1//===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "FindTarget.h"
10#include "AST.h"
11#include "support/Logger.h"
12#include "clang/AST/ASTConcept.h"
13#include "clang/AST/ASTTypeTraits.h"
14#include "clang/AST/Decl.h"
15#include "clang/AST/DeclBase.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/DeclarationName.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprConcepts.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/NestedNameSpecifier.h"
25#include "clang/AST/PrettyPrinter.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TemplateBase.h"
29#include "clang/AST/Type.h"
30#include "clang/AST/TypeLoc.h"
31#include "clang/AST/TypeLocVisitor.h"
32#include "clang/AST/TypeVisitor.h"
33#include "clang/Basic/LangOptions.h"
34#include "clang/Basic/SourceLocation.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/Specifiers.h"
37#include "clang/Sema/HeuristicResolver.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/Support/Casting.h"
42#include "llvm/Support/Compiler.h"
43#include "llvm/Support/raw_ostream.h"
44#include <iterator>
45#include <string>
46#include <utility>
47#include <vector>
48
49namespace clang {
50namespace clangd {
51namespace {
52
53LLVM_ATTRIBUTE_UNUSED std::string nodeToString(const DynTypedNode &N) {
54 std::string S = std::string(N.getNodeKind().asStringRef());
55 {
56 llvm::raw_string_ostream OS(S);
57 OS << ": ";
58 N.print(OS, PP: PrintingPolicy(LangOptions()));
59 }
60 llvm::replace(Range&: S, OldValue: '\n', NewValue: ' ');
61 return S;
62}
63
64const NamedDecl *getTemplatePattern(const NamedDecl *D) {
65 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(Val: D)) {
66 if (const auto *Result = CRD->getTemplateInstantiationPattern())
67 return Result;
68 // getTemplateInstantiationPattern returns null if the Specialization is
69 // incomplete (e.g. the type didn't need to be complete), fall back to the
70 // primary template.
71 if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
72 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: CRD))
73 return Spec->getSpecializedTemplate()->getTemplatedDecl();
74 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) {
75 return FD->getTemplateInstantiationPattern();
76 } else if (auto *VD = dyn_cast<VarDecl>(Val: D)) {
77 // Hmm: getTIP returns its arg if it's not an instantiation?!
78 VarDecl *T = VD->getTemplateInstantiationPattern();
79 return (T == D) ? nullptr : T;
80 } else if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) {
81 return ED->getInstantiatedFromMemberEnum();
82 } else if (isa<FieldDecl>(Val: D) || isa<TypedefNameDecl>(Val: D)) {
83 if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
84 if (const DeclContext *ParentPat =
85 dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
86 for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
87 if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
88 return BaseND;
89 } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(Val: D)) {
90 if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
91 if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
92 for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
93 return BaseECD;
94 }
95 }
96 }
97 return nullptr;
98}
99
100// Returns true if the `TypedefNameDecl` should not be reported.
101bool shouldSkipTypedef(const TypedefNameDecl *TD) {
102 // These should be treated as keywords rather than decls - the typedef is an
103 // odd implementation detail.
104 if (TD == TD->getASTContext().getObjCInstanceTypeDecl() ||
105 TD == TD->getASTContext().getObjCIdDecl())
106 return true;
107 return false;
108}
109
110// TargetFinder locates the entities that an AST node refers to.
111//
112// Typically this is (possibly) one declaration and (possibly) one type, but
113// may be more:
114// - for ambiguous nodes like OverloadExpr
115// - if we want to include e.g. both typedefs and the underlying type
116//
117// This is organized as a set of mutually recursive helpers for particular node
118// types, but for most nodes this is a short walk rather than a deep traversal.
119//
120// It's tempting to do e.g. typedef resolution as a second normalization step,
121// after finding the 'primary' decl etc. But we do this monolithically instead
122// because:
123// - normalization may require these traversals again (e.g. unwrapping a
124// typedef reveals a decltype which must be traversed)
125// - it doesn't simplify that much, e.g. the first stage must still be able
126// to yield multiple decls to handle OverloadExpr
127// - there are cases where it's required for correctness. e.g:
128// template<class X> using pvec = vector<x*>; pvec<int> x;
129// There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
130// and both are lossy. We must know upfront what the caller ultimately wants.
131struct TargetFinder {
132 using RelSet = DeclRelationSet;
133 using Rel = DeclRelation;
134
135private:
136 const HeuristicResolver *Resolver;
137 llvm::SmallDenseMap<const NamedDecl *,
138 std::pair<RelSet, /*InsertionOrder*/ size_t>>
139 Decls;
140 llvm::SmallDenseMap<const Decl *, RelSet> Seen;
141 RelSet Flags;
142
143 template <typename T> void debug(T &Node, RelSet Flags) {
144 dlog("visit [{0}] {1}", Flags, nodeToString(DynTypedNode::create(Node)));
145 }
146
147 void report(const NamedDecl *D, RelSet Flags) {
148 dlog("--> [{0}] {1}", Flags, nodeToString(DynTypedNode::create(*D)));
149 auto It = Decls.try_emplace(Key: D, Args: std::make_pair(x&: Flags, y: Decls.size()));
150 // If already exists, update the flags.
151 if (!It.second)
152 It.first->second.first |= Flags;
153 }
154
155public:
156 TargetFinder(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
157
158 llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
159 using ValTy = std::pair<const NamedDecl *, RelSet>;
160 llvm::SmallVector<ValTy, 1> Result;
161 Result.resize(N: Decls.size());
162 for (const auto &Elem : Decls)
163 Result[Elem.second.second] = {Elem.first, Elem.second.first};
164 return Result;
165 }
166
167 void add(const Decl *Dcl, RelSet Flags) {
168 const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Val: Dcl);
169 if (!D)
170 return;
171 debug(Node: *D, Flags);
172
173 // Avoid recursion (which can arise in the presence of heuristic
174 // resolution of dependent names) by exiting early if we have
175 // already seen this decl with all flags in Flags.
176 auto Res = Seen.try_emplace(D);
177 if (!Res.second && Res.first->second.contains(Flags))
178 return;
179 Res.first->second |= Flags;
180
181 if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(Val: D))
182 D = UDD->getNominatedNamespaceAsWritten();
183
184 if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(Val: D)) {
185 add(T: TND->getUnderlyingType(), Flags: Flags | Rel::Underlying);
186 Flags |= Rel::Alias; // continue with the alias.
187 } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(Val: D)) {
188 // no Underlying as this is a non-renaming alias.
189 for (const UsingShadowDecl *S : UD->shadows())
190 add(S->getUnderlyingDecl(), Flags);
191 Flags |= Rel::Alias; // continue with the alias.
192 } else if (const UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(Val: D)) {
193 // UsingEnumDecl is not an alias at all, just a reference.
194 D = UED->getEnumDecl();
195 } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(Val: D)) {
196 add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
197 Flags |= Rel::Alias; // continue with the alias
198 } else if (const UnresolvedUsingValueDecl *UUVD =
199 dyn_cast<UnresolvedUsingValueDecl>(Val: D)) {
200 if (Resolver) {
201 for (const NamedDecl *Target : Resolver->resolveUsingValueDecl(UUVD)) {
202 add(Target, Flags); // no Underlying as this is a non-renaming alias
203 }
204 }
205 Flags |= Rel::Alias; // continue with the alias
206 } else if (isa<UnresolvedUsingTypenameDecl>(Val: D)) {
207 // FIXME: improve common dependent scope using name lookup in primary
208 // templates.
209 Flags |= Rel::Alias;
210 } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(Val: D)) {
211 // Include the introducing UsingDecl, but don't traverse it. This may end
212 // up including *all* shadows, which we don't want.
213 // Don't apply this logic to UsingEnumDecl, which can't easily be
214 // conflated with the aliases it introduces.
215 if (llvm::isa<UsingDecl>(Val: USD->getIntroducer()))
216 report(USD->getIntroducer(), Flags | Rel::Alias);
217 // Shadow decls are synthetic and not themselves interesting.
218 // Record the underlying decl instead, if allowed.
219 D = USD->getTargetDecl();
220 } else if (const auto *DG = dyn_cast<CXXDeductionGuideDecl>(Val: D)) {
221 D = DG->getDeducedTemplate();
222 } else if (const ObjCImplementationDecl *IID =
223 dyn_cast<ObjCImplementationDecl>(Val: D)) {
224 // Treat ObjC{Interface,Implementation}Decl as if they were a decl/def
225 // pair as long as the interface isn't implicit.
226 if (const auto *CID = IID->getClassInterface())
227 if (const auto *DD = CID->getDefinition())
228 if (!DD->isImplicitInterfaceDecl())
229 D = DD;
230 } else if (const ObjCCategoryImplDecl *CID =
231 dyn_cast<ObjCCategoryImplDecl>(Val: D)) {
232 // Treat ObjC{Category,CategoryImpl}Decl as if they were a decl/def pair.
233 D = CID->getCategoryDecl();
234 }
235 if (!D)
236 return;
237
238 if (const Decl *Pat = getTemplatePattern(D)) {
239 assert(Pat != D);
240 add(Dcl: Pat, Flags: Flags | Rel::TemplatePattern);
241 // Now continue with the instantiation.
242 Flags |= Rel::TemplateInstantiation;
243 }
244
245 report(D, Flags);
246 }
247
248 void add(const Stmt *S, RelSet Flags) {
249 if (!S)
250 return;
251 debug(Node: *S, Flags);
252 struct Visitor : public ConstStmtVisitor<Visitor> {
253 TargetFinder &Outer;
254 RelSet Flags;
255 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
256
257 void VisitCallExpr(const CallExpr *CE) {
258 Outer.add(Dcl: CE->getCalleeDecl(), Flags);
259 }
260 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
261 Outer.add(CR: E->getConceptReference(), Flags);
262 }
263 void VisitDeclRefExpr(const DeclRefExpr *DRE) {
264 const Decl *D = DRE->getDecl();
265 // UsingShadowDecl allows us to record the UsingDecl.
266 // getFoundDecl() returns the wrong thing in other cases (templates).
267 if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(Val: DRE->getFoundDecl()))
268 D = USD;
269 Outer.add(Dcl: D, Flags);
270 }
271 void VisitMemberExpr(const MemberExpr *ME) {
272 const Decl *D = ME->getMemberDecl();
273 if (auto *USD =
274 llvm::dyn_cast<UsingShadowDecl>(Val: ME->getFoundDecl().getDecl()))
275 D = USD;
276 Outer.add(Dcl: D, Flags);
277 }
278 void VisitOverloadExpr(const OverloadExpr *OE) {
279 for (auto *D : OE->decls())
280 Outer.add(D, Flags);
281 }
282 void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
283 Outer.add(SE->getPack(), Flags);
284 }
285 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
286 Outer.add(CCE->getConstructor(), Flags);
287 }
288 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
289 for (const DesignatedInitExpr::Designator &D :
290 llvm::reverse(C: DIE->designators()))
291 if (D.isFieldDesignator()) {
292 Outer.add(D.getFieldDecl(), Flags);
293 // We don't know which designator was intended, we assume the outer.
294 break;
295 }
296 }
297 void VisitGotoStmt(const GotoStmt *Goto) {
298 if (auto *LabelDecl = Goto->getLabel())
299 Outer.add(LabelDecl, Flags);
300 }
301 void VisitLabelStmt(const LabelStmt *Label) {
302 if (auto *LabelDecl = Label->getDecl())
303 Outer.add(LabelDecl, Flags);
304 }
305 void
306 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
307 if (Outer.Resolver) {
308 for (const NamedDecl *D : Outer.Resolver->resolveMemberExpr(ME: E)) {
309 Outer.add(D, Flags);
310 }
311 }
312 }
313 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
314 if (Outer.Resolver) {
315 for (const NamedDecl *D : Outer.Resolver->resolveDeclRefExpr(RE: E)) {
316 Outer.add(D, Flags);
317 }
318 }
319 }
320 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
321 Outer.add(OIRE->getDecl(), Flags);
322 }
323 void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
324 Outer.add(OME->getMethodDecl(), Flags);
325 }
326 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
327 if (OPRE->isExplicitProperty())
328 Outer.add(OPRE->getExplicitProperty(), Flags);
329 else {
330 if (OPRE->isMessagingGetter())
331 Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
332 if (OPRE->isMessagingSetter())
333 Outer.add(OPRE->getImplicitPropertySetter(), Flags);
334 }
335 }
336 void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
337 Outer.add(OPE->getProtocol(), Flags);
338 }
339 void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
340 Outer.add(OVE->getSourceExpr(), Flags);
341 }
342 void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
343 Outer.add(POE->getSyntacticForm(), Flags);
344 }
345 void VisitCXXNewExpr(const CXXNewExpr *CNE) {
346 Outer.add(CNE->getOperatorNew(), Flags);
347 }
348 void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE) {
349 Outer.add(CDE->getOperatorDelete(), Flags);
350 }
351 void
352 VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) {
353 Outer.add(RBO->getDecomposedForm().InnerBinOp, Flags);
354 }
355 };
356 Visitor(*this, Flags).Visit(S);
357 }
358
359 void add(QualType T, RelSet Flags) {
360 if (T.isNull())
361 return;
362 debug(Node&: T, Flags);
363 struct Visitor : public TypeVisitor<Visitor> {
364 TargetFinder &Outer;
365 RelSet Flags;
366 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
367
368 void VisitTagType(const TagType *TT) {
369 Outer.add(TT->getAsTagDecl(), Flags);
370 }
371
372 void VisitElaboratedType(const ElaboratedType *ET) {
373 Outer.add(T: ET->desugar(), Flags);
374 }
375
376 void VisitUsingType(const UsingType *ET) {
377 Outer.add(ET->getFoundDecl(), Flags);
378 }
379
380 void VisitInjectedClassNameType(const InjectedClassNameType *ICNT) {
381 Outer.add(ICNT->getDecl(), Flags);
382 }
383
384 void VisitDecltypeType(const DecltypeType *DTT) {
385 Outer.add(T: DTT->getUnderlyingType(), Flags: Flags | Rel::Underlying);
386 }
387 void VisitDeducedType(const DeducedType *DT) {
388 // FIXME: In practice this doesn't work: the AutoType you find inside
389 // TypeLoc never has a deduced type. https://llvm.org/PR42914
390 Outer.add(T: DT->getDeducedType(), Flags);
391 }
392 void VisitUnresolvedUsingType(const UnresolvedUsingType *UUT) {
393 Outer.add(UUT->getDecl(), Flags);
394 }
395 void VisitDeducedTemplateSpecializationType(
396 const DeducedTemplateSpecializationType *DTST) {
397 if (const auto *USD = DTST->getTemplateName().getAsUsingShadowDecl())
398 Outer.add(USD, Flags);
399
400 // FIXME: This is a workaround for https://llvm.org/PR42914,
401 // which is causing DTST->getDeducedType() to be empty. We
402 // fall back to the template pattern and miss the instantiation
403 // even when it's known in principle. Once that bug is fixed,
404 // the following code can be removed (the existing handling in
405 // VisitDeducedType() is sufficient).
406 if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
407 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
408 }
409 void VisitDependentNameType(const DependentNameType *DNT) {
410 if (Outer.Resolver) {
411 for (const NamedDecl *ND :
412 Outer.Resolver->resolveDependentNameType(DNT)) {
413 Outer.add(ND, Flags);
414 }
415 }
416 }
417 void VisitDependentTemplateSpecializationType(
418 const DependentTemplateSpecializationType *DTST) {
419 if (Outer.Resolver) {
420 for (const NamedDecl *ND :
421 Outer.Resolver->resolveTemplateSpecializationType(DTST)) {
422 Outer.add(ND, Flags);
423 }
424 }
425 }
426 void VisitTypedefType(const TypedefType *TT) {
427 if (shouldSkipTypedef(TD: TT->getDecl()))
428 return;
429 Outer.add(TT->getDecl(), Flags);
430 }
431 void
432 VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
433 // Have to handle these case-by-case.
434
435 if (const auto *UTN = TST->getTemplateName().getAsUsingShadowDecl())
436 Outer.add(UTN, Flags);
437
438 // templated type aliases: there's no specialized/instantiated using
439 // decl to point to. So try to find a decl for the underlying type
440 // (after substitution), and failing that point to the (templated) using
441 // decl.
442 if (TST->isTypeAlias()) {
443 Outer.add(T: TST->getAliasedType(), Flags: Flags | Rel::Underlying);
444 // Don't *traverse* the alias, which would result in traversing the
445 // template of the underlying type.
446
447 TemplateDecl *TD = TST->getTemplateName().getAsTemplateDecl();
448 // Builtin templates e.g. __make_integer_seq, __type_pack_element
449 // are such that they don't have alias *decls*. Even then, we still
450 // traverse their desugared *types* so that instantiated decls are
451 // collected.
452 if (llvm::isa<BuiltinTemplateDecl>(Val: TD))
453 return;
454 Outer.report(D: TD->getTemplatedDecl(),
455 Flags: Flags | Rel::Alias | Rel::TemplatePattern);
456 }
457 // specializations of template template parameters aren't instantiated
458 // into decls, so they must refer to the parameter itself.
459 else if (const auto *Parm =
460 llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
461 Val: TST->getTemplateName().getAsTemplateDecl()))
462 Outer.add(Parm, Flags);
463 // class template specializations have a (specialized) CXXRecordDecl.
464 else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
465 Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
466 else {
467 // fallback: the (un-specialized) declaration from primary template.
468 if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
469 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
470 }
471 }
472 void
473 VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *STTPT) {
474 Outer.add(T: STTPT->getReplacementType(), Flags);
475 }
476 void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
477 Outer.add(TTPT->getDecl(), Flags);
478 }
479 void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
480 Outer.add(OIT->getDecl(), Flags);
481 }
482 };
483 Visitor(*this, Flags).Visit(T: T.getTypePtr());
484 }
485
486 void add(const NestedNameSpecifier *NNS, RelSet Flags) {
487 if (!NNS)
488 return;
489 debug(Node: *NNS, Flags);
490 switch (NNS->getKind()) {
491 case NestedNameSpecifier::Namespace:
492 add(NNS->getAsNamespace(), Flags);
493 return;
494 case NestedNameSpecifier::NamespaceAlias:
495 add(NNS->getAsNamespaceAlias(), Flags);
496 return;
497 case NestedNameSpecifier::Identifier:
498 if (Resolver) {
499 add(T: Resolver->resolveNestedNameSpecifierToType(NNS), Flags);
500 }
501 return;
502 case NestedNameSpecifier::TypeSpec:
503 add(T: QualType(NNS->getAsType(), 0), Flags);
504 return;
505 case NestedNameSpecifier::Global:
506 // This should be TUDecl, but we can't get a pointer to it!
507 return;
508 case NestedNameSpecifier::Super:
509 add(NNS->getAsRecordDecl(), Flags);
510 return;
511 }
512 llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
513 }
514
515 void add(const CXXCtorInitializer *CCI, RelSet Flags) {
516 if (!CCI)
517 return;
518 debug(Node: *CCI, Flags);
519
520 if (CCI->isAnyMemberInitializer())
521 add(CCI->getAnyMember(), Flags);
522 // Constructor calls contain a TypeLoc node, so we don't handle them here.
523 }
524
525 void add(const TemplateArgument &Arg, RelSet Flags) {
526 // Only used for template template arguments.
527 // For type and non-type template arguments, SelectionTree
528 // will hit a more specific node (e.g. a TypeLoc or a
529 // DeclRefExpr).
530 if (Arg.getKind() == TemplateArgument::Template ||
531 Arg.getKind() == TemplateArgument::TemplateExpansion) {
532 if (TemplateDecl *TD =
533 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) {
534 report(TD, Flags);
535 }
536 if (const auto *USD =
537 Arg.getAsTemplateOrTemplatePattern().getAsUsingShadowDecl())
538 add(USD, Flags);
539 }
540 }
541
542 void add(const ConceptReference *CR, RelSet Flags) {
543 add(CR->getNamedConcept(), Flags);
544 }
545};
546
547} // namespace
548
549llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
550allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver) {
551 dlog("allTargetDecls({0})", nodeToString(N));
552 TargetFinder Finder(Resolver);
553 DeclRelationSet Flags;
554 if (const Decl *D = N.get<Decl>())
555 Finder.add(Dcl: D, Flags);
556 else if (const Stmt *S = N.get<Stmt>())
557 Finder.add(S, Flags);
558 else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
559 Finder.add(NNS: NNSL->getNestedNameSpecifier(), Flags);
560 else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
561 Finder.add(NNS, Flags);
562 else if (const TypeLoc *TL = N.get<TypeLoc>())
563 Finder.add(T: TL->getType(), Flags);
564 else if (const QualType *QT = N.get<QualType>())
565 Finder.add(T: *QT, Flags);
566 else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
567 Finder.add(CCI, Flags);
568 else if (const TemplateArgumentLoc *TAL = N.get<TemplateArgumentLoc>())
569 Finder.add(Arg: TAL->getArgument(), Flags);
570 else if (const CXXBaseSpecifier *CBS = N.get<CXXBaseSpecifier>())
571 Finder.add(T: CBS->getTypeSourceInfo()->getType(), Flags);
572 else if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
573 Finder.add(PL->getProtocol(), Flags);
574 else if (const ConceptReference *CR = N.get<ConceptReference>())
575 Finder.add(CR, Flags);
576 return Finder.takeDecls();
577}
578
579llvm::SmallVector<const NamedDecl *, 1>
580targetDecl(const DynTypedNode &N, DeclRelationSet Mask,
581 const HeuristicResolver *Resolver) {
582 llvm::SmallVector<const NamedDecl *, 1> Result;
583 for (const auto &Entry : allTargetDecls(N, Resolver)) {
584 if (!(Entry.second & ~Mask))
585 Result.push_back(Elt: Entry.first);
586 }
587 return Result;
588}
589
590llvm::SmallVector<const NamedDecl *, 1>
591explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask,
592 const HeuristicResolver *Resolver) {
593 assert(!(Mask & (DeclRelation::TemplatePattern |
594 DeclRelation::TemplateInstantiation)) &&
595 "explicitReferenceTargets handles templates on its own");
596 auto Decls = allTargetDecls(N, Resolver);
597
598 // We prefer to return template instantiation, but fallback to template
599 // pattern if instantiation is not available.
600 Mask |= DeclRelation::TemplatePattern | DeclRelation::TemplateInstantiation;
601
602 llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
603 llvm::SmallVector<const NamedDecl *, 1> Targets;
604 bool SeenTemplateInstantiations = false;
605 for (auto &D : Decls) {
606 if (D.second & ~Mask)
607 continue;
608 if (D.second & DeclRelation::TemplatePattern) {
609 TemplatePatterns.push_back(Elt: D.first);
610 continue;
611 }
612 if (D.second & DeclRelation::TemplateInstantiation)
613 SeenTemplateInstantiations = true;
614 Targets.push_back(Elt: D.first);
615 }
616 if (!SeenTemplateInstantiations)
617 Targets.insert(I: Targets.end(), From: TemplatePatterns.begin(),
618 To: TemplatePatterns.end());
619 return Targets;
620}
621
622namespace {
623llvm::SmallVector<ReferenceLoc> refInDecl(const Decl *D,
624 const HeuristicResolver *Resolver) {
625 struct Visitor : ConstDeclVisitor<Visitor> {
626 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
627
628 const HeuristicResolver *Resolver;
629 llvm::SmallVector<ReferenceLoc> Refs;
630
631 void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
632 // We want to keep it as non-declaration references, as the
633 // "using namespace" declaration doesn't have a name.
634 Refs.push_back(Elt: ReferenceLoc{.Qualifier: D->getQualifierLoc(),
635 .NameLoc: D->getIdentLocation(),
636 /*IsDecl=*/false,
637 .Targets: {D->getNominatedNamespaceAsWritten()}});
638 }
639
640 void VisitUsingDecl(const UsingDecl *D) {
641 // "using ns::identifier;" is a non-declaration reference.
642 Refs.push_back(Elt: ReferenceLoc{
643 D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
644 explicitReferenceTargets(N: DynTypedNode::create(Node: *D),
645 Mask: DeclRelation::Underlying, Resolver)});
646 }
647
648 void VisitUsingEnumDecl(const UsingEnumDecl *D) {
649 // "using enum ns::E" is a non-declaration reference.
650 // The reference is covered by the embedded typeloc.
651 // Don't use the default VisitNamedDecl, which would report a declaration.
652 }
653
654 void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
655 // For namespace alias, "namespace Foo = Target;", we add two references.
656 // Add a declaration reference for Foo.
657 VisitNamedDecl(D);
658 // Add a non-declaration reference for Target.
659 Refs.push_back(Elt: ReferenceLoc{.Qualifier: D->getQualifierLoc(),
660 .NameLoc: D->getTargetNameLoc(),
661 /*IsDecl=*/false,
662 .Targets: {D->getAliasedNamespace()}});
663 }
664
665 void VisitNamedDecl(const NamedDecl *ND) {
666 // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
667 // as their underlying decls, covering the same range, will be visited.
668 if (llvm::isa<ClassTemplateDecl>(Val: ND) ||
669 llvm::isa<FunctionTemplateDecl>(Val: ND) ||
670 llvm::isa<VarTemplateDecl>(Val: ND) ||
671 llvm::isa<TypeAliasTemplateDecl>(Val: ND))
672 return;
673 // FIXME: decide on how to surface destructors when we need them.
674 if (llvm::isa<CXXDestructorDecl>(Val: ND))
675 return;
676 // Filter anonymous decls, name location will point outside the name token
677 // and the clients are not prepared to handle that.
678 if (ND->getDeclName().isIdentifier() &&
679 !ND->getDeclName().getAsIdentifierInfo())
680 return;
681 Refs.push_back(Elt: ReferenceLoc{getQualifierLoc(ND: *ND),
682 ND->getLocation(),
683 /*IsDecl=*/true,
684 {ND}});
685 }
686
687 void VisitCXXDeductionGuideDecl(const CXXDeductionGuideDecl *DG) {
688 // The class template name in a deduction guide targets the class
689 // template.
690 Refs.push_back(Elt: ReferenceLoc{DG->getQualifierLoc(),
691 DG->getNameInfo().getLoc(),
692 /*IsDecl=*/false,
693 {DG->getDeducedTemplate()}});
694 }
695
696 void VisitObjCMethodDecl(const ObjCMethodDecl *OMD) {
697 // The name may have several tokens, we can only report the first.
698 Refs.push_back(Elt: ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
699 .NameLoc: OMD->getSelectorStartLoc(),
700 /*IsDecl=*/true,
701 {OMD}});
702 }
703
704 void VisitObjCCategoryDecl(const ObjCCategoryDecl *OCD) {
705 // getLocation is the extended class's location, not the category's.
706 Refs.push_back(Elt: ReferenceLoc{NestedNameSpecifierLoc(),
707 OCD->getLocation(),
708 /*IsDecl=*/false,
709 {OCD->getClassInterface()}});
710 Refs.push_back(Elt: ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
711 .NameLoc: OCD->getCategoryNameLoc(),
712 /*IsDecl=*/true,
713 {OCD}});
714 }
715
716 void VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *OCID) {
717 Refs.push_back(Elt: ReferenceLoc{NestedNameSpecifierLoc(),
718 OCID->getLocation(),
719 /*IsDecl=*/false,
720 {OCID->getClassInterface()}});
721 Refs.push_back(Elt: ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
722 .NameLoc: OCID->getCategoryNameLoc(),
723 /*IsDecl=*/false,
724 {OCID->getCategoryDecl()}});
725 Refs.push_back(Elt: ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
726 .NameLoc: OCID->getCategoryNameLoc(),
727 /*IsDecl=*/true,
728 {OCID}});
729 }
730
731 void VisitObjCImplementationDecl(const ObjCImplementationDecl *OIMD) {
732 Refs.push_back(Elt: ReferenceLoc{NestedNameSpecifierLoc(),
733 OIMD->getLocation(),
734 /*IsDecl=*/false,
735 {OIMD->getClassInterface()}});
736 Refs.push_back(Elt: ReferenceLoc{NestedNameSpecifierLoc(),
737 OIMD->getLocation(),
738 /*IsDecl=*/true,
739 {OIMD}});
740 }
741 };
742
743 Visitor V{Resolver};
744 V.Visit(D);
745 return V.Refs;
746}
747
748llvm::SmallVector<ReferenceLoc> refInStmt(const Stmt *S,
749 const HeuristicResolver *Resolver) {
750 struct Visitor : ConstStmtVisitor<Visitor> {
751 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
752
753 const HeuristicResolver *Resolver;
754 // FIXME: handle more complicated cases: more ObjC, designated initializers.
755 llvm::SmallVector<ReferenceLoc> Refs;
756
757 void VisitDeclRefExpr(const DeclRefExpr *E) {
758 Refs.push_back(Elt: ReferenceLoc{.Qualifier: E->getQualifierLoc(),
759 .NameLoc: E->getNameInfo().getLoc(),
760 /*IsDecl=*/false,
761 .Targets: {E->getFoundDecl()}});
762 }
763
764 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
765 Refs.push_back(Elt: ReferenceLoc{
766 .Qualifier: E->getQualifierLoc(), .NameLoc: E->getNameInfo().getLoc(), /*IsDecl=*/false,
767 .Targets: explicitReferenceTargets(N: DynTypedNode::create(Node: *E), Mask: {}, Resolver)});
768 }
769
770 void VisitMemberExpr(const MemberExpr *E) {
771 // Skip destructor calls to avoid duplication: TypeLoc within will be
772 // visited separately.
773 if (llvm::isa<CXXDestructorDecl>(Val: E->getFoundDecl().getDecl()))
774 return;
775 Refs.push_back(Elt: ReferenceLoc{.Qualifier: E->getQualifierLoc(),
776 .NameLoc: E->getMemberNameInfo().getLoc(),
777 /*IsDecl=*/false,
778 .Targets: {E->getFoundDecl()}});
779 }
780
781 void
782 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
783 Refs.push_back(Elt: ReferenceLoc{
784 .Qualifier: E->getQualifierLoc(), .NameLoc: E->getMemberNameInfo().getLoc(),
785 /*IsDecl=*/false,
786 .Targets: explicitReferenceTargets(N: DynTypedNode::create(Node: *E), Mask: {}, Resolver)});
787 }
788
789 void VisitOverloadExpr(const OverloadExpr *E) {
790 Refs.push_back(Elt: ReferenceLoc{.Qualifier: E->getQualifierLoc(),
791 .NameLoc: E->getNameInfo().getLoc(),
792 /*IsDecl=*/false,
793 .Targets: llvm::SmallVector<const NamedDecl *, 1>(
794 E->decls().begin(), E->decls().end())});
795 }
796
797 void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
798 Refs.push_back(Elt: ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
799 .NameLoc: E->getPackLoc(),
800 /*IsDecl=*/false,
801 .Targets: {E->getPack()}});
802 }
803
804 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
805 Refs.push_back(Elt: ReferenceLoc{
806 .Qualifier: NestedNameSpecifierLoc(), .NameLoc: E->getLocation(),
807 /*IsDecl=*/false,
808 // Select the getter, setter, or @property depending on the call.
809 .Targets: explicitReferenceTargets(N: DynTypedNode::create(Node: *E), Mask: {}, Resolver)});
810 }
811
812 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
813 Refs.push_back(Elt: ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
814 .NameLoc: OIRE->getLocation(),
815 /*IsDecl=*/false,
816 {OIRE->getDecl()}});
817 }
818
819 void VisitObjCMessageExpr(const ObjCMessageExpr *E) {
820 // The name may have several tokens, we can only report the first.
821 Refs.push_back(Elt: ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
822 .NameLoc: E->getSelectorStartLoc(),
823 /*IsDecl=*/false,
824 {E->getMethodDecl()}});
825 }
826
827 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
828 for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
829 if (!D.isFieldDesignator())
830 continue;
831
832 Refs.push_back(Elt: ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
833 .NameLoc: D.getFieldLoc(),
834 /*IsDecl=*/false,
835 {D.getFieldDecl()}});
836 }
837 }
838
839 void VisitGotoStmt(const GotoStmt *GS) {
840 Refs.push_back(Elt: ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
841 .NameLoc: GS->getLabelLoc(),
842 /*IsDecl=*/false,
843 {GS->getLabel()}});
844 }
845
846 void VisitLabelStmt(const LabelStmt *LS) {
847 Refs.push_back(Elt: ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
848 .NameLoc: LS->getIdentLoc(),
849 /*IsDecl=*/true,
850 {LS->getDecl()}});
851 }
852 };
853
854 Visitor V{Resolver};
855 V.Visit(S);
856 return V.Refs;
857}
858
859llvm::SmallVector<ReferenceLoc>
860refInTypeLoc(TypeLoc L, const HeuristicResolver *Resolver) {
861 struct Visitor : TypeLocVisitor<Visitor> {
862 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
863
864 const HeuristicResolver *Resolver;
865 llvm::SmallVector<ReferenceLoc> Refs;
866
867 void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
868 // We only know about qualifier, rest if filled by inner locations.
869 size_t InitialSize = Refs.size();
870 Visit(TyLoc: L.getNamedTypeLoc().getUnqualifiedLoc());
871 size_t NewSize = Refs.size();
872 // Add qualifier for the newly-added refs.
873 for (unsigned I = InitialSize; I < NewSize; ++I) {
874 ReferenceLoc *Ref = &Refs[I];
875 // Fill in the qualifier.
876 assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
877 Ref->Qualifier = L.getQualifierLoc();
878 }
879 }
880
881 void VisitUsingTypeLoc(UsingTypeLoc L) {
882 Refs.push_back(Elt: ReferenceLoc{NestedNameSpecifierLoc(),
883 L.getLocalSourceRange().getBegin(),
884 /*IsDecl=*/false,
885 {L.getFoundDecl()}});
886 }
887
888 void VisitTagTypeLoc(TagTypeLoc L) {
889 Refs.push_back(Elt: ReferenceLoc{NestedNameSpecifierLoc(),
890 L.getNameLoc(),
891 /*IsDecl=*/false,
892 {L.getDecl()}});
893 }
894
895 void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
896 Refs.push_back(Elt: ReferenceLoc{NestedNameSpecifierLoc(),
897 L.getNameLoc(),
898 /*IsDecl=*/false,
899 {L.getDecl()}});
900 }
901
902 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
903 // We must ensure template type aliases are included in results if they
904 // were written in the source code, e.g. in
905 // template <class T> using valias = vector<T>;
906 // ^valias<int> x;
907 // 'explicitReferenceTargets' will return:
908 // 1. valias with mask 'Alias'.
909 // 2. 'vector<int>' with mask 'Underlying'.
910 // we want to return only #1 in this case.
911 Refs.push_back(Elt: ReferenceLoc{
912 NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
913 explicitReferenceTargets(DynTypedNode::create(L.getType()),
914 DeclRelation::Alias, Resolver)});
915 }
916 void VisitDeducedTemplateSpecializationTypeLoc(
917 DeducedTemplateSpecializationTypeLoc L) {
918 Refs.push_back(Elt: ReferenceLoc{
919 NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
920 explicitReferenceTargets(DynTypedNode::create(L.getType()),
921 DeclRelation::Alias, Resolver)});
922 }
923
924 void VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
925 Refs.push_back(Elt: ReferenceLoc{NestedNameSpecifierLoc(),
926 TL.getNameLoc(),
927 /*IsDecl=*/false,
928 {TL.getDecl()}});
929 }
930
931 void VisitDependentTemplateSpecializationTypeLoc(
932 DependentTemplateSpecializationTypeLoc L) {
933 Refs.push_back(
934 Elt: ReferenceLoc{L.getQualifierLoc(), L.getTemplateNameLoc(),
935 /*IsDecl=*/false,
936 explicitReferenceTargets(
937 DynTypedNode::create(L.getType()), {}, Resolver)});
938 }
939
940 void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
941 Refs.push_back(
942 Elt: ReferenceLoc{L.getQualifierLoc(), L.getNameLoc(),
943 /*IsDecl=*/false,
944 explicitReferenceTargets(
945 DynTypedNode::create(L.getType()), {}, Resolver)});
946 }
947
948 void VisitTypedefTypeLoc(TypedefTypeLoc L) {
949 if (shouldSkipTypedef(TD: L.getTypedefNameDecl()))
950 return;
951 Refs.push_back(Elt: ReferenceLoc{NestedNameSpecifierLoc(),
952 L.getNameLoc(),
953 /*IsDecl=*/false,
954 {L.getTypedefNameDecl()}});
955 }
956
957 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc L) {
958 Refs.push_back(Elt: ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
959 .NameLoc: L.getNameLoc(),
960 /*IsDecl=*/false,
961 {L.getIFaceDecl()}});
962 }
963 };
964
965 Visitor V{Resolver};
966 V.Visit(TyLoc: L.getUnqualifiedLoc());
967 return V.Refs;
968}
969
970class ExplicitReferenceCollector
971 : public RecursiveASTVisitor<ExplicitReferenceCollector> {
972public:
973 ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out,
974 const HeuristicResolver *Resolver)
975 : Out(Out), Resolver(Resolver) {
976 assert(Out);
977 }
978
979 bool VisitTypeLoc(TypeLoc TTL) {
980 if (TypeLocsToSkip.count(V: TTL.getBeginLoc()))
981 return true;
982 visitNode(N: DynTypedNode::create(Node: TTL));
983 return true;
984 }
985
986 bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
987 // ElaboratedTypeLoc will reports information for its inner type loc.
988 // Otherwise we loose information about inner types loc's qualifier.
989 TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
990 if (L.getBeginLoc() == Inner.getBeginLoc())
991 return RecursiveASTVisitor::TraverseTypeLoc(TL: Inner);
992 else
993 TypeLocsToSkip.insert(V: Inner.getBeginLoc());
994 return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
995 }
996
997 bool VisitStmt(Stmt *S) {
998 visitNode(N: DynTypedNode::create(Node: *S));
999 return true;
1000 }
1001
1002 bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
1003 visitNode(N: DynTypedNode::create(Node: *OVE));
1004 // Not clear why the source expression is skipped by default...
1005 // FIXME: can we just make RecursiveASTVisitor do this?
1006 return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
1007 }
1008
1009 bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
1010 visitNode(N: DynTypedNode::create(Node: *POE));
1011 // Traverse only the syntactic form to find the *written* references.
1012 // (The semantic form also contains lots of duplication)
1013 return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
1014 }
1015
1016 // We re-define Traverse*, since there's no corresponding Visit*.
1017 // TemplateArgumentLoc is the only way to get locations for references to
1018 // template template parameters.
1019 bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
1020 switch (A.getArgument().getKind()) {
1021 case TemplateArgument::Template:
1022 case TemplateArgument::TemplateExpansion:
1023 reportReference(Ref: ReferenceLoc{.Qualifier: A.getTemplateQualifierLoc(),
1024 .NameLoc: A.getTemplateNameLoc(),
1025 /*IsDecl=*/false,
1026 {A.getArgument()
1027 .getAsTemplateOrTemplatePattern()
1028 .getAsTemplateDecl()}},
1029 N: DynTypedNode::create(Node: A.getArgument()));
1030 break;
1031 case TemplateArgument::Declaration:
1032 break; // FIXME: can this actually happen in TemplateArgumentLoc?
1033 case TemplateArgument::Integral:
1034 case TemplateArgument::Null:
1035 case TemplateArgument::NullPtr:
1036 break; // no references.
1037 case TemplateArgument::Pack:
1038 case TemplateArgument::Type:
1039 case TemplateArgument::Expression:
1040 case TemplateArgument::StructuralValue:
1041 break; // Handled by VisitType and VisitExpression.
1042 };
1043 return RecursiveASTVisitor::TraverseTemplateArgumentLoc(ArgLoc: A);
1044 }
1045
1046 bool VisitDecl(Decl *D) {
1047 visitNode(N: DynTypedNode::create(Node: *D));
1048 return true;
1049 }
1050
1051 // We have to use Traverse* because there is no corresponding Visit*.
1052 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
1053 if (!L.getNestedNameSpecifier())
1054 return true;
1055 visitNode(N: DynTypedNode::create(Node: L));
1056 // Inner type is missing information about its qualifier, skip it.
1057 if (auto TL = L.getTypeLoc())
1058 TypeLocsToSkip.insert(V: TL.getBeginLoc());
1059 return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(NNS: L);
1060 }
1061
1062 bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc) {
1063 visitNode(N: DynTypedNode::create(Node: ProtocolLoc));
1064 return true;
1065 }
1066
1067 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
1068 visitNode(N: DynTypedNode::create(Node: *Init));
1069 return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
1070 }
1071
1072 bool VisitConceptReference(const ConceptReference *CR) {
1073 visitNode(N: DynTypedNode::create(Node: *CR));
1074 return true;
1075 }
1076
1077private:
1078 /// Obtain information about a reference directly defined in \p N. Does not
1079 /// recurse into child nodes, e.g. do not expect references for constructor
1080 /// initializers
1081 ///
1082 /// Any of the fields in the returned structure can be empty, but not all of
1083 /// them, e.g.
1084 /// - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
1085 /// source location information may be missing,
1086 /// - for dependent code, targets may be empty.
1087 ///
1088 /// (!) For the purposes of this function declarations are not considered to
1089 /// be references. However, declarations can have references inside them,
1090 /// e.g. 'namespace foo = std' references namespace 'std' and this
1091 /// function will return the corresponding reference.
1092 llvm::SmallVector<ReferenceLoc> explicitReference(DynTypedNode N) {
1093 if (auto *D = N.get<Decl>())
1094 return refInDecl(D, Resolver);
1095 if (auto *S = N.get<Stmt>())
1096 return refInStmt(S, Resolver);
1097 if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
1098 // (!) 'DeclRelation::Alias' ensures we do not loose namespace aliases.
1099 return {ReferenceLoc{
1100 .Qualifier: NNSL->getPrefix(), .NameLoc: NNSL->getLocalBeginLoc(), .IsDecl: false,
1101 .Targets: explicitReferenceTargets(
1102 N: DynTypedNode::create(Node: *NNSL->getNestedNameSpecifier()),
1103 Mask: DeclRelation::Alias, Resolver)}};
1104 }
1105 if (const TypeLoc *TL = N.get<TypeLoc>())
1106 return refInTypeLoc(L: *TL, Resolver);
1107 if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
1108 // Other type initializers (e.g. base initializer) are handled by visiting
1109 // the typeLoc.
1110 if (CCI->isAnyMemberInitializer()) {
1111 return {ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
1112 .NameLoc: CCI->getMemberLocation(),
1113 /*IsDecl=*/false,
1114 {CCI->getAnyMember()}}};
1115 }
1116 }
1117 if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
1118 return {ReferenceLoc{.Qualifier: NestedNameSpecifierLoc(),
1119 .NameLoc: PL->getLocation(),
1120 /*IsDecl=*/false,
1121 {PL->getProtocol()}}};
1122 if (const ConceptReference *CR = N.get<ConceptReference>())
1123 return {ReferenceLoc{.Qualifier: CR->getNestedNameSpecifierLoc(),
1124 .NameLoc: CR->getConceptNameLoc(),
1125 /*IsDecl=*/false,
1126 {CR->getNamedConcept()}}};
1127
1128 // We do not have location information for other nodes (QualType, etc)
1129 return {};
1130 }
1131
1132 void visitNode(DynTypedNode N) {
1133 for (auto &R : explicitReference(N))
1134 reportReference(Ref: std::move(R), N);
1135 }
1136
1137 void reportReference(ReferenceLoc &&Ref, DynTypedNode N) {
1138 // Strip null targets that can arise from invalid code.
1139 // (This avoids having to check for null everywhere we insert)
1140 llvm::erase(C&: Ref.Targets, V: nullptr);
1141 // Our promise is to return only references from the source code. If we lack
1142 // location information, skip these nodes.
1143 // Normally this should not happen in practice, unless there are bugs in the
1144 // traversals or users started the traversal at an implicit node.
1145 if (Ref.NameLoc.isInvalid()) {
1146 dlog("invalid location at node {0}", nodeToString(N));
1147 return;
1148 }
1149 Out(Ref);
1150 }
1151
1152 llvm::function_ref<void(ReferenceLoc)> Out;
1153 const HeuristicResolver *Resolver;
1154 /// TypeLocs starting at these locations must be skipped, see
1155 /// TraverseElaboratedTypeSpecifierLoc for details.
1156 llvm::DenseSet<SourceLocation> TypeLocsToSkip;
1157};
1158} // namespace
1159
1160void findExplicitReferences(const Stmt *S,
1161 llvm::function_ref<void(ReferenceLoc)> Out,
1162 const HeuristicResolver *Resolver) {
1163 assert(S);
1164 ExplicitReferenceCollector(Out, Resolver).TraverseStmt(S: const_cast<Stmt *>(S));
1165}
1166void findExplicitReferences(const Decl *D,
1167 llvm::function_ref<void(ReferenceLoc)> Out,
1168 const HeuristicResolver *Resolver) {
1169 assert(D);
1170 ExplicitReferenceCollector(Out, Resolver).TraverseDecl(D: const_cast<Decl *>(D));
1171}
1172void findExplicitReferences(const ASTContext &AST,
1173 llvm::function_ref<void(ReferenceLoc)> Out,
1174 const HeuristicResolver *Resolver) {
1175 ExplicitReferenceCollector(Out, Resolver)
1176 .TraverseAST(AST&: const_cast<ASTContext &>(AST));
1177}
1178
1179llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
1180 switch (R) {
1181#define REL_CASE(X) \
1182 case DeclRelation::X: \
1183 return OS << #X;
1184 REL_CASE(Alias);
1185 REL_CASE(Underlying);
1186 REL_CASE(TemplateInstantiation);
1187 REL_CASE(TemplatePattern);
1188#undef REL_CASE
1189 }
1190 llvm_unreachable("Unhandled DeclRelation enum");
1191}
1192llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
1193 const char *Sep = "";
1194 for (unsigned I = 0; I < RS.S.size(); ++I) {
1195 if (RS.S.test(position: I)) {
1196 OS << Sep << static_cast<DeclRelation>(I);
1197 Sep = "|";
1198 }
1199 }
1200 return OS;
1201}
1202
1203llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
1204 // note we cannot print R.NameLoc without a source manager.
1205 OS << "targets = {";
1206 llvm::SmallVector<std::string> Targets;
1207 for (const NamedDecl *T : R.Targets) {
1208 llvm::raw_string_ostream Target(Targets.emplace_back());
1209 Target << printQualifiedName(ND: *T) << printTemplateSpecializationArgs(ND: *T);
1210 }
1211 llvm::sort(C&: Targets);
1212 OS << llvm::join(R&: Targets, Separator: ", ");
1213 OS << "}";
1214 if (R.Qualifier) {
1215 OS << ", qualifier = '";
1216 R.Qualifier.getNestedNameSpecifier()->print(OS,
1217 Policy: PrintingPolicy(LangOptions()));
1218 OS << "'";
1219 }
1220 if (R.IsDecl)
1221 OS << ", decl";
1222 return OS;
1223}
1224
1225} // namespace clangd
1226} // namespace clang
1227

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of clang-tools-extra/clangd/FindTarget.cpp