1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr constant evaluator.
10//
11// Constant expression evaluation produces four main results:
12//
13// * A success/failure flag indicating whether constant folding was successful.
14// This is the 'bool' return value used by most of the code in this file. A
15// 'false' return value indicates that constant folding has failed, and any
16// appropriate diagnostic has already been produced.
17//
18// * An evaluated result, valid only if constant folding has not failed.
19//
20// * A flag indicating if evaluation encountered (unevaluated) side-effects.
21// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22// where it is possible to determine the evaluated result regardless.
23//
24// * A set of notes indicating why the evaluation was not a constant expression
25// (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26// too, why the expression could not be folded.
27//
28// If we are checking for a potential constant expression, failure to constant
29// fold a potential constant sub-expression will be indicated by a 'false'
30// return value (the expression could not be folded) and no diagnostic (the
31// expression is not necessarily non-constant).
32//
33//===----------------------------------------------------------------------===//
34
35#include "ExprConstShared.h"
36#include "Interp/Context.h"
37#include "Interp/Frame.h"
38#include "Interp/State.h"
39#include "clang/AST/APValue.h"
40#include "clang/AST/ASTContext.h"
41#include "clang/AST/ASTDiagnostic.h"
42#include "clang/AST/ASTLambda.h"
43#include "clang/AST/Attr.h"
44#include "clang/AST/CXXInheritance.h"
45#include "clang/AST/CharUnits.h"
46#include "clang/AST/CurrentSourceLocExprScope.h"
47#include "clang/AST/Expr.h"
48#include "clang/AST/OSLog.h"
49#include "clang/AST/OptionalDiagnostic.h"
50#include "clang/AST/RecordLayout.h"
51#include "clang/AST/StmtVisitor.h"
52#include "clang/AST/TypeLoc.h"
53#include "clang/Basic/Builtins.h"
54#include "clang/Basic/DiagnosticSema.h"
55#include "clang/Basic/TargetInfo.h"
56#include "llvm/ADT/APFixedPoint.h"
57#include "llvm/ADT/SmallBitVector.h"
58#include "llvm/ADT/StringExtras.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/SaveAndRestore.h"
61#include "llvm/Support/TimeProfiler.h"
62#include "llvm/Support/raw_ostream.h"
63#include <cstring>
64#include <functional>
65#include <optional>
66
67#define DEBUG_TYPE "exprconstant"
68
69using namespace clang;
70using llvm::APFixedPoint;
71using llvm::APInt;
72using llvm::APSInt;
73using llvm::APFloat;
74using llvm::FixedPointSemantics;
75
76namespace {
77 struct LValue;
78 class CallStackFrame;
79 class EvalInfo;
80
81 using SourceLocExprScopeGuard =
82 CurrentSourceLocExprScope::SourceLocExprScopeGuard;
83
84 static QualType getType(APValue::LValueBase B) {
85 return B.getType();
86 }
87
88 /// Get an LValue path entry, which is known to not be an array index, as a
89 /// field declaration.
90 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
91 return dyn_cast_or_null<FieldDecl>(Val: E.getAsBaseOrMember().getPointer());
92 }
93 /// Get an LValue path entry, which is known to not be an array index, as a
94 /// base class declaration.
95 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
96 return dyn_cast_or_null<CXXRecordDecl>(Val: E.getAsBaseOrMember().getPointer());
97 }
98 /// Determine whether this LValue path entry for a base class names a virtual
99 /// base class.
100 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
101 return E.getAsBaseOrMember().getInt();
102 }
103
104 /// Given an expression, determine the type used to store the result of
105 /// evaluating that expression.
106 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
107 if (E->isPRValue())
108 return E->getType();
109 return Ctx.getLValueReferenceType(T: E->getType());
110 }
111
112 /// Given a CallExpr, try to get the alloc_size attribute. May return null.
113 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
114 if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
115 return DirectCallee->getAttr<AllocSizeAttr>();
116 if (const Decl *IndirectCallee = CE->getCalleeDecl())
117 return IndirectCallee->getAttr<AllocSizeAttr>();
118 return nullptr;
119 }
120
121 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
122 /// This will look through a single cast.
123 ///
124 /// Returns null if we couldn't unwrap a function with alloc_size.
125 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
126 if (!E->getType()->isPointerType())
127 return nullptr;
128
129 E = E->IgnoreParens();
130 // If we're doing a variable assignment from e.g. malloc(N), there will
131 // probably be a cast of some kind. In exotic cases, we might also see a
132 // top-level ExprWithCleanups. Ignore them either way.
133 if (const auto *FE = dyn_cast<FullExpr>(Val: E))
134 E = FE->getSubExpr()->IgnoreParens();
135
136 if (const auto *Cast = dyn_cast<CastExpr>(Val: E))
137 E = Cast->getSubExpr()->IgnoreParens();
138
139 if (const auto *CE = dyn_cast<CallExpr>(E))
140 return getAllocSizeAttr(CE) ? CE : nullptr;
141 return nullptr;
142 }
143
144 /// Determines whether or not the given Base contains a call to a function
145 /// with the alloc_size attribute.
146 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
147 const auto *E = Base.dyn_cast<const Expr *>();
148 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
149 }
150
151 /// Determines whether the given kind of constant expression is only ever
152 /// used for name mangling. If so, it's permitted to reference things that we
153 /// can't generate code for (in particular, dllimported functions).
154 static bool isForManglingOnly(ConstantExprKind Kind) {
155 switch (Kind) {
156 case ConstantExprKind::Normal:
157 case ConstantExprKind::ClassTemplateArgument:
158 case ConstantExprKind::ImmediateInvocation:
159 // Note that non-type template arguments of class type are emitted as
160 // template parameter objects.
161 return false;
162
163 case ConstantExprKind::NonClassTemplateArgument:
164 return true;
165 }
166 llvm_unreachable("unknown ConstantExprKind");
167 }
168
169 static bool isTemplateArgument(ConstantExprKind Kind) {
170 switch (Kind) {
171 case ConstantExprKind::Normal:
172 case ConstantExprKind::ImmediateInvocation:
173 return false;
174
175 case ConstantExprKind::ClassTemplateArgument:
176 case ConstantExprKind::NonClassTemplateArgument:
177 return true;
178 }
179 llvm_unreachable("unknown ConstantExprKind");
180 }
181
182 /// The bound to claim that an array of unknown bound has.
183 /// The value in MostDerivedArraySize is undefined in this case. So, set it
184 /// to an arbitrary value that's likely to loudly break things if it's used.
185 static const uint64_t AssumedSizeForUnsizedArray =
186 std::numeric_limits<uint64_t>::max() / 2;
187
188 /// Determines if an LValue with the given LValueBase will have an unsized
189 /// array in its designator.
190 /// Find the path length and type of the most-derived subobject in the given
191 /// path, and find the size of the containing array, if any.
192 static unsigned
193 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
194 ArrayRef<APValue::LValuePathEntry> Path,
195 uint64_t &ArraySize, QualType &Type, bool &IsArray,
196 bool &FirstEntryIsUnsizedArray) {
197 // This only accepts LValueBases from APValues, and APValues don't support
198 // arrays that lack size info.
199 assert(!isBaseAnAllocSizeCall(Base) &&
200 "Unsized arrays shouldn't appear here");
201 unsigned MostDerivedLength = 0;
202 Type = getType(B: Base);
203
204 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
205 if (Type->isArrayType()) {
206 const ArrayType *AT = Ctx.getAsArrayType(T: Type);
207 Type = AT->getElementType();
208 MostDerivedLength = I + 1;
209 IsArray = true;
210
211 if (auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) {
212 ArraySize = CAT->getZExtSize();
213 } else {
214 assert(I == 0 && "unexpected unsized array designator");
215 FirstEntryIsUnsizedArray = true;
216 ArraySize = AssumedSizeForUnsizedArray;
217 }
218 } else if (Type->isAnyComplexType()) {
219 const ComplexType *CT = Type->castAs<ComplexType>();
220 Type = CT->getElementType();
221 ArraySize = 2;
222 MostDerivedLength = I + 1;
223 IsArray = true;
224 } else if (const FieldDecl *FD = getAsField(E: Path[I])) {
225 Type = FD->getType();
226 ArraySize = 0;
227 MostDerivedLength = I + 1;
228 IsArray = false;
229 } else {
230 // Path[I] describes a base class.
231 ArraySize = 0;
232 IsArray = false;
233 }
234 }
235 return MostDerivedLength;
236 }
237
238 /// A path from a glvalue to a subobject of that glvalue.
239 struct SubobjectDesignator {
240 /// True if the subobject was named in a manner not supported by C++11. Such
241 /// lvalues can still be folded, but they are not core constant expressions
242 /// and we cannot perform lvalue-to-rvalue conversions on them.
243 LLVM_PREFERRED_TYPE(bool)
244 unsigned Invalid : 1;
245
246 /// Is this a pointer one past the end of an object?
247 LLVM_PREFERRED_TYPE(bool)
248 unsigned IsOnePastTheEnd : 1;
249
250 /// Indicator of whether the first entry is an unsized array.
251 LLVM_PREFERRED_TYPE(bool)
252 unsigned FirstEntryIsAnUnsizedArray : 1;
253
254 /// Indicator of whether the most-derived object is an array element.
255 LLVM_PREFERRED_TYPE(bool)
256 unsigned MostDerivedIsArrayElement : 1;
257
258 /// The length of the path to the most-derived object of which this is a
259 /// subobject.
260 unsigned MostDerivedPathLength : 28;
261
262 /// The size of the array of which the most-derived object is an element.
263 /// This will always be 0 if the most-derived object is not an array
264 /// element. 0 is not an indicator of whether or not the most-derived object
265 /// is an array, however, because 0-length arrays are allowed.
266 ///
267 /// If the current array is an unsized array, the value of this is
268 /// undefined.
269 uint64_t MostDerivedArraySize;
270
271 /// The type of the most derived object referred to by this address.
272 QualType MostDerivedType;
273
274 typedef APValue::LValuePathEntry PathEntry;
275
276 /// The entries on the path from the glvalue to the designated subobject.
277 SmallVector<PathEntry, 8> Entries;
278
279 SubobjectDesignator() : Invalid(true) {}
280
281 explicit SubobjectDesignator(QualType T)
282 : Invalid(false), IsOnePastTheEnd(false),
283 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
284 MostDerivedPathLength(0), MostDerivedArraySize(0),
285 MostDerivedType(T) {}
286
287 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
288 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
289 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
290 MostDerivedPathLength(0), MostDerivedArraySize(0) {
291 assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
292 if (!Invalid) {
293 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
294 ArrayRef<PathEntry> VEntries = V.getLValuePath();
295 Entries.insert(I: Entries.end(), From: VEntries.begin(), To: VEntries.end());
296 if (V.getLValueBase()) {
297 bool IsArray = false;
298 bool FirstIsUnsizedArray = false;
299 MostDerivedPathLength = findMostDerivedSubobject(
300 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
301 MostDerivedType, IsArray, FirstIsUnsizedArray);
302 MostDerivedIsArrayElement = IsArray;
303 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
304 }
305 }
306 }
307
308 void truncate(ASTContext &Ctx, APValue::LValueBase Base,
309 unsigned NewLength) {
310 if (Invalid)
311 return;
312
313 assert(Base && "cannot truncate path for null pointer");
314 assert(NewLength <= Entries.size() && "not a truncation");
315
316 if (NewLength == Entries.size())
317 return;
318 Entries.resize(N: NewLength);
319
320 bool IsArray = false;
321 bool FirstIsUnsizedArray = false;
322 MostDerivedPathLength = findMostDerivedSubobject(
323 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
324 FirstIsUnsizedArray);
325 MostDerivedIsArrayElement = IsArray;
326 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
327 }
328
329 void setInvalid() {
330 Invalid = true;
331 Entries.clear();
332 }
333
334 /// Determine whether the most derived subobject is an array without a
335 /// known bound.
336 bool isMostDerivedAnUnsizedArray() const {
337 assert(!Invalid && "Calling this makes no sense on invalid designators");
338 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
339 }
340
341 /// Determine what the most derived array's size is. Results in an assertion
342 /// failure if the most derived array lacks a size.
343 uint64_t getMostDerivedArraySize() const {
344 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
345 return MostDerivedArraySize;
346 }
347
348 /// Determine whether this is a one-past-the-end pointer.
349 bool isOnePastTheEnd() const {
350 assert(!Invalid);
351 if (IsOnePastTheEnd)
352 return true;
353 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
354 Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
355 MostDerivedArraySize)
356 return true;
357 return false;
358 }
359
360 /// Get the range of valid index adjustments in the form
361 /// {maximum value that can be subtracted from this pointer,
362 /// maximum value that can be added to this pointer}
363 std::pair<uint64_t, uint64_t> validIndexAdjustments() {
364 if (Invalid || isMostDerivedAnUnsizedArray())
365 return {0, 0};
366
367 // [expr.add]p4: For the purposes of these operators, a pointer to a
368 // nonarray object behaves the same as a pointer to the first element of
369 // an array of length one with the type of the object as its element type.
370 bool IsArray = MostDerivedPathLength == Entries.size() &&
371 MostDerivedIsArrayElement;
372 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
373 : (uint64_t)IsOnePastTheEnd;
374 uint64_t ArraySize =
375 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
376 return {ArrayIndex, ArraySize - ArrayIndex};
377 }
378
379 /// Check that this refers to a valid subobject.
380 bool isValidSubobject() const {
381 if (Invalid)
382 return false;
383 return !isOnePastTheEnd();
384 }
385 /// Check that this refers to a valid subobject, and if not, produce a
386 /// relevant diagnostic and set the designator as invalid.
387 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
388
389 /// Get the type of the designated object.
390 QualType getType(ASTContext &Ctx) const {
391 assert(!Invalid && "invalid designator has no subobject type");
392 return MostDerivedPathLength == Entries.size()
393 ? MostDerivedType
394 : Ctx.getRecordType(getAsBaseClass(Entries.back()));
395 }
396
397 /// Update this designator to refer to the first element within this array.
398 void addArrayUnchecked(const ConstantArrayType *CAT) {
399 Entries.push_back(Elt: PathEntry::ArrayIndex(Index: 0));
400
401 // This is a most-derived object.
402 MostDerivedType = CAT->getElementType();
403 MostDerivedIsArrayElement = true;
404 MostDerivedArraySize = CAT->getZExtSize();
405 MostDerivedPathLength = Entries.size();
406 }
407 /// Update this designator to refer to the first element within the array of
408 /// elements of type T. This is an array of unknown size.
409 void addUnsizedArrayUnchecked(QualType ElemTy) {
410 Entries.push_back(Elt: PathEntry::ArrayIndex(Index: 0));
411
412 MostDerivedType = ElemTy;
413 MostDerivedIsArrayElement = true;
414 // The value in MostDerivedArraySize is undefined in this case. So, set it
415 // to an arbitrary value that's likely to loudly break things if it's
416 // used.
417 MostDerivedArraySize = AssumedSizeForUnsizedArray;
418 MostDerivedPathLength = Entries.size();
419 }
420 /// Update this designator to refer to the given base or member of this
421 /// object.
422 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
423 Entries.push_back(Elt: APValue::BaseOrMemberType(D, Virtual));
424
425 // If this isn't a base class, it's a new most-derived object.
426 if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: D)) {
427 MostDerivedType = FD->getType();
428 MostDerivedIsArrayElement = false;
429 MostDerivedArraySize = 0;
430 MostDerivedPathLength = Entries.size();
431 }
432 }
433 /// Update this designator to refer to the given complex component.
434 void addComplexUnchecked(QualType EltTy, bool Imag) {
435 Entries.push_back(Elt: PathEntry::ArrayIndex(Index: Imag));
436
437 // This is technically a most-derived object, though in practice this
438 // is unlikely to matter.
439 MostDerivedType = EltTy;
440 MostDerivedIsArrayElement = true;
441 MostDerivedArraySize = 2;
442 MostDerivedPathLength = Entries.size();
443 }
444 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
445 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
446 const APSInt &N);
447 /// Add N to the address of this subobject.
448 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
449 if (Invalid || !N) return;
450 uint64_t TruncatedN = N.extOrTrunc(width: 64).getZExtValue();
451 if (isMostDerivedAnUnsizedArray()) {
452 diagnoseUnsizedArrayPointerArithmetic(Info, E);
453 // Can't verify -- trust that the user is doing the right thing (or if
454 // not, trust that the caller will catch the bad behavior).
455 // FIXME: Should we reject if this overflows, at least?
456 Entries.back() = PathEntry::ArrayIndex(
457 Index: Entries.back().getAsArrayIndex() + TruncatedN);
458 return;
459 }
460
461 // [expr.add]p4: For the purposes of these operators, a pointer to a
462 // nonarray object behaves the same as a pointer to the first element of
463 // an array of length one with the type of the object as its element type.
464 bool IsArray = MostDerivedPathLength == Entries.size() &&
465 MostDerivedIsArrayElement;
466 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
467 : (uint64_t)IsOnePastTheEnd;
468 uint64_t ArraySize =
469 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
470
471 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
472 // Calculate the actual index in a wide enough type, so we can include
473 // it in the note.
474 N = N.extend(width: std::max<unsigned>(a: N.getBitWidth() + 1, b: 65));
475 (llvm::APInt&)N += ArrayIndex;
476 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
477 diagnosePointerArithmetic(Info, E, N);
478 setInvalid();
479 return;
480 }
481
482 ArrayIndex += TruncatedN;
483 assert(ArrayIndex <= ArraySize &&
484 "bounds check succeeded for out-of-bounds index");
485
486 if (IsArray)
487 Entries.back() = PathEntry::ArrayIndex(Index: ArrayIndex);
488 else
489 IsOnePastTheEnd = (ArrayIndex != 0);
490 }
491 };
492
493 /// A scope at the end of which an object can need to be destroyed.
494 enum class ScopeKind {
495 Block,
496 FullExpression,
497 Call
498 };
499
500 /// A reference to a particular call and its arguments.
501 struct CallRef {
502 CallRef() : OrigCallee(), CallIndex(0), Version() {}
503 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
504 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
505
506 explicit operator bool() const { return OrigCallee; }
507
508 /// Get the parameter that the caller initialized, corresponding to the
509 /// given parameter in the callee.
510 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
511 return OrigCallee ? OrigCallee->getParamDecl(i: PVD->getFunctionScopeIndex())
512 : PVD;
513 }
514
515 /// The callee at the point where the arguments were evaluated. This might
516 /// be different from the actual callee (a different redeclaration, or a
517 /// virtual override), but this function's parameters are the ones that
518 /// appear in the parameter map.
519 const FunctionDecl *OrigCallee;
520 /// The call index of the frame that holds the argument values.
521 unsigned CallIndex;
522 /// The version of the parameters corresponding to this call.
523 unsigned Version;
524 };
525
526 /// A stack frame in the constexpr call stack.
527 class CallStackFrame : public interp::Frame {
528 public:
529 EvalInfo &Info;
530
531 /// Parent - The caller of this stack frame.
532 CallStackFrame *Caller;
533
534 /// Callee - The function which was called.
535 const FunctionDecl *Callee;
536
537 /// This - The binding for the this pointer in this call, if any.
538 const LValue *This;
539
540 /// CallExpr - The syntactical structure of member function calls
541 const Expr *CallExpr;
542
543 /// Information on how to find the arguments to this call. Our arguments
544 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
545 /// key and this value as the version.
546 CallRef Arguments;
547
548 /// Source location information about the default argument or default
549 /// initializer expression we're evaluating, if any.
550 CurrentSourceLocExprScope CurSourceLocExprScope;
551
552 // Note that we intentionally use std::map here so that references to
553 // values are stable.
554 typedef std::pair<const void *, unsigned> MapKeyTy;
555 typedef std::map<MapKeyTy, APValue> MapTy;
556 /// Temporaries - Temporary lvalues materialized within this stack frame.
557 MapTy Temporaries;
558
559 /// CallRange - The source range of the call expression for this call.
560 SourceRange CallRange;
561
562 /// Index - The call index of this call.
563 unsigned Index;
564
565 /// The stack of integers for tracking version numbers for temporaries.
566 SmallVector<unsigned, 2> TempVersionStack = {1};
567 unsigned CurTempVersion = TempVersionStack.back();
568
569 unsigned getTempVersion() const { return TempVersionStack.back(); }
570
571 void pushTempVersion() {
572 TempVersionStack.push_back(Elt: ++CurTempVersion);
573 }
574
575 void popTempVersion() {
576 TempVersionStack.pop_back();
577 }
578
579 CallRef createCall(const FunctionDecl *Callee) {
580 return {Callee, Index, ++CurTempVersion};
581 }
582
583 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
584 // on the overall stack usage of deeply-recursing constexpr evaluations.
585 // (We should cache this map rather than recomputing it repeatedly.)
586 // But let's try this and see how it goes; we can look into caching the map
587 // as a later change.
588
589 /// LambdaCaptureFields - Mapping from captured variables/this to
590 /// corresponding data members in the closure class.
591 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
592 FieldDecl *LambdaThisCaptureField = nullptr;
593
594 CallStackFrame(EvalInfo &Info, SourceRange CallRange,
595 const FunctionDecl *Callee, const LValue *This,
596 const Expr *CallExpr, CallRef Arguments);
597 ~CallStackFrame();
598
599 // Return the temporary for Key whose version number is Version.
600 APValue *getTemporary(const void *Key, unsigned Version) {
601 MapKeyTy KV(Key, Version);
602 auto LB = Temporaries.lower_bound(x: KV);
603 if (LB != Temporaries.end() && LB->first == KV)
604 return &LB->second;
605 return nullptr;
606 }
607
608 // Return the current temporary for Key in the map.
609 APValue *getCurrentTemporary(const void *Key) {
610 auto UB = Temporaries.upper_bound(x: MapKeyTy(Key, UINT_MAX));
611 if (UB != Temporaries.begin() && std::prev(x: UB)->first.first == Key)
612 return &std::prev(x: UB)->second;
613 return nullptr;
614 }
615
616 // Return the version number of the current temporary for Key.
617 unsigned getCurrentTemporaryVersion(const void *Key) const {
618 auto UB = Temporaries.upper_bound(x: MapKeyTy(Key, UINT_MAX));
619 if (UB != Temporaries.begin() && std::prev(x: UB)->first.first == Key)
620 return std::prev(x: UB)->first.second;
621 return 0;
622 }
623
624 /// Allocate storage for an object of type T in this stack frame.
625 /// Populates LV with a handle to the created object. Key identifies
626 /// the temporary within the stack frame, and must not be reused without
627 /// bumping the temporary version number.
628 template<typename KeyT>
629 APValue &createTemporary(const KeyT *Key, QualType T,
630 ScopeKind Scope, LValue &LV);
631
632 /// Allocate storage for a parameter of a function call made in this frame.
633 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
634
635 void describe(llvm::raw_ostream &OS) const override;
636
637 Frame *getCaller() const override { return Caller; }
638 SourceRange getCallRange() const override { return CallRange; }
639 const FunctionDecl *getCallee() const override { return Callee; }
640
641 bool isStdFunction() const {
642 for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
643 if (DC->isStdNamespace())
644 return true;
645 return false;
646 }
647
648 /// Whether we're in a context where [[msvc::constexpr]] evaluation is
649 /// permitted. See MSConstexprDocs for description of permitted contexts.
650 bool CanEvalMSConstexpr = false;
651
652 private:
653 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
654 ScopeKind Scope);
655 };
656
657 /// Temporarily override 'this'.
658 class ThisOverrideRAII {
659 public:
660 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
661 : Frame(Frame), OldThis(Frame.This) {
662 if (Enable)
663 Frame.This = NewThis;
664 }
665 ~ThisOverrideRAII() {
666 Frame.This = OldThis;
667 }
668 private:
669 CallStackFrame &Frame;
670 const LValue *OldThis;
671 };
672
673 // A shorthand time trace scope struct, prints source range, for example
674 // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}}
675 class ExprTimeTraceScope {
676 public:
677 ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name)
678 : TimeScope(Name, [E, &Ctx] {
679 return E->getSourceRange().printToString(Ctx.getSourceManager());
680 }) {}
681
682 private:
683 llvm::TimeTraceScope TimeScope;
684 };
685
686 /// RAII object used to change the current ability of
687 /// [[msvc::constexpr]] evaulation.
688 struct MSConstexprContextRAII {
689 CallStackFrame &Frame;
690 bool OldValue;
691 explicit MSConstexprContextRAII(CallStackFrame &Frame, bool Value)
692 : Frame(Frame), OldValue(Frame.CanEvalMSConstexpr) {
693 Frame.CanEvalMSConstexpr = Value;
694 }
695
696 ~MSConstexprContextRAII() { Frame.CanEvalMSConstexpr = OldValue; }
697 };
698}
699
700static bool HandleDestruction(EvalInfo &Info, const Expr *E,
701 const LValue &This, QualType ThisType);
702static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
703 APValue::LValueBase LVBase, APValue &Value,
704 QualType T);
705
706namespace {
707 /// A cleanup, and a flag indicating whether it is lifetime-extended.
708 class Cleanup {
709 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
710 APValue::LValueBase Base;
711 QualType T;
712
713 public:
714 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
715 ScopeKind Scope)
716 : Value(Val, Scope), Base(Base), T(T) {}
717
718 /// Determine whether this cleanup should be performed at the end of the
719 /// given kind of scope.
720 bool isDestroyedAtEndOf(ScopeKind K) const {
721 return (int)Value.getInt() >= (int)K;
722 }
723 bool endLifetime(EvalInfo &Info, bool RunDestructors) {
724 if (RunDestructors) {
725 SourceLocation Loc;
726 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
727 Loc = VD->getLocation();
728 else if (const Expr *E = Base.dyn_cast<const Expr*>())
729 Loc = E->getExprLoc();
730 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
731 }
732 *Value.getPointer() = APValue();
733 return true;
734 }
735
736 bool hasSideEffect() {
737 return T.isDestructedType();
738 }
739 };
740
741 /// A reference to an object whose construction we are currently evaluating.
742 struct ObjectUnderConstruction {
743 APValue::LValueBase Base;
744 ArrayRef<APValue::LValuePathEntry> Path;
745 friend bool operator==(const ObjectUnderConstruction &LHS,
746 const ObjectUnderConstruction &RHS) {
747 return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
748 }
749 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
750 return llvm::hash_combine(args: Obj.Base, args: Obj.Path);
751 }
752 };
753 enum class ConstructionPhase {
754 None,
755 Bases,
756 AfterBases,
757 AfterFields,
758 Destroying,
759 DestroyingBases
760 };
761}
762
763namespace llvm {
764template<> struct DenseMapInfo<ObjectUnderConstruction> {
765 using Base = DenseMapInfo<APValue::LValueBase>;
766 static ObjectUnderConstruction getEmptyKey() {
767 return {.Base: Base::getEmptyKey(), .Path: {}}; }
768 static ObjectUnderConstruction getTombstoneKey() {
769 return {.Base: Base::getTombstoneKey(), .Path: {}};
770 }
771 static unsigned getHashValue(const ObjectUnderConstruction &Object) {
772 return hash_value(Obj: Object);
773 }
774 static bool isEqual(const ObjectUnderConstruction &LHS,
775 const ObjectUnderConstruction &RHS) {
776 return LHS == RHS;
777 }
778};
779}
780
781namespace {
782 /// A dynamically-allocated heap object.
783 struct DynAlloc {
784 /// The value of this heap-allocated object.
785 APValue Value;
786 /// The allocating expression; used for diagnostics. Either a CXXNewExpr
787 /// or a CallExpr (the latter is for direct calls to operator new inside
788 /// std::allocator<T>::allocate).
789 const Expr *AllocExpr = nullptr;
790
791 enum Kind {
792 New,
793 ArrayNew,
794 StdAllocator
795 };
796
797 /// Get the kind of the allocation. This must match between allocation
798 /// and deallocation.
799 Kind getKind() const {
800 if (auto *NE = dyn_cast<CXXNewExpr>(Val: AllocExpr))
801 return NE->isArray() ? ArrayNew : New;
802 assert(isa<CallExpr>(AllocExpr));
803 return StdAllocator;
804 }
805 };
806
807 struct DynAllocOrder {
808 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
809 return L.getIndex() < R.getIndex();
810 }
811 };
812
813 /// EvalInfo - This is a private struct used by the evaluator to capture
814 /// information about a subexpression as it is folded. It retains information
815 /// about the AST context, but also maintains information about the folded
816 /// expression.
817 ///
818 /// If an expression could be evaluated, it is still possible it is not a C
819 /// "integer constant expression" or constant expression. If not, this struct
820 /// captures information about how and why not.
821 ///
822 /// One bit of information passed *into* the request for constant folding
823 /// indicates whether the subexpression is "evaluated" or not according to C
824 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
825 /// evaluate the expression regardless of what the RHS is, but C only allows
826 /// certain things in certain situations.
827 class EvalInfo : public interp::State {
828 public:
829 ASTContext &Ctx;
830
831 /// EvalStatus - Contains information about the evaluation.
832 Expr::EvalStatus &EvalStatus;
833
834 /// CurrentCall - The top of the constexpr call stack.
835 CallStackFrame *CurrentCall;
836
837 /// CallStackDepth - The number of calls in the call stack right now.
838 unsigned CallStackDepth;
839
840 /// NextCallIndex - The next call index to assign.
841 unsigned NextCallIndex;
842
843 /// StepsLeft - The remaining number of evaluation steps we're permitted
844 /// to perform. This is essentially a limit for the number of statements
845 /// we will evaluate.
846 unsigned StepsLeft;
847
848 /// Enable the experimental new constant interpreter. If an expression is
849 /// not supported by the interpreter, an error is triggered.
850 bool EnableNewConstInterp;
851
852 /// BottomFrame - The frame in which evaluation started. This must be
853 /// initialized after CurrentCall and CallStackDepth.
854 CallStackFrame BottomFrame;
855
856 /// A stack of values whose lifetimes end at the end of some surrounding
857 /// evaluation frame.
858 llvm::SmallVector<Cleanup, 16> CleanupStack;
859
860 /// EvaluatingDecl - This is the declaration whose initializer is being
861 /// evaluated, if any.
862 APValue::LValueBase EvaluatingDecl;
863
864 enum class EvaluatingDeclKind {
865 None,
866 /// We're evaluating the construction of EvaluatingDecl.
867 Ctor,
868 /// We're evaluating the destruction of EvaluatingDecl.
869 Dtor,
870 };
871 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
872
873 /// EvaluatingDeclValue - This is the value being constructed for the
874 /// declaration whose initializer is being evaluated, if any.
875 APValue *EvaluatingDeclValue;
876
877 /// Set of objects that are currently being constructed.
878 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
879 ObjectsUnderConstruction;
880
881 /// Current heap allocations, along with the location where each was
882 /// allocated. We use std::map here because we need stable addresses
883 /// for the stored APValues.
884 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
885
886 /// The number of heap allocations performed so far in this evaluation.
887 unsigned NumHeapAllocs = 0;
888
889 struct EvaluatingConstructorRAII {
890 EvalInfo &EI;
891 ObjectUnderConstruction Object;
892 bool DidInsert;
893 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
894 bool HasBases)
895 : EI(EI), Object(Object) {
896 DidInsert =
897 EI.ObjectsUnderConstruction
898 .insert(KV: {Object, HasBases ? ConstructionPhase::Bases
899 : ConstructionPhase::AfterBases})
900 .second;
901 }
902 void finishedConstructingBases() {
903 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
904 }
905 void finishedConstructingFields() {
906 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
907 }
908 ~EvaluatingConstructorRAII() {
909 if (DidInsert) EI.ObjectsUnderConstruction.erase(Val: Object);
910 }
911 };
912
913 struct EvaluatingDestructorRAII {
914 EvalInfo &EI;
915 ObjectUnderConstruction Object;
916 bool DidInsert;
917 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
918 : EI(EI), Object(Object) {
919 DidInsert = EI.ObjectsUnderConstruction
920 .insert(KV: {Object, ConstructionPhase::Destroying})
921 .second;
922 }
923 void startedDestroyingBases() {
924 EI.ObjectsUnderConstruction[Object] =
925 ConstructionPhase::DestroyingBases;
926 }
927 ~EvaluatingDestructorRAII() {
928 if (DidInsert)
929 EI.ObjectsUnderConstruction.erase(Val: Object);
930 }
931 };
932
933 ConstructionPhase
934 isEvaluatingCtorDtor(APValue::LValueBase Base,
935 ArrayRef<APValue::LValuePathEntry> Path) {
936 return ObjectsUnderConstruction.lookup(Val: {.Base: Base, .Path: Path});
937 }
938
939 /// If we're currently speculatively evaluating, the outermost call stack
940 /// depth at which we can mutate state, otherwise 0.
941 unsigned SpeculativeEvaluationDepth = 0;
942
943 /// The current array initialization index, if we're performing array
944 /// initialization.
945 uint64_t ArrayInitIndex = -1;
946
947 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
948 /// notes attached to it will also be stored, otherwise they will not be.
949 bool HasActiveDiagnostic;
950
951 /// Have we emitted a diagnostic explaining why we couldn't constant
952 /// fold (not just why it's not strictly a constant expression)?
953 bool HasFoldFailureDiagnostic;
954
955 /// Whether we're checking that an expression is a potential constant
956 /// expression. If so, do not fail on constructs that could become constant
957 /// later on (such as a use of an undefined global).
958 bool CheckingPotentialConstantExpression = false;
959
960 /// Whether we're checking for an expression that has undefined behavior.
961 /// If so, we will produce warnings if we encounter an operation that is
962 /// always undefined.
963 ///
964 /// Note that we still need to evaluate the expression normally when this
965 /// is set; this is used when evaluating ICEs in C.
966 bool CheckingForUndefinedBehavior = false;
967
968 enum EvaluationMode {
969 /// Evaluate as a constant expression. Stop if we find that the expression
970 /// is not a constant expression.
971 EM_ConstantExpression,
972
973 /// Evaluate as a constant expression. Stop if we find that the expression
974 /// is not a constant expression. Some expressions can be retried in the
975 /// optimizer if we don't constant fold them here, but in an unevaluated
976 /// context we try to fold them immediately since the optimizer never
977 /// gets a chance to look at it.
978 EM_ConstantExpressionUnevaluated,
979
980 /// Fold the expression to a constant. Stop if we hit a side-effect that
981 /// we can't model.
982 EM_ConstantFold,
983
984 /// Evaluate in any way we know how. Don't worry about side-effects that
985 /// can't be modeled.
986 EM_IgnoreSideEffects,
987 } EvalMode;
988
989 /// Are we checking whether the expression is a potential constant
990 /// expression?
991 bool checkingPotentialConstantExpression() const override {
992 return CheckingPotentialConstantExpression;
993 }
994
995 /// Are we checking an expression for overflow?
996 // FIXME: We should check for any kind of undefined or suspicious behavior
997 // in such constructs, not just overflow.
998 bool checkingForUndefinedBehavior() const override {
999 return CheckingForUndefinedBehavior;
1000 }
1001
1002 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
1003 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
1004 CallStackDepth(0), NextCallIndex(1),
1005 StepsLeft(C.getLangOpts().ConstexprStepLimit),
1006 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
1007 BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr,
1008 /*This=*/nullptr,
1009 /*CallExpr=*/nullptr, CallRef()),
1010 EvaluatingDecl((const ValueDecl *)nullptr),
1011 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
1012 HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
1013
1014 ~EvalInfo() {
1015 discardCleanups();
1016 }
1017
1018 ASTContext &getCtx() const override { return Ctx; }
1019
1020 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
1021 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
1022 EvaluatingDecl = Base;
1023 IsEvaluatingDecl = EDK;
1024 EvaluatingDeclValue = &Value;
1025 }
1026
1027 bool CheckCallLimit(SourceLocation Loc) {
1028 // Don't perform any constexpr calls (other than the call we're checking)
1029 // when checking a potential constant expression.
1030 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
1031 return false;
1032 if (NextCallIndex == 0) {
1033 // NextCallIndex has wrapped around.
1034 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1035 return false;
1036 }
1037 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1038 return true;
1039 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1040 << getLangOpts().ConstexprCallDepth;
1041 return false;
1042 }
1043
1044 bool CheckArraySize(SourceLocation Loc, unsigned BitWidth,
1045 uint64_t ElemCount, bool Diag) {
1046 // FIXME: GH63562
1047 // APValue stores array extents as unsigned,
1048 // so anything that is greater that unsigned would overflow when
1049 // constructing the array, we catch this here.
1050 if (BitWidth > ConstantArrayType::getMaxSizeBits(Context: Ctx) ||
1051 ElemCount > uint64_t(std::numeric_limits<unsigned>::max())) {
1052 if (Diag)
1053 FFDiag(Loc, diag::note_constexpr_new_too_large) << ElemCount;
1054 return false;
1055 }
1056
1057 // FIXME: GH63562
1058 // Arrays allocate an APValue per element.
1059 // We use the number of constexpr steps as a proxy for the maximum size
1060 // of arrays to avoid exhausting the system resources, as initialization
1061 // of each element is likely to take some number of steps anyway.
1062 uint64_t Limit = Ctx.getLangOpts().ConstexprStepLimit;
1063 if (ElemCount > Limit) {
1064 if (Diag)
1065 FFDiag(Loc, diag::note_constexpr_new_exceeds_limits)
1066 << ElemCount << Limit;
1067 return false;
1068 }
1069 return true;
1070 }
1071
1072 std::pair<CallStackFrame *, unsigned>
1073 getCallFrameAndDepth(unsigned CallIndex) {
1074 assert(CallIndex && "no call index in getCallFrameAndDepth");
1075 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1076 // be null in this loop.
1077 unsigned Depth = CallStackDepth;
1078 CallStackFrame *Frame = CurrentCall;
1079 while (Frame->Index > CallIndex) {
1080 Frame = Frame->Caller;
1081 --Depth;
1082 }
1083 if (Frame->Index == CallIndex)
1084 return {Frame, Depth};
1085 return {nullptr, 0};
1086 }
1087
1088 bool nextStep(const Stmt *S) {
1089 if (!StepsLeft) {
1090 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1091 return false;
1092 }
1093 --StepsLeft;
1094 return true;
1095 }
1096
1097 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1098
1099 std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) {
1100 std::optional<DynAlloc *> Result;
1101 auto It = HeapAllocs.find(x: DA);
1102 if (It != HeapAllocs.end())
1103 Result = &It->second;
1104 return Result;
1105 }
1106
1107 /// Get the allocated storage for the given parameter of the given call.
1108 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1109 CallStackFrame *Frame = getCallFrameAndDepth(CallIndex: Call.CallIndex).first;
1110 return Frame ? Frame->getTemporary(Key: Call.getOrigParam(PVD), Version: Call.Version)
1111 : nullptr;
1112 }
1113
1114 /// Information about a stack frame for std::allocator<T>::[de]allocate.
1115 struct StdAllocatorCaller {
1116 unsigned FrameIndex;
1117 QualType ElemType;
1118 explicit operator bool() const { return FrameIndex != 0; };
1119 };
1120
1121 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1122 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1123 Call = Call->Caller) {
1124 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: Call->Callee);
1125 if (!MD)
1126 continue;
1127 const IdentifierInfo *FnII = MD->getIdentifier();
1128 if (!FnII || !FnII->isStr(Str: FnName))
1129 continue;
1130
1131 const auto *CTSD =
1132 dyn_cast<ClassTemplateSpecializationDecl>(Val: MD->getParent());
1133 if (!CTSD)
1134 continue;
1135
1136 const IdentifierInfo *ClassII = CTSD->getIdentifier();
1137 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1138 if (CTSD->isInStdNamespace() && ClassII &&
1139 ClassII->isStr(Str: "allocator") && TAL.size() >= 1 &&
1140 TAL[0].getKind() == TemplateArgument::Type)
1141 return {Call->Index, TAL[0].getAsType()};
1142 }
1143
1144 return {};
1145 }
1146
1147 void performLifetimeExtension() {
1148 // Disable the cleanups for lifetime-extended temporaries.
1149 llvm::erase_if(C&: CleanupStack, P: [](Cleanup &C) {
1150 return !C.isDestroyedAtEndOf(K: ScopeKind::FullExpression);
1151 });
1152 }
1153
1154 /// Throw away any remaining cleanups at the end of evaluation. If any
1155 /// cleanups would have had a side-effect, note that as an unmodeled
1156 /// side-effect and return false. Otherwise, return true.
1157 bool discardCleanups() {
1158 for (Cleanup &C : CleanupStack) {
1159 if (C.hasSideEffect() && !noteSideEffect()) {
1160 CleanupStack.clear();
1161 return false;
1162 }
1163 }
1164 CleanupStack.clear();
1165 return true;
1166 }
1167
1168 private:
1169 interp::Frame *getCurrentFrame() override { return CurrentCall; }
1170 const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1171
1172 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1173 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1174
1175 void setFoldFailureDiagnostic(bool Flag) override {
1176 HasFoldFailureDiagnostic = Flag;
1177 }
1178
1179 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1180
1181 // If we have a prior diagnostic, it will be noting that the expression
1182 // isn't a constant expression. This diagnostic is more important,
1183 // unless we require this evaluation to produce a constant expression.
1184 //
1185 // FIXME: We might want to show both diagnostics to the user in
1186 // EM_ConstantFold mode.
1187 bool hasPriorDiagnostic() override {
1188 if (!EvalStatus.Diag->empty()) {
1189 switch (EvalMode) {
1190 case EM_ConstantFold:
1191 case EM_IgnoreSideEffects:
1192 if (!HasFoldFailureDiagnostic)
1193 break;
1194 // We've already failed to fold something. Keep that diagnostic.
1195 [[fallthrough]];
1196 case EM_ConstantExpression:
1197 case EM_ConstantExpressionUnevaluated:
1198 setActiveDiagnostic(false);
1199 return true;
1200 }
1201 }
1202 return false;
1203 }
1204
1205 unsigned getCallStackDepth() override { return CallStackDepth; }
1206
1207 public:
1208 /// Should we continue evaluation after encountering a side-effect that we
1209 /// couldn't model?
1210 bool keepEvaluatingAfterSideEffect() {
1211 switch (EvalMode) {
1212 case EM_IgnoreSideEffects:
1213 return true;
1214
1215 case EM_ConstantExpression:
1216 case EM_ConstantExpressionUnevaluated:
1217 case EM_ConstantFold:
1218 // By default, assume any side effect might be valid in some other
1219 // evaluation of this expression from a different context.
1220 return checkingPotentialConstantExpression() ||
1221 checkingForUndefinedBehavior();
1222 }
1223 llvm_unreachable("Missed EvalMode case");
1224 }
1225
1226 /// Note that we have had a side-effect, and determine whether we should
1227 /// keep evaluating.
1228 bool noteSideEffect() {
1229 EvalStatus.HasSideEffects = true;
1230 return keepEvaluatingAfterSideEffect();
1231 }
1232
1233 /// Should we continue evaluation after encountering undefined behavior?
1234 bool keepEvaluatingAfterUndefinedBehavior() {
1235 switch (EvalMode) {
1236 case EM_IgnoreSideEffects:
1237 case EM_ConstantFold:
1238 return true;
1239
1240 case EM_ConstantExpression:
1241 case EM_ConstantExpressionUnevaluated:
1242 return checkingForUndefinedBehavior();
1243 }
1244 llvm_unreachable("Missed EvalMode case");
1245 }
1246
1247 /// Note that we hit something that was technically undefined behavior, but
1248 /// that we can evaluate past it (such as signed overflow or floating-point
1249 /// division by zero.)
1250 bool noteUndefinedBehavior() override {
1251 EvalStatus.HasUndefinedBehavior = true;
1252 return keepEvaluatingAfterUndefinedBehavior();
1253 }
1254
1255 /// Should we continue evaluation as much as possible after encountering a
1256 /// construct which can't be reduced to a value?
1257 bool keepEvaluatingAfterFailure() const override {
1258 if (!StepsLeft)
1259 return false;
1260
1261 switch (EvalMode) {
1262 case EM_ConstantExpression:
1263 case EM_ConstantExpressionUnevaluated:
1264 case EM_ConstantFold:
1265 case EM_IgnoreSideEffects:
1266 return checkingPotentialConstantExpression() ||
1267 checkingForUndefinedBehavior();
1268 }
1269 llvm_unreachable("Missed EvalMode case");
1270 }
1271
1272 /// Notes that we failed to evaluate an expression that other expressions
1273 /// directly depend on, and determine if we should keep evaluating. This
1274 /// should only be called if we actually intend to keep evaluating.
1275 ///
1276 /// Call noteSideEffect() instead if we may be able to ignore the value that
1277 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1278 ///
1279 /// (Foo(), 1) // use noteSideEffect
1280 /// (Foo() || true) // use noteSideEffect
1281 /// Foo() + 1 // use noteFailure
1282 [[nodiscard]] bool noteFailure() {
1283 // Failure when evaluating some expression often means there is some
1284 // subexpression whose evaluation was skipped. Therefore, (because we
1285 // don't track whether we skipped an expression when unwinding after an
1286 // evaluation failure) every evaluation failure that bubbles up from a
1287 // subexpression implies that a side-effect has potentially happened. We
1288 // skip setting the HasSideEffects flag to true until we decide to
1289 // continue evaluating after that point, which happens here.
1290 bool KeepGoing = keepEvaluatingAfterFailure();
1291 EvalStatus.HasSideEffects |= KeepGoing;
1292 return KeepGoing;
1293 }
1294
1295 class ArrayInitLoopIndex {
1296 EvalInfo &Info;
1297 uint64_t OuterIndex;
1298
1299 public:
1300 ArrayInitLoopIndex(EvalInfo &Info)
1301 : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1302 Info.ArrayInitIndex = 0;
1303 }
1304 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1305
1306 operator uint64_t&() { return Info.ArrayInitIndex; }
1307 };
1308 };
1309
1310 /// Object used to treat all foldable expressions as constant expressions.
1311 struct FoldConstant {
1312 EvalInfo &Info;
1313 bool Enabled;
1314 bool HadNoPriorDiags;
1315 EvalInfo::EvaluationMode OldMode;
1316
1317 explicit FoldConstant(EvalInfo &Info, bool Enabled)
1318 : Info(Info),
1319 Enabled(Enabled),
1320 HadNoPriorDiags(Info.EvalStatus.Diag &&
1321 Info.EvalStatus.Diag->empty() &&
1322 !Info.EvalStatus.HasSideEffects),
1323 OldMode(Info.EvalMode) {
1324 if (Enabled)
1325 Info.EvalMode = EvalInfo::EM_ConstantFold;
1326 }
1327 void keepDiagnostics() { Enabled = false; }
1328 ~FoldConstant() {
1329 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1330 !Info.EvalStatus.HasSideEffects)
1331 Info.EvalStatus.Diag->clear();
1332 Info.EvalMode = OldMode;
1333 }
1334 };
1335
1336 /// RAII object used to set the current evaluation mode to ignore
1337 /// side-effects.
1338 struct IgnoreSideEffectsRAII {
1339 EvalInfo &Info;
1340 EvalInfo::EvaluationMode OldMode;
1341 explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1342 : Info(Info), OldMode(Info.EvalMode) {
1343 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1344 }
1345
1346 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1347 };
1348
1349 /// RAII object used to optionally suppress diagnostics and side-effects from
1350 /// a speculative evaluation.
1351 class SpeculativeEvaluationRAII {
1352 EvalInfo *Info = nullptr;
1353 Expr::EvalStatus OldStatus;
1354 unsigned OldSpeculativeEvaluationDepth = 0;
1355
1356 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1357 Info = Other.Info;
1358 OldStatus = Other.OldStatus;
1359 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1360 Other.Info = nullptr;
1361 }
1362
1363 void maybeRestoreState() {
1364 if (!Info)
1365 return;
1366
1367 Info->EvalStatus = OldStatus;
1368 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1369 }
1370
1371 public:
1372 SpeculativeEvaluationRAII() = default;
1373
1374 SpeculativeEvaluationRAII(
1375 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1376 : Info(&Info), OldStatus(Info.EvalStatus),
1377 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1378 Info.EvalStatus.Diag = NewDiag;
1379 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1380 }
1381
1382 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1383 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1384 moveFromAndCancel(Other: std::move(Other));
1385 }
1386
1387 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1388 maybeRestoreState();
1389 moveFromAndCancel(Other: std::move(Other));
1390 return *this;
1391 }
1392
1393 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1394 };
1395
1396 /// RAII object wrapping a full-expression or block scope, and handling
1397 /// the ending of the lifetime of temporaries created within it.
1398 template<ScopeKind Kind>
1399 class ScopeRAII {
1400 EvalInfo &Info;
1401 unsigned OldStackSize;
1402 public:
1403 ScopeRAII(EvalInfo &Info)
1404 : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1405 // Push a new temporary version. This is needed to distinguish between
1406 // temporaries created in different iterations of a loop.
1407 Info.CurrentCall->pushTempVersion();
1408 }
1409 bool destroy(bool RunDestructors = true) {
1410 bool OK = cleanup(Info, RunDestructors, OldStackSize);
1411 OldStackSize = -1U;
1412 return OK;
1413 }
1414 ~ScopeRAII() {
1415 if (OldStackSize != -1U)
1416 destroy(RunDestructors: false);
1417 // Body moved to a static method to encourage the compiler to inline away
1418 // instances of this class.
1419 Info.CurrentCall->popTempVersion();
1420 }
1421 private:
1422 static bool cleanup(EvalInfo &Info, bool RunDestructors,
1423 unsigned OldStackSize) {
1424 assert(OldStackSize <= Info.CleanupStack.size() &&
1425 "running cleanups out of order?");
1426
1427 // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1428 // for a full-expression scope.
1429 bool Success = true;
1430 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1431 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(K: Kind)) {
1432 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1433 Success = false;
1434 break;
1435 }
1436 }
1437 }
1438
1439 // Compact any retained cleanups.
1440 auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1441 if (Kind != ScopeKind::Block)
1442 NewEnd =
1443 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1444 return C.isDestroyedAtEndOf(K: Kind);
1445 });
1446 Info.CleanupStack.erase(CS: NewEnd, CE: Info.CleanupStack.end());
1447 return Success;
1448 }
1449 };
1450 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1451 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1452 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1453}
1454
1455bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1456 CheckSubobjectKind CSK) {
1457 if (Invalid)
1458 return false;
1459 if (isOnePastTheEnd()) {
1460 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1461 << CSK;
1462 setInvalid();
1463 return false;
1464 }
1465 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1466 // must actually be at least one array element; even a VLA cannot have a
1467 // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1468 return true;
1469}
1470
1471void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1472 const Expr *E) {
1473 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1474 // Do not set the designator as invalid: we can represent this situation,
1475 // and correct handling of __builtin_object_size requires us to do so.
1476}
1477
1478void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1479 const Expr *E,
1480 const APSInt &N) {
1481 // If we're complaining, we must be able to statically determine the size of
1482 // the most derived array.
1483 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1484 Info.CCEDiag(E, diag::note_constexpr_array_index)
1485 << N << /*array*/ 0
1486 << static_cast<unsigned>(getMostDerivedArraySize());
1487 else
1488 Info.CCEDiag(E, diag::note_constexpr_array_index)
1489 << N << /*non-array*/ 1;
1490 setInvalid();
1491}
1492
1493CallStackFrame::CallStackFrame(EvalInfo &Info, SourceRange CallRange,
1494 const FunctionDecl *Callee, const LValue *This,
1495 const Expr *CallExpr, CallRef Call)
1496 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1497 CallExpr(CallExpr), Arguments(Call), CallRange(CallRange),
1498 Index(Info.NextCallIndex++) {
1499 Info.CurrentCall = this;
1500 ++Info.CallStackDepth;
1501}
1502
1503CallStackFrame::~CallStackFrame() {
1504 assert(Info.CurrentCall == this && "calls retired out of order");
1505 --Info.CallStackDepth;
1506 Info.CurrentCall = Caller;
1507}
1508
1509static bool isRead(AccessKinds AK) {
1510 return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1511}
1512
1513static bool isModification(AccessKinds AK) {
1514 switch (AK) {
1515 case AK_Read:
1516 case AK_ReadObjectRepresentation:
1517 case AK_MemberCall:
1518 case AK_DynamicCast:
1519 case AK_TypeId:
1520 return false;
1521 case AK_Assign:
1522 case AK_Increment:
1523 case AK_Decrement:
1524 case AK_Construct:
1525 case AK_Destroy:
1526 return true;
1527 }
1528 llvm_unreachable("unknown access kind");
1529}
1530
1531static bool isAnyAccess(AccessKinds AK) {
1532 return isRead(AK) || isModification(AK);
1533}
1534
1535/// Is this an access per the C++ definition?
1536static bool isFormalAccess(AccessKinds AK) {
1537 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1538}
1539
1540/// Is this kind of axcess valid on an indeterminate object value?
1541static bool isValidIndeterminateAccess(AccessKinds AK) {
1542 switch (AK) {
1543 case AK_Read:
1544 case AK_Increment:
1545 case AK_Decrement:
1546 // These need the object's value.
1547 return false;
1548
1549 case AK_ReadObjectRepresentation:
1550 case AK_Assign:
1551 case AK_Construct:
1552 case AK_Destroy:
1553 // Construction and destruction don't need the value.
1554 return true;
1555
1556 case AK_MemberCall:
1557 case AK_DynamicCast:
1558 case AK_TypeId:
1559 // These aren't really meaningful on scalars.
1560 return true;
1561 }
1562 llvm_unreachable("unknown access kind");
1563}
1564
1565namespace {
1566 struct ComplexValue {
1567 private:
1568 bool IsInt;
1569
1570 public:
1571 APSInt IntReal, IntImag;
1572 APFloat FloatReal, FloatImag;
1573
1574 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1575
1576 void makeComplexFloat() { IsInt = false; }
1577 bool isComplexFloat() const { return !IsInt; }
1578 APFloat &getComplexFloatReal() { return FloatReal; }
1579 APFloat &getComplexFloatImag() { return FloatImag; }
1580
1581 void makeComplexInt() { IsInt = true; }
1582 bool isComplexInt() const { return IsInt; }
1583 APSInt &getComplexIntReal() { return IntReal; }
1584 APSInt &getComplexIntImag() { return IntImag; }
1585
1586 void moveInto(APValue &v) const {
1587 if (isComplexFloat())
1588 v = APValue(FloatReal, FloatImag);
1589 else
1590 v = APValue(IntReal, IntImag);
1591 }
1592 void setFrom(const APValue &v) {
1593 assert(v.isComplexFloat() || v.isComplexInt());
1594 if (v.isComplexFloat()) {
1595 makeComplexFloat();
1596 FloatReal = v.getComplexFloatReal();
1597 FloatImag = v.getComplexFloatImag();
1598 } else {
1599 makeComplexInt();
1600 IntReal = v.getComplexIntReal();
1601 IntImag = v.getComplexIntImag();
1602 }
1603 }
1604 };
1605
1606 struct LValue {
1607 APValue::LValueBase Base;
1608 CharUnits Offset;
1609 SubobjectDesignator Designator;
1610 bool IsNullPtr : 1;
1611 bool InvalidBase : 1;
1612
1613 const APValue::LValueBase getLValueBase() const { return Base; }
1614 CharUnits &getLValueOffset() { return Offset; }
1615 const CharUnits &getLValueOffset() const { return Offset; }
1616 SubobjectDesignator &getLValueDesignator() { return Designator; }
1617 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1618 bool isNullPointer() const { return IsNullPtr;}
1619
1620 unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1621 unsigned getLValueVersion() const { return Base.getVersion(); }
1622
1623 void moveInto(APValue &V) const {
1624 if (Designator.Invalid)
1625 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1626 else {
1627 assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1628 V = APValue(Base, Offset, Designator.Entries,
1629 Designator.IsOnePastTheEnd, IsNullPtr);
1630 }
1631 }
1632 void setFrom(ASTContext &Ctx, const APValue &V) {
1633 assert(V.isLValue() && "Setting LValue from a non-LValue?");
1634 Base = V.getLValueBase();
1635 Offset = V.getLValueOffset();
1636 InvalidBase = false;
1637 Designator = SubobjectDesignator(Ctx, V);
1638 IsNullPtr = V.isNullPointer();
1639 }
1640
1641 void set(APValue::LValueBase B, bool BInvalid = false) {
1642#ifndef NDEBUG
1643 // We only allow a few types of invalid bases. Enforce that here.
1644 if (BInvalid) {
1645 const auto *E = B.get<const Expr *>();
1646 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1647 "Unexpected type of invalid base");
1648 }
1649#endif
1650
1651 Base = B;
1652 Offset = CharUnits::fromQuantity(Quantity: 0);
1653 InvalidBase = BInvalid;
1654 Designator = SubobjectDesignator(getType(B));
1655 IsNullPtr = false;
1656 }
1657
1658 void setNull(ASTContext &Ctx, QualType PointerTy) {
1659 Base = (const ValueDecl *)nullptr;
1660 Offset =
1661 CharUnits::fromQuantity(Quantity: Ctx.getTargetNullPointerValue(QT: PointerTy));
1662 InvalidBase = false;
1663 Designator = SubobjectDesignator(PointerTy->getPointeeType());
1664 IsNullPtr = true;
1665 }
1666
1667 void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1668 set(B, BInvalid: true);
1669 }
1670
1671 std::string toString(ASTContext &Ctx, QualType T) const {
1672 APValue Printable;
1673 moveInto(V&: Printable);
1674 return Printable.getAsString(Ctx, Ty: T);
1675 }
1676
1677 private:
1678 // Check that this LValue is not based on a null pointer. If it is, produce
1679 // a diagnostic and mark the designator as invalid.
1680 template <typename GenDiagType>
1681 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1682 if (Designator.Invalid)
1683 return false;
1684 if (IsNullPtr) {
1685 GenDiag();
1686 Designator.setInvalid();
1687 return false;
1688 }
1689 return true;
1690 }
1691
1692 public:
1693 bool checkNullPointer(EvalInfo &Info, const Expr *E,
1694 CheckSubobjectKind CSK) {
1695 return checkNullPointerDiagnosingWith(GenDiag: [&Info, E, CSK] {
1696 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1697 });
1698 }
1699
1700 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1701 AccessKinds AK) {
1702 return checkNullPointerDiagnosingWith(GenDiag: [&Info, E, AK] {
1703 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1704 });
1705 }
1706
1707 // Check this LValue refers to an object. If not, set the designator to be
1708 // invalid and emit a diagnostic.
1709 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1710 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1711 Designator.checkSubobject(Info, E, CSK);
1712 }
1713
1714 void addDecl(EvalInfo &Info, const Expr *E,
1715 const Decl *D, bool Virtual = false) {
1716 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1717 Designator.addDeclUnchecked(D, Virtual);
1718 }
1719 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1720 if (!Designator.Entries.empty()) {
1721 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1722 Designator.setInvalid();
1723 return;
1724 }
1725 if (checkSubobject(Info, E, CSK: CSK_ArrayToPointer)) {
1726 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1727 Designator.FirstEntryIsAnUnsizedArray = true;
1728 Designator.addUnsizedArrayUnchecked(ElemTy);
1729 }
1730 }
1731 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1732 if (checkSubobject(Info, E, CSK_ArrayToPointer))
1733 Designator.addArrayUnchecked(CAT);
1734 }
1735 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1736 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1737 Designator.addComplexUnchecked(EltTy, Imag);
1738 }
1739 void clearIsNullPointer() {
1740 IsNullPtr = false;
1741 }
1742 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1743 const APSInt &Index, CharUnits ElementSize) {
1744 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1745 // but we're not required to diagnose it and it's valid in C++.)
1746 if (!Index)
1747 return;
1748
1749 // Compute the new offset in the appropriate width, wrapping at 64 bits.
1750 // FIXME: When compiling for a 32-bit target, we should use 32-bit
1751 // offsets.
1752 uint64_t Offset64 = Offset.getQuantity();
1753 uint64_t ElemSize64 = ElementSize.getQuantity();
1754 uint64_t Index64 = Index.extOrTrunc(width: 64).getZExtValue();
1755 Offset = CharUnits::fromQuantity(Quantity: Offset64 + ElemSize64 * Index64);
1756
1757 if (checkNullPointer(Info, E, CSK_ArrayIndex))
1758 Designator.adjustIndex(Info, E, Index);
1759 clearIsNullPointer();
1760 }
1761 void adjustOffset(CharUnits N) {
1762 Offset += N;
1763 if (N.getQuantity())
1764 clearIsNullPointer();
1765 }
1766 };
1767
1768 struct MemberPtr {
1769 MemberPtr() {}
1770 explicit MemberPtr(const ValueDecl *Decl)
1771 : DeclAndIsDerivedMember(Decl, false) {}
1772
1773 /// The member or (direct or indirect) field referred to by this member
1774 /// pointer, or 0 if this is a null member pointer.
1775 const ValueDecl *getDecl() const {
1776 return DeclAndIsDerivedMember.getPointer();
1777 }
1778 /// Is this actually a member of some type derived from the relevant class?
1779 bool isDerivedMember() const {
1780 return DeclAndIsDerivedMember.getInt();
1781 }
1782 /// Get the class which the declaration actually lives in.
1783 const CXXRecordDecl *getContainingRecord() const {
1784 return cast<CXXRecordDecl>(
1785 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1786 }
1787
1788 void moveInto(APValue &V) const {
1789 V = APValue(getDecl(), isDerivedMember(), Path);
1790 }
1791 void setFrom(const APValue &V) {
1792 assert(V.isMemberPointer());
1793 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1794 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1795 Path.clear();
1796 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1797 Path.insert(I: Path.end(), From: P.begin(), To: P.end());
1798 }
1799
1800 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1801 /// whether the member is a member of some class derived from the class type
1802 /// of the member pointer.
1803 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1804 /// Path - The path of base/derived classes from the member declaration's
1805 /// class (exclusive) to the class type of the member pointer (inclusive).
1806 SmallVector<const CXXRecordDecl*, 4> Path;
1807
1808 /// Perform a cast towards the class of the Decl (either up or down the
1809 /// hierarchy).
1810 bool castBack(const CXXRecordDecl *Class) {
1811 assert(!Path.empty());
1812 const CXXRecordDecl *Expected;
1813 if (Path.size() >= 2)
1814 Expected = Path[Path.size() - 2];
1815 else
1816 Expected = getContainingRecord();
1817 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1818 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1819 // if B does not contain the original member and is not a base or
1820 // derived class of the class containing the original member, the result
1821 // of the cast is undefined.
1822 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1823 // (D::*). We consider that to be a language defect.
1824 return false;
1825 }
1826 Path.pop_back();
1827 return true;
1828 }
1829 /// Perform a base-to-derived member pointer cast.
1830 bool castToDerived(const CXXRecordDecl *Derived) {
1831 if (!getDecl())
1832 return true;
1833 if (!isDerivedMember()) {
1834 Path.push_back(Elt: Derived);
1835 return true;
1836 }
1837 if (!castBack(Class: Derived))
1838 return false;
1839 if (Path.empty())
1840 DeclAndIsDerivedMember.setInt(false);
1841 return true;
1842 }
1843 /// Perform a derived-to-base member pointer cast.
1844 bool castToBase(const CXXRecordDecl *Base) {
1845 if (!getDecl())
1846 return true;
1847 if (Path.empty())
1848 DeclAndIsDerivedMember.setInt(true);
1849 if (isDerivedMember()) {
1850 Path.push_back(Elt: Base);
1851 return true;
1852 }
1853 return castBack(Class: Base);
1854 }
1855 };
1856
1857 /// Compare two member pointers, which are assumed to be of the same type.
1858 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1859 if (!LHS.getDecl() || !RHS.getDecl())
1860 return !LHS.getDecl() && !RHS.getDecl();
1861 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1862 return false;
1863 return LHS.Path == RHS.Path;
1864 }
1865}
1866
1867static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1868static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1869 const LValue &This, const Expr *E,
1870 bool AllowNonLiteralTypes = false);
1871static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1872 bool InvalidBaseOK = false);
1873static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1874 bool InvalidBaseOK = false);
1875static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1876 EvalInfo &Info);
1877static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1878static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1879static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1880 EvalInfo &Info);
1881static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1882static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1883static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1884 EvalInfo &Info);
1885static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1886static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1887 EvalInfo &Info);
1888
1889/// Evaluate an integer or fixed point expression into an APResult.
1890static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1891 EvalInfo &Info);
1892
1893/// Evaluate only a fixed point expression into an APResult.
1894static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1895 EvalInfo &Info);
1896
1897//===----------------------------------------------------------------------===//
1898// Misc utilities
1899//===----------------------------------------------------------------------===//
1900
1901/// Negate an APSInt in place, converting it to a signed form if necessary, and
1902/// preserving its value (by extending by up to one bit as needed).
1903static void negateAsSigned(APSInt &Int) {
1904 if (Int.isUnsigned() || Int.isMinSignedValue()) {
1905 Int = Int.extend(width: Int.getBitWidth() + 1);
1906 Int.setIsSigned(true);
1907 }
1908 Int = -Int;
1909}
1910
1911template<typename KeyT>
1912APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1913 ScopeKind Scope, LValue &LV) {
1914 unsigned Version = getTempVersion();
1915 APValue::LValueBase Base(Key, Index, Version);
1916 LV.set(B: Base);
1917 return createLocal(Base, Key, T, Scope);
1918}
1919
1920/// Allocate storage for a parameter of a function call made in this frame.
1921APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1922 LValue &LV) {
1923 assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1924 APValue::LValueBase Base(PVD, Index, Args.Version);
1925 LV.set(B: Base);
1926 // We always destroy parameters at the end of the call, even if we'd allow
1927 // them to live to the end of the full-expression at runtime, in order to
1928 // give portable results and match other compilers.
1929 return createLocal(Base, Key: PVD, T: PVD->getType(), Scope: ScopeKind::Call);
1930}
1931
1932APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1933 QualType T, ScopeKind Scope) {
1934 assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1935 unsigned Version = Base.getVersion();
1936 APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1937 assert(Result.isAbsent() && "local created multiple times");
1938
1939 // If we're creating a local immediately in the operand of a speculative
1940 // evaluation, don't register a cleanup to be run outside the speculative
1941 // evaluation context, since we won't actually be able to initialize this
1942 // object.
1943 if (Index <= Info.SpeculativeEvaluationDepth) {
1944 if (T.isDestructedType())
1945 Info.noteSideEffect();
1946 } else {
1947 Info.CleanupStack.push_back(Elt: Cleanup(&Result, Base, T, Scope));
1948 }
1949 return Result;
1950}
1951
1952APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1953 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1954 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1955 return nullptr;
1956 }
1957
1958 DynamicAllocLValue DA(NumHeapAllocs++);
1959 LV.set(B: APValue::LValueBase::getDynamicAlloc(LV: DA, Type: T));
1960 auto Result = HeapAllocs.emplace(args: std::piecewise_construct,
1961 args: std::forward_as_tuple(args&: DA), args: std::tuple<>());
1962 assert(Result.second && "reused a heap alloc index?");
1963 Result.first->second.AllocExpr = E;
1964 return &Result.first->second.Value;
1965}
1966
1967/// Produce a string describing the given constexpr call.
1968void CallStackFrame::describe(raw_ostream &Out) const {
1969 unsigned ArgIndex = 0;
1970 bool IsMemberCall =
1971 isa<CXXMethodDecl>(Val: Callee) && !isa<CXXConstructorDecl>(Val: Callee) &&
1972 cast<CXXMethodDecl>(Val: Callee)->isImplicitObjectMemberFunction();
1973
1974 if (!IsMemberCall)
1975 Callee->getNameForDiagnostic(OS&: Out, Policy: Info.Ctx.getPrintingPolicy(),
1976 /*Qualified=*/false);
1977
1978 if (This && IsMemberCall) {
1979 if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(Val: CallExpr)) {
1980 const Expr *Object = MCE->getImplicitObjectArgument();
1981 Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(),
1982 /*Indentation=*/0);
1983 if (Object->getType()->isPointerType())
1984 Out << "->";
1985 else
1986 Out << ".";
1987 } else if (const auto *OCE =
1988 dyn_cast_if_present<CXXOperatorCallExpr>(Val: CallExpr)) {
1989 OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr,
1990 Info.Ctx.getPrintingPolicy(),
1991 /*Indentation=*/0);
1992 Out << ".";
1993 } else {
1994 APValue Val;
1995 This->moveInto(V&: Val);
1996 Val.printPretty(
1997 Out, Info.Ctx,
1998 Info.Ctx.getLValueReferenceType(T: This->Designator.MostDerivedType));
1999 Out << ".";
2000 }
2001 Callee->getNameForDiagnostic(OS&: Out, Policy: Info.Ctx.getPrintingPolicy(),
2002 /*Qualified=*/false);
2003 IsMemberCall = false;
2004 }
2005
2006 Out << '(';
2007
2008 for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
2009 E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
2010 if (ArgIndex > (unsigned)IsMemberCall)
2011 Out << ", ";
2012
2013 const ParmVarDecl *Param = *I;
2014 APValue *V = Info.getParamSlot(Call: Arguments, PVD: Param);
2015 if (V)
2016 V->printPretty(Out, Info.Ctx, Param->getType());
2017 else
2018 Out << "<...>";
2019
2020 if (ArgIndex == 0 && IsMemberCall)
2021 Out << "->" << *Callee << '(';
2022 }
2023
2024 Out << ')';
2025}
2026
2027/// Evaluate an expression to see if it had side-effects, and discard its
2028/// result.
2029/// \return \c true if the caller should keep evaluating.
2030static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
2031 assert(!E->isValueDependent());
2032 APValue Scratch;
2033 if (!Evaluate(Result&: Scratch, Info, E))
2034 // We don't need the value, but we might have skipped a side effect here.
2035 return Info.noteSideEffect();
2036 return true;
2037}
2038
2039/// Should this call expression be treated as a no-op?
2040static bool IsNoOpCall(const CallExpr *E) {
2041 unsigned Builtin = E->getBuiltinCallee();
2042 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
2043 Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
2044 Builtin == Builtin::BI__builtin_function_start);
2045}
2046
2047static bool IsGlobalLValue(APValue::LValueBase B) {
2048 // C++11 [expr.const]p3 An address constant expression is a prvalue core
2049 // constant expression of pointer type that evaluates to...
2050
2051 // ... a null pointer value, or a prvalue core constant expression of type
2052 // std::nullptr_t.
2053 if (!B)
2054 return true;
2055
2056 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
2057 // ... the address of an object with static storage duration,
2058 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
2059 return VD->hasGlobalStorage();
2060 if (isa<TemplateParamObjectDecl>(Val: D))
2061 return true;
2062 // ... the address of a function,
2063 // ... the address of a GUID [MS extension],
2064 // ... the address of an unnamed global constant
2065 return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(Val: D);
2066 }
2067
2068 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
2069 return true;
2070
2071 const Expr *E = B.get<const Expr*>();
2072 switch (E->getStmtClass()) {
2073 default:
2074 return false;
2075 case Expr::CompoundLiteralExprClass: {
2076 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(Val: E);
2077 return CLE->isFileScope() && CLE->isLValue();
2078 }
2079 case Expr::MaterializeTemporaryExprClass:
2080 // A materialized temporary might have been lifetime-extended to static
2081 // storage duration.
2082 return cast<MaterializeTemporaryExpr>(Val: E)->getStorageDuration() == SD_Static;
2083 // A string literal has static storage duration.
2084 case Expr::StringLiteralClass:
2085 case Expr::PredefinedExprClass:
2086 case Expr::ObjCStringLiteralClass:
2087 case Expr::ObjCEncodeExprClass:
2088 return true;
2089 case Expr::ObjCBoxedExprClass:
2090 return cast<ObjCBoxedExpr>(Val: E)->isExpressibleAsConstantInitializer();
2091 case Expr::CallExprClass:
2092 return IsNoOpCall(E: cast<CallExpr>(Val: E));
2093 // For GCC compatibility, &&label has static storage duration.
2094 case Expr::AddrLabelExprClass:
2095 return true;
2096 // A Block literal expression may be used as the initialization value for
2097 // Block variables at global or local static scope.
2098 case Expr::BlockExprClass:
2099 return !cast<BlockExpr>(Val: E)->getBlockDecl()->hasCaptures();
2100 // The APValue generated from a __builtin_source_location will be emitted as a
2101 // literal.
2102 case Expr::SourceLocExprClass:
2103 return true;
2104 case Expr::ImplicitValueInitExprClass:
2105 // FIXME:
2106 // We can never form an lvalue with an implicit value initialization as its
2107 // base through expression evaluation, so these only appear in one case: the
2108 // implicit variable declaration we invent when checking whether a constexpr
2109 // constructor can produce a constant expression. We must assume that such
2110 // an expression might be a global lvalue.
2111 return true;
2112 }
2113}
2114
2115static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2116 return LVal.Base.dyn_cast<const ValueDecl*>();
2117}
2118
2119static bool IsLiteralLValue(const LValue &Value) {
2120 if (Value.getLValueCallIndex())
2121 return false;
2122 const Expr *E = Value.Base.dyn_cast<const Expr*>();
2123 return E && !isa<MaterializeTemporaryExpr>(Val: E);
2124}
2125
2126static bool IsWeakLValue(const LValue &Value) {
2127 const ValueDecl *Decl = GetLValueBaseDecl(LVal: Value);
2128 return Decl && Decl->isWeak();
2129}
2130
2131static bool isZeroSized(const LValue &Value) {
2132 const ValueDecl *Decl = GetLValueBaseDecl(LVal: Value);
2133 if (Decl && isa<VarDecl>(Val: Decl)) {
2134 QualType Ty = Decl->getType();
2135 if (Ty->isArrayType())
2136 return Ty->isIncompleteType() ||
2137 Decl->getASTContext().getTypeSize(Ty) == 0;
2138 }
2139 return false;
2140}
2141
2142static bool HasSameBase(const LValue &A, const LValue &B) {
2143 if (!A.getLValueBase())
2144 return !B.getLValueBase();
2145 if (!B.getLValueBase())
2146 return false;
2147
2148 if (A.getLValueBase().getOpaqueValue() !=
2149 B.getLValueBase().getOpaqueValue())
2150 return false;
2151
2152 return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2153 A.getLValueVersion() == B.getLValueVersion();
2154}
2155
2156static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2157 assert(Base && "no location for a null lvalue");
2158 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2159
2160 // For a parameter, find the corresponding call stack frame (if it still
2161 // exists), and point at the parameter of the function definition we actually
2162 // invoked.
2163 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(Val: VD)) {
2164 unsigned Idx = PVD->getFunctionScopeIndex();
2165 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2166 if (F->Arguments.CallIndex == Base.getCallIndex() &&
2167 F->Arguments.Version == Base.getVersion() && F->Callee &&
2168 Idx < F->Callee->getNumParams()) {
2169 VD = F->Callee->getParamDecl(i: Idx);
2170 break;
2171 }
2172 }
2173 }
2174
2175 if (VD)
2176 Info.Note(VD->getLocation(), diag::note_declared_at);
2177 else if (const Expr *E = Base.dyn_cast<const Expr*>())
2178 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2179 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2180 // FIXME: Produce a note for dangling pointers too.
2181 if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA))
2182 Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2183 diag::note_constexpr_dynamic_alloc_here);
2184 }
2185
2186 // We have no information to show for a typeid(T) object.
2187}
2188
2189enum class CheckEvaluationResultKind {
2190 ConstantExpression,
2191 FullyInitialized,
2192};
2193
2194/// Materialized temporaries that we've already checked to determine if they're
2195/// initializsed by a constant expression.
2196using CheckedTemporaries =
2197 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2198
2199static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2200 EvalInfo &Info, SourceLocation DiagLoc,
2201 QualType Type, const APValue &Value,
2202 ConstantExprKind Kind,
2203 const FieldDecl *SubobjectDecl,
2204 CheckedTemporaries &CheckedTemps);
2205
2206/// Check that this reference or pointer core constant expression is a valid
2207/// value for an address or reference constant expression. Return true if we
2208/// can fold this expression, whether or not it's a constant expression.
2209static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2210 QualType Type, const LValue &LVal,
2211 ConstantExprKind Kind,
2212 CheckedTemporaries &CheckedTemps) {
2213 bool IsReferenceType = Type->isReferenceType();
2214
2215 APValue::LValueBase Base = LVal.getLValueBase();
2216 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2217
2218 const Expr *BaseE = Base.dyn_cast<const Expr *>();
2219 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2220
2221 // Additional restrictions apply in a template argument. We only enforce the
2222 // C++20 restrictions here; additional syntactic and semantic restrictions
2223 // are applied elsewhere.
2224 if (isTemplateArgument(Kind)) {
2225 int InvalidBaseKind = -1;
2226 StringRef Ident;
2227 if (Base.is<TypeInfoLValue>())
2228 InvalidBaseKind = 0;
2229 else if (isa_and_nonnull<StringLiteral>(Val: BaseE))
2230 InvalidBaseKind = 1;
2231 else if (isa_and_nonnull<MaterializeTemporaryExpr>(Val: BaseE) ||
2232 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(Val: BaseVD))
2233 InvalidBaseKind = 2;
2234 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(Val: BaseE)) {
2235 InvalidBaseKind = 3;
2236 Ident = PE->getIdentKindName();
2237 }
2238
2239 if (InvalidBaseKind != -1) {
2240 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2241 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2242 << Ident;
2243 return false;
2244 }
2245 }
2246
2247 if (auto *FD = dyn_cast_or_null<FunctionDecl>(Val: BaseVD);
2248 FD && FD->isImmediateFunction()) {
2249 Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2250 << !Type->isAnyPointerType();
2251 Info.Note(FD->getLocation(), diag::note_declared_at);
2252 return false;
2253 }
2254
2255 // Check that the object is a global. Note that the fake 'this' object we
2256 // manufacture when checking potential constant expressions is conservatively
2257 // assumed to be global here.
2258 if (!IsGlobalLValue(B: Base)) {
2259 if (Info.getLangOpts().CPlusPlus11) {
2260 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2261 << IsReferenceType << !Designator.Entries.empty() << !!BaseVD
2262 << BaseVD;
2263 auto *VarD = dyn_cast_or_null<VarDecl>(Val: BaseVD);
2264 if (VarD && VarD->isConstexpr()) {
2265 // Non-static local constexpr variables have unintuitive semantics:
2266 // constexpr int a = 1;
2267 // constexpr const int *p = &a;
2268 // ... is invalid because the address of 'a' is not constant. Suggest
2269 // adding a 'static' in this case.
2270 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2271 << VarD
2272 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2273 } else {
2274 NoteLValueLocation(Info, Base);
2275 }
2276 } else {
2277 Info.FFDiag(Loc);
2278 }
2279 // Don't allow references to temporaries to escape.
2280 return false;
2281 }
2282 assert((Info.checkingPotentialConstantExpression() ||
2283 LVal.getLValueCallIndex() == 0) &&
2284 "have call index for global lvalue");
2285
2286 if (Base.is<DynamicAllocLValue>()) {
2287 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2288 << IsReferenceType << !Designator.Entries.empty();
2289 NoteLValueLocation(Info, Base);
2290 return false;
2291 }
2292
2293 if (BaseVD) {
2294 if (const VarDecl *Var = dyn_cast<const VarDecl>(Val: BaseVD)) {
2295 // Check if this is a thread-local variable.
2296 if (Var->getTLSKind())
2297 // FIXME: Diagnostic!
2298 return false;
2299
2300 // A dllimport variable never acts like a constant, unless we're
2301 // evaluating a value for use only in name mangling.
2302 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2303 // FIXME: Diagnostic!
2304 return false;
2305
2306 // In CUDA/HIP device compilation, only device side variables have
2307 // constant addresses.
2308 if (Info.getCtx().getLangOpts().CUDA &&
2309 Info.getCtx().getLangOpts().CUDAIsDevice &&
2310 Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2311 if ((!Var->hasAttr<CUDADeviceAttr>() &&
2312 !Var->hasAttr<CUDAConstantAttr>() &&
2313 !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2314 !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2315 Var->hasAttr<HIPManagedAttr>())
2316 return false;
2317 }
2318 }
2319 if (const auto *FD = dyn_cast<const FunctionDecl>(Val: BaseVD)) {
2320 // __declspec(dllimport) must be handled very carefully:
2321 // We must never initialize an expression with the thunk in C++.
2322 // Doing otherwise would allow the same id-expression to yield
2323 // different addresses for the same function in different translation
2324 // units. However, this means that we must dynamically initialize the
2325 // expression with the contents of the import address table at runtime.
2326 //
2327 // The C language has no notion of ODR; furthermore, it has no notion of
2328 // dynamic initialization. This means that we are permitted to
2329 // perform initialization with the address of the thunk.
2330 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2331 FD->hasAttr<DLLImportAttr>())
2332 // FIXME: Diagnostic!
2333 return false;
2334 }
2335 } else if (const auto *MTE =
2336 dyn_cast_or_null<MaterializeTemporaryExpr>(Val: BaseE)) {
2337 if (CheckedTemps.insert(Ptr: MTE).second) {
2338 QualType TempType = getType(B: Base);
2339 if (TempType.isDestructedType()) {
2340 Info.FFDiag(MTE->getExprLoc(),
2341 diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2342 << TempType;
2343 return false;
2344 }
2345
2346 APValue *V = MTE->getOrCreateValue(MayCreate: false);
2347 assert(V && "evasluation result refers to uninitialised temporary");
2348 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2349 Info, MTE->getExprLoc(), TempType, *V, Kind,
2350 /*SubobjectDecl=*/nullptr, CheckedTemps))
2351 return false;
2352 }
2353 }
2354
2355 // Allow address constant expressions to be past-the-end pointers. This is
2356 // an extension: the standard requires them to point to an object.
2357 if (!IsReferenceType)
2358 return true;
2359
2360 // A reference constant expression must refer to an object.
2361 if (!Base) {
2362 // FIXME: diagnostic
2363 Info.CCEDiag(Loc);
2364 return true;
2365 }
2366
2367 // Does this refer one past the end of some object?
2368 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2369 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2370 << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2371 NoteLValueLocation(Info, Base);
2372 }
2373
2374 return true;
2375}
2376
2377/// Member pointers are constant expressions unless they point to a
2378/// non-virtual dllimport member function.
2379static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2380 SourceLocation Loc,
2381 QualType Type,
2382 const APValue &Value,
2383 ConstantExprKind Kind) {
2384 const ValueDecl *Member = Value.getMemberPointerDecl();
2385 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Val: Member);
2386 if (!FD)
2387 return true;
2388 if (FD->isImmediateFunction()) {
2389 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2390 Info.Note(FD->getLocation(), diag::note_declared_at);
2391 return false;
2392 }
2393 return isForManglingOnly(Kind) || FD->isVirtual() ||
2394 !FD->hasAttr<DLLImportAttr>();
2395}
2396
2397/// Check that this core constant expression is of literal type, and if not,
2398/// produce an appropriate diagnostic.
2399static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2400 const LValue *This = nullptr) {
2401 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx: Info.Ctx))
2402 return true;
2403
2404 // C++1y: A constant initializer for an object o [...] may also invoke
2405 // constexpr constructors for o and its subobjects even if those objects
2406 // are of non-literal class types.
2407 //
2408 // C++11 missed this detail for aggregates, so classes like this:
2409 // struct foo_t { union { int i; volatile int j; } u; };
2410 // are not (obviously) initializable like so:
2411 // __attribute__((__require_constant_initialization__))
2412 // static const foo_t x = {{0}};
2413 // because "i" is a subobject with non-literal initialization (due to the
2414 // volatile member of the union). See:
2415 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2416 // Therefore, we use the C++1y behavior.
2417 if (This && Info.EvaluatingDecl == This->getLValueBase())
2418 return true;
2419
2420 // Prvalue constant expressions must be of literal types.
2421 if (Info.getLangOpts().CPlusPlus11)
2422 Info.FFDiag(E, diag::note_constexpr_nonliteral)
2423 << E->getType();
2424 else
2425 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2426 return false;
2427}
2428
2429static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2430 EvalInfo &Info, SourceLocation DiagLoc,
2431 QualType Type, const APValue &Value,
2432 ConstantExprKind Kind,
2433 const FieldDecl *SubobjectDecl,
2434 CheckedTemporaries &CheckedTemps) {
2435 if (!Value.hasValue()) {
2436 if (SubobjectDecl) {
2437 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2438 << /*(name)*/ 1 << SubobjectDecl;
2439 Info.Note(SubobjectDecl->getLocation(),
2440 diag::note_constexpr_subobject_declared_here);
2441 } else {
2442 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2443 << /*of type*/ 0 << Type;
2444 }
2445 return false;
2446 }
2447
2448 // We allow _Atomic(T) to be initialized from anything that T can be
2449 // initialized from.
2450 if (const AtomicType *AT = Type->getAs<AtomicType>())
2451 Type = AT->getValueType();
2452
2453 // Core issue 1454: For a literal constant expression of array or class type,
2454 // each subobject of its value shall have been initialized by a constant
2455 // expression.
2456 if (Value.isArray()) {
2457 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2458 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2459 if (!CheckEvaluationResult(CERK, Info, DiagLoc, Type: EltTy,
2460 Value: Value.getArrayInitializedElt(I), Kind,
2461 SubobjectDecl, CheckedTemps))
2462 return false;
2463 }
2464 if (!Value.hasArrayFiller())
2465 return true;
2466 return CheckEvaluationResult(CERK, Info, DiagLoc, Type: EltTy,
2467 Value: Value.getArrayFiller(), Kind, SubobjectDecl,
2468 CheckedTemps);
2469 }
2470 if (Value.isUnion() && Value.getUnionField()) {
2471 return CheckEvaluationResult(
2472 CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2473 Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps);
2474 }
2475 if (Value.isStruct()) {
2476 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2477 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD)) {
2478 unsigned BaseIndex = 0;
2479 for (const CXXBaseSpecifier &BS : CD->bases()) {
2480 const APValue &BaseValue = Value.getStructBase(i: BaseIndex);
2481 if (!BaseValue.hasValue()) {
2482 SourceLocation TypeBeginLoc = BS.getBaseTypeLoc();
2483 Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base)
2484 << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc());
2485 return false;
2486 }
2487 if (!CheckEvaluationResult(CERK, Info, DiagLoc, Type: BS.getType(), Value: BaseValue,
2488 Kind, /*SubobjectDecl=*/nullptr,
2489 CheckedTemps))
2490 return false;
2491 ++BaseIndex;
2492 }
2493 }
2494 for (const auto *I : RD->fields()) {
2495 if (I->isUnnamedBitField())
2496 continue;
2497
2498 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2499 Value.getStructField(i: I->getFieldIndex()), Kind,
2500 I, CheckedTemps))
2501 return false;
2502 }
2503 }
2504
2505 if (Value.isLValue() &&
2506 CERK == CheckEvaluationResultKind::ConstantExpression) {
2507 LValue LVal;
2508 LVal.setFrom(Ctx&: Info.Ctx, V: Value);
2509 return CheckLValueConstantExpression(Info, Loc: DiagLoc, Type, LVal, Kind,
2510 CheckedTemps);
2511 }
2512
2513 if (Value.isMemberPointer() &&
2514 CERK == CheckEvaluationResultKind::ConstantExpression)
2515 return CheckMemberPointerConstantExpression(Info, Loc: DiagLoc, Type, Value, Kind);
2516
2517 // Everything else is fine.
2518 return true;
2519}
2520
2521/// Check that this core constant expression value is a valid value for a
2522/// constant expression. If not, report an appropriate diagnostic. Does not
2523/// check that the expression is of literal type.
2524static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2525 QualType Type, const APValue &Value,
2526 ConstantExprKind Kind) {
2527 // Nothing to check for a constant expression of type 'cv void'.
2528 if (Type->isVoidType())
2529 return true;
2530
2531 CheckedTemporaries CheckedTemps;
2532 return CheckEvaluationResult(CERK: CheckEvaluationResultKind::ConstantExpression,
2533 Info, DiagLoc, Type, Value, Kind,
2534 /*SubobjectDecl=*/nullptr, CheckedTemps);
2535}
2536
2537/// Check that this evaluated value is fully-initialized and can be loaded by
2538/// an lvalue-to-rvalue conversion.
2539static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2540 QualType Type, const APValue &Value) {
2541 CheckedTemporaries CheckedTemps;
2542 return CheckEvaluationResult(
2543 CERK: CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2544 Kind: ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps);
2545}
2546
2547/// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2548/// "the allocated storage is deallocated within the evaluation".
2549static bool CheckMemoryLeaks(EvalInfo &Info) {
2550 if (!Info.HeapAllocs.empty()) {
2551 // We can still fold to a constant despite a compile-time memory leak,
2552 // so long as the heap allocation isn't referenced in the result (we check
2553 // that in CheckConstantExpression).
2554 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2555 diag::note_constexpr_memory_leak)
2556 << unsigned(Info.HeapAllocs.size() - 1);
2557 }
2558 return true;
2559}
2560
2561static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2562 // A null base expression indicates a null pointer. These are always
2563 // evaluatable, and they are false unless the offset is zero.
2564 if (!Value.getLValueBase()) {
2565 // TODO: Should a non-null pointer with an offset of zero evaluate to true?
2566 Result = !Value.getLValueOffset().isZero();
2567 return true;
2568 }
2569
2570 // We have a non-null base. These are generally known to be true, but if it's
2571 // a weak declaration it can be null at runtime.
2572 Result = true;
2573 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2574 return !Decl || !Decl->isWeak();
2575}
2576
2577static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2578 // TODO: This function should produce notes if it fails.
2579 switch (Val.getKind()) {
2580 case APValue::None:
2581 case APValue::Indeterminate:
2582 return false;
2583 case APValue::Int:
2584 Result = Val.getInt().getBoolValue();
2585 return true;
2586 case APValue::FixedPoint:
2587 Result = Val.getFixedPoint().getBoolValue();
2588 return true;
2589 case APValue::Float:
2590 Result = !Val.getFloat().isZero();
2591 return true;
2592 case APValue::ComplexInt:
2593 Result = Val.getComplexIntReal().getBoolValue() ||
2594 Val.getComplexIntImag().getBoolValue();
2595 return true;
2596 case APValue::ComplexFloat:
2597 Result = !Val.getComplexFloatReal().isZero() ||
2598 !Val.getComplexFloatImag().isZero();
2599 return true;
2600 case APValue::LValue:
2601 return EvalPointerValueAsBool(Value: Val, Result);
2602 case APValue::MemberPointer:
2603 if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) {
2604 return false;
2605 }
2606 Result = Val.getMemberPointerDecl();
2607 return true;
2608 case APValue::Vector:
2609 case APValue::Array:
2610 case APValue::Struct:
2611 case APValue::Union:
2612 case APValue::AddrLabelDiff:
2613 return false;
2614 }
2615
2616 llvm_unreachable("unknown APValue kind");
2617}
2618
2619static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2620 EvalInfo &Info) {
2621 assert(!E->isValueDependent());
2622 assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2623 APValue Val;
2624 if (!Evaluate(Result&: Val, Info, E))
2625 return false;
2626 return HandleConversionToBool(Val, Result);
2627}
2628
2629template<typename T>
2630static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2631 const T &SrcValue, QualType DestType) {
2632 Info.CCEDiag(E, diag::note_constexpr_overflow)
2633 << SrcValue << DestType;
2634 return Info.noteUndefinedBehavior();
2635}
2636
2637static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2638 QualType SrcType, const APFloat &Value,
2639 QualType DestType, APSInt &Result) {
2640 unsigned DestWidth = Info.Ctx.getIntWidth(T: DestType);
2641 // Determine whether we are converting to unsigned or signed.
2642 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2643
2644 Result = APSInt(DestWidth, !DestSigned);
2645 bool ignored;
2646 if (Value.convertToInteger(Result, RM: llvm::APFloat::rmTowardZero, IsExact: &ignored)
2647 & APFloat::opInvalidOp)
2648 return HandleOverflow(Info, E, SrcValue: Value, DestType);
2649 return true;
2650}
2651
2652/// Get rounding mode to use in evaluation of the specified expression.
2653///
2654/// If rounding mode is unknown at compile time, still try to evaluate the
2655/// expression. If the result is exact, it does not depend on rounding mode.
2656/// So return "tonearest" mode instead of "dynamic".
2657static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) {
2658 llvm::RoundingMode RM =
2659 E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts()).getRoundingMode();
2660 if (RM == llvm::RoundingMode::Dynamic)
2661 RM = llvm::RoundingMode::NearestTiesToEven;
2662 return RM;
2663}
2664
2665/// Check if the given evaluation result is allowed for constant evaluation.
2666static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2667 APFloat::opStatus St) {
2668 // In a constant context, assume that any dynamic rounding mode or FP
2669 // exception state matches the default floating-point environment.
2670 if (Info.InConstantContext)
2671 return true;
2672
2673 FPOptions FPO = E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts());
2674 if ((St & APFloat::opInexact) &&
2675 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2676 // Inexact result means that it depends on rounding mode. If the requested
2677 // mode is dynamic, the evaluation cannot be made in compile time.
2678 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2679 return false;
2680 }
2681
2682 if ((St != APFloat::opOK) &&
2683 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2684 FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
2685 FPO.getAllowFEnvAccess())) {
2686 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2687 return false;
2688 }
2689
2690 if ((St & APFloat::opStatus::opInvalidOp) &&
2691 FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
2692 // There is no usefully definable result.
2693 Info.FFDiag(E);
2694 return false;
2695 }
2696
2697 // FIXME: if:
2698 // - evaluation triggered other FP exception, and
2699 // - exception mode is not "ignore", and
2700 // - the expression being evaluated is not a part of global variable
2701 // initializer,
2702 // the evaluation probably need to be rejected.
2703 return true;
2704}
2705
2706static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2707 QualType SrcType, QualType DestType,
2708 APFloat &Result) {
2709 assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2710 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2711 APFloat::opStatus St;
2712 APFloat Value = Result;
2713 bool ignored;
2714 St = Result.convert(ToSemantics: Info.Ctx.getFloatTypeSemantics(T: DestType), RM, losesInfo: &ignored);
2715 return checkFloatingPointResult(Info, E, St);
2716}
2717
2718static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2719 QualType DestType, QualType SrcType,
2720 const APSInt &Value) {
2721 unsigned DestWidth = Info.Ctx.getIntWidth(T: DestType);
2722 // Figure out if this is a truncate, extend or noop cast.
2723 // If the input is signed, do a sign extend, noop, or truncate.
2724 APSInt Result = Value.extOrTrunc(width: DestWidth);
2725 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2726 if (DestType->isBooleanType())
2727 Result = Value.getBoolValue();
2728 return Result;
2729}
2730
2731static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2732 const FPOptions FPO,
2733 QualType SrcType, const APSInt &Value,
2734 QualType DestType, APFloat &Result) {
2735 Result = APFloat(Info.Ctx.getFloatTypeSemantics(T: DestType), 1);
2736 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2737 APFloat::opStatus St = Result.convertFromAPInt(Input: Value, IsSigned: Value.isSigned(), RM);
2738 return checkFloatingPointResult(Info, E, St);
2739}
2740
2741static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2742 APValue &Value, const FieldDecl *FD) {
2743 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2744
2745 if (!Value.isInt()) {
2746 // Trying to store a pointer-cast-to-integer into a bitfield.
2747 // FIXME: In this case, we should provide the diagnostic for casting
2748 // a pointer to an integer.
2749 assert(Value.isLValue() && "integral value neither int nor lvalue?");
2750 Info.FFDiag(E);
2751 return false;
2752 }
2753
2754 APSInt &Int = Value.getInt();
2755 unsigned OldBitWidth = Int.getBitWidth();
2756 unsigned NewBitWidth = FD->getBitWidthValue(Ctx: Info.Ctx);
2757 if (NewBitWidth < OldBitWidth)
2758 Int = Int.trunc(width: NewBitWidth).extend(width: OldBitWidth);
2759 return true;
2760}
2761
2762/// Perform the given integer operation, which is known to need at most BitWidth
2763/// bits, and check for overflow in the original type (if that type was not an
2764/// unsigned type).
2765template<typename Operation>
2766static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2767 const APSInt &LHS, const APSInt &RHS,
2768 unsigned BitWidth, Operation Op,
2769 APSInt &Result) {
2770 if (LHS.isUnsigned()) {
2771 Result = Op(LHS, RHS);
2772 return true;
2773 }
2774
2775 APSInt Value(Op(LHS.extend(width: BitWidth), RHS.extend(width: BitWidth)), false);
2776 Result = Value.trunc(width: LHS.getBitWidth());
2777 if (Result.extend(width: BitWidth) != Value) {
2778 if (Info.checkingForUndefinedBehavior())
2779 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2780 diag::warn_integer_constant_overflow)
2781 << toString(Result, 10, Result.isSigned(), /*formatAsCLiteral=*/false,
2782 /*UpperCase=*/true, /*InsertSeparators=*/true)
2783 << E->getType() << E->getSourceRange();
2784 return HandleOverflow(Info, E, SrcValue: Value, DestType: E->getType());
2785 }
2786 return true;
2787}
2788
2789/// Perform the given binary integer operation.
2790static bool handleIntIntBinOp(EvalInfo &Info, const BinaryOperator *E,
2791 const APSInt &LHS, BinaryOperatorKind Opcode,
2792 APSInt RHS, APSInt &Result) {
2793 bool HandleOverflowResult = true;
2794 switch (Opcode) {
2795 default:
2796 Info.FFDiag(E);
2797 return false;
2798 case BO_Mul:
2799 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2800 std::multiplies<APSInt>(), Result);
2801 case BO_Add:
2802 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2803 std::plus<APSInt>(), Result);
2804 case BO_Sub:
2805 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2806 std::minus<APSInt>(), Result);
2807 case BO_And: Result = LHS & RHS; return true;
2808 case BO_Xor: Result = LHS ^ RHS; return true;
2809 case BO_Or: Result = LHS | RHS; return true;
2810 case BO_Div:
2811 case BO_Rem:
2812 if (RHS == 0) {
2813 Info.FFDiag(E, diag::note_expr_divide_by_zero)
2814 << E->getRHS()->getSourceRange();
2815 return false;
2816 }
2817 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2818 // this operation and gives the two's complement result.
2819 if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2820 LHS.isMinSignedValue())
2821 HandleOverflowResult = HandleOverflow(
2822 Info, E, -LHS.extend(width: LHS.getBitWidth() + 1), E->getType());
2823 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2824 return HandleOverflowResult;
2825 case BO_Shl: {
2826 if (Info.getLangOpts().OpenCL)
2827 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2828 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2829 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2830 RHS.isUnsigned());
2831 else if (RHS.isSigned() && RHS.isNegative()) {
2832 // During constant-folding, a negative shift is an opposite shift. Such
2833 // a shift is not a constant expression.
2834 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2835 RHS = -RHS;
2836 goto shift_right;
2837 }
2838 shift_left:
2839 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2840 // the shifted type.
2841 unsigned SA = (unsigned) RHS.getLimitedValue(Limit: LHS.getBitWidth()-1);
2842 if (SA != RHS) {
2843 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2844 << RHS << E->getType() << LHS.getBitWidth();
2845 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2846 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2847 // operand, and must not overflow the corresponding unsigned type.
2848 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2849 // E1 x 2^E2 module 2^N.
2850 if (LHS.isNegative())
2851 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2852 else if (LHS.countl_zero() < SA)
2853 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2854 }
2855 Result = LHS << SA;
2856 return true;
2857 }
2858 case BO_Shr: {
2859 if (Info.getLangOpts().OpenCL)
2860 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2861 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2862 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2863 RHS.isUnsigned());
2864 else if (RHS.isSigned() && RHS.isNegative()) {
2865 // During constant-folding, a negative shift is an opposite shift. Such a
2866 // shift is not a constant expression.
2867 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2868 RHS = -RHS;
2869 goto shift_left;
2870 }
2871 shift_right:
2872 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2873 // shifted type.
2874 unsigned SA = (unsigned) RHS.getLimitedValue(Limit: LHS.getBitWidth()-1);
2875 if (SA != RHS)
2876 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2877 << RHS << E->getType() << LHS.getBitWidth();
2878 Result = LHS >> SA;
2879 return true;
2880 }
2881
2882 case BO_LT: Result = LHS < RHS; return true;
2883 case BO_GT: Result = LHS > RHS; return true;
2884 case BO_LE: Result = LHS <= RHS; return true;
2885 case BO_GE: Result = LHS >= RHS; return true;
2886 case BO_EQ: Result = LHS == RHS; return true;
2887 case BO_NE: Result = LHS != RHS; return true;
2888 case BO_Cmp:
2889 llvm_unreachable("BO_Cmp should be handled elsewhere");
2890 }
2891}
2892
2893/// Perform the given binary floating-point operation, in-place, on LHS.
2894static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2895 APFloat &LHS, BinaryOperatorKind Opcode,
2896 const APFloat &RHS) {
2897 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2898 APFloat::opStatus St;
2899 switch (Opcode) {
2900 default:
2901 Info.FFDiag(E);
2902 return false;
2903 case BO_Mul:
2904 St = LHS.multiply(RHS, RM);
2905 break;
2906 case BO_Add:
2907 St = LHS.add(RHS, RM);
2908 break;
2909 case BO_Sub:
2910 St = LHS.subtract(RHS, RM);
2911 break;
2912 case BO_Div:
2913 // [expr.mul]p4:
2914 // If the second operand of / or % is zero the behavior is undefined.
2915 if (RHS.isZero())
2916 Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2917 St = LHS.divide(RHS, RM);
2918 break;
2919 }
2920
2921 // [expr.pre]p4:
2922 // If during the evaluation of an expression, the result is not
2923 // mathematically defined [...], the behavior is undefined.
2924 // FIXME: C++ rules require us to not conform to IEEE 754 here.
2925 if (LHS.isNaN()) {
2926 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2927 return Info.noteUndefinedBehavior();
2928 }
2929
2930 return checkFloatingPointResult(Info, E, St);
2931}
2932
2933static bool handleLogicalOpForVector(const APInt &LHSValue,
2934 BinaryOperatorKind Opcode,
2935 const APInt &RHSValue, APInt &Result) {
2936 bool LHS = (LHSValue != 0);
2937 bool RHS = (RHSValue != 0);
2938
2939 if (Opcode == BO_LAnd)
2940 Result = LHS && RHS;
2941 else
2942 Result = LHS || RHS;
2943 return true;
2944}
2945static bool handleLogicalOpForVector(const APFloat &LHSValue,
2946 BinaryOperatorKind Opcode,
2947 const APFloat &RHSValue, APInt &Result) {
2948 bool LHS = !LHSValue.isZero();
2949 bool RHS = !RHSValue.isZero();
2950
2951 if (Opcode == BO_LAnd)
2952 Result = LHS && RHS;
2953 else
2954 Result = LHS || RHS;
2955 return true;
2956}
2957
2958static bool handleLogicalOpForVector(const APValue &LHSValue,
2959 BinaryOperatorKind Opcode,
2960 const APValue &RHSValue, APInt &Result) {
2961 // The result is always an int type, however operands match the first.
2962 if (LHSValue.getKind() == APValue::Int)
2963 return handleLogicalOpForVector(LHSValue: LHSValue.getInt(), Opcode,
2964 RHSValue: RHSValue.getInt(), Result);
2965 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2966 return handleLogicalOpForVector(LHSValue: LHSValue.getFloat(), Opcode,
2967 RHSValue: RHSValue.getFloat(), Result);
2968}
2969
2970template <typename APTy>
2971static bool
2972handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2973 const APTy &RHSValue, APInt &Result) {
2974 switch (Opcode) {
2975 default:
2976 llvm_unreachable("unsupported binary operator");
2977 case BO_EQ:
2978 Result = (LHSValue == RHSValue);
2979 break;
2980 case BO_NE:
2981 Result = (LHSValue != RHSValue);
2982 break;
2983 case BO_LT:
2984 Result = (LHSValue < RHSValue);
2985 break;
2986 case BO_GT:
2987 Result = (LHSValue > RHSValue);
2988 break;
2989 case BO_LE:
2990 Result = (LHSValue <= RHSValue);
2991 break;
2992 case BO_GE:
2993 Result = (LHSValue >= RHSValue);
2994 break;
2995 }
2996
2997 // The boolean operations on these vector types use an instruction that
2998 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1
2999 // to -1 to make sure that we produce the correct value.
3000 Result.negate();
3001
3002 return true;
3003}
3004
3005static bool handleCompareOpForVector(const APValue &LHSValue,
3006 BinaryOperatorKind Opcode,
3007 const APValue &RHSValue, APInt &Result) {
3008 // The result is always an int type, however operands match the first.
3009 if (LHSValue.getKind() == APValue::Int)
3010 return handleCompareOpForVectorHelper(LHSValue: LHSValue.getInt(), Opcode,
3011 RHSValue: RHSValue.getInt(), Result);
3012 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
3013 return handleCompareOpForVectorHelper(LHSValue: LHSValue.getFloat(), Opcode,
3014 RHSValue: RHSValue.getFloat(), Result);
3015}
3016
3017// Perform binary operations for vector types, in place on the LHS.
3018static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
3019 BinaryOperatorKind Opcode,
3020 APValue &LHSValue,
3021 const APValue &RHSValue) {
3022 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
3023 "Operation not supported on vector types");
3024
3025 const auto *VT = E->getType()->castAs<VectorType>();
3026 unsigned NumElements = VT->getNumElements();
3027 QualType EltTy = VT->getElementType();
3028
3029 // In the cases (typically C as I've observed) where we aren't evaluating
3030 // constexpr but are checking for cases where the LHS isn't yet evaluatable,
3031 // just give up.
3032 if (!LHSValue.isVector()) {
3033 assert(LHSValue.isLValue() &&
3034 "A vector result that isn't a vector OR uncalculated LValue");
3035 Info.FFDiag(E);
3036 return false;
3037 }
3038
3039 assert(LHSValue.getVectorLength() == NumElements &&
3040 RHSValue.getVectorLength() == NumElements && "Different vector sizes");
3041
3042 SmallVector<APValue, 4> ResultElements;
3043
3044 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
3045 APValue LHSElt = LHSValue.getVectorElt(I: EltNum);
3046 APValue RHSElt = RHSValue.getVectorElt(I: EltNum);
3047
3048 if (EltTy->isIntegerType()) {
3049 APSInt EltResult{Info.Ctx.getIntWidth(T: EltTy),
3050 EltTy->isUnsignedIntegerType()};
3051 bool Success = true;
3052
3053 if (BinaryOperator::isLogicalOp(Opc: Opcode))
3054 Success = handleLogicalOpForVector(LHSValue: LHSElt, Opcode, RHSValue: RHSElt, Result&: EltResult);
3055 else if (BinaryOperator::isComparisonOp(Opc: Opcode))
3056 Success = handleCompareOpForVector(LHSValue: LHSElt, Opcode, RHSValue: RHSElt, Result&: EltResult);
3057 else
3058 Success = handleIntIntBinOp(Info, E, LHS: LHSElt.getInt(), Opcode,
3059 RHS: RHSElt.getInt(), Result&: EltResult);
3060
3061 if (!Success) {
3062 Info.FFDiag(E);
3063 return false;
3064 }
3065 ResultElements.emplace_back(Args&: EltResult);
3066
3067 } else if (EltTy->isFloatingType()) {
3068 assert(LHSElt.getKind() == APValue::Float &&
3069 RHSElt.getKind() == APValue::Float &&
3070 "Mismatched LHS/RHS/Result Type");
3071 APFloat LHSFloat = LHSElt.getFloat();
3072
3073 if (!handleFloatFloatBinOp(Info, E, LHS&: LHSFloat, Opcode,
3074 RHS: RHSElt.getFloat())) {
3075 Info.FFDiag(E);
3076 return false;
3077 }
3078
3079 ResultElements.emplace_back(Args&: LHSFloat);
3080 }
3081 }
3082
3083 LHSValue = APValue(ResultElements.data(), ResultElements.size());
3084 return true;
3085}
3086
3087/// Cast an lvalue referring to a base subobject to a derived class, by
3088/// truncating the lvalue's path to the given length.
3089static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3090 const RecordDecl *TruncatedType,
3091 unsigned TruncatedElements) {
3092 SubobjectDesignator &D = Result.Designator;
3093
3094 // Check we actually point to a derived class object.
3095 if (TruncatedElements == D.Entries.size())
3096 return true;
3097 assert(TruncatedElements >= D.MostDerivedPathLength &&
3098 "not casting to a derived class");
3099 if (!Result.checkSubobject(Info, E, CSK: CSK_Derived))
3100 return false;
3101
3102 // Truncate the path to the subobject, and remove any derived-to-base offsets.
3103 const RecordDecl *RD = TruncatedType;
3104 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3105 if (RD->isInvalidDecl()) return false;
3106 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
3107 const CXXRecordDecl *Base = getAsBaseClass(E: D.Entries[I]);
3108 if (isVirtualBaseClass(E: D.Entries[I]))
3109 Result.Offset -= Layout.getVBaseClassOffset(VBase: Base);
3110 else
3111 Result.Offset -= Layout.getBaseClassOffset(Base);
3112 RD = Base;
3113 }
3114 D.Entries.resize(N: TruncatedElements);
3115 return true;
3116}
3117
3118static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3119 const CXXRecordDecl *Derived,
3120 const CXXRecordDecl *Base,
3121 const ASTRecordLayout *RL = nullptr) {
3122 if (!RL) {
3123 if (Derived->isInvalidDecl()) return false;
3124 RL = &Info.Ctx.getASTRecordLayout(Derived);
3125 }
3126
3127 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3128 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3129 return true;
3130}
3131
3132static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3133 const CXXRecordDecl *DerivedDecl,
3134 const CXXBaseSpecifier *Base) {
3135 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3136
3137 if (!Base->isVirtual())
3138 return HandleLValueDirectBase(Info, E, Obj, Derived: DerivedDecl, Base: BaseDecl);
3139
3140 SubobjectDesignator &D = Obj.Designator;
3141 if (D.Invalid)
3142 return false;
3143
3144 // Extract most-derived object and corresponding type.
3145 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3146 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3147 return false;
3148
3149 // Find the virtual base class.
3150 if (DerivedDecl->isInvalidDecl()) return false;
3151 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3152 Obj.getLValueOffset() += Layout.getVBaseClassOffset(VBase: BaseDecl);
3153 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3154 return true;
3155}
3156
3157static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3158 QualType Type, LValue &Result) {
3159 for (CastExpr::path_const_iterator PathI = E->path_begin(),
3160 PathE = E->path_end();
3161 PathI != PathE; ++PathI) {
3162 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3163 *PathI))
3164 return false;
3165 Type = (*PathI)->getType();
3166 }
3167 return true;
3168}
3169
3170/// Cast an lvalue referring to a derived class to a known base subobject.
3171static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3172 const CXXRecordDecl *DerivedRD,
3173 const CXXRecordDecl *BaseRD) {
3174 CXXBasePaths Paths(/*FindAmbiguities=*/false,
3175 /*RecordPaths=*/true, /*DetectVirtual=*/false);
3176 if (!DerivedRD->isDerivedFrom(Base: BaseRD, Paths))
3177 llvm_unreachable("Class must be derived from the passed in base class!");
3178
3179 for (CXXBasePathElement &Elem : Paths.front())
3180 if (!HandleLValueBase(Info, E, Obj&: Result, DerivedDecl: Elem.Class, Base: Elem.Base))
3181 return false;
3182 return true;
3183}
3184
3185/// Update LVal to refer to the given field, which must be a member of the type
3186/// currently described by LVal.
3187static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3188 const FieldDecl *FD,
3189 const ASTRecordLayout *RL = nullptr) {
3190 if (!RL) {
3191 if (FD->getParent()->isInvalidDecl()) return false;
3192 RL = &Info.Ctx.getASTRecordLayout(D: FD->getParent());
3193 }
3194
3195 unsigned I = FD->getFieldIndex();
3196 LVal.adjustOffset(N: Info.Ctx.toCharUnitsFromBits(BitSize: RL->getFieldOffset(FieldNo: I)));
3197 LVal.addDecl(Info, E, FD);
3198 return true;
3199}
3200
3201/// Update LVal to refer to the given indirect field.
3202static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3203 LValue &LVal,
3204 const IndirectFieldDecl *IFD) {
3205 for (const auto *C : IFD->chain())
3206 if (!HandleLValueMember(Info, E, LVal, FD: cast<FieldDecl>(Val: C)))
3207 return false;
3208 return true;
3209}
3210
3211enum class SizeOfType {
3212 SizeOf,
3213 DataSizeOf,
3214};
3215
3216/// Get the size of the given type in char units.
3217static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, QualType Type,
3218 CharUnits &Size, SizeOfType SOT = SizeOfType::SizeOf) {
3219 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3220 // extension.
3221 if (Type->isVoidType() || Type->isFunctionType()) {
3222 Size = CharUnits::One();
3223 return true;
3224 }
3225
3226 if (Type->isDependentType()) {
3227 Info.FFDiag(Loc);
3228 return false;
3229 }
3230
3231 if (!Type->isConstantSizeType()) {
3232 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3233 // FIXME: Better diagnostic.
3234 Info.FFDiag(Loc);
3235 return false;
3236 }
3237
3238 if (SOT == SizeOfType::SizeOf)
3239 Size = Info.Ctx.getTypeSizeInChars(T: Type);
3240 else
3241 Size = Info.Ctx.getTypeInfoDataSizeInChars(T: Type).Width;
3242 return true;
3243}
3244
3245/// Update a pointer value to model pointer arithmetic.
3246/// \param Info - Information about the ongoing evaluation.
3247/// \param E - The expression being evaluated, for diagnostic purposes.
3248/// \param LVal - The pointer value to be updated.
3249/// \param EltTy - The pointee type represented by LVal.
3250/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3251static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3252 LValue &LVal, QualType EltTy,
3253 APSInt Adjustment) {
3254 CharUnits SizeOfPointee;
3255 if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: EltTy, Size&: SizeOfPointee))
3256 return false;
3257
3258 LVal.adjustOffsetAndIndex(Info, E, Index: Adjustment, ElementSize: SizeOfPointee);
3259 return true;
3260}
3261
3262static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3263 LValue &LVal, QualType EltTy,
3264 int64_t Adjustment) {
3265 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3266 Adjustment: APSInt::get(X: Adjustment));
3267}
3268
3269/// Update an lvalue to refer to a component of a complex number.
3270/// \param Info - Information about the ongoing evaluation.
3271/// \param LVal - The lvalue to be updated.
3272/// \param EltTy - The complex number's component type.
3273/// \param Imag - False for the real component, true for the imaginary.
3274static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3275 LValue &LVal, QualType EltTy,
3276 bool Imag) {
3277 if (Imag) {
3278 CharUnits SizeOfComponent;
3279 if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: EltTy, Size&: SizeOfComponent))
3280 return false;
3281 LVal.Offset += SizeOfComponent;
3282 }
3283 LVal.addComplex(Info, E, EltTy, Imag);
3284 return true;
3285}
3286
3287/// Try to evaluate the initializer for a variable declaration.
3288///
3289/// \param Info Information about the ongoing evaluation.
3290/// \param E An expression to be used when printing diagnostics.
3291/// \param VD The variable whose initializer should be obtained.
3292/// \param Version The version of the variable within the frame.
3293/// \param Frame The frame in which the variable was created. Must be null
3294/// if this variable is not local to the evaluation.
3295/// \param Result Filled in with a pointer to the value of the variable.
3296static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3297 const VarDecl *VD, CallStackFrame *Frame,
3298 unsigned Version, APValue *&Result) {
3299 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3300
3301 // If this is a local variable, dig out its value.
3302 if (Frame) {
3303 Result = Frame->getTemporary(Key: VD, Version);
3304 if (Result)
3305 return true;
3306
3307 if (!isa<ParmVarDecl>(Val: VD)) {
3308 // Assume variables referenced within a lambda's call operator that were
3309 // not declared within the call operator are captures and during checking
3310 // of a potential constant expression, assume they are unknown constant
3311 // expressions.
3312 assert(isLambdaCallOperator(Frame->Callee) &&
3313 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3314 "missing value for local variable");
3315 if (Info.checkingPotentialConstantExpression())
3316 return false;
3317 // FIXME: This diagnostic is bogus; we do support captures. Is this code
3318 // still reachable at all?
3319 Info.FFDiag(E->getBeginLoc(),
3320 diag::note_unimplemented_constexpr_lambda_feature_ast)
3321 << "captures not currently allowed";
3322 return false;
3323 }
3324 }
3325
3326 // If we're currently evaluating the initializer of this declaration, use that
3327 // in-flight value.
3328 if (Info.EvaluatingDecl == Base) {
3329 Result = Info.EvaluatingDeclValue;
3330 return true;
3331 }
3332
3333 if (isa<ParmVarDecl>(Val: VD)) {
3334 // Assume parameters of a potential constant expression are usable in
3335 // constant expressions.
3336 if (!Info.checkingPotentialConstantExpression() ||
3337 !Info.CurrentCall->Callee ||
3338 !Info.CurrentCall->Callee->Equals(DC: VD->getDeclContext())) {
3339 if (Info.getLangOpts().CPlusPlus11) {
3340 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3341 << VD;
3342 NoteLValueLocation(Info, Base);
3343 } else {
3344 Info.FFDiag(E);
3345 }
3346 }
3347 return false;
3348 }
3349
3350 if (E->isValueDependent())
3351 return false;
3352
3353 // Dig out the initializer, and use the declaration which it's attached to.
3354 // FIXME: We should eventually check whether the variable has a reachable
3355 // initializing declaration.
3356 const Expr *Init = VD->getAnyInitializer(D&: VD);
3357 if (!Init) {
3358 // Don't diagnose during potential constant expression checking; an
3359 // initializer might be added later.
3360 if (!Info.checkingPotentialConstantExpression()) {
3361 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3362 << VD;
3363 NoteLValueLocation(Info, Base);
3364 }
3365 return false;
3366 }
3367
3368 if (Init->isValueDependent()) {
3369 // The DeclRefExpr is not value-dependent, but the variable it refers to
3370 // has a value-dependent initializer. This should only happen in
3371 // constant-folding cases, where the variable is not actually of a suitable
3372 // type for use in a constant expression (otherwise the DeclRefExpr would
3373 // have been value-dependent too), so diagnose that.
3374 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3375 if (!Info.checkingPotentialConstantExpression()) {
3376 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3377 ? diag::note_constexpr_ltor_non_constexpr
3378 : diag::note_constexpr_ltor_non_integral, 1)
3379 << VD << VD->getType();
3380 NoteLValueLocation(Info, Base);
3381 }
3382 return false;
3383 }
3384
3385 // Check that we can fold the initializer. In C++, we will have already done
3386 // this in the cases where it matters for conformance.
3387 if (!VD->evaluateValue()) {
3388 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3389 NoteLValueLocation(Info, Base);
3390 return false;
3391 }
3392
3393 // Check that the variable is actually usable in constant expressions. For a
3394 // const integral variable or a reference, we might have a non-constant
3395 // initializer that we can nonetheless evaluate the initializer for. Such
3396 // variables are not usable in constant expressions. In C++98, the
3397 // initializer also syntactically needs to be an ICE.
3398 //
3399 // FIXME: We don't diagnose cases that aren't potentially usable in constant
3400 // expressions here; doing so would regress diagnostics for things like
3401 // reading from a volatile constexpr variable.
3402 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3403 VD->mightBeUsableInConstantExpressions(C: Info.Ctx)) ||
3404 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3405 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Context: Info.Ctx))) {
3406 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3407 NoteLValueLocation(Info, Base);
3408 }
3409
3410 // Never use the initializer of a weak variable, not even for constant
3411 // folding. We can't be sure that this is the definition that will be used.
3412 if (VD->isWeak()) {
3413 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3414 NoteLValueLocation(Info, Base);
3415 return false;
3416 }
3417
3418 Result = VD->getEvaluatedValue();
3419 return true;
3420}
3421
3422/// Get the base index of the given base class within an APValue representing
3423/// the given derived class.
3424static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3425 const CXXRecordDecl *Base) {
3426 Base = Base->getCanonicalDecl();
3427 unsigned Index = 0;
3428 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3429 E = Derived->bases_end(); I != E; ++I, ++Index) {
3430 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3431 return Index;
3432 }
3433
3434 llvm_unreachable("base class missing from derived class's bases list");
3435}
3436
3437/// Extract the value of a character from a string literal.
3438static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3439 uint64_t Index) {
3440 assert(!isa<SourceLocExpr>(Lit) &&
3441 "SourceLocExpr should have already been converted to a StringLiteral");
3442
3443 // FIXME: Support MakeStringConstant
3444 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Val: Lit)) {
3445 std::string Str;
3446 Info.Ctx.getObjCEncodingForType(T: ObjCEnc->getEncodedType(), S&: Str);
3447 assert(Index <= Str.size() && "Index too large");
3448 return APSInt::getUnsigned(X: Str.c_str()[Index]);
3449 }
3450
3451 if (auto PE = dyn_cast<PredefinedExpr>(Val: Lit))
3452 Lit = PE->getFunctionName();
3453 const StringLiteral *S = cast<StringLiteral>(Val: Lit);
3454 const ConstantArrayType *CAT =
3455 Info.Ctx.getAsConstantArrayType(T: S->getType());
3456 assert(CAT && "string literal isn't an array");
3457 QualType CharType = CAT->getElementType();
3458 assert(CharType->isIntegerType() && "unexpected character type");
3459 APSInt Value(Info.Ctx.getTypeSize(T: CharType),
3460 CharType->isUnsignedIntegerType());
3461 if (Index < S->getLength())
3462 Value = S->getCodeUnit(i: Index);
3463 return Value;
3464}
3465
3466// Expand a string literal into an array of characters.
3467//
3468// FIXME: This is inefficient; we should probably introduce something similar
3469// to the LLVM ConstantDataArray to make this cheaper.
3470static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3471 APValue &Result,
3472 QualType AllocType = QualType()) {
3473 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3474 T: AllocType.isNull() ? S->getType() : AllocType);
3475 assert(CAT && "string literal isn't an array");
3476 QualType CharType = CAT->getElementType();
3477 assert(CharType->isIntegerType() && "unexpected character type");
3478
3479 unsigned Elts = CAT->getZExtSize();
3480 Result = APValue(APValue::UninitArray(),
3481 std::min(a: S->getLength(), b: Elts), Elts);
3482 APSInt Value(Info.Ctx.getTypeSize(T: CharType),
3483 CharType->isUnsignedIntegerType());
3484 if (Result.hasArrayFiller())
3485 Result.getArrayFiller() = APValue(Value);
3486 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3487 Value = S->getCodeUnit(i: I);
3488 Result.getArrayInitializedElt(I) = APValue(Value);
3489 }
3490}
3491
3492// Expand an array so that it has more than Index filled elements.
3493static void expandArray(APValue &Array, unsigned Index) {
3494 unsigned Size = Array.getArraySize();
3495 assert(Index < Size);
3496
3497 // Always at least double the number of elements for which we store a value.
3498 unsigned OldElts = Array.getArrayInitializedElts();
3499 unsigned NewElts = std::max(a: Index+1, b: OldElts * 2);
3500 NewElts = std::min(a: Size, b: std::max(a: NewElts, b: 8u));
3501
3502 // Copy the data across.
3503 APValue NewValue(APValue::UninitArray(), NewElts, Size);
3504 for (unsigned I = 0; I != OldElts; ++I)
3505 NewValue.getArrayInitializedElt(I).swap(RHS&: Array.getArrayInitializedElt(I));
3506 for (unsigned I = OldElts; I != NewElts; ++I)
3507 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3508 if (NewValue.hasArrayFiller())
3509 NewValue.getArrayFiller() = Array.getArrayFiller();
3510 Array.swap(RHS&: NewValue);
3511}
3512
3513/// Determine whether a type would actually be read by an lvalue-to-rvalue
3514/// conversion. If it's of class type, we may assume that the copy operation
3515/// is trivial. Note that this is never true for a union type with fields
3516/// (because the copy always "reads" the active member) and always true for
3517/// a non-class type.
3518static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3519static bool isReadByLvalueToRvalueConversion(QualType T) {
3520 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3521 return !RD || isReadByLvalueToRvalueConversion(RD);
3522}
3523static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3524 // FIXME: A trivial copy of a union copies the object representation, even if
3525 // the union is empty.
3526 if (RD->isUnion())
3527 return !RD->field_empty();
3528 if (RD->isEmpty())
3529 return false;
3530
3531 for (auto *Field : RD->fields())
3532 if (!Field->isUnnamedBitField() &&
3533 isReadByLvalueToRvalueConversion(Field->getType()))
3534 return true;
3535
3536 for (auto &BaseSpec : RD->bases())
3537 if (isReadByLvalueToRvalueConversion(T: BaseSpec.getType()))
3538 return true;
3539
3540 return false;
3541}
3542
3543/// Diagnose an attempt to read from any unreadable field within the specified
3544/// type, which might be a class type.
3545static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3546 QualType T) {
3547 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3548 if (!RD)
3549 return false;
3550
3551 if (!RD->hasMutableFields())
3552 return false;
3553
3554 for (auto *Field : RD->fields()) {
3555 // If we're actually going to read this field in some way, then it can't
3556 // be mutable. If we're in a union, then assigning to a mutable field
3557 // (even an empty one) can change the active member, so that's not OK.
3558 // FIXME: Add core issue number for the union case.
3559 if (Field->isMutable() &&
3560 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3561 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3562 Info.Note(Field->getLocation(), diag::note_declared_at);
3563 return true;
3564 }
3565
3566 if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3567 return true;
3568 }
3569
3570 for (auto &BaseSpec : RD->bases())
3571 if (diagnoseMutableFields(Info, E, AK, T: BaseSpec.getType()))
3572 return true;
3573
3574 // All mutable fields were empty, and thus not actually read.
3575 return false;
3576}
3577
3578static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3579 APValue::LValueBase Base,
3580 bool MutableSubobject = false) {
3581 // A temporary or transient heap allocation we created.
3582 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3583 return true;
3584
3585 switch (Info.IsEvaluatingDecl) {
3586 case EvalInfo::EvaluatingDeclKind::None:
3587 return false;
3588
3589 case EvalInfo::EvaluatingDeclKind::Ctor:
3590 // The variable whose initializer we're evaluating.
3591 if (Info.EvaluatingDecl == Base)
3592 return true;
3593
3594 // A temporary lifetime-extended by the variable whose initializer we're
3595 // evaluating.
3596 if (auto *BaseE = Base.dyn_cast<const Expr *>())
3597 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(Val: BaseE))
3598 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3599 return false;
3600
3601 case EvalInfo::EvaluatingDeclKind::Dtor:
3602 // C++2a [expr.const]p6:
3603 // [during constant destruction] the lifetime of a and its non-mutable
3604 // subobjects (but not its mutable subobjects) [are] considered to start
3605 // within e.
3606 if (MutableSubobject || Base != Info.EvaluatingDecl)
3607 return false;
3608 // FIXME: We can meaningfully extend this to cover non-const objects, but
3609 // we will need special handling: we should be able to access only
3610 // subobjects of such objects that are themselves declared const.
3611 QualType T = getType(B: Base);
3612 return T.isConstQualified() || T->isReferenceType();
3613 }
3614
3615 llvm_unreachable("unknown evaluating decl kind");
3616}
3617
3618static bool CheckArraySize(EvalInfo &Info, const ConstantArrayType *CAT,
3619 SourceLocation CallLoc = {}) {
3620 return Info.CheckArraySize(
3621 Loc: CAT->getSizeExpr() ? CAT->getSizeExpr()->getBeginLoc() : CallLoc,
3622 BitWidth: CAT->getNumAddressingBits(Context: Info.Ctx), ElemCount: CAT->getZExtSize(),
3623 /*Diag=*/true);
3624}
3625
3626namespace {
3627/// A handle to a complete object (an object that is not a subobject of
3628/// another object).
3629struct CompleteObject {
3630 /// The identity of the object.
3631 APValue::LValueBase Base;
3632 /// The value of the complete object.
3633 APValue *Value;
3634 /// The type of the complete object.
3635 QualType Type;
3636
3637 CompleteObject() : Value(nullptr) {}
3638 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3639 : Base(Base), Value(Value), Type(Type) {}
3640
3641 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3642 // If this isn't a "real" access (eg, if it's just accessing the type
3643 // info), allow it. We assume the type doesn't change dynamically for
3644 // subobjects of constexpr objects (even though we'd hit UB here if it
3645 // did). FIXME: Is this right?
3646 if (!isAnyAccess(AK))
3647 return true;
3648
3649 // In C++14 onwards, it is permitted to read a mutable member whose
3650 // lifetime began within the evaluation.
3651 // FIXME: Should we also allow this in C++11?
3652 if (!Info.getLangOpts().CPlusPlus14)
3653 return false;
3654 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3655 }
3656
3657 explicit operator bool() const { return !Type.isNull(); }
3658};
3659} // end anonymous namespace
3660
3661static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3662 bool IsMutable = false) {
3663 // C++ [basic.type.qualifier]p1:
3664 // - A const object is an object of type const T or a non-mutable subobject
3665 // of a const object.
3666 if (ObjType.isConstQualified() && !IsMutable)
3667 SubobjType.addConst();
3668 // - A volatile object is an object of type const T or a subobject of a
3669 // volatile object.
3670 if (ObjType.isVolatileQualified())
3671 SubobjType.addVolatile();
3672 return SubobjType;
3673}
3674
3675/// Find the designated sub-object of an rvalue.
3676template<typename SubobjectHandler>
3677typename SubobjectHandler::result_type
3678findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3679 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3680 if (Sub.Invalid)
3681 // A diagnostic will have already been produced.
3682 return handler.failed();
3683 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3684 if (Info.getLangOpts().CPlusPlus11)
3685 Info.FFDiag(E, Sub.isOnePastTheEnd()
3686 ? diag::note_constexpr_access_past_end
3687 : diag::note_constexpr_access_unsized_array)
3688 << handler.AccessKind;
3689 else
3690 Info.FFDiag(E);
3691 return handler.failed();
3692 }
3693
3694 APValue *O = Obj.Value;
3695 QualType ObjType = Obj.Type;
3696 const FieldDecl *LastField = nullptr;
3697 const FieldDecl *VolatileField = nullptr;
3698
3699 // Walk the designator's path to find the subobject.
3700 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3701 // Reading an indeterminate value is undefined, but assigning over one is OK.
3702 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3703 (O->isIndeterminate() &&
3704 !isValidIndeterminateAccess(handler.AccessKind))) {
3705 if (!Info.checkingPotentialConstantExpression())
3706 Info.FFDiag(E, diag::note_constexpr_access_uninit)
3707 << handler.AccessKind << O->isIndeterminate()
3708 << E->getSourceRange();
3709 return handler.failed();
3710 }
3711
3712 // C++ [class.ctor]p5, C++ [class.dtor]p5:
3713 // const and volatile semantics are not applied on an object under
3714 // {con,de}struction.
3715 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3716 ObjType->isRecordType() &&
3717 Info.isEvaluatingCtorDtor(
3718 Base: Obj.Base,
3719 Path: llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) !=
3720 ConstructionPhase::None) {
3721 ObjType = Info.Ctx.getCanonicalType(T: ObjType);
3722 ObjType.removeLocalConst();
3723 ObjType.removeLocalVolatile();
3724 }
3725
3726 // If this is our last pass, check that the final object type is OK.
3727 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3728 // Accesses to volatile objects are prohibited.
3729 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3730 if (Info.getLangOpts().CPlusPlus) {
3731 int DiagKind;
3732 SourceLocation Loc;
3733 const NamedDecl *Decl = nullptr;
3734 if (VolatileField) {
3735 DiagKind = 2;
3736 Loc = VolatileField->getLocation();
3737 Decl = VolatileField;
3738 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3739 DiagKind = 1;
3740 Loc = VD->getLocation();
3741 Decl = VD;
3742 } else {
3743 DiagKind = 0;
3744 if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3745 Loc = E->getExprLoc();
3746 }
3747 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3748 << handler.AccessKind << DiagKind << Decl;
3749 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3750 } else {
3751 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3752 }
3753 return handler.failed();
3754 }
3755
3756 // If we are reading an object of class type, there may still be more
3757 // things we need to check: if there are any mutable subobjects, we
3758 // cannot perform this read. (This only happens when performing a trivial
3759 // copy or assignment.)
3760 if (ObjType->isRecordType() &&
3761 !Obj.mayAccessMutableMembers(Info, AK: handler.AccessKind) &&
3762 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3763 return handler.failed();
3764 }
3765
3766 if (I == N) {
3767 if (!handler.found(*O, ObjType))
3768 return false;
3769
3770 // If we modified a bit-field, truncate it to the right width.
3771 if (isModification(handler.AccessKind) &&
3772 LastField && LastField->isBitField() &&
3773 !truncateBitfieldValue(Info, E, Value&: *O, FD: LastField))
3774 return false;
3775
3776 return true;
3777 }
3778
3779 LastField = nullptr;
3780 if (ObjType->isArrayType()) {
3781 // Next subobject is an array element.
3782 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T: ObjType);
3783 assert(CAT && "vla in literal type?");
3784 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3785 if (CAT->getSize().ule(RHS: Index)) {
3786 // Note, it should not be possible to form a pointer with a valid
3787 // designator which points more than one past the end of the array.
3788 if (Info.getLangOpts().CPlusPlus11)
3789 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3790 << handler.AccessKind;
3791 else
3792 Info.FFDiag(E);
3793 return handler.failed();
3794 }
3795
3796 ObjType = CAT->getElementType();
3797
3798 if (O->getArrayInitializedElts() > Index)
3799 O = &O->getArrayInitializedElt(I: Index);
3800 else if (!isRead(handler.AccessKind)) {
3801 if (!CheckArraySize(Info, CAT, CallLoc: E->getExprLoc()))
3802 return handler.failed();
3803
3804 expandArray(Array&: *O, Index);
3805 O = &O->getArrayInitializedElt(I: Index);
3806 } else
3807 O = &O->getArrayFiller();
3808 } else if (ObjType->isAnyComplexType()) {
3809 // Next subobject is a complex number.
3810 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3811 if (Index > 1) {
3812 if (Info.getLangOpts().CPlusPlus11)
3813 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3814 << handler.AccessKind;
3815 else
3816 Info.FFDiag(E);
3817 return handler.failed();
3818 }
3819
3820 ObjType = getSubobjectType(
3821 ObjType, SubobjType: ObjType->castAs<ComplexType>()->getElementType());
3822
3823 assert(I == N - 1 && "extracting subobject of scalar?");
3824 if (O->isComplexInt()) {
3825 return handler.found(Index ? O->getComplexIntImag()
3826 : O->getComplexIntReal(), ObjType);
3827 } else {
3828 assert(O->isComplexFloat());
3829 return handler.found(Index ? O->getComplexFloatImag()
3830 : O->getComplexFloatReal(), ObjType);
3831 }
3832 } else if (const FieldDecl *Field = getAsField(E: Sub.Entries[I])) {
3833 if (Field->isMutable() &&
3834 !Obj.mayAccessMutableMembers(Info, AK: handler.AccessKind)) {
3835 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3836 << handler.AccessKind << Field;
3837 Info.Note(Field->getLocation(), diag::note_declared_at);
3838 return handler.failed();
3839 }
3840
3841 // Next subobject is a class, struct or union field.
3842 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3843 if (RD->isUnion()) {
3844 const FieldDecl *UnionField = O->getUnionField();
3845 if (!UnionField ||
3846 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3847 if (I == N - 1 && handler.AccessKind == AK_Construct) {
3848 // Placement new onto an inactive union member makes it active.
3849 O->setUnion(Field, Value: APValue());
3850 } else {
3851 // FIXME: If O->getUnionValue() is absent, report that there's no
3852 // active union member rather than reporting the prior active union
3853 // member. We'll need to fix nullptr_t to not use APValue() as its
3854 // representation first.
3855 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3856 << handler.AccessKind << Field << !UnionField << UnionField;
3857 return handler.failed();
3858 }
3859 }
3860 O = &O->getUnionValue();
3861 } else
3862 O = &O->getStructField(i: Field->getFieldIndex());
3863
3864 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3865 LastField = Field;
3866 if (Field->getType().isVolatileQualified())
3867 VolatileField = Field;
3868 } else {
3869 // Next subobject is a base class.
3870 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3871 const CXXRecordDecl *Base = getAsBaseClass(E: Sub.Entries[I]);
3872 O = &O->getStructBase(i: getBaseIndex(Derived, Base));
3873
3874 ObjType = getSubobjectType(ObjType, SubobjType: Info.Ctx.getRecordType(Base));
3875 }
3876 }
3877}
3878
3879namespace {
3880struct ExtractSubobjectHandler {
3881 EvalInfo &Info;
3882 const Expr *E;
3883 APValue &Result;
3884 const AccessKinds AccessKind;
3885
3886 typedef bool result_type;
3887 bool failed() { return false; }
3888 bool found(APValue &Subobj, QualType SubobjType) {
3889 Result = Subobj;
3890 if (AccessKind == AK_ReadObjectRepresentation)
3891 return true;
3892 return CheckFullyInitialized(Info, DiagLoc: E->getExprLoc(), Type: SubobjType, Value: Result);
3893 }
3894 bool found(APSInt &Value, QualType SubobjType) {
3895 Result = APValue(Value);
3896 return true;
3897 }
3898 bool found(APFloat &Value, QualType SubobjType) {
3899 Result = APValue(Value);
3900 return true;
3901 }
3902};
3903} // end anonymous namespace
3904
3905/// Extract the designated sub-object of an rvalue.
3906static bool extractSubobject(EvalInfo &Info, const Expr *E,
3907 const CompleteObject &Obj,
3908 const SubobjectDesignator &Sub, APValue &Result,
3909 AccessKinds AK = AK_Read) {
3910 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3911 ExtractSubobjectHandler Handler = {.Info: Info, .E: E, .Result: Result, .AccessKind: AK};
3912 return findSubobject(Info, E, Obj, Sub, handler&: Handler);
3913}
3914
3915namespace {
3916struct ModifySubobjectHandler {
3917 EvalInfo &Info;
3918 APValue &NewVal;
3919 const Expr *E;
3920
3921 typedef bool result_type;
3922 static const AccessKinds AccessKind = AK_Assign;
3923
3924 bool checkConst(QualType QT) {
3925 // Assigning to a const object has undefined behavior.
3926 if (QT.isConstQualified()) {
3927 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3928 return false;
3929 }
3930 return true;
3931 }
3932
3933 bool failed() { return false; }
3934 bool found(APValue &Subobj, QualType SubobjType) {
3935 if (!checkConst(QT: SubobjType))
3936 return false;
3937 // We've been given ownership of NewVal, so just swap it in.
3938 Subobj.swap(RHS&: NewVal);
3939 return true;
3940 }
3941 bool found(APSInt &Value, QualType SubobjType) {
3942 if (!checkConst(QT: SubobjType))
3943 return false;
3944 if (!NewVal.isInt()) {
3945 // Maybe trying to write a cast pointer value into a complex?
3946 Info.FFDiag(E);
3947 return false;
3948 }
3949 Value = NewVal.getInt();
3950 return true;
3951 }
3952 bool found(APFloat &Value, QualType SubobjType) {
3953 if (!checkConst(QT: SubobjType))
3954 return false;
3955 Value = NewVal.getFloat();
3956 return true;
3957 }
3958};
3959} // end anonymous namespace
3960
3961const AccessKinds ModifySubobjectHandler::AccessKind;
3962
3963/// Update the designated sub-object of an rvalue to the given value.
3964static bool modifySubobject(EvalInfo &Info, const Expr *E,
3965 const CompleteObject &Obj,
3966 const SubobjectDesignator &Sub,
3967 APValue &NewVal) {
3968 ModifySubobjectHandler Handler = { .Info: Info, .NewVal: NewVal, .E: E };
3969 return findSubobject(Info, E, Obj, Sub, handler&: Handler);
3970}
3971
3972/// Find the position where two subobject designators diverge, or equivalently
3973/// the length of the common initial subsequence.
3974static unsigned FindDesignatorMismatch(QualType ObjType,
3975 const SubobjectDesignator &A,
3976 const SubobjectDesignator &B,
3977 bool &WasArrayIndex) {
3978 unsigned I = 0, N = std::min(a: A.Entries.size(), b: B.Entries.size());
3979 for (/**/; I != N; ++I) {
3980 if (!ObjType.isNull() &&
3981 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3982 // Next subobject is an array element.
3983 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3984 WasArrayIndex = true;
3985 return I;
3986 }
3987 if (ObjType->isAnyComplexType())
3988 ObjType = ObjType->castAs<ComplexType>()->getElementType();
3989 else
3990 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3991 } else {
3992 if (A.Entries[I].getAsBaseOrMember() !=
3993 B.Entries[I].getAsBaseOrMember()) {
3994 WasArrayIndex = false;
3995 return I;
3996 }
3997 if (const FieldDecl *FD = getAsField(E: A.Entries[I]))
3998 // Next subobject is a field.
3999 ObjType = FD->getType();
4000 else
4001 // Next subobject is a base class.
4002 ObjType = QualType();
4003 }
4004 }
4005 WasArrayIndex = false;
4006 return I;
4007}
4008
4009/// Determine whether the given subobject designators refer to elements of the
4010/// same array object.
4011static bool AreElementsOfSameArray(QualType ObjType,
4012 const SubobjectDesignator &A,
4013 const SubobjectDesignator &B) {
4014 if (A.Entries.size() != B.Entries.size())
4015 return false;
4016
4017 bool IsArray = A.MostDerivedIsArrayElement;
4018 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
4019 // A is a subobject of the array element.
4020 return false;
4021
4022 // If A (and B) designates an array element, the last entry will be the array
4023 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
4024 // of length 1' case, and the entire path must match.
4025 bool WasArrayIndex;
4026 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
4027 return CommonLength >= A.Entries.size() - IsArray;
4028}
4029
4030/// Find the complete object to which an LValue refers.
4031static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
4032 AccessKinds AK, const LValue &LVal,
4033 QualType LValType) {
4034 if (LVal.InvalidBase) {
4035 Info.FFDiag(E);
4036 return CompleteObject();
4037 }
4038
4039 if (!LVal.Base) {
4040 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
4041 return CompleteObject();
4042 }
4043
4044 CallStackFrame *Frame = nullptr;
4045 unsigned Depth = 0;
4046 if (LVal.getLValueCallIndex()) {
4047 std::tie(args&: Frame, args&: Depth) =
4048 Info.getCallFrameAndDepth(CallIndex: LVal.getLValueCallIndex());
4049 if (!Frame) {
4050 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
4051 << AK << LVal.Base.is<const ValueDecl*>();
4052 NoteLValueLocation(Info, Base: LVal.Base);
4053 return CompleteObject();
4054 }
4055 }
4056
4057 bool IsAccess = isAnyAccess(AK);
4058
4059 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
4060 // is not a constant expression (even if the object is non-volatile). We also
4061 // apply this rule to C++98, in order to conform to the expected 'volatile'
4062 // semantics.
4063 if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
4064 if (Info.getLangOpts().CPlusPlus)
4065 Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
4066 << AK << LValType;
4067 else
4068 Info.FFDiag(E);
4069 return CompleteObject();
4070 }
4071
4072 // Compute value storage location and type of base object.
4073 APValue *BaseVal = nullptr;
4074 QualType BaseType = getType(B: LVal.Base);
4075
4076 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4077 lifetimeStartedInEvaluation(Info, Base: LVal.Base)) {
4078 // This is the object whose initializer we're evaluating, so its lifetime
4079 // started in the current evaluation.
4080 BaseVal = Info.EvaluatingDeclValue;
4081 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4082 // Allow reading from a GUID declaration.
4083 if (auto *GD = dyn_cast<MSGuidDecl>(Val: D)) {
4084 if (isModification(AK)) {
4085 // All the remaining cases do not permit modification of the object.
4086 Info.FFDiag(E, diag::note_constexpr_modify_global);
4087 return CompleteObject();
4088 }
4089 APValue &V = GD->getAsAPValue();
4090 if (V.isAbsent()) {
4091 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4092 << GD->getType();
4093 return CompleteObject();
4094 }
4095 return CompleteObject(LVal.Base, &V, GD->getType());
4096 }
4097
4098 // Allow reading the APValue from an UnnamedGlobalConstantDecl.
4099 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(Val: D)) {
4100 if (isModification(AK)) {
4101 Info.FFDiag(E, diag::note_constexpr_modify_global);
4102 return CompleteObject();
4103 }
4104 return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()),
4105 GCD->getType());
4106 }
4107
4108 // Allow reading from template parameter objects.
4109 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: D)) {
4110 if (isModification(AK)) {
4111 Info.FFDiag(E, diag::note_constexpr_modify_global);
4112 return CompleteObject();
4113 }
4114 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4115 TPO->getType());
4116 }
4117
4118 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4119 // In C++11, constexpr, non-volatile variables initialized with constant
4120 // expressions are constant expressions too. Inside constexpr functions,
4121 // parameters are constant expressions even if they're non-const.
4122 // In C++1y, objects local to a constant expression (those with a Frame) are
4123 // both readable and writable inside constant expressions.
4124 // In C, such things can also be folded, although they are not ICEs.
4125 const VarDecl *VD = dyn_cast<VarDecl>(Val: D);
4126 if (VD) {
4127 if (const VarDecl *VDef = VD->getDefinition(C&: Info.Ctx))
4128 VD = VDef;
4129 }
4130 if (!VD || VD->isInvalidDecl()) {
4131 Info.FFDiag(E);
4132 return CompleteObject();
4133 }
4134
4135 bool IsConstant = BaseType.isConstant(Ctx: Info.Ctx);
4136 bool ConstexprVar = false;
4137 if (const auto *VD = dyn_cast_if_present<VarDecl>(
4138 Val: Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
4139 ConstexprVar = VD->isConstexpr();
4140
4141 // Unless we're looking at a local variable or argument in a constexpr call,
4142 // the variable we're reading must be const.
4143 if (!Frame) {
4144 if (IsAccess && isa<ParmVarDecl>(Val: VD)) {
4145 // Access of a parameter that's not associated with a frame isn't going
4146 // to work out, but we can leave it to evaluateVarDeclInit to provide a
4147 // suitable diagnostic.
4148 } else if (Info.getLangOpts().CPlusPlus14 &&
4149 lifetimeStartedInEvaluation(Info, Base: LVal.Base)) {
4150 // OK, we can read and modify an object if we're in the process of
4151 // evaluating its initializer, because its lifetime began in this
4152 // evaluation.
4153 } else if (isModification(AK)) {
4154 // All the remaining cases do not permit modification of the object.
4155 Info.FFDiag(E, diag::note_constexpr_modify_global);
4156 return CompleteObject();
4157 } else if (VD->isConstexpr()) {
4158 // OK, we can read this variable.
4159 } else if (Info.getLangOpts().C23 && ConstexprVar) {
4160 Info.FFDiag(E);
4161 return CompleteObject();
4162 } else if (BaseType->isIntegralOrEnumerationType()) {
4163 if (!IsConstant) {
4164 if (!IsAccess)
4165 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4166 if (Info.getLangOpts().CPlusPlus) {
4167 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4168 Info.Note(VD->getLocation(), diag::note_declared_at);
4169 } else {
4170 Info.FFDiag(E);
4171 }
4172 return CompleteObject();
4173 }
4174 } else if (!IsAccess) {
4175 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4176 } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4177 BaseType->isLiteralType(Ctx: Info.Ctx) && !VD->hasDefinition()) {
4178 // This variable might end up being constexpr. Don't diagnose it yet.
4179 } else if (IsConstant) {
4180 // Keep evaluating to see what we can do. In particular, we support
4181 // folding of const floating-point types, in order to make static const
4182 // data members of such types (supported as an extension) more useful.
4183 if (Info.getLangOpts().CPlusPlus) {
4184 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4185 ? diag::note_constexpr_ltor_non_constexpr
4186 : diag::note_constexpr_ltor_non_integral, 1)
4187 << VD << BaseType;
4188 Info.Note(VD->getLocation(), diag::note_declared_at);
4189 } else {
4190 Info.CCEDiag(E);
4191 }
4192 } else {
4193 // Never allow reading a non-const value.
4194 if (Info.getLangOpts().CPlusPlus) {
4195 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4196 ? diag::note_constexpr_ltor_non_constexpr
4197 : diag::note_constexpr_ltor_non_integral, 1)
4198 << VD << BaseType;
4199 Info.Note(VD->getLocation(), diag::note_declared_at);
4200 } else {
4201 Info.FFDiag(E);
4202 }
4203 return CompleteObject();
4204 }
4205 }
4206
4207 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version: LVal.getLValueVersion(), Result&: BaseVal))
4208 return CompleteObject();
4209 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4210 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
4211 if (!Alloc) {
4212 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4213 return CompleteObject();
4214 }
4215 return CompleteObject(LVal.Base, &(*Alloc)->Value,
4216 LVal.Base.getDynamicAllocType());
4217 } else {
4218 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4219
4220 if (!Frame) {
4221 if (const MaterializeTemporaryExpr *MTE =
4222 dyn_cast_or_null<MaterializeTemporaryExpr>(Val: Base)) {
4223 assert(MTE->getStorageDuration() == SD_Static &&
4224 "should have a frame for a non-global materialized temporary");
4225
4226 // C++20 [expr.const]p4: [DR2126]
4227 // An object or reference is usable in constant expressions if it is
4228 // - a temporary object of non-volatile const-qualified literal type
4229 // whose lifetime is extended to that of a variable that is usable
4230 // in constant expressions
4231 //
4232 // C++20 [expr.const]p5:
4233 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4234 // - a non-volatile glvalue that refers to an object that is usable
4235 // in constant expressions, or
4236 // - a non-volatile glvalue of literal type that refers to a
4237 // non-volatile object whose lifetime began within the evaluation
4238 // of E;
4239 //
4240 // C++11 misses the 'began within the evaluation of e' check and
4241 // instead allows all temporaries, including things like:
4242 // int &&r = 1;
4243 // int x = ++r;
4244 // constexpr int k = r;
4245 // Therefore we use the C++14-onwards rules in C++11 too.
4246 //
4247 // Note that temporaries whose lifetimes began while evaluating a
4248 // variable's constructor are not usable while evaluating the
4249 // corresponding destructor, not even if they're of const-qualified
4250 // types.
4251 if (!MTE->isUsableInConstantExpressions(Context: Info.Ctx) &&
4252 !lifetimeStartedInEvaluation(Info, Base: LVal.Base)) {
4253 if (!IsAccess)
4254 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4255 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4256 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4257 return CompleteObject();
4258 }
4259
4260 BaseVal = MTE->getOrCreateValue(MayCreate: false);
4261 assert(BaseVal && "got reference to unevaluated temporary");
4262 } else {
4263 if (!IsAccess)
4264 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4265 APValue Val;
4266 LVal.moveInto(V&: Val);
4267 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4268 << AK
4269 << Val.getAsString(Info.Ctx,
4270 Info.Ctx.getLValueReferenceType(LValType));
4271 NoteLValueLocation(Info, Base: LVal.Base);
4272 return CompleteObject();
4273 }
4274 } else {
4275 BaseVal = Frame->getTemporary(Key: Base, Version: LVal.Base.getVersion());
4276 assert(BaseVal && "missing value for temporary");
4277 }
4278 }
4279
4280 // In C++14, we can't safely access any mutable state when we might be
4281 // evaluating after an unmodeled side effect. Parameters are modeled as state
4282 // in the caller, but aren't visible once the call returns, so they can be
4283 // modified in a speculatively-evaluated call.
4284 //
4285 // FIXME: Not all local state is mutable. Allow local constant subobjects
4286 // to be read here (but take care with 'mutable' fields).
4287 unsigned VisibleDepth = Depth;
4288 if (llvm::isa_and_nonnull<ParmVarDecl>(
4289 Val: LVal.Base.dyn_cast<const ValueDecl *>()))
4290 ++VisibleDepth;
4291 if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4292 Info.EvalStatus.HasSideEffects) ||
4293 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4294 return CompleteObject();
4295
4296 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4297}
4298
4299/// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4300/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4301/// glvalue referred to by an entity of reference type.
4302///
4303/// \param Info - Information about the ongoing evaluation.
4304/// \param Conv - The expression for which we are performing the conversion.
4305/// Used for diagnostics.
4306/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4307/// case of a non-class type).
4308/// \param LVal - The glvalue on which we are attempting to perform this action.
4309/// \param RVal - The produced value will be placed here.
4310/// \param WantObjectRepresentation - If true, we're looking for the object
4311/// representation rather than the value, and in particular,
4312/// there is no requirement that the result be fully initialized.
4313static bool
4314handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4315 const LValue &LVal, APValue &RVal,
4316 bool WantObjectRepresentation = false) {
4317 if (LVal.Designator.Invalid)
4318 return false;
4319
4320 // Check for special cases where there is no existing APValue to look at.
4321 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4322
4323 AccessKinds AK =
4324 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4325
4326 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4327 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Val: Base)) {
4328 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4329 // initializer until now for such expressions. Such an expression can't be
4330 // an ICE in C, so this only matters for fold.
4331 if (Type.isVolatileQualified()) {
4332 Info.FFDiag(E: Conv);
4333 return false;
4334 }
4335
4336 APValue Lit;
4337 if (!Evaluate(Result&: Lit, Info, E: CLE->getInitializer()))
4338 return false;
4339
4340 // According to GCC info page:
4341 //
4342 // 6.28 Compound Literals
4343 //
4344 // As an optimization, G++ sometimes gives array compound literals longer
4345 // lifetimes: when the array either appears outside a function or has a
4346 // const-qualified type. If foo and its initializer had elements of type
4347 // char *const rather than char *, or if foo were a global variable, the
4348 // array would have static storage duration. But it is probably safest
4349 // just to avoid the use of array compound literals in C++ code.
4350 //
4351 // Obey that rule by checking constness for converted array types.
4352
4353 QualType CLETy = CLE->getType();
4354 if (CLETy->isArrayType() && !Type->isArrayType()) {
4355 if (!CLETy.isConstant(Ctx: Info.Ctx)) {
4356 Info.FFDiag(E: Conv);
4357 Info.Note(CLE->getExprLoc(), diag::note_declared_at);
4358 return false;
4359 }
4360 }
4361
4362 CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4363 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4364 } else if (isa<StringLiteral>(Val: Base) || isa<PredefinedExpr>(Val: Base)) {
4365 // Special-case character extraction so we don't have to construct an
4366 // APValue for the whole string.
4367 assert(LVal.Designator.Entries.size() <= 1 &&
4368 "Can only read characters from string literals");
4369 if (LVal.Designator.Entries.empty()) {
4370 // Fail for now for LValue to RValue conversion of an array.
4371 // (This shouldn't show up in C/C++, but it could be triggered by a
4372 // weird EvaluateAsRValue call from a tool.)
4373 Info.FFDiag(E: Conv);
4374 return false;
4375 }
4376 if (LVal.Designator.isOnePastTheEnd()) {
4377 if (Info.getLangOpts().CPlusPlus11)
4378 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4379 else
4380 Info.FFDiag(E: Conv);
4381 return false;
4382 }
4383 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4384 RVal = APValue(extractStringLiteralCharacter(Info, Lit: Base, Index: CharIndex));
4385 return true;
4386 }
4387 }
4388
4389 CompleteObject Obj = findCompleteObject(Info, E: Conv, AK, LVal, LValType: Type);
4390 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4391}
4392
4393/// Perform an assignment of Val to LVal. Takes ownership of Val.
4394static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4395 QualType LValType, APValue &Val) {
4396 if (LVal.Designator.Invalid)
4397 return false;
4398
4399 if (!Info.getLangOpts().CPlusPlus14) {
4400 Info.FFDiag(E);
4401 return false;
4402 }
4403
4404 CompleteObject Obj = findCompleteObject(Info, E, AK: AK_Assign, LVal, LValType);
4405 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4406}
4407
4408namespace {
4409struct CompoundAssignSubobjectHandler {
4410 EvalInfo &Info;
4411 const CompoundAssignOperator *E;
4412 QualType PromotedLHSType;
4413 BinaryOperatorKind Opcode;
4414 const APValue &RHS;
4415
4416 static const AccessKinds AccessKind = AK_Assign;
4417
4418 typedef bool result_type;
4419
4420 bool checkConst(QualType QT) {
4421 // Assigning to a const object has undefined behavior.
4422 if (QT.isConstQualified()) {
4423 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4424 return false;
4425 }
4426 return true;
4427 }
4428
4429 bool failed() { return false; }
4430 bool found(APValue &Subobj, QualType SubobjType) {
4431 switch (Subobj.getKind()) {
4432 case APValue::Int:
4433 return found(Value&: Subobj.getInt(), SubobjType);
4434 case APValue::Float:
4435 return found(Value&: Subobj.getFloat(), SubobjType);
4436 case APValue::ComplexInt:
4437 case APValue::ComplexFloat:
4438 // FIXME: Implement complex compound assignment.
4439 Info.FFDiag(E);
4440 return false;
4441 case APValue::LValue:
4442 return foundPointer(Subobj, SubobjType);
4443 case APValue::Vector:
4444 return foundVector(Value&: Subobj, SubobjType);
4445 case APValue::Indeterminate:
4446 Info.FFDiag(E, diag::note_constexpr_access_uninit)
4447 << /*read of=*/0 << /*uninitialized object=*/1
4448 << E->getLHS()->getSourceRange();
4449 return false;
4450 default:
4451 // FIXME: can this happen?
4452 Info.FFDiag(E);
4453 return false;
4454 }
4455 }
4456
4457 bool foundVector(APValue &Value, QualType SubobjType) {
4458 if (!checkConst(QT: SubobjType))
4459 return false;
4460
4461 if (!SubobjType->isVectorType()) {
4462 Info.FFDiag(E);
4463 return false;
4464 }
4465 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4466 }
4467
4468 bool found(APSInt &Value, QualType SubobjType) {
4469 if (!checkConst(QT: SubobjType))
4470 return false;
4471
4472 if (!SubobjType->isIntegerType()) {
4473 // We don't support compound assignment on integer-cast-to-pointer
4474 // values.
4475 Info.FFDiag(E);
4476 return false;
4477 }
4478
4479 if (RHS.isInt()) {
4480 APSInt LHS =
4481 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4482 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4483 return false;
4484 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4485 return true;
4486 } else if (RHS.isFloat()) {
4487 const FPOptions FPO = E->getFPFeaturesInEffect(
4488 Info.Ctx.getLangOpts());
4489 APFloat FValue(0.0);
4490 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4491 PromotedLHSType, FValue) &&
4492 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4493 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4494 Value);
4495 }
4496
4497 Info.FFDiag(E);
4498 return false;
4499 }
4500 bool found(APFloat &Value, QualType SubobjType) {
4501 return checkConst(SubobjType) &&
4502 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4503 Value) &&
4504 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4505 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4506 }
4507 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4508 if (!checkConst(QT: SubobjType))
4509 return false;
4510
4511 QualType PointeeType;
4512 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4513 PointeeType = PT->getPointeeType();
4514
4515 if (PointeeType.isNull() || !RHS.isInt() ||
4516 (Opcode != BO_Add && Opcode != BO_Sub)) {
4517 Info.FFDiag(E);
4518 return false;
4519 }
4520
4521 APSInt Offset = RHS.getInt();
4522 if (Opcode == BO_Sub)
4523 negateAsSigned(Int&: Offset);
4524
4525 LValue LVal;
4526 LVal.setFrom(Ctx&: Info.Ctx, V: Subobj);
4527 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4528 return false;
4529 LVal.moveInto(V&: Subobj);
4530 return true;
4531 }
4532};
4533} // end anonymous namespace
4534
4535const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4536
4537/// Perform a compound assignment of LVal <op>= RVal.
4538static bool handleCompoundAssignment(EvalInfo &Info,
4539 const CompoundAssignOperator *E,
4540 const LValue &LVal, QualType LValType,
4541 QualType PromotedLValType,
4542 BinaryOperatorKind Opcode,
4543 const APValue &RVal) {
4544 if (LVal.Designator.Invalid)
4545 return false;
4546
4547 if (!Info.getLangOpts().CPlusPlus14) {
4548 Info.FFDiag(E);
4549 return false;
4550 }
4551
4552 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4553 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4554 RVal };
4555 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4556}
4557
4558namespace {
4559struct IncDecSubobjectHandler {
4560 EvalInfo &Info;
4561 const UnaryOperator *E;
4562 AccessKinds AccessKind;
4563 APValue *Old;
4564
4565 typedef bool result_type;
4566
4567 bool checkConst(QualType QT) {
4568 // Assigning to a const object has undefined behavior.
4569 if (QT.isConstQualified()) {
4570 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4571 return false;
4572 }
4573 return true;
4574 }
4575
4576 bool failed() { return false; }
4577 bool found(APValue &Subobj, QualType SubobjType) {
4578 // Stash the old value. Also clear Old, so we don't clobber it later
4579 // if we're post-incrementing a complex.
4580 if (Old) {
4581 *Old = Subobj;
4582 Old = nullptr;
4583 }
4584
4585 switch (Subobj.getKind()) {
4586 case APValue::Int:
4587 return found(Value&: Subobj.getInt(), SubobjType);
4588 case APValue::Float:
4589 return found(Value&: Subobj.getFloat(), SubobjType);
4590 case APValue::ComplexInt:
4591 return found(Value&: Subobj.getComplexIntReal(),
4592 SubobjType: SubobjType->castAs<ComplexType>()->getElementType()
4593 .withCVRQualifiers(CVR: SubobjType.getCVRQualifiers()));
4594 case APValue::ComplexFloat:
4595 return found(Value&: Subobj.getComplexFloatReal(),
4596 SubobjType: SubobjType->castAs<ComplexType>()->getElementType()
4597 .withCVRQualifiers(CVR: SubobjType.getCVRQualifiers()));
4598 case APValue::LValue:
4599 return foundPointer(Subobj, SubobjType);
4600 default:
4601 // FIXME: can this happen?
4602 Info.FFDiag(E);
4603 return false;
4604 }
4605 }
4606 bool found(APSInt &Value, QualType SubobjType) {
4607 if (!checkConst(QT: SubobjType))
4608 return false;
4609
4610 if (!SubobjType->isIntegerType()) {
4611 // We don't support increment / decrement on integer-cast-to-pointer
4612 // values.
4613 Info.FFDiag(E);
4614 return false;
4615 }
4616
4617 if (Old) *Old = APValue(Value);
4618
4619 // bool arithmetic promotes to int, and the conversion back to bool
4620 // doesn't reduce mod 2^n, so special-case it.
4621 if (SubobjType->isBooleanType()) {
4622 if (AccessKind == AK_Increment)
4623 Value = 1;
4624 else
4625 Value = !Value;
4626 return true;
4627 }
4628
4629 bool WasNegative = Value.isNegative();
4630 if (AccessKind == AK_Increment) {
4631 ++Value;
4632
4633 if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4634 APSInt ActualValue(Value, /*IsUnsigned*/true);
4635 return HandleOverflow(Info, E, ActualValue, SubobjType);
4636 }
4637 } else {
4638 --Value;
4639
4640 if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4641 unsigned BitWidth = Value.getBitWidth();
4642 APSInt ActualValue(Value.sext(width: BitWidth + 1), /*IsUnsigned*/false);
4643 ActualValue.setBit(BitWidth);
4644 return HandleOverflow(Info, E, ActualValue, SubobjType);
4645 }
4646 }
4647 return true;
4648 }
4649 bool found(APFloat &Value, QualType SubobjType) {
4650 if (!checkConst(QT: SubobjType))
4651 return false;
4652
4653 if (Old) *Old = APValue(Value);
4654
4655 APFloat One(Value.getSemantics(), 1);
4656 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
4657 APFloat::opStatus St;
4658 if (AccessKind == AK_Increment)
4659 St = Value.add(RHS: One, RM);
4660 else
4661 St = Value.subtract(RHS: One, RM);
4662 return checkFloatingPointResult(Info, E, St);
4663 }
4664 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4665 if (!checkConst(QT: SubobjType))
4666 return false;
4667
4668 QualType PointeeType;
4669 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4670 PointeeType = PT->getPointeeType();
4671 else {
4672 Info.FFDiag(E);
4673 return false;
4674 }
4675
4676 LValue LVal;
4677 LVal.setFrom(Ctx&: Info.Ctx, V: Subobj);
4678 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4679 AccessKind == AK_Increment ? 1 : -1))
4680 return false;
4681 LVal.moveInto(V&: Subobj);
4682 return true;
4683 }
4684};
4685} // end anonymous namespace
4686
4687/// Perform an increment or decrement on LVal.
4688static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4689 QualType LValType, bool IsIncrement, APValue *Old) {
4690 if (LVal.Designator.Invalid)
4691 return false;
4692
4693 if (!Info.getLangOpts().CPlusPlus14) {
4694 Info.FFDiag(E);
4695 return false;
4696 }
4697
4698 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4699 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4700 IncDecSubobjectHandler Handler = {.Info: Info, .E: cast<UnaryOperator>(Val: E), .AccessKind: AK, .Old: Old};
4701 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4702}
4703
4704/// Build an lvalue for the object argument of a member function call.
4705static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4706 LValue &This) {
4707 if (Object->getType()->isPointerType() && Object->isPRValue())
4708 return EvaluatePointer(E: Object, Result&: This, Info);
4709
4710 if (Object->isGLValue())
4711 return EvaluateLValue(E: Object, Result&: This, Info);
4712
4713 if (Object->getType()->isLiteralType(Ctx: Info.Ctx))
4714 return EvaluateTemporary(E: Object, Result&: This, Info);
4715
4716 if (Object->getType()->isRecordType() && Object->isPRValue())
4717 return EvaluateTemporary(E: Object, Result&: This, Info);
4718
4719 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4720 return false;
4721}
4722
4723/// HandleMemberPointerAccess - Evaluate a member access operation and build an
4724/// lvalue referring to the result.
4725///
4726/// \param Info - Information about the ongoing evaluation.
4727/// \param LV - An lvalue referring to the base of the member pointer.
4728/// \param RHS - The member pointer expression.
4729/// \param IncludeMember - Specifies whether the member itself is included in
4730/// the resulting LValue subobject designator. This is not possible when
4731/// creating a bound member function.
4732/// \return The field or method declaration to which the member pointer refers,
4733/// or 0 if evaluation fails.
4734static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4735 QualType LVType,
4736 LValue &LV,
4737 const Expr *RHS,
4738 bool IncludeMember = true) {
4739 MemberPtr MemPtr;
4740 if (!EvaluateMemberPointer(E: RHS, Result&: MemPtr, Info))
4741 return nullptr;
4742
4743 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4744 // member value, the behavior is undefined.
4745 if (!MemPtr.getDecl()) {
4746 // FIXME: Specific diagnostic.
4747 Info.FFDiag(E: RHS);
4748 return nullptr;
4749 }
4750
4751 if (MemPtr.isDerivedMember()) {
4752 // This is a member of some derived class. Truncate LV appropriately.
4753 // The end of the derived-to-base path for the base object must match the
4754 // derived-to-base path for the member pointer.
4755 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4756 LV.Designator.Entries.size()) {
4757 Info.FFDiag(E: RHS);
4758 return nullptr;
4759 }
4760 unsigned PathLengthToMember =
4761 LV.Designator.Entries.size() - MemPtr.Path.size();
4762 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4763 const CXXRecordDecl *LVDecl = getAsBaseClass(
4764 LV.Designator.Entries[PathLengthToMember + I]);
4765 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4766 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4767 Info.FFDiag(E: RHS);
4768 return nullptr;
4769 }
4770 }
4771
4772 // Truncate the lvalue to the appropriate derived class.
4773 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4774 PathLengthToMember))
4775 return nullptr;
4776 } else if (!MemPtr.Path.empty()) {
4777 // Extend the LValue path with the member pointer's path.
4778 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4779 MemPtr.Path.size() + IncludeMember);
4780
4781 // Walk down to the appropriate base class.
4782 if (const PointerType *PT = LVType->getAs<PointerType>())
4783 LVType = PT->getPointeeType();
4784 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4785 assert(RD && "member pointer access on non-class-type expression");
4786 // The first class in the path is that of the lvalue.
4787 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4788 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4789 if (!HandleLValueDirectBase(Info, E: RHS, Obj&: LV, Derived: RD, Base))
4790 return nullptr;
4791 RD = Base;
4792 }
4793 // Finally cast to the class containing the member.
4794 if (!HandleLValueDirectBase(Info, E: RHS, Obj&: LV, Derived: RD,
4795 Base: MemPtr.getContainingRecord()))
4796 return nullptr;
4797 }
4798
4799 // Add the member. Note that we cannot build bound member functions here.
4800 if (IncludeMember) {
4801 if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: MemPtr.getDecl())) {
4802 if (!HandleLValueMember(Info, E: RHS, LVal&: LV, FD))
4803 return nullptr;
4804 } else if (const IndirectFieldDecl *IFD =
4805 dyn_cast<IndirectFieldDecl>(Val: MemPtr.getDecl())) {
4806 if (!HandleLValueIndirectMember(Info, E: RHS, LVal&: LV, IFD))
4807 return nullptr;
4808 } else {
4809 llvm_unreachable("can't construct reference to bound member function");
4810 }
4811 }
4812
4813 return MemPtr.getDecl();
4814}
4815
4816static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4817 const BinaryOperator *BO,
4818 LValue &LV,
4819 bool IncludeMember = true) {
4820 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4821
4822 if (!EvaluateObjectArgument(Info, Object: BO->getLHS(), This&: LV)) {
4823 if (Info.noteFailure()) {
4824 MemberPtr MemPtr;
4825 EvaluateMemberPointer(E: BO->getRHS(), Result&: MemPtr, Info);
4826 }
4827 return nullptr;
4828 }
4829
4830 return HandleMemberPointerAccess(Info, LVType: BO->getLHS()->getType(), LV,
4831 RHS: BO->getRHS(), IncludeMember);
4832}
4833
4834/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4835/// the provided lvalue, which currently refers to the base object.
4836static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4837 LValue &Result) {
4838 SubobjectDesignator &D = Result.Designator;
4839 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4840 return false;
4841
4842 QualType TargetQT = E->getType();
4843 if (const PointerType *PT = TargetQT->getAs<PointerType>())
4844 TargetQT = PT->getPointeeType();
4845
4846 // Check this cast lands within the final derived-to-base subobject path.
4847 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4848 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4849 << D.MostDerivedType << TargetQT;
4850 return false;
4851 }
4852
4853 // Check the type of the final cast. We don't need to check the path,
4854 // since a cast can only be formed if the path is unique.
4855 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4856 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4857 const CXXRecordDecl *FinalType;
4858 if (NewEntriesSize == D.MostDerivedPathLength)
4859 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4860 else
4861 FinalType = getAsBaseClass(E: D.Entries[NewEntriesSize - 1]);
4862 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4863 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4864 << D.MostDerivedType << TargetQT;
4865 return false;
4866 }
4867
4868 // Truncate the lvalue to the appropriate derived class.
4869 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4870}
4871
4872/// Get the value to use for a default-initialized object of type T.
4873/// Return false if it encounters something invalid.
4874static bool handleDefaultInitValue(QualType T, APValue &Result) {
4875 bool Success = true;
4876
4877 // If there is already a value present don't overwrite it.
4878 if (!Result.isAbsent())
4879 return true;
4880
4881 if (auto *RD = T->getAsCXXRecordDecl()) {
4882 if (RD->isInvalidDecl()) {
4883 Result = APValue();
4884 return false;
4885 }
4886 if (RD->isUnion()) {
4887 Result = APValue((const FieldDecl *)nullptr);
4888 return true;
4889 }
4890 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4891 std::distance(RD->field_begin(), RD->field_end()));
4892
4893 unsigned Index = 0;
4894 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4895 End = RD->bases_end();
4896 I != End; ++I, ++Index)
4897 Success &=
4898 handleDefaultInitValue(T: I->getType(), Result&: Result.getStructBase(i: Index));
4899
4900 for (const auto *I : RD->fields()) {
4901 if (I->isUnnamedBitField())
4902 continue;
4903 Success &= handleDefaultInitValue(
4904 I->getType(), Result.getStructField(I->getFieldIndex()));
4905 }
4906 return Success;
4907 }
4908
4909 if (auto *AT =
4910 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4911 Result = APValue(APValue::UninitArray(), 0, AT->getZExtSize());
4912 if (Result.hasArrayFiller())
4913 Success &=
4914 handleDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4915
4916 return Success;
4917 }
4918
4919 Result = APValue::IndeterminateValue();
4920 return true;
4921}
4922
4923namespace {
4924enum EvalStmtResult {
4925 /// Evaluation failed.
4926 ESR_Failed,
4927 /// Hit a 'return' statement.
4928 ESR_Returned,
4929 /// Evaluation succeeded.
4930 ESR_Succeeded,
4931 /// Hit a 'continue' statement.
4932 ESR_Continue,
4933 /// Hit a 'break' statement.
4934 ESR_Break,
4935 /// Still scanning for 'case' or 'default' statement.
4936 ESR_CaseNotFound
4937};
4938}
4939
4940static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4941 if (VD->isInvalidDecl())
4942 return false;
4943 // We don't need to evaluate the initializer for a static local.
4944 if (!VD->hasLocalStorage())
4945 return true;
4946
4947 LValue Result;
4948 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4949 ScopeKind::Block, Result);
4950
4951 const Expr *InitE = VD->getInit();
4952 if (!InitE) {
4953 if (VD->getType()->isDependentType())
4954 return Info.noteSideEffect();
4955 return handleDefaultInitValue(VD->getType(), Val);
4956 }
4957 if (InitE->isValueDependent())
4958 return false;
4959
4960 if (!EvaluateInPlace(Result&: Val, Info, This: Result, E: InitE)) {
4961 // Wipe out any partially-computed value, to allow tracking that this
4962 // evaluation failed.
4963 Val = APValue();
4964 return false;
4965 }
4966
4967 return true;
4968}
4969
4970static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4971 bool OK = true;
4972
4973 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
4974 OK &= EvaluateVarDecl(Info, VD);
4975
4976 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(Val: D))
4977 for (auto *BD : DD->bindings())
4978 if (auto *VD = BD->getHoldingVar())
4979 OK &= EvaluateDecl(Info, VD);
4980
4981 return OK;
4982}
4983
4984static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4985 assert(E->isValueDependent());
4986 if (Info.noteSideEffect())
4987 return true;
4988 assert(E->containsErrors() && "valid value-dependent expression should never "
4989 "reach invalid code path.");
4990 return false;
4991}
4992
4993/// Evaluate a condition (either a variable declaration or an expression).
4994static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4995 const Expr *Cond, bool &Result) {
4996 if (Cond->isValueDependent())
4997 return false;
4998 FullExpressionRAII Scope(Info);
4999 if (CondDecl && !EvaluateDecl(Info, CondDecl))
5000 return false;
5001 if (!EvaluateAsBooleanCondition(E: Cond, Result, Info))
5002 return false;
5003 return Scope.destroy();
5004}
5005
5006namespace {
5007/// A location where the result (returned value) of evaluating a
5008/// statement should be stored.
5009struct StmtResult {
5010 /// The APValue that should be filled in with the returned value.
5011 APValue &Value;
5012 /// The location containing the result, if any (used to support RVO).
5013 const LValue *Slot;
5014};
5015
5016struct TempVersionRAII {
5017 CallStackFrame &Frame;
5018
5019 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
5020 Frame.pushTempVersion();
5021 }
5022
5023 ~TempVersionRAII() {
5024 Frame.popTempVersion();
5025 }
5026};
5027
5028}
5029
5030static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5031 const Stmt *S,
5032 const SwitchCase *SC = nullptr);
5033
5034/// Evaluate the body of a loop, and translate the result as appropriate.
5035static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
5036 const Stmt *Body,
5037 const SwitchCase *Case = nullptr) {
5038 BlockScopeRAII Scope(Info);
5039
5040 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Body, SC: Case);
5041 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5042 ESR = ESR_Failed;
5043
5044 switch (ESR) {
5045 case ESR_Break:
5046 return ESR_Succeeded;
5047 case ESR_Succeeded:
5048 case ESR_Continue:
5049 return ESR_Continue;
5050 case ESR_Failed:
5051 case ESR_Returned:
5052 case ESR_CaseNotFound:
5053 return ESR;
5054 }
5055 llvm_unreachable("Invalid EvalStmtResult!");
5056}
5057
5058/// Evaluate a switch statement.
5059static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
5060 const SwitchStmt *SS) {
5061 BlockScopeRAII Scope(Info);
5062
5063 // Evaluate the switch condition.
5064 APSInt Value;
5065 {
5066 if (const Stmt *Init = SS->getInit()) {
5067 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init);
5068 if (ESR != ESR_Succeeded) {
5069 if (ESR != ESR_Failed && !Scope.destroy())
5070 ESR = ESR_Failed;
5071 return ESR;
5072 }
5073 }
5074
5075 FullExpressionRAII CondScope(Info);
5076 if (SS->getConditionVariable() &&
5077 !EvaluateDecl(Info, SS->getConditionVariable()))
5078 return ESR_Failed;
5079 if (SS->getCond()->isValueDependent()) {
5080 // We don't know what the value is, and which branch should jump to.
5081 EvaluateDependentExpr(E: SS->getCond(), Info);
5082 return ESR_Failed;
5083 }
5084 if (!EvaluateInteger(E: SS->getCond(), Result&: Value, Info))
5085 return ESR_Failed;
5086
5087 if (!CondScope.destroy())
5088 return ESR_Failed;
5089 }
5090
5091 // Find the switch case corresponding to the value of the condition.
5092 // FIXME: Cache this lookup.
5093 const SwitchCase *Found = nullptr;
5094 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
5095 SC = SC->getNextSwitchCase()) {
5096 if (isa<DefaultStmt>(Val: SC)) {
5097 Found = SC;
5098 continue;
5099 }
5100
5101 const CaseStmt *CS = cast<CaseStmt>(Val: SC);
5102 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Ctx: Info.Ctx);
5103 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Ctx: Info.Ctx)
5104 : LHS;
5105 if (LHS <= Value && Value <= RHS) {
5106 Found = SC;
5107 break;
5108 }
5109 }
5110
5111 if (!Found)
5112 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5113
5114 // Search the switch body for the switch case and evaluate it from there.
5115 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: SS->getBody(), SC: Found);
5116 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5117 return ESR_Failed;
5118
5119 switch (ESR) {
5120 case ESR_Break:
5121 return ESR_Succeeded;
5122 case ESR_Succeeded:
5123 case ESR_Continue:
5124 case ESR_Failed:
5125 case ESR_Returned:
5126 return ESR;
5127 case ESR_CaseNotFound:
5128 // This can only happen if the switch case is nested within a statement
5129 // expression. We have no intention of supporting that.
5130 Info.FFDiag(Found->getBeginLoc(),
5131 diag::note_constexpr_stmt_expr_unsupported);
5132 return ESR_Failed;
5133 }
5134 llvm_unreachable("Invalid EvalStmtResult!");
5135}
5136
5137static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) {
5138 // An expression E is a core constant expression unless the evaluation of E
5139 // would evaluate one of the following: [C++23] - a control flow that passes
5140 // through a declaration of a variable with static or thread storage duration
5141 // unless that variable is usable in constant expressions.
5142 if (VD->isLocalVarDecl() && VD->isStaticLocal() &&
5143 !VD->isUsableInConstantExpressions(C: Info.Ctx)) {
5144 Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local)
5145 << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD;
5146 return false;
5147 }
5148 return true;
5149}
5150
5151// Evaluate a statement.
5152static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5153 const Stmt *S, const SwitchCase *Case) {
5154 if (!Info.nextStep(S))
5155 return ESR_Failed;
5156
5157 // If we're hunting down a 'case' or 'default' label, recurse through
5158 // substatements until we hit the label.
5159 if (Case) {
5160 switch (S->getStmtClass()) {
5161 case Stmt::CompoundStmtClass:
5162 // FIXME: Precompute which substatement of a compound statement we
5163 // would jump to, and go straight there rather than performing a
5164 // linear scan each time.
5165 case Stmt::LabelStmtClass:
5166 case Stmt::AttributedStmtClass:
5167 case Stmt::DoStmtClass:
5168 break;
5169
5170 case Stmt::CaseStmtClass:
5171 case Stmt::DefaultStmtClass:
5172 if (Case == S)
5173 Case = nullptr;
5174 break;
5175
5176 case Stmt::IfStmtClass: {
5177 // FIXME: Precompute which side of an 'if' we would jump to, and go
5178 // straight there rather than scanning both sides.
5179 const IfStmt *IS = cast<IfStmt>(Val: S);
5180
5181 // Wrap the evaluation in a block scope, in case it's a DeclStmt
5182 // preceded by our switch label.
5183 BlockScopeRAII Scope(Info);
5184
5185 // Step into the init statement in case it brings an (uninitialized)
5186 // variable into scope.
5187 if (const Stmt *Init = IS->getInit()) {
5188 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init, Case);
5189 if (ESR != ESR_CaseNotFound) {
5190 assert(ESR != ESR_Succeeded);
5191 return ESR;
5192 }
5193 }
5194
5195 // Condition variable must be initialized if it exists.
5196 // FIXME: We can skip evaluating the body if there's a condition
5197 // variable, as there can't be any case labels within it.
5198 // (The same is true for 'for' statements.)
5199
5200 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: IS->getThen(), Case);
5201 if (ESR == ESR_Failed)
5202 return ESR;
5203 if (ESR != ESR_CaseNotFound)
5204 return Scope.destroy() ? ESR : ESR_Failed;
5205 if (!IS->getElse())
5206 return ESR_CaseNotFound;
5207
5208 ESR = EvaluateStmt(Result, Info, S: IS->getElse(), Case);
5209 if (ESR == ESR_Failed)
5210 return ESR;
5211 if (ESR != ESR_CaseNotFound)
5212 return Scope.destroy() ? ESR : ESR_Failed;
5213 return ESR_CaseNotFound;
5214 }
5215
5216 case Stmt::WhileStmtClass: {
5217 EvalStmtResult ESR =
5218 EvaluateLoopBody(Result, Info, Body: cast<WhileStmt>(Val: S)->getBody(), Case);
5219 if (ESR != ESR_Continue)
5220 return ESR;
5221 break;
5222 }
5223
5224 case Stmt::ForStmtClass: {
5225 const ForStmt *FS = cast<ForStmt>(Val: S);
5226 BlockScopeRAII Scope(Info);
5227
5228 // Step into the init statement in case it brings an (uninitialized)
5229 // variable into scope.
5230 if (const Stmt *Init = FS->getInit()) {
5231 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init, Case);
5232 if (ESR != ESR_CaseNotFound) {
5233 assert(ESR != ESR_Succeeded);
5234 return ESR;
5235 }
5236 }
5237
5238 EvalStmtResult ESR =
5239 EvaluateLoopBody(Result, Info, Body: FS->getBody(), Case);
5240 if (ESR != ESR_Continue)
5241 return ESR;
5242 if (const auto *Inc = FS->getInc()) {
5243 if (Inc->isValueDependent()) {
5244 if (!EvaluateDependentExpr(E: Inc, Info))
5245 return ESR_Failed;
5246 } else {
5247 FullExpressionRAII IncScope(Info);
5248 if (!EvaluateIgnoredValue(Info, E: Inc) || !IncScope.destroy())
5249 return ESR_Failed;
5250 }
5251 }
5252 break;
5253 }
5254
5255 case Stmt::DeclStmtClass: {
5256 // Start the lifetime of any uninitialized variables we encounter. They
5257 // might be used by the selected branch of the switch.
5258 const DeclStmt *DS = cast<DeclStmt>(Val: S);
5259 for (const auto *D : DS->decls()) {
5260 if (const auto *VD = dyn_cast<VarDecl>(Val: D)) {
5261 if (!CheckLocalVariableDeclaration(Info, VD))
5262 return ESR_Failed;
5263 if (VD->hasLocalStorage() && !VD->getInit())
5264 if (!EvaluateVarDecl(Info, VD))
5265 return ESR_Failed;
5266 // FIXME: If the variable has initialization that can't be jumped
5267 // over, bail out of any immediately-surrounding compound-statement
5268 // too. There can't be any case labels here.
5269 }
5270 }
5271 return ESR_CaseNotFound;
5272 }
5273
5274 default:
5275 return ESR_CaseNotFound;
5276 }
5277 }
5278
5279 switch (S->getStmtClass()) {
5280 default:
5281 if (const Expr *E = dyn_cast<Expr>(Val: S)) {
5282 if (E->isValueDependent()) {
5283 if (!EvaluateDependentExpr(E, Info))
5284 return ESR_Failed;
5285 } else {
5286 // Don't bother evaluating beyond an expression-statement which couldn't
5287 // be evaluated.
5288 // FIXME: Do we need the FullExpressionRAII object here?
5289 // VisitExprWithCleanups should create one when necessary.
5290 FullExpressionRAII Scope(Info);
5291 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5292 return ESR_Failed;
5293 }
5294 return ESR_Succeeded;
5295 }
5296
5297 Info.FFDiag(Loc: S->getBeginLoc()) << S->getSourceRange();
5298 return ESR_Failed;
5299
5300 case Stmt::NullStmtClass:
5301 return ESR_Succeeded;
5302
5303 case Stmt::DeclStmtClass: {
5304 const DeclStmt *DS = cast<DeclStmt>(Val: S);
5305 for (const auto *D : DS->decls()) {
5306 const VarDecl *VD = dyn_cast_or_null<VarDecl>(Val: D);
5307 if (VD && !CheckLocalVariableDeclaration(Info, VD))
5308 return ESR_Failed;
5309 // Each declaration initialization is its own full-expression.
5310 FullExpressionRAII Scope(Info);
5311 if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5312 return ESR_Failed;
5313 if (!Scope.destroy())
5314 return ESR_Failed;
5315 }
5316 return ESR_Succeeded;
5317 }
5318
5319 case Stmt::ReturnStmtClass: {
5320 const Expr *RetExpr = cast<ReturnStmt>(Val: S)->getRetValue();
5321 FullExpressionRAII Scope(Info);
5322 if (RetExpr && RetExpr->isValueDependent()) {
5323 EvaluateDependentExpr(E: RetExpr, Info);
5324 // We know we returned, but we don't know what the value is.
5325 return ESR_Failed;
5326 }
5327 if (RetExpr &&
5328 !(Result.Slot
5329 ? EvaluateInPlace(Result&: Result.Value, Info, This: *Result.Slot, E: RetExpr)
5330 : Evaluate(Result&: Result.Value, Info, E: RetExpr)))
5331 return ESR_Failed;
5332 return Scope.destroy() ? ESR_Returned : ESR_Failed;
5333 }
5334
5335 case Stmt::CompoundStmtClass: {
5336 BlockScopeRAII Scope(Info);
5337
5338 const CompoundStmt *CS = cast<CompoundStmt>(Val: S);
5339 for (const auto *BI : CS->body()) {
5340 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: BI, Case);
5341 if (ESR == ESR_Succeeded)
5342 Case = nullptr;
5343 else if (ESR != ESR_CaseNotFound) {
5344 if (ESR != ESR_Failed && !Scope.destroy())
5345 return ESR_Failed;
5346 return ESR;
5347 }
5348 }
5349 if (Case)
5350 return ESR_CaseNotFound;
5351 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5352 }
5353
5354 case Stmt::IfStmtClass: {
5355 const IfStmt *IS = cast<IfStmt>(Val: S);
5356
5357 // Evaluate the condition, as either a var decl or as an expression.
5358 BlockScopeRAII Scope(Info);
5359 if (const Stmt *Init = IS->getInit()) {
5360 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init);
5361 if (ESR != ESR_Succeeded) {
5362 if (ESR != ESR_Failed && !Scope.destroy())
5363 return ESR_Failed;
5364 return ESR;
5365 }
5366 }
5367 bool Cond;
5368 if (IS->isConsteval()) {
5369 Cond = IS->isNonNegatedConsteval();
5370 // If we are not in a constant context, if consteval should not evaluate
5371 // to true.
5372 if (!Info.InConstantContext)
5373 Cond = !Cond;
5374 } else if (!EvaluateCond(Info, CondDecl: IS->getConditionVariable(), Cond: IS->getCond(),
5375 Result&: Cond))
5376 return ESR_Failed;
5377
5378 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5379 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: SubStmt);
5380 if (ESR != ESR_Succeeded) {
5381 if (ESR != ESR_Failed && !Scope.destroy())
5382 return ESR_Failed;
5383 return ESR;
5384 }
5385 }
5386 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5387 }
5388
5389 case Stmt::WhileStmtClass: {
5390 const WhileStmt *WS = cast<WhileStmt>(Val: S);
5391 while (true) {
5392 BlockScopeRAII Scope(Info);
5393 bool Continue;
5394 if (!EvaluateCond(Info, CondDecl: WS->getConditionVariable(), Cond: WS->getCond(),
5395 Result&: Continue))
5396 return ESR_Failed;
5397 if (!Continue)
5398 break;
5399
5400 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: WS->getBody());
5401 if (ESR != ESR_Continue) {
5402 if (ESR != ESR_Failed && !Scope.destroy())
5403 return ESR_Failed;
5404 return ESR;
5405 }
5406 if (!Scope.destroy())
5407 return ESR_Failed;
5408 }
5409 return ESR_Succeeded;
5410 }
5411
5412 case Stmt::DoStmtClass: {
5413 const DoStmt *DS = cast<DoStmt>(Val: S);
5414 bool Continue;
5415 do {
5416 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: DS->getBody(), Case);
5417 if (ESR != ESR_Continue)
5418 return ESR;
5419 Case = nullptr;
5420
5421 if (DS->getCond()->isValueDependent()) {
5422 EvaluateDependentExpr(E: DS->getCond(), Info);
5423 // Bailout as we don't know whether to keep going or terminate the loop.
5424 return ESR_Failed;
5425 }
5426 FullExpressionRAII CondScope(Info);
5427 if (!EvaluateAsBooleanCondition(E: DS->getCond(), Result&: Continue, Info) ||
5428 !CondScope.destroy())
5429 return ESR_Failed;
5430 } while (Continue);
5431 return ESR_Succeeded;
5432 }
5433
5434 case Stmt::ForStmtClass: {
5435 const ForStmt *FS = cast<ForStmt>(Val: S);
5436 BlockScopeRAII ForScope(Info);
5437 if (FS->getInit()) {
5438 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getInit());
5439 if (ESR != ESR_Succeeded) {
5440 if (ESR != ESR_Failed && !ForScope.destroy())
5441 return ESR_Failed;
5442 return ESR;
5443 }
5444 }
5445 while (true) {
5446 BlockScopeRAII IterScope(Info);
5447 bool Continue = true;
5448 if (FS->getCond() && !EvaluateCond(Info, CondDecl: FS->getConditionVariable(),
5449 Cond: FS->getCond(), Result&: Continue))
5450 return ESR_Failed;
5451 if (!Continue)
5452 break;
5453
5454 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: FS->getBody());
5455 if (ESR != ESR_Continue) {
5456 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5457 return ESR_Failed;
5458 return ESR;
5459 }
5460
5461 if (const auto *Inc = FS->getInc()) {
5462 if (Inc->isValueDependent()) {
5463 if (!EvaluateDependentExpr(E: Inc, Info))
5464 return ESR_Failed;
5465 } else {
5466 FullExpressionRAII IncScope(Info);
5467 if (!EvaluateIgnoredValue(Info, E: Inc) || !IncScope.destroy())
5468 return ESR_Failed;
5469 }
5470 }
5471
5472 if (!IterScope.destroy())
5473 return ESR_Failed;
5474 }
5475 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5476 }
5477
5478 case Stmt::CXXForRangeStmtClass: {
5479 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(Val: S);
5480 BlockScopeRAII Scope(Info);
5481
5482 // Evaluate the init-statement if present.
5483 if (FS->getInit()) {
5484 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getInit());
5485 if (ESR != ESR_Succeeded) {
5486 if (ESR != ESR_Failed && !Scope.destroy())
5487 return ESR_Failed;
5488 return ESR;
5489 }
5490 }
5491
5492 // Initialize the __range variable.
5493 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getRangeStmt());
5494 if (ESR != ESR_Succeeded) {
5495 if (ESR != ESR_Failed && !Scope.destroy())
5496 return ESR_Failed;
5497 return ESR;
5498 }
5499
5500 // In error-recovery cases it's possible to get here even if we failed to
5501 // synthesize the __begin and __end variables.
5502 if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5503 return ESR_Failed;
5504
5505 // Create the __begin and __end iterators.
5506 ESR = EvaluateStmt(Result, Info, S: FS->getBeginStmt());
5507 if (ESR != ESR_Succeeded) {
5508 if (ESR != ESR_Failed && !Scope.destroy())
5509 return ESR_Failed;
5510 return ESR;
5511 }
5512 ESR = EvaluateStmt(Result, Info, S: FS->getEndStmt());
5513 if (ESR != ESR_Succeeded) {
5514 if (ESR != ESR_Failed && !Scope.destroy())
5515 return ESR_Failed;
5516 return ESR;
5517 }
5518
5519 while (true) {
5520 // Condition: __begin != __end.
5521 {
5522 if (FS->getCond()->isValueDependent()) {
5523 EvaluateDependentExpr(E: FS->getCond(), Info);
5524 // We don't know whether to keep going or terminate the loop.
5525 return ESR_Failed;
5526 }
5527 bool Continue = true;
5528 FullExpressionRAII CondExpr(Info);
5529 if (!EvaluateAsBooleanCondition(E: FS->getCond(), Result&: Continue, Info))
5530 return ESR_Failed;
5531 if (!Continue)
5532 break;
5533 }
5534
5535 // User's variable declaration, initialized by *__begin.
5536 BlockScopeRAII InnerScope(Info);
5537 ESR = EvaluateStmt(Result, Info, S: FS->getLoopVarStmt());
5538 if (ESR != ESR_Succeeded) {
5539 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5540 return ESR_Failed;
5541 return ESR;
5542 }
5543
5544 // Loop body.
5545 ESR = EvaluateLoopBody(Result, Info, Body: FS->getBody());
5546 if (ESR != ESR_Continue) {
5547 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5548 return ESR_Failed;
5549 return ESR;
5550 }
5551 if (FS->getInc()->isValueDependent()) {
5552 if (!EvaluateDependentExpr(E: FS->getInc(), Info))
5553 return ESR_Failed;
5554 } else {
5555 // Increment: ++__begin
5556 if (!EvaluateIgnoredValue(Info, E: FS->getInc()))
5557 return ESR_Failed;
5558 }
5559
5560 if (!InnerScope.destroy())
5561 return ESR_Failed;
5562 }
5563
5564 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5565 }
5566
5567 case Stmt::SwitchStmtClass:
5568 return EvaluateSwitch(Result, Info, SS: cast<SwitchStmt>(Val: S));
5569
5570 case Stmt::ContinueStmtClass:
5571 return ESR_Continue;
5572
5573 case Stmt::BreakStmtClass:
5574 return ESR_Break;
5575
5576 case Stmt::LabelStmtClass:
5577 return EvaluateStmt(Result, Info, S: cast<LabelStmt>(Val: S)->getSubStmt(), Case);
5578
5579 case Stmt::AttributedStmtClass: {
5580 const auto *AS = cast<AttributedStmt>(Val: S);
5581 const auto *SS = AS->getSubStmt();
5582 MSConstexprContextRAII ConstexprContext(
5583 *Info.CurrentCall, hasSpecificAttr<MSConstexprAttr>(AS->getAttrs()) &&
5584 isa<ReturnStmt>(SS));
5585
5586 auto LO = Info.getCtx().getLangOpts();
5587 if (LO.CXXAssumptions && !LO.MSVCCompat) {
5588 for (auto *Attr : AS->getAttrs()) {
5589 auto *AA = dyn_cast<CXXAssumeAttr>(Attr);
5590 if (!AA)
5591 continue;
5592
5593 auto *Assumption = AA->getAssumption();
5594 if (Assumption->isValueDependent())
5595 return ESR_Failed;
5596
5597 if (Assumption->HasSideEffects(Info.getCtx()))
5598 continue;
5599
5600 bool Value;
5601 if (!EvaluateAsBooleanCondition(Assumption, Value, Info))
5602 return ESR_Failed;
5603 if (!Value) {
5604 Info.CCEDiag(Assumption->getExprLoc(),
5605 diag::note_constexpr_assumption_failed);
5606 return ESR_Failed;
5607 }
5608 }
5609 }
5610
5611 return EvaluateStmt(Result, Info, S: SS, Case);
5612 }
5613
5614 case Stmt::CaseStmtClass:
5615 case Stmt::DefaultStmtClass:
5616 return EvaluateStmt(Result, Info, S: cast<SwitchCase>(Val: S)->getSubStmt(), Case);
5617 case Stmt::CXXTryStmtClass:
5618 // Evaluate try blocks by evaluating all sub statements.
5619 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(Val: S)->getTryBlock(), Case);
5620 }
5621}
5622
5623/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5624/// default constructor. If so, we'll fold it whether or not it's marked as
5625/// constexpr. If it is marked as constexpr, we will never implicitly define it,
5626/// so we need special handling.
5627static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5628 const CXXConstructorDecl *CD,
5629 bool IsValueInitialization) {
5630 if (!CD->isTrivial() || !CD->isDefaultConstructor())
5631 return false;
5632
5633 // Value-initialization does not call a trivial default constructor, so such a
5634 // call is a core constant expression whether or not the constructor is
5635 // constexpr.
5636 if (!CD->isConstexpr() && !IsValueInitialization) {
5637 if (Info.getLangOpts().CPlusPlus11) {
5638 // FIXME: If DiagDecl is an implicitly-declared special member function,
5639 // we should be much more explicit about why it's not constexpr.
5640 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5641 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5642 Info.Note(CD->getLocation(), diag::note_declared_at);
5643 } else {
5644 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5645 }
5646 }
5647 return true;
5648}
5649
5650/// CheckConstexprFunction - Check that a function can be called in a constant
5651/// expression.
5652static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5653 const FunctionDecl *Declaration,
5654 const FunctionDecl *Definition,
5655 const Stmt *Body) {
5656 // Potential constant expressions can contain calls to declared, but not yet
5657 // defined, constexpr functions.
5658 if (Info.checkingPotentialConstantExpression() && !Definition &&
5659 Declaration->isConstexpr())
5660 return false;
5661
5662 // Bail out if the function declaration itself is invalid. We will
5663 // have produced a relevant diagnostic while parsing it, so just
5664 // note the problematic sub-expression.
5665 if (Declaration->isInvalidDecl()) {
5666 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5667 return false;
5668 }
5669
5670 // DR1872: An instantiated virtual constexpr function can't be called in a
5671 // constant expression (prior to C++20). We can still constant-fold such a
5672 // call.
5673 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5674 cast<CXXMethodDecl>(Declaration)->isVirtual())
5675 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5676
5677 if (Definition && Definition->isInvalidDecl()) {
5678 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5679 return false;
5680 }
5681
5682 // Can we evaluate this function call?
5683 if (Definition && Body &&
5684 (Definition->isConstexpr() || (Info.CurrentCall->CanEvalMSConstexpr &&
5685 Definition->hasAttr<MSConstexprAttr>())))
5686 return true;
5687
5688 if (Info.getLangOpts().CPlusPlus11) {
5689 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5690
5691 // If this function is not constexpr because it is an inherited
5692 // non-constexpr constructor, diagnose that directly.
5693 auto *CD = dyn_cast<CXXConstructorDecl>(Val: DiagDecl);
5694 if (CD && CD->isInheritingConstructor()) {
5695 auto *Inherited = CD->getInheritedConstructor().getConstructor();
5696 if (!Inherited->isConstexpr())
5697 DiagDecl = CD = Inherited;
5698 }
5699
5700 // FIXME: If DiagDecl is an implicitly-declared special member function
5701 // or an inheriting constructor, we should be much more explicit about why
5702 // it's not constexpr.
5703 if (CD && CD->isInheritingConstructor())
5704 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5705 << CD->getInheritedConstructor().getConstructor()->getParent();
5706 else
5707 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5708 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5709 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5710 } else {
5711 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5712 }
5713 return false;
5714}
5715
5716namespace {
5717struct CheckDynamicTypeHandler {
5718 AccessKinds AccessKind;
5719 typedef bool result_type;
5720 bool failed() { return false; }
5721 bool found(APValue &Subobj, QualType SubobjType) { return true; }
5722 bool found(APSInt &Value, QualType SubobjType) { return true; }
5723 bool found(APFloat &Value, QualType SubobjType) { return true; }
5724};
5725} // end anonymous namespace
5726
5727/// Check that we can access the notional vptr of an object / determine its
5728/// dynamic type.
5729static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5730 AccessKinds AK, bool Polymorphic) {
5731 if (This.Designator.Invalid)
5732 return false;
5733
5734 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal: This, LValType: QualType());
5735
5736 if (!Obj)
5737 return false;
5738
5739 if (!Obj.Value) {
5740 // The object is not usable in constant expressions, so we can't inspect
5741 // its value to see if it's in-lifetime or what the active union members
5742 // are. We can still check for a one-past-the-end lvalue.
5743 if (This.Designator.isOnePastTheEnd() ||
5744 This.Designator.isMostDerivedAnUnsizedArray()) {
5745 Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5746 ? diag::note_constexpr_access_past_end
5747 : diag::note_constexpr_access_unsized_array)
5748 << AK;
5749 return false;
5750 } else if (Polymorphic) {
5751 // Conservatively refuse to perform a polymorphic operation if we would
5752 // not be able to read a notional 'vptr' value.
5753 APValue Val;
5754 This.moveInto(V&: Val);
5755 QualType StarThisType =
5756 Info.Ctx.getLValueReferenceType(T: This.Designator.getType(Info.Ctx));
5757 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5758 << AK << Val.getAsString(Info.Ctx, StarThisType);
5759 return false;
5760 }
5761 return true;
5762 }
5763
5764 CheckDynamicTypeHandler Handler{.AccessKind: AK};
5765 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5766}
5767
5768/// Check that the pointee of the 'this' pointer in a member function call is
5769/// either within its lifetime or in its period of construction or destruction.
5770static bool
5771checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5772 const LValue &This,
5773 const CXXMethodDecl *NamedMember) {
5774 return checkDynamicType(
5775 Info, E, This,
5776 AK: isa<CXXDestructorDecl>(Val: NamedMember) ? AK_Destroy : AK_MemberCall, Polymorphic: false);
5777}
5778
5779struct DynamicType {
5780 /// The dynamic class type of the object.
5781 const CXXRecordDecl *Type;
5782 /// The corresponding path length in the lvalue.
5783 unsigned PathLength;
5784};
5785
5786static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5787 unsigned PathLength) {
5788 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5789 Designator.Entries.size() && "invalid path length");
5790 return (PathLength == Designator.MostDerivedPathLength)
5791 ? Designator.MostDerivedType->getAsCXXRecordDecl()
5792 : getAsBaseClass(E: Designator.Entries[PathLength - 1]);
5793}
5794
5795/// Determine the dynamic type of an object.
5796static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info,
5797 const Expr *E,
5798 LValue &This,
5799 AccessKinds AK) {
5800 // If we don't have an lvalue denoting an object of class type, there is no
5801 // meaningful dynamic type. (We consider objects of non-class type to have no
5802 // dynamic type.)
5803 if (!checkDynamicType(Info, E, This, AK, Polymorphic: true))
5804 return std::nullopt;
5805
5806 // Refuse to compute a dynamic type in the presence of virtual bases. This
5807 // shouldn't happen other than in constant-folding situations, since literal
5808 // types can't have virtual bases.
5809 //
5810 // Note that consumers of DynamicType assume that the type has no virtual
5811 // bases, and will need modifications if this restriction is relaxed.
5812 const CXXRecordDecl *Class =
5813 This.Designator.MostDerivedType->getAsCXXRecordDecl();
5814 if (!Class || Class->getNumVBases()) {
5815 Info.FFDiag(E);
5816 return std::nullopt;
5817 }
5818
5819 // FIXME: For very deep class hierarchies, it might be beneficial to use a
5820 // binary search here instead. But the overwhelmingly common case is that
5821 // we're not in the middle of a constructor, so it probably doesn't matter
5822 // in practice.
5823 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5824 for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5825 PathLength <= Path.size(); ++PathLength) {
5826 switch (Info.isEvaluatingCtorDtor(Base: This.getLValueBase(),
5827 Path: Path.slice(N: 0, M: PathLength))) {
5828 case ConstructionPhase::Bases:
5829 case ConstructionPhase::DestroyingBases:
5830 // We're constructing or destroying a base class. This is not the dynamic
5831 // type.
5832 break;
5833
5834 case ConstructionPhase::None:
5835 case ConstructionPhase::AfterBases:
5836 case ConstructionPhase::AfterFields:
5837 case ConstructionPhase::Destroying:
5838 // We've finished constructing the base classes and not yet started
5839 // destroying them again, so this is the dynamic type.
5840 return DynamicType{getBaseClassType(This.Designator, PathLength),
5841 PathLength};
5842 }
5843 }
5844
5845 // CWG issue 1517: we're constructing a base class of the object described by
5846 // 'This', so that object has not yet begun its period of construction and
5847 // any polymorphic operation on it results in undefined behavior.
5848 Info.FFDiag(E);
5849 return std::nullopt;
5850}
5851
5852/// Perform virtual dispatch.
5853static const CXXMethodDecl *HandleVirtualDispatch(
5854 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5855 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5856 std::optional<DynamicType> DynType = ComputeDynamicType(
5857 Info, E, This,
5858 AK: isa<CXXDestructorDecl>(Val: Found) ? AK_Destroy : AK_MemberCall);
5859 if (!DynType)
5860 return nullptr;
5861
5862 // Find the final overrider. It must be declared in one of the classes on the
5863 // path from the dynamic type to the static type.
5864 // FIXME: If we ever allow literal types to have virtual base classes, that
5865 // won't be true.
5866 const CXXMethodDecl *Callee = Found;
5867 unsigned PathLength = DynType->PathLength;
5868 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5869 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5870 const CXXMethodDecl *Overrider =
5871 Found->getCorrespondingMethodDeclaredInClass(RD: Class, MayBeBase: false);
5872 if (Overrider) {
5873 Callee = Overrider;
5874 break;
5875 }
5876 }
5877
5878 // C++2a [class.abstract]p6:
5879 // the effect of making a virtual call to a pure virtual function [...] is
5880 // undefined
5881 if (Callee->isPureVirtual()) {
5882 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5883 Info.Note(Callee->getLocation(), diag::note_declared_at);
5884 return nullptr;
5885 }
5886
5887 // If necessary, walk the rest of the path to determine the sequence of
5888 // covariant adjustment steps to apply.
5889 if (!Info.Ctx.hasSameUnqualifiedType(T1: Callee->getReturnType(),
5890 T2: Found->getReturnType())) {
5891 CovariantAdjustmentPath.push_back(Elt: Callee->getReturnType());
5892 for (unsigned CovariantPathLength = PathLength + 1;
5893 CovariantPathLength != This.Designator.Entries.size();
5894 ++CovariantPathLength) {
5895 const CXXRecordDecl *NextClass =
5896 getBaseClassType(This.Designator, CovariantPathLength);
5897 const CXXMethodDecl *Next =
5898 Found->getCorrespondingMethodDeclaredInClass(RD: NextClass, MayBeBase: false);
5899 if (Next && !Info.Ctx.hasSameUnqualifiedType(
5900 T1: Next->getReturnType(), T2: CovariantAdjustmentPath.back()))
5901 CovariantAdjustmentPath.push_back(Elt: Next->getReturnType());
5902 }
5903 if (!Info.Ctx.hasSameUnqualifiedType(T1: Found->getReturnType(),
5904 T2: CovariantAdjustmentPath.back()))
5905 CovariantAdjustmentPath.push_back(Elt: Found->getReturnType());
5906 }
5907
5908 // Perform 'this' adjustment.
5909 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5910 return nullptr;
5911
5912 return Callee;
5913}
5914
5915/// Perform the adjustment from a value returned by a virtual function to
5916/// a value of the statically expected type, which may be a pointer or
5917/// reference to a base class of the returned type.
5918static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5919 APValue &Result,
5920 ArrayRef<QualType> Path) {
5921 assert(Result.isLValue() &&
5922 "unexpected kind of APValue for covariant return");
5923 if (Result.isNullPointer())
5924 return true;
5925
5926 LValue LVal;
5927 LVal.setFrom(Ctx&: Info.Ctx, V: Result);
5928
5929 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5930 for (unsigned I = 1; I != Path.size(); ++I) {
5931 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5932 assert(OldClass && NewClass && "unexpected kind of covariant return");
5933 if (OldClass != NewClass &&
5934 !CastToBaseClass(Info, E, Result&: LVal, DerivedRD: OldClass, BaseRD: NewClass))
5935 return false;
5936 OldClass = NewClass;
5937 }
5938
5939 LVal.moveInto(V&: Result);
5940 return true;
5941}
5942
5943/// Determine whether \p Base, which is known to be a direct base class of
5944/// \p Derived, is a public base class.
5945static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5946 const CXXRecordDecl *Base) {
5947 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5948 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5949 if (BaseClass && declaresSameEntity(BaseClass, Base))
5950 return BaseSpec.getAccessSpecifier() == AS_public;
5951 }
5952 llvm_unreachable("Base is not a direct base of Derived");
5953}
5954
5955/// Apply the given dynamic cast operation on the provided lvalue.
5956///
5957/// This implements the hard case of dynamic_cast, requiring a "runtime check"
5958/// to find a suitable target subobject.
5959static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5960 LValue &Ptr) {
5961 // We can't do anything with a non-symbolic pointer value.
5962 SubobjectDesignator &D = Ptr.Designator;
5963 if (D.Invalid)
5964 return false;
5965
5966 // C++ [expr.dynamic.cast]p6:
5967 // If v is a null pointer value, the result is a null pointer value.
5968 if (Ptr.isNullPointer() && !E->isGLValue())
5969 return true;
5970
5971 // For all the other cases, we need the pointer to point to an object within
5972 // its lifetime / period of construction / destruction, and we need to know
5973 // its dynamic type.
5974 std::optional<DynamicType> DynType =
5975 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5976 if (!DynType)
5977 return false;
5978
5979 // C++ [expr.dynamic.cast]p7:
5980 // If T is "pointer to cv void", then the result is a pointer to the most
5981 // derived object
5982 if (E->getType()->isVoidPointerType())
5983 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5984
5985 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5986 assert(C && "dynamic_cast target is not void pointer nor class");
5987 CanQualType CQT = Info.Ctx.getCanonicalType(T: Info.Ctx.getRecordType(C));
5988
5989 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5990 // C++ [expr.dynamic.cast]p9:
5991 if (!E->isGLValue()) {
5992 // The value of a failed cast to pointer type is the null pointer value
5993 // of the required result type.
5994 Ptr.setNull(Ctx&: Info.Ctx, PointerTy: E->getType());
5995 return true;
5996 }
5997
5998 // A failed cast to reference type throws [...] std::bad_cast.
5999 unsigned DiagKind;
6000 if (!Paths && (declaresSameEntity(DynType->Type, C) ||
6001 DynType->Type->isDerivedFrom(Base: C)))
6002 DiagKind = 0;
6003 else if (!Paths || Paths->begin() == Paths->end())
6004 DiagKind = 1;
6005 else if (Paths->isAmbiguous(BaseType: CQT))
6006 DiagKind = 2;
6007 else {
6008 assert(Paths->front().Access != AS_public && "why did the cast fail?");
6009 DiagKind = 3;
6010 }
6011 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
6012 << DiagKind << Ptr.Designator.getType(Info.Ctx)
6013 << Info.Ctx.getRecordType(DynType->Type)
6014 << E->getType().getUnqualifiedType();
6015 return false;
6016 };
6017
6018 // Runtime check, phase 1:
6019 // Walk from the base subobject towards the derived object looking for the
6020 // target type.
6021 for (int PathLength = Ptr.Designator.Entries.size();
6022 PathLength >= (int)DynType->PathLength; --PathLength) {
6023 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
6024 if (declaresSameEntity(Class, C))
6025 return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
6026 // We can only walk across public inheritance edges.
6027 if (PathLength > (int)DynType->PathLength &&
6028 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
6029 Class))
6030 return RuntimeCheckFailed(nullptr);
6031 }
6032
6033 // Runtime check, phase 2:
6034 // Search the dynamic type for an unambiguous public base of type C.
6035 CXXBasePaths Paths(/*FindAmbiguities=*/true,
6036 /*RecordPaths=*/true, /*DetectVirtual=*/false);
6037 if (DynType->Type->isDerivedFrom(Base: C, Paths) && !Paths.isAmbiguous(BaseType: CQT) &&
6038 Paths.front().Access == AS_public) {
6039 // Downcast to the dynamic type...
6040 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
6041 return false;
6042 // ... then upcast to the chosen base class subobject.
6043 for (CXXBasePathElement &Elem : Paths.front())
6044 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
6045 return false;
6046 return true;
6047 }
6048
6049 // Otherwise, the runtime check fails.
6050 return RuntimeCheckFailed(&Paths);
6051}
6052
6053namespace {
6054struct StartLifetimeOfUnionMemberHandler {
6055 EvalInfo &Info;
6056 const Expr *LHSExpr;
6057 const FieldDecl *Field;
6058 bool DuringInit;
6059 bool Failed = false;
6060 static const AccessKinds AccessKind = AK_Assign;
6061
6062 typedef bool result_type;
6063 bool failed() { return Failed; }
6064 bool found(APValue &Subobj, QualType SubobjType) {
6065 // We are supposed to perform no initialization but begin the lifetime of
6066 // the object. We interpret that as meaning to do what default
6067 // initialization of the object would do if all constructors involved were
6068 // trivial:
6069 // * All base, non-variant member, and array element subobjects' lifetimes
6070 // begin
6071 // * No variant members' lifetimes begin
6072 // * All scalar subobjects whose lifetimes begin have indeterminate values
6073 assert(SubobjType->isUnionType());
6074 if (declaresSameEntity(Subobj.getUnionField(), Field)) {
6075 // This union member is already active. If it's also in-lifetime, there's
6076 // nothing to do.
6077 if (Subobj.getUnionValue().hasValue())
6078 return true;
6079 } else if (DuringInit) {
6080 // We're currently in the process of initializing a different union
6081 // member. If we carried on, that initialization would attempt to
6082 // store to an inactive union member, resulting in undefined behavior.
6083 Info.FFDiag(LHSExpr,
6084 diag::note_constexpr_union_member_change_during_init);
6085 return false;
6086 }
6087 APValue Result;
6088 Failed = !handleDefaultInitValue(Field->getType(), Result);
6089 Subobj.setUnion(Field, Value: Result);
6090 return true;
6091 }
6092 bool found(APSInt &Value, QualType SubobjType) {
6093 llvm_unreachable("wrong value kind for union object");
6094 }
6095 bool found(APFloat &Value, QualType SubobjType) {
6096 llvm_unreachable("wrong value kind for union object");
6097 }
6098};
6099} // end anonymous namespace
6100
6101const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
6102
6103/// Handle a builtin simple-assignment or a call to a trivial assignment
6104/// operator whose left-hand side might involve a union member access. If it
6105/// does, implicitly start the lifetime of any accessed union elements per
6106/// C++20 [class.union]5.
6107static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info,
6108 const Expr *LHSExpr,
6109 const LValue &LHS) {
6110 if (LHS.InvalidBase || LHS.Designator.Invalid)
6111 return false;
6112
6113 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
6114 // C++ [class.union]p5:
6115 // define the set S(E) of subexpressions of E as follows:
6116 unsigned PathLength = LHS.Designator.Entries.size();
6117 for (const Expr *E = LHSExpr; E != nullptr;) {
6118 // -- If E is of the form A.B, S(E) contains the elements of S(A)...
6119 if (auto *ME = dyn_cast<MemberExpr>(Val: E)) {
6120 auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl());
6121 // Note that we can't implicitly start the lifetime of a reference,
6122 // so we don't need to proceed any further if we reach one.
6123 if (!FD || FD->getType()->isReferenceType())
6124 break;
6125
6126 // ... and also contains A.B if B names a union member ...
6127 if (FD->getParent()->isUnion()) {
6128 // ... of a non-class, non-array type, or of a class type with a
6129 // trivial default constructor that is not deleted, or an array of
6130 // such types.
6131 auto *RD =
6132 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6133 if (!RD || RD->hasTrivialDefaultConstructor())
6134 UnionPathLengths.push_back(Elt: {PathLength - 1, FD});
6135 }
6136
6137 E = ME->getBase();
6138 --PathLength;
6139 assert(declaresSameEntity(FD,
6140 LHS.Designator.Entries[PathLength]
6141 .getAsBaseOrMember().getPointer()));
6142
6143 // -- If E is of the form A[B] and is interpreted as a built-in array
6144 // subscripting operator, S(E) is [S(the array operand, if any)].
6145 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: E)) {
6146 // Step over an ArrayToPointerDecay implicit cast.
6147 auto *Base = ASE->getBase()->IgnoreImplicit();
6148 if (!Base->getType()->isArrayType())
6149 break;
6150
6151 E = Base;
6152 --PathLength;
6153
6154 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
6155 // Step over a derived-to-base conversion.
6156 E = ICE->getSubExpr();
6157 if (ICE->getCastKind() == CK_NoOp)
6158 continue;
6159 if (ICE->getCastKind() != CK_DerivedToBase &&
6160 ICE->getCastKind() != CK_UncheckedDerivedToBase)
6161 break;
6162 // Walk path backwards as we walk up from the base to the derived class.
6163 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
6164 if (Elt->isVirtual()) {
6165 // A class with virtual base classes never has a trivial default
6166 // constructor, so S(E) is empty in this case.
6167 E = nullptr;
6168 break;
6169 }
6170
6171 --PathLength;
6172 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
6173 LHS.Designator.Entries[PathLength]
6174 .getAsBaseOrMember().getPointer()));
6175 }
6176
6177 // -- Otherwise, S(E) is empty.
6178 } else {
6179 break;
6180 }
6181 }
6182
6183 // Common case: no unions' lifetimes are started.
6184 if (UnionPathLengths.empty())
6185 return true;
6186
6187 // if modification of X [would access an inactive union member], an object
6188 // of the type of X is implicitly created
6189 CompleteObject Obj =
6190 findCompleteObject(Info, E: LHSExpr, AK: AK_Assign, LVal: LHS, LValType: LHSExpr->getType());
6191 if (!Obj)
6192 return false;
6193 for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6194 llvm::reverse(C&: UnionPathLengths)) {
6195 // Form a designator for the union object.
6196 SubobjectDesignator D = LHS.Designator;
6197 D.truncate(Ctx&: Info.Ctx, Base: LHS.Base, NewLength: LengthAndField.first);
6198
6199 bool DuringInit = Info.isEvaluatingCtorDtor(Base: LHS.Base, Path: D.Entries) ==
6200 ConstructionPhase::AfterBases;
6201 StartLifetimeOfUnionMemberHandler StartLifetime{
6202 .Info: Info, .LHSExpr: LHSExpr, .Field: LengthAndField.second, .DuringInit: DuringInit};
6203 if (!findSubobject(Info, E: LHSExpr, Obj, Sub: D, handler&: StartLifetime))
6204 return false;
6205 }
6206
6207 return true;
6208}
6209
6210static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6211 CallRef Call, EvalInfo &Info,
6212 bool NonNull = false) {
6213 LValue LV;
6214 // Create the parameter slot and register its destruction. For a vararg
6215 // argument, create a temporary.
6216 // FIXME: For calling conventions that destroy parameters in the callee,
6217 // should we consider performing destruction when the function returns
6218 // instead?
6219 APValue &V = PVD ? Info.CurrentCall->createParam(Args: Call, PVD, LV)
6220 : Info.CurrentCall->createTemporary(Key: Arg, T: Arg->getType(),
6221 Scope: ScopeKind::Call, LV);
6222 if (!EvaluateInPlace(Result&: V, Info, This: LV, E: Arg))
6223 return false;
6224
6225 // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6226 // undefined behavior, so is non-constant.
6227 if (NonNull && V.isLValue() && V.isNullPointer()) {
6228 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6229 return false;
6230 }
6231
6232 return true;
6233}
6234
6235/// Evaluate the arguments to a function call.
6236static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6237 EvalInfo &Info, const FunctionDecl *Callee,
6238 bool RightToLeft = false) {
6239 bool Success = true;
6240 llvm::SmallBitVector ForbiddenNullArgs;
6241 if (Callee->hasAttr<NonNullAttr>()) {
6242 ForbiddenNullArgs.resize(N: Args.size());
6243 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6244 if (!Attr->args_size()) {
6245 ForbiddenNullArgs.set();
6246 break;
6247 } else
6248 for (auto Idx : Attr->args()) {
6249 unsigned ASTIdx = Idx.getASTIndex();
6250 if (ASTIdx >= Args.size())
6251 continue;
6252 ForbiddenNullArgs[ASTIdx] = true;
6253 }
6254 }
6255 }
6256 for (unsigned I = 0; I < Args.size(); I++) {
6257 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6258 const ParmVarDecl *PVD =
6259 Idx < Callee->getNumParams() ? Callee->getParamDecl(i: Idx) : nullptr;
6260 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6261 if (!EvaluateCallArg(PVD, Arg: Args[Idx], Call, Info, NonNull)) {
6262 // If we're checking for a potential constant expression, evaluate all
6263 // initializers even if some of them fail.
6264 if (!Info.noteFailure())
6265 return false;
6266 Success = false;
6267 }
6268 }
6269 return Success;
6270}
6271
6272/// Perform a trivial copy from Param, which is the parameter of a copy or move
6273/// constructor or assignment operator.
6274static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6275 const Expr *E, APValue &Result,
6276 bool CopyObjectRepresentation) {
6277 // Find the reference argument.
6278 CallStackFrame *Frame = Info.CurrentCall;
6279 APValue *RefValue = Info.getParamSlot(Call: Frame->Arguments, PVD: Param);
6280 if (!RefValue) {
6281 Info.FFDiag(E);
6282 return false;
6283 }
6284
6285 // Copy out the contents of the RHS object.
6286 LValue RefLValue;
6287 RefLValue.setFrom(Ctx&: Info.Ctx, V: *RefValue);
6288 return handleLValueToRValueConversion(
6289 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6290 CopyObjectRepresentation);
6291}
6292
6293/// Evaluate a function call.
6294static bool HandleFunctionCall(SourceLocation CallLoc,
6295 const FunctionDecl *Callee, const LValue *This,
6296 const Expr *E, ArrayRef<const Expr *> Args,
6297 CallRef Call, const Stmt *Body, EvalInfo &Info,
6298 APValue &Result, const LValue *ResultSlot) {
6299 if (!Info.CheckCallLimit(Loc: CallLoc))
6300 return false;
6301
6302 CallStackFrame Frame(Info, E->getSourceRange(), Callee, This, E, Call);
6303
6304 // For a trivial copy or move assignment, perform an APValue copy. This is
6305 // essential for unions, where the operations performed by the assignment
6306 // operator cannot be represented as statements.
6307 //
6308 // Skip this for non-union classes with no fields; in that case, the defaulted
6309 // copy/move does not actually read the object.
6310 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: Callee);
6311 if (MD && MD->isDefaulted() &&
6312 (MD->getParent()->isUnion() ||
6313 (MD->isTrivial() &&
6314 isReadByLvalueToRvalueConversion(RD: MD->getParent())))) {
6315 assert(This &&
6316 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6317 APValue RHSValue;
6318 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6319 MD->getParent()->isUnion()))
6320 return false;
6321 if (!handleAssignment(Info, E: Args[0], LVal: *This, LValType: MD->getThisType(),
6322 Val&: RHSValue))
6323 return false;
6324 This->moveInto(V&: Result);
6325 return true;
6326 } else if (MD && isLambdaCallOperator(MD)) {
6327 // We're in a lambda; determine the lambda capture field maps unless we're
6328 // just constexpr checking a lambda's call operator. constexpr checking is
6329 // done before the captures have been added to the closure object (unless
6330 // we're inferring constexpr-ness), so we don't have access to them in this
6331 // case. But since we don't need the captures to constexpr check, we can
6332 // just ignore them.
6333 if (!Info.checkingPotentialConstantExpression())
6334 MD->getParent()->getCaptureFields(Captures&: Frame.LambdaCaptureFields,
6335 ThisCapture&: Frame.LambdaThisCaptureField);
6336 }
6337
6338 StmtResult Ret = {.Value: Result, .Slot: ResultSlot};
6339 EvalStmtResult ESR = EvaluateStmt(Result&: Ret, Info, S: Body);
6340 if (ESR == ESR_Succeeded) {
6341 if (Callee->getReturnType()->isVoidType())
6342 return true;
6343 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6344 }
6345 return ESR == ESR_Returned;
6346}
6347
6348/// Evaluate a constructor call.
6349static bool HandleConstructorCall(const Expr *E, const LValue &This,
6350 CallRef Call,
6351 const CXXConstructorDecl *Definition,
6352 EvalInfo &Info, APValue &Result) {
6353 SourceLocation CallLoc = E->getExprLoc();
6354 if (!Info.CheckCallLimit(Loc: CallLoc))
6355 return false;
6356
6357 const CXXRecordDecl *RD = Definition->getParent();
6358 if (RD->getNumVBases()) {
6359 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6360 return false;
6361 }
6362
6363 EvalInfo::EvaluatingConstructorRAII EvalObj(
6364 Info,
6365 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6366 RD->getNumBases());
6367 CallStackFrame Frame(Info, E->getSourceRange(), Definition, &This, E, Call);
6368
6369 // FIXME: Creating an APValue just to hold a nonexistent return value is
6370 // wasteful.
6371 APValue RetVal;
6372 StmtResult Ret = {.Value: RetVal, .Slot: nullptr};
6373
6374 // If it's a delegating constructor, delegate.
6375 if (Definition->isDelegatingConstructor()) {
6376 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6377 if ((*I)->getInit()->isValueDependent()) {
6378 if (!EvaluateDependentExpr(E: (*I)->getInit(), Info))
6379 return false;
6380 } else {
6381 FullExpressionRAII InitScope(Info);
6382 if (!EvaluateInPlace(Result, Info, This, E: (*I)->getInit()) ||
6383 !InitScope.destroy())
6384 return false;
6385 }
6386 return EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) != ESR_Failed;
6387 }
6388
6389 // For a trivial copy or move constructor, perform an APValue copy. This is
6390 // essential for unions (or classes with anonymous union members), where the
6391 // operations performed by the constructor cannot be represented by
6392 // ctor-initializers.
6393 //
6394 // Skip this for empty non-union classes; we should not perform an
6395 // lvalue-to-rvalue conversion on them because their copy constructor does not
6396 // actually read them.
6397 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6398 (Definition->getParent()->isUnion() ||
6399 (Definition->isTrivial() &&
6400 isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6401 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6402 Definition->getParent()->isUnion());
6403 }
6404
6405 // Reserve space for the struct members.
6406 if (!Result.hasValue()) {
6407 if (!RD->isUnion())
6408 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6409 std::distance(RD->field_begin(), RD->field_end()));
6410 else
6411 // A union starts with no active member.
6412 Result = APValue((const FieldDecl*)nullptr);
6413 }
6414
6415 if (RD->isInvalidDecl()) return false;
6416 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6417
6418 // A scope for temporaries lifetime-extended by reference members.
6419 BlockScopeRAII LifetimeExtendedScope(Info);
6420
6421 bool Success = true;
6422 unsigned BasesSeen = 0;
6423#ifndef NDEBUG
6424 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6425#endif
6426 CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6427 auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6428 // We might be initializing the same field again if this is an indirect
6429 // field initialization.
6430 if (FieldIt == RD->field_end() ||
6431 FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6432 assert(Indirect && "fields out of order?");
6433 return;
6434 }
6435
6436 // Default-initialize any fields with no explicit initializer.
6437 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6438 assert(FieldIt != RD->field_end() && "missing field?");
6439 if (!FieldIt->isUnnamedBitField())
6440 Success &= handleDefaultInitValue(
6441 FieldIt->getType(),
6442 Result.getStructField(i: FieldIt->getFieldIndex()));
6443 }
6444 ++FieldIt;
6445 };
6446 for (const auto *I : Definition->inits()) {
6447 LValue Subobject = This;
6448 LValue SubobjectParent = This;
6449 APValue *Value = &Result;
6450
6451 // Determine the subobject to initialize.
6452 FieldDecl *FD = nullptr;
6453 if (I->isBaseInitializer()) {
6454 QualType BaseType(I->getBaseClass(), 0);
6455#ifndef NDEBUG
6456 // Non-virtual base classes are initialized in the order in the class
6457 // definition. We have already checked for virtual base classes.
6458 assert(!BaseIt->isVirtual() && "virtual base for literal type");
6459 assert(Info.Ctx.hasSameUnqualifiedType(BaseIt->getType(), BaseType) &&
6460 "base class initializers not in expected order");
6461 ++BaseIt;
6462#endif
6463 if (!HandleLValueDirectBase(Info, E: I->getInit(), Obj&: Subobject, Derived: RD,
6464 Base: BaseType->getAsCXXRecordDecl(), RL: &Layout))
6465 return false;
6466 Value = &Result.getStructBase(i: BasesSeen++);
6467 } else if ((FD = I->getMember())) {
6468 if (!HandleLValueMember(Info, E: I->getInit(), LVal&: Subobject, FD, RL: &Layout))
6469 return false;
6470 if (RD->isUnion()) {
6471 Result = APValue(FD);
6472 Value = &Result.getUnionValue();
6473 } else {
6474 SkipToField(FD, false);
6475 Value = &Result.getStructField(i: FD->getFieldIndex());
6476 }
6477 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6478 // Walk the indirect field decl's chain to find the object to initialize,
6479 // and make sure we've initialized every step along it.
6480 auto IndirectFieldChain = IFD->chain();
6481 for (auto *C : IndirectFieldChain) {
6482 FD = cast<FieldDecl>(Val: C);
6483 CXXRecordDecl *CD = cast<CXXRecordDecl>(Val: FD->getParent());
6484 // Switch the union field if it differs. This happens if we had
6485 // preceding zero-initialization, and we're now initializing a union
6486 // subobject other than the first.
6487 // FIXME: In this case, the values of the other subobjects are
6488 // specified, since zero-initialization sets all padding bits to zero.
6489 if (!Value->hasValue() ||
6490 (Value->isUnion() && Value->getUnionField() != FD)) {
6491 if (CD->isUnion())
6492 *Value = APValue(FD);
6493 else
6494 // FIXME: This immediately starts the lifetime of all members of
6495 // an anonymous struct. It would be preferable to strictly start
6496 // member lifetime in initialization order.
6497 Success &=
6498 handleDefaultInitValue(T: Info.Ctx.getRecordType(CD), Result&: *Value);
6499 }
6500 // Store Subobject as its parent before updating it for the last element
6501 // in the chain.
6502 if (C == IndirectFieldChain.back())
6503 SubobjectParent = Subobject;
6504 if (!HandleLValueMember(Info, E: I->getInit(), LVal&: Subobject, FD))
6505 return false;
6506 if (CD->isUnion())
6507 Value = &Value->getUnionValue();
6508 else {
6509 if (C == IndirectFieldChain.front() && !RD->isUnion())
6510 SkipToField(FD, true);
6511 Value = &Value->getStructField(i: FD->getFieldIndex());
6512 }
6513 }
6514 } else {
6515 llvm_unreachable("unknown base initializer kind");
6516 }
6517
6518 // Need to override This for implicit field initializers as in this case
6519 // This refers to innermost anonymous struct/union containing initializer,
6520 // not to currently constructed class.
6521 const Expr *Init = I->getInit();
6522 if (Init->isValueDependent()) {
6523 if (!EvaluateDependentExpr(E: Init, Info))
6524 return false;
6525 } else {
6526 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6527 isa<CXXDefaultInitExpr>(Val: Init));
6528 FullExpressionRAII InitScope(Info);
6529 if (!EvaluateInPlace(Result&: *Value, Info, This: Subobject, E: Init) ||
6530 (FD && FD->isBitField() &&
6531 !truncateBitfieldValue(Info, E: Init, Value&: *Value, FD))) {
6532 // If we're checking for a potential constant expression, evaluate all
6533 // initializers even if some of them fail.
6534 if (!Info.noteFailure())
6535 return false;
6536 Success = false;
6537 }
6538 }
6539
6540 // This is the point at which the dynamic type of the object becomes this
6541 // class type.
6542 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6543 EvalObj.finishedConstructingBases();
6544 }
6545
6546 // Default-initialize any remaining fields.
6547 if (!RD->isUnion()) {
6548 for (; FieldIt != RD->field_end(); ++FieldIt) {
6549 if (!FieldIt->isUnnamedBitField())
6550 Success &= handleDefaultInitValue(
6551 FieldIt->getType(),
6552 Result.getStructField(i: FieldIt->getFieldIndex()));
6553 }
6554 }
6555
6556 EvalObj.finishedConstructingFields();
6557
6558 return Success &&
6559 EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) != ESR_Failed &&
6560 LifetimeExtendedScope.destroy();
6561}
6562
6563static bool HandleConstructorCall(const Expr *E, const LValue &This,
6564 ArrayRef<const Expr*> Args,
6565 const CXXConstructorDecl *Definition,
6566 EvalInfo &Info, APValue &Result) {
6567 CallScopeRAII CallScope(Info);
6568 CallRef Call = Info.CurrentCall->createCall(Definition);
6569 if (!EvaluateArgs(Args, Call, Info, Definition))
6570 return false;
6571
6572 return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6573 CallScope.destroy();
6574}
6575
6576static bool HandleDestructionImpl(EvalInfo &Info, SourceRange CallRange,
6577 const LValue &This, APValue &Value,
6578 QualType T) {
6579 // Objects can only be destroyed while they're within their lifetimes.
6580 // FIXME: We have no representation for whether an object of type nullptr_t
6581 // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6582 // as indeterminate instead?
6583 if (Value.isAbsent() && !T->isNullPtrType()) {
6584 APValue Printable;
6585 This.moveInto(V&: Printable);
6586 Info.FFDiag(CallRange.getBegin(),
6587 diag::note_constexpr_destroy_out_of_lifetime)
6588 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6589 return false;
6590 }
6591
6592 // Invent an expression for location purposes.
6593 // FIXME: We shouldn't need to do this.
6594 OpaqueValueExpr LocE(CallRange.getBegin(), Info.Ctx.IntTy, VK_PRValue);
6595
6596 // For arrays, destroy elements right-to-left.
6597 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6598 uint64_t Size = CAT->getZExtSize();
6599 QualType ElemT = CAT->getElementType();
6600
6601 if (!CheckArraySize(Info, CAT, CallLoc: CallRange.getBegin()))
6602 return false;
6603
6604 LValue ElemLV = This;
6605 ElemLV.addArray(Info, &LocE, CAT);
6606 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6607 return false;
6608
6609 // Ensure that we have actual array elements available to destroy; the
6610 // destructors might mutate the value, so we can't run them on the array
6611 // filler.
6612 if (Size && Size > Value.getArrayInitializedElts())
6613 expandArray(Array&: Value, Index: Value.getArraySize() - 1);
6614
6615 for (; Size != 0; --Size) {
6616 APValue &Elem = Value.getArrayInitializedElt(I: Size - 1);
6617 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6618 !HandleDestructionImpl(Info, CallRange, This: ElemLV, Value&: Elem, T: ElemT))
6619 return false;
6620 }
6621
6622 // End the lifetime of this array now.
6623 Value = APValue();
6624 return true;
6625 }
6626
6627 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6628 if (!RD) {
6629 if (T.isDestructedType()) {
6630 Info.FFDiag(CallRange.getBegin(),
6631 diag::note_constexpr_unsupported_destruction)
6632 << T;
6633 return false;
6634 }
6635
6636 Value = APValue();
6637 return true;
6638 }
6639
6640 if (RD->getNumVBases()) {
6641 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_virtual_base) << RD;
6642 return false;
6643 }
6644
6645 const CXXDestructorDecl *DD = RD->getDestructor();
6646 if (!DD && !RD->hasTrivialDestructor()) {
6647 Info.FFDiag(Loc: CallRange.getBegin());
6648 return false;
6649 }
6650
6651 if (!DD || DD->isTrivial() ||
6652 (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6653 // A trivial destructor just ends the lifetime of the object. Check for
6654 // this case before checking for a body, because we might not bother
6655 // building a body for a trivial destructor. Note that it doesn't matter
6656 // whether the destructor is constexpr in this case; all trivial
6657 // destructors are constexpr.
6658 //
6659 // If an anonymous union would be destroyed, some enclosing destructor must
6660 // have been explicitly defined, and the anonymous union destruction should
6661 // have no effect.
6662 Value = APValue();
6663 return true;
6664 }
6665
6666 if (!Info.CheckCallLimit(Loc: CallRange.getBegin()))
6667 return false;
6668
6669 const FunctionDecl *Definition = nullptr;
6670 const Stmt *Body = DD->getBody(Definition);
6671
6672 if (!CheckConstexprFunction(Info, CallRange.getBegin(), DD, Definition, Body))
6673 return false;
6674
6675 CallStackFrame Frame(Info, CallRange, Definition, &This, /*CallExpr=*/nullptr,
6676 CallRef());
6677
6678 // We're now in the period of destruction of this object.
6679 unsigned BasesLeft = RD->getNumBases();
6680 EvalInfo::EvaluatingDestructorRAII EvalObj(
6681 Info,
6682 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6683 if (!EvalObj.DidInsert) {
6684 // C++2a [class.dtor]p19:
6685 // the behavior is undefined if the destructor is invoked for an object
6686 // whose lifetime has ended
6687 // (Note that formally the lifetime ends when the period of destruction
6688 // begins, even though certain uses of the object remain valid until the
6689 // period of destruction ends.)
6690 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_double_destroy);
6691 return false;
6692 }
6693
6694 // FIXME: Creating an APValue just to hold a nonexistent return value is
6695 // wasteful.
6696 APValue RetVal;
6697 StmtResult Ret = {.Value: RetVal, .Slot: nullptr};
6698 if (EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) == ESR_Failed)
6699 return false;
6700
6701 // A union destructor does not implicitly destroy its members.
6702 if (RD->isUnion())
6703 return true;
6704
6705 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6706
6707 // We don't have a good way to iterate fields in reverse, so collect all the
6708 // fields first and then walk them backwards.
6709 SmallVector<FieldDecl*, 16> Fields(RD->fields());
6710 for (const FieldDecl *FD : llvm::reverse(Fields)) {
6711 if (FD->isUnnamedBitField())
6712 continue;
6713
6714 LValue Subobject = This;
6715 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6716 return false;
6717
6718 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6719 if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue,
6720 FD->getType()))
6721 return false;
6722 }
6723
6724 if (BasesLeft != 0)
6725 EvalObj.startedDestroyingBases();
6726
6727 // Destroy base classes in reverse order.
6728 for (const CXXBaseSpecifier &Base : llvm::reverse(C: RD->bases())) {
6729 --BasesLeft;
6730
6731 QualType BaseType = Base.getType();
6732 LValue Subobject = This;
6733 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6734 BaseType->getAsCXXRecordDecl(), &Layout))
6735 return false;
6736
6737 APValue *SubobjectValue = &Value.getStructBase(i: BasesLeft);
6738 if (!HandleDestructionImpl(Info, CallRange, This: Subobject, Value&: *SubobjectValue,
6739 T: BaseType))
6740 return false;
6741 }
6742 assert(BasesLeft == 0 && "NumBases was wrong?");
6743
6744 // The period of destruction ends now. The object is gone.
6745 Value = APValue();
6746 return true;
6747}
6748
6749namespace {
6750struct DestroyObjectHandler {
6751 EvalInfo &Info;
6752 const Expr *E;
6753 const LValue &This;
6754 const AccessKinds AccessKind;
6755
6756 typedef bool result_type;
6757 bool failed() { return false; }
6758 bool found(APValue &Subobj, QualType SubobjType) {
6759 return HandleDestructionImpl(Info, E->getSourceRange(), This, Subobj,
6760 SubobjType);
6761 }
6762 bool found(APSInt &Value, QualType SubobjType) {
6763 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6764 return false;
6765 }
6766 bool found(APFloat &Value, QualType SubobjType) {
6767 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6768 return false;
6769 }
6770};
6771}
6772
6773/// Perform a destructor or pseudo-destructor call on the given object, which
6774/// might in general not be a complete object.
6775static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6776 const LValue &This, QualType ThisType) {
6777 CompleteObject Obj = findCompleteObject(Info, E, AK: AK_Destroy, LVal: This, LValType: ThisType);
6778 DestroyObjectHandler Handler = {.Info: Info, .E: E, .This: This, .AccessKind: AK_Destroy};
6779 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6780}
6781
6782/// Destroy and end the lifetime of the given complete object.
6783static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6784 APValue::LValueBase LVBase, APValue &Value,
6785 QualType T) {
6786 // If we've had an unmodeled side-effect, we can't rely on mutable state
6787 // (such as the object we're about to destroy) being correct.
6788 if (Info.EvalStatus.HasSideEffects)
6789 return false;
6790
6791 LValue LV;
6792 LV.set(B: {LVBase});
6793 return HandleDestructionImpl(Info, CallRange: Loc, This: LV, Value, T);
6794}
6795
6796/// Perform a call to 'operator new' or to `__builtin_operator_new'.
6797static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6798 LValue &Result) {
6799 if (Info.checkingPotentialConstantExpression() ||
6800 Info.SpeculativeEvaluationDepth)
6801 return false;
6802
6803 // This is permitted only within a call to std::allocator<T>::allocate.
6804 auto Caller = Info.getStdAllocatorCaller(FnName: "allocate");
6805 if (!Caller) {
6806 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6807 ? diag::note_constexpr_new_untyped
6808 : diag::note_constexpr_new);
6809 return false;
6810 }
6811
6812 QualType ElemType = Caller.ElemType;
6813 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6814 Info.FFDiag(E->getExprLoc(),
6815 diag::note_constexpr_new_not_complete_object_type)
6816 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6817 return false;
6818 }
6819
6820 APSInt ByteSize;
6821 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: ByteSize, Info))
6822 return false;
6823 bool IsNothrow = false;
6824 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6825 EvaluateIgnoredValue(Info, E: E->getArg(Arg: I));
6826 IsNothrow |= E->getType()->isNothrowT();
6827 }
6828
6829 CharUnits ElemSize;
6830 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6831 return false;
6832 APInt Size, Remainder;
6833 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6834 APInt::udivrem(LHS: ByteSize, RHS: ElemSizeAP, Quotient&: Size, Remainder);
6835 if (Remainder != 0) {
6836 // This likely indicates a bug in the implementation of 'std::allocator'.
6837 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6838 << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6839 return false;
6840 }
6841
6842 if (!Info.CheckArraySize(Loc: E->getBeginLoc(), BitWidth: ByteSize.getActiveBits(),
6843 ElemCount: Size.getZExtValue(), /*Diag=*/!IsNothrow)) {
6844 if (IsNothrow) {
6845 Result.setNull(Ctx&: Info.Ctx, PointerTy: E->getType());
6846 return true;
6847 }
6848 return false;
6849 }
6850
6851 QualType AllocType = Info.Ctx.getConstantArrayType(
6852 EltTy: ElemType, ArySize: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
6853 APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6854 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6855 Result.addArray(Info, E, cast<ConstantArrayType>(Val&: AllocType));
6856 return true;
6857}
6858
6859static bool hasVirtualDestructor(QualType T) {
6860 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6861 if (CXXDestructorDecl *DD = RD->getDestructor())
6862 return DD->isVirtual();
6863 return false;
6864}
6865
6866static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6867 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6868 if (CXXDestructorDecl *DD = RD->getDestructor())
6869 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6870 return nullptr;
6871}
6872
6873/// Check that the given object is a suitable pointer to a heap allocation that
6874/// still exists and is of the right kind for the purpose of a deletion.
6875///
6876/// On success, returns the heap allocation to deallocate. On failure, produces
6877/// a diagnostic and returns std::nullopt.
6878static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6879 const LValue &Pointer,
6880 DynAlloc::Kind DeallocKind) {
6881 auto PointerAsString = [&] {
6882 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6883 };
6884
6885 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6886 if (!DA) {
6887 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6888 << PointerAsString();
6889 if (Pointer.Base)
6890 NoteLValueLocation(Info, Base: Pointer.Base);
6891 return std::nullopt;
6892 }
6893
6894 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6895 if (!Alloc) {
6896 Info.FFDiag(E, diag::note_constexpr_double_delete);
6897 return std::nullopt;
6898 }
6899
6900 if (DeallocKind != (*Alloc)->getKind()) {
6901 QualType AllocType = Pointer.Base.getDynamicAllocType();
6902 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6903 << DeallocKind << (*Alloc)->getKind() << AllocType;
6904 NoteLValueLocation(Info, Base: Pointer.Base);
6905 return std::nullopt;
6906 }
6907
6908 bool Subobject = false;
6909 if (DeallocKind == DynAlloc::New) {
6910 Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6911 Pointer.Designator.isOnePastTheEnd();
6912 } else {
6913 Subobject = Pointer.Designator.Entries.size() != 1 ||
6914 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6915 }
6916 if (Subobject) {
6917 Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6918 << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6919 return std::nullopt;
6920 }
6921
6922 return Alloc;
6923}
6924
6925// Perform a call to 'operator delete' or '__builtin_operator_delete'.
6926bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6927 if (Info.checkingPotentialConstantExpression() ||
6928 Info.SpeculativeEvaluationDepth)
6929 return false;
6930
6931 // This is permitted only within a call to std::allocator<T>::deallocate.
6932 if (!Info.getStdAllocatorCaller(FnName: "deallocate")) {
6933 Info.FFDiag(E->getExprLoc());
6934 return true;
6935 }
6936
6937 LValue Pointer;
6938 if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: Pointer, Info))
6939 return false;
6940 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6941 EvaluateIgnoredValue(Info, E: E->getArg(Arg: I));
6942
6943 if (Pointer.Designator.Invalid)
6944 return false;
6945
6946 // Deleting a null pointer would have no effect, but it's not permitted by
6947 // std::allocator<T>::deallocate's contract.
6948 if (Pointer.isNullPointer()) {
6949 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6950 return true;
6951 }
6952
6953 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6954 return false;
6955
6956 Info.HeapAllocs.erase(x: Pointer.Base.get<DynamicAllocLValue>());
6957 return true;
6958}
6959
6960//===----------------------------------------------------------------------===//
6961// Generic Evaluation
6962//===----------------------------------------------------------------------===//
6963namespace {
6964
6965class BitCastBuffer {
6966 // FIXME: We're going to need bit-level granularity when we support
6967 // bit-fields.
6968 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6969 // we don't support a host or target where that is the case. Still, we should
6970 // use a more generic type in case we ever do.
6971 SmallVector<std::optional<unsigned char>, 32> Bytes;
6972
6973 static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6974 "Need at least 8 bit unsigned char");
6975
6976 bool TargetIsLittleEndian;
6977
6978public:
6979 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6980 : Bytes(Width.getQuantity()),
6981 TargetIsLittleEndian(TargetIsLittleEndian) {}
6982
6983 [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width,
6984 SmallVectorImpl<unsigned char> &Output) const {
6985 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6986 // If a byte of an integer is uninitialized, then the whole integer is
6987 // uninitialized.
6988 if (!Bytes[I.getQuantity()])
6989 return false;
6990 Output.push_back(Elt: *Bytes[I.getQuantity()]);
6991 }
6992 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6993 std::reverse(first: Output.begin(), last: Output.end());
6994 return true;
6995 }
6996
6997 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6998 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6999 std::reverse(first: Input.begin(), last: Input.end());
7000
7001 size_t Index = 0;
7002 for (unsigned char Byte : Input) {
7003 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
7004 Bytes[Offset.getQuantity() + Index] = Byte;
7005 ++Index;
7006 }
7007 }
7008
7009 size_t size() { return Bytes.size(); }
7010};
7011
7012/// Traverse an APValue to produce an BitCastBuffer, emulating how the current
7013/// target would represent the value at runtime.
7014class APValueToBufferConverter {
7015 EvalInfo &Info;
7016 BitCastBuffer Buffer;
7017 const CastExpr *BCE;
7018
7019 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
7020 const CastExpr *BCE)
7021 : Info(Info),
7022 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
7023 BCE(BCE) {}
7024
7025 bool visit(const APValue &Val, QualType Ty) {
7026 return visit(Val, Ty, Offset: CharUnits::fromQuantity(Quantity: 0));
7027 }
7028
7029 // Write out Val with type Ty into Buffer starting at Offset.
7030 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
7031 assert((size_t)Offset.getQuantity() <= Buffer.size());
7032
7033 // As a special case, nullptr_t has an indeterminate value.
7034 if (Ty->isNullPtrType())
7035 return true;
7036
7037 // Dig through Src to find the byte at SrcOffset.
7038 switch (Val.getKind()) {
7039 case APValue::Indeterminate:
7040 case APValue::None:
7041 return true;
7042
7043 case APValue::Int:
7044 return visitInt(Val: Val.getInt(), Ty, Offset);
7045 case APValue::Float:
7046 return visitFloat(Val: Val.getFloat(), Ty, Offset);
7047 case APValue::Array:
7048 return visitArray(Val, Ty, Offset);
7049 case APValue::Struct:
7050 return visitRecord(Val, Ty, Offset);
7051 case APValue::Vector:
7052 return visitVector(Val, Ty, Offset);
7053
7054 case APValue::ComplexInt:
7055 case APValue::ComplexFloat:
7056 case APValue::FixedPoint:
7057 // FIXME: We should support these.
7058
7059 case APValue::Union:
7060 case APValue::MemberPointer:
7061 case APValue::AddrLabelDiff: {
7062 Info.FFDiag(BCE->getBeginLoc(),
7063 diag::note_constexpr_bit_cast_unsupported_type)
7064 << Ty;
7065 return false;
7066 }
7067
7068 case APValue::LValue:
7069 llvm_unreachable("LValue subobject in bit_cast?");
7070 }
7071 llvm_unreachable("Unhandled APValue::ValueKind");
7072 }
7073
7074 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
7075 const RecordDecl *RD = Ty->getAsRecordDecl();
7076 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
7077
7078 // Visit the base classes.
7079 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
7080 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7081 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7082 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7083
7084 if (!visitRecord(Val: Val.getStructBase(i: I), Ty: BS.getType(),
7085 Offset: Layout.getBaseClassOffset(Base: BaseDecl) + Offset))
7086 return false;
7087 }
7088 }
7089
7090 // Visit the fields.
7091 unsigned FieldIdx = 0;
7092 for (FieldDecl *FD : RD->fields()) {
7093 if (FD->isBitField()) {
7094 Info.FFDiag(BCE->getBeginLoc(),
7095 diag::note_constexpr_bit_cast_unsupported_bitfield);
7096 return false;
7097 }
7098
7099 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldNo: FieldIdx);
7100
7101 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
7102 "only bit-fields can have sub-char alignment");
7103 CharUnits FieldOffset =
7104 Info.Ctx.toCharUnitsFromBits(BitSize: FieldOffsetBits) + Offset;
7105 QualType FieldTy = FD->getType();
7106 if (!visit(Val: Val.getStructField(i: FieldIdx), Ty: FieldTy, Offset: FieldOffset))
7107 return false;
7108 ++FieldIdx;
7109 }
7110
7111 return true;
7112 }
7113
7114 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
7115 const auto *CAT =
7116 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
7117 if (!CAT)
7118 return false;
7119
7120 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
7121 unsigned NumInitializedElts = Val.getArrayInitializedElts();
7122 unsigned ArraySize = Val.getArraySize();
7123 // First, initialize the initialized elements.
7124 for (unsigned I = 0; I != NumInitializedElts; ++I) {
7125 const APValue &SubObj = Val.getArrayInitializedElt(I);
7126 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
7127 return false;
7128 }
7129
7130 // Next, initialize the rest of the array using the filler.
7131 if (Val.hasArrayFiller()) {
7132 const APValue &Filler = Val.getArrayFiller();
7133 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
7134 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
7135 return false;
7136 }
7137 }
7138
7139 return true;
7140 }
7141
7142 bool visitVector(const APValue &Val, QualType Ty, CharUnits Offset) {
7143 const VectorType *VTy = Ty->castAs<VectorType>();
7144 QualType EltTy = VTy->getElementType();
7145 unsigned NElts = VTy->getNumElements();
7146 unsigned EltSize =
7147 VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(T: EltTy);
7148
7149 if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) {
7150 // The vector's size in bits is not a multiple of the target's byte size,
7151 // so its layout is unspecified. For now, we'll simply treat these cases
7152 // as unsupported (this should only be possible with OpenCL bool vectors
7153 // whose element count isn't a multiple of the byte size).
7154 Info.FFDiag(BCE->getBeginLoc(),
7155 diag::note_constexpr_bit_cast_invalid_vector)
7156 << Ty.getCanonicalType() << EltSize << NElts
7157 << Info.Ctx.getCharWidth();
7158 return false;
7159 }
7160
7161 if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(T: EltTy) ==
7162 &APFloat::x87DoubleExtended()) {
7163 // The layout for x86_fp80 vectors seems to be handled very inconsistently
7164 // by both clang and LLVM, so for now we won't allow bit_casts involving
7165 // it in a constexpr context.
7166 Info.FFDiag(BCE->getBeginLoc(),
7167 diag::note_constexpr_bit_cast_unsupported_type)
7168 << EltTy;
7169 return false;
7170 }
7171
7172 if (VTy->isExtVectorBoolType()) {
7173 // Special handling for OpenCL bool vectors:
7174 // Since these vectors are stored as packed bits, but we can't write
7175 // individual bits to the BitCastBuffer, we'll buffer all of the elements
7176 // together into an appropriately sized APInt and write them all out at
7177 // once. Because we don't accept vectors where NElts * EltSize isn't a
7178 // multiple of the char size, there will be no padding space, so we don't
7179 // have to worry about writing data which should have been left
7180 // uninitialized.
7181 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7182
7183 llvm::APInt Res = llvm::APInt::getZero(numBits: NElts);
7184 for (unsigned I = 0; I < NElts; ++I) {
7185 const llvm::APSInt &EltAsInt = Val.getVectorElt(I).getInt();
7186 assert(EltAsInt.isUnsigned() && EltAsInt.getBitWidth() == 1 &&
7187 "bool vector element must be 1-bit unsigned integer!");
7188
7189 Res.insertBits(SubBits: EltAsInt, bitPosition: BigEndian ? (NElts - I - 1) : I);
7190 }
7191
7192 SmallVector<uint8_t, 8> Bytes(NElts / 8);
7193 llvm::StoreIntToMemory(IntVal: Res, Dst: &*Bytes.begin(), StoreBytes: NElts / 8);
7194 Buffer.writeObject(Offset, Input&: Bytes);
7195 } else {
7196 // Iterate over each of the elements and write them out to the buffer at
7197 // the appropriate offset.
7198 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(T: EltTy);
7199 for (unsigned I = 0; I < NElts; ++I) {
7200 if (!visit(Val: Val.getVectorElt(I), Ty: EltTy, Offset: Offset + I * EltSizeChars))
7201 return false;
7202 }
7203 }
7204
7205 return true;
7206 }
7207
7208 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
7209 APSInt AdjustedVal = Val;
7210 unsigned Width = AdjustedVal.getBitWidth();
7211 if (Ty->isBooleanType()) {
7212 Width = Info.Ctx.getTypeSize(T: Ty);
7213 AdjustedVal = AdjustedVal.extend(width: Width);
7214 }
7215
7216 SmallVector<uint8_t, 8> Bytes(Width / 8);
7217 llvm::StoreIntToMemory(IntVal: AdjustedVal, Dst: &*Bytes.begin(), StoreBytes: Width / 8);
7218 Buffer.writeObject(Offset, Input&: Bytes);
7219 return true;
7220 }
7221
7222 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
7223 APSInt AsInt(Val.bitcastToAPInt());
7224 return visitInt(Val: AsInt, Ty, Offset);
7225 }
7226
7227public:
7228 static std::optional<BitCastBuffer>
7229 convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) {
7230 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
7231 APValueToBufferConverter Converter(Info, DstSize, BCE);
7232 if (!Converter.visit(Val: Src, Ty: BCE->getSubExpr()->getType()))
7233 return std::nullopt;
7234 return Converter.Buffer;
7235 }
7236};
7237
7238/// Write an BitCastBuffer into an APValue.
7239class BufferToAPValueConverter {
7240 EvalInfo &Info;
7241 const BitCastBuffer &Buffer;
7242 const CastExpr *BCE;
7243
7244 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
7245 const CastExpr *BCE)
7246 : Info(Info), Buffer(Buffer), BCE(BCE) {}
7247
7248 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7249 // with an invalid type, so anything left is a deficiency on our part (FIXME).
7250 // Ideally this will be unreachable.
7251 std::nullopt_t unsupportedType(QualType Ty) {
7252 Info.FFDiag(BCE->getBeginLoc(),
7253 diag::note_constexpr_bit_cast_unsupported_type)
7254 << Ty;
7255 return std::nullopt;
7256 }
7257
7258 std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) {
7259 Info.FFDiag(BCE->getBeginLoc(),
7260 diag::note_constexpr_bit_cast_unrepresentable_value)
7261 << Ty << toString(Val, /*Radix=*/10);
7262 return std::nullopt;
7263 }
7264
7265 std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7266 const EnumType *EnumSugar = nullptr) {
7267 if (T->isNullPtrType()) {
7268 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QT: QualType(T, 0));
7269 return APValue((Expr *)nullptr,
7270 /*Offset=*/CharUnits::fromQuantity(Quantity: NullValue),
7271 APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7272 }
7273
7274 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7275
7276 // Work around floating point types that contain unused padding bytes. This
7277 // is really just `long double` on x86, which is the only fundamental type
7278 // with padding bytes.
7279 if (T->isRealFloatingType()) {
7280 const llvm::fltSemantics &Semantics =
7281 Info.Ctx.getFloatTypeSemantics(T: QualType(T, 0));
7282 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Sem: Semantics);
7283 assert(NumBits % 8 == 0);
7284 CharUnits NumBytes = CharUnits::fromQuantity(Quantity: NumBits / 8);
7285 if (NumBytes != SizeOf)
7286 SizeOf = NumBytes;
7287 }
7288
7289 SmallVector<uint8_t, 8> Bytes;
7290 if (!Buffer.readObject(Offset, Width: SizeOf, Output&: Bytes)) {
7291 // If this is std::byte or unsigned char, then its okay to store an
7292 // indeterminate value.
7293 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7294 bool IsUChar =
7295 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7296 T->isSpecificBuiltinType(BuiltinType::Char_U));
7297 if (!IsStdByte && !IsUChar) {
7298 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7299 Info.FFDiag(BCE->getExprLoc(),
7300 diag::note_constexpr_bit_cast_indet_dest)
7301 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7302 return std::nullopt;
7303 }
7304
7305 return APValue::IndeterminateValue();
7306 }
7307
7308 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7309 llvm::LoadIntFromMemory(IntVal&: Val, Src: &*Bytes.begin(), LoadBytes: Bytes.size());
7310
7311 if (T->isIntegralOrEnumerationType()) {
7312 Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7313
7314 unsigned IntWidth = Info.Ctx.getIntWidth(T: QualType(T, 0));
7315 if (IntWidth != Val.getBitWidth()) {
7316 APSInt Truncated = Val.trunc(width: IntWidth);
7317 if (Truncated.extend(width: Val.getBitWidth()) != Val)
7318 return unrepresentableValue(Ty: QualType(T, 0), Val);
7319 Val = Truncated;
7320 }
7321
7322 return APValue(Val);
7323 }
7324
7325 if (T->isRealFloatingType()) {
7326 const llvm::fltSemantics &Semantics =
7327 Info.Ctx.getFloatTypeSemantics(T: QualType(T, 0));
7328 return APValue(APFloat(Semantics, Val));
7329 }
7330
7331 return unsupportedType(Ty: QualType(T, 0));
7332 }
7333
7334 std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7335 const RecordDecl *RD = RTy->getAsRecordDecl();
7336 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
7337
7338 unsigned NumBases = 0;
7339 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7340 NumBases = CXXRD->getNumBases();
7341
7342 APValue ResultVal(APValue::UninitStruct(), NumBases,
7343 std::distance(RD->field_begin(), RD->field_end()));
7344
7345 // Visit the base classes.
7346 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7347 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7348 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7349 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7350
7351 std::optional<APValue> SubObj = visitType(
7352 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7353 if (!SubObj)
7354 return std::nullopt;
7355 ResultVal.getStructBase(i: I) = *SubObj;
7356 }
7357 }
7358
7359 // Visit the fields.
7360 unsigned FieldIdx = 0;
7361 for (FieldDecl *FD : RD->fields()) {
7362 // FIXME: We don't currently support bit-fields. A lot of the logic for
7363 // this is in CodeGen, so we need to factor it around.
7364 if (FD->isBitField()) {
7365 Info.FFDiag(BCE->getBeginLoc(),
7366 diag::note_constexpr_bit_cast_unsupported_bitfield);
7367 return std::nullopt;
7368 }
7369
7370 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7371 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7372
7373 CharUnits FieldOffset =
7374 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7375 Offset;
7376 QualType FieldTy = FD->getType();
7377 std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7378 if (!SubObj)
7379 return std::nullopt;
7380 ResultVal.getStructField(FieldIdx) = *SubObj;
7381 ++FieldIdx;
7382 }
7383
7384 return ResultVal;
7385 }
7386
7387 std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7388 QualType RepresentationType = Ty->getDecl()->getIntegerType();
7389 assert(!RepresentationType.isNull() &&
7390 "enum forward decl should be caught by Sema");
7391 const auto *AsBuiltin =
7392 RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7393 // Recurse into the underlying type. Treat std::byte transparently as
7394 // unsigned char.
7395 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7396 }
7397
7398 std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7399 size_t Size = Ty->getLimitedSize();
7400 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7401
7402 APValue ArrayValue(APValue::UninitArray(), Size, Size);
7403 for (size_t I = 0; I != Size; ++I) {
7404 std::optional<APValue> ElementValue =
7405 visitType(Ty->getElementType(), Offset + I * ElementWidth);
7406 if (!ElementValue)
7407 return std::nullopt;
7408 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7409 }
7410
7411 return ArrayValue;
7412 }
7413
7414 std::optional<APValue> visit(const VectorType *VTy, CharUnits Offset) {
7415 QualType EltTy = VTy->getElementType();
7416 unsigned NElts = VTy->getNumElements();
7417 unsigned EltSize =
7418 VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(T: EltTy);
7419
7420 if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) {
7421 // The vector's size in bits is not a multiple of the target's byte size,
7422 // so its layout is unspecified. For now, we'll simply treat these cases
7423 // as unsupported (this should only be possible with OpenCL bool vectors
7424 // whose element count isn't a multiple of the byte size).
7425 Info.FFDiag(BCE->getBeginLoc(),
7426 diag::note_constexpr_bit_cast_invalid_vector)
7427 << QualType(VTy, 0) << EltSize << NElts << Info.Ctx.getCharWidth();
7428 return std::nullopt;
7429 }
7430
7431 if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(T: EltTy) ==
7432 &APFloat::x87DoubleExtended()) {
7433 // The layout for x86_fp80 vectors seems to be handled very inconsistently
7434 // by both clang and LLVM, so for now we won't allow bit_casts involving
7435 // it in a constexpr context.
7436 Info.FFDiag(BCE->getBeginLoc(),
7437 diag::note_constexpr_bit_cast_unsupported_type)
7438 << EltTy;
7439 return std::nullopt;
7440 }
7441
7442 SmallVector<APValue, 4> Elts;
7443 Elts.reserve(N: NElts);
7444 if (VTy->isExtVectorBoolType()) {
7445 // Special handling for OpenCL bool vectors:
7446 // Since these vectors are stored as packed bits, but we can't read
7447 // individual bits from the BitCastBuffer, we'll buffer all of the
7448 // elements together into an appropriately sized APInt and write them all
7449 // out at once. Because we don't accept vectors where NElts * EltSize
7450 // isn't a multiple of the char size, there will be no padding space, so
7451 // we don't have to worry about reading any padding data which didn't
7452 // actually need to be accessed.
7453 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7454
7455 SmallVector<uint8_t, 8> Bytes;
7456 Bytes.reserve(N: NElts / 8);
7457 if (!Buffer.readObject(Offset, Width: CharUnits::fromQuantity(Quantity: NElts / 8), Output&: Bytes))
7458 return std::nullopt;
7459
7460 APSInt SValInt(NElts, true);
7461 llvm::LoadIntFromMemory(IntVal&: SValInt, Src: &*Bytes.begin(), LoadBytes: Bytes.size());
7462
7463 for (unsigned I = 0; I < NElts; ++I) {
7464 llvm::APInt Elt =
7465 SValInt.extractBits(numBits: 1, bitPosition: (BigEndian ? NElts - I - 1 : I) * EltSize);
7466 Elts.emplace_back(
7467 APSInt(std::move(Elt), !EltTy->isSignedIntegerType()));
7468 }
7469 } else {
7470 // Iterate over each of the elements and read them from the buffer at
7471 // the appropriate offset.
7472 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(T: EltTy);
7473 for (unsigned I = 0; I < NElts; ++I) {
7474 std::optional<APValue> EltValue =
7475 visitType(EltTy, Offset + I * EltSizeChars);
7476 if (!EltValue)
7477 return std::nullopt;
7478 Elts.push_back(std::move(*EltValue));
7479 }
7480 }
7481
7482 return APValue(Elts.data(), Elts.size());
7483 }
7484
7485 std::optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7486 return unsupportedType(Ty: QualType(Ty, 0));
7487 }
7488
7489 std::optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7490 QualType Can = Ty.getCanonicalType();
7491
7492 switch (Can->getTypeClass()) {
7493#define TYPE(Class, Base) \
7494 case Type::Class: \
7495 return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7496#define ABSTRACT_TYPE(Class, Base)
7497#define NON_CANONICAL_TYPE(Class, Base) \
7498 case Type::Class: \
7499 llvm_unreachable("non-canonical type should be impossible!");
7500#define DEPENDENT_TYPE(Class, Base) \
7501 case Type::Class: \
7502 llvm_unreachable( \
7503 "dependent types aren't supported in the constant evaluator!");
7504#define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \
7505 case Type::Class: \
7506 llvm_unreachable("either dependent or not canonical!");
7507#include "clang/AST/TypeNodes.inc"
7508 }
7509 llvm_unreachable("Unhandled Type::TypeClass");
7510 }
7511
7512public:
7513 // Pull out a full value of type DstType.
7514 static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7515 const CastExpr *BCE) {
7516 BufferToAPValueConverter Converter(Info, Buffer, BCE);
7517 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(Quantity: 0));
7518 }
7519};
7520
7521static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7522 QualType Ty, EvalInfo *Info,
7523 const ASTContext &Ctx,
7524 bool CheckingDest) {
7525 Ty = Ty.getCanonicalType();
7526
7527 auto diag = [&](int Reason) {
7528 if (Info)
7529 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7530 << CheckingDest << (Reason == 4) << Reason;
7531 return false;
7532 };
7533 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7534 if (Info)
7535 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7536 << NoteTy << Construct << Ty;
7537 return false;
7538 };
7539
7540 if (Ty->isUnionType())
7541 return diag(0);
7542 if (Ty->isPointerType())
7543 return diag(1);
7544 if (Ty->isMemberPointerType())
7545 return diag(2);
7546 if (Ty.isVolatileQualified())
7547 return diag(3);
7548
7549 if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7550 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7551 for (CXXBaseSpecifier &BS : CXXRD->bases())
7552 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7553 CheckingDest))
7554 return note(1, BS.getType(), BS.getBeginLoc());
7555 }
7556 for (FieldDecl *FD : Record->fields()) {
7557 if (FD->getType()->isReferenceType())
7558 return diag(4);
7559 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7560 CheckingDest))
7561 return note(0, FD->getType(), FD->getBeginLoc());
7562 }
7563 }
7564
7565 if (Ty->isArrayType() &&
7566 !checkBitCastConstexprEligibilityType(Loc, Ty: Ctx.getBaseElementType(QT: Ty),
7567 Info, Ctx, CheckingDest))
7568 return false;
7569
7570 return true;
7571}
7572
7573static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7574 const ASTContext &Ctx,
7575 const CastExpr *BCE) {
7576 bool DestOK = checkBitCastConstexprEligibilityType(
7577 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7578 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7579 BCE->getBeginLoc(),
7580 BCE->getSubExpr()->getType(), Info, Ctx, false);
7581 return SourceOK;
7582}
7583
7584static bool handleRValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7585 const APValue &SourceRValue,
7586 const CastExpr *BCE) {
7587 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7588 "no host or target supports non 8-bit chars");
7589
7590 if (!checkBitCastConstexprEligibility(Info: &Info, Ctx: Info.Ctx, BCE))
7591 return false;
7592
7593 // Read out SourceValue into a char buffer.
7594 std::optional<BitCastBuffer> Buffer =
7595 APValueToBufferConverter::convert(Info, Src: SourceRValue, BCE);
7596 if (!Buffer)
7597 return false;
7598
7599 // Write out the buffer into a new APValue.
7600 std::optional<APValue> MaybeDestValue =
7601 BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7602 if (!MaybeDestValue)
7603 return false;
7604
7605 DestValue = std::move(*MaybeDestValue);
7606 return true;
7607}
7608
7609static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7610 APValue &SourceValue,
7611 const CastExpr *BCE) {
7612 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7613 "no host or target supports non 8-bit chars");
7614 assert(SourceValue.isLValue() &&
7615 "LValueToRValueBitcast requires an lvalue operand!");
7616
7617 LValue SourceLValue;
7618 APValue SourceRValue;
7619 SourceLValue.setFrom(Ctx&: Info.Ctx, V: SourceValue);
7620 if (!handleLValueToRValueConversion(
7621 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7622 SourceRValue, /*WantObjectRepresentation=*/true))
7623 return false;
7624
7625 return handleRValueToRValueBitCast(Info, DestValue, SourceRValue, BCE);
7626}
7627
7628template <class Derived>
7629class ExprEvaluatorBase
7630 : public ConstStmtVisitor<Derived, bool> {
7631private:
7632 Derived &getDerived() { return static_cast<Derived&>(*this); }
7633 bool DerivedSuccess(const APValue &V, const Expr *E) {
7634 return getDerived().Success(V, E);
7635 }
7636 bool DerivedZeroInitialization(const Expr *E) {
7637 return getDerived().ZeroInitialization(E);
7638 }
7639
7640 // Check whether a conditional operator with a non-constant condition is a
7641 // potential constant expression. If neither arm is a potential constant
7642 // expression, then the conditional operator is not either.
7643 template<typename ConditionalOperator>
7644 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7645 assert(Info.checkingPotentialConstantExpression());
7646
7647 // Speculatively evaluate both arms.
7648 SmallVector<PartialDiagnosticAt, 8> Diag;
7649 {
7650 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7651 StmtVisitorTy::Visit(E->getFalseExpr());
7652 if (Diag.empty())
7653 return;
7654 }
7655
7656 {
7657 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7658 Diag.clear();
7659 StmtVisitorTy::Visit(E->getTrueExpr());
7660 if (Diag.empty())
7661 return;
7662 }
7663
7664 Error(E, diag::note_constexpr_conditional_never_const);
7665 }
7666
7667
7668 template<typename ConditionalOperator>
7669 bool HandleConditionalOperator(const ConditionalOperator *E) {
7670 bool BoolResult;
7671 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7672 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7673 CheckPotentialConstantConditional(E);
7674 return false;
7675 }
7676 if (Info.noteFailure()) {
7677 StmtVisitorTy::Visit(E->getTrueExpr());
7678 StmtVisitorTy::Visit(E->getFalseExpr());
7679 }
7680 return false;
7681 }
7682
7683 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7684 return StmtVisitorTy::Visit(EvalExpr);
7685 }
7686
7687protected:
7688 EvalInfo &Info;
7689 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7690 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7691
7692 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7693 return Info.CCEDiag(E, DiagId: D);
7694 }
7695
7696 bool ZeroInitialization(const Expr *E) { return Error(E); }
7697
7698 bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) {
7699 unsigned BuiltinOp = E->getBuiltinCallee();
7700 return BuiltinOp != 0 &&
7701 Info.Ctx.BuiltinInfo.isConstantEvaluated(ID: BuiltinOp);
7702 }
7703
7704public:
7705 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7706
7707 EvalInfo &getEvalInfo() { return Info; }
7708
7709 /// Report an evaluation error. This should only be called when an error is
7710 /// first discovered. When propagating an error, just return false.
7711 bool Error(const Expr *E, diag::kind D) {
7712 Info.FFDiag(E, DiagId: D) << E->getSourceRange();
7713 return false;
7714 }
7715 bool Error(const Expr *E) {
7716 return Error(E, diag::note_invalid_subexpr_in_const_expr);
7717 }
7718
7719 bool VisitStmt(const Stmt *) {
7720 llvm_unreachable("Expression evaluator should not be called on stmts");
7721 }
7722 bool VisitExpr(const Expr *E) {
7723 return Error(E);
7724 }
7725
7726 bool VisitPredefinedExpr(const PredefinedExpr *E) {
7727 return StmtVisitorTy::Visit(E->getFunctionName());
7728 }
7729 bool VisitConstantExpr(const ConstantExpr *E) {
7730 if (E->hasAPValueResult())
7731 return DerivedSuccess(V: E->getAPValueResult(), E);
7732
7733 return StmtVisitorTy::Visit(E->getSubExpr());
7734 }
7735
7736 bool VisitParenExpr(const ParenExpr *E)
7737 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7738 bool VisitUnaryExtension(const UnaryOperator *E)
7739 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7740 bool VisitUnaryPlus(const UnaryOperator *E)
7741 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7742 bool VisitChooseExpr(const ChooseExpr *E)
7743 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7744 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7745 { return StmtVisitorTy::Visit(E->getResultExpr()); }
7746 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7747 { return StmtVisitorTy::Visit(E->getReplacement()); }
7748 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7749 TempVersionRAII RAII(*Info.CurrentCall);
7750 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7751 return StmtVisitorTy::Visit(E->getExpr());
7752 }
7753 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7754 TempVersionRAII RAII(*Info.CurrentCall);
7755 // The initializer may not have been parsed yet, or might be erroneous.
7756 if (!E->getExpr())
7757 return Error(E);
7758 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7759 return StmtVisitorTy::Visit(E->getExpr());
7760 }
7761
7762 bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7763 FullExpressionRAII Scope(Info);
7764 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7765 }
7766
7767 // Temporaries are registered when created, so we don't care about
7768 // CXXBindTemporaryExpr.
7769 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7770 return StmtVisitorTy::Visit(E->getSubExpr());
7771 }
7772
7773 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7774 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7775 return static_cast<Derived*>(this)->VisitCastExpr(E);
7776 }
7777 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7778 if (!Info.Ctx.getLangOpts().CPlusPlus20)
7779 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7780 return static_cast<Derived*>(this)->VisitCastExpr(E);
7781 }
7782 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7783 return static_cast<Derived*>(this)->VisitCastExpr(E);
7784 }
7785
7786 bool VisitBinaryOperator(const BinaryOperator *E) {
7787 switch (E->getOpcode()) {
7788 default:
7789 return Error(E);
7790
7791 case BO_Comma:
7792 VisitIgnoredValue(E: E->getLHS());
7793 return StmtVisitorTy::Visit(E->getRHS());
7794
7795 case BO_PtrMemD:
7796 case BO_PtrMemI: {
7797 LValue Obj;
7798 if (!HandleMemberPointerAccess(Info, BO: E, LV&: Obj))
7799 return false;
7800 APValue Result;
7801 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7802 return false;
7803 return DerivedSuccess(V: Result, E);
7804 }
7805 }
7806 }
7807
7808 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7809 return StmtVisitorTy::Visit(E->getSemanticForm());
7810 }
7811
7812 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7813 // Evaluate and cache the common expression. We treat it as a temporary,
7814 // even though it's not quite the same thing.
7815 LValue CommonLV;
7816 if (!Evaluate(Result&: Info.CurrentCall->createTemporary(
7817 E->getOpaqueValue(),
7818 getStorageType(Info.Ctx, E->getOpaqueValue()),
7819 ScopeKind::FullExpression, CommonLV),
7820 Info, E: E->getCommon()))
7821 return false;
7822
7823 return HandleConditionalOperator(E);
7824 }
7825
7826 bool VisitConditionalOperator(const ConditionalOperator *E) {
7827 bool IsBcpCall = false;
7828 // If the condition (ignoring parens) is a __builtin_constant_p call,
7829 // the result is a constant expression if it can be folded without
7830 // side-effects. This is an important GNU extension. See GCC PR38377
7831 // for discussion.
7832 if (const CallExpr *CallCE =
7833 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7834 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7835 IsBcpCall = true;
7836
7837 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7838 // constant expression; we can't check whether it's potentially foldable.
7839 // FIXME: We should instead treat __builtin_constant_p as non-constant if
7840 // it would return 'false' in this mode.
7841 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7842 return false;
7843
7844 FoldConstant Fold(Info, IsBcpCall);
7845 if (!HandleConditionalOperator(E)) {
7846 Fold.keepDiagnostics();
7847 return false;
7848 }
7849
7850 return true;
7851 }
7852
7853 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7854 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(Key: E);
7855 Value && !Value->isAbsent())
7856 return DerivedSuccess(V: *Value, E);
7857
7858 const Expr *Source = E->getSourceExpr();
7859 if (!Source)
7860 return Error(E);
7861 if (Source == E) {
7862 assert(0 && "OpaqueValueExpr recursively refers to itself");
7863 return Error(E);
7864 }
7865 return StmtVisitorTy::Visit(Source);
7866 }
7867
7868 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7869 for (const Expr *SemE : E->semantics()) {
7870 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7871 // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7872 // result expression: there could be two different LValues that would
7873 // refer to the same object in that case, and we can't model that.
7874 if (SemE == E->getResultExpr())
7875 return Error(E);
7876
7877 // Unique OVEs get evaluated if and when we encounter them when
7878 // emitting the rest of the semantic form, rather than eagerly.
7879 if (OVE->isUnique())
7880 continue;
7881
7882 LValue LV;
7883 if (!Evaluate(Info.CurrentCall->createTemporary(
7884 OVE, getStorageType(Info.Ctx, OVE),
7885 ScopeKind::FullExpression, LV),
7886 Info, OVE->getSourceExpr()))
7887 return false;
7888 } else if (SemE == E->getResultExpr()) {
7889 if (!StmtVisitorTy::Visit(SemE))
7890 return false;
7891 } else {
7892 if (!EvaluateIgnoredValue(Info, E: SemE))
7893 return false;
7894 }
7895 }
7896 return true;
7897 }
7898
7899 bool VisitCallExpr(const CallExpr *E) {
7900 APValue Result;
7901 if (!handleCallExpr(E, Result, ResultSlot: nullptr))
7902 return false;
7903 return DerivedSuccess(V: Result, E);
7904 }
7905
7906 bool handleCallExpr(const CallExpr *E, APValue &Result,
7907 const LValue *ResultSlot) {
7908 CallScopeRAII CallScope(Info);
7909
7910 const Expr *Callee = E->getCallee()->IgnoreParens();
7911 QualType CalleeType = Callee->getType();
7912
7913 const FunctionDecl *FD = nullptr;
7914 LValue *This = nullptr, ThisVal;
7915 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
7916 bool HasQualifier = false;
7917
7918 CallRef Call;
7919
7920 // Extract function decl and 'this' pointer from the callee.
7921 if (CalleeType->isSpecificBuiltinType(K: BuiltinType::BoundMember)) {
7922 const CXXMethodDecl *Member = nullptr;
7923 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7924 // Explicit bound member calls, such as x.f() or p->g();
7925 if (!EvaluateObjectArgument(Info, Object: ME->getBase(), This&: ThisVal))
7926 return false;
7927 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7928 if (!Member)
7929 return Error(Callee);
7930 This = &ThisVal;
7931 HasQualifier = ME->hasQualifier();
7932 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7933 // Indirect bound member calls ('.*' or '->*').
7934 const ValueDecl *D =
7935 HandleMemberPointerAccess(Info, BO: BE, LV&: ThisVal, IncludeMember: false);
7936 if (!D)
7937 return false;
7938 Member = dyn_cast<CXXMethodDecl>(D);
7939 if (!Member)
7940 return Error(Callee);
7941 This = &ThisVal;
7942 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7943 if (!Info.getLangOpts().CPlusPlus20)
7944 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7945 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7946 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7947 } else
7948 return Error(Callee);
7949 FD = Member;
7950 } else if (CalleeType->isFunctionPointerType()) {
7951 LValue CalleeLV;
7952 if (!EvaluatePointer(E: Callee, Result&: CalleeLV, Info))
7953 return false;
7954
7955 if (!CalleeLV.getLValueOffset().isZero())
7956 return Error(Callee);
7957 if (CalleeLV.isNullPointer()) {
7958 Info.FFDiag(Callee, diag::note_constexpr_null_callee)
7959 << const_cast<Expr *>(Callee);
7960 return false;
7961 }
7962 FD = dyn_cast_or_null<FunctionDecl>(
7963 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7964 if (!FD)
7965 return Error(Callee);
7966 // Don't call function pointers which have been cast to some other type.
7967 // Per DR (no number yet), the caller and callee can differ in noexcept.
7968 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7969 T: CalleeType->getPointeeType(), U: FD->getType())) {
7970 return Error(E);
7971 }
7972
7973 // For an (overloaded) assignment expression, evaluate the RHS before the
7974 // LHS.
7975 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7976 if (OCE && OCE->isAssignmentOp()) {
7977 assert(Args.size() == 2 && "wrong number of arguments in assignment");
7978 Call = Info.CurrentCall->createCall(Callee: FD);
7979 bool HasThis = false;
7980 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
7981 HasThis = MD->isImplicitObjectMemberFunction();
7982 if (!EvaluateArgs(HasThis ? Args.slice(1) : Args, Call, Info, FD,
7983 /*RightToLeft=*/true))
7984 return false;
7985 }
7986
7987 // Overloaded operator calls to member functions are represented as normal
7988 // calls with '*this' as the first argument.
7989 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7990 if (MD &&
7991 (MD->isImplicitObjectMemberFunction() || (OCE && MD->isStatic()))) {
7992 // FIXME: When selecting an implicit conversion for an overloaded
7993 // operator delete, we sometimes try to evaluate calls to conversion
7994 // operators without a 'this' parameter!
7995 if (Args.empty())
7996 return Error(E);
7997
7998 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7999 return false;
8000
8001 // If we are calling a static operator, the 'this' argument needs to be
8002 // ignored after being evaluated.
8003 if (MD->isInstance())
8004 This = &ThisVal;
8005
8006 // If this is syntactically a simple assignment using a trivial
8007 // assignment operator, start the lifetimes of union members as needed,
8008 // per C++20 [class.union]5.
8009 if (Info.getLangOpts().CPlusPlus20 && OCE &&
8010 OCE->getOperator() == OO_Equal && MD->isTrivial() &&
8011 !MaybeHandleUnionActiveMemberChange(Info, Args[0], ThisVal))
8012 return false;
8013
8014 Args = Args.slice(1);
8015 } else if (MD && MD->isLambdaStaticInvoker()) {
8016 // Map the static invoker for the lambda back to the call operator.
8017 // Conveniently, we don't have to slice out the 'this' argument (as is
8018 // being done for the non-static case), since a static member function
8019 // doesn't have an implicit argument passed in.
8020 const CXXRecordDecl *ClosureClass = MD->getParent();
8021 assert(
8022 ClosureClass->captures_begin() == ClosureClass->captures_end() &&
8023 "Number of captures must be zero for conversion to function-ptr");
8024
8025 const CXXMethodDecl *LambdaCallOp =
8026 ClosureClass->getLambdaCallOperator();
8027
8028 // Set 'FD', the function that will be called below, to the call
8029 // operator. If the closure object represents a generic lambda, find
8030 // the corresponding specialization of the call operator.
8031
8032 if (ClosureClass->isGenericLambda()) {
8033 assert(MD->isFunctionTemplateSpecialization() &&
8034 "A generic lambda's static-invoker function must be a "
8035 "template specialization");
8036 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
8037 FunctionTemplateDecl *CallOpTemplate =
8038 LambdaCallOp->getDescribedFunctionTemplate();
8039 void *InsertPos = nullptr;
8040 FunctionDecl *CorrespondingCallOpSpecialization =
8041 CallOpTemplate->findSpecialization(Args: TAL->asArray(), InsertPos);
8042 assert(CorrespondingCallOpSpecialization &&
8043 "We must always have a function call operator specialization "
8044 "that corresponds to our static invoker specialization");
8045 assert(isa<CXXMethodDecl>(CorrespondingCallOpSpecialization));
8046 FD = CorrespondingCallOpSpecialization;
8047 } else
8048 FD = LambdaCallOp;
8049 } else if (FD->isReplaceableGlobalAllocationFunction()) {
8050 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
8051 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
8052 LValue Ptr;
8053 if (!HandleOperatorNewCall(Info, E, Result&: Ptr))
8054 return false;
8055 Ptr.moveInto(V&: Result);
8056 return CallScope.destroy();
8057 } else {
8058 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
8059 }
8060 }
8061 } else
8062 return Error(E);
8063
8064 // Evaluate the arguments now if we've not already done so.
8065 if (!Call) {
8066 Call = Info.CurrentCall->createCall(Callee: FD);
8067 if (!EvaluateArgs(Args, Call, Info, FD))
8068 return false;
8069 }
8070
8071 SmallVector<QualType, 4> CovariantAdjustmentPath;
8072 if (This) {
8073 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
8074 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
8075 // Perform virtual dispatch, if necessary.
8076 FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
8077 CovariantAdjustmentPath);
8078 if (!FD)
8079 return false;
8080 } else if (NamedMember && NamedMember->isImplicitObjectMemberFunction()) {
8081 // Check that the 'this' pointer points to an object of the right type.
8082 // FIXME: If this is an assignment operator call, we may need to change
8083 // the active union member before we check this.
8084 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
8085 return false;
8086 }
8087 }
8088
8089 // Destructor calls are different enough that they have their own codepath.
8090 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
8091 assert(This && "no 'this' pointer for destructor call");
8092 return HandleDestruction(Info, E, *This,
8093 Info.Ctx.getRecordType(Decl: DD->getParent())) &&
8094 CallScope.destroy();
8095 }
8096
8097 const FunctionDecl *Definition = nullptr;
8098 Stmt *Body = FD->getBody(Definition);
8099
8100 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
8101 !HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call,
8102 Body, Info, Result, ResultSlot))
8103 return false;
8104
8105 if (!CovariantAdjustmentPath.empty() &&
8106 !HandleCovariantReturnAdjustment(Info, E, Result,
8107 CovariantAdjustmentPath))
8108 return false;
8109
8110 return CallScope.destroy();
8111 }
8112
8113 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8114 return StmtVisitorTy::Visit(E->getInitializer());
8115 }
8116 bool VisitInitListExpr(const InitListExpr *E) {
8117 if (E->getNumInits() == 0)
8118 return DerivedZeroInitialization(E);
8119 if (E->getNumInits() == 1)
8120 return StmtVisitorTy::Visit(E->getInit(Init: 0));
8121 return Error(E);
8122 }
8123 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
8124 return DerivedZeroInitialization(E);
8125 }
8126 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
8127 return DerivedZeroInitialization(E);
8128 }
8129 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
8130 return DerivedZeroInitialization(E);
8131 }
8132
8133 /// A member expression where the object is a prvalue is itself a prvalue.
8134 bool VisitMemberExpr(const MemberExpr *E) {
8135 assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
8136 "missing temporary materialization conversion");
8137 assert(!E->isArrow() && "missing call to bound member function?");
8138
8139 APValue Val;
8140 if (!Evaluate(Result&: Val, Info, E: E->getBase()))
8141 return false;
8142
8143 QualType BaseTy = E->getBase()->getType();
8144
8145 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
8146 if (!FD) return Error(E);
8147 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
8148 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8149 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8150
8151 // Note: there is no lvalue base here. But this case should only ever
8152 // happen in C or in C++98, where we cannot be evaluating a constexpr
8153 // constructor, which is the only case the base matters.
8154 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
8155 SubobjectDesignator Designator(BaseTy);
8156 Designator.addDeclUnchecked(FD);
8157
8158 APValue Result;
8159 return extractSubobject(Info, E, Obj, Designator, Result) &&
8160 DerivedSuccess(V: Result, E);
8161 }
8162
8163 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
8164 APValue Val;
8165 if (!Evaluate(Result&: Val, Info, E: E->getBase()))
8166 return false;
8167
8168 if (Val.isVector()) {
8169 SmallVector<uint32_t, 4> Indices;
8170 E->getEncodedElementAccess(Elts&: Indices);
8171 if (Indices.size() == 1) {
8172 // Return scalar.
8173 return DerivedSuccess(V: Val.getVectorElt(I: Indices[0]), E);
8174 } else {
8175 // Construct new APValue vector.
8176 SmallVector<APValue, 4> Elts;
8177 for (unsigned I = 0; I < Indices.size(); ++I) {
8178 Elts.push_back(Elt: Val.getVectorElt(I: Indices[I]));
8179 }
8180 APValue VecResult(Elts.data(), Indices.size());
8181 return DerivedSuccess(V: VecResult, E);
8182 }
8183 }
8184
8185 return false;
8186 }
8187
8188 bool VisitCastExpr(const CastExpr *E) {
8189 switch (E->getCastKind()) {
8190 default:
8191 break;
8192
8193 case CK_AtomicToNonAtomic: {
8194 APValue AtomicVal;
8195 // This does not need to be done in place even for class/array types:
8196 // atomic-to-non-atomic conversion implies copying the object
8197 // representation.
8198 if (!Evaluate(Result&: AtomicVal, Info, E: E->getSubExpr()))
8199 return false;
8200 return DerivedSuccess(V: AtomicVal, E);
8201 }
8202
8203 case CK_NoOp:
8204 case CK_UserDefinedConversion:
8205 return StmtVisitorTy::Visit(E->getSubExpr());
8206
8207 case CK_LValueToRValue: {
8208 LValue LVal;
8209 if (!EvaluateLValue(E: E->getSubExpr(), Result&: LVal, Info))
8210 return false;
8211 APValue RVal;
8212 // Note, we use the subexpression's type in order to retain cv-qualifiers.
8213 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8214 LVal, RVal))
8215 return false;
8216 return DerivedSuccess(V: RVal, E);
8217 }
8218 case CK_LValueToRValueBitCast: {
8219 APValue DestValue, SourceValue;
8220 if (!Evaluate(Result&: SourceValue, Info, E: E->getSubExpr()))
8221 return false;
8222 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, BCE: E))
8223 return false;
8224 return DerivedSuccess(V: DestValue, E);
8225 }
8226
8227 case CK_AddressSpaceConversion: {
8228 APValue Value;
8229 if (!Evaluate(Result&: Value, Info, E: E->getSubExpr()))
8230 return false;
8231 return DerivedSuccess(V: Value, E);
8232 }
8233 }
8234
8235 return Error(E);
8236 }
8237
8238 bool VisitUnaryPostInc(const UnaryOperator *UO) {
8239 return VisitUnaryPostIncDec(UO);
8240 }
8241 bool VisitUnaryPostDec(const UnaryOperator *UO) {
8242 return VisitUnaryPostIncDec(UO);
8243 }
8244 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
8245 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8246 return Error(UO);
8247
8248 LValue LVal;
8249 if (!EvaluateLValue(E: UO->getSubExpr(), Result&: LVal, Info))
8250 return false;
8251 APValue RVal;
8252 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
8253 UO->isIncrementOp(), &RVal))
8254 return false;
8255 return DerivedSuccess(V: RVal, E: UO);
8256 }
8257
8258 bool VisitStmtExpr(const StmtExpr *E) {
8259 // We will have checked the full-expressions inside the statement expression
8260 // when they were completed, and don't need to check them again now.
8261 llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior,
8262 false);
8263
8264 const CompoundStmt *CS = E->getSubStmt();
8265 if (CS->body_empty())
8266 return true;
8267
8268 BlockScopeRAII Scope(Info);
8269 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
8270 BE = CS->body_end();
8271 /**/; ++BI) {
8272 if (BI + 1 == BE) {
8273 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
8274 if (!FinalExpr) {
8275 Info.FFDiag((*BI)->getBeginLoc(),
8276 diag::note_constexpr_stmt_expr_unsupported);
8277 return false;
8278 }
8279 return this->Visit(FinalExpr) && Scope.destroy();
8280 }
8281
8282 APValue ReturnValue;
8283 StmtResult Result = { .Value: ReturnValue, .Slot: nullptr };
8284 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: *BI);
8285 if (ESR != ESR_Succeeded) {
8286 // FIXME: If the statement-expression terminated due to 'return',
8287 // 'break', or 'continue', it would be nice to propagate that to
8288 // the outer statement evaluation rather than bailing out.
8289 if (ESR != ESR_Failed)
8290 Info.FFDiag((*BI)->getBeginLoc(),
8291 diag::note_constexpr_stmt_expr_unsupported);
8292 return false;
8293 }
8294 }
8295
8296 llvm_unreachable("Return from function from the loop above.");
8297 }
8298
8299 bool VisitPackIndexingExpr(const PackIndexingExpr *E) {
8300 return StmtVisitorTy::Visit(E->getSelectedExpr());
8301 }
8302
8303 /// Visit a value which is evaluated, but whose value is ignored.
8304 void VisitIgnoredValue(const Expr *E) {
8305 EvaluateIgnoredValue(Info, E);
8306 }
8307
8308 /// Potentially visit a MemberExpr's base expression.
8309 void VisitIgnoredBaseExpression(const Expr *E) {
8310 // While MSVC doesn't evaluate the base expression, it does diagnose the
8311 // presence of side-effecting behavior.
8312 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Ctx: Info.Ctx))
8313 return;
8314 VisitIgnoredValue(E);
8315 }
8316};
8317
8318} // namespace
8319
8320//===----------------------------------------------------------------------===//
8321// Common base class for lvalue and temporary evaluation.
8322//===----------------------------------------------------------------------===//
8323namespace {
8324template<class Derived>
8325class LValueExprEvaluatorBase
8326 : public ExprEvaluatorBase<Derived> {
8327protected:
8328 LValue &Result;
8329 bool InvalidBaseOK;
8330 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
8331 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
8332
8333 bool Success(APValue::LValueBase B) {
8334 Result.set(B);
8335 return true;
8336 }
8337
8338 bool evaluatePointer(const Expr *E, LValue &Result) {
8339 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
8340 }
8341
8342public:
8343 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
8344 : ExprEvaluatorBaseTy(Info), Result(Result),
8345 InvalidBaseOK(InvalidBaseOK) {}
8346
8347 bool Success(const APValue &V, const Expr *E) {
8348 Result.setFrom(Ctx&: this->Info.Ctx, V);
8349 return true;
8350 }
8351
8352 bool VisitMemberExpr(const MemberExpr *E) {
8353 // Handle non-static data members.
8354 QualType BaseTy;
8355 bool EvalOK;
8356 if (E->isArrow()) {
8357 EvalOK = evaluatePointer(E: E->getBase(), Result);
8358 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
8359 } else if (E->getBase()->isPRValue()) {
8360 assert(E->getBase()->getType()->isRecordType());
8361 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
8362 BaseTy = E->getBase()->getType();
8363 } else {
8364 EvalOK = this->Visit(E->getBase());
8365 BaseTy = E->getBase()->getType();
8366 }
8367 if (!EvalOK) {
8368 if (!InvalidBaseOK)
8369 return false;
8370 Result.setInvalid(E);
8371 return true;
8372 }
8373
8374 const ValueDecl *MD = E->getMemberDecl();
8375 if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: E->getMemberDecl())) {
8376 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8377 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8378 (void)BaseTy;
8379 if (!HandleLValueMember(this->Info, E, Result, FD))
8380 return false;
8381 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(Val: MD)) {
8382 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8383 return false;
8384 } else
8385 return this->Error(E);
8386
8387 if (MD->getType()->isReferenceType()) {
8388 APValue RefValue;
8389 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8390 RefValue))
8391 return false;
8392 return Success(RefValue, E);
8393 }
8394 return true;
8395 }
8396
8397 bool VisitBinaryOperator(const BinaryOperator *E) {
8398 switch (E->getOpcode()) {
8399 default:
8400 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8401
8402 case BO_PtrMemD:
8403 case BO_PtrMemI:
8404 return HandleMemberPointerAccess(this->Info, E, Result);
8405 }
8406 }
8407
8408 bool VisitCastExpr(const CastExpr *E) {
8409 switch (E->getCastKind()) {
8410 default:
8411 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8412
8413 case CK_DerivedToBase:
8414 case CK_UncheckedDerivedToBase:
8415 if (!this->Visit(E->getSubExpr()))
8416 return false;
8417
8418 // Now figure out the necessary offset to add to the base LV to get from
8419 // the derived class to the base class.
8420 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8421 Result);
8422 }
8423 }
8424};
8425}
8426
8427//===----------------------------------------------------------------------===//
8428// LValue Evaluation
8429//
8430// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8431// function designators (in C), decl references to void objects (in C), and
8432// temporaries (if building with -Wno-address-of-temporary).
8433//
8434// LValue evaluation produces values comprising a base expression of one of the
8435// following types:
8436// - Declarations
8437// * VarDecl
8438// * FunctionDecl
8439// - Literals
8440// * CompoundLiteralExpr in C (and in global scope in C++)
8441// * StringLiteral
8442// * PredefinedExpr
8443// * ObjCStringLiteralExpr
8444// * ObjCEncodeExpr
8445// * AddrLabelExpr
8446// * BlockExpr
8447// * CallExpr for a MakeStringConstant builtin
8448// - typeid(T) expressions, as TypeInfoLValues
8449// - Locals and temporaries
8450// * MaterializeTemporaryExpr
8451// * Any Expr, with a CallIndex indicating the function in which the temporary
8452// was evaluated, for cases where the MaterializeTemporaryExpr is missing
8453// from the AST (FIXME).
8454// * A MaterializeTemporaryExpr that has static storage duration, with no
8455// CallIndex, for a lifetime-extended temporary.
8456// * The ConstantExpr that is currently being evaluated during evaluation of an
8457// immediate invocation.
8458// plus an offset in bytes.
8459//===----------------------------------------------------------------------===//
8460namespace {
8461class LValueExprEvaluator
8462 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8463public:
8464 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8465 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8466
8467 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8468 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8469
8470 bool VisitCallExpr(const CallExpr *E);
8471 bool VisitDeclRefExpr(const DeclRefExpr *E);
8472 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8473 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8474 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8475 bool VisitMemberExpr(const MemberExpr *E);
8476 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
8477 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8478 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8479 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8480 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8481 bool VisitUnaryDeref(const UnaryOperator *E);
8482 bool VisitUnaryReal(const UnaryOperator *E);
8483 bool VisitUnaryImag(const UnaryOperator *E);
8484 bool VisitUnaryPreInc(const UnaryOperator *UO) {
8485 return VisitUnaryPreIncDec(UO);
8486 }
8487 bool VisitUnaryPreDec(const UnaryOperator *UO) {
8488 return VisitUnaryPreIncDec(UO);
8489 }
8490 bool VisitBinAssign(const BinaryOperator *BO);
8491 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8492
8493 bool VisitCastExpr(const CastExpr *E) {
8494 switch (E->getCastKind()) {
8495 default:
8496 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8497
8498 case CK_LValueBitCast:
8499 this->CCEDiag(E, diag::note_constexpr_invalid_cast)
8500 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
8501 if (!Visit(E->getSubExpr()))
8502 return false;
8503 Result.Designator.setInvalid();
8504 return true;
8505
8506 case CK_BaseToDerived:
8507 if (!Visit(E->getSubExpr()))
8508 return false;
8509 return HandleBaseToDerivedCast(Info, E, Result);
8510
8511 case CK_Dynamic:
8512 if (!Visit(E->getSubExpr()))
8513 return false;
8514 return HandleDynamicCast(Info, E: cast<ExplicitCastExpr>(Val: E), Ptr&: Result);
8515 }
8516 }
8517};
8518} // end anonymous namespace
8519
8520/// Get an lvalue to a field of a lambda's closure type.
8521static bool HandleLambdaCapture(EvalInfo &Info, const Expr *E, LValue &Result,
8522 const CXXMethodDecl *MD, const FieldDecl *FD,
8523 bool LValueToRValueConversion) {
8524 // Static lambda function call operators can't have captures. We already
8525 // diagnosed this, so bail out here.
8526 if (MD->isStatic()) {
8527 assert(Info.CurrentCall->This == nullptr &&
8528 "This should not be set for a static call operator");
8529 return false;
8530 }
8531
8532 // Start with 'Result' referring to the complete closure object...
8533 if (MD->isExplicitObjectMemberFunction()) {
8534 // Self may be passed by reference or by value.
8535 const ParmVarDecl *Self = MD->getParamDecl(0);
8536 if (Self->getType()->isReferenceType()) {
8537 APValue *RefValue = Info.getParamSlot(Call: Info.CurrentCall->Arguments, PVD: Self);
8538 Result.setFrom(Ctx&: Info.Ctx, V: *RefValue);
8539 } else {
8540 const ParmVarDecl *VD = Info.CurrentCall->Arguments.getOrigParam(PVD: Self);
8541 CallStackFrame *Frame =
8542 Info.getCallFrameAndDepth(CallIndex: Info.CurrentCall->Arguments.CallIndex)
8543 .first;
8544 unsigned Version = Info.CurrentCall->Arguments.Version;
8545 Result.set({VD, Frame->Index, Version});
8546 }
8547 } else
8548 Result = *Info.CurrentCall->This;
8549
8550 // ... then update it to refer to the field of the closure object
8551 // that represents the capture.
8552 if (!HandleLValueMember(Info, E, LVal&: Result, FD))
8553 return false;
8554
8555 // And if the field is of reference type (or if we captured '*this' by
8556 // reference), update 'Result' to refer to what
8557 // the field refers to.
8558 if (LValueToRValueConversion) {
8559 APValue RVal;
8560 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, RVal))
8561 return false;
8562 Result.setFrom(Ctx&: Info.Ctx, V: RVal);
8563 }
8564 return true;
8565}
8566
8567/// Evaluate an expression as an lvalue. This can be legitimately called on
8568/// expressions which are not glvalues, in three cases:
8569/// * function designators in C, and
8570/// * "extern void" objects
8571/// * @selector() expressions in Objective-C
8572static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8573 bool InvalidBaseOK) {
8574 assert(!E->isValueDependent());
8575 assert(E->isGLValue() || E->getType()->isFunctionType() ||
8576 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens()));
8577 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8578}
8579
8580bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8581 const NamedDecl *D = E->getDecl();
8582 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl,
8583 UnnamedGlobalConstantDecl>(Val: D))
8584 return Success(B: cast<ValueDecl>(Val: D));
8585 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
8586 return VisitVarDecl(E, VD);
8587 if (const BindingDecl *BD = dyn_cast<BindingDecl>(Val: D))
8588 return Visit(BD->getBinding());
8589 return Error(E);
8590}
8591
8592
8593bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8594
8595 // If we are within a lambda's call operator, check whether the 'VD' referred
8596 // to within 'E' actually represents a lambda-capture that maps to a
8597 // data-member/field within the closure object, and if so, evaluate to the
8598 // field or what the field refers to.
8599 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8600 isa<DeclRefExpr>(Val: E) &&
8601 cast<DeclRefExpr>(Val: E)->refersToEnclosingVariableOrCapture()) {
8602 // We don't always have a complete capture-map when checking or inferring if
8603 // the function call operator meets the requirements of a constexpr function
8604 // - but we don't need to evaluate the captures to determine constexprness
8605 // (dcl.constexpr C++17).
8606 if (Info.checkingPotentialConstantExpression())
8607 return false;
8608
8609 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8610 const auto *MD = cast<CXXMethodDecl>(Val: Info.CurrentCall->Callee);
8611 return HandleLambdaCapture(Info, E, Result, MD, FD,
8612 FD->getType()->isReferenceType());
8613 }
8614 }
8615
8616 CallStackFrame *Frame = nullptr;
8617 unsigned Version = 0;
8618 if (VD->hasLocalStorage()) {
8619 // Only if a local variable was declared in the function currently being
8620 // evaluated, do we expect to be able to find its value in the current
8621 // frame. (Otherwise it was likely declared in an enclosing context and
8622 // could either have a valid evaluatable value (for e.g. a constexpr
8623 // variable) or be ill-formed (and trigger an appropriate evaluation
8624 // diagnostic)).
8625 CallStackFrame *CurrFrame = Info.CurrentCall;
8626 if (CurrFrame->Callee && CurrFrame->Callee->Equals(DC: VD->getDeclContext())) {
8627 // Function parameters are stored in some caller's frame. (Usually the
8628 // immediate caller, but for an inherited constructor they may be more
8629 // distant.)
8630 if (auto *PVD = dyn_cast<ParmVarDecl>(Val: VD)) {
8631 if (CurrFrame->Arguments) {
8632 VD = CurrFrame->Arguments.getOrigParam(PVD);
8633 Frame =
8634 Info.getCallFrameAndDepth(CallIndex: CurrFrame->Arguments.CallIndex).first;
8635 Version = CurrFrame->Arguments.Version;
8636 }
8637 } else {
8638 Frame = CurrFrame;
8639 Version = CurrFrame->getCurrentTemporaryVersion(Key: VD);
8640 }
8641 }
8642 }
8643
8644 if (!VD->getType()->isReferenceType()) {
8645 if (Frame) {
8646 Result.set({VD, Frame->Index, Version});
8647 return true;
8648 }
8649 return Success(VD);
8650 }
8651
8652 if (!Info.getLangOpts().CPlusPlus11) {
8653 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8654 << VD << VD->getType();
8655 Info.Note(VD->getLocation(), diag::note_declared_at);
8656 }
8657
8658 APValue *V;
8659 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, Result&: V))
8660 return false;
8661 if (!V->hasValue()) {
8662 // FIXME: Is it possible for V to be indeterminate here? If so, we should
8663 // adjust the diagnostic to say that.
8664 if (!Info.checkingPotentialConstantExpression())
8665 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8666 return false;
8667 }
8668 return Success(V: *V, E);
8669}
8670
8671bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) {
8672 if (!IsConstantEvaluatedBuiltinCall(E))
8673 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8674
8675 switch (E->getBuiltinCallee()) {
8676 default:
8677 return false;
8678 case Builtin::BIas_const:
8679 case Builtin::BIforward:
8680 case Builtin::BIforward_like:
8681 case Builtin::BImove:
8682 case Builtin::BImove_if_noexcept:
8683 if (cast<FunctionDecl>(Val: E->getCalleeDecl())->isConstexpr())
8684 return Visit(E->getArg(Arg: 0));
8685 break;
8686 }
8687
8688 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8689}
8690
8691bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8692 const MaterializeTemporaryExpr *E) {
8693 // Walk through the expression to find the materialized temporary itself.
8694 SmallVector<const Expr *, 2> CommaLHSs;
8695 SmallVector<SubobjectAdjustment, 2> Adjustments;
8696 const Expr *Inner =
8697 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHS&: CommaLHSs, Adjustments);
8698
8699 // If we passed any comma operators, evaluate their LHSs.
8700 for (const Expr *E : CommaLHSs)
8701 if (!EvaluateIgnoredValue(Info, E))
8702 return false;
8703
8704 // A materialized temporary with static storage duration can appear within the
8705 // result of a constant expression evaluation, so we need to preserve its
8706 // value for use outside this evaluation.
8707 APValue *Value;
8708 if (E->getStorageDuration() == SD_Static) {
8709 if (Info.EvalMode == EvalInfo::EM_ConstantFold)
8710 return false;
8711 // FIXME: What about SD_Thread?
8712 Value = E->getOrCreateValue(MayCreate: true);
8713 *Value = APValue();
8714 Result.set(E);
8715 } else {
8716 Value = &Info.CurrentCall->createTemporary(
8717 Key: E, T: Inner->getType(),
8718 Scope: E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8719 : ScopeKind::Block,
8720 LV&: Result);
8721 }
8722
8723 QualType Type = Inner->getType();
8724
8725 // Materialize the temporary itself.
8726 if (!EvaluateInPlace(Result&: *Value, Info, This: Result, E: Inner)) {
8727 *Value = APValue();
8728 return false;
8729 }
8730
8731 // Adjust our lvalue to refer to the desired subobject.
8732 for (unsigned I = Adjustments.size(); I != 0; /**/) {
8733 --I;
8734 switch (Adjustments[I].Kind) {
8735 case SubobjectAdjustment::DerivedToBaseAdjustment:
8736 if (!HandleLValueBasePath(Info, E: Adjustments[I].DerivedToBase.BasePath,
8737 Type, Result))
8738 return false;
8739 Type = Adjustments[I].DerivedToBase.BasePath->getType();
8740 break;
8741
8742 case SubobjectAdjustment::FieldAdjustment:
8743 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8744 return false;
8745 Type = Adjustments[I].Field->getType();
8746 break;
8747
8748 case SubobjectAdjustment::MemberPointerAdjustment:
8749 if (!HandleMemberPointerAccess(Info&: this->Info, LVType: Type, LV&: Result,
8750 RHS: Adjustments[I].Ptr.RHS))
8751 return false;
8752 Type = Adjustments[I].Ptr.MPT->getPointeeType();
8753 break;
8754 }
8755 }
8756
8757 return true;
8758}
8759
8760bool
8761LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8762 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8763 "lvalue compound literal in c++?");
8764 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8765 // only see this when folding in C, so there's no standard to follow here.
8766 return Success(E);
8767}
8768
8769bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8770 TypeInfoLValue TypeInfo;
8771
8772 if (!E->isPotentiallyEvaluated()) {
8773 if (E->isTypeOperand())
8774 TypeInfo = TypeInfoLValue(E->getTypeOperand(Context&: Info.Ctx).getTypePtr());
8775 else
8776 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8777 } else {
8778 if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8779 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8780 << E->getExprOperand()->getType()
8781 << E->getExprOperand()->getSourceRange();
8782 }
8783
8784 if (!Visit(E->getExprOperand()))
8785 return false;
8786
8787 std::optional<DynamicType> DynType =
8788 ComputeDynamicType(Info, E, Result, AK_TypeId);
8789 if (!DynType)
8790 return false;
8791
8792 TypeInfo =
8793 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8794 }
8795
8796 return Success(APValue::LValueBase::getTypeInfo(LV: TypeInfo, TypeInfo: E->getType()));
8797}
8798
8799bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8800 return Success(E->getGuidDecl());
8801}
8802
8803bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8804 // Handle static data members.
8805 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: E->getMemberDecl())) {
8806 VisitIgnoredBaseExpression(E: E->getBase());
8807 return VisitVarDecl(E, VD);
8808 }
8809
8810 // Handle static member functions.
8811 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: E->getMemberDecl())) {
8812 if (MD->isStatic()) {
8813 VisitIgnoredBaseExpression(E: E->getBase());
8814 return Success(MD);
8815 }
8816 }
8817
8818 // Handle non-static data members.
8819 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8820}
8821
8822bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8823 // FIXME: Deal with vectors as array subscript bases.
8824 if (E->getBase()->getType()->isVectorType() ||
8825 E->getBase()->getType()->isSveVLSBuiltinType())
8826 return Error(E);
8827
8828 APSInt Index;
8829 bool Success = true;
8830
8831 // C++17's rules require us to evaluate the LHS first, regardless of which
8832 // side is the base.
8833 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8834 if (SubExpr == E->getBase() ? !evaluatePointer(E: SubExpr, Result)
8835 : !EvaluateInteger(E: SubExpr, Result&: Index, Info)) {
8836 if (!Info.noteFailure())
8837 return false;
8838 Success = false;
8839 }
8840 }
8841
8842 return Success &&
8843 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8844}
8845
8846bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8847 return evaluatePointer(E: E->getSubExpr(), Result);
8848}
8849
8850bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8851 if (!Visit(E->getSubExpr()))
8852 return false;
8853 // __real is a no-op on scalar lvalues.
8854 if (E->getSubExpr()->getType()->isAnyComplexType())
8855 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8856 return true;
8857}
8858
8859bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8860 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8861 "lvalue __imag__ on scalar?");
8862 if (!Visit(E->getSubExpr()))
8863 return false;
8864 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8865 return true;
8866}
8867
8868bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8869 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8870 return Error(UO);
8871
8872 if (!this->Visit(UO->getSubExpr()))
8873 return false;
8874
8875 return handleIncDec(
8876 this->Info, UO, Result, UO->getSubExpr()->getType(),
8877 UO->isIncrementOp(), nullptr);
8878}
8879
8880bool LValueExprEvaluator::VisitCompoundAssignOperator(
8881 const CompoundAssignOperator *CAO) {
8882 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8883 return Error(CAO);
8884
8885 bool Success = true;
8886
8887 // C++17 onwards require that we evaluate the RHS first.
8888 APValue RHS;
8889 if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8890 if (!Info.noteFailure())
8891 return false;
8892 Success = false;
8893 }
8894
8895 // The overall lvalue result is the result of evaluating the LHS.
8896 if (!this->Visit(CAO->getLHS()) || !Success)
8897 return false;
8898
8899 return handleCompoundAssignment(
8900 this->Info, CAO,
8901 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8902 CAO->getOpForCompoundAssignment(Opc: CAO->getOpcode()), RHS);
8903}
8904
8905bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8906 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8907 return Error(E);
8908
8909 bool Success = true;
8910
8911 // C++17 onwards require that we evaluate the RHS first.
8912 APValue NewVal;
8913 if (!Evaluate(Result&: NewVal, Info&: this->Info, E: E->getRHS())) {
8914 if (!Info.noteFailure())
8915 return false;
8916 Success = false;
8917 }
8918
8919 if (!this->Visit(E->getLHS()) || !Success)
8920 return false;
8921
8922 if (Info.getLangOpts().CPlusPlus20 &&
8923 !MaybeHandleUnionActiveMemberChange(Info, LHSExpr: E->getLHS(), LHS: Result))
8924 return false;
8925
8926 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8927 NewVal);
8928}
8929
8930//===----------------------------------------------------------------------===//
8931// Pointer Evaluation
8932//===----------------------------------------------------------------------===//
8933
8934/// Attempts to compute the number of bytes available at the pointer
8935/// returned by a function with the alloc_size attribute. Returns true if we
8936/// were successful. Places an unsigned number into `Result`.
8937///
8938/// This expects the given CallExpr to be a call to a function with an
8939/// alloc_size attribute.
8940static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8941 const CallExpr *Call,
8942 llvm::APInt &Result) {
8943 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8944
8945 assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8946 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8947 unsigned BitsInSizeT = Ctx.getTypeSize(T: Ctx.getSizeType());
8948 if (Call->getNumArgs() <= SizeArgNo)
8949 return false;
8950
8951 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8952 Expr::EvalResult ExprResult;
8953 if (!E->EvaluateAsInt(Result&: ExprResult, Ctx, AllowSideEffects: Expr::SE_AllowSideEffects))
8954 return false;
8955 Into = ExprResult.Val.getInt();
8956 if (Into.isNegative() || !Into.isIntN(N: BitsInSizeT))
8957 return false;
8958 Into = Into.zext(width: BitsInSizeT);
8959 return true;
8960 };
8961
8962 APSInt SizeOfElem;
8963 if (!EvaluateAsSizeT(Call->getArg(Arg: SizeArgNo), SizeOfElem))
8964 return false;
8965
8966 if (!AllocSize->getNumElemsParam().isValid()) {
8967 Result = std::move(SizeOfElem);
8968 return true;
8969 }
8970
8971 APSInt NumberOfElems;
8972 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8973 if (!EvaluateAsSizeT(Call->getArg(Arg: NumArgNo), NumberOfElems))
8974 return false;
8975
8976 bool Overflow;
8977 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(RHS: NumberOfElems, Overflow);
8978 if (Overflow)
8979 return false;
8980
8981 Result = std::move(BytesAvailable);
8982 return true;
8983}
8984
8985/// Convenience function. LVal's base must be a call to an alloc_size
8986/// function.
8987static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8988 const LValue &LVal,
8989 llvm::APInt &Result) {
8990 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8991 "Can't get the size of a non alloc_size function");
8992 const auto *Base = LVal.getLValueBase().get<const Expr *>();
8993 const CallExpr *CE = tryUnwrapAllocSizeCall(E: Base);
8994 return getBytesReturnedByAllocSizeCall(Ctx, Call: CE, Result);
8995}
8996
8997/// Attempts to evaluate the given LValueBase as the result of a call to
8998/// a function with the alloc_size attribute. If it was possible to do so, this
8999/// function will return true, make Result's Base point to said function call,
9000/// and mark Result's Base as invalid.
9001static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
9002 LValue &Result) {
9003 if (Base.isNull())
9004 return false;
9005
9006 // Because we do no form of static analysis, we only support const variables.
9007 //
9008 // Additionally, we can't support parameters, nor can we support static
9009 // variables (in the latter case, use-before-assign isn't UB; in the former,
9010 // we have no clue what they'll be assigned to).
9011 const auto *VD =
9012 dyn_cast_or_null<VarDecl>(Val: Base.dyn_cast<const ValueDecl *>());
9013 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
9014 return false;
9015
9016 const Expr *Init = VD->getAnyInitializer();
9017 if (!Init || Init->getType().isNull())
9018 return false;
9019
9020 const Expr *E = Init->IgnoreParens();
9021 if (!tryUnwrapAllocSizeCall(E))
9022 return false;
9023
9024 // Store E instead of E unwrapped so that the type of the LValue's base is
9025 // what the user wanted.
9026 Result.setInvalid(B: E);
9027
9028 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
9029 Result.addUnsizedArray(Info, E, ElemTy: Pointee);
9030 return true;
9031}
9032
9033namespace {
9034class PointerExprEvaluator
9035 : public ExprEvaluatorBase<PointerExprEvaluator> {
9036 LValue &Result;
9037 bool InvalidBaseOK;
9038
9039 bool Success(const Expr *E) {
9040 Result.set(B: E);
9041 return true;
9042 }
9043
9044 bool evaluateLValue(const Expr *E, LValue &Result) {
9045 return EvaluateLValue(E, Result, Info, InvalidBaseOK);
9046 }
9047
9048 bool evaluatePointer(const Expr *E, LValue &Result) {
9049 return EvaluatePointer(E, Result, Info, InvalidBaseOK);
9050 }
9051
9052 bool visitNonBuiltinCallExpr(const CallExpr *E);
9053public:
9054
9055 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
9056 : ExprEvaluatorBaseTy(info), Result(Result),
9057 InvalidBaseOK(InvalidBaseOK) {}
9058
9059 bool Success(const APValue &V, const Expr *E) {
9060 Result.setFrom(Ctx&: Info.Ctx, V);
9061 return true;
9062 }
9063 bool ZeroInitialization(const Expr *E) {
9064 Result.setNull(Ctx&: Info.Ctx, PointerTy: E->getType());
9065 return true;
9066 }
9067
9068 bool VisitBinaryOperator(const BinaryOperator *E);
9069 bool VisitCastExpr(const CastExpr* E);
9070 bool VisitUnaryAddrOf(const UnaryOperator *E);
9071 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
9072 { return Success(E); }
9073 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
9074 if (E->isExpressibleAsConstantInitializer())
9075 return Success(E);
9076 if (Info.noteFailure())
9077 EvaluateIgnoredValue(Info, E: E->getSubExpr());
9078 return Error(E);
9079 }
9080 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
9081 { return Success(E); }
9082 bool VisitCallExpr(const CallExpr *E);
9083 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
9084 bool VisitBlockExpr(const BlockExpr *E) {
9085 if (!E->getBlockDecl()->hasCaptures())
9086 return Success(E);
9087 return Error(E);
9088 }
9089 bool VisitCXXThisExpr(const CXXThisExpr *E) {
9090 auto DiagnoseInvalidUseOfThis = [&] {
9091 if (Info.getLangOpts().CPlusPlus11)
9092 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
9093 else
9094 Info.FFDiag(E);
9095 };
9096
9097 // Can't look at 'this' when checking a potential constant expression.
9098 if (Info.checkingPotentialConstantExpression())
9099 return false;
9100
9101 bool IsExplicitLambda =
9102 isLambdaCallWithExplicitObjectParameter(Info.CurrentCall->Callee);
9103 if (!IsExplicitLambda) {
9104 if (!Info.CurrentCall->This) {
9105 DiagnoseInvalidUseOfThis();
9106 return false;
9107 }
9108
9109 Result = *Info.CurrentCall->This;
9110 }
9111
9112 if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
9113 // Ensure we actually have captured 'this'. If something was wrong with
9114 // 'this' capture, the error would have been previously reported.
9115 // Otherwise we can be inside of a default initialization of an object
9116 // declared by lambda's body, so no need to return false.
9117 if (!Info.CurrentCall->LambdaThisCaptureField) {
9118 if (IsExplicitLambda && !Info.CurrentCall->This) {
9119 DiagnoseInvalidUseOfThis();
9120 return false;
9121 }
9122
9123 return true;
9124 }
9125
9126 const auto *MD = cast<CXXMethodDecl>(Val: Info.CurrentCall->Callee);
9127 return HandleLambdaCapture(
9128 Info, E, Result, MD, Info.CurrentCall->LambdaThisCaptureField,
9129 Info.CurrentCall->LambdaThisCaptureField->getType()->isPointerType());
9130 }
9131 return true;
9132 }
9133
9134 bool VisitCXXNewExpr(const CXXNewExpr *E);
9135
9136 bool VisitSourceLocExpr(const SourceLocExpr *E) {
9137 assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?");
9138 APValue LValResult = E->EvaluateInContext(
9139 Ctx: Info.Ctx, DefaultExpr: Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
9140 Result.setFrom(Ctx&: Info.Ctx, V: LValResult);
9141 return true;
9142 }
9143
9144 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
9145 std::string ResultStr = E->ComputeName(Context&: Info.Ctx);
9146
9147 QualType CharTy = Info.Ctx.CharTy.withConst();
9148 APInt Size(Info.Ctx.getTypeSize(T: Info.Ctx.getSizeType()),
9149 ResultStr.size() + 1);
9150 QualType ArrayTy = Info.Ctx.getConstantArrayType(
9151 EltTy: CharTy, ArySize: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
9152
9153 StringLiteral *SL =
9154 StringLiteral::Create(Ctx: Info.Ctx, Str: ResultStr, Kind: StringLiteralKind::Ordinary,
9155 /*Pascal*/ false, Ty: ArrayTy, Loc: E->getLocation());
9156
9157 evaluateLValue(SL, Result);
9158 Result.addArray(Info, E, cast<ConstantArrayType>(Val&: ArrayTy));
9159 return true;
9160 }
9161
9162 // FIXME: Missing: @protocol, @selector
9163};
9164} // end anonymous namespace
9165
9166static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
9167 bool InvalidBaseOK) {
9168 assert(!E->isValueDependent());
9169 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
9170 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
9171}
9172
9173bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
9174 if (E->getOpcode() != BO_Add &&
9175 E->getOpcode() != BO_Sub)
9176 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9177
9178 const Expr *PExp = E->getLHS();
9179 const Expr *IExp = E->getRHS();
9180 if (IExp->getType()->isPointerType())
9181 std::swap(a&: PExp, b&: IExp);
9182
9183 bool EvalPtrOK = evaluatePointer(E: PExp, Result);
9184 if (!EvalPtrOK && !Info.noteFailure())
9185 return false;
9186
9187 llvm::APSInt Offset;
9188 if (!EvaluateInteger(E: IExp, Result&: Offset, Info) || !EvalPtrOK)
9189 return false;
9190
9191 if (E->getOpcode() == BO_Sub)
9192 negateAsSigned(Int&: Offset);
9193
9194 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
9195 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
9196}
9197
9198bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9199 return evaluateLValue(E: E->getSubExpr(), Result);
9200}
9201
9202// Is the provided decl 'std::source_location::current'?
9203static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) {
9204 if (!FD)
9205 return false;
9206 const IdentifierInfo *FnII = FD->getIdentifier();
9207 if (!FnII || !FnII->isStr(Str: "current"))
9208 return false;
9209
9210 const auto *RD = dyn_cast<RecordDecl>(FD->getParent());
9211 if (!RD)
9212 return false;
9213
9214 const IdentifierInfo *ClassII = RD->getIdentifier();
9215 return RD->isInStdNamespace() && ClassII && ClassII->isStr(Str: "source_location");
9216}
9217
9218bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9219 const Expr *SubExpr = E->getSubExpr();
9220
9221 switch (E->getCastKind()) {
9222 default:
9223 break;
9224 case CK_BitCast:
9225 case CK_CPointerToObjCPointerCast:
9226 case CK_BlockPointerToObjCPointerCast:
9227 case CK_AnyPointerToBlockPointerCast:
9228 case CK_AddressSpaceConversion:
9229 if (!Visit(SubExpr))
9230 return false;
9231 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
9232 // permitted in constant expressions in C++11. Bitcasts from cv void* are
9233 // also static_casts, but we disallow them as a resolution to DR1312.
9234 if (!E->getType()->isVoidPointerType()) {
9235 // In some circumstances, we permit casting from void* to cv1 T*, when the
9236 // actual pointee object is actually a cv2 T.
9237 bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid &&
9238 !Result.IsNullPtr;
9239 bool VoidPtrCastMaybeOK =
9240 HasValidResult &&
9241 Info.Ctx.hasSameUnqualifiedType(T1: Result.Designator.getType(Info.Ctx),
9242 T2: E->getType()->getPointeeType());
9243 // 1. We'll allow it in std::allocator::allocate, and anything which that
9244 // calls.
9245 // 2. HACK 2022-03-28: Work around an issue with libstdc++'s
9246 // <source_location> header. Fixed in GCC 12 and later (2022-04-??).
9247 // We'll allow it in the body of std::source_location::current. GCC's
9248 // implementation had a parameter of type `void*`, and casts from
9249 // that back to `const __impl*` in its body.
9250 if (VoidPtrCastMaybeOK &&
9251 (Info.getStdAllocatorCaller(FnName: "allocate") ||
9252 IsDeclSourceLocationCurrent(FD: Info.CurrentCall->Callee) ||
9253 Info.getLangOpts().CPlusPlus26)) {
9254 // Permitted.
9255 } else {
9256 if (SubExpr->getType()->isVoidPointerType() &&
9257 Info.getLangOpts().CPlusPlus) {
9258 if (HasValidResult)
9259 CCEDiag(E, diag::note_constexpr_invalid_void_star_cast)
9260 << SubExpr->getType() << Info.getLangOpts().CPlusPlus26
9261 << Result.Designator.getType(Info.Ctx).getCanonicalType()
9262 << E->getType()->getPointeeType();
9263 else
9264 CCEDiag(E, diag::note_constexpr_invalid_cast)
9265 << 3 << SubExpr->getType();
9266 } else
9267 CCEDiag(E, diag::note_constexpr_invalid_cast)
9268 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
9269 Result.Designator.setInvalid();
9270 }
9271 }
9272 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
9273 ZeroInitialization(E);
9274 return true;
9275
9276 case CK_DerivedToBase:
9277 case CK_UncheckedDerivedToBase:
9278 if (!evaluatePointer(E: E->getSubExpr(), Result))
9279 return false;
9280 if (!Result.Base && Result.Offset.isZero())
9281 return true;
9282
9283 // Now figure out the necessary offset to add to the base LV to get from
9284 // the derived class to the base class.
9285 return HandleLValueBasePath(Info, E, Type: E->getSubExpr()->getType()->
9286 castAs<PointerType>()->getPointeeType(),
9287 Result);
9288
9289 case CK_BaseToDerived:
9290 if (!Visit(E->getSubExpr()))
9291 return false;
9292 if (!Result.Base && Result.Offset.isZero())
9293 return true;
9294 return HandleBaseToDerivedCast(Info, E, Result);
9295
9296 case CK_Dynamic:
9297 if (!Visit(E->getSubExpr()))
9298 return false;
9299 return HandleDynamicCast(Info, E: cast<ExplicitCastExpr>(Val: E), Ptr&: Result);
9300
9301 case CK_NullToPointer:
9302 VisitIgnoredValue(E: E->getSubExpr());
9303 return ZeroInitialization(E);
9304
9305 case CK_IntegralToPointer: {
9306 CCEDiag(E, diag::note_constexpr_invalid_cast)
9307 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
9308
9309 APValue Value;
9310 if (!EvaluateIntegerOrLValue(E: SubExpr, Result&: Value, Info))
9311 break;
9312
9313 if (Value.isInt()) {
9314 unsigned Size = Info.Ctx.getTypeSize(E->getType());
9315 uint64_t N = Value.getInt().extOrTrunc(width: Size).getZExtValue();
9316 Result.Base = (Expr*)nullptr;
9317 Result.InvalidBase = false;
9318 Result.Offset = CharUnits::fromQuantity(Quantity: N);
9319 Result.Designator.setInvalid();
9320 Result.IsNullPtr = false;
9321 return true;
9322 } else {
9323 // Cast is of an lvalue, no need to change value.
9324 Result.setFrom(Ctx&: Info.Ctx, V: Value);
9325 return true;
9326 }
9327 }
9328
9329 case CK_ArrayToPointerDecay: {
9330 if (SubExpr->isGLValue()) {
9331 if (!evaluateLValue(E: SubExpr, Result))
9332 return false;
9333 } else {
9334 APValue &Value = Info.CurrentCall->createTemporary(
9335 Key: SubExpr, T: SubExpr->getType(), Scope: ScopeKind::FullExpression, LV&: Result);
9336 if (!EvaluateInPlace(Result&: Value, Info, This: Result, E: SubExpr))
9337 return false;
9338 }
9339 // The result is a pointer to the first element of the array.
9340 auto *AT = Info.Ctx.getAsArrayType(T: SubExpr->getType());
9341 if (auto *CAT = dyn_cast<ConstantArrayType>(Val: AT))
9342 Result.addArray(Info, E, CAT);
9343 else
9344 Result.addUnsizedArray(Info, E, AT->getElementType());
9345 return true;
9346 }
9347
9348 case CK_FunctionToPointerDecay:
9349 return evaluateLValue(E: SubExpr, Result);
9350
9351 case CK_LValueToRValue: {
9352 LValue LVal;
9353 if (!evaluateLValue(E: E->getSubExpr(), Result&: LVal))
9354 return false;
9355
9356 APValue RVal;
9357 // Note, we use the subexpression's type in order to retain cv-qualifiers.
9358 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
9359 LVal, RVal))
9360 return InvalidBaseOK &&
9361 evaluateLValueAsAllocSize(Info, Base: LVal.Base, Result);
9362 return Success(RVal, E);
9363 }
9364 }
9365
9366 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9367}
9368
9369static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
9370 UnaryExprOrTypeTrait ExprKind) {
9371 // C++ [expr.alignof]p3:
9372 // When alignof is applied to a reference type, the result is the
9373 // alignment of the referenced type.
9374 T = T.getNonReferenceType();
9375
9376 if (T.getQualifiers().hasUnaligned())
9377 return CharUnits::One();
9378
9379 const bool AlignOfReturnsPreferred =
9380 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
9381
9382 // __alignof is defined to return the preferred alignment.
9383 // Before 8, clang returned the preferred alignment for alignof and _Alignof
9384 // as well.
9385 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
9386 return Info.Ctx.toCharUnitsFromBits(
9387 BitSize: Info.Ctx.getPreferredTypeAlign(T: T.getTypePtr()));
9388 // alignof and _Alignof are defined to return the ABI alignment.
9389 else if (ExprKind == UETT_AlignOf)
9390 return Info.Ctx.getTypeAlignInChars(T: T.getTypePtr());
9391 else
9392 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9393}
9394
9395static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
9396 UnaryExprOrTypeTrait ExprKind) {
9397 E = E->IgnoreParens();
9398
9399 // The kinds of expressions that we have special-case logic here for
9400 // should be kept up to date with the special checks for those
9401 // expressions in Sema.
9402
9403 // alignof decl is always accepted, even if it doesn't make sense: we default
9404 // to 1 in those cases.
9405 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E))
9406 return Info.Ctx.getDeclAlign(DRE->getDecl(),
9407 /*RefAsPointee*/true);
9408
9409 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E))
9410 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
9411 /*RefAsPointee*/true);
9412
9413 return GetAlignOfType(Info, T: E->getType(), ExprKind);
9414}
9415
9416static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
9417 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
9418 return Info.Ctx.getDeclAlign(VD);
9419 if (const auto *E = Value.Base.dyn_cast<const Expr *>())
9420 return GetAlignOfExpr(Info, E, ExprKind: UETT_AlignOf);
9421 return GetAlignOfType(Info, T: Value.Base.getTypeInfoType(), ExprKind: UETT_AlignOf);
9422}
9423
9424/// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9425/// __builtin_is_aligned and __builtin_assume_aligned.
9426static bool getAlignmentArgument(const Expr *E, QualType ForType,
9427 EvalInfo &Info, APSInt &Alignment) {
9428 if (!EvaluateInteger(E, Result&: Alignment, Info))
9429 return false;
9430 if (Alignment < 0 || !Alignment.isPowerOf2()) {
9431 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
9432 return false;
9433 }
9434 unsigned SrcWidth = Info.Ctx.getIntWidth(T: ForType);
9435 APSInt MaxValue(APInt::getOneBitSet(numBits: SrcWidth, BitNo: SrcWidth - 1));
9436 if (APSInt::compareValues(I1: Alignment, I2: MaxValue) > 0) {
9437 Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
9438 << MaxValue << ForType << Alignment;
9439 return false;
9440 }
9441 // Ensure both alignment and source value have the same bit width so that we
9442 // don't assert when computing the resulting value.
9443 APSInt ExtAlignment =
9444 APSInt(Alignment.zextOrTrunc(width: SrcWidth), /*isUnsigned=*/true);
9445 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
9446 "Alignment should not be changed by ext/trunc");
9447 Alignment = ExtAlignment;
9448 assert(Alignment.getBitWidth() == SrcWidth);
9449 return true;
9450}
9451
9452// To be clear: this happily visits unsupported builtins. Better name welcomed.
9453bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
9454 if (ExprEvaluatorBaseTy::VisitCallExpr(E))
9455 return true;
9456
9457 if (!(InvalidBaseOK && getAllocSizeAttr(E)))
9458 return false;
9459
9460 Result.setInvalid(E);
9461 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
9462 Result.addUnsizedArray(Info, E, PointeeTy);
9463 return true;
9464}
9465
9466bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
9467 if (!IsConstantEvaluatedBuiltinCall(E))
9468 return visitNonBuiltinCallExpr(E);
9469 return VisitBuiltinCallExpr(E, BuiltinOp: E->getBuiltinCallee());
9470}
9471
9472// Determine if T is a character type for which we guarantee that
9473// sizeof(T) == 1.
9474static bool isOneByteCharacterType(QualType T) {
9475 return T->isCharType() || T->isChar8Type();
9476}
9477
9478bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9479 unsigned BuiltinOp) {
9480 if (IsNoOpCall(E))
9481 return Success(E);
9482
9483 switch (BuiltinOp) {
9484 case Builtin::BIaddressof:
9485 case Builtin::BI__addressof:
9486 case Builtin::BI__builtin_addressof:
9487 return evaluateLValue(E: E->getArg(Arg: 0), Result);
9488 case Builtin::BI__builtin_assume_aligned: {
9489 // We need to be very careful here because: if the pointer does not have the
9490 // asserted alignment, then the behavior is undefined, and undefined
9491 // behavior is non-constant.
9492 if (!evaluatePointer(E: E->getArg(Arg: 0), Result))
9493 return false;
9494
9495 LValue OffsetResult(Result);
9496 APSInt Alignment;
9497 if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: E->getArg(Arg: 0)->getType(), Info,
9498 Alignment))
9499 return false;
9500 CharUnits Align = CharUnits::fromQuantity(Quantity: Alignment.getZExtValue());
9501
9502 if (E->getNumArgs() > 2) {
9503 APSInt Offset;
9504 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: Offset, Info))
9505 return false;
9506
9507 int64_t AdditionalOffset = -Offset.getZExtValue();
9508 OffsetResult.Offset += CharUnits::fromQuantity(Quantity: AdditionalOffset);
9509 }
9510
9511 // If there is a base object, then it must have the correct alignment.
9512 if (OffsetResult.Base) {
9513 CharUnits BaseAlignment = getBaseAlignment(Info, Value: OffsetResult);
9514
9515 if (BaseAlignment < Align) {
9516 Result.Designator.setInvalid();
9517 // FIXME: Add support to Diagnostic for long / long long.
9518 CCEDiag(E->getArg(0),
9519 diag::note_constexpr_baa_insufficient_alignment) << 0
9520 << (unsigned)BaseAlignment.getQuantity()
9521 << (unsigned)Align.getQuantity();
9522 return false;
9523 }
9524 }
9525
9526 // The offset must also have the correct alignment.
9527 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9528 Result.Designator.setInvalid();
9529
9530 (OffsetResult.Base
9531 ? CCEDiag(E->getArg(0),
9532 diag::note_constexpr_baa_insufficient_alignment) << 1
9533 : CCEDiag(E->getArg(0),
9534 diag::note_constexpr_baa_value_insufficient_alignment))
9535 << (int)OffsetResult.Offset.getQuantity()
9536 << (unsigned)Align.getQuantity();
9537 return false;
9538 }
9539
9540 return true;
9541 }
9542 case Builtin::BI__builtin_align_up:
9543 case Builtin::BI__builtin_align_down: {
9544 if (!evaluatePointer(E: E->getArg(Arg: 0), Result))
9545 return false;
9546 APSInt Alignment;
9547 if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: E->getArg(Arg: 0)->getType(), Info,
9548 Alignment))
9549 return false;
9550 CharUnits BaseAlignment = getBaseAlignment(Info, Value: Result);
9551 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(offset: Result.Offset);
9552 // For align_up/align_down, we can return the same value if the alignment
9553 // is known to be greater or equal to the requested value.
9554 if (PtrAlign.getQuantity() >= Alignment)
9555 return true;
9556
9557 // The alignment could be greater than the minimum at run-time, so we cannot
9558 // infer much about the resulting pointer value. One case is possible:
9559 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9560 // can infer the correct index if the requested alignment is smaller than
9561 // the base alignment so we can perform the computation on the offset.
9562 if (BaseAlignment.getQuantity() >= Alignment) {
9563 assert(Alignment.getBitWidth() <= 64 &&
9564 "Cannot handle > 64-bit address-space");
9565 uint64_t Alignment64 = Alignment.getZExtValue();
9566 CharUnits NewOffset = CharUnits::fromQuantity(
9567 BuiltinOp == Builtin::BI__builtin_align_down
9568 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9569 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9570 Result.adjustOffset(N: NewOffset - Result.Offset);
9571 // TODO: diagnose out-of-bounds values/only allow for arrays?
9572 return true;
9573 }
9574 // Otherwise, we cannot constant-evaluate the result.
9575 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9576 << Alignment;
9577 return false;
9578 }
9579 case Builtin::BI__builtin_operator_new:
9580 return HandleOperatorNewCall(Info, E, Result);
9581 case Builtin::BI__builtin_launder:
9582 return evaluatePointer(E: E->getArg(Arg: 0), Result);
9583 case Builtin::BIstrchr:
9584 case Builtin::BIwcschr:
9585 case Builtin::BImemchr:
9586 case Builtin::BIwmemchr:
9587 if (Info.getLangOpts().CPlusPlus11)
9588 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9589 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9590 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9591 else
9592 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9593 [[fallthrough]];
9594 case Builtin::BI__builtin_strchr:
9595 case Builtin::BI__builtin_wcschr:
9596 case Builtin::BI__builtin_memchr:
9597 case Builtin::BI__builtin_char_memchr:
9598 case Builtin::BI__builtin_wmemchr: {
9599 if (!Visit(E->getArg(Arg: 0)))
9600 return false;
9601 APSInt Desired;
9602 if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: Desired, Info))
9603 return false;
9604 uint64_t MaxLength = uint64_t(-1);
9605 if (BuiltinOp != Builtin::BIstrchr &&
9606 BuiltinOp != Builtin::BIwcschr &&
9607 BuiltinOp != Builtin::BI__builtin_strchr &&
9608 BuiltinOp != Builtin::BI__builtin_wcschr) {
9609 APSInt N;
9610 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info))
9611 return false;
9612 MaxLength = N.getZExtValue();
9613 }
9614 // We cannot find the value if there are no candidates to match against.
9615 if (MaxLength == 0u)
9616 return ZeroInitialization(E);
9617 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9618 Result.Designator.Invalid)
9619 return false;
9620 QualType CharTy = Result.Designator.getType(Info.Ctx);
9621 bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9622 BuiltinOp == Builtin::BI__builtin_memchr;
9623 assert(IsRawByte ||
9624 Info.Ctx.hasSameUnqualifiedType(
9625 CharTy, E->getArg(0)->getType()->getPointeeType()));
9626 // Pointers to const void may point to objects of incomplete type.
9627 if (IsRawByte && CharTy->isIncompleteType()) {
9628 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9629 return false;
9630 }
9631 // Give up on byte-oriented matching against multibyte elements.
9632 // FIXME: We can compare the bytes in the correct order.
9633 if (IsRawByte && !isOneByteCharacterType(T: CharTy)) {
9634 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9635 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
9636 << CharTy;
9637 return false;
9638 }
9639 // Figure out what value we're actually looking for (after converting to
9640 // the corresponding unsigned type if necessary).
9641 uint64_t DesiredVal;
9642 bool StopAtNull = false;
9643 switch (BuiltinOp) {
9644 case Builtin::BIstrchr:
9645 case Builtin::BI__builtin_strchr:
9646 // strchr compares directly to the passed integer, and therefore
9647 // always fails if given an int that is not a char.
9648 if (!APSInt::isSameValue(I1: HandleIntToIntCast(Info, E, CharTy,
9649 E->getArg(Arg: 1)->getType(),
9650 Desired),
9651 I2: Desired))
9652 return ZeroInitialization(E);
9653 StopAtNull = true;
9654 [[fallthrough]];
9655 case Builtin::BImemchr:
9656 case Builtin::BI__builtin_memchr:
9657 case Builtin::BI__builtin_char_memchr:
9658 // memchr compares by converting both sides to unsigned char. That's also
9659 // correct for strchr if we get this far (to cope with plain char being
9660 // unsigned in the strchr case).
9661 DesiredVal = Desired.trunc(width: Info.Ctx.getCharWidth()).getZExtValue();
9662 break;
9663
9664 case Builtin::BIwcschr:
9665 case Builtin::BI__builtin_wcschr:
9666 StopAtNull = true;
9667 [[fallthrough]];
9668 case Builtin::BIwmemchr:
9669 case Builtin::BI__builtin_wmemchr:
9670 // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9671 DesiredVal = Desired.getZExtValue();
9672 break;
9673 }
9674
9675 for (; MaxLength; --MaxLength) {
9676 APValue Char;
9677 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9678 !Char.isInt())
9679 return false;
9680 if (Char.getInt().getZExtValue() == DesiredVal)
9681 return true;
9682 if (StopAtNull && !Char.getInt())
9683 break;
9684 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9685 return false;
9686 }
9687 // Not found: return nullptr.
9688 return ZeroInitialization(E);
9689 }
9690
9691 case Builtin::BImemcpy:
9692 case Builtin::BImemmove:
9693 case Builtin::BIwmemcpy:
9694 case Builtin::BIwmemmove:
9695 if (Info.getLangOpts().CPlusPlus11)
9696 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9697 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9698 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9699 else
9700 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9701 [[fallthrough]];
9702 case Builtin::BI__builtin_memcpy:
9703 case Builtin::BI__builtin_memmove:
9704 case Builtin::BI__builtin_wmemcpy:
9705 case Builtin::BI__builtin_wmemmove: {
9706 bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9707 BuiltinOp == Builtin::BIwmemmove ||
9708 BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9709 BuiltinOp == Builtin::BI__builtin_wmemmove;
9710 bool Move = BuiltinOp == Builtin::BImemmove ||
9711 BuiltinOp == Builtin::BIwmemmove ||
9712 BuiltinOp == Builtin::BI__builtin_memmove ||
9713 BuiltinOp == Builtin::BI__builtin_wmemmove;
9714
9715 // The result of mem* is the first argument.
9716 if (!Visit(E->getArg(Arg: 0)))
9717 return false;
9718 LValue Dest = Result;
9719
9720 LValue Src;
9721 if (!EvaluatePointer(E: E->getArg(Arg: 1), Result&: Src, Info))
9722 return false;
9723
9724 APSInt N;
9725 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info))
9726 return false;
9727 assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9728
9729 // If the size is zero, we treat this as always being a valid no-op.
9730 // (Even if one of the src and dest pointers is null.)
9731 if (!N)
9732 return true;
9733
9734 // Otherwise, if either of the operands is null, we can't proceed. Don't
9735 // try to determine the type of the copied objects, because there aren't
9736 // any.
9737 if (!Src.Base || !Dest.Base) {
9738 APValue Val;
9739 (!Src.Base ? Src : Dest).moveInto(V&: Val);
9740 Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9741 << Move << WChar << !!Src.Base
9742 << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9743 return false;
9744 }
9745 if (Src.Designator.Invalid || Dest.Designator.Invalid)
9746 return false;
9747
9748 // We require that Src and Dest are both pointers to arrays of
9749 // trivially-copyable type. (For the wide version, the designator will be
9750 // invalid if the designated object is not a wchar_t.)
9751 QualType T = Dest.Designator.getType(Info.Ctx);
9752 QualType SrcT = Src.Designator.getType(Info.Ctx);
9753 if (!Info.Ctx.hasSameUnqualifiedType(T1: T, T2: SrcT)) {
9754 // FIXME: Consider using our bit_cast implementation to support this.
9755 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9756 return false;
9757 }
9758 if (T->isIncompleteType()) {
9759 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9760 return false;
9761 }
9762 if (!T.isTriviallyCopyableType(Context: Info.Ctx)) {
9763 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9764 return false;
9765 }
9766
9767 // Figure out how many T's we're copying.
9768 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9769 if (TSize == 0)
9770 return false;
9771 if (!WChar) {
9772 uint64_t Remainder;
9773 llvm::APInt OrigN = N;
9774 llvm::APInt::udivrem(LHS: OrigN, RHS: TSize, Quotient&: N, Remainder);
9775 if (Remainder) {
9776 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9777 << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9778 << (unsigned)TSize;
9779 return false;
9780 }
9781 }
9782
9783 // Check that the copying will remain within the arrays, just so that we
9784 // can give a more meaningful diagnostic. This implicitly also checks that
9785 // N fits into 64 bits.
9786 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9787 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9788 if (N.ugt(RHS: RemainingSrcSize) || N.ugt(RHS: RemainingDestSize)) {
9789 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9790 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9791 << toString(N, 10, /*Signed*/false);
9792 return false;
9793 }
9794 uint64_t NElems = N.getZExtValue();
9795 uint64_t NBytes = NElems * TSize;
9796
9797 // Check for overlap.
9798 int Direction = 1;
9799 if (HasSameBase(A: Src, B: Dest)) {
9800 uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9801 uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9802 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9803 // Dest is inside the source region.
9804 if (!Move) {
9805 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9806 return false;
9807 }
9808 // For memmove and friends, copy backwards.
9809 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9810 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9811 return false;
9812 Direction = -1;
9813 } else if (!Move && SrcOffset >= DestOffset &&
9814 SrcOffset - DestOffset < NBytes) {
9815 // Src is inside the destination region for memcpy: invalid.
9816 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9817 return false;
9818 }
9819 }
9820
9821 while (true) {
9822 APValue Val;
9823 // FIXME: Set WantObjectRepresentation to true if we're copying a
9824 // char-like type?
9825 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9826 !handleAssignment(Info, E, Dest, T, Val))
9827 return false;
9828 // Do not iterate past the last element; if we're copying backwards, that
9829 // might take us off the start of the array.
9830 if (--NElems == 0)
9831 return true;
9832 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9833 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9834 return false;
9835 }
9836 }
9837
9838 default:
9839 return false;
9840 }
9841}
9842
9843static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9844 APValue &Result, const InitListExpr *ILE,
9845 QualType AllocType);
9846static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9847 APValue &Result,
9848 const CXXConstructExpr *CCE,
9849 QualType AllocType);
9850
9851bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9852 if (!Info.getLangOpts().CPlusPlus20)
9853 Info.CCEDiag(E, diag::note_constexpr_new);
9854
9855 // We cannot speculatively evaluate a delete expression.
9856 if (Info.SpeculativeEvaluationDepth)
9857 return false;
9858
9859 FunctionDecl *OperatorNew = E->getOperatorNew();
9860
9861 bool IsNothrow = false;
9862 bool IsPlacement = false;
9863 if (OperatorNew->isReservedGlobalPlacementOperator() &&
9864 Info.CurrentCall->isStdFunction() && !E->isArray()) {
9865 // FIXME Support array placement new.
9866 assert(E->getNumPlacementArgs() == 1);
9867 if (!EvaluatePointer(E: E->getPlacementArg(I: 0), Result, Info))
9868 return false;
9869 if (Result.Designator.Invalid)
9870 return false;
9871 IsPlacement = true;
9872 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9873 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9874 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9875 return false;
9876 } else if (E->getNumPlacementArgs()) {
9877 // The only new-placement list we support is of the form (std::nothrow).
9878 //
9879 // FIXME: There is no restriction on this, but it's not clear that any
9880 // other form makes any sense. We get here for cases such as:
9881 //
9882 // new (std::align_val_t{N}) X(int)
9883 //
9884 // (which should presumably be valid only if N is a multiple of
9885 // alignof(int), and in any case can't be deallocated unless N is
9886 // alignof(X) and X has new-extended alignment).
9887 if (E->getNumPlacementArgs() != 1 ||
9888 !E->getPlacementArg(0)->getType()->isNothrowT())
9889 return Error(E, diag::note_constexpr_new_placement);
9890
9891 LValue Nothrow;
9892 if (!EvaluateLValue(E: E->getPlacementArg(I: 0), Result&: Nothrow, Info))
9893 return false;
9894 IsNothrow = true;
9895 }
9896
9897 const Expr *Init = E->getInitializer();
9898 const InitListExpr *ResizedArrayILE = nullptr;
9899 const CXXConstructExpr *ResizedArrayCCE = nullptr;
9900 bool ValueInit = false;
9901
9902 QualType AllocType = E->getAllocatedType();
9903 if (std::optional<const Expr *> ArraySize = E->getArraySize()) {
9904 const Expr *Stripped = *ArraySize;
9905 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Stripped);
9906 Stripped = ICE->getSubExpr())
9907 if (ICE->getCastKind() != CK_NoOp &&
9908 ICE->getCastKind() != CK_IntegralCast)
9909 break;
9910
9911 llvm::APSInt ArrayBound;
9912 if (!EvaluateInteger(E: Stripped, Result&: ArrayBound, Info))
9913 return false;
9914
9915 // C++ [expr.new]p9:
9916 // The expression is erroneous if:
9917 // -- [...] its value before converting to size_t [or] applying the
9918 // second standard conversion sequence is less than zero
9919 if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9920 if (IsNothrow)
9921 return ZeroInitialization(E);
9922
9923 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9924 << ArrayBound << (*ArraySize)->getSourceRange();
9925 return false;
9926 }
9927
9928 // -- its value is such that the size of the allocated object would
9929 // exceed the implementation-defined limit
9930 if (!Info.CheckArraySize(Loc: ArraySize.value()->getExprLoc(),
9931 BitWidth: ConstantArrayType::getNumAddressingBits(
9932 Context: Info.Ctx, ElementType: AllocType, NumElements: ArrayBound),
9933 ElemCount: ArrayBound.getZExtValue(), /*Diag=*/!IsNothrow)) {
9934 if (IsNothrow)
9935 return ZeroInitialization(E);
9936 return false;
9937 }
9938
9939 // -- the new-initializer is a braced-init-list and the number of
9940 // array elements for which initializers are provided [...]
9941 // exceeds the number of elements to initialize
9942 if (!Init) {
9943 // No initialization is performed.
9944 } else if (isa<CXXScalarValueInitExpr>(Val: Init) ||
9945 isa<ImplicitValueInitExpr>(Val: Init)) {
9946 ValueInit = true;
9947 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Val: Init)) {
9948 ResizedArrayCCE = CCE;
9949 } else {
9950 auto *CAT = Info.Ctx.getAsConstantArrayType(T: Init->getType());
9951 assert(CAT && "unexpected type for array initializer");
9952
9953 unsigned Bits =
9954 std::max(a: CAT->getSizeBitWidth(), b: ArrayBound.getBitWidth());
9955 llvm::APInt InitBound = CAT->getSize().zext(width: Bits);
9956 llvm::APInt AllocBound = ArrayBound.zext(width: Bits);
9957 if (InitBound.ugt(RHS: AllocBound)) {
9958 if (IsNothrow)
9959 return ZeroInitialization(E);
9960
9961 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9962 << toString(AllocBound, 10, /*Signed=*/false)
9963 << toString(InitBound, 10, /*Signed=*/false)
9964 << (*ArraySize)->getSourceRange();
9965 return false;
9966 }
9967
9968 // If the sizes differ, we must have an initializer list, and we need
9969 // special handling for this case when we initialize.
9970 if (InitBound != AllocBound)
9971 ResizedArrayILE = cast<InitListExpr>(Val: Init);
9972 }
9973
9974 AllocType = Info.Ctx.getConstantArrayType(EltTy: AllocType, ArySize: ArrayBound, SizeExpr: nullptr,
9975 ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
9976 } else {
9977 assert(!AllocType->isArrayType() &&
9978 "array allocation with non-array new");
9979 }
9980
9981 APValue *Val;
9982 if (IsPlacement) {
9983 AccessKinds AK = AK_Construct;
9984 struct FindObjectHandler {
9985 EvalInfo &Info;
9986 const Expr *E;
9987 QualType AllocType;
9988 const AccessKinds AccessKind;
9989 APValue *Value;
9990
9991 typedef bool result_type;
9992 bool failed() { return false; }
9993 bool found(APValue &Subobj, QualType SubobjType) {
9994 // FIXME: Reject the cases where [basic.life]p8 would not permit the
9995 // old name of the object to be used to name the new object.
9996 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9997 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9998 SubobjType << AllocType;
9999 return false;
10000 }
10001 Value = &Subobj;
10002 return true;
10003 }
10004 bool found(APSInt &Value, QualType SubobjType) {
10005 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
10006 return false;
10007 }
10008 bool found(APFloat &Value, QualType SubobjType) {
10009 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
10010 return false;
10011 }
10012 } Handler = {Info, E, AllocType, AK, nullptr};
10013
10014 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
10015 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
10016 return false;
10017
10018 Val = Handler.Value;
10019
10020 // [basic.life]p1:
10021 // The lifetime of an object o of type T ends when [...] the storage
10022 // which the object occupies is [...] reused by an object that is not
10023 // nested within o (6.6.2).
10024 *Val = APValue();
10025 } else {
10026 // Perform the allocation and obtain a pointer to the resulting object.
10027 Val = Info.createHeapAlloc(E, AllocType, Result);
10028 if (!Val)
10029 return false;
10030 }
10031
10032 if (ValueInit) {
10033 ImplicitValueInitExpr VIE(AllocType);
10034 if (!EvaluateInPlace(*Val, Info, Result, &VIE))
10035 return false;
10036 } else if (ResizedArrayILE) {
10037 if (!EvaluateArrayNewInitList(Info, This&: Result, Result&: *Val, ILE: ResizedArrayILE,
10038 AllocType))
10039 return false;
10040 } else if (ResizedArrayCCE) {
10041 if (!EvaluateArrayNewConstructExpr(Info, This&: Result, Result&: *Val, CCE: ResizedArrayCCE,
10042 AllocType))
10043 return false;
10044 } else if (Init) {
10045 if (!EvaluateInPlace(Result&: *Val, Info, This: Result, E: Init))
10046 return false;
10047 } else if (!handleDefaultInitValue(T: AllocType, Result&: *Val)) {
10048 return false;
10049 }
10050
10051 // Array new returns a pointer to the first element, not a pointer to the
10052 // array.
10053 if (auto *AT = AllocType->getAsArrayTypeUnsafe())
10054 Result.addArray(Info, E, CAT: cast<ConstantArrayType>(AT));
10055
10056 return true;
10057}
10058//===----------------------------------------------------------------------===//
10059// Member Pointer Evaluation
10060//===----------------------------------------------------------------------===//
10061
10062namespace {
10063class MemberPointerExprEvaluator
10064 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
10065 MemberPtr &Result;
10066
10067 bool Success(const ValueDecl *D) {
10068 Result = MemberPtr(D);
10069 return true;
10070 }
10071public:
10072
10073 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
10074 : ExprEvaluatorBaseTy(Info), Result(Result) {}
10075
10076 bool Success(const APValue &V, const Expr *E) {
10077 Result.setFrom(V);
10078 return true;
10079 }
10080 bool ZeroInitialization(const Expr *E) {
10081 return Success(D: (const ValueDecl*)nullptr);
10082 }
10083
10084 bool VisitCastExpr(const CastExpr *E);
10085 bool VisitUnaryAddrOf(const UnaryOperator *E);
10086};
10087} // end anonymous namespace
10088
10089static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
10090 EvalInfo &Info) {
10091 assert(!E->isValueDependent());
10092 assert(E->isPRValue() && E->getType()->isMemberPointerType());
10093 return MemberPointerExprEvaluator(Info, Result).Visit(E);
10094}
10095
10096bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
10097 switch (E->getCastKind()) {
10098 default:
10099 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10100
10101 case CK_NullToMemberPointer:
10102 VisitIgnoredValue(E: E->getSubExpr());
10103 return ZeroInitialization(E);
10104
10105 case CK_BaseToDerivedMemberPointer: {
10106 if (!Visit(E->getSubExpr()))
10107 return false;
10108 if (E->path_empty())
10109 return true;
10110 // Base-to-derived member pointer casts store the path in derived-to-base
10111 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
10112 // the wrong end of the derived->base arc, so stagger the path by one class.
10113 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
10114 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
10115 PathI != PathE; ++PathI) {
10116 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10117 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
10118 if (!Result.castToDerived(Derived))
10119 return Error(E);
10120 }
10121 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
10122 if (!Result.castToDerived(Derived: FinalTy->getAsCXXRecordDecl()))
10123 return Error(E);
10124 return true;
10125 }
10126
10127 case CK_DerivedToBaseMemberPointer:
10128 if (!Visit(E->getSubExpr()))
10129 return false;
10130 for (CastExpr::path_const_iterator PathI = E->path_begin(),
10131 PathE = E->path_end(); PathI != PathE; ++PathI) {
10132 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10133 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10134 if (!Result.castToBase(Base))
10135 return Error(E);
10136 }
10137 return true;
10138 }
10139}
10140
10141bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
10142 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
10143 // member can be formed.
10144 return Success(D: cast<DeclRefExpr>(Val: E->getSubExpr())->getDecl());
10145}
10146
10147//===----------------------------------------------------------------------===//
10148// Record Evaluation
10149//===----------------------------------------------------------------------===//
10150
10151namespace {
10152 class RecordExprEvaluator
10153 : public ExprEvaluatorBase<RecordExprEvaluator> {
10154 const LValue &This;
10155 APValue &Result;
10156 public:
10157
10158 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
10159 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
10160
10161 bool Success(const APValue &V, const Expr *E) {
10162 Result = V;
10163 return true;
10164 }
10165 bool ZeroInitialization(const Expr *E) {
10166 return ZeroInitialization(E, T: E->getType());
10167 }
10168 bool ZeroInitialization(const Expr *E, QualType T);
10169
10170 bool VisitCallExpr(const CallExpr *E) {
10171 return handleCallExpr(E, Result, ResultSlot: &This);
10172 }
10173 bool VisitCastExpr(const CastExpr *E);
10174 bool VisitInitListExpr(const InitListExpr *E);
10175 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10176 return VisitCXXConstructExpr(E, E->getType());
10177 }
10178 bool VisitLambdaExpr(const LambdaExpr *E);
10179 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
10180 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
10181 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
10182 bool VisitBinCmp(const BinaryOperator *E);
10183 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
10184 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
10185 ArrayRef<Expr *> Args);
10186 };
10187}
10188
10189/// Perform zero-initialization on an object of non-union class type.
10190/// C++11 [dcl.init]p5:
10191/// To zero-initialize an object or reference of type T means:
10192/// [...]
10193/// -- if T is a (possibly cv-qualified) non-union class type,
10194/// each non-static data member and each base-class subobject is
10195/// zero-initialized
10196static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
10197 const RecordDecl *RD,
10198 const LValue &This, APValue &Result) {
10199 assert(!RD->isUnion() && "Expected non-union class type");
10200 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD);
10201 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
10202 std::distance(first: RD->field_begin(), last: RD->field_end()));
10203
10204 if (RD->isInvalidDecl()) return false;
10205 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
10206
10207 if (CD) {
10208 unsigned Index = 0;
10209 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
10210 End = CD->bases_end(); I != End; ++I, ++Index) {
10211 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
10212 LValue Subobject = This;
10213 if (!HandleLValueDirectBase(Info, E, Obj&: Subobject, Derived: CD, Base, RL: &Layout))
10214 return false;
10215 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
10216 Result.getStructBase(i: Index)))
10217 return false;
10218 }
10219 }
10220
10221 for (const auto *I : RD->fields()) {
10222 // -- if T is a reference type, no initialization is performed.
10223 if (I->isUnnamedBitField() || I->getType()->isReferenceType())
10224 continue;
10225
10226 LValue Subobject = This;
10227 if (!HandleLValueMember(Info, E, LVal&: Subobject, FD: I, RL: &Layout))
10228 return false;
10229
10230 ImplicitValueInitExpr VIE(I->getType());
10231 if (!EvaluateInPlace(
10232 Result.getStructField(i: I->getFieldIndex()), Info, Subobject, &VIE))
10233 return false;
10234 }
10235
10236 return true;
10237}
10238
10239bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
10240 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
10241 if (RD->isInvalidDecl()) return false;
10242 if (RD->isUnion()) {
10243 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
10244 // object's first non-static named data member is zero-initialized
10245 RecordDecl::field_iterator I = RD->field_begin();
10246 while (I != RD->field_end() && (*I)->isUnnamedBitField())
10247 ++I;
10248 if (I == RD->field_end()) {
10249 Result = APValue((const FieldDecl*)nullptr);
10250 return true;
10251 }
10252
10253 LValue Subobject = This;
10254 if (!HandleLValueMember(Info, E, LVal&: Subobject, FD: *I))
10255 return false;
10256 Result = APValue(*I);
10257 ImplicitValueInitExpr VIE(I->getType());
10258 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
10259 }
10260
10261 if (isa<CXXRecordDecl>(Val: RD) && cast<CXXRecordDecl>(Val: RD)->getNumVBases()) {
10262 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
10263 return false;
10264 }
10265
10266 return HandleClassZeroInitialization(Info, E, RD, This, Result);
10267}
10268
10269bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
10270 switch (E->getCastKind()) {
10271 default:
10272 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10273
10274 case CK_ConstructorConversion:
10275 return Visit(E->getSubExpr());
10276
10277 case CK_DerivedToBase:
10278 case CK_UncheckedDerivedToBase: {
10279 APValue DerivedObject;
10280 if (!Evaluate(Result&: DerivedObject, Info, E: E->getSubExpr()))
10281 return false;
10282 if (!DerivedObject.isStruct())
10283 return Error(E: E->getSubExpr());
10284
10285 // Derived-to-base rvalue conversion: just slice off the derived part.
10286 APValue *Value = &DerivedObject;
10287 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
10288 for (CastExpr::path_const_iterator PathI = E->path_begin(),
10289 PathE = E->path_end(); PathI != PathE; ++PathI) {
10290 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
10291 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10292 Value = &Value->getStructBase(i: getBaseIndex(Derived: RD, Base));
10293 RD = Base;
10294 }
10295 Result = *Value;
10296 return true;
10297 }
10298 }
10299}
10300
10301bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10302 if (E->isTransparent())
10303 return Visit(E->getInit(Init: 0));
10304 return VisitCXXParenListOrInitListExpr(E, E->inits());
10305}
10306
10307bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr(
10308 const Expr *ExprToVisit, ArrayRef<Expr *> Args) {
10309 const RecordDecl *RD =
10310 ExprToVisit->getType()->castAs<RecordType>()->getDecl();
10311 if (RD->isInvalidDecl()) return false;
10312 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
10313 auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD);
10314
10315 EvalInfo::EvaluatingConstructorRAII EvalObj(
10316 Info,
10317 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
10318 CXXRD && CXXRD->getNumBases());
10319
10320 if (RD->isUnion()) {
10321 const FieldDecl *Field;
10322 if (auto *ILE = dyn_cast<InitListExpr>(Val: ExprToVisit)) {
10323 Field = ILE->getInitializedFieldInUnion();
10324 } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(Val: ExprToVisit)) {
10325 Field = PLIE->getInitializedFieldInUnion();
10326 } else {
10327 llvm_unreachable(
10328 "Expression is neither an init list nor a C++ paren list");
10329 }
10330
10331 Result = APValue(Field);
10332 if (!Field)
10333 return true;
10334
10335 // If the initializer list for a union does not contain any elements, the
10336 // first element of the union is value-initialized.
10337 // FIXME: The element should be initialized from an initializer list.
10338 // Is this difference ever observable for initializer lists which
10339 // we don't build?
10340 ImplicitValueInitExpr VIE(Field->getType());
10341 const Expr *InitExpr = Args.empty() ? &VIE : Args[0];
10342
10343 LValue Subobject = This;
10344 if (!HandleLValueMember(Info, E: InitExpr, LVal&: Subobject, FD: Field, RL: &Layout))
10345 return false;
10346
10347 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10348 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10349 isa<CXXDefaultInitExpr>(Val: InitExpr));
10350
10351 if (EvaluateInPlace(Result&: Result.getUnionValue(), Info, This: Subobject, E: InitExpr)) {
10352 if (Field->isBitField())
10353 return truncateBitfieldValue(Info, E: InitExpr, Value&: Result.getUnionValue(),
10354 FD: Field);
10355 return true;
10356 }
10357
10358 return false;
10359 }
10360
10361 if (!Result.hasValue())
10362 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
10363 std::distance(first: RD->field_begin(), last: RD->field_end()));
10364 unsigned ElementNo = 0;
10365 bool Success = true;
10366
10367 // Initialize base classes.
10368 if (CXXRD && CXXRD->getNumBases()) {
10369 for (const auto &Base : CXXRD->bases()) {
10370 assert(ElementNo < Args.size() && "missing init for base class");
10371 const Expr *Init = Args[ElementNo];
10372
10373 LValue Subobject = This;
10374 if (!HandleLValueBase(Info, E: Init, Obj&: Subobject, DerivedDecl: CXXRD, Base: &Base))
10375 return false;
10376
10377 APValue &FieldVal = Result.getStructBase(i: ElementNo);
10378 if (!EvaluateInPlace(Result&: FieldVal, Info, This: Subobject, E: Init)) {
10379 if (!Info.noteFailure())
10380 return false;
10381 Success = false;
10382 }
10383 ++ElementNo;
10384 }
10385
10386 EvalObj.finishedConstructingBases();
10387 }
10388
10389 // Initialize members.
10390 for (const auto *Field : RD->fields()) {
10391 // Anonymous bit-fields are not considered members of the class for
10392 // purposes of aggregate initialization.
10393 if (Field->isUnnamedBitField())
10394 continue;
10395
10396 LValue Subobject = This;
10397
10398 bool HaveInit = ElementNo < Args.size();
10399
10400 // FIXME: Diagnostics here should point to the end of the initializer
10401 // list, not the start.
10402 if (!HandleLValueMember(Info, E: HaveInit ? Args[ElementNo] : ExprToVisit,
10403 LVal&: Subobject, FD: Field, RL: &Layout))
10404 return false;
10405
10406 // Perform an implicit value-initialization for members beyond the end of
10407 // the initializer list.
10408 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
10409 const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE;
10410
10411 if (Field->getType()->isIncompleteArrayType()) {
10412 if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) {
10413 if (!CAT->isZeroSize()) {
10414 // Bail out for now. This might sort of "work", but the rest of the
10415 // code isn't really prepared to handle it.
10416 Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array);
10417 return false;
10418 }
10419 }
10420 }
10421
10422 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10423 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10424 isa<CXXDefaultInitExpr>(Val: Init));
10425
10426 APValue &FieldVal = Result.getStructField(i: Field->getFieldIndex());
10427 if (!EvaluateInPlace(Result&: FieldVal, Info, This: Subobject, E: Init) ||
10428 (Field->isBitField() && !truncateBitfieldValue(Info, E: Init,
10429 Value&: FieldVal, FD: Field))) {
10430 if (!Info.noteFailure())
10431 return false;
10432 Success = false;
10433 }
10434 }
10435
10436 EvalObj.finishedConstructingFields();
10437
10438 return Success;
10439}
10440
10441bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10442 QualType T) {
10443 // Note that E's type is not necessarily the type of our class here; we might
10444 // be initializing an array element instead.
10445 const CXXConstructorDecl *FD = E->getConstructor();
10446 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
10447
10448 bool ZeroInit = E->requiresZeroInitialization();
10449 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
10450 // If we've already performed zero-initialization, we're already done.
10451 if (Result.hasValue())
10452 return true;
10453
10454 if (ZeroInit)
10455 return ZeroInitialization(E, T);
10456
10457 return handleDefaultInitValue(T, Result);
10458 }
10459
10460 const FunctionDecl *Definition = nullptr;
10461 auto Body = FD->getBody(Definition);
10462
10463 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10464 return false;
10465
10466 // Avoid materializing a temporary for an elidable copy/move constructor.
10467 if (E->isElidable() && !ZeroInit) {
10468 // FIXME: This only handles the simplest case, where the source object
10469 // is passed directly as the first argument to the constructor.
10470 // This should also handle stepping though implicit casts and
10471 // and conversion sequences which involve two steps, with a
10472 // conversion operator followed by a converting constructor.
10473 const Expr *SrcObj = E->getArg(Arg: 0);
10474 assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
10475 assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
10476 if (const MaterializeTemporaryExpr *ME =
10477 dyn_cast<MaterializeTemporaryExpr>(Val: SrcObj))
10478 return Visit(ME->getSubExpr());
10479 }
10480
10481 if (ZeroInit && !ZeroInitialization(E, T))
10482 return false;
10483
10484 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
10485 return HandleConstructorCall(E, This, Args,
10486 cast<CXXConstructorDecl>(Val: Definition), Info,
10487 Result);
10488}
10489
10490bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10491 const CXXInheritedCtorInitExpr *E) {
10492 if (!Info.CurrentCall) {
10493 assert(Info.checkingPotentialConstantExpression());
10494 return false;
10495 }
10496
10497 const CXXConstructorDecl *FD = E->getConstructor();
10498 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
10499 return false;
10500
10501 const FunctionDecl *Definition = nullptr;
10502 auto Body = FD->getBody(Definition);
10503
10504 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10505 return false;
10506
10507 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10508 cast<CXXConstructorDecl>(Val: Definition), Info,
10509 Result);
10510}
10511
10512bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10513 const CXXStdInitializerListExpr *E) {
10514 const ConstantArrayType *ArrayType =
10515 Info.Ctx.getAsConstantArrayType(T: E->getSubExpr()->getType());
10516
10517 LValue Array;
10518 if (!EvaluateLValue(E: E->getSubExpr(), Result&: Array, Info))
10519 return false;
10520
10521 assert(ArrayType && "unexpected type for array initializer");
10522
10523 // Get a pointer to the first element of the array.
10524 Array.addArray(Info, E, ArrayType);
10525
10526 auto InvalidType = [&] {
10527 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
10528 << E->getType();
10529 return false;
10530 };
10531
10532 // FIXME: Perform the checks on the field types in SemaInit.
10533 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10534 RecordDecl::field_iterator Field = Record->field_begin();
10535 if (Field == Record->field_end())
10536 return InvalidType();
10537
10538 // Start pointer.
10539 if (!Field->getType()->isPointerType() ||
10540 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10541 ArrayType->getElementType()))
10542 return InvalidType();
10543
10544 // FIXME: What if the initializer_list type has base classes, etc?
10545 Result = APValue(APValue::UninitStruct(), 0, 2);
10546 Array.moveInto(V&: Result.getStructField(i: 0));
10547
10548 if (++Field == Record->field_end())
10549 return InvalidType();
10550
10551 if (Field->getType()->isPointerType() &&
10552 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10553 ArrayType->getElementType())) {
10554 // End pointer.
10555 if (!HandleLValueArrayAdjustment(Info, E, Array,
10556 ArrayType->getElementType(),
10557 ArrayType->getZExtSize()))
10558 return false;
10559 Array.moveInto(V&: Result.getStructField(i: 1));
10560 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
10561 // Length.
10562 Result.getStructField(i: 1) = APValue(APSInt(ArrayType->getSize()));
10563 else
10564 return InvalidType();
10565
10566 if (++Field != Record->field_end())
10567 return InvalidType();
10568
10569 return true;
10570}
10571
10572bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10573 const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10574 if (ClosureClass->isInvalidDecl())
10575 return false;
10576
10577 const size_t NumFields =
10578 std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10579
10580 assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10581 E->capture_init_end()) &&
10582 "The number of lambda capture initializers should equal the number of "
10583 "fields within the closure type");
10584
10585 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10586 // Iterate through all the lambda's closure object's fields and initialize
10587 // them.
10588 auto *CaptureInitIt = E->capture_init_begin();
10589 bool Success = true;
10590 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10591 for (const auto *Field : ClosureClass->fields()) {
10592 assert(CaptureInitIt != E->capture_init_end());
10593 // Get the initializer for this field
10594 Expr *const CurFieldInit = *CaptureInitIt++;
10595
10596 // If there is no initializer, either this is a VLA or an error has
10597 // occurred.
10598 if (!CurFieldInit)
10599 return Error(E);
10600
10601 LValue Subobject = This;
10602
10603 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10604 return false;
10605
10606 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10607 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10608 if (!Info.keepEvaluatingAfterFailure())
10609 return false;
10610 Success = false;
10611 }
10612 }
10613 return Success;
10614}
10615
10616static bool EvaluateRecord(const Expr *E, const LValue &This,
10617 APValue &Result, EvalInfo &Info) {
10618 assert(!E->isValueDependent());
10619 assert(E->isPRValue() && E->getType()->isRecordType() &&
10620 "can't evaluate expression as a record rvalue");
10621 return RecordExprEvaluator(Info, This, Result).Visit(E);
10622}
10623
10624//===----------------------------------------------------------------------===//
10625// Temporary Evaluation
10626//
10627// Temporaries are represented in the AST as rvalues, but generally behave like
10628// lvalues. The full-object of which the temporary is a subobject is implicitly
10629// materialized so that a reference can bind to it.
10630//===----------------------------------------------------------------------===//
10631namespace {
10632class TemporaryExprEvaluator
10633 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10634public:
10635 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10636 LValueExprEvaluatorBaseTy(Info, Result, false) {}
10637
10638 /// Visit an expression which constructs the value of this temporary.
10639 bool VisitConstructExpr(const Expr *E) {
10640 APValue &Value = Info.CurrentCall->createTemporary(
10641 Key: E, T: E->getType(), Scope: ScopeKind::FullExpression, LV&: Result);
10642 return EvaluateInPlace(Result&: Value, Info, This: Result, E);
10643 }
10644
10645 bool VisitCastExpr(const CastExpr *E) {
10646 switch (E->getCastKind()) {
10647 default:
10648 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10649
10650 case CK_ConstructorConversion:
10651 return VisitConstructExpr(E: E->getSubExpr());
10652 }
10653 }
10654 bool VisitInitListExpr(const InitListExpr *E) {
10655 return VisitConstructExpr(E);
10656 }
10657 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10658 return VisitConstructExpr(E);
10659 }
10660 bool VisitCallExpr(const CallExpr *E) {
10661 return VisitConstructExpr(E);
10662 }
10663 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10664 return VisitConstructExpr(E);
10665 }
10666 bool VisitLambdaExpr(const LambdaExpr *E) {
10667 return VisitConstructExpr(E);
10668 }
10669};
10670} // end anonymous namespace
10671
10672/// Evaluate an expression of record type as a temporary.
10673static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10674 assert(!E->isValueDependent());
10675 assert(E->isPRValue() && E->getType()->isRecordType());
10676 return TemporaryExprEvaluator(Info, Result).Visit(E);
10677}
10678
10679//===----------------------------------------------------------------------===//
10680// Vector Evaluation
10681//===----------------------------------------------------------------------===//
10682
10683namespace {
10684 class VectorExprEvaluator
10685 : public ExprEvaluatorBase<VectorExprEvaluator> {
10686 APValue &Result;
10687 public:
10688
10689 VectorExprEvaluator(EvalInfo &info, APValue &Result)
10690 : ExprEvaluatorBaseTy(info), Result(Result) {}
10691
10692 bool Success(ArrayRef<APValue> V, const Expr *E) {
10693 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10694 // FIXME: remove this APValue copy.
10695 Result = APValue(V.data(), V.size());
10696 return true;
10697 }
10698 bool Success(const APValue &V, const Expr *E) {
10699 assert(V.isVector());
10700 Result = V;
10701 return true;
10702 }
10703 bool ZeroInitialization(const Expr *E);
10704
10705 bool VisitUnaryReal(const UnaryOperator *E)
10706 { return Visit(E->getSubExpr()); }
10707 bool VisitCastExpr(const CastExpr* E);
10708 bool VisitInitListExpr(const InitListExpr *E);
10709 bool VisitUnaryImag(const UnaryOperator *E);
10710 bool VisitBinaryOperator(const BinaryOperator *E);
10711 bool VisitUnaryOperator(const UnaryOperator *E);
10712 // FIXME: Missing: conditional operator (for GNU
10713 // conditional select), shufflevector, ExtVectorElementExpr
10714 };
10715} // end anonymous namespace
10716
10717static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10718 assert(E->isPRValue() && E->getType()->isVectorType() &&
10719 "not a vector prvalue");
10720 return VectorExprEvaluator(Info, Result).Visit(E);
10721}
10722
10723bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10724 const VectorType *VTy = E->getType()->castAs<VectorType>();
10725 unsigned NElts = VTy->getNumElements();
10726
10727 const Expr *SE = E->getSubExpr();
10728 QualType SETy = SE->getType();
10729
10730 switch (E->getCastKind()) {
10731 case CK_VectorSplat: {
10732 APValue Val = APValue();
10733 if (SETy->isIntegerType()) {
10734 APSInt IntResult;
10735 if (!EvaluateInteger(E: SE, Result&: IntResult, Info))
10736 return false;
10737 Val = APValue(std::move(IntResult));
10738 } else if (SETy->isRealFloatingType()) {
10739 APFloat FloatResult(0.0);
10740 if (!EvaluateFloat(E: SE, Result&: FloatResult, Info))
10741 return false;
10742 Val = APValue(std::move(FloatResult));
10743 } else {
10744 return Error(E);
10745 }
10746
10747 // Splat and create vector APValue.
10748 SmallVector<APValue, 4> Elts(NElts, Val);
10749 return Success(Elts, E);
10750 }
10751 case CK_BitCast: {
10752 APValue SVal;
10753 if (!Evaluate(Result&: SVal, Info, E: SE))
10754 return false;
10755
10756 if (!SVal.isInt() && !SVal.isFloat() && !SVal.isVector()) {
10757 // Give up if the input isn't an int, float, or vector. For example, we
10758 // reject "(v4i16)(intptr_t)&a".
10759 Info.FFDiag(E, diag::note_constexpr_invalid_cast)
10760 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
10761 return false;
10762 }
10763
10764 if (!handleRValueToRValueBitCast(Info, DestValue&: Result, SourceRValue: SVal, BCE: E))
10765 return false;
10766
10767 return true;
10768 }
10769 default:
10770 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10771 }
10772}
10773
10774bool
10775VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10776 const VectorType *VT = E->getType()->castAs<VectorType>();
10777 unsigned NumInits = E->getNumInits();
10778 unsigned NumElements = VT->getNumElements();
10779
10780 QualType EltTy = VT->getElementType();
10781 SmallVector<APValue, 4> Elements;
10782
10783 // The number of initializers can be less than the number of
10784 // vector elements. For OpenCL, this can be due to nested vector
10785 // initialization. For GCC compatibility, missing trailing elements
10786 // should be initialized with zeroes.
10787 unsigned CountInits = 0, CountElts = 0;
10788 while (CountElts < NumElements) {
10789 // Handle nested vector initialization.
10790 if (CountInits < NumInits
10791 && E->getInit(Init: CountInits)->getType()->isVectorType()) {
10792 APValue v;
10793 if (!EvaluateVector(E: E->getInit(Init: CountInits), Result&: v, Info))
10794 return Error(E);
10795 unsigned vlen = v.getVectorLength();
10796 for (unsigned j = 0; j < vlen; j++)
10797 Elements.push_back(Elt: v.getVectorElt(I: j));
10798 CountElts += vlen;
10799 } else if (EltTy->isIntegerType()) {
10800 llvm::APSInt sInt(32);
10801 if (CountInits < NumInits) {
10802 if (!EvaluateInteger(E: E->getInit(Init: CountInits), Result&: sInt, Info))
10803 return false;
10804 } else // trailing integer zero.
10805 sInt = Info.Ctx.MakeIntValue(Value: 0, Type: EltTy);
10806 Elements.push_back(Elt: APValue(sInt));
10807 CountElts++;
10808 } else {
10809 llvm::APFloat f(0.0);
10810 if (CountInits < NumInits) {
10811 if (!EvaluateFloat(E: E->getInit(Init: CountInits), Result&: f, Info))
10812 return false;
10813 } else // trailing float zero.
10814 f = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: EltTy));
10815 Elements.push_back(Elt: APValue(f));
10816 CountElts++;
10817 }
10818 CountInits++;
10819 }
10820 return Success(Elements, E);
10821}
10822
10823bool
10824VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10825 const auto *VT = E->getType()->castAs<VectorType>();
10826 QualType EltTy = VT->getElementType();
10827 APValue ZeroElement;
10828 if (EltTy->isIntegerType())
10829 ZeroElement = APValue(Info.Ctx.MakeIntValue(Value: 0, Type: EltTy));
10830 else
10831 ZeroElement =
10832 APValue(APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: EltTy)));
10833
10834 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10835 return Success(V: Elements, E);
10836}
10837
10838bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10839 VisitIgnoredValue(E: E->getSubExpr());
10840 return ZeroInitialization(E);
10841}
10842
10843bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10844 BinaryOperatorKind Op = E->getOpcode();
10845 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10846 "Operation not supported on vector types");
10847
10848 if (Op == BO_Comma)
10849 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10850
10851 Expr *LHS = E->getLHS();
10852 Expr *RHS = E->getRHS();
10853
10854 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10855 "Must both be vector types");
10856 // Checking JUST the types are the same would be fine, except shifts don't
10857 // need to have their types be the same (since you always shift by an int).
10858 assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10859 E->getType()->castAs<VectorType>()->getNumElements() &&
10860 RHS->getType()->castAs<VectorType>()->getNumElements() ==
10861 E->getType()->castAs<VectorType>()->getNumElements() &&
10862 "All operands must be the same size.");
10863
10864 APValue LHSValue;
10865 APValue RHSValue;
10866 bool LHSOK = Evaluate(Result&: LHSValue, Info, E: LHS);
10867 if (!LHSOK && !Info.noteFailure())
10868 return false;
10869 if (!Evaluate(Result&: RHSValue, Info, E: RHS) || !LHSOK)
10870 return false;
10871
10872 if (!handleVectorVectorBinOp(Info, E, Opcode: Op, LHSValue, RHSValue))
10873 return false;
10874
10875 return Success(LHSValue, E);
10876}
10877
10878static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10879 QualType ResultTy,
10880 UnaryOperatorKind Op,
10881 APValue Elt) {
10882 switch (Op) {
10883 case UO_Plus:
10884 // Nothing to do here.
10885 return Elt;
10886 case UO_Minus:
10887 if (Elt.getKind() == APValue::Int) {
10888 Elt.getInt().negate();
10889 } else {
10890 assert(Elt.getKind() == APValue::Float &&
10891 "Vector can only be int or float type");
10892 Elt.getFloat().changeSign();
10893 }
10894 return Elt;
10895 case UO_Not:
10896 // This is only valid for integral types anyway, so we don't have to handle
10897 // float here.
10898 assert(Elt.getKind() == APValue::Int &&
10899 "Vector operator ~ can only be int");
10900 Elt.getInt().flipAllBits();
10901 return Elt;
10902 case UO_LNot: {
10903 if (Elt.getKind() == APValue::Int) {
10904 Elt.getInt() = !Elt.getInt();
10905 // operator ! on vectors returns -1 for 'truth', so negate it.
10906 Elt.getInt().negate();
10907 return Elt;
10908 }
10909 assert(Elt.getKind() == APValue::Float &&
10910 "Vector can only be int or float type");
10911 // Float types result in an int of the same size, but -1 for true, or 0 for
10912 // false.
10913 APSInt EltResult{Ctx.getIntWidth(T: ResultTy),
10914 ResultTy->isUnsignedIntegerType()};
10915 if (Elt.getFloat().isZero())
10916 EltResult.setAllBits();
10917 else
10918 EltResult.clearAllBits();
10919
10920 return APValue{EltResult};
10921 }
10922 default:
10923 // FIXME: Implement the rest of the unary operators.
10924 return std::nullopt;
10925 }
10926}
10927
10928bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10929 Expr *SubExpr = E->getSubExpr();
10930 const auto *VD = SubExpr->getType()->castAs<VectorType>();
10931 // This result element type differs in the case of negating a floating point
10932 // vector, since the result type is the a vector of the equivilant sized
10933 // integer.
10934 const QualType ResultEltTy = VD->getElementType();
10935 UnaryOperatorKind Op = E->getOpcode();
10936
10937 APValue SubExprValue;
10938 if (!Evaluate(Result&: SubExprValue, Info, E: SubExpr))
10939 return false;
10940
10941 // FIXME: This vector evaluator someday needs to be changed to be LValue
10942 // aware/keep LValue information around, rather than dealing with just vector
10943 // types directly. Until then, we cannot handle cases where the operand to
10944 // these unary operators is an LValue. The only case I've been able to see
10945 // cause this is operator++ assigning to a member expression (only valid in
10946 // altivec compilations) in C mode, so this shouldn't limit us too much.
10947 if (SubExprValue.isLValue())
10948 return false;
10949
10950 assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10951 "Vector length doesn't match type?");
10952
10953 SmallVector<APValue, 4> ResultElements;
10954 for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10955 std::optional<APValue> Elt = handleVectorUnaryOperator(
10956 Ctx&: Info.Ctx, ResultTy: ResultEltTy, Op, Elt: SubExprValue.getVectorElt(I: EltNum));
10957 if (!Elt)
10958 return false;
10959 ResultElements.push_back(Elt: *Elt);
10960 }
10961 return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10962}
10963
10964//===----------------------------------------------------------------------===//
10965// Array Evaluation
10966//===----------------------------------------------------------------------===//
10967
10968namespace {
10969 class ArrayExprEvaluator
10970 : public ExprEvaluatorBase<ArrayExprEvaluator> {
10971 const LValue &This;
10972 APValue &Result;
10973 public:
10974
10975 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10976 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10977
10978 bool Success(const APValue &V, const Expr *E) {
10979 assert(V.isArray() && "expected array");
10980 Result = V;
10981 return true;
10982 }
10983
10984 bool ZeroInitialization(const Expr *E) {
10985 const ConstantArrayType *CAT =
10986 Info.Ctx.getAsConstantArrayType(T: E->getType());
10987 if (!CAT) {
10988 if (E->getType()->isIncompleteArrayType()) {
10989 // We can be asked to zero-initialize a flexible array member; this
10990 // is represented as an ImplicitValueInitExpr of incomplete array
10991 // type. In this case, the array has zero elements.
10992 Result = APValue(APValue::UninitArray(), 0, 0);
10993 return true;
10994 }
10995 // FIXME: We could handle VLAs here.
10996 return Error(E);
10997 }
10998
10999 Result = APValue(APValue::UninitArray(), 0, CAT->getZExtSize());
11000 if (!Result.hasArrayFiller())
11001 return true;
11002
11003 // Zero-initialize all elements.
11004 LValue Subobject = This;
11005 Subobject.addArray(Info, E, CAT);
11006 ImplicitValueInitExpr VIE(CAT->getElementType());
11007 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
11008 }
11009
11010 bool VisitCallExpr(const CallExpr *E) {
11011 return handleCallExpr(E, Result, ResultSlot: &This);
11012 }
11013 bool VisitInitListExpr(const InitListExpr *E,
11014 QualType AllocType = QualType());
11015 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
11016 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
11017 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
11018 const LValue &Subobject,
11019 APValue *Value, QualType Type);
11020 bool VisitStringLiteral(const StringLiteral *E,
11021 QualType AllocType = QualType()) {
11022 expandStringLiteral(Info, S: E, Result, AllocType);
11023 return true;
11024 }
11025 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
11026 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
11027 ArrayRef<Expr *> Args,
11028 const Expr *ArrayFiller,
11029 QualType AllocType = QualType());
11030 };
11031} // end anonymous namespace
11032
11033static bool EvaluateArray(const Expr *E, const LValue &This,
11034 APValue &Result, EvalInfo &Info) {
11035 assert(!E->isValueDependent());
11036 assert(E->isPRValue() && E->getType()->isArrayType() &&
11037 "not an array prvalue");
11038 return ArrayExprEvaluator(Info, This, Result).Visit(E);
11039}
11040
11041static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
11042 APValue &Result, const InitListExpr *ILE,
11043 QualType AllocType) {
11044 assert(!ILE->isValueDependent());
11045 assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
11046 "not an array prvalue");
11047 return ArrayExprEvaluator(Info, This, Result)
11048 .VisitInitListExpr(E: ILE, AllocType);
11049}
11050
11051static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
11052 APValue &Result,
11053 const CXXConstructExpr *CCE,
11054 QualType AllocType) {
11055 assert(!CCE->isValueDependent());
11056 assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
11057 "not an array prvalue");
11058 return ArrayExprEvaluator(Info, This, Result)
11059 .VisitCXXConstructExpr(E: CCE, Subobject: This, Value: &Result, Type: AllocType);
11060}
11061
11062// Return true iff the given array filler may depend on the element index.
11063static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
11064 // For now, just allow non-class value-initialization and initialization
11065 // lists comprised of them.
11066 if (isa<ImplicitValueInitExpr>(Val: FillerExpr))
11067 return false;
11068 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: FillerExpr)) {
11069 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
11070 if (MaybeElementDependentArrayFiller(FillerExpr: ILE->getInit(Init: I)))
11071 return true;
11072 }
11073
11074 if (ILE->hasArrayFiller() &&
11075 MaybeElementDependentArrayFiller(FillerExpr: ILE->getArrayFiller()))
11076 return true;
11077
11078 return false;
11079 }
11080 return true;
11081}
11082
11083bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
11084 QualType AllocType) {
11085 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
11086 T: AllocType.isNull() ? E->getType() : AllocType);
11087 if (!CAT)
11088 return Error(E);
11089
11090 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
11091 // an appropriately-typed string literal enclosed in braces.
11092 if (E->isStringLiteralInit()) {
11093 auto *SL = dyn_cast<StringLiteral>(Val: E->getInit(Init: 0)->IgnoreParenImpCasts());
11094 // FIXME: Support ObjCEncodeExpr here once we support it in
11095 // ArrayExprEvaluator generally.
11096 if (!SL)
11097 return Error(E);
11098 return VisitStringLiteral(E: SL, AllocType);
11099 }
11100 // Any other transparent list init will need proper handling of the
11101 // AllocType; we can't just recurse to the inner initializer.
11102 assert(!E->isTransparent() &&
11103 "transparent array list initialization is not string literal init?");
11104
11105 return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(),
11106 AllocType);
11107}
11108
11109bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr(
11110 const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller,
11111 QualType AllocType) {
11112 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
11113 T: AllocType.isNull() ? ExprToVisit->getType() : AllocType);
11114
11115 bool Success = true;
11116
11117 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
11118 "zero-initialized array shouldn't have any initialized elts");
11119 APValue Filler;
11120 if (Result.isArray() && Result.hasArrayFiller())
11121 Filler = Result.getArrayFiller();
11122
11123 unsigned NumEltsToInit = Args.size();
11124 unsigned NumElts = CAT->getZExtSize();
11125
11126 // If the initializer might depend on the array index, run it for each
11127 // array element.
11128 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr: ArrayFiller))
11129 NumEltsToInit = NumElts;
11130
11131 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
11132 << NumEltsToInit << ".\n");
11133
11134 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
11135
11136 // If the array was previously zero-initialized, preserve the
11137 // zero-initialized values.
11138 if (Filler.hasValue()) {
11139 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
11140 Result.getArrayInitializedElt(I) = Filler;
11141 if (Result.hasArrayFiller())
11142 Result.getArrayFiller() = Filler;
11143 }
11144
11145 LValue Subobject = This;
11146 Subobject.addArray(Info, E: ExprToVisit, CAT);
11147 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
11148 const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller;
11149 if (!EvaluateInPlace(Result&: Result.getArrayInitializedElt(I: Index),
11150 Info, This: Subobject, E: Init) ||
11151 !HandleLValueArrayAdjustment(Info, Init, Subobject,
11152 CAT->getElementType(), 1)) {
11153 if (!Info.noteFailure())
11154 return false;
11155 Success = false;
11156 }
11157 }
11158
11159 if (!Result.hasArrayFiller())
11160 return Success;
11161
11162 // If we get here, we have a trivial filler, which we can just evaluate
11163 // once and splat over the rest of the array elements.
11164 assert(ArrayFiller && "no array filler for incomplete init list");
11165 return EvaluateInPlace(Result&: Result.getArrayFiller(), Info, This: Subobject,
11166 E: ArrayFiller) &&
11167 Success;
11168}
11169
11170bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
11171 LValue CommonLV;
11172 if (E->getCommonExpr() &&
11173 !Evaluate(Result&: Info.CurrentCall->createTemporary(
11174 Key: E->getCommonExpr(),
11175 T: getStorageType(Info.Ctx, E->getCommonExpr()),
11176 Scope: ScopeKind::FullExpression, LV&: CommonLV),
11177 Info, E: E->getCommonExpr()->getSourceExpr()))
11178 return false;
11179
11180 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
11181
11182 uint64_t Elements = CAT->getZExtSize();
11183 Result = APValue(APValue::UninitArray(), Elements, Elements);
11184
11185 LValue Subobject = This;
11186 Subobject.addArray(Info, E, CAT: CAT);
11187
11188 bool Success = true;
11189 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
11190 // C++ [class.temporary]/5
11191 // There are four contexts in which temporaries are destroyed at a different
11192 // point than the end of the full-expression. [...] The second context is
11193 // when a copy constructor is called to copy an element of an array while
11194 // the entire array is copied [...]. In either case, if the constructor has
11195 // one or more default arguments, the destruction of every temporary created
11196 // in a default argument is sequenced before the construction of the next
11197 // array element, if any.
11198 FullExpressionRAII Scope(Info);
11199
11200 if (!EvaluateInPlace(Result&: Result.getArrayInitializedElt(I: Index),
11201 Info, This: Subobject, E: E->getSubExpr()) ||
11202 !HandleLValueArrayAdjustment(Info, E, Subobject,
11203 CAT->getElementType(), 1)) {
11204 if (!Info.noteFailure())
11205 return false;
11206 Success = false;
11207 }
11208
11209 // Make sure we run the destructors too.
11210 Scope.destroy();
11211 }
11212
11213 return Success;
11214}
11215
11216bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
11217 return VisitCXXConstructExpr(E, This, &Result, E->getType());
11218}
11219
11220bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
11221 const LValue &Subobject,
11222 APValue *Value,
11223 QualType Type) {
11224 bool HadZeroInit = Value->hasValue();
11225
11226 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T: Type)) {
11227 unsigned FinalSize = CAT->getZExtSize();
11228
11229 // Preserve the array filler if we had prior zero-initialization.
11230 APValue Filler =
11231 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
11232 : APValue();
11233
11234 *Value = APValue(APValue::UninitArray(), 0, FinalSize);
11235 if (FinalSize == 0)
11236 return true;
11237
11238 bool HasTrivialConstructor = CheckTrivialDefaultConstructor(
11239 Info, E->getExprLoc(), E->getConstructor(),
11240 E->requiresZeroInitialization());
11241 LValue ArrayElt = Subobject;
11242 ArrayElt.addArray(Info, E, CAT);
11243 // We do the whole initialization in two passes, first for just one element,
11244 // then for the whole array. It's possible we may find out we can't do const
11245 // init in the first pass, in which case we avoid allocating a potentially
11246 // large array. We don't do more passes because expanding array requires
11247 // copying the data, which is wasteful.
11248 for (const unsigned N : {1u, FinalSize}) {
11249 unsigned OldElts = Value->getArrayInitializedElts();
11250 if (OldElts == N)
11251 break;
11252
11253 // Expand the array to appropriate size.
11254 APValue NewValue(APValue::UninitArray(), N, FinalSize);
11255 for (unsigned I = 0; I < OldElts; ++I)
11256 NewValue.getArrayInitializedElt(I).swap(
11257 RHS&: Value->getArrayInitializedElt(I));
11258 Value->swap(RHS&: NewValue);
11259
11260 if (HadZeroInit)
11261 for (unsigned I = OldElts; I < N; ++I)
11262 Value->getArrayInitializedElt(I) = Filler;
11263
11264 if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) {
11265 // If we have a trivial constructor, only evaluate it once and copy
11266 // the result into all the array elements.
11267 APValue &FirstResult = Value->getArrayInitializedElt(I: 0);
11268 for (unsigned I = OldElts; I < FinalSize; ++I)
11269 Value->getArrayInitializedElt(I) = FirstResult;
11270 } else {
11271 for (unsigned I = OldElts; I < N; ++I) {
11272 if (!VisitCXXConstructExpr(E, ArrayElt,
11273 &Value->getArrayInitializedElt(I),
11274 CAT->getElementType()) ||
11275 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
11276 CAT->getElementType(), 1))
11277 return false;
11278 // When checking for const initilization any diagnostic is considered
11279 // an error.
11280 if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
11281 !Info.keepEvaluatingAfterFailure())
11282 return false;
11283 }
11284 }
11285 }
11286
11287 return true;
11288 }
11289
11290 if (!Type->isRecordType())
11291 return Error(E);
11292
11293 return RecordExprEvaluator(Info, Subobject, *Value)
11294 .VisitCXXConstructExpr(E, T: Type);
11295}
11296
11297bool ArrayExprEvaluator::VisitCXXParenListInitExpr(
11298 const CXXParenListInitExpr *E) {
11299 assert(dyn_cast<ConstantArrayType>(E->getType()) &&
11300 "Expression result is not a constant array type");
11301
11302 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
11303 E->getArrayFiller());
11304}
11305
11306//===----------------------------------------------------------------------===//
11307// Integer Evaluation
11308//
11309// As a GNU extension, we support casting pointers to sufficiently-wide integer
11310// types and back in constant folding. Integer values are thus represented
11311// either as an integer-valued APValue, or as an lvalue-valued APValue.
11312//===----------------------------------------------------------------------===//
11313
11314namespace {
11315class IntExprEvaluator
11316 : public ExprEvaluatorBase<IntExprEvaluator> {
11317 APValue &Result;
11318public:
11319 IntExprEvaluator(EvalInfo &info, APValue &result)
11320 : ExprEvaluatorBaseTy(info), Result(result) {}
11321
11322 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
11323 assert(E->getType()->isIntegralOrEnumerationType() &&
11324 "Invalid evaluation result.");
11325 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
11326 "Invalid evaluation result.");
11327 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11328 "Invalid evaluation result.");
11329 Result = APValue(SI);
11330 return true;
11331 }
11332 bool Success(const llvm::APSInt &SI, const Expr *E) {
11333 return Success(SI, E, Result);
11334 }
11335
11336 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
11337 assert(E->getType()->isIntegralOrEnumerationType() &&
11338 "Invalid evaluation result.");
11339 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11340 "Invalid evaluation result.");
11341 Result = APValue(APSInt(I));
11342 Result.getInt().setIsUnsigned(
11343 E->getType()->isUnsignedIntegerOrEnumerationType());
11344 return true;
11345 }
11346 bool Success(const llvm::APInt &I, const Expr *E) {
11347 return Success(I, E, Result);
11348 }
11349
11350 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11351 assert(E->getType()->isIntegralOrEnumerationType() &&
11352 "Invalid evaluation result.");
11353 Result = APValue(Info.Ctx.MakeIntValue(Value, Type: E->getType()));
11354 return true;
11355 }
11356 bool Success(uint64_t Value, const Expr *E) {
11357 return Success(Value, E, Result);
11358 }
11359
11360 bool Success(CharUnits Size, const Expr *E) {
11361 return Success(Value: Size.getQuantity(), E);
11362 }
11363
11364 bool Success(const APValue &V, const Expr *E) {
11365 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
11366 Result = V;
11367 return true;
11368 }
11369 return Success(SI: V.getInt(), E);
11370 }
11371
11372 bool ZeroInitialization(const Expr *E) { return Success(Value: 0, E); }
11373
11374 //===--------------------------------------------------------------------===//
11375 // Visitor Methods
11376 //===--------------------------------------------------------------------===//
11377
11378 bool VisitIntegerLiteral(const IntegerLiteral *E) {
11379 return Success(E->getValue(), E);
11380 }
11381 bool VisitCharacterLiteral(const CharacterLiteral *E) {
11382 return Success(E->getValue(), E);
11383 }
11384
11385 bool CheckReferencedDecl(const Expr *E, const Decl *D);
11386 bool VisitDeclRefExpr(const DeclRefExpr *E) {
11387 if (CheckReferencedDecl(E, E->getDecl()))
11388 return true;
11389
11390 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
11391 }
11392 bool VisitMemberExpr(const MemberExpr *E) {
11393 if (CheckReferencedDecl(E, E->getMemberDecl())) {
11394 VisitIgnoredBaseExpression(E: E->getBase());
11395 return true;
11396 }
11397
11398 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
11399 }
11400
11401 bool VisitCallExpr(const CallExpr *E);
11402 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
11403 bool VisitBinaryOperator(const BinaryOperator *E);
11404 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
11405 bool VisitUnaryOperator(const UnaryOperator *E);
11406
11407 bool VisitCastExpr(const CastExpr* E);
11408 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
11409
11410 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
11411 return Success(E->getValue(), E);
11412 }
11413
11414 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
11415 return Success(E->getValue(), E);
11416 }
11417
11418 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
11419 if (Info.ArrayInitIndex == uint64_t(-1)) {
11420 // We were asked to evaluate this subexpression independent of the
11421 // enclosing ArrayInitLoopExpr. We can't do that.
11422 Info.FFDiag(E);
11423 return false;
11424 }
11425 return Success(Info.ArrayInitIndex, E);
11426 }
11427
11428 // Note, GNU defines __null as an integer, not a pointer.
11429 bool VisitGNUNullExpr(const GNUNullExpr *E) {
11430 return ZeroInitialization(E);
11431 }
11432
11433 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
11434 return Success(E->getValue(), E);
11435 }
11436
11437 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
11438 return Success(E->getValue(), E);
11439 }
11440
11441 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
11442 return Success(E->getValue(), E);
11443 }
11444
11445 bool VisitUnaryReal(const UnaryOperator *E);
11446 bool VisitUnaryImag(const UnaryOperator *E);
11447
11448 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
11449 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
11450 bool VisitSourceLocExpr(const SourceLocExpr *E);
11451 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
11452 bool VisitRequiresExpr(const RequiresExpr *E);
11453 // FIXME: Missing: array subscript of vector, member of vector
11454};
11455
11456class FixedPointExprEvaluator
11457 : public ExprEvaluatorBase<FixedPointExprEvaluator> {
11458 APValue &Result;
11459
11460 public:
11461 FixedPointExprEvaluator(EvalInfo &info, APValue &result)
11462 : ExprEvaluatorBaseTy(info), Result(result) {}
11463
11464 bool Success(const llvm::APInt &I, const Expr *E) {
11465 return Success(
11466 V: APFixedPoint(I, Info.Ctx.getFixedPointSemantics(Ty: E->getType())), E);
11467 }
11468
11469 bool Success(uint64_t Value, const Expr *E) {
11470 return Success(
11471 V: APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(Ty: E->getType())), E);
11472 }
11473
11474 bool Success(const APValue &V, const Expr *E) {
11475 return Success(V: V.getFixedPoint(), E);
11476 }
11477
11478 bool Success(const APFixedPoint &V, const Expr *E) {
11479 assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
11480 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11481 "Invalid evaluation result.");
11482 Result = APValue(V);
11483 return true;
11484 }
11485
11486 bool ZeroInitialization(const Expr *E) {
11487 return Success(Value: 0, E);
11488 }
11489
11490 //===--------------------------------------------------------------------===//
11491 // Visitor Methods
11492 //===--------------------------------------------------------------------===//
11493
11494 bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
11495 return Success(E->getValue(), E);
11496 }
11497
11498 bool VisitCastExpr(const CastExpr *E);
11499 bool VisitUnaryOperator(const UnaryOperator *E);
11500 bool VisitBinaryOperator(const BinaryOperator *E);
11501};
11502} // end anonymous namespace
11503
11504/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
11505/// produce either the integer value or a pointer.
11506///
11507/// GCC has a heinous extension which folds casts between pointer types and
11508/// pointer-sized integral types. We support this by allowing the evaluation of
11509/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
11510/// Some simple arithmetic on such values is supported (they are treated much
11511/// like char*).
11512static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
11513 EvalInfo &Info) {
11514 assert(!E->isValueDependent());
11515 assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
11516 return IntExprEvaluator(Info, Result).Visit(E);
11517}
11518
11519static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
11520 assert(!E->isValueDependent());
11521 APValue Val;
11522 if (!EvaluateIntegerOrLValue(E, Result&: Val, Info))
11523 return false;
11524 if (!Val.isInt()) {
11525 // FIXME: It would be better to produce the diagnostic for casting
11526 // a pointer to an integer.
11527 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11528 return false;
11529 }
11530 Result = Val.getInt();
11531 return true;
11532}
11533
11534bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
11535 APValue Evaluated = E->EvaluateInContext(
11536 Ctx: Info.Ctx, DefaultExpr: Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
11537 return Success(Evaluated, E);
11538}
11539
11540static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11541 EvalInfo &Info) {
11542 assert(!E->isValueDependent());
11543 if (E->getType()->isFixedPointType()) {
11544 APValue Val;
11545 if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11546 return false;
11547 if (!Val.isFixedPoint())
11548 return false;
11549
11550 Result = Val.getFixedPoint();
11551 return true;
11552 }
11553 return false;
11554}
11555
11556static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11557 EvalInfo &Info) {
11558 assert(!E->isValueDependent());
11559 if (E->getType()->isIntegerType()) {
11560 auto FXSema = Info.Ctx.getFixedPointSemantics(Ty: E->getType());
11561 APSInt Val;
11562 if (!EvaluateInteger(E, Result&: Val, Info))
11563 return false;
11564 Result = APFixedPoint(Val, FXSema);
11565 return true;
11566 } else if (E->getType()->isFixedPointType()) {
11567 return EvaluateFixedPoint(E, Result, Info);
11568 }
11569 return false;
11570}
11571
11572/// Check whether the given declaration can be directly converted to an integral
11573/// rvalue. If not, no diagnostic is produced; there are other things we can
11574/// try.
11575bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11576 // Enums are integer constant exprs.
11577 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(Val: D)) {
11578 // Check for signedness/width mismatches between E type and ECD value.
11579 bool SameSign = (ECD->getInitVal().isSigned()
11580 == E->getType()->isSignedIntegerOrEnumerationType());
11581 bool SameWidth = (ECD->getInitVal().getBitWidth()
11582 == Info.Ctx.getIntWidth(T: E->getType()));
11583 if (SameSign && SameWidth)
11584 return Success(SI: ECD->getInitVal(), E);
11585 else {
11586 // Get rid of mismatch (otherwise Success assertions will fail)
11587 // by computing a new value matching the type of E.
11588 llvm::APSInt Val = ECD->getInitVal();
11589 if (!SameSign)
11590 Val.setIsSigned(!ECD->getInitVal().isSigned());
11591 if (!SameWidth)
11592 Val = Val.extOrTrunc(width: Info.Ctx.getIntWidth(T: E->getType()));
11593 return Success(SI: Val, E);
11594 }
11595 }
11596 return false;
11597}
11598
11599/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11600/// as GCC.
11601GCCTypeClass EvaluateBuiltinClassifyType(QualType T,
11602 const LangOptions &LangOpts) {
11603 assert(!T->isDependentType() && "unexpected dependent type");
11604
11605 QualType CanTy = T.getCanonicalType();
11606
11607 switch (CanTy->getTypeClass()) {
11608#define TYPE(ID, BASE)
11609#define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11610#define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11611#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11612#include "clang/AST/TypeNodes.inc"
11613 case Type::Auto:
11614 case Type::DeducedTemplateSpecialization:
11615 llvm_unreachable("unexpected non-canonical or dependent type");
11616
11617 case Type::Builtin:
11618 switch (cast<BuiltinType>(CanTy)->getKind()) {
11619#define BUILTIN_TYPE(ID, SINGLETON_ID)
11620#define SIGNED_TYPE(ID, SINGLETON_ID) \
11621 case BuiltinType::ID: return GCCTypeClass::Integer;
11622#define FLOATING_TYPE(ID, SINGLETON_ID) \
11623 case BuiltinType::ID: return GCCTypeClass::RealFloat;
11624#define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11625 case BuiltinType::ID: break;
11626#include "clang/AST/BuiltinTypes.def"
11627 case BuiltinType::Void:
11628 return GCCTypeClass::Void;
11629
11630 case BuiltinType::Bool:
11631 return GCCTypeClass::Bool;
11632
11633 case BuiltinType::Char_U:
11634 case BuiltinType::UChar:
11635 case BuiltinType::WChar_U:
11636 case BuiltinType::Char8:
11637 case BuiltinType::Char16:
11638 case BuiltinType::Char32:
11639 case BuiltinType::UShort:
11640 case BuiltinType::UInt:
11641 case BuiltinType::ULong:
11642 case BuiltinType::ULongLong:
11643 case BuiltinType::UInt128:
11644 return GCCTypeClass::Integer;
11645
11646 case BuiltinType::UShortAccum:
11647 case BuiltinType::UAccum:
11648 case BuiltinType::ULongAccum:
11649 case BuiltinType::UShortFract:
11650 case BuiltinType::UFract:
11651 case BuiltinType::ULongFract:
11652 case BuiltinType::SatUShortAccum:
11653 case BuiltinType::SatUAccum:
11654 case BuiltinType::SatULongAccum:
11655 case BuiltinType::SatUShortFract:
11656 case BuiltinType::SatUFract:
11657 case BuiltinType::SatULongFract:
11658 return GCCTypeClass::None;
11659
11660 case BuiltinType::NullPtr:
11661
11662 case BuiltinType::ObjCId:
11663 case BuiltinType::ObjCClass:
11664 case BuiltinType::ObjCSel:
11665#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11666 case BuiltinType::Id:
11667#include "clang/Basic/OpenCLImageTypes.def"
11668#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11669 case BuiltinType::Id:
11670#include "clang/Basic/OpenCLExtensionTypes.def"
11671 case BuiltinType::OCLSampler:
11672 case BuiltinType::OCLEvent:
11673 case BuiltinType::OCLClkEvent:
11674 case BuiltinType::OCLQueue:
11675 case BuiltinType::OCLReserveID:
11676#define SVE_TYPE(Name, Id, SingletonId) \
11677 case BuiltinType::Id:
11678#include "clang/Basic/AArch64SVEACLETypes.def"
11679#define PPC_VECTOR_TYPE(Name, Id, Size) \
11680 case BuiltinType::Id:
11681#include "clang/Basic/PPCTypes.def"
11682#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11683#include "clang/Basic/RISCVVTypes.def"
11684#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11685#include "clang/Basic/WebAssemblyReferenceTypes.def"
11686 return GCCTypeClass::None;
11687
11688 case BuiltinType::Dependent:
11689 llvm_unreachable("unexpected dependent type");
11690 };
11691 llvm_unreachable("unexpected placeholder type");
11692
11693 case Type::Enum:
11694 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11695
11696 case Type::Pointer:
11697 case Type::ConstantArray:
11698 case Type::VariableArray:
11699 case Type::IncompleteArray:
11700 case Type::FunctionNoProto:
11701 case Type::FunctionProto:
11702 case Type::ArrayParameter:
11703 return GCCTypeClass::Pointer;
11704
11705 case Type::MemberPointer:
11706 return CanTy->isMemberDataPointerType()
11707 ? GCCTypeClass::PointerToDataMember
11708 : GCCTypeClass::PointerToMemberFunction;
11709
11710 case Type::Complex:
11711 return GCCTypeClass::Complex;
11712
11713 case Type::Record:
11714 return CanTy->isUnionType() ? GCCTypeClass::Union
11715 : GCCTypeClass::ClassOrStruct;
11716
11717 case Type::Atomic:
11718 // GCC classifies _Atomic T the same as T.
11719 return EvaluateBuiltinClassifyType(
11720 CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11721
11722 case Type::Vector:
11723 case Type::ExtVector:
11724 return GCCTypeClass::Vector;
11725
11726 case Type::BlockPointer:
11727 case Type::ConstantMatrix:
11728 case Type::ObjCObject:
11729 case Type::ObjCInterface:
11730 case Type::ObjCObjectPointer:
11731 case Type::Pipe:
11732 // Classify all other types that don't fit into the regular
11733 // classification the same way.
11734 return GCCTypeClass::None;
11735
11736 case Type::BitInt:
11737 return GCCTypeClass::BitInt;
11738
11739 case Type::LValueReference:
11740 case Type::RValueReference:
11741 llvm_unreachable("invalid type for expression");
11742 }
11743
11744 llvm_unreachable("unexpected type class");
11745}
11746
11747/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11748/// as GCC.
11749static GCCTypeClass
11750EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11751 // If no argument was supplied, default to None. This isn't
11752 // ideal, however it is what gcc does.
11753 if (E->getNumArgs() == 0)
11754 return GCCTypeClass::None;
11755
11756 // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11757 // being an ICE, but still folds it to a constant using the type of the first
11758 // argument.
11759 return EvaluateBuiltinClassifyType(T: E->getArg(Arg: 0)->getType(), LangOpts);
11760}
11761
11762/// EvaluateBuiltinConstantPForLValue - Determine the result of
11763/// __builtin_constant_p when applied to the given pointer.
11764///
11765/// A pointer is only "constant" if it is null (or a pointer cast to integer)
11766/// or it points to the first character of a string literal.
11767static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11768 APValue::LValueBase Base = LV.getLValueBase();
11769 if (Base.isNull()) {
11770 // A null base is acceptable.
11771 return true;
11772 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11773 if (!isa<StringLiteral>(Val: E))
11774 return false;
11775 return LV.getLValueOffset().isZero();
11776 } else if (Base.is<TypeInfoLValue>()) {
11777 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11778 // evaluate to true.
11779 return true;
11780 } else {
11781 // Any other base is not constant enough for GCC.
11782 return false;
11783 }
11784}
11785
11786/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11787/// GCC as we can manage.
11788static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11789 // This evaluation is not permitted to have side-effects, so evaluate it in
11790 // a speculative evaluation context.
11791 SpeculativeEvaluationRAII SpeculativeEval(Info);
11792
11793 // Constant-folding is always enabled for the operand of __builtin_constant_p
11794 // (even when the enclosing evaluation context otherwise requires a strict
11795 // language-specific constant expression).
11796 FoldConstant Fold(Info, true);
11797
11798 QualType ArgType = Arg->getType();
11799
11800 // __builtin_constant_p always has one operand. The rules which gcc follows
11801 // are not precisely documented, but are as follows:
11802 //
11803 // - If the operand is of integral, floating, complex or enumeration type,
11804 // and can be folded to a known value of that type, it returns 1.
11805 // - If the operand can be folded to a pointer to the first character
11806 // of a string literal (or such a pointer cast to an integral type)
11807 // or to a null pointer or an integer cast to a pointer, it returns 1.
11808 //
11809 // Otherwise, it returns 0.
11810 //
11811 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11812 // its support for this did not work prior to GCC 9 and is not yet well
11813 // understood.
11814 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11815 ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11816 ArgType->isNullPtrType()) {
11817 APValue V;
11818 if (!::EvaluateAsRValue(Info, E: Arg, Result&: V) || Info.EvalStatus.HasSideEffects) {
11819 Fold.keepDiagnostics();
11820 return false;
11821 }
11822
11823 // For a pointer (possibly cast to integer), there are special rules.
11824 if (V.getKind() == APValue::LValue)
11825 return EvaluateBuiltinConstantPForLValue(LV: V);
11826
11827 // Otherwise, any constant value is good enough.
11828 return V.hasValue();
11829 }
11830
11831 // Anything else isn't considered to be sufficiently constant.
11832 return false;
11833}
11834
11835/// Retrieves the "underlying object type" of the given expression,
11836/// as used by __builtin_object_size.
11837static QualType getObjectType(APValue::LValueBase B) {
11838 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11839 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
11840 return VD->getType();
11841 } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11842 if (isa<CompoundLiteralExpr>(Val: E))
11843 return E->getType();
11844 } else if (B.is<TypeInfoLValue>()) {
11845 return B.getTypeInfoType();
11846 } else if (B.is<DynamicAllocLValue>()) {
11847 return B.getDynamicAllocType();
11848 }
11849
11850 return QualType();
11851}
11852
11853/// A more selective version of E->IgnoreParenCasts for
11854/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11855/// to change the type of E.
11856/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11857///
11858/// Always returns an RValue with a pointer representation.
11859static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11860 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
11861
11862 const Expr *NoParens = E->IgnoreParens();
11863 const auto *Cast = dyn_cast<CastExpr>(Val: NoParens);
11864 if (Cast == nullptr)
11865 return NoParens;
11866
11867 // We only conservatively allow a few kinds of casts, because this code is
11868 // inherently a simple solution that seeks to support the common case.
11869 auto CastKind = Cast->getCastKind();
11870 if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11871 CastKind != CK_AddressSpaceConversion)
11872 return NoParens;
11873
11874 const auto *SubExpr = Cast->getSubExpr();
11875 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
11876 return NoParens;
11877 return ignorePointerCastsAndParens(E: SubExpr);
11878}
11879
11880/// Checks to see if the given LValue's Designator is at the end of the LValue's
11881/// record layout. e.g.
11882/// struct { struct { int a, b; } fst, snd; } obj;
11883/// obj.fst // no
11884/// obj.snd // yes
11885/// obj.fst.a // no
11886/// obj.fst.b // no
11887/// obj.snd.a // no
11888/// obj.snd.b // yes
11889///
11890/// Please note: this function is specialized for how __builtin_object_size
11891/// views "objects".
11892///
11893/// If this encounters an invalid RecordDecl or otherwise cannot determine the
11894/// correct result, it will always return true.
11895static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11896 assert(!LVal.Designator.Invalid);
11897
11898 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11899 const RecordDecl *Parent = FD->getParent();
11900 Invalid = Parent->isInvalidDecl();
11901 if (Invalid || Parent->isUnion())
11902 return true;
11903 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(D: Parent);
11904 return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11905 };
11906
11907 auto &Base = LVal.getLValueBase();
11908 if (auto *ME = dyn_cast_or_null<MemberExpr>(Val: Base.dyn_cast<const Expr *>())) {
11909 if (auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) {
11910 bool Invalid;
11911 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11912 return Invalid;
11913 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(Val: ME->getMemberDecl())) {
11914 for (auto *FD : IFD->chain()) {
11915 bool Invalid;
11916 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(Val: FD), Invalid))
11917 return Invalid;
11918 }
11919 }
11920 }
11921
11922 unsigned I = 0;
11923 QualType BaseType = getType(B: Base);
11924 if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11925 // If we don't know the array bound, conservatively assume we're looking at
11926 // the final array element.
11927 ++I;
11928 if (BaseType->isIncompleteArrayType())
11929 BaseType = Ctx.getAsArrayType(T: BaseType)->getElementType();
11930 else
11931 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11932 }
11933
11934 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11935 const auto &Entry = LVal.Designator.Entries[I];
11936 if (BaseType->isArrayType()) {
11937 // Because __builtin_object_size treats arrays as objects, we can ignore
11938 // the index iff this is the last array in the Designator.
11939 if (I + 1 == E)
11940 return true;
11941 const auto *CAT = cast<ConstantArrayType>(Val: Ctx.getAsArrayType(T: BaseType));
11942 uint64_t Index = Entry.getAsArrayIndex();
11943 if (Index + 1 != CAT->getZExtSize())
11944 return false;
11945 BaseType = CAT->getElementType();
11946 } else if (BaseType->isAnyComplexType()) {
11947 const auto *CT = BaseType->castAs<ComplexType>();
11948 uint64_t Index = Entry.getAsArrayIndex();
11949 if (Index != 1)
11950 return false;
11951 BaseType = CT->getElementType();
11952 } else if (auto *FD = getAsField(Entry)) {
11953 bool Invalid;
11954 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11955 return Invalid;
11956 BaseType = FD->getType();
11957 } else {
11958 assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11959 return false;
11960 }
11961 }
11962 return true;
11963}
11964
11965/// Tests to see if the LValue has a user-specified designator (that isn't
11966/// necessarily valid). Note that this always returns 'true' if the LValue has
11967/// an unsized array as its first designator entry, because there's currently no
11968/// way to tell if the user typed *foo or foo[0].
11969static bool refersToCompleteObject(const LValue &LVal) {
11970 if (LVal.Designator.Invalid)
11971 return false;
11972
11973 if (!LVal.Designator.Entries.empty())
11974 return LVal.Designator.isMostDerivedAnUnsizedArray();
11975
11976 if (!LVal.InvalidBase)
11977 return true;
11978
11979 // If `E` is a MemberExpr, then the first part of the designator is hiding in
11980 // the LValueBase.
11981 const auto *E = LVal.Base.dyn_cast<const Expr *>();
11982 return !E || !isa<MemberExpr>(Val: E);
11983}
11984
11985/// Attempts to detect a user writing into a piece of memory that's impossible
11986/// to figure out the size of by just using types.
11987static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11988 const SubobjectDesignator &Designator = LVal.Designator;
11989 // Notes:
11990 // - Users can only write off of the end when we have an invalid base. Invalid
11991 // bases imply we don't know where the memory came from.
11992 // - We used to be a bit more aggressive here; we'd only be conservative if
11993 // the array at the end was flexible, or if it had 0 or 1 elements. This
11994 // broke some common standard library extensions (PR30346), but was
11995 // otherwise seemingly fine. It may be useful to reintroduce this behavior
11996 // with some sort of list. OTOH, it seems that GCC is always
11997 // conservative with the last element in structs (if it's an array), so our
11998 // current behavior is more compatible than an explicit list approach would
11999 // be.
12000 auto isFlexibleArrayMember = [&] {
12001 using FAMKind = LangOptions::StrictFlexArraysLevelKind;
12002 FAMKind StrictFlexArraysLevel =
12003 Ctx.getLangOpts().getStrictFlexArraysLevel();
12004
12005 if (Designator.isMostDerivedAnUnsizedArray())
12006 return true;
12007
12008 if (StrictFlexArraysLevel == FAMKind::Default)
12009 return true;
12010
12011 if (Designator.getMostDerivedArraySize() == 0 &&
12012 StrictFlexArraysLevel != FAMKind::IncompleteOnly)
12013 return true;
12014
12015 if (Designator.getMostDerivedArraySize() == 1 &&
12016 StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete)
12017 return true;
12018
12019 return false;
12020 };
12021
12022 return LVal.InvalidBase &&
12023 Designator.Entries.size() == Designator.MostDerivedPathLength &&
12024 Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() &&
12025 isDesignatorAtObjectEnd(Ctx, LVal);
12026}
12027
12028/// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
12029/// Fails if the conversion would cause loss of precision.
12030static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
12031 CharUnits &Result) {
12032 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
12033 if (Int.ugt(RHS: CharUnitsMax))
12034 return false;
12035 Result = CharUnits::fromQuantity(Quantity: Int.getZExtValue());
12036 return true;
12037}
12038
12039/// If we're evaluating the object size of an instance of a struct that
12040/// contains a flexible array member, add the size of the initializer.
12041static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T,
12042 const LValue &LV, CharUnits &Size) {
12043 if (!T.isNull() && T->isStructureType() &&
12044 T->getAsStructureType()->getDecl()->hasFlexibleArrayMember())
12045 if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>())
12046 if (const auto *VD = dyn_cast<VarDecl>(Val: V))
12047 if (VD->hasInit())
12048 Size += VD->getFlexibleArrayInitChars(Ctx: Info.Ctx);
12049}
12050
12051/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
12052/// determine how many bytes exist from the beginning of the object to either
12053/// the end of the current subobject, or the end of the object itself, depending
12054/// on what the LValue looks like + the value of Type.
12055///
12056/// If this returns false, the value of Result is undefined.
12057static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
12058 unsigned Type, const LValue &LVal,
12059 CharUnits &EndOffset) {
12060 bool DetermineForCompleteObject = refersToCompleteObject(LVal);
12061
12062 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
12063 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
12064 return false;
12065 return HandleSizeof(Info, Loc: ExprLoc, Type: Ty, Size&: Result);
12066 };
12067
12068 // We want to evaluate the size of the entire object. This is a valid fallback
12069 // for when Type=1 and the designator is invalid, because we're asked for an
12070 // upper-bound.
12071 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
12072 // Type=3 wants a lower bound, so we can't fall back to this.
12073 if (Type == 3 && !DetermineForCompleteObject)
12074 return false;
12075
12076 llvm::APInt APEndOffset;
12077 if (isBaseAnAllocSizeCall(Base: LVal.getLValueBase()) &&
12078 getBytesReturnedByAllocSizeCall(Ctx: Info.Ctx, LVal, Result&: APEndOffset))
12079 return convertUnsignedAPIntToCharUnits(Int: APEndOffset, Result&: EndOffset);
12080
12081 if (LVal.InvalidBase)
12082 return false;
12083
12084 QualType BaseTy = getObjectType(B: LVal.getLValueBase());
12085 const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset);
12086 addFlexibleArrayMemberInitSize(Info, T: BaseTy, LV: LVal, Size&: EndOffset);
12087 return Ret;
12088 }
12089
12090 // We want to evaluate the size of a subobject.
12091 const SubobjectDesignator &Designator = LVal.Designator;
12092
12093 // The following is a moderately common idiom in C:
12094 //
12095 // struct Foo { int a; char c[1]; };
12096 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
12097 // strcpy(&F->c[0], Bar);
12098 //
12099 // In order to not break too much legacy code, we need to support it.
12100 if (isUserWritingOffTheEnd(Ctx: Info.Ctx, LVal)) {
12101 // If we can resolve this to an alloc_size call, we can hand that back,
12102 // because we know for certain how many bytes there are to write to.
12103 llvm::APInt APEndOffset;
12104 if (isBaseAnAllocSizeCall(Base: LVal.getLValueBase()) &&
12105 getBytesReturnedByAllocSizeCall(Ctx: Info.Ctx, LVal, Result&: APEndOffset))
12106 return convertUnsignedAPIntToCharUnits(Int: APEndOffset, Result&: EndOffset);
12107
12108 // If we cannot determine the size of the initial allocation, then we can't
12109 // given an accurate upper-bound. However, we are still able to give
12110 // conservative lower-bounds for Type=3.
12111 if (Type == 1)
12112 return false;
12113 }
12114
12115 CharUnits BytesPerElem;
12116 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
12117 return false;
12118
12119 // According to the GCC documentation, we want the size of the subobject
12120 // denoted by the pointer. But that's not quite right -- what we actually
12121 // want is the size of the immediately-enclosing array, if there is one.
12122 int64_t ElemsRemaining;
12123 if (Designator.MostDerivedIsArrayElement &&
12124 Designator.Entries.size() == Designator.MostDerivedPathLength) {
12125 uint64_t ArraySize = Designator.getMostDerivedArraySize();
12126 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
12127 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
12128 } else {
12129 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
12130 }
12131
12132 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
12133 return true;
12134}
12135
12136/// Tries to evaluate the __builtin_object_size for @p E. If successful,
12137/// returns true and stores the result in @p Size.
12138///
12139/// If @p WasError is non-null, this will report whether the failure to evaluate
12140/// is to be treated as an Error in IntExprEvaluator.
12141static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
12142 EvalInfo &Info, uint64_t &Size) {
12143 // Determine the denoted object.
12144 LValue LVal;
12145 {
12146 // The operand of __builtin_object_size is never evaluated for side-effects.
12147 // If there are any, but we can determine the pointed-to object anyway, then
12148 // ignore the side-effects.
12149 SpeculativeEvaluationRAII SpeculativeEval(Info);
12150 IgnoreSideEffectsRAII Fold(Info);
12151
12152 if (E->isGLValue()) {
12153 // It's possible for us to be given GLValues if we're called via
12154 // Expr::tryEvaluateObjectSize.
12155 APValue RVal;
12156 if (!EvaluateAsRValue(Info, E, Result&: RVal))
12157 return false;
12158 LVal.setFrom(Ctx&: Info.Ctx, V: RVal);
12159 } else if (!EvaluatePointer(E: ignorePointerCastsAndParens(E), Result&: LVal, Info,
12160 /*InvalidBaseOK=*/true))
12161 return false;
12162 }
12163
12164 // If we point to before the start of the object, there are no accessible
12165 // bytes.
12166 if (LVal.getLValueOffset().isNegative()) {
12167 Size = 0;
12168 return true;
12169 }
12170
12171 CharUnits EndOffset;
12172 if (!determineEndOffset(Info, ExprLoc: E->getExprLoc(), Type, LVal, EndOffset))
12173 return false;
12174
12175 // If we've fallen outside of the end offset, just pretend there's nothing to
12176 // write to/read from.
12177 if (EndOffset <= LVal.getLValueOffset())
12178 Size = 0;
12179 else
12180 Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
12181 return true;
12182}
12183
12184bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
12185 if (!IsConstantEvaluatedBuiltinCall(E))
12186 return ExprEvaluatorBaseTy::VisitCallExpr(E);
12187 return VisitBuiltinCallExpr(E, BuiltinOp: E->getBuiltinCallee());
12188}
12189
12190static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
12191 APValue &Val, APSInt &Alignment) {
12192 QualType SrcTy = E->getArg(Arg: 0)->getType();
12193 if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: SrcTy, Info, Alignment))
12194 return false;
12195 // Even though we are evaluating integer expressions we could get a pointer
12196 // argument for the __builtin_is_aligned() case.
12197 if (SrcTy->isPointerType()) {
12198 LValue Ptr;
12199 if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: Ptr, Info))
12200 return false;
12201 Ptr.moveInto(V&: Val);
12202 } else if (!SrcTy->isIntegralOrEnumerationType()) {
12203 Info.FFDiag(E: E->getArg(Arg: 0));
12204 return false;
12205 } else {
12206 APSInt SrcInt;
12207 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: SrcInt, Info))
12208 return false;
12209 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
12210 "Bit widths must be the same");
12211 Val = APValue(SrcInt);
12212 }
12213 assert(Val.hasValue());
12214 return true;
12215}
12216
12217bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
12218 unsigned BuiltinOp) {
12219 switch (BuiltinOp) {
12220 default:
12221 return false;
12222
12223 case Builtin::BI__builtin_dynamic_object_size:
12224 case Builtin::BI__builtin_object_size: {
12225 // The type was checked when we built the expression.
12226 unsigned Type =
12227 E->getArg(Arg: 1)->EvaluateKnownConstInt(Ctx: Info.Ctx).getZExtValue();
12228 assert(Type <= 3 && "unexpected type");
12229
12230 uint64_t Size;
12231 if (tryEvaluateBuiltinObjectSize(E: E->getArg(Arg: 0), Type, Info, Size))
12232 return Success(Size, E);
12233
12234 if (E->getArg(Arg: 0)->HasSideEffects(Ctx: Info.Ctx))
12235 return Success((Type & 2) ? 0 : -1, E);
12236
12237 // Expression had no side effects, but we couldn't statically determine the
12238 // size of the referenced object.
12239 switch (Info.EvalMode) {
12240 case EvalInfo::EM_ConstantExpression:
12241 case EvalInfo::EM_ConstantFold:
12242 case EvalInfo::EM_IgnoreSideEffects:
12243 // Leave it to IR generation.
12244 return Error(E);
12245 case EvalInfo::EM_ConstantExpressionUnevaluated:
12246 // Reduce it to a constant now.
12247 return Success((Type & 2) ? 0 : -1, E);
12248 }
12249
12250 llvm_unreachable("unexpected EvalMode");
12251 }
12252
12253 case Builtin::BI__builtin_os_log_format_buffer_size: {
12254 analyze_os_log::OSLogBufferLayout Layout;
12255 analyze_os_log::computeOSLogBufferLayout(Ctx&: Info.Ctx, E, layout&: Layout);
12256 return Success(Layout.size().getQuantity(), E);
12257 }
12258
12259 case Builtin::BI__builtin_is_aligned: {
12260 APValue Src;
12261 APSInt Alignment;
12262 if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment))
12263 return false;
12264 if (Src.isLValue()) {
12265 // If we evaluated a pointer, check the minimum known alignment.
12266 LValue Ptr;
12267 Ptr.setFrom(Ctx&: Info.Ctx, V: Src);
12268 CharUnits BaseAlignment = getBaseAlignment(Info, Value: Ptr);
12269 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(offset: Ptr.Offset);
12270 // We can return true if the known alignment at the computed offset is
12271 // greater than the requested alignment.
12272 assert(PtrAlign.isPowerOfTwo());
12273 assert(Alignment.isPowerOf2());
12274 if (PtrAlign.getQuantity() >= Alignment)
12275 return Success(1, E);
12276 // If the alignment is not known to be sufficient, some cases could still
12277 // be aligned at run time. However, if the requested alignment is less or
12278 // equal to the base alignment and the offset is not aligned, we know that
12279 // the run-time value can never be aligned.
12280 if (BaseAlignment.getQuantity() >= Alignment &&
12281 PtrAlign.getQuantity() < Alignment)
12282 return Success(0, E);
12283 // Otherwise we can't infer whether the value is sufficiently aligned.
12284 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
12285 // in cases where we can't fully evaluate the pointer.
12286 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
12287 << Alignment;
12288 return false;
12289 }
12290 assert(Src.isInt());
12291 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
12292 }
12293 case Builtin::BI__builtin_align_up: {
12294 APValue Src;
12295 APSInt Alignment;
12296 if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment))
12297 return false;
12298 if (!Src.isInt())
12299 return Error(E);
12300 APSInt AlignedVal =
12301 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
12302 Src.getInt().isUnsigned());
12303 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12304 return Success(AlignedVal, E);
12305 }
12306 case Builtin::BI__builtin_align_down: {
12307 APValue Src;
12308 APSInt Alignment;
12309 if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment))
12310 return false;
12311 if (!Src.isInt())
12312 return Error(E);
12313 APSInt AlignedVal =
12314 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
12315 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12316 return Success(AlignedVal, E);
12317 }
12318
12319 case Builtin::BI__builtin_bitreverse8:
12320 case Builtin::BI__builtin_bitreverse16:
12321 case Builtin::BI__builtin_bitreverse32:
12322 case Builtin::BI__builtin_bitreverse64: {
12323 APSInt Val;
12324 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12325 return false;
12326
12327 return Success(Val.reverseBits(), E);
12328 }
12329
12330 case Builtin::BI__builtin_bswap16:
12331 case Builtin::BI__builtin_bswap32:
12332 case Builtin::BI__builtin_bswap64: {
12333 APSInt Val;
12334 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12335 return false;
12336
12337 return Success(Val.byteSwap(), E);
12338 }
12339
12340 case Builtin::BI__builtin_classify_type:
12341 return Success((int)EvaluateBuiltinClassifyType(E, LangOpts: Info.getLangOpts()), E);
12342
12343 case Builtin::BI__builtin_clrsb:
12344 case Builtin::BI__builtin_clrsbl:
12345 case Builtin::BI__builtin_clrsbll: {
12346 APSInt Val;
12347 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12348 return false;
12349
12350 return Success(Val.getBitWidth() - Val.getSignificantBits(), E);
12351 }
12352
12353 case Builtin::BI__builtin_clz:
12354 case Builtin::BI__builtin_clzl:
12355 case Builtin::BI__builtin_clzll:
12356 case Builtin::BI__builtin_clzs:
12357 case Builtin::BI__builtin_clzg:
12358 case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes
12359 case Builtin::BI__lzcnt:
12360 case Builtin::BI__lzcnt64: {
12361 APSInt Val;
12362 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12363 return false;
12364
12365 std::optional<APSInt> Fallback;
12366 if (BuiltinOp == Builtin::BI__builtin_clzg && E->getNumArgs() > 1) {
12367 APSInt FallbackTemp;
12368 if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: FallbackTemp, Info))
12369 return false;
12370 Fallback = FallbackTemp;
12371 }
12372
12373 if (!Val) {
12374 if (Fallback)
12375 return Success(*Fallback, E);
12376
12377 // When the argument is 0, the result of GCC builtins is undefined,
12378 // whereas for Microsoft intrinsics, the result is the bit-width of the
12379 // argument.
12380 bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 &&
12381 BuiltinOp != Builtin::BI__lzcnt &&
12382 BuiltinOp != Builtin::BI__lzcnt64;
12383
12384 if (ZeroIsUndefined)
12385 return Error(E);
12386 }
12387
12388 return Success(Val.countl_zero(), E);
12389 }
12390
12391 case Builtin::BI__builtin_constant_p: {
12392 const Expr *Arg = E->getArg(Arg: 0);
12393 if (EvaluateBuiltinConstantP(Info, Arg))
12394 return Success(true, E);
12395 if (Info.InConstantContext || Arg->HasSideEffects(Ctx: Info.Ctx)) {
12396 // Outside a constant context, eagerly evaluate to false in the presence
12397 // of side-effects in order to avoid -Wunsequenced false-positives in
12398 // a branch on __builtin_constant_p(expr).
12399 return Success(false, E);
12400 }
12401 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12402 return false;
12403 }
12404
12405 case Builtin::BI__builtin_is_constant_evaluated: {
12406 const auto *Callee = Info.CurrentCall->getCallee();
12407 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
12408 (Info.CallStackDepth == 1 ||
12409 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
12410 Callee->getIdentifier() &&
12411 Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
12412 // FIXME: Find a better way to avoid duplicated diagnostics.
12413 if (Info.EvalStatus.Diag)
12414 Info.report((Info.CallStackDepth == 1)
12415 ? E->getExprLoc()
12416 : Info.CurrentCall->getCallRange().getBegin(),
12417 diag::warn_is_constant_evaluated_always_true_constexpr)
12418 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
12419 : "std::is_constant_evaluated");
12420 }
12421
12422 return Success(Info.InConstantContext, E);
12423 }
12424
12425 case Builtin::BI__builtin_ctz:
12426 case Builtin::BI__builtin_ctzl:
12427 case Builtin::BI__builtin_ctzll:
12428 case Builtin::BI__builtin_ctzs:
12429 case Builtin::BI__builtin_ctzg: {
12430 APSInt Val;
12431 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12432 return false;
12433
12434 std::optional<APSInt> Fallback;
12435 if (BuiltinOp == Builtin::BI__builtin_ctzg && E->getNumArgs() > 1) {
12436 APSInt FallbackTemp;
12437 if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: FallbackTemp, Info))
12438 return false;
12439 Fallback = FallbackTemp;
12440 }
12441
12442 if (!Val) {
12443 if (Fallback)
12444 return Success(*Fallback, E);
12445
12446 return Error(E);
12447 }
12448
12449 return Success(Val.countr_zero(), E);
12450 }
12451
12452 case Builtin::BI__builtin_eh_return_data_regno: {
12453 int Operand = E->getArg(Arg: 0)->EvaluateKnownConstInt(Ctx: Info.Ctx).getZExtValue();
12454 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(RegNo: Operand);
12455 return Success(Operand, E);
12456 }
12457
12458 case Builtin::BI__builtin_expect:
12459 case Builtin::BI__builtin_expect_with_probability:
12460 return Visit(E->getArg(Arg: 0));
12461
12462 case Builtin::BI__builtin_ffs:
12463 case Builtin::BI__builtin_ffsl:
12464 case Builtin::BI__builtin_ffsll: {
12465 APSInt Val;
12466 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12467 return false;
12468
12469 unsigned N = Val.countr_zero();
12470 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
12471 }
12472
12473 case Builtin::BI__builtin_fpclassify: {
12474 APFloat Val(0.0);
12475 if (!EvaluateFloat(E: E->getArg(Arg: 5), Result&: Val, Info))
12476 return false;
12477 unsigned Arg;
12478 switch (Val.getCategory()) {
12479 case APFloat::fcNaN: Arg = 0; break;
12480 case APFloat::fcInfinity: Arg = 1; break;
12481 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
12482 case APFloat::fcZero: Arg = 4; break;
12483 }
12484 return Visit(E->getArg(Arg));
12485 }
12486
12487 case Builtin::BI__builtin_isinf_sign: {
12488 APFloat Val(0.0);
12489 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12490 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
12491 }
12492
12493 case Builtin::BI__builtin_isinf: {
12494 APFloat Val(0.0);
12495 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12496 Success(Val.isInfinity() ? 1 : 0, E);
12497 }
12498
12499 case Builtin::BI__builtin_isfinite: {
12500 APFloat Val(0.0);
12501 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12502 Success(Val.isFinite() ? 1 : 0, E);
12503 }
12504
12505 case Builtin::BI__builtin_isnan: {
12506 APFloat Val(0.0);
12507 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12508 Success(Val.isNaN() ? 1 : 0, E);
12509 }
12510
12511 case Builtin::BI__builtin_isnormal: {
12512 APFloat Val(0.0);
12513 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12514 Success(Val.isNormal() ? 1 : 0, E);
12515 }
12516
12517 case Builtin::BI__builtin_issubnormal: {
12518 APFloat Val(0.0);
12519 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12520 Success(Val.isDenormal() ? 1 : 0, E);
12521 }
12522
12523 case Builtin::BI__builtin_iszero: {
12524 APFloat Val(0.0);
12525 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12526 Success(Val.isZero() ? 1 : 0, E);
12527 }
12528
12529 case Builtin::BI__builtin_issignaling: {
12530 APFloat Val(0.0);
12531 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12532 Success(Val.isSignaling() ? 1 : 0, E);
12533 }
12534
12535 case Builtin::BI__builtin_isfpclass: {
12536 APSInt MaskVal;
12537 if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: MaskVal, Info))
12538 return false;
12539 unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue());
12540 APFloat Val(0.0);
12541 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
12542 Success((Val.classify() & Test) ? 1 : 0, E);
12543 }
12544
12545 case Builtin::BI__builtin_parity:
12546 case Builtin::BI__builtin_parityl:
12547 case Builtin::BI__builtin_parityll: {
12548 APSInt Val;
12549 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12550 return false;
12551
12552 return Success(Val.popcount() % 2, E);
12553 }
12554
12555 case Builtin::BI__builtin_popcount:
12556 case Builtin::BI__builtin_popcountl:
12557 case Builtin::BI__builtin_popcountll:
12558 case Builtin::BI__builtin_popcountg:
12559 case Builtin::BI__popcnt16: // Microsoft variants of popcount
12560 case Builtin::BI__popcnt:
12561 case Builtin::BI__popcnt64: {
12562 APSInt Val;
12563 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
12564 return false;
12565
12566 return Success(Val.popcount(), E);
12567 }
12568
12569 case Builtin::BI__builtin_rotateleft8:
12570 case Builtin::BI__builtin_rotateleft16:
12571 case Builtin::BI__builtin_rotateleft32:
12572 case Builtin::BI__builtin_rotateleft64:
12573 case Builtin::BI_rotl8: // Microsoft variants of rotate right
12574 case Builtin::BI_rotl16:
12575 case Builtin::BI_rotl:
12576 case Builtin::BI_lrotl:
12577 case Builtin::BI_rotl64: {
12578 APSInt Val, Amt;
12579 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) ||
12580 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Amt, Info))
12581 return false;
12582
12583 return Success(Val.rotl(rotateAmt: Amt.urem(RHS: Val.getBitWidth())), E);
12584 }
12585
12586 case Builtin::BI__builtin_rotateright8:
12587 case Builtin::BI__builtin_rotateright16:
12588 case Builtin::BI__builtin_rotateright32:
12589 case Builtin::BI__builtin_rotateright64:
12590 case Builtin::BI_rotr8: // Microsoft variants of rotate right
12591 case Builtin::BI_rotr16:
12592 case Builtin::BI_rotr:
12593 case Builtin::BI_lrotr:
12594 case Builtin::BI_rotr64: {
12595 APSInt Val, Amt;
12596 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) ||
12597 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Amt, Info))
12598 return false;
12599
12600 return Success(Val.rotr(rotateAmt: Amt.urem(RHS: Val.getBitWidth())), E);
12601 }
12602
12603 case Builtin::BIstrlen:
12604 case Builtin::BIwcslen:
12605 // A call to strlen is not a constant expression.
12606 if (Info.getLangOpts().CPlusPlus11)
12607 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12608 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12609 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12610 else
12611 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12612 [[fallthrough]];
12613 case Builtin::BI__builtin_strlen:
12614 case Builtin::BI__builtin_wcslen: {
12615 // As an extension, we support __builtin_strlen() as a constant expression,
12616 // and support folding strlen() to a constant.
12617 uint64_t StrLen;
12618 if (EvaluateBuiltinStrLen(E: E->getArg(Arg: 0), Result&: StrLen, Info))
12619 return Success(StrLen, E);
12620 return false;
12621 }
12622
12623 case Builtin::BIstrcmp:
12624 case Builtin::BIwcscmp:
12625 case Builtin::BIstrncmp:
12626 case Builtin::BIwcsncmp:
12627 case Builtin::BImemcmp:
12628 case Builtin::BIbcmp:
12629 case Builtin::BIwmemcmp:
12630 // A call to strlen is not a constant expression.
12631 if (Info.getLangOpts().CPlusPlus11)
12632 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12633 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12634 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12635 else
12636 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12637 [[fallthrough]];
12638 case Builtin::BI__builtin_strcmp:
12639 case Builtin::BI__builtin_wcscmp:
12640 case Builtin::BI__builtin_strncmp:
12641 case Builtin::BI__builtin_wcsncmp:
12642 case Builtin::BI__builtin_memcmp:
12643 case Builtin::BI__builtin_bcmp:
12644 case Builtin::BI__builtin_wmemcmp: {
12645 LValue String1, String2;
12646 if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: String1, Info) ||
12647 !EvaluatePointer(E: E->getArg(Arg: 1), Result&: String2, Info))
12648 return false;
12649
12650 uint64_t MaxLength = uint64_t(-1);
12651 if (BuiltinOp != Builtin::BIstrcmp &&
12652 BuiltinOp != Builtin::BIwcscmp &&
12653 BuiltinOp != Builtin::BI__builtin_strcmp &&
12654 BuiltinOp != Builtin::BI__builtin_wcscmp) {
12655 APSInt N;
12656 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info))
12657 return false;
12658 MaxLength = N.getZExtValue();
12659 }
12660
12661 // Empty substrings compare equal by definition.
12662 if (MaxLength == 0u)
12663 return Success(0, E);
12664
12665 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12666 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12667 String1.Designator.Invalid || String2.Designator.Invalid)
12668 return false;
12669
12670 QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12671 QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12672
12673 bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12674 BuiltinOp == Builtin::BIbcmp ||
12675 BuiltinOp == Builtin::BI__builtin_memcmp ||
12676 BuiltinOp == Builtin::BI__builtin_bcmp;
12677
12678 assert(IsRawByte ||
12679 (Info.Ctx.hasSameUnqualifiedType(
12680 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12681 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12682
12683 // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12684 // 'char8_t', but no other types.
12685 if (IsRawByte &&
12686 !(isOneByteCharacterType(T: CharTy1) && isOneByteCharacterType(T: CharTy2))) {
12687 // FIXME: Consider using our bit_cast implementation to support this.
12688 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12689 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
12690 << CharTy1 << CharTy2;
12691 return false;
12692 }
12693
12694 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12695 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12696 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12697 Char1.isInt() && Char2.isInt();
12698 };
12699 const auto &AdvanceElems = [&] {
12700 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12701 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12702 };
12703
12704 bool StopAtNull =
12705 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12706 BuiltinOp != Builtin::BIwmemcmp &&
12707 BuiltinOp != Builtin::BI__builtin_memcmp &&
12708 BuiltinOp != Builtin::BI__builtin_bcmp &&
12709 BuiltinOp != Builtin::BI__builtin_wmemcmp);
12710 bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12711 BuiltinOp == Builtin::BIwcsncmp ||
12712 BuiltinOp == Builtin::BIwmemcmp ||
12713 BuiltinOp == Builtin::BI__builtin_wcscmp ||
12714 BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12715 BuiltinOp == Builtin::BI__builtin_wmemcmp;
12716
12717 for (; MaxLength; --MaxLength) {
12718 APValue Char1, Char2;
12719 if (!ReadCurElems(Char1, Char2))
12720 return false;
12721 if (Char1.getInt().ne(RHS: Char2.getInt())) {
12722 if (IsWide) // wmemcmp compares with wchar_t signedness.
12723 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12724 // memcmp always compares unsigned chars.
12725 return Success(Char1.getInt().ult(RHS: Char2.getInt()) ? -1 : 1, E);
12726 }
12727 if (StopAtNull && !Char1.getInt())
12728 return Success(0, E);
12729 assert(!(StopAtNull && !Char2.getInt()));
12730 if (!AdvanceElems())
12731 return false;
12732 }
12733 // We hit the strncmp / memcmp limit.
12734 return Success(0, E);
12735 }
12736
12737 case Builtin::BI__atomic_always_lock_free:
12738 case Builtin::BI__atomic_is_lock_free:
12739 case Builtin::BI__c11_atomic_is_lock_free: {
12740 APSInt SizeVal;
12741 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: SizeVal, Info))
12742 return false;
12743
12744 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12745 // of two less than or equal to the maximum inline atomic width, we know it
12746 // is lock-free. If the size isn't a power of two, or greater than the
12747 // maximum alignment where we promote atomics, we know it is not lock-free
12748 // (at least not in the sense of atomic_is_lock_free). Otherwise,
12749 // the answer can only be determined at runtime; for example, 16-byte
12750 // atomics have lock-free implementations on some, but not all,
12751 // x86-64 processors.
12752
12753 // Check power-of-two.
12754 CharUnits Size = CharUnits::fromQuantity(Quantity: SizeVal.getZExtValue());
12755 if (Size.isPowerOfTwo()) {
12756 // Check against inlining width.
12757 unsigned InlineWidthBits =
12758 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12759 if (Size <= Info.Ctx.toCharUnitsFromBits(BitSize: InlineWidthBits)) {
12760 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12761 Size == CharUnits::One() ||
12762 E->getArg(1)->isNullPointerConstant(Info.Ctx,
12763 Expr::NPC_NeverValueDependent))
12764 // OK, we will inline appropriately-aligned operations of this size,
12765 // and _Atomic(T) is appropriately-aligned.
12766 return Success(1, E);
12767
12768 QualType PointeeType = E->getArg(Arg: 1)->IgnoreImpCasts()->getType()->
12769 castAs<PointerType>()->getPointeeType();
12770 if (!PointeeType->isIncompleteType() &&
12771 Info.Ctx.getTypeAlignInChars(T: PointeeType) >= Size) {
12772 // OK, we will inline operations on this object.
12773 return Success(1, E);
12774 }
12775 }
12776 }
12777
12778 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12779 Success(0, E) : Error(E);
12780 }
12781 case Builtin::BI__builtin_addcb:
12782 case Builtin::BI__builtin_addcs:
12783 case Builtin::BI__builtin_addc:
12784 case Builtin::BI__builtin_addcl:
12785 case Builtin::BI__builtin_addcll:
12786 case Builtin::BI__builtin_subcb:
12787 case Builtin::BI__builtin_subcs:
12788 case Builtin::BI__builtin_subc:
12789 case Builtin::BI__builtin_subcl:
12790 case Builtin::BI__builtin_subcll: {
12791 LValue CarryOutLValue;
12792 APSInt LHS, RHS, CarryIn, CarryOut, Result;
12793 QualType ResultType = E->getArg(Arg: 0)->getType();
12794 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: LHS, Info) ||
12795 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: RHS, Info) ||
12796 !EvaluateInteger(E: E->getArg(Arg: 2), Result&: CarryIn, Info) ||
12797 !EvaluatePointer(E: E->getArg(Arg: 3), Result&: CarryOutLValue, Info))
12798 return false;
12799 // Copy the number of bits and sign.
12800 Result = LHS;
12801 CarryOut = LHS;
12802
12803 bool FirstOverflowed = false;
12804 bool SecondOverflowed = false;
12805 switch (BuiltinOp) {
12806 default:
12807 llvm_unreachable("Invalid value for BuiltinOp");
12808 case Builtin::BI__builtin_addcb:
12809 case Builtin::BI__builtin_addcs:
12810 case Builtin::BI__builtin_addc:
12811 case Builtin::BI__builtin_addcl:
12812 case Builtin::BI__builtin_addcll:
12813 Result =
12814 LHS.uadd_ov(RHS, Overflow&: FirstOverflowed).uadd_ov(RHS: CarryIn, Overflow&: SecondOverflowed);
12815 break;
12816 case Builtin::BI__builtin_subcb:
12817 case Builtin::BI__builtin_subcs:
12818 case Builtin::BI__builtin_subc:
12819 case Builtin::BI__builtin_subcl:
12820 case Builtin::BI__builtin_subcll:
12821 Result =
12822 LHS.usub_ov(RHS, Overflow&: FirstOverflowed).usub_ov(RHS: CarryIn, Overflow&: SecondOverflowed);
12823 break;
12824 }
12825
12826 // It is possible for both overflows to happen but CGBuiltin uses an OR so
12827 // this is consistent.
12828 CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed);
12829 APValue APV{CarryOut};
12830 if (!handleAssignment(Info, E, CarryOutLValue, ResultType, APV))
12831 return false;
12832 return Success(Result, E);
12833 }
12834 case Builtin::BI__builtin_add_overflow:
12835 case Builtin::BI__builtin_sub_overflow:
12836 case Builtin::BI__builtin_mul_overflow:
12837 case Builtin::BI__builtin_sadd_overflow:
12838 case Builtin::BI__builtin_uadd_overflow:
12839 case Builtin::BI__builtin_uaddl_overflow:
12840 case Builtin::BI__builtin_uaddll_overflow:
12841 case Builtin::BI__builtin_usub_overflow:
12842 case Builtin::BI__builtin_usubl_overflow:
12843 case Builtin::BI__builtin_usubll_overflow:
12844 case Builtin::BI__builtin_umul_overflow:
12845 case Builtin::BI__builtin_umull_overflow:
12846 case Builtin::BI__builtin_umulll_overflow:
12847 case Builtin::BI__builtin_saddl_overflow:
12848 case Builtin::BI__builtin_saddll_overflow:
12849 case Builtin::BI__builtin_ssub_overflow:
12850 case Builtin::BI__builtin_ssubl_overflow:
12851 case Builtin::BI__builtin_ssubll_overflow:
12852 case Builtin::BI__builtin_smul_overflow:
12853 case Builtin::BI__builtin_smull_overflow:
12854 case Builtin::BI__builtin_smulll_overflow: {
12855 LValue ResultLValue;
12856 APSInt LHS, RHS;
12857
12858 QualType ResultType = E->getArg(Arg: 2)->getType()->getPointeeType();
12859 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: LHS, Info) ||
12860 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: RHS, Info) ||
12861 !EvaluatePointer(E: E->getArg(Arg: 2), Result&: ResultLValue, Info))
12862 return false;
12863
12864 APSInt Result;
12865 bool DidOverflow = false;
12866
12867 // If the types don't have to match, enlarge all 3 to the largest of them.
12868 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12869 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12870 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12871 bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12872 ResultType->isSignedIntegerOrEnumerationType();
12873 bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12874 ResultType->isSignedIntegerOrEnumerationType();
12875 uint64_t LHSSize = LHS.getBitWidth();
12876 uint64_t RHSSize = RHS.getBitWidth();
12877 uint64_t ResultSize = Info.Ctx.getTypeSize(T: ResultType);
12878 uint64_t MaxBits = std::max(a: std::max(a: LHSSize, b: RHSSize), b: ResultSize);
12879
12880 // Add an additional bit if the signedness isn't uniformly agreed to. We
12881 // could do this ONLY if there is a signed and an unsigned that both have
12882 // MaxBits, but the code to check that is pretty nasty. The issue will be
12883 // caught in the shrink-to-result later anyway.
12884 if (IsSigned && !AllSigned)
12885 ++MaxBits;
12886
12887 LHS = APSInt(LHS.extOrTrunc(width: MaxBits), !IsSigned);
12888 RHS = APSInt(RHS.extOrTrunc(width: MaxBits), !IsSigned);
12889 Result = APSInt(MaxBits, !IsSigned);
12890 }
12891
12892 // Find largest int.
12893 switch (BuiltinOp) {
12894 default:
12895 llvm_unreachable("Invalid value for BuiltinOp");
12896 case Builtin::BI__builtin_add_overflow:
12897 case Builtin::BI__builtin_sadd_overflow:
12898 case Builtin::BI__builtin_saddl_overflow:
12899 case Builtin::BI__builtin_saddll_overflow:
12900 case Builtin::BI__builtin_uadd_overflow:
12901 case Builtin::BI__builtin_uaddl_overflow:
12902 case Builtin::BI__builtin_uaddll_overflow:
12903 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, Overflow&: DidOverflow)
12904 : LHS.uadd_ov(RHS, Overflow&: DidOverflow);
12905 break;
12906 case Builtin::BI__builtin_sub_overflow:
12907 case Builtin::BI__builtin_ssub_overflow:
12908 case Builtin::BI__builtin_ssubl_overflow:
12909 case Builtin::BI__builtin_ssubll_overflow:
12910 case Builtin::BI__builtin_usub_overflow:
12911 case Builtin::BI__builtin_usubl_overflow:
12912 case Builtin::BI__builtin_usubll_overflow:
12913 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, Overflow&: DidOverflow)
12914 : LHS.usub_ov(RHS, Overflow&: DidOverflow);
12915 break;
12916 case Builtin::BI__builtin_mul_overflow:
12917 case Builtin::BI__builtin_smul_overflow:
12918 case Builtin::BI__builtin_smull_overflow:
12919 case Builtin::BI__builtin_smulll_overflow:
12920 case Builtin::BI__builtin_umul_overflow:
12921 case Builtin::BI__builtin_umull_overflow:
12922 case Builtin::BI__builtin_umulll_overflow:
12923 Result = LHS.isSigned() ? LHS.smul_ov(RHS, Overflow&: DidOverflow)
12924 : LHS.umul_ov(RHS, Overflow&: DidOverflow);
12925 break;
12926 }
12927
12928 // In the case where multiple sizes are allowed, truncate and see if
12929 // the values are the same.
12930 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12931 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12932 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12933 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12934 // since it will give us the behavior of a TruncOrSelf in the case where
12935 // its parameter <= its size. We previously set Result to be at least the
12936 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12937 // will work exactly like TruncOrSelf.
12938 APSInt Temp = Result.extOrTrunc(width: Info.Ctx.getTypeSize(T: ResultType));
12939 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12940
12941 if (!APSInt::isSameValue(I1: Temp, I2: Result))
12942 DidOverflow = true;
12943 Result = Temp;
12944 }
12945
12946 APValue APV{Result};
12947 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12948 return false;
12949 return Success(DidOverflow, E);
12950 }
12951 }
12952}
12953
12954/// Determine whether this is a pointer past the end of the complete
12955/// object referred to by the lvalue.
12956static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12957 const LValue &LV) {
12958 // A null pointer can be viewed as being "past the end" but we don't
12959 // choose to look at it that way here.
12960 if (!LV.getLValueBase())
12961 return false;
12962
12963 // If the designator is valid and refers to a subobject, we're not pointing
12964 // past the end.
12965 if (!LV.getLValueDesignator().Invalid &&
12966 !LV.getLValueDesignator().isOnePastTheEnd())
12967 return false;
12968
12969 // A pointer to an incomplete type might be past-the-end if the type's size is
12970 // zero. We cannot tell because the type is incomplete.
12971 QualType Ty = getType(B: LV.getLValueBase());
12972 if (Ty->isIncompleteType())
12973 return true;
12974
12975 // Can't be past the end of an invalid object.
12976 if (LV.getLValueDesignator().Invalid)
12977 return false;
12978
12979 // We're a past-the-end pointer if we point to the byte after the object,
12980 // no matter what our type or path is.
12981 auto Size = Ctx.getTypeSizeInChars(T: Ty);
12982 return LV.getLValueOffset() == Size;
12983}
12984
12985namespace {
12986
12987/// Data recursive integer evaluator of certain binary operators.
12988///
12989/// We use a data recursive algorithm for binary operators so that we are able
12990/// to handle extreme cases of chained binary operators without causing stack
12991/// overflow.
12992class DataRecursiveIntBinOpEvaluator {
12993 struct EvalResult {
12994 APValue Val;
12995 bool Failed = false;
12996
12997 EvalResult() = default;
12998
12999 void swap(EvalResult &RHS) {
13000 Val.swap(RHS&: RHS.Val);
13001 Failed = RHS.Failed;
13002 RHS.Failed = false;
13003 }
13004 };
13005
13006 struct Job {
13007 const Expr *E;
13008 EvalResult LHSResult; // meaningful only for binary operator expression.
13009 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
13010
13011 Job() = default;
13012 Job(Job &&) = default;
13013
13014 void startSpeculativeEval(EvalInfo &Info) {
13015 SpecEvalRAII = SpeculativeEvaluationRAII(Info);
13016 }
13017
13018 private:
13019 SpeculativeEvaluationRAII SpecEvalRAII;
13020 };
13021
13022 SmallVector<Job, 16> Queue;
13023
13024 IntExprEvaluator &IntEval;
13025 EvalInfo &Info;
13026 APValue &FinalResult;
13027
13028public:
13029 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
13030 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
13031
13032 /// True if \param E is a binary operator that we are going to handle
13033 /// data recursively.
13034 /// We handle binary operators that are comma, logical, or that have operands
13035 /// with integral or enumeration type.
13036 static bool shouldEnqueue(const BinaryOperator *E) {
13037 return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
13038 (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
13039 E->getLHS()->getType()->isIntegralOrEnumerationType() &&
13040 E->getRHS()->getType()->isIntegralOrEnumerationType());
13041 }
13042
13043 bool Traverse(const BinaryOperator *E) {
13044 enqueue(E);
13045 EvalResult PrevResult;
13046 while (!Queue.empty())
13047 process(Result&: PrevResult);
13048
13049 if (PrevResult.Failed) return false;
13050
13051 FinalResult.swap(RHS&: PrevResult.Val);
13052 return true;
13053 }
13054
13055private:
13056 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
13057 return IntEval.Success(Value, E, Result);
13058 }
13059 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
13060 return IntEval.Success(SI: Value, E, Result);
13061 }
13062 bool Error(const Expr *E) {
13063 return IntEval.Error(E);
13064 }
13065 bool Error(const Expr *E, diag::kind D) {
13066 return IntEval.Error(E, D);
13067 }
13068
13069 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
13070 return Info.CCEDiag(E, DiagId: D);
13071 }
13072
13073 // Returns true if visiting the RHS is necessary, false otherwise.
13074 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
13075 bool &SuppressRHSDiags);
13076
13077 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
13078 const BinaryOperator *E, APValue &Result);
13079
13080 void EvaluateExpr(const Expr *E, EvalResult &Result) {
13081 Result.Failed = !Evaluate(Result&: Result.Val, Info, E);
13082 if (Result.Failed)
13083 Result.Val = APValue();
13084 }
13085
13086 void process(EvalResult &Result);
13087
13088 void enqueue(const Expr *E) {
13089 E = E->IgnoreParens();
13090 Queue.resize(N: Queue.size()+1);
13091 Queue.back().E = E;
13092 Queue.back().Kind = Job::AnyExprKind;
13093 }
13094};
13095
13096}
13097
13098bool DataRecursiveIntBinOpEvaluator::
13099 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
13100 bool &SuppressRHSDiags) {
13101 if (E->getOpcode() == BO_Comma) {
13102 // Ignore LHS but note if we could not evaluate it.
13103 if (LHSResult.Failed)
13104 return Info.noteSideEffect();
13105 return true;
13106 }
13107
13108 if (E->isLogicalOp()) {
13109 bool LHSAsBool;
13110 if (!LHSResult.Failed && HandleConversionToBool(Val: LHSResult.Val, Result&: LHSAsBool)) {
13111 // We were able to evaluate the LHS, see if we can get away with not
13112 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
13113 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
13114 Success(LHSAsBool, E, LHSResult.Val);
13115 return false; // Ignore RHS
13116 }
13117 } else {
13118 LHSResult.Failed = true;
13119
13120 // Since we weren't able to evaluate the left hand side, it
13121 // might have had side effects.
13122 if (!Info.noteSideEffect())
13123 return false;
13124
13125 // We can't evaluate the LHS; however, sometimes the result
13126 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
13127 // Don't ignore RHS and suppress diagnostics from this arm.
13128 SuppressRHSDiags = true;
13129 }
13130
13131 return true;
13132 }
13133
13134 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
13135 E->getRHS()->getType()->isIntegralOrEnumerationType());
13136
13137 if (LHSResult.Failed && !Info.noteFailure())
13138 return false; // Ignore RHS;
13139
13140 return true;
13141}
13142
13143static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
13144 bool IsSub) {
13145 // Compute the new offset in the appropriate width, wrapping at 64 bits.
13146 // FIXME: When compiling for a 32-bit target, we should use 32-bit
13147 // offsets.
13148 assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
13149 CharUnits &Offset = LVal.getLValueOffset();
13150 uint64_t Offset64 = Offset.getQuantity();
13151 uint64_t Index64 = Index.extOrTrunc(width: 64).getZExtValue();
13152 Offset = CharUnits::fromQuantity(Quantity: IsSub ? Offset64 - Index64
13153 : Offset64 + Index64);
13154}
13155
13156bool DataRecursiveIntBinOpEvaluator::
13157 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
13158 const BinaryOperator *E, APValue &Result) {
13159 if (E->getOpcode() == BO_Comma) {
13160 if (RHSResult.Failed)
13161 return false;
13162 Result = RHSResult.Val;
13163 return true;
13164 }
13165
13166 if (E->isLogicalOp()) {
13167 bool lhsResult, rhsResult;
13168 bool LHSIsOK = HandleConversionToBool(Val: LHSResult.Val, Result&: lhsResult);
13169 bool RHSIsOK = HandleConversionToBool(Val: RHSResult.Val, Result&: rhsResult);
13170
13171 if (LHSIsOK) {
13172 if (RHSIsOK) {
13173 if (E->getOpcode() == BO_LOr)
13174 return Success(lhsResult || rhsResult, E, Result);
13175 else
13176 return Success(lhsResult && rhsResult, E, Result);
13177 }
13178 } else {
13179 if (RHSIsOK) {
13180 // We can't evaluate the LHS; however, sometimes the result
13181 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
13182 if (rhsResult == (E->getOpcode() == BO_LOr))
13183 return Success(rhsResult, E, Result);
13184 }
13185 }
13186
13187 return false;
13188 }
13189
13190 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
13191 E->getRHS()->getType()->isIntegralOrEnumerationType());
13192
13193 if (LHSResult.Failed || RHSResult.Failed)
13194 return false;
13195
13196 const APValue &LHSVal = LHSResult.Val;
13197 const APValue &RHSVal = RHSResult.Val;
13198
13199 // Handle cases like (unsigned long)&a + 4.
13200 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
13201 Result = LHSVal;
13202 addOrSubLValueAsInteger(LVal&: Result, Index: RHSVal.getInt(), IsSub: E->getOpcode() == BO_Sub);
13203 return true;
13204 }
13205
13206 // Handle cases like 4 + (unsigned long)&a
13207 if (E->getOpcode() == BO_Add &&
13208 RHSVal.isLValue() && LHSVal.isInt()) {
13209 Result = RHSVal;
13210 addOrSubLValueAsInteger(LVal&: Result, Index: LHSVal.getInt(), /*IsSub*/false);
13211 return true;
13212 }
13213
13214 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
13215 // Handle (intptr_t)&&A - (intptr_t)&&B.
13216 if (!LHSVal.getLValueOffset().isZero() ||
13217 !RHSVal.getLValueOffset().isZero())
13218 return false;
13219 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
13220 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
13221 if (!LHSExpr || !RHSExpr)
13222 return false;
13223 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: LHSExpr);
13224 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: RHSExpr);
13225 if (!LHSAddrExpr || !RHSAddrExpr)
13226 return false;
13227 // Make sure both labels come from the same function.
13228 if (LHSAddrExpr->getLabel()->getDeclContext() !=
13229 RHSAddrExpr->getLabel()->getDeclContext())
13230 return false;
13231 Result = APValue(LHSAddrExpr, RHSAddrExpr);
13232 return true;
13233 }
13234
13235 // All the remaining cases expect both operands to be an integer
13236 if (!LHSVal.isInt() || !RHSVal.isInt())
13237 return Error(E);
13238
13239 // Set up the width and signedness manually, in case it can't be deduced
13240 // from the operation we're performing.
13241 // FIXME: Don't do this in the cases where we can deduce it.
13242 APSInt Value(Info.Ctx.getIntWidth(T: E->getType()),
13243 E->getType()->isUnsignedIntegerOrEnumerationType());
13244 if (!handleIntIntBinOp(Info, E, LHS: LHSVal.getInt(), Opcode: E->getOpcode(),
13245 RHS: RHSVal.getInt(), Result&: Value))
13246 return false;
13247 return Success(Value, E, Result);
13248}
13249
13250void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
13251 Job &job = Queue.back();
13252
13253 switch (job.Kind) {
13254 case Job::AnyExprKind: {
13255 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: job.E)) {
13256 if (shouldEnqueue(E: Bop)) {
13257 job.Kind = Job::BinOpKind;
13258 enqueue(E: Bop->getLHS());
13259 return;
13260 }
13261 }
13262
13263 EvaluateExpr(E: job.E, Result);
13264 Queue.pop_back();
13265 return;
13266 }
13267
13268 case Job::BinOpKind: {
13269 const BinaryOperator *Bop = cast<BinaryOperator>(Val: job.E);
13270 bool SuppressRHSDiags = false;
13271 if (!VisitBinOpLHSOnly(LHSResult&: Result, E: Bop, SuppressRHSDiags)) {
13272 Queue.pop_back();
13273 return;
13274 }
13275 if (SuppressRHSDiags)
13276 job.startSpeculativeEval(Info);
13277 job.LHSResult.swap(RHS&: Result);
13278 job.Kind = Job::BinOpVisitedLHSKind;
13279 enqueue(E: Bop->getRHS());
13280 return;
13281 }
13282
13283 case Job::BinOpVisitedLHSKind: {
13284 const BinaryOperator *Bop = cast<BinaryOperator>(Val: job.E);
13285 EvalResult RHS;
13286 RHS.swap(RHS&: Result);
13287 Result.Failed = !VisitBinOp(LHSResult: job.LHSResult, RHSResult: RHS, E: Bop, Result&: Result.Val);
13288 Queue.pop_back();
13289 return;
13290 }
13291 }
13292
13293 llvm_unreachable("Invalid Job::Kind!");
13294}
13295
13296namespace {
13297enum class CmpResult {
13298 Unequal,
13299 Less,
13300 Equal,
13301 Greater,
13302 Unordered,
13303};
13304}
13305
13306template <class SuccessCB, class AfterCB>
13307static bool
13308EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
13309 SuccessCB &&Success, AfterCB &&DoAfter) {
13310 assert(!E->isValueDependent());
13311 assert(E->isComparisonOp() && "expected comparison operator");
13312 assert((E->getOpcode() == BO_Cmp ||
13313 E->getType()->isIntegralOrEnumerationType()) &&
13314 "unsupported binary expression evaluation");
13315 auto Error = [&](const Expr *E) {
13316 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
13317 return false;
13318 };
13319
13320 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
13321 bool IsEquality = E->isEqualityOp();
13322
13323 QualType LHSTy = E->getLHS()->getType();
13324 QualType RHSTy = E->getRHS()->getType();
13325
13326 if (LHSTy->isIntegralOrEnumerationType() &&
13327 RHSTy->isIntegralOrEnumerationType()) {
13328 APSInt LHS, RHS;
13329 bool LHSOK = EvaluateInteger(E: E->getLHS(), Result&: LHS, Info);
13330 if (!LHSOK && !Info.noteFailure())
13331 return false;
13332 if (!EvaluateInteger(E: E->getRHS(), Result&: RHS, Info) || !LHSOK)
13333 return false;
13334 if (LHS < RHS)
13335 return Success(CmpResult::Less, E);
13336 if (LHS > RHS)
13337 return Success(CmpResult::Greater, E);
13338 return Success(CmpResult::Equal, E);
13339 }
13340
13341 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
13342 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(Ty: LHSTy));
13343 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(Ty: RHSTy));
13344
13345 bool LHSOK = EvaluateFixedPointOrInteger(E: E->getLHS(), Result&: LHSFX, Info);
13346 if (!LHSOK && !Info.noteFailure())
13347 return false;
13348 if (!EvaluateFixedPointOrInteger(E: E->getRHS(), Result&: RHSFX, Info) || !LHSOK)
13349 return false;
13350 if (LHSFX < RHSFX)
13351 return Success(CmpResult::Less, E);
13352 if (LHSFX > RHSFX)
13353 return Success(CmpResult::Greater, E);
13354 return Success(CmpResult::Equal, E);
13355 }
13356
13357 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
13358 ComplexValue LHS, RHS;
13359 bool LHSOK;
13360 if (E->isAssignmentOp()) {
13361 LValue LV;
13362 EvaluateLValue(E: E->getLHS(), Result&: LV, Info);
13363 LHSOK = false;
13364 } else if (LHSTy->isRealFloatingType()) {
13365 LHSOK = EvaluateFloat(E: E->getLHS(), Result&: LHS.FloatReal, Info);
13366 if (LHSOK) {
13367 LHS.makeComplexFloat();
13368 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
13369 }
13370 } else {
13371 LHSOK = EvaluateComplex(E: E->getLHS(), Res&: LHS, Info);
13372 }
13373 if (!LHSOK && !Info.noteFailure())
13374 return false;
13375
13376 if (E->getRHS()->getType()->isRealFloatingType()) {
13377 if (!EvaluateFloat(E: E->getRHS(), Result&: RHS.FloatReal, Info) || !LHSOK)
13378 return false;
13379 RHS.makeComplexFloat();
13380 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
13381 } else if (!EvaluateComplex(E: E->getRHS(), Res&: RHS, Info) || !LHSOK)
13382 return false;
13383
13384 if (LHS.isComplexFloat()) {
13385 APFloat::cmpResult CR_r =
13386 LHS.getComplexFloatReal().compare(RHS: RHS.getComplexFloatReal());
13387 APFloat::cmpResult CR_i =
13388 LHS.getComplexFloatImag().compare(RHS: RHS.getComplexFloatImag());
13389 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
13390 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13391 } else {
13392 assert(IsEquality && "invalid complex comparison");
13393 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
13394 LHS.getComplexIntImag() == RHS.getComplexIntImag();
13395 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13396 }
13397 }
13398
13399 if (LHSTy->isRealFloatingType() &&
13400 RHSTy->isRealFloatingType()) {
13401 APFloat RHS(0.0), LHS(0.0);
13402
13403 bool LHSOK = EvaluateFloat(E: E->getRHS(), Result&: RHS, Info);
13404 if (!LHSOK && !Info.noteFailure())
13405 return false;
13406
13407 if (!EvaluateFloat(E: E->getLHS(), Result&: LHS, Info) || !LHSOK)
13408 return false;
13409
13410 assert(E->isComparisonOp() && "Invalid binary operator!");
13411 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
13412 if (!Info.InConstantContext &&
13413 APFloatCmpResult == APFloat::cmpUnordered &&
13414 E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts()).isFPConstrained()) {
13415 // Note: Compares may raise invalid in some cases involving NaN or sNaN.
13416 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
13417 return false;
13418 }
13419 auto GetCmpRes = [&]() {
13420 switch (APFloatCmpResult) {
13421 case APFloat::cmpEqual:
13422 return CmpResult::Equal;
13423 case APFloat::cmpLessThan:
13424 return CmpResult::Less;
13425 case APFloat::cmpGreaterThan:
13426 return CmpResult::Greater;
13427 case APFloat::cmpUnordered:
13428 return CmpResult::Unordered;
13429 }
13430 llvm_unreachable("Unrecognised APFloat::cmpResult enum");
13431 };
13432 return Success(GetCmpRes(), E);
13433 }
13434
13435 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
13436 LValue LHSValue, RHSValue;
13437
13438 bool LHSOK = EvaluatePointer(E: E->getLHS(), Result&: LHSValue, Info);
13439 if (!LHSOK && !Info.noteFailure())
13440 return false;
13441
13442 if (!EvaluatePointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK)
13443 return false;
13444
13445 // Reject differing bases from the normal codepath; we special-case
13446 // comparisons to null.
13447 if (!HasSameBase(A: LHSValue, B: RHSValue)) {
13448 auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) {
13449 std::string LHS = LHSValue.toString(Ctx&: Info.Ctx, T: E->getLHS()->getType());
13450 std::string RHS = RHSValue.toString(Ctx&: Info.Ctx, T: E->getRHS()->getType());
13451 Info.FFDiag(E, DiagID)
13452 << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS);
13453 return false;
13454 };
13455 // Inequalities and subtractions between unrelated pointers have
13456 // unspecified or undefined behavior.
13457 if (!IsEquality)
13458 return DiagComparison(
13459 diag::note_constexpr_pointer_comparison_unspecified);
13460 // A constant address may compare equal to the address of a symbol.
13461 // The one exception is that address of an object cannot compare equal
13462 // to a null pointer constant.
13463 // TODO: Should we restrict this to actual null pointers, and exclude the
13464 // case of zero cast to pointer type?
13465 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
13466 (!RHSValue.Base && !RHSValue.Offset.isZero()))
13467 return DiagComparison(diag::note_constexpr_pointer_constant_comparison,
13468 !RHSValue.Base);
13469 // It's implementation-defined whether distinct literals will have
13470 // distinct addresses. In clang, the result of such a comparison is
13471 // unspecified, so it is not a constant expression. However, we do know
13472 // that the address of a literal will be non-null.
13473 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
13474 LHSValue.Base && RHSValue.Base)
13475 return DiagComparison(diag::note_constexpr_literal_comparison);
13476 // We can't tell whether weak symbols will end up pointing to the same
13477 // object.
13478 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
13479 return DiagComparison(diag::note_constexpr_pointer_weak_comparison,
13480 !IsWeakLValue(LHSValue));
13481 // We can't compare the address of the start of one object with the
13482 // past-the-end address of another object, per C++ DR1652.
13483 if (LHSValue.Base && LHSValue.Offset.isZero() &&
13484 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue))
13485 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13486 true);
13487 if (RHSValue.Base && RHSValue.Offset.isZero() &&
13488 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))
13489 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13490 false);
13491 // We can't tell whether an object is at the same address as another
13492 // zero sized object.
13493 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
13494 (LHSValue.Base && isZeroSized(RHSValue)))
13495 return DiagComparison(
13496 diag::note_constexpr_pointer_comparison_zero_sized);
13497 return Success(CmpResult::Unequal, E);
13498 }
13499
13500 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13501 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13502
13503 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13504 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13505
13506 // C++11 [expr.rel]p3:
13507 // Pointers to void (after pointer conversions) can be compared, with a
13508 // result defined as follows: If both pointers represent the same
13509 // address or are both the null pointer value, the result is true if the
13510 // operator is <= or >= and false otherwise; otherwise the result is
13511 // unspecified.
13512 // We interpret this as applying to pointers to *cv* void.
13513 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
13514 Info.CCEDiag(E, diag::note_constexpr_void_comparison);
13515
13516 // C++11 [expr.rel]p2:
13517 // - If two pointers point to non-static data members of the same object,
13518 // or to subobjects or array elements fo such members, recursively, the
13519 // pointer to the later declared member compares greater provided the
13520 // two members have the same access control and provided their class is
13521 // not a union.
13522 // [...]
13523 // - Otherwise pointer comparisons are unspecified.
13524 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
13525 bool WasArrayIndex;
13526 unsigned Mismatch = FindDesignatorMismatch(
13527 ObjType: getType(B: LHSValue.Base), A: LHSDesignator, B: RHSDesignator, WasArrayIndex);
13528 // At the point where the designators diverge, the comparison has a
13529 // specified value if:
13530 // - we are comparing array indices
13531 // - we are comparing fields of a union, or fields with the same access
13532 // Otherwise, the result is unspecified and thus the comparison is not a
13533 // constant expression.
13534 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
13535 Mismatch < RHSDesignator.Entries.size()) {
13536 const FieldDecl *LF = getAsField(E: LHSDesignator.Entries[Mismatch]);
13537 const FieldDecl *RF = getAsField(E: RHSDesignator.Entries[Mismatch]);
13538 if (!LF && !RF)
13539 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
13540 else if (!LF)
13541 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13542 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
13543 << RF->getParent() << RF;
13544 else if (!RF)
13545 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13546 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
13547 << LF->getParent() << LF;
13548 else if (!LF->getParent()->isUnion() &&
13549 LF->getAccess() != RF->getAccess())
13550 Info.CCEDiag(E,
13551 diag::note_constexpr_pointer_comparison_differing_access)
13552 << LF << LF->getAccess() << RF << RF->getAccess()
13553 << LF->getParent();
13554 }
13555 }
13556
13557 // The comparison here must be unsigned, and performed with the same
13558 // width as the pointer.
13559 unsigned PtrSize = Info.Ctx.getTypeSize(T: LHSTy);
13560 uint64_t CompareLHS = LHSOffset.getQuantity();
13561 uint64_t CompareRHS = RHSOffset.getQuantity();
13562 assert(PtrSize <= 64 && "Unexpected pointer width");
13563 uint64_t Mask = ~0ULL >> (64 - PtrSize);
13564 CompareLHS &= Mask;
13565 CompareRHS &= Mask;
13566
13567 // If there is a base and this is a relational operator, we can only
13568 // compare pointers within the object in question; otherwise, the result
13569 // depends on where the object is located in memory.
13570 if (!LHSValue.Base.isNull() && IsRelational) {
13571 QualType BaseTy = getType(B: LHSValue.Base);
13572 if (BaseTy->isIncompleteType())
13573 return Error(E);
13574 CharUnits Size = Info.Ctx.getTypeSizeInChars(T: BaseTy);
13575 uint64_t OffsetLimit = Size.getQuantity();
13576 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
13577 return Error(E);
13578 }
13579
13580 if (CompareLHS < CompareRHS)
13581 return Success(CmpResult::Less, E);
13582 if (CompareLHS > CompareRHS)
13583 return Success(CmpResult::Greater, E);
13584 return Success(CmpResult::Equal, E);
13585 }
13586
13587 if (LHSTy->isMemberPointerType()) {
13588 assert(IsEquality && "unexpected member pointer operation");
13589 assert(RHSTy->isMemberPointerType() && "invalid comparison");
13590
13591 MemberPtr LHSValue, RHSValue;
13592
13593 bool LHSOK = EvaluateMemberPointer(E: E->getLHS(), Result&: LHSValue, Info);
13594 if (!LHSOK && !Info.noteFailure())
13595 return false;
13596
13597 if (!EvaluateMemberPointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK)
13598 return false;
13599
13600 // If either operand is a pointer to a weak function, the comparison is not
13601 // constant.
13602 if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) {
13603 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13604 << LHSValue.getDecl();
13605 return false;
13606 }
13607 if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) {
13608 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13609 << RHSValue.getDecl();
13610 return false;
13611 }
13612
13613 // C++11 [expr.eq]p2:
13614 // If both operands are null, they compare equal. Otherwise if only one is
13615 // null, they compare unequal.
13616 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
13617 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
13618 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13619 }
13620
13621 // Otherwise if either is a pointer to a virtual member function, the
13622 // result is unspecified.
13623 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
13624 if (MD->isVirtual())
13625 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13626 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
13627 if (MD->isVirtual())
13628 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13629
13630 // Otherwise they compare equal if and only if they would refer to the
13631 // same member of the same most derived object or the same subobject if
13632 // they were dereferenced with a hypothetical object of the associated
13633 // class type.
13634 bool Equal = LHSValue == RHSValue;
13635 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13636 }
13637
13638 if (LHSTy->isNullPtrType()) {
13639 assert(E->isComparisonOp() && "unexpected nullptr operation");
13640 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
13641 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
13642 // are compared, the result is true of the operator is <=, >= or ==, and
13643 // false otherwise.
13644 LValue Res;
13645 if (!EvaluatePointer(E: E->getLHS(), Result&: Res, Info) ||
13646 !EvaluatePointer(E: E->getRHS(), Result&: Res, Info))
13647 return false;
13648 return Success(CmpResult::Equal, E);
13649 }
13650
13651 return DoAfter();
13652}
13653
13654bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
13655 if (!CheckLiteralType(Info, E))
13656 return false;
13657
13658 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13659 ComparisonCategoryResult CCR;
13660 switch (CR) {
13661 case CmpResult::Unequal:
13662 llvm_unreachable("should never produce Unequal for three-way comparison");
13663 case CmpResult::Less:
13664 CCR = ComparisonCategoryResult::Less;
13665 break;
13666 case CmpResult::Equal:
13667 CCR = ComparisonCategoryResult::Equal;
13668 break;
13669 case CmpResult::Greater:
13670 CCR = ComparisonCategoryResult::Greater;
13671 break;
13672 case CmpResult::Unordered:
13673 CCR = ComparisonCategoryResult::Unordered;
13674 break;
13675 }
13676 // Evaluation succeeded. Lookup the information for the comparison category
13677 // type and fetch the VarDecl for the result.
13678 const ComparisonCategoryInfo &CmpInfo =
13679 Info.Ctx.CompCategories.getInfoForType(Ty: E->getType());
13680 const VarDecl *VD = CmpInfo.getValueInfo(ValueKind: CmpInfo.makeWeakResult(Res: CCR))->VD;
13681 // Check and evaluate the result as a constant expression.
13682 LValue LV;
13683 LV.set(VD);
13684 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13685 return false;
13686 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
13687 ConstantExprKind::Normal);
13688 };
13689 return EvaluateComparisonBinaryOperator(Info, E, Success&: OnSuccess, DoAfter: [&]() {
13690 return ExprEvaluatorBaseTy::VisitBinCmp(E);
13691 });
13692}
13693
13694bool RecordExprEvaluator::VisitCXXParenListInitExpr(
13695 const CXXParenListInitExpr *E) {
13696 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs());
13697}
13698
13699bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13700 // We don't support assignment in C. C++ assignments don't get here because
13701 // assignment is an lvalue in C++.
13702 if (E->isAssignmentOp()) {
13703 Error(E);
13704 if (!Info.noteFailure())
13705 return false;
13706 }
13707
13708 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
13709 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
13710
13711 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
13712 !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13713 "DataRecursiveIntBinOpEvaluator should have handled integral types");
13714
13715 if (E->isComparisonOp()) {
13716 // Evaluate builtin binary comparisons by evaluating them as three-way
13717 // comparisons and then translating the result.
13718 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13719 assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
13720 "should only produce Unequal for equality comparisons");
13721 bool IsEqual = CR == CmpResult::Equal,
13722 IsLess = CR == CmpResult::Less,
13723 IsGreater = CR == CmpResult::Greater;
13724 auto Op = E->getOpcode();
13725 switch (Op) {
13726 default:
13727 llvm_unreachable("unsupported binary operator");
13728 case BO_EQ:
13729 case BO_NE:
13730 return Success(IsEqual == (Op == BO_EQ), E);
13731 case BO_LT:
13732 return Success(IsLess, E);
13733 case BO_GT:
13734 return Success(IsGreater, E);
13735 case BO_LE:
13736 return Success(IsEqual || IsLess, E);
13737 case BO_GE:
13738 return Success(IsEqual || IsGreater, E);
13739 }
13740 };
13741 return EvaluateComparisonBinaryOperator(Info, E, Success&: OnSuccess, DoAfter: [&]() {
13742 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13743 });
13744 }
13745
13746 QualType LHSTy = E->getLHS()->getType();
13747 QualType RHSTy = E->getRHS()->getType();
13748
13749 if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13750 E->getOpcode() == BO_Sub) {
13751 LValue LHSValue, RHSValue;
13752
13753 bool LHSOK = EvaluatePointer(E: E->getLHS(), Result&: LHSValue, Info);
13754 if (!LHSOK && !Info.noteFailure())
13755 return false;
13756
13757 if (!EvaluatePointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK)
13758 return false;
13759
13760 // Reject differing bases from the normal codepath; we special-case
13761 // comparisons to null.
13762 if (!HasSameBase(A: LHSValue, B: RHSValue)) {
13763 // Handle &&A - &&B.
13764 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13765 return Error(E);
13766 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13767 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13768 if (!LHSExpr || !RHSExpr)
13769 return Error(E);
13770 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: LHSExpr);
13771 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: RHSExpr);
13772 if (!LHSAddrExpr || !RHSAddrExpr)
13773 return Error(E);
13774 // Make sure both labels come from the same function.
13775 if (LHSAddrExpr->getLabel()->getDeclContext() !=
13776 RHSAddrExpr->getLabel()->getDeclContext())
13777 return Error(E);
13778 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13779 }
13780 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13781 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13782
13783 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13784 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13785
13786 // C++11 [expr.add]p6:
13787 // Unless both pointers point to elements of the same array object, or
13788 // one past the last element of the array object, the behavior is
13789 // undefined.
13790 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
13791 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
13792 RHSDesignator))
13793 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
13794
13795 QualType Type = E->getLHS()->getType();
13796 QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
13797
13798 CharUnits ElementSize;
13799 if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: ElementType, Size&: ElementSize))
13800 return false;
13801
13802 // As an extension, a type may have zero size (empty struct or union in
13803 // C, array of zero length). Pointer subtraction in such cases has
13804 // undefined behavior, so is not constant.
13805 if (ElementSize.isZero()) {
13806 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
13807 << ElementType;
13808 return false;
13809 }
13810
13811 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13812 // and produce incorrect results when it overflows. Such behavior
13813 // appears to be non-conforming, but is common, so perhaps we should
13814 // assume the standard intended for such cases to be undefined behavior
13815 // and check for them.
13816
13817 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13818 // overflow in the final conversion to ptrdiff_t.
13819 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
13820 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
13821 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
13822 false);
13823 APSInt TrueResult = (LHS - RHS) / ElemSize;
13824 APSInt Result = TrueResult.trunc(width: Info.Ctx.getIntWidth(T: E->getType()));
13825
13826 if (Result.extend(width: 65) != TrueResult &&
13827 !HandleOverflow(Info, E, TrueResult, E->getType()))
13828 return false;
13829 return Success(Result, E);
13830 }
13831
13832 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13833}
13834
13835/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13836/// a result as the expression's type.
13837bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13838 const UnaryExprOrTypeTraitExpr *E) {
13839 switch(E->getKind()) {
13840 case UETT_PreferredAlignOf:
13841 case UETT_AlignOf: {
13842 if (E->isArgumentType())
13843 return Success(GetAlignOfType(Info, T: E->getArgumentType(), ExprKind: E->getKind()),
13844 E);
13845 else
13846 return Success(GetAlignOfExpr(Info, E: E->getArgumentExpr(), ExprKind: E->getKind()),
13847 E);
13848 }
13849
13850 case UETT_VecStep: {
13851 QualType Ty = E->getTypeOfArgument();
13852
13853 if (Ty->isVectorType()) {
13854 unsigned n = Ty->castAs<VectorType>()->getNumElements();
13855
13856 // The vec_step built-in functions that take a 3-component
13857 // vector return 4. (OpenCL 1.1 spec 6.11.12)
13858 if (n == 3)
13859 n = 4;
13860
13861 return Success(n, E);
13862 } else
13863 return Success(1, E);
13864 }
13865
13866 case UETT_DataSizeOf:
13867 case UETT_SizeOf: {
13868 QualType SrcTy = E->getTypeOfArgument();
13869 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13870 // the result is the size of the referenced type."
13871 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13872 SrcTy = Ref->getPointeeType();
13873
13874 CharUnits Sizeof;
13875 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof,
13876 E->getKind() == UETT_DataSizeOf ? SizeOfType::DataSizeOf
13877 : SizeOfType::SizeOf)) {
13878 return false;
13879 }
13880 return Success(Sizeof, E);
13881 }
13882 case UETT_OpenMPRequiredSimdAlign:
13883 assert(E->isArgumentType());
13884 return Success(
13885 Info.Ctx.toCharUnitsFromBits(
13886 BitSize: Info.Ctx.getOpenMPDefaultSimdAlign(T: E->getArgumentType()))
13887 .getQuantity(),
13888 E);
13889 case UETT_VectorElements: {
13890 QualType Ty = E->getTypeOfArgument();
13891 // If the vector has a fixed size, we can determine the number of elements
13892 // at compile time.
13893 if (Ty->isVectorType())
13894 return Success(Ty->castAs<VectorType>()->getNumElements(), E);
13895
13896 assert(Ty->isSizelessVectorType());
13897 if (Info.InConstantContext)
13898 Info.CCEDiag(E, diag::note_constexpr_non_const_vectorelements)
13899 << E->getSourceRange();
13900
13901 return false;
13902 }
13903 }
13904
13905 llvm_unreachable("unknown expr/type trait");
13906}
13907
13908bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13909 CharUnits Result;
13910 unsigned n = OOE->getNumComponents();
13911 if (n == 0)
13912 return Error(OOE);
13913 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13914 for (unsigned i = 0; i != n; ++i) {
13915 OffsetOfNode ON = OOE->getComponent(Idx: i);
13916 switch (ON.getKind()) {
13917 case OffsetOfNode::Array: {
13918 const Expr *Idx = OOE->getIndexExpr(Idx: ON.getArrayExprIndex());
13919 APSInt IdxResult;
13920 if (!EvaluateInteger(E: Idx, Result&: IdxResult, Info))
13921 return false;
13922 const ArrayType *AT = Info.Ctx.getAsArrayType(T: CurrentType);
13923 if (!AT)
13924 return Error(OOE);
13925 CurrentType = AT->getElementType();
13926 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(T: CurrentType);
13927 Result += IdxResult.getSExtValue() * ElementSize;
13928 break;
13929 }
13930
13931 case OffsetOfNode::Field: {
13932 FieldDecl *MemberDecl = ON.getField();
13933 const RecordType *RT = CurrentType->getAs<RecordType>();
13934 if (!RT)
13935 return Error(OOE);
13936 RecordDecl *RD = RT->getDecl();
13937 if (RD->isInvalidDecl()) return false;
13938 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(D: RD);
13939 unsigned i = MemberDecl->getFieldIndex();
13940 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13941 Result += Info.Ctx.toCharUnitsFromBits(BitSize: RL.getFieldOffset(FieldNo: i));
13942 CurrentType = MemberDecl->getType().getNonReferenceType();
13943 break;
13944 }
13945
13946 case OffsetOfNode::Identifier:
13947 llvm_unreachable("dependent __builtin_offsetof");
13948
13949 case OffsetOfNode::Base: {
13950 CXXBaseSpecifier *BaseSpec = ON.getBase();
13951 if (BaseSpec->isVirtual())
13952 return Error(OOE);
13953
13954 // Find the layout of the class whose base we are looking into.
13955 const RecordType *RT = CurrentType->getAs<RecordType>();
13956 if (!RT)
13957 return Error(OOE);
13958 RecordDecl *RD = RT->getDecl();
13959 if (RD->isInvalidDecl()) return false;
13960 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(D: RD);
13961
13962 // Find the base class itself.
13963 CurrentType = BaseSpec->getType();
13964 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13965 if (!BaseRT)
13966 return Error(OOE);
13967
13968 // Add the offset to the base.
13969 Result += RL.getBaseClassOffset(Base: cast<CXXRecordDecl>(Val: BaseRT->getDecl()));
13970 break;
13971 }
13972 }
13973 }
13974 return Success(Result, OOE);
13975}
13976
13977bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13978 switch (E->getOpcode()) {
13979 default:
13980 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13981 // See C99 6.6p3.
13982 return Error(E);
13983 case UO_Extension:
13984 // FIXME: Should extension allow i-c-e extension expressions in its scope?
13985 // If so, we could clear the diagnostic ID.
13986 return Visit(E->getSubExpr());
13987 case UO_Plus:
13988 // The result is just the value.
13989 return Visit(E->getSubExpr());
13990 case UO_Minus: {
13991 if (!Visit(E->getSubExpr()))
13992 return false;
13993 if (!Result.isInt()) return Error(E);
13994 const APSInt &Value = Result.getInt();
13995 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) {
13996 if (Info.checkingForUndefinedBehavior())
13997 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13998 diag::warn_integer_constant_overflow)
13999 << toString(Value, 10, Value.isSigned(), /*formatAsCLiteral=*/false,
14000 /*UpperCase=*/true, /*InsertSeparators=*/true)
14001 << E->getType() << E->getSourceRange();
14002
14003 if (!HandleOverflow(Info, E, -Value.extend(width: Value.getBitWidth() + 1),
14004 E->getType()))
14005 return false;
14006 }
14007 return Success(-Value, E);
14008 }
14009 case UO_Not: {
14010 if (!Visit(E->getSubExpr()))
14011 return false;
14012 if (!Result.isInt()) return Error(E);
14013 return Success(~Result.getInt(), E);
14014 }
14015 case UO_LNot: {
14016 bool bres;
14017 if (!EvaluateAsBooleanCondition(E: E->getSubExpr(), Result&: bres, Info))
14018 return false;
14019 return Success(!bres, E);
14020 }
14021 }
14022}
14023
14024/// HandleCast - This is used to evaluate implicit or explicit casts where the
14025/// result type is integer.
14026bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
14027 const Expr *SubExpr = E->getSubExpr();
14028 QualType DestType = E->getType();
14029 QualType SrcType = SubExpr->getType();
14030
14031 switch (E->getCastKind()) {
14032 case CK_BaseToDerived:
14033 case CK_DerivedToBase:
14034 case CK_UncheckedDerivedToBase:
14035 case CK_Dynamic:
14036 case CK_ToUnion:
14037 case CK_ArrayToPointerDecay:
14038 case CK_FunctionToPointerDecay:
14039 case CK_NullToPointer:
14040 case CK_NullToMemberPointer:
14041 case CK_BaseToDerivedMemberPointer:
14042 case CK_DerivedToBaseMemberPointer:
14043 case CK_ReinterpretMemberPointer:
14044 case CK_ConstructorConversion:
14045 case CK_IntegralToPointer:
14046 case CK_ToVoid:
14047 case CK_VectorSplat:
14048 case CK_IntegralToFloating:
14049 case CK_FloatingCast:
14050 case CK_CPointerToObjCPointerCast:
14051 case CK_BlockPointerToObjCPointerCast:
14052 case CK_AnyPointerToBlockPointerCast:
14053 case CK_ObjCObjectLValueCast:
14054 case CK_FloatingRealToComplex:
14055 case CK_FloatingComplexToReal:
14056 case CK_FloatingComplexCast:
14057 case CK_FloatingComplexToIntegralComplex:
14058 case CK_IntegralRealToComplex:
14059 case CK_IntegralComplexCast:
14060 case CK_IntegralComplexToFloatingComplex:
14061 case CK_BuiltinFnToFnPtr:
14062 case CK_ZeroToOCLOpaqueType:
14063 case CK_NonAtomicToAtomic:
14064 case CK_AddressSpaceConversion:
14065 case CK_IntToOCLSampler:
14066 case CK_FloatingToFixedPoint:
14067 case CK_FixedPointToFloating:
14068 case CK_FixedPointCast:
14069 case CK_IntegralToFixedPoint:
14070 case CK_MatrixCast:
14071 case CK_HLSLVectorTruncation:
14072 llvm_unreachable("invalid cast kind for integral value");
14073
14074 case CK_BitCast:
14075 case CK_Dependent:
14076 case CK_LValueBitCast:
14077 case CK_ARCProduceObject:
14078 case CK_ARCConsumeObject:
14079 case CK_ARCReclaimReturnedObject:
14080 case CK_ARCExtendBlockObject:
14081 case CK_CopyAndAutoreleaseBlockObject:
14082 return Error(E);
14083
14084 case CK_UserDefinedConversion:
14085 case CK_LValueToRValue:
14086 case CK_AtomicToNonAtomic:
14087 case CK_NoOp:
14088 case CK_LValueToRValueBitCast:
14089 case CK_HLSLArrayRValue:
14090 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14091
14092 case CK_MemberPointerToBoolean:
14093 case CK_PointerToBoolean:
14094 case CK_IntegralToBoolean:
14095 case CK_FloatingToBoolean:
14096 case CK_BooleanToSignedIntegral:
14097 case CK_FloatingComplexToBoolean:
14098 case CK_IntegralComplexToBoolean: {
14099 bool BoolResult;
14100 if (!EvaluateAsBooleanCondition(E: SubExpr, Result&: BoolResult, Info))
14101 return false;
14102 uint64_t IntResult = BoolResult;
14103 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
14104 IntResult = (uint64_t)-1;
14105 return Success(IntResult, E);
14106 }
14107
14108 case CK_FixedPointToIntegral: {
14109 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(Ty: SrcType));
14110 if (!EvaluateFixedPoint(E: SubExpr, Result&: Src, Info))
14111 return false;
14112 bool Overflowed;
14113 llvm::APSInt Result = Src.convertToInt(
14114 DstWidth: Info.Ctx.getIntWidth(T: DestType),
14115 DstSign: DestType->isSignedIntegerOrEnumerationType(), Overflow: &Overflowed);
14116 if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
14117 return false;
14118 return Success(Result, E);
14119 }
14120
14121 case CK_FixedPointToBoolean: {
14122 // Unsigned padding does not affect this.
14123 APValue Val;
14124 if (!Evaluate(Result&: Val, Info, E: SubExpr))
14125 return false;
14126 return Success(Val.getFixedPoint().getBoolValue(), E);
14127 }
14128
14129 case CK_IntegralCast: {
14130 if (!Visit(SubExpr))
14131 return false;
14132
14133 if (!Result.isInt()) {
14134 // Allow casts of address-of-label differences if they are no-ops
14135 // or narrowing. (The narrowing case isn't actually guaranteed to
14136 // be constant-evaluatable except in some narrow cases which are hard
14137 // to detect here. We let it through on the assumption the user knows
14138 // what they are doing.)
14139 if (Result.isAddrLabelDiff())
14140 return Info.Ctx.getTypeSize(T: DestType) <= Info.Ctx.getTypeSize(T: SrcType);
14141 // Only allow casts of lvalues if they are lossless.
14142 return Info.Ctx.getTypeSize(T: DestType) == Info.Ctx.getTypeSize(T: SrcType);
14143 }
14144
14145 if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext &&
14146 Info.EvalMode == EvalInfo::EM_ConstantExpression &&
14147 DestType->isEnumeralType()) {
14148
14149 bool ConstexprVar = true;
14150
14151 // We know if we are here that we are in a context that we might require
14152 // a constant expression or a context that requires a constant
14153 // value. But if we are initializing a value we don't know if it is a
14154 // constexpr variable or not. We can check the EvaluatingDecl to determine
14155 // if it constexpr or not. If not then we don't want to emit a diagnostic.
14156 if (const auto *VD = dyn_cast_or_null<VarDecl>(
14157 Val: Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
14158 ConstexprVar = VD->isConstexpr();
14159
14160 const EnumType *ET = dyn_cast<EnumType>(Val: DestType.getCanonicalType());
14161 const EnumDecl *ED = ET->getDecl();
14162 // Check that the value is within the range of the enumeration values.
14163 //
14164 // This corressponds to [expr.static.cast]p10 which says:
14165 // A value of integral or enumeration type can be explicitly converted
14166 // to a complete enumeration type ... If the enumeration type does not
14167 // have a fixed underlying type, the value is unchanged if the original
14168 // value is within the range of the enumeration values ([dcl.enum]), and
14169 // otherwise, the behavior is undefined.
14170 //
14171 // This was resolved as part of DR2338 which has CD5 status.
14172 if (!ED->isFixed()) {
14173 llvm::APInt Min;
14174 llvm::APInt Max;
14175
14176 ED->getValueRange(Max, Min);
14177 --Max;
14178
14179 if (ED->getNumNegativeBits() && ConstexprVar &&
14180 (Max.slt(Result.getInt().getSExtValue()) ||
14181 Min.sgt(Result.getInt().getSExtValue())))
14182 Info.Ctx.getDiagnostics().Report(
14183 E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
14184 << llvm::toString(Result.getInt(), 10) << Min.getSExtValue()
14185 << Max.getSExtValue() << ED;
14186 else if (!ED->getNumNegativeBits() && ConstexprVar &&
14187 Max.ult(Result.getInt().getZExtValue()))
14188 Info.Ctx.getDiagnostics().Report(
14189 E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
14190 << llvm::toString(Result.getInt(), 10) << Min.getZExtValue()
14191 << Max.getZExtValue() << ED;
14192 }
14193 }
14194
14195 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
14196 Result.getInt()), E);
14197 }
14198
14199 case CK_PointerToIntegral: {
14200 CCEDiag(E, diag::note_constexpr_invalid_cast)
14201 << 2 << Info.Ctx.getLangOpts().CPlusPlus << E->getSourceRange();
14202
14203 LValue LV;
14204 if (!EvaluatePointer(E: SubExpr, Result&: LV, Info))
14205 return false;
14206
14207 if (LV.getLValueBase()) {
14208 // Only allow based lvalue casts if they are lossless.
14209 // FIXME: Allow a larger integer size than the pointer size, and allow
14210 // narrowing back down to pointer width in subsequent integral casts.
14211 // FIXME: Check integer type's active bits, not its type size.
14212 if (Info.Ctx.getTypeSize(T: DestType) != Info.Ctx.getTypeSize(T: SrcType))
14213 return Error(E);
14214
14215 LV.Designator.setInvalid();
14216 LV.moveInto(V&: Result);
14217 return true;
14218 }
14219
14220 APSInt AsInt;
14221 APValue V;
14222 LV.moveInto(V);
14223 if (!V.toIntegralConstant(Result&: AsInt, SrcTy: SrcType, Ctx: Info.Ctx))
14224 llvm_unreachable("Can't cast this!");
14225
14226 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
14227 }
14228
14229 case CK_IntegralComplexToReal: {
14230 ComplexValue C;
14231 if (!EvaluateComplex(E: SubExpr, Res&: C, Info))
14232 return false;
14233 return Success(C.getComplexIntReal(), E);
14234 }
14235
14236 case CK_FloatingToIntegral: {
14237 APFloat F(0.0);
14238 if (!EvaluateFloat(E: SubExpr, Result&: F, Info))
14239 return false;
14240
14241 APSInt Value;
14242 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
14243 return false;
14244 return Success(Value, E);
14245 }
14246 }
14247
14248 llvm_unreachable("unknown cast resulting in integral value");
14249}
14250
14251bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14252 if (E->getSubExpr()->getType()->isAnyComplexType()) {
14253 ComplexValue LV;
14254 if (!EvaluateComplex(E: E->getSubExpr(), Res&: LV, Info))
14255 return false;
14256 if (!LV.isComplexInt())
14257 return Error(E);
14258 return Success(LV.getComplexIntReal(), E);
14259 }
14260
14261 return Visit(E->getSubExpr());
14262}
14263
14264bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14265 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
14266 ComplexValue LV;
14267 if (!EvaluateComplex(E: E->getSubExpr(), Res&: LV, Info))
14268 return false;
14269 if (!LV.isComplexInt())
14270 return Error(E);
14271 return Success(LV.getComplexIntImag(), E);
14272 }
14273
14274 VisitIgnoredValue(E: E->getSubExpr());
14275 return Success(0, E);
14276}
14277
14278bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
14279 return Success(E->getPackLength(), E);
14280}
14281
14282bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
14283 return Success(E->getValue(), E);
14284}
14285
14286bool IntExprEvaluator::VisitConceptSpecializationExpr(
14287 const ConceptSpecializationExpr *E) {
14288 return Success(E->isSatisfied(), E);
14289}
14290
14291bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
14292 return Success(E->isSatisfied(), E);
14293}
14294
14295bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14296 switch (E->getOpcode()) {
14297 default:
14298 // Invalid unary operators
14299 return Error(E);
14300 case UO_Plus:
14301 // The result is just the value.
14302 return Visit(E->getSubExpr());
14303 case UO_Minus: {
14304 if (!Visit(E->getSubExpr())) return false;
14305 if (!Result.isFixedPoint())
14306 return Error(E);
14307 bool Overflowed;
14308 APFixedPoint Negated = Result.getFixedPoint().negate(Overflow: &Overflowed);
14309 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
14310 return false;
14311 return Success(Negated, E);
14312 }
14313 case UO_LNot: {
14314 bool bres;
14315 if (!EvaluateAsBooleanCondition(E: E->getSubExpr(), Result&: bres, Info))
14316 return false;
14317 return Success(!bres, E);
14318 }
14319 }
14320}
14321
14322bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
14323 const Expr *SubExpr = E->getSubExpr();
14324 QualType DestType = E->getType();
14325 assert(DestType->isFixedPointType() &&
14326 "Expected destination type to be a fixed point type");
14327 auto DestFXSema = Info.Ctx.getFixedPointSemantics(Ty: DestType);
14328
14329 switch (E->getCastKind()) {
14330 case CK_FixedPointCast: {
14331 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(Ty: SubExpr->getType()));
14332 if (!EvaluateFixedPoint(E: SubExpr, Result&: Src, Info))
14333 return false;
14334 bool Overflowed;
14335 APFixedPoint Result = Src.convert(DstSema: DestFXSema, Overflow: &Overflowed);
14336 if (Overflowed) {
14337 if (Info.checkingForUndefinedBehavior())
14338 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14339 diag::warn_fixedpoint_constant_overflow)
14340 << Result.toString() << E->getType();
14341 if (!HandleOverflow(Info, E, Result, E->getType()))
14342 return false;
14343 }
14344 return Success(Result, E);
14345 }
14346 case CK_IntegralToFixedPoint: {
14347 APSInt Src;
14348 if (!EvaluateInteger(E: SubExpr, Result&: Src, Info))
14349 return false;
14350
14351 bool Overflowed;
14352 APFixedPoint IntResult = APFixedPoint::getFromIntValue(
14353 Value: Src, DstFXSema: Info.Ctx.getFixedPointSemantics(Ty: DestType), Overflow: &Overflowed);
14354
14355 if (Overflowed) {
14356 if (Info.checkingForUndefinedBehavior())
14357 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14358 diag::warn_fixedpoint_constant_overflow)
14359 << IntResult.toString() << E->getType();
14360 if (!HandleOverflow(Info, E, IntResult, E->getType()))
14361 return false;
14362 }
14363
14364 return Success(IntResult, E);
14365 }
14366 case CK_FloatingToFixedPoint: {
14367 APFloat Src(0.0);
14368 if (!EvaluateFloat(E: SubExpr, Result&: Src, Info))
14369 return false;
14370
14371 bool Overflowed;
14372 APFixedPoint Result = APFixedPoint::getFromFloatValue(
14373 Value: Src, DstFXSema: Info.Ctx.getFixedPointSemantics(Ty: DestType), Overflow: &Overflowed);
14374
14375 if (Overflowed) {
14376 if (Info.checkingForUndefinedBehavior())
14377 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14378 diag::warn_fixedpoint_constant_overflow)
14379 << Result.toString() << E->getType();
14380 if (!HandleOverflow(Info, E, Result, E->getType()))
14381 return false;
14382 }
14383
14384 return Success(Result, E);
14385 }
14386 case CK_NoOp:
14387 case CK_LValueToRValue:
14388 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14389 default:
14390 return Error(E);
14391 }
14392}
14393
14394bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14395 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14396 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14397
14398 const Expr *LHS = E->getLHS();
14399 const Expr *RHS = E->getRHS();
14400 FixedPointSemantics ResultFXSema =
14401 Info.Ctx.getFixedPointSemantics(Ty: E->getType());
14402
14403 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(Ty: LHS->getType()));
14404 if (!EvaluateFixedPointOrInteger(E: LHS, Result&: LHSFX, Info))
14405 return false;
14406 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(Ty: RHS->getType()));
14407 if (!EvaluateFixedPointOrInteger(E: RHS, Result&: RHSFX, Info))
14408 return false;
14409
14410 bool OpOverflow = false, ConversionOverflow = false;
14411 APFixedPoint Result(LHSFX.getSemantics());
14412 switch (E->getOpcode()) {
14413 case BO_Add: {
14414 Result = LHSFX.add(Other: RHSFX, Overflow: &OpOverflow)
14415 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
14416 break;
14417 }
14418 case BO_Sub: {
14419 Result = LHSFX.sub(Other: RHSFX, Overflow: &OpOverflow)
14420 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
14421 break;
14422 }
14423 case BO_Mul: {
14424 Result = LHSFX.mul(Other: RHSFX, Overflow: &OpOverflow)
14425 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
14426 break;
14427 }
14428 case BO_Div: {
14429 if (RHSFX.getValue() == 0) {
14430 Info.FFDiag(E, diag::note_expr_divide_by_zero);
14431 return false;
14432 }
14433 Result = LHSFX.div(Other: RHSFX, Overflow: &OpOverflow)
14434 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
14435 break;
14436 }
14437 case BO_Shl:
14438 case BO_Shr: {
14439 FixedPointSemantics LHSSema = LHSFX.getSemantics();
14440 llvm::APSInt RHSVal = RHSFX.getValue();
14441
14442 unsigned ShiftBW =
14443 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
14444 unsigned Amt = RHSVal.getLimitedValue(Limit: ShiftBW - 1);
14445 // Embedded-C 4.1.6.2.2:
14446 // The right operand must be nonnegative and less than the total number
14447 // of (nonpadding) bits of the fixed-point operand ...
14448 if (RHSVal.isNegative())
14449 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
14450 else if (Amt != RHSVal)
14451 Info.CCEDiag(E, diag::note_constexpr_large_shift)
14452 << RHSVal << E->getType() << ShiftBW;
14453
14454 if (E->getOpcode() == BO_Shl)
14455 Result = LHSFX.shl(Amt, Overflow: &OpOverflow);
14456 else
14457 Result = LHSFX.shr(Amt, Overflow: &OpOverflow);
14458 break;
14459 }
14460 default:
14461 return false;
14462 }
14463 if (OpOverflow || ConversionOverflow) {
14464 if (Info.checkingForUndefinedBehavior())
14465 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14466 diag::warn_fixedpoint_constant_overflow)
14467 << Result.toString() << E->getType();
14468 if (!HandleOverflow(Info, E, Result, E->getType()))
14469 return false;
14470 }
14471 return Success(Result, E);
14472}
14473
14474//===----------------------------------------------------------------------===//
14475// Float Evaluation
14476//===----------------------------------------------------------------------===//
14477
14478namespace {
14479class FloatExprEvaluator
14480 : public ExprEvaluatorBase<FloatExprEvaluator> {
14481 APFloat &Result;
14482public:
14483 FloatExprEvaluator(EvalInfo &info, APFloat &result)
14484 : ExprEvaluatorBaseTy(info), Result(result) {}
14485
14486 bool Success(const APValue &V, const Expr *e) {
14487 Result = V.getFloat();
14488 return true;
14489 }
14490
14491 bool ZeroInitialization(const Expr *E) {
14492 Result = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: E->getType()));
14493 return true;
14494 }
14495
14496 bool VisitCallExpr(const CallExpr *E);
14497
14498 bool VisitUnaryOperator(const UnaryOperator *E);
14499 bool VisitBinaryOperator(const BinaryOperator *E);
14500 bool VisitFloatingLiteral(const FloatingLiteral *E);
14501 bool VisitCastExpr(const CastExpr *E);
14502
14503 bool VisitUnaryReal(const UnaryOperator *E);
14504 bool VisitUnaryImag(const UnaryOperator *E);
14505
14506 // FIXME: Missing: array subscript of vector, member of vector
14507};
14508} // end anonymous namespace
14509
14510static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
14511 assert(!E->isValueDependent());
14512 assert(E->isPRValue() && E->getType()->isRealFloatingType());
14513 return FloatExprEvaluator(Info, Result).Visit(E);
14514}
14515
14516static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
14517 QualType ResultTy,
14518 const Expr *Arg,
14519 bool SNaN,
14520 llvm::APFloat &Result) {
14521 const StringLiteral *S = dyn_cast<StringLiteral>(Val: Arg->IgnoreParenCasts());
14522 if (!S) return false;
14523
14524 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(T: ResultTy);
14525
14526 llvm::APInt fill;
14527
14528 // Treat empty strings as if they were zero.
14529 if (S->getString().empty())
14530 fill = llvm::APInt(32, 0);
14531 else if (S->getString().getAsInteger(Radix: 0, Result&: fill))
14532 return false;
14533
14534 if (Context.getTargetInfo().isNan2008()) {
14535 if (SNaN)
14536 Result = llvm::APFloat::getSNaN(Sem, Negative: false, payload: &fill);
14537 else
14538 Result = llvm::APFloat::getQNaN(Sem, Negative: false, payload: &fill);
14539 } else {
14540 // Prior to IEEE 754-2008, architectures were allowed to choose whether
14541 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
14542 // a different encoding to what became a standard in 2008, and for pre-
14543 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
14544 // sNaN. This is now known as "legacy NaN" encoding.
14545 if (SNaN)
14546 Result = llvm::APFloat::getQNaN(Sem, Negative: false, payload: &fill);
14547 else
14548 Result = llvm::APFloat::getSNaN(Sem, Negative: false, payload: &fill);
14549 }
14550
14551 return true;
14552}
14553
14554bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
14555 if (!IsConstantEvaluatedBuiltinCall(E))
14556 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14557
14558 switch (E->getBuiltinCallee()) {
14559 default:
14560 return false;
14561
14562 case Builtin::BI__builtin_huge_val:
14563 case Builtin::BI__builtin_huge_valf:
14564 case Builtin::BI__builtin_huge_vall:
14565 case Builtin::BI__builtin_huge_valf16:
14566 case Builtin::BI__builtin_huge_valf128:
14567 case Builtin::BI__builtin_inf:
14568 case Builtin::BI__builtin_inff:
14569 case Builtin::BI__builtin_infl:
14570 case Builtin::BI__builtin_inff16:
14571 case Builtin::BI__builtin_inff128: {
14572 const llvm::fltSemantics &Sem =
14573 Info.Ctx.getFloatTypeSemantics(T: E->getType());
14574 Result = llvm::APFloat::getInf(Sem);
14575 return true;
14576 }
14577
14578 case Builtin::BI__builtin_nans:
14579 case Builtin::BI__builtin_nansf:
14580 case Builtin::BI__builtin_nansl:
14581 case Builtin::BI__builtin_nansf16:
14582 case Builtin::BI__builtin_nansf128:
14583 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(Arg: 0),
14584 true, Result))
14585 return Error(E);
14586 return true;
14587
14588 case Builtin::BI__builtin_nan:
14589 case Builtin::BI__builtin_nanf:
14590 case Builtin::BI__builtin_nanl:
14591 case Builtin::BI__builtin_nanf16:
14592 case Builtin::BI__builtin_nanf128:
14593 // If this is __builtin_nan() turn this into a nan, otherwise we
14594 // can't constant fold it.
14595 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(Arg: 0),
14596 false, Result))
14597 return Error(E);
14598 return true;
14599
14600 case Builtin::BI__builtin_fabs:
14601 case Builtin::BI__builtin_fabsf:
14602 case Builtin::BI__builtin_fabsl:
14603 case Builtin::BI__builtin_fabsf128:
14604 // The C standard says "fabs raises no floating-point exceptions,
14605 // even if x is a signaling NaN. The returned value is independent of
14606 // the current rounding direction mode." Therefore constant folding can
14607 // proceed without regard to the floating point settings.
14608 // Reference, WG14 N2478 F.10.4.3
14609 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info))
14610 return false;
14611
14612 if (Result.isNegative())
14613 Result.changeSign();
14614 return true;
14615
14616 case Builtin::BI__arithmetic_fence:
14617 return EvaluateFloat(E: E->getArg(Arg: 0), Result, Info);
14618
14619 // FIXME: Builtin::BI__builtin_powi
14620 // FIXME: Builtin::BI__builtin_powif
14621 // FIXME: Builtin::BI__builtin_powil
14622
14623 case Builtin::BI__builtin_copysign:
14624 case Builtin::BI__builtin_copysignf:
14625 case Builtin::BI__builtin_copysignl:
14626 case Builtin::BI__builtin_copysignf128: {
14627 APFloat RHS(0.);
14628 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) ||
14629 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
14630 return false;
14631 Result.copySign(RHS);
14632 return true;
14633 }
14634
14635 case Builtin::BI__builtin_fmax:
14636 case Builtin::BI__builtin_fmaxf:
14637 case Builtin::BI__builtin_fmaxl:
14638 case Builtin::BI__builtin_fmaxf16:
14639 case Builtin::BI__builtin_fmaxf128: {
14640 // TODO: Handle sNaN.
14641 APFloat RHS(0.);
14642 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) ||
14643 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
14644 return false;
14645 // When comparing zeroes, return +0.0 if one of the zeroes is positive.
14646 if (Result.isZero() && RHS.isZero() && Result.isNegative())
14647 Result = RHS;
14648 else if (Result.isNaN() || RHS > Result)
14649 Result = RHS;
14650 return true;
14651 }
14652
14653 case Builtin::BI__builtin_fmin:
14654 case Builtin::BI__builtin_fminf:
14655 case Builtin::BI__builtin_fminl:
14656 case Builtin::BI__builtin_fminf16:
14657 case Builtin::BI__builtin_fminf128: {
14658 // TODO: Handle sNaN.
14659 APFloat RHS(0.);
14660 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) ||
14661 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
14662 return false;
14663 // When comparing zeroes, return -0.0 if one of the zeroes is negative.
14664 if (Result.isZero() && RHS.isZero() && RHS.isNegative())
14665 Result = RHS;
14666 else if (Result.isNaN() || RHS < Result)
14667 Result = RHS;
14668 return true;
14669 }
14670 }
14671}
14672
14673bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14674 if (E->getSubExpr()->getType()->isAnyComplexType()) {
14675 ComplexValue CV;
14676 if (!EvaluateComplex(E: E->getSubExpr(), Res&: CV, Info))
14677 return false;
14678 Result = CV.FloatReal;
14679 return true;
14680 }
14681
14682 return Visit(E->getSubExpr());
14683}
14684
14685bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14686 if (E->getSubExpr()->getType()->isAnyComplexType()) {
14687 ComplexValue CV;
14688 if (!EvaluateComplex(E: E->getSubExpr(), Res&: CV, Info))
14689 return false;
14690 Result = CV.FloatImag;
14691 return true;
14692 }
14693
14694 VisitIgnoredValue(E: E->getSubExpr());
14695 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(T: E->getType());
14696 Result = llvm::APFloat::getZero(Sem);
14697 return true;
14698}
14699
14700bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14701 switch (E->getOpcode()) {
14702 default: return Error(E);
14703 case UO_Plus:
14704 return EvaluateFloat(E: E->getSubExpr(), Result, Info);
14705 case UO_Minus:
14706 // In C standard, WG14 N2478 F.3 p4
14707 // "the unary - raises no floating point exceptions,
14708 // even if the operand is signalling."
14709 if (!EvaluateFloat(E: E->getSubExpr(), Result, Info))
14710 return false;
14711 Result.changeSign();
14712 return true;
14713 }
14714}
14715
14716bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14717 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14718 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14719
14720 APFloat RHS(0.0);
14721 bool LHSOK = EvaluateFloat(E: E->getLHS(), Result, Info);
14722 if (!LHSOK && !Info.noteFailure())
14723 return false;
14724 return EvaluateFloat(E: E->getRHS(), Result&: RHS, Info) && LHSOK &&
14725 handleFloatFloatBinOp(Info, E, LHS&: Result, Opcode: E->getOpcode(), RHS);
14726}
14727
14728bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
14729 Result = E->getValue();
14730 return true;
14731}
14732
14733bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
14734 const Expr* SubExpr = E->getSubExpr();
14735
14736 switch (E->getCastKind()) {
14737 default:
14738 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14739
14740 case CK_IntegralToFloating: {
14741 APSInt IntResult;
14742 const FPOptions FPO = E->getFPFeaturesInEffect(
14743 LO: Info.Ctx.getLangOpts());
14744 return EvaluateInteger(E: SubExpr, Result&: IntResult, Info) &&
14745 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
14746 IntResult, E->getType(), Result);
14747 }
14748
14749 case CK_FixedPointToFloating: {
14750 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(Ty: SubExpr->getType()));
14751 if (!EvaluateFixedPoint(E: SubExpr, Result&: FixResult, Info))
14752 return false;
14753 Result =
14754 FixResult.convertToFloat(FloatSema: Info.Ctx.getFloatTypeSemantics(T: E->getType()));
14755 return true;
14756 }
14757
14758 case CK_FloatingCast: {
14759 if (!Visit(SubExpr))
14760 return false;
14761 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
14762 Result);
14763 }
14764
14765 case CK_FloatingComplexToReal: {
14766 ComplexValue V;
14767 if (!EvaluateComplex(E: SubExpr, Res&: V, Info))
14768 return false;
14769 Result = V.getComplexFloatReal();
14770 return true;
14771 }
14772 }
14773}
14774
14775//===----------------------------------------------------------------------===//
14776// Complex Evaluation (for float and integer)
14777//===----------------------------------------------------------------------===//
14778
14779namespace {
14780class ComplexExprEvaluator
14781 : public ExprEvaluatorBase<ComplexExprEvaluator> {
14782 ComplexValue &Result;
14783
14784public:
14785 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
14786 : ExprEvaluatorBaseTy(info), Result(Result) {}
14787
14788 bool Success(const APValue &V, const Expr *e) {
14789 Result.setFrom(V);
14790 return true;
14791 }
14792
14793 bool ZeroInitialization(const Expr *E);
14794
14795 //===--------------------------------------------------------------------===//
14796 // Visitor Methods
14797 //===--------------------------------------------------------------------===//
14798
14799 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
14800 bool VisitCastExpr(const CastExpr *E);
14801 bool VisitBinaryOperator(const BinaryOperator *E);
14802 bool VisitUnaryOperator(const UnaryOperator *E);
14803 bool VisitInitListExpr(const InitListExpr *E);
14804 bool VisitCallExpr(const CallExpr *E);
14805};
14806} // end anonymous namespace
14807
14808static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
14809 EvalInfo &Info) {
14810 assert(!E->isValueDependent());
14811 assert(E->isPRValue() && E->getType()->isAnyComplexType());
14812 return ComplexExprEvaluator(Info, Result).Visit(E);
14813}
14814
14815bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
14816 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
14817 if (ElemTy->isRealFloatingType()) {
14818 Result.makeComplexFloat();
14819 APFloat Zero = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: ElemTy));
14820 Result.FloatReal = Zero;
14821 Result.FloatImag = Zero;
14822 } else {
14823 Result.makeComplexInt();
14824 APSInt Zero = Info.Ctx.MakeIntValue(Value: 0, Type: ElemTy);
14825 Result.IntReal = Zero;
14826 Result.IntImag = Zero;
14827 }
14828 return true;
14829}
14830
14831bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
14832 const Expr* SubExpr = E->getSubExpr();
14833
14834 if (SubExpr->getType()->isRealFloatingType()) {
14835 Result.makeComplexFloat();
14836 APFloat &Imag = Result.FloatImag;
14837 if (!EvaluateFloat(E: SubExpr, Result&: Imag, Info))
14838 return false;
14839
14840 Result.FloatReal = APFloat(Imag.getSemantics());
14841 return true;
14842 } else {
14843 assert(SubExpr->getType()->isIntegerType() &&
14844 "Unexpected imaginary literal.");
14845
14846 Result.makeComplexInt();
14847 APSInt &Imag = Result.IntImag;
14848 if (!EvaluateInteger(E: SubExpr, Result&: Imag, Info))
14849 return false;
14850
14851 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
14852 return true;
14853 }
14854}
14855
14856bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
14857
14858 switch (E->getCastKind()) {
14859 case CK_BitCast:
14860 case CK_BaseToDerived:
14861 case CK_DerivedToBase:
14862 case CK_UncheckedDerivedToBase:
14863 case CK_Dynamic:
14864 case CK_ToUnion:
14865 case CK_ArrayToPointerDecay:
14866 case CK_FunctionToPointerDecay:
14867 case CK_NullToPointer:
14868 case CK_NullToMemberPointer:
14869 case CK_BaseToDerivedMemberPointer:
14870 case CK_DerivedToBaseMemberPointer:
14871 case CK_MemberPointerToBoolean:
14872 case CK_ReinterpretMemberPointer:
14873 case CK_ConstructorConversion:
14874 case CK_IntegralToPointer:
14875 case CK_PointerToIntegral:
14876 case CK_PointerToBoolean:
14877 case CK_ToVoid:
14878 case CK_VectorSplat:
14879 case CK_IntegralCast:
14880 case CK_BooleanToSignedIntegral:
14881 case CK_IntegralToBoolean:
14882 case CK_IntegralToFloating:
14883 case CK_FloatingToIntegral:
14884 case CK_FloatingToBoolean:
14885 case CK_FloatingCast:
14886 case CK_CPointerToObjCPointerCast:
14887 case CK_BlockPointerToObjCPointerCast:
14888 case CK_AnyPointerToBlockPointerCast:
14889 case CK_ObjCObjectLValueCast:
14890 case CK_FloatingComplexToReal:
14891 case CK_FloatingComplexToBoolean:
14892 case CK_IntegralComplexToReal:
14893 case CK_IntegralComplexToBoolean:
14894 case CK_ARCProduceObject:
14895 case CK_ARCConsumeObject:
14896 case CK_ARCReclaimReturnedObject:
14897 case CK_ARCExtendBlockObject:
14898 case CK_CopyAndAutoreleaseBlockObject:
14899 case CK_BuiltinFnToFnPtr:
14900 case CK_ZeroToOCLOpaqueType:
14901 case CK_NonAtomicToAtomic:
14902 case CK_AddressSpaceConversion:
14903 case CK_IntToOCLSampler:
14904 case CK_FloatingToFixedPoint:
14905 case CK_FixedPointToFloating:
14906 case CK_FixedPointCast:
14907 case CK_FixedPointToBoolean:
14908 case CK_FixedPointToIntegral:
14909 case CK_IntegralToFixedPoint:
14910 case CK_MatrixCast:
14911 case CK_HLSLVectorTruncation:
14912 llvm_unreachable("invalid cast kind for complex value");
14913
14914 case CK_LValueToRValue:
14915 case CK_AtomicToNonAtomic:
14916 case CK_NoOp:
14917 case CK_LValueToRValueBitCast:
14918 case CK_HLSLArrayRValue:
14919 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14920
14921 case CK_Dependent:
14922 case CK_LValueBitCast:
14923 case CK_UserDefinedConversion:
14924 return Error(E);
14925
14926 case CK_FloatingRealToComplex: {
14927 APFloat &Real = Result.FloatReal;
14928 if (!EvaluateFloat(E: E->getSubExpr(), Result&: Real, Info))
14929 return false;
14930
14931 Result.makeComplexFloat();
14932 Result.FloatImag = APFloat(Real.getSemantics());
14933 return true;
14934 }
14935
14936 case CK_FloatingComplexCast: {
14937 if (!Visit(E->getSubExpr()))
14938 return false;
14939
14940 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14941 QualType From
14942 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14943
14944 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
14945 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
14946 }
14947
14948 case CK_FloatingComplexToIntegralComplex: {
14949 if (!Visit(E->getSubExpr()))
14950 return false;
14951
14952 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14953 QualType From
14954 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14955 Result.makeComplexInt();
14956 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
14957 To, Result.IntReal) &&
14958 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
14959 To, Result.IntImag);
14960 }
14961
14962 case CK_IntegralRealToComplex: {
14963 APSInt &Real = Result.IntReal;
14964 if (!EvaluateInteger(E: E->getSubExpr(), Result&: Real, Info))
14965 return false;
14966
14967 Result.makeComplexInt();
14968 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
14969 return true;
14970 }
14971
14972 case CK_IntegralComplexCast: {
14973 if (!Visit(E->getSubExpr()))
14974 return false;
14975
14976 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14977 QualType From
14978 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14979
14980 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
14981 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
14982 return true;
14983 }
14984
14985 case CK_IntegralComplexToFloatingComplex: {
14986 if (!Visit(E->getSubExpr()))
14987 return false;
14988
14989 const FPOptions FPO = E->getFPFeaturesInEffect(
14990 LO: Info.Ctx.getLangOpts());
14991 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14992 QualType From
14993 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14994 Result.makeComplexFloat();
14995 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14996 To, Result.FloatReal) &&
14997 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14998 To, Result.FloatImag);
14999 }
15000 }
15001
15002 llvm_unreachable("unknown cast resulting in complex value");
15003}
15004
15005bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
15006 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
15007 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
15008
15009 // Track whether the LHS or RHS is real at the type system level. When this is
15010 // the case we can simplify our evaluation strategy.
15011 bool LHSReal = false, RHSReal = false;
15012
15013 bool LHSOK;
15014 if (E->getLHS()->getType()->isRealFloatingType()) {
15015 LHSReal = true;
15016 APFloat &Real = Result.FloatReal;
15017 LHSOK = EvaluateFloat(E: E->getLHS(), Result&: Real, Info);
15018 if (LHSOK) {
15019 Result.makeComplexFloat();
15020 Result.FloatImag = APFloat(Real.getSemantics());
15021 }
15022 } else {
15023 LHSOK = Visit(E->getLHS());
15024 }
15025 if (!LHSOK && !Info.noteFailure())
15026 return false;
15027
15028 ComplexValue RHS;
15029 if (E->getRHS()->getType()->isRealFloatingType()) {
15030 RHSReal = true;
15031 APFloat &Real = RHS.FloatReal;
15032 if (!EvaluateFloat(E: E->getRHS(), Result&: Real, Info) || !LHSOK)
15033 return false;
15034 RHS.makeComplexFloat();
15035 RHS.FloatImag = APFloat(Real.getSemantics());
15036 } else if (!EvaluateComplex(E: E->getRHS(), Result&: RHS, Info) || !LHSOK)
15037 return false;
15038
15039 assert(!(LHSReal && RHSReal) &&
15040 "Cannot have both operands of a complex operation be real.");
15041 switch (E->getOpcode()) {
15042 default: return Error(E);
15043 case BO_Add:
15044 if (Result.isComplexFloat()) {
15045 Result.getComplexFloatReal().add(RHS: RHS.getComplexFloatReal(),
15046 RM: APFloat::rmNearestTiesToEven);
15047 if (LHSReal)
15048 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
15049 else if (!RHSReal)
15050 Result.getComplexFloatImag().add(RHS: RHS.getComplexFloatImag(),
15051 RM: APFloat::rmNearestTiesToEven);
15052 } else {
15053 Result.getComplexIntReal() += RHS.getComplexIntReal();
15054 Result.getComplexIntImag() += RHS.getComplexIntImag();
15055 }
15056 break;
15057 case BO_Sub:
15058 if (Result.isComplexFloat()) {
15059 Result.getComplexFloatReal().subtract(RHS: RHS.getComplexFloatReal(),
15060 RM: APFloat::rmNearestTiesToEven);
15061 if (LHSReal) {
15062 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
15063 Result.getComplexFloatImag().changeSign();
15064 } else if (!RHSReal) {
15065 Result.getComplexFloatImag().subtract(RHS: RHS.getComplexFloatImag(),
15066 RM: APFloat::rmNearestTiesToEven);
15067 }
15068 } else {
15069 Result.getComplexIntReal() -= RHS.getComplexIntReal();
15070 Result.getComplexIntImag() -= RHS.getComplexIntImag();
15071 }
15072 break;
15073 case BO_Mul:
15074 if (Result.isComplexFloat()) {
15075 // This is an implementation of complex multiplication according to the
15076 // constraints laid out in C11 Annex G. The implementation uses the
15077 // following naming scheme:
15078 // (a + ib) * (c + id)
15079 ComplexValue LHS = Result;
15080 APFloat &A = LHS.getComplexFloatReal();
15081 APFloat &B = LHS.getComplexFloatImag();
15082 APFloat &C = RHS.getComplexFloatReal();
15083 APFloat &D = RHS.getComplexFloatImag();
15084 APFloat &ResR = Result.getComplexFloatReal();
15085 APFloat &ResI = Result.getComplexFloatImag();
15086 if (LHSReal) {
15087 assert(!RHSReal && "Cannot have two real operands for a complex op!");
15088 ResR = A * C;
15089 ResI = A * D;
15090 } else if (RHSReal) {
15091 ResR = C * A;
15092 ResI = C * B;
15093 } else {
15094 // In the fully general case, we need to handle NaNs and infinities
15095 // robustly.
15096 APFloat AC = A * C;
15097 APFloat BD = B * D;
15098 APFloat AD = A * D;
15099 APFloat BC = B * C;
15100 ResR = AC - BD;
15101 ResI = AD + BC;
15102 if (ResR.isNaN() && ResI.isNaN()) {
15103 bool Recalc = false;
15104 if (A.isInfinity() || B.isInfinity()) {
15105 A = APFloat::copySign(
15106 Value: APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), Sign: A);
15107 B = APFloat::copySign(
15108 Value: APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), Sign: B);
15109 if (C.isNaN())
15110 C = APFloat::copySign(Value: APFloat(C.getSemantics()), Sign: C);
15111 if (D.isNaN())
15112 D = APFloat::copySign(Value: APFloat(D.getSemantics()), Sign: D);
15113 Recalc = true;
15114 }
15115 if (C.isInfinity() || D.isInfinity()) {
15116 C = APFloat::copySign(
15117 Value: APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), Sign: C);
15118 D = APFloat::copySign(
15119 Value: APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), Sign: D);
15120 if (A.isNaN())
15121 A = APFloat::copySign(Value: APFloat(A.getSemantics()), Sign: A);
15122 if (B.isNaN())
15123 B = APFloat::copySign(Value: APFloat(B.getSemantics()), Sign: B);
15124 Recalc = true;
15125 }
15126 if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
15127 AD.isInfinity() || BC.isInfinity())) {
15128 if (A.isNaN())
15129 A = APFloat::copySign(Value: APFloat(A.getSemantics()), Sign: A);
15130 if (B.isNaN())
15131 B = APFloat::copySign(Value: APFloat(B.getSemantics()), Sign: B);
15132 if (C.isNaN())
15133 C = APFloat::copySign(Value: APFloat(C.getSemantics()), Sign: C);
15134 if (D.isNaN())
15135 D = APFloat::copySign(Value: APFloat(D.getSemantics()), Sign: D);
15136 Recalc = true;
15137 }
15138 if (Recalc) {
15139 ResR = APFloat::getInf(Sem: A.getSemantics()) * (A * C - B * D);
15140 ResI = APFloat::getInf(Sem: A.getSemantics()) * (A * D + B * C);
15141 }
15142 }
15143 }
15144 } else {
15145 ComplexValue LHS = Result;
15146 Result.getComplexIntReal() =
15147 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
15148 LHS.getComplexIntImag() * RHS.getComplexIntImag());
15149 Result.getComplexIntImag() =
15150 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
15151 LHS.getComplexIntImag() * RHS.getComplexIntReal());
15152 }
15153 break;
15154 case BO_Div:
15155 if (Result.isComplexFloat()) {
15156 // This is an implementation of complex division according to the
15157 // constraints laid out in C11 Annex G. The implementation uses the
15158 // following naming scheme:
15159 // (a + ib) / (c + id)
15160 ComplexValue LHS = Result;
15161 APFloat &A = LHS.getComplexFloatReal();
15162 APFloat &B = LHS.getComplexFloatImag();
15163 APFloat &C = RHS.getComplexFloatReal();
15164 APFloat &D = RHS.getComplexFloatImag();
15165 APFloat &ResR = Result.getComplexFloatReal();
15166 APFloat &ResI = Result.getComplexFloatImag();
15167 if (RHSReal) {
15168 ResR = A / C;
15169 ResI = B / C;
15170 } else {
15171 if (LHSReal) {
15172 // No real optimizations we can do here, stub out with zero.
15173 B = APFloat::getZero(Sem: A.getSemantics());
15174 }
15175 int DenomLogB = 0;
15176 APFloat MaxCD = maxnum(A: abs(X: C), B: abs(X: D));
15177 if (MaxCD.isFinite()) {
15178 DenomLogB = ilogb(Arg: MaxCD);
15179 C = scalbn(X: C, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven);
15180 D = scalbn(X: D, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven);
15181 }
15182 APFloat Denom = C * C + D * D;
15183 ResR = scalbn(X: (A * C + B * D) / Denom, Exp: -DenomLogB,
15184 RM: APFloat::rmNearestTiesToEven);
15185 ResI = scalbn(X: (B * C - A * D) / Denom, Exp: -DenomLogB,
15186 RM: APFloat::rmNearestTiesToEven);
15187 if (ResR.isNaN() && ResI.isNaN()) {
15188 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
15189 ResR = APFloat::getInf(Sem: ResR.getSemantics(), Negative: C.isNegative()) * A;
15190 ResI = APFloat::getInf(Sem: ResR.getSemantics(), Negative: C.isNegative()) * B;
15191 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
15192 D.isFinite()) {
15193 A = APFloat::copySign(
15194 Value: APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), Sign: A);
15195 B = APFloat::copySign(
15196 Value: APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), Sign: B);
15197 ResR = APFloat::getInf(Sem: ResR.getSemantics()) * (A * C + B * D);
15198 ResI = APFloat::getInf(Sem: ResI.getSemantics()) * (B * C - A * D);
15199 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
15200 C = APFloat::copySign(
15201 Value: APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), Sign: C);
15202 D = APFloat::copySign(
15203 Value: APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), Sign: D);
15204 ResR = APFloat::getZero(Sem: ResR.getSemantics()) * (A * C + B * D);
15205 ResI = APFloat::getZero(Sem: ResI.getSemantics()) * (B * C - A * D);
15206 }
15207 }
15208 }
15209 } else {
15210 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
15211 return Error(E, diag::note_expr_divide_by_zero);
15212
15213 ComplexValue LHS = Result;
15214 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
15215 RHS.getComplexIntImag() * RHS.getComplexIntImag();
15216 Result.getComplexIntReal() =
15217 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
15218 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
15219 Result.getComplexIntImag() =
15220 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
15221 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
15222 }
15223 break;
15224 }
15225
15226 return true;
15227}
15228
15229bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
15230 // Get the operand value into 'Result'.
15231 if (!Visit(E->getSubExpr()))
15232 return false;
15233
15234 switch (E->getOpcode()) {
15235 default:
15236 return Error(E);
15237 case UO_Extension:
15238 return true;
15239 case UO_Plus:
15240 // The result is always just the subexpr.
15241 return true;
15242 case UO_Minus:
15243 if (Result.isComplexFloat()) {
15244 Result.getComplexFloatReal().changeSign();
15245 Result.getComplexFloatImag().changeSign();
15246 }
15247 else {
15248 Result.getComplexIntReal() = -Result.getComplexIntReal();
15249 Result.getComplexIntImag() = -Result.getComplexIntImag();
15250 }
15251 return true;
15252 case UO_Not:
15253 if (Result.isComplexFloat())
15254 Result.getComplexFloatImag().changeSign();
15255 else
15256 Result.getComplexIntImag() = -Result.getComplexIntImag();
15257 return true;
15258 }
15259}
15260
15261bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
15262 if (E->getNumInits() == 2) {
15263 if (E->getType()->isComplexType()) {
15264 Result.makeComplexFloat();
15265 if (!EvaluateFloat(E: E->getInit(Init: 0), Result&: Result.FloatReal, Info))
15266 return false;
15267 if (!EvaluateFloat(E: E->getInit(Init: 1), Result&: Result.FloatImag, Info))
15268 return false;
15269 } else {
15270 Result.makeComplexInt();
15271 if (!EvaluateInteger(E: E->getInit(Init: 0), Result&: Result.IntReal, Info))
15272 return false;
15273 if (!EvaluateInteger(E: E->getInit(Init: 1), Result&: Result.IntImag, Info))
15274 return false;
15275 }
15276 return true;
15277 }
15278 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
15279}
15280
15281bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
15282 if (!IsConstantEvaluatedBuiltinCall(E))
15283 return ExprEvaluatorBaseTy::VisitCallExpr(E);
15284
15285 switch (E->getBuiltinCallee()) {
15286 case Builtin::BI__builtin_complex:
15287 Result.makeComplexFloat();
15288 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result&: Result.FloatReal, Info))
15289 return false;
15290 if (!EvaluateFloat(E: E->getArg(Arg: 1), Result&: Result.FloatImag, Info))
15291 return false;
15292 return true;
15293
15294 default:
15295 return false;
15296 }
15297}
15298
15299//===----------------------------------------------------------------------===//
15300// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
15301// implicit conversion.
15302//===----------------------------------------------------------------------===//
15303
15304namespace {
15305class AtomicExprEvaluator :
15306 public ExprEvaluatorBase<AtomicExprEvaluator> {
15307 const LValue *This;
15308 APValue &Result;
15309public:
15310 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
15311 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
15312
15313 bool Success(const APValue &V, const Expr *E) {
15314 Result = V;
15315 return true;
15316 }
15317
15318 bool ZeroInitialization(const Expr *E) {
15319 ImplicitValueInitExpr VIE(
15320 E->getType()->castAs<AtomicType>()->getValueType());
15321 // For atomic-qualified class (and array) types in C++, initialize the
15322 // _Atomic-wrapped subobject directly, in-place.
15323 return This ? EvaluateInPlace(Result, Info, *This, &VIE)
15324 : Evaluate(Result, Info, &VIE);
15325 }
15326
15327 bool VisitCastExpr(const CastExpr *E) {
15328 switch (E->getCastKind()) {
15329 default:
15330 return ExprEvaluatorBaseTy::VisitCastExpr(E);
15331 case CK_NullToPointer:
15332 VisitIgnoredValue(E: E->getSubExpr());
15333 return ZeroInitialization(E);
15334 case CK_NonAtomicToAtomic:
15335 return This ? EvaluateInPlace(Result, Info, This: *This, E: E->getSubExpr())
15336 : Evaluate(Result, Info, E: E->getSubExpr());
15337 }
15338 }
15339};
15340} // end anonymous namespace
15341
15342static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
15343 EvalInfo &Info) {
15344 assert(!E->isValueDependent());
15345 assert(E->isPRValue() && E->getType()->isAtomicType());
15346 return AtomicExprEvaluator(Info, This, Result).Visit(E);
15347}
15348
15349//===----------------------------------------------------------------------===//
15350// Void expression evaluation, primarily for a cast to void on the LHS of a
15351// comma operator
15352//===----------------------------------------------------------------------===//
15353
15354namespace {
15355class VoidExprEvaluator
15356 : public ExprEvaluatorBase<VoidExprEvaluator> {
15357public:
15358 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
15359
15360 bool Success(const APValue &V, const Expr *e) { return true; }
15361
15362 bool ZeroInitialization(const Expr *E) { return true; }
15363
15364 bool VisitCastExpr(const CastExpr *E) {
15365 switch (E->getCastKind()) {
15366 default:
15367 return ExprEvaluatorBaseTy::VisitCastExpr(E);
15368 case CK_ToVoid:
15369 VisitIgnoredValue(E: E->getSubExpr());
15370 return true;
15371 }
15372 }
15373
15374 bool VisitCallExpr(const CallExpr *E) {
15375 if (!IsConstantEvaluatedBuiltinCall(E))
15376 return ExprEvaluatorBaseTy::VisitCallExpr(E);
15377
15378 switch (E->getBuiltinCallee()) {
15379 case Builtin::BI__assume:
15380 case Builtin::BI__builtin_assume:
15381 // The argument is not evaluated!
15382 return true;
15383
15384 case Builtin::BI__builtin_operator_delete:
15385 return HandleOperatorDeleteCall(Info, E);
15386
15387 default:
15388 return false;
15389 }
15390 }
15391
15392 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
15393};
15394} // end anonymous namespace
15395
15396bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
15397 // We cannot speculatively evaluate a delete expression.
15398 if (Info.SpeculativeEvaluationDepth)
15399 return false;
15400
15401 FunctionDecl *OperatorDelete = E->getOperatorDelete();
15402 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
15403 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15404 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
15405 return false;
15406 }
15407
15408 const Expr *Arg = E->getArgument();
15409
15410 LValue Pointer;
15411 if (!EvaluatePointer(E: Arg, Result&: Pointer, Info))
15412 return false;
15413 if (Pointer.Designator.Invalid)
15414 return false;
15415
15416 // Deleting a null pointer has no effect.
15417 if (Pointer.isNullPointer()) {
15418 // This is the only case where we need to produce an extension warning:
15419 // the only other way we can succeed is if we find a dynamic allocation,
15420 // and we will have warned when we allocated it in that case.
15421 if (!Info.getLangOpts().CPlusPlus20)
15422 Info.CCEDiag(E, diag::note_constexpr_new);
15423 return true;
15424 }
15425
15426 std::optional<DynAlloc *> Alloc = CheckDeleteKind(
15427 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
15428 if (!Alloc)
15429 return false;
15430 QualType AllocType = Pointer.Base.getDynamicAllocType();
15431
15432 // For the non-array case, the designator must be empty if the static type
15433 // does not have a virtual destructor.
15434 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
15435 !hasVirtualDestructor(T: Arg->getType()->getPointeeType())) {
15436 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
15437 << Arg->getType()->getPointeeType() << AllocType;
15438 return false;
15439 }
15440
15441 // For a class type with a virtual destructor, the selected operator delete
15442 // is the one looked up when building the destructor.
15443 if (!E->isArrayForm() && !E->isGlobalDelete()) {
15444 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(T: AllocType);
15445 if (VirtualDelete &&
15446 !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
15447 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15448 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
15449 return false;
15450 }
15451 }
15452
15453 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
15454 (*Alloc)->Value, AllocType))
15455 return false;
15456
15457 if (!Info.HeapAllocs.erase(x: Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
15458 // The element was already erased. This means the destructor call also
15459 // deleted the object.
15460 // FIXME: This probably results in undefined behavior before we get this
15461 // far, and should be diagnosed elsewhere first.
15462 Info.FFDiag(E, diag::note_constexpr_double_delete);
15463 return false;
15464 }
15465
15466 return true;
15467}
15468
15469static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
15470 assert(!E->isValueDependent());
15471 assert(E->isPRValue() && E->getType()->isVoidType());
15472 return VoidExprEvaluator(Info).Visit(E);
15473}
15474
15475//===----------------------------------------------------------------------===//
15476// Top level Expr::EvaluateAsRValue method.
15477//===----------------------------------------------------------------------===//
15478
15479static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
15480 assert(!E->isValueDependent());
15481 // In C, function designators are not lvalues, but we evaluate them as if they
15482 // are.
15483 QualType T = E->getType();
15484 if (E->isGLValue() || T->isFunctionType()) {
15485 LValue LV;
15486 if (!EvaluateLValue(E, Result&: LV, Info))
15487 return false;
15488 LV.moveInto(V&: Result);
15489 } else if (T->isVectorType()) {
15490 if (!EvaluateVector(E, Result, Info))
15491 return false;
15492 } else if (T->isIntegralOrEnumerationType()) {
15493 if (!IntExprEvaluator(Info, Result).Visit(E))
15494 return false;
15495 } else if (T->hasPointerRepresentation()) {
15496 LValue LV;
15497 if (!EvaluatePointer(E, Result&: LV, Info))
15498 return false;
15499 LV.moveInto(V&: Result);
15500 } else if (T->isRealFloatingType()) {
15501 llvm::APFloat F(0.0);
15502 if (!EvaluateFloat(E, Result&: F, Info))
15503 return false;
15504 Result = APValue(F);
15505 } else if (T->isAnyComplexType()) {
15506 ComplexValue C;
15507 if (!EvaluateComplex(E, Result&: C, Info))
15508 return false;
15509 C.moveInto(v&: Result);
15510 } else if (T->isFixedPointType()) {
15511 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
15512 } else if (T->isMemberPointerType()) {
15513 MemberPtr P;
15514 if (!EvaluateMemberPointer(E, Result&: P, Info))
15515 return false;
15516 P.moveInto(V&: Result);
15517 return true;
15518 } else if (T->isArrayType()) {
15519 LValue LV;
15520 APValue &Value =
15521 Info.CurrentCall->createTemporary(Key: E, T, Scope: ScopeKind::FullExpression, LV);
15522 if (!EvaluateArray(E, This: LV, Result&: Value, Info))
15523 return false;
15524 Result = Value;
15525 } else if (T->isRecordType()) {
15526 LValue LV;
15527 APValue &Value =
15528 Info.CurrentCall->createTemporary(Key: E, T, Scope: ScopeKind::FullExpression, LV);
15529 if (!EvaluateRecord(E, This: LV, Result&: Value, Info))
15530 return false;
15531 Result = Value;
15532 } else if (T->isVoidType()) {
15533 if (!Info.getLangOpts().CPlusPlus11)
15534 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
15535 << E->getType();
15536 if (!EvaluateVoid(E, Info))
15537 return false;
15538 } else if (T->isAtomicType()) {
15539 QualType Unqual = T.getAtomicUnqualifiedType();
15540 if (Unqual->isArrayType() || Unqual->isRecordType()) {
15541 LValue LV;
15542 APValue &Value = Info.CurrentCall->createTemporary(
15543 Key: E, T: Unqual, Scope: ScopeKind::FullExpression, LV);
15544 if (!EvaluateAtomic(E, This: &LV, Result&: Value, Info))
15545 return false;
15546 Result = Value;
15547 } else {
15548 if (!EvaluateAtomic(E, This: nullptr, Result, Info))
15549 return false;
15550 }
15551 } else if (Info.getLangOpts().CPlusPlus11) {
15552 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
15553 return false;
15554 } else {
15555 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
15556 return false;
15557 }
15558
15559 return true;
15560}
15561
15562/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
15563/// cases, the in-place evaluation is essential, since later initializers for
15564/// an object can indirectly refer to subobjects which were initialized earlier.
15565static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
15566 const Expr *E, bool AllowNonLiteralTypes) {
15567 assert(!E->isValueDependent());
15568
15569 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, This: &This))
15570 return false;
15571
15572 if (E->isPRValue()) {
15573 // Evaluate arrays and record types in-place, so that later initializers can
15574 // refer to earlier-initialized members of the object.
15575 QualType T = E->getType();
15576 if (T->isArrayType())
15577 return EvaluateArray(E, This, Result, Info);
15578 else if (T->isRecordType())
15579 return EvaluateRecord(E, This, Result, Info);
15580 else if (T->isAtomicType()) {
15581 QualType Unqual = T.getAtomicUnqualifiedType();
15582 if (Unqual->isArrayType() || Unqual->isRecordType())
15583 return EvaluateAtomic(E, This: &This, Result, Info);
15584 }
15585 }
15586
15587 // For any other type, in-place evaluation is unimportant.
15588 return Evaluate(Result, Info, E);
15589}
15590
15591/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
15592/// lvalue-to-rvalue cast if it is an lvalue.
15593static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
15594 assert(!E->isValueDependent());
15595
15596 if (E->getType().isNull())
15597 return false;
15598
15599 if (!CheckLiteralType(Info, E))
15600 return false;
15601
15602 if (Info.EnableNewConstInterp) {
15603 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Parent&: Info, E, Result))
15604 return false;
15605 return CheckConstantExpression(Info, DiagLoc: E->getExprLoc(), Type: E->getType(), Value: Result,
15606 Kind: ConstantExprKind::Normal);
15607 }
15608
15609 if (!::Evaluate(Result, Info, E))
15610 return false;
15611
15612 // Implicit lvalue-to-rvalue cast.
15613 if (E->isGLValue()) {
15614 LValue LV;
15615 LV.setFrom(Ctx&: Info.Ctx, V: Result);
15616 if (!handleLValueToRValueConversion(Info, Conv: E, Type: E->getType(), LVal: LV, RVal&: Result))
15617 return false;
15618 }
15619
15620 // Check this core constant expression is a constant expression.
15621 return CheckConstantExpression(Info, DiagLoc: E->getExprLoc(), Type: E->getType(), Value: Result,
15622 Kind: ConstantExprKind::Normal) &&
15623 CheckMemoryLeaks(Info);
15624}
15625
15626static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
15627 const ASTContext &Ctx, bool &IsConst) {
15628 // Fast-path evaluations of integer literals, since we sometimes see files
15629 // containing vast quantities of these.
15630 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Val: Exp)) {
15631 Result.Val = APValue(APSInt(L->getValue(),
15632 L->getType()->isUnsignedIntegerType()));
15633 IsConst = true;
15634 return true;
15635 }
15636
15637 if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Val: Exp)) {
15638 Result.Val = APValue(APSInt(APInt(1, L->getValue())));
15639 IsConst = true;
15640 return true;
15641 }
15642
15643 if (const auto *CE = dyn_cast<ConstantExpr>(Val: Exp)) {
15644 if (CE->hasAPValueResult()) {
15645 Result.Val = CE->getAPValueResult();
15646 IsConst = true;
15647 return true;
15648 }
15649
15650 // The SubExpr is usually just an IntegerLiteral.
15651 return FastEvaluateAsRValue(CE->getSubExpr(), Result, Ctx, IsConst);
15652 }
15653
15654 // This case should be rare, but we need to check it before we check on
15655 // the type below.
15656 if (Exp->getType().isNull()) {
15657 IsConst = false;
15658 return true;
15659 }
15660
15661 return false;
15662}
15663
15664static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
15665 Expr::SideEffectsKind SEK) {
15666 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
15667 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
15668}
15669
15670static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
15671 const ASTContext &Ctx, EvalInfo &Info) {
15672 assert(!E->isValueDependent());
15673 bool IsConst;
15674 if (FastEvaluateAsRValue(Exp: E, Result, Ctx, IsConst))
15675 return IsConst;
15676
15677 return EvaluateAsRValue(Info, E, Result&: Result.Val);
15678}
15679
15680static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
15681 const ASTContext &Ctx,
15682 Expr::SideEffectsKind AllowSideEffects,
15683 EvalInfo &Info) {
15684 assert(!E->isValueDependent());
15685 if (!E->getType()->isIntegralOrEnumerationType())
15686 return false;
15687
15688 if (!::EvaluateAsRValue(E, Result&: ExprResult, Ctx, Info) ||
15689 !ExprResult.Val.isInt() ||
15690 hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects))
15691 return false;
15692
15693 return true;
15694}
15695
15696static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
15697 const ASTContext &Ctx,
15698 Expr::SideEffectsKind AllowSideEffects,
15699 EvalInfo &Info) {
15700 assert(!E->isValueDependent());
15701 if (!E->getType()->isFixedPointType())
15702 return false;
15703
15704 if (!::EvaluateAsRValue(E, Result&: ExprResult, Ctx, Info))
15705 return false;
15706
15707 if (!ExprResult.Val.isFixedPoint() ||
15708 hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects))
15709 return false;
15710
15711 return true;
15712}
15713
15714/// EvaluateAsRValue - Return true if this is a constant which we can fold using
15715/// any crazy technique (that has nothing to do with language standards) that
15716/// we want to. If this function returns true, it returns the folded constant
15717/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
15718/// will be applied to the result.
15719bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
15720 bool InConstantContext) const {
15721 assert(!isValueDependent() &&
15722 "Expression evaluator can't be called on a dependent expression.");
15723 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue");
15724 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15725 Info.InConstantContext = InConstantContext;
15726 return ::EvaluateAsRValue(E: this, Result, Ctx, Info);
15727}
15728
15729bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
15730 bool InConstantContext) const {
15731 assert(!isValueDependent() &&
15732 "Expression evaluator can't be called on a dependent expression.");
15733 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition");
15734 EvalResult Scratch;
15735 return EvaluateAsRValue(Result&: Scratch, Ctx, InConstantContext) &&
15736 HandleConversionToBool(Val: Scratch.Val, Result);
15737}
15738
15739bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
15740 SideEffectsKind AllowSideEffects,
15741 bool InConstantContext) const {
15742 assert(!isValueDependent() &&
15743 "Expression evaluator can't be called on a dependent expression.");
15744 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt");
15745 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15746 Info.InConstantContext = InConstantContext;
15747 return ::EvaluateAsInt(E: this, ExprResult&: Result, Ctx, AllowSideEffects, Info);
15748}
15749
15750bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
15751 SideEffectsKind AllowSideEffects,
15752 bool InConstantContext) const {
15753 assert(!isValueDependent() &&
15754 "Expression evaluator can't be called on a dependent expression.");
15755 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint");
15756 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15757 Info.InConstantContext = InConstantContext;
15758 return ::EvaluateAsFixedPoint(E: this, ExprResult&: Result, Ctx, AllowSideEffects, Info);
15759}
15760
15761bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
15762 SideEffectsKind AllowSideEffects,
15763 bool InConstantContext) const {
15764 assert(!isValueDependent() &&
15765 "Expression evaluator can't be called on a dependent expression.");
15766
15767 if (!getType()->isRealFloatingType())
15768 return false;
15769
15770 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat");
15771 EvalResult ExprResult;
15772 if (!EvaluateAsRValue(Result&: ExprResult, Ctx, InConstantContext) ||
15773 !ExprResult.Val.isFloat() ||
15774 hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects))
15775 return false;
15776
15777 Result = ExprResult.Val.getFloat();
15778 return true;
15779}
15780
15781bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
15782 bool InConstantContext) const {
15783 assert(!isValueDependent() &&
15784 "Expression evaluator can't be called on a dependent expression.");
15785
15786 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue");
15787 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
15788 Info.InConstantContext = InConstantContext;
15789 LValue LV;
15790 CheckedTemporaries CheckedTemps;
15791 if (!EvaluateLValue(E: this, Result&: LV, Info) || !Info.discardCleanups() ||
15792 Result.HasSideEffects ||
15793 !CheckLValueConstantExpression(Info, Loc: getExprLoc(),
15794 Type: Ctx.getLValueReferenceType(T: getType()), LVal: LV,
15795 Kind: ConstantExprKind::Normal, CheckedTemps))
15796 return false;
15797
15798 LV.moveInto(V&: Result.Val);
15799 return true;
15800}
15801
15802static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
15803 APValue DestroyedValue, QualType Type,
15804 SourceLocation Loc, Expr::EvalStatus &EStatus,
15805 bool IsConstantDestruction) {
15806 EvalInfo Info(Ctx, EStatus,
15807 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
15808 : EvalInfo::EM_ConstantFold);
15809 Info.setEvaluatingDecl(Base, Value&: DestroyedValue,
15810 EDK: EvalInfo::EvaluatingDeclKind::Dtor);
15811 Info.InConstantContext = IsConstantDestruction;
15812
15813 LValue LVal;
15814 LVal.set(B: Base);
15815
15816 if (!HandleDestruction(Info, Loc, LVBase: Base, Value&: DestroyedValue, T: Type) ||
15817 EStatus.HasSideEffects)
15818 return false;
15819
15820 if (!Info.discardCleanups())
15821 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15822
15823 return true;
15824}
15825
15826bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
15827 ConstantExprKind Kind) const {
15828 assert(!isValueDependent() &&
15829 "Expression evaluator can't be called on a dependent expression.");
15830 bool IsConst;
15831 if (FastEvaluateAsRValue(Exp: this, Result, Ctx, IsConst) && Result.Val.hasValue())
15832 return true;
15833
15834 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr");
15835 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
15836 EvalInfo Info(Ctx, Result, EM);
15837 Info.InConstantContext = true;
15838
15839 if (Info.EnableNewConstInterp) {
15840 if (!Info.Ctx.getInterpContext().evaluate(Parent&: Info, E: this, Result&: Result.Val))
15841 return false;
15842 return CheckConstantExpression(Info, DiagLoc: getExprLoc(),
15843 Type: getStorageType(Ctx, E: this), Value: Result.Val, Kind);
15844 }
15845
15846 // The type of the object we're initializing is 'const T' for a class NTTP.
15847 QualType T = getType();
15848 if (Kind == ConstantExprKind::ClassTemplateArgument)
15849 T.addConst();
15850
15851 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
15852 // represent the result of the evaluation. CheckConstantExpression ensures
15853 // this doesn't escape.
15854 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
15855 APValue::LValueBase Base(&BaseMTE);
15856 Info.setEvaluatingDecl(Base, Value&: Result.Val);
15857
15858 if (Info.EnableNewConstInterp) {
15859 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Parent&: Info, E: this, Result&: Result.Val))
15860 return false;
15861 } else {
15862 LValue LVal;
15863 LVal.set(B: Base);
15864 // C++23 [intro.execution]/p5
15865 // A full-expression is [...] a constant-expression
15866 // So we need to make sure temporary objects are destroyed after having
15867 // evaluating the expression (per C++23 [class.temporary]/p4).
15868 FullExpressionRAII Scope(Info);
15869 if (!::EvaluateInPlace(Result&: Result.Val, Info, This: LVal, E: this) ||
15870 Result.HasSideEffects || !Scope.destroy())
15871 return false;
15872
15873 if (!Info.discardCleanups())
15874 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15875 }
15876
15877 if (!CheckConstantExpression(Info, DiagLoc: getExprLoc(), Type: getStorageType(Ctx, E: this),
15878 Value: Result.Val, Kind))
15879 return false;
15880 if (!CheckMemoryLeaks(Info))
15881 return false;
15882
15883 // If this is a class template argument, it's required to have constant
15884 // destruction too.
15885 if (Kind == ConstantExprKind::ClassTemplateArgument &&
15886 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
15887 true) ||
15888 Result.HasSideEffects)) {
15889 // FIXME: Prefix a note to indicate that the problem is lack of constant
15890 // destruction.
15891 return false;
15892 }
15893
15894 return true;
15895}
15896
15897bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
15898 const VarDecl *VD,
15899 SmallVectorImpl<PartialDiagnosticAt> &Notes,
15900 bool IsConstantInitialization) const {
15901 assert(!isValueDependent() &&
15902 "Expression evaluator can't be called on a dependent expression.");
15903
15904 llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] {
15905 std::string Name;
15906 llvm::raw_string_ostream OS(Name);
15907 VD->printQualifiedName(OS);
15908 return Name;
15909 });
15910
15911 Expr::EvalStatus EStatus;
15912 EStatus.Diag = &Notes;
15913
15914 EvalInfo Info(Ctx, EStatus,
15915 (IsConstantInitialization &&
15916 (Ctx.getLangOpts().CPlusPlus || Ctx.getLangOpts().C23))
15917 ? EvalInfo::EM_ConstantExpression
15918 : EvalInfo::EM_ConstantFold);
15919 Info.setEvaluatingDecl(VD, Value);
15920 Info.InConstantContext = IsConstantInitialization;
15921
15922 SourceLocation DeclLoc = VD->getLocation();
15923 QualType DeclTy = VD->getType();
15924
15925 if (Info.EnableNewConstInterp) {
15926 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
15927 if (!InterpCtx.evaluateAsInitializer(Parent&: Info, VD, Result&: Value))
15928 return false;
15929
15930 return CheckConstantExpression(Info, DiagLoc: DeclLoc, Type: DeclTy, Value,
15931 Kind: ConstantExprKind::Normal);
15932 } else {
15933 LValue LVal;
15934 LVal.set(VD);
15935
15936 {
15937 // C++23 [intro.execution]/p5
15938 // A full-expression is ... an init-declarator ([dcl.decl]) or a
15939 // mem-initializer.
15940 // So we need to make sure temporary objects are destroyed after having
15941 // evaluated the expression (per C++23 [class.temporary]/p4).
15942 //
15943 // FIXME: Otherwise this may break test/Modules/pr68702.cpp because the
15944 // serialization code calls ParmVarDecl::getDefaultArg() which strips the
15945 // outermost FullExpr, such as ExprWithCleanups.
15946 FullExpressionRAII Scope(Info);
15947 if (!EvaluateInPlace(Result&: Value, Info, This: LVal, E: this,
15948 /*AllowNonLiteralTypes=*/true) ||
15949 EStatus.HasSideEffects)
15950 return false;
15951 }
15952
15953 // At this point, any lifetime-extended temporaries are completely
15954 // initialized.
15955 Info.performLifetimeExtension();
15956
15957 if (!Info.discardCleanups())
15958 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15959 }
15960
15961 return CheckConstantExpression(Info, DiagLoc: DeclLoc, Type: DeclTy, Value,
15962 Kind: ConstantExprKind::Normal) &&
15963 CheckMemoryLeaks(Info);
15964}
15965
15966bool VarDecl::evaluateDestruction(
15967 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15968 Expr::EvalStatus EStatus;
15969 EStatus.Diag = &Notes;
15970
15971 // Only treat the destruction as constant destruction if we formally have
15972 // constant initialization (or are usable in a constant expression).
15973 bool IsConstantDestruction = hasConstantInitialization();
15974
15975 // Make a copy of the value for the destructor to mutate, if we know it.
15976 // Otherwise, treat the value as default-initialized; if the destructor works
15977 // anyway, then the destruction is constant (and must be essentially empty).
15978 APValue DestroyedValue;
15979 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15980 DestroyedValue = *getEvaluatedValue();
15981 else if (!handleDefaultInitValue(getType(), DestroyedValue))
15982 return false;
15983
15984 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
15985 getType(), getLocation(), EStatus,
15986 IsConstantDestruction) ||
15987 EStatus.HasSideEffects)
15988 return false;
15989
15990 ensureEvaluatedStmt()->HasConstantDestruction = true;
15991 return true;
15992}
15993
15994/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15995/// constant folded, but discard the result.
15996bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
15997 assert(!isValueDependent() &&
15998 "Expression evaluator can't be called on a dependent expression.");
15999
16000 EvalResult Result;
16001 return EvaluateAsRValue(Result, Ctx, /* in constant context */ InConstantContext: true) &&
16002 !hasUnacceptableSideEffect(Result, SEK);
16003}
16004
16005APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
16006 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
16007 assert(!isValueDependent() &&
16008 "Expression evaluator can't be called on a dependent expression.");
16009
16010 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt");
16011 EvalResult EVResult;
16012 EVResult.Diag = Diag;
16013 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
16014 Info.InConstantContext = true;
16015
16016 bool Result = ::EvaluateAsRValue(E: this, Result&: EVResult, Ctx, Info);
16017 (void)Result;
16018 assert(Result && "Could not evaluate expression");
16019 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
16020
16021 return EVResult.Val.getInt();
16022}
16023
16024APSInt Expr::EvaluateKnownConstIntCheckOverflow(
16025 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
16026 assert(!isValueDependent() &&
16027 "Expression evaluator can't be called on a dependent expression.");
16028
16029 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow");
16030 EvalResult EVResult;
16031 EVResult.Diag = Diag;
16032 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
16033 Info.InConstantContext = true;
16034 Info.CheckingForUndefinedBehavior = true;
16035
16036 bool Result = ::EvaluateAsRValue(Info, E: this, Result&: EVResult.Val);
16037 (void)Result;
16038 assert(Result && "Could not evaluate expression");
16039 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
16040
16041 return EVResult.Val.getInt();
16042}
16043
16044void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
16045 assert(!isValueDependent() &&
16046 "Expression evaluator can't be called on a dependent expression.");
16047
16048 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow");
16049 bool IsConst;
16050 EvalResult EVResult;
16051 if (!FastEvaluateAsRValue(Exp: this, Result&: EVResult, Ctx, IsConst)) {
16052 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
16053 Info.CheckingForUndefinedBehavior = true;
16054 (void)::EvaluateAsRValue(Info, E: this, Result&: EVResult.Val);
16055 }
16056}
16057
16058bool Expr::EvalResult::isGlobalLValue() const {
16059 assert(Val.isLValue());
16060 return IsGlobalLValue(B: Val.getLValueBase());
16061}
16062
16063/// isIntegerConstantExpr - this recursive routine will test if an expression is
16064/// an integer constant expression.
16065
16066/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
16067/// comma, etc
16068
16069// CheckICE - This function does the fundamental ICE checking: the returned
16070// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
16071// and a (possibly null) SourceLocation indicating the location of the problem.
16072//
16073// Note that to reduce code duplication, this helper does no evaluation
16074// itself; the caller checks whether the expression is evaluatable, and
16075// in the rare cases where CheckICE actually cares about the evaluated
16076// value, it calls into Evaluate.
16077
16078namespace {
16079
16080enum ICEKind {
16081 /// This expression is an ICE.
16082 IK_ICE,
16083 /// This expression is not an ICE, but if it isn't evaluated, it's
16084 /// a legal subexpression for an ICE. This return value is used to handle
16085 /// the comma operator in C99 mode, and non-constant subexpressions.
16086 IK_ICEIfUnevaluated,
16087 /// This expression is not an ICE, and is not a legal subexpression for one.
16088 IK_NotICE
16089};
16090
16091struct ICEDiag {
16092 ICEKind Kind;
16093 SourceLocation Loc;
16094
16095 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
16096};
16097
16098}
16099
16100static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
16101
16102static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
16103
16104static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
16105 Expr::EvalResult EVResult;
16106 Expr::EvalStatus Status;
16107 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16108
16109 Info.InConstantContext = true;
16110 if (!::EvaluateAsRValue(E, Result&: EVResult, Ctx, Info) || EVResult.HasSideEffects ||
16111 !EVResult.Val.isInt())
16112 return ICEDiag(IK_NotICE, E->getBeginLoc());
16113
16114 return NoDiag();
16115}
16116
16117static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
16118 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
16119 if (!E->getType()->isIntegralOrEnumerationType())
16120 return ICEDiag(IK_NotICE, E->getBeginLoc());
16121
16122 switch (E->getStmtClass()) {
16123#define ABSTRACT_STMT(Node)
16124#define STMT(Node, Base) case Expr::Node##Class:
16125#define EXPR(Node, Base)
16126#include "clang/AST/StmtNodes.inc"
16127 case Expr::PredefinedExprClass:
16128 case Expr::FloatingLiteralClass:
16129 case Expr::ImaginaryLiteralClass:
16130 case Expr::StringLiteralClass:
16131 case Expr::ArraySubscriptExprClass:
16132 case Expr::MatrixSubscriptExprClass:
16133 case Expr::OMPArraySectionExprClass:
16134 case Expr::OMPArrayShapingExprClass:
16135 case Expr::OMPIteratorExprClass:
16136 case Expr::MemberExprClass:
16137 case Expr::CompoundAssignOperatorClass:
16138 case Expr::CompoundLiteralExprClass:
16139 case Expr::ExtVectorElementExprClass:
16140 case Expr::DesignatedInitExprClass:
16141 case Expr::ArrayInitLoopExprClass:
16142 case Expr::ArrayInitIndexExprClass:
16143 case Expr::NoInitExprClass:
16144 case Expr::DesignatedInitUpdateExprClass:
16145 case Expr::ImplicitValueInitExprClass:
16146 case Expr::ParenListExprClass:
16147 case Expr::VAArgExprClass:
16148 case Expr::AddrLabelExprClass:
16149 case Expr::StmtExprClass:
16150 case Expr::CXXMemberCallExprClass:
16151 case Expr::CUDAKernelCallExprClass:
16152 case Expr::CXXAddrspaceCastExprClass:
16153 case Expr::CXXDynamicCastExprClass:
16154 case Expr::CXXTypeidExprClass:
16155 case Expr::CXXUuidofExprClass:
16156 case Expr::MSPropertyRefExprClass:
16157 case Expr::MSPropertySubscriptExprClass:
16158 case Expr::CXXNullPtrLiteralExprClass:
16159 case Expr::UserDefinedLiteralClass:
16160 case Expr::CXXThisExprClass:
16161 case Expr::CXXThrowExprClass:
16162 case Expr::CXXNewExprClass:
16163 case Expr::CXXDeleteExprClass:
16164 case Expr::CXXPseudoDestructorExprClass:
16165 case Expr::UnresolvedLookupExprClass:
16166 case Expr::TypoExprClass:
16167 case Expr::RecoveryExprClass:
16168 case Expr::DependentScopeDeclRefExprClass:
16169 case Expr::CXXConstructExprClass:
16170 case Expr::CXXInheritedCtorInitExprClass:
16171 case Expr::CXXStdInitializerListExprClass:
16172 case Expr::CXXBindTemporaryExprClass:
16173 case Expr::ExprWithCleanupsClass:
16174 case Expr::CXXTemporaryObjectExprClass:
16175 case Expr::CXXUnresolvedConstructExprClass:
16176 case Expr::CXXDependentScopeMemberExprClass:
16177 case Expr::UnresolvedMemberExprClass:
16178 case Expr::ObjCStringLiteralClass:
16179 case Expr::ObjCBoxedExprClass:
16180 case Expr::ObjCArrayLiteralClass:
16181 case Expr::ObjCDictionaryLiteralClass:
16182 case Expr::ObjCEncodeExprClass:
16183 case Expr::ObjCMessageExprClass:
16184 case Expr::ObjCSelectorExprClass:
16185 case Expr::ObjCProtocolExprClass:
16186 case Expr::ObjCIvarRefExprClass:
16187 case Expr::ObjCPropertyRefExprClass:
16188 case Expr::ObjCSubscriptRefExprClass:
16189 case Expr::ObjCIsaExprClass:
16190 case Expr::ObjCAvailabilityCheckExprClass:
16191 case Expr::ShuffleVectorExprClass:
16192 case Expr::ConvertVectorExprClass:
16193 case Expr::BlockExprClass:
16194 case Expr::NoStmtClass:
16195 case Expr::OpaqueValueExprClass:
16196 case Expr::PackExpansionExprClass:
16197 case Expr::SubstNonTypeTemplateParmPackExprClass:
16198 case Expr::FunctionParmPackExprClass:
16199 case Expr::AsTypeExprClass:
16200 case Expr::ObjCIndirectCopyRestoreExprClass:
16201 case Expr::MaterializeTemporaryExprClass:
16202 case Expr::PseudoObjectExprClass:
16203 case Expr::AtomicExprClass:
16204 case Expr::LambdaExprClass:
16205 case Expr::CXXFoldExprClass:
16206 case Expr::CoawaitExprClass:
16207 case Expr::DependentCoawaitExprClass:
16208 case Expr::CoyieldExprClass:
16209 case Expr::SYCLUniqueStableNameExprClass:
16210 case Expr::CXXParenListInitExprClass:
16211 return ICEDiag(IK_NotICE, E->getBeginLoc());
16212
16213 case Expr::InitListExprClass: {
16214 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
16215 // form "T x = { a };" is equivalent to "T x = a;".
16216 // Unless we're initializing a reference, T is a scalar as it is known to be
16217 // of integral or enumeration type.
16218 if (E->isPRValue())
16219 if (cast<InitListExpr>(E)->getNumInits() == 1)
16220 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
16221 return ICEDiag(IK_NotICE, E->getBeginLoc());
16222 }
16223
16224 case Expr::SizeOfPackExprClass:
16225 case Expr::GNUNullExprClass:
16226 case Expr::SourceLocExprClass:
16227 return NoDiag();
16228
16229 case Expr::PackIndexingExprClass:
16230 return CheckICE(cast<PackIndexingExpr>(E)->getSelectedExpr(), Ctx);
16231
16232 case Expr::SubstNonTypeTemplateParmExprClass:
16233 return
16234 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
16235
16236 case Expr::ConstantExprClass:
16237 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
16238
16239 case Expr::ParenExprClass:
16240 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
16241 case Expr::GenericSelectionExprClass:
16242 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
16243 case Expr::IntegerLiteralClass:
16244 case Expr::FixedPointLiteralClass:
16245 case Expr::CharacterLiteralClass:
16246 case Expr::ObjCBoolLiteralExprClass:
16247 case Expr::CXXBoolLiteralExprClass:
16248 case Expr::CXXScalarValueInitExprClass:
16249 case Expr::TypeTraitExprClass:
16250 case Expr::ConceptSpecializationExprClass:
16251 case Expr::RequiresExprClass:
16252 case Expr::ArrayTypeTraitExprClass:
16253 case Expr::ExpressionTraitExprClass:
16254 case Expr::CXXNoexceptExprClass:
16255 return NoDiag();
16256 case Expr::CallExprClass:
16257 case Expr::CXXOperatorCallExprClass: {
16258 // C99 6.6/3 allows function calls within unevaluated subexpressions of
16259 // constant expressions, but they can never be ICEs because an ICE cannot
16260 // contain an operand of (pointer to) function type.
16261 const CallExpr *CE = cast<CallExpr>(E);
16262 if (CE->getBuiltinCallee())
16263 return CheckEvalInICE(E, Ctx);
16264 return ICEDiag(IK_NotICE, E->getBeginLoc());
16265 }
16266 case Expr::CXXRewrittenBinaryOperatorClass:
16267 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
16268 Ctx);
16269 case Expr::DeclRefExprClass: {
16270 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
16271 if (isa<EnumConstantDecl>(D))
16272 return NoDiag();
16273
16274 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
16275 // integer variables in constant expressions:
16276 //
16277 // C++ 7.1.5.1p2
16278 // A variable of non-volatile const-qualified integral or enumeration
16279 // type initialized by an ICE can be used in ICEs.
16280 //
16281 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
16282 // that mode, use of reference variables should not be allowed.
16283 const VarDecl *VD = dyn_cast<VarDecl>(D);
16284 if (VD && VD->isUsableInConstantExpressions(C: Ctx) &&
16285 !VD->getType()->isReferenceType())
16286 return NoDiag();
16287
16288 return ICEDiag(IK_NotICE, E->getBeginLoc());
16289 }
16290 case Expr::UnaryOperatorClass: {
16291 const UnaryOperator *Exp = cast<UnaryOperator>(E);
16292 switch (Exp->getOpcode()) {
16293 case UO_PostInc:
16294 case UO_PostDec:
16295 case UO_PreInc:
16296 case UO_PreDec:
16297 case UO_AddrOf:
16298 case UO_Deref:
16299 case UO_Coawait:
16300 // C99 6.6/3 allows increment and decrement within unevaluated
16301 // subexpressions of constant expressions, but they can never be ICEs
16302 // because an ICE cannot contain an lvalue operand.
16303 return ICEDiag(IK_NotICE, E->getBeginLoc());
16304 case UO_Extension:
16305 case UO_LNot:
16306 case UO_Plus:
16307 case UO_Minus:
16308 case UO_Not:
16309 case UO_Real:
16310 case UO_Imag:
16311 return CheckICE(E: Exp->getSubExpr(), Ctx);
16312 }
16313 llvm_unreachable("invalid unary operator class");
16314 }
16315 case Expr::OffsetOfExprClass: {
16316 // Note that per C99, offsetof must be an ICE. And AFAIK, using
16317 // EvaluateAsRValue matches the proposed gcc behavior for cases like
16318 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
16319 // compliance: we should warn earlier for offsetof expressions with
16320 // array subscripts that aren't ICEs, and if the array subscripts
16321 // are ICEs, the value of the offsetof must be an integer constant.
16322 return CheckEvalInICE(E, Ctx);
16323 }
16324 case Expr::UnaryExprOrTypeTraitExprClass: {
16325 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
16326 if ((Exp->getKind() == UETT_SizeOf) &&
16327 Exp->getTypeOfArgument()->isVariableArrayType())
16328 return ICEDiag(IK_NotICE, E->getBeginLoc());
16329 return NoDiag();
16330 }
16331 case Expr::BinaryOperatorClass: {
16332 const BinaryOperator *Exp = cast<BinaryOperator>(E);
16333 switch (Exp->getOpcode()) {
16334 case BO_PtrMemD:
16335 case BO_PtrMemI:
16336 case BO_Assign:
16337 case BO_MulAssign:
16338 case BO_DivAssign:
16339 case BO_RemAssign:
16340 case BO_AddAssign:
16341 case BO_SubAssign:
16342 case BO_ShlAssign:
16343 case BO_ShrAssign:
16344 case BO_AndAssign:
16345 case BO_XorAssign:
16346 case BO_OrAssign:
16347 // C99 6.6/3 allows assignments within unevaluated subexpressions of
16348 // constant expressions, but they can never be ICEs because an ICE cannot
16349 // contain an lvalue operand.
16350 return ICEDiag(IK_NotICE, E->getBeginLoc());
16351
16352 case BO_Mul:
16353 case BO_Div:
16354 case BO_Rem:
16355 case BO_Add:
16356 case BO_Sub:
16357 case BO_Shl:
16358 case BO_Shr:
16359 case BO_LT:
16360 case BO_GT:
16361 case BO_LE:
16362 case BO_GE:
16363 case BO_EQ:
16364 case BO_NE:
16365 case BO_And:
16366 case BO_Xor:
16367 case BO_Or:
16368 case BO_Comma:
16369 case BO_Cmp: {
16370 ICEDiag LHSResult = CheckICE(E: Exp->getLHS(), Ctx);
16371 ICEDiag RHSResult = CheckICE(E: Exp->getRHS(), Ctx);
16372 if (Exp->getOpcode() == BO_Div ||
16373 Exp->getOpcode() == BO_Rem) {
16374 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
16375 // we don't evaluate one.
16376 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
16377 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
16378 if (REval == 0)
16379 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16380 if (REval.isSigned() && REval.isAllOnes()) {
16381 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
16382 if (LEval.isMinSignedValue())
16383 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16384 }
16385 }
16386 }
16387 if (Exp->getOpcode() == BO_Comma) {
16388 if (Ctx.getLangOpts().C99) {
16389 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
16390 // if it isn't evaluated.
16391 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
16392 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16393 } else {
16394 // In both C89 and C++, commas in ICEs are illegal.
16395 return ICEDiag(IK_NotICE, E->getBeginLoc());
16396 }
16397 }
16398 return Worst(A: LHSResult, B: RHSResult);
16399 }
16400 case BO_LAnd:
16401 case BO_LOr: {
16402 ICEDiag LHSResult = CheckICE(E: Exp->getLHS(), Ctx);
16403 ICEDiag RHSResult = CheckICE(E: Exp->getRHS(), Ctx);
16404 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
16405 // Rare case where the RHS has a comma "side-effect"; we need
16406 // to actually check the condition to see whether the side
16407 // with the comma is evaluated.
16408 if ((Exp->getOpcode() == BO_LAnd) !=
16409 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
16410 return RHSResult;
16411 return NoDiag();
16412 }
16413
16414 return Worst(A: LHSResult, B: RHSResult);
16415 }
16416 }
16417 llvm_unreachable("invalid binary operator kind");
16418 }
16419 case Expr::ImplicitCastExprClass:
16420 case Expr::CStyleCastExprClass:
16421 case Expr::CXXFunctionalCastExprClass:
16422 case Expr::CXXStaticCastExprClass:
16423 case Expr::CXXReinterpretCastExprClass:
16424 case Expr::CXXConstCastExprClass:
16425 case Expr::ObjCBridgedCastExprClass: {
16426 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
16427 if (isa<ExplicitCastExpr>(E)) {
16428 if (const FloatingLiteral *FL
16429 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
16430 unsigned DestWidth = Ctx.getIntWidth(T: E->getType());
16431 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
16432 APSInt IgnoredVal(DestWidth, !DestSigned);
16433 bool Ignored;
16434 // If the value does not fit in the destination type, the behavior is
16435 // undefined, so we are not required to treat it as a constant
16436 // expression.
16437 if (FL->getValue().convertToInteger(Result&: IgnoredVal,
16438 RM: llvm::APFloat::rmTowardZero,
16439 IsExact: &Ignored) & APFloat::opInvalidOp)
16440 return ICEDiag(IK_NotICE, E->getBeginLoc());
16441 return NoDiag();
16442 }
16443 }
16444 switch (cast<CastExpr>(E)->getCastKind()) {
16445 case CK_LValueToRValue:
16446 case CK_AtomicToNonAtomic:
16447 case CK_NonAtomicToAtomic:
16448 case CK_NoOp:
16449 case CK_IntegralToBoolean:
16450 case CK_IntegralCast:
16451 return CheckICE(E: SubExpr, Ctx);
16452 default:
16453 return ICEDiag(IK_NotICE, E->getBeginLoc());
16454 }
16455 }
16456 case Expr::BinaryConditionalOperatorClass: {
16457 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
16458 ICEDiag CommonResult = CheckICE(E: Exp->getCommon(), Ctx);
16459 if (CommonResult.Kind == IK_NotICE) return CommonResult;
16460 ICEDiag FalseResult = CheckICE(E: Exp->getFalseExpr(), Ctx);
16461 if (FalseResult.Kind == IK_NotICE) return FalseResult;
16462 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
16463 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
16464 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
16465 return FalseResult;
16466 }
16467 case Expr::ConditionalOperatorClass: {
16468 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
16469 // If the condition (ignoring parens) is a __builtin_constant_p call,
16470 // then only the true side is actually considered in an integer constant
16471 // expression, and it is fully evaluated. This is an important GNU
16472 // extension. See GCC PR38377 for discussion.
16473 if (const CallExpr *CallCE
16474 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
16475 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
16476 return CheckEvalInICE(E, Ctx);
16477 ICEDiag CondResult = CheckICE(E: Exp->getCond(), Ctx);
16478 if (CondResult.Kind == IK_NotICE)
16479 return CondResult;
16480
16481 ICEDiag TrueResult = CheckICE(E: Exp->getTrueExpr(), Ctx);
16482 ICEDiag FalseResult = CheckICE(E: Exp->getFalseExpr(), Ctx);
16483
16484 if (TrueResult.Kind == IK_NotICE)
16485 return TrueResult;
16486 if (FalseResult.Kind == IK_NotICE)
16487 return FalseResult;
16488 if (CondResult.Kind == IK_ICEIfUnevaluated)
16489 return CondResult;
16490 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
16491 return NoDiag();
16492 // Rare case where the diagnostics depend on which side is evaluated
16493 // Note that if we get here, CondResult is 0, and at least one of
16494 // TrueResult and FalseResult is non-zero.
16495 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
16496 return FalseResult;
16497 return TrueResult;
16498 }
16499 case Expr::CXXDefaultArgExprClass:
16500 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
16501 case Expr::CXXDefaultInitExprClass:
16502 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
16503 case Expr::ChooseExprClass: {
16504 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
16505 }
16506 case Expr::BuiltinBitCastExprClass: {
16507 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
16508 return ICEDiag(IK_NotICE, E->getBeginLoc());
16509 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
16510 }
16511 }
16512
16513 llvm_unreachable("Invalid StmtClass!");
16514}
16515
16516/// Evaluate an expression as a C++11 integral constant expression.
16517static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
16518 const Expr *E,
16519 llvm::APSInt *Value,
16520 SourceLocation *Loc) {
16521 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16522 if (Loc) *Loc = E->getExprLoc();
16523 return false;
16524 }
16525
16526 APValue Result;
16527 if (!E->isCXX11ConstantExpr(Ctx, Result: &Result, Loc))
16528 return false;
16529
16530 if (!Result.isInt()) {
16531 if (Loc) *Loc = E->getExprLoc();
16532 return false;
16533 }
16534
16535 if (Value) *Value = Result.getInt();
16536 return true;
16537}
16538
16539bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
16540 SourceLocation *Loc) const {
16541 assert(!isValueDependent() &&
16542 "Expression evaluator can't be called on a dependent expression.");
16543
16544 ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr");
16545
16546 if (Ctx.getLangOpts().CPlusPlus11)
16547 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, E: this, Value: nullptr, Loc);
16548
16549 ICEDiag D = CheckICE(E: this, Ctx);
16550 if (D.Kind != IK_ICE) {
16551 if (Loc) *Loc = D.Loc;
16552 return false;
16553 }
16554 return true;
16555}
16556
16557std::optional<llvm::APSInt>
16558Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc) const {
16559 if (isValueDependent()) {
16560 // Expression evaluator can't succeed on a dependent expression.
16561 return std::nullopt;
16562 }
16563
16564 APSInt Value;
16565
16566 if (Ctx.getLangOpts().CPlusPlus11) {
16567 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, E: this, Value: &Value, Loc))
16568 return Value;
16569 return std::nullopt;
16570 }
16571
16572 if (!isIntegerConstantExpr(Ctx, Loc))
16573 return std::nullopt;
16574
16575 // The only possible side-effects here are due to UB discovered in the
16576 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
16577 // required to treat the expression as an ICE, so we produce the folded
16578 // value.
16579 EvalResult ExprResult;
16580 Expr::EvalStatus Status;
16581 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
16582 Info.InConstantContext = true;
16583
16584 if (!::EvaluateAsInt(E: this, ExprResult, Ctx, AllowSideEffects: SE_AllowSideEffects, Info))
16585 llvm_unreachable("ICE cannot be evaluated!");
16586
16587 return ExprResult.Val.getInt();
16588}
16589
16590bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
16591 assert(!isValueDependent() &&
16592 "Expression evaluator can't be called on a dependent expression.");
16593
16594 return CheckICE(E: this, Ctx).Kind == IK_ICE;
16595}
16596
16597bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
16598 SourceLocation *Loc) const {
16599 assert(!isValueDependent() &&
16600 "Expression evaluator can't be called on a dependent expression.");
16601
16602 // We support this checking in C++98 mode in order to diagnose compatibility
16603 // issues.
16604 assert(Ctx.getLangOpts().CPlusPlus);
16605
16606 // Build evaluation settings.
16607 Expr::EvalStatus Status;
16608 SmallVector<PartialDiagnosticAt, 8> Diags;
16609 Status.Diag = &Diags;
16610 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16611
16612 APValue Scratch;
16613 bool IsConstExpr =
16614 ::EvaluateAsRValue(Info, E: this, Result&: Result ? *Result : Scratch) &&
16615 // FIXME: We don't produce a diagnostic for this, but the callers that
16616 // call us on arbitrary full-expressions should generally not care.
16617 Info.discardCleanups() && !Status.HasSideEffects;
16618
16619 if (!Diags.empty()) {
16620 IsConstExpr = false;
16621 if (Loc) *Loc = Diags[0].first;
16622 } else if (!IsConstExpr) {
16623 // FIXME: This shouldn't happen.
16624 if (Loc) *Loc = getExprLoc();
16625 }
16626
16627 return IsConstExpr;
16628}
16629
16630bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
16631 const FunctionDecl *Callee,
16632 ArrayRef<const Expr*> Args,
16633 const Expr *This) const {
16634 assert(!isValueDependent() &&
16635 "Expression evaluator can't be called on a dependent expression.");
16636
16637 llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] {
16638 std::string Name;
16639 llvm::raw_string_ostream OS(Name);
16640 Callee->getNameForDiagnostic(OS, Policy: Ctx.getPrintingPolicy(),
16641 /*Qualified=*/true);
16642 return Name;
16643 });
16644
16645 Expr::EvalStatus Status;
16646 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
16647 Info.InConstantContext = true;
16648
16649 LValue ThisVal;
16650 const LValue *ThisPtr = nullptr;
16651 if (This) {
16652#ifndef NDEBUG
16653 auto *MD = dyn_cast<CXXMethodDecl>(Val: Callee);
16654 assert(MD && "Don't provide `this` for non-methods.");
16655 assert(MD->isImplicitObjectMemberFunction() &&
16656 "Don't provide `this` for methods without an implicit object.");
16657#endif
16658 if (!This->isValueDependent() &&
16659 EvaluateObjectArgument(Info, Object: This, This&: ThisVal) &&
16660 !Info.EvalStatus.HasSideEffects)
16661 ThisPtr = &ThisVal;
16662
16663 // Ignore any side-effects from a failed evaluation. This is safe because
16664 // they can't interfere with any other argument evaluation.
16665 Info.EvalStatus.HasSideEffects = false;
16666 }
16667
16668 CallRef Call = Info.CurrentCall->createCall(Callee);
16669 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
16670 I != E; ++I) {
16671 unsigned Idx = I - Args.begin();
16672 if (Idx >= Callee->getNumParams())
16673 break;
16674 const ParmVarDecl *PVD = Callee->getParamDecl(i: Idx);
16675 if ((*I)->isValueDependent() ||
16676 !EvaluateCallArg(PVD, Arg: *I, Call, Info) ||
16677 Info.EvalStatus.HasSideEffects) {
16678 // If evaluation fails, throw away the argument entirely.
16679 if (APValue *Slot = Info.getParamSlot(Call, PVD))
16680 *Slot = APValue();
16681 }
16682
16683 // Ignore any side-effects from a failed evaluation. This is safe because
16684 // they can't interfere with any other argument evaluation.
16685 Info.EvalStatus.HasSideEffects = false;
16686 }
16687
16688 // Parameter cleanups happen in the caller and are not part of this
16689 // evaluation.
16690 Info.discardCleanups();
16691 Info.EvalStatus.HasSideEffects = false;
16692
16693 // Build fake call to Callee.
16694 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This,
16695 Call);
16696 // FIXME: Missing ExprWithCleanups in enable_if conditions?
16697 FullExpressionRAII Scope(Info);
16698 return Evaluate(Result&: Value, Info, E: this) && Scope.destroy() &&
16699 !Info.EvalStatus.HasSideEffects;
16700}
16701
16702bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
16703 SmallVectorImpl<
16704 PartialDiagnosticAt> &Diags) {
16705 // FIXME: It would be useful to check constexpr function templates, but at the
16706 // moment the constant expression evaluator cannot cope with the non-rigorous
16707 // ASTs which we build for dependent expressions.
16708 if (FD->isDependentContext())
16709 return true;
16710
16711 llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] {
16712 std::string Name;
16713 llvm::raw_string_ostream OS(Name);
16714 FD->getNameForDiagnostic(OS, Policy: FD->getASTContext().getPrintingPolicy(),
16715 /*Qualified=*/true);
16716 return Name;
16717 });
16718
16719 Expr::EvalStatus Status;
16720 Status.Diag = &Diags;
16721
16722 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
16723 Info.InConstantContext = true;
16724 Info.CheckingPotentialConstantExpression = true;
16725
16726 // The constexpr VM attempts to compile all methods to bytecode here.
16727 if (Info.EnableNewConstInterp) {
16728 Info.Ctx.getInterpContext().isPotentialConstantExpr(Parent&: Info, FnDecl: FD);
16729 return Diags.empty();
16730 }
16731
16732 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD);
16733 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
16734
16735 // Fabricate an arbitrary expression on the stack and pretend that it
16736 // is a temporary being used as the 'this' pointer.
16737 LValue This;
16738 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
16739 This.set({&VIE, Info.CurrentCall->Index});
16740
16741 ArrayRef<const Expr*> Args;
16742
16743 APValue Scratch;
16744 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: FD)) {
16745 // Evaluate the call as a constant initializer, to allow the construction
16746 // of objects of non-literal types.
16747 Info.setEvaluatingDecl(Base: This.getLValueBase(), Value&: Scratch);
16748 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
16749 } else {
16750 SourceLocation Loc = FD->getLocation();
16751 HandleFunctionCall(
16752 Loc, FD, (MD && MD->isImplicitObjectMemberFunction()) ? &This : nullptr,
16753 &VIE, Args, CallRef(), FD->getBody(), Info, Scratch,
16754 /*ResultSlot=*/nullptr);
16755 }
16756
16757 return Diags.empty();
16758}
16759
16760bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
16761 const FunctionDecl *FD,
16762 SmallVectorImpl<
16763 PartialDiagnosticAt> &Diags) {
16764 assert(!E->isValueDependent() &&
16765 "Expression evaluator can't be called on a dependent expression.");
16766
16767 Expr::EvalStatus Status;
16768 Status.Diag = &Diags;
16769
16770 EvalInfo Info(FD->getASTContext(), Status,
16771 EvalInfo::EM_ConstantExpressionUnevaluated);
16772 Info.InConstantContext = true;
16773 Info.CheckingPotentialConstantExpression = true;
16774
16775 // Fabricate a call stack frame to give the arguments a plausible cover story.
16776 CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr,
16777 /*CallExpr=*/nullptr, CallRef());
16778
16779 APValue ResultScratch;
16780 Evaluate(Result&: ResultScratch, Info, E);
16781 return Diags.empty();
16782}
16783
16784bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
16785 unsigned Type) const {
16786 if (!getType()->isPointerType())
16787 return false;
16788
16789 Expr::EvalStatus Status;
16790 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16791 return tryEvaluateBuiltinObjectSize(E: this, Type, Info, Size&: Result);
16792}
16793
16794static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
16795 EvalInfo &Info) {
16796 if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
16797 return false;
16798
16799 LValue String;
16800
16801 if (!EvaluatePointer(E, Result&: String, Info))
16802 return false;
16803
16804 QualType CharTy = E->getType()->getPointeeType();
16805
16806 // Fast path: if it's a string literal, search the string value.
16807 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
16808 Val: String.getLValueBase().dyn_cast<const Expr *>())) {
16809 StringRef Str = S->getBytes();
16810 int64_t Off = String.Offset.getQuantity();
16811 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
16812 S->getCharByteWidth() == 1 &&
16813 // FIXME: Add fast-path for wchar_t too.
16814 Info.Ctx.hasSameUnqualifiedType(T1: CharTy, T2: Info.Ctx.CharTy)) {
16815 Str = Str.substr(Start: Off);
16816
16817 StringRef::size_type Pos = Str.find(C: 0);
16818 if (Pos != StringRef::npos)
16819 Str = Str.substr(Start: 0, N: Pos);
16820
16821 Result = Str.size();
16822 return true;
16823 }
16824
16825 // Fall through to slow path.
16826 }
16827
16828 // Slow path: scan the bytes of the string looking for the terminating 0.
16829 for (uint64_t Strlen = 0; /**/; ++Strlen) {
16830 APValue Char;
16831 if (!handleLValueToRValueConversion(Info, Conv: E, Type: CharTy, LVal: String, RVal&: Char) ||
16832 !Char.isInt())
16833 return false;
16834 if (!Char.getInt()) {
16835 Result = Strlen;
16836 return true;
16837 }
16838 if (!HandleLValueArrayAdjustment(Info, E, LVal&: String, EltTy: CharTy, Adjustment: 1))
16839 return false;
16840 }
16841}
16842
16843bool Expr::EvaluateCharRangeAsString(std::string &Result,
16844 const Expr *SizeExpression,
16845 const Expr *PtrExpression, ASTContext &Ctx,
16846 EvalResult &Status) const {
16847 LValue String;
16848 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16849 Info.InConstantContext = true;
16850
16851 FullExpressionRAII Scope(Info);
16852 APSInt SizeValue;
16853 if (!::EvaluateInteger(E: SizeExpression, Result&: SizeValue, Info))
16854 return false;
16855
16856 uint64_t Size = SizeValue.getZExtValue();
16857
16858 if (!::EvaluatePointer(E: PtrExpression, Result&: String, Info))
16859 return false;
16860
16861 QualType CharTy = PtrExpression->getType()->getPointeeType();
16862 for (uint64_t I = 0; I < Size; ++I) {
16863 APValue Char;
16864 if (!handleLValueToRValueConversion(Info, Conv: PtrExpression, Type: CharTy, LVal: String,
16865 RVal&: Char))
16866 return false;
16867
16868 APSInt C = Char.getInt();
16869 Result.push_back(c: static_cast<char>(C.getExtValue()));
16870 if (!HandleLValueArrayAdjustment(Info, E: PtrExpression, LVal&: String, EltTy: CharTy, Adjustment: 1))
16871 return false;
16872 }
16873 if (!Scope.destroy())
16874 return false;
16875
16876 if (!CheckMemoryLeaks(Info))
16877 return false;
16878
16879 return true;
16880}
16881
16882bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
16883 Expr::EvalStatus Status;
16884 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16885 return EvaluateBuiltinStrLen(E: this, Result, Info);
16886}
16887

source code of clang/lib/AST/ExprConstant.cpp