1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
2 | /* internal.h: mm/ internal definitions |
3 | * |
4 | * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. |
5 | * Written by David Howells (dhowells@redhat.com) |
6 | */ |
7 | #ifndef __MM_INTERNAL_H |
8 | #define __MM_INTERNAL_H |
9 | |
10 | #include <linux/fs.h> |
11 | #include <linux/mm.h> |
12 | #include <linux/pagemap.h> |
13 | #include <linux/rmap.h> |
14 | #include <linux/tracepoint-defs.h> |
15 | |
16 | struct folio_batch; |
17 | |
18 | /* |
19 | * The set of flags that only affect watermark checking and reclaim |
20 | * behaviour. This is used by the MM to obey the caller constraints |
21 | * about IO, FS and watermark checking while ignoring placement |
22 | * hints such as HIGHMEM usage. |
23 | */ |
24 | #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ |
25 | __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ |
26 | __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ |
27 | __GFP_NOLOCKDEP) |
28 | |
29 | /* The GFP flags allowed during early boot */ |
30 | #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) |
31 | |
32 | /* Control allocation cpuset and node placement constraints */ |
33 | #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) |
34 | |
35 | /* Do not use these with a slab allocator */ |
36 | #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) |
37 | |
38 | /* |
39 | * Different from WARN_ON_ONCE(), no warning will be issued |
40 | * when we specify __GFP_NOWARN. |
41 | */ |
42 | #define WARN_ON_ONCE_GFP(cond, gfp) ({ \ |
43 | static bool __section(".data.once") __warned; \ |
44 | int __ret_warn_once = !!(cond); \ |
45 | \ |
46 | if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ |
47 | __warned = true; \ |
48 | WARN_ON(1); \ |
49 | } \ |
50 | unlikely(__ret_warn_once); \ |
51 | }) |
52 | |
53 | void page_writeback_init(void); |
54 | |
55 | /* |
56 | * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, |
57 | * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit |
58 | * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently |
59 | * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. |
60 | */ |
61 | #define ENTIRELY_MAPPED 0x800000 |
62 | #define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1) |
63 | |
64 | /* |
65 | * Flags passed to __show_mem() and show_free_areas() to suppress output in |
66 | * various contexts. |
67 | */ |
68 | #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ |
69 | |
70 | /* |
71 | * How many individual pages have an elevated _mapcount. Excludes |
72 | * the folio's entire_mapcount. |
73 | */ |
74 | static inline int folio_nr_pages_mapped(struct folio *folio) |
75 | { |
76 | return atomic_read(v: &folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; |
77 | } |
78 | |
79 | static inline void *folio_raw_mapping(struct folio *folio) |
80 | { |
81 | unsigned long mapping = (unsigned long)folio->mapping; |
82 | |
83 | return (void *)(mapping & ~PAGE_MAPPING_FLAGS); |
84 | } |
85 | |
86 | #ifdef CONFIG_MMU |
87 | |
88 | /* Flags for folio_pte_batch(). */ |
89 | typedef int __bitwise fpb_t; |
90 | |
91 | /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */ |
92 | #define FPB_IGNORE_DIRTY ((__force fpb_t)BIT(0)) |
93 | |
94 | /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */ |
95 | #define FPB_IGNORE_SOFT_DIRTY ((__force fpb_t)BIT(1)) |
96 | |
97 | static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags) |
98 | { |
99 | if (flags & FPB_IGNORE_DIRTY) |
100 | pte = pte_mkclean(pte); |
101 | if (likely(flags & FPB_IGNORE_SOFT_DIRTY)) |
102 | pte = pte_clear_soft_dirty(pte); |
103 | return pte_wrprotect(pte: pte_mkold(pte)); |
104 | } |
105 | |
106 | /** |
107 | * folio_pte_batch - detect a PTE batch for a large folio |
108 | * @folio: The large folio to detect a PTE batch for. |
109 | * @addr: The user virtual address the first page is mapped at. |
110 | * @start_ptep: Page table pointer for the first entry. |
111 | * @pte: Page table entry for the first page. |
112 | * @max_nr: The maximum number of table entries to consider. |
113 | * @flags: Flags to modify the PTE batch semantics. |
114 | * @any_writable: Optional pointer to indicate whether any entry except the |
115 | * first one is writable. |
116 | * |
117 | * Detect a PTE batch: consecutive (present) PTEs that map consecutive |
118 | * pages of the same large folio. |
119 | * |
120 | * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN, |
121 | * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and |
122 | * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY). |
123 | * |
124 | * start_ptep must map any page of the folio. max_nr must be at least one and |
125 | * must be limited by the caller so scanning cannot exceed a single page table. |
126 | * |
127 | * Return: the number of table entries in the batch. |
128 | */ |
129 | static inline int folio_pte_batch(struct folio *folio, unsigned long addr, |
130 | pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags, |
131 | bool *any_writable) |
132 | { |
133 | unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio); |
134 | const pte_t *end_ptep = start_ptep + max_nr; |
135 | pte_t expected_pte, *ptep; |
136 | bool writable; |
137 | int nr; |
138 | |
139 | if (any_writable) |
140 | *any_writable = false; |
141 | |
142 | VM_WARN_ON_FOLIO(!pte_present(pte), folio); |
143 | VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio); |
144 | VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio); |
145 | |
146 | nr = pte_batch_hint(ptep: start_ptep, pte); |
147 | expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags); |
148 | ptep = start_ptep + nr; |
149 | |
150 | while (ptep < end_ptep) { |
151 | pte = ptep_get(ptep); |
152 | if (any_writable) |
153 | writable = !!pte_write(pte); |
154 | pte = __pte_batch_clear_ignored(pte, flags); |
155 | |
156 | if (!pte_same(a: pte, b: expected_pte)) |
157 | break; |
158 | |
159 | /* |
160 | * Stop immediately once we reached the end of the folio. In |
161 | * corner cases the next PFN might fall into a different |
162 | * folio. |
163 | */ |
164 | if (pte_pfn(pte) >= folio_end_pfn) |
165 | break; |
166 | |
167 | if (any_writable) |
168 | *any_writable |= writable; |
169 | |
170 | nr = pte_batch_hint(ptep, pte); |
171 | expected_pte = pte_advance_pfn(pte: expected_pte, nr); |
172 | ptep += nr; |
173 | } |
174 | |
175 | return min(ptep - start_ptep, max_nr); |
176 | } |
177 | #endif /* CONFIG_MMU */ |
178 | |
179 | void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, |
180 | int nr_throttled); |
181 | static inline void acct_reclaim_writeback(struct folio *folio) |
182 | { |
183 | pg_data_t *pgdat = folio_pgdat(folio); |
184 | int nr_throttled = atomic_read(v: &pgdat->nr_writeback_throttled); |
185 | |
186 | if (nr_throttled) |
187 | __acct_reclaim_writeback(pgdat, folio, nr_throttled); |
188 | } |
189 | |
190 | static inline void wake_throttle_isolated(pg_data_t *pgdat) |
191 | { |
192 | wait_queue_head_t *wqh; |
193 | |
194 | wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; |
195 | if (waitqueue_active(wq_head: wqh)) |
196 | wake_up(wqh); |
197 | } |
198 | |
199 | vm_fault_t vmf_anon_prepare(struct vm_fault *vmf); |
200 | vm_fault_t do_swap_page(struct vm_fault *vmf); |
201 | void folio_rotate_reclaimable(struct folio *folio); |
202 | bool __folio_end_writeback(struct folio *folio); |
203 | void deactivate_file_folio(struct folio *folio); |
204 | void folio_activate(struct folio *folio); |
205 | |
206 | void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, |
207 | struct vm_area_struct *start_vma, unsigned long floor, |
208 | unsigned long ceiling, bool mm_wr_locked); |
209 | void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); |
210 | |
211 | struct zap_details; |
212 | void unmap_page_range(struct mmu_gather *tlb, |
213 | struct vm_area_struct *vma, |
214 | unsigned long addr, unsigned long end, |
215 | struct zap_details *details); |
216 | |
217 | void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, |
218 | unsigned int order); |
219 | void force_page_cache_ra(struct readahead_control *, unsigned long nr); |
220 | static inline void force_page_cache_readahead(struct address_space *mapping, |
221 | struct file *file, pgoff_t index, unsigned long nr_to_read) |
222 | { |
223 | DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); |
224 | force_page_cache_ra(&ractl, nr: nr_to_read); |
225 | } |
226 | |
227 | unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, |
228 | pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); |
229 | unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, |
230 | pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); |
231 | void filemap_free_folio(struct address_space *mapping, struct folio *folio); |
232 | int truncate_inode_folio(struct address_space *mapping, struct folio *folio); |
233 | bool truncate_inode_partial_folio(struct folio *folio, loff_t start, |
234 | loff_t end); |
235 | long mapping_evict_folio(struct address_space *mapping, struct folio *folio); |
236 | unsigned long mapping_try_invalidate(struct address_space *mapping, |
237 | pgoff_t start, pgoff_t end, unsigned long *nr_failed); |
238 | |
239 | /** |
240 | * folio_evictable - Test whether a folio is evictable. |
241 | * @folio: The folio to test. |
242 | * |
243 | * Test whether @folio is evictable -- i.e., should be placed on |
244 | * active/inactive lists vs unevictable list. |
245 | * |
246 | * Reasons folio might not be evictable: |
247 | * 1. folio's mapping marked unevictable |
248 | * 2. One of the pages in the folio is part of an mlocked VMA |
249 | */ |
250 | static inline bool folio_evictable(struct folio *folio) |
251 | { |
252 | bool ret; |
253 | |
254 | /* Prevent address_space of inode and swap cache from being freed */ |
255 | rcu_read_lock(); |
256 | ret = !mapping_unevictable(mapping: folio_mapping(folio)) && |
257 | !folio_test_mlocked(folio); |
258 | rcu_read_unlock(); |
259 | return ret; |
260 | } |
261 | |
262 | /* |
263 | * Turn a non-refcounted page (->_refcount == 0) into refcounted with |
264 | * a count of one. |
265 | */ |
266 | static inline void set_page_refcounted(struct page *page) |
267 | { |
268 | VM_BUG_ON_PAGE(PageTail(page), page); |
269 | VM_BUG_ON_PAGE(page_ref_count(page), page); |
270 | set_page_count(page, v: 1); |
271 | } |
272 | |
273 | /* |
274 | * Return true if a folio needs ->release_folio() calling upon it. |
275 | */ |
276 | static inline bool folio_needs_release(struct folio *folio) |
277 | { |
278 | struct address_space *mapping = folio_mapping(folio); |
279 | |
280 | return folio_has_private(folio) || |
281 | (mapping && mapping_release_always(mapping)); |
282 | } |
283 | |
284 | extern unsigned long highest_memmap_pfn; |
285 | |
286 | /* |
287 | * Maximum number of reclaim retries without progress before the OOM |
288 | * killer is consider the only way forward. |
289 | */ |
290 | #define MAX_RECLAIM_RETRIES 16 |
291 | |
292 | /* |
293 | * in mm/vmscan.c: |
294 | */ |
295 | bool isolate_lru_page(struct page *page); |
296 | bool folio_isolate_lru(struct folio *folio); |
297 | void putback_lru_page(struct page *page); |
298 | void folio_putback_lru(struct folio *folio); |
299 | extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); |
300 | |
301 | /* |
302 | * in mm/rmap.c: |
303 | */ |
304 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); |
305 | |
306 | /* |
307 | * in mm/page_alloc.c |
308 | */ |
309 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
310 | |
311 | extern char * const zone_names[MAX_NR_ZONES]; |
312 | |
313 | /* perform sanity checks on struct pages being allocated or freed */ |
314 | DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); |
315 | |
316 | extern int min_free_kbytes; |
317 | |
318 | void setup_per_zone_wmarks(void); |
319 | void calculate_min_free_kbytes(void); |
320 | int __meminit init_per_zone_wmark_min(void); |
321 | void page_alloc_sysctl_init(void); |
322 | |
323 | /* |
324 | * Structure for holding the mostly immutable allocation parameters passed |
325 | * between functions involved in allocations, including the alloc_pages* |
326 | * family of functions. |
327 | * |
328 | * nodemask, migratetype and highest_zoneidx are initialized only once in |
329 | * __alloc_pages() and then never change. |
330 | * |
331 | * zonelist, preferred_zone and highest_zoneidx are set first in |
332 | * __alloc_pages() for the fast path, and might be later changed |
333 | * in __alloc_pages_slowpath(). All other functions pass the whole structure |
334 | * by a const pointer. |
335 | */ |
336 | struct alloc_context { |
337 | struct zonelist *zonelist; |
338 | nodemask_t *nodemask; |
339 | struct zoneref *preferred_zoneref; |
340 | int migratetype; |
341 | |
342 | /* |
343 | * highest_zoneidx represents highest usable zone index of |
344 | * the allocation request. Due to the nature of the zone, |
345 | * memory on lower zone than the highest_zoneidx will be |
346 | * protected by lowmem_reserve[highest_zoneidx]. |
347 | * |
348 | * highest_zoneidx is also used by reclaim/compaction to limit |
349 | * the target zone since higher zone than this index cannot be |
350 | * usable for this allocation request. |
351 | */ |
352 | enum zone_type highest_zoneidx; |
353 | bool spread_dirty_pages; |
354 | }; |
355 | |
356 | /* |
357 | * This function returns the order of a free page in the buddy system. In |
358 | * general, page_zone(page)->lock must be held by the caller to prevent the |
359 | * page from being allocated in parallel and returning garbage as the order. |
360 | * If a caller does not hold page_zone(page)->lock, it must guarantee that the |
361 | * page cannot be allocated or merged in parallel. Alternatively, it must |
362 | * handle invalid values gracefully, and use buddy_order_unsafe() below. |
363 | */ |
364 | static inline unsigned int buddy_order(struct page *page) |
365 | { |
366 | /* PageBuddy() must be checked by the caller */ |
367 | return page_private(page); |
368 | } |
369 | |
370 | /* |
371 | * Like buddy_order(), but for callers who cannot afford to hold the zone lock. |
372 | * PageBuddy() should be checked first by the caller to minimize race window, |
373 | * and invalid values must be handled gracefully. |
374 | * |
375 | * READ_ONCE is used so that if the caller assigns the result into a local |
376 | * variable and e.g. tests it for valid range before using, the compiler cannot |
377 | * decide to remove the variable and inline the page_private(page) multiple |
378 | * times, potentially observing different values in the tests and the actual |
379 | * use of the result. |
380 | */ |
381 | #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) |
382 | |
383 | /* |
384 | * This function checks whether a page is free && is the buddy |
385 | * we can coalesce a page and its buddy if |
386 | * (a) the buddy is not in a hole (check before calling!) && |
387 | * (b) the buddy is in the buddy system && |
388 | * (c) a page and its buddy have the same order && |
389 | * (d) a page and its buddy are in the same zone. |
390 | * |
391 | * For recording whether a page is in the buddy system, we set PageBuddy. |
392 | * Setting, clearing, and testing PageBuddy is serialized by zone->lock. |
393 | * |
394 | * For recording page's order, we use page_private(page). |
395 | */ |
396 | static inline bool page_is_buddy(struct page *page, struct page *buddy, |
397 | unsigned int order) |
398 | { |
399 | if (!page_is_guard(page: buddy) && !PageBuddy(page: buddy)) |
400 | return false; |
401 | |
402 | if (buddy_order(page: buddy) != order) |
403 | return false; |
404 | |
405 | /* |
406 | * zone check is done late to avoid uselessly calculating |
407 | * zone/node ids for pages that could never merge. |
408 | */ |
409 | if (page_zone_id(page) != page_zone_id(page: buddy)) |
410 | return false; |
411 | |
412 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
413 | |
414 | return true; |
415 | } |
416 | |
417 | /* |
418 | * Locate the struct page for both the matching buddy in our |
419 | * pair (buddy1) and the combined O(n+1) page they form (page). |
420 | * |
421 | * 1) Any buddy B1 will have an order O twin B2 which satisfies |
422 | * the following equation: |
423 | * B2 = B1 ^ (1 << O) |
424 | * For example, if the starting buddy (buddy2) is #8 its order |
425 | * 1 buddy is #10: |
426 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 |
427 | * |
428 | * 2) Any buddy B will have an order O+1 parent P which |
429 | * satisfies the following equation: |
430 | * P = B & ~(1 << O) |
431 | * |
432 | * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER |
433 | */ |
434 | static inline unsigned long |
435 | __find_buddy_pfn(unsigned long page_pfn, unsigned int order) |
436 | { |
437 | return page_pfn ^ (1 << order); |
438 | } |
439 | |
440 | /* |
441 | * Find the buddy of @page and validate it. |
442 | * @page: The input page |
443 | * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the |
444 | * function is used in the performance-critical __free_one_page(). |
445 | * @order: The order of the page |
446 | * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to |
447 | * page_to_pfn(). |
448 | * |
449 | * The found buddy can be a non PageBuddy, out of @page's zone, or its order is |
450 | * not the same as @page. The validation is necessary before use it. |
451 | * |
452 | * Return: the found buddy page or NULL if not found. |
453 | */ |
454 | static inline struct page *find_buddy_page_pfn(struct page *page, |
455 | unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) |
456 | { |
457 | unsigned long __buddy_pfn = __find_buddy_pfn(page_pfn: pfn, order); |
458 | struct page *buddy; |
459 | |
460 | buddy = page + (__buddy_pfn - pfn); |
461 | if (buddy_pfn) |
462 | *buddy_pfn = __buddy_pfn; |
463 | |
464 | if (page_is_buddy(page, buddy, order)) |
465 | return buddy; |
466 | return NULL; |
467 | } |
468 | |
469 | extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, |
470 | unsigned long end_pfn, struct zone *zone); |
471 | |
472 | static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, |
473 | unsigned long end_pfn, struct zone *zone) |
474 | { |
475 | if (zone->contiguous) |
476 | return pfn_to_page(start_pfn); |
477 | |
478 | return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); |
479 | } |
480 | |
481 | void set_zone_contiguous(struct zone *zone); |
482 | |
483 | static inline void clear_zone_contiguous(struct zone *zone) |
484 | { |
485 | zone->contiguous = false; |
486 | } |
487 | |
488 | extern int __isolate_free_page(struct page *page, unsigned int order); |
489 | extern void __putback_isolated_page(struct page *page, unsigned int order, |
490 | int mt); |
491 | extern void memblock_free_pages(struct page *page, unsigned long pfn, |
492 | unsigned int order); |
493 | extern void __free_pages_core(struct page *page, unsigned int order); |
494 | |
495 | /* |
496 | * This will have no effect, other than possibly generating a warning, if the |
497 | * caller passes in a non-large folio. |
498 | */ |
499 | static inline void folio_set_order(struct folio *folio, unsigned int order) |
500 | { |
501 | if (WARN_ON_ONCE(!order || !folio_test_large(folio))) |
502 | return; |
503 | |
504 | folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order; |
505 | #ifdef CONFIG_64BIT |
506 | folio->_folio_nr_pages = 1U << order; |
507 | #endif |
508 | } |
509 | |
510 | void folio_undo_large_rmappable(struct folio *folio); |
511 | |
512 | static inline struct folio *page_rmappable_folio(struct page *page) |
513 | { |
514 | struct folio *folio = (struct folio *)page; |
515 | |
516 | folio_prep_large_rmappable(folio); |
517 | return folio; |
518 | } |
519 | |
520 | static inline void prep_compound_head(struct page *page, unsigned int order) |
521 | { |
522 | struct folio *folio = (struct folio *)page; |
523 | |
524 | folio_set_order(folio, order); |
525 | atomic_set(v: &folio->_entire_mapcount, i: -1); |
526 | atomic_set(v: &folio->_nr_pages_mapped, i: 0); |
527 | atomic_set(v: &folio->_pincount, i: 0); |
528 | } |
529 | |
530 | static inline void prep_compound_tail(struct page *head, int tail_idx) |
531 | { |
532 | struct page *p = head + tail_idx; |
533 | |
534 | p->mapping = TAIL_MAPPING; |
535 | set_compound_head(page: p, head); |
536 | set_page_private(page: p, private: 0); |
537 | } |
538 | |
539 | extern void prep_compound_page(struct page *page, unsigned int order); |
540 | |
541 | extern void post_alloc_hook(struct page *page, unsigned int order, |
542 | gfp_t gfp_flags); |
543 | extern bool free_pages_prepare(struct page *page, unsigned int order); |
544 | |
545 | extern int user_min_free_kbytes; |
546 | |
547 | void free_unref_page(struct page *page, unsigned int order); |
548 | void free_unref_folios(struct folio_batch *fbatch); |
549 | |
550 | extern void zone_pcp_reset(struct zone *zone); |
551 | extern void zone_pcp_disable(struct zone *zone); |
552 | extern void zone_pcp_enable(struct zone *zone); |
553 | extern void zone_pcp_init(struct zone *zone); |
554 | |
555 | extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, |
556 | phys_addr_t min_addr, |
557 | int nid, bool exact_nid); |
558 | |
559 | void memmap_init_range(unsigned long, int, unsigned long, unsigned long, |
560 | unsigned long, enum meminit_context, struct vmem_altmap *, int); |
561 | |
562 | |
563 | int split_free_page(struct page *free_page, |
564 | unsigned int order, unsigned long split_pfn_offset); |
565 | |
566 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA |
567 | |
568 | /* |
569 | * in mm/compaction.c |
570 | */ |
571 | /* |
572 | * compact_control is used to track pages being migrated and the free pages |
573 | * they are being migrated to during memory compaction. The free_pfn starts |
574 | * at the end of a zone and migrate_pfn begins at the start. Movable pages |
575 | * are moved to the end of a zone during a compaction run and the run |
576 | * completes when free_pfn <= migrate_pfn |
577 | */ |
578 | struct compact_control { |
579 | struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */ |
580 | struct list_head migratepages; /* List of pages being migrated */ |
581 | unsigned int nr_freepages; /* Number of isolated free pages */ |
582 | unsigned int nr_migratepages; /* Number of pages to migrate */ |
583 | unsigned long free_pfn; /* isolate_freepages search base */ |
584 | /* |
585 | * Acts as an in/out parameter to page isolation for migration. |
586 | * isolate_migratepages uses it as a search base. |
587 | * isolate_migratepages_block will update the value to the next pfn |
588 | * after the last isolated one. |
589 | */ |
590 | unsigned long migrate_pfn; |
591 | unsigned long fast_start_pfn; /* a pfn to start linear scan from */ |
592 | struct zone *zone; |
593 | unsigned long total_migrate_scanned; |
594 | unsigned long total_free_scanned; |
595 | unsigned short fast_search_fail;/* failures to use free list searches */ |
596 | short search_order; /* order to start a fast search at */ |
597 | const gfp_t gfp_mask; /* gfp mask of a direct compactor */ |
598 | int order; /* order a direct compactor needs */ |
599 | int migratetype; /* migratetype of direct compactor */ |
600 | const unsigned int alloc_flags; /* alloc flags of a direct compactor */ |
601 | const int highest_zoneidx; /* zone index of a direct compactor */ |
602 | enum migrate_mode mode; /* Async or sync migration mode */ |
603 | bool ignore_skip_hint; /* Scan blocks even if marked skip */ |
604 | bool no_set_skip_hint; /* Don't mark blocks for skipping */ |
605 | bool ignore_block_suitable; /* Scan blocks considered unsuitable */ |
606 | bool direct_compaction; /* False from kcompactd or /proc/... */ |
607 | bool proactive_compaction; /* kcompactd proactive compaction */ |
608 | bool whole_zone; /* Whole zone should/has been scanned */ |
609 | bool contended; /* Signal lock contention */ |
610 | bool finish_pageblock; /* Scan the remainder of a pageblock. Used |
611 | * when there are potentially transient |
612 | * isolation or migration failures to |
613 | * ensure forward progress. |
614 | */ |
615 | bool alloc_contig; /* alloc_contig_range allocation */ |
616 | }; |
617 | |
618 | /* |
619 | * Used in direct compaction when a page should be taken from the freelists |
620 | * immediately when one is created during the free path. |
621 | */ |
622 | struct capture_control { |
623 | struct compact_control *cc; |
624 | struct page *page; |
625 | }; |
626 | |
627 | unsigned long |
628 | isolate_freepages_range(struct compact_control *cc, |
629 | unsigned long start_pfn, unsigned long end_pfn); |
630 | int |
631 | isolate_migratepages_range(struct compact_control *cc, |
632 | unsigned long low_pfn, unsigned long end_pfn); |
633 | |
634 | int __alloc_contig_migrate_range(struct compact_control *cc, |
635 | unsigned long start, unsigned long end, |
636 | int migratetype); |
637 | |
638 | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ |
639 | void init_cma_reserved_pageblock(struct page *page); |
640 | |
641 | #endif /* CONFIG_COMPACTION || CONFIG_CMA */ |
642 | |
643 | int find_suitable_fallback(struct free_area *area, unsigned int order, |
644 | int migratetype, bool only_stealable, bool *can_steal); |
645 | |
646 | static inline bool free_area_empty(struct free_area *area, int migratetype) |
647 | { |
648 | return list_empty(head: &area->free_list[migratetype]); |
649 | } |
650 | |
651 | /* |
652 | * These three helpers classifies VMAs for virtual memory accounting. |
653 | */ |
654 | |
655 | /* |
656 | * Executable code area - executable, not writable, not stack |
657 | */ |
658 | static inline bool is_exec_mapping(vm_flags_t flags) |
659 | { |
660 | return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; |
661 | } |
662 | |
663 | /* |
664 | * Stack area (including shadow stacks) |
665 | * |
666 | * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: |
667 | * do_mmap() forbids all other combinations. |
668 | */ |
669 | static inline bool is_stack_mapping(vm_flags_t flags) |
670 | { |
671 | return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); |
672 | } |
673 | |
674 | /* |
675 | * Data area - private, writable, not stack |
676 | */ |
677 | static inline bool is_data_mapping(vm_flags_t flags) |
678 | { |
679 | return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; |
680 | } |
681 | |
682 | /* mm/util.c */ |
683 | struct anon_vma *folio_anon_vma(struct folio *folio); |
684 | |
685 | #ifdef CONFIG_MMU |
686 | void unmap_mapping_folio(struct folio *folio); |
687 | extern long populate_vma_page_range(struct vm_area_struct *vma, |
688 | unsigned long start, unsigned long end, int *locked); |
689 | extern long faultin_page_range(struct mm_struct *mm, unsigned long start, |
690 | unsigned long end, bool write, int *locked); |
691 | extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, |
692 | unsigned long bytes); |
693 | |
694 | /* |
695 | * NOTE: This function can't tell whether the folio is "fully mapped" in the |
696 | * range. |
697 | * "fully mapped" means all the pages of folio is associated with the page |
698 | * table of range while this function just check whether the folio range is |
699 | * within the range [start, end). Function caller needs to do page table |
700 | * check if it cares about the page table association. |
701 | * |
702 | * Typical usage (like mlock or madvise) is: |
703 | * Caller knows at least 1 page of folio is associated with page table of VMA |
704 | * and the range [start, end) is intersect with the VMA range. Caller wants |
705 | * to know whether the folio is fully associated with the range. It calls |
706 | * this function to check whether the folio is in the range first. Then checks |
707 | * the page table to know whether the folio is fully mapped to the range. |
708 | */ |
709 | static inline bool |
710 | folio_within_range(struct folio *folio, struct vm_area_struct *vma, |
711 | unsigned long start, unsigned long end) |
712 | { |
713 | pgoff_t pgoff, addr; |
714 | unsigned long vma_pglen = vma_pages(vma); |
715 | |
716 | VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio); |
717 | if (start > end) |
718 | return false; |
719 | |
720 | if (start < vma->vm_start) |
721 | start = vma->vm_start; |
722 | |
723 | if (end > vma->vm_end) |
724 | end = vma->vm_end; |
725 | |
726 | pgoff = folio_pgoff(folio); |
727 | |
728 | /* if folio start address is not in vma range */ |
729 | if (!in_range(pgoff, vma->vm_pgoff, vma_pglen)) |
730 | return false; |
731 | |
732 | addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
733 | |
734 | return !(addr < start || end - addr < folio_size(folio)); |
735 | } |
736 | |
737 | static inline bool |
738 | folio_within_vma(struct folio *folio, struct vm_area_struct *vma) |
739 | { |
740 | return folio_within_range(folio, vma, start: vma->vm_start, end: vma->vm_end); |
741 | } |
742 | |
743 | /* |
744 | * mlock_vma_folio() and munlock_vma_folio(): |
745 | * should be called with vma's mmap_lock held for read or write, |
746 | * under page table lock for the pte/pmd being added or removed. |
747 | * |
748 | * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at |
749 | * the end of folio_remove_rmap_*(); but new anon folios are managed by |
750 | * folio_add_lru_vma() calling mlock_new_folio(). |
751 | */ |
752 | void mlock_folio(struct folio *folio); |
753 | static inline void mlock_vma_folio(struct folio *folio, |
754 | struct vm_area_struct *vma) |
755 | { |
756 | /* |
757 | * The VM_SPECIAL check here serves two purposes. |
758 | * 1) VM_IO check prevents migration from double-counting during mlock. |
759 | * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED |
760 | * is never left set on a VM_SPECIAL vma, there is an interval while |
761 | * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may |
762 | * still be set while VM_SPECIAL bits are added: so ignore it then. |
763 | */ |
764 | if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED)) |
765 | mlock_folio(folio); |
766 | } |
767 | |
768 | void munlock_folio(struct folio *folio); |
769 | static inline void munlock_vma_folio(struct folio *folio, |
770 | struct vm_area_struct *vma) |
771 | { |
772 | /* |
773 | * munlock if the function is called. Ideally, we should only |
774 | * do munlock if any page of folio is unmapped from VMA and |
775 | * cause folio not fully mapped to VMA. |
776 | * |
777 | * But it's not easy to confirm that's the situation. So we |
778 | * always munlock the folio and page reclaim will correct it |
779 | * if it's wrong. |
780 | */ |
781 | if (unlikely(vma->vm_flags & VM_LOCKED)) |
782 | munlock_folio(folio); |
783 | } |
784 | |
785 | void mlock_new_folio(struct folio *folio); |
786 | bool need_mlock_drain(int cpu); |
787 | void mlock_drain_local(void); |
788 | void mlock_drain_remote(int cpu); |
789 | |
790 | extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); |
791 | |
792 | /* |
793 | * Return the start of user virtual address at the specific offset within |
794 | * a vma. |
795 | */ |
796 | static inline unsigned long |
797 | vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages, |
798 | struct vm_area_struct *vma) |
799 | { |
800 | unsigned long address; |
801 | |
802 | if (pgoff >= vma->vm_pgoff) { |
803 | address = vma->vm_start + |
804 | ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
805 | /* Check for address beyond vma (or wrapped through 0?) */ |
806 | if (address < vma->vm_start || address >= vma->vm_end) |
807 | address = -EFAULT; |
808 | } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { |
809 | /* Test above avoids possibility of wrap to 0 on 32-bit */ |
810 | address = vma->vm_start; |
811 | } else { |
812 | address = -EFAULT; |
813 | } |
814 | return address; |
815 | } |
816 | |
817 | /* |
818 | * Return the start of user virtual address of a page within a vma. |
819 | * Returns -EFAULT if all of the page is outside the range of vma. |
820 | * If page is a compound head, the entire compound page is considered. |
821 | */ |
822 | static inline unsigned long |
823 | vma_address(struct page *page, struct vm_area_struct *vma) |
824 | { |
825 | VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ |
826 | return vma_pgoff_address(pgoff: page_to_pgoff(page), nr_pages: compound_nr(page), vma); |
827 | } |
828 | |
829 | /* |
830 | * Then at what user virtual address will none of the range be found in vma? |
831 | * Assumes that vma_address() already returned a good starting address. |
832 | */ |
833 | static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) |
834 | { |
835 | struct vm_area_struct *vma = pvmw->vma; |
836 | pgoff_t pgoff; |
837 | unsigned long address; |
838 | |
839 | /* Common case, plus ->pgoff is invalid for KSM */ |
840 | if (pvmw->nr_pages == 1) |
841 | return pvmw->address + PAGE_SIZE; |
842 | |
843 | pgoff = pvmw->pgoff + pvmw->nr_pages; |
844 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
845 | /* Check for address beyond vma (or wrapped through 0?) */ |
846 | if (address < vma->vm_start || address > vma->vm_end) |
847 | address = vma->vm_end; |
848 | return address; |
849 | } |
850 | |
851 | static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, |
852 | struct file *fpin) |
853 | { |
854 | int flags = vmf->flags; |
855 | |
856 | if (fpin) |
857 | return fpin; |
858 | |
859 | /* |
860 | * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or |
861 | * anything, so we only pin the file and drop the mmap_lock if only |
862 | * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. |
863 | */ |
864 | if (fault_flag_allow_retry_first(flags) && |
865 | !(flags & FAULT_FLAG_RETRY_NOWAIT)) { |
866 | fpin = get_file(f: vmf->vma->vm_file); |
867 | release_fault_lock(vmf); |
868 | } |
869 | return fpin; |
870 | } |
871 | #else /* !CONFIG_MMU */ |
872 | static inline void unmap_mapping_folio(struct folio *folio) { } |
873 | static inline void mlock_new_folio(struct folio *folio) { } |
874 | static inline bool need_mlock_drain(int cpu) { return false; } |
875 | static inline void mlock_drain_local(void) { } |
876 | static inline void mlock_drain_remote(int cpu) { } |
877 | static inline void vunmap_range_noflush(unsigned long start, unsigned long end) |
878 | { |
879 | } |
880 | #endif /* !CONFIG_MMU */ |
881 | |
882 | /* Memory initialisation debug and verification */ |
883 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
884 | DECLARE_STATIC_KEY_TRUE(deferred_pages); |
885 | |
886 | bool __init deferred_grow_zone(struct zone *zone, unsigned int order); |
887 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
888 | |
889 | enum mminit_level { |
890 | MMINIT_WARNING, |
891 | MMINIT_VERIFY, |
892 | MMINIT_TRACE |
893 | }; |
894 | |
895 | #ifdef CONFIG_DEBUG_MEMORY_INIT |
896 | |
897 | extern int mminit_loglevel; |
898 | |
899 | #define mminit_dprintk(level, prefix, fmt, arg...) \ |
900 | do { \ |
901 | if (level < mminit_loglevel) { \ |
902 | if (level <= MMINIT_WARNING) \ |
903 | pr_warn("mminit::" prefix " " fmt, ##arg); \ |
904 | else \ |
905 | printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ |
906 | } \ |
907 | } while (0) |
908 | |
909 | extern void mminit_verify_pageflags_layout(void); |
910 | extern void mminit_verify_zonelist(void); |
911 | #else |
912 | |
913 | static inline void mminit_dprintk(enum mminit_level level, |
914 | const char *prefix, const char *fmt, ...) |
915 | { |
916 | } |
917 | |
918 | static inline void mminit_verify_pageflags_layout(void) |
919 | { |
920 | } |
921 | |
922 | static inline void mminit_verify_zonelist(void) |
923 | { |
924 | } |
925 | #endif /* CONFIG_DEBUG_MEMORY_INIT */ |
926 | |
927 | #define NODE_RECLAIM_NOSCAN -2 |
928 | #define NODE_RECLAIM_FULL -1 |
929 | #define NODE_RECLAIM_SOME 0 |
930 | #define NODE_RECLAIM_SUCCESS 1 |
931 | |
932 | #ifdef CONFIG_NUMA |
933 | extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); |
934 | extern int find_next_best_node(int node, nodemask_t *used_node_mask); |
935 | #else |
936 | static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, |
937 | unsigned int order) |
938 | { |
939 | return NODE_RECLAIM_NOSCAN; |
940 | } |
941 | static inline int find_next_best_node(int node, nodemask_t *used_node_mask) |
942 | { |
943 | return NUMA_NO_NODE; |
944 | } |
945 | #endif |
946 | |
947 | /* |
948 | * mm/memory-failure.c |
949 | */ |
950 | extern int hwpoison_filter(struct page *p); |
951 | |
952 | extern u32 hwpoison_filter_dev_major; |
953 | extern u32 hwpoison_filter_dev_minor; |
954 | extern u64 hwpoison_filter_flags_mask; |
955 | extern u64 hwpoison_filter_flags_value; |
956 | extern u64 hwpoison_filter_memcg; |
957 | extern u32 hwpoison_filter_enable; |
958 | |
959 | extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, |
960 | unsigned long, unsigned long, |
961 | unsigned long, unsigned long); |
962 | |
963 | extern void set_pageblock_order(void); |
964 | unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references); |
965 | unsigned int reclaim_clean_pages_from_list(struct zone *zone, |
966 | struct list_head *folio_list); |
967 | /* The ALLOC_WMARK bits are used as an index to zone->watermark */ |
968 | #define ALLOC_WMARK_MIN WMARK_MIN |
969 | #define ALLOC_WMARK_LOW WMARK_LOW |
970 | #define ALLOC_WMARK_HIGH WMARK_HIGH |
971 | #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ |
972 | |
973 | /* Mask to get the watermark bits */ |
974 | #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) |
975 | |
976 | /* |
977 | * Only MMU archs have async oom victim reclaim - aka oom_reaper so we |
978 | * cannot assume a reduced access to memory reserves is sufficient for |
979 | * !MMU |
980 | */ |
981 | #ifdef CONFIG_MMU |
982 | #define ALLOC_OOM 0x08 |
983 | #else |
984 | #define ALLOC_OOM ALLOC_NO_WATERMARKS |
985 | #endif |
986 | |
987 | #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access |
988 | * to 25% of the min watermark or |
989 | * 62.5% if __GFP_HIGH is set. |
990 | */ |
991 | #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% |
992 | * of the min watermark. |
993 | */ |
994 | #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ |
995 | #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ |
996 | #ifdef CONFIG_ZONE_DMA32 |
997 | #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ |
998 | #else |
999 | #define ALLOC_NOFRAGMENT 0x0 |
1000 | #endif |
1001 | #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ |
1002 | #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ |
1003 | |
1004 | /* Flags that allow allocations below the min watermark. */ |
1005 | #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) |
1006 | |
1007 | enum ttu_flags; |
1008 | struct tlbflush_unmap_batch; |
1009 | |
1010 | |
1011 | /* |
1012 | * only for MM internal work items which do not depend on |
1013 | * any allocations or locks which might depend on allocations |
1014 | */ |
1015 | extern struct workqueue_struct *mm_percpu_wq; |
1016 | |
1017 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
1018 | void try_to_unmap_flush(void); |
1019 | void try_to_unmap_flush_dirty(void); |
1020 | void flush_tlb_batched_pending(struct mm_struct *mm); |
1021 | #else |
1022 | static inline void try_to_unmap_flush(void) |
1023 | { |
1024 | } |
1025 | static inline void try_to_unmap_flush_dirty(void) |
1026 | { |
1027 | } |
1028 | static inline void flush_tlb_batched_pending(struct mm_struct *mm) |
1029 | { |
1030 | } |
1031 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ |
1032 | |
1033 | extern const struct trace_print_flags pageflag_names[]; |
1034 | extern const struct trace_print_flags pagetype_names[]; |
1035 | extern const struct trace_print_flags vmaflag_names[]; |
1036 | extern const struct trace_print_flags gfpflag_names[]; |
1037 | |
1038 | static inline bool is_migrate_highatomic(enum migratetype migratetype) |
1039 | { |
1040 | return migratetype == MIGRATE_HIGHATOMIC; |
1041 | } |
1042 | |
1043 | static inline bool is_migrate_highatomic_page(struct page *page) |
1044 | { |
1045 | return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; |
1046 | } |
1047 | |
1048 | void setup_zone_pageset(struct zone *zone); |
1049 | |
1050 | struct migration_target_control { |
1051 | int nid; /* preferred node id */ |
1052 | nodemask_t *nmask; |
1053 | gfp_t gfp_mask; |
1054 | }; |
1055 | |
1056 | /* |
1057 | * mm/filemap.c |
1058 | */ |
1059 | size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, |
1060 | struct folio *folio, loff_t fpos, size_t size); |
1061 | |
1062 | /* |
1063 | * mm/vmalloc.c |
1064 | */ |
1065 | #ifdef CONFIG_MMU |
1066 | void __init vmalloc_init(void); |
1067 | int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, |
1068 | pgprot_t prot, struct page **pages, unsigned int page_shift); |
1069 | #else |
1070 | static inline void vmalloc_init(void) |
1071 | { |
1072 | } |
1073 | |
1074 | static inline |
1075 | int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, |
1076 | pgprot_t prot, struct page **pages, unsigned int page_shift) |
1077 | { |
1078 | return -EINVAL; |
1079 | } |
1080 | #endif |
1081 | |
1082 | int __must_check __vmap_pages_range_noflush(unsigned long addr, |
1083 | unsigned long end, pgprot_t prot, |
1084 | struct page **pages, unsigned int page_shift); |
1085 | |
1086 | void vunmap_range_noflush(unsigned long start, unsigned long end); |
1087 | |
1088 | void __vunmap_range_noflush(unsigned long start, unsigned long end); |
1089 | |
1090 | int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma, |
1091 | unsigned long addr, int page_nid, int *flags); |
1092 | |
1093 | void free_zone_device_page(struct page *page); |
1094 | int migrate_device_coherent_page(struct page *page); |
1095 | |
1096 | /* |
1097 | * mm/gup.c |
1098 | */ |
1099 | struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags); |
1100 | int __must_check try_grab_page(struct page *page, unsigned int flags); |
1101 | |
1102 | /* |
1103 | * mm/huge_memory.c |
1104 | */ |
1105 | struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, |
1106 | unsigned long addr, pmd_t *pmd, |
1107 | unsigned int flags); |
1108 | |
1109 | /* |
1110 | * mm/mmap.c |
1111 | */ |
1112 | struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, |
1113 | struct vm_area_struct *vma, |
1114 | unsigned long delta); |
1115 | |
1116 | enum { |
1117 | /* mark page accessed */ |
1118 | FOLL_TOUCH = 1 << 16, |
1119 | /* a retry, previous pass started an IO */ |
1120 | FOLL_TRIED = 1 << 17, |
1121 | /* we are working on non-current tsk/mm */ |
1122 | FOLL_REMOTE = 1 << 18, |
1123 | /* pages must be released via unpin_user_page */ |
1124 | FOLL_PIN = 1 << 19, |
1125 | /* gup_fast: prevent fall-back to slow gup */ |
1126 | FOLL_FAST_ONLY = 1 << 20, |
1127 | /* allow unlocking the mmap lock */ |
1128 | FOLL_UNLOCKABLE = 1 << 21, |
1129 | /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */ |
1130 | FOLL_MADV_POPULATE = 1 << 22, |
1131 | }; |
1132 | |
1133 | #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \ |
1134 | FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \ |
1135 | FOLL_MADV_POPULATE) |
1136 | |
1137 | /* |
1138 | * Indicates for which pages that are write-protected in the page table, |
1139 | * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the |
1140 | * GUP pin will remain consistent with the pages mapped into the page tables |
1141 | * of the MM. |
1142 | * |
1143 | * Temporary unmapping of PageAnonExclusive() pages or clearing of |
1144 | * PageAnonExclusive() has to protect against concurrent GUP: |
1145 | * * Ordinary GUP: Using the PT lock |
1146 | * * GUP-fast and fork(): mm->write_protect_seq |
1147 | * * GUP-fast and KSM or temporary unmapping (swap, migration): see |
1148 | * folio_try_share_anon_rmap_*() |
1149 | * |
1150 | * Must be called with the (sub)page that's actually referenced via the |
1151 | * page table entry, which might not necessarily be the head page for a |
1152 | * PTE-mapped THP. |
1153 | * |
1154 | * If the vma is NULL, we're coming from the GUP-fast path and might have |
1155 | * to fallback to the slow path just to lookup the vma. |
1156 | */ |
1157 | static inline bool gup_must_unshare(struct vm_area_struct *vma, |
1158 | unsigned int flags, struct page *page) |
1159 | { |
1160 | /* |
1161 | * FOLL_WRITE is implicitly handled correctly as the page table entry |
1162 | * has to be writable -- and if it references (part of) an anonymous |
1163 | * folio, that part is required to be marked exclusive. |
1164 | */ |
1165 | if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) |
1166 | return false; |
1167 | /* |
1168 | * Note: PageAnon(page) is stable until the page is actually getting |
1169 | * freed. |
1170 | */ |
1171 | if (!PageAnon(page)) { |
1172 | /* |
1173 | * We only care about R/O long-term pining: R/O short-term |
1174 | * pinning does not have the semantics to observe successive |
1175 | * changes through the process page tables. |
1176 | */ |
1177 | if (!(flags & FOLL_LONGTERM)) |
1178 | return false; |
1179 | |
1180 | /* We really need the vma ... */ |
1181 | if (!vma) |
1182 | return true; |
1183 | |
1184 | /* |
1185 | * ... because we only care about writable private ("COW") |
1186 | * mappings where we have to break COW early. |
1187 | */ |
1188 | return is_cow_mapping(flags: vma->vm_flags); |
1189 | } |
1190 | |
1191 | /* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */ |
1192 | if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) |
1193 | smp_rmb(); |
1194 | |
1195 | /* |
1196 | * During GUP-fast we might not get called on the head page for a |
1197 | * hugetlb page that is mapped using cont-PTE, because GUP-fast does |
1198 | * not work with the abstracted hugetlb PTEs that always point at the |
1199 | * head page. For hugetlb, PageAnonExclusive only applies on the head |
1200 | * page (as it cannot be partially COW-shared), so lookup the head page. |
1201 | */ |
1202 | if (unlikely(!PageHead(page) && PageHuge(page))) |
1203 | page = compound_head(page); |
1204 | |
1205 | /* |
1206 | * Note that PageKsm() pages cannot be exclusive, and consequently, |
1207 | * cannot get pinned. |
1208 | */ |
1209 | return !PageAnonExclusive(page); |
1210 | } |
1211 | |
1212 | extern bool mirrored_kernelcore; |
1213 | extern bool memblock_has_mirror(void); |
1214 | |
1215 | static __always_inline void vma_set_range(struct vm_area_struct *vma, |
1216 | unsigned long start, unsigned long end, |
1217 | pgoff_t pgoff) |
1218 | { |
1219 | vma->vm_start = start; |
1220 | vma->vm_end = end; |
1221 | vma->vm_pgoff = pgoff; |
1222 | } |
1223 | |
1224 | static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) |
1225 | { |
1226 | /* |
1227 | * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty |
1228 | * enablements, because when without soft-dirty being compiled in, |
1229 | * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) |
1230 | * will be constantly true. |
1231 | */ |
1232 | if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) |
1233 | return false; |
1234 | |
1235 | /* |
1236 | * Soft-dirty is kind of special: its tracking is enabled when the |
1237 | * vma flags not set. |
1238 | */ |
1239 | return !(vma->vm_flags & VM_SOFTDIRTY); |
1240 | } |
1241 | |
1242 | static inline void vma_iter_config(struct vma_iterator *vmi, |
1243 | unsigned long index, unsigned long last) |
1244 | { |
1245 | __mas_set_range(mas: &vmi->mas, start: index, last: last - 1); |
1246 | } |
1247 | |
1248 | /* |
1249 | * VMA Iterator functions shared between nommu and mmap |
1250 | */ |
1251 | static inline int vma_iter_prealloc(struct vma_iterator *vmi, |
1252 | struct vm_area_struct *vma) |
1253 | { |
1254 | return mas_preallocate(mas: &vmi->mas, entry: vma, GFP_KERNEL); |
1255 | } |
1256 | |
1257 | static inline void vma_iter_clear(struct vma_iterator *vmi) |
1258 | { |
1259 | mas_store_prealloc(mas: &vmi->mas, NULL); |
1260 | } |
1261 | |
1262 | static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) |
1263 | { |
1264 | return mas_walk(mas: &vmi->mas); |
1265 | } |
1266 | |
1267 | /* Store a VMA with preallocated memory */ |
1268 | static inline void vma_iter_store(struct vma_iterator *vmi, |
1269 | struct vm_area_struct *vma) |
1270 | { |
1271 | |
1272 | #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) |
1273 | if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && |
1274 | vmi->mas.index > vma->vm_start)) { |
1275 | pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n" , |
1276 | vmi->mas.index, vma->vm_start, vma->vm_start, |
1277 | vma->vm_end, vmi->mas.index, vmi->mas.last); |
1278 | } |
1279 | if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && |
1280 | vmi->mas.last < vma->vm_start)) { |
1281 | pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n" , |
1282 | vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, |
1283 | vmi->mas.index, vmi->mas.last); |
1284 | } |
1285 | #endif |
1286 | |
1287 | if (vmi->mas.status != ma_start && |
1288 | ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) |
1289 | vma_iter_invalidate(vmi); |
1290 | |
1291 | __mas_set_range(mas: &vmi->mas, start: vma->vm_start, last: vma->vm_end - 1); |
1292 | mas_store_prealloc(mas: &vmi->mas, entry: vma); |
1293 | } |
1294 | |
1295 | static inline int vma_iter_store_gfp(struct vma_iterator *vmi, |
1296 | struct vm_area_struct *vma, gfp_t gfp) |
1297 | { |
1298 | if (vmi->mas.status != ma_start && |
1299 | ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) |
1300 | vma_iter_invalidate(vmi); |
1301 | |
1302 | __mas_set_range(mas: &vmi->mas, start: vma->vm_start, last: vma->vm_end - 1); |
1303 | mas_store_gfp(mas: &vmi->mas, entry: vma, gfp); |
1304 | if (unlikely(mas_is_err(&vmi->mas))) |
1305 | return -ENOMEM; |
1306 | |
1307 | return 0; |
1308 | } |
1309 | |
1310 | /* |
1311 | * VMA lock generalization |
1312 | */ |
1313 | struct vma_prepare { |
1314 | struct vm_area_struct *vma; |
1315 | struct vm_area_struct *adj_next; |
1316 | struct file *file; |
1317 | struct address_space *mapping; |
1318 | struct anon_vma *anon_vma; |
1319 | struct vm_area_struct *insert; |
1320 | struct vm_area_struct *remove; |
1321 | struct vm_area_struct *remove2; |
1322 | }; |
1323 | |
1324 | void __meminit __init_single_page(struct page *page, unsigned long pfn, |
1325 | unsigned long zone, int nid); |
1326 | |
1327 | /* shrinker related functions */ |
1328 | unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, |
1329 | int priority); |
1330 | |
1331 | #ifdef CONFIG_SHRINKER_DEBUG |
1332 | static inline __printf(2, 0) int shrinker_debugfs_name_alloc( |
1333 | struct shrinker *shrinker, const char *fmt, va_list ap) |
1334 | { |
1335 | shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, args: ap); |
1336 | |
1337 | return shrinker->name ? 0 : -ENOMEM; |
1338 | } |
1339 | |
1340 | static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) |
1341 | { |
1342 | kfree_const(x: shrinker->name); |
1343 | shrinker->name = NULL; |
1344 | } |
1345 | |
1346 | extern int shrinker_debugfs_add(struct shrinker *shrinker); |
1347 | extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, |
1348 | int *debugfs_id); |
1349 | extern void shrinker_debugfs_remove(struct dentry *debugfs_entry, |
1350 | int debugfs_id); |
1351 | #else /* CONFIG_SHRINKER_DEBUG */ |
1352 | static inline int shrinker_debugfs_add(struct shrinker *shrinker) |
1353 | { |
1354 | return 0; |
1355 | } |
1356 | static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker, |
1357 | const char *fmt, va_list ap) |
1358 | { |
1359 | return 0; |
1360 | } |
1361 | static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) |
1362 | { |
1363 | } |
1364 | static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, |
1365 | int *debugfs_id) |
1366 | { |
1367 | *debugfs_id = -1; |
1368 | return NULL; |
1369 | } |
1370 | static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry, |
1371 | int debugfs_id) |
1372 | { |
1373 | } |
1374 | #endif /* CONFIG_SHRINKER_DEBUG */ |
1375 | |
1376 | /* Only track the nodes of mappings with shadow entries */ |
1377 | void workingset_update_node(struct xa_node *node); |
1378 | extern struct list_lru shadow_nodes; |
1379 | |
1380 | #endif /* __MM_INTERNAL_H */ |
1381 | |