1 | // SPDX-License-Identifier: GPL-2.0+ |
---|---|
2 | /* |
3 | * This file contains the functions which manage clocksource drivers. |
4 | * |
5 | * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com) |
6 | */ |
7 | |
8 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
9 | |
10 | #include <linux/device.h> |
11 | #include <linux/clocksource.h> |
12 | #include <linux/init.h> |
13 | #include <linux/module.h> |
14 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ |
15 | #include <linux/tick.h> |
16 | #include <linux/kthread.h> |
17 | #include <linux/prandom.h> |
18 | #include <linux/cpu.h> |
19 | |
20 | #include "tick-internal.h" |
21 | #include "timekeeping_internal.h" |
22 | |
23 | static void clocksource_enqueue(struct clocksource *cs); |
24 | |
25 | static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end) |
26 | { |
27 | u64 delta = clocksource_delta(now: end, last: start, mask: cs->mask, max_delta: cs->max_raw_delta); |
28 | |
29 | if (likely(delta < cs->max_cycles)) |
30 | return clocksource_cyc2ns(cycles: delta, mult: cs->mult, shift: cs->shift); |
31 | |
32 | return mul_u64_u32_shr(a: delta, mul: cs->mult, shift: cs->shift); |
33 | } |
34 | |
35 | /** |
36 | * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks |
37 | * @mult: pointer to mult variable |
38 | * @shift: pointer to shift variable |
39 | * @from: frequency to convert from |
40 | * @to: frequency to convert to |
41 | * @maxsec: guaranteed runtime conversion range in seconds |
42 | * |
43 | * The function evaluates the shift/mult pair for the scaled math |
44 | * operations of clocksources and clockevents. |
45 | * |
46 | * @to and @from are frequency values in HZ. For clock sources @to is |
47 | * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock |
48 | * event @to is the counter frequency and @from is NSEC_PER_SEC. |
49 | * |
50 | * The @maxsec conversion range argument controls the time frame in |
51 | * seconds which must be covered by the runtime conversion with the |
52 | * calculated mult and shift factors. This guarantees that no 64bit |
53 | * overflow happens when the input value of the conversion is |
54 | * multiplied with the calculated mult factor. Larger ranges may |
55 | * reduce the conversion accuracy by choosing smaller mult and shift |
56 | * factors. |
57 | */ |
58 | void |
59 | clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec) |
60 | { |
61 | u64 tmp; |
62 | u32 sft, sftacc= 32; |
63 | |
64 | /* |
65 | * Calculate the shift factor which is limiting the conversion |
66 | * range: |
67 | */ |
68 | tmp = ((u64)maxsec * from) >> 32; |
69 | while (tmp) { |
70 | tmp >>=1; |
71 | sftacc--; |
72 | } |
73 | |
74 | /* |
75 | * Find the conversion shift/mult pair which has the best |
76 | * accuracy and fits the maxsec conversion range: |
77 | */ |
78 | for (sft = 32; sft > 0; sft--) { |
79 | tmp = (u64) to << sft; |
80 | tmp += from / 2; |
81 | do_div(tmp, from); |
82 | if ((tmp >> sftacc) == 0) |
83 | break; |
84 | } |
85 | *mult = tmp; |
86 | *shift = sft; |
87 | } |
88 | EXPORT_SYMBOL_GPL(clocks_calc_mult_shift); |
89 | |
90 | /*[Clocksource internal variables]--------- |
91 | * curr_clocksource: |
92 | * currently selected clocksource. |
93 | * suspend_clocksource: |
94 | * used to calculate the suspend time. |
95 | * clocksource_list: |
96 | * linked list with the registered clocksources |
97 | * clocksource_mutex: |
98 | * protects manipulations to curr_clocksource and the clocksource_list |
99 | * override_name: |
100 | * Name of the user-specified clocksource. |
101 | */ |
102 | static struct clocksource *curr_clocksource; |
103 | static struct clocksource *suspend_clocksource; |
104 | static LIST_HEAD(clocksource_list); |
105 | static DEFINE_MUTEX(clocksource_mutex); |
106 | static char override_name[CS_NAME_LEN]; |
107 | static int finished_booting; |
108 | static u64 suspend_start; |
109 | |
110 | /* |
111 | * Interval: 0.5sec. |
112 | */ |
113 | #define WATCHDOG_INTERVAL (HZ >> 1) |
114 | #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ)) |
115 | |
116 | /* |
117 | * Threshold: 0.0312s, when doubled: 0.0625s. |
118 | */ |
119 | #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5) |
120 | |
121 | /* |
122 | * Maximum permissible delay between two readouts of the watchdog |
123 | * clocksource surrounding a read of the clocksource being validated. |
124 | * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as |
125 | * a lower bound for cs->uncertainty_margin values when registering clocks. |
126 | * |
127 | * The default of 500 parts per million is based on NTP's limits. |
128 | * If a clocksource is good enough for NTP, it is good enough for us! |
129 | * |
130 | * In other words, by default, even if a clocksource is extremely |
131 | * precise (for example, with a sub-nanosecond period), the maximum |
132 | * permissible skew between the clocksource watchdog and the clocksource |
133 | * under test is not permitted to go below the 500ppm minimum defined |
134 | * by MAX_SKEW_USEC. This 500ppm minimum may be overridden using the |
135 | * CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option. |
136 | */ |
137 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US |
138 | #define MAX_SKEW_USEC CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US |
139 | #else |
140 | #define MAX_SKEW_USEC (125 * WATCHDOG_INTERVAL / HZ) |
141 | #endif |
142 | |
143 | /* |
144 | * Default for maximum permissible skew when cs->uncertainty_margin is |
145 | * not specified, and the lower bound even when cs->uncertainty_margin |
146 | * is specified. This is also the default that is used when registering |
147 | * clocks with unspecifed cs->uncertainty_margin, so this macro is used |
148 | * even in CONFIG_CLOCKSOURCE_WATCHDOG=n kernels. |
149 | */ |
150 | #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC) |
151 | |
152 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG |
153 | static void clocksource_watchdog_work(struct work_struct *work); |
154 | static void clocksource_select(void); |
155 | |
156 | static LIST_HEAD(watchdog_list); |
157 | static struct clocksource *watchdog; |
158 | static struct timer_list watchdog_timer; |
159 | static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); |
160 | static DEFINE_SPINLOCK(watchdog_lock); |
161 | static int watchdog_running; |
162 | static atomic_t watchdog_reset_pending; |
163 | static int64_t watchdog_max_interval; |
164 | |
165 | static inline void clocksource_watchdog_lock(unsigned long *flags) |
166 | { |
167 | spin_lock_irqsave(&watchdog_lock, *flags); |
168 | } |
169 | |
170 | static inline void clocksource_watchdog_unlock(unsigned long *flags) |
171 | { |
172 | spin_unlock_irqrestore(lock: &watchdog_lock, flags: *flags); |
173 | } |
174 | |
175 | static int clocksource_watchdog_kthread(void *data); |
176 | |
177 | static void clocksource_watchdog_work(struct work_struct *work) |
178 | { |
179 | /* |
180 | * We cannot directly run clocksource_watchdog_kthread() here, because |
181 | * clocksource_select() calls timekeeping_notify() which uses |
182 | * stop_machine(). One cannot use stop_machine() from a workqueue() due |
183 | * lock inversions wrt CPU hotplug. |
184 | * |
185 | * Also, we only ever run this work once or twice during the lifetime |
186 | * of the kernel, so there is no point in creating a more permanent |
187 | * kthread for this. |
188 | * |
189 | * If kthread_run fails the next watchdog scan over the |
190 | * watchdog_list will find the unstable clock again. |
191 | */ |
192 | kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); |
193 | } |
194 | |
195 | static void clocksource_change_rating(struct clocksource *cs, int rating) |
196 | { |
197 | list_del(entry: &cs->list); |
198 | cs->rating = rating; |
199 | clocksource_enqueue(cs); |
200 | } |
201 | |
202 | static void __clocksource_unstable(struct clocksource *cs) |
203 | { |
204 | cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); |
205 | cs->flags |= CLOCK_SOURCE_UNSTABLE; |
206 | |
207 | /* |
208 | * If the clocksource is registered clocksource_watchdog_kthread() will |
209 | * re-rate and re-select. |
210 | */ |
211 | if (list_empty(head: &cs->list)) { |
212 | cs->rating = 0; |
213 | return; |
214 | } |
215 | |
216 | if (cs->mark_unstable) |
217 | cs->mark_unstable(cs); |
218 | |
219 | /* kick clocksource_watchdog_kthread() */ |
220 | if (finished_booting) |
221 | schedule_work(work: &watchdog_work); |
222 | } |
223 | |
224 | /** |
225 | * clocksource_mark_unstable - mark clocksource unstable via watchdog |
226 | * @cs: clocksource to be marked unstable |
227 | * |
228 | * This function is called by the x86 TSC code to mark clocksources as unstable; |
229 | * it defers demotion and re-selection to a kthread. |
230 | */ |
231 | void clocksource_mark_unstable(struct clocksource *cs) |
232 | { |
233 | unsigned long flags; |
234 | |
235 | spin_lock_irqsave(&watchdog_lock, flags); |
236 | if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { |
237 | if (!list_empty(head: &cs->list) && list_empty(head: &cs->wd_list)) |
238 | list_add(new: &cs->wd_list, head: &watchdog_list); |
239 | __clocksource_unstable(cs); |
240 | } |
241 | spin_unlock_irqrestore(lock: &watchdog_lock, flags); |
242 | } |
243 | |
244 | static int verify_n_cpus = 8; |
245 | module_param(verify_n_cpus, int, 0644); |
246 | |
247 | enum wd_read_status { |
248 | WD_READ_SUCCESS, |
249 | WD_READ_UNSTABLE, |
250 | WD_READ_SKIP |
251 | }; |
252 | |
253 | static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow) |
254 | { |
255 | int64_t md = 2 * watchdog->uncertainty_margin; |
256 | unsigned int nretries, max_retries; |
257 | int64_t wd_delay, wd_seq_delay; |
258 | u64 wd_end, wd_end2; |
259 | |
260 | max_retries = clocksource_get_max_watchdog_retry(); |
261 | for (nretries = 0; nretries <= max_retries; nretries++) { |
262 | local_irq_disable(); |
263 | *wdnow = watchdog->read(watchdog); |
264 | *csnow = cs->read(cs); |
265 | wd_end = watchdog->read(watchdog); |
266 | wd_end2 = watchdog->read(watchdog); |
267 | local_irq_enable(); |
268 | |
269 | wd_delay = cycles_to_nsec_safe(cs: watchdog, start: *wdnow, end: wd_end); |
270 | if (wd_delay <= md + cs->uncertainty_margin) { |
271 | if (nretries > 1 && nretries >= max_retries) { |
272 | pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n", |
273 | smp_processor_id(), watchdog->name, nretries); |
274 | } |
275 | return WD_READ_SUCCESS; |
276 | } |
277 | |
278 | /* |
279 | * Now compute delay in consecutive watchdog read to see if |
280 | * there is too much external interferences that cause |
281 | * significant delay in reading both clocksource and watchdog. |
282 | * |
283 | * If consecutive WD read-back delay > md, report |
284 | * system busy, reinit the watchdog and skip the current |
285 | * watchdog test. |
286 | */ |
287 | wd_seq_delay = cycles_to_nsec_safe(cs: watchdog, start: wd_end, end: wd_end2); |
288 | if (wd_seq_delay > md) |
289 | goto skip_test; |
290 | } |
291 | |
292 | pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n", |
293 | smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name); |
294 | return WD_READ_UNSTABLE; |
295 | |
296 | skip_test: |
297 | pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n", |
298 | smp_processor_id(), watchdog->name, wd_seq_delay); |
299 | pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n", |
300 | cs->name, wd_delay); |
301 | return WD_READ_SKIP; |
302 | } |
303 | |
304 | static u64 csnow_mid; |
305 | static cpumask_t cpus_ahead; |
306 | static cpumask_t cpus_behind; |
307 | static cpumask_t cpus_chosen; |
308 | |
309 | static void clocksource_verify_choose_cpus(void) |
310 | { |
311 | int cpu, i, n = verify_n_cpus; |
312 | |
313 | if (n < 0 || n >= num_online_cpus()) { |
314 | /* Check all of the CPUs. */ |
315 | cpumask_copy(dstp: &cpus_chosen, cpu_online_mask); |
316 | cpumask_clear_cpu(smp_processor_id(), dstp: &cpus_chosen); |
317 | return; |
318 | } |
319 | |
320 | /* If no checking desired, or no other CPU to check, leave. */ |
321 | cpumask_clear(dstp: &cpus_chosen); |
322 | if (n == 0 || num_online_cpus() <= 1) |
323 | return; |
324 | |
325 | /* Make sure to select at least one CPU other than the current CPU. */ |
326 | cpu = cpumask_first(cpu_online_mask); |
327 | if (cpu == smp_processor_id()) |
328 | cpu = cpumask_next(n: cpu, cpu_online_mask); |
329 | if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) |
330 | return; |
331 | cpumask_set_cpu(cpu, dstp: &cpus_chosen); |
332 | |
333 | /* Force a sane value for the boot parameter. */ |
334 | if (n > nr_cpu_ids) |
335 | n = nr_cpu_ids; |
336 | |
337 | /* |
338 | * Randomly select the specified number of CPUs. If the same |
339 | * CPU is selected multiple times, that CPU is checked only once, |
340 | * and no replacement CPU is selected. This gracefully handles |
341 | * situations where verify_n_cpus is greater than the number of |
342 | * CPUs that are currently online. |
343 | */ |
344 | for (i = 1; i < n; i++) { |
345 | cpu = get_random_u32_below(ceil: nr_cpu_ids); |
346 | cpu = cpumask_next(n: cpu - 1, cpu_online_mask); |
347 | if (cpu >= nr_cpu_ids) |
348 | cpu = cpumask_first(cpu_online_mask); |
349 | if (!WARN_ON_ONCE(cpu >= nr_cpu_ids)) |
350 | cpumask_set_cpu(cpu, dstp: &cpus_chosen); |
351 | } |
352 | |
353 | /* Don't verify ourselves. */ |
354 | cpumask_clear_cpu(smp_processor_id(), dstp: &cpus_chosen); |
355 | } |
356 | |
357 | static void clocksource_verify_one_cpu(void *csin) |
358 | { |
359 | struct clocksource *cs = (struct clocksource *)csin; |
360 | |
361 | csnow_mid = cs->read(cs); |
362 | } |
363 | |
364 | void clocksource_verify_percpu(struct clocksource *cs) |
365 | { |
366 | int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX; |
367 | u64 csnow_begin, csnow_end; |
368 | int cpu, testcpu; |
369 | s64 delta; |
370 | |
371 | if (verify_n_cpus == 0) |
372 | return; |
373 | cpumask_clear(dstp: &cpus_ahead); |
374 | cpumask_clear(dstp: &cpus_behind); |
375 | cpus_read_lock(); |
376 | migrate_disable(); |
377 | clocksource_verify_choose_cpus(); |
378 | if (cpumask_empty(srcp: &cpus_chosen)) { |
379 | migrate_enable(); |
380 | cpus_read_unlock(); |
381 | pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name); |
382 | return; |
383 | } |
384 | testcpu = smp_processor_id(); |
385 | pr_info("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", |
386 | cs->name, testcpu, cpumask_pr_args(&cpus_chosen)); |
387 | preempt_disable(); |
388 | for_each_cpu(cpu, &cpus_chosen) { |
389 | if (cpu == testcpu) |
390 | continue; |
391 | csnow_begin = cs->read(cs); |
392 | smp_call_function_single(cpuid: cpu, func: clocksource_verify_one_cpu, info: cs, wait: 1); |
393 | csnow_end = cs->read(cs); |
394 | delta = (s64)((csnow_mid - csnow_begin) & cs->mask); |
395 | if (delta < 0) |
396 | cpumask_set_cpu(cpu, dstp: &cpus_behind); |
397 | delta = (csnow_end - csnow_mid) & cs->mask; |
398 | if (delta < 0) |
399 | cpumask_set_cpu(cpu, dstp: &cpus_ahead); |
400 | cs_nsec = cycles_to_nsec_safe(cs, start: csnow_begin, end: csnow_end); |
401 | if (cs_nsec > cs_nsec_max) |
402 | cs_nsec_max = cs_nsec; |
403 | if (cs_nsec < cs_nsec_min) |
404 | cs_nsec_min = cs_nsec; |
405 | } |
406 | preempt_enable(); |
407 | migrate_enable(); |
408 | cpus_read_unlock(); |
409 | if (!cpumask_empty(srcp: &cpus_ahead)) |
410 | pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n", |
411 | cpumask_pr_args(&cpus_ahead), testcpu, cs->name); |
412 | if (!cpumask_empty(srcp: &cpus_behind)) |
413 | pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n", |
414 | cpumask_pr_args(&cpus_behind), testcpu, cs->name); |
415 | if (!cpumask_empty(srcp: &cpus_ahead) || !cpumask_empty(srcp: &cpus_behind)) |
416 | pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n", |
417 | testcpu, cs_nsec_min, cs_nsec_max, cs->name); |
418 | } |
419 | EXPORT_SYMBOL_GPL(clocksource_verify_percpu); |
420 | |
421 | static inline void clocksource_reset_watchdog(void) |
422 | { |
423 | struct clocksource *cs; |
424 | |
425 | list_for_each_entry(cs, &watchdog_list, wd_list) |
426 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; |
427 | } |
428 | |
429 | |
430 | static void clocksource_watchdog(struct timer_list *unused) |
431 | { |
432 | int64_t wd_nsec, cs_nsec, interval; |
433 | u64 csnow, wdnow, cslast, wdlast; |
434 | int next_cpu, reset_pending; |
435 | struct clocksource *cs; |
436 | enum wd_read_status read_ret; |
437 | unsigned long extra_wait = 0; |
438 | u32 md; |
439 | |
440 | spin_lock(lock: &watchdog_lock); |
441 | if (!watchdog_running) |
442 | goto out; |
443 | |
444 | reset_pending = atomic_read(v: &watchdog_reset_pending); |
445 | |
446 | list_for_each_entry(cs, &watchdog_list, wd_list) { |
447 | |
448 | /* Clocksource already marked unstable? */ |
449 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { |
450 | if (finished_booting) |
451 | schedule_work(work: &watchdog_work); |
452 | continue; |
453 | } |
454 | |
455 | read_ret = cs_watchdog_read(cs, csnow: &csnow, wdnow: &wdnow); |
456 | |
457 | if (read_ret == WD_READ_UNSTABLE) { |
458 | /* Clock readout unreliable, so give it up. */ |
459 | __clocksource_unstable(cs); |
460 | continue; |
461 | } |
462 | |
463 | /* |
464 | * When WD_READ_SKIP is returned, it means the system is likely |
465 | * under very heavy load, where the latency of reading |
466 | * watchdog/clocksource is very big, and affect the accuracy of |
467 | * watchdog check. So give system some space and suspend the |
468 | * watchdog check for 5 minutes. |
469 | */ |
470 | if (read_ret == WD_READ_SKIP) { |
471 | /* |
472 | * As the watchdog timer will be suspended, and |
473 | * cs->last could keep unchanged for 5 minutes, reset |
474 | * the counters. |
475 | */ |
476 | clocksource_reset_watchdog(); |
477 | extra_wait = HZ * 300; |
478 | break; |
479 | } |
480 | |
481 | /* Clocksource initialized ? */ |
482 | if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) || |
483 | atomic_read(v: &watchdog_reset_pending)) { |
484 | cs->flags |= CLOCK_SOURCE_WATCHDOG; |
485 | cs->wd_last = wdnow; |
486 | cs->cs_last = csnow; |
487 | continue; |
488 | } |
489 | |
490 | wd_nsec = cycles_to_nsec_safe(cs: watchdog, start: cs->wd_last, end: wdnow); |
491 | cs_nsec = cycles_to_nsec_safe(cs, start: cs->cs_last, end: csnow); |
492 | wdlast = cs->wd_last; /* save these in case we print them */ |
493 | cslast = cs->cs_last; |
494 | cs->cs_last = csnow; |
495 | cs->wd_last = wdnow; |
496 | |
497 | if (atomic_read(v: &watchdog_reset_pending)) |
498 | continue; |
499 | |
500 | /* |
501 | * The processing of timer softirqs can get delayed (usually |
502 | * on account of ksoftirqd not getting to run in a timely |
503 | * manner), which causes the watchdog interval to stretch. |
504 | * Skew detection may fail for longer watchdog intervals |
505 | * on account of fixed margins being used. |
506 | * Some clocksources, e.g. acpi_pm, cannot tolerate |
507 | * watchdog intervals longer than a few seconds. |
508 | */ |
509 | interval = max(cs_nsec, wd_nsec); |
510 | if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) { |
511 | if (system_state > SYSTEM_SCHEDULING && |
512 | interval > 2 * watchdog_max_interval) { |
513 | watchdog_max_interval = interval; |
514 | pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n", |
515 | cs_nsec, wd_nsec); |
516 | } |
517 | watchdog_timer.expires = jiffies; |
518 | continue; |
519 | } |
520 | |
521 | /* Check the deviation from the watchdog clocksource. */ |
522 | md = cs->uncertainty_margin + watchdog->uncertainty_margin; |
523 | if (abs(cs_nsec - wd_nsec) > md) { |
524 | s64 cs_wd_msec; |
525 | s64 wd_msec; |
526 | u32 wd_rem; |
527 | |
528 | pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n", |
529 | smp_processor_id(), cs->name); |
530 | pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n", |
531 | watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask); |
532 | pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n", |
533 | cs->name, cs_nsec, csnow, cslast, cs->mask); |
534 | cs_wd_msec = div_s64_rem(dividend: cs_nsec - wd_nsec, divisor: 1000 * 1000, remainder: &wd_rem); |
535 | wd_msec = div_s64_rem(dividend: wd_nsec, divisor: 1000 * 1000, remainder: &wd_rem); |
536 | pr_warn(" Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n", |
537 | cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec); |
538 | if (curr_clocksource == cs) |
539 | pr_warn(" '%s' is current clocksource.\n", cs->name); |
540 | else if (curr_clocksource) |
541 | pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name); |
542 | else |
543 | pr_warn(" No current clocksource.\n"); |
544 | __clocksource_unstable(cs); |
545 | continue; |
546 | } |
547 | |
548 | if (cs == curr_clocksource && cs->tick_stable) |
549 | cs->tick_stable(cs); |
550 | |
551 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && |
552 | (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && |
553 | (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { |
554 | /* Mark it valid for high-res. */ |
555 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
556 | |
557 | /* |
558 | * clocksource_done_booting() will sort it if |
559 | * finished_booting is not set yet. |
560 | */ |
561 | if (!finished_booting) |
562 | continue; |
563 | |
564 | /* |
565 | * If this is not the current clocksource let |
566 | * the watchdog thread reselect it. Due to the |
567 | * change to high res this clocksource might |
568 | * be preferred now. If it is the current |
569 | * clocksource let the tick code know about |
570 | * that change. |
571 | */ |
572 | if (cs != curr_clocksource) { |
573 | cs->flags |= CLOCK_SOURCE_RESELECT; |
574 | schedule_work(work: &watchdog_work); |
575 | } else { |
576 | tick_clock_notify(); |
577 | } |
578 | } |
579 | } |
580 | |
581 | /* |
582 | * We only clear the watchdog_reset_pending, when we did a |
583 | * full cycle through all clocksources. |
584 | */ |
585 | if (reset_pending) |
586 | atomic_dec(v: &watchdog_reset_pending); |
587 | |
588 | /* |
589 | * Cycle through CPUs to check if the CPUs stay synchronized |
590 | * to each other. |
591 | */ |
592 | next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); |
593 | if (next_cpu >= nr_cpu_ids) |
594 | next_cpu = cpumask_first(cpu_online_mask); |
595 | |
596 | /* |
597 | * Arm timer if not already pending: could race with concurrent |
598 | * pair clocksource_stop_watchdog() clocksource_start_watchdog(). |
599 | */ |
600 | if (!timer_pending(timer: &watchdog_timer)) { |
601 | watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait; |
602 | add_timer_on(timer: &watchdog_timer, cpu: next_cpu); |
603 | } |
604 | out: |
605 | spin_unlock(lock: &watchdog_lock); |
606 | } |
607 | |
608 | static inline void clocksource_start_watchdog(void) |
609 | { |
610 | if (watchdog_running || !watchdog || list_empty(head: &watchdog_list)) |
611 | return; |
612 | timer_setup(&watchdog_timer, clocksource_watchdog, 0); |
613 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; |
614 | add_timer_on(timer: &watchdog_timer, cpu: cpumask_first(cpu_online_mask)); |
615 | watchdog_running = 1; |
616 | } |
617 | |
618 | static inline void clocksource_stop_watchdog(void) |
619 | { |
620 | if (!watchdog_running || (watchdog && !list_empty(head: &watchdog_list))) |
621 | return; |
622 | timer_delete(timer: &watchdog_timer); |
623 | watchdog_running = 0; |
624 | } |
625 | |
626 | static void clocksource_resume_watchdog(void) |
627 | { |
628 | atomic_inc(v: &watchdog_reset_pending); |
629 | } |
630 | |
631 | static void clocksource_enqueue_watchdog(struct clocksource *cs) |
632 | { |
633 | INIT_LIST_HEAD(list: &cs->wd_list); |
634 | |
635 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { |
636 | /* cs is a clocksource to be watched. */ |
637 | list_add(new: &cs->wd_list, head: &watchdog_list); |
638 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; |
639 | } else { |
640 | /* cs is a watchdog. */ |
641 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
642 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
643 | } |
644 | } |
645 | |
646 | static void clocksource_select_watchdog(bool fallback) |
647 | { |
648 | struct clocksource *cs, *old_wd; |
649 | unsigned long flags; |
650 | |
651 | spin_lock_irqsave(&watchdog_lock, flags); |
652 | /* save current watchdog */ |
653 | old_wd = watchdog; |
654 | if (fallback) |
655 | watchdog = NULL; |
656 | |
657 | list_for_each_entry(cs, &clocksource_list, list) { |
658 | /* cs is a clocksource to be watched. */ |
659 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) |
660 | continue; |
661 | |
662 | /* Skip current if we were requested for a fallback. */ |
663 | if (fallback && cs == old_wd) |
664 | continue; |
665 | |
666 | /* Pick the best watchdog. */ |
667 | if (!watchdog || cs->rating > watchdog->rating) |
668 | watchdog = cs; |
669 | } |
670 | /* If we failed to find a fallback restore the old one. */ |
671 | if (!watchdog) |
672 | watchdog = old_wd; |
673 | |
674 | /* If we changed the watchdog we need to reset cycles. */ |
675 | if (watchdog != old_wd) |
676 | clocksource_reset_watchdog(); |
677 | |
678 | /* Check if the watchdog timer needs to be started. */ |
679 | clocksource_start_watchdog(); |
680 | spin_unlock_irqrestore(lock: &watchdog_lock, flags); |
681 | } |
682 | |
683 | static void clocksource_dequeue_watchdog(struct clocksource *cs) |
684 | { |
685 | if (cs != watchdog) { |
686 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { |
687 | /* cs is a watched clocksource. */ |
688 | list_del_init(entry: &cs->wd_list); |
689 | /* Check if the watchdog timer needs to be stopped. */ |
690 | clocksource_stop_watchdog(); |
691 | } |
692 | } |
693 | } |
694 | |
695 | static int __clocksource_watchdog_kthread(void) |
696 | { |
697 | struct clocksource *cs, *tmp; |
698 | unsigned long flags; |
699 | int select = 0; |
700 | |
701 | /* Do any required per-CPU skew verification. */ |
702 | if (curr_clocksource && |
703 | curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE && |
704 | curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU) |
705 | clocksource_verify_percpu(curr_clocksource); |
706 | |
707 | spin_lock_irqsave(&watchdog_lock, flags); |
708 | list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { |
709 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { |
710 | list_del_init(entry: &cs->wd_list); |
711 | clocksource_change_rating(cs, rating: 0); |
712 | select = 1; |
713 | } |
714 | if (cs->flags & CLOCK_SOURCE_RESELECT) { |
715 | cs->flags &= ~CLOCK_SOURCE_RESELECT; |
716 | select = 1; |
717 | } |
718 | } |
719 | /* Check if the watchdog timer needs to be stopped. */ |
720 | clocksource_stop_watchdog(); |
721 | spin_unlock_irqrestore(lock: &watchdog_lock, flags); |
722 | |
723 | return select; |
724 | } |
725 | |
726 | static int clocksource_watchdog_kthread(void *data) |
727 | { |
728 | mutex_lock(&clocksource_mutex); |
729 | if (__clocksource_watchdog_kthread()) |
730 | clocksource_select(); |
731 | mutex_unlock(lock: &clocksource_mutex); |
732 | return 0; |
733 | } |
734 | |
735 | static bool clocksource_is_watchdog(struct clocksource *cs) |
736 | { |
737 | return cs == watchdog; |
738 | } |
739 | |
740 | #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ |
741 | |
742 | static void clocksource_enqueue_watchdog(struct clocksource *cs) |
743 | { |
744 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
745 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
746 | } |
747 | |
748 | static void clocksource_select_watchdog(bool fallback) { } |
749 | static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } |
750 | static inline void clocksource_resume_watchdog(void) { } |
751 | static inline int __clocksource_watchdog_kthread(void) { return 0; } |
752 | static bool clocksource_is_watchdog(struct clocksource *cs) { return false; } |
753 | void clocksource_mark_unstable(struct clocksource *cs) { } |
754 | |
755 | static inline void clocksource_watchdog_lock(unsigned long *flags) { } |
756 | static inline void clocksource_watchdog_unlock(unsigned long *flags) { } |
757 | |
758 | #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ |
759 | |
760 | static bool clocksource_is_suspend(struct clocksource *cs) |
761 | { |
762 | return cs == suspend_clocksource; |
763 | } |
764 | |
765 | static void __clocksource_suspend_select(struct clocksource *cs) |
766 | { |
767 | /* |
768 | * Skip the clocksource which will be stopped in suspend state. |
769 | */ |
770 | if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP)) |
771 | return; |
772 | |
773 | /* |
774 | * The nonstop clocksource can be selected as the suspend clocksource to |
775 | * calculate the suspend time, so it should not supply suspend/resume |
776 | * interfaces to suspend the nonstop clocksource when system suspends. |
777 | */ |
778 | if (cs->suspend || cs->resume) { |
779 | pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n", |
780 | cs->name); |
781 | } |
782 | |
783 | /* Pick the best rating. */ |
784 | if (!suspend_clocksource || cs->rating > suspend_clocksource->rating) |
785 | suspend_clocksource = cs; |
786 | } |
787 | |
788 | /** |
789 | * clocksource_suspend_select - Select the best clocksource for suspend timing |
790 | * @fallback: if select a fallback clocksource |
791 | */ |
792 | static void clocksource_suspend_select(bool fallback) |
793 | { |
794 | struct clocksource *cs, *old_suspend; |
795 | |
796 | old_suspend = suspend_clocksource; |
797 | if (fallback) |
798 | suspend_clocksource = NULL; |
799 | |
800 | list_for_each_entry(cs, &clocksource_list, list) { |
801 | /* Skip current if we were requested for a fallback. */ |
802 | if (fallback && cs == old_suspend) |
803 | continue; |
804 | |
805 | __clocksource_suspend_select(cs); |
806 | } |
807 | } |
808 | |
809 | /** |
810 | * clocksource_start_suspend_timing - Start measuring the suspend timing |
811 | * @cs: current clocksource from timekeeping |
812 | * @start_cycles: current cycles from timekeeping |
813 | * |
814 | * This function will save the start cycle values of suspend timer to calculate |
815 | * the suspend time when resuming system. |
816 | * |
817 | * This function is called late in the suspend process from timekeeping_suspend(), |
818 | * that means processes are frozen, non-boot cpus and interrupts are disabled |
819 | * now. It is therefore possible to start the suspend timer without taking the |
820 | * clocksource mutex. |
821 | */ |
822 | void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles) |
823 | { |
824 | if (!suspend_clocksource) |
825 | return; |
826 | |
827 | /* |
828 | * If current clocksource is the suspend timer, we should use the |
829 | * tkr_mono.cycle_last value as suspend_start to avoid same reading |
830 | * from suspend timer. |
831 | */ |
832 | if (clocksource_is_suspend(cs)) { |
833 | suspend_start = start_cycles; |
834 | return; |
835 | } |
836 | |
837 | if (suspend_clocksource->enable && |
838 | suspend_clocksource->enable(suspend_clocksource)) { |
839 | pr_warn_once("Failed to enable the non-suspend-able clocksource.\n"); |
840 | return; |
841 | } |
842 | |
843 | suspend_start = suspend_clocksource->read(suspend_clocksource); |
844 | } |
845 | |
846 | /** |
847 | * clocksource_stop_suspend_timing - Stop measuring the suspend timing |
848 | * @cs: current clocksource from timekeeping |
849 | * @cycle_now: current cycles from timekeeping |
850 | * |
851 | * This function will calculate the suspend time from suspend timer. |
852 | * |
853 | * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource. |
854 | * |
855 | * This function is called early in the resume process from timekeeping_resume(), |
856 | * that means there is only one cpu, no processes are running and the interrupts |
857 | * are disabled. It is therefore possible to stop the suspend timer without |
858 | * taking the clocksource mutex. |
859 | */ |
860 | u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now) |
861 | { |
862 | u64 now, nsec = 0; |
863 | |
864 | if (!suspend_clocksource) |
865 | return 0; |
866 | |
867 | /* |
868 | * If current clocksource is the suspend timer, we should use the |
869 | * tkr_mono.cycle_last value from timekeeping as current cycle to |
870 | * avoid same reading from suspend timer. |
871 | */ |
872 | if (clocksource_is_suspend(cs)) |
873 | now = cycle_now; |
874 | else |
875 | now = suspend_clocksource->read(suspend_clocksource); |
876 | |
877 | if (now > suspend_start) |
878 | nsec = cycles_to_nsec_safe(cs: suspend_clocksource, start: suspend_start, end: now); |
879 | |
880 | /* |
881 | * Disable the suspend timer to save power if current clocksource is |
882 | * not the suspend timer. |
883 | */ |
884 | if (!clocksource_is_suspend(cs) && suspend_clocksource->disable) |
885 | suspend_clocksource->disable(suspend_clocksource); |
886 | |
887 | return nsec; |
888 | } |
889 | |
890 | /** |
891 | * clocksource_suspend - suspend the clocksource(s) |
892 | */ |
893 | void clocksource_suspend(void) |
894 | { |
895 | struct clocksource *cs; |
896 | |
897 | list_for_each_entry_reverse(cs, &clocksource_list, list) |
898 | if (cs->suspend) |
899 | cs->suspend(cs); |
900 | } |
901 | |
902 | /** |
903 | * clocksource_resume - resume the clocksource(s) |
904 | */ |
905 | void clocksource_resume(void) |
906 | { |
907 | struct clocksource *cs; |
908 | |
909 | list_for_each_entry(cs, &clocksource_list, list) |
910 | if (cs->resume) |
911 | cs->resume(cs); |
912 | |
913 | clocksource_resume_watchdog(); |
914 | } |
915 | |
916 | /** |
917 | * clocksource_touch_watchdog - Update watchdog |
918 | * |
919 | * Update the watchdog after exception contexts such as kgdb so as not |
920 | * to incorrectly trip the watchdog. This might fail when the kernel |
921 | * was stopped in code which holds watchdog_lock. |
922 | */ |
923 | void clocksource_touch_watchdog(void) |
924 | { |
925 | clocksource_resume_watchdog(); |
926 | } |
927 | |
928 | /** |
929 | * clocksource_max_adjustment- Returns max adjustment amount |
930 | * @cs: Pointer to clocksource |
931 | * |
932 | */ |
933 | static u32 clocksource_max_adjustment(struct clocksource *cs) |
934 | { |
935 | u64 ret; |
936 | /* |
937 | * We won't try to correct for more than 11% adjustments (110,000 ppm), |
938 | */ |
939 | ret = (u64)cs->mult * 11; |
940 | do_div(ret,100); |
941 | return (u32)ret; |
942 | } |
943 | |
944 | /** |
945 | * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted |
946 | * @mult: cycle to nanosecond multiplier |
947 | * @shift: cycle to nanosecond divisor (power of two) |
948 | * @maxadj: maximum adjustment value to mult (~11%) |
949 | * @mask: bitmask for two's complement subtraction of non 64 bit counters |
950 | * @max_cyc: maximum cycle value before potential overflow (does not include |
951 | * any safety margin) |
952 | * |
953 | * NOTE: This function includes a safety margin of 50%, in other words, we |
954 | * return half the number of nanoseconds the hardware counter can technically |
955 | * cover. This is done so that we can potentially detect problems caused by |
956 | * delayed timers or bad hardware, which might result in time intervals that |
957 | * are larger than what the math used can handle without overflows. |
958 | */ |
959 | u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc) |
960 | { |
961 | u64 max_nsecs, max_cycles; |
962 | |
963 | /* |
964 | * Calculate the maximum number of cycles that we can pass to the |
965 | * cyc2ns() function without overflowing a 64-bit result. |
966 | */ |
967 | max_cycles = ULLONG_MAX; |
968 | do_div(max_cycles, mult+maxadj); |
969 | |
970 | /* |
971 | * The actual maximum number of cycles we can defer the clocksource is |
972 | * determined by the minimum of max_cycles and mask. |
973 | * Note: Here we subtract the maxadj to make sure we don't sleep for |
974 | * too long if there's a large negative adjustment. |
975 | */ |
976 | max_cycles = min(max_cycles, mask); |
977 | max_nsecs = clocksource_cyc2ns(cycles: max_cycles, mult: mult - maxadj, shift); |
978 | |
979 | /* return the max_cycles value as well if requested */ |
980 | if (max_cyc) |
981 | *max_cyc = max_cycles; |
982 | |
983 | /* Return 50% of the actual maximum, so we can detect bad values */ |
984 | max_nsecs >>= 1; |
985 | |
986 | return max_nsecs; |
987 | } |
988 | |
989 | /** |
990 | * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles |
991 | * @cs: Pointer to clocksource to be updated |
992 | * |
993 | */ |
994 | static inline void clocksource_update_max_deferment(struct clocksource *cs) |
995 | { |
996 | cs->max_idle_ns = clocks_calc_max_nsecs(mult: cs->mult, shift: cs->shift, |
997 | maxadj: cs->maxadj, mask: cs->mask, |
998 | max_cyc: &cs->max_cycles); |
999 | |
1000 | /* |
1001 | * Threshold for detecting negative motion in clocksource_delta(). |
1002 | * |
1003 | * Allow for 0.875 of the counter width so that overly long idle |
1004 | * sleeps, which go slightly over mask/2, do not trigger the |
1005 | * negative motion detection. |
1006 | */ |
1007 | cs->max_raw_delta = (cs->mask >> 1) + (cs->mask >> 2) + (cs->mask >> 3); |
1008 | } |
1009 | |
1010 | static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur) |
1011 | { |
1012 | struct clocksource *cs; |
1013 | |
1014 | if (!finished_booting || list_empty(head: &clocksource_list)) |
1015 | return NULL; |
1016 | |
1017 | /* |
1018 | * We pick the clocksource with the highest rating. If oneshot |
1019 | * mode is active, we pick the highres valid clocksource with |
1020 | * the best rating. |
1021 | */ |
1022 | list_for_each_entry(cs, &clocksource_list, list) { |
1023 | if (skipcur && cs == curr_clocksource) |
1024 | continue; |
1025 | if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES)) |
1026 | continue; |
1027 | return cs; |
1028 | } |
1029 | return NULL; |
1030 | } |
1031 | |
1032 | static void __clocksource_select(bool skipcur) |
1033 | { |
1034 | bool oneshot = tick_oneshot_mode_active(); |
1035 | struct clocksource *best, *cs; |
1036 | |
1037 | /* Find the best suitable clocksource */ |
1038 | best = clocksource_find_best(oneshot, skipcur); |
1039 | if (!best) |
1040 | return; |
1041 | |
1042 | if (!strlen(override_name)) |
1043 | goto found; |
1044 | |
1045 | /* Check for the override clocksource. */ |
1046 | list_for_each_entry(cs, &clocksource_list, list) { |
1047 | if (skipcur && cs == curr_clocksource) |
1048 | continue; |
1049 | if (strcmp(cs->name, override_name) != 0) |
1050 | continue; |
1051 | /* |
1052 | * Check to make sure we don't switch to a non-highres |
1053 | * capable clocksource if the tick code is in oneshot |
1054 | * mode (highres or nohz) |
1055 | */ |
1056 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) { |
1057 | /* Override clocksource cannot be used. */ |
1058 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { |
1059 | pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n", |
1060 | cs->name); |
1061 | override_name[0] = 0; |
1062 | } else { |
1063 | /* |
1064 | * The override cannot be currently verified. |
1065 | * Deferring to let the watchdog check. |
1066 | */ |
1067 | pr_info("Override clocksource %s is not currently HRT compatible - deferring\n", |
1068 | cs->name); |
1069 | } |
1070 | } else |
1071 | /* Override clocksource can be used. */ |
1072 | best = cs; |
1073 | break; |
1074 | } |
1075 | |
1076 | found: |
1077 | if (curr_clocksource != best && !timekeeping_notify(clock: best)) { |
1078 | pr_info("Switched to clocksource %s\n", best->name); |
1079 | curr_clocksource = best; |
1080 | } |
1081 | } |
1082 | |
1083 | /** |
1084 | * clocksource_select - Select the best clocksource available |
1085 | * |
1086 | * Private function. Must hold clocksource_mutex when called. |
1087 | * |
1088 | * Select the clocksource with the best rating, or the clocksource, |
1089 | * which is selected by userspace override. |
1090 | */ |
1091 | static void clocksource_select(void) |
1092 | { |
1093 | __clocksource_select(skipcur: false); |
1094 | } |
1095 | |
1096 | static void clocksource_select_fallback(void) |
1097 | { |
1098 | __clocksource_select(skipcur: true); |
1099 | } |
1100 | |
1101 | /* |
1102 | * clocksource_done_booting - Called near the end of core bootup |
1103 | * |
1104 | * Hack to avoid lots of clocksource churn at boot time. |
1105 | * We use fs_initcall because we want this to start before |
1106 | * device_initcall but after subsys_initcall. |
1107 | */ |
1108 | static int __init clocksource_done_booting(void) |
1109 | { |
1110 | mutex_lock(&clocksource_mutex); |
1111 | curr_clocksource = clocksource_default_clock(); |
1112 | finished_booting = 1; |
1113 | /* |
1114 | * Run the watchdog first to eliminate unstable clock sources |
1115 | */ |
1116 | __clocksource_watchdog_kthread(); |
1117 | clocksource_select(); |
1118 | mutex_unlock(lock: &clocksource_mutex); |
1119 | return 0; |
1120 | } |
1121 | fs_initcall(clocksource_done_booting); |
1122 | |
1123 | /* |
1124 | * Enqueue the clocksource sorted by rating |
1125 | */ |
1126 | static void clocksource_enqueue(struct clocksource *cs) |
1127 | { |
1128 | struct list_head *entry = &clocksource_list; |
1129 | struct clocksource *tmp; |
1130 | |
1131 | list_for_each_entry(tmp, &clocksource_list, list) { |
1132 | /* Keep track of the place, where to insert */ |
1133 | if (tmp->rating < cs->rating) |
1134 | break; |
1135 | entry = &tmp->list; |
1136 | } |
1137 | list_add(new: &cs->list, head: entry); |
1138 | } |
1139 | |
1140 | /** |
1141 | * __clocksource_update_freq_scale - Used update clocksource with new freq |
1142 | * @cs: clocksource to be registered |
1143 | * @scale: Scale factor multiplied against freq to get clocksource hz |
1144 | * @freq: clocksource frequency (cycles per second) divided by scale |
1145 | * |
1146 | * This should only be called from the clocksource->enable() method. |
1147 | * |
1148 | * This *SHOULD NOT* be called directly! Please use the |
1149 | * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper |
1150 | * functions. |
1151 | */ |
1152 | void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq) |
1153 | { |
1154 | u64 sec; |
1155 | |
1156 | /* |
1157 | * Default clocksources are *special* and self-define their mult/shift. |
1158 | * But, you're not special, so you should specify a freq value. |
1159 | */ |
1160 | if (freq) { |
1161 | /* |
1162 | * Calc the maximum number of seconds which we can run before |
1163 | * wrapping around. For clocksources which have a mask > 32-bit |
1164 | * we need to limit the max sleep time to have a good |
1165 | * conversion precision. 10 minutes is still a reasonable |
1166 | * amount. That results in a shift value of 24 for a |
1167 | * clocksource with mask >= 40-bit and f >= 4GHz. That maps to |
1168 | * ~ 0.06ppm granularity for NTP. |
1169 | */ |
1170 | sec = cs->mask; |
1171 | do_div(sec, freq); |
1172 | do_div(sec, scale); |
1173 | if (!sec) |
1174 | sec = 1; |
1175 | else if (sec > 600 && cs->mask > UINT_MAX) |
1176 | sec = 600; |
1177 | |
1178 | clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, |
1179 | NSEC_PER_SEC / scale, sec * scale); |
1180 | } |
1181 | |
1182 | /* |
1183 | * If the uncertainty margin is not specified, calculate it. If |
1184 | * both scale and freq are non-zero, calculate the clock period, but |
1185 | * bound below at 2*WATCHDOG_MAX_SKEW, that is, 500ppm by default. |
1186 | * However, if either of scale or freq is zero, be very conservative |
1187 | * and take the tens-of-milliseconds WATCHDOG_THRESHOLD value |
1188 | * for the uncertainty margin. Allow stupidly small uncertainty |
1189 | * margins to be specified by the caller for testing purposes, |
1190 | * but warn to discourage production use of this capability. |
1191 | * |
1192 | * Bottom line: The sum of the uncertainty margins of the |
1193 | * watchdog clocksource and the clocksource under test will be at |
1194 | * least 500ppm by default. For more information, please see the |
1195 | * comment preceding CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US above. |
1196 | */ |
1197 | if (scale && freq && !cs->uncertainty_margin) { |
1198 | cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq); |
1199 | if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW) |
1200 | cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW; |
1201 | } else if (!cs->uncertainty_margin) { |
1202 | cs->uncertainty_margin = WATCHDOG_THRESHOLD; |
1203 | } |
1204 | WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW); |
1205 | |
1206 | /* |
1207 | * Ensure clocksources that have large 'mult' values don't overflow |
1208 | * when adjusted. |
1209 | */ |
1210 | cs->maxadj = clocksource_max_adjustment(cs); |
1211 | while (freq && ((cs->mult + cs->maxadj < cs->mult) |
1212 | || (cs->mult - cs->maxadj > cs->mult))) { |
1213 | cs->mult >>= 1; |
1214 | cs->shift--; |
1215 | cs->maxadj = clocksource_max_adjustment(cs); |
1216 | } |
1217 | |
1218 | /* |
1219 | * Only warn for *special* clocksources that self-define |
1220 | * their mult/shift values and don't specify a freq. |
1221 | */ |
1222 | WARN_ONCE(cs->mult + cs->maxadj < cs->mult, |
1223 | "timekeeping: Clocksource %s might overflow on 11%% adjustment\n", |
1224 | cs->name); |
1225 | |
1226 | clocksource_update_max_deferment(cs); |
1227 | |
1228 | pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n", |
1229 | cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns); |
1230 | } |
1231 | EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale); |
1232 | |
1233 | /** |
1234 | * __clocksource_register_scale - Used to install new clocksources |
1235 | * @cs: clocksource to be registered |
1236 | * @scale: Scale factor multiplied against freq to get clocksource hz |
1237 | * @freq: clocksource frequency (cycles per second) divided by scale |
1238 | * |
1239 | * Returns -EBUSY if registration fails, zero otherwise. |
1240 | * |
1241 | * This *SHOULD NOT* be called directly! Please use the |
1242 | * clocksource_register_hz() or clocksource_register_khz helper functions. |
1243 | */ |
1244 | int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) |
1245 | { |
1246 | unsigned long flags; |
1247 | |
1248 | clocksource_arch_init(cs); |
1249 | |
1250 | if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX)) |
1251 | cs->id = CSID_GENERIC; |
1252 | if (cs->vdso_clock_mode < 0 || |
1253 | cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) { |
1254 | pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n", |
1255 | cs->name, cs->vdso_clock_mode); |
1256 | cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE; |
1257 | } |
1258 | |
1259 | /* Initialize mult/shift and max_idle_ns */ |
1260 | __clocksource_update_freq_scale(cs, scale, freq); |
1261 | |
1262 | /* Add clocksource to the clocksource list */ |
1263 | mutex_lock(&clocksource_mutex); |
1264 | |
1265 | clocksource_watchdog_lock(flags: &flags); |
1266 | clocksource_enqueue(cs); |
1267 | clocksource_enqueue_watchdog(cs); |
1268 | clocksource_watchdog_unlock(flags: &flags); |
1269 | |
1270 | clocksource_select(); |
1271 | clocksource_select_watchdog(fallback: false); |
1272 | __clocksource_suspend_select(cs); |
1273 | mutex_unlock(lock: &clocksource_mutex); |
1274 | return 0; |
1275 | } |
1276 | EXPORT_SYMBOL_GPL(__clocksource_register_scale); |
1277 | |
1278 | /* |
1279 | * Unbind clocksource @cs. Called with clocksource_mutex held |
1280 | */ |
1281 | static int clocksource_unbind(struct clocksource *cs) |
1282 | { |
1283 | unsigned long flags; |
1284 | |
1285 | if (clocksource_is_watchdog(cs)) { |
1286 | /* Select and try to install a replacement watchdog. */ |
1287 | clocksource_select_watchdog(fallback: true); |
1288 | if (clocksource_is_watchdog(cs)) |
1289 | return -EBUSY; |
1290 | } |
1291 | |
1292 | if (cs == curr_clocksource) { |
1293 | /* Select and try to install a replacement clock source */ |
1294 | clocksource_select_fallback(); |
1295 | if (curr_clocksource == cs) |
1296 | return -EBUSY; |
1297 | } |
1298 | |
1299 | if (clocksource_is_suspend(cs)) { |
1300 | /* |
1301 | * Select and try to install a replacement suspend clocksource. |
1302 | * If no replacement suspend clocksource, we will just let the |
1303 | * clocksource go and have no suspend clocksource. |
1304 | */ |
1305 | clocksource_suspend_select(fallback: true); |
1306 | } |
1307 | |
1308 | clocksource_watchdog_lock(flags: &flags); |
1309 | clocksource_dequeue_watchdog(cs); |
1310 | list_del_init(entry: &cs->list); |
1311 | clocksource_watchdog_unlock(flags: &flags); |
1312 | |
1313 | return 0; |
1314 | } |
1315 | |
1316 | /** |
1317 | * clocksource_unregister - remove a registered clocksource |
1318 | * @cs: clocksource to be unregistered |
1319 | */ |
1320 | int clocksource_unregister(struct clocksource *cs) |
1321 | { |
1322 | int ret = 0; |
1323 | |
1324 | mutex_lock(&clocksource_mutex); |
1325 | if (!list_empty(head: &cs->list)) |
1326 | ret = clocksource_unbind(cs); |
1327 | mutex_unlock(lock: &clocksource_mutex); |
1328 | return ret; |
1329 | } |
1330 | EXPORT_SYMBOL(clocksource_unregister); |
1331 | |
1332 | #ifdef CONFIG_SYSFS |
1333 | /** |
1334 | * current_clocksource_show - sysfs interface for current clocksource |
1335 | * @dev: unused |
1336 | * @attr: unused |
1337 | * @buf: char buffer to be filled with clocksource list |
1338 | * |
1339 | * Provides sysfs interface for listing current clocksource. |
1340 | */ |
1341 | static ssize_t current_clocksource_show(struct device *dev, |
1342 | struct device_attribute *attr, |
1343 | char *buf) |
1344 | { |
1345 | ssize_t count = 0; |
1346 | |
1347 | mutex_lock(&clocksource_mutex); |
1348 | count = sysfs_emit(buf, fmt: "%s\n", curr_clocksource->name); |
1349 | mutex_unlock(lock: &clocksource_mutex); |
1350 | |
1351 | return count; |
1352 | } |
1353 | |
1354 | ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt) |
1355 | { |
1356 | size_t ret = cnt; |
1357 | |
1358 | /* strings from sysfs write are not 0 terminated! */ |
1359 | if (!cnt || cnt >= CS_NAME_LEN) |
1360 | return -EINVAL; |
1361 | |
1362 | /* strip of \n: */ |
1363 | if (buf[cnt-1] == '\n') |
1364 | cnt--; |
1365 | if (cnt > 0) |
1366 | memcpy(dst, buf, cnt); |
1367 | dst[cnt] = 0; |
1368 | return ret; |
1369 | } |
1370 | |
1371 | /** |
1372 | * current_clocksource_store - interface for manually overriding clocksource |
1373 | * @dev: unused |
1374 | * @attr: unused |
1375 | * @buf: name of override clocksource |
1376 | * @count: length of buffer |
1377 | * |
1378 | * Takes input from sysfs interface for manually overriding the default |
1379 | * clocksource selection. |
1380 | */ |
1381 | static ssize_t current_clocksource_store(struct device *dev, |
1382 | struct device_attribute *attr, |
1383 | const char *buf, size_t count) |
1384 | { |
1385 | ssize_t ret; |
1386 | |
1387 | mutex_lock(&clocksource_mutex); |
1388 | |
1389 | ret = sysfs_get_uname(buf, dst: override_name, cnt: count); |
1390 | if (ret >= 0) |
1391 | clocksource_select(); |
1392 | |
1393 | mutex_unlock(lock: &clocksource_mutex); |
1394 | |
1395 | return ret; |
1396 | } |
1397 | static DEVICE_ATTR_RW(current_clocksource); |
1398 | |
1399 | /** |
1400 | * unbind_clocksource_store - interface for manually unbinding clocksource |
1401 | * @dev: unused |
1402 | * @attr: unused |
1403 | * @buf: unused |
1404 | * @count: length of buffer |
1405 | * |
1406 | * Takes input from sysfs interface for manually unbinding a clocksource. |
1407 | */ |
1408 | static ssize_t unbind_clocksource_store(struct device *dev, |
1409 | struct device_attribute *attr, |
1410 | const char *buf, size_t count) |
1411 | { |
1412 | struct clocksource *cs; |
1413 | char name[CS_NAME_LEN]; |
1414 | ssize_t ret; |
1415 | |
1416 | ret = sysfs_get_uname(buf, dst: name, cnt: count); |
1417 | if (ret < 0) |
1418 | return ret; |
1419 | |
1420 | ret = -ENODEV; |
1421 | mutex_lock(&clocksource_mutex); |
1422 | list_for_each_entry(cs, &clocksource_list, list) { |
1423 | if (strcmp(cs->name, name)) |
1424 | continue; |
1425 | ret = clocksource_unbind(cs); |
1426 | break; |
1427 | } |
1428 | mutex_unlock(lock: &clocksource_mutex); |
1429 | |
1430 | return ret ? ret : count; |
1431 | } |
1432 | static DEVICE_ATTR_WO(unbind_clocksource); |
1433 | |
1434 | /** |
1435 | * available_clocksource_show - sysfs interface for listing clocksource |
1436 | * @dev: unused |
1437 | * @attr: unused |
1438 | * @buf: char buffer to be filled with clocksource list |
1439 | * |
1440 | * Provides sysfs interface for listing registered clocksources |
1441 | */ |
1442 | static ssize_t available_clocksource_show(struct device *dev, |
1443 | struct device_attribute *attr, |
1444 | char *buf) |
1445 | { |
1446 | struct clocksource *src; |
1447 | ssize_t count = 0; |
1448 | |
1449 | mutex_lock(&clocksource_mutex); |
1450 | list_for_each_entry(src, &clocksource_list, list) { |
1451 | /* |
1452 | * Don't show non-HRES clocksource if the tick code is |
1453 | * in one shot mode (highres=on or nohz=on) |
1454 | */ |
1455 | if (!tick_oneshot_mode_active() || |
1456 | (src->flags & CLOCK_SOURCE_VALID_FOR_HRES)) |
1457 | count += snprintf(buf: buf + count, |
1458 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), |
1459 | fmt: "%s ", src->name); |
1460 | } |
1461 | mutex_unlock(lock: &clocksource_mutex); |
1462 | |
1463 | count += snprintf(buf: buf + count, |
1464 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), fmt: "\n"); |
1465 | |
1466 | return count; |
1467 | } |
1468 | static DEVICE_ATTR_RO(available_clocksource); |
1469 | |
1470 | static struct attribute *clocksource_attrs[] = { |
1471 | &dev_attr_current_clocksource.attr, |
1472 | &dev_attr_unbind_clocksource.attr, |
1473 | &dev_attr_available_clocksource.attr, |
1474 | NULL |
1475 | }; |
1476 | ATTRIBUTE_GROUPS(clocksource); |
1477 | |
1478 | static const struct bus_type clocksource_subsys = { |
1479 | .name = "clocksource", |
1480 | .dev_name = "clocksource", |
1481 | }; |
1482 | |
1483 | static struct device device_clocksource = { |
1484 | .id = 0, |
1485 | .bus = &clocksource_subsys, |
1486 | .groups = clocksource_groups, |
1487 | }; |
1488 | |
1489 | static int __init init_clocksource_sysfs(void) |
1490 | { |
1491 | int error = subsys_system_register(subsys: &clocksource_subsys, NULL); |
1492 | |
1493 | if (!error) |
1494 | error = device_register(dev: &device_clocksource); |
1495 | |
1496 | return error; |
1497 | } |
1498 | |
1499 | device_initcall(init_clocksource_sysfs); |
1500 | #endif /* CONFIG_SYSFS */ |
1501 | |
1502 | /** |
1503 | * boot_override_clocksource - boot clock override |
1504 | * @str: override name |
1505 | * |
1506 | * Takes a clocksource= boot argument and uses it |
1507 | * as the clocksource override name. |
1508 | */ |
1509 | static int __init boot_override_clocksource(char* str) |
1510 | { |
1511 | mutex_lock(&clocksource_mutex); |
1512 | if (str) |
1513 | strscpy(override_name, str); |
1514 | mutex_unlock(lock: &clocksource_mutex); |
1515 | return 1; |
1516 | } |
1517 | |
1518 | __setup("clocksource=", boot_override_clocksource); |
1519 | |
1520 | /** |
1521 | * boot_override_clock - Compatibility layer for deprecated boot option |
1522 | * @str: override name |
1523 | * |
1524 | * DEPRECATED! Takes a clock= boot argument and uses it |
1525 | * as the clocksource override name |
1526 | */ |
1527 | static int __init boot_override_clock(char* str) |
1528 | { |
1529 | if (!strcmp(str, "pmtmr")) { |
1530 | pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n"); |
1531 | return boot_override_clocksource(str: "acpi_pm"); |
1532 | } |
1533 | pr_warn("clock= boot option is deprecated - use clocksource=xyz\n"); |
1534 | return boot_override_clocksource(str); |
1535 | } |
1536 | |
1537 | __setup("clock=", boot_override_clock); |
1538 |
Definitions
- cycles_to_nsec_safe
- clocks_calc_mult_shift
- curr_clocksource
- suspend_clocksource
- clocksource_list
- clocksource_mutex
- override_name
- finished_booting
- suspend_start
- watchdog_list
- watchdog
- watchdog_timer
- watchdog_work
- watchdog_lock
- watchdog_running
- watchdog_reset_pending
- watchdog_max_interval
- clocksource_watchdog_lock
- clocksource_watchdog_unlock
- clocksource_watchdog_work
- clocksource_change_rating
- __clocksource_unstable
- clocksource_mark_unstable
- verify_n_cpus
- wd_read_status
- cs_watchdog_read
- csnow_mid
- cpus_ahead
- cpus_behind
- cpus_chosen
- clocksource_verify_choose_cpus
- clocksource_verify_one_cpu
- clocksource_verify_percpu
- clocksource_reset_watchdog
- clocksource_watchdog
- clocksource_start_watchdog
- clocksource_stop_watchdog
- clocksource_resume_watchdog
- clocksource_enqueue_watchdog
- clocksource_select_watchdog
- clocksource_dequeue_watchdog
- __clocksource_watchdog_kthread
- clocksource_watchdog_kthread
- clocksource_is_watchdog
- clocksource_is_suspend
- __clocksource_suspend_select
- clocksource_suspend_select
- clocksource_start_suspend_timing
- clocksource_stop_suspend_timing
- clocksource_suspend
- clocksource_resume
- clocksource_touch_watchdog
- clocksource_max_adjustment
- clocks_calc_max_nsecs
- clocksource_update_max_deferment
- clocksource_find_best
- __clocksource_select
- clocksource_select
- clocksource_select_fallback
- clocksource_done_booting
- clocksource_enqueue
- __clocksource_update_freq_scale
- __clocksource_register_scale
- clocksource_unbind
- clocksource_unregister
- current_clocksource_show
- sysfs_get_uname
- current_clocksource_store
- unbind_clocksource_store
- available_clocksource_show
- clocksource_attrs
- clocksource_subsys
- device_clocksource
- init_clocksource_sysfs
- boot_override_clocksource
Improve your Profiling and Debugging skills
Find out more