1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22#include <net/tcp.h>
23#include <net/xfrm.h>
24#include <net/busy_poll.h>
25
26static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
27{
28 if (seq == s_win)
29 return true;
30 if (after(end_seq, s_win) && before(seq1: seq, seq2: e_win))
31 return true;
32 return seq == e_win && seq == end_seq;
33}
34
35static enum tcp_tw_status
36tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
37 const struct sk_buff *skb, int mib_idx)
38{
39 struct tcp_timewait_sock *tcptw = tcp_twsk(sk: (struct sock *)tw);
40
41 if (!tcp_oow_rate_limited(net: twsk_net(twsk: tw), skb, mib_idx,
42 last_oow_ack_time: &tcptw->tw_last_oow_ack_time)) {
43 /* Send ACK. Note, we do not put the bucket,
44 * it will be released by caller.
45 */
46 return TCP_TW_ACK;
47 }
48
49 /* We are rate-limiting, so just release the tw sock and drop skb. */
50 inet_twsk_put(tw);
51 return TCP_TW_SUCCESS;
52}
53
54static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq)
55{
56#ifdef CONFIG_TCP_AO
57 struct tcp_ao_info *ao;
58
59 ao = rcu_dereference(tcptw->ao_info);
60 if (unlikely(ao && seq < tcptw->tw_rcv_nxt))
61 WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
62#endif
63 tcptw->tw_rcv_nxt = seq;
64}
65
66/*
67 * * Main purpose of TIME-WAIT state is to close connection gracefully,
68 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
69 * (and, probably, tail of data) and one or more our ACKs are lost.
70 * * What is TIME-WAIT timeout? It is associated with maximal packet
71 * lifetime in the internet, which results in wrong conclusion, that
72 * it is set to catch "old duplicate segments" wandering out of their path.
73 * It is not quite correct. This timeout is calculated so that it exceeds
74 * maximal retransmission timeout enough to allow to lose one (or more)
75 * segments sent by peer and our ACKs. This time may be calculated from RTO.
76 * * When TIME-WAIT socket receives RST, it means that another end
77 * finally closed and we are allowed to kill TIME-WAIT too.
78 * * Second purpose of TIME-WAIT is catching old duplicate segments.
79 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
80 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
81 * * If we invented some more clever way to catch duplicates
82 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
83 *
84 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
85 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
86 * from the very beginning.
87 *
88 * NOTE. With recycling (and later with fin-wait-2) TW bucket
89 * is _not_ stateless. It means, that strictly speaking we must
90 * spinlock it. I do not want! Well, probability of misbehaviour
91 * is ridiculously low and, seems, we could use some mb() tricks
92 * to avoid misread sequence numbers, states etc. --ANK
93 *
94 * We don't need to initialize tmp_out.sack_ok as we don't use the results
95 */
96enum tcp_tw_status
97tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98 const struct tcphdr *th)
99{
100 struct tcp_options_received tmp_opt;
101 struct tcp_timewait_sock *tcptw = tcp_twsk(sk: (struct sock *)tw);
102 bool paws_reject = false;
103
104 tmp_opt.saw_tstamp = 0;
105 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106 tcp_parse_options(net: twsk_net(twsk: tw), skb, opt_rx: &tmp_opt, estab: 0, NULL);
107
108 if (tmp_opt.saw_tstamp) {
109 if (tmp_opt.rcv_tsecr)
110 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
111 tmp_opt.ts_recent = tcptw->tw_ts_recent;
112 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
113 paws_reject = tcp_paws_reject(rx_opt: &tmp_opt, rst: th->rst);
114 }
115 }
116
117 if (tw->tw_substate == TCP_FIN_WAIT2) {
118 /* Just repeat all the checks of tcp_rcv_state_process() */
119
120 /* Out of window, send ACK */
121 if (paws_reject ||
122 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
123 s_win: tcptw->tw_rcv_nxt,
124 e_win: tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
125 return tcp_timewait_check_oow_rate_limit(
126 tw, skb, mib_idx: LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
127
128 if (th->rst)
129 goto kill;
130
131 if (th->syn && !before(TCP_SKB_CB(skb)->seq, seq2: tcptw->tw_rcv_nxt))
132 return TCP_TW_RST;
133
134 /* Dup ACK? */
135 if (!th->ack ||
136 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
137 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
138 inet_twsk_put(tw);
139 return TCP_TW_SUCCESS;
140 }
141
142 /* New data or FIN. If new data arrive after half-duplex close,
143 * reset.
144 */
145 if (!th->fin ||
146 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
147 return TCP_TW_RST;
148
149 /* FIN arrived, enter true time-wait state. */
150 tw->tw_substate = TCP_TIME_WAIT;
151 twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq);
152
153 if (tmp_opt.saw_tstamp) {
154 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
155 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
156 }
157
158 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
159 return TCP_TW_ACK;
160 }
161
162 /*
163 * Now real TIME-WAIT state.
164 *
165 * RFC 1122:
166 * "When a connection is [...] on TIME-WAIT state [...]
167 * [a TCP] MAY accept a new SYN from the remote TCP to
168 * reopen the connection directly, if it:
169 *
170 * (1) assigns its initial sequence number for the new
171 * connection to be larger than the largest sequence
172 * number it used on the previous connection incarnation,
173 * and
174 *
175 * (2) returns to TIME-WAIT state if the SYN turns out
176 * to be an old duplicate".
177 */
178
179 if (!paws_reject &&
180 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
181 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
182 /* In window segment, it may be only reset or bare ack. */
183
184 if (th->rst) {
185 /* This is TIME_WAIT assassination, in two flavors.
186 * Oh well... nobody has a sufficient solution to this
187 * protocol bug yet.
188 */
189 if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
190kill:
191 inet_twsk_deschedule_put(tw);
192 return TCP_TW_SUCCESS;
193 }
194 } else {
195 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
196 }
197
198 if (tmp_opt.saw_tstamp) {
199 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
200 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
201 }
202
203 inet_twsk_put(tw);
204 return TCP_TW_SUCCESS;
205 }
206
207 /* Out of window segment.
208
209 All the segments are ACKed immediately.
210
211 The only exception is new SYN. We accept it, if it is
212 not old duplicate and we are not in danger to be killed
213 by delayed old duplicates. RFC check is that it has
214 newer sequence number works at rates <40Mbit/sec.
215 However, if paws works, it is reliable AND even more,
216 we even may relax silly seq space cutoff.
217
218 RED-PEN: we violate main RFC requirement, if this SYN will appear
219 old duplicate (i.e. we receive RST in reply to SYN-ACK),
220 we must return socket to time-wait state. It is not good,
221 but not fatal yet.
222 */
223
224 if (th->syn && !th->rst && !th->ack && !paws_reject &&
225 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
226 (tmp_opt.saw_tstamp &&
227 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
228 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
229 if (isn == 0)
230 isn++;
231 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
232 return TCP_TW_SYN;
233 }
234
235 if (paws_reject)
236 __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
237
238 if (!th->rst) {
239 /* In this case we must reset the TIMEWAIT timer.
240 *
241 * If it is ACKless SYN it may be both old duplicate
242 * and new good SYN with random sequence number <rcv_nxt.
243 * Do not reschedule in the last case.
244 */
245 if (paws_reject || th->ack)
246 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
247
248 return tcp_timewait_check_oow_rate_limit(
249 tw, skb, mib_idx: LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
250 }
251 inet_twsk_put(tw);
252 return TCP_TW_SUCCESS;
253}
254EXPORT_SYMBOL(tcp_timewait_state_process);
255
256static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
257{
258#ifdef CONFIG_TCP_MD5SIG
259 const struct tcp_sock *tp = tcp_sk(sk);
260 struct tcp_md5sig_key *key;
261
262 /*
263 * The timewait bucket does not have the key DB from the
264 * sock structure. We just make a quick copy of the
265 * md5 key being used (if indeed we are using one)
266 * so the timewait ack generating code has the key.
267 */
268 tcptw->tw_md5_key = NULL;
269 if (!static_branch_unlikely(&tcp_md5_needed.key))
270 return;
271
272 key = tp->af_specific->md5_lookup(sk, sk);
273 if (key) {
274 tcptw->tw_md5_key = kmemdup(p: key, size: sizeof(*key), GFP_ATOMIC);
275 if (!tcptw->tw_md5_key)
276 return;
277 if (!static_key_fast_inc_not_disabled(key: &tcp_md5_needed.key.key))
278 goto out_free;
279 tcp_md5_add_sigpool();
280 }
281 return;
282out_free:
283 WARN_ON_ONCE(1);
284 kfree(objp: tcptw->tw_md5_key);
285 tcptw->tw_md5_key = NULL;
286#endif
287}
288
289/*
290 * Move a socket to time-wait or dead fin-wait-2 state.
291 */
292void tcp_time_wait(struct sock *sk, int state, int timeo)
293{
294 const struct inet_connection_sock *icsk = inet_csk(sk);
295 struct tcp_sock *tp = tcp_sk(sk);
296 struct net *net = sock_net(sk);
297 struct inet_timewait_sock *tw;
298
299 tw = inet_twsk_alloc(sk, dr: &net->ipv4.tcp_death_row, state);
300
301 if (tw) {
302 struct tcp_timewait_sock *tcptw = tcp_twsk(sk: (struct sock *)tw);
303 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
304
305 tw->tw_transparent = inet_test_bit(TRANSPARENT, sk);
306 tw->tw_mark = sk->sk_mark;
307 tw->tw_priority = READ_ONCE(sk->sk_priority);
308 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
309 tcptw->tw_rcv_nxt = tp->rcv_nxt;
310 tcptw->tw_snd_nxt = tp->snd_nxt;
311 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
312 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
313 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
314 tcptw->tw_ts_offset = tp->tsoffset;
315 tw->tw_usec_ts = tp->tcp_usec_ts;
316 tcptw->tw_last_oow_ack_time = 0;
317 tcptw->tw_tx_delay = tp->tcp_tx_delay;
318 tw->tw_txhash = sk->sk_txhash;
319#if IS_ENABLED(CONFIG_IPV6)
320 if (tw->tw_family == PF_INET6) {
321 struct ipv6_pinfo *np = inet6_sk(sk: sk);
322
323 tw->tw_v6_daddr = sk->sk_v6_daddr;
324 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
325 tw->tw_tclass = np->tclass;
326 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
327 tw->tw_ipv6only = sk->sk_ipv6only;
328 }
329#endif
330
331 tcp_time_wait_init(sk, tcptw);
332 tcp_ao_time_wait(tcptw, tp);
333
334 /* Get the TIME_WAIT timeout firing. */
335 if (timeo < rto)
336 timeo = rto;
337
338 if (state == TCP_TIME_WAIT)
339 timeo = TCP_TIMEWAIT_LEN;
340
341 /* tw_timer is pinned, so we need to make sure BH are disabled
342 * in following section, otherwise timer handler could run before
343 * we complete the initialization.
344 */
345 local_bh_disable();
346 inet_twsk_schedule(tw, timeo);
347 /* Linkage updates.
348 * Note that access to tw after this point is illegal.
349 */
350 inet_twsk_hashdance(tw, sk, hashinfo: net->ipv4.tcp_death_row.hashinfo);
351 local_bh_enable();
352 } else {
353 /* Sorry, if we're out of memory, just CLOSE this
354 * socket up. We've got bigger problems than
355 * non-graceful socket closings.
356 */
357 NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
358 }
359
360 tcp_update_metrics(sk);
361 tcp_done(sk);
362}
363EXPORT_SYMBOL(tcp_time_wait);
364
365#ifdef CONFIG_TCP_MD5SIG
366static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
367{
368 struct tcp_md5sig_key *key;
369
370 key = container_of(head, struct tcp_md5sig_key, rcu);
371 kfree(objp: key);
372 static_branch_slow_dec_deferred(&tcp_md5_needed);
373 tcp_md5_release_sigpool();
374}
375#endif
376
377void tcp_twsk_destructor(struct sock *sk)
378{
379#ifdef CONFIG_TCP_MD5SIG
380 if (static_branch_unlikely(&tcp_md5_needed.key)) {
381 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
382
383 if (twsk->tw_md5_key)
384 call_rcu(head: &twsk->tw_md5_key->rcu, func: tcp_md5_twsk_free_rcu);
385 }
386#endif
387 tcp_ao_destroy_sock(sk, twsk: true);
388}
389EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
390
391void tcp_twsk_purge(struct list_head *net_exit_list, int family)
392{
393 bool purged_once = false;
394 struct net *net;
395
396 list_for_each_entry(net, net_exit_list, exit_list) {
397 if (net->ipv4.tcp_death_row.hashinfo->pernet) {
398 /* Even if tw_refcount == 1, we must clean up kernel reqsk */
399 inet_twsk_purge(hashinfo: net->ipv4.tcp_death_row.hashinfo, family);
400 } else if (!purged_once) {
401 inet_twsk_purge(hashinfo: &tcp_hashinfo, family);
402 purged_once = true;
403 }
404 }
405}
406EXPORT_SYMBOL_GPL(tcp_twsk_purge);
407
408/* Warning : This function is called without sk_listener being locked.
409 * Be sure to read socket fields once, as their value could change under us.
410 */
411void tcp_openreq_init_rwin(struct request_sock *req,
412 const struct sock *sk_listener,
413 const struct dst_entry *dst)
414{
415 struct inet_request_sock *ireq = inet_rsk(sk: req);
416 const struct tcp_sock *tp = tcp_sk(sk_listener);
417 int full_space = tcp_full_space(sk: sk_listener);
418 u32 window_clamp;
419 __u8 rcv_wscale;
420 u32 rcv_wnd;
421 int mss;
422
423 mss = tcp_mss_clamp(tp, mss: dst_metric_advmss(dst));
424 window_clamp = READ_ONCE(tp->window_clamp);
425 /* Set this up on the first call only */
426 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
427
428 /* limit the window selection if the user enforce a smaller rx buffer */
429 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
430 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
431 req->rsk_window_clamp = full_space;
432
433 rcv_wnd = tcp_rwnd_init_bpf(sk: (struct sock *)req);
434 if (rcv_wnd == 0)
435 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
436 else if (full_space < rcv_wnd * mss)
437 full_space = rcv_wnd * mss;
438
439 /* tcp_full_space because it is guaranteed to be the first packet */
440 tcp_select_initial_window(sk: sk_listener, space: full_space,
441 mss: mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
442 rcv_wnd: &req->rsk_rcv_wnd,
443 window_clamp: &req->rsk_window_clamp,
444 wscale_ok: ireq->wscale_ok,
445 rcv_wscale: &rcv_wscale,
446 init_rcv_wnd: rcv_wnd);
447 ireq->rcv_wscale = rcv_wscale;
448}
449EXPORT_SYMBOL(tcp_openreq_init_rwin);
450
451static void tcp_ecn_openreq_child(struct tcp_sock *tp,
452 const struct request_sock *req)
453{
454 tp->ecn_flags = inet_rsk(sk: req)->ecn_ok ? TCP_ECN_OK : 0;
455}
456
457void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
458{
459 struct inet_connection_sock *icsk = inet_csk(sk);
460 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
461 bool ca_got_dst = false;
462
463 if (ca_key != TCP_CA_UNSPEC) {
464 const struct tcp_congestion_ops *ca;
465
466 rcu_read_lock();
467 ca = tcp_ca_find_key(key: ca_key);
468 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
469 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
470 icsk->icsk_ca_ops = ca;
471 ca_got_dst = true;
472 }
473 rcu_read_unlock();
474 }
475
476 /* If no valid choice made yet, assign current system default ca. */
477 if (!ca_got_dst &&
478 (!icsk->icsk_ca_setsockopt ||
479 !bpf_try_module_get(data: icsk->icsk_ca_ops, owner: icsk->icsk_ca_ops->owner)))
480 tcp_assign_congestion_control(sk);
481
482 tcp_set_ca_state(sk, ca_state: TCP_CA_Open);
483}
484EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
485
486static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
487 struct request_sock *req,
488 struct tcp_sock *newtp)
489{
490#if IS_ENABLED(CONFIG_SMC)
491 struct inet_request_sock *ireq;
492
493 if (static_branch_unlikely(&tcp_have_smc)) {
494 ireq = inet_rsk(sk: req);
495 if (oldtp->syn_smc && !ireq->smc_ok)
496 newtp->syn_smc = 0;
497 }
498#endif
499}
500
501/* This is not only more efficient than what we used to do, it eliminates
502 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
503 *
504 * Actually, we could lots of memory writes here. tp of listening
505 * socket contains all necessary default parameters.
506 */
507struct sock *tcp_create_openreq_child(const struct sock *sk,
508 struct request_sock *req,
509 struct sk_buff *skb)
510{
511 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
512 const struct inet_request_sock *ireq = inet_rsk(sk: req);
513 struct tcp_request_sock *treq = tcp_rsk(req);
514 struct inet_connection_sock *newicsk;
515 const struct tcp_sock *oldtp;
516 struct tcp_sock *newtp;
517 u32 seq;
518#ifdef CONFIG_TCP_AO
519 struct tcp_ao_key *ao_key;
520#endif
521
522 if (!newsk)
523 return NULL;
524
525 newicsk = inet_csk(sk: newsk);
526 newtp = tcp_sk(newsk);
527 oldtp = tcp_sk(sk);
528
529 smc_check_reset_syn_req(oldtp, req, newtp);
530
531 /* Now setup tcp_sock */
532 newtp->pred_flags = 0;
533
534 seq = treq->rcv_isn + 1;
535 newtp->rcv_wup = seq;
536 WRITE_ONCE(newtp->copied_seq, seq);
537 WRITE_ONCE(newtp->rcv_nxt, seq);
538 newtp->segs_in = 1;
539
540 seq = treq->snt_isn + 1;
541 newtp->snd_sml = newtp->snd_una = seq;
542 WRITE_ONCE(newtp->snd_nxt, seq);
543 newtp->snd_up = seq;
544
545 INIT_LIST_HEAD(list: &newtp->tsq_node);
546 INIT_LIST_HEAD(list: &newtp->tsorted_sent_queue);
547
548 tcp_init_wl(tp: newtp, seq: treq->rcv_isn);
549
550 minmax_reset(m: &newtp->rtt_min, tcp_jiffies32, meas: ~0U);
551 newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
552
553 newtp->lsndtime = tcp_jiffies32;
554 newsk->sk_txhash = READ_ONCE(treq->txhash);
555 newtp->total_retrans = req->num_retrans;
556
557 tcp_init_xmit_timers(newsk);
558 WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
559
560 if (sock_flag(sk: newsk, flag: SOCK_KEEPOPEN))
561 inet_csk_reset_keepalive_timer(sk: newsk,
562 timeout: keepalive_time_when(tp: newtp));
563
564 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
565 newtp->rx_opt.sack_ok = ireq->sack_ok;
566 newtp->window_clamp = req->rsk_window_clamp;
567 newtp->rcv_ssthresh = req->rsk_rcv_wnd;
568 newtp->rcv_wnd = req->rsk_rcv_wnd;
569 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
570 if (newtp->rx_opt.wscale_ok) {
571 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
572 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
573 } else {
574 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
575 newtp->window_clamp = min(newtp->window_clamp, 65535U);
576 }
577 newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
578 newtp->max_window = newtp->snd_wnd;
579
580 if (newtp->rx_opt.tstamp_ok) {
581 newtp->tcp_usec_ts = treq->req_usec_ts;
582 newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
583 newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
584 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
585 } else {
586 newtp->tcp_usec_ts = 0;
587 newtp->rx_opt.ts_recent_stamp = 0;
588 newtp->tcp_header_len = sizeof(struct tcphdr);
589 }
590 if (req->num_timeout) {
591 newtp->total_rto = req->num_timeout;
592 newtp->undo_marker = treq->snt_isn;
593 if (newtp->tcp_usec_ts) {
594 newtp->retrans_stamp = treq->snt_synack;
595 newtp->total_rto_time = (u32)(tcp_clock_us() -
596 newtp->retrans_stamp) / USEC_PER_MSEC;
597 } else {
598 newtp->retrans_stamp = div_u64(dividend: treq->snt_synack,
599 USEC_PER_SEC / TCP_TS_HZ);
600 newtp->total_rto_time = tcp_clock_ms() -
601 newtp->retrans_stamp;
602 }
603 newtp->total_rto_recoveries = 1;
604 }
605 newtp->tsoffset = treq->ts_off;
606#ifdef CONFIG_TCP_MD5SIG
607 newtp->md5sig_info = NULL; /*XXX*/
608#endif
609#ifdef CONFIG_TCP_AO
610 newtp->ao_info = NULL;
611 ao_key = treq->af_specific->ao_lookup(sk, req,
612 tcp_rsk(req)->ao_keyid, -1);
613 if (ao_key)
614 newtp->tcp_header_len += tcp_ao_len_aligned(key: ao_key);
615 #endif
616 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
617 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
618 newtp->rx_opt.mss_clamp = req->mss;
619 tcp_ecn_openreq_child(tp: newtp, req);
620 newtp->fastopen_req = NULL;
621 RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
622
623 newtp->bpf_chg_cc_inprogress = 0;
624 tcp_bpf_clone(sk, newsk);
625
626 __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
627
628 return newsk;
629}
630EXPORT_SYMBOL(tcp_create_openreq_child);
631
632/*
633 * Process an incoming packet for SYN_RECV sockets represented as a
634 * request_sock. Normally sk is the listener socket but for TFO it
635 * points to the child socket.
636 *
637 * XXX (TFO) - The current impl contains a special check for ack
638 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
639 *
640 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
641 *
642 * Note: If @fastopen is true, this can be called from process context.
643 * Otherwise, this is from BH context.
644 */
645
646struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
647 struct request_sock *req,
648 bool fastopen, bool *req_stolen)
649{
650 struct tcp_options_received tmp_opt;
651 struct sock *child;
652 const struct tcphdr *th = tcp_hdr(skb);
653 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
654 bool paws_reject = false;
655 bool own_req;
656
657 tmp_opt.saw_tstamp = 0;
658 if (th->doff > (sizeof(struct tcphdr)>>2)) {
659 tcp_parse_options(net: sock_net(sk), skb, opt_rx: &tmp_opt, estab: 0, NULL);
660
661 if (tmp_opt.saw_tstamp) {
662 tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
663 if (tmp_opt.rcv_tsecr)
664 tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
665 /* We do not store true stamp, but it is not required,
666 * it can be estimated (approximately)
667 * from another data.
668 */
669 tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
670 paws_reject = tcp_paws_reject(rx_opt: &tmp_opt, rst: th->rst);
671 }
672 }
673
674 /* Check for pure retransmitted SYN. */
675 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
676 flg == TCP_FLAG_SYN &&
677 !paws_reject) {
678 /*
679 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
680 * this case on figure 6 and figure 8, but formal
681 * protocol description says NOTHING.
682 * To be more exact, it says that we should send ACK,
683 * because this segment (at least, if it has no data)
684 * is out of window.
685 *
686 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
687 * describe SYN-RECV state. All the description
688 * is wrong, we cannot believe to it and should
689 * rely only on common sense and implementation
690 * experience.
691 *
692 * Enforce "SYN-ACK" according to figure 8, figure 6
693 * of RFC793, fixed by RFC1122.
694 *
695 * Note that even if there is new data in the SYN packet
696 * they will be thrown away too.
697 *
698 * Reset timer after retransmitting SYNACK, similar to
699 * the idea of fast retransmit in recovery.
700 */
701 if (!tcp_oow_rate_limited(net: sock_net(sk), skb,
702 mib_idx: LINUX_MIB_TCPACKSKIPPEDSYNRECV,
703 last_oow_ack_time: &tcp_rsk(req)->last_oow_ack_time) &&
704
705 !inet_rtx_syn_ack(parent: sk, req)) {
706 unsigned long expires = jiffies;
707
708 expires += reqsk_timeout(req, TCP_RTO_MAX);
709 if (!fastopen)
710 mod_timer_pending(timer: &req->rsk_timer, expires);
711 else
712 req->rsk_timer.expires = expires;
713 }
714 return NULL;
715 }
716
717 /* Further reproduces section "SEGMENT ARRIVES"
718 for state SYN-RECEIVED of RFC793.
719 It is broken, however, it does not work only
720 when SYNs are crossed.
721
722 You would think that SYN crossing is impossible here, since
723 we should have a SYN_SENT socket (from connect()) on our end,
724 but this is not true if the crossed SYNs were sent to both
725 ends by a malicious third party. We must defend against this,
726 and to do that we first verify the ACK (as per RFC793, page
727 36) and reset if it is invalid. Is this a true full defense?
728 To convince ourselves, let us consider a way in which the ACK
729 test can still pass in this 'malicious crossed SYNs' case.
730 Malicious sender sends identical SYNs (and thus identical sequence
731 numbers) to both A and B:
732
733 A: gets SYN, seq=7
734 B: gets SYN, seq=7
735
736 By our good fortune, both A and B select the same initial
737 send sequence number of seven :-)
738
739 A: sends SYN|ACK, seq=7, ack_seq=8
740 B: sends SYN|ACK, seq=7, ack_seq=8
741
742 So we are now A eating this SYN|ACK, ACK test passes. So
743 does sequence test, SYN is truncated, and thus we consider
744 it a bare ACK.
745
746 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
747 bare ACK. Otherwise, we create an established connection. Both
748 ends (listening sockets) accept the new incoming connection and try
749 to talk to each other. 8-)
750
751 Note: This case is both harmless, and rare. Possibility is about the
752 same as us discovering intelligent life on another plant tomorrow.
753
754 But generally, we should (RFC lies!) to accept ACK
755 from SYNACK both here and in tcp_rcv_state_process().
756 tcp_rcv_state_process() does not, hence, we do not too.
757
758 Note that the case is absolutely generic:
759 we cannot optimize anything here without
760 violating protocol. All the checks must be made
761 before attempt to create socket.
762 */
763
764 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
765 * and the incoming segment acknowledges something not yet
766 * sent (the segment carries an unacceptable ACK) ...
767 * a reset is sent."
768 *
769 * Invalid ACK: reset will be sent by listening socket.
770 * Note that the ACK validity check for a Fast Open socket is done
771 * elsewhere and is checked directly against the child socket rather
772 * than req because user data may have been sent out.
773 */
774 if ((flg & TCP_FLAG_ACK) && !fastopen &&
775 (TCP_SKB_CB(skb)->ack_seq !=
776 tcp_rsk(req)->snt_isn + 1))
777 return sk;
778
779 /* Also, it would be not so bad idea to check rcv_tsecr, which
780 * is essentially ACK extension and too early or too late values
781 * should cause reset in unsynchronized states.
782 */
783
784 /* RFC793: "first check sequence number". */
785
786 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
787 s_win: tcp_rsk(req)->rcv_nxt, e_win: tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
788 /* Out of window: send ACK and drop. */
789 if (!(flg & TCP_FLAG_RST) &&
790 !tcp_oow_rate_limited(net: sock_net(sk), skb,
791 mib_idx: LINUX_MIB_TCPACKSKIPPEDSYNRECV,
792 last_oow_ack_time: &tcp_rsk(req)->last_oow_ack_time))
793 req->rsk_ops->send_ack(sk, skb, req);
794 if (paws_reject)
795 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
796 return NULL;
797 }
798
799 /* In sequence, PAWS is OK. */
800
801 /* TODO: We probably should defer ts_recent change once
802 * we take ownership of @req.
803 */
804 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
805 WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
806
807 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
808 /* Truncate SYN, it is out of window starting
809 at tcp_rsk(req)->rcv_isn + 1. */
810 flg &= ~TCP_FLAG_SYN;
811 }
812
813 /* RFC793: "second check the RST bit" and
814 * "fourth, check the SYN bit"
815 */
816 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
817 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
818 goto embryonic_reset;
819 }
820
821 /* ACK sequence verified above, just make sure ACK is
822 * set. If ACK not set, just silently drop the packet.
823 *
824 * XXX (TFO) - if we ever allow "data after SYN", the
825 * following check needs to be removed.
826 */
827 if (!(flg & TCP_FLAG_ACK))
828 return NULL;
829
830 /* For Fast Open no more processing is needed (sk is the
831 * child socket).
832 */
833 if (fastopen)
834 return sk;
835
836 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
837 if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
838 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
839 inet_rsk(sk: req)->acked = 1;
840 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
841 return NULL;
842 }
843
844 /* OK, ACK is valid, create big socket and
845 * feed this segment to it. It will repeat all
846 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
847 * ESTABLISHED STATE. If it will be dropped after
848 * socket is created, wait for troubles.
849 */
850 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
851 req, &own_req);
852 if (!child)
853 goto listen_overflow;
854
855 if (own_req && rsk_drop_req(req)) {
856 reqsk_queue_removed(queue: &inet_csk(sk: req->rsk_listener)->icsk_accept_queue, req);
857 inet_csk_reqsk_queue_drop_and_put(sk: req->rsk_listener, req);
858 return child;
859 }
860
861 sock_rps_save_rxhash(sk: child, skb);
862 tcp_synack_rtt_meas(sk: child, req);
863 *req_stolen = !own_req;
864 return inet_csk_complete_hashdance(sk, child, req, own_req);
865
866listen_overflow:
867 if (sk != req->rsk_listener)
868 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
869
870 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
871 inet_rsk(sk: req)->acked = 1;
872 return NULL;
873 }
874
875embryonic_reset:
876 if (!(flg & TCP_FLAG_RST)) {
877 /* Received a bad SYN pkt - for TFO We try not to reset
878 * the local connection unless it's really necessary to
879 * avoid becoming vulnerable to outside attack aiming at
880 * resetting legit local connections.
881 */
882 req->rsk_ops->send_reset(sk, skb);
883 } else if (fastopen) { /* received a valid RST pkt */
884 reqsk_fastopen_remove(sk, req, reset: true);
885 tcp_reset(sk, skb);
886 }
887 if (!fastopen) {
888 bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
889
890 if (unlinked)
891 __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
892 *req_stolen = !unlinked;
893 }
894 return NULL;
895}
896EXPORT_SYMBOL(tcp_check_req);
897
898/*
899 * Queue segment on the new socket if the new socket is active,
900 * otherwise we just shortcircuit this and continue with
901 * the new socket.
902 *
903 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
904 * when entering. But other states are possible due to a race condition
905 * where after __inet_lookup_established() fails but before the listener
906 * locked is obtained, other packets cause the same connection to
907 * be created.
908 */
909
910enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
911 struct sk_buff *skb)
912 __releases(&((child)->sk_lock.slock))
913{
914 enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
915 int state = child->sk_state;
916
917 /* record sk_napi_id and sk_rx_queue_mapping of child. */
918 sk_mark_napi_id_set(sk: child, skb);
919
920 tcp_segs_in(tcp_sk(child), skb);
921 if (!sock_owned_by_user(sk: child)) {
922 reason = tcp_rcv_state_process(sk: child, skb);
923 /* Wakeup parent, send SIGIO */
924 if (state == TCP_SYN_RECV && child->sk_state != state)
925 parent->sk_data_ready(parent);
926 } else {
927 /* Alas, it is possible again, because we do lookup
928 * in main socket hash table and lock on listening
929 * socket does not protect us more.
930 */
931 __sk_add_backlog(sk: child, skb);
932 }
933
934 bh_unlock_sock(child);
935 sock_put(sk: child);
936 return reason;
937}
938EXPORT_SYMBOL(tcp_child_process);
939

source code of linux/net/ipv4/tcp_minisocks.c