 * NOTE: "void" has type_id 0
95 *
96 * String section:
97 * ~~~~~~~~~~~~~~
98 * The BTF string section contains the names used by the type section.
99 * Each string is referred by an "offset" from the beginning of the
100 * string section.
101 *
102 * Each string is '\0' terminated.
103 *
104 * The first character in the string section must be '\0'
105 * which is used to mean 'anonymous'. Some btf_type may not
106 * have a name.
107 */
108
109/* BTF verification:
110 *
111 * To verify BTF data, two passes are needed.
112 *
113 * Pass #1
114 * ~~~~~~~
115 * The first pass is to collect all btf_type objects to
116 * an array: "btf->types".
117 *
118 * Depending on the C type that a btf_type is describing,
119 * a btf_type may be followed by extra data. We don't know
120 * how many btf_type is there, and more importantly we don't
121 * know where each btf_type is located in the type section.
122 *
123 * Without knowing the location of each type_id, most verifications
124 * cannot be done. e.g. an earlier btf_type may refer to a later
125 * btf_type (recall the "const void *" above), so we cannot
126 * check this type-reference in the first pass.
127 *
128 * In the first pass, it still does some verifications (e.g.
129 * checking the name is a valid offset to the string section).
130 *
131 * Pass #2
132 * ~~~~~~~
133 * The main focus is to resolve a btf_type that is referring
134 * to another type.
135 *
136 * We have to ensure the referring type:
137 * 1) does exist in the BTF (i.e. in btf->types[])
138 * 2) does not cause a loop:
139 * struct A {
140 * struct B b;
141 * };
142 *
143 * struct B {
144 * struct A a;
145 * };
146 *
147 * btf_type_needs_resolve() decides if a btf_type needs
148 * to be resolved.
149 *
150 * The needs_resolve type implements the "resolve()" ops which
151 * essentially does a DFS and detects backedge.
152 *
153 * During resolve (or DFS), different C types have different
154 * "RESOLVED" conditions.
155 *
156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157 * members because a member is always referring to another
158 * type. A struct's member can be treated as "RESOLVED" if
159 * it is referring to a BTF_KIND_PTR. Otherwise, the
160 * following valid C struct would be rejected:
161 *
162 * struct A {
163 * int m;
164 * struct A *a;
165 * };
166 *
167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
169 * detect a pointer loop, e.g.:
170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171 * ^ |
172 * +-----------------------------------------+
173 *
174 */
175
176#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180#define BITS_ROUNDUP_BYTES(bits) \
181 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182
183#define BTF_INFO_MASK 0x9f00ffff
184#define BTF_INT_MASK 0x0fffffff
185#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187
188/* 16MB for 64k structs and each has 16 members and
189 * a few MB spaces for the string section.
190 * The hard limit is S32_MAX.
191 */
192#define BTF_MAX_SIZE (16 * 1024 * 1024)
193
194#define for_each_member_from(i, from, struct_type, member) \
195 for (i = from, member = btf_type_member(struct_type) + from; \
196 i < btf_type_vlen(struct_type); \
197 i++, member++)
198
199#define for_each_vsi_from(i, from, struct_type, member) \
200 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
201 i < btf_type_vlen(struct_type); \
202 i++, member++)
203
204DEFINE_IDR(btf_idr);
205DEFINE_SPINLOCK(btf_idr_lock);
206
207enum btf_kfunc_hook {
208 BTF_KFUNC_HOOK_COMMON,
209 BTF_KFUNC_HOOK_XDP,
210 BTF_KFUNC_HOOK_TC,
211 BTF_KFUNC_HOOK_STRUCT_OPS,
212 BTF_KFUNC_HOOK_TRACING,
213 BTF_KFUNC_HOOK_SYSCALL,
214 BTF_KFUNC_HOOK_FMODRET,
215 BTF_KFUNC_HOOK_CGROUP_SKB,
216 BTF_KFUNC_HOOK_SCHED_ACT,
217 BTF_KFUNC_HOOK_SK_SKB,
218 BTF_KFUNC_HOOK_SOCKET_FILTER,
219 BTF_KFUNC_HOOK_LWT,
220 BTF_KFUNC_HOOK_NETFILTER,
221 BTF_KFUNC_HOOK_MAX,
222};
223
224enum {
225 BTF_KFUNC_SET_MAX_CNT = 256,
226 BTF_DTOR_KFUNC_MAX_CNT = 256,
227 BTF_KFUNC_FILTER_MAX_CNT = 16,
228};
229
230struct btf_kfunc_hook_filter {
231 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
232 u32 nr_filters;
233};
234
235struct btf_kfunc_set_tab {
236 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
237 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
238};
239
240struct btf_id_dtor_kfunc_tab {
241 u32 cnt;
242 struct btf_id_dtor_kfunc dtors[];
243};
244
245struct btf_struct_ops_tab {
246 u32 cnt;
247 u32 capacity;
248 struct bpf_struct_ops_desc ops[];
249};
250
251struct btf {
252 void *data;
253 struct btf_type **types;
254 u32 *resolved_ids;
255 u32 *resolved_sizes;
256 const char *strings;
257 void *nohdr_data;
258 struct btf_header hdr;
259 u32 nr_types; /* includes VOID for base BTF */
260 u32 types_size;
261 u32 data_size;
262 refcount_t refcnt;
263 u32 id;
264 struct rcu_head rcu;
265 struct btf_kfunc_set_tab *kfunc_set_tab;
266 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
267 struct btf_struct_metas *struct_meta_tab;
268 struct btf_struct_ops_tab *struct_ops_tab;
269
270 /* split BTF support */
271 struct btf *base_btf;
272 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
273 u32 start_str_off; /* first string offset (0 for base BTF) */
274 char name[MODULE_NAME_LEN];
275 bool kernel_btf;
276};
277
278enum verifier_phase {
279 CHECK_META,
280 CHECK_TYPE,
281};
282
283struct resolve_vertex {
284 const struct btf_type *t;
285 u32 type_id;
286 u16 next_member;
287};
288
289enum visit_state {
290 NOT_VISITED,
291 VISITED,
292 RESOLVED,
293};
294
295enum resolve_mode {
296 RESOLVE_TBD, /* To Be Determined */
297 RESOLVE_PTR, /* Resolving for Pointer */
298 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
299 * or array
300 */
301};
302
303#define MAX_RESOLVE_DEPTH 32
304
305struct btf_sec_info {
306 u32 off;
307 u32 len;
308};
309
310struct btf_verifier_env {
311 struct btf *btf;
312 u8 *visit_states;
313 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
314 struct bpf_verifier_log log;
315 u32 log_type_id;
316 u32 top_stack;
317 enum verifier_phase phase;
318 enum resolve_mode resolve_mode;
319};
320
321static const char * const btf_kind_str[NR_BTF_KINDS] = {
322 [BTF_KIND_UNKN] = "UNKNOWN",
323 [BTF_KIND_INT] = "INT",
324 [BTF_KIND_PTR] = "PTR",
325 [BTF_KIND_ARRAY] = "ARRAY",
326 [BTF_KIND_STRUCT] = "STRUCT",
327 [BTF_KIND_UNION] = "UNION",
328 [BTF_KIND_ENUM] = "ENUM",
329 [BTF_KIND_FWD] = "FWD",
330 [BTF_KIND_TYPEDEF] = "TYPEDEF",
331 [BTF_KIND_VOLATILE] = "VOLATILE",
332 [BTF_KIND_CONST] = "CONST",
333 [BTF_KIND_RESTRICT] = "RESTRICT",
334 [BTF_KIND_FUNC] = "FUNC",
335 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
336 [BTF_KIND_VAR] = "VAR",
337 [BTF_KIND_DATASEC] = "DATASEC",
338 [BTF_KIND_FLOAT] = "FLOAT",
339 [BTF_KIND_DECL_TAG] = "DECL_TAG",
340 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
341 [BTF_KIND_ENUM64] = "ENUM64",
342};
343
344const char *btf_type_str(const struct btf_type *t)
345{
346 return btf_kind_str[BTF_INFO_KIND(t->info)];
347}
348
349/* Chunk size we use in safe copy of data to be shown. */
350#define BTF_SHOW_OBJ_SAFE_SIZE 32
351
352/*
353 * This is the maximum size of a base type value (equivalent to a
354 * 128-bit int); if we are at the end of our safe buffer and have
355 * less than 16 bytes space we can't be assured of being able
356 * to copy the next type safely, so in such cases we will initiate
357 * a new copy.
358 */
359#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
360
361/* Type name size */
362#define BTF_SHOW_NAME_SIZE 80
363
364/*
365 * The suffix of a type that indicates it cannot alias another type when
366 * comparing BTF IDs for kfunc invocations.
367 */
368#define NOCAST_ALIAS_SUFFIX "___init"
369
370/*
371 * Common data to all BTF show operations. Private show functions can add
372 * their own data to a structure containing a struct btf_show and consult it
373 * in the show callback. See btf_type_show() below.
374 *
375 * One challenge with showing nested data is we want to skip 0-valued
376 * data, but in order to figure out whether a nested object is all zeros
377 * we need to walk through it. As a result, we need to make two passes
378 * when handling structs, unions and arrays; the first path simply looks
379 * for nonzero data, while the second actually does the display. The first
380 * pass is signalled by show->state.depth_check being set, and if we
381 * encounter a non-zero value we set show->state.depth_to_show to
382 * the depth at which we encountered it. When we have completed the
383 * first pass, we will know if anything needs to be displayed if
384 * depth_to_show > depth. See btf_[struct,array]_show() for the
385 * implementation of this.
386 *
387 * Another problem is we want to ensure the data for display is safe to
388 * access. To support this, the anonymous "struct {} obj" tracks the data
389 * object and our safe copy of it. We copy portions of the data needed
390 * to the object "copy" buffer, but because its size is limited to
391 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
392 * traverse larger objects for display.
393 *
394 * The various data type show functions all start with a call to
395 * btf_show_start_type() which returns a pointer to the safe copy
396 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
397 * raw data itself). btf_show_obj_safe() is responsible for
398 * using copy_from_kernel_nofault() to update the safe data if necessary
399 * as we traverse the object's data. skbuff-like semantics are
400 * used:
401 *
402 * - obj.head points to the start of the toplevel object for display
403 * - obj.size is the size of the toplevel object
404 * - obj.data points to the current point in the original data at
405 * which our safe data starts. obj.data will advance as we copy
406 * portions of the data.
407 *
408 * In most cases a single copy will suffice, but larger data structures
409 * such as "struct task_struct" will require many copies. The logic in
410 * btf_show_obj_safe() handles the logic that determines if a new
411 * copy_from_kernel_nofault() is needed.
412 */
413struct btf_show {
414 u64 flags;
415 void *target; /* target of show operation (seq file, buffer) */
416 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
417 const struct btf *btf;
418 /* below are used during iteration */
419 struct {
420 u8 depth;
421 u8 depth_to_show;
422 u8 depth_check;
423 u8 array_member:1,
424 array_terminated:1;
425 u16 array_encoding;
426 u32 type_id;
427 int status; /* non-zero for error */
428 const struct btf_type *type;
429 const struct btf_member *member;
430 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
431 } state;
432 struct {
433 u32 size;
434 void *head;
435 void *data;
436 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
437 } obj;
438};
439
440struct btf_kind_operations {
441 s32 (*check_meta)(struct btf_verifier_env *env,
442 const struct btf_type *t,
443 u32 meta_left);
444 int (*resolve)(struct btf_verifier_env *env,
445 const struct resolve_vertex *v);
446 int (*check_member)(struct btf_verifier_env *env,
447 const struct btf_type *struct_type,
448 const struct btf_member *member,
449 const struct btf_type *member_type);
450 int (*check_kflag_member)(struct btf_verifier_env *env,
451 const struct btf_type *struct_type,
452 const struct btf_member *member,
453 const struct btf_type *member_type);
454 void (*log_details)(struct btf_verifier_env *env,
455 const struct btf_type *t);
456 void (*show)(const struct btf *btf, const struct btf_type *t,
457 u32 type_id, void *data, u8 bits_offsets,
458 struct btf_show *show);
459};
460
461static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
462static struct btf_type btf_void;
463
464static int btf_resolve(struct btf_verifier_env *env,
465 const struct btf_type *t, u32 type_id);
466
467static int btf_func_check(struct btf_verifier_env *env,
468 const struct btf_type *t);
469
470static bool btf_type_is_modifier(const struct btf_type *t)
471{
472 /* Some of them is not strictly a C modifier
473 * but they are grouped into the same bucket
474 * for BTF concern:
475 * A type (t) that refers to another
476 * type through t->type AND its size cannot
477 * be determined without following the t->type.
478 *
479 * ptr does not fall into this bucket
480 * because its size is always sizeof(void *).
481 */
482 switch (BTF_INFO_KIND(t->info)) {
483 case BTF_KIND_TYPEDEF:
484 case BTF_KIND_VOLATILE:
485 case BTF_KIND_CONST:
486 case BTF_KIND_RESTRICT:
487 case BTF_KIND_TYPE_TAG:
488 return true;
489 }
490
491 return false;
492}
493
494bool btf_type_is_void(const struct btf_type *t)
495{
496 return t == &btf_void;
497}
498
499static bool btf_type_is_fwd(const struct btf_type *t)
500{
501 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
502}
503
504static bool btf_type_is_datasec(const struct btf_type *t)
505{
506 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
507}
508
509static bool btf_type_is_decl_tag(const struct btf_type *t)
510{
511 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
512}
513
514static bool btf_type_nosize(const struct btf_type *t)
515{
516 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
517 btf_type_is_func(t) || btf_type_is_func_proto(t) ||
518 btf_type_is_decl_tag(t);
519}
520
521static bool btf_type_nosize_or_null(const struct btf_type *t)
522{
523 return !t || btf_type_nosize(t);
524}
525
526static bool btf_type_is_decl_tag_target(const struct btf_type *t)
527{
528 return btf_type_is_func(t) || btf_type_is_struct(t) ||
529 btf_type_is_var(t) || btf_type_is_typedef(t);
530}
531
532u32 btf_nr_types(const struct btf *btf)
533{
534 u32 total = 0;
535
536 while (btf) {
537 total += btf->nr_types;
538 btf = btf->base_btf;
539 }
540
541 return total;
542}
543
544s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
545{
546 const struct btf_type *t;
547 const char *tname;
548 u32 i, total;
549
550 total = btf_nr_types(btf);
551 for (i = 1; i < total; i++) {
552 t = btf_type_by_id(btf, type_id: i);
553 if (BTF_INFO_KIND(t->info) != kind)
554 continue;
555
556 tname = btf_name_by_offset(btf, offset: t->name_off);
557 if (!strcmp(tname, name))
558 return i;
559 }
560
561 return -ENOENT;
562}
563
564s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
565{
566 struct btf *btf;
567 s32 ret;
568 int id;
569
570 btf = bpf_get_btf_vmlinux();
571 if (IS_ERR(ptr: btf))
572 return PTR_ERR(ptr: btf);
573 if (!btf)
574 return -EINVAL;
575
576 ret = btf_find_by_name_kind(btf, name, kind);
577 /* ret is never zero, since btf_find_by_name_kind returns
578 * positive btf_id or negative error.
579 */
580 if (ret > 0) {
581 btf_get(btf);
582 *btf_p = btf;
583 return ret;
584 }
585
586 /* If name is not found in vmlinux's BTF then search in module's BTFs */
587 spin_lock_bh(lock: &btf_idr_lock);
588 idr_for_each_entry(&btf_idr, btf, id) {
589 if (!btf_is_module(btf))
590 continue;
591 /* linear search could be slow hence unlock/lock
592 * the IDR to avoiding holding it for too long
593 */
594 btf_get(btf);
595 spin_unlock_bh(lock: &btf_idr_lock);
596 ret = btf_find_by_name_kind(btf, name, kind);
597 if (ret > 0) {
598 *btf_p = btf;
599 return ret;
600 }
601 btf_put(btf);
602 spin_lock_bh(lock: &btf_idr_lock);
603 }
604 spin_unlock_bh(lock: &btf_idr_lock);
605 return ret;
606}
607
608const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
609 u32 id, u32 *res_id)
610{
611 const struct btf_type *t = btf_type_by_id(btf, type_id: id);
612
613 while (btf_type_is_modifier(t)) {
614 id = t->type;
615 t = btf_type_by_id(btf, type_id: t->type);
616 }
617
618 if (res_id)
619 *res_id = id;
620
621 return t;
622}
623
624const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
625 u32 id, u32 *res_id)
626{
627 const struct btf_type *t;
628
629 t = btf_type_skip_modifiers(btf, id, NULL);
630 if (!btf_type_is_ptr(t))
631 return NULL;
632
633 return btf_type_skip_modifiers(btf, id: t->type, res_id);
634}
635
636const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
637 u32 id, u32 *res_id)
638{
639 const struct btf_type *ptype;
640
641 ptype = btf_type_resolve_ptr(btf, id, res_id);
642 if (ptype && btf_type_is_func_proto(t: ptype))
643 return ptype;
644
645 return NULL;
646}
647
648/* Types that act only as a source, not sink or intermediate
649 * type when resolving.
650 */
651static bool btf_type_is_resolve_source_only(const struct btf_type *t)
652{
653 return btf_type_is_var(t) ||
654 btf_type_is_decl_tag(t) ||
655 btf_type_is_datasec(t);
656}
657
658/* What types need to be resolved?
659 *
660 * btf_type_is_modifier() is an obvious one.
661 *
662 * btf_type_is_struct() because its member refers to
663 * another type (through member->type).
664 *
665 * btf_type_is_var() because the variable refers to
666 * another type. btf_type_is_datasec() holds multiple
667 * btf_type_is_var() types that need resolving.
668 *
669 * btf_type_is_array() because its element (array->type)
670 * refers to another type. Array can be thought of a
671 * special case of struct while array just has the same
672 * member-type repeated by array->nelems of times.
673 */
674static bool btf_type_needs_resolve(const struct btf_type *t)
675{
676 return btf_type_is_modifier(t) ||
677 btf_type_is_ptr(t) ||
678 btf_type_is_struct(t) ||
679 btf_type_is_array(t) ||
680 btf_type_is_var(t) ||
681 btf_type_is_func(t) ||
682 btf_type_is_decl_tag(t) ||
683 btf_type_is_datasec(t);
684}
685
686/* t->size can be used */
687static bool btf_type_has_size(const struct btf_type *t)
688{
689 switch (BTF_INFO_KIND(t->info)) {
690 case BTF_KIND_INT:
691 case BTF_KIND_STRUCT:
692 case BTF_KIND_UNION:
693 case BTF_KIND_ENUM:
694 case BTF_KIND_DATASEC:
695 case BTF_KIND_FLOAT:
696 case BTF_KIND_ENUM64:
697 return true;
698 }
699
700 return false;
701}
702
703static const char *btf_int_encoding_str(u8 encoding)
704{
705 if (encoding == 0)
706 return "(none)";
707 else if (encoding == BTF_INT_SIGNED)
708 return "SIGNED";
709 else if (encoding == BTF_INT_CHAR)
710 return "CHAR";
711 else if (encoding == BTF_INT_BOOL)
712 return "BOOL";
713 else
714 return "UNKN";
715}
716
717static u32 btf_type_int(const struct btf_type *t)
718{
719 return *(u32 *)(t + 1);
720}
721
722static const struct btf_array *btf_type_array(const struct btf_type *t)
723{
724 return (const struct btf_array *)(t + 1);
725}
726
727static const struct btf_enum *btf_type_enum(const struct btf_type *t)
728{
729 return (const struct btf_enum *)(t + 1);
730}
731
732static const struct btf_var *btf_type_var(const struct btf_type *t)
733{
734 return (const struct btf_var *)(t + 1);
735}
736
737static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
738{
739 return (const struct btf_decl_tag *)(t + 1);
740}
741
742static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
743{
744 return (const struct btf_enum64 *)(t + 1);
745}
746
747static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
748{
749 return kind_ops[BTF_INFO_KIND(t->info)];
750}
751
752static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
753{
754 if (!BTF_STR_OFFSET_VALID(offset))
755 return false;
756
757 while (offset < btf->start_str_off)
758 btf = btf->base_btf;
759
760 offset -= btf->start_str_off;
761 return offset < btf->hdr.str_len;
762}
763
764static bool __btf_name_char_ok(char c, bool first)
765{
766 if ((first ? !isalpha(c) :
767 !isalnum(c)) &&
768 c != '_' &&
769 c != '.')
770 return false;
771 return true;
772}
773
774static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
775{
776 while (offset < btf->start_str_off)
777 btf = btf->base_btf;
778
779 offset -= btf->start_str_off;
780 if (offset < btf->hdr.str_len)
781 return &btf->strings[offset];
782
783 return NULL;
784}
785
786static bool __btf_name_valid(const struct btf *btf, u32 offset)
787{
788 /* offset must be valid */
789 const char *src = btf_str_by_offset(btf, offset);
790 const char *src_limit;
791
792 if (!__btf_name_char_ok(c: *src, first: true))
793 return false;
794
795 /* set a limit on identifier length */
796 src_limit = src + KSYM_NAME_LEN;
797 src++;
798 while (*src && src < src_limit) {
799 if (!__btf_name_char_ok(c: *src, first: false))
800 return false;
801 src++;
802 }
803
804 return !*src;
805}
806
807static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
808{
809 return __btf_name_valid(btf, offset);
810}
811
812/* Allow any printable character in DATASEC names */
813static bool btf_name_valid_section(const struct btf *btf, u32 offset)
814{
815 /* offset must be valid */
816 const char *src = btf_str_by_offset(btf, offset);
817 const char *src_limit;
818
819 /* set a limit on identifier length */
820 src_limit = src + KSYM_NAME_LEN;
821 src++;
822 while (*src && src < src_limit) {
823 if (!isprint(*src))
824 return false;
825 src++;
826 }
827
828 return !*src;
829}
830
831static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
832{
833 const char *name;
834
835 if (!offset)
836 return "(anon)";
837
838 name = btf_str_by_offset(btf, offset);
839 return name ?: "(invalid-name-offset)";
840}
841
842const char *btf_name_by_offset(const struct btf *btf, u32 offset)
843{
844 return btf_str_by_offset(btf, offset);
845}
846
847const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
848{
849 while (type_id < btf->start_id)
850 btf = btf->base_btf;
851
852 type_id -= btf->start_id;
853 if (type_id >= btf->nr_types)
854 return NULL;
855 return btf->types[type_id];
856}
857EXPORT_SYMBOL_GPL(btf_type_by_id);
858
859/*
860 * Regular int is not a bit field and it must be either
861 * u8/u16/u32/u64 or __int128.
862 */
863static bool btf_type_int_is_regular(const struct btf_type *t)
864{
865 u8 nr_bits, nr_bytes;
866 u32 int_data;
867
868 int_data = btf_type_int(t);
869 nr_bits = BTF_INT_BITS(int_data);
870 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
871 if (BITS_PER_BYTE_MASKED(nr_bits) ||
872 BTF_INT_OFFSET(int_data) ||
873 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
874 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
875 nr_bytes != (2 * sizeof(u64)))) {
876 return false;
877 }
878
879 return true;
880}
881
882/*
883 * Check that given struct member is a regular int with expected
884 * offset and size.
885 */
886bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
887 const struct btf_member *m,
888 u32 expected_offset, u32 expected_size)
889{
890 const struct btf_type *t;
891 u32 id, int_data;
892 u8 nr_bits;
893
894 id = m->type;
895 t = btf_type_id_size(btf, type_id: &id, NULL);
896 if (!t || !btf_type_is_int(t))
897 return false;
898
899 int_data = btf_type_int(t);
900 nr_bits = BTF_INT_BITS(int_data);
901 if (btf_type_kflag(t: s)) {
902 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
903 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
904
905 /* if kflag set, int should be a regular int and
906 * bit offset should be at byte boundary.
907 */
908 return !bitfield_size &&
909 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
910 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
911 }
912
913 if (BTF_INT_OFFSET(int_data) ||
914 BITS_PER_BYTE_MASKED(m->offset) ||
915 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
916 BITS_PER_BYTE_MASKED(nr_bits) ||
917 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
918 return false;
919
920 return true;
921}
922
923/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
924static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
925 u32 id)
926{
927 const struct btf_type *t = btf_type_by_id(btf, id);
928
929 while (btf_type_is_modifier(t) &&
930 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
931 t = btf_type_by_id(btf, t->type);
932 }
933
934 return t;
935}
936
937#define BTF_SHOW_MAX_ITER 10
938
939#define BTF_KIND_BIT(kind) (1ULL << kind)
940
941/*
942 * Populate show->state.name with type name information.
943 * Format of type name is
944 *
945 * [.member_name = ] (type_name)
946 */
947static const char *btf_show_name(struct btf_show *show)
948{
949 /* BTF_MAX_ITER array suffixes "[]" */
950 const char *array_suffixes = "[][][][][][][][][][]";
951 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
952 /* BTF_MAX_ITER pointer suffixes "*" */
953 const char *ptr_suffixes = "**********";
954 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
955 const char *name = NULL, *prefix = "", *parens = "";
956 const struct btf_member *m = show->state.member;
957 const struct btf_type *t;
958 const struct btf_array *array;
959 u32 id = show->state.type_id;
960 const char *member = NULL;
961 bool show_member = false;
962 u64 kinds = 0;
963 int i;
964
965 show->state.name[0] = '\0';
966
967 /*
968 * Don't show type name if we're showing an array member;
969 * in that case we show the array type so don't need to repeat
970 * ourselves for each member.
971 */
972 if (show->state.array_member)
973 return "";
974
975 /* Retrieve member name, if any. */
976 if (m) {
977 member = btf_name_by_offset(btf: show->btf, offset: m->name_off);
978 show_member = strlen(member) > 0;
979 id = m->type;
980 }
981
982 /*
983 * Start with type_id, as we have resolved the struct btf_type *
984 * via btf_modifier_show() past the parent typedef to the child
985 * struct, int etc it is defined as. In such cases, the type_id
986 * still represents the starting type while the struct btf_type *
987 * in our show->state points at the resolved type of the typedef.
988 */
989 t = btf_type_by_id(show->btf, id);
990 if (!t)
991 return "";
992
993 /*
994 * The goal here is to build up the right number of pointer and
995 * array suffixes while ensuring the type name for a typedef
996 * is represented. Along the way we accumulate a list of
997 * BTF kinds we have encountered, since these will inform later
998 * display; for example, pointer types will not require an
999 * opening "{" for struct, we will just display the pointer value.
1000 *
1001 * We also want to accumulate the right number of pointer or array
1002 * indices in the format string while iterating until we get to
1003 * the typedef/pointee/array member target type.
1004 *
1005 * We start by pointing at the end of pointer and array suffix
1006 * strings; as we accumulate pointers and arrays we move the pointer
1007 * or array string backwards so it will show the expected number of
1008 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
1009 * and/or arrays and typedefs are supported as a precaution.
1010 *
1011 * We also want to get typedef name while proceeding to resolve
1012 * type it points to so that we can add parentheses if it is a
1013 * "typedef struct" etc.
1014 */
1015 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1016
1017 switch (BTF_INFO_KIND(t->info)) {
1018 case BTF_KIND_TYPEDEF:
1019 if (!name)
1020 name = btf_name_by_offset(btf: show->btf,
1021 offset: t->name_off);
1022 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1023 id = t->type;
1024 break;
1025 case BTF_KIND_ARRAY:
1026 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1027 parens = "[";
1028 if (!t)
1029 return "";
1030 array = btf_type_array(t);
1031 if (array_suffix > array_suffixes)
1032 array_suffix -= 2;
1033 id = array->type;
1034 break;
1035 case BTF_KIND_PTR:
1036 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1037 if (ptr_suffix > ptr_suffixes)
1038 ptr_suffix -= 1;
1039 id = t->type;
1040 break;
1041 default:
1042 id = 0;
1043 break;
1044 }
1045 if (!id)
1046 break;
1047 t = btf_type_skip_qualifiers(btf: show->btf, id);
1048 }
1049 /* We may not be able to represent this type; bail to be safe */
1050 if (i == BTF_SHOW_MAX_ITER)
1051 return "";
1052
1053 if (!name)
1054 name = btf_name_by_offset(btf: show->btf, offset: t->name_off);
1055
1056 switch (BTF_INFO_KIND(t->info)) {
1057 case BTF_KIND_STRUCT:
1058 case BTF_KIND_UNION:
1059 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1060 "struct" : "union";
1061 /* if it's an array of struct/union, parens is already set */
1062 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1063 parens = "{";
1064 break;
1065 case BTF_KIND_ENUM:
1066 case BTF_KIND_ENUM64:
1067 prefix = "enum";
1068 break;
1069 default:
1070 break;
1071 }
1072
1073 /* pointer does not require parens */
1074 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1075 parens = "";
1076 /* typedef does not require struct/union/enum prefix */
1077 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1078 prefix = "";
1079
1080 if (!name)
1081 name = "";
1082
1083 /* Even if we don't want type name info, we want parentheses etc */
1084 if (show->flags & BTF_SHOW_NONAME)
1085 snprintf(buf: show->state.name, size: sizeof(show->state.name), fmt: "%s",
1086 parens);
1087 else
1088 snprintf(buf: show->state.name, size: sizeof(show->state.name),
1089 fmt: "%s%s%s(%s%s%s%s%s%s)%s",
1090 /* first 3 strings comprise ".member = " */
1091 show_member ? "." : "",
1092 show_member ? member : "",
1093 show_member ? " = " : "",
1094 /* ...next is our prefix (struct, enum, etc) */
1095 prefix,
1096 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1097 /* ...this is the type name itself */
1098 name,
1099 /* ...suffixed by the appropriate '*', '[]' suffixes */
1100 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1101 array_suffix, parens);
1102
1103 return show->state.name;
1104}
1105
1106static const char *__btf_show_indent(struct btf_show *show)
1107{
1108 const char *indents = " ";
1109 const char *indent = &indents[strlen(indents)];
1110
1111 if ((indent - show->state.depth) >= indents)
1112 return indent - show->state.depth;
1113 return indents;
1114}
1115
1116static const char *btf_show_indent(struct btf_show *show)
1117{
1118 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1119}
1120
1121static const char *btf_show_newline(struct btf_show *show)
1122{
1123 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1124}
1125
1126static const char *btf_show_delim(struct btf_show *show)
1127{
1128 if (show->state.depth == 0)
1129 return "";
1130
1131 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1132 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1133 return "|";
1134
1135 return ",";
1136}
1137
1138__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1139{
1140 va_list args;
1141
1142 if (!show->state.depth_check) {
1143 va_start(args, fmt);
1144 show->showfn(show, fmt, args);
1145 va_end(args);
1146 }
1147}
1148
1149/* Macros are used here as btf_show_type_value[s]() prepends and appends
1150 * format specifiers to the format specifier passed in; these do the work of
1151 * adding indentation, delimiters etc while the caller simply has to specify
1152 * the type value(s) in the format specifier + value(s).
1153 */
1154#define btf_show_type_value(show, fmt, value) \
1155 do { \
1156 if ((value) != (__typeof__(value))0 || \
1157 (show->flags & BTF_SHOW_ZERO) || \
1158 show->state.depth == 0) { \
1159 btf_show(show, "%s%s" fmt "%s%s", \
1160 btf_show_indent(show), \
1161 btf_show_name(show), \
1162 value, btf_show_delim(show), \
1163 btf_show_newline(show)); \
1164 if (show->state.depth > show->state.depth_to_show) \
1165 show->state.depth_to_show = show->state.depth; \
1166 } \
1167 } while (0)
1168
1169#define btf_show_type_values(show, fmt, ...) \
1170 do { \
1171 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1172 btf_show_name(show), \
1173 __VA_ARGS__, btf_show_delim(show), \
1174 btf_show_newline(show)); \
1175 if (show->state.depth > show->state.depth_to_show) \
1176 show->state.depth_to_show = show->state.depth; \
1177 } while (0)
1178
1179/* How much is left to copy to safe buffer after @data? */
1180static int btf_show_obj_size_left(struct btf_show *show, void *data)
1181{
1182 return show->obj.head + show->obj.size - data;
1183}
1184
1185/* Is object pointed to by @data of @size already copied to our safe buffer? */
1186static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1187{
1188 return data >= show->obj.data &&
1189 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1190}
1191
1192/*
1193 * If object pointed to by @data of @size falls within our safe buffer, return
1194 * the equivalent pointer to the same safe data. Assumes
1195 * copy_from_kernel_nofault() has already happened and our safe buffer is
1196 * populated.
1197 */
1198static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1199{
1200 if (btf_show_obj_is_safe(show, data, size))
1201 return show->obj.safe + (data - show->obj.data);
1202 return NULL;
1203}
1204
1205/*
1206 * Return a safe-to-access version of data pointed to by @data.
1207 * We do this by copying the relevant amount of information
1208 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1209 *
1210 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1211 * safe copy is needed.
1212 *
1213 * Otherwise we need to determine if we have the required amount
1214 * of data (determined by the @data pointer and the size of the
1215 * largest base type we can encounter (represented by
1216 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1217 * that we will be able to print some of the current object,
1218 * and if more is needed a copy will be triggered.
1219 * Some objects such as structs will not fit into the buffer;
1220 * in such cases additional copies when we iterate over their
1221 * members may be needed.
1222 *
1223 * btf_show_obj_safe() is used to return a safe buffer for
1224 * btf_show_start_type(); this ensures that as we recurse into
1225 * nested types we always have safe data for the given type.
1226 * This approach is somewhat wasteful; it's possible for example
1227 * that when iterating over a large union we'll end up copying the
1228 * same data repeatedly, but the goal is safety not performance.
1229 * We use stack data as opposed to per-CPU buffers because the
1230 * iteration over a type can take some time, and preemption handling
1231 * would greatly complicate use of the safe buffer.
1232 */
1233static void *btf_show_obj_safe(struct btf_show *show,
1234 const struct btf_type *t,
1235 void *data)
1236{
1237 const struct btf_type *rt;
1238 int size_left, size;
1239 void *safe = NULL;
1240
1241 if (show->flags & BTF_SHOW_UNSAFE)
1242 return data;
1243
1244 rt = btf_resolve_size(btf: show->btf, type: t, type_size: &size);
1245 if (IS_ERR(ptr: rt)) {
1246 show->state.status = PTR_ERR(ptr: rt);
1247 return NULL;
1248 }
1249
1250 /*
1251 * Is this toplevel object? If so, set total object size and
1252 * initialize pointers. Otherwise check if we still fall within
1253 * our safe object data.
1254 */
1255 if (show->state.depth == 0) {
1256 show->obj.size = size;
1257 show->obj.head = data;
1258 } else {
1259 /*
1260 * If the size of the current object is > our remaining
1261 * safe buffer we _may_ need to do a new copy. However
1262 * consider the case of a nested struct; it's size pushes
1263 * us over the safe buffer limit, but showing any individual
1264 * struct members does not. In such cases, we don't need
1265 * to initiate a fresh copy yet; however we definitely need
1266 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1267 * in our buffer, regardless of the current object size.
1268 * The logic here is that as we resolve types we will
1269 * hit a base type at some point, and we need to be sure
1270 * the next chunk of data is safely available to display
1271 * that type info safely. We cannot rely on the size of
1272 * the current object here because it may be much larger
1273 * than our current buffer (e.g. task_struct is 8k).
1274 * All we want to do here is ensure that we can print the
1275 * next basic type, which we can if either
1276 * - the current type size is within the safe buffer; or
1277 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1278 * the safe buffer.
1279 */
1280 safe = __btf_show_obj_safe(show, data,
1281 min(size,
1282 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1283 }
1284
1285 /*
1286 * We need a new copy to our safe object, either because we haven't
1287 * yet copied and are initializing safe data, or because the data
1288 * we want falls outside the boundaries of the safe object.
1289 */
1290 if (!safe) {
1291 size_left = btf_show_obj_size_left(show, data);
1292 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1293 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1294 show->state.status = copy_from_kernel_nofault(dst: show->obj.safe,
1295 src: data, size: size_left);
1296 if (!show->state.status) {
1297 show->obj.data = data;
1298 safe = show->obj.safe;
1299 }
1300 }
1301
1302 return safe;
1303}
1304
1305/*
1306 * Set the type we are starting to show and return a safe data pointer
1307 * to be used for showing the associated data.
1308 */
1309static void *btf_show_start_type(struct btf_show *show,
1310 const struct btf_type *t,
1311 u32 type_id, void *data)
1312{
1313 show->state.type = t;
1314 show->state.type_id = type_id;
1315 show->state.name[0] = '\0';
1316
1317 return btf_show_obj_safe(show, t, data);
1318}
1319
1320static void btf_show_end_type(struct btf_show *show)
1321{
1322 show->state.type = NULL;
1323 show->state.type_id = 0;
1324 show->state.name[0] = '\0';
1325}
1326
1327static void *btf_show_start_aggr_type(struct btf_show *show,
1328 const struct btf_type *t,
1329 u32 type_id, void *data)
1330{
1331 void *safe_data = btf_show_start_type(show, t, type_id, data);
1332
1333 if (!safe_data)
1334 return safe_data;
1335
1336 btf_show(show, fmt: "%s%s%s", btf_show_indent(show),
1337 btf_show_name(show),
1338 btf_show_newline(show));
1339 show->state.depth++;
1340 return safe_data;
1341}
1342
1343static void btf_show_end_aggr_type(struct btf_show *show,
1344 const char *suffix)
1345{
1346 show->state.depth--;
1347 btf_show(show, fmt: "%s%s%s%s", btf_show_indent(show), suffix,
1348 btf_show_delim(show), btf_show_newline(show));
1349 btf_show_end_type(show);
1350}
1351
1352static void btf_show_start_member(struct btf_show *show,
1353 const struct btf_member *m)
1354{
1355 show->state.member = m;
1356}
1357
1358static void btf_show_start_array_member(struct btf_show *show)
1359{
1360 show->state.array_member = 1;
1361 btf_show_start_member(show, NULL);
1362}
1363
1364static void btf_show_end_member(struct btf_show *show)
1365{
1366 show->state.member = NULL;
1367}
1368
1369static void btf_show_end_array_member(struct btf_show *show)
1370{
1371 show->state.array_member = 0;
1372 btf_show_end_member(show);
1373}
1374
1375static void *btf_show_start_array_type(struct btf_show *show,
1376 const struct btf_type *t,
1377 u32 type_id,
1378 u16 array_encoding,
1379 void *data)
1380{
1381 show->state.array_encoding = array_encoding;
1382 show->state.array_terminated = 0;
1383 return btf_show_start_aggr_type(show, t, type_id, data);
1384}
1385
1386static void btf_show_end_array_type(struct btf_show *show)
1387{
1388 show->state.array_encoding = 0;
1389 show->state.array_terminated = 0;
1390 btf_show_end_aggr_type(show, suffix: "]");
1391}
1392
1393static void *btf_show_start_struct_type(struct btf_show *show,
1394 const struct btf_type *t,
1395 u32 type_id,
1396 void *data)
1397{
1398 return btf_show_start_aggr_type(show, t, type_id, data);
1399}
1400
1401static void btf_show_end_struct_type(struct btf_show *show)
1402{
1403 btf_show_end_aggr_type(show, suffix: "}");
1404}
1405
1406__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1407 const char *fmt, ...)
1408{
1409 va_list args;
1410
1411 va_start(args, fmt);
1412 bpf_verifier_vlog(log, fmt, args);
1413 va_end(args);
1414}
1415
1416__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1417 const char *fmt, ...)
1418{
1419 struct bpf_verifier_log *log = &env->log;
1420 va_list args;
1421
1422 if (!bpf_verifier_log_needed(log))
1423 return;
1424
1425 va_start(args, fmt);
1426 bpf_verifier_vlog(log, fmt, args);
1427 va_end(args);
1428}
1429
1430__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1431 const struct btf_type *t,
1432 bool log_details,
1433 const char *fmt, ...)
1434{
1435 struct bpf_verifier_log *log = &env->log;
1436 struct btf *btf = env->btf;
1437 va_list args;
1438
1439 if (!bpf_verifier_log_needed(log))
1440 return;
1441
1442 if (log->level == BPF_LOG_KERNEL) {
1443 /* btf verifier prints all types it is processing via
1444 * btf_verifier_log_type(..., fmt = NULL).
1445 * Skip those prints for in-kernel BTF verification.
1446 */
1447 if (!fmt)
1448 return;
1449
1450 /* Skip logging when loading module BTF with mismatches permitted */
1451 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1452 return;
1453 }
1454
1455 __btf_verifier_log(log, fmt: "[%u] %s %s%s",
1456 env->log_type_id,
1457 btf_type_str(t),
1458 __btf_name_by_offset(btf, offset: t->name_off),
1459 log_details ? " " : "");
1460
1461 if (log_details)
1462 btf_type_ops(t)->log_details(env, t);
1463
1464 if (fmt && *fmt) {
1465 __btf_verifier_log(log, fmt: " ");
1466 va_start(args, fmt);
1467 bpf_verifier_vlog(log, fmt, args);
1468 va_end(args);
1469 }
1470
1471 __btf_verifier_log(log, fmt: "\n");
1472}
1473
1474#define btf_verifier_log_type(env, t, ...) \
1475 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1476#define btf_verifier_log_basic(env, t, ...) \
1477 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1478
1479__printf(4, 5)
1480static void btf_verifier_log_member(struct btf_verifier_env *env,
1481 const struct btf_type *struct_type,
1482 const struct btf_member *member,
1483 const char *fmt, ...)
1484{
1485 struct bpf_verifier_log *log = &env->log;
1486 struct btf *btf = env->btf;
1487 va_list args;
1488
1489 if (!bpf_verifier_log_needed(log))
1490 return;
1491
1492 if (log->level == BPF_LOG_KERNEL) {
1493 if (!fmt)
1494 return;
1495
1496 /* Skip logging when loading module BTF with mismatches permitted */
1497 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1498 return;
1499 }
1500
1501 /* The CHECK_META phase already did a btf dump.
1502 *
1503 * If member is logged again, it must hit an error in
1504 * parsing this member. It is useful to print out which
1505 * struct this member belongs to.
1506 */
1507 if (env->phase != CHECK_META)
1508 btf_verifier_log_type(env, struct_type, NULL);
1509
1510 if (btf_type_kflag(t: struct_type))
1511 __btf_verifier_log(log,
1512 fmt: "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1513 __btf_name_by_offset(btf, offset: member->name_off),
1514 member->type,
1515 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1516 BTF_MEMBER_BIT_OFFSET(member->offset));
1517 else
1518 __btf_verifier_log(log, fmt: "\t%s type_id=%u bits_offset=%u",
1519 __btf_name_by_offset(btf, offset: member->name_off),
1520 member->type, member->offset);
1521
1522 if (fmt && *fmt) {
1523 __btf_verifier_log(log, fmt: " ");
1524 va_start(args, fmt);
1525 bpf_verifier_vlog(log, fmt, args);
1526 va_end(args);
1527 }
1528
1529 __btf_verifier_log(log, fmt: "\n");
1530}
1531
1532__printf(4, 5)
1533static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1534 const struct btf_type *datasec_type,
1535 const struct btf_var_secinfo *vsi,
1536 const char *fmt, ...)
1537{
1538 struct bpf_verifier_log *log = &env->log;
1539 va_list args;
1540
1541 if (!bpf_verifier_log_needed(log))
1542 return;
1543 if (log->level == BPF_LOG_KERNEL && !fmt)
1544 return;
1545 if (env->phase != CHECK_META)
1546 btf_verifier_log_type(env, datasec_type, NULL);
1547
1548 __btf_verifier_log(log, fmt: "\t type_id=%u offset=%u size=%u",
1549 vsi->type, vsi->offset, vsi->size);
1550 if (fmt && *fmt) {
1551 __btf_verifier_log(log, fmt: " ");
1552 va_start(args, fmt);
1553 bpf_verifier_vlog(log, fmt, args);
1554 va_end(args);
1555 }
1556
1557 __btf_verifier_log(log, fmt: "\n");
1558}
1559
1560static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1561 u32 btf_data_size)
1562{
1563 struct bpf_verifier_log *log = &env->log;
1564 const struct btf *btf = env->btf;
1565 const struct btf_header *hdr;
1566
1567 if (!bpf_verifier_log_needed(log))
1568 return;
1569
1570 if (log->level == BPF_LOG_KERNEL)
1571 return;
1572 hdr = &btf->hdr;
1573 __btf_verifier_log(log, fmt: "magic: 0x%x\n", hdr->magic);
1574 __btf_verifier_log(log, fmt: "version: %u\n", hdr->version);
1575 __btf_verifier_log(log, fmt: "flags: 0x%x\n", hdr->flags);
1576 __btf_verifier_log(log, fmt: "hdr_len: %u\n", hdr->hdr_len);
1577 __btf_verifier_log(log, fmt: "type_off: %u\n", hdr->type_off);
1578 __btf_verifier_log(log, fmt: "type_len: %u\n", hdr->type_len);
1579 __btf_verifier_log(log, fmt: "str_off: %u\n", hdr->str_off);
1580 __btf_verifier_log(log, fmt: "str_len: %u\n", hdr->str_len);
1581 __btf_verifier_log(log, fmt: "btf_total_size: %u\n", btf_data_size);
1582}
1583
1584static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1585{
1586 struct btf *btf = env->btf;
1587
1588 if (btf->types_size == btf->nr_types) {
1589 /* Expand 'types' array */
1590
1591 struct btf_type **new_types;
1592 u32 expand_by, new_size;
1593
1594 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1595 btf_verifier_log(env, fmt: "Exceeded max num of types");
1596 return -E2BIG;
1597 }
1598
1599 expand_by = max_t(u32, btf->types_size >> 2, 16);
1600 new_size = min_t(u32, BTF_MAX_TYPE,
1601 btf->types_size + expand_by);
1602
1603 new_types = kvcalloc(n: new_size, size: sizeof(*new_types),
1604 GFP_KERNEL | __GFP_NOWARN);
1605 if (!new_types)
1606 return -ENOMEM;
1607
1608 if (btf->nr_types == 0) {
1609 if (!btf->base_btf) {
1610 /* lazily init VOID type */
1611 new_types[0] = &btf_void;
1612 btf->nr_types++;
1613 }
1614 } else {
1615 memcpy(new_types, btf->types,
1616 sizeof(*btf->types) * btf->nr_types);
1617 }
1618
1619 kvfree(addr: btf->types);
1620 btf->types = new_types;
1621 btf->types_size = new_size;
1622 }
1623
1624 btf->types[btf->nr_types++] = t;
1625
1626 return 0;
1627}
1628
1629static int btf_alloc_id(struct btf *btf)
1630{
1631 int id;
1632
1633 idr_preload(GFP_KERNEL);
1634 spin_lock_bh(lock: &btf_idr_lock);
1635 id = idr_alloc_cyclic(&btf_idr, ptr: btf, start: 1, INT_MAX, GFP_ATOMIC);
1636 if (id > 0)
1637 btf->id = id;
1638 spin_unlock_bh(lock: &btf_idr_lock);
1639 idr_preload_end();
1640
1641 if (WARN_ON_ONCE(!id))
1642 return -ENOSPC;
1643
1644 return id > 0 ? 0 : id;
1645}
1646
1647static void btf_free_id(struct btf *btf)
1648{
1649 unsigned long flags;
1650
1651 /*
1652 * In map-in-map, calling map_delete_elem() on outer
1653 * map will call bpf_map_put on the inner map.
1654 * It will then eventually call btf_free_id()
1655 * on the inner map. Some of the map_delete_elem()
1656 * implementation may have irq disabled, so
1657 * we need to use the _irqsave() version instead
1658 * of the _bh() version.
1659 */
1660 spin_lock_irqsave(&btf_idr_lock, flags);
1661 idr_remove(&btf_idr, id: btf->id);
1662 spin_unlock_irqrestore(lock: &btf_idr_lock, flags);
1663}
1664
1665static void btf_free_kfunc_set_tab(struct btf *btf)
1666{
1667 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1668 int hook;
1669
1670 if (!tab)
1671 return;
1672 /* For module BTF, we directly assign the sets being registered, so
1673 * there is nothing to free except kfunc_set_tab.
1674 */
1675 if (btf_is_module(btf))
1676 goto free_tab;
1677 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1678 kfree(objp: tab->sets[hook]);
1679free_tab:
1680 kfree(objp: tab);
1681 btf->kfunc_set_tab = NULL;
1682}
1683
1684static void btf_free_dtor_kfunc_tab(struct btf *btf)
1685{
1686 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1687
1688 if (!tab)
1689 return;
1690 kfree(objp: tab);
1691 btf->dtor_kfunc_tab = NULL;
1692}
1693
1694static void btf_struct_metas_free(struct btf_struct_metas *tab)
1695{
1696 int i;
1697
1698 if (!tab)
1699 return;
1700 for (i = 0; i < tab->cnt; i++)
1701 btf_record_free(rec: tab->types[i].record);
1702 kfree(objp: tab);
1703}
1704
1705static void btf_free_struct_meta_tab(struct btf *btf)
1706{
1707 struct btf_struct_metas *tab = btf->struct_meta_tab;
1708
1709 btf_struct_metas_free(tab);
1710 btf->struct_meta_tab = NULL;
1711}
1712
1713static void btf_free_struct_ops_tab(struct btf *btf)
1714{
1715 struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1716 u32 i;
1717
1718 if (!tab)
1719 return;
1720
1721 for (i = 0; i < tab->cnt; i++)
1722 bpf_struct_ops_desc_release(st_ops_desc: &tab->ops[i]);
1723
1724 kfree(objp: tab);
1725 btf->struct_ops_tab = NULL;
1726}
1727
1728static void btf_free(struct btf *btf)
1729{
1730 btf_free_struct_meta_tab(btf);
1731 btf_free_dtor_kfunc_tab(btf);
1732 btf_free_kfunc_set_tab(btf);
1733 btf_free_struct_ops_tab(btf);
1734 kvfree(addr: btf->types);
1735 kvfree(addr: btf->resolved_sizes);
1736 kvfree(addr: btf->resolved_ids);
1737 kvfree(addr: btf->data);
1738 kfree(objp: btf);
1739}
1740
1741static void btf_free_rcu(struct rcu_head *rcu)
1742{
1743 struct btf *btf = container_of(rcu, struct btf, rcu);
1744
1745 btf_free(btf);
1746}
1747
1748const char *btf_get_name(const struct btf *btf)
1749{
1750 return btf->name;
1751}
1752
1753void btf_get(struct btf *btf)
1754{
1755 refcount_inc(r: &btf->refcnt);
1756}
1757
1758void btf_put(struct btf *btf)
1759{
1760 if (btf && refcount_dec_and_test(r: &btf->refcnt)) {
1761 btf_free_id(btf);
1762 call_rcu(head: &btf->rcu, func: btf_free_rcu);
1763 }
1764}
1765
1766static int env_resolve_init(struct btf_verifier_env *env)
1767{
1768 struct btf *btf = env->btf;
1769 u32 nr_types = btf->nr_types;
1770 u32 *resolved_sizes = NULL;
1771 u32 *resolved_ids = NULL;
1772 u8 *visit_states = NULL;
1773
1774 resolved_sizes = kvcalloc(n: nr_types, size: sizeof(*resolved_sizes),
1775 GFP_KERNEL | __GFP_NOWARN);
1776 if (!resolved_sizes)
1777 goto nomem;
1778
1779 resolved_ids = kvcalloc(n: nr_types, size: sizeof(*resolved_ids),
1780 GFP_KERNEL | __GFP_NOWARN);
1781 if (!resolved_ids)
1782 goto nomem;
1783
1784 visit_states = kvcalloc(n: nr_types, size: sizeof(*visit_states),
1785 GFP_KERNEL | __GFP_NOWARN);
1786 if (!visit_states)
1787 goto nomem;
1788
1789 btf->resolved_sizes = resolved_sizes;
1790 btf->resolved_ids = resolved_ids;
1791 env->visit_states = visit_states;
1792
1793 return 0;
1794
1795nomem:
1796 kvfree(addr: resolved_sizes);
1797 kvfree(addr: resolved_ids);
1798 kvfree(addr: visit_states);
1799 return -ENOMEM;
1800}
1801
1802static void btf_verifier_env_free(struct btf_verifier_env *env)
1803{
1804 kvfree(addr: env->visit_states);
1805 kfree(objp: env);
1806}
1807
1808static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1809 const struct btf_type *next_type)
1810{
1811 switch (env->resolve_mode) {
1812 case RESOLVE_TBD:
1813 /* int, enum or void is a sink */
1814 return !btf_type_needs_resolve(t: next_type);
1815 case RESOLVE_PTR:
1816 /* int, enum, void, struct, array, func or func_proto is a sink
1817 * for ptr
1818 */
1819 return !btf_type_is_modifier(t: next_type) &&
1820 !btf_type_is_ptr(t: next_type);
1821 case RESOLVE_STRUCT_OR_ARRAY:
1822 /* int, enum, void, ptr, func or func_proto is a sink
1823 * for struct and array
1824 */
1825 return !btf_type_is_modifier(t: next_type) &&
1826 !btf_type_is_array(t: next_type) &&
1827 !btf_type_is_struct(t: next_type);
1828 default:
1829 BUG();
1830 }
1831}
1832
1833static bool env_type_is_resolved(const struct btf_verifier_env *env,
1834 u32 type_id)
1835{
1836 /* base BTF types should be resolved by now */
1837 if (type_id < env->btf->start_id)
1838 return true;
1839
1840 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1841}
1842
1843static int env_stack_push(struct btf_verifier_env *env,
1844 const struct btf_type *t, u32 type_id)
1845{
1846 const struct btf *btf = env->btf;
1847 struct resolve_vertex *v;
1848
1849 if (env->top_stack == MAX_RESOLVE_DEPTH)
1850 return -E2BIG;
1851
1852 if (type_id < btf->start_id
1853 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1854 return -EEXIST;
1855
1856 env->visit_states[type_id - btf->start_id] = VISITED;
1857
1858 v = &env->stack[env->top_stack++];
1859 v->t = t;
1860 v->type_id = type_id;
1861 v->next_member = 0;
1862
1863 if (env->resolve_mode == RESOLVE_TBD) {
1864 if (btf_type_is_ptr(t))
1865 env->resolve_mode = RESOLVE_PTR;
1866 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1867 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1868 }
1869
1870 return 0;
1871}
1872
1873static void env_stack_set_next_member(struct btf_verifier_env *env,
1874 u16 next_member)
1875{
1876 env->stack[env->top_stack - 1].next_member = next_member;
1877}
1878
1879static void env_stack_pop_resolved(struct btf_verifier_env *env,
1880 u32 resolved_type_id,
1881 u32 resolved_size)
1882{
1883 u32 type_id = env->stack[--(env->top_stack)].type_id;
1884 struct btf *btf = env->btf;
1885
1886 type_id -= btf->start_id; /* adjust to local type id */
1887 btf->resolved_sizes[type_id] = resolved_size;
1888 btf->resolved_ids[type_id] = resolved_type_id;
1889 env->visit_states[type_id] = RESOLVED;
1890}
1891
1892static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1893{
1894 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1895}
1896
1897/* Resolve the size of a passed-in "type"
1898 *
1899 * type: is an array (e.g. u32 array[x][y])
1900 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1901 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1902 * corresponds to the return type.
1903 * *elem_type: u32
1904 * *elem_id: id of u32
1905 * *total_nelems: (x * y). Hence, individual elem size is
1906 * (*type_size / *total_nelems)
1907 * *type_id: id of type if it's changed within the function, 0 if not
1908 *
1909 * type: is not an array (e.g. const struct X)
1910 * return type: type "struct X"
1911 * *type_size: sizeof(struct X)
1912 * *elem_type: same as return type ("struct X")
1913 * *elem_id: 0
1914 * *total_nelems: 1
1915 * *type_id: id of type if it's changed within the function, 0 if not
1916 */
1917static const struct btf_type *
1918__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1919 u32 *type_size, const struct btf_type **elem_type,
1920 u32 *elem_id, u32 *total_nelems, u32 *type_id)
1921{
1922 const struct btf_type *array_type = NULL;
1923 const struct btf_array *array = NULL;
1924 u32 i, size, nelems = 1, id = 0;
1925
1926 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1927 switch (BTF_INFO_KIND(type->info)) {
1928 /* type->size can be used */
1929 case BTF_KIND_INT:
1930 case BTF_KIND_STRUCT:
1931 case BTF_KIND_UNION:
1932 case BTF_KIND_ENUM:
1933 case BTF_KIND_FLOAT:
1934 case BTF_KIND_ENUM64:
1935 size = type->size;
1936 goto resolved;
1937
1938 case BTF_KIND_PTR:
1939 size = sizeof(void *);
1940 goto resolved;
1941
1942 /* Modifiers */
1943 case BTF_KIND_TYPEDEF:
1944 case BTF_KIND_VOLATILE:
1945 case BTF_KIND_CONST:
1946 case BTF_KIND_RESTRICT:
1947 case BTF_KIND_TYPE_TAG:
1948 id = type->type;
1949 type = btf_type_by_id(btf, type->type);
1950 break;
1951
1952 case BTF_KIND_ARRAY:
1953 if (!array_type)
1954 array_type = type;
1955 array = btf_type_array(t: type);
1956 if (nelems && array->nelems > U32_MAX / nelems)
1957 return ERR_PTR(error: -EINVAL);
1958 nelems *= array->nelems;
1959 type = btf_type_by_id(btf, array->type);
1960 break;
1961
1962 /* type without size */
1963 default:
1964 return ERR_PTR(error: -EINVAL);
1965 }
1966 }
1967
1968 return ERR_PTR(error: -EINVAL);
1969
1970resolved:
1971 if (nelems && size > U32_MAX / nelems)
1972 return ERR_PTR(error: -EINVAL);
1973
1974 *type_size = nelems * size;
1975 if (total_nelems)
1976 *total_nelems = nelems;
1977 if (elem_type)
1978 *elem_type = type;
1979 if (elem_id)
1980 *elem_id = array ? array->type : 0;
1981 if (type_id && id)
1982 *type_id = id;
1983
1984 return array_type ? : type;
1985}
1986
1987const struct btf_type *
1988btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1989 u32 *type_size)
1990{
1991 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1992}
1993
1994static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1995{
1996 while (type_id < btf->start_id)
1997 btf = btf->base_btf;
1998
1999 return btf->resolved_ids[type_id - btf->start_id];
2000}
2001
2002/* The input param "type_id" must point to a needs_resolve type */
2003static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2004 u32 *type_id)
2005{
2006 *type_id = btf_resolved_type_id(btf, type_id: *type_id);
2007 return btf_type_by_id(btf, *type_id);
2008}
2009
2010static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2011{
2012 while (type_id < btf->start_id)
2013 btf = btf->base_btf;
2014
2015 return btf->resolved_sizes[type_id - btf->start_id];
2016}
2017
2018const struct btf_type *btf_type_id_size(const struct btf *btf,
2019 u32 *type_id, u32 *ret_size)
2020{
2021 const struct btf_type *size_type;
2022 u32 size_type_id = *type_id;
2023 u32 size = 0;
2024
2025 size_type = btf_type_by_id(btf, size_type_id);
2026 if (btf_type_nosize_or_null(t: size_type))
2027 return NULL;
2028
2029 if (btf_type_has_size(t: size_type)) {
2030 size = size_type->size;
2031 } else if (btf_type_is_array(t: size_type)) {
2032 size = btf_resolved_type_size(btf, type_id: size_type_id);
2033 } else if (btf_type_is_ptr(t: size_type)) {
2034 size = sizeof(void *);
2035 } else {
2036 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2037 !btf_type_is_var(size_type)))
2038 return NULL;
2039
2040 size_type_id = btf_resolved_type_id(btf, type_id: size_type_id);
2041 size_type = btf_type_by_id(btf, size_type_id);
2042 if (btf_type_nosize_or_null(t: size_type))
2043 return NULL;
2044 else if (btf_type_has_size(t: size_type))
2045 size = size_type->size;
2046 else if (btf_type_is_array(t: size_type))
2047 size = btf_resolved_type_size(btf, type_id: size_type_id);
2048 else if (btf_type_is_ptr(t: size_type))
2049 size = sizeof(void *);
2050 else
2051 return NULL;
2052 }
2053
2054 *type_id = size_type_id;
2055 if (ret_size)
2056 *ret_size = size;
2057
2058 return size_type;
2059}
2060
2061static int btf_df_check_member(struct btf_verifier_env *env,
2062 const struct btf_type *struct_type,
2063 const struct btf_member *member,
2064 const struct btf_type *member_type)
2065{
2066 btf_verifier_log_basic(env, struct_type,
2067 "Unsupported check_member");
2068 return -EINVAL;
2069}
2070
2071static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2072 const struct btf_type *struct_type,
2073 const struct btf_member *member,
2074 const struct btf_type *member_type)
2075{
2076 btf_verifier_log_basic(env, struct_type,
2077 "Unsupported check_kflag_member");
2078 return -EINVAL;
2079}
2080
2081/* Used for ptr, array struct/union and float type members.
2082 * int, enum and modifier types have their specific callback functions.
2083 */
2084static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2085 const struct btf_type *struct_type,
2086 const struct btf_member *member,
2087 const struct btf_type *member_type)
2088{
2089 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2090 btf_verifier_log_member(env, struct_type, member,
2091 fmt: "Invalid member bitfield_size");
2092 return -EINVAL;
2093 }
2094
2095 /* bitfield size is 0, so member->offset represents bit offset only.
2096 * It is safe to call non kflag check_member variants.
2097 */
2098 return btf_type_ops(t: member_type)->check_member(env, struct_type,
2099 member,
2100 member_type);
2101}
2102
2103static int btf_df_resolve(struct btf_verifier_env *env,
2104 const struct resolve_vertex *v)
2105{
2106 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2107 return -EINVAL;
2108}
2109
2110static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2111 u32 type_id, void *data, u8 bits_offsets,
2112 struct btf_show *show)
2113{
2114 btf_show(show, fmt: "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2115}
2116
2117static int btf_int_check_member(struct btf_verifier_env *env,
2118 const struct btf_type *struct_type,
2119 const struct btf_member *member,
2120 const struct btf_type *member_type)
2121{
2122 u32 int_data = btf_type_int(t: member_type);
2123 u32 struct_bits_off = member->offset;
2124 u32 struct_size = struct_type->size;
2125 u32 nr_copy_bits;
2126 u32 bytes_offset;
2127
2128 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2129 btf_verifier_log_member(env, struct_type, member,
2130 fmt: "bits_offset exceeds U32_MAX");
2131 return -EINVAL;
2132 }
2133
2134 struct_bits_off += BTF_INT_OFFSET(int_data);
2135 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2136 nr_copy_bits = BTF_INT_BITS(int_data) +
2137 BITS_PER_BYTE_MASKED(struct_bits_off);
2138
2139 if (nr_copy_bits > BITS_PER_U128) {
2140 btf_verifier_log_member(env, struct_type, member,
2141 fmt: "nr_copy_bits exceeds 128");
2142 return -EINVAL;
2143 }
2144
2145 if (struct_size < bytes_offset ||
2146 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2147 btf_verifier_log_member(env, struct_type, member,
2148 fmt: "Member exceeds struct_size");
2149 return -EINVAL;
2150 }
2151
2152 return 0;
2153}
2154
2155static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2156 const struct btf_type *struct_type,
2157 const struct btf_member *member,
2158 const struct btf_type *member_type)
2159{
2160 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2161 u32 int_data = btf_type_int(t: member_type);
2162 u32 struct_size = struct_type->size;
2163 u32 nr_copy_bits;
2164
2165 /* a regular int type is required for the kflag int member */
2166 if (!btf_type_int_is_regular(t: member_type)) {
2167 btf_verifier_log_member(env, struct_type, member,
2168 fmt: "Invalid member base type");
2169 return -EINVAL;
2170 }
2171
2172 /* check sanity of bitfield size */
2173 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2174 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2175 nr_int_data_bits = BTF_INT_BITS(int_data);
2176 if (!nr_bits) {
2177 /* Not a bitfield member, member offset must be at byte
2178 * boundary.
2179 */
2180 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2181 btf_verifier_log_member(env, struct_type, member,
2182 fmt: "Invalid member offset");
2183 return -EINVAL;
2184 }
2185
2186 nr_bits = nr_int_data_bits;
2187 } else if (nr_bits > nr_int_data_bits) {
2188 btf_verifier_log_member(env, struct_type, member,
2189 fmt: "Invalid member bitfield_size");
2190 return -EINVAL;
2191 }
2192
2193 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2194 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2195 if (nr_copy_bits > BITS_PER_U128) {
2196 btf_verifier_log_member(env, struct_type, member,
2197 fmt: "nr_copy_bits exceeds 128");
2198 return -EINVAL;
2199 }
2200
2201 if (struct_size < bytes_offset ||
2202 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2203 btf_verifier_log_member(env, struct_type, member,
2204 fmt: "Member exceeds struct_size");
2205 return -EINVAL;
2206 }
2207
2208 return 0;
2209}
2210
2211static s32 btf_int_check_meta(struct btf_verifier_env *env,
2212 const struct btf_type *t,
2213 u32 meta_left)
2214{
2215 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2216 u16 encoding;
2217
2218 if (meta_left < meta_needed) {
2219 btf_verifier_log_basic(env, t,
2220 "meta_left:%u meta_needed:%u",
2221 meta_left, meta_needed);
2222 return -EINVAL;
2223 }
2224
2225 if (btf_type_vlen(t)) {
2226 btf_verifier_log_type(env, t, "vlen != 0");
2227 return -EINVAL;
2228 }
2229
2230 if (btf_type_kflag(t)) {
2231 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2232 return -EINVAL;
2233 }
2234
2235 int_data = btf_type_int(t);
2236 if (int_data & ~BTF_INT_MASK) {
2237 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2238 int_data);
2239 return -EINVAL;
2240 }
2241
2242 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2243
2244 if (nr_bits > BITS_PER_U128) {
2245 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2246 BITS_PER_U128);
2247 return -EINVAL;
2248 }
2249
2250 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2251 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2252 return -EINVAL;
2253 }
2254
2255 /*
2256 * Only one of the encoding bits is allowed and it
2257 * should be sufficient for the pretty print purpose (i.e. decoding).
2258 * Multiple bits can be allowed later if it is found
2259 * to be insufficient.
2260 */
2261 encoding = BTF_INT_ENCODING(int_data);
2262 if (encoding &&
2263 encoding != BTF_INT_SIGNED &&
2264 encoding != BTF_INT_CHAR &&
2265 encoding != BTF_INT_BOOL) {
2266 btf_verifier_log_type(env, t, "Unsupported encoding");
2267 return -ENOTSUPP;
2268 }
2269
2270 btf_verifier_log_type(env, t, NULL);
2271
2272 return meta_needed;
2273}
2274
2275static void btf_int_log(struct btf_verifier_env *env,
2276 const struct btf_type *t)
2277{
2278 int int_data = btf_type_int(t);
2279
2280 btf_verifier_log(env,
2281 fmt: "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2282 t->size, BTF_INT_OFFSET(int_data),
2283 BTF_INT_BITS(int_data),
2284 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2285}
2286
2287static void btf_int128_print(struct btf_show *show, void *data)
2288{
2289 /* data points to a __int128 number.
2290 * Suppose
2291 * int128_num = *(__int128 *)data;
2292 * The below formulas shows what upper_num and lower_num represents:
2293 * upper_num = int128_num >> 64;
2294 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2295 */
2296 u64 upper_num, lower_num;
2297
2298#ifdef __BIG_ENDIAN_BITFIELD
2299 upper_num = *(u64 *)data;
2300 lower_num = *(u64 *)(data + 8);
2301#else
2302 upper_num = *(u64 *)(data + 8);
2303 lower_num = *(u64 *)data;
2304#endif
2305 if (upper_num == 0)
2306 btf_show_type_value(show, "0x%llx", lower_num);
2307 else
2308 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2309 lower_num);
2310}
2311
2312static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2313 u16 right_shift_bits)
2314{
2315 u64 upper_num, lower_num;
2316
2317#ifdef __BIG_ENDIAN_BITFIELD
2318 upper_num = print_num[0];
2319 lower_num = print_num[1];
2320#else
2321 upper_num = print_num[1];
2322 lower_num = print_num[0];
2323#endif
2324
2325 /* shake out un-needed bits by shift/or operations */
2326 if (left_shift_bits >= 64) {
2327 upper_num = lower_num << (left_shift_bits - 64);
2328 lower_num = 0;
2329 } else {
2330 upper_num = (upper_num << left_shift_bits) |
2331 (lower_num >> (64 - left_shift_bits));
2332 lower_num = lower_num << left_shift_bits;
2333 }
2334
2335 if (right_shift_bits >= 64) {
2336 lower_num = upper_num >> (right_shift_bits - 64);
2337 upper_num = 0;
2338 } else {
2339 lower_num = (lower_num >> right_shift_bits) |
2340 (upper_num << (64 - right_shift_bits));
2341 upper_num = upper_num >> right_shift_bits;
2342 }
2343
2344#ifdef __BIG_ENDIAN_BITFIELD
2345 print_num[0] = upper_num;
2346 print_num[1] = lower_num;
2347#else
2348 print_num[0] = lower_num;
2349 print_num[1] = upper_num;
2350#endif
2351}
2352
2353static void btf_bitfield_show(void *data, u8 bits_offset,
2354 u8 nr_bits, struct btf_show *show)
2355{
2356 u16 left_shift_bits, right_shift_bits;
2357 u8 nr_copy_bytes;
2358 u8 nr_copy_bits;
2359 u64 print_num[2] = {};
2360
2361 nr_copy_bits = nr_bits + bits_offset;
2362 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2363
2364 memcpy(print_num, data, nr_copy_bytes);
2365
2366#ifdef __BIG_ENDIAN_BITFIELD
2367 left_shift_bits = bits_offset;
2368#else
2369 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2370#endif
2371 right_shift_bits = BITS_PER_U128 - nr_bits;
2372
2373 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2374 btf_int128_print(show, data: print_num);
2375}
2376
2377
2378static void btf_int_bits_show(const struct btf *btf,
2379 const struct btf_type *t,
2380 void *data, u8 bits_offset,
2381 struct btf_show *show)
2382{
2383 u32 int_data = btf_type_int(t);
2384 u8 nr_bits = BTF_INT_BITS(int_data);
2385 u8 total_bits_offset;
2386
2387 /*
2388 * bits_offset is at most 7.
2389 * BTF_INT_OFFSET() cannot exceed 128 bits.
2390 */
2391 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2392 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2393 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2394 btf_bitfield_show(data, bits_offset, nr_bits, show);
2395}
2396
2397static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2398 u32 type_id, void *data, u8 bits_offset,
2399 struct btf_show *show)
2400{
2401 u32 int_data = btf_type_int(t);
2402 u8 encoding = BTF_INT_ENCODING(int_data);
2403 bool sign = encoding & BTF_INT_SIGNED;
2404 u8 nr_bits = BTF_INT_BITS(int_data);
2405 void *safe_data;
2406
2407 safe_data = btf_show_start_type(show, t, type_id, data);
2408 if (!safe_data)
2409 return;
2410
2411 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2412 BITS_PER_BYTE_MASKED(nr_bits)) {
2413 btf_int_bits_show(btf, t, data: safe_data, bits_offset, show);
2414 goto out;
2415 }
2416
2417 switch (nr_bits) {
2418 case 128:
2419 btf_int128_print(show, data: safe_data);
2420 break;
2421 case 64:
2422 if (sign)
2423 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2424 else
2425 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2426 break;
2427 case 32:
2428 if (sign)
2429 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2430 else
2431 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2432 break;
2433 case 16:
2434 if (sign)
2435 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2436 else
2437 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2438 break;
2439 case 8:
2440 if (show->state.array_encoding == BTF_INT_CHAR) {
2441 /* check for null terminator */
2442 if (show->state.array_terminated)
2443 break;
2444 if (*(char *)data == '\0') {
2445 show->state.array_terminated = 1;
2446 break;
2447 }
2448 if (isprint(*(char *)data)) {
2449 btf_show_type_value(show, "'%c'",
2450 *(char *)safe_data);
2451 break;
2452 }
2453 }
2454 if (sign)
2455 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2456 else
2457 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2458 break;
2459 default:
2460 btf_int_bits_show(btf, t, data: safe_data, bits_offset, show);
2461 break;
2462 }
2463out:
2464 btf_show_end_type(show);
2465}
2466
2467static const struct btf_kind_operations int_ops = {
2468 .check_meta = btf_int_check_meta,
2469 .resolve = btf_df_resolve,
2470 .check_member = btf_int_check_member,
2471 .check_kflag_member = btf_int_check_kflag_member,
2472 .log_details = btf_int_log,
2473 .show = btf_int_show,
2474};
2475
2476static int btf_modifier_check_member(struct btf_verifier_env *env,
2477 const struct btf_type *struct_type,
2478 const struct btf_member *member,
2479 const struct btf_type *member_type)
2480{
2481 const struct btf_type *resolved_type;
2482 u32 resolved_type_id = member->type;
2483 struct btf_member resolved_member;
2484 struct btf *btf = env->btf;
2485
2486 resolved_type = btf_type_id_size(btf, type_id: &resolved_type_id, NULL);
2487 if (!resolved_type) {
2488 btf_verifier_log_member(env, struct_type, member,
2489 fmt: "Invalid member");
2490 return -EINVAL;
2491 }
2492
2493 resolved_member = *member;
2494 resolved_member.type = resolved_type_id;
2495
2496 return btf_type_ops(t: resolved_type)->check_member(env, struct_type,
2497 &resolved_member,
2498 resolved_type);
2499}
2500
2501static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2502 const struct btf_type *struct_type,
2503 const struct btf_member *member,
2504 const struct btf_type *member_type)
2505{
2506 const struct btf_type *resolved_type;
2507 u32 resolved_type_id = member->type;
2508 struct btf_member resolved_member;
2509 struct btf *btf = env->btf;
2510
2511 resolved_type = btf_type_id_size(btf, type_id: &resolved_type_id, NULL);
2512 if (!resolved_type) {
2513 btf_verifier_log_member(env, struct_type, member,
2514 fmt: "Invalid member");
2515 return -EINVAL;
2516 }
2517
2518 resolved_member = *member;
2519 resolved_member.type = resolved_type_id;
2520
2521 return btf_type_ops(t: resolved_type)->check_kflag_member(env, struct_type,
2522 &resolved_member,
2523 resolved_type);
2524}
2525
2526static int btf_ptr_check_member(struct btf_verifier_env *env,
2527 const struct btf_type *struct_type,
2528 const struct btf_member *member,
2529 const struct btf_type *member_type)
2530{
2531 u32 struct_size, struct_bits_off, bytes_offset;
2532
2533 struct_size = struct_type->size;
2534 struct_bits_off = member->offset;
2535 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2536
2537 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2538 btf_verifier_log_member(env, struct_type, member,
2539 fmt: "Member is not byte aligned");
2540 return -EINVAL;
2541 }
2542
2543 if (struct_size - bytes_offset < sizeof(void *)) {
2544 btf_verifier_log_member(env, struct_type, member,
2545 fmt: "Member exceeds struct_size");
2546 return -EINVAL;
2547 }
2548
2549 return 0;
2550}
2551
2552static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2553 const struct btf_type *t,
2554 u32 meta_left)
2555{
2556 const char *value;
2557
2558 if (btf_type_vlen(t)) {
2559 btf_verifier_log_type(env, t, "vlen != 0");
2560 return -EINVAL;
2561 }
2562
2563 if (btf_type_kflag(t)) {
2564 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2565 return -EINVAL;
2566 }
2567
2568 if (!BTF_TYPE_ID_VALID(t->type)) {
2569 btf_verifier_log_type(env, t, "Invalid type_id");
2570 return -EINVAL;
2571 }
2572
2573 /* typedef/type_tag type must have a valid name, and other ref types,
2574 * volatile, const, restrict, should have a null name.
2575 */
2576 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2577 if (!t->name_off ||
2578 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
2579 btf_verifier_log_type(env, t, "Invalid name");
2580 return -EINVAL;
2581 }
2582 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2583 value = btf_name_by_offset(btf: env->btf, offset: t->name_off);
2584 if (!value || !value[0]) {
2585 btf_verifier_log_type(env, t, "Invalid name");
2586 return -EINVAL;
2587 }
2588 } else {
2589 if (t->name_off) {
2590 btf_verifier_log_type(env, t, "Invalid name");
2591 return -EINVAL;
2592 }
2593 }
2594
2595 btf_verifier_log_type(env, t, NULL);
2596
2597 return 0;
2598}
2599
2600static int btf_modifier_resolve(struct btf_verifier_env *env,
2601 const struct resolve_vertex *v)
2602{
2603 const struct btf_type *t = v->t;
2604 const struct btf_type *next_type;
2605 u32 next_type_id = t->type;
2606 struct btf *btf = env->btf;
2607
2608 next_type = btf_type_by_id(btf, next_type_id);
2609 if (!next_type || btf_type_is_resolve_source_only(t: next_type)) {
2610 btf_verifier_log_type(env, v->t, "Invalid type_id");
2611 return -EINVAL;
2612 }
2613
2614 if (!env_type_is_resolve_sink(env, next_type) &&
2615 !env_type_is_resolved(env, type_id: next_type_id))
2616 return env_stack_push(env, t: next_type, type_id: next_type_id);
2617
2618 /* Figure out the resolved next_type_id with size.
2619 * They will be stored in the current modifier's
2620 * resolved_ids and resolved_sizes such that it can
2621 * save us a few type-following when we use it later (e.g. in
2622 * pretty print).
2623 */
2624 if (!btf_type_id_size(btf, type_id: &next_type_id, NULL)) {
2625 if (env_type_is_resolved(env, type_id: next_type_id))
2626 next_type = btf_type_id_resolve(btf, type_id: &next_type_id);
2627
2628 /* "typedef void new_void", "const void"...etc */
2629 if (!btf_type_is_void(t: next_type) &&
2630 !btf_type_is_fwd(t: next_type) &&
2631 !btf_type_is_func_proto(t: next_type)) {
2632 btf_verifier_log_type(env, v->t, "Invalid type_id");
2633 return -EINVAL;
2634 }
2635 }
2636
2637 env_stack_pop_resolved(env, resolved_type_id: next_type_id, resolved_size: 0);
2638
2639 return 0;
2640}
2641
2642static int btf_var_resolve(struct btf_verifier_env *env,
2643 const struct resolve_vertex *v)
2644{
2645 const struct btf_type *next_type;
2646 const struct btf_type *t = v->t;
2647 u32 next_type_id = t->type;
2648 struct btf *btf = env->btf;
2649
2650 next_type = btf_type_by_id(btf, next_type_id);
2651 if (!next_type || btf_type_is_resolve_source_only(t: next_type)) {
2652 btf_verifier_log_type(env, v->t, "Invalid type_id");
2653 return -EINVAL;
2654 }
2655
2656 if (!env_type_is_resolve_sink(env, next_type) &&
2657 !env_type_is_resolved(env, type_id: next_type_id))
2658 return env_stack_push(env, t: next_type, type_id: next_type_id);
2659
2660 if (btf_type_is_modifier(t: next_type)) {
2661 const struct btf_type *resolved_type;
2662 u32 resolved_type_id;
2663
2664 resolved_type_id = next_type_id;
2665 resolved_type = btf_type_id_resolve(btf, type_id: &resolved_type_id);
2666
2667 if (btf_type_is_ptr(t: resolved_type) &&
2668 !env_type_is_resolve_sink(env, next_type: resolved_type) &&
2669 !env_type_is_resolved(env, type_id: resolved_type_id))
2670 return env_stack_push(env, t: resolved_type,
2671 type_id: resolved_type_id);
2672 }
2673
2674 /* We must resolve to something concrete at this point, no
2675 * forward types or similar that would resolve to size of
2676 * zero is allowed.
2677 */
2678 if (!btf_type_id_size(btf, type_id: &next_type_id, NULL)) {
2679 btf_verifier_log_type(env, v->t, "Invalid type_id");
2680 return -EINVAL;
2681 }
2682
2683 env_stack_pop_resolved(env, resolved_type_id: next_type_id, resolved_size: 0);
2684
2685 return 0;
2686}
2687
2688static int btf_ptr_resolve(struct btf_verifier_env *env,
2689 const struct resolve_vertex *v)
2690{
2691 const struct btf_type *next_type;
2692 const struct btf_type *t = v->t;
2693 u32 next_type_id = t->type;
2694 struct btf *btf = env->btf;
2695
2696 next_type = btf_type_by_id(btf, next_type_id);
2697 if (!next_type || btf_type_is_resolve_source_only(t: next_type)) {
2698 btf_verifier_log_type(env, v->t, "Invalid type_id");
2699 return -EINVAL;
2700 }
2701
2702 if (!env_type_is_resolve_sink(env, next_type) &&
2703 !env_type_is_resolved(env, type_id: next_type_id))
2704 return env_stack_push(env, t: next_type, type_id: next_type_id);
2705
2706 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2707 * the modifier may have stopped resolving when it was resolved
2708 * to a ptr (last-resolved-ptr).
2709 *
2710 * We now need to continue from the last-resolved-ptr to
2711 * ensure the last-resolved-ptr will not referring back to
2712 * the current ptr (t).
2713 */
2714 if (btf_type_is_modifier(t: next_type)) {
2715 const struct btf_type *resolved_type;
2716 u32 resolved_type_id;
2717
2718 resolved_type_id = next_type_id;
2719 resolved_type = btf_type_id_resolve(btf, type_id: &resolved_type_id);
2720
2721 if (btf_type_is_ptr(t: resolved_type) &&
2722 !env_type_is_resolve_sink(env, next_type: resolved_type) &&
2723 !env_type_is_resolved(env, type_id: resolved_type_id))
2724 return env_stack_push(env, t: resolved_type,
2725 type_id: resolved_type_id);
2726 }
2727
2728 if (!btf_type_id_size(btf, type_id: &next_type_id, NULL)) {
2729 if (env_type_is_resolved(env, type_id: next_type_id))
2730 next_type = btf_type_id_resolve(btf, type_id: &next_type_id);
2731
2732 if (!btf_type_is_void(t: next_type) &&
2733 !btf_type_is_fwd(t: next_type) &&
2734 !btf_type_is_func_proto(t: next_type)) {
2735 btf_verifier_log_type(env, v->t, "Invalid type_id");
2736 return -EINVAL;
2737 }
2738 }
2739
2740 env_stack_pop_resolved(env, resolved_type_id: next_type_id, resolved_size: 0);
2741
2742 return 0;
2743}
2744
2745static void btf_modifier_show(const struct btf *btf,
2746 const struct btf_type *t,
2747 u32 type_id, void *data,
2748 u8 bits_offset, struct btf_show *show)
2749{
2750 if (btf->resolved_ids)
2751 t = btf_type_id_resolve(btf, type_id: &type_id);
2752 else
2753 t = btf_type_skip_modifiers(btf, id: type_id, NULL);
2754
2755 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2756}
2757
2758static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2759 u32 type_id, void *data, u8 bits_offset,
2760 struct btf_show *show)
2761{
2762 t = btf_type_id_resolve(btf, type_id: &type_id);
2763
2764 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2765}
2766
2767static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2768 u32 type_id, void *data, u8 bits_offset,
2769 struct btf_show *show)
2770{
2771 void *safe_data;
2772
2773 safe_data = btf_show_start_type(show, t, type_id, data);
2774 if (!safe_data)
2775 return;
2776
2777 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2778 if (show->flags & BTF_SHOW_PTR_RAW)
2779 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2780 else
2781 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2782 btf_show_end_type(show);
2783}
2784
2785static void btf_ref_type_log(struct btf_verifier_env *env,
2786 const struct btf_type *t)
2787{
2788 btf_verifier_log(env, fmt: "type_id=%u", t->type);
2789}
2790
2791static struct btf_kind_operations modifier_ops = {
2792 .check_meta = btf_ref_type_check_meta,
2793 .resolve = btf_modifier_resolve,
2794 .check_member = btf_modifier_check_member,
2795 .check_kflag_member = btf_modifier_check_kflag_member,
2796 .log_details = btf_ref_type_log,
2797 .show = btf_modifier_show,
2798};
2799
2800static struct btf_kind_operations ptr_ops = {
2801 .check_meta = btf_ref_type_check_meta,
2802 .resolve = btf_ptr_resolve,
2803 .check_member = btf_ptr_check_member,
2804 .check_kflag_member = btf_generic_check_kflag_member,
2805 .log_details = btf_ref_type_log,
2806 .show = btf_ptr_show,
2807};
2808
2809static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2810 const struct btf_type *t,
2811 u32 meta_left)
2812{
2813 if (btf_type_vlen(t)) {
2814 btf_verifier_log_type(env, t, "vlen != 0");
2815 return -EINVAL;
2816 }
2817
2818 if (t->type) {
2819 btf_verifier_log_type(env, t, "type != 0");
2820 return -EINVAL;
2821 }
2822
2823 /* fwd type must have a valid name */
2824 if (!t->name_off ||
2825 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
2826 btf_verifier_log_type(env, t, "Invalid name");
2827 return -EINVAL;
2828 }
2829
2830 btf_verifier_log_type(env, t, NULL);
2831
2832 return 0;
2833}
2834
2835static void btf_fwd_type_log(struct btf_verifier_env *env,
2836 const struct btf_type *t)
2837{
2838 btf_verifier_log(env, fmt: "%s", btf_type_kflag(t) ? "union" : "struct");
2839}
2840
2841static struct btf_kind_operations fwd_ops = {
2842 .check_meta = btf_fwd_check_meta,
2843 .resolve = btf_df_resolve,
2844 .check_member = btf_df_check_member,
2845 .check_kflag_member = btf_df_check_kflag_member,
2846 .log_details = btf_fwd_type_log,
2847 .show = btf_df_show,
2848};
2849
2850static int btf_array_check_member(struct btf_verifier_env *env,
2851 const struct btf_type *struct_type,
2852 const struct btf_member *member,
2853 const struct btf_type *member_type)
2854{
2855 u32 struct_bits_off = member->offset;
2856 u32 struct_size, bytes_offset;
2857 u32 array_type_id, array_size;
2858 struct btf *btf = env->btf;
2859
2860 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2861 btf_verifier_log_member(env, struct_type, member,
2862 fmt: "Member is not byte aligned");
2863 return -EINVAL;
2864 }
2865
2866 array_type_id = member->type;
2867 btf_type_id_size(btf, type_id: &array_type_id, ret_size: &array_size);
2868 struct_size = struct_type->size;
2869 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2870 if (struct_size - bytes_offset < array_size) {
2871 btf_verifier_log_member(env, struct_type, member,
2872 fmt: "Member exceeds struct_size");
2873 return -EINVAL;
2874 }
2875
2876 return 0;
2877}
2878
2879static s32 btf_array_check_meta(struct btf_verifier_env *env,
2880 const struct btf_type *t,
2881 u32 meta_left)
2882{
2883 const struct btf_array *array = btf_type_array(t);
2884 u32 meta_needed = sizeof(*array);
2885
2886 if (meta_left < meta_needed) {
2887 btf_verifier_log_basic(env, t,
2888 "meta_left:%u meta_needed:%u",
2889 meta_left, meta_needed);
2890 return -EINVAL;
2891 }
2892
2893 /* array type should not have a name */
2894 if (t->name_off) {
2895 btf_verifier_log_type(env, t, "Invalid name");
2896 return -EINVAL;
2897 }
2898
2899 if (btf_type_vlen(t)) {
2900 btf_verifier_log_type(env, t, "vlen != 0");
2901 return -EINVAL;
2902 }
2903
2904 if (btf_type_kflag(t)) {
2905 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2906 return -EINVAL;
2907 }
2908
2909 if (t->size) {
2910 btf_verifier_log_type(env, t, "size != 0");
2911 return -EINVAL;
2912 }
2913
2914 /* Array elem type and index type cannot be in type void,
2915 * so !array->type and !array->index_type are not allowed.
2916 */
2917 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2918 btf_verifier_log_type(env, t, "Invalid elem");
2919 return -EINVAL;
2920 }
2921
2922 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2923 btf_verifier_log_type(env, t, "Invalid index");
2924 return -EINVAL;
2925 }
2926
2927 btf_verifier_log_type(env, t, NULL);
2928
2929 return meta_needed;
2930}
2931
2932static int btf_array_resolve(struct btf_verifier_env *env,
2933 const struct resolve_vertex *v)
2934{
2935 const struct btf_array *array = btf_type_array(t: v->t);
2936 const struct btf_type *elem_type, *index_type;
2937 u32 elem_type_id, index_type_id;
2938 struct btf *btf = env->btf;
2939 u32 elem_size;
2940
2941 /* Check array->index_type */
2942 index_type_id = array->index_type;
2943 index_type = btf_type_by_id(btf, index_type_id);
2944 if (btf_type_nosize_or_null(t: index_type) ||
2945 btf_type_is_resolve_source_only(t: index_type)) {
2946 btf_verifier_log_type(env, v->t, "Invalid index");
2947 return -EINVAL;
2948 }
2949
2950 if (!env_type_is_resolve_sink(env, next_type: index_type) &&
2951 !env_type_is_resolved(env, type_id: index_type_id))
2952 return env_stack_push(env, t: index_type, type_id: index_type_id);
2953
2954 index_type = btf_type_id_size(btf, type_id: &index_type_id, NULL);
2955 if (!index_type || !btf_type_is_int(t: index_type) ||
2956 !btf_type_int_is_regular(t: index_type)) {
2957 btf_verifier_log_type(env, v->t, "Invalid index");
2958 return -EINVAL;
2959 }
2960
2961 /* Check array->type */
2962 elem_type_id = array->type;
2963 elem_type = btf_type_by_id(btf, elem_type_id);
2964 if (btf_type_nosize_or_null(t: elem_type) ||
2965 btf_type_is_resolve_source_only(t: elem_type)) {
2966 btf_verifier_log_type(env, v->t,
2967 "Invalid elem");
2968 return -EINVAL;
2969 }
2970
2971 if (!env_type_is_resolve_sink(env, next_type: elem_type) &&
2972 !env_type_is_resolved(env, type_id: elem_type_id))
2973 return env_stack_push(env, t: elem_type, type_id: elem_type_id);
2974
2975 elem_type = btf_type_id_size(btf, type_id: &elem_type_id, ret_size: &elem_size);
2976 if (!elem_type) {
2977 btf_verifier_log_type(env, v->t, "Invalid elem");
2978 return -EINVAL;
2979 }
2980
2981 if (btf_type_is_int(t: elem_type) && !btf_type_int_is_regular(t: elem_type)) {
2982 btf_verifier_log_type(env, v->t, "Invalid array of int");
2983 return -EINVAL;
2984 }
2985
2986 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2987 btf_verifier_log_type(env, v->t,
2988 "Array size overflows U32_MAX");
2989 return -EINVAL;
2990 }
2991
2992 env_stack_pop_resolved(env, resolved_type_id: elem_type_id, resolved_size: elem_size * array->nelems);
2993
2994 return 0;
2995}
2996
2997static void btf_array_log(struct btf_verifier_env *env,
2998 const struct btf_type *t)
2999{
3000 const struct btf_array *array = btf_type_array(t);
3001
3002 btf_verifier_log(env, fmt: "type_id=%u index_type_id=%u nr_elems=%u",
3003 array->type, array->index_type, array->nelems);
3004}
3005
3006static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3007 u32 type_id, void *data, u8 bits_offset,
3008 struct btf_show *show)
3009{
3010 const struct btf_array *array = btf_type_array(t);
3011 const struct btf_kind_operations *elem_ops;
3012 const struct btf_type *elem_type;
3013 u32 i, elem_size = 0, elem_type_id;
3014 u16 encoding = 0;
3015
3016 elem_type_id = array->type;
3017 elem_type = btf_type_skip_modifiers(btf, id: elem_type_id, NULL);
3018 if (elem_type && btf_type_has_size(t: elem_type))
3019 elem_size = elem_type->size;
3020
3021 if (elem_type && btf_type_is_int(t: elem_type)) {
3022 u32 int_type = btf_type_int(t: elem_type);
3023
3024 encoding = BTF_INT_ENCODING(int_type);
3025
3026 /*
3027 * BTF_INT_CHAR encoding never seems to be set for
3028 * char arrays, so if size is 1 and element is
3029 * printable as a char, we'll do that.
3030 */
3031 if (elem_size == 1)
3032 encoding = BTF_INT_CHAR;
3033 }
3034
3035 if (!btf_show_start_array_type(show, t, type_id, array_encoding: encoding, data))
3036 return;
3037
3038 if (!elem_type)
3039 goto out;
3040 elem_ops = btf_type_ops(t: elem_type);
3041
3042 for (i = 0; i < array->nelems; i++) {
3043
3044 btf_show_start_array_member(show);
3045
3046 elem_ops->show(btf, elem_type, elem_type_id, data,
3047 bits_offset, show);
3048 data += elem_size;
3049
3050 btf_show_end_array_member(show);
3051
3052 if (show->state.array_terminated)
3053 break;
3054 }
3055out:
3056 btf_show_end_array_type(show);
3057}
3058
3059static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3060 u32 type_id, void *data, u8 bits_offset,
3061 struct btf_show *show)
3062{
3063 const struct btf_member *m = show->state.member;
3064
3065 /*
3066 * First check if any members would be shown (are non-zero).
3067 * See comments above "struct btf_show" definition for more
3068 * details on how this works at a high-level.
3069 */
3070 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3071 if (!show->state.depth_check) {
3072 show->state.depth_check = show->state.depth + 1;
3073 show->state.depth_to_show = 0;
3074 }
3075 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3076 show->state.member = m;
3077
3078 if (show->state.depth_check != show->state.depth + 1)
3079 return;
3080 show->state.depth_check = 0;
3081
3082 if (show->state.depth_to_show <= show->state.depth)
3083 return;
3084 /*
3085 * Reaching here indicates we have recursed and found
3086 * non-zero array member(s).
3087 */
3088 }
3089 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3090}
3091
3092static struct btf_kind_operations array_ops = {
3093 .check_meta = btf_array_check_meta,
3094 .resolve = btf_array_resolve,
3095 .check_member = btf_array_check_member,
3096 .check_kflag_member = btf_generic_check_kflag_member,
3097 .log_details = btf_array_log,
3098 .show = btf_array_show,
3099};
3100
3101static int btf_struct_check_member(struct btf_verifier_env *env,
3102 const struct btf_type *struct_type,
3103 const struct btf_member *member,
3104 const struct btf_type *member_type)
3105{
3106 u32 struct_bits_off = member->offset;
3107 u32 struct_size, bytes_offset;
3108
3109 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3110 btf_verifier_log_member(env, struct_type, member,
3111 fmt: "Member is not byte aligned");
3112 return -EINVAL;
3113 }
3114
3115 struct_size = struct_type->size;
3116 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3117 if (struct_size - bytes_offset < member_type->size) {
3118 btf_verifier_log_member(env, struct_type, member,
3119 fmt: "Member exceeds struct_size");
3120 return -EINVAL;
3121 }
3122
3123 return 0;
3124}
3125
3126static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3127 const struct btf_type *t,
3128 u32 meta_left)
3129{
3130 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3131 const struct btf_member *member;
3132 u32 meta_needed, last_offset;
3133 struct btf *btf = env->btf;
3134 u32 struct_size = t->size;
3135 u32 offset;
3136 u16 i;
3137
3138 meta_needed = btf_type_vlen(t) * sizeof(*member);
3139 if (meta_left < meta_needed) {
3140 btf_verifier_log_basic(env, t,
3141 "meta_left:%u meta_needed:%u",
3142 meta_left, meta_needed);
3143 return -EINVAL;
3144 }
3145
3146 /* struct type either no name or a valid one */
3147 if (t->name_off &&
3148 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
3149 btf_verifier_log_type(env, t, "Invalid name");
3150 return -EINVAL;
3151 }
3152
3153 btf_verifier_log_type(env, t, NULL);
3154
3155 last_offset = 0;
3156 for_each_member(i, t, member) {
3157 if (!btf_name_offset_valid(btf, offset: member->name_off)) {
3158 btf_verifier_log_member(env, struct_type: t, member,
3159 fmt: "Invalid member name_offset:%u",
3160 member->name_off);
3161 return -EINVAL;
3162 }
3163
3164 /* struct member either no name or a valid one */
3165 if (member->name_off &&
3166 !btf_name_valid_identifier(btf, offset: member->name_off)) {
3167 btf_verifier_log_member(env, struct_type: t, member, fmt: "Invalid name");
3168 return -EINVAL;
3169 }
3170 /* A member cannot be in type void */
3171 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3172 btf_verifier_log_member(env, struct_type: t, member,
3173 fmt: "Invalid type_id");
3174 return -EINVAL;
3175 }
3176
3177 offset = __btf_member_bit_offset(struct_type: t, member);
3178 if (is_union && offset) {
3179 btf_verifier_log_member(env, struct_type: t, member,
3180 fmt: "Invalid member bits_offset");
3181 return -EINVAL;
3182 }
3183
3184 /*
3185 * ">" instead of ">=" because the last member could be
3186 * "char a[0];"
3187 */
3188 if (last_offset > offset) {
3189 btf_verifier_log_member(env, struct_type: t, member,
3190 fmt: "Invalid member bits_offset");
3191 return -EINVAL;
3192 }
3193
3194 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3195 btf_verifier_log_member(env, struct_type: t, member,
3196 fmt: "Member bits_offset exceeds its struct size");
3197 return -EINVAL;
3198 }
3199
3200 btf_verifier_log_member(env, struct_type: t, member, NULL);
3201 last_offset = offset;
3202 }
3203
3204 return meta_needed;
3205}
3206
3207static int btf_struct_resolve(struct btf_verifier_env *env,
3208 const struct resolve_vertex *v)
3209{
3210 const struct btf_member *member;
3211 int err;
3212 u16 i;
3213
3214 /* Before continue resolving the next_member,
3215 * ensure the last member is indeed resolved to a
3216 * type with size info.
3217 */
3218 if (v->next_member) {
3219 const struct btf_type *last_member_type;
3220 const struct btf_member *last_member;
3221 u32 last_member_type_id;
3222
3223 last_member = btf_type_member(t: v->t) + v->next_member - 1;
3224 last_member_type_id = last_member->type;
3225 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3226 last_member_type_id)))
3227 return -EINVAL;
3228
3229 last_member_type = btf_type_by_id(env->btf,
3230 last_member_type_id);
3231 if (btf_type_kflag(t: v->t))
3232 err = btf_type_ops(t: last_member_type)->check_kflag_member(env, v->t,
3233 last_member,
3234 last_member_type);
3235 else
3236 err = btf_type_ops(t: last_member_type)->check_member(env, v->t,
3237 last_member,
3238 last_member_type);
3239 if (err)
3240 return err;
3241 }
3242
3243 for_each_member_from(i, v->next_member, v->t, member) {
3244 u32 member_type_id = member->type;
3245 const struct btf_type *member_type = btf_type_by_id(env->btf,
3246 member_type_id);
3247
3248 if (btf_type_nosize_or_null(t: member_type) ||
3249 btf_type_is_resolve_source_only(t: member_type)) {
3250 btf_verifier_log_member(env, struct_type: v->t, member,
3251 fmt: "Invalid member");
3252 return -EINVAL;
3253 }
3254
3255 if (!env_type_is_resolve_sink(env, next_type: member_type) &&
3256 !env_type_is_resolved(env, type_id: member_type_id)) {
3257 env_stack_set_next_member(env, next_member: i + 1);
3258 return env_stack_push(env, t: member_type, type_id: member_type_id);
3259 }
3260
3261 if (btf_type_kflag(t: v->t))
3262 err = btf_type_ops(t: member_type)->check_kflag_member(env, v->t,
3263 member,
3264 member_type);
3265 else
3266 err = btf_type_ops(t: member_type)->check_member(env, v->t,
3267 member,
3268 member_type);
3269 if (err)
3270 return err;
3271 }
3272
3273 env_stack_pop_resolved(env, resolved_type_id: 0, resolved_size: 0);
3274
3275 return 0;
3276}
3277
3278static void btf_struct_log(struct btf_verifier_env *env,
3279 const struct btf_type *t)
3280{
3281 btf_verifier_log(env, fmt: "size=%u vlen=%u", t->size, btf_type_vlen(t));
3282}
3283
3284enum {
3285 BTF_FIELD_IGNORE = 0,
3286 BTF_FIELD_FOUND = 1,
3287};
3288
3289struct btf_field_info {
3290 enum btf_field_type type;
3291 u32 off;
3292 union {
3293 struct {
3294 u32 type_id;
3295 } kptr;
3296 struct {
3297 const char *node_name;
3298 u32 value_btf_id;
3299 } graph_root;
3300 };
3301};
3302
3303static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3304 u32 off, int sz, enum btf_field_type field_type,
3305 struct btf_field_info *info)
3306{
3307 if (!__btf_type_is_struct(t))
3308 return BTF_FIELD_IGNORE;
3309 if (t->size != sz)
3310 return BTF_FIELD_IGNORE;
3311 info->type = field_type;
3312 info->off = off;
3313 return BTF_FIELD_FOUND;
3314}
3315
3316static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3317 u32 off, int sz, struct btf_field_info *info)
3318{
3319 enum btf_field_type type;
3320 u32 res_id;
3321
3322 /* Permit modifiers on the pointer itself */
3323 if (btf_type_is_volatile(t))
3324 t = btf_type_by_id(btf, t->type);
3325 /* For PTR, sz is always == 8 */
3326 if (!btf_type_is_ptr(t))
3327 return BTF_FIELD_IGNORE;
3328 t = btf_type_by_id(btf, t->type);
3329
3330 if (!btf_type_is_type_tag(t))
3331 return BTF_FIELD_IGNORE;
3332 /* Reject extra tags */
3333 if (btf_type_is_type_tag(t: btf_type_by_id(btf, t->type)))
3334 return -EINVAL;
3335 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, offset: t->name_off)))
3336 type = BPF_KPTR_UNREF;
3337 else if (!strcmp("kptr", __btf_name_by_offset(btf, offset: t->name_off)))
3338 type = BPF_KPTR_REF;
3339 else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, offset: t->name_off)))
3340 type = BPF_KPTR_PERCPU;
3341 else
3342 return -EINVAL;
3343
3344 /* Get the base type */
3345 t = btf_type_skip_modifiers(btf, id: t->type, res_id: &res_id);
3346 /* Only pointer to struct is allowed */
3347 if (!__btf_type_is_struct(t))
3348 return -EINVAL;
3349
3350 info->type = type;
3351 info->off = off;
3352 info->kptr.type_id = res_id;
3353 return BTF_FIELD_FOUND;
3354}
3355
3356int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3357 int comp_idx, const char *tag_key, int last_id)
3358{
3359 int len = strlen(tag_key);
3360 int i, n;
3361
3362 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3363 const struct btf_type *t = btf_type_by_id(btf, i);
3364
3365 if (!btf_type_is_decl_tag(t))
3366 continue;
3367 if (pt != btf_type_by_id(btf, t->type))
3368 continue;
3369 if (btf_type_decl_tag(t)->component_idx != comp_idx)
3370 continue;
3371 if (strncmp(__btf_name_by_offset(btf, offset: t->name_off), tag_key, len))
3372 continue;
3373 return i;
3374 }
3375 return -ENOENT;
3376}
3377
3378const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3379 int comp_idx, const char *tag_key)
3380{
3381 const char *value = NULL;
3382 const struct btf_type *t;
3383 int len, id;
3384
3385 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, last_id: 0);
3386 if (id < 0)
3387 return ERR_PTR(error: id);
3388
3389 t = btf_type_by_id(btf, id);
3390 len = strlen(tag_key);
3391 value = __btf_name_by_offset(btf, offset: t->name_off) + len;
3392
3393 /* Prevent duplicate entries for same type */
3394 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, last_id: id);
3395 if (id >= 0)
3396 return ERR_PTR(error: -EEXIST);
3397
3398 return value;
3399}
3400
3401static int
3402btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3403 const struct btf_type *t, int comp_idx, u32 off,
3404 int sz, struct btf_field_info *info,
3405 enum btf_field_type head_type)
3406{
3407 const char *node_field_name;
3408 const char *value_type;
3409 s32 id;
3410
3411 if (!__btf_type_is_struct(t))
3412 return BTF_FIELD_IGNORE;
3413 if (t->size != sz)
3414 return BTF_FIELD_IGNORE;
3415 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, tag_key: "contains:");
3416 if (IS_ERR(ptr: value_type))
3417 return -EINVAL;
3418 node_field_name = strstr(value_type, ":");
3419 if (!node_field_name)
3420 return -EINVAL;
3421 value_type = kstrndup(s: value_type, len: node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3422 if (!value_type)
3423 return -ENOMEM;
3424 id = btf_find_by_name_kind(btf, name: value_type, kind: BTF_KIND_STRUCT);
3425 kfree(objp: value_type);
3426 if (id < 0)
3427 return id;
3428 node_field_name++;
3429 if (str_is_empty(s: node_field_name))
3430 return -EINVAL;
3431 info->type = head_type;
3432 info->off = off;
3433 info->graph_root.value_btf_id = id;
3434 info->graph_root.node_name = node_field_name;
3435 return BTF_FIELD_FOUND;
3436}
3437
3438#define field_mask_test_name(field_type, field_type_str) \
3439 if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3440 type = field_type; \
3441 goto end; \
3442 }
3443
3444static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3445 int *align, int *sz)
3446{
3447 int type = 0;
3448
3449 if (field_mask & BPF_SPIN_LOCK) {
3450 if (!strcmp(name, "bpf_spin_lock")) {
3451 if (*seen_mask & BPF_SPIN_LOCK)
3452 return -E2BIG;
3453 *seen_mask |= BPF_SPIN_LOCK;
3454 type = BPF_SPIN_LOCK;
3455 goto end;
3456 }
3457 }
3458 if (field_mask & BPF_TIMER) {
3459 if (!strcmp(name, "bpf_timer")) {
3460 if (*seen_mask & BPF_TIMER)
3461 return -E2BIG;
3462 *seen_mask |= BPF_TIMER;
3463 type = BPF_TIMER;
3464 goto end;
3465 }
3466 }
3467 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3468 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3469 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root");
3470 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node");
3471 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount");
3472
3473 /* Only return BPF_KPTR when all other types with matchable names fail */
3474 if (field_mask & BPF_KPTR) {
3475 type = BPF_KPTR_REF;
3476 goto end;
3477 }
3478 return 0;
3479end:
3480 *sz = btf_field_type_size(type);
3481 *align = btf_field_type_align(type);
3482 return type;
3483}
3484
3485#undef field_mask_test_name
3486
3487static int btf_find_struct_field(const struct btf *btf,
3488 const struct btf_type *t, u32 field_mask,
3489 struct btf_field_info *info, int info_cnt)
3490{
3491 int ret, idx = 0, align, sz, field_type;
3492 const struct btf_member *member;
3493 struct btf_field_info tmp;
3494 u32 i, off, seen_mask = 0;
3495
3496 for_each_member(i, t, member) {
3497 const struct btf_type *member_type = btf_type_by_id(btf,
3498 member->type);
3499
3500 field_type = btf_get_field_type(name: __btf_name_by_offset(btf, offset: member_type->name_off),
3501 field_mask, seen_mask: &seen_mask, align: &align, sz: &sz);
3502 if (field_type == 0)
3503 continue;
3504 if (field_type < 0)
3505 return field_type;
3506
3507 off = __btf_member_bit_offset(struct_type: t, member);
3508 if (off % 8)
3509 /* valid C code cannot generate such BTF */
3510 return -EINVAL;
3511 off /= 8;
3512 if (off % align)
3513 continue;
3514
3515 switch (field_type) {
3516 case BPF_SPIN_LOCK:
3517 case BPF_TIMER:
3518 case BPF_LIST_NODE:
3519 case BPF_RB_NODE:
3520 case BPF_REFCOUNT:
3521 ret = btf_find_struct(btf, t: member_type, off, sz, field_type,
3522 info: idx < info_cnt ? &info[idx] : &tmp);
3523 if (ret < 0)
3524 return ret;
3525 break;
3526 case BPF_KPTR_UNREF:
3527 case BPF_KPTR_REF:
3528 case BPF_KPTR_PERCPU:
3529 ret = btf_find_kptr(btf, t: member_type, off, sz,
3530 info: idx < info_cnt ? &info[idx] : &tmp);
3531 if (ret < 0)
3532 return ret;
3533 break;
3534 case BPF_LIST_HEAD:
3535 case BPF_RB_ROOT:
3536 ret = btf_find_graph_root(btf, pt: t, t: member_type,
3537 comp_idx: i, off, sz,
3538 info: idx < info_cnt ? &info[idx] : &tmp,
3539 head_type: field_type);
3540 if (ret < 0)
3541 return ret;
3542 break;
3543 default:
3544 return -EFAULT;
3545 }
3546
3547 if (ret == BTF_FIELD_IGNORE)
3548 continue;
3549 if (idx >= info_cnt)
3550 return -E2BIG;
3551 ++idx;
3552 }
3553 return idx;
3554}
3555
3556static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3557 u32 field_mask, struct btf_field_info *info,
3558 int info_cnt)
3559{
3560 int ret, idx = 0, align, sz, field_type;
3561 const struct btf_var_secinfo *vsi;
3562 struct btf_field_info tmp;
3563 u32 i, off, seen_mask = 0;
3564
3565 for_each_vsi(i, t, vsi) {
3566 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3567 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3568
3569 field_type = btf_get_field_type(name: __btf_name_by_offset(btf, offset: var_type->name_off),
3570 field_mask, seen_mask: &seen_mask, align: &align, sz: &sz);
3571 if (field_type == 0)
3572 continue;
3573 if (field_type < 0)
3574 return field_type;
3575
3576 off = vsi->offset;
3577 if (vsi->size != sz)
3578 continue;
3579 if (off % align)
3580 continue;
3581
3582 switch (field_type) {
3583 case BPF_SPIN_LOCK:
3584 case BPF_TIMER:
3585 case BPF_LIST_NODE:
3586 case BPF_RB_NODE:
3587 case BPF_REFCOUNT:
3588 ret = btf_find_struct(btf, t: var_type, off, sz, field_type,
3589 info: idx < info_cnt ? &info[idx] : &tmp);
3590 if (ret < 0)
3591 return ret;
3592 break;
3593 case BPF_KPTR_UNREF:
3594 case BPF_KPTR_REF:
3595 case BPF_KPTR_PERCPU:
3596 ret = btf_find_kptr(btf, t: var_type, off, sz,
3597 info: idx < info_cnt ? &info[idx] : &tmp);
3598 if (ret < 0)
3599 return ret;
3600 break;
3601 case BPF_LIST_HEAD:
3602 case BPF_RB_ROOT:
3603 ret = btf_find_graph_root(btf, pt: var, t: var_type,
3604 comp_idx: -1, off, sz,
3605 info: idx < info_cnt ? &info[idx] : &tmp,
3606 head_type: field_type);
3607 if (ret < 0)
3608 return ret;
3609 break;
3610 default:
3611 return -EFAULT;
3612 }
3613
3614 if (ret == BTF_FIELD_IGNORE)
3615 continue;
3616 if (idx >= info_cnt)
3617 return -E2BIG;
3618 ++idx;
3619 }
3620 return idx;
3621}
3622
3623static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3624 u32 field_mask, struct btf_field_info *info,
3625 int info_cnt)
3626{
3627 if (__btf_type_is_struct(t))
3628 return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3629 else if (btf_type_is_datasec(t))
3630 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3631 return -EINVAL;
3632}
3633
3634static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3635 struct btf_field_info *info)
3636{
3637 struct module *mod = NULL;
3638 const struct btf_type *t;
3639 /* If a matching btf type is found in kernel or module BTFs, kptr_ref
3640 * is that BTF, otherwise it's program BTF
3641 */
3642 struct btf *kptr_btf;
3643 int ret;
3644 s32 id;
3645
3646 /* Find type in map BTF, and use it to look up the matching type
3647 * in vmlinux or module BTFs, by name and kind.
3648 */
3649 t = btf_type_by_id(btf, info->kptr.type_id);
3650 id = bpf_find_btf_id(name: __btf_name_by_offset(btf, offset: t->name_off), BTF_INFO_KIND(t->info),
3651 btf_p: &kptr_btf);
3652 if (id == -ENOENT) {
3653 /* btf_parse_kptr should only be called w/ btf = program BTF */
3654 WARN_ON_ONCE(btf_is_kernel(btf));
3655
3656 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3657 * kptr allocated via bpf_obj_new
3658 */
3659 field->kptr.dtor = NULL;
3660 id = info->kptr.type_id;
3661 kptr_btf = (struct btf *)btf;
3662 btf_get(btf: kptr_btf);
3663 goto found_dtor;
3664 }
3665 if (id < 0)
3666 return id;
3667
3668 /* Find and stash the function pointer for the destruction function that
3669 * needs to be eventually invoked from the map free path.
3670 */
3671 if (info->type == BPF_KPTR_REF) {
3672 const struct btf_type *dtor_func;
3673 const char *dtor_func_name;
3674 unsigned long addr;
3675 s32 dtor_btf_id;
3676
3677 /* This call also serves as a whitelist of allowed objects that
3678 * can be used as a referenced pointer and be stored in a map at
3679 * the same time.
3680 */
3681 dtor_btf_id = btf_find_dtor_kfunc(btf: kptr_btf, btf_id: id);
3682 if (dtor_btf_id < 0) {
3683 ret = dtor_btf_id;
3684 goto end_btf;
3685 }
3686
3687 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3688 if (!dtor_func) {
3689 ret = -ENOENT;
3690 goto end_btf;
3691 }
3692
3693 if (btf_is_module(btf: kptr_btf)) {
3694 mod = btf_try_get_module(btf: kptr_btf);
3695 if (!mod) {
3696 ret = -ENXIO;
3697 goto end_btf;
3698 }
3699 }
3700
3701 /* We already verified dtor_func to be btf_type_is_func
3702 * in register_btf_id_dtor_kfuncs.
3703 */
3704 dtor_func_name = __btf_name_by_offset(btf: kptr_btf, offset: dtor_func->name_off);
3705 addr = kallsyms_lookup_name(name: dtor_func_name);
3706 if (!addr) {
3707 ret = -EINVAL;
3708 goto end_mod;
3709 }
3710 field->kptr.dtor = (void *)addr;
3711 }
3712
3713found_dtor:
3714 field->kptr.btf_id = id;
3715 field->kptr.btf = kptr_btf;
3716 field->kptr.module = mod;
3717 return 0;
3718end_mod:
3719 module_put(module: mod);
3720end_btf:
3721 btf_put(btf: kptr_btf);
3722 return ret;
3723}
3724
3725static int btf_parse_graph_root(const struct btf *btf,
3726 struct btf_field *field,
3727 struct btf_field_info *info,
3728 const char *node_type_name,
3729 size_t node_type_align)
3730{
3731 const struct btf_type *t, *n = NULL;
3732 const struct btf_member *member;
3733 u32 offset;
3734 int i;
3735
3736 t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3737 /* We've already checked that value_btf_id is a struct type. We
3738 * just need to figure out the offset of the list_node, and
3739 * verify its type.
3740 */
3741 for_each_member(i, t, member) {
3742 if (strcmp(info->graph_root.node_name,
3743 __btf_name_by_offset(btf, offset: member->name_off)))
3744 continue;
3745 /* Invalid BTF, two members with same name */
3746 if (n)
3747 return -EINVAL;
3748 n = btf_type_by_id(btf, member->type);
3749 if (!__btf_type_is_struct(t: n))
3750 return -EINVAL;
3751 if (strcmp(node_type_name, __btf_name_by_offset(btf, offset: n->name_off)))
3752 return -EINVAL;
3753 offset = __btf_member_bit_offset(struct_type: n, member);
3754 if (offset % 8)
3755 return -EINVAL;
3756 offset /= 8;
3757 if (offset % node_type_align)
3758 return -EINVAL;
3759
3760 field->graph_root.btf = (struct btf *)btf;
3761 field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3762 field->graph_root.node_offset = offset;
3763 }
3764 if (!n)
3765 return -ENOENT;
3766 return 0;
3767}
3768
3769static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3770 struct btf_field_info *info)
3771{
3772 return btf_parse_graph_root(btf, field, info, node_type_name: "bpf_list_node",
3773 node_type_align: __alignof__(struct bpf_list_node));
3774}
3775
3776static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3777 struct btf_field_info *info)
3778{
3779 return btf_parse_graph_root(btf, field, info, node_type_name: "bpf_rb_node",
3780 node_type_align: __alignof__(struct bpf_rb_node));
3781}
3782
3783static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3784{
3785 const struct btf_field *a = (const struct btf_field *)_a;
3786 const struct btf_field *b = (const struct btf_field *)_b;
3787
3788 if (a->offset < b->offset)
3789 return -1;
3790 else if (a->offset > b->offset)
3791 return 1;
3792 return 0;
3793}
3794
3795struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3796 u32 field_mask, u32 value_size)
3797{
3798 struct btf_field_info info_arr[BTF_FIELDS_MAX];
3799 u32 next_off = 0, field_type_size;
3800 struct btf_record *rec;
3801 int ret, i, cnt;
3802
3803 ret = btf_find_field(btf, t, field_mask, info: info_arr, ARRAY_SIZE(info_arr));
3804 if (ret < 0)
3805 return ERR_PTR(error: ret);
3806 if (!ret)
3807 return NULL;
3808
3809 cnt = ret;
3810 /* This needs to be kzalloc to zero out padding and unused fields, see
3811 * comment in btf_record_equal.
3812 */
3813 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3814 if (!rec)
3815 return ERR_PTR(error: -ENOMEM);
3816
3817 rec->spin_lock_off = -EINVAL;
3818 rec->timer_off = -EINVAL;
3819 rec->refcount_off = -EINVAL;
3820 for (i = 0; i < cnt; i++) {
3821 field_type_size = btf_field_type_size(type: info_arr[i].type);
3822 if (info_arr[i].off + field_type_size > value_size) {
3823 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3824 ret = -EFAULT;
3825 goto end;
3826 }
3827 if (info_arr[i].off < next_off) {
3828 ret = -EEXIST;
3829 goto end;
3830 }
3831 next_off = info_arr[i].off + field_type_size;
3832
3833 rec->field_mask |= info_arr[i].type;
3834 rec->fields[i].offset = info_arr[i].off;
3835 rec->fields[i].type = info_arr[i].type;
3836 rec->fields[i].size = field_type_size;
3837
3838 switch (info_arr[i].type) {
3839 case BPF_SPIN_LOCK:
3840 WARN_ON_ONCE(rec->spin_lock_off >= 0);
3841 /* Cache offset for faster lookup at runtime */
3842 rec->spin_lock_off = rec->fields[i].offset;
3843 break;
3844 case BPF_TIMER:
3845 WARN_ON_ONCE(rec->timer_off >= 0);
3846 /* Cache offset for faster lookup at runtime */
3847 rec->timer_off = rec->fields[i].offset;
3848 break;
3849 case BPF_REFCOUNT:
3850 WARN_ON_ONCE(rec->refcount_off >= 0);
3851 /* Cache offset for faster lookup at runtime */
3852 rec->refcount_off = rec->fields[i].offset;
3853 break;
3854 case BPF_KPTR_UNREF:
3855 case BPF_KPTR_REF:
3856 case BPF_KPTR_PERCPU:
3857 ret = btf_parse_kptr(btf, field: &rec->fields[i], info: &info_arr[i]);
3858 if (ret < 0)
3859 goto end;
3860 break;
3861 case BPF_LIST_HEAD:
3862 ret = btf_parse_list_head(btf, field: &rec->fields[i], info: &info_arr[i]);
3863 if (ret < 0)
3864 goto end;
3865 break;
3866 case BPF_RB_ROOT:
3867 ret = btf_parse_rb_root(btf, field: &rec->fields[i], info: &info_arr[i]);
3868 if (ret < 0)
3869 goto end;
3870 break;
3871 case BPF_LIST_NODE:
3872 case BPF_RB_NODE:
3873 break;
3874 default:
3875 ret = -EFAULT;
3876 goto end;
3877 }
3878 rec->cnt++;
3879 }
3880
3881 /* bpf_{list_head, rb_node} require bpf_spin_lock */
3882 if ((btf_record_has_field(rec, type: BPF_LIST_HEAD) ||
3883 btf_record_has_field(rec, type: BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3884 ret = -EINVAL;
3885 goto end;
3886 }
3887
3888 if (rec->refcount_off < 0 &&
3889 btf_record_has_field(rec, type: BPF_LIST_NODE) &&
3890 btf_record_has_field(rec, type: BPF_RB_NODE)) {
3891 ret = -EINVAL;
3892 goto end;
3893 }
3894
3895 sort_r(base: rec->fields, num: rec->cnt, size: sizeof(struct btf_field), cmp_func: btf_field_cmp,
3896 NULL, priv: rec);
3897
3898 return rec;
3899end:
3900 btf_record_free(rec);
3901 return ERR_PTR(error: ret);
3902}
3903
3904int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3905{
3906 int i;
3907
3908 /* There are three types that signify ownership of some other type:
3909 * kptr_ref, bpf_list_head, bpf_rb_root.
3910 * kptr_ref only supports storing kernel types, which can't store
3911 * references to program allocated local types.
3912 *
3913 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3914 * does not form cycles.
3915 */
3916 if (IS_ERR_OR_NULL(ptr: rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
3917 return 0;
3918 for (i = 0; i < rec->cnt; i++) {
3919 struct btf_struct_meta *meta;
3920 u32 btf_id;
3921
3922 if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
3923 continue;
3924 btf_id = rec->fields[i].graph_root.value_btf_id;
3925 meta = btf_find_struct_meta(btf, btf_id);
3926 if (!meta)
3927 return -EFAULT;
3928 rec->fields[i].graph_root.value_rec = meta->record;
3929
3930 /* We need to set value_rec for all root types, but no need
3931 * to check ownership cycle for a type unless it's also a
3932 * node type.
3933 */
3934 if (!(rec->field_mask & BPF_GRAPH_NODE))
3935 continue;
3936
3937 /* We need to ensure ownership acyclicity among all types. The
3938 * proper way to do it would be to topologically sort all BTF
3939 * IDs based on the ownership edges, since there can be multiple
3940 * bpf_{list_head,rb_node} in a type. Instead, we use the
3941 * following resaoning:
3942 *
3943 * - A type can only be owned by another type in user BTF if it
3944 * has a bpf_{list,rb}_node. Let's call these node types.
3945 * - A type can only _own_ another type in user BTF if it has a
3946 * bpf_{list_head,rb_root}. Let's call these root types.
3947 *
3948 * We ensure that if a type is both a root and node, its
3949 * element types cannot be root types.
3950 *
3951 * To ensure acyclicity:
3952 *
3953 * When A is an root type but not a node, its ownership
3954 * chain can be:
3955 * A -> B -> C
3956 * Where:
3957 * - A is an root, e.g. has bpf_rb_root.
3958 * - B is both a root and node, e.g. has bpf_rb_node and
3959 * bpf_list_head.
3960 * - C is only an root, e.g. has bpf_list_node
3961 *
3962 * When A is both a root and node, some other type already
3963 * owns it in the BTF domain, hence it can not own
3964 * another root type through any of the ownership edges.
3965 * A -> B
3966 * Where:
3967 * - A is both an root and node.
3968 * - B is only an node.
3969 */
3970 if (meta->record->field_mask & BPF_GRAPH_ROOT)
3971 return -ELOOP;
3972 }
3973 return 0;
3974}
3975
3976static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3977 u32 type_id, void *data, u8 bits_offset,
3978 struct btf_show *show)
3979{
3980 const struct btf_member *member;
3981 void *safe_data;
3982 u32 i;
3983
3984 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3985 if (!safe_data)
3986 return;
3987
3988 for_each_member(i, t, member) {
3989 const struct btf_type *member_type = btf_type_by_id(btf,
3990 member->type);
3991 const struct btf_kind_operations *ops;
3992 u32 member_offset, bitfield_size;
3993 u32 bytes_offset;
3994 u8 bits8_offset;
3995
3996 btf_show_start_member(show, m: member);
3997
3998 member_offset = __btf_member_bit_offset(struct_type: t, member);
3999 bitfield_size = __btf_member_bitfield_size(struct_type: t, member);
4000 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4001 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4002 if (bitfield_size) {
4003 safe_data = btf_show_start_type(show, t: member_type,
4004 type_id: member->type,
4005 data: data + bytes_offset);
4006 if (safe_data)
4007 btf_bitfield_show(data: safe_data,
4008 bits_offset: bits8_offset,
4009 nr_bits: bitfield_size, show);
4010 btf_show_end_type(show);
4011 } else {
4012 ops = btf_type_ops(t: member_type);
4013 ops->show(btf, member_type, member->type,
4014 data + bytes_offset, bits8_offset, show);
4015 }
4016
4017 btf_show_end_member(show);
4018 }
4019
4020 btf_show_end_struct_type(show);
4021}
4022
4023static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4024 u32 type_id, void *data, u8 bits_offset,
4025 struct btf_show *show)
4026{
4027 const struct btf_member *m = show->state.member;
4028
4029 /*
4030 * First check if any members would be shown (are non-zero).
4031 * See comments above "struct btf_show" definition for more
4032 * details on how this works at a high-level.
4033 */
4034 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4035 if (!show->state.depth_check) {
4036 show->state.depth_check = show->state.depth + 1;
4037 show->state.depth_to_show = 0;
4038 }
4039 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
4040 /* Restore saved member data here */
4041 show->state.member = m;
4042 if (show->state.depth_check != show->state.depth + 1)
4043 return;
4044 show->state.depth_check = 0;
4045
4046 if (show->state.depth_to_show <= show->state.depth)
4047 return;
4048 /*
4049 * Reaching here indicates we have recursed and found
4050 * non-zero child values.
4051 */
4052 }
4053
4054 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
4055}
4056
4057static struct btf_kind_operations struct_ops = {
4058 .check_meta = btf_struct_check_meta,
4059 .resolve = btf_struct_resolve,
4060 .check_member = btf_struct_check_member,
4061 .check_kflag_member = btf_generic_check_kflag_member,
4062 .log_details = btf_struct_log,
4063 .show = btf_struct_show,
4064};
4065
4066static int btf_enum_check_member(struct btf_verifier_env *env,
4067 const struct btf_type *struct_type,
4068 const struct btf_member *member,
4069 const struct btf_type *member_type)
4070{
4071 u32 struct_bits_off = member->offset;
4072 u32 struct_size, bytes_offset;
4073
4074 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4075 btf_verifier_log_member(env, struct_type, member,
4076 fmt: "Member is not byte aligned");
4077 return -EINVAL;
4078 }
4079
4080 struct_size = struct_type->size;
4081 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4082 if (struct_size - bytes_offset < member_type->size) {
4083 btf_verifier_log_member(env, struct_type, member,
4084 fmt: "Member exceeds struct_size");
4085 return -EINVAL;
4086 }
4087
4088 return 0;
4089}
4090
4091static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4092 const struct btf_type *struct_type,
4093 const struct btf_member *member,
4094 const struct btf_type *member_type)
4095{
4096 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4097 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4098
4099 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4100 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4101 if (!nr_bits) {
4102 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4103 btf_verifier_log_member(env, struct_type, member,
4104 fmt: "Member is not byte aligned");
4105 return -EINVAL;
4106 }
4107
4108 nr_bits = int_bitsize;
4109 } else if (nr_bits > int_bitsize) {
4110 btf_verifier_log_member(env, struct_type, member,
4111 fmt: "Invalid member bitfield_size");
4112 return -EINVAL;
4113 }
4114
4115 struct_size = struct_type->size;
4116 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4117 if (struct_size < bytes_end) {
4118 btf_verifier_log_member(env, struct_type, member,
4119 fmt: "Member exceeds struct_size");
4120 return -EINVAL;
4121 }
4122
4123 return 0;
4124}
4125
4126static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4127 const struct btf_type *t,
4128 u32 meta_left)
4129{
4130 const struct btf_enum *enums = btf_type_enum(t);
4131 struct btf *btf = env->btf;
4132 const char *fmt_str;
4133 u16 i, nr_enums;
4134 u32 meta_needed;
4135
4136 nr_enums = btf_type_vlen(t);
4137 meta_needed = nr_enums * sizeof(*enums);
4138
4139 if (meta_left < meta_needed) {
4140 btf_verifier_log_basic(env, t,
4141 "meta_left:%u meta_needed:%u",
4142 meta_left, meta_needed);
4143 return -EINVAL;
4144 }
4145
4146 if (t->size > 8 || !is_power_of_2(n: t->size)) {
4147 btf_verifier_log_type(env, t, "Unexpected size");
4148 return -EINVAL;
4149 }
4150
4151 /* enum type either no name or a valid one */
4152 if (t->name_off &&
4153 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
4154 btf_verifier_log_type(env, t, "Invalid name");
4155 return -EINVAL;
4156 }
4157
4158 btf_verifier_log_type(env, t, NULL);
4159
4160 for (i = 0; i < nr_enums; i++) {
4161 if (!btf_name_offset_valid(btf, offset: enums[i].name_off)) {
4162 btf_verifier_log(env, fmt: "\tInvalid name_offset:%u",
4163 enums[i].name_off);
4164 return -EINVAL;
4165 }
4166
4167 /* enum member must have a valid name */
4168 if (!enums[i].name_off ||
4169 !btf_name_valid_identifier(btf, offset: enums[i].name_off)) {
4170 btf_verifier_log_type(env, t, "Invalid name");
4171 return -EINVAL;
4172 }
4173
4174 if (env->log.level == BPF_LOG_KERNEL)
4175 continue;
4176 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4177 btf_verifier_log(env, fmt: fmt_str,
4178 __btf_name_by_offset(btf, offset: enums[i].name_off),
4179 enums[i].val);
4180 }
4181
4182 return meta_needed;
4183}
4184
4185static void btf_enum_log(struct btf_verifier_env *env,
4186 const struct btf_type *t)
4187{
4188 btf_verifier_log(env, fmt: "size=%u vlen=%u", t->size, btf_type_vlen(t));
4189}
4190
4191static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4192 u32 type_id, void *data, u8 bits_offset,
4193 struct btf_show *show)
4194{
4195 const struct btf_enum *enums = btf_type_enum(t);
4196 u32 i, nr_enums = btf_type_vlen(t);
4197 void *safe_data;
4198 int v;
4199
4200 safe_data = btf_show_start_type(show, t, type_id, data);
4201 if (!safe_data)
4202 return;
4203
4204 v = *(int *)safe_data;
4205
4206 for (i = 0; i < nr_enums; i++) {
4207 if (v != enums[i].val)
4208 continue;
4209
4210 btf_show_type_value(show, "%s",
4211 __btf_name_by_offset(btf,
4212 enums[i].name_off));
4213
4214 btf_show_end_type(show);
4215 return;
4216 }
4217
4218 if (btf_type_kflag(t))
4219 btf_show_type_value(show, "%d", v);
4220 else
4221 btf_show_type_value(show, "%u", v);
4222 btf_show_end_type(show);
4223}
4224
4225static struct btf_kind_operations enum_ops = {
4226 .check_meta = btf_enum_check_meta,
4227 .resolve = btf_df_resolve,
4228 .check_member = btf_enum_check_member,
4229 .check_kflag_member = btf_enum_check_kflag_member,
4230 .log_details = btf_enum_log,
4231 .show = btf_enum_show,
4232};
4233
4234static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4235 const struct btf_type *t,
4236 u32 meta_left)
4237{
4238 const struct btf_enum64 *enums = btf_type_enum64(t);
4239 struct btf *btf = env->btf;
4240 const char *fmt_str;
4241 u16 i, nr_enums;
4242 u32 meta_needed;
4243
4244 nr_enums = btf_type_vlen(t);
4245 meta_needed = nr_enums * sizeof(*enums);
4246
4247 if (meta_left < meta_needed) {
4248 btf_verifier_log_basic(env, t,
4249 "meta_left:%u meta_needed:%u",
4250 meta_left, meta_needed);
4251 return -EINVAL;
4252 }
4253
4254 if (t->size > 8 || !is_power_of_2(n: t->size)) {
4255 btf_verifier_log_type(env, t, "Unexpected size");
4256 return -EINVAL;
4257 }
4258
4259 /* enum type either no name or a valid one */
4260 if (t->name_off &&
4261 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
4262 btf_verifier_log_type(env, t, "Invalid name");
4263 return -EINVAL;
4264 }
4265
4266 btf_verifier_log_type(env, t, NULL);
4267
4268 for (i = 0; i < nr_enums; i++) {
4269 if (!btf_name_offset_valid(btf, offset: enums[i].name_off)) {
4270 btf_verifier_log(env, fmt: "\tInvalid name_offset:%u",
4271 enums[i].name_off);
4272 return -EINVAL;
4273 }
4274
4275 /* enum member must have a valid name */
4276 if (!enums[i].name_off ||
4277 !btf_name_valid_identifier(btf, offset: enums[i].name_off)) {
4278 btf_verifier_log_type(env, t, "Invalid name");
4279 return -EINVAL;
4280 }
4281
4282 if (env->log.level == BPF_LOG_KERNEL)
4283 continue;
4284
4285 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4286 btf_verifier_log(env, fmt: fmt_str,
4287 __btf_name_by_offset(btf, offset: enums[i].name_off),
4288 btf_enum64_value(e: enums + i));
4289 }
4290
4291 return meta_needed;
4292}
4293
4294static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4295 u32 type_id, void *data, u8 bits_offset,
4296 struct btf_show *show)
4297{
4298 const struct btf_enum64 *enums = btf_type_enum64(t);
4299 u32 i, nr_enums = btf_type_vlen(t);
4300 void *safe_data;
4301 s64 v;
4302
4303 safe_data = btf_show_start_type(show, t, type_id, data);
4304 if (!safe_data)
4305 return;
4306
4307 v = *(u64 *)safe_data;
4308
4309 for (i = 0; i < nr_enums; i++) {
4310 if (v != btf_enum64_value(e: enums + i))
4311 continue;
4312
4313 btf_show_type_value(show, "%s",
4314 __btf_name_by_offset(btf,
4315 enums[i].name_off));
4316
4317 btf_show_end_type(show);
4318 return;
4319 }
4320
4321 if (btf_type_kflag(t))
4322 btf_show_type_value(show, "%lld", v);
4323 else
4324 btf_show_type_value(show, "%llu", v);
4325 btf_show_end_type(show);
4326}
4327
4328static struct btf_kind_operations enum64_ops = {
4329 .check_meta = btf_enum64_check_meta,
4330 .resolve = btf_df_resolve,
4331 .check_member = btf_enum_check_member,
4332 .check_kflag_member = btf_enum_check_kflag_member,
4333 .log_details = btf_enum_log,
4334 .show = btf_enum64_show,
4335};
4336
4337static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4338 const struct btf_type *t,
4339 u32 meta_left)
4340{
4341 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4342
4343 if (meta_left < meta_needed) {
4344 btf_verifier_log_basic(env, t,
4345 "meta_left:%u meta_needed:%u",
4346 meta_left, meta_needed);
4347 return -EINVAL;
4348 }
4349
4350 if (t->name_off) {
4351 btf_verifier_log_type(env, t, "Invalid name");
4352 return -EINVAL;
4353 }
4354
4355 if (btf_type_kflag(t)) {
4356 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4357 return -EINVAL;
4358 }
4359
4360 btf_verifier_log_type(env, t, NULL);
4361
4362 return meta_needed;
4363}
4364
4365static void btf_func_proto_log(struct btf_verifier_env *env,
4366 const struct btf_type *t)
4367{
4368 const struct btf_param *args = (const struct btf_param *)(t + 1);
4369 u16 nr_args = btf_type_vlen(t), i;
4370
4371 btf_verifier_log(env, fmt: "return=%u args=(", t->type);
4372 if (!nr_args) {
4373 btf_verifier_log(env, fmt: "void");
4374 goto done;
4375 }
4376
4377 if (nr_args == 1 && !args[0].type) {
4378 /* Only one vararg */
4379 btf_verifier_log(env, fmt: "vararg");
4380 goto done;
4381 }
4382
4383 btf_verifier_log(env, fmt: "%u %s", args[0].type,
4384 __btf_name_by_offset(btf: env->btf,
4385 offset: args[0].name_off));
4386 for (i = 1; i < nr_args - 1; i++)
4387 btf_verifier_log(env, fmt: ", %u %s", args[i].type,
4388 __btf_name_by_offset(btf: env->btf,
4389 offset: args[i].name_off));
4390
4391 if (nr_args > 1) {
4392 const struct btf_param *last_arg = &args[nr_args - 1];
4393
4394 if (last_arg->type)
4395 btf_verifier_log(env, fmt: ", %u %s", last_arg->type,
4396 __btf_name_by_offset(btf: env->btf,
4397 offset: last_arg->name_off));
4398 else
4399 btf_verifier_log(env, fmt: ", vararg");
4400 }
4401
4402done:
4403 btf_verifier_log(env, fmt: ")");
4404}
4405
4406static struct btf_kind_operations func_proto_ops = {
4407 .check_meta = btf_func_proto_check_meta,
4408 .resolve = btf_df_resolve,
4409 /*
4410 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4411 * a struct's member.
4412 *
4413 * It should be a function pointer instead.
4414 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4415 *
4416 * Hence, there is no btf_func_check_member().
4417 */
4418 .check_member = btf_df_check_member,
4419 .check_kflag_member = btf_df_check_kflag_member,
4420 .log_details = btf_func_proto_log,
4421 .show = btf_df_show,
4422};
4423
4424static s32 btf_func_check_meta(struct btf_verifier_env *env,
4425 const struct btf_type *t,
4426 u32 meta_left)
4427{
4428 if (!t->name_off ||
4429 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
4430 btf_verifier_log_type(env, t, "Invalid name");
4431 return -EINVAL;
4432 }
4433
4434 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4435 btf_verifier_log_type(env, t, "Invalid func linkage");
4436 return -EINVAL;
4437 }
4438
4439 if (btf_type_kflag(t)) {
4440 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4441 return -EINVAL;
4442 }
4443
4444 btf_verifier_log_type(env, t, NULL);
4445
4446 return 0;
4447}
4448
4449static int btf_func_resolve(struct btf_verifier_env *env,
4450 const struct resolve_vertex *v)
4451{
4452 const struct btf_type *t = v->t;
4453 u32 next_type_id = t->type;
4454 int err;
4455
4456 err = btf_func_check(env, t);
4457 if (err)
4458 return err;
4459
4460 env_stack_pop_resolved(env, resolved_type_id: next_type_id, resolved_size: 0);
4461 return 0;
4462}
4463
4464static struct btf_kind_operations func_ops = {
4465 .check_meta = btf_func_check_meta,
4466 .resolve = btf_func_resolve,
4467 .check_member = btf_df_check_member,
4468 .check_kflag_member = btf_df_check_kflag_member,
4469 .log_details = btf_ref_type_log,
4470 .show = btf_df_show,
4471};
4472
4473static s32 btf_var_check_meta(struct btf_verifier_env *env,
4474 const struct btf_type *t,
4475 u32 meta_left)
4476{
4477 const struct btf_var *var;
4478 u32 meta_needed = sizeof(*var);
4479
4480 if (meta_left < meta_needed) {
4481 btf_verifier_log_basic(env, t,
4482 "meta_left:%u meta_needed:%u",
4483 meta_left, meta_needed);
4484 return -EINVAL;
4485 }
4486
4487 if (btf_type_vlen(t)) {
4488 btf_verifier_log_type(env, t, "vlen != 0");
4489 return -EINVAL;
4490 }
4491
4492 if (btf_type_kflag(t)) {
4493 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4494 return -EINVAL;
4495 }
4496
4497 if (!t->name_off ||
4498 !__btf_name_valid(btf: env->btf, offset: t->name_off)) {
4499 btf_verifier_log_type(env, t, "Invalid name");
4500 return -EINVAL;
4501 }
4502
4503 /* A var cannot be in type void */
4504 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4505 btf_verifier_log_type(env, t, "Invalid type_id");
4506 return -EINVAL;
4507 }
4508
4509 var = btf_type_var(t);
4510 if (var->linkage != BTF_VAR_STATIC &&
4511 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4512 btf_verifier_log_type(env, t, "Linkage not supported");
4513 return -EINVAL;
4514 }
4515
4516 btf_verifier_log_type(env, t, NULL);
4517
4518 return meta_needed;
4519}
4520
4521static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4522{
4523 const struct btf_var *var = btf_type_var(t);
4524
4525 btf_verifier_log(env, fmt: "type_id=%u linkage=%u", t->type, var->linkage);
4526}
4527
4528static const struct btf_kind_operations var_ops = {
4529 .check_meta = btf_var_check_meta,
4530 .resolve = btf_var_resolve,
4531 .check_member = btf_df_check_member,
4532 .check_kflag_member = btf_df_check_kflag_member,
4533 .log_details = btf_var_log,
4534 .show = btf_var_show,
4535};
4536
4537static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4538 const struct btf_type *t,
4539 u32 meta_left)
4540{
4541 const struct btf_var_secinfo *vsi;
4542 u64 last_vsi_end_off = 0, sum = 0;
4543 u32 i, meta_needed;
4544
4545 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4546 if (meta_left < meta_needed) {
4547 btf_verifier_log_basic(env, t,
4548 "meta_left:%u meta_needed:%u",
4549 meta_left, meta_needed);
4550 return -EINVAL;
4551 }
4552
4553 if (!t->size) {
4554 btf_verifier_log_type(env, t, "size == 0");
4555 return -EINVAL;
4556 }
4557
4558 if (btf_type_kflag(t)) {
4559 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4560 return -EINVAL;
4561 }
4562
4563 if (!t->name_off ||
4564 !btf_name_valid_section(btf: env->btf, offset: t->name_off)) {
4565 btf_verifier_log_type(env, t, "Invalid name");
4566 return -EINVAL;
4567 }
4568
4569 btf_verifier_log_type(env, t, NULL);
4570
4571 for_each_vsi(i, t, vsi) {
4572 /* A var cannot be in type void */
4573 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4574 btf_verifier_log_vsi(env, datasec_type: t, vsi,
4575 fmt: "Invalid type_id");
4576 return -EINVAL;
4577 }
4578
4579 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4580 btf_verifier_log_vsi(env, datasec_type: t, vsi,
4581 fmt: "Invalid offset");
4582 return -EINVAL;
4583 }
4584
4585 if (!vsi->size || vsi->size > t->size) {
4586 btf_verifier_log_vsi(env, datasec_type: t, vsi,
4587 fmt: "Invalid size");
4588 return -EINVAL;
4589 }
4590
4591 last_vsi_end_off = vsi->offset + vsi->size;
4592 if (last_vsi_end_off > t->size) {
4593 btf_verifier_log_vsi(env, datasec_type: t, vsi,
4594 fmt: "Invalid offset+size");
4595 return -EINVAL;
4596 }
4597
4598 btf_verifier_log_vsi(env, datasec_type: t, vsi, NULL);
4599 sum += vsi->size;
4600 }
4601
4602 if (t->size < sum) {
4603 btf_verifier_log_type(env, t, "Invalid btf_info size");
4604 return -EINVAL;
4605 }
4606
4607 return meta_needed;
4608}
4609
4610static int btf_datasec_resolve(struct btf_verifier_env *env,
4611 const struct resolve_vertex *v)
4612{
4613 const struct btf_var_secinfo *vsi;
4614 struct btf *btf = env->btf;
4615 u16 i;
4616
4617 env->resolve_mode = RESOLVE_TBD;
4618 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4619 u32 var_type_id = vsi->type, type_id, type_size = 0;
4620 const struct btf_type *var_type = btf_type_by_id(env->btf,
4621 var_type_id);
4622 if (!var_type || !btf_type_is_var(t: var_type)) {
4623 btf_verifier_log_vsi(env, datasec_type: v->t, vsi,
4624 fmt: "Not a VAR kind member");
4625 return -EINVAL;
4626 }
4627
4628 if (!env_type_is_resolve_sink(env, next_type: var_type) &&
4629 !env_type_is_resolved(env, type_id: var_type_id)) {
4630 env_stack_set_next_member(env, next_member: i + 1);
4631 return env_stack_push(env, t: var_type, type_id: var_type_id);
4632 }
4633
4634 type_id = var_type->type;
4635 if (!btf_type_id_size(btf, type_id: &type_id, ret_size: &type_size)) {
4636 btf_verifier_log_vsi(env, datasec_type: v->t, vsi, fmt: "Invalid type");
4637 return -EINVAL;
4638 }
4639
4640 if (vsi->size < type_size) {
4641 btf_verifier_log_vsi(env, datasec_type: v->t, vsi, fmt: "Invalid size");
4642 return -EINVAL;
4643 }
4644 }
4645
4646 env_stack_pop_resolved(env, resolved_type_id: 0, resolved_size: 0);
4647 return 0;
4648}
4649
4650static void btf_datasec_log(struct btf_verifier_env *env,
4651 const struct btf_type *t)
4652{
4653 btf_verifier_log(env, fmt: "size=%u vlen=%u", t->size, btf_type_vlen(t));
4654}
4655
4656static void btf_datasec_show(const struct btf *btf,
4657 const struct btf_type *t, u32 type_id,
4658 void *data, u8 bits_offset,
4659 struct btf_show *show)
4660{
4661 const struct btf_var_secinfo *vsi;
4662 const struct btf_type *var;
4663 u32 i;
4664
4665 if (!btf_show_start_type(show, t, type_id, data))
4666 return;
4667
4668 btf_show_type_value(show, "section (\"%s\") = {",
4669 __btf_name_by_offset(btf, t->name_off));
4670 for_each_vsi(i, t, vsi) {
4671 var = btf_type_by_id(btf, vsi->type);
4672 if (i)
4673 btf_show(show, fmt: ",");
4674 btf_type_ops(t: var)->show(btf, var, vsi->type,
4675 data + vsi->offset, bits_offset, show);
4676 }
4677 btf_show_end_type(show);
4678}
4679
4680static const struct btf_kind_operations datasec_ops = {
4681 .check_meta = btf_datasec_check_meta,
4682 .resolve = btf_datasec_resolve,
4683 .check_member = btf_df_check_member,
4684 .check_kflag_member = btf_df_check_kflag_member,
4685 .log_details = btf_datasec_log,
4686 .show = btf_datasec_show,
4687};
4688
4689static s32 btf_float_check_meta(struct btf_verifier_env *env,
4690 const struct btf_type *t,
4691 u32 meta_left)
4692{
4693 if (btf_type_vlen(t)) {
4694 btf_verifier_log_type(env, t, "vlen != 0");
4695 return -EINVAL;
4696 }
4697
4698 if (btf_type_kflag(t)) {
4699 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4700 return -EINVAL;
4701 }
4702
4703 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4704 t->size != 16) {
4705 btf_verifier_log_type(env, t, "Invalid type_size");
4706 return -EINVAL;
4707 }
4708
4709 btf_verifier_log_type(env, t, NULL);
4710
4711 return 0;
4712}
4713
4714static int btf_float_check_member(struct btf_verifier_env *env,
4715 const struct btf_type *struct_type,
4716 const struct btf_member *member,
4717 const struct btf_type *member_type)
4718{
4719 u64 start_offset_bytes;
4720 u64 end_offset_bytes;
4721 u64 misalign_bits;
4722 u64 align_bytes;
4723 u64 align_bits;
4724
4725 /* Different architectures have different alignment requirements, so
4726 * here we check only for the reasonable minimum. This way we ensure
4727 * that types after CO-RE can pass the kernel BTF verifier.
4728 */
4729 align_bytes = min_t(u64, sizeof(void *), member_type->size);
4730 align_bits = align_bytes * BITS_PER_BYTE;
4731 div64_u64_rem(dividend: member->offset, divisor: align_bits, remainder: &misalign_bits);
4732 if (misalign_bits) {
4733 btf_verifier_log_member(env, struct_type, member,
4734 fmt: "Member is not properly aligned");
4735 return -EINVAL;
4736 }
4737
4738 start_offset_bytes = member->offset / BITS_PER_BYTE;
4739 end_offset_bytes = start_offset_bytes + member_type->size;
4740 if (end_offset_bytes > struct_type->size) {
4741 btf_verifier_log_member(env, struct_type, member,
4742 fmt: "Member exceeds struct_size");
4743 return -EINVAL;
4744 }
4745
4746 return 0;
4747}
4748
4749static void btf_float_log(struct btf_verifier_env *env,
4750 const struct btf_type *t)
4751{
4752 btf_verifier_log(env, fmt: "size=%u", t->size);
4753}
4754
4755static const struct btf_kind_operations float_ops = {
4756 .check_meta = btf_float_check_meta,
4757 .resolve = btf_df_resolve,
4758 .check_member = btf_float_check_member,
4759 .check_kflag_member = btf_generic_check_kflag_member,
4760 .log_details = btf_float_log,
4761 .show = btf_df_show,
4762};
4763
4764static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4765 const struct btf_type *t,
4766 u32 meta_left)
4767{
4768 const struct btf_decl_tag *tag;
4769 u32 meta_needed = sizeof(*tag);
4770 s32 component_idx;
4771 const char *value;
4772
4773 if (meta_left < meta_needed) {
4774 btf_verifier_log_basic(env, t,
4775 "meta_left:%u meta_needed:%u",
4776 meta_left, meta_needed);
4777 return -EINVAL;
4778 }
4779
4780 value = btf_name_by_offset(btf: env->btf, offset: t->name_off);
4781 if (!value || !value[0]) {
4782 btf_verifier_log_type(env, t, "Invalid value");
4783 return -EINVAL;
4784 }
4785
4786 if (btf_type_vlen(t)) {
4787 btf_verifier_log_type(env, t, "vlen != 0");
4788 return -EINVAL;
4789 }
4790
4791 if (btf_type_kflag(t)) {
4792 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4793 return -EINVAL;
4794 }
4795
4796 component_idx = btf_type_decl_tag(t)->component_idx;
4797 if (component_idx < -1) {
4798 btf_verifier_log_type(env, t, "Invalid component_idx");
4799 return -EINVAL;
4800 }
4801
4802 btf_verifier_log_type(env, t, NULL);
4803
4804 return meta_needed;
4805}
4806
4807static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4808 const struct resolve_vertex *v)
4809{
4810 const struct btf_type *next_type;
4811 const struct btf_type *t = v->t;
4812 u32 next_type_id = t->type;
4813 struct btf *btf = env->btf;
4814 s32 component_idx;
4815 u32 vlen;
4816
4817 next_type = btf_type_by_id(btf, next_type_id);
4818 if (!next_type || !btf_type_is_decl_tag_target(t: next_type)) {
4819 btf_verifier_log_type(env, v->t, "Invalid type_id");
4820 return -EINVAL;
4821 }
4822
4823 if (!env_type_is_resolve_sink(env, next_type) &&
4824 !env_type_is_resolved(env, type_id: next_type_id))
4825 return env_stack_push(env, t: next_type, type_id: next_type_id);
4826
4827 component_idx = btf_type_decl_tag(t)->component_idx;
4828 if (component_idx != -1) {
4829 if (btf_type_is_var(t: next_type) || btf_type_is_typedef(t: next_type)) {
4830 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4831 return -EINVAL;
4832 }
4833
4834 if (btf_type_is_struct(t: next_type)) {
4835 vlen = btf_type_vlen(t: next_type);
4836 } else {
4837 /* next_type should be a function */
4838 next_type = btf_type_by_id(btf, next_type->type);
4839 vlen = btf_type_vlen(t: next_type);
4840 }
4841
4842 if ((u32)component_idx >= vlen) {
4843 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4844 return -EINVAL;
4845 }
4846 }
4847
4848 env_stack_pop_resolved(env, resolved_type_id: next_type_id, resolved_size: 0);
4849
4850 return 0;
4851}
4852
4853static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4854{
4855 btf_verifier_log(env, fmt: "type=%u component_idx=%d", t->type,
4856 btf_type_decl_tag(t)->component_idx);
4857}
4858
4859static const struct btf_kind_operations decl_tag_ops = {
4860 .check_meta = btf_decl_tag_check_meta,
4861 .resolve = btf_decl_tag_resolve,
4862 .check_member = btf_df_check_member,
4863 .check_kflag_member = btf_df_check_kflag_member,
4864 .log_details = btf_decl_tag_log,
4865 .show = btf_df_show,
4866};
4867
4868static int btf_func_proto_check(struct btf_verifier_env *env,
4869 const struct btf_type *t)
4870{
4871 const struct btf_type *ret_type;
4872 const struct btf_param *args;
4873 const struct btf *btf;
4874 u16 nr_args, i;
4875 int err;
4876
4877 btf = env->btf;
4878 args = (const struct btf_param *)(t + 1);
4879 nr_args = btf_type_vlen(t);
4880
4881 /* Check func return type which could be "void" (t->type == 0) */
4882 if (t->type) {
4883 u32 ret_type_id = t->type;
4884
4885 ret_type = btf_type_by_id(btf, ret_type_id);
4886 if (!ret_type) {
4887 btf_verifier_log_type(env, t, "Invalid return type");
4888 return -EINVAL;
4889 }
4890
4891 if (btf_type_is_resolve_source_only(t: ret_type)) {
4892 btf_verifier_log_type(env, t, "Invalid return type");
4893 return -EINVAL;
4894 }
4895
4896 if (btf_type_needs_resolve(t: ret_type) &&
4897 !env_type_is_resolved(env, type_id: ret_type_id)) {
4898 err = btf_resolve(env, t: ret_type, type_id: ret_type_id);
4899 if (err)
4900 return err;
4901 }
4902
4903 /* Ensure the return type is a type that has a size */
4904 if (!btf_type_id_size(btf, type_id: &ret_type_id, NULL)) {
4905 btf_verifier_log_type(env, t, "Invalid return type");
4906 return -EINVAL;
4907 }
4908 }
4909
4910 if (!nr_args)
4911 return 0;
4912
4913 /* Last func arg type_id could be 0 if it is a vararg */
4914 if (!args[nr_args - 1].type) {
4915 if (args[nr_args - 1].name_off) {
4916 btf_verifier_log_type(env, t, "Invalid arg#%u",
4917 nr_args);
4918 return -EINVAL;
4919 }
4920 nr_args--;
4921 }
4922
4923 for (i = 0; i < nr_args; i++) {
4924 const struct btf_type *arg_type;
4925 u32 arg_type_id;
4926
4927 arg_type_id = args[i].type;
4928 arg_type = btf_type_by_id(btf, arg_type_id);
4929 if (!arg_type) {
4930 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4931 return -EINVAL;
4932 }
4933
4934 if (btf_type_is_resolve_source_only(t: arg_type)) {
4935 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4936 return -EINVAL;
4937 }
4938
4939 if (args[i].name_off &&
4940 (!btf_name_offset_valid(btf, offset: args[i].name_off) ||
4941 !btf_name_valid_identifier(btf, offset: args[i].name_off))) {
4942 btf_verifier_log_type(env, t,
4943 "Invalid arg#%u", i + 1);
4944 return -EINVAL;
4945 }
4946
4947 if (btf_type_needs_resolve(t: arg_type) &&
4948 !env_type_is_resolved(env, type_id: arg_type_id)) {
4949 err = btf_resolve(env, t: arg_type, type_id: arg_type_id);
4950 if (err)
4951 return err;
4952 }
4953
4954 if (!btf_type_id_size(btf, type_id: &arg_type_id, NULL)) {
4955 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4956 return -EINVAL;
4957 }
4958 }
4959
4960 return 0;
4961}
4962
4963static int btf_func_check(struct btf_verifier_env *env,
4964 const struct btf_type *t)
4965{
4966 const struct btf_type *proto_type;
4967 const struct btf_param *args;
4968 const struct btf *btf;
4969 u16 nr_args, i;
4970
4971 btf = env->btf;
4972 proto_type = btf_type_by_id(btf, t->type);
4973
4974 if (!proto_type || !btf_type_is_func_proto(t: proto_type)) {
4975 btf_verifier_log_type(env, t, "Invalid type_id");
4976 return -EINVAL;
4977 }
4978
4979 args = (const struct btf_param *)(proto_type + 1);
4980 nr_args = btf_type_vlen(t: proto_type);
4981 for (i = 0; i < nr_args; i++) {
4982 if (!args[i].name_off && args[i].type) {
4983 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4984 return -EINVAL;
4985 }
4986 }
4987
4988 return 0;
4989}
4990
4991static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4992 [BTF_KIND_INT] = &int_ops,
4993 [BTF_KIND_PTR] = &ptr_ops,
4994 [BTF_KIND_ARRAY] = &array_ops,
4995 [BTF_KIND_STRUCT] = &struct_ops,
4996 [BTF_KIND_UNION] = &struct_ops,
4997 [BTF_KIND_ENUM] = &enum_ops,
4998 [BTF_KIND_FWD] = &fwd_ops,
4999 [BTF_KIND_TYPEDEF] = &modifier_ops,
5000 [BTF_KIND_VOLATILE] = &modifier_ops,
5001 [BTF_KIND_CONST] = &modifier_ops,
5002 [BTF_KIND_RESTRICT] = &modifier_ops,
5003 [BTF_KIND_FUNC] = &func_ops,
5004 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5005 [BTF_KIND_VAR] = &var_ops,
5006 [BTF_KIND_DATASEC] = &datasec_ops,
5007 [BTF_KIND_FLOAT] = &float_ops,
5008 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
5009 [BTF_KIND_TYPE_TAG] = &modifier_ops,
5010 [BTF_KIND_ENUM64] = &enum64_ops,
5011};
5012
5013static s32 btf_check_meta(struct btf_verifier_env *env,
5014 const struct btf_type *t,
5015 u32 meta_left)
5016{
5017 u32 saved_meta_left = meta_left;
5018 s32 var_meta_size;
5019
5020 if (meta_left < sizeof(*t)) {
5021 btf_verifier_log(env, fmt: "[%u] meta_left:%u meta_needed:%zu",
5022 env->log_type_id, meta_left, sizeof(*t));
5023 return -EINVAL;
5024 }
5025 meta_left -= sizeof(*t);
5026
5027 if (t->info & ~BTF_INFO_MASK) {
5028 btf_verifier_log(env, fmt: "[%u] Invalid btf_info:%x",
5029 env->log_type_id, t->info);
5030 return -EINVAL;
5031 }
5032
5033 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5034 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5035 btf_verifier_log(env, fmt: "[%u] Invalid kind:%u",
5036 env->log_type_id, BTF_INFO_KIND(t->info));
5037 return -EINVAL;
5038 }
5039
5040 if (!btf_name_offset_valid(btf: env->btf, offset: t->name_off)) {
5041 btf_verifier_log(env, fmt: "[%u] Invalid name_offset:%u",
5042 env->log_type_id, t->name_off);
5043 return -EINVAL;
5044 }
5045
5046 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5047 if (var_meta_size < 0)
5048 return var_meta_size;
5049
5050 meta_left -= var_meta_size;
5051
5052 return saved_meta_left - meta_left;
5053}
5054
5055static int btf_check_all_metas(struct btf_verifier_env *env)
5056{
5057 struct btf *btf = env->btf;
5058 struct btf_header *hdr;
5059 void *cur, *end;
5060
5061 hdr = &btf->hdr;
5062 cur = btf->nohdr_data + hdr->type_off;
5063 end = cur + hdr->type_len;
5064
5065 env->log_type_id = btf->base_btf ? btf->start_id : 1;
5066 while (cur < end) {
5067 struct btf_type *t = cur;
5068 s32 meta_size;
5069
5070 meta_size = btf_check_meta(env, t, meta_left: end - cur);
5071 if (meta_size < 0)
5072 return meta_size;
5073
5074 btf_add_type(env, t);
5075 cur += meta_size;
5076 env->log_type_id++;
5077 }
5078
5079 return 0;
5080}
5081
5082static bool btf_resolve_valid(struct btf_verifier_env *env,
5083 const struct btf_type *t,
5084 u32 type_id)
5085{
5086 struct btf *btf = env->btf;
5087
5088 if (!env_type_is_resolved(env, type_id))
5089 return false;
5090
5091 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5092 return !btf_resolved_type_id(btf, type_id) &&
5093 !btf_resolved_type_size(btf, type_id);
5094
5095 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5096 return btf_resolved_type_id(btf, type_id) &&
5097 !btf_resolved_type_size(btf, type_id);
5098
5099 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5100 btf_type_is_var(t)) {
5101 t = btf_type_id_resolve(btf, type_id: &type_id);
5102 return t &&
5103 !btf_type_is_modifier(t) &&
5104 !btf_type_is_var(t) &&
5105 !btf_type_is_datasec(t);
5106 }
5107
5108 if (btf_type_is_array(t)) {
5109 const struct btf_array *array = btf_type_array(t);
5110 const struct btf_type *elem_type;
5111 u32 elem_type_id = array->type;
5112 u32 elem_size;
5113
5114 elem_type = btf_type_id_size(btf, type_id: &elem_type_id, ret_size: &elem_size);
5115 return elem_type && !btf_type_is_modifier(t: elem_type) &&
5116 (array->nelems * elem_size ==
5117 btf_resolved_type_size(btf, type_id));
5118 }
5119
5120 return false;
5121}
5122
5123static int btf_resolve(struct btf_verifier_env *env,
5124 const struct btf_type *t, u32 type_id)
5125{
5126 u32 save_log_type_id = env->log_type_id;
5127 const struct resolve_vertex *v;
5128 int err = 0;
5129
5130 env->resolve_mode = RESOLVE_TBD;
5131 env_stack_push(env, t, type_id);
5132 while (!err && (v = env_stack_peak(env))) {
5133 env->log_type_id = v->type_id;
5134 err = btf_type_ops(t: v->t)->resolve(env, v);
5135 }
5136
5137 env->log_type_id = type_id;
5138 if (err == -E2BIG) {
5139 btf_verifier_log_type(env, t,
5140 "Exceeded max resolving depth:%u",
5141 MAX_RESOLVE_DEPTH);
5142 } else if (err == -EEXIST) {
5143 btf_verifier_log_type(env, t, "Loop detected");
5144 }
5145
5146 /* Final sanity check */
5147 if (!err && !btf_resolve_valid(env, t, type_id)) {
5148 btf_verifier_log_type(env, t, "Invalid resolve state");
5149 err = -EINVAL;
5150 }
5151
5152 env->log_type_id = save_log_type_id;
5153 return err;
5154}
5155
5156static int btf_check_all_types(struct btf_verifier_env *env)
5157{
5158 struct btf *btf = env->btf;
5159 const struct btf_type *t;
5160 u32 type_id, i;
5161 int err;
5162
5163 err = env_resolve_init(env);
5164 if (err)
5165 return err;
5166
5167 env->phase++;
5168 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5169 type_id = btf->start_id + i;
5170 t = btf_type_by_id(btf, type_id);
5171
5172 env->log_type_id = type_id;
5173 if (btf_type_needs_resolve(t) &&
5174 !env_type_is_resolved(env, type_id)) {
5175 err = btf_resolve(env, t, type_id);
5176 if (err)
5177 return err;
5178 }
5179
5180 if (btf_type_is_func_proto(t)) {
5181 err = btf_func_proto_check(env, t);
5182 if (err)
5183 return err;
5184 }
5185 }
5186
5187 return 0;
5188}
5189
5190static int btf_parse_type_sec(struct btf_verifier_env *env)
5191{
5192 const struct btf_header *hdr = &env->btf->hdr;
5193 int err;
5194
5195 /* Type section must align to 4 bytes */
5196 if (hdr->type_off & (sizeof(u32) - 1)) {
5197 btf_verifier_log(env, fmt: "Unaligned type_off");
5198 return -EINVAL;
5199 }
5200
5201 if (!env->btf->base_btf && !hdr->type_len) {
5202 btf_verifier_log(env, fmt: "No type found");
5203 return -EINVAL;
5204 }
5205
5206 err = btf_check_all_metas(env);
5207 if (err)
5208 return err;
5209
5210 return btf_check_all_types(env);
5211}
5212
5213static int btf_parse_str_sec(struct btf_verifier_env *env)
5214{
5215 const struct btf_header *hdr;
5216 struct btf *btf = env->btf;
5217 const char *start, *end;
5218
5219 hdr = &btf->hdr;
5220 start = btf->nohdr_data + hdr->str_off;
5221 end = start + hdr->str_len;
5222
5223 if (end != btf->data + btf->data_size) {
5224 btf_verifier_log(env, fmt: "String section is not at the end");
5225 return -EINVAL;
5226 }
5227
5228 btf->strings = start;
5229
5230 if (btf->base_btf && !hdr->str_len)
5231 return 0;
5232 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5233 btf_verifier_log(env, fmt: "Invalid string section");
5234 return -EINVAL;
5235 }
5236 if (!btf->base_btf && start[0]) {
5237 btf_verifier_log(env, fmt: "Invalid string section");
5238 return -EINVAL;
5239 }
5240
5241 return 0;
5242}
5243
5244static const size_t btf_sec_info_offset[] = {
5245 offsetof(struct btf_header, type_off),
5246 offsetof(struct btf_header, str_off),
5247};
5248
5249static int btf_sec_info_cmp(const void *a, const void *b)
5250{
5251 const struct btf_sec_info *x = a;
5252 const struct btf_sec_info *y = b;
5253
5254 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5255}
5256
5257static int btf_check_sec_info(struct btf_verifier_env *env,
5258 u32 btf_data_size)
5259{
5260 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5261 u32 total, expected_total, i;
5262 const struct btf_header *hdr;
5263 const struct btf *btf;
5264
5265 btf = env->btf;
5266 hdr = &btf->hdr;
5267
5268 /* Populate the secs from hdr */
5269 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5270 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5271 btf_sec_info_offset[i]);
5272
5273 sort(base: secs, ARRAY_SIZE(btf_sec_info_offset),
5274 size: sizeof(struct btf_sec_info), cmp_func: btf_sec_info_cmp, NULL);
5275
5276 /* Check for gaps and overlap among sections */
5277 total = 0;
5278 expected_total = btf_data_size - hdr->hdr_len;
5279 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5280 if (expected_total < secs[i].off) {
5281 btf_verifier_log(env, fmt: "Invalid section offset");
5282 return -EINVAL;
5283 }
5284 if (total < secs[i].off) {
5285 /* gap */
5286 btf_verifier_log(env, fmt: "Unsupported section found");
5287 return -EINVAL;
5288 }
5289 if (total > secs[i].off) {
5290 btf_verifier_log(env, fmt: "Section overlap found");
5291 return -EINVAL;
5292 }
5293 if (expected_total - total < secs[i].len) {
5294 btf_verifier_log(env,
5295 fmt: "Total section length too long");
5296 return -EINVAL;
5297 }
5298 total += secs[i].len;
5299 }
5300
5301 /* There is data other than hdr and known sections */
5302 if (expected_total != total) {
5303 btf_verifier_log(env, fmt: "Unsupported section found");
5304 return -EINVAL;
5305 }
5306
5307 return 0;
5308}
5309
5310static int btf_parse_hdr(struct btf_verifier_env *env)
5311{
5312 u32 hdr_len, hdr_copy, btf_data_size;
5313 const struct btf_header *hdr;
5314 struct btf *btf;
5315
5316 btf = env->btf;
5317 btf_data_size = btf->data_size;
5318
5319 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5320 btf_verifier_log(env, fmt: "hdr_len not found");
5321 return -EINVAL;
5322 }
5323
5324 hdr = btf->data;
5325 hdr_len = hdr->hdr_len;
5326 if (btf_data_size < hdr_len) {
5327 btf_verifier_log(env, fmt: "btf_header not found");
5328 return -EINVAL;
5329 }
5330
5331 /* Ensure the unsupported header fields are zero */
5332 if (hdr_len > sizeof(btf->hdr)) {
5333 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5334 u8 *end = btf->data + hdr_len;
5335
5336 for (; expected_zero < end; expected_zero++) {
5337 if (*expected_zero) {
5338 btf_verifier_log(env, fmt: "Unsupported btf_header");
5339 return -E2BIG;
5340 }
5341 }
5342 }
5343
5344 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5345 memcpy(&btf->hdr, btf->data, hdr_copy);
5346
5347 hdr = &btf->hdr;
5348
5349 btf_verifier_log_hdr(env, btf_data_size);
5350
5351 if (hdr->magic != BTF_MAGIC) {
5352 btf_verifier_log(env, fmt: "Invalid magic");
5353 return -EINVAL;
5354 }
5355
5356 if (hdr->version != BTF_VERSION) {
5357 btf_verifier_log(env, fmt: "Unsupported version");
5358 return -ENOTSUPP;
5359 }
5360
5361 if (hdr->flags) {
5362 btf_verifier_log(env, fmt: "Unsupported flags");
5363 return -ENOTSUPP;
5364 }
5365
5366 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5367 btf_verifier_log(env, fmt: "No data");
5368 return -EINVAL;
5369 }
5370
5371 return btf_check_sec_info(env, btf_data_size);
5372}
5373
5374static const char *alloc_obj_fields[] = {
5375 "bpf_spin_lock",
5376 "bpf_list_head",
5377 "bpf_list_node",
5378 "bpf_rb_root",
5379 "bpf_rb_node",
5380 "bpf_refcount",
5381};
5382
5383static struct btf_struct_metas *
5384btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5385{
5386 union {
5387 struct btf_id_set set;
5388 struct {
5389 u32 _cnt;
5390 u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5391 } _arr;
5392 } aof;
5393 struct btf_struct_metas *tab = NULL;
5394 int i, n, id, ret;
5395
5396 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5397 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5398
5399 memset(&aof, 0, sizeof(aof));
5400 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5401 /* Try to find whether this special type exists in user BTF, and
5402 * if so remember its ID so we can easily find it among members
5403 * of structs that we iterate in the next loop.
5404 */
5405 id = btf_find_by_name_kind(btf, name: alloc_obj_fields[i], kind: BTF_KIND_STRUCT);
5406 if (id < 0)
5407 continue;
5408 aof.set.ids[aof.set.cnt++] = id;
5409 }
5410
5411 if (!aof.set.cnt)
5412 return NULL;
5413 sort(base: &aof.set.ids, num: aof.set.cnt, size: sizeof(aof.set.ids[0]), cmp_func: btf_id_cmp_func, NULL);
5414
5415 n = btf_nr_types(btf);
5416 for (i = 1; i < n; i++) {
5417 struct btf_struct_metas *new_tab;
5418 const struct btf_member *member;
5419 struct btf_struct_meta *type;
5420 struct btf_record *record;
5421 const struct btf_type *t;
5422 int j, tab_cnt;
5423
5424 t = btf_type_by_id(btf, i);
5425 if (!t) {
5426 ret = -EINVAL;
5427 goto free;
5428 }
5429 if (!__btf_type_is_struct(t))
5430 continue;
5431
5432 cond_resched();
5433
5434 for_each_member(j, t, member) {
5435 if (btf_id_set_contains(set: &aof.set, id: member->type))
5436 goto parse;
5437 }
5438 continue;
5439 parse:
5440 tab_cnt = tab ? tab->cnt : 0;
5441 new_tab = krealloc(objp: tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5442 GFP_KERNEL | __GFP_NOWARN);
5443 if (!new_tab) {
5444 ret = -ENOMEM;
5445 goto free;
5446 }
5447 if (!tab)
5448 new_tab->cnt = 0;
5449 tab = new_tab;
5450
5451 type = &tab->types[tab->cnt];
5452 type->btf_id = i;
5453 record = btf_parse_fields(btf, t, field_mask: BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5454 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, value_size: t->size);
5455 /* The record cannot be unset, treat it as an error if so */
5456 if (IS_ERR_OR_NULL(ptr: record)) {
5457 ret = PTR_ERR_OR_ZERO(ptr: record) ?: -EFAULT;
5458 goto free;
5459 }
5460 type->record = record;
5461 tab->cnt++;
5462 }
5463 return tab;
5464free:
5465 btf_struct_metas_free(tab);
5466 return ERR_PTR(error: ret);
5467}
5468
5469struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5470{
5471 struct btf_struct_metas *tab;
5472
5473 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5474 tab = btf->struct_meta_tab;
5475 if (!tab)
5476 return NULL;
5477 return bsearch(key: &btf_id, base: tab->types, num: tab->cnt, size: sizeof(tab->types[0]), cmp: btf_id_cmp_func);
5478}
5479
5480static int btf_check_type_tags(struct btf_verifier_env *env,
5481 struct btf *btf, int start_id)
5482{
5483 int i, n, good_id = start_id - 1;
5484 bool in_tags;
5485
5486 n = btf_nr_types(btf);
5487 for (i = start_id; i < n; i++) {
5488 const struct btf_type *t;
5489 int chain_limit = 32;
5490 u32 cur_id = i;
5491
5492 t = btf_type_by_id(btf, i);
5493 if (!t)
5494 return -EINVAL;
5495 if (!btf_type_is_modifier(t))
5496 continue;
5497
5498 cond_resched();
5499
5500 in_tags = btf_type_is_type_tag(t);
5501 while (btf_type_is_modifier(t)) {
5502 if (!chain_limit--) {
5503 btf_verifier_log(env, fmt: "Max chain length or cycle detected");
5504 return -ELOOP;
5505 }
5506 if (btf_type_is_type_tag(t)) {
5507 if (!in_tags) {
5508 btf_verifier_log(env, fmt: "Type tags don't precede modifiers");
5509 return -EINVAL;
5510 }
5511 } else if (in_tags) {
5512 in_tags = false;
5513 }
5514 if (cur_id <= good_id)
5515 break;
5516 /* Move to next type */
5517 cur_id = t->type;
5518 t = btf_type_by_id(btf, cur_id);
5519 if (!t)
5520 return -EINVAL;
5521 }
5522 good_id = i;
5523 }
5524 return 0;
5525}
5526
5527static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5528{
5529 u32 log_true_size;
5530 int err;
5531
5532 err = bpf_vlog_finalize(log, log_size_actual: &log_true_size);
5533
5534 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5535 copy_to_bpfptr_offset(dst: uattr, offsetof(union bpf_attr, btf_log_true_size),
5536 src: &log_true_size, size: sizeof(log_true_size)))
5537 err = -EFAULT;
5538
5539 return err;
5540}
5541
5542static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5543{
5544 bpfptr_t btf_data = make_bpfptr(addr: attr->btf, is_kernel: uattr.is_kernel);
5545 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5546 struct btf_struct_metas *struct_meta_tab;
5547 struct btf_verifier_env *env = NULL;
5548 struct btf *btf = NULL;
5549 u8 *data;
5550 int err, ret;
5551
5552 if (attr->btf_size > BTF_MAX_SIZE)
5553 return ERR_PTR(error: -E2BIG);
5554
5555 env = kzalloc(size: sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5556 if (!env)
5557 return ERR_PTR(error: -ENOMEM);
5558
5559 /* user could have requested verbose verifier output
5560 * and supplied buffer to store the verification trace
5561 */
5562 err = bpf_vlog_init(log: &env->log, log_level: attr->btf_log_level,
5563 log_buf: log_ubuf, log_size: attr->btf_log_size);
5564 if (err)
5565 goto errout_free;
5566
5567 btf = kzalloc(size: sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5568 if (!btf) {
5569 err = -ENOMEM;
5570 goto errout;
5571 }
5572 env->btf = btf;
5573
5574 data = kvmalloc(size: attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5575 if (!data) {
5576 err = -ENOMEM;
5577 goto errout;
5578 }
5579
5580 btf->data = data;
5581 btf->data_size = attr->btf_size;
5582
5583 if (copy_from_bpfptr(dst: data, src: btf_data, size: attr->btf_size)) {
5584 err = -EFAULT;
5585 goto errout;
5586 }
5587
5588 err = btf_parse_hdr(env);
5589 if (err)
5590 goto errout;
5591
5592 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5593
5594 err = btf_parse_str_sec(env);
5595 if (err)
5596 goto errout;
5597
5598 err = btf_parse_type_sec(env);
5599 if (err)
5600 goto errout;
5601
5602 err = btf_check_type_tags(env, btf, start_id: 1);
5603 if (err)
5604 goto errout;
5605
5606 struct_meta_tab = btf_parse_struct_metas(log: &env->log, btf);
5607 if (IS_ERR(ptr: struct_meta_tab)) {
5608 err = PTR_ERR(ptr: struct_meta_tab);
5609 goto errout;
5610 }
5611 btf->struct_meta_tab = struct_meta_tab;
5612
5613 if (struct_meta_tab) {
5614 int i;
5615
5616 for (i = 0; i < struct_meta_tab->cnt; i++) {
5617 err = btf_check_and_fixup_fields(btf, rec: struct_meta_tab->types[i].record);
5618 if (err < 0)
5619 goto errout_meta;
5620 }
5621 }
5622
5623 err = finalize_log(log: &env->log, uattr, uattr_size);
5624 if (err)
5625 goto errout_free;
5626
5627 btf_verifier_env_free(env);
5628 refcount_set(r: &btf->refcnt, n: 1);
5629 return btf;
5630
5631errout_meta:
5632 btf_free_struct_meta_tab(btf);
5633errout:
5634 /* overwrite err with -ENOSPC or -EFAULT */
5635 ret = finalize_log(log: &env->log, uattr, uattr_size);
5636 if (ret)
5637 err = ret;
5638errout_free:
5639 btf_verifier_env_free(env);
5640 if (btf)
5641 btf_free(btf);
5642 return ERR_PTR(error: err);
5643}
5644
5645extern char __weak __start_BTF[];
5646extern char __weak __stop_BTF[];
5647extern struct btf *btf_vmlinux;
5648
5649#define BPF_MAP_TYPE(_id, _ops)
5650#define BPF_LINK_TYPE(_id, _name)
5651static union {
5652 struct bpf_ctx_convert {
5653#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5654 prog_ctx_type _id##_prog; \
5655 kern_ctx_type _id##_kern;
5656#include <linux/bpf_types.h>
5657#undef BPF_PROG_TYPE
5658 } *__t;
5659 /* 't' is written once under lock. Read many times. */
5660 const struct btf_type *t;
5661} bpf_ctx_convert;
5662enum {
5663#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5664 __ctx_convert##_id,
5665#include <linux/bpf_types.h>
5666#undef BPF_PROG_TYPE
5667 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
5668};
5669static u8 bpf_ctx_convert_map[] = {
5670#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5671 [_id] = __ctx_convert##_id,
5672#include <linux/bpf_types.h>
5673#undef BPF_PROG_TYPE
5674 0, /* avoid empty array */
5675};
5676#undef BPF_MAP_TYPE
5677#undef BPF_LINK_TYPE
5678
5679static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5680{
5681 const struct btf_type *conv_struct;
5682 const struct btf_member *ctx_type;
5683
5684 conv_struct = bpf_ctx_convert.t;
5685 if (!conv_struct)
5686 return NULL;
5687 /* prog_type is valid bpf program type. No need for bounds check. */
5688 ctx_type = btf_type_member(t: conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5689 /* ctx_type is a pointer to prog_ctx_type in vmlinux.
5690 * Like 'struct __sk_buff'
5691 */
5692 return btf_type_by_id(btf_vmlinux, ctx_type->type);
5693}
5694
5695static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5696{
5697 const struct btf_type *conv_struct;
5698 const struct btf_member *ctx_type;
5699
5700 conv_struct = bpf_ctx_convert.t;
5701 if (!conv_struct)
5702 return -EFAULT;
5703 /* prog_type is valid bpf program type. No need for bounds check. */
5704 ctx_type = btf_type_member(t: conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5705 /* ctx_type is a pointer to prog_ctx_type in vmlinux.
5706 * Like 'struct sk_buff'
5707 */
5708 return ctx_type->type;
5709}
5710
5711bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5712 const struct btf_type *t, enum bpf_prog_type prog_type,
5713 int arg)
5714{
5715 const struct btf_type *ctx_type;
5716 const char *tname, *ctx_tname;
5717
5718 t = btf_type_by_id(btf, t->type);
5719
5720 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5721 * check before we skip all the typedef below.
5722 */
5723 if (prog_type == BPF_PROG_TYPE_KPROBE) {
5724 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5725 t = btf_type_by_id(btf, t->type);
5726
5727 if (btf_type_is_typedef(t)) {
5728 tname = btf_name_by_offset(btf, offset: t->name_off);
5729 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5730 return true;
5731 }
5732 }
5733
5734 while (btf_type_is_modifier(t))
5735 t = btf_type_by_id(btf, t->type);
5736 if (!btf_type_is_struct(t)) {
5737 /* Only pointer to struct is supported for now.
5738 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5739 * is not supported yet.
5740 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5741 */
5742 return false;
5743 }
5744 tname = btf_name_by_offset(btf, offset: t->name_off);
5745 if (!tname) {
5746 bpf_log(log, fmt: "arg#%d struct doesn't have a name\n", arg);
5747 return false;
5748 }
5749
5750 ctx_type = find_canonical_prog_ctx_type(prog_type);
5751 if (!ctx_type) {
5752 bpf_log(log, fmt: "btf_vmlinux is malformed\n");
5753 /* should not happen */
5754 return false;
5755 }
5756again:
5757 ctx_tname = btf_name_by_offset(btf: btf_vmlinux, offset: ctx_type->name_off);
5758 if (!ctx_tname) {
5759 /* should not happen */
5760 bpf_log(log, fmt: "Please fix kernel include/linux/bpf_types.h\n");
5761 return false;
5762 }
5763 /* program types without named context types work only with arg:ctx tag */
5764 if (ctx_tname[0] == '\0')
5765 return false;
5766 /* only compare that prog's ctx type name is the same as
5767 * kernel expects. No need to compare field by field.
5768 * It's ok for bpf prog to do:
5769 * struct __sk_buff {};
5770 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5771 * { // no fields of skb are ever used }
5772 */
5773 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5774 return true;
5775 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5776 return true;
5777 if (strcmp(ctx_tname, tname)) {
5778 /* bpf_user_pt_regs_t is a typedef, so resolve it to
5779 * underlying struct and check name again
5780 */
5781 if (!btf_type_is_modifier(t: ctx_type))
5782 return false;
5783 while (btf_type_is_modifier(t: ctx_type))
5784 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5785 goto again;
5786 }
5787 return true;
5788}
5789
5790/* forward declarations for arch-specific underlying types of
5791 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5792 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5793 * works correctly with __builtin_types_compatible_p() on respective
5794 * architectures
5795 */
5796struct user_regs_struct;
5797struct user_pt_regs;
5798
5799static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5800 const struct btf_type *t, int arg,
5801 enum bpf_prog_type prog_type,
5802 enum bpf_attach_type attach_type)
5803{
5804 const struct btf_type *ctx_type;
5805 const char *tname, *ctx_tname;
5806
5807 if (!btf_is_ptr(t)) {
5808 bpf_log(log, fmt: "arg#%d type isn't a pointer\n", arg);
5809 return -EINVAL;
5810 }
5811 t = btf_type_by_id(btf, t->type);
5812
5813 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
5814 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
5815 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5816 t = btf_type_by_id(btf, t->type);
5817
5818 if (btf_type_is_typedef(t)) {
5819 tname = btf_name_by_offset(btf, offset: t->name_off);
5820 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5821 return 0;
5822 }
5823 }
5824
5825 /* all other program types don't use typedefs for context type */
5826 while (btf_type_is_modifier(t))
5827 t = btf_type_by_id(btf, t->type);
5828
5829 /* `void *ctx __arg_ctx` is always valid */
5830 if (btf_type_is_void(t))
5831 return 0;
5832
5833 tname = btf_name_by_offset(btf, offset: t->name_off);
5834 if (str_is_empty(s: tname)) {
5835 bpf_log(log, fmt: "arg#%d type doesn't have a name\n", arg);
5836 return -EINVAL;
5837 }
5838
5839 /* special cases */
5840 switch (prog_type) {
5841 case BPF_PROG_TYPE_KPROBE:
5842 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5843 return 0;
5844 break;
5845 case BPF_PROG_TYPE_PERF_EVENT:
5846 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
5847 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5848 return 0;
5849 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
5850 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
5851 return 0;
5852 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
5853 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
5854 return 0;
5855 break;
5856 case BPF_PROG_TYPE_RAW_TRACEPOINT:
5857 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
5858 /* allow u64* as ctx */
5859 if (btf_is_int(t) && t->size == 8)
5860 return 0;
5861 break;
5862 case BPF_PROG_TYPE_TRACING:
5863 switch (attach_type) {
5864 case BPF_TRACE_RAW_TP:
5865 /* tp_btf program is TRACING, so need special case here */
5866 if (__btf_type_is_struct(t) &&
5867 strcmp(tname, "bpf_raw_tracepoint_args") == 0)
5868 return 0;
5869 /* allow u64* as ctx */
5870 if (btf_is_int(t) && t->size == 8)
5871 return 0;
5872 break;
5873 case BPF_TRACE_ITER:
5874 /* allow struct bpf_iter__xxx types only */
5875 if (__btf_type_is_struct(t) &&
5876 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
5877 return 0;
5878 break;
5879 case BPF_TRACE_FENTRY:
5880 case BPF_TRACE_FEXIT:
5881 case BPF_MODIFY_RETURN:
5882 /* allow u64* as ctx */
5883 if (btf_is_int(t) && t->size == 8)
5884 return 0;
5885 break;
5886 default:
5887 break;
5888 }
5889 break;
5890 case BPF_PROG_TYPE_LSM:
5891 case BPF_PROG_TYPE_STRUCT_OPS:
5892 /* allow u64* as ctx */
5893 if (btf_is_int(t) && t->size == 8)
5894 return 0;
5895 break;
5896 case BPF_PROG_TYPE_TRACEPOINT:
5897 case BPF_PROG_TYPE_SYSCALL:
5898 case BPF_PROG_TYPE_EXT:
5899 return 0; /* anything goes */
5900 default:
5901 break;
5902 }
5903
5904 ctx_type = find_canonical_prog_ctx_type(prog_type);
5905 if (!ctx_type) {
5906 /* should not happen */
5907 bpf_log(log, fmt: "btf_vmlinux is malformed\n");
5908 return -EINVAL;
5909 }
5910
5911 /* resolve typedefs and check that underlying structs are matching as well */
5912 while (btf_type_is_modifier(t: ctx_type))
5913 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5914
5915 /* if program type doesn't have distinctly named struct type for
5916 * context, then __arg_ctx argument can only be `void *`, which we
5917 * already checked above
5918 */
5919 if (!__btf_type_is_struct(t: ctx_type)) {
5920 bpf_log(log, fmt: "arg#%d should be void pointer\n", arg);
5921 return -EINVAL;
5922 }
5923
5924 ctx_tname = btf_name_by_offset(btf: btf_vmlinux, offset: ctx_type->name_off);
5925 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
5926 bpf_log(log, fmt: "arg#%d should be `struct %s *`\n", arg, ctx_tname);
5927 return -EINVAL;
5928 }
5929
5930 return 0;
5931}
5932
5933static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5934 struct btf *btf,
5935 const struct btf_type *t,
5936 enum bpf_prog_type prog_type,
5937 int arg)
5938{
5939 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
5940 return -ENOENT;
5941 return find_kern_ctx_type_id(prog_type);
5942}
5943
5944int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5945{
5946 const struct btf_member *kctx_member;
5947 const struct btf_type *conv_struct;
5948 const struct btf_type *kctx_type;
5949 u32 kctx_type_id;
5950
5951 conv_struct = bpf_ctx_convert.t;
5952 /* get member for kernel ctx type */
5953 kctx_member = btf_type_member(t: conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5954 kctx_type_id = kctx_member->type;
5955 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5956 if (!btf_type_is_struct(t: kctx_type)) {
5957 bpf_log(log, fmt: "kern ctx type id %u is not a struct\n", kctx_type_id);
5958 return -EINVAL;
5959 }
5960
5961 return kctx_type_id;
5962}
5963
5964BTF_ID_LIST(bpf_ctx_convert_btf_id)
5965BTF_ID(struct, bpf_ctx_convert)
5966
5967struct btf *btf_parse_vmlinux(void)
5968{
5969 struct btf_verifier_env *env = NULL;
5970 struct bpf_verifier_log *log;
5971 struct btf *btf = NULL;
5972 int err;
5973
5974 env = kzalloc(size: sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5975 if (!env)
5976 return ERR_PTR(error: -ENOMEM);
5977
5978 log = &env->log;
5979 log->level = BPF_LOG_KERNEL;
5980
5981 btf = kzalloc(size: sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5982 if (!btf) {
5983 err = -ENOMEM;
5984 goto errout;
5985 }
5986 env->btf = btf;
5987
5988 btf->data = __start_BTF;
5989 btf->data_size = __stop_BTF - __start_BTF;
5990 btf->kernel_btf = true;
5991 snprintf(buf: btf->name, size: sizeof(btf->name), fmt: "vmlinux");
5992
5993 err = btf_parse_hdr(env);
5994 if (err)
5995 goto errout;
5996
5997 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5998
5999 err = btf_parse_str_sec(env);
6000 if (err)
6001 goto errout;
6002
6003 err = btf_check_all_metas(env);
6004 if (err)
6005 goto errout;
6006
6007 err = btf_check_type_tags(env, btf, start_id: 1);
6008 if (err)
6009 goto errout;
6010
6011 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
6012 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6013
6014 refcount_set(r: &btf->refcnt, n: 1);
6015
6016 err = btf_alloc_id(btf);
6017 if (err)
6018 goto errout;
6019
6020 btf_verifier_env_free(env);
6021 return btf;
6022
6023errout:
6024 btf_verifier_env_free(env);
6025 if (btf) {
6026 kvfree(addr: btf->types);
6027 kfree(objp: btf);
6028 }
6029 return ERR_PTR(error: err);
6030}
6031
6032#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6033
6034static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
6035{
6036 struct btf_verifier_env *env = NULL;
6037 struct bpf_verifier_log *log;
6038 struct btf *btf = NULL, *base_btf;
6039 int err;
6040
6041 base_btf = bpf_get_btf_vmlinux();
6042 if (IS_ERR(base_btf))
6043 return base_btf;
6044 if (!base_btf)
6045 return ERR_PTR(-EINVAL);
6046
6047 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6048 if (!env)
6049 return ERR_PTR(-ENOMEM);
6050
6051 log = &env->log;
6052 log->level = BPF_LOG_KERNEL;
6053
6054 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6055 if (!btf) {
6056 err = -ENOMEM;
6057 goto errout;
6058 }
6059 env->btf = btf;
6060
6061 btf->base_btf = base_btf;
6062 btf->start_id = base_btf->nr_types;
6063 btf->start_str_off = base_btf->hdr.str_len;
6064 btf->kernel_btf = true;
6065 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6066
6067 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
6068 if (!btf->data) {
6069 err = -ENOMEM;
6070 goto errout;
6071 }
6072 memcpy(btf->data, data, data_size);
6073 btf->data_size = data_size;
6074
6075 err = btf_parse_hdr(env);
6076 if (err)
6077 goto errout;
6078
6079 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6080
6081 err = btf_parse_str_sec(env);
6082 if (err)
6083 goto errout;
6084
6085 err = btf_check_all_metas(env);
6086 if (err)
6087 goto errout;
6088
6089 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6090 if (err)
6091 goto errout;
6092
6093 btf_verifier_env_free(env);
6094 refcount_set(&btf->refcnt, 1);
6095 return btf;
6096
6097errout:
6098 btf_verifier_env_free(env);
6099 if (btf) {
6100 kvfree(btf->data);
6101 kvfree(btf->types);
6102 kfree(btf);
6103 }
6104 return ERR_PTR(err);
6105}
6106
6107#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6108
6109struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6110{
6111 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6112
6113 if (tgt_prog)
6114 return tgt_prog->aux->btf;
6115 else
6116 return prog->aux->attach_btf;
6117}
6118
6119static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6120{
6121 /* skip modifiers */
6122 t = btf_type_skip_modifiers(btf, id: t->type, NULL);
6123
6124 return btf_type_is_int(t);
6125}
6126
6127static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6128 int off)
6129{
6130 const struct btf_param *args;
6131 const struct btf_type *t;
6132 u32 offset = 0, nr_args;
6133 int i;
6134
6135 if (!func_proto)
6136 return off / 8;
6137
6138 nr_args = btf_type_vlen(t: func_proto);
6139 args = (const struct btf_param *)(func_proto + 1);
6140 for (i = 0; i < nr_args; i++) {
6141 t = btf_type_skip_modifiers(btf, id: args[i].type, NULL);
6142 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6143 if (off < offset)
6144 return i;
6145 }
6146
6147 t = btf_type_skip_modifiers(btf, id: func_proto->type, NULL);
6148 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6149 if (off < offset)
6150 return nr_args;
6151
6152 return nr_args + 1;
6153}
6154
6155static bool prog_args_trusted(const struct bpf_prog *prog)
6156{
6157 enum bpf_attach_type atype = prog->expected_attach_type;
6158
6159 switch (prog->type) {
6160 case BPF_PROG_TYPE_TRACING:
6161 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6162 case BPF_PROG_TYPE_LSM:
6163 return bpf_lsm_is_trusted(prog);
6164 case BPF_PROG_TYPE_STRUCT_OPS:
6165 return true;
6166 default:
6167 return false;
6168 }
6169}
6170
6171int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6172 u32 arg_no)
6173{
6174 const struct btf_param *args;
6175 const struct btf_type *t;
6176 int off = 0, i;
6177 u32 sz;
6178
6179 args = btf_params(t: func_proto);
6180 for (i = 0; i < arg_no; i++) {
6181 t = btf_type_by_id(btf, args[i].type);
6182 t = btf_resolve_size(btf, type: t, type_size: &sz);
6183 if (IS_ERR(ptr: t))
6184 return PTR_ERR(ptr: t);
6185 off += roundup(sz, 8);
6186 }
6187
6188 return off;
6189}
6190
6191bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6192 const struct bpf_prog *prog,
6193 struct bpf_insn_access_aux *info)
6194{
6195 const struct btf_type *t = prog->aux->attach_func_proto;
6196 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6197 struct btf *btf = bpf_prog_get_target_btf(prog);
6198 const char *tname = prog->aux->attach_func_name;
6199 struct bpf_verifier_log *log = info->log;
6200 const struct btf_param *args;
6201 const char *tag_value;
6202 u32 nr_args, arg;
6203 int i, ret;
6204
6205 if (off % 8) {
6206 bpf_log(log, fmt: "func '%s' offset %d is not multiple of 8\n",
6207 tname, off);
6208 return false;
6209 }
6210 arg = get_ctx_arg_idx(btf, func_proto: t, off);
6211 args = (const struct btf_param *)(t + 1);
6212 /* if (t == NULL) Fall back to default BPF prog with
6213 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6214 */
6215 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6216 if (prog->aux->attach_btf_trace) {
6217 /* skip first 'void *__data' argument in btf_trace_##name typedef */
6218 args++;
6219 nr_args--;
6220 }
6221
6222 if (arg > nr_args) {
6223 bpf_log(log, fmt: "func '%s' doesn't have %d-th argument\n",
6224 tname, arg + 1);
6225 return false;
6226 }
6227
6228 if (arg == nr_args) {
6229 switch (prog->expected_attach_type) {
6230 case BPF_LSM_CGROUP:
6231 case BPF_LSM_MAC:
6232 case BPF_TRACE_FEXIT:
6233 /* When LSM programs are attached to void LSM hooks
6234 * they use FEXIT trampolines and when attached to
6235 * int LSM hooks, they use MODIFY_RETURN trampolines.
6236 *
6237 * While the LSM programs are BPF_MODIFY_RETURN-like
6238 * the check:
6239 *
6240 * if (ret_type != 'int')
6241 * return -EINVAL;
6242 *
6243 * is _not_ done here. This is still safe as LSM hooks
6244 * have only void and int return types.
6245 */
6246 if (!t)
6247 return true;
6248 t = btf_type_by_id(btf, t->type);
6249 break;
6250 case BPF_MODIFY_RETURN:
6251 /* For now the BPF_MODIFY_RETURN can only be attached to
6252 * functions that return an int.
6253 */
6254 if (!t)
6255 return false;
6256
6257 t = btf_type_skip_modifiers(btf, id: t->type, NULL);
6258 if (!btf_type_is_small_int(t)) {
6259 bpf_log(log,
6260 fmt: "ret type %s not allowed for fmod_ret\n",
6261 btf_type_str(t));
6262 return false;
6263 }
6264 break;
6265 default:
6266 bpf_log(log, fmt: "func '%s' doesn't have %d-th argument\n",
6267 tname, arg + 1);
6268 return false;
6269 }
6270 } else {
6271 if (!t)
6272 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6273 return true;
6274 t = btf_type_by_id(btf, args[arg].type);
6275 }
6276
6277 /* skip modifiers */
6278 while (btf_type_is_modifier(t))
6279 t = btf_type_by_id(btf, t->type);
6280 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6281 /* accessing a scalar */
6282 return true;
6283 if (!btf_type_is_ptr(t)) {
6284 bpf_log(log,
6285 fmt: "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6286 tname, arg,
6287 __btf_name_by_offset(btf, offset: t->name_off),
6288 btf_type_str(t));
6289 return false;
6290 }
6291
6292 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6293 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6294 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6295 u32 type, flag;
6296
6297 type = base_type(type: ctx_arg_info->reg_type);
6298 flag = type_flag(type: ctx_arg_info->reg_type);
6299 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6300 (flag & PTR_MAYBE_NULL)) {
6301 info->reg_type = ctx_arg_info->reg_type;
6302 return true;
6303 }
6304 }
6305
6306 if (t->type == 0)
6307 /* This is a pointer to void.
6308 * It is the same as scalar from the verifier safety pov.
6309 * No further pointer walking is allowed.
6310 */
6311 return true;
6312
6313 if (is_int_ptr(btf, t))
6314 return true;
6315
6316 /* this is a pointer to another type */
6317 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6318 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6319
6320 if (ctx_arg_info->offset == off) {
6321 if (!ctx_arg_info->btf_id) {
6322 bpf_log(log,fmt: "invalid btf_id for context argument offset %u\n", off);
6323 return false;
6324 }
6325
6326 info->reg_type = ctx_arg_info->reg_type;
6327 info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6328 info->btf_id = ctx_arg_info->btf_id;
6329 return true;
6330 }
6331 }
6332
6333 info->reg_type = PTR_TO_BTF_ID;
6334 if (prog_args_trusted(prog))
6335 info->reg_type |= PTR_TRUSTED;
6336
6337 if (tgt_prog) {
6338 enum bpf_prog_type tgt_type;
6339
6340 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6341 tgt_type = tgt_prog->aux->saved_dst_prog_type;
6342 else
6343 tgt_type = tgt_prog->type;
6344
6345 ret = btf_translate_to_vmlinux(log, btf, t, prog_type: tgt_type, arg);
6346 if (ret > 0) {
6347 info->btf = btf_vmlinux;
6348 info->btf_id = ret;
6349 return true;
6350 } else {
6351 return false;
6352 }
6353 }
6354
6355 info->btf = btf;
6356 info->btf_id = t->type;
6357 t = btf_type_by_id(btf, t->type);
6358
6359 if (btf_type_is_type_tag(t)) {
6360 tag_value = __btf_name_by_offset(btf, offset: t->name_off);
6361 if (strcmp(tag_value, "user") == 0)
6362 info->reg_type |= MEM_USER;
6363 if (strcmp(tag_value, "percpu") == 0)
6364 info->reg_type |= MEM_PERCPU;
6365 }
6366
6367 /* skip modifiers */
6368 while (btf_type_is_modifier(t)) {
6369 info->btf_id = t->type;
6370 t = btf_type_by_id(btf, t->type);
6371 }
6372 if (!btf_type_is_struct(t)) {
6373 bpf_log(log,
6374 fmt: "func '%s' arg%d type %s is not a struct\n",
6375 tname, arg, btf_type_str(t));
6376 return false;
6377 }
6378 bpf_log(log, fmt: "func '%s' arg%d has btf_id %d type %s '%s'\n",
6379 tname, arg, info->btf_id, btf_type_str(t),
6380 __btf_name_by_offset(btf, offset: t->name_off));
6381 return true;
6382}
6383EXPORT_SYMBOL_GPL(btf_ctx_access);
6384
6385enum bpf_struct_walk_result {
6386 /* < 0 error */
6387 WALK_SCALAR = 0,
6388 WALK_PTR,
6389 WALK_STRUCT,
6390};
6391
6392static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6393 const struct btf_type *t, int off, int size,
6394 u32 *next_btf_id, enum bpf_type_flag *flag,
6395 const char **field_name)
6396{
6397 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6398 const struct btf_type *mtype, *elem_type = NULL;
6399 const struct btf_member *member;
6400 const char *tname, *mname, *tag_value;
6401 u32 vlen, elem_id, mid;
6402
6403again:
6404 if (btf_type_is_modifier(t))
6405 t = btf_type_skip_modifiers(btf, id: t->type, NULL);
6406 tname = __btf_name_by_offset(btf, offset: t->name_off);
6407 if (!btf_type_is_struct(t)) {
6408 bpf_log(log, fmt: "Type '%s' is not a struct\n", tname);
6409 return -EINVAL;
6410 }
6411
6412 vlen = btf_type_vlen(t);
6413 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6414 /*
6415 * walking unions yields untrusted pointers
6416 * with exception of __bpf_md_ptr and other
6417 * unions with a single member
6418 */
6419 *flag |= PTR_UNTRUSTED;
6420
6421 if (off + size > t->size) {
6422 /* If the last element is a variable size array, we may
6423 * need to relax the rule.
6424 */
6425 struct btf_array *array_elem;
6426
6427 if (vlen == 0)
6428 goto error;
6429
6430 member = btf_type_member(t) + vlen - 1;
6431 mtype = btf_type_skip_modifiers(btf, id: member->type,
6432 NULL);
6433 if (!btf_type_is_array(t: mtype))
6434 goto error;
6435
6436 array_elem = (struct btf_array *)(mtype + 1);
6437 if (array_elem->nelems != 0)
6438 goto error;
6439
6440 moff = __btf_member_bit_offset(struct_type: t, member) / 8;
6441 if (off < moff)
6442 goto error;
6443
6444 /* allow structure and integer */
6445 t = btf_type_skip_modifiers(btf, id: array_elem->type,
6446 NULL);
6447
6448 if (btf_type_is_int(t))
6449 return WALK_SCALAR;
6450
6451 if (!btf_type_is_struct(t))
6452 goto error;
6453
6454 off = (off - moff) % t->size;
6455 goto again;
6456
6457error:
6458 bpf_log(log, fmt: "access beyond struct %s at off %u size %u\n",
6459 tname, off, size);
6460 return -EACCES;
6461 }
6462
6463 for_each_member(i, t, member) {
6464 /* offset of the field in bytes */
6465 moff = __btf_member_bit_offset(struct_type: t, member) / 8;
6466 if (off + size <= moff)
6467 /* won't find anything, field is already too far */
6468 break;
6469
6470 if (__btf_member_bitfield_size(struct_type: t, member)) {
6471 u32 end_bit = __btf_member_bit_offset(struct_type: t, member) +
6472 __btf_member_bitfield_size(struct_type: t, member);
6473
6474 /* off <= moff instead of off == moff because clang
6475 * does not generate a BTF member for anonymous
6476 * bitfield like the ":16" here:
6477 * struct {
6478 * int :16;
6479 * int x:8;
6480 * };
6481 */
6482 if (off <= moff &&
6483 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6484 return WALK_SCALAR;
6485
6486 /* off may be accessing a following member
6487 *
6488 * or
6489 *
6490 * Doing partial access at either end of this
6491 * bitfield. Continue on this case also to
6492 * treat it as not accessing this bitfield
6493 * and eventually error out as field not
6494 * found to keep it simple.
6495 * It could be relaxed if there was a legit
6496 * partial access case later.
6497 */
6498 continue;
6499 }
6500
6501 /* In case of "off" is pointing to holes of a struct */
6502 if (off < moff)
6503 break;
6504
6505 /* type of the field */
6506 mid = member->type;
6507 mtype = btf_type_by_id(btf, member->type);
6508 mname = __btf_name_by_offset(btf, offset: member->name_off);
6509
6510 mtype = __btf_resolve_size(btf, type: mtype, type_size: &msize,
6511 elem_type: &elem_type, elem_id: &elem_id, total_nelems: &total_nelems,
6512 type_id: &mid);
6513 if (IS_ERR(ptr: mtype)) {
6514 bpf_log(log, fmt: "field %s doesn't have size\n", mname);
6515 return -EFAULT;
6516 }
6517
6518 mtrue_end = moff + msize;
6519 if (off >= mtrue_end)
6520 /* no overlap with member, keep iterating */
6521 continue;
6522
6523 if (btf_type_is_array(t: mtype)) {
6524 u32 elem_idx;
6525
6526 /* __btf_resolve_size() above helps to
6527 * linearize a multi-dimensional array.
6528 *
6529 * The logic here is treating an array
6530 * in a struct as the following way:
6531 *
6532 * struct outer {
6533 * struct inner array[2][2];
6534 * };
6535 *
6536 * looks like:
6537 *
6538 * struct outer {
6539 * struct inner array_elem0;
6540 * struct inner array_elem1;
6541 * struct inner array_elem2;
6542 * struct inner array_elem3;
6543 * };
6544 *
6545 * When accessing outer->array[1][0], it moves
6546 * moff to "array_elem2", set mtype to
6547 * "struct inner", and msize also becomes
6548 * sizeof(struct inner). Then most of the
6549 * remaining logic will fall through without
6550 * caring the current member is an array or
6551 * not.
6552 *
6553 * Unlike mtype/msize/moff, mtrue_end does not
6554 * change. The naming difference ("_true") tells
6555 * that it is not always corresponding to
6556 * the current mtype/msize/moff.
6557 * It is the true end of the current
6558 * member (i.e. array in this case). That
6559 * will allow an int array to be accessed like
6560 * a scratch space,
6561 * i.e. allow access beyond the size of
6562 * the array's element as long as it is
6563 * within the mtrue_end boundary.
6564 */
6565
6566 /* skip empty array */
6567 if (moff == mtrue_end)
6568 continue;
6569
6570 msize /= total_nelems;
6571 elem_idx = (off - moff) / msize;
6572 moff += elem_idx * msize;
6573 mtype = elem_type;
6574 mid = elem_id;
6575 }
6576
6577 /* the 'off' we're looking for is either equal to start
6578 * of this field or inside of this struct
6579 */
6580 if (btf_type_is_struct(t: mtype)) {
6581 /* our field must be inside that union or struct */
6582 t = mtype;
6583
6584 /* return if the offset matches the member offset */
6585 if (off == moff) {
6586 *next_btf_id = mid;
6587 return WALK_STRUCT;
6588 }
6589
6590 /* adjust offset we're looking for */
6591 off -= moff;
6592 goto again;
6593 }
6594
6595 if (btf_type_is_ptr(t: mtype)) {
6596 const struct btf_type *stype, *t;
6597 enum bpf_type_flag tmp_flag = 0;
6598 u32 id;
6599
6600 if (msize != size || off != moff) {
6601 bpf_log(log,
6602 fmt: "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6603 mname, moff, tname, off, size);
6604 return -EACCES;
6605 }
6606
6607 /* check type tag */
6608 t = btf_type_by_id(btf, mtype->type);
6609 if (btf_type_is_type_tag(t)) {
6610 tag_value = __btf_name_by_offset(btf, offset: t->name_off);
6611 /* check __user tag */
6612 if (strcmp(tag_value, "user") == 0)
6613 tmp_flag = MEM_USER;
6614 /* check __percpu tag */
6615 if (strcmp(tag_value, "percpu") == 0)
6616 tmp_flag = MEM_PERCPU;
6617 /* check __rcu tag */
6618 if (strcmp(tag_value, "rcu") == 0)
6619 tmp_flag = MEM_RCU;
6620 }
6621
6622 stype = btf_type_skip_modifiers(btf, id: mtype->type, res_id: &id);
6623 if (btf_type_is_struct(t: stype)) {
6624 *next_btf_id = id;
6625 *flag |= tmp_flag;
6626 if (field_name)
6627 *field_name = mname;
6628 return WALK_PTR;
6629 }
6630 }
6631
6632 /* Allow more flexible access within an int as long as
6633 * it is within mtrue_end.
6634 * Since mtrue_end could be the end of an array,
6635 * that also allows using an array of int as a scratch
6636 * space. e.g. skb->cb[].
6637 */
6638 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6639 bpf_log(log,
6640 fmt: "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6641 mname, mtrue_end, tname, off, size);
6642 return -EACCES;
6643 }
6644
6645 return WALK_SCALAR;
6646 }
6647 bpf_log(log, fmt: "struct %s doesn't have field at offset %d\n", tname, off);
6648 return -EINVAL;
6649}
6650
6651int btf_struct_access(struct bpf_verifier_log *log,
6652 const struct bpf_reg_state *reg,
6653 int off, int size, enum bpf_access_type atype __maybe_unused,
6654 u32 *next_btf_id, enum bpf_type_flag *flag,
6655 const char **field_name)
6656{
6657 const struct btf *btf = reg->btf;
6658 enum bpf_type_flag tmp_flag = 0;
6659 const struct btf_type *t;
6660 u32 id = reg->btf_id;
6661 int err;
6662
6663 while (type_is_alloc(type: reg->type)) {
6664 struct btf_struct_meta *meta;
6665 struct btf_record *rec;
6666 int i;
6667
6668 meta = btf_find_struct_meta(btf, btf_id: id);
6669 if (!meta)
6670 break;
6671 rec = meta->record;
6672 for (i = 0; i < rec->cnt; i++) {
6673 struct btf_field *field = &rec->fields[i];
6674 u32 offset = field->offset;
6675 if (off < offset + btf_field_type_size(type: field->type) && offset < off + size) {
6676 bpf_log(log,
6677 fmt: "direct access to %s is disallowed\n",
6678 btf_field_type_name(type: field->type));
6679 return -EACCES;
6680 }
6681 }
6682 break;
6683 }
6684
6685 t = btf_type_by_id(btf, id);
6686 do {
6687 err = btf_struct_walk(log, btf, t, off, size, next_btf_id: &id, flag: &tmp_flag, field_name);
6688
6689 switch (err) {
6690 case WALK_PTR:
6691 /* For local types, the destination register cannot
6692 * become a pointer again.
6693 */
6694 if (type_is_alloc(type: reg->type))
6695 return SCALAR_VALUE;
6696 /* If we found the pointer or scalar on t+off,
6697 * we're done.
6698 */
6699 *next_btf_id = id;
6700 *flag = tmp_flag;
6701 return PTR_TO_BTF_ID;
6702 case WALK_SCALAR:
6703 return SCALAR_VALUE;
6704 case WALK_STRUCT:
6705 /* We found nested struct, so continue the search
6706 * by diving in it. At this point the offset is
6707 * aligned with the new type, so set it to 0.
6708 */
6709 t = btf_type_by_id(btf, id);
6710 off = 0;
6711 break;
6712 default:
6713 /* It's either error or unknown return value..
6714 * scream and leave.
6715 */
6716 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6717 return -EINVAL;
6718 return err;
6719 }
6720 } while (t);
6721
6722 return -EINVAL;
6723}
6724
6725/* Check that two BTF types, each specified as an BTF object + id, are exactly
6726 * the same. Trivial ID check is not enough due to module BTFs, because we can
6727 * end up with two different module BTFs, but IDs point to the common type in
6728 * vmlinux BTF.
6729 */
6730bool btf_types_are_same(const struct btf *btf1, u32 id1,
6731 const struct btf *btf2, u32 id2)
6732{
6733 if (id1 != id2)
6734 return false;
6735 if (btf1 == btf2)
6736 return true;
6737 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6738}
6739
6740bool btf_struct_ids_match(struct bpf_verifier_log *log,
6741 const struct btf *btf, u32 id, int off,
6742 const struct btf *need_btf, u32 need_type_id,
6743 bool strict)
6744{
6745 const struct btf_type *type;
6746 enum bpf_type_flag flag = 0;
6747 int err;
6748
6749 /* Are we already done? */
6750 if (off == 0 && btf_types_are_same(btf1: btf, id1: id, btf2: need_btf, id2: need_type_id))
6751 return true;
6752 /* In case of strict type match, we do not walk struct, the top level
6753 * type match must succeed. When strict is true, off should have already
6754 * been 0.
6755 */
6756 if (strict)
6757 return false;
6758again:
6759 type = btf_type_by_id(btf, id);
6760 if (!type)
6761 return false;
6762 err = btf_struct_walk(log, btf, t: type, off, size: 1, next_btf_id: &id, flag: &flag, NULL);
6763 if (err != WALK_STRUCT)
6764 return false;
6765
6766 /* We found nested struct object. If it matches
6767 * the requested ID, we're done. Otherwise let's
6768 * continue the search with offset 0 in the new
6769 * type.
6770 */
6771 if (!btf_types_are_same(btf1: btf, id1: id, btf2: need_btf, id2: need_type_id)) {
6772 off = 0;
6773 goto again;
6774 }
6775
6776 return true;
6777}
6778
6779static int __get_type_size(struct btf *btf, u32 btf_id,
6780 const struct btf_type **ret_type)
6781{
6782 const struct btf_type *t;
6783
6784 *ret_type = btf_type_by_id(btf, 0);
6785 if (!btf_id)
6786 /* void */
6787 return 0;
6788 t = btf_type_by_id(btf, btf_id);
6789 while (t && btf_type_is_modifier(t))
6790 t = btf_type_by_id(btf, t->type);
6791 if (!t)
6792 return -EINVAL;
6793 *ret_type = t;
6794 if (btf_type_is_ptr(t))
6795 /* kernel size of pointer. Not BPF's size of pointer*/
6796 return sizeof(void *);
6797 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6798 return t->size;
6799 return -EINVAL;
6800}
6801
6802static u8 __get_type_fmodel_flags(const struct btf_type *t)
6803{
6804 u8 flags = 0;
6805
6806 if (__btf_type_is_struct(t))
6807 flags |= BTF_FMODEL_STRUCT_ARG;
6808 if (btf_type_is_signed_int(t))
6809 flags |= BTF_FMODEL_SIGNED_ARG;
6810
6811 return flags;
6812}
6813
6814int btf_distill_func_proto(struct bpf_verifier_log *log,
6815 struct btf *btf,
6816 const struct btf_type *func,
6817 const char *tname,
6818 struct btf_func_model *m)
6819{
6820 const struct btf_param *args;
6821 const struct btf_type *t;
6822 u32 i, nargs;
6823 int ret;
6824
6825 if (!func) {
6826 /* BTF function prototype doesn't match the verifier types.
6827 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6828 */
6829 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6830 m->arg_size[i] = 8;
6831 m->arg_flags[i] = 0;
6832 }
6833 m->ret_size = 8;
6834 m->ret_flags = 0;
6835 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6836 return 0;
6837 }
6838 args = (const struct btf_param *)(func + 1);
6839 nargs = btf_type_vlen(t: func);
6840 if (nargs > MAX_BPF_FUNC_ARGS) {
6841 bpf_log(log,
6842 fmt: "The function %s has %d arguments. Too many.\n",
6843 tname, nargs);
6844 return -EINVAL;
6845 }
6846 ret = __get_type_size(btf, btf_id: func->type, ret_type: &t);
6847 if (ret < 0 || __btf_type_is_struct(t)) {
6848 bpf_log(log,
6849 fmt: "The function %s return type %s is unsupported.\n",
6850 tname, btf_type_str(t));
6851 return -EINVAL;
6852 }
6853 m->ret_size = ret;
6854 m->ret_flags = __get_type_fmodel_flags(t);
6855
6856 for (i = 0; i < nargs; i++) {
6857 if (i == nargs - 1 && args[i].type == 0) {
6858 bpf_log(log,
6859 fmt: "The function %s with variable args is unsupported.\n",
6860 tname);
6861 return -EINVAL;
6862 }
6863 ret = __get_type_size(btf, btf_id: args[i].type, ret_type: &t);
6864
6865 /* No support of struct argument size greater than 16 bytes */
6866 if (ret < 0 || ret > 16) {
6867 bpf_log(log,
6868 fmt: "The function %s arg%d type %s is unsupported.\n",
6869 tname, i, btf_type_str(t));
6870 return -EINVAL;
6871 }
6872 if (ret == 0) {
6873 bpf_log(log,
6874 fmt: "The function %s has malformed void argument.\n",
6875 tname);
6876 return -EINVAL;
6877 }
6878 m->arg_size[i] = ret;
6879 m->arg_flags[i] = __get_type_fmodel_flags(t);
6880 }
6881 m->nr_args = nargs;
6882 return 0;
6883}
6884
6885/* Compare BTFs of two functions assuming only scalars and pointers to context.
6886 * t1 points to BTF_KIND_FUNC in btf1
6887 * t2 points to BTF_KIND_FUNC in btf2
6888 * Returns:
6889 * EINVAL - function prototype mismatch
6890 * EFAULT - verifier bug
6891 * 0 - 99% match. The last 1% is validated by the verifier.
6892 */
6893static int btf_check_func_type_match(struct bpf_verifier_log *log,
6894 struct btf *btf1, const struct btf_type *t1,
6895 struct btf *btf2, const struct btf_type *t2)
6896{
6897 const struct btf_param *args1, *args2;
6898 const char *fn1, *fn2, *s1, *s2;
6899 u32 nargs1, nargs2, i;
6900
6901 fn1 = btf_name_by_offset(btf: btf1, offset: t1->name_off);
6902 fn2 = btf_name_by_offset(btf: btf2, offset: t2->name_off);
6903
6904 if (btf_func_linkage(t: t1) != BTF_FUNC_GLOBAL) {
6905 bpf_log(log, fmt: "%s() is not a global function\n", fn1);
6906 return -EINVAL;
6907 }
6908 if (btf_func_linkage(t: t2) != BTF_FUNC_GLOBAL) {
6909 bpf_log(log, fmt: "%s() is not a global function\n", fn2);
6910 return -EINVAL;
6911 }
6912
6913 t1 = btf_type_by_id(btf1, t1->type);
6914 if (!t1 || !btf_type_is_func_proto(t: t1))
6915 return -EFAULT;
6916 t2 = btf_type_by_id(btf2, t2->type);
6917 if (!t2 || !btf_type_is_func_proto(t: t2))
6918 return -EFAULT;
6919
6920 args1 = (const struct btf_param *)(t1 + 1);
6921 nargs1 = btf_type_vlen(t: t1);
6922 args2 = (const struct btf_param *)(t2 + 1);
6923 nargs2 = btf_type_vlen(t: t2);
6924
6925 if (nargs1 != nargs2) {
6926 bpf_log(log, fmt: "%s() has %d args while %s() has %d args\n",
6927 fn1, nargs1, fn2, nargs2);
6928 return -EINVAL;
6929 }
6930
6931 t1 = btf_type_skip_modifiers(btf: btf1, id: t1->type, NULL);
6932 t2 = btf_type_skip_modifiers(btf: btf2, id: t2->type, NULL);
6933 if (t1->info != t2->info) {
6934 bpf_log(log,
6935 fmt: "Return type %s of %s() doesn't match type %s of %s()\n",
6936 btf_type_str(t: t1), fn1,
6937 btf_type_str(t: t2), fn2);
6938 return -EINVAL;
6939 }
6940
6941 for (i = 0; i < nargs1; i++) {
6942 t1 = btf_type_skip_modifiers(btf: btf1, id: args1[i].type, NULL);
6943 t2 = btf_type_skip_modifiers(btf: btf2, id: args2[i].type, NULL);
6944
6945 if (t1->info != t2->info) {
6946 bpf_log(log, fmt: "arg%d in %s() is %s while %s() has %s\n",
6947 i, fn1, btf_type_str(t: t1),
6948 fn2, btf_type_str(t: t2));
6949 return -EINVAL;
6950 }
6951 if (btf_type_has_size(t: t1) && t1->size != t2->size) {
6952 bpf_log(log,
6953 fmt: "arg%d in %s() has size %d while %s() has %d\n",
6954 i, fn1, t1->size,
6955 fn2, t2->size);
6956 return -EINVAL;
6957 }
6958
6959 /* global functions are validated with scalars and pointers
6960 * to context only. And only global functions can be replaced.
6961 * Hence type check only those types.
6962 */
6963 if (btf_type_is_int(t: t1) || btf_is_any_enum(t: t1))
6964 continue;
6965 if (!btf_type_is_ptr(t: t1)) {
6966 bpf_log(log,
6967 fmt: "arg%d in %s() has unrecognized type\n",
6968 i, fn1);
6969 return -EINVAL;
6970 }
6971 t1 = btf_type_skip_modifiers(btf: btf1, id: t1->type, NULL);
6972 t2 = btf_type_skip_modifiers(btf: btf2, id: t2->type, NULL);
6973 if (!btf_type_is_struct(t: t1)) {
6974 bpf_log(log,
6975 fmt: "arg%d in %s() is not a pointer to context\n",
6976 i, fn1);
6977 return -EINVAL;
6978 }
6979 if (!btf_type_is_struct(t: t2)) {
6980 bpf_log(log,
6981 fmt: "arg%d in %s() is not a pointer to context\n",
6982 i, fn2);
6983 return -EINVAL;
6984 }
6985 /* This is an optional check to make program writing easier.
6986 * Compare names of structs and report an error to the user.
6987 * btf_prepare_func_args() already checked that t2 struct
6988 * is a context type. btf_prepare_func_args() will check
6989 * later that t1 struct is a context type as well.
6990 */
6991 s1 = btf_name_by_offset(btf: btf1, offset: t1->name_off);
6992 s2 = btf_name_by_offset(btf: btf2, offset: t2->name_off);
6993 if (strcmp(s1, s2)) {
6994 bpf_log(log,
6995 fmt: "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6996 i, fn1, s1, fn2, s2);
6997 return -EINVAL;
6998 }
6999 }
7000 return 0;
7001}
7002
7003/* Compare BTFs of given program with BTF of target program */
7004int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7005 struct btf *btf2, const struct btf_type *t2)
7006{
7007 struct btf *btf1 = prog->aux->btf;
7008 const struct btf_type *t1;
7009 u32 btf_id = 0;
7010
7011 if (!prog->aux->func_info) {
7012 bpf_log(log, fmt: "Program extension requires BTF\n");
7013 return -EINVAL;
7014 }
7015
7016 btf_id = prog->aux->func_info[0].type_id;
7017 if (!btf_id)
7018 return -EFAULT;
7019
7020 t1 = btf_type_by_id(btf1, btf_id);
7021 if (!t1 || !btf_type_is_func(t: t1))
7022 return -EFAULT;
7023
7024 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7025}
7026
7027static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7028{
7029 const char *name;
7030
7031 t = btf_type_by_id(btf, t->type); /* skip PTR */
7032
7033 while (btf_type_is_modifier(t))
7034 t = btf_type_by_id(btf, t->type);
7035
7036 /* allow either struct or struct forward declaration */
7037 if (btf_type_is_struct(t) ||
7038 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7039 name = btf_str_by_offset(btf, offset: t->name_off);
7040 return name && strcmp(name, "bpf_dynptr") == 0;
7041 }
7042
7043 return false;
7044}
7045
7046struct bpf_cand_cache {
7047 const char *name;
7048 u32 name_len;
7049 u16 kind;
7050 u16 cnt;
7051 struct {
7052 const struct btf *btf;
7053 u32 id;
7054 } cands[];
7055};
7056
7057static DEFINE_MUTEX(cand_cache_mutex);
7058
7059static struct bpf_cand_cache *
7060bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7061
7062static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7063 const struct btf *btf, const struct btf_type *t)
7064{
7065 struct bpf_cand_cache *cc;
7066 struct bpf_core_ctx ctx = {
7067 .btf = btf,
7068 .log = log,
7069 };
7070 u32 kern_type_id, type_id;
7071 int err = 0;
7072
7073 /* skip PTR and modifiers */
7074 type_id = t->type;
7075 t = btf_type_by_id(btf, t->type);
7076 while (btf_type_is_modifier(t)) {
7077 type_id = t->type;
7078 t = btf_type_by_id(btf, t->type);
7079 }
7080
7081 mutex_lock(&cand_cache_mutex);
7082 cc = bpf_core_find_cands(ctx: &ctx, local_type_id: type_id);
7083 if (IS_ERR(ptr: cc)) {
7084 err = PTR_ERR(ptr: cc);
7085 bpf_log(log, fmt: "arg#%d reference type('%s %s') candidate matching error: %d\n",
7086 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, offset: t->name_off),
7087 err);
7088 goto cand_cache_unlock;
7089 }
7090 if (cc->cnt != 1) {
7091 bpf_log(log, fmt: "arg#%d reference type('%s %s') %s\n",
7092 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, offset: t->name_off),
7093 cc->cnt == 0 ? "has no matches" : "is ambiguous");
7094 err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7095 goto cand_cache_unlock;
7096 }
7097 if (btf_is_module(btf: cc->cands[0].btf)) {
7098 bpf_log(log, fmt: "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7099 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, offset: t->name_off));
7100 err = -EOPNOTSUPP;
7101 goto cand_cache_unlock;
7102 }
7103 kern_type_id = cc->cands[0].id;
7104
7105cand_cache_unlock:
7106 mutex_unlock(lock: &cand_cache_mutex);
7107 if (err)
7108 return err;
7109
7110 return kern_type_id;
7111}
7112
7113enum btf_arg_tag {
7114 ARG_TAG_CTX = BIT_ULL(0),
7115 ARG_TAG_NONNULL = BIT_ULL(1),
7116 ARG_TAG_TRUSTED = BIT_ULL(2),
7117 ARG_TAG_NULLABLE = BIT_ULL(3),
7118 ARG_TAG_ARENA = BIT_ULL(4),
7119};
7120
7121/* Process BTF of a function to produce high-level expectation of function
7122 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7123 * is cached in subprog info for reuse.
7124 * Returns:
7125 * EFAULT - there is a verifier bug. Abort verification.
7126 * EINVAL - cannot convert BTF.
7127 * 0 - Successfully processed BTF and constructed argument expectations.
7128 */
7129int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7130{
7131 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7132 struct bpf_subprog_info *sub = subprog_info(env, subprog);
7133 struct bpf_verifier_log *log = &env->log;
7134 struct bpf_prog *prog = env->prog;
7135 enum bpf_prog_type prog_type = prog->type;
7136 struct btf *btf = prog->aux->btf;
7137 const struct btf_param *args;
7138 const struct btf_type *t, *ref_t, *fn_t;
7139 u32 i, nargs, btf_id;
7140 const char *tname;
7141
7142 if (sub->args_cached)
7143 return 0;
7144
7145 if (!prog->aux->func_info) {
7146 bpf_log(log, fmt: "Verifier bug\n");
7147 return -EFAULT;
7148 }
7149
7150 btf_id = prog->aux->func_info[subprog].type_id;
7151 if (!btf_id) {
7152 if (!is_global) /* not fatal for static funcs */
7153 return -EINVAL;
7154 bpf_log(log, fmt: "Global functions need valid BTF\n");
7155 return -EFAULT;
7156 }
7157
7158 fn_t = btf_type_by_id(btf, btf_id);
7159 if (!fn_t || !btf_type_is_func(t: fn_t)) {
7160 /* These checks were already done by the verifier while loading
7161 * struct bpf_func_info
7162 */
7163 bpf_log(log, fmt: "BTF of func#%d doesn't point to KIND_FUNC\n",
7164 subprog);
7165 return -EFAULT;
7166 }
7167 tname = btf_name_by_offset(btf, offset: fn_t->name_off);
7168
7169 if (prog->aux->func_info_aux[subprog].unreliable) {
7170 bpf_log(log, fmt: "Verifier bug in function %s()\n", tname);
7171 return -EFAULT;
7172 }
7173 if (prog_type == BPF_PROG_TYPE_EXT)
7174 prog_type = prog->aux->dst_prog->type;
7175
7176 t = btf_type_by_id(btf, fn_t->type);
7177 if (!t || !btf_type_is_func_proto(t)) {
7178 bpf_log(log, fmt: "Invalid type of function %s()\n", tname);
7179 return -EFAULT;
7180 }
7181 args = (const struct btf_param *)(t + 1);
7182 nargs = btf_type_vlen(t);
7183 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7184 if (!is_global)
7185 return -EINVAL;
7186 bpf_log(log, fmt: "Global function %s() with %d > %d args. Buggy compiler.\n",
7187 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7188 return -EINVAL;
7189 }
7190 /* check that function returns int, exception cb also requires this */
7191 t = btf_type_by_id(btf, t->type);
7192 while (btf_type_is_modifier(t))
7193 t = btf_type_by_id(btf, t->type);
7194 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7195 if (!is_global)
7196 return -EINVAL;
7197 bpf_log(log,
7198 fmt: "Global function %s() doesn't return scalar. Only those are supported.\n",
7199 tname);
7200 return -EINVAL;
7201 }
7202 /* Convert BTF function arguments into verifier types.
7203 * Only PTR_TO_CTX and SCALAR are supported atm.
7204 */
7205 for (i = 0; i < nargs; i++) {
7206 u32 tags = 0;
7207 int id = 0;
7208
7209 /* 'arg:<tag>' decl_tag takes precedence over derivation of
7210 * register type from BTF type itself
7211 */
7212 while ((id = btf_find_next_decl_tag(btf, pt: fn_t, comp_idx: i, tag_key: "arg:", last_id: id)) > 0) {
7213 const struct btf_type *tag_t = btf_type_by_id(btf, id);
7214 const char *tag = __btf_name_by_offset(btf, offset: tag_t->name_off) + 4;
7215
7216 /* disallow arg tags in static subprogs */
7217 if (!is_global) {
7218 bpf_log(log, fmt: "arg#%d type tag is not supported in static functions\n", i);
7219 return -EOPNOTSUPP;
7220 }
7221
7222 if (strcmp(tag, "ctx") == 0) {
7223 tags |= ARG_TAG_CTX;
7224 } else if (strcmp(tag, "trusted") == 0) {
7225 tags |= ARG_TAG_TRUSTED;
7226 } else if (strcmp(tag, "nonnull") == 0) {
7227 tags |= ARG_TAG_NONNULL;
7228 } else if (strcmp(tag, "nullable") == 0) {
7229 tags |= ARG_TAG_NULLABLE;
7230 } else if (strcmp(tag, "arena") == 0) {
7231 tags |= ARG_TAG_ARENA;
7232 } else {
7233 bpf_log(log, fmt: "arg#%d has unsupported set of tags\n", i);
7234 return -EOPNOTSUPP;
7235 }
7236 }
7237 if (id != -ENOENT) {
7238 bpf_log(log, fmt: "arg#%d type tag fetching failure: %d\n", i, id);
7239 return id;
7240 }
7241
7242 t = btf_type_by_id(btf, args[i].type);
7243 while (btf_type_is_modifier(t))
7244 t = btf_type_by_id(btf, t->type);
7245 if (!btf_type_is_ptr(t))
7246 goto skip_pointer;
7247
7248 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, arg: i)) {
7249 if (tags & ~ARG_TAG_CTX) {
7250 bpf_log(log, fmt: "arg#%d has invalid combination of tags\n", i);
7251 return -EINVAL;
7252 }
7253 if ((tags & ARG_TAG_CTX) &&
7254 btf_validate_prog_ctx_type(log, btf, t, arg: i, prog_type,
7255 attach_type: prog->expected_attach_type))
7256 return -EINVAL;
7257 sub->args[i].arg_type = ARG_PTR_TO_CTX;
7258 continue;
7259 }
7260 if (btf_is_dynptr_ptr(btf, t)) {
7261 if (tags) {
7262 bpf_log(log, fmt: "arg#%d has invalid combination of tags\n", i);
7263 return -EINVAL;
7264 }
7265 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7266 continue;
7267 }
7268 if (tags & ARG_TAG_TRUSTED) {
7269 int kern_type_id;
7270
7271 if (tags & ARG_TAG_NONNULL) {
7272 bpf_log(log, fmt: "arg#%d has invalid combination of tags\n", i);
7273 return -EINVAL;
7274 }
7275
7276 kern_type_id = btf_get_ptr_to_btf_id(log, arg_idx: i, btf, t);
7277 if (kern_type_id < 0)
7278 return kern_type_id;
7279
7280 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7281 if (tags & ARG_TAG_NULLABLE)
7282 sub->args[i].arg_type |= PTR_MAYBE_NULL;
7283 sub->args[i].btf_id = kern_type_id;
7284 continue;
7285 }
7286 if (tags & ARG_TAG_ARENA) {
7287 if (tags & ~ARG_TAG_ARENA) {
7288 bpf_log(log, fmt: "arg#%d arena cannot be combined with any other tags\n", i);
7289 return -EINVAL;
7290 }
7291 sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7292 continue;
7293 }
7294 if (is_global) { /* generic user data pointer */
7295 u32 mem_size;
7296
7297 if (tags & ARG_TAG_NULLABLE) {
7298 bpf_log(log, fmt: "arg#%d has invalid combination of tags\n", i);
7299 return -EINVAL;
7300 }
7301
7302 t = btf_type_skip_modifiers(btf, id: t->type, NULL);
7303 ref_t = btf_resolve_size(btf, type: t, type_size: &mem_size);
7304 if (IS_ERR(ptr: ref_t)) {
7305 bpf_log(log, fmt: "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7306 i, btf_type_str(t), btf_name_by_offset(btf, offset: t->name_off),
7307 PTR_ERR(ptr: ref_t));
7308 return -EINVAL;
7309 }
7310
7311 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7312 if (tags & ARG_TAG_NONNULL)
7313 sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7314 sub->args[i].mem_size = mem_size;
7315 continue;
7316 }
7317
7318skip_pointer:
7319 if (tags) {
7320 bpf_log(log, fmt: "arg#%d has pointer tag, but is not a pointer type\n", i);
7321 return -EINVAL;
7322 }
7323 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7324 sub->args[i].arg_type = ARG_ANYTHING;
7325 continue;
7326 }
7327 if (!is_global)
7328 return -EINVAL;
7329 bpf_log(log, fmt: "Arg#%d type %s in %s() is not supported yet.\n",
7330 i, btf_type_str(t), tname);
7331 return -EINVAL;
7332 }
7333
7334 sub->arg_cnt = nargs;
7335 sub->args_cached = true;
7336
7337 return 0;
7338}
7339
7340static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7341 struct btf_show *show)
7342{
7343 const struct btf_type *t = btf_type_by_id(btf, type_id);
7344
7345 show->btf = btf;
7346 memset(&show->state, 0, sizeof(show->state));
7347 memset(&show->obj, 0, sizeof(show->obj));
7348
7349 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7350}
7351
7352static void btf_seq_show(struct btf_show *show, const char *fmt,
7353 va_list args)
7354{
7355 seq_vprintf(m: (struct seq_file *)show->target, fmt, args);
7356}
7357
7358int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7359 void *obj, struct seq_file *m, u64 flags)
7360{
7361 struct btf_show sseq;
7362
7363 sseq.target = m;
7364 sseq.showfn = btf_seq_show;
7365 sseq.flags = flags;
7366
7367 btf_type_show(btf, type_id, obj, show: &sseq);
7368
7369 return sseq.state.status;
7370}
7371
7372void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7373 struct seq_file *m)
7374{
7375 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
7376 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7377 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7378}
7379
7380struct btf_show_snprintf {
7381 struct btf_show show;
7382 int len_left; /* space left in string */
7383 int len; /* length we would have written */
7384};
7385
7386static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7387 va_list args)
7388{
7389 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7390 int len;
7391
7392 len = vsnprintf(buf: show->target, size: ssnprintf->len_left, fmt, args);
7393
7394 if (len < 0) {
7395 ssnprintf->len_left = 0;
7396 ssnprintf->len = len;
7397 } else if (len >= ssnprintf->len_left) {
7398 /* no space, drive on to get length we would have written */
7399 ssnprintf->len_left = 0;
7400 ssnprintf->len += len;
7401 } else {
7402 ssnprintf->len_left -= len;
7403 ssnprintf->len += len;
7404 show->target += len;
7405 }
7406}
7407
7408int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7409 char *buf, int len, u64 flags)
7410{
7411 struct btf_show_snprintf ssnprintf;
7412
7413 ssnprintf.show.target = buf;
7414 ssnprintf.show.flags = flags;
7415 ssnprintf.show.showfn = btf_snprintf_show;
7416 ssnprintf.len_left = len;
7417 ssnprintf.len = 0;
7418
7419 btf_type_show(btf, type_id, obj, show: (struct btf_show *)&ssnprintf);
7420
7421 /* If we encountered an error, return it. */
7422 if (ssnprintf.show.state.status)
7423 return ssnprintf.show.state.status;
7424
7425 /* Otherwise return length we would have written */
7426 return ssnprintf.len;
7427}
7428
7429#ifdef CONFIG_PROC_FS
7430static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7431{
7432 const struct btf *btf = filp->private_data;
7433
7434 seq_printf(m, fmt: "btf_id:\t%u\n", btf->id);
7435}
7436#endif
7437
7438static int btf_release(struct inode *inode, struct file *filp)
7439{
7440 btf_put(btf: filp->private_data);
7441 return 0;
7442}
7443
7444const struct file_operations btf_fops = {
7445#ifdef CONFIG_PROC_FS
7446 .show_fdinfo = bpf_btf_show_fdinfo,
7447#endif
7448 .release = btf_release,
7449};
7450
7451static int __btf_new_fd(struct btf *btf)
7452{
7453 return anon_inode_getfd(name: "btf", fops: &btf_fops, priv: btf, O_RDONLY | O_CLOEXEC);
7454}
7455
7456int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7457{
7458 struct btf *btf;
7459 int ret;
7460
7461 btf = btf_parse(attr, uattr, uattr_size);
7462 if (IS_ERR(ptr: btf))
7463 return PTR_ERR(ptr: btf);
7464
7465 ret = btf_alloc_id(btf);
7466 if (ret) {
7467 btf_free(btf);
7468 return ret;
7469 }
7470
7471 /*
7472 * The BTF ID is published to the userspace.
7473 * All BTF free must go through call_rcu() from
7474 * now on (i.e. free by calling btf_put()).
7475 */
7476
7477 ret = __btf_new_fd(btf);
7478 if (ret < 0)
7479 btf_put(btf);
7480
7481 return ret;
7482}
7483
7484struct btf *btf_get_by_fd(int fd)
7485{
7486 struct btf *btf;
7487 struct fd f;
7488
7489 f = fdget(fd);
7490
7491 if (!f.file)
7492 return ERR_PTR(error: -EBADF);
7493
7494 if (f.file->f_op != &btf_fops) {
7495 fdput(fd: f);
7496 return ERR_PTR(error: -EINVAL);
7497 }
7498
7499 btf = f.file->private_data;
7500 refcount_inc(r: &btf->refcnt);
7501 fdput(fd: f);
7502
7503 return btf;
7504}
7505
7506int btf_get_info_by_fd(const struct btf *btf,
7507 const union bpf_attr *attr,
7508 union bpf_attr __user *uattr)
7509{
7510 struct bpf_btf_info __user *uinfo;
7511 struct bpf_btf_info info;
7512 u32 info_copy, btf_copy;
7513 void __user *ubtf;
7514 char __user *uname;
7515 u32 uinfo_len, uname_len, name_len;
7516 int ret = 0;
7517
7518 uinfo = u64_to_user_ptr(attr->info.info);
7519 uinfo_len = attr->info.info_len;
7520
7521 info_copy = min_t(u32, uinfo_len, sizeof(info));
7522 memset(&info, 0, sizeof(info));
7523 if (copy_from_user(to: &info, from: uinfo, n: info_copy))
7524 return -EFAULT;
7525
7526 info.id = btf->id;
7527 ubtf = u64_to_user_ptr(info.btf);
7528 btf_copy = min_t(u32, btf->data_size, info.btf_size);
7529 if (copy_to_user(to: ubtf, from: btf->data, n: btf_copy))
7530 return -EFAULT;
7531 info.btf_size = btf->data_size;
7532
7533 info.kernel_btf = btf->kernel_btf;
7534
7535 uname = u64_to_user_ptr(info.name);
7536 uname_len = info.name_len;
7537 if (!uname ^ !uname_len)
7538 return -EINVAL;
7539
7540 name_len = strlen(btf->name);
7541 info.name_len = name_len;
7542
7543 if (uname) {
7544 if (uname_len >= name_len + 1) {
7545 if (copy_to_user(to: uname, from: btf->name, n: name_len + 1))
7546 return -EFAULT;
7547 } else {
7548 char zero = '\0';
7549
7550 if (copy_to_user(to: uname, from: btf->name, n: uname_len - 1))
7551 return -EFAULT;
7552 if (put_user(zero, uname + uname_len - 1))
7553 return -EFAULT;
7554 /* let user-space know about too short buffer */
7555 ret = -ENOSPC;
7556 }
7557 }
7558
7559 if (copy_to_user(to: uinfo, from: &info, n: info_copy) ||
7560 put_user(info_copy, &uattr->info.info_len))
7561 return -EFAULT;
7562
7563 return ret;
7564}
7565
7566int btf_get_fd_by_id(u32 id)
7567{
7568 struct btf *btf;
7569 int fd;
7570
7571 rcu_read_lock();
7572 btf = idr_find(&btf_idr, id);
7573 if (!btf || !refcount_inc_not_zero(r: &btf->refcnt))
7574 btf = ERR_PTR(error: -ENOENT);
7575 rcu_read_unlock();
7576
7577 if (IS_ERR(ptr: btf))
7578 return PTR_ERR(ptr: btf);
7579
7580 fd = __btf_new_fd(btf);
7581 if (fd < 0)
7582 btf_put(btf);
7583
7584 return fd;
7585}
7586
7587u32 btf_obj_id(const struct btf *btf)
7588{
7589 return btf->id;
7590}
7591
7592bool btf_is_kernel(const struct btf *btf)
7593{
7594 return btf->kernel_btf;
7595}
7596
7597bool btf_is_module(const struct btf *btf)
7598{
7599 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7600}
7601
7602enum {
7603 BTF_MODULE_F_LIVE = (1 << 0),
7604};
7605
7606#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7607struct btf_module {
7608 struct list_head list;
7609 struct module *module;
7610 struct btf *btf;
7611 struct bin_attribute *sysfs_attr;
7612 int flags;
7613};
7614
7615static LIST_HEAD(btf_modules);
7616static DEFINE_MUTEX(btf_module_mutex);
7617
7618static ssize_t
7619btf_module_read(struct file *file, struct kobject *kobj,
7620 struct bin_attribute *bin_attr,
7621 char *buf, loff_t off, size_t len)
7622{
7623 const struct btf *btf = bin_attr->private;
7624
7625 memcpy(buf, btf->data + off, len);
7626 return len;
7627}
7628
7629static void purge_cand_cache(struct btf *btf);
7630
7631static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7632 void *module)
7633{
7634 struct btf_module *btf_mod, *tmp;
7635 struct module *mod = module;
7636 struct btf *btf;
7637 int err = 0;
7638
7639 if (mod->btf_data_size == 0 ||
7640 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7641 op != MODULE_STATE_GOING))
7642 goto out;
7643
7644 switch (op) {
7645 case MODULE_STATE_COMING:
7646 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7647 if (!btf_mod) {
7648 err = -ENOMEM;
7649 goto out;
7650 }
7651 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7652 if (IS_ERR(btf)) {
7653 kfree(btf_mod);
7654 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7655 pr_warn("failed to validate module [%s] BTF: %ld\n",
7656 mod->name, PTR_ERR(btf));
7657 err = PTR_ERR(btf);
7658 } else {
7659 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7660 }
7661 goto out;
7662 }
7663 err = btf_alloc_id(btf);
7664 if (err) {
7665 btf_free(btf);
7666 kfree(btf_mod);
7667 goto out;
7668 }
7669
7670 purge_cand_cache(NULL);
7671 mutex_lock(&btf_module_mutex);
7672 btf_mod->module = module;
7673 btf_mod->btf = btf;
7674 list_add(&btf_mod->list, &btf_modules);
7675 mutex_unlock(&btf_module_mutex);
7676
7677 if (IS_ENABLED(CONFIG_SYSFS)) {
7678 struct bin_attribute *attr;
7679
7680 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7681 if (!attr)
7682 goto out;
7683
7684 sysfs_bin_attr_init(attr);
7685 attr->attr.name = btf->name;
7686 attr->attr.mode = 0444;
7687 attr->size = btf->data_size;
7688 attr->private = btf;
7689 attr->read = btf_module_read;
7690
7691 err = sysfs_create_bin_file(btf_kobj, attr);
7692 if (err) {
7693 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7694 mod->name, err);
7695 kfree(attr);
7696 err = 0;
7697 goto out;
7698 }
7699
7700 btf_mod->sysfs_attr = attr;
7701 }
7702
7703 break;
7704 case MODULE_STATE_LIVE:
7705 mutex_lock(&btf_module_mutex);
7706 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7707 if (btf_mod->module != module)
7708 continue;
7709
7710 btf_mod->flags |= BTF_MODULE_F_LIVE;
7711 break;
7712 }
7713 mutex_unlock(&btf_module_mutex);
7714 break;
7715 case MODULE_STATE_GOING:
7716 mutex_lock(&btf_module_mutex);
7717 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7718 if (btf_mod->module != module)
7719 continue;
7720
7721 list_del(&btf_mod->list);
7722 if (btf_mod->sysfs_attr)
7723 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7724 purge_cand_cache(btf_mod->btf);
7725 btf_put(btf_mod->btf);
7726 kfree(btf_mod->sysfs_attr);
7727 kfree(btf_mod);
7728 break;
7729 }
7730 mutex_unlock(&btf_module_mutex);
7731 break;
7732 }
7733out:
7734 return notifier_from_errno(err);
7735}
7736
7737static struct notifier_block btf_module_nb = {
7738 .notifier_call = btf_module_notify,
7739};
7740
7741static int __init btf_module_init(void)
7742{
7743 register_module_notifier(&btf_module_nb);
7744 return 0;
7745}
7746
7747fs_initcall(btf_module_init);
7748#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7749
7750struct module *btf_try_get_module(const struct btf *btf)
7751{
7752 struct module *res = NULL;
7753#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7754 struct btf_module *btf_mod, *tmp;
7755
7756 mutex_lock(&btf_module_mutex);
7757 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7758 if (btf_mod->btf != btf)
7759 continue;
7760
7761 /* We must only consider module whose __init routine has
7762 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7763 * which is set from the notifier callback for
7764 * MODULE_STATE_LIVE.
7765 */
7766 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7767 res = btf_mod->module;
7768
7769 break;
7770 }
7771 mutex_unlock(&btf_module_mutex);
7772#endif
7773
7774 return res;
7775}
7776
7777/* Returns struct btf corresponding to the struct module.
7778 * This function can return NULL or ERR_PTR.
7779 */
7780static struct btf *btf_get_module_btf(const struct module *module)
7781{
7782#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7783 struct btf_module *btf_mod, *tmp;
7784#endif
7785 struct btf *btf = NULL;
7786
7787 if (!module) {
7788 btf = bpf_get_btf_vmlinux();
7789 if (!IS_ERR_OR_NULL(ptr: btf))
7790 btf_get(btf);
7791 return btf;
7792 }
7793
7794#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7795 mutex_lock(&btf_module_mutex);
7796 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7797 if (btf_mod->module != module)
7798 continue;
7799
7800 btf_get(btf_mod->btf);
7801 btf = btf_mod->btf;
7802 break;
7803 }
7804 mutex_unlock(&btf_module_mutex);
7805#endif
7806
7807 return btf;
7808}
7809
7810static int check_btf_kconfigs(const struct module *module, const char *feature)
7811{
7812 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7813 pr_err("missing vmlinux BTF, cannot register %s\n", feature);
7814 return -ENOENT;
7815 }
7816 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7817 pr_warn("missing module BTF, cannot register %s\n", feature);
7818 return 0;
7819}
7820
7821BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7822{
7823 struct btf *btf = NULL;
7824 int btf_obj_fd = 0;
7825 long ret;
7826
7827 if (flags)
7828 return -EINVAL;
7829
7830 if (name_sz <= 1 || name[name_sz - 1])
7831 return -EINVAL;
7832
7833 ret = bpf_find_btf_id(name, kind, btf_p: &btf);
7834 if (ret > 0 && btf_is_module(btf)) {
7835 btf_obj_fd = __btf_new_fd(btf);
7836 if (btf_obj_fd < 0) {
7837 btf_put(btf);
7838 return btf_obj_fd;
7839 }
7840 return ret | (((u64)btf_obj_fd) << 32);
7841 }
7842 if (ret > 0)
7843 btf_put(btf);
7844 return ret;
7845}
7846
7847const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7848 .func = bpf_btf_find_by_name_kind,
7849 .gpl_only = false,
7850 .ret_type = RET_INTEGER,
7851 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7852 .arg2_type = ARG_CONST_SIZE,
7853 .arg3_type = ARG_ANYTHING,
7854 .arg4_type = ARG_ANYTHING,
7855};
7856
7857BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7858#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7859BTF_TRACING_TYPE_xxx
7860#undef BTF_TRACING_TYPE
7861
7862static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7863 const struct btf_type *func, u32 func_flags)
7864{
7865 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7866 const char *name, *sfx, *iter_name;
7867 const struct btf_param *arg;
7868 const struct btf_type *t;
7869 char exp_name[128];
7870 u32 nr_args;
7871
7872 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7873 if (!flags || (flags & (flags - 1)))
7874 return -EINVAL;
7875
7876 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7877 nr_args = btf_type_vlen(t: func);
7878 if (nr_args < 1)
7879 return -EINVAL;
7880
7881 arg = &btf_params(t: func)[0];
7882 t = btf_type_skip_modifiers(btf, id: arg->type, NULL);
7883 if (!t || !btf_type_is_ptr(t))
7884 return -EINVAL;
7885 t = btf_type_skip_modifiers(btf, id: t->type, NULL);
7886 if (!t || !__btf_type_is_struct(t))
7887 return -EINVAL;
7888
7889 name = btf_name_by_offset(btf, offset: t->name_off);
7890 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7891 return -EINVAL;
7892
7893 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7894 * fit nicely in stack slots
7895 */
7896 if (t->size == 0 || (t->size % 8))
7897 return -EINVAL;
7898
7899 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7900 * naming pattern
7901 */
7902 iter_name = name + sizeof(ITER_PREFIX) - 1;
7903 if (flags & KF_ITER_NEW)
7904 sfx = "new";
7905 else if (flags & KF_ITER_NEXT)
7906 sfx = "next";
7907 else /* (flags & KF_ITER_DESTROY) */
7908 sfx = "destroy";
7909
7910 snprintf(buf: exp_name, size: sizeof(exp_name), fmt: "bpf_iter_%s_%s", iter_name, sfx);
7911 if (strcmp(func_name, exp_name))
7912 return -EINVAL;
7913
7914 /* only iter constructor should have extra arguments */
7915 if (!(flags & KF_ITER_NEW) && nr_args != 1)
7916 return -EINVAL;
7917
7918 if (flags & KF_ITER_NEXT) {
7919 /* bpf_iter_<type>_next() should return pointer */
7920 t = btf_type_skip_modifiers(btf, id: func->type, NULL);
7921 if (!t || !btf_type_is_ptr(t))
7922 return -EINVAL;
7923 }
7924
7925 if (flags & KF_ITER_DESTROY) {
7926 /* bpf_iter_<type>_destroy() should return void */
7927 t = btf_type_by_id(btf, func->type);
7928 if (!t || !btf_type_is_void(t))
7929 return -EINVAL;
7930 }
7931
7932 return 0;
7933}
7934
7935static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7936{
7937 const struct btf_type *func;
7938 const char *func_name;
7939 int err;
7940
7941 /* any kfunc should be FUNC -> FUNC_PROTO */
7942 func = btf_type_by_id(btf, func_id);
7943 if (!func || !btf_type_is_func(t: func))
7944 return -EINVAL;
7945
7946 /* sanity check kfunc name */
7947 func_name = btf_name_by_offset(btf, offset: func->name_off);
7948 if (!func_name || !func_name[0])
7949 return -EINVAL;
7950
7951 func = btf_type_by_id(btf, func->type);
7952 if (!func || !btf_type_is_func_proto(t: func))
7953 return -EINVAL;
7954
7955 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7956 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7957 if (err)
7958 return err;
7959 }
7960
7961 return 0;
7962}
7963
7964/* Kernel Function (kfunc) BTF ID set registration API */
7965
7966static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7967 const struct btf_kfunc_id_set *kset)
7968{
7969 struct btf_kfunc_hook_filter *hook_filter;
7970 struct btf_id_set8 *add_set = kset->set;
7971 bool vmlinux_set = !btf_is_module(btf);
7972 bool add_filter = !!kset->filter;
7973 struct btf_kfunc_set_tab *tab;
7974 struct btf_id_set8 *set;
7975 u32 set_cnt;
7976 int ret;
7977
7978 if (hook >= BTF_KFUNC_HOOK_MAX) {
7979 ret = -EINVAL;
7980 goto end;
7981 }
7982
7983 if (!add_set->cnt)
7984 return 0;
7985
7986 tab = btf->kfunc_set_tab;
7987
7988 if (tab && add_filter) {
7989 u32 i;
7990
7991 hook_filter = &tab->hook_filters[hook];
7992 for (i = 0; i < hook_filter->nr_filters; i++) {
7993 if (hook_filter->filters[i] == kset->filter) {
7994 add_filter = false;
7995 break;
7996 }
7997 }
7998
7999 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8000 ret = -E2BIG;
8001 goto end;
8002 }
8003 }
8004
8005 if (!tab) {
8006 tab = kzalloc(size: sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8007 if (!tab)
8008 return -ENOMEM;
8009 btf->kfunc_set_tab = tab;
8010 }
8011
8012 set = tab->sets[hook];
8013 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
8014 * for module sets.
8015 */
8016 if (WARN_ON_ONCE(set && !vmlinux_set)) {
8017 ret = -EINVAL;
8018 goto end;
8019 }
8020
8021 /* We don't need to allocate, concatenate, and sort module sets, because
8022 * only one is allowed per hook. Hence, we can directly assign the
8023 * pointer and return.
8024 */
8025 if (!vmlinux_set) {
8026 tab->sets[hook] = add_set;
8027 goto do_add_filter;
8028 }
8029
8030 /* In case of vmlinux sets, there may be more than one set being
8031 * registered per hook. To create a unified set, we allocate a new set
8032 * and concatenate all individual sets being registered. While each set
8033 * is individually sorted, they may become unsorted when concatenated,
8034 * hence re-sorting the final set again is required to make binary
8035 * searching the set using btf_id_set8_contains function work.
8036 */
8037 set_cnt = set ? set->cnt : 0;
8038
8039 if (set_cnt > U32_MAX - add_set->cnt) {
8040 ret = -EOVERFLOW;
8041 goto end;
8042 }
8043
8044 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8045 ret = -E2BIG;
8046 goto end;
8047 }
8048
8049 /* Grow set */
8050 set = krealloc(objp: tab->sets[hook],
8051 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8052 GFP_KERNEL | __GFP_NOWARN);
8053 if (!set) {
8054 ret = -ENOMEM;
8055 goto end;
8056 }
8057
8058 /* For newly allocated set, initialize set->cnt to 0 */
8059 if (!tab->sets[hook])
8060 set->cnt = 0;
8061 tab->sets[hook] = set;
8062
8063 /* Concatenate the two sets */
8064 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8065 set->cnt += add_set->cnt;
8066
8067 sort(base: set->pairs, num: set->cnt, size: sizeof(set->pairs[0]), cmp_func: btf_id_cmp_func, NULL);
8068
8069do_add_filter:
8070 if (add_filter) {
8071 hook_filter = &tab->hook_filters[hook];
8072 hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8073 }
8074 return 0;
8075end:
8076 btf_free_kfunc_set_tab(btf);
8077 return ret;
8078}
8079
8080static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8081 enum btf_kfunc_hook hook,
8082 u32 kfunc_btf_id,
8083 const struct bpf_prog *prog)
8084{
8085 struct btf_kfunc_hook_filter *hook_filter;
8086 struct btf_id_set8 *set;
8087 u32 *id, i;
8088
8089 if (hook >= BTF_KFUNC_HOOK_MAX)
8090 return NULL;
8091 if (!btf->kfunc_set_tab)
8092 return NULL;
8093 hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8094 for (i = 0; i < hook_filter->nr_filters; i++) {
8095 if (hook_filter->filters[i](prog, kfunc_btf_id))
8096 return NULL;
8097 }
8098 set = btf->kfunc_set_tab->sets[hook];
8099 if (!set)
8100 return NULL;
8101 id = btf_id_set8_contains(set, id: kfunc_btf_id);
8102 if (!id)
8103 return NULL;
8104 /* The flags for BTF ID are located next to it */
8105 return id + 1;
8106}
8107
8108static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8109{
8110 switch (prog_type) {
8111 case BPF_PROG_TYPE_UNSPEC:
8112 return BTF_KFUNC_HOOK_COMMON;
8113 case BPF_PROG_TYPE_XDP:
8114 return BTF_KFUNC_HOOK_XDP;
8115 case BPF_PROG_TYPE_SCHED_CLS:
8116 return BTF_KFUNC_HOOK_TC;
8117 case BPF_PROG_TYPE_STRUCT_OPS:
8118 return BTF_KFUNC_HOOK_STRUCT_OPS;
8119 case BPF_PROG_TYPE_TRACING:
8120 case BPF_PROG_TYPE_LSM:
8121 return BTF_KFUNC_HOOK_TRACING;
8122 case BPF_PROG_TYPE_SYSCALL:
8123 return BTF_KFUNC_HOOK_SYSCALL;
8124 case BPF_PROG_TYPE_CGROUP_SKB:
8125 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8126 return BTF_KFUNC_HOOK_CGROUP_SKB;
8127 case BPF_PROG_TYPE_SCHED_ACT:
8128 return BTF_KFUNC_HOOK_SCHED_ACT;
8129 case BPF_PROG_TYPE_SK_SKB:
8130 return BTF_KFUNC_HOOK_SK_SKB;
8131 case BPF_PROG_TYPE_SOCKET_FILTER:
8132 return BTF_KFUNC_HOOK_SOCKET_FILTER;
8133 case BPF_PROG_TYPE_LWT_OUT:
8134 case BPF_PROG_TYPE_LWT_IN:
8135 case BPF_PROG_TYPE_LWT_XMIT:
8136 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8137 return BTF_KFUNC_HOOK_LWT;
8138 case BPF_PROG_TYPE_NETFILTER:
8139 return BTF_KFUNC_HOOK_NETFILTER;
8140 default:
8141 return BTF_KFUNC_HOOK_MAX;
8142 }
8143}
8144
8145/* Caution:
8146 * Reference to the module (obtained using btf_try_get_module) corresponding to
8147 * the struct btf *MUST* be held when calling this function from verifier
8148 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8149 * keeping the reference for the duration of the call provides the necessary
8150 * protection for looking up a well-formed btf->kfunc_set_tab.
8151 */
8152u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8153 u32 kfunc_btf_id,
8154 const struct bpf_prog *prog)
8155{
8156 enum bpf_prog_type prog_type = resolve_prog_type(prog);
8157 enum btf_kfunc_hook hook;
8158 u32 *kfunc_flags;
8159
8160 kfunc_flags = __btf_kfunc_id_set_contains(btf, hook: BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8161 if (kfunc_flags)
8162 return kfunc_flags;
8163
8164 hook = bpf_prog_type_to_kfunc_hook(prog_type);
8165 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8166}
8167
8168u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8169 const struct bpf_prog *prog)
8170{
8171 return __btf_kfunc_id_set_contains(btf, hook: BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8172}
8173
8174static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8175 const struct btf_kfunc_id_set *kset)
8176{
8177 struct btf *btf;
8178 int ret, i;
8179
8180 btf = btf_get_module_btf(module: kset->owner);
8181 if (!btf)
8182 return check_btf_kconfigs(module: kset->owner, feature: "kfunc");
8183 if (IS_ERR(ptr: btf))
8184 return PTR_ERR(ptr: btf);
8185
8186 for (i = 0; i < kset->set->cnt; i++) {
8187 ret = btf_check_kfunc_protos(btf, func_id: kset->set->pairs[i].id,
8188 func_flags: kset->set->pairs[i].flags);
8189 if (ret)
8190 goto err_out;
8191 }
8192
8193 ret = btf_populate_kfunc_set(btf, hook, kset);
8194
8195err_out:
8196 btf_put(btf);
8197 return ret;
8198}
8199
8200/* This function must be invoked only from initcalls/module init functions */
8201int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8202 const struct btf_kfunc_id_set *kset)
8203{
8204 enum btf_kfunc_hook hook;
8205
8206 /* All kfuncs need to be tagged as such in BTF.
8207 * WARN() for initcall registrations that do not check errors.
8208 */
8209 if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8210 WARN_ON(!kset->owner);
8211 return -EINVAL;
8212 }
8213
8214 hook = bpf_prog_type_to_kfunc_hook(prog_type);
8215 return __register_btf_kfunc_id_set(hook, kset);
8216}
8217EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8218
8219/* This function must be invoked only from initcalls/module init functions */
8220int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8221{
8222 return __register_btf_kfunc_id_set(hook: BTF_KFUNC_HOOK_FMODRET, kset);
8223}
8224EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8225
8226s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8227{
8228 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8229 struct btf_id_dtor_kfunc *dtor;
8230
8231 if (!tab)
8232 return -ENOENT;
8233 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8234 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8235 */
8236 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8237 dtor = bsearch(key: &btf_id, base: tab->dtors, num: tab->cnt, size: sizeof(tab->dtors[0]), cmp: btf_id_cmp_func);
8238 if (!dtor)
8239 return -ENOENT;
8240 return dtor->kfunc_btf_id;
8241}
8242
8243static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8244{
8245 const struct btf_type *dtor_func, *dtor_func_proto, *t;
8246 const struct btf_param *args;
8247 s32 dtor_btf_id;
8248 u32 nr_args, i;
8249
8250 for (i = 0; i < cnt; i++) {
8251 dtor_btf_id = dtors[i].kfunc_btf_id;
8252
8253 dtor_func = btf_type_by_id(btf, dtor_btf_id);
8254 if (!dtor_func || !btf_type_is_func(t: dtor_func))
8255 return -EINVAL;
8256
8257 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8258 if (!dtor_func_proto || !btf_type_is_func_proto(t: dtor_func_proto))
8259 return -EINVAL;
8260
8261 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8262 t = btf_type_by_id(btf, dtor_func_proto->type);
8263 if (!t || !btf_type_is_void(t))
8264 return -EINVAL;
8265
8266 nr_args = btf_type_vlen(t: dtor_func_proto);
8267 if (nr_args != 1)
8268 return -EINVAL;
8269 args = btf_params(t: dtor_func_proto);
8270 t = btf_type_by_id(btf, args[0].type);
8271 /* Allow any pointer type, as width on targets Linux supports
8272 * will be same for all pointer types (i.e. sizeof(void *))
8273 */
8274 if (!t || !btf_type_is_ptr(t))
8275 return -EINVAL;
8276 }
8277 return 0;
8278}
8279
8280/* This function must be invoked only from initcalls/module init functions */
8281int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8282 struct module *owner)
8283{
8284 struct btf_id_dtor_kfunc_tab *tab;
8285 struct btf *btf;
8286 u32 tab_cnt;
8287 int ret;
8288
8289 btf = btf_get_module_btf(module: owner);
8290 if (!btf)
8291 return check_btf_kconfigs(module: owner, feature: "dtor kfuncs");
8292 if (IS_ERR(ptr: btf))
8293 return PTR_ERR(ptr: btf);
8294
8295 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8296 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8297 ret = -E2BIG;
8298 goto end;
8299 }
8300
8301 /* Ensure that the prototype of dtor kfuncs being registered is sane */
8302 ret = btf_check_dtor_kfuncs(btf, dtors, cnt: add_cnt);
8303 if (ret < 0)
8304 goto end;
8305
8306 tab = btf->dtor_kfunc_tab;
8307 /* Only one call allowed for modules */
8308 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8309 ret = -EINVAL;
8310 goto end;
8311 }
8312
8313 tab_cnt = tab ? tab->cnt : 0;
8314 if (tab_cnt > U32_MAX - add_cnt) {
8315 ret = -EOVERFLOW;
8316 goto end;
8317 }
8318 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8319 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8320 ret = -E2BIG;
8321 goto end;
8322 }
8323
8324 tab = krealloc(objp: btf->dtor_kfunc_tab,
8325 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8326 GFP_KERNEL | __GFP_NOWARN);
8327 if (!tab) {
8328 ret = -ENOMEM;
8329 goto end;
8330 }
8331
8332 if (!btf->dtor_kfunc_tab)
8333 tab->cnt = 0;
8334 btf->dtor_kfunc_tab = tab;
8335
8336 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8337 tab->cnt += add_cnt;
8338
8339 sort(base: tab->dtors, num: tab->cnt, size: sizeof(tab->dtors[0]), cmp_func: btf_id_cmp_func, NULL);
8340
8341end:
8342 if (ret)
8343 btf_free_dtor_kfunc_tab(btf);
8344 btf_put(btf);
8345 return ret;
8346}
8347EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8348
8349#define MAX_TYPES_ARE_COMPAT_DEPTH 2
8350
8351/* Check local and target types for compatibility. This check is used for
8352 * type-based CO-RE relocations and follow slightly different rules than
8353 * field-based relocations. This function assumes that root types were already
8354 * checked for name match. Beyond that initial root-level name check, names
8355 * are completely ignored. Compatibility rules are as follows:
8356 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8357 * kind should match for local and target types (i.e., STRUCT is not
8358 * compatible with UNION);
8359 * - for ENUMs/ENUM64s, the size is ignored;
8360 * - for INT, size and signedness are ignored;
8361 * - for ARRAY, dimensionality is ignored, element types are checked for
8362 * compatibility recursively;
8363 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
8364 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8365 * - FUNC_PROTOs are compatible if they have compatible signature: same
8366 * number of input args and compatible return and argument types.
8367 * These rules are not set in stone and probably will be adjusted as we get
8368 * more experience with using BPF CO-RE relocations.
8369 */
8370int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8371 const struct btf *targ_btf, __u32 targ_id)
8372{
8373 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8374 MAX_TYPES_ARE_COMPAT_DEPTH);
8375}
8376
8377#define MAX_TYPES_MATCH_DEPTH 2
8378
8379int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8380 const struct btf *targ_btf, u32 targ_id)
8381{
8382 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, behind_ptr: false,
8383 MAX_TYPES_MATCH_DEPTH);
8384}
8385
8386static bool bpf_core_is_flavor_sep(const char *s)
8387{
8388 /* check X___Y name pattern, where X and Y are not underscores */
8389 return s[0] != '_' && /* X */
8390 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
8391 s[4] != '_'; /* Y */
8392}
8393
8394size_t bpf_core_essential_name_len(const char *name)
8395{
8396 size_t n = strlen(name);
8397 int i;
8398
8399 for (i = n - 5; i >= 0; i--) {
8400 if (bpf_core_is_flavor_sep(s: name + i))
8401 return i + 1;
8402 }
8403 return n;
8404}
8405
8406static void bpf_free_cands(struct bpf_cand_cache *cands)
8407{
8408 if (!cands->cnt)
8409 /* empty candidate array was allocated on stack */
8410 return;
8411 kfree(objp: cands);
8412}
8413
8414static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8415{
8416 kfree(objp: cands->name);
8417 kfree(objp: cands);
8418}
8419
8420#define VMLINUX_CAND_CACHE_SIZE 31
8421static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8422
8423#define MODULE_CAND_CACHE_SIZE 31
8424static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8425
8426static void __print_cand_cache(struct bpf_verifier_log *log,
8427 struct bpf_cand_cache **cache,
8428 int cache_size)
8429{
8430 struct bpf_cand_cache *cc;
8431 int i, j;
8432
8433 for (i = 0; i < cache_size; i++) {
8434 cc = cache[i];
8435 if (!cc)
8436 continue;
8437 bpf_log(log, fmt: "[%d]%s(", i, cc->name);
8438 for (j = 0; j < cc->cnt; j++) {
8439 bpf_log(log, fmt: "%d", cc->cands[j].id);
8440 if (j < cc->cnt - 1)
8441 bpf_log(log, fmt: " ");
8442 }
8443 bpf_log(log, fmt: "), ");
8444 }
8445}
8446
8447static void print_cand_cache(struct bpf_verifier_log *log)
8448{
8449 mutex_lock(&cand_cache_mutex);
8450 bpf_log(log, fmt: "vmlinux_cand_cache:");
8451 __print_cand_cache(log, cache: vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8452 bpf_log(log, fmt: "\nmodule_cand_cache:");
8453 __print_cand_cache(log, cache: module_cand_cache, MODULE_CAND_CACHE_SIZE);
8454 bpf_log(log, fmt: "\n");
8455 mutex_unlock(lock: &cand_cache_mutex);
8456}
8457
8458static u32 hash_cands(struct bpf_cand_cache *cands)
8459{
8460 return jhash(key: cands->name, length: cands->name_len, initval: 0);
8461}
8462
8463static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8464 struct bpf_cand_cache **cache,
8465 int cache_size)
8466{
8467 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8468
8469 if (cc && cc->name_len == cands->name_len &&
8470 !strncmp(cc->name, cands->name, cands->name_len))
8471 return cc;
8472 return NULL;
8473}
8474
8475static size_t sizeof_cands(int cnt)
8476{
8477 return offsetof(struct bpf_cand_cache, cands[cnt]);
8478}
8479
8480static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8481 struct bpf_cand_cache **cache,
8482 int cache_size)
8483{
8484 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8485
8486 if (*cc) {
8487 bpf_free_cands_from_cache(cands: *cc);
8488 *cc = NULL;
8489 }
8490 new_cands = kmemdup(p: cands, size: sizeof_cands(cnt: cands->cnt), GFP_KERNEL);
8491 if (!new_cands) {
8492 bpf_free_cands(cands);
8493 return ERR_PTR(error: -ENOMEM);
8494 }
8495 /* strdup the name, since it will stay in cache.
8496 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8497 */
8498 new_cands->name = kmemdup_nul(s: cands->name, len: cands->name_len, GFP_KERNEL);
8499 bpf_free_cands(cands);
8500 if (!new_cands->name) {
8501 kfree(objp: new_cands);
8502 return ERR_PTR(error: -ENOMEM);
8503 }
8504 *cc = new_cands;
8505 return new_cands;
8506}
8507
8508#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8509static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8510 int cache_size)
8511{
8512 struct bpf_cand_cache *cc;
8513 int i, j;
8514
8515 for (i = 0; i < cache_size; i++) {
8516 cc = cache[i];
8517 if (!cc)
8518 continue;
8519 if (!btf) {
8520 /* when new module is loaded purge all of module_cand_cache,
8521 * since new module might have candidates with the name
8522 * that matches cached cands.
8523 */
8524 bpf_free_cands_from_cache(cc);
8525 cache[i] = NULL;
8526 continue;
8527 }
8528 /* when module is unloaded purge cache entries
8529 * that match module's btf
8530 */
8531 for (j = 0; j < cc->cnt; j++)
8532 if (cc->cands[j].btf == btf) {
8533 bpf_free_cands_from_cache(cc);
8534 cache[i] = NULL;
8535 break;
8536 }
8537 }
8538
8539}
8540
8541static void purge_cand_cache(struct btf *btf)
8542{
8543 mutex_lock(&cand_cache_mutex);
8544 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8545 mutex_unlock(&cand_cache_mutex);
8546}
8547#endif
8548
8549static struct bpf_cand_cache *
8550bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8551 int targ_start_id)
8552{
8553 struct bpf_cand_cache *new_cands;
8554 const struct btf_type *t;
8555 const char *targ_name;
8556 size_t targ_essent_len;
8557 int n, i;
8558
8559 n = btf_nr_types(btf: targ_btf);
8560 for (i = targ_start_id; i < n; i++) {
8561 t = btf_type_by_id(targ_btf, i);
8562 if (btf_kind(t) != cands->kind)
8563 continue;
8564
8565 targ_name = btf_name_by_offset(btf: targ_btf, offset: t->name_off);
8566 if (!targ_name)
8567 continue;
8568
8569 /* the resched point is before strncmp to make sure that search
8570 * for non-existing name will have a chance to schedule().
8571 */
8572 cond_resched();
8573
8574 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8575 continue;
8576
8577 targ_essent_len = bpf_core_essential_name_len(name: targ_name);
8578 if (targ_essent_len != cands->name_len)
8579 continue;
8580
8581 /* most of the time there is only one candidate for a given kind+name pair */
8582 new_cands = kmalloc(size: sizeof_cands(cnt: cands->cnt + 1), GFP_KERNEL);
8583 if (!new_cands) {
8584 bpf_free_cands(cands);
8585 return ERR_PTR(error: -ENOMEM);
8586 }
8587
8588 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8589 bpf_free_cands(cands);
8590 cands = new_cands;
8591 cands->cands[cands->cnt].btf = targ_btf;
8592 cands->cands[cands->cnt].id = i;
8593 cands->cnt++;
8594 }
8595 return cands;
8596}
8597
8598static struct bpf_cand_cache *
8599bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8600{
8601 struct bpf_cand_cache *cands, *cc, local_cand = {};
8602 const struct btf *local_btf = ctx->btf;
8603 const struct btf_type *local_type;
8604 const struct btf *main_btf;
8605 size_t local_essent_len;
8606 struct btf *mod_btf;
8607 const char *name;
8608 int id;
8609
8610 main_btf = bpf_get_btf_vmlinux();
8611 if (IS_ERR(ptr: main_btf))
8612 return ERR_CAST(ptr: main_btf);
8613 if (!main_btf)
8614 return ERR_PTR(error: -EINVAL);
8615
8616 local_type = btf_type_by_id(local_btf, local_type_id);
8617 if (!local_type)
8618 return ERR_PTR(error: -EINVAL);
8619
8620 name = btf_name_by_offset(btf: local_btf, offset: local_type->name_off);
8621 if (str_is_empty(s: name))
8622 return ERR_PTR(error: -EINVAL);
8623 local_essent_len = bpf_core_essential_name_len(name);
8624
8625 cands = &local_cand;
8626 cands->name = name;
8627 cands->kind = btf_kind(t: local_type);
8628 cands->name_len = local_essent_len;
8629
8630 cc = check_cand_cache(cands, cache: vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8631 /* cands is a pointer to stack here */
8632 if (cc) {
8633 if (cc->cnt)
8634 return cc;
8635 goto check_modules;
8636 }
8637
8638 /* Attempt to find target candidates in vmlinux BTF first */
8639 cands = bpf_core_add_cands(cands, targ_btf: main_btf, targ_start_id: 1);
8640 if (IS_ERR(ptr: cands))
8641 return ERR_CAST(ptr: cands);
8642
8643 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8644
8645 /* populate cache even when cands->cnt == 0 */
8646 cc = populate_cand_cache(cands, cache: vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8647 if (IS_ERR(ptr: cc))
8648 return ERR_CAST(ptr: cc);
8649
8650 /* if vmlinux BTF has any candidate, don't go for module BTFs */
8651 if (cc->cnt)
8652 return cc;
8653
8654check_modules:
8655 /* cands is a pointer to stack here and cands->cnt == 0 */
8656 cc = check_cand_cache(cands, cache: module_cand_cache, MODULE_CAND_CACHE_SIZE);
8657 if (cc)
8658 /* if cache has it return it even if cc->cnt == 0 */
8659 return cc;
8660
8661 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8662 spin_lock_bh(lock: &btf_idr_lock);
8663 idr_for_each_entry(&btf_idr, mod_btf, id) {
8664 if (!btf_is_module(btf: mod_btf))
8665 continue;
8666 /* linear search could be slow hence unlock/lock
8667 * the IDR to avoiding holding it for too long
8668 */
8669 btf_get(btf: mod_btf);
8670 spin_unlock_bh(lock: &btf_idr_lock);
8671 cands = bpf_core_add_cands(cands, targ_btf: mod_btf, targ_start_id: btf_nr_types(btf: main_btf));
8672 btf_put(btf: mod_btf);
8673 if (IS_ERR(ptr: cands))
8674 return ERR_CAST(ptr: cands);
8675 spin_lock_bh(lock: &btf_idr_lock);
8676 }
8677 spin_unlock_bh(lock: &btf_idr_lock);
8678 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
8679 * or pointer to stack if cands->cnd == 0.
8680 * Copy it into the cache even when cands->cnt == 0 and
8681 * return the result.
8682 */
8683 return populate_cand_cache(cands, cache: module_cand_cache, MODULE_CAND_CACHE_SIZE);
8684}
8685
8686int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8687 int relo_idx, void *insn)
8688{
8689 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8690 struct bpf_core_cand_list cands = {};
8691 struct bpf_core_relo_res targ_res;
8692 struct bpf_core_spec *specs;
8693 int err;
8694
8695 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8696 * into arrays of btf_ids of struct fields and array indices.
8697 */
8698 specs = kcalloc(n: 3, size: sizeof(*specs), GFP_KERNEL);
8699 if (!specs)
8700 return -ENOMEM;
8701
8702 if (need_cands) {
8703 struct bpf_cand_cache *cc;
8704 int i;
8705
8706 mutex_lock(&cand_cache_mutex);
8707 cc = bpf_core_find_cands(ctx, local_type_id: relo->type_id);
8708 if (IS_ERR(ptr: cc)) {
8709 bpf_log(log: ctx->log, fmt: "target candidate search failed for %d\n",
8710 relo->type_id);
8711 err = PTR_ERR(ptr: cc);
8712 goto out;
8713 }
8714 if (cc->cnt) {
8715 cands.cands = kcalloc(n: cc->cnt, size: sizeof(*cands.cands), GFP_KERNEL);
8716 if (!cands.cands) {
8717 err = -ENOMEM;
8718 goto out;
8719 }
8720 }
8721 for (i = 0; i < cc->cnt; i++) {
8722 bpf_log(log: ctx->log,
8723 fmt: "CO-RE relocating %s %s: found target candidate [%d]\n",
8724 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8725 cands.cands[i].btf = cc->cands[i].btf;
8726 cands.cands[i].id = cc->cands[i].id;
8727 }
8728 cands.len = cc->cnt;
8729 /* cand_cache_mutex needs to span the cache lookup and
8730 * copy of btf pointer into bpf_core_cand_list,
8731 * since module can be unloaded while bpf_core_calc_relo_insn
8732 * is working with module's btf.
8733 */
8734 }
8735
8736 err = bpf_core_calc_relo_insn(prog_name: (void *)ctx->log, relo, relo_idx, local_btf: ctx->btf, cands: &cands, specs_scratch: specs,
8737 targ_res: &targ_res);
8738 if (err)
8739 goto out;
8740
8741 err = bpf_core_patch_insn(prog_name: (void *)ctx->log, insn, insn_idx: relo->insn_off / 8, relo, relo_idx,
8742 res: &targ_res);
8743
8744out:
8745 kfree(objp: specs);
8746 if (need_cands) {
8747 kfree(objp: cands.cands);
8748 mutex_unlock(lock: &cand_cache_mutex);
8749 if (ctx->log->level & BPF_LOG_LEVEL2)
8750 print_cand_cache(log: ctx->log);
8751 }
8752 return err;
8753}
8754
8755bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8756 const struct bpf_reg_state *reg,
8757 const char *field_name, u32 btf_id, const char *suffix)
8758{
8759 struct btf *btf = reg->btf;
8760 const struct btf_type *walk_type, *safe_type;
8761 const char *tname;
8762 char safe_tname[64];
8763 long ret, safe_id;
8764 const struct btf_member *member;
8765 u32 i;
8766
8767 walk_type = btf_type_by_id(btf, reg->btf_id);
8768 if (!walk_type)
8769 return false;
8770
8771 tname = btf_name_by_offset(btf, offset: walk_type->name_off);
8772
8773 ret = snprintf(buf: safe_tname, size: sizeof(safe_tname), fmt: "%s%s", tname, suffix);
8774 if (ret >= sizeof(safe_tname))
8775 return false;
8776
8777 safe_id = btf_find_by_name_kind(btf, name: safe_tname, BTF_INFO_KIND(walk_type->info));
8778 if (safe_id < 0)
8779 return false;
8780
8781 safe_type = btf_type_by_id(btf, safe_id);
8782 if (!safe_type)
8783 return false;
8784
8785 for_each_member(i, safe_type, member) {
8786 const char *m_name = __btf_name_by_offset(btf, offset: member->name_off);
8787 const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8788 u32 id;
8789
8790 if (!btf_type_is_ptr(t: mtype))
8791 continue;
8792
8793 btf_type_skip_modifiers(btf, id: mtype->type, res_id: &id);
8794 /* If we match on both type and name, the field is considered trusted. */
8795 if (btf_id == id && !strcmp(field_name, m_name))
8796 return true;
8797 }
8798
8799 return false;
8800}
8801
8802bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8803 const struct btf *reg_btf, u32 reg_id,
8804 const struct btf *arg_btf, u32 arg_id)
8805{
8806 const char *reg_name, *arg_name, *search_needle;
8807 const struct btf_type *reg_type, *arg_type;
8808 int reg_len, arg_len, cmp_len;
8809 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8810
8811 reg_type = btf_type_by_id(reg_btf, reg_id);
8812 if (!reg_type)
8813 return false;
8814
8815 arg_type = btf_type_by_id(arg_btf, arg_id);
8816 if (!arg_type)
8817 return false;
8818
8819 reg_name = btf_name_by_offset(btf: reg_btf, offset: reg_type->name_off);
8820 arg_name = btf_name_by_offset(btf: arg_btf, offset: arg_type->name_off);
8821
8822 reg_len = strlen(reg_name);
8823 arg_len = strlen(arg_name);
8824
8825 /* Exactly one of the two type names may be suffixed with ___init, so
8826 * if the strings are the same size, they can't possibly be no-cast
8827 * aliases of one another. If you have two of the same type names, e.g.
8828 * they're both nf_conn___init, it would be improper to return true
8829 * because they are _not_ no-cast aliases, they are the same type.
8830 */
8831 if (reg_len == arg_len)
8832 return false;
8833
8834 /* Either of the two names must be the other name, suffixed with ___init. */
8835 if ((reg_len != arg_len + pattern_len) &&
8836 (arg_len != reg_len + pattern_len))
8837 return false;
8838
8839 if (reg_len < arg_len) {
8840 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8841 cmp_len = reg_len;
8842 } else {
8843 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8844 cmp_len = arg_len;
8845 }
8846
8847 if (!search_needle)
8848 return false;
8849
8850 /* ___init suffix must come at the end of the name */
8851 if (*(search_needle + pattern_len) != '\0')
8852 return false;
8853
8854 return !strncmp(reg_name, arg_name, cmp_len);
8855}
8856
8857#ifdef CONFIG_BPF_JIT
8858static int
8859btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
8860 struct bpf_verifier_log *log)
8861{
8862 struct btf_struct_ops_tab *tab, *new_tab;
8863 int i, err;
8864
8865 tab = btf->struct_ops_tab;
8866 if (!tab) {
8867 tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
8868 GFP_KERNEL);
8869 if (!tab)
8870 return -ENOMEM;
8871 tab->capacity = 4;
8872 btf->struct_ops_tab = tab;
8873 }
8874
8875 for (i = 0; i < tab->cnt; i++)
8876 if (tab->ops[i].st_ops == st_ops)
8877 return -EEXIST;
8878
8879 if (tab->cnt == tab->capacity) {
8880 new_tab = krealloc(objp: tab,
8881 offsetof(struct btf_struct_ops_tab,
8882 ops[tab->capacity * 2]),
8883 GFP_KERNEL);
8884 if (!new_tab)
8885 return -ENOMEM;
8886 tab = new_tab;
8887 tab->capacity *= 2;
8888 btf->struct_ops_tab = tab;
8889 }
8890
8891 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
8892
8893 err = bpf_struct_ops_desc_init(st_ops_desc: &tab->ops[btf->struct_ops_tab->cnt], btf, log);
8894 if (err)
8895 return err;
8896
8897 btf->struct_ops_tab->cnt++;
8898
8899 return 0;
8900}
8901
8902const struct bpf_struct_ops_desc *
8903bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
8904{
8905 const struct bpf_struct_ops_desc *st_ops_list;
8906 unsigned int i;
8907 u32 cnt;
8908
8909 if (!value_id)
8910 return NULL;
8911 if (!btf->struct_ops_tab)
8912 return NULL;
8913
8914 cnt = btf->struct_ops_tab->cnt;
8915 st_ops_list = btf->struct_ops_tab->ops;
8916 for (i = 0; i < cnt; i++) {
8917 if (st_ops_list[i].value_id == value_id)
8918 return &st_ops_list[i];
8919 }
8920
8921 return NULL;
8922}
8923
8924const struct bpf_struct_ops_desc *
8925bpf_struct_ops_find(struct btf *btf, u32 type_id)
8926{
8927 const struct bpf_struct_ops_desc *st_ops_list;
8928 unsigned int i;
8929 u32 cnt;
8930
8931 if (!type_id)
8932 return NULL;
8933 if (!btf->struct_ops_tab)
8934 return NULL;
8935
8936 cnt = btf->struct_ops_tab->cnt;
8937 st_ops_list = btf->struct_ops_tab->ops;
8938 for (i = 0; i < cnt; i++) {
8939 if (st_ops_list[i].type_id == type_id)
8940 return &st_ops_list[i];
8941 }
8942
8943 return NULL;
8944}
8945
8946int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
8947{
8948 struct bpf_verifier_log *log;
8949 struct btf *btf;
8950 int err = 0;
8951
8952 btf = btf_get_module_btf(module: st_ops->owner);
8953 if (!btf)
8954 return check_btf_kconfigs(module: st_ops->owner, feature: "struct_ops");
8955 if (IS_ERR(ptr: btf))
8956 return PTR_ERR(ptr: btf);
8957
8958 log = kzalloc(size: sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
8959 if (!log) {
8960 err = -ENOMEM;
8961 goto errout;
8962 }
8963
8964 log->level = BPF_LOG_KERNEL;
8965
8966 err = btf_add_struct_ops(btf, st_ops, log);
8967
8968errout:
8969 kfree(objp: log);
8970 btf_put(btf);
8971
8972 return err;
8973}
8974EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
8975#endif
8976
8977bool btf_param_match_suffix(const struct btf *btf,
8978 const struct btf_param *arg,
8979 const char *suffix)
8980{
8981 int suffix_len = strlen(suffix), len;
8982 const char *param_name;
8983
8984 /* In the future, this can be ported to use BTF tagging */
8985 param_name = btf_name_by_offset(btf, offset: arg->name_off);
8986 if (str_is_empty(s: param_name))
8987 return false;
8988 len = strlen(param_name);
8989 if (len <= suffix_len)
8990 return false;
8991 param_name += len - suffix_len;
8992 return !strncmp(param_name, suffix, suffix_len);
8993}
8994

source code of linux/kernel/bpf/btf.c