| 1 | //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the ASTContext interface. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/AST/ASTContext.h" |
| 14 | #include "ByteCode/Context.h" |
| 15 | #include "CXXABI.h" |
| 16 | #include "clang/AST/APValue.h" |
| 17 | #include "clang/AST/ASTConcept.h" |
| 18 | #include "clang/AST/ASTMutationListener.h" |
| 19 | #include "clang/AST/ASTStructuralEquivalence.h" |
| 20 | #include "clang/AST/ASTTypeTraits.h" |
| 21 | #include "clang/AST/Attr.h" |
| 22 | #include "clang/AST/AttrIterator.h" |
| 23 | #include "clang/AST/CharUnits.h" |
| 24 | #include "clang/AST/Comment.h" |
| 25 | #include "clang/AST/Decl.h" |
| 26 | #include "clang/AST/DeclBase.h" |
| 27 | #include "clang/AST/DeclCXX.h" |
| 28 | #include "clang/AST/DeclContextInternals.h" |
| 29 | #include "clang/AST/DeclObjC.h" |
| 30 | #include "clang/AST/DeclOpenMP.h" |
| 31 | #include "clang/AST/DeclTemplate.h" |
| 32 | #include "clang/AST/DeclarationName.h" |
| 33 | #include "clang/AST/DependenceFlags.h" |
| 34 | #include "clang/AST/Expr.h" |
| 35 | #include "clang/AST/ExprCXX.h" |
| 36 | #include "clang/AST/ExternalASTSource.h" |
| 37 | #include "clang/AST/Mangle.h" |
| 38 | #include "clang/AST/MangleNumberingContext.h" |
| 39 | #include "clang/AST/NestedNameSpecifier.h" |
| 40 | #include "clang/AST/ParentMapContext.h" |
| 41 | #include "clang/AST/RawCommentList.h" |
| 42 | #include "clang/AST/RecordLayout.h" |
| 43 | #include "clang/AST/Stmt.h" |
| 44 | #include "clang/AST/TemplateBase.h" |
| 45 | #include "clang/AST/TemplateName.h" |
| 46 | #include "clang/AST/Type.h" |
| 47 | #include "clang/AST/TypeLoc.h" |
| 48 | #include "clang/AST/UnresolvedSet.h" |
| 49 | #include "clang/AST/VTableBuilder.h" |
| 50 | #include "clang/Basic/AddressSpaces.h" |
| 51 | #include "clang/Basic/Builtins.h" |
| 52 | #include "clang/Basic/CommentOptions.h" |
| 53 | #include "clang/Basic/ExceptionSpecificationType.h" |
| 54 | #include "clang/Basic/IdentifierTable.h" |
| 55 | #include "clang/Basic/LLVM.h" |
| 56 | #include "clang/Basic/LangOptions.h" |
| 57 | #include "clang/Basic/Linkage.h" |
| 58 | #include "clang/Basic/Module.h" |
| 59 | #include "clang/Basic/NoSanitizeList.h" |
| 60 | #include "clang/Basic/ObjCRuntime.h" |
| 61 | #include "clang/Basic/ProfileList.h" |
| 62 | #include "clang/Basic/SourceLocation.h" |
| 63 | #include "clang/Basic/SourceManager.h" |
| 64 | #include "clang/Basic/Specifiers.h" |
| 65 | #include "clang/Basic/TargetCXXABI.h" |
| 66 | #include "clang/Basic/TargetInfo.h" |
| 67 | #include "clang/Basic/XRayLists.h" |
| 68 | #include "llvm/ADT/APFixedPoint.h" |
| 69 | #include "llvm/ADT/APInt.h" |
| 70 | #include "llvm/ADT/APSInt.h" |
| 71 | #include "llvm/ADT/ArrayRef.h" |
| 72 | #include "llvm/ADT/DenseMap.h" |
| 73 | #include "llvm/ADT/DenseSet.h" |
| 74 | #include "llvm/ADT/FoldingSet.h" |
| 75 | #include "llvm/ADT/PointerUnion.h" |
| 76 | #include "llvm/ADT/STLExtras.h" |
| 77 | #include "llvm/ADT/SmallPtrSet.h" |
| 78 | #include "llvm/ADT/SmallVector.h" |
| 79 | #include "llvm/ADT/StringExtras.h" |
| 80 | #include "llvm/ADT/StringRef.h" |
| 81 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
| 82 | #include "llvm/Support/Capacity.h" |
| 83 | #include "llvm/Support/Compiler.h" |
| 84 | #include "llvm/Support/ErrorHandling.h" |
| 85 | #include "llvm/Support/MD5.h" |
| 86 | #include "llvm/Support/MathExtras.h" |
| 87 | #include "llvm/Support/SipHash.h" |
| 88 | #include "llvm/Support/raw_ostream.h" |
| 89 | #include "llvm/TargetParser/AArch64TargetParser.h" |
| 90 | #include "llvm/TargetParser/Triple.h" |
| 91 | #include <algorithm> |
| 92 | #include <cassert> |
| 93 | #include <cstddef> |
| 94 | #include <cstdint> |
| 95 | #include <cstdlib> |
| 96 | #include <map> |
| 97 | #include <memory> |
| 98 | #include <optional> |
| 99 | #include <string> |
| 100 | #include <tuple> |
| 101 | #include <utility> |
| 102 | |
| 103 | using namespace clang; |
| 104 | |
| 105 | enum FloatingRank { |
| 106 | BFloat16Rank, |
| 107 | Float16Rank, |
| 108 | HalfRank, |
| 109 | FloatRank, |
| 110 | DoubleRank, |
| 111 | LongDoubleRank, |
| 112 | Float128Rank, |
| 113 | Ibm128Rank |
| 114 | }; |
| 115 | |
| 116 | template <> struct llvm::DenseMapInfo<llvm::FoldingSetNodeID> { |
| 117 | static FoldingSetNodeID getEmptyKey() { return FoldingSetNodeID{}; } |
| 118 | |
| 119 | static FoldingSetNodeID getTombstoneKey() { |
| 120 | FoldingSetNodeID id; |
| 121 | for (size_t i = 0; i < sizeof(id) / sizeof(unsigned); ++i) { |
| 122 | id.AddInteger(I: std::numeric_limits<unsigned>::max()); |
| 123 | } |
| 124 | return id; |
| 125 | } |
| 126 | |
| 127 | static unsigned getHashValue(const FoldingSetNodeID &Val) { |
| 128 | return Val.ComputeHash(); |
| 129 | } |
| 130 | |
| 131 | static bool isEqual(const FoldingSetNodeID &LHS, |
| 132 | const FoldingSetNodeID &RHS) { |
| 133 | return LHS == RHS; |
| 134 | } |
| 135 | }; |
| 136 | |
| 137 | /// \returns The locations that are relevant when searching for Doc comments |
| 138 | /// related to \p D. |
| 139 | static SmallVector<SourceLocation, 2> |
| 140 | (const Decl *D, SourceManager &SourceMgr) { |
| 141 | assert(D); |
| 142 | |
| 143 | // User can not attach documentation to implicit declarations. |
| 144 | if (D->isImplicit()) |
| 145 | return {}; |
| 146 | |
| 147 | // User can not attach documentation to implicit instantiations. |
| 148 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 149 | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| 150 | return {}; |
| 151 | } |
| 152 | |
| 153 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
| 154 | if (VD->isStaticDataMember() && |
| 155 | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| 156 | return {}; |
| 157 | } |
| 158 | |
| 159 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(Val: D)) { |
| 160 | if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| 161 | return {}; |
| 162 | } |
| 163 | |
| 164 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: D)) { |
| 165 | TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); |
| 166 | if (TSK == TSK_ImplicitInstantiation || |
| 167 | TSK == TSK_Undeclared) |
| 168 | return {}; |
| 169 | } |
| 170 | |
| 171 | if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) { |
| 172 | if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| 173 | return {}; |
| 174 | } |
| 175 | if (const auto *TD = dyn_cast<TagDecl>(Val: D)) { |
| 176 | // When tag declaration (but not definition!) is part of the |
| 177 | // decl-specifier-seq of some other declaration, it doesn't get comment |
| 178 | if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) |
| 179 | return {}; |
| 180 | } |
| 181 | // TODO: handle comments for function parameters properly. |
| 182 | if (isa<ParmVarDecl>(Val: D)) |
| 183 | return {}; |
| 184 | |
| 185 | // TODO: we could look up template parameter documentation in the template |
| 186 | // documentation. |
| 187 | if (isa<TemplateTypeParmDecl>(Val: D) || |
| 188 | isa<NonTypeTemplateParmDecl>(Val: D) || |
| 189 | isa<TemplateTemplateParmDecl>(Val: D)) |
| 190 | return {}; |
| 191 | |
| 192 | SmallVector<SourceLocation, 2> Locations; |
| 193 | // Find declaration location. |
| 194 | // For Objective-C declarations we generally don't expect to have multiple |
| 195 | // declarators, thus use declaration starting location as the "declaration |
| 196 | // location". |
| 197 | // For all other declarations multiple declarators are used quite frequently, |
| 198 | // so we use the location of the identifier as the "declaration location". |
| 199 | SourceLocation BaseLocation; |
| 200 | if (isa<ObjCMethodDecl>(Val: D) || isa<ObjCContainerDecl>(Val: D) || |
| 201 | isa<ObjCPropertyDecl>(Val: D) || isa<RedeclarableTemplateDecl>(Val: D) || |
| 202 | isa<ClassTemplateSpecializationDecl>(Val: D) || |
| 203 | // Allow association with Y across {} in `typedef struct X {} Y`. |
| 204 | isa<TypedefDecl>(Val: D)) |
| 205 | BaseLocation = D->getBeginLoc(); |
| 206 | else |
| 207 | BaseLocation = D->getLocation(); |
| 208 | |
| 209 | if (!D->getLocation().isMacroID()) { |
| 210 | Locations.emplace_back(Args&: BaseLocation); |
| 211 | } else { |
| 212 | const auto *DeclCtx = D->getDeclContext(); |
| 213 | |
| 214 | // When encountering definitions generated from a macro (that are not |
| 215 | // contained by another declaration in the macro) we need to try and find |
| 216 | // the comment at the location of the expansion but if there is no comment |
| 217 | // there we should retry to see if there is a comment inside the macro as |
| 218 | // well. To this end we return first BaseLocation to first look at the |
| 219 | // expansion site, the second value is the spelling location of the |
| 220 | // beginning of the declaration defined inside the macro. |
| 221 | if (!(DeclCtx && |
| 222 | Decl::castFromDeclContext(DeclCtx)->getLocation().isMacroID())) { |
| 223 | Locations.emplace_back(Args: SourceMgr.getExpansionLoc(Loc: BaseLocation)); |
| 224 | } |
| 225 | |
| 226 | // We use Decl::getBeginLoc() and not just BaseLocation here to ensure that |
| 227 | // we don't refer to the macro argument location at the expansion site (this |
| 228 | // can happen if the name's spelling is provided via macro argument), and |
| 229 | // always to the declaration itself. |
| 230 | Locations.emplace_back(Args: SourceMgr.getSpellingLoc(Loc: D->getBeginLoc())); |
| 231 | } |
| 232 | |
| 233 | return Locations; |
| 234 | } |
| 235 | |
| 236 | RawComment *ASTContext::( |
| 237 | const Decl *D, const SourceLocation RepresentativeLocForDecl, |
| 238 | const std::map<unsigned, RawComment *> &) const { |
| 239 | // If the declaration doesn't map directly to a location in a file, we |
| 240 | // can't find the comment. |
| 241 | if (RepresentativeLocForDecl.isInvalid() || |
| 242 | !RepresentativeLocForDecl.isFileID()) |
| 243 | return nullptr; |
| 244 | |
| 245 | // If there are no comments anywhere, we won't find anything. |
| 246 | if (CommentsInTheFile.empty()) |
| 247 | return nullptr; |
| 248 | |
| 249 | // Decompose the location for the declaration and find the beginning of the |
| 250 | // file buffer. |
| 251 | const std::pair<FileID, unsigned> DeclLocDecomp = |
| 252 | SourceMgr.getDecomposedLoc(Loc: RepresentativeLocForDecl); |
| 253 | |
| 254 | // Slow path. |
| 255 | auto = |
| 256 | CommentsInTheFile.lower_bound(x: DeclLocDecomp.second); |
| 257 | |
| 258 | // First check whether we have a trailing comment. |
| 259 | if (OffsetCommentBehindDecl != CommentsInTheFile.end()) { |
| 260 | RawComment * = OffsetCommentBehindDecl->second; |
| 261 | if ((CommentBehindDecl->isDocumentation() || |
| 262 | LangOpts.CommentOpts.ParseAllComments) && |
| 263 | CommentBehindDecl->isTrailingComment() && |
| 264 | (isa<FieldDecl>(Val: D) || isa<EnumConstantDecl>(Val: D) || isa<VarDecl>(Val: D) || |
| 265 | isa<ObjCMethodDecl>(Val: D) || isa<ObjCPropertyDecl>(Val: D))) { |
| 266 | |
| 267 | // Check that Doxygen trailing comment comes after the declaration, starts |
| 268 | // on the same line and in the same file as the declaration. |
| 269 | if (SourceMgr.getLineNumber(FID: DeclLocDecomp.first, FilePos: DeclLocDecomp.second) == |
| 270 | Comments.getCommentBeginLine(C: CommentBehindDecl, File: DeclLocDecomp.first, |
| 271 | Offset: OffsetCommentBehindDecl->first)) { |
| 272 | return CommentBehindDecl; |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | // The comment just after the declaration was not a trailing comment. |
| 278 | // Let's look at the previous comment. |
| 279 | if (OffsetCommentBehindDecl == CommentsInTheFile.begin()) |
| 280 | return nullptr; |
| 281 | |
| 282 | auto = --OffsetCommentBehindDecl; |
| 283 | RawComment * = OffsetCommentBeforeDecl->second; |
| 284 | |
| 285 | // Check that we actually have a non-member Doxygen comment. |
| 286 | if (!(CommentBeforeDecl->isDocumentation() || |
| 287 | LangOpts.CommentOpts.ParseAllComments) || |
| 288 | CommentBeforeDecl->isTrailingComment()) |
| 289 | return nullptr; |
| 290 | |
| 291 | // Decompose the end of the comment. |
| 292 | const unsigned = |
| 293 | Comments.getCommentEndOffset(C: CommentBeforeDecl); |
| 294 | |
| 295 | // Get the corresponding buffer. |
| 296 | bool Invalid = false; |
| 297 | const char *Buffer = SourceMgr.getBufferData(FID: DeclLocDecomp.first, |
| 298 | Invalid: &Invalid).data(); |
| 299 | if (Invalid) |
| 300 | return nullptr; |
| 301 | |
| 302 | // Extract text between the comment and declaration. |
| 303 | StringRef Text(Buffer + CommentEndOffset, |
| 304 | DeclLocDecomp.second - CommentEndOffset); |
| 305 | |
| 306 | // There should be no other declarations or preprocessor directives between |
| 307 | // comment and declaration. |
| 308 | if (Text.find_last_of(Chars: ";{}#@" ) != StringRef::npos) |
| 309 | return nullptr; |
| 310 | |
| 311 | return CommentBeforeDecl; |
| 312 | } |
| 313 | |
| 314 | RawComment *ASTContext::(const Decl *D) const { |
| 315 | const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr); |
| 316 | |
| 317 | for (const auto DeclLoc : DeclLocs) { |
| 318 | // If the declaration doesn't map directly to a location in a file, we |
| 319 | // can't find the comment. |
| 320 | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) |
| 321 | continue; |
| 322 | |
| 323 | if (ExternalSource && !CommentsLoaded) { |
| 324 | ExternalSource->ReadComments(); |
| 325 | CommentsLoaded = true; |
| 326 | } |
| 327 | |
| 328 | if (Comments.empty()) |
| 329 | continue; |
| 330 | |
| 331 | const FileID File = SourceMgr.getDecomposedLoc(Loc: DeclLoc).first; |
| 332 | if (!File.isValid()) |
| 333 | continue; |
| 334 | |
| 335 | const auto = Comments.getCommentsInFile(File); |
| 336 | if (!CommentsInThisFile || CommentsInThisFile->empty()) |
| 337 | continue; |
| 338 | |
| 339 | if (RawComment * = |
| 340 | getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) |
| 341 | return Comment; |
| 342 | } |
| 343 | |
| 344 | return nullptr; |
| 345 | } |
| 346 | |
| 347 | void ASTContext::(const RawComment &RC) { |
| 348 | assert(LangOpts.RetainCommentsFromSystemHeaders || |
| 349 | !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin())); |
| 350 | Comments.addComment(RC, CommentOpts: LangOpts.CommentOpts, Allocator&: BumpAlloc); |
| 351 | } |
| 352 | |
| 353 | /// If we have a 'templated' declaration for a template, adjust 'D' to |
| 354 | /// refer to the actual template. |
| 355 | /// If we have an implicit instantiation, adjust 'D' to refer to template. |
| 356 | static const Decl &adjustDeclToTemplate(const Decl &D) { |
| 357 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: &D)) { |
| 358 | // Is this function declaration part of a function template? |
| 359 | if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) |
| 360 | return *FTD; |
| 361 | |
| 362 | // Nothing to do if function is not an implicit instantiation. |
| 363 | if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) |
| 364 | return D; |
| 365 | |
| 366 | // Function is an implicit instantiation of a function template? |
| 367 | if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) |
| 368 | return *FTD; |
| 369 | |
| 370 | // Function is instantiated from a member definition of a class template? |
| 371 | if (const FunctionDecl *MemberDecl = |
| 372 | FD->getInstantiatedFromMemberFunction()) |
| 373 | return *MemberDecl; |
| 374 | |
| 375 | return D; |
| 376 | } |
| 377 | if (const auto *VD = dyn_cast<VarDecl>(Val: &D)) { |
| 378 | // Static data member is instantiated from a member definition of a class |
| 379 | // template? |
| 380 | if (VD->isStaticDataMember()) |
| 381 | if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) |
| 382 | return *MemberDecl; |
| 383 | |
| 384 | return D; |
| 385 | } |
| 386 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(Val: &D)) { |
| 387 | // Is this class declaration part of a class template? |
| 388 | if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) |
| 389 | return *CTD; |
| 390 | |
| 391 | // Class is an implicit instantiation of a class template or partial |
| 392 | // specialization? |
| 393 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: CRD)) { |
| 394 | if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) |
| 395 | return D; |
| 396 | llvm::PointerUnion<ClassTemplateDecl *, |
| 397 | ClassTemplatePartialSpecializationDecl *> |
| 398 | PU = CTSD->getSpecializedTemplateOrPartial(); |
| 399 | return isa<ClassTemplateDecl *>(PU) |
| 400 | ? *static_cast<const Decl *>(cast<ClassTemplateDecl *>(PU)) |
| 401 | : *static_cast<const Decl *>( |
| 402 | cast<ClassTemplatePartialSpecializationDecl *>(PU)); |
| 403 | } |
| 404 | |
| 405 | // Class is instantiated from a member definition of a class template? |
| 406 | if (const MemberSpecializationInfo *Info = |
| 407 | CRD->getMemberSpecializationInfo()) |
| 408 | return *Info->getInstantiatedFrom(); |
| 409 | |
| 410 | return D; |
| 411 | } |
| 412 | if (const auto *ED = dyn_cast<EnumDecl>(Val: &D)) { |
| 413 | // Enum is instantiated from a member definition of a class template? |
| 414 | if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) |
| 415 | return *MemberDecl; |
| 416 | |
| 417 | return D; |
| 418 | } |
| 419 | // FIXME: Adjust alias templates? |
| 420 | return D; |
| 421 | } |
| 422 | |
| 423 | const RawComment *ASTContext::( |
| 424 | const Decl *D, |
| 425 | const Decl **OriginalDecl) const { |
| 426 | if (!D) { |
| 427 | if (OriginalDecl) |
| 428 | OriginalDecl = nullptr; |
| 429 | return nullptr; |
| 430 | } |
| 431 | |
| 432 | D = &adjustDeclToTemplate(D: *D); |
| 433 | |
| 434 | // Any comment directly attached to D? |
| 435 | { |
| 436 | auto = DeclRawComments.find(D); |
| 437 | if (DeclComment != DeclRawComments.end()) { |
| 438 | if (OriginalDecl) |
| 439 | *OriginalDecl = D; |
| 440 | return DeclComment->second; |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | // Any comment attached to any redeclaration of D? |
| 445 | const Decl *CanonicalD = D->getCanonicalDecl(); |
| 446 | if (!CanonicalD) |
| 447 | return nullptr; |
| 448 | |
| 449 | { |
| 450 | auto = RedeclChainComments.find(CanonicalD); |
| 451 | if (RedeclComment != RedeclChainComments.end()) { |
| 452 | if (OriginalDecl) |
| 453 | *OriginalDecl = RedeclComment->second; |
| 454 | auto = DeclRawComments.find(RedeclComment->second); |
| 455 | assert(CommentAtRedecl != DeclRawComments.end() && |
| 456 | "This decl is supposed to have comment attached." ); |
| 457 | return CommentAtRedecl->second; |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | // Any redeclarations of D that we haven't checked for comments yet? |
| 462 | const Decl *LastCheckedRedecl = [&]() { |
| 463 | const Decl *LastChecked = CommentlessRedeclChains.lookup(CanonicalD); |
| 464 | bool = false; |
| 465 | if (LastChecked) { |
| 466 | for (auto *Redecl : CanonicalD->redecls()) { |
| 467 | if (Redecl == D) { |
| 468 | CanUseCommentlessCache = true; |
| 469 | break; |
| 470 | } |
| 471 | if (Redecl == LastChecked) |
| 472 | break; |
| 473 | } |
| 474 | } |
| 475 | // FIXME: This could be improved so that even if CanUseCommentlessCache |
| 476 | // is false, once we've traversed past CanonicalD we still skip ahead |
| 477 | // LastChecked. |
| 478 | return CanUseCommentlessCache ? LastChecked : nullptr; |
| 479 | }(); |
| 480 | |
| 481 | for (const Decl *Redecl : D->redecls()) { |
| 482 | assert(Redecl); |
| 483 | // Skip all redeclarations that have been checked previously. |
| 484 | if (LastCheckedRedecl) { |
| 485 | if (LastCheckedRedecl == Redecl) { |
| 486 | LastCheckedRedecl = nullptr; |
| 487 | } |
| 488 | continue; |
| 489 | } |
| 490 | const RawComment * = getRawCommentForDeclNoCache(D: Redecl); |
| 491 | if (RedeclComment) { |
| 492 | cacheRawCommentForDecl(OriginalD: *Redecl, Comment: *RedeclComment); |
| 493 | if (OriginalDecl) |
| 494 | *OriginalDecl = Redecl; |
| 495 | return RedeclComment; |
| 496 | } |
| 497 | CommentlessRedeclChains[CanonicalD] = Redecl; |
| 498 | } |
| 499 | |
| 500 | if (OriginalDecl) |
| 501 | *OriginalDecl = nullptr; |
| 502 | return nullptr; |
| 503 | } |
| 504 | |
| 505 | void ASTContext::(const Decl &OriginalD, |
| 506 | const RawComment &) const { |
| 507 | assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments); |
| 508 | DeclRawComments.try_emplace(&OriginalD, &Comment); |
| 509 | const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl(); |
| 510 | RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD); |
| 511 | CommentlessRedeclChains.erase(CanonicalDecl); |
| 512 | } |
| 513 | |
| 514 | static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, |
| 515 | SmallVectorImpl<const NamedDecl *> &Redeclared) { |
| 516 | const DeclContext *DC = ObjCMethod->getDeclContext(); |
| 517 | if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) { |
| 518 | const ObjCInterfaceDecl *ID = IMD->getClassInterface(); |
| 519 | if (!ID) |
| 520 | return; |
| 521 | // Add redeclared method here. |
| 522 | for (const auto *Ext : ID->known_extensions()) { |
| 523 | if (ObjCMethodDecl *RedeclaredMethod = |
| 524 | Ext->getMethod(ObjCMethod->getSelector(), |
| 525 | ObjCMethod->isInstanceMethod())) |
| 526 | Redeclared.push_back(RedeclaredMethod); |
| 527 | } |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | void ASTContext::(ArrayRef<Decl *> Decls, |
| 532 | const Preprocessor *PP) { |
| 533 | if (Comments.empty() || Decls.empty()) |
| 534 | return; |
| 535 | |
| 536 | FileID File; |
| 537 | for (const Decl *D : Decls) { |
| 538 | if (D->isInvalidDecl()) |
| 539 | continue; |
| 540 | |
| 541 | D = &adjustDeclToTemplate(D: *D); |
| 542 | SourceLocation Loc = D->getLocation(); |
| 543 | if (Loc.isValid()) { |
| 544 | // See if there are any new comments that are not attached to a decl. |
| 545 | // The location doesn't have to be precise - we care only about the file. |
| 546 | File = SourceMgr.getDecomposedLoc(Loc).first; |
| 547 | break; |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | if (File.isInvalid()) |
| 552 | return; |
| 553 | |
| 554 | auto = Comments.getCommentsInFile(File); |
| 555 | if (!CommentsInThisFile || CommentsInThisFile->empty() || |
| 556 | CommentsInThisFile->rbegin()->second->isAttached()) |
| 557 | return; |
| 558 | |
| 559 | // There is at least one comment not attached to a decl. |
| 560 | // Maybe it should be attached to one of Decls? |
| 561 | // |
| 562 | // Note that this way we pick up not only comments that precede the |
| 563 | // declaration, but also comments that *follow* the declaration -- thanks to |
| 564 | // the lookahead in the lexer: we've consumed the semicolon and looked |
| 565 | // ahead through comments. |
| 566 | for (const Decl *D : Decls) { |
| 567 | assert(D); |
| 568 | if (D->isInvalidDecl()) |
| 569 | continue; |
| 570 | |
| 571 | D = &adjustDeclToTemplate(D: *D); |
| 572 | |
| 573 | if (DeclRawComments.count(D) > 0) |
| 574 | continue; |
| 575 | |
| 576 | const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr); |
| 577 | |
| 578 | for (const auto DeclLoc : DeclLocs) { |
| 579 | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) |
| 580 | continue; |
| 581 | |
| 582 | if (RawComment *const = getRawCommentForDeclNoCacheImpl( |
| 583 | D, DeclLoc, *CommentsInThisFile)) { |
| 584 | cacheRawCommentForDecl(OriginalD: *D, Comment: *DocComment); |
| 585 | comments::FullComment *FC = DocComment->parse(Context: *this, PP, D); |
| 586 | ParsedComments[D->getCanonicalDecl()] = FC; |
| 587 | break; |
| 588 | } |
| 589 | } |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | comments::FullComment *ASTContext::(comments::FullComment *FC, |
| 594 | const Decl *D) const { |
| 595 | auto *ThisDeclInfo = new (*this) comments::DeclInfo; |
| 596 | ThisDeclInfo->CommentDecl = D; |
| 597 | ThisDeclInfo->IsFilled = false; |
| 598 | ThisDeclInfo->fill(); |
| 599 | ThisDeclInfo->CommentDecl = FC->getDecl(); |
| 600 | if (!ThisDeclInfo->TemplateParameters) |
| 601 | ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; |
| 602 | comments::FullComment *CFC = |
| 603 | new (*this) comments::FullComment(FC->getBlocks(), |
| 604 | ThisDeclInfo); |
| 605 | return CFC; |
| 606 | } |
| 607 | |
| 608 | comments::FullComment *ASTContext::(const Decl *D) const { |
| 609 | const RawComment *RC = getRawCommentForDeclNoCache(D); |
| 610 | return RC ? RC->parse(Context: *this, PP: nullptr, D) : nullptr; |
| 611 | } |
| 612 | |
| 613 | comments::FullComment *ASTContext::( |
| 614 | const Decl *D, |
| 615 | const Preprocessor *PP) const { |
| 616 | if (!D || D->isInvalidDecl()) |
| 617 | return nullptr; |
| 618 | D = &adjustDeclToTemplate(D: *D); |
| 619 | |
| 620 | const Decl *Canonical = D->getCanonicalDecl(); |
| 621 | llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = |
| 622 | ParsedComments.find(Canonical); |
| 623 | |
| 624 | if (Pos != ParsedComments.end()) { |
| 625 | if (Canonical != D) { |
| 626 | comments::FullComment *FC = Pos->second; |
| 627 | comments::FullComment *CFC = cloneFullComment(FC, D); |
| 628 | return CFC; |
| 629 | } |
| 630 | return Pos->second; |
| 631 | } |
| 632 | |
| 633 | const Decl *OriginalDecl = nullptr; |
| 634 | |
| 635 | const RawComment *RC = getRawCommentForAnyRedecl(D, OriginalDecl: &OriginalDecl); |
| 636 | if (!RC) { |
| 637 | if (isa<ObjCMethodDecl>(Val: D) || isa<FunctionDecl>(Val: D)) { |
| 638 | SmallVector<const NamedDecl*, 8> Overridden; |
| 639 | const auto *OMD = dyn_cast<ObjCMethodDecl>(Val: D); |
| 640 | if (OMD && OMD->isPropertyAccessor()) |
| 641 | if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) |
| 642 | if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) |
| 643 | return cloneFullComment(FC, D); |
| 644 | if (OMD) |
| 645 | addRedeclaredMethods(ObjCMethod: OMD, Redeclared&: Overridden); |
| 646 | getOverriddenMethods(Method: dyn_cast<NamedDecl>(Val: D), Overridden); |
| 647 | for (unsigned i = 0, e = Overridden.size(); i < e; i++) |
| 648 | if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) |
| 649 | return cloneFullComment(FC, D); |
| 650 | } |
| 651 | else if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) { |
| 652 | // Attach any tag type's documentation to its typedef if latter |
| 653 | // does not have one of its own. |
| 654 | QualType QT = TD->getUnderlyingType(); |
| 655 | if (const auto *TT = QT->getAs<TagType>()) |
| 656 | if (const Decl *TD = TT->getDecl()) |
| 657 | if (comments::FullComment *FC = getCommentForDecl(D: TD, PP)) |
| 658 | return cloneFullComment(FC, D); |
| 659 | } |
| 660 | else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(Val: D)) { |
| 661 | while (IC->getSuperClass()) { |
| 662 | IC = IC->getSuperClass(); |
| 663 | if (comments::FullComment *FC = getCommentForDecl(IC, PP)) |
| 664 | return cloneFullComment(FC, D); |
| 665 | } |
| 666 | } |
| 667 | else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: D)) { |
| 668 | if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) |
| 669 | if (comments::FullComment *FC = getCommentForDecl(IC, PP)) |
| 670 | return cloneFullComment(FC, D); |
| 671 | } |
| 672 | else if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
| 673 | if (!(RD = RD->getDefinition())) |
| 674 | return nullptr; |
| 675 | // Check non-virtual bases. |
| 676 | for (const auto &I : RD->bases()) { |
| 677 | if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) |
| 678 | continue; |
| 679 | QualType Ty = I.getType(); |
| 680 | if (Ty.isNull()) |
| 681 | continue; |
| 682 | if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { |
| 683 | if (!(NonVirtualBase= NonVirtualBase->getDefinition())) |
| 684 | continue; |
| 685 | |
| 686 | if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) |
| 687 | return cloneFullComment(FC, D); |
| 688 | } |
| 689 | } |
| 690 | // Check virtual bases. |
| 691 | for (const auto &I : RD->vbases()) { |
| 692 | if (I.getAccessSpecifier() != AS_public) |
| 693 | continue; |
| 694 | QualType Ty = I.getType(); |
| 695 | if (Ty.isNull()) |
| 696 | continue; |
| 697 | if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { |
| 698 | if (!(VirtualBase= VirtualBase->getDefinition())) |
| 699 | continue; |
| 700 | if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) |
| 701 | return cloneFullComment(FC, D); |
| 702 | } |
| 703 | } |
| 704 | } |
| 705 | return nullptr; |
| 706 | } |
| 707 | |
| 708 | // If the RawComment was attached to other redeclaration of this Decl, we |
| 709 | // should parse the comment in context of that other Decl. This is important |
| 710 | // because comments can contain references to parameter names which can be |
| 711 | // different across redeclarations. |
| 712 | if (D != OriginalDecl && OriginalDecl) |
| 713 | return getCommentForDecl(D: OriginalDecl, PP); |
| 714 | |
| 715 | comments::FullComment *FC = RC->parse(Context: *this, PP, D); |
| 716 | ParsedComments[Canonical] = FC; |
| 717 | return FC; |
| 718 | } |
| 719 | |
| 720 | void |
| 721 | ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, |
| 722 | const ASTContext &C, |
| 723 | TemplateTemplateParmDecl *Parm) { |
| 724 | ID.AddInteger(Parm->getDepth()); |
| 725 | ID.AddInteger(Parm->getPosition()); |
| 726 | ID.AddBoolean(B: Parm->isParameterPack()); |
| 727 | |
| 728 | TemplateParameterList *Params = Parm->getTemplateParameters(); |
| 729 | ID.AddInteger(I: Params->size()); |
| 730 | for (TemplateParameterList::const_iterator P = Params->begin(), |
| 731 | PEnd = Params->end(); |
| 732 | P != PEnd; ++P) { |
| 733 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { |
| 734 | ID.AddInteger(I: 0); |
| 735 | ID.AddBoolean(B: TTP->isParameterPack()); |
| 736 | ID.AddInteger( |
| 737 | TTP->getNumExpansionParameters().toInternalRepresentation()); |
| 738 | continue; |
| 739 | } |
| 740 | |
| 741 | if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
| 742 | ID.AddInteger(I: 1); |
| 743 | ID.AddBoolean(B: NTTP->isParameterPack()); |
| 744 | ID.AddPointer(Ptr: C.getUnconstrainedType(T: C.getCanonicalType(NTTP->getType())) |
| 745 | .getAsOpaquePtr()); |
| 746 | if (NTTP->isExpandedParameterPack()) { |
| 747 | ID.AddBoolean(B: true); |
| 748 | ID.AddInteger(NTTP->getNumExpansionTypes()); |
| 749 | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
| 750 | QualType T = NTTP->getExpansionType(I); |
| 751 | ID.AddPointer(Ptr: T.getCanonicalType().getAsOpaquePtr()); |
| 752 | } |
| 753 | } else |
| 754 | ID.AddBoolean(B: false); |
| 755 | continue; |
| 756 | } |
| 757 | |
| 758 | auto *TTP = cast<TemplateTemplateParmDecl>(Val: *P); |
| 759 | ID.AddInteger(I: 2); |
| 760 | Profile(ID, C, TTP); |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | TemplateTemplateParmDecl * |
| 765 | ASTContext::getCanonicalTemplateTemplateParmDecl( |
| 766 | TemplateTemplateParmDecl *TTP) const { |
| 767 | // Check if we already have a canonical template template parameter. |
| 768 | llvm::FoldingSetNodeID ID; |
| 769 | CanonicalTemplateTemplateParm::Profile(ID, C: *this, Parm: TTP); |
| 770 | void *InsertPos = nullptr; |
| 771 | CanonicalTemplateTemplateParm *Canonical |
| 772 | = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
| 773 | if (Canonical) |
| 774 | return Canonical->getParam(); |
| 775 | |
| 776 | // Build a canonical template parameter list. |
| 777 | TemplateParameterList *Params = TTP->getTemplateParameters(); |
| 778 | SmallVector<NamedDecl *, 4> CanonParams; |
| 779 | CanonParams.reserve(N: Params->size()); |
| 780 | for (TemplateParameterList::const_iterator P = Params->begin(), |
| 781 | PEnd = Params->end(); |
| 782 | P != PEnd; ++P) { |
| 783 | // Note that, per C++20 [temp.over.link]/6, when determining whether |
| 784 | // template-parameters are equivalent, constraints are ignored. |
| 785 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { |
| 786 | TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create( |
| 787 | C: *this, DC: getTranslationUnitDecl(), KeyLoc: SourceLocation(), NameLoc: SourceLocation(), |
| 788 | D: TTP->getDepth(), P: TTP->getIndex(), Id: nullptr, Typename: false, |
| 789 | ParameterPack: TTP->isParameterPack(), /*HasTypeConstraint=*/false, |
| 790 | NumExpanded: TTP->getNumExpansionParameters()); |
| 791 | CanonParams.push_back(NewTTP); |
| 792 | } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
| 793 | QualType T = getUnconstrainedType(T: getCanonicalType(NTTP->getType())); |
| 794 | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
| 795 | NonTypeTemplateParmDecl *Param; |
| 796 | if (NTTP->isExpandedParameterPack()) { |
| 797 | SmallVector<QualType, 2> ExpandedTypes; |
| 798 | SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; |
| 799 | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
| 800 | ExpandedTypes.push_back(Elt: getCanonicalType(NTTP->getExpansionType(I))); |
| 801 | ExpandedTInfos.push_back( |
| 802 | Elt: getTrivialTypeSourceInfo(T: ExpandedTypes.back())); |
| 803 | } |
| 804 | |
| 805 | Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
| 806 | SourceLocation(), |
| 807 | SourceLocation(), |
| 808 | NTTP->getDepth(), |
| 809 | NTTP->getPosition(), nullptr, |
| 810 | T, |
| 811 | TInfo, |
| 812 | ExpandedTypes, |
| 813 | ExpandedTInfos); |
| 814 | } else { |
| 815 | Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
| 816 | SourceLocation(), |
| 817 | SourceLocation(), |
| 818 | NTTP->getDepth(), |
| 819 | NTTP->getPosition(), nullptr, |
| 820 | T, |
| 821 | NTTP->isParameterPack(), |
| 822 | TInfo); |
| 823 | } |
| 824 | CanonParams.push_back(Param); |
| 825 | } else |
| 826 | CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( |
| 827 | TTP: cast<TemplateTemplateParmDecl>(Val: *P))); |
| 828 | } |
| 829 | |
| 830 | TemplateTemplateParmDecl *CanonTTP = TemplateTemplateParmDecl::Create( |
| 831 | *this, getTranslationUnitDecl(), SourceLocation(), TTP->getDepth(), |
| 832 | TTP->getPosition(), TTP->isParameterPack(), nullptr, /*Typename=*/false, |
| 833 | TemplateParameterList::Create(C: *this, TemplateLoc: SourceLocation(), LAngleLoc: SourceLocation(), |
| 834 | Params: CanonParams, RAngleLoc: SourceLocation(), |
| 835 | /*RequiresClause=*/nullptr)); |
| 836 | |
| 837 | // Get the new insert position for the node we care about. |
| 838 | Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
| 839 | assert(!Canonical && "Shouldn't be in the map!" ); |
| 840 | (void)Canonical; |
| 841 | |
| 842 | // Create the canonical template template parameter entry. |
| 843 | Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); |
| 844 | CanonTemplateTemplateParms.InsertNode(N: Canonical, InsertPos); |
| 845 | return CanonTTP; |
| 846 | } |
| 847 | |
| 848 | TemplateTemplateParmDecl * |
| 849 | ASTContext::findCanonicalTemplateTemplateParmDeclInternal( |
| 850 | TemplateTemplateParmDecl *TTP) const { |
| 851 | llvm::FoldingSetNodeID ID; |
| 852 | CanonicalTemplateTemplateParm::Profile(ID, C: *this, Parm: TTP); |
| 853 | void *InsertPos = nullptr; |
| 854 | CanonicalTemplateTemplateParm *Canonical = |
| 855 | CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
| 856 | return Canonical ? Canonical->getParam() : nullptr; |
| 857 | } |
| 858 | |
| 859 | TemplateTemplateParmDecl * |
| 860 | ASTContext::insertCanonicalTemplateTemplateParmDeclInternal( |
| 861 | TemplateTemplateParmDecl *CanonTTP) const { |
| 862 | llvm::FoldingSetNodeID ID; |
| 863 | CanonicalTemplateTemplateParm::Profile(ID, C: *this, Parm: CanonTTP); |
| 864 | void *InsertPos = nullptr; |
| 865 | if (auto *Existing = |
| 866 | CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos)) |
| 867 | return Existing->getParam(); |
| 868 | CanonTemplateTemplateParms.InsertNode( |
| 869 | N: new (*this) CanonicalTemplateTemplateParm(CanonTTP), InsertPos); |
| 870 | return CanonTTP; |
| 871 | } |
| 872 | |
| 873 | /// Check if a type can have its sanitizer instrumentation elided based on its |
| 874 | /// presence within an ignorelist. |
| 875 | bool ASTContext::isTypeIgnoredBySanitizer(const SanitizerMask &Mask, |
| 876 | const QualType &Ty) const { |
| 877 | std::string TyName = Ty.getUnqualifiedType().getAsString(Policy: getPrintingPolicy()); |
| 878 | return NoSanitizeL->containsType(Mask, TyName); |
| 879 | } |
| 880 | |
| 881 | TargetCXXABI::Kind ASTContext::getCXXABIKind() const { |
| 882 | auto Kind = getTargetInfo().getCXXABI().getKind(); |
| 883 | return getLangOpts().CXXABI.value_or(u&: Kind); |
| 884 | } |
| 885 | |
| 886 | CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { |
| 887 | if (!LangOpts.CPlusPlus) return nullptr; |
| 888 | |
| 889 | switch (getCXXABIKind()) { |
| 890 | case TargetCXXABI::AppleARM64: |
| 891 | case TargetCXXABI::Fuchsia: |
| 892 | case TargetCXXABI::GenericARM: // Same as Itanium at this level |
| 893 | case TargetCXXABI::iOS: |
| 894 | case TargetCXXABI::WatchOS: |
| 895 | case TargetCXXABI::GenericAArch64: |
| 896 | case TargetCXXABI::GenericMIPS: |
| 897 | case TargetCXXABI::GenericItanium: |
| 898 | case TargetCXXABI::WebAssembly: |
| 899 | case TargetCXXABI::XL: |
| 900 | return CreateItaniumCXXABI(Ctx&: *this); |
| 901 | case TargetCXXABI::Microsoft: |
| 902 | return CreateMicrosoftCXXABI(Ctx&: *this); |
| 903 | } |
| 904 | llvm_unreachable("Invalid CXXABI type!" ); |
| 905 | } |
| 906 | |
| 907 | interp::Context &ASTContext::getInterpContext() { |
| 908 | if (!InterpContext) { |
| 909 | InterpContext.reset(new interp::Context(*this)); |
| 910 | } |
| 911 | return *InterpContext; |
| 912 | } |
| 913 | |
| 914 | ParentMapContext &ASTContext::getParentMapContext() { |
| 915 | if (!ParentMapCtx) |
| 916 | ParentMapCtx.reset(new ParentMapContext(*this)); |
| 917 | return *ParentMapCtx; |
| 918 | } |
| 919 | |
| 920 | static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, |
| 921 | const LangOptions &LangOpts) { |
| 922 | switch (LangOpts.getAddressSpaceMapMangling()) { |
| 923 | case LangOptions::ASMM_Target: |
| 924 | return TI.useAddressSpaceMapMangling(); |
| 925 | case LangOptions::ASMM_On: |
| 926 | return true; |
| 927 | case LangOptions::ASMM_Off: |
| 928 | return false; |
| 929 | } |
| 930 | llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything." ); |
| 931 | } |
| 932 | |
| 933 | ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, |
| 934 | IdentifierTable &idents, SelectorTable &sels, |
| 935 | Builtin::Context &builtins, TranslationUnitKind TUKind) |
| 936 | : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize), |
| 937 | DependentSizedArrayTypes(this_()), DependentSizedExtVectorTypes(this_()), |
| 938 | DependentAddressSpaceTypes(this_()), DependentVectorTypes(this_()), |
| 939 | DependentSizedMatrixTypes(this_()), |
| 940 | FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize), |
| 941 | DependentTypeOfExprTypes(this_()), DependentDecltypeTypes(this_()), |
| 942 | DependentPackIndexingTypes(this_()), TemplateSpecializationTypes(this_()), |
| 943 | DependentTemplateSpecializationTypes(this_()), |
| 944 | DependentBitIntTypes(this_()), SubstTemplateTemplateParmPacks(this_()), |
| 945 | DeducedTemplates(this_()), ArrayParameterTypes(this_()), |
| 946 | CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts), |
| 947 | NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)), |
| 948 | XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles, |
| 949 | LangOpts.XRayNeverInstrumentFiles, |
| 950 | LangOpts.XRayAttrListFiles, SM)), |
| 951 | ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)), |
| 952 | PrintingPolicy(LOpts), Idents(idents), Selectors(sels), |
| 953 | BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this), |
| 954 | Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), |
| 955 | CompCategories(this_()), LastSDM(nullptr, 0) { |
| 956 | addTranslationUnitDecl(); |
| 957 | } |
| 958 | |
| 959 | void ASTContext::cleanup() { |
| 960 | // Release the DenseMaps associated with DeclContext objects. |
| 961 | // FIXME: Is this the ideal solution? |
| 962 | ReleaseDeclContextMaps(); |
| 963 | |
| 964 | // Call all of the deallocation functions on all of their targets. |
| 965 | for (auto &Pair : Deallocations) |
| 966 | (Pair.first)(Pair.second); |
| 967 | Deallocations.clear(); |
| 968 | |
| 969 | // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed |
| 970 | // because they can contain DenseMaps. |
| 971 | for (llvm::DenseMap<const ObjCInterfaceDecl *, |
| 972 | const ASTRecordLayout *>::iterator |
| 973 | I = ObjCLayouts.begin(), |
| 974 | E = ObjCLayouts.end(); |
| 975 | I != E;) |
| 976 | // Increment in loop to prevent using deallocated memory. |
| 977 | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
| 978 | R->Destroy(Ctx&: *this); |
| 979 | ObjCLayouts.clear(); |
| 980 | |
| 981 | for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator |
| 982 | I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { |
| 983 | // Increment in loop to prevent using deallocated memory. |
| 984 | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
| 985 | R->Destroy(Ctx&: *this); |
| 986 | } |
| 987 | ASTRecordLayouts.clear(); |
| 988 | |
| 989 | for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), |
| 990 | AEnd = DeclAttrs.end(); |
| 991 | A != AEnd; ++A) |
| 992 | A->second->~AttrVec(); |
| 993 | DeclAttrs.clear(); |
| 994 | |
| 995 | for (const auto &Value : ModuleInitializers) |
| 996 | Value.second->~PerModuleInitializers(); |
| 997 | ModuleInitializers.clear(); |
| 998 | } |
| 999 | |
| 1000 | ASTContext::~ASTContext() { cleanup(); } |
| 1001 | |
| 1002 | void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) { |
| 1003 | TraversalScope = TopLevelDecls; |
| 1004 | getParentMapContext().clear(); |
| 1005 | } |
| 1006 | |
| 1007 | void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const { |
| 1008 | Deallocations.push_back({Callback, Data}); |
| 1009 | } |
| 1010 | |
| 1011 | void |
| 1012 | ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { |
| 1013 | ExternalSource = std::move(Source); |
| 1014 | } |
| 1015 | |
| 1016 | void ASTContext::PrintStats() const { |
| 1017 | llvm::errs() << "\n*** AST Context Stats:\n" ; |
| 1018 | llvm::errs() << " " << Types.size() << " types total.\n" ; |
| 1019 | |
| 1020 | unsigned counts[] = { |
| 1021 | #define TYPE(Name, Parent) 0, |
| 1022 | #define ABSTRACT_TYPE(Name, Parent) |
| 1023 | #include "clang/AST/TypeNodes.inc" |
| 1024 | 0 // Extra |
| 1025 | }; |
| 1026 | |
| 1027 | for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
| 1028 | Type *T = Types[i]; |
| 1029 | counts[(unsigned)T->getTypeClass()]++; |
| 1030 | } |
| 1031 | |
| 1032 | unsigned Idx = 0; |
| 1033 | unsigned TotalBytes = 0; |
| 1034 | #define TYPE(Name, Parent) \ |
| 1035 | if (counts[Idx]) \ |
| 1036 | llvm::errs() << " " << counts[Idx] << " " << #Name \ |
| 1037 | << " types, " << sizeof(Name##Type) << " each " \ |
| 1038 | << "(" << counts[Idx] * sizeof(Name##Type) \ |
| 1039 | << " bytes)\n"; \ |
| 1040 | TotalBytes += counts[Idx] * sizeof(Name##Type); \ |
| 1041 | ++Idx; |
| 1042 | #define ABSTRACT_TYPE(Name, Parent) |
| 1043 | #include "clang/AST/TypeNodes.inc" |
| 1044 | |
| 1045 | llvm::errs() << "Total bytes = " << TotalBytes << "\n" ; |
| 1046 | |
| 1047 | // Implicit special member functions. |
| 1048 | llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" |
| 1049 | << NumImplicitDefaultConstructors |
| 1050 | << " implicit default constructors created\n" ; |
| 1051 | llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" |
| 1052 | << NumImplicitCopyConstructors |
| 1053 | << " implicit copy constructors created\n" ; |
| 1054 | if (getLangOpts().CPlusPlus) |
| 1055 | llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" |
| 1056 | << NumImplicitMoveConstructors |
| 1057 | << " implicit move constructors created\n" ; |
| 1058 | llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" |
| 1059 | << NumImplicitCopyAssignmentOperators |
| 1060 | << " implicit copy assignment operators created\n" ; |
| 1061 | if (getLangOpts().CPlusPlus) |
| 1062 | llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" |
| 1063 | << NumImplicitMoveAssignmentOperators |
| 1064 | << " implicit move assignment operators created\n" ; |
| 1065 | llvm::errs() << NumImplicitDestructorsDeclared << "/" |
| 1066 | << NumImplicitDestructors |
| 1067 | << " implicit destructors created\n" ; |
| 1068 | |
| 1069 | if (ExternalSource) { |
| 1070 | llvm::errs() << "\n" ; |
| 1071 | ExternalSource->PrintStats(); |
| 1072 | } |
| 1073 | |
| 1074 | BumpAlloc.PrintStats(); |
| 1075 | } |
| 1076 | |
| 1077 | void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, |
| 1078 | bool NotifyListeners) { |
| 1079 | if (NotifyListeners) |
| 1080 | if (auto *Listener = getASTMutationListener(); |
| 1081 | Listener && !ND->isUnconditionallyVisible()) |
| 1082 | Listener->RedefinedHiddenDefinition(D: ND, M); |
| 1083 | |
| 1084 | MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M); |
| 1085 | } |
| 1086 | |
| 1087 | void ASTContext::deduplicateMergedDefinitionsFor(NamedDecl *ND) { |
| 1088 | auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl())); |
| 1089 | if (It == MergedDefModules.end()) |
| 1090 | return; |
| 1091 | |
| 1092 | auto &Merged = It->second; |
| 1093 | llvm::DenseSet<Module*> Found; |
| 1094 | for (Module *&M : Merged) |
| 1095 | if (!Found.insert(M).second) |
| 1096 | M = nullptr; |
| 1097 | llvm::erase(Merged, nullptr); |
| 1098 | } |
| 1099 | |
| 1100 | ArrayRef<Module *> |
| 1101 | ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) { |
| 1102 | auto MergedIt = |
| 1103 | MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl())); |
| 1104 | if (MergedIt == MergedDefModules.end()) |
| 1105 | return {}; |
| 1106 | return MergedIt->second; |
| 1107 | } |
| 1108 | |
| 1109 | void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) { |
| 1110 | if (LazyInitializers.empty()) |
| 1111 | return; |
| 1112 | |
| 1113 | auto *Source = Ctx.getExternalSource(); |
| 1114 | assert(Source && "lazy initializers but no external source" ); |
| 1115 | |
| 1116 | auto LazyInits = std::move(LazyInitializers); |
| 1117 | LazyInitializers.clear(); |
| 1118 | |
| 1119 | for (auto ID : LazyInits) |
| 1120 | Initializers.push_back(Source->GetExternalDecl(ID)); |
| 1121 | |
| 1122 | assert(LazyInitializers.empty() && |
| 1123 | "GetExternalDecl for lazy module initializer added more inits" ); |
| 1124 | } |
| 1125 | |
| 1126 | void ASTContext::addModuleInitializer(Module *M, Decl *D) { |
| 1127 | // One special case: if we add a module initializer that imports another |
| 1128 | // module, and that module's only initializer is an ImportDecl, simplify. |
| 1129 | if (const auto *ID = dyn_cast<ImportDecl>(Val: D)) { |
| 1130 | auto It = ModuleInitializers.find(ID->getImportedModule()); |
| 1131 | |
| 1132 | // Maybe the ImportDecl does nothing at all. (Common case.) |
| 1133 | if (It == ModuleInitializers.end()) |
| 1134 | return; |
| 1135 | |
| 1136 | // Maybe the ImportDecl only imports another ImportDecl. |
| 1137 | auto &Imported = *It->second; |
| 1138 | if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) { |
| 1139 | Imported.resolve(*this); |
| 1140 | auto *OnlyDecl = Imported.Initializers.front(); |
| 1141 | if (isa<ImportDecl>(OnlyDecl)) |
| 1142 | D = OnlyDecl; |
| 1143 | } |
| 1144 | } |
| 1145 | |
| 1146 | auto *&Inits = ModuleInitializers[M]; |
| 1147 | if (!Inits) |
| 1148 | Inits = new (*this) PerModuleInitializers; |
| 1149 | Inits->Initializers.push_back(D); |
| 1150 | } |
| 1151 | |
| 1152 | void ASTContext::addLazyModuleInitializers(Module *M, |
| 1153 | ArrayRef<GlobalDeclID> IDs) { |
| 1154 | auto *&Inits = ModuleInitializers[M]; |
| 1155 | if (!Inits) |
| 1156 | Inits = new (*this) PerModuleInitializers; |
| 1157 | Inits->LazyInitializers.insert(Inits->LazyInitializers.end(), |
| 1158 | IDs.begin(), IDs.end()); |
| 1159 | } |
| 1160 | |
| 1161 | ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) { |
| 1162 | auto It = ModuleInitializers.find(M); |
| 1163 | if (It == ModuleInitializers.end()) |
| 1164 | return {}; |
| 1165 | |
| 1166 | auto *Inits = It->second; |
| 1167 | Inits->resolve(*this); |
| 1168 | return Inits->Initializers; |
| 1169 | } |
| 1170 | |
| 1171 | void ASTContext::setCurrentNamedModule(Module *M) { |
| 1172 | assert(M->isNamedModule()); |
| 1173 | assert(!CurrentCXXNamedModule && |
| 1174 | "We should set named module for ASTContext for only once" ); |
| 1175 | CurrentCXXNamedModule = M; |
| 1176 | } |
| 1177 | |
| 1178 | bool ASTContext::isInSameModule(const Module *M1, const Module *M2) { |
| 1179 | if (!M1 != !M2) |
| 1180 | return false; |
| 1181 | |
| 1182 | /// Get the representative module for M. The representative module is the |
| 1183 | /// first module unit for a specific primary module name. So that the module |
| 1184 | /// units have the same representative module belongs to the same module. |
| 1185 | /// |
| 1186 | /// The process is helpful to reduce the expensive string operations. |
| 1187 | auto GetRepresentativeModule = [this](const Module *M) { |
| 1188 | auto Iter = SameModuleLookupSet.find(M); |
| 1189 | if (Iter != SameModuleLookupSet.end()) |
| 1190 | return Iter->second; |
| 1191 | |
| 1192 | const Module *RepresentativeModule = |
| 1193 | PrimaryModuleNameMap.try_emplace(M->getPrimaryModuleInterfaceName(), M) |
| 1194 | .first->second; |
| 1195 | SameModuleLookupSet[M] = RepresentativeModule; |
| 1196 | return RepresentativeModule; |
| 1197 | }; |
| 1198 | |
| 1199 | assert(M1 && "Shouldn't call `isInSameModule` if both M1 and M2 are none." ); |
| 1200 | return GetRepresentativeModule(M1) == GetRepresentativeModule(M2); |
| 1201 | } |
| 1202 | |
| 1203 | ExternCContextDecl *ASTContext::getExternCContextDecl() const { |
| 1204 | if (!ExternCContext) |
| 1205 | ExternCContext = ExternCContextDecl::Create(C: *this, TU: getTranslationUnitDecl()); |
| 1206 | |
| 1207 | return ExternCContext; |
| 1208 | } |
| 1209 | |
| 1210 | BuiltinTemplateDecl * |
| 1211 | ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, |
| 1212 | const IdentifierInfo *II) const { |
| 1213 | auto *BuiltinTemplate = |
| 1214 | BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK); |
| 1215 | BuiltinTemplate->setImplicit(); |
| 1216 | getTranslationUnitDecl()->addDecl(D: BuiltinTemplate); |
| 1217 | |
| 1218 | return BuiltinTemplate; |
| 1219 | } |
| 1220 | |
| 1221 | #define BuiltinTemplate(BTName) \ |
| 1222 | BuiltinTemplateDecl *ASTContext::get##BTName##Decl() const { \ |
| 1223 | if (!Decl##BTName) \ |
| 1224 | Decl##BTName = \ |
| 1225 | buildBuiltinTemplateDecl(BTK##BTName, get##BTName##Name()); \ |
| 1226 | return Decl##BTName; \ |
| 1227 | } |
| 1228 | #include "clang/Basic/BuiltinTemplates.inc" |
| 1229 | |
| 1230 | RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, |
| 1231 | RecordDecl::TagKind TK) const { |
| 1232 | SourceLocation Loc; |
| 1233 | RecordDecl *NewDecl; |
| 1234 | if (getLangOpts().CPlusPlus) |
| 1235 | NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, |
| 1236 | Loc, &Idents.get(Name)); |
| 1237 | else |
| 1238 | NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, |
| 1239 | &Idents.get(Name)); |
| 1240 | NewDecl->setImplicit(); |
| 1241 | NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit( |
| 1242 | const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default)); |
| 1243 | return NewDecl; |
| 1244 | } |
| 1245 | |
| 1246 | TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, |
| 1247 | StringRef Name) const { |
| 1248 | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
| 1249 | TypedefDecl *NewDecl = TypedefDecl::Create( |
| 1250 | const_cast<ASTContext &>(*this), getTranslationUnitDecl(), |
| 1251 | SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); |
| 1252 | NewDecl->setImplicit(); |
| 1253 | return NewDecl; |
| 1254 | } |
| 1255 | |
| 1256 | TypedefDecl *ASTContext::getInt128Decl() const { |
| 1257 | if (!Int128Decl) |
| 1258 | Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t" ); |
| 1259 | return Int128Decl; |
| 1260 | } |
| 1261 | |
| 1262 | TypedefDecl *ASTContext::getUInt128Decl() const { |
| 1263 | if (!UInt128Decl) |
| 1264 | UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t" ); |
| 1265 | return UInt128Decl; |
| 1266 | } |
| 1267 | |
| 1268 | void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { |
| 1269 | auto *Ty = new (*this, alignof(BuiltinType)) BuiltinType(K); |
| 1270 | R = CanQualType::CreateUnsafe(Other: QualType(Ty, 0)); |
| 1271 | Types.push_back(Ty); |
| 1272 | } |
| 1273 | |
| 1274 | void ASTContext::InitBuiltinTypes(const TargetInfo &Target, |
| 1275 | const TargetInfo *AuxTarget) { |
| 1276 | assert((!this->Target || this->Target == &Target) && |
| 1277 | "Incorrect target reinitialization" ); |
| 1278 | assert(VoidTy.isNull() && "Context reinitialized?" ); |
| 1279 | |
| 1280 | this->Target = &Target; |
| 1281 | this->AuxTarget = AuxTarget; |
| 1282 | |
| 1283 | ABI.reset(createCXXABI(Target)); |
| 1284 | AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(TI: Target, LangOpts); |
| 1285 | |
| 1286 | // C99 6.2.5p19. |
| 1287 | InitBuiltinType(VoidTy, BuiltinType::Void); |
| 1288 | |
| 1289 | // C99 6.2.5p2. |
| 1290 | InitBuiltinType(BoolTy, BuiltinType::Bool); |
| 1291 | // C99 6.2.5p3. |
| 1292 | if (LangOpts.CharIsSigned) |
| 1293 | InitBuiltinType(CharTy, BuiltinType::Char_S); |
| 1294 | else |
| 1295 | InitBuiltinType(CharTy, BuiltinType::Char_U); |
| 1296 | // C99 6.2.5p4. |
| 1297 | InitBuiltinType(SignedCharTy, BuiltinType::SChar); |
| 1298 | InitBuiltinType(ShortTy, BuiltinType::Short); |
| 1299 | InitBuiltinType(IntTy, BuiltinType::Int); |
| 1300 | InitBuiltinType(LongTy, BuiltinType::Long); |
| 1301 | InitBuiltinType(LongLongTy, BuiltinType::LongLong); |
| 1302 | |
| 1303 | // C99 6.2.5p6. |
| 1304 | InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); |
| 1305 | InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); |
| 1306 | InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); |
| 1307 | InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); |
| 1308 | InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); |
| 1309 | |
| 1310 | // C99 6.2.5p10. |
| 1311 | InitBuiltinType(FloatTy, BuiltinType::Float); |
| 1312 | InitBuiltinType(DoubleTy, BuiltinType::Double); |
| 1313 | InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); |
| 1314 | |
| 1315 | // GNU extension, __float128 for IEEE quadruple precision |
| 1316 | InitBuiltinType(Float128Ty, BuiltinType::Float128); |
| 1317 | |
| 1318 | // __ibm128 for IBM extended precision |
| 1319 | InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128); |
| 1320 | |
| 1321 | // C11 extension ISO/IEC TS 18661-3 |
| 1322 | InitBuiltinType(Float16Ty, BuiltinType::Float16); |
| 1323 | |
| 1324 | // ISO/IEC JTC1 SC22 WG14 N1169 Extension |
| 1325 | InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum); |
| 1326 | InitBuiltinType(AccumTy, BuiltinType::Accum); |
| 1327 | InitBuiltinType(LongAccumTy, BuiltinType::LongAccum); |
| 1328 | InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum); |
| 1329 | InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum); |
| 1330 | InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum); |
| 1331 | InitBuiltinType(ShortFractTy, BuiltinType::ShortFract); |
| 1332 | InitBuiltinType(FractTy, BuiltinType::Fract); |
| 1333 | InitBuiltinType(LongFractTy, BuiltinType::LongFract); |
| 1334 | InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract); |
| 1335 | InitBuiltinType(UnsignedFractTy, BuiltinType::UFract); |
| 1336 | InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract); |
| 1337 | InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum); |
| 1338 | InitBuiltinType(SatAccumTy, BuiltinType::SatAccum); |
| 1339 | InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum); |
| 1340 | InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum); |
| 1341 | InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum); |
| 1342 | InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum); |
| 1343 | InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract); |
| 1344 | InitBuiltinType(SatFractTy, BuiltinType::SatFract); |
| 1345 | InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract); |
| 1346 | InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract); |
| 1347 | InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract); |
| 1348 | InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract); |
| 1349 | |
| 1350 | // GNU extension, 128-bit integers. |
| 1351 | InitBuiltinType(Int128Ty, BuiltinType::Int128); |
| 1352 | InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); |
| 1353 | |
| 1354 | // C++ 3.9.1p5 |
| 1355 | if (TargetInfo::isTypeSigned(Target.getWCharType())) |
| 1356 | InitBuiltinType(WCharTy, BuiltinType::WChar_S); |
| 1357 | else // -fshort-wchar makes wchar_t be unsigned. |
| 1358 | InitBuiltinType(WCharTy, BuiltinType::WChar_U); |
| 1359 | if (LangOpts.CPlusPlus && LangOpts.WChar) |
| 1360 | WideCharTy = WCharTy; |
| 1361 | else { |
| 1362 | // C99 (or C++ using -fno-wchar). |
| 1363 | WideCharTy = getFromTargetType(Target.getWCharType()); |
| 1364 | } |
| 1365 | |
| 1366 | WIntTy = getFromTargetType(Target.getWIntType()); |
| 1367 | |
| 1368 | // C++20 (proposed) |
| 1369 | InitBuiltinType(Char8Ty, BuiltinType::Char8); |
| 1370 | |
| 1371 | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
| 1372 | InitBuiltinType(Char16Ty, BuiltinType::Char16); |
| 1373 | else // C99 |
| 1374 | Char16Ty = getFromTargetType(Target.getChar16Type()); |
| 1375 | |
| 1376 | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
| 1377 | InitBuiltinType(Char32Ty, BuiltinType::Char32); |
| 1378 | else // C99 |
| 1379 | Char32Ty = getFromTargetType(Target.getChar32Type()); |
| 1380 | |
| 1381 | // Placeholder type for type-dependent expressions whose type is |
| 1382 | // completely unknown. No code should ever check a type against |
| 1383 | // DependentTy and users should never see it; however, it is here to |
| 1384 | // help diagnose failures to properly check for type-dependent |
| 1385 | // expressions. |
| 1386 | InitBuiltinType(DependentTy, BuiltinType::Dependent); |
| 1387 | |
| 1388 | // Placeholder type for functions. |
| 1389 | InitBuiltinType(OverloadTy, BuiltinType::Overload); |
| 1390 | |
| 1391 | // Placeholder type for bound members. |
| 1392 | InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember); |
| 1393 | |
| 1394 | // Placeholder type for unresolved templates. |
| 1395 | InitBuiltinType(UnresolvedTemplateTy, BuiltinType::UnresolvedTemplate); |
| 1396 | |
| 1397 | // Placeholder type for pseudo-objects. |
| 1398 | InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject); |
| 1399 | |
| 1400 | // "any" type; useful for debugger-like clients. |
| 1401 | InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny); |
| 1402 | |
| 1403 | // Placeholder type for unbridged ARC casts. |
| 1404 | InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast); |
| 1405 | |
| 1406 | // Placeholder type for builtin functions. |
| 1407 | InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn); |
| 1408 | |
| 1409 | // Placeholder type for OMP array sections. |
| 1410 | if (LangOpts.OpenMP) { |
| 1411 | InitBuiltinType(ArraySectionTy, BuiltinType::ArraySection); |
| 1412 | InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping); |
| 1413 | InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator); |
| 1414 | } |
| 1415 | // Placeholder type for OpenACC array sections, if we are ALSO in OMP mode, |
| 1416 | // don't bother, as we're just using the same type as OMP. |
| 1417 | if (LangOpts.OpenACC && !LangOpts.OpenMP) { |
| 1418 | InitBuiltinType(ArraySectionTy, BuiltinType::ArraySection); |
| 1419 | } |
| 1420 | if (LangOpts.MatrixTypes) |
| 1421 | InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx); |
| 1422 | |
| 1423 | // Builtin types for 'id', 'Class', and 'SEL'. |
| 1424 | InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); |
| 1425 | InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); |
| 1426 | InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); |
| 1427 | |
| 1428 | if (LangOpts.OpenCL) { |
| 1429 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 1430 | InitBuiltinType(SingletonId, BuiltinType::Id); |
| 1431 | #include "clang/Basic/OpenCLImageTypes.def" |
| 1432 | |
| 1433 | InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); |
| 1434 | InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); |
| 1435 | InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent); |
| 1436 | InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue); |
| 1437 | InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID); |
| 1438 | |
| 1439 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| 1440 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
| 1441 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 1442 | } |
| 1443 | |
| 1444 | if (LangOpts.HLSL) { |
| 1445 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \ |
| 1446 | InitBuiltinType(SingletonId, BuiltinType::Id); |
| 1447 | #include "clang/Basic/HLSLIntangibleTypes.def" |
| 1448 | } |
| 1449 | |
| 1450 | if (Target.hasAArch64ACLETypes() || |
| 1451 | (AuxTarget && AuxTarget->hasAArch64ACLETypes())) { |
| 1452 | #define SVE_TYPE(Name, Id, SingletonId) \ |
| 1453 | InitBuiltinType(SingletonId, BuiltinType::Id); |
| 1454 | #include "clang/Basic/AArch64ACLETypes.def" |
| 1455 | } |
| 1456 | |
| 1457 | if (Target.getTriple().isPPC64()) { |
| 1458 | #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \ |
| 1459 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
| 1460 | #include "clang/Basic/PPCTypes.def" |
| 1461 | #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \ |
| 1462 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
| 1463 | #include "clang/Basic/PPCTypes.def" |
| 1464 | } |
| 1465 | |
| 1466 | if (Target.hasRISCVVTypes()) { |
| 1467 | #define RVV_TYPE(Name, Id, SingletonId) \ |
| 1468 | InitBuiltinType(SingletonId, BuiltinType::Id); |
| 1469 | #include "clang/Basic/RISCVVTypes.def" |
| 1470 | } |
| 1471 | |
| 1472 | if (Target.getTriple().isWasm() && Target.hasFeature(Feature: "reference-types" )) { |
| 1473 | #define WASM_TYPE(Name, Id, SingletonId) \ |
| 1474 | InitBuiltinType(SingletonId, BuiltinType::Id); |
| 1475 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
| 1476 | } |
| 1477 | |
| 1478 | if (Target.getTriple().isAMDGPU() || |
| 1479 | (AuxTarget && AuxTarget->getTriple().isAMDGPU())) { |
| 1480 | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) \ |
| 1481 | InitBuiltinType(SingletonId, BuiltinType::Id); |
| 1482 | #include "clang/Basic/AMDGPUTypes.def" |
| 1483 | } |
| 1484 | |
| 1485 | // Builtin type for __objc_yes and __objc_no |
| 1486 | ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? |
| 1487 | SignedCharTy : BoolTy); |
| 1488 | |
| 1489 | ObjCConstantStringType = QualType(); |
| 1490 | |
| 1491 | ObjCSuperType = QualType(); |
| 1492 | |
| 1493 | // void * type |
| 1494 | if (LangOpts.OpenCLGenericAddressSpace) { |
| 1495 | auto Q = VoidTy.getQualifiers(); |
| 1496 | Q.setAddressSpace(LangAS::opencl_generic); |
| 1497 | VoidPtrTy = getPointerType(getCanonicalType( |
| 1498 | getQualifiedType(VoidTy.getUnqualifiedType(), Q))); |
| 1499 | } else { |
| 1500 | VoidPtrTy = getPointerType(VoidTy); |
| 1501 | } |
| 1502 | |
| 1503 | // nullptr type (C++0x 2.14.7) |
| 1504 | InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); |
| 1505 | |
| 1506 | // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 |
| 1507 | InitBuiltinType(HalfTy, BuiltinType::Half); |
| 1508 | |
| 1509 | InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16); |
| 1510 | |
| 1511 | // Builtin type used to help define __builtin_va_list. |
| 1512 | VaListTagDecl = nullptr; |
| 1513 | |
| 1514 | // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls. |
| 1515 | if (LangOpts.MicrosoftExt || LangOpts.Borland) { |
| 1516 | MSGuidTagDecl = buildImplicitRecord(Name: "_GUID" ); |
| 1517 | getTranslationUnitDecl()->addDecl(MSGuidTagDecl); |
| 1518 | } |
| 1519 | } |
| 1520 | |
| 1521 | DiagnosticsEngine &ASTContext::getDiagnostics() const { |
| 1522 | return SourceMgr.getDiagnostics(); |
| 1523 | } |
| 1524 | |
| 1525 | AttrVec& ASTContext::getDeclAttrs(const Decl *D) { |
| 1526 | AttrVec *&Result = DeclAttrs[D]; |
| 1527 | if (!Result) { |
| 1528 | void *Mem = Allocate(Size: sizeof(AttrVec)); |
| 1529 | Result = new (Mem) AttrVec; |
| 1530 | } |
| 1531 | |
| 1532 | return *Result; |
| 1533 | } |
| 1534 | |
| 1535 | /// Erase the attributes corresponding to the given declaration. |
| 1536 | void ASTContext::eraseDeclAttrs(const Decl *D) { |
| 1537 | llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); |
| 1538 | if (Pos != DeclAttrs.end()) { |
| 1539 | Pos->second->~AttrVec(); |
| 1540 | DeclAttrs.erase(Pos); |
| 1541 | } |
| 1542 | } |
| 1543 | |
| 1544 | // FIXME: Remove ? |
| 1545 | MemberSpecializationInfo * |
| 1546 | ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { |
| 1547 | assert(Var->isStaticDataMember() && "Not a static data member" ); |
| 1548 | return getTemplateOrSpecializationInfo(Var) |
| 1549 | .dyn_cast<MemberSpecializationInfo *>(); |
| 1550 | } |
| 1551 | |
| 1552 | ASTContext::TemplateOrSpecializationInfo |
| 1553 | ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { |
| 1554 | llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = |
| 1555 | TemplateOrInstantiation.find(Var); |
| 1556 | if (Pos == TemplateOrInstantiation.end()) |
| 1557 | return {}; |
| 1558 | |
| 1559 | return Pos->second; |
| 1560 | } |
| 1561 | |
| 1562 | void |
| 1563 | ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, |
| 1564 | TemplateSpecializationKind TSK, |
| 1565 | SourceLocation PointOfInstantiation) { |
| 1566 | assert(Inst->isStaticDataMember() && "Not a static data member" ); |
| 1567 | assert(Tmpl->isStaticDataMember() && "Not a static data member" ); |
| 1568 | setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( |
| 1569 | Tmpl, TSK, PointOfInstantiation)); |
| 1570 | } |
| 1571 | |
| 1572 | void |
| 1573 | ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, |
| 1574 | TemplateOrSpecializationInfo TSI) { |
| 1575 | assert(!TemplateOrInstantiation[Inst] && |
| 1576 | "Already noted what the variable was instantiated from" ); |
| 1577 | TemplateOrInstantiation[Inst] = TSI; |
| 1578 | } |
| 1579 | |
| 1580 | NamedDecl * |
| 1581 | ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) { |
| 1582 | return InstantiatedFromUsingDecl.lookup(UUD); |
| 1583 | } |
| 1584 | |
| 1585 | void |
| 1586 | ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) { |
| 1587 | assert((isa<UsingDecl>(Pattern) || |
| 1588 | isa<UnresolvedUsingValueDecl>(Pattern) || |
| 1589 | isa<UnresolvedUsingTypenameDecl>(Pattern)) && |
| 1590 | "pattern decl is not a using decl" ); |
| 1591 | assert((isa<UsingDecl>(Inst) || |
| 1592 | isa<UnresolvedUsingValueDecl>(Inst) || |
| 1593 | isa<UnresolvedUsingTypenameDecl>(Inst)) && |
| 1594 | "instantiation did not produce a using decl" ); |
| 1595 | assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists" ); |
| 1596 | InstantiatedFromUsingDecl[Inst] = Pattern; |
| 1597 | } |
| 1598 | |
| 1599 | UsingEnumDecl * |
| 1600 | ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) { |
| 1601 | return InstantiatedFromUsingEnumDecl.lookup(UUD); |
| 1602 | } |
| 1603 | |
| 1604 | void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst, |
| 1605 | UsingEnumDecl *Pattern) { |
| 1606 | assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists" ); |
| 1607 | InstantiatedFromUsingEnumDecl[Inst] = Pattern; |
| 1608 | } |
| 1609 | |
| 1610 | UsingShadowDecl * |
| 1611 | ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { |
| 1612 | return InstantiatedFromUsingShadowDecl.lookup(Inst); |
| 1613 | } |
| 1614 | |
| 1615 | void |
| 1616 | ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, |
| 1617 | UsingShadowDecl *Pattern) { |
| 1618 | assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists" ); |
| 1619 | InstantiatedFromUsingShadowDecl[Inst] = Pattern; |
| 1620 | } |
| 1621 | |
| 1622 | FieldDecl * |
| 1623 | ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) const { |
| 1624 | return InstantiatedFromUnnamedFieldDecl.lookup(Field); |
| 1625 | } |
| 1626 | |
| 1627 | void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, |
| 1628 | FieldDecl *Tmpl) { |
| 1629 | assert((!Inst->getDeclName() || Inst->isPlaceholderVar(getLangOpts())) && |
| 1630 | "Instantiated field decl is not unnamed" ); |
| 1631 | assert((!Inst->getDeclName() || Inst->isPlaceholderVar(getLangOpts())) && |
| 1632 | "Template field decl is not unnamed" ); |
| 1633 | assert(!InstantiatedFromUnnamedFieldDecl[Inst] && |
| 1634 | "Already noted what unnamed field was instantiated from" ); |
| 1635 | |
| 1636 | InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; |
| 1637 | } |
| 1638 | |
| 1639 | ASTContext::overridden_cxx_method_iterator |
| 1640 | ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { |
| 1641 | return overridden_methods(Method).begin(); |
| 1642 | } |
| 1643 | |
| 1644 | ASTContext::overridden_cxx_method_iterator |
| 1645 | ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { |
| 1646 | return overridden_methods(Method).end(); |
| 1647 | } |
| 1648 | |
| 1649 | unsigned |
| 1650 | ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { |
| 1651 | auto Range = overridden_methods(Method); |
| 1652 | return Range.end() - Range.begin(); |
| 1653 | } |
| 1654 | |
| 1655 | ASTContext::overridden_method_range |
| 1656 | ASTContext::overridden_methods(const CXXMethodDecl *Method) const { |
| 1657 | llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = |
| 1658 | OverriddenMethods.find(Method->getCanonicalDecl()); |
| 1659 | if (Pos == OverriddenMethods.end()) |
| 1660 | return overridden_method_range(nullptr, nullptr); |
| 1661 | return overridden_method_range(Pos->second.begin(), Pos->second.end()); |
| 1662 | } |
| 1663 | |
| 1664 | void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, |
| 1665 | const CXXMethodDecl *Overridden) { |
| 1666 | assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); |
| 1667 | OverriddenMethods[Method].push_back(Overridden); |
| 1668 | } |
| 1669 | |
| 1670 | void ASTContext::getOverriddenMethods( |
| 1671 | const NamedDecl *D, |
| 1672 | SmallVectorImpl<const NamedDecl *> &Overridden) const { |
| 1673 | assert(D); |
| 1674 | |
| 1675 | if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(Val: D)) { |
| 1676 | Overridden.append(overridden_methods_begin(CXXMethod), |
| 1677 | overridden_methods_end(CXXMethod)); |
| 1678 | return; |
| 1679 | } |
| 1680 | |
| 1681 | const auto *Method = dyn_cast<ObjCMethodDecl>(Val: D); |
| 1682 | if (!Method) |
| 1683 | return; |
| 1684 | |
| 1685 | SmallVector<const ObjCMethodDecl *, 8> OverDecls; |
| 1686 | Method->getOverriddenMethods(Overridden&: OverDecls); |
| 1687 | Overridden.append(in_start: OverDecls.begin(), in_end: OverDecls.end()); |
| 1688 | } |
| 1689 | |
| 1690 | std::optional<ASTContext::CXXRecordDeclRelocationInfo> |
| 1691 | ASTContext::getRelocationInfoForCXXRecord(const CXXRecordDecl *RD) const { |
| 1692 | assert(RD); |
| 1693 | CXXRecordDecl *D = RD->getDefinition(); |
| 1694 | auto it = RelocatableClasses.find(D); |
| 1695 | if (it != RelocatableClasses.end()) |
| 1696 | return it->getSecond(); |
| 1697 | return std::nullopt; |
| 1698 | } |
| 1699 | |
| 1700 | void ASTContext::setRelocationInfoForCXXRecord( |
| 1701 | const CXXRecordDecl *RD, CXXRecordDeclRelocationInfo Info) { |
| 1702 | assert(RD); |
| 1703 | CXXRecordDecl *D = RD->getDefinition(); |
| 1704 | assert(RelocatableClasses.find(D) == RelocatableClasses.end()); |
| 1705 | RelocatableClasses.insert({D, Info}); |
| 1706 | } |
| 1707 | |
| 1708 | void ASTContext::addedLocalImportDecl(ImportDecl *Import) { |
| 1709 | assert(!Import->getNextLocalImport() && |
| 1710 | "Import declaration already in the chain" ); |
| 1711 | assert(!Import->isFromASTFile() && "Non-local import declaration" ); |
| 1712 | if (!FirstLocalImport) { |
| 1713 | FirstLocalImport = Import; |
| 1714 | LastLocalImport = Import; |
| 1715 | return; |
| 1716 | } |
| 1717 | |
| 1718 | LastLocalImport->setNextLocalImport(Import); |
| 1719 | LastLocalImport = Import; |
| 1720 | } |
| 1721 | |
| 1722 | //===----------------------------------------------------------------------===// |
| 1723 | // Type Sizing and Analysis |
| 1724 | //===----------------------------------------------------------------------===// |
| 1725 | |
| 1726 | /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified |
| 1727 | /// scalar floating point type. |
| 1728 | const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { |
| 1729 | switch (T->castAs<BuiltinType>()->getKind()) { |
| 1730 | default: |
| 1731 | llvm_unreachable("Not a floating point type!" ); |
| 1732 | case BuiltinType::BFloat16: |
| 1733 | return Target->getBFloat16Format(); |
| 1734 | case BuiltinType::Float16: |
| 1735 | return Target->getHalfFormat(); |
| 1736 | case BuiltinType::Half: |
| 1737 | return Target->getHalfFormat(); |
| 1738 | case BuiltinType::Float: return Target->getFloatFormat(); |
| 1739 | case BuiltinType::Double: return Target->getDoubleFormat(); |
| 1740 | case BuiltinType::Ibm128: |
| 1741 | return Target->getIbm128Format(); |
| 1742 | case BuiltinType::LongDouble: |
| 1743 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) |
| 1744 | return AuxTarget->getLongDoubleFormat(); |
| 1745 | return Target->getLongDoubleFormat(); |
| 1746 | case BuiltinType::Float128: |
| 1747 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) |
| 1748 | return AuxTarget->getFloat128Format(); |
| 1749 | return Target->getFloat128Format(); |
| 1750 | } |
| 1751 | } |
| 1752 | |
| 1753 | CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { |
| 1754 | unsigned Align = Target->getCharWidth(); |
| 1755 | |
| 1756 | const unsigned AlignFromAttr = D->getMaxAlignment(); |
| 1757 | if (AlignFromAttr) |
| 1758 | Align = AlignFromAttr; |
| 1759 | |
| 1760 | // __attribute__((aligned)) can increase or decrease alignment |
| 1761 | // *except* on a struct or struct member, where it only increases |
| 1762 | // alignment unless 'packed' is also specified. |
| 1763 | // |
| 1764 | // It is an error for alignas to decrease alignment, so we can |
| 1765 | // ignore that possibility; Sema should diagnose it. |
| 1766 | bool UseAlignAttrOnly; |
| 1767 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: D)) |
| 1768 | UseAlignAttrOnly = |
| 1769 | FD->hasAttr<PackedAttr>() || FD->getParent()->hasAttr<PackedAttr>(); |
| 1770 | else |
| 1771 | UseAlignAttrOnly = AlignFromAttr != 0; |
| 1772 | // If we're using the align attribute only, just ignore everything |
| 1773 | // else about the declaration and its type. |
| 1774 | if (UseAlignAttrOnly) { |
| 1775 | // do nothing |
| 1776 | } else if (const auto *VD = dyn_cast<ValueDecl>(Val: D)) { |
| 1777 | QualType T = VD->getType(); |
| 1778 | if (const auto *RT = T->getAs<ReferenceType>()) { |
| 1779 | if (ForAlignof) |
| 1780 | T = RT->getPointeeType(); |
| 1781 | else |
| 1782 | T = getPointerType(T: RT->getPointeeType()); |
| 1783 | } |
| 1784 | QualType BaseT = getBaseElementType(QT: T); |
| 1785 | if (T->isFunctionType()) |
| 1786 | Align = getTypeInfoImpl(T: T.getTypePtr()).Align; |
| 1787 | else if (!BaseT->isIncompleteType()) { |
| 1788 | // Adjust alignments of declarations with array type by the |
| 1789 | // large-array alignment on the target. |
| 1790 | if (const ArrayType *arrayType = getAsArrayType(T)) { |
| 1791 | unsigned MinWidth = Target->getLargeArrayMinWidth(); |
| 1792 | if (!ForAlignof && MinWidth) { |
| 1793 | if (isa<VariableArrayType>(Val: arrayType)) |
| 1794 | Align = std::max(a: Align, b: Target->getLargeArrayAlign()); |
| 1795 | else if (isa<ConstantArrayType>(Val: arrayType) && |
| 1796 | MinWidth <= getTypeSize(cast<ConstantArrayType>(Val: arrayType))) |
| 1797 | Align = std::max(a: Align, b: Target->getLargeArrayAlign()); |
| 1798 | } |
| 1799 | } |
| 1800 | Align = std::max(a: Align, b: getPreferredTypeAlign(T: T.getTypePtr())); |
| 1801 | if (BaseT.getQualifiers().hasUnaligned()) |
| 1802 | Align = Target->getCharWidth(); |
| 1803 | } |
| 1804 | |
| 1805 | // Ensure minimum alignment for global variables. |
| 1806 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) |
| 1807 | if (VD->hasGlobalStorage() && !ForAlignof) { |
| 1808 | uint64_t TypeSize = |
| 1809 | !BaseT->isIncompleteType() ? getTypeSize(T: T.getTypePtr()) : 0; |
| 1810 | Align = std::max(a: Align, b: getMinGlobalAlignOfVar(Size: TypeSize, VD)); |
| 1811 | } |
| 1812 | |
| 1813 | // Fields can be subject to extra alignment constraints, like if |
| 1814 | // the field is packed, the struct is packed, or the struct has a |
| 1815 | // a max-field-alignment constraint (#pragma pack). So calculate |
| 1816 | // the actual alignment of the field within the struct, and then |
| 1817 | // (as we're expected to) constrain that by the alignment of the type. |
| 1818 | if (const auto *Field = dyn_cast<FieldDecl>(Val: VD)) { |
| 1819 | const RecordDecl *Parent = Field->getParent(); |
| 1820 | // We can only produce a sensible answer if the record is valid. |
| 1821 | if (!Parent->isInvalidDecl()) { |
| 1822 | const ASTRecordLayout &Layout = getASTRecordLayout(D: Parent); |
| 1823 | |
| 1824 | // Start with the record's overall alignment. |
| 1825 | unsigned FieldAlign = toBits(CharSize: Layout.getAlignment()); |
| 1826 | |
| 1827 | // Use the GCD of that and the offset within the record. |
| 1828 | uint64_t Offset = Layout.getFieldOffset(FieldNo: Field->getFieldIndex()); |
| 1829 | if (Offset > 0) { |
| 1830 | // Alignment is always a power of 2, so the GCD will be a power of 2, |
| 1831 | // which means we get to do this crazy thing instead of Euclid's. |
| 1832 | uint64_t LowBitOfOffset = Offset & (~Offset + 1); |
| 1833 | if (LowBitOfOffset < FieldAlign) |
| 1834 | FieldAlign = static_cast<unsigned>(LowBitOfOffset); |
| 1835 | } |
| 1836 | |
| 1837 | Align = std::min(a: Align, b: FieldAlign); |
| 1838 | } |
| 1839 | } |
| 1840 | } |
| 1841 | |
| 1842 | // Some targets have hard limitation on the maximum requestable alignment in |
| 1843 | // aligned attribute for static variables. |
| 1844 | const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute(); |
| 1845 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
| 1846 | if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static) |
| 1847 | Align = std::min(a: Align, b: MaxAlignedAttr); |
| 1848 | |
| 1849 | return toCharUnitsFromBits(BitSize: Align); |
| 1850 | } |
| 1851 | |
| 1852 | CharUnits ASTContext::getExnObjectAlignment() const { |
| 1853 | return toCharUnitsFromBits(BitSize: Target->getExnObjectAlignment()); |
| 1854 | } |
| 1855 | |
| 1856 | // getTypeInfoDataSizeInChars - Return the size of a type, in |
| 1857 | // chars. If the type is a record, its data size is returned. This is |
| 1858 | // the size of the memcpy that's performed when assigning this type |
| 1859 | // using a trivial copy/move assignment operator. |
| 1860 | TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const { |
| 1861 | TypeInfoChars Info = getTypeInfoInChars(T); |
| 1862 | |
| 1863 | // In C++, objects can sometimes be allocated into the tail padding |
| 1864 | // of a base-class subobject. We decide whether that's possible |
| 1865 | // during class layout, so here we can just trust the layout results. |
| 1866 | if (getLangOpts().CPlusPlus) { |
| 1867 | if (const auto *RT = T->getAs<RecordType>(); |
| 1868 | RT && !RT->getDecl()->isInvalidDecl()) { |
| 1869 | const ASTRecordLayout &layout = getASTRecordLayout(D: RT->getDecl()); |
| 1870 | Info.Width = layout.getDataSize(); |
| 1871 | } |
| 1872 | } |
| 1873 | |
| 1874 | return Info; |
| 1875 | } |
| 1876 | |
| 1877 | /// getConstantArrayInfoInChars - Performing the computation in CharUnits |
| 1878 | /// instead of in bits prevents overflowing the uint64_t for some large arrays. |
| 1879 | TypeInfoChars |
| 1880 | static getConstantArrayInfoInChars(const ASTContext &Context, |
| 1881 | const ConstantArrayType *CAT) { |
| 1882 | TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType()); |
| 1883 | uint64_t Size = CAT->getZExtSize(); |
| 1884 | assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <= |
| 1885 | (uint64_t)(-1)/Size) && |
| 1886 | "Overflow in array type char size evaluation" ); |
| 1887 | uint64_t Width = EltInfo.Width.getQuantity() * Size; |
| 1888 | unsigned Align = EltInfo.Align.getQuantity(); |
| 1889 | if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || |
| 1890 | Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) == 64) |
| 1891 | Width = llvm::alignTo(Value: Width, Align); |
| 1892 | return TypeInfoChars(CharUnits::fromQuantity(Quantity: Width), |
| 1893 | CharUnits::fromQuantity(Quantity: Align), |
| 1894 | EltInfo.AlignRequirement); |
| 1895 | } |
| 1896 | |
| 1897 | TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const { |
| 1898 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: T)) |
| 1899 | return getConstantArrayInfoInChars(Context: *this, CAT); |
| 1900 | TypeInfo Info = getTypeInfo(T); |
| 1901 | return TypeInfoChars(toCharUnitsFromBits(BitSize: Info.Width), |
| 1902 | toCharUnitsFromBits(BitSize: Info.Align), Info.AlignRequirement); |
| 1903 | } |
| 1904 | |
| 1905 | TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const { |
| 1906 | return getTypeInfoInChars(T: T.getTypePtr()); |
| 1907 | } |
| 1908 | |
| 1909 | bool ASTContext::isPromotableIntegerType(QualType T) const { |
| 1910 | // HLSL doesn't promote all small integer types to int, it |
| 1911 | // just uses the rank-based promotion rules for all types. |
| 1912 | if (getLangOpts().HLSL) |
| 1913 | return false; |
| 1914 | |
| 1915 | if (const auto *BT = T->getAs<BuiltinType>()) |
| 1916 | switch (BT->getKind()) { |
| 1917 | case BuiltinType::Bool: |
| 1918 | case BuiltinType::Char_S: |
| 1919 | case BuiltinType::Char_U: |
| 1920 | case BuiltinType::SChar: |
| 1921 | case BuiltinType::UChar: |
| 1922 | case BuiltinType::Short: |
| 1923 | case BuiltinType::UShort: |
| 1924 | case BuiltinType::WChar_S: |
| 1925 | case BuiltinType::WChar_U: |
| 1926 | case BuiltinType::Char8: |
| 1927 | case BuiltinType::Char16: |
| 1928 | case BuiltinType::Char32: |
| 1929 | return true; |
| 1930 | default: |
| 1931 | return false; |
| 1932 | } |
| 1933 | |
| 1934 | // Enumerated types are promotable to their compatible integer types |
| 1935 | // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2). |
| 1936 | if (const auto *ET = T->getAs<EnumType>()) { |
| 1937 | if (T->isDependentType() || ET->getDecl()->getPromotionType().isNull() || |
| 1938 | ET->getDecl()->isScoped()) |
| 1939 | return false; |
| 1940 | |
| 1941 | return true; |
| 1942 | } |
| 1943 | |
| 1944 | return false; |
| 1945 | } |
| 1946 | |
| 1947 | bool ASTContext::isAlignmentRequired(const Type *T) const { |
| 1948 | return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None; |
| 1949 | } |
| 1950 | |
| 1951 | bool ASTContext::isAlignmentRequired(QualType T) const { |
| 1952 | return isAlignmentRequired(T: T.getTypePtr()); |
| 1953 | } |
| 1954 | |
| 1955 | unsigned ASTContext::getTypeAlignIfKnown(QualType T, |
| 1956 | bool NeedsPreferredAlignment) const { |
| 1957 | // An alignment on a typedef overrides anything else. |
| 1958 | if (const auto *TT = T->getAs<TypedefType>()) |
| 1959 | if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
| 1960 | return Align; |
| 1961 | |
| 1962 | // If we have an (array of) complete type, we're done. |
| 1963 | T = getBaseElementType(QT: T); |
| 1964 | if (!T->isIncompleteType()) |
| 1965 | return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T); |
| 1966 | |
| 1967 | // If we had an array type, its element type might be a typedef |
| 1968 | // type with an alignment attribute. |
| 1969 | if (const auto *TT = T->getAs<TypedefType>()) |
| 1970 | if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
| 1971 | return Align; |
| 1972 | |
| 1973 | // Otherwise, see if the declaration of the type had an attribute. |
| 1974 | if (const auto *TT = T->getAs<TagType>()) |
| 1975 | return TT->getDecl()->getMaxAlignment(); |
| 1976 | |
| 1977 | return 0; |
| 1978 | } |
| 1979 | |
| 1980 | TypeInfo ASTContext::getTypeInfo(const Type *T) const { |
| 1981 | TypeInfoMap::iterator I = MemoizedTypeInfo.find(Val: T); |
| 1982 | if (I != MemoizedTypeInfo.end()) |
| 1983 | return I->second; |
| 1984 | |
| 1985 | // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. |
| 1986 | TypeInfo TI = getTypeInfoImpl(T); |
| 1987 | MemoizedTypeInfo[T] = TI; |
| 1988 | return TI; |
| 1989 | } |
| 1990 | |
| 1991 | /// getTypeInfoImpl - Return the size of the specified type, in bits. This |
| 1992 | /// method does not work on incomplete types. |
| 1993 | /// |
| 1994 | /// FIXME: Pointers into different addr spaces could have different sizes and |
| 1995 | /// alignment requirements: getPointerInfo should take an AddrSpace, this |
| 1996 | /// should take a QualType, &c. |
| 1997 | TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { |
| 1998 | uint64_t Width = 0; |
| 1999 | unsigned Align = 8; |
| 2000 | AlignRequirementKind AlignRequirement = AlignRequirementKind::None; |
| 2001 | LangAS AS = LangAS::Default; |
| 2002 | switch (T->getTypeClass()) { |
| 2003 | #define TYPE(Class, Base) |
| 2004 | #define ABSTRACT_TYPE(Class, Base) |
| 2005 | #define NON_CANONICAL_TYPE(Class, Base) |
| 2006 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 2007 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ |
| 2008 | case Type::Class: \ |
| 2009 | assert(!T->isDependentType() && "should not see dependent types here"); \ |
| 2010 | return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); |
| 2011 | #include "clang/AST/TypeNodes.inc" |
| 2012 | llvm_unreachable("Should not see dependent types" ); |
| 2013 | |
| 2014 | case Type::FunctionNoProto: |
| 2015 | case Type::FunctionProto: |
| 2016 | // GCC extension: alignof(function) = 32 bits |
| 2017 | Width = 0; |
| 2018 | Align = 32; |
| 2019 | break; |
| 2020 | |
| 2021 | case Type::IncompleteArray: |
| 2022 | case Type::VariableArray: |
| 2023 | case Type::ConstantArray: |
| 2024 | case Type::ArrayParameter: { |
| 2025 | // Model non-constant sized arrays as size zero, but track the alignment. |
| 2026 | uint64_t Size = 0; |
| 2027 | if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) |
| 2028 | Size = CAT->getZExtSize(); |
| 2029 | |
| 2030 | TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType()); |
| 2031 | assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && |
| 2032 | "Overflow in array type bit size evaluation" ); |
| 2033 | Width = EltInfo.Width * Size; |
| 2034 | Align = EltInfo.Align; |
| 2035 | AlignRequirement = EltInfo.AlignRequirement; |
| 2036 | if (!getTargetInfo().getCXXABI().isMicrosoft() || |
| 2037 | getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) == 64) |
| 2038 | Width = llvm::alignTo(Value: Width, Align); |
| 2039 | break; |
| 2040 | } |
| 2041 | |
| 2042 | case Type::ExtVector: |
| 2043 | case Type::Vector: { |
| 2044 | const auto *VT = cast<VectorType>(T); |
| 2045 | TypeInfo EltInfo = getTypeInfo(VT->getElementType()); |
| 2046 | Width = VT->isPackedVectorBoolType(*this) |
| 2047 | ? VT->getNumElements() |
| 2048 | : EltInfo.Width * VT->getNumElements(); |
| 2049 | // Enforce at least byte size and alignment. |
| 2050 | Width = std::max<unsigned>(8, Width); |
| 2051 | Align = std::max<unsigned>(8, Width); |
| 2052 | |
| 2053 | // If the alignment is not a power of 2, round up to the next power of 2. |
| 2054 | // This happens for non-power-of-2 length vectors. |
| 2055 | if (Align & (Align-1)) { |
| 2056 | Align = llvm::bit_ceil(Align); |
| 2057 | Width = llvm::alignTo(Value: Width, Align); |
| 2058 | } |
| 2059 | // Adjust the alignment based on the target max. |
| 2060 | uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); |
| 2061 | if (TargetVectorAlign && TargetVectorAlign < Align) |
| 2062 | Align = TargetVectorAlign; |
| 2063 | if (VT->getVectorKind() == VectorKind::SveFixedLengthData) |
| 2064 | // Adjust the alignment for fixed-length SVE vectors. This is important |
| 2065 | // for non-power-of-2 vector lengths. |
| 2066 | Align = 128; |
| 2067 | else if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) |
| 2068 | // Adjust the alignment for fixed-length SVE predicates. |
| 2069 | Align = 16; |
| 2070 | else if (VT->getVectorKind() == VectorKind::RVVFixedLengthData || |
| 2071 | VT->getVectorKind() == VectorKind::RVVFixedLengthMask || |
| 2072 | VT->getVectorKind() == VectorKind::RVVFixedLengthMask_1 || |
| 2073 | VT->getVectorKind() == VectorKind::RVVFixedLengthMask_2 || |
| 2074 | VT->getVectorKind() == VectorKind::RVVFixedLengthMask_4) |
| 2075 | // Adjust the alignment for fixed-length RVV vectors. |
| 2076 | Align = std::min<unsigned>(64, Width); |
| 2077 | break; |
| 2078 | } |
| 2079 | |
| 2080 | case Type::ConstantMatrix: { |
| 2081 | const auto *MT = cast<ConstantMatrixType>(T); |
| 2082 | TypeInfo ElementInfo = getTypeInfo(MT->getElementType()); |
| 2083 | // The internal layout of a matrix value is implementation defined. |
| 2084 | // Initially be ABI compatible with arrays with respect to alignment and |
| 2085 | // size. |
| 2086 | Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns(); |
| 2087 | Align = ElementInfo.Align; |
| 2088 | break; |
| 2089 | } |
| 2090 | |
| 2091 | case Type::Builtin: |
| 2092 | switch (cast<BuiltinType>(T)->getKind()) { |
| 2093 | default: llvm_unreachable("Unknown builtin type!" ); |
| 2094 | case BuiltinType::Void: |
| 2095 | // GCC extension: alignof(void) = 8 bits. |
| 2096 | Width = 0; |
| 2097 | Align = 8; |
| 2098 | break; |
| 2099 | case BuiltinType::Bool: |
| 2100 | Width = Target->getBoolWidth(); |
| 2101 | Align = Target->getBoolAlign(); |
| 2102 | break; |
| 2103 | case BuiltinType::Char_S: |
| 2104 | case BuiltinType::Char_U: |
| 2105 | case BuiltinType::UChar: |
| 2106 | case BuiltinType::SChar: |
| 2107 | case BuiltinType::Char8: |
| 2108 | Width = Target->getCharWidth(); |
| 2109 | Align = Target->getCharAlign(); |
| 2110 | break; |
| 2111 | case BuiltinType::WChar_S: |
| 2112 | case BuiltinType::WChar_U: |
| 2113 | Width = Target->getWCharWidth(); |
| 2114 | Align = Target->getWCharAlign(); |
| 2115 | break; |
| 2116 | case BuiltinType::Char16: |
| 2117 | Width = Target->getChar16Width(); |
| 2118 | Align = Target->getChar16Align(); |
| 2119 | break; |
| 2120 | case BuiltinType::Char32: |
| 2121 | Width = Target->getChar32Width(); |
| 2122 | Align = Target->getChar32Align(); |
| 2123 | break; |
| 2124 | case BuiltinType::UShort: |
| 2125 | case BuiltinType::Short: |
| 2126 | Width = Target->getShortWidth(); |
| 2127 | Align = Target->getShortAlign(); |
| 2128 | break; |
| 2129 | case BuiltinType::UInt: |
| 2130 | case BuiltinType::Int: |
| 2131 | Width = Target->getIntWidth(); |
| 2132 | Align = Target->getIntAlign(); |
| 2133 | break; |
| 2134 | case BuiltinType::ULong: |
| 2135 | case BuiltinType::Long: |
| 2136 | Width = Target->getLongWidth(); |
| 2137 | Align = Target->getLongAlign(); |
| 2138 | break; |
| 2139 | case BuiltinType::ULongLong: |
| 2140 | case BuiltinType::LongLong: |
| 2141 | Width = Target->getLongLongWidth(); |
| 2142 | Align = Target->getLongLongAlign(); |
| 2143 | break; |
| 2144 | case BuiltinType::Int128: |
| 2145 | case BuiltinType::UInt128: |
| 2146 | Width = 128; |
| 2147 | Align = Target->getInt128Align(); |
| 2148 | break; |
| 2149 | case BuiltinType::ShortAccum: |
| 2150 | case BuiltinType::UShortAccum: |
| 2151 | case BuiltinType::SatShortAccum: |
| 2152 | case BuiltinType::SatUShortAccum: |
| 2153 | Width = Target->getShortAccumWidth(); |
| 2154 | Align = Target->getShortAccumAlign(); |
| 2155 | break; |
| 2156 | case BuiltinType::Accum: |
| 2157 | case BuiltinType::UAccum: |
| 2158 | case BuiltinType::SatAccum: |
| 2159 | case BuiltinType::SatUAccum: |
| 2160 | Width = Target->getAccumWidth(); |
| 2161 | Align = Target->getAccumAlign(); |
| 2162 | break; |
| 2163 | case BuiltinType::LongAccum: |
| 2164 | case BuiltinType::ULongAccum: |
| 2165 | case BuiltinType::SatLongAccum: |
| 2166 | case BuiltinType::SatULongAccum: |
| 2167 | Width = Target->getLongAccumWidth(); |
| 2168 | Align = Target->getLongAccumAlign(); |
| 2169 | break; |
| 2170 | case BuiltinType::ShortFract: |
| 2171 | case BuiltinType::UShortFract: |
| 2172 | case BuiltinType::SatShortFract: |
| 2173 | case BuiltinType::SatUShortFract: |
| 2174 | Width = Target->getShortFractWidth(); |
| 2175 | Align = Target->getShortFractAlign(); |
| 2176 | break; |
| 2177 | case BuiltinType::Fract: |
| 2178 | case BuiltinType::UFract: |
| 2179 | case BuiltinType::SatFract: |
| 2180 | case BuiltinType::SatUFract: |
| 2181 | Width = Target->getFractWidth(); |
| 2182 | Align = Target->getFractAlign(); |
| 2183 | break; |
| 2184 | case BuiltinType::LongFract: |
| 2185 | case BuiltinType::ULongFract: |
| 2186 | case BuiltinType::SatLongFract: |
| 2187 | case BuiltinType::SatULongFract: |
| 2188 | Width = Target->getLongFractWidth(); |
| 2189 | Align = Target->getLongFractAlign(); |
| 2190 | break; |
| 2191 | case BuiltinType::BFloat16: |
| 2192 | if (Target->hasBFloat16Type()) { |
| 2193 | Width = Target->getBFloat16Width(); |
| 2194 | Align = Target->getBFloat16Align(); |
| 2195 | } else if ((getLangOpts().SYCLIsDevice || |
| 2196 | (getLangOpts().OpenMP && |
| 2197 | getLangOpts().OpenMPIsTargetDevice)) && |
| 2198 | AuxTarget->hasBFloat16Type()) { |
| 2199 | Width = AuxTarget->getBFloat16Width(); |
| 2200 | Align = AuxTarget->getBFloat16Align(); |
| 2201 | } |
| 2202 | break; |
| 2203 | case BuiltinType::Float16: |
| 2204 | case BuiltinType::Half: |
| 2205 | if (Target->hasFloat16Type() || !getLangOpts().OpenMP || |
| 2206 | !getLangOpts().OpenMPIsTargetDevice) { |
| 2207 | Width = Target->getHalfWidth(); |
| 2208 | Align = Target->getHalfAlign(); |
| 2209 | } else { |
| 2210 | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
| 2211 | "Expected OpenMP device compilation." ); |
| 2212 | Width = AuxTarget->getHalfWidth(); |
| 2213 | Align = AuxTarget->getHalfAlign(); |
| 2214 | } |
| 2215 | break; |
| 2216 | case BuiltinType::Float: |
| 2217 | Width = Target->getFloatWidth(); |
| 2218 | Align = Target->getFloatAlign(); |
| 2219 | break; |
| 2220 | case BuiltinType::Double: |
| 2221 | Width = Target->getDoubleWidth(); |
| 2222 | Align = Target->getDoubleAlign(); |
| 2223 | break; |
| 2224 | case BuiltinType::Ibm128: |
| 2225 | Width = Target->getIbm128Width(); |
| 2226 | Align = Target->getIbm128Align(); |
| 2227 | break; |
| 2228 | case BuiltinType::LongDouble: |
| 2229 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
| 2230 | (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() || |
| 2231 | Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) { |
| 2232 | Width = AuxTarget->getLongDoubleWidth(); |
| 2233 | Align = AuxTarget->getLongDoubleAlign(); |
| 2234 | } else { |
| 2235 | Width = Target->getLongDoubleWidth(); |
| 2236 | Align = Target->getLongDoubleAlign(); |
| 2237 | } |
| 2238 | break; |
| 2239 | case BuiltinType::Float128: |
| 2240 | if (Target->hasFloat128Type() || !getLangOpts().OpenMP || |
| 2241 | !getLangOpts().OpenMPIsTargetDevice) { |
| 2242 | Width = Target->getFloat128Width(); |
| 2243 | Align = Target->getFloat128Align(); |
| 2244 | } else { |
| 2245 | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
| 2246 | "Expected OpenMP device compilation." ); |
| 2247 | Width = AuxTarget->getFloat128Width(); |
| 2248 | Align = AuxTarget->getFloat128Align(); |
| 2249 | } |
| 2250 | break; |
| 2251 | case BuiltinType::NullPtr: |
| 2252 | // C++ 3.9.1p11: sizeof(nullptr_t) == sizeof(void*) |
| 2253 | Width = Target->getPointerWidth(AddrSpace: LangAS::Default); |
| 2254 | Align = Target->getPointerAlign(AddrSpace: LangAS::Default); |
| 2255 | break; |
| 2256 | case BuiltinType::ObjCId: |
| 2257 | case BuiltinType::ObjCClass: |
| 2258 | case BuiltinType::ObjCSel: |
| 2259 | Width = Target->getPointerWidth(AddrSpace: LangAS::Default); |
| 2260 | Align = Target->getPointerAlign(AddrSpace: LangAS::Default); |
| 2261 | break; |
| 2262 | case BuiltinType::OCLSampler: |
| 2263 | case BuiltinType::OCLEvent: |
| 2264 | case BuiltinType::OCLClkEvent: |
| 2265 | case BuiltinType::OCLQueue: |
| 2266 | case BuiltinType::OCLReserveID: |
| 2267 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 2268 | case BuiltinType::Id: |
| 2269 | #include "clang/Basic/OpenCLImageTypes.def" |
| 2270 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| 2271 | case BuiltinType::Id: |
| 2272 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 2273 | AS = Target->getOpenCLTypeAddrSpace(TK: getOpenCLTypeKind(T)); |
| 2274 | Width = Target->getPointerWidth(AddrSpace: AS); |
| 2275 | Align = Target->getPointerAlign(AddrSpace: AS); |
| 2276 | break; |
| 2277 | // The SVE types are effectively target-specific. The length of an |
| 2278 | // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple |
| 2279 | // of 128 bits. There is one predicate bit for each vector byte, so the |
| 2280 | // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits. |
| 2281 | // |
| 2282 | // Because the length is only known at runtime, we use a dummy value |
| 2283 | // of 0 for the static length. The alignment values are those defined |
| 2284 | // by the Procedure Call Standard for the Arm Architecture. |
| 2285 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId) \ |
| 2286 | case BuiltinType::Id: \ |
| 2287 | Width = 0; \ |
| 2288 | Align = 128; \ |
| 2289 | break; |
| 2290 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId) \ |
| 2291 | case BuiltinType::Id: \ |
| 2292 | Width = 0; \ |
| 2293 | Align = 16; \ |
| 2294 | break; |
| 2295 | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId) \ |
| 2296 | case BuiltinType::Id: \ |
| 2297 | Width = 0; \ |
| 2298 | Align = 16; \ |
| 2299 | break; |
| 2300 | #define SVE_SCALAR_TYPE(Name, MangledName, Id, SingletonId, Bits) \ |
| 2301 | case BuiltinType::Id: \ |
| 2302 | Width = Bits; \ |
| 2303 | Align = Bits; \ |
| 2304 | break; |
| 2305 | #include "clang/Basic/AArch64ACLETypes.def" |
| 2306 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
| 2307 | case BuiltinType::Id: \ |
| 2308 | Width = Size; \ |
| 2309 | Align = Size; \ |
| 2310 | break; |
| 2311 | #include "clang/Basic/PPCTypes.def" |
| 2312 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned, \ |
| 2313 | IsFP, IsBF) \ |
| 2314 | case BuiltinType::Id: \ |
| 2315 | Width = 0; \ |
| 2316 | Align = ElBits; \ |
| 2317 | break; |
| 2318 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \ |
| 2319 | case BuiltinType::Id: \ |
| 2320 | Width = 0; \ |
| 2321 | Align = 8; \ |
| 2322 | break; |
| 2323 | #include "clang/Basic/RISCVVTypes.def" |
| 2324 | #define WASM_TYPE(Name, Id, SingletonId) \ |
| 2325 | case BuiltinType::Id: \ |
| 2326 | Width = 0; \ |
| 2327 | Align = 8; \ |
| 2328 | break; |
| 2329 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
| 2330 | #define AMDGPU_TYPE(NAME, ID, SINGLETONID, WIDTH, ALIGN) \ |
| 2331 | case BuiltinType::ID: \ |
| 2332 | Width = WIDTH; \ |
| 2333 | Align = ALIGN; \ |
| 2334 | break; |
| 2335 | #include "clang/Basic/AMDGPUTypes.def" |
| 2336 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| 2337 | #include "clang/Basic/HLSLIntangibleTypes.def" |
| 2338 | Width = Target->getPointerWidth(AddrSpace: LangAS::Default); |
| 2339 | Align = Target->getPointerAlign(AddrSpace: LangAS::Default); |
| 2340 | break; |
| 2341 | } |
| 2342 | break; |
| 2343 | case Type::ObjCObjectPointer: |
| 2344 | Width = Target->getPointerWidth(AddrSpace: LangAS::Default); |
| 2345 | Align = Target->getPointerAlign(AddrSpace: LangAS::Default); |
| 2346 | break; |
| 2347 | case Type::BlockPointer: |
| 2348 | AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace(); |
| 2349 | Width = Target->getPointerWidth(AddrSpace: AS); |
| 2350 | Align = Target->getPointerAlign(AddrSpace: AS); |
| 2351 | break; |
| 2352 | case Type::LValueReference: |
| 2353 | case Type::RValueReference: |
| 2354 | // alignof and sizeof should never enter this code path here, so we go |
| 2355 | // the pointer route. |
| 2356 | AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace(); |
| 2357 | Width = Target->getPointerWidth(AddrSpace: AS); |
| 2358 | Align = Target->getPointerAlign(AddrSpace: AS); |
| 2359 | break; |
| 2360 | case Type::Pointer: |
| 2361 | AS = cast<PointerType>(T)->getPointeeType().getAddressSpace(); |
| 2362 | Width = Target->getPointerWidth(AddrSpace: AS); |
| 2363 | Align = Target->getPointerAlign(AddrSpace: AS); |
| 2364 | break; |
| 2365 | case Type::MemberPointer: { |
| 2366 | const auto *MPT = cast<MemberPointerType>(T); |
| 2367 | CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT); |
| 2368 | Width = MPI.Width; |
| 2369 | Align = MPI.Align; |
| 2370 | break; |
| 2371 | } |
| 2372 | case Type::Complex: { |
| 2373 | // Complex types have the same alignment as their elements, but twice the |
| 2374 | // size. |
| 2375 | TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); |
| 2376 | Width = EltInfo.Width * 2; |
| 2377 | Align = EltInfo.Align; |
| 2378 | break; |
| 2379 | } |
| 2380 | case Type::ObjCObject: |
| 2381 | return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); |
| 2382 | case Type::Adjusted: |
| 2383 | case Type::Decayed: |
| 2384 | return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); |
| 2385 | case Type::ObjCInterface: { |
| 2386 | const auto *ObjCI = cast<ObjCInterfaceType>(T); |
| 2387 | if (ObjCI->getDecl()->isInvalidDecl()) { |
| 2388 | Width = 8; |
| 2389 | Align = 8; |
| 2390 | break; |
| 2391 | } |
| 2392 | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(D: ObjCI->getDecl()); |
| 2393 | Width = toBits(CharSize: Layout.getSize()); |
| 2394 | Align = toBits(CharSize: Layout.getAlignment()); |
| 2395 | break; |
| 2396 | } |
| 2397 | case Type::BitInt: { |
| 2398 | const auto *EIT = cast<BitIntType>(T); |
| 2399 | Align = Target->getBitIntAlign(NumBits: EIT->getNumBits()); |
| 2400 | Width = Target->getBitIntWidth(NumBits: EIT->getNumBits()); |
| 2401 | break; |
| 2402 | } |
| 2403 | case Type::Record: |
| 2404 | case Type::Enum: { |
| 2405 | const auto *TT = cast<TagType>(T); |
| 2406 | |
| 2407 | if (TT->getDecl()->isInvalidDecl()) { |
| 2408 | Width = 8; |
| 2409 | Align = 8; |
| 2410 | break; |
| 2411 | } |
| 2412 | |
| 2413 | if (const auto *ET = dyn_cast<EnumType>(TT)) { |
| 2414 | const EnumDecl *ED = ET->getDecl(); |
| 2415 | TypeInfo Info = |
| 2416 | getTypeInfo(T: ED->getIntegerType()->getUnqualifiedDesugaredType()); |
| 2417 | if (unsigned AttrAlign = ED->getMaxAlignment()) { |
| 2418 | Info.Align = AttrAlign; |
| 2419 | Info.AlignRequirement = AlignRequirementKind::RequiredByEnum; |
| 2420 | } |
| 2421 | return Info; |
| 2422 | } |
| 2423 | |
| 2424 | const auto *RT = cast<RecordType>(TT); |
| 2425 | const RecordDecl *RD = RT->getDecl(); |
| 2426 | const ASTRecordLayout &Layout = getASTRecordLayout(D: RD); |
| 2427 | Width = toBits(CharSize: Layout.getSize()); |
| 2428 | Align = toBits(CharSize: Layout.getAlignment()); |
| 2429 | AlignRequirement = RD->hasAttr<AlignedAttr>() |
| 2430 | ? AlignRequirementKind::RequiredByRecord |
| 2431 | : AlignRequirementKind::None; |
| 2432 | break; |
| 2433 | } |
| 2434 | |
| 2435 | case Type::SubstTemplateTypeParm: |
| 2436 | return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> |
| 2437 | getReplacementType().getTypePtr()); |
| 2438 | |
| 2439 | case Type::Auto: |
| 2440 | case Type::DeducedTemplateSpecialization: { |
| 2441 | const auto *A = cast<DeducedType>(T); |
| 2442 | assert(!A->getDeducedType().isNull() && |
| 2443 | "cannot request the size of an undeduced or dependent auto type" ); |
| 2444 | return getTypeInfo(A->getDeducedType().getTypePtr()); |
| 2445 | } |
| 2446 | |
| 2447 | case Type::Paren: |
| 2448 | return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); |
| 2449 | |
| 2450 | case Type::MacroQualified: |
| 2451 | return getTypeInfo( |
| 2452 | cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr()); |
| 2453 | |
| 2454 | case Type::ObjCTypeParam: |
| 2455 | return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr()); |
| 2456 | |
| 2457 | case Type::Using: |
| 2458 | return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr()); |
| 2459 | |
| 2460 | case Type::Typedef: { |
| 2461 | const auto *TT = cast<TypedefType>(T); |
| 2462 | TypeInfo Info = getTypeInfo(TT->desugar().getTypePtr()); |
| 2463 | // If the typedef has an aligned attribute on it, it overrides any computed |
| 2464 | // alignment we have. This violates the GCC documentation (which says that |
| 2465 | // attribute(aligned) can only round up) but matches its implementation. |
| 2466 | if (unsigned AttrAlign = TT->getDecl()->getMaxAlignment()) { |
| 2467 | Align = AttrAlign; |
| 2468 | AlignRequirement = AlignRequirementKind::RequiredByTypedef; |
| 2469 | } else { |
| 2470 | Align = Info.Align; |
| 2471 | AlignRequirement = Info.AlignRequirement; |
| 2472 | } |
| 2473 | Width = Info.Width; |
| 2474 | break; |
| 2475 | } |
| 2476 | |
| 2477 | case Type::Elaborated: |
| 2478 | return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); |
| 2479 | |
| 2480 | case Type::Attributed: |
| 2481 | return getTypeInfo( |
| 2482 | cast<AttributedType>(T)->getEquivalentType().getTypePtr()); |
| 2483 | |
| 2484 | case Type::CountAttributed: |
| 2485 | return getTypeInfo(cast<CountAttributedType>(T)->desugar().getTypePtr()); |
| 2486 | |
| 2487 | case Type::BTFTagAttributed: |
| 2488 | return getTypeInfo( |
| 2489 | cast<BTFTagAttributedType>(T)->getWrappedType().getTypePtr()); |
| 2490 | |
| 2491 | case Type::HLSLAttributedResource: |
| 2492 | return getTypeInfo( |
| 2493 | cast<HLSLAttributedResourceType>(T)->getWrappedType().getTypePtr()); |
| 2494 | |
| 2495 | case Type::HLSLInlineSpirv: { |
| 2496 | const auto *ST = cast<HLSLInlineSpirvType>(T); |
| 2497 | // Size is specified in bytes, convert to bits |
| 2498 | Width = ST->getSize() * 8; |
| 2499 | Align = ST->getAlignment(); |
| 2500 | if (Width == 0 && Align == 0) { |
| 2501 | // We are defaulting to laying out opaque SPIR-V types as 32-bit ints. |
| 2502 | Width = 32; |
| 2503 | Align = 32; |
| 2504 | } |
| 2505 | break; |
| 2506 | } |
| 2507 | |
| 2508 | case Type::Atomic: { |
| 2509 | // Start with the base type information. |
| 2510 | TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); |
| 2511 | Width = Info.Width; |
| 2512 | Align = Info.Align; |
| 2513 | |
| 2514 | if (!Width) { |
| 2515 | // An otherwise zero-sized type should still generate an |
| 2516 | // atomic operation. |
| 2517 | Width = Target->getCharWidth(); |
| 2518 | assert(Align); |
| 2519 | } else if (Width <= Target->getMaxAtomicPromoteWidth()) { |
| 2520 | // If the size of the type doesn't exceed the platform's max |
| 2521 | // atomic promotion width, make the size and alignment more |
| 2522 | // favorable to atomic operations: |
| 2523 | |
| 2524 | // Round the size up to a power of 2. |
| 2525 | Width = llvm::bit_ceil(Width); |
| 2526 | |
| 2527 | // Set the alignment equal to the size. |
| 2528 | Align = static_cast<unsigned>(Width); |
| 2529 | } |
| 2530 | } |
| 2531 | break; |
| 2532 | |
| 2533 | case Type::Pipe: |
| 2534 | Width = Target->getPointerWidth(AddrSpace: LangAS::opencl_global); |
| 2535 | Align = Target->getPointerAlign(AddrSpace: LangAS::opencl_global); |
| 2536 | break; |
| 2537 | } |
| 2538 | |
| 2539 | assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2" ); |
| 2540 | return TypeInfo(Width, Align, AlignRequirement); |
| 2541 | } |
| 2542 | |
| 2543 | unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const { |
| 2544 | UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(Val: T); |
| 2545 | if (I != MemoizedUnadjustedAlign.end()) |
| 2546 | return I->second; |
| 2547 | |
| 2548 | unsigned UnadjustedAlign; |
| 2549 | if (const auto *RT = T->getAs<RecordType>()) { |
| 2550 | const RecordDecl *RD = RT->getDecl(); |
| 2551 | const ASTRecordLayout &Layout = getASTRecordLayout(D: RD); |
| 2552 | UnadjustedAlign = toBits(CharSize: Layout.getUnadjustedAlignment()); |
| 2553 | } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) { |
| 2554 | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(D: ObjCI->getDecl()); |
| 2555 | UnadjustedAlign = toBits(CharSize: Layout.getUnadjustedAlignment()); |
| 2556 | } else { |
| 2557 | UnadjustedAlign = getTypeAlign(T: T->getUnqualifiedDesugaredType()); |
| 2558 | } |
| 2559 | |
| 2560 | MemoizedUnadjustedAlign[T] = UnadjustedAlign; |
| 2561 | return UnadjustedAlign; |
| 2562 | } |
| 2563 | |
| 2564 | unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { |
| 2565 | unsigned SimdAlign = llvm::OpenMPIRBuilder::getOpenMPDefaultSimdAlign( |
| 2566 | TargetTriple: getTargetInfo().getTriple(), Features: Target->getTargetOpts().FeatureMap); |
| 2567 | return SimdAlign; |
| 2568 | } |
| 2569 | |
| 2570 | /// toCharUnitsFromBits - Convert a size in bits to a size in characters. |
| 2571 | CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { |
| 2572 | return CharUnits::fromQuantity(Quantity: BitSize / getCharWidth()); |
| 2573 | } |
| 2574 | |
| 2575 | /// toBits - Convert a size in characters to a size in characters. |
| 2576 | int64_t ASTContext::toBits(CharUnits CharSize) const { |
| 2577 | return CharSize.getQuantity() * getCharWidth(); |
| 2578 | } |
| 2579 | |
| 2580 | /// getTypeSizeInChars - Return the size of the specified type, in characters. |
| 2581 | /// This method does not work on incomplete types. |
| 2582 | CharUnits ASTContext::getTypeSizeInChars(QualType T) const { |
| 2583 | return getTypeInfoInChars(T).Width; |
| 2584 | } |
| 2585 | CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { |
| 2586 | return getTypeInfoInChars(T).Width; |
| 2587 | } |
| 2588 | |
| 2589 | /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in |
| 2590 | /// characters. This method does not work on incomplete types. |
| 2591 | CharUnits ASTContext::getTypeAlignInChars(QualType T) const { |
| 2592 | return toCharUnitsFromBits(BitSize: getTypeAlign(T)); |
| 2593 | } |
| 2594 | CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { |
| 2595 | return toCharUnitsFromBits(BitSize: getTypeAlign(T)); |
| 2596 | } |
| 2597 | |
| 2598 | /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a |
| 2599 | /// type, in characters, before alignment adjustments. This method does |
| 2600 | /// not work on incomplete types. |
| 2601 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const { |
| 2602 | return toCharUnitsFromBits(BitSize: getTypeUnadjustedAlign(T)); |
| 2603 | } |
| 2604 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const { |
| 2605 | return toCharUnitsFromBits(BitSize: getTypeUnadjustedAlign(T)); |
| 2606 | } |
| 2607 | |
| 2608 | /// getPreferredTypeAlign - Return the "preferred" alignment of the specified |
| 2609 | /// type for the current target in bits. This can be different than the ABI |
| 2610 | /// alignment in cases where it is beneficial for performance or backwards |
| 2611 | /// compatibility preserving to overalign a data type. (Note: despite the name, |
| 2612 | /// the preferred alignment is ABI-impacting, and not an optimization.) |
| 2613 | unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { |
| 2614 | TypeInfo TI = getTypeInfo(T); |
| 2615 | unsigned ABIAlign = TI.Align; |
| 2616 | |
| 2617 | T = T->getBaseElementTypeUnsafe(); |
| 2618 | |
| 2619 | // The preferred alignment of member pointers is that of a pointer. |
| 2620 | if (T->isMemberPointerType()) |
| 2621 | return getPreferredTypeAlign(T: getPointerDiffType().getTypePtr()); |
| 2622 | |
| 2623 | if (!Target->allowsLargerPreferedTypeAlignment()) |
| 2624 | return ABIAlign; |
| 2625 | |
| 2626 | if (const auto *RT = T->getAs<RecordType>()) { |
| 2627 | const RecordDecl *RD = RT->getDecl(); |
| 2628 | |
| 2629 | // When used as part of a typedef, or together with a 'packed' attribute, |
| 2630 | // the 'aligned' attribute can be used to decrease alignment. Note that the |
| 2631 | // 'packed' case is already taken into consideration when computing the |
| 2632 | // alignment, we only need to handle the typedef case here. |
| 2633 | if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef || |
| 2634 | RD->isInvalidDecl()) |
| 2635 | return ABIAlign; |
| 2636 | |
| 2637 | unsigned PreferredAlign = static_cast<unsigned>( |
| 2638 | toBits(CharSize: getASTRecordLayout(D: RD).PreferredAlignment)); |
| 2639 | assert(PreferredAlign >= ABIAlign && |
| 2640 | "PreferredAlign should be at least as large as ABIAlign." ); |
| 2641 | return PreferredAlign; |
| 2642 | } |
| 2643 | |
| 2644 | // Double (and, for targets supporting AIX `power` alignment, long double) and |
| 2645 | // long long should be naturally aligned (despite requiring less alignment) if |
| 2646 | // possible. |
| 2647 | if (const auto *CT = T->getAs<ComplexType>()) |
| 2648 | T = CT->getElementType().getTypePtr(); |
| 2649 | if (const auto *ET = T->getAs<EnumType>()) |
| 2650 | T = ET->getDecl()->getIntegerType().getTypePtr(); |
| 2651 | if (T->isSpecificBuiltinType(K: BuiltinType::Double) || |
| 2652 | T->isSpecificBuiltinType(K: BuiltinType::LongLong) || |
| 2653 | T->isSpecificBuiltinType(K: BuiltinType::ULongLong) || |
| 2654 | (T->isSpecificBuiltinType(K: BuiltinType::LongDouble) && |
| 2655 | Target->defaultsToAIXPowerAlignment())) |
| 2656 | // Don't increase the alignment if an alignment attribute was specified on a |
| 2657 | // typedef declaration. |
| 2658 | if (!TI.isAlignRequired()) |
| 2659 | return std::max(a: ABIAlign, b: (unsigned)getTypeSize(T)); |
| 2660 | |
| 2661 | return ABIAlign; |
| 2662 | } |
| 2663 | |
| 2664 | /// getTargetDefaultAlignForAttributeAligned - Return the default alignment |
| 2665 | /// for __attribute__((aligned)) on this target, to be used if no alignment |
| 2666 | /// value is specified. |
| 2667 | unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { |
| 2668 | return getTargetInfo().getDefaultAlignForAttributeAligned(); |
| 2669 | } |
| 2670 | |
| 2671 | /// getAlignOfGlobalVar - Return the alignment in bits that should be given |
| 2672 | /// to a global variable of the specified type. |
| 2673 | unsigned ASTContext::getAlignOfGlobalVar(QualType T, const VarDecl *VD) const { |
| 2674 | uint64_t TypeSize = getTypeSize(T: T.getTypePtr()); |
| 2675 | return std::max(a: getPreferredTypeAlign(T), |
| 2676 | b: getMinGlobalAlignOfVar(Size: TypeSize, VD)); |
| 2677 | } |
| 2678 | |
| 2679 | /// getAlignOfGlobalVarInChars - Return the alignment in characters that |
| 2680 | /// should be given to a global variable of the specified type. |
| 2681 | CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T, |
| 2682 | const VarDecl *VD) const { |
| 2683 | return toCharUnitsFromBits(BitSize: getAlignOfGlobalVar(T, VD)); |
| 2684 | } |
| 2685 | |
| 2686 | unsigned ASTContext::getMinGlobalAlignOfVar(uint64_t Size, |
| 2687 | const VarDecl *VD) const { |
| 2688 | // Make the default handling as that of a non-weak definition in the |
| 2689 | // current translation unit. |
| 2690 | bool HasNonWeakDef = !VD || (VD->hasDefinition() && !VD->isWeak()); |
| 2691 | return getTargetInfo().getMinGlobalAlign(Size, HasNonWeakDef); |
| 2692 | } |
| 2693 | |
| 2694 | CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { |
| 2695 | CharUnits Offset = CharUnits::Zero(); |
| 2696 | const ASTRecordLayout *Layout = &getASTRecordLayout(RD); |
| 2697 | while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { |
| 2698 | Offset += Layout->getBaseClassOffset(Base); |
| 2699 | Layout = &getASTRecordLayout(Base); |
| 2700 | } |
| 2701 | return Offset; |
| 2702 | } |
| 2703 | |
| 2704 | CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const { |
| 2705 | const ValueDecl *MPD = MP.getMemberPointerDecl(); |
| 2706 | CharUnits ThisAdjustment = CharUnits::Zero(); |
| 2707 | ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath(); |
| 2708 | bool DerivedMember = MP.isMemberPointerToDerivedMember(); |
| 2709 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext()); |
| 2710 | for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
| 2711 | const CXXRecordDecl *Base = RD; |
| 2712 | const CXXRecordDecl *Derived = Path[I]; |
| 2713 | if (DerivedMember) |
| 2714 | std::swap(a&: Base, b&: Derived); |
| 2715 | ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base); |
| 2716 | RD = Path[I]; |
| 2717 | } |
| 2718 | if (DerivedMember) |
| 2719 | ThisAdjustment = -ThisAdjustment; |
| 2720 | return ThisAdjustment; |
| 2721 | } |
| 2722 | |
| 2723 | /// DeepCollectObjCIvars - |
| 2724 | /// This routine first collects all declared, but not synthesized, ivars in |
| 2725 | /// super class and then collects all ivars, including those synthesized for |
| 2726 | /// current class. This routine is used for implementation of current class |
| 2727 | /// when all ivars, declared and synthesized are known. |
| 2728 | void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, |
| 2729 | bool leafClass, |
| 2730 | SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { |
| 2731 | if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) |
| 2732 | DeepCollectObjCIvars(OI: SuperClass, leafClass: false, Ivars); |
| 2733 | if (!leafClass) { |
| 2734 | llvm::append_range(C&: Ivars, R: OI->ivars()); |
| 2735 | } else { |
| 2736 | auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI); |
| 2737 | for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; |
| 2738 | Iv= Iv->getNextIvar()) |
| 2739 | Ivars.push_back(Elt: Iv); |
| 2740 | } |
| 2741 | } |
| 2742 | |
| 2743 | /// CollectInheritedProtocols - Collect all protocols in current class and |
| 2744 | /// those inherited by it. |
| 2745 | void ASTContext::CollectInheritedProtocols(const Decl *CDecl, |
| 2746 | llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { |
| 2747 | if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(Val: CDecl)) { |
| 2748 | // We can use protocol_iterator here instead of |
| 2749 | // all_referenced_protocol_iterator since we are walking all categories. |
| 2750 | for (auto *Proto : OI->all_referenced_protocols()) { |
| 2751 | CollectInheritedProtocols(Proto, Protocols); |
| 2752 | } |
| 2753 | |
| 2754 | // Categories of this Interface. |
| 2755 | for (const auto *Cat : OI->visible_categories()) |
| 2756 | CollectInheritedProtocols(Cat, Protocols); |
| 2757 | |
| 2758 | if (ObjCInterfaceDecl *SD = OI->getSuperClass()) |
| 2759 | while (SD) { |
| 2760 | CollectInheritedProtocols(SD, Protocols); |
| 2761 | SD = SD->getSuperClass(); |
| 2762 | } |
| 2763 | } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(Val: CDecl)) { |
| 2764 | for (auto *Proto : OC->protocols()) { |
| 2765 | CollectInheritedProtocols(Proto, Protocols); |
| 2766 | } |
| 2767 | } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(Val: CDecl)) { |
| 2768 | // Insert the protocol. |
| 2769 | if (!Protocols.insert( |
| 2770 | Ptr: const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) |
| 2771 | return; |
| 2772 | |
| 2773 | for (auto *Proto : OP->protocols()) |
| 2774 | CollectInheritedProtocols(Proto, Protocols); |
| 2775 | } |
| 2776 | } |
| 2777 | |
| 2778 | static bool unionHasUniqueObjectRepresentations(const ASTContext &Context, |
| 2779 | const RecordDecl *RD, |
| 2780 | bool CheckIfTriviallyCopyable) { |
| 2781 | assert(RD->isUnion() && "Must be union type" ); |
| 2782 | CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl()); |
| 2783 | |
| 2784 | for (const auto *Field : RD->fields()) { |
| 2785 | if (!Context.hasUniqueObjectRepresentations(Ty: Field->getType(), |
| 2786 | CheckIfTriviallyCopyable)) |
| 2787 | return false; |
| 2788 | CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType()); |
| 2789 | if (FieldSize != UnionSize) |
| 2790 | return false; |
| 2791 | } |
| 2792 | return !RD->field_empty(); |
| 2793 | } |
| 2794 | |
| 2795 | static int64_t getSubobjectOffset(const FieldDecl *Field, |
| 2796 | const ASTContext &Context, |
| 2797 | const clang::ASTRecordLayout & /*Layout*/) { |
| 2798 | return Context.getFieldOffset(Field); |
| 2799 | } |
| 2800 | |
| 2801 | static int64_t getSubobjectOffset(const CXXRecordDecl *RD, |
| 2802 | const ASTContext &Context, |
| 2803 | const clang::ASTRecordLayout &Layout) { |
| 2804 | return Context.toBits(CharSize: Layout.getBaseClassOffset(Base: RD)); |
| 2805 | } |
| 2806 | |
| 2807 | static std::optional<int64_t> |
| 2808 | structHasUniqueObjectRepresentations(const ASTContext &Context, |
| 2809 | const RecordDecl *RD, |
| 2810 | bool CheckIfTriviallyCopyable); |
| 2811 | |
| 2812 | static std::optional<int64_t> |
| 2813 | getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context, |
| 2814 | bool CheckIfTriviallyCopyable) { |
| 2815 | if (Field->getType()->isRecordType()) { |
| 2816 | const RecordDecl *RD = Field->getType()->getAsRecordDecl(); |
| 2817 | if (!RD->isUnion()) |
| 2818 | return structHasUniqueObjectRepresentations(Context, RD, |
| 2819 | CheckIfTriviallyCopyable); |
| 2820 | } |
| 2821 | |
| 2822 | // A _BitInt type may not be unique if it has padding bits |
| 2823 | // but if it is a bitfield the padding bits are not used. |
| 2824 | bool IsBitIntType = Field->getType()->isBitIntType(); |
| 2825 | if (!Field->getType()->isReferenceType() && !IsBitIntType && |
| 2826 | !Context.hasUniqueObjectRepresentations(Ty: Field->getType(), |
| 2827 | CheckIfTriviallyCopyable)) |
| 2828 | return std::nullopt; |
| 2829 | |
| 2830 | int64_t FieldSizeInBits = |
| 2831 | Context.toBits(CharSize: Context.getTypeSizeInChars(Field->getType())); |
| 2832 | if (Field->isBitField()) { |
| 2833 | // If we have explicit padding bits, they don't contribute bits |
| 2834 | // to the actual object representation, so return 0. |
| 2835 | if (Field->isUnnamedBitField()) |
| 2836 | return 0; |
| 2837 | |
| 2838 | int64_t BitfieldSize = Field->getBitWidthValue(); |
| 2839 | if (IsBitIntType) { |
| 2840 | if ((unsigned)BitfieldSize > |
| 2841 | cast<BitIntType>(Field->getType())->getNumBits()) |
| 2842 | return std::nullopt; |
| 2843 | } else if (BitfieldSize > FieldSizeInBits) { |
| 2844 | return std::nullopt; |
| 2845 | } |
| 2846 | FieldSizeInBits = BitfieldSize; |
| 2847 | } else if (IsBitIntType && !Context.hasUniqueObjectRepresentations( |
| 2848 | Ty: Field->getType(), CheckIfTriviallyCopyable)) { |
| 2849 | return std::nullopt; |
| 2850 | } |
| 2851 | return FieldSizeInBits; |
| 2852 | } |
| 2853 | |
| 2854 | static std::optional<int64_t> |
| 2855 | getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context, |
| 2856 | bool CheckIfTriviallyCopyable) { |
| 2857 | return structHasUniqueObjectRepresentations(Context, RD, |
| 2858 | CheckIfTriviallyCopyable); |
| 2859 | } |
| 2860 | |
| 2861 | template <typename RangeT> |
| 2862 | static std::optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations( |
| 2863 | const RangeT &Subobjects, int64_t CurOffsetInBits, |
| 2864 | const ASTContext &Context, const clang::ASTRecordLayout &Layout, |
| 2865 | bool CheckIfTriviallyCopyable) { |
| 2866 | for (const auto *Subobject : Subobjects) { |
| 2867 | std::optional<int64_t> SizeInBits = |
| 2868 | getSubobjectSizeInBits(Subobject, Context, CheckIfTriviallyCopyable); |
| 2869 | if (!SizeInBits) |
| 2870 | return std::nullopt; |
| 2871 | if (*SizeInBits != 0) { |
| 2872 | int64_t Offset = getSubobjectOffset(Subobject, Context, Layout); |
| 2873 | if (Offset != CurOffsetInBits) |
| 2874 | return std::nullopt; |
| 2875 | CurOffsetInBits += *SizeInBits; |
| 2876 | } |
| 2877 | } |
| 2878 | return CurOffsetInBits; |
| 2879 | } |
| 2880 | |
| 2881 | static std::optional<int64_t> |
| 2882 | structHasUniqueObjectRepresentations(const ASTContext &Context, |
| 2883 | const RecordDecl *RD, |
| 2884 | bool CheckIfTriviallyCopyable) { |
| 2885 | assert(!RD->isUnion() && "Must be struct/class type" ); |
| 2886 | const auto &Layout = Context.getASTRecordLayout(D: RD); |
| 2887 | |
| 2888 | int64_t CurOffsetInBits = 0; |
| 2889 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 2890 | if (ClassDecl->isDynamicClass()) |
| 2891 | return std::nullopt; |
| 2892 | |
| 2893 | SmallVector<CXXRecordDecl *, 4> Bases; |
| 2894 | for (const auto &Base : ClassDecl->bases()) { |
| 2895 | // Empty types can be inherited from, and non-empty types can potentially |
| 2896 | // have tail padding, so just make sure there isn't an error. |
| 2897 | Bases.emplace_back(Args: Base.getType()->getAsCXXRecordDecl()); |
| 2898 | } |
| 2899 | |
| 2900 | llvm::sort(C&: Bases, Comp: [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { |
| 2901 | return Layout.getBaseClassOffset(Base: L) < Layout.getBaseClassOffset(Base: R); |
| 2902 | }); |
| 2903 | |
| 2904 | std::optional<int64_t> OffsetAfterBases = |
| 2905 | structSubobjectsHaveUniqueObjectRepresentations( |
| 2906 | Subobjects: Bases, CurOffsetInBits, Context, Layout, CheckIfTriviallyCopyable); |
| 2907 | if (!OffsetAfterBases) |
| 2908 | return std::nullopt; |
| 2909 | CurOffsetInBits = *OffsetAfterBases; |
| 2910 | } |
| 2911 | |
| 2912 | std::optional<int64_t> OffsetAfterFields = |
| 2913 | structSubobjectsHaveUniqueObjectRepresentations( |
| 2914 | Subobjects: RD->fields(), CurOffsetInBits, Context, Layout, |
| 2915 | CheckIfTriviallyCopyable); |
| 2916 | if (!OffsetAfterFields) |
| 2917 | return std::nullopt; |
| 2918 | CurOffsetInBits = *OffsetAfterFields; |
| 2919 | |
| 2920 | return CurOffsetInBits; |
| 2921 | } |
| 2922 | |
| 2923 | bool ASTContext::hasUniqueObjectRepresentations( |
| 2924 | QualType Ty, bool CheckIfTriviallyCopyable) const { |
| 2925 | // C++17 [meta.unary.prop]: |
| 2926 | // The predicate condition for a template specialization |
| 2927 | // has_unique_object_representations<T> shall be satisfied if and only if: |
| 2928 | // (9.1) - T is trivially copyable, and |
| 2929 | // (9.2) - any two objects of type T with the same value have the same |
| 2930 | // object representation, where: |
| 2931 | // - two objects of array or non-union class type are considered to have |
| 2932 | // the same value if their respective sequences of direct subobjects |
| 2933 | // have the same values, and |
| 2934 | // - two objects of union type are considered to have the same value if |
| 2935 | // they have the same active member and the corresponding members have |
| 2936 | // the same value. |
| 2937 | // The set of scalar types for which this condition holds is |
| 2938 | // implementation-defined. [ Note: If a type has padding bits, the condition |
| 2939 | // does not hold; otherwise, the condition holds true for unsigned integral |
| 2940 | // types. -- end note ] |
| 2941 | assert(!Ty.isNull() && "Null QualType sent to unique object rep check" ); |
| 2942 | |
| 2943 | // Arrays are unique only if their element type is unique. |
| 2944 | if (Ty->isArrayType()) |
| 2945 | return hasUniqueObjectRepresentations(Ty: getBaseElementType(QT: Ty), |
| 2946 | CheckIfTriviallyCopyable); |
| 2947 | |
| 2948 | assert((Ty->isVoidType() || !Ty->isIncompleteType()) && |
| 2949 | "hasUniqueObjectRepresentations should not be called with an " |
| 2950 | "incomplete type" ); |
| 2951 | |
| 2952 | // (9.1) - T is trivially copyable... |
| 2953 | if (CheckIfTriviallyCopyable && !Ty.isTriviallyCopyableType(Context: *this)) |
| 2954 | return false; |
| 2955 | |
| 2956 | // All integrals and enums are unique. |
| 2957 | if (Ty->isIntegralOrEnumerationType()) { |
| 2958 | // Address discriminated integer types are not unique. |
| 2959 | if (Ty.hasAddressDiscriminatedPointerAuth()) |
| 2960 | return false; |
| 2961 | // Except _BitInt types that have padding bits. |
| 2962 | if (const auto *BIT = Ty->getAs<BitIntType>()) |
| 2963 | return getTypeSize(BIT) == BIT->getNumBits(); |
| 2964 | |
| 2965 | return true; |
| 2966 | } |
| 2967 | |
| 2968 | // All other pointers (except __ptrauth pointers) are unique. |
| 2969 | if (Ty->isPointerType()) |
| 2970 | return !Ty.hasAddressDiscriminatedPointerAuth(); |
| 2971 | |
| 2972 | if (const auto *MPT = Ty->getAs<MemberPointerType>()) |
| 2973 | return !ABI->getMemberPointerInfo(MPT).HasPadding; |
| 2974 | |
| 2975 | if (Ty->isRecordType()) { |
| 2976 | const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl(); |
| 2977 | |
| 2978 | if (Record->isInvalidDecl()) |
| 2979 | return false; |
| 2980 | |
| 2981 | if (Record->isUnion()) |
| 2982 | return unionHasUniqueObjectRepresentations(Context: *this, RD: Record, |
| 2983 | CheckIfTriviallyCopyable); |
| 2984 | |
| 2985 | std::optional<int64_t> StructSize = structHasUniqueObjectRepresentations( |
| 2986 | Context: *this, RD: Record, CheckIfTriviallyCopyable); |
| 2987 | |
| 2988 | return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(T: Ty)); |
| 2989 | } |
| 2990 | |
| 2991 | // FIXME: More cases to handle here (list by rsmith): |
| 2992 | // vectors (careful about, eg, vector of 3 foo) |
| 2993 | // _Complex int and friends |
| 2994 | // _Atomic T |
| 2995 | // Obj-C block pointers |
| 2996 | // Obj-C object pointers |
| 2997 | // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t, |
| 2998 | // clk_event_t, queue_t, reserve_id_t) |
| 2999 | // There're also Obj-C class types and the Obj-C selector type, but I think it |
| 3000 | // makes sense for those to return false here. |
| 3001 | |
| 3002 | return false; |
| 3003 | } |
| 3004 | |
| 3005 | unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { |
| 3006 | unsigned count = 0; |
| 3007 | // Count ivars declared in class extension. |
| 3008 | for (const auto *Ext : OI->known_extensions()) |
| 3009 | count += Ext->ivar_size(); |
| 3010 | |
| 3011 | // Count ivar defined in this class's implementation. This |
| 3012 | // includes synthesized ivars. |
| 3013 | if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) |
| 3014 | count += ImplDecl->ivar_size(); |
| 3015 | |
| 3016 | return count; |
| 3017 | } |
| 3018 | |
| 3019 | bool ASTContext::isSentinelNullExpr(const Expr *E) { |
| 3020 | if (!E) |
| 3021 | return false; |
| 3022 | |
| 3023 | // nullptr_t is always treated as null. |
| 3024 | if (E->getType()->isNullPtrType()) return true; |
| 3025 | |
| 3026 | if (E->getType()->isAnyPointerType() && |
| 3027 | E->IgnoreParenCasts()->isNullPointerConstant(Ctx&: *this, |
| 3028 | NPC: Expr::NPC_ValueDependentIsNull)) |
| 3029 | return true; |
| 3030 | |
| 3031 | // Unfortunately, __null has type 'int'. |
| 3032 | if (isa<GNUNullExpr>(Val: E)) return true; |
| 3033 | |
| 3034 | return false; |
| 3035 | } |
| 3036 | |
| 3037 | /// Get the implementation of ObjCInterfaceDecl, or nullptr if none |
| 3038 | /// exists. |
| 3039 | ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { |
| 3040 | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
| 3041 | I = ObjCImpls.find(D); |
| 3042 | if (I != ObjCImpls.end()) |
| 3043 | return cast<ObjCImplementationDecl>(Val: I->second); |
| 3044 | return nullptr; |
| 3045 | } |
| 3046 | |
| 3047 | /// Get the implementation of ObjCCategoryDecl, or nullptr if none |
| 3048 | /// exists. |
| 3049 | ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { |
| 3050 | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
| 3051 | I = ObjCImpls.find(D); |
| 3052 | if (I != ObjCImpls.end()) |
| 3053 | return cast<ObjCCategoryImplDecl>(Val: I->second); |
| 3054 | return nullptr; |
| 3055 | } |
| 3056 | |
| 3057 | /// Set the implementation of ObjCInterfaceDecl. |
| 3058 | void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, |
| 3059 | ObjCImplementationDecl *ImplD) { |
| 3060 | assert(IFaceD && ImplD && "Passed null params" ); |
| 3061 | ObjCImpls[IFaceD] = ImplD; |
| 3062 | } |
| 3063 | |
| 3064 | /// Set the implementation of ObjCCategoryDecl. |
| 3065 | void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, |
| 3066 | ObjCCategoryImplDecl *ImplD) { |
| 3067 | assert(CatD && ImplD && "Passed null params" ); |
| 3068 | ObjCImpls[CatD] = ImplD; |
| 3069 | } |
| 3070 | |
| 3071 | const ObjCMethodDecl * |
| 3072 | ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const { |
| 3073 | return ObjCMethodRedecls.lookup(Val: MD); |
| 3074 | } |
| 3075 | |
| 3076 | void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD, |
| 3077 | const ObjCMethodDecl *Redecl) { |
| 3078 | assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration" ); |
| 3079 | ObjCMethodRedecls[MD] = Redecl; |
| 3080 | } |
| 3081 | |
| 3082 | const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( |
| 3083 | const NamedDecl *ND) const { |
| 3084 | if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) |
| 3085 | return ID; |
| 3086 | if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) |
| 3087 | return CD->getClassInterface(); |
| 3088 | if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext())) |
| 3089 | return IMD->getClassInterface(); |
| 3090 | |
| 3091 | return nullptr; |
| 3092 | } |
| 3093 | |
| 3094 | /// Get the copy initialization expression of VarDecl, or nullptr if |
| 3095 | /// none exists. |
| 3096 | BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const { |
| 3097 | assert(VD && "Passed null params" ); |
| 3098 | assert(VD->hasAttr<BlocksAttr>() && |
| 3099 | "getBlockVarCopyInits - not __block var" ); |
| 3100 | auto I = BlockVarCopyInits.find(Val: VD); |
| 3101 | if (I != BlockVarCopyInits.end()) |
| 3102 | return I->second; |
| 3103 | return {nullptr, false}; |
| 3104 | } |
| 3105 | |
| 3106 | /// Set the copy initialization expression of a block var decl. |
| 3107 | void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr, |
| 3108 | bool CanThrow) { |
| 3109 | assert(VD && CopyExpr && "Passed null params" ); |
| 3110 | assert(VD->hasAttr<BlocksAttr>() && |
| 3111 | "setBlockVarCopyInits - not __block var" ); |
| 3112 | BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow); |
| 3113 | } |
| 3114 | |
| 3115 | TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, |
| 3116 | unsigned DataSize) const { |
| 3117 | if (!DataSize) |
| 3118 | DataSize = TypeLoc::getFullDataSizeForType(Ty: T); |
| 3119 | else |
| 3120 | assert(DataSize == TypeLoc::getFullDataSizeForType(T) && |
| 3121 | "incorrect data size provided to CreateTypeSourceInfo!" ); |
| 3122 | |
| 3123 | auto *TInfo = |
| 3124 | (TypeSourceInfo*)BumpAlloc.Allocate(Size: sizeof(TypeSourceInfo) + DataSize, Alignment: 8); |
| 3125 | new (TInfo) TypeSourceInfo(T, DataSize); |
| 3126 | return TInfo; |
| 3127 | } |
| 3128 | |
| 3129 | TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, |
| 3130 | SourceLocation L) const { |
| 3131 | TypeSourceInfo *DI = CreateTypeSourceInfo(T); |
| 3132 | DI->getTypeLoc().initialize(Context&: const_cast<ASTContext &>(*this), Loc: L); |
| 3133 | return DI; |
| 3134 | } |
| 3135 | |
| 3136 | const ASTRecordLayout & |
| 3137 | ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { |
| 3138 | return getObjCLayout(D); |
| 3139 | } |
| 3140 | |
| 3141 | static auto getCanonicalTemplateArguments(const ASTContext &C, |
| 3142 | ArrayRef<TemplateArgument> Args, |
| 3143 | bool &AnyNonCanonArgs) { |
| 3144 | SmallVector<TemplateArgument, 16> CanonArgs(Args); |
| 3145 | AnyNonCanonArgs |= C.canonicalizeTemplateArguments(Args: CanonArgs); |
| 3146 | return CanonArgs; |
| 3147 | } |
| 3148 | |
| 3149 | bool ASTContext::canonicalizeTemplateArguments( |
| 3150 | MutableArrayRef<TemplateArgument> Args) const { |
| 3151 | bool AnyNonCanonArgs = false; |
| 3152 | for (auto &Arg : Args) { |
| 3153 | TemplateArgument OrigArg = Arg; |
| 3154 | Arg = getCanonicalTemplateArgument(Arg); |
| 3155 | AnyNonCanonArgs |= !Arg.structurallyEquals(Other: OrigArg); |
| 3156 | } |
| 3157 | return AnyNonCanonArgs; |
| 3158 | } |
| 3159 | |
| 3160 | //===----------------------------------------------------------------------===// |
| 3161 | // Type creation/memoization methods |
| 3162 | //===----------------------------------------------------------------------===// |
| 3163 | |
| 3164 | QualType |
| 3165 | ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { |
| 3166 | unsigned fastQuals = quals.getFastQualifiers(); |
| 3167 | quals.removeFastQualifiers(); |
| 3168 | |
| 3169 | // Check if we've already instantiated this type. |
| 3170 | llvm::FoldingSetNodeID ID; |
| 3171 | ExtQuals::Profile(ID, BaseType: baseType, Quals: quals); |
| 3172 | void *insertPos = nullptr; |
| 3173 | if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos&: insertPos)) { |
| 3174 | assert(eq->getQualifiers() == quals); |
| 3175 | return QualType(eq, fastQuals); |
| 3176 | } |
| 3177 | |
| 3178 | // If the base type is not canonical, make the appropriate canonical type. |
| 3179 | QualType canon; |
| 3180 | if (!baseType->isCanonicalUnqualified()) { |
| 3181 | SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); |
| 3182 | canonSplit.Quals.addConsistentQualifiers(qs: quals); |
| 3183 | canon = getExtQualType(baseType: canonSplit.Ty, quals: canonSplit.Quals); |
| 3184 | |
| 3185 | // Re-find the insert position. |
| 3186 | (void) ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
| 3187 | } |
| 3188 | |
| 3189 | auto *eq = new (*this, alignof(ExtQuals)) ExtQuals(baseType, canon, quals); |
| 3190 | ExtQualNodes.InsertNode(N: eq, InsertPos: insertPos); |
| 3191 | return QualType(eq, fastQuals); |
| 3192 | } |
| 3193 | |
| 3194 | QualType ASTContext::getAddrSpaceQualType(QualType T, |
| 3195 | LangAS AddressSpace) const { |
| 3196 | QualType CanT = getCanonicalType(T); |
| 3197 | if (CanT.getAddressSpace() == AddressSpace) |
| 3198 | return T; |
| 3199 | |
| 3200 | // If we are composing extended qualifiers together, merge together |
| 3201 | // into one ExtQuals node. |
| 3202 | QualifierCollector Quals; |
| 3203 | const Type *TypeNode = Quals.strip(type: T); |
| 3204 | |
| 3205 | // If this type already has an address space specified, it cannot get |
| 3206 | // another one. |
| 3207 | assert(!Quals.hasAddressSpace() && |
| 3208 | "Type cannot be in multiple addr spaces!" ); |
| 3209 | Quals.addAddressSpace(space: AddressSpace); |
| 3210 | |
| 3211 | return getExtQualType(baseType: TypeNode, quals: Quals); |
| 3212 | } |
| 3213 | |
| 3214 | QualType ASTContext::removeAddrSpaceQualType(QualType T) const { |
| 3215 | // If the type is not qualified with an address space, just return it |
| 3216 | // immediately. |
| 3217 | if (!T.hasAddressSpace()) |
| 3218 | return T; |
| 3219 | |
| 3220 | QualifierCollector Quals; |
| 3221 | const Type *TypeNode; |
| 3222 | // For arrays, strip the qualifier off the element type, then reconstruct the |
| 3223 | // array type |
| 3224 | if (T.getTypePtr()->isArrayType()) { |
| 3225 | T = getUnqualifiedArrayType(T, Quals); |
| 3226 | TypeNode = T.getTypePtr(); |
| 3227 | } else { |
| 3228 | // If we are composing extended qualifiers together, merge together |
| 3229 | // into one ExtQuals node. |
| 3230 | while (T.hasAddressSpace()) { |
| 3231 | TypeNode = Quals.strip(type: T); |
| 3232 | |
| 3233 | // If the type no longer has an address space after stripping qualifiers, |
| 3234 | // jump out. |
| 3235 | if (!QualType(TypeNode, 0).hasAddressSpace()) |
| 3236 | break; |
| 3237 | |
| 3238 | // There might be sugar in the way. Strip it and try again. |
| 3239 | T = T.getSingleStepDesugaredType(Context: *this); |
| 3240 | } |
| 3241 | } |
| 3242 | |
| 3243 | Quals.removeAddressSpace(); |
| 3244 | |
| 3245 | // Removal of the address space can mean there are no longer any |
| 3246 | // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts) |
| 3247 | // or required. |
| 3248 | if (Quals.hasNonFastQualifiers()) |
| 3249 | return getExtQualType(baseType: TypeNode, quals: Quals); |
| 3250 | else |
| 3251 | return QualType(TypeNode, Quals.getFastQualifiers()); |
| 3252 | } |
| 3253 | |
| 3254 | uint16_t |
| 3255 | ASTContext::getPointerAuthVTablePointerDiscriminator(const CXXRecordDecl *RD) { |
| 3256 | assert(RD->isPolymorphic() && |
| 3257 | "Attempted to get vtable pointer discriminator on a monomorphic type" ); |
| 3258 | std::unique_ptr<MangleContext> MC(createMangleContext()); |
| 3259 | SmallString<256> Str; |
| 3260 | llvm::raw_svector_ostream Out(Str); |
| 3261 | MC->mangleCXXVTable(RD, Out); |
| 3262 | return llvm::getPointerAuthStableSipHash(S: Str); |
| 3263 | } |
| 3264 | |
| 3265 | /// Encode a function type for use in the discriminator of a function pointer |
| 3266 | /// type. We can't use the itanium scheme for this since C has quite permissive |
| 3267 | /// rules for type compatibility that we need to be compatible with. |
| 3268 | /// |
| 3269 | /// Formally, this function associates every function pointer type T with an |
| 3270 | /// encoded string E(T). Let the equivalence relation T1 ~ T2 be defined as |
| 3271 | /// E(T1) == E(T2). E(T) is part of the ABI of values of type T. C type |
| 3272 | /// compatibility requires equivalent treatment under the ABI, so |
| 3273 | /// CCompatible(T1, T2) must imply E(T1) == E(T2), that is, CCompatible must be |
| 3274 | /// a subset of ~. Crucially, however, it must be a proper subset because |
| 3275 | /// CCompatible is not an equivalence relation: for example, int[] is compatible |
| 3276 | /// with both int[1] and int[2], but the latter are not compatible with each |
| 3277 | /// other. Therefore this encoding function must be careful to only distinguish |
| 3278 | /// types if there is no third type with which they are both required to be |
| 3279 | /// compatible. |
| 3280 | static void encodeTypeForFunctionPointerAuth(const ASTContext &Ctx, |
| 3281 | raw_ostream &OS, QualType QT) { |
| 3282 | // FIXME: Consider address space qualifiers. |
| 3283 | const Type *T = QT.getCanonicalType().getTypePtr(); |
| 3284 | |
| 3285 | // FIXME: Consider using the C++ type mangling when we encounter a construct |
| 3286 | // that is incompatible with C. |
| 3287 | |
| 3288 | switch (T->getTypeClass()) { |
| 3289 | case Type::Atomic: |
| 3290 | return encodeTypeForFunctionPointerAuth( |
| 3291 | Ctx, OS, QT: cast<AtomicType>(Val: T)->getValueType()); |
| 3292 | |
| 3293 | case Type::LValueReference: |
| 3294 | OS << "R" ; |
| 3295 | encodeTypeForFunctionPointerAuth(Ctx, OS, |
| 3296 | QT: cast<ReferenceType>(Val: T)->getPointeeType()); |
| 3297 | return; |
| 3298 | case Type::RValueReference: |
| 3299 | OS << "O" ; |
| 3300 | encodeTypeForFunctionPointerAuth(Ctx, OS, |
| 3301 | QT: cast<ReferenceType>(Val: T)->getPointeeType()); |
| 3302 | return; |
| 3303 | |
| 3304 | case Type::Pointer: |
| 3305 | // C11 6.7.6.1p2: |
| 3306 | // For two pointer types to be compatible, both shall be identically |
| 3307 | // qualified and both shall be pointers to compatible types. |
| 3308 | // FIXME: we should also consider pointee types. |
| 3309 | OS << "P" ; |
| 3310 | return; |
| 3311 | |
| 3312 | case Type::ObjCObjectPointer: |
| 3313 | case Type::BlockPointer: |
| 3314 | OS << "P" ; |
| 3315 | return; |
| 3316 | |
| 3317 | case Type::Complex: |
| 3318 | OS << "C" ; |
| 3319 | return encodeTypeForFunctionPointerAuth( |
| 3320 | Ctx, OS, QT: cast<ComplexType>(Val: T)->getElementType()); |
| 3321 | |
| 3322 | case Type::VariableArray: |
| 3323 | case Type::ConstantArray: |
| 3324 | case Type::IncompleteArray: |
| 3325 | case Type::ArrayParameter: |
| 3326 | // C11 6.7.6.2p6: |
| 3327 | // For two array types to be compatible, both shall have compatible |
| 3328 | // element types, and if both size specifiers are present, and are integer |
| 3329 | // constant expressions, then both size specifiers shall have the same |
| 3330 | // constant value [...] |
| 3331 | // |
| 3332 | // So since ElemType[N] has to be compatible ElemType[], we can't encode the |
| 3333 | // width of the array. |
| 3334 | OS << "A" ; |
| 3335 | return encodeTypeForFunctionPointerAuth( |
| 3336 | Ctx, OS, QT: cast<ArrayType>(Val: T)->getElementType()); |
| 3337 | |
| 3338 | case Type::ObjCInterface: |
| 3339 | case Type::ObjCObject: |
| 3340 | OS << "<objc_object>" ; |
| 3341 | return; |
| 3342 | |
| 3343 | case Type::Enum: { |
| 3344 | // C11 6.7.2.2p4: |
| 3345 | // Each enumerated type shall be compatible with char, a signed integer |
| 3346 | // type, or an unsigned integer type. |
| 3347 | // |
| 3348 | // So we have to treat enum types as integers. |
| 3349 | QualType UnderlyingType = cast<EnumType>(Val: T)->getDecl()->getIntegerType(); |
| 3350 | return encodeTypeForFunctionPointerAuth( |
| 3351 | Ctx, OS, UnderlyingType.isNull() ? Ctx.IntTy : UnderlyingType); |
| 3352 | } |
| 3353 | |
| 3354 | case Type::FunctionNoProto: |
| 3355 | case Type::FunctionProto: { |
| 3356 | // C11 6.7.6.3p15: |
| 3357 | // For two function types to be compatible, both shall specify compatible |
| 3358 | // return types. Moreover, the parameter type lists, if both are present, |
| 3359 | // shall agree in the number of parameters and in the use of the ellipsis |
| 3360 | // terminator; corresponding parameters shall have compatible types. |
| 3361 | // |
| 3362 | // That paragraph goes on to describe how unprototyped functions are to be |
| 3363 | // handled, which we ignore here. Unprototyped function pointers are hashed |
| 3364 | // as though they were prototyped nullary functions since thats probably |
| 3365 | // what the user meant. This behavior is non-conforming. |
| 3366 | // FIXME: If we add a "custom discriminator" function type attribute we |
| 3367 | // should encode functions as their discriminators. |
| 3368 | OS << "F" ; |
| 3369 | const auto *FuncType = cast<FunctionType>(Val: T); |
| 3370 | encodeTypeForFunctionPointerAuth(Ctx, OS, QT: FuncType->getReturnType()); |
| 3371 | if (const auto *FPT = dyn_cast<FunctionProtoType>(Val: FuncType)) { |
| 3372 | for (QualType Param : FPT->param_types()) { |
| 3373 | Param = Ctx.getSignatureParameterType(T: Param); |
| 3374 | encodeTypeForFunctionPointerAuth(Ctx, OS, QT: Param); |
| 3375 | } |
| 3376 | if (FPT->isVariadic()) |
| 3377 | OS << "z" ; |
| 3378 | } |
| 3379 | OS << "E" ; |
| 3380 | return; |
| 3381 | } |
| 3382 | |
| 3383 | case Type::MemberPointer: { |
| 3384 | OS << "M" ; |
| 3385 | const auto *MPT = T->castAs<MemberPointerType>(); |
| 3386 | encodeTypeForFunctionPointerAuth( |
| 3387 | Ctx, OS, QT: QualType(MPT->getQualifier()->getAsType(), 0)); |
| 3388 | encodeTypeForFunctionPointerAuth(Ctx, OS, QT: MPT->getPointeeType()); |
| 3389 | return; |
| 3390 | } |
| 3391 | case Type::ExtVector: |
| 3392 | case Type::Vector: |
| 3393 | OS << "Dv" << Ctx.getTypeSizeInChars(T).getQuantity(); |
| 3394 | break; |
| 3395 | |
| 3396 | // Don't bother discriminating based on these types. |
| 3397 | case Type::Pipe: |
| 3398 | case Type::BitInt: |
| 3399 | case Type::ConstantMatrix: |
| 3400 | OS << "?" ; |
| 3401 | return; |
| 3402 | |
| 3403 | case Type::Builtin: { |
| 3404 | const auto *BTy = T->castAs<BuiltinType>(); |
| 3405 | switch (BTy->getKind()) { |
| 3406 | #define SIGNED_TYPE(Id, SingletonId) \ |
| 3407 | case BuiltinType::Id: \ |
| 3408 | OS << "i"; \ |
| 3409 | return; |
| 3410 | #define UNSIGNED_TYPE(Id, SingletonId) \ |
| 3411 | case BuiltinType::Id: \ |
| 3412 | OS << "i"; \ |
| 3413 | return; |
| 3414 | #define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id: |
| 3415 | #define BUILTIN_TYPE(Id, SingletonId) |
| 3416 | #include "clang/AST/BuiltinTypes.def" |
| 3417 | llvm_unreachable("placeholder types should not appear here." ); |
| 3418 | |
| 3419 | case BuiltinType::Half: |
| 3420 | OS << "Dh" ; |
| 3421 | return; |
| 3422 | case BuiltinType::Float: |
| 3423 | OS << "f" ; |
| 3424 | return; |
| 3425 | case BuiltinType::Double: |
| 3426 | OS << "d" ; |
| 3427 | return; |
| 3428 | case BuiltinType::LongDouble: |
| 3429 | OS << "e" ; |
| 3430 | return; |
| 3431 | case BuiltinType::Float16: |
| 3432 | OS << "DF16_" ; |
| 3433 | return; |
| 3434 | case BuiltinType::Float128: |
| 3435 | OS << "g" ; |
| 3436 | return; |
| 3437 | |
| 3438 | case BuiltinType::Void: |
| 3439 | OS << "v" ; |
| 3440 | return; |
| 3441 | |
| 3442 | case BuiltinType::ObjCId: |
| 3443 | case BuiltinType::ObjCClass: |
| 3444 | case BuiltinType::ObjCSel: |
| 3445 | case BuiltinType::NullPtr: |
| 3446 | OS << "P" ; |
| 3447 | return; |
| 3448 | |
| 3449 | // Don't bother discriminating based on OpenCL types. |
| 3450 | case BuiltinType::OCLSampler: |
| 3451 | case BuiltinType::OCLEvent: |
| 3452 | case BuiltinType::OCLClkEvent: |
| 3453 | case BuiltinType::OCLQueue: |
| 3454 | case BuiltinType::OCLReserveID: |
| 3455 | case BuiltinType::BFloat16: |
| 3456 | case BuiltinType::VectorQuad: |
| 3457 | case BuiltinType::VectorPair: |
| 3458 | OS << "?" ; |
| 3459 | return; |
| 3460 | |
| 3461 | // Don't bother discriminating based on these seldom-used types. |
| 3462 | case BuiltinType::Ibm128: |
| 3463 | return; |
| 3464 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 3465 | case BuiltinType::Id: \ |
| 3466 | return; |
| 3467 | #include "clang/Basic/OpenCLImageTypes.def" |
| 3468 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| 3469 | case BuiltinType::Id: \ |
| 3470 | return; |
| 3471 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 3472 | #define SVE_TYPE(Name, Id, SingletonId) \ |
| 3473 | case BuiltinType::Id: \ |
| 3474 | return; |
| 3475 | #include "clang/Basic/AArch64ACLETypes.def" |
| 3476 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \ |
| 3477 | case BuiltinType::Id: \ |
| 3478 | return; |
| 3479 | #include "clang/Basic/HLSLIntangibleTypes.def" |
| 3480 | case BuiltinType::Dependent: |
| 3481 | llvm_unreachable("should never get here" ); |
| 3482 | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: |
| 3483 | #include "clang/Basic/AMDGPUTypes.def" |
| 3484 | case BuiltinType::WasmExternRef: |
| 3485 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| 3486 | #include "clang/Basic/RISCVVTypes.def" |
| 3487 | llvm_unreachable("not yet implemented" ); |
| 3488 | } |
| 3489 | llvm_unreachable("should never get here" ); |
| 3490 | } |
| 3491 | case Type::Record: { |
| 3492 | const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); |
| 3493 | const IdentifierInfo *II = RD->getIdentifier(); |
| 3494 | |
| 3495 | // In C++, an immediate typedef of an anonymous struct or union |
| 3496 | // is considered to name it for ODR purposes, but C's specification |
| 3497 | // of type compatibility does not have a similar rule. Using the typedef |
| 3498 | // name in function type discriminators anyway, as we do here, |
| 3499 | // therefore technically violates the C standard: two function pointer |
| 3500 | // types defined in terms of two typedef'd anonymous structs with |
| 3501 | // different names are formally still compatible, but we are assigning |
| 3502 | // them different discriminators and therefore incompatible ABIs. |
| 3503 | // |
| 3504 | // This is a relatively minor violation that significantly improves |
| 3505 | // discrimination in some cases and has not caused problems in |
| 3506 | // practice. Regardless, it is now part of the ABI in places where |
| 3507 | // function type discrimination is used, and it can no longer be |
| 3508 | // changed except on new platforms. |
| 3509 | |
| 3510 | if (!II) |
| 3511 | if (const TypedefNameDecl *Typedef = RD->getTypedefNameForAnonDecl()) |
| 3512 | II = Typedef->getDeclName().getAsIdentifierInfo(); |
| 3513 | |
| 3514 | if (!II) { |
| 3515 | OS << "<anonymous_record>" ; |
| 3516 | return; |
| 3517 | } |
| 3518 | OS << II->getLength() << II->getName(); |
| 3519 | return; |
| 3520 | } |
| 3521 | case Type::HLSLAttributedResource: |
| 3522 | case Type::HLSLInlineSpirv: |
| 3523 | llvm_unreachable("should never get here" ); |
| 3524 | break; |
| 3525 | case Type::DeducedTemplateSpecialization: |
| 3526 | case Type::Auto: |
| 3527 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| 3528 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 3529 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 3530 | #define ABSTRACT_TYPE(Class, Base) |
| 3531 | #define TYPE(Class, Base) |
| 3532 | #include "clang/AST/TypeNodes.inc" |
| 3533 | llvm_unreachable("unexpected non-canonical or dependent type!" ); |
| 3534 | return; |
| 3535 | } |
| 3536 | } |
| 3537 | |
| 3538 | uint16_t ASTContext::getPointerAuthTypeDiscriminator(QualType T) { |
| 3539 | assert(!T->isDependentType() && |
| 3540 | "cannot compute type discriminator of a dependent type" ); |
| 3541 | |
| 3542 | SmallString<256> Str; |
| 3543 | llvm::raw_svector_ostream Out(Str); |
| 3544 | |
| 3545 | if (T->isFunctionPointerType() || T->isFunctionReferenceType()) |
| 3546 | T = T->getPointeeType(); |
| 3547 | |
| 3548 | if (T->isFunctionType()) { |
| 3549 | encodeTypeForFunctionPointerAuth(Ctx: *this, OS&: Out, QT: T); |
| 3550 | } else { |
| 3551 | T = T.getUnqualifiedType(); |
| 3552 | // Calls to member function pointers don't need to worry about |
| 3553 | // language interop or the laxness of the C type compatibility rules. |
| 3554 | // We just mangle the member pointer type directly, which is |
| 3555 | // implicitly much stricter about type matching. However, we do |
| 3556 | // strip any top-level exception specification before this mangling. |
| 3557 | // C++23 requires calls to work when the function type is convertible |
| 3558 | // to the pointer type by a function pointer conversion, which can |
| 3559 | // change the exception specification. This does not technically |
| 3560 | // require the exception specification to not affect representation, |
| 3561 | // because the function pointer conversion is still always a direct |
| 3562 | // value conversion and therefore an opportunity to resign the |
| 3563 | // pointer. (This is in contrast to e.g. qualification conversions, |
| 3564 | // which can be applied in nested pointer positions, effectively |
| 3565 | // requiring qualified and unqualified representations to match.) |
| 3566 | // However, it is pragmatic to ignore exception specifications |
| 3567 | // because it allows a certain amount of `noexcept` mismatching |
| 3568 | // to not become a visible ODR problem. This also leaves some |
| 3569 | // room for the committee to add laxness to function pointer |
| 3570 | // conversions in future standards. |
| 3571 | if (auto *MPT = T->getAs<MemberPointerType>()) |
| 3572 | if (MPT->isMemberFunctionPointer()) { |
| 3573 | QualType PointeeType = MPT->getPointeeType(); |
| 3574 | if (PointeeType->castAs<FunctionProtoType>()->getExceptionSpecType() != |
| 3575 | EST_None) { |
| 3576 | QualType FT = getFunctionTypeWithExceptionSpec(Orig: PointeeType, ESI: EST_None); |
| 3577 | T = getMemberPointerType(T: FT, Qualifier: MPT->getQualifier(), |
| 3578 | Cls: MPT->getMostRecentCXXRecordDecl()); |
| 3579 | } |
| 3580 | } |
| 3581 | std::unique_ptr<MangleContext> MC(createMangleContext()); |
| 3582 | MC->mangleCanonicalTypeName(T, Out); |
| 3583 | } |
| 3584 | |
| 3585 | return llvm::getPointerAuthStableSipHash(S: Str); |
| 3586 | } |
| 3587 | |
| 3588 | QualType ASTContext::getObjCGCQualType(QualType T, |
| 3589 | Qualifiers::GC GCAttr) const { |
| 3590 | QualType CanT = getCanonicalType(T); |
| 3591 | if (CanT.getObjCGCAttr() == GCAttr) |
| 3592 | return T; |
| 3593 | |
| 3594 | if (const auto *ptr = T->getAs<PointerType>()) { |
| 3595 | QualType Pointee = ptr->getPointeeType(); |
| 3596 | if (Pointee->isAnyPointerType()) { |
| 3597 | QualType ResultType = getObjCGCQualType(T: Pointee, GCAttr); |
| 3598 | return getPointerType(T: ResultType); |
| 3599 | } |
| 3600 | } |
| 3601 | |
| 3602 | // If we are composing extended qualifiers together, merge together |
| 3603 | // into one ExtQuals node. |
| 3604 | QualifierCollector Quals; |
| 3605 | const Type *TypeNode = Quals.strip(type: T); |
| 3606 | |
| 3607 | // If this type already has an ObjCGC specified, it cannot get |
| 3608 | // another one. |
| 3609 | assert(!Quals.hasObjCGCAttr() && |
| 3610 | "Type cannot have multiple ObjCGCs!" ); |
| 3611 | Quals.addObjCGCAttr(type: GCAttr); |
| 3612 | |
| 3613 | return getExtQualType(baseType: TypeNode, quals: Quals); |
| 3614 | } |
| 3615 | |
| 3616 | QualType ASTContext::removePtrSizeAddrSpace(QualType T) const { |
| 3617 | if (const PointerType *Ptr = T->getAs<PointerType>()) { |
| 3618 | QualType Pointee = Ptr->getPointeeType(); |
| 3619 | if (isPtrSizeAddressSpace(AS: Pointee.getAddressSpace())) { |
| 3620 | return getPointerType(T: removeAddrSpaceQualType(T: Pointee)); |
| 3621 | } |
| 3622 | } |
| 3623 | return T; |
| 3624 | } |
| 3625 | |
| 3626 | QualType ASTContext::getCountAttributedType( |
| 3627 | QualType WrappedTy, Expr *CountExpr, bool CountInBytes, bool OrNull, |
| 3628 | ArrayRef<TypeCoupledDeclRefInfo> DependentDecls) const { |
| 3629 | assert(WrappedTy->isPointerType() || WrappedTy->isArrayType()); |
| 3630 | |
| 3631 | llvm::FoldingSetNodeID ID; |
| 3632 | CountAttributedType::Profile(ID, WrappedTy, CountExpr, CountInBytes, Nullable: OrNull); |
| 3633 | |
| 3634 | void *InsertPos = nullptr; |
| 3635 | CountAttributedType *CATy = |
| 3636 | CountAttributedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3637 | if (CATy) |
| 3638 | return QualType(CATy, 0); |
| 3639 | |
| 3640 | QualType CanonTy = getCanonicalType(T: WrappedTy); |
| 3641 | size_t Size = CountAttributedType::totalSizeToAlloc<TypeCoupledDeclRefInfo>( |
| 3642 | DependentDecls.size()); |
| 3643 | CATy = (CountAttributedType *)Allocate(Size, Align: TypeAlignment); |
| 3644 | new (CATy) CountAttributedType(WrappedTy, CanonTy, CountExpr, CountInBytes, |
| 3645 | OrNull, DependentDecls); |
| 3646 | Types.push_back(CATy); |
| 3647 | CountAttributedTypes.InsertNode(N: CATy, InsertPos); |
| 3648 | |
| 3649 | return QualType(CATy, 0); |
| 3650 | } |
| 3651 | |
| 3652 | QualType |
| 3653 | ASTContext::adjustType(QualType Orig, |
| 3654 | llvm::function_ref<QualType(QualType)> Adjust) const { |
| 3655 | switch (Orig->getTypeClass()) { |
| 3656 | case Type::Attributed: { |
| 3657 | const auto *AT = cast<AttributedType>(Val&: Orig); |
| 3658 | return getAttributedType(attrKind: AT->getAttrKind(), |
| 3659 | modifiedType: adjustType(Orig: AT->getModifiedType(), Adjust), |
| 3660 | equivalentType: adjustType(Orig: AT->getEquivalentType(), Adjust), |
| 3661 | attr: AT->getAttr()); |
| 3662 | } |
| 3663 | |
| 3664 | case Type::BTFTagAttributed: { |
| 3665 | const auto *BTFT = dyn_cast<BTFTagAttributedType>(Val&: Orig); |
| 3666 | return getBTFTagAttributedType(BTFAttr: BTFT->getAttr(), |
| 3667 | Wrapped: adjustType(Orig: BTFT->getWrappedType(), Adjust)); |
| 3668 | } |
| 3669 | |
| 3670 | case Type::Elaborated: { |
| 3671 | const auto *ET = cast<ElaboratedType>(Val&: Orig); |
| 3672 | return getElaboratedType(Keyword: ET->getKeyword(), NNS: ET->getQualifier(), |
| 3673 | NamedType: adjustType(Orig: ET->getNamedType(), Adjust)); |
| 3674 | } |
| 3675 | |
| 3676 | case Type::Paren: |
| 3677 | return getParenType( |
| 3678 | NamedType: adjustType(Orig: cast<ParenType>(Val&: Orig)->getInnerType(), Adjust)); |
| 3679 | |
| 3680 | case Type::Adjusted: { |
| 3681 | const auto *AT = cast<AdjustedType>(Val&: Orig); |
| 3682 | return getAdjustedType(Orig: AT->getOriginalType(), |
| 3683 | New: adjustType(Orig: AT->getAdjustedType(), Adjust)); |
| 3684 | } |
| 3685 | |
| 3686 | case Type::MacroQualified: { |
| 3687 | const auto *MQT = cast<MacroQualifiedType>(Val&: Orig); |
| 3688 | return getMacroQualifiedType(UnderlyingTy: adjustType(Orig: MQT->getUnderlyingType(), Adjust), |
| 3689 | MacroII: MQT->getMacroIdentifier()); |
| 3690 | } |
| 3691 | |
| 3692 | default: |
| 3693 | return Adjust(Orig); |
| 3694 | } |
| 3695 | } |
| 3696 | |
| 3697 | const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, |
| 3698 | FunctionType::ExtInfo Info) { |
| 3699 | if (T->getExtInfo() == Info) |
| 3700 | return T; |
| 3701 | |
| 3702 | QualType Result; |
| 3703 | if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(Val: T)) { |
| 3704 | Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); |
| 3705 | } else { |
| 3706 | const auto *FPT = cast<FunctionProtoType>(Val: T); |
| 3707 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 3708 | EPI.ExtInfo = Info; |
| 3709 | Result = getFunctionType(ResultTy: FPT->getReturnType(), Args: FPT->getParamTypes(), EPI); |
| 3710 | } |
| 3711 | |
| 3712 | return cast<FunctionType>(Val: Result.getTypePtr()); |
| 3713 | } |
| 3714 | |
| 3715 | QualType ASTContext::adjustFunctionResultType(QualType FunctionType, |
| 3716 | QualType ResultType) { |
| 3717 | return adjustType(FunctionType, [&](QualType Orig) { |
| 3718 | if (const auto *FNPT = Orig->getAs<FunctionNoProtoType>()) |
| 3719 | return getFunctionNoProtoType(ResultType, FNPT->getExtInfo()); |
| 3720 | |
| 3721 | const auto *FPT = Orig->castAs<FunctionProtoType>(); |
| 3722 | return getFunctionType(ResultType, FPT->getParamTypes(), |
| 3723 | FPT->getExtProtoInfo()); |
| 3724 | }); |
| 3725 | } |
| 3726 | |
| 3727 | void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, |
| 3728 | QualType ResultType) { |
| 3729 | FD = FD->getMostRecentDecl(); |
| 3730 | while (true) { |
| 3731 | FD->setType(adjustFunctionResultType(FunctionType: FD->getType(), ResultType)); |
| 3732 | if (FunctionDecl *Next = FD->getPreviousDecl()) |
| 3733 | FD = Next; |
| 3734 | else |
| 3735 | break; |
| 3736 | } |
| 3737 | if (ASTMutationListener *L = getASTMutationListener()) |
| 3738 | L->DeducedReturnType(FD, ReturnType: ResultType); |
| 3739 | } |
| 3740 | |
| 3741 | /// Get a function type and produce the equivalent function type with the |
| 3742 | /// specified exception specification. Type sugar that can be present on a |
| 3743 | /// declaration of a function with an exception specification is permitted |
| 3744 | /// and preserved. Other type sugar (for instance, typedefs) is not. |
| 3745 | QualType ASTContext::getFunctionTypeWithExceptionSpec( |
| 3746 | QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const { |
| 3747 | return adjustType(Orig, [&](QualType Ty) { |
| 3748 | const auto *Proto = Ty->castAs<FunctionProtoType>(); |
| 3749 | return getFunctionType(Proto->getReturnType(), Proto->getParamTypes(), |
| 3750 | Proto->getExtProtoInfo().withExceptionSpec(ESI)); |
| 3751 | }); |
| 3752 | } |
| 3753 | |
| 3754 | bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T, |
| 3755 | QualType U) const { |
| 3756 | return hasSameType(T1: T, T2: U) || |
| 3757 | (getLangOpts().CPlusPlus17 && |
| 3758 | hasSameType(T1: getFunctionTypeWithExceptionSpec(Orig: T, ESI: EST_None), |
| 3759 | T2: getFunctionTypeWithExceptionSpec(Orig: U, ESI: EST_None))); |
| 3760 | } |
| 3761 | |
| 3762 | QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) { |
| 3763 | if (const auto *Proto = T->getAs<FunctionProtoType>()) { |
| 3764 | QualType RetTy = removePtrSizeAddrSpace(T: Proto->getReturnType()); |
| 3765 | SmallVector<QualType, 16> Args(Proto->param_types().size()); |
| 3766 | for (unsigned i = 0, n = Args.size(); i != n; ++i) |
| 3767 | Args[i] = removePtrSizeAddrSpace(T: Proto->param_types()[i]); |
| 3768 | return getFunctionType(ResultTy: RetTy, Args, EPI: Proto->getExtProtoInfo()); |
| 3769 | } |
| 3770 | |
| 3771 | if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) { |
| 3772 | QualType RetTy = removePtrSizeAddrSpace(T: Proto->getReturnType()); |
| 3773 | return getFunctionNoProtoType(RetTy, Proto->getExtInfo()); |
| 3774 | } |
| 3775 | |
| 3776 | return T; |
| 3777 | } |
| 3778 | |
| 3779 | bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) { |
| 3780 | return hasSameType(T1: T, T2: U) || |
| 3781 | hasSameType(T1: getFunctionTypeWithoutPtrSizes(T), |
| 3782 | T2: getFunctionTypeWithoutPtrSizes(T: U)); |
| 3783 | } |
| 3784 | |
| 3785 | QualType ASTContext::getFunctionTypeWithoutParamABIs(QualType T) const { |
| 3786 | if (const auto *Proto = T->getAs<FunctionProtoType>()) { |
| 3787 | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); |
| 3788 | EPI.ExtParameterInfos = nullptr; |
| 3789 | return getFunctionType(ResultTy: Proto->getReturnType(), Args: Proto->param_types(), EPI); |
| 3790 | } |
| 3791 | return T; |
| 3792 | } |
| 3793 | |
| 3794 | bool ASTContext::hasSameFunctionTypeIgnoringParamABI(QualType T, |
| 3795 | QualType U) const { |
| 3796 | return hasSameType(T1: T, T2: U) || hasSameType(T1: getFunctionTypeWithoutParamABIs(T), |
| 3797 | T2: getFunctionTypeWithoutParamABIs(T: U)); |
| 3798 | } |
| 3799 | |
| 3800 | void ASTContext::adjustExceptionSpec( |
| 3801 | FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, |
| 3802 | bool AsWritten) { |
| 3803 | // Update the type. |
| 3804 | QualType Updated = |
| 3805 | getFunctionTypeWithExceptionSpec(Orig: FD->getType(), ESI); |
| 3806 | FD->setType(Updated); |
| 3807 | |
| 3808 | if (!AsWritten) |
| 3809 | return; |
| 3810 | |
| 3811 | // Update the type in the type source information too. |
| 3812 | if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { |
| 3813 | // If the type and the type-as-written differ, we may need to update |
| 3814 | // the type-as-written too. |
| 3815 | if (TSInfo->getType() != FD->getType()) |
| 3816 | Updated = getFunctionTypeWithExceptionSpec(Orig: TSInfo->getType(), ESI); |
| 3817 | |
| 3818 | // FIXME: When we get proper type location information for exceptions, |
| 3819 | // we'll also have to rebuild the TypeSourceInfo. For now, we just patch |
| 3820 | // up the TypeSourceInfo; |
| 3821 | assert(TypeLoc::getFullDataSizeForType(Updated) == |
| 3822 | TypeLoc::getFullDataSizeForType(TSInfo->getType()) && |
| 3823 | "TypeLoc size mismatch from updating exception specification" ); |
| 3824 | TSInfo->overrideType(T: Updated); |
| 3825 | } |
| 3826 | } |
| 3827 | |
| 3828 | /// getComplexType - Return the uniqued reference to the type for a complex |
| 3829 | /// number with the specified element type. |
| 3830 | QualType ASTContext::getComplexType(QualType T) const { |
| 3831 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 3832 | // structure. |
| 3833 | llvm::FoldingSetNodeID ID; |
| 3834 | ComplexType::Profile(ID, Element: T); |
| 3835 | |
| 3836 | void *InsertPos = nullptr; |
| 3837 | if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 3838 | return QualType(CT, 0); |
| 3839 | |
| 3840 | // If the pointee type isn't canonical, this won't be a canonical type either, |
| 3841 | // so fill in the canonical type field. |
| 3842 | QualType Canonical; |
| 3843 | if (!T.isCanonical()) { |
| 3844 | Canonical = getComplexType(T: getCanonicalType(T)); |
| 3845 | |
| 3846 | // Get the new insert position for the node we care about. |
| 3847 | ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3848 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
| 3849 | } |
| 3850 | auto *New = new (*this, alignof(ComplexType)) ComplexType(T, Canonical); |
| 3851 | Types.push_back(New); |
| 3852 | ComplexTypes.InsertNode(N: New, InsertPos); |
| 3853 | return QualType(New, 0); |
| 3854 | } |
| 3855 | |
| 3856 | /// getPointerType - Return the uniqued reference to the type for a pointer to |
| 3857 | /// the specified type. |
| 3858 | QualType ASTContext::getPointerType(QualType T) const { |
| 3859 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 3860 | // structure. |
| 3861 | llvm::FoldingSetNodeID ID; |
| 3862 | PointerType::Profile(ID, Pointee: T); |
| 3863 | |
| 3864 | void *InsertPos = nullptr; |
| 3865 | if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 3866 | return QualType(PT, 0); |
| 3867 | |
| 3868 | // If the pointee type isn't canonical, this won't be a canonical type either, |
| 3869 | // so fill in the canonical type field. |
| 3870 | QualType Canonical; |
| 3871 | if (!T.isCanonical()) { |
| 3872 | Canonical = getPointerType(T: getCanonicalType(T)); |
| 3873 | |
| 3874 | // Get the new insert position for the node we care about. |
| 3875 | PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3876 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
| 3877 | } |
| 3878 | auto *New = new (*this, alignof(PointerType)) PointerType(T, Canonical); |
| 3879 | Types.push_back(New); |
| 3880 | PointerTypes.InsertNode(N: New, InsertPos); |
| 3881 | return QualType(New, 0); |
| 3882 | } |
| 3883 | |
| 3884 | QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { |
| 3885 | llvm::FoldingSetNodeID ID; |
| 3886 | AdjustedType::Profile(ID, Orig, New); |
| 3887 | void *InsertPos = nullptr; |
| 3888 | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3889 | if (AT) |
| 3890 | return QualType(AT, 0); |
| 3891 | |
| 3892 | QualType Canonical = getCanonicalType(T: New); |
| 3893 | |
| 3894 | // Get the new insert position for the node we care about. |
| 3895 | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3896 | assert(!AT && "Shouldn't be in the map!" ); |
| 3897 | |
| 3898 | AT = new (*this, alignof(AdjustedType)) |
| 3899 | AdjustedType(Type::Adjusted, Orig, New, Canonical); |
| 3900 | Types.push_back(AT); |
| 3901 | AdjustedTypes.InsertNode(N: AT, InsertPos); |
| 3902 | return QualType(AT, 0); |
| 3903 | } |
| 3904 | |
| 3905 | QualType ASTContext::getDecayedType(QualType Orig, QualType Decayed) const { |
| 3906 | llvm::FoldingSetNodeID ID; |
| 3907 | AdjustedType::Profile(ID, Orig, New: Decayed); |
| 3908 | void *InsertPos = nullptr; |
| 3909 | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3910 | if (AT) |
| 3911 | return QualType(AT, 0); |
| 3912 | |
| 3913 | QualType Canonical = getCanonicalType(T: Decayed); |
| 3914 | |
| 3915 | // Get the new insert position for the node we care about. |
| 3916 | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3917 | assert(!AT && "Shouldn't be in the map!" ); |
| 3918 | |
| 3919 | AT = new (*this, alignof(DecayedType)) DecayedType(Orig, Decayed, Canonical); |
| 3920 | Types.push_back(AT); |
| 3921 | AdjustedTypes.InsertNode(N: AT, InsertPos); |
| 3922 | return QualType(AT, 0); |
| 3923 | } |
| 3924 | |
| 3925 | QualType ASTContext::getDecayedType(QualType T) const { |
| 3926 | assert((T->isArrayType() || T->isFunctionType()) && "T does not decay" ); |
| 3927 | |
| 3928 | QualType Decayed; |
| 3929 | |
| 3930 | // C99 6.7.5.3p7: |
| 3931 | // A declaration of a parameter as "array of type" shall be |
| 3932 | // adjusted to "qualified pointer to type", where the type |
| 3933 | // qualifiers (if any) are those specified within the [ and ] of |
| 3934 | // the array type derivation. |
| 3935 | if (T->isArrayType()) |
| 3936 | Decayed = getArrayDecayedType(T); |
| 3937 | |
| 3938 | // C99 6.7.5.3p8: |
| 3939 | // A declaration of a parameter as "function returning type" |
| 3940 | // shall be adjusted to "pointer to function returning type", as |
| 3941 | // in 6.3.2.1. |
| 3942 | if (T->isFunctionType()) |
| 3943 | Decayed = getPointerType(T); |
| 3944 | |
| 3945 | return getDecayedType(Orig: T, Decayed); |
| 3946 | } |
| 3947 | |
| 3948 | QualType ASTContext::getArrayParameterType(QualType Ty) const { |
| 3949 | if (Ty->isArrayParameterType()) |
| 3950 | return Ty; |
| 3951 | assert(Ty->isConstantArrayType() && "Ty must be an array type." ); |
| 3952 | QualType DTy = Ty.getDesugaredType(Context: *this); |
| 3953 | const auto *ATy = cast<ConstantArrayType>(Val&: DTy); |
| 3954 | llvm::FoldingSetNodeID ID; |
| 3955 | ATy->Profile(ID, *this, ATy->getElementType(), ATy->getZExtSize(), |
| 3956 | ATy->getSizeExpr(), ATy->getSizeModifier(), |
| 3957 | ATy->getIndexTypeQualifiers().getAsOpaqueValue()); |
| 3958 | void *InsertPos = nullptr; |
| 3959 | ArrayParameterType *AT = |
| 3960 | ArrayParameterTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3961 | if (AT) |
| 3962 | return QualType(AT, 0); |
| 3963 | |
| 3964 | QualType Canonical; |
| 3965 | if (!DTy.isCanonical()) { |
| 3966 | Canonical = getArrayParameterType(Ty: getCanonicalType(T: Ty)); |
| 3967 | |
| 3968 | // Get the new insert position for the node we care about. |
| 3969 | AT = ArrayParameterTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3970 | assert(!AT && "Shouldn't be in the map!" ); |
| 3971 | } |
| 3972 | |
| 3973 | AT = new (*this, alignof(ArrayParameterType)) |
| 3974 | ArrayParameterType(ATy, Canonical); |
| 3975 | Types.push_back(AT); |
| 3976 | ArrayParameterTypes.InsertNode(N: AT, InsertPos); |
| 3977 | return QualType(AT, 0); |
| 3978 | } |
| 3979 | |
| 3980 | /// getBlockPointerType - Return the uniqued reference to the type for |
| 3981 | /// a pointer to the specified block. |
| 3982 | QualType ASTContext::getBlockPointerType(QualType T) const { |
| 3983 | assert(T->isFunctionType() && "block of function types only" ); |
| 3984 | // Unique pointers, to guarantee there is only one block of a particular |
| 3985 | // structure. |
| 3986 | llvm::FoldingSetNodeID ID; |
| 3987 | BlockPointerType::Profile(ID, Pointee: T); |
| 3988 | |
| 3989 | void *InsertPos = nullptr; |
| 3990 | if (BlockPointerType *PT = |
| 3991 | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 3992 | return QualType(PT, 0); |
| 3993 | |
| 3994 | // If the block pointee type isn't canonical, this won't be a canonical |
| 3995 | // type either so fill in the canonical type field. |
| 3996 | QualType Canonical; |
| 3997 | if (!T.isCanonical()) { |
| 3998 | Canonical = getBlockPointerType(T: getCanonicalType(T)); |
| 3999 | |
| 4000 | // Get the new insert position for the node we care about. |
| 4001 | BlockPointerType *NewIP = |
| 4002 | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4003 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
| 4004 | } |
| 4005 | auto *New = |
| 4006 | new (*this, alignof(BlockPointerType)) BlockPointerType(T, Canonical); |
| 4007 | Types.push_back(New); |
| 4008 | BlockPointerTypes.InsertNode(N: New, InsertPos); |
| 4009 | return QualType(New, 0); |
| 4010 | } |
| 4011 | |
| 4012 | /// getLValueReferenceType - Return the uniqued reference to the type for an |
| 4013 | /// lvalue reference to the specified type. |
| 4014 | QualType |
| 4015 | ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { |
| 4016 | assert((!T->isPlaceholderType() || |
| 4017 | T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && |
| 4018 | "Unresolved placeholder type" ); |
| 4019 | |
| 4020 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 4021 | // structure. |
| 4022 | llvm::FoldingSetNodeID ID; |
| 4023 | ReferenceType::Profile(ID, Referencee: T, SpelledAsLValue); |
| 4024 | |
| 4025 | void *InsertPos = nullptr; |
| 4026 | if (LValueReferenceType *RT = |
| 4027 | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4028 | return QualType(RT, 0); |
| 4029 | |
| 4030 | const auto *InnerRef = T->getAs<ReferenceType>(); |
| 4031 | |
| 4032 | // If the referencee type isn't canonical, this won't be a canonical type |
| 4033 | // either, so fill in the canonical type field. |
| 4034 | QualType Canonical; |
| 4035 | if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { |
| 4036 | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
| 4037 | Canonical = getLValueReferenceType(T: getCanonicalType(T: PointeeType)); |
| 4038 | |
| 4039 | // Get the new insert position for the node we care about. |
| 4040 | LValueReferenceType *NewIP = |
| 4041 | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4042 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
| 4043 | } |
| 4044 | |
| 4045 | auto *New = new (*this, alignof(LValueReferenceType)) |
| 4046 | LValueReferenceType(T, Canonical, SpelledAsLValue); |
| 4047 | Types.push_back(New); |
| 4048 | LValueReferenceTypes.InsertNode(N: New, InsertPos); |
| 4049 | |
| 4050 | return QualType(New, 0); |
| 4051 | } |
| 4052 | |
| 4053 | /// getRValueReferenceType - Return the uniqued reference to the type for an |
| 4054 | /// rvalue reference to the specified type. |
| 4055 | QualType ASTContext::getRValueReferenceType(QualType T) const { |
| 4056 | assert((!T->isPlaceholderType() || |
| 4057 | T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && |
| 4058 | "Unresolved placeholder type" ); |
| 4059 | |
| 4060 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 4061 | // structure. |
| 4062 | llvm::FoldingSetNodeID ID; |
| 4063 | ReferenceType::Profile(ID, Referencee: T, SpelledAsLValue: false); |
| 4064 | |
| 4065 | void *InsertPos = nullptr; |
| 4066 | if (RValueReferenceType *RT = |
| 4067 | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4068 | return QualType(RT, 0); |
| 4069 | |
| 4070 | const auto *InnerRef = T->getAs<ReferenceType>(); |
| 4071 | |
| 4072 | // If the referencee type isn't canonical, this won't be a canonical type |
| 4073 | // either, so fill in the canonical type field. |
| 4074 | QualType Canonical; |
| 4075 | if (InnerRef || !T.isCanonical()) { |
| 4076 | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
| 4077 | Canonical = getRValueReferenceType(T: getCanonicalType(T: PointeeType)); |
| 4078 | |
| 4079 | // Get the new insert position for the node we care about. |
| 4080 | RValueReferenceType *NewIP = |
| 4081 | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4082 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
| 4083 | } |
| 4084 | |
| 4085 | auto *New = new (*this, alignof(RValueReferenceType)) |
| 4086 | RValueReferenceType(T, Canonical); |
| 4087 | Types.push_back(New); |
| 4088 | RValueReferenceTypes.InsertNode(N: New, InsertPos); |
| 4089 | return QualType(New, 0); |
| 4090 | } |
| 4091 | |
| 4092 | QualType ASTContext::getMemberPointerType(QualType T, |
| 4093 | NestedNameSpecifier *Qualifier, |
| 4094 | const CXXRecordDecl *Cls) const { |
| 4095 | if (!Qualifier) { |
| 4096 | assert(Cls && "At least one of Qualifier or Cls must be provided" ); |
| 4097 | Qualifier = NestedNameSpecifier::Create(Context: *this, /*Prefix=*/nullptr, |
| 4098 | T: getTypeDeclType(Cls).getTypePtr()); |
| 4099 | } else if (!Cls) { |
| 4100 | Cls = Qualifier->getAsRecordDecl(); |
| 4101 | } |
| 4102 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 4103 | // structure. |
| 4104 | llvm::FoldingSetNodeID ID; |
| 4105 | MemberPointerType::Profile(ID, Pointee: T, Qualifier, Cls); |
| 4106 | |
| 4107 | void *InsertPos = nullptr; |
| 4108 | if (MemberPointerType *PT = |
| 4109 | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4110 | return QualType(PT, 0); |
| 4111 | |
| 4112 | NestedNameSpecifier *CanonicalQualifier = [&] { |
| 4113 | if (!Cls) |
| 4114 | return getCanonicalNestedNameSpecifier(NNS: Qualifier); |
| 4115 | NestedNameSpecifier *R = NestedNameSpecifier::Create( |
| 4116 | *this, /*Prefix=*/nullptr, Cls->getCanonicalDecl()->getTypeForDecl()); |
| 4117 | assert(R == getCanonicalNestedNameSpecifier(R)); |
| 4118 | return R; |
| 4119 | }(); |
| 4120 | // If the pointee or class type isn't canonical, this won't be a canonical |
| 4121 | // type either, so fill in the canonical type field. |
| 4122 | QualType Canonical; |
| 4123 | if (!T.isCanonical() || Qualifier != CanonicalQualifier) { |
| 4124 | Canonical = |
| 4125 | getMemberPointerType(T: getCanonicalType(T), Qualifier: CanonicalQualifier, Cls); |
| 4126 | assert(!cast<MemberPointerType>(Canonical)->isSugared()); |
| 4127 | // Get the new insert position for the node we care about. |
| 4128 | [[maybe_unused]] MemberPointerType *NewIP = |
| 4129 | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4130 | assert(!NewIP && "Shouldn't be in the map!" ); |
| 4131 | } |
| 4132 | auto *New = new (*this, alignof(MemberPointerType)) |
| 4133 | MemberPointerType(T, Qualifier, Canonical); |
| 4134 | Types.push_back(New); |
| 4135 | MemberPointerTypes.InsertNode(N: New, InsertPos); |
| 4136 | return QualType(New, 0); |
| 4137 | } |
| 4138 | |
| 4139 | /// getConstantArrayType - Return the unique reference to the type for an |
| 4140 | /// array of the specified element type. |
| 4141 | QualType ASTContext::getConstantArrayType(QualType EltTy, |
| 4142 | const llvm::APInt &ArySizeIn, |
| 4143 | const Expr *SizeExpr, |
| 4144 | ArraySizeModifier ASM, |
| 4145 | unsigned IndexTypeQuals) const { |
| 4146 | assert((EltTy->isDependentType() || |
| 4147 | EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && |
| 4148 | "Constant array of VLAs is illegal!" ); |
| 4149 | |
| 4150 | // We only need the size as part of the type if it's instantiation-dependent. |
| 4151 | if (SizeExpr && !SizeExpr->isInstantiationDependent()) |
| 4152 | SizeExpr = nullptr; |
| 4153 | |
| 4154 | // Convert the array size into a canonical width matching the pointer size for |
| 4155 | // the target. |
| 4156 | llvm::APInt ArySize(ArySizeIn); |
| 4157 | ArySize = ArySize.zextOrTrunc(width: Target->getMaxPointerWidth()); |
| 4158 | |
| 4159 | llvm::FoldingSetNodeID ID; |
| 4160 | ConstantArrayType::Profile(ID, Ctx: *this, ET: EltTy, ArraySize: ArySize.getZExtValue(), SizeExpr, |
| 4161 | SizeMod: ASM, TypeQuals: IndexTypeQuals); |
| 4162 | |
| 4163 | void *InsertPos = nullptr; |
| 4164 | if (ConstantArrayType *ATP = |
| 4165 | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4166 | return QualType(ATP, 0); |
| 4167 | |
| 4168 | // If the element type isn't canonical or has qualifiers, or the array bound |
| 4169 | // is instantiation-dependent, this won't be a canonical type either, so fill |
| 4170 | // in the canonical type field. |
| 4171 | QualType Canon; |
| 4172 | // FIXME: Check below should look for qualifiers behind sugar. |
| 4173 | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) { |
| 4174 | SplitQualType canonSplit = getCanonicalType(T: EltTy).split(); |
| 4175 | Canon = getConstantArrayType(EltTy: QualType(canonSplit.Ty, 0), ArySizeIn: ArySize, SizeExpr: nullptr, |
| 4176 | ASM, IndexTypeQuals); |
| 4177 | Canon = getQualifiedType(T: Canon, Qs: canonSplit.Quals); |
| 4178 | |
| 4179 | // Get the new insert position for the node we care about. |
| 4180 | ConstantArrayType *NewIP = |
| 4181 | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4182 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
| 4183 | } |
| 4184 | |
| 4185 | auto *New = ConstantArrayType::Create(Ctx: *this, ET: EltTy, Can: Canon, Sz: ArySize, SzExpr: SizeExpr, |
| 4186 | SzMod: ASM, Qual: IndexTypeQuals); |
| 4187 | ConstantArrayTypes.InsertNode(N: New, InsertPos); |
| 4188 | Types.push_back(New); |
| 4189 | return QualType(New, 0); |
| 4190 | } |
| 4191 | |
| 4192 | /// getVariableArrayDecayedType - Turns the given type, which may be |
| 4193 | /// variably-modified, into the corresponding type with all the known |
| 4194 | /// sizes replaced with [*]. |
| 4195 | QualType ASTContext::getVariableArrayDecayedType(QualType type) const { |
| 4196 | // Vastly most common case. |
| 4197 | if (!type->isVariablyModifiedType()) return type; |
| 4198 | |
| 4199 | QualType result; |
| 4200 | |
| 4201 | SplitQualType split = type.getSplitDesugaredType(); |
| 4202 | const Type *ty = split.Ty; |
| 4203 | switch (ty->getTypeClass()) { |
| 4204 | #define TYPE(Class, Base) |
| 4205 | #define ABSTRACT_TYPE(Class, Base) |
| 4206 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| 4207 | #include "clang/AST/TypeNodes.inc" |
| 4208 | llvm_unreachable("didn't desugar past all non-canonical types?" ); |
| 4209 | |
| 4210 | // These types should never be variably-modified. |
| 4211 | case Type::Builtin: |
| 4212 | case Type::Complex: |
| 4213 | case Type::Vector: |
| 4214 | case Type::DependentVector: |
| 4215 | case Type::ExtVector: |
| 4216 | case Type::DependentSizedExtVector: |
| 4217 | case Type::ConstantMatrix: |
| 4218 | case Type::DependentSizedMatrix: |
| 4219 | case Type::DependentAddressSpace: |
| 4220 | case Type::ObjCObject: |
| 4221 | case Type::ObjCInterface: |
| 4222 | case Type::ObjCObjectPointer: |
| 4223 | case Type::Record: |
| 4224 | case Type::Enum: |
| 4225 | case Type::UnresolvedUsing: |
| 4226 | case Type::TypeOfExpr: |
| 4227 | case Type::TypeOf: |
| 4228 | case Type::Decltype: |
| 4229 | case Type::UnaryTransform: |
| 4230 | case Type::DependentName: |
| 4231 | case Type::InjectedClassName: |
| 4232 | case Type::TemplateSpecialization: |
| 4233 | case Type::DependentTemplateSpecialization: |
| 4234 | case Type::TemplateTypeParm: |
| 4235 | case Type::SubstTemplateTypeParmPack: |
| 4236 | case Type::Auto: |
| 4237 | case Type::DeducedTemplateSpecialization: |
| 4238 | case Type::PackExpansion: |
| 4239 | case Type::PackIndexing: |
| 4240 | case Type::BitInt: |
| 4241 | case Type::DependentBitInt: |
| 4242 | case Type::ArrayParameter: |
| 4243 | case Type::HLSLAttributedResource: |
| 4244 | case Type::HLSLInlineSpirv: |
| 4245 | llvm_unreachable("type should never be variably-modified" ); |
| 4246 | |
| 4247 | // These types can be variably-modified but should never need to |
| 4248 | // further decay. |
| 4249 | case Type::FunctionNoProto: |
| 4250 | case Type::FunctionProto: |
| 4251 | case Type::BlockPointer: |
| 4252 | case Type::MemberPointer: |
| 4253 | case Type::Pipe: |
| 4254 | return type; |
| 4255 | |
| 4256 | // These types can be variably-modified. All these modifications |
| 4257 | // preserve structure except as noted by comments. |
| 4258 | // TODO: if we ever care about optimizing VLAs, there are no-op |
| 4259 | // optimizations available here. |
| 4260 | case Type::Pointer: |
| 4261 | result = getPointerType(getVariableArrayDecayedType( |
| 4262 | type: cast<PointerType>(ty)->getPointeeType())); |
| 4263 | break; |
| 4264 | |
| 4265 | case Type::LValueReference: { |
| 4266 | const auto *lv = cast<LValueReferenceType>(ty); |
| 4267 | result = getLValueReferenceType( |
| 4268 | T: getVariableArrayDecayedType(type: lv->getPointeeType()), |
| 4269 | SpelledAsLValue: lv->isSpelledAsLValue()); |
| 4270 | break; |
| 4271 | } |
| 4272 | |
| 4273 | case Type::RValueReference: { |
| 4274 | const auto *lv = cast<RValueReferenceType>(ty); |
| 4275 | result = getRValueReferenceType( |
| 4276 | T: getVariableArrayDecayedType(type: lv->getPointeeType())); |
| 4277 | break; |
| 4278 | } |
| 4279 | |
| 4280 | case Type::Atomic: { |
| 4281 | const auto *at = cast<AtomicType>(ty); |
| 4282 | result = getAtomicType(T: getVariableArrayDecayedType(type: at->getValueType())); |
| 4283 | break; |
| 4284 | } |
| 4285 | |
| 4286 | case Type::ConstantArray: { |
| 4287 | const auto *cat = cast<ConstantArrayType>(ty); |
| 4288 | result = getConstantArrayType( |
| 4289 | EltTy: getVariableArrayDecayedType(type: cat->getElementType()), |
| 4290 | ArySizeIn: cat->getSize(), |
| 4291 | SizeExpr: cat->getSizeExpr(), |
| 4292 | ASM: cat->getSizeModifier(), |
| 4293 | IndexTypeQuals: cat->getIndexTypeCVRQualifiers()); |
| 4294 | break; |
| 4295 | } |
| 4296 | |
| 4297 | case Type::DependentSizedArray: { |
| 4298 | const auto *dat = cast<DependentSizedArrayType>(ty); |
| 4299 | result = getDependentSizedArrayType( |
| 4300 | EltTy: getVariableArrayDecayedType(type: dat->getElementType()), NumElts: dat->getSizeExpr(), |
| 4301 | ASM: dat->getSizeModifier(), IndexTypeQuals: dat->getIndexTypeCVRQualifiers()); |
| 4302 | break; |
| 4303 | } |
| 4304 | |
| 4305 | // Turn incomplete types into [*] types. |
| 4306 | case Type::IncompleteArray: { |
| 4307 | const auto *iat = cast<IncompleteArrayType>(ty); |
| 4308 | result = |
| 4309 | getVariableArrayType(EltTy: getVariableArrayDecayedType(type: iat->getElementType()), |
| 4310 | /*size*/ NumElts: nullptr, ASM: ArraySizeModifier::Normal, |
| 4311 | IndexTypeQuals: iat->getIndexTypeCVRQualifiers()); |
| 4312 | break; |
| 4313 | } |
| 4314 | |
| 4315 | // Turn VLA types into [*] types. |
| 4316 | case Type::VariableArray: { |
| 4317 | const auto *vat = cast<VariableArrayType>(ty); |
| 4318 | result = |
| 4319 | getVariableArrayType(EltTy: getVariableArrayDecayedType(type: vat->getElementType()), |
| 4320 | /*size*/ NumElts: nullptr, ASM: ArraySizeModifier::Star, |
| 4321 | IndexTypeQuals: vat->getIndexTypeCVRQualifiers()); |
| 4322 | break; |
| 4323 | } |
| 4324 | } |
| 4325 | |
| 4326 | // Apply the top-level qualifiers from the original. |
| 4327 | return getQualifiedType(T: result, Qs: split.Quals); |
| 4328 | } |
| 4329 | |
| 4330 | /// getVariableArrayType - Returns a non-unique reference to the type for a |
| 4331 | /// variable array of the specified element type. |
| 4332 | QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, |
| 4333 | ArraySizeModifier ASM, |
| 4334 | unsigned IndexTypeQuals) const { |
| 4335 | // Since we don't unique expressions, it isn't possible to unique VLA's |
| 4336 | // that have an expression provided for their size. |
| 4337 | QualType Canon; |
| 4338 | |
| 4339 | // Be sure to pull qualifiers off the element type. |
| 4340 | // FIXME: Check below should look for qualifiers behind sugar. |
| 4341 | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { |
| 4342 | SplitQualType canonSplit = getCanonicalType(T: EltTy).split(); |
| 4343 | Canon = getVariableArrayType(EltTy: QualType(canonSplit.Ty, 0), NumElts, ASM, |
| 4344 | IndexTypeQuals); |
| 4345 | Canon = getQualifiedType(T: Canon, Qs: canonSplit.Quals); |
| 4346 | } |
| 4347 | |
| 4348 | auto *New = new (*this, alignof(VariableArrayType)) |
| 4349 | VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals); |
| 4350 | |
| 4351 | VariableArrayTypes.push_back(x: New); |
| 4352 | Types.push_back(New); |
| 4353 | return QualType(New, 0); |
| 4354 | } |
| 4355 | |
| 4356 | /// getDependentSizedArrayType - Returns a non-unique reference to |
| 4357 | /// the type for a dependently-sized array of the specified element |
| 4358 | /// type. |
| 4359 | QualType |
| 4360 | ASTContext::getDependentSizedArrayType(QualType elementType, Expr *numElements, |
| 4361 | ArraySizeModifier ASM, |
| 4362 | unsigned elementTypeQuals) const { |
| 4363 | assert((!numElements || numElements->isTypeDependent() || |
| 4364 | numElements->isValueDependent()) && |
| 4365 | "Size must be type- or value-dependent!" ); |
| 4366 | |
| 4367 | SplitQualType canonElementType = getCanonicalType(T: elementType).split(); |
| 4368 | |
| 4369 | void *insertPos = nullptr; |
| 4370 | llvm::FoldingSetNodeID ID; |
| 4371 | DependentSizedArrayType::Profile( |
| 4372 | ID, Context: *this, ET: numElements ? QualType(canonElementType.Ty, 0) : elementType, |
| 4373 | SizeMod: ASM, TypeQuals: elementTypeQuals, E: numElements); |
| 4374 | |
| 4375 | // Look for an existing type with these properties. |
| 4376 | DependentSizedArrayType *canonTy = |
| 4377 | DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
| 4378 | |
| 4379 | // Dependently-sized array types that do not have a specified number |
| 4380 | // of elements will have their sizes deduced from a dependent |
| 4381 | // initializer. |
| 4382 | if (!numElements) { |
| 4383 | if (canonTy) |
| 4384 | return QualType(canonTy, 0); |
| 4385 | |
| 4386 | auto *newType = new (*this, alignof(DependentSizedArrayType)) |
| 4387 | DependentSizedArrayType(elementType, QualType(), numElements, ASM, |
| 4388 | elementTypeQuals); |
| 4389 | DependentSizedArrayTypes.InsertNode(N: newType, InsertPos: insertPos); |
| 4390 | Types.push_back(newType); |
| 4391 | return QualType(newType, 0); |
| 4392 | } |
| 4393 | |
| 4394 | // If we don't have one, build one. |
| 4395 | if (!canonTy) { |
| 4396 | canonTy = new (*this, alignof(DependentSizedArrayType)) |
| 4397 | DependentSizedArrayType(QualType(canonElementType.Ty, 0), QualType(), |
| 4398 | numElements, ASM, elementTypeQuals); |
| 4399 | DependentSizedArrayTypes.InsertNode(N: canonTy, InsertPos: insertPos); |
| 4400 | Types.push_back(canonTy); |
| 4401 | } |
| 4402 | |
| 4403 | // Apply qualifiers from the element type to the array. |
| 4404 | QualType canon = getQualifiedType(T: QualType(canonTy,0), |
| 4405 | Qs: canonElementType.Quals); |
| 4406 | |
| 4407 | // If we didn't need extra canonicalization for the element type or the size |
| 4408 | // expression, then just use that as our result. |
| 4409 | if (QualType(canonElementType.Ty, 0) == elementType && |
| 4410 | canonTy->getSizeExpr() == numElements) |
| 4411 | return canon; |
| 4412 | |
| 4413 | // Otherwise, we need to build a type which follows the spelling |
| 4414 | // of the element type. |
| 4415 | auto *sugaredType = new (*this, alignof(DependentSizedArrayType)) |
| 4416 | DependentSizedArrayType(elementType, canon, numElements, ASM, |
| 4417 | elementTypeQuals); |
| 4418 | Types.push_back(Elt: sugaredType); |
| 4419 | return QualType(sugaredType, 0); |
| 4420 | } |
| 4421 | |
| 4422 | QualType ASTContext::getIncompleteArrayType(QualType elementType, |
| 4423 | ArraySizeModifier ASM, |
| 4424 | unsigned elementTypeQuals) const { |
| 4425 | llvm::FoldingSetNodeID ID; |
| 4426 | IncompleteArrayType::Profile(ID, ET: elementType, SizeMod: ASM, TypeQuals: elementTypeQuals); |
| 4427 | |
| 4428 | void *insertPos = nullptr; |
| 4429 | if (IncompleteArrayType *iat = |
| 4430 | IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos)) |
| 4431 | return QualType(iat, 0); |
| 4432 | |
| 4433 | // If the element type isn't canonical, this won't be a canonical type |
| 4434 | // either, so fill in the canonical type field. We also have to pull |
| 4435 | // qualifiers off the element type. |
| 4436 | QualType canon; |
| 4437 | |
| 4438 | // FIXME: Check below should look for qualifiers behind sugar. |
| 4439 | if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { |
| 4440 | SplitQualType canonSplit = getCanonicalType(T: elementType).split(); |
| 4441 | canon = getIncompleteArrayType(elementType: QualType(canonSplit.Ty, 0), |
| 4442 | ASM, elementTypeQuals); |
| 4443 | canon = getQualifiedType(T: canon, Qs: canonSplit.Quals); |
| 4444 | |
| 4445 | // Get the new insert position for the node we care about. |
| 4446 | IncompleteArrayType *existing = |
| 4447 | IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
| 4448 | assert(!existing && "Shouldn't be in the map!" ); (void) existing; |
| 4449 | } |
| 4450 | |
| 4451 | auto *newType = new (*this, alignof(IncompleteArrayType)) |
| 4452 | IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); |
| 4453 | |
| 4454 | IncompleteArrayTypes.InsertNode(N: newType, InsertPos: insertPos); |
| 4455 | Types.push_back(newType); |
| 4456 | return QualType(newType, 0); |
| 4457 | } |
| 4458 | |
| 4459 | ASTContext::BuiltinVectorTypeInfo |
| 4460 | ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const { |
| 4461 | #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS) \ |
| 4462 | {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \ |
| 4463 | NUMVECTORS}; |
| 4464 | |
| 4465 | #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS) \ |
| 4466 | {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS}; |
| 4467 | |
| 4468 | switch (Ty->getKind()) { |
| 4469 | default: |
| 4470 | llvm_unreachable("Unsupported builtin vector type" ); |
| 4471 | |
| 4472 | #define SVE_VECTOR_TYPE_INT(Name, MangledName, Id, SingletonId, NumEls, \ |
| 4473 | ElBits, NF, IsSigned) \ |
| 4474 | case BuiltinType::Id: \ |
| 4475 | return {getIntTypeForBitwidth(ElBits, IsSigned), \ |
| 4476 | llvm::ElementCount::getScalable(NumEls), NF}; |
| 4477 | #define SVE_VECTOR_TYPE_FLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
| 4478 | ElBits, NF) \ |
| 4479 | case BuiltinType::Id: \ |
| 4480 | return {ElBits == 16 ? HalfTy : (ElBits == 32 ? FloatTy : DoubleTy), \ |
| 4481 | llvm::ElementCount::getScalable(NumEls), NF}; |
| 4482 | #define SVE_VECTOR_TYPE_BFLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
| 4483 | ElBits, NF) \ |
| 4484 | case BuiltinType::Id: \ |
| 4485 | return {BFloat16Ty, llvm::ElementCount::getScalable(NumEls), NF}; |
| 4486 | #define SVE_VECTOR_TYPE_MFLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
| 4487 | ElBits, NF) \ |
| 4488 | case BuiltinType::Id: \ |
| 4489 | return {MFloat8Ty, llvm::ElementCount::getScalable(NumEls), NF}; |
| 4490 | #define SVE_PREDICATE_TYPE_ALL(Name, MangledName, Id, SingletonId, NumEls, NF) \ |
| 4491 | case BuiltinType::Id: \ |
| 4492 | return {BoolTy, llvm::ElementCount::getScalable(NumEls), NF}; |
| 4493 | #include "clang/Basic/AArch64ACLETypes.def" |
| 4494 | |
| 4495 | #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF, \ |
| 4496 | IsSigned) \ |
| 4497 | case BuiltinType::Id: \ |
| 4498 | return {getIntTypeForBitwidth(ElBits, IsSigned), \ |
| 4499 | llvm::ElementCount::getScalable(NumEls), NF}; |
| 4500 | #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF) \ |
| 4501 | case BuiltinType::Id: \ |
| 4502 | return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy), \ |
| 4503 | llvm::ElementCount::getScalable(NumEls), NF}; |
| 4504 | #define RVV_VECTOR_TYPE_BFLOAT(Name, Id, SingletonId, NumEls, ElBits, NF) \ |
| 4505 | case BuiltinType::Id: \ |
| 4506 | return {BFloat16Ty, llvm::ElementCount::getScalable(NumEls), NF}; |
| 4507 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
| 4508 | case BuiltinType::Id: \ |
| 4509 | return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1}; |
| 4510 | #include "clang/Basic/RISCVVTypes.def" |
| 4511 | } |
| 4512 | } |
| 4513 | |
| 4514 | /// getExternrefType - Return a WebAssembly externref type, which represents an |
| 4515 | /// opaque reference to a host value. |
| 4516 | QualType ASTContext::getWebAssemblyExternrefType() const { |
| 4517 | if (Target->getTriple().isWasm() && Target->hasFeature(Feature: "reference-types" )) { |
| 4518 | #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \ |
| 4519 | if (BuiltinType::Id == BuiltinType::WasmExternRef) \ |
| 4520 | return SingletonId; |
| 4521 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
| 4522 | } |
| 4523 | llvm_unreachable( |
| 4524 | "shouldn't try to generate type externref outside WebAssembly target" ); |
| 4525 | } |
| 4526 | |
| 4527 | /// getScalableVectorType - Return the unique reference to a scalable vector |
| 4528 | /// type of the specified element type and size. VectorType must be a built-in |
| 4529 | /// type. |
| 4530 | QualType ASTContext::getScalableVectorType(QualType EltTy, unsigned NumElts, |
| 4531 | unsigned NumFields) const { |
| 4532 | if (Target->hasAArch64ACLETypes()) { |
| 4533 | uint64_t EltTySize = getTypeSize(T: EltTy); |
| 4534 | |
| 4535 | #define SVE_VECTOR_TYPE_INT(Name, MangledName, Id, SingletonId, NumEls, \ |
| 4536 | ElBits, NF, IsSigned) \ |
| 4537 | if (EltTy->hasIntegerRepresentation() && !EltTy->isBooleanType() && \ |
| 4538 | EltTy->hasSignedIntegerRepresentation() == IsSigned && \ |
| 4539 | EltTySize == ElBits && NumElts == (NumEls * NF) && NumFields == 1) { \ |
| 4540 | return SingletonId; \ |
| 4541 | } |
| 4542 | #define SVE_VECTOR_TYPE_FLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
| 4543 | ElBits, NF) \ |
| 4544 | if (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \ |
| 4545 | EltTySize == ElBits && NumElts == (NumEls * NF) && NumFields == 1) { \ |
| 4546 | return SingletonId; \ |
| 4547 | } |
| 4548 | #define SVE_VECTOR_TYPE_BFLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
| 4549 | ElBits, NF) \ |
| 4550 | if (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \ |
| 4551 | EltTySize == ElBits && NumElts == (NumEls * NF) && NumFields == 1) { \ |
| 4552 | return SingletonId; \ |
| 4553 | } |
| 4554 | #define SVE_VECTOR_TYPE_MFLOAT(Name, MangledName, Id, SingletonId, NumEls, \ |
| 4555 | ElBits, NF) \ |
| 4556 | if (EltTy->isMFloat8Type() && EltTySize == ElBits && \ |
| 4557 | NumElts == (NumEls * NF) && NumFields == 1) { \ |
| 4558 | return SingletonId; \ |
| 4559 | } |
| 4560 | #define SVE_PREDICATE_TYPE_ALL(Name, MangledName, Id, SingletonId, NumEls, NF) \ |
| 4561 | if (EltTy->isBooleanType() && NumElts == (NumEls * NF) && NumFields == 1) \ |
| 4562 | return SingletonId; |
| 4563 | #include "clang/Basic/AArch64ACLETypes.def" |
| 4564 | } else if (Target->hasRISCVVTypes()) { |
| 4565 | uint64_t EltTySize = getTypeSize(T: EltTy); |
| 4566 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned, \ |
| 4567 | IsFP, IsBF) \ |
| 4568 | if (!EltTy->isBooleanType() && \ |
| 4569 | ((EltTy->hasIntegerRepresentation() && \ |
| 4570 | EltTy->hasSignedIntegerRepresentation() == IsSigned) || \ |
| 4571 | (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \ |
| 4572 | IsFP && !IsBF) || \ |
| 4573 | (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \ |
| 4574 | IsBF && !IsFP)) && \ |
| 4575 | EltTySize == ElBits && NumElts == NumEls && NumFields == NF) \ |
| 4576 | return SingletonId; |
| 4577 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
| 4578 | if (EltTy->isBooleanType() && NumElts == NumEls) \ |
| 4579 | return SingletonId; |
| 4580 | #include "clang/Basic/RISCVVTypes.def" |
| 4581 | } |
| 4582 | return QualType(); |
| 4583 | } |
| 4584 | |
| 4585 | /// getVectorType - Return the unique reference to a vector type of |
| 4586 | /// the specified element type and size. VectorType must be a built-in type. |
| 4587 | QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, |
| 4588 | VectorKind VecKind) const { |
| 4589 | assert(vecType->isBuiltinType() || |
| 4590 | (vecType->isBitIntType() && |
| 4591 | // Only support _BitInt elements with byte-sized power of 2 NumBits. |
| 4592 | llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()))); |
| 4593 | |
| 4594 | // Check if we've already instantiated a vector of this type. |
| 4595 | llvm::FoldingSetNodeID ID; |
| 4596 | VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); |
| 4597 | |
| 4598 | void *InsertPos = nullptr; |
| 4599 | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4600 | return QualType(VTP, 0); |
| 4601 | |
| 4602 | // If the element type isn't canonical, this won't be a canonical type either, |
| 4603 | // so fill in the canonical type field. |
| 4604 | QualType Canonical; |
| 4605 | if (!vecType.isCanonical()) { |
| 4606 | Canonical = getVectorType(vecType: getCanonicalType(T: vecType), NumElts, VecKind); |
| 4607 | |
| 4608 | // Get the new insert position for the node we care about. |
| 4609 | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4610 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
| 4611 | } |
| 4612 | auto *New = new (*this, alignof(VectorType)) |
| 4613 | VectorType(vecType, NumElts, Canonical, VecKind); |
| 4614 | VectorTypes.InsertNode(N: New, InsertPos); |
| 4615 | Types.push_back(New); |
| 4616 | return QualType(New, 0); |
| 4617 | } |
| 4618 | |
| 4619 | QualType ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr, |
| 4620 | SourceLocation AttrLoc, |
| 4621 | VectorKind VecKind) const { |
| 4622 | llvm::FoldingSetNodeID ID; |
| 4623 | DependentVectorType::Profile(ID, Context: *this, ElementType: getCanonicalType(T: VecType), SizeExpr, |
| 4624 | VecKind); |
| 4625 | void *InsertPos = nullptr; |
| 4626 | DependentVectorType *Canon = |
| 4627 | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4628 | DependentVectorType *New; |
| 4629 | |
| 4630 | if (Canon) { |
| 4631 | New = new (*this, alignof(DependentVectorType)) DependentVectorType( |
| 4632 | VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind); |
| 4633 | } else { |
| 4634 | QualType CanonVecTy = getCanonicalType(T: VecType); |
| 4635 | if (CanonVecTy == VecType) { |
| 4636 | New = new (*this, alignof(DependentVectorType)) |
| 4637 | DependentVectorType(VecType, QualType(), SizeExpr, AttrLoc, VecKind); |
| 4638 | |
| 4639 | DependentVectorType *CanonCheck = |
| 4640 | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4641 | assert(!CanonCheck && |
| 4642 | "Dependent-sized vector_size canonical type broken" ); |
| 4643 | (void)CanonCheck; |
| 4644 | DependentVectorTypes.InsertNode(N: New, InsertPos); |
| 4645 | } else { |
| 4646 | QualType CanonTy = getDependentVectorType(VecType: CanonVecTy, SizeExpr, |
| 4647 | AttrLoc: SourceLocation(), VecKind); |
| 4648 | New = new (*this, alignof(DependentVectorType)) |
| 4649 | DependentVectorType(VecType, CanonTy, SizeExpr, AttrLoc, VecKind); |
| 4650 | } |
| 4651 | } |
| 4652 | |
| 4653 | Types.push_back(New); |
| 4654 | return QualType(New, 0); |
| 4655 | } |
| 4656 | |
| 4657 | /// getExtVectorType - Return the unique reference to an extended vector type of |
| 4658 | /// the specified element type and size. VectorType must be a built-in type. |
| 4659 | QualType ASTContext::getExtVectorType(QualType vecType, |
| 4660 | unsigned NumElts) const { |
| 4661 | assert(vecType->isBuiltinType() || vecType->isDependentType() || |
| 4662 | (vecType->isBitIntType() && |
| 4663 | // Only support _BitInt elements with byte-sized power of 2 NumBits. |
| 4664 | llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()))); |
| 4665 | |
| 4666 | // Check if we've already instantiated a vector of this type. |
| 4667 | llvm::FoldingSetNodeID ID; |
| 4668 | VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, |
| 4669 | VectorKind::Generic); |
| 4670 | void *InsertPos = nullptr; |
| 4671 | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4672 | return QualType(VTP, 0); |
| 4673 | |
| 4674 | // If the element type isn't canonical, this won't be a canonical type either, |
| 4675 | // so fill in the canonical type field. |
| 4676 | QualType Canonical; |
| 4677 | if (!vecType.isCanonical()) { |
| 4678 | Canonical = getExtVectorType(vecType: getCanonicalType(T: vecType), NumElts); |
| 4679 | |
| 4680 | // Get the new insert position for the node we care about. |
| 4681 | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4682 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
| 4683 | } |
| 4684 | auto *New = new (*this, alignof(ExtVectorType)) |
| 4685 | ExtVectorType(vecType, NumElts, Canonical); |
| 4686 | VectorTypes.InsertNode(New, InsertPos); |
| 4687 | Types.push_back(New); |
| 4688 | return QualType(New, 0); |
| 4689 | } |
| 4690 | |
| 4691 | QualType |
| 4692 | ASTContext::getDependentSizedExtVectorType(QualType vecType, |
| 4693 | Expr *SizeExpr, |
| 4694 | SourceLocation AttrLoc) const { |
| 4695 | llvm::FoldingSetNodeID ID; |
| 4696 | DependentSizedExtVectorType::Profile(ID, Context: *this, ElementType: getCanonicalType(T: vecType), |
| 4697 | SizeExpr); |
| 4698 | |
| 4699 | void *InsertPos = nullptr; |
| 4700 | DependentSizedExtVectorType *Canon |
| 4701 | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4702 | DependentSizedExtVectorType *New; |
| 4703 | if (Canon) { |
| 4704 | // We already have a canonical version of this array type; use it as |
| 4705 | // the canonical type for a newly-built type. |
| 4706 | New = new (*this, alignof(DependentSizedExtVectorType)) |
| 4707 | DependentSizedExtVectorType(vecType, QualType(Canon, 0), SizeExpr, |
| 4708 | AttrLoc); |
| 4709 | } else { |
| 4710 | QualType CanonVecTy = getCanonicalType(T: vecType); |
| 4711 | if (CanonVecTy == vecType) { |
| 4712 | New = new (*this, alignof(DependentSizedExtVectorType)) |
| 4713 | DependentSizedExtVectorType(vecType, QualType(), SizeExpr, AttrLoc); |
| 4714 | |
| 4715 | DependentSizedExtVectorType *CanonCheck |
| 4716 | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4717 | assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken" ); |
| 4718 | (void)CanonCheck; |
| 4719 | DependentSizedExtVectorTypes.InsertNode(N: New, InsertPos); |
| 4720 | } else { |
| 4721 | QualType CanonExtTy = getDependentSizedExtVectorType(vecType: CanonVecTy, SizeExpr, |
| 4722 | AttrLoc: SourceLocation()); |
| 4723 | New = new (*this, alignof(DependentSizedExtVectorType)) |
| 4724 | DependentSizedExtVectorType(vecType, CanonExtTy, SizeExpr, AttrLoc); |
| 4725 | } |
| 4726 | } |
| 4727 | |
| 4728 | Types.push_back(New); |
| 4729 | return QualType(New, 0); |
| 4730 | } |
| 4731 | |
| 4732 | QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows, |
| 4733 | unsigned NumColumns) const { |
| 4734 | llvm::FoldingSetNodeID ID; |
| 4735 | ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns, |
| 4736 | Type::ConstantMatrix); |
| 4737 | |
| 4738 | assert(MatrixType::isValidElementType(ElementTy) && |
| 4739 | "need a valid element type" ); |
| 4740 | assert(ConstantMatrixType::isDimensionValid(NumRows) && |
| 4741 | ConstantMatrixType::isDimensionValid(NumColumns) && |
| 4742 | "need valid matrix dimensions" ); |
| 4743 | void *InsertPos = nullptr; |
| 4744 | if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4745 | return QualType(MTP, 0); |
| 4746 | |
| 4747 | QualType Canonical; |
| 4748 | if (!ElementTy.isCanonical()) { |
| 4749 | Canonical = |
| 4750 | getConstantMatrixType(ElementTy: getCanonicalType(T: ElementTy), NumRows, NumColumns); |
| 4751 | |
| 4752 | ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4753 | assert(!NewIP && "Matrix type shouldn't already exist in the map" ); |
| 4754 | (void)NewIP; |
| 4755 | } |
| 4756 | |
| 4757 | auto *New = new (*this, alignof(ConstantMatrixType)) |
| 4758 | ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical); |
| 4759 | MatrixTypes.InsertNode(N: New, InsertPos); |
| 4760 | Types.push_back(New); |
| 4761 | return QualType(New, 0); |
| 4762 | } |
| 4763 | |
| 4764 | QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy, |
| 4765 | Expr *RowExpr, |
| 4766 | Expr *ColumnExpr, |
| 4767 | SourceLocation AttrLoc) const { |
| 4768 | QualType CanonElementTy = getCanonicalType(T: ElementTy); |
| 4769 | llvm::FoldingSetNodeID ID; |
| 4770 | DependentSizedMatrixType::Profile(ID, Context: *this, ElementType: CanonElementTy, RowExpr, |
| 4771 | ColumnExpr); |
| 4772 | |
| 4773 | void *InsertPos = nullptr; |
| 4774 | DependentSizedMatrixType *Canon = |
| 4775 | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4776 | |
| 4777 | if (!Canon) { |
| 4778 | Canon = new (*this, alignof(DependentSizedMatrixType)) |
| 4779 | DependentSizedMatrixType(CanonElementTy, QualType(), RowExpr, |
| 4780 | ColumnExpr, AttrLoc); |
| 4781 | #ifndef NDEBUG |
| 4782 | DependentSizedMatrixType *CanonCheck = |
| 4783 | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4784 | assert(!CanonCheck && "Dependent-sized matrix canonical type broken" ); |
| 4785 | #endif |
| 4786 | DependentSizedMatrixTypes.InsertNode(N: Canon, InsertPos); |
| 4787 | Types.push_back(Canon); |
| 4788 | } |
| 4789 | |
| 4790 | // Already have a canonical version of the matrix type |
| 4791 | // |
| 4792 | // If it exactly matches the requested type, use it directly. |
| 4793 | if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr && |
| 4794 | Canon->getRowExpr() == ColumnExpr) |
| 4795 | return QualType(Canon, 0); |
| 4796 | |
| 4797 | // Use Canon as the canonical type for newly-built type. |
| 4798 | DependentSizedMatrixType *New = new (*this, alignof(DependentSizedMatrixType)) |
| 4799 | DependentSizedMatrixType(ElementTy, QualType(Canon, 0), RowExpr, |
| 4800 | ColumnExpr, AttrLoc); |
| 4801 | Types.push_back(New); |
| 4802 | return QualType(New, 0); |
| 4803 | } |
| 4804 | |
| 4805 | QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType, |
| 4806 | Expr *AddrSpaceExpr, |
| 4807 | SourceLocation AttrLoc) const { |
| 4808 | assert(AddrSpaceExpr->isInstantiationDependent()); |
| 4809 | |
| 4810 | QualType canonPointeeType = getCanonicalType(T: PointeeType); |
| 4811 | |
| 4812 | void *insertPos = nullptr; |
| 4813 | llvm::FoldingSetNodeID ID; |
| 4814 | DependentAddressSpaceType::Profile(ID, Context: *this, PointeeType: canonPointeeType, |
| 4815 | AddrSpaceExpr); |
| 4816 | |
| 4817 | DependentAddressSpaceType *canonTy = |
| 4818 | DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
| 4819 | |
| 4820 | if (!canonTy) { |
| 4821 | canonTy = new (*this, alignof(DependentAddressSpaceType)) |
| 4822 | DependentAddressSpaceType(canonPointeeType, QualType(), AddrSpaceExpr, |
| 4823 | AttrLoc); |
| 4824 | DependentAddressSpaceTypes.InsertNode(N: canonTy, InsertPos: insertPos); |
| 4825 | Types.push_back(canonTy); |
| 4826 | } |
| 4827 | |
| 4828 | if (canonPointeeType == PointeeType && |
| 4829 | canonTy->getAddrSpaceExpr() == AddrSpaceExpr) |
| 4830 | return QualType(canonTy, 0); |
| 4831 | |
| 4832 | auto *sugaredType = new (*this, alignof(DependentAddressSpaceType)) |
| 4833 | DependentAddressSpaceType(PointeeType, QualType(canonTy, 0), |
| 4834 | AddrSpaceExpr, AttrLoc); |
| 4835 | Types.push_back(Elt: sugaredType); |
| 4836 | return QualType(sugaredType, 0); |
| 4837 | } |
| 4838 | |
| 4839 | /// Determine whether \p T is canonical as the result type of a function. |
| 4840 | static bool isCanonicalResultType(QualType T) { |
| 4841 | return T.isCanonical() && |
| 4842 | (T.getObjCLifetime() == Qualifiers::OCL_None || |
| 4843 | T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); |
| 4844 | } |
| 4845 | |
| 4846 | /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. |
| 4847 | QualType |
| 4848 | ASTContext::getFunctionNoProtoType(QualType ResultTy, |
| 4849 | const FunctionType::ExtInfo &Info) const { |
| 4850 | // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter |
| 4851 | // functionality creates a function without a prototype regardless of |
| 4852 | // language mode (so it makes them even in C++). Once the rewriter has been |
| 4853 | // fixed, this assertion can be enabled again. |
| 4854 | //assert(!LangOpts.requiresStrictPrototypes() && |
| 4855 | // "strict prototypes are disabled"); |
| 4856 | |
| 4857 | // Unique functions, to guarantee there is only one function of a particular |
| 4858 | // structure. |
| 4859 | llvm::FoldingSetNodeID ID; |
| 4860 | FunctionNoProtoType::Profile(ID, ResultType: ResultTy, Info); |
| 4861 | |
| 4862 | void *InsertPos = nullptr; |
| 4863 | if (FunctionNoProtoType *FT = |
| 4864 | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4865 | return QualType(FT, 0); |
| 4866 | |
| 4867 | QualType Canonical; |
| 4868 | if (!isCanonicalResultType(T: ResultTy)) { |
| 4869 | Canonical = |
| 4870 | getFunctionNoProtoType(ResultTy: getCanonicalFunctionResultType(ResultType: ResultTy), Info); |
| 4871 | |
| 4872 | // Get the new insert position for the node we care about. |
| 4873 | FunctionNoProtoType *NewIP = |
| 4874 | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4875 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
| 4876 | } |
| 4877 | |
| 4878 | auto *New = new (*this, alignof(FunctionNoProtoType)) |
| 4879 | FunctionNoProtoType(ResultTy, Canonical, Info); |
| 4880 | Types.push_back(New); |
| 4881 | FunctionNoProtoTypes.InsertNode(N: New, InsertPos); |
| 4882 | return QualType(New, 0); |
| 4883 | } |
| 4884 | |
| 4885 | CanQualType |
| 4886 | ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { |
| 4887 | CanQualType CanResultType = getCanonicalType(T: ResultType); |
| 4888 | |
| 4889 | // Canonical result types do not have ARC lifetime qualifiers. |
| 4890 | if (CanResultType.getQualifiers().hasObjCLifetime()) { |
| 4891 | Qualifiers Qs = CanResultType.getQualifiers(); |
| 4892 | Qs.removeObjCLifetime(); |
| 4893 | return CanQualType::CreateUnsafe( |
| 4894 | Other: getQualifiedType(T: CanResultType.getUnqualifiedType(), Qs)); |
| 4895 | } |
| 4896 | |
| 4897 | return CanResultType; |
| 4898 | } |
| 4899 | |
| 4900 | static bool isCanonicalExceptionSpecification( |
| 4901 | const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) { |
| 4902 | if (ESI.Type == EST_None) |
| 4903 | return true; |
| 4904 | if (!NoexceptInType) |
| 4905 | return false; |
| 4906 | |
| 4907 | // C++17 onwards: exception specification is part of the type, as a simple |
| 4908 | // boolean "can this function type throw". |
| 4909 | if (ESI.Type == EST_BasicNoexcept) |
| 4910 | return true; |
| 4911 | |
| 4912 | // A noexcept(expr) specification is (possibly) canonical if expr is |
| 4913 | // value-dependent. |
| 4914 | if (ESI.Type == EST_DependentNoexcept) |
| 4915 | return true; |
| 4916 | |
| 4917 | // A dynamic exception specification is canonical if it only contains pack |
| 4918 | // expansions (so we can't tell whether it's non-throwing) and all its |
| 4919 | // contained types are canonical. |
| 4920 | if (ESI.Type == EST_Dynamic) { |
| 4921 | bool AnyPackExpansions = false; |
| 4922 | for (QualType ET : ESI.Exceptions) { |
| 4923 | if (!ET.isCanonical()) |
| 4924 | return false; |
| 4925 | if (ET->getAs<PackExpansionType>()) |
| 4926 | AnyPackExpansions = true; |
| 4927 | } |
| 4928 | return AnyPackExpansions; |
| 4929 | } |
| 4930 | |
| 4931 | return false; |
| 4932 | } |
| 4933 | |
| 4934 | QualType ASTContext::getFunctionTypeInternal( |
| 4935 | QualType ResultTy, ArrayRef<QualType> ArgArray, |
| 4936 | const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const { |
| 4937 | size_t NumArgs = ArgArray.size(); |
| 4938 | |
| 4939 | // Unique functions, to guarantee there is only one function of a particular |
| 4940 | // structure. |
| 4941 | llvm::FoldingSetNodeID ID; |
| 4942 | FunctionProtoType::Profile(ID, Result: ResultTy, ArgTys: ArgArray.begin(), NumArgs, EPI, |
| 4943 | Context: *this, Canonical: true); |
| 4944 | |
| 4945 | QualType Canonical; |
| 4946 | bool Unique = false; |
| 4947 | |
| 4948 | void *InsertPos = nullptr; |
| 4949 | if (FunctionProtoType *FPT = |
| 4950 | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) { |
| 4951 | QualType Existing = QualType(FPT, 0); |
| 4952 | |
| 4953 | // If we find a pre-existing equivalent FunctionProtoType, we can just reuse |
| 4954 | // it so long as our exception specification doesn't contain a dependent |
| 4955 | // noexcept expression, or we're just looking for a canonical type. |
| 4956 | // Otherwise, we're going to need to create a type |
| 4957 | // sugar node to hold the concrete expression. |
| 4958 | if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) || |
| 4959 | EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr()) |
| 4960 | return Existing; |
| 4961 | |
| 4962 | // We need a new type sugar node for this one, to hold the new noexcept |
| 4963 | // expression. We do no canonicalization here, but that's OK since we don't |
| 4964 | // expect to see the same noexcept expression much more than once. |
| 4965 | Canonical = getCanonicalType(T: Existing); |
| 4966 | Unique = true; |
| 4967 | } |
| 4968 | |
| 4969 | bool NoexceptInType = getLangOpts().CPlusPlus17; |
| 4970 | bool IsCanonicalExceptionSpec = |
| 4971 | isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType); |
| 4972 | |
| 4973 | // Determine whether the type being created is already canonical or not. |
| 4974 | bool isCanonical = !Unique && IsCanonicalExceptionSpec && |
| 4975 | isCanonicalResultType(T: ResultTy) && !EPI.HasTrailingReturn; |
| 4976 | for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
| 4977 | if (!ArgArray[i].isCanonicalAsParam()) |
| 4978 | isCanonical = false; |
| 4979 | |
| 4980 | if (OnlyWantCanonical) |
| 4981 | assert(isCanonical && |
| 4982 | "given non-canonical parameters constructing canonical type" ); |
| 4983 | |
| 4984 | // If this type isn't canonical, get the canonical version of it if we don't |
| 4985 | // already have it. The exception spec is only partially part of the |
| 4986 | // canonical type, and only in C++17 onwards. |
| 4987 | if (!isCanonical && Canonical.isNull()) { |
| 4988 | SmallVector<QualType, 16> CanonicalArgs; |
| 4989 | CanonicalArgs.reserve(N: NumArgs); |
| 4990 | for (unsigned i = 0; i != NumArgs; ++i) |
| 4991 | CanonicalArgs.push_back(Elt: getCanonicalParamType(T: ArgArray[i])); |
| 4992 | |
| 4993 | llvm::SmallVector<QualType, 8> ExceptionTypeStorage; |
| 4994 | FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; |
| 4995 | CanonicalEPI.HasTrailingReturn = false; |
| 4996 | |
| 4997 | if (IsCanonicalExceptionSpec) { |
| 4998 | // Exception spec is already OK. |
| 4999 | } else if (NoexceptInType) { |
| 5000 | switch (EPI.ExceptionSpec.Type) { |
| 5001 | case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated: |
| 5002 | // We don't know yet. It shouldn't matter what we pick here; no-one |
| 5003 | // should ever look at this. |
| 5004 | [[fallthrough]]; |
| 5005 | case EST_None: case EST_MSAny: case EST_NoexceptFalse: |
| 5006 | CanonicalEPI.ExceptionSpec.Type = EST_None; |
| 5007 | break; |
| 5008 | |
| 5009 | // A dynamic exception specification is almost always "not noexcept", |
| 5010 | // with the exception that a pack expansion might expand to no types. |
| 5011 | case EST_Dynamic: { |
| 5012 | bool AnyPacks = false; |
| 5013 | for (QualType ET : EPI.ExceptionSpec.Exceptions) { |
| 5014 | if (ET->getAs<PackExpansionType>()) |
| 5015 | AnyPacks = true; |
| 5016 | ExceptionTypeStorage.push_back(getCanonicalType(ET)); |
| 5017 | } |
| 5018 | if (!AnyPacks) |
| 5019 | CanonicalEPI.ExceptionSpec.Type = EST_None; |
| 5020 | else { |
| 5021 | CanonicalEPI.ExceptionSpec.Type = EST_Dynamic; |
| 5022 | CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage; |
| 5023 | } |
| 5024 | break; |
| 5025 | } |
| 5026 | |
| 5027 | case EST_DynamicNone: |
| 5028 | case EST_BasicNoexcept: |
| 5029 | case EST_NoexceptTrue: |
| 5030 | case EST_NoThrow: |
| 5031 | CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept; |
| 5032 | break; |
| 5033 | |
| 5034 | case EST_DependentNoexcept: |
| 5035 | llvm_unreachable("dependent noexcept is already canonical" ); |
| 5036 | } |
| 5037 | } else { |
| 5038 | CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); |
| 5039 | } |
| 5040 | |
| 5041 | // Adjust the canonical function result type. |
| 5042 | CanQualType CanResultTy = getCanonicalFunctionResultType(ResultType: ResultTy); |
| 5043 | Canonical = |
| 5044 | getFunctionTypeInternal(ResultTy: CanResultTy, ArgArray: CanonicalArgs, EPI: CanonicalEPI, OnlyWantCanonical: true); |
| 5045 | |
| 5046 | // Get the new insert position for the node we care about. |
| 5047 | FunctionProtoType *NewIP = |
| 5048 | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5049 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
| 5050 | } |
| 5051 | |
| 5052 | // Compute the needed size to hold this FunctionProtoType and the |
| 5053 | // various trailing objects. |
| 5054 | auto ESH = FunctionProtoType::getExceptionSpecSize( |
| 5055 | EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size()); |
| 5056 | size_t Size = FunctionProtoType::totalSizeToAlloc< |
| 5057 | QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields, |
| 5058 | FunctionType::FunctionTypeArmAttributes, FunctionType::ExceptionType, |
| 5059 | Expr *, FunctionDecl *, FunctionProtoType::ExtParameterInfo, Qualifiers, |
| 5060 | FunctionEffect, EffectConditionExpr>( |
| 5061 | NumArgs, EPI.Variadic, EPI.requiresFunctionProtoTypeExtraBitfields(), |
| 5062 | EPI.requiresFunctionProtoTypeArmAttributes(), ESH.NumExceptionType, |
| 5063 | ESH.NumExprPtr, ESH.NumFunctionDeclPtr, |
| 5064 | EPI.ExtParameterInfos ? NumArgs : 0, |
| 5065 | EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0, EPI.FunctionEffects.size(), |
| 5066 | EPI.FunctionEffects.conditions().size()); |
| 5067 | |
| 5068 | auto *FTP = (FunctionProtoType *)Allocate(Size, Align: alignof(FunctionProtoType)); |
| 5069 | FunctionProtoType::ExtProtoInfo newEPI = EPI; |
| 5070 | new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); |
| 5071 | Types.push_back(FTP); |
| 5072 | if (!Unique) |
| 5073 | FunctionProtoTypes.InsertNode(N: FTP, InsertPos); |
| 5074 | if (!EPI.FunctionEffects.empty()) |
| 5075 | AnyFunctionEffects = true; |
| 5076 | return QualType(FTP, 0); |
| 5077 | } |
| 5078 | |
| 5079 | QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const { |
| 5080 | llvm::FoldingSetNodeID ID; |
| 5081 | PipeType::Profile(ID, T, isRead: ReadOnly); |
| 5082 | |
| 5083 | void *InsertPos = nullptr; |
| 5084 | if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5085 | return QualType(PT, 0); |
| 5086 | |
| 5087 | // If the pipe element type isn't canonical, this won't be a canonical type |
| 5088 | // either, so fill in the canonical type field. |
| 5089 | QualType Canonical; |
| 5090 | if (!T.isCanonical()) { |
| 5091 | Canonical = getPipeType(T: getCanonicalType(T), ReadOnly); |
| 5092 | |
| 5093 | // Get the new insert position for the node we care about. |
| 5094 | PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5095 | assert(!NewIP && "Shouldn't be in the map!" ); |
| 5096 | (void)NewIP; |
| 5097 | } |
| 5098 | auto *New = new (*this, alignof(PipeType)) PipeType(T, Canonical, ReadOnly); |
| 5099 | Types.push_back(New); |
| 5100 | PipeTypes.InsertNode(N: New, InsertPos); |
| 5101 | return QualType(New, 0); |
| 5102 | } |
| 5103 | |
| 5104 | QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const { |
| 5105 | // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. |
| 5106 | return LangOpts.OpenCL ? getAddrSpaceQualType(T: Ty, AddressSpace: LangAS::opencl_constant) |
| 5107 | : Ty; |
| 5108 | } |
| 5109 | |
| 5110 | QualType ASTContext::getReadPipeType(QualType T) const { |
| 5111 | return getPipeType(T, ReadOnly: true); |
| 5112 | } |
| 5113 | |
| 5114 | QualType ASTContext::getWritePipeType(QualType T) const { |
| 5115 | return getPipeType(T, ReadOnly: false); |
| 5116 | } |
| 5117 | |
| 5118 | QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const { |
| 5119 | llvm::FoldingSetNodeID ID; |
| 5120 | BitIntType::Profile(ID, IsUnsigned, NumBits); |
| 5121 | |
| 5122 | void *InsertPos = nullptr; |
| 5123 | if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5124 | return QualType(EIT, 0); |
| 5125 | |
| 5126 | auto *New = new (*this, alignof(BitIntType)) BitIntType(IsUnsigned, NumBits); |
| 5127 | BitIntTypes.InsertNode(N: New, InsertPos); |
| 5128 | Types.push_back(New); |
| 5129 | return QualType(New, 0); |
| 5130 | } |
| 5131 | |
| 5132 | QualType ASTContext::getDependentBitIntType(bool IsUnsigned, |
| 5133 | Expr *NumBitsExpr) const { |
| 5134 | assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent" ); |
| 5135 | llvm::FoldingSetNodeID ID; |
| 5136 | DependentBitIntType::Profile(ID, Context: *this, IsUnsigned, NumBitsExpr); |
| 5137 | |
| 5138 | void *InsertPos = nullptr; |
| 5139 | if (DependentBitIntType *Existing = |
| 5140 | DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5141 | return QualType(Existing, 0); |
| 5142 | |
| 5143 | auto *New = new (*this, alignof(DependentBitIntType)) |
| 5144 | DependentBitIntType(IsUnsigned, NumBitsExpr); |
| 5145 | DependentBitIntTypes.InsertNode(N: New, InsertPos); |
| 5146 | |
| 5147 | Types.push_back(New); |
| 5148 | return QualType(New, 0); |
| 5149 | } |
| 5150 | |
| 5151 | #ifndef NDEBUG |
| 5152 | static bool NeedsInjectedClassNameType(const RecordDecl *D) { |
| 5153 | if (!isa<CXXRecordDecl>(Val: D)) return false; |
| 5154 | const auto *RD = cast<CXXRecordDecl>(Val: D); |
| 5155 | if (isa<ClassTemplatePartialSpecializationDecl>(Val: RD)) |
| 5156 | return true; |
| 5157 | if (RD->getDescribedClassTemplate() && |
| 5158 | !isa<ClassTemplateSpecializationDecl>(Val: RD)) |
| 5159 | return true; |
| 5160 | return false; |
| 5161 | } |
| 5162 | #endif |
| 5163 | |
| 5164 | /// getInjectedClassNameType - Return the unique reference to the |
| 5165 | /// injected class name type for the specified templated declaration. |
| 5166 | QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, |
| 5167 | QualType TST) const { |
| 5168 | assert(NeedsInjectedClassNameType(Decl)); |
| 5169 | if (Decl->TypeForDecl) { |
| 5170 | assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
| 5171 | } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { |
| 5172 | assert(PrevDecl->TypeForDecl && "previous declaration has no type" ); |
| 5173 | Decl->TypeForDecl = PrevDecl->TypeForDecl; |
| 5174 | assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
| 5175 | } else { |
| 5176 | Type *newType = new (*this, alignof(InjectedClassNameType)) |
| 5177 | InjectedClassNameType(Decl, TST); |
| 5178 | Decl->TypeForDecl = newType; |
| 5179 | Types.push_back(Elt: newType); |
| 5180 | } |
| 5181 | return QualType(Decl->TypeForDecl, 0); |
| 5182 | } |
| 5183 | |
| 5184 | /// getTypeDeclType - Return the unique reference to the type for the |
| 5185 | /// specified type declaration. |
| 5186 | QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { |
| 5187 | assert(Decl && "Passed null for Decl param" ); |
| 5188 | assert(!Decl->TypeForDecl && "TypeForDecl present in slow case" ); |
| 5189 | |
| 5190 | if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Val: Decl)) |
| 5191 | return getTypedefType(Decl: Typedef); |
| 5192 | |
| 5193 | assert(!isa<TemplateTypeParmDecl>(Decl) && |
| 5194 | "Template type parameter types are always available." ); |
| 5195 | |
| 5196 | if (const auto *Record = dyn_cast<RecordDecl>(Val: Decl)) { |
| 5197 | assert(Record->isFirstDecl() && "struct/union has previous declaration" ); |
| 5198 | assert(!NeedsInjectedClassNameType(Record)); |
| 5199 | return getRecordType(Decl: Record); |
| 5200 | } else if (const auto *Enum = dyn_cast<EnumDecl>(Val: Decl)) { |
| 5201 | assert(Enum->isFirstDecl() && "enum has previous declaration" ); |
| 5202 | return getEnumType(Decl: Enum); |
| 5203 | } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Val: Decl)) { |
| 5204 | return getUnresolvedUsingType(Decl: Using); |
| 5205 | } else |
| 5206 | llvm_unreachable("TypeDecl without a type?" ); |
| 5207 | |
| 5208 | return QualType(Decl->TypeForDecl, 0); |
| 5209 | } |
| 5210 | |
| 5211 | /// getTypedefType - Return the unique reference to the type for the |
| 5212 | /// specified typedef name decl. |
| 5213 | QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl, |
| 5214 | QualType Underlying) const { |
| 5215 | if (!Decl->TypeForDecl) { |
| 5216 | if (Underlying.isNull()) |
| 5217 | Underlying = Decl->getUnderlyingType(); |
| 5218 | auto *NewType = new (*this, alignof(TypedefType)) TypedefType( |
| 5219 | Type::Typedef, Decl, Underlying, /*HasTypeDifferentFromDecl=*/false); |
| 5220 | Decl->TypeForDecl = NewType; |
| 5221 | Types.push_back(Elt: NewType); |
| 5222 | return QualType(NewType, 0); |
| 5223 | } |
| 5224 | if (Underlying.isNull() || Decl->getUnderlyingType() == Underlying) |
| 5225 | return QualType(Decl->TypeForDecl, 0); |
| 5226 | assert(hasSameType(Decl->getUnderlyingType(), Underlying)); |
| 5227 | |
| 5228 | llvm::FoldingSetNodeID ID; |
| 5229 | TypedefType::Profile(ID, Decl, Underlying); |
| 5230 | |
| 5231 | void *InsertPos = nullptr; |
| 5232 | if (TypedefType *T = TypedefTypes.FindNodeOrInsertPos(ID, InsertPos)) { |
| 5233 | assert(!T->typeMatchesDecl() && |
| 5234 | "non-divergent case should be handled with TypeDecl" ); |
| 5235 | return QualType(T, 0); |
| 5236 | } |
| 5237 | |
| 5238 | void *Mem = Allocate(TypedefType::totalSizeToAlloc<QualType>(true), |
| 5239 | alignof(TypedefType)); |
| 5240 | auto *NewType = new (Mem) TypedefType(Type::Typedef, Decl, Underlying, |
| 5241 | /*HasTypeDifferentFromDecl=*/true); |
| 5242 | TypedefTypes.InsertNode(NewType, InsertPos); |
| 5243 | Types.push_back(Elt: NewType); |
| 5244 | return QualType(NewType, 0); |
| 5245 | } |
| 5246 | |
| 5247 | QualType ASTContext::getUsingType(const UsingShadowDecl *Found, |
| 5248 | QualType Underlying) const { |
| 5249 | llvm::FoldingSetNodeID ID; |
| 5250 | UsingType::Profile(ID, Found, Underlying); |
| 5251 | |
| 5252 | void *InsertPos = nullptr; |
| 5253 | if (UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5254 | return QualType(T, 0); |
| 5255 | |
| 5256 | const Type *TypeForDecl = |
| 5257 | cast<TypeDecl>(Val: Found->getTargetDecl())->getTypeForDecl(); |
| 5258 | |
| 5259 | assert(!Underlying.hasLocalQualifiers()); |
| 5260 | QualType Canon = Underlying->getCanonicalTypeInternal(); |
| 5261 | assert(TypeForDecl->getCanonicalTypeInternal() == Canon); |
| 5262 | |
| 5263 | if (Underlying.getTypePtr() == TypeForDecl) |
| 5264 | Underlying = QualType(); |
| 5265 | void *Mem = |
| 5266 | Allocate(UsingType::totalSizeToAlloc<QualType>(!Underlying.isNull()), |
| 5267 | alignof(UsingType)); |
| 5268 | UsingType *NewType = new (Mem) UsingType(Found, Underlying, Canon); |
| 5269 | Types.push_back(NewType); |
| 5270 | UsingTypes.InsertNode(N: NewType, InsertPos); |
| 5271 | return QualType(NewType, 0); |
| 5272 | } |
| 5273 | |
| 5274 | QualType ASTContext::getRecordType(const RecordDecl *Decl) const { |
| 5275 | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| 5276 | |
| 5277 | if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) |
| 5278 | if (PrevDecl->TypeForDecl) |
| 5279 | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
| 5280 | |
| 5281 | auto *newType = new (*this, alignof(RecordType)) RecordType(Decl); |
| 5282 | Decl->TypeForDecl = newType; |
| 5283 | Types.push_back(newType); |
| 5284 | return QualType(newType, 0); |
| 5285 | } |
| 5286 | |
| 5287 | QualType ASTContext::getEnumType(const EnumDecl *Decl) const { |
| 5288 | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| 5289 | |
| 5290 | if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) |
| 5291 | if (PrevDecl->TypeForDecl) |
| 5292 | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
| 5293 | |
| 5294 | auto *newType = new (*this, alignof(EnumType)) EnumType(Decl); |
| 5295 | Decl->TypeForDecl = newType; |
| 5296 | Types.push_back(newType); |
| 5297 | return QualType(newType, 0); |
| 5298 | } |
| 5299 | |
| 5300 | bool ASTContext::computeBestEnumTypes(bool IsPacked, unsigned NumNegativeBits, |
| 5301 | unsigned NumPositiveBits, |
| 5302 | QualType &BestType, |
| 5303 | QualType &BestPromotionType) { |
| 5304 | unsigned IntWidth = Target->getIntWidth(); |
| 5305 | unsigned CharWidth = Target->getCharWidth(); |
| 5306 | unsigned ShortWidth = Target->getShortWidth(); |
| 5307 | bool EnumTooLarge = false; |
| 5308 | unsigned BestWidth; |
| 5309 | if (NumNegativeBits) { |
| 5310 | // If there is a negative value, figure out the smallest integer type (of |
| 5311 | // int/long/longlong) that fits. |
| 5312 | // If it's packed, check also if it fits a char or a short. |
| 5313 | if (IsPacked && NumNegativeBits <= CharWidth && |
| 5314 | NumPositiveBits < CharWidth) { |
| 5315 | BestType = SignedCharTy; |
| 5316 | BestWidth = CharWidth; |
| 5317 | } else if (IsPacked && NumNegativeBits <= ShortWidth && |
| 5318 | NumPositiveBits < ShortWidth) { |
| 5319 | BestType = ShortTy; |
| 5320 | BestWidth = ShortWidth; |
| 5321 | } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { |
| 5322 | BestType = IntTy; |
| 5323 | BestWidth = IntWidth; |
| 5324 | } else { |
| 5325 | BestWidth = Target->getLongWidth(); |
| 5326 | |
| 5327 | if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { |
| 5328 | BestType = LongTy; |
| 5329 | } else { |
| 5330 | BestWidth = Target->getLongLongWidth(); |
| 5331 | |
| 5332 | if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) |
| 5333 | EnumTooLarge = true; |
| 5334 | BestType = LongLongTy; |
| 5335 | } |
| 5336 | } |
| 5337 | BestPromotionType = (BestWidth <= IntWidth ? IntTy : BestType); |
| 5338 | } else { |
| 5339 | // If there is no negative value, figure out the smallest type that fits |
| 5340 | // all of the enumerator values. |
| 5341 | // If it's packed, check also if it fits a char or a short. |
| 5342 | if (IsPacked && NumPositiveBits <= CharWidth) { |
| 5343 | BestType = UnsignedCharTy; |
| 5344 | BestPromotionType = IntTy; |
| 5345 | BestWidth = CharWidth; |
| 5346 | } else if (IsPacked && NumPositiveBits <= ShortWidth) { |
| 5347 | BestType = UnsignedShortTy; |
| 5348 | BestPromotionType = IntTy; |
| 5349 | BestWidth = ShortWidth; |
| 5350 | } else if (NumPositiveBits <= IntWidth) { |
| 5351 | BestType = UnsignedIntTy; |
| 5352 | BestWidth = IntWidth; |
| 5353 | BestPromotionType = (NumPositiveBits == BestWidth || !LangOpts.CPlusPlus) |
| 5354 | ? UnsignedIntTy |
| 5355 | : IntTy; |
| 5356 | } else if (NumPositiveBits <= (BestWidth = Target->getLongWidth())) { |
| 5357 | BestType = UnsignedLongTy; |
| 5358 | BestPromotionType = (NumPositiveBits == BestWidth || !LangOpts.CPlusPlus) |
| 5359 | ? UnsignedLongTy |
| 5360 | : LongTy; |
| 5361 | } else { |
| 5362 | BestWidth = Target->getLongLongWidth(); |
| 5363 | if (NumPositiveBits > BestWidth) { |
| 5364 | // This can happen with bit-precise integer types, but those are not |
| 5365 | // allowed as the type for an enumerator per C23 6.7.2.2p4 and p12. |
| 5366 | // FIXME: GCC uses __int128_t and __uint128_t for cases that fit within |
| 5367 | // a 128-bit integer, we should consider doing the same. |
| 5368 | EnumTooLarge = true; |
| 5369 | } |
| 5370 | BestType = UnsignedLongLongTy; |
| 5371 | BestPromotionType = (NumPositiveBits == BestWidth || !LangOpts.CPlusPlus) |
| 5372 | ? UnsignedLongLongTy |
| 5373 | : LongLongTy; |
| 5374 | } |
| 5375 | } |
| 5376 | return EnumTooLarge; |
| 5377 | } |
| 5378 | |
| 5379 | bool ASTContext::isRepresentableIntegerValue(llvm::APSInt &Value, QualType T) { |
| 5380 | assert((T->isIntegralType(*this) || T->isEnumeralType()) && |
| 5381 | "Integral type required!" ); |
| 5382 | unsigned BitWidth = getIntWidth(T); |
| 5383 | |
| 5384 | if (Value.isUnsigned() || Value.isNonNegative()) { |
| 5385 | if (T->isSignedIntegerOrEnumerationType()) |
| 5386 | --BitWidth; |
| 5387 | return Value.getActiveBits() <= BitWidth; |
| 5388 | } |
| 5389 | return Value.getSignificantBits() <= BitWidth; |
| 5390 | } |
| 5391 | |
| 5392 | QualType ASTContext::getUnresolvedUsingType( |
| 5393 | const UnresolvedUsingTypenameDecl *Decl) const { |
| 5394 | if (Decl->TypeForDecl) |
| 5395 | return QualType(Decl->TypeForDecl, 0); |
| 5396 | |
| 5397 | if (const UnresolvedUsingTypenameDecl *CanonicalDecl = |
| 5398 | Decl->getCanonicalDecl()) |
| 5399 | if (CanonicalDecl->TypeForDecl) |
| 5400 | return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0); |
| 5401 | |
| 5402 | Type *newType = |
| 5403 | new (*this, alignof(UnresolvedUsingType)) UnresolvedUsingType(Decl); |
| 5404 | Decl->TypeForDecl = newType; |
| 5405 | Types.push_back(Elt: newType); |
| 5406 | return QualType(newType, 0); |
| 5407 | } |
| 5408 | |
| 5409 | QualType ASTContext::getAttributedType(attr::Kind attrKind, |
| 5410 | QualType modifiedType, |
| 5411 | QualType equivalentType, |
| 5412 | const Attr *attr) const { |
| 5413 | llvm::FoldingSetNodeID id; |
| 5414 | AttributedType::Profile(ID&: id, attrKind, modified: modifiedType, equivalent: equivalentType, attr); |
| 5415 | |
| 5416 | void *insertPos = nullptr; |
| 5417 | AttributedType *type = AttributedTypes.FindNodeOrInsertPos(ID: id, InsertPos&: insertPos); |
| 5418 | if (type) return QualType(type, 0); |
| 5419 | |
| 5420 | assert(!attr || attr->getKind() == attrKind); |
| 5421 | |
| 5422 | QualType canon = getCanonicalType(T: equivalentType); |
| 5423 | type = new (*this, alignof(AttributedType)) |
| 5424 | AttributedType(canon, attrKind, attr, modifiedType, equivalentType); |
| 5425 | |
| 5426 | Types.push_back(type); |
| 5427 | AttributedTypes.InsertNode(N: type, InsertPos: insertPos); |
| 5428 | |
| 5429 | return QualType(type, 0); |
| 5430 | } |
| 5431 | |
| 5432 | QualType ASTContext::getAttributedType(const Attr *attr, QualType modifiedType, |
| 5433 | QualType equivalentType) const { |
| 5434 | return getAttributedType(attrKind: attr->getKind(), modifiedType, equivalentType, attr); |
| 5435 | } |
| 5436 | |
| 5437 | QualType ASTContext::getAttributedType(NullabilityKind nullability, |
| 5438 | QualType modifiedType, |
| 5439 | QualType equivalentType) { |
| 5440 | switch (nullability) { |
| 5441 | case NullabilityKind::NonNull: |
| 5442 | return getAttributedType(attr::TypeNonNull, modifiedType, equivalentType); |
| 5443 | |
| 5444 | case NullabilityKind::Nullable: |
| 5445 | return getAttributedType(attr::TypeNullable, modifiedType, equivalentType); |
| 5446 | |
| 5447 | case NullabilityKind::NullableResult: |
| 5448 | return getAttributedType(attr::TypeNullableResult, modifiedType, |
| 5449 | equivalentType); |
| 5450 | |
| 5451 | case NullabilityKind::Unspecified: |
| 5452 | return getAttributedType(attr::TypeNullUnspecified, modifiedType, |
| 5453 | equivalentType); |
| 5454 | } |
| 5455 | |
| 5456 | llvm_unreachable("Unknown nullability kind" ); |
| 5457 | } |
| 5458 | |
| 5459 | QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr, |
| 5460 | QualType Wrapped) const { |
| 5461 | llvm::FoldingSetNodeID ID; |
| 5462 | BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr); |
| 5463 | |
| 5464 | void *InsertPos = nullptr; |
| 5465 | BTFTagAttributedType *Ty = |
| 5466 | BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5467 | if (Ty) |
| 5468 | return QualType(Ty, 0); |
| 5469 | |
| 5470 | QualType Canon = getCanonicalType(T: Wrapped); |
| 5471 | Ty = new (*this, alignof(BTFTagAttributedType)) |
| 5472 | BTFTagAttributedType(Canon, Wrapped, BTFAttr); |
| 5473 | |
| 5474 | Types.push_back(Ty); |
| 5475 | BTFTagAttributedTypes.InsertNode(N: Ty, InsertPos); |
| 5476 | |
| 5477 | return QualType(Ty, 0); |
| 5478 | } |
| 5479 | |
| 5480 | QualType ASTContext::getHLSLAttributedResourceType( |
| 5481 | QualType Wrapped, QualType Contained, |
| 5482 | const HLSLAttributedResourceType::Attributes &Attrs) { |
| 5483 | |
| 5484 | llvm::FoldingSetNodeID ID; |
| 5485 | HLSLAttributedResourceType::Profile(ID, Wrapped, Contained, Attrs); |
| 5486 | |
| 5487 | void *InsertPos = nullptr; |
| 5488 | HLSLAttributedResourceType *Ty = |
| 5489 | HLSLAttributedResourceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5490 | if (Ty) |
| 5491 | return QualType(Ty, 0); |
| 5492 | |
| 5493 | Ty = new (*this, alignof(HLSLAttributedResourceType)) |
| 5494 | HLSLAttributedResourceType(Wrapped, Contained, Attrs); |
| 5495 | |
| 5496 | Types.push_back(Ty); |
| 5497 | HLSLAttributedResourceTypes.InsertNode(N: Ty, InsertPos); |
| 5498 | |
| 5499 | return QualType(Ty, 0); |
| 5500 | } |
| 5501 | |
| 5502 | QualType ASTContext::getHLSLInlineSpirvType(uint32_t Opcode, uint32_t Size, |
| 5503 | uint32_t Alignment, |
| 5504 | ArrayRef<SpirvOperand> Operands) { |
| 5505 | llvm::FoldingSetNodeID ID; |
| 5506 | HLSLInlineSpirvType::Profile(ID, Opcode, Size, Alignment, Operands); |
| 5507 | |
| 5508 | void *InsertPos = nullptr; |
| 5509 | HLSLInlineSpirvType *Ty = |
| 5510 | HLSLInlineSpirvTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5511 | if (Ty) |
| 5512 | return QualType(Ty, 0); |
| 5513 | |
| 5514 | void *Mem = Allocate( |
| 5515 | HLSLInlineSpirvType::totalSizeToAlloc<SpirvOperand>(Operands.size()), |
| 5516 | alignof(HLSLInlineSpirvType)); |
| 5517 | |
| 5518 | Ty = new (Mem) HLSLInlineSpirvType(Opcode, Size, Alignment, Operands); |
| 5519 | |
| 5520 | Types.push_back(Ty); |
| 5521 | HLSLInlineSpirvTypes.InsertNode(N: Ty, InsertPos); |
| 5522 | |
| 5523 | return QualType(Ty, 0); |
| 5524 | } |
| 5525 | |
| 5526 | /// Retrieve a substitution-result type. |
| 5527 | QualType ASTContext::getSubstTemplateTypeParmType(QualType Replacement, |
| 5528 | Decl *AssociatedDecl, |
| 5529 | unsigned Index, |
| 5530 | UnsignedOrNone PackIndex, |
| 5531 | bool Final) const { |
| 5532 | llvm::FoldingSetNodeID ID; |
| 5533 | SubstTemplateTypeParmType::Profile(ID, Replacement, AssociatedDecl, Index, |
| 5534 | PackIndex, Final); |
| 5535 | void *InsertPos = nullptr; |
| 5536 | SubstTemplateTypeParmType *SubstParm = |
| 5537 | SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5538 | |
| 5539 | if (!SubstParm) { |
| 5540 | void *Mem = Allocate(SubstTemplateTypeParmType::totalSizeToAlloc<QualType>( |
| 5541 | !Replacement.isCanonical()), |
| 5542 | alignof(SubstTemplateTypeParmType)); |
| 5543 | SubstParm = new (Mem) SubstTemplateTypeParmType(Replacement, AssociatedDecl, |
| 5544 | Index, PackIndex, Final); |
| 5545 | Types.push_back(SubstParm); |
| 5546 | SubstTemplateTypeParmTypes.InsertNode(N: SubstParm, InsertPos); |
| 5547 | } |
| 5548 | |
| 5549 | return QualType(SubstParm, 0); |
| 5550 | } |
| 5551 | |
| 5552 | /// Retrieve a |
| 5553 | QualType |
| 5554 | ASTContext::getSubstTemplateTypeParmPackType(Decl *AssociatedDecl, |
| 5555 | unsigned Index, bool Final, |
| 5556 | const TemplateArgument &ArgPack) { |
| 5557 | #ifndef NDEBUG |
| 5558 | for (const auto &P : ArgPack.pack_elements()) |
| 5559 | assert(P.getKind() == TemplateArgument::Type && "Pack contains a non-type" ); |
| 5560 | #endif |
| 5561 | |
| 5562 | llvm::FoldingSetNodeID ID; |
| 5563 | SubstTemplateTypeParmPackType::Profile(ID, AssociatedDecl, Index, Final, |
| 5564 | ArgPack); |
| 5565 | void *InsertPos = nullptr; |
| 5566 | if (SubstTemplateTypeParmPackType *SubstParm = |
| 5567 | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5568 | return QualType(SubstParm, 0); |
| 5569 | |
| 5570 | QualType Canon; |
| 5571 | { |
| 5572 | TemplateArgument CanonArgPack = getCanonicalTemplateArgument(Arg: ArgPack); |
| 5573 | if (!AssociatedDecl->isCanonicalDecl() || |
| 5574 | !CanonArgPack.structurallyEquals(Other: ArgPack)) { |
| 5575 | Canon = getSubstTemplateTypeParmPackType( |
| 5576 | AssociatedDecl: AssociatedDecl->getCanonicalDecl(), Index, Final, ArgPack: CanonArgPack); |
| 5577 | [[maybe_unused]] const auto *Nothing = |
| 5578 | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5579 | assert(!Nothing); |
| 5580 | } |
| 5581 | } |
| 5582 | |
| 5583 | auto *SubstParm = new (*this, alignof(SubstTemplateTypeParmPackType)) |
| 5584 | SubstTemplateTypeParmPackType(Canon, AssociatedDecl, Index, Final, |
| 5585 | ArgPack); |
| 5586 | Types.push_back(SubstParm); |
| 5587 | SubstTemplateTypeParmPackTypes.InsertNode(N: SubstParm, InsertPos); |
| 5588 | return QualType(SubstParm, 0); |
| 5589 | } |
| 5590 | |
| 5591 | /// Retrieve the template type parameter type for a template |
| 5592 | /// parameter or parameter pack with the given depth, index, and (optionally) |
| 5593 | /// name. |
| 5594 | QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, |
| 5595 | bool ParameterPack, |
| 5596 | TemplateTypeParmDecl *TTPDecl) const { |
| 5597 | llvm::FoldingSetNodeID ID; |
| 5598 | TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); |
| 5599 | void *InsertPos = nullptr; |
| 5600 | TemplateTypeParmType *TypeParm |
| 5601 | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5602 | |
| 5603 | if (TypeParm) |
| 5604 | return QualType(TypeParm, 0); |
| 5605 | |
| 5606 | if (TTPDecl) { |
| 5607 | QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); |
| 5608 | TypeParm = new (*this, alignof(TemplateTypeParmType)) |
| 5609 | TemplateTypeParmType(Depth, Index, ParameterPack, TTPDecl, Canon); |
| 5610 | |
| 5611 | TemplateTypeParmType *TypeCheck |
| 5612 | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5613 | assert(!TypeCheck && "Template type parameter canonical type broken" ); |
| 5614 | (void)TypeCheck; |
| 5615 | } else |
| 5616 | TypeParm = new (*this, alignof(TemplateTypeParmType)) TemplateTypeParmType( |
| 5617 | Depth, Index, ParameterPack, /*TTPDecl=*/nullptr, /*Canon=*/QualType()); |
| 5618 | |
| 5619 | Types.push_back(TypeParm); |
| 5620 | TemplateTypeParmTypes.InsertNode(N: TypeParm, InsertPos); |
| 5621 | |
| 5622 | return QualType(TypeParm, 0); |
| 5623 | } |
| 5624 | |
| 5625 | TypeSourceInfo *ASTContext::getTemplateSpecializationTypeInfo( |
| 5626 | TemplateName Name, SourceLocation NameLoc, |
| 5627 | const TemplateArgumentListInfo &SpecifiedArgs, |
| 5628 | ArrayRef<TemplateArgument> CanonicalArgs, QualType Underlying) const { |
| 5629 | QualType TST = getTemplateSpecializationType(T: Name, SpecifiedArgs: SpecifiedArgs.arguments(), |
| 5630 | CanonicalArgs, Canon: Underlying); |
| 5631 | |
| 5632 | TypeSourceInfo *DI = CreateTypeSourceInfo(T: TST); |
| 5633 | TemplateSpecializationTypeLoc TL = |
| 5634 | DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); |
| 5635 | TL.setTemplateKeywordLoc(SourceLocation()); |
| 5636 | TL.setTemplateNameLoc(NameLoc); |
| 5637 | TL.setLAngleLoc(SpecifiedArgs.getLAngleLoc()); |
| 5638 | TL.setRAngleLoc(SpecifiedArgs.getRAngleLoc()); |
| 5639 | for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) |
| 5640 | TL.setArgLocInfo(i, AI: SpecifiedArgs[i].getLocInfo()); |
| 5641 | return DI; |
| 5642 | } |
| 5643 | |
| 5644 | QualType ASTContext::getTemplateSpecializationType( |
| 5645 | TemplateName Template, ArrayRef<TemplateArgumentLoc> SpecifiedArgs, |
| 5646 | ArrayRef<TemplateArgument> CanonicalArgs, QualType Underlying) const { |
| 5647 | SmallVector<TemplateArgument, 4> SpecifiedArgVec; |
| 5648 | SpecifiedArgVec.reserve(N: SpecifiedArgs.size()); |
| 5649 | for (const TemplateArgumentLoc &Arg : SpecifiedArgs) |
| 5650 | SpecifiedArgVec.push_back(Elt: Arg.getArgument()); |
| 5651 | |
| 5652 | return getTemplateSpecializationType(T: Template, SpecifiedArgs: SpecifiedArgVec, CanonicalArgs, |
| 5653 | Underlying); |
| 5654 | } |
| 5655 | |
| 5656 | [[maybe_unused]] static bool |
| 5657 | hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) { |
| 5658 | for (const TemplateArgument &Arg : Args) |
| 5659 | if (Arg.isPackExpansion()) |
| 5660 | return true; |
| 5661 | return false; |
| 5662 | } |
| 5663 | |
| 5664 | QualType ASTContext::getCanonicalTemplateSpecializationType( |
| 5665 | TemplateName Template, ArrayRef<TemplateArgument> Args) const { |
| 5666 | assert(Template == |
| 5667 | getCanonicalTemplateName(Template, /*IgnoreDeduced=*/true)); |
| 5668 | assert(!Args.empty()); |
| 5669 | #ifndef NDEBUG |
| 5670 | for (const auto &Arg : Args) |
| 5671 | assert(Arg.structurallyEquals(getCanonicalTemplateArgument(Arg))); |
| 5672 | #endif |
| 5673 | |
| 5674 | llvm::FoldingSetNodeID ID; |
| 5675 | TemplateSpecializationType::Profile(ID, T: Template, Args, Underlying: QualType(), Context: *this); |
| 5676 | void *InsertPos = nullptr; |
| 5677 | if (auto *T = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5678 | return QualType(T, 0); |
| 5679 | |
| 5680 | void *Mem = Allocate(Size: sizeof(TemplateSpecializationType) + |
| 5681 | sizeof(TemplateArgument) * Args.size(), |
| 5682 | Align: alignof(TemplateSpecializationType)); |
| 5683 | auto *Spec = new (Mem) |
| 5684 | TemplateSpecializationType(Template, /*IsAlias=*/false, Args, QualType()); |
| 5685 | assert(Spec->isDependentType() && |
| 5686 | "canonical template specialization must be dependent" ); |
| 5687 | Types.push_back(Spec); |
| 5688 | TemplateSpecializationTypes.InsertNode(N: Spec, InsertPos); |
| 5689 | return QualType(Spec, 0); |
| 5690 | } |
| 5691 | |
| 5692 | QualType ASTContext::getTemplateSpecializationType( |
| 5693 | TemplateName Template, ArrayRef<TemplateArgument> SpecifiedArgs, |
| 5694 | ArrayRef<TemplateArgument> CanonicalArgs, QualType Underlying) const { |
| 5695 | assert(!Template.getUnderlying().getAsDependentTemplateName() && |
| 5696 | "No dependent template names here!" ); |
| 5697 | |
| 5698 | const auto *TD = Template.getAsTemplateDecl(/*IgnoreDeduced=*/true); |
| 5699 | bool IsTypeAlias = TD && TD->isTypeAlias(); |
| 5700 | if (Underlying.isNull()) { |
| 5701 | TemplateName CanonTemplate = |
| 5702 | getCanonicalTemplateName(Name: Template, /*IgnoreDeduced=*/true); |
| 5703 | bool NonCanonical = Template != CanonTemplate; |
| 5704 | SmallVector<TemplateArgument, 4> CanonArgsVec; |
| 5705 | if (CanonicalArgs.empty()) { |
| 5706 | CanonArgsVec = SmallVector<TemplateArgument, 4>(SpecifiedArgs); |
| 5707 | NonCanonical |= canonicalizeTemplateArguments(Args: CanonArgsVec); |
| 5708 | CanonicalArgs = CanonArgsVec; |
| 5709 | } else { |
| 5710 | NonCanonical |= !llvm::equal( |
| 5711 | LRange&: SpecifiedArgs, RRange&: CanonicalArgs, |
| 5712 | P: [](const TemplateArgument &A, const TemplateArgument &B) { |
| 5713 | return A.structurallyEquals(Other: B); |
| 5714 | }); |
| 5715 | } |
| 5716 | |
| 5717 | // We can get here with an alias template when the specialization |
| 5718 | // contains a pack expansion that does not match up with a parameter |
| 5719 | // pack, or a builtin template which cannot be resolved due to dependency. |
| 5720 | assert((!isa_and_nonnull<TypeAliasTemplateDecl>(TD) || |
| 5721 | hasAnyPackExpansions(CanonicalArgs)) && |
| 5722 | "Caller must compute aliased type" ); |
| 5723 | IsTypeAlias = false; |
| 5724 | |
| 5725 | Underlying = |
| 5726 | getCanonicalTemplateSpecializationType(Template: CanonTemplate, Args: CanonicalArgs); |
| 5727 | if (!NonCanonical) |
| 5728 | return Underlying; |
| 5729 | } |
| 5730 | void *Mem = Allocate(Size: sizeof(TemplateSpecializationType) + |
| 5731 | sizeof(TemplateArgument) * SpecifiedArgs.size() + |
| 5732 | (IsTypeAlias ? sizeof(QualType) : 0), |
| 5733 | Align: alignof(TemplateSpecializationType)); |
| 5734 | auto *Spec = new (Mem) TemplateSpecializationType(Template, IsTypeAlias, |
| 5735 | SpecifiedArgs, Underlying); |
| 5736 | Types.push_back(Spec); |
| 5737 | return QualType(Spec, 0); |
| 5738 | } |
| 5739 | |
| 5740 | QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, |
| 5741 | NestedNameSpecifier *NNS, |
| 5742 | QualType NamedType, |
| 5743 | TagDecl *OwnedTagDecl) const { |
| 5744 | llvm::FoldingSetNodeID ID; |
| 5745 | ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl); |
| 5746 | |
| 5747 | void *InsertPos = nullptr; |
| 5748 | ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5749 | if (T) |
| 5750 | return QualType(T, 0); |
| 5751 | |
| 5752 | QualType Canon = NamedType; |
| 5753 | if (!Canon.isCanonical()) { |
| 5754 | Canon = getCanonicalType(T: NamedType); |
| 5755 | ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5756 | assert(!CheckT && "Elaborated canonical type broken" ); |
| 5757 | (void)CheckT; |
| 5758 | } |
| 5759 | |
| 5760 | void *Mem = |
| 5761 | Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl), |
| 5762 | alignof(ElaboratedType)); |
| 5763 | T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl); |
| 5764 | |
| 5765 | Types.push_back(T); |
| 5766 | ElaboratedTypes.InsertNode(N: T, InsertPos); |
| 5767 | return QualType(T, 0); |
| 5768 | } |
| 5769 | |
| 5770 | QualType |
| 5771 | ASTContext::getParenType(QualType InnerType) const { |
| 5772 | llvm::FoldingSetNodeID ID; |
| 5773 | ParenType::Profile(ID, Inner: InnerType); |
| 5774 | |
| 5775 | void *InsertPos = nullptr; |
| 5776 | ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5777 | if (T) |
| 5778 | return QualType(T, 0); |
| 5779 | |
| 5780 | QualType Canon = InnerType; |
| 5781 | if (!Canon.isCanonical()) { |
| 5782 | Canon = getCanonicalType(T: InnerType); |
| 5783 | ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5784 | assert(!CheckT && "Paren canonical type broken" ); |
| 5785 | (void)CheckT; |
| 5786 | } |
| 5787 | |
| 5788 | T = new (*this, alignof(ParenType)) ParenType(InnerType, Canon); |
| 5789 | Types.push_back(T); |
| 5790 | ParenTypes.InsertNode(N: T, InsertPos); |
| 5791 | return QualType(T, 0); |
| 5792 | } |
| 5793 | |
| 5794 | QualType |
| 5795 | ASTContext::getMacroQualifiedType(QualType UnderlyingTy, |
| 5796 | const IdentifierInfo *MacroII) const { |
| 5797 | QualType Canon = UnderlyingTy; |
| 5798 | if (!Canon.isCanonical()) |
| 5799 | Canon = getCanonicalType(T: UnderlyingTy); |
| 5800 | |
| 5801 | auto *newType = new (*this, alignof(MacroQualifiedType)) |
| 5802 | MacroQualifiedType(UnderlyingTy, Canon, MacroII); |
| 5803 | Types.push_back(newType); |
| 5804 | return QualType(newType, 0); |
| 5805 | } |
| 5806 | |
| 5807 | static ElaboratedTypeKeyword |
| 5808 | getCanonicalElaboratedTypeKeyword(ElaboratedTypeKeyword Keyword) { |
| 5809 | switch (Keyword) { |
| 5810 | // These are just themselves. |
| 5811 | case ElaboratedTypeKeyword::None: |
| 5812 | case ElaboratedTypeKeyword::Struct: |
| 5813 | case ElaboratedTypeKeyword::Union: |
| 5814 | case ElaboratedTypeKeyword::Enum: |
| 5815 | case ElaboratedTypeKeyword::Interface: |
| 5816 | return Keyword; |
| 5817 | |
| 5818 | // These are equivalent. |
| 5819 | case ElaboratedTypeKeyword::Typename: |
| 5820 | return ElaboratedTypeKeyword::None; |
| 5821 | |
| 5822 | // These are functionally equivalent, so relying on their equivalence is |
| 5823 | // IFNDR. By making them equivalent, we disallow overloading, which at least |
| 5824 | // can produce a diagnostic. |
| 5825 | case ElaboratedTypeKeyword::Class: |
| 5826 | return ElaboratedTypeKeyword::Struct; |
| 5827 | } |
| 5828 | llvm_unreachable("unexpected keyword kind" ); |
| 5829 | } |
| 5830 | |
| 5831 | QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, |
| 5832 | NestedNameSpecifier *NNS, |
| 5833 | const IdentifierInfo *Name) const { |
| 5834 | llvm::FoldingSetNodeID ID; |
| 5835 | DependentNameType::Profile(ID, Keyword, NNS, Name); |
| 5836 | |
| 5837 | void *InsertPos = nullptr; |
| 5838 | if (DependentNameType *T = |
| 5839 | DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5840 | return QualType(T, 0); |
| 5841 | |
| 5842 | ElaboratedTypeKeyword CanonKeyword = |
| 5843 | getCanonicalElaboratedTypeKeyword(Keyword); |
| 5844 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| 5845 | |
| 5846 | QualType Canon; |
| 5847 | if (CanonKeyword != Keyword || CanonNNS != NNS) { |
| 5848 | Canon = getDependentNameType(Keyword: CanonKeyword, NNS: CanonNNS, Name); |
| 5849 | [[maybe_unused]] DependentNameType *T = |
| 5850 | DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5851 | assert(!T && "broken canonicalization" ); |
| 5852 | assert(Canon.isCanonical()); |
| 5853 | } |
| 5854 | |
| 5855 | DependentNameType *T = new (*this, alignof(DependentNameType)) |
| 5856 | DependentNameType(Keyword, NNS, Name, Canon); |
| 5857 | Types.push_back(T); |
| 5858 | DependentNameTypes.InsertNode(N: T, InsertPos); |
| 5859 | return QualType(T, 0); |
| 5860 | } |
| 5861 | |
| 5862 | QualType ASTContext::getDependentTemplateSpecializationType( |
| 5863 | ElaboratedTypeKeyword Keyword, const DependentTemplateStorage &Name, |
| 5864 | ArrayRef<TemplateArgumentLoc> Args) const { |
| 5865 | // TODO: avoid this copy |
| 5866 | SmallVector<TemplateArgument, 16> ArgCopy; |
| 5867 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
| 5868 | ArgCopy.push_back(Elt: Args[I].getArgument()); |
| 5869 | return getDependentTemplateSpecializationType(Keyword, Name, Args: ArgCopy); |
| 5870 | } |
| 5871 | |
| 5872 | QualType ASTContext::getDependentTemplateSpecializationType( |
| 5873 | ElaboratedTypeKeyword Keyword, const DependentTemplateStorage &Name, |
| 5874 | ArrayRef<TemplateArgument> Args, bool IsCanonical) const { |
| 5875 | llvm::FoldingSetNodeID ID; |
| 5876 | DependentTemplateSpecializationType::Profile(ID, Context: *this, Keyword, Name, Args); |
| 5877 | |
| 5878 | void *InsertPos = nullptr; |
| 5879 | if (auto *T = DependentTemplateSpecializationTypes.FindNodeOrInsertPos( |
| 5880 | ID, InsertPos)) |
| 5881 | return QualType(T, 0); |
| 5882 | |
| 5883 | NestedNameSpecifier *NNS = Name.getQualifier(); |
| 5884 | |
| 5885 | QualType Canon; |
| 5886 | if (!IsCanonical) { |
| 5887 | ElaboratedTypeKeyword CanonKeyword = |
| 5888 | getCanonicalElaboratedTypeKeyword(Keyword); |
| 5889 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| 5890 | bool AnyNonCanonArgs = false; |
| 5891 | auto CanonArgs = |
| 5892 | ::getCanonicalTemplateArguments(C: *this, Args, AnyNonCanonArgs); |
| 5893 | |
| 5894 | if (CanonKeyword != Keyword || AnyNonCanonArgs || CanonNNS != NNS || |
| 5895 | !Name.hasTemplateKeyword()) { |
| 5896 | Canon = getDependentTemplateSpecializationType( |
| 5897 | Keyword: CanonKeyword, Name: {CanonNNS, Name.getName(), /*HasTemplateKeyword=*/true}, |
| 5898 | Args: CanonArgs, |
| 5899 | /*IsCanonical=*/true); |
| 5900 | // Find the insert position again. |
| 5901 | [[maybe_unused]] auto *Nothing = |
| 5902 | DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, |
| 5903 | InsertPos); |
| 5904 | assert(!Nothing && "canonical type broken" ); |
| 5905 | } |
| 5906 | } else { |
| 5907 | assert(Keyword == getCanonicalElaboratedTypeKeyword(Keyword)); |
| 5908 | assert(Name.hasTemplateKeyword()); |
| 5909 | assert(NNS == getCanonicalNestedNameSpecifier(NNS)); |
| 5910 | #ifndef NDEBUG |
| 5911 | for (const auto &Arg : Args) |
| 5912 | assert(Arg.structurallyEquals(getCanonicalTemplateArgument(Arg))); |
| 5913 | #endif |
| 5914 | } |
| 5915 | void *Mem = Allocate(Size: (sizeof(DependentTemplateSpecializationType) + |
| 5916 | sizeof(TemplateArgument) * Args.size()), |
| 5917 | Align: alignof(DependentTemplateSpecializationType)); |
| 5918 | auto *T = |
| 5919 | new (Mem) DependentTemplateSpecializationType(Keyword, Name, Args, Canon); |
| 5920 | Types.push_back(T); |
| 5921 | DependentTemplateSpecializationTypes.InsertNode(N: T, InsertPos); |
| 5922 | return QualType(T, 0); |
| 5923 | } |
| 5924 | |
| 5925 | TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) const { |
| 5926 | TemplateArgument Arg; |
| 5927 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) { |
| 5928 | QualType ArgType = getTypeDeclType(TTP); |
| 5929 | if (TTP->isParameterPack()) |
| 5930 | ArgType = getPackExpansionType(Pattern: ArgType, NumExpansions: std::nullopt); |
| 5931 | |
| 5932 | Arg = TemplateArgument(ArgType); |
| 5933 | } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
| 5934 | QualType T = |
| 5935 | NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this); |
| 5936 | // For class NTTPs, ensure we include the 'const' so the type matches that |
| 5937 | // of a real template argument. |
| 5938 | // FIXME: It would be more faithful to model this as something like an |
| 5939 | // lvalue-to-rvalue conversion applied to a const-qualified lvalue. |
| 5940 | ExprValueKind VK; |
| 5941 | if (T->isRecordType()) { |
| 5942 | // C++ [temp.param]p8: An id-expression naming a non-type |
| 5943 | // template-parameter of class type T denotes a static storage duration |
| 5944 | // object of type const T. |
| 5945 | T.addConst(); |
| 5946 | VK = VK_LValue; |
| 5947 | } else { |
| 5948 | VK = Expr::getValueKindForType(T: NTTP->getType()); |
| 5949 | } |
| 5950 | Expr *E = new (*this) |
| 5951 | DeclRefExpr(*this, NTTP, /*RefersToEnclosingVariableOrCapture=*/false, |
| 5952 | T, VK, NTTP->getLocation()); |
| 5953 | |
| 5954 | if (NTTP->isParameterPack()) |
| 5955 | E = new (*this) PackExpansionExpr(E, NTTP->getLocation(), std::nullopt); |
| 5956 | Arg = TemplateArgument(E, /*IsCanonical=*/false); |
| 5957 | } else { |
| 5958 | auto *TTP = cast<TemplateTemplateParmDecl>(Val: Param); |
| 5959 | TemplateName Name = getQualifiedTemplateName( |
| 5960 | NNS: nullptr, /*TemplateKeyword=*/false, Template: TemplateName(TTP)); |
| 5961 | if (TTP->isParameterPack()) |
| 5962 | Arg = TemplateArgument(Name, /*NumExpansions=*/std::nullopt); |
| 5963 | else |
| 5964 | Arg = TemplateArgument(Name); |
| 5965 | } |
| 5966 | |
| 5967 | if (Param->isTemplateParameterPack()) |
| 5968 | Arg = |
| 5969 | TemplateArgument::CreatePackCopy(Context&: const_cast<ASTContext &>(*this), Args: Arg); |
| 5970 | |
| 5971 | return Arg; |
| 5972 | } |
| 5973 | |
| 5974 | QualType ASTContext::getPackExpansionType(QualType Pattern, |
| 5975 | UnsignedOrNone NumExpansions, |
| 5976 | bool ExpectPackInType) const { |
| 5977 | assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) && |
| 5978 | "Pack expansions must expand one or more parameter packs" ); |
| 5979 | |
| 5980 | llvm::FoldingSetNodeID ID; |
| 5981 | PackExpansionType::Profile(ID, Pattern, NumExpansions); |
| 5982 | |
| 5983 | void *InsertPos = nullptr; |
| 5984 | PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5985 | if (T) |
| 5986 | return QualType(T, 0); |
| 5987 | |
| 5988 | QualType Canon; |
| 5989 | if (!Pattern.isCanonical()) { |
| 5990 | Canon = getPackExpansionType(Pattern: getCanonicalType(T: Pattern), NumExpansions, |
| 5991 | /*ExpectPackInType=*/false); |
| 5992 | |
| 5993 | // Find the insert position again, in case we inserted an element into |
| 5994 | // PackExpansionTypes and invalidated our insert position. |
| 5995 | PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5996 | } |
| 5997 | |
| 5998 | T = new (*this, alignof(PackExpansionType)) |
| 5999 | PackExpansionType(Pattern, Canon, NumExpansions); |
| 6000 | Types.push_back(T); |
| 6001 | PackExpansionTypes.InsertNode(N: T, InsertPos); |
| 6002 | return QualType(T, 0); |
| 6003 | } |
| 6004 | |
| 6005 | /// CmpProtocolNames - Comparison predicate for sorting protocols |
| 6006 | /// alphabetically. |
| 6007 | static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, |
| 6008 | ObjCProtocolDecl *const *RHS) { |
| 6009 | return DeclarationName::compare(LHS: (*LHS)->getDeclName(), RHS: (*RHS)->getDeclName()); |
| 6010 | } |
| 6011 | |
| 6012 | static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) { |
| 6013 | if (Protocols.empty()) return true; |
| 6014 | |
| 6015 | if (Protocols[0]->getCanonicalDecl() != Protocols[0]) |
| 6016 | return false; |
| 6017 | |
| 6018 | for (unsigned i = 1; i != Protocols.size(); ++i) |
| 6019 | if (CmpProtocolNames(LHS: &Protocols[i - 1], RHS: &Protocols[i]) >= 0 || |
| 6020 | Protocols[i]->getCanonicalDecl() != Protocols[i]) |
| 6021 | return false; |
| 6022 | return true; |
| 6023 | } |
| 6024 | |
| 6025 | static void |
| 6026 | SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { |
| 6027 | // Sort protocols, keyed by name. |
| 6028 | llvm::array_pod_sort(Start: Protocols.begin(), End: Protocols.end(), Compare: CmpProtocolNames); |
| 6029 | |
| 6030 | // Canonicalize. |
| 6031 | for (ObjCProtocolDecl *&P : Protocols) |
| 6032 | P = P->getCanonicalDecl(); |
| 6033 | |
| 6034 | // Remove duplicates. |
| 6035 | auto ProtocolsEnd = llvm::unique(R&: Protocols); |
| 6036 | Protocols.erase(CS: ProtocolsEnd, CE: Protocols.end()); |
| 6037 | } |
| 6038 | |
| 6039 | QualType ASTContext::getObjCObjectType(QualType BaseType, |
| 6040 | ObjCProtocolDecl * const *Protocols, |
| 6041 | unsigned NumProtocols) const { |
| 6042 | return getObjCObjectType(Base: BaseType, typeArgs: {}, |
| 6043 | protocols: llvm::ArrayRef(Protocols, NumProtocols), |
| 6044 | /*isKindOf=*/false); |
| 6045 | } |
| 6046 | |
| 6047 | QualType ASTContext::getObjCObjectType( |
| 6048 | QualType baseType, |
| 6049 | ArrayRef<QualType> typeArgs, |
| 6050 | ArrayRef<ObjCProtocolDecl *> protocols, |
| 6051 | bool isKindOf) const { |
| 6052 | // If the base type is an interface and there aren't any protocols or |
| 6053 | // type arguments to add, then the interface type will do just fine. |
| 6054 | if (typeArgs.empty() && protocols.empty() && !isKindOf && |
| 6055 | isa<ObjCInterfaceType>(Val: baseType)) |
| 6056 | return baseType; |
| 6057 | |
| 6058 | // Look in the folding set for an existing type. |
| 6059 | llvm::FoldingSetNodeID ID; |
| 6060 | ObjCObjectTypeImpl::Profile(ID, Base: baseType, typeArgs, protocols, isKindOf); |
| 6061 | void *InsertPos = nullptr; |
| 6062 | if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 6063 | return QualType(QT, 0); |
| 6064 | |
| 6065 | // Determine the type arguments to be used for canonicalization, |
| 6066 | // which may be explicitly specified here or written on the base |
| 6067 | // type. |
| 6068 | ArrayRef<QualType> effectiveTypeArgs = typeArgs; |
| 6069 | if (effectiveTypeArgs.empty()) { |
| 6070 | if (const auto *baseObject = baseType->getAs<ObjCObjectType>()) |
| 6071 | effectiveTypeArgs = baseObject->getTypeArgs(); |
| 6072 | } |
| 6073 | |
| 6074 | // Build the canonical type, which has the canonical base type and a |
| 6075 | // sorted-and-uniqued list of protocols and the type arguments |
| 6076 | // canonicalized. |
| 6077 | QualType canonical; |
| 6078 | bool typeArgsAreCanonical = llvm::all_of( |
| 6079 | Range&: effectiveTypeArgs, P: [&](QualType type) { return type.isCanonical(); }); |
| 6080 | bool protocolsSorted = areSortedAndUniqued(Protocols: protocols); |
| 6081 | if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { |
| 6082 | // Determine the canonical type arguments. |
| 6083 | ArrayRef<QualType> canonTypeArgs; |
| 6084 | SmallVector<QualType, 4> canonTypeArgsVec; |
| 6085 | if (!typeArgsAreCanonical) { |
| 6086 | canonTypeArgsVec.reserve(N: effectiveTypeArgs.size()); |
| 6087 | for (auto typeArg : effectiveTypeArgs) |
| 6088 | canonTypeArgsVec.push_back(Elt: getCanonicalType(T: typeArg)); |
| 6089 | canonTypeArgs = canonTypeArgsVec; |
| 6090 | } else { |
| 6091 | canonTypeArgs = effectiveTypeArgs; |
| 6092 | } |
| 6093 | |
| 6094 | ArrayRef<ObjCProtocolDecl *> canonProtocols; |
| 6095 | SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; |
| 6096 | if (!protocolsSorted) { |
| 6097 | canonProtocolsVec.append(in_start: protocols.begin(), in_end: protocols.end()); |
| 6098 | SortAndUniqueProtocols(Protocols&: canonProtocolsVec); |
| 6099 | canonProtocols = canonProtocolsVec; |
| 6100 | } else { |
| 6101 | canonProtocols = protocols; |
| 6102 | } |
| 6103 | |
| 6104 | canonical = getObjCObjectType(baseType: getCanonicalType(T: baseType), typeArgs: canonTypeArgs, |
| 6105 | protocols: canonProtocols, isKindOf); |
| 6106 | |
| 6107 | // Regenerate InsertPos. |
| 6108 | ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 6109 | } |
| 6110 | |
| 6111 | unsigned size = sizeof(ObjCObjectTypeImpl); |
| 6112 | size += typeArgs.size() * sizeof(QualType); |
| 6113 | size += protocols.size() * sizeof(ObjCProtocolDecl *); |
| 6114 | void *mem = Allocate(Size: size, Align: alignof(ObjCObjectTypeImpl)); |
| 6115 | auto *T = |
| 6116 | new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, |
| 6117 | isKindOf); |
| 6118 | |
| 6119 | Types.push_back(T); |
| 6120 | ObjCObjectTypes.InsertNode(N: T, InsertPos); |
| 6121 | return QualType(T, 0); |
| 6122 | } |
| 6123 | |
| 6124 | /// Apply Objective-C protocol qualifiers to the given type. |
| 6125 | /// If this is for the canonical type of a type parameter, we can apply |
| 6126 | /// protocol qualifiers on the ObjCObjectPointerType. |
| 6127 | QualType |
| 6128 | ASTContext::applyObjCProtocolQualifiers(QualType type, |
| 6129 | ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError, |
| 6130 | bool allowOnPointerType) const { |
| 6131 | hasError = false; |
| 6132 | |
| 6133 | if (const auto *objT = dyn_cast<ObjCTypeParamType>(Val: type.getTypePtr())) { |
| 6134 | return getObjCTypeParamType(Decl: objT->getDecl(), protocols); |
| 6135 | } |
| 6136 | |
| 6137 | // Apply protocol qualifiers to ObjCObjectPointerType. |
| 6138 | if (allowOnPointerType) { |
| 6139 | if (const auto *objPtr = |
| 6140 | dyn_cast<ObjCObjectPointerType>(Val: type.getTypePtr())) { |
| 6141 | const ObjCObjectType *objT = objPtr->getObjectType(); |
| 6142 | // Merge protocol lists and construct ObjCObjectType. |
| 6143 | SmallVector<ObjCProtocolDecl*, 8> protocolsVec; |
| 6144 | protocolsVec.append(objT->qual_begin(), |
| 6145 | objT->qual_end()); |
| 6146 | protocolsVec.append(in_start: protocols.begin(), in_end: protocols.end()); |
| 6147 | ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec; |
| 6148 | type = getObjCObjectType( |
| 6149 | baseType: objT->getBaseType(), |
| 6150 | typeArgs: objT->getTypeArgsAsWritten(), |
| 6151 | protocols, |
| 6152 | isKindOf: objT->isKindOfTypeAsWritten()); |
| 6153 | return getObjCObjectPointerType(OIT: type); |
| 6154 | } |
| 6155 | } |
| 6156 | |
| 6157 | // Apply protocol qualifiers to ObjCObjectType. |
| 6158 | if (const auto *objT = dyn_cast<ObjCObjectType>(Val: type.getTypePtr())){ |
| 6159 | // FIXME: Check for protocols to which the class type is already |
| 6160 | // known to conform. |
| 6161 | |
| 6162 | return getObjCObjectType(baseType: objT->getBaseType(), |
| 6163 | typeArgs: objT->getTypeArgsAsWritten(), |
| 6164 | protocols, |
| 6165 | isKindOf: objT->isKindOfTypeAsWritten()); |
| 6166 | } |
| 6167 | |
| 6168 | // If the canonical type is ObjCObjectType, ... |
| 6169 | if (type->isObjCObjectType()) { |
| 6170 | // Silently overwrite any existing protocol qualifiers. |
| 6171 | // TODO: determine whether that's the right thing to do. |
| 6172 | |
| 6173 | // FIXME: Check for protocols to which the class type is already |
| 6174 | // known to conform. |
| 6175 | return getObjCObjectType(baseType: type, typeArgs: {}, protocols, isKindOf: false); |
| 6176 | } |
| 6177 | |
| 6178 | // id<protocol-list> |
| 6179 | if (type->isObjCIdType()) { |
| 6180 | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
| 6181 | type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols, |
| 6182 | objPtr->isKindOfType()); |
| 6183 | return getObjCObjectPointerType(OIT: type); |
| 6184 | } |
| 6185 | |
| 6186 | // Class<protocol-list> |
| 6187 | if (type->isObjCClassType()) { |
| 6188 | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
| 6189 | type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols, |
| 6190 | objPtr->isKindOfType()); |
| 6191 | return getObjCObjectPointerType(OIT: type); |
| 6192 | } |
| 6193 | |
| 6194 | hasError = true; |
| 6195 | return type; |
| 6196 | } |
| 6197 | |
| 6198 | QualType |
| 6199 | ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl, |
| 6200 | ArrayRef<ObjCProtocolDecl *> protocols) const { |
| 6201 | // Look in the folding set for an existing type. |
| 6202 | llvm::FoldingSetNodeID ID; |
| 6203 | ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols); |
| 6204 | void *InsertPos = nullptr; |
| 6205 | if (ObjCTypeParamType *TypeParam = |
| 6206 | ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 6207 | return QualType(TypeParam, 0); |
| 6208 | |
| 6209 | // We canonicalize to the underlying type. |
| 6210 | QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); |
| 6211 | if (!protocols.empty()) { |
| 6212 | // Apply the protocol qualifers. |
| 6213 | bool hasError; |
| 6214 | Canonical = getCanonicalType(T: applyObjCProtocolQualifiers( |
| 6215 | type: Canonical, protocols, hasError, allowOnPointerType: true /*allowOnPointerType*/)); |
| 6216 | assert(!hasError && "Error when apply protocol qualifier to bound type" ); |
| 6217 | } |
| 6218 | |
| 6219 | unsigned size = sizeof(ObjCTypeParamType); |
| 6220 | size += protocols.size() * sizeof(ObjCProtocolDecl *); |
| 6221 | void *mem = Allocate(Size: size, Align: alignof(ObjCTypeParamType)); |
| 6222 | auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols); |
| 6223 | |
| 6224 | Types.push_back(Elt: newType); |
| 6225 | ObjCTypeParamTypes.InsertNode(newType, InsertPos); |
| 6226 | return QualType(newType, 0); |
| 6227 | } |
| 6228 | |
| 6229 | void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig, |
| 6230 | ObjCTypeParamDecl *New) const { |
| 6231 | New->setTypeSourceInfo(getTrivialTypeSourceInfo(T: Orig->getUnderlyingType())); |
| 6232 | // Update TypeForDecl after updating TypeSourceInfo. |
| 6233 | auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl()); |
| 6234 | SmallVector<ObjCProtocolDecl *, 8> protocols; |
| 6235 | protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end()); |
| 6236 | QualType UpdatedTy = getObjCTypeParamType(Decl: New, protocols); |
| 6237 | New->setTypeForDecl(UpdatedTy.getTypePtr()); |
| 6238 | } |
| 6239 | |
| 6240 | /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's |
| 6241 | /// protocol list adopt all protocols in QT's qualified-id protocol |
| 6242 | /// list. |
| 6243 | bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, |
| 6244 | ObjCInterfaceDecl *IC) { |
| 6245 | if (!QT->isObjCQualifiedIdType()) |
| 6246 | return false; |
| 6247 | |
| 6248 | if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) { |
| 6249 | // If both the right and left sides have qualifiers. |
| 6250 | for (auto *Proto : OPT->quals()) { |
| 6251 | if (!IC->ClassImplementsProtocol(Proto, false)) |
| 6252 | return false; |
| 6253 | } |
| 6254 | return true; |
| 6255 | } |
| 6256 | return false; |
| 6257 | } |
| 6258 | |
| 6259 | /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in |
| 6260 | /// QT's qualified-id protocol list adopt all protocols in IDecl's list |
| 6261 | /// of protocols. |
| 6262 | bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, |
| 6263 | ObjCInterfaceDecl *IDecl) { |
| 6264 | if (!QT->isObjCQualifiedIdType()) |
| 6265 | return false; |
| 6266 | const auto *OPT = QT->getAs<ObjCObjectPointerType>(); |
| 6267 | if (!OPT) |
| 6268 | return false; |
| 6269 | if (!IDecl->hasDefinition()) |
| 6270 | return false; |
| 6271 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; |
| 6272 | CollectInheritedProtocols(IDecl, InheritedProtocols); |
| 6273 | if (InheritedProtocols.empty()) |
| 6274 | return false; |
| 6275 | // Check that if every protocol in list of id<plist> conforms to a protocol |
| 6276 | // of IDecl's, then bridge casting is ok. |
| 6277 | bool Conforms = false; |
| 6278 | for (auto *Proto : OPT->quals()) { |
| 6279 | Conforms = false; |
| 6280 | for (auto *PI : InheritedProtocols) { |
| 6281 | if (ProtocolCompatibleWithProtocol(Proto, PI)) { |
| 6282 | Conforms = true; |
| 6283 | break; |
| 6284 | } |
| 6285 | } |
| 6286 | if (!Conforms) |
| 6287 | break; |
| 6288 | } |
| 6289 | if (Conforms) |
| 6290 | return true; |
| 6291 | |
| 6292 | for (auto *PI : InheritedProtocols) { |
| 6293 | // If both the right and left sides have qualifiers. |
| 6294 | bool Adopts = false; |
| 6295 | for (auto *Proto : OPT->quals()) { |
| 6296 | // return 'true' if 'PI' is in the inheritance hierarchy of Proto |
| 6297 | if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) |
| 6298 | break; |
| 6299 | } |
| 6300 | if (!Adopts) |
| 6301 | return false; |
| 6302 | } |
| 6303 | return true; |
| 6304 | } |
| 6305 | |
| 6306 | /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for |
| 6307 | /// the given object type. |
| 6308 | QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { |
| 6309 | llvm::FoldingSetNodeID ID; |
| 6310 | ObjCObjectPointerType::Profile(ID, T: ObjectT); |
| 6311 | |
| 6312 | void *InsertPos = nullptr; |
| 6313 | if (ObjCObjectPointerType *QT = |
| 6314 | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 6315 | return QualType(QT, 0); |
| 6316 | |
| 6317 | // Find the canonical object type. |
| 6318 | QualType Canonical; |
| 6319 | if (!ObjectT.isCanonical()) { |
| 6320 | Canonical = getObjCObjectPointerType(ObjectT: getCanonicalType(T: ObjectT)); |
| 6321 | |
| 6322 | // Regenerate InsertPos. |
| 6323 | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 6324 | } |
| 6325 | |
| 6326 | // No match. |
| 6327 | void *Mem = |
| 6328 | Allocate(Size: sizeof(ObjCObjectPointerType), Align: alignof(ObjCObjectPointerType)); |
| 6329 | auto *QType = |
| 6330 | new (Mem) ObjCObjectPointerType(Canonical, ObjectT); |
| 6331 | |
| 6332 | Types.push_back(QType); |
| 6333 | ObjCObjectPointerTypes.InsertNode(N: QType, InsertPos); |
| 6334 | return QualType(QType, 0); |
| 6335 | } |
| 6336 | |
| 6337 | /// getObjCInterfaceType - Return the unique reference to the type for the |
| 6338 | /// specified ObjC interface decl. The list of protocols is optional. |
| 6339 | QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, |
| 6340 | ObjCInterfaceDecl *PrevDecl) const { |
| 6341 | if (Decl->TypeForDecl) |
| 6342 | return QualType(Decl->TypeForDecl, 0); |
| 6343 | |
| 6344 | if (PrevDecl) { |
| 6345 | assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl" ); |
| 6346 | Decl->TypeForDecl = PrevDecl->TypeForDecl; |
| 6347 | return QualType(PrevDecl->TypeForDecl, 0); |
| 6348 | } |
| 6349 | |
| 6350 | // Prefer the definition, if there is one. |
| 6351 | if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) |
| 6352 | Decl = Def; |
| 6353 | |
| 6354 | void *Mem = Allocate(Size: sizeof(ObjCInterfaceType), Align: alignof(ObjCInterfaceType)); |
| 6355 | auto *T = new (Mem) ObjCInterfaceType(Decl); |
| 6356 | Decl->TypeForDecl = T; |
| 6357 | Types.push_back(T); |
| 6358 | return QualType(T, 0); |
| 6359 | } |
| 6360 | |
| 6361 | /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique |
| 6362 | /// TypeOfExprType AST's (since expression's are never shared). For example, |
| 6363 | /// multiple declarations that refer to "typeof(x)" all contain different |
| 6364 | /// DeclRefExpr's. This doesn't effect the type checker, since it operates |
| 6365 | /// on canonical type's (which are always unique). |
| 6366 | QualType ASTContext::getTypeOfExprType(Expr *tofExpr, TypeOfKind Kind) const { |
| 6367 | TypeOfExprType *toe; |
| 6368 | if (tofExpr->isTypeDependent()) { |
| 6369 | llvm::FoldingSetNodeID ID; |
| 6370 | DependentTypeOfExprType::Profile(ID, Context: *this, E: tofExpr, |
| 6371 | IsUnqual: Kind == TypeOfKind::Unqualified); |
| 6372 | |
| 6373 | void *InsertPos = nullptr; |
| 6374 | DependentTypeOfExprType *Canon = |
| 6375 | DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 6376 | if (Canon) { |
| 6377 | // We already have a "canonical" version of an identical, dependent |
| 6378 | // typeof(expr) type. Use that as our canonical type. |
| 6379 | toe = new (*this, alignof(TypeOfExprType)) TypeOfExprType( |
| 6380 | *this, tofExpr, Kind, QualType((TypeOfExprType *)Canon, 0)); |
| 6381 | } else { |
| 6382 | // Build a new, canonical typeof(expr) type. |
| 6383 | Canon = new (*this, alignof(DependentTypeOfExprType)) |
| 6384 | DependentTypeOfExprType(*this, tofExpr, Kind); |
| 6385 | DependentTypeOfExprTypes.InsertNode(N: Canon, InsertPos); |
| 6386 | toe = Canon; |
| 6387 | } |
| 6388 | } else { |
| 6389 | QualType Canonical = getCanonicalType(T: tofExpr->getType()); |
| 6390 | toe = new (*this, alignof(TypeOfExprType)) |
| 6391 | TypeOfExprType(*this, tofExpr, Kind, Canonical); |
| 6392 | } |
| 6393 | Types.push_back(toe); |
| 6394 | return QualType(toe, 0); |
| 6395 | } |
| 6396 | |
| 6397 | /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique |
| 6398 | /// TypeOfType nodes. The only motivation to unique these nodes would be |
| 6399 | /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be |
| 6400 | /// an issue. This doesn't affect the type checker, since it operates |
| 6401 | /// on canonical types (which are always unique). |
| 6402 | QualType ASTContext::getTypeOfType(QualType tofType, TypeOfKind Kind) const { |
| 6403 | QualType Canonical = getCanonicalType(T: tofType); |
| 6404 | auto *tot = new (*this, alignof(TypeOfType)) |
| 6405 | TypeOfType(*this, tofType, Canonical, Kind); |
| 6406 | Types.push_back(tot); |
| 6407 | return QualType(tot, 0); |
| 6408 | } |
| 6409 | |
| 6410 | /// getReferenceQualifiedType - Given an expr, will return the type for |
| 6411 | /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions |
| 6412 | /// and class member access into account. |
| 6413 | QualType ASTContext::getReferenceQualifiedType(const Expr *E) const { |
| 6414 | // C++11 [dcl.type.simple]p4: |
| 6415 | // [...] |
| 6416 | QualType T = E->getType(); |
| 6417 | switch (E->getValueKind()) { |
| 6418 | // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the |
| 6419 | // type of e; |
| 6420 | case VK_XValue: |
| 6421 | return getRValueReferenceType(T); |
| 6422 | // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the |
| 6423 | // type of e; |
| 6424 | case VK_LValue: |
| 6425 | return getLValueReferenceType(T); |
| 6426 | // - otherwise, decltype(e) is the type of e. |
| 6427 | case VK_PRValue: |
| 6428 | return T; |
| 6429 | } |
| 6430 | llvm_unreachable("Unknown value kind" ); |
| 6431 | } |
| 6432 | |
| 6433 | /// Unlike many "get<Type>" functions, we don't unique DecltypeType |
| 6434 | /// nodes. This would never be helpful, since each such type has its own |
| 6435 | /// expression, and would not give a significant memory saving, since there |
| 6436 | /// is an Expr tree under each such type. |
| 6437 | QualType ASTContext::getDecltypeType(Expr *E, QualType UnderlyingType) const { |
| 6438 | // C++11 [temp.type]p2: |
| 6439 | // If an expression e involves a template parameter, decltype(e) denotes a |
| 6440 | // unique dependent type. Two such decltype-specifiers refer to the same |
| 6441 | // type only if their expressions are equivalent (14.5.6.1). |
| 6442 | QualType CanonType; |
| 6443 | if (!E->isInstantiationDependent()) { |
| 6444 | CanonType = getCanonicalType(T: UnderlyingType); |
| 6445 | } else if (!UnderlyingType.isNull()) { |
| 6446 | CanonType = getDecltypeType(E, UnderlyingType: QualType()); |
| 6447 | } else { |
| 6448 | llvm::FoldingSetNodeID ID; |
| 6449 | DependentDecltypeType::Profile(ID, Context: *this, E); |
| 6450 | |
| 6451 | void *InsertPos = nullptr; |
| 6452 | if (DependentDecltypeType *Canon = |
| 6453 | DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 6454 | return QualType(Canon, 0); |
| 6455 | |
| 6456 | // Build a new, canonical decltype(expr) type. |
| 6457 | auto *DT = |
| 6458 | new (*this, alignof(DependentDecltypeType)) DependentDecltypeType(E); |
| 6459 | DependentDecltypeTypes.InsertNode(N: DT, InsertPos); |
| 6460 | Types.push_back(DT); |
| 6461 | return QualType(DT, 0); |
| 6462 | } |
| 6463 | auto *DT = new (*this, alignof(DecltypeType)) |
| 6464 | DecltypeType(E, UnderlyingType, CanonType); |
| 6465 | Types.push_back(DT); |
| 6466 | return QualType(DT, 0); |
| 6467 | } |
| 6468 | |
| 6469 | QualType ASTContext::getPackIndexingType(QualType Pattern, Expr *IndexExpr, |
| 6470 | bool FullySubstituted, |
| 6471 | ArrayRef<QualType> Expansions, |
| 6472 | UnsignedOrNone Index) const { |
| 6473 | QualType Canonical; |
| 6474 | if (FullySubstituted && Index) { |
| 6475 | Canonical = getCanonicalType(T: Expansions[*Index]); |
| 6476 | } else { |
| 6477 | llvm::FoldingSetNodeID ID; |
| 6478 | PackIndexingType::Profile(ID, Context: *this, Pattern: Pattern.getCanonicalType(), E: IndexExpr, |
| 6479 | FullySubstituted, Expansions); |
| 6480 | void *InsertPos = nullptr; |
| 6481 | PackIndexingType *Canon = |
| 6482 | DependentPackIndexingTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 6483 | if (!Canon) { |
| 6484 | void *Mem = Allocate( |
| 6485 | PackIndexingType::totalSizeToAlloc<QualType>(Expansions.size()), |
| 6486 | TypeAlignment); |
| 6487 | Canon = |
| 6488 | new (Mem) PackIndexingType(QualType(), Pattern.getCanonicalType(), |
| 6489 | IndexExpr, FullySubstituted, Expansions); |
| 6490 | DependentPackIndexingTypes.InsertNode(N: Canon, InsertPos); |
| 6491 | } |
| 6492 | Canonical = QualType(Canon, 0); |
| 6493 | } |
| 6494 | |
| 6495 | void *Mem = |
| 6496 | Allocate(PackIndexingType::totalSizeToAlloc<QualType>(Expansions.size()), |
| 6497 | TypeAlignment); |
| 6498 | auto *T = new (Mem) PackIndexingType(Canonical, Pattern, IndexExpr, |
| 6499 | FullySubstituted, Expansions); |
| 6500 | Types.push_back(T); |
| 6501 | return QualType(T, 0); |
| 6502 | } |
| 6503 | |
| 6504 | /// getUnaryTransformationType - We don't unique these, since the memory |
| 6505 | /// savings are minimal and these are rare. |
| 6506 | QualType |
| 6507 | ASTContext::getUnaryTransformType(QualType BaseType, QualType UnderlyingType, |
| 6508 | UnaryTransformType::UTTKind Kind) const { |
| 6509 | |
| 6510 | llvm::FoldingSetNodeID ID; |
| 6511 | UnaryTransformType::Profile(ID, BaseType, UnderlyingType, UKind: Kind); |
| 6512 | |
| 6513 | void *InsertPos = nullptr; |
| 6514 | if (UnaryTransformType *UT = |
| 6515 | UnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 6516 | return QualType(UT, 0); |
| 6517 | |
| 6518 | QualType CanonType; |
| 6519 | if (!BaseType->isDependentType()) { |
| 6520 | CanonType = UnderlyingType.getCanonicalType(); |
| 6521 | } else { |
| 6522 | assert(UnderlyingType.isNull() || BaseType == UnderlyingType); |
| 6523 | UnderlyingType = QualType(); |
| 6524 | if (QualType CanonBase = BaseType.getCanonicalType(); |
| 6525 | BaseType != CanonBase) { |
| 6526 | CanonType = getUnaryTransformType(BaseType: CanonBase, UnderlyingType: QualType(), Kind); |
| 6527 | assert(CanonType.isCanonical()); |
| 6528 | |
| 6529 | // Find the insertion position again. |
| 6530 | [[maybe_unused]] UnaryTransformType *UT = |
| 6531 | UnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 6532 | assert(!UT && "broken canonicalization" ); |
| 6533 | } |
| 6534 | } |
| 6535 | |
| 6536 | auto *UT = new (*this, alignof(UnaryTransformType)) |
| 6537 | UnaryTransformType(BaseType, UnderlyingType, Kind, CanonType); |
| 6538 | UnaryTransformTypes.InsertNode(N: UT, InsertPos); |
| 6539 | Types.push_back(UT); |
| 6540 | return QualType(UT, 0); |
| 6541 | } |
| 6542 | |
| 6543 | QualType ASTContext::getAutoTypeInternal( |
| 6544 | QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent, |
| 6545 | bool IsPack, ConceptDecl *TypeConstraintConcept, |
| 6546 | ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const { |
| 6547 | if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && |
| 6548 | !TypeConstraintConcept && !IsDependent) |
| 6549 | return getAutoDeductType(); |
| 6550 | |
| 6551 | // Look in the folding set for an existing type. |
| 6552 | llvm::FoldingSetNodeID ID; |
| 6553 | bool IsDeducedDependent = |
| 6554 | !DeducedType.isNull() && DeducedType->isDependentType(); |
| 6555 | AutoType::Profile(ID, Context: *this, Deduced: DeducedType, Keyword, |
| 6556 | IsDependent: IsDependent || IsDeducedDependent, CD: TypeConstraintConcept, |
| 6557 | Arguments: TypeConstraintArgs); |
| 6558 | if (auto const AT_iter = AutoTypes.find(Val: ID); AT_iter != AutoTypes.end()) |
| 6559 | return QualType(AT_iter->getSecond(), 0); |
| 6560 | |
| 6561 | QualType Canon; |
| 6562 | if (!IsCanon) { |
| 6563 | if (!DeducedType.isNull()) { |
| 6564 | Canon = DeducedType.getCanonicalType(); |
| 6565 | } else if (TypeConstraintConcept) { |
| 6566 | bool AnyNonCanonArgs = false; |
| 6567 | ConceptDecl *CanonicalConcept = TypeConstraintConcept->getCanonicalDecl(); |
| 6568 | auto CanonicalConceptArgs = ::getCanonicalTemplateArguments( |
| 6569 | C: *this, Args: TypeConstraintArgs, AnyNonCanonArgs); |
| 6570 | if (CanonicalConcept != TypeConstraintConcept || AnyNonCanonArgs) { |
| 6571 | Canon = getAutoTypeInternal(DeducedType: QualType(), Keyword, IsDependent, IsPack, |
| 6572 | TypeConstraintConcept: CanonicalConcept, TypeConstraintArgs: CanonicalConceptArgs, |
| 6573 | /*IsCanon=*/true); |
| 6574 | } |
| 6575 | } |
| 6576 | } |
| 6577 | |
| 6578 | void *Mem = Allocate(Size: sizeof(AutoType) + |
| 6579 | sizeof(TemplateArgument) * TypeConstraintArgs.size(), |
| 6580 | Align: alignof(AutoType)); |
| 6581 | auto *AT = new (Mem) AutoType( |
| 6582 | DeducedType, Keyword, |
| 6583 | (IsDependent ? TypeDependence::DependentInstantiation |
| 6584 | : TypeDependence::None) | |
| 6585 | (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None), |
| 6586 | Canon, TypeConstraintConcept, TypeConstraintArgs); |
| 6587 | #ifndef NDEBUG |
| 6588 | llvm::FoldingSetNodeID InsertedID; |
| 6589 | AT->Profile(InsertedID, *this); |
| 6590 | assert(InsertedID == ID && "ID does not match" ); |
| 6591 | #endif |
| 6592 | Types.push_back(Elt: AT); |
| 6593 | AutoTypes.try_emplace(ID, AT); |
| 6594 | return QualType(AT, 0); |
| 6595 | } |
| 6596 | |
| 6597 | /// getAutoType - Return the uniqued reference to the 'auto' type which has been |
| 6598 | /// deduced to the given type, or to the canonical undeduced 'auto' type, or the |
| 6599 | /// canonical deduced-but-dependent 'auto' type. |
| 6600 | QualType |
| 6601 | ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, |
| 6602 | bool IsDependent, bool IsPack, |
| 6603 | ConceptDecl *TypeConstraintConcept, |
| 6604 | ArrayRef<TemplateArgument> TypeConstraintArgs) const { |
| 6605 | assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack" ); |
| 6606 | assert((!IsDependent || DeducedType.isNull()) && |
| 6607 | "A dependent auto should be undeduced" ); |
| 6608 | return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack, |
| 6609 | TypeConstraintConcept, TypeConstraintArgs); |
| 6610 | } |
| 6611 | |
| 6612 | QualType ASTContext::getUnconstrainedType(QualType T) const { |
| 6613 | QualType CanonT = T.getNonPackExpansionType().getCanonicalType(); |
| 6614 | |
| 6615 | // Remove a type-constraint from a top-level auto or decltype(auto). |
| 6616 | if (auto *AT = CanonT->getAs<AutoType>()) { |
| 6617 | if (!AT->isConstrained()) |
| 6618 | return T; |
| 6619 | return getQualifiedType(getAutoType(DeducedType: QualType(), Keyword: AT->getKeyword(), |
| 6620 | IsDependent: AT->isDependentType(), |
| 6621 | IsPack: AT->containsUnexpandedParameterPack()), |
| 6622 | T.getQualifiers()); |
| 6623 | } |
| 6624 | |
| 6625 | // FIXME: We only support constrained auto at the top level in the type of a |
| 6626 | // non-type template parameter at the moment. Once we lift that restriction, |
| 6627 | // we'll need to recursively build types containing auto here. |
| 6628 | assert(!CanonT->getContainedAutoType() || |
| 6629 | !CanonT->getContainedAutoType()->isConstrained()); |
| 6630 | return T; |
| 6631 | } |
| 6632 | |
| 6633 | QualType ASTContext::getDeducedTemplateSpecializationTypeInternal( |
| 6634 | TemplateName Template, QualType DeducedType, bool IsDependent, |
| 6635 | QualType Canon) const { |
| 6636 | // Look in the folding set for an existing type. |
| 6637 | void *InsertPos = nullptr; |
| 6638 | llvm::FoldingSetNodeID ID; |
| 6639 | DeducedTemplateSpecializationType::Profile(ID, Template, Deduced: DeducedType, |
| 6640 | IsDependent); |
| 6641 | if (DeducedTemplateSpecializationType *DTST = |
| 6642 | DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 6643 | return QualType(DTST, 0); |
| 6644 | |
| 6645 | auto *DTST = new (*this, alignof(DeducedTemplateSpecializationType)) |
| 6646 | DeducedTemplateSpecializationType(Template, DeducedType, IsDependent, |
| 6647 | Canon); |
| 6648 | |
| 6649 | #ifndef NDEBUG |
| 6650 | llvm::FoldingSetNodeID TempID; |
| 6651 | DTST->Profile(ID&: TempID); |
| 6652 | assert(ID == TempID && "ID does not match" ); |
| 6653 | #endif |
| 6654 | Types.push_back(DTST); |
| 6655 | DeducedTemplateSpecializationTypes.InsertNode(N: DTST, InsertPos); |
| 6656 | return QualType(DTST, 0); |
| 6657 | } |
| 6658 | |
| 6659 | /// Return the uniqued reference to the deduced template specialization type |
| 6660 | /// which has been deduced to the given type, or to the canonical undeduced |
| 6661 | /// such type, or the canonical deduced-but-dependent such type. |
| 6662 | QualType ASTContext::getDeducedTemplateSpecializationType( |
| 6663 | TemplateName Template, QualType DeducedType, bool IsDependent) const { |
| 6664 | QualType Canon = DeducedType.isNull() |
| 6665 | ? getDeducedTemplateSpecializationTypeInternal( |
| 6666 | Template: getCanonicalTemplateName(Name: Template), DeducedType: QualType(), |
| 6667 | IsDependent, Canon: QualType()) |
| 6668 | : DeducedType.getCanonicalType(); |
| 6669 | return getDeducedTemplateSpecializationTypeInternal(Template, DeducedType, |
| 6670 | IsDependent, Canon); |
| 6671 | } |
| 6672 | |
| 6673 | /// getAtomicType - Return the uniqued reference to the atomic type for |
| 6674 | /// the given value type. |
| 6675 | QualType ASTContext::getAtomicType(QualType T) const { |
| 6676 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 6677 | // structure. |
| 6678 | llvm::FoldingSetNodeID ID; |
| 6679 | AtomicType::Profile(ID, T); |
| 6680 | |
| 6681 | void *InsertPos = nullptr; |
| 6682 | if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 6683 | return QualType(AT, 0); |
| 6684 | |
| 6685 | // If the atomic value type isn't canonical, this won't be a canonical type |
| 6686 | // either, so fill in the canonical type field. |
| 6687 | QualType Canonical; |
| 6688 | if (!T.isCanonical()) { |
| 6689 | Canonical = getAtomicType(T: getCanonicalType(T)); |
| 6690 | |
| 6691 | // Get the new insert position for the node we care about. |
| 6692 | AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 6693 | assert(!NewIP && "Shouldn't be in the map!" ); (void)NewIP; |
| 6694 | } |
| 6695 | auto *New = new (*this, alignof(AtomicType)) AtomicType(T, Canonical); |
| 6696 | Types.push_back(New); |
| 6697 | AtomicTypes.InsertNode(N: New, InsertPos); |
| 6698 | return QualType(New, 0); |
| 6699 | } |
| 6700 | |
| 6701 | /// getAutoDeductType - Get type pattern for deducing against 'auto'. |
| 6702 | QualType ASTContext::getAutoDeductType() const { |
| 6703 | if (AutoDeductTy.isNull()) |
| 6704 | AutoDeductTy = QualType(new (*this, alignof(AutoType)) |
| 6705 | AutoType(QualType(), AutoTypeKeyword::Auto, |
| 6706 | TypeDependence::None, QualType(), |
| 6707 | /*concept*/ nullptr, /*args*/ {}), |
| 6708 | 0); |
| 6709 | return AutoDeductTy; |
| 6710 | } |
| 6711 | |
| 6712 | /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. |
| 6713 | QualType ASTContext::getAutoRRefDeductType() const { |
| 6714 | if (AutoRRefDeductTy.isNull()) |
| 6715 | AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); |
| 6716 | assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern" ); |
| 6717 | return AutoRRefDeductTy; |
| 6718 | } |
| 6719 | |
| 6720 | /// getTagDeclType - Return the unique reference to the type for the |
| 6721 | /// specified TagDecl (struct/union/class/enum) decl. |
| 6722 | QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { |
| 6723 | assert(Decl); |
| 6724 | // FIXME: What is the design on getTagDeclType when it requires casting |
| 6725 | // away const? mutable? |
| 6726 | return getTypeDeclType(const_cast<TagDecl*>(Decl)); |
| 6727 | } |
| 6728 | |
| 6729 | /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
| 6730 | /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
| 6731 | /// needs to agree with the definition in <stddef.h>. |
| 6732 | CanQualType ASTContext::getSizeType() const { |
| 6733 | return getFromTargetType(Type: Target->getSizeType()); |
| 6734 | } |
| 6735 | |
| 6736 | /// Return the unique signed counterpart of the integer type |
| 6737 | /// corresponding to size_t. |
| 6738 | CanQualType ASTContext::getSignedSizeType() const { |
| 6739 | return getFromTargetType(Type: Target->getSignedSizeType()); |
| 6740 | } |
| 6741 | |
| 6742 | /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). |
| 6743 | CanQualType ASTContext::getIntMaxType() const { |
| 6744 | return getFromTargetType(Type: Target->getIntMaxType()); |
| 6745 | } |
| 6746 | |
| 6747 | /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). |
| 6748 | CanQualType ASTContext::getUIntMaxType() const { |
| 6749 | return getFromTargetType(Type: Target->getUIntMaxType()); |
| 6750 | } |
| 6751 | |
| 6752 | /// getSignedWCharType - Return the type of "signed wchar_t". |
| 6753 | /// Used when in C++, as a GCC extension. |
| 6754 | QualType ASTContext::getSignedWCharType() const { |
| 6755 | // FIXME: derive from "Target" ? |
| 6756 | return WCharTy; |
| 6757 | } |
| 6758 | |
| 6759 | /// getUnsignedWCharType - Return the type of "unsigned wchar_t". |
| 6760 | /// Used when in C++, as a GCC extension. |
| 6761 | QualType ASTContext::getUnsignedWCharType() const { |
| 6762 | // FIXME: derive from "Target" ? |
| 6763 | return UnsignedIntTy; |
| 6764 | } |
| 6765 | |
| 6766 | QualType ASTContext::getIntPtrType() const { |
| 6767 | return getFromTargetType(Type: Target->getIntPtrType()); |
| 6768 | } |
| 6769 | |
| 6770 | QualType ASTContext::getUIntPtrType() const { |
| 6771 | return getCorrespondingUnsignedType(T: getIntPtrType()); |
| 6772 | } |
| 6773 | |
| 6774 | /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) |
| 6775 | /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
| 6776 | QualType ASTContext::getPointerDiffType() const { |
| 6777 | return getFromTargetType(Type: Target->getPtrDiffType(AddrSpace: LangAS::Default)); |
| 6778 | } |
| 6779 | |
| 6780 | /// Return the unique unsigned counterpart of "ptrdiff_t" |
| 6781 | /// integer type. The standard (C11 7.21.6.1p7) refers to this type |
| 6782 | /// in the definition of %tu format specifier. |
| 6783 | QualType ASTContext::getUnsignedPointerDiffType() const { |
| 6784 | return getFromTargetType(Type: Target->getUnsignedPtrDiffType(AddrSpace: LangAS::Default)); |
| 6785 | } |
| 6786 | |
| 6787 | /// Return the unique type for "pid_t" defined in |
| 6788 | /// <sys/types.h>. We need this to compute the correct type for vfork(). |
| 6789 | QualType ASTContext::getProcessIDType() const { |
| 6790 | return getFromTargetType(Type: Target->getProcessIDType()); |
| 6791 | } |
| 6792 | |
| 6793 | //===----------------------------------------------------------------------===// |
| 6794 | // Type Operators |
| 6795 | //===----------------------------------------------------------------------===// |
| 6796 | |
| 6797 | CanQualType ASTContext::getCanonicalParamType(QualType T) const { |
| 6798 | // Push qualifiers into arrays, and then discard any remaining |
| 6799 | // qualifiers. |
| 6800 | T = getCanonicalType(T); |
| 6801 | T = getVariableArrayDecayedType(type: T); |
| 6802 | const Type *Ty = T.getTypePtr(); |
| 6803 | QualType Result; |
| 6804 | if (getLangOpts().HLSL && isa<ConstantArrayType>(Val: Ty)) { |
| 6805 | Result = getArrayParameterType(Ty: QualType(Ty, 0)); |
| 6806 | } else if (isa<ArrayType>(Val: Ty)) { |
| 6807 | Result = getArrayDecayedType(T: QualType(Ty,0)); |
| 6808 | } else if (isa<FunctionType>(Val: Ty)) { |
| 6809 | Result = getPointerType(T: QualType(Ty, 0)); |
| 6810 | } else { |
| 6811 | Result = QualType(Ty, 0); |
| 6812 | } |
| 6813 | |
| 6814 | return CanQualType::CreateUnsafe(Other: Result); |
| 6815 | } |
| 6816 | |
| 6817 | QualType ASTContext::getUnqualifiedArrayType(QualType type, |
| 6818 | Qualifiers &quals) const { |
| 6819 | SplitQualType splitType = type.getSplitUnqualifiedType(); |
| 6820 | |
| 6821 | // FIXME: getSplitUnqualifiedType() actually walks all the way to |
| 6822 | // the unqualified desugared type and then drops it on the floor. |
| 6823 | // We then have to strip that sugar back off with |
| 6824 | // getUnqualifiedDesugaredType(), which is silly. |
| 6825 | const auto *AT = |
| 6826 | dyn_cast<ArrayType>(Val: splitType.Ty->getUnqualifiedDesugaredType()); |
| 6827 | |
| 6828 | // If we don't have an array, just use the results in splitType. |
| 6829 | if (!AT) { |
| 6830 | quals = splitType.Quals; |
| 6831 | return QualType(splitType.Ty, 0); |
| 6832 | } |
| 6833 | |
| 6834 | // Otherwise, recurse on the array's element type. |
| 6835 | QualType elementType = AT->getElementType(); |
| 6836 | QualType unqualElementType = getUnqualifiedArrayType(type: elementType, quals); |
| 6837 | |
| 6838 | // If that didn't change the element type, AT has no qualifiers, so we |
| 6839 | // can just use the results in splitType. |
| 6840 | if (elementType == unqualElementType) { |
| 6841 | assert(quals.empty()); // from the recursive call |
| 6842 | quals = splitType.Quals; |
| 6843 | return QualType(splitType.Ty, 0); |
| 6844 | } |
| 6845 | |
| 6846 | // Otherwise, add in the qualifiers from the outermost type, then |
| 6847 | // build the type back up. |
| 6848 | quals.addConsistentQualifiers(qs: splitType.Quals); |
| 6849 | |
| 6850 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) { |
| 6851 | return getConstantArrayType(EltTy: unqualElementType, ArySizeIn: CAT->getSize(), |
| 6852 | SizeExpr: CAT->getSizeExpr(), ASM: CAT->getSizeModifier(), IndexTypeQuals: 0); |
| 6853 | } |
| 6854 | |
| 6855 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(Val: AT)) { |
| 6856 | return getIncompleteArrayType(elementType: unqualElementType, ASM: IAT->getSizeModifier(), elementTypeQuals: 0); |
| 6857 | } |
| 6858 | |
| 6859 | if (const auto *VAT = dyn_cast<VariableArrayType>(Val: AT)) { |
| 6860 | return getVariableArrayType(EltTy: unqualElementType, NumElts: VAT->getSizeExpr(), |
| 6861 | ASM: VAT->getSizeModifier(), |
| 6862 | IndexTypeQuals: VAT->getIndexTypeCVRQualifiers()); |
| 6863 | } |
| 6864 | |
| 6865 | const auto *DSAT = cast<DependentSizedArrayType>(Val: AT); |
| 6866 | return getDependentSizedArrayType(elementType: unqualElementType, numElements: DSAT->getSizeExpr(), |
| 6867 | ASM: DSAT->getSizeModifier(), elementTypeQuals: 0); |
| 6868 | } |
| 6869 | |
| 6870 | /// Attempt to unwrap two types that may both be array types with the same bound |
| 6871 | /// (or both be array types of unknown bound) for the purpose of comparing the |
| 6872 | /// cv-decomposition of two types per C++ [conv.qual]. |
| 6873 | /// |
| 6874 | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in |
| 6875 | /// C++20 [conv.qual], if permitted by the current language mode. |
| 6876 | void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2, |
| 6877 | bool AllowPiMismatch) const { |
| 6878 | while (true) { |
| 6879 | auto *AT1 = getAsArrayType(T: T1); |
| 6880 | if (!AT1) |
| 6881 | return; |
| 6882 | |
| 6883 | auto *AT2 = getAsArrayType(T: T2); |
| 6884 | if (!AT2) |
| 6885 | return; |
| 6886 | |
| 6887 | // If we don't have two array types with the same constant bound nor two |
| 6888 | // incomplete array types, we've unwrapped everything we can. |
| 6889 | // C++20 also permits one type to be a constant array type and the other |
| 6890 | // to be an incomplete array type. |
| 6891 | // FIXME: Consider also unwrapping array of unknown bound and VLA. |
| 6892 | if (auto *CAT1 = dyn_cast<ConstantArrayType>(Val: AT1)) { |
| 6893 | auto *CAT2 = dyn_cast<ConstantArrayType>(Val: AT2); |
| 6894 | if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) || |
| 6895 | (AllowPiMismatch && getLangOpts().CPlusPlus20 && |
| 6896 | isa<IncompleteArrayType>(Val: AT2)))) |
| 6897 | return; |
| 6898 | } else if (isa<IncompleteArrayType>(Val: AT1)) { |
| 6899 | if (!(isa<IncompleteArrayType>(Val: AT2) || |
| 6900 | (AllowPiMismatch && getLangOpts().CPlusPlus20 && |
| 6901 | isa<ConstantArrayType>(Val: AT2)))) |
| 6902 | return; |
| 6903 | } else { |
| 6904 | return; |
| 6905 | } |
| 6906 | |
| 6907 | T1 = AT1->getElementType(); |
| 6908 | T2 = AT2->getElementType(); |
| 6909 | } |
| 6910 | } |
| 6911 | |
| 6912 | /// Attempt to unwrap two types that may be similar (C++ [conv.qual]). |
| 6913 | /// |
| 6914 | /// If T1 and T2 are both pointer types of the same kind, or both array types |
| 6915 | /// with the same bound, unwraps layers from T1 and T2 until a pointer type is |
| 6916 | /// unwrapped. Top-level qualifiers on T1 and T2 are ignored. |
| 6917 | /// |
| 6918 | /// This function will typically be called in a loop that successively |
| 6919 | /// "unwraps" pointer and pointer-to-member types to compare them at each |
| 6920 | /// level. |
| 6921 | /// |
| 6922 | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in |
| 6923 | /// C++20 [conv.qual], if permitted by the current language mode. |
| 6924 | /// |
| 6925 | /// \return \c true if a pointer type was unwrapped, \c false if we reached a |
| 6926 | /// pair of types that can't be unwrapped further. |
| 6927 | bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2, |
| 6928 | bool AllowPiMismatch) const { |
| 6929 | UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch); |
| 6930 | |
| 6931 | const auto *T1PtrType = T1->getAs<PointerType>(); |
| 6932 | const auto *T2PtrType = T2->getAs<PointerType>(); |
| 6933 | if (T1PtrType && T2PtrType) { |
| 6934 | T1 = T1PtrType->getPointeeType(); |
| 6935 | T2 = T2PtrType->getPointeeType(); |
| 6936 | return true; |
| 6937 | } |
| 6938 | |
| 6939 | if (const auto *T1MPType = T1->getAs<MemberPointerType>(), |
| 6940 | *T2MPType = T2->getAs<MemberPointerType>(); |
| 6941 | T1MPType && T2MPType) { |
| 6942 | if (auto *RD1 = T1MPType->getMostRecentCXXRecordDecl(), |
| 6943 | *RD2 = T2MPType->getMostRecentCXXRecordDecl(); |
| 6944 | RD1 != RD2 && RD1->getCanonicalDecl() != RD2->getCanonicalDecl()) |
| 6945 | return false; |
| 6946 | if (getCanonicalNestedNameSpecifier(NNS: T1MPType->getQualifier()) != |
| 6947 | getCanonicalNestedNameSpecifier(NNS: T2MPType->getQualifier())) |
| 6948 | return false; |
| 6949 | T1 = T1MPType->getPointeeType(); |
| 6950 | T2 = T2MPType->getPointeeType(); |
| 6951 | return true; |
| 6952 | } |
| 6953 | |
| 6954 | if (getLangOpts().ObjC) { |
| 6955 | const auto *T1OPType = T1->getAs<ObjCObjectPointerType>(); |
| 6956 | const auto *T2OPType = T2->getAs<ObjCObjectPointerType>(); |
| 6957 | if (T1OPType && T2OPType) { |
| 6958 | T1 = T1OPType->getPointeeType(); |
| 6959 | T2 = T2OPType->getPointeeType(); |
| 6960 | return true; |
| 6961 | } |
| 6962 | } |
| 6963 | |
| 6964 | // FIXME: Block pointers, too? |
| 6965 | |
| 6966 | return false; |
| 6967 | } |
| 6968 | |
| 6969 | bool ASTContext::hasSimilarType(QualType T1, QualType T2) const { |
| 6970 | while (true) { |
| 6971 | Qualifiers Quals; |
| 6972 | T1 = getUnqualifiedArrayType(type: T1, quals&: Quals); |
| 6973 | T2 = getUnqualifiedArrayType(type: T2, quals&: Quals); |
| 6974 | if (hasSameType(T1, T2)) |
| 6975 | return true; |
| 6976 | if (!UnwrapSimilarTypes(T1, T2)) |
| 6977 | return false; |
| 6978 | } |
| 6979 | } |
| 6980 | |
| 6981 | bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) { |
| 6982 | while (true) { |
| 6983 | Qualifiers Quals1, Quals2; |
| 6984 | T1 = getUnqualifiedArrayType(type: T1, quals&: Quals1); |
| 6985 | T2 = getUnqualifiedArrayType(type: T2, quals&: Quals2); |
| 6986 | |
| 6987 | Quals1.removeCVRQualifiers(); |
| 6988 | Quals2.removeCVRQualifiers(); |
| 6989 | if (Quals1 != Quals2) |
| 6990 | return false; |
| 6991 | |
| 6992 | if (hasSameType(T1, T2)) |
| 6993 | return true; |
| 6994 | |
| 6995 | if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false)) |
| 6996 | return false; |
| 6997 | } |
| 6998 | } |
| 6999 | |
| 7000 | DeclarationNameInfo |
| 7001 | ASTContext::getNameForTemplate(TemplateName Name, |
| 7002 | SourceLocation NameLoc) const { |
| 7003 | switch (Name.getKind()) { |
| 7004 | case TemplateName::QualifiedTemplate: |
| 7005 | case TemplateName::Template: |
| 7006 | // DNInfo work in progress: CHECKME: what about DNLoc? |
| 7007 | return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), |
| 7008 | NameLoc); |
| 7009 | |
| 7010 | case TemplateName::OverloadedTemplate: { |
| 7011 | OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); |
| 7012 | // DNInfo work in progress: CHECKME: what about DNLoc? |
| 7013 | return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); |
| 7014 | } |
| 7015 | |
| 7016 | case TemplateName::AssumedTemplate: { |
| 7017 | AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName(); |
| 7018 | return DeclarationNameInfo(Storage->getDeclName(), NameLoc); |
| 7019 | } |
| 7020 | |
| 7021 | case TemplateName::DependentTemplate: { |
| 7022 | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
| 7023 | IdentifierOrOverloadedOperator TN = DTN->getName(); |
| 7024 | DeclarationName DName; |
| 7025 | if (const IdentifierInfo *II = TN.getIdentifier()) { |
| 7026 | DName = DeclarationNames.getIdentifier(ID: II); |
| 7027 | return DeclarationNameInfo(DName, NameLoc); |
| 7028 | } else { |
| 7029 | DName = DeclarationNames.getCXXOperatorName(Op: TN.getOperator()); |
| 7030 | // DNInfo work in progress: FIXME: source locations? |
| 7031 | DeclarationNameLoc DNLoc = |
| 7032 | DeclarationNameLoc::makeCXXOperatorNameLoc(Range: SourceRange()); |
| 7033 | return DeclarationNameInfo(DName, NameLoc, DNLoc); |
| 7034 | } |
| 7035 | } |
| 7036 | |
| 7037 | case TemplateName::SubstTemplateTemplateParm: { |
| 7038 | SubstTemplateTemplateParmStorage *subst |
| 7039 | = Name.getAsSubstTemplateTemplateParm(); |
| 7040 | return DeclarationNameInfo(subst->getParameter()->getDeclName(), |
| 7041 | NameLoc); |
| 7042 | } |
| 7043 | |
| 7044 | case TemplateName::SubstTemplateTemplateParmPack: { |
| 7045 | SubstTemplateTemplateParmPackStorage *subst |
| 7046 | = Name.getAsSubstTemplateTemplateParmPack(); |
| 7047 | return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), |
| 7048 | NameLoc); |
| 7049 | } |
| 7050 | case TemplateName::UsingTemplate: |
| 7051 | return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(), |
| 7052 | NameLoc); |
| 7053 | case TemplateName::DeducedTemplate: { |
| 7054 | DeducedTemplateStorage *DTS = Name.getAsDeducedTemplateName(); |
| 7055 | return getNameForTemplate(Name: DTS->getUnderlying(), NameLoc); |
| 7056 | } |
| 7057 | } |
| 7058 | |
| 7059 | llvm_unreachable("bad template name kind!" ); |
| 7060 | } |
| 7061 | |
| 7062 | static const TemplateArgument * |
| 7063 | getDefaultTemplateArgumentOrNone(const NamedDecl *P) { |
| 7064 | auto handleParam = [](auto *TP) -> const TemplateArgument * { |
| 7065 | if (!TP->hasDefaultArgument()) |
| 7066 | return nullptr; |
| 7067 | return &TP->getDefaultArgument().getArgument(); |
| 7068 | }; |
| 7069 | switch (P->getKind()) { |
| 7070 | case NamedDecl::TemplateTypeParm: |
| 7071 | return handleParam(cast<TemplateTypeParmDecl>(Val: P)); |
| 7072 | case NamedDecl::NonTypeTemplateParm: |
| 7073 | return handleParam(cast<NonTypeTemplateParmDecl>(Val: P)); |
| 7074 | case NamedDecl::TemplateTemplateParm: |
| 7075 | return handleParam(cast<TemplateTemplateParmDecl>(Val: P)); |
| 7076 | default: |
| 7077 | llvm_unreachable("Unexpected template parameter kind" ); |
| 7078 | } |
| 7079 | } |
| 7080 | |
| 7081 | TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name, |
| 7082 | bool IgnoreDeduced) const { |
| 7083 | while (std::optional<TemplateName> UnderlyingOrNone = |
| 7084 | Name.desugar(IgnoreDeduced)) |
| 7085 | Name = *UnderlyingOrNone; |
| 7086 | |
| 7087 | switch (Name.getKind()) { |
| 7088 | case TemplateName::Template: { |
| 7089 | TemplateDecl *Template = Name.getAsTemplateDecl(); |
| 7090 | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: Template)) |
| 7091 | Template = getCanonicalTemplateTemplateParmDecl(TTP); |
| 7092 | |
| 7093 | // The canonical template name is the canonical template declaration. |
| 7094 | return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); |
| 7095 | } |
| 7096 | |
| 7097 | case TemplateName::OverloadedTemplate: |
| 7098 | case TemplateName::AssumedTemplate: |
| 7099 | llvm_unreachable("cannot canonicalize unresolved template" ); |
| 7100 | |
| 7101 | case TemplateName::DependentTemplate: { |
| 7102 | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
| 7103 | assert(DTN && "Non-dependent template names must refer to template decls." ); |
| 7104 | NestedNameSpecifier *Qualifier = DTN->getQualifier(); |
| 7105 | NestedNameSpecifier *CanonQualifier = |
| 7106 | getCanonicalNestedNameSpecifier(NNS: Qualifier); |
| 7107 | if (Qualifier != CanonQualifier || !DTN->hasTemplateKeyword()) |
| 7108 | return getDependentTemplateName(Name: {CanonQualifier, DTN->getName(), |
| 7109 | /*HasTemplateKeyword=*/true}); |
| 7110 | return Name; |
| 7111 | } |
| 7112 | |
| 7113 | case TemplateName::SubstTemplateTemplateParmPack: { |
| 7114 | SubstTemplateTemplateParmPackStorage *subst = |
| 7115 | Name.getAsSubstTemplateTemplateParmPack(); |
| 7116 | TemplateArgument canonArgPack = |
| 7117 | getCanonicalTemplateArgument(Arg: subst->getArgumentPack()); |
| 7118 | return getSubstTemplateTemplateParmPack( |
| 7119 | ArgPack: canonArgPack, AssociatedDecl: subst->getAssociatedDecl()->getCanonicalDecl(), |
| 7120 | Index: subst->getIndex(), Final: subst->getFinal()); |
| 7121 | } |
| 7122 | case TemplateName::DeducedTemplate: { |
| 7123 | assert(IgnoreDeduced == false); |
| 7124 | DeducedTemplateStorage *DTS = Name.getAsDeducedTemplateName(); |
| 7125 | DefaultArguments DefArgs = DTS->getDefaultArguments(); |
| 7126 | TemplateName Underlying = DTS->getUnderlying(); |
| 7127 | |
| 7128 | TemplateName CanonUnderlying = |
| 7129 | getCanonicalTemplateName(Name: Underlying, /*IgnoreDeduced=*/true); |
| 7130 | bool NonCanonical = CanonUnderlying != Underlying; |
| 7131 | auto CanonArgs = |
| 7132 | getCanonicalTemplateArguments(C: *this, Args: DefArgs.Args, AnyNonCanonArgs&: NonCanonical); |
| 7133 | |
| 7134 | ArrayRef<NamedDecl *> Params = |
| 7135 | CanonUnderlying.getAsTemplateDecl()->getTemplateParameters()->asArray(); |
| 7136 | assert(CanonArgs.size() <= Params.size()); |
| 7137 | // A deduced template name which deduces the same default arguments already |
| 7138 | // declared in the underlying template is the same template as the |
| 7139 | // underlying template. We need need to note any arguments which differ from |
| 7140 | // the corresponding declaration. If any argument differs, we must build a |
| 7141 | // deduced template name. |
| 7142 | for (int I = CanonArgs.size() - 1; I >= 0; --I) { |
| 7143 | const TemplateArgument *A = getDefaultTemplateArgumentOrNone(P: Params[I]); |
| 7144 | if (!A) |
| 7145 | break; |
| 7146 | auto CanonParamDefArg = getCanonicalTemplateArgument(Arg: *A); |
| 7147 | TemplateArgument &CanonDefArg = CanonArgs[I]; |
| 7148 | if (CanonDefArg.structurallyEquals(Other: CanonParamDefArg)) |
| 7149 | continue; |
| 7150 | // Keep popping from the back any deault arguments which are the same. |
| 7151 | if (I == int(CanonArgs.size() - 1)) |
| 7152 | CanonArgs.pop_back(); |
| 7153 | NonCanonical = true; |
| 7154 | } |
| 7155 | return NonCanonical ? getDeducedTemplateName( |
| 7156 | Underlying: CanonUnderlying, |
| 7157 | /*DefaultArgs=*/{.StartPos: DefArgs.StartPos, .Args: CanonArgs}) |
| 7158 | : Name; |
| 7159 | } |
| 7160 | case TemplateName::UsingTemplate: |
| 7161 | case TemplateName::QualifiedTemplate: |
| 7162 | case TemplateName::SubstTemplateTemplateParm: |
| 7163 | llvm_unreachable("always sugar node" ); |
| 7164 | } |
| 7165 | |
| 7166 | llvm_unreachable("bad template name!" ); |
| 7167 | } |
| 7168 | |
| 7169 | bool ASTContext::hasSameTemplateName(const TemplateName &X, |
| 7170 | const TemplateName &Y, |
| 7171 | bool IgnoreDeduced) const { |
| 7172 | return getCanonicalTemplateName(Name: X, IgnoreDeduced) == |
| 7173 | getCanonicalTemplateName(Name: Y, IgnoreDeduced); |
| 7174 | } |
| 7175 | |
| 7176 | bool ASTContext::isSameAssociatedConstraint( |
| 7177 | const AssociatedConstraint &ACX, const AssociatedConstraint &ACY) const { |
| 7178 | if (ACX.ArgPackSubstIndex != ACY.ArgPackSubstIndex) |
| 7179 | return false; |
| 7180 | if (!isSameConstraintExpr(XCE: ACX.ConstraintExpr, YCE: ACY.ConstraintExpr)) |
| 7181 | return false; |
| 7182 | return true; |
| 7183 | } |
| 7184 | |
| 7185 | bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const { |
| 7186 | if (!XCE != !YCE) |
| 7187 | return false; |
| 7188 | |
| 7189 | if (!XCE) |
| 7190 | return true; |
| 7191 | |
| 7192 | llvm::FoldingSetNodeID XCEID, YCEID; |
| 7193 | XCE->Profile(XCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); |
| 7194 | YCE->Profile(YCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); |
| 7195 | return XCEID == YCEID; |
| 7196 | } |
| 7197 | |
| 7198 | bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC, |
| 7199 | const TypeConstraint *YTC) const { |
| 7200 | if (!XTC != !YTC) |
| 7201 | return false; |
| 7202 | |
| 7203 | if (!XTC) |
| 7204 | return true; |
| 7205 | |
| 7206 | auto *NCX = XTC->getNamedConcept(); |
| 7207 | auto *NCY = YTC->getNamedConcept(); |
| 7208 | if (!NCX || !NCY || !isSameEntity(NCX, NCY)) |
| 7209 | return false; |
| 7210 | if (XTC->getConceptReference()->hasExplicitTemplateArgs() != |
| 7211 | YTC->getConceptReference()->hasExplicitTemplateArgs()) |
| 7212 | return false; |
| 7213 | if (XTC->getConceptReference()->hasExplicitTemplateArgs()) |
| 7214 | if (XTC->getConceptReference() |
| 7215 | ->getTemplateArgsAsWritten() |
| 7216 | ->NumTemplateArgs != |
| 7217 | YTC->getConceptReference()->getTemplateArgsAsWritten()->NumTemplateArgs) |
| 7218 | return false; |
| 7219 | |
| 7220 | // Compare slowly by profiling. |
| 7221 | // |
| 7222 | // We couldn't compare the profiling result for the template |
| 7223 | // args here. Consider the following example in different modules: |
| 7224 | // |
| 7225 | // template <__integer_like _Tp, C<_Tp> Sentinel> |
| 7226 | // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const { |
| 7227 | // return __t; |
| 7228 | // } |
| 7229 | // |
| 7230 | // When we compare the profiling result for `C<_Tp>` in different |
| 7231 | // modules, it will compare the type of `_Tp` in different modules. |
| 7232 | // However, the type of `_Tp` in different modules refer to different |
| 7233 | // types here naturally. So we couldn't compare the profiling result |
| 7234 | // for the template args directly. |
| 7235 | return isSameConstraintExpr(XCE: XTC->getImmediatelyDeclaredConstraint(), |
| 7236 | YCE: YTC->getImmediatelyDeclaredConstraint()); |
| 7237 | } |
| 7238 | |
| 7239 | bool ASTContext::isSameTemplateParameter(const NamedDecl *X, |
| 7240 | const NamedDecl *Y) const { |
| 7241 | if (X->getKind() != Y->getKind()) |
| 7242 | return false; |
| 7243 | |
| 7244 | if (auto *TX = dyn_cast<TemplateTypeParmDecl>(Val: X)) { |
| 7245 | auto *TY = cast<TemplateTypeParmDecl>(Val: Y); |
| 7246 | if (TX->isParameterPack() != TY->isParameterPack()) |
| 7247 | return false; |
| 7248 | if (TX->hasTypeConstraint() != TY->hasTypeConstraint()) |
| 7249 | return false; |
| 7250 | return isSameTypeConstraint(XTC: TX->getTypeConstraint(), |
| 7251 | YTC: TY->getTypeConstraint()); |
| 7252 | } |
| 7253 | |
| 7254 | if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(Val: X)) { |
| 7255 | auto *TY = cast<NonTypeTemplateParmDecl>(Val: Y); |
| 7256 | return TX->isParameterPack() == TY->isParameterPack() && |
| 7257 | TX->getASTContext().hasSameType(TX->getType(), TY->getType()) && |
| 7258 | isSameConstraintExpr(XCE: TX->getPlaceholderTypeConstraint(), |
| 7259 | YCE: TY->getPlaceholderTypeConstraint()); |
| 7260 | } |
| 7261 | |
| 7262 | auto *TX = cast<TemplateTemplateParmDecl>(Val: X); |
| 7263 | auto *TY = cast<TemplateTemplateParmDecl>(Val: Y); |
| 7264 | return TX->isParameterPack() == TY->isParameterPack() && |
| 7265 | isSameTemplateParameterList(X: TX->getTemplateParameters(), |
| 7266 | Y: TY->getTemplateParameters()); |
| 7267 | } |
| 7268 | |
| 7269 | bool ASTContext::isSameTemplateParameterList( |
| 7270 | const TemplateParameterList *X, const TemplateParameterList *Y) const { |
| 7271 | if (X->size() != Y->size()) |
| 7272 | return false; |
| 7273 | |
| 7274 | for (unsigned I = 0, N = X->size(); I != N; ++I) |
| 7275 | if (!isSameTemplateParameter(X: X->getParam(Idx: I), Y: Y->getParam(Idx: I))) |
| 7276 | return false; |
| 7277 | |
| 7278 | return isSameConstraintExpr(XCE: X->getRequiresClause(), YCE: Y->getRequiresClause()); |
| 7279 | } |
| 7280 | |
| 7281 | bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X, |
| 7282 | const NamedDecl *Y) const { |
| 7283 | // If the type parameter isn't the same already, we don't need to check the |
| 7284 | // default argument further. |
| 7285 | if (!isSameTemplateParameter(X, Y)) |
| 7286 | return false; |
| 7287 | |
| 7288 | if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(Val: X)) { |
| 7289 | auto *TTPY = cast<TemplateTypeParmDecl>(Val: Y); |
| 7290 | if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) |
| 7291 | return false; |
| 7292 | |
| 7293 | return hasSameType(T1: TTPX->getDefaultArgument().getArgument().getAsType(), |
| 7294 | T2: TTPY->getDefaultArgument().getArgument().getAsType()); |
| 7295 | } |
| 7296 | |
| 7297 | if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(Val: X)) { |
| 7298 | auto *NTTPY = cast<NonTypeTemplateParmDecl>(Val: Y); |
| 7299 | if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument()) |
| 7300 | return false; |
| 7301 | |
| 7302 | Expr *DefaultArgumentX = |
| 7303 | NTTPX->getDefaultArgument().getArgument().getAsExpr()->IgnoreImpCasts(); |
| 7304 | Expr *DefaultArgumentY = |
| 7305 | NTTPY->getDefaultArgument().getArgument().getAsExpr()->IgnoreImpCasts(); |
| 7306 | llvm::FoldingSetNodeID XID, YID; |
| 7307 | DefaultArgumentX->Profile(XID, *this, /*Canonical=*/true); |
| 7308 | DefaultArgumentY->Profile(YID, *this, /*Canonical=*/true); |
| 7309 | return XID == YID; |
| 7310 | } |
| 7311 | |
| 7312 | auto *TTPX = cast<TemplateTemplateParmDecl>(Val: X); |
| 7313 | auto *TTPY = cast<TemplateTemplateParmDecl>(Val: Y); |
| 7314 | |
| 7315 | if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) |
| 7316 | return false; |
| 7317 | |
| 7318 | const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument(); |
| 7319 | const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument(); |
| 7320 | return hasSameTemplateName(X: TAX.getAsTemplate(), Y: TAY.getAsTemplate()); |
| 7321 | } |
| 7322 | |
| 7323 | static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) { |
| 7324 | if (auto *NS = X->getAsNamespace()) |
| 7325 | return NS; |
| 7326 | if (auto *NAS = X->getAsNamespaceAlias()) |
| 7327 | return NAS->getNamespace(); |
| 7328 | return nullptr; |
| 7329 | } |
| 7330 | |
| 7331 | static bool isSameQualifier(const NestedNameSpecifier *X, |
| 7332 | const NestedNameSpecifier *Y) { |
| 7333 | if (auto *NSX = getNamespace(X)) { |
| 7334 | auto *NSY = getNamespace(X: Y); |
| 7335 | if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl()) |
| 7336 | return false; |
| 7337 | } else if (X->getKind() != Y->getKind()) |
| 7338 | return false; |
| 7339 | |
| 7340 | // FIXME: For namespaces and types, we're permitted to check that the entity |
| 7341 | // is named via the same tokens. We should probably do so. |
| 7342 | switch (X->getKind()) { |
| 7343 | case NestedNameSpecifier::Identifier: |
| 7344 | if (X->getAsIdentifier() != Y->getAsIdentifier()) |
| 7345 | return false; |
| 7346 | break; |
| 7347 | case NestedNameSpecifier::Namespace: |
| 7348 | case NestedNameSpecifier::NamespaceAlias: |
| 7349 | // We've already checked that we named the same namespace. |
| 7350 | break; |
| 7351 | case NestedNameSpecifier::TypeSpec: |
| 7352 | if (X->getAsType()->getCanonicalTypeInternal() != |
| 7353 | Y->getAsType()->getCanonicalTypeInternal()) |
| 7354 | return false; |
| 7355 | break; |
| 7356 | case NestedNameSpecifier::Global: |
| 7357 | case NestedNameSpecifier::Super: |
| 7358 | return true; |
| 7359 | } |
| 7360 | |
| 7361 | // Recurse into earlier portion of NNS, if any. |
| 7362 | auto *PX = X->getPrefix(); |
| 7363 | auto *PY = Y->getPrefix(); |
| 7364 | if (PX && PY) |
| 7365 | return isSameQualifier(X: PX, Y: PY); |
| 7366 | return !PX && !PY; |
| 7367 | } |
| 7368 | |
| 7369 | static bool hasSameCudaAttrs(const FunctionDecl *A, const FunctionDecl *B) { |
| 7370 | if (!A->getASTContext().getLangOpts().CUDA) |
| 7371 | return true; // Target attributes are overloadable in CUDA compilation only. |
| 7372 | if (A->hasAttr<CUDADeviceAttr>() != B->hasAttr<CUDADeviceAttr>()) |
| 7373 | return false; |
| 7374 | if (A->hasAttr<CUDADeviceAttr>() && B->hasAttr<CUDADeviceAttr>()) |
| 7375 | return A->hasAttr<CUDAHostAttr>() == B->hasAttr<CUDAHostAttr>(); |
| 7376 | return true; // unattributed and __host__ functions are the same. |
| 7377 | } |
| 7378 | |
| 7379 | /// Determine whether the attributes we can overload on are identical for A and |
| 7380 | /// B. Will ignore any overloadable attrs represented in the type of A and B. |
| 7381 | static bool hasSameOverloadableAttrs(const FunctionDecl *A, |
| 7382 | const FunctionDecl *B) { |
| 7383 | // Note that pass_object_size attributes are represented in the function's |
| 7384 | // ExtParameterInfo, so we don't need to check them here. |
| 7385 | |
| 7386 | llvm::FoldingSetNodeID Cand1ID, Cand2ID; |
| 7387 | auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>(); |
| 7388 | auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>(); |
| 7389 | |
| 7390 | for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) { |
| 7391 | std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); |
| 7392 | std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); |
| 7393 | |
| 7394 | // Return false if the number of enable_if attributes is different. |
| 7395 | if (!Cand1A || !Cand2A) |
| 7396 | return false; |
| 7397 | |
| 7398 | Cand1ID.clear(); |
| 7399 | Cand2ID.clear(); |
| 7400 | |
| 7401 | (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true); |
| 7402 | (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true); |
| 7403 | |
| 7404 | // Return false if any of the enable_if expressions of A and B are |
| 7405 | // different. |
| 7406 | if (Cand1ID != Cand2ID) |
| 7407 | return false; |
| 7408 | } |
| 7409 | return hasSameCudaAttrs(A, B); |
| 7410 | } |
| 7411 | |
| 7412 | bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const { |
| 7413 | // Caution: this function is called by the AST reader during deserialization, |
| 7414 | // so it cannot rely on AST invariants being met. Non-trivial accessors |
| 7415 | // should be avoided, along with any traversal of redeclaration chains. |
| 7416 | |
| 7417 | if (X == Y) |
| 7418 | return true; |
| 7419 | |
| 7420 | if (X->getDeclName() != Y->getDeclName()) |
| 7421 | return false; |
| 7422 | |
| 7423 | // Must be in the same context. |
| 7424 | // |
| 7425 | // Note that we can't use DeclContext::Equals here, because the DeclContexts |
| 7426 | // could be two different declarations of the same function. (We will fix the |
| 7427 | // semantic DC to refer to the primary definition after merging.) |
| 7428 | if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()), |
| 7429 | cast<Decl>(Y->getDeclContext()->getRedeclContext()))) |
| 7430 | return false; |
| 7431 | |
| 7432 | // Two typedefs refer to the same entity if they have the same underlying |
| 7433 | // type. |
| 7434 | if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(Val: X)) |
| 7435 | if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Val: Y)) |
| 7436 | return hasSameType(T1: TypedefX->getUnderlyingType(), |
| 7437 | T2: TypedefY->getUnderlyingType()); |
| 7438 | |
| 7439 | // Must have the same kind. |
| 7440 | if (X->getKind() != Y->getKind()) |
| 7441 | return false; |
| 7442 | |
| 7443 | // Objective-C classes and protocols with the same name always match. |
| 7444 | if (isa<ObjCInterfaceDecl>(Val: X) || isa<ObjCProtocolDecl>(Val: X)) |
| 7445 | return true; |
| 7446 | |
| 7447 | if (isa<ClassTemplateSpecializationDecl>(Val: X)) { |
| 7448 | // No need to handle these here: we merge them when adding them to the |
| 7449 | // template. |
| 7450 | return false; |
| 7451 | } |
| 7452 | |
| 7453 | // Compatible tags match. |
| 7454 | if (const auto *TagX = dyn_cast<TagDecl>(Val: X)) { |
| 7455 | const auto *TagY = cast<TagDecl>(Val: Y); |
| 7456 | return (TagX->getTagKind() == TagY->getTagKind()) || |
| 7457 | ((TagX->getTagKind() == TagTypeKind::Struct || |
| 7458 | TagX->getTagKind() == TagTypeKind::Class || |
| 7459 | TagX->getTagKind() == TagTypeKind::Interface) && |
| 7460 | (TagY->getTagKind() == TagTypeKind::Struct || |
| 7461 | TagY->getTagKind() == TagTypeKind::Class || |
| 7462 | TagY->getTagKind() == TagTypeKind::Interface)); |
| 7463 | } |
| 7464 | |
| 7465 | // Functions with the same type and linkage match. |
| 7466 | // FIXME: This needs to cope with merging of prototyped/non-prototyped |
| 7467 | // functions, etc. |
| 7468 | if (const auto *FuncX = dyn_cast<FunctionDecl>(Val: X)) { |
| 7469 | const auto *FuncY = cast<FunctionDecl>(Val: Y); |
| 7470 | if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(Val: X)) { |
| 7471 | const auto *CtorY = cast<CXXConstructorDecl>(Val: Y); |
| 7472 | if (CtorX->getInheritedConstructor() && |
| 7473 | !isSameEntity(CtorX->getInheritedConstructor().getConstructor(), |
| 7474 | CtorY->getInheritedConstructor().getConstructor())) |
| 7475 | return false; |
| 7476 | } |
| 7477 | |
| 7478 | if (FuncX->isMultiVersion() != FuncY->isMultiVersion()) |
| 7479 | return false; |
| 7480 | |
| 7481 | // Multiversioned functions with different feature strings are represented |
| 7482 | // as separate declarations. |
| 7483 | if (FuncX->isMultiVersion()) { |
| 7484 | const auto *TAX = FuncX->getAttr<TargetAttr>(); |
| 7485 | const auto *TAY = FuncY->getAttr<TargetAttr>(); |
| 7486 | assert(TAX && TAY && "Multiversion Function without target attribute" ); |
| 7487 | |
| 7488 | if (TAX->getFeaturesStr() != TAY->getFeaturesStr()) |
| 7489 | return false; |
| 7490 | } |
| 7491 | |
| 7492 | // Per C++20 [temp.over.link]/4, friends in different classes are sometimes |
| 7493 | // not the same entity if they are constrained. |
| 7494 | if ((FuncX->isMemberLikeConstrainedFriend() || |
| 7495 | FuncY->isMemberLikeConstrainedFriend()) && |
| 7496 | !FuncX->getLexicalDeclContext()->Equals( |
| 7497 | FuncY->getLexicalDeclContext())) { |
| 7498 | return false; |
| 7499 | } |
| 7500 | |
| 7501 | if (!isSameAssociatedConstraint(ACX: FuncX->getTrailingRequiresClause(), |
| 7502 | ACY: FuncY->getTrailingRequiresClause())) |
| 7503 | return false; |
| 7504 | |
| 7505 | auto GetTypeAsWritten = [](const FunctionDecl *FD) { |
| 7506 | // Map to the first declaration that we've already merged into this one. |
| 7507 | // The TSI of redeclarations might not match (due to calling conventions |
| 7508 | // being inherited onto the type but not the TSI), but the TSI type of |
| 7509 | // the first declaration of the function should match across modules. |
| 7510 | FD = FD->getCanonicalDecl(); |
| 7511 | return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType() |
| 7512 | : FD->getType(); |
| 7513 | }; |
| 7514 | QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY); |
| 7515 | if (!hasSameType(T1: XT, T2: YT)) { |
| 7516 | // We can get functions with different types on the redecl chain in C++17 |
| 7517 | // if they have differing exception specifications and at least one of |
| 7518 | // the excpetion specs is unresolved. |
| 7519 | auto *XFPT = XT->getAs<FunctionProtoType>(); |
| 7520 | auto *YFPT = YT->getAs<FunctionProtoType>(); |
| 7521 | if (getLangOpts().CPlusPlus17 && XFPT && YFPT && |
| 7522 | (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) || |
| 7523 | isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) && |
| 7524 | hasSameFunctionTypeIgnoringExceptionSpec(T: XT, U: YT)) |
| 7525 | return true; |
| 7526 | return false; |
| 7527 | } |
| 7528 | |
| 7529 | return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() && |
| 7530 | hasSameOverloadableAttrs(A: FuncX, B: FuncY); |
| 7531 | } |
| 7532 | |
| 7533 | // Variables with the same type and linkage match. |
| 7534 | if (const auto *VarX = dyn_cast<VarDecl>(Val: X)) { |
| 7535 | const auto *VarY = cast<VarDecl>(Val: Y); |
| 7536 | if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) { |
| 7537 | // During deserialization, we might compare variables before we load |
| 7538 | // their types. Assume the types will end up being the same. |
| 7539 | if (VarX->getType().isNull() || VarY->getType().isNull()) |
| 7540 | return true; |
| 7541 | |
| 7542 | if (hasSameType(VarX->getType(), VarY->getType())) |
| 7543 | return true; |
| 7544 | |
| 7545 | // We can get decls with different types on the redecl chain. Eg. |
| 7546 | // template <typename T> struct S { static T Var[]; }; // #1 |
| 7547 | // template <typename T> T S<T>::Var[sizeof(T)]; // #2 |
| 7548 | // Only? happens when completing an incomplete array type. In this case |
| 7549 | // when comparing #1 and #2 we should go through their element type. |
| 7550 | const ArrayType *VarXTy = getAsArrayType(T: VarX->getType()); |
| 7551 | const ArrayType *VarYTy = getAsArrayType(T: VarY->getType()); |
| 7552 | if (!VarXTy || !VarYTy) |
| 7553 | return false; |
| 7554 | if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType()) |
| 7555 | return hasSameType(T1: VarXTy->getElementType(), T2: VarYTy->getElementType()); |
| 7556 | } |
| 7557 | return false; |
| 7558 | } |
| 7559 | |
| 7560 | // Namespaces with the same name and inlinedness match. |
| 7561 | if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(Val: X)) { |
| 7562 | const auto *NamespaceY = cast<NamespaceDecl>(Val: Y); |
| 7563 | return NamespaceX->isInline() == NamespaceY->isInline(); |
| 7564 | } |
| 7565 | |
| 7566 | // Identical template names and kinds match if their template parameter lists |
| 7567 | // and patterns match. |
| 7568 | if (const auto *TemplateX = dyn_cast<TemplateDecl>(Val: X)) { |
| 7569 | const auto *TemplateY = cast<TemplateDecl>(Val: Y); |
| 7570 | |
| 7571 | // ConceptDecl wouldn't be the same if their constraint expression differs. |
| 7572 | if (const auto *ConceptX = dyn_cast<ConceptDecl>(Val: X)) { |
| 7573 | const auto *ConceptY = cast<ConceptDecl>(Val: Y); |
| 7574 | if (!isSameConstraintExpr(XCE: ConceptX->getConstraintExpr(), |
| 7575 | YCE: ConceptY->getConstraintExpr())) |
| 7576 | return false; |
| 7577 | } |
| 7578 | |
| 7579 | return isSameEntity(X: TemplateX->getTemplatedDecl(), |
| 7580 | Y: TemplateY->getTemplatedDecl()) && |
| 7581 | isSameTemplateParameterList(X: TemplateX->getTemplateParameters(), |
| 7582 | Y: TemplateY->getTemplateParameters()); |
| 7583 | } |
| 7584 | |
| 7585 | // Fields with the same name and the same type match. |
| 7586 | if (const auto *FDX = dyn_cast<FieldDecl>(Val: X)) { |
| 7587 | const auto *FDY = cast<FieldDecl>(Val: Y); |
| 7588 | // FIXME: Also check the bitwidth is odr-equivalent, if any. |
| 7589 | return hasSameType(FDX->getType(), FDY->getType()); |
| 7590 | } |
| 7591 | |
| 7592 | // Indirect fields with the same target field match. |
| 7593 | if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(Val: X)) { |
| 7594 | const auto *IFDY = cast<IndirectFieldDecl>(Val: Y); |
| 7595 | return IFDX->getAnonField()->getCanonicalDecl() == |
| 7596 | IFDY->getAnonField()->getCanonicalDecl(); |
| 7597 | } |
| 7598 | |
| 7599 | // Enumerators with the same name match. |
| 7600 | if (isa<EnumConstantDecl>(Val: X)) |
| 7601 | // FIXME: Also check the value is odr-equivalent. |
| 7602 | return true; |
| 7603 | |
| 7604 | // Using shadow declarations with the same target match. |
| 7605 | if (const auto *USX = dyn_cast<UsingShadowDecl>(Val: X)) { |
| 7606 | const auto *USY = cast<UsingShadowDecl>(Val: Y); |
| 7607 | return declaresSameEntity(USX->getTargetDecl(), USY->getTargetDecl()); |
| 7608 | } |
| 7609 | |
| 7610 | // Using declarations with the same qualifier match. (We already know that |
| 7611 | // the name matches.) |
| 7612 | if (const auto *UX = dyn_cast<UsingDecl>(Val: X)) { |
| 7613 | const auto *UY = cast<UsingDecl>(Val: Y); |
| 7614 | return isSameQualifier(X: UX->getQualifier(), Y: UY->getQualifier()) && |
| 7615 | UX->hasTypename() == UY->hasTypename() && |
| 7616 | UX->isAccessDeclaration() == UY->isAccessDeclaration(); |
| 7617 | } |
| 7618 | if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(Val: X)) { |
| 7619 | const auto *UY = cast<UnresolvedUsingValueDecl>(Val: Y); |
| 7620 | return isSameQualifier(X: UX->getQualifier(), Y: UY->getQualifier()) && |
| 7621 | UX->isAccessDeclaration() == UY->isAccessDeclaration(); |
| 7622 | } |
| 7623 | if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(Val: X)) { |
| 7624 | return isSameQualifier( |
| 7625 | X: UX->getQualifier(), |
| 7626 | Y: cast<UnresolvedUsingTypenameDecl>(Val: Y)->getQualifier()); |
| 7627 | } |
| 7628 | |
| 7629 | // Using-pack declarations are only created by instantiation, and match if |
| 7630 | // they're instantiated from matching UnresolvedUsing...Decls. |
| 7631 | if (const auto *UX = dyn_cast<UsingPackDecl>(Val: X)) { |
| 7632 | return declaresSameEntity( |
| 7633 | UX->getInstantiatedFromUsingDecl(), |
| 7634 | cast<UsingPackDecl>(Val: Y)->getInstantiatedFromUsingDecl()); |
| 7635 | } |
| 7636 | |
| 7637 | // Namespace alias definitions with the same target match. |
| 7638 | if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(Val: X)) { |
| 7639 | const auto *NAY = cast<NamespaceAliasDecl>(Val: Y); |
| 7640 | return NAX->getNamespace()->Equals(NAY->getNamespace()); |
| 7641 | } |
| 7642 | |
| 7643 | return false; |
| 7644 | } |
| 7645 | |
| 7646 | TemplateArgument |
| 7647 | ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { |
| 7648 | switch (Arg.getKind()) { |
| 7649 | case TemplateArgument::Null: |
| 7650 | return Arg; |
| 7651 | |
| 7652 | case TemplateArgument::Expression: |
| 7653 | return TemplateArgument(Arg.getAsExpr(), /*IsCanonical=*/true, |
| 7654 | Arg.getIsDefaulted()); |
| 7655 | |
| 7656 | case TemplateArgument::Declaration: { |
| 7657 | auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); |
| 7658 | return TemplateArgument(D, getCanonicalType(T: Arg.getParamTypeForDecl()), |
| 7659 | Arg.getIsDefaulted()); |
| 7660 | } |
| 7661 | |
| 7662 | case TemplateArgument::NullPtr: |
| 7663 | return TemplateArgument(getCanonicalType(T: Arg.getNullPtrType()), |
| 7664 | /*isNullPtr*/ true, Arg.getIsDefaulted()); |
| 7665 | |
| 7666 | case TemplateArgument::Template: |
| 7667 | return TemplateArgument(getCanonicalTemplateName(Name: Arg.getAsTemplate()), |
| 7668 | Arg.getIsDefaulted()); |
| 7669 | |
| 7670 | case TemplateArgument::TemplateExpansion: |
| 7671 | return TemplateArgument( |
| 7672 | getCanonicalTemplateName(Name: Arg.getAsTemplateOrTemplatePattern()), |
| 7673 | Arg.getNumTemplateExpansions(), Arg.getIsDefaulted()); |
| 7674 | |
| 7675 | case TemplateArgument::Integral: |
| 7676 | return TemplateArgument(Arg, getCanonicalType(T: Arg.getIntegralType())); |
| 7677 | |
| 7678 | case TemplateArgument::StructuralValue: |
| 7679 | return TemplateArgument(*this, |
| 7680 | getCanonicalType(T: Arg.getStructuralValueType()), |
| 7681 | Arg.getAsStructuralValue(), Arg.getIsDefaulted()); |
| 7682 | |
| 7683 | case TemplateArgument::Type: |
| 7684 | return TemplateArgument(getCanonicalType(T: Arg.getAsType()), |
| 7685 | /*isNullPtr*/ false, Arg.getIsDefaulted()); |
| 7686 | |
| 7687 | case TemplateArgument::Pack: { |
| 7688 | bool AnyNonCanonArgs = false; |
| 7689 | auto CanonArgs = ::getCanonicalTemplateArguments( |
| 7690 | C: *this, Args: Arg.pack_elements(), AnyNonCanonArgs); |
| 7691 | if (!AnyNonCanonArgs) |
| 7692 | return Arg; |
| 7693 | auto NewArg = TemplateArgument::CreatePackCopy( |
| 7694 | Context&: const_cast<ASTContext &>(*this), Args: CanonArgs); |
| 7695 | NewArg.setIsDefaulted(Arg.getIsDefaulted()); |
| 7696 | return NewArg; |
| 7697 | } |
| 7698 | } |
| 7699 | |
| 7700 | // Silence GCC warning |
| 7701 | llvm_unreachable("Unhandled template argument kind" ); |
| 7702 | } |
| 7703 | |
| 7704 | bool ASTContext::isSameTemplateArgument(const TemplateArgument &Arg1, |
| 7705 | const TemplateArgument &Arg2) const { |
| 7706 | if (Arg1.getKind() != Arg2.getKind()) |
| 7707 | return false; |
| 7708 | |
| 7709 | switch (Arg1.getKind()) { |
| 7710 | case TemplateArgument::Null: |
| 7711 | llvm_unreachable("Comparing NULL template argument" ); |
| 7712 | |
| 7713 | case TemplateArgument::Type: |
| 7714 | return hasSameType(T1: Arg1.getAsType(), T2: Arg2.getAsType()); |
| 7715 | |
| 7716 | case TemplateArgument::Declaration: |
| 7717 | return Arg1.getAsDecl()->getUnderlyingDecl()->getCanonicalDecl() == |
| 7718 | Arg2.getAsDecl()->getUnderlyingDecl()->getCanonicalDecl(); |
| 7719 | |
| 7720 | case TemplateArgument::NullPtr: |
| 7721 | return hasSameType(T1: Arg1.getNullPtrType(), T2: Arg2.getNullPtrType()); |
| 7722 | |
| 7723 | case TemplateArgument::Template: |
| 7724 | case TemplateArgument::TemplateExpansion: |
| 7725 | return getCanonicalTemplateName(Name: Arg1.getAsTemplateOrTemplatePattern()) == |
| 7726 | getCanonicalTemplateName(Name: Arg2.getAsTemplateOrTemplatePattern()); |
| 7727 | |
| 7728 | case TemplateArgument::Integral: |
| 7729 | return llvm::APSInt::isSameValue(I1: Arg1.getAsIntegral(), |
| 7730 | I2: Arg2.getAsIntegral()); |
| 7731 | |
| 7732 | case TemplateArgument::StructuralValue: |
| 7733 | return Arg1.structurallyEquals(Other: Arg2); |
| 7734 | |
| 7735 | case TemplateArgument::Expression: { |
| 7736 | llvm::FoldingSetNodeID ID1, ID2; |
| 7737 | Arg1.getAsExpr()->Profile(ID1, *this, /*Canonical=*/true); |
| 7738 | Arg2.getAsExpr()->Profile(ID2, *this, /*Canonical=*/true); |
| 7739 | return ID1 == ID2; |
| 7740 | } |
| 7741 | |
| 7742 | case TemplateArgument::Pack: |
| 7743 | return llvm::equal( |
| 7744 | LRange: Arg1.getPackAsArray(), RRange: Arg2.getPackAsArray(), |
| 7745 | P: [&](const TemplateArgument &Arg1, const TemplateArgument &Arg2) { |
| 7746 | return isSameTemplateArgument(Arg1, Arg2); |
| 7747 | }); |
| 7748 | } |
| 7749 | |
| 7750 | llvm_unreachable("Unhandled template argument kind" ); |
| 7751 | } |
| 7752 | |
| 7753 | NestedNameSpecifier * |
| 7754 | ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { |
| 7755 | if (!NNS) |
| 7756 | return nullptr; |
| 7757 | |
| 7758 | switch (NNS->getKind()) { |
| 7759 | case NestedNameSpecifier::Identifier: |
| 7760 | // Canonicalize the prefix but keep the identifier the same. |
| 7761 | return NestedNameSpecifier::Create(Context: *this, |
| 7762 | Prefix: getCanonicalNestedNameSpecifier(NNS: NNS->getPrefix()), |
| 7763 | II: NNS->getAsIdentifier()); |
| 7764 | |
| 7765 | case NestedNameSpecifier::Namespace: |
| 7766 | // A namespace is canonical; build a nested-name-specifier with |
| 7767 | // this namespace and no prefix. |
| 7768 | return NestedNameSpecifier::Create(*this, nullptr, |
| 7769 | NNS->getAsNamespace()->getFirstDecl()); |
| 7770 | |
| 7771 | case NestedNameSpecifier::NamespaceAlias: |
| 7772 | // A namespace is canonical; build a nested-name-specifier with |
| 7773 | // this namespace and no prefix. |
| 7774 | return NestedNameSpecifier::Create( |
| 7775 | *this, nullptr, |
| 7776 | NNS->getAsNamespaceAlias()->getNamespace()->getFirstDecl()); |
| 7777 | |
| 7778 | // The difference between TypeSpec and TypeSpecWithTemplate is that the |
| 7779 | // latter will have the 'template' keyword when printed. |
| 7780 | case NestedNameSpecifier::TypeSpec: { |
| 7781 | const Type *T = getCanonicalType(T: NNS->getAsType()); |
| 7782 | |
| 7783 | // If we have some kind of dependent-named type (e.g., "typename T::type"), |
| 7784 | // break it apart into its prefix and identifier, then reconsititute those |
| 7785 | // as the canonical nested-name-specifier. This is required to canonicalize |
| 7786 | // a dependent nested-name-specifier involving typedefs of dependent-name |
| 7787 | // types, e.g., |
| 7788 | // typedef typename T::type T1; |
| 7789 | // typedef typename T1::type T2; |
| 7790 | if (const auto *DNT = T->getAs<DependentNameType>()) |
| 7791 | return NestedNameSpecifier::Create(Context: *this, Prefix: DNT->getQualifier(), |
| 7792 | II: DNT->getIdentifier()); |
| 7793 | if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>()) { |
| 7794 | const DependentTemplateStorage &DTN = DTST->getDependentTemplateName(); |
| 7795 | QualType NewT = getDependentTemplateSpecializationType( |
| 7796 | Keyword: ElaboratedTypeKeyword::None, |
| 7797 | Name: {/*NNS=*/nullptr, DTN.getName(), /*HasTemplateKeyword=*/true}, |
| 7798 | Args: DTST->template_arguments(), /*IsCanonical=*/true); |
| 7799 | assert(NewT.isCanonical()); |
| 7800 | NestedNameSpecifier *Prefix = DTN.getQualifier(); |
| 7801 | if (!Prefix) |
| 7802 | Prefix = getCanonicalNestedNameSpecifier(NNS: NNS->getPrefix()); |
| 7803 | return NestedNameSpecifier::Create(Context: *this, Prefix, T: NewT.getTypePtr()); |
| 7804 | } |
| 7805 | return NestedNameSpecifier::Create(Context: *this, Prefix: nullptr, T); |
| 7806 | } |
| 7807 | |
| 7808 | case NestedNameSpecifier::Global: |
| 7809 | case NestedNameSpecifier::Super: |
| 7810 | // The global specifier and __super specifer are canonical and unique. |
| 7811 | return NNS; |
| 7812 | } |
| 7813 | |
| 7814 | llvm_unreachable("Invalid NestedNameSpecifier::Kind!" ); |
| 7815 | } |
| 7816 | |
| 7817 | const ArrayType *ASTContext::getAsArrayType(QualType T) const { |
| 7818 | // Handle the non-qualified case efficiently. |
| 7819 | if (!T.hasLocalQualifiers()) { |
| 7820 | // Handle the common positive case fast. |
| 7821 | if (const auto *AT = dyn_cast<ArrayType>(Val&: T)) |
| 7822 | return AT; |
| 7823 | } |
| 7824 | |
| 7825 | // Handle the common negative case fast. |
| 7826 | if (!isa<ArrayType>(Val: T.getCanonicalType())) |
| 7827 | return nullptr; |
| 7828 | |
| 7829 | // Apply any qualifiers from the array type to the element type. This |
| 7830 | // implements C99 6.7.3p8: "If the specification of an array type includes |
| 7831 | // any type qualifiers, the element type is so qualified, not the array type." |
| 7832 | |
| 7833 | // If we get here, we either have type qualifiers on the type, or we have |
| 7834 | // sugar such as a typedef in the way. If we have type qualifiers on the type |
| 7835 | // we must propagate them down into the element type. |
| 7836 | |
| 7837 | SplitQualType split = T.getSplitDesugaredType(); |
| 7838 | Qualifiers qs = split.Quals; |
| 7839 | |
| 7840 | // If we have a simple case, just return now. |
| 7841 | const auto *ATy = dyn_cast<ArrayType>(Val: split.Ty); |
| 7842 | if (!ATy || qs.empty()) |
| 7843 | return ATy; |
| 7844 | |
| 7845 | // Otherwise, we have an array and we have qualifiers on it. Push the |
| 7846 | // qualifiers into the array element type and return a new array type. |
| 7847 | QualType NewEltTy = getQualifiedType(T: ATy->getElementType(), Qs: qs); |
| 7848 | |
| 7849 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: ATy)) |
| 7850 | return cast<ArrayType>(getConstantArrayType(EltTy: NewEltTy, ArySizeIn: CAT->getSize(), |
| 7851 | SizeExpr: CAT->getSizeExpr(), |
| 7852 | ASM: CAT->getSizeModifier(), |
| 7853 | IndexTypeQuals: CAT->getIndexTypeCVRQualifiers())); |
| 7854 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(Val: ATy)) |
| 7855 | return cast<ArrayType>(getIncompleteArrayType(elementType: NewEltTy, |
| 7856 | ASM: IAT->getSizeModifier(), |
| 7857 | elementTypeQuals: IAT->getIndexTypeCVRQualifiers())); |
| 7858 | |
| 7859 | if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(Val: ATy)) |
| 7860 | return cast<ArrayType>(getDependentSizedArrayType( |
| 7861 | elementType: NewEltTy, numElements: DSAT->getSizeExpr(), ASM: DSAT->getSizeModifier(), |
| 7862 | elementTypeQuals: DSAT->getIndexTypeCVRQualifiers())); |
| 7863 | |
| 7864 | const auto *VAT = cast<VariableArrayType>(Val: ATy); |
| 7865 | return cast<ArrayType>( |
| 7866 | getVariableArrayType(EltTy: NewEltTy, NumElts: VAT->getSizeExpr(), ASM: VAT->getSizeModifier(), |
| 7867 | IndexTypeQuals: VAT->getIndexTypeCVRQualifiers())); |
| 7868 | } |
| 7869 | |
| 7870 | QualType ASTContext::getAdjustedParameterType(QualType T) const { |
| 7871 | if (getLangOpts().HLSL && T->isConstantArrayType()) |
| 7872 | return getArrayParameterType(Ty: T); |
| 7873 | if (T->isArrayType() || T->isFunctionType()) |
| 7874 | return getDecayedType(T); |
| 7875 | return T; |
| 7876 | } |
| 7877 | |
| 7878 | QualType ASTContext::getSignatureParameterType(QualType T) const { |
| 7879 | T = getVariableArrayDecayedType(type: T); |
| 7880 | T = getAdjustedParameterType(T); |
| 7881 | return T.getUnqualifiedType(); |
| 7882 | } |
| 7883 | |
| 7884 | QualType ASTContext::getExceptionObjectType(QualType T) const { |
| 7885 | // C++ [except.throw]p3: |
| 7886 | // A throw-expression initializes a temporary object, called the exception |
| 7887 | // object, the type of which is determined by removing any top-level |
| 7888 | // cv-qualifiers from the static type of the operand of throw and adjusting |
| 7889 | // the type from "array of T" or "function returning T" to "pointer to T" |
| 7890 | // or "pointer to function returning T", [...] |
| 7891 | T = getVariableArrayDecayedType(type: T); |
| 7892 | if (T->isArrayType() || T->isFunctionType()) |
| 7893 | T = getDecayedType(T); |
| 7894 | return T.getUnqualifiedType(); |
| 7895 | } |
| 7896 | |
| 7897 | /// getArrayDecayedType - Return the properly qualified result of decaying the |
| 7898 | /// specified array type to a pointer. This operation is non-trivial when |
| 7899 | /// handling typedefs etc. The canonical type of "T" must be an array type, |
| 7900 | /// this returns a pointer to a properly qualified element of the array. |
| 7901 | /// |
| 7902 | /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. |
| 7903 | QualType ASTContext::getArrayDecayedType(QualType Ty) const { |
| 7904 | // Get the element type with 'getAsArrayType' so that we don't lose any |
| 7905 | // typedefs in the element type of the array. This also handles propagation |
| 7906 | // of type qualifiers from the array type into the element type if present |
| 7907 | // (C99 6.7.3p8). |
| 7908 | const ArrayType *PrettyArrayType = getAsArrayType(T: Ty); |
| 7909 | assert(PrettyArrayType && "Not an array type!" ); |
| 7910 | |
| 7911 | QualType PtrTy = getPointerType(T: PrettyArrayType->getElementType()); |
| 7912 | |
| 7913 | // int x[restrict 4] -> int *restrict |
| 7914 | QualType Result = getQualifiedType(T: PtrTy, |
| 7915 | Qs: PrettyArrayType->getIndexTypeQualifiers()); |
| 7916 | |
| 7917 | // int x[_Nullable] -> int * _Nullable |
| 7918 | if (auto Nullability = Ty->getNullability()) { |
| 7919 | Result = const_cast<ASTContext *>(this)->getAttributedType(nullability: *Nullability, |
| 7920 | modifiedType: Result, equivalentType: Result); |
| 7921 | } |
| 7922 | return Result; |
| 7923 | } |
| 7924 | |
| 7925 | QualType ASTContext::getBaseElementType(const ArrayType *array) const { |
| 7926 | return getBaseElementType(QT: array->getElementType()); |
| 7927 | } |
| 7928 | |
| 7929 | QualType ASTContext::getBaseElementType(QualType type) const { |
| 7930 | Qualifiers qs; |
| 7931 | while (true) { |
| 7932 | SplitQualType split = type.getSplitDesugaredType(); |
| 7933 | const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); |
| 7934 | if (!array) break; |
| 7935 | |
| 7936 | type = array->getElementType(); |
| 7937 | qs.addConsistentQualifiers(qs: split.Quals); |
| 7938 | } |
| 7939 | |
| 7940 | return getQualifiedType(T: type, Qs: qs); |
| 7941 | } |
| 7942 | |
| 7943 | /// getConstantArrayElementCount - Returns number of constant array elements. |
| 7944 | uint64_t |
| 7945 | ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { |
| 7946 | uint64_t ElementCount = 1; |
| 7947 | do { |
| 7948 | ElementCount *= CA->getZExtSize(); |
| 7949 | CA = dyn_cast_or_null<ConstantArrayType>( |
| 7950 | CA->getElementType()->getAsArrayTypeUnsafe()); |
| 7951 | } while (CA); |
| 7952 | return ElementCount; |
| 7953 | } |
| 7954 | |
| 7955 | uint64_t ASTContext::getArrayInitLoopExprElementCount( |
| 7956 | const ArrayInitLoopExpr *AILE) const { |
| 7957 | if (!AILE) |
| 7958 | return 0; |
| 7959 | |
| 7960 | uint64_t ElementCount = 1; |
| 7961 | |
| 7962 | do { |
| 7963 | ElementCount *= AILE->getArraySize().getZExtValue(); |
| 7964 | AILE = dyn_cast<ArrayInitLoopExpr>(Val: AILE->getSubExpr()); |
| 7965 | } while (AILE); |
| 7966 | |
| 7967 | return ElementCount; |
| 7968 | } |
| 7969 | |
| 7970 | /// getFloatingRank - Return a relative rank for floating point types. |
| 7971 | /// This routine will assert if passed a built-in type that isn't a float. |
| 7972 | static FloatingRank getFloatingRank(QualType T) { |
| 7973 | if (const auto *CT = T->getAs<ComplexType>()) |
| 7974 | return getFloatingRank(T: CT->getElementType()); |
| 7975 | |
| 7976 | switch (T->castAs<BuiltinType>()->getKind()) { |
| 7977 | default: llvm_unreachable("getFloatingRank(): not a floating type" ); |
| 7978 | case BuiltinType::Float16: return Float16Rank; |
| 7979 | case BuiltinType::Half: return HalfRank; |
| 7980 | case BuiltinType::Float: return FloatRank; |
| 7981 | case BuiltinType::Double: return DoubleRank; |
| 7982 | case BuiltinType::LongDouble: return LongDoubleRank; |
| 7983 | case BuiltinType::Float128: return Float128Rank; |
| 7984 | case BuiltinType::BFloat16: return BFloat16Rank; |
| 7985 | case BuiltinType::Ibm128: return Ibm128Rank; |
| 7986 | } |
| 7987 | } |
| 7988 | |
| 7989 | /// getFloatingTypeOrder - Compare the rank of the two specified floating |
| 7990 | /// point types, ignoring the domain of the type (i.e. 'double' == |
| 7991 | /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| 7992 | /// LHS < RHS, return -1. |
| 7993 | int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { |
| 7994 | FloatingRank LHSR = getFloatingRank(T: LHS); |
| 7995 | FloatingRank RHSR = getFloatingRank(T: RHS); |
| 7996 | |
| 7997 | if (LHSR == RHSR) |
| 7998 | return 0; |
| 7999 | if (LHSR > RHSR) |
| 8000 | return 1; |
| 8001 | return -1; |
| 8002 | } |
| 8003 | |
| 8004 | int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const { |
| 8005 | if (&getFloatTypeSemantics(T: LHS) == &getFloatTypeSemantics(T: RHS)) |
| 8006 | return 0; |
| 8007 | return getFloatingTypeOrder(LHS, RHS); |
| 8008 | } |
| 8009 | |
| 8010 | /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
| 8011 | /// routine will assert if passed a built-in type that isn't an integer or enum, |
| 8012 | /// or if it is not canonicalized. |
| 8013 | unsigned ASTContext::getIntegerRank(const Type *T) const { |
| 8014 | assert(T->isCanonicalUnqualified() && "T should be canonicalized" ); |
| 8015 | |
| 8016 | // Results in this 'losing' to any type of the same size, but winning if |
| 8017 | // larger. |
| 8018 | if (const auto *EIT = dyn_cast<BitIntType>(Val: T)) |
| 8019 | return 0 + (EIT->getNumBits() << 3); |
| 8020 | |
| 8021 | switch (cast<BuiltinType>(Val: T)->getKind()) { |
| 8022 | default: llvm_unreachable("getIntegerRank(): not a built-in integer" ); |
| 8023 | case BuiltinType::Bool: |
| 8024 | return 1 + (getIntWidth(BoolTy) << 3); |
| 8025 | case BuiltinType::Char_S: |
| 8026 | case BuiltinType::Char_U: |
| 8027 | case BuiltinType::SChar: |
| 8028 | case BuiltinType::UChar: |
| 8029 | return 2 + (getIntWidth(CharTy) << 3); |
| 8030 | case BuiltinType::Short: |
| 8031 | case BuiltinType::UShort: |
| 8032 | return 3 + (getIntWidth(ShortTy) << 3); |
| 8033 | case BuiltinType::Int: |
| 8034 | case BuiltinType::UInt: |
| 8035 | return 4 + (getIntWidth(IntTy) << 3); |
| 8036 | case BuiltinType::Long: |
| 8037 | case BuiltinType::ULong: |
| 8038 | return 5 + (getIntWidth(LongTy) << 3); |
| 8039 | case BuiltinType::LongLong: |
| 8040 | case BuiltinType::ULongLong: |
| 8041 | return 6 + (getIntWidth(LongLongTy) << 3); |
| 8042 | case BuiltinType::Int128: |
| 8043 | case BuiltinType::UInt128: |
| 8044 | return 7 + (getIntWidth(Int128Ty) << 3); |
| 8045 | |
| 8046 | // "The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of |
| 8047 | // their underlying types" [c++20 conv.rank] |
| 8048 | case BuiltinType::Char8: |
| 8049 | return getIntegerRank(UnsignedCharTy.getTypePtr()); |
| 8050 | case BuiltinType::Char16: |
| 8051 | return getIntegerRank( |
| 8052 | T: getFromTargetType(Type: Target->getChar16Type()).getTypePtr()); |
| 8053 | case BuiltinType::Char32: |
| 8054 | return getIntegerRank( |
| 8055 | T: getFromTargetType(Type: Target->getChar32Type()).getTypePtr()); |
| 8056 | case BuiltinType::WChar_S: |
| 8057 | case BuiltinType::WChar_U: |
| 8058 | return getIntegerRank( |
| 8059 | T: getFromTargetType(Type: Target->getWCharType()).getTypePtr()); |
| 8060 | } |
| 8061 | } |
| 8062 | |
| 8063 | /// Whether this is a promotable bitfield reference according |
| 8064 | /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). |
| 8065 | /// |
| 8066 | /// \returns the type this bit-field will promote to, or NULL if no |
| 8067 | /// promotion occurs. |
| 8068 | QualType ASTContext::isPromotableBitField(Expr *E) const { |
| 8069 | if (E->isTypeDependent() || E->isValueDependent()) |
| 8070 | return {}; |
| 8071 | |
| 8072 | // C++ [conv.prom]p5: |
| 8073 | // If the bit-field has an enumerated type, it is treated as any other |
| 8074 | // value of that type for promotion purposes. |
| 8075 | if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType()) |
| 8076 | return {}; |
| 8077 | |
| 8078 | // FIXME: We should not do this unless E->refersToBitField() is true. This |
| 8079 | // matters in C where getSourceBitField() will find bit-fields for various |
| 8080 | // cases where the source expression is not a bit-field designator. |
| 8081 | |
| 8082 | FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? |
| 8083 | if (!Field) |
| 8084 | return {}; |
| 8085 | |
| 8086 | QualType FT = Field->getType(); |
| 8087 | |
| 8088 | uint64_t BitWidth = Field->getBitWidthValue(); |
| 8089 | uint64_t IntSize = getTypeSize(IntTy); |
| 8090 | // C++ [conv.prom]p5: |
| 8091 | // A prvalue for an integral bit-field can be converted to a prvalue of type |
| 8092 | // int if int can represent all the values of the bit-field; otherwise, it |
| 8093 | // can be converted to unsigned int if unsigned int can represent all the |
| 8094 | // values of the bit-field. If the bit-field is larger yet, no integral |
| 8095 | // promotion applies to it. |
| 8096 | // C11 6.3.1.1/2: |
| 8097 | // [For a bit-field of type _Bool, int, signed int, or unsigned int:] |
| 8098 | // If an int can represent all values of the original type (as restricted by |
| 8099 | // the width, for a bit-field), the value is converted to an int; otherwise, |
| 8100 | // it is converted to an unsigned int. |
| 8101 | // |
| 8102 | // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. |
| 8103 | // We perform that promotion here to match GCC and C++. |
| 8104 | // FIXME: C does not permit promotion of an enum bit-field whose rank is |
| 8105 | // greater than that of 'int'. We perform that promotion to match GCC. |
| 8106 | // |
| 8107 | // C23 6.3.1.1p2: |
| 8108 | // The value from a bit-field of a bit-precise integer type is converted to |
| 8109 | // the corresponding bit-precise integer type. (The rest is the same as in |
| 8110 | // C11.) |
| 8111 | if (QualType QT = Field->getType(); QT->isBitIntType()) |
| 8112 | return QT; |
| 8113 | |
| 8114 | if (BitWidth < IntSize) |
| 8115 | return IntTy; |
| 8116 | |
| 8117 | if (BitWidth == IntSize) |
| 8118 | return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; |
| 8119 | |
| 8120 | // Bit-fields wider than int are not subject to promotions, and therefore act |
| 8121 | // like the base type. GCC has some weird bugs in this area that we |
| 8122 | // deliberately do not follow (GCC follows a pre-standard resolution to |
| 8123 | // C's DR315 which treats bit-width as being part of the type, and this leaks |
| 8124 | // into their semantics in some cases). |
| 8125 | return {}; |
| 8126 | } |
| 8127 | |
| 8128 | /// getPromotedIntegerType - Returns the type that Promotable will |
| 8129 | /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable |
| 8130 | /// integer type. |
| 8131 | QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { |
| 8132 | assert(!Promotable.isNull()); |
| 8133 | assert(isPromotableIntegerType(Promotable)); |
| 8134 | if (const auto *ET = Promotable->getAs<EnumType>()) |
| 8135 | return ET->getDecl()->getPromotionType(); |
| 8136 | |
| 8137 | if (const auto *BT = Promotable->getAs<BuiltinType>()) { |
| 8138 | // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t |
| 8139 | // (3.9.1) can be converted to a prvalue of the first of the following |
| 8140 | // types that can represent all the values of its underlying type: |
| 8141 | // int, unsigned int, long int, unsigned long int, long long int, or |
| 8142 | // unsigned long long int [...] |
| 8143 | // FIXME: Is there some better way to compute this? |
| 8144 | if (BT->getKind() == BuiltinType::WChar_S || |
| 8145 | BT->getKind() == BuiltinType::WChar_U || |
| 8146 | BT->getKind() == BuiltinType::Char8 || |
| 8147 | BT->getKind() == BuiltinType::Char16 || |
| 8148 | BT->getKind() == BuiltinType::Char32) { |
| 8149 | bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; |
| 8150 | uint64_t FromSize = getTypeSize(BT); |
| 8151 | QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, |
| 8152 | LongLongTy, UnsignedLongLongTy }; |
| 8153 | for (const auto &PT : PromoteTypes) { |
| 8154 | uint64_t ToSize = getTypeSize(PT); |
| 8155 | if (FromSize < ToSize || |
| 8156 | (FromSize == ToSize && FromIsSigned == PT->isSignedIntegerType())) |
| 8157 | return PT; |
| 8158 | } |
| 8159 | llvm_unreachable("char type should fit into long long" ); |
| 8160 | } |
| 8161 | } |
| 8162 | |
| 8163 | // At this point, we should have a signed or unsigned integer type. |
| 8164 | if (Promotable->isSignedIntegerType()) |
| 8165 | return IntTy; |
| 8166 | uint64_t PromotableSize = getIntWidth(T: Promotable); |
| 8167 | uint64_t IntSize = getIntWidth(IntTy); |
| 8168 | assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); |
| 8169 | return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; |
| 8170 | } |
| 8171 | |
| 8172 | /// Recurses in pointer/array types until it finds an objc retainable |
| 8173 | /// type and returns its ownership. |
| 8174 | Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { |
| 8175 | while (!T.isNull()) { |
| 8176 | if (T.getObjCLifetime() != Qualifiers::OCL_None) |
| 8177 | return T.getObjCLifetime(); |
| 8178 | if (T->isArrayType()) |
| 8179 | T = getBaseElementType(type: T); |
| 8180 | else if (const auto *PT = T->getAs<PointerType>()) |
| 8181 | T = PT->getPointeeType(); |
| 8182 | else if (const auto *RT = T->getAs<ReferenceType>()) |
| 8183 | T = RT->getPointeeType(); |
| 8184 | else |
| 8185 | break; |
| 8186 | } |
| 8187 | |
| 8188 | return Qualifiers::OCL_None; |
| 8189 | } |
| 8190 | |
| 8191 | static const Type *getIntegerTypeForEnum(const EnumType *ET) { |
| 8192 | // Incomplete enum types are not treated as integer types. |
| 8193 | // FIXME: In C++, enum types are never integer types. |
| 8194 | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
| 8195 | return ET->getDecl()->getIntegerType().getTypePtr(); |
| 8196 | return nullptr; |
| 8197 | } |
| 8198 | |
| 8199 | /// getIntegerTypeOrder - Returns the highest ranked integer type: |
| 8200 | /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| 8201 | /// LHS < RHS, return -1. |
| 8202 | int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { |
| 8203 | const Type *LHSC = getCanonicalType(T: LHS).getTypePtr(); |
| 8204 | const Type *RHSC = getCanonicalType(T: RHS).getTypePtr(); |
| 8205 | |
| 8206 | // Unwrap enums to their underlying type. |
| 8207 | if (const auto *ET = dyn_cast<EnumType>(Val: LHSC)) |
| 8208 | LHSC = getIntegerTypeForEnum(ET); |
| 8209 | if (const auto *ET = dyn_cast<EnumType>(Val: RHSC)) |
| 8210 | RHSC = getIntegerTypeForEnum(ET); |
| 8211 | |
| 8212 | if (LHSC == RHSC) return 0; |
| 8213 | |
| 8214 | bool LHSUnsigned = LHSC->isUnsignedIntegerType(); |
| 8215 | bool RHSUnsigned = RHSC->isUnsignedIntegerType(); |
| 8216 | |
| 8217 | unsigned LHSRank = getIntegerRank(T: LHSC); |
| 8218 | unsigned RHSRank = getIntegerRank(T: RHSC); |
| 8219 | |
| 8220 | if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. |
| 8221 | if (LHSRank == RHSRank) return 0; |
| 8222 | return LHSRank > RHSRank ? 1 : -1; |
| 8223 | } |
| 8224 | |
| 8225 | // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. |
| 8226 | if (LHSUnsigned) { |
| 8227 | // If the unsigned [LHS] type is larger, return it. |
| 8228 | if (LHSRank >= RHSRank) |
| 8229 | return 1; |
| 8230 | |
| 8231 | // If the signed type can represent all values of the unsigned type, it |
| 8232 | // wins. Because we are dealing with 2's complement and types that are |
| 8233 | // powers of two larger than each other, this is always safe. |
| 8234 | return -1; |
| 8235 | } |
| 8236 | |
| 8237 | // If the unsigned [RHS] type is larger, return it. |
| 8238 | if (RHSRank >= LHSRank) |
| 8239 | return -1; |
| 8240 | |
| 8241 | // If the signed type can represent all values of the unsigned type, it |
| 8242 | // wins. Because we are dealing with 2's complement and types that are |
| 8243 | // powers of two larger than each other, this is always safe. |
| 8244 | return 1; |
| 8245 | } |
| 8246 | |
| 8247 | TypedefDecl *ASTContext::getCFConstantStringDecl() const { |
| 8248 | if (CFConstantStringTypeDecl) |
| 8249 | return CFConstantStringTypeDecl; |
| 8250 | |
| 8251 | assert(!CFConstantStringTagDecl && |
| 8252 | "tag and typedef should be initialized together" ); |
| 8253 | CFConstantStringTagDecl = buildImplicitRecord(Name: "__NSConstantString_tag" ); |
| 8254 | CFConstantStringTagDecl->startDefinition(); |
| 8255 | |
| 8256 | struct { |
| 8257 | QualType Type; |
| 8258 | const char *Name; |
| 8259 | } Fields[5]; |
| 8260 | unsigned Count = 0; |
| 8261 | |
| 8262 | /// Objective-C ABI |
| 8263 | /// |
| 8264 | /// typedef struct __NSConstantString_tag { |
| 8265 | /// const int *isa; |
| 8266 | /// int flags; |
| 8267 | /// const char *str; |
| 8268 | /// long length; |
| 8269 | /// } __NSConstantString; |
| 8270 | /// |
| 8271 | /// Swift ABI (4.1, 4.2) |
| 8272 | /// |
| 8273 | /// typedef struct __NSConstantString_tag { |
| 8274 | /// uintptr_t _cfisa; |
| 8275 | /// uintptr_t _swift_rc; |
| 8276 | /// _Atomic(uint64_t) _cfinfoa; |
| 8277 | /// const char *_ptr; |
| 8278 | /// uint32_t _length; |
| 8279 | /// } __NSConstantString; |
| 8280 | /// |
| 8281 | /// Swift ABI (5.0) |
| 8282 | /// |
| 8283 | /// typedef struct __NSConstantString_tag { |
| 8284 | /// uintptr_t _cfisa; |
| 8285 | /// uintptr_t _swift_rc; |
| 8286 | /// _Atomic(uint64_t) _cfinfoa; |
| 8287 | /// const char *_ptr; |
| 8288 | /// uintptr_t _length; |
| 8289 | /// } __NSConstantString; |
| 8290 | |
| 8291 | const auto CFRuntime = getLangOpts().CFRuntime; |
| 8292 | if (static_cast<unsigned>(CFRuntime) < |
| 8293 | static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) { |
| 8294 | Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" }; |
| 8295 | Fields[Count++] = { IntTy, "flags" }; |
| 8296 | Fields[Count++] = { getPointerType(CharTy.withConst()), "str" }; |
| 8297 | Fields[Count++] = { LongTy, "length" }; |
| 8298 | } else { |
| 8299 | Fields[Count++] = { getUIntPtrType(), "_cfisa" }; |
| 8300 | Fields[Count++] = { getUIntPtrType(), "_swift_rc" }; |
| 8301 | Fields[Count++] = { getFromTargetType(Type: Target->getUInt64Type()), "_swift_rc" }; |
| 8302 | Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" }; |
| 8303 | if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || |
| 8304 | CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) |
| 8305 | Fields[Count++] = { IntTy, "_ptr" }; |
| 8306 | else |
| 8307 | Fields[Count++] = { getUIntPtrType(), "_ptr" }; |
| 8308 | } |
| 8309 | |
| 8310 | // Create fields |
| 8311 | for (unsigned i = 0; i < Count; ++i) { |
| 8312 | FieldDecl *Field = |
| 8313 | FieldDecl::Create(C: *this, DC: CFConstantStringTagDecl, StartLoc: SourceLocation(), |
| 8314 | IdLoc: SourceLocation(), Id: &Idents.get(Name: Fields[i].Name), |
| 8315 | T: Fields[i].Type, /*TInfo=*/nullptr, |
| 8316 | /*BitWidth=*/BW: nullptr, /*Mutable=*/false, InitStyle: ICIS_NoInit); |
| 8317 | Field->setAccess(AS_public); |
| 8318 | CFConstantStringTagDecl->addDecl(Field); |
| 8319 | } |
| 8320 | |
| 8321 | CFConstantStringTagDecl->completeDefinition(); |
| 8322 | // This type is designed to be compatible with NSConstantString, but cannot |
| 8323 | // use the same name, since NSConstantString is an interface. |
| 8324 | auto tagType = getTagDeclType(CFConstantStringTagDecl); |
| 8325 | CFConstantStringTypeDecl = |
| 8326 | buildImplicitTypedef(T: tagType, Name: "__NSConstantString" ); |
| 8327 | |
| 8328 | return CFConstantStringTypeDecl; |
| 8329 | } |
| 8330 | |
| 8331 | RecordDecl *ASTContext::getCFConstantStringTagDecl() const { |
| 8332 | if (!CFConstantStringTagDecl) |
| 8333 | getCFConstantStringDecl(); // Build the tag and the typedef. |
| 8334 | return CFConstantStringTagDecl; |
| 8335 | } |
| 8336 | |
| 8337 | // getCFConstantStringType - Return the type used for constant CFStrings. |
| 8338 | QualType ASTContext::getCFConstantStringType() const { |
| 8339 | return getTypedefType(getCFConstantStringDecl()); |
| 8340 | } |
| 8341 | |
| 8342 | QualType ASTContext::getObjCSuperType() const { |
| 8343 | if (ObjCSuperType.isNull()) { |
| 8344 | RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord(Name: "objc_super" ); |
| 8345 | getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl); |
| 8346 | ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); |
| 8347 | } |
| 8348 | return ObjCSuperType; |
| 8349 | } |
| 8350 | |
| 8351 | void ASTContext::setCFConstantStringType(QualType T) { |
| 8352 | const auto *TD = T->castAs<TypedefType>(); |
| 8353 | CFConstantStringTypeDecl = cast<TypedefDecl>(Val: TD->getDecl()); |
| 8354 | const auto *TagType = TD->castAs<RecordType>(); |
| 8355 | CFConstantStringTagDecl = TagType->getDecl(); |
| 8356 | } |
| 8357 | |
| 8358 | QualType ASTContext::getBlockDescriptorType() const { |
| 8359 | if (BlockDescriptorType) |
| 8360 | return getTagDeclType(BlockDescriptorType); |
| 8361 | |
| 8362 | RecordDecl *RD; |
| 8363 | // FIXME: Needs the FlagAppleBlock bit. |
| 8364 | RD = buildImplicitRecord(Name: "__block_descriptor" ); |
| 8365 | RD->startDefinition(); |
| 8366 | |
| 8367 | QualType FieldTypes[] = { |
| 8368 | UnsignedLongTy, |
| 8369 | UnsignedLongTy, |
| 8370 | }; |
| 8371 | |
| 8372 | static const char *const FieldNames[] = { |
| 8373 | "reserved" , |
| 8374 | "Size" |
| 8375 | }; |
| 8376 | |
| 8377 | for (size_t i = 0; i < 2; ++i) { |
| 8378 | FieldDecl *Field = FieldDecl::Create( |
| 8379 | *this, RD, SourceLocation(), SourceLocation(), |
| 8380 | &Idents.get(Name: FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, |
| 8381 | /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); |
| 8382 | Field->setAccess(AS_public); |
| 8383 | RD->addDecl(Field); |
| 8384 | } |
| 8385 | |
| 8386 | RD->completeDefinition(); |
| 8387 | |
| 8388 | BlockDescriptorType = RD; |
| 8389 | |
| 8390 | return getTagDeclType(BlockDescriptorType); |
| 8391 | } |
| 8392 | |
| 8393 | QualType ASTContext::getBlockDescriptorExtendedType() const { |
| 8394 | if (BlockDescriptorExtendedType) |
| 8395 | return getTagDeclType(BlockDescriptorExtendedType); |
| 8396 | |
| 8397 | RecordDecl *RD; |
| 8398 | // FIXME: Needs the FlagAppleBlock bit. |
| 8399 | RD = buildImplicitRecord(Name: "__block_descriptor_withcopydispose" ); |
| 8400 | RD->startDefinition(); |
| 8401 | |
| 8402 | QualType FieldTypes[] = { |
| 8403 | UnsignedLongTy, |
| 8404 | UnsignedLongTy, |
| 8405 | getPointerType(VoidPtrTy), |
| 8406 | getPointerType(VoidPtrTy) |
| 8407 | }; |
| 8408 | |
| 8409 | static const char *const FieldNames[] = { |
| 8410 | "reserved" , |
| 8411 | "Size" , |
| 8412 | "CopyFuncPtr" , |
| 8413 | "DestroyFuncPtr" |
| 8414 | }; |
| 8415 | |
| 8416 | for (size_t i = 0; i < 4; ++i) { |
| 8417 | FieldDecl *Field = FieldDecl::Create( |
| 8418 | *this, RD, SourceLocation(), SourceLocation(), |
| 8419 | &Idents.get(Name: FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, |
| 8420 | /*BitWidth=*/nullptr, |
| 8421 | /*Mutable=*/false, ICIS_NoInit); |
| 8422 | Field->setAccess(AS_public); |
| 8423 | RD->addDecl(Field); |
| 8424 | } |
| 8425 | |
| 8426 | RD->completeDefinition(); |
| 8427 | |
| 8428 | BlockDescriptorExtendedType = RD; |
| 8429 | return getTagDeclType(BlockDescriptorExtendedType); |
| 8430 | } |
| 8431 | |
| 8432 | OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const { |
| 8433 | const auto *BT = dyn_cast<BuiltinType>(Val: T); |
| 8434 | |
| 8435 | if (!BT) { |
| 8436 | if (isa<PipeType>(Val: T)) |
| 8437 | return OCLTK_Pipe; |
| 8438 | |
| 8439 | return OCLTK_Default; |
| 8440 | } |
| 8441 | |
| 8442 | switch (BT->getKind()) { |
| 8443 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 8444 | case BuiltinType::Id: \ |
| 8445 | return OCLTK_Image; |
| 8446 | #include "clang/Basic/OpenCLImageTypes.def" |
| 8447 | |
| 8448 | case BuiltinType::OCLClkEvent: |
| 8449 | return OCLTK_ClkEvent; |
| 8450 | |
| 8451 | case BuiltinType::OCLEvent: |
| 8452 | return OCLTK_Event; |
| 8453 | |
| 8454 | case BuiltinType::OCLQueue: |
| 8455 | return OCLTK_Queue; |
| 8456 | |
| 8457 | case BuiltinType::OCLReserveID: |
| 8458 | return OCLTK_ReserveID; |
| 8459 | |
| 8460 | case BuiltinType::OCLSampler: |
| 8461 | return OCLTK_Sampler; |
| 8462 | |
| 8463 | default: |
| 8464 | return OCLTK_Default; |
| 8465 | } |
| 8466 | } |
| 8467 | |
| 8468 | LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const { |
| 8469 | return Target->getOpenCLTypeAddrSpace(TK: getOpenCLTypeKind(T)); |
| 8470 | } |
| 8471 | |
| 8472 | /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" |
| 8473 | /// requires copy/dispose. Note that this must match the logic |
| 8474 | /// in buildByrefHelpers. |
| 8475 | bool ASTContext::BlockRequiresCopying(QualType Ty, |
| 8476 | const VarDecl *D) { |
| 8477 | if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { |
| 8478 | const Expr *copyExpr = getBlockVarCopyInit(VD: D).getCopyExpr(); |
| 8479 | if (!copyExpr && record->hasTrivialDestructor()) return false; |
| 8480 | |
| 8481 | return true; |
| 8482 | } |
| 8483 | |
| 8484 | if (Ty.hasAddressDiscriminatedPointerAuth()) |
| 8485 | return true; |
| 8486 | |
| 8487 | // The block needs copy/destroy helpers if Ty is non-trivial to destructively |
| 8488 | // move or destroy. |
| 8489 | if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType()) |
| 8490 | return true; |
| 8491 | |
| 8492 | if (!Ty->isObjCRetainableType()) return false; |
| 8493 | |
| 8494 | Qualifiers qs = Ty.getQualifiers(); |
| 8495 | |
| 8496 | // If we have lifetime, that dominates. |
| 8497 | if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { |
| 8498 | switch (lifetime) { |
| 8499 | case Qualifiers::OCL_None: llvm_unreachable("impossible" ); |
| 8500 | |
| 8501 | // These are just bits as far as the runtime is concerned. |
| 8502 | case Qualifiers::OCL_ExplicitNone: |
| 8503 | case Qualifiers::OCL_Autoreleasing: |
| 8504 | return false; |
| 8505 | |
| 8506 | // These cases should have been taken care of when checking the type's |
| 8507 | // non-triviality. |
| 8508 | case Qualifiers::OCL_Weak: |
| 8509 | case Qualifiers::OCL_Strong: |
| 8510 | llvm_unreachable("impossible" ); |
| 8511 | } |
| 8512 | llvm_unreachable("fell out of lifetime switch!" ); |
| 8513 | } |
| 8514 | return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || |
| 8515 | Ty->isObjCObjectPointerType()); |
| 8516 | } |
| 8517 | |
| 8518 | bool ASTContext::getByrefLifetime(QualType Ty, |
| 8519 | Qualifiers::ObjCLifetime &LifeTime, |
| 8520 | bool &HasByrefExtendedLayout) const { |
| 8521 | if (!getLangOpts().ObjC || |
| 8522 | getLangOpts().getGC() != LangOptions::NonGC) |
| 8523 | return false; |
| 8524 | |
| 8525 | HasByrefExtendedLayout = false; |
| 8526 | if (Ty->isRecordType()) { |
| 8527 | HasByrefExtendedLayout = true; |
| 8528 | LifeTime = Qualifiers::OCL_None; |
| 8529 | } else if ((LifeTime = Ty.getObjCLifetime())) { |
| 8530 | // Honor the ARC qualifiers. |
| 8531 | } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { |
| 8532 | // The MRR rule. |
| 8533 | LifeTime = Qualifiers::OCL_ExplicitNone; |
| 8534 | } else { |
| 8535 | LifeTime = Qualifiers::OCL_None; |
| 8536 | } |
| 8537 | return true; |
| 8538 | } |
| 8539 | |
| 8540 | CanQualType ASTContext::getNSUIntegerType() const { |
| 8541 | assert(Target && "Expected target to be initialized" ); |
| 8542 | const llvm::Triple &T = Target->getTriple(); |
| 8543 | // Windows is LLP64 rather than LP64 |
| 8544 | if (T.isOSWindows() && T.isArch64Bit()) |
| 8545 | return UnsignedLongLongTy; |
| 8546 | return UnsignedLongTy; |
| 8547 | } |
| 8548 | |
| 8549 | CanQualType ASTContext::getNSIntegerType() const { |
| 8550 | assert(Target && "Expected target to be initialized" ); |
| 8551 | const llvm::Triple &T = Target->getTriple(); |
| 8552 | // Windows is LLP64 rather than LP64 |
| 8553 | if (T.isOSWindows() && T.isArch64Bit()) |
| 8554 | return LongLongTy; |
| 8555 | return LongTy; |
| 8556 | } |
| 8557 | |
| 8558 | TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { |
| 8559 | if (!ObjCInstanceTypeDecl) |
| 8560 | ObjCInstanceTypeDecl = |
| 8561 | buildImplicitTypedef(T: getObjCIdType(), Name: "instancetype" ); |
| 8562 | return ObjCInstanceTypeDecl; |
| 8563 | } |
| 8564 | |
| 8565 | // This returns true if a type has been typedefed to BOOL: |
| 8566 | // typedef <type> BOOL; |
| 8567 | static bool isTypeTypedefedAsBOOL(QualType T) { |
| 8568 | if (const auto *TT = dyn_cast<TypedefType>(Val&: T)) |
| 8569 | if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) |
| 8570 | return II->isStr(Str: "BOOL" ); |
| 8571 | |
| 8572 | return false; |
| 8573 | } |
| 8574 | |
| 8575 | /// getObjCEncodingTypeSize returns size of type for objective-c encoding |
| 8576 | /// purpose. |
| 8577 | CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { |
| 8578 | if (!type->isIncompleteArrayType() && type->isIncompleteType()) |
| 8579 | return CharUnits::Zero(); |
| 8580 | |
| 8581 | CharUnits sz = getTypeSizeInChars(T: type); |
| 8582 | |
| 8583 | // Make all integer and enum types at least as large as an int |
| 8584 | if (sz.isPositive() && type->isIntegralOrEnumerationType()) |
| 8585 | sz = std::max(sz, getTypeSizeInChars(IntTy)); |
| 8586 | // Treat arrays as pointers, since that's how they're passed in. |
| 8587 | else if (type->isArrayType()) |
| 8588 | sz = getTypeSizeInChars(VoidPtrTy); |
| 8589 | return sz; |
| 8590 | } |
| 8591 | |
| 8592 | bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { |
| 8593 | return getTargetInfo().getCXXABI().isMicrosoft() && |
| 8594 | VD->isStaticDataMember() && |
| 8595 | VD->getType()->isIntegralOrEnumerationType() && |
| 8596 | !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); |
| 8597 | } |
| 8598 | |
| 8599 | ASTContext::InlineVariableDefinitionKind |
| 8600 | ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const { |
| 8601 | if (!VD->isInline()) |
| 8602 | return InlineVariableDefinitionKind::None; |
| 8603 | |
| 8604 | // In almost all cases, it's a weak definition. |
| 8605 | auto *First = VD->getFirstDecl(); |
| 8606 | if (First->isInlineSpecified() || !First->isStaticDataMember()) |
| 8607 | return InlineVariableDefinitionKind::Weak; |
| 8608 | |
| 8609 | // If there's a file-context declaration in this translation unit, it's a |
| 8610 | // non-discardable definition. |
| 8611 | for (auto *D : VD->redecls()) |
| 8612 | if (D->getLexicalDeclContext()->isFileContext() && |
| 8613 | !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr())) |
| 8614 | return InlineVariableDefinitionKind::Strong; |
| 8615 | |
| 8616 | // If we've not seen one yet, we don't know. |
| 8617 | return InlineVariableDefinitionKind::WeakUnknown; |
| 8618 | } |
| 8619 | |
| 8620 | static std::string charUnitsToString(const CharUnits &CU) { |
| 8621 | return llvm::itostr(X: CU.getQuantity()); |
| 8622 | } |
| 8623 | |
| 8624 | /// getObjCEncodingForBlock - Return the encoded type for this block |
| 8625 | /// declaration. |
| 8626 | std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { |
| 8627 | std::string S; |
| 8628 | |
| 8629 | const BlockDecl *Decl = Expr->getBlockDecl(); |
| 8630 | QualType BlockTy = |
| 8631 | Expr->getType()->castAs<BlockPointerType>()->getPointeeType(); |
| 8632 | QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType(); |
| 8633 | // Encode result type. |
| 8634 | if (getLangOpts().EncodeExtendedBlockSig) |
| 8635 | getObjCEncodingForMethodParameter(QT: Decl::OBJC_TQ_None, T: BlockReturnTy, S, |
| 8636 | Extended: true /*Extended*/); |
| 8637 | else |
| 8638 | getObjCEncodingForType(T: BlockReturnTy, S); |
| 8639 | // Compute size of all parameters. |
| 8640 | // Start with computing size of a pointer in number of bytes. |
| 8641 | // FIXME: There might(should) be a better way of doing this computation! |
| 8642 | CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); |
| 8643 | CharUnits ParmOffset = PtrSize; |
| 8644 | for (auto *PI : Decl->parameters()) { |
| 8645 | QualType PType = PI->getType(); |
| 8646 | CharUnits sz = getObjCEncodingTypeSize(type: PType); |
| 8647 | if (sz.isZero()) |
| 8648 | continue; |
| 8649 | assert(sz.isPositive() && "BlockExpr - Incomplete param type" ); |
| 8650 | ParmOffset += sz; |
| 8651 | } |
| 8652 | // Size of the argument frame |
| 8653 | S += charUnitsToString(CU: ParmOffset); |
| 8654 | // Block pointer and offset. |
| 8655 | S += "@?0" ; |
| 8656 | |
| 8657 | // Argument types. |
| 8658 | ParmOffset = PtrSize; |
| 8659 | for (auto *PVDecl : Decl->parameters()) { |
| 8660 | QualType PType = PVDecl->getOriginalType(); |
| 8661 | if (const auto *AT = |
| 8662 | dyn_cast<ArrayType>(Val: PType->getCanonicalTypeInternal())) { |
| 8663 | // Use array's original type only if it has known number of |
| 8664 | // elements. |
| 8665 | if (!isa<ConstantArrayType>(Val: AT)) |
| 8666 | PType = PVDecl->getType(); |
| 8667 | } else if (PType->isFunctionType()) |
| 8668 | PType = PVDecl->getType(); |
| 8669 | if (getLangOpts().EncodeExtendedBlockSig) |
| 8670 | getObjCEncodingForMethodParameter(QT: Decl::OBJC_TQ_None, T: PType, |
| 8671 | S, Extended: true /*Extended*/); |
| 8672 | else |
| 8673 | getObjCEncodingForType(T: PType, S); |
| 8674 | S += charUnitsToString(CU: ParmOffset); |
| 8675 | ParmOffset += getObjCEncodingTypeSize(type: PType); |
| 8676 | } |
| 8677 | |
| 8678 | return S; |
| 8679 | } |
| 8680 | |
| 8681 | std::string |
| 8682 | ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const { |
| 8683 | std::string S; |
| 8684 | // Encode result type. |
| 8685 | getObjCEncodingForType(T: Decl->getReturnType(), S); |
| 8686 | CharUnits ParmOffset; |
| 8687 | // Compute size of all parameters. |
| 8688 | for (auto *PI : Decl->parameters()) { |
| 8689 | QualType PType = PI->getType(); |
| 8690 | CharUnits sz = getObjCEncodingTypeSize(type: PType); |
| 8691 | if (sz.isZero()) |
| 8692 | continue; |
| 8693 | |
| 8694 | assert(sz.isPositive() && |
| 8695 | "getObjCEncodingForFunctionDecl - Incomplete param type" ); |
| 8696 | ParmOffset += sz; |
| 8697 | } |
| 8698 | S += charUnitsToString(CU: ParmOffset); |
| 8699 | ParmOffset = CharUnits::Zero(); |
| 8700 | |
| 8701 | // Argument types. |
| 8702 | for (auto *PVDecl : Decl->parameters()) { |
| 8703 | QualType PType = PVDecl->getOriginalType(); |
| 8704 | if (const auto *AT = |
| 8705 | dyn_cast<ArrayType>(Val: PType->getCanonicalTypeInternal())) { |
| 8706 | // Use array's original type only if it has known number of |
| 8707 | // elements. |
| 8708 | if (!isa<ConstantArrayType>(Val: AT)) |
| 8709 | PType = PVDecl->getType(); |
| 8710 | } else if (PType->isFunctionType()) |
| 8711 | PType = PVDecl->getType(); |
| 8712 | getObjCEncodingForType(T: PType, S); |
| 8713 | S += charUnitsToString(CU: ParmOffset); |
| 8714 | ParmOffset += getObjCEncodingTypeSize(type: PType); |
| 8715 | } |
| 8716 | |
| 8717 | return S; |
| 8718 | } |
| 8719 | |
| 8720 | /// getObjCEncodingForMethodParameter - Return the encoded type for a single |
| 8721 | /// method parameter or return type. If Extended, include class names and |
| 8722 | /// block object types. |
| 8723 | void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, |
| 8724 | QualType T, std::string& S, |
| 8725 | bool Extended) const { |
| 8726 | // Encode type qualifier, 'in', 'inout', etc. for the parameter. |
| 8727 | getObjCEncodingForTypeQualifier(QT, S); |
| 8728 | // Encode parameter type. |
| 8729 | ObjCEncOptions Options = ObjCEncOptions() |
| 8730 | .setExpandPointedToStructures() |
| 8731 | .setExpandStructures() |
| 8732 | .setIsOutermostType(); |
| 8733 | if (Extended) |
| 8734 | Options.setEncodeBlockParameters().setEncodeClassNames(); |
| 8735 | getObjCEncodingForTypeImpl(t: T, S, Options, /*Field=*/nullptr); |
| 8736 | } |
| 8737 | |
| 8738 | /// getObjCEncodingForMethodDecl - Return the encoded type for this method |
| 8739 | /// declaration. |
| 8740 | std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, |
| 8741 | bool Extended) const { |
| 8742 | // FIXME: This is not very efficient. |
| 8743 | // Encode return type. |
| 8744 | std::string S; |
| 8745 | getObjCEncodingForMethodParameter(QT: Decl->getObjCDeclQualifier(), |
| 8746 | T: Decl->getReturnType(), S, Extended); |
| 8747 | // Compute size of all parameters. |
| 8748 | // Start with computing size of a pointer in number of bytes. |
| 8749 | // FIXME: There might(should) be a better way of doing this computation! |
| 8750 | CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); |
| 8751 | // The first two arguments (self and _cmd) are pointers; account for |
| 8752 | // their size. |
| 8753 | CharUnits ParmOffset = 2 * PtrSize; |
| 8754 | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
| 8755 | E = Decl->sel_param_end(); PI != E; ++PI) { |
| 8756 | QualType PType = (*PI)->getType(); |
| 8757 | CharUnits sz = getObjCEncodingTypeSize(type: PType); |
| 8758 | if (sz.isZero()) |
| 8759 | continue; |
| 8760 | |
| 8761 | assert(sz.isPositive() && |
| 8762 | "getObjCEncodingForMethodDecl - Incomplete param type" ); |
| 8763 | ParmOffset += sz; |
| 8764 | } |
| 8765 | S += charUnitsToString(CU: ParmOffset); |
| 8766 | S += "@0:" ; |
| 8767 | S += charUnitsToString(CU: PtrSize); |
| 8768 | |
| 8769 | // Argument types. |
| 8770 | ParmOffset = 2 * PtrSize; |
| 8771 | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
| 8772 | E = Decl->sel_param_end(); PI != E; ++PI) { |
| 8773 | const ParmVarDecl *PVDecl = *PI; |
| 8774 | QualType PType = PVDecl->getOriginalType(); |
| 8775 | if (const auto *AT = |
| 8776 | dyn_cast<ArrayType>(Val: PType->getCanonicalTypeInternal())) { |
| 8777 | // Use array's original type only if it has known number of |
| 8778 | // elements. |
| 8779 | if (!isa<ConstantArrayType>(Val: AT)) |
| 8780 | PType = PVDecl->getType(); |
| 8781 | } else if (PType->isFunctionType()) |
| 8782 | PType = PVDecl->getType(); |
| 8783 | getObjCEncodingForMethodParameter(QT: PVDecl->getObjCDeclQualifier(), |
| 8784 | T: PType, S, Extended); |
| 8785 | S += charUnitsToString(CU: ParmOffset); |
| 8786 | ParmOffset += getObjCEncodingTypeSize(type: PType); |
| 8787 | } |
| 8788 | |
| 8789 | return S; |
| 8790 | } |
| 8791 | |
| 8792 | ObjCPropertyImplDecl * |
| 8793 | ASTContext::getObjCPropertyImplDeclForPropertyDecl( |
| 8794 | const ObjCPropertyDecl *PD, |
| 8795 | const Decl *Container) const { |
| 8796 | if (!Container) |
| 8797 | return nullptr; |
| 8798 | if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Val: Container)) { |
| 8799 | for (auto *PID : CID->property_impls()) |
| 8800 | if (PID->getPropertyDecl() == PD) |
| 8801 | return PID; |
| 8802 | } else { |
| 8803 | const auto *OID = cast<ObjCImplementationDecl>(Val: Container); |
| 8804 | for (auto *PID : OID->property_impls()) |
| 8805 | if (PID->getPropertyDecl() == PD) |
| 8806 | return PID; |
| 8807 | } |
| 8808 | return nullptr; |
| 8809 | } |
| 8810 | |
| 8811 | /// getObjCEncodingForPropertyDecl - Return the encoded type for this |
| 8812 | /// property declaration. If non-NULL, Container must be either an |
| 8813 | /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be |
| 8814 | /// NULL when getting encodings for protocol properties. |
| 8815 | /// Property attributes are stored as a comma-delimited C string. The simple |
| 8816 | /// attributes readonly and bycopy are encoded as single characters. The |
| 8817 | /// parametrized attributes, getter=name, setter=name, and ivar=name, are |
| 8818 | /// encoded as single characters, followed by an identifier. Property types |
| 8819 | /// are also encoded as a parametrized attribute. The characters used to encode |
| 8820 | /// these attributes are defined by the following enumeration: |
| 8821 | /// @code |
| 8822 | /// enum PropertyAttributes { |
| 8823 | /// kPropertyReadOnly = 'R', // property is read-only. |
| 8824 | /// kPropertyBycopy = 'C', // property is a copy of the value last assigned |
| 8825 | /// kPropertyByref = '&', // property is a reference to the value last assigned |
| 8826 | /// kPropertyDynamic = 'D', // property is dynamic |
| 8827 | /// kPropertyGetter = 'G', // followed by getter selector name |
| 8828 | /// kPropertySetter = 'S', // followed by setter selector name |
| 8829 | /// kPropertyInstanceVariable = 'V' // followed by instance variable name |
| 8830 | /// kPropertyType = 'T' // followed by old-style type encoding. |
| 8831 | /// kPropertyWeak = 'W' // 'weak' property |
| 8832 | /// kPropertyStrong = 'P' // property GC'able |
| 8833 | /// kPropertyNonAtomic = 'N' // property non-atomic |
| 8834 | /// kPropertyOptional = '?' // property optional |
| 8835 | /// }; |
| 8836 | /// @endcode |
| 8837 | std::string |
| 8838 | ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, |
| 8839 | const Decl *Container) const { |
| 8840 | // Collect information from the property implementation decl(s). |
| 8841 | bool Dynamic = false; |
| 8842 | ObjCPropertyImplDecl *SynthesizePID = nullptr; |
| 8843 | |
| 8844 | if (ObjCPropertyImplDecl *PropertyImpDecl = |
| 8845 | getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { |
| 8846 | if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) |
| 8847 | Dynamic = true; |
| 8848 | else |
| 8849 | SynthesizePID = PropertyImpDecl; |
| 8850 | } |
| 8851 | |
| 8852 | // FIXME: This is not very efficient. |
| 8853 | std::string S = "T" ; |
| 8854 | |
| 8855 | // Encode result type. |
| 8856 | // GCC has some special rules regarding encoding of properties which |
| 8857 | // closely resembles encoding of ivars. |
| 8858 | getObjCEncodingForPropertyType(T: PD->getType(), S); |
| 8859 | |
| 8860 | if (PD->isOptional()) |
| 8861 | S += ",?" ; |
| 8862 | |
| 8863 | if (PD->isReadOnly()) { |
| 8864 | S += ",R" ; |
| 8865 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy) |
| 8866 | S += ",C" ; |
| 8867 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain) |
| 8868 | S += ",&" ; |
| 8869 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak) |
| 8870 | S += ",W" ; |
| 8871 | } else { |
| 8872 | switch (PD->getSetterKind()) { |
| 8873 | case ObjCPropertyDecl::Assign: break; |
| 8874 | case ObjCPropertyDecl::Copy: S += ",C" ; break; |
| 8875 | case ObjCPropertyDecl::Retain: S += ",&" ; break; |
| 8876 | case ObjCPropertyDecl::Weak: S += ",W" ; break; |
| 8877 | } |
| 8878 | } |
| 8879 | |
| 8880 | // It really isn't clear at all what this means, since properties |
| 8881 | // are "dynamic by default". |
| 8882 | if (Dynamic) |
| 8883 | S += ",D" ; |
| 8884 | |
| 8885 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic) |
| 8886 | S += ",N" ; |
| 8887 | |
| 8888 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) { |
| 8889 | S += ",G" ; |
| 8890 | S += PD->getGetterName().getAsString(); |
| 8891 | } |
| 8892 | |
| 8893 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) { |
| 8894 | S += ",S" ; |
| 8895 | S += PD->getSetterName().getAsString(); |
| 8896 | } |
| 8897 | |
| 8898 | if (SynthesizePID) { |
| 8899 | const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); |
| 8900 | S += ",V" ; |
| 8901 | S += OID->getNameAsString(); |
| 8902 | } |
| 8903 | |
| 8904 | // FIXME: OBJCGC: weak & strong |
| 8905 | return S; |
| 8906 | } |
| 8907 | |
| 8908 | /// getLegacyIntegralTypeEncoding - |
| 8909 | /// Another legacy compatibility encoding: 32-bit longs are encoded as |
| 8910 | /// 'l' or 'L' , but not always. For typedefs, we need to use |
| 8911 | /// 'i' or 'I' instead if encoding a struct field, or a pointer! |
| 8912 | void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { |
| 8913 | if (PointeeTy->getAs<TypedefType>()) { |
| 8914 | if (const auto *BT = PointeeTy->getAs<BuiltinType>()) { |
| 8915 | if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) |
| 8916 | PointeeTy = UnsignedIntTy; |
| 8917 | else |
| 8918 | if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) |
| 8919 | PointeeTy = IntTy; |
| 8920 | } |
| 8921 | } |
| 8922 | } |
| 8923 | |
| 8924 | void ASTContext::getObjCEncodingForType(QualType T, std::string& S, |
| 8925 | const FieldDecl *Field, |
| 8926 | QualType *NotEncodedT) const { |
| 8927 | // We follow the behavior of gcc, expanding structures which are |
| 8928 | // directly pointed to, and expanding embedded structures. Note that |
| 8929 | // these rules are sufficient to prevent recursive encoding of the |
| 8930 | // same type. |
| 8931 | getObjCEncodingForTypeImpl(t: T, S, |
| 8932 | Options: ObjCEncOptions() |
| 8933 | .setExpandPointedToStructures() |
| 8934 | .setExpandStructures() |
| 8935 | .setIsOutermostType(), |
| 8936 | Field, NotEncodedT); |
| 8937 | } |
| 8938 | |
| 8939 | void ASTContext::getObjCEncodingForPropertyType(QualType T, |
| 8940 | std::string& S) const { |
| 8941 | // Encode result type. |
| 8942 | // GCC has some special rules regarding encoding of properties which |
| 8943 | // closely resembles encoding of ivars. |
| 8944 | getObjCEncodingForTypeImpl(t: T, S, |
| 8945 | Options: ObjCEncOptions() |
| 8946 | .setExpandPointedToStructures() |
| 8947 | .setExpandStructures() |
| 8948 | .setIsOutermostType() |
| 8949 | .setEncodingProperty(), |
| 8950 | /*Field=*/nullptr); |
| 8951 | } |
| 8952 | |
| 8953 | static char getObjCEncodingForPrimitiveType(const ASTContext *C, |
| 8954 | const BuiltinType *BT) { |
| 8955 | BuiltinType::Kind kind = BT->getKind(); |
| 8956 | switch (kind) { |
| 8957 | case BuiltinType::Void: return 'v'; |
| 8958 | case BuiltinType::Bool: return 'B'; |
| 8959 | case BuiltinType::Char8: |
| 8960 | case BuiltinType::Char_U: |
| 8961 | case BuiltinType::UChar: return 'C'; |
| 8962 | case BuiltinType::Char16: |
| 8963 | case BuiltinType::UShort: return 'S'; |
| 8964 | case BuiltinType::Char32: |
| 8965 | case BuiltinType::UInt: return 'I'; |
| 8966 | case BuiltinType::ULong: |
| 8967 | return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; |
| 8968 | case BuiltinType::UInt128: return 'T'; |
| 8969 | case BuiltinType::ULongLong: return 'Q'; |
| 8970 | case BuiltinType::Char_S: |
| 8971 | case BuiltinType::SChar: return 'c'; |
| 8972 | case BuiltinType::Short: return 's'; |
| 8973 | case BuiltinType::WChar_S: |
| 8974 | case BuiltinType::WChar_U: |
| 8975 | case BuiltinType::Int: return 'i'; |
| 8976 | case BuiltinType::Long: |
| 8977 | return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; |
| 8978 | case BuiltinType::LongLong: return 'q'; |
| 8979 | case BuiltinType::Int128: return 't'; |
| 8980 | case BuiltinType::Float: return 'f'; |
| 8981 | case BuiltinType::Double: return 'd'; |
| 8982 | case BuiltinType::LongDouble: return 'D'; |
| 8983 | case BuiltinType::NullPtr: return '*'; // like char* |
| 8984 | |
| 8985 | case BuiltinType::BFloat16: |
| 8986 | case BuiltinType::Float16: |
| 8987 | case BuiltinType::Float128: |
| 8988 | case BuiltinType::Ibm128: |
| 8989 | case BuiltinType::Half: |
| 8990 | case BuiltinType::ShortAccum: |
| 8991 | case BuiltinType::Accum: |
| 8992 | case BuiltinType::LongAccum: |
| 8993 | case BuiltinType::UShortAccum: |
| 8994 | case BuiltinType::UAccum: |
| 8995 | case BuiltinType::ULongAccum: |
| 8996 | case BuiltinType::ShortFract: |
| 8997 | case BuiltinType::Fract: |
| 8998 | case BuiltinType::LongFract: |
| 8999 | case BuiltinType::UShortFract: |
| 9000 | case BuiltinType::UFract: |
| 9001 | case BuiltinType::ULongFract: |
| 9002 | case BuiltinType::SatShortAccum: |
| 9003 | case BuiltinType::SatAccum: |
| 9004 | case BuiltinType::SatLongAccum: |
| 9005 | case BuiltinType::SatUShortAccum: |
| 9006 | case BuiltinType::SatUAccum: |
| 9007 | case BuiltinType::SatULongAccum: |
| 9008 | case BuiltinType::SatShortFract: |
| 9009 | case BuiltinType::SatFract: |
| 9010 | case BuiltinType::SatLongFract: |
| 9011 | case BuiltinType::SatUShortFract: |
| 9012 | case BuiltinType::SatUFract: |
| 9013 | case BuiltinType::SatULongFract: |
| 9014 | // FIXME: potentially need @encodes for these! |
| 9015 | return ' '; |
| 9016 | |
| 9017 | #define SVE_TYPE(Name, Id, SingletonId) \ |
| 9018 | case BuiltinType::Id: |
| 9019 | #include "clang/Basic/AArch64ACLETypes.def" |
| 9020 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| 9021 | #include "clang/Basic/RISCVVTypes.def" |
| 9022 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| 9023 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
| 9024 | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: |
| 9025 | #include "clang/Basic/AMDGPUTypes.def" |
| 9026 | { |
| 9027 | DiagnosticsEngine &Diags = C->getDiagnostics(); |
| 9028 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
| 9029 | FormatString: "cannot yet @encode type %0" ); |
| 9030 | Diags.Report(DiagID) << BT->getName(Policy: C->getPrintingPolicy()); |
| 9031 | return ' '; |
| 9032 | } |
| 9033 | |
| 9034 | case BuiltinType::ObjCId: |
| 9035 | case BuiltinType::ObjCClass: |
| 9036 | case BuiltinType::ObjCSel: |
| 9037 | llvm_unreachable("@encoding ObjC primitive type" ); |
| 9038 | |
| 9039 | // OpenCL and placeholder types don't need @encodings. |
| 9040 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 9041 | case BuiltinType::Id: |
| 9042 | #include "clang/Basic/OpenCLImageTypes.def" |
| 9043 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| 9044 | case BuiltinType::Id: |
| 9045 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 9046 | case BuiltinType::OCLEvent: |
| 9047 | case BuiltinType::OCLClkEvent: |
| 9048 | case BuiltinType::OCLQueue: |
| 9049 | case BuiltinType::OCLReserveID: |
| 9050 | case BuiltinType::OCLSampler: |
| 9051 | case BuiltinType::Dependent: |
| 9052 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
| 9053 | case BuiltinType::Id: |
| 9054 | #include "clang/Basic/PPCTypes.def" |
| 9055 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| 9056 | #include "clang/Basic/HLSLIntangibleTypes.def" |
| 9057 | #define BUILTIN_TYPE(KIND, ID) |
| 9058 | #define PLACEHOLDER_TYPE(KIND, ID) \ |
| 9059 | case BuiltinType::KIND: |
| 9060 | #include "clang/AST/BuiltinTypes.def" |
| 9061 | llvm_unreachable("invalid builtin type for @encode" ); |
| 9062 | } |
| 9063 | llvm_unreachable("invalid BuiltinType::Kind value" ); |
| 9064 | } |
| 9065 | |
| 9066 | static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { |
| 9067 | EnumDecl *Enum = ET->getDecl(); |
| 9068 | |
| 9069 | // The encoding of an non-fixed enum type is always 'i', regardless of size. |
| 9070 | if (!Enum->isFixed()) |
| 9071 | return 'i'; |
| 9072 | |
| 9073 | // The encoding of a fixed enum type matches its fixed underlying type. |
| 9074 | const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>(); |
| 9075 | return getObjCEncodingForPrimitiveType(C, BT); |
| 9076 | } |
| 9077 | |
| 9078 | static void EncodeBitField(const ASTContext *Ctx, std::string& S, |
| 9079 | QualType T, const FieldDecl *FD) { |
| 9080 | assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl" ); |
| 9081 | S += 'b'; |
| 9082 | // The NeXT runtime encodes bit fields as b followed by the number of bits. |
| 9083 | // The GNU runtime requires more information; bitfields are encoded as b, |
| 9084 | // then the offset (in bits) of the first element, then the type of the |
| 9085 | // bitfield, then the size in bits. For example, in this structure: |
| 9086 | // |
| 9087 | // struct |
| 9088 | // { |
| 9089 | // int integer; |
| 9090 | // int flags:2; |
| 9091 | // }; |
| 9092 | // On a 32-bit system, the encoding for flags would be b2 for the NeXT |
| 9093 | // runtime, but b32i2 for the GNU runtime. The reason for this extra |
| 9094 | // information is not especially sensible, but we're stuck with it for |
| 9095 | // compatibility with GCC, although providing it breaks anything that |
| 9096 | // actually uses runtime introspection and wants to work on both runtimes... |
| 9097 | if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { |
| 9098 | uint64_t Offset; |
| 9099 | |
| 9100 | if (const auto *IVD = dyn_cast<ObjCIvarDecl>(Val: FD)) { |
| 9101 | Offset = Ctx->lookupFieldBitOffset(OID: IVD->getContainingInterface(), Ivar: IVD); |
| 9102 | } else { |
| 9103 | const RecordDecl *RD = FD->getParent(); |
| 9104 | const ASTRecordLayout &RL = Ctx->getASTRecordLayout(D: RD); |
| 9105 | Offset = RL.getFieldOffset(FieldNo: FD->getFieldIndex()); |
| 9106 | } |
| 9107 | |
| 9108 | S += llvm::utostr(X: Offset); |
| 9109 | |
| 9110 | if (const auto *ET = T->getAs<EnumType>()) |
| 9111 | S += ObjCEncodingForEnumType(C: Ctx, ET); |
| 9112 | else { |
| 9113 | const auto *BT = T->castAs<BuiltinType>(); |
| 9114 | S += getObjCEncodingForPrimitiveType(C: Ctx, BT); |
| 9115 | } |
| 9116 | } |
| 9117 | S += llvm::utostr(X: FD->getBitWidthValue()); |
| 9118 | } |
| 9119 | |
| 9120 | // Helper function for determining whether the encoded type string would include |
| 9121 | // a template specialization type. |
| 9122 | static bool hasTemplateSpecializationInEncodedString(const Type *T, |
| 9123 | bool VisitBasesAndFields) { |
| 9124 | T = T->getBaseElementTypeUnsafe(); |
| 9125 | |
| 9126 | if (auto *PT = T->getAs<PointerType>()) |
| 9127 | return hasTemplateSpecializationInEncodedString( |
| 9128 | T: PT->getPointeeType().getTypePtr(), VisitBasesAndFields: false); |
| 9129 | |
| 9130 | auto *CXXRD = T->getAsCXXRecordDecl(); |
| 9131 | |
| 9132 | if (!CXXRD) |
| 9133 | return false; |
| 9134 | |
| 9135 | if (isa<ClassTemplateSpecializationDecl>(Val: CXXRD)) |
| 9136 | return true; |
| 9137 | |
| 9138 | if (!CXXRD->hasDefinition() || !VisitBasesAndFields) |
| 9139 | return false; |
| 9140 | |
| 9141 | for (const auto &B : CXXRD->bases()) |
| 9142 | if (hasTemplateSpecializationInEncodedString(T: B.getType().getTypePtr(), |
| 9143 | VisitBasesAndFields: true)) |
| 9144 | return true; |
| 9145 | |
| 9146 | for (auto *FD : CXXRD->fields()) |
| 9147 | if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(), |
| 9148 | true)) |
| 9149 | return true; |
| 9150 | |
| 9151 | return false; |
| 9152 | } |
| 9153 | |
| 9154 | // FIXME: Use SmallString for accumulating string. |
| 9155 | void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S, |
| 9156 | const ObjCEncOptions Options, |
| 9157 | const FieldDecl *FD, |
| 9158 | QualType *NotEncodedT) const { |
| 9159 | CanQualType CT = getCanonicalType(T); |
| 9160 | switch (CT->getTypeClass()) { |
| 9161 | case Type::Builtin: |
| 9162 | case Type::Enum: |
| 9163 | if (FD && FD->isBitField()) |
| 9164 | return EncodeBitField(Ctx: this, S, T, FD); |
| 9165 | if (const auto *BT = dyn_cast<BuiltinType>(Val&: CT)) |
| 9166 | S += getObjCEncodingForPrimitiveType(C: this, BT); |
| 9167 | else |
| 9168 | S += ObjCEncodingForEnumType(C: this, ET: cast<EnumType>(Val&: CT)); |
| 9169 | return; |
| 9170 | |
| 9171 | case Type::Complex: |
| 9172 | S += 'j'; |
| 9173 | getObjCEncodingForTypeImpl(T: T->castAs<ComplexType>()->getElementType(), S, |
| 9174 | Options: ObjCEncOptions(), |
| 9175 | /*Field=*/FD: nullptr); |
| 9176 | return; |
| 9177 | |
| 9178 | case Type::Atomic: |
| 9179 | S += 'A'; |
| 9180 | getObjCEncodingForTypeImpl(T: T->castAs<AtomicType>()->getValueType(), S, |
| 9181 | Options: ObjCEncOptions(), |
| 9182 | /*Field=*/FD: nullptr); |
| 9183 | return; |
| 9184 | |
| 9185 | // encoding for pointer or reference types. |
| 9186 | case Type::Pointer: |
| 9187 | case Type::LValueReference: |
| 9188 | case Type::RValueReference: { |
| 9189 | QualType PointeeTy; |
| 9190 | if (isa<PointerType>(Val: CT)) { |
| 9191 | const auto *PT = T->castAs<PointerType>(); |
| 9192 | if (PT->isObjCSelType()) { |
| 9193 | S += ':'; |
| 9194 | return; |
| 9195 | } |
| 9196 | PointeeTy = PT->getPointeeType(); |
| 9197 | } else { |
| 9198 | PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); |
| 9199 | } |
| 9200 | |
| 9201 | bool isReadOnly = false; |
| 9202 | // For historical/compatibility reasons, the read-only qualifier of the |
| 9203 | // pointee gets emitted _before_ the '^'. The read-only qualifier of |
| 9204 | // the pointer itself gets ignored, _unless_ we are looking at a typedef! |
| 9205 | // Also, do not emit the 'r' for anything but the outermost type! |
| 9206 | if (T->getAs<TypedefType>()) { |
| 9207 | if (Options.IsOutermostType() && T.isConstQualified()) { |
| 9208 | isReadOnly = true; |
| 9209 | S += 'r'; |
| 9210 | } |
| 9211 | } else if (Options.IsOutermostType()) { |
| 9212 | QualType P = PointeeTy; |
| 9213 | while (auto PT = P->getAs<PointerType>()) |
| 9214 | P = PT->getPointeeType(); |
| 9215 | if (P.isConstQualified()) { |
| 9216 | isReadOnly = true; |
| 9217 | S += 'r'; |
| 9218 | } |
| 9219 | } |
| 9220 | if (isReadOnly) { |
| 9221 | // Another legacy compatibility encoding. Some ObjC qualifier and type |
| 9222 | // combinations need to be rearranged. |
| 9223 | // Rewrite "in const" from "nr" to "rn" |
| 9224 | if (StringRef(S).ends_with(Suffix: "nr" )) |
| 9225 | S.replace(i1: S.end()-2, i2: S.end(), s: "rn" ); |
| 9226 | } |
| 9227 | |
| 9228 | if (PointeeTy->isCharType()) { |
| 9229 | // char pointer types should be encoded as '*' unless it is a |
| 9230 | // type that has been typedef'd to 'BOOL'. |
| 9231 | if (!isTypeTypedefedAsBOOL(T: PointeeTy)) { |
| 9232 | S += '*'; |
| 9233 | return; |
| 9234 | } |
| 9235 | } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) { |
| 9236 | // GCC binary compat: Need to convert "struct objc_class *" to "#". |
| 9237 | if (RTy->getDecl()->getIdentifier() == &Idents.get(Name: "objc_class" )) { |
| 9238 | S += '#'; |
| 9239 | return; |
| 9240 | } |
| 9241 | // GCC binary compat: Need to convert "struct objc_object *" to "@". |
| 9242 | if (RTy->getDecl()->getIdentifier() == &Idents.get(Name: "objc_object" )) { |
| 9243 | S += '@'; |
| 9244 | return; |
| 9245 | } |
| 9246 | // If the encoded string for the class includes template names, just emit |
| 9247 | // "^v" for pointers to the class. |
| 9248 | if (getLangOpts().CPlusPlus && |
| 9249 | (!getLangOpts().EncodeCXXClassTemplateSpec && |
| 9250 | hasTemplateSpecializationInEncodedString( |
| 9251 | RTy, Options.ExpandPointedToStructures()))) { |
| 9252 | S += "^v" ; |
| 9253 | return; |
| 9254 | } |
| 9255 | // fall through... |
| 9256 | } |
| 9257 | S += '^'; |
| 9258 | getLegacyIntegralTypeEncoding(PointeeTy); |
| 9259 | |
| 9260 | ObjCEncOptions NewOptions; |
| 9261 | if (Options.ExpandPointedToStructures()) |
| 9262 | NewOptions.setExpandStructures(); |
| 9263 | getObjCEncodingForTypeImpl(T: PointeeTy, S, Options: NewOptions, |
| 9264 | /*Field=*/FD: nullptr, NotEncodedT); |
| 9265 | return; |
| 9266 | } |
| 9267 | |
| 9268 | case Type::ConstantArray: |
| 9269 | case Type::IncompleteArray: |
| 9270 | case Type::VariableArray: { |
| 9271 | const auto *AT = cast<ArrayType>(Val&: CT); |
| 9272 | |
| 9273 | if (isa<IncompleteArrayType>(Val: AT) && !Options.IsStructField()) { |
| 9274 | // Incomplete arrays are encoded as a pointer to the array element. |
| 9275 | S += '^'; |
| 9276 | |
| 9277 | getObjCEncodingForTypeImpl( |
| 9278 | T: AT->getElementType(), S, |
| 9279 | Options: Options.keepingOnly(Mask: ObjCEncOptions().setExpandStructures()), FD); |
| 9280 | } else { |
| 9281 | S += '['; |
| 9282 | |
| 9283 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
| 9284 | S += llvm::utostr(X: CAT->getZExtSize()); |
| 9285 | else { |
| 9286 | //Variable length arrays are encoded as a regular array with 0 elements. |
| 9287 | assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && |
| 9288 | "Unknown array type!" ); |
| 9289 | S += '0'; |
| 9290 | } |
| 9291 | |
| 9292 | getObjCEncodingForTypeImpl( |
| 9293 | T: AT->getElementType(), S, |
| 9294 | Options: Options.keepingOnly(Mask: ObjCEncOptions().setExpandStructures()), FD, |
| 9295 | NotEncodedT); |
| 9296 | S += ']'; |
| 9297 | } |
| 9298 | return; |
| 9299 | } |
| 9300 | |
| 9301 | case Type::FunctionNoProto: |
| 9302 | case Type::FunctionProto: |
| 9303 | S += '?'; |
| 9304 | return; |
| 9305 | |
| 9306 | case Type::Record: { |
| 9307 | RecordDecl *RDecl = cast<RecordType>(Val&: CT)->getDecl(); |
| 9308 | S += RDecl->isUnion() ? '(' : '{'; |
| 9309 | // Anonymous structures print as '?' |
| 9310 | if (const IdentifierInfo *II = RDecl->getIdentifier()) { |
| 9311 | S += II->getName(); |
| 9312 | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: RDecl)) { |
| 9313 | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
| 9314 | llvm::raw_string_ostream OS(S); |
| 9315 | printTemplateArgumentList(OS, Args: TemplateArgs.asArray(), |
| 9316 | Policy: getPrintingPolicy()); |
| 9317 | } |
| 9318 | } else { |
| 9319 | S += '?'; |
| 9320 | } |
| 9321 | if (Options.ExpandStructures()) { |
| 9322 | S += '='; |
| 9323 | if (!RDecl->isUnion()) { |
| 9324 | getObjCEncodingForStructureImpl(RD: RDecl, S, Field: FD, includeVBases: true, NotEncodedT); |
| 9325 | } else { |
| 9326 | for (const auto *Field : RDecl->fields()) { |
| 9327 | if (FD) { |
| 9328 | S += '"'; |
| 9329 | S += Field->getNameAsString(); |
| 9330 | S += '"'; |
| 9331 | } |
| 9332 | |
| 9333 | // Special case bit-fields. |
| 9334 | if (Field->isBitField()) { |
| 9335 | getObjCEncodingForTypeImpl(T: Field->getType(), S, |
| 9336 | Options: ObjCEncOptions().setExpandStructures(), |
| 9337 | FD: Field); |
| 9338 | } else { |
| 9339 | QualType qt = Field->getType(); |
| 9340 | getLegacyIntegralTypeEncoding(PointeeTy&: qt); |
| 9341 | getObjCEncodingForTypeImpl( |
| 9342 | T: qt, S, |
| 9343 | Options: ObjCEncOptions().setExpandStructures().setIsStructField(), FD, |
| 9344 | NotEncodedT); |
| 9345 | } |
| 9346 | } |
| 9347 | } |
| 9348 | } |
| 9349 | S += RDecl->isUnion() ? ')' : '}'; |
| 9350 | return; |
| 9351 | } |
| 9352 | |
| 9353 | case Type::BlockPointer: { |
| 9354 | const auto *BT = T->castAs<BlockPointerType>(); |
| 9355 | S += "@?" ; // Unlike a pointer-to-function, which is "^?". |
| 9356 | if (Options.EncodeBlockParameters()) { |
| 9357 | const auto *FT = BT->getPointeeType()->castAs<FunctionType>(); |
| 9358 | |
| 9359 | S += '<'; |
| 9360 | // Block return type |
| 9361 | getObjCEncodingForTypeImpl(T: FT->getReturnType(), S, |
| 9362 | Options: Options.forComponentType(), FD, NotEncodedT); |
| 9363 | // Block self |
| 9364 | S += "@?" ; |
| 9365 | // Block parameters |
| 9366 | if (const auto *FPT = dyn_cast<FunctionProtoType>(Val: FT)) { |
| 9367 | for (const auto &I : FPT->param_types()) |
| 9368 | getObjCEncodingForTypeImpl(T: I, S, Options: Options.forComponentType(), FD, |
| 9369 | NotEncodedT); |
| 9370 | } |
| 9371 | S += '>'; |
| 9372 | } |
| 9373 | return; |
| 9374 | } |
| 9375 | |
| 9376 | case Type::ObjCObject: { |
| 9377 | // hack to match legacy encoding of *id and *Class |
| 9378 | QualType Ty = getObjCObjectPointerType(ObjectT: CT); |
| 9379 | if (Ty->isObjCIdType()) { |
| 9380 | S += "{objc_object=}" ; |
| 9381 | return; |
| 9382 | } |
| 9383 | else if (Ty->isObjCClassType()) { |
| 9384 | S += "{objc_class=}" ; |
| 9385 | return; |
| 9386 | } |
| 9387 | // TODO: Double check to make sure this intentionally falls through. |
| 9388 | [[fallthrough]]; |
| 9389 | } |
| 9390 | |
| 9391 | case Type::ObjCInterface: { |
| 9392 | // Ignore protocol qualifiers when mangling at this level. |
| 9393 | // @encode(class_name) |
| 9394 | ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); |
| 9395 | S += '{'; |
| 9396 | S += OI->getObjCRuntimeNameAsString(); |
| 9397 | if (Options.ExpandStructures()) { |
| 9398 | S += '='; |
| 9399 | SmallVector<const ObjCIvarDecl*, 32> Ivars; |
| 9400 | DeepCollectObjCIvars(OI, leafClass: true, Ivars); |
| 9401 | for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { |
| 9402 | const FieldDecl *Field = Ivars[i]; |
| 9403 | if (Field->isBitField()) |
| 9404 | getObjCEncodingForTypeImpl(T: Field->getType(), S, |
| 9405 | Options: ObjCEncOptions().setExpandStructures(), |
| 9406 | FD: Field); |
| 9407 | else |
| 9408 | getObjCEncodingForTypeImpl(T: Field->getType(), S, |
| 9409 | Options: ObjCEncOptions().setExpandStructures(), FD, |
| 9410 | NotEncodedT); |
| 9411 | } |
| 9412 | } |
| 9413 | S += '}'; |
| 9414 | return; |
| 9415 | } |
| 9416 | |
| 9417 | case Type::ObjCObjectPointer: { |
| 9418 | const auto *OPT = T->castAs<ObjCObjectPointerType>(); |
| 9419 | if (OPT->isObjCIdType()) { |
| 9420 | S += '@'; |
| 9421 | return; |
| 9422 | } |
| 9423 | |
| 9424 | if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { |
| 9425 | // FIXME: Consider if we need to output qualifiers for 'Class<p>'. |
| 9426 | // Since this is a binary compatibility issue, need to consult with |
| 9427 | // runtime folks. Fortunately, this is a *very* obscure construct. |
| 9428 | S += '#'; |
| 9429 | return; |
| 9430 | } |
| 9431 | |
| 9432 | if (OPT->isObjCQualifiedIdType()) { |
| 9433 | getObjCEncodingForTypeImpl( |
| 9434 | T: getObjCIdType(), S, |
| 9435 | Options: Options.keepingOnly(Mask: ObjCEncOptions() |
| 9436 | .setExpandPointedToStructures() |
| 9437 | .setExpandStructures()), |
| 9438 | FD); |
| 9439 | if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) { |
| 9440 | // Note that we do extended encoding of protocol qualifier list |
| 9441 | // Only when doing ivar or property encoding. |
| 9442 | S += '"'; |
| 9443 | for (const auto *I : OPT->quals()) { |
| 9444 | S += '<'; |
| 9445 | S += I->getObjCRuntimeNameAsString(); |
| 9446 | S += '>'; |
| 9447 | } |
| 9448 | S += '"'; |
| 9449 | } |
| 9450 | return; |
| 9451 | } |
| 9452 | |
| 9453 | S += '@'; |
| 9454 | if (OPT->getInterfaceDecl() && |
| 9455 | (FD || Options.EncodingProperty() || Options.EncodeClassNames())) { |
| 9456 | S += '"'; |
| 9457 | S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); |
| 9458 | for (const auto *I : OPT->quals()) { |
| 9459 | S += '<'; |
| 9460 | S += I->getObjCRuntimeNameAsString(); |
| 9461 | S += '>'; |
| 9462 | } |
| 9463 | S += '"'; |
| 9464 | } |
| 9465 | return; |
| 9466 | } |
| 9467 | |
| 9468 | // gcc just blithely ignores member pointers. |
| 9469 | // FIXME: we should do better than that. 'M' is available. |
| 9470 | case Type::MemberPointer: |
| 9471 | // This matches gcc's encoding, even though technically it is insufficient. |
| 9472 | //FIXME. We should do a better job than gcc. |
| 9473 | case Type::Vector: |
| 9474 | case Type::ExtVector: |
| 9475 | // Until we have a coherent encoding of these three types, issue warning. |
| 9476 | if (NotEncodedT) |
| 9477 | *NotEncodedT = T; |
| 9478 | return; |
| 9479 | |
| 9480 | case Type::ConstantMatrix: |
| 9481 | if (NotEncodedT) |
| 9482 | *NotEncodedT = T; |
| 9483 | return; |
| 9484 | |
| 9485 | case Type::BitInt: |
| 9486 | if (NotEncodedT) |
| 9487 | *NotEncodedT = T; |
| 9488 | return; |
| 9489 | |
| 9490 | // We could see an undeduced auto type here during error recovery. |
| 9491 | // Just ignore it. |
| 9492 | case Type::Auto: |
| 9493 | case Type::DeducedTemplateSpecialization: |
| 9494 | return; |
| 9495 | |
| 9496 | case Type::HLSLAttributedResource: |
| 9497 | case Type::HLSLInlineSpirv: |
| 9498 | llvm_unreachable("unexpected type" ); |
| 9499 | |
| 9500 | case Type::ArrayParameter: |
| 9501 | case Type::Pipe: |
| 9502 | #define ABSTRACT_TYPE(KIND, BASE) |
| 9503 | #define TYPE(KIND, BASE) |
| 9504 | #define DEPENDENT_TYPE(KIND, BASE) \ |
| 9505 | case Type::KIND: |
| 9506 | #define NON_CANONICAL_TYPE(KIND, BASE) \ |
| 9507 | case Type::KIND: |
| 9508 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ |
| 9509 | case Type::KIND: |
| 9510 | #include "clang/AST/TypeNodes.inc" |
| 9511 | llvm_unreachable("@encode for dependent type!" ); |
| 9512 | } |
| 9513 | llvm_unreachable("bad type kind!" ); |
| 9514 | } |
| 9515 | |
| 9516 | void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, |
| 9517 | std::string &S, |
| 9518 | const FieldDecl *FD, |
| 9519 | bool includeVBases, |
| 9520 | QualType *NotEncodedT) const { |
| 9521 | assert(RDecl && "Expected non-null RecordDecl" ); |
| 9522 | assert(!RDecl->isUnion() && "Should not be called for unions" ); |
| 9523 | if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl()) |
| 9524 | return; |
| 9525 | |
| 9526 | const auto *CXXRec = dyn_cast<CXXRecordDecl>(Val: RDecl); |
| 9527 | std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; |
| 9528 | const ASTRecordLayout &layout = getASTRecordLayout(D: RDecl); |
| 9529 | |
| 9530 | if (CXXRec) { |
| 9531 | for (const auto &BI : CXXRec->bases()) { |
| 9532 | if (!BI.isVirtual()) { |
| 9533 | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
| 9534 | if (base->isEmpty()) |
| 9535 | continue; |
| 9536 | uint64_t offs = toBits(CharSize: layout.getBaseClassOffset(Base: base)); |
| 9537 | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(x: offs), |
| 9538 | std::make_pair(x&: offs, y&: base)); |
| 9539 | } |
| 9540 | } |
| 9541 | } |
| 9542 | |
| 9543 | for (FieldDecl *Field : RDecl->fields()) { |
| 9544 | if (!Field->isZeroLengthBitField() && Field->isZeroSize(Ctx: *this)) |
| 9545 | continue; |
| 9546 | uint64_t offs = layout.getFieldOffset(FieldNo: Field->getFieldIndex()); |
| 9547 | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(x: offs), |
| 9548 | std::make_pair(x&: offs, y&: Field)); |
| 9549 | } |
| 9550 | |
| 9551 | if (CXXRec && includeVBases) { |
| 9552 | for (const auto &BI : CXXRec->vbases()) { |
| 9553 | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
| 9554 | if (base->isEmpty()) |
| 9555 | continue; |
| 9556 | uint64_t offs = toBits(CharSize: layout.getVBaseClassOffset(VBase: base)); |
| 9557 | if (offs >= uint64_t(toBits(CharSize: layout.getNonVirtualSize())) && |
| 9558 | FieldOrBaseOffsets.find(x: offs) == FieldOrBaseOffsets.end()) |
| 9559 | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), |
| 9560 | std::make_pair(x&: offs, y&: base)); |
| 9561 | } |
| 9562 | } |
| 9563 | |
| 9564 | CharUnits size; |
| 9565 | if (CXXRec) { |
| 9566 | size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); |
| 9567 | } else { |
| 9568 | size = layout.getSize(); |
| 9569 | } |
| 9570 | |
| 9571 | #ifndef NDEBUG |
| 9572 | uint64_t CurOffs = 0; |
| 9573 | #endif |
| 9574 | std::multimap<uint64_t, NamedDecl *>::iterator |
| 9575 | CurLayObj = FieldOrBaseOffsets.begin(); |
| 9576 | |
| 9577 | if (CXXRec && CXXRec->isDynamicClass() && |
| 9578 | (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { |
| 9579 | if (FD) { |
| 9580 | S += "\"_vptr$" ; |
| 9581 | std::string recname = CXXRec->getNameAsString(); |
| 9582 | if (recname.empty()) recname = "?" ; |
| 9583 | S += recname; |
| 9584 | S += '"'; |
| 9585 | } |
| 9586 | S += "^^?" ; |
| 9587 | #ifndef NDEBUG |
| 9588 | CurOffs += getTypeSize(VoidPtrTy); |
| 9589 | #endif |
| 9590 | } |
| 9591 | |
| 9592 | if (!RDecl->hasFlexibleArrayMember()) { |
| 9593 | // Mark the end of the structure. |
| 9594 | uint64_t offs = toBits(CharSize: size); |
| 9595 | FieldOrBaseOffsets.insert(position: FieldOrBaseOffsets.upper_bound(x: offs), |
| 9596 | x: std::make_pair(x&: offs, y: nullptr)); |
| 9597 | } |
| 9598 | |
| 9599 | for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { |
| 9600 | #ifndef NDEBUG |
| 9601 | assert(CurOffs <= CurLayObj->first); |
| 9602 | if (CurOffs < CurLayObj->first) { |
| 9603 | uint64_t padding = CurLayObj->first - CurOffs; |
| 9604 | // FIXME: There doesn't seem to be a way to indicate in the encoding that |
| 9605 | // packing/alignment of members is different that normal, in which case |
| 9606 | // the encoding will be out-of-sync with the real layout. |
| 9607 | // If the runtime switches to just consider the size of types without |
| 9608 | // taking into account alignment, we could make padding explicit in the |
| 9609 | // encoding (e.g. using arrays of chars). The encoding strings would be |
| 9610 | // longer then though. |
| 9611 | CurOffs += padding; |
| 9612 | } |
| 9613 | #endif |
| 9614 | |
| 9615 | NamedDecl *dcl = CurLayObj->second; |
| 9616 | if (!dcl) |
| 9617 | break; // reached end of structure. |
| 9618 | |
| 9619 | if (auto *base = dyn_cast<CXXRecordDecl>(Val: dcl)) { |
| 9620 | // We expand the bases without their virtual bases since those are going |
| 9621 | // in the initial structure. Note that this differs from gcc which |
| 9622 | // expands virtual bases each time one is encountered in the hierarchy, |
| 9623 | // making the encoding type bigger than it really is. |
| 9624 | getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, |
| 9625 | NotEncodedT); |
| 9626 | assert(!base->isEmpty()); |
| 9627 | #ifndef NDEBUG |
| 9628 | CurOffs += toBits(CharSize: getASTRecordLayout(base).getNonVirtualSize()); |
| 9629 | #endif |
| 9630 | } else { |
| 9631 | const auto *field = cast<FieldDecl>(Val: dcl); |
| 9632 | if (FD) { |
| 9633 | S += '"'; |
| 9634 | S += field->getNameAsString(); |
| 9635 | S += '"'; |
| 9636 | } |
| 9637 | |
| 9638 | if (field->isBitField()) { |
| 9639 | EncodeBitField(this, S, field->getType(), field); |
| 9640 | #ifndef NDEBUG |
| 9641 | CurOffs += field->getBitWidthValue(); |
| 9642 | #endif |
| 9643 | } else { |
| 9644 | QualType qt = field->getType(); |
| 9645 | getLegacyIntegralTypeEncoding(PointeeTy&: qt); |
| 9646 | getObjCEncodingForTypeImpl( |
| 9647 | T: qt, S, Options: ObjCEncOptions().setExpandStructures().setIsStructField(), |
| 9648 | FD, NotEncodedT); |
| 9649 | #ifndef NDEBUG |
| 9650 | CurOffs += getTypeSize(field->getType()); |
| 9651 | #endif |
| 9652 | } |
| 9653 | } |
| 9654 | } |
| 9655 | } |
| 9656 | |
| 9657 | void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, |
| 9658 | std::string& S) const { |
| 9659 | if (QT & Decl::OBJC_TQ_In) |
| 9660 | S += 'n'; |
| 9661 | if (QT & Decl::OBJC_TQ_Inout) |
| 9662 | S += 'N'; |
| 9663 | if (QT & Decl::OBJC_TQ_Out) |
| 9664 | S += 'o'; |
| 9665 | if (QT & Decl::OBJC_TQ_Bycopy) |
| 9666 | S += 'O'; |
| 9667 | if (QT & Decl::OBJC_TQ_Byref) |
| 9668 | S += 'R'; |
| 9669 | if (QT & Decl::OBJC_TQ_Oneway) |
| 9670 | S += 'V'; |
| 9671 | } |
| 9672 | |
| 9673 | TypedefDecl *ASTContext::getObjCIdDecl() const { |
| 9674 | if (!ObjCIdDecl) { |
| 9675 | QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {}); |
| 9676 | T = getObjCObjectPointerType(ObjectT: T); |
| 9677 | ObjCIdDecl = buildImplicitTypedef(T, Name: "id" ); |
| 9678 | } |
| 9679 | return ObjCIdDecl; |
| 9680 | } |
| 9681 | |
| 9682 | TypedefDecl *ASTContext::getObjCSelDecl() const { |
| 9683 | if (!ObjCSelDecl) { |
| 9684 | QualType T = getPointerType(ObjCBuiltinSelTy); |
| 9685 | ObjCSelDecl = buildImplicitTypedef(T, Name: "SEL" ); |
| 9686 | } |
| 9687 | return ObjCSelDecl; |
| 9688 | } |
| 9689 | |
| 9690 | TypedefDecl *ASTContext::getObjCClassDecl() const { |
| 9691 | if (!ObjCClassDecl) { |
| 9692 | QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {}); |
| 9693 | T = getObjCObjectPointerType(ObjectT: T); |
| 9694 | ObjCClassDecl = buildImplicitTypedef(T, Name: "Class" ); |
| 9695 | } |
| 9696 | return ObjCClassDecl; |
| 9697 | } |
| 9698 | |
| 9699 | ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { |
| 9700 | if (!ObjCProtocolClassDecl) { |
| 9701 | ObjCProtocolClassDecl |
| 9702 | = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), |
| 9703 | SourceLocation(), |
| 9704 | &Idents.get(Name: "Protocol" ), |
| 9705 | /*typeParamList=*/nullptr, |
| 9706 | /*PrevDecl=*/nullptr, |
| 9707 | SourceLocation(), true); |
| 9708 | } |
| 9709 | |
| 9710 | return ObjCProtocolClassDecl; |
| 9711 | } |
| 9712 | |
| 9713 | //===----------------------------------------------------------------------===// |
| 9714 | // __builtin_va_list Construction Functions |
| 9715 | //===----------------------------------------------------------------------===// |
| 9716 | |
| 9717 | static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, |
| 9718 | StringRef Name) { |
| 9719 | // typedef char* __builtin[_ms]_va_list; |
| 9720 | QualType T = Context->getPointerType(Context->CharTy); |
| 9721 | return Context->buildImplicitTypedef(T, Name); |
| 9722 | } |
| 9723 | |
| 9724 | static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { |
| 9725 | return CreateCharPtrNamedVaListDecl(Context, Name: "__builtin_ms_va_list" ); |
| 9726 | } |
| 9727 | |
| 9728 | static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { |
| 9729 | return CreateCharPtrNamedVaListDecl(Context, Name: "__builtin_va_list" ); |
| 9730 | } |
| 9731 | |
| 9732 | static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { |
| 9733 | // typedef void* __builtin_va_list; |
| 9734 | QualType T = Context->getPointerType(Context->VoidTy); |
| 9735 | return Context->buildImplicitTypedef(T, Name: "__builtin_va_list" ); |
| 9736 | } |
| 9737 | |
| 9738 | static TypedefDecl * |
| 9739 | CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { |
| 9740 | // struct __va_list |
| 9741 | RecordDecl *VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list" ); |
| 9742 | if (Context->getLangOpts().CPlusPlus) { |
| 9743 | // namespace std { struct __va_list { |
| 9744 | auto *NS = NamespaceDecl::Create( |
| 9745 | const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(), |
| 9746 | /*Inline=*/false, SourceLocation(), SourceLocation(), |
| 9747 | &Context->Idents.get(Name: "std" ), |
| 9748 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
| 9749 | NS->setImplicit(); |
| 9750 | VaListTagDecl->setDeclContext(NS); |
| 9751 | } |
| 9752 | |
| 9753 | VaListTagDecl->startDefinition(); |
| 9754 | |
| 9755 | const size_t NumFields = 5; |
| 9756 | QualType FieldTypes[NumFields]; |
| 9757 | const char *FieldNames[NumFields]; |
| 9758 | |
| 9759 | // void *__stack; |
| 9760 | FieldTypes[0] = Context->getPointerType(Context->VoidTy); |
| 9761 | FieldNames[0] = "__stack" ; |
| 9762 | |
| 9763 | // void *__gr_top; |
| 9764 | FieldTypes[1] = Context->getPointerType(Context->VoidTy); |
| 9765 | FieldNames[1] = "__gr_top" ; |
| 9766 | |
| 9767 | // void *__vr_top; |
| 9768 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
| 9769 | FieldNames[2] = "__vr_top" ; |
| 9770 | |
| 9771 | // int __gr_offs; |
| 9772 | FieldTypes[3] = Context->IntTy; |
| 9773 | FieldNames[3] = "__gr_offs" ; |
| 9774 | |
| 9775 | // int __vr_offs; |
| 9776 | FieldTypes[4] = Context->IntTy; |
| 9777 | FieldNames[4] = "__vr_offs" ; |
| 9778 | |
| 9779 | // Create fields |
| 9780 | for (unsigned i = 0; i < NumFields; ++i) { |
| 9781 | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
| 9782 | VaListTagDecl, |
| 9783 | SourceLocation(), |
| 9784 | SourceLocation(), |
| 9785 | &Context->Idents.get(Name: FieldNames[i]), |
| 9786 | FieldTypes[i], /*TInfo=*/nullptr, |
| 9787 | /*BitWidth=*/nullptr, |
| 9788 | /*Mutable=*/false, |
| 9789 | ICIS_NoInit); |
| 9790 | Field->setAccess(AS_public); |
| 9791 | VaListTagDecl->addDecl(Field); |
| 9792 | } |
| 9793 | VaListTagDecl->completeDefinition(); |
| 9794 | Context->VaListTagDecl = VaListTagDecl; |
| 9795 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
| 9796 | |
| 9797 | // } __builtin_va_list; |
| 9798 | return Context->buildImplicitTypedef(T: VaListTagType, Name: "__builtin_va_list" ); |
| 9799 | } |
| 9800 | |
| 9801 | static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { |
| 9802 | // typedef struct __va_list_tag { |
| 9803 | RecordDecl *VaListTagDecl; |
| 9804 | |
| 9805 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
| 9806 | VaListTagDecl->startDefinition(); |
| 9807 | |
| 9808 | const size_t NumFields = 5; |
| 9809 | QualType FieldTypes[NumFields]; |
| 9810 | const char *FieldNames[NumFields]; |
| 9811 | |
| 9812 | // unsigned char gpr; |
| 9813 | FieldTypes[0] = Context->UnsignedCharTy; |
| 9814 | FieldNames[0] = "gpr" ; |
| 9815 | |
| 9816 | // unsigned char fpr; |
| 9817 | FieldTypes[1] = Context->UnsignedCharTy; |
| 9818 | FieldNames[1] = "fpr" ; |
| 9819 | |
| 9820 | // unsigned short reserved; |
| 9821 | FieldTypes[2] = Context->UnsignedShortTy; |
| 9822 | FieldNames[2] = "reserved" ; |
| 9823 | |
| 9824 | // void* overflow_arg_area; |
| 9825 | FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
| 9826 | FieldNames[3] = "overflow_arg_area" ; |
| 9827 | |
| 9828 | // void* reg_save_area; |
| 9829 | FieldTypes[4] = Context->getPointerType(Context->VoidTy); |
| 9830 | FieldNames[4] = "reg_save_area" ; |
| 9831 | |
| 9832 | // Create fields |
| 9833 | for (unsigned i = 0; i < NumFields; ++i) { |
| 9834 | FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, |
| 9835 | SourceLocation(), |
| 9836 | SourceLocation(), |
| 9837 | &Context->Idents.get(Name: FieldNames[i]), |
| 9838 | FieldTypes[i], /*TInfo=*/nullptr, |
| 9839 | /*BitWidth=*/nullptr, |
| 9840 | /*Mutable=*/false, |
| 9841 | ICIS_NoInit); |
| 9842 | Field->setAccess(AS_public); |
| 9843 | VaListTagDecl->addDecl(Field); |
| 9844 | } |
| 9845 | VaListTagDecl->completeDefinition(); |
| 9846 | Context->VaListTagDecl = VaListTagDecl; |
| 9847 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
| 9848 | |
| 9849 | // } __va_list_tag; |
| 9850 | TypedefDecl *VaListTagTypedefDecl = |
| 9851 | Context->buildImplicitTypedef(T: VaListTagType, Name: "__va_list_tag" ); |
| 9852 | |
| 9853 | QualType VaListTagTypedefType = |
| 9854 | Context->getTypedefType(VaListTagTypedefDecl); |
| 9855 | |
| 9856 | // typedef __va_list_tag __builtin_va_list[1]; |
| 9857 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
| 9858 | QualType VaListTagArrayType = Context->getConstantArrayType( |
| 9859 | EltTy: VaListTagTypedefType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 9860 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
| 9861 | } |
| 9862 | |
| 9863 | static TypedefDecl * |
| 9864 | CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { |
| 9865 | // struct __va_list_tag { |
| 9866 | RecordDecl *VaListTagDecl; |
| 9867 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
| 9868 | VaListTagDecl->startDefinition(); |
| 9869 | |
| 9870 | const size_t NumFields = 4; |
| 9871 | QualType FieldTypes[NumFields]; |
| 9872 | const char *FieldNames[NumFields]; |
| 9873 | |
| 9874 | // unsigned gp_offset; |
| 9875 | FieldTypes[0] = Context->UnsignedIntTy; |
| 9876 | FieldNames[0] = "gp_offset" ; |
| 9877 | |
| 9878 | // unsigned fp_offset; |
| 9879 | FieldTypes[1] = Context->UnsignedIntTy; |
| 9880 | FieldNames[1] = "fp_offset" ; |
| 9881 | |
| 9882 | // void* overflow_arg_area; |
| 9883 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
| 9884 | FieldNames[2] = "overflow_arg_area" ; |
| 9885 | |
| 9886 | // void* reg_save_area; |
| 9887 | FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
| 9888 | FieldNames[3] = "reg_save_area" ; |
| 9889 | |
| 9890 | // Create fields |
| 9891 | for (unsigned i = 0; i < NumFields; ++i) { |
| 9892 | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
| 9893 | VaListTagDecl, |
| 9894 | SourceLocation(), |
| 9895 | SourceLocation(), |
| 9896 | &Context->Idents.get(Name: FieldNames[i]), |
| 9897 | FieldTypes[i], /*TInfo=*/nullptr, |
| 9898 | /*BitWidth=*/nullptr, |
| 9899 | /*Mutable=*/false, |
| 9900 | ICIS_NoInit); |
| 9901 | Field->setAccess(AS_public); |
| 9902 | VaListTagDecl->addDecl(Field); |
| 9903 | } |
| 9904 | VaListTagDecl->completeDefinition(); |
| 9905 | Context->VaListTagDecl = VaListTagDecl; |
| 9906 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
| 9907 | |
| 9908 | // }; |
| 9909 | |
| 9910 | // typedef struct __va_list_tag __builtin_va_list[1]; |
| 9911 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
| 9912 | QualType VaListTagArrayType = Context->getConstantArrayType( |
| 9913 | EltTy: VaListTagType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 9914 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
| 9915 | } |
| 9916 | |
| 9917 | static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { |
| 9918 | // typedef int __builtin_va_list[4]; |
| 9919 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 4); |
| 9920 | QualType IntArrayType = Context->getConstantArrayType( |
| 9921 | EltTy: Context->IntTy, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 9922 | return Context->buildImplicitTypedef(T: IntArrayType, Name: "__builtin_va_list" ); |
| 9923 | } |
| 9924 | |
| 9925 | static TypedefDecl * |
| 9926 | CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { |
| 9927 | // struct __va_list |
| 9928 | RecordDecl *VaListDecl = Context->buildImplicitRecord(Name: "__va_list" ); |
| 9929 | if (Context->getLangOpts().CPlusPlus) { |
| 9930 | // namespace std { struct __va_list { |
| 9931 | NamespaceDecl *NS; |
| 9932 | NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), |
| 9933 | Context->getTranslationUnitDecl(), |
| 9934 | /*Inline=*/false, SourceLocation(), |
| 9935 | SourceLocation(), &Context->Idents.get(Name: "std" ), |
| 9936 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
| 9937 | NS->setImplicit(); |
| 9938 | VaListDecl->setDeclContext(NS); |
| 9939 | } |
| 9940 | |
| 9941 | VaListDecl->startDefinition(); |
| 9942 | |
| 9943 | // void * __ap; |
| 9944 | FieldDecl *Field = FieldDecl::Create(C: const_cast<ASTContext &>(*Context), |
| 9945 | DC: VaListDecl, |
| 9946 | StartLoc: SourceLocation(), |
| 9947 | IdLoc: SourceLocation(), |
| 9948 | Id: &Context->Idents.get(Name: "__ap" ), |
| 9949 | T: Context->getPointerType(Context->VoidTy), |
| 9950 | /*TInfo=*/nullptr, |
| 9951 | /*BitWidth=*/BW: nullptr, |
| 9952 | /*Mutable=*/false, |
| 9953 | InitStyle: ICIS_NoInit); |
| 9954 | Field->setAccess(AS_public); |
| 9955 | VaListDecl->addDecl(Field); |
| 9956 | |
| 9957 | // }; |
| 9958 | VaListDecl->completeDefinition(); |
| 9959 | Context->VaListTagDecl = VaListDecl; |
| 9960 | |
| 9961 | // typedef struct __va_list __builtin_va_list; |
| 9962 | QualType T = Context->getRecordType(Decl: VaListDecl); |
| 9963 | return Context->buildImplicitTypedef(T, Name: "__builtin_va_list" ); |
| 9964 | } |
| 9965 | |
| 9966 | static TypedefDecl * |
| 9967 | CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { |
| 9968 | // struct __va_list_tag { |
| 9969 | RecordDecl *VaListTagDecl; |
| 9970 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
| 9971 | VaListTagDecl->startDefinition(); |
| 9972 | |
| 9973 | const size_t NumFields = 4; |
| 9974 | QualType FieldTypes[NumFields]; |
| 9975 | const char *FieldNames[NumFields]; |
| 9976 | |
| 9977 | // long __gpr; |
| 9978 | FieldTypes[0] = Context->LongTy; |
| 9979 | FieldNames[0] = "__gpr" ; |
| 9980 | |
| 9981 | // long __fpr; |
| 9982 | FieldTypes[1] = Context->LongTy; |
| 9983 | FieldNames[1] = "__fpr" ; |
| 9984 | |
| 9985 | // void *__overflow_arg_area; |
| 9986 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
| 9987 | FieldNames[2] = "__overflow_arg_area" ; |
| 9988 | |
| 9989 | // void *__reg_save_area; |
| 9990 | FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
| 9991 | FieldNames[3] = "__reg_save_area" ; |
| 9992 | |
| 9993 | // Create fields |
| 9994 | for (unsigned i = 0; i < NumFields; ++i) { |
| 9995 | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
| 9996 | VaListTagDecl, |
| 9997 | SourceLocation(), |
| 9998 | SourceLocation(), |
| 9999 | &Context->Idents.get(Name: FieldNames[i]), |
| 10000 | FieldTypes[i], /*TInfo=*/nullptr, |
| 10001 | /*BitWidth=*/nullptr, |
| 10002 | /*Mutable=*/false, |
| 10003 | ICIS_NoInit); |
| 10004 | Field->setAccess(AS_public); |
| 10005 | VaListTagDecl->addDecl(Field); |
| 10006 | } |
| 10007 | VaListTagDecl->completeDefinition(); |
| 10008 | Context->VaListTagDecl = VaListTagDecl; |
| 10009 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
| 10010 | |
| 10011 | // }; |
| 10012 | |
| 10013 | // typedef __va_list_tag __builtin_va_list[1]; |
| 10014 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
| 10015 | QualType VaListTagArrayType = Context->getConstantArrayType( |
| 10016 | EltTy: VaListTagType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 10017 | |
| 10018 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
| 10019 | } |
| 10020 | |
| 10021 | static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) { |
| 10022 | // typedef struct __va_list_tag { |
| 10023 | RecordDecl *VaListTagDecl; |
| 10024 | VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
| 10025 | VaListTagDecl->startDefinition(); |
| 10026 | |
| 10027 | const size_t NumFields = 3; |
| 10028 | QualType FieldTypes[NumFields]; |
| 10029 | const char *FieldNames[NumFields]; |
| 10030 | |
| 10031 | // void *CurrentSavedRegisterArea; |
| 10032 | FieldTypes[0] = Context->getPointerType(Context->VoidTy); |
| 10033 | FieldNames[0] = "__current_saved_reg_area_pointer" ; |
| 10034 | |
| 10035 | // void *SavedRegAreaEnd; |
| 10036 | FieldTypes[1] = Context->getPointerType(Context->VoidTy); |
| 10037 | FieldNames[1] = "__saved_reg_area_end_pointer" ; |
| 10038 | |
| 10039 | // void *OverflowArea; |
| 10040 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
| 10041 | FieldNames[2] = "__overflow_area_pointer" ; |
| 10042 | |
| 10043 | // Create fields |
| 10044 | for (unsigned i = 0; i < NumFields; ++i) { |
| 10045 | FieldDecl *Field = FieldDecl::Create( |
| 10046 | const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(), |
| 10047 | SourceLocation(), &Context->Idents.get(Name: FieldNames[i]), FieldTypes[i], |
| 10048 | /*TInfo=*/nullptr, |
| 10049 | /*BitWidth=*/nullptr, |
| 10050 | /*Mutable=*/false, ICIS_NoInit); |
| 10051 | Field->setAccess(AS_public); |
| 10052 | VaListTagDecl->addDecl(Field); |
| 10053 | } |
| 10054 | VaListTagDecl->completeDefinition(); |
| 10055 | Context->VaListTagDecl = VaListTagDecl; |
| 10056 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
| 10057 | |
| 10058 | // } __va_list_tag; |
| 10059 | TypedefDecl *VaListTagTypedefDecl = |
| 10060 | Context->buildImplicitTypedef(T: VaListTagType, Name: "__va_list_tag" ); |
| 10061 | |
| 10062 | QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl); |
| 10063 | |
| 10064 | // typedef __va_list_tag __builtin_va_list[1]; |
| 10065 | llvm::APInt Size(Context->getTypeSize(T: Context->getSizeType()), 1); |
| 10066 | QualType VaListTagArrayType = Context->getConstantArrayType( |
| 10067 | EltTy: VaListTagTypedefType, ArySizeIn: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 10068 | |
| 10069 | return Context->buildImplicitTypedef(T: VaListTagArrayType, Name: "__builtin_va_list" ); |
| 10070 | } |
| 10071 | |
| 10072 | static TypedefDecl * |
| 10073 | CreateXtensaABIBuiltinVaListDecl(const ASTContext *Context) { |
| 10074 | // typedef struct __va_list_tag { |
| 10075 | RecordDecl *VaListTagDecl = Context->buildImplicitRecord(Name: "__va_list_tag" ); |
| 10076 | |
| 10077 | VaListTagDecl->startDefinition(); |
| 10078 | |
| 10079 | // int* __va_stk; |
| 10080 | // int* __va_reg; |
| 10081 | // int __va_ndx; |
| 10082 | constexpr size_t NumFields = 3; |
| 10083 | QualType FieldTypes[NumFields] = {Context->getPointerType(Context->IntTy), |
| 10084 | Context->getPointerType(Context->IntTy), |
| 10085 | Context->IntTy}; |
| 10086 | const char *FieldNames[NumFields] = {"__va_stk" , "__va_reg" , "__va_ndx" }; |
| 10087 | |
| 10088 | // Create fields |
| 10089 | for (unsigned i = 0; i < NumFields; ++i) { |
| 10090 | FieldDecl *Field = FieldDecl::Create( |
| 10091 | *Context, VaListTagDecl, SourceLocation(), SourceLocation(), |
| 10092 | &Context->Idents.get(Name: FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, |
| 10093 | /*BitWidth=*/nullptr, |
| 10094 | /*Mutable=*/false, ICIS_NoInit); |
| 10095 | Field->setAccess(AS_public); |
| 10096 | VaListTagDecl->addDecl(Field); |
| 10097 | } |
| 10098 | VaListTagDecl->completeDefinition(); |
| 10099 | Context->VaListTagDecl = VaListTagDecl; |
| 10100 | QualType VaListTagType = Context->getRecordType(Decl: VaListTagDecl); |
| 10101 | |
| 10102 | // } __va_list_tag; |
| 10103 | TypedefDecl *VaListTagTypedefDecl = |
| 10104 | Context->buildImplicitTypedef(T: VaListTagType, Name: "__builtin_va_list" ); |
| 10105 | |
| 10106 | return VaListTagTypedefDecl; |
| 10107 | } |
| 10108 | |
| 10109 | static TypedefDecl *CreateVaListDecl(const ASTContext *Context, |
| 10110 | TargetInfo::BuiltinVaListKind Kind) { |
| 10111 | switch (Kind) { |
| 10112 | case TargetInfo::CharPtrBuiltinVaList: |
| 10113 | return CreateCharPtrBuiltinVaListDecl(Context); |
| 10114 | case TargetInfo::VoidPtrBuiltinVaList: |
| 10115 | return CreateVoidPtrBuiltinVaListDecl(Context); |
| 10116 | case TargetInfo::AArch64ABIBuiltinVaList: |
| 10117 | return CreateAArch64ABIBuiltinVaListDecl(Context); |
| 10118 | case TargetInfo::PowerABIBuiltinVaList: |
| 10119 | return CreatePowerABIBuiltinVaListDecl(Context); |
| 10120 | case TargetInfo::X86_64ABIBuiltinVaList: |
| 10121 | return CreateX86_64ABIBuiltinVaListDecl(Context); |
| 10122 | case TargetInfo::PNaClABIBuiltinVaList: |
| 10123 | return CreatePNaClABIBuiltinVaListDecl(Context); |
| 10124 | case TargetInfo::AAPCSABIBuiltinVaList: |
| 10125 | return CreateAAPCSABIBuiltinVaListDecl(Context); |
| 10126 | case TargetInfo::SystemZBuiltinVaList: |
| 10127 | return CreateSystemZBuiltinVaListDecl(Context); |
| 10128 | case TargetInfo::HexagonBuiltinVaList: |
| 10129 | return CreateHexagonBuiltinVaListDecl(Context); |
| 10130 | case TargetInfo::XtensaABIBuiltinVaList: |
| 10131 | return CreateXtensaABIBuiltinVaListDecl(Context); |
| 10132 | } |
| 10133 | |
| 10134 | llvm_unreachable("Unhandled __builtin_va_list type kind" ); |
| 10135 | } |
| 10136 | |
| 10137 | TypedefDecl *ASTContext::getBuiltinVaListDecl() const { |
| 10138 | if (!BuiltinVaListDecl) { |
| 10139 | BuiltinVaListDecl = CreateVaListDecl(Context: this, Kind: Target->getBuiltinVaListKind()); |
| 10140 | assert(BuiltinVaListDecl->isImplicit()); |
| 10141 | } |
| 10142 | |
| 10143 | return BuiltinVaListDecl; |
| 10144 | } |
| 10145 | |
| 10146 | Decl *ASTContext::getVaListTagDecl() const { |
| 10147 | // Force the creation of VaListTagDecl by building the __builtin_va_list |
| 10148 | // declaration. |
| 10149 | if (!VaListTagDecl) |
| 10150 | (void)getBuiltinVaListDecl(); |
| 10151 | |
| 10152 | return VaListTagDecl; |
| 10153 | } |
| 10154 | |
| 10155 | TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { |
| 10156 | if (!BuiltinMSVaListDecl) |
| 10157 | BuiltinMSVaListDecl = CreateMSVaListDecl(Context: this); |
| 10158 | |
| 10159 | return BuiltinMSVaListDecl; |
| 10160 | } |
| 10161 | |
| 10162 | bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const { |
| 10163 | // Allow redecl custom type checking builtin for HLSL. |
| 10164 | if (LangOpts.HLSL && FD->getBuiltinID() != Builtin::NotBuiltin && |
| 10165 | BuiltinInfo.hasCustomTypechecking(ID: FD->getBuiltinID())) |
| 10166 | return true; |
| 10167 | // Allow redecl custom type checking builtin for SPIR-V. |
| 10168 | if (getTargetInfo().getTriple().isSPIROrSPIRV() && |
| 10169 | BuiltinInfo.isTSBuiltin(ID: FD->getBuiltinID()) && |
| 10170 | BuiltinInfo.hasCustomTypechecking(ID: FD->getBuiltinID())) |
| 10171 | return true; |
| 10172 | return BuiltinInfo.canBeRedeclared(ID: FD->getBuiltinID()); |
| 10173 | } |
| 10174 | |
| 10175 | void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { |
| 10176 | assert(ObjCConstantStringType.isNull() && |
| 10177 | "'NSConstantString' type already set!" ); |
| 10178 | |
| 10179 | ObjCConstantStringType = getObjCInterfaceType(Decl); |
| 10180 | } |
| 10181 | |
| 10182 | /// Retrieve the template name that corresponds to a non-empty |
| 10183 | /// lookup. |
| 10184 | TemplateName |
| 10185 | ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, |
| 10186 | UnresolvedSetIterator End) const { |
| 10187 | unsigned size = End - Begin; |
| 10188 | assert(size > 1 && "set is not overloaded!" ); |
| 10189 | |
| 10190 | void *memory = Allocate(Size: sizeof(OverloadedTemplateStorage) + |
| 10191 | size * sizeof(FunctionTemplateDecl*)); |
| 10192 | auto *OT = new (memory) OverloadedTemplateStorage(size); |
| 10193 | |
| 10194 | NamedDecl **Storage = OT->getStorage(); |
| 10195 | for (UnresolvedSetIterator I = Begin; I != End; ++I) { |
| 10196 | NamedDecl *D = *I; |
| 10197 | assert(isa<FunctionTemplateDecl>(D) || |
| 10198 | isa<UnresolvedUsingValueDecl>(D) || |
| 10199 | (isa<UsingShadowDecl>(D) && |
| 10200 | isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); |
| 10201 | *Storage++ = D; |
| 10202 | } |
| 10203 | |
| 10204 | return TemplateName(OT); |
| 10205 | } |
| 10206 | |
| 10207 | /// Retrieve a template name representing an unqualified-id that has been |
| 10208 | /// assumed to name a template for ADL purposes. |
| 10209 | TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const { |
| 10210 | auto *OT = new (*this) AssumedTemplateStorage(Name); |
| 10211 | return TemplateName(OT); |
| 10212 | } |
| 10213 | |
| 10214 | /// Retrieve the template name that represents a qualified |
| 10215 | /// template name such as \c std::vector. |
| 10216 | TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, |
| 10217 | bool TemplateKeyword, |
| 10218 | TemplateName Template) const { |
| 10219 | assert(Template.getKind() == TemplateName::Template || |
| 10220 | Template.getKind() == TemplateName::UsingTemplate); |
| 10221 | |
| 10222 | // FIXME: Canonicalization? |
| 10223 | llvm::FoldingSetNodeID ID; |
| 10224 | QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, TN: Template); |
| 10225 | |
| 10226 | void *InsertPos = nullptr; |
| 10227 | QualifiedTemplateName *QTN = |
| 10228 | QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| 10229 | if (!QTN) { |
| 10230 | QTN = new (*this, alignof(QualifiedTemplateName)) |
| 10231 | QualifiedTemplateName(NNS, TemplateKeyword, Template); |
| 10232 | QualifiedTemplateNames.InsertNode(N: QTN, InsertPos); |
| 10233 | } |
| 10234 | |
| 10235 | return TemplateName(QTN); |
| 10236 | } |
| 10237 | |
| 10238 | /// Retrieve the template name that represents a dependent |
| 10239 | /// template name such as \c MetaFun::template operator+. |
| 10240 | TemplateName |
| 10241 | ASTContext::getDependentTemplateName(const DependentTemplateStorage &S) const { |
| 10242 | llvm::FoldingSetNodeID ID; |
| 10243 | S.Profile(ID); |
| 10244 | |
| 10245 | void *InsertPos = nullptr; |
| 10246 | if (DependentTemplateName *QTN = |
| 10247 | DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos)) |
| 10248 | return TemplateName(QTN); |
| 10249 | |
| 10250 | DependentTemplateName *QTN = |
| 10251 | new (*this, alignof(DependentTemplateName)) DependentTemplateName(S); |
| 10252 | DependentTemplateNames.InsertNode(N: QTN, InsertPos); |
| 10253 | return TemplateName(QTN); |
| 10254 | } |
| 10255 | |
| 10256 | TemplateName ASTContext::getSubstTemplateTemplateParm(TemplateName Replacement, |
| 10257 | Decl *AssociatedDecl, |
| 10258 | unsigned Index, |
| 10259 | UnsignedOrNone PackIndex, |
| 10260 | bool Final) const { |
| 10261 | llvm::FoldingSetNodeID ID; |
| 10262 | SubstTemplateTemplateParmStorage::Profile(ID, Replacement, AssociatedDecl, |
| 10263 | Index, PackIndex, Final); |
| 10264 | |
| 10265 | void *insertPos = nullptr; |
| 10266 | SubstTemplateTemplateParmStorage *subst |
| 10267 | = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos&: insertPos); |
| 10268 | |
| 10269 | if (!subst) { |
| 10270 | subst = new (*this) SubstTemplateTemplateParmStorage( |
| 10271 | Replacement, AssociatedDecl, Index, PackIndex, Final); |
| 10272 | SubstTemplateTemplateParms.InsertNode(N: subst, InsertPos: insertPos); |
| 10273 | } |
| 10274 | |
| 10275 | return TemplateName(subst); |
| 10276 | } |
| 10277 | |
| 10278 | TemplateName |
| 10279 | ASTContext::getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack, |
| 10280 | Decl *AssociatedDecl, |
| 10281 | unsigned Index, bool Final) const { |
| 10282 | auto &Self = const_cast<ASTContext &>(*this); |
| 10283 | llvm::FoldingSetNodeID ID; |
| 10284 | SubstTemplateTemplateParmPackStorage::Profile(ID, Context&: Self, ArgPack, |
| 10285 | AssociatedDecl, Index, Final); |
| 10286 | |
| 10287 | void *InsertPos = nullptr; |
| 10288 | SubstTemplateTemplateParmPackStorage *Subst |
| 10289 | = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); |
| 10290 | |
| 10291 | if (!Subst) { |
| 10292 | Subst = new (*this) SubstTemplateTemplateParmPackStorage( |
| 10293 | ArgPack.pack_elements(), AssociatedDecl, Index, Final); |
| 10294 | SubstTemplateTemplateParmPacks.InsertNode(N: Subst, InsertPos); |
| 10295 | } |
| 10296 | |
| 10297 | return TemplateName(Subst); |
| 10298 | } |
| 10299 | |
| 10300 | /// Retrieve the template name that represents a template name |
| 10301 | /// deduced from a specialization. |
| 10302 | TemplateName |
| 10303 | ASTContext::getDeducedTemplateName(TemplateName Underlying, |
| 10304 | DefaultArguments DefaultArgs) const { |
| 10305 | if (!DefaultArgs) |
| 10306 | return Underlying; |
| 10307 | |
| 10308 | llvm::FoldingSetNodeID ID; |
| 10309 | DeducedTemplateStorage::Profile(ID, Context: *this, Underlying, DefArgs: DefaultArgs); |
| 10310 | |
| 10311 | void *InsertPos = nullptr; |
| 10312 | DeducedTemplateStorage *DTS = |
| 10313 | DeducedTemplates.FindNodeOrInsertPos(ID, InsertPos); |
| 10314 | if (!DTS) { |
| 10315 | void *Mem = Allocate(Size: sizeof(DeducedTemplateStorage) + |
| 10316 | sizeof(TemplateArgument) * DefaultArgs.Args.size(), |
| 10317 | Align: alignof(DeducedTemplateStorage)); |
| 10318 | DTS = new (Mem) DeducedTemplateStorage(Underlying, DefaultArgs); |
| 10319 | DeducedTemplates.InsertNode(N: DTS, InsertPos); |
| 10320 | } |
| 10321 | return TemplateName(DTS); |
| 10322 | } |
| 10323 | |
| 10324 | /// getFromTargetType - Given one of the integer types provided by |
| 10325 | /// TargetInfo, produce the corresponding type. The unsigned @p Type |
| 10326 | /// is actually a value of type @c TargetInfo::IntType. |
| 10327 | CanQualType ASTContext::getFromTargetType(unsigned Type) const { |
| 10328 | switch (Type) { |
| 10329 | case TargetInfo::NoInt: return {}; |
| 10330 | case TargetInfo::SignedChar: return SignedCharTy; |
| 10331 | case TargetInfo::UnsignedChar: return UnsignedCharTy; |
| 10332 | case TargetInfo::SignedShort: return ShortTy; |
| 10333 | case TargetInfo::UnsignedShort: return UnsignedShortTy; |
| 10334 | case TargetInfo::SignedInt: return IntTy; |
| 10335 | case TargetInfo::UnsignedInt: return UnsignedIntTy; |
| 10336 | case TargetInfo::SignedLong: return LongTy; |
| 10337 | case TargetInfo::UnsignedLong: return UnsignedLongTy; |
| 10338 | case TargetInfo::SignedLongLong: return LongLongTy; |
| 10339 | case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; |
| 10340 | } |
| 10341 | |
| 10342 | llvm_unreachable("Unhandled TargetInfo::IntType value" ); |
| 10343 | } |
| 10344 | |
| 10345 | //===----------------------------------------------------------------------===// |
| 10346 | // Type Predicates. |
| 10347 | //===----------------------------------------------------------------------===// |
| 10348 | |
| 10349 | /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's |
| 10350 | /// garbage collection attribute. |
| 10351 | /// |
| 10352 | Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { |
| 10353 | if (getLangOpts().getGC() == LangOptions::NonGC) |
| 10354 | return Qualifiers::GCNone; |
| 10355 | |
| 10356 | assert(getLangOpts().ObjC); |
| 10357 | Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); |
| 10358 | |
| 10359 | // Default behaviour under objective-C's gc is for ObjC pointers |
| 10360 | // (or pointers to them) be treated as though they were declared |
| 10361 | // as __strong. |
| 10362 | if (GCAttrs == Qualifiers::GCNone) { |
| 10363 | if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) |
| 10364 | return Qualifiers::Strong; |
| 10365 | else if (Ty->isPointerType()) |
| 10366 | return getObjCGCAttrKind(Ty: Ty->castAs<PointerType>()->getPointeeType()); |
| 10367 | } else { |
| 10368 | // It's not valid to set GC attributes on anything that isn't a |
| 10369 | // pointer. |
| 10370 | #ifndef NDEBUG |
| 10371 | QualType CT = Ty->getCanonicalTypeInternal(); |
| 10372 | while (const auto *AT = dyn_cast<ArrayType>(Val&: CT)) |
| 10373 | CT = AT->getElementType(); |
| 10374 | assert(CT->isAnyPointerType() || CT->isBlockPointerType()); |
| 10375 | #endif |
| 10376 | } |
| 10377 | return GCAttrs; |
| 10378 | } |
| 10379 | |
| 10380 | //===----------------------------------------------------------------------===// |
| 10381 | // Type Compatibility Testing |
| 10382 | //===----------------------------------------------------------------------===// |
| 10383 | |
| 10384 | /// areCompatVectorTypes - Return true if the two specified vector types are |
| 10385 | /// compatible. |
| 10386 | static bool areCompatVectorTypes(const VectorType *LHS, |
| 10387 | const VectorType *RHS) { |
| 10388 | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); |
| 10389 | return LHS->getElementType() == RHS->getElementType() && |
| 10390 | LHS->getNumElements() == RHS->getNumElements(); |
| 10391 | } |
| 10392 | |
| 10393 | /// areCompatMatrixTypes - Return true if the two specified matrix types are |
| 10394 | /// compatible. |
| 10395 | static bool areCompatMatrixTypes(const ConstantMatrixType *LHS, |
| 10396 | const ConstantMatrixType *RHS) { |
| 10397 | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); |
| 10398 | return LHS->getElementType() == RHS->getElementType() && |
| 10399 | LHS->getNumRows() == RHS->getNumRows() && |
| 10400 | LHS->getNumColumns() == RHS->getNumColumns(); |
| 10401 | } |
| 10402 | |
| 10403 | bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, |
| 10404 | QualType SecondVec) { |
| 10405 | assert(FirstVec->isVectorType() && "FirstVec should be a vector type" ); |
| 10406 | assert(SecondVec->isVectorType() && "SecondVec should be a vector type" ); |
| 10407 | |
| 10408 | if (hasSameUnqualifiedType(T1: FirstVec, T2: SecondVec)) |
| 10409 | return true; |
| 10410 | |
| 10411 | // Treat Neon vector types and most AltiVec vector types as if they are the |
| 10412 | // equivalent GCC vector types. |
| 10413 | const auto *First = FirstVec->castAs<VectorType>(); |
| 10414 | const auto *Second = SecondVec->castAs<VectorType>(); |
| 10415 | if (First->getNumElements() == Second->getNumElements() && |
| 10416 | hasSameType(T1: First->getElementType(), T2: Second->getElementType()) && |
| 10417 | First->getVectorKind() != VectorKind::AltiVecPixel && |
| 10418 | First->getVectorKind() != VectorKind::AltiVecBool && |
| 10419 | Second->getVectorKind() != VectorKind::AltiVecPixel && |
| 10420 | Second->getVectorKind() != VectorKind::AltiVecBool && |
| 10421 | First->getVectorKind() != VectorKind::SveFixedLengthData && |
| 10422 | First->getVectorKind() != VectorKind::SveFixedLengthPredicate && |
| 10423 | Second->getVectorKind() != VectorKind::SveFixedLengthData && |
| 10424 | Second->getVectorKind() != VectorKind::SveFixedLengthPredicate && |
| 10425 | First->getVectorKind() != VectorKind::RVVFixedLengthData && |
| 10426 | Second->getVectorKind() != VectorKind::RVVFixedLengthData && |
| 10427 | First->getVectorKind() != VectorKind::RVVFixedLengthMask && |
| 10428 | Second->getVectorKind() != VectorKind::RVVFixedLengthMask && |
| 10429 | First->getVectorKind() != VectorKind::RVVFixedLengthMask_1 && |
| 10430 | Second->getVectorKind() != VectorKind::RVVFixedLengthMask_1 && |
| 10431 | First->getVectorKind() != VectorKind::RVVFixedLengthMask_2 && |
| 10432 | Second->getVectorKind() != VectorKind::RVVFixedLengthMask_2 && |
| 10433 | First->getVectorKind() != VectorKind::RVVFixedLengthMask_4 && |
| 10434 | Second->getVectorKind() != VectorKind::RVVFixedLengthMask_4) |
| 10435 | return true; |
| 10436 | |
| 10437 | return false; |
| 10438 | } |
| 10439 | |
| 10440 | /// getSVETypeSize - Return SVE vector or predicate register size. |
| 10441 | static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) { |
| 10442 | assert(Ty->isSveVLSBuiltinType() && "Invalid SVE Type" ); |
| 10443 | if (Ty->getKind() == BuiltinType::SveBool || |
| 10444 | Ty->getKind() == BuiltinType::SveCount) |
| 10445 | return (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth(); |
| 10446 | return Context.getLangOpts().VScaleMin * 128; |
| 10447 | } |
| 10448 | |
| 10449 | bool ASTContext::areCompatibleSveTypes(QualType FirstType, |
| 10450 | QualType SecondType) { |
| 10451 | auto IsValidCast = [this](QualType FirstType, QualType SecondType) { |
| 10452 | if (const auto *BT = FirstType->getAs<BuiltinType>()) { |
| 10453 | if (const auto *VT = SecondType->getAs<VectorType>()) { |
| 10454 | // Predicates have the same representation as uint8 so we also have to |
| 10455 | // check the kind to make these types incompatible. |
| 10456 | if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) |
| 10457 | return BT->getKind() == BuiltinType::SveBool; |
| 10458 | else if (VT->getVectorKind() == VectorKind::SveFixedLengthData) |
| 10459 | return VT->getElementType().getCanonicalType() == |
| 10460 | FirstType->getSveEltType(Ctx: *this); |
| 10461 | else if (VT->getVectorKind() == VectorKind::Generic) |
| 10462 | return getTypeSize(SecondType) == getSVETypeSize(*this, BT) && |
| 10463 | hasSameType(VT->getElementType(), |
| 10464 | getBuiltinVectorTypeInfo(BT).ElementType); |
| 10465 | } |
| 10466 | } |
| 10467 | return false; |
| 10468 | }; |
| 10469 | |
| 10470 | return IsValidCast(FirstType, SecondType) || |
| 10471 | IsValidCast(SecondType, FirstType); |
| 10472 | } |
| 10473 | |
| 10474 | bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType, |
| 10475 | QualType SecondType) { |
| 10476 | auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { |
| 10477 | const auto *BT = FirstType->getAs<BuiltinType>(); |
| 10478 | if (!BT) |
| 10479 | return false; |
| 10480 | |
| 10481 | const auto *VecTy = SecondType->getAs<VectorType>(); |
| 10482 | if (VecTy && (VecTy->getVectorKind() == VectorKind::SveFixedLengthData || |
| 10483 | VecTy->getVectorKind() == VectorKind::Generic)) { |
| 10484 | const LangOptions::LaxVectorConversionKind LVCKind = |
| 10485 | getLangOpts().getLaxVectorConversions(); |
| 10486 | |
| 10487 | // Can not convert between sve predicates and sve vectors because of |
| 10488 | // different size. |
| 10489 | if (BT->getKind() == BuiltinType::SveBool && |
| 10490 | VecTy->getVectorKind() == VectorKind::SveFixedLengthData) |
| 10491 | return false; |
| 10492 | |
| 10493 | // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion. |
| 10494 | // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly |
| 10495 | // converts to VLAT and VLAT implicitly converts to GNUT." |
| 10496 | // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and |
| 10497 | // predicates. |
| 10498 | if (VecTy->getVectorKind() == VectorKind::Generic && |
| 10499 | getTypeSize(T: SecondType) != getSVETypeSize(Context&: *this, Ty: BT)) |
| 10500 | return false; |
| 10501 | |
| 10502 | // If -flax-vector-conversions=all is specified, the types are |
| 10503 | // certainly compatible. |
| 10504 | if (LVCKind == LangOptions::LaxVectorConversionKind::All) |
| 10505 | return true; |
| 10506 | |
| 10507 | // If -flax-vector-conversions=integer is specified, the types are |
| 10508 | // compatible if the elements are integer types. |
| 10509 | if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) |
| 10510 | return VecTy->getElementType().getCanonicalType()->isIntegerType() && |
| 10511 | FirstType->getSveEltType(Ctx: *this)->isIntegerType(); |
| 10512 | } |
| 10513 | |
| 10514 | return false; |
| 10515 | }; |
| 10516 | |
| 10517 | return IsLaxCompatible(FirstType, SecondType) || |
| 10518 | IsLaxCompatible(SecondType, FirstType); |
| 10519 | } |
| 10520 | |
| 10521 | /// getRVVTypeSize - Return RVV vector register size. |
| 10522 | static uint64_t getRVVTypeSize(ASTContext &Context, const BuiltinType *Ty) { |
| 10523 | assert(Ty->isRVVVLSBuiltinType() && "Invalid RVV Type" ); |
| 10524 | auto VScale = |
| 10525 | Context.getTargetInfo().getVScaleRange(LangOpts: Context.getLangOpts(), IsArmStreamingFunction: false); |
| 10526 | if (!VScale) |
| 10527 | return 0; |
| 10528 | |
| 10529 | ASTContext::BuiltinVectorTypeInfo Info = Context.getBuiltinVectorTypeInfo(Ty); |
| 10530 | |
| 10531 | uint64_t EltSize = Context.getTypeSize(Info.ElementType); |
| 10532 | if (Info.ElementType == Context.BoolTy) |
| 10533 | EltSize = 1; |
| 10534 | |
| 10535 | uint64_t MinElts = Info.EC.getKnownMinValue(); |
| 10536 | return VScale->first * MinElts * EltSize; |
| 10537 | } |
| 10538 | |
| 10539 | bool ASTContext::areCompatibleRVVTypes(QualType FirstType, |
| 10540 | QualType SecondType) { |
| 10541 | assert( |
| 10542 | ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || |
| 10543 | (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && |
| 10544 | "Expected RVV builtin type and vector type!" ); |
| 10545 | |
| 10546 | auto IsValidCast = [this](QualType FirstType, QualType SecondType) { |
| 10547 | if (const auto *BT = FirstType->getAs<BuiltinType>()) { |
| 10548 | if (const auto *VT = SecondType->getAs<VectorType>()) { |
| 10549 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask) { |
| 10550 | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(Ty: BT); |
| 10551 | return FirstType->isRVVVLSBuiltinType() && |
| 10552 | Info.ElementType == BoolTy && |
| 10553 | getTypeSize(SecondType) == ((getRVVTypeSize(*this, BT))); |
| 10554 | } |
| 10555 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask_1) { |
| 10556 | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(Ty: BT); |
| 10557 | return FirstType->isRVVVLSBuiltinType() && |
| 10558 | Info.ElementType == BoolTy && |
| 10559 | getTypeSize(SecondType) == ((getRVVTypeSize(*this, BT) * 8)); |
| 10560 | } |
| 10561 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask_2) { |
| 10562 | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(Ty: BT); |
| 10563 | return FirstType->isRVVVLSBuiltinType() && |
| 10564 | Info.ElementType == BoolTy && |
| 10565 | getTypeSize(SecondType) == ((getRVVTypeSize(*this, BT)) * 4); |
| 10566 | } |
| 10567 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask_4) { |
| 10568 | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(Ty: BT); |
| 10569 | return FirstType->isRVVVLSBuiltinType() && |
| 10570 | Info.ElementType == BoolTy && |
| 10571 | getTypeSize(SecondType) == ((getRVVTypeSize(*this, BT)) * 2); |
| 10572 | } |
| 10573 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthData || |
| 10574 | VT->getVectorKind() == VectorKind::Generic) |
| 10575 | return FirstType->isRVVVLSBuiltinType() && |
| 10576 | getTypeSize(SecondType) == getRVVTypeSize(*this, BT) && |
| 10577 | hasSameType(VT->getElementType(), |
| 10578 | getBuiltinVectorTypeInfo(BT).ElementType); |
| 10579 | } |
| 10580 | } |
| 10581 | return false; |
| 10582 | }; |
| 10583 | |
| 10584 | return IsValidCast(FirstType, SecondType) || |
| 10585 | IsValidCast(SecondType, FirstType); |
| 10586 | } |
| 10587 | |
| 10588 | bool ASTContext::areLaxCompatibleRVVTypes(QualType FirstType, |
| 10589 | QualType SecondType) { |
| 10590 | assert( |
| 10591 | ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || |
| 10592 | (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && |
| 10593 | "Expected RVV builtin type and vector type!" ); |
| 10594 | |
| 10595 | auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { |
| 10596 | const auto *BT = FirstType->getAs<BuiltinType>(); |
| 10597 | if (!BT) |
| 10598 | return false; |
| 10599 | |
| 10600 | if (!BT->isRVVVLSBuiltinType()) |
| 10601 | return false; |
| 10602 | |
| 10603 | const auto *VecTy = SecondType->getAs<VectorType>(); |
| 10604 | if (VecTy && VecTy->getVectorKind() == VectorKind::Generic) { |
| 10605 | const LangOptions::LaxVectorConversionKind LVCKind = |
| 10606 | getLangOpts().getLaxVectorConversions(); |
| 10607 | |
| 10608 | // If __riscv_v_fixed_vlen != N do not allow vector lax conversion. |
| 10609 | if (getTypeSize(T: SecondType) != getRVVTypeSize(Context&: *this, Ty: BT)) |
| 10610 | return false; |
| 10611 | |
| 10612 | // If -flax-vector-conversions=all is specified, the types are |
| 10613 | // certainly compatible. |
| 10614 | if (LVCKind == LangOptions::LaxVectorConversionKind::All) |
| 10615 | return true; |
| 10616 | |
| 10617 | // If -flax-vector-conversions=integer is specified, the types are |
| 10618 | // compatible if the elements are integer types. |
| 10619 | if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) |
| 10620 | return VecTy->getElementType().getCanonicalType()->isIntegerType() && |
| 10621 | FirstType->getRVVEltType(Ctx: *this)->isIntegerType(); |
| 10622 | } |
| 10623 | |
| 10624 | return false; |
| 10625 | }; |
| 10626 | |
| 10627 | return IsLaxCompatible(FirstType, SecondType) || |
| 10628 | IsLaxCompatible(SecondType, FirstType); |
| 10629 | } |
| 10630 | |
| 10631 | bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const { |
| 10632 | while (true) { |
| 10633 | // __strong id |
| 10634 | if (const AttributedType *Attr = dyn_cast<AttributedType>(Val&: Ty)) { |
| 10635 | if (Attr->getAttrKind() == attr::ObjCOwnership) |
| 10636 | return true; |
| 10637 | |
| 10638 | Ty = Attr->getModifiedType(); |
| 10639 | |
| 10640 | // X *__strong (...) |
| 10641 | } else if (const ParenType *Paren = dyn_cast<ParenType>(Val&: Ty)) { |
| 10642 | Ty = Paren->getInnerType(); |
| 10643 | |
| 10644 | // We do not want to look through typedefs, typeof(expr), |
| 10645 | // typeof(type), or any other way that the type is somehow |
| 10646 | // abstracted. |
| 10647 | } else { |
| 10648 | return false; |
| 10649 | } |
| 10650 | } |
| 10651 | } |
| 10652 | |
| 10653 | //===----------------------------------------------------------------------===// |
| 10654 | // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. |
| 10655 | //===----------------------------------------------------------------------===// |
| 10656 | |
| 10657 | /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the |
| 10658 | /// inheritance hierarchy of 'rProto'. |
| 10659 | bool |
| 10660 | ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, |
| 10661 | ObjCProtocolDecl *rProto) const { |
| 10662 | if (declaresSameEntity(lProto, rProto)) |
| 10663 | return true; |
| 10664 | for (auto *PI : rProto->protocols()) |
| 10665 | if (ProtocolCompatibleWithProtocol(lProto, rProto: PI)) |
| 10666 | return true; |
| 10667 | return false; |
| 10668 | } |
| 10669 | |
| 10670 | /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and |
| 10671 | /// Class<pr1, ...>. |
| 10672 | bool ASTContext::ObjCQualifiedClassTypesAreCompatible( |
| 10673 | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) { |
| 10674 | for (auto *lhsProto : lhs->quals()) { |
| 10675 | bool match = false; |
| 10676 | for (auto *rhsProto : rhs->quals()) { |
| 10677 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { |
| 10678 | match = true; |
| 10679 | break; |
| 10680 | } |
| 10681 | } |
| 10682 | if (!match) |
| 10683 | return false; |
| 10684 | } |
| 10685 | return true; |
| 10686 | } |
| 10687 | |
| 10688 | /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an |
| 10689 | /// ObjCQualifiedIDType. |
| 10690 | bool ASTContext::ObjCQualifiedIdTypesAreCompatible( |
| 10691 | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs, |
| 10692 | bool compare) { |
| 10693 | // Allow id<P..> and an 'id' in all cases. |
| 10694 | if (lhs->isObjCIdType() || rhs->isObjCIdType()) |
| 10695 | return true; |
| 10696 | |
| 10697 | // Don't allow id<P..> to convert to Class or Class<P..> in either direction. |
| 10698 | if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() || |
| 10699 | rhs->isObjCClassType() || rhs->isObjCQualifiedClassType()) |
| 10700 | return false; |
| 10701 | |
| 10702 | if (lhs->isObjCQualifiedIdType()) { |
| 10703 | if (rhs->qual_empty()) { |
| 10704 | // If the RHS is a unqualified interface pointer "NSString*", |
| 10705 | // make sure we check the class hierarchy. |
| 10706 | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { |
| 10707 | for (auto *I : lhs->quals()) { |
| 10708 | // when comparing an id<P> on lhs with a static type on rhs, |
| 10709 | // see if static class implements all of id's protocols, directly or |
| 10710 | // through its super class and categories. |
| 10711 | if (!rhsID->ClassImplementsProtocol(I, true)) |
| 10712 | return false; |
| 10713 | } |
| 10714 | } |
| 10715 | // If there are no qualifiers and no interface, we have an 'id'. |
| 10716 | return true; |
| 10717 | } |
| 10718 | // Both the right and left sides have qualifiers. |
| 10719 | for (auto *lhsProto : lhs->quals()) { |
| 10720 | bool match = false; |
| 10721 | |
| 10722 | // when comparing an id<P> on lhs with a static type on rhs, |
| 10723 | // see if static class implements all of id's protocols, directly or |
| 10724 | // through its super class and categories. |
| 10725 | for (auto *rhsProto : rhs->quals()) { |
| 10726 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| 10727 | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| 10728 | match = true; |
| 10729 | break; |
| 10730 | } |
| 10731 | } |
| 10732 | // If the RHS is a qualified interface pointer "NSString<P>*", |
| 10733 | // make sure we check the class hierarchy. |
| 10734 | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { |
| 10735 | for (auto *I : lhs->quals()) { |
| 10736 | // when comparing an id<P> on lhs with a static type on rhs, |
| 10737 | // see if static class implements all of id's protocols, directly or |
| 10738 | // through its super class and categories. |
| 10739 | if (rhsID->ClassImplementsProtocol(I, true)) { |
| 10740 | match = true; |
| 10741 | break; |
| 10742 | } |
| 10743 | } |
| 10744 | } |
| 10745 | if (!match) |
| 10746 | return false; |
| 10747 | } |
| 10748 | |
| 10749 | return true; |
| 10750 | } |
| 10751 | |
| 10752 | assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>" ); |
| 10753 | |
| 10754 | if (lhs->getInterfaceType()) { |
| 10755 | // If both the right and left sides have qualifiers. |
| 10756 | for (auto *lhsProto : lhs->quals()) { |
| 10757 | bool match = false; |
| 10758 | |
| 10759 | // when comparing an id<P> on rhs with a static type on lhs, |
| 10760 | // see if static class implements all of id's protocols, directly or |
| 10761 | // through its super class and categories. |
| 10762 | // First, lhs protocols in the qualifier list must be found, direct |
| 10763 | // or indirect in rhs's qualifier list or it is a mismatch. |
| 10764 | for (auto *rhsProto : rhs->quals()) { |
| 10765 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| 10766 | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| 10767 | match = true; |
| 10768 | break; |
| 10769 | } |
| 10770 | } |
| 10771 | if (!match) |
| 10772 | return false; |
| 10773 | } |
| 10774 | |
| 10775 | // Static class's protocols, or its super class or category protocols |
| 10776 | // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. |
| 10777 | if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) { |
| 10778 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; |
| 10779 | CollectInheritedProtocols(lhsID, LHSInheritedProtocols); |
| 10780 | // This is rather dubious but matches gcc's behavior. If lhs has |
| 10781 | // no type qualifier and its class has no static protocol(s) |
| 10782 | // assume that it is mismatch. |
| 10783 | if (LHSInheritedProtocols.empty() && lhs->qual_empty()) |
| 10784 | return false; |
| 10785 | for (auto *lhsProto : LHSInheritedProtocols) { |
| 10786 | bool match = false; |
| 10787 | for (auto *rhsProto : rhs->quals()) { |
| 10788 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| 10789 | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| 10790 | match = true; |
| 10791 | break; |
| 10792 | } |
| 10793 | } |
| 10794 | if (!match) |
| 10795 | return false; |
| 10796 | } |
| 10797 | } |
| 10798 | return true; |
| 10799 | } |
| 10800 | return false; |
| 10801 | } |
| 10802 | |
| 10803 | /// canAssignObjCInterfaces - Return true if the two interface types are |
| 10804 | /// compatible for assignment from RHS to LHS. This handles validation of any |
| 10805 | /// protocol qualifiers on the LHS or RHS. |
| 10806 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, |
| 10807 | const ObjCObjectPointerType *RHSOPT) { |
| 10808 | const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
| 10809 | const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
| 10810 | |
| 10811 | // If either type represents the built-in 'id' type, return true. |
| 10812 | if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId()) |
| 10813 | return true; |
| 10814 | |
| 10815 | // Function object that propagates a successful result or handles |
| 10816 | // __kindof types. |
| 10817 | auto finish = [&](bool succeeded) -> bool { |
| 10818 | if (succeeded) |
| 10819 | return true; |
| 10820 | |
| 10821 | if (!RHS->isKindOfType()) |
| 10822 | return false; |
| 10823 | |
| 10824 | // Strip off __kindof and protocol qualifiers, then check whether |
| 10825 | // we can assign the other way. |
| 10826 | return canAssignObjCInterfaces(LHSOPT: RHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this), |
| 10827 | RHSOPT: LHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this)); |
| 10828 | }; |
| 10829 | |
| 10830 | // Casts from or to id<P> are allowed when the other side has compatible |
| 10831 | // protocols. |
| 10832 | if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { |
| 10833 | return finish(ObjCQualifiedIdTypesAreCompatible(lhs: LHSOPT, rhs: RHSOPT, compare: false)); |
| 10834 | } |
| 10835 | |
| 10836 | // Verify protocol compatibility for casts from Class<P1> to Class<P2>. |
| 10837 | if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { |
| 10838 | return finish(ObjCQualifiedClassTypesAreCompatible(lhs: LHSOPT, rhs: RHSOPT)); |
| 10839 | } |
| 10840 | |
| 10841 | // Casts from Class to Class<Foo>, or vice-versa, are allowed. |
| 10842 | if (LHS->isObjCClass() && RHS->isObjCClass()) { |
| 10843 | return true; |
| 10844 | } |
| 10845 | |
| 10846 | // If we have 2 user-defined types, fall into that path. |
| 10847 | if (LHS->getInterface() && RHS->getInterface()) { |
| 10848 | return finish(canAssignObjCInterfaces(LHS, RHS)); |
| 10849 | } |
| 10850 | |
| 10851 | return false; |
| 10852 | } |
| 10853 | |
| 10854 | /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written |
| 10855 | /// for providing type-safety for objective-c pointers used to pass/return |
| 10856 | /// arguments in block literals. When passed as arguments, passing 'A*' where |
| 10857 | /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is |
| 10858 | /// not OK. For the return type, the opposite is not OK. |
| 10859 | bool ASTContext::canAssignObjCInterfacesInBlockPointer( |
| 10860 | const ObjCObjectPointerType *LHSOPT, |
| 10861 | const ObjCObjectPointerType *RHSOPT, |
| 10862 | bool BlockReturnType) { |
| 10863 | |
| 10864 | // Function object that propagates a successful result or handles |
| 10865 | // __kindof types. |
| 10866 | auto finish = [&](bool succeeded) -> bool { |
| 10867 | if (succeeded) |
| 10868 | return true; |
| 10869 | |
| 10870 | const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; |
| 10871 | if (!Expected->isKindOfType()) |
| 10872 | return false; |
| 10873 | |
| 10874 | // Strip off __kindof and protocol qualifiers, then check whether |
| 10875 | // we can assign the other way. |
| 10876 | return canAssignObjCInterfacesInBlockPointer( |
| 10877 | LHSOPT: RHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this), |
| 10878 | RHSOPT: LHSOPT->stripObjCKindOfTypeAndQuals(ctx: *this), |
| 10879 | BlockReturnType); |
| 10880 | }; |
| 10881 | |
| 10882 | if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) |
| 10883 | return true; |
| 10884 | |
| 10885 | if (LHSOPT->isObjCBuiltinType()) { |
| 10886 | return finish(RHSOPT->isObjCBuiltinType() || |
| 10887 | RHSOPT->isObjCQualifiedIdType()); |
| 10888 | } |
| 10889 | |
| 10890 | if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) { |
| 10891 | if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking) |
| 10892 | // Use for block parameters previous type checking for compatibility. |
| 10893 | return finish(ObjCQualifiedIdTypesAreCompatible(lhs: LHSOPT, rhs: RHSOPT, compare: false) || |
| 10894 | // Or corrected type checking as in non-compat mode. |
| 10895 | (!BlockReturnType && |
| 10896 | ObjCQualifiedIdTypesAreCompatible(lhs: RHSOPT, rhs: LHSOPT, compare: false))); |
| 10897 | else |
| 10898 | return finish(ObjCQualifiedIdTypesAreCompatible( |
| 10899 | lhs: (BlockReturnType ? LHSOPT : RHSOPT), |
| 10900 | rhs: (BlockReturnType ? RHSOPT : LHSOPT), compare: false)); |
| 10901 | } |
| 10902 | |
| 10903 | const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); |
| 10904 | const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); |
| 10905 | if (LHS && RHS) { // We have 2 user-defined types. |
| 10906 | if (LHS != RHS) { |
| 10907 | if (LHS->getDecl()->isSuperClassOf(I: RHS->getDecl())) |
| 10908 | return finish(BlockReturnType); |
| 10909 | if (RHS->getDecl()->isSuperClassOf(I: LHS->getDecl())) |
| 10910 | return finish(!BlockReturnType); |
| 10911 | } |
| 10912 | else |
| 10913 | return true; |
| 10914 | } |
| 10915 | return false; |
| 10916 | } |
| 10917 | |
| 10918 | /// Comparison routine for Objective-C protocols to be used with |
| 10919 | /// llvm::array_pod_sort. |
| 10920 | static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, |
| 10921 | ObjCProtocolDecl * const *rhs) { |
| 10922 | return (*lhs)->getName().compare((*rhs)->getName()); |
| 10923 | } |
| 10924 | |
| 10925 | /// getIntersectionOfProtocols - This routine finds the intersection of set |
| 10926 | /// of protocols inherited from two distinct objective-c pointer objects with |
| 10927 | /// the given common base. |
| 10928 | /// It is used to build composite qualifier list of the composite type of |
| 10929 | /// the conditional expression involving two objective-c pointer objects. |
| 10930 | static |
| 10931 | void getIntersectionOfProtocols(ASTContext &Context, |
| 10932 | const ObjCInterfaceDecl *CommonBase, |
| 10933 | const ObjCObjectPointerType *LHSOPT, |
| 10934 | const ObjCObjectPointerType *RHSOPT, |
| 10935 | SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { |
| 10936 | |
| 10937 | const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
| 10938 | const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
| 10939 | assert(LHS->getInterface() && "LHS must have an interface base" ); |
| 10940 | assert(RHS->getInterface() && "RHS must have an interface base" ); |
| 10941 | |
| 10942 | // Add all of the protocols for the LHS. |
| 10943 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; |
| 10944 | |
| 10945 | // Start with the protocol qualifiers. |
| 10946 | for (auto *proto : LHS->quals()) { |
| 10947 | Context.CollectInheritedProtocols(proto, LHSProtocolSet); |
| 10948 | } |
| 10949 | |
| 10950 | // Also add the protocols associated with the LHS interface. |
| 10951 | Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet); |
| 10952 | |
| 10953 | // Add all of the protocols for the RHS. |
| 10954 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; |
| 10955 | |
| 10956 | // Start with the protocol qualifiers. |
| 10957 | for (auto *proto : RHS->quals()) { |
| 10958 | Context.CollectInheritedProtocols(proto, RHSProtocolSet); |
| 10959 | } |
| 10960 | |
| 10961 | // Also add the protocols associated with the RHS interface. |
| 10962 | Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet); |
| 10963 | |
| 10964 | // Compute the intersection of the collected protocol sets. |
| 10965 | for (auto *proto : LHSProtocolSet) { |
| 10966 | if (RHSProtocolSet.count(Ptr: proto)) |
| 10967 | IntersectionSet.push_back(Elt: proto); |
| 10968 | } |
| 10969 | |
| 10970 | // Compute the set of protocols that is implied by either the common type or |
| 10971 | // the protocols within the intersection. |
| 10972 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; |
| 10973 | Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols); |
| 10974 | |
| 10975 | // Remove any implied protocols from the list of inherited protocols. |
| 10976 | if (!ImpliedProtocols.empty()) { |
| 10977 | llvm::erase_if(C&: IntersectionSet, P: [&](ObjCProtocolDecl *proto) -> bool { |
| 10978 | return ImpliedProtocols.contains(Ptr: proto); |
| 10979 | }); |
| 10980 | } |
| 10981 | |
| 10982 | // Sort the remaining protocols by name. |
| 10983 | llvm::array_pod_sort(Start: IntersectionSet.begin(), End: IntersectionSet.end(), |
| 10984 | Compare: compareObjCProtocolsByName); |
| 10985 | } |
| 10986 | |
| 10987 | /// Determine whether the first type is a subtype of the second. |
| 10988 | static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, |
| 10989 | QualType rhs) { |
| 10990 | // Common case: two object pointers. |
| 10991 | const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); |
| 10992 | const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); |
| 10993 | if (lhsOPT && rhsOPT) |
| 10994 | return ctx.canAssignObjCInterfaces(LHSOPT: lhsOPT, RHSOPT: rhsOPT); |
| 10995 | |
| 10996 | // Two block pointers. |
| 10997 | const auto *lhsBlock = lhs->getAs<BlockPointerType>(); |
| 10998 | const auto *rhsBlock = rhs->getAs<BlockPointerType>(); |
| 10999 | if (lhsBlock && rhsBlock) |
| 11000 | return ctx.typesAreBlockPointerCompatible(lhs, rhs); |
| 11001 | |
| 11002 | // If either is an unqualified 'id' and the other is a block, it's |
| 11003 | // acceptable. |
| 11004 | if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || |
| 11005 | (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) |
| 11006 | return true; |
| 11007 | |
| 11008 | return false; |
| 11009 | } |
| 11010 | |
| 11011 | // Check that the given Objective-C type argument lists are equivalent. |
| 11012 | static bool sameObjCTypeArgs(ASTContext &ctx, |
| 11013 | const ObjCInterfaceDecl *iface, |
| 11014 | ArrayRef<QualType> lhsArgs, |
| 11015 | ArrayRef<QualType> rhsArgs, |
| 11016 | bool stripKindOf) { |
| 11017 | if (lhsArgs.size() != rhsArgs.size()) |
| 11018 | return false; |
| 11019 | |
| 11020 | ObjCTypeParamList *typeParams = iface->getTypeParamList(); |
| 11021 | if (!typeParams) |
| 11022 | return false; |
| 11023 | |
| 11024 | for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { |
| 11025 | if (ctx.hasSameType(T1: lhsArgs[i], T2: rhsArgs[i])) |
| 11026 | continue; |
| 11027 | |
| 11028 | switch (typeParams->begin()[i]->getVariance()) { |
| 11029 | case ObjCTypeParamVariance::Invariant: |
| 11030 | if (!stripKindOf || |
| 11031 | !ctx.hasSameType(T1: lhsArgs[i].stripObjCKindOfType(ctx), |
| 11032 | T2: rhsArgs[i].stripObjCKindOfType(ctx))) { |
| 11033 | return false; |
| 11034 | } |
| 11035 | break; |
| 11036 | |
| 11037 | case ObjCTypeParamVariance::Covariant: |
| 11038 | if (!canAssignObjCObjectTypes(ctx, lhs: lhsArgs[i], rhs: rhsArgs[i])) |
| 11039 | return false; |
| 11040 | break; |
| 11041 | |
| 11042 | case ObjCTypeParamVariance::Contravariant: |
| 11043 | if (!canAssignObjCObjectTypes(ctx, lhs: rhsArgs[i], rhs: lhsArgs[i])) |
| 11044 | return false; |
| 11045 | break; |
| 11046 | } |
| 11047 | } |
| 11048 | |
| 11049 | return true; |
| 11050 | } |
| 11051 | |
| 11052 | QualType ASTContext::areCommonBaseCompatible( |
| 11053 | const ObjCObjectPointerType *Lptr, |
| 11054 | const ObjCObjectPointerType *Rptr) { |
| 11055 | const ObjCObjectType *LHS = Lptr->getObjectType(); |
| 11056 | const ObjCObjectType *RHS = Rptr->getObjectType(); |
| 11057 | const ObjCInterfaceDecl* LDecl = LHS->getInterface(); |
| 11058 | const ObjCInterfaceDecl* RDecl = RHS->getInterface(); |
| 11059 | |
| 11060 | if (!LDecl || !RDecl) |
| 11061 | return {}; |
| 11062 | |
| 11063 | // When either LHS or RHS is a kindof type, we should return a kindof type. |
| 11064 | // For example, for common base of kindof(ASub1) and kindof(ASub2), we return |
| 11065 | // kindof(A). |
| 11066 | bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType(); |
| 11067 | |
| 11068 | // Follow the left-hand side up the class hierarchy until we either hit a |
| 11069 | // root or find the RHS. Record the ancestors in case we don't find it. |
| 11070 | llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> |
| 11071 | LHSAncestors; |
| 11072 | while (true) { |
| 11073 | // Record this ancestor. We'll need this if the common type isn't in the |
| 11074 | // path from the LHS to the root. |
| 11075 | LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; |
| 11076 | |
| 11077 | if (declaresSameEntity(LHS->getInterface(), RDecl)) { |
| 11078 | // Get the type arguments. |
| 11079 | ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); |
| 11080 | bool anyChanges = false; |
| 11081 | if (LHS->isSpecialized() && RHS->isSpecialized()) { |
| 11082 | // Both have type arguments, compare them. |
| 11083 | if (!sameObjCTypeArgs(ctx&: *this, iface: LHS->getInterface(), |
| 11084 | lhsArgs: LHS->getTypeArgs(), rhsArgs: RHS->getTypeArgs(), |
| 11085 | /*stripKindOf=*/true)) |
| 11086 | return {}; |
| 11087 | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
| 11088 | // If only one has type arguments, the result will not have type |
| 11089 | // arguments. |
| 11090 | LHSTypeArgs = {}; |
| 11091 | anyChanges = true; |
| 11092 | } |
| 11093 | |
| 11094 | // Compute the intersection of protocols. |
| 11095 | SmallVector<ObjCProtocolDecl *, 8> Protocols; |
| 11096 | getIntersectionOfProtocols(Context&: *this, CommonBase: LHS->getInterface(), LHSOPT: Lptr, RHSOPT: Rptr, |
| 11097 | IntersectionSet&: Protocols); |
| 11098 | if (!Protocols.empty()) |
| 11099 | anyChanges = true; |
| 11100 | |
| 11101 | // If anything in the LHS will have changed, build a new result type. |
| 11102 | // If we need to return a kindof type but LHS is not a kindof type, we |
| 11103 | // build a new result type. |
| 11104 | if (anyChanges || LHS->isKindOfType() != anyKindOf) { |
| 11105 | QualType Result = getObjCInterfaceType(Decl: LHS->getInterface()); |
| 11106 | Result = getObjCObjectType(baseType: Result, typeArgs: LHSTypeArgs, protocols: Protocols, |
| 11107 | isKindOf: anyKindOf || LHS->isKindOfType()); |
| 11108 | return getObjCObjectPointerType(ObjectT: Result); |
| 11109 | } |
| 11110 | |
| 11111 | return getObjCObjectPointerType(ObjectT: QualType(LHS, 0)); |
| 11112 | } |
| 11113 | |
| 11114 | // Find the superclass. |
| 11115 | QualType LHSSuperType = LHS->getSuperClassType(); |
| 11116 | if (LHSSuperType.isNull()) |
| 11117 | break; |
| 11118 | |
| 11119 | LHS = LHSSuperType->castAs<ObjCObjectType>(); |
| 11120 | } |
| 11121 | |
| 11122 | // We didn't find anything by following the LHS to its root; now check |
| 11123 | // the RHS against the cached set of ancestors. |
| 11124 | while (true) { |
| 11125 | auto KnownLHS = LHSAncestors.find(Val: RHS->getInterface()->getCanonicalDecl()); |
| 11126 | if (KnownLHS != LHSAncestors.end()) { |
| 11127 | LHS = KnownLHS->second; |
| 11128 | |
| 11129 | // Get the type arguments. |
| 11130 | ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); |
| 11131 | bool anyChanges = false; |
| 11132 | if (LHS->isSpecialized() && RHS->isSpecialized()) { |
| 11133 | // Both have type arguments, compare them. |
| 11134 | if (!sameObjCTypeArgs(ctx&: *this, iface: LHS->getInterface(), |
| 11135 | lhsArgs: LHS->getTypeArgs(), rhsArgs: RHS->getTypeArgs(), |
| 11136 | /*stripKindOf=*/true)) |
| 11137 | return {}; |
| 11138 | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
| 11139 | // If only one has type arguments, the result will not have type |
| 11140 | // arguments. |
| 11141 | RHSTypeArgs = {}; |
| 11142 | anyChanges = true; |
| 11143 | } |
| 11144 | |
| 11145 | // Compute the intersection of protocols. |
| 11146 | SmallVector<ObjCProtocolDecl *, 8> Protocols; |
| 11147 | getIntersectionOfProtocols(Context&: *this, CommonBase: RHS->getInterface(), LHSOPT: Lptr, RHSOPT: Rptr, |
| 11148 | IntersectionSet&: Protocols); |
| 11149 | if (!Protocols.empty()) |
| 11150 | anyChanges = true; |
| 11151 | |
| 11152 | // If we need to return a kindof type but RHS is not a kindof type, we |
| 11153 | // build a new result type. |
| 11154 | if (anyChanges || RHS->isKindOfType() != anyKindOf) { |
| 11155 | QualType Result = getObjCInterfaceType(Decl: RHS->getInterface()); |
| 11156 | Result = getObjCObjectType(baseType: Result, typeArgs: RHSTypeArgs, protocols: Protocols, |
| 11157 | isKindOf: anyKindOf || RHS->isKindOfType()); |
| 11158 | return getObjCObjectPointerType(ObjectT: Result); |
| 11159 | } |
| 11160 | |
| 11161 | return getObjCObjectPointerType(ObjectT: QualType(RHS, 0)); |
| 11162 | } |
| 11163 | |
| 11164 | // Find the superclass of the RHS. |
| 11165 | QualType RHSSuperType = RHS->getSuperClassType(); |
| 11166 | if (RHSSuperType.isNull()) |
| 11167 | break; |
| 11168 | |
| 11169 | RHS = RHSSuperType->castAs<ObjCObjectType>(); |
| 11170 | } |
| 11171 | |
| 11172 | return {}; |
| 11173 | } |
| 11174 | |
| 11175 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, |
| 11176 | const ObjCObjectType *RHS) { |
| 11177 | assert(LHS->getInterface() && "LHS is not an interface type" ); |
| 11178 | assert(RHS->getInterface() && "RHS is not an interface type" ); |
| 11179 | |
| 11180 | // Verify that the base decls are compatible: the RHS must be a subclass of |
| 11181 | // the LHS. |
| 11182 | ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); |
| 11183 | bool IsSuperClass = LHSInterface->isSuperClassOf(I: RHS->getInterface()); |
| 11184 | if (!IsSuperClass) |
| 11185 | return false; |
| 11186 | |
| 11187 | // If the LHS has protocol qualifiers, determine whether all of them are |
| 11188 | // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the |
| 11189 | // LHS). |
| 11190 | if (LHS->getNumProtocols() > 0) { |
| 11191 | // OK if conversion of LHS to SuperClass results in narrowing of types |
| 11192 | // ; i.e., SuperClass may implement at least one of the protocols |
| 11193 | // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. |
| 11194 | // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. |
| 11195 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; |
| 11196 | CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); |
| 11197 | // Also, if RHS has explicit quelifiers, include them for comparing with LHS's |
| 11198 | // qualifiers. |
| 11199 | for (auto *RHSPI : RHS->quals()) |
| 11200 | CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols); |
| 11201 | // If there is no protocols associated with RHS, it is not a match. |
| 11202 | if (SuperClassInheritedProtocols.empty()) |
| 11203 | return false; |
| 11204 | |
| 11205 | for (const auto *LHSProto : LHS->quals()) { |
| 11206 | bool SuperImplementsProtocol = false; |
| 11207 | for (auto *SuperClassProto : SuperClassInheritedProtocols) |
| 11208 | if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { |
| 11209 | SuperImplementsProtocol = true; |
| 11210 | break; |
| 11211 | } |
| 11212 | if (!SuperImplementsProtocol) |
| 11213 | return false; |
| 11214 | } |
| 11215 | } |
| 11216 | |
| 11217 | // If the LHS is specialized, we may need to check type arguments. |
| 11218 | if (LHS->isSpecialized()) { |
| 11219 | // Follow the superclass chain until we've matched the LHS class in the |
| 11220 | // hierarchy. This substitutes type arguments through. |
| 11221 | const ObjCObjectType *RHSSuper = RHS; |
| 11222 | while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface)) |
| 11223 | RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); |
| 11224 | |
| 11225 | // If the RHS is specializd, compare type arguments. |
| 11226 | if (RHSSuper->isSpecialized() && |
| 11227 | !sameObjCTypeArgs(ctx&: *this, iface: LHS->getInterface(), |
| 11228 | lhsArgs: LHS->getTypeArgs(), rhsArgs: RHSSuper->getTypeArgs(), |
| 11229 | /*stripKindOf=*/true)) { |
| 11230 | return false; |
| 11231 | } |
| 11232 | } |
| 11233 | |
| 11234 | return true; |
| 11235 | } |
| 11236 | |
| 11237 | bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { |
| 11238 | // get the "pointed to" types |
| 11239 | const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); |
| 11240 | const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); |
| 11241 | |
| 11242 | if (!LHSOPT || !RHSOPT) |
| 11243 | return false; |
| 11244 | |
| 11245 | return canAssignObjCInterfaces(LHSOPT, RHSOPT) || |
| 11246 | canAssignObjCInterfaces(LHSOPT: RHSOPT, RHSOPT: LHSOPT); |
| 11247 | } |
| 11248 | |
| 11249 | bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { |
| 11250 | return canAssignObjCInterfaces( |
| 11251 | LHSOPT: getObjCObjectPointerType(ObjectT: To)->castAs<ObjCObjectPointerType>(), |
| 11252 | RHSOPT: getObjCObjectPointerType(ObjectT: From)->castAs<ObjCObjectPointerType>()); |
| 11253 | } |
| 11254 | |
| 11255 | /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, |
| 11256 | /// both shall have the identically qualified version of a compatible type. |
| 11257 | /// C99 6.2.7p1: Two types have compatible types if their types are the |
| 11258 | /// same. See 6.7.[2,3,5] for additional rules. |
| 11259 | bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, |
| 11260 | bool CompareUnqualified) { |
| 11261 | if (getLangOpts().CPlusPlus) |
| 11262 | return hasSameType(T1: LHS, T2: RHS); |
| 11263 | |
| 11264 | return !mergeTypes(LHS, RHS, OfBlockPointer: false, Unqualified: CompareUnqualified).isNull(); |
| 11265 | } |
| 11266 | |
| 11267 | bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { |
| 11268 | return typesAreCompatible(LHS, RHS); |
| 11269 | } |
| 11270 | |
| 11271 | bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { |
| 11272 | return !mergeTypes(LHS, RHS, OfBlockPointer: true).isNull(); |
| 11273 | } |
| 11274 | |
| 11275 | /// mergeTransparentUnionType - if T is a transparent union type and a member |
| 11276 | /// of T is compatible with SubType, return the merged type, else return |
| 11277 | /// QualType() |
| 11278 | QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, |
| 11279 | bool OfBlockPointer, |
| 11280 | bool Unqualified) { |
| 11281 | if (const RecordType *UT = T->getAsUnionType()) { |
| 11282 | RecordDecl *UD = UT->getDecl(); |
| 11283 | if (UD->hasAttr<TransparentUnionAttr>()) { |
| 11284 | for (const auto *I : UD->fields()) { |
| 11285 | QualType ET = I->getType().getUnqualifiedType(); |
| 11286 | QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); |
| 11287 | if (!MT.isNull()) |
| 11288 | return MT; |
| 11289 | } |
| 11290 | } |
| 11291 | } |
| 11292 | |
| 11293 | return {}; |
| 11294 | } |
| 11295 | |
| 11296 | /// mergeFunctionParameterTypes - merge two types which appear as function |
| 11297 | /// parameter types |
| 11298 | QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, |
| 11299 | bool OfBlockPointer, |
| 11300 | bool Unqualified) { |
| 11301 | // GNU extension: two types are compatible if they appear as a function |
| 11302 | // argument, one of the types is a transparent union type and the other |
| 11303 | // type is compatible with a union member |
| 11304 | QualType lmerge = mergeTransparentUnionType(T: lhs, SubType: rhs, OfBlockPointer, |
| 11305 | Unqualified); |
| 11306 | if (!lmerge.isNull()) |
| 11307 | return lmerge; |
| 11308 | |
| 11309 | QualType rmerge = mergeTransparentUnionType(T: rhs, SubType: lhs, OfBlockPointer, |
| 11310 | Unqualified); |
| 11311 | if (!rmerge.isNull()) |
| 11312 | return rmerge; |
| 11313 | |
| 11314 | return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); |
| 11315 | } |
| 11316 | |
| 11317 | QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, |
| 11318 | bool OfBlockPointer, bool Unqualified, |
| 11319 | bool AllowCXX, |
| 11320 | bool IsConditionalOperator) { |
| 11321 | const auto *lbase = lhs->castAs<FunctionType>(); |
| 11322 | const auto *rbase = rhs->castAs<FunctionType>(); |
| 11323 | const auto *lproto = dyn_cast<FunctionProtoType>(Val: lbase); |
| 11324 | const auto *rproto = dyn_cast<FunctionProtoType>(Val: rbase); |
| 11325 | bool allLTypes = true; |
| 11326 | bool allRTypes = true; |
| 11327 | |
| 11328 | // Check return type |
| 11329 | QualType retType; |
| 11330 | if (OfBlockPointer) { |
| 11331 | QualType RHS = rbase->getReturnType(); |
| 11332 | QualType LHS = lbase->getReturnType(); |
| 11333 | bool UnqualifiedResult = Unqualified; |
| 11334 | if (!UnqualifiedResult) |
| 11335 | UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); |
| 11336 | retType = mergeTypes(LHS, RHS, OfBlockPointer: true, Unqualified: UnqualifiedResult, BlockReturnType: true); |
| 11337 | } |
| 11338 | else |
| 11339 | retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), OfBlockPointer: false, |
| 11340 | Unqualified); |
| 11341 | if (retType.isNull()) |
| 11342 | return {}; |
| 11343 | |
| 11344 | if (Unqualified) |
| 11345 | retType = retType.getUnqualifiedType(); |
| 11346 | |
| 11347 | CanQualType LRetType = getCanonicalType(T: lbase->getReturnType()); |
| 11348 | CanQualType RRetType = getCanonicalType(T: rbase->getReturnType()); |
| 11349 | if (Unqualified) { |
| 11350 | LRetType = LRetType.getUnqualifiedType(); |
| 11351 | RRetType = RRetType.getUnqualifiedType(); |
| 11352 | } |
| 11353 | |
| 11354 | if (getCanonicalType(T: retType) != LRetType) |
| 11355 | allLTypes = false; |
| 11356 | if (getCanonicalType(T: retType) != RRetType) |
| 11357 | allRTypes = false; |
| 11358 | |
| 11359 | // FIXME: double check this |
| 11360 | // FIXME: should we error if lbase->getRegParmAttr() != 0 && |
| 11361 | // rbase->getRegParmAttr() != 0 && |
| 11362 | // lbase->getRegParmAttr() != rbase->getRegParmAttr()? |
| 11363 | FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); |
| 11364 | FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); |
| 11365 | |
| 11366 | // Compatible functions must have compatible calling conventions |
| 11367 | if (lbaseInfo.getCC() != rbaseInfo.getCC()) |
| 11368 | return {}; |
| 11369 | |
| 11370 | // Regparm is part of the calling convention. |
| 11371 | if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) |
| 11372 | return {}; |
| 11373 | if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) |
| 11374 | return {}; |
| 11375 | |
| 11376 | if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) |
| 11377 | return {}; |
| 11378 | if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs()) |
| 11379 | return {}; |
| 11380 | if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck()) |
| 11381 | return {}; |
| 11382 | |
| 11383 | // When merging declarations, it's common for supplemental information like |
| 11384 | // attributes to only be present in one of the declarations, and we generally |
| 11385 | // want type merging to preserve the union of information. So a merged |
| 11386 | // function type should be noreturn if it was noreturn in *either* operand |
| 11387 | // type. |
| 11388 | // |
| 11389 | // But for the conditional operator, this is backwards. The result of the |
| 11390 | // operator could be either operand, and its type should conservatively |
| 11391 | // reflect that. So a function type in a composite type is noreturn only |
| 11392 | // if it's noreturn in *both* operand types. |
| 11393 | // |
| 11394 | // Arguably, noreturn is a kind of subtype, and the conditional operator |
| 11395 | // ought to produce the most specific common supertype of its operand types. |
| 11396 | // That would differ from this rule in contravariant positions. However, |
| 11397 | // neither C nor C++ generally uses this kind of subtype reasoning. Also, |
| 11398 | // as a practical matter, it would only affect C code that does abstraction of |
| 11399 | // higher-order functions (taking noreturn callbacks!), which is uncommon to |
| 11400 | // say the least. So we use the simpler rule. |
| 11401 | bool NoReturn = IsConditionalOperator |
| 11402 | ? lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn() |
| 11403 | : lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); |
| 11404 | if (lbaseInfo.getNoReturn() != NoReturn) |
| 11405 | allLTypes = false; |
| 11406 | if (rbaseInfo.getNoReturn() != NoReturn) |
| 11407 | allRTypes = false; |
| 11408 | |
| 11409 | FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(noReturn: NoReturn); |
| 11410 | |
| 11411 | std::optional<FunctionEffectSet> MergedFX; |
| 11412 | |
| 11413 | if (lproto && rproto) { // two C99 style function prototypes |
| 11414 | assert((AllowCXX || |
| 11415 | (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) && |
| 11416 | "C++ shouldn't be here" ); |
| 11417 | // Compatible functions must have the same number of parameters |
| 11418 | if (lproto->getNumParams() != rproto->getNumParams()) |
| 11419 | return {}; |
| 11420 | |
| 11421 | // Variadic and non-variadic functions aren't compatible |
| 11422 | if (lproto->isVariadic() != rproto->isVariadic()) |
| 11423 | return {}; |
| 11424 | |
| 11425 | if (lproto->getMethodQuals() != rproto->getMethodQuals()) |
| 11426 | return {}; |
| 11427 | |
| 11428 | // Function effects are handled similarly to noreturn, see above. |
| 11429 | FunctionEffectsRef LHSFX = lproto->getFunctionEffects(); |
| 11430 | FunctionEffectsRef RHSFX = rproto->getFunctionEffects(); |
| 11431 | if (LHSFX != RHSFX) { |
| 11432 | if (IsConditionalOperator) |
| 11433 | MergedFX = FunctionEffectSet::getIntersection(LHS: LHSFX, RHS: RHSFX); |
| 11434 | else { |
| 11435 | FunctionEffectSet::Conflicts Errs; |
| 11436 | MergedFX = FunctionEffectSet::getUnion(LHSFX, RHSFX, Errs); |
| 11437 | // Here we're discarding a possible error due to conflicts in the effect |
| 11438 | // sets. But we're not in a context where we can report it. The |
| 11439 | // operation does however guarantee maintenance of invariants. |
| 11440 | } |
| 11441 | if (*MergedFX != LHSFX) |
| 11442 | allLTypes = false; |
| 11443 | if (*MergedFX != RHSFX) |
| 11444 | allRTypes = false; |
| 11445 | } |
| 11446 | |
| 11447 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos; |
| 11448 | bool canUseLeft, canUseRight; |
| 11449 | if (!mergeExtParameterInfo(FirstFnType: lproto, SecondFnType: rproto, CanUseFirst&: canUseLeft, CanUseSecond&: canUseRight, |
| 11450 | NewParamInfos&: newParamInfos)) |
| 11451 | return {}; |
| 11452 | |
| 11453 | if (!canUseLeft) |
| 11454 | allLTypes = false; |
| 11455 | if (!canUseRight) |
| 11456 | allRTypes = false; |
| 11457 | |
| 11458 | // Check parameter type compatibility |
| 11459 | SmallVector<QualType, 10> types; |
| 11460 | for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { |
| 11461 | QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); |
| 11462 | QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); |
| 11463 | QualType paramType = mergeFunctionParameterTypes( |
| 11464 | lhs: lParamType, rhs: rParamType, OfBlockPointer, Unqualified); |
| 11465 | if (paramType.isNull()) |
| 11466 | return {}; |
| 11467 | |
| 11468 | if (Unqualified) |
| 11469 | paramType = paramType.getUnqualifiedType(); |
| 11470 | |
| 11471 | types.push_back(Elt: paramType); |
| 11472 | if (Unqualified) { |
| 11473 | lParamType = lParamType.getUnqualifiedType(); |
| 11474 | rParamType = rParamType.getUnqualifiedType(); |
| 11475 | } |
| 11476 | |
| 11477 | if (getCanonicalType(T: paramType) != getCanonicalType(T: lParamType)) |
| 11478 | allLTypes = false; |
| 11479 | if (getCanonicalType(T: paramType) != getCanonicalType(T: rParamType)) |
| 11480 | allRTypes = false; |
| 11481 | } |
| 11482 | |
| 11483 | if (allLTypes) return lhs; |
| 11484 | if (allRTypes) return rhs; |
| 11485 | |
| 11486 | FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); |
| 11487 | EPI.ExtInfo = einfo; |
| 11488 | EPI.ExtParameterInfos = |
| 11489 | newParamInfos.empty() ? nullptr : newParamInfos.data(); |
| 11490 | if (MergedFX) |
| 11491 | EPI.FunctionEffects = *MergedFX; |
| 11492 | return getFunctionType(ResultTy: retType, Args: types, EPI); |
| 11493 | } |
| 11494 | |
| 11495 | if (lproto) allRTypes = false; |
| 11496 | if (rproto) allLTypes = false; |
| 11497 | |
| 11498 | const FunctionProtoType *proto = lproto ? lproto : rproto; |
| 11499 | if (proto) { |
| 11500 | assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here" ); |
| 11501 | if (proto->isVariadic()) |
| 11502 | return {}; |
| 11503 | // Check that the types are compatible with the types that |
| 11504 | // would result from default argument promotions (C99 6.7.5.3p15). |
| 11505 | // The only types actually affected are promotable integer |
| 11506 | // types and floats, which would be passed as a different |
| 11507 | // type depending on whether the prototype is visible. |
| 11508 | for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { |
| 11509 | QualType paramTy = proto->getParamType(i); |
| 11510 | |
| 11511 | // Look at the converted type of enum types, since that is the type used |
| 11512 | // to pass enum values. |
| 11513 | if (const auto *Enum = paramTy->getAs<EnumType>()) { |
| 11514 | paramTy = Enum->getDecl()->getIntegerType(); |
| 11515 | if (paramTy.isNull()) |
| 11516 | return {}; |
| 11517 | } |
| 11518 | |
| 11519 | if (isPromotableIntegerType(paramTy) || |
| 11520 | getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) |
| 11521 | return {}; |
| 11522 | } |
| 11523 | |
| 11524 | if (allLTypes) return lhs; |
| 11525 | if (allRTypes) return rhs; |
| 11526 | |
| 11527 | FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); |
| 11528 | EPI.ExtInfo = einfo; |
| 11529 | if (MergedFX) |
| 11530 | EPI.FunctionEffects = *MergedFX; |
| 11531 | return getFunctionType(ResultTy: retType, Args: proto->getParamTypes(), EPI); |
| 11532 | } |
| 11533 | |
| 11534 | if (allLTypes) return lhs; |
| 11535 | if (allRTypes) return rhs; |
| 11536 | return getFunctionNoProtoType(ResultTy: retType, Info: einfo); |
| 11537 | } |
| 11538 | |
| 11539 | /// Given that we have an enum type and a non-enum type, try to merge them. |
| 11540 | static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, |
| 11541 | QualType other, bool isBlockReturnType) { |
| 11542 | // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, |
| 11543 | // a signed integer type, or an unsigned integer type. |
| 11544 | // Compatibility is based on the underlying type, not the promotion |
| 11545 | // type. |
| 11546 | QualType underlyingType = ET->getDecl()->getIntegerType(); |
| 11547 | if (underlyingType.isNull()) |
| 11548 | return {}; |
| 11549 | if (Context.hasSameType(T1: underlyingType, T2: other)) |
| 11550 | return other; |
| 11551 | |
| 11552 | // In block return types, we're more permissive and accept any |
| 11553 | // integral type of the same size. |
| 11554 | if (isBlockReturnType && other->isIntegerType() && |
| 11555 | Context.getTypeSize(T: underlyingType) == Context.getTypeSize(T: other)) |
| 11556 | return other; |
| 11557 | |
| 11558 | return {}; |
| 11559 | } |
| 11560 | |
| 11561 | QualType ASTContext::mergeTagDefinitions(QualType LHS, QualType RHS) { |
| 11562 | // C17 and earlier and C++ disallow two tag definitions within the same TU |
| 11563 | // from being compatible. |
| 11564 | if (LangOpts.CPlusPlus || !LangOpts.C23) |
| 11565 | return {}; |
| 11566 | |
| 11567 | // C23, on the other hand, requires the members to be "the same enough", so |
| 11568 | // we use a structural equivalence check. |
| 11569 | StructuralEquivalenceContext::NonEquivalentDeclSet NonEquivalentDecls; |
| 11570 | StructuralEquivalenceContext Ctx( |
| 11571 | getLangOpts(), *this, *this, NonEquivalentDecls, |
| 11572 | StructuralEquivalenceKind::Default, /*StrictTypeSpelling=*/false, |
| 11573 | /*Complain=*/false, /*ErrorOnTagTypeMismatch=*/true); |
| 11574 | return Ctx.IsEquivalent(T1: LHS, T2: RHS) ? LHS : QualType{}; |
| 11575 | } |
| 11576 | |
| 11577 | QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, bool OfBlockPointer, |
| 11578 | bool Unqualified, bool BlockReturnType, |
| 11579 | bool IsConditionalOperator) { |
| 11580 | // For C++ we will not reach this code with reference types (see below), |
| 11581 | // for OpenMP variant call overloading we might. |
| 11582 | // |
| 11583 | // C++ [expr]: If an expression initially has the type "reference to T", the |
| 11584 | // type is adjusted to "T" prior to any further analysis, the expression |
| 11585 | // designates the object or function denoted by the reference, and the |
| 11586 | // expression is an lvalue unless the reference is an rvalue reference and |
| 11587 | // the expression is a function call (possibly inside parentheses). |
| 11588 | auto *LHSRefTy = LHS->getAs<ReferenceType>(); |
| 11589 | auto *RHSRefTy = RHS->getAs<ReferenceType>(); |
| 11590 | if (LangOpts.OpenMP && LHSRefTy && RHSRefTy && |
| 11591 | LHS->getTypeClass() == RHS->getTypeClass()) |
| 11592 | return mergeTypes(LHS: LHSRefTy->getPointeeType(), RHS: RHSRefTy->getPointeeType(), |
| 11593 | OfBlockPointer, Unqualified, BlockReturnType); |
| 11594 | if (LHSRefTy || RHSRefTy) |
| 11595 | return {}; |
| 11596 | |
| 11597 | if (Unqualified) { |
| 11598 | LHS = LHS.getUnqualifiedType(); |
| 11599 | RHS = RHS.getUnqualifiedType(); |
| 11600 | } |
| 11601 | |
| 11602 | QualType LHSCan = getCanonicalType(T: LHS), |
| 11603 | RHSCan = getCanonicalType(T: RHS); |
| 11604 | |
| 11605 | // If two types are identical, they are compatible. |
| 11606 | if (LHSCan == RHSCan) |
| 11607 | return LHS; |
| 11608 | |
| 11609 | // If the qualifiers are different, the types aren't compatible... mostly. |
| 11610 | Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
| 11611 | Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
| 11612 | if (LQuals != RQuals) { |
| 11613 | // If any of these qualifiers are different, we have a type |
| 11614 | // mismatch. |
| 11615 | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
| 11616 | LQuals.getAddressSpace() != RQuals.getAddressSpace() || |
| 11617 | LQuals.getObjCLifetime() != RQuals.getObjCLifetime() || |
| 11618 | !LQuals.getPointerAuth().isEquivalent(Other: RQuals.getPointerAuth()) || |
| 11619 | LQuals.hasUnaligned() != RQuals.hasUnaligned()) |
| 11620 | return {}; |
| 11621 | |
| 11622 | // Exactly one GC qualifier difference is allowed: __strong is |
| 11623 | // okay if the other type has no GC qualifier but is an Objective |
| 11624 | // C object pointer (i.e. implicitly strong by default). We fix |
| 11625 | // this by pretending that the unqualified type was actually |
| 11626 | // qualified __strong. |
| 11627 | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
| 11628 | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
| 11629 | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements" ); |
| 11630 | |
| 11631 | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
| 11632 | return {}; |
| 11633 | |
| 11634 | if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { |
| 11635 | return mergeTypes(LHS, RHS: getObjCGCQualType(T: RHS, GCAttr: Qualifiers::Strong)); |
| 11636 | } |
| 11637 | if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { |
| 11638 | return mergeTypes(LHS: getObjCGCQualType(T: LHS, GCAttr: Qualifiers::Strong), RHS); |
| 11639 | } |
| 11640 | return {}; |
| 11641 | } |
| 11642 | |
| 11643 | // Okay, qualifiers are equal. |
| 11644 | |
| 11645 | Type::TypeClass LHSClass = LHSCan->getTypeClass(); |
| 11646 | Type::TypeClass RHSClass = RHSCan->getTypeClass(); |
| 11647 | |
| 11648 | // We want to consider the two function types to be the same for these |
| 11649 | // comparisons, just force one to the other. |
| 11650 | if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; |
| 11651 | if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; |
| 11652 | |
| 11653 | // Same as above for arrays |
| 11654 | if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) |
| 11655 | LHSClass = Type::ConstantArray; |
| 11656 | if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) |
| 11657 | RHSClass = Type::ConstantArray; |
| 11658 | |
| 11659 | // ObjCInterfaces are just specialized ObjCObjects. |
| 11660 | if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; |
| 11661 | if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; |
| 11662 | |
| 11663 | // Canonicalize ExtVector -> Vector. |
| 11664 | if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; |
| 11665 | if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; |
| 11666 | |
| 11667 | // If the canonical type classes don't match. |
| 11668 | if (LHSClass != RHSClass) { |
| 11669 | // Note that we only have special rules for turning block enum |
| 11670 | // returns into block int returns, not vice-versa. |
| 11671 | if (const auto *ETy = LHS->getAs<EnumType>()) { |
| 11672 | return mergeEnumWithInteger(Context&: *this, ET: ETy, other: RHS, isBlockReturnType: false); |
| 11673 | } |
| 11674 | if (const EnumType* ETy = RHS->getAs<EnumType>()) { |
| 11675 | return mergeEnumWithInteger(Context&: *this, ET: ETy, other: LHS, isBlockReturnType: BlockReturnType); |
| 11676 | } |
| 11677 | // allow block pointer type to match an 'id' type. |
| 11678 | if (OfBlockPointer && !BlockReturnType) { |
| 11679 | if (LHS->isObjCIdType() && RHS->isBlockPointerType()) |
| 11680 | return LHS; |
| 11681 | if (RHS->isObjCIdType() && LHS->isBlockPointerType()) |
| 11682 | return RHS; |
| 11683 | } |
| 11684 | // Allow __auto_type to match anything; it merges to the type with more |
| 11685 | // information. |
| 11686 | if (const auto *AT = LHS->getAs<AutoType>()) { |
| 11687 | if (!AT->isDeduced() && AT->isGNUAutoType()) |
| 11688 | return RHS; |
| 11689 | } |
| 11690 | if (const auto *AT = RHS->getAs<AutoType>()) { |
| 11691 | if (!AT->isDeduced() && AT->isGNUAutoType()) |
| 11692 | return LHS; |
| 11693 | } |
| 11694 | return {}; |
| 11695 | } |
| 11696 | |
| 11697 | // The canonical type classes match. |
| 11698 | switch (LHSClass) { |
| 11699 | #define TYPE(Class, Base) |
| 11700 | #define ABSTRACT_TYPE(Class, Base) |
| 11701 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 11702 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| 11703 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 11704 | #include "clang/AST/TypeNodes.inc" |
| 11705 | llvm_unreachable("Non-canonical and dependent types shouldn't get here" ); |
| 11706 | |
| 11707 | case Type::Auto: |
| 11708 | case Type::DeducedTemplateSpecialization: |
| 11709 | case Type::LValueReference: |
| 11710 | case Type::RValueReference: |
| 11711 | case Type::MemberPointer: |
| 11712 | llvm_unreachable("C++ should never be in mergeTypes" ); |
| 11713 | |
| 11714 | case Type::ObjCInterface: |
| 11715 | case Type::IncompleteArray: |
| 11716 | case Type::VariableArray: |
| 11717 | case Type::FunctionProto: |
| 11718 | case Type::ExtVector: |
| 11719 | llvm_unreachable("Types are eliminated above" ); |
| 11720 | |
| 11721 | case Type::Pointer: |
| 11722 | { |
| 11723 | // Merge two pointer types, while trying to preserve typedef info |
| 11724 | QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType(); |
| 11725 | QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType(); |
| 11726 | if (Unqualified) { |
| 11727 | LHSPointee = LHSPointee.getUnqualifiedType(); |
| 11728 | RHSPointee = RHSPointee.getUnqualifiedType(); |
| 11729 | } |
| 11730 | QualType ResultType = mergeTypes(LHS: LHSPointee, RHS: RHSPointee, OfBlockPointer: false, |
| 11731 | Unqualified); |
| 11732 | if (ResultType.isNull()) |
| 11733 | return {}; |
| 11734 | if (getCanonicalType(T: LHSPointee) == getCanonicalType(T: ResultType)) |
| 11735 | return LHS; |
| 11736 | if (getCanonicalType(T: RHSPointee) == getCanonicalType(T: ResultType)) |
| 11737 | return RHS; |
| 11738 | return getPointerType(T: ResultType); |
| 11739 | } |
| 11740 | case Type::BlockPointer: |
| 11741 | { |
| 11742 | // Merge two block pointer types, while trying to preserve typedef info |
| 11743 | QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType(); |
| 11744 | QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType(); |
| 11745 | if (Unqualified) { |
| 11746 | LHSPointee = LHSPointee.getUnqualifiedType(); |
| 11747 | RHSPointee = RHSPointee.getUnqualifiedType(); |
| 11748 | } |
| 11749 | if (getLangOpts().OpenCL) { |
| 11750 | Qualifiers LHSPteeQual = LHSPointee.getQualifiers(); |
| 11751 | Qualifiers RHSPteeQual = RHSPointee.getQualifiers(); |
| 11752 | // Blocks can't be an expression in a ternary operator (OpenCL v2.0 |
| 11753 | // 6.12.5) thus the following check is asymmetric. |
| 11754 | if (!LHSPteeQual.isAddressSpaceSupersetOf(other: RHSPteeQual, Ctx: *this)) |
| 11755 | return {}; |
| 11756 | LHSPteeQual.removeAddressSpace(); |
| 11757 | RHSPteeQual.removeAddressSpace(); |
| 11758 | LHSPointee = |
| 11759 | QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue()); |
| 11760 | RHSPointee = |
| 11761 | QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue()); |
| 11762 | } |
| 11763 | QualType ResultType = mergeTypes(LHS: LHSPointee, RHS: RHSPointee, OfBlockPointer, |
| 11764 | Unqualified); |
| 11765 | if (ResultType.isNull()) |
| 11766 | return {}; |
| 11767 | if (getCanonicalType(T: LHSPointee) == getCanonicalType(T: ResultType)) |
| 11768 | return LHS; |
| 11769 | if (getCanonicalType(T: RHSPointee) == getCanonicalType(T: ResultType)) |
| 11770 | return RHS; |
| 11771 | return getBlockPointerType(T: ResultType); |
| 11772 | } |
| 11773 | case Type::Atomic: |
| 11774 | { |
| 11775 | // Merge two pointer types, while trying to preserve typedef info |
| 11776 | QualType LHSValue = LHS->castAs<AtomicType>()->getValueType(); |
| 11777 | QualType RHSValue = RHS->castAs<AtomicType>()->getValueType(); |
| 11778 | if (Unqualified) { |
| 11779 | LHSValue = LHSValue.getUnqualifiedType(); |
| 11780 | RHSValue = RHSValue.getUnqualifiedType(); |
| 11781 | } |
| 11782 | QualType ResultType = mergeTypes(LHS: LHSValue, RHS: RHSValue, OfBlockPointer: false, |
| 11783 | Unqualified); |
| 11784 | if (ResultType.isNull()) |
| 11785 | return {}; |
| 11786 | if (getCanonicalType(T: LHSValue) == getCanonicalType(T: ResultType)) |
| 11787 | return LHS; |
| 11788 | if (getCanonicalType(T: RHSValue) == getCanonicalType(T: ResultType)) |
| 11789 | return RHS; |
| 11790 | return getAtomicType(T: ResultType); |
| 11791 | } |
| 11792 | case Type::ConstantArray: |
| 11793 | { |
| 11794 | const ConstantArrayType* LCAT = getAsConstantArrayType(T: LHS); |
| 11795 | const ConstantArrayType* RCAT = getAsConstantArrayType(T: RHS); |
| 11796 | if (LCAT && RCAT && RCAT->getZExtSize() != LCAT->getZExtSize()) |
| 11797 | return {}; |
| 11798 | |
| 11799 | QualType LHSElem = getAsArrayType(T: LHS)->getElementType(); |
| 11800 | QualType RHSElem = getAsArrayType(T: RHS)->getElementType(); |
| 11801 | if (Unqualified) { |
| 11802 | LHSElem = LHSElem.getUnqualifiedType(); |
| 11803 | RHSElem = RHSElem.getUnqualifiedType(); |
| 11804 | } |
| 11805 | |
| 11806 | QualType ResultType = mergeTypes(LHS: LHSElem, RHS: RHSElem, OfBlockPointer: false, Unqualified); |
| 11807 | if (ResultType.isNull()) |
| 11808 | return {}; |
| 11809 | |
| 11810 | const VariableArrayType* LVAT = getAsVariableArrayType(T: LHS); |
| 11811 | const VariableArrayType* RVAT = getAsVariableArrayType(T: RHS); |
| 11812 | |
| 11813 | // If either side is a variable array, and both are complete, check whether |
| 11814 | // the current dimension is definite. |
| 11815 | if (LVAT || RVAT) { |
| 11816 | auto SizeFetch = [this](const VariableArrayType* VAT, |
| 11817 | const ConstantArrayType* CAT) |
| 11818 | -> std::pair<bool,llvm::APInt> { |
| 11819 | if (VAT) { |
| 11820 | std::optional<llvm::APSInt> TheInt; |
| 11821 | Expr *E = VAT->getSizeExpr(); |
| 11822 | if (E && (TheInt = E->getIntegerConstantExpr(*this))) |
| 11823 | return std::make_pair(true, *TheInt); |
| 11824 | return std::make_pair(false, llvm::APSInt()); |
| 11825 | } |
| 11826 | if (CAT) |
| 11827 | return std::make_pair(true, CAT->getSize()); |
| 11828 | return std::make_pair(false, llvm::APInt()); |
| 11829 | }; |
| 11830 | |
| 11831 | bool HaveLSize, HaveRSize; |
| 11832 | llvm::APInt LSize, RSize; |
| 11833 | std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT); |
| 11834 | std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT); |
| 11835 | if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(I1: LSize, I2: RSize)) |
| 11836 | return {}; // Definite, but unequal, array dimension |
| 11837 | } |
| 11838 | |
| 11839 | if (LCAT && getCanonicalType(T: LHSElem) == getCanonicalType(T: ResultType)) |
| 11840 | return LHS; |
| 11841 | if (RCAT && getCanonicalType(T: RHSElem) == getCanonicalType(T: ResultType)) |
| 11842 | return RHS; |
| 11843 | if (LCAT) |
| 11844 | return getConstantArrayType(EltTy: ResultType, ArySizeIn: LCAT->getSize(), |
| 11845 | SizeExpr: LCAT->getSizeExpr(), ASM: ArraySizeModifier(), IndexTypeQuals: 0); |
| 11846 | if (RCAT) |
| 11847 | return getConstantArrayType(EltTy: ResultType, ArySizeIn: RCAT->getSize(), |
| 11848 | SizeExpr: RCAT->getSizeExpr(), ASM: ArraySizeModifier(), IndexTypeQuals: 0); |
| 11849 | if (LVAT && getCanonicalType(T: LHSElem) == getCanonicalType(T: ResultType)) |
| 11850 | return LHS; |
| 11851 | if (RVAT && getCanonicalType(T: RHSElem) == getCanonicalType(T: ResultType)) |
| 11852 | return RHS; |
| 11853 | if (LVAT) { |
| 11854 | // FIXME: This isn't correct! But tricky to implement because |
| 11855 | // the array's size has to be the size of LHS, but the type |
| 11856 | // has to be different. |
| 11857 | return LHS; |
| 11858 | } |
| 11859 | if (RVAT) { |
| 11860 | // FIXME: This isn't correct! But tricky to implement because |
| 11861 | // the array's size has to be the size of RHS, but the type |
| 11862 | // has to be different. |
| 11863 | return RHS; |
| 11864 | } |
| 11865 | if (getCanonicalType(T: LHSElem) == getCanonicalType(T: ResultType)) return LHS; |
| 11866 | if (getCanonicalType(T: RHSElem) == getCanonicalType(T: ResultType)) return RHS; |
| 11867 | return getIncompleteArrayType(elementType: ResultType, ASM: ArraySizeModifier(), elementTypeQuals: 0); |
| 11868 | } |
| 11869 | case Type::FunctionNoProto: |
| 11870 | return mergeFunctionTypes(lhs: LHS, rhs: RHS, OfBlockPointer, Unqualified, |
| 11871 | /*AllowCXX=*/false, IsConditionalOperator); |
| 11872 | case Type::Record: |
| 11873 | case Type::Enum: |
| 11874 | return mergeTagDefinitions(LHS, RHS); |
| 11875 | case Type::Builtin: |
| 11876 | // Only exactly equal builtin types are compatible, which is tested above. |
| 11877 | return {}; |
| 11878 | case Type::Complex: |
| 11879 | // Distinct complex types are incompatible. |
| 11880 | return {}; |
| 11881 | case Type::Vector: |
| 11882 | // FIXME: The merged type should be an ExtVector! |
| 11883 | if (areCompatVectorTypes(LHSCan->castAs<VectorType>(), |
| 11884 | RHSCan->castAs<VectorType>())) |
| 11885 | return LHS; |
| 11886 | return {}; |
| 11887 | case Type::ConstantMatrix: |
| 11888 | if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(), |
| 11889 | RHSCan->castAs<ConstantMatrixType>())) |
| 11890 | return LHS; |
| 11891 | return {}; |
| 11892 | case Type::ObjCObject: { |
| 11893 | // Check if the types are assignment compatible. |
| 11894 | // FIXME: This should be type compatibility, e.g. whether |
| 11895 | // "LHS x; RHS x;" at global scope is legal. |
| 11896 | if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(), |
| 11897 | RHS->castAs<ObjCObjectType>())) |
| 11898 | return LHS; |
| 11899 | return {}; |
| 11900 | } |
| 11901 | case Type::ObjCObjectPointer: |
| 11902 | if (OfBlockPointer) { |
| 11903 | if (canAssignObjCInterfacesInBlockPointer( |
| 11904 | LHSOPT: LHS->castAs<ObjCObjectPointerType>(), |
| 11905 | RHSOPT: RHS->castAs<ObjCObjectPointerType>(), BlockReturnType)) |
| 11906 | return LHS; |
| 11907 | return {}; |
| 11908 | } |
| 11909 | if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(), |
| 11910 | RHS->castAs<ObjCObjectPointerType>())) |
| 11911 | return LHS; |
| 11912 | return {}; |
| 11913 | case Type::Pipe: |
| 11914 | assert(LHS != RHS && |
| 11915 | "Equivalent pipe types should have already been handled!" ); |
| 11916 | return {}; |
| 11917 | case Type::ArrayParameter: |
| 11918 | assert(LHS != RHS && |
| 11919 | "Equivalent ArrayParameter types should have already been handled!" ); |
| 11920 | return {}; |
| 11921 | case Type::BitInt: { |
| 11922 | // Merge two bit-precise int types, while trying to preserve typedef info. |
| 11923 | bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned(); |
| 11924 | bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned(); |
| 11925 | unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits(); |
| 11926 | unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits(); |
| 11927 | |
| 11928 | // Like unsigned/int, shouldn't have a type if they don't match. |
| 11929 | if (LHSUnsigned != RHSUnsigned) |
| 11930 | return {}; |
| 11931 | |
| 11932 | if (LHSBits != RHSBits) |
| 11933 | return {}; |
| 11934 | return LHS; |
| 11935 | } |
| 11936 | case Type::HLSLAttributedResource: { |
| 11937 | const HLSLAttributedResourceType *LHSTy = |
| 11938 | LHS->castAs<HLSLAttributedResourceType>(); |
| 11939 | const HLSLAttributedResourceType *RHSTy = |
| 11940 | RHS->castAs<HLSLAttributedResourceType>(); |
| 11941 | assert(LHSTy->getWrappedType() == RHSTy->getWrappedType() && |
| 11942 | LHSTy->getWrappedType()->isHLSLResourceType() && |
| 11943 | "HLSLAttributedResourceType should always wrap __hlsl_resource_t" ); |
| 11944 | |
| 11945 | if (LHSTy->getAttrs() == RHSTy->getAttrs() && |
| 11946 | LHSTy->getContainedType() == RHSTy->getContainedType()) |
| 11947 | return LHS; |
| 11948 | return {}; |
| 11949 | } |
| 11950 | case Type::HLSLInlineSpirv: |
| 11951 | const HLSLInlineSpirvType *LHSTy = LHS->castAs<HLSLInlineSpirvType>(); |
| 11952 | const HLSLInlineSpirvType *RHSTy = RHS->castAs<HLSLInlineSpirvType>(); |
| 11953 | |
| 11954 | if (LHSTy->getOpcode() == RHSTy->getOpcode() && |
| 11955 | LHSTy->getSize() == RHSTy->getSize() && |
| 11956 | LHSTy->getAlignment() == RHSTy->getAlignment()) { |
| 11957 | for (size_t I = 0; I < LHSTy->getOperands().size(); I++) |
| 11958 | if (LHSTy->getOperands()[I] != RHSTy->getOperands()[I]) |
| 11959 | return {}; |
| 11960 | |
| 11961 | return LHS; |
| 11962 | } |
| 11963 | return {}; |
| 11964 | } |
| 11965 | |
| 11966 | llvm_unreachable("Invalid Type::Class!" ); |
| 11967 | } |
| 11968 | |
| 11969 | bool ASTContext::mergeExtParameterInfo( |
| 11970 | const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType, |
| 11971 | bool &CanUseFirst, bool &CanUseSecond, |
| 11972 | SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) { |
| 11973 | assert(NewParamInfos.empty() && "param info list not empty" ); |
| 11974 | CanUseFirst = CanUseSecond = true; |
| 11975 | bool FirstHasInfo = FirstFnType->hasExtParameterInfos(); |
| 11976 | bool SecondHasInfo = SecondFnType->hasExtParameterInfos(); |
| 11977 | |
| 11978 | // Fast path: if the first type doesn't have ext parameter infos, |
| 11979 | // we match if and only if the second type also doesn't have them. |
| 11980 | if (!FirstHasInfo && !SecondHasInfo) |
| 11981 | return true; |
| 11982 | |
| 11983 | bool NeedParamInfo = false; |
| 11984 | size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size() |
| 11985 | : SecondFnType->getExtParameterInfos().size(); |
| 11986 | |
| 11987 | for (size_t I = 0; I < E; ++I) { |
| 11988 | FunctionProtoType::ExtParameterInfo FirstParam, SecondParam; |
| 11989 | if (FirstHasInfo) |
| 11990 | FirstParam = FirstFnType->getExtParameterInfo(I); |
| 11991 | if (SecondHasInfo) |
| 11992 | SecondParam = SecondFnType->getExtParameterInfo(I); |
| 11993 | |
| 11994 | // Cannot merge unless everything except the noescape flag matches. |
| 11995 | if (FirstParam.withIsNoEscape(NoEscape: false) != SecondParam.withIsNoEscape(NoEscape: false)) |
| 11996 | return false; |
| 11997 | |
| 11998 | bool FirstNoEscape = FirstParam.isNoEscape(); |
| 11999 | bool SecondNoEscape = SecondParam.isNoEscape(); |
| 12000 | bool IsNoEscape = FirstNoEscape && SecondNoEscape; |
| 12001 | NewParamInfos.push_back(Elt: FirstParam.withIsNoEscape(NoEscape: IsNoEscape)); |
| 12002 | if (NewParamInfos.back().getOpaqueValue()) |
| 12003 | NeedParamInfo = true; |
| 12004 | if (FirstNoEscape != IsNoEscape) |
| 12005 | CanUseFirst = false; |
| 12006 | if (SecondNoEscape != IsNoEscape) |
| 12007 | CanUseSecond = false; |
| 12008 | } |
| 12009 | |
| 12010 | if (!NeedParamInfo) |
| 12011 | NewParamInfos.clear(); |
| 12012 | |
| 12013 | return true; |
| 12014 | } |
| 12015 | |
| 12016 | void ASTContext::ResetObjCLayout(const ObjCInterfaceDecl *D) { |
| 12017 | if (auto It = ObjCLayouts.find(Val: D); It != ObjCLayouts.end()) { |
| 12018 | It->second = nullptr; |
| 12019 | for (auto *SubClass : ObjCSubClasses[D]) |
| 12020 | ResetObjCLayout(SubClass); |
| 12021 | } |
| 12022 | } |
| 12023 | |
| 12024 | /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and |
| 12025 | /// 'RHS' attributes and returns the merged version; including for function |
| 12026 | /// return types. |
| 12027 | QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { |
| 12028 | QualType LHSCan = getCanonicalType(T: LHS), |
| 12029 | RHSCan = getCanonicalType(T: RHS); |
| 12030 | // If two types are identical, they are compatible. |
| 12031 | if (LHSCan == RHSCan) |
| 12032 | return LHS; |
| 12033 | if (RHSCan->isFunctionType()) { |
| 12034 | if (!LHSCan->isFunctionType()) |
| 12035 | return {}; |
| 12036 | QualType OldReturnType = |
| 12037 | cast<FunctionType>(Val: RHSCan.getTypePtr())->getReturnType(); |
| 12038 | QualType NewReturnType = |
| 12039 | cast<FunctionType>(Val: LHSCan.getTypePtr())->getReturnType(); |
| 12040 | QualType ResReturnType = |
| 12041 | mergeObjCGCQualifiers(LHS: NewReturnType, RHS: OldReturnType); |
| 12042 | if (ResReturnType.isNull()) |
| 12043 | return {}; |
| 12044 | if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { |
| 12045 | // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); |
| 12046 | // In either case, use OldReturnType to build the new function type. |
| 12047 | const auto *F = LHS->castAs<FunctionType>(); |
| 12048 | if (const auto *FPT = cast<FunctionProtoType>(Val: F)) { |
| 12049 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 12050 | EPI.ExtInfo = getFunctionExtInfo(t: LHS); |
| 12051 | QualType ResultType = |
| 12052 | getFunctionType(ResultTy: OldReturnType, Args: FPT->getParamTypes(), EPI); |
| 12053 | return ResultType; |
| 12054 | } |
| 12055 | } |
| 12056 | return {}; |
| 12057 | } |
| 12058 | |
| 12059 | // If the qualifiers are different, the types can still be merged. |
| 12060 | Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
| 12061 | Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
| 12062 | if (LQuals != RQuals) { |
| 12063 | // If any of these qualifiers are different, we have a type mismatch. |
| 12064 | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
| 12065 | LQuals.getAddressSpace() != RQuals.getAddressSpace()) |
| 12066 | return {}; |
| 12067 | |
| 12068 | // Exactly one GC qualifier difference is allowed: __strong is |
| 12069 | // okay if the other type has no GC qualifier but is an Objective |
| 12070 | // C object pointer (i.e. implicitly strong by default). We fix |
| 12071 | // this by pretending that the unqualified type was actually |
| 12072 | // qualified __strong. |
| 12073 | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
| 12074 | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
| 12075 | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements" ); |
| 12076 | |
| 12077 | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
| 12078 | return {}; |
| 12079 | |
| 12080 | if (GC_L == Qualifiers::Strong) |
| 12081 | return LHS; |
| 12082 | if (GC_R == Qualifiers::Strong) |
| 12083 | return RHS; |
| 12084 | return {}; |
| 12085 | } |
| 12086 | |
| 12087 | if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { |
| 12088 | QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType(); |
| 12089 | QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType(); |
| 12090 | QualType ResQT = mergeObjCGCQualifiers(LHS: LHSBaseQT, RHS: RHSBaseQT); |
| 12091 | if (ResQT == LHSBaseQT) |
| 12092 | return LHS; |
| 12093 | if (ResQT == RHSBaseQT) |
| 12094 | return RHS; |
| 12095 | } |
| 12096 | return {}; |
| 12097 | } |
| 12098 | |
| 12099 | //===----------------------------------------------------------------------===// |
| 12100 | // Integer Predicates |
| 12101 | //===----------------------------------------------------------------------===// |
| 12102 | |
| 12103 | unsigned ASTContext::getIntWidth(QualType T) const { |
| 12104 | if (const auto *ET = T->getAs<EnumType>()) |
| 12105 | T = ET->getDecl()->getIntegerType(); |
| 12106 | if (T->isBooleanType()) |
| 12107 | return 1; |
| 12108 | if (const auto *EIT = T->getAs<BitIntType>()) |
| 12109 | return EIT->getNumBits(); |
| 12110 | // For builtin types, just use the standard type sizing method |
| 12111 | return (unsigned)getTypeSize(T); |
| 12112 | } |
| 12113 | |
| 12114 | QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { |
| 12115 | assert((T->hasIntegerRepresentation() || T->isEnumeralType() || |
| 12116 | T->isFixedPointType()) && |
| 12117 | "Unexpected type" ); |
| 12118 | |
| 12119 | // Turn <4 x signed int> -> <4 x unsigned int> |
| 12120 | if (const auto *VTy = T->getAs<VectorType>()) |
| 12121 | return getVectorType(vecType: getCorrespondingUnsignedType(T: VTy->getElementType()), |
| 12122 | NumElts: VTy->getNumElements(), VecKind: VTy->getVectorKind()); |
| 12123 | |
| 12124 | // For _BitInt, return an unsigned _BitInt with same width. |
| 12125 | if (const auto *EITy = T->getAs<BitIntType>()) |
| 12126 | return getBitIntType(/*Unsigned=*/IsUnsigned: true, NumBits: EITy->getNumBits()); |
| 12127 | |
| 12128 | // For enums, get the underlying integer type of the enum, and let the general |
| 12129 | // integer type signchanging code handle it. |
| 12130 | if (const auto *ETy = T->getAs<EnumType>()) |
| 12131 | T = ETy->getDecl()->getIntegerType(); |
| 12132 | |
| 12133 | switch (T->castAs<BuiltinType>()->getKind()) { |
| 12134 | case BuiltinType::Char_U: |
| 12135 | // Plain `char` is mapped to `unsigned char` even if it's already unsigned |
| 12136 | case BuiltinType::Char_S: |
| 12137 | case BuiltinType::SChar: |
| 12138 | case BuiltinType::Char8: |
| 12139 | return UnsignedCharTy; |
| 12140 | case BuiltinType::Short: |
| 12141 | return UnsignedShortTy; |
| 12142 | case BuiltinType::Int: |
| 12143 | return UnsignedIntTy; |
| 12144 | case BuiltinType::Long: |
| 12145 | return UnsignedLongTy; |
| 12146 | case BuiltinType::LongLong: |
| 12147 | return UnsignedLongLongTy; |
| 12148 | case BuiltinType::Int128: |
| 12149 | return UnsignedInt128Ty; |
| 12150 | // wchar_t is special. It is either signed or not, but when it's signed, |
| 12151 | // there's no matching "unsigned wchar_t". Therefore we return the unsigned |
| 12152 | // version of its underlying type instead. |
| 12153 | case BuiltinType::WChar_S: |
| 12154 | return getUnsignedWCharType(); |
| 12155 | |
| 12156 | case BuiltinType::ShortAccum: |
| 12157 | return UnsignedShortAccumTy; |
| 12158 | case BuiltinType::Accum: |
| 12159 | return UnsignedAccumTy; |
| 12160 | case BuiltinType::LongAccum: |
| 12161 | return UnsignedLongAccumTy; |
| 12162 | case BuiltinType::SatShortAccum: |
| 12163 | return SatUnsignedShortAccumTy; |
| 12164 | case BuiltinType::SatAccum: |
| 12165 | return SatUnsignedAccumTy; |
| 12166 | case BuiltinType::SatLongAccum: |
| 12167 | return SatUnsignedLongAccumTy; |
| 12168 | case BuiltinType::ShortFract: |
| 12169 | return UnsignedShortFractTy; |
| 12170 | case BuiltinType::Fract: |
| 12171 | return UnsignedFractTy; |
| 12172 | case BuiltinType::LongFract: |
| 12173 | return UnsignedLongFractTy; |
| 12174 | case BuiltinType::SatShortFract: |
| 12175 | return SatUnsignedShortFractTy; |
| 12176 | case BuiltinType::SatFract: |
| 12177 | return SatUnsignedFractTy; |
| 12178 | case BuiltinType::SatLongFract: |
| 12179 | return SatUnsignedLongFractTy; |
| 12180 | default: |
| 12181 | assert((T->hasUnsignedIntegerRepresentation() || |
| 12182 | T->isUnsignedFixedPointType()) && |
| 12183 | "Unexpected signed integer or fixed point type" ); |
| 12184 | return T; |
| 12185 | } |
| 12186 | } |
| 12187 | |
| 12188 | QualType ASTContext::getCorrespondingSignedType(QualType T) const { |
| 12189 | assert((T->hasIntegerRepresentation() || T->isEnumeralType() || |
| 12190 | T->isFixedPointType()) && |
| 12191 | "Unexpected type" ); |
| 12192 | |
| 12193 | // Turn <4 x unsigned int> -> <4 x signed int> |
| 12194 | if (const auto *VTy = T->getAs<VectorType>()) |
| 12195 | return getVectorType(vecType: getCorrespondingSignedType(T: VTy->getElementType()), |
| 12196 | NumElts: VTy->getNumElements(), VecKind: VTy->getVectorKind()); |
| 12197 | |
| 12198 | // For _BitInt, return a signed _BitInt with same width. |
| 12199 | if (const auto *EITy = T->getAs<BitIntType>()) |
| 12200 | return getBitIntType(/*Unsigned=*/IsUnsigned: false, NumBits: EITy->getNumBits()); |
| 12201 | |
| 12202 | // For enums, get the underlying integer type of the enum, and let the general |
| 12203 | // integer type signchanging code handle it. |
| 12204 | if (const auto *ETy = T->getAs<EnumType>()) |
| 12205 | T = ETy->getDecl()->getIntegerType(); |
| 12206 | |
| 12207 | switch (T->castAs<BuiltinType>()->getKind()) { |
| 12208 | case BuiltinType::Char_S: |
| 12209 | // Plain `char` is mapped to `signed char` even if it's already signed |
| 12210 | case BuiltinType::Char_U: |
| 12211 | case BuiltinType::UChar: |
| 12212 | case BuiltinType::Char8: |
| 12213 | return SignedCharTy; |
| 12214 | case BuiltinType::UShort: |
| 12215 | return ShortTy; |
| 12216 | case BuiltinType::UInt: |
| 12217 | return IntTy; |
| 12218 | case BuiltinType::ULong: |
| 12219 | return LongTy; |
| 12220 | case BuiltinType::ULongLong: |
| 12221 | return LongLongTy; |
| 12222 | case BuiltinType::UInt128: |
| 12223 | return Int128Ty; |
| 12224 | // wchar_t is special. It is either unsigned or not, but when it's unsigned, |
| 12225 | // there's no matching "signed wchar_t". Therefore we return the signed |
| 12226 | // version of its underlying type instead. |
| 12227 | case BuiltinType::WChar_U: |
| 12228 | return getSignedWCharType(); |
| 12229 | |
| 12230 | case BuiltinType::UShortAccum: |
| 12231 | return ShortAccumTy; |
| 12232 | case BuiltinType::UAccum: |
| 12233 | return AccumTy; |
| 12234 | case BuiltinType::ULongAccum: |
| 12235 | return LongAccumTy; |
| 12236 | case BuiltinType::SatUShortAccum: |
| 12237 | return SatShortAccumTy; |
| 12238 | case BuiltinType::SatUAccum: |
| 12239 | return SatAccumTy; |
| 12240 | case BuiltinType::SatULongAccum: |
| 12241 | return SatLongAccumTy; |
| 12242 | case BuiltinType::UShortFract: |
| 12243 | return ShortFractTy; |
| 12244 | case BuiltinType::UFract: |
| 12245 | return FractTy; |
| 12246 | case BuiltinType::ULongFract: |
| 12247 | return LongFractTy; |
| 12248 | case BuiltinType::SatUShortFract: |
| 12249 | return SatShortFractTy; |
| 12250 | case BuiltinType::SatUFract: |
| 12251 | return SatFractTy; |
| 12252 | case BuiltinType::SatULongFract: |
| 12253 | return SatLongFractTy; |
| 12254 | default: |
| 12255 | assert( |
| 12256 | (T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && |
| 12257 | "Unexpected signed integer or fixed point type" ); |
| 12258 | return T; |
| 12259 | } |
| 12260 | } |
| 12261 | |
| 12262 | ASTMutationListener::~ASTMutationListener() = default; |
| 12263 | |
| 12264 | void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, |
| 12265 | QualType ReturnType) {} |
| 12266 | |
| 12267 | //===----------------------------------------------------------------------===// |
| 12268 | // Builtin Type Computation |
| 12269 | //===----------------------------------------------------------------------===// |
| 12270 | |
| 12271 | /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the |
| 12272 | /// pointer over the consumed characters. This returns the resultant type. If |
| 12273 | /// AllowTypeModifiers is false then modifier like * are not parsed, just basic |
| 12274 | /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of |
| 12275 | /// a vector of "i*". |
| 12276 | /// |
| 12277 | /// RequiresICE is filled in on return to indicate whether the value is required |
| 12278 | /// to be an Integer Constant Expression. |
| 12279 | static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, |
| 12280 | ASTContext::GetBuiltinTypeError &Error, |
| 12281 | bool &RequiresICE, |
| 12282 | bool AllowTypeModifiers) { |
| 12283 | // Modifiers. |
| 12284 | int HowLong = 0; |
| 12285 | bool Signed = false, Unsigned = false; |
| 12286 | RequiresICE = false; |
| 12287 | |
| 12288 | // Read the prefixed modifiers first. |
| 12289 | bool Done = false; |
| 12290 | #ifndef NDEBUG |
| 12291 | bool IsSpecial = false; |
| 12292 | #endif |
| 12293 | while (!Done) { |
| 12294 | switch (*Str++) { |
| 12295 | default: Done = true; --Str; break; |
| 12296 | case 'I': |
| 12297 | RequiresICE = true; |
| 12298 | break; |
| 12299 | case 'S': |
| 12300 | assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!" ); |
| 12301 | assert(!Signed && "Can't use 'S' modifier multiple times!" ); |
| 12302 | Signed = true; |
| 12303 | break; |
| 12304 | case 'U': |
| 12305 | assert(!Signed && "Can't use both 'S' and 'U' modifiers!" ); |
| 12306 | assert(!Unsigned && "Can't use 'U' modifier multiple times!" ); |
| 12307 | Unsigned = true; |
| 12308 | break; |
| 12309 | case 'L': |
| 12310 | assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers" ); |
| 12311 | assert(HowLong <= 2 && "Can't have LLLL modifier" ); |
| 12312 | ++HowLong; |
| 12313 | break; |
| 12314 | case 'N': |
| 12315 | // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise. |
| 12316 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
| 12317 | assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!" ); |
| 12318 | #ifndef NDEBUG |
| 12319 | IsSpecial = true; |
| 12320 | #endif |
| 12321 | if (Context.getTargetInfo().getLongWidth() == 32) |
| 12322 | ++HowLong; |
| 12323 | break; |
| 12324 | case 'W': |
| 12325 | // This modifier represents int64 type. |
| 12326 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
| 12327 | assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!" ); |
| 12328 | #ifndef NDEBUG |
| 12329 | IsSpecial = true; |
| 12330 | #endif |
| 12331 | switch (Context.getTargetInfo().getInt64Type()) { |
| 12332 | default: |
| 12333 | llvm_unreachable("Unexpected integer type" ); |
| 12334 | case TargetInfo::SignedLong: |
| 12335 | HowLong = 1; |
| 12336 | break; |
| 12337 | case TargetInfo::SignedLongLong: |
| 12338 | HowLong = 2; |
| 12339 | break; |
| 12340 | } |
| 12341 | break; |
| 12342 | case 'Z': |
| 12343 | // This modifier represents int32 type. |
| 12344 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
| 12345 | assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!" ); |
| 12346 | #ifndef NDEBUG |
| 12347 | IsSpecial = true; |
| 12348 | #endif |
| 12349 | switch (Context.getTargetInfo().getIntTypeByWidth(BitWidth: 32, IsSigned: true)) { |
| 12350 | default: |
| 12351 | llvm_unreachable("Unexpected integer type" ); |
| 12352 | case TargetInfo::SignedInt: |
| 12353 | HowLong = 0; |
| 12354 | break; |
| 12355 | case TargetInfo::SignedLong: |
| 12356 | HowLong = 1; |
| 12357 | break; |
| 12358 | case TargetInfo::SignedLongLong: |
| 12359 | HowLong = 2; |
| 12360 | break; |
| 12361 | } |
| 12362 | break; |
| 12363 | case 'O': |
| 12364 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!" ); |
| 12365 | assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!" ); |
| 12366 | #ifndef NDEBUG |
| 12367 | IsSpecial = true; |
| 12368 | #endif |
| 12369 | if (Context.getLangOpts().OpenCL) |
| 12370 | HowLong = 1; |
| 12371 | else |
| 12372 | HowLong = 2; |
| 12373 | break; |
| 12374 | } |
| 12375 | } |
| 12376 | |
| 12377 | QualType Type; |
| 12378 | |
| 12379 | // Read the base type. |
| 12380 | switch (*Str++) { |
| 12381 | default: llvm_unreachable("Unknown builtin type letter!" ); |
| 12382 | case 'x': |
| 12383 | assert(HowLong == 0 && !Signed && !Unsigned && |
| 12384 | "Bad modifiers used with 'x'!" ); |
| 12385 | Type = Context.Float16Ty; |
| 12386 | break; |
| 12387 | case 'y': |
| 12388 | assert(HowLong == 0 && !Signed && !Unsigned && |
| 12389 | "Bad modifiers used with 'y'!" ); |
| 12390 | Type = Context.BFloat16Ty; |
| 12391 | break; |
| 12392 | case 'v': |
| 12393 | assert(HowLong == 0 && !Signed && !Unsigned && |
| 12394 | "Bad modifiers used with 'v'!" ); |
| 12395 | Type = Context.VoidTy; |
| 12396 | break; |
| 12397 | case 'h': |
| 12398 | assert(HowLong == 0 && !Signed && !Unsigned && |
| 12399 | "Bad modifiers used with 'h'!" ); |
| 12400 | Type = Context.HalfTy; |
| 12401 | break; |
| 12402 | case 'f': |
| 12403 | assert(HowLong == 0 && !Signed && !Unsigned && |
| 12404 | "Bad modifiers used with 'f'!" ); |
| 12405 | Type = Context.FloatTy; |
| 12406 | break; |
| 12407 | case 'd': |
| 12408 | assert(HowLong < 3 && !Signed && !Unsigned && |
| 12409 | "Bad modifiers used with 'd'!" ); |
| 12410 | if (HowLong == 1) |
| 12411 | Type = Context.LongDoubleTy; |
| 12412 | else if (HowLong == 2) |
| 12413 | Type = Context.Float128Ty; |
| 12414 | else |
| 12415 | Type = Context.DoubleTy; |
| 12416 | break; |
| 12417 | case 's': |
| 12418 | assert(HowLong == 0 && "Bad modifiers used with 's'!" ); |
| 12419 | if (Unsigned) |
| 12420 | Type = Context.UnsignedShortTy; |
| 12421 | else |
| 12422 | Type = Context.ShortTy; |
| 12423 | break; |
| 12424 | case 'i': |
| 12425 | if (HowLong == 3) |
| 12426 | Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; |
| 12427 | else if (HowLong == 2) |
| 12428 | Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; |
| 12429 | else if (HowLong == 1) |
| 12430 | Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; |
| 12431 | else |
| 12432 | Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; |
| 12433 | break; |
| 12434 | case 'c': |
| 12435 | assert(HowLong == 0 && "Bad modifiers used with 'c'!" ); |
| 12436 | if (Signed) |
| 12437 | Type = Context.SignedCharTy; |
| 12438 | else if (Unsigned) |
| 12439 | Type = Context.UnsignedCharTy; |
| 12440 | else |
| 12441 | Type = Context.CharTy; |
| 12442 | break; |
| 12443 | case 'b': // boolean |
| 12444 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!" ); |
| 12445 | Type = Context.BoolTy; |
| 12446 | break; |
| 12447 | case 'z': // size_t. |
| 12448 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!" ); |
| 12449 | Type = Context.getSizeType(); |
| 12450 | break; |
| 12451 | case 'w': // wchar_t. |
| 12452 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!" ); |
| 12453 | Type = Context.getWideCharType(); |
| 12454 | break; |
| 12455 | case 'F': |
| 12456 | Type = Context.getCFConstantStringType(); |
| 12457 | break; |
| 12458 | case 'G': |
| 12459 | Type = Context.getObjCIdType(); |
| 12460 | break; |
| 12461 | case 'H': |
| 12462 | Type = Context.getObjCSelType(); |
| 12463 | break; |
| 12464 | case 'M': |
| 12465 | Type = Context.getObjCSuperType(); |
| 12466 | break; |
| 12467 | case 'a': |
| 12468 | Type = Context.getBuiltinVaListType(); |
| 12469 | assert(!Type.isNull() && "builtin va list type not initialized!" ); |
| 12470 | break; |
| 12471 | case 'A': |
| 12472 | // This is a "reference" to a va_list; however, what exactly |
| 12473 | // this means depends on how va_list is defined. There are two |
| 12474 | // different kinds of va_list: ones passed by value, and ones |
| 12475 | // passed by reference. An example of a by-value va_list is |
| 12476 | // x86, where va_list is a char*. An example of by-ref va_list |
| 12477 | // is x86-64, where va_list is a __va_list_tag[1]. For x86, |
| 12478 | // we want this argument to be a char*&; for x86-64, we want |
| 12479 | // it to be a __va_list_tag*. |
| 12480 | Type = Context.getBuiltinVaListType(); |
| 12481 | assert(!Type.isNull() && "builtin va list type not initialized!" ); |
| 12482 | if (Type->isArrayType()) |
| 12483 | Type = Context.getArrayDecayedType(Ty: Type); |
| 12484 | else |
| 12485 | Type = Context.getLValueReferenceType(T: Type); |
| 12486 | break; |
| 12487 | case 'q': { |
| 12488 | char *End; |
| 12489 | unsigned NumElements = strtoul(nptr: Str, endptr: &End, base: 10); |
| 12490 | assert(End != Str && "Missing vector size" ); |
| 12491 | Str = End; |
| 12492 | |
| 12493 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
| 12494 | RequiresICE, AllowTypeModifiers: false); |
| 12495 | assert(!RequiresICE && "Can't require vector ICE" ); |
| 12496 | |
| 12497 | Type = Context.getScalableVectorType(EltTy: ElementType, NumElts: NumElements); |
| 12498 | break; |
| 12499 | } |
| 12500 | case 'Q': { |
| 12501 | switch (*Str++) { |
| 12502 | case 'a': { |
| 12503 | Type = Context.SveCountTy; |
| 12504 | break; |
| 12505 | } |
| 12506 | case 'b': { |
| 12507 | Type = Context.AMDGPUBufferRsrcTy; |
| 12508 | break; |
| 12509 | } |
| 12510 | default: |
| 12511 | llvm_unreachable("Unexpected target builtin type" ); |
| 12512 | } |
| 12513 | break; |
| 12514 | } |
| 12515 | case 'V': { |
| 12516 | char *End; |
| 12517 | unsigned NumElements = strtoul(nptr: Str, endptr: &End, base: 10); |
| 12518 | assert(End != Str && "Missing vector size" ); |
| 12519 | Str = End; |
| 12520 | |
| 12521 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
| 12522 | RequiresICE, AllowTypeModifiers: false); |
| 12523 | assert(!RequiresICE && "Can't require vector ICE" ); |
| 12524 | |
| 12525 | // TODO: No way to make AltiVec vectors in builtins yet. |
| 12526 | Type = Context.getVectorType(vecType: ElementType, NumElts: NumElements, VecKind: VectorKind::Generic); |
| 12527 | break; |
| 12528 | } |
| 12529 | case 'E': { |
| 12530 | char *End; |
| 12531 | |
| 12532 | unsigned NumElements = strtoul(nptr: Str, endptr: &End, base: 10); |
| 12533 | assert(End != Str && "Missing vector size" ); |
| 12534 | |
| 12535 | Str = End; |
| 12536 | |
| 12537 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
| 12538 | AllowTypeModifiers: false); |
| 12539 | Type = Context.getExtVectorType(vecType: ElementType, NumElts: NumElements); |
| 12540 | break; |
| 12541 | } |
| 12542 | case 'X': { |
| 12543 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
| 12544 | AllowTypeModifiers: false); |
| 12545 | assert(!RequiresICE && "Can't require complex ICE" ); |
| 12546 | Type = Context.getComplexType(T: ElementType); |
| 12547 | break; |
| 12548 | } |
| 12549 | case 'Y': |
| 12550 | Type = Context.getPointerDiffType(); |
| 12551 | break; |
| 12552 | case 'P': |
| 12553 | Type = Context.getFILEType(); |
| 12554 | if (Type.isNull()) { |
| 12555 | Error = ASTContext::GE_Missing_stdio; |
| 12556 | return {}; |
| 12557 | } |
| 12558 | break; |
| 12559 | case 'J': |
| 12560 | if (Signed) |
| 12561 | Type = Context.getsigjmp_bufType(); |
| 12562 | else |
| 12563 | Type = Context.getjmp_bufType(); |
| 12564 | |
| 12565 | if (Type.isNull()) { |
| 12566 | Error = ASTContext::GE_Missing_setjmp; |
| 12567 | return {}; |
| 12568 | } |
| 12569 | break; |
| 12570 | case 'K': |
| 12571 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!" ); |
| 12572 | Type = Context.getucontext_tType(); |
| 12573 | |
| 12574 | if (Type.isNull()) { |
| 12575 | Error = ASTContext::GE_Missing_ucontext; |
| 12576 | return {}; |
| 12577 | } |
| 12578 | break; |
| 12579 | case 'p': |
| 12580 | Type = Context.getProcessIDType(); |
| 12581 | break; |
| 12582 | case 'm': |
| 12583 | Type = Context.MFloat8Ty; |
| 12584 | break; |
| 12585 | } |
| 12586 | |
| 12587 | // If there are modifiers and if we're allowed to parse them, go for it. |
| 12588 | Done = !AllowTypeModifiers; |
| 12589 | while (!Done) { |
| 12590 | switch (char c = *Str++) { |
| 12591 | default: Done = true; --Str; break; |
| 12592 | case '*': |
| 12593 | case '&': { |
| 12594 | // Both pointers and references can have their pointee types |
| 12595 | // qualified with an address space. |
| 12596 | char *End; |
| 12597 | unsigned AddrSpace = strtoul(nptr: Str, endptr: &End, base: 10); |
| 12598 | if (End != Str) { |
| 12599 | // Note AddrSpace == 0 is not the same as an unspecified address space. |
| 12600 | Type = Context.getAddrSpaceQualType( |
| 12601 | T: Type, |
| 12602 | AddressSpace: Context.getLangASForBuiltinAddressSpace(AS: AddrSpace)); |
| 12603 | Str = End; |
| 12604 | } |
| 12605 | if (c == '*') |
| 12606 | Type = Context.getPointerType(T: Type); |
| 12607 | else |
| 12608 | Type = Context.getLValueReferenceType(T: Type); |
| 12609 | break; |
| 12610 | } |
| 12611 | // FIXME: There's no way to have a built-in with an rvalue ref arg. |
| 12612 | case 'C': |
| 12613 | Type = Type.withConst(); |
| 12614 | break; |
| 12615 | case 'D': |
| 12616 | Type = Context.getVolatileType(T: Type); |
| 12617 | break; |
| 12618 | case 'R': |
| 12619 | Type = Type.withRestrict(); |
| 12620 | break; |
| 12621 | } |
| 12622 | } |
| 12623 | |
| 12624 | assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && |
| 12625 | "Integer constant 'I' type must be an integer" ); |
| 12626 | |
| 12627 | return Type; |
| 12628 | } |
| 12629 | |
| 12630 | // On some targets such as PowerPC, some of the builtins are defined with custom |
| 12631 | // type descriptors for target-dependent types. These descriptors are decoded in |
| 12632 | // other functions, but it may be useful to be able to fall back to default |
| 12633 | // descriptor decoding to define builtins mixing target-dependent and target- |
| 12634 | // independent types. This function allows decoding one type descriptor with |
| 12635 | // default decoding. |
| 12636 | QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context, |
| 12637 | GetBuiltinTypeError &Error, bool &RequireICE, |
| 12638 | bool AllowTypeModifiers) const { |
| 12639 | return DecodeTypeFromStr(Str, Context, Error, RequiresICE&: RequireICE, AllowTypeModifiers); |
| 12640 | } |
| 12641 | |
| 12642 | /// GetBuiltinType - Return the type for the specified builtin. |
| 12643 | QualType ASTContext::GetBuiltinType(unsigned Id, |
| 12644 | GetBuiltinTypeError &Error, |
| 12645 | unsigned *IntegerConstantArgs) const { |
| 12646 | const char *TypeStr = BuiltinInfo.getTypeString(ID: Id); |
| 12647 | if (TypeStr[0] == '\0') { |
| 12648 | Error = GE_Missing_type; |
| 12649 | return {}; |
| 12650 | } |
| 12651 | |
| 12652 | SmallVector<QualType, 8> ArgTypes; |
| 12653 | |
| 12654 | bool RequiresICE = false; |
| 12655 | Error = GE_None; |
| 12656 | QualType ResType = DecodeTypeFromStr(Str&: TypeStr, Context: *this, Error, |
| 12657 | RequiresICE, AllowTypeModifiers: true); |
| 12658 | if (Error != GE_None) |
| 12659 | return {}; |
| 12660 | |
| 12661 | assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE" ); |
| 12662 | |
| 12663 | while (TypeStr[0] && TypeStr[0] != '.') { |
| 12664 | QualType Ty = DecodeTypeFromStr(Str&: TypeStr, Context: *this, Error, RequiresICE, AllowTypeModifiers: true); |
| 12665 | if (Error != GE_None) |
| 12666 | return {}; |
| 12667 | |
| 12668 | // If this argument is required to be an IntegerConstantExpression and the |
| 12669 | // caller cares, fill in the bitmask we return. |
| 12670 | if (RequiresICE && IntegerConstantArgs) |
| 12671 | *IntegerConstantArgs |= 1 << ArgTypes.size(); |
| 12672 | |
| 12673 | // Do array -> pointer decay. The builtin should use the decayed type. |
| 12674 | if (Ty->isArrayType()) |
| 12675 | Ty = getArrayDecayedType(Ty); |
| 12676 | |
| 12677 | ArgTypes.push_back(Elt: Ty); |
| 12678 | } |
| 12679 | |
| 12680 | if (Id == Builtin::BI__GetExceptionInfo) |
| 12681 | return {}; |
| 12682 | |
| 12683 | assert((TypeStr[0] != '.' || TypeStr[1] == 0) && |
| 12684 | "'.' should only occur at end of builtin type list!" ); |
| 12685 | |
| 12686 | bool Variadic = (TypeStr[0] == '.'); |
| 12687 | |
| 12688 | FunctionType::ExtInfo EI(getDefaultCallingConvention( |
| 12689 | IsVariadic: Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); |
| 12690 | if (BuiltinInfo.isNoReturn(ID: Id)) EI = EI.withNoReturn(noReturn: true); |
| 12691 | |
| 12692 | |
| 12693 | // We really shouldn't be making a no-proto type here. |
| 12694 | if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes()) |
| 12695 | return getFunctionNoProtoType(ResultTy: ResType, Info: EI); |
| 12696 | |
| 12697 | FunctionProtoType::ExtProtoInfo EPI; |
| 12698 | EPI.ExtInfo = EI; |
| 12699 | EPI.Variadic = Variadic; |
| 12700 | if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(ID: Id)) |
| 12701 | EPI.ExceptionSpec.Type = |
| 12702 | getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; |
| 12703 | |
| 12704 | return getFunctionType(ResultTy: ResType, Args: ArgTypes, EPI); |
| 12705 | } |
| 12706 | |
| 12707 | static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, |
| 12708 | const FunctionDecl *FD) { |
| 12709 | if (!FD->isExternallyVisible()) |
| 12710 | return GVA_Internal; |
| 12711 | |
| 12712 | // Non-user-provided functions get emitted as weak definitions with every |
| 12713 | // use, no matter whether they've been explicitly instantiated etc. |
| 12714 | if (!FD->isUserProvided()) |
| 12715 | return GVA_DiscardableODR; |
| 12716 | |
| 12717 | GVALinkage External; |
| 12718 | switch (FD->getTemplateSpecializationKind()) { |
| 12719 | case TSK_Undeclared: |
| 12720 | case TSK_ExplicitSpecialization: |
| 12721 | External = GVA_StrongExternal; |
| 12722 | break; |
| 12723 | |
| 12724 | case TSK_ExplicitInstantiationDefinition: |
| 12725 | return GVA_StrongODR; |
| 12726 | |
| 12727 | // C++11 [temp.explicit]p10: |
| 12728 | // [ Note: The intent is that an inline function that is the subject of |
| 12729 | // an explicit instantiation declaration will still be implicitly |
| 12730 | // instantiated when used so that the body can be considered for |
| 12731 | // inlining, but that no out-of-line copy of the inline function would be |
| 12732 | // generated in the translation unit. -- end note ] |
| 12733 | case TSK_ExplicitInstantiationDeclaration: |
| 12734 | return GVA_AvailableExternally; |
| 12735 | |
| 12736 | case TSK_ImplicitInstantiation: |
| 12737 | External = GVA_DiscardableODR; |
| 12738 | break; |
| 12739 | } |
| 12740 | |
| 12741 | if (!FD->isInlined()) |
| 12742 | return External; |
| 12743 | |
| 12744 | if ((!Context.getLangOpts().CPlusPlus && |
| 12745 | !Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| 12746 | !FD->hasAttr<DLLExportAttr>()) || |
| 12747 | FD->hasAttr<GNUInlineAttr>()) { |
| 12748 | // FIXME: This doesn't match gcc's behavior for dllexport inline functions. |
| 12749 | |
| 12750 | // GNU or C99 inline semantics. Determine whether this symbol should be |
| 12751 | // externally visible. |
| 12752 | if (FD->isInlineDefinitionExternallyVisible()) |
| 12753 | return External; |
| 12754 | |
| 12755 | // C99 inline semantics, where the symbol is not externally visible. |
| 12756 | return GVA_AvailableExternally; |
| 12757 | } |
| 12758 | |
| 12759 | // Functions specified with extern and inline in -fms-compatibility mode |
| 12760 | // forcibly get emitted. While the body of the function cannot be later |
| 12761 | // replaced, the function definition cannot be discarded. |
| 12762 | if (FD->isMSExternInline()) |
| 12763 | return GVA_StrongODR; |
| 12764 | |
| 12765 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| 12766 | isa<CXXConstructorDecl>(Val: FD) && |
| 12767 | cast<CXXConstructorDecl>(Val: FD)->isInheritingConstructor()) |
| 12768 | // Our approach to inheriting constructors is fundamentally different from |
| 12769 | // that used by the MS ABI, so keep our inheriting constructor thunks |
| 12770 | // internal rather than trying to pick an unambiguous mangling for them. |
| 12771 | return GVA_Internal; |
| 12772 | |
| 12773 | return GVA_DiscardableODR; |
| 12774 | } |
| 12775 | |
| 12776 | static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context, |
| 12777 | const Decl *D, GVALinkage L) { |
| 12778 | // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx |
| 12779 | // dllexport/dllimport on inline functions. |
| 12780 | if (D->hasAttr<DLLImportAttr>()) { |
| 12781 | if (L == GVA_DiscardableODR || L == GVA_StrongODR) |
| 12782 | return GVA_AvailableExternally; |
| 12783 | } else if (D->hasAttr<DLLExportAttr>()) { |
| 12784 | if (L == GVA_DiscardableODR) |
| 12785 | return GVA_StrongODR; |
| 12786 | } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) { |
| 12787 | // Device-side functions with __global__ attribute must always be |
| 12788 | // visible externally so they can be launched from host. |
| 12789 | if (D->hasAttr<CUDAGlobalAttr>() && |
| 12790 | (L == GVA_DiscardableODR || L == GVA_Internal)) |
| 12791 | return GVA_StrongODR; |
| 12792 | // Single source offloading languages like CUDA/HIP need to be able to |
| 12793 | // access static device variables from host code of the same compilation |
| 12794 | // unit. This is done by externalizing the static variable with a shared |
| 12795 | // name between the host and device compilation which is the same for the |
| 12796 | // same compilation unit whereas different among different compilation |
| 12797 | // units. |
| 12798 | if (Context.shouldExternalize(D)) |
| 12799 | return GVA_StrongExternal; |
| 12800 | } |
| 12801 | return L; |
| 12802 | } |
| 12803 | |
| 12804 | /// Adjust the GVALinkage for a declaration based on what an external AST source |
| 12805 | /// knows about whether there can be other definitions of this declaration. |
| 12806 | static GVALinkage |
| 12807 | adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D, |
| 12808 | GVALinkage L) { |
| 12809 | ExternalASTSource *Source = Ctx.getExternalSource(); |
| 12810 | if (!Source) |
| 12811 | return L; |
| 12812 | |
| 12813 | switch (Source->hasExternalDefinitions(D)) { |
| 12814 | case ExternalASTSource::EK_Never: |
| 12815 | // Other translation units rely on us to provide the definition. |
| 12816 | if (L == GVA_DiscardableODR) |
| 12817 | return GVA_StrongODR; |
| 12818 | break; |
| 12819 | |
| 12820 | case ExternalASTSource::EK_Always: |
| 12821 | return GVA_AvailableExternally; |
| 12822 | |
| 12823 | case ExternalASTSource::EK_ReplyHazy: |
| 12824 | break; |
| 12825 | } |
| 12826 | return L; |
| 12827 | } |
| 12828 | |
| 12829 | GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { |
| 12830 | return adjustGVALinkageForExternalDefinitionKind(*this, FD, |
| 12831 | adjustGVALinkageForAttributes(*this, FD, |
| 12832 | basicGVALinkageForFunction(Context: *this, FD))); |
| 12833 | } |
| 12834 | |
| 12835 | static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, |
| 12836 | const VarDecl *VD) { |
| 12837 | // As an extension for interactive REPLs, make sure constant variables are |
| 12838 | // only emitted once instead of LinkageComputer::getLVForNamespaceScopeDecl |
| 12839 | // marking them as internal. |
| 12840 | if (Context.getLangOpts().CPlusPlus && |
| 12841 | Context.getLangOpts().IncrementalExtensions && |
| 12842 | VD->getType().isConstQualified() && |
| 12843 | !VD->getType().isVolatileQualified() && !VD->isInline() && |
| 12844 | !isa<VarTemplateSpecializationDecl>(Val: VD) && !VD->getDescribedVarTemplate()) |
| 12845 | return GVA_DiscardableODR; |
| 12846 | |
| 12847 | if (!VD->isExternallyVisible()) |
| 12848 | return GVA_Internal; |
| 12849 | |
| 12850 | if (VD->isStaticLocal()) { |
| 12851 | const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); |
| 12852 | while (LexicalContext && !isa<FunctionDecl>(Val: LexicalContext)) |
| 12853 | LexicalContext = LexicalContext->getLexicalParent(); |
| 12854 | |
| 12855 | // ObjC Blocks can create local variables that don't have a FunctionDecl |
| 12856 | // LexicalContext. |
| 12857 | if (!LexicalContext) |
| 12858 | return GVA_DiscardableODR; |
| 12859 | |
| 12860 | // Otherwise, let the static local variable inherit its linkage from the |
| 12861 | // nearest enclosing function. |
| 12862 | auto StaticLocalLinkage = |
| 12863 | Context.GetGVALinkageForFunction(FD: cast<FunctionDecl>(Val: LexicalContext)); |
| 12864 | |
| 12865 | // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must |
| 12866 | // be emitted in any object with references to the symbol for the object it |
| 12867 | // contains, whether inline or out-of-line." |
| 12868 | // Similar behavior is observed with MSVC. An alternative ABI could use |
| 12869 | // StrongODR/AvailableExternally to match the function, but none are |
| 12870 | // known/supported currently. |
| 12871 | if (StaticLocalLinkage == GVA_StrongODR || |
| 12872 | StaticLocalLinkage == GVA_AvailableExternally) |
| 12873 | return GVA_DiscardableODR; |
| 12874 | return StaticLocalLinkage; |
| 12875 | } |
| 12876 | |
| 12877 | // MSVC treats in-class initialized static data members as definitions. |
| 12878 | // By giving them non-strong linkage, out-of-line definitions won't |
| 12879 | // cause link errors. |
| 12880 | if (Context.isMSStaticDataMemberInlineDefinition(VD)) |
| 12881 | return GVA_DiscardableODR; |
| 12882 | |
| 12883 | // Most non-template variables have strong linkage; inline variables are |
| 12884 | // linkonce_odr or (occasionally, for compatibility) weak_odr. |
| 12885 | GVALinkage StrongLinkage; |
| 12886 | switch (Context.getInlineVariableDefinitionKind(VD)) { |
| 12887 | case ASTContext::InlineVariableDefinitionKind::None: |
| 12888 | StrongLinkage = GVA_StrongExternal; |
| 12889 | break; |
| 12890 | case ASTContext::InlineVariableDefinitionKind::Weak: |
| 12891 | case ASTContext::InlineVariableDefinitionKind::WeakUnknown: |
| 12892 | StrongLinkage = GVA_DiscardableODR; |
| 12893 | break; |
| 12894 | case ASTContext::InlineVariableDefinitionKind::Strong: |
| 12895 | StrongLinkage = GVA_StrongODR; |
| 12896 | break; |
| 12897 | } |
| 12898 | |
| 12899 | switch (VD->getTemplateSpecializationKind()) { |
| 12900 | case TSK_Undeclared: |
| 12901 | return StrongLinkage; |
| 12902 | |
| 12903 | case TSK_ExplicitSpecialization: |
| 12904 | return Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| 12905 | VD->isStaticDataMember() |
| 12906 | ? GVA_StrongODR |
| 12907 | : StrongLinkage; |
| 12908 | |
| 12909 | case TSK_ExplicitInstantiationDefinition: |
| 12910 | return GVA_StrongODR; |
| 12911 | |
| 12912 | case TSK_ExplicitInstantiationDeclaration: |
| 12913 | return GVA_AvailableExternally; |
| 12914 | |
| 12915 | case TSK_ImplicitInstantiation: |
| 12916 | return GVA_DiscardableODR; |
| 12917 | } |
| 12918 | |
| 12919 | llvm_unreachable("Invalid Linkage!" ); |
| 12920 | } |
| 12921 | |
| 12922 | GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) const { |
| 12923 | return adjustGVALinkageForExternalDefinitionKind(*this, VD, |
| 12924 | adjustGVALinkageForAttributes(*this, VD, |
| 12925 | basicGVALinkageForVariable(Context: *this, VD))); |
| 12926 | } |
| 12927 | |
| 12928 | bool ASTContext::DeclMustBeEmitted(const Decl *D) { |
| 12929 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
| 12930 | if (!VD->isFileVarDecl()) |
| 12931 | return false; |
| 12932 | // Global named register variables (GNU extension) are never emitted. |
| 12933 | if (VD->getStorageClass() == SC_Register) |
| 12934 | return false; |
| 12935 | if (VD->getDescribedVarTemplate() || |
| 12936 | isa<VarTemplatePartialSpecializationDecl>(Val: VD)) |
| 12937 | return false; |
| 12938 | } else if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 12939 | // We never need to emit an uninstantiated function template. |
| 12940 | if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
| 12941 | return false; |
| 12942 | } else if (isa<PragmaCommentDecl>(Val: D)) |
| 12943 | return true; |
| 12944 | else if (isa<PragmaDetectMismatchDecl>(Val: D)) |
| 12945 | return true; |
| 12946 | else if (isa<OMPRequiresDecl>(Val: D)) |
| 12947 | return true; |
| 12948 | else if (isa<OMPThreadPrivateDecl>(Val: D)) |
| 12949 | return !D->getDeclContext()->isDependentContext(); |
| 12950 | else if (isa<OMPAllocateDecl>(Val: D)) |
| 12951 | return !D->getDeclContext()->isDependentContext(); |
| 12952 | else if (isa<OMPDeclareReductionDecl>(Val: D) || isa<OMPDeclareMapperDecl>(Val: D)) |
| 12953 | return !D->getDeclContext()->isDependentContext(); |
| 12954 | else if (isa<ImportDecl>(Val: D)) |
| 12955 | return true; |
| 12956 | else |
| 12957 | return false; |
| 12958 | |
| 12959 | // If this is a member of a class template, we do not need to emit it. |
| 12960 | if (D->getDeclContext()->isDependentContext()) |
| 12961 | return false; |
| 12962 | |
| 12963 | // Weak references don't produce any output by themselves. |
| 12964 | if (D->hasAttr<WeakRefAttr>()) |
| 12965 | return false; |
| 12966 | |
| 12967 | // Aliases and used decls are required. |
| 12968 | if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) |
| 12969 | return true; |
| 12970 | |
| 12971 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 12972 | // Forward declarations aren't required. |
| 12973 | if (!FD->doesThisDeclarationHaveABody()) |
| 12974 | return FD->doesDeclarationForceExternallyVisibleDefinition(); |
| 12975 | |
| 12976 | // Function definitions with the sycl_kernel_entry_point attribute are |
| 12977 | // required during device compilation so that SYCL kernel caller offload |
| 12978 | // entry points are emitted. |
| 12979 | if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelEntryPointAttr>()) |
| 12980 | return true; |
| 12981 | |
| 12982 | // FIXME: Functions declared with SYCL_EXTERNAL are required during |
| 12983 | // device compilation. |
| 12984 | |
| 12985 | // Constructors and destructors are required. |
| 12986 | if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) |
| 12987 | return true; |
| 12988 | |
| 12989 | // The key function for a class is required. This rule only comes |
| 12990 | // into play when inline functions can be key functions, though. |
| 12991 | if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { |
| 12992 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
| 12993 | const CXXRecordDecl *RD = MD->getParent(); |
| 12994 | if (MD->isOutOfLine() && RD->isDynamicClass()) { |
| 12995 | const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); |
| 12996 | if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) |
| 12997 | return true; |
| 12998 | } |
| 12999 | } |
| 13000 | } |
| 13001 | |
| 13002 | GVALinkage Linkage = GetGVALinkageForFunction(FD); |
| 13003 | |
| 13004 | // static, static inline, always_inline, and extern inline functions can |
| 13005 | // always be deferred. Normal inline functions can be deferred in C99/C++. |
| 13006 | // Implicit template instantiations can also be deferred in C++. |
| 13007 | return !isDiscardableGVALinkage(L: Linkage); |
| 13008 | } |
| 13009 | |
| 13010 | const auto *VD = cast<VarDecl>(Val: D); |
| 13011 | assert(VD->isFileVarDecl() && "Expected file scoped var" ); |
| 13012 | |
| 13013 | // If the decl is marked as `declare target to`, it should be emitted for the |
| 13014 | // host and for the device. |
| 13015 | if (LangOpts.OpenMP && |
| 13016 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
| 13017 | return true; |
| 13018 | |
| 13019 | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && |
| 13020 | !isMSStaticDataMemberInlineDefinition(VD)) |
| 13021 | return false; |
| 13022 | |
| 13023 | if (VD->shouldEmitInExternalSource()) |
| 13024 | return false; |
| 13025 | |
| 13026 | // Variables that can be needed in other TUs are required. |
| 13027 | auto Linkage = GetGVALinkageForVariable(VD); |
| 13028 | if (!isDiscardableGVALinkage(L: Linkage)) |
| 13029 | return true; |
| 13030 | |
| 13031 | // We never need to emit a variable that is available in another TU. |
| 13032 | if (Linkage == GVA_AvailableExternally) |
| 13033 | return false; |
| 13034 | |
| 13035 | // Variables that have destruction with side-effects are required. |
| 13036 | if (VD->needsDestruction(Ctx: *this)) |
| 13037 | return true; |
| 13038 | |
| 13039 | // Variables that have initialization with side-effects are required. |
| 13040 | if (VD->getInit() && VD->getInit()->HasSideEffects(Ctx: *this) && |
| 13041 | // We can get a value-dependent initializer during error recovery. |
| 13042 | (VD->getInit()->isValueDependent() || !VD->evaluateValue())) |
| 13043 | return true; |
| 13044 | |
| 13045 | // Likewise, variables with tuple-like bindings are required if their |
| 13046 | // bindings have side-effects. |
| 13047 | if (const auto *DD = dyn_cast<DecompositionDecl>(Val: VD)) { |
| 13048 | for (const auto *BD : DD->flat_bindings()) |
| 13049 | if (const auto *BindingVD = BD->getHoldingVar()) |
| 13050 | if (DeclMustBeEmitted(BindingVD)) |
| 13051 | return true; |
| 13052 | } |
| 13053 | |
| 13054 | return false; |
| 13055 | } |
| 13056 | |
| 13057 | void ASTContext::forEachMultiversionedFunctionVersion( |
| 13058 | const FunctionDecl *FD, |
| 13059 | llvm::function_ref<void(FunctionDecl *)> Pred) const { |
| 13060 | assert(FD->isMultiVersion() && "Only valid for multiversioned functions" ); |
| 13061 | llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls; |
| 13062 | FD = FD->getMostRecentDecl(); |
| 13063 | // FIXME: The order of traversal here matters and depends on the order of |
| 13064 | // lookup results, which happens to be (mostly) oldest-to-newest, but we |
| 13065 | // shouldn't rely on that. |
| 13066 | for (auto *CurDecl : |
| 13067 | FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) { |
| 13068 | FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl(); |
| 13069 | if (CurFD && hasSameType(CurFD->getType(), FD->getType()) && |
| 13070 | SeenDecls.insert(CurFD).second) { |
| 13071 | Pred(CurFD); |
| 13072 | } |
| 13073 | } |
| 13074 | } |
| 13075 | |
| 13076 | CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, |
| 13077 | bool IsCXXMethod, |
| 13078 | bool IsBuiltin) const { |
| 13079 | // Pass through to the C++ ABI object |
| 13080 | if (IsCXXMethod) |
| 13081 | return ABI->getDefaultMethodCallConv(IsVariadic); |
| 13082 | |
| 13083 | // Builtins ignore user-specified default calling convention and remain the |
| 13084 | // Target's default calling convention. |
| 13085 | if (!IsBuiltin) { |
| 13086 | switch (LangOpts.getDefaultCallingConv()) { |
| 13087 | case LangOptions::DCC_None: |
| 13088 | break; |
| 13089 | case LangOptions::DCC_CDecl: |
| 13090 | return CC_C; |
| 13091 | case LangOptions::DCC_FastCall: |
| 13092 | if (getTargetInfo().hasFeature(Feature: "sse2" ) && !IsVariadic) |
| 13093 | return CC_X86FastCall; |
| 13094 | break; |
| 13095 | case LangOptions::DCC_StdCall: |
| 13096 | if (!IsVariadic) |
| 13097 | return CC_X86StdCall; |
| 13098 | break; |
| 13099 | case LangOptions::DCC_VectorCall: |
| 13100 | // __vectorcall cannot be applied to variadic functions. |
| 13101 | if (!IsVariadic) |
| 13102 | return CC_X86VectorCall; |
| 13103 | break; |
| 13104 | case LangOptions::DCC_RegCall: |
| 13105 | // __regcall cannot be applied to variadic functions. |
| 13106 | if (!IsVariadic) |
| 13107 | return CC_X86RegCall; |
| 13108 | break; |
| 13109 | case LangOptions::DCC_RtdCall: |
| 13110 | if (!IsVariadic) |
| 13111 | return CC_M68kRTD; |
| 13112 | break; |
| 13113 | } |
| 13114 | } |
| 13115 | return Target->getDefaultCallingConv(); |
| 13116 | } |
| 13117 | |
| 13118 | bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { |
| 13119 | // Pass through to the C++ ABI object |
| 13120 | return ABI->isNearlyEmpty(RD); |
| 13121 | } |
| 13122 | |
| 13123 | VTableContextBase *ASTContext::getVTableContext() { |
| 13124 | if (!VTContext) { |
| 13125 | auto ABI = Target->getCXXABI(); |
| 13126 | if (ABI.isMicrosoft()) |
| 13127 | VTContext.reset(new MicrosoftVTableContext(*this)); |
| 13128 | else { |
| 13129 | auto ComponentLayout = getLangOpts().RelativeCXXABIVTables |
| 13130 | ? ItaniumVTableContext::Relative |
| 13131 | : ItaniumVTableContext::Pointer; |
| 13132 | VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout)); |
| 13133 | } |
| 13134 | } |
| 13135 | return VTContext.get(); |
| 13136 | } |
| 13137 | |
| 13138 | MangleContext *ASTContext::createMangleContext(const TargetInfo *T) { |
| 13139 | if (!T) |
| 13140 | T = Target; |
| 13141 | switch (T->getCXXABI().getKind()) { |
| 13142 | case TargetCXXABI::AppleARM64: |
| 13143 | case TargetCXXABI::Fuchsia: |
| 13144 | case TargetCXXABI::GenericAArch64: |
| 13145 | case TargetCXXABI::GenericItanium: |
| 13146 | case TargetCXXABI::GenericARM: |
| 13147 | case TargetCXXABI::GenericMIPS: |
| 13148 | case TargetCXXABI::iOS: |
| 13149 | case TargetCXXABI::WebAssembly: |
| 13150 | case TargetCXXABI::WatchOS: |
| 13151 | case TargetCXXABI::XL: |
| 13152 | return ItaniumMangleContext::create(Context&: *this, Diags&: getDiagnostics()); |
| 13153 | case TargetCXXABI::Microsoft: |
| 13154 | return MicrosoftMangleContext::create(Context&: *this, Diags&: getDiagnostics()); |
| 13155 | } |
| 13156 | llvm_unreachable("Unsupported ABI" ); |
| 13157 | } |
| 13158 | |
| 13159 | MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) { |
| 13160 | assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft && |
| 13161 | "Device mangle context does not support Microsoft mangling." ); |
| 13162 | switch (T.getCXXABI().getKind()) { |
| 13163 | case TargetCXXABI::AppleARM64: |
| 13164 | case TargetCXXABI::Fuchsia: |
| 13165 | case TargetCXXABI::GenericAArch64: |
| 13166 | case TargetCXXABI::GenericItanium: |
| 13167 | case TargetCXXABI::GenericARM: |
| 13168 | case TargetCXXABI::GenericMIPS: |
| 13169 | case TargetCXXABI::iOS: |
| 13170 | case TargetCXXABI::WebAssembly: |
| 13171 | case TargetCXXABI::WatchOS: |
| 13172 | case TargetCXXABI::XL: |
| 13173 | return ItaniumMangleContext::create( |
| 13174 | Context&: *this, Diags&: getDiagnostics(), |
| 13175 | Discriminator: [](ASTContext &, const NamedDecl *ND) -> UnsignedOrNone { |
| 13176 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) |
| 13177 | return RD->getDeviceLambdaManglingNumber(); |
| 13178 | return std::nullopt; |
| 13179 | }, |
| 13180 | /*IsAux=*/true); |
| 13181 | case TargetCXXABI::Microsoft: |
| 13182 | return MicrosoftMangleContext::create(Context&: *this, Diags&: getDiagnostics(), |
| 13183 | /*IsAux=*/true); |
| 13184 | } |
| 13185 | llvm_unreachable("Unsupported ABI" ); |
| 13186 | } |
| 13187 | |
| 13188 | CXXABI::~CXXABI() = default; |
| 13189 | |
| 13190 | size_t ASTContext::getSideTableAllocatedMemory() const { |
| 13191 | return ASTRecordLayouts.getMemorySize() + |
| 13192 | llvm::capacity_in_bytes(ObjCLayouts) + |
| 13193 | llvm::capacity_in_bytes(KeyFunctions) + |
| 13194 | llvm::capacity_in_bytes(ObjCImpls) + |
| 13195 | llvm::capacity_in_bytes(BlockVarCopyInits) + |
| 13196 | llvm::capacity_in_bytes(DeclAttrs) + |
| 13197 | llvm::capacity_in_bytes(TemplateOrInstantiation) + |
| 13198 | llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + |
| 13199 | llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + |
| 13200 | llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + |
| 13201 | llvm::capacity_in_bytes(OverriddenMethods) + |
| 13202 | llvm::capacity_in_bytes(Types) + |
| 13203 | llvm::capacity_in_bytes(VariableArrayTypes); |
| 13204 | } |
| 13205 | |
| 13206 | /// getIntTypeForBitwidth - |
| 13207 | /// sets integer QualTy according to specified details: |
| 13208 | /// bitwidth, signed/unsigned. |
| 13209 | /// Returns empty type if there is no appropriate target types. |
| 13210 | QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, |
| 13211 | unsigned Signed) const { |
| 13212 | TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(BitWidth: DestWidth, IsSigned: Signed); |
| 13213 | CanQualType QualTy = getFromTargetType(Type: Ty); |
| 13214 | if (!QualTy && DestWidth == 128) |
| 13215 | return Signed ? Int128Ty : UnsignedInt128Ty; |
| 13216 | return QualTy; |
| 13217 | } |
| 13218 | |
| 13219 | /// getRealTypeForBitwidth - |
| 13220 | /// sets floating point QualTy according to specified bitwidth. |
| 13221 | /// Returns empty type if there is no appropriate target types. |
| 13222 | QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth, |
| 13223 | FloatModeKind ExplicitType) const { |
| 13224 | FloatModeKind Ty = |
| 13225 | getTargetInfo().getRealTypeByWidth(BitWidth: DestWidth, ExplicitType); |
| 13226 | switch (Ty) { |
| 13227 | case FloatModeKind::Half: |
| 13228 | return HalfTy; |
| 13229 | case FloatModeKind::Float: |
| 13230 | return FloatTy; |
| 13231 | case FloatModeKind::Double: |
| 13232 | return DoubleTy; |
| 13233 | case FloatModeKind::LongDouble: |
| 13234 | return LongDoubleTy; |
| 13235 | case FloatModeKind::Float128: |
| 13236 | return Float128Ty; |
| 13237 | case FloatModeKind::Ibm128: |
| 13238 | return Ibm128Ty; |
| 13239 | case FloatModeKind::NoFloat: |
| 13240 | return {}; |
| 13241 | } |
| 13242 | |
| 13243 | llvm_unreachable("Unhandled TargetInfo::RealType value" ); |
| 13244 | } |
| 13245 | |
| 13246 | void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { |
| 13247 | if (Number <= 1) |
| 13248 | return; |
| 13249 | |
| 13250 | MangleNumbers[ND] = Number; |
| 13251 | |
| 13252 | if (Listener) |
| 13253 | Listener->AddedManglingNumber(ND, Number); |
| 13254 | } |
| 13255 | |
| 13256 | unsigned ASTContext::getManglingNumber(const NamedDecl *ND, |
| 13257 | bool ForAuxTarget) const { |
| 13258 | auto I = MangleNumbers.find(ND); |
| 13259 | unsigned Res = I != MangleNumbers.end() ? I->second : 1; |
| 13260 | // CUDA/HIP host compilation encodes host and device mangling numbers |
| 13261 | // as lower and upper half of 32 bit integer. |
| 13262 | if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) { |
| 13263 | Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF; |
| 13264 | } else { |
| 13265 | assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling " |
| 13266 | "number for aux target" ); |
| 13267 | } |
| 13268 | return Res > 1 ? Res : 1; |
| 13269 | } |
| 13270 | |
| 13271 | void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { |
| 13272 | if (Number <= 1) |
| 13273 | return; |
| 13274 | |
| 13275 | StaticLocalNumbers[VD] = Number; |
| 13276 | |
| 13277 | if (Listener) |
| 13278 | Listener->AddedStaticLocalNumbers(VD, Number); |
| 13279 | } |
| 13280 | |
| 13281 | unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { |
| 13282 | auto I = StaticLocalNumbers.find(VD); |
| 13283 | return I != StaticLocalNumbers.end() ? I->second : 1; |
| 13284 | } |
| 13285 | |
| 13286 | void ASTContext::setIsDestroyingOperatorDelete(const FunctionDecl *FD, |
| 13287 | bool IsDestroying) { |
| 13288 | if (!IsDestroying) { |
| 13289 | assert(!DestroyingOperatorDeletes.contains(FD->getCanonicalDecl())); |
| 13290 | return; |
| 13291 | } |
| 13292 | DestroyingOperatorDeletes.insert(V: FD->getCanonicalDecl()); |
| 13293 | } |
| 13294 | |
| 13295 | bool ASTContext::isDestroyingOperatorDelete(const FunctionDecl *FD) const { |
| 13296 | return DestroyingOperatorDeletes.contains(V: FD->getCanonicalDecl()); |
| 13297 | } |
| 13298 | |
| 13299 | void ASTContext::setIsTypeAwareOperatorNewOrDelete(const FunctionDecl *FD, |
| 13300 | bool IsTypeAware) { |
| 13301 | if (!IsTypeAware) { |
| 13302 | assert(!TypeAwareOperatorNewAndDeletes.contains(FD->getCanonicalDecl())); |
| 13303 | return; |
| 13304 | } |
| 13305 | TypeAwareOperatorNewAndDeletes.insert(V: FD->getCanonicalDecl()); |
| 13306 | } |
| 13307 | |
| 13308 | bool ASTContext::isTypeAwareOperatorNewOrDelete(const FunctionDecl *FD) const { |
| 13309 | return TypeAwareOperatorNewAndDeletes.contains(V: FD->getCanonicalDecl()); |
| 13310 | } |
| 13311 | |
| 13312 | MangleNumberingContext & |
| 13313 | ASTContext::getManglingNumberContext(const DeclContext *DC) { |
| 13314 | assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. |
| 13315 | std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC]; |
| 13316 | if (!MCtx) |
| 13317 | MCtx = createMangleNumberingContext(); |
| 13318 | return *MCtx; |
| 13319 | } |
| 13320 | |
| 13321 | MangleNumberingContext & |
| 13322 | ASTContext::(NeedExtraManglingDecl_t, const Decl *D) { |
| 13323 | assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. |
| 13324 | std::unique_ptr<MangleNumberingContext> &MCtx = |
| 13325 | ExtraMangleNumberingContexts[D]; |
| 13326 | if (!MCtx) |
| 13327 | MCtx = createMangleNumberingContext(); |
| 13328 | return *MCtx; |
| 13329 | } |
| 13330 | |
| 13331 | std::unique_ptr<MangleNumberingContext> |
| 13332 | ASTContext::createMangleNumberingContext() const { |
| 13333 | return ABI->createMangleNumberingContext(); |
| 13334 | } |
| 13335 | |
| 13336 | const CXXConstructorDecl * |
| 13337 | ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { |
| 13338 | return ABI->getCopyConstructorForExceptionObject( |
| 13339 | cast<CXXRecordDecl>(RD->getFirstDecl())); |
| 13340 | } |
| 13341 | |
| 13342 | void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, |
| 13343 | CXXConstructorDecl *CD) { |
| 13344 | return ABI->addCopyConstructorForExceptionObject( |
| 13345 | cast<CXXRecordDecl>(RD->getFirstDecl()), |
| 13346 | cast<CXXConstructorDecl>(CD->getFirstDecl())); |
| 13347 | } |
| 13348 | |
| 13349 | void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, |
| 13350 | TypedefNameDecl *DD) { |
| 13351 | return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); |
| 13352 | } |
| 13353 | |
| 13354 | TypedefNameDecl * |
| 13355 | ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { |
| 13356 | return ABI->getTypedefNameForUnnamedTagDecl(TD); |
| 13357 | } |
| 13358 | |
| 13359 | void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, |
| 13360 | DeclaratorDecl *DD) { |
| 13361 | return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); |
| 13362 | } |
| 13363 | |
| 13364 | DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { |
| 13365 | return ABI->getDeclaratorForUnnamedTagDecl(TD); |
| 13366 | } |
| 13367 | |
| 13368 | void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { |
| 13369 | ParamIndices[D] = index; |
| 13370 | } |
| 13371 | |
| 13372 | unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { |
| 13373 | ParameterIndexTable::const_iterator I = ParamIndices.find(D); |
| 13374 | assert(I != ParamIndices.end() && |
| 13375 | "ParmIndices lacks entry set by ParmVarDecl" ); |
| 13376 | return I->second; |
| 13377 | } |
| 13378 | |
| 13379 | QualType ASTContext::getStringLiteralArrayType(QualType EltTy, |
| 13380 | unsigned Length) const { |
| 13381 | // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). |
| 13382 | if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) |
| 13383 | EltTy = EltTy.withConst(); |
| 13384 | |
| 13385 | EltTy = adjustStringLiteralBaseType(Ty: EltTy); |
| 13386 | |
| 13387 | // Get an array type for the string, according to C99 6.4.5. This includes |
| 13388 | // the null terminator character. |
| 13389 | return getConstantArrayType(EltTy, ArySizeIn: llvm::APInt(32, Length + 1), SizeExpr: nullptr, |
| 13390 | ASM: ArraySizeModifier::Normal, /*IndexTypeQuals*/ 0); |
| 13391 | } |
| 13392 | |
| 13393 | StringLiteral * |
| 13394 | ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const { |
| 13395 | StringLiteral *&Result = StringLiteralCache[Key]; |
| 13396 | if (!Result) |
| 13397 | Result = StringLiteral::Create( |
| 13398 | *this, Key, StringLiteralKind::Ordinary, |
| 13399 | /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()), |
| 13400 | SourceLocation()); |
| 13401 | return Result; |
| 13402 | } |
| 13403 | |
| 13404 | MSGuidDecl * |
| 13405 | ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const { |
| 13406 | assert(MSGuidTagDecl && "building MS GUID without MS extensions?" ); |
| 13407 | |
| 13408 | llvm::FoldingSetNodeID ID; |
| 13409 | MSGuidDecl::Profile(ID, P: Parts); |
| 13410 | |
| 13411 | void *InsertPos; |
| 13412 | if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos)) |
| 13413 | return Existing; |
| 13414 | |
| 13415 | QualType GUIDType = getMSGuidType().withConst(); |
| 13416 | MSGuidDecl *New = MSGuidDecl::Create(C: *this, T: GUIDType, P: Parts); |
| 13417 | MSGuidDecls.InsertNode(New, InsertPos); |
| 13418 | return New; |
| 13419 | } |
| 13420 | |
| 13421 | UnnamedGlobalConstantDecl * |
| 13422 | ASTContext::getUnnamedGlobalConstantDecl(QualType Ty, |
| 13423 | const APValue &APVal) const { |
| 13424 | llvm::FoldingSetNodeID ID; |
| 13425 | UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal); |
| 13426 | |
| 13427 | void *InsertPos; |
| 13428 | if (UnnamedGlobalConstantDecl *Existing = |
| 13429 | UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos)) |
| 13430 | return Existing; |
| 13431 | |
| 13432 | UnnamedGlobalConstantDecl *New = |
| 13433 | UnnamedGlobalConstantDecl::Create(C: *this, T: Ty, APVal); |
| 13434 | UnnamedGlobalConstantDecls.InsertNode(New, InsertPos); |
| 13435 | return New; |
| 13436 | } |
| 13437 | |
| 13438 | TemplateParamObjectDecl * |
| 13439 | ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const { |
| 13440 | assert(T->isRecordType() && "template param object of unexpected type" ); |
| 13441 | |
| 13442 | // C++ [temp.param]p8: |
| 13443 | // [...] a static storage duration object of type 'const T' [...] |
| 13444 | T.addConst(); |
| 13445 | |
| 13446 | llvm::FoldingSetNodeID ID; |
| 13447 | TemplateParamObjectDecl::Profile(ID, T, V); |
| 13448 | |
| 13449 | void *InsertPos; |
| 13450 | if (TemplateParamObjectDecl *Existing = |
| 13451 | TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos)) |
| 13452 | return Existing; |
| 13453 | |
| 13454 | TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(C: *this, T, V); |
| 13455 | TemplateParamObjectDecls.InsertNode(New, InsertPos); |
| 13456 | return New; |
| 13457 | } |
| 13458 | |
| 13459 | bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { |
| 13460 | const llvm::Triple &T = getTargetInfo().getTriple(); |
| 13461 | if (!T.isOSDarwin()) |
| 13462 | return false; |
| 13463 | |
| 13464 | if (!(T.isiOS() && T.isOSVersionLT(Major: 7)) && |
| 13465 | !(T.isMacOSX() && T.isOSVersionLT(Major: 10, Minor: 9))) |
| 13466 | return false; |
| 13467 | |
| 13468 | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); |
| 13469 | CharUnits sizeChars = getTypeSizeInChars(T: AtomicTy); |
| 13470 | uint64_t Size = sizeChars.getQuantity(); |
| 13471 | CharUnits alignChars = getTypeAlignInChars(T: AtomicTy); |
| 13472 | unsigned Align = alignChars.getQuantity(); |
| 13473 | unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); |
| 13474 | return (Size != Align || toBits(CharSize: sizeChars) > MaxInlineWidthInBits); |
| 13475 | } |
| 13476 | |
| 13477 | bool |
| 13478 | ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, |
| 13479 | const ObjCMethodDecl *MethodImpl) { |
| 13480 | // No point trying to match an unavailable/deprecated mothod. |
| 13481 | if (MethodDecl->hasAttr<UnavailableAttr>() |
| 13482 | || MethodDecl->hasAttr<DeprecatedAttr>()) |
| 13483 | return false; |
| 13484 | if (MethodDecl->getObjCDeclQualifier() != |
| 13485 | MethodImpl->getObjCDeclQualifier()) |
| 13486 | return false; |
| 13487 | if (!hasSameType(T1: MethodDecl->getReturnType(), T2: MethodImpl->getReturnType())) |
| 13488 | return false; |
| 13489 | |
| 13490 | if (MethodDecl->param_size() != MethodImpl->param_size()) |
| 13491 | return false; |
| 13492 | |
| 13493 | for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), |
| 13494 | IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), |
| 13495 | EF = MethodDecl->param_end(); |
| 13496 | IM != EM && IF != EF; ++IM, ++IF) { |
| 13497 | const ParmVarDecl *DeclVar = (*IF); |
| 13498 | const ParmVarDecl *ImplVar = (*IM); |
| 13499 | if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) |
| 13500 | return false; |
| 13501 | if (!hasSameType(DeclVar->getType(), ImplVar->getType())) |
| 13502 | return false; |
| 13503 | } |
| 13504 | |
| 13505 | return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); |
| 13506 | } |
| 13507 | |
| 13508 | uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const { |
| 13509 | LangAS AS; |
| 13510 | if (QT->getUnqualifiedDesugaredType()->isNullPtrType()) |
| 13511 | AS = LangAS::Default; |
| 13512 | else |
| 13513 | AS = QT->getPointeeType().getAddressSpace(); |
| 13514 | |
| 13515 | return getTargetInfo().getNullPointerValue(AddrSpace: AS); |
| 13516 | } |
| 13517 | |
| 13518 | unsigned ASTContext::getTargetAddressSpace(LangAS AS) const { |
| 13519 | return getTargetInfo().getTargetAddressSpace(AS); |
| 13520 | } |
| 13521 | |
| 13522 | bool ASTContext::hasSameExpr(const Expr *X, const Expr *Y) const { |
| 13523 | if (X == Y) |
| 13524 | return true; |
| 13525 | if (!X || !Y) |
| 13526 | return false; |
| 13527 | llvm::FoldingSetNodeID IDX, IDY; |
| 13528 | X->Profile(IDX, *this, /*Canonical=*/true); |
| 13529 | Y->Profile(IDY, *this, /*Canonical=*/true); |
| 13530 | return IDX == IDY; |
| 13531 | } |
| 13532 | |
| 13533 | // The getCommon* helpers return, for given 'same' X and Y entities given as |
| 13534 | // inputs, another entity which is also the 'same' as the inputs, but which |
| 13535 | // is closer to the canonical form of the inputs, each according to a given |
| 13536 | // criteria. |
| 13537 | // The getCommon*Checked variants are 'null inputs not-allowed' equivalents of |
| 13538 | // the regular ones. |
| 13539 | |
| 13540 | static Decl *getCommonDecl(Decl *X, Decl *Y) { |
| 13541 | if (!declaresSameEntity(D1: X, D2: Y)) |
| 13542 | return nullptr; |
| 13543 | for (const Decl *DX : X->redecls()) { |
| 13544 | // If we reach Y before reaching the first decl, that means X is older. |
| 13545 | if (DX == Y) |
| 13546 | return X; |
| 13547 | // If we reach the first decl, then Y is older. |
| 13548 | if (DX->isFirstDecl()) |
| 13549 | return Y; |
| 13550 | } |
| 13551 | llvm_unreachable("Corrupt redecls chain" ); |
| 13552 | } |
| 13553 | |
| 13554 | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> |
| 13555 | static T *getCommonDecl(T *X, T *Y) { |
| 13556 | return cast_or_null<T>( |
| 13557 | getCommonDecl(X: const_cast<Decl *>(cast_or_null<Decl>(X)), |
| 13558 | Y: const_cast<Decl *>(cast_or_null<Decl>(Y)))); |
| 13559 | } |
| 13560 | |
| 13561 | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> |
| 13562 | static T *getCommonDeclChecked(T *X, T *Y) { |
| 13563 | return cast<T>(getCommonDecl(X: const_cast<Decl *>(cast<Decl>(X)), |
| 13564 | Y: const_cast<Decl *>(cast<Decl>(Y)))); |
| 13565 | } |
| 13566 | |
| 13567 | static TemplateName getCommonTemplateName(ASTContext &Ctx, TemplateName X, |
| 13568 | TemplateName Y, |
| 13569 | bool IgnoreDeduced = false) { |
| 13570 | if (X.getAsVoidPointer() == Y.getAsVoidPointer()) |
| 13571 | return X; |
| 13572 | // FIXME: There are cases here where we could find a common template name |
| 13573 | // with more sugar. For example one could be a SubstTemplateTemplate* |
| 13574 | // replacing the other. |
| 13575 | TemplateName CX = Ctx.getCanonicalTemplateName(Name: X, IgnoreDeduced); |
| 13576 | if (CX.getAsVoidPointer() != |
| 13577 | Ctx.getCanonicalTemplateName(Name: Y).getAsVoidPointer()) |
| 13578 | return TemplateName(); |
| 13579 | return CX; |
| 13580 | } |
| 13581 | |
| 13582 | static TemplateName getCommonTemplateNameChecked(ASTContext &Ctx, |
| 13583 | TemplateName X, TemplateName Y, |
| 13584 | bool IgnoreDeduced) { |
| 13585 | TemplateName R = getCommonTemplateName(Ctx, X, Y, IgnoreDeduced); |
| 13586 | assert(R.getAsVoidPointer() != nullptr); |
| 13587 | return R; |
| 13588 | } |
| 13589 | |
| 13590 | static auto getCommonTypes(ASTContext &Ctx, ArrayRef<QualType> Xs, |
| 13591 | ArrayRef<QualType> Ys, bool Unqualified = false) { |
| 13592 | assert(Xs.size() == Ys.size()); |
| 13593 | SmallVector<QualType, 8> Rs(Xs.size()); |
| 13594 | for (size_t I = 0; I < Rs.size(); ++I) |
| 13595 | Rs[I] = Ctx.getCommonSugaredType(X: Xs[I], Y: Ys[I], Unqualified); |
| 13596 | return Rs; |
| 13597 | } |
| 13598 | |
| 13599 | template <class T> |
| 13600 | static SourceLocation getCommonAttrLoc(const T *X, const T *Y) { |
| 13601 | return X->getAttributeLoc() == Y->getAttributeLoc() ? X->getAttributeLoc() |
| 13602 | : SourceLocation(); |
| 13603 | } |
| 13604 | |
| 13605 | static TemplateArgument getCommonTemplateArgument(ASTContext &Ctx, |
| 13606 | const TemplateArgument &X, |
| 13607 | const TemplateArgument &Y) { |
| 13608 | if (X.getKind() != Y.getKind()) |
| 13609 | return TemplateArgument(); |
| 13610 | |
| 13611 | switch (X.getKind()) { |
| 13612 | case TemplateArgument::ArgKind::Type: |
| 13613 | if (!Ctx.hasSameType(T1: X.getAsType(), T2: Y.getAsType())) |
| 13614 | return TemplateArgument(); |
| 13615 | return TemplateArgument( |
| 13616 | Ctx.getCommonSugaredType(X: X.getAsType(), Y: Y.getAsType())); |
| 13617 | case TemplateArgument::ArgKind::NullPtr: |
| 13618 | if (!Ctx.hasSameType(T1: X.getNullPtrType(), T2: Y.getNullPtrType())) |
| 13619 | return TemplateArgument(); |
| 13620 | return TemplateArgument( |
| 13621 | Ctx.getCommonSugaredType(X: X.getNullPtrType(), Y: Y.getNullPtrType()), |
| 13622 | /*Unqualified=*/true); |
| 13623 | case TemplateArgument::ArgKind::Expression: |
| 13624 | if (!Ctx.hasSameType(T1: X.getAsExpr()->getType(), T2: Y.getAsExpr()->getType())) |
| 13625 | return TemplateArgument(); |
| 13626 | // FIXME: Try to keep the common sugar. |
| 13627 | return X; |
| 13628 | case TemplateArgument::ArgKind::Template: { |
| 13629 | TemplateName TX = X.getAsTemplate(), TY = Y.getAsTemplate(); |
| 13630 | TemplateName CTN = ::getCommonTemplateName(Ctx, X: TX, Y: TY); |
| 13631 | if (!CTN.getAsVoidPointer()) |
| 13632 | return TemplateArgument(); |
| 13633 | return TemplateArgument(CTN); |
| 13634 | } |
| 13635 | case TemplateArgument::ArgKind::TemplateExpansion: { |
| 13636 | TemplateName TX = X.getAsTemplateOrTemplatePattern(), |
| 13637 | TY = Y.getAsTemplateOrTemplatePattern(); |
| 13638 | TemplateName CTN = ::getCommonTemplateName(Ctx, X: TX, Y: TY); |
| 13639 | if (!CTN.getAsVoidPointer()) |
| 13640 | return TemplateName(); |
| 13641 | auto NExpX = X.getNumTemplateExpansions(); |
| 13642 | assert(NExpX == Y.getNumTemplateExpansions()); |
| 13643 | return TemplateArgument(CTN, NExpX); |
| 13644 | } |
| 13645 | default: |
| 13646 | // FIXME: Handle the other argument kinds. |
| 13647 | return X; |
| 13648 | } |
| 13649 | } |
| 13650 | |
| 13651 | static bool getCommonTemplateArguments(ASTContext &Ctx, |
| 13652 | SmallVectorImpl<TemplateArgument> &R, |
| 13653 | ArrayRef<TemplateArgument> Xs, |
| 13654 | ArrayRef<TemplateArgument> Ys) { |
| 13655 | if (Xs.size() != Ys.size()) |
| 13656 | return true; |
| 13657 | R.resize(N: Xs.size()); |
| 13658 | for (size_t I = 0; I < R.size(); ++I) { |
| 13659 | R[I] = getCommonTemplateArgument(Ctx, X: Xs[I], Y: Ys[I]); |
| 13660 | if (R[I].isNull()) |
| 13661 | return true; |
| 13662 | } |
| 13663 | return false; |
| 13664 | } |
| 13665 | |
| 13666 | static auto getCommonTemplateArguments(ASTContext &Ctx, |
| 13667 | ArrayRef<TemplateArgument> Xs, |
| 13668 | ArrayRef<TemplateArgument> Ys) { |
| 13669 | SmallVector<TemplateArgument, 8> R; |
| 13670 | bool Different = getCommonTemplateArguments(Ctx, R, Xs, Ys); |
| 13671 | assert(!Different); |
| 13672 | (void)Different; |
| 13673 | return R; |
| 13674 | } |
| 13675 | |
| 13676 | template <class T> |
| 13677 | static ElaboratedTypeKeyword getCommonTypeKeyword(const T *X, const T *Y) { |
| 13678 | return X->getKeyword() == Y->getKeyword() ? X->getKeyword() |
| 13679 | : ElaboratedTypeKeyword::None; |
| 13680 | } |
| 13681 | |
| 13682 | /// Returns a NestedNameSpecifier which has only the common sugar |
| 13683 | /// present in both NNS1 and NNS2. |
| 13684 | static NestedNameSpecifier *getCommonNNS(ASTContext &Ctx, |
| 13685 | NestedNameSpecifier *NNS1, |
| 13686 | NestedNameSpecifier *NNS2, |
| 13687 | bool IsSame) { |
| 13688 | // If they are identical, all sugar is common. |
| 13689 | if (NNS1 == NNS2) |
| 13690 | return NNS1; |
| 13691 | |
| 13692 | // IsSame implies both NNSes are equivalent. |
| 13693 | NestedNameSpecifier *Canon = Ctx.getCanonicalNestedNameSpecifier(NNS: NNS1); |
| 13694 | if (Canon != Ctx.getCanonicalNestedNameSpecifier(NNS: NNS2)) { |
| 13695 | assert(!IsSame && "Should be the same NestedNameSpecifier" ); |
| 13696 | // If they are not the same, there is nothing to unify. |
| 13697 | // FIXME: It would be useful here if we could represent a canonically |
| 13698 | // empty NNS, which is not identical to an empty-as-written NNS. |
| 13699 | return nullptr; |
| 13700 | } |
| 13701 | |
| 13702 | NestedNameSpecifier *R = nullptr; |
| 13703 | NestedNameSpecifier::SpecifierKind K1 = NNS1->getKind(), K2 = NNS2->getKind(); |
| 13704 | switch (K1) { |
| 13705 | case NestedNameSpecifier::SpecifierKind::Identifier: { |
| 13706 | assert(K2 == NestedNameSpecifier::SpecifierKind::Identifier); |
| 13707 | IdentifierInfo *II = NNS1->getAsIdentifier(); |
| 13708 | assert(II == NNS2->getAsIdentifier()); |
| 13709 | // For an identifier, the prefixes are significant, so they must be the |
| 13710 | // same. |
| 13711 | NestedNameSpecifier *P = ::getCommonNNS(Ctx, NNS1: NNS1->getPrefix(), |
| 13712 | NNS2: NNS2->getPrefix(), /*IsSame=*/true); |
| 13713 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: P, II); |
| 13714 | break; |
| 13715 | } |
| 13716 | case NestedNameSpecifier::SpecifierKind::Namespace: |
| 13717 | case NestedNameSpecifier::SpecifierKind::NamespaceAlias: { |
| 13718 | assert(K2 == NestedNameSpecifier::SpecifierKind::Namespace || |
| 13719 | K2 == NestedNameSpecifier::SpecifierKind::NamespaceAlias); |
| 13720 | // The prefixes for namespaces are not significant, its declaration |
| 13721 | // identifies it uniquely. |
| 13722 | NestedNameSpecifier *P = |
| 13723 | ::getCommonNNS(Ctx, NNS1: NNS1->getPrefix(), NNS2: NNS2->getPrefix(), |
| 13724 | /*IsSame=*/false); |
| 13725 | NamespaceAliasDecl *A1 = NNS1->getAsNamespaceAlias(), |
| 13726 | *A2 = NNS2->getAsNamespaceAlias(); |
| 13727 | // Are they the same namespace alias? |
| 13728 | if (declaresSameEntity(A1, A2)) { |
| 13729 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: P, Alias: ::getCommonDeclChecked(X: A1, Y: A2)); |
| 13730 | break; |
| 13731 | } |
| 13732 | // Otherwise, look at the namespaces only. |
| 13733 | NamespaceDecl *N1 = A1 ? A1->getNamespace() : NNS1->getAsNamespace(), |
| 13734 | *N2 = A2 ? A2->getNamespace() : NNS2->getAsNamespace(); |
| 13735 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: P, NS: ::getCommonDeclChecked(X: N1, Y: N2)); |
| 13736 | break; |
| 13737 | } |
| 13738 | case NestedNameSpecifier::SpecifierKind::TypeSpec: { |
| 13739 | // FIXME: See comment below, on Super case. |
| 13740 | if (K2 == NestedNameSpecifier::SpecifierKind::Super) |
| 13741 | return Ctx.getCanonicalNestedNameSpecifier(NNS: NNS1); |
| 13742 | |
| 13743 | assert(K2 == NestedNameSpecifier::SpecifierKind::TypeSpec); |
| 13744 | |
| 13745 | const Type *T1 = NNS1->getAsType(), *T2 = NNS2->getAsType(); |
| 13746 | if (T1 == T2) { |
| 13747 | // If the types are indentical, then only the prefixes differ. |
| 13748 | // A well-formed NNS never has these types, as they have |
| 13749 | // special normalized forms. |
| 13750 | assert((!isa<DependentNameType, ElaboratedType>(T1))); |
| 13751 | // Only for a DependentTemplateSpecializationType the prefix |
| 13752 | // is actually significant. A DependentName, which would be another |
| 13753 | // plausible case, cannot occur here, as explained above. |
| 13754 | bool IsSame = isa<DependentTemplateSpecializationType>(Val: T1); |
| 13755 | NestedNameSpecifier *P = |
| 13756 | ::getCommonNNS(Ctx, NNS1: NNS1->getPrefix(), NNS2: NNS2->getPrefix(), IsSame); |
| 13757 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: P, T: T1); |
| 13758 | break; |
| 13759 | } |
| 13760 | // TODO: Try to salvage the original prefix. |
| 13761 | // If getCommonSugaredType removed any top level sugar, the original prefix |
| 13762 | // is not applicable anymore. |
| 13763 | const Type *T = Ctx.getCommonSugaredType(X: QualType(T1, 0), Y: QualType(T2, 0), |
| 13764 | /*Unqualified=*/true) |
| 13765 | .getTypePtr(); |
| 13766 | |
| 13767 | // A NestedNameSpecifier has special normalization rules for certain types. |
| 13768 | switch (T->getTypeClass()) { |
| 13769 | case Type::Elaborated: { |
| 13770 | // An ElaboratedType is stripped off, it's Qualifier becomes the prefix. |
| 13771 | auto *ET = cast<ElaboratedType>(Val: T); |
| 13772 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: ET->getQualifier(), |
| 13773 | T: ET->getNamedType().getTypePtr()); |
| 13774 | break; |
| 13775 | } |
| 13776 | case Type::DependentName: { |
| 13777 | // A DependentName is turned into an Identifier NNS. |
| 13778 | auto *DN = cast<DependentNameType>(Val: T); |
| 13779 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: DN->getQualifier(), |
| 13780 | II: DN->getIdentifier()); |
| 13781 | break; |
| 13782 | } |
| 13783 | case Type::DependentTemplateSpecialization: { |
| 13784 | // A DependentTemplateSpecializationType loses it's Qualifier, which |
| 13785 | // is turned into the prefix. |
| 13786 | auto *DTST = cast<DependentTemplateSpecializationType>(Val: T); |
| 13787 | const DependentTemplateStorage &DTN = DTST->getDependentTemplateName(); |
| 13788 | DependentTemplateStorage NewDTN(/*Qualifier=*/nullptr, DTN.getName(), |
| 13789 | DTN.hasTemplateKeyword()); |
| 13790 | T = Ctx.getDependentTemplateSpecializationType(DTST->getKeyword(), NewDTN, |
| 13791 | DTST->template_arguments()) |
| 13792 | .getTypePtr(); |
| 13793 | R = NestedNameSpecifier::Create(Context: Ctx, Prefix: DTN.getQualifier(), T); |
| 13794 | break; |
| 13795 | } |
| 13796 | default: |
| 13797 | R = NestedNameSpecifier::Create(Context: Ctx, /*Prefix=*/nullptr, T); |
| 13798 | break; |
| 13799 | } |
| 13800 | break; |
| 13801 | } |
| 13802 | case NestedNameSpecifier::SpecifierKind::Super: |
| 13803 | // FIXME: Can __super even be used with data members? |
| 13804 | // If it's only usable in functions, we will never see it here, |
| 13805 | // unless we save the qualifiers used in function types. |
| 13806 | // In that case, it might be possible NNS2 is a type, |
| 13807 | // in which case we should degrade the result to |
| 13808 | // a CXXRecordType. |
| 13809 | return Ctx.getCanonicalNestedNameSpecifier(NNS: NNS1); |
| 13810 | case NestedNameSpecifier::SpecifierKind::Global: |
| 13811 | // The global NNS is a singleton. |
| 13812 | assert(K2 == NestedNameSpecifier::SpecifierKind::Global && |
| 13813 | "Global NNS cannot be equivalent to any other kind" ); |
| 13814 | llvm_unreachable("Global NestedNameSpecifiers did not compare equal" ); |
| 13815 | } |
| 13816 | assert(Ctx.getCanonicalNestedNameSpecifier(R) == Canon); |
| 13817 | return R; |
| 13818 | } |
| 13819 | |
| 13820 | template <class T> |
| 13821 | static NestedNameSpecifier *getCommonQualifier(ASTContext &Ctx, const T *X, |
| 13822 | const T *Y, bool IsSame) { |
| 13823 | return ::getCommonNNS(Ctx, NNS1: X->getQualifier(), NNS2: Y->getQualifier(), IsSame); |
| 13824 | } |
| 13825 | |
| 13826 | template <class T> |
| 13827 | static QualType getCommonElementType(ASTContext &Ctx, const T *X, const T *Y) { |
| 13828 | return Ctx.getCommonSugaredType(X: X->getElementType(), Y: Y->getElementType()); |
| 13829 | } |
| 13830 | |
| 13831 | template <class T> |
| 13832 | static QualType getCommonArrayElementType(ASTContext &Ctx, const T *X, |
| 13833 | Qualifiers &QX, const T *Y, |
| 13834 | Qualifiers &QY) { |
| 13835 | QualType EX = X->getElementType(), EY = Y->getElementType(); |
| 13836 | QualType R = Ctx.getCommonSugaredType(X: EX, Y: EY, |
| 13837 | /*Unqualified=*/true); |
| 13838 | // Qualifiers common to both element types. |
| 13839 | Qualifiers RQ = R.getQualifiers(); |
| 13840 | // For each side, move to the top level any qualifiers which are not common to |
| 13841 | // both element types. The caller must assume top level qualifiers might |
| 13842 | // be different, even if they are the same type, and can be treated as sugar. |
| 13843 | QX += EX.getQualifiers() - RQ; |
| 13844 | QY += EY.getQualifiers() - RQ; |
| 13845 | return R; |
| 13846 | } |
| 13847 | |
| 13848 | template <class T> |
| 13849 | static QualType getCommonPointeeType(ASTContext &Ctx, const T *X, const T *Y) { |
| 13850 | return Ctx.getCommonSugaredType(X: X->getPointeeType(), Y: Y->getPointeeType()); |
| 13851 | } |
| 13852 | |
| 13853 | template <class T> static auto *getCommonSizeExpr(ASTContext &Ctx, T *X, T *Y) { |
| 13854 | assert(Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr())); |
| 13855 | return X->getSizeExpr(); |
| 13856 | } |
| 13857 | |
| 13858 | static auto getCommonSizeModifier(const ArrayType *X, const ArrayType *Y) { |
| 13859 | assert(X->getSizeModifier() == Y->getSizeModifier()); |
| 13860 | return X->getSizeModifier(); |
| 13861 | } |
| 13862 | |
| 13863 | static auto getCommonIndexTypeCVRQualifiers(const ArrayType *X, |
| 13864 | const ArrayType *Y) { |
| 13865 | assert(X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers()); |
| 13866 | return X->getIndexTypeCVRQualifiers(); |
| 13867 | } |
| 13868 | |
| 13869 | // Merges two type lists such that the resulting vector will contain |
| 13870 | // each type (in a canonical sense) only once, in the order they appear |
| 13871 | // from X to Y. If they occur in both X and Y, the result will contain |
| 13872 | // the common sugared type between them. |
| 13873 | static void mergeTypeLists(ASTContext &Ctx, SmallVectorImpl<QualType> &Out, |
| 13874 | ArrayRef<QualType> X, ArrayRef<QualType> Y) { |
| 13875 | llvm::DenseMap<QualType, unsigned> Found; |
| 13876 | for (auto Ts : {X, Y}) { |
| 13877 | for (QualType T : Ts) { |
| 13878 | auto Res = Found.try_emplace(Ctx.getCanonicalType(T), Out.size()); |
| 13879 | if (!Res.second) { |
| 13880 | QualType &U = Out[Res.first->second]; |
| 13881 | U = Ctx.getCommonSugaredType(X: U, Y: T); |
| 13882 | } else { |
| 13883 | Out.emplace_back(Args&: T); |
| 13884 | } |
| 13885 | } |
| 13886 | } |
| 13887 | } |
| 13888 | |
| 13889 | FunctionProtoType::ExceptionSpecInfo |
| 13890 | ASTContext::mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1, |
| 13891 | FunctionProtoType::ExceptionSpecInfo ESI2, |
| 13892 | SmallVectorImpl<QualType> &ExceptionTypeStorage, |
| 13893 | bool AcceptDependent) { |
| 13894 | ExceptionSpecificationType EST1 = ESI1.Type, EST2 = ESI2.Type; |
| 13895 | |
| 13896 | // If either of them can throw anything, that is the result. |
| 13897 | for (auto I : {EST_None, EST_MSAny, EST_NoexceptFalse}) { |
| 13898 | if (EST1 == I) |
| 13899 | return ESI1; |
| 13900 | if (EST2 == I) |
| 13901 | return ESI2; |
| 13902 | } |
| 13903 | |
| 13904 | // If either of them is non-throwing, the result is the other. |
| 13905 | for (auto I : |
| 13906 | {EST_NoThrow, EST_DynamicNone, EST_BasicNoexcept, EST_NoexceptTrue}) { |
| 13907 | if (EST1 == I) |
| 13908 | return ESI2; |
| 13909 | if (EST2 == I) |
| 13910 | return ESI1; |
| 13911 | } |
| 13912 | |
| 13913 | // If we're left with value-dependent computed noexcept expressions, we're |
| 13914 | // stuck. Before C++17, we can just drop the exception specification entirely, |
| 13915 | // since it's not actually part of the canonical type. And this should never |
| 13916 | // happen in C++17, because it would mean we were computing the composite |
| 13917 | // pointer type of dependent types, which should never happen. |
| 13918 | if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { |
| 13919 | assert(AcceptDependent && |
| 13920 | "computing composite pointer type of dependent types" ); |
| 13921 | return FunctionProtoType::ExceptionSpecInfo(); |
| 13922 | } |
| 13923 | |
| 13924 | // Switch over the possibilities so that people adding new values know to |
| 13925 | // update this function. |
| 13926 | switch (EST1) { |
| 13927 | case EST_None: |
| 13928 | case EST_DynamicNone: |
| 13929 | case EST_MSAny: |
| 13930 | case EST_BasicNoexcept: |
| 13931 | case EST_DependentNoexcept: |
| 13932 | case EST_NoexceptFalse: |
| 13933 | case EST_NoexceptTrue: |
| 13934 | case EST_NoThrow: |
| 13935 | llvm_unreachable("These ESTs should be handled above" ); |
| 13936 | |
| 13937 | case EST_Dynamic: { |
| 13938 | // This is the fun case: both exception specifications are dynamic. Form |
| 13939 | // the union of the two lists. |
| 13940 | assert(EST2 == EST_Dynamic && "other cases should already be handled" ); |
| 13941 | mergeTypeLists(*this, ExceptionTypeStorage, ESI1.Exceptions, |
| 13942 | ESI2.Exceptions); |
| 13943 | FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); |
| 13944 | Result.Exceptions = ExceptionTypeStorage; |
| 13945 | return Result; |
| 13946 | } |
| 13947 | |
| 13948 | case EST_Unevaluated: |
| 13949 | case EST_Uninstantiated: |
| 13950 | case EST_Unparsed: |
| 13951 | llvm_unreachable("shouldn't see unresolved exception specifications here" ); |
| 13952 | } |
| 13953 | |
| 13954 | llvm_unreachable("invalid ExceptionSpecificationType" ); |
| 13955 | } |
| 13956 | |
| 13957 | static QualType getCommonNonSugarTypeNode(ASTContext &Ctx, const Type *X, |
| 13958 | Qualifiers &QX, const Type *Y, |
| 13959 | Qualifiers &QY) { |
| 13960 | Type::TypeClass TC = X->getTypeClass(); |
| 13961 | assert(TC == Y->getTypeClass()); |
| 13962 | switch (TC) { |
| 13963 | #define UNEXPECTED_TYPE(Class, Kind) \ |
| 13964 | case Type::Class: \ |
| 13965 | llvm_unreachable("Unexpected " Kind ": " #Class); |
| 13966 | |
| 13967 | #define NON_CANONICAL_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "non-canonical") |
| 13968 | #define TYPE(Class, Base) |
| 13969 | #include "clang/AST/TypeNodes.inc" |
| 13970 | |
| 13971 | #define SUGAR_FREE_TYPE(Class) UNEXPECTED_TYPE(Class, "sugar-free") |
| 13972 | SUGAR_FREE_TYPE(Builtin) |
| 13973 | SUGAR_FREE_TYPE(DeducedTemplateSpecialization) |
| 13974 | SUGAR_FREE_TYPE(DependentBitInt) |
| 13975 | SUGAR_FREE_TYPE(Enum) |
| 13976 | SUGAR_FREE_TYPE(BitInt) |
| 13977 | SUGAR_FREE_TYPE(ObjCInterface) |
| 13978 | SUGAR_FREE_TYPE(Record) |
| 13979 | SUGAR_FREE_TYPE(SubstTemplateTypeParmPack) |
| 13980 | SUGAR_FREE_TYPE(UnresolvedUsing) |
| 13981 | SUGAR_FREE_TYPE(HLSLAttributedResource) |
| 13982 | SUGAR_FREE_TYPE(HLSLInlineSpirv) |
| 13983 | #undef SUGAR_FREE_TYPE |
| 13984 | #define NON_UNIQUE_TYPE(Class) UNEXPECTED_TYPE(Class, "non-unique") |
| 13985 | NON_UNIQUE_TYPE(TypeOfExpr) |
| 13986 | NON_UNIQUE_TYPE(VariableArray) |
| 13987 | #undef NON_UNIQUE_TYPE |
| 13988 | |
| 13989 | UNEXPECTED_TYPE(TypeOf, "sugar" ) |
| 13990 | |
| 13991 | #undef UNEXPECTED_TYPE |
| 13992 | |
| 13993 | case Type::Auto: { |
| 13994 | const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y); |
| 13995 | assert(AX->getDeducedType().isNull()); |
| 13996 | assert(AY->getDeducedType().isNull()); |
| 13997 | assert(AX->getKeyword() == AY->getKeyword()); |
| 13998 | assert(AX->isInstantiationDependentType() == |
| 13999 | AY->isInstantiationDependentType()); |
| 14000 | auto As = getCommonTemplateArguments(Ctx, AX->getTypeConstraintArguments(), |
| 14001 | AY->getTypeConstraintArguments()); |
| 14002 | return Ctx.getAutoType(DeducedType: QualType(), Keyword: AX->getKeyword(), |
| 14003 | IsDependent: AX->isInstantiationDependentType(), |
| 14004 | IsPack: AX->containsUnexpandedParameterPack(), |
| 14005 | TypeConstraintConcept: getCommonDeclChecked(AX->getTypeConstraintConcept(), |
| 14006 | AY->getTypeConstraintConcept()), |
| 14007 | TypeConstraintArgs: As); |
| 14008 | } |
| 14009 | case Type::IncompleteArray: { |
| 14010 | const auto *AX = cast<IncompleteArrayType>(X), |
| 14011 | *AY = cast<IncompleteArrayType>(Y); |
| 14012 | return Ctx.getIncompleteArrayType( |
| 14013 | elementType: getCommonArrayElementType(Ctx, AX, QX, AY, QY), |
| 14014 | ASM: getCommonSizeModifier(AX, AY), elementTypeQuals: getCommonIndexTypeCVRQualifiers(AX, AY)); |
| 14015 | } |
| 14016 | case Type::DependentSizedArray: { |
| 14017 | const auto *AX = cast<DependentSizedArrayType>(X), |
| 14018 | *AY = cast<DependentSizedArrayType>(Y); |
| 14019 | return Ctx.getDependentSizedArrayType( |
| 14020 | elementType: getCommonArrayElementType(Ctx, AX, QX, AY, QY), |
| 14021 | numElements: getCommonSizeExpr(Ctx, AX, AY), ASM: getCommonSizeModifier(AX, AY), |
| 14022 | elementTypeQuals: getCommonIndexTypeCVRQualifiers(AX, AY)); |
| 14023 | } |
| 14024 | case Type::ConstantArray: { |
| 14025 | const auto *AX = cast<ConstantArrayType>(X), |
| 14026 | *AY = cast<ConstantArrayType>(Y); |
| 14027 | assert(AX->getSize() == AY->getSize()); |
| 14028 | const Expr *SizeExpr = Ctx.hasSameExpr(X: AX->getSizeExpr(), Y: AY->getSizeExpr()) |
| 14029 | ? AX->getSizeExpr() |
| 14030 | : nullptr; |
| 14031 | return Ctx.getConstantArrayType( |
| 14032 | EltTy: getCommonArrayElementType(Ctx, AX, QX, AY, QY), ArySizeIn: AX->getSize(), SizeExpr, |
| 14033 | ASM: getCommonSizeModifier(AX, AY), IndexTypeQuals: getCommonIndexTypeCVRQualifiers(AX, AY)); |
| 14034 | } |
| 14035 | case Type::ArrayParameter: { |
| 14036 | const auto *AX = cast<ArrayParameterType>(X), |
| 14037 | *AY = cast<ArrayParameterType>(Y); |
| 14038 | assert(AX->getSize() == AY->getSize()); |
| 14039 | const Expr *SizeExpr = Ctx.hasSameExpr(X: AX->getSizeExpr(), Y: AY->getSizeExpr()) |
| 14040 | ? AX->getSizeExpr() |
| 14041 | : nullptr; |
| 14042 | auto ArrayTy = Ctx.getConstantArrayType( |
| 14043 | EltTy: getCommonArrayElementType(Ctx, AX, QX, AY, QY), ArySizeIn: AX->getSize(), SizeExpr, |
| 14044 | ASM: getCommonSizeModifier(AX, AY), IndexTypeQuals: getCommonIndexTypeCVRQualifiers(AX, AY)); |
| 14045 | return Ctx.getArrayParameterType(Ty: ArrayTy); |
| 14046 | } |
| 14047 | case Type::Atomic: { |
| 14048 | const auto *AX = cast<AtomicType>(X), *AY = cast<AtomicType>(Y); |
| 14049 | return Ctx.getAtomicType( |
| 14050 | T: Ctx.getCommonSugaredType(X: AX->getValueType(), Y: AY->getValueType())); |
| 14051 | } |
| 14052 | case Type::Complex: { |
| 14053 | const auto *CX = cast<ComplexType>(X), *CY = cast<ComplexType>(Y); |
| 14054 | return Ctx.getComplexType(getCommonArrayElementType(Ctx, CX, QX, CY, QY)); |
| 14055 | } |
| 14056 | case Type::Pointer: { |
| 14057 | const auto *PX = cast<PointerType>(X), *PY = cast<PointerType>(Y); |
| 14058 | return Ctx.getPointerType(getCommonPointeeType(Ctx, PX, PY)); |
| 14059 | } |
| 14060 | case Type::BlockPointer: { |
| 14061 | const auto *PX = cast<BlockPointerType>(X), *PY = cast<BlockPointerType>(Y); |
| 14062 | return Ctx.getBlockPointerType(T: getCommonPointeeType(Ctx, PX, PY)); |
| 14063 | } |
| 14064 | case Type::ObjCObjectPointer: { |
| 14065 | const auto *PX = cast<ObjCObjectPointerType>(X), |
| 14066 | *PY = cast<ObjCObjectPointerType>(Y); |
| 14067 | return Ctx.getObjCObjectPointerType(ObjectT: getCommonPointeeType(Ctx, PX, PY)); |
| 14068 | } |
| 14069 | case Type::MemberPointer: { |
| 14070 | const auto *PX = cast<MemberPointerType>(X), |
| 14071 | *PY = cast<MemberPointerType>(Y); |
| 14072 | assert(declaresSameEntity(PX->getMostRecentCXXRecordDecl(), |
| 14073 | PY->getMostRecentCXXRecordDecl())); |
| 14074 | return Ctx.getMemberPointerType( |
| 14075 | T: getCommonPointeeType(Ctx, PX, PY), |
| 14076 | Qualifier: getCommonQualifier(Ctx, PX, PY, /*IsSame=*/true), |
| 14077 | Cls: PX->getMostRecentCXXRecordDecl()); |
| 14078 | } |
| 14079 | case Type::LValueReference: { |
| 14080 | const auto *PX = cast<LValueReferenceType>(X), |
| 14081 | *PY = cast<LValueReferenceType>(Y); |
| 14082 | // FIXME: Preserve PointeeTypeAsWritten. |
| 14083 | return Ctx.getLValueReferenceType(T: getCommonPointeeType(Ctx, PX, PY), |
| 14084 | SpelledAsLValue: PX->isSpelledAsLValue() || |
| 14085 | PY->isSpelledAsLValue()); |
| 14086 | } |
| 14087 | case Type::RValueReference: { |
| 14088 | const auto *PX = cast<RValueReferenceType>(X), |
| 14089 | *PY = cast<RValueReferenceType>(Y); |
| 14090 | // FIXME: Preserve PointeeTypeAsWritten. |
| 14091 | return Ctx.getRValueReferenceType(T: getCommonPointeeType(Ctx, PX, PY)); |
| 14092 | } |
| 14093 | case Type::DependentAddressSpace: { |
| 14094 | const auto *PX = cast<DependentAddressSpaceType>(X), |
| 14095 | *PY = cast<DependentAddressSpaceType>(Y); |
| 14096 | assert(Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr())); |
| 14097 | return Ctx.getDependentAddressSpaceType(PointeeType: getCommonPointeeType(Ctx, PX, PY), |
| 14098 | AddrSpaceExpr: PX->getAddrSpaceExpr(), |
| 14099 | AttrLoc: getCommonAttrLoc(PX, PY)); |
| 14100 | } |
| 14101 | case Type::FunctionNoProto: { |
| 14102 | const auto *FX = cast<FunctionNoProtoType>(X), |
| 14103 | *FY = cast<FunctionNoProtoType>(Y); |
| 14104 | assert(FX->getExtInfo() == FY->getExtInfo()); |
| 14105 | return Ctx.getFunctionNoProtoType( |
| 14106 | Ctx.getCommonSugaredType(X: FX->getReturnType(), Y: FY->getReturnType()), |
| 14107 | FX->getExtInfo()); |
| 14108 | } |
| 14109 | case Type::FunctionProto: { |
| 14110 | const auto *FX = cast<FunctionProtoType>(X), |
| 14111 | *FY = cast<FunctionProtoType>(Y); |
| 14112 | FunctionProtoType::ExtProtoInfo EPIX = FX->getExtProtoInfo(), |
| 14113 | EPIY = FY->getExtProtoInfo(); |
| 14114 | assert(EPIX.ExtInfo == EPIY.ExtInfo); |
| 14115 | assert(EPIX.ExtParameterInfos == EPIY.ExtParameterInfos); |
| 14116 | assert(EPIX.RefQualifier == EPIY.RefQualifier); |
| 14117 | assert(EPIX.TypeQuals == EPIY.TypeQuals); |
| 14118 | assert(EPIX.Variadic == EPIY.Variadic); |
| 14119 | |
| 14120 | // FIXME: Can we handle an empty EllipsisLoc? |
| 14121 | // Use emtpy EllipsisLoc if X and Y differ. |
| 14122 | |
| 14123 | EPIX.HasTrailingReturn = EPIX.HasTrailingReturn && EPIY.HasTrailingReturn; |
| 14124 | |
| 14125 | QualType R = |
| 14126 | Ctx.getCommonSugaredType(X: FX->getReturnType(), Y: FY->getReturnType()); |
| 14127 | auto P = getCommonTypes(Ctx, FX->param_types(), FY->param_types(), |
| 14128 | /*Unqualified=*/true); |
| 14129 | |
| 14130 | SmallVector<QualType, 8> Exceptions; |
| 14131 | EPIX.ExceptionSpec = Ctx.mergeExceptionSpecs( |
| 14132 | ESI1: EPIX.ExceptionSpec, ESI2: EPIY.ExceptionSpec, ExceptionTypeStorage&: Exceptions, AcceptDependent: true); |
| 14133 | return Ctx.getFunctionType(ResultTy: R, Args: P, EPI: EPIX); |
| 14134 | } |
| 14135 | case Type::ObjCObject: { |
| 14136 | const auto *OX = cast<ObjCObjectType>(X), *OY = cast<ObjCObjectType>(Y); |
| 14137 | assert( |
| 14138 | std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), |
| 14139 | OY->getProtocols().begin(), OY->getProtocols().end(), |
| 14140 | [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { |
| 14141 | return P0->getCanonicalDecl() == P1->getCanonicalDecl(); |
| 14142 | }) && |
| 14143 | "protocol lists must be the same" ); |
| 14144 | auto TAs = getCommonTypes(Ctx, OX->getTypeArgsAsWritten(), |
| 14145 | OY->getTypeArgsAsWritten()); |
| 14146 | return Ctx.getObjCObjectType( |
| 14147 | Ctx.getCommonSugaredType(X: OX->getBaseType(), Y: OY->getBaseType()), TAs, |
| 14148 | OX->getProtocols(), |
| 14149 | OX->isKindOfTypeAsWritten() && OY->isKindOfTypeAsWritten()); |
| 14150 | } |
| 14151 | case Type::ConstantMatrix: { |
| 14152 | const auto *MX = cast<ConstantMatrixType>(X), |
| 14153 | *MY = cast<ConstantMatrixType>(Y); |
| 14154 | assert(MX->getNumRows() == MY->getNumRows()); |
| 14155 | assert(MX->getNumColumns() == MY->getNumColumns()); |
| 14156 | return Ctx.getConstantMatrixType(ElementTy: getCommonElementType(Ctx, MX, MY), |
| 14157 | NumRows: MX->getNumRows(), NumColumns: MX->getNumColumns()); |
| 14158 | } |
| 14159 | case Type::DependentSizedMatrix: { |
| 14160 | const auto *MX = cast<DependentSizedMatrixType>(X), |
| 14161 | *MY = cast<DependentSizedMatrixType>(Y); |
| 14162 | assert(Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr())); |
| 14163 | assert(Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr())); |
| 14164 | return Ctx.getDependentSizedMatrixType( |
| 14165 | ElementTy: getCommonElementType(Ctx, MX, MY), RowExpr: MX->getRowExpr(), |
| 14166 | ColumnExpr: MX->getColumnExpr(), AttrLoc: getCommonAttrLoc(MX, MY)); |
| 14167 | } |
| 14168 | case Type::Vector: { |
| 14169 | const auto *VX = cast<VectorType>(X), *VY = cast<VectorType>(Y); |
| 14170 | assert(VX->getNumElements() == VY->getNumElements()); |
| 14171 | assert(VX->getVectorKind() == VY->getVectorKind()); |
| 14172 | return Ctx.getVectorType(vecType: getCommonElementType(Ctx, VX, VY), |
| 14173 | NumElts: VX->getNumElements(), VecKind: VX->getVectorKind()); |
| 14174 | } |
| 14175 | case Type::ExtVector: { |
| 14176 | const auto *VX = cast<ExtVectorType>(X), *VY = cast<ExtVectorType>(Y); |
| 14177 | assert(VX->getNumElements() == VY->getNumElements()); |
| 14178 | return Ctx.getExtVectorType(vecType: getCommonElementType(Ctx, VX, VY), |
| 14179 | NumElts: VX->getNumElements()); |
| 14180 | } |
| 14181 | case Type::DependentSizedExtVector: { |
| 14182 | const auto *VX = cast<DependentSizedExtVectorType>(X), |
| 14183 | *VY = cast<DependentSizedExtVectorType>(Y); |
| 14184 | return Ctx.getDependentSizedExtVectorType(vecType: getCommonElementType(Ctx, VX, VY), |
| 14185 | SizeExpr: getCommonSizeExpr(Ctx, VX, VY), |
| 14186 | AttrLoc: getCommonAttrLoc(VX, VY)); |
| 14187 | } |
| 14188 | case Type::DependentVector: { |
| 14189 | const auto *VX = cast<DependentVectorType>(X), |
| 14190 | *VY = cast<DependentVectorType>(Y); |
| 14191 | assert(VX->getVectorKind() == VY->getVectorKind()); |
| 14192 | return Ctx.getDependentVectorType( |
| 14193 | VecType: getCommonElementType(Ctx, VX, VY), SizeExpr: getCommonSizeExpr(Ctx, VX, VY), |
| 14194 | AttrLoc: getCommonAttrLoc(VX, VY), VecKind: VX->getVectorKind()); |
| 14195 | } |
| 14196 | case Type::InjectedClassName: { |
| 14197 | const auto *IX = cast<InjectedClassNameType>(X), |
| 14198 | *IY = cast<InjectedClassNameType>(Y); |
| 14199 | return Ctx.getInjectedClassNameType( |
| 14200 | Decl: getCommonDeclChecked(IX->getDecl(), IY->getDecl()), |
| 14201 | TST: Ctx.getCommonSugaredType(X: IX->getInjectedSpecializationType(), |
| 14202 | Y: IY->getInjectedSpecializationType())); |
| 14203 | } |
| 14204 | case Type::TemplateSpecialization: { |
| 14205 | const auto *TX = cast<TemplateSpecializationType>(X), |
| 14206 | *TY = cast<TemplateSpecializationType>(Y); |
| 14207 | auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(), |
| 14208 | TY->template_arguments()); |
| 14209 | return Ctx.getTemplateSpecializationType( |
| 14210 | ::getCommonTemplateNameChecked(Ctx, X: TX->getTemplateName(), |
| 14211 | Y: TY->getTemplateName(), |
| 14212 | /*IgnoreDeduced=*/true), |
| 14213 | As, /*CanonicalArgs=*/std::nullopt, X->getCanonicalTypeInternal()); |
| 14214 | } |
| 14215 | case Type::Decltype: { |
| 14216 | const auto *DX = cast<DecltypeType>(X); |
| 14217 | [[maybe_unused]] const auto *DY = cast<DecltypeType>(Y); |
| 14218 | assert(DX->isDependentType()); |
| 14219 | assert(DY->isDependentType()); |
| 14220 | assert(Ctx.hasSameExpr(DX->getUnderlyingExpr(), DY->getUnderlyingExpr())); |
| 14221 | // As Decltype is not uniqued, building a common type would be wasteful. |
| 14222 | return QualType(DX, 0); |
| 14223 | } |
| 14224 | case Type::PackIndexing: { |
| 14225 | const auto *DX = cast<PackIndexingType>(X); |
| 14226 | [[maybe_unused]] const auto *DY = cast<PackIndexingType>(Y); |
| 14227 | assert(DX->isDependentType()); |
| 14228 | assert(DY->isDependentType()); |
| 14229 | assert(Ctx.hasSameExpr(DX->getIndexExpr(), DY->getIndexExpr())); |
| 14230 | return QualType(DX, 0); |
| 14231 | } |
| 14232 | case Type::DependentName: { |
| 14233 | const auto *NX = cast<DependentNameType>(X), |
| 14234 | *NY = cast<DependentNameType>(Y); |
| 14235 | assert(NX->getIdentifier() == NY->getIdentifier()); |
| 14236 | return Ctx.getDependentNameType( |
| 14237 | Keyword: getCommonTypeKeyword(NX, NY), |
| 14238 | NNS: getCommonQualifier(Ctx, NX, NY, /*IsSame=*/true), Name: NX->getIdentifier()); |
| 14239 | } |
| 14240 | case Type::DependentTemplateSpecialization: { |
| 14241 | const auto *TX = cast<DependentTemplateSpecializationType>(X), |
| 14242 | *TY = cast<DependentTemplateSpecializationType>(Y); |
| 14243 | auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(), |
| 14244 | TY->template_arguments()); |
| 14245 | const DependentTemplateStorage &SX = TX->getDependentTemplateName(), |
| 14246 | &SY = TY->getDependentTemplateName(); |
| 14247 | assert(SX.getName() == SY.getName()); |
| 14248 | DependentTemplateStorage Name( |
| 14249 | getCommonNNS(Ctx, NNS1: SX.getQualifier(), NNS2: SY.getQualifier(), |
| 14250 | /*IsSame=*/true), |
| 14251 | SX.getName(), SX.hasTemplateKeyword() || SY.hasTemplateKeyword()); |
| 14252 | return Ctx.getDependentTemplateSpecializationType( |
| 14253 | getCommonTypeKeyword(TX, TY), Name, As); |
| 14254 | } |
| 14255 | case Type::UnaryTransform: { |
| 14256 | const auto *TX = cast<UnaryTransformType>(X), |
| 14257 | *TY = cast<UnaryTransformType>(Y); |
| 14258 | assert(TX->getUTTKind() == TY->getUTTKind()); |
| 14259 | return Ctx.getUnaryTransformType( |
| 14260 | BaseType: Ctx.getCommonSugaredType(X: TX->getBaseType(), Y: TY->getBaseType()), |
| 14261 | UnderlyingType: Ctx.getCommonSugaredType(X: TX->getUnderlyingType(), |
| 14262 | Y: TY->getUnderlyingType()), |
| 14263 | Kind: TX->getUTTKind()); |
| 14264 | } |
| 14265 | case Type::PackExpansion: { |
| 14266 | const auto *PX = cast<PackExpansionType>(X), |
| 14267 | *PY = cast<PackExpansionType>(Y); |
| 14268 | assert(PX->getNumExpansions() == PY->getNumExpansions()); |
| 14269 | return Ctx.getPackExpansionType( |
| 14270 | Pattern: Ctx.getCommonSugaredType(X: PX->getPattern(), Y: PY->getPattern()), |
| 14271 | NumExpansions: PX->getNumExpansions(), ExpectPackInType: false); |
| 14272 | } |
| 14273 | case Type::Pipe: { |
| 14274 | const auto *PX = cast<PipeType>(X), *PY = cast<PipeType>(Y); |
| 14275 | assert(PX->isReadOnly() == PY->isReadOnly()); |
| 14276 | auto MP = PX->isReadOnly() ? &ASTContext::getReadPipeType |
| 14277 | : &ASTContext::getWritePipeType; |
| 14278 | return (Ctx.*MP)(getCommonElementType(Ctx, PX, PY)); |
| 14279 | } |
| 14280 | case Type::TemplateTypeParm: { |
| 14281 | const auto *TX = cast<TemplateTypeParmType>(X), |
| 14282 | *TY = cast<TemplateTypeParmType>(Y); |
| 14283 | assert(TX->getDepth() == TY->getDepth()); |
| 14284 | assert(TX->getIndex() == TY->getIndex()); |
| 14285 | assert(TX->isParameterPack() == TY->isParameterPack()); |
| 14286 | return Ctx.getTemplateTypeParmType( |
| 14287 | Depth: TX->getDepth(), Index: TX->getIndex(), ParameterPack: TX->isParameterPack(), |
| 14288 | TTPDecl: getCommonDecl(TX->getDecl(), TY->getDecl())); |
| 14289 | } |
| 14290 | } |
| 14291 | llvm_unreachable("Unknown Type Class" ); |
| 14292 | } |
| 14293 | |
| 14294 | static QualType getCommonSugarTypeNode(ASTContext &Ctx, const Type *X, |
| 14295 | const Type *Y, |
| 14296 | SplitQualType Underlying) { |
| 14297 | Type::TypeClass TC = X->getTypeClass(); |
| 14298 | if (TC != Y->getTypeClass()) |
| 14299 | return QualType(); |
| 14300 | switch (TC) { |
| 14301 | #define UNEXPECTED_TYPE(Class, Kind) \ |
| 14302 | case Type::Class: \ |
| 14303 | llvm_unreachable("Unexpected " Kind ": " #Class); |
| 14304 | #define TYPE(Class, Base) |
| 14305 | #define DEPENDENT_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "dependent") |
| 14306 | #include "clang/AST/TypeNodes.inc" |
| 14307 | |
| 14308 | #define CANONICAL_TYPE(Class) UNEXPECTED_TYPE(Class, "canonical") |
| 14309 | CANONICAL_TYPE(Atomic) |
| 14310 | CANONICAL_TYPE(BitInt) |
| 14311 | CANONICAL_TYPE(BlockPointer) |
| 14312 | CANONICAL_TYPE(Builtin) |
| 14313 | CANONICAL_TYPE(Complex) |
| 14314 | CANONICAL_TYPE(ConstantArray) |
| 14315 | CANONICAL_TYPE(ArrayParameter) |
| 14316 | CANONICAL_TYPE(ConstantMatrix) |
| 14317 | CANONICAL_TYPE(Enum) |
| 14318 | CANONICAL_TYPE(ExtVector) |
| 14319 | CANONICAL_TYPE(FunctionNoProto) |
| 14320 | CANONICAL_TYPE(FunctionProto) |
| 14321 | CANONICAL_TYPE(IncompleteArray) |
| 14322 | CANONICAL_TYPE(HLSLAttributedResource) |
| 14323 | CANONICAL_TYPE(HLSLInlineSpirv) |
| 14324 | CANONICAL_TYPE(LValueReference) |
| 14325 | CANONICAL_TYPE(ObjCInterface) |
| 14326 | CANONICAL_TYPE(ObjCObject) |
| 14327 | CANONICAL_TYPE(ObjCObjectPointer) |
| 14328 | CANONICAL_TYPE(Pipe) |
| 14329 | CANONICAL_TYPE(Pointer) |
| 14330 | CANONICAL_TYPE(Record) |
| 14331 | CANONICAL_TYPE(RValueReference) |
| 14332 | CANONICAL_TYPE(VariableArray) |
| 14333 | CANONICAL_TYPE(Vector) |
| 14334 | #undef CANONICAL_TYPE |
| 14335 | |
| 14336 | #undef UNEXPECTED_TYPE |
| 14337 | |
| 14338 | case Type::Adjusted: { |
| 14339 | const auto *AX = cast<AdjustedType>(X), *AY = cast<AdjustedType>(Y); |
| 14340 | QualType OX = AX->getOriginalType(), OY = AY->getOriginalType(); |
| 14341 | if (!Ctx.hasSameType(T1: OX, T2: OY)) |
| 14342 | return QualType(); |
| 14343 | // FIXME: It's inefficient to have to unify the original types. |
| 14344 | return Ctx.getAdjustedType(Orig: Ctx.getCommonSugaredType(X: OX, Y: OY), |
| 14345 | New: Ctx.getQualifiedType(split: Underlying)); |
| 14346 | } |
| 14347 | case Type::Decayed: { |
| 14348 | const auto *DX = cast<DecayedType>(X), *DY = cast<DecayedType>(Y); |
| 14349 | QualType OX = DX->getOriginalType(), OY = DY->getOriginalType(); |
| 14350 | if (!Ctx.hasSameType(T1: OX, T2: OY)) |
| 14351 | return QualType(); |
| 14352 | // FIXME: It's inefficient to have to unify the original types. |
| 14353 | return Ctx.getDecayedType(Orig: Ctx.getCommonSugaredType(X: OX, Y: OY), |
| 14354 | Decayed: Ctx.getQualifiedType(split: Underlying)); |
| 14355 | } |
| 14356 | case Type::Attributed: { |
| 14357 | const auto *AX = cast<AttributedType>(X), *AY = cast<AttributedType>(Y); |
| 14358 | AttributedType::Kind Kind = AX->getAttrKind(); |
| 14359 | if (Kind != AY->getAttrKind()) |
| 14360 | return QualType(); |
| 14361 | QualType MX = AX->getModifiedType(), MY = AY->getModifiedType(); |
| 14362 | if (!Ctx.hasSameType(T1: MX, T2: MY)) |
| 14363 | return QualType(); |
| 14364 | // FIXME: It's inefficient to have to unify the modified types. |
| 14365 | return Ctx.getAttributedType(Kind, Ctx.getCommonSugaredType(X: MX, Y: MY), |
| 14366 | Ctx.getQualifiedType(split: Underlying), |
| 14367 | AX->getAttr()); |
| 14368 | } |
| 14369 | case Type::BTFTagAttributed: { |
| 14370 | const auto *BX = cast<BTFTagAttributedType>(X); |
| 14371 | const BTFTypeTagAttr *AX = BX->getAttr(); |
| 14372 | // The attribute is not uniqued, so just compare the tag. |
| 14373 | if (AX->getBTFTypeTag() != |
| 14374 | cast<BTFTagAttributedType>(Y)->getAttr()->getBTFTypeTag()) |
| 14375 | return QualType(); |
| 14376 | return Ctx.getBTFTagAttributedType(BTFAttr: AX, Wrapped: Ctx.getQualifiedType(split: Underlying)); |
| 14377 | } |
| 14378 | case Type::Auto: { |
| 14379 | const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y); |
| 14380 | |
| 14381 | AutoTypeKeyword KW = AX->getKeyword(); |
| 14382 | if (KW != AY->getKeyword()) |
| 14383 | return QualType(); |
| 14384 | |
| 14385 | ConceptDecl *CD = ::getCommonDecl(AX->getTypeConstraintConcept(), |
| 14386 | AY->getTypeConstraintConcept()); |
| 14387 | SmallVector<TemplateArgument, 8> As; |
| 14388 | if (CD && |
| 14389 | getCommonTemplateArguments(Ctx, As, AX->getTypeConstraintArguments(), |
| 14390 | AY->getTypeConstraintArguments())) { |
| 14391 | CD = nullptr; // The arguments differ, so make it unconstrained. |
| 14392 | As.clear(); |
| 14393 | } |
| 14394 | |
| 14395 | // Both auto types can't be dependent, otherwise they wouldn't have been |
| 14396 | // sugar. This implies they can't contain unexpanded packs either. |
| 14397 | return Ctx.getAutoType(DeducedType: Ctx.getQualifiedType(split: Underlying), Keyword: AX->getKeyword(), |
| 14398 | /*IsDependent=*/false, /*IsPack=*/false, TypeConstraintConcept: CD, TypeConstraintArgs: As); |
| 14399 | } |
| 14400 | case Type::PackIndexing: |
| 14401 | case Type::Decltype: |
| 14402 | return QualType(); |
| 14403 | case Type::DeducedTemplateSpecialization: |
| 14404 | // FIXME: Try to merge these. |
| 14405 | return QualType(); |
| 14406 | |
| 14407 | case Type::Elaborated: { |
| 14408 | const auto *EX = cast<ElaboratedType>(X), *EY = cast<ElaboratedType>(Y); |
| 14409 | return Ctx.getElaboratedType( |
| 14410 | Keyword: ::getCommonTypeKeyword(EX, EY), |
| 14411 | NNS: ::getCommonQualifier(Ctx, EX, EY, /*IsSame=*/false), |
| 14412 | NamedType: Ctx.getQualifiedType(split: Underlying), |
| 14413 | OwnedTagDecl: ::getCommonDecl(EX->getOwnedTagDecl(), EY->getOwnedTagDecl())); |
| 14414 | } |
| 14415 | case Type::MacroQualified: { |
| 14416 | const auto *MX = cast<MacroQualifiedType>(X), |
| 14417 | *MY = cast<MacroQualifiedType>(Y); |
| 14418 | const IdentifierInfo *IX = MX->getMacroIdentifier(); |
| 14419 | if (IX != MY->getMacroIdentifier()) |
| 14420 | return QualType(); |
| 14421 | return Ctx.getMacroQualifiedType(UnderlyingTy: Ctx.getQualifiedType(split: Underlying), MacroII: IX); |
| 14422 | } |
| 14423 | case Type::SubstTemplateTypeParm: { |
| 14424 | const auto *SX = cast<SubstTemplateTypeParmType>(X), |
| 14425 | *SY = cast<SubstTemplateTypeParmType>(Y); |
| 14426 | Decl *CD = |
| 14427 | ::getCommonDecl(SX->getAssociatedDecl(), SY->getAssociatedDecl()); |
| 14428 | if (!CD) |
| 14429 | return QualType(); |
| 14430 | unsigned Index = SX->getIndex(); |
| 14431 | if (Index != SY->getIndex()) |
| 14432 | return QualType(); |
| 14433 | auto PackIndex = SX->getPackIndex(); |
| 14434 | if (PackIndex != SY->getPackIndex()) |
| 14435 | return QualType(); |
| 14436 | return Ctx.getSubstTemplateTypeParmType(Replacement: Ctx.getQualifiedType(split: Underlying), |
| 14437 | AssociatedDecl: CD, Index, PackIndex: PackIndex, |
| 14438 | Final: SX->getFinal() && SY->getFinal()); |
| 14439 | } |
| 14440 | case Type::ObjCTypeParam: |
| 14441 | // FIXME: Try to merge these. |
| 14442 | return QualType(); |
| 14443 | case Type::Paren: |
| 14444 | return Ctx.getParenType(InnerType: Ctx.getQualifiedType(split: Underlying)); |
| 14445 | |
| 14446 | case Type::TemplateSpecialization: { |
| 14447 | const auto *TX = cast<TemplateSpecializationType>(X), |
| 14448 | *TY = cast<TemplateSpecializationType>(Y); |
| 14449 | TemplateName CTN = |
| 14450 | ::getCommonTemplateName(Ctx, X: TX->getTemplateName(), |
| 14451 | Y: TY->getTemplateName(), /*IgnoreDeduced=*/true); |
| 14452 | if (!CTN.getAsVoidPointer()) |
| 14453 | return QualType(); |
| 14454 | SmallVector<TemplateArgument, 8> As; |
| 14455 | if (getCommonTemplateArguments(Ctx, As, TX->template_arguments(), |
| 14456 | TY->template_arguments())) |
| 14457 | return QualType(); |
| 14458 | return Ctx.getTemplateSpecializationType(CTN, As, |
| 14459 | /*CanonicalArgs=*/std::nullopt, |
| 14460 | Ctx.getQualifiedType(split: Underlying)); |
| 14461 | } |
| 14462 | case Type::Typedef: { |
| 14463 | const auto *TX = cast<TypedefType>(X), *TY = cast<TypedefType>(Y); |
| 14464 | const TypedefNameDecl *CD = ::getCommonDecl(TX->getDecl(), TY->getDecl()); |
| 14465 | if (!CD) |
| 14466 | return QualType(); |
| 14467 | return Ctx.getTypedefType(Decl: CD, Underlying: Ctx.getQualifiedType(split: Underlying)); |
| 14468 | } |
| 14469 | case Type::TypeOf: { |
| 14470 | // The common sugar between two typeof expressions, where one is |
| 14471 | // potentially a typeof_unqual and the other is not, we unify to the |
| 14472 | // qualified type as that retains the most information along with the type. |
| 14473 | // We only return a typeof_unqual type when both types are unqual types. |
| 14474 | TypeOfKind Kind = TypeOfKind::Qualified; |
| 14475 | if (cast<TypeOfType>(X)->getKind() == cast<TypeOfType>(Y)->getKind() && |
| 14476 | cast<TypeOfType>(X)->getKind() == TypeOfKind::Unqualified) |
| 14477 | Kind = TypeOfKind::Unqualified; |
| 14478 | return Ctx.getTypeOfType(tofType: Ctx.getQualifiedType(split: Underlying), Kind); |
| 14479 | } |
| 14480 | case Type::TypeOfExpr: |
| 14481 | return QualType(); |
| 14482 | |
| 14483 | case Type::UnaryTransform: { |
| 14484 | const auto *UX = cast<UnaryTransformType>(X), |
| 14485 | *UY = cast<UnaryTransformType>(Y); |
| 14486 | UnaryTransformType::UTTKind KX = UX->getUTTKind(); |
| 14487 | if (KX != UY->getUTTKind()) |
| 14488 | return QualType(); |
| 14489 | QualType BX = UX->getBaseType(), BY = UY->getBaseType(); |
| 14490 | if (!Ctx.hasSameType(T1: BX, T2: BY)) |
| 14491 | return QualType(); |
| 14492 | // FIXME: It's inefficient to have to unify the base types. |
| 14493 | return Ctx.getUnaryTransformType(BaseType: Ctx.getCommonSugaredType(X: BX, Y: BY), |
| 14494 | UnderlyingType: Ctx.getQualifiedType(split: Underlying), Kind: KX); |
| 14495 | } |
| 14496 | case Type::Using: { |
| 14497 | const auto *UX = cast<UsingType>(X), *UY = cast<UsingType>(Y); |
| 14498 | const UsingShadowDecl *CD = |
| 14499 | ::getCommonDecl(UX->getFoundDecl(), UY->getFoundDecl()); |
| 14500 | if (!CD) |
| 14501 | return QualType(); |
| 14502 | return Ctx.getUsingType(Found: CD, Underlying: Ctx.getQualifiedType(split: Underlying)); |
| 14503 | } |
| 14504 | case Type::MemberPointer: { |
| 14505 | const auto *PX = cast<MemberPointerType>(X), |
| 14506 | *PY = cast<MemberPointerType>(Y); |
| 14507 | CXXRecordDecl *Cls = PX->getMostRecentCXXRecordDecl(); |
| 14508 | assert(Cls == PY->getMostRecentCXXRecordDecl()); |
| 14509 | return Ctx.getMemberPointerType( |
| 14510 | T: ::getCommonPointeeType(Ctx, PX, PY), |
| 14511 | Qualifier: ::getCommonQualifier(Ctx, PX, PY, /*IsSame=*/false), Cls); |
| 14512 | } |
| 14513 | case Type::CountAttributed: { |
| 14514 | const auto *DX = cast<CountAttributedType>(X), |
| 14515 | *DY = cast<CountAttributedType>(Y); |
| 14516 | if (DX->isCountInBytes() != DY->isCountInBytes()) |
| 14517 | return QualType(); |
| 14518 | if (DX->isOrNull() != DY->isOrNull()) |
| 14519 | return QualType(); |
| 14520 | Expr *CEX = DX->getCountExpr(); |
| 14521 | Expr *CEY = DY->getCountExpr(); |
| 14522 | llvm::ArrayRef<clang::TypeCoupledDeclRefInfo> CDX = DX->getCoupledDecls(); |
| 14523 | if (Ctx.hasSameExpr(X: CEX, Y: CEY)) |
| 14524 | return Ctx.getCountAttributedType(WrappedTy: Ctx.getQualifiedType(split: Underlying), CountExpr: CEX, |
| 14525 | CountInBytes: DX->isCountInBytes(), OrNull: DX->isOrNull(), |
| 14526 | DependentDecls: CDX); |
| 14527 | if (!CEX->isIntegerConstantExpr(Ctx) || !CEY->isIntegerConstantExpr(Ctx)) |
| 14528 | return QualType(); |
| 14529 | // Two declarations with the same integer constant may still differ in their |
| 14530 | // expression pointers, so we need to evaluate them. |
| 14531 | llvm::APSInt VX = *CEX->getIntegerConstantExpr(Ctx); |
| 14532 | llvm::APSInt VY = *CEY->getIntegerConstantExpr(Ctx); |
| 14533 | if (VX != VY) |
| 14534 | return QualType(); |
| 14535 | return Ctx.getCountAttributedType(WrappedTy: Ctx.getQualifiedType(split: Underlying), CountExpr: CEX, |
| 14536 | CountInBytes: DX->isCountInBytes(), OrNull: DX->isOrNull(), |
| 14537 | DependentDecls: CDX); |
| 14538 | } |
| 14539 | } |
| 14540 | llvm_unreachable("Unhandled Type Class" ); |
| 14541 | } |
| 14542 | |
| 14543 | static auto unwrapSugar(SplitQualType &T, Qualifiers &QTotal) { |
| 14544 | SmallVector<SplitQualType, 8> R; |
| 14545 | while (true) { |
| 14546 | QTotal.addConsistentQualifiers(qs: T.Quals); |
| 14547 | QualType NT = T.Ty->getLocallyUnqualifiedSingleStepDesugaredType(); |
| 14548 | if (NT == QualType(T.Ty, 0)) |
| 14549 | break; |
| 14550 | R.push_back(Elt: T); |
| 14551 | T = NT.split(); |
| 14552 | } |
| 14553 | return R; |
| 14554 | } |
| 14555 | |
| 14556 | QualType ASTContext::getCommonSugaredType(QualType X, QualType Y, |
| 14557 | bool Unqualified) { |
| 14558 | assert(Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y)); |
| 14559 | if (X == Y) |
| 14560 | return X; |
| 14561 | if (!Unqualified) { |
| 14562 | if (X.isCanonical()) |
| 14563 | return X; |
| 14564 | if (Y.isCanonical()) |
| 14565 | return Y; |
| 14566 | } |
| 14567 | |
| 14568 | SplitQualType SX = X.split(), SY = Y.split(); |
| 14569 | Qualifiers QX, QY; |
| 14570 | // Desugar SX and SY, setting the sugar and qualifiers aside into Xs and Ys, |
| 14571 | // until we reach their underlying "canonical nodes". Note these are not |
| 14572 | // necessarily canonical types, as they may still have sugared properties. |
| 14573 | // QX and QY will store the sum of all qualifiers in Xs and Ys respectively. |
| 14574 | auto Xs = ::unwrapSugar(T&: SX, QTotal&: QX), Ys = ::unwrapSugar(T&: SY, QTotal&: QY); |
| 14575 | |
| 14576 | // If this is an ArrayType, the element qualifiers are interchangeable with |
| 14577 | // the top level qualifiers. |
| 14578 | // * In case the canonical nodes are the same, the elements types are already |
| 14579 | // the same. |
| 14580 | // * Otherwise, the element types will be made the same, and any different |
| 14581 | // element qualifiers will be moved up to the top level qualifiers, per |
| 14582 | // 'getCommonArrayElementType'. |
| 14583 | // In both cases, this means there may be top level qualifiers which differ |
| 14584 | // between X and Y. If so, these differing qualifiers are redundant with the |
| 14585 | // element qualifiers, and can be removed without changing the canonical type. |
| 14586 | // The desired behaviour is the same as for the 'Unqualified' case here: |
| 14587 | // treat the redundant qualifiers as sugar, remove the ones which are not |
| 14588 | // common to both sides. |
| 14589 | bool KeepCommonQualifiers = Unqualified || isa<ArrayType>(Val: SX.Ty); |
| 14590 | |
| 14591 | if (SX.Ty != SY.Ty) { |
| 14592 | // The canonical nodes differ. Build a common canonical node out of the two, |
| 14593 | // unifying their sugar. This may recurse back here. |
| 14594 | SX.Ty = |
| 14595 | ::getCommonNonSugarTypeNode(Ctx&: *this, X: SX.Ty, QX, Y: SY.Ty, QY).getTypePtr(); |
| 14596 | } else { |
| 14597 | // The canonical nodes were identical: We may have desugared too much. |
| 14598 | // Add any common sugar back in. |
| 14599 | while (!Xs.empty() && !Ys.empty() && Xs.back().Ty == Ys.back().Ty) { |
| 14600 | QX -= SX.Quals; |
| 14601 | QY -= SY.Quals; |
| 14602 | SX = Xs.pop_back_val(); |
| 14603 | SY = Ys.pop_back_val(); |
| 14604 | } |
| 14605 | } |
| 14606 | if (KeepCommonQualifiers) |
| 14607 | QX = Qualifiers::removeCommonQualifiers(L&: QX, R&: QY); |
| 14608 | else |
| 14609 | assert(QX == QY); |
| 14610 | |
| 14611 | // Even though the remaining sugar nodes in Xs and Ys differ, some may be |
| 14612 | // related. Walk up these nodes, unifying them and adding the result. |
| 14613 | while (!Xs.empty() && !Ys.empty()) { |
| 14614 | auto Underlying = SplitQualType( |
| 14615 | SX.Ty, Qualifiers::removeCommonQualifiers(L&: SX.Quals, R&: SY.Quals)); |
| 14616 | SX = Xs.pop_back_val(); |
| 14617 | SY = Ys.pop_back_val(); |
| 14618 | SX.Ty = ::getCommonSugarTypeNode(Ctx&: *this, X: SX.Ty, Y: SY.Ty, Underlying) |
| 14619 | .getTypePtrOrNull(); |
| 14620 | // Stop at the first pair which is unrelated. |
| 14621 | if (!SX.Ty) { |
| 14622 | SX.Ty = Underlying.Ty; |
| 14623 | break; |
| 14624 | } |
| 14625 | QX -= Underlying.Quals; |
| 14626 | }; |
| 14627 | |
| 14628 | // Add back the missing accumulated qualifiers, which were stripped off |
| 14629 | // with the sugar nodes we could not unify. |
| 14630 | QualType R = getQualifiedType(T: SX.Ty, Qs: QX); |
| 14631 | assert(Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X)); |
| 14632 | return R; |
| 14633 | } |
| 14634 | |
| 14635 | QualType ASTContext::getCorrespondingUnsaturatedType(QualType Ty) const { |
| 14636 | assert(Ty->isFixedPointType()); |
| 14637 | |
| 14638 | if (Ty->isUnsaturatedFixedPointType()) |
| 14639 | return Ty; |
| 14640 | |
| 14641 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
| 14642 | default: |
| 14643 | llvm_unreachable("Not a saturated fixed point type!" ); |
| 14644 | case BuiltinType::SatShortAccum: |
| 14645 | return ShortAccumTy; |
| 14646 | case BuiltinType::SatAccum: |
| 14647 | return AccumTy; |
| 14648 | case BuiltinType::SatLongAccum: |
| 14649 | return LongAccumTy; |
| 14650 | case BuiltinType::SatUShortAccum: |
| 14651 | return UnsignedShortAccumTy; |
| 14652 | case BuiltinType::SatUAccum: |
| 14653 | return UnsignedAccumTy; |
| 14654 | case BuiltinType::SatULongAccum: |
| 14655 | return UnsignedLongAccumTy; |
| 14656 | case BuiltinType::SatShortFract: |
| 14657 | return ShortFractTy; |
| 14658 | case BuiltinType::SatFract: |
| 14659 | return FractTy; |
| 14660 | case BuiltinType::SatLongFract: |
| 14661 | return LongFractTy; |
| 14662 | case BuiltinType::SatUShortFract: |
| 14663 | return UnsignedShortFractTy; |
| 14664 | case BuiltinType::SatUFract: |
| 14665 | return UnsignedFractTy; |
| 14666 | case BuiltinType::SatULongFract: |
| 14667 | return UnsignedLongFractTy; |
| 14668 | } |
| 14669 | } |
| 14670 | |
| 14671 | QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const { |
| 14672 | assert(Ty->isFixedPointType()); |
| 14673 | |
| 14674 | if (Ty->isSaturatedFixedPointType()) return Ty; |
| 14675 | |
| 14676 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
| 14677 | default: |
| 14678 | llvm_unreachable("Not a fixed point type!" ); |
| 14679 | case BuiltinType::ShortAccum: |
| 14680 | return SatShortAccumTy; |
| 14681 | case BuiltinType::Accum: |
| 14682 | return SatAccumTy; |
| 14683 | case BuiltinType::LongAccum: |
| 14684 | return SatLongAccumTy; |
| 14685 | case BuiltinType::UShortAccum: |
| 14686 | return SatUnsignedShortAccumTy; |
| 14687 | case BuiltinType::UAccum: |
| 14688 | return SatUnsignedAccumTy; |
| 14689 | case BuiltinType::ULongAccum: |
| 14690 | return SatUnsignedLongAccumTy; |
| 14691 | case BuiltinType::ShortFract: |
| 14692 | return SatShortFractTy; |
| 14693 | case BuiltinType::Fract: |
| 14694 | return SatFractTy; |
| 14695 | case BuiltinType::LongFract: |
| 14696 | return SatLongFractTy; |
| 14697 | case BuiltinType::UShortFract: |
| 14698 | return SatUnsignedShortFractTy; |
| 14699 | case BuiltinType::UFract: |
| 14700 | return SatUnsignedFractTy; |
| 14701 | case BuiltinType::ULongFract: |
| 14702 | return SatUnsignedLongFractTy; |
| 14703 | } |
| 14704 | } |
| 14705 | |
| 14706 | LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const { |
| 14707 | if (LangOpts.OpenCL) |
| 14708 | return getTargetInfo().getOpenCLBuiltinAddressSpace(AS); |
| 14709 | |
| 14710 | if (LangOpts.CUDA) |
| 14711 | return getTargetInfo().getCUDABuiltinAddressSpace(AS); |
| 14712 | |
| 14713 | return getLangASFromTargetAS(TargetAS: AS); |
| 14714 | } |
| 14715 | |
| 14716 | // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that |
| 14717 | // doesn't include ASTContext.h |
| 14718 | template |
| 14719 | clang::LazyGenerationalUpdatePtr< |
| 14720 | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType |
| 14721 | clang::LazyGenerationalUpdatePtr< |
| 14722 | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( |
| 14723 | const clang::ASTContext &Ctx, Decl *Value); |
| 14724 | |
| 14725 | unsigned char ASTContext::getFixedPointScale(QualType Ty) const { |
| 14726 | assert(Ty->isFixedPointType()); |
| 14727 | |
| 14728 | const TargetInfo &Target = getTargetInfo(); |
| 14729 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
| 14730 | default: |
| 14731 | llvm_unreachable("Not a fixed point type!" ); |
| 14732 | case BuiltinType::ShortAccum: |
| 14733 | case BuiltinType::SatShortAccum: |
| 14734 | return Target.getShortAccumScale(); |
| 14735 | case BuiltinType::Accum: |
| 14736 | case BuiltinType::SatAccum: |
| 14737 | return Target.getAccumScale(); |
| 14738 | case BuiltinType::LongAccum: |
| 14739 | case BuiltinType::SatLongAccum: |
| 14740 | return Target.getLongAccumScale(); |
| 14741 | case BuiltinType::UShortAccum: |
| 14742 | case BuiltinType::SatUShortAccum: |
| 14743 | return Target.getUnsignedShortAccumScale(); |
| 14744 | case BuiltinType::UAccum: |
| 14745 | case BuiltinType::SatUAccum: |
| 14746 | return Target.getUnsignedAccumScale(); |
| 14747 | case BuiltinType::ULongAccum: |
| 14748 | case BuiltinType::SatULongAccum: |
| 14749 | return Target.getUnsignedLongAccumScale(); |
| 14750 | case BuiltinType::ShortFract: |
| 14751 | case BuiltinType::SatShortFract: |
| 14752 | return Target.getShortFractScale(); |
| 14753 | case BuiltinType::Fract: |
| 14754 | case BuiltinType::SatFract: |
| 14755 | return Target.getFractScale(); |
| 14756 | case BuiltinType::LongFract: |
| 14757 | case BuiltinType::SatLongFract: |
| 14758 | return Target.getLongFractScale(); |
| 14759 | case BuiltinType::UShortFract: |
| 14760 | case BuiltinType::SatUShortFract: |
| 14761 | return Target.getUnsignedShortFractScale(); |
| 14762 | case BuiltinType::UFract: |
| 14763 | case BuiltinType::SatUFract: |
| 14764 | return Target.getUnsignedFractScale(); |
| 14765 | case BuiltinType::ULongFract: |
| 14766 | case BuiltinType::SatULongFract: |
| 14767 | return Target.getUnsignedLongFractScale(); |
| 14768 | } |
| 14769 | } |
| 14770 | |
| 14771 | unsigned char ASTContext::getFixedPointIBits(QualType Ty) const { |
| 14772 | assert(Ty->isFixedPointType()); |
| 14773 | |
| 14774 | const TargetInfo &Target = getTargetInfo(); |
| 14775 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
| 14776 | default: |
| 14777 | llvm_unreachable("Not a fixed point type!" ); |
| 14778 | case BuiltinType::ShortAccum: |
| 14779 | case BuiltinType::SatShortAccum: |
| 14780 | return Target.getShortAccumIBits(); |
| 14781 | case BuiltinType::Accum: |
| 14782 | case BuiltinType::SatAccum: |
| 14783 | return Target.getAccumIBits(); |
| 14784 | case BuiltinType::LongAccum: |
| 14785 | case BuiltinType::SatLongAccum: |
| 14786 | return Target.getLongAccumIBits(); |
| 14787 | case BuiltinType::UShortAccum: |
| 14788 | case BuiltinType::SatUShortAccum: |
| 14789 | return Target.getUnsignedShortAccumIBits(); |
| 14790 | case BuiltinType::UAccum: |
| 14791 | case BuiltinType::SatUAccum: |
| 14792 | return Target.getUnsignedAccumIBits(); |
| 14793 | case BuiltinType::ULongAccum: |
| 14794 | case BuiltinType::SatULongAccum: |
| 14795 | return Target.getUnsignedLongAccumIBits(); |
| 14796 | case BuiltinType::ShortFract: |
| 14797 | case BuiltinType::SatShortFract: |
| 14798 | case BuiltinType::Fract: |
| 14799 | case BuiltinType::SatFract: |
| 14800 | case BuiltinType::LongFract: |
| 14801 | case BuiltinType::SatLongFract: |
| 14802 | case BuiltinType::UShortFract: |
| 14803 | case BuiltinType::SatUShortFract: |
| 14804 | case BuiltinType::UFract: |
| 14805 | case BuiltinType::SatUFract: |
| 14806 | case BuiltinType::ULongFract: |
| 14807 | case BuiltinType::SatULongFract: |
| 14808 | return 0; |
| 14809 | } |
| 14810 | } |
| 14811 | |
| 14812 | llvm::FixedPointSemantics |
| 14813 | ASTContext::getFixedPointSemantics(QualType Ty) const { |
| 14814 | assert((Ty->isFixedPointType() || Ty->isIntegerType()) && |
| 14815 | "Can only get the fixed point semantics for a " |
| 14816 | "fixed point or integer type." ); |
| 14817 | if (Ty->isIntegerType()) |
| 14818 | return llvm::FixedPointSemantics::GetIntegerSemantics( |
| 14819 | Width: getIntWidth(T: Ty), IsSigned: Ty->isSignedIntegerType()); |
| 14820 | |
| 14821 | bool isSigned = Ty->isSignedFixedPointType(); |
| 14822 | return llvm::FixedPointSemantics( |
| 14823 | static_cast<unsigned>(getTypeSize(T: Ty)), getFixedPointScale(Ty), isSigned, |
| 14824 | Ty->isSaturatedFixedPointType(), |
| 14825 | !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding()); |
| 14826 | } |
| 14827 | |
| 14828 | llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const { |
| 14829 | assert(Ty->isFixedPointType()); |
| 14830 | return llvm::APFixedPoint::getMax(Sema: getFixedPointSemantics(Ty)); |
| 14831 | } |
| 14832 | |
| 14833 | llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const { |
| 14834 | assert(Ty->isFixedPointType()); |
| 14835 | return llvm::APFixedPoint::getMin(Sema: getFixedPointSemantics(Ty)); |
| 14836 | } |
| 14837 | |
| 14838 | QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const { |
| 14839 | assert(Ty->isUnsignedFixedPointType() && |
| 14840 | "Expected unsigned fixed point type" ); |
| 14841 | |
| 14842 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
| 14843 | case BuiltinType::UShortAccum: |
| 14844 | return ShortAccumTy; |
| 14845 | case BuiltinType::UAccum: |
| 14846 | return AccumTy; |
| 14847 | case BuiltinType::ULongAccum: |
| 14848 | return LongAccumTy; |
| 14849 | case BuiltinType::SatUShortAccum: |
| 14850 | return SatShortAccumTy; |
| 14851 | case BuiltinType::SatUAccum: |
| 14852 | return SatAccumTy; |
| 14853 | case BuiltinType::SatULongAccum: |
| 14854 | return SatLongAccumTy; |
| 14855 | case BuiltinType::UShortFract: |
| 14856 | return ShortFractTy; |
| 14857 | case BuiltinType::UFract: |
| 14858 | return FractTy; |
| 14859 | case BuiltinType::ULongFract: |
| 14860 | return LongFractTy; |
| 14861 | case BuiltinType::SatUShortFract: |
| 14862 | return SatShortFractTy; |
| 14863 | case BuiltinType::SatUFract: |
| 14864 | return SatFractTy; |
| 14865 | case BuiltinType::SatULongFract: |
| 14866 | return SatLongFractTy; |
| 14867 | default: |
| 14868 | llvm_unreachable("Unexpected unsigned fixed point type" ); |
| 14869 | } |
| 14870 | } |
| 14871 | |
| 14872 | // Given a list of FMV features, return a concatenated list of the |
| 14873 | // corresponding backend features (which may contain duplicates). |
| 14874 | static std::vector<std::string> getFMVBackendFeaturesFor( |
| 14875 | const llvm::SmallVectorImpl<StringRef> &FMVFeatStrings) { |
| 14876 | std::vector<std::string> BackendFeats; |
| 14877 | llvm::AArch64::ExtensionSet FeatureBits; |
| 14878 | for (StringRef F : FMVFeatStrings) |
| 14879 | if (auto FMVExt = llvm::AArch64::parseFMVExtension(F)) |
| 14880 | if (FMVExt->ID) |
| 14881 | FeatureBits.enable(*FMVExt->ID); |
| 14882 | FeatureBits.toLLVMFeatureList(BackendFeats); |
| 14883 | return BackendFeats; |
| 14884 | } |
| 14885 | |
| 14886 | ParsedTargetAttr |
| 14887 | ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const { |
| 14888 | assert(TD != nullptr); |
| 14889 | ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(Str: TD->getFeaturesStr()); |
| 14890 | |
| 14891 | llvm::erase_if(C&: ParsedAttr.Features, P: [&](const std::string &Feat) { |
| 14892 | return !Target->isValidFeatureName(Feature: StringRef{Feat}.substr(Start: 1)); |
| 14893 | }); |
| 14894 | return ParsedAttr; |
| 14895 | } |
| 14896 | |
| 14897 | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, |
| 14898 | const FunctionDecl *FD) const { |
| 14899 | if (FD) |
| 14900 | getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD)); |
| 14901 | else |
| 14902 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), |
| 14903 | CPU: Target->getTargetOpts().CPU, |
| 14904 | FeatureVec: Target->getTargetOpts().Features); |
| 14905 | } |
| 14906 | |
| 14907 | // Fills in the supplied string map with the set of target features for the |
| 14908 | // passed in function. |
| 14909 | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, |
| 14910 | GlobalDecl GD) const { |
| 14911 | StringRef TargetCPU = Target->getTargetOpts().CPU; |
| 14912 | const FunctionDecl *FD = GD.getDecl()->getAsFunction(); |
| 14913 | if (const auto *TD = FD->getAttr<TargetAttr>()) { |
| 14914 | ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD: TD); |
| 14915 | |
| 14916 | // Make a copy of the features as passed on the command line into the |
| 14917 | // beginning of the additional features from the function to override. |
| 14918 | // AArch64 handles command line option features in parseTargetAttr(). |
| 14919 | if (!Target->getTriple().isAArch64()) |
| 14920 | ParsedAttr.Features.insert( |
| 14921 | position: ParsedAttr.Features.begin(), |
| 14922 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
| 14923 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
| 14924 | |
| 14925 | if (ParsedAttr.CPU != "" && Target->isValidCPUName(Name: ParsedAttr.CPU)) |
| 14926 | TargetCPU = ParsedAttr.CPU; |
| 14927 | |
| 14928 | // Now populate the feature map, first with the TargetCPU which is either |
| 14929 | // the default or a new one from the target attribute string. Then we'll use |
| 14930 | // the passed in features (FeaturesAsWritten) along with the new ones from |
| 14931 | // the attribute. |
| 14932 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, |
| 14933 | FeatureVec: ParsedAttr.Features); |
| 14934 | } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { |
| 14935 | llvm::SmallVector<StringRef, 32> FeaturesTmp; |
| 14936 | Target->getCPUSpecificCPUDispatchFeatures( |
| 14937 | Name: SD->getCPUName(GD.getMultiVersionIndex())->getName(), Features&: FeaturesTmp); |
| 14938 | std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); |
| 14939 | Features.insert(position: Features.begin(), |
| 14940 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
| 14941 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
| 14942 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
| 14943 | } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) { |
| 14944 | if (Target->getTriple().isAArch64()) { |
| 14945 | llvm::SmallVector<StringRef, 8> Feats; |
| 14946 | TC->getFeatures(Feats, GD.getMultiVersionIndex()); |
| 14947 | std::vector<std::string> Features = getFMVBackendFeaturesFor(FMVFeatStrings: Feats); |
| 14948 | Features.insert(position: Features.begin(), |
| 14949 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
| 14950 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
| 14951 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
| 14952 | } else if (Target->getTriple().isRISCV()) { |
| 14953 | StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex()); |
| 14954 | std::vector<std::string> Features; |
| 14955 | if (VersionStr != "default" ) { |
| 14956 | ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(Str: VersionStr); |
| 14957 | Features.insert(position: Features.begin(), first: ParsedAttr.Features.begin(), |
| 14958 | last: ParsedAttr.Features.end()); |
| 14959 | } |
| 14960 | Features.insert(position: Features.begin(), |
| 14961 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
| 14962 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
| 14963 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
| 14964 | } else { |
| 14965 | std::vector<std::string> Features; |
| 14966 | StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex()); |
| 14967 | if (VersionStr.starts_with(Prefix: "arch=" )) |
| 14968 | TargetCPU = VersionStr.drop_front(N: sizeof("arch=" ) - 1); |
| 14969 | else if (VersionStr != "default" ) |
| 14970 | Features.push_back(x: (StringRef{"+" } + VersionStr).str()); |
| 14971 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
| 14972 | } |
| 14973 | } else if (const auto *TV = FD->getAttr<TargetVersionAttr>()) { |
| 14974 | std::vector<std::string> Features; |
| 14975 | if (Target->getTriple().isRISCV()) { |
| 14976 | ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(Str: TV->getName()); |
| 14977 | Features.insert(position: Features.begin(), first: ParsedAttr.Features.begin(), |
| 14978 | last: ParsedAttr.Features.end()); |
| 14979 | } else { |
| 14980 | assert(Target->getTriple().isAArch64()); |
| 14981 | llvm::SmallVector<StringRef, 8> Feats; |
| 14982 | TV->getFeatures(Feats); |
| 14983 | Features = getFMVBackendFeaturesFor(FMVFeatStrings: Feats); |
| 14984 | } |
| 14985 | Features.insert(position: Features.begin(), |
| 14986 | first: Target->getTargetOpts().FeaturesAsWritten.begin(), |
| 14987 | last: Target->getTargetOpts().FeaturesAsWritten.end()); |
| 14988 | Target->initFeatureMap(Features&: FeatureMap, Diags&: getDiagnostics(), CPU: TargetCPU, FeatureVec: Features); |
| 14989 | } else { |
| 14990 | FeatureMap = Target->getTargetOpts().FeatureMap; |
| 14991 | } |
| 14992 | } |
| 14993 | |
| 14994 | static SYCLKernelInfo BuildSYCLKernelInfo(ASTContext &Context, |
| 14995 | CanQualType KernelNameType, |
| 14996 | const FunctionDecl *FD) { |
| 14997 | // Host and device compilation may use different ABIs and different ABIs |
| 14998 | // may allocate name mangling discriminators differently. A discriminator |
| 14999 | // override is used to ensure consistent discriminator allocation across |
| 15000 | // host and device compilation. |
| 15001 | auto DeviceDiscriminatorOverrider = |
| 15002 | [](ASTContext &Ctx, const NamedDecl *ND) -> UnsignedOrNone { |
| 15003 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) |
| 15004 | if (RD->isLambda()) |
| 15005 | return RD->getDeviceLambdaManglingNumber(); |
| 15006 | return std::nullopt; |
| 15007 | }; |
| 15008 | std::unique_ptr<MangleContext> MC{ItaniumMangleContext::create( |
| 15009 | Context, Diags&: Context.getDiagnostics(), Discriminator: DeviceDiscriminatorOverrider)}; |
| 15010 | |
| 15011 | // Construct a mangled name for the SYCL kernel caller offload entry point. |
| 15012 | // FIXME: The Itanium typeinfo mangling (_ZTS<type>) is currently used to |
| 15013 | // name the SYCL kernel caller offload entry point function. This mangling |
| 15014 | // does not suffice to clearly identify symbols that correspond to SYCL |
| 15015 | // kernel caller functions, nor is this mangling natural for targets that |
| 15016 | // use a non-Itanium ABI. |
| 15017 | std::string Buffer; |
| 15018 | Buffer.reserve(res: 128); |
| 15019 | llvm::raw_string_ostream Out(Buffer); |
| 15020 | MC->mangleCanonicalTypeName(T: KernelNameType, Out); |
| 15021 | std::string KernelName = Out.str(); |
| 15022 | |
| 15023 | return {KernelNameType, FD, KernelName}; |
| 15024 | } |
| 15025 | |
| 15026 | void ASTContext::registerSYCLEntryPointFunction(FunctionDecl *FD) { |
| 15027 | // If the function declaration to register is invalid or dependent, the |
| 15028 | // registration attempt is ignored. |
| 15029 | if (FD->isInvalidDecl() || FD->isTemplated()) |
| 15030 | return; |
| 15031 | |
| 15032 | const auto *SKEPAttr = FD->getAttr<SYCLKernelEntryPointAttr>(); |
| 15033 | assert(SKEPAttr && "Missing sycl_kernel_entry_point attribute" ); |
| 15034 | |
| 15035 | // Be tolerant of multiple registration attempts so long as each attempt |
| 15036 | // is for the same entity. Callers are obligated to detect and diagnose |
| 15037 | // conflicting kernel names prior to calling this function. |
| 15038 | CanQualType KernelNameType = getCanonicalType(SKEPAttr->getKernelName()); |
| 15039 | auto IT = SYCLKernels.find(KernelNameType); |
| 15040 | assert((IT == SYCLKernels.end() || |
| 15041 | declaresSameEntity(FD, IT->second.getKernelEntryPointDecl())) && |
| 15042 | "SYCL kernel name conflict" ); |
| 15043 | (void)IT; |
| 15044 | SYCLKernels.insert(std::make_pair( |
| 15045 | KernelNameType, BuildSYCLKernelInfo(*this, KernelNameType, FD))); |
| 15046 | } |
| 15047 | |
| 15048 | const SYCLKernelInfo &ASTContext::getSYCLKernelInfo(QualType T) const { |
| 15049 | CanQualType KernelNameType = getCanonicalType(T); |
| 15050 | return SYCLKernels.at(KernelNameType); |
| 15051 | } |
| 15052 | |
| 15053 | const SYCLKernelInfo *ASTContext::findSYCLKernelInfo(QualType T) const { |
| 15054 | CanQualType KernelNameType = getCanonicalType(T); |
| 15055 | auto IT = SYCLKernels.find(KernelNameType); |
| 15056 | if (IT != SYCLKernels.end()) |
| 15057 | return &IT->second; |
| 15058 | return nullptr; |
| 15059 | } |
| 15060 | |
| 15061 | OMPTraitInfo &ASTContext::getNewOMPTraitInfo() { |
| 15062 | OMPTraitInfoVector.emplace_back(new OMPTraitInfo()); |
| 15063 | return *OMPTraitInfoVector.back(); |
| 15064 | } |
| 15065 | |
| 15066 | const StreamingDiagnostic &clang:: |
| 15067 | operator<<(const StreamingDiagnostic &DB, |
| 15068 | const ASTContext::SectionInfo &Section) { |
| 15069 | if (Section.Decl) |
| 15070 | return DB << Section.Decl; |
| 15071 | return DB << "a prior #pragma section" ; |
| 15072 | } |
| 15073 | |
| 15074 | bool ASTContext::mayExternalize(const Decl *D) const { |
| 15075 | bool IsInternalVar = |
| 15076 | isa<VarDecl>(Val: D) && |
| 15077 | basicGVALinkageForVariable(Context: *this, VD: cast<VarDecl>(Val: D)) == GVA_Internal; |
| 15078 | bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() && |
| 15079 | !D->getAttr<CUDADeviceAttr>()->isImplicit()) || |
| 15080 | (D->hasAttr<CUDAConstantAttr>() && |
| 15081 | !D->getAttr<CUDAConstantAttr>()->isImplicit()); |
| 15082 | // CUDA/HIP: managed variables need to be externalized since it is |
| 15083 | // a declaration in IR, therefore cannot have internal linkage. Kernels in |
| 15084 | // anonymous name space needs to be externalized to avoid duplicate symbols. |
| 15085 | return (IsInternalVar && |
| 15086 | (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) || |
| 15087 | (D->hasAttr<CUDAGlobalAttr>() && |
| 15088 | basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) == |
| 15089 | GVA_Internal); |
| 15090 | } |
| 15091 | |
| 15092 | bool ASTContext::shouldExternalize(const Decl *D) const { |
| 15093 | return mayExternalize(D) && |
| 15094 | (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() || |
| 15095 | CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D))); |
| 15096 | } |
| 15097 | |
| 15098 | StringRef ASTContext::getCUIDHash() const { |
| 15099 | if (!CUIDHash.empty()) |
| 15100 | return CUIDHash; |
| 15101 | if (LangOpts.CUID.empty()) |
| 15102 | return StringRef(); |
| 15103 | CUIDHash = llvm::utohexstr(X: llvm::MD5Hash(Str: LangOpts.CUID), /*LowerCase=*/true); |
| 15104 | return CUIDHash; |
| 15105 | } |
| 15106 | |
| 15107 | const CXXRecordDecl * |
| 15108 | ASTContext::baseForVTableAuthentication(const CXXRecordDecl *ThisClass) { |
| 15109 | assert(ThisClass); |
| 15110 | assert(ThisClass->isPolymorphic()); |
| 15111 | const CXXRecordDecl *PrimaryBase = ThisClass; |
| 15112 | while (1) { |
| 15113 | assert(PrimaryBase); |
| 15114 | assert(PrimaryBase->isPolymorphic()); |
| 15115 | auto &Layout = getASTRecordLayout(PrimaryBase); |
| 15116 | auto Base = Layout.getPrimaryBase(); |
| 15117 | if (!Base || Base == PrimaryBase || !Base->isPolymorphic()) |
| 15118 | break; |
| 15119 | PrimaryBase = Base; |
| 15120 | } |
| 15121 | return PrimaryBase; |
| 15122 | } |
| 15123 | |
| 15124 | bool ASTContext::useAbbreviatedThunkName(GlobalDecl VirtualMethodDecl, |
| 15125 | StringRef MangledName) { |
| 15126 | auto *Method = cast<CXXMethodDecl>(Val: VirtualMethodDecl.getDecl()); |
| 15127 | assert(Method->isVirtual()); |
| 15128 | bool DefaultIncludesPointerAuth = |
| 15129 | LangOpts.PointerAuthCalls || LangOpts.PointerAuthIntrinsics; |
| 15130 | |
| 15131 | if (!DefaultIncludesPointerAuth) |
| 15132 | return true; |
| 15133 | |
| 15134 | auto Existing = ThunksToBeAbbreviated.find(VirtualMethodDecl); |
| 15135 | if (Existing != ThunksToBeAbbreviated.end()) |
| 15136 | return Existing->second.contains(MangledName.str()); |
| 15137 | |
| 15138 | std::unique_ptr<MangleContext> Mangler(createMangleContext()); |
| 15139 | llvm::StringMap<llvm::SmallVector<std::string, 2>> Thunks; |
| 15140 | auto VtableContext = getVTableContext(); |
| 15141 | if (const auto *ThunkInfos = VtableContext->getThunkInfo(GD: VirtualMethodDecl)) { |
| 15142 | auto *Destructor = dyn_cast<CXXDestructorDecl>(Val: Method); |
| 15143 | for (const auto &Thunk : *ThunkInfos) { |
| 15144 | SmallString<256> ElidedName; |
| 15145 | llvm::raw_svector_ostream ElidedNameStream(ElidedName); |
| 15146 | if (Destructor) |
| 15147 | Mangler->mangleCXXDtorThunk(DD: Destructor, Type: VirtualMethodDecl.getDtorType(), |
| 15148 | Thunk, /* elideOverrideInfo */ ElideOverrideInfo: true, |
| 15149 | ElidedNameStream); |
| 15150 | else |
| 15151 | Mangler->mangleThunk(MD: Method, Thunk, /* elideOverrideInfo */ ElideOverrideInfo: true, |
| 15152 | ElidedNameStream); |
| 15153 | SmallString<256> MangledName; |
| 15154 | llvm::raw_svector_ostream mangledNameStream(MangledName); |
| 15155 | if (Destructor) |
| 15156 | Mangler->mangleCXXDtorThunk(DD: Destructor, Type: VirtualMethodDecl.getDtorType(), |
| 15157 | Thunk, /* elideOverrideInfo */ ElideOverrideInfo: false, |
| 15158 | mangledNameStream); |
| 15159 | else |
| 15160 | Mangler->mangleThunk(MD: Method, Thunk, /* elideOverrideInfo */ ElideOverrideInfo: false, |
| 15161 | mangledNameStream); |
| 15162 | |
| 15163 | Thunks[ElidedName].push_back(Elt: std::string(MangledName)); |
| 15164 | } |
| 15165 | } |
| 15166 | llvm::StringSet<> SimplifiedThunkNames; |
| 15167 | for (auto &ThunkList : Thunks) { |
| 15168 | llvm::sort(C&: ThunkList.second); |
| 15169 | SimplifiedThunkNames.insert(key: ThunkList.second[0]); |
| 15170 | } |
| 15171 | bool Result = SimplifiedThunkNames.contains(key: MangledName); |
| 15172 | ThunksToBeAbbreviated[VirtualMethodDecl] = std::move(SimplifiedThunkNames); |
| 15173 | return Result; |
| 15174 | } |
| 15175 | |