1 | //===--- Interp.h - Interpreter for the constexpr VM ------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Definition of the interpreter state and entry point. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_CLANG_AST_INTERP_INTERP_H |
14 | #define LLVM_CLANG_AST_INTERP_INTERP_H |
15 | |
16 | #include "../ExprConstShared.h" |
17 | #include "BitcastBuffer.h" |
18 | #include "Boolean.h" |
19 | #include "DynamicAllocator.h" |
20 | #include "FixedPoint.h" |
21 | #include "Floating.h" |
22 | #include "Function.h" |
23 | #include "InterpBuiltinBitCast.h" |
24 | #include "InterpFrame.h" |
25 | #include "InterpStack.h" |
26 | #include "InterpState.h" |
27 | #include "MemberPointer.h" |
28 | #include "Opcode.h" |
29 | #include "PrimType.h" |
30 | #include "Program.h" |
31 | #include "State.h" |
32 | #include "clang/AST/ASTContext.h" |
33 | #include "clang/AST/Expr.h" |
34 | #include "llvm/ADT/APFloat.h" |
35 | #include "llvm/ADT/APSInt.h" |
36 | #include <type_traits> |
37 | |
38 | namespace clang { |
39 | namespace interp { |
40 | |
41 | using APSInt = llvm::APSInt; |
42 | using FixedPointSemantics = llvm::FixedPointSemantics; |
43 | |
44 | /// Checks if the variable has externally defined storage. |
45 | bool CheckExtern(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
46 | |
47 | /// Checks if the array is offsetable. |
48 | bool CheckArray(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
49 | |
50 | /// Checks if a pointer is live and accessible. |
51 | bool CheckLive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
52 | AccessKinds AK); |
53 | |
54 | /// Checks if a pointer is a dummy pointer. |
55 | bool CheckDummy(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
56 | AccessKinds AK); |
57 | |
58 | /// Checks if a pointer is null. |
59 | bool CheckNull(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
60 | CheckSubobjectKind CSK); |
61 | |
62 | /// Checks if a pointer is in range. |
63 | bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
64 | AccessKinds AK); |
65 | |
66 | /// Checks if a field from which a pointer is going to be derived is valid. |
67 | bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
68 | CheckSubobjectKind CSK); |
69 | |
70 | /// Checks if Ptr is a one-past-the-end pointer. |
71 | bool CheckSubobject(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
72 | CheckSubobjectKind CSK); |
73 | |
74 | /// Checks if the dowcast using the given offset is possible with the given |
75 | /// pointer. |
76 | bool CheckDowncast(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
77 | uint32_t Offset); |
78 | |
79 | /// Checks if a pointer points to const storage. |
80 | bool CheckConst(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
81 | |
82 | /// Checks if the Descriptor is of a constexpr or const global variable. |
83 | bool CheckConstant(InterpState &S, CodePtr OpPC, const Descriptor *Desc); |
84 | |
85 | /// Checks if a pointer points to a mutable field. |
86 | bool CheckMutable(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
87 | |
88 | /// Checks if a value can be loaded from a block. |
89 | bool CheckLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
90 | AccessKinds AK = AK_Read); |
91 | bool CheckFinalLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
92 | |
93 | bool CheckInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
94 | AccessKinds AK); |
95 | /// Check if a global variable is initialized. |
96 | bool CheckGlobalInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
97 | |
98 | /// Checks if a value can be stored in a block. |
99 | bool CheckStore(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
100 | |
101 | /// Checks if a method can be invoked on an object. |
102 | bool CheckInvoke(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
103 | |
104 | /// Checks if a value can be initialized. |
105 | bool CheckInit(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
106 | |
107 | /// Checks if a method can be called. |
108 | bool CheckCallable(InterpState &S, CodePtr OpPC, const Function *F); |
109 | |
110 | /// Checks if calling the currently active function would exceed |
111 | /// the allowed call depth. |
112 | bool CheckCallDepth(InterpState &S, CodePtr OpPC); |
113 | |
114 | /// Checks the 'this' pointer. |
115 | bool CheckThis(InterpState &S, CodePtr OpPC, const Pointer &This); |
116 | |
117 | /// Checks if all the arguments annotated as 'nonnull' are in fact not null. |
118 | bool CheckNonNullArgs(InterpState &S, CodePtr OpPC, const Function *F, |
119 | const CallExpr *CE, unsigned ArgSize); |
120 | |
121 | /// Checks if dynamic memory allocation is available in the current |
122 | /// language mode. |
123 | bool CheckDynamicMemoryAllocation(InterpState &S, CodePtr OpPC); |
124 | |
125 | /// Diagnose mismatched new[]/delete or new/delete[] pairs. |
126 | bool CheckNewDeleteForms(InterpState &S, CodePtr OpPC, |
127 | DynamicAllocator::Form AllocForm, |
128 | DynamicAllocator::Form DeleteForm, const Descriptor *D, |
129 | const Expr *NewExpr); |
130 | |
131 | /// Check the source of the pointer passed to delete/delete[] has actually |
132 | /// been heap allocated by us. |
133 | bool CheckDeleteSource(InterpState &S, CodePtr OpPC, const Expr *Source, |
134 | const Pointer &Ptr); |
135 | |
136 | bool CheckActive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
137 | AccessKinds AK); |
138 | |
139 | /// Sets the given integral value to the pointer, which is of |
140 | /// a std::{weak,partial,strong}_ordering type. |
141 | bool SetThreeWayComparisonField(InterpState &S, CodePtr OpPC, |
142 | const Pointer &Ptr, const APSInt &IntValue); |
143 | |
144 | /// Copy the contents of Src into Dest. |
145 | bool DoMemcpy(InterpState &S, CodePtr OpPC, const Pointer &Src, Pointer &Dest); |
146 | |
147 | bool CallVar(InterpState &S, CodePtr OpPC, const Function *Func, |
148 | uint32_t VarArgSize); |
149 | bool Call(InterpState &S, CodePtr OpPC, const Function *Func, |
150 | uint32_t VarArgSize); |
151 | bool CallVirt(InterpState &S, CodePtr OpPC, const Function *Func, |
152 | uint32_t VarArgSize); |
153 | bool CallBI(InterpState &S, CodePtr OpPC, const CallExpr *CE, |
154 | uint32_t BuiltinID); |
155 | bool CallPtr(InterpState &S, CodePtr OpPC, uint32_t ArgSize, |
156 | const CallExpr *CE); |
157 | bool CheckLiteralType(InterpState &S, CodePtr OpPC, const Type *T); |
158 | bool InvalidShuffleVectorIndex(InterpState &S, CodePtr OpPC, uint32_t Index); |
159 | bool CheckBitCast(InterpState &S, CodePtr OpPC, bool HasIndeterminateBits, |
160 | bool TargetIsUCharOrByte); |
161 | bool CheckBCPResult(InterpState &S, const Pointer &Ptr); |
162 | bool CheckDestructor(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
163 | |
164 | template <typename T> |
165 | static bool handleOverflow(InterpState &S, CodePtr OpPC, const T &SrcValue) { |
166 | const Expr *E = S.Current->getExpr(PC: OpPC); |
167 | S.CCEDiag(E, diag::note_constexpr_overflow) << SrcValue << E->getType(); |
168 | return S.noteUndefinedBehavior(); |
169 | } |
170 | bool handleFixedPointOverflow(InterpState &S, CodePtr OpPC, |
171 | const FixedPoint &FP); |
172 | |
173 | bool isConstexprUnknown(const Pointer &P); |
174 | |
175 | inline bool CheckArraySize(InterpState &S, CodePtr OpPC, uint64_t NumElems); |
176 | |
177 | enum class ShiftDir { Left, Right }; |
178 | |
179 | /// Checks if the shift operation is legal. |
180 | template <ShiftDir Dir, typename LT, typename RT> |
181 | bool CheckShift(InterpState &S, CodePtr OpPC, const LT &LHS, const RT &RHS, |
182 | unsigned Bits) { |
183 | if (RHS.isNegative()) { |
184 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
185 | S.CCEDiag(Loc, diag::note_constexpr_negative_shift) << RHS.toAPSInt(); |
186 | if (!S.noteUndefinedBehavior()) |
187 | return false; |
188 | } |
189 | |
190 | // C++11 [expr.shift]p1: Shift width must be less than the bit width of |
191 | // the shifted type. |
192 | if (Bits > 1 && RHS >= RT::from(Bits, RHS.bitWidth())) { |
193 | const Expr *E = S.Current->getExpr(PC: OpPC); |
194 | const APSInt Val = RHS.toAPSInt(); |
195 | QualType Ty = E->getType(); |
196 | S.CCEDiag(E, diag::note_constexpr_large_shift) << Val << Ty << Bits; |
197 | if (!S.noteUndefinedBehavior()) |
198 | return false; |
199 | } |
200 | |
201 | if constexpr (Dir == ShiftDir::Left) { |
202 | if (LHS.isSigned() && !S.getLangOpts().CPlusPlus20) { |
203 | // C++11 [expr.shift]p2: A signed left shift must have a non-negative |
204 | // operand, and must not overflow the corresponding unsigned type. |
205 | if (LHS.isNegative()) { |
206 | const Expr *E = S.Current->getExpr(PC: OpPC); |
207 | S.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS.toAPSInt(); |
208 | if (!S.noteUndefinedBehavior()) |
209 | return false; |
210 | } else if (LHS.toUnsigned().countLeadingZeros() < |
211 | static_cast<unsigned>(RHS)) { |
212 | const Expr *E = S.Current->getExpr(PC: OpPC); |
213 | S.CCEDiag(E, diag::note_constexpr_lshift_discards); |
214 | if (!S.noteUndefinedBehavior()) |
215 | return false; |
216 | } |
217 | } |
218 | } |
219 | |
220 | // C++2a [expr.shift]p2: [P0907R4]: |
221 | // E1 << E2 is the unique value congruent to |
222 | // E1 x 2^E2 module 2^N. |
223 | return true; |
224 | } |
225 | |
226 | /// Checks if Div/Rem operation on LHS and RHS is valid. |
227 | template <typename T> |
228 | bool CheckDivRem(InterpState &S, CodePtr OpPC, const T &LHS, const T &RHS) { |
229 | if (RHS.isZero()) { |
230 | const auto *Op = cast<BinaryOperator>(Val: S.Current->getExpr(PC: OpPC)); |
231 | if constexpr (std::is_same_v<T, Floating>) { |
232 | S.CCEDiag(Op, diag::note_expr_divide_by_zero) |
233 | << Op->getRHS()->getSourceRange(); |
234 | return true; |
235 | } |
236 | |
237 | S.FFDiag(Op, diag::note_expr_divide_by_zero) |
238 | << Op->getRHS()->getSourceRange(); |
239 | return false; |
240 | } |
241 | |
242 | if constexpr (!std::is_same_v<T, FixedPoint>) { |
243 | if (LHS.isSigned() && LHS.isMin() && RHS.isNegative() && RHS.isMinusOne()) { |
244 | APSInt LHSInt = LHS.toAPSInt(); |
245 | SmallString<32> Trunc; |
246 | (-LHSInt.extend(width: LHSInt.getBitWidth() + 1)).toString(Str&: Trunc, Radix: 10); |
247 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
248 | const Expr *E = S.Current->getExpr(PC: OpPC); |
249 | S.CCEDiag(Loc, diag::note_constexpr_overflow) << Trunc << E->getType(); |
250 | return false; |
251 | } |
252 | } |
253 | return true; |
254 | } |
255 | |
256 | template <typename SizeT> |
257 | bool CheckArraySize(InterpState &S, CodePtr OpPC, SizeT *NumElements, |
258 | unsigned ElemSize, bool IsNoThrow) { |
259 | // FIXME: Both the SizeT::from() as well as the |
260 | // NumElements.toAPSInt() in this function are rather expensive. |
261 | |
262 | // Can't be too many elements if the bitwidth of NumElements is lower than |
263 | // that of Descriptor::MaxArrayElemBytes. |
264 | if ((NumElements->bitWidth() - NumElements->isSigned()) < |
265 | (sizeof(Descriptor::MaxArrayElemBytes) * 8)) |
266 | return true; |
267 | |
268 | // FIXME: GH63562 |
269 | // APValue stores array extents as unsigned, |
270 | // so anything that is greater that unsigned would overflow when |
271 | // constructing the array, we catch this here. |
272 | SizeT MaxElements = SizeT::from(Descriptor::MaxArrayElemBytes / ElemSize); |
273 | assert(MaxElements.isPositive()); |
274 | if (NumElements->toAPSInt().getActiveBits() > |
275 | ConstantArrayType::getMaxSizeBits(Context: S.getASTContext()) || |
276 | *NumElements > MaxElements) { |
277 | if (!IsNoThrow) { |
278 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
279 | |
280 | if (NumElements->isSigned() && NumElements->isNegative()) { |
281 | S.FFDiag(Loc, diag::note_constexpr_new_negative) |
282 | << NumElements->toDiagnosticString(S.getASTContext()); |
283 | } else { |
284 | S.FFDiag(Loc, diag::note_constexpr_new_too_large) |
285 | << NumElements->toDiagnosticString(S.getASTContext()); |
286 | } |
287 | } |
288 | return false; |
289 | } |
290 | return true; |
291 | } |
292 | |
293 | /// Checks if the result of a floating-point operation is valid |
294 | /// in the current context. |
295 | bool CheckFloatResult(InterpState &S, CodePtr OpPC, const Floating &Result, |
296 | APFloat::opStatus Status, FPOptions FPO); |
297 | |
298 | /// Checks why the given DeclRefExpr is invalid. |
299 | bool CheckDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR); |
300 | |
301 | /// Interpreter entry point. |
302 | bool Interpret(InterpState &S); |
303 | |
304 | /// Interpret a builtin function. |
305 | bool InterpretBuiltin(InterpState &S, CodePtr OpPC, const CallExpr *Call, |
306 | uint32_t BuiltinID); |
307 | |
308 | /// Interpret an offsetof operation. |
309 | bool InterpretOffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E, |
310 | llvm::ArrayRef<int64_t> ArrayIndices, int64_t &Result); |
311 | |
312 | inline bool Invalid(InterpState &S, CodePtr OpPC); |
313 | |
314 | enum class ArithOp { Add, Sub }; |
315 | |
316 | //===----------------------------------------------------------------------===// |
317 | // Returning values |
318 | //===----------------------------------------------------------------------===// |
319 | |
320 | void cleanupAfterFunctionCall(InterpState &S, CodePtr OpPC, |
321 | const Function *Func); |
322 | |
323 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
324 | bool Ret(InterpState &S, CodePtr &PC) { |
325 | const T &Ret = S.Stk.pop<T>(); |
326 | |
327 | assert(S.Current); |
328 | assert(S.Current->getFrameOffset() == S.Stk.size() && "Invalid frame" ); |
329 | if (!S.checkingPotentialConstantExpression() || S.Current->Caller) |
330 | cleanupAfterFunctionCall(S, OpPC: PC, Func: S.Current->getFunction()); |
331 | |
332 | if (InterpFrame *Caller = S.Current->Caller) { |
333 | PC = S.Current->getRetPC(); |
334 | InterpFrame::free(F: S.Current); |
335 | S.Current = Caller; |
336 | S.Stk.push<T>(Ret); |
337 | } else { |
338 | InterpFrame::free(F: S.Current); |
339 | S.Current = nullptr; |
340 | // The topmost frame should come from an EvalEmitter, |
341 | // which has its own implementation of the Ret<> instruction. |
342 | } |
343 | return true; |
344 | } |
345 | |
346 | inline bool RetVoid(InterpState &S, CodePtr &PC) { |
347 | assert(S.Current->getFrameOffset() == S.Stk.size() && "Invalid frame" ); |
348 | |
349 | if (!S.checkingPotentialConstantExpression() || S.Current->Caller) |
350 | cleanupAfterFunctionCall(S, OpPC: PC, Func: S.Current->getFunction()); |
351 | |
352 | if (InterpFrame *Caller = S.Current->Caller) { |
353 | PC = S.Current->getRetPC(); |
354 | InterpFrame::free(F: S.Current); |
355 | S.Current = Caller; |
356 | } else { |
357 | InterpFrame::free(F: S.Current); |
358 | S.Current = nullptr; |
359 | } |
360 | return true; |
361 | } |
362 | |
363 | //===----------------------------------------------------------------------===// |
364 | // Add, Sub, Mul |
365 | //===----------------------------------------------------------------------===// |
366 | |
367 | template <typename T, bool (*OpFW)(T, T, unsigned, T *), |
368 | template <typename U> class OpAP> |
369 | bool AddSubMulHelper(InterpState &S, CodePtr OpPC, unsigned Bits, const T &LHS, |
370 | const T &RHS) { |
371 | // Fast path - add the numbers with fixed width. |
372 | T Result; |
373 | if (!OpFW(LHS, RHS, Bits, &Result)) { |
374 | S.Stk.push<T>(Result); |
375 | return true; |
376 | } |
377 | // If for some reason evaluation continues, use the truncated results. |
378 | S.Stk.push<T>(Result); |
379 | |
380 | // Short-circuit fixed-points here since the error handling is easier. |
381 | if constexpr (std::is_same_v<T, FixedPoint>) |
382 | return handleFixedPointOverflow(S, OpPC, Result); |
383 | |
384 | // Slow path - compute the result using another bit of precision. |
385 | APSInt Value = OpAP<APSInt>()(LHS.toAPSInt(Bits), RHS.toAPSInt(Bits)); |
386 | |
387 | // Report undefined behaviour, stopping if required. |
388 | if (S.checkingForUndefinedBehavior()) { |
389 | const Expr *E = S.Current->getExpr(PC: OpPC); |
390 | QualType Type = E->getType(); |
391 | SmallString<32> Trunc; |
392 | Value.trunc(width: Result.bitWidth()) |
393 | .toString(Trunc, 10, Result.isSigned(), /*formatAsCLiteral=*/false, |
394 | /*UpperCase=*/true, /*InsertSeparators=*/true); |
395 | S.report(E->getExprLoc(), diag::warn_integer_constant_overflow) |
396 | << Trunc << Type << E->getSourceRange(); |
397 | } |
398 | |
399 | if (!handleOverflow(S, OpPC, SrcValue: Value)) { |
400 | S.Stk.pop<T>(); |
401 | return false; |
402 | } |
403 | return true; |
404 | } |
405 | |
406 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
407 | bool Add(InterpState &S, CodePtr OpPC) { |
408 | const T &RHS = S.Stk.pop<T>(); |
409 | const T &LHS = S.Stk.pop<T>(); |
410 | const unsigned Bits = RHS.bitWidth() + 1; |
411 | return AddSubMulHelper<T, T::add, std::plus>(S, OpPC, Bits, LHS, RHS); |
412 | } |
413 | |
414 | static inline llvm::RoundingMode getRoundingMode(FPOptions FPO) { |
415 | auto RM = FPO.getRoundingMode(); |
416 | if (RM == llvm::RoundingMode::Dynamic) |
417 | return llvm::RoundingMode::NearestTiesToEven; |
418 | return RM; |
419 | } |
420 | |
421 | inline bool Addf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
422 | const Floating &RHS = S.Stk.pop<Floating>(); |
423 | const Floating &LHS = S.Stk.pop<Floating>(); |
424 | |
425 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
426 | Floating Result; |
427 | auto Status = Floating::add(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
428 | S.Stk.push<Floating>(Args&: Result); |
429 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
430 | } |
431 | |
432 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
433 | bool Sub(InterpState &S, CodePtr OpPC) { |
434 | const T &RHS = S.Stk.pop<T>(); |
435 | const T &LHS = S.Stk.pop<T>(); |
436 | const unsigned Bits = RHS.bitWidth() + 1; |
437 | return AddSubMulHelper<T, T::sub, std::minus>(S, OpPC, Bits, LHS, RHS); |
438 | } |
439 | |
440 | inline bool Subf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
441 | const Floating &RHS = S.Stk.pop<Floating>(); |
442 | const Floating &LHS = S.Stk.pop<Floating>(); |
443 | |
444 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
445 | Floating Result; |
446 | auto Status = Floating::sub(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
447 | S.Stk.push<Floating>(Args&: Result); |
448 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
449 | } |
450 | |
451 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
452 | bool Mul(InterpState &S, CodePtr OpPC) { |
453 | const T &RHS = S.Stk.pop<T>(); |
454 | const T &LHS = S.Stk.pop<T>(); |
455 | const unsigned Bits = RHS.bitWidth() * 2; |
456 | return AddSubMulHelper<T, T::mul, std::multiplies>(S, OpPC, Bits, LHS, RHS); |
457 | } |
458 | |
459 | inline bool Mulf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
460 | const Floating &RHS = S.Stk.pop<Floating>(); |
461 | const Floating &LHS = S.Stk.pop<Floating>(); |
462 | |
463 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
464 | Floating Result; |
465 | auto Status = Floating::mul(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
466 | S.Stk.push<Floating>(Args&: Result); |
467 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
468 | } |
469 | |
470 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
471 | inline bool Mulc(InterpState &S, CodePtr OpPC) { |
472 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
473 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
474 | const Pointer &Result = S.Stk.peek<Pointer>(); |
475 | |
476 | if constexpr (std::is_same_v<T, Floating>) { |
477 | APFloat A = LHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
478 | APFloat B = LHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
479 | APFloat C = RHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
480 | APFloat D = RHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
481 | |
482 | APFloat ResR(A.getSemantics()); |
483 | APFloat ResI(A.getSemantics()); |
484 | HandleComplexComplexMul(A, B, C, D, ResR, ResI); |
485 | |
486 | // Copy into the result. |
487 | Result.atIndex(Idx: 0).deref<Floating>() = Floating(ResR); |
488 | Result.atIndex(Idx: 0).initialize(); |
489 | Result.atIndex(Idx: 1).deref<Floating>() = Floating(ResI); |
490 | Result.atIndex(Idx: 1).initialize(); |
491 | Result.initialize(); |
492 | } else { |
493 | // Integer element type. |
494 | const T &LHSR = LHS.atIndex(Idx: 0).deref<T>(); |
495 | const T &LHSI = LHS.atIndex(Idx: 1).deref<T>(); |
496 | const T &RHSR = RHS.atIndex(Idx: 0).deref<T>(); |
497 | const T &RHSI = RHS.atIndex(Idx: 1).deref<T>(); |
498 | unsigned Bits = LHSR.bitWidth(); |
499 | |
500 | // real(Result) = (real(LHS) * real(RHS)) - (imag(LHS) * imag(RHS)) |
501 | T A; |
502 | if (T::mul(LHSR, RHSR, Bits, &A)) |
503 | return false; |
504 | T B; |
505 | if (T::mul(LHSI, RHSI, Bits, &B)) |
506 | return false; |
507 | if (T::sub(A, B, Bits, &Result.atIndex(Idx: 0).deref<T>())) |
508 | return false; |
509 | Result.atIndex(Idx: 0).initialize(); |
510 | |
511 | // imag(Result) = (real(LHS) * imag(RHS)) + (imag(LHS) * real(RHS)) |
512 | if (T::mul(LHSR, RHSI, Bits, &A)) |
513 | return false; |
514 | if (T::mul(LHSI, RHSR, Bits, &B)) |
515 | return false; |
516 | if (T::add(A, B, Bits, &Result.atIndex(Idx: 1).deref<T>())) |
517 | return false; |
518 | Result.atIndex(Idx: 1).initialize(); |
519 | Result.initialize(); |
520 | } |
521 | |
522 | return true; |
523 | } |
524 | |
525 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
526 | inline bool Divc(InterpState &S, CodePtr OpPC) { |
527 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
528 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
529 | const Pointer &Result = S.Stk.peek<Pointer>(); |
530 | |
531 | if constexpr (std::is_same_v<T, Floating>) { |
532 | APFloat A = LHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
533 | APFloat B = LHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
534 | APFloat C = RHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
535 | APFloat D = RHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
536 | |
537 | APFloat ResR(A.getSemantics()); |
538 | APFloat ResI(A.getSemantics()); |
539 | HandleComplexComplexDiv(A, B, C, D, ResR, ResI); |
540 | |
541 | // Copy into the result. |
542 | Result.atIndex(Idx: 0).deref<Floating>() = Floating(ResR); |
543 | Result.atIndex(Idx: 0).initialize(); |
544 | Result.atIndex(Idx: 1).deref<Floating>() = Floating(ResI); |
545 | Result.atIndex(Idx: 1).initialize(); |
546 | Result.initialize(); |
547 | } else { |
548 | // Integer element type. |
549 | const T &LHSR = LHS.atIndex(Idx: 0).deref<T>(); |
550 | const T &LHSI = LHS.atIndex(Idx: 1).deref<T>(); |
551 | const T &RHSR = RHS.atIndex(Idx: 0).deref<T>(); |
552 | const T &RHSI = RHS.atIndex(Idx: 1).deref<T>(); |
553 | unsigned Bits = LHSR.bitWidth(); |
554 | const T Zero = T::from(0, Bits); |
555 | |
556 | if (Compare(RHSR, Zero) == ComparisonCategoryResult::Equal && |
557 | Compare(RHSI, Zero) == ComparisonCategoryResult::Equal) { |
558 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
559 | S.FFDiag(E, diag::note_expr_divide_by_zero); |
560 | return false; |
561 | } |
562 | |
563 | // Den = real(RHS)² + imag(RHS)² |
564 | T A, B; |
565 | if (T::mul(RHSR, RHSR, Bits, &A) || T::mul(RHSI, RHSI, Bits, &B)) { |
566 | // Ignore overflow here, because that's what the current interpeter does. |
567 | } |
568 | T Den; |
569 | if (T::add(A, B, Bits, &Den)) |
570 | return false; |
571 | |
572 | if (Compare(Den, Zero) == ComparisonCategoryResult::Equal) { |
573 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
574 | S.FFDiag(E, diag::note_expr_divide_by_zero); |
575 | return false; |
576 | } |
577 | |
578 | // real(Result) = ((real(LHS) * real(RHS)) + (imag(LHS) * imag(RHS))) / Den |
579 | T &ResultR = Result.atIndex(Idx: 0).deref<T>(); |
580 | T &ResultI = Result.atIndex(Idx: 1).deref<T>(); |
581 | |
582 | if (T::mul(LHSR, RHSR, Bits, &A) || T::mul(LHSI, RHSI, Bits, &B)) |
583 | return false; |
584 | if (T::add(A, B, Bits, &ResultR)) |
585 | return false; |
586 | if (T::div(ResultR, Den, Bits, &ResultR)) |
587 | return false; |
588 | Result.atIndex(Idx: 0).initialize(); |
589 | |
590 | // imag(Result) = ((imag(LHS) * real(RHS)) - (real(LHS) * imag(RHS))) / Den |
591 | if (T::mul(LHSI, RHSR, Bits, &A) || T::mul(LHSR, RHSI, Bits, &B)) |
592 | return false; |
593 | if (T::sub(A, B, Bits, &ResultI)) |
594 | return false; |
595 | if (T::div(ResultI, Den, Bits, &ResultI)) |
596 | return false; |
597 | Result.atIndex(Idx: 1).initialize(); |
598 | Result.initialize(); |
599 | } |
600 | |
601 | return true; |
602 | } |
603 | |
604 | /// 1) Pops the RHS from the stack. |
605 | /// 2) Pops the LHS from the stack. |
606 | /// 3) Pushes 'LHS & RHS' on the stack |
607 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
608 | bool BitAnd(InterpState &S, CodePtr OpPC) { |
609 | const T &RHS = S.Stk.pop<T>(); |
610 | const T &LHS = S.Stk.pop<T>(); |
611 | |
612 | unsigned Bits = RHS.bitWidth(); |
613 | T Result; |
614 | if (!T::bitAnd(LHS, RHS, Bits, &Result)) { |
615 | S.Stk.push<T>(Result); |
616 | return true; |
617 | } |
618 | return false; |
619 | } |
620 | |
621 | /// 1) Pops the RHS from the stack. |
622 | /// 2) Pops the LHS from the stack. |
623 | /// 3) Pushes 'LHS | RHS' on the stack |
624 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
625 | bool BitOr(InterpState &S, CodePtr OpPC) { |
626 | const T &RHS = S.Stk.pop<T>(); |
627 | const T &LHS = S.Stk.pop<T>(); |
628 | |
629 | unsigned Bits = RHS.bitWidth(); |
630 | T Result; |
631 | if (!T::bitOr(LHS, RHS, Bits, &Result)) { |
632 | S.Stk.push<T>(Result); |
633 | return true; |
634 | } |
635 | return false; |
636 | } |
637 | |
638 | /// 1) Pops the RHS from the stack. |
639 | /// 2) Pops the LHS from the stack. |
640 | /// 3) Pushes 'LHS ^ RHS' on the stack |
641 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
642 | bool BitXor(InterpState &S, CodePtr OpPC) { |
643 | const T &RHS = S.Stk.pop<T>(); |
644 | const T &LHS = S.Stk.pop<T>(); |
645 | |
646 | unsigned Bits = RHS.bitWidth(); |
647 | T Result; |
648 | if (!T::bitXor(LHS, RHS, Bits, &Result)) { |
649 | S.Stk.push<T>(Result); |
650 | return true; |
651 | } |
652 | return false; |
653 | } |
654 | |
655 | /// 1) Pops the RHS from the stack. |
656 | /// 2) Pops the LHS from the stack. |
657 | /// 3) Pushes 'LHS % RHS' on the stack (the remainder of dividing LHS by RHS). |
658 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
659 | bool Rem(InterpState &S, CodePtr OpPC) { |
660 | const T &RHS = S.Stk.pop<T>(); |
661 | const T &LHS = S.Stk.pop<T>(); |
662 | |
663 | if (!CheckDivRem(S, OpPC, LHS, RHS)) |
664 | return false; |
665 | |
666 | const unsigned Bits = RHS.bitWidth() * 2; |
667 | T Result; |
668 | if (!T::rem(LHS, RHS, Bits, &Result)) { |
669 | S.Stk.push<T>(Result); |
670 | return true; |
671 | } |
672 | return false; |
673 | } |
674 | |
675 | /// 1) Pops the RHS from the stack. |
676 | /// 2) Pops the LHS from the stack. |
677 | /// 3) Pushes 'LHS / RHS' on the stack |
678 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
679 | bool Div(InterpState &S, CodePtr OpPC) { |
680 | const T &RHS = S.Stk.pop<T>(); |
681 | const T &LHS = S.Stk.pop<T>(); |
682 | |
683 | if (!CheckDivRem(S, OpPC, LHS, RHS)) |
684 | return false; |
685 | |
686 | const unsigned Bits = RHS.bitWidth() * 2; |
687 | T Result; |
688 | if (!T::div(LHS, RHS, Bits, &Result)) { |
689 | S.Stk.push<T>(Result); |
690 | return true; |
691 | } |
692 | |
693 | if constexpr (std::is_same_v<T, FixedPoint>) { |
694 | if (handleFixedPointOverflow(S, OpPC, Result)) { |
695 | S.Stk.push<T>(Result); |
696 | return true; |
697 | } |
698 | } |
699 | return false; |
700 | } |
701 | |
702 | inline bool Divf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
703 | const Floating &RHS = S.Stk.pop<Floating>(); |
704 | const Floating &LHS = S.Stk.pop<Floating>(); |
705 | |
706 | if (!CheckDivRem(S, OpPC, LHS, RHS)) |
707 | return false; |
708 | |
709 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
710 | Floating Result; |
711 | auto Status = Floating::div(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
712 | S.Stk.push<Floating>(Args&: Result); |
713 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
714 | } |
715 | |
716 | //===----------------------------------------------------------------------===// |
717 | // Inv |
718 | //===----------------------------------------------------------------------===// |
719 | |
720 | inline bool Inv(InterpState &S, CodePtr OpPC) { |
721 | const auto &Val = S.Stk.pop<Boolean>(); |
722 | S.Stk.push<Boolean>(Args: !Val); |
723 | return true; |
724 | } |
725 | |
726 | //===----------------------------------------------------------------------===// |
727 | // Neg |
728 | //===----------------------------------------------------------------------===// |
729 | |
730 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
731 | bool Neg(InterpState &S, CodePtr OpPC) { |
732 | const T &Value = S.Stk.pop<T>(); |
733 | T Result; |
734 | |
735 | if (!T::neg(Value, &Result)) { |
736 | S.Stk.push<T>(Result); |
737 | return true; |
738 | } |
739 | |
740 | assert(isIntegralType(Name) && |
741 | "don't expect other types to fail at constexpr negation" ); |
742 | S.Stk.push<T>(Result); |
743 | |
744 | APSInt NegatedValue = -Value.toAPSInt(Value.bitWidth() + 1); |
745 | if (S.checkingForUndefinedBehavior()) { |
746 | const Expr *E = S.Current->getExpr(PC: OpPC); |
747 | QualType Type = E->getType(); |
748 | SmallString<32> Trunc; |
749 | NegatedValue.trunc(width: Result.bitWidth()) |
750 | .toString(Trunc, 10, Result.isSigned(), /*formatAsCLiteral=*/false, |
751 | /*UpperCase=*/true, /*InsertSeparators=*/true); |
752 | S.report(E->getExprLoc(), diag::warn_integer_constant_overflow) |
753 | << Trunc << Type << E->getSourceRange(); |
754 | return true; |
755 | } |
756 | |
757 | return handleOverflow(S, OpPC, SrcValue: NegatedValue); |
758 | } |
759 | |
760 | enum class PushVal : bool { |
761 | No, |
762 | Yes, |
763 | }; |
764 | enum class IncDecOp { |
765 | Inc, |
766 | Dec, |
767 | }; |
768 | |
769 | template <typename T, IncDecOp Op, PushVal DoPush> |
770 | bool IncDecHelper(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
771 | bool CanOverflow) { |
772 | assert(!Ptr.isDummy()); |
773 | |
774 | if (!S.inConstantContext()) { |
775 | if (isConstexprUnknown(P: Ptr)) |
776 | return false; |
777 | } |
778 | |
779 | if constexpr (std::is_same_v<T, Boolean>) { |
780 | if (!S.getLangOpts().CPlusPlus14) |
781 | return Invalid(S, OpPC); |
782 | } |
783 | |
784 | const T &Value = Ptr.deref<T>(); |
785 | T Result; |
786 | |
787 | if constexpr (DoPush == PushVal::Yes) |
788 | S.Stk.push<T>(Value); |
789 | |
790 | if constexpr (Op == IncDecOp::Inc) { |
791 | if (!T::increment(Value, &Result) || !CanOverflow) { |
792 | Ptr.deref<T>() = Result; |
793 | return true; |
794 | } |
795 | } else { |
796 | if (!T::decrement(Value, &Result) || !CanOverflow) { |
797 | Ptr.deref<T>() = Result; |
798 | return true; |
799 | } |
800 | } |
801 | assert(CanOverflow); |
802 | |
803 | // Something went wrong with the previous operation. Compute the |
804 | // result with another bit of precision. |
805 | unsigned Bits = Value.bitWidth() + 1; |
806 | APSInt APResult; |
807 | if constexpr (Op == IncDecOp::Inc) |
808 | APResult = ++Value.toAPSInt(Bits); |
809 | else |
810 | APResult = --Value.toAPSInt(Bits); |
811 | |
812 | // Report undefined behaviour, stopping if required. |
813 | if (S.checkingForUndefinedBehavior()) { |
814 | const Expr *E = S.Current->getExpr(PC: OpPC); |
815 | QualType Type = E->getType(); |
816 | SmallString<32> Trunc; |
817 | APResult.trunc(width: Result.bitWidth()) |
818 | .toString(Trunc, 10, Result.isSigned(), /*formatAsCLiteral=*/false, |
819 | /*UpperCase=*/true, /*InsertSeparators=*/true); |
820 | S.report(E->getExprLoc(), diag::warn_integer_constant_overflow) |
821 | << Trunc << Type << E->getSourceRange(); |
822 | return true; |
823 | } |
824 | return handleOverflow(S, OpPC, SrcValue: APResult); |
825 | } |
826 | |
827 | /// 1) Pops a pointer from the stack |
828 | /// 2) Load the value from the pointer |
829 | /// 3) Writes the value increased by one back to the pointer |
830 | /// 4) Pushes the original (pre-inc) value on the stack. |
831 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
832 | bool Inc(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
833 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
834 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
835 | return false; |
836 | |
837 | return IncDecHelper<T, IncDecOp::Inc, PushVal::Yes>(S, OpPC, Ptr, |
838 | CanOverflow); |
839 | } |
840 | |
841 | /// 1) Pops a pointer from the stack |
842 | /// 2) Load the value from the pointer |
843 | /// 3) Writes the value increased by one back to the pointer |
844 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
845 | bool IncPop(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
846 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
847 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
848 | return false; |
849 | |
850 | return IncDecHelper<T, IncDecOp::Inc, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
851 | } |
852 | |
853 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
854 | bool PreInc(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
855 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
856 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
857 | return false; |
858 | |
859 | return IncDecHelper<T, IncDecOp::Inc, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
860 | } |
861 | |
862 | /// 1) Pops a pointer from the stack |
863 | /// 2) Load the value from the pointer |
864 | /// 3) Writes the value decreased by one back to the pointer |
865 | /// 4) Pushes the original (pre-dec) value on the stack. |
866 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
867 | bool Dec(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
868 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
869 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
870 | return false; |
871 | |
872 | return IncDecHelper<T, IncDecOp::Dec, PushVal::Yes>(S, OpPC, Ptr, |
873 | CanOverflow); |
874 | } |
875 | |
876 | /// 1) Pops a pointer from the stack |
877 | /// 2) Load the value from the pointer |
878 | /// 3) Writes the value decreased by one back to the pointer |
879 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
880 | bool DecPop(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
881 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
882 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
883 | return false; |
884 | |
885 | return IncDecHelper<T, IncDecOp::Dec, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
886 | } |
887 | |
888 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
889 | bool PreDec(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
890 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
891 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
892 | return false; |
893 | |
894 | return IncDecHelper<T, IncDecOp::Dec, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
895 | } |
896 | |
897 | template <IncDecOp Op, PushVal DoPush> |
898 | bool IncDecFloatHelper(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
899 | uint32_t FPOI) { |
900 | Floating Value = Ptr.deref<Floating>(); |
901 | Floating Result; |
902 | |
903 | if constexpr (DoPush == PushVal::Yes) |
904 | S.Stk.push<Floating>(Args&: Value); |
905 | |
906 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
907 | llvm::APFloat::opStatus Status; |
908 | if constexpr (Op == IncDecOp::Inc) |
909 | Status = Floating::increment(A: Value, RM: getRoundingMode(FPO), R: &Result); |
910 | else |
911 | Status = Floating::decrement(A: Value, RM: getRoundingMode(FPO), R: &Result); |
912 | |
913 | Ptr.deref<Floating>() = Result; |
914 | |
915 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
916 | } |
917 | |
918 | inline bool Incf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
919 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
920 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
921 | return false; |
922 | |
923 | return IncDecFloatHelper<IncDecOp::Inc, PushVal::Yes>(S, OpPC, Ptr, FPOI); |
924 | } |
925 | |
926 | inline bool IncfPop(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
927 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
928 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
929 | return false; |
930 | |
931 | return IncDecFloatHelper<IncDecOp::Inc, PushVal::No>(S, OpPC, Ptr, FPOI); |
932 | } |
933 | |
934 | inline bool Decf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
935 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
936 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
937 | return false; |
938 | |
939 | return IncDecFloatHelper<IncDecOp::Dec, PushVal::Yes>(S, OpPC, Ptr, FPOI); |
940 | } |
941 | |
942 | inline bool DecfPop(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
943 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
944 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
945 | return false; |
946 | |
947 | return IncDecFloatHelper<IncDecOp::Dec, PushVal::No>(S, OpPC, Ptr, FPOI); |
948 | } |
949 | |
950 | /// 1) Pops the value from the stack. |
951 | /// 2) Pushes the bitwise complemented value on the stack (~V). |
952 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
953 | bool Comp(InterpState &S, CodePtr OpPC) { |
954 | const T &Val = S.Stk.pop<T>(); |
955 | T Result; |
956 | if (!T::comp(Val, &Result)) { |
957 | S.Stk.push<T>(Result); |
958 | return true; |
959 | } |
960 | |
961 | return false; |
962 | } |
963 | |
964 | //===----------------------------------------------------------------------===// |
965 | // EQ, NE, GT, GE, LT, LE |
966 | //===----------------------------------------------------------------------===// |
967 | |
968 | using CompareFn = llvm::function_ref<bool(ComparisonCategoryResult)>; |
969 | |
970 | template <typename T> |
971 | bool CmpHelper(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
972 | assert((!std::is_same_v<T, MemberPointer>) && |
973 | "Non-equality comparisons on member pointer types should already be " |
974 | "rejected in Sema." ); |
975 | using BoolT = PrimConv<PT_Bool>::T; |
976 | const T &RHS = S.Stk.pop<T>(); |
977 | const T &LHS = S.Stk.pop<T>(); |
978 | S.Stk.push<BoolT>(BoolT::from(Fn(LHS.compare(RHS)))); |
979 | return true; |
980 | } |
981 | |
982 | template <typename T> |
983 | bool CmpHelperEQ(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
984 | return CmpHelper<T>(S, OpPC, Fn); |
985 | } |
986 | |
987 | template <> |
988 | inline bool CmpHelper<Pointer>(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
989 | using BoolT = PrimConv<PT_Bool>::T; |
990 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
991 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
992 | |
993 | // Function pointers cannot be compared in an ordered way. |
994 | if (LHS.isFunctionPointer() || RHS.isFunctionPointer() || |
995 | LHS.isTypeidPointer() || RHS.isTypeidPointer()) { |
996 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
997 | S.FFDiag(Loc, diag::note_constexpr_pointer_comparison_unspecified) |
998 | << LHS.toDiagnosticString(S.getASTContext()) |
999 | << RHS.toDiagnosticString(S.getASTContext()); |
1000 | return false; |
1001 | } |
1002 | |
1003 | if (!Pointer::hasSameBase(A: LHS, B: RHS)) { |
1004 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1005 | S.FFDiag(Loc, diag::note_constexpr_pointer_comparison_unspecified) |
1006 | << LHS.toDiagnosticString(S.getASTContext()) |
1007 | << RHS.toDiagnosticString(S.getASTContext()); |
1008 | return false; |
1009 | } |
1010 | |
1011 | // Diagnose comparisons between fields with different access specifiers. |
1012 | if (std::optional<std::pair<Pointer, Pointer>> Split = |
1013 | Pointer::computeSplitPoint(A: LHS, B: RHS)) { |
1014 | const FieldDecl *LF = Split->first.getField(); |
1015 | const FieldDecl *RF = Split->second.getField(); |
1016 | if (LF && RF && !LF->getParent()->isUnion() && |
1017 | LF->getAccess() != RF->getAccess()) { |
1018 | S.CCEDiag(S.Current->getSource(OpPC), |
1019 | diag::note_constexpr_pointer_comparison_differing_access) |
1020 | << LF << LF->getAccess() << RF << RF->getAccess() << LF->getParent(); |
1021 | } |
1022 | } |
1023 | |
1024 | unsigned VL = LHS.getByteOffset(); |
1025 | unsigned VR = RHS.getByteOffset(); |
1026 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: VL, Y: VR)))); |
1027 | return true; |
1028 | } |
1029 | |
1030 | static inline bool IsOpaqueConstantCall(const CallExpr *E) { |
1031 | unsigned Builtin = E->getBuiltinCallee(); |
1032 | return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || |
1033 | Builtin == Builtin::BI__builtin___NSStringMakeConstantString || |
1034 | Builtin == Builtin::BI__builtin_ptrauth_sign_constant || |
1035 | Builtin == Builtin::BI__builtin_function_start); |
1036 | } |
1037 | |
1038 | bool arePotentiallyOverlappingStringLiterals(const Pointer &LHS, |
1039 | const Pointer &RHS); |
1040 | |
1041 | template <> |
1042 | inline bool CmpHelperEQ<Pointer>(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
1043 | using BoolT = PrimConv<PT_Bool>::T; |
1044 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
1045 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
1046 | |
1047 | if (LHS.isZero() && RHS.isZero()) { |
1048 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(ComparisonCategoryResult::Equal))); |
1049 | return true; |
1050 | } |
1051 | |
1052 | // Reject comparisons to weak pointers. |
1053 | for (const auto &P : {LHS, RHS}) { |
1054 | if (P.isZero()) |
1055 | continue; |
1056 | if (P.isWeak()) { |
1057 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1058 | S.FFDiag(Loc, diag::note_constexpr_pointer_weak_comparison) |
1059 | << P.toDiagnosticString(S.getASTContext()); |
1060 | return false; |
1061 | } |
1062 | } |
1063 | |
1064 | if (!S.inConstantContext()) { |
1065 | if (isConstexprUnknown(P: LHS) || isConstexprUnknown(P: RHS)) |
1066 | return false; |
1067 | } |
1068 | |
1069 | if (LHS.isFunctionPointer() && RHS.isFunctionPointer()) { |
1070 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: LHS.getIntegerRepresentation(), |
1071 | Y: RHS.getIntegerRepresentation())))); |
1072 | return true; |
1073 | } |
1074 | |
1075 | // FIXME: The source check here isn't entirely correct. |
1076 | if (LHS.pointsToStringLiteral() && RHS.pointsToStringLiteral() && |
1077 | LHS.getFieldDesc()->asExpr() != RHS.getFieldDesc()->asExpr()) { |
1078 | if (arePotentiallyOverlappingStringLiterals(LHS, RHS)) { |
1079 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1080 | S.FFDiag(Loc, diag::note_constexpr_literal_comparison) |
1081 | << LHS.toDiagnosticString(S.getASTContext()) |
1082 | << RHS.toDiagnosticString(S.getASTContext()); |
1083 | return false; |
1084 | } |
1085 | } |
1086 | |
1087 | if (Pointer::hasSameBase(A: LHS, B: RHS)) { |
1088 | if (LHS.inUnion() && RHS.inUnion()) { |
1089 | // If the pointers point into a union, things are a little more |
1090 | // complicated since the offset we save in interp::Pointer can't be used |
1091 | // to compare the pointers directly. |
1092 | size_t A = LHS.computeOffsetForComparison(); |
1093 | size_t B = RHS.computeOffsetForComparison(); |
1094 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: A, Y: B)))); |
1095 | return true; |
1096 | } |
1097 | |
1098 | unsigned VL = LHS.getByteOffset(); |
1099 | unsigned VR = RHS.getByteOffset(); |
1100 | // In our Pointer class, a pointer to an array and a pointer to the first |
1101 | // element in the same array are NOT equal. They have the same Base value, |
1102 | // but a different Offset. This is a pretty rare case, so we fix this here |
1103 | // by comparing pointers to the first elements. |
1104 | if (!LHS.isZero() && LHS.isArrayRoot()) |
1105 | VL = LHS.atIndex(Idx: 0).getByteOffset(); |
1106 | if (!RHS.isZero() && RHS.isArrayRoot()) |
1107 | VR = RHS.atIndex(Idx: 0).getByteOffset(); |
1108 | |
1109 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: VL, Y: VR)))); |
1110 | return true; |
1111 | } |
1112 | // Otherwise we need to do a bunch of extra checks before returning Unordered. |
1113 | if (LHS.isOnePastEnd() && !RHS.isOnePastEnd() && !RHS.isZero() && |
1114 | RHS.getOffset() == 0) { |
1115 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1116 | S.FFDiag(Loc, diag::note_constexpr_pointer_comparison_past_end) |
1117 | << LHS.toDiagnosticString(S.getASTContext()); |
1118 | return false; |
1119 | } else if (RHS.isOnePastEnd() && !LHS.isOnePastEnd() && !LHS.isZero() && |
1120 | LHS.getOffset() == 0) { |
1121 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1122 | S.FFDiag(Loc, diag::note_constexpr_pointer_comparison_past_end) |
1123 | << RHS.toDiagnosticString(S.getASTContext()); |
1124 | return false; |
1125 | } |
1126 | |
1127 | bool BothNonNull = !LHS.isZero() && !RHS.isZero(); |
1128 | // Reject comparisons to literals. |
1129 | for (const auto &P : {LHS, RHS}) { |
1130 | if (P.isZero()) |
1131 | continue; |
1132 | if (BothNonNull && P.pointsToLiteral()) { |
1133 | const Expr *E = P.getDeclDesc()->asExpr(); |
1134 | if (isa<StringLiteral>(Val: E)) { |
1135 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1136 | S.FFDiag(Loc, diag::note_constexpr_literal_comparison); |
1137 | return false; |
1138 | } else if (const auto *CE = dyn_cast<CallExpr>(Val: E); |
1139 | CE && IsOpaqueConstantCall(E: CE)) { |
1140 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1141 | S.FFDiag(Loc, diag::note_constexpr_opaque_call_comparison) |
1142 | << P.toDiagnosticString(S.getASTContext()); |
1143 | return false; |
1144 | } |
1145 | } else if (BothNonNull && P.isIntegralPointer()) { |
1146 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1147 | S.FFDiag(Loc, diag::note_constexpr_pointer_constant_comparison) |
1148 | << LHS.toDiagnosticString(S.getASTContext()) |
1149 | << RHS.toDiagnosticString(S.getASTContext()); |
1150 | return false; |
1151 | } |
1152 | } |
1153 | |
1154 | if (LHS.isUnknownSizeArray() && RHS.isUnknownSizeArray()) { |
1155 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1156 | S.FFDiag(Loc, diag::note_constexpr_pointer_comparison_zero_sized) |
1157 | << LHS.toDiagnosticString(S.getASTContext()) |
1158 | << RHS.toDiagnosticString(S.getASTContext()); |
1159 | return false; |
1160 | } |
1161 | |
1162 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(ComparisonCategoryResult::Unordered))); |
1163 | return true; |
1164 | } |
1165 | |
1166 | template <> |
1167 | inline bool CmpHelperEQ<MemberPointer>(InterpState &S, CodePtr OpPC, |
1168 | CompareFn Fn) { |
1169 | const auto &RHS = S.Stk.pop<MemberPointer>(); |
1170 | const auto &LHS = S.Stk.pop<MemberPointer>(); |
1171 | |
1172 | // If either operand is a pointer to a weak function, the comparison is not |
1173 | // constant. |
1174 | for (const auto &MP : {LHS, RHS}) { |
1175 | if (MP.isWeak()) { |
1176 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1177 | S.FFDiag(Loc, diag::note_constexpr_mem_pointer_weak_comparison) |
1178 | << MP.getMemberFunction(); |
1179 | return false; |
1180 | } |
1181 | } |
1182 | |
1183 | // C++11 [expr.eq]p2: |
1184 | // If both operands are null, they compare equal. Otherwise if only one is |
1185 | // null, they compare unequal. |
1186 | if (LHS.isZero() && RHS.isZero()) { |
1187 | S.Stk.push<Boolean>(Args: Fn(ComparisonCategoryResult::Equal)); |
1188 | return true; |
1189 | } |
1190 | if (LHS.isZero() || RHS.isZero()) { |
1191 | S.Stk.push<Boolean>(Args: Fn(ComparisonCategoryResult::Unordered)); |
1192 | return true; |
1193 | } |
1194 | |
1195 | // We cannot compare against virtual declarations at compile time. |
1196 | for (const auto &MP : {LHS, RHS}) { |
1197 | if (const CXXMethodDecl *MD = MP.getMemberFunction(); |
1198 | MD && MD->isVirtual()) { |
1199 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1200 | S.CCEDiag(Loc, diag::note_constexpr_compare_virtual_mem_ptr) << MD; |
1201 | } |
1202 | } |
1203 | |
1204 | S.Stk.push<Boolean>(Args: Boolean::from(Value: Fn(LHS.compare(RHS)))); |
1205 | return true; |
1206 | } |
1207 | |
1208 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1209 | bool EQ(InterpState &S, CodePtr OpPC) { |
1210 | return CmpHelperEQ<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1211 | return R == ComparisonCategoryResult::Equal; |
1212 | }); |
1213 | } |
1214 | |
1215 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1216 | bool CMP3(InterpState &S, CodePtr OpPC, const ComparisonCategoryInfo *CmpInfo) { |
1217 | const T &RHS = S.Stk.pop<T>(); |
1218 | const T &LHS = S.Stk.pop<T>(); |
1219 | const Pointer &P = S.Stk.peek<Pointer>(); |
1220 | |
1221 | ComparisonCategoryResult CmpResult = LHS.compare(RHS); |
1222 | if constexpr (std::is_same_v<T, Pointer>) { |
1223 | if (CmpResult == ComparisonCategoryResult::Unordered) { |
1224 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1225 | S.FFDiag(Loc, diag::note_constexpr_pointer_comparison_unspecified) |
1226 | << LHS.toDiagnosticString(S.getASTContext()) |
1227 | << RHS.toDiagnosticString(S.getASTContext()); |
1228 | return false; |
1229 | } |
1230 | } |
1231 | |
1232 | assert(CmpInfo); |
1233 | const auto *CmpValueInfo = |
1234 | CmpInfo->getValueInfo(ValueKind: CmpInfo->makeWeakResult(Res: CmpResult)); |
1235 | assert(CmpValueInfo); |
1236 | assert(CmpValueInfo->hasValidIntValue()); |
1237 | return SetThreeWayComparisonField(S, OpPC, Ptr: P, IntValue: CmpValueInfo->getIntValue()); |
1238 | } |
1239 | |
1240 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1241 | bool NE(InterpState &S, CodePtr OpPC) { |
1242 | return CmpHelperEQ<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1243 | return R != ComparisonCategoryResult::Equal; |
1244 | }); |
1245 | } |
1246 | |
1247 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1248 | bool LT(InterpState &S, CodePtr OpPC) { |
1249 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1250 | return R == ComparisonCategoryResult::Less; |
1251 | }); |
1252 | } |
1253 | |
1254 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1255 | bool LE(InterpState &S, CodePtr OpPC) { |
1256 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1257 | return R == ComparisonCategoryResult::Less || |
1258 | R == ComparisonCategoryResult::Equal; |
1259 | }); |
1260 | } |
1261 | |
1262 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1263 | bool GT(InterpState &S, CodePtr OpPC) { |
1264 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1265 | return R == ComparisonCategoryResult::Greater; |
1266 | }); |
1267 | } |
1268 | |
1269 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1270 | bool GE(InterpState &S, CodePtr OpPC) { |
1271 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1272 | return R == ComparisonCategoryResult::Greater || |
1273 | R == ComparisonCategoryResult::Equal; |
1274 | }); |
1275 | } |
1276 | |
1277 | //===----------------------------------------------------------------------===// |
1278 | // InRange |
1279 | //===----------------------------------------------------------------------===// |
1280 | |
1281 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1282 | bool InRange(InterpState &S, CodePtr OpPC) { |
1283 | const T RHS = S.Stk.pop<T>(); |
1284 | const T LHS = S.Stk.pop<T>(); |
1285 | const T Value = S.Stk.pop<T>(); |
1286 | |
1287 | S.Stk.push<bool>(LHS <= Value && Value <= RHS); |
1288 | return true; |
1289 | } |
1290 | |
1291 | //===----------------------------------------------------------------------===// |
1292 | // Dup, Pop, Test |
1293 | //===----------------------------------------------------------------------===// |
1294 | |
1295 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1296 | bool Dup(InterpState &S, CodePtr OpPC) { |
1297 | S.Stk.push<T>(S.Stk.peek<T>()); |
1298 | return true; |
1299 | } |
1300 | |
1301 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1302 | bool Pop(InterpState &S, CodePtr OpPC) { |
1303 | S.Stk.pop<T>(); |
1304 | return true; |
1305 | } |
1306 | |
1307 | /// [Value1, Value2] -> [Value2, Value1] |
1308 | template <PrimType TopName, PrimType BottomName> |
1309 | bool Flip(InterpState &S, CodePtr OpPC) { |
1310 | using TopT = typename PrimConv<TopName>::T; |
1311 | using BottomT = typename PrimConv<BottomName>::T; |
1312 | |
1313 | const auto &Top = S.Stk.pop<TopT>(); |
1314 | const auto &Bottom = S.Stk.pop<BottomT>(); |
1315 | |
1316 | S.Stk.push<TopT>(Top); |
1317 | S.Stk.push<BottomT>(Bottom); |
1318 | |
1319 | return true; |
1320 | } |
1321 | |
1322 | //===----------------------------------------------------------------------===// |
1323 | // Const |
1324 | //===----------------------------------------------------------------------===// |
1325 | |
1326 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1327 | bool Const(InterpState &S, CodePtr OpPC, const T &Arg) { |
1328 | S.Stk.push<T>(Arg); |
1329 | return true; |
1330 | } |
1331 | |
1332 | //===----------------------------------------------------------------------===// |
1333 | // Get/Set Local/Param/Global/This |
1334 | //===----------------------------------------------------------------------===// |
1335 | |
1336 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1337 | bool GetLocal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1338 | const Pointer &Ptr = S.Current->getLocalPointer(Offset: I); |
1339 | if (!CheckLoad(S, OpPC, Ptr)) |
1340 | return false; |
1341 | S.Stk.push<T>(Ptr.deref<T>()); |
1342 | return true; |
1343 | } |
1344 | |
1345 | bool EndLifetime(InterpState &S, CodePtr OpPC); |
1346 | bool EndLifetimePop(InterpState &S, CodePtr OpPC); |
1347 | bool StartLifetime(InterpState &S, CodePtr OpPC); |
1348 | |
1349 | /// 1) Pops the value from the stack. |
1350 | /// 2) Writes the value to the local variable with the |
1351 | /// given offset. |
1352 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1353 | bool SetLocal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1354 | S.Current->setLocal<T>(I, S.Stk.pop<T>()); |
1355 | return true; |
1356 | } |
1357 | |
1358 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1359 | bool GetParam(InterpState &S, CodePtr OpPC, uint32_t I) { |
1360 | if (S.checkingPotentialConstantExpression()) { |
1361 | return false; |
1362 | } |
1363 | S.Stk.push<T>(S.Current->getParam<T>(I)); |
1364 | return true; |
1365 | } |
1366 | |
1367 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1368 | bool SetParam(InterpState &S, CodePtr OpPC, uint32_t I) { |
1369 | S.Current->setParam<T>(I, S.Stk.pop<T>()); |
1370 | return true; |
1371 | } |
1372 | |
1373 | /// 1) Peeks a pointer on the stack |
1374 | /// 2) Pushes the value of the pointer's field on the stack |
1375 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1376 | bool GetField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1377 | const Pointer &Obj = S.Stk.peek<Pointer>(); |
1378 | if (!CheckNull(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1379 | return false; |
1380 | if (!CheckRange(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1381 | return false; |
1382 | const Pointer &Field = Obj.atField(Off: I); |
1383 | if (!CheckLoad(S, OpPC, Ptr: Field)) |
1384 | return false; |
1385 | S.Stk.push<T>(Field.deref<T>()); |
1386 | return true; |
1387 | } |
1388 | |
1389 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1390 | bool SetField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1391 | const T &Value = S.Stk.pop<T>(); |
1392 | const Pointer &Obj = S.Stk.peek<Pointer>(); |
1393 | if (!CheckNull(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1394 | return false; |
1395 | if (!CheckRange(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1396 | return false; |
1397 | const Pointer &Field = Obj.atField(Off: I); |
1398 | if (!CheckStore(S, OpPC, Ptr: Field)) |
1399 | return false; |
1400 | Field.initialize(); |
1401 | Field.deref<T>() = Value; |
1402 | return true; |
1403 | } |
1404 | |
1405 | /// 1) Pops a pointer from the stack |
1406 | /// 2) Pushes the value of the pointer's field on the stack |
1407 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1408 | bool GetFieldPop(InterpState &S, CodePtr OpPC, uint32_t I) { |
1409 | const Pointer &Obj = S.Stk.pop<Pointer>(); |
1410 | if (!CheckNull(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1411 | return false; |
1412 | if (!CheckRange(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1413 | return false; |
1414 | const Pointer &Field = Obj.atField(Off: I); |
1415 | if (!CheckLoad(S, OpPC, Ptr: Field)) |
1416 | return false; |
1417 | S.Stk.push<T>(Field.deref<T>()); |
1418 | return true; |
1419 | } |
1420 | |
1421 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1422 | bool GetThisField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1423 | if (S.checkingPotentialConstantExpression()) |
1424 | return false; |
1425 | const Pointer &This = S.Current->getThis(); |
1426 | if (!CheckThis(S, OpPC, This)) |
1427 | return false; |
1428 | const Pointer &Field = This.atField(Off: I); |
1429 | if (!CheckLoad(S, OpPC, Ptr: Field)) |
1430 | return false; |
1431 | S.Stk.push<T>(Field.deref<T>()); |
1432 | return true; |
1433 | } |
1434 | |
1435 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1436 | bool SetThisField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1437 | if (S.checkingPotentialConstantExpression()) |
1438 | return false; |
1439 | const T &Value = S.Stk.pop<T>(); |
1440 | const Pointer &This = S.Current->getThis(); |
1441 | if (!CheckThis(S, OpPC, This)) |
1442 | return false; |
1443 | const Pointer &Field = This.atField(Off: I); |
1444 | if (!CheckStore(S, OpPC, Ptr: Field)) |
1445 | return false; |
1446 | Field.deref<T>() = Value; |
1447 | return true; |
1448 | } |
1449 | |
1450 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1451 | bool GetGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1452 | const Pointer &Ptr = S.P.getPtrGlobal(Idx: I); |
1453 | if (!CheckConstant(S, OpPC, Desc: Ptr.getFieldDesc())) |
1454 | return false; |
1455 | if (Ptr.isExtern()) |
1456 | return false; |
1457 | |
1458 | // If a global variable is uninitialized, that means the initializer we've |
1459 | // compiled for it wasn't a constant expression. Diagnose that. |
1460 | if (!CheckGlobalInitialized(S, OpPC, Ptr)) |
1461 | return false; |
1462 | |
1463 | S.Stk.push<T>(Ptr.deref<T>()); |
1464 | return true; |
1465 | } |
1466 | |
1467 | /// Same as GetGlobal, but without the checks. |
1468 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1469 | bool GetGlobalUnchecked(InterpState &S, CodePtr OpPC, uint32_t I) { |
1470 | const Pointer &Ptr = S.P.getPtrGlobal(Idx: I); |
1471 | if (!CheckInitialized(S, OpPC, Ptr, AK: AK_Read)) |
1472 | return false; |
1473 | S.Stk.push<T>(Ptr.deref<T>()); |
1474 | return true; |
1475 | } |
1476 | |
1477 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1478 | bool SetGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1479 | // TODO: emit warning. |
1480 | return false; |
1481 | } |
1482 | |
1483 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1484 | bool InitGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1485 | const Pointer &P = S.P.getGlobal(Idx: I); |
1486 | P.deref<T>() = S.Stk.pop<T>(); |
1487 | P.initialize(); |
1488 | return true; |
1489 | } |
1490 | |
1491 | /// 1) Converts the value on top of the stack to an APValue |
1492 | /// 2) Sets that APValue on \Temp |
1493 | /// 3) Initializes global with index \I with that |
1494 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1495 | bool InitGlobalTemp(InterpState &S, CodePtr OpPC, uint32_t I, |
1496 | const LifetimeExtendedTemporaryDecl *Temp) { |
1497 | const Pointer &Ptr = S.P.getGlobal(Idx: I); |
1498 | |
1499 | const T Value = S.Stk.peek<T>(); |
1500 | APValue APV = Value.toAPValue(S.getASTContext()); |
1501 | APValue *Cached = Temp->getOrCreateValue(MayCreate: true); |
1502 | *Cached = APV; |
1503 | |
1504 | assert(Ptr.getDeclDesc()->asExpr()); |
1505 | |
1506 | S.SeenGlobalTemporaries.push_back( |
1507 | Elt: std::make_pair(x: Ptr.getDeclDesc()->asExpr(), y&: Temp)); |
1508 | |
1509 | Ptr.deref<T>() = S.Stk.pop<T>(); |
1510 | Ptr.initialize(); |
1511 | return true; |
1512 | } |
1513 | |
1514 | /// 1) Converts the value on top of the stack to an APValue |
1515 | /// 2) Sets that APValue on \Temp |
1516 | /// 3) Initialized global with index \I with that |
1517 | inline bool InitGlobalTempComp(InterpState &S, CodePtr OpPC, |
1518 | const LifetimeExtendedTemporaryDecl *Temp) { |
1519 | assert(Temp); |
1520 | const Pointer &P = S.Stk.peek<Pointer>(); |
1521 | APValue *Cached = Temp->getOrCreateValue(MayCreate: true); |
1522 | |
1523 | S.SeenGlobalTemporaries.push_back( |
1524 | Elt: std::make_pair(x: P.getDeclDesc()->asExpr(), y&: Temp)); |
1525 | |
1526 | if (std::optional<APValue> APV = |
1527 | P.toRValue(S.getASTContext(), Temp->getTemporaryExpr()->getType())) { |
1528 | *Cached = *APV; |
1529 | return true; |
1530 | } |
1531 | |
1532 | return false; |
1533 | } |
1534 | |
1535 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1536 | bool InitThisField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1537 | if (S.checkingPotentialConstantExpression() && S.Current->getDepth() == 0) |
1538 | return false; |
1539 | const Pointer &This = S.Current->getThis(); |
1540 | if (!CheckThis(S, OpPC, This)) |
1541 | return false; |
1542 | const Pointer &Field = This.atField(Off: I); |
1543 | Field.deref<T>() = S.Stk.pop<T>(); |
1544 | Field.activate(); |
1545 | Field.initialize(); |
1546 | return true; |
1547 | } |
1548 | |
1549 | // FIXME: The Field pointer here is too much IMO and we could instead just |
1550 | // pass an Offset + BitWidth pair. |
1551 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1552 | bool InitThisBitField(InterpState &S, CodePtr OpPC, const Record::Field *F, |
1553 | uint32_t FieldOffset) { |
1554 | assert(F->isBitField()); |
1555 | if (S.checkingPotentialConstantExpression() && S.Current->getDepth() == 0) |
1556 | return false; |
1557 | const Pointer &This = S.Current->getThis(); |
1558 | if (!CheckThis(S, OpPC, This)) |
1559 | return false; |
1560 | const Pointer &Field = This.atField(Off: FieldOffset); |
1561 | const auto &Value = S.Stk.pop<T>(); |
1562 | Field.deref<T>() = Value.truncate(F->Decl->getBitWidthValue()); |
1563 | Field.initialize(); |
1564 | return true; |
1565 | } |
1566 | |
1567 | /// 1) Pops the value from the stack |
1568 | /// 2) Peeks a pointer from the stack |
1569 | /// 3) Pushes the value to field I of the pointer on the stack |
1570 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1571 | bool InitField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1572 | const T &Value = S.Stk.pop<T>(); |
1573 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1574 | if (!CheckRange(S, OpPC, Ptr, CSK: CSK_Field)) |
1575 | return false; |
1576 | const Pointer &Field = Ptr.atField(Off: I); |
1577 | Field.deref<T>() = Value; |
1578 | Field.activate(); |
1579 | Field.initialize(); |
1580 | return true; |
1581 | } |
1582 | |
1583 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1584 | bool InitBitField(InterpState &S, CodePtr OpPC, const Record::Field *F) { |
1585 | assert(F->isBitField()); |
1586 | const T &Value = S.Stk.pop<T>(); |
1587 | const Pointer &Field = S.Stk.peek<Pointer>().atField(Off: F->Offset); |
1588 | Field.deref<T>() = Value.truncate(F->Decl->getBitWidthValue()); |
1589 | Field.activate(); |
1590 | Field.initialize(); |
1591 | return true; |
1592 | } |
1593 | |
1594 | //===----------------------------------------------------------------------===// |
1595 | // GetPtr Local/Param/Global/Field/This |
1596 | //===----------------------------------------------------------------------===// |
1597 | |
1598 | inline bool GetPtrLocal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1599 | S.Stk.push<Pointer>(Args: S.Current->getLocalPointer(Offset: I)); |
1600 | return true; |
1601 | } |
1602 | |
1603 | inline bool GetPtrParam(InterpState &S, CodePtr OpPC, uint32_t I) { |
1604 | if (S.checkingPotentialConstantExpression()) { |
1605 | return false; |
1606 | } |
1607 | S.Stk.push<Pointer>(Args: S.Current->getParamPointer(Offset: I)); |
1608 | return true; |
1609 | } |
1610 | |
1611 | inline bool GetPtrGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1612 | S.Stk.push<Pointer>(Args: S.P.getPtrGlobal(Idx: I)); |
1613 | return true; |
1614 | } |
1615 | |
1616 | /// 1) Peeks a Pointer |
1617 | /// 2) Pushes Pointer.atField(Off) on the stack |
1618 | bool GetPtrField(InterpState &S, CodePtr OpPC, uint32_t Off); |
1619 | bool GetPtrFieldPop(InterpState &S, CodePtr OpPC, uint32_t Off); |
1620 | |
1621 | inline bool GetPtrThisField(InterpState &S, CodePtr OpPC, uint32_t Off) { |
1622 | if (S.checkingPotentialConstantExpression() && S.Current->getDepth() == 0) |
1623 | return false; |
1624 | const Pointer &This = S.Current->getThis(); |
1625 | if (!CheckThis(S, OpPC, This)) |
1626 | return false; |
1627 | S.Stk.push<Pointer>(Args: This.atField(Off)); |
1628 | return true; |
1629 | } |
1630 | |
1631 | inline bool GetPtrActiveField(InterpState &S, CodePtr OpPC, uint32_t Off) { |
1632 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1633 | if (!CheckNull(S, OpPC, Ptr, CSK: CSK_Field)) |
1634 | return false; |
1635 | if (!CheckRange(S, OpPC, Ptr, CSK: CSK_Field)) |
1636 | return false; |
1637 | Pointer Field = Ptr.atField(Off); |
1638 | Ptr.deactivate(); |
1639 | Field.activate(); |
1640 | S.Stk.push<Pointer>(Args: std::move(Field)); |
1641 | return true; |
1642 | } |
1643 | |
1644 | inline bool GetPtrActiveThisField(InterpState &S, CodePtr OpPC, uint32_t Off) { |
1645 | if (S.checkingPotentialConstantExpression()) |
1646 | return false; |
1647 | const Pointer &This = S.Current->getThis(); |
1648 | if (!CheckThis(S, OpPC, This)) |
1649 | return false; |
1650 | Pointer Field = This.atField(Off); |
1651 | This.deactivate(); |
1652 | Field.activate(); |
1653 | S.Stk.push<Pointer>(Args: std::move(Field)); |
1654 | return true; |
1655 | } |
1656 | |
1657 | inline bool GetPtrDerivedPop(InterpState &S, CodePtr OpPC, uint32_t Off, |
1658 | bool NullOK, const Type *TargetType) { |
1659 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1660 | if (!NullOK && !CheckNull(S, OpPC, Ptr, CSK: CSK_Derived)) |
1661 | return false; |
1662 | |
1663 | if (!Ptr.isBlockPointer()) { |
1664 | // FIXME: We don't have the necessary information in integral pointers. |
1665 | // The Descriptor only has a record, but that does of course not include |
1666 | // the potential derived classes of said record. |
1667 | S.Stk.push<Pointer>(Args: Ptr); |
1668 | return true; |
1669 | } |
1670 | |
1671 | if (!CheckSubobject(S, OpPC, Ptr, CSK: CSK_Derived)) |
1672 | return false; |
1673 | if (!CheckDowncast(S, OpPC, Ptr, Offset: Off)) |
1674 | return false; |
1675 | |
1676 | const Record *TargetRecord = Ptr.atFieldSub(Off).getRecord(); |
1677 | assert(TargetRecord); |
1678 | |
1679 | if (TargetRecord->getDecl() |
1680 | ->getTypeForDecl() |
1681 | ->getAsCXXRecordDecl() |
1682 | ->getCanonicalDecl() != |
1683 | TargetType->getAsCXXRecordDecl()->getCanonicalDecl()) { |
1684 | QualType MostDerivedType = Ptr.getDeclDesc()->getType(); |
1685 | S.CCEDiag(S.Current->getSource(OpPC), diag::note_constexpr_invalid_downcast) |
1686 | << MostDerivedType << QualType(TargetType, 0); |
1687 | return false; |
1688 | } |
1689 | |
1690 | S.Stk.push<Pointer>(Args: Ptr.atFieldSub(Off)); |
1691 | return true; |
1692 | } |
1693 | |
1694 | inline bool GetPtrBase(InterpState &S, CodePtr OpPC, uint32_t Off) { |
1695 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1696 | if (!CheckNull(S, OpPC, Ptr, CSK: CSK_Base)) |
1697 | return false; |
1698 | |
1699 | if (!Ptr.isBlockPointer()) { |
1700 | S.Stk.push<Pointer>(Args: Ptr.asIntPointer().baseCast(ASTCtx: S.getASTContext(), BaseOffset: Off)); |
1701 | return true; |
1702 | } |
1703 | |
1704 | if (!CheckSubobject(S, OpPC, Ptr, CSK: CSK_Base)) |
1705 | return false; |
1706 | const Pointer &Result = Ptr.atField(Off); |
1707 | if (Result.isPastEnd() || !Result.isBaseClass()) |
1708 | return false; |
1709 | S.Stk.push<Pointer>(Args: Result); |
1710 | return true; |
1711 | } |
1712 | |
1713 | inline bool GetPtrBasePop(InterpState &S, CodePtr OpPC, uint32_t Off, |
1714 | bool NullOK) { |
1715 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1716 | |
1717 | if (!NullOK && !CheckNull(S, OpPC, Ptr, CSK: CSK_Base)) |
1718 | return false; |
1719 | |
1720 | if (!Ptr.isBlockPointer()) { |
1721 | S.Stk.push<Pointer>(Args: Ptr.asIntPointer().baseCast(ASTCtx: S.getASTContext(), BaseOffset: Off)); |
1722 | return true; |
1723 | } |
1724 | |
1725 | if (!CheckSubobject(S, OpPC, Ptr, CSK: CSK_Base)) |
1726 | return false; |
1727 | const Pointer &Result = Ptr.atField(Off); |
1728 | if (Result.isPastEnd() || !Result.isBaseClass()) |
1729 | return false; |
1730 | S.Stk.push<Pointer>(Args: Result); |
1731 | return true; |
1732 | } |
1733 | |
1734 | inline bool GetMemberPtrBasePop(InterpState &S, CodePtr OpPC, int32_t Off) { |
1735 | const auto &Ptr = S.Stk.pop<MemberPointer>(); |
1736 | S.Stk.push<MemberPointer>(Args: Ptr.atInstanceBase(Offset: Off)); |
1737 | return true; |
1738 | } |
1739 | |
1740 | inline bool GetPtrThisBase(InterpState &S, CodePtr OpPC, uint32_t Off) { |
1741 | if (S.checkingPotentialConstantExpression()) |
1742 | return false; |
1743 | const Pointer &This = S.Current->getThis(); |
1744 | if (!CheckThis(S, OpPC, This)) |
1745 | return false; |
1746 | S.Stk.push<Pointer>(Args: This.atField(Off)); |
1747 | return true; |
1748 | } |
1749 | |
1750 | inline bool FinishInitPop(InterpState &S, CodePtr OpPC) { |
1751 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1752 | if (Ptr.canBeInitialized()) { |
1753 | Ptr.initialize(); |
1754 | Ptr.activate(); |
1755 | } |
1756 | return true; |
1757 | } |
1758 | |
1759 | inline bool FinishInit(InterpState &S, CodePtr OpPC) { |
1760 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1761 | if (Ptr.canBeInitialized()) { |
1762 | Ptr.initialize(); |
1763 | Ptr.activate(); |
1764 | } |
1765 | return true; |
1766 | } |
1767 | |
1768 | inline bool Dump(InterpState &S, CodePtr OpPC) { |
1769 | S.Stk.dump(); |
1770 | return true; |
1771 | } |
1772 | |
1773 | inline bool VirtBaseHelper(InterpState &S, CodePtr OpPC, const RecordDecl *Decl, |
1774 | const Pointer &Ptr) { |
1775 | Pointer Base = Ptr; |
1776 | while (Base.isBaseClass()) |
1777 | Base = Base.getBase(); |
1778 | |
1779 | const Record::Base *VirtBase = Base.getRecord()->getVirtualBase(RD: Decl); |
1780 | S.Stk.push<Pointer>(Args: Base.atField(Off: VirtBase->Offset)); |
1781 | return true; |
1782 | } |
1783 | |
1784 | inline bool GetPtrVirtBasePop(InterpState &S, CodePtr OpPC, |
1785 | const RecordDecl *D) { |
1786 | assert(D); |
1787 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1788 | if (!CheckNull(S, OpPC, Ptr, CSK: CSK_Base)) |
1789 | return false; |
1790 | return VirtBaseHelper(S, OpPC, Decl: D, Ptr); |
1791 | } |
1792 | |
1793 | inline bool GetPtrThisVirtBase(InterpState &S, CodePtr OpPC, |
1794 | const RecordDecl *D) { |
1795 | assert(D); |
1796 | if (S.checkingPotentialConstantExpression()) |
1797 | return false; |
1798 | const Pointer &This = S.Current->getThis(); |
1799 | if (!CheckThis(S, OpPC, This)) |
1800 | return false; |
1801 | return VirtBaseHelper(S, OpPC, Decl: D, Ptr: S.Current->getThis()); |
1802 | } |
1803 | |
1804 | //===----------------------------------------------------------------------===// |
1805 | // Load, Store, Init |
1806 | //===----------------------------------------------------------------------===// |
1807 | |
1808 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1809 | bool Load(InterpState &S, CodePtr OpPC) { |
1810 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1811 | if (!CheckLoad(S, OpPC, Ptr)) |
1812 | return false; |
1813 | if (!Ptr.isBlockPointer()) |
1814 | return false; |
1815 | S.Stk.push<T>(Ptr.deref<T>()); |
1816 | return true; |
1817 | } |
1818 | |
1819 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1820 | bool LoadPop(InterpState &S, CodePtr OpPC) { |
1821 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1822 | if (!CheckLoad(S, OpPC, Ptr)) |
1823 | return false; |
1824 | if (!Ptr.isBlockPointer()) |
1825 | return false; |
1826 | S.Stk.push<T>(Ptr.deref<T>()); |
1827 | return true; |
1828 | } |
1829 | |
1830 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1831 | bool Store(InterpState &S, CodePtr OpPC) { |
1832 | const T &Value = S.Stk.pop<T>(); |
1833 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1834 | if (!CheckStore(S, OpPC, Ptr)) |
1835 | return false; |
1836 | if (Ptr.canBeInitialized()) { |
1837 | Ptr.initialize(); |
1838 | Ptr.activate(); |
1839 | } |
1840 | Ptr.deref<T>() = Value; |
1841 | return true; |
1842 | } |
1843 | |
1844 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1845 | bool StorePop(InterpState &S, CodePtr OpPC) { |
1846 | const T &Value = S.Stk.pop<T>(); |
1847 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1848 | if (!CheckStore(S, OpPC, Ptr)) |
1849 | return false; |
1850 | if (Ptr.canBeInitialized()) { |
1851 | Ptr.initialize(); |
1852 | Ptr.activate(); |
1853 | } |
1854 | Ptr.deref<T>() = Value; |
1855 | return true; |
1856 | } |
1857 | |
1858 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1859 | bool StoreBitField(InterpState &S, CodePtr OpPC) { |
1860 | const T &Value = S.Stk.pop<T>(); |
1861 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1862 | if (!CheckStore(S, OpPC, Ptr)) |
1863 | return false; |
1864 | if (Ptr.canBeInitialized()) |
1865 | Ptr.initialize(); |
1866 | if (const auto *FD = Ptr.getField()) |
1867 | Ptr.deref<T>() = Value.truncate(FD->getBitWidthValue()); |
1868 | else |
1869 | Ptr.deref<T>() = Value; |
1870 | return true; |
1871 | } |
1872 | |
1873 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1874 | bool StoreBitFieldPop(InterpState &S, CodePtr OpPC) { |
1875 | const T &Value = S.Stk.pop<T>(); |
1876 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1877 | if (!CheckStore(S, OpPC, Ptr)) |
1878 | return false; |
1879 | if (Ptr.canBeInitialized()) |
1880 | Ptr.initialize(); |
1881 | if (const auto *FD = Ptr.getField()) |
1882 | Ptr.deref<T>() = Value.truncate(FD->getBitWidthValue()); |
1883 | else |
1884 | Ptr.deref<T>() = Value; |
1885 | return true; |
1886 | } |
1887 | |
1888 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1889 | bool Init(InterpState &S, CodePtr OpPC) { |
1890 | const T &Value = S.Stk.pop<T>(); |
1891 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1892 | if (!CheckInit(S, OpPC, Ptr)) |
1893 | return false; |
1894 | Ptr.activate(); |
1895 | Ptr.initialize(); |
1896 | new (&Ptr.deref<T>()) T(Value); |
1897 | return true; |
1898 | } |
1899 | |
1900 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1901 | bool InitPop(InterpState &S, CodePtr OpPC) { |
1902 | const T &Value = S.Stk.pop<T>(); |
1903 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1904 | if (!CheckInit(S, OpPC, Ptr)) |
1905 | return false; |
1906 | Ptr.activate(); |
1907 | Ptr.initialize(); |
1908 | new (&Ptr.deref<T>()) T(Value); |
1909 | return true; |
1910 | } |
1911 | |
1912 | /// 1) Pops the value from the stack |
1913 | /// 2) Peeks a pointer and gets its index \Idx |
1914 | /// 3) Sets the value on the pointer, leaving the pointer on the stack. |
1915 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1916 | bool InitElem(InterpState &S, CodePtr OpPC, uint32_t Idx) { |
1917 | const T &Value = S.Stk.pop<T>(); |
1918 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1919 | |
1920 | if (Ptr.isUnknownSizeArray()) |
1921 | return false; |
1922 | |
1923 | // In the unlikely event that we're initializing the first item of |
1924 | // a non-array, skip the atIndex(). |
1925 | if (Idx == 0 && !Ptr.getFieldDesc()->isArray()) { |
1926 | Ptr.initialize(); |
1927 | new (&Ptr.deref<T>()) T(Value); |
1928 | return true; |
1929 | } |
1930 | |
1931 | const Pointer &ElemPtr = Ptr.atIndex(Idx); |
1932 | if (!CheckInit(S, OpPC, Ptr: ElemPtr)) |
1933 | return false; |
1934 | ElemPtr.initialize(); |
1935 | new (&ElemPtr.deref<T>()) T(Value); |
1936 | return true; |
1937 | } |
1938 | |
1939 | /// The same as InitElem, but pops the pointer as well. |
1940 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1941 | bool InitElemPop(InterpState &S, CodePtr OpPC, uint32_t Idx) { |
1942 | const T &Value = S.Stk.pop<T>(); |
1943 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1944 | if (Ptr.isUnknownSizeArray()) |
1945 | return false; |
1946 | |
1947 | // In the unlikely event that we're initializing the first item of |
1948 | // a non-array, skip the atIndex(). |
1949 | if (Idx == 0 && !Ptr.getFieldDesc()->isArray()) { |
1950 | Ptr.initialize(); |
1951 | new (&Ptr.deref<T>()) T(Value); |
1952 | return true; |
1953 | } |
1954 | |
1955 | const Pointer &ElemPtr = Ptr.atIndex(Idx); |
1956 | if (!CheckInit(S, OpPC, Ptr: ElemPtr)) |
1957 | return false; |
1958 | ElemPtr.initialize(); |
1959 | new (&ElemPtr.deref<T>()) T(Value); |
1960 | return true; |
1961 | } |
1962 | |
1963 | inline bool Memcpy(InterpState &S, CodePtr OpPC) { |
1964 | const Pointer &Src = S.Stk.pop<Pointer>(); |
1965 | Pointer &Dest = S.Stk.peek<Pointer>(); |
1966 | |
1967 | if (!CheckLoad(S, OpPC, Ptr: Src)) |
1968 | return false; |
1969 | |
1970 | return DoMemcpy(S, OpPC, Src, Dest); |
1971 | } |
1972 | |
1973 | inline bool ToMemberPtr(InterpState &S, CodePtr OpPC) { |
1974 | const auto &Member = S.Stk.pop<MemberPointer>(); |
1975 | const auto &Base = S.Stk.pop<Pointer>(); |
1976 | |
1977 | S.Stk.push<MemberPointer>(Args: Member.takeInstance(Instance: Base)); |
1978 | return true; |
1979 | } |
1980 | |
1981 | inline bool CastMemberPtrPtr(InterpState &S, CodePtr OpPC) { |
1982 | const auto &MP = S.Stk.pop<MemberPointer>(); |
1983 | |
1984 | if (std::optional<Pointer> Ptr = MP.toPointer(Ctx: S.Ctx)) { |
1985 | S.Stk.push<Pointer>(Args&: *Ptr); |
1986 | return true; |
1987 | } |
1988 | return Invalid(S, OpPC); |
1989 | } |
1990 | |
1991 | //===----------------------------------------------------------------------===// |
1992 | // AddOffset, SubOffset |
1993 | //===----------------------------------------------------------------------===// |
1994 | |
1995 | template <class T, ArithOp Op> |
1996 | bool OffsetHelper(InterpState &S, CodePtr OpPC, const T &Offset, |
1997 | const Pointer &Ptr, bool IsPointerArith = false) { |
1998 | // A zero offset does not change the pointer. |
1999 | if (Offset.isZero()) { |
2000 | S.Stk.push<Pointer>(Args: Ptr); |
2001 | return true; |
2002 | } |
2003 | |
2004 | if (IsPointerArith && !CheckNull(S, OpPC, Ptr, CSK: CSK_ArrayIndex)) { |
2005 | // The CheckNull will have emitted a note already, but we only |
2006 | // abort in C++, since this is fine in C. |
2007 | if (S.getLangOpts().CPlusPlus) |
2008 | return false; |
2009 | } |
2010 | |
2011 | // Arrays of unknown bounds cannot have pointers into them. |
2012 | if (!CheckArray(S, OpPC, Ptr)) |
2013 | return false; |
2014 | |
2015 | // This is much simpler for integral pointers, so handle them first. |
2016 | if (Ptr.isIntegralPointer()) { |
2017 | uint64_t V = Ptr.getIntegerRepresentation(); |
2018 | uint64_t O = static_cast<uint64_t>(Offset) * Ptr.elemSize(); |
2019 | if constexpr (Op == ArithOp::Add) |
2020 | S.Stk.push<Pointer>(Args: V + O, Args: Ptr.asIntPointer().Desc); |
2021 | else |
2022 | S.Stk.push<Pointer>(Args: V - O, Args: Ptr.asIntPointer().Desc); |
2023 | return true; |
2024 | } else if (Ptr.isFunctionPointer()) { |
2025 | uint64_t O = static_cast<uint64_t>(Offset); |
2026 | uint64_t N; |
2027 | if constexpr (Op == ArithOp::Add) |
2028 | N = Ptr.getByteOffset() + O; |
2029 | else |
2030 | N = Ptr.getByteOffset() - O; |
2031 | |
2032 | if (N > 1) |
2033 | S.CCEDiag(S.Current->getSource(OpPC), diag::note_constexpr_array_index) |
2034 | << N << /*non-array*/ true << 0; |
2035 | S.Stk.push<Pointer>(Args: Ptr.asFunctionPointer().getFunction(), Args&: N); |
2036 | return true; |
2037 | } |
2038 | |
2039 | assert(Ptr.isBlockPointer()); |
2040 | |
2041 | uint64_t MaxIndex = static_cast<uint64_t>(Ptr.getNumElems()); |
2042 | uint64_t Index; |
2043 | if (Ptr.isOnePastEnd()) |
2044 | Index = MaxIndex; |
2045 | else |
2046 | Index = Ptr.getIndex(); |
2047 | |
2048 | bool Invalid = false; |
2049 | // Helper to report an invalid offset, computed as APSInt. |
2050 | auto DiagInvalidOffset = [&]() -> void { |
2051 | const unsigned Bits = Offset.bitWidth(); |
2052 | APSInt APOffset(Offset.toAPSInt().extend(Bits + 2), /*IsUnsigend=*/false); |
2053 | APSInt APIndex(APInt(Bits + 2, Index, /*IsSigned=*/true), |
2054 | /*IsUnsigned=*/false); |
2055 | APSInt NewIndex = |
2056 | (Op == ArithOp::Add) ? (APIndex + APOffset) : (APIndex - APOffset); |
2057 | S.CCEDiag(S.Current->getSource(OpPC), diag::note_constexpr_array_index) |
2058 | << NewIndex << /*array*/ static_cast<int>(!Ptr.inArray()) << MaxIndex; |
2059 | Invalid = true; |
2060 | }; |
2061 | |
2062 | if (Ptr.isBlockPointer()) { |
2063 | uint64_t IOffset = static_cast<uint64_t>(Offset); |
2064 | uint64_t MaxOffset = MaxIndex - Index; |
2065 | |
2066 | if constexpr (Op == ArithOp::Add) { |
2067 | // If the new offset would be negative, bail out. |
2068 | if (Offset.isNegative() && (Offset.isMin() || -IOffset > Index)) |
2069 | DiagInvalidOffset(); |
2070 | |
2071 | // If the new offset would be out of bounds, bail out. |
2072 | if (Offset.isPositive() && IOffset > MaxOffset) |
2073 | DiagInvalidOffset(); |
2074 | } else { |
2075 | // If the new offset would be negative, bail out. |
2076 | if (Offset.isPositive() && Index < IOffset) |
2077 | DiagInvalidOffset(); |
2078 | |
2079 | // If the new offset would be out of bounds, bail out. |
2080 | if (Offset.isNegative() && (Offset.isMin() || -IOffset > MaxOffset)) |
2081 | DiagInvalidOffset(); |
2082 | } |
2083 | } |
2084 | |
2085 | if (Invalid && S.getLangOpts().CPlusPlus) |
2086 | return false; |
2087 | |
2088 | // Offset is valid - compute it on unsigned. |
2089 | int64_t WideIndex = static_cast<int64_t>(Index); |
2090 | int64_t WideOffset = static_cast<int64_t>(Offset); |
2091 | int64_t Result; |
2092 | if constexpr (Op == ArithOp::Add) |
2093 | Result = WideIndex + WideOffset; |
2094 | else |
2095 | Result = WideIndex - WideOffset; |
2096 | |
2097 | // When the pointer is one-past-end, going back to index 0 is the only |
2098 | // useful thing we can do. Any other index has been diagnosed before and |
2099 | // we don't get here. |
2100 | if (Result == 0 && Ptr.isOnePastEnd()) { |
2101 | if (Ptr.getFieldDesc()->isArray()) |
2102 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
2103 | else |
2104 | S.Stk.push<Pointer>(Args: Ptr.asBlockPointer().Pointee, |
2105 | Args: Ptr.asBlockPointer().Base); |
2106 | return true; |
2107 | } |
2108 | |
2109 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: static_cast<uint64_t>(Result))); |
2110 | return true; |
2111 | } |
2112 | |
2113 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2114 | bool AddOffset(InterpState &S, CodePtr OpPC) { |
2115 | const T &Offset = S.Stk.pop<T>(); |
2116 | Pointer Ptr = S.Stk.pop<Pointer>(); |
2117 | if (Ptr.isBlockPointer()) |
2118 | Ptr = Ptr.expand(); |
2119 | return OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr, |
2120 | /*IsPointerArith=*/true); |
2121 | } |
2122 | |
2123 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2124 | bool SubOffset(InterpState &S, CodePtr OpPC) { |
2125 | const T &Offset = S.Stk.pop<T>(); |
2126 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2127 | return OffsetHelper<T, ArithOp::Sub>(S, OpPC, Offset, Ptr, |
2128 | /*IsPointerArith=*/true); |
2129 | } |
2130 | |
2131 | template <ArithOp Op> |
2132 | static inline bool IncDecPtrHelper(InterpState &S, CodePtr OpPC, |
2133 | const Pointer &Ptr) { |
2134 | if (Ptr.isDummy()) |
2135 | return false; |
2136 | |
2137 | using OneT = Integral<8, false>; |
2138 | |
2139 | const Pointer &P = Ptr.deref<Pointer>(); |
2140 | if (!CheckNull(S, OpPC, Ptr: P, CSK: CSK_ArrayIndex)) |
2141 | return false; |
2142 | |
2143 | // Get the current value on the stack. |
2144 | S.Stk.push<Pointer>(Args: P); |
2145 | |
2146 | // Now the current Ptr again and a constant 1. |
2147 | OneT One = OneT::from(Value: 1); |
2148 | if (!OffsetHelper<OneT, Op>(S, OpPC, One, P, /*IsPointerArith=*/true)) |
2149 | return false; |
2150 | |
2151 | // Store the new value. |
2152 | Ptr.deref<Pointer>() = S.Stk.pop<Pointer>(); |
2153 | return true; |
2154 | } |
2155 | |
2156 | static inline bool IncPtr(InterpState &S, CodePtr OpPC) { |
2157 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2158 | |
2159 | if (!CheckInitialized(S, OpPC, Ptr, AK: AK_Increment)) |
2160 | return false; |
2161 | |
2162 | return IncDecPtrHelper<ArithOp::Add>(S, OpPC, Ptr); |
2163 | } |
2164 | |
2165 | static inline bool DecPtr(InterpState &S, CodePtr OpPC) { |
2166 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2167 | |
2168 | if (!CheckInitialized(S, OpPC, Ptr, AK: AK_Decrement)) |
2169 | return false; |
2170 | |
2171 | return IncDecPtrHelper<ArithOp::Sub>(S, OpPC, Ptr); |
2172 | } |
2173 | |
2174 | /// 1) Pops a Pointer from the stack. |
2175 | /// 2) Pops another Pointer from the stack. |
2176 | /// 3) Pushes the difference of the indices of the two pointers on the stack. |
2177 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2178 | inline bool SubPtr(InterpState &S, CodePtr OpPC) { |
2179 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
2180 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
2181 | |
2182 | if (!Pointer::hasSameBase(A: LHS, B: RHS) && S.getLangOpts().CPlusPlus) { |
2183 | S.FFDiag(S.Current->getSource(OpPC), |
2184 | diag::note_constexpr_pointer_arith_unspecified) |
2185 | << LHS.toDiagnosticString(S.getASTContext()) |
2186 | << RHS.toDiagnosticString(S.getASTContext()); |
2187 | return false; |
2188 | } |
2189 | |
2190 | if (LHS == RHS) { |
2191 | S.Stk.push<T>(); |
2192 | return true; |
2193 | } |
2194 | |
2195 | for (const Pointer &P : {LHS, RHS}) { |
2196 | if (P.isZeroSizeArray()) { |
2197 | QualType PtrT = P.getType(); |
2198 | while (auto *AT = dyn_cast<ArrayType>(Val&: PtrT)) |
2199 | PtrT = AT->getElementType(); |
2200 | |
2201 | QualType ArrayTy = S.getASTContext().getConstantArrayType( |
2202 | EltTy: PtrT, ArySize: APInt::getZero(numBits: 1), SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
2203 | S.FFDiag(S.Current->getSource(OpPC), |
2204 | diag::note_constexpr_pointer_subtraction_zero_size) |
2205 | << ArrayTy; |
2206 | |
2207 | return false; |
2208 | } |
2209 | } |
2210 | |
2211 | int64_t A64 = |
2212 | LHS.isBlockPointer() |
2213 | ? (LHS.isElementPastEnd() ? LHS.getNumElems() : LHS.getIndex()) |
2214 | : LHS.getIntegerRepresentation(); |
2215 | |
2216 | int64_t B64 = |
2217 | RHS.isBlockPointer() |
2218 | ? (RHS.isElementPastEnd() ? RHS.getNumElems() : RHS.getIndex()) |
2219 | : RHS.getIntegerRepresentation(); |
2220 | |
2221 | int64_t R64 = A64 - B64; |
2222 | if (static_cast<int64_t>(T::from(R64)) != R64) |
2223 | return handleOverflow(S, OpPC, SrcValue: R64); |
2224 | |
2225 | S.Stk.push<T>(T::from(R64)); |
2226 | return true; |
2227 | } |
2228 | |
2229 | //===----------------------------------------------------------------------===// |
2230 | // Destroy |
2231 | //===----------------------------------------------------------------------===// |
2232 | |
2233 | inline bool Destroy(InterpState &S, CodePtr OpPC, uint32_t I) { |
2234 | assert(S.Current->getFunction()); |
2235 | |
2236 | // FIXME: We iterate the scope once here and then again in the destroy() call |
2237 | // below. |
2238 | for (auto &Local : S.Current->getFunction()->getScope(Idx: I).locals_reverse()) { |
2239 | const Pointer &Ptr = S.Current->getLocalPointer(Offset: Local.Offset); |
2240 | |
2241 | if (Ptr.getLifetime() == Lifetime::Ended) { |
2242 | auto *D = cast<NamedDecl>(Val: Ptr.getFieldDesc()->asDecl()); |
2243 | S.FFDiag(D->getLocation(), diag::note_constexpr_destroy_out_of_lifetime) |
2244 | << D->getNameAsString(); |
2245 | return false; |
2246 | } |
2247 | } |
2248 | |
2249 | S.Current->destroy(Idx: I); |
2250 | return true; |
2251 | } |
2252 | |
2253 | inline bool InitScope(InterpState &S, CodePtr OpPC, uint32_t I) { |
2254 | S.Current->initScope(Idx: I); |
2255 | return true; |
2256 | } |
2257 | |
2258 | //===----------------------------------------------------------------------===// |
2259 | // Cast, CastFP |
2260 | //===----------------------------------------------------------------------===// |
2261 | |
2262 | template <PrimType TIn, PrimType TOut> bool Cast(InterpState &S, CodePtr OpPC) { |
2263 | using T = typename PrimConv<TIn>::T; |
2264 | using U = typename PrimConv<TOut>::T; |
2265 | S.Stk.push<U>(U::from(S.Stk.pop<T>())); |
2266 | return true; |
2267 | } |
2268 | |
2269 | /// 1) Pops a Floating from the stack. |
2270 | /// 2) Pushes a new floating on the stack that uses the given semantics. |
2271 | inline bool CastFP(InterpState &S, CodePtr OpPC, const llvm::fltSemantics *Sem, |
2272 | llvm::RoundingMode RM) { |
2273 | Floating F = S.Stk.pop<Floating>(); |
2274 | Floating Result = F.toSemantics(Sem, RM); |
2275 | S.Stk.push<Floating>(Args&: Result); |
2276 | return true; |
2277 | } |
2278 | |
2279 | inline bool CastFixedPoint(InterpState &S, CodePtr OpPC, uint32_t FPS) { |
2280 | FixedPointSemantics TargetSemantics = |
2281 | FixedPointSemantics::getFromOpaqueInt(FPS); |
2282 | const auto &Source = S.Stk.pop<FixedPoint>(); |
2283 | |
2284 | bool Overflow; |
2285 | FixedPoint Result = Source.toSemantics(Sem: TargetSemantics, Overflow: &Overflow); |
2286 | |
2287 | if (Overflow && !handleFixedPointOverflow(S, OpPC, FP: Result)) |
2288 | return false; |
2289 | |
2290 | S.Stk.push<FixedPoint>(Args&: Result); |
2291 | return true; |
2292 | } |
2293 | |
2294 | /// Like Cast(), but we cast to an arbitrary-bitwidth integral, so we need |
2295 | /// to know what bitwidth the result should be. |
2296 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2297 | bool CastAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
2298 | S.Stk.push<IntegralAP<false>>( |
2299 | IntegralAP<false>::from(S.Stk.pop<T>(), BitWidth)); |
2300 | return true; |
2301 | } |
2302 | |
2303 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2304 | bool CastAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
2305 | S.Stk.push<IntegralAP<true>>( |
2306 | IntegralAP<true>::from(S.Stk.pop<T>(), BitWidth)); |
2307 | return true; |
2308 | } |
2309 | |
2310 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2311 | bool CastIntegralFloating(InterpState &S, CodePtr OpPC, |
2312 | const llvm::fltSemantics *Sem, uint32_t FPOI) { |
2313 | const T &From = S.Stk.pop<T>(); |
2314 | APSInt FromAP = From.toAPSInt(); |
2315 | Floating Result; |
2316 | |
2317 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
2318 | auto Status = |
2319 | Floating::fromIntegral(Val: FromAP, Sem: *Sem, RM: getRoundingMode(FPO), Result); |
2320 | S.Stk.push<Floating>(Args&: Result); |
2321 | |
2322 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
2323 | } |
2324 | |
2325 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2326 | bool CastFloatingIntegral(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
2327 | const Floating &F = S.Stk.pop<Floating>(); |
2328 | |
2329 | if constexpr (std::is_same_v<T, Boolean>) { |
2330 | S.Stk.push<T>(T(F.isNonZero())); |
2331 | return true; |
2332 | } else { |
2333 | APSInt Result(std::max(8u, T::bitWidth()), |
2334 | /*IsUnsigned=*/!T::isSigned()); |
2335 | auto Status = F.convertToInteger(Result); |
2336 | |
2337 | // Float-to-Integral overflow check. |
2338 | if ((Status & APFloat::opStatus::opInvalidOp)) { |
2339 | const Expr *E = S.Current->getExpr(PC: OpPC); |
2340 | QualType Type = E->getType(); |
2341 | |
2342 | S.CCEDiag(E, diag::note_constexpr_overflow) << F.getAPFloat() << Type; |
2343 | if (S.noteUndefinedBehavior()) { |
2344 | S.Stk.push<T>(T(Result)); |
2345 | return true; |
2346 | } |
2347 | return false; |
2348 | } |
2349 | |
2350 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
2351 | S.Stk.push<T>(T(Result)); |
2352 | return CheckFloatResult(S, OpPC, Result: F, Status, FPO); |
2353 | } |
2354 | } |
2355 | |
2356 | static inline bool CastFloatingIntegralAP(InterpState &S, CodePtr OpPC, |
2357 | uint32_t BitWidth, uint32_t FPOI) { |
2358 | const Floating &F = S.Stk.pop<Floating>(); |
2359 | |
2360 | APSInt Result(BitWidth, /*IsUnsigned=*/true); |
2361 | auto Status = F.convertToInteger(Result); |
2362 | |
2363 | // Float-to-Integral overflow check. |
2364 | if ((Status & APFloat::opStatus::opInvalidOp) && F.isFinite()) |
2365 | return handleOverflow(S, OpPC, SrcValue: F.getAPFloat()); |
2366 | |
2367 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
2368 | S.Stk.push<IntegralAP<true>>(Args: IntegralAP<true>(Result)); |
2369 | return CheckFloatResult(S, OpPC, Result: F, Status, FPO); |
2370 | } |
2371 | |
2372 | static inline bool CastFloatingIntegralAPS(InterpState &S, CodePtr OpPC, |
2373 | uint32_t BitWidth, uint32_t FPOI) { |
2374 | const Floating &F = S.Stk.pop<Floating>(); |
2375 | |
2376 | APSInt Result(BitWidth, /*IsUnsigned=*/false); |
2377 | auto Status = F.convertToInteger(Result); |
2378 | |
2379 | // Float-to-Integral overflow check. |
2380 | if ((Status & APFloat::opStatus::opInvalidOp) && F.isFinite()) |
2381 | return handleOverflow(S, OpPC, SrcValue: F.getAPFloat()); |
2382 | |
2383 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
2384 | S.Stk.push<IntegralAP<true>>(Args: IntegralAP<true>(Result)); |
2385 | return CheckFloatResult(S, OpPC, Result: F, Status, FPO); |
2386 | } |
2387 | |
2388 | bool CheckPointerToIntegralCast(InterpState &S, CodePtr OpPC, |
2389 | const Pointer &Ptr, unsigned BitWidth); |
2390 | bool CastPointerIntegralAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth); |
2391 | bool CastPointerIntegralAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth); |
2392 | |
2393 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2394 | bool CastPointerIntegral(InterpState &S, CodePtr OpPC) { |
2395 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2396 | |
2397 | S.CCEDiag(S.Current->getSource(OpPC), diag::note_constexpr_invalid_cast) |
2398 | << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret |
2399 | << S.getLangOpts().CPlusPlus << S.Current->getRange(OpPC); |
2400 | |
2401 | if (!CheckPointerToIntegralCast(S, OpPC, Ptr, T::bitWidth())) |
2402 | return Invalid(S, OpPC); |
2403 | |
2404 | S.Stk.push<T>(T::from(Ptr.getIntegerRepresentation())); |
2405 | return true; |
2406 | } |
2407 | |
2408 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2409 | static inline bool CastIntegralFixedPoint(InterpState &S, CodePtr OpPC, |
2410 | uint32_t FPS) { |
2411 | const T &Int = S.Stk.pop<T>(); |
2412 | |
2413 | FixedPointSemantics Sem = FixedPointSemantics::getFromOpaqueInt(FPS); |
2414 | |
2415 | bool Overflow; |
2416 | FixedPoint Result = FixedPoint::from(Int.toAPSInt(), Sem, &Overflow); |
2417 | |
2418 | if (Overflow && !handleFixedPointOverflow(S, OpPC, FP: Result)) |
2419 | return false; |
2420 | |
2421 | S.Stk.push<FixedPoint>(Args&: Result); |
2422 | return true; |
2423 | } |
2424 | |
2425 | static inline bool CastFloatingFixedPoint(InterpState &S, CodePtr OpPC, |
2426 | uint32_t FPS) { |
2427 | const auto &Float = S.Stk.pop<Floating>(); |
2428 | |
2429 | FixedPointSemantics Sem = FixedPointSemantics::getFromOpaqueInt(FPS); |
2430 | |
2431 | bool Overflow; |
2432 | FixedPoint Result = FixedPoint::from(I: Float.getAPFloat(), Sem, Overflow: &Overflow); |
2433 | |
2434 | if (Overflow && !handleFixedPointOverflow(S, OpPC, FP: Result)) |
2435 | return false; |
2436 | |
2437 | S.Stk.push<FixedPoint>(Args&: Result); |
2438 | return true; |
2439 | } |
2440 | |
2441 | static inline bool CastFixedPointFloating(InterpState &S, CodePtr OpPC, |
2442 | const llvm::fltSemantics *Sem) { |
2443 | const auto &Fixed = S.Stk.pop<FixedPoint>(); |
2444 | |
2445 | S.Stk.push<Floating>(Args: Fixed.toFloat(Sem)); |
2446 | return true; |
2447 | } |
2448 | |
2449 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2450 | static inline bool CastFixedPointIntegral(InterpState &S, CodePtr OpPC) { |
2451 | const auto &Fixed = S.Stk.pop<FixedPoint>(); |
2452 | |
2453 | bool Overflow; |
2454 | APSInt Int = Fixed.toInt(BitWidth: T::bitWidth(), Signed: T::isSigned(), Overflow: &Overflow); |
2455 | |
2456 | if (Overflow && !handleOverflow(S, OpPC, SrcValue: Int)) |
2457 | return false; |
2458 | |
2459 | S.Stk.push<T>(Int); |
2460 | return true; |
2461 | } |
2462 | |
2463 | static inline bool PtrPtrCast(InterpState &S, CodePtr OpPC, bool SrcIsVoidPtr) { |
2464 | const auto &Ptr = S.Stk.peek<Pointer>(); |
2465 | |
2466 | if (SrcIsVoidPtr && S.getLangOpts().CPlusPlus) { |
2467 | bool HasValidResult = !Ptr.isZero(); |
2468 | |
2469 | if (HasValidResult) { |
2470 | if (S.getStdAllocatorCaller(Name: "allocate" )) |
2471 | return true; |
2472 | |
2473 | const auto &E = cast<CastExpr>(Val: S.Current->getExpr(PC: OpPC)); |
2474 | if (S.getLangOpts().CPlusPlus26 && |
2475 | S.getASTContext().hasSimilarType(T1: Ptr.getType(), |
2476 | T2: E->getType()->getPointeeType())) |
2477 | return true; |
2478 | |
2479 | S.CCEDiag(E, diag::note_constexpr_invalid_void_star_cast) |
2480 | << E->getSubExpr()->getType() << S.getLangOpts().CPlusPlus26 |
2481 | << Ptr.getType().getCanonicalType() << E->getType()->getPointeeType(); |
2482 | } else if (!S.getLangOpts().CPlusPlus26) { |
2483 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
2484 | S.CCEDiag(E, diag::note_constexpr_invalid_cast) |
2485 | << diag::ConstexprInvalidCastKind::CastFrom << "'void *'" |
2486 | << S.Current->getRange(OpPC); |
2487 | } |
2488 | } else { |
2489 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
2490 | S.CCEDiag(E, diag::note_constexpr_invalid_cast) |
2491 | << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret |
2492 | << S.getLangOpts().CPlusPlus << S.Current->getRange(OpPC); |
2493 | } |
2494 | |
2495 | return true; |
2496 | } |
2497 | |
2498 | //===----------------------------------------------------------------------===// |
2499 | // Zero, Nullptr |
2500 | //===----------------------------------------------------------------------===// |
2501 | |
2502 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2503 | bool Zero(InterpState &S, CodePtr OpPC) { |
2504 | S.Stk.push<T>(T::zero()); |
2505 | return true; |
2506 | } |
2507 | |
2508 | static inline bool ZeroIntAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
2509 | S.Stk.push<IntegralAP<false>>(Args: IntegralAP<false>::zero(BitWidth)); |
2510 | return true; |
2511 | } |
2512 | |
2513 | static inline bool ZeroIntAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
2514 | S.Stk.push<IntegralAP<true>>(Args: IntegralAP<true>::zero(BitWidth)); |
2515 | return true; |
2516 | } |
2517 | |
2518 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2519 | inline bool Null(InterpState &S, CodePtr OpPC, uint64_t Value, |
2520 | const Descriptor *Desc) { |
2521 | // FIXME(perf): This is a somewhat often-used function and the value of a |
2522 | // null pointer is almost always 0. |
2523 | S.Stk.push<T>(Value, Desc); |
2524 | return true; |
2525 | } |
2526 | |
2527 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2528 | inline bool IsNonNull(InterpState &S, CodePtr OpPC) { |
2529 | const auto &P = S.Stk.pop<T>(); |
2530 | if (P.isWeak()) |
2531 | return false; |
2532 | S.Stk.push<Boolean>(Boolean::from(!P.isZero())); |
2533 | return true; |
2534 | } |
2535 | |
2536 | //===----------------------------------------------------------------------===// |
2537 | // This, ImplicitThis |
2538 | //===----------------------------------------------------------------------===// |
2539 | |
2540 | inline bool This(InterpState &S, CodePtr OpPC) { |
2541 | // Cannot read 'this' in this mode. |
2542 | if (S.checkingPotentialConstantExpression()) { |
2543 | return false; |
2544 | } |
2545 | |
2546 | const Pointer &This = S.Current->getThis(); |
2547 | if (!CheckThis(S, OpPC, This)) |
2548 | return false; |
2549 | |
2550 | // Ensure the This pointer has been cast to the correct base. |
2551 | if (!This.isDummy()) { |
2552 | assert(isa<CXXMethodDecl>(S.Current->getFunction()->getDecl())); |
2553 | if (!This.isTypeidPointer()) { |
2554 | [[maybe_unused]] const Record *R = This.getRecord(); |
2555 | if (!R) |
2556 | R = This.narrow().getRecord(); |
2557 | assert(R); |
2558 | assert(R->getDecl() == |
2559 | cast<CXXMethodDecl>(S.Current->getFunction()->getDecl()) |
2560 | ->getParent()); |
2561 | } |
2562 | } |
2563 | |
2564 | S.Stk.push<Pointer>(Args: This); |
2565 | return true; |
2566 | } |
2567 | |
2568 | inline bool RVOPtr(InterpState &S, CodePtr OpPC) { |
2569 | assert(S.Current->getFunction()->hasRVO()); |
2570 | if (S.checkingPotentialConstantExpression()) |
2571 | return false; |
2572 | S.Stk.push<Pointer>(Args: S.Current->getRVOPtr()); |
2573 | return true; |
2574 | } |
2575 | |
2576 | //===----------------------------------------------------------------------===// |
2577 | // Shr, Shl |
2578 | //===----------------------------------------------------------------------===// |
2579 | |
2580 | template <class LT, class RT, ShiftDir Dir> |
2581 | inline bool DoShift(InterpState &S, CodePtr OpPC, LT &LHS, RT &RHS) { |
2582 | const unsigned Bits = LHS.bitWidth(); |
2583 | |
2584 | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
2585 | if (S.getLangOpts().OpenCL) |
2586 | RT::bitAnd(RHS, RT::from(LHS.bitWidth() - 1, RHS.bitWidth()), |
2587 | RHS.bitWidth(), &RHS); |
2588 | |
2589 | if (RHS.isNegative()) { |
2590 | // During constant-folding, a negative shift is an opposite shift. Such a |
2591 | // shift is not a constant expression. |
2592 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
2593 | S.CCEDiag(Loc, diag::note_constexpr_negative_shift) << RHS.toAPSInt(); |
2594 | if (!S.noteUndefinedBehavior()) |
2595 | return false; |
2596 | RHS = -RHS; |
2597 | return DoShift<LT, RT, |
2598 | Dir == ShiftDir::Left ? ShiftDir::Right : ShiftDir::Left>( |
2599 | S, OpPC, LHS, RHS); |
2600 | } |
2601 | |
2602 | if (!CheckShift<Dir>(S, OpPC, LHS, RHS, Bits)) |
2603 | return false; |
2604 | |
2605 | // Limit the shift amount to Bits - 1. If this happened, |
2606 | // it has already been diagnosed by CheckShift() above, |
2607 | // but we still need to handle it. |
2608 | // Note that we have to be extra careful here since we're doing the shift in |
2609 | // any case, but we need to adjust the shift amount or the way we do the shift |
2610 | // for the potential error cases. |
2611 | typename LT::AsUnsigned R; |
2612 | unsigned MaxShiftAmount = LHS.bitWidth() - 1; |
2613 | if constexpr (Dir == ShiftDir::Left) { |
2614 | if (Compare(RHS, RT::from(MaxShiftAmount, RHS.bitWidth())) == |
2615 | ComparisonCategoryResult::Greater) { |
2616 | if (LHS.isNegative()) |
2617 | R = LT::AsUnsigned::zero(LHS.bitWidth()); |
2618 | else { |
2619 | RHS = RT::from(LHS.countLeadingZeros(), RHS.bitWidth()); |
2620 | LT::AsUnsigned::shiftLeft(LT::AsUnsigned::from(LHS), |
2621 | LT::AsUnsigned::from(RHS, Bits), Bits, &R); |
2622 | } |
2623 | } else if (LHS.isNegative()) { |
2624 | if (LHS.isMin()) { |
2625 | R = LT::AsUnsigned::zero(LHS.bitWidth()); |
2626 | } else { |
2627 | // If the LHS is negative, perform the cast and invert the result. |
2628 | typename LT::AsUnsigned LHSU = LT::AsUnsigned::from(-LHS); |
2629 | LT::AsUnsigned::shiftLeft(LHSU, LT::AsUnsigned::from(RHS, Bits), Bits, |
2630 | &R); |
2631 | R = -R; |
2632 | } |
2633 | } else { |
2634 | // The good case, a simple left shift. |
2635 | LT::AsUnsigned::shiftLeft(LT::AsUnsigned::from(LHS), |
2636 | LT::AsUnsigned::from(RHS, Bits), Bits, &R); |
2637 | } |
2638 | } else { |
2639 | // Right shift. |
2640 | if (Compare(RHS, RT::from(MaxShiftAmount, RHS.bitWidth())) == |
2641 | ComparisonCategoryResult::Greater) { |
2642 | R = LT::AsUnsigned::from(-1); |
2643 | } else { |
2644 | // Do the shift on potentially signed LT, then convert to unsigned type. |
2645 | LT A; |
2646 | LT::shiftRight(LHS, LT::from(RHS, Bits), Bits, &A); |
2647 | R = LT::AsUnsigned::from(A); |
2648 | } |
2649 | } |
2650 | |
2651 | S.Stk.push<LT>(LT::from(R)); |
2652 | return true; |
2653 | } |
2654 | |
2655 | template <PrimType NameL, PrimType NameR> |
2656 | inline bool Shr(InterpState &S, CodePtr OpPC) { |
2657 | using LT = typename PrimConv<NameL>::T; |
2658 | using RT = typename PrimConv<NameR>::T; |
2659 | auto RHS = S.Stk.pop<RT>(); |
2660 | auto LHS = S.Stk.pop<LT>(); |
2661 | |
2662 | return DoShift<LT, RT, ShiftDir::Right>(S, OpPC, LHS, RHS); |
2663 | } |
2664 | |
2665 | template <PrimType NameL, PrimType NameR> |
2666 | inline bool Shl(InterpState &S, CodePtr OpPC) { |
2667 | using LT = typename PrimConv<NameL>::T; |
2668 | using RT = typename PrimConv<NameR>::T; |
2669 | auto RHS = S.Stk.pop<RT>(); |
2670 | auto LHS = S.Stk.pop<LT>(); |
2671 | |
2672 | return DoShift<LT, RT, ShiftDir::Left>(S, OpPC, LHS, RHS); |
2673 | } |
2674 | |
2675 | static inline bool ShiftFixedPoint(InterpState &S, CodePtr OpPC, bool Left) { |
2676 | const auto &RHS = S.Stk.pop<FixedPoint>(); |
2677 | const auto &LHS = S.Stk.pop<FixedPoint>(); |
2678 | llvm::FixedPointSemantics LHSSema = LHS.getSemantics(); |
2679 | |
2680 | unsigned ShiftBitWidth = |
2681 | LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding() - 1; |
2682 | |
2683 | // Embedded-C 4.1.6.2.2: |
2684 | // The right operand must be nonnegative and less than the total number |
2685 | // of (nonpadding) bits of the fixed-point operand ... |
2686 | if (RHS.isNegative()) { |
2687 | S.CCEDiag(S.Current->getLocation(OpPC), diag::note_constexpr_negative_shift) |
2688 | << RHS.toAPSInt(); |
2689 | } else if (static_cast<unsigned>(RHS.toAPSInt().getLimitedValue( |
2690 | Limit: ShiftBitWidth)) != RHS.toAPSInt()) { |
2691 | const Expr *E = S.Current->getExpr(PC: OpPC); |
2692 | S.CCEDiag(E, diag::note_constexpr_large_shift) |
2693 | << RHS.toAPSInt() << E->getType() << ShiftBitWidth; |
2694 | } |
2695 | |
2696 | FixedPoint Result; |
2697 | if (Left) { |
2698 | if (FixedPoint::shiftLeft(A: LHS, B: RHS, OpBits: ShiftBitWidth, R: &Result) && |
2699 | !handleFixedPointOverflow(S, OpPC, FP: Result)) |
2700 | return false; |
2701 | } else { |
2702 | if (FixedPoint::shiftRight(A: LHS, B: RHS, OpBits: ShiftBitWidth, R: &Result) && |
2703 | !handleFixedPointOverflow(S, OpPC, FP: Result)) |
2704 | return false; |
2705 | } |
2706 | |
2707 | S.Stk.push<FixedPoint>(Args&: Result); |
2708 | return true; |
2709 | } |
2710 | |
2711 | //===----------------------------------------------------------------------===// |
2712 | // NoRet |
2713 | //===----------------------------------------------------------------------===// |
2714 | |
2715 | inline bool NoRet(InterpState &S, CodePtr OpPC) { |
2716 | SourceLocation EndLoc = S.Current->getCallee()->getEndLoc(); |
2717 | S.FFDiag(EndLoc, diag::note_constexpr_no_return); |
2718 | return false; |
2719 | } |
2720 | |
2721 | //===----------------------------------------------------------------------===// |
2722 | // NarrowPtr, ExpandPtr |
2723 | //===----------------------------------------------------------------------===// |
2724 | |
2725 | inline bool NarrowPtr(InterpState &S, CodePtr OpPC) { |
2726 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2727 | S.Stk.push<Pointer>(Args: Ptr.narrow()); |
2728 | return true; |
2729 | } |
2730 | |
2731 | inline bool ExpandPtr(InterpState &S, CodePtr OpPC) { |
2732 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2733 | if (Ptr.isBlockPointer()) |
2734 | S.Stk.push<Pointer>(Args: Ptr.expand()); |
2735 | else |
2736 | S.Stk.push<Pointer>(Args: Ptr); |
2737 | return true; |
2738 | } |
2739 | |
2740 | // 1) Pops an integral value from the stack |
2741 | // 2) Peeks a pointer |
2742 | // 3) Pushes a new pointer that's a narrowed array |
2743 | // element of the peeked pointer with the value |
2744 | // from 1) added as offset. |
2745 | // |
2746 | // This leaves the original pointer on the stack and pushes a new one |
2747 | // with the offset applied and narrowed. |
2748 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2749 | inline bool ArrayElemPtr(InterpState &S, CodePtr OpPC) { |
2750 | const T &Offset = S.Stk.pop<T>(); |
2751 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
2752 | |
2753 | if (!Ptr.isZero() && !Offset.isZero()) { |
2754 | if (!CheckArray(S, OpPC, Ptr)) |
2755 | return false; |
2756 | } |
2757 | |
2758 | if (Offset.isZero()) { |
2759 | if (Ptr.getFieldDesc()->isArray() && Ptr.getIndex() == 0) { |
2760 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
2761 | } else { |
2762 | S.Stk.push<Pointer>(Args: Ptr); |
2763 | } |
2764 | } else { |
2765 | if (!OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr)) |
2766 | return false; |
2767 | } |
2768 | |
2769 | return NarrowPtr(S, OpPC); |
2770 | } |
2771 | |
2772 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2773 | inline bool ArrayElemPtrPop(InterpState &S, CodePtr OpPC) { |
2774 | const T &Offset = S.Stk.pop<T>(); |
2775 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2776 | |
2777 | if (!Ptr.isZero() && !Offset.isZero()) { |
2778 | if (!CheckArray(S, OpPC, Ptr)) |
2779 | return false; |
2780 | } |
2781 | |
2782 | if (Offset.isZero()) { |
2783 | if (Ptr.getFieldDesc()->isArray() && Ptr.getIndex() == 0) { |
2784 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
2785 | } else { |
2786 | S.Stk.push<Pointer>(Args: Ptr); |
2787 | } |
2788 | } else { |
2789 | if (!OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr)) |
2790 | return false; |
2791 | } |
2792 | |
2793 | return NarrowPtr(S, OpPC); |
2794 | } |
2795 | |
2796 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2797 | inline bool ArrayElem(InterpState &S, CodePtr OpPC, uint32_t Index) { |
2798 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
2799 | |
2800 | if (!CheckLoad(S, OpPC, Ptr)) |
2801 | return false; |
2802 | |
2803 | assert(Ptr.atIndex(Index).getFieldDesc()->getPrimType() == Name); |
2804 | S.Stk.push<T>(Ptr.atIndex(Idx: Index).deref<T>()); |
2805 | return true; |
2806 | } |
2807 | |
2808 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2809 | inline bool ArrayElemPop(InterpState &S, CodePtr OpPC, uint32_t Index) { |
2810 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2811 | |
2812 | if (!CheckLoad(S, OpPC, Ptr)) |
2813 | return false; |
2814 | |
2815 | assert(Ptr.atIndex(Index).getFieldDesc()->getPrimType() == Name); |
2816 | S.Stk.push<T>(Ptr.atIndex(Idx: Index).deref<T>()); |
2817 | return true; |
2818 | } |
2819 | |
2820 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2821 | inline bool CopyArray(InterpState &S, CodePtr OpPC, uint32_t SrcIndex, |
2822 | uint32_t DestIndex, uint32_t Size) { |
2823 | const auto &SrcPtr = S.Stk.pop<Pointer>(); |
2824 | const auto &DestPtr = S.Stk.peek<Pointer>(); |
2825 | |
2826 | for (uint32_t I = 0; I != Size; ++I) { |
2827 | const Pointer &SP = SrcPtr.atIndex(Idx: SrcIndex + I); |
2828 | |
2829 | if (!CheckLoad(S, OpPC, Ptr: SP)) |
2830 | return false; |
2831 | |
2832 | const Pointer &DP = DestPtr.atIndex(Idx: DestIndex + I); |
2833 | DP.deref<T>() = SP.deref<T>(); |
2834 | DP.initialize(); |
2835 | } |
2836 | return true; |
2837 | } |
2838 | |
2839 | /// Just takes a pointer and checks if it's an incomplete |
2840 | /// array type. |
2841 | inline bool ArrayDecay(InterpState &S, CodePtr OpPC) { |
2842 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2843 | |
2844 | if (Ptr.isZero()) { |
2845 | S.Stk.push<Pointer>(Args: Ptr); |
2846 | return true; |
2847 | } |
2848 | |
2849 | if (!CheckRange(S, OpPC, Ptr, CSK: CSK_ArrayToPointer)) |
2850 | return false; |
2851 | |
2852 | if (Ptr.isRoot() || !Ptr.isUnknownSizeArray()) { |
2853 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
2854 | return true; |
2855 | } |
2856 | |
2857 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
2858 | S.FFDiag(E, diag::note_constexpr_unsupported_unsized_array); |
2859 | |
2860 | return false; |
2861 | } |
2862 | |
2863 | inline bool GetFnPtr(InterpState &S, CodePtr OpPC, const Function *Func) { |
2864 | assert(Func); |
2865 | S.Stk.push<Pointer>(Args&: Func); |
2866 | return true; |
2867 | } |
2868 | |
2869 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2870 | inline bool GetIntPtr(InterpState &S, CodePtr OpPC, const Descriptor *Desc) { |
2871 | const T &IntVal = S.Stk.pop<T>(); |
2872 | |
2873 | S.CCEDiag(S.Current->getSource(OpPC), diag::note_constexpr_invalid_cast) |
2874 | << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret |
2875 | << S.getLangOpts().CPlusPlus; |
2876 | |
2877 | S.Stk.push<Pointer>(Args: static_cast<uint64_t>(IntVal), Args&: Desc); |
2878 | return true; |
2879 | } |
2880 | |
2881 | inline bool GetMemberPtr(InterpState &S, CodePtr OpPC, const ValueDecl *D) { |
2882 | S.Stk.push<MemberPointer>(Args&: D); |
2883 | return true; |
2884 | } |
2885 | |
2886 | inline bool GetMemberPtrBase(InterpState &S, CodePtr OpPC) { |
2887 | const auto &MP = S.Stk.pop<MemberPointer>(); |
2888 | |
2889 | S.Stk.push<Pointer>(Args: MP.getBase()); |
2890 | return true; |
2891 | } |
2892 | |
2893 | inline bool GetMemberPtrDecl(InterpState &S, CodePtr OpPC) { |
2894 | const auto &MP = S.Stk.pop<MemberPointer>(); |
2895 | |
2896 | const auto *FD = cast<FunctionDecl>(Val: MP.getDecl()); |
2897 | const auto *Func = S.getContext().getOrCreateFunction(FuncDecl: FD); |
2898 | |
2899 | S.Stk.push<Pointer>(Args&: Func); |
2900 | return true; |
2901 | } |
2902 | |
2903 | /// Just emit a diagnostic. The expression that caused emission of this |
2904 | /// op is not valid in a constant context. |
2905 | inline bool Invalid(InterpState &S, CodePtr OpPC) { |
2906 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
2907 | S.FFDiag(Loc, diag::note_invalid_subexpr_in_const_expr) |
2908 | << S.Current->getRange(OpPC); |
2909 | return false; |
2910 | } |
2911 | |
2912 | inline bool Unsupported(InterpState &S, CodePtr OpPC) { |
2913 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
2914 | S.FFDiag(Loc, diag::note_constexpr_stmt_expr_unsupported) |
2915 | << S.Current->getRange(OpPC); |
2916 | return false; |
2917 | } |
2918 | |
2919 | inline bool StartSpeculation(InterpState &S, CodePtr OpPC) { |
2920 | ++S.SpeculationDepth; |
2921 | if (S.SpeculationDepth != 1) |
2922 | return true; |
2923 | |
2924 | assert(S.PrevDiags == nullptr); |
2925 | S.PrevDiags = S.getEvalStatus().Diag; |
2926 | S.getEvalStatus().Diag = nullptr; |
2927 | return true; |
2928 | } |
2929 | inline bool EndSpeculation(InterpState &S, CodePtr OpPC) { |
2930 | assert(S.SpeculationDepth != 0); |
2931 | --S.SpeculationDepth; |
2932 | if (S.SpeculationDepth == 0) { |
2933 | S.getEvalStatus().Diag = S.PrevDiags; |
2934 | S.PrevDiags = nullptr; |
2935 | } |
2936 | return true; |
2937 | } |
2938 | |
2939 | inline bool PushCC(InterpState &S, CodePtr OpPC, bool Value) { |
2940 | S.ConstantContextOverride = Value; |
2941 | return true; |
2942 | } |
2943 | inline bool PopCC(InterpState &S, CodePtr OpPC) { |
2944 | S.ConstantContextOverride = std::nullopt; |
2945 | return true; |
2946 | } |
2947 | |
2948 | /// Do nothing and just abort execution. |
2949 | inline bool Error(InterpState &S, CodePtr OpPC) { return false; } |
2950 | |
2951 | inline bool SideEffect(InterpState &S, CodePtr OpPC) { |
2952 | return S.noteSideEffect(); |
2953 | } |
2954 | |
2955 | /// Same here, but only for casts. |
2956 | inline bool InvalidCast(InterpState &S, CodePtr OpPC, CastKind Kind, |
2957 | bool Fatal) { |
2958 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
2959 | |
2960 | if (Kind == CastKind::Reinterpret) { |
2961 | S.CCEDiag(Loc, diag::note_constexpr_invalid_cast) |
2962 | << static_cast<unsigned>(Kind) << S.Current->getRange(OpPC); |
2963 | return !Fatal; |
2964 | } else if (Kind == CastKind::Volatile) { |
2965 | if (!S.checkingPotentialConstantExpression()) { |
2966 | const auto *E = cast<CastExpr>(Val: S.Current->getExpr(PC: OpPC)); |
2967 | if (S.getLangOpts().CPlusPlus) |
2968 | S.FFDiag(E, diag::note_constexpr_access_volatile_type) |
2969 | << AK_Read << E->getSubExpr()->getType(); |
2970 | else |
2971 | S.FFDiag(E); |
2972 | } |
2973 | |
2974 | return false; |
2975 | } else if (Kind == CastKind::Dynamic) { |
2976 | assert(!S.getLangOpts().CPlusPlus20); |
2977 | S.CCEDiag(S.Current->getSource(OpPC), diag::note_constexpr_invalid_cast) |
2978 | << diag::ConstexprInvalidCastKind::Dynamic; |
2979 | return true; |
2980 | } |
2981 | |
2982 | return false; |
2983 | } |
2984 | |
2985 | inline bool InvalidDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR, |
2986 | bool InitializerFailed) { |
2987 | assert(DR); |
2988 | |
2989 | if (InitializerFailed) { |
2990 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
2991 | const auto *VD = cast<VarDecl>(Val: DR->getDecl()); |
2992 | S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD; |
2993 | S.Note(VD->getLocation(), diag::note_declared_at); |
2994 | return false; |
2995 | } |
2996 | |
2997 | return CheckDeclRef(S, OpPC, DR); |
2998 | } |
2999 | |
3000 | inline bool SizelessVectorElementSize(InterpState &S, CodePtr OpPC) { |
3001 | if (S.inConstantContext()) { |
3002 | const SourceRange &ArgRange = S.Current->getRange(PC: OpPC); |
3003 | const Expr *E = S.Current->getExpr(PC: OpPC); |
3004 | S.CCEDiag(E, diag::note_constexpr_non_const_vectorelements) << ArgRange; |
3005 | } |
3006 | return false; |
3007 | } |
3008 | |
3009 | inline bool CheckPseudoDtor(InterpState &S, CodePtr OpPC) { |
3010 | if (!S.getLangOpts().CPlusPlus20) |
3011 | S.CCEDiag(S.Current->getSource(OpPC), |
3012 | diag::note_constexpr_pseudo_destructor); |
3013 | return true; |
3014 | } |
3015 | |
3016 | inline bool Assume(InterpState &S, CodePtr OpPC) { |
3017 | const auto Val = S.Stk.pop<Boolean>(); |
3018 | |
3019 | if (Val) |
3020 | return true; |
3021 | |
3022 | // Else, diagnose. |
3023 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
3024 | S.CCEDiag(Loc, diag::note_constexpr_assumption_failed); |
3025 | return false; |
3026 | } |
3027 | |
3028 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3029 | inline bool OffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E) { |
3030 | llvm::SmallVector<int64_t> ArrayIndices; |
3031 | for (size_t I = 0; I != E->getNumExpressions(); ++I) |
3032 | ArrayIndices.emplace_back(Args: S.Stk.pop<int64_t>()); |
3033 | |
3034 | int64_t Result; |
3035 | if (!InterpretOffsetOf(S, OpPC, E, ArrayIndices, Result)) |
3036 | return false; |
3037 | |
3038 | S.Stk.push<T>(T::from(Result)); |
3039 | |
3040 | return true; |
3041 | } |
3042 | |
3043 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3044 | inline bool CheckNonNullArg(InterpState &S, CodePtr OpPC) { |
3045 | const T &Arg = S.Stk.peek<T>(); |
3046 | if (!Arg.isZero()) |
3047 | return true; |
3048 | |
3049 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
3050 | S.CCEDiag(Loc, diag::note_non_null_attribute_failed); |
3051 | |
3052 | return false; |
3053 | } |
3054 | |
3055 | void diagnoseEnumValue(InterpState &S, CodePtr OpPC, const EnumDecl *ED, |
3056 | const APSInt &Value); |
3057 | |
3058 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3059 | inline bool CheckEnumValue(InterpState &S, CodePtr OpPC, const EnumDecl *ED) { |
3060 | assert(ED); |
3061 | assert(!ED->isFixed()); |
3062 | |
3063 | if (S.inConstantContext()) { |
3064 | const APSInt Val = S.Stk.peek<T>().toAPSInt(); |
3065 | diagnoseEnumValue(S, OpPC, ED, Value: Val); |
3066 | } |
3067 | return true; |
3068 | } |
3069 | |
3070 | /// OldPtr -> Integer -> NewPtr. |
3071 | template <PrimType TIn, PrimType TOut> |
3072 | inline bool DecayPtr(InterpState &S, CodePtr OpPC) { |
3073 | static_assert(isPtrType(T: TIn) && isPtrType(T: TOut)); |
3074 | using FromT = typename PrimConv<TIn>::T; |
3075 | using ToT = typename PrimConv<TOut>::T; |
3076 | |
3077 | const FromT &OldPtr = S.Stk.pop<FromT>(); |
3078 | |
3079 | if constexpr (std::is_same_v<FromT, FunctionPointer> && |
3080 | std::is_same_v<ToT, Pointer>) { |
3081 | S.Stk.push<Pointer>(OldPtr.getFunction(), OldPtr.getOffset()); |
3082 | return true; |
3083 | } else if constexpr (std::is_same_v<FromT, Pointer> && |
3084 | std::is_same_v<ToT, FunctionPointer>) { |
3085 | if (OldPtr.isFunctionPointer()) { |
3086 | S.Stk.push<FunctionPointer>(OldPtr.asFunctionPointer().getFunction(), |
3087 | OldPtr.getByteOffset()); |
3088 | return true; |
3089 | } |
3090 | } |
3091 | |
3092 | S.Stk.push<ToT>(ToT(OldPtr.getIntegerRepresentation(), nullptr)); |
3093 | return true; |
3094 | } |
3095 | |
3096 | inline bool CheckDecl(InterpState &S, CodePtr OpPC, const VarDecl *VD) { |
3097 | // An expression E is a core constant expression unless the evaluation of E |
3098 | // would evaluate one of the following: [C++23] - a control flow that passes |
3099 | // through a declaration of a variable with static or thread storage duration |
3100 | // unless that variable is usable in constant expressions. |
3101 | assert(VD->isLocalVarDecl() && |
3102 | VD->isStaticLocal()); // Checked before emitting this. |
3103 | |
3104 | if (VD == S.EvaluatingDecl) |
3105 | return true; |
3106 | |
3107 | if (!VD->isUsableInConstantExpressions(C: S.getASTContext())) { |
3108 | S.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local) |
3109 | << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD; |
3110 | return false; |
3111 | } |
3112 | return true; |
3113 | } |
3114 | |
3115 | inline bool Alloc(InterpState &S, CodePtr OpPC, const Descriptor *Desc) { |
3116 | assert(Desc); |
3117 | |
3118 | if (!CheckDynamicMemoryAllocation(S, OpPC)) |
3119 | return false; |
3120 | |
3121 | DynamicAllocator &Allocator = S.getAllocator(); |
3122 | Block *B = Allocator.allocate(D: Desc, EvalID: S.Ctx.getEvalID(), |
3123 | AllocForm: DynamicAllocator::Form::NonArray); |
3124 | assert(B); |
3125 | S.Stk.push<Pointer>(Args&: B); |
3126 | return true; |
3127 | } |
3128 | |
3129 | template <PrimType Name, class SizeT = typename PrimConv<Name>::T> |
3130 | inline bool AllocN(InterpState &S, CodePtr OpPC, PrimType T, const Expr *Source, |
3131 | bool IsNoThrow) { |
3132 | if (!CheckDynamicMemoryAllocation(S, OpPC)) |
3133 | return false; |
3134 | |
3135 | SizeT NumElements = S.Stk.pop<SizeT>(); |
3136 | if (!CheckArraySize(S, OpPC, &NumElements, primSize(Type: T), IsNoThrow)) { |
3137 | if (!IsNoThrow) |
3138 | return false; |
3139 | |
3140 | // If this failed and is nothrow, just return a null ptr. |
3141 | S.Stk.push<Pointer>(Args: 0, Args: nullptr); |
3142 | return true; |
3143 | } |
3144 | assert(NumElements.isPositive()); |
3145 | |
3146 | if (!CheckArraySize(S, OpPC, NumElems: static_cast<uint64_t>(NumElements))) |
3147 | return false; |
3148 | |
3149 | DynamicAllocator &Allocator = S.getAllocator(); |
3150 | Block *B = |
3151 | Allocator.allocate(Source, T, NumElements: static_cast<size_t>(NumElements), |
3152 | EvalID: S.Ctx.getEvalID(), AllocForm: DynamicAllocator::Form::Array); |
3153 | assert(B); |
3154 | if (NumElements.isZero()) |
3155 | S.Stk.push<Pointer>(Args&: B); |
3156 | else |
3157 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0)); |
3158 | return true; |
3159 | } |
3160 | |
3161 | template <PrimType Name, class SizeT = typename PrimConv<Name>::T> |
3162 | inline bool AllocCN(InterpState &S, CodePtr OpPC, const Descriptor *ElementDesc, |
3163 | bool IsNoThrow) { |
3164 | if (!CheckDynamicMemoryAllocation(S, OpPC)) |
3165 | return false; |
3166 | |
3167 | SizeT NumElements = S.Stk.pop<SizeT>(); |
3168 | if (!CheckArraySize(S, OpPC, &NumElements, ElementDesc->getSize(), |
3169 | IsNoThrow)) { |
3170 | if (!IsNoThrow) |
3171 | return false; |
3172 | |
3173 | // If this failed and is nothrow, just return a null ptr. |
3174 | S.Stk.push<Pointer>(Args: 0, Args&: ElementDesc); |
3175 | return true; |
3176 | } |
3177 | assert(NumElements.isPositive()); |
3178 | |
3179 | if (!CheckArraySize(S, OpPC, NumElems: static_cast<uint64_t>(NumElements))) |
3180 | return false; |
3181 | |
3182 | DynamicAllocator &Allocator = S.getAllocator(); |
3183 | Block *B = |
3184 | Allocator.allocate(D: ElementDesc, NumElements: static_cast<size_t>(NumElements), |
3185 | EvalID: S.Ctx.getEvalID(), AllocForm: DynamicAllocator::Form::Array); |
3186 | assert(B); |
3187 | if (NumElements.isZero()) |
3188 | S.Stk.push<Pointer>(Args&: B); |
3189 | else |
3190 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0)); |
3191 | |
3192 | return true; |
3193 | } |
3194 | |
3195 | bool Free(InterpState &S, CodePtr OpPC, bool DeleteIsArrayForm, |
3196 | bool IsGlobalDelete); |
3197 | |
3198 | static inline bool IsConstantContext(InterpState &S, CodePtr OpPC) { |
3199 | S.Stk.push<Boolean>(Args: Boolean::from(Value: S.inConstantContext())); |
3200 | return true; |
3201 | } |
3202 | |
3203 | static inline bool CheckAllocations(InterpState &S, CodePtr OpPC) { |
3204 | return S.maybeDiagnoseDanglingAllocations(); |
3205 | } |
3206 | |
3207 | /// Check if the initializer and storage types of a placement-new expression |
3208 | /// match. |
3209 | bool CheckNewTypeMismatch(InterpState &S, CodePtr OpPC, const Expr *E, |
3210 | std::optional<uint64_t> ArraySize = std::nullopt); |
3211 | |
3212 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3213 | bool CheckNewTypeMismatchArray(InterpState &S, CodePtr OpPC, const Expr *E) { |
3214 | const auto &Size = S.Stk.pop<T>(); |
3215 | return CheckNewTypeMismatch(S, OpPC, E, ArraySize: static_cast<uint64_t>(Size)); |
3216 | } |
3217 | bool InvalidNewDeleteExpr(InterpState &S, CodePtr OpPC, const Expr *E); |
3218 | |
3219 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3220 | inline bool BitCastPrim(InterpState &S, CodePtr OpPC, bool TargetIsUCharOrByte, |
3221 | uint32_t ResultBitWidth, |
3222 | const llvm::fltSemantics *Sem) { |
3223 | const Pointer &FromPtr = S.Stk.pop<Pointer>(); |
3224 | |
3225 | if (!CheckLoad(S, OpPC, Ptr: FromPtr)) |
3226 | return false; |
3227 | |
3228 | if constexpr (std::is_same_v<T, Pointer>) { |
3229 | // The only pointer type we can validly bitcast to is nullptr_t. |
3230 | S.Stk.push<Pointer>(); |
3231 | return true; |
3232 | } else { |
3233 | |
3234 | size_t BuffSize = ResultBitWidth / 8; |
3235 | llvm::SmallVector<std::byte> Buff(BuffSize); |
3236 | bool HasIndeterminateBits = false; |
3237 | |
3238 | Bits FullBitWidth(ResultBitWidth); |
3239 | Bits BitWidth = FullBitWidth; |
3240 | |
3241 | if constexpr (std::is_same_v<T, Floating>) { |
3242 | assert(Sem); |
3243 | BitWidth = Bits(llvm::APFloatBase::getSizeInBits(Sem: *Sem)); |
3244 | } |
3245 | |
3246 | if (!DoBitCast(S, OpPC, Ptr: FromPtr, Buff: Buff.data(), BitWidth, FullBitWidth, |
3247 | HasIndeterminateBits)) |
3248 | return false; |
3249 | |
3250 | if (!CheckBitCast(S, OpPC, HasIndeterminateBits, TargetIsUCharOrByte)) |
3251 | return false; |
3252 | |
3253 | if constexpr (std::is_same_v<T, Floating>) { |
3254 | assert(Sem); |
3255 | S.Stk.push<Floating>(T::bitcastFromMemory(Buff.data(), *Sem)); |
3256 | } else { |
3257 | assert(!Sem); |
3258 | S.Stk.push<T>(T::bitcastFromMemory(Buff.data(), ResultBitWidth)); |
3259 | } |
3260 | return true; |
3261 | } |
3262 | } |
3263 | |
3264 | inline bool BitCast(InterpState &S, CodePtr OpPC) { |
3265 | const Pointer &FromPtr = S.Stk.pop<Pointer>(); |
3266 | Pointer &ToPtr = S.Stk.peek<Pointer>(); |
3267 | |
3268 | if (!CheckLoad(S, OpPC, Ptr: FromPtr)) |
3269 | return false; |
3270 | |
3271 | if (!DoBitCastPtr(S, OpPC, FromPtr, ToPtr)) |
3272 | return false; |
3273 | |
3274 | return true; |
3275 | } |
3276 | |
3277 | /// Typeid support. |
3278 | bool GetTypeid(InterpState &S, CodePtr OpPC, const Type *TypePtr, |
3279 | const Type *TypeInfoType); |
3280 | bool GetTypeidPtr(InterpState &S, CodePtr OpPC, const Type *TypeInfoType); |
3281 | bool DiagTypeid(InterpState &S, CodePtr OpPC); |
3282 | |
3283 | inline bool CheckDestruction(InterpState &S, CodePtr OpPC) { |
3284 | const auto &Ptr = S.Stk.peek<Pointer>(); |
3285 | return CheckDestructor(S, OpPC, Ptr); |
3286 | } |
3287 | |
3288 | inline bool CheckArraySize(InterpState &S, CodePtr OpPC, uint64_t NumElems) { |
3289 | uint64_t Limit = S.getLangOpts().ConstexprStepLimit; |
3290 | if (NumElems > Limit) { |
3291 | S.FFDiag(S.Current->getSource(OpPC), |
3292 | diag::note_constexpr_new_exceeds_limits) |
3293 | << NumElems << Limit; |
3294 | return false; |
3295 | } |
3296 | return true; |
3297 | } |
3298 | |
3299 | //===----------------------------------------------------------------------===// |
3300 | // Read opcode arguments |
3301 | //===----------------------------------------------------------------------===// |
3302 | |
3303 | template <typename T> inline T ReadArg(InterpState &S, CodePtr &OpPC) { |
3304 | if constexpr (std::is_pointer<T>::value) { |
3305 | uint32_t ID = OpPC.read<uint32_t>(); |
3306 | return reinterpret_cast<T>(S.P.getNativePointer(Idx: ID)); |
3307 | } else { |
3308 | return OpPC.read<T>(); |
3309 | } |
3310 | } |
3311 | |
3312 | template <> inline Floating ReadArg<Floating>(InterpState &S, CodePtr &OpPC) { |
3313 | Floating F = Floating::deserialize(Buff: *OpPC); |
3314 | OpPC += align(Size: F.bytesToSerialize()); |
3315 | return F; |
3316 | } |
3317 | |
3318 | template <> |
3319 | inline IntegralAP<false> ReadArg<IntegralAP<false>>(InterpState &S, |
3320 | CodePtr &OpPC) { |
3321 | IntegralAP<false> I = IntegralAP<false>::deserialize(Buff: *OpPC); |
3322 | OpPC += align(Size: I.bytesToSerialize()); |
3323 | return I; |
3324 | } |
3325 | |
3326 | template <> |
3327 | inline IntegralAP<true> ReadArg<IntegralAP<true>>(InterpState &S, |
3328 | CodePtr &OpPC) { |
3329 | IntegralAP<true> I = IntegralAP<true>::deserialize(Buff: *OpPC); |
3330 | OpPC += align(Size: I.bytesToSerialize()); |
3331 | return I; |
3332 | } |
3333 | |
3334 | template <> |
3335 | inline FixedPoint ReadArg<FixedPoint>(InterpState &S, CodePtr &OpPC) { |
3336 | FixedPoint FP = FixedPoint::deserialize(Buff: *OpPC); |
3337 | OpPC += align(Size: FP.bytesToSerialize()); |
3338 | return FP; |
3339 | } |
3340 | |
3341 | } // namespace interp |
3342 | } // namespace clang |
3343 | |
3344 | #endif |
3345 | |