1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * RT-Mutexes: simple blocking mutual exclusion locks with PI support |
4 | * |
5 | * started by Ingo Molnar and Thomas Gleixner. |
6 | * |
7 | * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
8 | * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> |
9 | * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt |
10 | * Copyright (C) 2006 Esben Nielsen |
11 | * Adaptive Spinlocks: |
12 | * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich, |
13 | * and Peter Morreale, |
14 | * Adaptive Spinlocks simplification: |
15 | * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com> |
16 | * |
17 | * See Documentation/locking/rt-mutex-design.rst for details. |
18 | */ |
19 | #include <linux/sched.h> |
20 | #include <linux/sched/debug.h> |
21 | #include <linux/sched/deadline.h> |
22 | #include <linux/sched/signal.h> |
23 | #include <linux/sched/rt.h> |
24 | #include <linux/sched/wake_q.h> |
25 | #include <linux/ww_mutex.h> |
26 | |
27 | #include <trace/events/lock.h> |
28 | |
29 | #include "rtmutex_common.h" |
30 | |
31 | #ifndef WW_RT |
32 | # define build_ww_mutex() (false) |
33 | # define ww_container_of(rtm) NULL |
34 | |
35 | static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter, |
36 | struct rt_mutex *lock, |
37 | struct ww_acquire_ctx *ww_ctx) |
38 | { |
39 | return 0; |
40 | } |
41 | |
42 | static inline void __ww_mutex_check_waiters(struct rt_mutex *lock, |
43 | struct ww_acquire_ctx *ww_ctx) |
44 | { |
45 | } |
46 | |
47 | static inline void ww_mutex_lock_acquired(struct ww_mutex *lock, |
48 | struct ww_acquire_ctx *ww_ctx) |
49 | { |
50 | } |
51 | |
52 | static inline int __ww_mutex_check_kill(struct rt_mutex *lock, |
53 | struct rt_mutex_waiter *waiter, |
54 | struct ww_acquire_ctx *ww_ctx) |
55 | { |
56 | return 0; |
57 | } |
58 | |
59 | #else |
60 | # define build_ww_mutex() (true) |
61 | # define ww_container_of(rtm) container_of(rtm, struct ww_mutex, base) |
62 | # include "ww_mutex.h" |
63 | #endif |
64 | |
65 | /* |
66 | * lock->owner state tracking: |
67 | * |
68 | * lock->owner holds the task_struct pointer of the owner. Bit 0 |
69 | * is used to keep track of the "lock has waiters" state. |
70 | * |
71 | * owner bit0 |
72 | * NULL 0 lock is free (fast acquire possible) |
73 | * NULL 1 lock is free and has waiters and the top waiter |
74 | * is going to take the lock* |
75 | * taskpointer 0 lock is held (fast release possible) |
76 | * taskpointer 1 lock is held and has waiters** |
77 | * |
78 | * The fast atomic compare exchange based acquire and release is only |
79 | * possible when bit 0 of lock->owner is 0. |
80 | * |
81 | * (*) It also can be a transitional state when grabbing the lock |
82 | * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, |
83 | * we need to set the bit0 before looking at the lock, and the owner may be |
84 | * NULL in this small time, hence this can be a transitional state. |
85 | * |
86 | * (**) There is a small time when bit 0 is set but there are no |
87 | * waiters. This can happen when grabbing the lock in the slow path. |
88 | * To prevent a cmpxchg of the owner releasing the lock, we need to |
89 | * set this bit before looking at the lock. |
90 | */ |
91 | |
92 | static __always_inline struct task_struct * |
93 | rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner) |
94 | { |
95 | unsigned long val = (unsigned long)owner; |
96 | |
97 | if (rt_mutex_has_waiters(lock)) |
98 | val |= RT_MUTEX_HAS_WAITERS; |
99 | |
100 | return (struct task_struct *)val; |
101 | } |
102 | |
103 | static __always_inline void |
104 | rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner) |
105 | { |
106 | /* |
107 | * lock->wait_lock is held but explicit acquire semantics are needed |
108 | * for a new lock owner so WRITE_ONCE is insufficient. |
109 | */ |
110 | xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner)); |
111 | } |
112 | |
113 | static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock) |
114 | { |
115 | /* lock->wait_lock is held so the unlock provides release semantics. */ |
116 | WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL)); |
117 | } |
118 | |
119 | static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock) |
120 | { |
121 | lock->owner = (struct task_struct *) |
122 | ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); |
123 | } |
124 | |
125 | static __always_inline void |
126 | fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock) |
127 | { |
128 | unsigned long owner, *p = (unsigned long *) &lock->owner; |
129 | |
130 | if (rt_mutex_has_waiters(lock)) |
131 | return; |
132 | |
133 | /* |
134 | * The rbtree has no waiters enqueued, now make sure that the |
135 | * lock->owner still has the waiters bit set, otherwise the |
136 | * following can happen: |
137 | * |
138 | * CPU 0 CPU 1 CPU2 |
139 | * l->owner=T1 |
140 | * rt_mutex_lock(l) |
141 | * lock(l->lock) |
142 | * l->owner = T1 | HAS_WAITERS; |
143 | * enqueue(T2) |
144 | * boost() |
145 | * unlock(l->lock) |
146 | * block() |
147 | * |
148 | * rt_mutex_lock(l) |
149 | * lock(l->lock) |
150 | * l->owner = T1 | HAS_WAITERS; |
151 | * enqueue(T3) |
152 | * boost() |
153 | * unlock(l->lock) |
154 | * block() |
155 | * signal(->T2) signal(->T3) |
156 | * lock(l->lock) |
157 | * dequeue(T2) |
158 | * deboost() |
159 | * unlock(l->lock) |
160 | * lock(l->lock) |
161 | * dequeue(T3) |
162 | * ==> wait list is empty |
163 | * deboost() |
164 | * unlock(l->lock) |
165 | * lock(l->lock) |
166 | * fixup_rt_mutex_waiters() |
167 | * if (wait_list_empty(l) { |
168 | * l->owner = owner |
169 | * owner = l->owner & ~HAS_WAITERS; |
170 | * ==> l->owner = T1 |
171 | * } |
172 | * lock(l->lock) |
173 | * rt_mutex_unlock(l) fixup_rt_mutex_waiters() |
174 | * if (wait_list_empty(l) { |
175 | * owner = l->owner & ~HAS_WAITERS; |
176 | * cmpxchg(l->owner, T1, NULL) |
177 | * ===> Success (l->owner = NULL) |
178 | * |
179 | * l->owner = owner |
180 | * ==> l->owner = T1 |
181 | * } |
182 | * |
183 | * With the check for the waiter bit in place T3 on CPU2 will not |
184 | * overwrite. All tasks fiddling with the waiters bit are |
185 | * serialized by l->lock, so nothing else can modify the waiters |
186 | * bit. If the bit is set then nothing can change l->owner either |
187 | * so the simple RMW is safe. The cmpxchg() will simply fail if it |
188 | * happens in the middle of the RMW because the waiters bit is |
189 | * still set. |
190 | */ |
191 | owner = READ_ONCE(*p); |
192 | if (owner & RT_MUTEX_HAS_WAITERS) { |
193 | /* |
194 | * See rt_mutex_set_owner() and rt_mutex_clear_owner() on |
195 | * why xchg_acquire() is used for updating owner for |
196 | * locking and WRITE_ONCE() for unlocking. |
197 | * |
198 | * WRITE_ONCE() would work for the acquire case too, but |
199 | * in case that the lock acquisition failed it might |
200 | * force other lockers into the slow path unnecessarily. |
201 | */ |
202 | if (acquire_lock) |
203 | xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS); |
204 | else |
205 | WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS); |
206 | } |
207 | } |
208 | |
209 | /* |
210 | * We can speed up the acquire/release, if there's no debugging state to be |
211 | * set up. |
212 | */ |
213 | #ifndef CONFIG_DEBUG_RT_MUTEXES |
214 | static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock, |
215 | struct task_struct *old, |
216 | struct task_struct *new) |
217 | { |
218 | return try_cmpxchg_acquire(&lock->owner, &old, new); |
219 | } |
220 | |
221 | static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock) |
222 | { |
223 | return rt_mutex_cmpxchg_acquire(lock, NULL, current); |
224 | } |
225 | |
226 | static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock, |
227 | struct task_struct *old, |
228 | struct task_struct *new) |
229 | { |
230 | return try_cmpxchg_release(&lock->owner, &old, new); |
231 | } |
232 | |
233 | /* |
234 | * Callers must hold the ->wait_lock -- which is the whole purpose as we force |
235 | * all future threads that attempt to [Rmw] the lock to the slowpath. As such |
236 | * relaxed semantics suffice. |
237 | */ |
238 | static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock) |
239 | { |
240 | unsigned long *p = (unsigned long *) &lock->owner; |
241 | unsigned long owner, new; |
242 | |
243 | owner = READ_ONCE(*p); |
244 | do { |
245 | new = owner | RT_MUTEX_HAS_WAITERS; |
246 | } while (!try_cmpxchg_relaxed(p, &owner, new)); |
247 | |
248 | /* |
249 | * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE |
250 | * operations in the event of contention. Ensure the successful |
251 | * cmpxchg is visible. |
252 | */ |
253 | smp_mb__after_atomic(); |
254 | } |
255 | |
256 | /* |
257 | * Safe fastpath aware unlock: |
258 | * 1) Clear the waiters bit |
259 | * 2) Drop lock->wait_lock |
260 | * 3) Try to unlock the lock with cmpxchg |
261 | */ |
262 | static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock, |
263 | unsigned long flags) |
264 | __releases(lock->wait_lock) |
265 | { |
266 | struct task_struct *owner = rt_mutex_owner(lock); |
267 | |
268 | clear_rt_mutex_waiters(lock); |
269 | raw_spin_unlock_irqrestore(&lock->wait_lock, flags); |
270 | /* |
271 | * If a new waiter comes in between the unlock and the cmpxchg |
272 | * we have two situations: |
273 | * |
274 | * unlock(wait_lock); |
275 | * lock(wait_lock); |
276 | * cmpxchg(p, owner, 0) == owner |
277 | * mark_rt_mutex_waiters(lock); |
278 | * acquire(lock); |
279 | * or: |
280 | * |
281 | * unlock(wait_lock); |
282 | * lock(wait_lock); |
283 | * mark_rt_mutex_waiters(lock); |
284 | * |
285 | * cmpxchg(p, owner, 0) != owner |
286 | * enqueue_waiter(); |
287 | * unlock(wait_lock); |
288 | * lock(wait_lock); |
289 | * wake waiter(); |
290 | * unlock(wait_lock); |
291 | * lock(wait_lock); |
292 | * acquire(lock); |
293 | */ |
294 | return rt_mutex_cmpxchg_release(lock, owner, NULL); |
295 | } |
296 | |
297 | #else |
298 | static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock, |
299 | struct task_struct *old, |
300 | struct task_struct *new) |
301 | { |
302 | return false; |
303 | |
304 | } |
305 | |
306 | static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock); |
307 | |
308 | static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock) |
309 | { |
310 | /* |
311 | * With debug enabled rt_mutex_cmpxchg trylock() will always fail. |
312 | * |
313 | * Avoid unconditionally taking the slow path by using |
314 | * rt_mutex_slow_trylock() which is covered by the debug code and can |
315 | * acquire a non-contended rtmutex. |
316 | */ |
317 | return rt_mutex_slowtrylock(lock); |
318 | } |
319 | |
320 | static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock, |
321 | struct task_struct *old, |
322 | struct task_struct *new) |
323 | { |
324 | return false; |
325 | } |
326 | |
327 | static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock) |
328 | { |
329 | lock->owner = (struct task_struct *) |
330 | ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); |
331 | } |
332 | |
333 | /* |
334 | * Simple slow path only version: lock->owner is protected by lock->wait_lock. |
335 | */ |
336 | static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock, |
337 | unsigned long flags) |
338 | __releases(lock->wait_lock) |
339 | { |
340 | lock->owner = NULL; |
341 | raw_spin_unlock_irqrestore(&lock->wait_lock, flags); |
342 | return true; |
343 | } |
344 | #endif |
345 | |
346 | static __always_inline int __waiter_prio(struct task_struct *task) |
347 | { |
348 | int prio = task->prio; |
349 | |
350 | if (!rt_prio(prio)) |
351 | return DEFAULT_PRIO; |
352 | |
353 | return prio; |
354 | } |
355 | |
356 | /* |
357 | * Update the waiter->tree copy of the sort keys. |
358 | */ |
359 | static __always_inline void |
360 | waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task) |
361 | { |
362 | lockdep_assert_held(&waiter->lock->wait_lock); |
363 | lockdep_assert(RB_EMPTY_NODE(&waiter->tree.entry)); |
364 | |
365 | waiter->tree.prio = __waiter_prio(task); |
366 | waiter->tree.deadline = task->dl.deadline; |
367 | } |
368 | |
369 | /* |
370 | * Update the waiter->pi_tree copy of the sort keys (from the tree copy). |
371 | */ |
372 | static __always_inline void |
373 | waiter_clone_prio(struct rt_mutex_waiter *waiter, struct task_struct *task) |
374 | { |
375 | lockdep_assert_held(&waiter->lock->wait_lock); |
376 | lockdep_assert_held(&task->pi_lock); |
377 | lockdep_assert(RB_EMPTY_NODE(&waiter->pi_tree.entry)); |
378 | |
379 | waiter->pi_tree.prio = waiter->tree.prio; |
380 | waiter->pi_tree.deadline = waiter->tree.deadline; |
381 | } |
382 | |
383 | /* |
384 | * Only use with rt_waiter_node_{less,equal}() |
385 | */ |
386 | #define task_to_waiter_node(p) \ |
387 | &(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline } |
388 | #define task_to_waiter(p) \ |
389 | &(struct rt_mutex_waiter){ .tree = *task_to_waiter_node(p) } |
390 | |
391 | static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left, |
392 | struct rt_waiter_node *right) |
393 | { |
394 | if (left->prio < right->prio) |
395 | return 1; |
396 | |
397 | /* |
398 | * If both waiters have dl_prio(), we check the deadlines of the |
399 | * associated tasks. |
400 | * If left waiter has a dl_prio(), and we didn't return 1 above, |
401 | * then right waiter has a dl_prio() too. |
402 | */ |
403 | if (dl_prio(prio: left->prio)) |
404 | return dl_time_before(a: left->deadline, b: right->deadline); |
405 | |
406 | return 0; |
407 | } |
408 | |
409 | static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left, |
410 | struct rt_waiter_node *right) |
411 | { |
412 | if (left->prio != right->prio) |
413 | return 0; |
414 | |
415 | /* |
416 | * If both waiters have dl_prio(), we check the deadlines of the |
417 | * associated tasks. |
418 | * If left waiter has a dl_prio(), and we didn't return 0 above, |
419 | * then right waiter has a dl_prio() too. |
420 | */ |
421 | if (dl_prio(prio: left->prio)) |
422 | return left->deadline == right->deadline; |
423 | |
424 | return 1; |
425 | } |
426 | |
427 | static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter, |
428 | struct rt_mutex_waiter *top_waiter) |
429 | { |
430 | if (rt_waiter_node_less(left: &waiter->tree, right: &top_waiter->tree)) |
431 | return true; |
432 | |
433 | #ifdef RT_MUTEX_BUILD_SPINLOCKS |
434 | /* |
435 | * Note that RT tasks are excluded from same priority (lateral) |
436 | * steals to prevent the introduction of an unbounded latency. |
437 | */ |
438 | if (rt_prio(waiter->tree.prio) || dl_prio(waiter->tree.prio)) |
439 | return false; |
440 | |
441 | return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree); |
442 | #else |
443 | return false; |
444 | #endif |
445 | } |
446 | |
447 | #define __node_2_waiter(node) \ |
448 | rb_entry((node), struct rt_mutex_waiter, tree.entry) |
449 | |
450 | static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b) |
451 | { |
452 | struct rt_mutex_waiter *aw = __node_2_waiter(a); |
453 | struct rt_mutex_waiter *bw = __node_2_waiter(b); |
454 | |
455 | if (rt_waiter_node_less(left: &aw->tree, right: &bw->tree)) |
456 | return 1; |
457 | |
458 | if (!build_ww_mutex()) |
459 | return 0; |
460 | |
461 | if (rt_waiter_node_less(left: &bw->tree, right: &aw->tree)) |
462 | return 0; |
463 | |
464 | /* NOTE: relies on waiter->ww_ctx being set before insertion */ |
465 | if (aw->ww_ctx) { |
466 | if (!bw->ww_ctx) |
467 | return 1; |
468 | |
469 | return (signed long)(aw->ww_ctx->stamp - |
470 | bw->ww_ctx->stamp) < 0; |
471 | } |
472 | |
473 | return 0; |
474 | } |
475 | |
476 | static __always_inline void |
477 | rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter) |
478 | { |
479 | lockdep_assert_held(&lock->wait_lock); |
480 | |
481 | rb_add_cached(node: &waiter->tree.entry, tree: &lock->waiters, less: __waiter_less); |
482 | } |
483 | |
484 | static __always_inline void |
485 | rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter) |
486 | { |
487 | lockdep_assert_held(&lock->wait_lock); |
488 | |
489 | if (RB_EMPTY_NODE(&waiter->tree.entry)) |
490 | return; |
491 | |
492 | rb_erase_cached(node: &waiter->tree.entry, root: &lock->waiters); |
493 | RB_CLEAR_NODE(&waiter->tree.entry); |
494 | } |
495 | |
496 | #define __node_2_rt_node(node) \ |
497 | rb_entry((node), struct rt_waiter_node, entry) |
498 | |
499 | static __always_inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b) |
500 | { |
501 | return rt_waiter_node_less(__node_2_rt_node(a), __node_2_rt_node(b)); |
502 | } |
503 | |
504 | static __always_inline void |
505 | rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) |
506 | { |
507 | lockdep_assert_held(&task->pi_lock); |
508 | |
509 | rb_add_cached(node: &waiter->pi_tree.entry, tree: &task->pi_waiters, less: __pi_waiter_less); |
510 | } |
511 | |
512 | static __always_inline void |
513 | rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) |
514 | { |
515 | lockdep_assert_held(&task->pi_lock); |
516 | |
517 | if (RB_EMPTY_NODE(&waiter->pi_tree.entry)) |
518 | return; |
519 | |
520 | rb_erase_cached(node: &waiter->pi_tree.entry, root: &task->pi_waiters); |
521 | RB_CLEAR_NODE(&waiter->pi_tree.entry); |
522 | } |
523 | |
524 | static __always_inline void rt_mutex_adjust_prio(struct rt_mutex_base *lock, |
525 | struct task_struct *p) |
526 | { |
527 | struct task_struct *pi_task = NULL; |
528 | |
529 | lockdep_assert_held(&lock->wait_lock); |
530 | lockdep_assert(rt_mutex_owner(lock) == p); |
531 | lockdep_assert_held(&p->pi_lock); |
532 | |
533 | if (task_has_pi_waiters(p)) |
534 | pi_task = task_top_pi_waiter(p)->task; |
535 | |
536 | rt_mutex_setprio(p, pi_task); |
537 | } |
538 | |
539 | /* RT mutex specific wake_q wrappers */ |
540 | static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh, |
541 | struct task_struct *task, |
542 | unsigned int wake_state) |
543 | { |
544 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) { |
545 | if (IS_ENABLED(CONFIG_PROVE_LOCKING)) |
546 | WARN_ON_ONCE(wqh->rtlock_task); |
547 | get_task_struct(t: task); |
548 | wqh->rtlock_task = task; |
549 | } else { |
550 | wake_q_add(head: &wqh->head, task); |
551 | } |
552 | } |
553 | |
554 | static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh, |
555 | struct rt_mutex_waiter *w) |
556 | { |
557 | rt_mutex_wake_q_add_task(wqh, task: w->task, wake_state: w->wake_state); |
558 | } |
559 | |
560 | static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh) |
561 | { |
562 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) { |
563 | wake_up_state(tsk: wqh->rtlock_task, TASK_RTLOCK_WAIT); |
564 | put_task_struct(t: wqh->rtlock_task); |
565 | wqh->rtlock_task = NULL; |
566 | } |
567 | |
568 | if (!wake_q_empty(head: &wqh->head)) |
569 | wake_up_q(head: &wqh->head); |
570 | |
571 | /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */ |
572 | preempt_enable(); |
573 | } |
574 | |
575 | /* |
576 | * Deadlock detection is conditional: |
577 | * |
578 | * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted |
579 | * if the detect argument is == RT_MUTEX_FULL_CHAINWALK. |
580 | * |
581 | * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always |
582 | * conducted independent of the detect argument. |
583 | * |
584 | * If the waiter argument is NULL this indicates the deboost path and |
585 | * deadlock detection is disabled independent of the detect argument |
586 | * and the config settings. |
587 | */ |
588 | static __always_inline bool |
589 | rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter, |
590 | enum rtmutex_chainwalk chwalk) |
591 | { |
592 | if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES)) |
593 | return waiter != NULL; |
594 | return chwalk == RT_MUTEX_FULL_CHAINWALK; |
595 | } |
596 | |
597 | static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p) |
598 | { |
599 | return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL; |
600 | } |
601 | |
602 | /* |
603 | * Adjust the priority chain. Also used for deadlock detection. |
604 | * Decreases task's usage by one - may thus free the task. |
605 | * |
606 | * @task: the task owning the mutex (owner) for which a chain walk is |
607 | * probably needed |
608 | * @chwalk: do we have to carry out deadlock detection? |
609 | * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck |
610 | * things for a task that has just got its priority adjusted, and |
611 | * is waiting on a mutex) |
612 | * @next_lock: the mutex on which the owner of @orig_lock was blocked before |
613 | * we dropped its pi_lock. Is never dereferenced, only used for |
614 | * comparison to detect lock chain changes. |
615 | * @orig_waiter: rt_mutex_waiter struct for the task that has just donated |
616 | * its priority to the mutex owner (can be NULL in the case |
617 | * depicted above or if the top waiter is gone away and we are |
618 | * actually deboosting the owner) |
619 | * @top_task: the current top waiter |
620 | * |
621 | * Returns 0 or -EDEADLK. |
622 | * |
623 | * Chain walk basics and protection scope |
624 | * |
625 | * [R] refcount on task |
626 | * [Pn] task->pi_lock held |
627 | * [L] rtmutex->wait_lock held |
628 | * |
629 | * Normal locking order: |
630 | * |
631 | * rtmutex->wait_lock |
632 | * task->pi_lock |
633 | * |
634 | * Step Description Protected by |
635 | * function arguments: |
636 | * @task [R] |
637 | * @orig_lock if != NULL @top_task is blocked on it |
638 | * @next_lock Unprotected. Cannot be |
639 | * dereferenced. Only used for |
640 | * comparison. |
641 | * @orig_waiter if != NULL @top_task is blocked on it |
642 | * @top_task current, or in case of proxy |
643 | * locking protected by calling |
644 | * code |
645 | * again: |
646 | * loop_sanity_check(); |
647 | * retry: |
648 | * [1] lock(task->pi_lock); [R] acquire [P1] |
649 | * [2] waiter = task->pi_blocked_on; [P1] |
650 | * [3] check_exit_conditions_1(); [P1] |
651 | * [4] lock = waiter->lock; [P1] |
652 | * [5] if (!try_lock(lock->wait_lock)) { [P1] try to acquire [L] |
653 | * unlock(task->pi_lock); release [P1] |
654 | * goto retry; |
655 | * } |
656 | * [6] check_exit_conditions_2(); [P1] + [L] |
657 | * [7] requeue_lock_waiter(lock, waiter); [P1] + [L] |
658 | * [8] unlock(task->pi_lock); release [P1] |
659 | * put_task_struct(task); release [R] |
660 | * [9] check_exit_conditions_3(); [L] |
661 | * [10] task = owner(lock); [L] |
662 | * get_task_struct(task); [L] acquire [R] |
663 | * lock(task->pi_lock); [L] acquire [P2] |
664 | * [11] requeue_pi_waiter(tsk, waiters(lock));[P2] + [L] |
665 | * [12] check_exit_conditions_4(); [P2] + [L] |
666 | * [13] unlock(task->pi_lock); release [P2] |
667 | * unlock(lock->wait_lock); release [L] |
668 | * goto again; |
669 | * |
670 | * Where P1 is the blocking task and P2 is the lock owner; going up one step |
671 | * the owner becomes the next blocked task etc.. |
672 | * |
673 | * |
674 | */ |
675 | static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task, |
676 | enum rtmutex_chainwalk chwalk, |
677 | struct rt_mutex_base *orig_lock, |
678 | struct rt_mutex_base *next_lock, |
679 | struct rt_mutex_waiter *orig_waiter, |
680 | struct task_struct *top_task) |
681 | { |
682 | struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; |
683 | struct rt_mutex_waiter *prerequeue_top_waiter; |
684 | int ret = 0, depth = 0; |
685 | struct rt_mutex_base *lock; |
686 | bool detect_deadlock; |
687 | bool requeue = true; |
688 | |
689 | detect_deadlock = rt_mutex_cond_detect_deadlock(waiter: orig_waiter, chwalk); |
690 | |
691 | /* |
692 | * The (de)boosting is a step by step approach with a lot of |
693 | * pitfalls. We want this to be preemptible and we want hold a |
694 | * maximum of two locks per step. So we have to check |
695 | * carefully whether things change under us. |
696 | */ |
697 | again: |
698 | /* |
699 | * We limit the lock chain length for each invocation. |
700 | */ |
701 | if (++depth > max_lock_depth) { |
702 | static int prev_max; |
703 | |
704 | /* |
705 | * Print this only once. If the admin changes the limit, |
706 | * print a new message when reaching the limit again. |
707 | */ |
708 | if (prev_max != max_lock_depth) { |
709 | prev_max = max_lock_depth; |
710 | printk(KERN_WARNING "Maximum lock depth %d reached " |
711 | "task: %s (%d)\n", max_lock_depth, |
712 | top_task->comm, task_pid_nr(top_task)); |
713 | } |
714 | put_task_struct(t: task); |
715 | |
716 | return -EDEADLK; |
717 | } |
718 | |
719 | /* |
720 | * We are fully preemptible here and only hold the refcount on |
721 | * @task. So everything can have changed under us since the |
722 | * caller or our own code below (goto retry/again) dropped all |
723 | * locks. |
724 | */ |
725 | retry: |
726 | /* |
727 | * [1] Task cannot go away as we did a get_task() before ! |
728 | */ |
729 | raw_spin_lock_irq(&task->pi_lock); |
730 | |
731 | /* |
732 | * [2] Get the waiter on which @task is blocked on. |
733 | */ |
734 | waiter = task->pi_blocked_on; |
735 | |
736 | /* |
737 | * [3] check_exit_conditions_1() protected by task->pi_lock. |
738 | */ |
739 | |
740 | /* |
741 | * Check whether the end of the boosting chain has been |
742 | * reached or the state of the chain has changed while we |
743 | * dropped the locks. |
744 | */ |
745 | if (!waiter) |
746 | goto out_unlock_pi; |
747 | |
748 | /* |
749 | * Check the orig_waiter state. After we dropped the locks, |
750 | * the previous owner of the lock might have released the lock. |
751 | */ |
752 | if (orig_waiter && !rt_mutex_owner(lock: orig_lock)) |
753 | goto out_unlock_pi; |
754 | |
755 | /* |
756 | * We dropped all locks after taking a refcount on @task, so |
757 | * the task might have moved on in the lock chain or even left |
758 | * the chain completely and blocks now on an unrelated lock or |
759 | * on @orig_lock. |
760 | * |
761 | * We stored the lock on which @task was blocked in @next_lock, |
762 | * so we can detect the chain change. |
763 | */ |
764 | if (next_lock != waiter->lock) |
765 | goto out_unlock_pi; |
766 | |
767 | /* |
768 | * There could be 'spurious' loops in the lock graph due to ww_mutex, |
769 | * consider: |
770 | * |
771 | * P1: A, ww_A, ww_B |
772 | * P2: ww_B, ww_A |
773 | * P3: A |
774 | * |
775 | * P3 should not return -EDEADLK because it gets trapped in the cycle |
776 | * created by P1 and P2 (which will resolve -- and runs into |
777 | * max_lock_depth above). Therefore disable detect_deadlock such that |
778 | * the below termination condition can trigger once all relevant tasks |
779 | * are boosted. |
780 | * |
781 | * Even when we start with ww_mutex we can disable deadlock detection, |
782 | * since we would supress a ww_mutex induced deadlock at [6] anyway. |
783 | * Supressing it here however is not sufficient since we might still |
784 | * hit [6] due to adjustment driven iteration. |
785 | * |
786 | * NOTE: if someone were to create a deadlock between 2 ww_classes we'd |
787 | * utterly fail to report it; lockdep should. |
788 | */ |
789 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock) |
790 | detect_deadlock = false; |
791 | |
792 | /* |
793 | * Drop out, when the task has no waiters. Note, |
794 | * top_waiter can be NULL, when we are in the deboosting |
795 | * mode! |
796 | */ |
797 | if (top_waiter) { |
798 | if (!task_has_pi_waiters(p: task)) |
799 | goto out_unlock_pi; |
800 | /* |
801 | * If deadlock detection is off, we stop here if we |
802 | * are not the top pi waiter of the task. If deadlock |
803 | * detection is enabled we continue, but stop the |
804 | * requeueing in the chain walk. |
805 | */ |
806 | if (top_waiter != task_top_pi_waiter(p: task)) { |
807 | if (!detect_deadlock) |
808 | goto out_unlock_pi; |
809 | else |
810 | requeue = false; |
811 | } |
812 | } |
813 | |
814 | /* |
815 | * If the waiter priority is the same as the task priority |
816 | * then there is no further priority adjustment necessary. If |
817 | * deadlock detection is off, we stop the chain walk. If its |
818 | * enabled we continue, but stop the requeueing in the chain |
819 | * walk. |
820 | */ |
821 | if (rt_waiter_node_equal(left: &waiter->tree, task_to_waiter_node(task))) { |
822 | if (!detect_deadlock) |
823 | goto out_unlock_pi; |
824 | else |
825 | requeue = false; |
826 | } |
827 | |
828 | /* |
829 | * [4] Get the next lock; per holding task->pi_lock we can't unblock |
830 | * and guarantee @lock's existence. |
831 | */ |
832 | lock = waiter->lock; |
833 | /* |
834 | * [5] We need to trylock here as we are holding task->pi_lock, |
835 | * which is the reverse lock order versus the other rtmutex |
836 | * operations. |
837 | * |
838 | * Per the above, holding task->pi_lock guarantees lock exists, so |
839 | * inverting this lock order is infeasible from a life-time |
840 | * perspective. |
841 | */ |
842 | if (!raw_spin_trylock(&lock->wait_lock)) { |
843 | raw_spin_unlock_irq(&task->pi_lock); |
844 | cpu_relax(); |
845 | goto retry; |
846 | } |
847 | |
848 | /* |
849 | * [6] check_exit_conditions_2() protected by task->pi_lock and |
850 | * lock->wait_lock. |
851 | * |
852 | * Deadlock detection. If the lock is the same as the original |
853 | * lock which caused us to walk the lock chain or if the |
854 | * current lock is owned by the task which initiated the chain |
855 | * walk, we detected a deadlock. |
856 | */ |
857 | if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { |
858 | ret = -EDEADLK; |
859 | |
860 | /* |
861 | * When the deadlock is due to ww_mutex; also see above. Don't |
862 | * report the deadlock and instead let the ww_mutex wound/die |
863 | * logic pick which of the contending threads gets -EDEADLK. |
864 | * |
865 | * NOTE: assumes the cycle only contains a single ww_class; any |
866 | * other configuration and we fail to report; also, see |
867 | * lockdep. |
868 | */ |
869 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx) |
870 | ret = 0; |
871 | |
872 | raw_spin_unlock(&lock->wait_lock); |
873 | goto out_unlock_pi; |
874 | } |
875 | |
876 | /* |
877 | * If we just follow the lock chain for deadlock detection, no |
878 | * need to do all the requeue operations. To avoid a truckload |
879 | * of conditionals around the various places below, just do the |
880 | * minimum chain walk checks. |
881 | */ |
882 | if (!requeue) { |
883 | /* |
884 | * No requeue[7] here. Just release @task [8] |
885 | */ |
886 | raw_spin_unlock(&task->pi_lock); |
887 | put_task_struct(t: task); |
888 | |
889 | /* |
890 | * [9] check_exit_conditions_3 protected by lock->wait_lock. |
891 | * If there is no owner of the lock, end of chain. |
892 | */ |
893 | if (!rt_mutex_owner(lock)) { |
894 | raw_spin_unlock_irq(&lock->wait_lock); |
895 | return 0; |
896 | } |
897 | |
898 | /* [10] Grab the next task, i.e. owner of @lock */ |
899 | task = get_task_struct(t: rt_mutex_owner(lock)); |
900 | raw_spin_lock(&task->pi_lock); |
901 | |
902 | /* |
903 | * No requeue [11] here. We just do deadlock detection. |
904 | * |
905 | * [12] Store whether owner is blocked |
906 | * itself. Decision is made after dropping the locks |
907 | */ |
908 | next_lock = task_blocked_on_lock(p: task); |
909 | /* |
910 | * Get the top waiter for the next iteration |
911 | */ |
912 | top_waiter = rt_mutex_top_waiter(lock); |
913 | |
914 | /* [13] Drop locks */ |
915 | raw_spin_unlock(&task->pi_lock); |
916 | raw_spin_unlock_irq(&lock->wait_lock); |
917 | |
918 | /* If owner is not blocked, end of chain. */ |
919 | if (!next_lock) |
920 | goto out_put_task; |
921 | goto again; |
922 | } |
923 | |
924 | /* |
925 | * Store the current top waiter before doing the requeue |
926 | * operation on @lock. We need it for the boost/deboost |
927 | * decision below. |
928 | */ |
929 | prerequeue_top_waiter = rt_mutex_top_waiter(lock); |
930 | |
931 | /* [7] Requeue the waiter in the lock waiter tree. */ |
932 | rt_mutex_dequeue(lock, waiter); |
933 | |
934 | /* |
935 | * Update the waiter prio fields now that we're dequeued. |
936 | * |
937 | * These values can have changed through either: |
938 | * |
939 | * sys_sched_set_scheduler() / sys_sched_setattr() |
940 | * |
941 | * or |
942 | * |
943 | * DL CBS enforcement advancing the effective deadline. |
944 | */ |
945 | waiter_update_prio(waiter, task); |
946 | |
947 | rt_mutex_enqueue(lock, waiter); |
948 | |
949 | /* |
950 | * [8] Release the (blocking) task in preparation for |
951 | * taking the owner task in [10]. |
952 | * |
953 | * Since we hold lock->waiter_lock, task cannot unblock, even if we |
954 | * release task->pi_lock. |
955 | */ |
956 | raw_spin_unlock(&task->pi_lock); |
957 | put_task_struct(t: task); |
958 | |
959 | /* |
960 | * [9] check_exit_conditions_3 protected by lock->wait_lock. |
961 | * |
962 | * We must abort the chain walk if there is no lock owner even |
963 | * in the dead lock detection case, as we have nothing to |
964 | * follow here. This is the end of the chain we are walking. |
965 | */ |
966 | if (!rt_mutex_owner(lock)) { |
967 | /* |
968 | * If the requeue [7] above changed the top waiter, |
969 | * then we need to wake the new top waiter up to try |
970 | * to get the lock. |
971 | */ |
972 | top_waiter = rt_mutex_top_waiter(lock); |
973 | if (prerequeue_top_waiter != top_waiter) |
974 | wake_up_state(tsk: top_waiter->task, state: top_waiter->wake_state); |
975 | raw_spin_unlock_irq(&lock->wait_lock); |
976 | return 0; |
977 | } |
978 | |
979 | /* |
980 | * [10] Grab the next task, i.e. the owner of @lock |
981 | * |
982 | * Per holding lock->wait_lock and checking for !owner above, there |
983 | * must be an owner and it cannot go away. |
984 | */ |
985 | task = get_task_struct(t: rt_mutex_owner(lock)); |
986 | raw_spin_lock(&task->pi_lock); |
987 | |
988 | /* [11] requeue the pi waiters if necessary */ |
989 | if (waiter == rt_mutex_top_waiter(lock)) { |
990 | /* |
991 | * The waiter became the new top (highest priority) |
992 | * waiter on the lock. Replace the previous top waiter |
993 | * in the owner tasks pi waiters tree with this waiter |
994 | * and adjust the priority of the owner. |
995 | */ |
996 | rt_mutex_dequeue_pi(task, waiter: prerequeue_top_waiter); |
997 | waiter_clone_prio(waiter, task); |
998 | rt_mutex_enqueue_pi(task, waiter); |
999 | rt_mutex_adjust_prio(lock, p: task); |
1000 | |
1001 | } else if (prerequeue_top_waiter == waiter) { |
1002 | /* |
1003 | * The waiter was the top waiter on the lock, but is |
1004 | * no longer the top priority waiter. Replace waiter in |
1005 | * the owner tasks pi waiters tree with the new top |
1006 | * (highest priority) waiter and adjust the priority |
1007 | * of the owner. |
1008 | * The new top waiter is stored in @waiter so that |
1009 | * @waiter == @top_waiter evaluates to true below and |
1010 | * we continue to deboost the rest of the chain. |
1011 | */ |
1012 | rt_mutex_dequeue_pi(task, waiter); |
1013 | waiter = rt_mutex_top_waiter(lock); |
1014 | waiter_clone_prio(waiter, task); |
1015 | rt_mutex_enqueue_pi(task, waiter); |
1016 | rt_mutex_adjust_prio(lock, p: task); |
1017 | } else { |
1018 | /* |
1019 | * Nothing changed. No need to do any priority |
1020 | * adjustment. |
1021 | */ |
1022 | } |
1023 | |
1024 | /* |
1025 | * [12] check_exit_conditions_4() protected by task->pi_lock |
1026 | * and lock->wait_lock. The actual decisions are made after we |
1027 | * dropped the locks. |
1028 | * |
1029 | * Check whether the task which owns the current lock is pi |
1030 | * blocked itself. If yes we store a pointer to the lock for |
1031 | * the lock chain change detection above. After we dropped |
1032 | * task->pi_lock next_lock cannot be dereferenced anymore. |
1033 | */ |
1034 | next_lock = task_blocked_on_lock(p: task); |
1035 | /* |
1036 | * Store the top waiter of @lock for the end of chain walk |
1037 | * decision below. |
1038 | */ |
1039 | top_waiter = rt_mutex_top_waiter(lock); |
1040 | |
1041 | /* [13] Drop the locks */ |
1042 | raw_spin_unlock(&task->pi_lock); |
1043 | raw_spin_unlock_irq(&lock->wait_lock); |
1044 | |
1045 | /* |
1046 | * Make the actual exit decisions [12], based on the stored |
1047 | * values. |
1048 | * |
1049 | * We reached the end of the lock chain. Stop right here. No |
1050 | * point to go back just to figure that out. |
1051 | */ |
1052 | if (!next_lock) |
1053 | goto out_put_task; |
1054 | |
1055 | /* |
1056 | * If the current waiter is not the top waiter on the lock, |
1057 | * then we can stop the chain walk here if we are not in full |
1058 | * deadlock detection mode. |
1059 | */ |
1060 | if (!detect_deadlock && waiter != top_waiter) |
1061 | goto out_put_task; |
1062 | |
1063 | goto again; |
1064 | |
1065 | out_unlock_pi: |
1066 | raw_spin_unlock_irq(&task->pi_lock); |
1067 | out_put_task: |
1068 | put_task_struct(t: task); |
1069 | |
1070 | return ret; |
1071 | } |
1072 | |
1073 | /* |
1074 | * Try to take an rt-mutex |
1075 | * |
1076 | * Must be called with lock->wait_lock held and interrupts disabled |
1077 | * |
1078 | * @lock: The lock to be acquired. |
1079 | * @task: The task which wants to acquire the lock |
1080 | * @waiter: The waiter that is queued to the lock's wait tree if the |
1081 | * callsite called task_blocked_on_lock(), otherwise NULL |
1082 | */ |
1083 | static int __sched |
1084 | try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task, |
1085 | struct rt_mutex_waiter *waiter) |
1086 | { |
1087 | lockdep_assert_held(&lock->wait_lock); |
1088 | |
1089 | /* |
1090 | * Before testing whether we can acquire @lock, we set the |
1091 | * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all |
1092 | * other tasks which try to modify @lock into the slow path |
1093 | * and they serialize on @lock->wait_lock. |
1094 | * |
1095 | * The RT_MUTEX_HAS_WAITERS bit can have a transitional state |
1096 | * as explained at the top of this file if and only if: |
1097 | * |
1098 | * - There is a lock owner. The caller must fixup the |
1099 | * transient state if it does a trylock or leaves the lock |
1100 | * function due to a signal or timeout. |
1101 | * |
1102 | * - @task acquires the lock and there are no other |
1103 | * waiters. This is undone in rt_mutex_set_owner(@task) at |
1104 | * the end of this function. |
1105 | */ |
1106 | mark_rt_mutex_waiters(lock); |
1107 | |
1108 | /* |
1109 | * If @lock has an owner, give up. |
1110 | */ |
1111 | if (rt_mutex_owner(lock)) |
1112 | return 0; |
1113 | |
1114 | /* |
1115 | * If @waiter != NULL, @task has already enqueued the waiter |
1116 | * into @lock waiter tree. If @waiter == NULL then this is a |
1117 | * trylock attempt. |
1118 | */ |
1119 | if (waiter) { |
1120 | struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock); |
1121 | |
1122 | /* |
1123 | * If waiter is the highest priority waiter of @lock, |
1124 | * or allowed to steal it, take it over. |
1125 | */ |
1126 | if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) { |
1127 | /* |
1128 | * We can acquire the lock. Remove the waiter from the |
1129 | * lock waiters tree. |
1130 | */ |
1131 | rt_mutex_dequeue(lock, waiter); |
1132 | } else { |
1133 | return 0; |
1134 | } |
1135 | } else { |
1136 | /* |
1137 | * If the lock has waiters already we check whether @task is |
1138 | * eligible to take over the lock. |
1139 | * |
1140 | * If there are no other waiters, @task can acquire |
1141 | * the lock. @task->pi_blocked_on is NULL, so it does |
1142 | * not need to be dequeued. |
1143 | */ |
1144 | if (rt_mutex_has_waiters(lock)) { |
1145 | /* Check whether the trylock can steal it. */ |
1146 | if (!rt_mutex_steal(task_to_waiter(task), |
1147 | top_waiter: rt_mutex_top_waiter(lock))) |
1148 | return 0; |
1149 | |
1150 | /* |
1151 | * The current top waiter stays enqueued. We |
1152 | * don't have to change anything in the lock |
1153 | * waiters order. |
1154 | */ |
1155 | } else { |
1156 | /* |
1157 | * No waiters. Take the lock without the |
1158 | * pi_lock dance.@task->pi_blocked_on is NULL |
1159 | * and we have no waiters to enqueue in @task |
1160 | * pi waiters tree. |
1161 | */ |
1162 | goto takeit; |
1163 | } |
1164 | } |
1165 | |
1166 | /* |
1167 | * Clear @task->pi_blocked_on. Requires protection by |
1168 | * @task->pi_lock. Redundant operation for the @waiter == NULL |
1169 | * case, but conditionals are more expensive than a redundant |
1170 | * store. |
1171 | */ |
1172 | raw_spin_lock(&task->pi_lock); |
1173 | task->pi_blocked_on = NULL; |
1174 | /* |
1175 | * Finish the lock acquisition. @task is the new owner. If |
1176 | * other waiters exist we have to insert the highest priority |
1177 | * waiter into @task->pi_waiters tree. |
1178 | */ |
1179 | if (rt_mutex_has_waiters(lock)) |
1180 | rt_mutex_enqueue_pi(task, waiter: rt_mutex_top_waiter(lock)); |
1181 | raw_spin_unlock(&task->pi_lock); |
1182 | |
1183 | takeit: |
1184 | /* |
1185 | * This either preserves the RT_MUTEX_HAS_WAITERS bit if there |
1186 | * are still waiters or clears it. |
1187 | */ |
1188 | rt_mutex_set_owner(lock, owner: task); |
1189 | |
1190 | return 1; |
1191 | } |
1192 | |
1193 | /* |
1194 | * Task blocks on lock. |
1195 | * |
1196 | * Prepare waiter and propagate pi chain |
1197 | * |
1198 | * This must be called with lock->wait_lock held and interrupts disabled |
1199 | */ |
1200 | static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock, |
1201 | struct rt_mutex_waiter *waiter, |
1202 | struct task_struct *task, |
1203 | struct ww_acquire_ctx *ww_ctx, |
1204 | enum rtmutex_chainwalk chwalk) |
1205 | { |
1206 | struct task_struct *owner = rt_mutex_owner(lock); |
1207 | struct rt_mutex_waiter *top_waiter = waiter; |
1208 | struct rt_mutex_base *next_lock; |
1209 | int chain_walk = 0, res; |
1210 | |
1211 | lockdep_assert_held(&lock->wait_lock); |
1212 | |
1213 | /* |
1214 | * Early deadlock detection. We really don't want the task to |
1215 | * enqueue on itself just to untangle the mess later. It's not |
1216 | * only an optimization. We drop the locks, so another waiter |
1217 | * can come in before the chain walk detects the deadlock. So |
1218 | * the other will detect the deadlock and return -EDEADLOCK, |
1219 | * which is wrong, as the other waiter is not in a deadlock |
1220 | * situation. |
1221 | * |
1222 | * Except for ww_mutex, in that case the chain walk must already deal |
1223 | * with spurious cycles, see the comments at [3] and [6]. |
1224 | */ |
1225 | if (owner == task && !(build_ww_mutex() && ww_ctx)) |
1226 | return -EDEADLK; |
1227 | |
1228 | raw_spin_lock(&task->pi_lock); |
1229 | waiter->task = task; |
1230 | waiter->lock = lock; |
1231 | waiter_update_prio(waiter, task); |
1232 | waiter_clone_prio(waiter, task); |
1233 | |
1234 | /* Get the top priority waiter on the lock */ |
1235 | if (rt_mutex_has_waiters(lock)) |
1236 | top_waiter = rt_mutex_top_waiter(lock); |
1237 | rt_mutex_enqueue(lock, waiter); |
1238 | |
1239 | task->pi_blocked_on = waiter; |
1240 | |
1241 | raw_spin_unlock(&task->pi_lock); |
1242 | |
1243 | if (build_ww_mutex() && ww_ctx) { |
1244 | struct rt_mutex *rtm; |
1245 | |
1246 | /* Check whether the waiter should back out immediately */ |
1247 | rtm = container_of(lock, struct rt_mutex, rtmutex); |
1248 | res = __ww_mutex_add_waiter(waiter, lock: rtm, ww_ctx); |
1249 | if (res) { |
1250 | raw_spin_lock(&task->pi_lock); |
1251 | rt_mutex_dequeue(lock, waiter); |
1252 | task->pi_blocked_on = NULL; |
1253 | raw_spin_unlock(&task->pi_lock); |
1254 | return res; |
1255 | } |
1256 | } |
1257 | |
1258 | if (!owner) |
1259 | return 0; |
1260 | |
1261 | raw_spin_lock(&owner->pi_lock); |
1262 | if (waiter == rt_mutex_top_waiter(lock)) { |
1263 | rt_mutex_dequeue_pi(task: owner, waiter: top_waiter); |
1264 | rt_mutex_enqueue_pi(task: owner, waiter); |
1265 | |
1266 | rt_mutex_adjust_prio(lock, p: owner); |
1267 | if (owner->pi_blocked_on) |
1268 | chain_walk = 1; |
1269 | } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) { |
1270 | chain_walk = 1; |
1271 | } |
1272 | |
1273 | /* Store the lock on which owner is blocked or NULL */ |
1274 | next_lock = task_blocked_on_lock(p: owner); |
1275 | |
1276 | raw_spin_unlock(&owner->pi_lock); |
1277 | /* |
1278 | * Even if full deadlock detection is on, if the owner is not |
1279 | * blocked itself, we can avoid finding this out in the chain |
1280 | * walk. |
1281 | */ |
1282 | if (!chain_walk || !next_lock) |
1283 | return 0; |
1284 | |
1285 | /* |
1286 | * The owner can't disappear while holding a lock, |
1287 | * so the owner struct is protected by wait_lock. |
1288 | * Gets dropped in rt_mutex_adjust_prio_chain()! |
1289 | */ |
1290 | get_task_struct(t: owner); |
1291 | |
1292 | raw_spin_unlock_irq(&lock->wait_lock); |
1293 | |
1294 | res = rt_mutex_adjust_prio_chain(task: owner, chwalk, orig_lock: lock, |
1295 | next_lock, orig_waiter: waiter, top_task: task); |
1296 | |
1297 | raw_spin_lock_irq(&lock->wait_lock); |
1298 | |
1299 | return res; |
1300 | } |
1301 | |
1302 | /* |
1303 | * Remove the top waiter from the current tasks pi waiter tree and |
1304 | * queue it up. |
1305 | * |
1306 | * Called with lock->wait_lock held and interrupts disabled. |
1307 | */ |
1308 | static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh, |
1309 | struct rt_mutex_base *lock) |
1310 | { |
1311 | struct rt_mutex_waiter *waiter; |
1312 | |
1313 | lockdep_assert_held(&lock->wait_lock); |
1314 | |
1315 | raw_spin_lock(¤t->pi_lock); |
1316 | |
1317 | waiter = rt_mutex_top_waiter(lock); |
1318 | |
1319 | /* |
1320 | * Remove it from current->pi_waiters and deboost. |
1321 | * |
1322 | * We must in fact deboost here in order to ensure we call |
1323 | * rt_mutex_setprio() to update p->pi_top_task before the |
1324 | * task unblocks. |
1325 | */ |
1326 | rt_mutex_dequeue_pi(current, waiter); |
1327 | rt_mutex_adjust_prio(lock, current); |
1328 | |
1329 | /* |
1330 | * As we are waking up the top waiter, and the waiter stays |
1331 | * queued on the lock until it gets the lock, this lock |
1332 | * obviously has waiters. Just set the bit here and this has |
1333 | * the added benefit of forcing all new tasks into the |
1334 | * slow path making sure no task of lower priority than |
1335 | * the top waiter can steal this lock. |
1336 | */ |
1337 | lock->owner = (void *) RT_MUTEX_HAS_WAITERS; |
1338 | |
1339 | /* |
1340 | * We deboosted before waking the top waiter task such that we don't |
1341 | * run two tasks with the 'same' priority (and ensure the |
1342 | * p->pi_top_task pointer points to a blocked task). This however can |
1343 | * lead to priority inversion if we would get preempted after the |
1344 | * deboost but before waking our donor task, hence the preempt_disable() |
1345 | * before unlock. |
1346 | * |
1347 | * Pairs with preempt_enable() in rt_mutex_wake_up_q(); |
1348 | */ |
1349 | preempt_disable(); |
1350 | rt_mutex_wake_q_add(wqh, w: waiter); |
1351 | raw_spin_unlock(¤t->pi_lock); |
1352 | } |
1353 | |
1354 | static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock) |
1355 | { |
1356 | int ret = try_to_take_rt_mutex(lock, current, NULL); |
1357 | |
1358 | /* |
1359 | * try_to_take_rt_mutex() sets the lock waiters bit |
1360 | * unconditionally. Clean this up. |
1361 | */ |
1362 | fixup_rt_mutex_waiters(lock, acquire_lock: true); |
1363 | |
1364 | return ret; |
1365 | } |
1366 | |
1367 | /* |
1368 | * Slow path try-lock function: |
1369 | */ |
1370 | static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock) |
1371 | { |
1372 | unsigned long flags; |
1373 | int ret; |
1374 | |
1375 | /* |
1376 | * If the lock already has an owner we fail to get the lock. |
1377 | * This can be done without taking the @lock->wait_lock as |
1378 | * it is only being read, and this is a trylock anyway. |
1379 | */ |
1380 | if (rt_mutex_owner(lock)) |
1381 | return 0; |
1382 | |
1383 | /* |
1384 | * The mutex has currently no owner. Lock the wait lock and try to |
1385 | * acquire the lock. We use irqsave here to support early boot calls. |
1386 | */ |
1387 | raw_spin_lock_irqsave(&lock->wait_lock, flags); |
1388 | |
1389 | ret = __rt_mutex_slowtrylock(lock); |
1390 | |
1391 | raw_spin_unlock_irqrestore(&lock->wait_lock, flags); |
1392 | |
1393 | return ret; |
1394 | } |
1395 | |
1396 | static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock) |
1397 | { |
1398 | if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) |
1399 | return 1; |
1400 | |
1401 | return rt_mutex_slowtrylock(lock); |
1402 | } |
1403 | |
1404 | /* |
1405 | * Slow path to release a rt-mutex. |
1406 | */ |
1407 | static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock) |
1408 | { |
1409 | DEFINE_RT_WAKE_Q(wqh); |
1410 | unsigned long flags; |
1411 | |
1412 | /* irqsave required to support early boot calls */ |
1413 | raw_spin_lock_irqsave(&lock->wait_lock, flags); |
1414 | |
1415 | debug_rt_mutex_unlock(lock); |
1416 | |
1417 | /* |
1418 | * We must be careful here if the fast path is enabled. If we |
1419 | * have no waiters queued we cannot set owner to NULL here |
1420 | * because of: |
1421 | * |
1422 | * foo->lock->owner = NULL; |
1423 | * rtmutex_lock(foo->lock); <- fast path |
1424 | * free = atomic_dec_and_test(foo->refcnt); |
1425 | * rtmutex_unlock(foo->lock); <- fast path |
1426 | * if (free) |
1427 | * kfree(foo); |
1428 | * raw_spin_unlock(foo->lock->wait_lock); |
1429 | * |
1430 | * So for the fastpath enabled kernel: |
1431 | * |
1432 | * Nothing can set the waiters bit as long as we hold |
1433 | * lock->wait_lock. So we do the following sequence: |
1434 | * |
1435 | * owner = rt_mutex_owner(lock); |
1436 | * clear_rt_mutex_waiters(lock); |
1437 | * raw_spin_unlock(&lock->wait_lock); |
1438 | * if (cmpxchg(&lock->owner, owner, 0) == owner) |
1439 | * return; |
1440 | * goto retry; |
1441 | * |
1442 | * The fastpath disabled variant is simple as all access to |
1443 | * lock->owner is serialized by lock->wait_lock: |
1444 | * |
1445 | * lock->owner = NULL; |
1446 | * raw_spin_unlock(&lock->wait_lock); |
1447 | */ |
1448 | while (!rt_mutex_has_waiters(lock)) { |
1449 | /* Drops lock->wait_lock ! */ |
1450 | if (unlock_rt_mutex_safe(lock, flags) == true) |
1451 | return; |
1452 | /* Relock the rtmutex and try again */ |
1453 | raw_spin_lock_irqsave(&lock->wait_lock, flags); |
1454 | } |
1455 | |
1456 | /* |
1457 | * The wakeup next waiter path does not suffer from the above |
1458 | * race. See the comments there. |
1459 | * |
1460 | * Queue the next waiter for wakeup once we release the wait_lock. |
1461 | */ |
1462 | mark_wakeup_next_waiter(wqh: &wqh, lock); |
1463 | raw_spin_unlock_irqrestore(&lock->wait_lock, flags); |
1464 | |
1465 | rt_mutex_wake_up_q(wqh: &wqh); |
1466 | } |
1467 | |
1468 | static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock) |
1469 | { |
1470 | if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) |
1471 | return; |
1472 | |
1473 | rt_mutex_slowunlock(lock); |
1474 | } |
1475 | |
1476 | #ifdef CONFIG_SMP |
1477 | static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock, |
1478 | struct rt_mutex_waiter *waiter, |
1479 | struct task_struct *owner) |
1480 | { |
1481 | bool res = true; |
1482 | |
1483 | rcu_read_lock(); |
1484 | for (;;) { |
1485 | /* If owner changed, trylock again. */ |
1486 | if (owner != rt_mutex_owner(lock)) |
1487 | break; |
1488 | /* |
1489 | * Ensure that @owner is dereferenced after checking that |
1490 | * the lock owner still matches @owner. If that fails, |
1491 | * @owner might point to freed memory. If it still matches, |
1492 | * the rcu_read_lock() ensures the memory stays valid. |
1493 | */ |
1494 | barrier(); |
1495 | /* |
1496 | * Stop spinning when: |
1497 | * - the lock owner has been scheduled out |
1498 | * - current is not longer the top waiter |
1499 | * - current is requested to reschedule (redundant |
1500 | * for CONFIG_PREEMPT_RCU=y) |
1501 | * - the VCPU on which owner runs is preempted |
1502 | */ |
1503 | if (!owner_on_cpu(owner) || need_resched() || |
1504 | !rt_mutex_waiter_is_top_waiter(lock, waiter)) { |
1505 | res = false; |
1506 | break; |
1507 | } |
1508 | cpu_relax(); |
1509 | } |
1510 | rcu_read_unlock(); |
1511 | return res; |
1512 | } |
1513 | #else |
1514 | static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock, |
1515 | struct rt_mutex_waiter *waiter, |
1516 | struct task_struct *owner) |
1517 | { |
1518 | return false; |
1519 | } |
1520 | #endif |
1521 | |
1522 | #ifdef RT_MUTEX_BUILD_MUTEX |
1523 | /* |
1524 | * Functions required for: |
1525 | * - rtmutex, futex on all kernels |
1526 | * - mutex and rwsem substitutions on RT kernels |
1527 | */ |
1528 | |
1529 | /* |
1530 | * Remove a waiter from a lock and give up |
1531 | * |
1532 | * Must be called with lock->wait_lock held and interrupts disabled. It must |
1533 | * have just failed to try_to_take_rt_mutex(). |
1534 | */ |
1535 | static void __sched remove_waiter(struct rt_mutex_base *lock, |
1536 | struct rt_mutex_waiter *waiter) |
1537 | { |
1538 | bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock)); |
1539 | struct task_struct *owner = rt_mutex_owner(lock); |
1540 | struct rt_mutex_base *next_lock; |
1541 | |
1542 | lockdep_assert_held(&lock->wait_lock); |
1543 | |
1544 | raw_spin_lock(¤t->pi_lock); |
1545 | rt_mutex_dequeue(lock, waiter); |
1546 | current->pi_blocked_on = NULL; |
1547 | raw_spin_unlock(¤t->pi_lock); |
1548 | |
1549 | /* |
1550 | * Only update priority if the waiter was the highest priority |
1551 | * waiter of the lock and there is an owner to update. |
1552 | */ |
1553 | if (!owner || !is_top_waiter) |
1554 | return; |
1555 | |
1556 | raw_spin_lock(&owner->pi_lock); |
1557 | |
1558 | rt_mutex_dequeue_pi(owner, waiter); |
1559 | |
1560 | if (rt_mutex_has_waiters(lock)) |
1561 | rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock)); |
1562 | |
1563 | rt_mutex_adjust_prio(lock, owner); |
1564 | |
1565 | /* Store the lock on which owner is blocked or NULL */ |
1566 | next_lock = task_blocked_on_lock(owner); |
1567 | |
1568 | raw_spin_unlock(&owner->pi_lock); |
1569 | |
1570 | /* |
1571 | * Don't walk the chain, if the owner task is not blocked |
1572 | * itself. |
1573 | */ |
1574 | if (!next_lock) |
1575 | return; |
1576 | |
1577 | /* gets dropped in rt_mutex_adjust_prio_chain()! */ |
1578 | get_task_struct(owner); |
1579 | |
1580 | raw_spin_unlock_irq(&lock->wait_lock); |
1581 | |
1582 | rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock, |
1583 | next_lock, NULL, current); |
1584 | |
1585 | raw_spin_lock_irq(&lock->wait_lock); |
1586 | } |
1587 | |
1588 | /** |
1589 | * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop |
1590 | * @lock: the rt_mutex to take |
1591 | * @ww_ctx: WW mutex context pointer |
1592 | * @state: the state the task should block in (TASK_INTERRUPTIBLE |
1593 | * or TASK_UNINTERRUPTIBLE) |
1594 | * @timeout: the pre-initialized and started timer, or NULL for none |
1595 | * @waiter: the pre-initialized rt_mutex_waiter |
1596 | * |
1597 | * Must be called with lock->wait_lock held and interrupts disabled |
1598 | */ |
1599 | static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock, |
1600 | struct ww_acquire_ctx *ww_ctx, |
1601 | unsigned int state, |
1602 | struct hrtimer_sleeper *timeout, |
1603 | struct rt_mutex_waiter *waiter) |
1604 | { |
1605 | struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex); |
1606 | struct task_struct *owner; |
1607 | int ret = 0; |
1608 | |
1609 | for (;;) { |
1610 | /* Try to acquire the lock: */ |
1611 | if (try_to_take_rt_mutex(lock, current, waiter)) |
1612 | break; |
1613 | |
1614 | if (timeout && !timeout->task) { |
1615 | ret = -ETIMEDOUT; |
1616 | break; |
1617 | } |
1618 | if (signal_pending_state(state, current)) { |
1619 | ret = -EINTR; |
1620 | break; |
1621 | } |
1622 | |
1623 | if (build_ww_mutex() && ww_ctx) { |
1624 | ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx); |
1625 | if (ret) |
1626 | break; |
1627 | } |
1628 | |
1629 | if (waiter == rt_mutex_top_waiter(lock)) |
1630 | owner = rt_mutex_owner(lock); |
1631 | else |
1632 | owner = NULL; |
1633 | raw_spin_unlock_irq(&lock->wait_lock); |
1634 | |
1635 | if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner)) |
1636 | rt_mutex_schedule(); |
1637 | |
1638 | raw_spin_lock_irq(&lock->wait_lock); |
1639 | set_current_state(state); |
1640 | } |
1641 | |
1642 | __set_current_state(TASK_RUNNING); |
1643 | return ret; |
1644 | } |
1645 | |
1646 | static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock, |
1647 | struct rt_mutex_waiter *w) |
1648 | { |
1649 | /* |
1650 | * If the result is not -EDEADLOCK or the caller requested |
1651 | * deadlock detection, nothing to do here. |
1652 | */ |
1653 | if (res != -EDEADLOCK || detect_deadlock) |
1654 | return; |
1655 | |
1656 | if (build_ww_mutex() && w->ww_ctx) |
1657 | return; |
1658 | |
1659 | /* |
1660 | * Yell loudly and stop the task right here. |
1661 | */ |
1662 | WARN(1, "rtmutex deadlock detected\n"); |
1663 | while (1) { |
1664 | set_current_state(TASK_INTERRUPTIBLE); |
1665 | rt_mutex_schedule(); |
1666 | } |
1667 | } |
1668 | |
1669 | /** |
1670 | * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held |
1671 | * @lock: The rtmutex to block lock |
1672 | * @ww_ctx: WW mutex context pointer |
1673 | * @state: The task state for sleeping |
1674 | * @chwalk: Indicator whether full or partial chainwalk is requested |
1675 | * @waiter: Initializer waiter for blocking |
1676 | */ |
1677 | static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock, |
1678 | struct ww_acquire_ctx *ww_ctx, |
1679 | unsigned int state, |
1680 | enum rtmutex_chainwalk chwalk, |
1681 | struct rt_mutex_waiter *waiter) |
1682 | { |
1683 | struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex); |
1684 | struct ww_mutex *ww = ww_container_of(rtm); |
1685 | int ret; |
1686 | |
1687 | lockdep_assert_held(&lock->wait_lock); |
1688 | |
1689 | /* Try to acquire the lock again: */ |
1690 | if (try_to_take_rt_mutex(lock, current, NULL)) { |
1691 | if (build_ww_mutex() && ww_ctx) { |
1692 | __ww_mutex_check_waiters(rtm, ww_ctx); |
1693 | ww_mutex_lock_acquired(ww, ww_ctx); |
1694 | } |
1695 | return 0; |
1696 | } |
1697 | |
1698 | set_current_state(state); |
1699 | |
1700 | trace_contention_begin(lock, LCB_F_RT); |
1701 | |
1702 | ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk); |
1703 | if (likely(!ret)) |
1704 | ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter); |
1705 | |
1706 | if (likely(!ret)) { |
1707 | /* acquired the lock */ |
1708 | if (build_ww_mutex() && ww_ctx) { |
1709 | if (!ww_ctx->is_wait_die) |
1710 | __ww_mutex_check_waiters(rtm, ww_ctx); |
1711 | ww_mutex_lock_acquired(ww, ww_ctx); |
1712 | } |
1713 | } else { |
1714 | __set_current_state(TASK_RUNNING); |
1715 | remove_waiter(lock, waiter); |
1716 | rt_mutex_handle_deadlock(ret, chwalk, waiter); |
1717 | } |
1718 | |
1719 | /* |
1720 | * try_to_take_rt_mutex() sets the waiter bit |
1721 | * unconditionally. We might have to fix that up. |
1722 | */ |
1723 | fixup_rt_mutex_waiters(lock, true); |
1724 | |
1725 | trace_contention_end(lock, ret); |
1726 | |
1727 | return ret; |
1728 | } |
1729 | |
1730 | static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock, |
1731 | struct ww_acquire_ctx *ww_ctx, |
1732 | unsigned int state) |
1733 | { |
1734 | struct rt_mutex_waiter waiter; |
1735 | int ret; |
1736 | |
1737 | rt_mutex_init_waiter(&waiter); |
1738 | waiter.ww_ctx = ww_ctx; |
1739 | |
1740 | ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK, |
1741 | &waiter); |
1742 | |
1743 | debug_rt_mutex_free_waiter(&waiter); |
1744 | return ret; |
1745 | } |
1746 | |
1747 | /* |
1748 | * rt_mutex_slowlock - Locking slowpath invoked when fast path fails |
1749 | * @lock: The rtmutex to block lock |
1750 | * @ww_ctx: WW mutex context pointer |
1751 | * @state: The task state for sleeping |
1752 | */ |
1753 | static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock, |
1754 | struct ww_acquire_ctx *ww_ctx, |
1755 | unsigned int state) |
1756 | { |
1757 | unsigned long flags; |
1758 | int ret; |
1759 | |
1760 | /* |
1761 | * Do all pre-schedule work here, before we queue a waiter and invoke |
1762 | * PI -- any such work that trips on rtlock (PREEMPT_RT spinlock) would |
1763 | * otherwise recurse back into task_blocks_on_rt_mutex() through |
1764 | * rtlock_slowlock() and will then enqueue a second waiter for this |
1765 | * same task and things get really confusing real fast. |
1766 | */ |
1767 | rt_mutex_pre_schedule(); |
1768 | |
1769 | /* |
1770 | * Technically we could use raw_spin_[un]lock_irq() here, but this can |
1771 | * be called in early boot if the cmpxchg() fast path is disabled |
1772 | * (debug, no architecture support). In this case we will acquire the |
1773 | * rtmutex with lock->wait_lock held. But we cannot unconditionally |
1774 | * enable interrupts in that early boot case. So we need to use the |
1775 | * irqsave/restore variants. |
1776 | */ |
1777 | raw_spin_lock_irqsave(&lock->wait_lock, flags); |
1778 | ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state); |
1779 | raw_spin_unlock_irqrestore(&lock->wait_lock, flags); |
1780 | rt_mutex_post_schedule(); |
1781 | |
1782 | return ret; |
1783 | } |
1784 | |
1785 | static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock, |
1786 | unsigned int state) |
1787 | { |
1788 | lockdep_assert(!current->pi_blocked_on); |
1789 | |
1790 | if (likely(rt_mutex_try_acquire(lock))) |
1791 | return 0; |
1792 | |
1793 | return rt_mutex_slowlock(lock, NULL, state); |
1794 | } |
1795 | #endif /* RT_MUTEX_BUILD_MUTEX */ |
1796 | |
1797 | #ifdef RT_MUTEX_BUILD_SPINLOCKS |
1798 | /* |
1799 | * Functions required for spin/rw_lock substitution on RT kernels |
1800 | */ |
1801 | |
1802 | /** |
1803 | * rtlock_slowlock_locked - Slow path lock acquisition for RT locks |
1804 | * @lock: The underlying RT mutex |
1805 | */ |
1806 | static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock) |
1807 | { |
1808 | struct rt_mutex_waiter waiter; |
1809 | struct task_struct *owner; |
1810 | |
1811 | lockdep_assert_held(&lock->wait_lock); |
1812 | |
1813 | if (try_to_take_rt_mutex(lock, current, NULL)) |
1814 | return; |
1815 | |
1816 | rt_mutex_init_rtlock_waiter(&waiter); |
1817 | |
1818 | /* Save current state and set state to TASK_RTLOCK_WAIT */ |
1819 | current_save_and_set_rtlock_wait_state(); |
1820 | |
1821 | trace_contention_begin(lock, LCB_F_RT); |
1822 | |
1823 | task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK); |
1824 | |
1825 | for (;;) { |
1826 | /* Try to acquire the lock again */ |
1827 | if (try_to_take_rt_mutex(lock, current, &waiter)) |
1828 | break; |
1829 | |
1830 | if (&waiter == rt_mutex_top_waiter(lock)) |
1831 | owner = rt_mutex_owner(lock); |
1832 | else |
1833 | owner = NULL; |
1834 | raw_spin_unlock_irq(&lock->wait_lock); |
1835 | |
1836 | if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner)) |
1837 | schedule_rtlock(); |
1838 | |
1839 | raw_spin_lock_irq(&lock->wait_lock); |
1840 | set_current_state(TASK_RTLOCK_WAIT); |
1841 | } |
1842 | |
1843 | /* Restore the task state */ |
1844 | current_restore_rtlock_saved_state(); |
1845 | |
1846 | /* |
1847 | * try_to_take_rt_mutex() sets the waiter bit unconditionally. |
1848 | * We might have to fix that up: |
1849 | */ |
1850 | fixup_rt_mutex_waiters(lock, true); |
1851 | debug_rt_mutex_free_waiter(&waiter); |
1852 | |
1853 | trace_contention_end(lock, 0); |
1854 | } |
1855 | |
1856 | static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock) |
1857 | { |
1858 | unsigned long flags; |
1859 | |
1860 | raw_spin_lock_irqsave(&lock->wait_lock, flags); |
1861 | rtlock_slowlock_locked(lock); |
1862 | raw_spin_unlock_irqrestore(&lock->wait_lock, flags); |
1863 | } |
1864 | |
1865 | #endif /* RT_MUTEX_BUILD_SPINLOCKS */ |
1866 |
Definitions
- __ww_mutex_add_waiter
- __ww_mutex_check_waiters
- ww_mutex_lock_acquired
- __ww_mutex_check_kill
- rt_mutex_owner_encode
- rt_mutex_set_owner
- rt_mutex_clear_owner
- clear_rt_mutex_waiters
- fixup_rt_mutex_waiters
- rt_mutex_cmpxchg_acquire
- rt_mutex_try_acquire
- rt_mutex_cmpxchg_release
- mark_rt_mutex_waiters
- unlock_rt_mutex_safe
- __waiter_prio
- waiter_update_prio
- waiter_clone_prio
- rt_waiter_node_less
- rt_waiter_node_equal
- rt_mutex_steal
- __waiter_less
- rt_mutex_enqueue
- rt_mutex_dequeue
- __pi_waiter_less
- rt_mutex_enqueue_pi
- rt_mutex_dequeue_pi
- rt_mutex_adjust_prio
- rt_mutex_wake_q_add_task
- rt_mutex_wake_q_add
- rt_mutex_wake_up_q
- rt_mutex_cond_detect_deadlock
- task_blocked_on_lock
- rt_mutex_adjust_prio_chain
- try_to_take_rt_mutex
- task_blocks_on_rt_mutex
- mark_wakeup_next_waiter
- __rt_mutex_slowtrylock
- rt_mutex_slowtrylock
- __rt_mutex_trylock
- rt_mutex_slowunlock
- __rt_mutex_unlock
Improve your Profiling and Debugging skills
Find out more