1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* |
3 | * linux/mm/vmstat.c |
4 | * |
5 | * Manages VM statistics |
6 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
7 | * |
8 | * zoned VM statistics |
9 | * Copyright (C) 2006 Silicon Graphics, Inc., |
10 | * Christoph Lameter <cl@gentwo.org> |
11 | * Copyright (C) 2008-2014 Christoph Lameter |
12 | */ |
13 | #include <linux/fs.h> |
14 | #include <linux/mm.h> |
15 | #include <linux/err.h> |
16 | #include <linux/module.h> |
17 | #include <linux/slab.h> |
18 | #include <linux/cpu.h> |
19 | #include <linux/cpumask.h> |
20 | #include <linux/vmstat.h> |
21 | #include <linux/proc_fs.h> |
22 | #include <linux/seq_file.h> |
23 | #include <linux/debugfs.h> |
24 | #include <linux/sched.h> |
25 | #include <linux/math64.h> |
26 | #include <linux/writeback.h> |
27 | #include <linux/compaction.h> |
28 | #include <linux/mm_inline.h> |
29 | #include <linux/page_owner.h> |
30 | #include <linux/sched/isolation.h> |
31 | |
32 | #include "internal.h" |
33 | |
34 | #ifdef CONFIG_PROC_FS |
35 | #ifdef CONFIG_NUMA |
36 | #define ENABLE_NUMA_STAT 1 |
37 | static int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; |
38 | |
39 | /* zero numa counters within a zone */ |
40 | static void zero_zone_numa_counters(struct zone *zone) |
41 | { |
42 | int item, cpu; |
43 | |
44 | for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) { |
45 | atomic_long_set(v: &zone->vm_numa_event[item], i: 0); |
46 | for_each_online_cpu(cpu) { |
47 | per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item] |
48 | = 0; |
49 | } |
50 | } |
51 | } |
52 | |
53 | /* zero numa counters of all the populated zones */ |
54 | static void zero_zones_numa_counters(void) |
55 | { |
56 | struct zone *zone; |
57 | |
58 | for_each_populated_zone(zone) |
59 | zero_zone_numa_counters(zone); |
60 | } |
61 | |
62 | /* zero global numa counters */ |
63 | static void zero_global_numa_counters(void) |
64 | { |
65 | int item; |
66 | |
67 | for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) |
68 | atomic_long_set(v: &vm_numa_event[item], i: 0); |
69 | } |
70 | |
71 | static void invalid_numa_statistics(void) |
72 | { |
73 | zero_zones_numa_counters(); |
74 | zero_global_numa_counters(); |
75 | } |
76 | |
77 | static DEFINE_MUTEX(vm_numa_stat_lock); |
78 | |
79 | static int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write, |
80 | void *buffer, size_t *length, loff_t *ppos) |
81 | { |
82 | int ret, oldval; |
83 | |
84 | mutex_lock(&vm_numa_stat_lock); |
85 | if (write) |
86 | oldval = sysctl_vm_numa_stat; |
87 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
88 | if (ret || !write) |
89 | goto out; |
90 | |
91 | if (oldval == sysctl_vm_numa_stat) |
92 | goto out; |
93 | else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { |
94 | static_branch_enable(&vm_numa_stat_key); |
95 | pr_info("enable numa statistics\n" ); |
96 | } else { |
97 | static_branch_disable(&vm_numa_stat_key); |
98 | invalid_numa_statistics(); |
99 | pr_info("disable numa statistics, and clear numa counters\n" ); |
100 | } |
101 | |
102 | out: |
103 | mutex_unlock(lock: &vm_numa_stat_lock); |
104 | return ret; |
105 | } |
106 | #endif |
107 | #endif /* CONFIG_PROC_FS */ |
108 | |
109 | #ifdef CONFIG_VM_EVENT_COUNTERS |
110 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; |
111 | EXPORT_PER_CPU_SYMBOL(vm_event_states); |
112 | |
113 | static void sum_vm_events(unsigned long *ret) |
114 | { |
115 | int cpu; |
116 | int i; |
117 | |
118 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); |
119 | |
120 | for_each_online_cpu(cpu) { |
121 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); |
122 | |
123 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) |
124 | ret[i] += this->event[i]; |
125 | } |
126 | } |
127 | |
128 | /* |
129 | * Accumulate the vm event counters across all CPUs. |
130 | * The result is unavoidably approximate - it can change |
131 | * during and after execution of this function. |
132 | */ |
133 | void all_vm_events(unsigned long *ret) |
134 | { |
135 | cpus_read_lock(); |
136 | sum_vm_events(ret); |
137 | cpus_read_unlock(); |
138 | } |
139 | EXPORT_SYMBOL_GPL(all_vm_events); |
140 | |
141 | /* |
142 | * Fold the foreign cpu events into our own. |
143 | * |
144 | * This is adding to the events on one processor |
145 | * but keeps the global counts constant. |
146 | */ |
147 | void vm_events_fold_cpu(int cpu) |
148 | { |
149 | struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); |
150 | int i; |
151 | |
152 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { |
153 | count_vm_events(item: i, delta: fold_state->event[i]); |
154 | fold_state->event[i] = 0; |
155 | } |
156 | } |
157 | |
158 | #endif /* CONFIG_VM_EVENT_COUNTERS */ |
159 | |
160 | /* |
161 | * Manage combined zone based / global counters |
162 | * |
163 | * vm_stat contains the global counters |
164 | */ |
165 | atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; |
166 | atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; |
167 | atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp; |
168 | EXPORT_SYMBOL(vm_zone_stat); |
169 | EXPORT_SYMBOL(vm_node_stat); |
170 | |
171 | #ifdef CONFIG_NUMA |
172 | static void fold_vm_zone_numa_events(struct zone *zone) |
173 | { |
174 | unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, }; |
175 | int cpu; |
176 | enum numa_stat_item item; |
177 | |
178 | for_each_online_cpu(cpu) { |
179 | struct per_cpu_zonestat *pzstats; |
180 | |
181 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
182 | for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) |
183 | zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0); |
184 | } |
185 | |
186 | for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) |
187 | zone_numa_event_add(x: zone_numa_events[item], zone, item); |
188 | } |
189 | |
190 | void fold_vm_numa_events(void) |
191 | { |
192 | struct zone *zone; |
193 | |
194 | for_each_populated_zone(zone) |
195 | fold_vm_zone_numa_events(zone); |
196 | } |
197 | #endif |
198 | |
199 | #ifdef CONFIG_SMP |
200 | |
201 | int calculate_pressure_threshold(struct zone *zone) |
202 | { |
203 | int threshold; |
204 | int watermark_distance; |
205 | |
206 | /* |
207 | * As vmstats are not up to date, there is drift between the estimated |
208 | * and real values. For high thresholds and a high number of CPUs, it |
209 | * is possible for the min watermark to be breached while the estimated |
210 | * value looks fine. The pressure threshold is a reduced value such |
211 | * that even the maximum amount of drift will not accidentally breach |
212 | * the min watermark |
213 | */ |
214 | watermark_distance = low_wmark_pages(z: zone) - min_wmark_pages(z: zone); |
215 | threshold = max(1, (int)(watermark_distance / num_online_cpus())); |
216 | |
217 | /* |
218 | * Maximum threshold is 125 |
219 | */ |
220 | threshold = min(125, threshold); |
221 | |
222 | return threshold; |
223 | } |
224 | |
225 | int calculate_normal_threshold(struct zone *zone) |
226 | { |
227 | int threshold; |
228 | int mem; /* memory in 128 MB units */ |
229 | |
230 | /* |
231 | * The threshold scales with the number of processors and the amount |
232 | * of memory per zone. More memory means that we can defer updates for |
233 | * longer, more processors could lead to more contention. |
234 | * fls() is used to have a cheap way of logarithmic scaling. |
235 | * |
236 | * Some sample thresholds: |
237 | * |
238 | * Threshold Processors (fls) Zonesize fls(mem)+1 |
239 | * ------------------------------------------------------------------ |
240 | * 8 1 1 0.9-1 GB 4 |
241 | * 16 2 2 0.9-1 GB 4 |
242 | * 20 2 2 1-2 GB 5 |
243 | * 24 2 2 2-4 GB 6 |
244 | * 28 2 2 4-8 GB 7 |
245 | * 32 2 2 8-16 GB 8 |
246 | * 4 2 2 <128M 1 |
247 | * 30 4 3 2-4 GB 5 |
248 | * 48 4 3 8-16 GB 8 |
249 | * 32 8 4 1-2 GB 4 |
250 | * 32 8 4 0.9-1GB 4 |
251 | * 10 16 5 <128M 1 |
252 | * 40 16 5 900M 4 |
253 | * 70 64 7 2-4 GB 5 |
254 | * 84 64 7 4-8 GB 6 |
255 | * 108 512 9 4-8 GB 6 |
256 | * 125 1024 10 8-16 GB 8 |
257 | * 125 1024 10 16-32 GB 9 |
258 | */ |
259 | |
260 | mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); |
261 | |
262 | threshold = 2 * fls(x: num_online_cpus()) * (1 + fls(x: mem)); |
263 | |
264 | /* |
265 | * Maximum threshold is 125 |
266 | */ |
267 | threshold = min(125, threshold); |
268 | |
269 | return threshold; |
270 | } |
271 | |
272 | /* |
273 | * Refresh the thresholds for each zone. |
274 | */ |
275 | void refresh_zone_stat_thresholds(void) |
276 | { |
277 | struct pglist_data *pgdat; |
278 | struct zone *zone; |
279 | int cpu; |
280 | int threshold; |
281 | |
282 | /* Zero current pgdat thresholds */ |
283 | for_each_online_pgdat(pgdat) { |
284 | for_each_online_cpu(cpu) { |
285 | per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; |
286 | } |
287 | } |
288 | |
289 | for_each_populated_zone(zone) { |
290 | struct pglist_data *pgdat = zone->zone_pgdat; |
291 | unsigned long max_drift, tolerate_drift; |
292 | |
293 | threshold = calculate_normal_threshold(zone); |
294 | |
295 | for_each_online_cpu(cpu) { |
296 | int pgdat_threshold; |
297 | |
298 | per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold |
299 | = threshold; |
300 | |
301 | /* Base nodestat threshold on the largest populated zone. */ |
302 | pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; |
303 | per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold |
304 | = max(threshold, pgdat_threshold); |
305 | } |
306 | |
307 | /* |
308 | * Only set percpu_drift_mark if there is a danger that |
309 | * NR_FREE_PAGES reports the low watermark is ok when in fact |
310 | * the min watermark could be breached by an allocation |
311 | */ |
312 | tolerate_drift = low_wmark_pages(z: zone) - min_wmark_pages(z: zone); |
313 | max_drift = num_online_cpus() * threshold; |
314 | if (max_drift > tolerate_drift) |
315 | zone->percpu_drift_mark = high_wmark_pages(z: zone) + |
316 | max_drift; |
317 | } |
318 | } |
319 | |
320 | void set_pgdat_percpu_threshold(pg_data_t *pgdat, |
321 | int (*calculate_pressure)(struct zone *)) |
322 | { |
323 | struct zone *zone; |
324 | int cpu; |
325 | int threshold; |
326 | int i; |
327 | |
328 | for (i = 0; i < pgdat->nr_zones; i++) { |
329 | zone = &pgdat->node_zones[i]; |
330 | if (!zone->percpu_drift_mark) |
331 | continue; |
332 | |
333 | threshold = (*calculate_pressure)(zone); |
334 | for_each_online_cpu(cpu) |
335 | per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold |
336 | = threshold; |
337 | } |
338 | } |
339 | |
340 | /* |
341 | * For use when we know that interrupts are disabled, |
342 | * or when we know that preemption is disabled and that |
343 | * particular counter cannot be updated from interrupt context. |
344 | */ |
345 | void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
346 | long delta) |
347 | { |
348 | struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
349 | s8 __percpu *p = pcp->vm_stat_diff + item; |
350 | long x; |
351 | long t; |
352 | |
353 | /* |
354 | * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels, |
355 | * atomicity is provided by IRQs being disabled -- either explicitly |
356 | * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables |
357 | * CPU migrations and preemption potentially corrupts a counter so |
358 | * disable preemption. |
359 | */ |
360 | preempt_disable_nested(); |
361 | |
362 | x = delta + __this_cpu_read(*p); |
363 | |
364 | t = __this_cpu_read(pcp->stat_threshold); |
365 | |
366 | if (unlikely(abs(x) > t)) { |
367 | zone_page_state_add(x, zone, item); |
368 | x = 0; |
369 | } |
370 | __this_cpu_write(*p, x); |
371 | |
372 | preempt_enable_nested(); |
373 | } |
374 | EXPORT_SYMBOL(__mod_zone_page_state); |
375 | |
376 | void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, |
377 | long delta) |
378 | { |
379 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
380 | s8 __percpu *p = pcp->vm_node_stat_diff + item; |
381 | long x; |
382 | long t; |
383 | |
384 | if (vmstat_item_in_bytes(idx: item)) { |
385 | /* |
386 | * Only cgroups use subpage accounting right now; at |
387 | * the global level, these items still change in |
388 | * multiples of whole pages. Store them as pages |
389 | * internally to keep the per-cpu counters compact. |
390 | */ |
391 | VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); |
392 | delta >>= PAGE_SHIFT; |
393 | } |
394 | |
395 | /* See __mod_node_page_state */ |
396 | preempt_disable_nested(); |
397 | |
398 | x = delta + __this_cpu_read(*p); |
399 | |
400 | t = __this_cpu_read(pcp->stat_threshold); |
401 | |
402 | if (unlikely(abs(x) > t)) { |
403 | node_page_state_add(x, pgdat, item); |
404 | x = 0; |
405 | } |
406 | __this_cpu_write(*p, x); |
407 | |
408 | preempt_enable_nested(); |
409 | } |
410 | EXPORT_SYMBOL(__mod_node_page_state); |
411 | |
412 | /* |
413 | * Optimized increment and decrement functions. |
414 | * |
415 | * These are only for a single page and therefore can take a struct page * |
416 | * argument instead of struct zone *. This allows the inclusion of the code |
417 | * generated for page_zone(page) into the optimized functions. |
418 | * |
419 | * No overflow check is necessary and therefore the differential can be |
420 | * incremented or decremented in place which may allow the compilers to |
421 | * generate better code. |
422 | * The increment or decrement is known and therefore one boundary check can |
423 | * be omitted. |
424 | * |
425 | * NOTE: These functions are very performance sensitive. Change only |
426 | * with care. |
427 | * |
428 | * Some processors have inc/dec instructions that are atomic vs an interrupt. |
429 | * However, the code must first determine the differential location in a zone |
430 | * based on the processor number and then inc/dec the counter. There is no |
431 | * guarantee without disabling preemption that the processor will not change |
432 | * in between and therefore the atomicity vs. interrupt cannot be exploited |
433 | * in a useful way here. |
434 | */ |
435 | void __inc_zone_state(struct zone *zone, enum zone_stat_item item) |
436 | { |
437 | struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
438 | s8 __percpu *p = pcp->vm_stat_diff + item; |
439 | s8 v, t; |
440 | |
441 | /* See __mod_node_page_state */ |
442 | preempt_disable_nested(); |
443 | |
444 | v = __this_cpu_inc_return(*p); |
445 | t = __this_cpu_read(pcp->stat_threshold); |
446 | if (unlikely(v > t)) { |
447 | s8 overstep = t >> 1; |
448 | |
449 | zone_page_state_add(x: v + overstep, zone, item); |
450 | __this_cpu_write(*p, -overstep); |
451 | } |
452 | |
453 | preempt_enable_nested(); |
454 | } |
455 | |
456 | void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
457 | { |
458 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
459 | s8 __percpu *p = pcp->vm_node_stat_diff + item; |
460 | s8 v, t; |
461 | |
462 | VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); |
463 | |
464 | /* See __mod_node_page_state */ |
465 | preempt_disable_nested(); |
466 | |
467 | v = __this_cpu_inc_return(*p); |
468 | t = __this_cpu_read(pcp->stat_threshold); |
469 | if (unlikely(v > t)) { |
470 | s8 overstep = t >> 1; |
471 | |
472 | node_page_state_add(x: v + overstep, pgdat, item); |
473 | __this_cpu_write(*p, -overstep); |
474 | } |
475 | |
476 | preempt_enable_nested(); |
477 | } |
478 | |
479 | void __inc_zone_page_state(struct page *page, enum zone_stat_item item) |
480 | { |
481 | __inc_zone_state(zone: page_zone(page), item); |
482 | } |
483 | EXPORT_SYMBOL(__inc_zone_page_state); |
484 | |
485 | void __inc_node_page_state(struct page *page, enum node_stat_item item) |
486 | { |
487 | __inc_node_state(pgdat: page_pgdat(page), item); |
488 | } |
489 | EXPORT_SYMBOL(__inc_node_page_state); |
490 | |
491 | void __dec_zone_state(struct zone *zone, enum zone_stat_item item) |
492 | { |
493 | struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
494 | s8 __percpu *p = pcp->vm_stat_diff + item; |
495 | s8 v, t; |
496 | |
497 | /* See __mod_node_page_state */ |
498 | preempt_disable_nested(); |
499 | |
500 | v = __this_cpu_dec_return(*p); |
501 | t = __this_cpu_read(pcp->stat_threshold); |
502 | if (unlikely(v < - t)) { |
503 | s8 overstep = t >> 1; |
504 | |
505 | zone_page_state_add(x: v - overstep, zone, item); |
506 | __this_cpu_write(*p, overstep); |
507 | } |
508 | |
509 | preempt_enable_nested(); |
510 | } |
511 | |
512 | void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
513 | { |
514 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
515 | s8 __percpu *p = pcp->vm_node_stat_diff + item; |
516 | s8 v, t; |
517 | |
518 | VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); |
519 | |
520 | /* See __mod_node_page_state */ |
521 | preempt_disable_nested(); |
522 | |
523 | v = __this_cpu_dec_return(*p); |
524 | t = __this_cpu_read(pcp->stat_threshold); |
525 | if (unlikely(v < - t)) { |
526 | s8 overstep = t >> 1; |
527 | |
528 | node_page_state_add(x: v - overstep, pgdat, item); |
529 | __this_cpu_write(*p, overstep); |
530 | } |
531 | |
532 | preempt_enable_nested(); |
533 | } |
534 | |
535 | void __dec_zone_page_state(struct page *page, enum zone_stat_item item) |
536 | { |
537 | __dec_zone_state(zone: page_zone(page), item); |
538 | } |
539 | EXPORT_SYMBOL(__dec_zone_page_state); |
540 | |
541 | void __dec_node_page_state(struct page *page, enum node_stat_item item) |
542 | { |
543 | __dec_node_state(pgdat: page_pgdat(page), item); |
544 | } |
545 | EXPORT_SYMBOL(__dec_node_page_state); |
546 | |
547 | #ifdef CONFIG_HAVE_CMPXCHG_LOCAL |
548 | /* |
549 | * If we have cmpxchg_local support then we do not need to incur the overhead |
550 | * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. |
551 | * |
552 | * mod_state() modifies the zone counter state through atomic per cpu |
553 | * operations. |
554 | * |
555 | * Overstep mode specifies how overstep should handled: |
556 | * 0 No overstepping |
557 | * 1 Overstepping half of threshold |
558 | * -1 Overstepping minus half of threshold |
559 | */ |
560 | static inline void mod_zone_state(struct zone *zone, |
561 | enum zone_stat_item item, long delta, int overstep_mode) |
562 | { |
563 | struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
564 | s8 __percpu *p = pcp->vm_stat_diff + item; |
565 | long n, t, z; |
566 | s8 o; |
567 | |
568 | o = this_cpu_read(*p); |
569 | do { |
570 | z = 0; /* overflow to zone counters */ |
571 | |
572 | /* |
573 | * The fetching of the stat_threshold is racy. We may apply |
574 | * a counter threshold to the wrong the cpu if we get |
575 | * rescheduled while executing here. However, the next |
576 | * counter update will apply the threshold again and |
577 | * therefore bring the counter under the threshold again. |
578 | * |
579 | * Most of the time the thresholds are the same anyways |
580 | * for all cpus in a zone. |
581 | */ |
582 | t = this_cpu_read(pcp->stat_threshold); |
583 | |
584 | n = delta + (long)o; |
585 | |
586 | if (abs(n) > t) { |
587 | int os = overstep_mode * (t >> 1) ; |
588 | |
589 | /* Overflow must be added to zone counters */ |
590 | z = n + os; |
591 | n = -os; |
592 | } |
593 | } while (!this_cpu_try_cmpxchg(*p, &o, n)); |
594 | |
595 | if (z) |
596 | zone_page_state_add(x: z, zone, item); |
597 | } |
598 | |
599 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
600 | long delta) |
601 | { |
602 | mod_zone_state(zone, item, delta, overstep_mode: 0); |
603 | } |
604 | EXPORT_SYMBOL(mod_zone_page_state); |
605 | |
606 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) |
607 | { |
608 | mod_zone_state(zone: page_zone(page), item, delta: 1, overstep_mode: 1); |
609 | } |
610 | EXPORT_SYMBOL(inc_zone_page_state); |
611 | |
612 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) |
613 | { |
614 | mod_zone_state(zone: page_zone(page), item, delta: -1, overstep_mode: -1); |
615 | } |
616 | EXPORT_SYMBOL(dec_zone_page_state); |
617 | |
618 | static inline void mod_node_state(struct pglist_data *pgdat, |
619 | enum node_stat_item item, int delta, int overstep_mode) |
620 | { |
621 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
622 | s8 __percpu *p = pcp->vm_node_stat_diff + item; |
623 | long n, t, z; |
624 | s8 o; |
625 | |
626 | if (vmstat_item_in_bytes(idx: item)) { |
627 | /* |
628 | * Only cgroups use subpage accounting right now; at |
629 | * the global level, these items still change in |
630 | * multiples of whole pages. Store them as pages |
631 | * internally to keep the per-cpu counters compact. |
632 | */ |
633 | VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); |
634 | delta >>= PAGE_SHIFT; |
635 | } |
636 | |
637 | o = this_cpu_read(*p); |
638 | do { |
639 | z = 0; /* overflow to node counters */ |
640 | |
641 | /* |
642 | * The fetching of the stat_threshold is racy. We may apply |
643 | * a counter threshold to the wrong the cpu if we get |
644 | * rescheduled while executing here. However, the next |
645 | * counter update will apply the threshold again and |
646 | * therefore bring the counter under the threshold again. |
647 | * |
648 | * Most of the time the thresholds are the same anyways |
649 | * for all cpus in a node. |
650 | */ |
651 | t = this_cpu_read(pcp->stat_threshold); |
652 | |
653 | n = delta + (long)o; |
654 | |
655 | if (abs(n) > t) { |
656 | int os = overstep_mode * (t >> 1) ; |
657 | |
658 | /* Overflow must be added to node counters */ |
659 | z = n + os; |
660 | n = -os; |
661 | } |
662 | } while (!this_cpu_try_cmpxchg(*p, &o, n)); |
663 | |
664 | if (z) |
665 | node_page_state_add(x: z, pgdat, item); |
666 | } |
667 | |
668 | void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, |
669 | long delta) |
670 | { |
671 | mod_node_state(pgdat, item, delta, overstep_mode: 0); |
672 | } |
673 | EXPORT_SYMBOL(mod_node_page_state); |
674 | |
675 | void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
676 | { |
677 | mod_node_state(pgdat, item, delta: 1, overstep_mode: 1); |
678 | } |
679 | |
680 | void inc_node_page_state(struct page *page, enum node_stat_item item) |
681 | { |
682 | mod_node_state(pgdat: page_pgdat(page), item, delta: 1, overstep_mode: 1); |
683 | } |
684 | EXPORT_SYMBOL(inc_node_page_state); |
685 | |
686 | void dec_node_page_state(struct page *page, enum node_stat_item item) |
687 | { |
688 | mod_node_state(pgdat: page_pgdat(page), item, delta: -1, overstep_mode: -1); |
689 | } |
690 | EXPORT_SYMBOL(dec_node_page_state); |
691 | #else |
692 | /* |
693 | * Use interrupt disable to serialize counter updates |
694 | */ |
695 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
696 | long delta) |
697 | { |
698 | unsigned long flags; |
699 | |
700 | local_irq_save(flags); |
701 | __mod_zone_page_state(zone, item, delta); |
702 | local_irq_restore(flags); |
703 | } |
704 | EXPORT_SYMBOL(mod_zone_page_state); |
705 | |
706 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) |
707 | { |
708 | unsigned long flags; |
709 | struct zone *zone; |
710 | |
711 | zone = page_zone(page); |
712 | local_irq_save(flags); |
713 | __inc_zone_state(zone, item); |
714 | local_irq_restore(flags); |
715 | } |
716 | EXPORT_SYMBOL(inc_zone_page_state); |
717 | |
718 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) |
719 | { |
720 | unsigned long flags; |
721 | |
722 | local_irq_save(flags); |
723 | __dec_zone_page_state(page, item); |
724 | local_irq_restore(flags); |
725 | } |
726 | EXPORT_SYMBOL(dec_zone_page_state); |
727 | |
728 | void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
729 | { |
730 | unsigned long flags; |
731 | |
732 | local_irq_save(flags); |
733 | __inc_node_state(pgdat, item); |
734 | local_irq_restore(flags); |
735 | } |
736 | EXPORT_SYMBOL(inc_node_state); |
737 | |
738 | void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, |
739 | long delta) |
740 | { |
741 | unsigned long flags; |
742 | |
743 | local_irq_save(flags); |
744 | __mod_node_page_state(pgdat, item, delta); |
745 | local_irq_restore(flags); |
746 | } |
747 | EXPORT_SYMBOL(mod_node_page_state); |
748 | |
749 | void inc_node_page_state(struct page *page, enum node_stat_item item) |
750 | { |
751 | unsigned long flags; |
752 | struct pglist_data *pgdat; |
753 | |
754 | pgdat = page_pgdat(page); |
755 | local_irq_save(flags); |
756 | __inc_node_state(pgdat, item); |
757 | local_irq_restore(flags); |
758 | } |
759 | EXPORT_SYMBOL(inc_node_page_state); |
760 | |
761 | void dec_node_page_state(struct page *page, enum node_stat_item item) |
762 | { |
763 | unsigned long flags; |
764 | |
765 | local_irq_save(flags); |
766 | __dec_node_page_state(page, item); |
767 | local_irq_restore(flags); |
768 | } |
769 | EXPORT_SYMBOL(dec_node_page_state); |
770 | #endif |
771 | |
772 | /* |
773 | * Fold a differential into the global counters. |
774 | * Returns the number of counters updated. |
775 | */ |
776 | static int fold_diff(int *zone_diff, int *node_diff) |
777 | { |
778 | int i; |
779 | int changes = 0; |
780 | |
781 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
782 | if (zone_diff[i]) { |
783 | atomic_long_add(i: zone_diff[i], v: &vm_zone_stat[i]); |
784 | changes++; |
785 | } |
786 | |
787 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) |
788 | if (node_diff[i]) { |
789 | atomic_long_add(i: node_diff[i], v: &vm_node_stat[i]); |
790 | changes++; |
791 | } |
792 | return changes; |
793 | } |
794 | |
795 | /* |
796 | * Update the zone counters for the current cpu. |
797 | * |
798 | * Note that refresh_cpu_vm_stats strives to only access |
799 | * node local memory. The per cpu pagesets on remote zones are placed |
800 | * in the memory local to the processor using that pageset. So the |
801 | * loop over all zones will access a series of cachelines local to |
802 | * the processor. |
803 | * |
804 | * The call to zone_page_state_add updates the cachelines with the |
805 | * statistics in the remote zone struct as well as the global cachelines |
806 | * with the global counters. These could cause remote node cache line |
807 | * bouncing and will have to be only done when necessary. |
808 | * |
809 | * The function returns the number of global counters updated. |
810 | */ |
811 | static int refresh_cpu_vm_stats(bool do_pagesets) |
812 | { |
813 | struct pglist_data *pgdat; |
814 | struct zone *zone; |
815 | int i; |
816 | int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; |
817 | int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; |
818 | int changes = 0; |
819 | |
820 | for_each_populated_zone(zone) { |
821 | struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; |
822 | struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset; |
823 | |
824 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
825 | int v; |
826 | |
827 | v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0); |
828 | if (v) { |
829 | |
830 | atomic_long_add(i: v, v: &zone->vm_stat[i]); |
831 | global_zone_diff[i] += v; |
832 | #ifdef CONFIG_NUMA |
833 | /* 3 seconds idle till flush */ |
834 | __this_cpu_write(pcp->expire, 3); |
835 | #endif |
836 | } |
837 | } |
838 | |
839 | if (do_pagesets) { |
840 | cond_resched(); |
841 | |
842 | changes += decay_pcp_high(zone, this_cpu_ptr(pcp)); |
843 | #ifdef CONFIG_NUMA |
844 | /* |
845 | * Deal with draining the remote pageset of this |
846 | * processor |
847 | * |
848 | * Check if there are pages remaining in this pageset |
849 | * if not then there is nothing to expire. |
850 | */ |
851 | if (!__this_cpu_read(pcp->expire) || |
852 | !__this_cpu_read(pcp->count)) |
853 | continue; |
854 | |
855 | /* |
856 | * We never drain zones local to this processor. |
857 | */ |
858 | if (zone_to_nid(zone) == numa_node_id()) { |
859 | __this_cpu_write(pcp->expire, 0); |
860 | continue; |
861 | } |
862 | |
863 | if (__this_cpu_dec_return(pcp->expire)) { |
864 | changes++; |
865 | continue; |
866 | } |
867 | |
868 | if (__this_cpu_read(pcp->count)) { |
869 | drain_zone_pages(zone, this_cpu_ptr(pcp)); |
870 | changes++; |
871 | } |
872 | #endif |
873 | } |
874 | } |
875 | |
876 | for_each_online_pgdat(pgdat) { |
877 | struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; |
878 | |
879 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
880 | int v; |
881 | |
882 | v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); |
883 | if (v) { |
884 | atomic_long_add(i: v, v: &pgdat->vm_stat[i]); |
885 | global_node_diff[i] += v; |
886 | } |
887 | } |
888 | } |
889 | |
890 | changes += fold_diff(zone_diff: global_zone_diff, node_diff: global_node_diff); |
891 | return changes; |
892 | } |
893 | |
894 | /* |
895 | * Fold the data for an offline cpu into the global array. |
896 | * There cannot be any access by the offline cpu and therefore |
897 | * synchronization is simplified. |
898 | */ |
899 | void cpu_vm_stats_fold(int cpu) |
900 | { |
901 | struct pglist_data *pgdat; |
902 | struct zone *zone; |
903 | int i; |
904 | int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; |
905 | int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; |
906 | |
907 | for_each_populated_zone(zone) { |
908 | struct per_cpu_zonestat *pzstats; |
909 | |
910 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
911 | |
912 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
913 | if (pzstats->vm_stat_diff[i]) { |
914 | int v; |
915 | |
916 | v = pzstats->vm_stat_diff[i]; |
917 | pzstats->vm_stat_diff[i] = 0; |
918 | atomic_long_add(i: v, v: &zone->vm_stat[i]); |
919 | global_zone_diff[i] += v; |
920 | } |
921 | } |
922 | #ifdef CONFIG_NUMA |
923 | for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { |
924 | if (pzstats->vm_numa_event[i]) { |
925 | unsigned long v; |
926 | |
927 | v = pzstats->vm_numa_event[i]; |
928 | pzstats->vm_numa_event[i] = 0; |
929 | zone_numa_event_add(x: v, zone, item: i); |
930 | } |
931 | } |
932 | #endif |
933 | } |
934 | |
935 | for_each_online_pgdat(pgdat) { |
936 | struct per_cpu_nodestat *p; |
937 | |
938 | p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); |
939 | |
940 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) |
941 | if (p->vm_node_stat_diff[i]) { |
942 | int v; |
943 | |
944 | v = p->vm_node_stat_diff[i]; |
945 | p->vm_node_stat_diff[i] = 0; |
946 | atomic_long_add(i: v, v: &pgdat->vm_stat[i]); |
947 | global_node_diff[i] += v; |
948 | } |
949 | } |
950 | |
951 | fold_diff(zone_diff: global_zone_diff, node_diff: global_node_diff); |
952 | } |
953 | |
954 | /* |
955 | * this is only called if !populated_zone(zone), which implies no other users of |
956 | * pset->vm_stat_diff[] exist. |
957 | */ |
958 | void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) |
959 | { |
960 | unsigned long v; |
961 | int i; |
962 | |
963 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
964 | if (pzstats->vm_stat_diff[i]) { |
965 | v = pzstats->vm_stat_diff[i]; |
966 | pzstats->vm_stat_diff[i] = 0; |
967 | zone_page_state_add(x: v, zone, item: i); |
968 | } |
969 | } |
970 | |
971 | #ifdef CONFIG_NUMA |
972 | for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { |
973 | if (pzstats->vm_numa_event[i]) { |
974 | v = pzstats->vm_numa_event[i]; |
975 | pzstats->vm_numa_event[i] = 0; |
976 | zone_numa_event_add(x: v, zone, item: i); |
977 | } |
978 | } |
979 | #endif |
980 | } |
981 | #endif |
982 | |
983 | #ifdef CONFIG_NUMA |
984 | /* |
985 | * Determine the per node value of a stat item. This function |
986 | * is called frequently in a NUMA machine, so try to be as |
987 | * frugal as possible. |
988 | */ |
989 | unsigned long sum_zone_node_page_state(int node, |
990 | enum zone_stat_item item) |
991 | { |
992 | struct zone *zones = NODE_DATA(node)->node_zones; |
993 | int i; |
994 | unsigned long count = 0; |
995 | |
996 | for (i = 0; i < MAX_NR_ZONES; i++) |
997 | count += zone_page_state(zone: zones + i, item); |
998 | |
999 | return count; |
1000 | } |
1001 | |
1002 | /* Determine the per node value of a numa stat item. */ |
1003 | unsigned long sum_zone_numa_event_state(int node, |
1004 | enum numa_stat_item item) |
1005 | { |
1006 | struct zone *zones = NODE_DATA(node)->node_zones; |
1007 | unsigned long count = 0; |
1008 | int i; |
1009 | |
1010 | for (i = 0; i < MAX_NR_ZONES; i++) |
1011 | count += zone_numa_event_state(zone: zones + i, item); |
1012 | |
1013 | return count; |
1014 | } |
1015 | |
1016 | /* |
1017 | * Determine the per node value of a stat item. |
1018 | */ |
1019 | unsigned long node_page_state_pages(struct pglist_data *pgdat, |
1020 | enum node_stat_item item) |
1021 | { |
1022 | long x = atomic_long_read(v: &pgdat->vm_stat[item]); |
1023 | #ifdef CONFIG_SMP |
1024 | if (x < 0) |
1025 | x = 0; |
1026 | #endif |
1027 | return x; |
1028 | } |
1029 | |
1030 | unsigned long node_page_state(struct pglist_data *pgdat, |
1031 | enum node_stat_item item) |
1032 | { |
1033 | VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); |
1034 | |
1035 | return node_page_state_pages(pgdat, item); |
1036 | } |
1037 | #endif |
1038 | |
1039 | /* |
1040 | * Count number of pages "struct page" and "struct page_ext" consume. |
1041 | * nr_memmap_boot_pages: # of pages allocated by boot allocator |
1042 | * nr_memmap_pages: # of pages that were allocated by buddy allocator |
1043 | */ |
1044 | static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0); |
1045 | static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0); |
1046 | |
1047 | void memmap_boot_pages_add(long delta) |
1048 | { |
1049 | atomic_long_add(i: delta, v: &nr_memmap_boot_pages); |
1050 | } |
1051 | |
1052 | void memmap_pages_add(long delta) |
1053 | { |
1054 | atomic_long_add(i: delta, v: &nr_memmap_pages); |
1055 | } |
1056 | |
1057 | #ifdef CONFIG_COMPACTION |
1058 | |
1059 | struct contig_page_info { |
1060 | unsigned long free_pages; |
1061 | unsigned long free_blocks_total; |
1062 | unsigned long free_blocks_suitable; |
1063 | }; |
1064 | |
1065 | /* |
1066 | * Calculate the number of free pages in a zone, how many contiguous |
1067 | * pages are free and how many are large enough to satisfy an allocation of |
1068 | * the target size. Note that this function makes no attempt to estimate |
1069 | * how many suitable free blocks there *might* be if MOVABLE pages were |
1070 | * migrated. Calculating that is possible, but expensive and can be |
1071 | * figured out from userspace |
1072 | */ |
1073 | static void fill_contig_page_info(struct zone *zone, |
1074 | unsigned int suitable_order, |
1075 | struct contig_page_info *info) |
1076 | { |
1077 | unsigned int order; |
1078 | |
1079 | info->free_pages = 0; |
1080 | info->free_blocks_total = 0; |
1081 | info->free_blocks_suitable = 0; |
1082 | |
1083 | for (order = 0; order < NR_PAGE_ORDERS; order++) { |
1084 | unsigned long blocks; |
1085 | |
1086 | /* |
1087 | * Count number of free blocks. |
1088 | * |
1089 | * Access to nr_free is lockless as nr_free is used only for |
1090 | * diagnostic purposes. Use data_race to avoid KCSAN warning. |
1091 | */ |
1092 | blocks = data_race(zone->free_area[order].nr_free); |
1093 | info->free_blocks_total += blocks; |
1094 | |
1095 | /* Count free base pages */ |
1096 | info->free_pages += blocks << order; |
1097 | |
1098 | /* Count the suitable free blocks */ |
1099 | if (order >= suitable_order) |
1100 | info->free_blocks_suitable += blocks << |
1101 | (order - suitable_order); |
1102 | } |
1103 | } |
1104 | |
1105 | /* |
1106 | * A fragmentation index only makes sense if an allocation of a requested |
1107 | * size would fail. If that is true, the fragmentation index indicates |
1108 | * whether external fragmentation or a lack of memory was the problem. |
1109 | * The value can be used to determine if page reclaim or compaction |
1110 | * should be used |
1111 | */ |
1112 | static int __fragmentation_index(unsigned int order, struct contig_page_info *info) |
1113 | { |
1114 | unsigned long requested = 1UL << order; |
1115 | |
1116 | if (WARN_ON_ONCE(order > MAX_PAGE_ORDER)) |
1117 | return 0; |
1118 | |
1119 | if (!info->free_blocks_total) |
1120 | return 0; |
1121 | |
1122 | /* Fragmentation index only makes sense when a request would fail */ |
1123 | if (info->free_blocks_suitable) |
1124 | return -1000; |
1125 | |
1126 | /* |
1127 | * Index is between 0 and 1 so return within 3 decimal places |
1128 | * |
1129 | * 0 => allocation would fail due to lack of memory |
1130 | * 1 => allocation would fail due to fragmentation |
1131 | */ |
1132 | return 1000 - div_u64( dividend: (1000+(div_u64(dividend: info->free_pages * 1000ULL, divisor: requested))), divisor: info->free_blocks_total); |
1133 | } |
1134 | |
1135 | /* |
1136 | * Calculates external fragmentation within a zone wrt the given order. |
1137 | * It is defined as the percentage of pages found in blocks of size |
1138 | * less than 1 << order. It returns values in range [0, 100]. |
1139 | */ |
1140 | unsigned int extfrag_for_order(struct zone *zone, unsigned int order) |
1141 | { |
1142 | struct contig_page_info info; |
1143 | |
1144 | fill_contig_page_info(zone, suitable_order: order, info: &info); |
1145 | if (info.free_pages == 0) |
1146 | return 0; |
1147 | |
1148 | return div_u64(dividend: (info.free_pages - |
1149 | (info.free_blocks_suitable << order)) * 100, |
1150 | divisor: info.free_pages); |
1151 | } |
1152 | |
1153 | /* Same as __fragmentation index but allocs contig_page_info on stack */ |
1154 | int fragmentation_index(struct zone *zone, unsigned int order) |
1155 | { |
1156 | struct contig_page_info info; |
1157 | |
1158 | fill_contig_page_info(zone, suitable_order: order, info: &info); |
1159 | return __fragmentation_index(order, info: &info); |
1160 | } |
1161 | #endif |
1162 | |
1163 | #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ |
1164 | defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) |
1165 | #ifdef CONFIG_ZONE_DMA |
1166 | #define TEXT_FOR_DMA(xx) xx "_dma", |
1167 | #else |
1168 | #define TEXT_FOR_DMA(xx) |
1169 | #endif |
1170 | |
1171 | #ifdef CONFIG_ZONE_DMA32 |
1172 | #define TEXT_FOR_DMA32(xx) xx "_dma32", |
1173 | #else |
1174 | #define TEXT_FOR_DMA32(xx) |
1175 | #endif |
1176 | |
1177 | #ifdef CONFIG_HIGHMEM |
1178 | #define TEXT_FOR_HIGHMEM(xx) xx "_high", |
1179 | #else |
1180 | #define TEXT_FOR_HIGHMEM(xx) |
1181 | #endif |
1182 | |
1183 | #ifdef CONFIG_ZONE_DEVICE |
1184 | #define TEXT_FOR_DEVICE(xx) xx "_device", |
1185 | #else |
1186 | #define TEXT_FOR_DEVICE(xx) |
1187 | #endif |
1188 | |
1189 | #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ |
1190 | TEXT_FOR_HIGHMEM(xx) xx "_movable", \ |
1191 | TEXT_FOR_DEVICE(xx) |
1192 | |
1193 | const char * const vmstat_text[] = { |
1194 | /* enum zone_stat_item counters */ |
1195 | "nr_free_pages" , |
1196 | "nr_free_pages_blocks" , |
1197 | "nr_zone_inactive_anon" , |
1198 | "nr_zone_active_anon" , |
1199 | "nr_zone_inactive_file" , |
1200 | "nr_zone_active_file" , |
1201 | "nr_zone_unevictable" , |
1202 | "nr_zone_write_pending" , |
1203 | "nr_mlock" , |
1204 | #if IS_ENABLED(CONFIG_ZSMALLOC) |
1205 | "nr_zspages" , |
1206 | #endif |
1207 | "nr_free_cma" , |
1208 | #ifdef CONFIG_UNACCEPTED_MEMORY |
1209 | "nr_unaccepted" , |
1210 | #endif |
1211 | |
1212 | /* enum numa_stat_item counters */ |
1213 | #ifdef CONFIG_NUMA |
1214 | "numa_hit" , |
1215 | "numa_miss" , |
1216 | "numa_foreign" , |
1217 | "numa_interleave" , |
1218 | "numa_local" , |
1219 | "numa_other" , |
1220 | #endif |
1221 | |
1222 | /* enum node_stat_item counters */ |
1223 | "nr_inactive_anon" , |
1224 | "nr_active_anon" , |
1225 | "nr_inactive_file" , |
1226 | "nr_active_file" , |
1227 | "nr_unevictable" , |
1228 | "nr_slab_reclaimable" , |
1229 | "nr_slab_unreclaimable" , |
1230 | "nr_isolated_anon" , |
1231 | "nr_isolated_file" , |
1232 | "workingset_nodes" , |
1233 | "workingset_refault_anon" , |
1234 | "workingset_refault_file" , |
1235 | "workingset_activate_anon" , |
1236 | "workingset_activate_file" , |
1237 | "workingset_restore_anon" , |
1238 | "workingset_restore_file" , |
1239 | "workingset_nodereclaim" , |
1240 | "nr_anon_pages" , |
1241 | "nr_mapped" , |
1242 | "nr_file_pages" , |
1243 | "nr_dirty" , |
1244 | "nr_writeback" , |
1245 | "nr_writeback_temp" , |
1246 | "nr_shmem" , |
1247 | "nr_shmem_hugepages" , |
1248 | "nr_shmem_pmdmapped" , |
1249 | "nr_file_hugepages" , |
1250 | "nr_file_pmdmapped" , |
1251 | "nr_anon_transparent_hugepages" , |
1252 | "nr_vmscan_write" , |
1253 | "nr_vmscan_immediate_reclaim" , |
1254 | "nr_dirtied" , |
1255 | "nr_written" , |
1256 | "nr_throttled_written" , |
1257 | "nr_kernel_misc_reclaimable" , |
1258 | "nr_foll_pin_acquired" , |
1259 | "nr_foll_pin_released" , |
1260 | "nr_kernel_stack" , |
1261 | #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) |
1262 | "nr_shadow_call_stack" , |
1263 | #endif |
1264 | "nr_page_table_pages" , |
1265 | "nr_sec_page_table_pages" , |
1266 | #ifdef CONFIG_IOMMU_SUPPORT |
1267 | "nr_iommu_pages" , |
1268 | #endif |
1269 | #ifdef CONFIG_SWAP |
1270 | "nr_swapcached" , |
1271 | #endif |
1272 | #ifdef CONFIG_NUMA_BALANCING |
1273 | "pgpromote_success" , |
1274 | "pgpromote_candidate" , |
1275 | #endif |
1276 | "pgdemote_kswapd" , |
1277 | "pgdemote_direct" , |
1278 | "pgdemote_khugepaged" , |
1279 | "pgdemote_proactive" , |
1280 | #ifdef CONFIG_HUGETLB_PAGE |
1281 | "nr_hugetlb" , |
1282 | #endif |
1283 | "nr_balloon_pages" , |
1284 | /* system-wide enum vm_stat_item counters */ |
1285 | "nr_dirty_threshold" , |
1286 | "nr_dirty_background_threshold" , |
1287 | "nr_memmap_pages" , |
1288 | "nr_memmap_boot_pages" , |
1289 | |
1290 | #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) |
1291 | /* enum vm_event_item counters */ |
1292 | "pgpgin" , |
1293 | "pgpgout" , |
1294 | "pswpin" , |
1295 | "pswpout" , |
1296 | |
1297 | TEXTS_FOR_ZONES("pgalloc" ) |
1298 | TEXTS_FOR_ZONES("allocstall" ) |
1299 | TEXTS_FOR_ZONES("pgskip" ) |
1300 | |
1301 | "pgfree" , |
1302 | "pgactivate" , |
1303 | "pgdeactivate" , |
1304 | "pglazyfree" , |
1305 | |
1306 | "pgfault" , |
1307 | "pgmajfault" , |
1308 | "pglazyfreed" , |
1309 | |
1310 | "pgrefill" , |
1311 | "pgreuse" , |
1312 | "pgsteal_kswapd" , |
1313 | "pgsteal_direct" , |
1314 | "pgsteal_khugepaged" , |
1315 | "pgsteal_proactive" , |
1316 | "pgscan_kswapd" , |
1317 | "pgscan_direct" , |
1318 | "pgscan_khugepaged" , |
1319 | "pgscan_proactive" , |
1320 | "pgscan_direct_throttle" , |
1321 | "pgscan_anon" , |
1322 | "pgscan_file" , |
1323 | "pgsteal_anon" , |
1324 | "pgsteal_file" , |
1325 | |
1326 | #ifdef CONFIG_NUMA |
1327 | "zone_reclaim_success" , |
1328 | "zone_reclaim_failed" , |
1329 | #endif |
1330 | "pginodesteal" , |
1331 | "slabs_scanned" , |
1332 | "kswapd_inodesteal" , |
1333 | "kswapd_low_wmark_hit_quickly" , |
1334 | "kswapd_high_wmark_hit_quickly" , |
1335 | "pageoutrun" , |
1336 | |
1337 | "pgrotated" , |
1338 | |
1339 | "drop_pagecache" , |
1340 | "drop_slab" , |
1341 | "oom_kill" , |
1342 | |
1343 | #ifdef CONFIG_NUMA_BALANCING |
1344 | "numa_pte_updates" , |
1345 | "numa_huge_pte_updates" , |
1346 | "numa_hint_faults" , |
1347 | "numa_hint_faults_local" , |
1348 | "numa_pages_migrated" , |
1349 | "numa_task_migrated" , |
1350 | "numa_task_swapped" , |
1351 | #endif |
1352 | #ifdef CONFIG_MIGRATION |
1353 | "pgmigrate_success" , |
1354 | "pgmigrate_fail" , |
1355 | "thp_migration_success" , |
1356 | "thp_migration_fail" , |
1357 | "thp_migration_split" , |
1358 | #endif |
1359 | #ifdef CONFIG_COMPACTION |
1360 | "compact_migrate_scanned" , |
1361 | "compact_free_scanned" , |
1362 | "compact_isolated" , |
1363 | "compact_stall" , |
1364 | "compact_fail" , |
1365 | "compact_success" , |
1366 | "compact_daemon_wake" , |
1367 | "compact_daemon_migrate_scanned" , |
1368 | "compact_daemon_free_scanned" , |
1369 | #endif |
1370 | |
1371 | #ifdef CONFIG_HUGETLB_PAGE |
1372 | "htlb_buddy_alloc_success" , |
1373 | "htlb_buddy_alloc_fail" , |
1374 | #endif |
1375 | #ifdef CONFIG_CMA |
1376 | "cma_alloc_success" , |
1377 | "cma_alloc_fail" , |
1378 | #endif |
1379 | "unevictable_pgs_culled" , |
1380 | "unevictable_pgs_scanned" , |
1381 | "unevictable_pgs_rescued" , |
1382 | "unevictable_pgs_mlocked" , |
1383 | "unevictable_pgs_munlocked" , |
1384 | "unevictable_pgs_cleared" , |
1385 | "unevictable_pgs_stranded" , |
1386 | |
1387 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
1388 | "thp_fault_alloc" , |
1389 | "thp_fault_fallback" , |
1390 | "thp_fault_fallback_charge" , |
1391 | "thp_collapse_alloc" , |
1392 | "thp_collapse_alloc_failed" , |
1393 | "thp_file_alloc" , |
1394 | "thp_file_fallback" , |
1395 | "thp_file_fallback_charge" , |
1396 | "thp_file_mapped" , |
1397 | "thp_split_page" , |
1398 | "thp_split_page_failed" , |
1399 | "thp_deferred_split_page" , |
1400 | "thp_underused_split_page" , |
1401 | "thp_split_pmd" , |
1402 | "thp_scan_exceed_none_pte" , |
1403 | "thp_scan_exceed_swap_pte" , |
1404 | "thp_scan_exceed_share_pte" , |
1405 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
1406 | "thp_split_pud" , |
1407 | #endif |
1408 | "thp_zero_page_alloc" , |
1409 | "thp_zero_page_alloc_failed" , |
1410 | "thp_swpout" , |
1411 | "thp_swpout_fallback" , |
1412 | #endif |
1413 | #ifdef CONFIG_MEMORY_BALLOON |
1414 | "balloon_inflate" , |
1415 | "balloon_deflate" , |
1416 | #ifdef CONFIG_BALLOON_COMPACTION |
1417 | "balloon_migrate" , |
1418 | #endif |
1419 | #endif /* CONFIG_MEMORY_BALLOON */ |
1420 | #ifdef CONFIG_DEBUG_TLBFLUSH |
1421 | "nr_tlb_remote_flush" , |
1422 | "nr_tlb_remote_flush_received" , |
1423 | "nr_tlb_local_flush_all" , |
1424 | "nr_tlb_local_flush_one" , |
1425 | #endif /* CONFIG_DEBUG_TLBFLUSH */ |
1426 | |
1427 | #ifdef CONFIG_SWAP |
1428 | "swap_ra" , |
1429 | "swap_ra_hit" , |
1430 | "swpin_zero" , |
1431 | "swpout_zero" , |
1432 | #ifdef CONFIG_KSM |
1433 | "ksm_swpin_copy" , |
1434 | #endif |
1435 | #endif |
1436 | #ifdef CONFIG_KSM |
1437 | "cow_ksm" , |
1438 | #endif |
1439 | #ifdef CONFIG_ZSWAP |
1440 | "zswpin" , |
1441 | "zswpout" , |
1442 | "zswpwb" , |
1443 | #endif |
1444 | #ifdef CONFIG_X86 |
1445 | "direct_map_level2_splits" , |
1446 | "direct_map_level3_splits" , |
1447 | "direct_map_level2_collapses" , |
1448 | "direct_map_level3_collapses" , |
1449 | #endif |
1450 | #ifdef CONFIG_PER_VMA_LOCK_STATS |
1451 | "vma_lock_success" , |
1452 | "vma_lock_abort" , |
1453 | "vma_lock_retry" , |
1454 | "vma_lock_miss" , |
1455 | #endif |
1456 | #ifdef CONFIG_DEBUG_STACK_USAGE |
1457 | "kstack_1k" , |
1458 | #if THREAD_SIZE > 1024 |
1459 | "kstack_2k" , |
1460 | #endif |
1461 | #if THREAD_SIZE > 2048 |
1462 | "kstack_4k" , |
1463 | #endif |
1464 | #if THREAD_SIZE > 4096 |
1465 | "kstack_8k" , |
1466 | #endif |
1467 | #if THREAD_SIZE > 8192 |
1468 | "kstack_16k" , |
1469 | #endif |
1470 | #if THREAD_SIZE > 16384 |
1471 | "kstack_32k" , |
1472 | #endif |
1473 | #if THREAD_SIZE > 32768 |
1474 | "kstack_64k" , |
1475 | #endif |
1476 | #if THREAD_SIZE > 65536 |
1477 | "kstack_rest" , |
1478 | #endif |
1479 | #endif |
1480 | #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ |
1481 | }; |
1482 | #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ |
1483 | |
1484 | #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ |
1485 | defined(CONFIG_PROC_FS) |
1486 | static void *frag_start(struct seq_file *m, loff_t *pos) |
1487 | { |
1488 | pg_data_t *pgdat; |
1489 | loff_t node = *pos; |
1490 | |
1491 | for (pgdat = first_online_pgdat(); |
1492 | pgdat && node; |
1493 | pgdat = next_online_pgdat(pgdat)) |
1494 | --node; |
1495 | |
1496 | return pgdat; |
1497 | } |
1498 | |
1499 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) |
1500 | { |
1501 | pg_data_t *pgdat = (pg_data_t *)arg; |
1502 | |
1503 | (*pos)++; |
1504 | return next_online_pgdat(pgdat); |
1505 | } |
1506 | |
1507 | static void frag_stop(struct seq_file *m, void *arg) |
1508 | { |
1509 | } |
1510 | |
1511 | /* |
1512 | * Walk zones in a node and print using a callback. |
1513 | * If @assert_populated is true, only use callback for zones that are populated. |
1514 | */ |
1515 | static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, |
1516 | bool assert_populated, bool nolock, |
1517 | void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) |
1518 | { |
1519 | struct zone *zone; |
1520 | struct zone *node_zones = pgdat->node_zones; |
1521 | unsigned long flags; |
1522 | |
1523 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { |
1524 | if (assert_populated && !populated_zone(zone)) |
1525 | continue; |
1526 | |
1527 | if (!nolock) |
1528 | spin_lock_irqsave(&zone->lock, flags); |
1529 | print(m, pgdat, zone); |
1530 | if (!nolock) |
1531 | spin_unlock_irqrestore(lock: &zone->lock, flags); |
1532 | } |
1533 | } |
1534 | #endif |
1535 | |
1536 | #ifdef CONFIG_PROC_FS |
1537 | static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, |
1538 | struct zone *zone) |
1539 | { |
1540 | int order; |
1541 | |
1542 | seq_printf(m, fmt: "Node %d, zone %8s " , pgdat->node_id, zone->name); |
1543 | for (order = 0; order < NR_PAGE_ORDERS; ++order) |
1544 | /* |
1545 | * Access to nr_free is lockless as nr_free is used only for |
1546 | * printing purposes. Use data_race to avoid KCSAN warning. |
1547 | */ |
1548 | seq_printf(m, fmt: "%6lu " , data_race(zone->free_area[order].nr_free)); |
1549 | seq_putc(m, c: '\n'); |
1550 | } |
1551 | |
1552 | /* |
1553 | * This walks the free areas for each zone. |
1554 | */ |
1555 | static int frag_show(struct seq_file *m, void *arg) |
1556 | { |
1557 | pg_data_t *pgdat = (pg_data_t *)arg; |
1558 | walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: frag_show_print); |
1559 | return 0; |
1560 | } |
1561 | |
1562 | static void pagetypeinfo_showfree_print(struct seq_file *m, |
1563 | pg_data_t *pgdat, struct zone *zone) |
1564 | { |
1565 | int order, mtype; |
1566 | |
1567 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { |
1568 | seq_printf(m, fmt: "Node %4d, zone %8s, type %12s " , |
1569 | pgdat->node_id, |
1570 | zone->name, |
1571 | migratetype_names[mtype]); |
1572 | for (order = 0; order < NR_PAGE_ORDERS; ++order) { |
1573 | unsigned long freecount = 0; |
1574 | struct free_area *area; |
1575 | struct list_head *curr; |
1576 | bool overflow = false; |
1577 | |
1578 | area = &(zone->free_area[order]); |
1579 | |
1580 | list_for_each(curr, &area->free_list[mtype]) { |
1581 | /* |
1582 | * Cap the free_list iteration because it might |
1583 | * be really large and we are under a spinlock |
1584 | * so a long time spent here could trigger a |
1585 | * hard lockup detector. Anyway this is a |
1586 | * debugging tool so knowing there is a handful |
1587 | * of pages of this order should be more than |
1588 | * sufficient. |
1589 | */ |
1590 | if (++freecount >= 100000) { |
1591 | overflow = true; |
1592 | break; |
1593 | } |
1594 | } |
1595 | seq_printf(m, fmt: "%s%6lu " , overflow ? ">" : "" , freecount); |
1596 | spin_unlock_irq(lock: &zone->lock); |
1597 | cond_resched(); |
1598 | spin_lock_irq(lock: &zone->lock); |
1599 | } |
1600 | seq_putc(m, c: '\n'); |
1601 | } |
1602 | } |
1603 | |
1604 | /* Print out the free pages at each order for each migatetype */ |
1605 | static void pagetypeinfo_showfree(struct seq_file *m, void *arg) |
1606 | { |
1607 | int order; |
1608 | pg_data_t *pgdat = (pg_data_t *)arg; |
1609 | |
1610 | /* Print header */ |
1611 | seq_printf(m, fmt: "%-43s " , "Free pages count per migrate type at order" ); |
1612 | for (order = 0; order < NR_PAGE_ORDERS; ++order) |
1613 | seq_printf(m, fmt: "%6d " , order); |
1614 | seq_putc(m, c: '\n'); |
1615 | |
1616 | walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: pagetypeinfo_showfree_print); |
1617 | } |
1618 | |
1619 | static void pagetypeinfo_showblockcount_print(struct seq_file *m, |
1620 | pg_data_t *pgdat, struct zone *zone) |
1621 | { |
1622 | int mtype; |
1623 | unsigned long pfn; |
1624 | unsigned long start_pfn = zone->zone_start_pfn; |
1625 | unsigned long end_pfn = zone_end_pfn(zone); |
1626 | unsigned long count[MIGRATE_TYPES] = { 0, }; |
1627 | |
1628 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
1629 | struct page *page; |
1630 | |
1631 | page = pfn_to_online_page(pfn); |
1632 | if (!page) |
1633 | continue; |
1634 | |
1635 | if (page_zone(page) != zone) |
1636 | continue; |
1637 | |
1638 | mtype = get_pageblock_migratetype(page); |
1639 | |
1640 | if (mtype < MIGRATE_TYPES) |
1641 | count[mtype]++; |
1642 | } |
1643 | |
1644 | /* Print counts */ |
1645 | seq_printf(m, fmt: "Node %d, zone %8s " , pgdat->node_id, zone->name); |
1646 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
1647 | seq_printf(m, fmt: "%12lu " , count[mtype]); |
1648 | seq_putc(m, c: '\n'); |
1649 | } |
1650 | |
1651 | /* Print out the number of pageblocks for each migratetype */ |
1652 | static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg) |
1653 | { |
1654 | int mtype; |
1655 | pg_data_t *pgdat = (pg_data_t *)arg; |
1656 | |
1657 | seq_printf(m, fmt: "\n%-23s" , "Number of blocks type " ); |
1658 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
1659 | seq_printf(m, fmt: "%12s " , migratetype_names[mtype]); |
1660 | seq_putc(m, c: '\n'); |
1661 | walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, |
1662 | print: pagetypeinfo_showblockcount_print); |
1663 | } |
1664 | |
1665 | /* |
1666 | * Print out the number of pageblocks for each migratetype that contain pages |
1667 | * of other types. This gives an indication of how well fallbacks are being |
1668 | * contained by rmqueue_fallback(). It requires information from PAGE_OWNER |
1669 | * to determine what is going on |
1670 | */ |
1671 | static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) |
1672 | { |
1673 | #ifdef CONFIG_PAGE_OWNER |
1674 | int mtype; |
1675 | |
1676 | if (!static_branch_unlikely(&page_owner_inited)) |
1677 | return; |
1678 | |
1679 | drain_all_pages(NULL); |
1680 | |
1681 | seq_printf(m, fmt: "\n%-23s" , "Number of mixed blocks " ); |
1682 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
1683 | seq_printf(m, fmt: "%12s " , migratetype_names[mtype]); |
1684 | seq_putc(m, c: '\n'); |
1685 | |
1686 | walk_zones_in_node(m, pgdat, assert_populated: true, nolock: true, |
1687 | print: pagetypeinfo_showmixedcount_print); |
1688 | #endif /* CONFIG_PAGE_OWNER */ |
1689 | } |
1690 | |
1691 | /* |
1692 | * This prints out statistics in relation to grouping pages by mobility. |
1693 | * It is expensive to collect so do not constantly read the file. |
1694 | */ |
1695 | static int pagetypeinfo_show(struct seq_file *m, void *arg) |
1696 | { |
1697 | pg_data_t *pgdat = (pg_data_t *)arg; |
1698 | |
1699 | /* check memoryless node */ |
1700 | if (!node_state(node: pgdat->node_id, state: N_MEMORY)) |
1701 | return 0; |
1702 | |
1703 | seq_printf(m, fmt: "Page block order: %d\n" , pageblock_order); |
1704 | seq_printf(m, fmt: "Pages per block: %lu\n" , pageblock_nr_pages); |
1705 | seq_putc(m, c: '\n'); |
1706 | pagetypeinfo_showfree(m, arg: pgdat); |
1707 | pagetypeinfo_showblockcount(m, arg: pgdat); |
1708 | pagetypeinfo_showmixedcount(m, pgdat); |
1709 | |
1710 | return 0; |
1711 | } |
1712 | |
1713 | static const struct seq_operations fragmentation_op = { |
1714 | .start = frag_start, |
1715 | .next = frag_next, |
1716 | .stop = frag_stop, |
1717 | .show = frag_show, |
1718 | }; |
1719 | |
1720 | static const struct seq_operations pagetypeinfo_op = { |
1721 | .start = frag_start, |
1722 | .next = frag_next, |
1723 | .stop = frag_stop, |
1724 | .show = pagetypeinfo_show, |
1725 | }; |
1726 | |
1727 | static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) |
1728 | { |
1729 | int zid; |
1730 | |
1731 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
1732 | struct zone *compare = &pgdat->node_zones[zid]; |
1733 | |
1734 | if (populated_zone(zone: compare)) |
1735 | return zone == compare; |
1736 | } |
1737 | |
1738 | return false; |
1739 | } |
1740 | |
1741 | static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, |
1742 | struct zone *zone) |
1743 | { |
1744 | int i; |
1745 | seq_printf(m, fmt: "Node %d, zone %8s" , pgdat->node_id, zone->name); |
1746 | if (is_zone_first_populated(pgdat, zone)) { |
1747 | seq_printf(m, fmt: "\n per-node stats" ); |
1748 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
1749 | unsigned long pages = node_page_state_pages(pgdat, item: i); |
1750 | |
1751 | if (vmstat_item_print_in_thp(item: i)) |
1752 | pages /= HPAGE_PMD_NR; |
1753 | seq_printf(m, fmt: "\n %-12s %lu" , node_stat_name(item: i), |
1754 | pages); |
1755 | } |
1756 | } |
1757 | seq_printf(m, |
1758 | fmt: "\n pages free %lu" |
1759 | "\n boost %lu" |
1760 | "\n min %lu" |
1761 | "\n low %lu" |
1762 | "\n high %lu" |
1763 | "\n promo %lu" |
1764 | "\n spanned %lu" |
1765 | "\n present %lu" |
1766 | "\n managed %lu" |
1767 | "\n cma %lu" , |
1768 | zone_page_state(zone, item: NR_FREE_PAGES), |
1769 | zone->watermark_boost, |
1770 | min_wmark_pages(z: zone), |
1771 | low_wmark_pages(z: zone), |
1772 | high_wmark_pages(z: zone), |
1773 | promo_wmark_pages(z: zone), |
1774 | zone->spanned_pages, |
1775 | zone->present_pages, |
1776 | zone_managed_pages(zone), |
1777 | zone_cma_pages(zone)); |
1778 | |
1779 | seq_printf(m, |
1780 | fmt: "\n protection: (%ld" , |
1781 | zone->lowmem_reserve[0]); |
1782 | for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) |
1783 | seq_printf(m, fmt: ", %ld" , zone->lowmem_reserve[i]); |
1784 | seq_putc(m, c: ')'); |
1785 | |
1786 | /* If unpopulated, no other information is useful */ |
1787 | if (!populated_zone(zone)) { |
1788 | seq_putc(m, c: '\n'); |
1789 | return; |
1790 | } |
1791 | |
1792 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
1793 | seq_printf(m, fmt: "\n %-12s %lu" , zone_stat_name(item: i), |
1794 | zone_page_state(zone, item: i)); |
1795 | |
1796 | #ifdef CONFIG_NUMA |
1797 | fold_vm_zone_numa_events(zone); |
1798 | for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) |
1799 | seq_printf(m, fmt: "\n %-12s %lu" , numa_stat_name(item: i), |
1800 | zone_numa_event_state(zone, item: i)); |
1801 | #endif |
1802 | |
1803 | seq_printf(m, fmt: "\n pagesets" ); |
1804 | for_each_online_cpu(i) { |
1805 | struct per_cpu_pages *pcp; |
1806 | struct per_cpu_zonestat __maybe_unused *pzstats; |
1807 | |
1808 | pcp = per_cpu_ptr(zone->per_cpu_pageset, i); |
1809 | seq_printf(m, |
1810 | fmt: "\n cpu: %i" |
1811 | "\n count: %i" |
1812 | "\n high: %i" |
1813 | "\n batch: %i" |
1814 | "\n high_min: %i" |
1815 | "\n high_max: %i" , |
1816 | i, |
1817 | pcp->count, |
1818 | pcp->high, |
1819 | pcp->batch, |
1820 | pcp->high_min, |
1821 | pcp->high_max); |
1822 | #ifdef CONFIG_SMP |
1823 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i); |
1824 | seq_printf(m, fmt: "\n vm stats threshold: %d" , |
1825 | pzstats->stat_threshold); |
1826 | #endif |
1827 | } |
1828 | seq_printf(m, |
1829 | fmt: "\n node_unreclaimable: %u" |
1830 | "\n start_pfn: %lu" , |
1831 | pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, |
1832 | zone->zone_start_pfn); |
1833 | seq_putc(m, c: '\n'); |
1834 | } |
1835 | |
1836 | /* |
1837 | * Output information about zones in @pgdat. All zones are printed regardless |
1838 | * of whether they are populated or not: lowmem_reserve_ratio operates on the |
1839 | * set of all zones and userspace would not be aware of such zones if they are |
1840 | * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). |
1841 | */ |
1842 | static int zoneinfo_show(struct seq_file *m, void *arg) |
1843 | { |
1844 | pg_data_t *pgdat = (pg_data_t *)arg; |
1845 | walk_zones_in_node(m, pgdat, assert_populated: false, nolock: false, print: zoneinfo_show_print); |
1846 | return 0; |
1847 | } |
1848 | |
1849 | static const struct seq_operations zoneinfo_op = { |
1850 | .start = frag_start, /* iterate over all zones. The same as in |
1851 | * fragmentation. */ |
1852 | .next = frag_next, |
1853 | .stop = frag_stop, |
1854 | .show = zoneinfo_show, |
1855 | }; |
1856 | |
1857 | #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ |
1858 | NR_VM_NUMA_EVENT_ITEMS + \ |
1859 | NR_VM_NODE_STAT_ITEMS + \ |
1860 | NR_VM_STAT_ITEMS + \ |
1861 | (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ |
1862 | NR_VM_EVENT_ITEMS : 0)) |
1863 | |
1864 | static void *vmstat_start(struct seq_file *m, loff_t *pos) |
1865 | { |
1866 | unsigned long *v; |
1867 | int i; |
1868 | |
1869 | if (*pos >= NR_VMSTAT_ITEMS) |
1870 | return NULL; |
1871 | |
1872 | BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); |
1873 | fold_vm_numa_events(); |
1874 | v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); |
1875 | m->private = v; |
1876 | if (!v) |
1877 | return ERR_PTR(error: -ENOMEM); |
1878 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
1879 | v[i] = global_zone_page_state(item: i); |
1880 | v += NR_VM_ZONE_STAT_ITEMS; |
1881 | |
1882 | #ifdef CONFIG_NUMA |
1883 | for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) |
1884 | v[i] = global_numa_event_state(item: i); |
1885 | v += NR_VM_NUMA_EVENT_ITEMS; |
1886 | #endif |
1887 | |
1888 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
1889 | v[i] = global_node_page_state_pages(item: i); |
1890 | if (vmstat_item_print_in_thp(item: i)) |
1891 | v[i] /= HPAGE_PMD_NR; |
1892 | } |
1893 | v += NR_VM_NODE_STAT_ITEMS; |
1894 | |
1895 | global_dirty_limits(pbackground: v + NR_DIRTY_BG_THRESHOLD, |
1896 | pdirty: v + NR_DIRTY_THRESHOLD); |
1897 | v[NR_MEMMAP_PAGES] = atomic_long_read(v: &nr_memmap_pages); |
1898 | v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(v: &nr_memmap_boot_pages); |
1899 | v += NR_VM_STAT_ITEMS; |
1900 | |
1901 | #ifdef CONFIG_VM_EVENT_COUNTERS |
1902 | all_vm_events(v); |
1903 | v[PGPGIN] /= 2; /* sectors -> kbytes */ |
1904 | v[PGPGOUT] /= 2; |
1905 | #endif |
1906 | return (unsigned long *)m->private + *pos; |
1907 | } |
1908 | |
1909 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) |
1910 | { |
1911 | (*pos)++; |
1912 | if (*pos >= NR_VMSTAT_ITEMS) |
1913 | return NULL; |
1914 | return (unsigned long *)m->private + *pos; |
1915 | } |
1916 | |
1917 | static int vmstat_show(struct seq_file *m, void *arg) |
1918 | { |
1919 | unsigned long *l = arg; |
1920 | unsigned long off = l - (unsigned long *)m->private; |
1921 | |
1922 | seq_puts(m, s: vmstat_text[off]); |
1923 | seq_put_decimal_ull(m, delimiter: " " , num: *l); |
1924 | seq_putc(m, c: '\n'); |
1925 | |
1926 | if (off == NR_VMSTAT_ITEMS - 1) { |
1927 | /* |
1928 | * We've come to the end - add any deprecated counters to avoid |
1929 | * breaking userspace which might depend on them being present. |
1930 | */ |
1931 | seq_puts(m, s: "nr_unstable 0\n" ); |
1932 | } |
1933 | return 0; |
1934 | } |
1935 | |
1936 | static void vmstat_stop(struct seq_file *m, void *arg) |
1937 | { |
1938 | kfree(objp: m->private); |
1939 | m->private = NULL; |
1940 | } |
1941 | |
1942 | static const struct seq_operations vmstat_op = { |
1943 | .start = vmstat_start, |
1944 | .next = vmstat_next, |
1945 | .stop = vmstat_stop, |
1946 | .show = vmstat_show, |
1947 | }; |
1948 | #endif /* CONFIG_PROC_FS */ |
1949 | |
1950 | #ifdef CONFIG_SMP |
1951 | static DEFINE_PER_CPU(struct delayed_work, vmstat_work); |
1952 | static int sysctl_stat_interval __read_mostly = HZ; |
1953 | static int vmstat_late_init_done; |
1954 | |
1955 | #ifdef CONFIG_PROC_FS |
1956 | static void refresh_vm_stats(struct work_struct *work) |
1957 | { |
1958 | refresh_cpu_vm_stats(do_pagesets: true); |
1959 | } |
1960 | |
1961 | static int vmstat_refresh(const struct ctl_table *table, int write, |
1962 | void *buffer, size_t *lenp, loff_t *ppos) |
1963 | { |
1964 | long val; |
1965 | int err; |
1966 | int i; |
1967 | |
1968 | /* |
1969 | * The regular update, every sysctl_stat_interval, may come later |
1970 | * than expected: leaving a significant amount in per_cpu buckets. |
1971 | * This is particularly misleading when checking a quantity of HUGE |
1972 | * pages, immediately after running a test. /proc/sys/vm/stat_refresh, |
1973 | * which can equally be echo'ed to or cat'ted from (by root), |
1974 | * can be used to update the stats just before reading them. |
1975 | * |
1976 | * Oh, and since global_zone_page_state() etc. are so careful to hide |
1977 | * transiently negative values, report an error here if any of |
1978 | * the stats is negative, so we know to go looking for imbalance. |
1979 | */ |
1980 | err = schedule_on_each_cpu(func: refresh_vm_stats); |
1981 | if (err) |
1982 | return err; |
1983 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
1984 | /* |
1985 | * Skip checking stats known to go negative occasionally. |
1986 | */ |
1987 | switch (i) { |
1988 | case NR_ZONE_WRITE_PENDING: |
1989 | case NR_FREE_CMA_PAGES: |
1990 | continue; |
1991 | } |
1992 | val = atomic_long_read(v: &vm_zone_stat[i]); |
1993 | if (val < 0) { |
1994 | pr_warn("%s: %s %ld\n" , |
1995 | __func__, zone_stat_name(i), val); |
1996 | } |
1997 | } |
1998 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
1999 | /* |
2000 | * Skip checking stats known to go negative occasionally. |
2001 | */ |
2002 | switch (i) { |
2003 | case NR_WRITEBACK: |
2004 | continue; |
2005 | } |
2006 | val = atomic_long_read(v: &vm_node_stat[i]); |
2007 | if (val < 0) { |
2008 | pr_warn("%s: %s %ld\n" , |
2009 | __func__, node_stat_name(i), val); |
2010 | } |
2011 | } |
2012 | if (write) |
2013 | *ppos += *lenp; |
2014 | else |
2015 | *lenp = 0; |
2016 | return 0; |
2017 | } |
2018 | #endif /* CONFIG_PROC_FS */ |
2019 | |
2020 | static void vmstat_update(struct work_struct *w) |
2021 | { |
2022 | if (refresh_cpu_vm_stats(do_pagesets: true)) { |
2023 | /* |
2024 | * Counters were updated so we expect more updates |
2025 | * to occur in the future. Keep on running the |
2026 | * update worker thread. |
2027 | */ |
2028 | queue_delayed_work_on(smp_processor_id(), wq: mm_percpu_wq, |
2029 | this_cpu_ptr(&vmstat_work), |
2030 | delay: round_jiffies_relative(j: sysctl_stat_interval)); |
2031 | } |
2032 | } |
2033 | |
2034 | /* |
2035 | * Check if the diffs for a certain cpu indicate that |
2036 | * an update is needed. |
2037 | */ |
2038 | static bool need_update(int cpu) |
2039 | { |
2040 | pg_data_t *last_pgdat = NULL; |
2041 | struct zone *zone; |
2042 | |
2043 | for_each_populated_zone(zone) { |
2044 | struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
2045 | struct per_cpu_nodestat *n; |
2046 | |
2047 | /* |
2048 | * The fast way of checking if there are any vmstat diffs. |
2049 | */ |
2050 | if (memchr_inv(p: pzstats->vm_stat_diff, c: 0, size: sizeof(pzstats->vm_stat_diff))) |
2051 | return true; |
2052 | |
2053 | if (last_pgdat == zone->zone_pgdat) |
2054 | continue; |
2055 | last_pgdat = zone->zone_pgdat; |
2056 | n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); |
2057 | if (memchr_inv(p: n->vm_node_stat_diff, c: 0, size: sizeof(n->vm_node_stat_diff))) |
2058 | return true; |
2059 | } |
2060 | return false; |
2061 | } |
2062 | |
2063 | /* |
2064 | * Switch off vmstat processing and then fold all the remaining differentials |
2065 | * until the diffs stay at zero. The function is used by NOHZ and can only be |
2066 | * invoked when tick processing is not active. |
2067 | */ |
2068 | void quiet_vmstat(void) |
2069 | { |
2070 | if (system_state != SYSTEM_RUNNING) |
2071 | return; |
2072 | |
2073 | if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) |
2074 | return; |
2075 | |
2076 | if (!need_update(smp_processor_id())) |
2077 | return; |
2078 | |
2079 | /* |
2080 | * Just refresh counters and do not care about the pending delayed |
2081 | * vmstat_update. It doesn't fire that often to matter and canceling |
2082 | * it would be too expensive from this path. |
2083 | * vmstat_shepherd will take care about that for us. |
2084 | */ |
2085 | refresh_cpu_vm_stats(do_pagesets: false); |
2086 | } |
2087 | |
2088 | /* |
2089 | * Shepherd worker thread that checks the |
2090 | * differentials of processors that have their worker |
2091 | * threads for vm statistics updates disabled because of |
2092 | * inactivity. |
2093 | */ |
2094 | static void vmstat_shepherd(struct work_struct *w); |
2095 | |
2096 | static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); |
2097 | |
2098 | static void vmstat_shepherd(struct work_struct *w) |
2099 | { |
2100 | int cpu; |
2101 | |
2102 | cpus_read_lock(); |
2103 | /* Check processors whose vmstat worker threads have been disabled */ |
2104 | for_each_online_cpu(cpu) { |
2105 | struct delayed_work *dw = &per_cpu(vmstat_work, cpu); |
2106 | |
2107 | /* |
2108 | * In kernel users of vmstat counters either require the precise value and |
2109 | * they are using zone_page_state_snapshot interface or they can live with |
2110 | * an imprecision as the regular flushing can happen at arbitrary time and |
2111 | * cumulative error can grow (see calculate_normal_threshold). |
2112 | * |
2113 | * From that POV the regular flushing can be postponed for CPUs that have |
2114 | * been isolated from the kernel interference without critical |
2115 | * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd |
2116 | * for all isolated CPUs to avoid interference with the isolated workload. |
2117 | */ |
2118 | if (cpu_is_isolated(cpu)) |
2119 | continue; |
2120 | |
2121 | if (!delayed_work_pending(dw) && need_update(cpu)) |
2122 | queue_delayed_work_on(cpu, wq: mm_percpu_wq, work: dw, delay: 0); |
2123 | |
2124 | cond_resched(); |
2125 | } |
2126 | cpus_read_unlock(); |
2127 | |
2128 | schedule_delayed_work(dwork: &shepherd, |
2129 | delay: round_jiffies_relative(j: sysctl_stat_interval)); |
2130 | } |
2131 | |
2132 | static void __init start_shepherd_timer(void) |
2133 | { |
2134 | int cpu; |
2135 | |
2136 | for_each_possible_cpu(cpu) { |
2137 | INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), |
2138 | vmstat_update); |
2139 | |
2140 | /* |
2141 | * For secondary CPUs during CPU hotplug scenarios, |
2142 | * vmstat_cpu_online() will enable the work. |
2143 | * mm/vmstat:online enables and disables vmstat_work |
2144 | * symmetrically during CPU hotplug events. |
2145 | */ |
2146 | if (!cpu_online(cpu)) |
2147 | disable_delayed_work_sync(dwork: &per_cpu(vmstat_work, cpu)); |
2148 | } |
2149 | |
2150 | schedule_delayed_work(dwork: &shepherd, |
2151 | delay: round_jiffies_relative(j: sysctl_stat_interval)); |
2152 | } |
2153 | |
2154 | static void __init init_cpu_node_state(void) |
2155 | { |
2156 | int node; |
2157 | |
2158 | for_each_online_node(node) { |
2159 | if (!cpumask_empty(srcp: cpumask_of_node(node))) |
2160 | node_set_state(node, state: N_CPU); |
2161 | } |
2162 | } |
2163 | |
2164 | static int vmstat_cpu_online(unsigned int cpu) |
2165 | { |
2166 | if (vmstat_late_init_done) |
2167 | refresh_zone_stat_thresholds(); |
2168 | |
2169 | if (!node_state(cpu_to_node(cpu), state: N_CPU)) { |
2170 | node_set_state(cpu_to_node(cpu), state: N_CPU); |
2171 | } |
2172 | enable_delayed_work(dwork: &per_cpu(vmstat_work, cpu)); |
2173 | |
2174 | return 0; |
2175 | } |
2176 | |
2177 | static int vmstat_cpu_down_prep(unsigned int cpu) |
2178 | { |
2179 | disable_delayed_work_sync(dwork: &per_cpu(vmstat_work, cpu)); |
2180 | return 0; |
2181 | } |
2182 | |
2183 | static int vmstat_cpu_dead(unsigned int cpu) |
2184 | { |
2185 | const struct cpumask *node_cpus; |
2186 | int node; |
2187 | |
2188 | node = cpu_to_node(cpu); |
2189 | |
2190 | refresh_zone_stat_thresholds(); |
2191 | node_cpus = cpumask_of_node(node); |
2192 | if (!cpumask_empty(srcp: node_cpus)) |
2193 | return 0; |
2194 | |
2195 | node_clear_state(node, state: N_CPU); |
2196 | |
2197 | return 0; |
2198 | } |
2199 | |
2200 | static int __init vmstat_late_init(void) |
2201 | { |
2202 | refresh_zone_stat_thresholds(); |
2203 | vmstat_late_init_done = 1; |
2204 | |
2205 | return 0; |
2206 | } |
2207 | late_initcall(vmstat_late_init); |
2208 | #endif |
2209 | |
2210 | #ifdef CONFIG_PROC_FS |
2211 | static const struct ctl_table vmstat_table[] = { |
2212 | #ifdef CONFIG_SMP |
2213 | { |
2214 | .procname = "stat_interval" , |
2215 | .data = &sysctl_stat_interval, |
2216 | .maxlen = sizeof(sysctl_stat_interval), |
2217 | .mode = 0644, |
2218 | .proc_handler = proc_dointvec_jiffies, |
2219 | }, |
2220 | { |
2221 | .procname = "stat_refresh" , |
2222 | .data = NULL, |
2223 | .maxlen = 0, |
2224 | .mode = 0600, |
2225 | .proc_handler = vmstat_refresh, |
2226 | }, |
2227 | #endif |
2228 | #ifdef CONFIG_NUMA |
2229 | { |
2230 | .procname = "numa_stat" , |
2231 | .data = &sysctl_vm_numa_stat, |
2232 | .maxlen = sizeof(int), |
2233 | .mode = 0644, |
2234 | .proc_handler = sysctl_vm_numa_stat_handler, |
2235 | .extra1 = SYSCTL_ZERO, |
2236 | .extra2 = SYSCTL_ONE, |
2237 | }, |
2238 | #endif |
2239 | }; |
2240 | #endif |
2241 | |
2242 | struct workqueue_struct *mm_percpu_wq; |
2243 | |
2244 | void __init init_mm_internals(void) |
2245 | { |
2246 | int ret __maybe_unused; |
2247 | |
2248 | mm_percpu_wq = alloc_workqueue(fmt: "mm_percpu_wq" , flags: WQ_MEM_RECLAIM, max_active: 0); |
2249 | |
2250 | #ifdef CONFIG_SMP |
2251 | ret = cpuhp_setup_state_nocalls(state: CPUHP_MM_VMSTAT_DEAD, name: "mm/vmstat:dead" , |
2252 | NULL, teardown: vmstat_cpu_dead); |
2253 | if (ret < 0) |
2254 | pr_err("vmstat: failed to register 'dead' hotplug state\n" ); |
2255 | |
2256 | ret = cpuhp_setup_state_nocalls(state: CPUHP_AP_ONLINE_DYN, name: "mm/vmstat:online" , |
2257 | startup: vmstat_cpu_online, |
2258 | teardown: vmstat_cpu_down_prep); |
2259 | if (ret < 0) |
2260 | pr_err("vmstat: failed to register 'online' hotplug state\n" ); |
2261 | |
2262 | cpus_read_lock(); |
2263 | init_cpu_node_state(); |
2264 | cpus_read_unlock(); |
2265 | |
2266 | start_shepherd_timer(); |
2267 | #endif |
2268 | #ifdef CONFIG_PROC_FS |
2269 | proc_create_seq("buddyinfo" , 0444, NULL, &fragmentation_op); |
2270 | proc_create_seq("pagetypeinfo" , 0400, NULL, &pagetypeinfo_op); |
2271 | proc_create_seq("vmstat" , 0444, NULL, &vmstat_op); |
2272 | proc_create_seq("zoneinfo" , 0444, NULL, &zoneinfo_op); |
2273 | register_sysctl_init("vm" , vmstat_table); |
2274 | #endif |
2275 | } |
2276 | |
2277 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) |
2278 | |
2279 | /* |
2280 | * Return an index indicating how much of the available free memory is |
2281 | * unusable for an allocation of the requested size. |
2282 | */ |
2283 | static int unusable_free_index(unsigned int order, |
2284 | struct contig_page_info *info) |
2285 | { |
2286 | /* No free memory is interpreted as all free memory is unusable */ |
2287 | if (info->free_pages == 0) |
2288 | return 1000; |
2289 | |
2290 | /* |
2291 | * Index should be a value between 0 and 1. Return a value to 3 |
2292 | * decimal places. |
2293 | * |
2294 | * 0 => no fragmentation |
2295 | * 1 => high fragmentation |
2296 | */ |
2297 | return div_u64(dividend: (info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, divisor: info->free_pages); |
2298 | |
2299 | } |
2300 | |
2301 | static void unusable_show_print(struct seq_file *m, |
2302 | pg_data_t *pgdat, struct zone *zone) |
2303 | { |
2304 | unsigned int order; |
2305 | int index; |
2306 | struct contig_page_info info; |
2307 | |
2308 | seq_printf(m, fmt: "Node %d, zone %8s " , |
2309 | pgdat->node_id, |
2310 | zone->name); |
2311 | for (order = 0; order < NR_PAGE_ORDERS; ++order) { |
2312 | fill_contig_page_info(zone, suitable_order: order, info: &info); |
2313 | index = unusable_free_index(order, info: &info); |
2314 | seq_printf(m, fmt: "%d.%03d " , index / 1000, index % 1000); |
2315 | } |
2316 | |
2317 | seq_putc(m, c: '\n'); |
2318 | } |
2319 | |
2320 | /* |
2321 | * Display unusable free space index |
2322 | * |
2323 | * The unusable free space index measures how much of the available free |
2324 | * memory cannot be used to satisfy an allocation of a given size and is a |
2325 | * value between 0 and 1. The higher the value, the more of free memory is |
2326 | * unusable and by implication, the worse the external fragmentation is. This |
2327 | * can be expressed as a percentage by multiplying by 100. |
2328 | */ |
2329 | static int unusable_show(struct seq_file *m, void *arg) |
2330 | { |
2331 | pg_data_t *pgdat = (pg_data_t *)arg; |
2332 | |
2333 | /* check memoryless node */ |
2334 | if (!node_state(node: pgdat->node_id, state: N_MEMORY)) |
2335 | return 0; |
2336 | |
2337 | walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: unusable_show_print); |
2338 | |
2339 | return 0; |
2340 | } |
2341 | |
2342 | static const struct seq_operations unusable_sops = { |
2343 | .start = frag_start, |
2344 | .next = frag_next, |
2345 | .stop = frag_stop, |
2346 | .show = unusable_show, |
2347 | }; |
2348 | |
2349 | DEFINE_SEQ_ATTRIBUTE(unusable); |
2350 | |
2351 | static void extfrag_show_print(struct seq_file *m, |
2352 | pg_data_t *pgdat, struct zone *zone) |
2353 | { |
2354 | unsigned int order; |
2355 | int index; |
2356 | |
2357 | /* Alloc on stack as interrupts are disabled for zone walk */ |
2358 | struct contig_page_info info; |
2359 | |
2360 | seq_printf(m, fmt: "Node %d, zone %8s " , |
2361 | pgdat->node_id, |
2362 | zone->name); |
2363 | for (order = 0; order < NR_PAGE_ORDERS; ++order) { |
2364 | fill_contig_page_info(zone, suitable_order: order, info: &info); |
2365 | index = __fragmentation_index(order, info: &info); |
2366 | seq_printf(m, fmt: "%2d.%03d " , index / 1000, index % 1000); |
2367 | } |
2368 | |
2369 | seq_putc(m, c: '\n'); |
2370 | } |
2371 | |
2372 | /* |
2373 | * Display fragmentation index for orders that allocations would fail for |
2374 | */ |
2375 | static int extfrag_show(struct seq_file *m, void *arg) |
2376 | { |
2377 | pg_data_t *pgdat = (pg_data_t *)arg; |
2378 | |
2379 | walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: extfrag_show_print); |
2380 | |
2381 | return 0; |
2382 | } |
2383 | |
2384 | static const struct seq_operations extfrag_sops = { |
2385 | .start = frag_start, |
2386 | .next = frag_next, |
2387 | .stop = frag_stop, |
2388 | .show = extfrag_show, |
2389 | }; |
2390 | |
2391 | DEFINE_SEQ_ATTRIBUTE(extfrag); |
2392 | |
2393 | static int __init extfrag_debug_init(void) |
2394 | { |
2395 | struct dentry *extfrag_debug_root; |
2396 | |
2397 | extfrag_debug_root = debugfs_create_dir(name: "extfrag" , NULL); |
2398 | |
2399 | debugfs_create_file("unusable_index" , 0444, extfrag_debug_root, NULL, |
2400 | &unusable_fops); |
2401 | |
2402 | debugfs_create_file("extfrag_index" , 0444, extfrag_debug_root, NULL, |
2403 | &extfrag_fops); |
2404 | |
2405 | return 0; |
2406 | } |
2407 | |
2408 | module_init(extfrag_debug_init); |
2409 | |
2410 | #endif |
2411 | |