1 | //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the C++ related Decl classes. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/DeclCXX.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/ASTLambda.h" |
16 | #include "clang/AST/ASTMutationListener.h" |
17 | #include "clang/AST/ASTUnresolvedSet.h" |
18 | #include "clang/AST/Attr.h" |
19 | #include "clang/AST/CXXInheritance.h" |
20 | #include "clang/AST/DeclBase.h" |
21 | #include "clang/AST/DeclTemplate.h" |
22 | #include "clang/AST/DeclarationName.h" |
23 | #include "clang/AST/Expr.h" |
24 | #include "clang/AST/ExprCXX.h" |
25 | #include "clang/AST/LambdaCapture.h" |
26 | #include "clang/AST/NestedNameSpecifier.h" |
27 | #include "clang/AST/ODRHash.h" |
28 | #include "clang/AST/Type.h" |
29 | #include "clang/AST/TypeLoc.h" |
30 | #include "clang/AST/UnresolvedSet.h" |
31 | #include "clang/Basic/Diagnostic.h" |
32 | #include "clang/Basic/DiagnosticAST.h" |
33 | #include "clang/Basic/IdentifierTable.h" |
34 | #include "clang/Basic/LLVM.h" |
35 | #include "clang/Basic/LangOptions.h" |
36 | #include "clang/Basic/OperatorKinds.h" |
37 | #include "clang/Basic/SourceLocation.h" |
38 | #include "clang/Basic/Specifiers.h" |
39 | #include "clang/Basic/TargetInfo.h" |
40 | #include "llvm/ADT/SmallPtrSet.h" |
41 | #include "llvm/ADT/SmallVector.h" |
42 | #include "llvm/ADT/iterator_range.h" |
43 | #include "llvm/Support/Casting.h" |
44 | #include "llvm/Support/ErrorHandling.h" |
45 | #include "llvm/Support/Format.h" |
46 | #include "llvm/Support/raw_ostream.h" |
47 | #include <algorithm> |
48 | #include <cassert> |
49 | #include <cstddef> |
50 | #include <cstdint> |
51 | |
52 | using namespace clang; |
53 | |
54 | //===----------------------------------------------------------------------===// |
55 | // Decl Allocation/Deallocation Method Implementations |
56 | //===----------------------------------------------------------------------===// |
57 | |
58 | void AccessSpecDecl::anchor() {} |
59 | |
60 | AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, |
61 | GlobalDeclID ID) { |
62 | return new (C, ID) AccessSpecDecl(EmptyShell()); |
63 | } |
64 | |
65 | void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { |
66 | ExternalASTSource *Source = C.getExternalSource(); |
67 | assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set"); |
68 | assert(Source && "getFromExternalSource with no external source"); |
69 | |
70 | for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) |
71 | I.setDecl( |
72 | cast<NamedDecl>(Val: Source->GetExternalDecl(ID: GlobalDeclID(I.getDeclID())))); |
73 | Impl.Decls.setLazy(false); |
74 | } |
75 | |
76 | CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) |
77 | : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), |
78 | Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), |
79 | Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), |
80 | HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), |
81 | HasPrivateFields(false), HasProtectedFields(false), |
82 | HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), |
83 | HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false), |
84 | HasUninitializedReferenceMember(false), HasUninitializedFields(false), |
85 | HasInheritedConstructor(false), HasInheritedDefaultConstructor(false), |
86 | HasInheritedAssignment(false), |
87 | NeedOverloadResolutionForCopyConstructor(false), |
88 | NeedOverloadResolutionForMoveConstructor(false), |
89 | NeedOverloadResolutionForCopyAssignment(false), |
90 | NeedOverloadResolutionForMoveAssignment(false), |
91 | NeedOverloadResolutionForDestructor(false), |
92 | DefaultedCopyConstructorIsDeleted(false), |
93 | DefaultedMoveConstructorIsDeleted(false), |
94 | DefaultedCopyAssignmentIsDeleted(false), |
95 | DefaultedMoveAssignmentIsDeleted(false), |
96 | DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), |
97 | HasTrivialSpecialMembersForCall(SMF_All), |
98 | DeclaredNonTrivialSpecialMembers(0), |
99 | DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), |
100 | HasConstexprNonCopyMoveConstructor(false), |
101 | HasDefaultedDefaultConstructor(false), |
102 | DefaultedDefaultConstructorIsConstexpr(true), |
103 | HasConstexprDefaultConstructor(false), |
104 | DefaultedDestructorIsConstexpr(true), |
105 | HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true), |
106 | UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), |
107 | ImplicitCopyConstructorCanHaveConstParamForVBase(true), |
108 | ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), |
109 | ImplicitCopyAssignmentHasConstParam(true), |
110 | HasDeclaredCopyConstructorWithConstParam(false), |
111 | HasDeclaredCopyAssignmentWithConstParam(false), |
112 | IsAnyDestructorNoReturn(false), IsHLSLIntangible(false), IsLambda(false), |
113 | IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false), |
114 | HasODRHash(false), Definition(D) {} |
115 | |
116 | CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { |
117 | return Bases.get(Source: Definition->getASTContext().getExternalSource()); |
118 | } |
119 | |
120 | CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { |
121 | return VBases.get(Source: Definition->getASTContext().getExternalSource()); |
122 | } |
123 | |
124 | CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, |
125 | DeclContext *DC, SourceLocation StartLoc, |
126 | SourceLocation IdLoc, IdentifierInfo *Id, |
127 | CXXRecordDecl *PrevDecl) |
128 | : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), |
129 | DefinitionData(PrevDecl ? PrevDecl->DefinitionData |
130 | : nullptr) {} |
131 | |
132 | CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, |
133 | DeclContext *DC, SourceLocation StartLoc, |
134 | SourceLocation IdLoc, IdentifierInfo *Id, |
135 | CXXRecordDecl *PrevDecl, |
136 | bool DelayTypeCreation) { |
137 | auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, |
138 | PrevDecl); |
139 | R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); |
140 | |
141 | // FIXME: DelayTypeCreation seems like such a hack |
142 | if (!DelayTypeCreation) |
143 | C.getTypeDeclType(Decl: R, PrevDecl); |
144 | return R; |
145 | } |
146 | |
147 | CXXRecordDecl * |
148 | CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, |
149 | TypeSourceInfo *Info, SourceLocation Loc, |
150 | unsigned DependencyKind, bool IsGeneric, |
151 | LambdaCaptureDefault CaptureDefault) { |
152 | auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TagTypeKind::Class, C, DC, Loc, |
153 | Loc, nullptr, nullptr); |
154 | R->setBeingDefined(true); |
155 | R->DefinitionData = new (C) struct LambdaDefinitionData( |
156 | R, Info, DependencyKind, IsGeneric, CaptureDefault); |
157 | R->setMayHaveOutOfDateDef(false); |
158 | R->setImplicit(true); |
159 | |
160 | C.getTypeDeclType(Decl: R, /*PrevDecl=*/nullptr); |
161 | return R; |
162 | } |
163 | |
164 | CXXRecordDecl *CXXRecordDecl::CreateDeserialized(const ASTContext &C, |
165 | GlobalDeclID ID) { |
166 | auto *R = new (C, ID) |
167 | CXXRecordDecl(CXXRecord, TagTypeKind::Struct, C, nullptr, |
168 | SourceLocation(), SourceLocation(), nullptr, nullptr); |
169 | R->setMayHaveOutOfDateDef(false); |
170 | return R; |
171 | } |
172 | |
173 | /// Determine whether a class has a repeated base class. This is intended for |
174 | /// use when determining if a class is standard-layout, so makes no attempt to |
175 | /// handle virtual bases. |
176 | static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { |
177 | llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes; |
178 | SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD}; |
179 | while (!WorkList.empty()) { |
180 | const CXXRecordDecl *RD = WorkList.pop_back_val(); |
181 | if (RD->getTypeForDecl()->isDependentType()) |
182 | continue; |
183 | for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { |
184 | if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { |
185 | if (!SeenBaseTypes.insert(Ptr: B).second) |
186 | return true; |
187 | WorkList.push_back(Elt: B); |
188 | } |
189 | } |
190 | } |
191 | return false; |
192 | } |
193 | |
194 | void |
195 | CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, |
196 | unsigned NumBases) { |
197 | ASTContext &C = getASTContext(); |
198 | |
199 | if (!data().Bases.isOffset() && data().NumBases > 0) |
200 | C.Deallocate(Ptr: data().getBases()); |
201 | |
202 | if (NumBases) { |
203 | if (!C.getLangOpts().CPlusPlus17) { |
204 | // C++ [dcl.init.aggr]p1: |
205 | // An aggregate is [...] a class with [...] no base classes [...]. |
206 | data().Aggregate = false; |
207 | } |
208 | |
209 | // C++ [class]p4: |
210 | // A POD-struct is an aggregate class... |
211 | data().PlainOldData = false; |
212 | } |
213 | |
214 | // The set of seen virtual base types. |
215 | llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; |
216 | |
217 | // The virtual bases of this class. |
218 | SmallVector<const CXXBaseSpecifier *, 8> VBases; |
219 | |
220 | data().Bases = new(C) CXXBaseSpecifier [NumBases]; |
221 | data().NumBases = NumBases; |
222 | for (unsigned i = 0; i < NumBases; ++i) { |
223 | data().getBases()[i] = *Bases[i]; |
224 | // Keep track of inherited vbases for this base class. |
225 | const CXXBaseSpecifier *Base = Bases[i]; |
226 | QualType BaseType = Base->getType(); |
227 | // Skip dependent types; we can't do any checking on them now. |
228 | if (BaseType->isDependentType()) |
229 | continue; |
230 | auto *BaseClassDecl = |
231 | cast<CXXRecordDecl>(Val: BaseType->castAs<RecordType>()->getDecl()); |
232 | |
233 | // C++2a [class]p7: |
234 | // A standard-layout class is a class that: |
235 | // [...] |
236 | // -- has all non-static data members and bit-fields in the class and |
237 | // its base classes first declared in the same class |
238 | if (BaseClassDecl->data().HasBasesWithFields || |
239 | !BaseClassDecl->field_empty()) { |
240 | if (data().HasBasesWithFields) |
241 | // Two bases have members or bit-fields: not standard-layout. |
242 | data().IsStandardLayout = false; |
243 | data().HasBasesWithFields = true; |
244 | } |
245 | |
246 | // C++11 [class]p7: |
247 | // A standard-layout class is a class that: |
248 | // -- [...] has [...] at most one base class with non-static data |
249 | // members |
250 | if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || |
251 | BaseClassDecl->hasDirectFields()) { |
252 | if (data().HasBasesWithNonStaticDataMembers) |
253 | data().IsCXX11StandardLayout = false; |
254 | data().HasBasesWithNonStaticDataMembers = true; |
255 | } |
256 | |
257 | if (!BaseClassDecl->isEmpty()) { |
258 | // C++14 [meta.unary.prop]p4: |
259 | // T is a class type [...] with [...] no base class B for which |
260 | // is_empty<B>::value is false. |
261 | data().Empty = false; |
262 | } |
263 | |
264 | // C++1z [dcl.init.agg]p1: |
265 | // An aggregate is a class with [...] no private or protected base classes |
266 | if (Base->getAccessSpecifier() != AS_public) { |
267 | data().Aggregate = false; |
268 | |
269 | // C++20 [temp.param]p7: |
270 | // A structural type is [...] a literal class type with [...] all base |
271 | // classes [...] public |
272 | data().StructuralIfLiteral = false; |
273 | } |
274 | |
275 | // C++ [class.virtual]p1: |
276 | // A class that declares or inherits a virtual function is called a |
277 | // polymorphic class. |
278 | if (BaseClassDecl->isPolymorphic()) { |
279 | data().Polymorphic = true; |
280 | |
281 | // An aggregate is a class with [...] no virtual functions. |
282 | data().Aggregate = false; |
283 | } |
284 | |
285 | // C++0x [class]p7: |
286 | // A standard-layout class is a class that: [...] |
287 | // -- has no non-standard-layout base classes |
288 | if (!BaseClassDecl->isStandardLayout()) |
289 | data().IsStandardLayout = false; |
290 | if (!BaseClassDecl->isCXX11StandardLayout()) |
291 | data().IsCXX11StandardLayout = false; |
292 | |
293 | // Record if this base is the first non-literal field or base. |
294 | if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(Ctx: C)) |
295 | data().HasNonLiteralTypeFieldsOrBases = true; |
296 | |
297 | // Now go through all virtual bases of this base and add them. |
298 | for (const auto &VBase : BaseClassDecl->vbases()) { |
299 | // Add this base if it's not already in the list. |
300 | if (SeenVBaseTypes.insert(Ptr: C.getCanonicalType(T: VBase.getType())).second) { |
301 | VBases.push_back(Elt: &VBase); |
302 | |
303 | // C++11 [class.copy]p8: |
304 | // The implicitly-declared copy constructor for a class X will have |
305 | // the form 'X::X(const X&)' if each [...] virtual base class B of X |
306 | // has a copy constructor whose first parameter is of type |
307 | // 'const B&' or 'const volatile B&' [...] |
308 | if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) |
309 | if (!VBaseDecl->hasCopyConstructorWithConstParam()) |
310 | data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; |
311 | |
312 | // C++1z [dcl.init.agg]p1: |
313 | // An aggregate is a class with [...] no virtual base classes |
314 | data().Aggregate = false; |
315 | } |
316 | } |
317 | |
318 | if (Base->isVirtual()) { |
319 | // Add this base if it's not already in the list. |
320 | if (SeenVBaseTypes.insert(Ptr: C.getCanonicalType(T: BaseType)).second) |
321 | VBases.push_back(Elt: Base); |
322 | |
323 | // C++14 [meta.unary.prop] is_empty: |
324 | // T is a class type, but not a union type, with ... no virtual base |
325 | // classes |
326 | data().Empty = false; |
327 | |
328 | // C++1z [dcl.init.agg]p1: |
329 | // An aggregate is a class with [...] no virtual base classes |
330 | data().Aggregate = false; |
331 | |
332 | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: |
333 | // A [default constructor, copy/move constructor, or copy/move assignment |
334 | // operator for a class X] is trivial [...] if: |
335 | // -- class X has [...] no virtual base classes |
336 | data().HasTrivialSpecialMembers &= SMF_Destructor; |
337 | data().HasTrivialSpecialMembersForCall &= SMF_Destructor; |
338 | |
339 | // C++0x [class]p7: |
340 | // A standard-layout class is a class that: [...] |
341 | // -- has [...] no virtual base classes |
342 | data().IsStandardLayout = false; |
343 | data().IsCXX11StandardLayout = false; |
344 | |
345 | // C++20 [dcl.constexpr]p3: |
346 | // In the definition of a constexpr function [...] |
347 | // -- if the function is a constructor or destructor, |
348 | // its class shall not have any virtual base classes |
349 | data().DefaultedDefaultConstructorIsConstexpr = false; |
350 | data().DefaultedDestructorIsConstexpr = false; |
351 | |
352 | // C++1z [class.copy]p8: |
353 | // The implicitly-declared copy constructor for a class X will have |
354 | // the form 'X::X(const X&)' if each potentially constructed subobject |
355 | // has a copy constructor whose first parameter is of type |
356 | // 'const B&' or 'const volatile B&' [...] |
357 | if (!BaseClassDecl->hasCopyConstructorWithConstParam()) |
358 | data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; |
359 | } else { |
360 | // C++ [class.ctor]p5: |
361 | // A default constructor is trivial [...] if: |
362 | // -- all the direct base classes of its class have trivial default |
363 | // constructors. |
364 | if (!BaseClassDecl->hasTrivialDefaultConstructor()) |
365 | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; |
366 | |
367 | // C++0x [class.copy]p13: |
368 | // A copy/move constructor for class X is trivial if [...] |
369 | // [...] |
370 | // -- the constructor selected to copy/move each direct base class |
371 | // subobject is trivial, and |
372 | if (!BaseClassDecl->hasTrivialCopyConstructor()) |
373 | data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; |
374 | |
375 | if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) |
376 | data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; |
377 | |
378 | // If the base class doesn't have a simple move constructor, we'll eagerly |
379 | // declare it and perform overload resolution to determine which function |
380 | // it actually calls. If it does have a simple move constructor, this |
381 | // check is correct. |
382 | if (!BaseClassDecl->hasTrivialMoveConstructor()) |
383 | data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; |
384 | |
385 | if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) |
386 | data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; |
387 | |
388 | // C++0x [class.copy]p27: |
389 | // A copy/move assignment operator for class X is trivial if [...] |
390 | // [...] |
391 | // -- the assignment operator selected to copy/move each direct base |
392 | // class subobject is trivial, and |
393 | if (!BaseClassDecl->hasTrivialCopyAssignment()) |
394 | data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; |
395 | // If the base class doesn't have a simple move assignment, we'll eagerly |
396 | // declare it and perform overload resolution to determine which function |
397 | // it actually calls. If it does have a simple move assignment, this |
398 | // check is correct. |
399 | if (!BaseClassDecl->hasTrivialMoveAssignment()) |
400 | data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; |
401 | |
402 | // C++11 [class.ctor]p6: |
403 | // If that user-written default constructor would satisfy the |
404 | // requirements of a constexpr constructor/function(C++23), the |
405 | // implicitly-defined default constructor is constexpr. |
406 | if (!BaseClassDecl->hasConstexprDefaultConstructor()) |
407 | data().DefaultedDefaultConstructorIsConstexpr = |
408 | C.getLangOpts().CPlusPlus23; |
409 | |
410 | // C++1z [class.copy]p8: |
411 | // The implicitly-declared copy constructor for a class X will have |
412 | // the form 'X::X(const X&)' if each potentially constructed subobject |
413 | // has a copy constructor whose first parameter is of type |
414 | // 'const B&' or 'const volatile B&' [...] |
415 | if (!BaseClassDecl->hasCopyConstructorWithConstParam()) |
416 | data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; |
417 | } |
418 | |
419 | // C++ [class.ctor]p3: |
420 | // A destructor is trivial if all the direct base classes of its class |
421 | // have trivial destructors. |
422 | if (!BaseClassDecl->hasTrivialDestructor()) |
423 | data().HasTrivialSpecialMembers &= ~SMF_Destructor; |
424 | |
425 | if (!BaseClassDecl->hasTrivialDestructorForCall()) |
426 | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; |
427 | |
428 | if (!BaseClassDecl->hasIrrelevantDestructor()) |
429 | data().HasIrrelevantDestructor = false; |
430 | |
431 | if (BaseClassDecl->isAnyDestructorNoReturn()) |
432 | data().IsAnyDestructorNoReturn = true; |
433 | |
434 | if (BaseClassDecl->isHLSLIntangible()) |
435 | data().IsHLSLIntangible = true; |
436 | |
437 | // C++11 [class.copy]p18: |
438 | // The implicitly-declared copy assignment operator for a class X will |
439 | // have the form 'X& X::operator=(const X&)' if each direct base class B |
440 | // of X has a copy assignment operator whose parameter is of type 'const |
441 | // B&', 'const volatile B&', or 'B' [...] |
442 | if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) |
443 | data().ImplicitCopyAssignmentHasConstParam = false; |
444 | |
445 | // A class has an Objective-C object member if... or any of its bases |
446 | // has an Objective-C object member. |
447 | if (BaseClassDecl->hasObjectMember()) |
448 | setHasObjectMember(true); |
449 | |
450 | if (BaseClassDecl->hasVolatileMember()) |
451 | setHasVolatileMember(true); |
452 | |
453 | if (BaseClassDecl->getArgPassingRestrictions() == |
454 | RecordArgPassingKind::CanNeverPassInRegs) |
455 | setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs); |
456 | |
457 | // Keep track of the presence of mutable fields. |
458 | if (BaseClassDecl->hasMutableFields()) |
459 | data().HasMutableFields = true; |
460 | |
461 | if (BaseClassDecl->hasUninitializedExplicitInitFields() && |
462 | BaseClassDecl->isAggregate()) |
463 | setHasUninitializedExplicitInitFields(true); |
464 | |
465 | if (BaseClassDecl->hasUninitializedReferenceMember()) |
466 | data().HasUninitializedReferenceMember = true; |
467 | |
468 | if (!BaseClassDecl->allowConstDefaultInit()) |
469 | data().HasUninitializedFields = true; |
470 | |
471 | addedClassSubobject(Base: BaseClassDecl); |
472 | } |
473 | |
474 | // C++2a [class]p7: |
475 | // A class S is a standard-layout class if it: |
476 | // -- has at most one base class subobject of any given type |
477 | // |
478 | // Note that we only need to check this for classes with more than one base |
479 | // class. If there's only one base class, and it's standard layout, then |
480 | // we know there are no repeated base classes. |
481 | if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(StartRD: this)) |
482 | data().IsStandardLayout = false; |
483 | |
484 | if (VBases.empty()) { |
485 | data().IsParsingBaseSpecifiers = false; |
486 | return; |
487 | } |
488 | |
489 | // Create base specifier for any direct or indirect virtual bases. |
490 | data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; |
491 | data().NumVBases = VBases.size(); |
492 | for (int I = 0, E = VBases.size(); I != E; ++I) { |
493 | QualType Type = VBases[I]->getType(); |
494 | if (!Type->isDependentType()) |
495 | addedClassSubobject(Base: Type->getAsCXXRecordDecl()); |
496 | data().getVBases()[I] = *VBases[I]; |
497 | } |
498 | |
499 | data().IsParsingBaseSpecifiers = false; |
500 | } |
501 | |
502 | unsigned CXXRecordDecl::getODRHash() const { |
503 | assert(hasDefinition() && "ODRHash only for records with definitions"); |
504 | |
505 | // Previously calculated hash is stored in DefinitionData. |
506 | if (DefinitionData->HasODRHash) |
507 | return DefinitionData->ODRHash; |
508 | |
509 | // Only calculate hash on first call of getODRHash per record. |
510 | ODRHash Hash; |
511 | Hash.AddCXXRecordDecl(Record: getDefinition()); |
512 | DefinitionData->HasODRHash = true; |
513 | DefinitionData->ODRHash = Hash.CalculateHash(); |
514 | |
515 | return DefinitionData->ODRHash; |
516 | } |
517 | |
518 | void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { |
519 | // C++11 [class.copy]p11: |
520 | // A defaulted copy/move constructor for a class X is defined as |
521 | // deleted if X has: |
522 | // -- a direct or virtual base class B that cannot be copied/moved [...] |
523 | // -- a non-static data member of class type M (or array thereof) |
524 | // that cannot be copied or moved [...] |
525 | if (!Subobj->hasSimpleCopyConstructor()) |
526 | data().NeedOverloadResolutionForCopyConstructor = true; |
527 | if (!Subobj->hasSimpleMoveConstructor()) |
528 | data().NeedOverloadResolutionForMoveConstructor = true; |
529 | |
530 | // C++11 [class.copy]p23: |
531 | // A defaulted copy/move assignment operator for a class X is defined as |
532 | // deleted if X has: |
533 | // -- a direct or virtual base class B that cannot be copied/moved [...] |
534 | // -- a non-static data member of class type M (or array thereof) |
535 | // that cannot be copied or moved [...] |
536 | if (!Subobj->hasSimpleCopyAssignment()) |
537 | data().NeedOverloadResolutionForCopyAssignment = true; |
538 | if (!Subobj->hasSimpleMoveAssignment()) |
539 | data().NeedOverloadResolutionForMoveAssignment = true; |
540 | |
541 | // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: |
542 | // A defaulted [ctor or dtor] for a class X is defined as |
543 | // deleted if X has: |
544 | // -- any direct or virtual base class [...] has a type with a destructor |
545 | // that is deleted or inaccessible from the defaulted [ctor or dtor]. |
546 | // -- any non-static data member has a type with a destructor |
547 | // that is deleted or inaccessible from the defaulted [ctor or dtor]. |
548 | if (!Subobj->hasSimpleDestructor()) { |
549 | data().NeedOverloadResolutionForCopyConstructor = true; |
550 | data().NeedOverloadResolutionForMoveConstructor = true; |
551 | data().NeedOverloadResolutionForDestructor = true; |
552 | } |
553 | |
554 | // C++20 [dcl.constexpr]p5: |
555 | // The definition of a constexpr destructor whose function-body is not |
556 | // = delete shall additionally satisfy the following requirement: |
557 | // -- for every subobject of class type or (possibly multi-dimensional) |
558 | // array thereof, that class type shall have a constexpr destructor |
559 | if (!Subobj->hasConstexprDestructor()) |
560 | data().DefaultedDestructorIsConstexpr = |
561 | getASTContext().getLangOpts().CPlusPlus23; |
562 | |
563 | // C++20 [temp.param]p7: |
564 | // A structural type is [...] a literal class type [for which] the types |
565 | // of all base classes and non-static data members are structural types or |
566 | // (possibly multi-dimensional) array thereof |
567 | if (!Subobj->data().StructuralIfLiteral) |
568 | data().StructuralIfLiteral = false; |
569 | } |
570 | |
571 | const CXXRecordDecl *CXXRecordDecl::getStandardLayoutBaseWithFields() const { |
572 | assert( |
573 | isStandardLayout() && |
574 | "getStandardLayoutBaseWithFields called on a non-standard-layout type"); |
575 | #ifdef EXPENSIVE_CHECKS |
576 | { |
577 | unsigned NumberOfBasesWithFields = 0; |
578 | if (!field_empty()) |
579 | ++NumberOfBasesWithFields; |
580 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; |
581 | forallBases([&](const CXXRecordDecl *Base) -> bool { |
582 | if (!Base->field_empty()) |
583 | ++NumberOfBasesWithFields; |
584 | assert( |
585 | UniqueBases.insert(Base->getCanonicalDecl()).second && |
586 | "Standard layout struct has multiple base classes of the same type"); |
587 | return true; |
588 | }); |
589 | assert(NumberOfBasesWithFields <= 1 && |
590 | "Standard layout struct has fields declared in more than one class"); |
591 | } |
592 | #endif |
593 | if (!field_empty()) |
594 | return this; |
595 | const CXXRecordDecl *Result = this; |
596 | forallBases(BaseMatches: [&](const CXXRecordDecl *Base) -> bool { |
597 | if (!Base->field_empty()) { |
598 | // This is the base where the fields are declared; return early |
599 | Result = Base; |
600 | return false; |
601 | } |
602 | return true; |
603 | }); |
604 | return Result; |
605 | } |
606 | |
607 | bool CXXRecordDecl::hasConstexprDestructor() const { |
608 | auto *Dtor = getDestructor(); |
609 | return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr(); |
610 | } |
611 | |
612 | bool CXXRecordDecl::hasAnyDependentBases() const { |
613 | if (!isDependentContext()) |
614 | return false; |
615 | |
616 | return !forallBases(BaseMatches: [](const CXXRecordDecl *) { return true; }); |
617 | } |
618 | |
619 | bool CXXRecordDecl::isTriviallyCopyable() const { |
620 | // C++0x [class]p5: |
621 | // A trivially copyable class is a class that: |
622 | // -- has no non-trivial copy constructors, |
623 | if (hasNonTrivialCopyConstructor()) return false; |
624 | // -- has no non-trivial move constructors, |
625 | if (hasNonTrivialMoveConstructor()) return false; |
626 | // -- has no non-trivial copy assignment operators, |
627 | if (hasNonTrivialCopyAssignment()) return false; |
628 | // -- has no non-trivial move assignment operators, and |
629 | if (hasNonTrivialMoveAssignment()) return false; |
630 | // -- has a trivial destructor. |
631 | if (!hasTrivialDestructor()) return false; |
632 | |
633 | return true; |
634 | } |
635 | |
636 | bool CXXRecordDecl::isTriviallyCopyConstructible() const { |
637 | |
638 | // A trivially copy constructible class is a class that: |
639 | // -- has no non-trivial copy constructors, |
640 | if (hasNonTrivialCopyConstructor()) |
641 | return false; |
642 | // -- has a trivial destructor. |
643 | if (!hasTrivialDestructor()) |
644 | return false; |
645 | |
646 | return true; |
647 | } |
648 | |
649 | void CXXRecordDecl::markedVirtualFunctionPure() { |
650 | // C++ [class.abstract]p2: |
651 | // A class is abstract if it has at least one pure virtual function. |
652 | data().Abstract = true; |
653 | } |
654 | |
655 | bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( |
656 | ASTContext &Ctx, const CXXRecordDecl *XFirst) { |
657 | if (!getNumBases()) |
658 | return false; |
659 | |
660 | llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases; |
661 | llvm::SmallPtrSet<const CXXRecordDecl*, 8> M; |
662 | SmallVector<const CXXRecordDecl*, 8> WorkList; |
663 | |
664 | // Visit a type that we have determined is an element of M(S). |
665 | auto Visit = [&](const CXXRecordDecl *RD) -> bool { |
666 | RD = RD->getCanonicalDecl(); |
667 | |
668 | // C++2a [class]p8: |
669 | // A class S is a standard-layout class if it [...] has no element of the |
670 | // set M(S) of types as a base class. |
671 | // |
672 | // If we find a subobject of an empty type, it might also be a base class, |
673 | // so we'll need to walk the base classes to check. |
674 | if (!RD->data().HasBasesWithFields) { |
675 | // Walk the bases the first time, stopping if we find the type. Build a |
676 | // set of them so we don't need to walk them again. |
677 | if (Bases.empty()) { |
678 | bool RDIsBase = !forallBases(BaseMatches: [&](const CXXRecordDecl *Base) -> bool { |
679 | Base = Base->getCanonicalDecl(); |
680 | if (RD == Base) |
681 | return false; |
682 | Bases.insert(Ptr: Base); |
683 | return true; |
684 | }); |
685 | if (RDIsBase) |
686 | return true; |
687 | } else { |
688 | if (Bases.count(Ptr: RD)) |
689 | return true; |
690 | } |
691 | } |
692 | |
693 | if (M.insert(Ptr: RD).second) |
694 | WorkList.push_back(Elt: RD); |
695 | return false; |
696 | }; |
697 | |
698 | if (Visit(XFirst)) |
699 | return true; |
700 | |
701 | while (!WorkList.empty()) { |
702 | const CXXRecordDecl *X = WorkList.pop_back_val(); |
703 | |
704 | // FIXME: We don't check the bases of X. That matches the standard, but |
705 | // that sure looks like a wording bug. |
706 | |
707 | // -- If X is a non-union class type with a non-static data member |
708 | // [recurse to each field] that is either of zero size or is the |
709 | // first non-static data member of X |
710 | // -- If X is a union type, [recurse to union members] |
711 | bool IsFirstField = true; |
712 | for (auto *FD : X->fields()) { |
713 | // FIXME: Should we really care about the type of the first non-static |
714 | // data member of a non-union if there are preceding unnamed bit-fields? |
715 | if (FD->isUnnamedBitField()) |
716 | continue; |
717 | |
718 | if (!IsFirstField && !FD->isZeroSize(Ctx)) |
719 | continue; |
720 | |
721 | if (FD->isInvalidDecl()) |
722 | continue; |
723 | |
724 | // -- If X is n array type, [visit the element type] |
725 | QualType T = Ctx.getBaseElementType(FD->getType()); |
726 | if (auto *RD = T->getAsCXXRecordDecl()) |
727 | if (Visit(RD)) |
728 | return true; |
729 | |
730 | if (!X->isUnion()) |
731 | IsFirstField = false; |
732 | } |
733 | } |
734 | |
735 | return false; |
736 | } |
737 | |
738 | bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const { |
739 | assert(isLambda() && "not a lambda"); |
740 | |
741 | // C++2a [expr.prim.lambda.capture]p11: |
742 | // The closure type associated with a lambda-expression has no default |
743 | // constructor if the lambda-expression has a lambda-capture and a |
744 | // defaulted default constructor otherwise. It has a deleted copy |
745 | // assignment operator if the lambda-expression has a lambda-capture and |
746 | // defaulted copy and move assignment operators otherwise. |
747 | // |
748 | // C++17 [expr.prim.lambda]p21: |
749 | // The closure type associated with a lambda-expression has no default |
750 | // constructor and a deleted copy assignment operator. |
751 | if (!isCapturelessLambda()) |
752 | return false; |
753 | return getASTContext().getLangOpts().CPlusPlus20; |
754 | } |
755 | |
756 | void CXXRecordDecl::addedMember(Decl *D) { |
757 | if (!D->isImplicit() && !isa<FieldDecl>(Val: D) && !isa<IndirectFieldDecl>(Val: D) && |
758 | (!isa<TagDecl>(Val: D) || |
759 | cast<TagDecl>(Val: D)->getTagKind() == TagTypeKind::Class || |
760 | cast<TagDecl>(Val: D)->getTagKind() == TagTypeKind::Interface)) |
761 | data().HasOnlyCMembers = false; |
762 | |
763 | // Ignore friends and invalid declarations. |
764 | if (D->getFriendObjectKind() || D->isInvalidDecl()) |
765 | return; |
766 | |
767 | auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: D); |
768 | if (FunTmpl) |
769 | D = FunTmpl->getTemplatedDecl(); |
770 | |
771 | // FIXME: Pass NamedDecl* to addedMember? |
772 | Decl *DUnderlying = D; |
773 | if (auto *ND = dyn_cast<NamedDecl>(Val: DUnderlying)) { |
774 | DUnderlying = ND->getUnderlyingDecl(); |
775 | if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(Val: DUnderlying)) |
776 | DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); |
777 | } |
778 | |
779 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: D)) { |
780 | if (Method->isVirtual()) { |
781 | // C++ [dcl.init.aggr]p1: |
782 | // An aggregate is an array or a class with [...] no virtual functions. |
783 | data().Aggregate = false; |
784 | |
785 | // C++ [class]p4: |
786 | // A POD-struct is an aggregate class... |
787 | data().PlainOldData = false; |
788 | |
789 | // C++14 [meta.unary.prop]p4: |
790 | // T is a class type [...] with [...] no virtual member functions... |
791 | data().Empty = false; |
792 | |
793 | // C++ [class.virtual]p1: |
794 | // A class that declares or inherits a virtual function is called a |
795 | // polymorphic class. |
796 | data().Polymorphic = true; |
797 | |
798 | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: |
799 | // A [default constructor, copy/move constructor, or copy/move |
800 | // assignment operator for a class X] is trivial [...] if: |
801 | // -- class X has no virtual functions [...] |
802 | data().HasTrivialSpecialMembers &= SMF_Destructor; |
803 | data().HasTrivialSpecialMembersForCall &= SMF_Destructor; |
804 | |
805 | // C++0x [class]p7: |
806 | // A standard-layout class is a class that: [...] |
807 | // -- has no virtual functions |
808 | data().IsStandardLayout = false; |
809 | data().IsCXX11StandardLayout = false; |
810 | } |
811 | } |
812 | |
813 | // Notify the listener if an implicit member was added after the definition |
814 | // was completed. |
815 | if (!isBeingDefined() && D->isImplicit()) |
816 | if (ASTMutationListener *L = getASTMutationListener()) |
817 | L->AddedCXXImplicitMember(RD: data().Definition, D); |
818 | |
819 | // The kind of special member this declaration is, if any. |
820 | unsigned SMKind = 0; |
821 | |
822 | // Handle constructors. |
823 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: D)) { |
824 | if (Constructor->isInheritingConstructor()) { |
825 | // Ignore constructor shadow declarations. They are lazily created and |
826 | // so shouldn't affect any properties of the class. |
827 | } else { |
828 | if (!Constructor->isImplicit()) { |
829 | // Note that we have a user-declared constructor. |
830 | data().UserDeclaredConstructor = true; |
831 | |
832 | const TargetInfo &TI = getASTContext().getTargetInfo(); |
833 | if ((!Constructor->isDeleted() && !Constructor->isDefaulted()) || |
834 | !TI.areDefaultedSMFStillPOD(getLangOpts())) { |
835 | // C++ [class]p4: |
836 | // A POD-struct is an aggregate class [...] |
837 | // Since the POD bit is meant to be C++03 POD-ness, clear it even if |
838 | // the type is technically an aggregate in C++0x since it wouldn't be |
839 | // in 03. |
840 | data().PlainOldData = false; |
841 | } |
842 | } |
843 | |
844 | if (Constructor->isDefaultConstructor()) { |
845 | SMKind |= SMF_DefaultConstructor; |
846 | |
847 | if (Constructor->isUserProvided()) |
848 | data().UserProvidedDefaultConstructor = true; |
849 | if (Constructor->isConstexpr()) |
850 | data().HasConstexprDefaultConstructor = true; |
851 | if (Constructor->isDefaulted()) |
852 | data().HasDefaultedDefaultConstructor = true; |
853 | } |
854 | |
855 | if (!FunTmpl) { |
856 | unsigned Quals; |
857 | if (Constructor->isCopyConstructor(TypeQuals&: Quals)) { |
858 | SMKind |= SMF_CopyConstructor; |
859 | |
860 | if (Quals & Qualifiers::Const) |
861 | data().HasDeclaredCopyConstructorWithConstParam = true; |
862 | } else if (Constructor->isMoveConstructor()) |
863 | SMKind |= SMF_MoveConstructor; |
864 | } |
865 | |
866 | // C++11 [dcl.init.aggr]p1: DR1518 |
867 | // An aggregate is an array or a class with no user-provided [or] |
868 | // explicit [...] constructors |
869 | // C++20 [dcl.init.aggr]p1: |
870 | // An aggregate is an array or a class with no user-declared [...] |
871 | // constructors |
872 | if (getASTContext().getLangOpts().CPlusPlus20 |
873 | ? !Constructor->isImplicit() |
874 | : (Constructor->isUserProvided() || Constructor->isExplicit())) |
875 | data().Aggregate = false; |
876 | } |
877 | } |
878 | |
879 | // Handle constructors, including those inherited from base classes. |
880 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: DUnderlying)) { |
881 | // Record if we see any constexpr constructors which are neither copy |
882 | // nor move constructors. |
883 | // C++1z [basic.types]p10: |
884 | // [...] has at least one constexpr constructor or constructor template |
885 | // (possibly inherited from a base class) that is not a copy or move |
886 | // constructor [...] |
887 | if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) |
888 | data().HasConstexprNonCopyMoveConstructor = true; |
889 | if (!isa<CXXConstructorDecl>(Val: D) && Constructor->isDefaultConstructor()) |
890 | data().HasInheritedDefaultConstructor = true; |
891 | } |
892 | |
893 | // Handle member functions. |
894 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: D)) { |
895 | if (isa<CXXDestructorDecl>(Val: D)) |
896 | SMKind |= SMF_Destructor; |
897 | |
898 | if (Method->isCopyAssignmentOperator()) { |
899 | SMKind |= SMF_CopyAssignment; |
900 | |
901 | const auto *ParamTy = |
902 | Method->getNonObjectParameter(0)->getType()->getAs<ReferenceType>(); |
903 | if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) |
904 | data().HasDeclaredCopyAssignmentWithConstParam = true; |
905 | } |
906 | |
907 | if (Method->isMoveAssignmentOperator()) |
908 | SMKind |= SMF_MoveAssignment; |
909 | |
910 | // Keep the list of conversion functions up-to-date. |
911 | if (auto *Conversion = dyn_cast<CXXConversionDecl>(Val: D)) { |
912 | // FIXME: We use the 'unsafe' accessor for the access specifier here, |
913 | // because Sema may not have set it yet. That's really just a misdesign |
914 | // in Sema. However, LLDB *will* have set the access specifier correctly, |
915 | // and adds declarations after the class is technically completed, |
916 | // so completeDefinition()'s overriding of the access specifiers doesn't |
917 | // work. |
918 | AccessSpecifier AS = Conversion->getAccessUnsafe(); |
919 | |
920 | if (Conversion->getPrimaryTemplate()) { |
921 | // We don't record specializations. |
922 | } else { |
923 | ASTContext &Ctx = getASTContext(); |
924 | ASTUnresolvedSet &Conversions = data().Conversions.get(C&: Ctx); |
925 | NamedDecl *Primary = |
926 | FunTmpl ? cast<NamedDecl>(Val: FunTmpl) : cast<NamedDecl>(Val: Conversion); |
927 | if (Primary->getPreviousDecl()) |
928 | Conversions.replace(Old: cast<NamedDecl>(Primary->getPreviousDecl()), |
929 | New: Primary, AS); |
930 | else |
931 | Conversions.addDecl(C&: Ctx, D: Primary, AS); |
932 | } |
933 | } |
934 | |
935 | if (SMKind) { |
936 | // If this is the first declaration of a special member, we no longer have |
937 | // an implicit trivial special member. |
938 | data().HasTrivialSpecialMembers &= |
939 | data().DeclaredSpecialMembers | ~SMKind; |
940 | data().HasTrivialSpecialMembersForCall &= |
941 | data().DeclaredSpecialMembers | ~SMKind; |
942 | |
943 | // Note when we have declared a declared special member, and suppress the |
944 | // implicit declaration of this special member. |
945 | data().DeclaredSpecialMembers |= SMKind; |
946 | if (!Method->isImplicit()) { |
947 | data().UserDeclaredSpecialMembers |= SMKind; |
948 | |
949 | const TargetInfo &TI = getASTContext().getTargetInfo(); |
950 | if ((!Method->isDeleted() && !Method->isDefaulted() && |
951 | SMKind != SMF_MoveAssignment) || |
952 | !TI.areDefaultedSMFStillPOD(getLangOpts())) { |
953 | // C++03 [class]p4: |
954 | // A POD-struct is an aggregate class that has [...] no user-defined |
955 | // copy assignment operator and no user-defined destructor. |
956 | // |
957 | // Since the POD bit is meant to be C++03 POD-ness, and in C++03, |
958 | // aggregates could not have any constructors, clear it even for an |
959 | // explicitly defaulted or deleted constructor. |
960 | // type is technically an aggregate in C++0x since it wouldn't be in |
961 | // 03. |
962 | // |
963 | // Also, a user-declared move assignment operator makes a class |
964 | // non-POD. This is an extension in C++03. |
965 | data().PlainOldData = false; |
966 | } |
967 | } |
968 | // When instantiating a class, we delay updating the destructor and |
969 | // triviality properties of the class until selecting a destructor and |
970 | // computing the eligibility of its special member functions. This is |
971 | // because there might be function constraints that we need to evaluate |
972 | // and compare later in the instantiation. |
973 | if (!Method->isIneligibleOrNotSelected()) { |
974 | addedEligibleSpecialMemberFunction(MD: Method, SMKind); |
975 | } |
976 | } |
977 | |
978 | return; |
979 | } |
980 | |
981 | // Handle non-static data members. |
982 | if (const auto *Field = dyn_cast<FieldDecl>(Val: D)) { |
983 | ASTContext &Context = getASTContext(); |
984 | |
985 | // C++2a [class]p7: |
986 | // A standard-layout class is a class that: |
987 | // [...] |
988 | // -- has all non-static data members and bit-fields in the class and |
989 | // its base classes first declared in the same class |
990 | if (data().HasBasesWithFields) |
991 | data().IsStandardLayout = false; |
992 | |
993 | // C++ [class.bit]p2: |
994 | // A declaration for a bit-field that omits the identifier declares an |
995 | // unnamed bit-field. Unnamed bit-fields are not members and cannot be |
996 | // initialized. |
997 | if (Field->isUnnamedBitField()) { |
998 | // C++ [meta.unary.prop]p4: [LWG2358] |
999 | // T is a class type [...] with [...] no unnamed bit-fields of non-zero |
1000 | // length |
1001 | if (data().Empty && !Field->isZeroLengthBitField() && |
1002 | Context.getLangOpts().getClangABICompat() > |
1003 | LangOptions::ClangABI::Ver6) |
1004 | data().Empty = false; |
1005 | return; |
1006 | } |
1007 | |
1008 | // C++11 [class]p7: |
1009 | // A standard-layout class is a class that: |
1010 | // -- either has no non-static data members in the most derived class |
1011 | // [...] or has no base classes with non-static data members |
1012 | if (data().HasBasesWithNonStaticDataMembers) |
1013 | data().IsCXX11StandardLayout = false; |
1014 | |
1015 | // C++ [dcl.init.aggr]p1: |
1016 | // An aggregate is an array or a class (clause 9) with [...] no |
1017 | // private or protected non-static data members (clause 11). |
1018 | // |
1019 | // A POD must be an aggregate. |
1020 | if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { |
1021 | data().Aggregate = false; |
1022 | data().PlainOldData = false; |
1023 | |
1024 | // C++20 [temp.param]p7: |
1025 | // A structural type is [...] a literal class type [for which] all |
1026 | // non-static data members are public |
1027 | data().StructuralIfLiteral = false; |
1028 | } |
1029 | |
1030 | // Track whether this is the first field. We use this when checking |
1031 | // whether the class is standard-layout below. |
1032 | bool IsFirstField = !data().HasPrivateFields && |
1033 | !data().HasProtectedFields && !data().HasPublicFields; |
1034 | |
1035 | // C++0x [class]p7: |
1036 | // A standard-layout class is a class that: |
1037 | // [...] |
1038 | // -- has the same access control for all non-static data members, |
1039 | switch (D->getAccess()) { |
1040 | case AS_private: data().HasPrivateFields = true; break; |
1041 | case AS_protected: data().HasProtectedFields = true; break; |
1042 | case AS_public: data().HasPublicFields = true; break; |
1043 | case AS_none: llvm_unreachable("Invalid access specifier"); |
1044 | }; |
1045 | if ((data().HasPrivateFields + data().HasProtectedFields + |
1046 | data().HasPublicFields) > 1) { |
1047 | data().IsStandardLayout = false; |
1048 | data().IsCXX11StandardLayout = false; |
1049 | } |
1050 | |
1051 | // Keep track of the presence of mutable fields. |
1052 | if (Field->isMutable()) { |
1053 | data().HasMutableFields = true; |
1054 | |
1055 | // C++20 [temp.param]p7: |
1056 | // A structural type is [...] a literal class type [for which] all |
1057 | // non-static data members are public |
1058 | data().StructuralIfLiteral = false; |
1059 | } |
1060 | |
1061 | // C++11 [class.union]p8, DR1460: |
1062 | // If X is a union, a non-static data member of X that is not an anonymous |
1063 | // union is a variant member of X. |
1064 | if (isUnion() && !Field->isAnonymousStructOrUnion()) |
1065 | data().HasVariantMembers = true; |
1066 | |
1067 | if (isUnion() && IsFirstField) |
1068 | data().HasUninitializedFields = true; |
1069 | |
1070 | // C++0x [class]p9: |
1071 | // A POD struct is a class that is both a trivial class and a |
1072 | // standard-layout class, and has no non-static data members of type |
1073 | // non-POD struct, non-POD union (or array of such types). |
1074 | // |
1075 | // Automatic Reference Counting: the presence of a member of Objective-C pointer type |
1076 | // that does not explicitly have no lifetime makes the class a non-POD. |
1077 | QualType T = Context.getBaseElementType(Field->getType()); |
1078 | if (T->isObjCRetainableType() || T.isObjCGCStrong()) { |
1079 | if (T.hasNonTrivialObjCLifetime()) { |
1080 | // Objective-C Automatic Reference Counting: |
1081 | // If a class has a non-static data member of Objective-C pointer |
1082 | // type (or array thereof), it is a non-POD type and its |
1083 | // default constructor (if any), copy constructor, move constructor, |
1084 | // copy assignment operator, move assignment operator, and destructor are |
1085 | // non-trivial. |
1086 | setHasObjectMember(true); |
1087 | struct DefinitionData &Data = data(); |
1088 | Data.PlainOldData = false; |
1089 | Data.HasTrivialSpecialMembers = 0; |
1090 | |
1091 | // __strong or __weak fields do not make special functions non-trivial |
1092 | // for the purpose of calls. |
1093 | Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); |
1094 | if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) |
1095 | data().HasTrivialSpecialMembersForCall = 0; |
1096 | |
1097 | // Structs with __weak fields should never be passed directly. |
1098 | if (LT == Qualifiers::OCL_Weak) |
1099 | setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs); |
1100 | |
1101 | Data.HasIrrelevantDestructor = false; |
1102 | |
1103 | if (isUnion()) { |
1104 | data().DefaultedCopyConstructorIsDeleted = true; |
1105 | data().DefaultedMoveConstructorIsDeleted = true; |
1106 | data().DefaultedCopyAssignmentIsDeleted = true; |
1107 | data().DefaultedMoveAssignmentIsDeleted = true; |
1108 | data().DefaultedDestructorIsDeleted = true; |
1109 | data().NeedOverloadResolutionForCopyConstructor = true; |
1110 | data().NeedOverloadResolutionForMoveConstructor = true; |
1111 | data().NeedOverloadResolutionForCopyAssignment = true; |
1112 | data().NeedOverloadResolutionForMoveAssignment = true; |
1113 | data().NeedOverloadResolutionForDestructor = true; |
1114 | } |
1115 | } else if (!Context.getLangOpts().ObjCAutoRefCount) { |
1116 | setHasObjectMember(true); |
1117 | } |
1118 | } else if (!T.isCXX98PODType(Context)) |
1119 | data().PlainOldData = false; |
1120 | |
1121 | // If a class has an address-discriminated signed pointer member, it is a |
1122 | // non-POD type and its copy constructor, move constructor, copy assignment |
1123 | // operator, move assignment operator are non-trivial. |
1124 | if (PointerAuthQualifier Q = T.getPointerAuth()) { |
1125 | if (Q.isAddressDiscriminated()) { |
1126 | struct DefinitionData &Data = data(); |
1127 | Data.PlainOldData = false; |
1128 | Data.HasTrivialSpecialMembers &= |
1129 | ~(SMF_CopyConstructor | SMF_MoveConstructor | SMF_CopyAssignment | |
1130 | SMF_MoveAssignment); |
1131 | setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs); |
1132 | |
1133 | // Copy/move constructors/assignment operators of a union are deleted by |
1134 | // default if it has an address-discriminated ptrauth field. |
1135 | if (isUnion()) { |
1136 | data().DefaultedCopyConstructorIsDeleted = true; |
1137 | data().DefaultedMoveConstructorIsDeleted = true; |
1138 | data().DefaultedCopyAssignmentIsDeleted = true; |
1139 | data().DefaultedMoveAssignmentIsDeleted = true; |
1140 | data().NeedOverloadResolutionForCopyConstructor = true; |
1141 | data().NeedOverloadResolutionForMoveConstructor = true; |
1142 | data().NeedOverloadResolutionForCopyAssignment = true; |
1143 | data().NeedOverloadResolutionForMoveAssignment = true; |
1144 | } |
1145 | } |
1146 | } |
1147 | |
1148 | if (Field->hasAttr<ExplicitInitAttr>()) |
1149 | setHasUninitializedExplicitInitFields(true); |
1150 | |
1151 | if (T->isReferenceType()) { |
1152 | if (!Field->hasInClassInitializer()) |
1153 | data().HasUninitializedReferenceMember = true; |
1154 | |
1155 | // C++0x [class]p7: |
1156 | // A standard-layout class is a class that: |
1157 | // -- has no non-static data members of type [...] reference, |
1158 | data().IsStandardLayout = false; |
1159 | data().IsCXX11StandardLayout = false; |
1160 | |
1161 | // C++1z [class.copy.ctor]p10: |
1162 | // A defaulted copy constructor for a class X is defined as deleted if X has: |
1163 | // -- a non-static data member of rvalue reference type |
1164 | if (T->isRValueReferenceType()) |
1165 | data().DefaultedCopyConstructorIsDeleted = true; |
1166 | } |
1167 | |
1168 | if (isUnion() && !Field->isMutable()) { |
1169 | if (Field->hasInClassInitializer()) |
1170 | data().HasUninitializedFields = false; |
1171 | } else if (!Field->hasInClassInitializer() && !Field->isMutable()) { |
1172 | if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { |
1173 | if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) |
1174 | data().HasUninitializedFields = true; |
1175 | } else { |
1176 | data().HasUninitializedFields = true; |
1177 | } |
1178 | } |
1179 | |
1180 | // Record if this field is the first non-literal or volatile field or base. |
1181 | if (!T->isLiteralType(Ctx: Context) || T.isVolatileQualified()) |
1182 | data().HasNonLiteralTypeFieldsOrBases = true; |
1183 | |
1184 | if (Field->hasInClassInitializer() || |
1185 | (Field->isAnonymousStructOrUnion() && |
1186 | Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { |
1187 | data().HasInClassInitializer = true; |
1188 | |
1189 | // C++11 [class]p5: |
1190 | // A default constructor is trivial if [...] no non-static data member |
1191 | // of its class has a brace-or-equal-initializer. |
1192 | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; |
1193 | |
1194 | // C++11 [dcl.init.aggr]p1: |
1195 | // An aggregate is a [...] class with [...] no |
1196 | // brace-or-equal-initializers for non-static data members. |
1197 | // |
1198 | // This rule was removed in C++14. |
1199 | if (!getASTContext().getLangOpts().CPlusPlus14) |
1200 | data().Aggregate = false; |
1201 | |
1202 | // C++11 [class]p10: |
1203 | // A POD struct is [...] a trivial class. |
1204 | data().PlainOldData = false; |
1205 | } |
1206 | |
1207 | // C++11 [class.copy]p23: |
1208 | // A defaulted copy/move assignment operator for a class X is defined |
1209 | // as deleted if X has: |
1210 | // -- a non-static data member of reference type |
1211 | if (T->isReferenceType()) { |
1212 | data().DefaultedCopyAssignmentIsDeleted = true; |
1213 | data().DefaultedMoveAssignmentIsDeleted = true; |
1214 | } |
1215 | |
1216 | // Bitfields of length 0 are also zero-sized, but we already bailed out for |
1217 | // those because they are always unnamed. |
1218 | bool IsZeroSize = Field->isZeroSize(Ctx: Context); |
1219 | |
1220 | if (const auto *RecordTy = T->getAs<RecordType>()) { |
1221 | auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); |
1222 | if (FieldRec->getDefinition()) { |
1223 | addedClassSubobject(Subobj: FieldRec); |
1224 | |
1225 | // We may need to perform overload resolution to determine whether a |
1226 | // field can be moved if it's const or volatile qualified. |
1227 | if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { |
1228 | // We need to care about 'const' for the copy constructor because an |
1229 | // implicit copy constructor might be declared with a non-const |
1230 | // parameter. |
1231 | data().NeedOverloadResolutionForCopyConstructor = true; |
1232 | data().NeedOverloadResolutionForMoveConstructor = true; |
1233 | data().NeedOverloadResolutionForCopyAssignment = true; |
1234 | data().NeedOverloadResolutionForMoveAssignment = true; |
1235 | } |
1236 | |
1237 | // C++11 [class.ctor]p5, C++11 [class.copy]p11: |
1238 | // A defaulted [special member] for a class X is defined as |
1239 | // deleted if: |
1240 | // -- X is a union-like class that has a variant member with a |
1241 | // non-trivial [corresponding special member] |
1242 | if (isUnion()) { |
1243 | if (FieldRec->hasNonTrivialCopyConstructor()) |
1244 | data().DefaultedCopyConstructorIsDeleted = true; |
1245 | if (FieldRec->hasNonTrivialMoveConstructor()) |
1246 | data().DefaultedMoveConstructorIsDeleted = true; |
1247 | if (FieldRec->hasNonTrivialCopyAssignment()) |
1248 | data().DefaultedCopyAssignmentIsDeleted = true; |
1249 | if (FieldRec->hasNonTrivialMoveAssignment()) |
1250 | data().DefaultedMoveAssignmentIsDeleted = true; |
1251 | if (FieldRec->hasNonTrivialDestructor()) { |
1252 | data().DefaultedDestructorIsDeleted = true; |
1253 | // C++20 [dcl.constexpr]p5: |
1254 | // The definition of a constexpr destructor whose function-body is |
1255 | // not = delete shall additionally satisfy... |
1256 | data().DefaultedDestructorIsConstexpr = true; |
1257 | } |
1258 | } |
1259 | |
1260 | // For an anonymous union member, our overload resolution will perform |
1261 | // overload resolution for its members. |
1262 | if (Field->isAnonymousStructOrUnion()) { |
1263 | data().NeedOverloadResolutionForCopyConstructor |= |
1264 | FieldRec->data().NeedOverloadResolutionForCopyConstructor; |
1265 | data().NeedOverloadResolutionForMoveConstructor |= |
1266 | FieldRec->data().NeedOverloadResolutionForMoveConstructor; |
1267 | data().NeedOverloadResolutionForCopyAssignment |= |
1268 | FieldRec->data().NeedOverloadResolutionForCopyAssignment; |
1269 | data().NeedOverloadResolutionForMoveAssignment |= |
1270 | FieldRec->data().NeedOverloadResolutionForMoveAssignment; |
1271 | data().NeedOverloadResolutionForDestructor |= |
1272 | FieldRec->data().NeedOverloadResolutionForDestructor; |
1273 | } |
1274 | |
1275 | // C++0x [class.ctor]p5: |
1276 | // A default constructor is trivial [...] if: |
1277 | // -- for all the non-static data members of its class that are of |
1278 | // class type (or array thereof), each such class has a trivial |
1279 | // default constructor. |
1280 | if (!FieldRec->hasTrivialDefaultConstructor()) |
1281 | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; |
1282 | |
1283 | // C++0x [class.copy]p13: |
1284 | // A copy/move constructor for class X is trivial if [...] |
1285 | // [...] |
1286 | // -- for each non-static data member of X that is of class type (or |
1287 | // an array thereof), the constructor selected to copy/move that |
1288 | // member is trivial; |
1289 | if (!FieldRec->hasTrivialCopyConstructor()) |
1290 | data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; |
1291 | |
1292 | if (!FieldRec->hasTrivialCopyConstructorForCall()) |
1293 | data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; |
1294 | |
1295 | // If the field doesn't have a simple move constructor, we'll eagerly |
1296 | // declare the move constructor for this class and we'll decide whether |
1297 | // it's trivial then. |
1298 | if (!FieldRec->hasTrivialMoveConstructor()) |
1299 | data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; |
1300 | |
1301 | if (!FieldRec->hasTrivialMoveConstructorForCall()) |
1302 | data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; |
1303 | |
1304 | // C++0x [class.copy]p27: |
1305 | // A copy/move assignment operator for class X is trivial if [...] |
1306 | // [...] |
1307 | // -- for each non-static data member of X that is of class type (or |
1308 | // an array thereof), the assignment operator selected to |
1309 | // copy/move that member is trivial; |
1310 | if (!FieldRec->hasTrivialCopyAssignment()) |
1311 | data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; |
1312 | // If the field doesn't have a simple move assignment, we'll eagerly |
1313 | // declare the move assignment for this class and we'll decide whether |
1314 | // it's trivial then. |
1315 | if (!FieldRec->hasTrivialMoveAssignment()) |
1316 | data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; |
1317 | |
1318 | if (!FieldRec->hasTrivialDestructor()) |
1319 | data().HasTrivialSpecialMembers &= ~SMF_Destructor; |
1320 | if (!FieldRec->hasTrivialDestructorForCall()) |
1321 | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; |
1322 | if (!FieldRec->hasIrrelevantDestructor()) |
1323 | data().HasIrrelevantDestructor = false; |
1324 | if (FieldRec->isAnyDestructorNoReturn()) |
1325 | data().IsAnyDestructorNoReturn = true; |
1326 | if (FieldRec->hasObjectMember()) |
1327 | setHasObjectMember(true); |
1328 | if (FieldRec->hasVolatileMember()) |
1329 | setHasVolatileMember(true); |
1330 | if (FieldRec->getArgPassingRestrictions() == |
1331 | RecordArgPassingKind::CanNeverPassInRegs) |
1332 | setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs); |
1333 | |
1334 | // C++0x [class]p7: |
1335 | // A standard-layout class is a class that: |
1336 | // -- has no non-static data members of type non-standard-layout |
1337 | // class (or array of such types) [...] |
1338 | if (!FieldRec->isStandardLayout()) |
1339 | data().IsStandardLayout = false; |
1340 | if (!FieldRec->isCXX11StandardLayout()) |
1341 | data().IsCXX11StandardLayout = false; |
1342 | |
1343 | // C++2a [class]p7: |
1344 | // A standard-layout class is a class that: |
1345 | // [...] |
1346 | // -- has no element of the set M(S) of types as a base class. |
1347 | if (data().IsStandardLayout && |
1348 | (isUnion() || IsFirstField || IsZeroSize) && |
1349 | hasSubobjectAtOffsetZeroOfEmptyBaseType(Ctx&: Context, XFirst: FieldRec)) |
1350 | data().IsStandardLayout = false; |
1351 | |
1352 | // C++11 [class]p7: |
1353 | // A standard-layout class is a class that: |
1354 | // -- has no base classes of the same type as the first non-static |
1355 | // data member |
1356 | if (data().IsCXX11StandardLayout && IsFirstField) { |
1357 | // FIXME: We should check all base classes here, not just direct |
1358 | // base classes. |
1359 | for (const auto &BI : bases()) { |
1360 | if (Context.hasSameUnqualifiedType(T1: BI.getType(), T2: T)) { |
1361 | data().IsCXX11StandardLayout = false; |
1362 | break; |
1363 | } |
1364 | } |
1365 | } |
1366 | |
1367 | // Keep track of the presence of mutable fields. |
1368 | if (FieldRec->hasMutableFields()) |
1369 | data().HasMutableFields = true; |
1370 | |
1371 | if (Field->isMutable()) { |
1372 | // Our copy constructor/assignment might call something other than |
1373 | // the subobject's copy constructor/assignment if it's mutable and of |
1374 | // class type. |
1375 | data().NeedOverloadResolutionForCopyConstructor = true; |
1376 | data().NeedOverloadResolutionForCopyAssignment = true; |
1377 | } |
1378 | |
1379 | // C++11 [class.copy]p13: |
1380 | // If the implicitly-defined constructor would satisfy the |
1381 | // requirements of a constexpr constructor, the implicitly-defined |
1382 | // constructor is constexpr. |
1383 | // C++11 [dcl.constexpr]p4: |
1384 | // -- every constructor involved in initializing non-static data |
1385 | // members [...] shall be a constexpr constructor |
1386 | if (!Field->hasInClassInitializer() && |
1387 | !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) |
1388 | // The standard requires any in-class initializer to be a constant |
1389 | // expression. We consider this to be a defect. |
1390 | data().DefaultedDefaultConstructorIsConstexpr = |
1391 | Context.getLangOpts().CPlusPlus23; |
1392 | |
1393 | // C++11 [class.copy]p8: |
1394 | // The implicitly-declared copy constructor for a class X will have |
1395 | // the form 'X::X(const X&)' if each potentially constructed subobject |
1396 | // of a class type M (or array thereof) has a copy constructor whose |
1397 | // first parameter is of type 'const M&' or 'const volatile M&'. |
1398 | if (!FieldRec->hasCopyConstructorWithConstParam()) |
1399 | data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; |
1400 | |
1401 | // C++11 [class.copy]p18: |
1402 | // The implicitly-declared copy assignment oeprator for a class X will |
1403 | // have the form 'X& X::operator=(const X&)' if [...] for all the |
1404 | // non-static data members of X that are of a class type M (or array |
1405 | // thereof), each such class type has a copy assignment operator whose |
1406 | // parameter is of type 'const M&', 'const volatile M&' or 'M'. |
1407 | if (!FieldRec->hasCopyAssignmentWithConstParam()) |
1408 | data().ImplicitCopyAssignmentHasConstParam = false; |
1409 | |
1410 | if (FieldRec->hasUninitializedExplicitInitFields() && |
1411 | FieldRec->isAggregate()) |
1412 | setHasUninitializedExplicitInitFields(true); |
1413 | |
1414 | if (FieldRec->hasUninitializedReferenceMember() && |
1415 | !Field->hasInClassInitializer()) |
1416 | data().HasUninitializedReferenceMember = true; |
1417 | |
1418 | // C++11 [class.union]p8, DR1460: |
1419 | // a non-static data member of an anonymous union that is a member of |
1420 | // X is also a variant member of X. |
1421 | if (FieldRec->hasVariantMembers() && |
1422 | Field->isAnonymousStructOrUnion()) |
1423 | data().HasVariantMembers = true; |
1424 | } |
1425 | } else { |
1426 | // Base element type of field is a non-class type. |
1427 | if (!T->isLiteralType(Ctx: Context) || |
1428 | (!Field->hasInClassInitializer() && !isUnion() && |
1429 | !Context.getLangOpts().CPlusPlus20)) |
1430 | data().DefaultedDefaultConstructorIsConstexpr = false; |
1431 | |
1432 | // C++11 [class.copy]p23: |
1433 | // A defaulted copy/move assignment operator for a class X is defined |
1434 | // as deleted if X has: |
1435 | // -- a non-static data member of const non-class type (or array |
1436 | // thereof) |
1437 | if (T.isConstQualified()) { |
1438 | data().DefaultedCopyAssignmentIsDeleted = true; |
1439 | data().DefaultedMoveAssignmentIsDeleted = true; |
1440 | } |
1441 | |
1442 | // C++20 [temp.param]p7: |
1443 | // A structural type is [...] a literal class type [for which] the |
1444 | // types of all non-static data members are structural types or |
1445 | // (possibly multidimensional) array thereof |
1446 | // We deal with class types elsewhere. |
1447 | if (!T->isStructuralType()) |
1448 | data().StructuralIfLiteral = false; |
1449 | } |
1450 | |
1451 | // C++14 [meta.unary.prop]p4: |
1452 | // T is a class type [...] with [...] no non-static data members other |
1453 | // than subobjects of zero size |
1454 | if (data().Empty && !IsZeroSize) |
1455 | data().Empty = false; |
1456 | |
1457 | if (getLangOpts().HLSL) { |
1458 | const Type *Ty = Field->getType()->getUnqualifiedDesugaredType(); |
1459 | while (isa<ConstantArrayType>(Val: Ty)) |
1460 | Ty = Ty->getArrayElementTypeNoTypeQual(); |
1461 | |
1462 | Ty = Ty->getUnqualifiedDesugaredType(); |
1463 | if (const RecordType *RT = dyn_cast<RecordType>(Val: Ty)) |
1464 | data().IsHLSLIntangible |= RT->getAsCXXRecordDecl()->isHLSLIntangible(); |
1465 | else |
1466 | data().IsHLSLIntangible |= (Ty->isHLSLAttributedResourceType() || |
1467 | Ty->isHLSLBuiltinIntangibleType()); |
1468 | } |
1469 | } |
1470 | |
1471 | // Handle using declarations of conversion functions. |
1472 | if (auto *Shadow = dyn_cast<UsingShadowDecl>(Val: D)) { |
1473 | if (Shadow->getDeclName().getNameKind() |
1474 | == DeclarationName::CXXConversionFunctionName) { |
1475 | ASTContext &Ctx = getASTContext(); |
1476 | data().Conversions.get(C&: Ctx).addDecl(C&: Ctx, D: Shadow, AS: Shadow->getAccess()); |
1477 | } |
1478 | } |
1479 | |
1480 | if (const auto *Using = dyn_cast<UsingDecl>(Val: D)) { |
1481 | if (Using->getDeclName().getNameKind() == |
1482 | DeclarationName::CXXConstructorName) { |
1483 | data().HasInheritedConstructor = true; |
1484 | // C++1z [dcl.init.aggr]p1: |
1485 | // An aggregate is [...] a class [...] with no inherited constructors |
1486 | data().Aggregate = false; |
1487 | } |
1488 | |
1489 | if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) |
1490 | data().HasInheritedAssignment = true; |
1491 | } |
1492 | |
1493 | // HLSL: All user-defined data types are aggregates and use aggregate |
1494 | // initialization, meanwhile most, but not all built-in types behave like |
1495 | // aggregates. Resource types, and some other HLSL types that wrap handles |
1496 | // don't behave like aggregates. We can identify these as different because we |
1497 | // implicitly define "special" member functions, which aren't spellable in |
1498 | // HLSL. This all _needs_ to change in the future. There are two |
1499 | // relevant HLSL feature proposals that will depend on this changing: |
1500 | // * 0005-strict-initializer-lists.md |
1501 | // * https://github.com/microsoft/hlsl-specs/pull/325 |
1502 | if (getLangOpts().HLSL) |
1503 | data().Aggregate = data().UserDeclaredSpecialMembers == 0; |
1504 | } |
1505 | |
1506 | bool CXXRecordDecl::isLiteral() const { |
1507 | const LangOptions &LangOpts = getLangOpts(); |
1508 | if (!(LangOpts.CPlusPlus20 ? hasConstexprDestructor() |
1509 | : hasTrivialDestructor())) |
1510 | return false; |
1511 | |
1512 | if (hasNonLiteralTypeFieldsOrBases()) { |
1513 | // CWG2598 |
1514 | // is an aggregate union type that has either no variant |
1515 | // members or at least one variant member of non-volatile literal type, |
1516 | if (!isUnion()) |
1517 | return false; |
1518 | bool HasAtLeastOneLiteralMember = |
1519 | fields().empty() || any_of(fields(), [this](const FieldDecl *D) { |
1520 | return !D->getType().isVolatileQualified() && |
1521 | D->getType()->isLiteralType(getASTContext()); |
1522 | }); |
1523 | if (!HasAtLeastOneLiteralMember) |
1524 | return false; |
1525 | } |
1526 | |
1527 | return isAggregate() || (isLambda() && LangOpts.CPlusPlus17) || |
1528 | hasConstexprNonCopyMoveConstructor() || hasTrivialDefaultConstructor(); |
1529 | } |
1530 | |
1531 | void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl *DD) { |
1532 | DD->setIneligibleOrNotSelected(false); |
1533 | addedEligibleSpecialMemberFunction(DD, SMF_Destructor); |
1534 | } |
1535 | |
1536 | void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD, |
1537 | unsigned SMKind) { |
1538 | // FIXME: We shouldn't change DeclaredNonTrivialSpecialMembers if `MD` is |
1539 | // a function template, but this needs CWG attention before we break ABI. |
1540 | // See https://github.com/llvm/llvm-project/issues/59206 |
1541 | |
1542 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
1543 | if (DD->isUserProvided()) |
1544 | data().HasIrrelevantDestructor = false; |
1545 | // If the destructor is explicitly defaulted and not trivial or not public |
1546 | // or if the destructor is deleted, we clear HasIrrelevantDestructor in |
1547 | // finishedDefaultedOrDeletedMember. |
1548 | |
1549 | // C++11 [class.dtor]p5: |
1550 | // A destructor is trivial if [...] the destructor is not virtual. |
1551 | if (DD->isVirtual()) { |
1552 | data().HasTrivialSpecialMembers &= ~SMF_Destructor; |
1553 | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; |
1554 | } |
1555 | |
1556 | if (DD->isNoReturn()) |
1557 | data().IsAnyDestructorNoReturn = true; |
1558 | } |
1559 | if (!MD->isImplicit() && !MD->isUserProvided()) { |
1560 | // This method is user-declared but not user-provided. We can't work |
1561 | // out whether it's trivial yet (not until we get to the end of the |
1562 | // class). We'll handle this method in |
1563 | // finishedDefaultedOrDeletedMember. |
1564 | } else if (MD->isTrivial()) { |
1565 | data().HasTrivialSpecialMembers |= SMKind; |
1566 | data().HasTrivialSpecialMembersForCall |= SMKind; |
1567 | } else if (MD->isTrivialForCall()) { |
1568 | data().HasTrivialSpecialMembersForCall |= SMKind; |
1569 | data().DeclaredNonTrivialSpecialMembers |= SMKind; |
1570 | } else { |
1571 | data().DeclaredNonTrivialSpecialMembers |= SMKind; |
1572 | // If this is a user-provided function, do not set |
1573 | // DeclaredNonTrivialSpecialMembersForCall here since we don't know |
1574 | // yet whether the method would be considered non-trivial for the |
1575 | // purpose of calls (attribute "trivial_abi" can be dropped from the |
1576 | // class later, which can change the special method's triviality). |
1577 | if (!MD->isUserProvided()) |
1578 | data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; |
1579 | } |
1580 | } |
1581 | |
1582 | void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { |
1583 | assert(!D->isImplicit() && !D->isUserProvided()); |
1584 | |
1585 | // The kind of special member this declaration is, if any. |
1586 | unsigned SMKind = 0; |
1587 | |
1588 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: D)) { |
1589 | if (Constructor->isDefaultConstructor()) { |
1590 | SMKind |= SMF_DefaultConstructor; |
1591 | if (Constructor->isConstexpr()) |
1592 | data().HasConstexprDefaultConstructor = true; |
1593 | } |
1594 | if (Constructor->isCopyConstructor()) |
1595 | SMKind |= SMF_CopyConstructor; |
1596 | else if (Constructor->isMoveConstructor()) |
1597 | SMKind |= SMF_MoveConstructor; |
1598 | else if (Constructor->isConstexpr()) |
1599 | // We may now know that the constructor is constexpr. |
1600 | data().HasConstexprNonCopyMoveConstructor = true; |
1601 | } else if (isa<CXXDestructorDecl>(Val: D)) { |
1602 | SMKind |= SMF_Destructor; |
1603 | if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) |
1604 | data().HasIrrelevantDestructor = false; |
1605 | } else if (D->isCopyAssignmentOperator()) |
1606 | SMKind |= SMF_CopyAssignment; |
1607 | else if (D->isMoveAssignmentOperator()) |
1608 | SMKind |= SMF_MoveAssignment; |
1609 | |
1610 | // Update which trivial / non-trivial special members we have. |
1611 | // addedMember will have skipped this step for this member. |
1612 | if (!D->isIneligibleOrNotSelected()) { |
1613 | if (D->isTrivial()) |
1614 | data().HasTrivialSpecialMembers |= SMKind; |
1615 | else |
1616 | data().DeclaredNonTrivialSpecialMembers |= SMKind; |
1617 | } |
1618 | } |
1619 | |
1620 | void CXXRecordDecl::LambdaDefinitionData::AddCaptureList(ASTContext &Ctx, |
1621 | Capture *CaptureList) { |
1622 | Captures.push_back(NewVal: CaptureList); |
1623 | if (Captures.size() == 2) { |
1624 | // The TinyPtrVector member now needs destruction. |
1625 | Ctx.addDestruction(Ptr: &Captures); |
1626 | } |
1627 | } |
1628 | |
1629 | void CXXRecordDecl::setCaptures(ASTContext &Context, |
1630 | ArrayRef<LambdaCapture> Captures) { |
1631 | CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData(); |
1632 | |
1633 | // Copy captures. |
1634 | Data.NumCaptures = Captures.size(); |
1635 | Data.NumExplicitCaptures = 0; |
1636 | auto *ToCapture = (LambdaCapture *)Context.Allocate(Size: sizeof(LambdaCapture) * |
1637 | Captures.size()); |
1638 | Data.AddCaptureList(Ctx&: Context, CaptureList: ToCapture); |
1639 | for (const LambdaCapture &C : Captures) { |
1640 | if (C.isExplicit()) |
1641 | ++Data.NumExplicitCaptures; |
1642 | |
1643 | new (ToCapture) LambdaCapture(C); |
1644 | ToCapture++; |
1645 | } |
1646 | |
1647 | if (!lambdaIsDefaultConstructibleAndAssignable()) |
1648 | Data.DefaultedCopyAssignmentIsDeleted = true; |
1649 | } |
1650 | |
1651 | void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { |
1652 | unsigned SMKind = 0; |
1653 | |
1654 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: D)) { |
1655 | if (Constructor->isCopyConstructor()) |
1656 | SMKind = SMF_CopyConstructor; |
1657 | else if (Constructor->isMoveConstructor()) |
1658 | SMKind = SMF_MoveConstructor; |
1659 | } else if (isa<CXXDestructorDecl>(Val: D)) |
1660 | SMKind = SMF_Destructor; |
1661 | |
1662 | if (D->isTrivialForCall()) |
1663 | data().HasTrivialSpecialMembersForCall |= SMKind; |
1664 | else |
1665 | data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; |
1666 | } |
1667 | |
1668 | bool CXXRecordDecl::isCLike() const { |
1669 | if (getTagKind() == TagTypeKind::Class || |
1670 | getTagKind() == TagTypeKind::Interface || |
1671 | !TemplateOrInstantiation.isNull()) |
1672 | return false; |
1673 | if (!hasDefinition()) |
1674 | return true; |
1675 | |
1676 | return isPOD() && data().HasOnlyCMembers; |
1677 | } |
1678 | |
1679 | bool CXXRecordDecl::isGenericLambda() const { |
1680 | if (!isLambda()) return false; |
1681 | return getLambdaData().IsGenericLambda; |
1682 | } |
1683 | |
1684 | #ifndef NDEBUG |
1685 | static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) { |
1686 | return llvm::all_of(Range: R, P: [&](NamedDecl *D) { |
1687 | return D->isInvalidDecl() || declaresSameEntity(D, R.front()); |
1688 | }); |
1689 | } |
1690 | #endif |
1691 | |
1692 | static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) { |
1693 | if (!RD.isLambda()) return nullptr; |
1694 | DeclarationName Name = |
1695 | RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); |
1696 | |
1697 | DeclContext::lookup_result Calls = RD.lookup(Name); |
1698 | |
1699 | // This can happen while building the lambda. |
1700 | if (Calls.empty()) |
1701 | return nullptr; |
1702 | |
1703 | assert(allLookupResultsAreTheSame(Calls) && |
1704 | "More than one lambda call operator!"); |
1705 | |
1706 | // FIXME: If we have multiple call operators, we might be in a situation |
1707 | // where we merged this lambda with one from another module; in that |
1708 | // case, return our method (instead of that of the other lambda). |
1709 | // |
1710 | // This avoids situations where, given two modules A and B, if we |
1711 | // try to instantiate A's call operator in a function in B, anything |
1712 | // in the call operator that relies on local decls in the surrounding |
1713 | // function will crash because it tries to find A's decls, but we only |
1714 | // instantiated B's: |
1715 | // |
1716 | // template <typename> |
1717 | // void f() { |
1718 | // using T = int; // We only instantiate B's version of this. |
1719 | // auto L = [](T) { }; // But A's call operator would want A's here. |
1720 | // } |
1721 | // |
1722 | // Walk the call operator’s redecl chain to find the one that belongs |
1723 | // to this module. |
1724 | // |
1725 | // TODO: We need to fix this properly (see |
1726 | // https://github.com/llvm/llvm-project/issues/90154). |
1727 | Module *M = RD.getOwningModule(); |
1728 | for (Decl *D : Calls.front()->redecls()) { |
1729 | auto *MD = cast<NamedDecl>(D); |
1730 | if (MD->getOwningModule() == M) |
1731 | return MD; |
1732 | } |
1733 | |
1734 | llvm_unreachable("Couldn't find our call operator!"); |
1735 | } |
1736 | |
1737 | FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const { |
1738 | NamedDecl *CallOp = getLambdaCallOperatorHelper(RD: *this); |
1739 | return dyn_cast_or_null<FunctionTemplateDecl>(Val: CallOp); |
1740 | } |
1741 | |
1742 | CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const { |
1743 | NamedDecl *CallOp = getLambdaCallOperatorHelper(RD: *this); |
1744 | |
1745 | if (CallOp == nullptr) |
1746 | return nullptr; |
1747 | |
1748 | if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(Val: CallOp)) |
1749 | return cast<CXXMethodDecl>(Val: CallOpTmpl->getTemplatedDecl()); |
1750 | |
1751 | return cast<CXXMethodDecl>(Val: CallOp); |
1752 | } |
1753 | |
1754 | CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { |
1755 | CXXMethodDecl *CallOp = getLambdaCallOperator(); |
1756 | assert(CallOp && "null call operator"); |
1757 | CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv(); |
1758 | return getLambdaStaticInvoker(CC); |
1759 | } |
1760 | |
1761 | static DeclContext::lookup_result |
1762 | getLambdaStaticInvokers(const CXXRecordDecl &RD) { |
1763 | assert(RD.isLambda() && "Must be a lambda"); |
1764 | DeclarationName Name = |
1765 | &RD.getASTContext().Idents.get(getLambdaStaticInvokerName()); |
1766 | return RD.lookup(Name); |
1767 | } |
1768 | |
1769 | static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) { |
1770 | if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(Val: ND)) |
1771 | return cast<CXXMethodDecl>(Val: InvokerTemplate->getTemplatedDecl()); |
1772 | return cast<CXXMethodDecl>(Val: ND); |
1773 | } |
1774 | |
1775 | CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const { |
1776 | if (!isLambda()) |
1777 | return nullptr; |
1778 | DeclContext::lookup_result Invoker = getLambdaStaticInvokers(RD: *this); |
1779 | |
1780 | for (NamedDecl *ND : Invoker) { |
1781 | const auto *FTy = |
1782 | cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>(); |
1783 | if (FTy->getCallConv() == CC) |
1784 | return getInvokerAsMethod(ND); |
1785 | } |
1786 | |
1787 | return nullptr; |
1788 | } |
1789 | |
1790 | void CXXRecordDecl::getCaptureFields( |
1791 | llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures, |
1792 | FieldDecl *&ThisCapture) const { |
1793 | Captures.clear(); |
1794 | ThisCapture = nullptr; |
1795 | |
1796 | LambdaDefinitionData &Lambda = getLambdaData(); |
1797 | for (const LambdaCapture *List : Lambda.Captures) { |
1798 | RecordDecl::field_iterator Field = field_begin(); |
1799 | for (const LambdaCapture *C = List, *CEnd = C + Lambda.NumCaptures; |
1800 | C != CEnd; ++C, ++Field) { |
1801 | if (C->capturesThis()) |
1802 | ThisCapture = *Field; |
1803 | else if (C->capturesVariable()) |
1804 | Captures[C->getCapturedVar()] = *Field; |
1805 | } |
1806 | assert(Field == field_end()); |
1807 | } |
1808 | } |
1809 | |
1810 | TemplateParameterList * |
1811 | CXXRecordDecl::getGenericLambdaTemplateParameterList() const { |
1812 | if (!isGenericLambda()) return nullptr; |
1813 | CXXMethodDecl *CallOp = getLambdaCallOperator(); |
1814 | if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) |
1815 | return Tmpl->getTemplateParameters(); |
1816 | return nullptr; |
1817 | } |
1818 | |
1819 | ArrayRef<NamedDecl *> |
1820 | CXXRecordDecl::getLambdaExplicitTemplateParameters() const { |
1821 | TemplateParameterList *List = getGenericLambdaTemplateParameterList(); |
1822 | if (!List) |
1823 | return {}; |
1824 | |
1825 | assert(std::is_partitioned(List->begin(), List->end(), |
1826 | [](const NamedDecl *D) { return !D->isImplicit(); }) |
1827 | && "Explicit template params should be ordered before implicit ones"); |
1828 | |
1829 | const auto ExplicitEnd = llvm::partition_point( |
1830 | Range&: *List, P: [](const NamedDecl *D) { return !D->isImplicit(); }); |
1831 | return llvm::ArrayRef(List->begin(), ExplicitEnd); |
1832 | } |
1833 | |
1834 | Decl *CXXRecordDecl::getLambdaContextDecl() const { |
1835 | assert(isLambda() && "Not a lambda closure type!"); |
1836 | ExternalASTSource *Source = getParentASTContext().getExternalSource(); |
1837 | return getLambdaData().ContextDecl.get(Source); |
1838 | } |
1839 | |
1840 | void CXXRecordDecl::setLambdaNumbering(LambdaNumbering Numbering) { |
1841 | assert(isLambda() && "Not a lambda closure type!"); |
1842 | getLambdaData().ManglingNumber = Numbering.ManglingNumber; |
1843 | if (Numbering.DeviceManglingNumber) |
1844 | getASTContext().DeviceLambdaManglingNumbers[this] = |
1845 | Numbering.DeviceManglingNumber; |
1846 | getLambdaData().IndexInContext = Numbering.IndexInContext; |
1847 | getLambdaData().ContextDecl = Numbering.ContextDecl; |
1848 | getLambdaData().HasKnownInternalLinkage = Numbering.HasKnownInternalLinkage; |
1849 | } |
1850 | |
1851 | unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const { |
1852 | assert(isLambda() && "Not a lambda closure type!"); |
1853 | return getASTContext().DeviceLambdaManglingNumbers.lookup(this); |
1854 | } |
1855 | |
1856 | static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { |
1857 | QualType T = |
1858 | cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction()) |
1859 | ->getConversionType(); |
1860 | return Context.getCanonicalType(T); |
1861 | } |
1862 | |
1863 | /// Collect the visible conversions of a base class. |
1864 | /// |
1865 | /// \param Record a base class of the class we're considering |
1866 | /// \param InVirtual whether this base class is a virtual base (or a base |
1867 | /// of a virtual base) |
1868 | /// \param Access the access along the inheritance path to this base |
1869 | /// \param ParentHiddenTypes the conversions provided by the inheritors |
1870 | /// of this base |
1871 | /// \param Output the set to which to add conversions from non-virtual bases |
1872 | /// \param VOutput the set to which to add conversions from virtual bases |
1873 | /// \param HiddenVBaseCs the set of conversions which were hidden in a |
1874 | /// virtual base along some inheritance path |
1875 | static void CollectVisibleConversions( |
1876 | ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual, |
1877 | AccessSpecifier Access, |
1878 | const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, |
1879 | ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput, |
1880 | llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) { |
1881 | // The set of types which have conversions in this class or its |
1882 | // subclasses. As an optimization, we don't copy the derived set |
1883 | // unless it might change. |
1884 | const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; |
1885 | llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; |
1886 | |
1887 | // Collect the direct conversions and figure out which conversions |
1888 | // will be hidden in the subclasses. |
1889 | CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); |
1890 | CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); |
1891 | if (ConvI != ConvE) { |
1892 | HiddenTypesBuffer = ParentHiddenTypes; |
1893 | HiddenTypes = &HiddenTypesBuffer; |
1894 | |
1895 | for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { |
1896 | CanQualType ConvType(GetConversionType(Context, Conv: I.getDecl())); |
1897 | bool Hidden = ParentHiddenTypes.count(Ptr: ConvType); |
1898 | if (!Hidden) |
1899 | HiddenTypesBuffer.insert(Ptr: ConvType); |
1900 | |
1901 | // If this conversion is hidden and we're in a virtual base, |
1902 | // remember that it's hidden along some inheritance path. |
1903 | if (Hidden && InVirtual) |
1904 | HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); |
1905 | |
1906 | // If this conversion isn't hidden, add it to the appropriate output. |
1907 | else if (!Hidden) { |
1908 | AccessSpecifier IAccess |
1909 | = CXXRecordDecl::MergeAccess(PathAccess: Access, DeclAccess: I.getAccess()); |
1910 | |
1911 | if (InVirtual) |
1912 | VOutput.addDecl(D: I.getDecl(), AS: IAccess); |
1913 | else |
1914 | Output.addDecl(C&: Context, D: I.getDecl(), AS: IAccess); |
1915 | } |
1916 | } |
1917 | } |
1918 | |
1919 | // Collect information recursively from any base classes. |
1920 | for (const auto &I : Record->bases()) { |
1921 | const auto *RT = I.getType()->getAs<RecordType>(); |
1922 | if (!RT) continue; |
1923 | |
1924 | AccessSpecifier BaseAccess |
1925 | = CXXRecordDecl::MergeAccess(PathAccess: Access, DeclAccess: I.getAccessSpecifier()); |
1926 | bool BaseInVirtual = InVirtual || I.isVirtual(); |
1927 | |
1928 | auto *Base = cast<CXXRecordDecl>(Val: RT->getDecl()); |
1929 | CollectVisibleConversions(Context, Record: Base, InVirtual: BaseInVirtual, Access: BaseAccess, |
1930 | ParentHiddenTypes: *HiddenTypes, Output, VOutput, HiddenVBaseCs); |
1931 | } |
1932 | } |
1933 | |
1934 | /// Collect the visible conversions of a class. |
1935 | /// |
1936 | /// This would be extremely straightforward if it weren't for virtual |
1937 | /// bases. It might be worth special-casing that, really. |
1938 | static void CollectVisibleConversions(ASTContext &Context, |
1939 | const CXXRecordDecl *Record, |
1940 | ASTUnresolvedSet &Output) { |
1941 | // The collection of all conversions in virtual bases that we've |
1942 | // found. These will be added to the output as long as they don't |
1943 | // appear in the hidden-conversions set. |
1944 | UnresolvedSet<8> VBaseCs; |
1945 | |
1946 | // The set of conversions in virtual bases that we've determined to |
1947 | // be hidden. |
1948 | llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; |
1949 | |
1950 | // The set of types hidden by classes derived from this one. |
1951 | llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; |
1952 | |
1953 | // Go ahead and collect the direct conversions and add them to the |
1954 | // hidden-types set. |
1955 | CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); |
1956 | CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); |
1957 | Output.append(C&: Context, I: ConvI, E: ConvE); |
1958 | for (; ConvI != ConvE; ++ConvI) |
1959 | HiddenTypes.insert(Ptr: GetConversionType(Context, Conv: ConvI.getDecl())); |
1960 | |
1961 | // Recursively collect conversions from base classes. |
1962 | for (const auto &I : Record->bases()) { |
1963 | const auto *RT = I.getType()->getAs<RecordType>(); |
1964 | if (!RT) continue; |
1965 | |
1966 | CollectVisibleConversions(Context, Record: cast<CXXRecordDecl>(Val: RT->getDecl()), |
1967 | InVirtual: I.isVirtual(), Access: I.getAccessSpecifier(), |
1968 | ParentHiddenTypes: HiddenTypes, Output, VOutput&: VBaseCs, HiddenVBaseCs); |
1969 | } |
1970 | |
1971 | // Add any unhidden conversions provided by virtual bases. |
1972 | for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); |
1973 | I != E; ++I) { |
1974 | if (!HiddenVBaseCs.count(Ptr: cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) |
1975 | Output.addDecl(C&: Context, D: I.getDecl(), AS: I.getAccess()); |
1976 | } |
1977 | } |
1978 | |
1979 | /// getVisibleConversionFunctions - get all conversion functions visible |
1980 | /// in current class; including conversion function templates. |
1981 | llvm::iterator_range<CXXRecordDecl::conversion_iterator> |
1982 | CXXRecordDecl::getVisibleConversionFunctions() const { |
1983 | ASTContext &Ctx = getASTContext(); |
1984 | |
1985 | ASTUnresolvedSet *Set; |
1986 | if (bases_begin() == bases_end()) { |
1987 | // If root class, all conversions are visible. |
1988 | Set = &data().Conversions.get(C&: Ctx); |
1989 | } else { |
1990 | Set = &data().VisibleConversions.get(C&: Ctx); |
1991 | // If visible conversion list is not evaluated, evaluate it. |
1992 | if (!data().ComputedVisibleConversions) { |
1993 | CollectVisibleConversions(Context&: Ctx, Record: this, Output&: *Set); |
1994 | data().ComputedVisibleConversions = true; |
1995 | } |
1996 | } |
1997 | return llvm::make_range(x: Set->begin(), y: Set->end()); |
1998 | } |
1999 | |
2000 | void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { |
2001 | // This operation is O(N) but extremely rare. Sema only uses it to |
2002 | // remove UsingShadowDecls in a class that were followed by a direct |
2003 | // declaration, e.g.: |
2004 | // class A : B { |
2005 | // using B::operator int; |
2006 | // operator int(); |
2007 | // }; |
2008 | // This is uncommon by itself and even more uncommon in conjunction |
2009 | // with sufficiently large numbers of directly-declared conversions |
2010 | // that asymptotic behavior matters. |
2011 | |
2012 | ASTUnresolvedSet &Convs = data().Conversions.get(C&: getASTContext()); |
2013 | for (unsigned I = 0, E = Convs.size(); I != E; ++I) { |
2014 | if (Convs[I].getDecl() == ConvDecl) { |
2015 | Convs.erase(I); |
2016 | assert(!llvm::is_contained(Convs, ConvDecl) && |
2017 | "conversion was found multiple times in unresolved set"); |
2018 | return; |
2019 | } |
2020 | } |
2021 | |
2022 | llvm_unreachable("conversion not found in set!"); |
2023 | } |
2024 | |
2025 | CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { |
2026 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) |
2027 | return cast<CXXRecordDecl>(Val: MSInfo->getInstantiatedFrom()); |
2028 | |
2029 | return nullptr; |
2030 | } |
2031 | |
2032 | MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { |
2033 | return dyn_cast_if_present<MemberSpecializationInfo *>( |
2034 | Val: TemplateOrInstantiation); |
2035 | } |
2036 | |
2037 | void |
2038 | CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, |
2039 | TemplateSpecializationKind TSK) { |
2040 | assert(TemplateOrInstantiation.isNull() && |
2041 | "Previous template or instantiation?"); |
2042 | assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); |
2043 | TemplateOrInstantiation |
2044 | = new (getASTContext()) MemberSpecializationInfo(RD, TSK); |
2045 | } |
2046 | |
2047 | ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { |
2048 | return dyn_cast_if_present<ClassTemplateDecl *>(Val: TemplateOrInstantiation); |
2049 | } |
2050 | |
2051 | void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { |
2052 | TemplateOrInstantiation = Template; |
2053 | } |
2054 | |
2055 | TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ |
2056 | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: this)) |
2057 | return Spec->getSpecializationKind(); |
2058 | |
2059 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) |
2060 | return MSInfo->getTemplateSpecializationKind(); |
2061 | |
2062 | return TSK_Undeclared; |
2063 | } |
2064 | |
2065 | void |
2066 | CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { |
2067 | if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: this)) { |
2068 | Spec->setSpecializationKind(TSK); |
2069 | return; |
2070 | } |
2071 | |
2072 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { |
2073 | MSInfo->setTemplateSpecializationKind(TSK); |
2074 | return; |
2075 | } |
2076 | |
2077 | llvm_unreachable("Not a class template or member class specialization"); |
2078 | } |
2079 | |
2080 | const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { |
2081 | auto GetDefinitionOrSelf = |
2082 | [](const CXXRecordDecl *D) -> const CXXRecordDecl * { |
2083 | if (auto *Def = D->getDefinition()) |
2084 | return Def; |
2085 | return D; |
2086 | }; |
2087 | |
2088 | // If it's a class template specialization, find the template or partial |
2089 | // specialization from which it was instantiated. |
2090 | if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(Val: this)) { |
2091 | auto From = TD->getInstantiatedFrom(); |
2092 | if (auto *CTD = dyn_cast_if_present<ClassTemplateDecl *>(Val&: From)) { |
2093 | while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { |
2094 | if (NewCTD->isMemberSpecialization()) |
2095 | break; |
2096 | CTD = NewCTD; |
2097 | } |
2098 | return GetDefinitionOrSelf(CTD->getTemplatedDecl()); |
2099 | } |
2100 | if (auto *CTPSD = |
2101 | dyn_cast_if_present<ClassTemplatePartialSpecializationDecl *>( |
2102 | Val&: From)) { |
2103 | while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { |
2104 | if (NewCTPSD->isMemberSpecialization()) |
2105 | break; |
2106 | CTPSD = NewCTPSD; |
2107 | } |
2108 | return GetDefinitionOrSelf(CTPSD); |
2109 | } |
2110 | } |
2111 | |
2112 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { |
2113 | if (isTemplateInstantiation(Kind: MSInfo->getTemplateSpecializationKind())) { |
2114 | const CXXRecordDecl *RD = this; |
2115 | while (auto *NewRD = RD->getInstantiatedFromMemberClass()) |
2116 | RD = NewRD; |
2117 | return GetDefinitionOrSelf(RD); |
2118 | } |
2119 | } |
2120 | |
2121 | assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && |
2122 | "couldn't find pattern for class template instantiation"); |
2123 | return nullptr; |
2124 | } |
2125 | |
2126 | CXXDestructorDecl *CXXRecordDecl::getDestructor() const { |
2127 | ASTContext &Context = getASTContext(); |
2128 | QualType ClassType = Context.getTypeDeclType(this); |
2129 | |
2130 | DeclarationName Name |
2131 | = Context.DeclarationNames.getCXXDestructorName( |
2132 | Ty: Context.getCanonicalType(T: ClassType)); |
2133 | |
2134 | DeclContext::lookup_result R = lookup(Name); |
2135 | |
2136 | // If a destructor was marked as not selected, we skip it. We don't always |
2137 | // have a selected destructor: dependent types, unnamed structs. |
2138 | for (auto *Decl : R) { |
2139 | auto* DD = dyn_cast<CXXDestructorDecl>(Decl); |
2140 | if (DD && !DD->isIneligibleOrNotSelected()) |
2141 | return DD; |
2142 | } |
2143 | return nullptr; |
2144 | } |
2145 | |
2146 | bool CXXRecordDecl::hasDeletedDestructor() const { |
2147 | if (const CXXDestructorDecl *D = getDestructor()) |
2148 | return D->isDeleted(); |
2149 | return false; |
2150 | } |
2151 | |
2152 | static bool isDeclContextInNamespace(const DeclContext *DC) { |
2153 | while (!DC->isTranslationUnit()) { |
2154 | if (DC->isNamespace()) |
2155 | return true; |
2156 | DC = DC->getParent(); |
2157 | } |
2158 | return false; |
2159 | } |
2160 | |
2161 | bool CXXRecordDecl::isInterfaceLike() const { |
2162 | assert(hasDefinition() && "checking for interface-like without a definition"); |
2163 | // All __interfaces are inheritently interface-like. |
2164 | if (isInterface()) |
2165 | return true; |
2166 | |
2167 | // Interface-like types cannot have a user declared constructor, destructor, |
2168 | // friends, VBases, conversion functions, or fields. Additionally, lambdas |
2169 | // cannot be interface types. |
2170 | if (isLambda() || hasUserDeclaredConstructor() || |
2171 | hasUserDeclaredDestructor() || !field_empty() || hasFriends() || |
2172 | getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) |
2173 | return false; |
2174 | |
2175 | // No interface-like type can have a method with a definition. |
2176 | for (const auto *const Method : methods()) |
2177 | if (Method->isDefined() && !Method->isImplicit()) |
2178 | return false; |
2179 | |
2180 | // Check "Special" types. |
2181 | const auto *Uuid = getAttr<UuidAttr>(); |
2182 | // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an |
2183 | // extern C++ block directly in the TU. These are only valid if in one |
2184 | // of these two situations. |
2185 | if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && |
2186 | !isDeclContextInNamespace(getDeclContext()) && |
2187 | ((getName() == "IUnknown"&& |
2188 | Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") || |
2189 | (getName() == "IDispatch"&& |
2190 | Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) { |
2191 | if (getNumBases() > 0) |
2192 | return false; |
2193 | return true; |
2194 | } |
2195 | |
2196 | // FIXME: Any access specifiers is supposed to make this no longer interface |
2197 | // like. |
2198 | |
2199 | // If this isn't a 'special' type, it must have a single interface-like base. |
2200 | if (getNumBases() != 1) |
2201 | return false; |
2202 | |
2203 | const auto BaseSpec = *bases_begin(); |
2204 | if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) |
2205 | return false; |
2206 | const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); |
2207 | if (Base->isInterface() || !Base->isInterfaceLike()) |
2208 | return false; |
2209 | return true; |
2210 | } |
2211 | |
2212 | void CXXRecordDecl::completeDefinition() { |
2213 | completeDefinition(FinalOverriders: nullptr); |
2214 | } |
2215 | |
2216 | static bool hasPureVirtualFinalOverrider( |
2217 | const CXXRecordDecl &RD, const CXXFinalOverriderMap *FinalOverriders) { |
2218 | if (!FinalOverriders) { |
2219 | CXXFinalOverriderMap MyFinalOverriders; |
2220 | RD.getFinalOverriders(FinaOverriders&: MyFinalOverriders); |
2221 | return hasPureVirtualFinalOverrider(RD, FinalOverriders: &MyFinalOverriders); |
2222 | } |
2223 | |
2224 | for (const CXXFinalOverriderMap::value_type & |
2225 | OverridingMethodsEntry : *FinalOverriders) { |
2226 | for (const auto &[_, SubobjOverrides] : OverridingMethodsEntry.second) { |
2227 | assert(SubobjOverrides.size() > 0 && |
2228 | "All virtual functions have overriding virtual functions"); |
2229 | |
2230 | if (SubobjOverrides.front().Method->isPureVirtual()) |
2231 | return true; |
2232 | } |
2233 | } |
2234 | return false; |
2235 | } |
2236 | |
2237 | void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { |
2238 | RecordDecl::completeDefinition(); |
2239 | |
2240 | // If the class may be abstract (but hasn't been marked as such), check for |
2241 | // any pure final overriders. |
2242 | // |
2243 | // C++ [class.abstract]p4: |
2244 | // A class is abstract if it contains or inherits at least one |
2245 | // pure virtual function for which the final overrider is pure |
2246 | // virtual. |
2247 | if (mayBeAbstract() && hasPureVirtualFinalOverrider(RD: *this, FinalOverriders)) |
2248 | markAbstract(); |
2249 | |
2250 | // Set access bits correctly on the directly-declared conversions. |
2251 | for (conversion_iterator I = conversion_begin(), E = conversion_end(); |
2252 | I != E; ++I) |
2253 | I.setAccess((*I)->getAccess()); |
2254 | |
2255 | ASTContext &Context = getASTContext(); |
2256 | |
2257 | if (isAggregate() && hasUserDeclaredConstructor() && |
2258 | !Context.getLangOpts().CPlusPlus20) { |
2259 | // Diagnose any aggregate behavior changes in C++20 |
2260 | for (const FieldDecl *FD : fields()) { |
2261 | if (const auto *AT = FD->getAttr<ExplicitInitAttr>()) |
2262 | Context.getDiagnostics().Report( |
2263 | AT->getLocation(), |
2264 | diag::warn_cxx20_compat_requires_explicit_init_non_aggregate) |
2265 | << AT << FD << Context.getRecordType(this); |
2266 | } |
2267 | } |
2268 | |
2269 | if (!isAggregate() && hasUninitializedExplicitInitFields()) { |
2270 | // Diagnose any fields that required explicit initialization in a |
2271 | // non-aggregate type. (Note that the fields may not be directly in this |
2272 | // type, but in a subobject. In such cases we don't emit diagnoses here.) |
2273 | for (const FieldDecl *FD : fields()) { |
2274 | if (const auto *AT = FD->getAttr<ExplicitInitAttr>()) |
2275 | Context.getDiagnostics().Report(AT->getLocation(), |
2276 | diag::warn_attribute_needs_aggregate) |
2277 | << AT << Context.getRecordType(this); |
2278 | } |
2279 | setHasUninitializedExplicitInitFields(false); |
2280 | } |
2281 | } |
2282 | |
2283 | bool CXXRecordDecl::mayBeAbstract() const { |
2284 | if (data().Abstract || isInvalidDecl() || !data().Polymorphic || |
2285 | isDependentContext()) |
2286 | return false; |
2287 | |
2288 | for (const auto &B : bases()) { |
2289 | const auto *BaseDecl = |
2290 | cast<CXXRecordDecl>(Val: B.getType()->castAs<RecordType>()->getDecl()); |
2291 | if (BaseDecl->isAbstract()) |
2292 | return true; |
2293 | } |
2294 | |
2295 | return false; |
2296 | } |
2297 | |
2298 | bool CXXRecordDecl::isEffectivelyFinal() const { |
2299 | auto *Def = getDefinition(); |
2300 | if (!Def) |
2301 | return false; |
2302 | if (Def->hasAttr<FinalAttr>()) |
2303 | return true; |
2304 | if (const auto *Dtor = Def->getDestructor()) |
2305 | if (Dtor->hasAttr<FinalAttr>()) |
2306 | return true; |
2307 | return false; |
2308 | } |
2309 | |
2310 | void CXXDeductionGuideDecl::anchor() {} |
2311 | |
2312 | bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const { |
2313 | if ((getKind() != Other.getKind() || |
2314 | getKind() == ExplicitSpecKind::Unresolved)) { |
2315 | if (getKind() == ExplicitSpecKind::Unresolved && |
2316 | Other.getKind() == ExplicitSpecKind::Unresolved) { |
2317 | ODRHash SelfHash, OtherHash; |
2318 | SelfHash.AddStmt(getExpr()); |
2319 | OtherHash.AddStmt(Other.getExpr()); |
2320 | return SelfHash.CalculateHash() == OtherHash.CalculateHash(); |
2321 | } else |
2322 | return false; |
2323 | } |
2324 | return true; |
2325 | } |
2326 | |
2327 | ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) { |
2328 | switch (Function->getDeclKind()) { |
2329 | case Decl::Kind::CXXConstructor: |
2330 | return cast<CXXConstructorDecl>(Val: Function)->getExplicitSpecifier(); |
2331 | case Decl::Kind::CXXConversion: |
2332 | return cast<CXXConversionDecl>(Val: Function)->getExplicitSpecifier(); |
2333 | case Decl::Kind::CXXDeductionGuide: |
2334 | return cast<CXXDeductionGuideDecl>(Val: Function)->getExplicitSpecifier(); |
2335 | default: |
2336 | return {}; |
2337 | } |
2338 | } |
2339 | |
2340 | CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create( |
2341 | ASTContext &C, DeclContext *DC, SourceLocation StartLoc, |
2342 | ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T, |
2343 | TypeSourceInfo *TInfo, SourceLocation EndLocation, CXXConstructorDecl *Ctor, |
2344 | DeductionCandidate Kind, const AssociatedConstraint &TrailingRequiresClause, |
2345 | const CXXDeductionGuideDecl *GeneratedFrom, |
2346 | SourceDeductionGuideKind SourceKind) { |
2347 | return new (C, DC) CXXDeductionGuideDecl( |
2348 | C, DC, StartLoc, ES, NameInfo, T, TInfo, EndLocation, Ctor, Kind, |
2349 | TrailingRequiresClause, GeneratedFrom, SourceKind); |
2350 | } |
2351 | |
2352 | CXXDeductionGuideDecl * |
2353 | CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
2354 | return new (C, ID) CXXDeductionGuideDecl( |
2355 | C, /*DC=*/nullptr, SourceLocation(), ExplicitSpecifier(), |
2356 | DeclarationNameInfo(), QualType(), /*TInfo=*/nullptr, SourceLocation(), |
2357 | /*Ctor=*/nullptr, DeductionCandidate::Normal, |
2358 | /*TrailingRequiresClause=*/{}, |
2359 | /*GeneratedFrom=*/nullptr, SourceDeductionGuideKind::None); |
2360 | } |
2361 | |
2362 | RequiresExprBodyDecl *RequiresExprBodyDecl::Create( |
2363 | ASTContext &C, DeclContext *DC, SourceLocation StartLoc) { |
2364 | return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc); |
2365 | } |
2366 | |
2367 | RequiresExprBodyDecl * |
2368 | RequiresExprBodyDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
2369 | return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation()); |
2370 | } |
2371 | |
2372 | void CXXMethodDecl::anchor() {} |
2373 | |
2374 | bool CXXMethodDecl::isStatic() const { |
2375 | const CXXMethodDecl *MD = getCanonicalDecl(); |
2376 | |
2377 | if (MD->getStorageClass() == SC_Static) |
2378 | return true; |
2379 | |
2380 | OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); |
2381 | return isStaticOverloadedOperator(OOK); |
2382 | } |
2383 | |
2384 | static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, |
2385 | const CXXMethodDecl *BaseMD) { |
2386 | for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { |
2387 | if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) |
2388 | return true; |
2389 | if (recursivelyOverrides(DerivedMD: MD, BaseMD)) |
2390 | return true; |
2391 | } |
2392 | return false; |
2393 | } |
2394 | |
2395 | CXXMethodDecl * |
2396 | CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, |
2397 | bool MayBeBase) { |
2398 | if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) |
2399 | return this; |
2400 | |
2401 | // Lookup doesn't work for destructors, so handle them separately. |
2402 | if (isa<CXXDestructorDecl>(Val: this)) { |
2403 | CXXMethodDecl *MD = RD->getDestructor(); |
2404 | if (MD) { |
2405 | if (recursivelyOverrides(DerivedMD: MD, BaseMD: this)) |
2406 | return MD; |
2407 | if (MayBeBase && recursivelyOverrides(DerivedMD: this, BaseMD: MD)) |
2408 | return MD; |
2409 | } |
2410 | return nullptr; |
2411 | } |
2412 | |
2413 | for (auto *ND : RD->lookup(getDeclName())) { |
2414 | auto *MD = dyn_cast<CXXMethodDecl>(ND); |
2415 | if (!MD) |
2416 | continue; |
2417 | if (recursivelyOverrides(MD, this)) |
2418 | return MD; |
2419 | if (MayBeBase && recursivelyOverrides(this, MD)) |
2420 | return MD; |
2421 | } |
2422 | |
2423 | return nullptr; |
2424 | } |
2425 | |
2426 | CXXMethodDecl * |
2427 | CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, |
2428 | bool MayBeBase) { |
2429 | if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase)) |
2430 | return MD; |
2431 | |
2432 | llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders; |
2433 | auto AddFinalOverrider = [&](CXXMethodDecl *D) { |
2434 | // If this function is overridden by a candidate final overrider, it is not |
2435 | // a final overrider. |
2436 | for (CXXMethodDecl *OtherD : FinalOverriders) { |
2437 | if (declaresSameEntity(D, OtherD) || recursivelyOverrides(DerivedMD: OtherD, BaseMD: D)) |
2438 | return; |
2439 | } |
2440 | |
2441 | // Other candidate final overriders might be overridden by this function. |
2442 | llvm::erase_if(C&: FinalOverriders, P: [&](CXXMethodDecl *OtherD) { |
2443 | return recursivelyOverrides(DerivedMD: D, BaseMD: OtherD); |
2444 | }); |
2445 | |
2446 | FinalOverriders.push_back(Elt: D); |
2447 | }; |
2448 | |
2449 | for (const auto &I : RD->bases()) { |
2450 | const RecordType *RT = I.getType()->getAs<RecordType>(); |
2451 | if (!RT) |
2452 | continue; |
2453 | const auto *Base = cast<CXXRecordDecl>(Val: RT->getDecl()); |
2454 | if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(RD: Base)) |
2455 | AddFinalOverrider(D); |
2456 | } |
2457 | |
2458 | return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr; |
2459 | } |
2460 | |
2461 | CXXMethodDecl * |
2462 | CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
2463 | const DeclarationNameInfo &NameInfo, QualType T, |
2464 | TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, |
2465 | bool isInline, ConstexprSpecKind ConstexprKind, |
2466 | SourceLocation EndLocation, |
2467 | const AssociatedConstraint &TrailingRequiresClause) { |
2468 | return new (C, RD) CXXMethodDecl( |
2469 | CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, |
2470 | isInline, ConstexprKind, EndLocation, TrailingRequiresClause); |
2471 | } |
2472 | |
2473 | CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, |
2474 | GlobalDeclID ID) { |
2475 | return new (C, ID) |
2476 | CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(), |
2477 | DeclarationNameInfo(), QualType(), nullptr, SC_None, false, |
2478 | false, ConstexprSpecKind::Unspecified, SourceLocation(), |
2479 | /*TrailingRequiresClause=*/{}); |
2480 | } |
2481 | |
2482 | CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, |
2483 | bool IsAppleKext) { |
2484 | assert(isVirtual() && "this method is expected to be virtual"); |
2485 | |
2486 | // When building with -fapple-kext, all calls must go through the vtable since |
2487 | // the kernel linker can do runtime patching of vtables. |
2488 | if (IsAppleKext) |
2489 | return nullptr; |
2490 | |
2491 | // If the member function is marked 'final', we know that it can't be |
2492 | // overridden and can therefore devirtualize it unless it's pure virtual. |
2493 | if (hasAttr<FinalAttr>()) |
2494 | return isPureVirtual() ? nullptr : this; |
2495 | |
2496 | // If Base is unknown, we cannot devirtualize. |
2497 | if (!Base) |
2498 | return nullptr; |
2499 | |
2500 | // If the base expression (after skipping derived-to-base conversions) is a |
2501 | // class prvalue, then we can devirtualize. |
2502 | Base = Base->getBestDynamicClassTypeExpr(); |
2503 | if (Base->isPRValue() && Base->getType()->isRecordType()) |
2504 | return this; |
2505 | |
2506 | // If we don't even know what we would call, we can't devirtualize. |
2507 | const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); |
2508 | if (!BestDynamicDecl) |
2509 | return nullptr; |
2510 | |
2511 | // There may be a method corresponding to MD in a derived class. |
2512 | CXXMethodDecl *DevirtualizedMethod = |
2513 | getCorrespondingMethodInClass(RD: BestDynamicDecl); |
2514 | |
2515 | // If there final overrider in the dynamic type is ambiguous, we can't |
2516 | // devirtualize this call. |
2517 | if (!DevirtualizedMethod) |
2518 | return nullptr; |
2519 | |
2520 | // If that method is pure virtual, we can't devirtualize. If this code is |
2521 | // reached, the result would be UB, not a direct call to the derived class |
2522 | // function, and we can't assume the derived class function is defined. |
2523 | if (DevirtualizedMethod->isPureVirtual()) |
2524 | return nullptr; |
2525 | |
2526 | // If that method is marked final, we can devirtualize it. |
2527 | if (DevirtualizedMethod->hasAttr<FinalAttr>()) |
2528 | return DevirtualizedMethod; |
2529 | |
2530 | // Similarly, if the class itself or its destructor is marked 'final', |
2531 | // the class can't be derived from and we can therefore devirtualize the |
2532 | // member function call. |
2533 | if (BestDynamicDecl->isEffectivelyFinal()) |
2534 | return DevirtualizedMethod; |
2535 | |
2536 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: Base)) { |
2537 | if (const auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl())) |
2538 | if (VD->getType()->isRecordType()) |
2539 | // This is a record decl. We know the type and can devirtualize it. |
2540 | return DevirtualizedMethod; |
2541 | |
2542 | return nullptr; |
2543 | } |
2544 | |
2545 | // We can devirtualize calls on an object accessed by a class member access |
2546 | // expression, since by C++11 [basic.life]p6 we know that it can't refer to |
2547 | // a derived class object constructed in the same location. |
2548 | if (const auto *ME = dyn_cast<MemberExpr>(Val: Base)) { |
2549 | const ValueDecl *VD = ME->getMemberDecl(); |
2550 | return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; |
2551 | } |
2552 | |
2553 | // Likewise for calls on an object accessed by a (non-reference) pointer to |
2554 | // member access. |
2555 | if (auto *BO = dyn_cast<BinaryOperator>(Val: Base)) { |
2556 | if (BO->isPtrMemOp()) { |
2557 | auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); |
2558 | if (MPT->getPointeeType()->isRecordType()) |
2559 | return DevirtualizedMethod; |
2560 | } |
2561 | } |
2562 | |
2563 | // We can't devirtualize the call. |
2564 | return nullptr; |
2565 | } |
2566 | |
2567 | bool CXXMethodDecl::isUsualDeallocationFunction( |
2568 | SmallVectorImpl<const FunctionDecl *> &PreventedBy) const { |
2569 | assert(PreventedBy.empty() && "PreventedBy is expected to be empty"); |
2570 | if (!getDeclName().isAnyOperatorDelete()) |
2571 | return false; |
2572 | |
2573 | if (isTypeAwareOperatorNewOrDelete()) { |
2574 | // A variadic type aware allocation function is not a usual deallocation |
2575 | // function |
2576 | if (isVariadic()) |
2577 | return false; |
2578 | |
2579 | // Type aware deallocation functions are only usual if they only accept the |
2580 | // mandatory arguments |
2581 | if (getNumParams() != FunctionDecl::RequiredTypeAwareDeleteParameterCount) |
2582 | return false; |
2583 | |
2584 | FunctionTemplateDecl *PrimaryTemplate = getPrimaryTemplate(); |
2585 | if (!PrimaryTemplate) |
2586 | return true; |
2587 | |
2588 | // A template instance is is only a usual deallocation function if it has a |
2589 | // type-identity parameter, the type-identity parameter is a dependent type |
2590 | // (i.e. the type-identity parameter is of type std::type_identity<U> where |
2591 | // U shall be a dependent type), and the type-identity parameter is the only |
2592 | // dependent parameter, and there are no template packs in the parameter |
2593 | // list. |
2594 | FunctionDecl *SpecializedDecl = PrimaryTemplate->getTemplatedDecl(); |
2595 | if (!SpecializedDecl->getParamDecl(i: 0)->getType()->isDependentType()) |
2596 | return false; |
2597 | for (unsigned Idx = 1; Idx < getNumParams(); ++Idx) { |
2598 | if (SpecializedDecl->getParamDecl(i: Idx)->getType()->isDependentType()) |
2599 | return false; |
2600 | } |
2601 | return true; |
2602 | } |
2603 | |
2604 | // C++ [basic.stc.dynamic.deallocation]p2: |
2605 | // A template instance is never a usual deallocation function, |
2606 | // regardless of its signature. |
2607 | // Post-P2719 adoption: |
2608 | // A template instance is is only a usual deallocation function if it has a |
2609 | // type-identity parameter |
2610 | if (getPrimaryTemplate()) |
2611 | return false; |
2612 | |
2613 | // C++ [basic.stc.dynamic.deallocation]p2: |
2614 | // If a class T has a member deallocation function named operator delete |
2615 | // with exactly one parameter, then that function is a usual (non-placement) |
2616 | // deallocation function. [...] |
2617 | if (getNumParams() == 1) |
2618 | return true; |
2619 | unsigned UsualParams = 1; |
2620 | |
2621 | // C++ P0722: |
2622 | // A destroying operator delete is a usual deallocation function if |
2623 | // removing the std::destroying_delete_t parameter and changing the |
2624 | // first parameter type from T* to void* results in the signature of |
2625 | // a usual deallocation function. |
2626 | if (isDestroyingOperatorDelete()) |
2627 | ++UsualParams; |
2628 | |
2629 | // C++ <=14 [basic.stc.dynamic.deallocation]p2: |
2630 | // [...] If class T does not declare such an operator delete but does |
2631 | // declare a member deallocation function named operator delete with |
2632 | // exactly two parameters, the second of which has type std::size_t (18.1), |
2633 | // then this function is a usual deallocation function. |
2634 | // |
2635 | // C++17 says a usual deallocation function is one with the signature |
2636 | // (void* [, size_t] [, std::align_val_t] [, ...]) |
2637 | // and all such functions are usual deallocation functions. It's not clear |
2638 | // that allowing varargs functions was intentional. |
2639 | ASTContext &Context = getASTContext(); |
2640 | if (UsualParams < getNumParams() && |
2641 | Context.hasSameUnqualifiedType(T1: getParamDecl(UsualParams)->getType(), |
2642 | T2: Context.getSizeType())) |
2643 | ++UsualParams; |
2644 | |
2645 | if (UsualParams < getNumParams() && |
2646 | getParamDecl(UsualParams)->getType()->isAlignValT()) |
2647 | ++UsualParams; |
2648 | |
2649 | if (UsualParams != getNumParams()) |
2650 | return false; |
2651 | |
2652 | // In C++17 onwards, all potential usual deallocation functions are actual |
2653 | // usual deallocation functions. Honor this behavior when post-C++14 |
2654 | // deallocation functions are offered as extensions too. |
2655 | // FIXME(EricWF): Destroying Delete should be a language option. How do we |
2656 | // handle when destroying delete is used prior to C++17? |
2657 | if (Context.getLangOpts().CPlusPlus17 || |
2658 | Context.getLangOpts().AlignedAllocation || |
2659 | isDestroyingOperatorDelete()) |
2660 | return true; |
2661 | |
2662 | // This function is a usual deallocation function if there are no |
2663 | // single-parameter deallocation functions of the same kind. |
2664 | DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName()); |
2665 | bool Result = true; |
2666 | for (const auto *D : R) { |
2667 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
2668 | if (FD->getNumParams() == 1) { |
2669 | PreventedBy.push_back(FD); |
2670 | Result = false; |
2671 | } |
2672 | } |
2673 | } |
2674 | return Result; |
2675 | } |
2676 | |
2677 | bool CXXMethodDecl::isExplicitObjectMemberFunction() const { |
2678 | // C++2b [dcl.fct]p6: |
2679 | // An explicit object member function is a non-static member |
2680 | // function with an explicit object parameter |
2681 | return !isStatic() && hasCXXExplicitFunctionObjectParameter(); |
2682 | } |
2683 | |
2684 | bool CXXMethodDecl::isImplicitObjectMemberFunction() const { |
2685 | return !isStatic() && !hasCXXExplicitFunctionObjectParameter(); |
2686 | } |
2687 | |
2688 | bool CXXMethodDecl::isCopyAssignmentOperator() const { |
2689 | // C++0x [class.copy]p17: |
2690 | // A user-declared copy assignment operator X::operator= is a non-static |
2691 | // non-template member function of class X with exactly one parameter of |
2692 | // type X, X&, const X&, volatile X& or const volatile X&. |
2693 | if (/*operator=*/getOverloadedOperator() != OO_Equal || |
2694 | /*non-static*/ isStatic() || |
2695 | |
2696 | /*non-template*/ getPrimaryTemplate() || getDescribedFunctionTemplate() || |
2697 | getNumExplicitParams() != 1) |
2698 | return false; |
2699 | |
2700 | QualType ParamType = getNonObjectParameter(0)->getType(); |
2701 | if (const auto *Ref = ParamType->getAs<LValueReferenceType>()) |
2702 | ParamType = Ref->getPointeeType(); |
2703 | |
2704 | ASTContext &Context = getASTContext(); |
2705 | QualType ClassType |
2706 | = Context.getCanonicalType(T: Context.getTypeDeclType(getParent())); |
2707 | return Context.hasSameUnqualifiedType(T1: ClassType, T2: ParamType); |
2708 | } |
2709 | |
2710 | bool CXXMethodDecl::isMoveAssignmentOperator() const { |
2711 | // C++0x [class.copy]p19: |
2712 | // A user-declared move assignment operator X::operator= is a non-static |
2713 | // non-template member function of class X with exactly one parameter of type |
2714 | // X&&, const X&&, volatile X&&, or const volatile X&&. |
2715 | if (getOverloadedOperator() != OO_Equal || isStatic() || |
2716 | getPrimaryTemplate() || getDescribedFunctionTemplate() || |
2717 | getNumExplicitParams() != 1) |
2718 | return false; |
2719 | |
2720 | QualType ParamType = getNonObjectParameter(0)->getType(); |
2721 | if (!ParamType->isRValueReferenceType()) |
2722 | return false; |
2723 | ParamType = ParamType->getPointeeType(); |
2724 | |
2725 | ASTContext &Context = getASTContext(); |
2726 | QualType ClassType |
2727 | = Context.getCanonicalType(T: Context.getTypeDeclType(getParent())); |
2728 | return Context.hasSameUnqualifiedType(T1: ClassType, T2: ParamType); |
2729 | } |
2730 | |
2731 | void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { |
2732 | assert(MD->isCanonicalDecl() && "Method is not canonical!"); |
2733 | assert(MD->isVirtual() && "Method is not virtual!"); |
2734 | |
2735 | getASTContext().addOverriddenMethod(this, MD); |
2736 | } |
2737 | |
2738 | CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { |
2739 | if (isa<CXXConstructorDecl>(Val: this)) return nullptr; |
2740 | return getASTContext().overridden_methods_begin(this); |
2741 | } |
2742 | |
2743 | CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { |
2744 | if (isa<CXXConstructorDecl>(Val: this)) return nullptr; |
2745 | return getASTContext().overridden_methods_end(this); |
2746 | } |
2747 | |
2748 | unsigned CXXMethodDecl::size_overridden_methods() const { |
2749 | if (isa<CXXConstructorDecl>(Val: this)) return 0; |
2750 | return getASTContext().overridden_methods_size(this); |
2751 | } |
2752 | |
2753 | CXXMethodDecl::overridden_method_range |
2754 | CXXMethodDecl::overridden_methods() const { |
2755 | if (isa<CXXConstructorDecl>(Val: this)) |
2756 | return overridden_method_range(nullptr, nullptr); |
2757 | return getASTContext().overridden_methods(this); |
2758 | } |
2759 | |
2760 | static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT, |
2761 | const CXXRecordDecl *Decl) { |
2762 | QualType ClassTy = C.getTypeDeclType(Decl); |
2763 | return C.getQualifiedType(T: ClassTy, Qs: FPT->getMethodQuals()); |
2764 | } |
2765 | |
2766 | QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT, |
2767 | const CXXRecordDecl *Decl) { |
2768 | ASTContext &C = Decl->getASTContext(); |
2769 | QualType ObjectTy = ::getThisObjectType(C, FPT, Decl); |
2770 | |
2771 | // Unlike 'const' and 'volatile', a '__restrict' qualifier must be |
2772 | // attached to the pointer type, not the pointee. |
2773 | bool Restrict = FPT->getMethodQuals().hasRestrict(); |
2774 | if (Restrict) |
2775 | ObjectTy.removeLocalRestrict(); |
2776 | |
2777 | ObjectTy = C.getLangOpts().HLSL ? C.getLValueReferenceType(T: ObjectTy) |
2778 | : C.getPointerType(T: ObjectTy); |
2779 | |
2780 | if (Restrict) |
2781 | ObjectTy.addRestrict(); |
2782 | return ObjectTy; |
2783 | } |
2784 | |
2785 | QualType CXXMethodDecl::getThisType() const { |
2786 | // C++ 9.3.2p1: The type of this in a member function of a class X is X*. |
2787 | // If the member function is declared const, the type of this is const X*, |
2788 | // if the member function is declared volatile, the type of this is |
2789 | // volatile X*, and if the member function is declared const volatile, |
2790 | // the type of this is const volatile X*. |
2791 | assert(isInstance() && "No 'this' for static methods!"); |
2792 | return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(), |
2793 | getParent()); |
2794 | } |
2795 | |
2796 | QualType CXXMethodDecl::getFunctionObjectParameterReferenceType() const { |
2797 | if (isExplicitObjectMemberFunction()) |
2798 | return parameters()[0]->getType(); |
2799 | |
2800 | ASTContext &C = getParentASTContext(); |
2801 | const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>(); |
2802 | QualType Type = ::getThisObjectType(C, FPT, Decl: getParent()); |
2803 | RefQualifierKind RK = FPT->getRefQualifier(); |
2804 | if (RK == RefQualifierKind::RQ_RValue) |
2805 | return C.getRValueReferenceType(T: Type); |
2806 | return C.getLValueReferenceType(T: Type); |
2807 | } |
2808 | |
2809 | bool CXXMethodDecl::hasInlineBody() const { |
2810 | // If this function is a template instantiation, look at the template from |
2811 | // which it was instantiated. |
2812 | const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); |
2813 | if (!CheckFn) |
2814 | CheckFn = this; |
2815 | |
2816 | const FunctionDecl *fn; |
2817 | return CheckFn->isDefined(Definition&: fn) && !fn->isOutOfLine() && |
2818 | (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); |
2819 | } |
2820 | |
2821 | bool CXXMethodDecl::isLambdaStaticInvoker() const { |
2822 | const CXXRecordDecl *P = getParent(); |
2823 | return P->isLambda() && getDeclName().isIdentifier() && |
2824 | getName() == getLambdaStaticInvokerName(); |
2825 | } |
2826 | |
2827 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
2828 | TypeSourceInfo *TInfo, bool IsVirtual, |
2829 | SourceLocation L, Expr *Init, |
2830 | SourceLocation R, |
2831 | SourceLocation EllipsisLoc) |
2832 | : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc), |
2833 | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), |
2834 | IsWritten(false), SourceOrder(0) {} |
2835 | |
2836 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, |
2837 | SourceLocation MemberLoc, |
2838 | SourceLocation L, Expr *Init, |
2839 | SourceLocation R) |
2840 | : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), |
2841 | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), |
2842 | IsWritten(false), SourceOrder(0) {} |
2843 | |
2844 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
2845 | IndirectFieldDecl *Member, |
2846 | SourceLocation MemberLoc, |
2847 | SourceLocation L, Expr *Init, |
2848 | SourceLocation R) |
2849 | : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), |
2850 | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), |
2851 | IsWritten(false), SourceOrder(0) {} |
2852 | |
2853 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
2854 | TypeSourceInfo *TInfo, |
2855 | SourceLocation L, Expr *Init, |
2856 | SourceLocation R) |
2857 | : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), |
2858 | IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} |
2859 | |
2860 | int64_t CXXCtorInitializer::getID(const ASTContext &Context) const { |
2861 | return Context.getAllocator() |
2862 | .identifyKnownAlignedObject<CXXCtorInitializer>(Ptr: this); |
2863 | } |
2864 | |
2865 | TypeLoc CXXCtorInitializer::getBaseClassLoc() const { |
2866 | if (isBaseInitializer()) |
2867 | return cast<TypeSourceInfo *>(Val: Initializee)->getTypeLoc(); |
2868 | else |
2869 | return {}; |
2870 | } |
2871 | |
2872 | const Type *CXXCtorInitializer::getBaseClass() const { |
2873 | if (isBaseInitializer()) |
2874 | return cast<TypeSourceInfo *>(Val: Initializee)->getType().getTypePtr(); |
2875 | else |
2876 | return nullptr; |
2877 | } |
2878 | |
2879 | SourceLocation CXXCtorInitializer::getSourceLocation() const { |
2880 | if (isInClassMemberInitializer()) |
2881 | return getAnyMember()->getLocation(); |
2882 | |
2883 | if (isAnyMemberInitializer()) |
2884 | return getMemberLocation(); |
2885 | |
2886 | if (const auto *TSInfo = cast<TypeSourceInfo *>(Val: Initializee)) |
2887 | return TSInfo->getTypeLoc().getBeginLoc(); |
2888 | |
2889 | return {}; |
2890 | } |
2891 | |
2892 | SourceRange CXXCtorInitializer::getSourceRange() const { |
2893 | if (isInClassMemberInitializer()) { |
2894 | FieldDecl *D = getAnyMember(); |
2895 | if (Expr *I = D->getInClassInitializer()) |
2896 | return I->getSourceRange(); |
2897 | return {}; |
2898 | } |
2899 | |
2900 | return SourceRange(getSourceLocation(), getRParenLoc()); |
2901 | } |
2902 | |
2903 | CXXConstructorDecl::CXXConstructorDecl( |
2904 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
2905 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
2906 | ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, |
2907 | bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, |
2908 | InheritedConstructor Inherited, |
2909 | const AssociatedConstraint &TrailingRequiresClause) |
2910 | : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, |
2911 | SC_None, UsesFPIntrin, isInline, ConstexprKind, |
2912 | SourceLocation(), TrailingRequiresClause) { |
2913 | setNumCtorInitializers(0); |
2914 | setInheritingConstructor(static_cast<bool>(Inherited)); |
2915 | setImplicit(isImplicitlyDeclared); |
2916 | CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0; |
2917 | if (Inherited) |
2918 | *getTrailingObjects<InheritedConstructor>() = Inherited; |
2919 | setExplicitSpecifier(ES); |
2920 | } |
2921 | |
2922 | void CXXConstructorDecl::anchor() {} |
2923 | |
2924 | CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, |
2925 | GlobalDeclID ID, |
2926 | uint64_t AllocKind) { |
2927 | bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit); |
2928 | bool isInheritingConstructor = |
2929 | static_cast<bool>(AllocKind & TAKInheritsConstructor); |
2930 | unsigned Extra = |
2931 | additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( |
2932 | Counts: isInheritingConstructor, Counts: hasTrailingExplicit); |
2933 | auto *Result = new (C, ID, Extra) CXXConstructorDecl( |
2934 | C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, |
2935 | ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified, |
2936 | InheritedConstructor(), /*TrailingRequiresClause=*/{}); |
2937 | Result->setInheritingConstructor(isInheritingConstructor); |
2938 | Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier = |
2939 | hasTrailingExplicit; |
2940 | Result->setExplicitSpecifier(ExplicitSpecifier()); |
2941 | return Result; |
2942 | } |
2943 | |
2944 | CXXConstructorDecl *CXXConstructorDecl::Create( |
2945 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
2946 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
2947 | ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, |
2948 | bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, |
2949 | InheritedConstructor Inherited, |
2950 | const AssociatedConstraint &TrailingRequiresClause) { |
2951 | assert(NameInfo.getName().getNameKind() |
2952 | == DeclarationName::CXXConstructorName && |
2953 | "Name must refer to a constructor"); |
2954 | unsigned Extra = |
2955 | additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( |
2956 | Counts: Inherited ? 1 : 0, Counts: ES.getExpr() ? 1 : 0); |
2957 | return new (C, RD, Extra) CXXConstructorDecl( |
2958 | C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline, |
2959 | isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause); |
2960 | } |
2961 | |
2962 | CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { |
2963 | return CtorInitializers.get(Source: getASTContext().getExternalSource()); |
2964 | } |
2965 | |
2966 | CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { |
2967 | assert(isDelegatingConstructor() && "Not a delegating constructor!"); |
2968 | Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); |
2969 | if (const auto *Construct = dyn_cast<CXXConstructExpr>(Val: E)) |
2970 | return Construct->getConstructor(); |
2971 | |
2972 | return nullptr; |
2973 | } |
2974 | |
2975 | bool CXXConstructorDecl::isDefaultConstructor() const { |
2976 | // C++ [class.default.ctor]p1: |
2977 | // A default constructor for a class X is a constructor of class X for |
2978 | // which each parameter that is not a function parameter pack has a default |
2979 | // argument (including the case of a constructor with no parameters) |
2980 | return getMinRequiredArguments() == 0; |
2981 | } |
2982 | |
2983 | bool |
2984 | CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { |
2985 | return isCopyOrMoveConstructor(TypeQuals) && |
2986 | getParamDecl(0)->getType()->isLValueReferenceType(); |
2987 | } |
2988 | |
2989 | bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { |
2990 | return isCopyOrMoveConstructor(TypeQuals) && |
2991 | getParamDecl(0)->getType()->isRValueReferenceType(); |
2992 | } |
2993 | |
2994 | /// Determine whether this is a copy or move constructor. |
2995 | bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { |
2996 | // C++ [class.copy]p2: |
2997 | // A non-template constructor for class X is a copy constructor |
2998 | // if its first parameter is of type X&, const X&, volatile X& or |
2999 | // const volatile X&, and either there are no other parameters |
3000 | // or else all other parameters have default arguments (8.3.6). |
3001 | // C++0x [class.copy]p3: |
3002 | // A non-template constructor for class X is a move constructor if its |
3003 | // first parameter is of type X&&, const X&&, volatile X&&, or |
3004 | // const volatile X&&, and either there are no other parameters or else |
3005 | // all other parameters have default arguments. |
3006 | if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr || |
3007 | getDescribedFunctionTemplate() != nullptr) |
3008 | return false; |
3009 | |
3010 | const ParmVarDecl *Param = getParamDecl(0); |
3011 | |
3012 | // Do we have a reference type? |
3013 | const auto *ParamRefType = Param->getType()->getAs<ReferenceType>(); |
3014 | if (!ParamRefType) |
3015 | return false; |
3016 | |
3017 | // Is it a reference to our class type? |
3018 | ASTContext &Context = getASTContext(); |
3019 | |
3020 | CanQualType PointeeType |
3021 | = Context.getCanonicalType(ParamRefType->getPointeeType()); |
3022 | CanQualType ClassTy |
3023 | = Context.getCanonicalType(Context.getTagDeclType(Decl: getParent())); |
3024 | if (PointeeType.getUnqualifiedType() != ClassTy) |
3025 | return false; |
3026 | |
3027 | // FIXME: other qualifiers? |
3028 | |
3029 | // We have a copy or move constructor. |
3030 | TypeQuals = PointeeType.getCVRQualifiers(); |
3031 | return true; |
3032 | } |
3033 | |
3034 | bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { |
3035 | // C++ [class.conv.ctor]p1: |
3036 | // A constructor declared without the function-specifier explicit |
3037 | // that can be called with a single parameter specifies a |
3038 | // conversion from the type of its first parameter to the type of |
3039 | // its class. Such a constructor is called a converting |
3040 | // constructor. |
3041 | if (isExplicit() && !AllowExplicit) |
3042 | return false; |
3043 | |
3044 | // FIXME: This has nothing to do with the definition of converting |
3045 | // constructor, but is convenient for how we use this function in overload |
3046 | // resolution. |
3047 | return getNumParams() == 0 |
3048 | ? getType()->castAs<FunctionProtoType>()->isVariadic() |
3049 | : getMinRequiredArguments() <= 1; |
3050 | } |
3051 | |
3052 | bool CXXConstructorDecl::isSpecializationCopyingObject() const { |
3053 | if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr) |
3054 | return false; |
3055 | |
3056 | const ParmVarDecl *Param = getParamDecl(0); |
3057 | |
3058 | ASTContext &Context = getASTContext(); |
3059 | CanQualType ParamType = Context.getCanonicalType(Param->getType()); |
3060 | |
3061 | // Is it the same as our class type? |
3062 | CanQualType ClassTy |
3063 | = Context.getCanonicalType(Context.getTagDeclType(Decl: getParent())); |
3064 | if (ParamType.getUnqualifiedType() != ClassTy) |
3065 | return false; |
3066 | |
3067 | return true; |
3068 | } |
3069 | |
3070 | void CXXDestructorDecl::anchor() {} |
3071 | |
3072 | CXXDestructorDecl *CXXDestructorDecl::CreateDeserialized(ASTContext &C, |
3073 | GlobalDeclID ID) { |
3074 | return new (C, ID) CXXDestructorDecl( |
3075 | C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, |
3076 | false, false, false, ConstexprSpecKind::Unspecified, |
3077 | /*TrailingRequiresClause=*/{}); |
3078 | } |
3079 | |
3080 | CXXDestructorDecl *CXXDestructorDecl::Create( |
3081 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
3082 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
3083 | bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared, |
3084 | ConstexprSpecKind ConstexprKind, |
3085 | const AssociatedConstraint &TrailingRequiresClause) { |
3086 | assert(NameInfo.getName().getNameKind() |
3087 | == DeclarationName::CXXDestructorName && |
3088 | "Name must refer to a destructor"); |
3089 | return new (C, RD) CXXDestructorDecl( |
3090 | C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, |
3091 | isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause); |
3092 | } |
3093 | |
3094 | void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { |
3095 | auto *First = cast<CXXDestructorDecl>(getFirstDecl()); |
3096 | if (OD && !First->OperatorDelete) { |
3097 | First->OperatorDelete = OD; |
3098 | First->OperatorDeleteThisArg = ThisArg; |
3099 | if (auto *L = getASTMutationListener()) |
3100 | L->ResolvedOperatorDelete(First, OD, ThisArg); |
3101 | } |
3102 | } |
3103 | |
3104 | bool CXXDestructorDecl::isCalledByDelete(const FunctionDecl *OpDel) const { |
3105 | // C++20 [expr.delete]p6: If the value of the operand of the delete- |
3106 | // expression is not a null pointer value and the selected deallocation |
3107 | // function (see below) is not a destroying operator delete, the delete- |
3108 | // expression will invoke the destructor (if any) for the object or the |
3109 | // elements of the array being deleted. |
3110 | // |
3111 | // This means we should not look at the destructor for a destroying |
3112 | // delete operator, as that destructor is never called, unless the |
3113 | // destructor is virtual (see [expr.delete]p8.1) because then the |
3114 | // selected operator depends on the dynamic type of the pointer. |
3115 | const FunctionDecl *SelectedOperatorDelete = OpDel ? OpDel : OperatorDelete; |
3116 | if (!SelectedOperatorDelete) |
3117 | return true; |
3118 | |
3119 | if (!SelectedOperatorDelete->isDestroyingOperatorDelete()) |
3120 | return true; |
3121 | |
3122 | // We have a destroying operator delete, so it depends on the dtor. |
3123 | return isVirtual(); |
3124 | } |
3125 | |
3126 | void CXXConversionDecl::anchor() {} |
3127 | |
3128 | CXXConversionDecl *CXXConversionDecl::CreateDeserialized(ASTContext &C, |
3129 | GlobalDeclID ID) { |
3130 | return new (C, ID) CXXConversionDecl( |
3131 | C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, |
3132 | false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, |
3133 | SourceLocation(), /*TrailingRequiresClause=*/{}); |
3134 | } |
3135 | |
3136 | CXXConversionDecl *CXXConversionDecl::Create( |
3137 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
3138 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
3139 | bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES, |
3140 | ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, |
3141 | const AssociatedConstraint &TrailingRequiresClause) { |
3142 | assert(NameInfo.getName().getNameKind() |
3143 | == DeclarationName::CXXConversionFunctionName && |
3144 | "Name must refer to a conversion function"); |
3145 | return new (C, RD) CXXConversionDecl( |
3146 | C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES, |
3147 | ConstexprKind, EndLocation, TrailingRequiresClause); |
3148 | } |
3149 | |
3150 | bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { |
3151 | return isImplicit() && getParent()->isLambda() && |
3152 | getConversionType()->isBlockPointerType(); |
3153 | } |
3154 | |
3155 | LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, |
3156 | SourceLocation LangLoc, |
3157 | LinkageSpecLanguageIDs lang, bool HasBraces) |
3158 | : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), |
3159 | ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { |
3160 | setLanguage(lang); |
3161 | LinkageSpecDeclBits.HasBraces = HasBraces; |
3162 | } |
3163 | |
3164 | void LinkageSpecDecl::anchor() {} |
3165 | |
3166 | LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, DeclContext *DC, |
3167 | SourceLocation ExternLoc, |
3168 | SourceLocation LangLoc, |
3169 | LinkageSpecLanguageIDs Lang, |
3170 | bool HasBraces) { |
3171 | return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); |
3172 | } |
3173 | |
3174 | LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, |
3175 | GlobalDeclID ID) { |
3176 | return new (C, ID) |
3177 | LinkageSpecDecl(nullptr, SourceLocation(), SourceLocation(), |
3178 | LinkageSpecLanguageIDs::C, false); |
3179 | } |
3180 | |
3181 | void UsingDirectiveDecl::anchor() {} |
3182 | |
3183 | UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, |
3184 | SourceLocation L, |
3185 | SourceLocation NamespaceLoc, |
3186 | NestedNameSpecifierLoc QualifierLoc, |
3187 | SourceLocation IdentLoc, |
3188 | NamedDecl *Used, |
3189 | DeclContext *CommonAncestor) { |
3190 | if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Val: Used)) |
3191 | Used = NS->getFirstDecl(); |
3192 | return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, |
3193 | IdentLoc, Used, CommonAncestor); |
3194 | } |
3195 | |
3196 | UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, |
3197 | GlobalDeclID ID) { |
3198 | return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), |
3199 | SourceLocation(), |
3200 | NestedNameSpecifierLoc(), |
3201 | SourceLocation(), nullptr, nullptr); |
3202 | } |
3203 | |
3204 | NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { |
3205 | if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(Val: NominatedNamespace)) |
3206 | return NA->getNamespace(); |
3207 | return cast_or_null<NamespaceDecl>(Val: NominatedNamespace); |
3208 | } |
3209 | |
3210 | NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, |
3211 | SourceLocation StartLoc, SourceLocation IdLoc, |
3212 | IdentifierInfo *Id, NamespaceDecl *PrevDecl, |
3213 | bool Nested) |
3214 | : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), |
3215 | redeclarable_base(C), LocStart(StartLoc) { |
3216 | setInline(Inline); |
3217 | setNested(Nested); |
3218 | setPreviousDecl(PrevDecl); |
3219 | } |
3220 | |
3221 | NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, |
3222 | bool Inline, SourceLocation StartLoc, |
3223 | SourceLocation IdLoc, IdentifierInfo *Id, |
3224 | NamespaceDecl *PrevDecl, bool Nested) { |
3225 | return new (C, DC) |
3226 | NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, PrevDecl, Nested); |
3227 | } |
3228 | |
3229 | NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, |
3230 | GlobalDeclID ID) { |
3231 | return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), |
3232 | SourceLocation(), nullptr, nullptr, false); |
3233 | } |
3234 | |
3235 | NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { |
3236 | return getNextRedeclaration(); |
3237 | } |
3238 | |
3239 | NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { |
3240 | return getPreviousDecl(); |
3241 | } |
3242 | |
3243 | NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { |
3244 | return getMostRecentDecl(); |
3245 | } |
3246 | |
3247 | void NamespaceAliasDecl::anchor() {} |
3248 | |
3249 | NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { |
3250 | return getNextRedeclaration(); |
3251 | } |
3252 | |
3253 | NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { |
3254 | return getPreviousDecl(); |
3255 | } |
3256 | |
3257 | NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { |
3258 | return getMostRecentDecl(); |
3259 | } |
3260 | |
3261 | NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, |
3262 | SourceLocation UsingLoc, |
3263 | SourceLocation AliasLoc, |
3264 | IdentifierInfo *Alias, |
3265 | NestedNameSpecifierLoc QualifierLoc, |
3266 | SourceLocation IdentLoc, |
3267 | NamedDecl *Namespace) { |
3268 | // FIXME: Preserve the aliased namespace as written. |
3269 | if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Val: Namespace)) |
3270 | Namespace = NS->getFirstDecl(); |
3271 | return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, |
3272 | QualifierLoc, IdentLoc, Namespace); |
3273 | } |
3274 | |
3275 | NamespaceAliasDecl *NamespaceAliasDecl::CreateDeserialized(ASTContext &C, |
3276 | GlobalDeclID ID) { |
3277 | return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), |
3278 | SourceLocation(), nullptr, |
3279 | NestedNameSpecifierLoc(), |
3280 | SourceLocation(), nullptr); |
3281 | } |
3282 | |
3283 | void LifetimeExtendedTemporaryDecl::anchor() {} |
3284 | |
3285 | /// Retrieve the storage duration for the materialized temporary. |
3286 | StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const { |
3287 | const ValueDecl *ExtendingDecl = getExtendingDecl(); |
3288 | if (!ExtendingDecl) |
3289 | return SD_FullExpression; |
3290 | // FIXME: This is not necessarily correct for a temporary materialized |
3291 | // within a default initializer. |
3292 | if (isa<FieldDecl>(Val: ExtendingDecl)) |
3293 | return SD_Automatic; |
3294 | // FIXME: This only works because storage class specifiers are not allowed |
3295 | // on decomposition declarations. |
3296 | if (isa<BindingDecl>(Val: ExtendingDecl)) |
3297 | return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic |
3298 | : SD_Static; |
3299 | return cast<VarDecl>(Val: ExtendingDecl)->getStorageDuration(); |
3300 | } |
3301 | |
3302 | APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const { |
3303 | assert(getStorageDuration() == SD_Static && |
3304 | "don't need to cache the computed value for this temporary"); |
3305 | if (MayCreate && !Value) { |
3306 | Value = (new (getASTContext()) APValue); |
3307 | getASTContext().addDestruction(Value); |
3308 | } |
3309 | assert(Value && "may not be null"); |
3310 | return Value; |
3311 | } |
3312 | |
3313 | void UsingShadowDecl::anchor() {} |
3314 | |
3315 | UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, |
3316 | SourceLocation Loc, DeclarationName Name, |
3317 | BaseUsingDecl *Introducer, NamedDecl *Target) |
3318 | : NamedDecl(K, DC, Loc, Name), redeclarable_base(C), |
3319 | UsingOrNextShadow(Introducer) { |
3320 | if (Target) { |
3321 | assert(!isa<UsingShadowDecl>(Target)); |
3322 | setTargetDecl(Target); |
3323 | } |
3324 | setImplicit(); |
3325 | } |
3326 | |
3327 | UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) |
3328 | : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), |
3329 | redeclarable_base(C) {} |
3330 | |
3331 | UsingShadowDecl *UsingShadowDecl::CreateDeserialized(ASTContext &C, |
3332 | GlobalDeclID ID) { |
3333 | return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); |
3334 | } |
3335 | |
3336 | BaseUsingDecl *UsingShadowDecl::getIntroducer() const { |
3337 | const UsingShadowDecl *Shadow = this; |
3338 | while (const auto *NextShadow = |
3339 | dyn_cast<UsingShadowDecl>(Val: Shadow->UsingOrNextShadow)) |
3340 | Shadow = NextShadow; |
3341 | return cast<BaseUsingDecl>(Val: Shadow->UsingOrNextShadow); |
3342 | } |
3343 | |
3344 | void ConstructorUsingShadowDecl::anchor() {} |
3345 | |
3346 | ConstructorUsingShadowDecl * |
3347 | ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, |
3348 | SourceLocation Loc, UsingDecl *Using, |
3349 | NamedDecl *Target, bool IsVirtual) { |
3350 | return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, |
3351 | IsVirtual); |
3352 | } |
3353 | |
3354 | ConstructorUsingShadowDecl * |
3355 | ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3356 | return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); |
3357 | } |
3358 | |
3359 | CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { |
3360 | return getIntroducer()->getQualifier()->getAsRecordDecl(); |
3361 | } |
3362 | |
3363 | void BaseUsingDecl::anchor() {} |
3364 | |
3365 | void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) { |
3366 | assert(!llvm::is_contained(shadows(), S) && "declaration already in set"); |
3367 | assert(S->getIntroducer() == this); |
3368 | |
3369 | if (FirstUsingShadow.getPointer()) |
3370 | S->UsingOrNextShadow = FirstUsingShadow.getPointer(); |
3371 | FirstUsingShadow.setPointer(S); |
3372 | } |
3373 | |
3374 | void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) { |
3375 | assert(llvm::is_contained(shadows(), S) && "declaration not in set"); |
3376 | assert(S->getIntroducer() == this); |
3377 | |
3378 | // Remove S from the shadow decl chain. This is O(n) but hopefully rare. |
3379 | |
3380 | if (FirstUsingShadow.getPointer() == S) { |
3381 | FirstUsingShadow.setPointer( |
3382 | dyn_cast<UsingShadowDecl>(Val: S->UsingOrNextShadow)); |
3383 | S->UsingOrNextShadow = this; |
3384 | return; |
3385 | } |
3386 | |
3387 | UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); |
3388 | while (Prev->UsingOrNextShadow != S) |
3389 | Prev = cast<UsingShadowDecl>(Val: Prev->UsingOrNextShadow); |
3390 | Prev->UsingOrNextShadow = S->UsingOrNextShadow; |
3391 | S->UsingOrNextShadow = this; |
3392 | } |
3393 | |
3394 | void UsingDecl::anchor() {} |
3395 | |
3396 | UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, |
3397 | NestedNameSpecifierLoc QualifierLoc, |
3398 | const DeclarationNameInfo &NameInfo, |
3399 | bool HasTypename) { |
3400 | return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); |
3401 | } |
3402 | |
3403 | UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3404 | return new (C, ID) UsingDecl(nullptr, SourceLocation(), |
3405 | NestedNameSpecifierLoc(), DeclarationNameInfo(), |
3406 | false); |
3407 | } |
3408 | |
3409 | SourceRange UsingDecl::getSourceRange() const { |
3410 | SourceLocation Begin = isAccessDeclaration() |
3411 | ? getQualifierLoc().getBeginLoc() : UsingLocation; |
3412 | return SourceRange(Begin, getNameInfo().getEndLoc()); |
3413 | } |
3414 | |
3415 | void UsingEnumDecl::anchor() {} |
3416 | |
3417 | UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC, |
3418 | SourceLocation UL, |
3419 | SourceLocation EL, |
3420 | SourceLocation NL, |
3421 | TypeSourceInfo *EnumType) { |
3422 | assert(isa<EnumDecl>(EnumType->getType()->getAsTagDecl())); |
3423 | return new (C, DC) |
3424 | UsingEnumDecl(DC, EnumType->getType()->getAsTagDecl()->getDeclName(), UL, EL, NL, EnumType); |
3425 | } |
3426 | |
3427 | UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, |
3428 | GlobalDeclID ID) { |
3429 | return new (C, ID) |
3430 | UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(), |
3431 | SourceLocation(), SourceLocation(), nullptr); |
3432 | } |
3433 | |
3434 | SourceRange UsingEnumDecl::getSourceRange() const { |
3435 | return SourceRange(UsingLocation, EnumType->getTypeLoc().getEndLoc()); |
3436 | } |
3437 | |
3438 | void UsingPackDecl::anchor() {} |
3439 | |
3440 | UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, |
3441 | NamedDecl *InstantiatedFrom, |
3442 | ArrayRef<NamedDecl *> UsingDecls) { |
3443 | size_t Extra = additionalSizeToAlloc<NamedDecl *>(Counts: UsingDecls.size()); |
3444 | return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); |
3445 | } |
3446 | |
3447 | UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID, |
3448 | unsigned NumExpansions) { |
3449 | size_t Extra = additionalSizeToAlloc<NamedDecl *>(Counts: NumExpansions); |
3450 | auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, {}); |
3451 | Result->NumExpansions = NumExpansions; |
3452 | auto *Trail = Result->getTrailingObjects(); |
3453 | std::uninitialized_fill_n(Trail, NumExpansions, nullptr); |
3454 | return Result; |
3455 | } |
3456 | |
3457 | void UnresolvedUsingValueDecl::anchor() {} |
3458 | |
3459 | UnresolvedUsingValueDecl * |
3460 | UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, |
3461 | SourceLocation UsingLoc, |
3462 | NestedNameSpecifierLoc QualifierLoc, |
3463 | const DeclarationNameInfo &NameInfo, |
3464 | SourceLocation EllipsisLoc) { |
3465 | return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, |
3466 | QualifierLoc, NameInfo, |
3467 | EllipsisLoc); |
3468 | } |
3469 | |
3470 | UnresolvedUsingValueDecl * |
3471 | UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3472 | return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), |
3473 | SourceLocation(), |
3474 | NestedNameSpecifierLoc(), |
3475 | DeclarationNameInfo(), |
3476 | SourceLocation()); |
3477 | } |
3478 | |
3479 | SourceRange UnresolvedUsingValueDecl::getSourceRange() const { |
3480 | SourceLocation Begin = isAccessDeclaration() |
3481 | ? getQualifierLoc().getBeginLoc() : UsingLocation; |
3482 | return SourceRange(Begin, getNameInfo().getEndLoc()); |
3483 | } |
3484 | |
3485 | void UnresolvedUsingTypenameDecl::anchor() {} |
3486 | |
3487 | UnresolvedUsingTypenameDecl * |
3488 | UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, |
3489 | SourceLocation UsingLoc, |
3490 | SourceLocation TypenameLoc, |
3491 | NestedNameSpecifierLoc QualifierLoc, |
3492 | SourceLocation TargetNameLoc, |
3493 | DeclarationName TargetName, |
3494 | SourceLocation EllipsisLoc) { |
3495 | return new (C, DC) UnresolvedUsingTypenameDecl( |
3496 | DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, |
3497 | TargetName.getAsIdentifierInfo(), EllipsisLoc); |
3498 | } |
3499 | |
3500 | UnresolvedUsingTypenameDecl * |
3501 | UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, |
3502 | GlobalDeclID ID) { |
3503 | return new (C, ID) UnresolvedUsingTypenameDecl( |
3504 | nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), |
3505 | SourceLocation(), nullptr, SourceLocation()); |
3506 | } |
3507 | |
3508 | UnresolvedUsingIfExistsDecl * |
3509 | UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC, |
3510 | SourceLocation Loc, DeclarationName Name) { |
3511 | return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name); |
3512 | } |
3513 | |
3514 | UnresolvedUsingIfExistsDecl * |
3515 | UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, |
3516 | GlobalDeclID ID) { |
3517 | return new (Ctx, ID) |
3518 | UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName()); |
3519 | } |
3520 | |
3521 | UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC, |
3522 | SourceLocation Loc, |
3523 | DeclarationName Name) |
3524 | : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {} |
3525 | |
3526 | void UnresolvedUsingIfExistsDecl::anchor() {} |
3527 | |
3528 | void StaticAssertDecl::anchor() {} |
3529 | |
3530 | StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, |
3531 | SourceLocation StaticAssertLoc, |
3532 | Expr *AssertExpr, Expr *Message, |
3533 | SourceLocation RParenLoc, |
3534 | bool Failed) { |
3535 | return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, |
3536 | RParenLoc, Failed); |
3537 | } |
3538 | |
3539 | StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, |
3540 | GlobalDeclID ID) { |
3541 | return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, |
3542 | nullptr, SourceLocation(), false); |
3543 | } |
3544 | |
3545 | VarDecl *ValueDecl::getPotentiallyDecomposedVarDecl() { |
3546 | assert((isa<VarDecl, BindingDecl>(this)) && |
3547 | "expected a VarDecl or a BindingDecl"); |
3548 | if (auto *Var = llvm::dyn_cast<VarDecl>(Val: this)) |
3549 | return Var; |
3550 | if (auto *BD = llvm::dyn_cast<BindingDecl>(Val: this)) |
3551 | return llvm::dyn_cast_if_present<VarDecl>(Val: BD->getDecomposedDecl()); |
3552 | return nullptr; |
3553 | } |
3554 | |
3555 | void BindingDecl::anchor() {} |
3556 | |
3557 | BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, |
3558 | SourceLocation IdLoc, IdentifierInfo *Id, |
3559 | QualType T) { |
3560 | return new (C, DC) BindingDecl(DC, IdLoc, Id, T); |
3561 | } |
3562 | |
3563 | BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3564 | return new (C, ID) |
3565 | BindingDecl(nullptr, SourceLocation(), nullptr, QualType()); |
3566 | } |
3567 | |
3568 | VarDecl *BindingDecl::getHoldingVar() const { |
3569 | Expr *B = getBinding(); |
3570 | if (!B) |
3571 | return nullptr; |
3572 | auto *DRE = dyn_cast<DeclRefExpr>(Val: B->IgnoreImplicit()); |
3573 | if (!DRE) |
3574 | return nullptr; |
3575 | |
3576 | auto *VD = cast<VarDecl>(Val: DRE->getDecl()); |
3577 | assert(VD->isImplicit() && "holding var for binding decl not implicit"); |
3578 | return VD; |
3579 | } |
3580 | |
3581 | llvm::ArrayRef<BindingDecl *> BindingDecl::getBindingPackDecls() const { |
3582 | assert(Binding && "expecting a pack expr"); |
3583 | auto *FP = cast<FunctionParmPackExpr>(Val: Binding); |
3584 | ValueDecl *const *First = FP->getNumExpansions() > 0 ? FP->begin() : nullptr; |
3585 | assert((!First || isa<BindingDecl>(*First)) && "expecting a BindingDecl"); |
3586 | return llvm::ArrayRef<BindingDecl *>( |
3587 | reinterpret_cast<BindingDecl *const *>(First), FP->getNumExpansions()); |
3588 | } |
3589 | |
3590 | void DecompositionDecl::anchor() {} |
3591 | |
3592 | DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, |
3593 | SourceLocation StartLoc, |
3594 | SourceLocation LSquareLoc, |
3595 | QualType T, TypeSourceInfo *TInfo, |
3596 | StorageClass SC, |
3597 | ArrayRef<BindingDecl *> Bindings) { |
3598 | size_t Extra = additionalSizeToAlloc<BindingDecl *>(Counts: Bindings.size()); |
3599 | return new (C, DC, Extra) |
3600 | DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); |
3601 | } |
3602 | |
3603 | DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, |
3604 | GlobalDeclID ID, |
3605 | unsigned NumBindings) { |
3606 | size_t Extra = additionalSizeToAlloc<BindingDecl *>(Counts: NumBindings); |
3607 | auto *Result = new (C, ID, Extra) |
3608 | DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), |
3609 | QualType(), nullptr, StorageClass(), {}); |
3610 | // Set up and clean out the bindings array. |
3611 | Result->NumBindings = NumBindings; |
3612 | auto *Trail = Result->getTrailingObjects(); |
3613 | std::uninitialized_fill_n(Trail, NumBindings, nullptr); |
3614 | return Result; |
3615 | } |
3616 | |
3617 | void DecompositionDecl::printName(llvm::raw_ostream &OS, |
3618 | const PrintingPolicy &Policy) const { |
3619 | OS << '['; |
3620 | bool Comma = false; |
3621 | for (const auto *B : bindings()) { |
3622 | if (Comma) |
3623 | OS << ", "; |
3624 | B->printName(OS, Policy); |
3625 | Comma = true; |
3626 | } |
3627 | OS << ']'; |
3628 | } |
3629 | |
3630 | void MSPropertyDecl::anchor() {} |
3631 | |
3632 | MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, |
3633 | SourceLocation L, DeclarationName N, |
3634 | QualType T, TypeSourceInfo *TInfo, |
3635 | SourceLocation StartL, |
3636 | IdentifierInfo *Getter, |
3637 | IdentifierInfo *Setter) { |
3638 | return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); |
3639 | } |
3640 | |
3641 | MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, |
3642 | GlobalDeclID ID) { |
3643 | return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), |
3644 | DeclarationName(), QualType(), nullptr, |
3645 | SourceLocation(), nullptr, nullptr); |
3646 | } |
3647 | |
3648 | void MSGuidDecl::anchor() {} |
3649 | |
3650 | MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P) |
3651 | : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T), |
3652 | PartVal(P) {} |
3653 | |
3654 | MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) { |
3655 | DeclContext *DC = C.getTranslationUnitDecl(); |
3656 | return new (C, DC) MSGuidDecl(DC, T, P); |
3657 | } |
3658 | |
3659 | MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3660 | return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts()); |
3661 | } |
3662 | |
3663 | void MSGuidDecl::printName(llvm::raw_ostream &OS, |
3664 | const PrintingPolicy &) const { |
3665 | OS << llvm::format(Fmt: "GUID{%08"PRIx32 "-%04"PRIx16 "-%04"PRIx16 "-", |
3666 | Vals: PartVal.Part1, Vals: PartVal.Part2, Vals: PartVal.Part3); |
3667 | unsigned I = 0; |
3668 | for (uint8_t Byte : PartVal.Part4And5) { |
3669 | OS << llvm::format(Fmt: "%02"PRIx8, Vals: Byte); |
3670 | if (++I == 2) |
3671 | OS << '-'; |
3672 | } |
3673 | OS << '}'; |
3674 | } |
3675 | |
3676 | /// Determine if T is a valid 'struct _GUID' of the shape that we expect. |
3677 | static bool isValidStructGUID(ASTContext &Ctx, QualType T) { |
3678 | // FIXME: We only need to check this once, not once each time we compute a |
3679 | // GUID APValue. |
3680 | using MatcherRef = llvm::function_ref<bool(QualType)>; |
3681 | |
3682 | auto IsInt = [&Ctx](unsigned N) { |
3683 | return [&Ctx, N](QualType T) { |
3684 | return T->isUnsignedIntegerOrEnumerationType() && |
3685 | Ctx.getIntWidth(T) == N; |
3686 | }; |
3687 | }; |
3688 | |
3689 | auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) { |
3690 | return [&Ctx, Elem, N](QualType T) { |
3691 | const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T); |
3692 | return CAT && CAT->getSize() == N && Elem(CAT->getElementType()); |
3693 | }; |
3694 | }; |
3695 | |
3696 | auto IsStruct = [](std::initializer_list<MatcherRef> Fields) { |
3697 | return [Fields](QualType T) { |
3698 | const RecordDecl *RD = T->getAsRecordDecl(); |
3699 | if (!RD || RD->isUnion()) |
3700 | return false; |
3701 | RD = RD->getDefinition(); |
3702 | if (!RD) |
3703 | return false; |
3704 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
3705 | if (CXXRD->getNumBases()) |
3706 | return false; |
3707 | auto MatcherIt = Fields.begin(); |
3708 | for (const FieldDecl *FD : RD->fields()) { |
3709 | if (FD->isUnnamedBitField()) |
3710 | continue; |
3711 | if (FD->isBitField() || MatcherIt == Fields.end() || |
3712 | !(*MatcherIt)(FD->getType())) |
3713 | return false; |
3714 | ++MatcherIt; |
3715 | } |
3716 | return MatcherIt == Fields.end(); |
3717 | }; |
3718 | }; |
3719 | |
3720 | // We expect an {i32, i16, i16, [8 x i8]}. |
3721 | return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T); |
3722 | } |
3723 | |
3724 | APValue &MSGuidDecl::getAsAPValue() const { |
3725 | if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) { |
3726 | using llvm::APInt; |
3727 | using llvm::APSInt; |
3728 | APVal = APValue(APValue::UninitStruct(), 0, 4); |
3729 | APVal.getStructField(i: 0) = APValue(APSInt(APInt(32, PartVal.Part1), true)); |
3730 | APVal.getStructField(i: 1) = APValue(APSInt(APInt(16, PartVal.Part2), true)); |
3731 | APVal.getStructField(i: 2) = APValue(APSInt(APInt(16, PartVal.Part3), true)); |
3732 | APValue &Arr = APVal.getStructField(i: 3) = |
3733 | APValue(APValue::UninitArray(), 8, 8); |
3734 | for (unsigned I = 0; I != 8; ++I) { |
3735 | Arr.getArrayInitializedElt(I) = |
3736 | APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true)); |
3737 | } |
3738 | // Register this APValue to be destroyed if necessary. (Note that the |
3739 | // MSGuidDecl destructor is never run.) |
3740 | getASTContext().addDestruction(&APVal); |
3741 | } |
3742 | |
3743 | return APVal; |
3744 | } |
3745 | |
3746 | void UnnamedGlobalConstantDecl::anchor() {} |
3747 | |
3748 | UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext &C, |
3749 | DeclContext *DC, |
3750 | QualType Ty, |
3751 | const APValue &Val) |
3752 | : ValueDecl(Decl::UnnamedGlobalConstant, DC, SourceLocation(), |
3753 | DeclarationName(), Ty), |
3754 | Value(Val) { |
3755 | // Cleanup the embedded APValue if required (note that our destructor is never |
3756 | // run) |
3757 | if (Value.needsCleanup()) |
3758 | C.addDestruction(Ptr: &Value); |
3759 | } |
3760 | |
3761 | UnnamedGlobalConstantDecl * |
3762 | UnnamedGlobalConstantDecl::Create(const ASTContext &C, QualType T, |
3763 | const APValue &Value) { |
3764 | DeclContext *DC = C.getTranslationUnitDecl(); |
3765 | return new (C, DC) UnnamedGlobalConstantDecl(C, DC, T, Value); |
3766 | } |
3767 | |
3768 | UnnamedGlobalConstantDecl * |
3769 | UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
3770 | return new (C, ID) |
3771 | UnnamedGlobalConstantDecl(C, nullptr, QualType(), APValue()); |
3772 | } |
3773 | |
3774 | void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream &OS, |
3775 | const PrintingPolicy &) const { |
3776 | OS << "unnamed-global-constant"; |
3777 | } |
3778 | |
3779 | static const char *getAccessName(AccessSpecifier AS) { |
3780 | switch (AS) { |
3781 | case AS_none: |
3782 | llvm_unreachable("Invalid access specifier!"); |
3783 | case AS_public: |
3784 | return "public"; |
3785 | case AS_private: |
3786 | return "private"; |
3787 | case AS_protected: |
3788 | return "protected"; |
3789 | } |
3790 | llvm_unreachable("Invalid access specifier!"); |
3791 | } |
3792 | |
3793 | const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB, |
3794 | AccessSpecifier AS) { |
3795 | return DB << getAccessName(AS); |
3796 | } |
3797 |
Definitions
- anchor
- CreateDeserialized
- getFromExternalSource
- DefinitionData
- getBasesSlowCase
- getVBasesSlowCase
- CXXRecordDecl
- Create
- CreateLambda
- CreateDeserialized
- hasRepeatedBaseClass
- setBases
- getODRHash
- addedClassSubobject
- getStandardLayoutBaseWithFields
- hasConstexprDestructor
- hasAnyDependentBases
- isTriviallyCopyable
- isTriviallyCopyConstructible
- markedVirtualFunctionPure
- hasSubobjectAtOffsetZeroOfEmptyBaseType
- lambdaIsDefaultConstructibleAndAssignable
- addedMember
- isLiteral
- addedSelectedDestructor
- addedEligibleSpecialMemberFunction
- finishedDefaultedOrDeletedMember
- AddCaptureList
- setCaptures
- setTrivialForCallFlags
- isCLike
- isGenericLambda
- allLookupResultsAreTheSame
- getLambdaCallOperatorHelper
- getDependentLambdaCallOperator
- getLambdaCallOperator
- getLambdaStaticInvoker
- getLambdaStaticInvokers
- getInvokerAsMethod
- getLambdaStaticInvoker
- getCaptureFields
- getGenericLambdaTemplateParameterList
- getLambdaExplicitTemplateParameters
- getLambdaContextDecl
- setLambdaNumbering
- getDeviceLambdaManglingNumber
- GetConversionType
- CollectVisibleConversions
- CollectVisibleConversions
- getVisibleConversionFunctions
- removeConversion
- getInstantiatedFromMemberClass
- getMemberSpecializationInfo
- setInstantiationOfMemberClass
- getDescribedClassTemplate
- setDescribedClassTemplate
- getTemplateSpecializationKind
- setTemplateSpecializationKind
- getTemplateInstantiationPattern
- getDestructor
- hasDeletedDestructor
- isDeclContextInNamespace
- isInterfaceLike
- completeDefinition
- hasPureVirtualFinalOverrider
- completeDefinition
- mayBeAbstract
- isEffectivelyFinal
- anchor
- isEquivalent
- getFromDecl
- Create
- CreateDeserialized
- Create
- CreateDeserialized
- anchor
- isStatic
- recursivelyOverrides
- getCorrespondingMethodDeclaredInClass
- getCorrespondingMethodInClass
- Create
- CreateDeserialized
- getDevirtualizedMethod
- isUsualDeallocationFunction
- isExplicitObjectMemberFunction
- isImplicitObjectMemberFunction
- isCopyAssignmentOperator
- isMoveAssignmentOperator
- addOverriddenMethod
- begin_overridden_methods
- end_overridden_methods
- size_overridden_methods
- overridden_methods
- getThisObjectType
- getThisType
- getThisType
- getFunctionObjectParameterReferenceType
- hasInlineBody
- isLambdaStaticInvoker
- CXXCtorInitializer
- CXXCtorInitializer
- CXXCtorInitializer
- CXXCtorInitializer
- getID
- getBaseClassLoc
- getBaseClass
- getSourceLocation
- getSourceRange
- CXXConstructorDecl
- anchor
- CreateDeserialized
- Create
- init_begin
- getTargetConstructor
- isDefaultConstructor
- isCopyConstructor
- isMoveConstructor
- isCopyOrMoveConstructor
- isConvertingConstructor
- isSpecializationCopyingObject
- anchor
- CreateDeserialized
- Create
- setOperatorDelete
- isCalledByDelete
- anchor
- CreateDeserialized
- Create
- isLambdaToBlockPointerConversion
- LinkageSpecDecl
- anchor
- Create
- CreateDeserialized
- anchor
- Create
- CreateDeserialized
- getNominatedNamespace
- NamespaceDecl
- Create
- CreateDeserialized
- getNextRedeclarationImpl
- getPreviousDeclImpl
- getMostRecentDeclImpl
- anchor
- getNextRedeclarationImpl
- getPreviousDeclImpl
- getMostRecentDeclImpl
- Create
- CreateDeserialized
- anchor
- getStorageDuration
- getOrCreateValue
- anchor
- UsingShadowDecl
- UsingShadowDecl
- CreateDeserialized
- getIntroducer
- anchor
- Create
- CreateDeserialized
- getNominatedBaseClass
- anchor
- addShadowDecl
- removeShadowDecl
- anchor
- Create
- CreateDeserialized
- getSourceRange
- anchor
- Create
- CreateDeserialized
- getSourceRange
- anchor
- Create
- CreateDeserialized
- anchor
- Create
- CreateDeserialized
- getSourceRange
- anchor
- Create
- CreateDeserialized
- Create
- CreateDeserialized
- UnresolvedUsingIfExistsDecl
- anchor
- anchor
- Create
- CreateDeserialized
- getPotentiallyDecomposedVarDecl
- anchor
- Create
- CreateDeserialized
- getHoldingVar
- getBindingPackDecls
- anchor
- Create
- CreateDeserialized
- printName
- anchor
- Create
- CreateDeserialized
- anchor
- MSGuidDecl
- Create
- CreateDeserialized
- printName
- isValidStructGUID
- getAsAPValue
- anchor
- UnnamedGlobalConstantDecl
- Create
- CreateDeserialized
- printName
- getAccessName
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more