1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sj@kernel.org>
6 */
7
8#define pr_fmt(fmt) "damon: " fmt
9
10#include <linux/damon.h>
11#include <linux/delay.h>
12#include <linux/kthread.h>
13#include <linux/mm.h>
14#include <linux/psi.h>
15#include <linux/slab.h>
16#include <linux/string.h>
17#include <linux/string_choices.h>
18
19#define CREATE_TRACE_POINTS
20#include <trace/events/damon.h>
21
22#ifdef CONFIG_DAMON_KUNIT_TEST
23#undef DAMON_MIN_REGION
24#define DAMON_MIN_REGION 1
25#endif
26
27static DEFINE_MUTEX(damon_lock);
28static int nr_running_ctxs;
29static bool running_exclusive_ctxs;
30
31static DEFINE_MUTEX(damon_ops_lock);
32static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
33
34static struct kmem_cache *damon_region_cache __ro_after_init;
35
36/* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
37static bool __damon_is_registered_ops(enum damon_ops_id id)
38{
39 struct damon_operations empty_ops = {};
40
41 if (!memcmp(p: &empty_ops, q: &damon_registered_ops[id], size: sizeof(empty_ops)))
42 return false;
43 return true;
44}
45
46/**
47 * damon_is_registered_ops() - Check if a given damon_operations is registered.
48 * @id: Id of the damon_operations to check if registered.
49 *
50 * Return: true if the ops is set, false otherwise.
51 */
52bool damon_is_registered_ops(enum damon_ops_id id)
53{
54 bool registered;
55
56 if (id >= NR_DAMON_OPS)
57 return false;
58 mutex_lock(&damon_ops_lock);
59 registered = __damon_is_registered_ops(id);
60 mutex_unlock(lock: &damon_ops_lock);
61 return registered;
62}
63
64/**
65 * damon_register_ops() - Register a monitoring operations set to DAMON.
66 * @ops: monitoring operations set to register.
67 *
68 * This function registers a monitoring operations set of valid &struct
69 * damon_operations->id so that others can find and use them later.
70 *
71 * Return: 0 on success, negative error code otherwise.
72 */
73int damon_register_ops(struct damon_operations *ops)
74{
75 int err = 0;
76
77 if (ops->id >= NR_DAMON_OPS)
78 return -EINVAL;
79
80 mutex_lock(&damon_ops_lock);
81 /* Fail for already registered ops */
82 if (__damon_is_registered_ops(id: ops->id))
83 err = -EINVAL;
84 else
85 damon_registered_ops[ops->id] = *ops;
86 mutex_unlock(lock: &damon_ops_lock);
87 return err;
88}
89
90/**
91 * damon_select_ops() - Select a monitoring operations to use with the context.
92 * @ctx: monitoring context to use the operations.
93 * @id: id of the registered monitoring operations to select.
94 *
95 * This function finds registered monitoring operations set of @id and make
96 * @ctx to use it.
97 *
98 * Return: 0 on success, negative error code otherwise.
99 */
100int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
101{
102 int err = 0;
103
104 if (id >= NR_DAMON_OPS)
105 return -EINVAL;
106
107 mutex_lock(&damon_ops_lock);
108 if (!__damon_is_registered_ops(id))
109 err = -EINVAL;
110 else
111 ctx->ops = damon_registered_ops[id];
112 mutex_unlock(lock: &damon_ops_lock);
113 return err;
114}
115
116/*
117 * Construct a damon_region struct
118 *
119 * Returns the pointer to the new struct if success, or NULL otherwise
120 */
121struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122{
123 struct damon_region *region;
124
125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 if (!region)
127 return NULL;
128
129 region->ar.start = start;
130 region->ar.end = end;
131 region->nr_accesses = 0;
132 region->nr_accesses_bp = 0;
133 INIT_LIST_HEAD(list: &region->list);
134
135 region->age = 0;
136 region->last_nr_accesses = 0;
137
138 return region;
139}
140
141void damon_add_region(struct damon_region *r, struct damon_target *t)
142{
143 list_add_tail(new: &r->list, head: &t->regions_list);
144 t->nr_regions++;
145}
146
147static void damon_del_region(struct damon_region *r, struct damon_target *t)
148{
149 list_del(entry: &r->list);
150 t->nr_regions--;
151}
152
153static void damon_free_region(struct damon_region *r)
154{
155 kmem_cache_free(s: damon_region_cache, objp: r);
156}
157
158void damon_destroy_region(struct damon_region *r, struct damon_target *t)
159{
160 damon_del_region(r, t);
161 damon_free_region(r);
162}
163
164/*
165 * Check whether a region is intersecting an address range
166 *
167 * Returns true if it is.
168 */
169static bool damon_intersect(struct damon_region *r,
170 struct damon_addr_range *re)
171{
172 return !(r->ar.end <= re->start || re->end <= r->ar.start);
173}
174
175/*
176 * Fill holes in regions with new regions.
177 */
178static int damon_fill_regions_holes(struct damon_region *first,
179 struct damon_region *last, struct damon_target *t)
180{
181 struct damon_region *r = first;
182
183 damon_for_each_region_from(r, t) {
184 struct damon_region *next, *newr;
185
186 if (r == last)
187 break;
188 next = damon_next_region(r);
189 if (r->ar.end != next->ar.start) {
190 newr = damon_new_region(start: r->ar.end, end: next->ar.start);
191 if (!newr)
192 return -ENOMEM;
193 damon_insert_region(r: newr, prev: r, next, t);
194 }
195 }
196 return 0;
197}
198
199/*
200 * damon_set_regions() - Set regions of a target for given address ranges.
201 * @t: the given target.
202 * @ranges: array of new monitoring target ranges.
203 * @nr_ranges: length of @ranges.
204 *
205 * This function adds new regions to, or modify existing regions of a
206 * monitoring target to fit in specific ranges.
207 *
208 * Return: 0 if success, or negative error code otherwise.
209 */
210int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
211 unsigned int nr_ranges)
212{
213 struct damon_region *r, *next;
214 unsigned int i;
215 int err;
216
217 /* Remove regions which are not in the new ranges */
218 damon_for_each_region_safe(r, next, t) {
219 for (i = 0; i < nr_ranges; i++) {
220 if (damon_intersect(r, re: &ranges[i]))
221 break;
222 }
223 if (i == nr_ranges)
224 damon_destroy_region(r, t);
225 }
226
227 r = damon_first_region(t);
228 /* Add new regions or resize existing regions to fit in the ranges */
229 for (i = 0; i < nr_ranges; i++) {
230 struct damon_region *first = NULL, *last, *newr;
231 struct damon_addr_range *range;
232
233 range = &ranges[i];
234 /* Get the first/last regions intersecting with the range */
235 damon_for_each_region_from(r, t) {
236 if (damon_intersect(r, re: range)) {
237 if (!first)
238 first = r;
239 last = r;
240 }
241 if (r->ar.start >= range->end)
242 break;
243 }
244 if (!first) {
245 /* no region intersects with this range */
246 newr = damon_new_region(
247 ALIGN_DOWN(range->start,
248 DAMON_MIN_REGION),
249 ALIGN(range->end, DAMON_MIN_REGION));
250 if (!newr)
251 return -ENOMEM;
252 damon_insert_region(r: newr, prev: damon_prev_region(r), next: r, t);
253 } else {
254 /* resize intersecting regions to fit in this range */
255 first->ar.start = ALIGN_DOWN(range->start,
256 DAMON_MIN_REGION);
257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
258
259 /* fill possible holes in the range */
260 err = damon_fill_regions_holes(first, last, t);
261 if (err)
262 return err;
263 }
264 }
265 return 0;
266}
267
268struct damos_filter *damos_new_filter(enum damos_filter_type type,
269 bool matching, bool allow)
270{
271 struct damos_filter *filter;
272
273 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
274 if (!filter)
275 return NULL;
276 filter->type = type;
277 filter->matching = matching;
278 filter->allow = allow;
279 INIT_LIST_HEAD(list: &filter->list);
280 return filter;
281}
282
283/**
284 * damos_filter_for_ops() - Return if the filter is ops-hndled one.
285 * @type: type of the filter.
286 *
287 * Return: true if the filter of @type needs to be handled by ops layer, false
288 * otherwise.
289 */
290bool damos_filter_for_ops(enum damos_filter_type type)
291{
292 switch (type) {
293 case DAMOS_FILTER_TYPE_ADDR:
294 case DAMOS_FILTER_TYPE_TARGET:
295 return false;
296 default:
297 break;
298 }
299 return true;
300}
301
302void damos_add_filter(struct damos *s, struct damos_filter *f)
303{
304 if (damos_filter_for_ops(type: f->type))
305 list_add_tail(new: &f->list, head: &s->ops_filters);
306 else
307 list_add_tail(new: &f->list, head: &s->filters);
308}
309
310static void damos_del_filter(struct damos_filter *f)
311{
312 list_del(entry: &f->list);
313}
314
315static void damos_free_filter(struct damos_filter *f)
316{
317 kfree(objp: f);
318}
319
320void damos_destroy_filter(struct damos_filter *f)
321{
322 damos_del_filter(f);
323 damos_free_filter(f);
324}
325
326struct damos_quota_goal *damos_new_quota_goal(
327 enum damos_quota_goal_metric metric,
328 unsigned long target_value)
329{
330 struct damos_quota_goal *goal;
331
332 goal = kmalloc(sizeof(*goal), GFP_KERNEL);
333 if (!goal)
334 return NULL;
335 goal->metric = metric;
336 goal->target_value = target_value;
337 INIT_LIST_HEAD(list: &goal->list);
338 return goal;
339}
340
341void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
342{
343 list_add_tail(new: &g->list, head: &q->goals);
344}
345
346static void damos_del_quota_goal(struct damos_quota_goal *g)
347{
348 list_del(entry: &g->list);
349}
350
351static void damos_free_quota_goal(struct damos_quota_goal *g)
352{
353 kfree(objp: g);
354}
355
356void damos_destroy_quota_goal(struct damos_quota_goal *g)
357{
358 damos_del_quota_goal(g);
359 damos_free_quota_goal(g);
360}
361
362/* initialize fields of @quota that normally API users wouldn't set */
363static struct damos_quota *damos_quota_init(struct damos_quota *quota)
364{
365 quota->esz = 0;
366 quota->total_charged_sz = 0;
367 quota->total_charged_ns = 0;
368 quota->charged_sz = 0;
369 quota->charged_from = 0;
370 quota->charge_target_from = NULL;
371 quota->charge_addr_from = 0;
372 quota->esz_bp = 0;
373 return quota;
374}
375
376struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
377 enum damos_action action,
378 unsigned long apply_interval_us,
379 struct damos_quota *quota,
380 struct damos_watermarks *wmarks,
381 int target_nid)
382{
383 struct damos *scheme;
384
385 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
386 if (!scheme)
387 return NULL;
388 scheme->pattern = *pattern;
389 scheme->action = action;
390 scheme->apply_interval_us = apply_interval_us;
391 /*
392 * next_apply_sis will be set when kdamond starts. While kdamond is
393 * running, it will also updated when it is added to the DAMON context,
394 * or damon_attrs are updated.
395 */
396 scheme->next_apply_sis = 0;
397 scheme->walk_completed = false;
398 INIT_LIST_HEAD(list: &scheme->filters);
399 INIT_LIST_HEAD(list: &scheme->ops_filters);
400 scheme->stat = (struct damos_stat){};
401 INIT_LIST_HEAD(list: &scheme->list);
402
403 scheme->quota = *(damos_quota_init(quota));
404 /* quota.goals should be separately set by caller */
405 INIT_LIST_HEAD(list: &scheme->quota.goals);
406
407 scheme->wmarks = *wmarks;
408 scheme->wmarks.activated = true;
409
410 scheme->target_nid = target_nid;
411
412 return scheme;
413}
414
415static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
416{
417 unsigned long sample_interval = ctx->attrs.sample_interval ?
418 ctx->attrs.sample_interval : 1;
419 unsigned long apply_interval = s->apply_interval_us ?
420 s->apply_interval_us : ctx->attrs.aggr_interval;
421
422 s->next_apply_sis = ctx->passed_sample_intervals +
423 apply_interval / sample_interval;
424}
425
426void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
427{
428 list_add_tail(new: &s->list, head: &ctx->schemes);
429 damos_set_next_apply_sis(s, ctx);
430}
431
432static void damon_del_scheme(struct damos *s)
433{
434 list_del(entry: &s->list);
435}
436
437static void damon_free_scheme(struct damos *s)
438{
439 kfree(objp: s);
440}
441
442void damon_destroy_scheme(struct damos *s)
443{
444 struct damos_quota_goal *g, *g_next;
445 struct damos_filter *f, *next;
446
447 damos_for_each_quota_goal_safe(g, g_next, &s->quota)
448 damos_destroy_quota_goal(g);
449
450 damos_for_each_filter_safe(f, next, s)
451 damos_destroy_filter(f);
452 damon_del_scheme(s);
453 damon_free_scheme(s);
454}
455
456/*
457 * Construct a damon_target struct
458 *
459 * Returns the pointer to the new struct if success, or NULL otherwise
460 */
461struct damon_target *damon_new_target(void)
462{
463 struct damon_target *t;
464
465 t = kmalloc(sizeof(*t), GFP_KERNEL);
466 if (!t)
467 return NULL;
468
469 t->pid = NULL;
470 t->nr_regions = 0;
471 INIT_LIST_HEAD(list: &t->regions_list);
472 INIT_LIST_HEAD(list: &t->list);
473
474 return t;
475}
476
477void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
478{
479 list_add_tail(new: &t->list, head: &ctx->adaptive_targets);
480}
481
482bool damon_targets_empty(struct damon_ctx *ctx)
483{
484 return list_empty(head: &ctx->adaptive_targets);
485}
486
487static void damon_del_target(struct damon_target *t)
488{
489 list_del(entry: &t->list);
490}
491
492void damon_free_target(struct damon_target *t)
493{
494 struct damon_region *r, *next;
495
496 damon_for_each_region_safe(r, next, t)
497 damon_free_region(r);
498 kfree(objp: t);
499}
500
501void damon_destroy_target(struct damon_target *t)
502{
503 damon_del_target(t);
504 damon_free_target(t);
505}
506
507unsigned int damon_nr_regions(struct damon_target *t)
508{
509 return t->nr_regions;
510}
511
512struct damon_ctx *damon_new_ctx(void)
513{
514 struct damon_ctx *ctx;
515
516 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
517 if (!ctx)
518 return NULL;
519
520 init_completion(x: &ctx->kdamond_started);
521
522 ctx->attrs.sample_interval = 5 * 1000;
523 ctx->attrs.aggr_interval = 100 * 1000;
524 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
525
526 ctx->passed_sample_intervals = 0;
527 /* These will be set from kdamond_init_ctx() */
528 ctx->next_aggregation_sis = 0;
529 ctx->next_ops_update_sis = 0;
530
531 mutex_init(&ctx->kdamond_lock);
532 mutex_init(&ctx->call_control_lock);
533 mutex_init(&ctx->walk_control_lock);
534
535 ctx->attrs.min_nr_regions = 10;
536 ctx->attrs.max_nr_regions = 1000;
537
538 INIT_LIST_HEAD(list: &ctx->adaptive_targets);
539 INIT_LIST_HEAD(list: &ctx->schemes);
540
541 return ctx;
542}
543
544static void damon_destroy_targets(struct damon_ctx *ctx)
545{
546 struct damon_target *t, *next_t;
547
548 if (ctx->ops.cleanup) {
549 ctx->ops.cleanup(ctx);
550 return;
551 }
552
553 damon_for_each_target_safe(t, next_t, ctx)
554 damon_destroy_target(t);
555}
556
557void damon_destroy_ctx(struct damon_ctx *ctx)
558{
559 struct damos *s, *next_s;
560
561 damon_destroy_targets(ctx);
562
563 damon_for_each_scheme_safe(s, next_s, ctx)
564 damon_destroy_scheme(s);
565
566 kfree(objp: ctx);
567}
568
569static unsigned int damon_age_for_new_attrs(unsigned int age,
570 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
571{
572 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
573}
574
575/* convert access ratio in bp (per 10,000) to nr_accesses */
576static unsigned int damon_accesses_bp_to_nr_accesses(
577 unsigned int accesses_bp, struct damon_attrs *attrs)
578{
579 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
580}
581
582/*
583 * Convert nr_accesses to access ratio in bp (per 10,000).
584 *
585 * Callers should ensure attrs.aggr_interval is not zero, like
586 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would
587 * happen.
588 */
589static unsigned int damon_nr_accesses_to_accesses_bp(
590 unsigned int nr_accesses, struct damon_attrs *attrs)
591{
592 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
593}
594
595static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
596 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
597{
598 return damon_accesses_bp_to_nr_accesses(
599 accesses_bp: damon_nr_accesses_to_accesses_bp(
600 nr_accesses, attrs: old_attrs),
601 attrs: new_attrs);
602}
603
604static void damon_update_monitoring_result(struct damon_region *r,
605 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs,
606 bool aggregating)
607{
608 if (!aggregating) {
609 r->nr_accesses = damon_nr_accesses_for_new_attrs(
610 nr_accesses: r->nr_accesses, old_attrs, new_attrs);
611 r->nr_accesses_bp = r->nr_accesses * 10000;
612 } else {
613 /*
614 * if this is called in the middle of the aggregation, reset
615 * the aggregations we made so far for this aggregation
616 * interval. In other words, make the status like
617 * kdamond_reset_aggregated() is called.
618 */
619 r->last_nr_accesses = damon_nr_accesses_for_new_attrs(
620 nr_accesses: r->last_nr_accesses, old_attrs, new_attrs);
621 r->nr_accesses_bp = r->last_nr_accesses * 10000;
622 r->nr_accesses = 0;
623 }
624 r->age = damon_age_for_new_attrs(age: r->age, old_attrs, new_attrs);
625}
626
627/*
628 * region->nr_accesses is the number of sampling intervals in the last
629 * aggregation interval that access to the region has found, and region->age is
630 * the number of aggregation intervals that its access pattern has maintained.
631 * For the reason, the real meaning of the two fields depend on current
632 * sampling interval and aggregation interval. This function updates
633 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
634 */
635static void damon_update_monitoring_results(struct damon_ctx *ctx,
636 struct damon_attrs *new_attrs, bool aggregating)
637{
638 struct damon_attrs *old_attrs = &ctx->attrs;
639 struct damon_target *t;
640 struct damon_region *r;
641
642 /* if any interval is zero, simply forgive conversion */
643 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
644 !new_attrs->sample_interval ||
645 !new_attrs->aggr_interval)
646 return;
647
648 damon_for_each_target(t, ctx)
649 damon_for_each_region(r, t)
650 damon_update_monitoring_result(
651 r, old_attrs, new_attrs, aggregating);
652}
653
654/*
655 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is
656 * valid.
657 */
658static bool damon_valid_intervals_goal(struct damon_attrs *attrs)
659{
660 struct damon_intervals_goal *goal = &attrs->intervals_goal;
661
662 /* tuning is disabled */
663 if (!goal->aggrs)
664 return true;
665 if (goal->min_sample_us > goal->max_sample_us)
666 return false;
667 if (attrs->sample_interval < goal->min_sample_us ||
668 goal->max_sample_us < attrs->sample_interval)
669 return false;
670 return true;
671}
672
673/**
674 * damon_set_attrs() - Set attributes for the monitoring.
675 * @ctx: monitoring context
676 * @attrs: monitoring attributes
677 *
678 * This function should be called while the kdamond is not running, an access
679 * check results aggregation is not ongoing (e.g., from &struct
680 * damon_callback->after_aggregation or &struct
681 * damon_callback->after_wmarks_check callbacks), or from damon_call().
682 *
683 * Every time interval is in micro-seconds.
684 *
685 * Return: 0 on success, negative error code otherwise.
686 */
687int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
688{
689 unsigned long sample_interval = attrs->sample_interval ?
690 attrs->sample_interval : 1;
691 struct damos *s;
692 bool aggregating = ctx->passed_sample_intervals <
693 ctx->next_aggregation_sis;
694
695 if (!damon_valid_intervals_goal(attrs))
696 return -EINVAL;
697
698 if (attrs->min_nr_regions < 3)
699 return -EINVAL;
700 if (attrs->min_nr_regions > attrs->max_nr_regions)
701 return -EINVAL;
702 if (attrs->sample_interval > attrs->aggr_interval)
703 return -EINVAL;
704
705 /* calls from core-external doesn't set this. */
706 if (!attrs->aggr_samples)
707 attrs->aggr_samples = attrs->aggr_interval / sample_interval;
708
709 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
710 attrs->aggr_interval / sample_interval;
711 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
712 attrs->ops_update_interval / sample_interval;
713
714 damon_update_monitoring_results(ctx, new_attrs: attrs, aggregating);
715 ctx->attrs = *attrs;
716
717 damon_for_each_scheme(s, ctx)
718 damos_set_next_apply_sis(s, ctx);
719
720 return 0;
721}
722
723/**
724 * damon_set_schemes() - Set data access monitoring based operation schemes.
725 * @ctx: monitoring context
726 * @schemes: array of the schemes
727 * @nr_schemes: number of entries in @schemes
728 *
729 * This function should not be called while the kdamond of the context is
730 * running.
731 */
732void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
733 ssize_t nr_schemes)
734{
735 struct damos *s, *next;
736 ssize_t i;
737
738 damon_for_each_scheme_safe(s, next, ctx)
739 damon_destroy_scheme(s);
740 for (i = 0; i < nr_schemes; i++)
741 damon_add_scheme(ctx, s: schemes[i]);
742}
743
744static struct damos_quota_goal *damos_nth_quota_goal(
745 int n, struct damos_quota *q)
746{
747 struct damos_quota_goal *goal;
748 int i = 0;
749
750 damos_for_each_quota_goal(goal, q) {
751 if (i++ == n)
752 return goal;
753 }
754 return NULL;
755}
756
757static void damos_commit_quota_goal(
758 struct damos_quota_goal *dst, struct damos_quota_goal *src)
759{
760 dst->metric = src->metric;
761 dst->target_value = src->target_value;
762 if (dst->metric == DAMOS_QUOTA_USER_INPUT)
763 dst->current_value = src->current_value;
764 /* keep last_psi_total as is, since it will be updated in next cycle */
765}
766
767/**
768 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
769 * @dst: The commit destination DAMOS quota.
770 * @src: The commit source DAMOS quota.
771 *
772 * Copies user-specified parameters for quota goals from @src to @dst. Users
773 * should use this function for quota goals-level parameters update of running
774 * DAMON contexts, instead of manual in-place updates.
775 *
776 * This function should be called from parameters-update safe context, like
777 * DAMON callbacks.
778 */
779int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
780{
781 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
782 int i = 0, j = 0;
783
784 damos_for_each_quota_goal_safe(dst_goal, next, dst) {
785 src_goal = damos_nth_quota_goal(n: i++, q: src);
786 if (src_goal)
787 damos_commit_quota_goal(dst: dst_goal, src: src_goal);
788 else
789 damos_destroy_quota_goal(g: dst_goal);
790 }
791 damos_for_each_quota_goal_safe(src_goal, next, src) {
792 if (j++ < i)
793 continue;
794 new_goal = damos_new_quota_goal(
795 metric: src_goal->metric, target_value: src_goal->target_value);
796 if (!new_goal)
797 return -ENOMEM;
798 damos_add_quota_goal(q: dst, g: new_goal);
799 }
800 return 0;
801}
802
803static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
804{
805 int err;
806
807 dst->reset_interval = src->reset_interval;
808 dst->ms = src->ms;
809 dst->sz = src->sz;
810 err = damos_commit_quota_goals(dst, src);
811 if (err)
812 return err;
813 dst->weight_sz = src->weight_sz;
814 dst->weight_nr_accesses = src->weight_nr_accesses;
815 dst->weight_age = src->weight_age;
816 return 0;
817}
818
819static struct damos_filter *damos_nth_filter(int n, struct damos *s)
820{
821 struct damos_filter *filter;
822 int i = 0;
823
824 damos_for_each_filter(filter, s) {
825 if (i++ == n)
826 return filter;
827 }
828 return NULL;
829}
830
831static void damos_commit_filter_arg(
832 struct damos_filter *dst, struct damos_filter *src)
833{
834 switch (dst->type) {
835 case DAMOS_FILTER_TYPE_MEMCG:
836 dst->memcg_id = src->memcg_id;
837 break;
838 case DAMOS_FILTER_TYPE_ADDR:
839 dst->addr_range = src->addr_range;
840 break;
841 case DAMOS_FILTER_TYPE_TARGET:
842 dst->target_idx = src->target_idx;
843 break;
844 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE:
845 dst->sz_range = src->sz_range;
846 break;
847 default:
848 break;
849 }
850}
851
852static void damos_commit_filter(
853 struct damos_filter *dst, struct damos_filter *src)
854{
855 dst->type = src->type;
856 dst->matching = src->matching;
857 damos_commit_filter_arg(dst, src);
858}
859
860static int damos_commit_core_filters(struct damos *dst, struct damos *src)
861{
862 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
863 int i = 0, j = 0;
864
865 damos_for_each_filter_safe(dst_filter, next, dst) {
866 src_filter = damos_nth_filter(n: i++, s: src);
867 if (src_filter)
868 damos_commit_filter(dst: dst_filter, src: src_filter);
869 else
870 damos_destroy_filter(f: dst_filter);
871 }
872
873 damos_for_each_filter_safe(src_filter, next, src) {
874 if (j++ < i)
875 continue;
876
877 new_filter = damos_new_filter(
878 type: src_filter->type, matching: src_filter->matching,
879 allow: src_filter->allow);
880 if (!new_filter)
881 return -ENOMEM;
882 damos_commit_filter_arg(dst: new_filter, src: src_filter);
883 damos_add_filter(s: dst, f: new_filter);
884 }
885 return 0;
886}
887
888static int damos_commit_ops_filters(struct damos *dst, struct damos *src)
889{
890 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
891 int i = 0, j = 0;
892
893 damos_for_each_ops_filter_safe(dst_filter, next, dst) {
894 src_filter = damos_nth_filter(n: i++, s: src);
895 if (src_filter)
896 damos_commit_filter(dst: dst_filter, src: src_filter);
897 else
898 damos_destroy_filter(f: dst_filter);
899 }
900
901 damos_for_each_ops_filter_safe(src_filter, next, src) {
902 if (j++ < i)
903 continue;
904
905 new_filter = damos_new_filter(
906 type: src_filter->type, matching: src_filter->matching,
907 allow: src_filter->allow);
908 if (!new_filter)
909 return -ENOMEM;
910 damos_commit_filter_arg(dst: new_filter, src: src_filter);
911 damos_add_filter(s: dst, f: new_filter);
912 }
913 return 0;
914}
915
916/**
917 * damos_filters_default_reject() - decide whether to reject memory that didn't
918 * match with any given filter.
919 * @filters: Given DAMOS filters of a group.
920 */
921static bool damos_filters_default_reject(struct list_head *filters)
922{
923 struct damos_filter *last_filter;
924
925 if (list_empty(head: filters))
926 return false;
927 last_filter = list_last_entry(filters, struct damos_filter, list);
928 return last_filter->allow;
929}
930
931static void damos_set_filters_default_reject(struct damos *s)
932{
933 if (!list_empty(head: &s->ops_filters))
934 s->core_filters_default_reject = false;
935 else
936 s->core_filters_default_reject =
937 damos_filters_default_reject(filters: &s->filters);
938 s->ops_filters_default_reject =
939 damos_filters_default_reject(filters: &s->ops_filters);
940}
941
942static int damos_commit_filters(struct damos *dst, struct damos *src)
943{
944 int err;
945
946 err = damos_commit_core_filters(dst, src);
947 if (err)
948 return err;
949 err = damos_commit_ops_filters(dst, src);
950 if (err)
951 return err;
952 damos_set_filters_default_reject(s: dst);
953 return 0;
954}
955
956static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
957{
958 struct damos *s;
959 int i = 0;
960
961 damon_for_each_scheme(s, ctx) {
962 if (i++ == n)
963 return s;
964 }
965 return NULL;
966}
967
968static int damos_commit(struct damos *dst, struct damos *src)
969{
970 int err;
971
972 dst->pattern = src->pattern;
973 dst->action = src->action;
974 dst->apply_interval_us = src->apply_interval_us;
975
976 err = damos_commit_quota(dst: &dst->quota, src: &src->quota);
977 if (err)
978 return err;
979
980 dst->wmarks = src->wmarks;
981
982 err = damos_commit_filters(dst, src);
983 return err;
984}
985
986static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
987{
988 struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
989 int i = 0, j = 0, err;
990
991 damon_for_each_scheme_safe(dst_scheme, next, dst) {
992 src_scheme = damon_nth_scheme(n: i++, ctx: src);
993 if (src_scheme) {
994 err = damos_commit(dst: dst_scheme, src: src_scheme);
995 if (err)
996 return err;
997 } else {
998 damon_destroy_scheme(s: dst_scheme);
999 }
1000 }
1001
1002 damon_for_each_scheme_safe(src_scheme, next, src) {
1003 if (j++ < i)
1004 continue;
1005 new_scheme = damon_new_scheme(pattern: &src_scheme->pattern,
1006 action: src_scheme->action,
1007 apply_interval_us: src_scheme->apply_interval_us,
1008 quota: &src_scheme->quota, wmarks: &src_scheme->wmarks,
1009 NUMA_NO_NODE);
1010 if (!new_scheme)
1011 return -ENOMEM;
1012 err = damos_commit(dst: new_scheme, src: src_scheme);
1013 if (err) {
1014 damon_destroy_scheme(s: new_scheme);
1015 return err;
1016 }
1017 damon_add_scheme(ctx: dst, s: new_scheme);
1018 }
1019 return 0;
1020}
1021
1022static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
1023{
1024 struct damon_target *t;
1025 int i = 0;
1026
1027 damon_for_each_target(t, ctx) {
1028 if (i++ == n)
1029 return t;
1030 }
1031 return NULL;
1032}
1033
1034/*
1035 * The caller should ensure the regions of @src are
1036 * 1. valid (end >= src) and
1037 * 2. sorted by starting address.
1038 *
1039 * If @src has no region, @dst keeps current regions.
1040 */
1041static int damon_commit_target_regions(
1042 struct damon_target *dst, struct damon_target *src)
1043{
1044 struct damon_region *src_region;
1045 struct damon_addr_range *ranges;
1046 int i = 0, err;
1047
1048 damon_for_each_region(src_region, src)
1049 i++;
1050 if (!i)
1051 return 0;
1052
1053 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
1054 if (!ranges)
1055 return -ENOMEM;
1056 i = 0;
1057 damon_for_each_region(src_region, src)
1058 ranges[i++] = src_region->ar;
1059 err = damon_set_regions(t: dst, ranges, nr_ranges: i);
1060 kfree(objp: ranges);
1061 return err;
1062}
1063
1064static int damon_commit_target(
1065 struct damon_target *dst, bool dst_has_pid,
1066 struct damon_target *src, bool src_has_pid)
1067{
1068 int err;
1069
1070 err = damon_commit_target_regions(dst, src);
1071 if (err)
1072 return err;
1073 if (dst_has_pid)
1074 put_pid(pid: dst->pid);
1075 if (src_has_pid)
1076 get_pid(pid: src->pid);
1077 dst->pid = src->pid;
1078 return 0;
1079}
1080
1081static int damon_commit_targets(
1082 struct damon_ctx *dst, struct damon_ctx *src)
1083{
1084 struct damon_target *dst_target, *next, *src_target, *new_target;
1085 int i = 0, j = 0, err;
1086
1087 damon_for_each_target_safe(dst_target, next, dst) {
1088 src_target = damon_nth_target(n: i++, ctx: src);
1089 if (src_target) {
1090 err = damon_commit_target(
1091 dst: dst_target, dst_has_pid: damon_target_has_pid(ctx: dst),
1092 src: src_target, src_has_pid: damon_target_has_pid(ctx: src));
1093 if (err)
1094 return err;
1095 } else {
1096 struct damos *s;
1097
1098 if (damon_target_has_pid(ctx: dst))
1099 put_pid(pid: dst_target->pid);
1100 damon_destroy_target(t: dst_target);
1101 damon_for_each_scheme(s, dst) {
1102 if (s->quota.charge_target_from == dst_target) {
1103 s->quota.charge_target_from = NULL;
1104 s->quota.charge_addr_from = 0;
1105 }
1106 }
1107 }
1108 }
1109
1110 damon_for_each_target_safe(src_target, next, src) {
1111 if (j++ < i)
1112 continue;
1113 new_target = damon_new_target();
1114 if (!new_target)
1115 return -ENOMEM;
1116 err = damon_commit_target(dst: new_target, dst_has_pid: false,
1117 src: src_target, src_has_pid: damon_target_has_pid(ctx: src));
1118 if (err) {
1119 damon_destroy_target(t: new_target);
1120 return err;
1121 }
1122 damon_add_target(ctx: dst, t: new_target);
1123 }
1124 return 0;
1125}
1126
1127/**
1128 * damon_commit_ctx() - Commit parameters of a DAMON context to another.
1129 * @dst: The commit destination DAMON context.
1130 * @src: The commit source DAMON context.
1131 *
1132 * This function copies user-specified parameters from @src to @dst and update
1133 * the internal status and results accordingly. Users should use this function
1134 * for context-level parameters update of running context, instead of manual
1135 * in-place updates.
1136 *
1137 * This function should be called from parameters-update safe context, like
1138 * DAMON callbacks.
1139 */
1140int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
1141{
1142 int err;
1143
1144 err = damon_commit_schemes(dst, src);
1145 if (err)
1146 return err;
1147 err = damon_commit_targets(dst, src);
1148 if (err)
1149 return err;
1150 /*
1151 * schemes and targets should be updated first, since
1152 * 1. damon_set_attrs() updates monitoring results of targets and
1153 * next_apply_sis of schemes, and
1154 * 2. ops update should be done after pid handling is done (target
1155 * committing require putting pids).
1156 */
1157 err = damon_set_attrs(ctx: dst, attrs: &src->attrs);
1158 if (err)
1159 return err;
1160 dst->ops = src->ops;
1161
1162 return 0;
1163}
1164
1165/**
1166 * damon_nr_running_ctxs() - Return number of currently running contexts.
1167 */
1168int damon_nr_running_ctxs(void)
1169{
1170 int nr_ctxs;
1171
1172 mutex_lock(&damon_lock);
1173 nr_ctxs = nr_running_ctxs;
1174 mutex_unlock(lock: &damon_lock);
1175
1176 return nr_ctxs;
1177}
1178
1179/* Returns the size upper limit for each monitoring region */
1180static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1181{
1182 struct damon_target *t;
1183 struct damon_region *r;
1184 unsigned long sz = 0;
1185
1186 damon_for_each_target(t, ctx) {
1187 damon_for_each_region(r, t)
1188 sz += damon_sz_region(r);
1189 }
1190
1191 if (ctx->attrs.min_nr_regions)
1192 sz /= ctx->attrs.min_nr_regions;
1193 if (sz < DAMON_MIN_REGION)
1194 sz = DAMON_MIN_REGION;
1195
1196 return sz;
1197}
1198
1199static int kdamond_fn(void *data);
1200
1201/*
1202 * __damon_start() - Starts monitoring with given context.
1203 * @ctx: monitoring context
1204 *
1205 * This function should be called while damon_lock is hold.
1206 *
1207 * Return: 0 on success, negative error code otherwise.
1208 */
1209static int __damon_start(struct damon_ctx *ctx)
1210{
1211 int err = -EBUSY;
1212
1213 mutex_lock(&ctx->kdamond_lock);
1214 if (!ctx->kdamond) {
1215 err = 0;
1216 reinit_completion(x: &ctx->kdamond_started);
1217 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1218 nr_running_ctxs);
1219 if (IS_ERR(ptr: ctx->kdamond)) {
1220 err = PTR_ERR(ptr: ctx->kdamond);
1221 ctx->kdamond = NULL;
1222 } else {
1223 wait_for_completion(&ctx->kdamond_started);
1224 }
1225 }
1226 mutex_unlock(lock: &ctx->kdamond_lock);
1227
1228 return err;
1229}
1230
1231/**
1232 * damon_start() - Starts the monitorings for a given group of contexts.
1233 * @ctxs: an array of the pointers for contexts to start monitoring
1234 * @nr_ctxs: size of @ctxs
1235 * @exclusive: exclusiveness of this contexts group
1236 *
1237 * This function starts a group of monitoring threads for a group of monitoring
1238 * contexts. One thread per each context is created and run in parallel. The
1239 * caller should handle synchronization between the threads by itself. If
1240 * @exclusive is true and a group of threads that created by other
1241 * 'damon_start()' call is currently running, this function does nothing but
1242 * returns -EBUSY.
1243 *
1244 * Return: 0 on success, negative error code otherwise.
1245 */
1246int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1247{
1248 int i;
1249 int err = 0;
1250
1251 mutex_lock(&damon_lock);
1252 if ((exclusive && nr_running_ctxs) ||
1253 (!exclusive && running_exclusive_ctxs)) {
1254 mutex_unlock(lock: &damon_lock);
1255 return -EBUSY;
1256 }
1257
1258 for (i = 0; i < nr_ctxs; i++) {
1259 err = __damon_start(ctx: ctxs[i]);
1260 if (err)
1261 break;
1262 nr_running_ctxs++;
1263 }
1264 if (exclusive && nr_running_ctxs)
1265 running_exclusive_ctxs = true;
1266 mutex_unlock(lock: &damon_lock);
1267
1268 return err;
1269}
1270
1271/*
1272 * __damon_stop() - Stops monitoring of a given context.
1273 * @ctx: monitoring context
1274 *
1275 * Return: 0 on success, negative error code otherwise.
1276 */
1277static int __damon_stop(struct damon_ctx *ctx)
1278{
1279 struct task_struct *tsk;
1280
1281 mutex_lock(&ctx->kdamond_lock);
1282 tsk = ctx->kdamond;
1283 if (tsk) {
1284 get_task_struct(t: tsk);
1285 mutex_unlock(lock: &ctx->kdamond_lock);
1286 kthread_stop_put(k: tsk);
1287 return 0;
1288 }
1289 mutex_unlock(lock: &ctx->kdamond_lock);
1290
1291 return -EPERM;
1292}
1293
1294/**
1295 * damon_stop() - Stops the monitorings for a given group of contexts.
1296 * @ctxs: an array of the pointers for contexts to stop monitoring
1297 * @nr_ctxs: size of @ctxs
1298 *
1299 * Return: 0 on success, negative error code otherwise.
1300 */
1301int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1302{
1303 int i, err = 0;
1304
1305 for (i = 0; i < nr_ctxs; i++) {
1306 /* nr_running_ctxs is decremented in kdamond_fn */
1307 err = __damon_stop(ctx: ctxs[i]);
1308 if (err)
1309 break;
1310 }
1311 return err;
1312}
1313
1314static bool damon_is_running(struct damon_ctx *ctx)
1315{
1316 bool running;
1317
1318 mutex_lock(&ctx->kdamond_lock);
1319 running = ctx->kdamond != NULL;
1320 mutex_unlock(lock: &ctx->kdamond_lock);
1321 return running;
1322}
1323
1324/**
1325 * damon_call() - Invoke a given function on DAMON worker thread (kdamond).
1326 * @ctx: DAMON context to call the function for.
1327 * @control: Control variable of the call request.
1328 *
1329 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an
1330 * argument data that respectively passed via &damon_call_control->fn and
1331 * &damon_call_control->data of @control, and wait until the kdamond finishes
1332 * handling of the request.
1333 *
1334 * The kdamond executes the function with the argument in the main loop, just
1335 * after a sampling of the iteration is finished. The function can hence
1336 * safely access the internal data of the &struct damon_ctx without additional
1337 * synchronization. The return value of the function will be saved in
1338 * &damon_call_control->return_code.
1339 *
1340 * Return: 0 on success, negative error code otherwise.
1341 */
1342int damon_call(struct damon_ctx *ctx, struct damon_call_control *control)
1343{
1344 init_completion(x: &control->completion);
1345 control->canceled = false;
1346
1347 mutex_lock(&ctx->call_control_lock);
1348 if (ctx->call_control) {
1349 mutex_unlock(lock: &ctx->call_control_lock);
1350 return -EBUSY;
1351 }
1352 ctx->call_control = control;
1353 mutex_unlock(lock: &ctx->call_control_lock);
1354 if (!damon_is_running(ctx))
1355 return -EINVAL;
1356 wait_for_completion(&control->completion);
1357 if (control->canceled)
1358 return -ECANCELED;
1359 return 0;
1360}
1361
1362/**
1363 * damos_walk() - Invoke a given functions while DAMOS walk regions.
1364 * @ctx: DAMON context to call the functions for.
1365 * @control: Control variable of the walk request.
1366 *
1367 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region
1368 * that the kdamond will apply DAMOS action to, and wait until the kdamond
1369 * finishes handling of the request.
1370 *
1371 * The kdamond executes the given function in the main loop, for each region
1372 * just after it applied any DAMOS actions of @ctx to it. The invocation is
1373 * made only within one &damos->apply_interval_us since damos_walk()
1374 * invocation, for each scheme. The given callback function can hence safely
1375 * access the internal data of &struct damon_ctx and &struct damon_region that
1376 * each of the scheme will apply the action for next interval, without
1377 * additional synchronizations against the kdamond. If every scheme of @ctx
1378 * passed at least one &damos->apply_interval_us, kdamond marks the request as
1379 * completed so that damos_walk() can wakeup and return.
1380 *
1381 * Return: 0 on success, negative error code otherwise.
1382 */
1383int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control)
1384{
1385 init_completion(x: &control->completion);
1386 control->canceled = false;
1387 mutex_lock(&ctx->walk_control_lock);
1388 if (ctx->walk_control) {
1389 mutex_unlock(lock: &ctx->walk_control_lock);
1390 return -EBUSY;
1391 }
1392 ctx->walk_control = control;
1393 mutex_unlock(lock: &ctx->walk_control_lock);
1394 if (!damon_is_running(ctx))
1395 return -EINVAL;
1396 wait_for_completion(&control->completion);
1397 if (control->canceled)
1398 return -ECANCELED;
1399 return 0;
1400}
1401
1402/*
1403 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing
1404 * the problem being propagated.
1405 */
1406static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r)
1407{
1408 if (r->nr_accesses_bp == r->nr_accesses * 10000)
1409 return;
1410 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n",
1411 r->nr_accesses_bp, r->nr_accesses);
1412 r->nr_accesses_bp = r->nr_accesses * 10000;
1413}
1414
1415/*
1416 * Reset the aggregated monitoring results ('nr_accesses' of each region).
1417 */
1418static void kdamond_reset_aggregated(struct damon_ctx *c)
1419{
1420 struct damon_target *t;
1421 unsigned int ti = 0; /* target's index */
1422
1423 damon_for_each_target(t, c) {
1424 struct damon_region *r;
1425
1426 damon_for_each_region(r, t) {
1427 trace_damon_aggregated(target_id: ti, r, nr_regions: damon_nr_regions(t));
1428 damon_warn_fix_nr_accesses_corruption(r);
1429 r->last_nr_accesses = r->nr_accesses;
1430 r->nr_accesses = 0;
1431 }
1432 ti++;
1433 }
1434}
1435
1436static unsigned long damon_get_intervals_score(struct damon_ctx *c)
1437{
1438 struct damon_target *t;
1439 struct damon_region *r;
1440 unsigned long sz_region, max_access_events = 0, access_events = 0;
1441 unsigned long target_access_events;
1442 unsigned long goal_bp = c->attrs.intervals_goal.access_bp;
1443
1444 damon_for_each_target(t, c) {
1445 damon_for_each_region(r, t) {
1446 sz_region = damon_sz_region(r);
1447 max_access_events += sz_region * c->attrs.aggr_samples;
1448 access_events += sz_region * r->nr_accesses;
1449 }
1450 }
1451 target_access_events = max_access_events * goal_bp / 10000;
1452 return access_events * 10000 / target_access_events;
1453}
1454
1455static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1456 unsigned long score);
1457
1458static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c)
1459{
1460 unsigned long score_bp, adaptation_bp;
1461
1462 score_bp = damon_get_intervals_score(c);
1463 adaptation_bp = damon_feed_loop_next_input(last_input: 100000000, score: score_bp) /
1464 10000;
1465 /*
1466 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of
1467 * the intervals by rescaling [1,10,000] to [5000, 10,000].
1468 */
1469 if (adaptation_bp <= 10000)
1470 adaptation_bp = 5000 + adaptation_bp / 2;
1471 return adaptation_bp;
1472}
1473
1474static void kdamond_tune_intervals(struct damon_ctx *c)
1475{
1476 unsigned long adaptation_bp;
1477 struct damon_attrs new_attrs;
1478 struct damon_intervals_goal *goal;
1479
1480 adaptation_bp = damon_get_intervals_adaptation_bp(c);
1481 if (adaptation_bp == 10000)
1482 return;
1483
1484 new_attrs = c->attrs;
1485 goal = &c->attrs.intervals_goal;
1486 new_attrs.sample_interval = min(goal->max_sample_us,
1487 c->attrs.sample_interval * adaptation_bp / 10000);
1488 new_attrs.sample_interval = max(goal->min_sample_us,
1489 new_attrs.sample_interval);
1490 new_attrs.aggr_interval = new_attrs.sample_interval *
1491 c->attrs.aggr_samples;
1492 damon_set_attrs(ctx: c, attrs: &new_attrs);
1493}
1494
1495static void damon_split_region_at(struct damon_target *t,
1496 struct damon_region *r, unsigned long sz_r);
1497
1498static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1499{
1500 unsigned long sz;
1501 unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1502
1503 sz = damon_sz_region(r);
1504 return s->pattern.min_sz_region <= sz &&
1505 sz <= s->pattern.max_sz_region &&
1506 s->pattern.min_nr_accesses <= nr_accesses &&
1507 nr_accesses <= s->pattern.max_nr_accesses &&
1508 s->pattern.min_age_region <= r->age &&
1509 r->age <= s->pattern.max_age_region;
1510}
1511
1512static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1513 struct damon_region *r, struct damos *s)
1514{
1515 bool ret = __damos_valid_target(r, s);
1516
1517 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1518 return ret;
1519
1520 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1521}
1522
1523/*
1524 * damos_skip_charged_region() - Check if the given region or starting part of
1525 * it is already charged for the DAMOS quota.
1526 * @t: The target of the region.
1527 * @rp: The pointer to the region.
1528 * @s: The scheme to be applied.
1529 *
1530 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1531 * action would applied to only a part of the target access pattern fulfilling
1532 * regions. To avoid applying the scheme action to only already applied
1533 * regions, DAMON skips applying the scheme action to the regions that charged
1534 * in the previous charge window.
1535 *
1536 * This function checks if a given region should be skipped or not for the
1537 * reason. If only the starting part of the region has previously charged,
1538 * this function splits the region into two so that the second one covers the
1539 * area that not charged in the previous charge widnow and saves the second
1540 * region in *rp and returns false, so that the caller can apply DAMON action
1541 * to the second one.
1542 *
1543 * Return: true if the region should be entirely skipped, false otherwise.
1544 */
1545static bool damos_skip_charged_region(struct damon_target *t,
1546 struct damon_region **rp, struct damos *s)
1547{
1548 struct damon_region *r = *rp;
1549 struct damos_quota *quota = &s->quota;
1550 unsigned long sz_to_skip;
1551
1552 /* Skip previously charged regions */
1553 if (quota->charge_target_from) {
1554 if (t != quota->charge_target_from)
1555 return true;
1556 if (r == damon_last_region(t)) {
1557 quota->charge_target_from = NULL;
1558 quota->charge_addr_from = 0;
1559 return true;
1560 }
1561 if (quota->charge_addr_from &&
1562 r->ar.end <= quota->charge_addr_from)
1563 return true;
1564
1565 if (quota->charge_addr_from && r->ar.start <
1566 quota->charge_addr_from) {
1567 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1568 r->ar.start, DAMON_MIN_REGION);
1569 if (!sz_to_skip) {
1570 if (damon_sz_region(r) <= DAMON_MIN_REGION)
1571 return true;
1572 sz_to_skip = DAMON_MIN_REGION;
1573 }
1574 damon_split_region_at(t, r, sz_r: sz_to_skip);
1575 r = damon_next_region(r);
1576 *rp = r;
1577 }
1578 quota->charge_target_from = NULL;
1579 quota->charge_addr_from = 0;
1580 }
1581 return false;
1582}
1583
1584static void damos_update_stat(struct damos *s,
1585 unsigned long sz_tried, unsigned long sz_applied,
1586 unsigned long sz_ops_filter_passed)
1587{
1588 s->stat.nr_tried++;
1589 s->stat.sz_tried += sz_tried;
1590 if (sz_applied)
1591 s->stat.nr_applied++;
1592 s->stat.sz_applied += sz_applied;
1593 s->stat.sz_ops_filter_passed += sz_ops_filter_passed;
1594}
1595
1596static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t,
1597 struct damon_region *r, struct damos_filter *filter)
1598{
1599 bool matched = false;
1600 struct damon_target *ti;
1601 int target_idx = 0;
1602 unsigned long start, end;
1603
1604 switch (filter->type) {
1605 case DAMOS_FILTER_TYPE_TARGET:
1606 damon_for_each_target(ti, ctx) {
1607 if (ti == t)
1608 break;
1609 target_idx++;
1610 }
1611 matched = target_idx == filter->target_idx;
1612 break;
1613 case DAMOS_FILTER_TYPE_ADDR:
1614 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
1615 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
1616
1617 /* inside the range */
1618 if (start <= r->ar.start && r->ar.end <= end) {
1619 matched = true;
1620 break;
1621 }
1622 /* outside of the range */
1623 if (r->ar.end <= start || end <= r->ar.start) {
1624 matched = false;
1625 break;
1626 }
1627 /* start before the range and overlap */
1628 if (r->ar.start < start) {
1629 damon_split_region_at(t, r, sz_r: start - r->ar.start);
1630 matched = false;
1631 break;
1632 }
1633 /* start inside the range */
1634 damon_split_region_at(t, r, sz_r: end - r->ar.start);
1635 matched = true;
1636 break;
1637 default:
1638 return false;
1639 }
1640
1641 return matched == filter->matching;
1642}
1643
1644static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1645 struct damon_region *r, struct damos *s)
1646{
1647 struct damos_filter *filter;
1648
1649 s->core_filters_allowed = false;
1650 damos_for_each_filter(filter, s) {
1651 if (damos_filter_match(ctx, t, r, filter)) {
1652 if (filter->allow)
1653 s->core_filters_allowed = true;
1654 return !filter->allow;
1655 }
1656 }
1657 return s->core_filters_default_reject;
1658}
1659
1660/*
1661 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn.
1662 * @ctx: The context of &damon_ctx->walk_control.
1663 * @t: The monitoring target of @r that @s will be applied.
1664 * @r: The region of @t that @s will be applied.
1665 * @s: The scheme of @ctx that will be applied to @r.
1666 *
1667 * This function is called from kdamond whenever it asked the operation set to
1668 * apply a DAMOS scheme action to a region. If a DAMOS walk request is
1669 * installed by damos_walk() and not yet uninstalled, invoke it.
1670 */
1671static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t,
1672 struct damon_region *r, struct damos *s,
1673 unsigned long sz_filter_passed)
1674{
1675 struct damos_walk_control *control;
1676
1677 if (s->walk_completed)
1678 return;
1679
1680 control = ctx->walk_control;
1681 if (!control)
1682 return;
1683
1684 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed);
1685}
1686
1687/*
1688 * damos_walk_complete() - Complete DAMOS walk request if all walks are done.
1689 * @ctx: The context of &damon_ctx->walk_control.
1690 * @s: A scheme of @ctx that all walks are now done.
1691 *
1692 * This function is called when kdamond finished applying the action of a DAMOS
1693 * scheme to all regions that eligible for the given &damos->apply_interval_us.
1694 * If every scheme of @ctx including @s now finished walking for at least one
1695 * &damos->apply_interval_us, this function makrs the handling of the given
1696 * DAMOS walk request is done, so that damos_walk() can wake up and return.
1697 */
1698static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s)
1699{
1700 struct damos *siter;
1701 struct damos_walk_control *control;
1702
1703 control = ctx->walk_control;
1704 if (!control)
1705 return;
1706
1707 s->walk_completed = true;
1708 /* if all schemes completed, signal completion to walker */
1709 damon_for_each_scheme(siter, ctx) {
1710 if (!siter->walk_completed)
1711 return;
1712 }
1713 damon_for_each_scheme(siter, ctx)
1714 siter->walk_completed = false;
1715
1716 complete(&control->completion);
1717 ctx->walk_control = NULL;
1718}
1719
1720/*
1721 * damos_walk_cancel() - Cancel the current DAMOS walk request.
1722 * @ctx: The context of &damon_ctx->walk_control.
1723 *
1724 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS
1725 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond
1726 * is already out of the main loop and therefore gonna be terminated, and hence
1727 * cannot continue the walks. This function therefore marks the walk request
1728 * as canceled, so that damos_walk() can wake up and return.
1729 */
1730static void damos_walk_cancel(struct damon_ctx *ctx)
1731{
1732 struct damos_walk_control *control;
1733
1734 mutex_lock(&ctx->walk_control_lock);
1735 control = ctx->walk_control;
1736 mutex_unlock(lock: &ctx->walk_control_lock);
1737
1738 if (!control)
1739 return;
1740 control->canceled = true;
1741 complete(&control->completion);
1742 mutex_lock(&ctx->walk_control_lock);
1743 ctx->walk_control = NULL;
1744 mutex_unlock(lock: &ctx->walk_control_lock);
1745}
1746
1747static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1748 struct damon_region *r, struct damos *s)
1749{
1750 struct damos_quota *quota = &s->quota;
1751 unsigned long sz = damon_sz_region(r);
1752 struct timespec64 begin, end;
1753 unsigned long sz_applied = 0;
1754 unsigned long sz_ops_filter_passed = 0;
1755 /*
1756 * We plan to support multiple context per kdamond, as DAMON sysfs
1757 * implies with 'nr_contexts' file. Nevertheless, only single context
1758 * per kdamond is supported for now. So, we can simply use '0' context
1759 * index here.
1760 */
1761 unsigned int cidx = 0;
1762 struct damos *siter; /* schemes iterator */
1763 unsigned int sidx = 0;
1764 struct damon_target *titer; /* targets iterator */
1765 unsigned int tidx = 0;
1766 bool do_trace = false;
1767
1768 /* get indices for trace_damos_before_apply() */
1769 if (trace_damos_before_apply_enabled()) {
1770 damon_for_each_scheme(siter, c) {
1771 if (siter == s)
1772 break;
1773 sidx++;
1774 }
1775 damon_for_each_target(titer, c) {
1776 if (titer == t)
1777 break;
1778 tidx++;
1779 }
1780 do_trace = true;
1781 }
1782
1783 if (c->ops.apply_scheme) {
1784 if (quota->esz && quota->charged_sz + sz > quota->esz) {
1785 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1786 DAMON_MIN_REGION);
1787 if (!sz)
1788 goto update_stat;
1789 damon_split_region_at(t, r, sz_r: sz);
1790 }
1791 if (damos_filter_out(ctx: c, t, r, s))
1792 return;
1793 ktime_get_coarse_ts64(ts: &begin);
1794 trace_damos_before_apply(context_idx: cidx, scheme_idx: sidx, target_idx: tidx, r,
1795 nr_regions: damon_nr_regions(t), do_trace);
1796 sz_applied = c->ops.apply_scheme(c, t, r, s,
1797 &sz_ops_filter_passed);
1798 damos_walk_call_walk(ctx: c, t, r, s, sz_filter_passed: sz_ops_filter_passed);
1799 ktime_get_coarse_ts64(ts: &end);
1800 quota->total_charged_ns += timespec64_to_ns(ts: &end) -
1801 timespec64_to_ns(ts: &begin);
1802 quota->charged_sz += sz;
1803 if (quota->esz && quota->charged_sz >= quota->esz) {
1804 quota->charge_target_from = t;
1805 quota->charge_addr_from = r->ar.end + 1;
1806 }
1807 }
1808 if (s->action != DAMOS_STAT)
1809 r->age = 0;
1810
1811update_stat:
1812 damos_update_stat(s, sz_tried: sz, sz_applied, sz_ops_filter_passed);
1813}
1814
1815static void damon_do_apply_schemes(struct damon_ctx *c,
1816 struct damon_target *t,
1817 struct damon_region *r)
1818{
1819 struct damos *s;
1820
1821 damon_for_each_scheme(s, c) {
1822 struct damos_quota *quota = &s->quota;
1823
1824 if (c->passed_sample_intervals < s->next_apply_sis)
1825 continue;
1826
1827 if (!s->wmarks.activated)
1828 continue;
1829
1830 /* Check the quota */
1831 if (quota->esz && quota->charged_sz >= quota->esz)
1832 continue;
1833
1834 if (damos_skip_charged_region(t, rp: &r, s))
1835 continue;
1836
1837 if (!damos_valid_target(c, t, r, s))
1838 continue;
1839
1840 damos_apply_scheme(c, t, r, s);
1841 }
1842}
1843
1844/*
1845 * damon_feed_loop_next_input() - get next input to achieve a target score.
1846 * @last_input The last input.
1847 * @score Current score that made with @last_input.
1848 *
1849 * Calculate next input to achieve the target score, based on the last input
1850 * and current score. Assuming the input and the score are positively
1851 * proportional, calculate how much compensation should be added to or
1852 * subtracted from the last input as a proportion of the last input. Avoid
1853 * next input always being zero by setting it non-zero always. In short form
1854 * (assuming support of float and signed calculations), the algorithm is as
1855 * below.
1856 *
1857 * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1858 *
1859 * For simple implementation, we assume the target score is always 10,000. The
1860 * caller should adjust @score for this.
1861 *
1862 * Returns next input that assumed to achieve the target score.
1863 */
1864static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1865 unsigned long score)
1866{
1867 const unsigned long goal = 10000;
1868 /* Set minimum input as 10000 to avoid compensation be zero */
1869 const unsigned long min_input = 10000;
1870 unsigned long score_goal_diff, compensation;
1871 bool over_achieving = score > goal;
1872
1873 if (score == goal)
1874 return last_input;
1875 if (score >= goal * 2)
1876 return min_input;
1877
1878 if (over_achieving)
1879 score_goal_diff = score - goal;
1880 else
1881 score_goal_diff = goal - score;
1882
1883 if (last_input < ULONG_MAX / score_goal_diff)
1884 compensation = last_input * score_goal_diff / goal;
1885 else
1886 compensation = last_input / goal * score_goal_diff;
1887
1888 if (over_achieving)
1889 return max(last_input - compensation, min_input);
1890 if (last_input < ULONG_MAX - compensation)
1891 return last_input + compensation;
1892 return ULONG_MAX;
1893}
1894
1895#ifdef CONFIG_PSI
1896
1897static u64 damos_get_some_mem_psi_total(void)
1898{
1899 if (static_branch_likely(&psi_disabled))
1900 return 0;
1901 return div_u64(dividend: psi_system.total[PSI_AVGS][PSI_MEM * 2],
1902 NSEC_PER_USEC);
1903}
1904
1905#else /* CONFIG_PSI */
1906
1907static inline u64 damos_get_some_mem_psi_total(void)
1908{
1909 return 0;
1910};
1911
1912#endif /* CONFIG_PSI */
1913
1914#ifdef CONFIG_NUMA
1915static __kernel_ulong_t damos_get_node_mem_bp(
1916 struct damos_quota_goal *goal)
1917{
1918 struct sysinfo i;
1919 __kernel_ulong_t numerator;
1920
1921 si_meminfo_node(val: &i, nid: goal->nid);
1922 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP)
1923 numerator = i.totalram - i.freeram;
1924 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */
1925 numerator = i.freeram;
1926 return numerator * 10000 / i.totalram;
1927}
1928#else
1929static __kernel_ulong_t damos_get_node_mem_bp(
1930 struct damos_quota_goal *goal)
1931{
1932 return 0;
1933}
1934#endif
1935
1936
1937static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
1938{
1939 u64 now_psi_total;
1940
1941 switch (goal->metric) {
1942 case DAMOS_QUOTA_USER_INPUT:
1943 /* User should already set goal->current_value */
1944 break;
1945 case DAMOS_QUOTA_SOME_MEM_PSI_US:
1946 now_psi_total = damos_get_some_mem_psi_total();
1947 goal->current_value = now_psi_total - goal->last_psi_total;
1948 goal->last_psi_total = now_psi_total;
1949 break;
1950 case DAMOS_QUOTA_NODE_MEM_USED_BP:
1951 case DAMOS_QUOTA_NODE_MEM_FREE_BP:
1952 goal->current_value = damos_get_node_mem_bp(goal);
1953 break;
1954 default:
1955 break;
1956 }
1957}
1958
1959/* Return the highest score since it makes schemes least aggressive */
1960static unsigned long damos_quota_score(struct damos_quota *quota)
1961{
1962 struct damos_quota_goal *goal;
1963 unsigned long highest_score = 0;
1964
1965 damos_for_each_quota_goal(goal, quota) {
1966 damos_set_quota_goal_current_value(goal);
1967 highest_score = max(highest_score,
1968 goal->current_value * 10000 /
1969 goal->target_value);
1970 }
1971
1972 return highest_score;
1973}
1974
1975/*
1976 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
1977 */
1978static void damos_set_effective_quota(struct damos_quota *quota)
1979{
1980 unsigned long throughput;
1981 unsigned long esz = ULONG_MAX;
1982
1983 if (!quota->ms && list_empty(head: &quota->goals)) {
1984 quota->esz = quota->sz;
1985 return;
1986 }
1987
1988 if (!list_empty(head: &quota->goals)) {
1989 unsigned long score = damos_quota_score(quota);
1990
1991 quota->esz_bp = damon_feed_loop_next_input(
1992 max(quota->esz_bp, 10000UL),
1993 score);
1994 esz = quota->esz_bp / 10000;
1995 }
1996
1997 if (quota->ms) {
1998 if (quota->total_charged_ns)
1999 throughput = quota->total_charged_sz * 1000000 /
2000 quota->total_charged_ns;
2001 else
2002 throughput = PAGE_SIZE * 1024;
2003 esz = min(throughput * quota->ms, esz);
2004 }
2005
2006 if (quota->sz && quota->sz < esz)
2007 esz = quota->sz;
2008
2009 quota->esz = esz;
2010}
2011
2012static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
2013{
2014 struct damos_quota *quota = &s->quota;
2015 struct damon_target *t;
2016 struct damon_region *r;
2017 unsigned long cumulated_sz;
2018 unsigned int score, max_score = 0;
2019
2020 if (!quota->ms && !quota->sz && list_empty(head: &quota->goals))
2021 return;
2022
2023 /* New charge window starts */
2024 if (time_after_eq(jiffies, quota->charged_from +
2025 msecs_to_jiffies(quota->reset_interval))) {
2026 if (quota->esz && quota->charged_sz >= quota->esz)
2027 s->stat.qt_exceeds++;
2028 quota->total_charged_sz += quota->charged_sz;
2029 quota->charged_from = jiffies;
2030 quota->charged_sz = 0;
2031 damos_set_effective_quota(quota);
2032 }
2033
2034 if (!c->ops.get_scheme_score)
2035 return;
2036
2037 /* Fill up the score histogram */
2038 memset(c->regions_score_histogram, 0,
2039 sizeof(*c->regions_score_histogram) *
2040 (DAMOS_MAX_SCORE + 1));
2041 damon_for_each_target(t, c) {
2042 damon_for_each_region(r, t) {
2043 if (!__damos_valid_target(r, s))
2044 continue;
2045 score = c->ops.get_scheme_score(c, t, r, s);
2046 c->regions_score_histogram[score] +=
2047 damon_sz_region(r);
2048 if (score > max_score)
2049 max_score = score;
2050 }
2051 }
2052
2053 /* Set the min score limit */
2054 for (cumulated_sz = 0, score = max_score; ; score--) {
2055 cumulated_sz += c->regions_score_histogram[score];
2056 if (cumulated_sz >= quota->esz || !score)
2057 break;
2058 }
2059 quota->min_score = score;
2060}
2061
2062static void kdamond_apply_schemes(struct damon_ctx *c)
2063{
2064 struct damon_target *t;
2065 struct damon_region *r, *next_r;
2066 struct damos *s;
2067 unsigned long sample_interval = c->attrs.sample_interval ?
2068 c->attrs.sample_interval : 1;
2069 bool has_schemes_to_apply = false;
2070
2071 damon_for_each_scheme(s, c) {
2072 if (c->passed_sample_intervals < s->next_apply_sis)
2073 continue;
2074
2075 if (!s->wmarks.activated)
2076 continue;
2077
2078 has_schemes_to_apply = true;
2079
2080 damos_adjust_quota(c, s);
2081 }
2082
2083 if (!has_schemes_to_apply)
2084 return;
2085
2086 mutex_lock(&c->walk_control_lock);
2087 damon_for_each_target(t, c) {
2088 damon_for_each_region_safe(r, next_r, t)
2089 damon_do_apply_schemes(c, t, r);
2090 }
2091
2092 damon_for_each_scheme(s, c) {
2093 if (c->passed_sample_intervals < s->next_apply_sis)
2094 continue;
2095 damos_walk_complete(ctx: c, s);
2096 s->next_apply_sis = c->passed_sample_intervals +
2097 (s->apply_interval_us ? s->apply_interval_us :
2098 c->attrs.aggr_interval) / sample_interval;
2099 s->last_applied = NULL;
2100 }
2101 mutex_unlock(lock: &c->walk_control_lock);
2102}
2103
2104/*
2105 * Merge two adjacent regions into one region
2106 */
2107static void damon_merge_two_regions(struct damon_target *t,
2108 struct damon_region *l, struct damon_region *r)
2109{
2110 unsigned long sz_l = damon_sz_region(r: l), sz_r = damon_sz_region(r);
2111
2112 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
2113 (sz_l + sz_r);
2114 l->nr_accesses_bp = l->nr_accesses * 10000;
2115 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
2116 l->ar.end = r->ar.end;
2117 damon_destroy_region(r, t);
2118}
2119
2120/*
2121 * Merge adjacent regions having similar access frequencies
2122 *
2123 * t target affected by this merge operation
2124 * thres '->nr_accesses' diff threshold for the merge
2125 * sz_limit size upper limit of each region
2126 */
2127static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
2128 unsigned long sz_limit)
2129{
2130 struct damon_region *r, *prev = NULL, *next;
2131
2132 damon_for_each_region_safe(r, next, t) {
2133 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
2134 r->age = 0;
2135 else
2136 r->age++;
2137
2138 if (prev && prev->ar.end == r->ar.start &&
2139 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
2140 damon_sz_region(r: prev) + damon_sz_region(r) <= sz_limit)
2141 damon_merge_two_regions(t, l: prev, r);
2142 else
2143 prev = r;
2144 }
2145}
2146
2147/*
2148 * Merge adjacent regions having similar access frequencies
2149 *
2150 * threshold '->nr_accesses' diff threshold for the merge
2151 * sz_limit size upper limit of each region
2152 *
2153 * This function merges monitoring target regions which are adjacent and their
2154 * access frequencies are similar. This is for minimizing the monitoring
2155 * overhead under the dynamically changeable access pattern. If a merge was
2156 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
2157 *
2158 * The total number of regions could be higher than the user-defined limit,
2159 * max_nr_regions for some cases. For example, the user can update
2160 * max_nr_regions to a number that lower than the current number of regions
2161 * while DAMON is running. For such a case, repeat merging until the limit is
2162 * met while increasing @threshold up to possible maximum level.
2163 */
2164static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
2165 unsigned long sz_limit)
2166{
2167 struct damon_target *t;
2168 unsigned int nr_regions;
2169 unsigned int max_thres;
2170
2171 max_thres = c->attrs.aggr_interval /
2172 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
2173 do {
2174 nr_regions = 0;
2175 damon_for_each_target(t, c) {
2176 damon_merge_regions_of(t, thres: threshold, sz_limit);
2177 nr_regions += damon_nr_regions(t);
2178 }
2179 threshold = max(1, threshold * 2);
2180 } while (nr_regions > c->attrs.max_nr_regions &&
2181 threshold / 2 < max_thres);
2182}
2183
2184/*
2185 * Split a region in two
2186 *
2187 * r the region to be split
2188 * sz_r size of the first sub-region that will be made
2189 */
2190static void damon_split_region_at(struct damon_target *t,
2191 struct damon_region *r, unsigned long sz_r)
2192{
2193 struct damon_region *new;
2194
2195 new = damon_new_region(start: r->ar.start + sz_r, end: r->ar.end);
2196 if (!new)
2197 return;
2198
2199 r->ar.end = new->ar.start;
2200
2201 new->age = r->age;
2202 new->last_nr_accesses = r->last_nr_accesses;
2203 new->nr_accesses_bp = r->nr_accesses_bp;
2204 new->nr_accesses = r->nr_accesses;
2205
2206 damon_insert_region(r: new, prev: r, next: damon_next_region(r), t);
2207}
2208
2209/* Split every region in the given target into 'nr_subs' regions */
2210static void damon_split_regions_of(struct damon_target *t, int nr_subs)
2211{
2212 struct damon_region *r, *next;
2213 unsigned long sz_region, sz_sub = 0;
2214 int i;
2215
2216 damon_for_each_region_safe(r, next, t) {
2217 sz_region = damon_sz_region(r);
2218
2219 for (i = 0; i < nr_subs - 1 &&
2220 sz_region > 2 * DAMON_MIN_REGION; i++) {
2221 /*
2222 * Randomly select size of left sub-region to be at
2223 * least 10 percent and at most 90% of original region
2224 */
2225 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
2226 sz_region / 10, DAMON_MIN_REGION);
2227 /* Do not allow blank region */
2228 if (sz_sub == 0 || sz_sub >= sz_region)
2229 continue;
2230
2231 damon_split_region_at(t, r, sz_r: sz_sub);
2232 sz_region = sz_sub;
2233 }
2234 }
2235}
2236
2237/*
2238 * Split every target region into randomly-sized small regions
2239 *
2240 * This function splits every target region into random-sized small regions if
2241 * current total number of the regions is equal or smaller than half of the
2242 * user-specified maximum number of regions. This is for maximizing the
2243 * monitoring accuracy under the dynamically changeable access patterns. If a
2244 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
2245 * it.
2246 */
2247static void kdamond_split_regions(struct damon_ctx *ctx)
2248{
2249 struct damon_target *t;
2250 unsigned int nr_regions = 0;
2251 static unsigned int last_nr_regions;
2252 int nr_subregions = 2;
2253
2254 damon_for_each_target(t, ctx)
2255 nr_regions += damon_nr_regions(t);
2256
2257 if (nr_regions > ctx->attrs.max_nr_regions / 2)
2258 return;
2259
2260 /* Maybe the middle of the region has different access frequency */
2261 if (last_nr_regions == nr_regions &&
2262 nr_regions < ctx->attrs.max_nr_regions / 3)
2263 nr_subregions = 3;
2264
2265 damon_for_each_target(t, ctx)
2266 damon_split_regions_of(t, nr_subs: nr_subregions);
2267
2268 last_nr_regions = nr_regions;
2269}
2270
2271/*
2272 * Check whether current monitoring should be stopped
2273 *
2274 * The monitoring is stopped when either the user requested to stop, or all
2275 * monitoring targets are invalid.
2276 *
2277 * Returns true if need to stop current monitoring.
2278 */
2279static bool kdamond_need_stop(struct damon_ctx *ctx)
2280{
2281 struct damon_target *t;
2282
2283 if (kthread_should_stop())
2284 return true;
2285
2286 if (!ctx->ops.target_valid)
2287 return false;
2288
2289 damon_for_each_target(t, ctx) {
2290 if (ctx->ops.target_valid(t))
2291 return false;
2292 }
2293
2294 return true;
2295}
2296
2297static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
2298 unsigned long *metric_value)
2299{
2300 switch (metric) {
2301 case DAMOS_WMARK_FREE_MEM_RATE:
2302 *metric_value = global_zone_page_state(item: NR_FREE_PAGES) * 1000 /
2303 totalram_pages();
2304 return 0;
2305 default:
2306 break;
2307 }
2308 return -EINVAL;
2309}
2310
2311/*
2312 * Returns zero if the scheme is active. Else, returns time to wait for next
2313 * watermark check in micro-seconds.
2314 */
2315static unsigned long damos_wmark_wait_us(struct damos *scheme)
2316{
2317 unsigned long metric;
2318
2319 if (damos_get_wmark_metric_value(metric: scheme->wmarks.metric, metric_value: &metric))
2320 return 0;
2321
2322 /* higher than high watermark or lower than low watermark */
2323 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
2324 if (scheme->wmarks.activated)
2325 pr_debug("deactivate a scheme (%d) for %s wmark\n",
2326 scheme->action,
2327 str_high_low(metric > scheme->wmarks.high));
2328 scheme->wmarks.activated = false;
2329 return scheme->wmarks.interval;
2330 }
2331
2332 /* inactive and higher than middle watermark */
2333 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
2334 !scheme->wmarks.activated)
2335 return scheme->wmarks.interval;
2336
2337 if (!scheme->wmarks.activated)
2338 pr_debug("activate a scheme (%d)\n", scheme->action);
2339 scheme->wmarks.activated = true;
2340 return 0;
2341}
2342
2343static void kdamond_usleep(unsigned long usecs)
2344{
2345 if (usecs >= USLEEP_RANGE_UPPER_BOUND)
2346 schedule_timeout_idle(timeout: usecs_to_jiffies(u: usecs));
2347 else
2348 usleep_range_idle(min: usecs, max: usecs + 1);
2349}
2350
2351/*
2352 * kdamond_call() - handle damon_call_control.
2353 * @ctx: The &struct damon_ctx of the kdamond.
2354 * @cancel: Whether to cancel the invocation of the function.
2355 *
2356 * If there is a &struct damon_call_control request that registered via
2357 * &damon_call() on @ctx, do or cancel the invocation of the function depending
2358 * on @cancel. @cancel is set when the kdamond is deactivated by DAMOS
2359 * watermarks, or the kdamond is already out of the main loop and therefore
2360 * will be terminated.
2361 */
2362static void kdamond_call(struct damon_ctx *ctx, bool cancel)
2363{
2364 struct damon_call_control *control;
2365 int ret = 0;
2366
2367 mutex_lock(&ctx->call_control_lock);
2368 control = ctx->call_control;
2369 mutex_unlock(lock: &ctx->call_control_lock);
2370 if (!control)
2371 return;
2372 if (cancel) {
2373 control->canceled = true;
2374 } else {
2375 ret = control->fn(control->data);
2376 control->return_code = ret;
2377 }
2378 complete(&control->completion);
2379 mutex_lock(&ctx->call_control_lock);
2380 ctx->call_control = NULL;
2381 mutex_unlock(lock: &ctx->call_control_lock);
2382}
2383
2384/* Returns negative error code if it's not activated but should return */
2385static int kdamond_wait_activation(struct damon_ctx *ctx)
2386{
2387 struct damos *s;
2388 unsigned long wait_time;
2389 unsigned long min_wait_time = 0;
2390 bool init_wait_time = false;
2391
2392 while (!kdamond_need_stop(ctx)) {
2393 damon_for_each_scheme(s, ctx) {
2394 wait_time = damos_wmark_wait_us(scheme: s);
2395 if (!init_wait_time || wait_time < min_wait_time) {
2396 init_wait_time = true;
2397 min_wait_time = wait_time;
2398 }
2399 }
2400 if (!min_wait_time)
2401 return 0;
2402
2403 kdamond_usleep(usecs: min_wait_time);
2404
2405 if (ctx->callback.after_wmarks_check &&
2406 ctx->callback.after_wmarks_check(ctx))
2407 break;
2408 kdamond_call(ctx, cancel: true);
2409 damos_walk_cancel(ctx);
2410 }
2411 return -EBUSY;
2412}
2413
2414static void kdamond_init_ctx(struct damon_ctx *ctx)
2415{
2416 unsigned long sample_interval = ctx->attrs.sample_interval ?
2417 ctx->attrs.sample_interval : 1;
2418 unsigned long apply_interval;
2419 struct damos *scheme;
2420
2421 ctx->passed_sample_intervals = 0;
2422 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
2423 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
2424 sample_interval;
2425 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis *
2426 ctx->attrs.intervals_goal.aggrs;
2427
2428 damon_for_each_scheme(scheme, ctx) {
2429 apply_interval = scheme->apply_interval_us ?
2430 scheme->apply_interval_us : ctx->attrs.aggr_interval;
2431 scheme->next_apply_sis = apply_interval / sample_interval;
2432 damos_set_filters_default_reject(s: scheme);
2433 }
2434}
2435
2436/*
2437 * The monitoring daemon that runs as a kernel thread
2438 */
2439static int kdamond_fn(void *data)
2440{
2441 struct damon_ctx *ctx = data;
2442 struct damon_target *t;
2443 struct damon_region *r, *next;
2444 unsigned int max_nr_accesses = 0;
2445 unsigned long sz_limit = 0;
2446
2447 pr_debug("kdamond (%d) starts\n", current->pid);
2448
2449 complete(&ctx->kdamond_started);
2450 kdamond_init_ctx(ctx);
2451
2452 if (ctx->ops.init)
2453 ctx->ops.init(ctx);
2454 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
2455 sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
2456 if (!ctx->regions_score_histogram)
2457 goto done;
2458
2459 sz_limit = damon_region_sz_limit(ctx);
2460
2461 while (!kdamond_need_stop(ctx)) {
2462 /*
2463 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2464 * be changed from after_wmarks_check() or after_aggregation()
2465 * callbacks. Read the values here, and use those for this
2466 * iteration. That is, damon_set_attrs() updated new values
2467 * are respected from next iteration.
2468 */
2469 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2470 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2471 unsigned long sample_interval = ctx->attrs.sample_interval;
2472
2473 if (kdamond_wait_activation(ctx))
2474 break;
2475
2476 if (ctx->ops.prepare_access_checks)
2477 ctx->ops.prepare_access_checks(ctx);
2478
2479 kdamond_usleep(usecs: sample_interval);
2480 ctx->passed_sample_intervals++;
2481
2482 if (ctx->ops.check_accesses)
2483 max_nr_accesses = ctx->ops.check_accesses(ctx);
2484
2485 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2486 kdamond_merge_regions(c: ctx,
2487 threshold: max_nr_accesses / 10,
2488 sz_limit);
2489 if (ctx->callback.after_aggregation &&
2490 ctx->callback.after_aggregation(ctx))
2491 break;
2492 }
2493
2494 /*
2495 * do kdamond_call() and kdamond_apply_schemes() after
2496 * kdamond_merge_regions() if possible, to reduce overhead
2497 */
2498 kdamond_call(ctx, cancel: false);
2499 if (!list_empty(head: &ctx->schemes))
2500 kdamond_apply_schemes(c: ctx);
2501 else
2502 damos_walk_cancel(ctx);
2503
2504 sample_interval = ctx->attrs.sample_interval ?
2505 ctx->attrs.sample_interval : 1;
2506 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2507 if (ctx->attrs.intervals_goal.aggrs &&
2508 ctx->passed_sample_intervals >=
2509 ctx->next_intervals_tune_sis) {
2510 /*
2511 * ctx->next_aggregation_sis might be updated
2512 * from kdamond_call(). In the case,
2513 * damon_set_attrs() which will be called from
2514 * kdamond_tune_interval() may wrongly think
2515 * this is in the middle of the current
2516 * aggregation, and make aggregation
2517 * information reset for all regions. Then,
2518 * following kdamond_reset_aggregated() call
2519 * will make the region information invalid,
2520 * particularly for ->nr_accesses_bp.
2521 *
2522 * Reset ->next_aggregation_sis to avoid that.
2523 * It will anyway correctly updated after this
2524 * if caluse.
2525 */
2526 ctx->next_aggregation_sis =
2527 next_aggregation_sis;
2528 ctx->next_intervals_tune_sis +=
2529 ctx->attrs.aggr_samples *
2530 ctx->attrs.intervals_goal.aggrs;
2531 kdamond_tune_intervals(c: ctx);
2532 sample_interval = ctx->attrs.sample_interval ?
2533 ctx->attrs.sample_interval : 1;
2534
2535 }
2536 ctx->next_aggregation_sis = next_aggregation_sis +
2537 ctx->attrs.aggr_interval / sample_interval;
2538
2539 kdamond_reset_aggregated(c: ctx);
2540 kdamond_split_regions(ctx);
2541 }
2542
2543 if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2544 ctx->next_ops_update_sis = next_ops_update_sis +
2545 ctx->attrs.ops_update_interval /
2546 sample_interval;
2547 if (ctx->ops.update)
2548 ctx->ops.update(ctx);
2549 sz_limit = damon_region_sz_limit(ctx);
2550 }
2551 }
2552done:
2553 damon_for_each_target(t, ctx) {
2554 damon_for_each_region_safe(r, next, t)
2555 damon_destroy_region(r, t);
2556 }
2557
2558 if (ctx->callback.before_terminate)
2559 ctx->callback.before_terminate(ctx);
2560 if (ctx->ops.cleanup)
2561 ctx->ops.cleanup(ctx);
2562 kfree(objp: ctx->regions_score_histogram);
2563
2564 pr_debug("kdamond (%d) finishes\n", current->pid);
2565 mutex_lock(&ctx->kdamond_lock);
2566 ctx->kdamond = NULL;
2567 mutex_unlock(lock: &ctx->kdamond_lock);
2568
2569 kdamond_call(ctx, cancel: true);
2570 damos_walk_cancel(ctx);
2571
2572 mutex_lock(&damon_lock);
2573 nr_running_ctxs--;
2574 if (!nr_running_ctxs && running_exclusive_ctxs)
2575 running_exclusive_ctxs = false;
2576 mutex_unlock(lock: &damon_lock);
2577
2578 return 0;
2579}
2580
2581/*
2582 * struct damon_system_ram_region - System RAM resource address region of
2583 * [@start, @end).
2584 * @start: Start address of the region (inclusive).
2585 * @end: End address of the region (exclusive).
2586 */
2587struct damon_system_ram_region {
2588 unsigned long start;
2589 unsigned long end;
2590};
2591
2592static int walk_system_ram(struct resource *res, void *arg)
2593{
2594 struct damon_system_ram_region *a = arg;
2595
2596 if (a->end - a->start < resource_size(res)) {
2597 a->start = res->start;
2598 a->end = res->end;
2599 }
2600 return 0;
2601}
2602
2603/*
2604 * Find biggest 'System RAM' resource and store its start and end address in
2605 * @start and @end, respectively. If no System RAM is found, returns false.
2606 */
2607static bool damon_find_biggest_system_ram(unsigned long *start,
2608 unsigned long *end)
2609
2610{
2611 struct damon_system_ram_region arg = {};
2612
2613 walk_system_ram_res(start: 0, ULONG_MAX, arg: &arg, func: walk_system_ram);
2614 if (arg.end <= arg.start)
2615 return false;
2616
2617 *start = arg.start;
2618 *end = arg.end;
2619 return true;
2620}
2621
2622/**
2623 * damon_set_region_biggest_system_ram_default() - Set the region of the given
2624 * monitoring target as requested, or biggest 'System RAM'.
2625 * @t: The monitoring target to set the region.
2626 * @start: The pointer to the start address of the region.
2627 * @end: The pointer to the end address of the region.
2628 *
2629 * This function sets the region of @t as requested by @start and @end. If the
2630 * values of @start and @end are zero, however, this function finds the biggest
2631 * 'System RAM' resource and sets the region to cover the resource. In the
2632 * latter case, this function saves the start and end addresses of the resource
2633 * in @start and @end, respectively.
2634 *
2635 * Return: 0 on success, negative error code otherwise.
2636 */
2637int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2638 unsigned long *start, unsigned long *end)
2639{
2640 struct damon_addr_range addr_range;
2641
2642 if (*start > *end)
2643 return -EINVAL;
2644
2645 if (!*start && !*end &&
2646 !damon_find_biggest_system_ram(start, end))
2647 return -EINVAL;
2648
2649 addr_range.start = *start;
2650 addr_range.end = *end;
2651 return damon_set_regions(t, ranges: &addr_range, nr_ranges: 1);
2652}
2653
2654/*
2655 * damon_moving_sum() - Calculate an inferred moving sum value.
2656 * @mvsum: Inferred sum of the last @len_window values.
2657 * @nomvsum: Non-moving sum of the last discrete @len_window window values.
2658 * @len_window: The number of last values to take care of.
2659 * @new_value: New value that will be added to the pseudo moving sum.
2660 *
2661 * Moving sum (moving average * window size) is good for handling noise, but
2662 * the cost of keeping past values can be high for arbitrary window size. This
2663 * function implements a lightweight pseudo moving sum function that doesn't
2664 * keep the past window values.
2665 *
2666 * It simply assumes there was no noise in the past, and get the no-noise
2667 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a
2668 * non-moving sum of the last window. For example, if @len_window is 10 and we
2669 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2670 * values. Hence, this function simply drops @nomvsum / @len_window from
2671 * given @mvsum and add @new_value.
2672 *
2673 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2674 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For
2675 * calculating next moving sum with a new value, we should drop 0 from 50 and
2676 * add the new value. However, this function assumes it got value 5 for each
2677 * of the last ten times. Based on the assumption, when the next value is
2678 * measured, it drops the assumed past value, 5 from the current sum, and add
2679 * the new value to get the updated pseduo-moving average.
2680 *
2681 * This means the value could have errors, but the errors will be disappeared
2682 * for every @len_window aligned calls. For example, if @len_window is 10, the
2683 * pseudo moving sum with 11th value to 19th value would have an error. But
2684 * the sum with 20th value will not have the error.
2685 *
2686 * Return: Pseudo-moving average after getting the @new_value.
2687 */
2688static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2689 unsigned int len_window, unsigned int new_value)
2690{
2691 return mvsum - nomvsum / len_window + new_value;
2692}
2693
2694/**
2695 * damon_update_region_access_rate() - Update the access rate of a region.
2696 * @r: The DAMON region to update for its access check result.
2697 * @accessed: Whether the region has accessed during last sampling interval.
2698 * @attrs: The damon_attrs of the DAMON context.
2699 *
2700 * Update the access rate of a region with the region's last sampling interval
2701 * access check result.
2702 *
2703 * Usually this will be called by &damon_operations->check_accesses callback.
2704 */
2705void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2706 struct damon_attrs *attrs)
2707{
2708 unsigned int len_window = 1;
2709
2710 /*
2711 * sample_interval can be zero, but cannot be larger than
2712 * aggr_interval, owing to validation of damon_set_attrs().
2713 */
2714 if (attrs->sample_interval)
2715 len_window = damon_max_nr_accesses(attrs);
2716 r->nr_accesses_bp = damon_moving_sum(mvsum: r->nr_accesses_bp,
2717 nomvsum: r->last_nr_accesses * 10000, len_window,
2718 new_value: accessed ? 10000 : 0);
2719
2720 if (accessed)
2721 r->nr_accesses++;
2722}
2723
2724static int __init damon_init(void)
2725{
2726 damon_region_cache = KMEM_CACHE(damon_region, 0);
2727 if (unlikely(!damon_region_cache)) {
2728 pr_err("creating damon_region_cache fails\n");
2729 return -ENOMEM;
2730 }
2731
2732 return 0;
2733}
2734
2735subsys_initcall(damon_init);
2736
2737#include "tests/core-kunit.h"
2738

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/mm/damon/core.c