| 1 | //===--- InterpBuiltin.cpp - Interpreter for the constexpr VM ---*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | #include "../ExprConstShared.h" |
| 9 | #include "Boolean.h" |
| 10 | #include "Compiler.h" |
| 11 | #include "EvalEmitter.h" |
| 12 | #include "Interp.h" |
| 13 | #include "InterpBuiltinBitCast.h" |
| 14 | #include "PrimType.h" |
| 15 | #include "clang/AST/OSLog.h" |
| 16 | #include "clang/AST/RecordLayout.h" |
| 17 | #include "clang/Basic/Builtins.h" |
| 18 | #include "clang/Basic/TargetBuiltins.h" |
| 19 | #include "clang/Basic/TargetInfo.h" |
| 20 | #include "llvm/ADT/StringExtras.h" |
| 21 | #include "llvm/Support/SipHash.h" |
| 22 | |
| 23 | namespace clang { |
| 24 | namespace interp { |
| 25 | |
| 26 | LLVM_ATTRIBUTE_UNUSED static bool isNoopBuiltin(unsigned ID) { |
| 27 | switch (ID) { |
| 28 | case Builtin::BIas_const: |
| 29 | case Builtin::BIforward: |
| 30 | case Builtin::BIforward_like: |
| 31 | case Builtin::BImove: |
| 32 | case Builtin::BImove_if_noexcept: |
| 33 | case Builtin::BIaddressof: |
| 34 | case Builtin::BI__addressof: |
| 35 | case Builtin::BI__builtin_addressof: |
| 36 | case Builtin::BI__builtin_launder: |
| 37 | return true; |
| 38 | default: |
| 39 | return false; |
| 40 | } |
| 41 | return false; |
| 42 | } |
| 43 | |
| 44 | static void discard(InterpStack &Stk, PrimType T) { |
| 45 | TYPE_SWITCH(T, { Stk.discard<T>(); }); |
| 46 | } |
| 47 | |
| 48 | static APSInt popToAPSInt(InterpStack &Stk, PrimType T) { |
| 49 | INT_TYPE_SWITCH(T, return Stk.pop<T>().toAPSInt()); |
| 50 | } |
| 51 | |
| 52 | /// Pushes \p Val on the stack as the type given by \p QT. |
| 53 | static void pushInteger(InterpState &S, const APSInt &Val, QualType QT) { |
| 54 | assert(QT->isSignedIntegerOrEnumerationType() || |
| 55 | QT->isUnsignedIntegerOrEnumerationType()); |
| 56 | std::optional<PrimType> T = S.getContext().classify(T: QT); |
| 57 | assert(T); |
| 58 | |
| 59 | unsigned BitWidth = S.getASTContext().getTypeSize(T: QT); |
| 60 | if (QT->isSignedIntegerOrEnumerationType()) { |
| 61 | int64_t V = Val.getSExtValue(); |
| 62 | INT_TYPE_SWITCH(*T, { S.Stk.push<T>(T::from(V, BitWidth)); }); |
| 63 | } else { |
| 64 | assert(QT->isUnsignedIntegerOrEnumerationType()); |
| 65 | uint64_t V = Val.getZExtValue(); |
| 66 | INT_TYPE_SWITCH(*T, { S.Stk.push<T>(T::from(V, BitWidth)); }); |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | template <typename T> |
| 71 | static void pushInteger(InterpState &S, T Val, QualType QT) { |
| 72 | if constexpr (std::is_same_v<T, APInt>) |
| 73 | pushInteger(S, Val: APSInt(Val, !std::is_signed_v<T>), QT); |
| 74 | else if constexpr (std::is_same_v<T, APSInt>) |
| 75 | pushInteger(S, Val, QT); |
| 76 | else |
| 77 | pushInteger(S, |
| 78 | Val: APSInt(APInt(sizeof(T) * 8, static_cast<uint64_t>(Val), |
| 79 | std::is_signed_v<T>), |
| 80 | !std::is_signed_v<T>), |
| 81 | QT); |
| 82 | } |
| 83 | |
| 84 | static void assignInteger(const Pointer &Dest, PrimType ValueT, |
| 85 | const APSInt &Value) { |
| 86 | INT_TYPE_SWITCH_NO_BOOL( |
| 87 | ValueT, { Dest.deref<T>() = T::from(static_cast<T>(Value)); }); |
| 88 | } |
| 89 | |
| 90 | static QualType getElemType(const Pointer &P) { |
| 91 | const Descriptor *Desc = P.getFieldDesc(); |
| 92 | QualType T = Desc->getType(); |
| 93 | if (Desc->isPrimitive()) |
| 94 | return T; |
| 95 | if (T->isPointerType()) |
| 96 | return T->getAs<PointerType>()->getPointeeType(); |
| 97 | if (Desc->isArray()) |
| 98 | return Desc->getElemQualType(); |
| 99 | if (const auto *AT = T->getAsArrayTypeUnsafe()) |
| 100 | return AT->getElementType(); |
| 101 | return T; |
| 102 | } |
| 103 | |
| 104 | static void diagnoseNonConstexprBuiltin(InterpState &S, CodePtr OpPC, |
| 105 | unsigned ID) { |
| 106 | if (!S.diagnosing()) |
| 107 | return; |
| 108 | |
| 109 | auto Loc = S.Current->getSource(PC: OpPC); |
| 110 | if (S.getLangOpts().CPlusPlus11) |
| 111 | S.CCEDiag(Loc, diag::note_constexpr_invalid_function) |
| 112 | << /*isConstexpr=*/0 << /*isConstructor=*/0 |
| 113 | << S.getASTContext().BuiltinInfo.getQuotedName(ID); |
| 114 | else |
| 115 | S.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); |
| 116 | } |
| 117 | |
| 118 | static bool interp__builtin_is_constant_evaluated(InterpState &S, CodePtr OpPC, |
| 119 | const InterpFrame *Frame, |
| 120 | const CallExpr *Call) { |
| 121 | unsigned Depth = S.Current->getDepth(); |
| 122 | auto isStdCall = [](const FunctionDecl *F) -> bool { |
| 123 | return F && F->isInStdNamespace() && F->getIdentifier() && |
| 124 | F->getIdentifier()->isStr("is_constant_evaluated" ); |
| 125 | }; |
| 126 | const InterpFrame *Caller = Frame->Caller; |
| 127 | // The current frame is the one for __builtin_is_constant_evaluated. |
| 128 | // The one above that, potentially the one for std::is_constant_evaluated(). |
| 129 | if (S.inConstantContext() && !S.checkingPotentialConstantExpression() && |
| 130 | S.getEvalStatus().Diag && |
| 131 | (Depth == 0 || (Depth == 1 && isStdCall(Frame->getCallee())))) { |
| 132 | if (Caller && isStdCall(Frame->getCallee())) { |
| 133 | const Expr *E = Caller->getExpr(PC: Caller->getRetPC()); |
| 134 | S.report(E->getExprLoc(), |
| 135 | diag::warn_is_constant_evaluated_always_true_constexpr) |
| 136 | << "std::is_constant_evaluated" << E->getSourceRange(); |
| 137 | } else { |
| 138 | S.report(Call->getExprLoc(), |
| 139 | diag::warn_is_constant_evaluated_always_true_constexpr) |
| 140 | << "__builtin_is_constant_evaluated" << Call->getSourceRange(); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | S.Stk.push<Boolean>(Args: Boolean::from(Value: S.inConstantContext())); |
| 145 | return true; |
| 146 | } |
| 147 | |
| 148 | // __builtin_assume(int) |
| 149 | static bool interp__builtin_assume(InterpState &S, CodePtr OpPC, |
| 150 | const InterpFrame *Frame, |
| 151 | const CallExpr *Call) { |
| 152 | assert(Call->getNumArgs() == 1); |
| 153 | discard(Stk&: S.Stk, T: *S.getContext().classify(E: Call->getArg(Arg: 0))); |
| 154 | return true; |
| 155 | } |
| 156 | |
| 157 | static bool interp__builtin_strcmp(InterpState &S, CodePtr OpPC, |
| 158 | const InterpFrame *Frame, |
| 159 | const CallExpr *Call, unsigned ID) { |
| 160 | uint64_t Limit = ~static_cast<uint64_t>(0); |
| 161 | if (ID == Builtin::BIstrncmp || ID == Builtin::BI__builtin_strncmp || |
| 162 | ID == Builtin::BIwcsncmp || ID == Builtin::BI__builtin_wcsncmp) |
| 163 | Limit = popToAPSInt(Stk&: S.Stk, T: *S.getContext().classify(E: Call->getArg(Arg: 2))) |
| 164 | .getZExtValue(); |
| 165 | |
| 166 | const Pointer &B = S.Stk.pop<Pointer>(); |
| 167 | const Pointer &A = S.Stk.pop<Pointer>(); |
| 168 | if (ID == Builtin::BIstrcmp || ID == Builtin::BIstrncmp || |
| 169 | ID == Builtin::BIwcscmp || ID == Builtin::BIwcsncmp) |
| 170 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
| 171 | |
| 172 | if (Limit == 0) { |
| 173 | pushInteger(S, 0, Call->getType()); |
| 174 | return true; |
| 175 | } |
| 176 | |
| 177 | if (!CheckLive(S, OpPC, Ptr: A, AK: AK_Read) || !CheckLive(S, OpPC, Ptr: B, AK: AK_Read)) |
| 178 | return false; |
| 179 | |
| 180 | if (A.isDummy() || B.isDummy()) |
| 181 | return false; |
| 182 | |
| 183 | bool IsWide = ID == Builtin::BIwcscmp || ID == Builtin::BIwcsncmp || |
| 184 | ID == Builtin::BI__builtin_wcscmp || |
| 185 | ID == Builtin::BI__builtin_wcsncmp; |
| 186 | assert(A.getFieldDesc()->isPrimitiveArray()); |
| 187 | assert(B.getFieldDesc()->isPrimitiveArray()); |
| 188 | |
| 189 | assert(getElemType(A).getTypePtr() == getElemType(B).getTypePtr()); |
| 190 | PrimType ElemT = *S.getContext().classify(T: getElemType(P: A)); |
| 191 | |
| 192 | auto returnResult = [&](int V) -> bool { |
| 193 | pushInteger(S, V, Call->getType()); |
| 194 | return true; |
| 195 | }; |
| 196 | |
| 197 | unsigned IndexA = A.getIndex(); |
| 198 | unsigned IndexB = B.getIndex(); |
| 199 | uint64_t Steps = 0; |
| 200 | for (;; ++IndexA, ++IndexB, ++Steps) { |
| 201 | |
| 202 | if (Steps >= Limit) |
| 203 | break; |
| 204 | const Pointer &PA = A.atIndex(Idx: IndexA); |
| 205 | const Pointer &PB = B.atIndex(Idx: IndexB); |
| 206 | if (!CheckRange(S, OpPC, Ptr: PA, AK: AK_Read) || |
| 207 | !CheckRange(S, OpPC, Ptr: PB, AK: AK_Read)) { |
| 208 | return false; |
| 209 | } |
| 210 | |
| 211 | if (IsWide) { |
| 212 | INT_TYPE_SWITCH(ElemT, { |
| 213 | T CA = PA.deref<T>(); |
| 214 | T CB = PB.deref<T>(); |
| 215 | if (CA > CB) |
| 216 | return returnResult(1); |
| 217 | else if (CA < CB) |
| 218 | return returnResult(-1); |
| 219 | else if (CA.isZero() || CB.isZero()) |
| 220 | return returnResult(0); |
| 221 | }); |
| 222 | continue; |
| 223 | } |
| 224 | |
| 225 | uint8_t CA = PA.deref<uint8_t>(); |
| 226 | uint8_t CB = PB.deref<uint8_t>(); |
| 227 | |
| 228 | if (CA > CB) |
| 229 | return returnResult(1); |
| 230 | else if (CA < CB) |
| 231 | return returnResult(-1); |
| 232 | if (CA == 0 || CB == 0) |
| 233 | return returnResult(0); |
| 234 | } |
| 235 | |
| 236 | return returnResult(0); |
| 237 | } |
| 238 | |
| 239 | static bool interp__builtin_strlen(InterpState &S, CodePtr OpPC, |
| 240 | const InterpFrame *Frame, |
| 241 | const CallExpr *Call, unsigned ID) { |
| 242 | const Pointer &StrPtr = S.Stk.pop<Pointer>(); |
| 243 | |
| 244 | if (ID == Builtin::BIstrlen || ID == Builtin::BIwcslen) |
| 245 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
| 246 | |
| 247 | if (!CheckArray(S, OpPC, Ptr: StrPtr)) |
| 248 | return false; |
| 249 | |
| 250 | if (!CheckLive(S, OpPC, Ptr: StrPtr, AK: AK_Read)) |
| 251 | return false; |
| 252 | |
| 253 | if (!CheckDummy(S, OpPC, Ptr: StrPtr, AK: AK_Read)) |
| 254 | return false; |
| 255 | |
| 256 | assert(StrPtr.getFieldDesc()->isPrimitiveArray()); |
| 257 | unsigned ElemSize = StrPtr.getFieldDesc()->getElemSize(); |
| 258 | |
| 259 | if (ID == Builtin::BI__builtin_wcslen || ID == Builtin::BIwcslen) { |
| 260 | [[maybe_unused]] const ASTContext &AC = S.getASTContext(); |
| 261 | assert(ElemSize == AC.getTypeSizeInChars(AC.getWCharType()).getQuantity()); |
| 262 | } |
| 263 | |
| 264 | size_t Len = 0; |
| 265 | for (size_t I = StrPtr.getIndex();; ++I, ++Len) { |
| 266 | const Pointer &ElemPtr = StrPtr.atIndex(Idx: I); |
| 267 | |
| 268 | if (!CheckRange(S, OpPC, Ptr: ElemPtr, AK: AK_Read)) |
| 269 | return false; |
| 270 | |
| 271 | uint32_t Val; |
| 272 | switch (ElemSize) { |
| 273 | case 1: |
| 274 | Val = ElemPtr.deref<uint8_t>(); |
| 275 | break; |
| 276 | case 2: |
| 277 | Val = ElemPtr.deref<uint16_t>(); |
| 278 | break; |
| 279 | case 4: |
| 280 | Val = ElemPtr.deref<uint32_t>(); |
| 281 | break; |
| 282 | default: |
| 283 | llvm_unreachable("Unsupported char size" ); |
| 284 | } |
| 285 | if (Val == 0) |
| 286 | break; |
| 287 | } |
| 288 | |
| 289 | pushInteger(S, Len, Call->getType()); |
| 290 | |
| 291 | return true; |
| 292 | } |
| 293 | |
| 294 | static bool interp__builtin_nan(InterpState &S, CodePtr OpPC, |
| 295 | const InterpFrame *Frame, const CallExpr *Call, |
| 296 | bool Signaling) { |
| 297 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
| 298 | |
| 299 | if (!CheckLoad(S, OpPC, Ptr: Arg)) |
| 300 | return false; |
| 301 | |
| 302 | assert(Arg.getFieldDesc()->isPrimitiveArray()); |
| 303 | |
| 304 | // Convert the given string to an integer using StringRef's API. |
| 305 | llvm::APInt Fill; |
| 306 | std::string Str; |
| 307 | assert(Arg.getNumElems() >= 1); |
| 308 | for (unsigned I = 0;; ++I) { |
| 309 | const Pointer &Elem = Arg.atIndex(Idx: I); |
| 310 | |
| 311 | if (!CheckLoad(S, OpPC, Ptr: Elem)) |
| 312 | return false; |
| 313 | |
| 314 | if (Elem.deref<int8_t>() == 0) |
| 315 | break; |
| 316 | |
| 317 | Str += Elem.deref<char>(); |
| 318 | } |
| 319 | |
| 320 | // Treat empty strings as if they were zero. |
| 321 | if (Str.empty()) |
| 322 | Fill = llvm::APInt(32, 0); |
| 323 | else if (StringRef(Str).getAsInteger(Radix: 0, Result&: Fill)) |
| 324 | return false; |
| 325 | |
| 326 | const llvm::fltSemantics &TargetSemantics = |
| 327 | S.getASTContext().getFloatTypeSemantics( |
| 328 | T: Call->getDirectCallee()->getReturnType()); |
| 329 | |
| 330 | Floating Result; |
| 331 | if (S.getASTContext().getTargetInfo().isNan2008()) { |
| 332 | if (Signaling) |
| 333 | Result = Floating( |
| 334 | llvm::APFloat::getSNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
| 335 | else |
| 336 | Result = Floating( |
| 337 | llvm::APFloat::getQNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
| 338 | } else { |
| 339 | // Prior to IEEE 754-2008, architectures were allowed to choose whether |
| 340 | // the first bit of their significand was set for qNaN or sNaN. MIPS chose |
| 341 | // a different encoding to what became a standard in 2008, and for pre- |
| 342 | // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as |
| 343 | // sNaN. This is now known as "legacy NaN" encoding. |
| 344 | if (Signaling) |
| 345 | Result = Floating( |
| 346 | llvm::APFloat::getQNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
| 347 | else |
| 348 | Result = Floating( |
| 349 | llvm::APFloat::getSNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
| 350 | } |
| 351 | |
| 352 | S.Stk.push<Floating>(Args&: Result); |
| 353 | return true; |
| 354 | } |
| 355 | |
| 356 | static bool interp__builtin_inf(InterpState &S, CodePtr OpPC, |
| 357 | const InterpFrame *Frame, |
| 358 | const CallExpr *Call) { |
| 359 | const llvm::fltSemantics &TargetSemantics = |
| 360 | S.getASTContext().getFloatTypeSemantics( |
| 361 | T: Call->getDirectCallee()->getReturnType()); |
| 362 | |
| 363 | S.Stk.push<Floating>(Args: Floating::getInf(Sem: TargetSemantics)); |
| 364 | return true; |
| 365 | } |
| 366 | |
| 367 | static bool interp__builtin_copysign(InterpState &S, CodePtr OpPC, |
| 368 | const InterpFrame *Frame) { |
| 369 | const Floating &Arg2 = S.Stk.pop<Floating>(); |
| 370 | const Floating &Arg1 = S.Stk.pop<Floating>(); |
| 371 | |
| 372 | APFloat Copy = Arg1.getAPFloat(); |
| 373 | Copy.copySign(RHS: Arg2.getAPFloat()); |
| 374 | S.Stk.push<Floating>(Args: Floating(Copy)); |
| 375 | |
| 376 | return true; |
| 377 | } |
| 378 | |
| 379 | static bool interp__builtin_fmin(InterpState &S, CodePtr OpPC, |
| 380 | const InterpFrame *Frame, bool IsNumBuiltin) { |
| 381 | const Floating &RHS = S.Stk.pop<Floating>(); |
| 382 | const Floating &LHS = S.Stk.pop<Floating>(); |
| 383 | |
| 384 | if (IsNumBuiltin) |
| 385 | S.Stk.push<Floating>(Args: llvm::minimumnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
| 386 | else |
| 387 | S.Stk.push<Floating>(Args: minnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
| 388 | return true; |
| 389 | } |
| 390 | |
| 391 | static bool interp__builtin_fmax(InterpState &S, CodePtr OpPC, |
| 392 | const InterpFrame *Frame, bool IsNumBuiltin) { |
| 393 | const Floating &RHS = S.Stk.pop<Floating>(); |
| 394 | const Floating &LHS = S.Stk.pop<Floating>(); |
| 395 | |
| 396 | if (IsNumBuiltin) |
| 397 | S.Stk.push<Floating>(Args: llvm::maximumnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
| 398 | else |
| 399 | S.Stk.push<Floating>(Args: maxnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
| 400 | return true; |
| 401 | } |
| 402 | |
| 403 | /// Defined as __builtin_isnan(...), to accommodate the fact that it can |
| 404 | /// take a float, double, long double, etc. |
| 405 | /// But for us, that's all a Floating anyway. |
| 406 | static bool interp__builtin_isnan(InterpState &S, CodePtr OpPC, |
| 407 | const InterpFrame *Frame, |
| 408 | const CallExpr *Call) { |
| 409 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 410 | |
| 411 | pushInteger(S, Arg.isNan(), Call->getType()); |
| 412 | return true; |
| 413 | } |
| 414 | |
| 415 | static bool interp__builtin_issignaling(InterpState &S, CodePtr OpPC, |
| 416 | const InterpFrame *Frame, |
| 417 | const CallExpr *Call) { |
| 418 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 419 | |
| 420 | pushInteger(S, Arg.isSignaling(), Call->getType()); |
| 421 | return true; |
| 422 | } |
| 423 | |
| 424 | static bool interp__builtin_isinf(InterpState &S, CodePtr OpPC, |
| 425 | const InterpFrame *Frame, bool CheckSign, |
| 426 | const CallExpr *Call) { |
| 427 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 428 | bool IsInf = Arg.isInf(); |
| 429 | |
| 430 | if (CheckSign) |
| 431 | pushInteger(S, IsInf ? (Arg.isNegative() ? -1 : 1) : 0, Call->getType()); |
| 432 | else |
| 433 | pushInteger(S, Arg.isInf(), Call->getType()); |
| 434 | return true; |
| 435 | } |
| 436 | |
| 437 | static bool interp__builtin_isfinite(InterpState &S, CodePtr OpPC, |
| 438 | const InterpFrame *Frame, |
| 439 | const CallExpr *Call) { |
| 440 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 441 | |
| 442 | pushInteger(S, Arg.isFinite(), Call->getType()); |
| 443 | return true; |
| 444 | } |
| 445 | |
| 446 | static bool interp__builtin_isnormal(InterpState &S, CodePtr OpPC, |
| 447 | const InterpFrame *Frame, |
| 448 | const CallExpr *Call) { |
| 449 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 450 | |
| 451 | pushInteger(S, Arg.isNormal(), Call->getType()); |
| 452 | return true; |
| 453 | } |
| 454 | |
| 455 | static bool interp__builtin_issubnormal(InterpState &S, CodePtr OpPC, |
| 456 | const InterpFrame *Frame, |
| 457 | const CallExpr *Call) { |
| 458 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 459 | |
| 460 | pushInteger(S, Arg.isDenormal(), Call->getType()); |
| 461 | return true; |
| 462 | } |
| 463 | |
| 464 | static bool interp__builtin_iszero(InterpState &S, CodePtr OpPC, |
| 465 | const InterpFrame *Frame, |
| 466 | const CallExpr *Call) { |
| 467 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 468 | |
| 469 | pushInteger(S, Arg.isZero(), Call->getType()); |
| 470 | return true; |
| 471 | } |
| 472 | |
| 473 | static bool interp__builtin_signbit(InterpState &S, CodePtr OpPC, |
| 474 | const InterpFrame *Frame, |
| 475 | const CallExpr *Call) { |
| 476 | const Floating &Arg = S.Stk.pop<Floating>(); |
| 477 | |
| 478 | pushInteger(S, Arg.isNegative(), Call->getType()); |
| 479 | return true; |
| 480 | } |
| 481 | |
| 482 | static bool interp_floating_comparison(InterpState &S, CodePtr OpPC, |
| 483 | const CallExpr *Call, unsigned ID) { |
| 484 | const Floating &RHS = S.Stk.pop<Floating>(); |
| 485 | const Floating &LHS = S.Stk.pop<Floating>(); |
| 486 | |
| 487 | pushInteger( |
| 488 | S, |
| 489 | [&] { |
| 490 | switch (ID) { |
| 491 | case Builtin::BI__builtin_isgreater: |
| 492 | return LHS > RHS; |
| 493 | case Builtin::BI__builtin_isgreaterequal: |
| 494 | return LHS >= RHS; |
| 495 | case Builtin::BI__builtin_isless: |
| 496 | return LHS < RHS; |
| 497 | case Builtin::BI__builtin_islessequal: |
| 498 | return LHS <= RHS; |
| 499 | case Builtin::BI__builtin_islessgreater: { |
| 500 | ComparisonCategoryResult cmp = LHS.compare(RHS); |
| 501 | return cmp == ComparisonCategoryResult::Less || |
| 502 | cmp == ComparisonCategoryResult::Greater; |
| 503 | } |
| 504 | case Builtin::BI__builtin_isunordered: |
| 505 | return LHS.compare(RHS) == ComparisonCategoryResult::Unordered; |
| 506 | default: |
| 507 | llvm_unreachable("Unexpected builtin ID: Should be a floating point " |
| 508 | "comparison function" ); |
| 509 | } |
| 510 | }(), |
| 511 | Call->getType()); |
| 512 | return true; |
| 513 | } |
| 514 | |
| 515 | /// First parameter to __builtin_isfpclass is the floating value, the |
| 516 | /// second one is an integral value. |
| 517 | static bool interp__builtin_isfpclass(InterpState &S, CodePtr OpPC, |
| 518 | const InterpFrame *Frame, |
| 519 | const CallExpr *Call) { |
| 520 | PrimType FPClassArgT = *S.getContext().classify(T: Call->getArg(Arg: 1)->getType()); |
| 521 | APSInt FPClassArg = popToAPSInt(Stk&: S.Stk, T: FPClassArgT); |
| 522 | const Floating &F = S.Stk.pop<Floating>(); |
| 523 | |
| 524 | int32_t Result = |
| 525 | static_cast<int32_t>((F.classify() & FPClassArg).getZExtValue()); |
| 526 | pushInteger(S, Result, Call->getType()); |
| 527 | |
| 528 | return true; |
| 529 | } |
| 530 | |
| 531 | /// Five int values followed by one floating value. |
| 532 | /// __builtin_fpclassify(int, int, int, int, int, float) |
| 533 | static bool interp__builtin_fpclassify(InterpState &S, CodePtr OpPC, |
| 534 | const InterpFrame *Frame, |
| 535 | const CallExpr *Call) { |
| 536 | const Floating &Val = S.Stk.pop<Floating>(); |
| 537 | |
| 538 | PrimType IntT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
| 539 | APSInt Values[5]; |
| 540 | for (unsigned I = 0; I != 5; ++I) |
| 541 | Values[4 - I] = popToAPSInt(Stk&: S.Stk, T: IntT); |
| 542 | |
| 543 | unsigned Index; |
| 544 | switch (Val.getCategory()) { |
| 545 | case APFloat::fcNaN: |
| 546 | Index = 0; |
| 547 | break; |
| 548 | case APFloat::fcInfinity: |
| 549 | Index = 1; |
| 550 | break; |
| 551 | case APFloat::fcNormal: |
| 552 | Index = Val.isDenormal() ? 3 : 2; |
| 553 | break; |
| 554 | case APFloat::fcZero: |
| 555 | Index = 4; |
| 556 | break; |
| 557 | } |
| 558 | |
| 559 | // The last argument is first on the stack. |
| 560 | assert(Index <= 4); |
| 561 | |
| 562 | pushInteger(S, Values[Index], Call->getType()); |
| 563 | return true; |
| 564 | } |
| 565 | |
| 566 | // The C standard says "fabs raises no floating-point exceptions, |
| 567 | // even if x is a signaling NaN. The returned value is independent of |
| 568 | // the current rounding direction mode." Therefore constant folding can |
| 569 | // proceed without regard to the floating point settings. |
| 570 | // Reference, WG14 N2478 F.10.4.3 |
| 571 | static bool interp__builtin_fabs(InterpState &S, CodePtr OpPC, |
| 572 | const InterpFrame *Frame) { |
| 573 | const Floating &Val = S.Stk.pop<Floating>(); |
| 574 | |
| 575 | S.Stk.push<Floating>(Args: Floating::abs(F: Val)); |
| 576 | return true; |
| 577 | } |
| 578 | |
| 579 | static bool interp__builtin_abs(InterpState &S, CodePtr OpPC, |
| 580 | const InterpFrame *Frame, |
| 581 | const CallExpr *Call) { |
| 582 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 583 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 584 | if (Val == |
| 585 | APSInt(APInt::getSignedMinValue(numBits: Val.getBitWidth()), /*IsUnsigned=*/false)) |
| 586 | return false; |
| 587 | if (Val.isNegative()) |
| 588 | Val.negate(); |
| 589 | pushInteger(S, Val, Call->getType()); |
| 590 | return true; |
| 591 | } |
| 592 | |
| 593 | static bool interp__builtin_popcount(InterpState &S, CodePtr OpPC, |
| 594 | const InterpFrame *Frame, |
| 595 | const CallExpr *Call) { |
| 596 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 597 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 598 | pushInteger(S, Val.popcount(), Call->getType()); |
| 599 | return true; |
| 600 | } |
| 601 | |
| 602 | static bool interp__builtin_parity(InterpState &S, CodePtr OpPC, |
| 603 | const InterpFrame *Frame, |
| 604 | const CallExpr *Call) { |
| 605 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 606 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 607 | pushInteger(S, Val.popcount() % 2, Call->getType()); |
| 608 | return true; |
| 609 | } |
| 610 | |
| 611 | static bool interp__builtin_clrsb(InterpState &S, CodePtr OpPC, |
| 612 | const InterpFrame *Frame, |
| 613 | const CallExpr *Call) { |
| 614 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 615 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 616 | pushInteger(S, Val.getBitWidth() - Val.getSignificantBits(), Call->getType()); |
| 617 | return true; |
| 618 | } |
| 619 | |
| 620 | static bool interp__builtin_bitreverse(InterpState &S, CodePtr OpPC, |
| 621 | const InterpFrame *Frame, |
| 622 | const CallExpr *Call) { |
| 623 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 624 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 625 | pushInteger(S, Val.reverseBits(), Call->getType()); |
| 626 | return true; |
| 627 | } |
| 628 | |
| 629 | static bool interp__builtin_classify_type(InterpState &S, CodePtr OpPC, |
| 630 | const InterpFrame *Frame, |
| 631 | const CallExpr *Call) { |
| 632 | // This is an unevaluated call, so there are no arguments on the stack. |
| 633 | assert(Call->getNumArgs() == 1); |
| 634 | const Expr *Arg = Call->getArg(Arg: 0); |
| 635 | |
| 636 | GCCTypeClass ResultClass = |
| 637 | EvaluateBuiltinClassifyType(T: Arg->getType(), LangOpts: S.getLangOpts()); |
| 638 | int32_t ReturnVal = static_cast<int32_t>(ResultClass); |
| 639 | pushInteger(S, ReturnVal, Call->getType()); |
| 640 | return true; |
| 641 | } |
| 642 | |
| 643 | // __builtin_expect(long, long) |
| 644 | // __builtin_expect_with_probability(long, long, double) |
| 645 | static bool interp__builtin_expect(InterpState &S, CodePtr OpPC, |
| 646 | const InterpFrame *Frame, |
| 647 | const CallExpr *Call) { |
| 648 | // The return value is simply the value of the first parameter. |
| 649 | // We ignore the probability. |
| 650 | unsigned NumArgs = Call->getNumArgs(); |
| 651 | assert(NumArgs == 2 || NumArgs == 3); |
| 652 | |
| 653 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 654 | if (NumArgs == 3) |
| 655 | S.Stk.discard<Floating>(); |
| 656 | discard(Stk&: S.Stk, T: ArgT); |
| 657 | |
| 658 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 659 | pushInteger(S, Val, Call->getType()); |
| 660 | return true; |
| 661 | } |
| 662 | |
| 663 | /// rotateleft(value, amount) |
| 664 | static bool interp__builtin_rotate(InterpState &S, CodePtr OpPC, |
| 665 | const InterpFrame *Frame, |
| 666 | const CallExpr *Call, bool Right) { |
| 667 | PrimType AmountT = *S.getContext().classify(T: Call->getArg(Arg: 1)->getType()); |
| 668 | PrimType ValueT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 669 | |
| 670 | APSInt Amount = popToAPSInt(Stk&: S.Stk, T: AmountT); |
| 671 | APSInt Value = popToAPSInt(Stk&: S.Stk, T: ValueT); |
| 672 | |
| 673 | APSInt Result; |
| 674 | if (Right) |
| 675 | Result = APSInt(Value.rotr(rotateAmt: Amount.urem(RHS: Value.getBitWidth())), |
| 676 | /*IsUnsigned=*/true); |
| 677 | else // Left. |
| 678 | Result = APSInt(Value.rotl(rotateAmt: Amount.urem(RHS: Value.getBitWidth())), |
| 679 | /*IsUnsigned=*/true); |
| 680 | |
| 681 | pushInteger(S, Result, Call->getType()); |
| 682 | return true; |
| 683 | } |
| 684 | |
| 685 | static bool interp__builtin_ffs(InterpState &S, CodePtr OpPC, |
| 686 | const InterpFrame *Frame, |
| 687 | const CallExpr *Call) { |
| 688 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 689 | APSInt Value = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 690 | |
| 691 | uint64_t N = Value.countr_zero(); |
| 692 | pushInteger(S, N == Value.getBitWidth() ? 0 : N + 1, Call->getType()); |
| 693 | return true; |
| 694 | } |
| 695 | |
| 696 | static bool interp__builtin_addressof(InterpState &S, CodePtr OpPC, |
| 697 | const InterpFrame *Frame, |
| 698 | const CallExpr *Call) { |
| 699 | #ifndef NDEBUG |
| 700 | assert(Call->getArg(0)->isLValue()); |
| 701 | PrimType PtrT = S.getContext().classify(E: Call->getArg(Arg: 0)).value_or(u: PT_Ptr); |
| 702 | assert(PtrT == PT_Ptr && |
| 703 | "Unsupported pointer type passed to __builtin_addressof()" ); |
| 704 | #endif |
| 705 | return true; |
| 706 | } |
| 707 | |
| 708 | static bool interp__builtin_move(InterpState &S, CodePtr OpPC, |
| 709 | const InterpFrame *Frame, |
| 710 | const CallExpr *Call) { |
| 711 | return Call->getDirectCallee()->isConstexpr(); |
| 712 | } |
| 713 | |
| 714 | static bool interp__builtin_eh_return_data_regno(InterpState &S, CodePtr OpPC, |
| 715 | const InterpFrame *Frame, |
| 716 | const CallExpr *Call) { |
| 717 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 718 | APSInt Arg = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 719 | |
| 720 | int Result = S.getASTContext().getTargetInfo().getEHDataRegisterNumber( |
| 721 | RegNo: Arg.getZExtValue()); |
| 722 | pushInteger(S, Result, Call->getType()); |
| 723 | return true; |
| 724 | } |
| 725 | |
| 726 | // Two integral values followed by a pointer (lhs, rhs, resultOut) |
| 727 | static bool interp__builtin_overflowop(InterpState &S, CodePtr OpPC, |
| 728 | const CallExpr *Call, |
| 729 | unsigned BuiltinOp) { |
| 730 | const Pointer &ResultPtr = S.Stk.pop<Pointer>(); |
| 731 | if (ResultPtr.isDummy()) |
| 732 | return false; |
| 733 | |
| 734 | PrimType RHST = *S.getContext().classify(T: Call->getArg(Arg: 1)->getType()); |
| 735 | PrimType LHST = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 736 | APSInt RHS = popToAPSInt(Stk&: S.Stk, T: RHST); |
| 737 | APSInt LHS = popToAPSInt(Stk&: S.Stk, T: LHST); |
| 738 | QualType ResultType = Call->getArg(Arg: 2)->getType()->getPointeeType(); |
| 739 | PrimType ResultT = *S.getContext().classify(T: ResultType); |
| 740 | bool Overflow; |
| 741 | |
| 742 | APSInt Result; |
| 743 | if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
| 744 | BuiltinOp == Builtin::BI__builtin_sub_overflow || |
| 745 | BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
| 746 | bool IsSigned = LHS.isSigned() || RHS.isSigned() || |
| 747 | ResultType->isSignedIntegerOrEnumerationType(); |
| 748 | bool AllSigned = LHS.isSigned() && RHS.isSigned() && |
| 749 | ResultType->isSignedIntegerOrEnumerationType(); |
| 750 | uint64_t LHSSize = LHS.getBitWidth(); |
| 751 | uint64_t RHSSize = RHS.getBitWidth(); |
| 752 | uint64_t ResultSize = S.getASTContext().getTypeSize(T: ResultType); |
| 753 | uint64_t MaxBits = std::max(a: std::max(a: LHSSize, b: RHSSize), b: ResultSize); |
| 754 | |
| 755 | // Add an additional bit if the signedness isn't uniformly agreed to. We |
| 756 | // could do this ONLY if there is a signed and an unsigned that both have |
| 757 | // MaxBits, but the code to check that is pretty nasty. The issue will be |
| 758 | // caught in the shrink-to-result later anyway. |
| 759 | if (IsSigned && !AllSigned) |
| 760 | ++MaxBits; |
| 761 | |
| 762 | LHS = APSInt(LHS.extOrTrunc(width: MaxBits), !IsSigned); |
| 763 | RHS = APSInt(RHS.extOrTrunc(width: MaxBits), !IsSigned); |
| 764 | Result = APSInt(MaxBits, !IsSigned); |
| 765 | } |
| 766 | |
| 767 | // Find largest int. |
| 768 | switch (BuiltinOp) { |
| 769 | default: |
| 770 | llvm_unreachable("Invalid value for BuiltinOp" ); |
| 771 | case Builtin::BI__builtin_add_overflow: |
| 772 | case Builtin::BI__builtin_sadd_overflow: |
| 773 | case Builtin::BI__builtin_saddl_overflow: |
| 774 | case Builtin::BI__builtin_saddll_overflow: |
| 775 | case Builtin::BI__builtin_uadd_overflow: |
| 776 | case Builtin::BI__builtin_uaddl_overflow: |
| 777 | case Builtin::BI__builtin_uaddll_overflow: |
| 778 | Result = LHS.isSigned() ? LHS.sadd_ov(RHS, Overflow) |
| 779 | : LHS.uadd_ov(RHS, Overflow); |
| 780 | break; |
| 781 | case Builtin::BI__builtin_sub_overflow: |
| 782 | case Builtin::BI__builtin_ssub_overflow: |
| 783 | case Builtin::BI__builtin_ssubl_overflow: |
| 784 | case Builtin::BI__builtin_ssubll_overflow: |
| 785 | case Builtin::BI__builtin_usub_overflow: |
| 786 | case Builtin::BI__builtin_usubl_overflow: |
| 787 | case Builtin::BI__builtin_usubll_overflow: |
| 788 | Result = LHS.isSigned() ? LHS.ssub_ov(RHS, Overflow) |
| 789 | : LHS.usub_ov(RHS, Overflow); |
| 790 | break; |
| 791 | case Builtin::BI__builtin_mul_overflow: |
| 792 | case Builtin::BI__builtin_smul_overflow: |
| 793 | case Builtin::BI__builtin_smull_overflow: |
| 794 | case Builtin::BI__builtin_smulll_overflow: |
| 795 | case Builtin::BI__builtin_umul_overflow: |
| 796 | case Builtin::BI__builtin_umull_overflow: |
| 797 | case Builtin::BI__builtin_umulll_overflow: |
| 798 | Result = LHS.isSigned() ? LHS.smul_ov(RHS, Overflow) |
| 799 | : LHS.umul_ov(RHS, Overflow); |
| 800 | break; |
| 801 | } |
| 802 | |
| 803 | // In the case where multiple sizes are allowed, truncate and see if |
| 804 | // the values are the same. |
| 805 | if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
| 806 | BuiltinOp == Builtin::BI__builtin_sub_overflow || |
| 807 | BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
| 808 | // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, |
| 809 | // since it will give us the behavior of a TruncOrSelf in the case where |
| 810 | // its parameter <= its size. We previously set Result to be at least the |
| 811 | // type-size of the result, so getTypeSize(ResultType) <= Resu |
| 812 | APSInt Temp = Result.extOrTrunc(width: S.getASTContext().getTypeSize(T: ResultType)); |
| 813 | Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); |
| 814 | |
| 815 | if (!APSInt::isSameValue(I1: Temp, I2: Result)) |
| 816 | Overflow = true; |
| 817 | Result = Temp; |
| 818 | } |
| 819 | |
| 820 | // Write Result to ResultPtr and put Overflow on the stack. |
| 821 | assignInteger(Dest: ResultPtr, ValueT: ResultT, Value: Result); |
| 822 | ResultPtr.initialize(); |
| 823 | assert(Call->getDirectCallee()->getReturnType()->isBooleanType()); |
| 824 | S.Stk.push<Boolean>(Args&: Overflow); |
| 825 | return true; |
| 826 | } |
| 827 | |
| 828 | /// Three integral values followed by a pointer (lhs, rhs, carry, carryOut). |
| 829 | static bool interp__builtin_carryop(InterpState &S, CodePtr OpPC, |
| 830 | const InterpFrame *Frame, |
| 831 | const CallExpr *Call, unsigned BuiltinOp) { |
| 832 | const Pointer &CarryOutPtr = S.Stk.pop<Pointer>(); |
| 833 | PrimType LHST = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 834 | PrimType RHST = *S.getContext().classify(T: Call->getArg(Arg: 1)->getType()); |
| 835 | APSInt CarryIn = popToAPSInt(Stk&: S.Stk, T: LHST); |
| 836 | APSInt RHS = popToAPSInt(Stk&: S.Stk, T: RHST); |
| 837 | APSInt LHS = popToAPSInt(Stk&: S.Stk, T: LHST); |
| 838 | |
| 839 | APSInt CarryOut; |
| 840 | |
| 841 | APSInt Result; |
| 842 | // Copy the number of bits and sign. |
| 843 | Result = LHS; |
| 844 | CarryOut = LHS; |
| 845 | |
| 846 | bool FirstOverflowed = false; |
| 847 | bool SecondOverflowed = false; |
| 848 | switch (BuiltinOp) { |
| 849 | default: |
| 850 | llvm_unreachable("Invalid value for BuiltinOp" ); |
| 851 | case Builtin::BI__builtin_addcb: |
| 852 | case Builtin::BI__builtin_addcs: |
| 853 | case Builtin::BI__builtin_addc: |
| 854 | case Builtin::BI__builtin_addcl: |
| 855 | case Builtin::BI__builtin_addcll: |
| 856 | Result = |
| 857 | LHS.uadd_ov(RHS, Overflow&: FirstOverflowed).uadd_ov(RHS: CarryIn, Overflow&: SecondOverflowed); |
| 858 | break; |
| 859 | case Builtin::BI__builtin_subcb: |
| 860 | case Builtin::BI__builtin_subcs: |
| 861 | case Builtin::BI__builtin_subc: |
| 862 | case Builtin::BI__builtin_subcl: |
| 863 | case Builtin::BI__builtin_subcll: |
| 864 | Result = |
| 865 | LHS.usub_ov(RHS, Overflow&: FirstOverflowed).usub_ov(RHS: CarryIn, Overflow&: SecondOverflowed); |
| 866 | break; |
| 867 | } |
| 868 | // It is possible for both overflows to happen but CGBuiltin uses an OR so |
| 869 | // this is consistent. |
| 870 | CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed); |
| 871 | |
| 872 | QualType CarryOutType = Call->getArg(Arg: 3)->getType()->getPointeeType(); |
| 873 | PrimType CarryOutT = *S.getContext().classify(T: CarryOutType); |
| 874 | assignInteger(Dest: CarryOutPtr, ValueT: CarryOutT, Value: CarryOut); |
| 875 | CarryOutPtr.initialize(); |
| 876 | |
| 877 | assert(Call->getType() == Call->getArg(0)->getType()); |
| 878 | pushInteger(S, Result, Call->getType()); |
| 879 | return true; |
| 880 | } |
| 881 | |
| 882 | static bool interp__builtin_clz(InterpState &S, CodePtr OpPC, |
| 883 | const InterpFrame *Frame, const CallExpr *Call, |
| 884 | unsigned BuiltinOp) { |
| 885 | |
| 886 | std::optional<APSInt> Fallback; |
| 887 | if (BuiltinOp == Builtin::BI__builtin_clzg && Call->getNumArgs() == 2) { |
| 888 | PrimType FallbackT = *S.getContext().classify(E: Call->getArg(Arg: 1)); |
| 889 | Fallback = popToAPSInt(Stk&: S.Stk, T: FallbackT); |
| 890 | } |
| 891 | PrimType ValT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
| 892 | const APSInt &Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
| 893 | |
| 894 | // When the argument is 0, the result of GCC builtins is undefined, whereas |
| 895 | // for Microsoft intrinsics, the result is the bit-width of the argument. |
| 896 | bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 && |
| 897 | BuiltinOp != Builtin::BI__lzcnt && |
| 898 | BuiltinOp != Builtin::BI__lzcnt64; |
| 899 | |
| 900 | if (Val == 0) { |
| 901 | if (Fallback) { |
| 902 | pushInteger(S, *Fallback, Call->getType()); |
| 903 | return true; |
| 904 | } |
| 905 | |
| 906 | if (ZeroIsUndefined) |
| 907 | return false; |
| 908 | } |
| 909 | |
| 910 | pushInteger(S, Val.countl_zero(), Call->getType()); |
| 911 | return true; |
| 912 | } |
| 913 | |
| 914 | static bool interp__builtin_ctz(InterpState &S, CodePtr OpPC, |
| 915 | const InterpFrame *Frame, const CallExpr *Call, |
| 916 | unsigned BuiltinID) { |
| 917 | std::optional<APSInt> Fallback; |
| 918 | if (BuiltinID == Builtin::BI__builtin_ctzg && Call->getNumArgs() == 2) { |
| 919 | PrimType FallbackT = *S.getContext().classify(E: Call->getArg(Arg: 1)); |
| 920 | Fallback = popToAPSInt(Stk&: S.Stk, T: FallbackT); |
| 921 | } |
| 922 | PrimType ValT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
| 923 | const APSInt &Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
| 924 | |
| 925 | if (Val == 0) { |
| 926 | if (Fallback) { |
| 927 | pushInteger(S, *Fallback, Call->getType()); |
| 928 | return true; |
| 929 | } |
| 930 | return false; |
| 931 | } |
| 932 | |
| 933 | pushInteger(S, Val.countr_zero(), Call->getType()); |
| 934 | return true; |
| 935 | } |
| 936 | |
| 937 | static bool interp__builtin_bswap(InterpState &S, CodePtr OpPC, |
| 938 | const InterpFrame *Frame, |
| 939 | const CallExpr *Call) { |
| 940 | PrimType ReturnT = *S.getContext().classify(Call->getType()); |
| 941 | PrimType ValT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
| 942 | const APSInt &Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
| 943 | assert(Val.getActiveBits() <= 64); |
| 944 | |
| 945 | INT_TYPE_SWITCH(ReturnT, |
| 946 | { S.Stk.push<T>(T::from(Val.byteSwap().getZExtValue())); }); |
| 947 | return true; |
| 948 | } |
| 949 | |
| 950 | /// bool __atomic_always_lock_free(size_t, void const volatile*) |
| 951 | /// bool __atomic_is_lock_free(size_t, void const volatile*) |
| 952 | static bool interp__builtin_atomic_lock_free(InterpState &S, CodePtr OpPC, |
| 953 | const InterpFrame *Frame, |
| 954 | const CallExpr *Call, |
| 955 | unsigned BuiltinOp) { |
| 956 | auto returnBool = [&S](bool Value) -> bool { |
| 957 | S.Stk.push<Boolean>(Args&: Value); |
| 958 | return true; |
| 959 | }; |
| 960 | |
| 961 | PrimType ValT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
| 962 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 963 | const APSInt &SizeVal = popToAPSInt(Stk&: S.Stk, T: ValT); |
| 964 | |
| 965 | // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power |
| 966 | // of two less than or equal to the maximum inline atomic width, we know it |
| 967 | // is lock-free. If the size isn't a power of two, or greater than the |
| 968 | // maximum alignment where we promote atomics, we know it is not lock-free |
| 969 | // (at least not in the sense of atomic_is_lock_free). Otherwise, |
| 970 | // the answer can only be determined at runtime; for example, 16-byte |
| 971 | // atomics have lock-free implementations on some, but not all, |
| 972 | // x86-64 processors. |
| 973 | |
| 974 | // Check power-of-two. |
| 975 | CharUnits Size = CharUnits::fromQuantity(Quantity: SizeVal.getZExtValue()); |
| 976 | if (Size.isPowerOfTwo()) { |
| 977 | // Check against inlining width. |
| 978 | unsigned InlineWidthBits = |
| 979 | S.getASTContext().getTargetInfo().getMaxAtomicInlineWidth(); |
| 980 | if (Size <= S.getASTContext().toCharUnitsFromBits(BitSize: InlineWidthBits)) { |
| 981 | |
| 982 | // OK, we will inline appropriately-aligned operations of this size, |
| 983 | // and _Atomic(T) is appropriately-aligned. |
| 984 | if (Size == CharUnits::One()) |
| 985 | return returnBool(true); |
| 986 | |
| 987 | // Same for null pointers. |
| 988 | assert(BuiltinOp != Builtin::BI__c11_atomic_is_lock_free); |
| 989 | if (Ptr.isZero()) |
| 990 | return returnBool(true); |
| 991 | |
| 992 | if (Ptr.isIntegralPointer()) { |
| 993 | uint64_t IntVal = Ptr.getIntegerRepresentation(); |
| 994 | if (APSInt(APInt(64, IntVal, false), true).isAligned(A: Size.getAsAlign())) |
| 995 | return returnBool(true); |
| 996 | } |
| 997 | |
| 998 | const Expr *PtrArg = Call->getArg(Arg: 1); |
| 999 | // Otherwise, check if the type's alignment against Size. |
| 1000 | if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: PtrArg)) { |
| 1001 | // Drop the potential implicit-cast to 'const volatile void*', getting |
| 1002 | // the underlying type. |
| 1003 | if (ICE->getCastKind() == CK_BitCast) |
| 1004 | PtrArg = ICE->getSubExpr(); |
| 1005 | } |
| 1006 | |
| 1007 | if (auto PtrTy = PtrArg->getType()->getAs<PointerType>()) { |
| 1008 | QualType PointeeType = PtrTy->getPointeeType(); |
| 1009 | if (!PointeeType->isIncompleteType() && |
| 1010 | S.getASTContext().getTypeAlignInChars(T: PointeeType) >= Size) { |
| 1011 | // OK, we will inline operations on this object. |
| 1012 | return returnBool(true); |
| 1013 | } |
| 1014 | } |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | if (BuiltinOp == Builtin::BI__atomic_always_lock_free) |
| 1019 | return returnBool(false); |
| 1020 | |
| 1021 | return false; |
| 1022 | } |
| 1023 | |
| 1024 | /// bool __c11_atomic_is_lock_free(size_t) |
| 1025 | static bool interp__builtin_c11_atomic_is_lock_free(InterpState &S, |
| 1026 | CodePtr OpPC, |
| 1027 | const InterpFrame *Frame, |
| 1028 | const CallExpr *Call) { |
| 1029 | PrimType ValT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
| 1030 | const APSInt &SizeVal = popToAPSInt(Stk&: S.Stk, T: ValT); |
| 1031 | |
| 1032 | auto returnBool = [&S](bool Value) -> bool { |
| 1033 | S.Stk.push<Boolean>(Args&: Value); |
| 1034 | return true; |
| 1035 | }; |
| 1036 | |
| 1037 | CharUnits Size = CharUnits::fromQuantity(Quantity: SizeVal.getZExtValue()); |
| 1038 | if (Size.isPowerOfTwo()) { |
| 1039 | // Check against inlining width. |
| 1040 | unsigned InlineWidthBits = |
| 1041 | S.getASTContext().getTargetInfo().getMaxAtomicInlineWidth(); |
| 1042 | if (Size <= S.getASTContext().toCharUnitsFromBits(BitSize: InlineWidthBits)) |
| 1043 | return returnBool(true); |
| 1044 | } |
| 1045 | |
| 1046 | return false; // returnBool(false); |
| 1047 | } |
| 1048 | |
| 1049 | /// __builtin_complex(Float A, float B); |
| 1050 | static bool interp__builtin_complex(InterpState &S, CodePtr OpPC, |
| 1051 | const InterpFrame *Frame, |
| 1052 | const CallExpr *Call) { |
| 1053 | const Floating &Arg2 = S.Stk.pop<Floating>(); |
| 1054 | const Floating &Arg1 = S.Stk.pop<Floating>(); |
| 1055 | Pointer &Result = S.Stk.peek<Pointer>(); |
| 1056 | |
| 1057 | Result.atIndex(Idx: 0).deref<Floating>() = Arg1; |
| 1058 | Result.atIndex(Idx: 0).initialize(); |
| 1059 | Result.atIndex(Idx: 1).deref<Floating>() = Arg2; |
| 1060 | Result.atIndex(Idx: 1).initialize(); |
| 1061 | Result.initialize(); |
| 1062 | |
| 1063 | return true; |
| 1064 | } |
| 1065 | |
| 1066 | /// __builtin_is_aligned() |
| 1067 | /// __builtin_align_up() |
| 1068 | /// __builtin_align_down() |
| 1069 | /// The first parameter is either an integer or a pointer. |
| 1070 | /// The second parameter is the requested alignment as an integer. |
| 1071 | static bool interp__builtin_is_aligned_up_down(InterpState &S, CodePtr OpPC, |
| 1072 | const InterpFrame *Frame, |
| 1073 | const CallExpr *Call, |
| 1074 | unsigned BuiltinOp) { |
| 1075 | PrimType AlignmentT = *S.Ctx.classify(E: Call->getArg(Arg: 1)); |
| 1076 | const APSInt &Alignment = popToAPSInt(Stk&: S.Stk, T: AlignmentT); |
| 1077 | |
| 1078 | if (Alignment < 0 || !Alignment.isPowerOf2()) { |
| 1079 | S.FFDiag(Call, diag::note_constexpr_invalid_alignment) << Alignment; |
| 1080 | return false; |
| 1081 | } |
| 1082 | unsigned SrcWidth = S.getASTContext().getIntWidth(T: Call->getArg(Arg: 0)->getType()); |
| 1083 | APSInt MaxValue(APInt::getOneBitSet(numBits: SrcWidth, BitNo: SrcWidth - 1)); |
| 1084 | if (APSInt::compareValues(I1: Alignment, I2: MaxValue) > 0) { |
| 1085 | S.FFDiag(Call, diag::note_constexpr_alignment_too_big) |
| 1086 | << MaxValue << Call->getArg(0)->getType() << Alignment; |
| 1087 | return false; |
| 1088 | } |
| 1089 | |
| 1090 | // The first parameter is either an integer or a pointer (but not a function |
| 1091 | // pointer). |
| 1092 | PrimType FirstArgT = *S.Ctx.classify(E: Call->getArg(Arg: 0)); |
| 1093 | |
| 1094 | if (isIntegralType(T: FirstArgT)) { |
| 1095 | const APSInt &Src = popToAPSInt(Stk&: S.Stk, T: FirstArgT); |
| 1096 | APSInt Align = Alignment.extOrTrunc(width: Src.getBitWidth()); |
| 1097 | if (BuiltinOp == Builtin::BI__builtin_align_up) { |
| 1098 | APSInt AlignedVal = |
| 1099 | APSInt((Src + (Align - 1)) & ~(Align - 1), Src.isUnsigned()); |
| 1100 | pushInteger(S, AlignedVal, Call->getType()); |
| 1101 | } else if (BuiltinOp == Builtin::BI__builtin_align_down) { |
| 1102 | APSInt AlignedVal = APSInt(Src & ~(Align - 1), Src.isUnsigned()); |
| 1103 | pushInteger(S, AlignedVal, Call->getType()); |
| 1104 | } else { |
| 1105 | assert(*S.Ctx.classify(Call->getType()) == PT_Bool); |
| 1106 | S.Stk.push<Boolean>(Args: (Src & (Align - 1)) == 0); |
| 1107 | } |
| 1108 | return true; |
| 1109 | } |
| 1110 | |
| 1111 | assert(FirstArgT == PT_Ptr); |
| 1112 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1113 | |
| 1114 | unsigned PtrOffset = Ptr.getByteOffset(); |
| 1115 | PtrOffset = Ptr.getIndex(); |
| 1116 | CharUnits BaseAlignment = |
| 1117 | S.getASTContext().getDeclAlign(Ptr.getDeclDesc()->asValueDecl()); |
| 1118 | CharUnits PtrAlign = |
| 1119 | BaseAlignment.alignmentAtOffset(offset: CharUnits::fromQuantity(Quantity: PtrOffset)); |
| 1120 | |
| 1121 | if (BuiltinOp == Builtin::BI__builtin_is_aligned) { |
| 1122 | if (PtrAlign.getQuantity() >= Alignment) { |
| 1123 | S.Stk.push<Boolean>(Args: true); |
| 1124 | return true; |
| 1125 | } |
| 1126 | // If the alignment is not known to be sufficient, some cases could still |
| 1127 | // be aligned at run time. However, if the requested alignment is less or |
| 1128 | // equal to the base alignment and the offset is not aligned, we know that |
| 1129 | // the run-time value can never be aligned. |
| 1130 | if (BaseAlignment.getQuantity() >= Alignment && |
| 1131 | PtrAlign.getQuantity() < Alignment) { |
| 1132 | S.Stk.push<Boolean>(Args: false); |
| 1133 | return true; |
| 1134 | } |
| 1135 | |
| 1136 | S.FFDiag(Call->getArg(0), diag::note_constexpr_alignment_compute) |
| 1137 | << Alignment; |
| 1138 | return false; |
| 1139 | } |
| 1140 | |
| 1141 | assert(BuiltinOp == Builtin::BI__builtin_align_down || |
| 1142 | BuiltinOp == Builtin::BI__builtin_align_up); |
| 1143 | |
| 1144 | // For align_up/align_down, we can return the same value if the alignment |
| 1145 | // is known to be greater or equal to the requested value. |
| 1146 | if (PtrAlign.getQuantity() >= Alignment) { |
| 1147 | S.Stk.push<Pointer>(Args: Ptr); |
| 1148 | return true; |
| 1149 | } |
| 1150 | |
| 1151 | // The alignment could be greater than the minimum at run-time, so we cannot |
| 1152 | // infer much about the resulting pointer value. One case is possible: |
| 1153 | // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we |
| 1154 | // can infer the correct index if the requested alignment is smaller than |
| 1155 | // the base alignment so we can perform the computation on the offset. |
| 1156 | if (BaseAlignment.getQuantity() >= Alignment) { |
| 1157 | assert(Alignment.getBitWidth() <= 64 && |
| 1158 | "Cannot handle > 64-bit address-space" ); |
| 1159 | uint64_t Alignment64 = Alignment.getZExtValue(); |
| 1160 | CharUnits NewOffset = |
| 1161 | CharUnits::fromQuantity(BuiltinOp == Builtin::BI__builtin_align_down |
| 1162 | ? llvm::alignDown(PtrOffset, Alignment64) |
| 1163 | : llvm::alignTo(PtrOffset, Alignment64)); |
| 1164 | |
| 1165 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: NewOffset.getQuantity())); |
| 1166 | return true; |
| 1167 | } |
| 1168 | |
| 1169 | // Otherwise, we cannot constant-evaluate the result. |
| 1170 | S.FFDiag(Call->getArg(0), diag::note_constexpr_alignment_adjust) << Alignment; |
| 1171 | return false; |
| 1172 | } |
| 1173 | |
| 1174 | /// __builtin_assume_aligned(Ptr, Alignment[, ExtraOffset]) |
| 1175 | static bool interp__builtin_assume_aligned(InterpState &S, CodePtr OpPC, |
| 1176 | const InterpFrame *Frame, |
| 1177 | const CallExpr *Call) { |
| 1178 | assert(Call->getNumArgs() == 2 || Call->getNumArgs() == 3); |
| 1179 | |
| 1180 | std::optional<APSInt> ; |
| 1181 | if (Call->getNumArgs() == 3) |
| 1182 | ExtraOffset = popToAPSInt(Stk&: S.Stk, T: *S.Ctx.classify(E: Call->getArg(Arg: 2))); |
| 1183 | |
| 1184 | APSInt Alignment = popToAPSInt(Stk&: S.Stk, T: *S.Ctx.classify(E: Call->getArg(Arg: 1))); |
| 1185 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1186 | |
| 1187 | CharUnits Align = CharUnits::fromQuantity(Quantity: Alignment.getZExtValue()); |
| 1188 | |
| 1189 | // If there is a base object, then it must have the correct alignment. |
| 1190 | if (Ptr.isBlockPointer()) { |
| 1191 | CharUnits BaseAlignment; |
| 1192 | if (const auto *VD = Ptr.getDeclDesc()->asValueDecl()) |
| 1193 | BaseAlignment = S.getASTContext().getDeclAlign(VD); |
| 1194 | else if (const auto *E = Ptr.getDeclDesc()->asExpr()) |
| 1195 | BaseAlignment = GetAlignOfExpr(Ctx: S.getASTContext(), E, ExprKind: UETT_AlignOf); |
| 1196 | |
| 1197 | if (BaseAlignment < Align) { |
| 1198 | S.CCEDiag(Call->getArg(0), |
| 1199 | diag::note_constexpr_baa_insufficient_alignment) |
| 1200 | << 0 << BaseAlignment.getQuantity() << Align.getQuantity(); |
| 1201 | return false; |
| 1202 | } |
| 1203 | } |
| 1204 | |
| 1205 | APValue AV = Ptr.toAPValue(ASTCtx: S.getASTContext()); |
| 1206 | CharUnits AVOffset = AV.getLValueOffset(); |
| 1207 | if (ExtraOffset) |
| 1208 | AVOffset -= CharUnits::fromQuantity(Quantity: ExtraOffset->getZExtValue()); |
| 1209 | if (AVOffset.alignTo(Align) != AVOffset) { |
| 1210 | if (Ptr.isBlockPointer()) |
| 1211 | S.CCEDiag(Call->getArg(0), |
| 1212 | diag::note_constexpr_baa_insufficient_alignment) |
| 1213 | << 1 << AVOffset.getQuantity() << Align.getQuantity(); |
| 1214 | else |
| 1215 | S.CCEDiag(Call->getArg(0), |
| 1216 | diag::note_constexpr_baa_value_insufficient_alignment) |
| 1217 | << AVOffset.getQuantity() << Align.getQuantity(); |
| 1218 | return false; |
| 1219 | } |
| 1220 | |
| 1221 | S.Stk.push<Pointer>(Args: Ptr); |
| 1222 | return true; |
| 1223 | } |
| 1224 | |
| 1225 | static bool interp__builtin_ia32_bextr(InterpState &S, CodePtr OpPC, |
| 1226 | const InterpFrame *Frame, |
| 1227 | const CallExpr *Call) { |
| 1228 | if (Call->getNumArgs() != 2 || !Call->getArg(Arg: 0)->getType()->isIntegerType() || |
| 1229 | !Call->getArg(Arg: 1)->getType()->isIntegerType()) |
| 1230 | return false; |
| 1231 | |
| 1232 | PrimType ValT = *S.Ctx.classify(E: Call->getArg(Arg: 0)); |
| 1233 | PrimType IndexT = *S.Ctx.classify(E: Call->getArg(Arg: 1)); |
| 1234 | APSInt Index = popToAPSInt(Stk&: S.Stk, T: IndexT); |
| 1235 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
| 1236 | |
| 1237 | unsigned BitWidth = Val.getBitWidth(); |
| 1238 | uint64_t Shift = Index.extractBitsAsZExtValue(numBits: 8, bitPosition: 0); |
| 1239 | uint64_t Length = Index.extractBitsAsZExtValue(numBits: 8, bitPosition: 8); |
| 1240 | Length = Length > BitWidth ? BitWidth : Length; |
| 1241 | |
| 1242 | // Handle out of bounds cases. |
| 1243 | if (Length == 0 || Shift >= BitWidth) { |
| 1244 | pushInteger(S, 0, Call->getType()); |
| 1245 | return true; |
| 1246 | } |
| 1247 | |
| 1248 | uint64_t Result = Val.getZExtValue() >> Shift; |
| 1249 | Result &= llvm::maskTrailingOnes<uint64_t>(N: Length); |
| 1250 | pushInteger(S, Result, Call->getType()); |
| 1251 | return true; |
| 1252 | } |
| 1253 | |
| 1254 | static bool interp__builtin_ia32_bzhi(InterpState &S, CodePtr OpPC, |
| 1255 | const InterpFrame *Frame, |
| 1256 | const CallExpr *Call) { |
| 1257 | QualType CallType = Call->getType(); |
| 1258 | if (Call->getNumArgs() != 2 || !Call->getArg(Arg: 0)->getType()->isIntegerType() || |
| 1259 | !Call->getArg(Arg: 1)->getType()->isIntegerType() || |
| 1260 | !CallType->isIntegerType()) |
| 1261 | return false; |
| 1262 | |
| 1263 | PrimType ValT = *S.Ctx.classify(E: Call->getArg(Arg: 0)); |
| 1264 | PrimType IndexT = *S.Ctx.classify(E: Call->getArg(Arg: 1)); |
| 1265 | |
| 1266 | APSInt Idx = popToAPSInt(Stk&: S.Stk, T: IndexT); |
| 1267 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
| 1268 | |
| 1269 | unsigned BitWidth = Val.getBitWidth(); |
| 1270 | uint64_t Index = Idx.extractBitsAsZExtValue(numBits: 8, bitPosition: 0); |
| 1271 | |
| 1272 | if (Index < BitWidth) |
| 1273 | Val.clearHighBits(hiBits: BitWidth - Index); |
| 1274 | |
| 1275 | pushInteger(S, Val, QT: CallType); |
| 1276 | return true; |
| 1277 | } |
| 1278 | |
| 1279 | static bool interp__builtin_ia32_lzcnt(InterpState &S, CodePtr OpPC, |
| 1280 | const InterpFrame *Frame, |
| 1281 | const CallExpr *Call) { |
| 1282 | QualType CallType = Call->getType(); |
| 1283 | if (!CallType->isIntegerType() || |
| 1284 | !Call->getArg(Arg: 0)->getType()->isIntegerType()) |
| 1285 | return false; |
| 1286 | |
| 1287 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: *S.Ctx.classify(E: Call->getArg(Arg: 0))); |
| 1288 | pushInteger(S, Val: Val.countLeadingZeros(), QT: CallType); |
| 1289 | return true; |
| 1290 | } |
| 1291 | |
| 1292 | static bool interp__builtin_ia32_tzcnt(InterpState &S, CodePtr OpPC, |
| 1293 | const InterpFrame *Frame, |
| 1294 | const CallExpr *Call) { |
| 1295 | QualType CallType = Call->getType(); |
| 1296 | if (!CallType->isIntegerType() || |
| 1297 | !Call->getArg(Arg: 0)->getType()->isIntegerType()) |
| 1298 | return false; |
| 1299 | |
| 1300 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: *S.Ctx.classify(E: Call->getArg(Arg: 0))); |
| 1301 | pushInteger(S, Val: Val.countTrailingZeros(), QT: CallType); |
| 1302 | return true; |
| 1303 | } |
| 1304 | |
| 1305 | static bool interp__builtin_ia32_pdep(InterpState &S, CodePtr OpPC, |
| 1306 | const InterpFrame *Frame, |
| 1307 | const CallExpr *Call) { |
| 1308 | if (Call->getNumArgs() != 2 || !Call->getArg(Arg: 0)->getType()->isIntegerType() || |
| 1309 | !Call->getArg(Arg: 1)->getType()->isIntegerType()) |
| 1310 | return false; |
| 1311 | |
| 1312 | PrimType ValT = *S.Ctx.classify(E: Call->getArg(Arg: 0)); |
| 1313 | PrimType MaskT = *S.Ctx.classify(E: Call->getArg(Arg: 1)); |
| 1314 | |
| 1315 | APSInt Mask = popToAPSInt(Stk&: S.Stk, T: MaskT); |
| 1316 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
| 1317 | |
| 1318 | unsigned BitWidth = Val.getBitWidth(); |
| 1319 | APInt Result = APInt::getZero(numBits: BitWidth); |
| 1320 | for (unsigned I = 0, P = 0; I != BitWidth; ++I) { |
| 1321 | if (Mask[I]) |
| 1322 | Result.setBitVal(BitPosition: I, BitValue: Val[P++]); |
| 1323 | } |
| 1324 | pushInteger(S, std::move(Result), Call->getType()); |
| 1325 | return true; |
| 1326 | } |
| 1327 | |
| 1328 | static bool interp__builtin_ia32_pext(InterpState &S, CodePtr OpPC, |
| 1329 | const InterpFrame *Frame, |
| 1330 | const CallExpr *Call) { |
| 1331 | if (Call->getNumArgs() != 2 || !Call->getArg(Arg: 0)->getType()->isIntegerType() || |
| 1332 | !Call->getArg(Arg: 1)->getType()->isIntegerType()) |
| 1333 | return false; |
| 1334 | |
| 1335 | PrimType ValT = *S.Ctx.classify(E: Call->getArg(Arg: 0)); |
| 1336 | PrimType MaskT = *S.Ctx.classify(E: Call->getArg(Arg: 1)); |
| 1337 | |
| 1338 | APSInt Mask = popToAPSInt(Stk&: S.Stk, T: MaskT); |
| 1339 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
| 1340 | |
| 1341 | unsigned BitWidth = Val.getBitWidth(); |
| 1342 | APInt Result = APInt::getZero(numBits: BitWidth); |
| 1343 | for (unsigned I = 0, P = 0; I != BitWidth; ++I) { |
| 1344 | if (Mask[I]) |
| 1345 | Result.setBitVal(BitPosition: P++, BitValue: Val[I]); |
| 1346 | } |
| 1347 | pushInteger(S, std::move(Result), Call->getType()); |
| 1348 | return true; |
| 1349 | } |
| 1350 | |
| 1351 | /// (CarryIn, LHS, RHS, Result) |
| 1352 | static bool interp__builtin_ia32_addcarry_subborrow(InterpState &S, |
| 1353 | CodePtr OpPC, |
| 1354 | const InterpFrame *Frame, |
| 1355 | const CallExpr *Call, |
| 1356 | unsigned BuiltinOp) { |
| 1357 | if (Call->getNumArgs() != 4 || !Call->getArg(Arg: 0)->getType()->isIntegerType() || |
| 1358 | !Call->getArg(Arg: 1)->getType()->isIntegerType() || |
| 1359 | !Call->getArg(Arg: 2)->getType()->isIntegerType()) |
| 1360 | return false; |
| 1361 | |
| 1362 | const Pointer &CarryOutPtr = S.Stk.pop<Pointer>(); |
| 1363 | |
| 1364 | PrimType CarryInT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
| 1365 | PrimType LHST = *S.getContext().classify(E: Call->getArg(Arg: 1)); |
| 1366 | PrimType RHST = *S.getContext().classify(E: Call->getArg(Arg: 2)); |
| 1367 | APSInt RHS = popToAPSInt(Stk&: S.Stk, T: RHST); |
| 1368 | APSInt LHS = popToAPSInt(Stk&: S.Stk, T: LHST); |
| 1369 | APSInt CarryIn = popToAPSInt(Stk&: S.Stk, T: CarryInT); |
| 1370 | |
| 1371 | bool IsAdd = BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u32 || |
| 1372 | BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u64; |
| 1373 | |
| 1374 | unsigned BitWidth = LHS.getBitWidth(); |
| 1375 | unsigned CarryInBit = CarryIn.ugt(RHS: 0) ? 1 : 0; |
| 1376 | APInt ExResult = |
| 1377 | IsAdd ? (LHS.zext(width: BitWidth + 1) + (RHS.zext(width: BitWidth + 1) + CarryInBit)) |
| 1378 | : (LHS.zext(width: BitWidth + 1) - (RHS.zext(width: BitWidth + 1) + CarryInBit)); |
| 1379 | |
| 1380 | APInt Result = ExResult.extractBits(numBits: BitWidth, bitPosition: 0); |
| 1381 | APSInt CarryOut = |
| 1382 | APSInt(ExResult.extractBits(numBits: 1, bitPosition: BitWidth), /*IsUnsigned=*/true); |
| 1383 | |
| 1384 | QualType CarryOutType = Call->getArg(Arg: 3)->getType()->getPointeeType(); |
| 1385 | PrimType CarryOutT = *S.getContext().classify(T: CarryOutType); |
| 1386 | assignInteger(Dest: CarryOutPtr, ValueT: CarryOutT, Value: APSInt(Result, true)); |
| 1387 | |
| 1388 | pushInteger(S, CarryOut, Call->getType()); |
| 1389 | |
| 1390 | return true; |
| 1391 | } |
| 1392 | |
| 1393 | static bool interp__builtin_os_log_format_buffer_size(InterpState &S, |
| 1394 | CodePtr OpPC, |
| 1395 | const InterpFrame *Frame, |
| 1396 | const CallExpr *Call) { |
| 1397 | analyze_os_log::OSLogBufferLayout Layout; |
| 1398 | analyze_os_log::computeOSLogBufferLayout(Ctx&: S.getASTContext(), E: Call, layout&: Layout); |
| 1399 | pushInteger(S, Layout.size().getQuantity(), Call->getType()); |
| 1400 | return true; |
| 1401 | } |
| 1402 | |
| 1403 | static bool |
| 1404 | interp__builtin_ptrauth_string_discriminator(InterpState &S, CodePtr OpPC, |
| 1405 | const InterpFrame *Frame, |
| 1406 | const CallExpr *Call) { |
| 1407 | const auto &Ptr = S.Stk.pop<Pointer>(); |
| 1408 | assert(Ptr.getFieldDesc()->isPrimitiveArray()); |
| 1409 | |
| 1410 | // This should be created for a StringLiteral, so should alway shold at least |
| 1411 | // one array element. |
| 1412 | assert(Ptr.getFieldDesc()->getNumElems() >= 1); |
| 1413 | StringRef R(&Ptr.deref<char>(), Ptr.getFieldDesc()->getNumElems() - 1); |
| 1414 | uint64_t Result = getPointerAuthStableSipHash(S: R); |
| 1415 | pushInteger(S, Result, Call->getType()); |
| 1416 | return true; |
| 1417 | } |
| 1418 | |
| 1419 | static bool interp__builtin_operator_new(InterpState &S, CodePtr OpPC, |
| 1420 | const InterpFrame *Frame, |
| 1421 | const CallExpr *Call) { |
| 1422 | // A call to __operator_new is only valid within std::allocate<>::allocate. |
| 1423 | // Walk up the call stack to find the appropriate caller and get the |
| 1424 | // element type from it. |
| 1425 | auto [NewCall, ElemType] = S.getStdAllocatorCaller(Name: "allocate" ); |
| 1426 | APSInt Bytes = popToAPSInt(Stk&: S.Stk, T: *S.getContext().classify(E: Call->getArg(Arg: 0))); |
| 1427 | |
| 1428 | if (ElemType.isNull()) { |
| 1429 | S.FFDiag(Call, S.getLangOpts().CPlusPlus20 |
| 1430 | ? diag::note_constexpr_new_untyped |
| 1431 | : diag::note_constexpr_new); |
| 1432 | return false; |
| 1433 | } |
| 1434 | assert(NewCall); |
| 1435 | |
| 1436 | if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { |
| 1437 | S.FFDiag(Call, diag::note_constexpr_new_not_complete_object_type) |
| 1438 | << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; |
| 1439 | return false; |
| 1440 | } |
| 1441 | |
| 1442 | CharUnits ElemSize = S.getASTContext().getTypeSizeInChars(T: ElemType); |
| 1443 | assert(!ElemSize.isZero()); |
| 1444 | // Divide the number of bytes by sizeof(ElemType), so we get the number of |
| 1445 | // elements we should allocate. |
| 1446 | APInt NumElems, Remainder; |
| 1447 | APInt ElemSizeAP(Bytes.getBitWidth(), ElemSize.getQuantity()); |
| 1448 | APInt::udivrem(LHS: Bytes, RHS: ElemSizeAP, Quotient&: NumElems, Remainder); |
| 1449 | if (Remainder != 0) { |
| 1450 | // This likely indicates a bug in the implementation of 'std::allocator'. |
| 1451 | S.FFDiag(Call, diag::note_constexpr_operator_new_bad_size) |
| 1452 | << Bytes << APSInt(ElemSizeAP, true) << ElemType; |
| 1453 | return false; |
| 1454 | } |
| 1455 | |
| 1456 | // NB: The same check we're using in CheckArraySize() |
| 1457 | if (NumElems.getActiveBits() > |
| 1458 | ConstantArrayType::getMaxSizeBits(Context: S.getASTContext()) || |
| 1459 | NumElems.ugt(RHS: Descriptor::MaxArrayElemBytes / ElemSize.getQuantity())) { |
| 1460 | // FIXME: NoThrow check? |
| 1461 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1462 | S.FFDiag(Loc, diag::note_constexpr_new_too_large) |
| 1463 | << NumElems.getZExtValue(); |
| 1464 | return false; |
| 1465 | } |
| 1466 | |
| 1467 | if (!CheckArraySize(S, OpPC, NumElems: NumElems.getZExtValue())) |
| 1468 | return false; |
| 1469 | |
| 1470 | bool IsArray = NumElems.ugt(RHS: 1); |
| 1471 | std::optional<PrimType> ElemT = S.getContext().classify(T: ElemType); |
| 1472 | DynamicAllocator &Allocator = S.getAllocator(); |
| 1473 | if (ElemT) { |
| 1474 | if (IsArray) { |
| 1475 | Block *B = Allocator.allocate(Source: NewCall, T: *ElemT, NumElements: NumElems.getZExtValue(), |
| 1476 | EvalID: S.Ctx.getEvalID(), |
| 1477 | AllocForm: DynamicAllocator::Form::Operator); |
| 1478 | assert(B); |
| 1479 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0)); |
| 1480 | return true; |
| 1481 | } |
| 1482 | |
| 1483 | const Descriptor *Desc = S.P.createDescriptor( |
| 1484 | D: NewCall, T: *ElemT, SourceTy: ElemType.getTypePtr(), MDSize: Descriptor::InlineDescMD, |
| 1485 | /*IsConst=*/false, /*IsTemporary=*/false, |
| 1486 | /*IsMutable=*/false); |
| 1487 | Block *B = Allocator.allocate(D: Desc, EvalID: S.getContext().getEvalID(), |
| 1488 | AllocForm: DynamicAllocator::Form::Operator); |
| 1489 | assert(B); |
| 1490 | |
| 1491 | S.Stk.push<Pointer>(Args&: B); |
| 1492 | return true; |
| 1493 | } |
| 1494 | |
| 1495 | assert(!ElemT); |
| 1496 | // Structs etc. |
| 1497 | const Descriptor *Desc = |
| 1498 | S.P.createDescriptor(D: NewCall, Ty: ElemType.getTypePtr(), |
| 1499 | MDSize: IsArray ? std::nullopt : Descriptor::InlineDescMD); |
| 1500 | |
| 1501 | if (IsArray) { |
| 1502 | Block *B = |
| 1503 | Allocator.allocate(D: Desc, NumElements: NumElems.getZExtValue(), EvalID: S.Ctx.getEvalID(), |
| 1504 | AllocForm: DynamicAllocator::Form::Operator); |
| 1505 | assert(B); |
| 1506 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0)); |
| 1507 | return true; |
| 1508 | } |
| 1509 | |
| 1510 | Block *B = Allocator.allocate(D: Desc, EvalID: S.getContext().getEvalID(), |
| 1511 | AllocForm: DynamicAllocator::Form::Operator); |
| 1512 | assert(B); |
| 1513 | S.Stk.push<Pointer>(Args&: B); |
| 1514 | return true; |
| 1515 | } |
| 1516 | |
| 1517 | static bool interp__builtin_operator_delete(InterpState &S, CodePtr OpPC, |
| 1518 | const InterpFrame *Frame, |
| 1519 | const CallExpr *Call) { |
| 1520 | const Expr *Source = nullptr; |
| 1521 | const Block *BlockToDelete = nullptr; |
| 1522 | |
| 1523 | if (S.checkingPotentialConstantExpression()) { |
| 1524 | S.Stk.discard<Pointer>(); |
| 1525 | return false; |
| 1526 | } |
| 1527 | |
| 1528 | // This is permitted only within a call to std::allocator<T>::deallocate. |
| 1529 | if (!S.getStdAllocatorCaller(Name: "deallocate" )) { |
| 1530 | S.FFDiag(Call); |
| 1531 | S.Stk.discard<Pointer>(); |
| 1532 | return true; |
| 1533 | } |
| 1534 | |
| 1535 | { |
| 1536 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1537 | |
| 1538 | if (Ptr.isZero()) { |
| 1539 | S.CCEDiag(Call, diag::note_constexpr_deallocate_null); |
| 1540 | return true; |
| 1541 | } |
| 1542 | |
| 1543 | Source = Ptr.getDeclDesc()->asExpr(); |
| 1544 | BlockToDelete = Ptr.block(); |
| 1545 | |
| 1546 | if (!BlockToDelete->isDynamic()) { |
| 1547 | S.FFDiag(Call, diag::note_constexpr_delete_not_heap_alloc) |
| 1548 | << Ptr.toDiagnosticString(S.getASTContext()); |
| 1549 | if (const auto *D = Ptr.getFieldDesc()->asDecl()) |
| 1550 | S.Note(D->getLocation(), diag::note_declared_at); |
| 1551 | } |
| 1552 | } |
| 1553 | assert(BlockToDelete); |
| 1554 | |
| 1555 | DynamicAllocator &Allocator = S.getAllocator(); |
| 1556 | const Descriptor *BlockDesc = BlockToDelete->getDescriptor(); |
| 1557 | std::optional<DynamicAllocator::Form> AllocForm = |
| 1558 | Allocator.getAllocationForm(Source); |
| 1559 | |
| 1560 | if (!Allocator.deallocate(Source, BlockToDelete, S)) { |
| 1561 | // Nothing has been deallocated, this must be a double-delete. |
| 1562 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1563 | S.FFDiag(Loc, diag::note_constexpr_double_delete); |
| 1564 | return false; |
| 1565 | } |
| 1566 | assert(AllocForm); |
| 1567 | |
| 1568 | return CheckNewDeleteForms( |
| 1569 | S, OpPC, AllocForm: *AllocForm, DeleteForm: DynamicAllocator::Form::Operator, D: BlockDesc, NewExpr: Source); |
| 1570 | } |
| 1571 | |
| 1572 | static bool interp__builtin_arithmetic_fence(InterpState &S, CodePtr OpPC, |
| 1573 | const InterpFrame *Frame, |
| 1574 | const CallExpr *Call) { |
| 1575 | const Floating &Arg0 = S.Stk.pop<Floating>(); |
| 1576 | S.Stk.push<Floating>(Args: Arg0); |
| 1577 | return true; |
| 1578 | } |
| 1579 | |
| 1580 | static bool interp__builtin_vector_reduce(InterpState &S, CodePtr OpPC, |
| 1581 | const CallExpr *Call, unsigned ID) { |
| 1582 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
| 1583 | assert(Arg.getFieldDesc()->isPrimitiveArray()); |
| 1584 | |
| 1585 | QualType ElemType = Arg.getFieldDesc()->getElemQualType(); |
| 1586 | assert(Call->getType() == ElemType); |
| 1587 | PrimType ElemT = *S.getContext().classify(T: ElemType); |
| 1588 | unsigned NumElems = Arg.getNumElems(); |
| 1589 | |
| 1590 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 1591 | T Result = Arg.atIndex(0).deref<T>(); |
| 1592 | unsigned BitWidth = Result.bitWidth(); |
| 1593 | for (unsigned I = 1; I != NumElems; ++I) { |
| 1594 | T Elem = Arg.atIndex(I).deref<T>(); |
| 1595 | T PrevResult = Result; |
| 1596 | |
| 1597 | if (ID == Builtin::BI__builtin_reduce_add) { |
| 1598 | if (T::add(Result, Elem, BitWidth, &Result)) { |
| 1599 | unsigned OverflowBits = BitWidth + 1; |
| 1600 | (void)handleOverflow(S, OpPC, |
| 1601 | (PrevResult.toAPSInt(OverflowBits) + |
| 1602 | Elem.toAPSInt(OverflowBits))); |
| 1603 | return false; |
| 1604 | } |
| 1605 | } else if (ID == Builtin::BI__builtin_reduce_mul) { |
| 1606 | if (T::mul(Result, Elem, BitWidth, &Result)) { |
| 1607 | unsigned OverflowBits = BitWidth * 2; |
| 1608 | (void)handleOverflow(S, OpPC, |
| 1609 | (PrevResult.toAPSInt(OverflowBits) * |
| 1610 | Elem.toAPSInt(OverflowBits))); |
| 1611 | return false; |
| 1612 | } |
| 1613 | |
| 1614 | } else if (ID == Builtin::BI__builtin_reduce_and) { |
| 1615 | (void)T::bitAnd(Result, Elem, BitWidth, &Result); |
| 1616 | } else if (ID == Builtin::BI__builtin_reduce_or) { |
| 1617 | (void)T::bitOr(Result, Elem, BitWidth, &Result); |
| 1618 | } else if (ID == Builtin::BI__builtin_reduce_xor) { |
| 1619 | (void)T::bitXor(Result, Elem, BitWidth, &Result); |
| 1620 | } else { |
| 1621 | llvm_unreachable("Unhandled vector reduce builtin" ); |
| 1622 | } |
| 1623 | } |
| 1624 | pushInteger(S, Result.toAPSInt(), Call->getType()); |
| 1625 | }); |
| 1626 | |
| 1627 | return true; |
| 1628 | } |
| 1629 | |
| 1630 | /// Can be called with an integer or vector as the first and only parameter. |
| 1631 | static bool interp__builtin_elementwise_popcount(InterpState &S, CodePtr OpPC, |
| 1632 | const InterpFrame *Frame, |
| 1633 | const CallExpr *Call) { |
| 1634 | assert(Call->getNumArgs() == 1); |
| 1635 | if (Call->getArg(Arg: 0)->getType()->isIntegerType()) { |
| 1636 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
| 1637 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
| 1638 | pushInteger(S, Val.popcount(), Call->getType()); |
| 1639 | return true; |
| 1640 | } |
| 1641 | // Otherwise, the argument must be a vector. |
| 1642 | assert(Call->getArg(0)->getType()->isVectorType()); |
| 1643 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
| 1644 | assert(Arg.getFieldDesc()->isPrimitiveArray()); |
| 1645 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
| 1646 | assert(Dst.getFieldDesc()->isPrimitiveArray()); |
| 1647 | assert(Arg.getFieldDesc()->getNumElems() == |
| 1648 | Dst.getFieldDesc()->getNumElems()); |
| 1649 | |
| 1650 | QualType ElemType = Arg.getFieldDesc()->getElemQualType(); |
| 1651 | PrimType ElemT = *S.getContext().classify(T: ElemType); |
| 1652 | unsigned NumElems = Arg.getNumElems(); |
| 1653 | |
| 1654 | // FIXME: Reading from uninitialized vector elements? |
| 1655 | for (unsigned I = 0; I != NumElems; ++I) { |
| 1656 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
| 1657 | Dst.atIndex(I).deref<T>() = |
| 1658 | T::from(Arg.atIndex(I).deref<T>().toAPSInt().popcount()); |
| 1659 | Dst.atIndex(I).initialize(); |
| 1660 | }); |
| 1661 | } |
| 1662 | |
| 1663 | return true; |
| 1664 | } |
| 1665 | |
| 1666 | static bool interp__builtin_memcpy(InterpState &S, CodePtr OpPC, |
| 1667 | const InterpFrame *Frame, |
| 1668 | const CallExpr *Call, unsigned ID) { |
| 1669 | assert(Call->getNumArgs() == 3); |
| 1670 | const ASTContext &ASTCtx = S.getASTContext(); |
| 1671 | PrimType SizeT = *S.getContext().classify(E: Call->getArg(Arg: 2)); |
| 1672 | APSInt Size = popToAPSInt(Stk&: S.Stk, T: SizeT); |
| 1673 | const Pointer SrcPtr = S.Stk.pop<Pointer>(); |
| 1674 | const Pointer DestPtr = S.Stk.pop<Pointer>(); |
| 1675 | |
| 1676 | assert(!Size.isSigned() && "memcpy and friends take an unsigned size" ); |
| 1677 | |
| 1678 | if (ID == Builtin::BImemcpy || ID == Builtin::BImemmove) |
| 1679 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
| 1680 | |
| 1681 | bool Move = |
| 1682 | (ID == Builtin::BI__builtin_memmove || ID == Builtin::BImemmove || |
| 1683 | ID == Builtin::BI__builtin_wmemmove || ID == Builtin::BIwmemmove); |
| 1684 | bool WChar = ID == Builtin::BIwmemcpy || ID == Builtin::BIwmemmove || |
| 1685 | ID == Builtin::BI__builtin_wmemcpy || |
| 1686 | ID == Builtin::BI__builtin_wmemmove; |
| 1687 | |
| 1688 | // If the size is zero, we treat this as always being a valid no-op. |
| 1689 | if (Size.isZero()) { |
| 1690 | S.Stk.push<Pointer>(Args: DestPtr); |
| 1691 | return true; |
| 1692 | } |
| 1693 | |
| 1694 | if (SrcPtr.isZero() || DestPtr.isZero()) { |
| 1695 | Pointer DiagPtr = (SrcPtr.isZero() ? SrcPtr : DestPtr); |
| 1696 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_memcpy_null) |
| 1697 | << /*IsMove=*/Move << /*IsWchar=*/WChar << !SrcPtr.isZero() |
| 1698 | << DiagPtr.toDiagnosticString(ASTCtx); |
| 1699 | return false; |
| 1700 | } |
| 1701 | |
| 1702 | // Diagnose integral src/dest pointers specially. |
| 1703 | if (SrcPtr.isIntegralPointer() || DestPtr.isIntegralPointer()) { |
| 1704 | std::string DiagVal = "(void *)" ; |
| 1705 | DiagVal += SrcPtr.isIntegralPointer() |
| 1706 | ? std::to_string(val: SrcPtr.getIntegerRepresentation()) |
| 1707 | : std::to_string(val: DestPtr.getIntegerRepresentation()); |
| 1708 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_memcpy_null) |
| 1709 | << Move << WChar << DestPtr.isIntegralPointer() << DiagVal; |
| 1710 | return false; |
| 1711 | } |
| 1712 | |
| 1713 | // Can't read from dummy pointers. |
| 1714 | if (DestPtr.isDummy() || SrcPtr.isDummy()) |
| 1715 | return false; |
| 1716 | |
| 1717 | QualType DestElemType = getElemType(P: DestPtr); |
| 1718 | size_t RemainingDestElems; |
| 1719 | if (DestPtr.getFieldDesc()->isArray()) { |
| 1720 | RemainingDestElems = DestPtr.isUnknownSizeArray() |
| 1721 | ? 0 |
| 1722 | : (DestPtr.getNumElems() - DestPtr.getIndex()); |
| 1723 | } else { |
| 1724 | RemainingDestElems = 1; |
| 1725 | } |
| 1726 | unsigned DestElemSize = ASTCtx.getTypeSizeInChars(T: DestElemType).getQuantity(); |
| 1727 | |
| 1728 | if (WChar) { |
| 1729 | uint64_t WCharSize = |
| 1730 | ASTCtx.getTypeSizeInChars(T: ASTCtx.getWCharType()).getQuantity(); |
| 1731 | Size *= APSInt(APInt(Size.getBitWidth(), WCharSize, /*IsSigned=*/false), |
| 1732 | /*IsUnsigend=*/true); |
| 1733 | } |
| 1734 | |
| 1735 | if (Size.urem(RHS: DestElemSize) != 0) { |
| 1736 | S.FFDiag(S.Current->getSource(OpPC), |
| 1737 | diag::note_constexpr_memcpy_unsupported) |
| 1738 | << Move << WChar << 0 << DestElemType << Size << DestElemSize; |
| 1739 | return false; |
| 1740 | } |
| 1741 | |
| 1742 | QualType SrcElemType = getElemType(P: SrcPtr); |
| 1743 | size_t RemainingSrcElems; |
| 1744 | if (SrcPtr.getFieldDesc()->isArray()) { |
| 1745 | RemainingSrcElems = SrcPtr.isUnknownSizeArray() |
| 1746 | ? 0 |
| 1747 | : (SrcPtr.getNumElems() - SrcPtr.getIndex()); |
| 1748 | } else { |
| 1749 | RemainingSrcElems = 1; |
| 1750 | } |
| 1751 | unsigned SrcElemSize = ASTCtx.getTypeSizeInChars(T: SrcElemType).getQuantity(); |
| 1752 | |
| 1753 | if (!ASTCtx.hasSameUnqualifiedType(T1: DestElemType, T2: SrcElemType)) { |
| 1754 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_memcpy_type_pun) |
| 1755 | << Move << SrcElemType << DestElemType; |
| 1756 | return false; |
| 1757 | } |
| 1758 | |
| 1759 | if (DestElemType->isIncompleteType() || |
| 1760 | DestPtr.getType()->isIncompleteType()) { |
| 1761 | QualType DiagType = |
| 1762 | DestElemType->isIncompleteType() ? DestElemType : DestPtr.getType(); |
| 1763 | S.FFDiag(S.Current->getSource(OpPC), |
| 1764 | diag::note_constexpr_memcpy_incomplete_type) |
| 1765 | << Move << DiagType; |
| 1766 | return false; |
| 1767 | } |
| 1768 | |
| 1769 | if (!DestElemType.isTriviallyCopyableType(Context: ASTCtx)) { |
| 1770 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_memcpy_nontrivial) |
| 1771 | << Move << DestElemType; |
| 1772 | return false; |
| 1773 | } |
| 1774 | |
| 1775 | // Check if we have enough elements to read from and write to. |
| 1776 | size_t RemainingDestBytes = RemainingDestElems * DestElemSize; |
| 1777 | size_t RemainingSrcBytes = RemainingSrcElems * SrcElemSize; |
| 1778 | if (Size.ugt(RHS: RemainingDestBytes) || Size.ugt(RHS: RemainingSrcBytes)) { |
| 1779 | APInt N = Size.udiv(RHS: DestElemSize); |
| 1780 | S.FFDiag(S.Current->getSource(OpPC), |
| 1781 | diag::note_constexpr_memcpy_unsupported) |
| 1782 | << Move << WChar << (Size.ugt(RemainingSrcBytes) ? 1 : 2) |
| 1783 | << DestElemType << toString(N, 10, /*Signed=*/false); |
| 1784 | return false; |
| 1785 | } |
| 1786 | |
| 1787 | // Check for overlapping memory regions. |
| 1788 | if (!Move && Pointer::pointToSameBlock(A: SrcPtr, B: DestPtr)) { |
| 1789 | // Remove base casts. |
| 1790 | Pointer SrcP = SrcPtr; |
| 1791 | while (SrcP.isBaseClass()) |
| 1792 | SrcP = SrcP.getBase(); |
| 1793 | |
| 1794 | Pointer DestP = DestPtr; |
| 1795 | while (DestP.isBaseClass()) |
| 1796 | DestP = DestP.getBase(); |
| 1797 | |
| 1798 | unsigned SrcIndex = SrcP.expand().getIndex() * SrcP.elemSize(); |
| 1799 | unsigned DstIndex = DestP.expand().getIndex() * DestP.elemSize(); |
| 1800 | unsigned N = Size.getZExtValue(); |
| 1801 | |
| 1802 | if ((SrcIndex <= DstIndex && (SrcIndex + N) > DstIndex) || |
| 1803 | (DstIndex <= SrcIndex && (DstIndex + N) > SrcIndex)) { |
| 1804 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_memcpy_overlap) |
| 1805 | << /*IsWChar=*/false; |
| 1806 | return false; |
| 1807 | } |
| 1808 | } |
| 1809 | |
| 1810 | assert(Size.getZExtValue() % DestElemSize == 0); |
| 1811 | if (!DoMemcpy(S, OpPC, SrcPtr, DestPtr, Size: Bytes(Size.getZExtValue()).toBits())) |
| 1812 | return false; |
| 1813 | |
| 1814 | S.Stk.push<Pointer>(Args: DestPtr); |
| 1815 | return true; |
| 1816 | } |
| 1817 | |
| 1818 | /// Determine if T is a character type for which we guarantee that |
| 1819 | /// sizeof(T) == 1. |
| 1820 | static bool isOneByteCharacterType(QualType T) { |
| 1821 | return T->isCharType() || T->isChar8Type(); |
| 1822 | } |
| 1823 | |
| 1824 | static bool interp__builtin_memcmp(InterpState &S, CodePtr OpPC, |
| 1825 | const InterpFrame *Frame, |
| 1826 | const CallExpr *Call, unsigned ID) { |
| 1827 | assert(Call->getNumArgs() == 3); |
| 1828 | PrimType SizeT = *S.getContext().classify(E: Call->getArg(Arg: 2)); |
| 1829 | const APSInt &Size = popToAPSInt(Stk&: S.Stk, T: SizeT); |
| 1830 | const Pointer &PtrB = S.Stk.pop<Pointer>(); |
| 1831 | const Pointer &PtrA = S.Stk.pop<Pointer>(); |
| 1832 | |
| 1833 | if (ID == Builtin::BImemcmp || ID == Builtin::BIbcmp || |
| 1834 | ID == Builtin::BIwmemcmp) |
| 1835 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
| 1836 | |
| 1837 | if (Size.isZero()) { |
| 1838 | pushInteger(S, 0, Call->getType()); |
| 1839 | return true; |
| 1840 | } |
| 1841 | |
| 1842 | bool IsWide = |
| 1843 | (ID == Builtin::BIwmemcmp || ID == Builtin::BI__builtin_wmemcmp); |
| 1844 | |
| 1845 | const ASTContext &ASTCtx = S.getASTContext(); |
| 1846 | QualType ElemTypeA = getElemType(P: PtrA); |
| 1847 | QualType ElemTypeB = getElemType(P: PtrB); |
| 1848 | // FIXME: This is an arbitrary limitation the current constant interpreter |
| 1849 | // had. We could remove this. |
| 1850 | if (!IsWide && (!isOneByteCharacterType(T: ElemTypeA) || |
| 1851 | !isOneByteCharacterType(T: ElemTypeB))) { |
| 1852 | S.FFDiag(S.Current->getSource(OpPC), |
| 1853 | diag::note_constexpr_memcmp_unsupported) |
| 1854 | << ASTCtx.BuiltinInfo.getQuotedName(ID) << PtrA.getType() |
| 1855 | << PtrB.getType(); |
| 1856 | return false; |
| 1857 | } |
| 1858 | |
| 1859 | if (PtrA.isDummy() || PtrB.isDummy()) |
| 1860 | return false; |
| 1861 | |
| 1862 | // Now, read both pointers to a buffer and compare those. |
| 1863 | BitcastBuffer BufferA( |
| 1864 | Bits(ASTCtx.getTypeSize(T: ElemTypeA) * PtrA.getNumElems())); |
| 1865 | readPointerToBuffer(Ctx: S.getContext(), FromPtr: PtrA, Buffer&: BufferA, ReturnOnUninit: false); |
| 1866 | // FIXME: The swapping here is UNDOING something we do when reading the |
| 1867 | // data into the buffer. |
| 1868 | if (ASTCtx.getTargetInfo().isBigEndian()) |
| 1869 | swapBytes(M: BufferA.Data.get(), N: BufferA.byteSize().getQuantity()); |
| 1870 | |
| 1871 | BitcastBuffer BufferB( |
| 1872 | Bits(ASTCtx.getTypeSize(T: ElemTypeB) * PtrB.getNumElems())); |
| 1873 | readPointerToBuffer(Ctx: S.getContext(), FromPtr: PtrB, Buffer&: BufferB, ReturnOnUninit: false); |
| 1874 | // FIXME: The swapping here is UNDOING something we do when reading the |
| 1875 | // data into the buffer. |
| 1876 | if (ASTCtx.getTargetInfo().isBigEndian()) |
| 1877 | swapBytes(M: BufferB.Data.get(), N: BufferB.byteSize().getQuantity()); |
| 1878 | |
| 1879 | size_t MinBufferSize = std::min(a: BufferA.byteSize().getQuantity(), |
| 1880 | b: BufferB.byteSize().getQuantity()); |
| 1881 | |
| 1882 | unsigned ElemSize = 1; |
| 1883 | if (IsWide) |
| 1884 | ElemSize = ASTCtx.getTypeSizeInChars(T: ASTCtx.getWCharType()).getQuantity(); |
| 1885 | // The Size given for the wide variants is in wide-char units. Convert it |
| 1886 | // to bytes. |
| 1887 | size_t ByteSize = Size.getZExtValue() * ElemSize; |
| 1888 | size_t CmpSize = std::min(a: MinBufferSize, b: ByteSize); |
| 1889 | |
| 1890 | for (size_t I = 0; I != CmpSize; I += ElemSize) { |
| 1891 | if (IsWide) { |
| 1892 | INT_TYPE_SWITCH(*S.getContext().classify(ASTCtx.getWCharType()), { |
| 1893 | T A = *reinterpret_cast<T *>(BufferA.Data.get() + I); |
| 1894 | T B = *reinterpret_cast<T *>(BufferB.Data.get() + I); |
| 1895 | if (A < B) { |
| 1896 | pushInteger(S, -1, Call->getType()); |
| 1897 | return true; |
| 1898 | } else if (A > B) { |
| 1899 | pushInteger(S, 1, Call->getType()); |
| 1900 | return true; |
| 1901 | } |
| 1902 | }); |
| 1903 | } else { |
| 1904 | std::byte A = BufferA.Data[I]; |
| 1905 | std::byte B = BufferB.Data[I]; |
| 1906 | |
| 1907 | if (A < B) { |
| 1908 | pushInteger(S, -1, Call->getType()); |
| 1909 | return true; |
| 1910 | } else if (A > B) { |
| 1911 | pushInteger(S, 1, Call->getType()); |
| 1912 | return true; |
| 1913 | } |
| 1914 | } |
| 1915 | } |
| 1916 | |
| 1917 | // We compared CmpSize bytes above. If the limiting factor was the Size |
| 1918 | // passed, we're done and the result is equality (0). |
| 1919 | if (ByteSize <= CmpSize) { |
| 1920 | pushInteger(S, 0, Call->getType()); |
| 1921 | return true; |
| 1922 | } |
| 1923 | |
| 1924 | // However, if we read all the available bytes but were instructed to read |
| 1925 | // even more, diagnose this as a "read of dereferenced one-past-the-end |
| 1926 | // pointer". This is what would happen if we called CheckLoad() on every array |
| 1927 | // element. |
| 1928 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_access_past_end) |
| 1929 | << AK_Read << S.Current->getRange(OpPC); |
| 1930 | return false; |
| 1931 | } |
| 1932 | |
| 1933 | // __builtin_memchr(ptr, int, int) |
| 1934 | // __builtin_strchr(ptr, int) |
| 1935 | static bool interp__builtin_memchr(InterpState &S, CodePtr OpPC, |
| 1936 | const CallExpr *Call, unsigned ID) { |
| 1937 | if (ID == Builtin::BImemchr || ID == Builtin::BIwcschr || |
| 1938 | ID == Builtin::BIstrchr || ID == Builtin::BIwmemchr) |
| 1939 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
| 1940 | |
| 1941 | std::optional<APSInt> MaxLength; |
| 1942 | PrimType DesiredT = *S.getContext().classify(E: Call->getArg(Arg: 1)); |
| 1943 | if (Call->getNumArgs() == 3) { |
| 1944 | PrimType MaxT = *S.getContext().classify(E: Call->getArg(Arg: 2)); |
| 1945 | MaxLength = popToAPSInt(Stk&: S.Stk, T: MaxT); |
| 1946 | } |
| 1947 | APSInt Desired = popToAPSInt(Stk&: S.Stk, T: DesiredT); |
| 1948 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1949 | |
| 1950 | if (MaxLength && MaxLength->isZero()) { |
| 1951 | S.Stk.push<Pointer>(); |
| 1952 | return true; |
| 1953 | } |
| 1954 | |
| 1955 | if (Ptr.isDummy()) |
| 1956 | return false; |
| 1957 | |
| 1958 | // Null is only okay if the given size is 0. |
| 1959 | if (Ptr.isZero()) { |
| 1960 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_access_null) |
| 1961 | << AK_Read; |
| 1962 | return false; |
| 1963 | } |
| 1964 | |
| 1965 | QualType ElemTy = Ptr.getFieldDesc()->isArray() |
| 1966 | ? Ptr.getFieldDesc()->getElemQualType() |
| 1967 | : Ptr.getFieldDesc()->getType(); |
| 1968 | bool IsRawByte = ID == Builtin::BImemchr || ID == Builtin::BI__builtin_memchr; |
| 1969 | |
| 1970 | // Give up on byte-oriented matching against multibyte elements. |
| 1971 | if (IsRawByte && !isOneByteCharacterType(T: ElemTy)) { |
| 1972 | S.FFDiag(S.Current->getSource(OpPC), |
| 1973 | diag::note_constexpr_memchr_unsupported) |
| 1974 | << S.getASTContext().BuiltinInfo.getQuotedName(ID) << ElemTy; |
| 1975 | return false; |
| 1976 | } |
| 1977 | |
| 1978 | if (ID == Builtin::BIstrchr || ID == Builtin::BI__builtin_strchr) { |
| 1979 | // strchr compares directly to the passed integer, and therefore |
| 1980 | // always fails if given an int that is not a char. |
| 1981 | if (Desired != |
| 1982 | Desired.trunc(width: S.getASTContext().getCharWidth()).getSExtValue()) { |
| 1983 | S.Stk.push<Pointer>(); |
| 1984 | return true; |
| 1985 | } |
| 1986 | } |
| 1987 | |
| 1988 | uint64_t DesiredVal; |
| 1989 | if (ID == Builtin::BIwmemchr || ID == Builtin::BI__builtin_wmemchr || |
| 1990 | ID == Builtin::BIwcschr || ID == Builtin::BI__builtin_wcschr) { |
| 1991 | // wcschr and wmemchr are given a wchar_t to look for. Just use it. |
| 1992 | DesiredVal = Desired.getZExtValue(); |
| 1993 | } else { |
| 1994 | DesiredVal = Desired.trunc(width: S.getASTContext().getCharWidth()).getZExtValue(); |
| 1995 | } |
| 1996 | |
| 1997 | bool StopAtZero = |
| 1998 | (ID == Builtin::BIstrchr || ID == Builtin::BI__builtin_strchr || |
| 1999 | ID == Builtin::BIwcschr || ID == Builtin::BI__builtin_wcschr); |
| 2000 | |
| 2001 | PrimType ElemT = |
| 2002 | IsRawByte ? PT_Sint8 : *S.getContext().classify(T: getElemType(P: Ptr)); |
| 2003 | |
| 2004 | size_t Index = Ptr.getIndex(); |
| 2005 | size_t Step = 0; |
| 2006 | for (;;) { |
| 2007 | const Pointer &ElemPtr = |
| 2008 | (Index + Step) > 0 ? Ptr.atIndex(Idx: Index + Step) : Ptr; |
| 2009 | |
| 2010 | if (!CheckLoad(S, OpPC, Ptr: ElemPtr)) |
| 2011 | return false; |
| 2012 | |
| 2013 | uint64_t V; |
| 2014 | INT_TYPE_SWITCH_NO_BOOL( |
| 2015 | ElemT, { V = static_cast<uint64_t>(ElemPtr.deref<T>().toUnsigned()); }); |
| 2016 | |
| 2017 | if (V == DesiredVal) { |
| 2018 | S.Stk.push<Pointer>(Args: ElemPtr); |
| 2019 | return true; |
| 2020 | } |
| 2021 | |
| 2022 | if (StopAtZero && V == 0) |
| 2023 | break; |
| 2024 | |
| 2025 | ++Step; |
| 2026 | if (MaxLength && Step == MaxLength->getZExtValue()) |
| 2027 | break; |
| 2028 | } |
| 2029 | |
| 2030 | S.Stk.push<Pointer>(); |
| 2031 | return true; |
| 2032 | } |
| 2033 | |
| 2034 | static unsigned computeFullDescSize(const ASTContext &ASTCtx, |
| 2035 | const Descriptor *Desc) { |
| 2036 | |
| 2037 | if (Desc->isPrimitive()) |
| 2038 | return ASTCtx.getTypeSizeInChars(T: Desc->getType()).getQuantity(); |
| 2039 | |
| 2040 | if (Desc->isArray()) |
| 2041 | return ASTCtx.getTypeSizeInChars(T: Desc->getElemQualType()).getQuantity() * |
| 2042 | Desc->getNumElems(); |
| 2043 | |
| 2044 | if (Desc->isRecord()) |
| 2045 | return ASTCtx.getTypeSizeInChars(T: Desc->getType()).getQuantity(); |
| 2046 | |
| 2047 | llvm_unreachable("Unhandled descriptor type" ); |
| 2048 | return 0; |
| 2049 | } |
| 2050 | |
| 2051 | static unsigned computePointerOffset(const ASTContext &ASTCtx, |
| 2052 | const Pointer &Ptr) { |
| 2053 | unsigned Result = 0; |
| 2054 | |
| 2055 | Pointer P = Ptr; |
| 2056 | while (P.isArrayElement() || P.isField()) { |
| 2057 | P = P.expand(); |
| 2058 | const Descriptor *D = P.getFieldDesc(); |
| 2059 | |
| 2060 | if (P.isArrayElement()) { |
| 2061 | unsigned ElemSize = |
| 2062 | ASTCtx.getTypeSizeInChars(T: D->getElemQualType()).getQuantity(); |
| 2063 | if (P.isOnePastEnd()) |
| 2064 | Result += ElemSize * P.getNumElems(); |
| 2065 | else |
| 2066 | Result += ElemSize * P.getIndex(); |
| 2067 | P = P.expand().getArray(); |
| 2068 | } else if (P.isBaseClass()) { |
| 2069 | |
| 2070 | const auto *RD = cast<CXXRecordDecl>(Val: D->asDecl()); |
| 2071 | bool IsVirtual = Ptr.isVirtualBaseClass(); |
| 2072 | P = P.getBase(); |
| 2073 | const Record *BaseRecord = P.getRecord(); |
| 2074 | |
| 2075 | const ASTRecordLayout &Layout = |
| 2076 | ASTCtx.getASTRecordLayout(cast<CXXRecordDecl>(Val: BaseRecord->getDecl())); |
| 2077 | if (IsVirtual) |
| 2078 | Result += Layout.getVBaseClassOffset(VBase: RD).getQuantity(); |
| 2079 | else |
| 2080 | Result += Layout.getBaseClassOffset(Base: RD).getQuantity(); |
| 2081 | } else if (P.isField()) { |
| 2082 | const FieldDecl *FD = P.getField(); |
| 2083 | const ASTRecordLayout &Layout = |
| 2084 | ASTCtx.getASTRecordLayout(D: FD->getParent()); |
| 2085 | unsigned FieldIndex = FD->getFieldIndex(); |
| 2086 | uint64_t FieldOffset = |
| 2087 | ASTCtx.toCharUnitsFromBits(BitSize: Layout.getFieldOffset(FieldNo: FieldIndex)) |
| 2088 | .getQuantity(); |
| 2089 | Result += FieldOffset; |
| 2090 | P = P.getBase(); |
| 2091 | } else |
| 2092 | llvm_unreachable("Unhandled descriptor type" ); |
| 2093 | } |
| 2094 | |
| 2095 | return Result; |
| 2096 | } |
| 2097 | |
| 2098 | static bool interp__builtin_object_size(InterpState &S, CodePtr OpPC, |
| 2099 | const InterpFrame *Frame, |
| 2100 | const CallExpr *Call) { |
| 2101 | PrimType KindT = *S.getContext().classify(E: Call->getArg(Arg: 1)); |
| 2102 | [[maybe_unused]] unsigned Kind = popToAPSInt(Stk&: S.Stk, T: KindT).getZExtValue(); |
| 2103 | |
| 2104 | assert(Kind <= 3 && "unexpected kind" ); |
| 2105 | |
| 2106 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2107 | |
| 2108 | if (Ptr.isZero()) |
| 2109 | return false; |
| 2110 | |
| 2111 | const Descriptor *DeclDesc = Ptr.getDeclDesc(); |
| 2112 | if (!DeclDesc) |
| 2113 | return false; |
| 2114 | |
| 2115 | const ASTContext &ASTCtx = S.getASTContext(); |
| 2116 | |
| 2117 | unsigned ByteOffset = computePointerOffset(ASTCtx, Ptr); |
| 2118 | unsigned FullSize = computeFullDescSize(ASTCtx, Desc: DeclDesc); |
| 2119 | |
| 2120 | pushInteger(S, FullSize - ByteOffset, Call->getType()); |
| 2121 | |
| 2122 | return true; |
| 2123 | } |
| 2124 | |
| 2125 | static bool interp__builtin_is_within_lifetime(InterpState &S, CodePtr OpPC, |
| 2126 | const CallExpr *Call) { |
| 2127 | |
| 2128 | if (!S.inConstantContext()) |
| 2129 | return false; |
| 2130 | |
| 2131 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2132 | |
| 2133 | auto Error = [&](int Diag) { |
| 2134 | bool CalledFromStd = false; |
| 2135 | const auto *Callee = S.Current->getCallee(); |
| 2136 | if (Callee && Callee->isInStdNamespace()) { |
| 2137 | const IdentifierInfo *Identifier = Callee->getIdentifier(); |
| 2138 | CalledFromStd = Identifier && Identifier->isStr(Str: "is_within_lifetime" ); |
| 2139 | } |
| 2140 | S.CCEDiag(CalledFromStd |
| 2141 | ? S.Current->Caller->getSource(S.Current->getRetPC()) |
| 2142 | : S.Current->getSource(OpPC), |
| 2143 | diag::err_invalid_is_within_lifetime) |
| 2144 | << (CalledFromStd ? "std::is_within_lifetime" |
| 2145 | : "__builtin_is_within_lifetime" ) |
| 2146 | << Diag; |
| 2147 | return false; |
| 2148 | }; |
| 2149 | |
| 2150 | if (Ptr.isZero()) |
| 2151 | return Error(0); |
| 2152 | if (Ptr.isOnePastEnd()) |
| 2153 | return Error(1); |
| 2154 | |
| 2155 | bool Result = true; |
| 2156 | if (!Ptr.isActive()) { |
| 2157 | Result = false; |
| 2158 | } else { |
| 2159 | if (!CheckLive(S, OpPC, Ptr, AK: AK_Read)) |
| 2160 | return false; |
| 2161 | if (!CheckMutable(S, OpPC, Ptr)) |
| 2162 | return false; |
| 2163 | } |
| 2164 | |
| 2165 | pushInteger(S, Result, Call->getType()); |
| 2166 | return true; |
| 2167 | } |
| 2168 | |
| 2169 | bool InterpretBuiltin(InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 2170 | uint32_t BuiltinID) { |
| 2171 | if (!S.getASTContext().BuiltinInfo.isConstantEvaluated(ID: BuiltinID)) |
| 2172 | return Invalid(S, OpPC); |
| 2173 | |
| 2174 | const InterpFrame *Frame = S.Current; |
| 2175 | switch (BuiltinID) { |
| 2176 | case Builtin::BI__builtin_is_constant_evaluated: |
| 2177 | return interp__builtin_is_constant_evaluated(S, OpPC, Frame, Call); |
| 2178 | |
| 2179 | case Builtin::BI__builtin_assume: |
| 2180 | case Builtin::BI__assume: |
| 2181 | return interp__builtin_assume(S, OpPC, Frame, Call); |
| 2182 | |
| 2183 | case Builtin::BI__builtin_strcmp: |
| 2184 | case Builtin::BIstrcmp: |
| 2185 | case Builtin::BI__builtin_strncmp: |
| 2186 | case Builtin::BIstrncmp: |
| 2187 | case Builtin::BI__builtin_wcsncmp: |
| 2188 | case Builtin::BIwcsncmp: |
| 2189 | case Builtin::BI__builtin_wcscmp: |
| 2190 | case Builtin::BIwcscmp: |
| 2191 | return interp__builtin_strcmp(S, OpPC, Frame, Call, ID: BuiltinID); |
| 2192 | |
| 2193 | case Builtin::BI__builtin_strlen: |
| 2194 | case Builtin::BIstrlen: |
| 2195 | case Builtin::BI__builtin_wcslen: |
| 2196 | case Builtin::BIwcslen: |
| 2197 | return interp__builtin_strlen(S, OpPC, Frame, Call, ID: BuiltinID); |
| 2198 | |
| 2199 | case Builtin::BI__builtin_nan: |
| 2200 | case Builtin::BI__builtin_nanf: |
| 2201 | case Builtin::BI__builtin_nanl: |
| 2202 | case Builtin::BI__builtin_nanf16: |
| 2203 | case Builtin::BI__builtin_nanf128: |
| 2204 | return interp__builtin_nan(S, OpPC, Frame, Call, /*Signaling=*/false); |
| 2205 | |
| 2206 | case Builtin::BI__builtin_nans: |
| 2207 | case Builtin::BI__builtin_nansf: |
| 2208 | case Builtin::BI__builtin_nansl: |
| 2209 | case Builtin::BI__builtin_nansf16: |
| 2210 | case Builtin::BI__builtin_nansf128: |
| 2211 | return interp__builtin_nan(S, OpPC, Frame, Call, /*Signaling=*/true); |
| 2212 | |
| 2213 | case Builtin::BI__builtin_huge_val: |
| 2214 | case Builtin::BI__builtin_huge_valf: |
| 2215 | case Builtin::BI__builtin_huge_vall: |
| 2216 | case Builtin::BI__builtin_huge_valf16: |
| 2217 | case Builtin::BI__builtin_huge_valf128: |
| 2218 | case Builtin::BI__builtin_inf: |
| 2219 | case Builtin::BI__builtin_inff: |
| 2220 | case Builtin::BI__builtin_infl: |
| 2221 | case Builtin::BI__builtin_inff16: |
| 2222 | case Builtin::BI__builtin_inff128: |
| 2223 | return interp__builtin_inf(S, OpPC, Frame, Call); |
| 2224 | |
| 2225 | case Builtin::BI__builtin_copysign: |
| 2226 | case Builtin::BI__builtin_copysignf: |
| 2227 | case Builtin::BI__builtin_copysignl: |
| 2228 | case Builtin::BI__builtin_copysignf128: |
| 2229 | return interp__builtin_copysign(S, OpPC, Frame); |
| 2230 | |
| 2231 | case Builtin::BI__builtin_fmin: |
| 2232 | case Builtin::BI__builtin_fminf: |
| 2233 | case Builtin::BI__builtin_fminl: |
| 2234 | case Builtin::BI__builtin_fminf16: |
| 2235 | case Builtin::BI__builtin_fminf128: |
| 2236 | return interp__builtin_fmin(S, OpPC, Frame, /*IsNumBuiltin=*/false); |
| 2237 | |
| 2238 | case Builtin::BI__builtin_fminimum_num: |
| 2239 | case Builtin::BI__builtin_fminimum_numf: |
| 2240 | case Builtin::BI__builtin_fminimum_numl: |
| 2241 | case Builtin::BI__builtin_fminimum_numf16: |
| 2242 | case Builtin::BI__builtin_fminimum_numf128: |
| 2243 | return interp__builtin_fmin(S, OpPC, Frame, /*IsNumBuiltin=*/true); |
| 2244 | |
| 2245 | case Builtin::BI__builtin_fmax: |
| 2246 | case Builtin::BI__builtin_fmaxf: |
| 2247 | case Builtin::BI__builtin_fmaxl: |
| 2248 | case Builtin::BI__builtin_fmaxf16: |
| 2249 | case Builtin::BI__builtin_fmaxf128: |
| 2250 | return interp__builtin_fmax(S, OpPC, Frame, /*IsNumBuiltin=*/false); |
| 2251 | |
| 2252 | case Builtin::BI__builtin_fmaximum_num: |
| 2253 | case Builtin::BI__builtin_fmaximum_numf: |
| 2254 | case Builtin::BI__builtin_fmaximum_numl: |
| 2255 | case Builtin::BI__builtin_fmaximum_numf16: |
| 2256 | case Builtin::BI__builtin_fmaximum_numf128: |
| 2257 | return interp__builtin_fmax(S, OpPC, Frame, /*IsNumBuiltin=*/true); |
| 2258 | |
| 2259 | case Builtin::BI__builtin_isnan: |
| 2260 | return interp__builtin_isnan(S, OpPC, Frame, Call); |
| 2261 | |
| 2262 | case Builtin::BI__builtin_issignaling: |
| 2263 | return interp__builtin_issignaling(S, OpPC, Frame, Call); |
| 2264 | |
| 2265 | case Builtin::BI__builtin_isinf: |
| 2266 | return interp__builtin_isinf(S, OpPC, Frame, /*Sign=*/CheckSign: false, Call); |
| 2267 | |
| 2268 | case Builtin::BI__builtin_isinf_sign: |
| 2269 | return interp__builtin_isinf(S, OpPC, Frame, /*Sign=*/CheckSign: true, Call); |
| 2270 | |
| 2271 | case Builtin::BI__builtin_isfinite: |
| 2272 | return interp__builtin_isfinite(S, OpPC, Frame, Call); |
| 2273 | |
| 2274 | case Builtin::BI__builtin_isnormal: |
| 2275 | return interp__builtin_isnormal(S, OpPC, Frame, Call); |
| 2276 | |
| 2277 | case Builtin::BI__builtin_issubnormal: |
| 2278 | return interp__builtin_issubnormal(S, OpPC, Frame, Call); |
| 2279 | |
| 2280 | case Builtin::BI__builtin_iszero: |
| 2281 | return interp__builtin_iszero(S, OpPC, Frame, Call); |
| 2282 | |
| 2283 | case Builtin::BI__builtin_signbit: |
| 2284 | case Builtin::BI__builtin_signbitf: |
| 2285 | case Builtin::BI__builtin_signbitl: |
| 2286 | return interp__builtin_signbit(S, OpPC, Frame, Call); |
| 2287 | |
| 2288 | case Builtin::BI__builtin_isgreater: |
| 2289 | case Builtin::BI__builtin_isgreaterequal: |
| 2290 | case Builtin::BI__builtin_isless: |
| 2291 | case Builtin::BI__builtin_islessequal: |
| 2292 | case Builtin::BI__builtin_islessgreater: |
| 2293 | case Builtin::BI__builtin_isunordered: |
| 2294 | return interp_floating_comparison(S, OpPC, Call, ID: BuiltinID); |
| 2295 | |
| 2296 | case Builtin::BI__builtin_isfpclass: |
| 2297 | return interp__builtin_isfpclass(S, OpPC, Frame, Call); |
| 2298 | |
| 2299 | case Builtin::BI__builtin_fpclassify: |
| 2300 | return interp__builtin_fpclassify(S, OpPC, Frame, Call); |
| 2301 | |
| 2302 | case Builtin::BI__builtin_fabs: |
| 2303 | case Builtin::BI__builtin_fabsf: |
| 2304 | case Builtin::BI__builtin_fabsl: |
| 2305 | case Builtin::BI__builtin_fabsf128: |
| 2306 | return interp__builtin_fabs(S, OpPC, Frame); |
| 2307 | |
| 2308 | case Builtin::BI__builtin_abs: |
| 2309 | case Builtin::BI__builtin_labs: |
| 2310 | case Builtin::BI__builtin_llabs: |
| 2311 | return interp__builtin_abs(S, OpPC, Frame, Call); |
| 2312 | |
| 2313 | case Builtin::BI__builtin_popcount: |
| 2314 | case Builtin::BI__builtin_popcountl: |
| 2315 | case Builtin::BI__builtin_popcountll: |
| 2316 | case Builtin::BI__builtin_popcountg: |
| 2317 | case Builtin::BI__popcnt16: // Microsoft variants of popcount |
| 2318 | case Builtin::BI__popcnt: |
| 2319 | case Builtin::BI__popcnt64: |
| 2320 | return interp__builtin_popcount(S, OpPC, Frame, Call); |
| 2321 | |
| 2322 | case Builtin::BI__builtin_parity: |
| 2323 | case Builtin::BI__builtin_parityl: |
| 2324 | case Builtin::BI__builtin_parityll: |
| 2325 | return interp__builtin_parity(S, OpPC, Frame, Call); |
| 2326 | |
| 2327 | case Builtin::BI__builtin_clrsb: |
| 2328 | case Builtin::BI__builtin_clrsbl: |
| 2329 | case Builtin::BI__builtin_clrsbll: |
| 2330 | return interp__builtin_clrsb(S, OpPC, Frame, Call); |
| 2331 | |
| 2332 | case Builtin::BI__builtin_bitreverse8: |
| 2333 | case Builtin::BI__builtin_bitreverse16: |
| 2334 | case Builtin::BI__builtin_bitreverse32: |
| 2335 | case Builtin::BI__builtin_bitreverse64: |
| 2336 | return interp__builtin_bitreverse(S, OpPC, Frame, Call); |
| 2337 | |
| 2338 | case Builtin::BI__builtin_classify_type: |
| 2339 | return interp__builtin_classify_type(S, OpPC, Frame, Call); |
| 2340 | |
| 2341 | case Builtin::BI__builtin_expect: |
| 2342 | case Builtin::BI__builtin_expect_with_probability: |
| 2343 | return interp__builtin_expect(S, OpPC, Frame, Call); |
| 2344 | |
| 2345 | case Builtin::BI__builtin_rotateleft8: |
| 2346 | case Builtin::BI__builtin_rotateleft16: |
| 2347 | case Builtin::BI__builtin_rotateleft32: |
| 2348 | case Builtin::BI__builtin_rotateleft64: |
| 2349 | case Builtin::BI_rotl8: // Microsoft variants of rotate left |
| 2350 | case Builtin::BI_rotl16: |
| 2351 | case Builtin::BI_rotl: |
| 2352 | case Builtin::BI_lrotl: |
| 2353 | case Builtin::BI_rotl64: |
| 2354 | return interp__builtin_rotate(S, OpPC, Frame, Call, /*Right=*/false); |
| 2355 | |
| 2356 | case Builtin::BI__builtin_rotateright8: |
| 2357 | case Builtin::BI__builtin_rotateright16: |
| 2358 | case Builtin::BI__builtin_rotateright32: |
| 2359 | case Builtin::BI__builtin_rotateright64: |
| 2360 | case Builtin::BI_rotr8: // Microsoft variants of rotate right |
| 2361 | case Builtin::BI_rotr16: |
| 2362 | case Builtin::BI_rotr: |
| 2363 | case Builtin::BI_lrotr: |
| 2364 | case Builtin::BI_rotr64: |
| 2365 | return interp__builtin_rotate(S, OpPC, Frame, Call, /*Right=*/true); |
| 2366 | |
| 2367 | case Builtin::BI__builtin_ffs: |
| 2368 | case Builtin::BI__builtin_ffsl: |
| 2369 | case Builtin::BI__builtin_ffsll: |
| 2370 | return interp__builtin_ffs(S, OpPC, Frame, Call); |
| 2371 | |
| 2372 | case Builtin::BIaddressof: |
| 2373 | case Builtin::BI__addressof: |
| 2374 | case Builtin::BI__builtin_addressof: |
| 2375 | assert(isNoopBuiltin(BuiltinID)); |
| 2376 | return interp__builtin_addressof(S, OpPC, Frame, Call); |
| 2377 | |
| 2378 | case Builtin::BIas_const: |
| 2379 | case Builtin::BIforward: |
| 2380 | case Builtin::BIforward_like: |
| 2381 | case Builtin::BImove: |
| 2382 | case Builtin::BImove_if_noexcept: |
| 2383 | assert(isNoopBuiltin(BuiltinID)); |
| 2384 | return interp__builtin_move(S, OpPC, Frame, Call); |
| 2385 | |
| 2386 | case Builtin::BI__builtin_eh_return_data_regno: |
| 2387 | return interp__builtin_eh_return_data_regno(S, OpPC, Frame, Call); |
| 2388 | |
| 2389 | case Builtin::BI__builtin_launder: |
| 2390 | assert(isNoopBuiltin(BuiltinID)); |
| 2391 | return true; |
| 2392 | |
| 2393 | case Builtin::BI__builtin_add_overflow: |
| 2394 | case Builtin::BI__builtin_sub_overflow: |
| 2395 | case Builtin::BI__builtin_mul_overflow: |
| 2396 | case Builtin::BI__builtin_sadd_overflow: |
| 2397 | case Builtin::BI__builtin_uadd_overflow: |
| 2398 | case Builtin::BI__builtin_uaddl_overflow: |
| 2399 | case Builtin::BI__builtin_uaddll_overflow: |
| 2400 | case Builtin::BI__builtin_usub_overflow: |
| 2401 | case Builtin::BI__builtin_usubl_overflow: |
| 2402 | case Builtin::BI__builtin_usubll_overflow: |
| 2403 | case Builtin::BI__builtin_umul_overflow: |
| 2404 | case Builtin::BI__builtin_umull_overflow: |
| 2405 | case Builtin::BI__builtin_umulll_overflow: |
| 2406 | case Builtin::BI__builtin_saddl_overflow: |
| 2407 | case Builtin::BI__builtin_saddll_overflow: |
| 2408 | case Builtin::BI__builtin_ssub_overflow: |
| 2409 | case Builtin::BI__builtin_ssubl_overflow: |
| 2410 | case Builtin::BI__builtin_ssubll_overflow: |
| 2411 | case Builtin::BI__builtin_smul_overflow: |
| 2412 | case Builtin::BI__builtin_smull_overflow: |
| 2413 | case Builtin::BI__builtin_smulll_overflow: |
| 2414 | return interp__builtin_overflowop(S, OpPC, Call, BuiltinOp: BuiltinID); |
| 2415 | |
| 2416 | case Builtin::BI__builtin_addcb: |
| 2417 | case Builtin::BI__builtin_addcs: |
| 2418 | case Builtin::BI__builtin_addc: |
| 2419 | case Builtin::BI__builtin_addcl: |
| 2420 | case Builtin::BI__builtin_addcll: |
| 2421 | case Builtin::BI__builtin_subcb: |
| 2422 | case Builtin::BI__builtin_subcs: |
| 2423 | case Builtin::BI__builtin_subc: |
| 2424 | case Builtin::BI__builtin_subcl: |
| 2425 | case Builtin::BI__builtin_subcll: |
| 2426 | return interp__builtin_carryop(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
| 2427 | |
| 2428 | case Builtin::BI__builtin_clz: |
| 2429 | case Builtin::BI__builtin_clzl: |
| 2430 | case Builtin::BI__builtin_clzll: |
| 2431 | case Builtin::BI__builtin_clzs: |
| 2432 | case Builtin::BI__builtin_clzg: |
| 2433 | case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes |
| 2434 | case Builtin::BI__lzcnt: |
| 2435 | case Builtin::BI__lzcnt64: |
| 2436 | return interp__builtin_clz(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
| 2437 | |
| 2438 | case Builtin::BI__builtin_ctz: |
| 2439 | case Builtin::BI__builtin_ctzl: |
| 2440 | case Builtin::BI__builtin_ctzll: |
| 2441 | case Builtin::BI__builtin_ctzs: |
| 2442 | case Builtin::BI__builtin_ctzg: |
| 2443 | return interp__builtin_ctz(S, OpPC, Frame, Call, BuiltinID); |
| 2444 | |
| 2445 | case Builtin::BI__builtin_bswap16: |
| 2446 | case Builtin::BI__builtin_bswap32: |
| 2447 | case Builtin::BI__builtin_bswap64: |
| 2448 | return interp__builtin_bswap(S, OpPC, Frame, Call); |
| 2449 | |
| 2450 | case Builtin::BI__atomic_always_lock_free: |
| 2451 | case Builtin::BI__atomic_is_lock_free: |
| 2452 | return interp__builtin_atomic_lock_free(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
| 2453 | |
| 2454 | case Builtin::BI__c11_atomic_is_lock_free: |
| 2455 | return interp__builtin_c11_atomic_is_lock_free(S, OpPC, Frame, Call); |
| 2456 | |
| 2457 | case Builtin::BI__builtin_complex: |
| 2458 | return interp__builtin_complex(S, OpPC, Frame, Call); |
| 2459 | |
| 2460 | case Builtin::BI__builtin_is_aligned: |
| 2461 | case Builtin::BI__builtin_align_up: |
| 2462 | case Builtin::BI__builtin_align_down: |
| 2463 | return interp__builtin_is_aligned_up_down(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
| 2464 | |
| 2465 | case Builtin::BI__builtin_assume_aligned: |
| 2466 | return interp__builtin_assume_aligned(S, OpPC, Frame, Call); |
| 2467 | |
| 2468 | case clang::X86::BI__builtin_ia32_bextr_u32: |
| 2469 | case clang::X86::BI__builtin_ia32_bextr_u64: |
| 2470 | case clang::X86::BI__builtin_ia32_bextri_u32: |
| 2471 | case clang::X86::BI__builtin_ia32_bextri_u64: |
| 2472 | return interp__builtin_ia32_bextr(S, OpPC, Frame, Call); |
| 2473 | |
| 2474 | case clang::X86::BI__builtin_ia32_bzhi_si: |
| 2475 | case clang::X86::BI__builtin_ia32_bzhi_di: |
| 2476 | return interp__builtin_ia32_bzhi(S, OpPC, Frame, Call); |
| 2477 | |
| 2478 | case clang::X86::BI__builtin_ia32_lzcnt_u16: |
| 2479 | case clang::X86::BI__builtin_ia32_lzcnt_u32: |
| 2480 | case clang::X86::BI__builtin_ia32_lzcnt_u64: |
| 2481 | return interp__builtin_ia32_lzcnt(S, OpPC, Frame, Call); |
| 2482 | |
| 2483 | case clang::X86::BI__builtin_ia32_tzcnt_u16: |
| 2484 | case clang::X86::BI__builtin_ia32_tzcnt_u32: |
| 2485 | case clang::X86::BI__builtin_ia32_tzcnt_u64: |
| 2486 | return interp__builtin_ia32_tzcnt(S, OpPC, Frame, Call); |
| 2487 | |
| 2488 | case clang::X86::BI__builtin_ia32_pdep_si: |
| 2489 | case clang::X86::BI__builtin_ia32_pdep_di: |
| 2490 | return interp__builtin_ia32_pdep(S, OpPC, Frame, Call); |
| 2491 | |
| 2492 | case clang::X86::BI__builtin_ia32_pext_si: |
| 2493 | case clang::X86::BI__builtin_ia32_pext_di: |
| 2494 | return interp__builtin_ia32_pext(S, OpPC, Frame, Call); |
| 2495 | |
| 2496 | case clang::X86::BI__builtin_ia32_addcarryx_u32: |
| 2497 | case clang::X86::BI__builtin_ia32_addcarryx_u64: |
| 2498 | case clang::X86::BI__builtin_ia32_subborrow_u32: |
| 2499 | case clang::X86::BI__builtin_ia32_subborrow_u64: |
| 2500 | return interp__builtin_ia32_addcarry_subborrow(S, OpPC, Frame, Call, |
| 2501 | BuiltinOp: BuiltinID); |
| 2502 | |
| 2503 | case Builtin::BI__builtin_os_log_format_buffer_size: |
| 2504 | return interp__builtin_os_log_format_buffer_size(S, OpPC, Frame, Call); |
| 2505 | |
| 2506 | case Builtin::BI__builtin_ptrauth_string_discriminator: |
| 2507 | return interp__builtin_ptrauth_string_discriminator(S, OpPC, Frame, Call); |
| 2508 | |
| 2509 | case Builtin::BI__noop: |
| 2510 | pushInteger(S, 0, Call->getType()); |
| 2511 | return true; |
| 2512 | |
| 2513 | case Builtin::BI__builtin_operator_new: |
| 2514 | return interp__builtin_operator_new(S, OpPC, Frame, Call); |
| 2515 | |
| 2516 | case Builtin::BI__builtin_operator_delete: |
| 2517 | return interp__builtin_operator_delete(S, OpPC, Frame, Call); |
| 2518 | |
| 2519 | case Builtin::BI__arithmetic_fence: |
| 2520 | return interp__builtin_arithmetic_fence(S, OpPC, Frame, Call); |
| 2521 | |
| 2522 | case Builtin::BI__builtin_reduce_add: |
| 2523 | case Builtin::BI__builtin_reduce_mul: |
| 2524 | case Builtin::BI__builtin_reduce_and: |
| 2525 | case Builtin::BI__builtin_reduce_or: |
| 2526 | case Builtin::BI__builtin_reduce_xor: |
| 2527 | return interp__builtin_vector_reduce(S, OpPC, Call, ID: BuiltinID); |
| 2528 | |
| 2529 | case Builtin::BI__builtin_elementwise_popcount: |
| 2530 | return interp__builtin_elementwise_popcount(S, OpPC, Frame, Call); |
| 2531 | |
| 2532 | case Builtin::BI__builtin_memcpy: |
| 2533 | case Builtin::BImemcpy: |
| 2534 | case Builtin::BI__builtin_wmemcpy: |
| 2535 | case Builtin::BIwmemcpy: |
| 2536 | case Builtin::BI__builtin_memmove: |
| 2537 | case Builtin::BImemmove: |
| 2538 | case Builtin::BI__builtin_wmemmove: |
| 2539 | case Builtin::BIwmemmove: |
| 2540 | return interp__builtin_memcpy(S, OpPC, Frame, Call, ID: BuiltinID); |
| 2541 | |
| 2542 | case Builtin::BI__builtin_memcmp: |
| 2543 | case Builtin::BImemcmp: |
| 2544 | case Builtin::BI__builtin_bcmp: |
| 2545 | case Builtin::BIbcmp: |
| 2546 | case Builtin::BI__builtin_wmemcmp: |
| 2547 | case Builtin::BIwmemcmp: |
| 2548 | return interp__builtin_memcmp(S, OpPC, Frame, Call, ID: BuiltinID); |
| 2549 | |
| 2550 | case Builtin::BImemchr: |
| 2551 | case Builtin::BI__builtin_memchr: |
| 2552 | case Builtin::BIstrchr: |
| 2553 | case Builtin::BI__builtin_strchr: |
| 2554 | case Builtin::BIwmemchr: |
| 2555 | case Builtin::BI__builtin_wmemchr: |
| 2556 | case Builtin::BIwcschr: |
| 2557 | case Builtin::BI__builtin_wcschr: |
| 2558 | case Builtin::BI__builtin_char_memchr: |
| 2559 | return interp__builtin_memchr(S, OpPC, Call, ID: BuiltinID); |
| 2560 | |
| 2561 | case Builtin::BI__builtin_object_size: |
| 2562 | case Builtin::BI__builtin_dynamic_object_size: |
| 2563 | return interp__builtin_object_size(S, OpPC, Frame, Call); |
| 2564 | |
| 2565 | case Builtin::BI__builtin_is_within_lifetime: |
| 2566 | return interp__builtin_is_within_lifetime(S, OpPC, Call); |
| 2567 | |
| 2568 | default: |
| 2569 | S.FFDiag(S.Current->getLocation(OpPC), |
| 2570 | diag::note_invalid_subexpr_in_const_expr) |
| 2571 | << S.Current->getRange(OpPC); |
| 2572 | |
| 2573 | return false; |
| 2574 | } |
| 2575 | |
| 2576 | llvm_unreachable("Unhandled builtin ID" ); |
| 2577 | } |
| 2578 | |
| 2579 | bool InterpretOffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E, |
| 2580 | llvm::ArrayRef<int64_t> ArrayIndices, |
| 2581 | int64_t &IntResult) { |
| 2582 | CharUnits Result; |
| 2583 | unsigned N = E->getNumComponents(); |
| 2584 | assert(N > 0); |
| 2585 | |
| 2586 | unsigned ArrayIndex = 0; |
| 2587 | QualType CurrentType = E->getTypeSourceInfo()->getType(); |
| 2588 | for (unsigned I = 0; I != N; ++I) { |
| 2589 | const OffsetOfNode &Node = E->getComponent(Idx: I); |
| 2590 | switch (Node.getKind()) { |
| 2591 | case OffsetOfNode::Field: { |
| 2592 | const FieldDecl *MemberDecl = Node.getField(); |
| 2593 | const RecordType *RT = CurrentType->getAs<RecordType>(); |
| 2594 | if (!RT) |
| 2595 | return false; |
| 2596 | const RecordDecl *RD = RT->getDecl(); |
| 2597 | if (RD->isInvalidDecl()) |
| 2598 | return false; |
| 2599 | const ASTRecordLayout &RL = S.getASTContext().getASTRecordLayout(D: RD); |
| 2600 | unsigned FieldIndex = MemberDecl->getFieldIndex(); |
| 2601 | assert(FieldIndex < RL.getFieldCount() && "offsetof field in wrong type" ); |
| 2602 | Result += |
| 2603 | S.getASTContext().toCharUnitsFromBits(BitSize: RL.getFieldOffset(FieldNo: FieldIndex)); |
| 2604 | CurrentType = MemberDecl->getType().getNonReferenceType(); |
| 2605 | break; |
| 2606 | } |
| 2607 | case OffsetOfNode::Array: { |
| 2608 | // When generating bytecode, we put all the index expressions as Sint64 on |
| 2609 | // the stack. |
| 2610 | int64_t Index = ArrayIndices[ArrayIndex]; |
| 2611 | const ArrayType *AT = S.getASTContext().getAsArrayType(T: CurrentType); |
| 2612 | if (!AT) |
| 2613 | return false; |
| 2614 | CurrentType = AT->getElementType(); |
| 2615 | CharUnits ElementSize = S.getASTContext().getTypeSizeInChars(T: CurrentType); |
| 2616 | Result += Index * ElementSize; |
| 2617 | ++ArrayIndex; |
| 2618 | break; |
| 2619 | } |
| 2620 | case OffsetOfNode::Base: { |
| 2621 | const CXXBaseSpecifier *BaseSpec = Node.getBase(); |
| 2622 | if (BaseSpec->isVirtual()) |
| 2623 | return false; |
| 2624 | |
| 2625 | // Find the layout of the class whose base we are looking into. |
| 2626 | const RecordType *RT = CurrentType->getAs<RecordType>(); |
| 2627 | if (!RT) |
| 2628 | return false; |
| 2629 | const RecordDecl *RD = RT->getDecl(); |
| 2630 | if (RD->isInvalidDecl()) |
| 2631 | return false; |
| 2632 | const ASTRecordLayout &RL = S.getASTContext().getASTRecordLayout(D: RD); |
| 2633 | |
| 2634 | // Find the base class itself. |
| 2635 | CurrentType = BaseSpec->getType(); |
| 2636 | const RecordType *BaseRT = CurrentType->getAs<RecordType>(); |
| 2637 | if (!BaseRT) |
| 2638 | return false; |
| 2639 | |
| 2640 | // Add the offset to the base. |
| 2641 | Result += RL.getBaseClassOffset(Base: cast<CXXRecordDecl>(Val: BaseRT->getDecl())); |
| 2642 | break; |
| 2643 | } |
| 2644 | case OffsetOfNode::Identifier: |
| 2645 | llvm_unreachable("Dependent OffsetOfExpr?" ); |
| 2646 | } |
| 2647 | } |
| 2648 | |
| 2649 | IntResult = Result.getQuantity(); |
| 2650 | |
| 2651 | return true; |
| 2652 | } |
| 2653 | |
| 2654 | bool SetThreeWayComparisonField(InterpState &S, CodePtr OpPC, |
| 2655 | const Pointer &Ptr, const APSInt &IntValue) { |
| 2656 | |
| 2657 | const Record *R = Ptr.getRecord(); |
| 2658 | assert(R); |
| 2659 | assert(R->getNumFields() == 1); |
| 2660 | |
| 2661 | unsigned FieldOffset = R->getField(I: 0u)->Offset; |
| 2662 | const Pointer &FieldPtr = Ptr.atField(Off: FieldOffset); |
| 2663 | PrimType FieldT = *S.getContext().classify(T: FieldPtr.getType()); |
| 2664 | |
| 2665 | INT_TYPE_SWITCH(FieldT, |
| 2666 | FieldPtr.deref<T>() = T::from(IntValue.getSExtValue())); |
| 2667 | FieldPtr.initialize(); |
| 2668 | return true; |
| 2669 | } |
| 2670 | |
| 2671 | static void zeroAll(Pointer &Dest) { |
| 2672 | const Descriptor *Desc = Dest.getFieldDesc(); |
| 2673 | |
| 2674 | if (Desc->isPrimitive()) { |
| 2675 | TYPE_SWITCH(Desc->getPrimType(), { |
| 2676 | Dest.deref<T>().~T(); |
| 2677 | new (&Dest.deref<T>()) T(); |
| 2678 | }); |
| 2679 | return; |
| 2680 | } |
| 2681 | |
| 2682 | if (Desc->isRecord()) { |
| 2683 | const Record *R = Desc->ElemRecord; |
| 2684 | for (const Record::Field &F : R->fields()) { |
| 2685 | Pointer FieldPtr = Dest.atField(Off: F.Offset); |
| 2686 | zeroAll(Dest&: FieldPtr); |
| 2687 | } |
| 2688 | return; |
| 2689 | } |
| 2690 | |
| 2691 | if (Desc->isPrimitiveArray()) { |
| 2692 | for (unsigned I = 0, N = Desc->getNumElems(); I != N; ++I) { |
| 2693 | TYPE_SWITCH(Desc->getPrimType(), { |
| 2694 | Dest.deref<T>().~T(); |
| 2695 | new (&Dest.deref<T>()) T(); |
| 2696 | }); |
| 2697 | } |
| 2698 | return; |
| 2699 | } |
| 2700 | |
| 2701 | if (Desc->isCompositeArray()) { |
| 2702 | for (unsigned I = 0, N = Desc->getNumElems(); I != N; ++I) { |
| 2703 | Pointer ElemPtr = Dest.atIndex(Idx: I).narrow(); |
| 2704 | zeroAll(Dest&: ElemPtr); |
| 2705 | } |
| 2706 | return; |
| 2707 | } |
| 2708 | } |
| 2709 | |
| 2710 | static bool copyComposite(InterpState &S, CodePtr OpPC, const Pointer &Src, |
| 2711 | Pointer &Dest, bool Activate); |
| 2712 | static bool copyRecord(InterpState &S, CodePtr OpPC, const Pointer &Src, |
| 2713 | Pointer &Dest, bool Activate = false) { |
| 2714 | [[maybe_unused]] const Descriptor *SrcDesc = Src.getFieldDesc(); |
| 2715 | const Descriptor *DestDesc = Dest.getFieldDesc(); |
| 2716 | |
| 2717 | auto copyField = [&](const Record::Field &F, bool Activate) -> bool { |
| 2718 | Pointer DestField = Dest.atField(Off: F.Offset); |
| 2719 | if (std::optional<PrimType> FT = S.Ctx.classify(F.Decl->getType())) { |
| 2720 | TYPE_SWITCH(*FT, { |
| 2721 | DestField.deref<T>() = Src.atField(F.Offset).deref<T>(); |
| 2722 | if (Src.atField(F.Offset).isInitialized()) |
| 2723 | DestField.initialize(); |
| 2724 | if (Activate) |
| 2725 | DestField.activate(); |
| 2726 | }); |
| 2727 | return true; |
| 2728 | } |
| 2729 | // Composite field. |
| 2730 | return copyComposite(S, OpPC, Src: Src.atField(Off: F.Offset), Dest&: DestField, Activate); |
| 2731 | }; |
| 2732 | |
| 2733 | assert(SrcDesc->isRecord()); |
| 2734 | assert(SrcDesc->ElemRecord == DestDesc->ElemRecord); |
| 2735 | const Record *R = DestDesc->ElemRecord; |
| 2736 | for (const Record::Field &F : R->fields()) { |
| 2737 | if (R->isUnion()) { |
| 2738 | // For unions, only copy the active field. Zero all others. |
| 2739 | const Pointer &SrcField = Src.atField(Off: F.Offset); |
| 2740 | if (SrcField.isActive()) { |
| 2741 | if (!copyField(F, /*Activate=*/true)) |
| 2742 | return false; |
| 2743 | } else { |
| 2744 | Pointer DestField = Dest.atField(Off: F.Offset); |
| 2745 | zeroAll(Dest&: DestField); |
| 2746 | } |
| 2747 | } else { |
| 2748 | if (!copyField(F, Activate)) |
| 2749 | return false; |
| 2750 | } |
| 2751 | } |
| 2752 | |
| 2753 | for (const Record::Base &B : R->bases()) { |
| 2754 | Pointer DestBase = Dest.atField(Off: B.Offset); |
| 2755 | if (!copyRecord(S, OpPC, Src: Src.atField(Off: B.Offset), Dest&: DestBase, Activate)) |
| 2756 | return false; |
| 2757 | } |
| 2758 | |
| 2759 | Dest.initialize(); |
| 2760 | return true; |
| 2761 | } |
| 2762 | |
| 2763 | static bool copyComposite(InterpState &S, CodePtr OpPC, const Pointer &Src, |
| 2764 | Pointer &Dest, bool Activate = false) { |
| 2765 | assert(Src.isLive() && Dest.isLive()); |
| 2766 | |
| 2767 | [[maybe_unused]] const Descriptor *SrcDesc = Src.getFieldDesc(); |
| 2768 | const Descriptor *DestDesc = Dest.getFieldDesc(); |
| 2769 | |
| 2770 | assert(!DestDesc->isPrimitive() && !SrcDesc->isPrimitive()); |
| 2771 | |
| 2772 | if (DestDesc->isPrimitiveArray()) { |
| 2773 | assert(SrcDesc->isPrimitiveArray()); |
| 2774 | assert(SrcDesc->getNumElems() == DestDesc->getNumElems()); |
| 2775 | PrimType ET = DestDesc->getPrimType(); |
| 2776 | for (unsigned I = 0, N = DestDesc->getNumElems(); I != N; ++I) { |
| 2777 | Pointer DestElem = Dest.atIndex(Idx: I); |
| 2778 | TYPE_SWITCH(ET, { |
| 2779 | DestElem.deref<T>() = Src.atIndex(I).deref<T>(); |
| 2780 | DestElem.initialize(); |
| 2781 | }); |
| 2782 | } |
| 2783 | return true; |
| 2784 | } |
| 2785 | |
| 2786 | if (DestDesc->isCompositeArray()) { |
| 2787 | assert(SrcDesc->isCompositeArray()); |
| 2788 | assert(SrcDesc->getNumElems() == DestDesc->getNumElems()); |
| 2789 | for (unsigned I = 0, N = DestDesc->getNumElems(); I != N; ++I) { |
| 2790 | const Pointer &SrcElem = Src.atIndex(Idx: I).narrow(); |
| 2791 | Pointer DestElem = Dest.atIndex(Idx: I).narrow(); |
| 2792 | if (!copyComposite(S, OpPC, Src: SrcElem, Dest&: DestElem, Activate)) |
| 2793 | return false; |
| 2794 | } |
| 2795 | return true; |
| 2796 | } |
| 2797 | |
| 2798 | if (DestDesc->isRecord()) |
| 2799 | return copyRecord(S, OpPC, Src, Dest, Activate); |
| 2800 | return Invalid(S, OpPC); |
| 2801 | } |
| 2802 | |
| 2803 | bool DoMemcpy(InterpState &S, CodePtr OpPC, const Pointer &Src, Pointer &Dest) { |
| 2804 | return copyComposite(S, OpPC, Src, Dest); |
| 2805 | } |
| 2806 | |
| 2807 | } // namespace interp |
| 2808 | } // namespace clang |
| 2809 | |