1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13#include <linux/fs.h>
14#include <linux/mm.h>
15#include <linux/err.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/vmstat.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
24#include <linux/sched.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include <linux/compaction.h>
28#include <linux/mm_inline.h>
29#include <linux/page_owner.h>
30#include <linux/sched/isolation.h>
31
32#include "internal.h"
33
34#ifdef CONFIG_NUMA
35int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37/* zero numa counters within a zone */
38static void zero_zone_numa_counters(struct zone *zone)
39{
40 int item, cpu;
41
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(v: &zone->vm_numa_event[item], i: 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 = 0;
47 }
48 }
49}
50
51/* zero numa counters of all the populated zones */
52static void zero_zones_numa_counters(void)
53{
54 struct zone *zone;
55
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
58}
59
60/* zero global numa counters */
61static void zero_global_numa_counters(void)
62{
63 int item;
64
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(v: &vm_numa_event[item], i: 0);
67}
68
69static void invalid_numa_statistics(void)
70{
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
73}
74
75static DEFINE_MUTEX(vm_numa_stat_lock);
76
77int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
79{
80 int ret, oldval;
81
82 mutex_lock(&vm_numa_stat_lock);
83 if (write)
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 if (ret || !write)
87 goto out;
88
89 if (oldval == sysctl_vm_numa_stat)
90 goto out;
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
94 } else {
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
98 }
99
100out:
101 mutex_unlock(lock: &vm_numa_stat_lock);
102 return ret;
103}
104#endif
105
106#ifdef CONFIG_VM_EVENT_COUNTERS
107DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
110static void sum_vm_events(unsigned long *ret)
111{
112 int cpu;
113 int i;
114
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
122 }
123}
124
125/*
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
129*/
130void all_vm_events(unsigned long *ret)
131{
132 cpus_read_lock();
133 sum_vm_events(ret);
134 cpus_read_unlock();
135}
136EXPORT_SYMBOL_GPL(all_vm_events);
137
138/*
139 * Fold the foreign cpu events into our own.
140 *
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
143 */
144void vm_events_fold_cpu(int cpu)
145{
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 int i;
148
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(item: i, delta: fold_state->event[i]);
151 fold_state->event[i] = 0;
152 }
153}
154
155#endif /* CONFIG_VM_EVENT_COUNTERS */
156
157/*
158 * Manage combined zone based / global counters
159 *
160 * vm_stat contains the global counters
161 */
162atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165EXPORT_SYMBOL(vm_zone_stat);
166EXPORT_SYMBOL(vm_node_stat);
167
168#ifdef CONFIG_NUMA
169static void fold_vm_zone_numa_events(struct zone *zone)
170{
171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172 int cpu;
173 enum numa_stat_item item;
174
175 for_each_online_cpu(cpu) {
176 struct per_cpu_zonestat *pzstats;
177
178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181 }
182
183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184 zone_numa_event_add(x: zone_numa_events[item], zone, item);
185}
186
187void fold_vm_numa_events(void)
188{
189 struct zone *zone;
190
191 for_each_populated_zone(zone)
192 fold_vm_zone_numa_events(zone);
193}
194#endif
195
196#ifdef CONFIG_SMP
197
198int calculate_pressure_threshold(struct zone *zone)
199{
200 int threshold;
201 int watermark_distance;
202
203 /*
204 * As vmstats are not up to date, there is drift between the estimated
205 * and real values. For high thresholds and a high number of CPUs, it
206 * is possible for the min watermark to be breached while the estimated
207 * value looks fine. The pressure threshold is a reduced value such
208 * that even the maximum amount of drift will not accidentally breach
209 * the min watermark
210 */
211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213
214 /*
215 * Maximum threshold is 125
216 */
217 threshold = min(125, threshold);
218
219 return threshold;
220}
221
222int calculate_normal_threshold(struct zone *zone)
223{
224 int threshold;
225 int mem; /* memory in 128 MB units */
226
227 /*
228 * The threshold scales with the number of processors and the amount
229 * of memory per zone. More memory means that we can defer updates for
230 * longer, more processors could lead to more contention.
231 * fls() is used to have a cheap way of logarithmic scaling.
232 *
233 * Some sample thresholds:
234 *
235 * Threshold Processors (fls) Zonesize fls(mem)+1
236 * ------------------------------------------------------------------
237 * 8 1 1 0.9-1 GB 4
238 * 16 2 2 0.9-1 GB 4
239 * 20 2 2 1-2 GB 5
240 * 24 2 2 2-4 GB 6
241 * 28 2 2 4-8 GB 7
242 * 32 2 2 8-16 GB 8
243 * 4 2 2 <128M 1
244 * 30 4 3 2-4 GB 5
245 * 48 4 3 8-16 GB 8
246 * 32 8 4 1-2 GB 4
247 * 32 8 4 0.9-1GB 4
248 * 10 16 5 <128M 1
249 * 40 16 5 900M 4
250 * 70 64 7 2-4 GB 5
251 * 84 64 7 4-8 GB 6
252 * 108 512 9 4-8 GB 6
253 * 125 1024 10 8-16 GB 8
254 * 125 1024 10 16-32 GB 9
255 */
256
257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258
259 threshold = 2 * fls(x: num_online_cpus()) * (1 + fls(x: mem));
260
261 /*
262 * Maximum threshold is 125
263 */
264 threshold = min(125, threshold);
265
266 return threshold;
267}
268
269/*
270 * Refresh the thresholds for each zone.
271 */
272void refresh_zone_stat_thresholds(void)
273{
274 struct pglist_data *pgdat;
275 struct zone *zone;
276 int cpu;
277 int threshold;
278
279 /* Zero current pgdat thresholds */
280 for_each_online_pgdat(pgdat) {
281 for_each_online_cpu(cpu) {
282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283 }
284 }
285
286 for_each_populated_zone(zone) {
287 struct pglist_data *pgdat = zone->zone_pgdat;
288 unsigned long max_drift, tolerate_drift;
289
290 threshold = calculate_normal_threshold(zone);
291
292 for_each_online_cpu(cpu) {
293 int pgdat_threshold;
294
295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296 = threshold;
297
298 /* Base nodestat threshold on the largest populated zone. */
299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301 = max(threshold, pgdat_threshold);
302 }
303
304 /*
305 * Only set percpu_drift_mark if there is a danger that
306 * NR_FREE_PAGES reports the low watermark is ok when in fact
307 * the min watermark could be breached by an allocation
308 */
309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310 max_drift = num_online_cpus() * threshold;
311 if (max_drift > tolerate_drift)
312 zone->percpu_drift_mark = high_wmark_pages(zone) +
313 max_drift;
314 }
315}
316
317void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318 int (*calculate_pressure)(struct zone *))
319{
320 struct zone *zone;
321 int cpu;
322 int threshold;
323 int i;
324
325 for (i = 0; i < pgdat->nr_zones; i++) {
326 zone = &pgdat->node_zones[i];
327 if (!zone->percpu_drift_mark)
328 continue;
329
330 threshold = (*calculate_pressure)(zone);
331 for_each_online_cpu(cpu)
332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333 = threshold;
334 }
335}
336
337/*
338 * For use when we know that interrupts are disabled,
339 * or when we know that preemption is disabled and that
340 * particular counter cannot be updated from interrupt context.
341 */
342void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343 long delta)
344{
345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346 s8 __percpu *p = pcp->vm_stat_diff + item;
347 long x;
348 long t;
349
350 /*
351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352 * atomicity is provided by IRQs being disabled -- either explicitly
353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354 * CPU migrations and preemption potentially corrupts a counter so
355 * disable preemption.
356 */
357 preempt_disable_nested();
358
359 x = delta + __this_cpu_read(*p);
360
361 t = __this_cpu_read(pcp->stat_threshold);
362
363 if (unlikely(abs(x) > t)) {
364 zone_page_state_add(x, zone, item);
365 x = 0;
366 }
367 __this_cpu_write(*p, x);
368
369 preempt_enable_nested();
370}
371EXPORT_SYMBOL(__mod_zone_page_state);
372
373void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374 long delta)
375{
376 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377 s8 __percpu *p = pcp->vm_node_stat_diff + item;
378 long x;
379 long t;
380
381 if (vmstat_item_in_bytes(idx: item)) {
382 /*
383 * Only cgroups use subpage accounting right now; at
384 * the global level, these items still change in
385 * multiples of whole pages. Store them as pages
386 * internally to keep the per-cpu counters compact.
387 */
388 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389 delta >>= PAGE_SHIFT;
390 }
391
392 /* See __mod_node_page_state */
393 preempt_disable_nested();
394
395 x = delta + __this_cpu_read(*p);
396
397 t = __this_cpu_read(pcp->stat_threshold);
398
399 if (unlikely(abs(x) > t)) {
400 node_page_state_add(x, pgdat, item);
401 x = 0;
402 }
403 __this_cpu_write(*p, x);
404
405 preempt_enable_nested();
406}
407EXPORT_SYMBOL(__mod_node_page_state);
408
409/*
410 * Optimized increment and decrement functions.
411 *
412 * These are only for a single page and therefore can take a struct page *
413 * argument instead of struct zone *. This allows the inclusion of the code
414 * generated for page_zone(page) into the optimized functions.
415 *
416 * No overflow check is necessary and therefore the differential can be
417 * incremented or decremented in place which may allow the compilers to
418 * generate better code.
419 * The increment or decrement is known and therefore one boundary check can
420 * be omitted.
421 *
422 * NOTE: These functions are very performance sensitive. Change only
423 * with care.
424 *
425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
426 * However, the code must first determine the differential location in a zone
427 * based on the processor number and then inc/dec the counter. There is no
428 * guarantee without disabling preemption that the processor will not change
429 * in between and therefore the atomicity vs. interrupt cannot be exploited
430 * in a useful way here.
431 */
432void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433{
434 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435 s8 __percpu *p = pcp->vm_stat_diff + item;
436 s8 v, t;
437
438 /* See __mod_node_page_state */
439 preempt_disable_nested();
440
441 v = __this_cpu_inc_return(*p);
442 t = __this_cpu_read(pcp->stat_threshold);
443 if (unlikely(v > t)) {
444 s8 overstep = t >> 1;
445
446 zone_page_state_add(x: v + overstep, zone, item);
447 __this_cpu_write(*p, -overstep);
448 }
449
450 preempt_enable_nested();
451}
452
453void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454{
455 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456 s8 __percpu *p = pcp->vm_node_stat_diff + item;
457 s8 v, t;
458
459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460
461 /* See __mod_node_page_state */
462 preempt_disable_nested();
463
464 v = __this_cpu_inc_return(*p);
465 t = __this_cpu_read(pcp->stat_threshold);
466 if (unlikely(v > t)) {
467 s8 overstep = t >> 1;
468
469 node_page_state_add(x: v + overstep, pgdat, item);
470 __this_cpu_write(*p, -overstep);
471 }
472
473 preempt_enable_nested();
474}
475
476void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477{
478 __inc_zone_state(zone: page_zone(page), item);
479}
480EXPORT_SYMBOL(__inc_zone_page_state);
481
482void __inc_node_page_state(struct page *page, enum node_stat_item item)
483{
484 __inc_node_state(pgdat: page_pgdat(page), item);
485}
486EXPORT_SYMBOL(__inc_node_page_state);
487
488void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489{
490 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491 s8 __percpu *p = pcp->vm_stat_diff + item;
492 s8 v, t;
493
494 /* See __mod_node_page_state */
495 preempt_disable_nested();
496
497 v = __this_cpu_dec_return(*p);
498 t = __this_cpu_read(pcp->stat_threshold);
499 if (unlikely(v < - t)) {
500 s8 overstep = t >> 1;
501
502 zone_page_state_add(x: v - overstep, zone, item);
503 __this_cpu_write(*p, overstep);
504 }
505
506 preempt_enable_nested();
507}
508
509void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510{
511 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512 s8 __percpu *p = pcp->vm_node_stat_diff + item;
513 s8 v, t;
514
515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516
517 /* See __mod_node_page_state */
518 preempt_disable_nested();
519
520 v = __this_cpu_dec_return(*p);
521 t = __this_cpu_read(pcp->stat_threshold);
522 if (unlikely(v < - t)) {
523 s8 overstep = t >> 1;
524
525 node_page_state_add(x: v - overstep, pgdat, item);
526 __this_cpu_write(*p, overstep);
527 }
528
529 preempt_enable_nested();
530}
531
532void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533{
534 __dec_zone_state(zone: page_zone(page), item);
535}
536EXPORT_SYMBOL(__dec_zone_page_state);
537
538void __dec_node_page_state(struct page *page, enum node_stat_item item)
539{
540 __dec_node_state(pgdat: page_pgdat(page), item);
541}
542EXPORT_SYMBOL(__dec_node_page_state);
543
544#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545/*
546 * If we have cmpxchg_local support then we do not need to incur the overhead
547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548 *
549 * mod_state() modifies the zone counter state through atomic per cpu
550 * operations.
551 *
552 * Overstep mode specifies how overstep should handled:
553 * 0 No overstepping
554 * 1 Overstepping half of threshold
555 * -1 Overstepping minus half of threshold
556*/
557static inline void mod_zone_state(struct zone *zone,
558 enum zone_stat_item item, long delta, int overstep_mode)
559{
560 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561 s8 __percpu *p = pcp->vm_stat_diff + item;
562 long n, t, z;
563 s8 o;
564
565 o = this_cpu_read(*p);
566 do {
567 z = 0; /* overflow to zone counters */
568
569 /*
570 * The fetching of the stat_threshold is racy. We may apply
571 * a counter threshold to the wrong the cpu if we get
572 * rescheduled while executing here. However, the next
573 * counter update will apply the threshold again and
574 * therefore bring the counter under the threshold again.
575 *
576 * Most of the time the thresholds are the same anyways
577 * for all cpus in a zone.
578 */
579 t = this_cpu_read(pcp->stat_threshold);
580
581 n = delta + (long)o;
582
583 if (abs(n) > t) {
584 int os = overstep_mode * (t >> 1) ;
585
586 /* Overflow must be added to zone counters */
587 z = n + os;
588 n = -os;
589 }
590 } while (!this_cpu_try_cmpxchg(*p, &o, n));
591
592 if (z)
593 zone_page_state_add(x: z, zone, item);
594}
595
596void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
597 long delta)
598{
599 mod_zone_state(zone, item, delta, overstep_mode: 0);
600}
601EXPORT_SYMBOL(mod_zone_page_state);
602
603void inc_zone_page_state(struct page *page, enum zone_stat_item item)
604{
605 mod_zone_state(zone: page_zone(page), item, delta: 1, overstep_mode: 1);
606}
607EXPORT_SYMBOL(inc_zone_page_state);
608
609void dec_zone_page_state(struct page *page, enum zone_stat_item item)
610{
611 mod_zone_state(zone: page_zone(page), item, delta: -1, overstep_mode: -1);
612}
613EXPORT_SYMBOL(dec_zone_page_state);
614
615static inline void mod_node_state(struct pglist_data *pgdat,
616 enum node_stat_item item, int delta, int overstep_mode)
617{
618 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
619 s8 __percpu *p = pcp->vm_node_stat_diff + item;
620 long n, t, z;
621 s8 o;
622
623 if (vmstat_item_in_bytes(idx: item)) {
624 /*
625 * Only cgroups use subpage accounting right now; at
626 * the global level, these items still change in
627 * multiples of whole pages. Store them as pages
628 * internally to keep the per-cpu counters compact.
629 */
630 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
631 delta >>= PAGE_SHIFT;
632 }
633
634 o = this_cpu_read(*p);
635 do {
636 z = 0; /* overflow to node counters */
637
638 /*
639 * The fetching of the stat_threshold is racy. We may apply
640 * a counter threshold to the wrong the cpu if we get
641 * rescheduled while executing here. However, the next
642 * counter update will apply the threshold again and
643 * therefore bring the counter under the threshold again.
644 *
645 * Most of the time the thresholds are the same anyways
646 * for all cpus in a node.
647 */
648 t = this_cpu_read(pcp->stat_threshold);
649
650 n = delta + (long)o;
651
652 if (abs(n) > t) {
653 int os = overstep_mode * (t >> 1) ;
654
655 /* Overflow must be added to node counters */
656 z = n + os;
657 n = -os;
658 }
659 } while (!this_cpu_try_cmpxchg(*p, &o, n));
660
661 if (z)
662 node_page_state_add(x: z, pgdat, item);
663}
664
665void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
666 long delta)
667{
668 mod_node_state(pgdat, item, delta, overstep_mode: 0);
669}
670EXPORT_SYMBOL(mod_node_page_state);
671
672void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
673{
674 mod_node_state(pgdat, item, delta: 1, overstep_mode: 1);
675}
676
677void inc_node_page_state(struct page *page, enum node_stat_item item)
678{
679 mod_node_state(pgdat: page_pgdat(page), item, delta: 1, overstep_mode: 1);
680}
681EXPORT_SYMBOL(inc_node_page_state);
682
683void dec_node_page_state(struct page *page, enum node_stat_item item)
684{
685 mod_node_state(pgdat: page_pgdat(page), item, delta: -1, overstep_mode: -1);
686}
687EXPORT_SYMBOL(dec_node_page_state);
688#else
689/*
690 * Use interrupt disable to serialize counter updates
691 */
692void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
693 long delta)
694{
695 unsigned long flags;
696
697 local_irq_save(flags);
698 __mod_zone_page_state(zone, item, delta);
699 local_irq_restore(flags);
700}
701EXPORT_SYMBOL(mod_zone_page_state);
702
703void inc_zone_page_state(struct page *page, enum zone_stat_item item)
704{
705 unsigned long flags;
706 struct zone *zone;
707
708 zone = page_zone(page);
709 local_irq_save(flags);
710 __inc_zone_state(zone, item);
711 local_irq_restore(flags);
712}
713EXPORT_SYMBOL(inc_zone_page_state);
714
715void dec_zone_page_state(struct page *page, enum zone_stat_item item)
716{
717 unsigned long flags;
718
719 local_irq_save(flags);
720 __dec_zone_page_state(page, item);
721 local_irq_restore(flags);
722}
723EXPORT_SYMBOL(dec_zone_page_state);
724
725void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
726{
727 unsigned long flags;
728
729 local_irq_save(flags);
730 __inc_node_state(pgdat, item);
731 local_irq_restore(flags);
732}
733EXPORT_SYMBOL(inc_node_state);
734
735void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
736 long delta)
737{
738 unsigned long flags;
739
740 local_irq_save(flags);
741 __mod_node_page_state(pgdat, item, delta);
742 local_irq_restore(flags);
743}
744EXPORT_SYMBOL(mod_node_page_state);
745
746void inc_node_page_state(struct page *page, enum node_stat_item item)
747{
748 unsigned long flags;
749 struct pglist_data *pgdat;
750
751 pgdat = page_pgdat(page);
752 local_irq_save(flags);
753 __inc_node_state(pgdat, item);
754 local_irq_restore(flags);
755}
756EXPORT_SYMBOL(inc_node_page_state);
757
758void dec_node_page_state(struct page *page, enum node_stat_item item)
759{
760 unsigned long flags;
761
762 local_irq_save(flags);
763 __dec_node_page_state(page, item);
764 local_irq_restore(flags);
765}
766EXPORT_SYMBOL(dec_node_page_state);
767#endif
768
769/*
770 * Fold a differential into the global counters.
771 * Returns the number of counters updated.
772 */
773static int fold_diff(int *zone_diff, int *node_diff)
774{
775 int i;
776 int changes = 0;
777
778 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
779 if (zone_diff[i]) {
780 atomic_long_add(i: zone_diff[i], v: &vm_zone_stat[i]);
781 changes++;
782 }
783
784 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
785 if (node_diff[i]) {
786 atomic_long_add(i: node_diff[i], v: &vm_node_stat[i]);
787 changes++;
788 }
789 return changes;
790}
791
792/*
793 * Update the zone counters for the current cpu.
794 *
795 * Note that refresh_cpu_vm_stats strives to only access
796 * node local memory. The per cpu pagesets on remote zones are placed
797 * in the memory local to the processor using that pageset. So the
798 * loop over all zones will access a series of cachelines local to
799 * the processor.
800 *
801 * The call to zone_page_state_add updates the cachelines with the
802 * statistics in the remote zone struct as well as the global cachelines
803 * with the global counters. These could cause remote node cache line
804 * bouncing and will have to be only done when necessary.
805 *
806 * The function returns the number of global counters updated.
807 */
808static int refresh_cpu_vm_stats(bool do_pagesets)
809{
810 struct pglist_data *pgdat;
811 struct zone *zone;
812 int i;
813 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
814 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
815 int changes = 0;
816
817 for_each_populated_zone(zone) {
818 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
819 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
820
821 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822 int v;
823
824 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825 if (v) {
826
827 atomic_long_add(i: v, v: &zone->vm_stat[i]);
828 global_zone_diff[i] += v;
829#ifdef CONFIG_NUMA
830 /* 3 seconds idle till flush */
831 __this_cpu_write(pcp->expire, 3);
832#endif
833 }
834 }
835
836 if (do_pagesets) {
837 cond_resched();
838
839 changes += decay_pcp_high(zone, this_cpu_ptr(pcp));
840#ifdef CONFIG_NUMA
841 /*
842 * Deal with draining the remote pageset of this
843 * processor
844 *
845 * Check if there are pages remaining in this pageset
846 * if not then there is nothing to expire.
847 */
848 if (!__this_cpu_read(pcp->expire) ||
849 !__this_cpu_read(pcp->count))
850 continue;
851
852 /*
853 * We never drain zones local to this processor.
854 */
855 if (zone_to_nid(zone) == numa_node_id()) {
856 __this_cpu_write(pcp->expire, 0);
857 continue;
858 }
859
860 if (__this_cpu_dec_return(pcp->expire)) {
861 changes++;
862 continue;
863 }
864
865 if (__this_cpu_read(pcp->count)) {
866 drain_zone_pages(zone, this_cpu_ptr(pcp));
867 changes++;
868 }
869#endif
870 }
871 }
872
873 for_each_online_pgdat(pgdat) {
874 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
875
876 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
877 int v;
878
879 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
880 if (v) {
881 atomic_long_add(i: v, v: &pgdat->vm_stat[i]);
882 global_node_diff[i] += v;
883 }
884 }
885 }
886
887 changes += fold_diff(zone_diff: global_zone_diff, node_diff: global_node_diff);
888 return changes;
889}
890
891/*
892 * Fold the data for an offline cpu into the global array.
893 * There cannot be any access by the offline cpu and therefore
894 * synchronization is simplified.
895 */
896void cpu_vm_stats_fold(int cpu)
897{
898 struct pglist_data *pgdat;
899 struct zone *zone;
900 int i;
901 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
902 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
903
904 for_each_populated_zone(zone) {
905 struct per_cpu_zonestat *pzstats;
906
907 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
908
909 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
910 if (pzstats->vm_stat_diff[i]) {
911 int v;
912
913 v = pzstats->vm_stat_diff[i];
914 pzstats->vm_stat_diff[i] = 0;
915 atomic_long_add(i: v, v: &zone->vm_stat[i]);
916 global_zone_diff[i] += v;
917 }
918 }
919#ifdef CONFIG_NUMA
920 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
921 if (pzstats->vm_numa_event[i]) {
922 unsigned long v;
923
924 v = pzstats->vm_numa_event[i];
925 pzstats->vm_numa_event[i] = 0;
926 zone_numa_event_add(x: v, zone, item: i);
927 }
928 }
929#endif
930 }
931
932 for_each_online_pgdat(pgdat) {
933 struct per_cpu_nodestat *p;
934
935 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
936
937 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
938 if (p->vm_node_stat_diff[i]) {
939 int v;
940
941 v = p->vm_node_stat_diff[i];
942 p->vm_node_stat_diff[i] = 0;
943 atomic_long_add(i: v, v: &pgdat->vm_stat[i]);
944 global_node_diff[i] += v;
945 }
946 }
947
948 fold_diff(zone_diff: global_zone_diff, node_diff: global_node_diff);
949}
950
951/*
952 * this is only called if !populated_zone(zone), which implies no other users of
953 * pset->vm_stat_diff[] exist.
954 */
955void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
956{
957 unsigned long v;
958 int i;
959
960 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
961 if (pzstats->vm_stat_diff[i]) {
962 v = pzstats->vm_stat_diff[i];
963 pzstats->vm_stat_diff[i] = 0;
964 zone_page_state_add(x: v, zone, item: i);
965 }
966 }
967
968#ifdef CONFIG_NUMA
969 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
970 if (pzstats->vm_numa_event[i]) {
971 v = pzstats->vm_numa_event[i];
972 pzstats->vm_numa_event[i] = 0;
973 zone_numa_event_add(x: v, zone, item: i);
974 }
975 }
976#endif
977}
978#endif
979
980#ifdef CONFIG_NUMA
981/*
982 * Determine the per node value of a stat item. This function
983 * is called frequently in a NUMA machine, so try to be as
984 * frugal as possible.
985 */
986unsigned long sum_zone_node_page_state(int node,
987 enum zone_stat_item item)
988{
989 struct zone *zones = NODE_DATA(node)->node_zones;
990 int i;
991 unsigned long count = 0;
992
993 for (i = 0; i < MAX_NR_ZONES; i++)
994 count += zone_page_state(zone: zones + i, item);
995
996 return count;
997}
998
999/* Determine the per node value of a numa stat item. */
1000unsigned long sum_zone_numa_event_state(int node,
1001 enum numa_stat_item item)
1002{
1003 struct zone *zones = NODE_DATA(node)->node_zones;
1004 unsigned long count = 0;
1005 int i;
1006
1007 for (i = 0; i < MAX_NR_ZONES; i++)
1008 count += zone_numa_event_state(zone: zones + i, item);
1009
1010 return count;
1011}
1012
1013/*
1014 * Determine the per node value of a stat item.
1015 */
1016unsigned long node_page_state_pages(struct pglist_data *pgdat,
1017 enum node_stat_item item)
1018{
1019 long x = atomic_long_read(v: &pgdat->vm_stat[item]);
1020#ifdef CONFIG_SMP
1021 if (x < 0)
1022 x = 0;
1023#endif
1024 return x;
1025}
1026
1027unsigned long node_page_state(struct pglist_data *pgdat,
1028 enum node_stat_item item)
1029{
1030 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1031
1032 return node_page_state_pages(pgdat, item);
1033}
1034#endif
1035
1036#ifdef CONFIG_COMPACTION
1037
1038struct contig_page_info {
1039 unsigned long free_pages;
1040 unsigned long free_blocks_total;
1041 unsigned long free_blocks_suitable;
1042};
1043
1044/*
1045 * Calculate the number of free pages in a zone, how many contiguous
1046 * pages are free and how many are large enough to satisfy an allocation of
1047 * the target size. Note that this function makes no attempt to estimate
1048 * how many suitable free blocks there *might* be if MOVABLE pages were
1049 * migrated. Calculating that is possible, but expensive and can be
1050 * figured out from userspace
1051 */
1052static void fill_contig_page_info(struct zone *zone,
1053 unsigned int suitable_order,
1054 struct contig_page_info *info)
1055{
1056 unsigned int order;
1057
1058 info->free_pages = 0;
1059 info->free_blocks_total = 0;
1060 info->free_blocks_suitable = 0;
1061
1062 for (order = 0; order <= MAX_ORDER; order++) {
1063 unsigned long blocks;
1064
1065 /*
1066 * Count number of free blocks.
1067 *
1068 * Access to nr_free is lockless as nr_free is used only for
1069 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1070 */
1071 blocks = data_race(zone->free_area[order].nr_free);
1072 info->free_blocks_total += blocks;
1073
1074 /* Count free base pages */
1075 info->free_pages += blocks << order;
1076
1077 /* Count the suitable free blocks */
1078 if (order >= suitable_order)
1079 info->free_blocks_suitable += blocks <<
1080 (order - suitable_order);
1081 }
1082}
1083
1084/*
1085 * A fragmentation index only makes sense if an allocation of a requested
1086 * size would fail. If that is true, the fragmentation index indicates
1087 * whether external fragmentation or a lack of memory was the problem.
1088 * The value can be used to determine if page reclaim or compaction
1089 * should be used
1090 */
1091static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1092{
1093 unsigned long requested = 1UL << order;
1094
1095 if (WARN_ON_ONCE(order > MAX_ORDER))
1096 return 0;
1097
1098 if (!info->free_blocks_total)
1099 return 0;
1100
1101 /* Fragmentation index only makes sense when a request would fail */
1102 if (info->free_blocks_suitable)
1103 return -1000;
1104
1105 /*
1106 * Index is between 0 and 1 so return within 3 decimal places
1107 *
1108 * 0 => allocation would fail due to lack of memory
1109 * 1 => allocation would fail due to fragmentation
1110 */
1111 return 1000 - div_u64( dividend: (1000+(div_u64(dividend: info->free_pages * 1000ULL, divisor: requested))), divisor: info->free_blocks_total);
1112}
1113
1114/*
1115 * Calculates external fragmentation within a zone wrt the given order.
1116 * It is defined as the percentage of pages found in blocks of size
1117 * less than 1 << order. It returns values in range [0, 100].
1118 */
1119unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1120{
1121 struct contig_page_info info;
1122
1123 fill_contig_page_info(zone, suitable_order: order, info: &info);
1124 if (info.free_pages == 0)
1125 return 0;
1126
1127 return div_u64(dividend: (info.free_pages -
1128 (info.free_blocks_suitable << order)) * 100,
1129 divisor: info.free_pages);
1130}
1131
1132/* Same as __fragmentation index but allocs contig_page_info on stack */
1133int fragmentation_index(struct zone *zone, unsigned int order)
1134{
1135 struct contig_page_info info;
1136
1137 fill_contig_page_info(zone, suitable_order: order, info: &info);
1138 return __fragmentation_index(order, info: &info);
1139}
1140#endif
1141
1142#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1143 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1144#ifdef CONFIG_ZONE_DMA
1145#define TEXT_FOR_DMA(xx) xx "_dma",
1146#else
1147#define TEXT_FOR_DMA(xx)
1148#endif
1149
1150#ifdef CONFIG_ZONE_DMA32
1151#define TEXT_FOR_DMA32(xx) xx "_dma32",
1152#else
1153#define TEXT_FOR_DMA32(xx)
1154#endif
1155
1156#ifdef CONFIG_HIGHMEM
1157#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1158#else
1159#define TEXT_FOR_HIGHMEM(xx)
1160#endif
1161
1162#ifdef CONFIG_ZONE_DEVICE
1163#define TEXT_FOR_DEVICE(xx) xx "_device",
1164#else
1165#define TEXT_FOR_DEVICE(xx)
1166#endif
1167
1168#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1169 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1170 TEXT_FOR_DEVICE(xx)
1171
1172const char * const vmstat_text[] = {
1173 /* enum zone_stat_item counters */
1174 "nr_free_pages",
1175 "nr_zone_inactive_anon",
1176 "nr_zone_active_anon",
1177 "nr_zone_inactive_file",
1178 "nr_zone_active_file",
1179 "nr_zone_unevictable",
1180 "nr_zone_write_pending",
1181 "nr_mlock",
1182 "nr_bounce",
1183#if IS_ENABLED(CONFIG_ZSMALLOC)
1184 "nr_zspages",
1185#endif
1186 "nr_free_cma",
1187#ifdef CONFIG_UNACCEPTED_MEMORY
1188 "nr_unaccepted",
1189#endif
1190
1191 /* enum numa_stat_item counters */
1192#ifdef CONFIG_NUMA
1193 "numa_hit",
1194 "numa_miss",
1195 "numa_foreign",
1196 "numa_interleave",
1197 "numa_local",
1198 "numa_other",
1199#endif
1200
1201 /* enum node_stat_item counters */
1202 "nr_inactive_anon",
1203 "nr_active_anon",
1204 "nr_inactive_file",
1205 "nr_active_file",
1206 "nr_unevictable",
1207 "nr_slab_reclaimable",
1208 "nr_slab_unreclaimable",
1209 "nr_isolated_anon",
1210 "nr_isolated_file",
1211 "workingset_nodes",
1212 "workingset_refault_anon",
1213 "workingset_refault_file",
1214 "workingset_activate_anon",
1215 "workingset_activate_file",
1216 "workingset_restore_anon",
1217 "workingset_restore_file",
1218 "workingset_nodereclaim",
1219 "nr_anon_pages",
1220 "nr_mapped",
1221 "nr_file_pages",
1222 "nr_dirty",
1223 "nr_writeback",
1224 "nr_writeback_temp",
1225 "nr_shmem",
1226 "nr_shmem_hugepages",
1227 "nr_shmem_pmdmapped",
1228 "nr_file_hugepages",
1229 "nr_file_pmdmapped",
1230 "nr_anon_transparent_hugepages",
1231 "nr_vmscan_write",
1232 "nr_vmscan_immediate_reclaim",
1233 "nr_dirtied",
1234 "nr_written",
1235 "nr_throttled_written",
1236 "nr_kernel_misc_reclaimable",
1237 "nr_foll_pin_acquired",
1238 "nr_foll_pin_released",
1239 "nr_kernel_stack",
1240#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1241 "nr_shadow_call_stack",
1242#endif
1243 "nr_page_table_pages",
1244 "nr_sec_page_table_pages",
1245#ifdef CONFIG_SWAP
1246 "nr_swapcached",
1247#endif
1248#ifdef CONFIG_NUMA_BALANCING
1249 "pgpromote_success",
1250 "pgpromote_candidate",
1251#endif
1252
1253 /* enum writeback_stat_item counters */
1254 "nr_dirty_threshold",
1255 "nr_dirty_background_threshold",
1256
1257#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1258 /* enum vm_event_item counters */
1259 "pgpgin",
1260 "pgpgout",
1261 "pswpin",
1262 "pswpout",
1263
1264 TEXTS_FOR_ZONES("pgalloc")
1265 TEXTS_FOR_ZONES("allocstall")
1266 TEXTS_FOR_ZONES("pgskip")
1267
1268 "pgfree",
1269 "pgactivate",
1270 "pgdeactivate",
1271 "pglazyfree",
1272
1273 "pgfault",
1274 "pgmajfault",
1275 "pglazyfreed",
1276
1277 "pgrefill",
1278 "pgreuse",
1279 "pgsteal_kswapd",
1280 "pgsteal_direct",
1281 "pgsteal_khugepaged",
1282 "pgdemote_kswapd",
1283 "pgdemote_direct",
1284 "pgdemote_khugepaged",
1285 "pgscan_kswapd",
1286 "pgscan_direct",
1287 "pgscan_khugepaged",
1288 "pgscan_direct_throttle",
1289 "pgscan_anon",
1290 "pgscan_file",
1291 "pgsteal_anon",
1292 "pgsteal_file",
1293
1294#ifdef CONFIG_NUMA
1295 "zone_reclaim_failed",
1296#endif
1297 "pginodesteal",
1298 "slabs_scanned",
1299 "kswapd_inodesteal",
1300 "kswapd_low_wmark_hit_quickly",
1301 "kswapd_high_wmark_hit_quickly",
1302 "pageoutrun",
1303
1304 "pgrotated",
1305
1306 "drop_pagecache",
1307 "drop_slab",
1308 "oom_kill",
1309
1310#ifdef CONFIG_NUMA_BALANCING
1311 "numa_pte_updates",
1312 "numa_huge_pte_updates",
1313 "numa_hint_faults",
1314 "numa_hint_faults_local",
1315 "numa_pages_migrated",
1316#endif
1317#ifdef CONFIG_MIGRATION
1318 "pgmigrate_success",
1319 "pgmigrate_fail",
1320 "thp_migration_success",
1321 "thp_migration_fail",
1322 "thp_migration_split",
1323#endif
1324#ifdef CONFIG_COMPACTION
1325 "compact_migrate_scanned",
1326 "compact_free_scanned",
1327 "compact_isolated",
1328 "compact_stall",
1329 "compact_fail",
1330 "compact_success",
1331 "compact_daemon_wake",
1332 "compact_daemon_migrate_scanned",
1333 "compact_daemon_free_scanned",
1334#endif
1335
1336#ifdef CONFIG_HUGETLB_PAGE
1337 "htlb_buddy_alloc_success",
1338 "htlb_buddy_alloc_fail",
1339#endif
1340#ifdef CONFIG_CMA
1341 "cma_alloc_success",
1342 "cma_alloc_fail",
1343#endif
1344 "unevictable_pgs_culled",
1345 "unevictable_pgs_scanned",
1346 "unevictable_pgs_rescued",
1347 "unevictable_pgs_mlocked",
1348 "unevictable_pgs_munlocked",
1349 "unevictable_pgs_cleared",
1350 "unevictable_pgs_stranded",
1351
1352#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1353 "thp_fault_alloc",
1354 "thp_fault_fallback",
1355 "thp_fault_fallback_charge",
1356 "thp_collapse_alloc",
1357 "thp_collapse_alloc_failed",
1358 "thp_file_alloc",
1359 "thp_file_fallback",
1360 "thp_file_fallback_charge",
1361 "thp_file_mapped",
1362 "thp_split_page",
1363 "thp_split_page_failed",
1364 "thp_deferred_split_page",
1365 "thp_split_pmd",
1366 "thp_scan_exceed_none_pte",
1367 "thp_scan_exceed_swap_pte",
1368 "thp_scan_exceed_share_pte",
1369#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1370 "thp_split_pud",
1371#endif
1372 "thp_zero_page_alloc",
1373 "thp_zero_page_alloc_failed",
1374 "thp_swpout",
1375 "thp_swpout_fallback",
1376#endif
1377#ifdef CONFIG_MEMORY_BALLOON
1378 "balloon_inflate",
1379 "balloon_deflate",
1380#ifdef CONFIG_BALLOON_COMPACTION
1381 "balloon_migrate",
1382#endif
1383#endif /* CONFIG_MEMORY_BALLOON */
1384#ifdef CONFIG_DEBUG_TLBFLUSH
1385 "nr_tlb_remote_flush",
1386 "nr_tlb_remote_flush_received",
1387 "nr_tlb_local_flush_all",
1388 "nr_tlb_local_flush_one",
1389#endif /* CONFIG_DEBUG_TLBFLUSH */
1390
1391#ifdef CONFIG_SWAP
1392 "swap_ra",
1393 "swap_ra_hit",
1394#ifdef CONFIG_KSM
1395 "ksm_swpin_copy",
1396#endif
1397#endif
1398#ifdef CONFIG_KSM
1399 "cow_ksm",
1400#endif
1401#ifdef CONFIG_ZSWAP
1402 "zswpin",
1403 "zswpout",
1404#endif
1405#ifdef CONFIG_X86
1406 "direct_map_level2_splits",
1407 "direct_map_level3_splits",
1408#endif
1409#ifdef CONFIG_PER_VMA_LOCK_STATS
1410 "vma_lock_success",
1411 "vma_lock_abort",
1412 "vma_lock_retry",
1413 "vma_lock_miss",
1414#endif
1415#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1416};
1417#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1418
1419#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1420 defined(CONFIG_PROC_FS)
1421static void *frag_start(struct seq_file *m, loff_t *pos)
1422{
1423 pg_data_t *pgdat;
1424 loff_t node = *pos;
1425
1426 for (pgdat = first_online_pgdat();
1427 pgdat && node;
1428 pgdat = next_online_pgdat(pgdat))
1429 --node;
1430
1431 return pgdat;
1432}
1433
1434static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1435{
1436 pg_data_t *pgdat = (pg_data_t *)arg;
1437
1438 (*pos)++;
1439 return next_online_pgdat(pgdat);
1440}
1441
1442static void frag_stop(struct seq_file *m, void *arg)
1443{
1444}
1445
1446/*
1447 * Walk zones in a node and print using a callback.
1448 * If @assert_populated is true, only use callback for zones that are populated.
1449 */
1450static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1451 bool assert_populated, bool nolock,
1452 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1453{
1454 struct zone *zone;
1455 struct zone *node_zones = pgdat->node_zones;
1456 unsigned long flags;
1457
1458 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1459 if (assert_populated && !populated_zone(zone))
1460 continue;
1461
1462 if (!nolock)
1463 spin_lock_irqsave(&zone->lock, flags);
1464 print(m, pgdat, zone);
1465 if (!nolock)
1466 spin_unlock_irqrestore(lock: &zone->lock, flags);
1467 }
1468}
1469#endif
1470
1471#ifdef CONFIG_PROC_FS
1472static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1473 struct zone *zone)
1474{
1475 int order;
1476
1477 seq_printf(m, fmt: "Node %d, zone %8s ", pgdat->node_id, zone->name);
1478 for (order = 0; order <= MAX_ORDER; ++order)
1479 /*
1480 * Access to nr_free is lockless as nr_free is used only for
1481 * printing purposes. Use data_race to avoid KCSAN warning.
1482 */
1483 seq_printf(m, fmt: "%6lu ", data_race(zone->free_area[order].nr_free));
1484 seq_putc(m, c: '\n');
1485}
1486
1487/*
1488 * This walks the free areas for each zone.
1489 */
1490static int frag_show(struct seq_file *m, void *arg)
1491{
1492 pg_data_t *pgdat = (pg_data_t *)arg;
1493 walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: frag_show_print);
1494 return 0;
1495}
1496
1497static void pagetypeinfo_showfree_print(struct seq_file *m,
1498 pg_data_t *pgdat, struct zone *zone)
1499{
1500 int order, mtype;
1501
1502 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1503 seq_printf(m, fmt: "Node %4d, zone %8s, type %12s ",
1504 pgdat->node_id,
1505 zone->name,
1506 migratetype_names[mtype]);
1507 for (order = 0; order <= MAX_ORDER; ++order) {
1508 unsigned long freecount = 0;
1509 struct free_area *area;
1510 struct list_head *curr;
1511 bool overflow = false;
1512
1513 area = &(zone->free_area[order]);
1514
1515 list_for_each(curr, &area->free_list[mtype]) {
1516 /*
1517 * Cap the free_list iteration because it might
1518 * be really large and we are under a spinlock
1519 * so a long time spent here could trigger a
1520 * hard lockup detector. Anyway this is a
1521 * debugging tool so knowing there is a handful
1522 * of pages of this order should be more than
1523 * sufficient.
1524 */
1525 if (++freecount >= 100000) {
1526 overflow = true;
1527 break;
1528 }
1529 }
1530 seq_printf(m, fmt: "%s%6lu ", overflow ? ">" : "", freecount);
1531 spin_unlock_irq(lock: &zone->lock);
1532 cond_resched();
1533 spin_lock_irq(lock: &zone->lock);
1534 }
1535 seq_putc(m, c: '\n');
1536 }
1537}
1538
1539/* Print out the free pages at each order for each migatetype */
1540static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1541{
1542 int order;
1543 pg_data_t *pgdat = (pg_data_t *)arg;
1544
1545 /* Print header */
1546 seq_printf(m, fmt: "%-43s ", "Free pages count per migrate type at order");
1547 for (order = 0; order <= MAX_ORDER; ++order)
1548 seq_printf(m, fmt: "%6d ", order);
1549 seq_putc(m, c: '\n');
1550
1551 walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: pagetypeinfo_showfree_print);
1552}
1553
1554static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1555 pg_data_t *pgdat, struct zone *zone)
1556{
1557 int mtype;
1558 unsigned long pfn;
1559 unsigned long start_pfn = zone->zone_start_pfn;
1560 unsigned long end_pfn = zone_end_pfn(zone);
1561 unsigned long count[MIGRATE_TYPES] = { 0, };
1562
1563 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1564 struct page *page;
1565
1566 page = pfn_to_online_page(pfn);
1567 if (!page)
1568 continue;
1569
1570 if (page_zone(page) != zone)
1571 continue;
1572
1573 mtype = get_pageblock_migratetype(page);
1574
1575 if (mtype < MIGRATE_TYPES)
1576 count[mtype]++;
1577 }
1578
1579 /* Print counts */
1580 seq_printf(m, fmt: "Node %d, zone %8s ", pgdat->node_id, zone->name);
1581 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1582 seq_printf(m, fmt: "%12lu ", count[mtype]);
1583 seq_putc(m, c: '\n');
1584}
1585
1586/* Print out the number of pageblocks for each migratetype */
1587static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1588{
1589 int mtype;
1590 pg_data_t *pgdat = (pg_data_t *)arg;
1591
1592 seq_printf(m, fmt: "\n%-23s", "Number of blocks type ");
1593 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1594 seq_printf(m, fmt: "%12s ", migratetype_names[mtype]);
1595 seq_putc(m, c: '\n');
1596 walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false,
1597 print: pagetypeinfo_showblockcount_print);
1598}
1599
1600/*
1601 * Print out the number of pageblocks for each migratetype that contain pages
1602 * of other types. This gives an indication of how well fallbacks are being
1603 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1604 * to determine what is going on
1605 */
1606static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1607{
1608#ifdef CONFIG_PAGE_OWNER
1609 int mtype;
1610
1611 if (!static_branch_unlikely(&page_owner_inited))
1612 return;
1613
1614 drain_all_pages(NULL);
1615
1616 seq_printf(m, fmt: "\n%-23s", "Number of mixed blocks ");
1617 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1618 seq_printf(m, fmt: "%12s ", migratetype_names[mtype]);
1619 seq_putc(m, c: '\n');
1620
1621 walk_zones_in_node(m, pgdat, assert_populated: true, nolock: true,
1622 print: pagetypeinfo_showmixedcount_print);
1623#endif /* CONFIG_PAGE_OWNER */
1624}
1625
1626/*
1627 * This prints out statistics in relation to grouping pages by mobility.
1628 * It is expensive to collect so do not constantly read the file.
1629 */
1630static int pagetypeinfo_show(struct seq_file *m, void *arg)
1631{
1632 pg_data_t *pgdat = (pg_data_t *)arg;
1633
1634 /* check memoryless node */
1635 if (!node_state(node: pgdat->node_id, state: N_MEMORY))
1636 return 0;
1637
1638 seq_printf(m, fmt: "Page block order: %d\n", pageblock_order);
1639 seq_printf(m, fmt: "Pages per block: %lu\n", pageblock_nr_pages);
1640 seq_putc(m, c: '\n');
1641 pagetypeinfo_showfree(m, arg: pgdat);
1642 pagetypeinfo_showblockcount(m, arg: pgdat);
1643 pagetypeinfo_showmixedcount(m, pgdat);
1644
1645 return 0;
1646}
1647
1648static const struct seq_operations fragmentation_op = {
1649 .start = frag_start,
1650 .next = frag_next,
1651 .stop = frag_stop,
1652 .show = frag_show,
1653};
1654
1655static const struct seq_operations pagetypeinfo_op = {
1656 .start = frag_start,
1657 .next = frag_next,
1658 .stop = frag_stop,
1659 .show = pagetypeinfo_show,
1660};
1661
1662static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1663{
1664 int zid;
1665
1666 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1667 struct zone *compare = &pgdat->node_zones[zid];
1668
1669 if (populated_zone(zone: compare))
1670 return zone == compare;
1671 }
1672
1673 return false;
1674}
1675
1676static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1677 struct zone *zone)
1678{
1679 int i;
1680 seq_printf(m, fmt: "Node %d, zone %8s", pgdat->node_id, zone->name);
1681 if (is_zone_first_populated(pgdat, zone)) {
1682 seq_printf(m, fmt: "\n per-node stats");
1683 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1684 unsigned long pages = node_page_state_pages(pgdat, item: i);
1685
1686 if (vmstat_item_print_in_thp(item: i))
1687 pages /= HPAGE_PMD_NR;
1688 seq_printf(m, fmt: "\n %-12s %lu", node_stat_name(item: i),
1689 pages);
1690 }
1691 }
1692 seq_printf(m,
1693 fmt: "\n pages free %lu"
1694 "\n boost %lu"
1695 "\n min %lu"
1696 "\n low %lu"
1697 "\n high %lu"
1698 "\n spanned %lu"
1699 "\n present %lu"
1700 "\n managed %lu"
1701 "\n cma %lu",
1702 zone_page_state(zone, item: NR_FREE_PAGES),
1703 zone->watermark_boost,
1704 min_wmark_pages(zone),
1705 low_wmark_pages(zone),
1706 high_wmark_pages(zone),
1707 zone->spanned_pages,
1708 zone->present_pages,
1709 zone_managed_pages(zone),
1710 zone_cma_pages(zone));
1711
1712 seq_printf(m,
1713 fmt: "\n protection: (%ld",
1714 zone->lowmem_reserve[0]);
1715 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1716 seq_printf(m, fmt: ", %ld", zone->lowmem_reserve[i]);
1717 seq_putc(m, c: ')');
1718
1719 /* If unpopulated, no other information is useful */
1720 if (!populated_zone(zone)) {
1721 seq_putc(m, c: '\n');
1722 return;
1723 }
1724
1725 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1726 seq_printf(m, fmt: "\n %-12s %lu", zone_stat_name(item: i),
1727 zone_page_state(zone, item: i));
1728
1729#ifdef CONFIG_NUMA
1730 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1731 seq_printf(m, fmt: "\n %-12s %lu", numa_stat_name(item: i),
1732 zone_numa_event_state(zone, item: i));
1733#endif
1734
1735 seq_printf(m, fmt: "\n pagesets");
1736 for_each_online_cpu(i) {
1737 struct per_cpu_pages *pcp;
1738 struct per_cpu_zonestat __maybe_unused *pzstats;
1739
1740 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1741 seq_printf(m,
1742 fmt: "\n cpu: %i"
1743 "\n count: %i"
1744 "\n high: %i"
1745 "\n batch: %i",
1746 i,
1747 pcp->count,
1748 pcp->high,
1749 pcp->batch);
1750#ifdef CONFIG_SMP
1751 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1752 seq_printf(m, fmt: "\n vm stats threshold: %d",
1753 pzstats->stat_threshold);
1754#endif
1755 }
1756 seq_printf(m,
1757 fmt: "\n node_unreclaimable: %u"
1758 "\n start_pfn: %lu",
1759 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1760 zone->zone_start_pfn);
1761 seq_putc(m, c: '\n');
1762}
1763
1764/*
1765 * Output information about zones in @pgdat. All zones are printed regardless
1766 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1767 * set of all zones and userspace would not be aware of such zones if they are
1768 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1769 */
1770static int zoneinfo_show(struct seq_file *m, void *arg)
1771{
1772 pg_data_t *pgdat = (pg_data_t *)arg;
1773 walk_zones_in_node(m, pgdat, assert_populated: false, nolock: false, print: zoneinfo_show_print);
1774 return 0;
1775}
1776
1777static const struct seq_operations zoneinfo_op = {
1778 .start = frag_start, /* iterate over all zones. The same as in
1779 * fragmentation. */
1780 .next = frag_next,
1781 .stop = frag_stop,
1782 .show = zoneinfo_show,
1783};
1784
1785#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1786 NR_VM_NUMA_EVENT_ITEMS + \
1787 NR_VM_NODE_STAT_ITEMS + \
1788 NR_VM_WRITEBACK_STAT_ITEMS + \
1789 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1790 NR_VM_EVENT_ITEMS : 0))
1791
1792static void *vmstat_start(struct seq_file *m, loff_t *pos)
1793{
1794 unsigned long *v;
1795 int i;
1796
1797 if (*pos >= NR_VMSTAT_ITEMS)
1798 return NULL;
1799
1800 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1801 fold_vm_numa_events();
1802 v = kmalloc_array(NR_VMSTAT_ITEMS, size: sizeof(unsigned long), GFP_KERNEL);
1803 m->private = v;
1804 if (!v)
1805 return ERR_PTR(error: -ENOMEM);
1806 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1807 v[i] = global_zone_page_state(item: i);
1808 v += NR_VM_ZONE_STAT_ITEMS;
1809
1810#ifdef CONFIG_NUMA
1811 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1812 v[i] = global_numa_event_state(item: i);
1813 v += NR_VM_NUMA_EVENT_ITEMS;
1814#endif
1815
1816 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1817 v[i] = global_node_page_state_pages(item: i);
1818 if (vmstat_item_print_in_thp(item: i))
1819 v[i] /= HPAGE_PMD_NR;
1820 }
1821 v += NR_VM_NODE_STAT_ITEMS;
1822
1823 global_dirty_limits(pbackground: v + NR_DIRTY_BG_THRESHOLD,
1824 pdirty: v + NR_DIRTY_THRESHOLD);
1825 v += NR_VM_WRITEBACK_STAT_ITEMS;
1826
1827#ifdef CONFIG_VM_EVENT_COUNTERS
1828 all_vm_events(v);
1829 v[PGPGIN] /= 2; /* sectors -> kbytes */
1830 v[PGPGOUT] /= 2;
1831#endif
1832 return (unsigned long *)m->private + *pos;
1833}
1834
1835static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1836{
1837 (*pos)++;
1838 if (*pos >= NR_VMSTAT_ITEMS)
1839 return NULL;
1840 return (unsigned long *)m->private + *pos;
1841}
1842
1843static int vmstat_show(struct seq_file *m, void *arg)
1844{
1845 unsigned long *l = arg;
1846 unsigned long off = l - (unsigned long *)m->private;
1847
1848 seq_puts(m, s: vmstat_text[off]);
1849 seq_put_decimal_ull(m, delimiter: " ", num: *l);
1850 seq_putc(m, c: '\n');
1851
1852 if (off == NR_VMSTAT_ITEMS - 1) {
1853 /*
1854 * We've come to the end - add any deprecated counters to avoid
1855 * breaking userspace which might depend on them being present.
1856 */
1857 seq_puts(m, s: "nr_unstable 0\n");
1858 }
1859 return 0;
1860}
1861
1862static void vmstat_stop(struct seq_file *m, void *arg)
1863{
1864 kfree(objp: m->private);
1865 m->private = NULL;
1866}
1867
1868static const struct seq_operations vmstat_op = {
1869 .start = vmstat_start,
1870 .next = vmstat_next,
1871 .stop = vmstat_stop,
1872 .show = vmstat_show,
1873};
1874#endif /* CONFIG_PROC_FS */
1875
1876#ifdef CONFIG_SMP
1877static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1878int sysctl_stat_interval __read_mostly = HZ;
1879
1880#ifdef CONFIG_PROC_FS
1881static void refresh_vm_stats(struct work_struct *work)
1882{
1883 refresh_cpu_vm_stats(do_pagesets: true);
1884}
1885
1886int vmstat_refresh(struct ctl_table *table, int write,
1887 void *buffer, size_t *lenp, loff_t *ppos)
1888{
1889 long val;
1890 int err;
1891 int i;
1892
1893 /*
1894 * The regular update, every sysctl_stat_interval, may come later
1895 * than expected: leaving a significant amount in per_cpu buckets.
1896 * This is particularly misleading when checking a quantity of HUGE
1897 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1898 * which can equally be echo'ed to or cat'ted from (by root),
1899 * can be used to update the stats just before reading them.
1900 *
1901 * Oh, and since global_zone_page_state() etc. are so careful to hide
1902 * transiently negative values, report an error here if any of
1903 * the stats is negative, so we know to go looking for imbalance.
1904 */
1905 err = schedule_on_each_cpu(func: refresh_vm_stats);
1906 if (err)
1907 return err;
1908 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1909 /*
1910 * Skip checking stats known to go negative occasionally.
1911 */
1912 switch (i) {
1913 case NR_ZONE_WRITE_PENDING:
1914 case NR_FREE_CMA_PAGES:
1915 continue;
1916 }
1917 val = atomic_long_read(v: &vm_zone_stat[i]);
1918 if (val < 0) {
1919 pr_warn("%s: %s %ld\n",
1920 __func__, zone_stat_name(i), val);
1921 }
1922 }
1923 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1924 /*
1925 * Skip checking stats known to go negative occasionally.
1926 */
1927 switch (i) {
1928 case NR_WRITEBACK:
1929 continue;
1930 }
1931 val = atomic_long_read(v: &vm_node_stat[i]);
1932 if (val < 0) {
1933 pr_warn("%s: %s %ld\n",
1934 __func__, node_stat_name(i), val);
1935 }
1936 }
1937 if (write)
1938 *ppos += *lenp;
1939 else
1940 *lenp = 0;
1941 return 0;
1942}
1943#endif /* CONFIG_PROC_FS */
1944
1945static void vmstat_update(struct work_struct *w)
1946{
1947 if (refresh_cpu_vm_stats(do_pagesets: true)) {
1948 /*
1949 * Counters were updated so we expect more updates
1950 * to occur in the future. Keep on running the
1951 * update worker thread.
1952 */
1953 queue_delayed_work_on(smp_processor_id(), wq: mm_percpu_wq,
1954 this_cpu_ptr(&vmstat_work),
1955 delay: round_jiffies_relative(j: sysctl_stat_interval));
1956 }
1957}
1958
1959/*
1960 * Check if the diffs for a certain cpu indicate that
1961 * an update is needed.
1962 */
1963static bool need_update(int cpu)
1964{
1965 pg_data_t *last_pgdat = NULL;
1966 struct zone *zone;
1967
1968 for_each_populated_zone(zone) {
1969 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1970 struct per_cpu_nodestat *n;
1971
1972 /*
1973 * The fast way of checking if there are any vmstat diffs.
1974 */
1975 if (memchr_inv(p: pzstats->vm_stat_diff, c: 0, size: sizeof(pzstats->vm_stat_diff)))
1976 return true;
1977
1978 if (last_pgdat == zone->zone_pgdat)
1979 continue;
1980 last_pgdat = zone->zone_pgdat;
1981 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1982 if (memchr_inv(p: n->vm_node_stat_diff, c: 0, size: sizeof(n->vm_node_stat_diff)))
1983 return true;
1984 }
1985 return false;
1986}
1987
1988/*
1989 * Switch off vmstat processing and then fold all the remaining differentials
1990 * until the diffs stay at zero. The function is used by NOHZ and can only be
1991 * invoked when tick processing is not active.
1992 */
1993void quiet_vmstat(void)
1994{
1995 if (system_state != SYSTEM_RUNNING)
1996 return;
1997
1998 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1999 return;
2000
2001 if (!need_update(smp_processor_id()))
2002 return;
2003
2004 /*
2005 * Just refresh counters and do not care about the pending delayed
2006 * vmstat_update. It doesn't fire that often to matter and canceling
2007 * it would be too expensive from this path.
2008 * vmstat_shepherd will take care about that for us.
2009 */
2010 refresh_cpu_vm_stats(do_pagesets: false);
2011}
2012
2013/*
2014 * Shepherd worker thread that checks the
2015 * differentials of processors that have their worker
2016 * threads for vm statistics updates disabled because of
2017 * inactivity.
2018 */
2019static void vmstat_shepherd(struct work_struct *w);
2020
2021static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2022
2023static void vmstat_shepherd(struct work_struct *w)
2024{
2025 int cpu;
2026
2027 cpus_read_lock();
2028 /* Check processors whose vmstat worker threads have been disabled */
2029 for_each_online_cpu(cpu) {
2030 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2031
2032 /*
2033 * In kernel users of vmstat counters either require the precise value and
2034 * they are using zone_page_state_snapshot interface or they can live with
2035 * an imprecision as the regular flushing can happen at arbitrary time and
2036 * cumulative error can grow (see calculate_normal_threshold).
2037 *
2038 * From that POV the regular flushing can be postponed for CPUs that have
2039 * been isolated from the kernel interference without critical
2040 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2041 * for all isolated CPUs to avoid interference with the isolated workload.
2042 */
2043 if (cpu_is_isolated(cpu))
2044 continue;
2045
2046 if (!delayed_work_pending(dw) && need_update(cpu))
2047 queue_delayed_work_on(cpu, wq: mm_percpu_wq, work: dw, delay: 0);
2048
2049 cond_resched();
2050 }
2051 cpus_read_unlock();
2052
2053 schedule_delayed_work(dwork: &shepherd,
2054 delay: round_jiffies_relative(j: sysctl_stat_interval));
2055}
2056
2057static void __init start_shepherd_timer(void)
2058{
2059 int cpu;
2060
2061 for_each_possible_cpu(cpu)
2062 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2063 vmstat_update);
2064
2065 schedule_delayed_work(dwork: &shepherd,
2066 delay: round_jiffies_relative(j: sysctl_stat_interval));
2067}
2068
2069static void __init init_cpu_node_state(void)
2070{
2071 int node;
2072
2073 for_each_online_node(node) {
2074 if (!cpumask_empty(srcp: cpumask_of_node(node)))
2075 node_set_state(node, state: N_CPU);
2076 }
2077}
2078
2079static int vmstat_cpu_online(unsigned int cpu)
2080{
2081 refresh_zone_stat_thresholds();
2082
2083 if (!node_state(cpu_to_node(cpu), state: N_CPU)) {
2084 node_set_state(cpu_to_node(cpu), state: N_CPU);
2085 }
2086
2087 return 0;
2088}
2089
2090static int vmstat_cpu_down_prep(unsigned int cpu)
2091{
2092 cancel_delayed_work_sync(dwork: &per_cpu(vmstat_work, cpu));
2093 return 0;
2094}
2095
2096static int vmstat_cpu_dead(unsigned int cpu)
2097{
2098 const struct cpumask *node_cpus;
2099 int node;
2100
2101 node = cpu_to_node(cpu);
2102
2103 refresh_zone_stat_thresholds();
2104 node_cpus = cpumask_of_node(node);
2105 if (!cpumask_empty(srcp: node_cpus))
2106 return 0;
2107
2108 node_clear_state(node, state: N_CPU);
2109
2110 return 0;
2111}
2112
2113#endif
2114
2115struct workqueue_struct *mm_percpu_wq;
2116
2117void __init init_mm_internals(void)
2118{
2119 int ret __maybe_unused;
2120
2121 mm_percpu_wq = alloc_workqueue(fmt: "mm_percpu_wq", flags: WQ_MEM_RECLAIM, max_active: 0);
2122
2123#ifdef CONFIG_SMP
2124 ret = cpuhp_setup_state_nocalls(state: CPUHP_MM_VMSTAT_DEAD, name: "mm/vmstat:dead",
2125 NULL, teardown: vmstat_cpu_dead);
2126 if (ret < 0)
2127 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2128
2129 ret = cpuhp_setup_state_nocalls(state: CPUHP_AP_ONLINE_DYN, name: "mm/vmstat:online",
2130 startup: vmstat_cpu_online,
2131 teardown: vmstat_cpu_down_prep);
2132 if (ret < 0)
2133 pr_err("vmstat: failed to register 'online' hotplug state\n");
2134
2135 cpus_read_lock();
2136 init_cpu_node_state();
2137 cpus_read_unlock();
2138
2139 start_shepherd_timer();
2140#endif
2141#ifdef CONFIG_PROC_FS
2142 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2143 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2144 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2145 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2146#endif
2147}
2148
2149#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2150
2151/*
2152 * Return an index indicating how much of the available free memory is
2153 * unusable for an allocation of the requested size.
2154 */
2155static int unusable_free_index(unsigned int order,
2156 struct contig_page_info *info)
2157{
2158 /* No free memory is interpreted as all free memory is unusable */
2159 if (info->free_pages == 0)
2160 return 1000;
2161
2162 /*
2163 * Index should be a value between 0 and 1. Return a value to 3
2164 * decimal places.
2165 *
2166 * 0 => no fragmentation
2167 * 1 => high fragmentation
2168 */
2169 return div_u64(dividend: (info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, divisor: info->free_pages);
2170
2171}
2172
2173static void unusable_show_print(struct seq_file *m,
2174 pg_data_t *pgdat, struct zone *zone)
2175{
2176 unsigned int order;
2177 int index;
2178 struct contig_page_info info;
2179
2180 seq_printf(m, fmt: "Node %d, zone %8s ",
2181 pgdat->node_id,
2182 zone->name);
2183 for (order = 0; order <= MAX_ORDER; ++order) {
2184 fill_contig_page_info(zone, suitable_order: order, info: &info);
2185 index = unusable_free_index(order, info: &info);
2186 seq_printf(m, fmt: "%d.%03d ", index / 1000, index % 1000);
2187 }
2188
2189 seq_putc(m, c: '\n');
2190}
2191
2192/*
2193 * Display unusable free space index
2194 *
2195 * The unusable free space index measures how much of the available free
2196 * memory cannot be used to satisfy an allocation of a given size and is a
2197 * value between 0 and 1. The higher the value, the more of free memory is
2198 * unusable and by implication, the worse the external fragmentation is. This
2199 * can be expressed as a percentage by multiplying by 100.
2200 */
2201static int unusable_show(struct seq_file *m, void *arg)
2202{
2203 pg_data_t *pgdat = (pg_data_t *)arg;
2204
2205 /* check memoryless node */
2206 if (!node_state(node: pgdat->node_id, state: N_MEMORY))
2207 return 0;
2208
2209 walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: unusable_show_print);
2210
2211 return 0;
2212}
2213
2214static const struct seq_operations unusable_sops = {
2215 .start = frag_start,
2216 .next = frag_next,
2217 .stop = frag_stop,
2218 .show = unusable_show,
2219};
2220
2221DEFINE_SEQ_ATTRIBUTE(unusable);
2222
2223static void extfrag_show_print(struct seq_file *m,
2224 pg_data_t *pgdat, struct zone *zone)
2225{
2226 unsigned int order;
2227 int index;
2228
2229 /* Alloc on stack as interrupts are disabled for zone walk */
2230 struct contig_page_info info;
2231
2232 seq_printf(m, fmt: "Node %d, zone %8s ",
2233 pgdat->node_id,
2234 zone->name);
2235 for (order = 0; order <= MAX_ORDER; ++order) {
2236 fill_contig_page_info(zone, suitable_order: order, info: &info);
2237 index = __fragmentation_index(order, info: &info);
2238 seq_printf(m, fmt: "%2d.%03d ", index / 1000, index % 1000);
2239 }
2240
2241 seq_putc(m, c: '\n');
2242}
2243
2244/*
2245 * Display fragmentation index for orders that allocations would fail for
2246 */
2247static int extfrag_show(struct seq_file *m, void *arg)
2248{
2249 pg_data_t *pgdat = (pg_data_t *)arg;
2250
2251 walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: extfrag_show_print);
2252
2253 return 0;
2254}
2255
2256static const struct seq_operations extfrag_sops = {
2257 .start = frag_start,
2258 .next = frag_next,
2259 .stop = frag_stop,
2260 .show = extfrag_show,
2261};
2262
2263DEFINE_SEQ_ATTRIBUTE(extfrag);
2264
2265static int __init extfrag_debug_init(void)
2266{
2267 struct dentry *extfrag_debug_root;
2268
2269 extfrag_debug_root = debugfs_create_dir(name: "extfrag", NULL);
2270
2271 debugfs_create_file(name: "unusable_index", mode: 0444, parent: extfrag_debug_root, NULL,
2272 fops: &unusable_fops);
2273
2274 debugfs_create_file(name: "extfrag_index", mode: 0444, parent: extfrag_debug_root, NULL,
2275 fops: &extfrag_fops);
2276
2277 return 0;
2278}
2279
2280module_init(extfrag_debug_init);
2281#endif
2282

source code of linux/mm/vmstat.c