1 | //===--- InterpBuiltin.cpp - Interpreter for the constexpr VM ---*- C++ -*-===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | #include "../ExprConstShared.h" |
9 | #include "Boolean.h" |
10 | #include "Compiler.h" |
11 | #include "EvalEmitter.h" |
12 | #include "Interp.h" |
13 | #include "InterpBuiltinBitCast.h" |
14 | #include "PrimType.h" |
15 | #include "clang/AST/OSLog.h" |
16 | #include "clang/AST/RecordLayout.h" |
17 | #include "clang/Basic/Builtins.h" |
18 | #include "clang/Basic/TargetBuiltins.h" |
19 | #include "clang/Basic/TargetInfo.h" |
20 | #include "llvm/ADT/StringExtras.h" |
21 | #include "llvm/Support/SipHash.h" |
22 | |
23 | namespace clang { |
24 | namespace interp { |
25 | |
26 | LLVM_ATTRIBUTE_UNUSED static bool isNoopBuiltin(unsigned ID) { |
27 | switch (ID) { |
28 | case Builtin::BIas_const: |
29 | case Builtin::BIforward: |
30 | case Builtin::BIforward_like: |
31 | case Builtin::BImove: |
32 | case Builtin::BImove_if_noexcept: |
33 | case Builtin::BIaddressof: |
34 | case Builtin::BI__addressof: |
35 | case Builtin::BI__builtin_addressof: |
36 | case Builtin::BI__builtin_launder: |
37 | return true; |
38 | default: |
39 | return false; |
40 | } |
41 | return false; |
42 | } |
43 | |
44 | static void discard(InterpStack &Stk, PrimType T) { |
45 | TYPE_SWITCH(T, { Stk.discard<T>(); }); |
46 | } |
47 | |
48 | static APSInt popToAPSInt(InterpStack &Stk, PrimType T) { |
49 | INT_TYPE_SWITCH(T, return Stk.pop<T>().toAPSInt()); |
50 | } |
51 | |
52 | /// Pushes \p Val on the stack as the type given by \p QT. |
53 | static void pushInteger(InterpState &S, const APSInt &Val, QualType QT) { |
54 | assert(QT->isSignedIntegerOrEnumerationType() || |
55 | QT->isUnsignedIntegerOrEnumerationType()); |
56 | std::optional<PrimType> T = S.getContext().classify(T: QT); |
57 | assert(T); |
58 | |
59 | unsigned BitWidth = S.getASTContext().getTypeSize(T: QT); |
60 | if (QT->isSignedIntegerOrEnumerationType()) { |
61 | int64_t V = Val.getSExtValue(); |
62 | INT_TYPE_SWITCH(*T, { S.Stk.push<T>(T::from(V, BitWidth)); }); |
63 | } else { |
64 | assert(QT->isUnsignedIntegerOrEnumerationType()); |
65 | uint64_t V = Val.getZExtValue(); |
66 | INT_TYPE_SWITCH(*T, { S.Stk.push<T>(T::from(V, BitWidth)); }); |
67 | } |
68 | } |
69 | |
70 | template <typename T> |
71 | static void pushInteger(InterpState &S, T Val, QualType QT) { |
72 | if constexpr (std::is_same_v<T, APInt>) |
73 | pushInteger(S, Val: APSInt(Val, !std::is_signed_v<T>), QT); |
74 | else if constexpr (std::is_same_v<T, APSInt>) |
75 | pushInteger(S, Val, QT); |
76 | else |
77 | pushInteger(S, |
78 | Val: APSInt(APInt(sizeof(T) * 8, static_cast<uint64_t>(Val), |
79 | std::is_signed_v<T>), |
80 | !std::is_signed_v<T>), |
81 | QT); |
82 | } |
83 | |
84 | static void assignInteger(const Pointer &Dest, PrimType ValueT, |
85 | const APSInt &Value) { |
86 | INT_TYPE_SWITCH_NO_BOOL( |
87 | ValueT, { Dest.deref<T>() = T::from(static_cast<T>(Value)); }); |
88 | } |
89 | |
90 | static QualType getElemType(const Pointer &P) { |
91 | const Descriptor *Desc = P.getFieldDesc(); |
92 | QualType T = Desc->getType(); |
93 | if (Desc->isPrimitive()) |
94 | return T; |
95 | if (T->isPointerType()) |
96 | return T->getAs<PointerType>()->getPointeeType(); |
97 | if (Desc->isArray()) |
98 | return Desc->getElemQualType(); |
99 | if (const auto *AT = T->getAsArrayTypeUnsafe()) |
100 | return AT->getElementType(); |
101 | return T; |
102 | } |
103 | |
104 | static void diagnoseNonConstexprBuiltin(InterpState &S, CodePtr OpPC, |
105 | unsigned ID) { |
106 | if (!S.diagnosing()) |
107 | return; |
108 | |
109 | auto Loc = S.Current->getSource(PC: OpPC); |
110 | if (S.getLangOpts().CPlusPlus11) |
111 | S.CCEDiag(Loc, diag::note_constexpr_invalid_function) |
112 | << /*isConstexpr=*/0 << /*isConstructor=*/0 |
113 | << S.getASTContext().BuiltinInfo.getQuotedName(ID); |
114 | else |
115 | S.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); |
116 | } |
117 | |
118 | static bool interp__builtin_is_constant_evaluated(InterpState &S, CodePtr OpPC, |
119 | const InterpFrame *Frame, |
120 | const CallExpr *Call) { |
121 | unsigned Depth = S.Current->getDepth(); |
122 | auto isStdCall = [](const FunctionDecl *F) -> bool { |
123 | return F && F->isInStdNamespace() && F->getIdentifier() && |
124 | F->getIdentifier()->isStr("is_constant_evaluated"); |
125 | }; |
126 | const InterpFrame *Caller = Frame->Caller; |
127 | // The current frame is the one for __builtin_is_constant_evaluated. |
128 | // The one above that, potentially the one for std::is_constant_evaluated(). |
129 | if (S.inConstantContext() && !S.checkingPotentialConstantExpression() && |
130 | S.getEvalStatus().Diag && |
131 | (Depth == 0 || (Depth == 1 && isStdCall(Frame->getCallee())))) { |
132 | if (Caller && isStdCall(Frame->getCallee())) { |
133 | const Expr *E = Caller->getExpr(PC: Caller->getRetPC()); |
134 | S.report(E->getExprLoc(), |
135 | diag::warn_is_constant_evaluated_always_true_constexpr) |
136 | << "std::is_constant_evaluated"<< E->getSourceRange(); |
137 | } else { |
138 | S.report(Call->getExprLoc(), |
139 | diag::warn_is_constant_evaluated_always_true_constexpr) |
140 | << "__builtin_is_constant_evaluated"<< Call->getSourceRange(); |
141 | } |
142 | } |
143 | |
144 | S.Stk.push<Boolean>(Args: Boolean::from(Value: S.inConstantContext())); |
145 | return true; |
146 | } |
147 | |
148 | // __builtin_assume(int) |
149 | static bool interp__builtin_assume(InterpState &S, CodePtr OpPC, |
150 | const InterpFrame *Frame, |
151 | const CallExpr *Call) { |
152 | assert(Call->getNumArgs() == 1); |
153 | discard(Stk&: S.Stk, T: *S.getContext().classify(E: Call->getArg(Arg: 0))); |
154 | return true; |
155 | } |
156 | |
157 | static bool interp__builtin_strcmp(InterpState &S, CodePtr OpPC, |
158 | const InterpFrame *Frame, |
159 | const CallExpr *Call, unsigned ID) { |
160 | uint64_t Limit = ~static_cast<uint64_t>(0); |
161 | if (ID == Builtin::BIstrncmp || ID == Builtin::BI__builtin_strncmp || |
162 | ID == Builtin::BIwcsncmp || ID == Builtin::BI__builtin_wcsncmp) |
163 | Limit = popToAPSInt(Stk&: S.Stk, T: *S.getContext().classify(E: Call->getArg(Arg: 2))) |
164 | .getZExtValue(); |
165 | |
166 | const Pointer &B = S.Stk.pop<Pointer>(); |
167 | const Pointer &A = S.Stk.pop<Pointer>(); |
168 | if (ID == Builtin::BIstrcmp || ID == Builtin::BIstrncmp || |
169 | ID == Builtin::BIwcscmp || ID == Builtin::BIwcsncmp) |
170 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
171 | |
172 | if (Limit == 0) { |
173 | pushInteger(S, 0, Call->getType()); |
174 | return true; |
175 | } |
176 | |
177 | if (!CheckLive(S, OpPC, Ptr: A, AK: AK_Read) || !CheckLive(S, OpPC, Ptr: B, AK: AK_Read)) |
178 | return false; |
179 | |
180 | if (A.isDummy() || B.isDummy()) |
181 | return false; |
182 | |
183 | bool IsWide = ID == Builtin::BIwcscmp || ID == Builtin::BIwcsncmp || |
184 | ID == Builtin::BI__builtin_wcscmp || |
185 | ID == Builtin::BI__builtin_wcsncmp; |
186 | assert(A.getFieldDesc()->isPrimitiveArray()); |
187 | assert(B.getFieldDesc()->isPrimitiveArray()); |
188 | |
189 | assert(getElemType(A).getTypePtr() == getElemType(B).getTypePtr()); |
190 | PrimType ElemT = *S.getContext().classify(T: getElemType(P: A)); |
191 | |
192 | auto returnResult = [&](int V) -> bool { |
193 | pushInteger(S, V, Call->getType()); |
194 | return true; |
195 | }; |
196 | |
197 | unsigned IndexA = A.getIndex(); |
198 | unsigned IndexB = B.getIndex(); |
199 | uint64_t Steps = 0; |
200 | for (;; ++IndexA, ++IndexB, ++Steps) { |
201 | |
202 | if (Steps >= Limit) |
203 | break; |
204 | const Pointer &PA = A.atIndex(Idx: IndexA); |
205 | const Pointer &PB = B.atIndex(Idx: IndexB); |
206 | if (!CheckRange(S, OpPC, Ptr: PA, AK: AK_Read) || |
207 | !CheckRange(S, OpPC, Ptr: PB, AK: AK_Read)) { |
208 | return false; |
209 | } |
210 | |
211 | if (IsWide) { |
212 | INT_TYPE_SWITCH(ElemT, { |
213 | T CA = PA.deref<T>(); |
214 | T CB = PB.deref<T>(); |
215 | if (CA > CB) |
216 | return returnResult(1); |
217 | else if (CA < CB) |
218 | return returnResult(-1); |
219 | else if (CA.isZero() || CB.isZero()) |
220 | return returnResult(0); |
221 | }); |
222 | continue; |
223 | } |
224 | |
225 | uint8_t CA = PA.deref<uint8_t>(); |
226 | uint8_t CB = PB.deref<uint8_t>(); |
227 | |
228 | if (CA > CB) |
229 | return returnResult(1); |
230 | else if (CA < CB) |
231 | return returnResult(-1); |
232 | if (CA == 0 || CB == 0) |
233 | return returnResult(0); |
234 | } |
235 | |
236 | return returnResult(0); |
237 | } |
238 | |
239 | static bool interp__builtin_strlen(InterpState &S, CodePtr OpPC, |
240 | const InterpFrame *Frame, |
241 | const CallExpr *Call, unsigned ID) { |
242 | const Pointer &StrPtr = S.Stk.pop<Pointer>(); |
243 | |
244 | if (ID == Builtin::BIstrlen || ID == Builtin::BIwcslen) |
245 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
246 | |
247 | if (!CheckArray(S, OpPC, Ptr: StrPtr)) |
248 | return false; |
249 | |
250 | if (!CheckLive(S, OpPC, Ptr: StrPtr, AK: AK_Read)) |
251 | return false; |
252 | |
253 | if (!CheckDummy(S, OpPC, Ptr: StrPtr, AK: AK_Read)) |
254 | return false; |
255 | |
256 | assert(StrPtr.getFieldDesc()->isPrimitiveArray()); |
257 | unsigned ElemSize = StrPtr.getFieldDesc()->getElemSize(); |
258 | |
259 | if (ID == Builtin::BI__builtin_wcslen || ID == Builtin::BIwcslen) { |
260 | [[maybe_unused]] const ASTContext &AC = S.getASTContext(); |
261 | assert(ElemSize == AC.getTypeSizeInChars(AC.getWCharType()).getQuantity()); |
262 | } |
263 | |
264 | size_t Len = 0; |
265 | for (size_t I = StrPtr.getIndex();; ++I, ++Len) { |
266 | const Pointer &ElemPtr = StrPtr.atIndex(Idx: I); |
267 | |
268 | if (!CheckRange(S, OpPC, Ptr: ElemPtr, AK: AK_Read)) |
269 | return false; |
270 | |
271 | uint32_t Val; |
272 | switch (ElemSize) { |
273 | case 1: |
274 | Val = ElemPtr.deref<uint8_t>(); |
275 | break; |
276 | case 2: |
277 | Val = ElemPtr.deref<uint16_t>(); |
278 | break; |
279 | case 4: |
280 | Val = ElemPtr.deref<uint32_t>(); |
281 | break; |
282 | default: |
283 | llvm_unreachable("Unsupported char size"); |
284 | } |
285 | if (Val == 0) |
286 | break; |
287 | } |
288 | |
289 | pushInteger(S, Len, Call->getType()); |
290 | |
291 | return true; |
292 | } |
293 | |
294 | static bool interp__builtin_nan(InterpState &S, CodePtr OpPC, |
295 | const InterpFrame *Frame, const CallExpr *Call, |
296 | bool Signaling) { |
297 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
298 | |
299 | if (!CheckLoad(S, OpPC, Ptr: Arg)) |
300 | return false; |
301 | |
302 | assert(Arg.getFieldDesc()->isPrimitiveArray()); |
303 | |
304 | // Convert the given string to an integer using StringRef's API. |
305 | llvm::APInt Fill; |
306 | std::string Str; |
307 | assert(Arg.getNumElems() >= 1); |
308 | for (unsigned I = 0;; ++I) { |
309 | const Pointer &Elem = Arg.atIndex(Idx: I); |
310 | |
311 | if (!CheckLoad(S, OpPC, Ptr: Elem)) |
312 | return false; |
313 | |
314 | if (Elem.deref<int8_t>() == 0) |
315 | break; |
316 | |
317 | Str += Elem.deref<char>(); |
318 | } |
319 | |
320 | // Treat empty strings as if they were zero. |
321 | if (Str.empty()) |
322 | Fill = llvm::APInt(32, 0); |
323 | else if (StringRef(Str).getAsInteger(Radix: 0, Result&: Fill)) |
324 | return false; |
325 | |
326 | const llvm::fltSemantics &TargetSemantics = |
327 | S.getASTContext().getFloatTypeSemantics( |
328 | T: Call->getDirectCallee()->getReturnType()); |
329 | |
330 | Floating Result; |
331 | if (S.getASTContext().getTargetInfo().isNan2008()) { |
332 | if (Signaling) |
333 | Result = Floating( |
334 | llvm::APFloat::getSNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
335 | else |
336 | Result = Floating( |
337 | llvm::APFloat::getQNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
338 | } else { |
339 | // Prior to IEEE 754-2008, architectures were allowed to choose whether |
340 | // the first bit of their significand was set for qNaN or sNaN. MIPS chose |
341 | // a different encoding to what became a standard in 2008, and for pre- |
342 | // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as |
343 | // sNaN. This is now known as "legacy NaN" encoding. |
344 | if (Signaling) |
345 | Result = Floating( |
346 | llvm::APFloat::getQNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
347 | else |
348 | Result = Floating( |
349 | llvm::APFloat::getSNaN(Sem: TargetSemantics, /*Negative=*/false, payload: &Fill)); |
350 | } |
351 | |
352 | S.Stk.push<Floating>(Args&: Result); |
353 | return true; |
354 | } |
355 | |
356 | static bool interp__builtin_inf(InterpState &S, CodePtr OpPC, |
357 | const InterpFrame *Frame, |
358 | const CallExpr *Call) { |
359 | const llvm::fltSemantics &TargetSemantics = |
360 | S.getASTContext().getFloatTypeSemantics( |
361 | T: Call->getDirectCallee()->getReturnType()); |
362 | |
363 | S.Stk.push<Floating>(Args: Floating::getInf(Sem: TargetSemantics)); |
364 | return true; |
365 | } |
366 | |
367 | static bool interp__builtin_copysign(InterpState &S, CodePtr OpPC, |
368 | const InterpFrame *Frame) { |
369 | const Floating &Arg2 = S.Stk.pop<Floating>(); |
370 | const Floating &Arg1 = S.Stk.pop<Floating>(); |
371 | |
372 | APFloat Copy = Arg1.getAPFloat(); |
373 | Copy.copySign(RHS: Arg2.getAPFloat()); |
374 | S.Stk.push<Floating>(Args: Floating(Copy)); |
375 | |
376 | return true; |
377 | } |
378 | |
379 | static bool interp__builtin_fmin(InterpState &S, CodePtr OpPC, |
380 | const InterpFrame *Frame, bool IsNumBuiltin) { |
381 | const Floating &RHS = S.Stk.pop<Floating>(); |
382 | const Floating &LHS = S.Stk.pop<Floating>(); |
383 | |
384 | if (IsNumBuiltin) |
385 | S.Stk.push<Floating>(Args: llvm::minimumnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
386 | else |
387 | S.Stk.push<Floating>(Args: minnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
388 | return true; |
389 | } |
390 | |
391 | static bool interp__builtin_fmax(InterpState &S, CodePtr OpPC, |
392 | const InterpFrame *Frame, bool IsNumBuiltin) { |
393 | const Floating &RHS = S.Stk.pop<Floating>(); |
394 | const Floating &LHS = S.Stk.pop<Floating>(); |
395 | |
396 | if (IsNumBuiltin) |
397 | S.Stk.push<Floating>(Args: llvm::maximumnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
398 | else |
399 | S.Stk.push<Floating>(Args: maxnum(A: LHS.getAPFloat(), B: RHS.getAPFloat())); |
400 | return true; |
401 | } |
402 | |
403 | /// Defined as __builtin_isnan(...), to accommodate the fact that it can |
404 | /// take a float, double, long double, etc. |
405 | /// But for us, that's all a Floating anyway. |
406 | static bool interp__builtin_isnan(InterpState &S, CodePtr OpPC, |
407 | const InterpFrame *Frame, |
408 | const CallExpr *Call) { |
409 | const Floating &Arg = S.Stk.pop<Floating>(); |
410 | |
411 | pushInteger(S, Arg.isNan(), Call->getType()); |
412 | return true; |
413 | } |
414 | |
415 | static bool interp__builtin_issignaling(InterpState &S, CodePtr OpPC, |
416 | const InterpFrame *Frame, |
417 | const CallExpr *Call) { |
418 | const Floating &Arg = S.Stk.pop<Floating>(); |
419 | |
420 | pushInteger(S, Arg.isSignaling(), Call->getType()); |
421 | return true; |
422 | } |
423 | |
424 | static bool interp__builtin_isinf(InterpState &S, CodePtr OpPC, |
425 | const InterpFrame *Frame, bool CheckSign, |
426 | const CallExpr *Call) { |
427 | const Floating &Arg = S.Stk.pop<Floating>(); |
428 | bool IsInf = Arg.isInf(); |
429 | |
430 | if (CheckSign) |
431 | pushInteger(S, IsInf ? (Arg.isNegative() ? -1 : 1) : 0, Call->getType()); |
432 | else |
433 | pushInteger(S, Arg.isInf(), Call->getType()); |
434 | return true; |
435 | } |
436 | |
437 | static bool interp__builtin_isfinite(InterpState &S, CodePtr OpPC, |
438 | const InterpFrame *Frame, |
439 | const CallExpr *Call) { |
440 | const Floating &Arg = S.Stk.pop<Floating>(); |
441 | |
442 | pushInteger(S, Arg.isFinite(), Call->getType()); |
443 | return true; |
444 | } |
445 | |
446 | static bool interp__builtin_isnormal(InterpState &S, CodePtr OpPC, |
447 | const InterpFrame *Frame, |
448 | const CallExpr *Call) { |
449 | const Floating &Arg = S.Stk.pop<Floating>(); |
450 | |
451 | pushInteger(S, Arg.isNormal(), Call->getType()); |
452 | return true; |
453 | } |
454 | |
455 | static bool interp__builtin_issubnormal(InterpState &S, CodePtr OpPC, |
456 | const InterpFrame *Frame, |
457 | const CallExpr *Call) { |
458 | const Floating &Arg = S.Stk.pop<Floating>(); |
459 | |
460 | pushInteger(S, Arg.isDenormal(), Call->getType()); |
461 | return true; |
462 | } |
463 | |
464 | static bool interp__builtin_iszero(InterpState &S, CodePtr OpPC, |
465 | const InterpFrame *Frame, |
466 | const CallExpr *Call) { |
467 | const Floating &Arg = S.Stk.pop<Floating>(); |
468 | |
469 | pushInteger(S, Arg.isZero(), Call->getType()); |
470 | return true; |
471 | } |
472 | |
473 | static bool interp__builtin_signbit(InterpState &S, CodePtr OpPC, |
474 | const InterpFrame *Frame, |
475 | const CallExpr *Call) { |
476 | const Floating &Arg = S.Stk.pop<Floating>(); |
477 | |
478 | pushInteger(S, Arg.isNegative(), Call->getType()); |
479 | return true; |
480 | } |
481 | |
482 | static bool interp_floating_comparison(InterpState &S, CodePtr OpPC, |
483 | const CallExpr *Call, unsigned ID) { |
484 | const Floating &RHS = S.Stk.pop<Floating>(); |
485 | const Floating &LHS = S.Stk.pop<Floating>(); |
486 | |
487 | pushInteger( |
488 | S, |
489 | [&] { |
490 | switch (ID) { |
491 | case Builtin::BI__builtin_isgreater: |
492 | return LHS > RHS; |
493 | case Builtin::BI__builtin_isgreaterequal: |
494 | return LHS >= RHS; |
495 | case Builtin::BI__builtin_isless: |
496 | return LHS < RHS; |
497 | case Builtin::BI__builtin_islessequal: |
498 | return LHS <= RHS; |
499 | case Builtin::BI__builtin_islessgreater: { |
500 | ComparisonCategoryResult cmp = LHS.compare(RHS); |
501 | return cmp == ComparisonCategoryResult::Less || |
502 | cmp == ComparisonCategoryResult::Greater; |
503 | } |
504 | case Builtin::BI__builtin_isunordered: |
505 | return LHS.compare(RHS) == ComparisonCategoryResult::Unordered; |
506 | default: |
507 | llvm_unreachable("Unexpected builtin ID: Should be a floating point " |
508 | "comparison function"); |
509 | } |
510 | }(), |
511 | Call->getType()); |
512 | return true; |
513 | } |
514 | |
515 | /// First parameter to __builtin_isfpclass is the floating value, the |
516 | /// second one is an integral value. |
517 | static bool interp__builtin_isfpclass(InterpState &S, CodePtr OpPC, |
518 | const InterpFrame *Frame, |
519 | const CallExpr *Call) { |
520 | PrimType FPClassArgT = *S.getContext().classify(T: Call->getArg(Arg: 1)->getType()); |
521 | APSInt FPClassArg = popToAPSInt(Stk&: S.Stk, T: FPClassArgT); |
522 | const Floating &F = S.Stk.pop<Floating>(); |
523 | |
524 | int32_t Result = |
525 | static_cast<int32_t>((F.classify() & FPClassArg).getZExtValue()); |
526 | pushInteger(S, Result, Call->getType()); |
527 | |
528 | return true; |
529 | } |
530 | |
531 | /// Five int values followed by one floating value. |
532 | /// __builtin_fpclassify(int, int, int, int, int, float) |
533 | static bool interp__builtin_fpclassify(InterpState &S, CodePtr OpPC, |
534 | const InterpFrame *Frame, |
535 | const CallExpr *Call) { |
536 | const Floating &Val = S.Stk.pop<Floating>(); |
537 | |
538 | PrimType IntT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
539 | APSInt Values[5]; |
540 | for (unsigned I = 0; I != 5; ++I) |
541 | Values[4 - I] = popToAPSInt(Stk&: S.Stk, T: IntT); |
542 | |
543 | unsigned Index; |
544 | switch (Val.getCategory()) { |
545 | case APFloat::fcNaN: |
546 | Index = 0; |
547 | break; |
548 | case APFloat::fcInfinity: |
549 | Index = 1; |
550 | break; |
551 | case APFloat::fcNormal: |
552 | Index = Val.isDenormal() ? 3 : 2; |
553 | break; |
554 | case APFloat::fcZero: |
555 | Index = 4; |
556 | break; |
557 | } |
558 | |
559 | // The last argument is first on the stack. |
560 | assert(Index <= 4); |
561 | |
562 | pushInteger(S, Values[Index], Call->getType()); |
563 | return true; |
564 | } |
565 | |
566 | // The C standard says "fabs raises no floating-point exceptions, |
567 | // even if x is a signaling NaN. The returned value is independent of |
568 | // the current rounding direction mode." Therefore constant folding can |
569 | // proceed without regard to the floating point settings. |
570 | // Reference, WG14 N2478 F.10.4.3 |
571 | static bool interp__builtin_fabs(InterpState &S, CodePtr OpPC, |
572 | const InterpFrame *Frame) { |
573 | const Floating &Val = S.Stk.pop<Floating>(); |
574 | |
575 | S.Stk.push<Floating>(Args: Floating::abs(F: Val)); |
576 | return true; |
577 | } |
578 | |
579 | static bool interp__builtin_abs(InterpState &S, CodePtr OpPC, |
580 | const InterpFrame *Frame, |
581 | const CallExpr *Call) { |
582 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
583 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
584 | if (Val == |
585 | APSInt(APInt::getSignedMinValue(numBits: Val.getBitWidth()), /*IsUnsigned=*/false)) |
586 | return false; |
587 | if (Val.isNegative()) |
588 | Val.negate(); |
589 | pushInteger(S, Val, Call->getType()); |
590 | return true; |
591 | } |
592 | |
593 | static bool interp__builtin_popcount(InterpState &S, CodePtr OpPC, |
594 | const InterpFrame *Frame, |
595 | const CallExpr *Call) { |
596 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
597 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
598 | pushInteger(S, Val.popcount(), Call->getType()); |
599 | return true; |
600 | } |
601 | |
602 | static bool interp__builtin_parity(InterpState &S, CodePtr OpPC, |
603 | const InterpFrame *Frame, |
604 | const CallExpr *Call) { |
605 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
606 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
607 | pushInteger(S, Val.popcount() % 2, Call->getType()); |
608 | return true; |
609 | } |
610 | |
611 | static bool interp__builtin_clrsb(InterpState &S, CodePtr OpPC, |
612 | const InterpFrame *Frame, |
613 | const CallExpr *Call) { |
614 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
615 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
616 | pushInteger(S, Val.getBitWidth() - Val.getSignificantBits(), Call->getType()); |
617 | return true; |
618 | } |
619 | |
620 | static bool interp__builtin_bitreverse(InterpState &S, CodePtr OpPC, |
621 | const InterpFrame *Frame, |
622 | const CallExpr *Call) { |
623 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
624 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
625 | pushInteger(S, Val.reverseBits(), Call->getType()); |
626 | return true; |
627 | } |
628 | |
629 | static bool interp__builtin_classify_type(InterpState &S, CodePtr OpPC, |
630 | const InterpFrame *Frame, |
631 | const CallExpr *Call) { |
632 | // This is an unevaluated call, so there are no arguments on the stack. |
633 | assert(Call->getNumArgs() == 1); |
634 | const Expr *Arg = Call->getArg(Arg: 0); |
635 | |
636 | GCCTypeClass ResultClass = |
637 | EvaluateBuiltinClassifyType(T: Arg->getType(), LangOpts: S.getLangOpts()); |
638 | int32_t ReturnVal = static_cast<int32_t>(ResultClass); |
639 | pushInteger(S, ReturnVal, Call->getType()); |
640 | return true; |
641 | } |
642 | |
643 | // __builtin_expect(long, long) |
644 | // __builtin_expect_with_probability(long, long, double) |
645 | static bool interp__builtin_expect(InterpState &S, CodePtr OpPC, |
646 | const InterpFrame *Frame, |
647 | const CallExpr *Call) { |
648 | // The return value is simply the value of the first parameter. |
649 | // We ignore the probability. |
650 | unsigned NumArgs = Call->getNumArgs(); |
651 | assert(NumArgs == 2 || NumArgs == 3); |
652 | |
653 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
654 | if (NumArgs == 3) |
655 | S.Stk.discard<Floating>(); |
656 | discard(Stk&: S.Stk, T: ArgT); |
657 | |
658 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
659 | pushInteger(S, Val, Call->getType()); |
660 | return true; |
661 | } |
662 | |
663 | /// rotateleft(value, amount) |
664 | static bool interp__builtin_rotate(InterpState &S, CodePtr OpPC, |
665 | const InterpFrame *Frame, |
666 | const CallExpr *Call, bool Right) { |
667 | PrimType AmountT = *S.getContext().classify(T: Call->getArg(Arg: 1)->getType()); |
668 | PrimType ValueT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
669 | |
670 | APSInt Amount = popToAPSInt(Stk&: S.Stk, T: AmountT); |
671 | APSInt Value = popToAPSInt(Stk&: S.Stk, T: ValueT); |
672 | |
673 | APSInt Result; |
674 | if (Right) |
675 | Result = APSInt(Value.rotr(rotateAmt: Amount.urem(RHS: Value.getBitWidth())), |
676 | /*IsUnsigned=*/true); |
677 | else // Left. |
678 | Result = APSInt(Value.rotl(rotateAmt: Amount.urem(RHS: Value.getBitWidth())), |
679 | /*IsUnsigned=*/true); |
680 | |
681 | pushInteger(S, Result, Call->getType()); |
682 | return true; |
683 | } |
684 | |
685 | static bool interp__builtin_ffs(InterpState &S, CodePtr OpPC, |
686 | const InterpFrame *Frame, |
687 | const CallExpr *Call) { |
688 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
689 | APSInt Value = popToAPSInt(Stk&: S.Stk, T: ArgT); |
690 | |
691 | uint64_t N = Value.countr_zero(); |
692 | pushInteger(S, N == Value.getBitWidth() ? 0 : N + 1, Call->getType()); |
693 | return true; |
694 | } |
695 | |
696 | static bool interp__builtin_addressof(InterpState &S, CodePtr OpPC, |
697 | const InterpFrame *Frame, |
698 | const CallExpr *Call) { |
699 | #ifndef NDEBUG |
700 | assert(Call->getArg(0)->isLValue()); |
701 | PrimType PtrT = S.getContext().classify(E: Call->getArg(Arg: 0)).value_or(u: PT_Ptr); |
702 | assert(PtrT == PT_Ptr && |
703 | "Unsupported pointer type passed to __builtin_addressof()"); |
704 | #endif |
705 | return true; |
706 | } |
707 | |
708 | static bool interp__builtin_move(InterpState &S, CodePtr OpPC, |
709 | const InterpFrame *Frame, |
710 | const CallExpr *Call) { |
711 | return Call->getDirectCallee()->isConstexpr(); |
712 | } |
713 | |
714 | static bool interp__builtin_eh_return_data_regno(InterpState &S, CodePtr OpPC, |
715 | const InterpFrame *Frame, |
716 | const CallExpr *Call) { |
717 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
718 | APSInt Arg = popToAPSInt(Stk&: S.Stk, T: ArgT); |
719 | |
720 | int Result = S.getASTContext().getTargetInfo().getEHDataRegisterNumber( |
721 | RegNo: Arg.getZExtValue()); |
722 | pushInteger(S, Result, Call->getType()); |
723 | return true; |
724 | } |
725 | |
726 | // Two integral values followed by a pointer (lhs, rhs, resultOut) |
727 | static bool interp__builtin_overflowop(InterpState &S, CodePtr OpPC, |
728 | const CallExpr *Call, |
729 | unsigned BuiltinOp) { |
730 | const Pointer &ResultPtr = S.Stk.pop<Pointer>(); |
731 | if (ResultPtr.isDummy()) |
732 | return false; |
733 | |
734 | PrimType RHST = *S.getContext().classify(T: Call->getArg(Arg: 1)->getType()); |
735 | PrimType LHST = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
736 | APSInt RHS = popToAPSInt(Stk&: S.Stk, T: RHST); |
737 | APSInt LHS = popToAPSInt(Stk&: S.Stk, T: LHST); |
738 | QualType ResultType = Call->getArg(Arg: 2)->getType()->getPointeeType(); |
739 | PrimType ResultT = *S.getContext().classify(T: ResultType); |
740 | bool Overflow; |
741 | |
742 | APSInt Result; |
743 | if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
744 | BuiltinOp == Builtin::BI__builtin_sub_overflow || |
745 | BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
746 | bool IsSigned = LHS.isSigned() || RHS.isSigned() || |
747 | ResultType->isSignedIntegerOrEnumerationType(); |
748 | bool AllSigned = LHS.isSigned() && RHS.isSigned() && |
749 | ResultType->isSignedIntegerOrEnumerationType(); |
750 | uint64_t LHSSize = LHS.getBitWidth(); |
751 | uint64_t RHSSize = RHS.getBitWidth(); |
752 | uint64_t ResultSize = S.getASTContext().getTypeSize(T: ResultType); |
753 | uint64_t MaxBits = std::max(a: std::max(a: LHSSize, b: RHSSize), b: ResultSize); |
754 | |
755 | // Add an additional bit if the signedness isn't uniformly agreed to. We |
756 | // could do this ONLY if there is a signed and an unsigned that both have |
757 | // MaxBits, but the code to check that is pretty nasty. The issue will be |
758 | // caught in the shrink-to-result later anyway. |
759 | if (IsSigned && !AllSigned) |
760 | ++MaxBits; |
761 | |
762 | LHS = APSInt(LHS.extOrTrunc(width: MaxBits), !IsSigned); |
763 | RHS = APSInt(RHS.extOrTrunc(width: MaxBits), !IsSigned); |
764 | Result = APSInt(MaxBits, !IsSigned); |
765 | } |
766 | |
767 | // Find largest int. |
768 | switch (BuiltinOp) { |
769 | default: |
770 | llvm_unreachable("Invalid value for BuiltinOp"); |
771 | case Builtin::BI__builtin_add_overflow: |
772 | case Builtin::BI__builtin_sadd_overflow: |
773 | case Builtin::BI__builtin_saddl_overflow: |
774 | case Builtin::BI__builtin_saddll_overflow: |
775 | case Builtin::BI__builtin_uadd_overflow: |
776 | case Builtin::BI__builtin_uaddl_overflow: |
777 | case Builtin::BI__builtin_uaddll_overflow: |
778 | Result = LHS.isSigned() ? LHS.sadd_ov(RHS, Overflow) |
779 | : LHS.uadd_ov(RHS, Overflow); |
780 | break; |
781 | case Builtin::BI__builtin_sub_overflow: |
782 | case Builtin::BI__builtin_ssub_overflow: |
783 | case Builtin::BI__builtin_ssubl_overflow: |
784 | case Builtin::BI__builtin_ssubll_overflow: |
785 | case Builtin::BI__builtin_usub_overflow: |
786 | case Builtin::BI__builtin_usubl_overflow: |
787 | case Builtin::BI__builtin_usubll_overflow: |
788 | Result = LHS.isSigned() ? LHS.ssub_ov(RHS, Overflow) |
789 | : LHS.usub_ov(RHS, Overflow); |
790 | break; |
791 | case Builtin::BI__builtin_mul_overflow: |
792 | case Builtin::BI__builtin_smul_overflow: |
793 | case Builtin::BI__builtin_smull_overflow: |
794 | case Builtin::BI__builtin_smulll_overflow: |
795 | case Builtin::BI__builtin_umul_overflow: |
796 | case Builtin::BI__builtin_umull_overflow: |
797 | case Builtin::BI__builtin_umulll_overflow: |
798 | Result = LHS.isSigned() ? LHS.smul_ov(RHS, Overflow) |
799 | : LHS.umul_ov(RHS, Overflow); |
800 | break; |
801 | } |
802 | |
803 | // In the case where multiple sizes are allowed, truncate and see if |
804 | // the values are the same. |
805 | if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
806 | BuiltinOp == Builtin::BI__builtin_sub_overflow || |
807 | BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
808 | // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, |
809 | // since it will give us the behavior of a TruncOrSelf in the case where |
810 | // its parameter <= its size. We previously set Result to be at least the |
811 | // type-size of the result, so getTypeSize(ResultType) <= Resu |
812 | APSInt Temp = Result.extOrTrunc(width: S.getASTContext().getTypeSize(T: ResultType)); |
813 | Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); |
814 | |
815 | if (!APSInt::isSameValue(I1: Temp, I2: Result)) |
816 | Overflow = true; |
817 | Result = Temp; |
818 | } |
819 | |
820 | // Write Result to ResultPtr and put Overflow on the stack. |
821 | assignInteger(Dest: ResultPtr, ValueT: ResultT, Value: Result); |
822 | ResultPtr.initialize(); |
823 | assert(Call->getDirectCallee()->getReturnType()->isBooleanType()); |
824 | S.Stk.push<Boolean>(Args&: Overflow); |
825 | return true; |
826 | } |
827 | |
828 | /// Three integral values followed by a pointer (lhs, rhs, carry, carryOut). |
829 | static bool interp__builtin_carryop(InterpState &S, CodePtr OpPC, |
830 | const InterpFrame *Frame, |
831 | const CallExpr *Call, unsigned BuiltinOp) { |
832 | const Pointer &CarryOutPtr = S.Stk.pop<Pointer>(); |
833 | PrimType LHST = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
834 | PrimType RHST = *S.getContext().classify(T: Call->getArg(Arg: 1)->getType()); |
835 | APSInt CarryIn = popToAPSInt(Stk&: S.Stk, T: LHST); |
836 | APSInt RHS = popToAPSInt(Stk&: S.Stk, T: RHST); |
837 | APSInt LHS = popToAPSInt(Stk&: S.Stk, T: LHST); |
838 | |
839 | APSInt CarryOut; |
840 | |
841 | APSInt Result; |
842 | // Copy the number of bits and sign. |
843 | Result = LHS; |
844 | CarryOut = LHS; |
845 | |
846 | bool FirstOverflowed = false; |
847 | bool SecondOverflowed = false; |
848 | switch (BuiltinOp) { |
849 | default: |
850 | llvm_unreachable("Invalid value for BuiltinOp"); |
851 | case Builtin::BI__builtin_addcb: |
852 | case Builtin::BI__builtin_addcs: |
853 | case Builtin::BI__builtin_addc: |
854 | case Builtin::BI__builtin_addcl: |
855 | case Builtin::BI__builtin_addcll: |
856 | Result = |
857 | LHS.uadd_ov(RHS, Overflow&: FirstOverflowed).uadd_ov(RHS: CarryIn, Overflow&: SecondOverflowed); |
858 | break; |
859 | case Builtin::BI__builtin_subcb: |
860 | case Builtin::BI__builtin_subcs: |
861 | case Builtin::BI__builtin_subc: |
862 | case Builtin::BI__builtin_subcl: |
863 | case Builtin::BI__builtin_subcll: |
864 | Result = |
865 | LHS.usub_ov(RHS, Overflow&: FirstOverflowed).usub_ov(RHS: CarryIn, Overflow&: SecondOverflowed); |
866 | break; |
867 | } |
868 | // It is possible for both overflows to happen but CGBuiltin uses an OR so |
869 | // this is consistent. |
870 | CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed); |
871 | |
872 | QualType CarryOutType = Call->getArg(Arg: 3)->getType()->getPointeeType(); |
873 | PrimType CarryOutT = *S.getContext().classify(T: CarryOutType); |
874 | assignInteger(Dest: CarryOutPtr, ValueT: CarryOutT, Value: CarryOut); |
875 | CarryOutPtr.initialize(); |
876 | |
877 | assert(Call->getType() == Call->getArg(0)->getType()); |
878 | pushInteger(S, Result, Call->getType()); |
879 | return true; |
880 | } |
881 | |
882 | static bool interp__builtin_clz(InterpState &S, CodePtr OpPC, |
883 | const InterpFrame *Frame, const CallExpr *Call, |
884 | unsigned BuiltinOp) { |
885 | |
886 | std::optional<APSInt> Fallback; |
887 | if (BuiltinOp == Builtin::BI__builtin_clzg && Call->getNumArgs() == 2) { |
888 | PrimType FallbackT = *S.getContext().classify(E: Call->getArg(Arg: 1)); |
889 | Fallback = popToAPSInt(Stk&: S.Stk, T: FallbackT); |
890 | } |
891 | PrimType ValT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
892 | const APSInt &Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
893 | |
894 | // When the argument is 0, the result of GCC builtins is undefined, whereas |
895 | // for Microsoft intrinsics, the result is the bit-width of the argument. |
896 | bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 && |
897 | BuiltinOp != Builtin::BI__lzcnt && |
898 | BuiltinOp != Builtin::BI__lzcnt64; |
899 | |
900 | if (Val == 0) { |
901 | if (Fallback) { |
902 | pushInteger(S, *Fallback, Call->getType()); |
903 | return true; |
904 | } |
905 | |
906 | if (ZeroIsUndefined) |
907 | return false; |
908 | } |
909 | |
910 | pushInteger(S, Val.countl_zero(), Call->getType()); |
911 | return true; |
912 | } |
913 | |
914 | static bool interp__builtin_ctz(InterpState &S, CodePtr OpPC, |
915 | const InterpFrame *Frame, const CallExpr *Call, |
916 | unsigned BuiltinID) { |
917 | std::optional<APSInt> Fallback; |
918 | if (BuiltinID == Builtin::BI__builtin_ctzg && Call->getNumArgs() == 2) { |
919 | PrimType FallbackT = *S.getContext().classify(E: Call->getArg(Arg: 1)); |
920 | Fallback = popToAPSInt(Stk&: S.Stk, T: FallbackT); |
921 | } |
922 | PrimType ValT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
923 | const APSInt &Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
924 | |
925 | if (Val == 0) { |
926 | if (Fallback) { |
927 | pushInteger(S, *Fallback, Call->getType()); |
928 | return true; |
929 | } |
930 | return false; |
931 | } |
932 | |
933 | pushInteger(S, Val.countr_zero(), Call->getType()); |
934 | return true; |
935 | } |
936 | |
937 | static bool interp__builtin_bswap(InterpState &S, CodePtr OpPC, |
938 | const InterpFrame *Frame, |
939 | const CallExpr *Call) { |
940 | PrimType ReturnT = *S.getContext().classify(Call->getType()); |
941 | PrimType ValT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
942 | const APSInt &Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
943 | assert(Val.getActiveBits() <= 64); |
944 | |
945 | INT_TYPE_SWITCH(ReturnT, |
946 | { S.Stk.push<T>(T::from(Val.byteSwap().getZExtValue())); }); |
947 | return true; |
948 | } |
949 | |
950 | /// bool __atomic_always_lock_free(size_t, void const volatile*) |
951 | /// bool __atomic_is_lock_free(size_t, void const volatile*) |
952 | static bool interp__builtin_atomic_lock_free(InterpState &S, CodePtr OpPC, |
953 | const InterpFrame *Frame, |
954 | const CallExpr *Call, |
955 | unsigned BuiltinOp) { |
956 | auto returnBool = [&S](bool Value) -> bool { |
957 | S.Stk.push<Boolean>(Args&: Value); |
958 | return true; |
959 | }; |
960 | |
961 | PrimType ValT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
962 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
963 | const APSInt &SizeVal = popToAPSInt(Stk&: S.Stk, T: ValT); |
964 | |
965 | // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power |
966 | // of two less than or equal to the maximum inline atomic width, we know it |
967 | // is lock-free. If the size isn't a power of two, or greater than the |
968 | // maximum alignment where we promote atomics, we know it is not lock-free |
969 | // (at least not in the sense of atomic_is_lock_free). Otherwise, |
970 | // the answer can only be determined at runtime; for example, 16-byte |
971 | // atomics have lock-free implementations on some, but not all, |
972 | // x86-64 processors. |
973 | |
974 | // Check power-of-two. |
975 | CharUnits Size = CharUnits::fromQuantity(Quantity: SizeVal.getZExtValue()); |
976 | if (Size.isPowerOfTwo()) { |
977 | // Check against inlining width. |
978 | unsigned InlineWidthBits = |
979 | S.getASTContext().getTargetInfo().getMaxAtomicInlineWidth(); |
980 | if (Size <= S.getASTContext().toCharUnitsFromBits(BitSize: InlineWidthBits)) { |
981 | |
982 | // OK, we will inline appropriately-aligned operations of this size, |
983 | // and _Atomic(T) is appropriately-aligned. |
984 | if (Size == CharUnits::One()) |
985 | return returnBool(true); |
986 | |
987 | // Same for null pointers. |
988 | assert(BuiltinOp != Builtin::BI__c11_atomic_is_lock_free); |
989 | if (Ptr.isZero()) |
990 | return returnBool(true); |
991 | |
992 | if (Ptr.isIntegralPointer()) { |
993 | uint64_t IntVal = Ptr.getIntegerRepresentation(); |
994 | if (APSInt(APInt(64, IntVal, false), true).isAligned(A: Size.getAsAlign())) |
995 | return returnBool(true); |
996 | } |
997 | |
998 | const Expr *PtrArg = Call->getArg(Arg: 1); |
999 | // Otherwise, check if the type's alignment against Size. |
1000 | if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: PtrArg)) { |
1001 | // Drop the potential implicit-cast to 'const volatile void*', getting |
1002 | // the underlying type. |
1003 | if (ICE->getCastKind() == CK_BitCast) |
1004 | PtrArg = ICE->getSubExpr(); |
1005 | } |
1006 | |
1007 | if (auto PtrTy = PtrArg->getType()->getAs<PointerType>()) { |
1008 | QualType PointeeType = PtrTy->getPointeeType(); |
1009 | if (!PointeeType->isIncompleteType() && |
1010 | S.getASTContext().getTypeAlignInChars(T: PointeeType) >= Size) { |
1011 | // OK, we will inline operations on this object. |
1012 | return returnBool(true); |
1013 | } |
1014 | } |
1015 | } |
1016 | } |
1017 | |
1018 | if (BuiltinOp == Builtin::BI__atomic_always_lock_free) |
1019 | return returnBool(false); |
1020 | |
1021 | return false; |
1022 | } |
1023 | |
1024 | /// bool __c11_atomic_is_lock_free(size_t) |
1025 | static bool interp__builtin_c11_atomic_is_lock_free(InterpState &S, |
1026 | CodePtr OpPC, |
1027 | const InterpFrame *Frame, |
1028 | const CallExpr *Call) { |
1029 | PrimType ValT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
1030 | const APSInt &SizeVal = popToAPSInt(Stk&: S.Stk, T: ValT); |
1031 | |
1032 | auto returnBool = [&S](bool Value) -> bool { |
1033 | S.Stk.push<Boolean>(Args&: Value); |
1034 | return true; |
1035 | }; |
1036 | |
1037 | CharUnits Size = CharUnits::fromQuantity(Quantity: SizeVal.getZExtValue()); |
1038 | if (Size.isPowerOfTwo()) { |
1039 | // Check against inlining width. |
1040 | unsigned InlineWidthBits = |
1041 | S.getASTContext().getTargetInfo().getMaxAtomicInlineWidth(); |
1042 | if (Size <= S.getASTContext().toCharUnitsFromBits(BitSize: InlineWidthBits)) |
1043 | return returnBool(true); |
1044 | } |
1045 | |
1046 | return false; // returnBool(false); |
1047 | } |
1048 | |
1049 | /// __builtin_complex(Float A, float B); |
1050 | static bool interp__builtin_complex(InterpState &S, CodePtr OpPC, |
1051 | const InterpFrame *Frame, |
1052 | const CallExpr *Call) { |
1053 | const Floating &Arg2 = S.Stk.pop<Floating>(); |
1054 | const Floating &Arg1 = S.Stk.pop<Floating>(); |
1055 | Pointer &Result = S.Stk.peek<Pointer>(); |
1056 | |
1057 | Result.atIndex(Idx: 0).deref<Floating>() = Arg1; |
1058 | Result.atIndex(Idx: 0).initialize(); |
1059 | Result.atIndex(Idx: 1).deref<Floating>() = Arg2; |
1060 | Result.atIndex(Idx: 1).initialize(); |
1061 | Result.initialize(); |
1062 | |
1063 | return true; |
1064 | } |
1065 | |
1066 | /// __builtin_is_aligned() |
1067 | /// __builtin_align_up() |
1068 | /// __builtin_align_down() |
1069 | /// The first parameter is either an integer or a pointer. |
1070 | /// The second parameter is the requested alignment as an integer. |
1071 | static bool interp__builtin_is_aligned_up_down(InterpState &S, CodePtr OpPC, |
1072 | const InterpFrame *Frame, |
1073 | const CallExpr *Call, |
1074 | unsigned BuiltinOp) { |
1075 | PrimType AlignmentT = *S.Ctx.classify(E: Call->getArg(Arg: 1)); |
1076 | const APSInt &Alignment = popToAPSInt(Stk&: S.Stk, T: AlignmentT); |
1077 | |
1078 | if (Alignment < 0 || !Alignment.isPowerOf2()) { |
1079 | S.FFDiag(Call, diag::note_constexpr_invalid_alignment) << Alignment; |
1080 | return false; |
1081 | } |
1082 | unsigned SrcWidth = S.getASTContext().getIntWidth(T: Call->getArg(Arg: 0)->getType()); |
1083 | APSInt MaxValue(APInt::getOneBitSet(numBits: SrcWidth, BitNo: SrcWidth - 1)); |
1084 | if (APSInt::compareValues(I1: Alignment, I2: MaxValue) > 0) { |
1085 | S.FFDiag(Call, diag::note_constexpr_alignment_too_big) |
1086 | << MaxValue << Call->getArg(0)->getType() << Alignment; |
1087 | return false; |
1088 | } |
1089 | |
1090 | // The first parameter is either an integer or a pointer (but not a function |
1091 | // pointer). |
1092 | PrimType FirstArgT = *S.Ctx.classify(E: Call->getArg(Arg: 0)); |
1093 | |
1094 | if (isIntegralType(T: FirstArgT)) { |
1095 | const APSInt &Src = popToAPSInt(Stk&: S.Stk, T: FirstArgT); |
1096 | APSInt Align = Alignment.extOrTrunc(width: Src.getBitWidth()); |
1097 | if (BuiltinOp == Builtin::BI__builtin_align_up) { |
1098 | APSInt AlignedVal = |
1099 | APSInt((Src + (Align - 1)) & ~(Align - 1), Src.isUnsigned()); |
1100 | pushInteger(S, AlignedVal, Call->getType()); |
1101 | } else if (BuiltinOp == Builtin::BI__builtin_align_down) { |
1102 | APSInt AlignedVal = APSInt(Src & ~(Align - 1), Src.isUnsigned()); |
1103 | pushInteger(S, AlignedVal, Call->getType()); |
1104 | } else { |
1105 | assert(*S.Ctx.classify(Call->getType()) == PT_Bool); |
1106 | S.Stk.push<Boolean>(Args: (Src & (Align - 1)) == 0); |
1107 | } |
1108 | return true; |
1109 | } |
1110 | |
1111 | assert(FirstArgT == PT_Ptr); |
1112 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1113 | |
1114 | unsigned PtrOffset = Ptr.getByteOffset(); |
1115 | PtrOffset = Ptr.getIndex(); |
1116 | CharUnits BaseAlignment = |
1117 | S.getASTContext().getDeclAlign(Ptr.getDeclDesc()->asValueDecl()); |
1118 | CharUnits PtrAlign = |
1119 | BaseAlignment.alignmentAtOffset(offset: CharUnits::fromQuantity(Quantity: PtrOffset)); |
1120 | |
1121 | if (BuiltinOp == Builtin::BI__builtin_is_aligned) { |
1122 | if (PtrAlign.getQuantity() >= Alignment) { |
1123 | S.Stk.push<Boolean>(Args: true); |
1124 | return true; |
1125 | } |
1126 | // If the alignment is not known to be sufficient, some cases could still |
1127 | // be aligned at run time. However, if the requested alignment is less or |
1128 | // equal to the base alignment and the offset is not aligned, we know that |
1129 | // the run-time value can never be aligned. |
1130 | if (BaseAlignment.getQuantity() >= Alignment && |
1131 | PtrAlign.getQuantity() < Alignment) { |
1132 | S.Stk.push<Boolean>(Args: false); |
1133 | return true; |
1134 | } |
1135 | |
1136 | S.FFDiag(Call->getArg(0), diag::note_constexpr_alignment_compute) |
1137 | << Alignment; |
1138 | return false; |
1139 | } |
1140 | |
1141 | assert(BuiltinOp == Builtin::BI__builtin_align_down || |
1142 | BuiltinOp == Builtin::BI__builtin_align_up); |
1143 | |
1144 | // For align_up/align_down, we can return the same value if the alignment |
1145 | // is known to be greater or equal to the requested value. |
1146 | if (PtrAlign.getQuantity() >= Alignment) { |
1147 | S.Stk.push<Pointer>(Args: Ptr); |
1148 | return true; |
1149 | } |
1150 | |
1151 | // The alignment could be greater than the minimum at run-time, so we cannot |
1152 | // infer much about the resulting pointer value. One case is possible: |
1153 | // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we |
1154 | // can infer the correct index if the requested alignment is smaller than |
1155 | // the base alignment so we can perform the computation on the offset. |
1156 | if (BaseAlignment.getQuantity() >= Alignment) { |
1157 | assert(Alignment.getBitWidth() <= 64 && |
1158 | "Cannot handle > 64-bit address-space"); |
1159 | uint64_t Alignment64 = Alignment.getZExtValue(); |
1160 | CharUnits NewOffset = |
1161 | CharUnits::fromQuantity(BuiltinOp == Builtin::BI__builtin_align_down |
1162 | ? llvm::alignDown(PtrOffset, Alignment64) |
1163 | : llvm::alignTo(PtrOffset, Alignment64)); |
1164 | |
1165 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: NewOffset.getQuantity())); |
1166 | return true; |
1167 | } |
1168 | |
1169 | // Otherwise, we cannot constant-evaluate the result. |
1170 | S.FFDiag(Call->getArg(0), diag::note_constexpr_alignment_adjust) << Alignment; |
1171 | return false; |
1172 | } |
1173 | |
1174 | /// __builtin_assume_aligned(Ptr, Alignment[, ExtraOffset]) |
1175 | static bool interp__builtin_assume_aligned(InterpState &S, CodePtr OpPC, |
1176 | const InterpFrame *Frame, |
1177 | const CallExpr *Call) { |
1178 | assert(Call->getNumArgs() == 2 || Call->getNumArgs() == 3); |
1179 | |
1180 | std::optional<APSInt> ExtraOffset; |
1181 | if (Call->getNumArgs() == 3) |
1182 | ExtraOffset = popToAPSInt(Stk&: S.Stk, T: *S.Ctx.classify(E: Call->getArg(Arg: 2))); |
1183 | |
1184 | APSInt Alignment = popToAPSInt(Stk&: S.Stk, T: *S.Ctx.classify(E: Call->getArg(Arg: 1))); |
1185 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1186 | |
1187 | CharUnits Align = CharUnits::fromQuantity(Quantity: Alignment.getZExtValue()); |
1188 | |
1189 | // If there is a base object, then it must have the correct alignment. |
1190 | if (Ptr.isBlockPointer()) { |
1191 | CharUnits BaseAlignment; |
1192 | if (const auto *VD = Ptr.getDeclDesc()->asValueDecl()) |
1193 | BaseAlignment = S.getASTContext().getDeclAlign(VD); |
1194 | else if (const auto *E = Ptr.getDeclDesc()->asExpr()) |
1195 | BaseAlignment = GetAlignOfExpr(Ctx: S.getASTContext(), E, ExprKind: UETT_AlignOf); |
1196 | |
1197 | if (BaseAlignment < Align) { |
1198 | S.CCEDiag(Call->getArg(0), |
1199 | diag::note_constexpr_baa_insufficient_alignment) |
1200 | << 0 << BaseAlignment.getQuantity() << Align.getQuantity(); |
1201 | return false; |
1202 | } |
1203 | } |
1204 | |
1205 | APValue AV = Ptr.toAPValue(ASTCtx: S.getASTContext()); |
1206 | CharUnits AVOffset = AV.getLValueOffset(); |
1207 | if (ExtraOffset) |
1208 | AVOffset -= CharUnits::fromQuantity(Quantity: ExtraOffset->getZExtValue()); |
1209 | if (AVOffset.alignTo(Align) != AVOffset) { |
1210 | if (Ptr.isBlockPointer()) |
1211 | S.CCEDiag(Call->getArg(0), |
1212 | diag::note_constexpr_baa_insufficient_alignment) |
1213 | << 1 << AVOffset.getQuantity() << Align.getQuantity(); |
1214 | else |
1215 | S.CCEDiag(Call->getArg(0), |
1216 | diag::note_constexpr_baa_value_insufficient_alignment) |
1217 | << AVOffset.getQuantity() << Align.getQuantity(); |
1218 | return false; |
1219 | } |
1220 | |
1221 | S.Stk.push<Pointer>(Args: Ptr); |
1222 | return true; |
1223 | } |
1224 | |
1225 | static bool interp__builtin_ia32_bextr(InterpState &S, CodePtr OpPC, |
1226 | const InterpFrame *Frame, |
1227 | const CallExpr *Call) { |
1228 | if (Call->getNumArgs() != 2 || !Call->getArg(Arg: 0)->getType()->isIntegerType() || |
1229 | !Call->getArg(Arg: 1)->getType()->isIntegerType()) |
1230 | return false; |
1231 | |
1232 | PrimType ValT = *S.Ctx.classify(E: Call->getArg(Arg: 0)); |
1233 | PrimType IndexT = *S.Ctx.classify(E: Call->getArg(Arg: 1)); |
1234 | APSInt Index = popToAPSInt(Stk&: S.Stk, T: IndexT); |
1235 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
1236 | |
1237 | unsigned BitWidth = Val.getBitWidth(); |
1238 | uint64_t Shift = Index.extractBitsAsZExtValue(numBits: 8, bitPosition: 0); |
1239 | uint64_t Length = Index.extractBitsAsZExtValue(numBits: 8, bitPosition: 8); |
1240 | Length = Length > BitWidth ? BitWidth : Length; |
1241 | |
1242 | // Handle out of bounds cases. |
1243 | if (Length == 0 || Shift >= BitWidth) { |
1244 | pushInteger(S, 0, Call->getType()); |
1245 | return true; |
1246 | } |
1247 | |
1248 | uint64_t Result = Val.getZExtValue() >> Shift; |
1249 | Result &= llvm::maskTrailingOnes<uint64_t>(N: Length); |
1250 | pushInteger(S, Result, Call->getType()); |
1251 | return true; |
1252 | } |
1253 | |
1254 | static bool interp__builtin_ia32_bzhi(InterpState &S, CodePtr OpPC, |
1255 | const InterpFrame *Frame, |
1256 | const CallExpr *Call) { |
1257 | QualType CallType = Call->getType(); |
1258 | if (Call->getNumArgs() != 2 || !Call->getArg(Arg: 0)->getType()->isIntegerType() || |
1259 | !Call->getArg(Arg: 1)->getType()->isIntegerType() || |
1260 | !CallType->isIntegerType()) |
1261 | return false; |
1262 | |
1263 | PrimType ValT = *S.Ctx.classify(E: Call->getArg(Arg: 0)); |
1264 | PrimType IndexT = *S.Ctx.classify(E: Call->getArg(Arg: 1)); |
1265 | |
1266 | APSInt Idx = popToAPSInt(Stk&: S.Stk, T: IndexT); |
1267 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
1268 | |
1269 | unsigned BitWidth = Val.getBitWidth(); |
1270 | uint64_t Index = Idx.extractBitsAsZExtValue(numBits: 8, bitPosition: 0); |
1271 | |
1272 | if (Index < BitWidth) |
1273 | Val.clearHighBits(hiBits: BitWidth - Index); |
1274 | |
1275 | pushInteger(S, Val, QT: CallType); |
1276 | return true; |
1277 | } |
1278 | |
1279 | static bool interp__builtin_ia32_lzcnt(InterpState &S, CodePtr OpPC, |
1280 | const InterpFrame *Frame, |
1281 | const CallExpr *Call) { |
1282 | QualType CallType = Call->getType(); |
1283 | if (!CallType->isIntegerType() || |
1284 | !Call->getArg(Arg: 0)->getType()->isIntegerType()) |
1285 | return false; |
1286 | |
1287 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: *S.Ctx.classify(E: Call->getArg(Arg: 0))); |
1288 | pushInteger(S, Val: Val.countLeadingZeros(), QT: CallType); |
1289 | return true; |
1290 | } |
1291 | |
1292 | static bool interp__builtin_ia32_tzcnt(InterpState &S, CodePtr OpPC, |
1293 | const InterpFrame *Frame, |
1294 | const CallExpr *Call) { |
1295 | QualType CallType = Call->getType(); |
1296 | if (!CallType->isIntegerType() || |
1297 | !Call->getArg(Arg: 0)->getType()->isIntegerType()) |
1298 | return false; |
1299 | |
1300 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: *S.Ctx.classify(E: Call->getArg(Arg: 0))); |
1301 | pushInteger(S, Val: Val.countTrailingZeros(), QT: CallType); |
1302 | return true; |
1303 | } |
1304 | |
1305 | static bool interp__builtin_ia32_pdep(InterpState &S, CodePtr OpPC, |
1306 | const InterpFrame *Frame, |
1307 | const CallExpr *Call) { |
1308 | if (Call->getNumArgs() != 2 || !Call->getArg(Arg: 0)->getType()->isIntegerType() || |
1309 | !Call->getArg(Arg: 1)->getType()->isIntegerType()) |
1310 | return false; |
1311 | |
1312 | PrimType ValT = *S.Ctx.classify(E: Call->getArg(Arg: 0)); |
1313 | PrimType MaskT = *S.Ctx.classify(E: Call->getArg(Arg: 1)); |
1314 | |
1315 | APSInt Mask = popToAPSInt(Stk&: S.Stk, T: MaskT); |
1316 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
1317 | |
1318 | unsigned BitWidth = Val.getBitWidth(); |
1319 | APInt Result = APInt::getZero(numBits: BitWidth); |
1320 | for (unsigned I = 0, P = 0; I != BitWidth; ++I) { |
1321 | if (Mask[I]) |
1322 | Result.setBitVal(BitPosition: I, BitValue: Val[P++]); |
1323 | } |
1324 | pushInteger(S, std::move(Result), Call->getType()); |
1325 | return true; |
1326 | } |
1327 | |
1328 | static bool interp__builtin_ia32_pext(InterpState &S, CodePtr OpPC, |
1329 | const InterpFrame *Frame, |
1330 | const CallExpr *Call) { |
1331 | if (Call->getNumArgs() != 2 || !Call->getArg(Arg: 0)->getType()->isIntegerType() || |
1332 | !Call->getArg(Arg: 1)->getType()->isIntegerType()) |
1333 | return false; |
1334 | |
1335 | PrimType ValT = *S.Ctx.classify(E: Call->getArg(Arg: 0)); |
1336 | PrimType MaskT = *S.Ctx.classify(E: Call->getArg(Arg: 1)); |
1337 | |
1338 | APSInt Mask = popToAPSInt(Stk&: S.Stk, T: MaskT); |
1339 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ValT); |
1340 | |
1341 | unsigned BitWidth = Val.getBitWidth(); |
1342 | APInt Result = APInt::getZero(numBits: BitWidth); |
1343 | for (unsigned I = 0, P = 0; I != BitWidth; ++I) { |
1344 | if (Mask[I]) |
1345 | Result.setBitVal(BitPosition: P++, BitValue: Val[I]); |
1346 | } |
1347 | pushInteger(S, std::move(Result), Call->getType()); |
1348 | return true; |
1349 | } |
1350 | |
1351 | /// (CarryIn, LHS, RHS, Result) |
1352 | static bool interp__builtin_ia32_addcarry_subborrow(InterpState &S, |
1353 | CodePtr OpPC, |
1354 | const InterpFrame *Frame, |
1355 | const CallExpr *Call, |
1356 | unsigned BuiltinOp) { |
1357 | if (Call->getNumArgs() != 4 || !Call->getArg(Arg: 0)->getType()->isIntegerType() || |
1358 | !Call->getArg(Arg: 1)->getType()->isIntegerType() || |
1359 | !Call->getArg(Arg: 2)->getType()->isIntegerType()) |
1360 | return false; |
1361 | |
1362 | const Pointer &CarryOutPtr = S.Stk.pop<Pointer>(); |
1363 | |
1364 | PrimType CarryInT = *S.getContext().classify(E: Call->getArg(Arg: 0)); |
1365 | PrimType LHST = *S.getContext().classify(E: Call->getArg(Arg: 1)); |
1366 | PrimType RHST = *S.getContext().classify(E: Call->getArg(Arg: 2)); |
1367 | APSInt RHS = popToAPSInt(Stk&: S.Stk, T: RHST); |
1368 | APSInt LHS = popToAPSInt(Stk&: S.Stk, T: LHST); |
1369 | APSInt CarryIn = popToAPSInt(Stk&: S.Stk, T: CarryInT); |
1370 | |
1371 | bool IsAdd = BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u32 || |
1372 | BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u64; |
1373 | |
1374 | unsigned BitWidth = LHS.getBitWidth(); |
1375 | unsigned CarryInBit = CarryIn.ugt(RHS: 0) ? 1 : 0; |
1376 | APInt ExResult = |
1377 | IsAdd ? (LHS.zext(width: BitWidth + 1) + (RHS.zext(width: BitWidth + 1) + CarryInBit)) |
1378 | : (LHS.zext(width: BitWidth + 1) - (RHS.zext(width: BitWidth + 1) + CarryInBit)); |
1379 | |
1380 | APInt Result = ExResult.extractBits(numBits: BitWidth, bitPosition: 0); |
1381 | APSInt CarryOut = |
1382 | APSInt(ExResult.extractBits(numBits: 1, bitPosition: BitWidth), /*IsUnsigned=*/true); |
1383 | |
1384 | QualType CarryOutType = Call->getArg(Arg: 3)->getType()->getPointeeType(); |
1385 | PrimType CarryOutT = *S.getContext().classify(T: CarryOutType); |
1386 | assignInteger(Dest: CarryOutPtr, ValueT: CarryOutT, Value: APSInt(Result, true)); |
1387 | |
1388 | pushInteger(S, CarryOut, Call->getType()); |
1389 | |
1390 | return true; |
1391 | } |
1392 | |
1393 | static bool interp__builtin_os_log_format_buffer_size(InterpState &S, |
1394 | CodePtr OpPC, |
1395 | const InterpFrame *Frame, |
1396 | const CallExpr *Call) { |
1397 | analyze_os_log::OSLogBufferLayout Layout; |
1398 | analyze_os_log::computeOSLogBufferLayout(Ctx&: S.getASTContext(), E: Call, layout&: Layout); |
1399 | pushInteger(S, Layout.size().getQuantity(), Call->getType()); |
1400 | return true; |
1401 | } |
1402 | |
1403 | static bool |
1404 | interp__builtin_ptrauth_string_discriminator(InterpState &S, CodePtr OpPC, |
1405 | const InterpFrame *Frame, |
1406 | const CallExpr *Call) { |
1407 | const auto &Ptr = S.Stk.pop<Pointer>(); |
1408 | assert(Ptr.getFieldDesc()->isPrimitiveArray()); |
1409 | |
1410 | // This should be created for a StringLiteral, so should alway shold at least |
1411 | // one array element. |
1412 | assert(Ptr.getFieldDesc()->getNumElems() >= 1); |
1413 | StringRef R(&Ptr.deref<char>(), Ptr.getFieldDesc()->getNumElems() - 1); |
1414 | uint64_t Result = getPointerAuthStableSipHash(S: R); |
1415 | pushInteger(S, Result, Call->getType()); |
1416 | return true; |
1417 | } |
1418 | |
1419 | static bool interp__builtin_operator_new(InterpState &S, CodePtr OpPC, |
1420 | const InterpFrame *Frame, |
1421 | const CallExpr *Call) { |
1422 | // A call to __operator_new is only valid within std::allocate<>::allocate. |
1423 | // Walk up the call stack to find the appropriate caller and get the |
1424 | // element type from it. |
1425 | auto [NewCall, ElemType] = S.getStdAllocatorCaller(Name: "allocate"); |
1426 | APSInt Bytes = popToAPSInt(Stk&: S.Stk, T: *S.getContext().classify(E: Call->getArg(Arg: 0))); |
1427 | |
1428 | if (ElemType.isNull()) { |
1429 | S.FFDiag(Call, S.getLangOpts().CPlusPlus20 |
1430 | ? diag::note_constexpr_new_untyped |
1431 | : diag::note_constexpr_new); |
1432 | return false; |
1433 | } |
1434 | assert(NewCall); |
1435 | |
1436 | if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { |
1437 | S.FFDiag(Call, diag::note_constexpr_new_not_complete_object_type) |
1438 | << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; |
1439 | return false; |
1440 | } |
1441 | |
1442 | CharUnits ElemSize = S.getASTContext().getTypeSizeInChars(T: ElemType); |
1443 | assert(!ElemSize.isZero()); |
1444 | // Divide the number of bytes by sizeof(ElemType), so we get the number of |
1445 | // elements we should allocate. |
1446 | APInt NumElems, Remainder; |
1447 | APInt ElemSizeAP(Bytes.getBitWidth(), ElemSize.getQuantity()); |
1448 | APInt::udivrem(LHS: Bytes, RHS: ElemSizeAP, Quotient&: NumElems, Remainder); |
1449 | if (Remainder != 0) { |
1450 | // This likely indicates a bug in the implementation of 'std::allocator'. |
1451 | S.FFDiag(Call, diag::note_constexpr_operator_new_bad_size) |
1452 | << Bytes << APSInt(ElemSizeAP, true) << ElemType; |
1453 | return false; |
1454 | } |
1455 | |
1456 | // NB: The same check we're using in CheckArraySize() |
1457 | if (NumElems.getActiveBits() > |
1458 | ConstantArrayType::getMaxSizeBits(Context: S.getASTContext()) || |
1459 | NumElems.ugt(RHS: Descriptor::MaxArrayElemBytes / ElemSize.getQuantity())) { |
1460 | // FIXME: NoThrow check? |
1461 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1462 | S.FFDiag(Loc, diag::note_constexpr_new_too_large) |
1463 | << NumElems.getZExtValue(); |
1464 | return false; |
1465 | } |
1466 | |
1467 | if (!CheckArraySize(S, OpPC, NumElems: NumElems.getZExtValue())) |
1468 | return false; |
1469 | |
1470 | bool IsArray = NumElems.ugt(RHS: 1); |
1471 | std::optional<PrimType> ElemT = S.getContext().classify(T: ElemType); |
1472 | DynamicAllocator &Allocator = S.getAllocator(); |
1473 | if (ElemT) { |
1474 | if (IsArray) { |
1475 | Block *B = Allocator.allocate(Source: NewCall, T: *ElemT, NumElements: NumElems.getZExtValue(), |
1476 | EvalID: S.Ctx.getEvalID(), |
1477 | AllocForm: DynamicAllocator::Form::Operator); |
1478 | assert(B); |
1479 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0)); |
1480 | return true; |
1481 | } |
1482 | |
1483 | const Descriptor *Desc = S.P.createDescriptor( |
1484 | D: NewCall, T: *ElemT, SourceTy: ElemType.getTypePtr(), MDSize: Descriptor::InlineDescMD, |
1485 | /*IsConst=*/false, /*IsTemporary=*/false, |
1486 | /*IsMutable=*/false); |
1487 | Block *B = Allocator.allocate(D: Desc, EvalID: S.getContext().getEvalID(), |
1488 | AllocForm: DynamicAllocator::Form::Operator); |
1489 | assert(B); |
1490 | |
1491 | S.Stk.push<Pointer>(Args&: B); |
1492 | return true; |
1493 | } |
1494 | |
1495 | assert(!ElemT); |
1496 | // Structs etc. |
1497 | const Descriptor *Desc = |
1498 | S.P.createDescriptor(D: NewCall, Ty: ElemType.getTypePtr(), |
1499 | MDSize: IsArray ? std::nullopt : Descriptor::InlineDescMD); |
1500 | |
1501 | if (IsArray) { |
1502 | Block *B = |
1503 | Allocator.allocate(D: Desc, NumElements: NumElems.getZExtValue(), EvalID: S.Ctx.getEvalID(), |
1504 | AllocForm: DynamicAllocator::Form::Operator); |
1505 | assert(B); |
1506 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0)); |
1507 | return true; |
1508 | } |
1509 | |
1510 | Block *B = Allocator.allocate(D: Desc, EvalID: S.getContext().getEvalID(), |
1511 | AllocForm: DynamicAllocator::Form::Operator); |
1512 | assert(B); |
1513 | S.Stk.push<Pointer>(Args&: B); |
1514 | return true; |
1515 | } |
1516 | |
1517 | static bool interp__builtin_operator_delete(InterpState &S, CodePtr OpPC, |
1518 | const InterpFrame *Frame, |
1519 | const CallExpr *Call) { |
1520 | const Expr *Source = nullptr; |
1521 | const Block *BlockToDelete = nullptr; |
1522 | |
1523 | if (S.checkingPotentialConstantExpression()) { |
1524 | S.Stk.discard<Pointer>(); |
1525 | return false; |
1526 | } |
1527 | |
1528 | // This is permitted only within a call to std::allocator<T>::deallocate. |
1529 | if (!S.getStdAllocatorCaller(Name: "deallocate")) { |
1530 | S.FFDiag(Call); |
1531 | S.Stk.discard<Pointer>(); |
1532 | return true; |
1533 | } |
1534 | |
1535 | { |
1536 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1537 | |
1538 | if (Ptr.isZero()) { |
1539 | S.CCEDiag(Call, diag::note_constexpr_deallocate_null); |
1540 | return true; |
1541 | } |
1542 | |
1543 | Source = Ptr.getDeclDesc()->asExpr(); |
1544 | BlockToDelete = Ptr.block(); |
1545 | |
1546 | if (!BlockToDelete->isDynamic()) { |
1547 | S.FFDiag(Call, diag::note_constexpr_delete_not_heap_alloc) |
1548 | << Ptr.toDiagnosticString(S.getASTContext()); |
1549 | if (const auto *D = Ptr.getFieldDesc()->asDecl()) |
1550 | S.Note(D->getLocation(), diag::note_declared_at); |
1551 | } |
1552 | } |
1553 | assert(BlockToDelete); |
1554 | |
1555 | DynamicAllocator &Allocator = S.getAllocator(); |
1556 | const Descriptor *BlockDesc = BlockToDelete->getDescriptor(); |
1557 | std::optional<DynamicAllocator::Form> AllocForm = |
1558 | Allocator.getAllocationForm(Source); |
1559 | |
1560 | if (!Allocator.deallocate(Source, BlockToDelete, S)) { |
1561 | // Nothing has been deallocated, this must be a double-delete. |
1562 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1563 | S.FFDiag(Loc, diag::note_constexpr_double_delete); |
1564 | return false; |
1565 | } |
1566 | assert(AllocForm); |
1567 | |
1568 | return CheckNewDeleteForms( |
1569 | S, OpPC, AllocForm: *AllocForm, DeleteForm: DynamicAllocator::Form::Operator, D: BlockDesc, NewExpr: Source); |
1570 | } |
1571 | |
1572 | static bool interp__builtin_arithmetic_fence(InterpState &S, CodePtr OpPC, |
1573 | const InterpFrame *Frame, |
1574 | const CallExpr *Call) { |
1575 | const Floating &Arg0 = S.Stk.pop<Floating>(); |
1576 | S.Stk.push<Floating>(Args: Arg0); |
1577 | return true; |
1578 | } |
1579 | |
1580 | static bool interp__builtin_vector_reduce(InterpState &S, CodePtr OpPC, |
1581 | const CallExpr *Call, unsigned ID) { |
1582 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
1583 | assert(Arg.getFieldDesc()->isPrimitiveArray()); |
1584 | |
1585 | QualType ElemType = Arg.getFieldDesc()->getElemQualType(); |
1586 | assert(Call->getType() == ElemType); |
1587 | PrimType ElemT = *S.getContext().classify(T: ElemType); |
1588 | unsigned NumElems = Arg.getNumElems(); |
1589 | |
1590 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
1591 | T Result = Arg.atIndex(0).deref<T>(); |
1592 | unsigned BitWidth = Result.bitWidth(); |
1593 | for (unsigned I = 1; I != NumElems; ++I) { |
1594 | T Elem = Arg.atIndex(I).deref<T>(); |
1595 | T PrevResult = Result; |
1596 | |
1597 | if (ID == Builtin::BI__builtin_reduce_add) { |
1598 | if (T::add(Result, Elem, BitWidth, &Result)) { |
1599 | unsigned OverflowBits = BitWidth + 1; |
1600 | (void)handleOverflow(S, OpPC, |
1601 | (PrevResult.toAPSInt(OverflowBits) + |
1602 | Elem.toAPSInt(OverflowBits))); |
1603 | return false; |
1604 | } |
1605 | } else if (ID == Builtin::BI__builtin_reduce_mul) { |
1606 | if (T::mul(Result, Elem, BitWidth, &Result)) { |
1607 | unsigned OverflowBits = BitWidth * 2; |
1608 | (void)handleOverflow(S, OpPC, |
1609 | (PrevResult.toAPSInt(OverflowBits) * |
1610 | Elem.toAPSInt(OverflowBits))); |
1611 | return false; |
1612 | } |
1613 | |
1614 | } else if (ID == Builtin::BI__builtin_reduce_and) { |
1615 | (void)T::bitAnd(Result, Elem, BitWidth, &Result); |
1616 | } else if (ID == Builtin::BI__builtin_reduce_or) { |
1617 | (void)T::bitOr(Result, Elem, BitWidth, &Result); |
1618 | } else if (ID == Builtin::BI__builtin_reduce_xor) { |
1619 | (void)T::bitXor(Result, Elem, BitWidth, &Result); |
1620 | } else { |
1621 | llvm_unreachable("Unhandled vector reduce builtin"); |
1622 | } |
1623 | } |
1624 | pushInteger(S, Result.toAPSInt(), Call->getType()); |
1625 | }); |
1626 | |
1627 | return true; |
1628 | } |
1629 | |
1630 | /// Can be called with an integer or vector as the first and only parameter. |
1631 | static bool interp__builtin_elementwise_popcount(InterpState &S, CodePtr OpPC, |
1632 | const InterpFrame *Frame, |
1633 | const CallExpr *Call) { |
1634 | assert(Call->getNumArgs() == 1); |
1635 | if (Call->getArg(Arg: 0)->getType()->isIntegerType()) { |
1636 | PrimType ArgT = *S.getContext().classify(T: Call->getArg(Arg: 0)->getType()); |
1637 | APSInt Val = popToAPSInt(Stk&: S.Stk, T: ArgT); |
1638 | pushInteger(S, Val.popcount(), Call->getType()); |
1639 | return true; |
1640 | } |
1641 | // Otherwise, the argument must be a vector. |
1642 | assert(Call->getArg(0)->getType()->isVectorType()); |
1643 | const Pointer &Arg = S.Stk.pop<Pointer>(); |
1644 | assert(Arg.getFieldDesc()->isPrimitiveArray()); |
1645 | const Pointer &Dst = S.Stk.peek<Pointer>(); |
1646 | assert(Dst.getFieldDesc()->isPrimitiveArray()); |
1647 | assert(Arg.getFieldDesc()->getNumElems() == |
1648 | Dst.getFieldDesc()->getNumElems()); |
1649 | |
1650 | QualType ElemType = Arg.getFieldDesc()->getElemQualType(); |
1651 | PrimType ElemT = *S.getContext().classify(T: ElemType); |
1652 | unsigned NumElems = Arg.getNumElems(); |
1653 | |
1654 | // FIXME: Reading from uninitialized vector elements? |
1655 | for (unsigned I = 0; I != NumElems; ++I) { |
1656 | INT_TYPE_SWITCH_NO_BOOL(ElemT, { |
1657 | Dst.atIndex(I).deref<T>() = |
1658 | T::from(Arg.atIndex(I).deref<T>().toAPSInt().popcount()); |
1659 | Dst.atIndex(I).initialize(); |
1660 | }); |
1661 | } |
1662 | |
1663 | return true; |
1664 | } |
1665 | |
1666 | static bool interp__builtin_memcpy(InterpState &S, CodePtr OpPC, |
1667 | const InterpFrame *Frame, |
1668 | const CallExpr *Call, unsigned ID) { |
1669 | assert(Call->getNumArgs() == 3); |
1670 | const ASTContext &ASTCtx = S.getASTContext(); |
1671 | PrimType SizeT = *S.getContext().classify(E: Call->getArg(Arg: 2)); |
1672 | APSInt Size = popToAPSInt(Stk&: S.Stk, T: SizeT); |
1673 | const Pointer SrcPtr = S.Stk.pop<Pointer>(); |
1674 | const Pointer DestPtr = S.Stk.pop<Pointer>(); |
1675 | |
1676 | assert(!Size.isSigned() && "memcpy and friends take an unsigned size"); |
1677 | |
1678 | if (ID == Builtin::BImemcpy || ID == Builtin::BImemmove) |
1679 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
1680 | |
1681 | bool Move = |
1682 | (ID == Builtin::BI__builtin_memmove || ID == Builtin::BImemmove || |
1683 | ID == Builtin::BI__builtin_wmemmove || ID == Builtin::BIwmemmove); |
1684 | bool WChar = ID == Builtin::BIwmemcpy || ID == Builtin::BIwmemmove || |
1685 | ID == Builtin::BI__builtin_wmemcpy || |
1686 | ID == Builtin::BI__builtin_wmemmove; |
1687 | |
1688 | // If the size is zero, we treat this as always being a valid no-op. |
1689 | if (Size.isZero()) { |
1690 | S.Stk.push<Pointer>(Args: DestPtr); |
1691 | return true; |
1692 | } |
1693 | |
1694 | if (SrcPtr.isZero() || DestPtr.isZero()) { |
1695 | Pointer DiagPtr = (SrcPtr.isZero() ? SrcPtr : DestPtr); |
1696 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_memcpy_null) |
1697 | << /*IsMove=*/Move << /*IsWchar=*/WChar << !SrcPtr.isZero() |
1698 | << DiagPtr.toDiagnosticString(ASTCtx); |
1699 | return false; |
1700 | } |
1701 | |
1702 | // Diagnose integral src/dest pointers specially. |
1703 | if (SrcPtr.isIntegralPointer() || DestPtr.isIntegralPointer()) { |
1704 | std::string DiagVal = "(void *)"; |
1705 | DiagVal += SrcPtr.isIntegralPointer() |
1706 | ? std::to_string(val: SrcPtr.getIntegerRepresentation()) |
1707 | : std::to_string(val: DestPtr.getIntegerRepresentation()); |
1708 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_memcpy_null) |
1709 | << Move << WChar << DestPtr.isIntegralPointer() << DiagVal; |
1710 | return false; |
1711 | } |
1712 | |
1713 | // Can't read from dummy pointers. |
1714 | if (DestPtr.isDummy() || SrcPtr.isDummy()) |
1715 | return false; |
1716 | |
1717 | QualType DestElemType = getElemType(P: DestPtr); |
1718 | size_t RemainingDestElems; |
1719 | if (DestPtr.getFieldDesc()->isArray()) { |
1720 | RemainingDestElems = DestPtr.isUnknownSizeArray() |
1721 | ? 0 |
1722 | : (DestPtr.getNumElems() - DestPtr.getIndex()); |
1723 | } else { |
1724 | RemainingDestElems = 1; |
1725 | } |
1726 | unsigned DestElemSize = ASTCtx.getTypeSizeInChars(T: DestElemType).getQuantity(); |
1727 | |
1728 | if (WChar) { |
1729 | uint64_t WCharSize = |
1730 | ASTCtx.getTypeSizeInChars(T: ASTCtx.getWCharType()).getQuantity(); |
1731 | Size *= APSInt(APInt(Size.getBitWidth(), WCharSize, /*IsSigned=*/false), |
1732 | /*IsUnsigend=*/true); |
1733 | } |
1734 | |
1735 | if (Size.urem(RHS: DestElemSize) != 0) { |
1736 | S.FFDiag(S.Current->getSource(OpPC), |
1737 | diag::note_constexpr_memcpy_unsupported) |
1738 | << Move << WChar << 0 << DestElemType << Size << DestElemSize; |
1739 | return false; |
1740 | } |
1741 | |
1742 | QualType SrcElemType = getElemType(P: SrcPtr); |
1743 | size_t RemainingSrcElems; |
1744 | if (SrcPtr.getFieldDesc()->isArray()) { |
1745 | RemainingSrcElems = SrcPtr.isUnknownSizeArray() |
1746 | ? 0 |
1747 | : (SrcPtr.getNumElems() - SrcPtr.getIndex()); |
1748 | } else { |
1749 | RemainingSrcElems = 1; |
1750 | } |
1751 | unsigned SrcElemSize = ASTCtx.getTypeSizeInChars(T: SrcElemType).getQuantity(); |
1752 | |
1753 | if (!ASTCtx.hasSameUnqualifiedType(T1: DestElemType, T2: SrcElemType)) { |
1754 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_memcpy_type_pun) |
1755 | << Move << SrcElemType << DestElemType; |
1756 | return false; |
1757 | } |
1758 | |
1759 | if (DestElemType->isIncompleteType() || |
1760 | DestPtr.getType()->isIncompleteType()) { |
1761 | QualType DiagType = |
1762 | DestElemType->isIncompleteType() ? DestElemType : DestPtr.getType(); |
1763 | S.FFDiag(S.Current->getSource(OpPC), |
1764 | diag::note_constexpr_memcpy_incomplete_type) |
1765 | << Move << DiagType; |
1766 | return false; |
1767 | } |
1768 | |
1769 | if (!DestElemType.isTriviallyCopyableType(Context: ASTCtx)) { |
1770 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_memcpy_nontrivial) |
1771 | << Move << DestElemType; |
1772 | return false; |
1773 | } |
1774 | |
1775 | // Check if we have enough elements to read from and write to. |
1776 | size_t RemainingDestBytes = RemainingDestElems * DestElemSize; |
1777 | size_t RemainingSrcBytes = RemainingSrcElems * SrcElemSize; |
1778 | if (Size.ugt(RHS: RemainingDestBytes) || Size.ugt(RHS: RemainingSrcBytes)) { |
1779 | APInt N = Size.udiv(RHS: DestElemSize); |
1780 | S.FFDiag(S.Current->getSource(OpPC), |
1781 | diag::note_constexpr_memcpy_unsupported) |
1782 | << Move << WChar << (Size.ugt(RemainingSrcBytes) ? 1 : 2) |
1783 | << DestElemType << toString(N, 10, /*Signed=*/false); |
1784 | return false; |
1785 | } |
1786 | |
1787 | // Check for overlapping memory regions. |
1788 | if (!Move && Pointer::pointToSameBlock(A: SrcPtr, B: DestPtr)) { |
1789 | // Remove base casts. |
1790 | Pointer SrcP = SrcPtr; |
1791 | while (SrcP.isBaseClass()) |
1792 | SrcP = SrcP.getBase(); |
1793 | |
1794 | Pointer DestP = DestPtr; |
1795 | while (DestP.isBaseClass()) |
1796 | DestP = DestP.getBase(); |
1797 | |
1798 | unsigned SrcIndex = SrcP.expand().getIndex() * SrcP.elemSize(); |
1799 | unsigned DstIndex = DestP.expand().getIndex() * DestP.elemSize(); |
1800 | unsigned N = Size.getZExtValue(); |
1801 | |
1802 | if ((SrcIndex <= DstIndex && (SrcIndex + N) > DstIndex) || |
1803 | (DstIndex <= SrcIndex && (DstIndex + N) > SrcIndex)) { |
1804 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_memcpy_overlap) |
1805 | << /*IsWChar=*/false; |
1806 | return false; |
1807 | } |
1808 | } |
1809 | |
1810 | assert(Size.getZExtValue() % DestElemSize == 0); |
1811 | if (!DoMemcpy(S, OpPC, SrcPtr, DestPtr, Size: Bytes(Size.getZExtValue()).toBits())) |
1812 | return false; |
1813 | |
1814 | S.Stk.push<Pointer>(Args: DestPtr); |
1815 | return true; |
1816 | } |
1817 | |
1818 | /// Determine if T is a character type for which we guarantee that |
1819 | /// sizeof(T) == 1. |
1820 | static bool isOneByteCharacterType(QualType T) { |
1821 | return T->isCharType() || T->isChar8Type(); |
1822 | } |
1823 | |
1824 | static bool interp__builtin_memcmp(InterpState &S, CodePtr OpPC, |
1825 | const InterpFrame *Frame, |
1826 | const CallExpr *Call, unsigned ID) { |
1827 | assert(Call->getNumArgs() == 3); |
1828 | PrimType SizeT = *S.getContext().classify(E: Call->getArg(Arg: 2)); |
1829 | const APSInt &Size = popToAPSInt(Stk&: S.Stk, T: SizeT); |
1830 | const Pointer &PtrB = S.Stk.pop<Pointer>(); |
1831 | const Pointer &PtrA = S.Stk.pop<Pointer>(); |
1832 | |
1833 | if (ID == Builtin::BImemcmp || ID == Builtin::BIbcmp || |
1834 | ID == Builtin::BIwmemcmp) |
1835 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
1836 | |
1837 | if (Size.isZero()) { |
1838 | pushInteger(S, 0, Call->getType()); |
1839 | return true; |
1840 | } |
1841 | |
1842 | bool IsWide = |
1843 | (ID == Builtin::BIwmemcmp || ID == Builtin::BI__builtin_wmemcmp); |
1844 | |
1845 | const ASTContext &ASTCtx = S.getASTContext(); |
1846 | QualType ElemTypeA = getElemType(P: PtrA); |
1847 | QualType ElemTypeB = getElemType(P: PtrB); |
1848 | // FIXME: This is an arbitrary limitation the current constant interpreter |
1849 | // had. We could remove this. |
1850 | if (!IsWide && (!isOneByteCharacterType(T: ElemTypeA) || |
1851 | !isOneByteCharacterType(T: ElemTypeB))) { |
1852 | S.FFDiag(S.Current->getSource(OpPC), |
1853 | diag::note_constexpr_memcmp_unsupported) |
1854 | << ASTCtx.BuiltinInfo.getQuotedName(ID) << PtrA.getType() |
1855 | << PtrB.getType(); |
1856 | return false; |
1857 | } |
1858 | |
1859 | if (PtrA.isDummy() || PtrB.isDummy()) |
1860 | return false; |
1861 | |
1862 | // Now, read both pointers to a buffer and compare those. |
1863 | BitcastBuffer BufferA( |
1864 | Bits(ASTCtx.getTypeSize(T: ElemTypeA) * PtrA.getNumElems())); |
1865 | readPointerToBuffer(Ctx: S.getContext(), FromPtr: PtrA, Buffer&: BufferA, ReturnOnUninit: false); |
1866 | // FIXME: The swapping here is UNDOING something we do when reading the |
1867 | // data into the buffer. |
1868 | if (ASTCtx.getTargetInfo().isBigEndian()) |
1869 | swapBytes(M: BufferA.Data.get(), N: BufferA.byteSize().getQuantity()); |
1870 | |
1871 | BitcastBuffer BufferB( |
1872 | Bits(ASTCtx.getTypeSize(T: ElemTypeB) * PtrB.getNumElems())); |
1873 | readPointerToBuffer(Ctx: S.getContext(), FromPtr: PtrB, Buffer&: BufferB, ReturnOnUninit: false); |
1874 | // FIXME: The swapping here is UNDOING something we do when reading the |
1875 | // data into the buffer. |
1876 | if (ASTCtx.getTargetInfo().isBigEndian()) |
1877 | swapBytes(M: BufferB.Data.get(), N: BufferB.byteSize().getQuantity()); |
1878 | |
1879 | size_t MinBufferSize = std::min(a: BufferA.byteSize().getQuantity(), |
1880 | b: BufferB.byteSize().getQuantity()); |
1881 | |
1882 | unsigned ElemSize = 1; |
1883 | if (IsWide) |
1884 | ElemSize = ASTCtx.getTypeSizeInChars(T: ASTCtx.getWCharType()).getQuantity(); |
1885 | // The Size given for the wide variants is in wide-char units. Convert it |
1886 | // to bytes. |
1887 | size_t ByteSize = Size.getZExtValue() * ElemSize; |
1888 | size_t CmpSize = std::min(a: MinBufferSize, b: ByteSize); |
1889 | |
1890 | for (size_t I = 0; I != CmpSize; I += ElemSize) { |
1891 | if (IsWide) { |
1892 | INT_TYPE_SWITCH(*S.getContext().classify(ASTCtx.getWCharType()), { |
1893 | T A = *reinterpret_cast<T *>(BufferA.Data.get() + I); |
1894 | T B = *reinterpret_cast<T *>(BufferB.Data.get() + I); |
1895 | if (A < B) { |
1896 | pushInteger(S, -1, Call->getType()); |
1897 | return true; |
1898 | } else if (A > B) { |
1899 | pushInteger(S, 1, Call->getType()); |
1900 | return true; |
1901 | } |
1902 | }); |
1903 | } else { |
1904 | std::byte A = BufferA.Data[I]; |
1905 | std::byte B = BufferB.Data[I]; |
1906 | |
1907 | if (A < B) { |
1908 | pushInteger(S, -1, Call->getType()); |
1909 | return true; |
1910 | } else if (A > B) { |
1911 | pushInteger(S, 1, Call->getType()); |
1912 | return true; |
1913 | } |
1914 | } |
1915 | } |
1916 | |
1917 | // We compared CmpSize bytes above. If the limiting factor was the Size |
1918 | // passed, we're done and the result is equality (0). |
1919 | if (ByteSize <= CmpSize) { |
1920 | pushInteger(S, 0, Call->getType()); |
1921 | return true; |
1922 | } |
1923 | |
1924 | // However, if we read all the available bytes but were instructed to read |
1925 | // even more, diagnose this as a "read of dereferenced one-past-the-end |
1926 | // pointer". This is what would happen if we called CheckLoad() on every array |
1927 | // element. |
1928 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_access_past_end) |
1929 | << AK_Read << S.Current->getRange(OpPC); |
1930 | return false; |
1931 | } |
1932 | |
1933 | // __builtin_memchr(ptr, int, int) |
1934 | // __builtin_strchr(ptr, int) |
1935 | static bool interp__builtin_memchr(InterpState &S, CodePtr OpPC, |
1936 | const CallExpr *Call, unsigned ID) { |
1937 | if (ID == Builtin::BImemchr || ID == Builtin::BIwcschr || |
1938 | ID == Builtin::BIstrchr || ID == Builtin::BIwmemchr) |
1939 | diagnoseNonConstexprBuiltin(S, OpPC, ID); |
1940 | |
1941 | std::optional<APSInt> MaxLength; |
1942 | PrimType DesiredT = *S.getContext().classify(E: Call->getArg(Arg: 1)); |
1943 | if (Call->getNumArgs() == 3) { |
1944 | PrimType MaxT = *S.getContext().classify(E: Call->getArg(Arg: 2)); |
1945 | MaxLength = popToAPSInt(Stk&: S.Stk, T: MaxT); |
1946 | } |
1947 | APSInt Desired = popToAPSInt(Stk&: S.Stk, T: DesiredT); |
1948 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1949 | |
1950 | if (MaxLength && MaxLength->isZero()) { |
1951 | S.Stk.push<Pointer>(); |
1952 | return true; |
1953 | } |
1954 | |
1955 | if (Ptr.isDummy()) |
1956 | return false; |
1957 | |
1958 | // Null is only okay if the given size is 0. |
1959 | if (Ptr.isZero()) { |
1960 | S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_access_null) |
1961 | << AK_Read; |
1962 | return false; |
1963 | } |
1964 | |
1965 | QualType ElemTy = Ptr.getFieldDesc()->isArray() |
1966 | ? Ptr.getFieldDesc()->getElemQualType() |
1967 | : Ptr.getFieldDesc()->getType(); |
1968 | bool IsRawByte = ID == Builtin::BImemchr || ID == Builtin::BI__builtin_memchr; |
1969 | |
1970 | // Give up on byte-oriented matching against multibyte elements. |
1971 | if (IsRawByte && !isOneByteCharacterType(T: ElemTy)) { |
1972 | S.FFDiag(S.Current->getSource(OpPC), |
1973 | diag::note_constexpr_memchr_unsupported) |
1974 | << S.getASTContext().BuiltinInfo.getQuotedName(ID) << ElemTy; |
1975 | return false; |
1976 | } |
1977 | |
1978 | if (ID == Builtin::BIstrchr || ID == Builtin::BI__builtin_strchr) { |
1979 | // strchr compares directly to the passed integer, and therefore |
1980 | // always fails if given an int that is not a char. |
1981 | if (Desired != |
1982 | Desired.trunc(width: S.getASTContext().getCharWidth()).getSExtValue()) { |
1983 | S.Stk.push<Pointer>(); |
1984 | return true; |
1985 | } |
1986 | } |
1987 | |
1988 | uint64_t DesiredVal; |
1989 | if (ID == Builtin::BIwmemchr || ID == Builtin::BI__builtin_wmemchr || |
1990 | ID == Builtin::BIwcschr || ID == Builtin::BI__builtin_wcschr) { |
1991 | // wcschr and wmemchr are given a wchar_t to look for. Just use it. |
1992 | DesiredVal = Desired.getZExtValue(); |
1993 | } else { |
1994 | DesiredVal = Desired.trunc(width: S.getASTContext().getCharWidth()).getZExtValue(); |
1995 | } |
1996 | |
1997 | bool StopAtZero = |
1998 | (ID == Builtin::BIstrchr || ID == Builtin::BI__builtin_strchr || |
1999 | ID == Builtin::BIwcschr || ID == Builtin::BI__builtin_wcschr); |
2000 | |
2001 | PrimType ElemT = |
2002 | IsRawByte ? PT_Sint8 : *S.getContext().classify(T: getElemType(P: Ptr)); |
2003 | |
2004 | size_t Index = Ptr.getIndex(); |
2005 | size_t Step = 0; |
2006 | for (;;) { |
2007 | const Pointer &ElemPtr = |
2008 | (Index + Step) > 0 ? Ptr.atIndex(Idx: Index + Step) : Ptr; |
2009 | |
2010 | if (!CheckLoad(S, OpPC, Ptr: ElemPtr)) |
2011 | return false; |
2012 | |
2013 | uint64_t V; |
2014 | INT_TYPE_SWITCH_NO_BOOL( |
2015 | ElemT, { V = static_cast<uint64_t>(ElemPtr.deref<T>().toUnsigned()); }); |
2016 | |
2017 | if (V == DesiredVal) { |
2018 | S.Stk.push<Pointer>(Args: ElemPtr); |
2019 | return true; |
2020 | } |
2021 | |
2022 | if (StopAtZero && V == 0) |
2023 | break; |
2024 | |
2025 | ++Step; |
2026 | if (MaxLength && Step == MaxLength->getZExtValue()) |
2027 | break; |
2028 | } |
2029 | |
2030 | S.Stk.push<Pointer>(); |
2031 | return true; |
2032 | } |
2033 | |
2034 | static unsigned computeFullDescSize(const ASTContext &ASTCtx, |
2035 | const Descriptor *Desc) { |
2036 | |
2037 | if (Desc->isPrimitive()) |
2038 | return ASTCtx.getTypeSizeInChars(T: Desc->getType()).getQuantity(); |
2039 | |
2040 | if (Desc->isArray()) |
2041 | return ASTCtx.getTypeSizeInChars(T: Desc->getElemQualType()).getQuantity() * |
2042 | Desc->getNumElems(); |
2043 | |
2044 | if (Desc->isRecord()) |
2045 | return ASTCtx.getTypeSizeInChars(T: Desc->getType()).getQuantity(); |
2046 | |
2047 | llvm_unreachable("Unhandled descriptor type"); |
2048 | return 0; |
2049 | } |
2050 | |
2051 | static unsigned computePointerOffset(const ASTContext &ASTCtx, |
2052 | const Pointer &Ptr) { |
2053 | unsigned Result = 0; |
2054 | |
2055 | Pointer P = Ptr; |
2056 | while (P.isArrayElement() || P.isField()) { |
2057 | P = P.expand(); |
2058 | const Descriptor *D = P.getFieldDesc(); |
2059 | |
2060 | if (P.isArrayElement()) { |
2061 | unsigned ElemSize = |
2062 | ASTCtx.getTypeSizeInChars(T: D->getElemQualType()).getQuantity(); |
2063 | if (P.isOnePastEnd()) |
2064 | Result += ElemSize * P.getNumElems(); |
2065 | else |
2066 | Result += ElemSize * P.getIndex(); |
2067 | P = P.expand().getArray(); |
2068 | } else if (P.isBaseClass()) { |
2069 | |
2070 | const auto *RD = cast<CXXRecordDecl>(Val: D->asDecl()); |
2071 | bool IsVirtual = Ptr.isVirtualBaseClass(); |
2072 | P = P.getBase(); |
2073 | const Record *BaseRecord = P.getRecord(); |
2074 | |
2075 | const ASTRecordLayout &Layout = |
2076 | ASTCtx.getASTRecordLayout(cast<CXXRecordDecl>(Val: BaseRecord->getDecl())); |
2077 | if (IsVirtual) |
2078 | Result += Layout.getVBaseClassOffset(VBase: RD).getQuantity(); |
2079 | else |
2080 | Result += Layout.getBaseClassOffset(Base: RD).getQuantity(); |
2081 | } else if (P.isField()) { |
2082 | const FieldDecl *FD = P.getField(); |
2083 | const ASTRecordLayout &Layout = |
2084 | ASTCtx.getASTRecordLayout(D: FD->getParent()); |
2085 | unsigned FieldIndex = FD->getFieldIndex(); |
2086 | uint64_t FieldOffset = |
2087 | ASTCtx.toCharUnitsFromBits(BitSize: Layout.getFieldOffset(FieldNo: FieldIndex)) |
2088 | .getQuantity(); |
2089 | Result += FieldOffset; |
2090 | P = P.getBase(); |
2091 | } else |
2092 | llvm_unreachable("Unhandled descriptor type"); |
2093 | } |
2094 | |
2095 | return Result; |
2096 | } |
2097 | |
2098 | static bool interp__builtin_object_size(InterpState &S, CodePtr OpPC, |
2099 | const InterpFrame *Frame, |
2100 | const CallExpr *Call) { |
2101 | PrimType KindT = *S.getContext().classify(E: Call->getArg(Arg: 1)); |
2102 | [[maybe_unused]] unsigned Kind = popToAPSInt(Stk&: S.Stk, T: KindT).getZExtValue(); |
2103 | |
2104 | assert(Kind <= 3 && "unexpected kind"); |
2105 | |
2106 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2107 | |
2108 | if (Ptr.isZero()) |
2109 | return false; |
2110 | |
2111 | const Descriptor *DeclDesc = Ptr.getDeclDesc(); |
2112 | if (!DeclDesc) |
2113 | return false; |
2114 | |
2115 | const ASTContext &ASTCtx = S.getASTContext(); |
2116 | |
2117 | unsigned ByteOffset = computePointerOffset(ASTCtx, Ptr); |
2118 | unsigned FullSize = computeFullDescSize(ASTCtx, Desc: DeclDesc); |
2119 | |
2120 | pushInteger(S, FullSize - ByteOffset, Call->getType()); |
2121 | |
2122 | return true; |
2123 | } |
2124 | |
2125 | static bool interp__builtin_is_within_lifetime(InterpState &S, CodePtr OpPC, |
2126 | const CallExpr *Call) { |
2127 | |
2128 | if (!S.inConstantContext()) |
2129 | return false; |
2130 | |
2131 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2132 | |
2133 | auto Error = [&](int Diag) { |
2134 | bool CalledFromStd = false; |
2135 | const auto *Callee = S.Current->getCallee(); |
2136 | if (Callee && Callee->isInStdNamespace()) { |
2137 | const IdentifierInfo *Identifier = Callee->getIdentifier(); |
2138 | CalledFromStd = Identifier && Identifier->isStr(Str: "is_within_lifetime"); |
2139 | } |
2140 | S.CCEDiag(CalledFromStd |
2141 | ? S.Current->Caller->getSource(S.Current->getRetPC()) |
2142 | : S.Current->getSource(OpPC), |
2143 | diag::err_invalid_is_within_lifetime) |
2144 | << (CalledFromStd ? "std::is_within_lifetime" |
2145 | : "__builtin_is_within_lifetime") |
2146 | << Diag; |
2147 | return false; |
2148 | }; |
2149 | |
2150 | if (Ptr.isZero()) |
2151 | return Error(0); |
2152 | if (Ptr.isOnePastEnd()) |
2153 | return Error(1); |
2154 | |
2155 | bool Result = true; |
2156 | if (!Ptr.isActive()) { |
2157 | Result = false; |
2158 | } else { |
2159 | if (!CheckLive(S, OpPC, Ptr, AK: AK_Read)) |
2160 | return false; |
2161 | if (!CheckMutable(S, OpPC, Ptr)) |
2162 | return false; |
2163 | } |
2164 | |
2165 | pushInteger(S, Result, Call->getType()); |
2166 | return true; |
2167 | } |
2168 | |
2169 | bool InterpretBuiltin(InterpState &S, CodePtr OpPC, const CallExpr *Call, |
2170 | uint32_t BuiltinID) { |
2171 | if (!S.getASTContext().BuiltinInfo.isConstantEvaluated(ID: BuiltinID)) |
2172 | return Invalid(S, OpPC); |
2173 | |
2174 | const InterpFrame *Frame = S.Current; |
2175 | switch (BuiltinID) { |
2176 | case Builtin::BI__builtin_is_constant_evaluated: |
2177 | return interp__builtin_is_constant_evaluated(S, OpPC, Frame, Call); |
2178 | |
2179 | case Builtin::BI__builtin_assume: |
2180 | case Builtin::BI__assume: |
2181 | return interp__builtin_assume(S, OpPC, Frame, Call); |
2182 | |
2183 | case Builtin::BI__builtin_strcmp: |
2184 | case Builtin::BIstrcmp: |
2185 | case Builtin::BI__builtin_strncmp: |
2186 | case Builtin::BIstrncmp: |
2187 | case Builtin::BI__builtin_wcsncmp: |
2188 | case Builtin::BIwcsncmp: |
2189 | case Builtin::BI__builtin_wcscmp: |
2190 | case Builtin::BIwcscmp: |
2191 | return interp__builtin_strcmp(S, OpPC, Frame, Call, ID: BuiltinID); |
2192 | |
2193 | case Builtin::BI__builtin_strlen: |
2194 | case Builtin::BIstrlen: |
2195 | case Builtin::BI__builtin_wcslen: |
2196 | case Builtin::BIwcslen: |
2197 | return interp__builtin_strlen(S, OpPC, Frame, Call, ID: BuiltinID); |
2198 | |
2199 | case Builtin::BI__builtin_nan: |
2200 | case Builtin::BI__builtin_nanf: |
2201 | case Builtin::BI__builtin_nanl: |
2202 | case Builtin::BI__builtin_nanf16: |
2203 | case Builtin::BI__builtin_nanf128: |
2204 | return interp__builtin_nan(S, OpPC, Frame, Call, /*Signaling=*/false); |
2205 | |
2206 | case Builtin::BI__builtin_nans: |
2207 | case Builtin::BI__builtin_nansf: |
2208 | case Builtin::BI__builtin_nansl: |
2209 | case Builtin::BI__builtin_nansf16: |
2210 | case Builtin::BI__builtin_nansf128: |
2211 | return interp__builtin_nan(S, OpPC, Frame, Call, /*Signaling=*/true); |
2212 | |
2213 | case Builtin::BI__builtin_huge_val: |
2214 | case Builtin::BI__builtin_huge_valf: |
2215 | case Builtin::BI__builtin_huge_vall: |
2216 | case Builtin::BI__builtin_huge_valf16: |
2217 | case Builtin::BI__builtin_huge_valf128: |
2218 | case Builtin::BI__builtin_inf: |
2219 | case Builtin::BI__builtin_inff: |
2220 | case Builtin::BI__builtin_infl: |
2221 | case Builtin::BI__builtin_inff16: |
2222 | case Builtin::BI__builtin_inff128: |
2223 | return interp__builtin_inf(S, OpPC, Frame, Call); |
2224 | |
2225 | case Builtin::BI__builtin_copysign: |
2226 | case Builtin::BI__builtin_copysignf: |
2227 | case Builtin::BI__builtin_copysignl: |
2228 | case Builtin::BI__builtin_copysignf128: |
2229 | return interp__builtin_copysign(S, OpPC, Frame); |
2230 | |
2231 | case Builtin::BI__builtin_fmin: |
2232 | case Builtin::BI__builtin_fminf: |
2233 | case Builtin::BI__builtin_fminl: |
2234 | case Builtin::BI__builtin_fminf16: |
2235 | case Builtin::BI__builtin_fminf128: |
2236 | return interp__builtin_fmin(S, OpPC, Frame, /*IsNumBuiltin=*/false); |
2237 | |
2238 | case Builtin::BI__builtin_fminimum_num: |
2239 | case Builtin::BI__builtin_fminimum_numf: |
2240 | case Builtin::BI__builtin_fminimum_numl: |
2241 | case Builtin::BI__builtin_fminimum_numf16: |
2242 | case Builtin::BI__builtin_fminimum_numf128: |
2243 | return interp__builtin_fmin(S, OpPC, Frame, /*IsNumBuiltin=*/true); |
2244 | |
2245 | case Builtin::BI__builtin_fmax: |
2246 | case Builtin::BI__builtin_fmaxf: |
2247 | case Builtin::BI__builtin_fmaxl: |
2248 | case Builtin::BI__builtin_fmaxf16: |
2249 | case Builtin::BI__builtin_fmaxf128: |
2250 | return interp__builtin_fmax(S, OpPC, Frame, /*IsNumBuiltin=*/false); |
2251 | |
2252 | case Builtin::BI__builtin_fmaximum_num: |
2253 | case Builtin::BI__builtin_fmaximum_numf: |
2254 | case Builtin::BI__builtin_fmaximum_numl: |
2255 | case Builtin::BI__builtin_fmaximum_numf16: |
2256 | case Builtin::BI__builtin_fmaximum_numf128: |
2257 | return interp__builtin_fmax(S, OpPC, Frame, /*IsNumBuiltin=*/true); |
2258 | |
2259 | case Builtin::BI__builtin_isnan: |
2260 | return interp__builtin_isnan(S, OpPC, Frame, Call); |
2261 | |
2262 | case Builtin::BI__builtin_issignaling: |
2263 | return interp__builtin_issignaling(S, OpPC, Frame, Call); |
2264 | |
2265 | case Builtin::BI__builtin_isinf: |
2266 | return interp__builtin_isinf(S, OpPC, Frame, /*Sign=*/CheckSign: false, Call); |
2267 | |
2268 | case Builtin::BI__builtin_isinf_sign: |
2269 | return interp__builtin_isinf(S, OpPC, Frame, /*Sign=*/CheckSign: true, Call); |
2270 | |
2271 | case Builtin::BI__builtin_isfinite: |
2272 | return interp__builtin_isfinite(S, OpPC, Frame, Call); |
2273 | |
2274 | case Builtin::BI__builtin_isnormal: |
2275 | return interp__builtin_isnormal(S, OpPC, Frame, Call); |
2276 | |
2277 | case Builtin::BI__builtin_issubnormal: |
2278 | return interp__builtin_issubnormal(S, OpPC, Frame, Call); |
2279 | |
2280 | case Builtin::BI__builtin_iszero: |
2281 | return interp__builtin_iszero(S, OpPC, Frame, Call); |
2282 | |
2283 | case Builtin::BI__builtin_signbit: |
2284 | case Builtin::BI__builtin_signbitf: |
2285 | case Builtin::BI__builtin_signbitl: |
2286 | return interp__builtin_signbit(S, OpPC, Frame, Call); |
2287 | |
2288 | case Builtin::BI__builtin_isgreater: |
2289 | case Builtin::BI__builtin_isgreaterequal: |
2290 | case Builtin::BI__builtin_isless: |
2291 | case Builtin::BI__builtin_islessequal: |
2292 | case Builtin::BI__builtin_islessgreater: |
2293 | case Builtin::BI__builtin_isunordered: |
2294 | return interp_floating_comparison(S, OpPC, Call, ID: BuiltinID); |
2295 | |
2296 | case Builtin::BI__builtin_isfpclass: |
2297 | return interp__builtin_isfpclass(S, OpPC, Frame, Call); |
2298 | |
2299 | case Builtin::BI__builtin_fpclassify: |
2300 | return interp__builtin_fpclassify(S, OpPC, Frame, Call); |
2301 | |
2302 | case Builtin::BI__builtin_fabs: |
2303 | case Builtin::BI__builtin_fabsf: |
2304 | case Builtin::BI__builtin_fabsl: |
2305 | case Builtin::BI__builtin_fabsf128: |
2306 | return interp__builtin_fabs(S, OpPC, Frame); |
2307 | |
2308 | case Builtin::BI__builtin_abs: |
2309 | case Builtin::BI__builtin_labs: |
2310 | case Builtin::BI__builtin_llabs: |
2311 | return interp__builtin_abs(S, OpPC, Frame, Call); |
2312 | |
2313 | case Builtin::BI__builtin_popcount: |
2314 | case Builtin::BI__builtin_popcountl: |
2315 | case Builtin::BI__builtin_popcountll: |
2316 | case Builtin::BI__builtin_popcountg: |
2317 | case Builtin::BI__popcnt16: // Microsoft variants of popcount |
2318 | case Builtin::BI__popcnt: |
2319 | case Builtin::BI__popcnt64: |
2320 | return interp__builtin_popcount(S, OpPC, Frame, Call); |
2321 | |
2322 | case Builtin::BI__builtin_parity: |
2323 | case Builtin::BI__builtin_parityl: |
2324 | case Builtin::BI__builtin_parityll: |
2325 | return interp__builtin_parity(S, OpPC, Frame, Call); |
2326 | |
2327 | case Builtin::BI__builtin_clrsb: |
2328 | case Builtin::BI__builtin_clrsbl: |
2329 | case Builtin::BI__builtin_clrsbll: |
2330 | return interp__builtin_clrsb(S, OpPC, Frame, Call); |
2331 | |
2332 | case Builtin::BI__builtin_bitreverse8: |
2333 | case Builtin::BI__builtin_bitreverse16: |
2334 | case Builtin::BI__builtin_bitreverse32: |
2335 | case Builtin::BI__builtin_bitreverse64: |
2336 | return interp__builtin_bitreverse(S, OpPC, Frame, Call); |
2337 | |
2338 | case Builtin::BI__builtin_classify_type: |
2339 | return interp__builtin_classify_type(S, OpPC, Frame, Call); |
2340 | |
2341 | case Builtin::BI__builtin_expect: |
2342 | case Builtin::BI__builtin_expect_with_probability: |
2343 | return interp__builtin_expect(S, OpPC, Frame, Call); |
2344 | |
2345 | case Builtin::BI__builtin_rotateleft8: |
2346 | case Builtin::BI__builtin_rotateleft16: |
2347 | case Builtin::BI__builtin_rotateleft32: |
2348 | case Builtin::BI__builtin_rotateleft64: |
2349 | case Builtin::BI_rotl8: // Microsoft variants of rotate left |
2350 | case Builtin::BI_rotl16: |
2351 | case Builtin::BI_rotl: |
2352 | case Builtin::BI_lrotl: |
2353 | case Builtin::BI_rotl64: |
2354 | return interp__builtin_rotate(S, OpPC, Frame, Call, /*Right=*/false); |
2355 | |
2356 | case Builtin::BI__builtin_rotateright8: |
2357 | case Builtin::BI__builtin_rotateright16: |
2358 | case Builtin::BI__builtin_rotateright32: |
2359 | case Builtin::BI__builtin_rotateright64: |
2360 | case Builtin::BI_rotr8: // Microsoft variants of rotate right |
2361 | case Builtin::BI_rotr16: |
2362 | case Builtin::BI_rotr: |
2363 | case Builtin::BI_lrotr: |
2364 | case Builtin::BI_rotr64: |
2365 | return interp__builtin_rotate(S, OpPC, Frame, Call, /*Right=*/true); |
2366 | |
2367 | case Builtin::BI__builtin_ffs: |
2368 | case Builtin::BI__builtin_ffsl: |
2369 | case Builtin::BI__builtin_ffsll: |
2370 | return interp__builtin_ffs(S, OpPC, Frame, Call); |
2371 | |
2372 | case Builtin::BIaddressof: |
2373 | case Builtin::BI__addressof: |
2374 | case Builtin::BI__builtin_addressof: |
2375 | assert(isNoopBuiltin(BuiltinID)); |
2376 | return interp__builtin_addressof(S, OpPC, Frame, Call); |
2377 | |
2378 | case Builtin::BIas_const: |
2379 | case Builtin::BIforward: |
2380 | case Builtin::BIforward_like: |
2381 | case Builtin::BImove: |
2382 | case Builtin::BImove_if_noexcept: |
2383 | assert(isNoopBuiltin(BuiltinID)); |
2384 | return interp__builtin_move(S, OpPC, Frame, Call); |
2385 | |
2386 | case Builtin::BI__builtin_eh_return_data_regno: |
2387 | return interp__builtin_eh_return_data_regno(S, OpPC, Frame, Call); |
2388 | |
2389 | case Builtin::BI__builtin_launder: |
2390 | assert(isNoopBuiltin(BuiltinID)); |
2391 | return true; |
2392 | |
2393 | case Builtin::BI__builtin_add_overflow: |
2394 | case Builtin::BI__builtin_sub_overflow: |
2395 | case Builtin::BI__builtin_mul_overflow: |
2396 | case Builtin::BI__builtin_sadd_overflow: |
2397 | case Builtin::BI__builtin_uadd_overflow: |
2398 | case Builtin::BI__builtin_uaddl_overflow: |
2399 | case Builtin::BI__builtin_uaddll_overflow: |
2400 | case Builtin::BI__builtin_usub_overflow: |
2401 | case Builtin::BI__builtin_usubl_overflow: |
2402 | case Builtin::BI__builtin_usubll_overflow: |
2403 | case Builtin::BI__builtin_umul_overflow: |
2404 | case Builtin::BI__builtin_umull_overflow: |
2405 | case Builtin::BI__builtin_umulll_overflow: |
2406 | case Builtin::BI__builtin_saddl_overflow: |
2407 | case Builtin::BI__builtin_saddll_overflow: |
2408 | case Builtin::BI__builtin_ssub_overflow: |
2409 | case Builtin::BI__builtin_ssubl_overflow: |
2410 | case Builtin::BI__builtin_ssubll_overflow: |
2411 | case Builtin::BI__builtin_smul_overflow: |
2412 | case Builtin::BI__builtin_smull_overflow: |
2413 | case Builtin::BI__builtin_smulll_overflow: |
2414 | return interp__builtin_overflowop(S, OpPC, Call, BuiltinOp: BuiltinID); |
2415 | |
2416 | case Builtin::BI__builtin_addcb: |
2417 | case Builtin::BI__builtin_addcs: |
2418 | case Builtin::BI__builtin_addc: |
2419 | case Builtin::BI__builtin_addcl: |
2420 | case Builtin::BI__builtin_addcll: |
2421 | case Builtin::BI__builtin_subcb: |
2422 | case Builtin::BI__builtin_subcs: |
2423 | case Builtin::BI__builtin_subc: |
2424 | case Builtin::BI__builtin_subcl: |
2425 | case Builtin::BI__builtin_subcll: |
2426 | return interp__builtin_carryop(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
2427 | |
2428 | case Builtin::BI__builtin_clz: |
2429 | case Builtin::BI__builtin_clzl: |
2430 | case Builtin::BI__builtin_clzll: |
2431 | case Builtin::BI__builtin_clzs: |
2432 | case Builtin::BI__builtin_clzg: |
2433 | case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes |
2434 | case Builtin::BI__lzcnt: |
2435 | case Builtin::BI__lzcnt64: |
2436 | return interp__builtin_clz(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
2437 | |
2438 | case Builtin::BI__builtin_ctz: |
2439 | case Builtin::BI__builtin_ctzl: |
2440 | case Builtin::BI__builtin_ctzll: |
2441 | case Builtin::BI__builtin_ctzs: |
2442 | case Builtin::BI__builtin_ctzg: |
2443 | return interp__builtin_ctz(S, OpPC, Frame, Call, BuiltinID); |
2444 | |
2445 | case Builtin::BI__builtin_bswap16: |
2446 | case Builtin::BI__builtin_bswap32: |
2447 | case Builtin::BI__builtin_bswap64: |
2448 | return interp__builtin_bswap(S, OpPC, Frame, Call); |
2449 | |
2450 | case Builtin::BI__atomic_always_lock_free: |
2451 | case Builtin::BI__atomic_is_lock_free: |
2452 | return interp__builtin_atomic_lock_free(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
2453 | |
2454 | case Builtin::BI__c11_atomic_is_lock_free: |
2455 | return interp__builtin_c11_atomic_is_lock_free(S, OpPC, Frame, Call); |
2456 | |
2457 | case Builtin::BI__builtin_complex: |
2458 | return interp__builtin_complex(S, OpPC, Frame, Call); |
2459 | |
2460 | case Builtin::BI__builtin_is_aligned: |
2461 | case Builtin::BI__builtin_align_up: |
2462 | case Builtin::BI__builtin_align_down: |
2463 | return interp__builtin_is_aligned_up_down(S, OpPC, Frame, Call, BuiltinOp: BuiltinID); |
2464 | |
2465 | case Builtin::BI__builtin_assume_aligned: |
2466 | return interp__builtin_assume_aligned(S, OpPC, Frame, Call); |
2467 | |
2468 | case clang::X86::BI__builtin_ia32_bextr_u32: |
2469 | case clang::X86::BI__builtin_ia32_bextr_u64: |
2470 | case clang::X86::BI__builtin_ia32_bextri_u32: |
2471 | case clang::X86::BI__builtin_ia32_bextri_u64: |
2472 | return interp__builtin_ia32_bextr(S, OpPC, Frame, Call); |
2473 | |
2474 | case clang::X86::BI__builtin_ia32_bzhi_si: |
2475 | case clang::X86::BI__builtin_ia32_bzhi_di: |
2476 | return interp__builtin_ia32_bzhi(S, OpPC, Frame, Call); |
2477 | |
2478 | case clang::X86::BI__builtin_ia32_lzcnt_u16: |
2479 | case clang::X86::BI__builtin_ia32_lzcnt_u32: |
2480 | case clang::X86::BI__builtin_ia32_lzcnt_u64: |
2481 | return interp__builtin_ia32_lzcnt(S, OpPC, Frame, Call); |
2482 | |
2483 | case clang::X86::BI__builtin_ia32_tzcnt_u16: |
2484 | case clang::X86::BI__builtin_ia32_tzcnt_u32: |
2485 | case clang::X86::BI__builtin_ia32_tzcnt_u64: |
2486 | return interp__builtin_ia32_tzcnt(S, OpPC, Frame, Call); |
2487 | |
2488 | case clang::X86::BI__builtin_ia32_pdep_si: |
2489 | case clang::X86::BI__builtin_ia32_pdep_di: |
2490 | return interp__builtin_ia32_pdep(S, OpPC, Frame, Call); |
2491 | |
2492 | case clang::X86::BI__builtin_ia32_pext_si: |
2493 | case clang::X86::BI__builtin_ia32_pext_di: |
2494 | return interp__builtin_ia32_pext(S, OpPC, Frame, Call); |
2495 | |
2496 | case clang::X86::BI__builtin_ia32_addcarryx_u32: |
2497 | case clang::X86::BI__builtin_ia32_addcarryx_u64: |
2498 | case clang::X86::BI__builtin_ia32_subborrow_u32: |
2499 | case clang::X86::BI__builtin_ia32_subborrow_u64: |
2500 | return interp__builtin_ia32_addcarry_subborrow(S, OpPC, Frame, Call, |
2501 | BuiltinOp: BuiltinID); |
2502 | |
2503 | case Builtin::BI__builtin_os_log_format_buffer_size: |
2504 | return interp__builtin_os_log_format_buffer_size(S, OpPC, Frame, Call); |
2505 | |
2506 | case Builtin::BI__builtin_ptrauth_string_discriminator: |
2507 | return interp__builtin_ptrauth_string_discriminator(S, OpPC, Frame, Call); |
2508 | |
2509 | case Builtin::BI__noop: |
2510 | pushInteger(S, 0, Call->getType()); |
2511 | return true; |
2512 | |
2513 | case Builtin::BI__builtin_operator_new: |
2514 | return interp__builtin_operator_new(S, OpPC, Frame, Call); |
2515 | |
2516 | case Builtin::BI__builtin_operator_delete: |
2517 | return interp__builtin_operator_delete(S, OpPC, Frame, Call); |
2518 | |
2519 | case Builtin::BI__arithmetic_fence: |
2520 | return interp__builtin_arithmetic_fence(S, OpPC, Frame, Call); |
2521 | |
2522 | case Builtin::BI__builtin_reduce_add: |
2523 | case Builtin::BI__builtin_reduce_mul: |
2524 | case Builtin::BI__builtin_reduce_and: |
2525 | case Builtin::BI__builtin_reduce_or: |
2526 | case Builtin::BI__builtin_reduce_xor: |
2527 | return interp__builtin_vector_reduce(S, OpPC, Call, ID: BuiltinID); |
2528 | |
2529 | case Builtin::BI__builtin_elementwise_popcount: |
2530 | return interp__builtin_elementwise_popcount(S, OpPC, Frame, Call); |
2531 | |
2532 | case Builtin::BI__builtin_memcpy: |
2533 | case Builtin::BImemcpy: |
2534 | case Builtin::BI__builtin_wmemcpy: |
2535 | case Builtin::BIwmemcpy: |
2536 | case Builtin::BI__builtin_memmove: |
2537 | case Builtin::BImemmove: |
2538 | case Builtin::BI__builtin_wmemmove: |
2539 | case Builtin::BIwmemmove: |
2540 | return interp__builtin_memcpy(S, OpPC, Frame, Call, ID: BuiltinID); |
2541 | |
2542 | case Builtin::BI__builtin_memcmp: |
2543 | case Builtin::BImemcmp: |
2544 | case Builtin::BI__builtin_bcmp: |
2545 | case Builtin::BIbcmp: |
2546 | case Builtin::BI__builtin_wmemcmp: |
2547 | case Builtin::BIwmemcmp: |
2548 | return interp__builtin_memcmp(S, OpPC, Frame, Call, ID: BuiltinID); |
2549 | |
2550 | case Builtin::BImemchr: |
2551 | case Builtin::BI__builtin_memchr: |
2552 | case Builtin::BIstrchr: |
2553 | case Builtin::BI__builtin_strchr: |
2554 | case Builtin::BIwmemchr: |
2555 | case Builtin::BI__builtin_wmemchr: |
2556 | case Builtin::BIwcschr: |
2557 | case Builtin::BI__builtin_wcschr: |
2558 | case Builtin::BI__builtin_char_memchr: |
2559 | return interp__builtin_memchr(S, OpPC, Call, ID: BuiltinID); |
2560 | |
2561 | case Builtin::BI__builtin_object_size: |
2562 | case Builtin::BI__builtin_dynamic_object_size: |
2563 | return interp__builtin_object_size(S, OpPC, Frame, Call); |
2564 | |
2565 | case Builtin::BI__builtin_is_within_lifetime: |
2566 | return interp__builtin_is_within_lifetime(S, OpPC, Call); |
2567 | |
2568 | default: |
2569 | S.FFDiag(S.Current->getLocation(OpPC), |
2570 | diag::note_invalid_subexpr_in_const_expr) |
2571 | << S.Current->getRange(OpPC); |
2572 | |
2573 | return false; |
2574 | } |
2575 | |
2576 | llvm_unreachable("Unhandled builtin ID"); |
2577 | } |
2578 | |
2579 | bool InterpretOffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E, |
2580 | llvm::ArrayRef<int64_t> ArrayIndices, |
2581 | int64_t &IntResult) { |
2582 | CharUnits Result; |
2583 | unsigned N = E->getNumComponents(); |
2584 | assert(N > 0); |
2585 | |
2586 | unsigned ArrayIndex = 0; |
2587 | QualType CurrentType = E->getTypeSourceInfo()->getType(); |
2588 | for (unsigned I = 0; I != N; ++I) { |
2589 | const OffsetOfNode &Node = E->getComponent(Idx: I); |
2590 | switch (Node.getKind()) { |
2591 | case OffsetOfNode::Field: { |
2592 | const FieldDecl *MemberDecl = Node.getField(); |
2593 | const RecordType *RT = CurrentType->getAs<RecordType>(); |
2594 | if (!RT) |
2595 | return false; |
2596 | const RecordDecl *RD = RT->getDecl(); |
2597 | if (RD->isInvalidDecl()) |
2598 | return false; |
2599 | const ASTRecordLayout &RL = S.getASTContext().getASTRecordLayout(D: RD); |
2600 | unsigned FieldIndex = MemberDecl->getFieldIndex(); |
2601 | assert(FieldIndex < RL.getFieldCount() && "offsetof field in wrong type"); |
2602 | Result += |
2603 | S.getASTContext().toCharUnitsFromBits(BitSize: RL.getFieldOffset(FieldNo: FieldIndex)); |
2604 | CurrentType = MemberDecl->getType().getNonReferenceType(); |
2605 | break; |
2606 | } |
2607 | case OffsetOfNode::Array: { |
2608 | // When generating bytecode, we put all the index expressions as Sint64 on |
2609 | // the stack. |
2610 | int64_t Index = ArrayIndices[ArrayIndex]; |
2611 | const ArrayType *AT = S.getASTContext().getAsArrayType(T: CurrentType); |
2612 | if (!AT) |
2613 | return false; |
2614 | CurrentType = AT->getElementType(); |
2615 | CharUnits ElementSize = S.getASTContext().getTypeSizeInChars(T: CurrentType); |
2616 | Result += Index * ElementSize; |
2617 | ++ArrayIndex; |
2618 | break; |
2619 | } |
2620 | case OffsetOfNode::Base: { |
2621 | const CXXBaseSpecifier *BaseSpec = Node.getBase(); |
2622 | if (BaseSpec->isVirtual()) |
2623 | return false; |
2624 | |
2625 | // Find the layout of the class whose base we are looking into. |
2626 | const RecordType *RT = CurrentType->getAs<RecordType>(); |
2627 | if (!RT) |
2628 | return false; |
2629 | const RecordDecl *RD = RT->getDecl(); |
2630 | if (RD->isInvalidDecl()) |
2631 | return false; |
2632 | const ASTRecordLayout &RL = S.getASTContext().getASTRecordLayout(D: RD); |
2633 | |
2634 | // Find the base class itself. |
2635 | CurrentType = BaseSpec->getType(); |
2636 | const RecordType *BaseRT = CurrentType->getAs<RecordType>(); |
2637 | if (!BaseRT) |
2638 | return false; |
2639 | |
2640 | // Add the offset to the base. |
2641 | Result += RL.getBaseClassOffset(Base: cast<CXXRecordDecl>(Val: BaseRT->getDecl())); |
2642 | break; |
2643 | } |
2644 | case OffsetOfNode::Identifier: |
2645 | llvm_unreachable("Dependent OffsetOfExpr?"); |
2646 | } |
2647 | } |
2648 | |
2649 | IntResult = Result.getQuantity(); |
2650 | |
2651 | return true; |
2652 | } |
2653 | |
2654 | bool SetThreeWayComparisonField(InterpState &S, CodePtr OpPC, |
2655 | const Pointer &Ptr, const APSInt &IntValue) { |
2656 | |
2657 | const Record *R = Ptr.getRecord(); |
2658 | assert(R); |
2659 | assert(R->getNumFields() == 1); |
2660 | |
2661 | unsigned FieldOffset = R->getField(I: 0u)->Offset; |
2662 | const Pointer &FieldPtr = Ptr.atField(Off: FieldOffset); |
2663 | PrimType FieldT = *S.getContext().classify(T: FieldPtr.getType()); |
2664 | |
2665 | INT_TYPE_SWITCH(FieldT, |
2666 | FieldPtr.deref<T>() = T::from(IntValue.getSExtValue())); |
2667 | FieldPtr.initialize(); |
2668 | return true; |
2669 | } |
2670 | |
2671 | static void zeroAll(Pointer &Dest) { |
2672 | const Descriptor *Desc = Dest.getFieldDesc(); |
2673 | |
2674 | if (Desc->isPrimitive()) { |
2675 | TYPE_SWITCH(Desc->getPrimType(), { |
2676 | Dest.deref<T>().~T(); |
2677 | new (&Dest.deref<T>()) T(); |
2678 | }); |
2679 | return; |
2680 | } |
2681 | |
2682 | if (Desc->isRecord()) { |
2683 | const Record *R = Desc->ElemRecord; |
2684 | for (const Record::Field &F : R->fields()) { |
2685 | Pointer FieldPtr = Dest.atField(Off: F.Offset); |
2686 | zeroAll(Dest&: FieldPtr); |
2687 | } |
2688 | return; |
2689 | } |
2690 | |
2691 | if (Desc->isPrimitiveArray()) { |
2692 | for (unsigned I = 0, N = Desc->getNumElems(); I != N; ++I) { |
2693 | TYPE_SWITCH(Desc->getPrimType(), { |
2694 | Dest.deref<T>().~T(); |
2695 | new (&Dest.deref<T>()) T(); |
2696 | }); |
2697 | } |
2698 | return; |
2699 | } |
2700 | |
2701 | if (Desc->isCompositeArray()) { |
2702 | for (unsigned I = 0, N = Desc->getNumElems(); I != N; ++I) { |
2703 | Pointer ElemPtr = Dest.atIndex(Idx: I).narrow(); |
2704 | zeroAll(Dest&: ElemPtr); |
2705 | } |
2706 | return; |
2707 | } |
2708 | } |
2709 | |
2710 | static bool copyComposite(InterpState &S, CodePtr OpPC, const Pointer &Src, |
2711 | Pointer &Dest, bool Activate); |
2712 | static bool copyRecord(InterpState &S, CodePtr OpPC, const Pointer &Src, |
2713 | Pointer &Dest, bool Activate = false) { |
2714 | [[maybe_unused]] const Descriptor *SrcDesc = Src.getFieldDesc(); |
2715 | const Descriptor *DestDesc = Dest.getFieldDesc(); |
2716 | |
2717 | auto copyField = [&](const Record::Field &F, bool Activate) -> bool { |
2718 | Pointer DestField = Dest.atField(Off: F.Offset); |
2719 | if (std::optional<PrimType> FT = S.Ctx.classify(F.Decl->getType())) { |
2720 | TYPE_SWITCH(*FT, { |
2721 | DestField.deref<T>() = Src.atField(F.Offset).deref<T>(); |
2722 | if (Src.atField(F.Offset).isInitialized()) |
2723 | DestField.initialize(); |
2724 | if (Activate) |
2725 | DestField.activate(); |
2726 | }); |
2727 | return true; |
2728 | } |
2729 | // Composite field. |
2730 | return copyComposite(S, OpPC, Src: Src.atField(Off: F.Offset), Dest&: DestField, Activate); |
2731 | }; |
2732 | |
2733 | assert(SrcDesc->isRecord()); |
2734 | assert(SrcDesc->ElemRecord == DestDesc->ElemRecord); |
2735 | const Record *R = DestDesc->ElemRecord; |
2736 | for (const Record::Field &F : R->fields()) { |
2737 | if (R->isUnion()) { |
2738 | // For unions, only copy the active field. Zero all others. |
2739 | const Pointer &SrcField = Src.atField(Off: F.Offset); |
2740 | if (SrcField.isActive()) { |
2741 | if (!copyField(F, /*Activate=*/true)) |
2742 | return false; |
2743 | } else { |
2744 | Pointer DestField = Dest.atField(Off: F.Offset); |
2745 | zeroAll(Dest&: DestField); |
2746 | } |
2747 | } else { |
2748 | if (!copyField(F, Activate)) |
2749 | return false; |
2750 | } |
2751 | } |
2752 | |
2753 | for (const Record::Base &B : R->bases()) { |
2754 | Pointer DestBase = Dest.atField(Off: B.Offset); |
2755 | if (!copyRecord(S, OpPC, Src: Src.atField(Off: B.Offset), Dest&: DestBase, Activate)) |
2756 | return false; |
2757 | } |
2758 | |
2759 | Dest.initialize(); |
2760 | return true; |
2761 | } |
2762 | |
2763 | static bool copyComposite(InterpState &S, CodePtr OpPC, const Pointer &Src, |
2764 | Pointer &Dest, bool Activate = false) { |
2765 | assert(Src.isLive() && Dest.isLive()); |
2766 | |
2767 | [[maybe_unused]] const Descriptor *SrcDesc = Src.getFieldDesc(); |
2768 | const Descriptor *DestDesc = Dest.getFieldDesc(); |
2769 | |
2770 | assert(!DestDesc->isPrimitive() && !SrcDesc->isPrimitive()); |
2771 | |
2772 | if (DestDesc->isPrimitiveArray()) { |
2773 | assert(SrcDesc->isPrimitiveArray()); |
2774 | assert(SrcDesc->getNumElems() == DestDesc->getNumElems()); |
2775 | PrimType ET = DestDesc->getPrimType(); |
2776 | for (unsigned I = 0, N = DestDesc->getNumElems(); I != N; ++I) { |
2777 | Pointer DestElem = Dest.atIndex(Idx: I); |
2778 | TYPE_SWITCH(ET, { |
2779 | DestElem.deref<T>() = Src.atIndex(I).deref<T>(); |
2780 | DestElem.initialize(); |
2781 | }); |
2782 | } |
2783 | return true; |
2784 | } |
2785 | |
2786 | if (DestDesc->isCompositeArray()) { |
2787 | assert(SrcDesc->isCompositeArray()); |
2788 | assert(SrcDesc->getNumElems() == DestDesc->getNumElems()); |
2789 | for (unsigned I = 0, N = DestDesc->getNumElems(); I != N; ++I) { |
2790 | const Pointer &SrcElem = Src.atIndex(Idx: I).narrow(); |
2791 | Pointer DestElem = Dest.atIndex(Idx: I).narrow(); |
2792 | if (!copyComposite(S, OpPC, Src: SrcElem, Dest&: DestElem, Activate)) |
2793 | return false; |
2794 | } |
2795 | return true; |
2796 | } |
2797 | |
2798 | if (DestDesc->isRecord()) |
2799 | return copyRecord(S, OpPC, Src, Dest, Activate); |
2800 | return Invalid(S, OpPC); |
2801 | } |
2802 | |
2803 | bool DoMemcpy(InterpState &S, CodePtr OpPC, const Pointer &Src, Pointer &Dest) { |
2804 | return copyComposite(S, OpPC, Src, Dest); |
2805 | } |
2806 | |
2807 | } // namespace interp |
2808 | } // namespace clang |
2809 |
Definitions
- isNoopBuiltin
- discard
- popToAPSInt
- pushInteger
- pushInteger
- assignInteger
- getElemType
- diagnoseNonConstexprBuiltin
- interp__builtin_is_constant_evaluated
- interp__builtin_assume
- interp__builtin_strcmp
- interp__builtin_strlen
- interp__builtin_nan
- interp__builtin_inf
- interp__builtin_copysign
- interp__builtin_fmin
- interp__builtin_fmax
- interp__builtin_isnan
- interp__builtin_issignaling
- interp__builtin_isinf
- interp__builtin_isfinite
- interp__builtin_isnormal
- interp__builtin_issubnormal
- interp__builtin_iszero
- interp__builtin_signbit
- interp_floating_comparison
- interp__builtin_isfpclass
- interp__builtin_fpclassify
- interp__builtin_fabs
- interp__builtin_abs
- interp__builtin_popcount
- interp__builtin_parity
- interp__builtin_clrsb
- interp__builtin_bitreverse
- interp__builtin_classify_type
- interp__builtin_expect
- interp__builtin_rotate
- interp__builtin_ffs
- interp__builtin_addressof
- interp__builtin_move
- interp__builtin_eh_return_data_regno
- interp__builtin_overflowop
- interp__builtin_carryop
- interp__builtin_clz
- interp__builtin_ctz
- interp__builtin_bswap
- interp__builtin_atomic_lock_free
- interp__builtin_c11_atomic_is_lock_free
- interp__builtin_complex
- interp__builtin_is_aligned_up_down
- interp__builtin_assume_aligned
- interp__builtin_ia32_bextr
- interp__builtin_ia32_bzhi
- interp__builtin_ia32_lzcnt
- interp__builtin_ia32_tzcnt
- interp__builtin_ia32_pdep
- interp__builtin_ia32_pext
- interp__builtin_ia32_addcarry_subborrow
- interp__builtin_os_log_format_buffer_size
- interp__builtin_ptrauth_string_discriminator
- interp__builtin_operator_new
- interp__builtin_operator_delete
- interp__builtin_arithmetic_fence
- interp__builtin_vector_reduce
- interp__builtin_elementwise_popcount
- interp__builtin_memcpy
- isOneByteCharacterType
- interp__builtin_memcmp
- interp__builtin_memchr
- computeFullDescSize
- computePointerOffset
- interp__builtin_object_size
- interp__builtin_is_within_lifetime
- InterpretBuiltin
- InterpretOffsetOf
- SetThreeWayComparisonField
- zeroAll
- copyRecord
- copyComposite
Learn to use CMake with our Intro Training
Find out more