1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2024 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80static void bss_free(struct cfg80211_internal_bss *bss)
81{
82 struct cfg80211_bss_ies *ies;
83
84 if (WARN_ON(atomic_read(&bss->hold)))
85 return;
86
87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 if (ies && !bss->pub.hidden_beacon_bss)
89 kfree_rcu(ies, rcu_head);
90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 if (ies)
92 kfree_rcu(ies, rcu_head);
93
94 /*
95 * This happens when the module is removed, it doesn't
96 * really matter any more save for completeness
97 */
98 if (!list_empty(head: &bss->hidden_list))
99 list_del(entry: &bss->hidden_list);
100
101 kfree(objp: bss);
102}
103
104static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 struct cfg80211_internal_bss *bss)
106{
107 lockdep_assert_held(&rdev->bss_lock);
108
109 bss->refcount++;
110
111 if (bss->pub.hidden_beacon_bss)
112 bss_from_pub(pub: bss->pub.hidden_beacon_bss)->refcount++;
113
114 if (bss->pub.transmitted_bss)
115 bss_from_pub(pub: bss->pub.transmitted_bss)->refcount++;
116}
117
118static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120{
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (bss->pub.hidden_beacon_bss) {
124 struct cfg80211_internal_bss *hbss;
125
126 hbss = bss_from_pub(pub: bss->pub.hidden_beacon_bss);
127 hbss->refcount--;
128 if (hbss->refcount == 0)
129 bss_free(bss: hbss);
130 }
131
132 if (bss->pub.transmitted_bss) {
133 struct cfg80211_internal_bss *tbss;
134
135 tbss = bss_from_pub(pub: bss->pub.transmitted_bss);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(bss: tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144}
145
146static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148{
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(head: &bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(entry: &bss->hidden_list);
163 }
164
165 list_del_init(entry: &bss->list);
166 list_del_init(entry: &bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174}
175
176bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178{
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 return false;
188
189 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 return true;
191
192 /*
193 * non inheritance element format is:
194 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 * Both lists are optional. Both lengths are mandatory.
196 * This means valid length is:
197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 */
199 id_len = non_inherit_elem->data[1];
200 if (non_inherit_elem->datalen < 3 + id_len)
201 return true;
202
203 ext_id_len = non_inherit_elem->data[2 + id_len];
204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 return true;
206
207 if (elem->id == WLAN_EID_EXTENSION) {
208 if (!ext_id_len)
209 return true;
210 loop_len = ext_id_len;
211 list = &non_inherit_elem->data[3 + id_len];
212 id = elem->data[0];
213 } else {
214 if (!id_len)
215 return true;
216 loop_len = id_len;
217 list = &non_inherit_elem->data[2];
218 id = elem->id;
219 }
220
221 for (i = 0; i < loop_len; i++) {
222 if (list[i] == id)
223 return false;
224 }
225
226 return true;
227}
228EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
230static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 const u8 *ie, size_t ie_len,
232 u8 **pos, u8 *buf, size_t buf_len)
233{
234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 elem->data + elem->datalen > ie + ie_len))
236 return 0;
237
238 if (elem->datalen + 2 > buf + buf_len - *pos)
239 return 0;
240
241 memcpy(*pos, elem, elem->datalen + 2);
242 *pos += elem->datalen + 2;
243
244 /* Finish if it is not fragmented */
245 if (elem->datalen != 255)
246 return *pos - buf;
247
248 ie_len = ie + ie_len - elem->data - elem->datalen;
249 ie = (const u8 *)elem->data + elem->datalen;
250
251 for_each_element(elem, ie, ie_len) {
252 if (elem->id != WLAN_EID_FRAGMENT)
253 break;
254
255 if (elem->datalen + 2 > buf + buf_len - *pos)
256 return 0;
257
258 memcpy(*pos, elem, elem->datalen + 2);
259 *pos += elem->datalen + 2;
260
261 if (elem->datalen != 255)
262 break;
263 }
264
265 return *pos - buf;
266}
267
268VISIBLE_IF_CFG80211_KUNIT size_t
269cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 const u8 *subie, size_t subie_len,
271 u8 *new_ie, size_t new_ie_len)
272{
273 const struct element *non_inherit_elem, *parent, *sub;
274 u8 *pos = new_ie;
275 u8 id, ext_id;
276 unsigned int match_len;
277
278 non_inherit_elem = cfg80211_find_ext_elem(ext_eid: WLAN_EID_EXT_NON_INHERITANCE,
279 ies: subie, len: subie_len);
280
281 /* We copy the elements one by one from the parent to the generated
282 * elements.
283 * If they are not inherited (included in subie or in the non
284 * inheritance element), then we copy all occurrences the first time
285 * we see this element type.
286 */
287 for_each_element(parent, ie, ielen) {
288 if (parent->id == WLAN_EID_FRAGMENT)
289 continue;
290
291 if (parent->id == WLAN_EID_EXTENSION) {
292 if (parent->datalen < 1)
293 continue;
294
295 id = WLAN_EID_EXTENSION;
296 ext_id = parent->data[0];
297 match_len = 1;
298 } else {
299 id = parent->id;
300 match_len = 0;
301 }
302
303 /* Find first occurrence in subie */
304 sub = cfg80211_find_elem_match(eid: id, ies: subie, len: subie_len,
305 match: &ext_id, match_len, match_offset: 0);
306
307 /* Copy from parent if not in subie and inherited */
308 if (!sub &&
309 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 if (!cfg80211_copy_elem_with_frags(elem: parent,
311 ie, ie_len: ielen,
312 pos: &pos, buf: new_ie,
313 buf_len: new_ie_len))
314 return 0;
315
316 continue;
317 }
318
319 /* Already copied if an earlier element had the same type */
320 if (cfg80211_find_elem_match(eid: id, ies: ie, len: (u8 *)parent - ie,
321 match: &ext_id, match_len, match_offset: 0))
322 continue;
323
324 /* Not inheriting, copy all similar elements from subie */
325 while (sub) {
326 if (!cfg80211_copy_elem_with_frags(elem: sub,
327 ie: subie, ie_len: subie_len,
328 pos: &pos, buf: new_ie,
329 buf_len: new_ie_len))
330 return 0;
331
332 sub = cfg80211_find_elem_match(eid: id,
333 ies: sub->data + sub->datalen,
334 len: subie_len + subie -
335 (sub->data +
336 sub->datalen),
337 match: &ext_id, match_len, match_offset: 0);
338 }
339 }
340
341 /* The above misses elements that are included in subie but not in the
342 * parent, so do a pass over subie and append those.
343 * Skip the non-tx BSSID caps and non-inheritance element.
344 */
345 for_each_element(sub, subie, subie_len) {
346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 continue;
348
349 if (sub->id == WLAN_EID_FRAGMENT)
350 continue;
351
352 if (sub->id == WLAN_EID_EXTENSION) {
353 if (sub->datalen < 1)
354 continue;
355
356 id = WLAN_EID_EXTENSION;
357 ext_id = sub->data[0];
358 match_len = 1;
359
360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 continue;
362 } else {
363 id = sub->id;
364 match_len = 0;
365 }
366
367 /* Processed if one was included in the parent */
368 if (cfg80211_find_elem_match(eid: id, ies: ie, len: ielen,
369 match: &ext_id, match_len, match_offset: 0))
370 continue;
371
372 if (!cfg80211_copy_elem_with_frags(elem: sub, ie: subie, ie_len: subie_len,
373 pos: &pos, buf: new_ie, buf_len: new_ie_len))
374 return 0;
375 }
376
377 return pos - new_ie;
378}
379EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380
381static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 const u8 *ssid, size_t ssid_len)
383{
384 const struct cfg80211_bss_ies *ies;
385 const struct element *ssid_elem;
386
387 if (bssid && !ether_addr_equal(addr1: a->bssid, addr2: bssid))
388 return false;
389
390 if (!ssid)
391 return true;
392
393 ies = rcu_access_pointer(a->ies);
394 if (!ies)
395 return false;
396 ssid_elem = cfg80211_find_elem(eid: WLAN_EID_SSID, ies: ies->data, len: ies->len);
397 if (!ssid_elem)
398 return false;
399 if (ssid_elem->datalen != ssid_len)
400 return false;
401 return memcmp(p: ssid_elem->data, q: ssid, size: ssid_len) == 0;
402}
403
404static int
405cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 struct cfg80211_bss *nontrans_bss)
407{
408 const struct element *ssid_elem;
409 struct cfg80211_bss *bss = NULL;
410
411 rcu_read_lock();
412 ssid_elem = ieee80211_bss_get_elem(bss: nontrans_bss, id: WLAN_EID_SSID);
413 if (!ssid_elem) {
414 rcu_read_unlock();
415 return -EINVAL;
416 }
417
418 /* check if nontrans_bss is in the list */
419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 if (is_bss(a: bss, bssid: nontrans_bss->bssid, ssid: ssid_elem->data,
421 ssid_len: ssid_elem->datalen)) {
422 rcu_read_unlock();
423 return 0;
424 }
425 }
426
427 rcu_read_unlock();
428
429 /*
430 * This is a bit weird - it's not on the list, but already on another
431 * one! The only way that could happen is if there's some BSSID/SSID
432 * shared by multiple APs in their multi-BSSID profiles, potentially
433 * with hidden SSID mixed in ... ignore it.
434 */
435 if (!list_empty(head: &nontrans_bss->nontrans_list))
436 return -EINVAL;
437
438 /* add to the list */
439 list_add_tail(new: &nontrans_bss->nontrans_list, head: &trans_bss->nontrans_list);
440 return 0;
441}
442
443static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 unsigned long expire_time)
445{
446 struct cfg80211_internal_bss *bss, *tmp;
447 bool expired = false;
448
449 lockdep_assert_held(&rdev->bss_lock);
450
451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 if (atomic_read(v: &bss->hold))
453 continue;
454 if (!time_after(expire_time, bss->ts))
455 continue;
456
457 if (__cfg80211_unlink_bss(rdev, bss))
458 expired = true;
459 }
460
461 if (expired)
462 rdev->bss_generation++;
463}
464
465static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466{
467 struct cfg80211_internal_bss *bss, *oldest = NULL;
468 bool ret;
469
470 lockdep_assert_held(&rdev->bss_lock);
471
472 list_for_each_entry(bss, &rdev->bss_list, list) {
473 if (atomic_read(v: &bss->hold))
474 continue;
475
476 if (!list_empty(head: &bss->hidden_list) &&
477 !bss->pub.hidden_beacon_bss)
478 continue;
479
480 if (oldest && time_before(oldest->ts, bss->ts))
481 continue;
482 oldest = bss;
483 }
484
485 if (WARN_ON(!oldest))
486 return false;
487
488 /*
489 * The callers make sure to increase rdev->bss_generation if anything
490 * gets removed (and a new entry added), so there's no need to also do
491 * it here.
492 */
493
494 ret = __cfg80211_unlink_bss(rdev, bss: oldest);
495 WARN_ON(!ret);
496 return ret;
497}
498
499static u8 cfg80211_parse_bss_param(u8 data,
500 struct cfg80211_colocated_ap *coloc_ap)
501{
502 coloc_ap->oct_recommended =
503 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 coloc_ap->same_ssid =
505 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 coloc_ap->multi_bss =
507 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 coloc_ap->transmitted_bssid =
509 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 coloc_ap->unsolicited_probe =
511 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 coloc_ap->colocated_ess =
513 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514
515 return u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516}
517
518static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 const struct element **elem, u32 *s_ssid)
520{
521
522 *elem = cfg80211_find_elem(eid: WLAN_EID_SSID, ies: ies->data, len: ies->len);
523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 return -EINVAL;
525
526 *s_ssid = ~crc32_le(crc: ~0, p: (*elem)->data, len: (*elem)->datalen);
527 return 0;
528}
529
530VISIBLE_IF_CFG80211_KUNIT void
531cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532{
533 struct cfg80211_colocated_ap *ap, *tmp_ap;
534
535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 list_del(entry: &ap->list);
537 kfree(objp: ap);
538 }
539}
540EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541
542static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 const u8 *pos, u8 length,
544 const struct element *ssid_elem,
545 u32 s_ssid_tmp)
546{
547 u8 bss_params;
548
549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550
551 /* The length is already verified by the caller to contain bss_params */
552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554
555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 entry->short_ssid_valid = true;
558
559 bss_params = tbtt_info->bss_params;
560
561 /* Ignore disabled links */
562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 if (le16_get_bits(v: tbtt_info->mld_params.params,
564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 return -EINVAL;
566 }
567
568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 psd_20))
570 entry->psd_20 = tbtt_info->psd_20;
571 } else {
572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573
574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575
576 bss_params = tbtt_info->bss_params;
577
578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 psd_20))
580 entry->psd_20 = tbtt_info->psd_20;
581 }
582
583 /* ignore entries with invalid BSSID */
584 if (!is_valid_ether_addr(addr: entry->bssid))
585 return -EINVAL;
586
587 /* skip non colocated APs */
588 if (!cfg80211_parse_bss_param(data: bss_params, coloc_ap: entry))
589 return -EINVAL;
590
591 /* no information about the short ssid. Consider the entry valid
592 * for now. It would later be dropped in case there are explicit
593 * SSIDs that need to be matched
594 */
595 if (!entry->same_ssid && !entry->short_ssid_valid)
596 return 0;
597
598 if (entry->same_ssid) {
599 entry->short_ssid = s_ssid_tmp;
600 entry->short_ssid_valid = true;
601
602 /*
603 * This is safe because we validate datalen in
604 * cfg80211_parse_colocated_ap(), before calling this
605 * function.
606 */
607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 entry->ssid_len = ssid_elem->datalen;
609 }
610
611 return 0;
612}
613
614bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 enum cfg80211_rnr_iter_ret
616 (*iter)(void *data, u8 type,
617 const struct ieee80211_neighbor_ap_info *info,
618 const u8 *tbtt_info, u8 tbtt_info_len),
619 void *iter_data)
620{
621 const struct element *rnr;
622 const u8 *pos, *end;
623
624 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 elems, elems_len) {
626 const struct ieee80211_neighbor_ap_info *info;
627
628 pos = rnr->data;
629 end = rnr->data + rnr->datalen;
630
631 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 while (sizeof(*info) <= end - pos) {
633 u8 length, i, count;
634 u8 type;
635
636 info = (void *)pos;
637 count = u8_get_bits(v: info->tbtt_info_hdr,
638 IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 1;
640 length = info->tbtt_info_len;
641
642 pos += sizeof(*info);
643
644 if (count * length > end - pos)
645 return false;
646
647 type = u8_get_bits(v: info->tbtt_info_hdr,
648 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649
650 for (i = 0; i < count; i++) {
651 switch (iter(iter_data, type, info,
652 pos, length)) {
653 case RNR_ITER_CONTINUE:
654 break;
655 case RNR_ITER_BREAK:
656 return true;
657 case RNR_ITER_ERROR:
658 return false;
659 }
660
661 pos += length;
662 }
663 }
664
665 if (pos != end)
666 return false;
667 }
668
669 return true;
670}
671EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672
673struct colocated_ap_data {
674 const struct element *ssid_elem;
675 struct list_head ap_list;
676 u32 s_ssid_tmp;
677 int n_coloc;
678};
679
680static enum cfg80211_rnr_iter_ret
681cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 const struct ieee80211_neighbor_ap_info *info,
683 const u8 *tbtt_info, u8 tbtt_info_len)
684{
685 struct colocated_ap_data *data = _data;
686 struct cfg80211_colocated_ap *entry;
687 enum nl80211_band band;
688
689 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 return RNR_ITER_CONTINUE;
691
692 if (!ieee80211_operating_class_to_band(operating_class: info->op_class, band: &band))
693 return RNR_ITER_CONTINUE;
694
695 /* TBTT info must include bss param + BSSID + (short SSID or
696 * same_ssid bit to be set). Ignore other options, and move to
697 * the next AP info
698 */
699 if (band != NL80211_BAND_6GHZ ||
700 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 bss_params) ||
702 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 bss_params)))
705 return RNR_ITER_CONTINUE;
706
707 entry = kzalloc(size: sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 if (!entry)
709 return RNR_ITER_ERROR;
710
711 entry->center_freq =
712 ieee80211_channel_to_frequency(chan: info->channel, band);
713
714 if (!cfg80211_parse_ap_info(entry, pos: tbtt_info, length: tbtt_info_len,
715 ssid_elem: data->ssid_elem, s_ssid_tmp: data->s_ssid_tmp)) {
716 data->n_coloc++;
717 list_add_tail(new: &entry->list, head: &data->ap_list);
718 } else {
719 kfree(objp: entry);
720 }
721
722 return RNR_ITER_CONTINUE;
723}
724
725VISIBLE_IF_CFG80211_KUNIT int
726cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 struct list_head *list)
728{
729 struct colocated_ap_data data = {};
730 int ret;
731
732 INIT_LIST_HEAD(list: &data.ap_list);
733
734 ret = cfg80211_calc_short_ssid(ies, elem: &data.ssid_elem, s_ssid: &data.s_ssid_tmp);
735 if (ret)
736 return 0;
737
738 if (!cfg80211_iter_rnr(ies->data, ies->len,
739 cfg80211_parse_colocated_ap_iter, &data)) {
740 cfg80211_free_coloc_ap_list(&data.ap_list);
741 return 0;
742 }
743
744 list_splice_tail(list: &data.ap_list, head: list);
745 return data.n_coloc;
746}
747EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748
749static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 struct ieee80211_channel *chan,
751 bool add_to_6ghz)
752{
753 int i;
754 u32 n_channels = request->n_channels;
755 struct cfg80211_scan_6ghz_params *params =
756 &request->scan_6ghz_params[request->n_6ghz_params];
757
758 for (i = 0; i < n_channels; i++) {
759 if (request->channels[i] == chan) {
760 if (add_to_6ghz)
761 params->channel_idx = i;
762 return;
763 }
764 }
765
766 request->channels[n_channels] = chan;
767 if (add_to_6ghz)
768 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769 n_channels;
770
771 request->n_channels++;
772}
773
774static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
775 struct cfg80211_scan_request *request)
776{
777 int i;
778 u32 s_ssid;
779
780 for (i = 0; i < request->n_ssids; i++) {
781 /* wildcard ssid in the scan request */
782 if (!request->ssids[i].ssid_len) {
783 if (ap->multi_bss && !ap->transmitted_bssid)
784 continue;
785
786 return true;
787 }
788
789 if (ap->ssid_len &&
790 ap->ssid_len == request->ssids[i].ssid_len) {
791 if (!memcmp(p: request->ssids[i].ssid, q: ap->ssid,
792 size: ap->ssid_len))
793 return true;
794 } else if (ap->short_ssid_valid) {
795 s_ssid = ~crc32_le(crc: ~0, p: request->ssids[i].ssid,
796 len: request->ssids[i].ssid_len);
797
798 if (ap->short_ssid == s_ssid)
799 return true;
800 }
801 }
802
803 return false;
804}
805
806static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807{
808 u8 i;
809 struct cfg80211_colocated_ap *ap;
810 int n_channels, count = 0, err;
811 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
812 LIST_HEAD(coloc_ap_list);
813 bool need_scan_psc = true;
814 const struct ieee80211_sband_iftype_data *iftd;
815
816 rdev_req->scan_6ghz = true;
817
818 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819 return -EOPNOTSUPP;
820
821 iftd = ieee80211_get_sband_iftype_data(sband: rdev->wiphy.bands[NL80211_BAND_6GHZ],
822 iftype: rdev_req->wdev->iftype);
823 if (!iftd || !iftd->he_cap.has_he)
824 return -EOPNOTSUPP;
825
826 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
827
828 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
829 struct cfg80211_internal_bss *intbss;
830
831 spin_lock_bh(lock: &rdev->bss_lock);
832 list_for_each_entry(intbss, &rdev->bss_list, list) {
833 struct cfg80211_bss *res = &intbss->pub;
834 const struct cfg80211_bss_ies *ies;
835 const struct element *ssid_elem;
836 struct cfg80211_colocated_ap *entry;
837 u32 s_ssid_tmp;
838 int ret;
839
840 ies = rcu_access_pointer(res->ies);
841 count += cfg80211_parse_colocated_ap(ies,
842 &coloc_ap_list);
843
844 /* In case the scan request specified a specific BSSID
845 * and the BSS is found and operating on 6GHz band then
846 * add this AP to the collocated APs list.
847 * This is relevant for ML probe requests when the lower
848 * band APs have not been discovered.
849 */
850 if (is_broadcast_ether_addr(addr: rdev_req->bssid) ||
851 !ether_addr_equal(addr1: rdev_req->bssid, addr2: res->bssid) ||
852 res->channel->band != NL80211_BAND_6GHZ)
853 continue;
854
855 ret = cfg80211_calc_short_ssid(ies, elem: &ssid_elem,
856 s_ssid: &s_ssid_tmp);
857 if (ret)
858 continue;
859
860 entry = kzalloc(size: sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
861 GFP_ATOMIC);
862
863 if (!entry)
864 continue;
865
866 memcpy(entry->bssid, res->bssid, ETH_ALEN);
867 entry->short_ssid = s_ssid_tmp;
868 memcpy(entry->ssid, ssid_elem->data,
869 ssid_elem->datalen);
870 entry->ssid_len = ssid_elem->datalen;
871 entry->short_ssid_valid = true;
872 entry->center_freq = res->channel->center_freq;
873
874 list_add_tail(new: &entry->list, head: &coloc_ap_list);
875 count++;
876 }
877 spin_unlock_bh(lock: &rdev->bss_lock);
878 }
879
880 request = kzalloc(struct_size(request, channels, n_channels) +
881 sizeof(*request->scan_6ghz_params) * count +
882 sizeof(*request->ssids) * rdev_req->n_ssids,
883 GFP_KERNEL);
884 if (!request) {
885 cfg80211_free_coloc_ap_list(&coloc_ap_list);
886 return -ENOMEM;
887 }
888
889 *request = *rdev_req;
890 request->n_channels = 0;
891 request->scan_6ghz_params =
892 (void *)&request->channels[n_channels];
893
894 /*
895 * PSC channels should not be scanned in case of direct scan with 1 SSID
896 * and at least one of the reported co-located APs with same SSID
897 * indicating that all APs in the same ESS are co-located
898 */
899 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
900 list_for_each_entry(ap, &coloc_ap_list, list) {
901 if (ap->colocated_ess &&
902 cfg80211_find_ssid_match(ap, request)) {
903 need_scan_psc = false;
904 break;
905 }
906 }
907 }
908
909 /*
910 * add to the scan request the channels that need to be scanned
911 * regardless of the collocated APs (PSC channels or all channels
912 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
913 */
914 for (i = 0; i < rdev_req->n_channels; i++) {
915 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
916 ((need_scan_psc &&
917 cfg80211_channel_is_psc(chan: rdev_req->channels[i])) ||
918 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
919 cfg80211_scan_req_add_chan(request,
920 chan: rdev_req->channels[i],
921 add_to_6ghz: false);
922 }
923 }
924
925 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
926 goto skip;
927
928 list_for_each_entry(ap, &coloc_ap_list, list) {
929 bool found = false;
930 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
931 &request->scan_6ghz_params[request->n_6ghz_params];
932 struct ieee80211_channel *chan =
933 ieee80211_get_channel(wiphy: &rdev->wiphy, freq: ap->center_freq);
934
935 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
936 continue;
937
938 for (i = 0; i < rdev_req->n_channels; i++) {
939 if (rdev_req->channels[i] == chan)
940 found = true;
941 }
942
943 if (!found)
944 continue;
945
946 if (request->n_ssids > 0 &&
947 !cfg80211_find_ssid_match(ap, request))
948 continue;
949
950 if (!is_broadcast_ether_addr(addr: request->bssid) &&
951 !ether_addr_equal(addr1: request->bssid, addr2: ap->bssid))
952 continue;
953
954 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
955 continue;
956
957 cfg80211_scan_req_add_chan(request, chan, add_to_6ghz: true);
958 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
959 scan_6ghz_params->short_ssid = ap->short_ssid;
960 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
961 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
962 scan_6ghz_params->psd_20 = ap->psd_20;
963
964 /*
965 * If a PSC channel is added to the scan and 'need_scan_psc' is
966 * set to false, then all the APs that the scan logic is
967 * interested with on the channel are collocated and thus there
968 * is no need to perform the initial PSC channel listen.
969 */
970 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
971 scan_6ghz_params->psc_no_listen = true;
972
973 request->n_6ghz_params++;
974 }
975
976skip:
977 cfg80211_free_coloc_ap_list(&coloc_ap_list);
978
979 if (request->n_channels) {
980 struct cfg80211_scan_request *old = rdev->int_scan_req;
981 rdev->int_scan_req = request;
982
983 /*
984 * Add the ssids from the parent scan request to the new scan
985 * request, so the driver would be able to use them in its
986 * probe requests to discover hidden APs on PSC channels.
987 */
988 request->ssids = (void *)&request->channels[request->n_channels];
989 request->n_ssids = rdev_req->n_ssids;
990 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
991 request->n_ssids);
992
993 /*
994 * If this scan follows a previous scan, save the scan start
995 * info from the first part of the scan
996 */
997 if (old)
998 rdev->int_scan_req->info = old->info;
999
1000 err = rdev_scan(rdev, request);
1001 if (err) {
1002 rdev->int_scan_req = old;
1003 kfree(objp: request);
1004 } else {
1005 kfree(objp: old);
1006 }
1007
1008 return err;
1009 }
1010
1011 kfree(objp: request);
1012 return -EINVAL;
1013}
1014
1015int cfg80211_scan(struct cfg80211_registered_device *rdev)
1016{
1017 struct cfg80211_scan_request *request;
1018 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1019 u32 n_channels = 0, idx, i;
1020
1021 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1022 return rdev_scan(rdev, request: rdev_req);
1023
1024 for (i = 0; i < rdev_req->n_channels; i++) {
1025 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1026 n_channels++;
1027 }
1028
1029 if (!n_channels)
1030 return cfg80211_scan_6ghz(rdev);
1031
1032 request = kzalloc(struct_size(request, channels, n_channels),
1033 GFP_KERNEL);
1034 if (!request)
1035 return -ENOMEM;
1036
1037 *request = *rdev_req;
1038 request->n_channels = n_channels;
1039
1040 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1041 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1042 request->channels[idx++] = rdev_req->channels[i];
1043 }
1044
1045 rdev_req->scan_6ghz = false;
1046 rdev->int_scan_req = request;
1047 return rdev_scan(rdev, request);
1048}
1049
1050void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1051 bool send_message)
1052{
1053 struct cfg80211_scan_request *request, *rdev_req;
1054 struct wireless_dev *wdev;
1055 struct sk_buff *msg;
1056#ifdef CONFIG_CFG80211_WEXT
1057 union iwreq_data wrqu;
1058#endif
1059
1060 lockdep_assert_held(&rdev->wiphy.mtx);
1061
1062 if (rdev->scan_msg) {
1063 nl80211_send_scan_msg(rdev, msg: rdev->scan_msg);
1064 rdev->scan_msg = NULL;
1065 return;
1066 }
1067
1068 rdev_req = rdev->scan_req;
1069 if (!rdev_req)
1070 return;
1071
1072 wdev = rdev_req->wdev;
1073 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1074
1075 if (wdev_running(wdev) &&
1076 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1077 !rdev_req->scan_6ghz && !request->info.aborted &&
1078 !cfg80211_scan_6ghz(rdev))
1079 return;
1080
1081 /*
1082 * This must be before sending the other events!
1083 * Otherwise, wpa_supplicant gets completely confused with
1084 * wext events.
1085 */
1086 if (wdev->netdev)
1087 cfg80211_sme_scan_done(dev: wdev->netdev);
1088
1089 if (!request->info.aborted &&
1090 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1091 /* flush entries from previous scans */
1092 spin_lock_bh(lock: &rdev->bss_lock);
1093 __cfg80211_bss_expire(rdev, expire_time: request->scan_start);
1094 spin_unlock_bh(lock: &rdev->bss_lock);
1095 }
1096
1097 msg = nl80211_build_scan_msg(rdev, wdev, aborted: request->info.aborted);
1098
1099#ifdef CONFIG_CFG80211_WEXT
1100 if (wdev->netdev && !request->info.aborted) {
1101 memset(&wrqu, 0, sizeof(wrqu));
1102
1103 wireless_send_event(dev: wdev->netdev, SIOCGIWSCAN, wrqu: &wrqu, NULL);
1104 }
1105#endif
1106
1107 dev_put(dev: wdev->netdev);
1108
1109 kfree(objp: rdev->int_scan_req);
1110 rdev->int_scan_req = NULL;
1111
1112 kfree(objp: rdev->scan_req);
1113 rdev->scan_req = NULL;
1114
1115 if (!send_message)
1116 rdev->scan_msg = msg;
1117 else
1118 nl80211_send_scan_msg(rdev, msg);
1119}
1120
1121void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1122{
1123 ___cfg80211_scan_done(rdev: wiphy_to_rdev(wiphy), send_message: true);
1124}
1125
1126void cfg80211_scan_done(struct cfg80211_scan_request *request,
1127 struct cfg80211_scan_info *info)
1128{
1129 struct cfg80211_scan_info old_info = request->info;
1130
1131 trace_cfg80211_scan_done(request, info);
1132 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1133 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1134
1135 request->info = *info;
1136
1137 /*
1138 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1139 * be of the first part. In such a case old_info.scan_start_tsf should
1140 * be non zero.
1141 */
1142 if (request->scan_6ghz && old_info.scan_start_tsf) {
1143 request->info.scan_start_tsf = old_info.scan_start_tsf;
1144 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1145 sizeof(request->info.tsf_bssid));
1146 }
1147
1148 request->notified = true;
1149 wiphy_work_queue(wiphy: request->wiphy,
1150 work: &wiphy_to_rdev(wiphy: request->wiphy)->scan_done_wk);
1151}
1152EXPORT_SYMBOL(cfg80211_scan_done);
1153
1154void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1155 struct cfg80211_sched_scan_request *req)
1156{
1157 lockdep_assert_held(&rdev->wiphy.mtx);
1158
1159 list_add_rcu(new: &req->list, head: &rdev->sched_scan_req_list);
1160}
1161
1162static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1163 struct cfg80211_sched_scan_request *req)
1164{
1165 lockdep_assert_held(&rdev->wiphy.mtx);
1166
1167 list_del_rcu(entry: &req->list);
1168 kfree_rcu(req, rcu_head);
1169}
1170
1171static struct cfg80211_sched_scan_request *
1172cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1173{
1174 struct cfg80211_sched_scan_request *pos;
1175
1176 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1177 lockdep_is_held(&rdev->wiphy.mtx)) {
1178 if (pos->reqid == reqid)
1179 return pos;
1180 }
1181 return NULL;
1182}
1183
1184/*
1185 * Determines if a scheduled scan request can be handled. When a legacy
1186 * scheduled scan is running no other scheduled scan is allowed regardless
1187 * whether the request is for legacy or multi-support scan. When a multi-support
1188 * scheduled scan is running a request for legacy scan is not allowed. In this
1189 * case a request for multi-support scan can be handled if resources are
1190 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1191 */
1192int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1193 bool want_multi)
1194{
1195 struct cfg80211_sched_scan_request *pos;
1196 int i = 0;
1197
1198 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1199 /* request id zero means legacy in progress */
1200 if (!i && !pos->reqid)
1201 return -EINPROGRESS;
1202 i++;
1203 }
1204
1205 if (i) {
1206 /* no legacy allowed when multi request(s) are active */
1207 if (!want_multi)
1208 return -EINPROGRESS;
1209
1210 /* resource limit reached */
1211 if (i == rdev->wiphy.max_sched_scan_reqs)
1212 return -ENOSPC;
1213 }
1214 return 0;
1215}
1216
1217void cfg80211_sched_scan_results_wk(struct work_struct *work)
1218{
1219 struct cfg80211_registered_device *rdev;
1220 struct cfg80211_sched_scan_request *req, *tmp;
1221
1222 rdev = container_of(work, struct cfg80211_registered_device,
1223 sched_scan_res_wk);
1224
1225 wiphy_lock(wiphy: &rdev->wiphy);
1226 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1227 if (req->report_results) {
1228 req->report_results = false;
1229 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1230 /* flush entries from previous scans */
1231 spin_lock_bh(lock: &rdev->bss_lock);
1232 __cfg80211_bss_expire(rdev, expire_time: req->scan_start);
1233 spin_unlock_bh(lock: &rdev->bss_lock);
1234 req->scan_start = jiffies;
1235 }
1236 nl80211_send_sched_scan(req,
1237 cmd: NL80211_CMD_SCHED_SCAN_RESULTS);
1238 }
1239 }
1240 wiphy_unlock(wiphy: &rdev->wiphy);
1241}
1242
1243void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1244{
1245 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1246 struct cfg80211_sched_scan_request *request;
1247
1248 trace_cfg80211_sched_scan_results(wiphy, id: reqid);
1249 /* ignore if we're not scanning */
1250
1251 rcu_read_lock();
1252 request = cfg80211_find_sched_scan_req(rdev, reqid);
1253 if (request) {
1254 request->report_results = true;
1255 queue_work(wq: cfg80211_wq, work: &rdev->sched_scan_res_wk);
1256 }
1257 rcu_read_unlock();
1258}
1259EXPORT_SYMBOL(cfg80211_sched_scan_results);
1260
1261void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1262{
1263 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1264
1265 lockdep_assert_held(&wiphy->mtx);
1266
1267 trace_cfg80211_sched_scan_stopped(wiphy, id: reqid);
1268
1269 __cfg80211_stop_sched_scan(rdev, reqid, driver_initiated: true);
1270}
1271EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1272
1273void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1274{
1275 wiphy_lock(wiphy);
1276 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1277 wiphy_unlock(wiphy);
1278}
1279EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1280
1281int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1282 struct cfg80211_sched_scan_request *req,
1283 bool driver_initiated)
1284{
1285 lockdep_assert_held(&rdev->wiphy.mtx);
1286
1287 if (!driver_initiated) {
1288 int err = rdev_sched_scan_stop(rdev, dev: req->dev, reqid: req->reqid);
1289 if (err)
1290 return err;
1291 }
1292
1293 nl80211_send_sched_scan(req, cmd: NL80211_CMD_SCHED_SCAN_STOPPED);
1294
1295 cfg80211_del_sched_scan_req(rdev, req);
1296
1297 return 0;
1298}
1299
1300int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1301 u64 reqid, bool driver_initiated)
1302{
1303 struct cfg80211_sched_scan_request *sched_scan_req;
1304
1305 lockdep_assert_held(&rdev->wiphy.mtx);
1306
1307 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1308 if (!sched_scan_req)
1309 return -ENOENT;
1310
1311 return cfg80211_stop_sched_scan_req(rdev, req: sched_scan_req,
1312 driver_initiated);
1313}
1314
1315void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1316 unsigned long age_secs)
1317{
1318 struct cfg80211_internal_bss *bss;
1319 unsigned long age_jiffies = msecs_to_jiffies(m: age_secs * MSEC_PER_SEC);
1320
1321 spin_lock_bh(lock: &rdev->bss_lock);
1322 list_for_each_entry(bss, &rdev->bss_list, list)
1323 bss->ts -= age_jiffies;
1324 spin_unlock_bh(lock: &rdev->bss_lock);
1325}
1326
1327void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1328{
1329 __cfg80211_bss_expire(rdev, expire_time: jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1330}
1331
1332void cfg80211_bss_flush(struct wiphy *wiphy)
1333{
1334 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1335
1336 spin_lock_bh(lock: &rdev->bss_lock);
1337 __cfg80211_bss_expire(rdev, expire_time: jiffies);
1338 spin_unlock_bh(lock: &rdev->bss_lock);
1339}
1340EXPORT_SYMBOL(cfg80211_bss_flush);
1341
1342const struct element *
1343cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1344 const u8 *match, unsigned int match_len,
1345 unsigned int match_offset)
1346{
1347 const struct element *elem;
1348
1349 for_each_element_id(elem, eid, ies, len) {
1350 if (elem->datalen >= match_offset + match_len &&
1351 !memcmp(p: elem->data + match_offset, q: match, size: match_len))
1352 return elem;
1353 }
1354
1355 return NULL;
1356}
1357EXPORT_SYMBOL(cfg80211_find_elem_match);
1358
1359const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1360 const u8 *ies,
1361 unsigned int len)
1362{
1363 const struct element *elem;
1364 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1365 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1366
1367 if (WARN_ON(oui_type > 0xff))
1368 return NULL;
1369
1370 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1371 match, match_len, 0);
1372
1373 if (!elem || elem->datalen < 4)
1374 return NULL;
1375
1376 return elem;
1377}
1378EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1379
1380/**
1381 * enum bss_compare_mode - BSS compare mode
1382 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1383 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1384 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1385 */
1386enum bss_compare_mode {
1387 BSS_CMP_REGULAR,
1388 BSS_CMP_HIDE_ZLEN,
1389 BSS_CMP_HIDE_NUL,
1390};
1391
1392static int cmp_bss(struct cfg80211_bss *a,
1393 struct cfg80211_bss *b,
1394 enum bss_compare_mode mode)
1395{
1396 const struct cfg80211_bss_ies *a_ies, *b_ies;
1397 const u8 *ie1 = NULL;
1398 const u8 *ie2 = NULL;
1399 int i, r;
1400
1401 if (a->channel != b->channel)
1402 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1403 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1404
1405 a_ies = rcu_access_pointer(a->ies);
1406 if (!a_ies)
1407 return -1;
1408 b_ies = rcu_access_pointer(b->ies);
1409 if (!b_ies)
1410 return 1;
1411
1412 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1413 ie1 = cfg80211_find_ie(eid: WLAN_EID_MESH_ID,
1414 ies: a_ies->data, len: a_ies->len);
1415 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1416 ie2 = cfg80211_find_ie(eid: WLAN_EID_MESH_ID,
1417 ies: b_ies->data, len: b_ies->len);
1418 if (ie1 && ie2) {
1419 int mesh_id_cmp;
1420
1421 if (ie1[1] == ie2[1])
1422 mesh_id_cmp = memcmp(p: ie1 + 2, q: ie2 + 2, size: ie1[1]);
1423 else
1424 mesh_id_cmp = ie2[1] - ie1[1];
1425
1426 ie1 = cfg80211_find_ie(eid: WLAN_EID_MESH_CONFIG,
1427 ies: a_ies->data, len: a_ies->len);
1428 ie2 = cfg80211_find_ie(eid: WLAN_EID_MESH_CONFIG,
1429 ies: b_ies->data, len: b_ies->len);
1430 if (ie1 && ie2) {
1431 if (mesh_id_cmp)
1432 return mesh_id_cmp;
1433 if (ie1[1] != ie2[1])
1434 return ie2[1] - ie1[1];
1435 return memcmp(p: ie1 + 2, q: ie2 + 2, size: ie1[1]);
1436 }
1437 }
1438
1439 r = memcmp(p: a->bssid, q: b->bssid, size: sizeof(a->bssid));
1440 if (r)
1441 return r;
1442
1443 ie1 = cfg80211_find_ie(eid: WLAN_EID_SSID, ies: a_ies->data, len: a_ies->len);
1444 ie2 = cfg80211_find_ie(eid: WLAN_EID_SSID, ies: b_ies->data, len: b_ies->len);
1445
1446 if (!ie1 && !ie2)
1447 return 0;
1448
1449 /*
1450 * Note that with "hide_ssid", the function returns a match if
1451 * the already-present BSS ("b") is a hidden SSID beacon for
1452 * the new BSS ("a").
1453 */
1454
1455 /* sort missing IE before (left of) present IE */
1456 if (!ie1)
1457 return -1;
1458 if (!ie2)
1459 return 1;
1460
1461 switch (mode) {
1462 case BSS_CMP_HIDE_ZLEN:
1463 /*
1464 * In ZLEN mode we assume the BSS entry we're
1465 * looking for has a zero-length SSID. So if
1466 * the one we're looking at right now has that,
1467 * return 0. Otherwise, return the difference
1468 * in length, but since we're looking for the
1469 * 0-length it's really equivalent to returning
1470 * the length of the one we're looking at.
1471 *
1472 * No content comparison is needed as we assume
1473 * the content length is zero.
1474 */
1475 return ie2[1];
1476 case BSS_CMP_REGULAR:
1477 default:
1478 /* sort by length first, then by contents */
1479 if (ie1[1] != ie2[1])
1480 return ie2[1] - ie1[1];
1481 return memcmp(p: ie1 + 2, q: ie2 + 2, size: ie1[1]);
1482 case BSS_CMP_HIDE_NUL:
1483 if (ie1[1] != ie2[1])
1484 return ie2[1] - ie1[1];
1485 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1486 for (i = 0; i < ie2[1]; i++)
1487 if (ie2[i + 2])
1488 return -1;
1489 return 0;
1490 }
1491}
1492
1493static bool cfg80211_bss_type_match(u16 capability,
1494 enum nl80211_band band,
1495 enum ieee80211_bss_type bss_type)
1496{
1497 bool ret = true;
1498 u16 mask, val;
1499
1500 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1501 return ret;
1502
1503 if (band == NL80211_BAND_60GHZ) {
1504 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1505 switch (bss_type) {
1506 case IEEE80211_BSS_TYPE_ESS:
1507 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1508 break;
1509 case IEEE80211_BSS_TYPE_PBSS:
1510 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1511 break;
1512 case IEEE80211_BSS_TYPE_IBSS:
1513 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1514 break;
1515 default:
1516 return false;
1517 }
1518 } else {
1519 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1520 switch (bss_type) {
1521 case IEEE80211_BSS_TYPE_ESS:
1522 val = WLAN_CAPABILITY_ESS;
1523 break;
1524 case IEEE80211_BSS_TYPE_IBSS:
1525 val = WLAN_CAPABILITY_IBSS;
1526 break;
1527 case IEEE80211_BSS_TYPE_MBSS:
1528 val = 0;
1529 break;
1530 default:
1531 return false;
1532 }
1533 }
1534
1535 ret = ((capability & mask) == val);
1536 return ret;
1537}
1538
1539/* Returned bss is reference counted and must be cleaned up appropriately. */
1540struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1541 struct ieee80211_channel *channel,
1542 const u8 *bssid,
1543 const u8 *ssid, size_t ssid_len,
1544 enum ieee80211_bss_type bss_type,
1545 enum ieee80211_privacy privacy,
1546 u32 use_for)
1547{
1548 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1549 struct cfg80211_internal_bss *bss, *res = NULL;
1550 unsigned long now = jiffies;
1551 int bss_privacy;
1552
1553 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1554 privacy);
1555
1556 spin_lock_bh(lock: &rdev->bss_lock);
1557
1558 list_for_each_entry(bss, &rdev->bss_list, list) {
1559 if (!cfg80211_bss_type_match(capability: bss->pub.capability,
1560 band: bss->pub.channel->band, bss_type))
1561 continue;
1562
1563 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1564 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1565 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1566 continue;
1567 if (channel && bss->pub.channel != channel)
1568 continue;
1569 if (!is_valid_ether_addr(addr: bss->pub.bssid))
1570 continue;
1571 if ((bss->pub.use_for & use_for) != use_for)
1572 continue;
1573 /* Don't get expired BSS structs */
1574 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1575 !atomic_read(v: &bss->hold))
1576 continue;
1577 if (is_bss(a: &bss->pub, bssid, ssid, ssid_len)) {
1578 res = bss;
1579 bss_ref_get(rdev, bss: res);
1580 break;
1581 }
1582 }
1583
1584 spin_unlock_bh(lock: &rdev->bss_lock);
1585 if (!res)
1586 return NULL;
1587 trace_cfg80211_return_bss(pub: &res->pub);
1588 return &res->pub;
1589}
1590EXPORT_SYMBOL(__cfg80211_get_bss);
1591
1592static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1593 struct cfg80211_internal_bss *bss)
1594{
1595 struct rb_node **p = &rdev->bss_tree.rb_node;
1596 struct rb_node *parent = NULL;
1597 struct cfg80211_internal_bss *tbss;
1598 int cmp;
1599
1600 while (*p) {
1601 parent = *p;
1602 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1603
1604 cmp = cmp_bss(a: &bss->pub, b: &tbss->pub, mode: BSS_CMP_REGULAR);
1605
1606 if (WARN_ON(!cmp)) {
1607 /* will sort of leak this BSS */
1608 return;
1609 }
1610
1611 if (cmp < 0)
1612 p = &(*p)->rb_left;
1613 else
1614 p = &(*p)->rb_right;
1615 }
1616
1617 rb_link_node(node: &bss->rbn, parent, rb_link: p);
1618 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1619}
1620
1621static struct cfg80211_internal_bss *
1622rb_find_bss(struct cfg80211_registered_device *rdev,
1623 struct cfg80211_internal_bss *res,
1624 enum bss_compare_mode mode)
1625{
1626 struct rb_node *n = rdev->bss_tree.rb_node;
1627 struct cfg80211_internal_bss *bss;
1628 int r;
1629
1630 while (n) {
1631 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1632 r = cmp_bss(a: &res->pub, b: &bss->pub, mode);
1633
1634 if (r == 0)
1635 return bss;
1636 else if (r < 0)
1637 n = n->rb_left;
1638 else
1639 n = n->rb_right;
1640 }
1641
1642 return NULL;
1643}
1644
1645static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1646 struct cfg80211_internal_bss *new)
1647{
1648 const struct cfg80211_bss_ies *ies;
1649 struct cfg80211_internal_bss *bss;
1650 const u8 *ie;
1651 int i, ssidlen;
1652 u8 fold = 0;
1653 u32 n_entries = 0;
1654
1655 ies = rcu_access_pointer(new->pub.beacon_ies);
1656 if (WARN_ON(!ies))
1657 return false;
1658
1659 ie = cfg80211_find_ie(eid: WLAN_EID_SSID, ies: ies->data, len: ies->len);
1660 if (!ie) {
1661 /* nothing to do */
1662 return true;
1663 }
1664
1665 ssidlen = ie[1];
1666 for (i = 0; i < ssidlen; i++)
1667 fold |= ie[2 + i];
1668
1669 if (fold) {
1670 /* not a hidden SSID */
1671 return true;
1672 }
1673
1674 /* This is the bad part ... */
1675
1676 list_for_each_entry(bss, &rdev->bss_list, list) {
1677 /*
1678 * we're iterating all the entries anyway, so take the
1679 * opportunity to validate the list length accounting
1680 */
1681 n_entries++;
1682
1683 if (!ether_addr_equal(addr1: bss->pub.bssid, addr2: new->pub.bssid))
1684 continue;
1685 if (bss->pub.channel != new->pub.channel)
1686 continue;
1687 if (rcu_access_pointer(bss->pub.beacon_ies))
1688 continue;
1689 ies = rcu_access_pointer(bss->pub.ies);
1690 if (!ies)
1691 continue;
1692 ie = cfg80211_find_ie(eid: WLAN_EID_SSID, ies: ies->data, len: ies->len);
1693 if (!ie)
1694 continue;
1695 if (ssidlen && ie[1] != ssidlen)
1696 continue;
1697 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1698 continue;
1699 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1700 list_del(entry: &bss->hidden_list);
1701 /* combine them */
1702 list_add(new: &bss->hidden_list, head: &new->hidden_list);
1703 bss->pub.hidden_beacon_bss = &new->pub;
1704 new->refcount += bss->refcount;
1705 rcu_assign_pointer(bss->pub.beacon_ies,
1706 new->pub.beacon_ies);
1707 }
1708
1709 WARN_ONCE(n_entries != rdev->bss_entries,
1710 "rdev bss entries[%d]/list[len:%d] corruption\n",
1711 rdev->bss_entries, n_entries);
1712
1713 return true;
1714}
1715
1716static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1717 const struct cfg80211_bss_ies *new_ies,
1718 const struct cfg80211_bss_ies *old_ies)
1719{
1720 struct cfg80211_internal_bss *bss;
1721
1722 /* Assign beacon IEs to all sub entries */
1723 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1724 const struct cfg80211_bss_ies *ies;
1725
1726 ies = rcu_access_pointer(bss->pub.beacon_ies);
1727 WARN_ON(ies != old_ies);
1728
1729 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1730 }
1731}
1732
1733static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1734 struct cfg80211_internal_bss *known,
1735 const struct cfg80211_bss_ies *old)
1736{
1737 const struct ieee80211_ext_chansw_ie *ecsa;
1738 const struct element *elem_new, *elem_old;
1739 const struct cfg80211_bss_ies *new, *bcn;
1740
1741 if (known->pub.proberesp_ecsa_stuck)
1742 return;
1743
1744 new = rcu_dereference_protected(known->pub.proberesp_ies,
1745 lockdep_is_held(&rdev->bss_lock));
1746 if (WARN_ON(!new))
1747 return;
1748
1749 if (new->tsf - old->tsf < USEC_PER_SEC)
1750 return;
1751
1752 elem_old = cfg80211_find_elem(eid: WLAN_EID_EXT_CHANSWITCH_ANN,
1753 ies: old->data, len: old->len);
1754 if (!elem_old)
1755 return;
1756
1757 elem_new = cfg80211_find_elem(eid: WLAN_EID_EXT_CHANSWITCH_ANN,
1758 ies: new->data, len: new->len);
1759 if (!elem_new)
1760 return;
1761
1762 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1763 lockdep_is_held(&rdev->bss_lock));
1764 if (bcn &&
1765 cfg80211_find_elem(eid: WLAN_EID_EXT_CHANSWITCH_ANN,
1766 ies: bcn->data, len: bcn->len))
1767 return;
1768
1769 if (elem_new->datalen != elem_old->datalen)
1770 return;
1771 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1772 return;
1773 if (memcmp(p: elem_new->data, q: elem_old->data, size: elem_new->datalen))
1774 return;
1775
1776 ecsa = (void *)elem_new->data;
1777
1778 if (!ecsa->mode)
1779 return;
1780
1781 if (ecsa->new_ch_num !=
1782 ieee80211_frequency_to_channel(freq: known->pub.channel->center_freq))
1783 return;
1784
1785 known->pub.proberesp_ecsa_stuck = 1;
1786}
1787
1788static bool
1789cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1790 struct cfg80211_internal_bss *known,
1791 struct cfg80211_internal_bss *new,
1792 bool signal_valid)
1793{
1794 lockdep_assert_held(&rdev->bss_lock);
1795
1796 /* Update IEs */
1797 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1798 const struct cfg80211_bss_ies *old;
1799
1800 old = rcu_access_pointer(known->pub.proberesp_ies);
1801
1802 rcu_assign_pointer(known->pub.proberesp_ies,
1803 new->pub.proberesp_ies);
1804 /* Override possible earlier Beacon frame IEs */
1805 rcu_assign_pointer(known->pub.ies,
1806 new->pub.proberesp_ies);
1807 if (old) {
1808 cfg80211_check_stuck_ecsa(rdev, known, old);
1809 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1810 }
1811 }
1812
1813 if (rcu_access_pointer(new->pub.beacon_ies)) {
1814 const struct cfg80211_bss_ies *old;
1815
1816 if (known->pub.hidden_beacon_bss &&
1817 !list_empty(head: &known->hidden_list)) {
1818 const struct cfg80211_bss_ies *f;
1819
1820 /* The known BSS struct is one of the probe
1821 * response members of a group, but we're
1822 * receiving a beacon (beacon_ies in the new
1823 * bss is used). This can only mean that the
1824 * AP changed its beacon from not having an
1825 * SSID to showing it, which is confusing so
1826 * drop this information.
1827 */
1828
1829 f = rcu_access_pointer(new->pub.beacon_ies);
1830 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1831 return false;
1832 }
1833
1834 old = rcu_access_pointer(known->pub.beacon_ies);
1835
1836 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1837
1838 /* Override IEs if they were from a beacon before */
1839 if (old == rcu_access_pointer(known->pub.ies))
1840 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1841
1842 cfg80211_update_hidden_bsses(known,
1843 rcu_access_pointer(new->pub.beacon_ies),
1844 old_ies: old);
1845
1846 if (old)
1847 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1848 }
1849
1850 known->pub.beacon_interval = new->pub.beacon_interval;
1851
1852 /* don't update the signal if beacon was heard on
1853 * adjacent channel.
1854 */
1855 if (signal_valid)
1856 known->pub.signal = new->pub.signal;
1857 known->pub.capability = new->pub.capability;
1858 known->ts = new->ts;
1859 known->ts_boottime = new->ts_boottime;
1860 known->parent_tsf = new->parent_tsf;
1861 known->pub.chains = new->pub.chains;
1862 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1863 IEEE80211_MAX_CHAINS);
1864 ether_addr_copy(dst: known->parent_bssid, src: new->parent_bssid);
1865 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1866 known->pub.bssid_index = new->pub.bssid_index;
1867 known->pub.use_for &= new->pub.use_for;
1868 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1869
1870 return true;
1871}
1872
1873/* Returned bss is reference counted and must be cleaned up appropriately. */
1874static struct cfg80211_internal_bss *
1875__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1876 struct cfg80211_internal_bss *tmp,
1877 bool signal_valid, unsigned long ts)
1878{
1879 struct cfg80211_internal_bss *found = NULL;
1880 struct cfg80211_bss_ies *ies;
1881
1882 if (WARN_ON(!tmp->pub.channel))
1883 goto free_ies;
1884
1885 tmp->ts = ts;
1886
1887 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1888 goto free_ies;
1889
1890 found = rb_find_bss(rdev, res: tmp, mode: BSS_CMP_REGULAR);
1891
1892 if (found) {
1893 if (!cfg80211_update_known_bss(rdev, known: found, new: tmp, signal_valid))
1894 return NULL;
1895 } else {
1896 struct cfg80211_internal_bss *new;
1897 struct cfg80211_internal_bss *hidden;
1898
1899 /*
1900 * create a copy -- the "res" variable that is passed in
1901 * is allocated on the stack since it's not needed in the
1902 * more common case of an update
1903 */
1904 new = kzalloc(size: sizeof(*new) + rdev->wiphy.bss_priv_size,
1905 GFP_ATOMIC);
1906 if (!new)
1907 goto free_ies;
1908 memcpy(new, tmp, sizeof(*new));
1909 new->refcount = 1;
1910 INIT_LIST_HEAD(list: &new->hidden_list);
1911 INIT_LIST_HEAD(list: &new->pub.nontrans_list);
1912 /* we'll set this later if it was non-NULL */
1913 new->pub.transmitted_bss = NULL;
1914
1915 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1916 hidden = rb_find_bss(rdev, res: tmp, mode: BSS_CMP_HIDE_ZLEN);
1917 if (!hidden)
1918 hidden = rb_find_bss(rdev, res: tmp,
1919 mode: BSS_CMP_HIDE_NUL);
1920 if (hidden) {
1921 new->pub.hidden_beacon_bss = &hidden->pub;
1922 list_add(new: &new->hidden_list,
1923 head: &hidden->hidden_list);
1924 hidden->refcount++;
1925
1926 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1927 rcu_assign_pointer(new->pub.beacon_ies,
1928 hidden->pub.beacon_ies);
1929 if (ies)
1930 kfree_rcu(ies, rcu_head);
1931 }
1932 } else {
1933 /*
1934 * Ok so we found a beacon, and don't have an entry. If
1935 * it's a beacon with hidden SSID, we might be in for an
1936 * expensive search for any probe responses that should
1937 * be grouped with this beacon for updates ...
1938 */
1939 if (!cfg80211_combine_bsses(rdev, new)) {
1940 bss_ref_put(rdev, bss: new);
1941 return NULL;
1942 }
1943 }
1944
1945 if (rdev->bss_entries >= bss_entries_limit &&
1946 !cfg80211_bss_expire_oldest(rdev)) {
1947 bss_ref_put(rdev, bss: new);
1948 return NULL;
1949 }
1950
1951 /* This must be before the call to bss_ref_get */
1952 if (tmp->pub.transmitted_bss) {
1953 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1954 bss_ref_get(rdev, bss: bss_from_pub(pub: tmp->pub.transmitted_bss));
1955 }
1956
1957 list_add_tail(new: &new->list, head: &rdev->bss_list);
1958 rdev->bss_entries++;
1959 rb_insert_bss(rdev, bss: new);
1960 found = new;
1961 }
1962
1963 rdev->bss_generation++;
1964 bss_ref_get(rdev, bss: found);
1965
1966 return found;
1967
1968free_ies:
1969 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1970 if (ies)
1971 kfree_rcu(ies, rcu_head);
1972 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1973 if (ies)
1974 kfree_rcu(ies, rcu_head);
1975
1976 return NULL;
1977}
1978
1979struct cfg80211_internal_bss *
1980cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1981 struct cfg80211_internal_bss *tmp,
1982 bool signal_valid, unsigned long ts)
1983{
1984 struct cfg80211_internal_bss *res;
1985
1986 spin_lock_bh(lock: &rdev->bss_lock);
1987 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1988 spin_unlock_bh(lock: &rdev->bss_lock);
1989
1990 return res;
1991}
1992
1993int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1994 enum nl80211_band band)
1995{
1996 const struct element *tmp;
1997
1998 if (band == NL80211_BAND_6GHZ) {
1999 struct ieee80211_he_operation *he_oper;
2000
2001 tmp = cfg80211_find_ext_elem(ext_eid: WLAN_EID_EXT_HE_OPERATION, ies: ie,
2002 len: ielen);
2003 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2004 tmp->datalen >= ieee80211_he_oper_size(he_oper_ie: &tmp->data[1])) {
2005 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2006
2007 he_oper = (void *)&tmp->data[1];
2008
2009 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2010 if (!he_6ghz_oper)
2011 return -1;
2012
2013 return he_6ghz_oper->primary;
2014 }
2015 } else if (band == NL80211_BAND_S1GHZ) {
2016 tmp = cfg80211_find_elem(eid: WLAN_EID_S1G_OPERATION, ies: ie, len: ielen);
2017 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2018 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2019
2020 return s1gop->oper_ch;
2021 }
2022 } else {
2023 tmp = cfg80211_find_elem(eid: WLAN_EID_DS_PARAMS, ies: ie, len: ielen);
2024 if (tmp && tmp->datalen == 1)
2025 return tmp->data[0];
2026
2027 tmp = cfg80211_find_elem(eid: WLAN_EID_HT_OPERATION, ies: ie, len: ielen);
2028 if (tmp &&
2029 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2030 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2031
2032 return htop->primary_chan;
2033 }
2034 }
2035
2036 return -1;
2037}
2038EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2039
2040/*
2041 * Update RX channel information based on the available frame payload
2042 * information. This is mainly for the 2.4 GHz band where frames can be received
2043 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2044 * element to indicate the current (transmitting) channel, but this might also
2045 * be needed on other bands if RX frequency does not match with the actual
2046 * operating channel of a BSS, or if the AP reports a different primary channel.
2047 */
2048static struct ieee80211_channel *
2049cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2050 struct ieee80211_channel *channel)
2051{
2052 u32 freq;
2053 int channel_number;
2054 struct ieee80211_channel *alt_channel;
2055
2056 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2057 channel->band);
2058
2059 if (channel_number < 0) {
2060 /* No channel information in frame payload */
2061 return channel;
2062 }
2063
2064 freq = ieee80211_channel_to_freq_khz(chan: channel_number, band: channel->band);
2065
2066 /*
2067 * Frame info (beacon/prob res) is the same as received channel,
2068 * no need for further processing.
2069 */
2070 if (freq == ieee80211_channel_to_khz(chan: channel))
2071 return channel;
2072
2073 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2074 if (!alt_channel) {
2075 if (channel->band == NL80211_BAND_2GHZ ||
2076 channel->band == NL80211_BAND_6GHZ) {
2077 /*
2078 * Better not allow unexpected channels when that could
2079 * be going beyond the 1-11 range (e.g., discovering
2080 * BSS on channel 12 when radio is configured for
2081 * channel 11) or beyond the 6 GHz channel range.
2082 */
2083 return NULL;
2084 }
2085
2086 /* No match for the payload channel number - ignore it */
2087 return channel;
2088 }
2089
2090 /*
2091 * Use the channel determined through the payload channel number
2092 * instead of the RX channel reported by the driver.
2093 */
2094 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2095 return NULL;
2096 return alt_channel;
2097}
2098
2099struct cfg80211_inform_single_bss_data {
2100 struct cfg80211_inform_bss *drv_data;
2101 enum cfg80211_bss_frame_type ftype;
2102 struct ieee80211_channel *channel;
2103 u8 bssid[ETH_ALEN];
2104 u64 tsf;
2105 u16 capability;
2106 u16 beacon_interval;
2107 const u8 *ie;
2108 size_t ielen;
2109
2110 enum {
2111 BSS_SOURCE_DIRECT = 0,
2112 BSS_SOURCE_MBSSID,
2113 BSS_SOURCE_STA_PROFILE,
2114 } bss_source;
2115 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2116 struct cfg80211_bss *source_bss;
2117 u8 max_bssid_indicator;
2118 u8 bssid_index;
2119
2120 u8 use_for;
2121 u64 cannot_use_reasons;
2122};
2123
2124static bool cfg80211_6ghz_power_type_valid(const u8 *ie, size_t ielen,
2125 const u32 flags)
2126{
2127 const struct element *tmp;
2128 struct ieee80211_he_operation *he_oper;
2129
2130 tmp = cfg80211_find_ext_elem(ext_eid: WLAN_EID_EXT_HE_OPERATION, ies: ie, len: ielen);
2131 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2132 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2133
2134 he_oper = (void *)&tmp->data[1];
2135 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2136
2137 if (!he_6ghz_oper)
2138 return false;
2139
2140 switch (u8_get_bits(v: he_6ghz_oper->control,
2141 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2142 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2143 return true;
2144 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2145 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2146 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2147 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2148 }
2149 }
2150 return false;
2151}
2152
2153/* Returned bss is reference counted and must be cleaned up appropriately. */
2154static struct cfg80211_bss *
2155cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2156 struct cfg80211_inform_single_bss_data *data,
2157 gfp_t gfp)
2158{
2159 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2160 struct cfg80211_inform_bss *drv_data = data->drv_data;
2161 struct cfg80211_bss_ies *ies;
2162 struct ieee80211_channel *channel;
2163 struct cfg80211_internal_bss tmp = {}, *res;
2164 int bss_type;
2165 bool signal_valid;
2166 unsigned long ts;
2167
2168 if (WARN_ON(!wiphy))
2169 return NULL;
2170
2171 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2172 (drv_data->signal < 0 || drv_data->signal > 100)))
2173 return NULL;
2174
2175 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2176 return NULL;
2177
2178 channel = data->channel;
2179 if (!channel)
2180 channel = cfg80211_get_bss_channel(wiphy, ie: data->ie, ielen: data->ielen,
2181 channel: drv_data->chan);
2182 if (!channel)
2183 return NULL;
2184
2185 if (channel->band == NL80211_BAND_6GHZ &&
2186 !cfg80211_6ghz_power_type_valid(ie: data->ie, ielen: data->ielen,
2187 flags: channel->flags)) {
2188 data->use_for = 0;
2189 data->cannot_use_reasons =
2190 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2191 }
2192
2193 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2194 tmp.pub.channel = channel;
2195 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2196 tmp.pub.signal = drv_data->signal;
2197 else
2198 tmp.pub.signal = 0;
2199 tmp.pub.beacon_interval = data->beacon_interval;
2200 tmp.pub.capability = data->capability;
2201 tmp.ts_boottime = drv_data->boottime_ns;
2202 tmp.parent_tsf = drv_data->parent_tsf;
2203 ether_addr_copy(dst: tmp.parent_bssid, src: drv_data->parent_bssid);
2204 tmp.pub.chains = drv_data->chains;
2205 memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2206 IEEE80211_MAX_CHAINS);
2207 tmp.pub.use_for = data->use_for;
2208 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2209
2210 if (data->bss_source != BSS_SOURCE_DIRECT) {
2211 tmp.pub.transmitted_bss = data->source_bss;
2212 ts = bss_from_pub(pub: data->source_bss)->ts;
2213 tmp.pub.bssid_index = data->bssid_index;
2214 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2215 } else {
2216 ts = jiffies;
2217
2218 if (channel->band == NL80211_BAND_60GHZ) {
2219 bss_type = data->capability &
2220 WLAN_CAPABILITY_DMG_TYPE_MASK;
2221 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2222 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2223 regulatory_hint_found_beacon(wiphy, beacon_chan: channel,
2224 gfp);
2225 } else {
2226 if (data->capability & WLAN_CAPABILITY_ESS)
2227 regulatory_hint_found_beacon(wiphy, beacon_chan: channel,
2228 gfp);
2229 }
2230 }
2231
2232 /*
2233 * If we do not know here whether the IEs are from a Beacon or Probe
2234 * Response frame, we need to pick one of the options and only use it
2235 * with the driver that does not provide the full Beacon/Probe Response
2236 * frame. Use Beacon frame pointer to avoid indicating that this should
2237 * override the IEs pointer should we have received an earlier
2238 * indication of Probe Response data.
2239 */
2240 ies = kzalloc(size: sizeof(*ies) + data->ielen, flags: gfp);
2241 if (!ies)
2242 return NULL;
2243 ies->len = data->ielen;
2244 ies->tsf = data->tsf;
2245 ies->from_beacon = false;
2246 memcpy(ies->data, data->ie, data->ielen);
2247
2248 switch (data->ftype) {
2249 case CFG80211_BSS_FTYPE_BEACON:
2250 case CFG80211_BSS_FTYPE_S1G_BEACON:
2251 ies->from_beacon = true;
2252 fallthrough;
2253 case CFG80211_BSS_FTYPE_UNKNOWN:
2254 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2255 break;
2256 case CFG80211_BSS_FTYPE_PRESP:
2257 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2258 break;
2259 }
2260 rcu_assign_pointer(tmp.pub.ies, ies);
2261
2262 signal_valid = drv_data->chan == channel;
2263 spin_lock_bh(lock: &rdev->bss_lock);
2264 res = __cfg80211_bss_update(rdev, tmp: &tmp, signal_valid, ts);
2265 if (!res)
2266 goto drop;
2267
2268 rdev_inform_bss(rdev, bss: &res->pub, ies, drv_data: drv_data->drv_data);
2269
2270 if (data->bss_source == BSS_SOURCE_MBSSID) {
2271 /* this is a nontransmitting bss, we need to add it to
2272 * transmitting bss' list if it is not there
2273 */
2274 if (cfg80211_add_nontrans_list(trans_bss: data->source_bss, nontrans_bss: &res->pub)) {
2275 if (__cfg80211_unlink_bss(rdev, bss: res)) {
2276 rdev->bss_generation++;
2277 res = NULL;
2278 }
2279 }
2280
2281 if (!res)
2282 goto drop;
2283 }
2284 spin_unlock_bh(lock: &rdev->bss_lock);
2285
2286 trace_cfg80211_return_bss(pub: &res->pub);
2287 /* __cfg80211_bss_update gives us a referenced result */
2288 return &res->pub;
2289
2290drop:
2291 spin_unlock_bh(lock: &rdev->bss_lock);
2292 return NULL;
2293}
2294
2295static const struct element
2296*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2297 const struct element *mbssid_elem,
2298 const struct element *sub_elem)
2299{
2300 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2301 const struct element *next_mbssid;
2302 const struct element *next_sub;
2303
2304 next_mbssid = cfg80211_find_elem(eid: WLAN_EID_MULTIPLE_BSSID,
2305 ies: mbssid_end,
2306 len: ielen - (mbssid_end - ie));
2307
2308 /*
2309 * If it is not the last subelement in current MBSSID IE or there isn't
2310 * a next MBSSID IE - profile is complete.
2311 */
2312 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2313 !next_mbssid)
2314 return NULL;
2315
2316 /* For any length error, just return NULL */
2317
2318 if (next_mbssid->datalen < 4)
2319 return NULL;
2320
2321 next_sub = (void *)&next_mbssid->data[1];
2322
2323 if (next_mbssid->data + next_mbssid->datalen <
2324 next_sub->data + next_sub->datalen)
2325 return NULL;
2326
2327 if (next_sub->id != 0 || next_sub->datalen < 2)
2328 return NULL;
2329
2330 /*
2331 * Check if the first element in the next sub element is a start
2332 * of a new profile
2333 */
2334 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2335 NULL : next_mbssid;
2336}
2337
2338size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2339 const struct element *mbssid_elem,
2340 const struct element *sub_elem,
2341 u8 *merged_ie, size_t max_copy_len)
2342{
2343 size_t copied_len = sub_elem->datalen;
2344 const struct element *next_mbssid;
2345
2346 if (sub_elem->datalen > max_copy_len)
2347 return 0;
2348
2349 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2350
2351 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2352 mbssid_elem,
2353 sub_elem))) {
2354 const struct element *next_sub = (void *)&next_mbssid->data[1];
2355
2356 if (copied_len + next_sub->datalen > max_copy_len)
2357 break;
2358 memcpy(merged_ie + copied_len, next_sub->data,
2359 next_sub->datalen);
2360 copied_len += next_sub->datalen;
2361 }
2362
2363 return copied_len;
2364}
2365EXPORT_SYMBOL(cfg80211_merge_profile);
2366
2367static void
2368cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2369 struct cfg80211_inform_single_bss_data *tx_data,
2370 struct cfg80211_bss *source_bss,
2371 gfp_t gfp)
2372{
2373 struct cfg80211_inform_single_bss_data data = {
2374 .drv_data = tx_data->drv_data,
2375 .ftype = tx_data->ftype,
2376 .tsf = tx_data->tsf,
2377 .beacon_interval = tx_data->beacon_interval,
2378 .source_bss = source_bss,
2379 .bss_source = BSS_SOURCE_MBSSID,
2380 .use_for = tx_data->use_for,
2381 .cannot_use_reasons = tx_data->cannot_use_reasons,
2382 };
2383 const u8 *mbssid_index_ie;
2384 const struct element *elem, *sub;
2385 u8 *new_ie, *profile;
2386 u64 seen_indices = 0;
2387 struct cfg80211_bss *bss;
2388
2389 if (!source_bss)
2390 return;
2391 if (!cfg80211_find_elem(eid: WLAN_EID_MULTIPLE_BSSID,
2392 ies: tx_data->ie, len: tx_data->ielen))
2393 return;
2394 if (!wiphy->support_mbssid)
2395 return;
2396 if (wiphy->support_only_he_mbssid &&
2397 !cfg80211_find_ext_elem(ext_eid: WLAN_EID_EXT_HE_CAPABILITY,
2398 ies: tx_data->ie, len: tx_data->ielen))
2399 return;
2400
2401 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, flags: gfp);
2402 if (!new_ie)
2403 return;
2404
2405 profile = kmalloc(size: tx_data->ielen, flags: gfp);
2406 if (!profile)
2407 goto out;
2408
2409 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2410 tx_data->ie, tx_data->ielen) {
2411 if (elem->datalen < 4)
2412 continue;
2413 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2414 continue;
2415 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2416 u8 profile_len;
2417
2418 if (sub->id != 0 || sub->datalen < 4) {
2419 /* not a valid BSS profile */
2420 continue;
2421 }
2422
2423 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2424 sub->data[1] != 2) {
2425 /* The first element within the Nontransmitted
2426 * BSSID Profile is not the Nontransmitted
2427 * BSSID Capability element.
2428 */
2429 continue;
2430 }
2431
2432 memset(profile, 0, tx_data->ielen);
2433 profile_len = cfg80211_merge_profile(tx_data->ie,
2434 tx_data->ielen,
2435 elem,
2436 sub,
2437 profile,
2438 tx_data->ielen);
2439
2440 /* found a Nontransmitted BSSID Profile */
2441 mbssid_index_ie = cfg80211_find_ie
2442 (eid: WLAN_EID_MULTI_BSSID_IDX,
2443 ies: profile, len: profile_len);
2444 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2445 mbssid_index_ie[2] == 0 ||
2446 mbssid_index_ie[2] > 46) {
2447 /* No valid Multiple BSSID-Index element */
2448 continue;
2449 }
2450
2451 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2452 /* We don't support legacy split of a profile */
2453 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2454 mbssid_index_ie[2]);
2455
2456 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2457
2458 data.bssid_index = mbssid_index_ie[2];
2459 data.max_bssid_indicator = elem->data[0];
2460
2461 cfg80211_gen_new_bssid(bssid: tx_data->bssid,
2462 max_bssid: data.max_bssid_indicator,
2463 mbssid_index: data.bssid_index,
2464 new_bssid: data.bssid);
2465
2466 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2467 data.ie = new_ie;
2468 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2469 tx_data->ielen,
2470 profile,
2471 profile_len,
2472 new_ie,
2473 IEEE80211_MAX_DATA_LEN);
2474 if (!data.ielen)
2475 continue;
2476
2477 data.capability = get_unaligned_le16(p: profile + 2);
2478 bss = cfg80211_inform_single_bss_data(wiphy, data: &data, gfp);
2479 if (!bss)
2480 break;
2481 cfg80211_put_bss(wiphy, bss);
2482 }
2483 }
2484
2485out:
2486 kfree(objp: new_ie);
2487 kfree(objp: profile);
2488}
2489
2490ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2491 size_t ieslen, u8 *data, size_t data_len,
2492 u8 frag_id)
2493{
2494 const struct element *next;
2495 ssize_t copied;
2496 u8 elem_datalen;
2497
2498 if (!elem)
2499 return -EINVAL;
2500
2501 /* elem might be invalid after the memmove */
2502 next = (void *)(elem->data + elem->datalen);
2503 elem_datalen = elem->datalen;
2504
2505 if (elem->id == WLAN_EID_EXTENSION) {
2506 copied = elem->datalen - 1;
2507
2508 if (data) {
2509 if (copied > data_len)
2510 return -ENOSPC;
2511
2512 memmove(data, elem->data + 1, copied);
2513 }
2514 } else {
2515 copied = elem->datalen;
2516
2517 if (data) {
2518 if (copied > data_len)
2519 return -ENOSPC;
2520
2521 memmove(data, elem->data, copied);
2522 }
2523 }
2524
2525 /* Fragmented elements must have 255 bytes */
2526 if (elem_datalen < 255)
2527 return copied;
2528
2529 for (elem = next;
2530 elem->data < ies + ieslen &&
2531 elem->data + elem->datalen <= ies + ieslen;
2532 elem = next) {
2533 /* elem might be invalid after the memmove */
2534 next = (void *)(elem->data + elem->datalen);
2535
2536 if (elem->id != frag_id)
2537 break;
2538
2539 elem_datalen = elem->datalen;
2540
2541 if (data) {
2542 if (copied + elem_datalen > data_len)
2543 return -ENOSPC;
2544
2545 memmove(data + copied, elem->data, elem_datalen);
2546 }
2547
2548 copied += elem_datalen;
2549
2550 /* Only the last fragment may be short */
2551 if (elem_datalen != 255)
2552 break;
2553 }
2554
2555 return copied;
2556}
2557EXPORT_SYMBOL(cfg80211_defragment_element);
2558
2559struct cfg80211_mle {
2560 struct ieee80211_multi_link_elem *mle;
2561 struct ieee80211_mle_per_sta_profile
2562 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2563 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2564
2565 u8 data[];
2566};
2567
2568static struct cfg80211_mle *
2569cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2570 gfp_t gfp)
2571{
2572 const struct element *elem;
2573 struct cfg80211_mle *res;
2574 size_t buf_len;
2575 ssize_t mle_len;
2576 u8 common_size, idx;
2577
2578 if (!mle || !ieee80211_mle_size_ok(data: mle->data + 1, len: mle->datalen - 1))
2579 return NULL;
2580
2581 /* Required length for first defragmentation */
2582 buf_len = mle->datalen - 1;
2583 for_each_element(elem, mle->data + mle->datalen,
2584 ielen - sizeof(*mle) + mle->datalen) {
2585 if (elem->id != WLAN_EID_FRAGMENT)
2586 break;
2587
2588 buf_len += elem->datalen;
2589 }
2590
2591 res = kzalloc(struct_size(res, data, buf_len), flags: gfp);
2592 if (!res)
2593 return NULL;
2594
2595 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2596 res->data, buf_len,
2597 WLAN_EID_FRAGMENT);
2598 if (mle_len < 0)
2599 goto error;
2600
2601 res->mle = (void *)res->data;
2602
2603 /* Find the sub-element area in the buffer */
2604 common_size = ieee80211_mle_common_size(data: (u8 *)res->mle);
2605 ie = res->data + common_size;
2606 ielen = mle_len - common_size;
2607
2608 idx = 0;
2609 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2610 ie, ielen) {
2611 res->sta_prof[idx] = (void *)elem->data;
2612 res->sta_prof_len[idx] = elem->datalen;
2613
2614 idx++;
2615 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2616 break;
2617 }
2618 if (!for_each_element_completed(element: elem, data: ie, datalen: ielen))
2619 goto error;
2620
2621 /* Defragment sta_info in-place */
2622 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2623 idx++) {
2624 if (res->sta_prof_len[idx] < 255)
2625 continue;
2626
2627 elem = (void *)res->sta_prof[idx] - 2;
2628
2629 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2630 res->sta_prof[idx + 1])
2631 buf_len = (u8 *)res->sta_prof[idx + 1] -
2632 (u8 *)res->sta_prof[idx];
2633 else
2634 buf_len = ielen + ie - (u8 *)elem;
2635
2636 res->sta_prof_len[idx] =
2637 cfg80211_defragment_element(elem,
2638 (u8 *)elem, buf_len,
2639 (u8 *)res->sta_prof[idx],
2640 buf_len,
2641 IEEE80211_MLE_SUBELEM_FRAGMENT);
2642 if (res->sta_prof_len[idx] < 0)
2643 goto error;
2644 }
2645
2646 return res;
2647
2648error:
2649 kfree(objp: res);
2650 return NULL;
2651}
2652
2653struct tbtt_info_iter_data {
2654 const struct ieee80211_neighbor_ap_info *ap_info;
2655 u8 param_ch_count;
2656 u32 use_for;
2657 u8 mld_id, link_id;
2658};
2659
2660static enum cfg80211_rnr_iter_ret
2661cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2662 const struct ieee80211_neighbor_ap_info *info,
2663 const u8 *tbtt_info, u8 tbtt_info_len)
2664{
2665 const struct ieee80211_rnr_mld_params *mld_params;
2666 struct tbtt_info_iter_data *data = _data;
2667 u8 link_id;
2668
2669 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2670 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2671 mld_params))
2672 mld_params = (void *)(tbtt_info +
2673 offsetof(struct ieee80211_tbtt_info_ge_11,
2674 mld_params));
2675 else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2676 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2677 mld_params = (void *)tbtt_info;
2678 else
2679 return RNR_ITER_CONTINUE;
2680
2681 link_id = le16_get_bits(v: mld_params->params,
2682 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2683
2684 if (data->mld_id != mld_params->mld_id)
2685 return RNR_ITER_CONTINUE;
2686
2687 if (data->link_id != link_id)
2688 return RNR_ITER_CONTINUE;
2689
2690 data->ap_info = info;
2691 data->param_ch_count =
2692 le16_get_bits(v: mld_params->params,
2693 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2694
2695 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2696 data->use_for = NL80211_BSS_USE_FOR_ALL;
2697 else
2698 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2699 return RNR_ITER_BREAK;
2700}
2701
2702static u8
2703cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2704 const struct ieee80211_neighbor_ap_info **ap_info,
2705 u8 *param_ch_count)
2706{
2707 struct tbtt_info_iter_data data = {
2708 .mld_id = mld_id,
2709 .link_id = link_id,
2710 };
2711
2712 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2713
2714 *ap_info = data.ap_info;
2715 *param_ch_count = data.param_ch_count;
2716
2717 return data.use_for;
2718}
2719
2720static struct element *
2721cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2722 bool same_mld, u8 link_id, u8 bss_change_count,
2723 gfp_t gfp)
2724{
2725 const struct cfg80211_bss_ies *ies;
2726 struct ieee80211_neighbor_ap_info ap_info;
2727 struct ieee80211_tbtt_info_ge_11 tbtt_info;
2728 u32 short_ssid;
2729 const struct element *elem;
2730 struct element *res;
2731
2732 /*
2733 * We only generate the RNR to permit ML lookups. For that we do not
2734 * need an entry for the corresponding transmitting BSS, lets just skip
2735 * it even though it would be easy to add.
2736 */
2737 if (!same_mld)
2738 return NULL;
2739
2740 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2741 rcu_read_lock();
2742 ies = rcu_dereference(source_bss->ies);
2743
2744 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2745 ap_info.tbtt_info_hdr =
2746 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2747 IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2748 u8_encode_bits(v: 0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2749
2750 ap_info.channel = ieee80211_frequency_to_channel(freq: source_bss->channel->center_freq);
2751
2752 /* operating class */
2753 elem = cfg80211_find_elem(eid: WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2754 ies: ies->data, len: ies->len);
2755 if (elem && elem->datalen >= 1) {
2756 ap_info.op_class = elem->data[0];
2757 } else {
2758 struct cfg80211_chan_def chandef;
2759
2760 /* The AP is not providing us with anything to work with. So
2761 * make up a somewhat reasonable operating class, but don't
2762 * bother with it too much as no one will ever use the
2763 * information.
2764 */
2765 cfg80211_chandef_create(chandef: &chandef, channel: source_bss->channel,
2766 chantype: NL80211_CHAN_NO_HT);
2767
2768 if (!ieee80211_chandef_to_operating_class(chandef: &chandef,
2769 op_class: &ap_info.op_class))
2770 goto out_unlock;
2771 }
2772
2773 /* Just set TBTT offset and PSD 20 to invalid/unknown */
2774 tbtt_info.tbtt_offset = 255;
2775 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2776
2777 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2778 if (cfg80211_calc_short_ssid(ies, elem: &elem, s_ssid: &short_ssid))
2779 goto out_unlock;
2780
2781 rcu_read_unlock();
2782
2783 tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2784
2785 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2786
2787 if (is_mbssid) {
2788 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2789 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2790 }
2791
2792 tbtt_info.mld_params.mld_id = 0;
2793 tbtt_info.mld_params.params =
2794 le16_encode_bits(v: link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2795 le16_encode_bits(v: bss_change_count,
2796 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2797
2798 res = kzalloc(struct_size(res, data,
2799 sizeof(ap_info) + ap_info.tbtt_info_len),
2800 flags: gfp);
2801 if (!res)
2802 return NULL;
2803
2804 /* Copy the data */
2805 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2806 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2807 memcpy(res->data, &ap_info, sizeof(ap_info));
2808 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2809
2810 return res;
2811
2812out_unlock:
2813 rcu_read_unlock();
2814 return NULL;
2815}
2816
2817static void
2818cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2819 struct cfg80211_inform_single_bss_data *tx_data,
2820 struct cfg80211_bss *source_bss,
2821 const struct element *elem,
2822 gfp_t gfp)
2823{
2824 struct cfg80211_inform_single_bss_data data = {
2825 .drv_data = tx_data->drv_data,
2826 .ftype = tx_data->ftype,
2827 .source_bss = source_bss,
2828 .bss_source = BSS_SOURCE_STA_PROFILE,
2829 };
2830 struct element *reporter_rnr = NULL;
2831 struct ieee80211_multi_link_elem *ml_elem;
2832 struct cfg80211_mle *mle;
2833 u16 control;
2834 u8 ml_common_len;
2835 u8 *new_ie = NULL;
2836 struct cfg80211_bss *bss;
2837 u8 mld_id, reporter_link_id, bss_change_count;
2838 u16 seen_links = 0;
2839 u8 i;
2840
2841 if (!ieee80211_mle_type_ok(data: elem->data + 1,
2842 IEEE80211_ML_CONTROL_TYPE_BASIC,
2843 len: elem->datalen - 1))
2844 return;
2845
2846 ml_elem = (void *)(elem->data + 1);
2847 control = le16_to_cpu(ml_elem->control);
2848 ml_common_len = ml_elem->variable[0];
2849
2850 /* Must be present when transmitted by an AP (in a probe response) */
2851 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2852 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2853 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2854 return;
2855
2856 reporter_link_id = ieee80211_mle_get_link_id(data: elem->data + 1);
2857 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(data: elem->data + 1);
2858
2859 /*
2860 * The MLD ID of the reporting AP is always zero. It is set if the AP
2861 * is part of an MBSSID set and will be non-zero for ML Elements
2862 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2863 * Draft P802.11be_D3.2, 35.3.4.2)
2864 */
2865 mld_id = ieee80211_mle_get_mld_id(data: elem->data + 1);
2866
2867 /* Fully defrag the ML element for sta information/profile iteration */
2868 mle = cfg80211_defrag_mle(mle: elem, ie: tx_data->ie, ielen: tx_data->ielen, gfp);
2869 if (!mle)
2870 return;
2871
2872 /* No point in doing anything if there is no per-STA profile */
2873 if (!mle->sta_prof[0])
2874 goto out;
2875
2876 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, flags: gfp);
2877 if (!new_ie)
2878 goto out;
2879
2880 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2881 is_mbssid: u16_get_bits(v: control,
2882 IEEE80211_MLC_BASIC_PRES_MLD_ID),
2883 same_mld: mld_id == 0, link_id: reporter_link_id,
2884 bss_change_count,
2885 gfp);
2886
2887 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2888 const struct ieee80211_neighbor_ap_info *ap_info;
2889 enum nl80211_band band;
2890 u32 freq;
2891 const u8 *profile;
2892 ssize_t profile_len;
2893 u8 param_ch_count;
2894 u8 link_id, use_for;
2895
2896 if (!ieee80211_mle_basic_sta_prof_size_ok(data: (u8 *)mle->sta_prof[i],
2897 len: mle->sta_prof_len[i]))
2898 continue;
2899
2900 control = le16_to_cpu(mle->sta_prof[i]->control);
2901
2902 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2903 continue;
2904
2905 link_id = u16_get_bits(v: control,
2906 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2907 if (seen_links & BIT(link_id))
2908 break;
2909 seen_links |= BIT(link_id);
2910
2911 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2912 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2913 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2914 continue;
2915
2916 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2917 data.beacon_interval =
2918 get_unaligned_le16(p: mle->sta_prof[i]->variable + 6);
2919 data.tsf = tx_data->tsf +
2920 get_unaligned_le64(p: mle->sta_prof[i]->variable + 8);
2921
2922 /* sta_info_len counts itself */
2923 profile = mle->sta_prof[i]->variable +
2924 mle->sta_prof[i]->sta_info_len - 1;
2925 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2926 profile;
2927
2928 if (profile_len < 2)
2929 continue;
2930
2931 data.capability = get_unaligned_le16(p: profile);
2932 profile += 2;
2933 profile_len -= 2;
2934
2935 /* Find in RNR to look up channel information */
2936 use_for = cfg80211_rnr_info_for_mld_ap(ie: tx_data->ie,
2937 ielen: tx_data->ielen,
2938 mld_id, link_id,
2939 ap_info: &ap_info,
2940 param_ch_count: &param_ch_count);
2941 if (!use_for)
2942 continue;
2943
2944 /* We could sanity check the BSSID is included */
2945
2946 if (!ieee80211_operating_class_to_band(operating_class: ap_info->op_class,
2947 band: &band))
2948 continue;
2949
2950 freq = ieee80211_channel_to_freq_khz(chan: ap_info->channel, band);
2951 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2952
2953 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2954 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2955 use_for = 0;
2956 data.cannot_use_reasons =
2957 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2958 }
2959 data.use_for = use_for;
2960
2961 /* Generate new elements */
2962 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2963 data.ie = new_ie;
2964 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2965 profile, profile_len,
2966 new_ie,
2967 IEEE80211_MAX_DATA_LEN);
2968 if (!data.ielen)
2969 continue;
2970
2971 /* The generated elements do not contain:
2972 * - Basic ML element
2973 * - A TBTT entry in the RNR for the transmitting AP
2974 *
2975 * This information is needed both internally and in userspace
2976 * as such, we should append it here.
2977 */
2978 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
2979 IEEE80211_MAX_DATA_LEN)
2980 continue;
2981
2982 /* Copy the Basic Multi-Link element including the common
2983 * information, and then fix up the link ID and BSS param
2984 * change count.
2985 * Note that the ML element length has been verified and we
2986 * also checked that it contains the link ID.
2987 */
2988 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
2989 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
2990 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
2991 memcpy(new_ie + data.ielen, ml_elem,
2992 sizeof(*ml_elem) + ml_common_len);
2993
2994 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
2995 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
2996 param_ch_count;
2997
2998 data.ielen += sizeof(*ml_elem) + ml_common_len;
2999
3000 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3001 if (data.ielen + sizeof(struct element) +
3002 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3003 continue;
3004
3005 memcpy(new_ie + data.ielen, reporter_rnr,
3006 sizeof(struct element) + reporter_rnr->datalen);
3007 data.ielen += sizeof(struct element) +
3008 reporter_rnr->datalen;
3009 }
3010
3011 bss = cfg80211_inform_single_bss_data(wiphy, data: &data, gfp);
3012 if (!bss)
3013 break;
3014 cfg80211_put_bss(wiphy, bss);
3015 }
3016
3017out:
3018 kfree(objp: reporter_rnr);
3019 kfree(objp: new_ie);
3020 kfree(objp: mle);
3021}
3022
3023static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3024 struct cfg80211_inform_single_bss_data *tx_data,
3025 struct cfg80211_bss *source_bss,
3026 gfp_t gfp)
3027{
3028 const struct element *elem;
3029
3030 if (!source_bss)
3031 return;
3032
3033 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3034 return;
3035
3036 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3037 tx_data->ie, tx_data->ielen)
3038 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3039 elem, gfp);
3040}
3041
3042struct cfg80211_bss *
3043cfg80211_inform_bss_data(struct wiphy *wiphy,
3044 struct cfg80211_inform_bss *data,
3045 enum cfg80211_bss_frame_type ftype,
3046 const u8 *bssid, u64 tsf, u16 capability,
3047 u16 beacon_interval, const u8 *ie, size_t ielen,
3048 gfp_t gfp)
3049{
3050 struct cfg80211_inform_single_bss_data inform_data = {
3051 .drv_data = data,
3052 .ftype = ftype,
3053 .tsf = tsf,
3054 .capability = capability,
3055 .beacon_interval = beacon_interval,
3056 .ie = ie,
3057 .ielen = ielen,
3058 .use_for = data->restrict_use ?
3059 data->use_for :
3060 NL80211_BSS_USE_FOR_ALL,
3061 .cannot_use_reasons = data->cannot_use_reasons,
3062 };
3063 struct cfg80211_bss *res;
3064
3065 memcpy(inform_data.bssid, bssid, ETH_ALEN);
3066
3067 res = cfg80211_inform_single_bss_data(wiphy, data: &inform_data, gfp);
3068 if (!res)
3069 return NULL;
3070
3071 /* don't do any further MBSSID/ML handling for S1G */
3072 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3073 return res;
3074
3075 cfg80211_parse_mbssid_data(wiphy, tx_data: &inform_data, source_bss: res, gfp);
3076
3077 cfg80211_parse_ml_sta_data(wiphy, tx_data: &inform_data, source_bss: res, gfp);
3078
3079 return res;
3080}
3081EXPORT_SYMBOL(cfg80211_inform_bss_data);
3082
3083struct cfg80211_bss *
3084cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3085 struct cfg80211_inform_bss *data,
3086 struct ieee80211_mgmt *mgmt, size_t len,
3087 gfp_t gfp)
3088{
3089 size_t min_hdr_len = offsetof(struct ieee80211_mgmt,
3090 u.probe_resp.variable);
3091 struct ieee80211_ext *ext = NULL;
3092 enum cfg80211_bss_frame_type ftype;
3093 u16 beacon_interval;
3094 const u8 *bssid;
3095 u16 capability;
3096 const u8 *ie;
3097 size_t ielen;
3098 u64 tsf;
3099
3100 if (WARN_ON(!mgmt))
3101 return NULL;
3102
3103 if (WARN_ON(!wiphy))
3104 return NULL;
3105
3106 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3107 offsetof(struct ieee80211_mgmt, u.beacon.variable));
3108
3109 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3110
3111 if (ieee80211_is_s1g_beacon(fc: mgmt->frame_control)) {
3112 ext = (void *) mgmt;
3113 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
3114 if (ieee80211_is_s1g_short_beacon(fc: mgmt->frame_control))
3115 min_hdr_len = offsetof(struct ieee80211_ext,
3116 u.s1g_short_beacon.variable);
3117 }
3118
3119 if (WARN_ON(len < min_hdr_len))
3120 return NULL;
3121
3122 ielen = len - min_hdr_len;
3123 ie = mgmt->u.probe_resp.variable;
3124 if (ext) {
3125 const struct ieee80211_s1g_bcn_compat_ie *compat;
3126 const struct element *elem;
3127
3128 if (ieee80211_is_s1g_short_beacon(fc: mgmt->frame_control))
3129 ie = ext->u.s1g_short_beacon.variable;
3130 else
3131 ie = ext->u.s1g_beacon.variable;
3132
3133 elem = cfg80211_find_elem(eid: WLAN_EID_S1G_BCN_COMPAT, ies: ie, len: ielen);
3134 if (!elem)
3135 return NULL;
3136 if (elem->datalen < sizeof(*compat))
3137 return NULL;
3138 compat = (void *)elem->data;
3139 bssid = ext->u.s1g_beacon.sa;
3140 capability = le16_to_cpu(compat->compat_info);
3141 beacon_interval = le16_to_cpu(compat->beacon_int);
3142 } else {
3143 bssid = mgmt->bssid;
3144 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3145 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3146 }
3147
3148 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3149
3150 if (ieee80211_is_probe_resp(fc: mgmt->frame_control))
3151 ftype = CFG80211_BSS_FTYPE_PRESP;
3152 else if (ext)
3153 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3154 else
3155 ftype = CFG80211_BSS_FTYPE_BEACON;
3156
3157 return cfg80211_inform_bss_data(wiphy, data, ftype,
3158 bssid, tsf, capability,
3159 beacon_interval, ie, ielen,
3160 gfp);
3161}
3162EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3163
3164void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3165{
3166 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3167
3168 if (!pub)
3169 return;
3170
3171 spin_lock_bh(lock: &rdev->bss_lock);
3172 bss_ref_get(rdev, bss: bss_from_pub(pub));
3173 spin_unlock_bh(lock: &rdev->bss_lock);
3174}
3175EXPORT_SYMBOL(cfg80211_ref_bss);
3176
3177void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3178{
3179 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3180
3181 if (!pub)
3182 return;
3183
3184 spin_lock_bh(lock: &rdev->bss_lock);
3185 bss_ref_put(rdev, bss: bss_from_pub(pub));
3186 spin_unlock_bh(lock: &rdev->bss_lock);
3187}
3188EXPORT_SYMBOL(cfg80211_put_bss);
3189
3190void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3191{
3192 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3193 struct cfg80211_internal_bss *bss, *tmp1;
3194 struct cfg80211_bss *nontrans_bss, *tmp;
3195
3196 if (WARN_ON(!pub))
3197 return;
3198
3199 bss = bss_from_pub(pub);
3200
3201 spin_lock_bh(lock: &rdev->bss_lock);
3202 if (list_empty(head: &bss->list))
3203 goto out;
3204
3205 list_for_each_entry_safe(nontrans_bss, tmp,
3206 &pub->nontrans_list,
3207 nontrans_list) {
3208 tmp1 = bss_from_pub(pub: nontrans_bss);
3209 if (__cfg80211_unlink_bss(rdev, bss: tmp1))
3210 rdev->bss_generation++;
3211 }
3212
3213 if (__cfg80211_unlink_bss(rdev, bss))
3214 rdev->bss_generation++;
3215out:
3216 spin_unlock_bh(lock: &rdev->bss_lock);
3217}
3218EXPORT_SYMBOL(cfg80211_unlink_bss);
3219
3220void cfg80211_bss_iter(struct wiphy *wiphy,
3221 struct cfg80211_chan_def *chandef,
3222 void (*iter)(struct wiphy *wiphy,
3223 struct cfg80211_bss *bss,
3224 void *data),
3225 void *iter_data)
3226{
3227 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3228 struct cfg80211_internal_bss *bss;
3229
3230 spin_lock_bh(lock: &rdev->bss_lock);
3231
3232 list_for_each_entry(bss, &rdev->bss_list, list) {
3233 if (!chandef || cfg80211_is_sub_chan(chandef, chan: bss->pub.channel,
3234 primary_only: false))
3235 iter(wiphy, &bss->pub, iter_data);
3236 }
3237
3238 spin_unlock_bh(lock: &rdev->bss_lock);
3239}
3240EXPORT_SYMBOL(cfg80211_bss_iter);
3241
3242void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3243 unsigned int link_id,
3244 struct ieee80211_channel *chan)
3245{
3246 struct wiphy *wiphy = wdev->wiphy;
3247 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3248 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3249 struct cfg80211_internal_bss *new = NULL;
3250 struct cfg80211_internal_bss *bss;
3251 struct cfg80211_bss *nontrans_bss;
3252 struct cfg80211_bss *tmp;
3253
3254 spin_lock_bh(lock: &rdev->bss_lock);
3255
3256 /*
3257 * Some APs use CSA also for bandwidth changes, i.e., without actually
3258 * changing the control channel, so no need to update in such a case.
3259 */
3260 if (cbss->pub.channel == chan)
3261 goto done;
3262
3263 /* use transmitting bss */
3264 if (cbss->pub.transmitted_bss)
3265 cbss = bss_from_pub(pub: cbss->pub.transmitted_bss);
3266
3267 cbss->pub.channel = chan;
3268
3269 list_for_each_entry(bss, &rdev->bss_list, list) {
3270 if (!cfg80211_bss_type_match(capability: bss->pub.capability,
3271 band: bss->pub.channel->band,
3272 bss_type: wdev->conn_bss_type))
3273 continue;
3274
3275 if (bss == cbss)
3276 continue;
3277
3278 if (!cmp_bss(a: &bss->pub, b: &cbss->pub, mode: BSS_CMP_REGULAR)) {
3279 new = bss;
3280 break;
3281 }
3282 }
3283
3284 if (new) {
3285 /* to save time, update IEs for transmitting bss only */
3286 cfg80211_update_known_bss(rdev, known: cbss, new, signal_valid: false);
3287 new->pub.proberesp_ies = NULL;
3288 new->pub.beacon_ies = NULL;
3289
3290 list_for_each_entry_safe(nontrans_bss, tmp,
3291 &new->pub.nontrans_list,
3292 nontrans_list) {
3293 bss = bss_from_pub(pub: nontrans_bss);
3294 if (__cfg80211_unlink_bss(rdev, bss))
3295 rdev->bss_generation++;
3296 }
3297
3298 WARN_ON(atomic_read(&new->hold));
3299 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3300 rdev->bss_generation++;
3301 }
3302
3303 rb_erase(&cbss->rbn, &rdev->bss_tree);
3304 rb_insert_bss(rdev, bss: cbss);
3305 rdev->bss_generation++;
3306
3307 list_for_each_entry_safe(nontrans_bss, tmp,
3308 &cbss->pub.nontrans_list,
3309 nontrans_list) {
3310 bss = bss_from_pub(pub: nontrans_bss);
3311 bss->pub.channel = chan;
3312 rb_erase(&bss->rbn, &rdev->bss_tree);
3313 rb_insert_bss(rdev, bss);
3314 rdev->bss_generation++;
3315 }
3316
3317done:
3318 spin_unlock_bh(lock: &rdev->bss_lock);
3319}
3320
3321#ifdef CONFIG_CFG80211_WEXT
3322static struct cfg80211_registered_device *
3323cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3324{
3325 struct cfg80211_registered_device *rdev;
3326 struct net_device *dev;
3327
3328 ASSERT_RTNL();
3329
3330 dev = dev_get_by_index(net, ifindex);
3331 if (!dev)
3332 return ERR_PTR(error: -ENODEV);
3333 if (dev->ieee80211_ptr)
3334 rdev = wiphy_to_rdev(wiphy: dev->ieee80211_ptr->wiphy);
3335 else
3336 rdev = ERR_PTR(error: -ENODEV);
3337 dev_put(dev);
3338 return rdev;
3339}
3340
3341int cfg80211_wext_siwscan(struct net_device *dev,
3342 struct iw_request_info *info,
3343 union iwreq_data *wrqu, char *extra)
3344{
3345 struct cfg80211_registered_device *rdev;
3346 struct wiphy *wiphy;
3347 struct iw_scan_req *wreq = NULL;
3348 struct cfg80211_scan_request *creq;
3349 int i, err, n_channels = 0;
3350 enum nl80211_band band;
3351
3352 if (!netif_running(dev))
3353 return -ENETDOWN;
3354
3355 if (wrqu->data.length == sizeof(struct iw_scan_req))
3356 wreq = (struct iw_scan_req *)extra;
3357
3358 rdev = cfg80211_get_dev_from_ifindex(net: dev_net(dev), ifindex: dev->ifindex);
3359
3360 if (IS_ERR(ptr: rdev))
3361 return PTR_ERR(ptr: rdev);
3362
3363 if (rdev->scan_req || rdev->scan_msg)
3364 return -EBUSY;
3365
3366 wiphy = &rdev->wiphy;
3367
3368 /* Determine number of channels, needed to allocate creq */
3369 if (wreq && wreq->num_channels)
3370 n_channels = wreq->num_channels;
3371 else
3372 n_channels = ieee80211_get_num_supported_channels(wiphy);
3373
3374 creq = kzalloc(size: sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3375 n_channels * sizeof(void *),
3376 GFP_ATOMIC);
3377 if (!creq)
3378 return -ENOMEM;
3379
3380 creq->wiphy = wiphy;
3381 creq->wdev = dev->ieee80211_ptr;
3382 /* SSIDs come after channels */
3383 creq->ssids = (void *)&creq->channels[n_channels];
3384 creq->n_channels = n_channels;
3385 creq->n_ssids = 1;
3386 creq->scan_start = jiffies;
3387
3388 /* translate "Scan on frequencies" request */
3389 i = 0;
3390 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3391 int j;
3392
3393 if (!wiphy->bands[band])
3394 continue;
3395
3396 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3397 /* ignore disabled channels */
3398 if (wiphy->bands[band]->channels[j].flags &
3399 IEEE80211_CHAN_DISABLED)
3400 continue;
3401
3402 /* If we have a wireless request structure and the
3403 * wireless request specifies frequencies, then search
3404 * for the matching hardware channel.
3405 */
3406 if (wreq && wreq->num_channels) {
3407 int k;
3408 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3409 for (k = 0; k < wreq->num_channels; k++) {
3410 struct iw_freq *freq =
3411 &wreq->channel_list[k];
3412 int wext_freq =
3413 cfg80211_wext_freq(freq);
3414
3415 if (wext_freq == wiphy_freq)
3416 goto wext_freq_found;
3417 }
3418 goto wext_freq_not_found;
3419 }
3420
3421 wext_freq_found:
3422 creq->channels[i] = &wiphy->bands[band]->channels[j];
3423 i++;
3424 wext_freq_not_found: ;
3425 }
3426 }
3427 /* No channels found? */
3428 if (!i) {
3429 err = -EINVAL;
3430 goto out;
3431 }
3432
3433 /* Set real number of channels specified in creq->channels[] */
3434 creq->n_channels = i;
3435
3436 /* translate "Scan for SSID" request */
3437 if (wreq) {
3438 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3439 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3440 err = -EINVAL;
3441 goto out;
3442 }
3443 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3444 creq->ssids[0].ssid_len = wreq->essid_len;
3445 }
3446 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3447 creq->n_ssids = 0;
3448 }
3449
3450 for (i = 0; i < NUM_NL80211_BANDS; i++)
3451 if (wiphy->bands[i])
3452 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3453
3454 eth_broadcast_addr(addr: creq->bssid);
3455
3456 wiphy_lock(wiphy: &rdev->wiphy);
3457
3458 rdev->scan_req = creq;
3459 err = rdev_scan(rdev, request: creq);
3460 if (err) {
3461 rdev->scan_req = NULL;
3462 /* creq will be freed below */
3463 } else {
3464 nl80211_send_scan_start(rdev, wdev: dev->ieee80211_ptr);
3465 /* creq now owned by driver */
3466 creq = NULL;
3467 dev_hold(dev);
3468 }
3469 wiphy_unlock(wiphy: &rdev->wiphy);
3470 out:
3471 kfree(objp: creq);
3472 return err;
3473}
3474EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3475
3476static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3477 const struct cfg80211_bss_ies *ies,
3478 char *current_ev, char *end_buf)
3479{
3480 const u8 *pos, *end, *next;
3481 struct iw_event iwe;
3482
3483 if (!ies)
3484 return current_ev;
3485
3486 /*
3487 * If needed, fragment the IEs buffer (at IE boundaries) into short
3488 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3489 */
3490 pos = ies->data;
3491 end = pos + ies->len;
3492
3493 while (end - pos > IW_GENERIC_IE_MAX) {
3494 next = pos + 2 + pos[1];
3495 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3496 next = next + 2 + next[1];
3497
3498 memset(&iwe, 0, sizeof(iwe));
3499 iwe.cmd = IWEVGENIE;
3500 iwe.u.data.length = next - pos;
3501 current_ev = iwe_stream_add_point_check(info, stream: current_ev,
3502 ends: end_buf, iwe: &iwe,
3503 extra: (void *)pos);
3504 if (IS_ERR(ptr: current_ev))
3505 return current_ev;
3506 pos = next;
3507 }
3508
3509 if (end > pos) {
3510 memset(&iwe, 0, sizeof(iwe));
3511 iwe.cmd = IWEVGENIE;
3512 iwe.u.data.length = end - pos;
3513 current_ev = iwe_stream_add_point_check(info, stream: current_ev,
3514 ends: end_buf, iwe: &iwe,
3515 extra: (void *)pos);
3516 if (IS_ERR(ptr: current_ev))
3517 return current_ev;
3518 }
3519
3520 return current_ev;
3521}
3522
3523static char *
3524ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3525 struct cfg80211_internal_bss *bss, char *current_ev,
3526 char *end_buf)
3527{
3528 const struct cfg80211_bss_ies *ies;
3529 struct iw_event iwe;
3530 const u8 *ie;
3531 u8 buf[50];
3532 u8 *cfg, *p, *tmp;
3533 int rem, i, sig;
3534 bool ismesh = false;
3535
3536 memset(&iwe, 0, sizeof(iwe));
3537 iwe.cmd = SIOCGIWAP;
3538 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3539 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3540 current_ev = iwe_stream_add_event_check(info, stream: current_ev, ends: end_buf, iwe: &iwe,
3541 IW_EV_ADDR_LEN);
3542 if (IS_ERR(ptr: current_ev))
3543 return current_ev;
3544
3545 memset(&iwe, 0, sizeof(iwe));
3546 iwe.cmd = SIOCGIWFREQ;
3547 iwe.u.freq.m = ieee80211_frequency_to_channel(freq: bss->pub.channel->center_freq);
3548 iwe.u.freq.e = 0;
3549 current_ev = iwe_stream_add_event_check(info, stream: current_ev, ends: end_buf, iwe: &iwe,
3550 IW_EV_FREQ_LEN);
3551 if (IS_ERR(ptr: current_ev))
3552 return current_ev;
3553
3554 memset(&iwe, 0, sizeof(iwe));
3555 iwe.cmd = SIOCGIWFREQ;
3556 iwe.u.freq.m = bss->pub.channel->center_freq;
3557 iwe.u.freq.e = 6;
3558 current_ev = iwe_stream_add_event_check(info, stream: current_ev, ends: end_buf, iwe: &iwe,
3559 IW_EV_FREQ_LEN);
3560 if (IS_ERR(ptr: current_ev))
3561 return current_ev;
3562
3563 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3564 memset(&iwe, 0, sizeof(iwe));
3565 iwe.cmd = IWEVQUAL;
3566 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3567 IW_QUAL_NOISE_INVALID |
3568 IW_QUAL_QUAL_UPDATED;
3569 switch (wiphy->signal_type) {
3570 case CFG80211_SIGNAL_TYPE_MBM:
3571 sig = bss->pub.signal / 100;
3572 iwe.u.qual.level = sig;
3573 iwe.u.qual.updated |= IW_QUAL_DBM;
3574 if (sig < -110) /* rather bad */
3575 sig = -110;
3576 else if (sig > -40) /* perfect */
3577 sig = -40;
3578 /* will give a range of 0 .. 70 */
3579 iwe.u.qual.qual = sig + 110;
3580 break;
3581 case CFG80211_SIGNAL_TYPE_UNSPEC:
3582 iwe.u.qual.level = bss->pub.signal;
3583 /* will give range 0 .. 100 */
3584 iwe.u.qual.qual = bss->pub.signal;
3585 break;
3586 default:
3587 /* not reached */
3588 break;
3589 }
3590 current_ev = iwe_stream_add_event_check(info, stream: current_ev,
3591 ends: end_buf, iwe: &iwe,
3592 IW_EV_QUAL_LEN);
3593 if (IS_ERR(ptr: current_ev))
3594 return current_ev;
3595 }
3596
3597 memset(&iwe, 0, sizeof(iwe));
3598 iwe.cmd = SIOCGIWENCODE;
3599 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3600 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3601 else
3602 iwe.u.data.flags = IW_ENCODE_DISABLED;
3603 iwe.u.data.length = 0;
3604 current_ev = iwe_stream_add_point_check(info, stream: current_ev, ends: end_buf,
3605 iwe: &iwe, extra: "");
3606 if (IS_ERR(ptr: current_ev))
3607 return current_ev;
3608
3609 rcu_read_lock();
3610 ies = rcu_dereference(bss->pub.ies);
3611 rem = ies->len;
3612 ie = ies->data;
3613
3614 while (rem >= 2) {
3615 /* invalid data */
3616 if (ie[1] > rem - 2)
3617 break;
3618
3619 switch (ie[0]) {
3620 case WLAN_EID_SSID:
3621 memset(&iwe, 0, sizeof(iwe));
3622 iwe.cmd = SIOCGIWESSID;
3623 iwe.u.data.length = ie[1];
3624 iwe.u.data.flags = 1;
3625 current_ev = iwe_stream_add_point_check(info,
3626 stream: current_ev,
3627 ends: end_buf, iwe: &iwe,
3628 extra: (u8 *)ie + 2);
3629 if (IS_ERR(ptr: current_ev))
3630 goto unlock;
3631 break;
3632 case WLAN_EID_MESH_ID:
3633 memset(&iwe, 0, sizeof(iwe));
3634 iwe.cmd = SIOCGIWESSID;
3635 iwe.u.data.length = ie[1];
3636 iwe.u.data.flags = 1;
3637 current_ev = iwe_stream_add_point_check(info,
3638 stream: current_ev,
3639 ends: end_buf, iwe: &iwe,
3640 extra: (u8 *)ie + 2);
3641 if (IS_ERR(ptr: current_ev))
3642 goto unlock;
3643 break;
3644 case WLAN_EID_MESH_CONFIG:
3645 ismesh = true;
3646 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3647 break;
3648 cfg = (u8 *)ie + 2;
3649 memset(&iwe, 0, sizeof(iwe));
3650 iwe.cmd = IWEVCUSTOM;
3651 iwe.u.data.length = sprintf(buf,
3652 fmt: "Mesh Network Path Selection Protocol ID: 0x%02X",
3653 cfg[0]);
3654 current_ev = iwe_stream_add_point_check(info,
3655 stream: current_ev,
3656 ends: end_buf,
3657 iwe: &iwe, extra: buf);
3658 if (IS_ERR(ptr: current_ev))
3659 goto unlock;
3660 iwe.u.data.length = sprintf(buf,
3661 fmt: "Path Selection Metric ID: 0x%02X",
3662 cfg[1]);
3663 current_ev = iwe_stream_add_point_check(info,
3664 stream: current_ev,
3665 ends: end_buf,
3666 iwe: &iwe, extra: buf);
3667 if (IS_ERR(ptr: current_ev))
3668 goto unlock;
3669 iwe.u.data.length = sprintf(buf,
3670 fmt: "Congestion Control Mode ID: 0x%02X",
3671 cfg[2]);
3672 current_ev = iwe_stream_add_point_check(info,
3673 stream: current_ev,
3674 ends: end_buf,
3675 iwe: &iwe, extra: buf);
3676 if (IS_ERR(ptr: current_ev))
3677 goto unlock;
3678 iwe.u.data.length = sprintf(buf,
3679 fmt: "Synchronization ID: 0x%02X",
3680 cfg[3]);
3681 current_ev = iwe_stream_add_point_check(info,
3682 stream: current_ev,
3683 ends: end_buf,
3684 iwe: &iwe, extra: buf);
3685 if (IS_ERR(ptr: current_ev))
3686 goto unlock;
3687 iwe.u.data.length = sprintf(buf,
3688 fmt: "Authentication ID: 0x%02X",
3689 cfg[4]);
3690 current_ev = iwe_stream_add_point_check(info,
3691 stream: current_ev,
3692 ends: end_buf,
3693 iwe: &iwe, extra: buf);
3694 if (IS_ERR(ptr: current_ev))
3695 goto unlock;
3696 iwe.u.data.length = sprintf(buf,
3697 fmt: "Formation Info: 0x%02X",
3698 cfg[5]);
3699 current_ev = iwe_stream_add_point_check(info,
3700 stream: current_ev,
3701 ends: end_buf,
3702 iwe: &iwe, extra: buf);
3703 if (IS_ERR(ptr: current_ev))
3704 goto unlock;
3705 iwe.u.data.length = sprintf(buf,
3706 fmt: "Capabilities: 0x%02X",
3707 cfg[6]);
3708 current_ev = iwe_stream_add_point_check(info,
3709 stream: current_ev,
3710 ends: end_buf,
3711 iwe: &iwe, extra: buf);
3712 if (IS_ERR(ptr: current_ev))
3713 goto unlock;
3714 break;
3715 case WLAN_EID_SUPP_RATES:
3716 case WLAN_EID_EXT_SUPP_RATES:
3717 /* display all supported rates in readable format */
3718 p = current_ev + iwe_stream_lcp_len(info);
3719
3720 memset(&iwe, 0, sizeof(iwe));
3721 iwe.cmd = SIOCGIWRATE;
3722 /* Those two flags are ignored... */
3723 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3724
3725 for (i = 0; i < ie[1]; i++) {
3726 iwe.u.bitrate.value =
3727 ((ie[i + 2] & 0x7f) * 500000);
3728 tmp = p;
3729 p = iwe_stream_add_value(info, event: current_ev, value: p,
3730 ends: end_buf, iwe: &iwe,
3731 IW_EV_PARAM_LEN);
3732 if (p == tmp) {
3733 current_ev = ERR_PTR(error: -E2BIG);
3734 goto unlock;
3735 }
3736 }
3737 current_ev = p;
3738 break;
3739 }
3740 rem -= ie[1] + 2;
3741 ie += ie[1] + 2;
3742 }
3743
3744 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3745 ismesh) {
3746 memset(&iwe, 0, sizeof(iwe));
3747 iwe.cmd = SIOCGIWMODE;
3748 if (ismesh)
3749 iwe.u.mode = IW_MODE_MESH;
3750 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3751 iwe.u.mode = IW_MODE_MASTER;
3752 else
3753 iwe.u.mode = IW_MODE_ADHOC;
3754 current_ev = iwe_stream_add_event_check(info, stream: current_ev,
3755 ends: end_buf, iwe: &iwe,
3756 IW_EV_UINT_LEN);
3757 if (IS_ERR(ptr: current_ev))
3758 goto unlock;
3759 }
3760
3761 memset(&iwe, 0, sizeof(iwe));
3762 iwe.cmd = IWEVCUSTOM;
3763 iwe.u.data.length = sprintf(buf, fmt: "tsf=%016llx",
3764 (unsigned long long)(ies->tsf));
3765 current_ev = iwe_stream_add_point_check(info, stream: current_ev, ends: end_buf,
3766 iwe: &iwe, extra: buf);
3767 if (IS_ERR(ptr: current_ev))
3768 goto unlock;
3769 memset(&iwe, 0, sizeof(iwe));
3770 iwe.cmd = IWEVCUSTOM;
3771 iwe.u.data.length = sprintf(buf, fmt: " Last beacon: %ums ago",
3772 elapsed_jiffies_msecs(start: bss->ts));
3773 current_ev = iwe_stream_add_point_check(info, stream: current_ev,
3774 ends: end_buf, iwe: &iwe, extra: buf);
3775 if (IS_ERR(ptr: current_ev))
3776 goto unlock;
3777
3778 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3779
3780 unlock:
3781 rcu_read_unlock();
3782 return current_ev;
3783}
3784
3785
3786static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3787 struct iw_request_info *info,
3788 char *buf, size_t len)
3789{
3790 char *current_ev = buf;
3791 char *end_buf = buf + len;
3792 struct cfg80211_internal_bss *bss;
3793 int err = 0;
3794
3795 spin_lock_bh(lock: &rdev->bss_lock);
3796 cfg80211_bss_expire(rdev);
3797
3798 list_for_each_entry(bss, &rdev->bss_list, list) {
3799 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3800 err = -E2BIG;
3801 break;
3802 }
3803 current_ev = ieee80211_bss(wiphy: &rdev->wiphy, info, bss,
3804 current_ev, end_buf);
3805 if (IS_ERR(ptr: current_ev)) {
3806 err = PTR_ERR(ptr: current_ev);
3807 break;
3808 }
3809 }
3810 spin_unlock_bh(lock: &rdev->bss_lock);
3811
3812 if (err)
3813 return err;
3814 return current_ev - buf;
3815}
3816
3817
3818int cfg80211_wext_giwscan(struct net_device *dev,
3819 struct iw_request_info *info,
3820 union iwreq_data *wrqu, char *extra)
3821{
3822 struct iw_point *data = &wrqu->data;
3823 struct cfg80211_registered_device *rdev;
3824 int res;
3825
3826 if (!netif_running(dev))
3827 return -ENETDOWN;
3828
3829 rdev = cfg80211_get_dev_from_ifindex(net: dev_net(dev), ifindex: dev->ifindex);
3830
3831 if (IS_ERR(ptr: rdev))
3832 return PTR_ERR(ptr: rdev);
3833
3834 if (rdev->scan_req || rdev->scan_msg)
3835 return -EAGAIN;
3836
3837 res = ieee80211_scan_results(rdev, info, buf: extra, len: data->length);
3838 data->length = 0;
3839 if (res >= 0) {
3840 data->length = res;
3841 res = 0;
3842 }
3843
3844 return res;
3845}
3846EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3847#endif
3848

source code of linux/net/wireless/scan.c