1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * NTP state machine interfaces and logic. |
4 | * |
5 | * This code was mainly moved from kernel/timer.c and kernel/time.c |
6 | * Please see those files for relevant copyright info and historical |
7 | * changelogs. |
8 | */ |
9 | #include <linux/capability.h> |
10 | #include <linux/clocksource.h> |
11 | #include <linux/workqueue.h> |
12 | #include <linux/hrtimer.h> |
13 | #include <linux/jiffies.h> |
14 | #include <linux/math64.h> |
15 | #include <linux/timex.h> |
16 | #include <linux/time.h> |
17 | #include <linux/mm.h> |
18 | #include <linux/module.h> |
19 | #include <linux/rtc.h> |
20 | #include <linux/audit.h> |
21 | |
22 | #include "ntp_internal.h" |
23 | #include "timekeeping_internal.h" |
24 | |
25 | |
26 | /* |
27 | * NTP timekeeping variables: |
28 | * |
29 | * Note: All of the NTP state is protected by the timekeeping locks. |
30 | */ |
31 | |
32 | |
33 | /* USER_HZ period (usecs): */ |
34 | unsigned long tick_usec = USER_TICK_USEC; |
35 | |
36 | /* SHIFTED_HZ period (nsecs): */ |
37 | unsigned long tick_nsec; |
38 | |
39 | static u64 tick_length; |
40 | static u64 tick_length_base; |
41 | |
42 | #define SECS_PER_DAY 86400 |
43 | #define MAX_TICKADJ 500LL /* usecs */ |
44 | #define MAX_TICKADJ_SCALED \ |
45 | (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) |
46 | #define MAX_TAI_OFFSET 100000 |
47 | |
48 | /* |
49 | * phase-lock loop variables |
50 | */ |
51 | |
52 | /* |
53 | * clock synchronization status |
54 | * |
55 | * (TIME_ERROR prevents overwriting the CMOS clock) |
56 | */ |
57 | static int time_state = TIME_OK; |
58 | |
59 | /* clock status bits: */ |
60 | static int time_status = STA_UNSYNC; |
61 | |
62 | /* time adjustment (nsecs): */ |
63 | static s64 time_offset; |
64 | |
65 | /* pll time constant: */ |
66 | static long time_constant = 2; |
67 | |
68 | /* maximum error (usecs): */ |
69 | static long time_maxerror = NTP_PHASE_LIMIT; |
70 | |
71 | /* estimated error (usecs): */ |
72 | static long time_esterror = NTP_PHASE_LIMIT; |
73 | |
74 | /* frequency offset (scaled nsecs/secs): */ |
75 | static s64 time_freq; |
76 | |
77 | /* time at last adjustment (secs): */ |
78 | static time64_t time_reftime; |
79 | |
80 | static long time_adjust; |
81 | |
82 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ |
83 | static s64 ntp_tick_adj; |
84 | |
85 | /* second value of the next pending leapsecond, or TIME64_MAX if no leap */ |
86 | static time64_t ntp_next_leap_sec = TIME64_MAX; |
87 | |
88 | #ifdef CONFIG_NTP_PPS |
89 | |
90 | /* |
91 | * The following variables are used when a pulse-per-second (PPS) signal |
92 | * is available. They establish the engineering parameters of the clock |
93 | * discipline loop when controlled by the PPS signal. |
94 | */ |
95 | #define PPS_VALID 10 /* PPS signal watchdog max (s) */ |
96 | #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */ |
97 | #define PPS_INTMIN 2 /* min freq interval (s) (shift) */ |
98 | #define PPS_INTMAX 8 /* max freq interval (s) (shift) */ |
99 | #define PPS_INTCOUNT 4 /* number of consecutive good intervals to |
100 | increase pps_shift or consecutive bad |
101 | intervals to decrease it */ |
102 | #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */ |
103 | |
104 | static int pps_valid; /* signal watchdog counter */ |
105 | static long pps_tf[3]; /* phase median filter */ |
106 | static long pps_jitter; /* current jitter (ns) */ |
107 | static struct timespec64 pps_fbase; /* beginning of the last freq interval */ |
108 | static int pps_shift; /* current interval duration (s) (shift) */ |
109 | static int pps_intcnt; /* interval counter */ |
110 | static s64 pps_freq; /* frequency offset (scaled ns/s) */ |
111 | static long pps_stabil; /* current stability (scaled ns/s) */ |
112 | |
113 | /* |
114 | * PPS signal quality monitors |
115 | */ |
116 | static long pps_calcnt; /* calibration intervals */ |
117 | static long pps_jitcnt; /* jitter limit exceeded */ |
118 | static long pps_stbcnt; /* stability limit exceeded */ |
119 | static long pps_errcnt; /* calibration errors */ |
120 | |
121 | |
122 | /* PPS kernel consumer compensates the whole phase error immediately. |
123 | * Otherwise, reduce the offset by a fixed factor times the time constant. |
124 | */ |
125 | static inline s64 ntp_offset_chunk(s64 offset) |
126 | { |
127 | if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) |
128 | return offset; |
129 | else |
130 | return shift_right(offset, SHIFT_PLL + time_constant); |
131 | } |
132 | |
133 | static inline void pps_reset_freq_interval(void) |
134 | { |
135 | /* the PPS calibration interval may end |
136 | surprisingly early */ |
137 | pps_shift = PPS_INTMIN; |
138 | pps_intcnt = 0; |
139 | } |
140 | |
141 | /** |
142 | * pps_clear - Clears the PPS state variables |
143 | */ |
144 | static inline void pps_clear(void) |
145 | { |
146 | pps_reset_freq_interval(); |
147 | pps_tf[0] = 0; |
148 | pps_tf[1] = 0; |
149 | pps_tf[2] = 0; |
150 | pps_fbase.tv_sec = pps_fbase.tv_nsec = 0; |
151 | pps_freq = 0; |
152 | } |
153 | |
154 | /* Decrease pps_valid to indicate that another second has passed since |
155 | * the last PPS signal. When it reaches 0, indicate that PPS signal is |
156 | * missing. |
157 | */ |
158 | static inline void pps_dec_valid(void) |
159 | { |
160 | if (pps_valid > 0) |
161 | pps_valid--; |
162 | else { |
163 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | |
164 | STA_PPSWANDER | STA_PPSERROR); |
165 | pps_clear(); |
166 | } |
167 | } |
168 | |
169 | static inline void pps_set_freq(s64 freq) |
170 | { |
171 | pps_freq = freq; |
172 | } |
173 | |
174 | static inline int is_error_status(int status) |
175 | { |
176 | return (status & (STA_UNSYNC|STA_CLOCKERR)) |
177 | /* PPS signal lost when either PPS time or |
178 | * PPS frequency synchronization requested |
179 | */ |
180 | || ((status & (STA_PPSFREQ|STA_PPSTIME)) |
181 | && !(status & STA_PPSSIGNAL)) |
182 | /* PPS jitter exceeded when |
183 | * PPS time synchronization requested */ |
184 | || ((status & (STA_PPSTIME|STA_PPSJITTER)) |
185 | == (STA_PPSTIME|STA_PPSJITTER)) |
186 | /* PPS wander exceeded or calibration error when |
187 | * PPS frequency synchronization requested |
188 | */ |
189 | || ((status & STA_PPSFREQ) |
190 | && (status & (STA_PPSWANDER|STA_PPSERROR))); |
191 | } |
192 | |
193 | static inline void pps_fill_timex(struct __kernel_timex *txc) |
194 | { |
195 | txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) * |
196 | PPM_SCALE_INV, NTP_SCALE_SHIFT); |
197 | txc->jitter = pps_jitter; |
198 | if (!(time_status & STA_NANO)) |
199 | txc->jitter = pps_jitter / NSEC_PER_USEC; |
200 | txc->shift = pps_shift; |
201 | txc->stabil = pps_stabil; |
202 | txc->jitcnt = pps_jitcnt; |
203 | txc->calcnt = pps_calcnt; |
204 | txc->errcnt = pps_errcnt; |
205 | txc->stbcnt = pps_stbcnt; |
206 | } |
207 | |
208 | #else /* !CONFIG_NTP_PPS */ |
209 | |
210 | static inline s64 ntp_offset_chunk(s64 offset) |
211 | { |
212 | return shift_right(offset, SHIFT_PLL + time_constant); |
213 | } |
214 | |
215 | static inline void pps_reset_freq_interval(void) {} |
216 | static inline void pps_clear(void) {} |
217 | static inline void pps_dec_valid(void) {} |
218 | static inline void pps_set_freq(s64 freq) {} |
219 | |
220 | static inline int is_error_status(int status) |
221 | { |
222 | return status & (STA_UNSYNC|STA_CLOCKERR); |
223 | } |
224 | |
225 | static inline void pps_fill_timex(struct __kernel_timex *txc) |
226 | { |
227 | /* PPS is not implemented, so these are zero */ |
228 | txc->ppsfreq = 0; |
229 | txc->jitter = 0; |
230 | txc->shift = 0; |
231 | txc->stabil = 0; |
232 | txc->jitcnt = 0; |
233 | txc->calcnt = 0; |
234 | txc->errcnt = 0; |
235 | txc->stbcnt = 0; |
236 | } |
237 | |
238 | #endif /* CONFIG_NTP_PPS */ |
239 | |
240 | |
241 | /** |
242 | * ntp_synced - Returns 1 if the NTP status is not UNSYNC |
243 | * |
244 | */ |
245 | static inline int ntp_synced(void) |
246 | { |
247 | return !(time_status & STA_UNSYNC); |
248 | } |
249 | |
250 | |
251 | /* |
252 | * NTP methods: |
253 | */ |
254 | |
255 | /* |
256 | * Update (tick_length, tick_length_base, tick_nsec), based |
257 | * on (tick_usec, ntp_tick_adj, time_freq): |
258 | */ |
259 | static void ntp_update_frequency(void) |
260 | { |
261 | u64 second_length; |
262 | u64 new_base; |
263 | |
264 | second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) |
265 | << NTP_SCALE_SHIFT; |
266 | |
267 | second_length += ntp_tick_adj; |
268 | second_length += time_freq; |
269 | |
270 | tick_nsec = div_u64(dividend: second_length, HZ) >> NTP_SCALE_SHIFT; |
271 | new_base = div_u64(dividend: second_length, NTP_INTERVAL_FREQ); |
272 | |
273 | /* |
274 | * Don't wait for the next second_overflow, apply |
275 | * the change to the tick length immediately: |
276 | */ |
277 | tick_length += new_base - tick_length_base; |
278 | tick_length_base = new_base; |
279 | } |
280 | |
281 | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) |
282 | { |
283 | time_status &= ~STA_MODE; |
284 | |
285 | if (secs < MINSEC) |
286 | return 0; |
287 | |
288 | if (!(time_status & STA_FLL) && (secs <= MAXSEC)) |
289 | return 0; |
290 | |
291 | time_status |= STA_MODE; |
292 | |
293 | return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); |
294 | } |
295 | |
296 | static void ntp_update_offset(long offset) |
297 | { |
298 | s64 freq_adj; |
299 | s64 offset64; |
300 | long secs; |
301 | |
302 | if (!(time_status & STA_PLL)) |
303 | return; |
304 | |
305 | if (!(time_status & STA_NANO)) { |
306 | /* Make sure the multiplication below won't overflow */ |
307 | offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC); |
308 | offset *= NSEC_PER_USEC; |
309 | } |
310 | |
311 | /* |
312 | * Scale the phase adjustment and |
313 | * clamp to the operating range. |
314 | */ |
315 | offset = clamp(offset, -MAXPHASE, MAXPHASE); |
316 | |
317 | /* |
318 | * Select how the frequency is to be controlled |
319 | * and in which mode (PLL or FLL). |
320 | */ |
321 | secs = (long)(__ktime_get_real_seconds() - time_reftime); |
322 | if (unlikely(time_status & STA_FREQHOLD)) |
323 | secs = 0; |
324 | |
325 | time_reftime = __ktime_get_real_seconds(); |
326 | |
327 | offset64 = offset; |
328 | freq_adj = ntp_update_offset_fll(offset64, secs); |
329 | |
330 | /* |
331 | * Clamp update interval to reduce PLL gain with low |
332 | * sampling rate (e.g. intermittent network connection) |
333 | * to avoid instability. |
334 | */ |
335 | if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant))) |
336 | secs = 1 << (SHIFT_PLL + 1 + time_constant); |
337 | |
338 | freq_adj += (offset64 * secs) << |
339 | (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); |
340 | |
341 | freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); |
342 | |
343 | time_freq = max(freq_adj, -MAXFREQ_SCALED); |
344 | |
345 | time_offset = div_s64(dividend: offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); |
346 | } |
347 | |
348 | /** |
349 | * ntp_clear - Clears the NTP state variables |
350 | */ |
351 | void ntp_clear(void) |
352 | { |
353 | time_adjust = 0; /* stop active adjtime() */ |
354 | time_status |= STA_UNSYNC; |
355 | time_maxerror = NTP_PHASE_LIMIT; |
356 | time_esterror = NTP_PHASE_LIMIT; |
357 | |
358 | ntp_update_frequency(); |
359 | |
360 | tick_length = tick_length_base; |
361 | time_offset = 0; |
362 | |
363 | ntp_next_leap_sec = TIME64_MAX; |
364 | /* Clear PPS state variables */ |
365 | pps_clear(); |
366 | } |
367 | |
368 | |
369 | u64 ntp_tick_length(void) |
370 | { |
371 | return tick_length; |
372 | } |
373 | |
374 | /** |
375 | * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t |
376 | * |
377 | * Provides the time of the next leapsecond against CLOCK_REALTIME in |
378 | * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending. |
379 | */ |
380 | ktime_t ntp_get_next_leap(void) |
381 | { |
382 | ktime_t ret; |
383 | |
384 | if ((time_state == TIME_INS) && (time_status & STA_INS)) |
385 | return ktime_set(secs: ntp_next_leap_sec, nsecs: 0); |
386 | ret = KTIME_MAX; |
387 | return ret; |
388 | } |
389 | |
390 | /* |
391 | * this routine handles the overflow of the microsecond field |
392 | * |
393 | * The tricky bits of code to handle the accurate clock support |
394 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. |
395 | * They were originally developed for SUN and DEC kernels. |
396 | * All the kudos should go to Dave for this stuff. |
397 | * |
398 | * Also handles leap second processing, and returns leap offset |
399 | */ |
400 | int second_overflow(time64_t secs) |
401 | { |
402 | s64 delta; |
403 | int leap = 0; |
404 | s32 rem; |
405 | |
406 | /* |
407 | * Leap second processing. If in leap-insert state at the end of the |
408 | * day, the system clock is set back one second; if in leap-delete |
409 | * state, the system clock is set ahead one second. |
410 | */ |
411 | switch (time_state) { |
412 | case TIME_OK: |
413 | if (time_status & STA_INS) { |
414 | time_state = TIME_INS; |
415 | div_s64_rem(dividend: secs, SECS_PER_DAY, remainder: &rem); |
416 | ntp_next_leap_sec = secs + SECS_PER_DAY - rem; |
417 | } else if (time_status & STA_DEL) { |
418 | time_state = TIME_DEL; |
419 | div_s64_rem(dividend: secs + 1, SECS_PER_DAY, remainder: &rem); |
420 | ntp_next_leap_sec = secs + SECS_PER_DAY - rem; |
421 | } |
422 | break; |
423 | case TIME_INS: |
424 | if (!(time_status & STA_INS)) { |
425 | ntp_next_leap_sec = TIME64_MAX; |
426 | time_state = TIME_OK; |
427 | } else if (secs == ntp_next_leap_sec) { |
428 | leap = -1; |
429 | time_state = TIME_OOP; |
430 | printk(KERN_NOTICE |
431 | "Clock: inserting leap second 23:59:60 UTC\n"); |
432 | } |
433 | break; |
434 | case TIME_DEL: |
435 | if (!(time_status & STA_DEL)) { |
436 | ntp_next_leap_sec = TIME64_MAX; |
437 | time_state = TIME_OK; |
438 | } else if (secs == ntp_next_leap_sec) { |
439 | leap = 1; |
440 | ntp_next_leap_sec = TIME64_MAX; |
441 | time_state = TIME_WAIT; |
442 | printk(KERN_NOTICE |
443 | "Clock: deleting leap second 23:59:59 UTC\n"); |
444 | } |
445 | break; |
446 | case TIME_OOP: |
447 | ntp_next_leap_sec = TIME64_MAX; |
448 | time_state = TIME_WAIT; |
449 | break; |
450 | case TIME_WAIT: |
451 | if (!(time_status & (STA_INS | STA_DEL))) |
452 | time_state = TIME_OK; |
453 | break; |
454 | } |
455 | |
456 | |
457 | /* Bump the maxerror field */ |
458 | time_maxerror += MAXFREQ / NSEC_PER_USEC; |
459 | if (time_maxerror > NTP_PHASE_LIMIT) { |
460 | time_maxerror = NTP_PHASE_LIMIT; |
461 | time_status |= STA_UNSYNC; |
462 | } |
463 | |
464 | /* Compute the phase adjustment for the next second */ |
465 | tick_length = tick_length_base; |
466 | |
467 | delta = ntp_offset_chunk(offset: time_offset); |
468 | time_offset -= delta; |
469 | tick_length += delta; |
470 | |
471 | /* Check PPS signal */ |
472 | pps_dec_valid(); |
473 | |
474 | if (!time_adjust) |
475 | goto out; |
476 | |
477 | if (time_adjust > MAX_TICKADJ) { |
478 | time_adjust -= MAX_TICKADJ; |
479 | tick_length += MAX_TICKADJ_SCALED; |
480 | goto out; |
481 | } |
482 | |
483 | if (time_adjust < -MAX_TICKADJ) { |
484 | time_adjust += MAX_TICKADJ; |
485 | tick_length -= MAX_TICKADJ_SCALED; |
486 | goto out; |
487 | } |
488 | |
489 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) |
490 | << NTP_SCALE_SHIFT; |
491 | time_adjust = 0; |
492 | |
493 | out: |
494 | return leap; |
495 | } |
496 | |
497 | #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) |
498 | static void sync_hw_clock(struct work_struct *work); |
499 | static DECLARE_WORK(sync_work, sync_hw_clock); |
500 | static struct hrtimer sync_hrtimer; |
501 | #define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC) |
502 | |
503 | static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer) |
504 | { |
505 | queue_work(wq: system_freezable_power_efficient_wq, work: &sync_work); |
506 | |
507 | return HRTIMER_NORESTART; |
508 | } |
509 | |
510 | static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry) |
511 | { |
512 | ktime_t exp = ktime_set(secs: ktime_get_real_seconds(), nsecs: 0); |
513 | |
514 | if (retry) |
515 | exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec); |
516 | else |
517 | exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec); |
518 | |
519 | hrtimer_start(timer: &sync_hrtimer, tim: exp, mode: HRTIMER_MODE_ABS); |
520 | } |
521 | |
522 | /* |
523 | * Check whether @now is correct versus the required time to update the RTC |
524 | * and calculate the value which needs to be written to the RTC so that the |
525 | * next seconds increment of the RTC after the write is aligned with the next |
526 | * seconds increment of clock REALTIME. |
527 | * |
528 | * tsched t1 write(t2.tv_sec - 1sec)) t2 RTC increments seconds |
529 | * |
530 | * t2.tv_nsec == 0 |
531 | * tsched = t2 - set_offset_nsec |
532 | * newval = t2 - NSEC_PER_SEC |
533 | * |
534 | * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC |
535 | * |
536 | * As the execution of this code is not guaranteed to happen exactly at |
537 | * tsched this allows it to happen within a fuzzy region: |
538 | * |
539 | * abs(now - tsched) < FUZZ |
540 | * |
541 | * If @now is not inside the allowed window the function returns false. |
542 | */ |
543 | static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec, |
544 | struct timespec64 *to_set, |
545 | const struct timespec64 *now) |
546 | { |
547 | /* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */ |
548 | const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5; |
549 | struct timespec64 delay = {.tv_sec = -1, |
550 | .tv_nsec = set_offset_nsec}; |
551 | |
552 | *to_set = timespec64_add(lhs: *now, rhs: delay); |
553 | |
554 | if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) { |
555 | to_set->tv_nsec = 0; |
556 | return true; |
557 | } |
558 | |
559 | if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) { |
560 | to_set->tv_sec++; |
561 | to_set->tv_nsec = 0; |
562 | return true; |
563 | } |
564 | return false; |
565 | } |
566 | |
567 | #ifdef CONFIG_GENERIC_CMOS_UPDATE |
568 | int __weak update_persistent_clock64(struct timespec64 now64) |
569 | { |
570 | return -ENODEV; |
571 | } |
572 | #else |
573 | static inline int update_persistent_clock64(struct timespec64 now64) |
574 | { |
575 | return -ENODEV; |
576 | } |
577 | #endif |
578 | |
579 | #ifdef CONFIG_RTC_SYSTOHC |
580 | /* Save NTP synchronized time to the RTC */ |
581 | static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec) |
582 | { |
583 | struct rtc_device *rtc; |
584 | struct rtc_time tm; |
585 | int err = -ENODEV; |
586 | |
587 | rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE); |
588 | if (!rtc) |
589 | return -ENODEV; |
590 | |
591 | if (!rtc->ops || !rtc->ops->set_time) |
592 | goto out_close; |
593 | |
594 | /* First call might not have the correct offset */ |
595 | if (*offset_nsec == rtc->set_offset_nsec) { |
596 | rtc_time64_to_tm(time: to_set->tv_sec, tm: &tm); |
597 | err = rtc_set_time(rtc, tm: &tm); |
598 | } else { |
599 | /* Store the update offset and let the caller try again */ |
600 | *offset_nsec = rtc->set_offset_nsec; |
601 | err = -EAGAIN; |
602 | } |
603 | out_close: |
604 | rtc_class_close(rtc); |
605 | return err; |
606 | } |
607 | #else |
608 | static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec) |
609 | { |
610 | return -ENODEV; |
611 | } |
612 | #endif |
613 | |
614 | /* |
615 | * If we have an externally synchronized Linux clock, then update RTC clock |
616 | * accordingly every ~11 minutes. Generally RTCs can only store second |
617 | * precision, but many RTCs will adjust the phase of their second tick to |
618 | * match the moment of update. This infrastructure arranges to call to the RTC |
619 | * set at the correct moment to phase synchronize the RTC second tick over |
620 | * with the kernel clock. |
621 | */ |
622 | static void sync_hw_clock(struct work_struct *work) |
623 | { |
624 | /* |
625 | * The default synchronization offset is 500ms for the deprecated |
626 | * update_persistent_clock64() under the assumption that it uses |
627 | * the infamous CMOS clock (MC146818). |
628 | */ |
629 | static unsigned long offset_nsec = NSEC_PER_SEC / 2; |
630 | struct timespec64 now, to_set; |
631 | int res = -EAGAIN; |
632 | |
633 | /* |
634 | * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer() |
635 | * managed to schedule the work between the timer firing and the |
636 | * work being able to rearm the timer. Wait for the timer to expire. |
637 | */ |
638 | if (!ntp_synced() || hrtimer_is_queued(timer: &sync_hrtimer)) |
639 | return; |
640 | |
641 | ktime_get_real_ts64(tv: &now); |
642 | /* If @now is not in the allowed window, try again */ |
643 | if (!rtc_tv_nsec_ok(set_offset_nsec: offset_nsec, to_set: &to_set, now: &now)) |
644 | goto rearm; |
645 | |
646 | /* Take timezone adjusted RTCs into account */ |
647 | if (persistent_clock_is_local) |
648 | to_set.tv_sec -= (sys_tz.tz_minuteswest * 60); |
649 | |
650 | /* Try the legacy RTC first. */ |
651 | res = update_persistent_clock64(now64: to_set); |
652 | if (res != -ENODEV) |
653 | goto rearm; |
654 | |
655 | /* Try the RTC class */ |
656 | res = update_rtc(to_set: &to_set, offset_nsec: &offset_nsec); |
657 | if (res == -ENODEV) |
658 | return; |
659 | rearm: |
660 | sched_sync_hw_clock(offset_nsec, retry: res != 0); |
661 | } |
662 | |
663 | void ntp_notify_cmos_timer(void) |
664 | { |
665 | /* |
666 | * When the work is currently executed but has not yet the timer |
667 | * rearmed this queues the work immediately again. No big issue, |
668 | * just a pointless work scheduled. |
669 | */ |
670 | if (ntp_synced() && !hrtimer_is_queued(timer: &sync_hrtimer)) |
671 | queue_work(wq: system_freezable_power_efficient_wq, work: &sync_work); |
672 | } |
673 | |
674 | static void __init ntp_init_cmos_sync(void) |
675 | { |
676 | hrtimer_init(timer: &sync_hrtimer, CLOCK_REALTIME, mode: HRTIMER_MODE_ABS); |
677 | sync_hrtimer.function = sync_timer_callback; |
678 | } |
679 | #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */ |
680 | static inline void __init ntp_init_cmos_sync(void) { } |
681 | #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */ |
682 | |
683 | /* |
684 | * Propagate a new txc->status value into the NTP state: |
685 | */ |
686 | static inline void process_adj_status(const struct __kernel_timex *txc) |
687 | { |
688 | if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { |
689 | time_state = TIME_OK; |
690 | time_status = STA_UNSYNC; |
691 | ntp_next_leap_sec = TIME64_MAX; |
692 | /* restart PPS frequency calibration */ |
693 | pps_reset_freq_interval(); |
694 | } |
695 | |
696 | /* |
697 | * If we turn on PLL adjustments then reset the |
698 | * reference time to current time. |
699 | */ |
700 | if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) |
701 | time_reftime = __ktime_get_real_seconds(); |
702 | |
703 | /* only set allowed bits */ |
704 | time_status &= STA_RONLY; |
705 | time_status |= txc->status & ~STA_RONLY; |
706 | } |
707 | |
708 | |
709 | static inline void process_adjtimex_modes(const struct __kernel_timex *txc, |
710 | s32 *time_tai) |
711 | { |
712 | if (txc->modes & ADJ_STATUS) |
713 | process_adj_status(txc); |
714 | |
715 | if (txc->modes & ADJ_NANO) |
716 | time_status |= STA_NANO; |
717 | |
718 | if (txc->modes & ADJ_MICRO) |
719 | time_status &= ~STA_NANO; |
720 | |
721 | if (txc->modes & ADJ_FREQUENCY) { |
722 | time_freq = txc->freq * PPM_SCALE; |
723 | time_freq = min(time_freq, MAXFREQ_SCALED); |
724 | time_freq = max(time_freq, -MAXFREQ_SCALED); |
725 | /* update pps_freq */ |
726 | pps_set_freq(freq: time_freq); |
727 | } |
728 | |
729 | if (txc->modes & ADJ_MAXERROR) |
730 | time_maxerror = txc->maxerror; |
731 | |
732 | if (txc->modes & ADJ_ESTERROR) |
733 | time_esterror = txc->esterror; |
734 | |
735 | if (txc->modes & ADJ_TIMECONST) { |
736 | time_constant = txc->constant; |
737 | if (!(time_status & STA_NANO)) |
738 | time_constant += 4; |
739 | time_constant = min(time_constant, (long)MAXTC); |
740 | time_constant = max(time_constant, 0l); |
741 | } |
742 | |
743 | if (txc->modes & ADJ_TAI && |
744 | txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET) |
745 | *time_tai = txc->constant; |
746 | |
747 | if (txc->modes & ADJ_OFFSET) |
748 | ntp_update_offset(offset: txc->offset); |
749 | |
750 | if (txc->modes & ADJ_TICK) |
751 | tick_usec = txc->tick; |
752 | |
753 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) |
754 | ntp_update_frequency(); |
755 | } |
756 | |
757 | |
758 | /* |
759 | * adjtimex mainly allows reading (and writing, if superuser) of |
760 | * kernel time-keeping variables. used by xntpd. |
761 | */ |
762 | int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts, |
763 | s32 *time_tai, struct audit_ntp_data *ad) |
764 | { |
765 | int result; |
766 | |
767 | if (txc->modes & ADJ_ADJTIME) { |
768 | long save_adjust = time_adjust; |
769 | |
770 | if (!(txc->modes & ADJ_OFFSET_READONLY)) { |
771 | /* adjtime() is independent from ntp_adjtime() */ |
772 | time_adjust = txc->offset; |
773 | ntp_update_frequency(); |
774 | |
775 | audit_ntp_set_old(ad, type: AUDIT_NTP_ADJUST, val: save_adjust); |
776 | audit_ntp_set_new(ad, type: AUDIT_NTP_ADJUST, val: time_adjust); |
777 | } |
778 | txc->offset = save_adjust; |
779 | } else { |
780 | /* If there are input parameters, then process them: */ |
781 | if (txc->modes) { |
782 | audit_ntp_set_old(ad, type: AUDIT_NTP_OFFSET, val: time_offset); |
783 | audit_ntp_set_old(ad, type: AUDIT_NTP_FREQ, val: time_freq); |
784 | audit_ntp_set_old(ad, type: AUDIT_NTP_STATUS, val: time_status); |
785 | audit_ntp_set_old(ad, type: AUDIT_NTP_TAI, val: *time_tai); |
786 | audit_ntp_set_old(ad, type: AUDIT_NTP_TICK, val: tick_usec); |
787 | |
788 | process_adjtimex_modes(txc, time_tai); |
789 | |
790 | audit_ntp_set_new(ad, type: AUDIT_NTP_OFFSET, val: time_offset); |
791 | audit_ntp_set_new(ad, type: AUDIT_NTP_FREQ, val: time_freq); |
792 | audit_ntp_set_new(ad, type: AUDIT_NTP_STATUS, val: time_status); |
793 | audit_ntp_set_new(ad, type: AUDIT_NTP_TAI, val: *time_tai); |
794 | audit_ntp_set_new(ad, type: AUDIT_NTP_TICK, val: tick_usec); |
795 | } |
796 | |
797 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, |
798 | NTP_SCALE_SHIFT); |
799 | if (!(time_status & STA_NANO)) |
800 | txc->offset = (u32)txc->offset / NSEC_PER_USEC; |
801 | } |
802 | |
803 | result = time_state; /* mostly `TIME_OK' */ |
804 | /* check for errors */ |
805 | if (is_error_status(status: time_status)) |
806 | result = TIME_ERROR; |
807 | |
808 | txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * |
809 | PPM_SCALE_INV, NTP_SCALE_SHIFT); |
810 | txc->maxerror = time_maxerror; |
811 | txc->esterror = time_esterror; |
812 | txc->status = time_status; |
813 | txc->constant = time_constant; |
814 | txc->precision = 1; |
815 | txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; |
816 | txc->tick = tick_usec; |
817 | txc->tai = *time_tai; |
818 | |
819 | /* fill PPS status fields */ |
820 | pps_fill_timex(txc); |
821 | |
822 | txc->time.tv_sec = ts->tv_sec; |
823 | txc->time.tv_usec = ts->tv_nsec; |
824 | if (!(time_status & STA_NANO)) |
825 | txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC; |
826 | |
827 | /* Handle leapsec adjustments */ |
828 | if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) { |
829 | if ((time_state == TIME_INS) && (time_status & STA_INS)) { |
830 | result = TIME_OOP; |
831 | txc->tai++; |
832 | txc->time.tv_sec--; |
833 | } |
834 | if ((time_state == TIME_DEL) && (time_status & STA_DEL)) { |
835 | result = TIME_WAIT; |
836 | txc->tai--; |
837 | txc->time.tv_sec++; |
838 | } |
839 | if ((time_state == TIME_OOP) && |
840 | (ts->tv_sec == ntp_next_leap_sec)) { |
841 | result = TIME_WAIT; |
842 | } |
843 | } |
844 | |
845 | return result; |
846 | } |
847 | |
848 | #ifdef CONFIG_NTP_PPS |
849 | |
850 | /* actually struct pps_normtime is good old struct timespec, but it is |
851 | * semantically different (and it is the reason why it was invented): |
852 | * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] |
853 | * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */ |
854 | struct pps_normtime { |
855 | s64 sec; /* seconds */ |
856 | long nsec; /* nanoseconds */ |
857 | }; |
858 | |
859 | /* normalize the timestamp so that nsec is in the |
860 | ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */ |
861 | static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts) |
862 | { |
863 | struct pps_normtime norm = { |
864 | .sec = ts.tv_sec, |
865 | .nsec = ts.tv_nsec |
866 | }; |
867 | |
868 | if (norm.nsec > (NSEC_PER_SEC >> 1)) { |
869 | norm.nsec -= NSEC_PER_SEC; |
870 | norm.sec++; |
871 | } |
872 | |
873 | return norm; |
874 | } |
875 | |
876 | /* get current phase correction and jitter */ |
877 | static inline long pps_phase_filter_get(long *jitter) |
878 | { |
879 | *jitter = pps_tf[0] - pps_tf[1]; |
880 | if (*jitter < 0) |
881 | *jitter = -*jitter; |
882 | |
883 | /* TODO: test various filters */ |
884 | return pps_tf[0]; |
885 | } |
886 | |
887 | /* add the sample to the phase filter */ |
888 | static inline void pps_phase_filter_add(long err) |
889 | { |
890 | pps_tf[2] = pps_tf[1]; |
891 | pps_tf[1] = pps_tf[0]; |
892 | pps_tf[0] = err; |
893 | } |
894 | |
895 | /* decrease frequency calibration interval length. |
896 | * It is halved after four consecutive unstable intervals. |
897 | */ |
898 | static inline void pps_dec_freq_interval(void) |
899 | { |
900 | if (--pps_intcnt <= -PPS_INTCOUNT) { |
901 | pps_intcnt = -PPS_INTCOUNT; |
902 | if (pps_shift > PPS_INTMIN) { |
903 | pps_shift--; |
904 | pps_intcnt = 0; |
905 | } |
906 | } |
907 | } |
908 | |
909 | /* increase frequency calibration interval length. |
910 | * It is doubled after four consecutive stable intervals. |
911 | */ |
912 | static inline void pps_inc_freq_interval(void) |
913 | { |
914 | if (++pps_intcnt >= PPS_INTCOUNT) { |
915 | pps_intcnt = PPS_INTCOUNT; |
916 | if (pps_shift < PPS_INTMAX) { |
917 | pps_shift++; |
918 | pps_intcnt = 0; |
919 | } |
920 | } |
921 | } |
922 | |
923 | /* update clock frequency based on MONOTONIC_RAW clock PPS signal |
924 | * timestamps |
925 | * |
926 | * At the end of the calibration interval the difference between the |
927 | * first and last MONOTONIC_RAW clock timestamps divided by the length |
928 | * of the interval becomes the frequency update. If the interval was |
929 | * too long, the data are discarded. |
930 | * Returns the difference between old and new frequency values. |
931 | */ |
932 | static long hardpps_update_freq(struct pps_normtime freq_norm) |
933 | { |
934 | long delta, delta_mod; |
935 | s64 ftemp; |
936 | |
937 | /* check if the frequency interval was too long */ |
938 | if (freq_norm.sec > (2 << pps_shift)) { |
939 | time_status |= STA_PPSERROR; |
940 | pps_errcnt++; |
941 | pps_dec_freq_interval(); |
942 | printk_deferred(KERN_ERR |
943 | "hardpps: PPSERROR: interval too long - %lld s\n", |
944 | freq_norm.sec); |
945 | return 0; |
946 | } |
947 | |
948 | /* here the raw frequency offset and wander (stability) is |
949 | * calculated. If the wander is less than the wander threshold |
950 | * the interval is increased; otherwise it is decreased. |
951 | */ |
952 | ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT, |
953 | freq_norm.sec); |
954 | delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT); |
955 | pps_freq = ftemp; |
956 | if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) { |
957 | printk_deferred(KERN_WARNING |
958 | "hardpps: PPSWANDER: change=%ld\n", delta); |
959 | time_status |= STA_PPSWANDER; |
960 | pps_stbcnt++; |
961 | pps_dec_freq_interval(); |
962 | } else { /* good sample */ |
963 | pps_inc_freq_interval(); |
964 | } |
965 | |
966 | /* the stability metric is calculated as the average of recent |
967 | * frequency changes, but is used only for performance |
968 | * monitoring |
969 | */ |
970 | delta_mod = delta; |
971 | if (delta_mod < 0) |
972 | delta_mod = -delta_mod; |
973 | pps_stabil += (div_s64(((s64)delta_mod) << |
974 | (NTP_SCALE_SHIFT - SHIFT_USEC), |
975 | NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN; |
976 | |
977 | /* if enabled, the system clock frequency is updated */ |
978 | if ((time_status & STA_PPSFREQ) != 0 && |
979 | (time_status & STA_FREQHOLD) == 0) { |
980 | time_freq = pps_freq; |
981 | ntp_update_frequency(); |
982 | } |
983 | |
984 | return delta; |
985 | } |
986 | |
987 | /* correct REALTIME clock phase error against PPS signal */ |
988 | static void hardpps_update_phase(long error) |
989 | { |
990 | long correction = -error; |
991 | long jitter; |
992 | |
993 | /* add the sample to the median filter */ |
994 | pps_phase_filter_add(correction); |
995 | correction = pps_phase_filter_get(&jitter); |
996 | |
997 | /* Nominal jitter is due to PPS signal noise. If it exceeds the |
998 | * threshold, the sample is discarded; otherwise, if so enabled, |
999 | * the time offset is updated. |
1000 | */ |
1001 | if (jitter > (pps_jitter << PPS_POPCORN)) { |
1002 | printk_deferred(KERN_WARNING |
1003 | "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", |
1004 | jitter, (pps_jitter << PPS_POPCORN)); |
1005 | time_status |= STA_PPSJITTER; |
1006 | pps_jitcnt++; |
1007 | } else if (time_status & STA_PPSTIME) { |
1008 | /* correct the time using the phase offset */ |
1009 | time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT, |
1010 | NTP_INTERVAL_FREQ); |
1011 | /* cancel running adjtime() */ |
1012 | time_adjust = 0; |
1013 | } |
1014 | /* update jitter */ |
1015 | pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN; |
1016 | } |
1017 | |
1018 | /* |
1019 | * __hardpps() - discipline CPU clock oscillator to external PPS signal |
1020 | * |
1021 | * This routine is called at each PPS signal arrival in order to |
1022 | * discipline the CPU clock oscillator to the PPS signal. It takes two |
1023 | * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former |
1024 | * is used to correct clock phase error and the latter is used to |
1025 | * correct the frequency. |
1026 | * |
1027 | * This code is based on David Mills's reference nanokernel |
1028 | * implementation. It was mostly rewritten but keeps the same idea. |
1029 | */ |
1030 | void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) |
1031 | { |
1032 | struct pps_normtime pts_norm, freq_norm; |
1033 | |
1034 | pts_norm = pps_normalize_ts(*phase_ts); |
1035 | |
1036 | /* clear the error bits, they will be set again if needed */ |
1037 | time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); |
1038 | |
1039 | /* indicate signal presence */ |
1040 | time_status |= STA_PPSSIGNAL; |
1041 | pps_valid = PPS_VALID; |
1042 | |
1043 | /* when called for the first time, |
1044 | * just start the frequency interval */ |
1045 | if (unlikely(pps_fbase.tv_sec == 0)) { |
1046 | pps_fbase = *raw_ts; |
1047 | return; |
1048 | } |
1049 | |
1050 | /* ok, now we have a base for frequency calculation */ |
1051 | freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase)); |
1052 | |
1053 | /* check that the signal is in the range |
1054 | * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */ |
1055 | if ((freq_norm.sec == 0) || |
1056 | (freq_norm.nsec > MAXFREQ * freq_norm.sec) || |
1057 | (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) { |
1058 | time_status |= STA_PPSJITTER; |
1059 | /* restart the frequency calibration interval */ |
1060 | pps_fbase = *raw_ts; |
1061 | printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n"); |
1062 | return; |
1063 | } |
1064 | |
1065 | /* signal is ok */ |
1066 | |
1067 | /* check if the current frequency interval is finished */ |
1068 | if (freq_norm.sec >= (1 << pps_shift)) { |
1069 | pps_calcnt++; |
1070 | /* restart the frequency calibration interval */ |
1071 | pps_fbase = *raw_ts; |
1072 | hardpps_update_freq(freq_norm); |
1073 | } |
1074 | |
1075 | hardpps_update_phase(pts_norm.nsec); |
1076 | |
1077 | } |
1078 | #endif /* CONFIG_NTP_PPS */ |
1079 | |
1080 | static int __init ntp_tick_adj_setup(char *str) |
1081 | { |
1082 | int rc = kstrtos64(s: str, base: 0, res: &ntp_tick_adj); |
1083 | if (rc) |
1084 | return rc; |
1085 | |
1086 | ntp_tick_adj <<= NTP_SCALE_SHIFT; |
1087 | return 1; |
1088 | } |
1089 | |
1090 | __setup("ntp_tick_adj=", ntp_tick_adj_setup); |
1091 | |
1092 | void __init ntp_init(void) |
1093 | { |
1094 | ntp_clear(); |
1095 | ntp_init_cmos_sync(); |
1096 | } |
1097 |
Definitions
- tick_usec
- tick_nsec
- tick_length
- tick_length_base
- time_state
- time_status
- time_offset
- time_constant
- time_maxerror
- time_esterror
- time_freq
- time_reftime
- time_adjust
- ntp_tick_adj
- ntp_next_leap_sec
- ntp_offset_chunk
- pps_reset_freq_interval
- pps_clear
- pps_dec_valid
- pps_set_freq
- is_error_status
- pps_fill_timex
- ntp_synced
- ntp_update_frequency
- ntp_update_offset_fll
- ntp_update_offset
- ntp_clear
- ntp_tick_length
- ntp_get_next_leap
- second_overflow
- sync_work
- sync_hrtimer
- sync_timer_callback
- sched_sync_hw_clock
- rtc_tv_nsec_ok
- update_persistent_clock64
- update_rtc
- sync_hw_clock
- ntp_notify_cmos_timer
- ntp_init_cmos_sync
- process_adj_status
- process_adjtimex_modes
- __do_adjtimex
- ntp_tick_adj_setup
Improve your Profiling and Debugging skills
Find out more