1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr constant evaluator.
10//
11// Constant expression evaluation produces four main results:
12//
13// * A success/failure flag indicating whether constant folding was successful.
14// This is the 'bool' return value used by most of the code in this file. A
15// 'false' return value indicates that constant folding has failed, and any
16// appropriate diagnostic has already been produced.
17//
18// * An evaluated result, valid only if constant folding has not failed.
19//
20// * A flag indicating if evaluation encountered (unevaluated) side-effects.
21// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22// where it is possible to determine the evaluated result regardless.
23//
24// * A set of notes indicating why the evaluation was not a constant expression
25// (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26// too, why the expression could not be folded.
27//
28// If we are checking for a potential constant expression, failure to constant
29// fold a potential constant sub-expression will be indicated by a 'false'
30// return value (the expression could not be folded) and no diagnostic (the
31// expression is not necessarily non-constant).
32//
33//===----------------------------------------------------------------------===//
34
35#include "ByteCode/Context.h"
36#include "ByteCode/Frame.h"
37#include "ByteCode/State.h"
38#include "ExprConstShared.h"
39#include "clang/AST/APValue.h"
40#include "clang/AST/ASTContext.h"
41#include "clang/AST/ASTLambda.h"
42#include "clang/AST/Attr.h"
43#include "clang/AST/CXXInheritance.h"
44#include "clang/AST/CharUnits.h"
45#include "clang/AST/CurrentSourceLocExprScope.h"
46#include "clang/AST/Expr.h"
47#include "clang/AST/OSLog.h"
48#include "clang/AST/OptionalDiagnostic.h"
49#include "clang/AST/RecordLayout.h"
50#include "clang/AST/StmtVisitor.h"
51#include "clang/AST/TypeLoc.h"
52#include "clang/Basic/Builtins.h"
53#include "clang/Basic/DiagnosticSema.h"
54#include "clang/Basic/TargetBuiltins.h"
55#include "clang/Basic/TargetInfo.h"
56#include "llvm/ADT/APFixedPoint.h"
57#include "llvm/ADT/Sequence.h"
58#include "llvm/ADT/SmallBitVector.h"
59#include "llvm/ADT/StringExtras.h"
60#include "llvm/Support/Casting.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/SaveAndRestore.h"
63#include "llvm/Support/SipHash.h"
64#include "llvm/Support/TimeProfiler.h"
65#include "llvm/Support/raw_ostream.h"
66#include <cstring>
67#include <functional>
68#include <optional>
69
70#define DEBUG_TYPE "exprconstant"
71
72using namespace clang;
73using llvm::APFixedPoint;
74using llvm::APInt;
75using llvm::APSInt;
76using llvm::APFloat;
77using llvm::FixedPointSemantics;
78
79namespace {
80 struct LValue;
81 class CallStackFrame;
82 class EvalInfo;
83
84 using SourceLocExprScopeGuard =
85 CurrentSourceLocExprScope::SourceLocExprScopeGuard;
86
87 static QualType getType(APValue::LValueBase B) {
88 return B.getType();
89 }
90
91 /// Get an LValue path entry, which is known to not be an array index, as a
92 /// field declaration.
93 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
94 return dyn_cast_or_null<FieldDecl>(Val: E.getAsBaseOrMember().getPointer());
95 }
96 /// Get an LValue path entry, which is known to not be an array index, as a
97 /// base class declaration.
98 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
99 return dyn_cast_or_null<CXXRecordDecl>(Val: E.getAsBaseOrMember().getPointer());
100 }
101 /// Determine whether this LValue path entry for a base class names a virtual
102 /// base class.
103 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
104 return E.getAsBaseOrMember().getInt();
105 }
106
107 /// Given an expression, determine the type used to store the result of
108 /// evaluating that expression.
109 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
110 if (E->isPRValue())
111 return E->getType();
112 return Ctx.getLValueReferenceType(T: E->getType());
113 }
114
115 /// Given a CallExpr, try to get the alloc_size attribute. May return null.
116 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
117 if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
118 return DirectCallee->getAttr<AllocSizeAttr>();
119 if (const Decl *IndirectCallee = CE->getCalleeDecl())
120 return IndirectCallee->getAttr<AllocSizeAttr>();
121 return nullptr;
122 }
123
124 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
125 /// This will look through a single cast.
126 ///
127 /// Returns null if we couldn't unwrap a function with alloc_size.
128 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
129 if (!E->getType()->isPointerType())
130 return nullptr;
131
132 E = E->IgnoreParens();
133 // If we're doing a variable assignment from e.g. malloc(N), there will
134 // probably be a cast of some kind. In exotic cases, we might also see a
135 // top-level ExprWithCleanups. Ignore them either way.
136 if (const auto *FE = dyn_cast<FullExpr>(Val: E))
137 E = FE->getSubExpr()->IgnoreParens();
138
139 if (const auto *Cast = dyn_cast<CastExpr>(Val: E))
140 E = Cast->getSubExpr()->IgnoreParens();
141
142 if (const auto *CE = dyn_cast<CallExpr>(E))
143 return getAllocSizeAttr(CE) ? CE : nullptr;
144 return nullptr;
145 }
146
147 /// Determines whether or not the given Base contains a call to a function
148 /// with the alloc_size attribute.
149 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
150 const auto *E = Base.dyn_cast<const Expr *>();
151 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
152 }
153
154 /// Determines whether the given kind of constant expression is only ever
155 /// used for name mangling. If so, it's permitted to reference things that we
156 /// can't generate code for (in particular, dllimported functions).
157 static bool isForManglingOnly(ConstantExprKind Kind) {
158 switch (Kind) {
159 case ConstantExprKind::Normal:
160 case ConstantExprKind::ClassTemplateArgument:
161 case ConstantExprKind::ImmediateInvocation:
162 // Note that non-type template arguments of class type are emitted as
163 // template parameter objects.
164 return false;
165
166 case ConstantExprKind::NonClassTemplateArgument:
167 return true;
168 }
169 llvm_unreachable("unknown ConstantExprKind");
170 }
171
172 static bool isTemplateArgument(ConstantExprKind Kind) {
173 switch (Kind) {
174 case ConstantExprKind::Normal:
175 case ConstantExprKind::ImmediateInvocation:
176 return false;
177
178 case ConstantExprKind::ClassTemplateArgument:
179 case ConstantExprKind::NonClassTemplateArgument:
180 return true;
181 }
182 llvm_unreachable("unknown ConstantExprKind");
183 }
184
185 /// The bound to claim that an array of unknown bound has.
186 /// The value in MostDerivedArraySize is undefined in this case. So, set it
187 /// to an arbitrary value that's likely to loudly break things if it's used.
188 static const uint64_t AssumedSizeForUnsizedArray =
189 std::numeric_limits<uint64_t>::max() / 2;
190
191 /// Determines if an LValue with the given LValueBase will have an unsized
192 /// array in its designator.
193 /// Find the path length and type of the most-derived subobject in the given
194 /// path, and find the size of the containing array, if any.
195 static unsigned
196 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
197 ArrayRef<APValue::LValuePathEntry> Path,
198 uint64_t &ArraySize, QualType &Type, bool &IsArray,
199 bool &FirstEntryIsUnsizedArray) {
200 // This only accepts LValueBases from APValues, and APValues don't support
201 // arrays that lack size info.
202 assert(!isBaseAnAllocSizeCall(Base) &&
203 "Unsized arrays shouldn't appear here");
204 unsigned MostDerivedLength = 0;
205 Type = getType(B: Base);
206
207 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
208 if (Type->isArrayType()) {
209 const ArrayType *AT = Ctx.getAsArrayType(T: Type);
210 Type = AT->getElementType();
211 MostDerivedLength = I + 1;
212 IsArray = true;
213
214 if (auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) {
215 ArraySize = CAT->getZExtSize();
216 } else {
217 assert(I == 0 && "unexpected unsized array designator");
218 FirstEntryIsUnsizedArray = true;
219 ArraySize = AssumedSizeForUnsizedArray;
220 }
221 } else if (Type->isAnyComplexType()) {
222 const ComplexType *CT = Type->castAs<ComplexType>();
223 Type = CT->getElementType();
224 ArraySize = 2;
225 MostDerivedLength = I + 1;
226 IsArray = true;
227 } else if (const auto *VT = Type->getAs<VectorType>()) {
228 Type = VT->getElementType();
229 ArraySize = VT->getNumElements();
230 MostDerivedLength = I + 1;
231 IsArray = true;
232 } else if (const FieldDecl *FD = getAsField(E: Path[I])) {
233 Type = FD->getType();
234 ArraySize = 0;
235 MostDerivedLength = I + 1;
236 IsArray = false;
237 } else {
238 // Path[I] describes a base class.
239 ArraySize = 0;
240 IsArray = false;
241 }
242 }
243 return MostDerivedLength;
244 }
245
246 /// A path from a glvalue to a subobject of that glvalue.
247 struct SubobjectDesignator {
248 /// True if the subobject was named in a manner not supported by C++11. Such
249 /// lvalues can still be folded, but they are not core constant expressions
250 /// and we cannot perform lvalue-to-rvalue conversions on them.
251 LLVM_PREFERRED_TYPE(bool)
252 unsigned Invalid : 1;
253
254 /// Is this a pointer one past the end of an object?
255 LLVM_PREFERRED_TYPE(bool)
256 unsigned IsOnePastTheEnd : 1;
257
258 /// Indicator of whether the first entry is an unsized array.
259 LLVM_PREFERRED_TYPE(bool)
260 unsigned FirstEntryIsAnUnsizedArray : 1;
261
262 /// Indicator of whether the most-derived object is an array element.
263 LLVM_PREFERRED_TYPE(bool)
264 unsigned MostDerivedIsArrayElement : 1;
265
266 /// The length of the path to the most-derived object of which this is a
267 /// subobject.
268 unsigned MostDerivedPathLength : 28;
269
270 /// The size of the array of which the most-derived object is an element.
271 /// This will always be 0 if the most-derived object is not an array
272 /// element. 0 is not an indicator of whether or not the most-derived object
273 /// is an array, however, because 0-length arrays are allowed.
274 ///
275 /// If the current array is an unsized array, the value of this is
276 /// undefined.
277 uint64_t MostDerivedArraySize;
278 /// The type of the most derived object referred to by this address.
279 QualType MostDerivedType;
280
281 typedef APValue::LValuePathEntry PathEntry;
282
283 /// The entries on the path from the glvalue to the designated subobject.
284 SmallVector<PathEntry, 8> Entries;
285
286 SubobjectDesignator() : Invalid(true) {}
287
288 explicit SubobjectDesignator(QualType T)
289 : Invalid(false), IsOnePastTheEnd(false),
290 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
291 MostDerivedPathLength(0), MostDerivedArraySize(0),
292 MostDerivedType(T) {}
293
294 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
295 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
296 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
297 MostDerivedPathLength(0), MostDerivedArraySize(0) {
298 assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
299 if (!Invalid) {
300 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
301 llvm::append_range(C&: Entries, R: V.getLValuePath());
302 if (V.getLValueBase()) {
303 bool IsArray = false;
304 bool FirstIsUnsizedArray = false;
305 MostDerivedPathLength = findMostDerivedSubobject(
306 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
307 MostDerivedType, IsArray, FirstIsUnsizedArray);
308 MostDerivedIsArrayElement = IsArray;
309 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
310 }
311 }
312 }
313
314 void truncate(ASTContext &Ctx, APValue::LValueBase Base,
315 unsigned NewLength) {
316 if (Invalid)
317 return;
318
319 assert(Base && "cannot truncate path for null pointer");
320 assert(NewLength <= Entries.size() && "not a truncation");
321
322 if (NewLength == Entries.size())
323 return;
324 Entries.resize(N: NewLength);
325
326 bool IsArray = false;
327 bool FirstIsUnsizedArray = false;
328 MostDerivedPathLength = findMostDerivedSubobject(
329 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
330 FirstIsUnsizedArray);
331 MostDerivedIsArrayElement = IsArray;
332 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
333 }
334
335 void setInvalid() {
336 Invalid = true;
337 Entries.clear();
338 }
339
340 /// Determine whether the most derived subobject is an array without a
341 /// known bound.
342 bool isMostDerivedAnUnsizedArray() const {
343 assert(!Invalid && "Calling this makes no sense on invalid designators");
344 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
345 }
346
347 /// Determine what the most derived array's size is. Results in an assertion
348 /// failure if the most derived array lacks a size.
349 uint64_t getMostDerivedArraySize() const {
350 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
351 return MostDerivedArraySize;
352 }
353
354 /// Determine whether this is a one-past-the-end pointer.
355 bool isOnePastTheEnd() const {
356 assert(!Invalid);
357 if (IsOnePastTheEnd)
358 return true;
359 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
360 Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
361 MostDerivedArraySize)
362 return true;
363 return false;
364 }
365
366 /// Get the range of valid index adjustments in the form
367 /// {maximum value that can be subtracted from this pointer,
368 /// maximum value that can be added to this pointer}
369 std::pair<uint64_t, uint64_t> validIndexAdjustments() {
370 if (Invalid || isMostDerivedAnUnsizedArray())
371 return {0, 0};
372
373 // [expr.add]p4: For the purposes of these operators, a pointer to a
374 // nonarray object behaves the same as a pointer to the first element of
375 // an array of length one with the type of the object as its element type.
376 bool IsArray = MostDerivedPathLength == Entries.size() &&
377 MostDerivedIsArrayElement;
378 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
379 : (uint64_t)IsOnePastTheEnd;
380 uint64_t ArraySize =
381 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
382 return {ArrayIndex, ArraySize - ArrayIndex};
383 }
384
385 /// Check that this refers to a valid subobject.
386 bool isValidSubobject() const {
387 if (Invalid)
388 return false;
389 return !isOnePastTheEnd();
390 }
391 /// Check that this refers to a valid subobject, and if not, produce a
392 /// relevant diagnostic and set the designator as invalid.
393 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
394
395 /// Get the type of the designated object.
396 QualType getType(ASTContext &Ctx) const {
397 assert(!Invalid && "invalid designator has no subobject type");
398 return MostDerivedPathLength == Entries.size()
399 ? MostDerivedType
400 : Ctx.getRecordType(getAsBaseClass(Entries.back()));
401 }
402
403 /// Update this designator to refer to the first element within this array.
404 void addArrayUnchecked(const ConstantArrayType *CAT) {
405 Entries.push_back(Elt: PathEntry::ArrayIndex(Index: 0));
406
407 // This is a most-derived object.
408 MostDerivedType = CAT->getElementType();
409 MostDerivedIsArrayElement = true;
410 MostDerivedArraySize = CAT->getZExtSize();
411 MostDerivedPathLength = Entries.size();
412 }
413 /// Update this designator to refer to the first element within the array of
414 /// elements of type T. This is an array of unknown size.
415 void addUnsizedArrayUnchecked(QualType ElemTy) {
416 Entries.push_back(Elt: PathEntry::ArrayIndex(Index: 0));
417
418 MostDerivedType = ElemTy;
419 MostDerivedIsArrayElement = true;
420 // The value in MostDerivedArraySize is undefined in this case. So, set it
421 // to an arbitrary value that's likely to loudly break things if it's
422 // used.
423 MostDerivedArraySize = AssumedSizeForUnsizedArray;
424 MostDerivedPathLength = Entries.size();
425 }
426 /// Update this designator to refer to the given base or member of this
427 /// object.
428 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
429 Entries.push_back(Elt: APValue::BaseOrMemberType(D, Virtual));
430
431 // If this isn't a base class, it's a new most-derived object.
432 if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: D)) {
433 MostDerivedType = FD->getType();
434 MostDerivedIsArrayElement = false;
435 MostDerivedArraySize = 0;
436 MostDerivedPathLength = Entries.size();
437 }
438 }
439 /// Update this designator to refer to the given complex component.
440 void addComplexUnchecked(QualType EltTy, bool Imag) {
441 Entries.push_back(Elt: PathEntry::ArrayIndex(Index: Imag));
442
443 // This is technically a most-derived object, though in practice this
444 // is unlikely to matter.
445 MostDerivedType = EltTy;
446 MostDerivedIsArrayElement = true;
447 MostDerivedArraySize = 2;
448 MostDerivedPathLength = Entries.size();
449 }
450
451 void addVectorElementUnchecked(QualType EltTy, uint64_t Size,
452 uint64_t Idx) {
453 Entries.push_back(Elt: PathEntry::ArrayIndex(Index: Idx));
454 MostDerivedType = EltTy;
455 MostDerivedPathLength = Entries.size();
456 MostDerivedArraySize = 0;
457 MostDerivedIsArrayElement = false;
458 }
459
460 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
461 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
462 const APSInt &N);
463 /// Add N to the address of this subobject.
464 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
465 if (Invalid || !N) return;
466 uint64_t TruncatedN = N.extOrTrunc(width: 64).getZExtValue();
467 if (isMostDerivedAnUnsizedArray()) {
468 diagnoseUnsizedArrayPointerArithmetic(Info, E);
469 // Can't verify -- trust that the user is doing the right thing (or if
470 // not, trust that the caller will catch the bad behavior).
471 // FIXME: Should we reject if this overflows, at least?
472 Entries.back() = PathEntry::ArrayIndex(
473 Index: Entries.back().getAsArrayIndex() + TruncatedN);
474 return;
475 }
476
477 // [expr.add]p4: For the purposes of these operators, a pointer to a
478 // nonarray object behaves the same as a pointer to the first element of
479 // an array of length one with the type of the object as its element type.
480 bool IsArray = MostDerivedPathLength == Entries.size() &&
481 MostDerivedIsArrayElement;
482 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
483 : (uint64_t)IsOnePastTheEnd;
484 uint64_t ArraySize =
485 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
486
487 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
488 // Calculate the actual index in a wide enough type, so we can include
489 // it in the note.
490 N = N.extend(width: std::max<unsigned>(a: N.getBitWidth() + 1, b: 65));
491 (llvm::APInt&)N += ArrayIndex;
492 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
493 diagnosePointerArithmetic(Info, E, N);
494 setInvalid();
495 return;
496 }
497
498 ArrayIndex += TruncatedN;
499 assert(ArrayIndex <= ArraySize &&
500 "bounds check succeeded for out-of-bounds index");
501
502 if (IsArray)
503 Entries.back() = PathEntry::ArrayIndex(Index: ArrayIndex);
504 else
505 IsOnePastTheEnd = (ArrayIndex != 0);
506 }
507 };
508
509 /// A scope at the end of which an object can need to be destroyed.
510 enum class ScopeKind {
511 Block,
512 FullExpression,
513 Call
514 };
515
516 /// A reference to a particular call and its arguments.
517 struct CallRef {
518 CallRef() : OrigCallee(), CallIndex(0), Version() {}
519 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
520 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
521
522 explicit operator bool() const { return OrigCallee; }
523
524 /// Get the parameter that the caller initialized, corresponding to the
525 /// given parameter in the callee.
526 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
527 return OrigCallee ? OrigCallee->getParamDecl(i: PVD->getFunctionScopeIndex())
528 : PVD;
529 }
530
531 /// The callee at the point where the arguments were evaluated. This might
532 /// be different from the actual callee (a different redeclaration, or a
533 /// virtual override), but this function's parameters are the ones that
534 /// appear in the parameter map.
535 const FunctionDecl *OrigCallee;
536 /// The call index of the frame that holds the argument values.
537 unsigned CallIndex;
538 /// The version of the parameters corresponding to this call.
539 unsigned Version;
540 };
541
542 /// A stack frame in the constexpr call stack.
543 class CallStackFrame : public interp::Frame {
544 public:
545 EvalInfo &Info;
546
547 /// Parent - The caller of this stack frame.
548 CallStackFrame *Caller;
549
550 /// Callee - The function which was called.
551 const FunctionDecl *Callee;
552
553 /// This - The binding for the this pointer in this call, if any.
554 const LValue *This;
555
556 /// CallExpr - The syntactical structure of member function calls
557 const Expr *CallExpr;
558
559 /// Information on how to find the arguments to this call. Our arguments
560 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
561 /// key and this value as the version.
562 CallRef Arguments;
563
564 /// Source location information about the default argument or default
565 /// initializer expression we're evaluating, if any.
566 CurrentSourceLocExprScope CurSourceLocExprScope;
567
568 // Note that we intentionally use std::map here so that references to
569 // values are stable.
570 typedef std::pair<const void *, unsigned> MapKeyTy;
571 typedef std::map<MapKeyTy, APValue> MapTy;
572 /// Temporaries - Temporary lvalues materialized within this stack frame.
573 MapTy Temporaries;
574 MapTy ConstexprUnknownAPValues;
575
576 /// CallRange - The source range of the call expression for this call.
577 SourceRange CallRange;
578
579 /// Index - The call index of this call.
580 unsigned Index;
581
582 /// The stack of integers for tracking version numbers for temporaries.
583 SmallVector<unsigned, 2> TempVersionStack = {1};
584 unsigned CurTempVersion = TempVersionStack.back();
585
586 unsigned getTempVersion() const { return TempVersionStack.back(); }
587
588 void pushTempVersion() {
589 TempVersionStack.push_back(Elt: ++CurTempVersion);
590 }
591
592 void popTempVersion() {
593 TempVersionStack.pop_back();
594 }
595
596 CallRef createCall(const FunctionDecl *Callee) {
597 return {Callee, Index, ++CurTempVersion};
598 }
599
600 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
601 // on the overall stack usage of deeply-recursing constexpr evaluations.
602 // (We should cache this map rather than recomputing it repeatedly.)
603 // But let's try this and see how it goes; we can look into caching the map
604 // as a later change.
605
606 /// LambdaCaptureFields - Mapping from captured variables/this to
607 /// corresponding data members in the closure class.
608 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
609 FieldDecl *LambdaThisCaptureField = nullptr;
610
611 CallStackFrame(EvalInfo &Info, SourceRange CallRange,
612 const FunctionDecl *Callee, const LValue *This,
613 const Expr *CallExpr, CallRef Arguments);
614 ~CallStackFrame();
615
616 // Return the temporary for Key whose version number is Version.
617 APValue *getTemporary(const void *Key, unsigned Version) {
618 MapKeyTy KV(Key, Version);
619 auto LB = Temporaries.lower_bound(x: KV);
620 if (LB != Temporaries.end() && LB->first == KV)
621 return &LB->second;
622 return nullptr;
623 }
624
625 // Return the current temporary for Key in the map.
626 APValue *getCurrentTemporary(const void *Key) {
627 auto UB = Temporaries.upper_bound(x: MapKeyTy(Key, UINT_MAX));
628 if (UB != Temporaries.begin() && std::prev(x: UB)->first.first == Key)
629 return &std::prev(x: UB)->second;
630 return nullptr;
631 }
632
633 // Return the version number of the current temporary for Key.
634 unsigned getCurrentTemporaryVersion(const void *Key) const {
635 auto UB = Temporaries.upper_bound(x: MapKeyTy(Key, UINT_MAX));
636 if (UB != Temporaries.begin() && std::prev(x: UB)->first.first == Key)
637 return std::prev(x: UB)->first.second;
638 return 0;
639 }
640
641 /// Allocate storage for an object of type T in this stack frame.
642 /// Populates LV with a handle to the created object. Key identifies
643 /// the temporary within the stack frame, and must not be reused without
644 /// bumping the temporary version number.
645 template<typename KeyT>
646 APValue &createTemporary(const KeyT *Key, QualType T,
647 ScopeKind Scope, LValue &LV);
648
649 APValue &createConstexprUnknownAPValues(const VarDecl *Key,
650 APValue::LValueBase Base);
651
652 /// Allocate storage for a parameter of a function call made in this frame.
653 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
654
655 void describe(llvm::raw_ostream &OS) const override;
656
657 Frame *getCaller() const override { return Caller; }
658 SourceRange getCallRange() const override { return CallRange; }
659 const FunctionDecl *getCallee() const override { return Callee; }
660
661 bool isStdFunction() const {
662 for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
663 if (DC->isStdNamespace())
664 return true;
665 return false;
666 }
667
668 /// Whether we're in a context where [[msvc::constexpr]] evaluation is
669 /// permitted. See MSConstexprDocs for description of permitted contexts.
670 bool CanEvalMSConstexpr = false;
671
672 private:
673 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
674 ScopeKind Scope);
675 };
676
677 /// Temporarily override 'this'.
678 class ThisOverrideRAII {
679 public:
680 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
681 : Frame(Frame), OldThis(Frame.This) {
682 if (Enable)
683 Frame.This = NewThis;
684 }
685 ~ThisOverrideRAII() {
686 Frame.This = OldThis;
687 }
688 private:
689 CallStackFrame &Frame;
690 const LValue *OldThis;
691 };
692
693 // A shorthand time trace scope struct, prints source range, for example
694 // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}}
695 class ExprTimeTraceScope {
696 public:
697 ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name)
698 : TimeScope(Name, [E, &Ctx] {
699 return E->getSourceRange().printToString(Ctx.getSourceManager());
700 }) {}
701
702 private:
703 llvm::TimeTraceScope TimeScope;
704 };
705
706 /// RAII object used to change the current ability of
707 /// [[msvc::constexpr]] evaulation.
708 struct MSConstexprContextRAII {
709 CallStackFrame &Frame;
710 bool OldValue;
711 explicit MSConstexprContextRAII(CallStackFrame &Frame, bool Value)
712 : Frame(Frame), OldValue(Frame.CanEvalMSConstexpr) {
713 Frame.CanEvalMSConstexpr = Value;
714 }
715
716 ~MSConstexprContextRAII() { Frame.CanEvalMSConstexpr = OldValue; }
717 };
718}
719
720static bool HandleDestruction(EvalInfo &Info, const Expr *E,
721 const LValue &This, QualType ThisType);
722static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
723 APValue::LValueBase LVBase, APValue &Value,
724 QualType T);
725
726namespace {
727 /// A cleanup, and a flag indicating whether it is lifetime-extended.
728 class Cleanup {
729 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
730 APValue::LValueBase Base;
731 QualType T;
732
733 public:
734 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
735 ScopeKind Scope)
736 : Value(Val, Scope), Base(Base), T(T) {}
737
738 /// Determine whether this cleanup should be performed at the end of the
739 /// given kind of scope.
740 bool isDestroyedAtEndOf(ScopeKind K) const {
741 return (int)Value.getInt() >= (int)K;
742 }
743 bool endLifetime(EvalInfo &Info, bool RunDestructors) {
744 if (RunDestructors) {
745 SourceLocation Loc;
746 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
747 Loc = VD->getLocation();
748 else if (const Expr *E = Base.dyn_cast<const Expr*>())
749 Loc = E->getExprLoc();
750 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
751 }
752 *Value.getPointer() = APValue();
753 return true;
754 }
755
756 bool hasSideEffect() {
757 return T.isDestructedType();
758 }
759 };
760
761 /// A reference to an object whose construction we are currently evaluating.
762 struct ObjectUnderConstruction {
763 APValue::LValueBase Base;
764 ArrayRef<APValue::LValuePathEntry> Path;
765 friend bool operator==(const ObjectUnderConstruction &LHS,
766 const ObjectUnderConstruction &RHS) {
767 return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
768 }
769 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
770 return llvm::hash_combine(args: Obj.Base, args: Obj.Path);
771 }
772 };
773 enum class ConstructionPhase {
774 None,
775 Bases,
776 AfterBases,
777 AfterFields,
778 Destroying,
779 DestroyingBases
780 };
781}
782
783namespace llvm {
784template<> struct DenseMapInfo<ObjectUnderConstruction> {
785 using Base = DenseMapInfo<APValue::LValueBase>;
786 static ObjectUnderConstruction getEmptyKey() {
787 return {.Base: Base::getEmptyKey(), .Path: {}}; }
788 static ObjectUnderConstruction getTombstoneKey() {
789 return {.Base: Base::getTombstoneKey(), .Path: {}};
790 }
791 static unsigned getHashValue(const ObjectUnderConstruction &Object) {
792 return hash_value(Obj: Object);
793 }
794 static bool isEqual(const ObjectUnderConstruction &LHS,
795 const ObjectUnderConstruction &RHS) {
796 return LHS == RHS;
797 }
798};
799}
800
801namespace {
802 /// A dynamically-allocated heap object.
803 struct DynAlloc {
804 /// The value of this heap-allocated object.
805 APValue Value;
806 /// The allocating expression; used for diagnostics. Either a CXXNewExpr
807 /// or a CallExpr (the latter is for direct calls to operator new inside
808 /// std::allocator<T>::allocate).
809 const Expr *AllocExpr = nullptr;
810
811 enum Kind {
812 New,
813 ArrayNew,
814 StdAllocator
815 };
816
817 /// Get the kind of the allocation. This must match between allocation
818 /// and deallocation.
819 Kind getKind() const {
820 if (auto *NE = dyn_cast<CXXNewExpr>(Val: AllocExpr))
821 return NE->isArray() ? ArrayNew : New;
822 assert(isa<CallExpr>(AllocExpr));
823 return StdAllocator;
824 }
825 };
826
827 struct DynAllocOrder {
828 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
829 return L.getIndex() < R.getIndex();
830 }
831 };
832
833 /// EvalInfo - This is a private struct used by the evaluator to capture
834 /// information about a subexpression as it is folded. It retains information
835 /// about the AST context, but also maintains information about the folded
836 /// expression.
837 ///
838 /// If an expression could be evaluated, it is still possible it is not a C
839 /// "integer constant expression" or constant expression. If not, this struct
840 /// captures information about how and why not.
841 ///
842 /// One bit of information passed *into* the request for constant folding
843 /// indicates whether the subexpression is "evaluated" or not according to C
844 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
845 /// evaluate the expression regardless of what the RHS is, but C only allows
846 /// certain things in certain situations.
847 class EvalInfo : public interp::State {
848 public:
849 ASTContext &Ctx;
850
851 /// EvalStatus - Contains information about the evaluation.
852 Expr::EvalStatus &EvalStatus;
853
854 /// CurrentCall - The top of the constexpr call stack.
855 CallStackFrame *CurrentCall;
856
857 /// CallStackDepth - The number of calls in the call stack right now.
858 unsigned CallStackDepth;
859
860 /// NextCallIndex - The next call index to assign.
861 unsigned NextCallIndex;
862
863 /// StepsLeft - The remaining number of evaluation steps we're permitted
864 /// to perform. This is essentially a limit for the number of statements
865 /// we will evaluate.
866 unsigned StepsLeft;
867
868 /// Enable the experimental new constant interpreter. If an expression is
869 /// not supported by the interpreter, an error is triggered.
870 bool EnableNewConstInterp;
871
872 /// BottomFrame - The frame in which evaluation started. This must be
873 /// initialized after CurrentCall and CallStackDepth.
874 CallStackFrame BottomFrame;
875
876 /// A stack of values whose lifetimes end at the end of some surrounding
877 /// evaluation frame.
878 llvm::SmallVector<Cleanup, 16> CleanupStack;
879
880 /// EvaluatingDecl - This is the declaration whose initializer is being
881 /// evaluated, if any.
882 APValue::LValueBase EvaluatingDecl;
883
884 enum class EvaluatingDeclKind {
885 None,
886 /// We're evaluating the construction of EvaluatingDecl.
887 Ctor,
888 /// We're evaluating the destruction of EvaluatingDecl.
889 Dtor,
890 };
891 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
892
893 /// EvaluatingDeclValue - This is the value being constructed for the
894 /// declaration whose initializer is being evaluated, if any.
895 APValue *EvaluatingDeclValue;
896
897 /// Set of objects that are currently being constructed.
898 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
899 ObjectsUnderConstruction;
900
901 /// Current heap allocations, along with the location where each was
902 /// allocated. We use std::map here because we need stable addresses
903 /// for the stored APValues.
904 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
905
906 /// The number of heap allocations performed so far in this evaluation.
907 unsigned NumHeapAllocs = 0;
908
909 struct EvaluatingConstructorRAII {
910 EvalInfo &EI;
911 ObjectUnderConstruction Object;
912 bool DidInsert;
913 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
914 bool HasBases)
915 : EI(EI), Object(Object) {
916 DidInsert =
917 EI.ObjectsUnderConstruction
918 .insert(KV: {Object, HasBases ? ConstructionPhase::Bases
919 : ConstructionPhase::AfterBases})
920 .second;
921 }
922 void finishedConstructingBases() {
923 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
924 }
925 void finishedConstructingFields() {
926 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
927 }
928 ~EvaluatingConstructorRAII() {
929 if (DidInsert) EI.ObjectsUnderConstruction.erase(Val: Object);
930 }
931 };
932
933 struct EvaluatingDestructorRAII {
934 EvalInfo &EI;
935 ObjectUnderConstruction Object;
936 bool DidInsert;
937 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
938 : EI(EI), Object(Object) {
939 DidInsert = EI.ObjectsUnderConstruction
940 .insert(KV: {Object, ConstructionPhase::Destroying})
941 .second;
942 }
943 void startedDestroyingBases() {
944 EI.ObjectsUnderConstruction[Object] =
945 ConstructionPhase::DestroyingBases;
946 }
947 ~EvaluatingDestructorRAII() {
948 if (DidInsert)
949 EI.ObjectsUnderConstruction.erase(Val: Object);
950 }
951 };
952
953 ConstructionPhase
954 isEvaluatingCtorDtor(APValue::LValueBase Base,
955 ArrayRef<APValue::LValuePathEntry> Path) {
956 return ObjectsUnderConstruction.lookup(Val: {.Base: Base, .Path: Path});
957 }
958
959 /// If we're currently speculatively evaluating, the outermost call stack
960 /// depth at which we can mutate state, otherwise 0.
961 unsigned SpeculativeEvaluationDepth = 0;
962
963 /// The current array initialization index, if we're performing array
964 /// initialization.
965 uint64_t ArrayInitIndex = -1;
966
967 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
968 /// notes attached to it will also be stored, otherwise they will not be.
969 bool HasActiveDiagnostic;
970
971 /// Have we emitted a diagnostic explaining why we couldn't constant
972 /// fold (not just why it's not strictly a constant expression)?
973 bool HasFoldFailureDiagnostic;
974
975 /// Whether we're checking that an expression is a potential constant
976 /// expression. If so, do not fail on constructs that could become constant
977 /// later on (such as a use of an undefined global).
978 bool CheckingPotentialConstantExpression = false;
979
980 /// Whether we're checking for an expression that has undefined behavior.
981 /// If so, we will produce warnings if we encounter an operation that is
982 /// always undefined.
983 ///
984 /// Note that we still need to evaluate the expression normally when this
985 /// is set; this is used when evaluating ICEs in C.
986 bool CheckingForUndefinedBehavior = false;
987
988 enum EvaluationMode {
989 /// Evaluate as a constant expression. Stop if we find that the expression
990 /// is not a constant expression.
991 EM_ConstantExpression,
992
993 /// Evaluate as a constant expression. Stop if we find that the expression
994 /// is not a constant expression. Some expressions can be retried in the
995 /// optimizer if we don't constant fold them here, but in an unevaluated
996 /// context we try to fold them immediately since the optimizer never
997 /// gets a chance to look at it.
998 EM_ConstantExpressionUnevaluated,
999
1000 /// Fold the expression to a constant. Stop if we hit a side-effect that
1001 /// we can't model.
1002 EM_ConstantFold,
1003
1004 /// Evaluate in any way we know how. Don't worry about side-effects that
1005 /// can't be modeled.
1006 EM_IgnoreSideEffects,
1007 } EvalMode;
1008
1009 /// Are we checking whether the expression is a potential constant
1010 /// expression?
1011 bool checkingPotentialConstantExpression() const override {
1012 return CheckingPotentialConstantExpression;
1013 }
1014
1015 /// Are we checking an expression for overflow?
1016 // FIXME: We should check for any kind of undefined or suspicious behavior
1017 // in such constructs, not just overflow.
1018 bool checkingForUndefinedBehavior() const override {
1019 return CheckingForUndefinedBehavior;
1020 }
1021
1022 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
1023 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
1024 CallStackDepth(0), NextCallIndex(1),
1025 StepsLeft(C.getLangOpts().ConstexprStepLimit),
1026 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
1027 BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr,
1028 /*This=*/nullptr,
1029 /*CallExpr=*/nullptr, CallRef()),
1030 EvaluatingDecl((const ValueDecl *)nullptr),
1031 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
1032 HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
1033
1034 ~EvalInfo() {
1035 discardCleanups();
1036 }
1037
1038 ASTContext &getASTContext() const override { return Ctx; }
1039
1040 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
1041 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
1042 EvaluatingDecl = Base;
1043 IsEvaluatingDecl = EDK;
1044 EvaluatingDeclValue = &Value;
1045 }
1046
1047 bool CheckCallLimit(SourceLocation Loc) {
1048 // Don't perform any constexpr calls (other than the call we're checking)
1049 // when checking a potential constant expression.
1050 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
1051 return false;
1052 if (NextCallIndex == 0) {
1053 // NextCallIndex has wrapped around.
1054 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1055 return false;
1056 }
1057 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1058 return true;
1059 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1060 << getLangOpts().ConstexprCallDepth;
1061 return false;
1062 }
1063
1064 bool CheckArraySize(SourceLocation Loc, unsigned BitWidth,
1065 uint64_t ElemCount, bool Diag) {
1066 // FIXME: GH63562
1067 // APValue stores array extents as unsigned,
1068 // so anything that is greater that unsigned would overflow when
1069 // constructing the array, we catch this here.
1070 if (BitWidth > ConstantArrayType::getMaxSizeBits(Context: Ctx) ||
1071 ElemCount > uint64_t(std::numeric_limits<unsigned>::max())) {
1072 if (Diag)
1073 FFDiag(Loc, diag::note_constexpr_new_too_large) << ElemCount;
1074 return false;
1075 }
1076
1077 // FIXME: GH63562
1078 // Arrays allocate an APValue per element.
1079 // We use the number of constexpr steps as a proxy for the maximum size
1080 // of arrays to avoid exhausting the system resources, as initialization
1081 // of each element is likely to take some number of steps anyway.
1082 uint64_t Limit = Ctx.getLangOpts().ConstexprStepLimit;
1083 if (ElemCount > Limit) {
1084 if (Diag)
1085 FFDiag(Loc, diag::note_constexpr_new_exceeds_limits)
1086 << ElemCount << Limit;
1087 return false;
1088 }
1089 return true;
1090 }
1091
1092 std::pair<CallStackFrame *, unsigned>
1093 getCallFrameAndDepth(unsigned CallIndex) {
1094 assert(CallIndex && "no call index in getCallFrameAndDepth");
1095 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1096 // be null in this loop.
1097 unsigned Depth = CallStackDepth;
1098 CallStackFrame *Frame = CurrentCall;
1099 while (Frame->Index > CallIndex) {
1100 Frame = Frame->Caller;
1101 --Depth;
1102 }
1103 if (Frame->Index == CallIndex)
1104 return {Frame, Depth};
1105 return {nullptr, 0};
1106 }
1107
1108 bool nextStep(const Stmt *S) {
1109 if (!StepsLeft) {
1110 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1111 return false;
1112 }
1113 --StepsLeft;
1114 return true;
1115 }
1116
1117 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1118
1119 std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) {
1120 std::optional<DynAlloc *> Result;
1121 auto It = HeapAllocs.find(x: DA);
1122 if (It != HeapAllocs.end())
1123 Result = &It->second;
1124 return Result;
1125 }
1126
1127 /// Get the allocated storage for the given parameter of the given call.
1128 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1129 CallStackFrame *Frame = getCallFrameAndDepth(CallIndex: Call.CallIndex).first;
1130 return Frame ? Frame->getTemporary(Key: Call.getOrigParam(PVD), Version: Call.Version)
1131 : nullptr;
1132 }
1133
1134 /// Information about a stack frame for std::allocator<T>::[de]allocate.
1135 struct StdAllocatorCaller {
1136 unsigned FrameIndex;
1137 QualType ElemType;
1138 const Expr *Call;
1139 explicit operator bool() const { return FrameIndex != 0; };
1140 };
1141
1142 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1143 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1144 Call = Call->Caller) {
1145 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: Call->Callee);
1146 if (!MD)
1147 continue;
1148 const IdentifierInfo *FnII = MD->getIdentifier();
1149 if (!FnII || !FnII->isStr(Str: FnName))
1150 continue;
1151
1152 const auto *CTSD =
1153 dyn_cast<ClassTemplateSpecializationDecl>(Val: MD->getParent());
1154 if (!CTSD)
1155 continue;
1156
1157 const IdentifierInfo *ClassII = CTSD->getIdentifier();
1158 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1159 if (CTSD->isInStdNamespace() && ClassII &&
1160 ClassII->isStr(Str: "allocator") && TAL.size() >= 1 &&
1161 TAL[0].getKind() == TemplateArgument::Type)
1162 return {Call->Index, TAL[0].getAsType(), Call->CallExpr};
1163 }
1164
1165 return {};
1166 }
1167
1168 void performLifetimeExtension() {
1169 // Disable the cleanups for lifetime-extended temporaries.
1170 llvm::erase_if(C&: CleanupStack, P: [](Cleanup &C) {
1171 return !C.isDestroyedAtEndOf(K: ScopeKind::FullExpression);
1172 });
1173 }
1174
1175 /// Throw away any remaining cleanups at the end of evaluation. If any
1176 /// cleanups would have had a side-effect, note that as an unmodeled
1177 /// side-effect and return false. Otherwise, return true.
1178 bool discardCleanups() {
1179 for (Cleanup &C : CleanupStack) {
1180 if (C.hasSideEffect() && !noteSideEffect()) {
1181 CleanupStack.clear();
1182 return false;
1183 }
1184 }
1185 CleanupStack.clear();
1186 return true;
1187 }
1188
1189 private:
1190 interp::Frame *getCurrentFrame() override { return CurrentCall; }
1191 const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1192
1193 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1194 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1195
1196 void setFoldFailureDiagnostic(bool Flag) override {
1197 HasFoldFailureDiagnostic = Flag;
1198 }
1199
1200 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1201
1202 // If we have a prior diagnostic, it will be noting that the expression
1203 // isn't a constant expression. This diagnostic is more important,
1204 // unless we require this evaluation to produce a constant expression.
1205 //
1206 // FIXME: We might want to show both diagnostics to the user in
1207 // EM_ConstantFold mode.
1208 bool hasPriorDiagnostic() override {
1209 if (!EvalStatus.Diag->empty()) {
1210 switch (EvalMode) {
1211 case EM_ConstantFold:
1212 case EM_IgnoreSideEffects:
1213 if (!HasFoldFailureDiagnostic)
1214 break;
1215 // We've already failed to fold something. Keep that diagnostic.
1216 [[fallthrough]];
1217 case EM_ConstantExpression:
1218 case EM_ConstantExpressionUnevaluated:
1219 setActiveDiagnostic(false);
1220 return true;
1221 }
1222 }
1223 return false;
1224 }
1225
1226 unsigned getCallStackDepth() override { return CallStackDepth; }
1227
1228 public:
1229 /// Should we continue evaluation after encountering a side-effect that we
1230 /// couldn't model?
1231 bool keepEvaluatingAfterSideEffect() const override {
1232 switch (EvalMode) {
1233 case EM_IgnoreSideEffects:
1234 return true;
1235
1236 case EM_ConstantExpression:
1237 case EM_ConstantExpressionUnevaluated:
1238 case EM_ConstantFold:
1239 // By default, assume any side effect might be valid in some other
1240 // evaluation of this expression from a different context.
1241 return checkingPotentialConstantExpression() ||
1242 checkingForUndefinedBehavior();
1243 }
1244 llvm_unreachable("Missed EvalMode case");
1245 }
1246
1247 /// Note that we have had a side-effect, and determine whether we should
1248 /// keep evaluating.
1249 bool noteSideEffect() override {
1250 EvalStatus.HasSideEffects = true;
1251 return keepEvaluatingAfterSideEffect();
1252 }
1253
1254 /// Should we continue evaluation after encountering undefined behavior?
1255 bool keepEvaluatingAfterUndefinedBehavior() {
1256 switch (EvalMode) {
1257 case EM_IgnoreSideEffects:
1258 case EM_ConstantFold:
1259 return true;
1260
1261 case EM_ConstantExpression:
1262 case EM_ConstantExpressionUnevaluated:
1263 return checkingForUndefinedBehavior();
1264 }
1265 llvm_unreachable("Missed EvalMode case");
1266 }
1267
1268 /// Note that we hit something that was technically undefined behavior, but
1269 /// that we can evaluate past it (such as signed overflow or floating-point
1270 /// division by zero.)
1271 bool noteUndefinedBehavior() override {
1272 EvalStatus.HasUndefinedBehavior = true;
1273 return keepEvaluatingAfterUndefinedBehavior();
1274 }
1275
1276 /// Should we continue evaluation as much as possible after encountering a
1277 /// construct which can't be reduced to a value?
1278 bool keepEvaluatingAfterFailure() const override {
1279 if (!StepsLeft)
1280 return false;
1281
1282 switch (EvalMode) {
1283 case EM_ConstantExpression:
1284 case EM_ConstantExpressionUnevaluated:
1285 case EM_ConstantFold:
1286 case EM_IgnoreSideEffects:
1287 return checkingPotentialConstantExpression() ||
1288 checkingForUndefinedBehavior();
1289 }
1290 llvm_unreachable("Missed EvalMode case");
1291 }
1292
1293 /// Notes that we failed to evaluate an expression that other expressions
1294 /// directly depend on, and determine if we should keep evaluating. This
1295 /// should only be called if we actually intend to keep evaluating.
1296 ///
1297 /// Call noteSideEffect() instead if we may be able to ignore the value that
1298 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1299 ///
1300 /// (Foo(), 1) // use noteSideEffect
1301 /// (Foo() || true) // use noteSideEffect
1302 /// Foo() + 1 // use noteFailure
1303 [[nodiscard]] bool noteFailure() {
1304 // Failure when evaluating some expression often means there is some
1305 // subexpression whose evaluation was skipped. Therefore, (because we
1306 // don't track whether we skipped an expression when unwinding after an
1307 // evaluation failure) every evaluation failure that bubbles up from a
1308 // subexpression implies that a side-effect has potentially happened. We
1309 // skip setting the HasSideEffects flag to true until we decide to
1310 // continue evaluating after that point, which happens here.
1311 bool KeepGoing = keepEvaluatingAfterFailure();
1312 EvalStatus.HasSideEffects |= KeepGoing;
1313 return KeepGoing;
1314 }
1315
1316 class ArrayInitLoopIndex {
1317 EvalInfo &Info;
1318 uint64_t OuterIndex;
1319
1320 public:
1321 ArrayInitLoopIndex(EvalInfo &Info)
1322 : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1323 Info.ArrayInitIndex = 0;
1324 }
1325 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1326
1327 operator uint64_t&() { return Info.ArrayInitIndex; }
1328 };
1329 };
1330
1331 /// Object used to treat all foldable expressions as constant expressions.
1332 struct FoldConstant {
1333 EvalInfo &Info;
1334 bool Enabled;
1335 bool HadNoPriorDiags;
1336 EvalInfo::EvaluationMode OldMode;
1337
1338 explicit FoldConstant(EvalInfo &Info, bool Enabled)
1339 : Info(Info),
1340 Enabled(Enabled),
1341 HadNoPriorDiags(Info.EvalStatus.Diag &&
1342 Info.EvalStatus.Diag->empty() &&
1343 !Info.EvalStatus.HasSideEffects),
1344 OldMode(Info.EvalMode) {
1345 if (Enabled)
1346 Info.EvalMode = EvalInfo::EM_ConstantFold;
1347 }
1348 void keepDiagnostics() { Enabled = false; }
1349 ~FoldConstant() {
1350 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1351 !Info.EvalStatus.HasSideEffects)
1352 Info.EvalStatus.Diag->clear();
1353 Info.EvalMode = OldMode;
1354 }
1355 };
1356
1357 /// RAII object used to set the current evaluation mode to ignore
1358 /// side-effects.
1359 struct IgnoreSideEffectsRAII {
1360 EvalInfo &Info;
1361 EvalInfo::EvaluationMode OldMode;
1362 explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1363 : Info(Info), OldMode(Info.EvalMode) {
1364 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1365 }
1366
1367 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1368 };
1369
1370 /// RAII object used to optionally suppress diagnostics and side-effects from
1371 /// a speculative evaluation.
1372 class SpeculativeEvaluationRAII {
1373 EvalInfo *Info = nullptr;
1374 Expr::EvalStatus OldStatus;
1375 unsigned OldSpeculativeEvaluationDepth = 0;
1376
1377 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1378 Info = Other.Info;
1379 OldStatus = Other.OldStatus;
1380 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1381 Other.Info = nullptr;
1382 }
1383
1384 void maybeRestoreState() {
1385 if (!Info)
1386 return;
1387
1388 Info->EvalStatus = OldStatus;
1389 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1390 }
1391
1392 public:
1393 SpeculativeEvaluationRAII() = default;
1394
1395 SpeculativeEvaluationRAII(
1396 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1397 : Info(&Info), OldStatus(Info.EvalStatus),
1398 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1399 Info.EvalStatus.Diag = NewDiag;
1400 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1401 }
1402
1403 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1404 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1405 moveFromAndCancel(Other: std::move(Other));
1406 }
1407
1408 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1409 maybeRestoreState();
1410 moveFromAndCancel(Other: std::move(Other));
1411 return *this;
1412 }
1413
1414 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1415 };
1416
1417 /// RAII object wrapping a full-expression or block scope, and handling
1418 /// the ending of the lifetime of temporaries created within it.
1419 template<ScopeKind Kind>
1420 class ScopeRAII {
1421 EvalInfo &Info;
1422 unsigned OldStackSize;
1423 public:
1424 ScopeRAII(EvalInfo &Info)
1425 : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1426 // Push a new temporary version. This is needed to distinguish between
1427 // temporaries created in different iterations of a loop.
1428 Info.CurrentCall->pushTempVersion();
1429 }
1430 bool destroy(bool RunDestructors = true) {
1431 bool OK = cleanup(Info, RunDestructors, OldStackSize);
1432 OldStackSize = -1U;
1433 return OK;
1434 }
1435 ~ScopeRAII() {
1436 if (OldStackSize != -1U)
1437 destroy(RunDestructors: false);
1438 // Body moved to a static method to encourage the compiler to inline away
1439 // instances of this class.
1440 Info.CurrentCall->popTempVersion();
1441 }
1442 private:
1443 static bool cleanup(EvalInfo &Info, bool RunDestructors,
1444 unsigned OldStackSize) {
1445 assert(OldStackSize <= Info.CleanupStack.size() &&
1446 "running cleanups out of order?");
1447
1448 // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1449 // for a full-expression scope.
1450 bool Success = true;
1451 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1452 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(K: Kind)) {
1453 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1454 Success = false;
1455 break;
1456 }
1457 }
1458 }
1459
1460 // Compact any retained cleanups.
1461 auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1462 if (Kind != ScopeKind::Block)
1463 NewEnd =
1464 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1465 return C.isDestroyedAtEndOf(K: Kind);
1466 });
1467 Info.CleanupStack.erase(CS: NewEnd, CE: Info.CleanupStack.end());
1468 return Success;
1469 }
1470 };
1471 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1472 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1473 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1474}
1475
1476bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1477 CheckSubobjectKind CSK) {
1478 if (Invalid)
1479 return false;
1480 if (isOnePastTheEnd()) {
1481 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1482 << CSK;
1483 setInvalid();
1484 return false;
1485 }
1486 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1487 // must actually be at least one array element; even a VLA cannot have a
1488 // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1489 return true;
1490}
1491
1492void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1493 const Expr *E) {
1494 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1495 // Do not set the designator as invalid: we can represent this situation,
1496 // and correct handling of __builtin_object_size requires us to do so.
1497}
1498
1499void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1500 const Expr *E,
1501 const APSInt &N) {
1502 // If we're complaining, we must be able to statically determine the size of
1503 // the most derived array.
1504 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1505 Info.CCEDiag(E, diag::note_constexpr_array_index)
1506 << N << /*array*/ 0
1507 << static_cast<unsigned>(getMostDerivedArraySize());
1508 else
1509 Info.CCEDiag(E, diag::note_constexpr_array_index)
1510 << N << /*non-array*/ 1;
1511 setInvalid();
1512}
1513
1514CallStackFrame::CallStackFrame(EvalInfo &Info, SourceRange CallRange,
1515 const FunctionDecl *Callee, const LValue *This,
1516 const Expr *CallExpr, CallRef Call)
1517 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1518 CallExpr(CallExpr), Arguments(Call), CallRange(CallRange),
1519 Index(Info.NextCallIndex++) {
1520 Info.CurrentCall = this;
1521 ++Info.CallStackDepth;
1522}
1523
1524CallStackFrame::~CallStackFrame() {
1525 assert(Info.CurrentCall == this && "calls retired out of order");
1526 --Info.CallStackDepth;
1527 Info.CurrentCall = Caller;
1528}
1529
1530static bool isRead(AccessKinds AK) {
1531 return AK == AK_Read || AK == AK_ReadObjectRepresentation ||
1532 AK == AK_IsWithinLifetime;
1533}
1534
1535static bool isModification(AccessKinds AK) {
1536 switch (AK) {
1537 case AK_Read:
1538 case AK_ReadObjectRepresentation:
1539 case AK_MemberCall:
1540 case AK_DynamicCast:
1541 case AK_TypeId:
1542 case AK_IsWithinLifetime:
1543 return false;
1544 case AK_Assign:
1545 case AK_Increment:
1546 case AK_Decrement:
1547 case AK_Construct:
1548 case AK_Destroy:
1549 return true;
1550 }
1551 llvm_unreachable("unknown access kind");
1552}
1553
1554static bool isAnyAccess(AccessKinds AK) {
1555 return isRead(AK) || isModification(AK);
1556}
1557
1558/// Is this an access per the C++ definition?
1559static bool isFormalAccess(AccessKinds AK) {
1560 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy &&
1561 AK != AK_IsWithinLifetime;
1562}
1563
1564/// Is this kind of axcess valid on an indeterminate object value?
1565static bool isValidIndeterminateAccess(AccessKinds AK) {
1566 switch (AK) {
1567 case AK_Read:
1568 case AK_Increment:
1569 case AK_Decrement:
1570 // These need the object's value.
1571 return false;
1572
1573 case AK_IsWithinLifetime:
1574 case AK_ReadObjectRepresentation:
1575 case AK_Assign:
1576 case AK_Construct:
1577 case AK_Destroy:
1578 // Construction and destruction don't need the value.
1579 return true;
1580
1581 case AK_MemberCall:
1582 case AK_DynamicCast:
1583 case AK_TypeId:
1584 // These aren't really meaningful on scalars.
1585 return true;
1586 }
1587 llvm_unreachable("unknown access kind");
1588}
1589
1590namespace {
1591 struct ComplexValue {
1592 private:
1593 bool IsInt;
1594
1595 public:
1596 APSInt IntReal, IntImag;
1597 APFloat FloatReal, FloatImag;
1598
1599 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1600
1601 void makeComplexFloat() { IsInt = false; }
1602 bool isComplexFloat() const { return !IsInt; }
1603 APFloat &getComplexFloatReal() { return FloatReal; }
1604 APFloat &getComplexFloatImag() { return FloatImag; }
1605
1606 void makeComplexInt() { IsInt = true; }
1607 bool isComplexInt() const { return IsInt; }
1608 APSInt &getComplexIntReal() { return IntReal; }
1609 APSInt &getComplexIntImag() { return IntImag; }
1610
1611 void moveInto(APValue &v) const {
1612 if (isComplexFloat())
1613 v = APValue(FloatReal, FloatImag);
1614 else
1615 v = APValue(IntReal, IntImag);
1616 }
1617 void setFrom(const APValue &v) {
1618 assert(v.isComplexFloat() || v.isComplexInt());
1619 if (v.isComplexFloat()) {
1620 makeComplexFloat();
1621 FloatReal = v.getComplexFloatReal();
1622 FloatImag = v.getComplexFloatImag();
1623 } else {
1624 makeComplexInt();
1625 IntReal = v.getComplexIntReal();
1626 IntImag = v.getComplexIntImag();
1627 }
1628 }
1629 };
1630
1631 struct LValue {
1632 APValue::LValueBase Base;
1633 CharUnits Offset;
1634 SubobjectDesignator Designator;
1635 bool IsNullPtr : 1;
1636 bool InvalidBase : 1;
1637 // P2280R4 track if we have an unknown reference or pointer.
1638 bool AllowConstexprUnknown = false;
1639
1640 const APValue::LValueBase getLValueBase() const { return Base; }
1641 bool allowConstexprUnknown() const { return AllowConstexprUnknown; }
1642 CharUnits &getLValueOffset() { return Offset; }
1643 const CharUnits &getLValueOffset() const { return Offset; }
1644 SubobjectDesignator &getLValueDesignator() { return Designator; }
1645 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1646 bool isNullPointer() const { return IsNullPtr;}
1647
1648 unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1649 unsigned getLValueVersion() const { return Base.getVersion(); }
1650
1651 void moveInto(APValue &V) const {
1652 if (Designator.Invalid)
1653 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1654 else {
1655 assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1656 V = APValue(Base, Offset, Designator.Entries,
1657 Designator.IsOnePastTheEnd, IsNullPtr);
1658 }
1659 if (AllowConstexprUnknown)
1660 V.setConstexprUnknown();
1661 }
1662 void setFrom(ASTContext &Ctx, const APValue &V) {
1663 assert(V.isLValue() && "Setting LValue from a non-LValue?");
1664 Base = V.getLValueBase();
1665 Offset = V.getLValueOffset();
1666 InvalidBase = false;
1667 Designator = SubobjectDesignator(Ctx, V);
1668 IsNullPtr = V.isNullPointer();
1669 AllowConstexprUnknown = V.allowConstexprUnknown();
1670 }
1671
1672 void set(APValue::LValueBase B, bool BInvalid = false) {
1673#ifndef NDEBUG
1674 // We only allow a few types of invalid bases. Enforce that here.
1675 if (BInvalid) {
1676 const auto *E = B.get<const Expr *>();
1677 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1678 "Unexpected type of invalid base");
1679 }
1680#endif
1681
1682 Base = B;
1683 Offset = CharUnits::fromQuantity(Quantity: 0);
1684 InvalidBase = BInvalid;
1685 Designator = SubobjectDesignator(getType(B));
1686 IsNullPtr = false;
1687 AllowConstexprUnknown = false;
1688 }
1689
1690 void setNull(ASTContext &Ctx, QualType PointerTy) {
1691 Base = (const ValueDecl *)nullptr;
1692 Offset =
1693 CharUnits::fromQuantity(Quantity: Ctx.getTargetNullPointerValue(QT: PointerTy));
1694 InvalidBase = false;
1695 Designator = SubobjectDesignator(PointerTy->getPointeeType());
1696 IsNullPtr = true;
1697 AllowConstexprUnknown = false;
1698 }
1699
1700 void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1701 set(B, BInvalid: true);
1702 }
1703
1704 std::string toString(ASTContext &Ctx, QualType T) const {
1705 APValue Printable;
1706 moveInto(V&: Printable);
1707 return Printable.getAsString(Ctx, Ty: T);
1708 }
1709
1710 private:
1711 // Check that this LValue is not based on a null pointer. If it is, produce
1712 // a diagnostic and mark the designator as invalid.
1713 template <typename GenDiagType>
1714 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1715 if (Designator.Invalid)
1716 return false;
1717 if (IsNullPtr) {
1718 GenDiag();
1719 Designator.setInvalid();
1720 return false;
1721 }
1722 return true;
1723 }
1724
1725 public:
1726 bool checkNullPointer(EvalInfo &Info, const Expr *E,
1727 CheckSubobjectKind CSK) {
1728 return checkNullPointerDiagnosingWith(GenDiag: [&Info, E, CSK] {
1729 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1730 });
1731 }
1732
1733 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1734 AccessKinds AK) {
1735 return checkNullPointerDiagnosingWith(GenDiag: [&Info, E, AK] {
1736 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1737 });
1738 }
1739
1740 // Check this LValue refers to an object. If not, set the designator to be
1741 // invalid and emit a diagnostic.
1742 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1743 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1744 Designator.checkSubobject(Info, E, CSK);
1745 }
1746
1747 void addDecl(EvalInfo &Info, const Expr *E,
1748 const Decl *D, bool Virtual = false) {
1749 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1750 Designator.addDeclUnchecked(D, Virtual);
1751 }
1752 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1753 if (!Designator.Entries.empty()) {
1754 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1755 Designator.setInvalid();
1756 return;
1757 }
1758 if (checkSubobject(Info, E, CSK: CSK_ArrayToPointer)) {
1759 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1760 Designator.FirstEntryIsAnUnsizedArray = true;
1761 Designator.addUnsizedArrayUnchecked(ElemTy);
1762 }
1763 }
1764 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1765 if (checkSubobject(Info, E, CSK_ArrayToPointer))
1766 Designator.addArrayUnchecked(CAT);
1767 }
1768 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1769 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1770 Designator.addComplexUnchecked(EltTy, Imag);
1771 }
1772 void addVectorElement(EvalInfo &Info, const Expr *E, QualType EltTy,
1773 uint64_t Size, uint64_t Idx) {
1774 if (checkSubobject(Info, E, CSK_VectorElement))
1775 Designator.addVectorElementUnchecked(EltTy, Size, Idx);
1776 }
1777 void clearIsNullPointer() {
1778 IsNullPtr = false;
1779 }
1780 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1781 const APSInt &Index, CharUnits ElementSize) {
1782 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1783 // but we're not required to diagnose it and it's valid in C++.)
1784 if (!Index)
1785 return;
1786
1787 // Compute the new offset in the appropriate width, wrapping at 64 bits.
1788 // FIXME: When compiling for a 32-bit target, we should use 32-bit
1789 // offsets.
1790 uint64_t Offset64 = Offset.getQuantity();
1791 uint64_t ElemSize64 = ElementSize.getQuantity();
1792 uint64_t Index64 = Index.extOrTrunc(width: 64).getZExtValue();
1793 Offset = CharUnits::fromQuantity(Quantity: Offset64 + ElemSize64 * Index64);
1794
1795 if (checkNullPointer(Info, E, CSK_ArrayIndex))
1796 Designator.adjustIndex(Info, E, Index);
1797 clearIsNullPointer();
1798 }
1799 void adjustOffset(CharUnits N) {
1800 Offset += N;
1801 if (N.getQuantity())
1802 clearIsNullPointer();
1803 }
1804 };
1805
1806 struct MemberPtr {
1807 MemberPtr() {}
1808 explicit MemberPtr(const ValueDecl *Decl)
1809 : DeclAndIsDerivedMember(Decl, false) {}
1810
1811 /// The member or (direct or indirect) field referred to by this member
1812 /// pointer, or 0 if this is a null member pointer.
1813 const ValueDecl *getDecl() const {
1814 return DeclAndIsDerivedMember.getPointer();
1815 }
1816 /// Is this actually a member of some type derived from the relevant class?
1817 bool isDerivedMember() const {
1818 return DeclAndIsDerivedMember.getInt();
1819 }
1820 /// Get the class which the declaration actually lives in.
1821 const CXXRecordDecl *getContainingRecord() const {
1822 return cast<CXXRecordDecl>(
1823 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1824 }
1825
1826 void moveInto(APValue &V) const {
1827 V = APValue(getDecl(), isDerivedMember(), Path);
1828 }
1829 void setFrom(const APValue &V) {
1830 assert(V.isMemberPointer());
1831 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1832 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1833 Path.clear();
1834 llvm::append_range(C&: Path, R: V.getMemberPointerPath());
1835 }
1836
1837 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1838 /// whether the member is a member of some class derived from the class type
1839 /// of the member pointer.
1840 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1841 /// Path - The path of base/derived classes from the member declaration's
1842 /// class (exclusive) to the class type of the member pointer (inclusive).
1843 SmallVector<const CXXRecordDecl*, 4> Path;
1844
1845 /// Perform a cast towards the class of the Decl (either up or down the
1846 /// hierarchy).
1847 bool castBack(const CXXRecordDecl *Class) {
1848 assert(!Path.empty());
1849 const CXXRecordDecl *Expected;
1850 if (Path.size() >= 2)
1851 Expected = Path[Path.size() - 2];
1852 else
1853 Expected = getContainingRecord();
1854 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1855 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1856 // if B does not contain the original member and is not a base or
1857 // derived class of the class containing the original member, the result
1858 // of the cast is undefined.
1859 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1860 // (D::*). We consider that to be a language defect.
1861 return false;
1862 }
1863 Path.pop_back();
1864 return true;
1865 }
1866 /// Perform a base-to-derived member pointer cast.
1867 bool castToDerived(const CXXRecordDecl *Derived) {
1868 if (!getDecl())
1869 return true;
1870 if (!isDerivedMember()) {
1871 Path.push_back(Elt: Derived);
1872 return true;
1873 }
1874 if (!castBack(Class: Derived))
1875 return false;
1876 if (Path.empty())
1877 DeclAndIsDerivedMember.setInt(false);
1878 return true;
1879 }
1880 /// Perform a derived-to-base member pointer cast.
1881 bool castToBase(const CXXRecordDecl *Base) {
1882 if (!getDecl())
1883 return true;
1884 if (Path.empty())
1885 DeclAndIsDerivedMember.setInt(true);
1886 if (isDerivedMember()) {
1887 Path.push_back(Elt: Base);
1888 return true;
1889 }
1890 return castBack(Class: Base);
1891 }
1892 };
1893
1894 /// Compare two member pointers, which are assumed to be of the same type.
1895 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1896 if (!LHS.getDecl() || !RHS.getDecl())
1897 return !LHS.getDecl() && !RHS.getDecl();
1898 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1899 return false;
1900 return LHS.Path == RHS.Path;
1901 }
1902}
1903
1904static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1905static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1906 const LValue &This, const Expr *E,
1907 bool AllowNonLiteralTypes = false);
1908static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1909 bool InvalidBaseOK = false);
1910static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1911 bool InvalidBaseOK = false);
1912static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1913 EvalInfo &Info);
1914static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1915static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1916static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1917 EvalInfo &Info);
1918static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1919static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1920static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1921 EvalInfo &Info);
1922static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1923static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1924 EvalInfo &Info,
1925 std::string *StringResult = nullptr);
1926
1927/// Evaluate an integer or fixed point expression into an APResult.
1928static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1929 EvalInfo &Info);
1930
1931/// Evaluate only a fixed point expression into an APResult.
1932static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1933 EvalInfo &Info);
1934
1935//===----------------------------------------------------------------------===//
1936// Misc utilities
1937//===----------------------------------------------------------------------===//
1938
1939/// Negate an APSInt in place, converting it to a signed form if necessary, and
1940/// preserving its value (by extending by up to one bit as needed).
1941static void negateAsSigned(APSInt &Int) {
1942 if (Int.isUnsigned() || Int.isMinSignedValue()) {
1943 Int = Int.extend(width: Int.getBitWidth() + 1);
1944 Int.setIsSigned(true);
1945 }
1946 Int = -Int;
1947}
1948
1949template<typename KeyT>
1950APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1951 ScopeKind Scope, LValue &LV) {
1952 unsigned Version = getTempVersion();
1953 APValue::LValueBase Base(Key, Index, Version);
1954 LV.set(B: Base);
1955 return createLocal(Base, Key, T, Scope);
1956}
1957
1958APValue &
1959CallStackFrame::createConstexprUnknownAPValues(const VarDecl *Key,
1960 APValue::LValueBase Base) {
1961 APValue &Result = ConstexprUnknownAPValues[MapKeyTy(Key, Base.getVersion())];
1962 Result = APValue(Base, CharUnits::Zero(), APValue::ConstexprUnknown{});
1963
1964 return Result;
1965}
1966
1967/// Allocate storage for a parameter of a function call made in this frame.
1968APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1969 LValue &LV) {
1970 assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1971 APValue::LValueBase Base(PVD, Index, Args.Version);
1972 LV.set(B: Base);
1973 // We always destroy parameters at the end of the call, even if we'd allow
1974 // them to live to the end of the full-expression at runtime, in order to
1975 // give portable results and match other compilers.
1976 return createLocal(Base, Key: PVD, T: PVD->getType(), Scope: ScopeKind::Call);
1977}
1978
1979APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1980 QualType T, ScopeKind Scope) {
1981 assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1982 unsigned Version = Base.getVersion();
1983 APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1984 assert(Result.isAbsent() && "local created multiple times");
1985
1986 // If we're creating a local immediately in the operand of a speculative
1987 // evaluation, don't register a cleanup to be run outside the speculative
1988 // evaluation context, since we won't actually be able to initialize this
1989 // object.
1990 if (Index <= Info.SpeculativeEvaluationDepth) {
1991 if (T.isDestructedType())
1992 Info.noteSideEffect();
1993 } else {
1994 Info.CleanupStack.push_back(Elt: Cleanup(&Result, Base, T, Scope));
1995 }
1996 return Result;
1997}
1998
1999APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
2000 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
2001 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
2002 return nullptr;
2003 }
2004
2005 DynamicAllocLValue DA(NumHeapAllocs++);
2006 LV.set(B: APValue::LValueBase::getDynamicAlloc(LV: DA, Type: T));
2007 auto Result = HeapAllocs.emplace(args: std::piecewise_construct,
2008 args: std::forward_as_tuple(args&: DA), args: std::tuple<>());
2009 assert(Result.second && "reused a heap alloc index?");
2010 Result.first->second.AllocExpr = E;
2011 return &Result.first->second.Value;
2012}
2013
2014/// Produce a string describing the given constexpr call.
2015void CallStackFrame::describe(raw_ostream &Out) const {
2016 unsigned ArgIndex = 0;
2017 bool IsMemberCall =
2018 isa<CXXMethodDecl>(Val: Callee) && !isa<CXXConstructorDecl>(Val: Callee) &&
2019 cast<CXXMethodDecl>(Val: Callee)->isImplicitObjectMemberFunction();
2020
2021 if (!IsMemberCall)
2022 Callee->getNameForDiagnostic(OS&: Out, Policy: Info.Ctx.getPrintingPolicy(),
2023 /*Qualified=*/false);
2024
2025 if (This && IsMemberCall) {
2026 if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(Val: CallExpr)) {
2027 const Expr *Object = MCE->getImplicitObjectArgument();
2028 Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(),
2029 /*Indentation=*/0);
2030 if (Object->getType()->isPointerType())
2031 Out << "->";
2032 else
2033 Out << ".";
2034 } else if (const auto *OCE =
2035 dyn_cast_if_present<CXXOperatorCallExpr>(Val: CallExpr)) {
2036 OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr,
2037 Info.Ctx.getPrintingPolicy(),
2038 /*Indentation=*/0);
2039 Out << ".";
2040 } else {
2041 APValue Val;
2042 This->moveInto(V&: Val);
2043 Val.printPretty(
2044 Out, Info.Ctx,
2045 Info.Ctx.getLValueReferenceType(T: This->Designator.MostDerivedType));
2046 Out << ".";
2047 }
2048 Callee->getNameForDiagnostic(OS&: Out, Policy: Info.Ctx.getPrintingPolicy(),
2049 /*Qualified=*/false);
2050 IsMemberCall = false;
2051 }
2052
2053 Out << '(';
2054
2055 for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
2056 E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
2057 if (ArgIndex > (unsigned)IsMemberCall)
2058 Out << ", ";
2059
2060 const ParmVarDecl *Param = *I;
2061 APValue *V = Info.getParamSlot(Call: Arguments, PVD: Param);
2062 if (V)
2063 V->printPretty(Out, Info.Ctx, Param->getType());
2064 else
2065 Out << "<...>";
2066
2067 if (ArgIndex == 0 && IsMemberCall)
2068 Out << "->" << *Callee << '(';
2069 }
2070
2071 Out << ')';
2072}
2073
2074/// Evaluate an expression to see if it had side-effects, and discard its
2075/// result.
2076/// \return \c true if the caller should keep evaluating.
2077static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
2078 assert(!E->isValueDependent());
2079 APValue Scratch;
2080 if (!Evaluate(Result&: Scratch, Info, E))
2081 // We don't need the value, but we might have skipped a side effect here.
2082 return Info.noteSideEffect();
2083 return true;
2084}
2085
2086/// Should this call expression be treated as forming an opaque constant?
2087static bool IsOpaqueConstantCall(const CallExpr *E) {
2088 unsigned Builtin = E->getBuiltinCallee();
2089 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
2090 Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
2091 Builtin == Builtin::BI__builtin_ptrauth_sign_constant ||
2092 Builtin == Builtin::BI__builtin_function_start);
2093}
2094
2095static bool IsOpaqueConstantCall(const LValue &LVal) {
2096 const auto *BaseExpr =
2097 llvm::dyn_cast_if_present<CallExpr>(Val: LVal.Base.dyn_cast<const Expr *>());
2098 return BaseExpr && IsOpaqueConstantCall(E: BaseExpr);
2099}
2100
2101static bool IsGlobalLValue(APValue::LValueBase B) {
2102 // C++11 [expr.const]p3 An address constant expression is a prvalue core
2103 // constant expression of pointer type that evaluates to...
2104
2105 // ... a null pointer value, or a prvalue core constant expression of type
2106 // std::nullptr_t.
2107 if (!B)
2108 return true;
2109
2110 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
2111 // ... the address of an object with static storage duration,
2112 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
2113 return VD->hasGlobalStorage();
2114 if (isa<TemplateParamObjectDecl>(Val: D))
2115 return true;
2116 // ... the address of a function,
2117 // ... the address of a GUID [MS extension],
2118 // ... the address of an unnamed global constant
2119 return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(Val: D);
2120 }
2121
2122 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
2123 return true;
2124
2125 const Expr *E = B.get<const Expr*>();
2126 switch (E->getStmtClass()) {
2127 default:
2128 return false;
2129 case Expr::CompoundLiteralExprClass: {
2130 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(Val: E);
2131 return CLE->isFileScope() && CLE->isLValue();
2132 }
2133 case Expr::MaterializeTemporaryExprClass:
2134 // A materialized temporary might have been lifetime-extended to static
2135 // storage duration.
2136 return cast<MaterializeTemporaryExpr>(Val: E)->getStorageDuration() == SD_Static;
2137 // A string literal has static storage duration.
2138 case Expr::StringLiteralClass:
2139 case Expr::PredefinedExprClass:
2140 case Expr::ObjCStringLiteralClass:
2141 case Expr::ObjCEncodeExprClass:
2142 return true;
2143 case Expr::ObjCBoxedExprClass:
2144 return cast<ObjCBoxedExpr>(Val: E)->isExpressibleAsConstantInitializer();
2145 case Expr::CallExprClass:
2146 return IsOpaqueConstantCall(E: cast<CallExpr>(Val: E));
2147 // For GCC compatibility, &&label has static storage duration.
2148 case Expr::AddrLabelExprClass:
2149 return true;
2150 // A Block literal expression may be used as the initialization value for
2151 // Block variables at global or local static scope.
2152 case Expr::BlockExprClass:
2153 return !cast<BlockExpr>(Val: E)->getBlockDecl()->hasCaptures();
2154 // The APValue generated from a __builtin_source_location will be emitted as a
2155 // literal.
2156 case Expr::SourceLocExprClass:
2157 return true;
2158 case Expr::ImplicitValueInitExprClass:
2159 // FIXME:
2160 // We can never form an lvalue with an implicit value initialization as its
2161 // base through expression evaluation, so these only appear in one case: the
2162 // implicit variable declaration we invent when checking whether a constexpr
2163 // constructor can produce a constant expression. We must assume that such
2164 // an expression might be a global lvalue.
2165 return true;
2166 }
2167}
2168
2169static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2170 return LVal.Base.dyn_cast<const ValueDecl*>();
2171}
2172
2173// Information about an LValueBase that is some kind of string.
2174struct LValueBaseString {
2175 std::string ObjCEncodeStorage;
2176 StringRef Bytes;
2177 int CharWidth;
2178};
2179
2180// Gets the lvalue base of LVal as a string.
2181static bool GetLValueBaseAsString(const EvalInfo &Info, const LValue &LVal,
2182 LValueBaseString &AsString) {
2183 const auto *BaseExpr = LVal.Base.dyn_cast<const Expr *>();
2184 if (!BaseExpr)
2185 return false;
2186
2187 // For ObjCEncodeExpr, we need to compute and store the string.
2188 if (const auto *EE = dyn_cast<ObjCEncodeExpr>(Val: BaseExpr)) {
2189 Info.Ctx.getObjCEncodingForType(T: EE->getEncodedType(),
2190 S&: AsString.ObjCEncodeStorage);
2191 AsString.Bytes = AsString.ObjCEncodeStorage;
2192 AsString.CharWidth = 1;
2193 return true;
2194 }
2195
2196 // Otherwise, we have a StringLiteral.
2197 const auto *Lit = dyn_cast<StringLiteral>(Val: BaseExpr);
2198 if (const auto *PE = dyn_cast<PredefinedExpr>(Val: BaseExpr))
2199 Lit = PE->getFunctionName();
2200
2201 if (!Lit)
2202 return false;
2203
2204 AsString.Bytes = Lit->getBytes();
2205 AsString.CharWidth = Lit->getCharByteWidth();
2206 return true;
2207}
2208
2209// Determine whether two string literals potentially overlap. This will be the
2210// case if they agree on the values of all the bytes on the overlapping region
2211// between them.
2212//
2213// The overlapping region is the portion of the two string literals that must
2214// overlap in memory if the pointers actually point to the same address at
2215// runtime. For example, if LHS is "abcdef" + 3 and RHS is "cdef\0gh" + 1 then
2216// the overlapping region is "cdef\0", which in this case does agree, so the
2217// strings are potentially overlapping. Conversely, for "foobar" + 3 versus
2218// "bazbar" + 3, the overlapping region contains all of both strings, so they
2219// are not potentially overlapping, even though they agree from the given
2220// addresses onwards.
2221//
2222// See open core issue CWG2765 which is discussing the desired rule here.
2223static bool ArePotentiallyOverlappingStringLiterals(const EvalInfo &Info,
2224 const LValue &LHS,
2225 const LValue &RHS) {
2226 LValueBaseString LHSString, RHSString;
2227 if (!GetLValueBaseAsString(Info, LVal: LHS, AsString&: LHSString) ||
2228 !GetLValueBaseAsString(Info, LVal: RHS, AsString&: RHSString))
2229 return false;
2230
2231 // This is the byte offset to the location of the first character of LHS
2232 // within RHS. We don't need to look at the characters of one string that
2233 // would appear before the start of the other string if they were merged.
2234 CharUnits Offset = RHS.Offset - LHS.Offset;
2235 if (Offset.isNegative()) {
2236 if (LHSString.Bytes.size() < (size_t)-Offset.getQuantity())
2237 return false;
2238 LHSString.Bytes = LHSString.Bytes.drop_front(N: -Offset.getQuantity());
2239 } else {
2240 if (RHSString.Bytes.size() < (size_t)Offset.getQuantity())
2241 return false;
2242 RHSString.Bytes = RHSString.Bytes.drop_front(N: Offset.getQuantity());
2243 }
2244
2245 bool LHSIsLonger = LHSString.Bytes.size() > RHSString.Bytes.size();
2246 StringRef Longer = LHSIsLonger ? LHSString.Bytes : RHSString.Bytes;
2247 StringRef Shorter = LHSIsLonger ? RHSString.Bytes : LHSString.Bytes;
2248 int ShorterCharWidth = (LHSIsLonger ? RHSString : LHSString).CharWidth;
2249
2250 // The null terminator isn't included in the string data, so check for it
2251 // manually. If the longer string doesn't have a null terminator where the
2252 // shorter string ends, they aren't potentially overlapping.
2253 for (int NullByte : llvm::seq(Size: ShorterCharWidth)) {
2254 if (Shorter.size() + NullByte >= Longer.size())
2255 break;
2256 if (Longer[Shorter.size() + NullByte])
2257 return false;
2258 }
2259
2260 // Otherwise, they're potentially overlapping if and only if the overlapping
2261 // region is the same.
2262 return Shorter == Longer.take_front(N: Shorter.size());
2263}
2264
2265static bool IsWeakLValue(const LValue &Value) {
2266 const ValueDecl *Decl = GetLValueBaseDecl(LVal: Value);
2267 return Decl && Decl->isWeak();
2268}
2269
2270static bool isZeroSized(const LValue &Value) {
2271 const ValueDecl *Decl = GetLValueBaseDecl(LVal: Value);
2272 if (isa_and_nonnull<VarDecl>(Val: Decl)) {
2273 QualType Ty = Decl->getType();
2274 if (Ty->isArrayType())
2275 return Ty->isIncompleteType() ||
2276 Decl->getASTContext().getTypeSize(Ty) == 0;
2277 }
2278 return false;
2279}
2280
2281static bool HasSameBase(const LValue &A, const LValue &B) {
2282 if (!A.getLValueBase())
2283 return !B.getLValueBase();
2284 if (!B.getLValueBase())
2285 return false;
2286
2287 if (A.getLValueBase().getOpaqueValue() !=
2288 B.getLValueBase().getOpaqueValue())
2289 return false;
2290
2291 return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2292 A.getLValueVersion() == B.getLValueVersion();
2293}
2294
2295static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2296 assert(Base && "no location for a null lvalue");
2297 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2298
2299 // For a parameter, find the corresponding call stack frame (if it still
2300 // exists), and point at the parameter of the function definition we actually
2301 // invoked.
2302 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(Val: VD)) {
2303 unsigned Idx = PVD->getFunctionScopeIndex();
2304 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2305 if (F->Arguments.CallIndex == Base.getCallIndex() &&
2306 F->Arguments.Version == Base.getVersion() && F->Callee &&
2307 Idx < F->Callee->getNumParams()) {
2308 VD = F->Callee->getParamDecl(i: Idx);
2309 break;
2310 }
2311 }
2312 }
2313
2314 if (VD)
2315 Info.Note(VD->getLocation(), diag::note_declared_at);
2316 else if (const Expr *E = Base.dyn_cast<const Expr*>())
2317 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2318 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2319 // FIXME: Produce a note for dangling pointers too.
2320 if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA))
2321 Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2322 diag::note_constexpr_dynamic_alloc_here);
2323 }
2324
2325 // We have no information to show for a typeid(T) object.
2326}
2327
2328enum class CheckEvaluationResultKind {
2329 ConstantExpression,
2330 FullyInitialized,
2331};
2332
2333/// Materialized temporaries that we've already checked to determine if they're
2334/// initializsed by a constant expression.
2335using CheckedTemporaries =
2336 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2337
2338static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2339 EvalInfo &Info, SourceLocation DiagLoc,
2340 QualType Type, const APValue &Value,
2341 ConstantExprKind Kind,
2342 const FieldDecl *SubobjectDecl,
2343 CheckedTemporaries &CheckedTemps);
2344
2345/// Check that this reference or pointer core constant expression is a valid
2346/// value for an address or reference constant expression. Return true if we
2347/// can fold this expression, whether or not it's a constant expression.
2348static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2349 QualType Type, const LValue &LVal,
2350 ConstantExprKind Kind,
2351 CheckedTemporaries &CheckedTemps) {
2352 bool IsReferenceType = Type->isReferenceType();
2353
2354 APValue::LValueBase Base = LVal.getLValueBase();
2355 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2356
2357 const Expr *BaseE = Base.dyn_cast<const Expr *>();
2358 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2359
2360 // Additional restrictions apply in a template argument. We only enforce the
2361 // C++20 restrictions here; additional syntactic and semantic restrictions
2362 // are applied elsewhere.
2363 if (isTemplateArgument(Kind)) {
2364 int InvalidBaseKind = -1;
2365 StringRef Ident;
2366 if (Base.is<TypeInfoLValue>())
2367 InvalidBaseKind = 0;
2368 else if (isa_and_nonnull<StringLiteral>(Val: BaseE))
2369 InvalidBaseKind = 1;
2370 else if (isa_and_nonnull<MaterializeTemporaryExpr>(Val: BaseE) ||
2371 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(Val: BaseVD))
2372 InvalidBaseKind = 2;
2373 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(Val: BaseE)) {
2374 InvalidBaseKind = 3;
2375 Ident = PE->getIdentKindName();
2376 }
2377
2378 if (InvalidBaseKind != -1) {
2379 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2380 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2381 << Ident;
2382 return false;
2383 }
2384 }
2385
2386 if (auto *FD = dyn_cast_or_null<FunctionDecl>(Val: BaseVD);
2387 FD && FD->isImmediateFunction()) {
2388 Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2389 << !Type->isAnyPointerType();
2390 Info.Note(FD->getLocation(), diag::note_declared_at);
2391 return false;
2392 }
2393
2394 // Check that the object is a global. Note that the fake 'this' object we
2395 // manufacture when checking potential constant expressions is conservatively
2396 // assumed to be global here.
2397 if (!IsGlobalLValue(B: Base)) {
2398 if (Info.getLangOpts().CPlusPlus11) {
2399 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2400 << IsReferenceType << !Designator.Entries.empty() << !!BaseVD
2401 << BaseVD;
2402 auto *VarD = dyn_cast_or_null<VarDecl>(Val: BaseVD);
2403 if (VarD && VarD->isConstexpr()) {
2404 // Non-static local constexpr variables have unintuitive semantics:
2405 // constexpr int a = 1;
2406 // constexpr const int *p = &a;
2407 // ... is invalid because the address of 'a' is not constant. Suggest
2408 // adding a 'static' in this case.
2409 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2410 << VarD
2411 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2412 } else {
2413 NoteLValueLocation(Info, Base);
2414 }
2415 } else {
2416 Info.FFDiag(Loc);
2417 }
2418 // Don't allow references to temporaries to escape.
2419 return false;
2420 }
2421 assert((Info.checkingPotentialConstantExpression() ||
2422 LVal.getLValueCallIndex() == 0) &&
2423 "have call index for global lvalue");
2424
2425 if (LVal.allowConstexprUnknown()) {
2426 if (BaseVD) {
2427 Info.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << BaseVD;
2428 NoteLValueLocation(Info, Base);
2429 } else {
2430 Info.FFDiag(Loc);
2431 }
2432 return false;
2433 }
2434
2435 if (Base.is<DynamicAllocLValue>()) {
2436 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2437 << IsReferenceType << !Designator.Entries.empty();
2438 NoteLValueLocation(Info, Base);
2439 return false;
2440 }
2441
2442 if (BaseVD) {
2443 if (const VarDecl *Var = dyn_cast<const VarDecl>(Val: BaseVD)) {
2444 // Check if this is a thread-local variable.
2445 if (Var->getTLSKind())
2446 // FIXME: Diagnostic!
2447 return false;
2448
2449 // A dllimport variable never acts like a constant, unless we're
2450 // evaluating a value for use only in name mangling.
2451 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2452 // FIXME: Diagnostic!
2453 return false;
2454
2455 // In CUDA/HIP device compilation, only device side variables have
2456 // constant addresses.
2457 if (Info.getASTContext().getLangOpts().CUDA &&
2458 Info.getASTContext().getLangOpts().CUDAIsDevice &&
2459 Info.getASTContext().CUDAConstantEvalCtx.NoWrongSidedVars) {
2460 if ((!Var->hasAttr<CUDADeviceAttr>() &&
2461 !Var->hasAttr<CUDAConstantAttr>() &&
2462 !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2463 !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2464 Var->hasAttr<HIPManagedAttr>())
2465 return false;
2466 }
2467 }
2468 if (const auto *FD = dyn_cast<const FunctionDecl>(Val: BaseVD)) {
2469 // __declspec(dllimport) must be handled very carefully:
2470 // We must never initialize an expression with the thunk in C++.
2471 // Doing otherwise would allow the same id-expression to yield
2472 // different addresses for the same function in different translation
2473 // units. However, this means that we must dynamically initialize the
2474 // expression with the contents of the import address table at runtime.
2475 //
2476 // The C language has no notion of ODR; furthermore, it has no notion of
2477 // dynamic initialization. This means that we are permitted to
2478 // perform initialization with the address of the thunk.
2479 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2480 FD->hasAttr<DLLImportAttr>())
2481 // FIXME: Diagnostic!
2482 return false;
2483 }
2484 } else if (const auto *MTE =
2485 dyn_cast_or_null<MaterializeTemporaryExpr>(Val: BaseE)) {
2486 if (CheckedTemps.insert(Ptr: MTE).second) {
2487 QualType TempType = getType(B: Base);
2488 if (TempType.isDestructedType()) {
2489 Info.FFDiag(MTE->getExprLoc(),
2490 diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2491 << TempType;
2492 return false;
2493 }
2494
2495 APValue *V = MTE->getOrCreateValue(MayCreate: false);
2496 assert(V && "evasluation result refers to uninitialised temporary");
2497 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2498 Info, MTE->getExprLoc(), TempType, *V, Kind,
2499 /*SubobjectDecl=*/nullptr, CheckedTemps))
2500 return false;
2501 }
2502 }
2503
2504 // Allow address constant expressions to be past-the-end pointers. This is
2505 // an extension: the standard requires them to point to an object.
2506 if (!IsReferenceType)
2507 return true;
2508
2509 // A reference constant expression must refer to an object.
2510 if (!Base) {
2511 // FIXME: diagnostic
2512 Info.CCEDiag(Loc);
2513 return true;
2514 }
2515
2516 // Does this refer one past the end of some object?
2517 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2518 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2519 << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2520 NoteLValueLocation(Info, Base);
2521 }
2522
2523 return true;
2524}
2525
2526/// Member pointers are constant expressions unless they point to a
2527/// non-virtual dllimport member function.
2528static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2529 SourceLocation Loc,
2530 QualType Type,
2531 const APValue &Value,
2532 ConstantExprKind Kind) {
2533 const ValueDecl *Member = Value.getMemberPointerDecl();
2534 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Val: Member);
2535 if (!FD)
2536 return true;
2537 if (FD->isImmediateFunction()) {
2538 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2539 Info.Note(FD->getLocation(), diag::note_declared_at);
2540 return false;
2541 }
2542 return isForManglingOnly(Kind) || FD->isVirtual() ||
2543 !FD->hasAttr<DLLImportAttr>();
2544}
2545
2546/// Check that this core constant expression is of literal type, and if not,
2547/// produce an appropriate diagnostic.
2548static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2549 const LValue *This = nullptr) {
2550 // The restriction to literal types does not exist in C++23 anymore.
2551 if (Info.getLangOpts().CPlusPlus23)
2552 return true;
2553
2554 if (!E->isPRValue() || E->getType()->isLiteralType(Ctx: Info.Ctx))
2555 return true;
2556
2557 // C++1y: A constant initializer for an object o [...] may also invoke
2558 // constexpr constructors for o and its subobjects even if those objects
2559 // are of non-literal class types.
2560 //
2561 // C++11 missed this detail for aggregates, so classes like this:
2562 // struct foo_t { union { int i; volatile int j; } u; };
2563 // are not (obviously) initializable like so:
2564 // __attribute__((__require_constant_initialization__))
2565 // static const foo_t x = {{0}};
2566 // because "i" is a subobject with non-literal initialization (due to the
2567 // volatile member of the union). See:
2568 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2569 // Therefore, we use the C++1y behavior.
2570 if (This && Info.EvaluatingDecl == This->getLValueBase())
2571 return true;
2572
2573 // Prvalue constant expressions must be of literal types.
2574 if (Info.getLangOpts().CPlusPlus11)
2575 Info.FFDiag(E, diag::note_constexpr_nonliteral)
2576 << E->getType();
2577 else
2578 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2579 return false;
2580}
2581
2582static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2583 EvalInfo &Info, SourceLocation DiagLoc,
2584 QualType Type, const APValue &Value,
2585 ConstantExprKind Kind,
2586 const FieldDecl *SubobjectDecl,
2587 CheckedTemporaries &CheckedTemps) {
2588 if (!Value.hasValue()) {
2589 if (SubobjectDecl) {
2590 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2591 << /*(name)*/ 1 << SubobjectDecl;
2592 Info.Note(SubobjectDecl->getLocation(),
2593 diag::note_constexpr_subobject_declared_here);
2594 } else {
2595 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2596 << /*of type*/ 0 << Type;
2597 }
2598 return false;
2599 }
2600
2601 // We allow _Atomic(T) to be initialized from anything that T can be
2602 // initialized from.
2603 if (const AtomicType *AT = Type->getAs<AtomicType>())
2604 Type = AT->getValueType();
2605
2606 // Core issue 1454: For a literal constant expression of array or class type,
2607 // each subobject of its value shall have been initialized by a constant
2608 // expression.
2609 if (Value.isArray()) {
2610 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2611 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2612 if (!CheckEvaluationResult(CERK, Info, DiagLoc, Type: EltTy,
2613 Value: Value.getArrayInitializedElt(I), Kind,
2614 SubobjectDecl, CheckedTemps))
2615 return false;
2616 }
2617 if (!Value.hasArrayFiller())
2618 return true;
2619 return CheckEvaluationResult(CERK, Info, DiagLoc, Type: EltTy,
2620 Value: Value.getArrayFiller(), Kind, SubobjectDecl,
2621 CheckedTemps);
2622 }
2623 if (Value.isUnion() && Value.getUnionField()) {
2624 return CheckEvaluationResult(
2625 CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2626 Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps);
2627 }
2628 if (Value.isStruct()) {
2629 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2630 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD)) {
2631 unsigned BaseIndex = 0;
2632 for (const CXXBaseSpecifier &BS : CD->bases()) {
2633 const APValue &BaseValue = Value.getStructBase(i: BaseIndex);
2634 if (!BaseValue.hasValue()) {
2635 SourceLocation TypeBeginLoc = BS.getBaseTypeLoc();
2636 Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base)
2637 << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc());
2638 return false;
2639 }
2640 if (!CheckEvaluationResult(CERK, Info, DiagLoc, Type: BS.getType(), Value: BaseValue,
2641 Kind, /*SubobjectDecl=*/nullptr,
2642 CheckedTemps))
2643 return false;
2644 ++BaseIndex;
2645 }
2646 }
2647 for (const auto *I : RD->fields()) {
2648 if (I->isUnnamedBitField())
2649 continue;
2650
2651 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2652 Value.getStructField(i: I->getFieldIndex()), Kind,
2653 I, CheckedTemps))
2654 return false;
2655 }
2656 }
2657
2658 if (Value.isLValue() &&
2659 CERK == CheckEvaluationResultKind::ConstantExpression) {
2660 LValue LVal;
2661 LVal.setFrom(Ctx&: Info.Ctx, V: Value);
2662 return CheckLValueConstantExpression(Info, Loc: DiagLoc, Type, LVal, Kind,
2663 CheckedTemps);
2664 }
2665
2666 if (Value.isMemberPointer() &&
2667 CERK == CheckEvaluationResultKind::ConstantExpression)
2668 return CheckMemberPointerConstantExpression(Info, Loc: DiagLoc, Type, Value, Kind);
2669
2670 // Everything else is fine.
2671 return true;
2672}
2673
2674/// Check that this core constant expression value is a valid value for a
2675/// constant expression. If not, report an appropriate diagnostic. Does not
2676/// check that the expression is of literal type.
2677static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2678 QualType Type, const APValue &Value,
2679 ConstantExprKind Kind) {
2680 // Nothing to check for a constant expression of type 'cv void'.
2681 if (Type->isVoidType())
2682 return true;
2683
2684 CheckedTemporaries CheckedTemps;
2685 return CheckEvaluationResult(CERK: CheckEvaluationResultKind::ConstantExpression,
2686 Info, DiagLoc, Type, Value, Kind,
2687 /*SubobjectDecl=*/nullptr, CheckedTemps);
2688}
2689
2690/// Check that this evaluated value is fully-initialized and can be loaded by
2691/// an lvalue-to-rvalue conversion.
2692static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2693 QualType Type, const APValue &Value) {
2694 CheckedTemporaries CheckedTemps;
2695 return CheckEvaluationResult(
2696 CERK: CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2697 Kind: ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps);
2698}
2699
2700/// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2701/// "the allocated storage is deallocated within the evaluation".
2702static bool CheckMemoryLeaks(EvalInfo &Info) {
2703 if (!Info.HeapAllocs.empty()) {
2704 // We can still fold to a constant despite a compile-time memory leak,
2705 // so long as the heap allocation isn't referenced in the result (we check
2706 // that in CheckConstantExpression).
2707 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2708 diag::note_constexpr_memory_leak)
2709 << unsigned(Info.HeapAllocs.size() - 1);
2710 }
2711 return true;
2712}
2713
2714static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2715 // A null base expression indicates a null pointer. These are always
2716 // evaluatable, and they are false unless the offset is zero.
2717 if (!Value.getLValueBase()) {
2718 // TODO: Should a non-null pointer with an offset of zero evaluate to true?
2719 Result = !Value.getLValueOffset().isZero();
2720 return true;
2721 }
2722
2723 // We have a non-null base. These are generally known to be true, but if it's
2724 // a weak declaration it can be null at runtime.
2725 Result = true;
2726 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2727 return !Decl || !Decl->isWeak();
2728}
2729
2730static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2731 // TODO: This function should produce notes if it fails.
2732 switch (Val.getKind()) {
2733 case APValue::None:
2734 case APValue::Indeterminate:
2735 return false;
2736 case APValue::Int:
2737 Result = Val.getInt().getBoolValue();
2738 return true;
2739 case APValue::FixedPoint:
2740 Result = Val.getFixedPoint().getBoolValue();
2741 return true;
2742 case APValue::Float:
2743 Result = !Val.getFloat().isZero();
2744 return true;
2745 case APValue::ComplexInt:
2746 Result = Val.getComplexIntReal().getBoolValue() ||
2747 Val.getComplexIntImag().getBoolValue();
2748 return true;
2749 case APValue::ComplexFloat:
2750 Result = !Val.getComplexFloatReal().isZero() ||
2751 !Val.getComplexFloatImag().isZero();
2752 return true;
2753 case APValue::LValue:
2754 return EvalPointerValueAsBool(Value: Val, Result);
2755 case APValue::MemberPointer:
2756 if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) {
2757 return false;
2758 }
2759 Result = Val.getMemberPointerDecl();
2760 return true;
2761 case APValue::Vector:
2762 case APValue::Array:
2763 case APValue::Struct:
2764 case APValue::Union:
2765 case APValue::AddrLabelDiff:
2766 return false;
2767 }
2768
2769 llvm_unreachable("unknown APValue kind");
2770}
2771
2772static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2773 EvalInfo &Info) {
2774 assert(!E->isValueDependent());
2775 assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2776 APValue Val;
2777 if (!Evaluate(Result&: Val, Info, E))
2778 return false;
2779 return HandleConversionToBool(Val, Result);
2780}
2781
2782template<typename T>
2783static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2784 const T &SrcValue, QualType DestType) {
2785 Info.CCEDiag(E, diag::note_constexpr_overflow)
2786 << SrcValue << DestType;
2787 return Info.noteUndefinedBehavior();
2788}
2789
2790static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2791 QualType SrcType, const APFloat &Value,
2792 QualType DestType, APSInt &Result) {
2793 unsigned DestWidth = Info.Ctx.getIntWidth(T: DestType);
2794 // Determine whether we are converting to unsigned or signed.
2795 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2796
2797 Result = APSInt(DestWidth, !DestSigned);
2798 bool ignored;
2799 if (Value.convertToInteger(Result, RM: llvm::APFloat::rmTowardZero, IsExact: &ignored)
2800 & APFloat::opInvalidOp)
2801 return HandleOverflow(Info, E, SrcValue: Value, DestType);
2802 return true;
2803}
2804
2805/// Get rounding mode to use in evaluation of the specified expression.
2806///
2807/// If rounding mode is unknown at compile time, still try to evaluate the
2808/// expression. If the result is exact, it does not depend on rounding mode.
2809/// So return "tonearest" mode instead of "dynamic".
2810static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) {
2811 llvm::RoundingMode RM =
2812 E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts()).getRoundingMode();
2813 if (RM == llvm::RoundingMode::Dynamic)
2814 RM = llvm::RoundingMode::NearestTiesToEven;
2815 return RM;
2816}
2817
2818/// Check if the given evaluation result is allowed for constant evaluation.
2819static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2820 APFloat::opStatus St) {
2821 // In a constant context, assume that any dynamic rounding mode or FP
2822 // exception state matches the default floating-point environment.
2823 if (Info.InConstantContext)
2824 return true;
2825
2826 FPOptions FPO = E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts());
2827 if ((St & APFloat::opInexact) &&
2828 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2829 // Inexact result means that it depends on rounding mode. If the requested
2830 // mode is dynamic, the evaluation cannot be made in compile time.
2831 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2832 return false;
2833 }
2834
2835 if ((St != APFloat::opOK) &&
2836 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2837 FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
2838 FPO.getAllowFEnvAccess())) {
2839 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2840 return false;
2841 }
2842
2843 if ((St & APFloat::opStatus::opInvalidOp) &&
2844 FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
2845 // There is no usefully definable result.
2846 Info.FFDiag(E);
2847 return false;
2848 }
2849
2850 // FIXME: if:
2851 // - evaluation triggered other FP exception, and
2852 // - exception mode is not "ignore", and
2853 // - the expression being evaluated is not a part of global variable
2854 // initializer,
2855 // the evaluation probably need to be rejected.
2856 return true;
2857}
2858
2859static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2860 QualType SrcType, QualType DestType,
2861 APFloat &Result) {
2862 assert((isa<CastExpr>(E) || isa<CompoundAssignOperator>(E) ||
2863 isa<ConvertVectorExpr>(E)) &&
2864 "HandleFloatToFloatCast has been checked with only CastExpr, "
2865 "CompoundAssignOperator and ConvertVectorExpr. Please either validate "
2866 "the new expression or address the root cause of this usage.");
2867 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2868 APFloat::opStatus St;
2869 APFloat Value = Result;
2870 bool ignored;
2871 St = Result.convert(ToSemantics: Info.Ctx.getFloatTypeSemantics(T: DestType), RM, losesInfo: &ignored);
2872 return checkFloatingPointResult(Info, E, St);
2873}
2874
2875static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2876 QualType DestType, QualType SrcType,
2877 const APSInt &Value) {
2878 unsigned DestWidth = Info.Ctx.getIntWidth(T: DestType);
2879 // Figure out if this is a truncate, extend or noop cast.
2880 // If the input is signed, do a sign extend, noop, or truncate.
2881 APSInt Result = Value.extOrTrunc(width: DestWidth);
2882 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2883 if (DestType->isBooleanType())
2884 Result = Value.getBoolValue();
2885 return Result;
2886}
2887
2888static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2889 const FPOptions FPO,
2890 QualType SrcType, const APSInt &Value,
2891 QualType DestType, APFloat &Result) {
2892 Result = APFloat(Info.Ctx.getFloatTypeSemantics(T: DestType), 1);
2893 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2894 APFloat::opStatus St = Result.convertFromAPInt(Input: Value, IsSigned: Value.isSigned(), RM);
2895 return checkFloatingPointResult(Info, E, St);
2896}
2897
2898static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2899 APValue &Value, const FieldDecl *FD) {
2900 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2901
2902 if (!Value.isInt()) {
2903 // Trying to store a pointer-cast-to-integer into a bitfield.
2904 // FIXME: In this case, we should provide the diagnostic for casting
2905 // a pointer to an integer.
2906 assert(Value.isLValue() && "integral value neither int nor lvalue?");
2907 Info.FFDiag(E);
2908 return false;
2909 }
2910
2911 APSInt &Int = Value.getInt();
2912 unsigned OldBitWidth = Int.getBitWidth();
2913 unsigned NewBitWidth = FD->getBitWidthValue();
2914 if (NewBitWidth < OldBitWidth)
2915 Int = Int.trunc(width: NewBitWidth).extend(width: OldBitWidth);
2916 return true;
2917}
2918
2919/// Perform the given integer operation, which is known to need at most BitWidth
2920/// bits, and check for overflow in the original type (if that type was not an
2921/// unsigned type).
2922template<typename Operation>
2923static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2924 const APSInt &LHS, const APSInt &RHS,
2925 unsigned BitWidth, Operation Op,
2926 APSInt &Result) {
2927 if (LHS.isUnsigned()) {
2928 Result = Op(LHS, RHS);
2929 return true;
2930 }
2931
2932 APSInt Value(Op(LHS.extend(width: BitWidth), RHS.extend(width: BitWidth)), false);
2933 Result = Value.trunc(width: LHS.getBitWidth());
2934 if (Result.extend(width: BitWidth) != Value) {
2935 if (Info.checkingForUndefinedBehavior())
2936 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2937 diag::warn_integer_constant_overflow)
2938 << toString(Result, 10, Result.isSigned(), /*formatAsCLiteral=*/false,
2939 /*UpperCase=*/true, /*InsertSeparators=*/true)
2940 << E->getType() << E->getSourceRange();
2941 return HandleOverflow(Info, E, SrcValue: Value, DestType: E->getType());
2942 }
2943 return true;
2944}
2945
2946/// Perform the given binary integer operation.
2947static bool handleIntIntBinOp(EvalInfo &Info, const BinaryOperator *E,
2948 const APSInt &LHS, BinaryOperatorKind Opcode,
2949 APSInt RHS, APSInt &Result) {
2950 bool HandleOverflowResult = true;
2951 switch (Opcode) {
2952 default:
2953 Info.FFDiag(E);
2954 return false;
2955 case BO_Mul:
2956 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2957 std::multiplies<APSInt>(), Result);
2958 case BO_Add:
2959 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2960 std::plus<APSInt>(), Result);
2961 case BO_Sub:
2962 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2963 std::minus<APSInt>(), Result);
2964 case BO_And: Result = LHS & RHS; return true;
2965 case BO_Xor: Result = LHS ^ RHS; return true;
2966 case BO_Or: Result = LHS | RHS; return true;
2967 case BO_Div:
2968 case BO_Rem:
2969 if (RHS == 0) {
2970 Info.FFDiag(E, diag::note_expr_divide_by_zero)
2971 << E->getRHS()->getSourceRange();
2972 return false;
2973 }
2974 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2975 // this operation and gives the two's complement result.
2976 if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2977 LHS.isMinSignedValue())
2978 HandleOverflowResult = HandleOverflow(
2979 Info, E, -LHS.extend(width: LHS.getBitWidth() + 1), E->getType());
2980 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2981 return HandleOverflowResult;
2982 case BO_Shl: {
2983 if (Info.getLangOpts().OpenCL)
2984 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2985 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2986 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2987 RHS.isUnsigned());
2988 else if (RHS.isSigned() && RHS.isNegative()) {
2989 // During constant-folding, a negative shift is an opposite shift. Such
2990 // a shift is not a constant expression.
2991 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2992 if (!Info.noteUndefinedBehavior())
2993 return false;
2994 RHS = -RHS;
2995 goto shift_right;
2996 }
2997 shift_left:
2998 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2999 // the shifted type.
3000 unsigned SA = (unsigned) RHS.getLimitedValue(Limit: LHS.getBitWidth()-1);
3001 if (SA != RHS) {
3002 Info.CCEDiag(E, diag::note_constexpr_large_shift)
3003 << RHS << E->getType() << LHS.getBitWidth();
3004 if (!Info.noteUndefinedBehavior())
3005 return false;
3006 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
3007 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
3008 // operand, and must not overflow the corresponding unsigned type.
3009 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
3010 // E1 x 2^E2 module 2^N.
3011 if (LHS.isNegative()) {
3012 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
3013 if (!Info.noteUndefinedBehavior())
3014 return false;
3015 } else if (LHS.countl_zero() < SA) {
3016 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
3017 if (!Info.noteUndefinedBehavior())
3018 return false;
3019 }
3020 }
3021 Result = LHS << SA;
3022 return true;
3023 }
3024 case BO_Shr: {
3025 if (Info.getLangOpts().OpenCL)
3026 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3027 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
3028 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
3029 RHS.isUnsigned());
3030 else if (RHS.isSigned() && RHS.isNegative()) {
3031 // During constant-folding, a negative shift is an opposite shift. Such a
3032 // shift is not a constant expression.
3033 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
3034 if (!Info.noteUndefinedBehavior())
3035 return false;
3036 RHS = -RHS;
3037 goto shift_left;
3038 }
3039 shift_right:
3040 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
3041 // shifted type.
3042 unsigned SA = (unsigned) RHS.getLimitedValue(Limit: LHS.getBitWidth()-1);
3043 if (SA != RHS) {
3044 Info.CCEDiag(E, diag::note_constexpr_large_shift)
3045 << RHS << E->getType() << LHS.getBitWidth();
3046 if (!Info.noteUndefinedBehavior())
3047 return false;
3048 }
3049
3050 Result = LHS >> SA;
3051 return true;
3052 }
3053
3054 case BO_LT: Result = LHS < RHS; return true;
3055 case BO_GT: Result = LHS > RHS; return true;
3056 case BO_LE: Result = LHS <= RHS; return true;
3057 case BO_GE: Result = LHS >= RHS; return true;
3058 case BO_EQ: Result = LHS == RHS; return true;
3059 case BO_NE: Result = LHS != RHS; return true;
3060 case BO_Cmp:
3061 llvm_unreachable("BO_Cmp should be handled elsewhere");
3062 }
3063}
3064
3065/// Perform the given binary floating-point operation, in-place, on LHS.
3066static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
3067 APFloat &LHS, BinaryOperatorKind Opcode,
3068 const APFloat &RHS) {
3069 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
3070 APFloat::opStatus St;
3071 switch (Opcode) {
3072 default:
3073 Info.FFDiag(E);
3074 return false;
3075 case BO_Mul:
3076 St = LHS.multiply(RHS, RM);
3077 break;
3078 case BO_Add:
3079 St = LHS.add(RHS, RM);
3080 break;
3081 case BO_Sub:
3082 St = LHS.subtract(RHS, RM);
3083 break;
3084 case BO_Div:
3085 // [expr.mul]p4:
3086 // If the second operand of / or % is zero the behavior is undefined.
3087 if (RHS.isZero())
3088 Info.CCEDiag(E, diag::note_expr_divide_by_zero);
3089 St = LHS.divide(RHS, RM);
3090 break;
3091 }
3092
3093 // [expr.pre]p4:
3094 // If during the evaluation of an expression, the result is not
3095 // mathematically defined [...], the behavior is undefined.
3096 // FIXME: C++ rules require us to not conform to IEEE 754 here.
3097 if (LHS.isNaN()) {
3098 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
3099 return Info.noteUndefinedBehavior();
3100 }
3101
3102 return checkFloatingPointResult(Info, E, St);
3103}
3104
3105static bool handleLogicalOpForVector(const APInt &LHSValue,
3106 BinaryOperatorKind Opcode,
3107 const APInt &RHSValue, APInt &Result) {
3108 bool LHS = (LHSValue != 0);
3109 bool RHS = (RHSValue != 0);
3110
3111 if (Opcode == BO_LAnd)
3112 Result = LHS && RHS;
3113 else
3114 Result = LHS || RHS;
3115 return true;
3116}
3117static bool handleLogicalOpForVector(const APFloat &LHSValue,
3118 BinaryOperatorKind Opcode,
3119 const APFloat &RHSValue, APInt &Result) {
3120 bool LHS = !LHSValue.isZero();
3121 bool RHS = !RHSValue.isZero();
3122
3123 if (Opcode == BO_LAnd)
3124 Result = LHS && RHS;
3125 else
3126 Result = LHS || RHS;
3127 return true;
3128}
3129
3130static bool handleLogicalOpForVector(const APValue &LHSValue,
3131 BinaryOperatorKind Opcode,
3132 const APValue &RHSValue, APInt &Result) {
3133 // The result is always an int type, however operands match the first.
3134 if (LHSValue.getKind() == APValue::Int)
3135 return handleLogicalOpForVector(LHSValue: LHSValue.getInt(), Opcode,
3136 RHSValue: RHSValue.getInt(), Result);
3137 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
3138 return handleLogicalOpForVector(LHSValue: LHSValue.getFloat(), Opcode,
3139 RHSValue: RHSValue.getFloat(), Result);
3140}
3141
3142template <typename APTy>
3143static bool
3144handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
3145 const APTy &RHSValue, APInt &Result) {
3146 switch (Opcode) {
3147 default:
3148 llvm_unreachable("unsupported binary operator");
3149 case BO_EQ:
3150 Result = (LHSValue == RHSValue);
3151 break;
3152 case BO_NE:
3153 Result = (LHSValue != RHSValue);
3154 break;
3155 case BO_LT:
3156 Result = (LHSValue < RHSValue);
3157 break;
3158 case BO_GT:
3159 Result = (LHSValue > RHSValue);
3160 break;
3161 case BO_LE:
3162 Result = (LHSValue <= RHSValue);
3163 break;
3164 case BO_GE:
3165 Result = (LHSValue >= RHSValue);
3166 break;
3167 }
3168
3169 // The boolean operations on these vector types use an instruction that
3170 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1
3171 // to -1 to make sure that we produce the correct value.
3172 Result.negate();
3173
3174 return true;
3175}
3176
3177static bool handleCompareOpForVector(const APValue &LHSValue,
3178 BinaryOperatorKind Opcode,
3179 const APValue &RHSValue, APInt &Result) {
3180 // The result is always an int type, however operands match the first.
3181 if (LHSValue.getKind() == APValue::Int)
3182 return handleCompareOpForVectorHelper(LHSValue: LHSValue.getInt(), Opcode,
3183 RHSValue: RHSValue.getInt(), Result);
3184 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
3185 return handleCompareOpForVectorHelper(LHSValue: LHSValue.getFloat(), Opcode,
3186 RHSValue: RHSValue.getFloat(), Result);
3187}
3188
3189// Perform binary operations for vector types, in place on the LHS.
3190static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
3191 BinaryOperatorKind Opcode,
3192 APValue &LHSValue,
3193 const APValue &RHSValue) {
3194 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
3195 "Operation not supported on vector types");
3196
3197 const auto *VT = E->getType()->castAs<VectorType>();
3198 unsigned NumElements = VT->getNumElements();
3199 QualType EltTy = VT->getElementType();
3200
3201 // In the cases (typically C as I've observed) where we aren't evaluating
3202 // constexpr but are checking for cases where the LHS isn't yet evaluatable,
3203 // just give up.
3204 if (!LHSValue.isVector()) {
3205 assert(LHSValue.isLValue() &&
3206 "A vector result that isn't a vector OR uncalculated LValue");
3207 Info.FFDiag(E);
3208 return false;
3209 }
3210
3211 assert(LHSValue.getVectorLength() == NumElements &&
3212 RHSValue.getVectorLength() == NumElements && "Different vector sizes");
3213
3214 SmallVector<APValue, 4> ResultElements;
3215
3216 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
3217 APValue LHSElt = LHSValue.getVectorElt(I: EltNum);
3218 APValue RHSElt = RHSValue.getVectorElt(I: EltNum);
3219
3220 if (EltTy->isIntegerType()) {
3221 APSInt EltResult{Info.Ctx.getIntWidth(T: EltTy),
3222 EltTy->isUnsignedIntegerType()};
3223 bool Success = true;
3224
3225 if (BinaryOperator::isLogicalOp(Opc: Opcode))
3226 Success = handleLogicalOpForVector(LHSValue: LHSElt, Opcode, RHSValue: RHSElt, Result&: EltResult);
3227 else if (BinaryOperator::isComparisonOp(Opc: Opcode))
3228 Success = handleCompareOpForVector(LHSValue: LHSElt, Opcode, RHSValue: RHSElt, Result&: EltResult);
3229 else
3230 Success = handleIntIntBinOp(Info, E, LHS: LHSElt.getInt(), Opcode,
3231 RHS: RHSElt.getInt(), Result&: EltResult);
3232
3233 if (!Success) {
3234 Info.FFDiag(E);
3235 return false;
3236 }
3237 ResultElements.emplace_back(Args&: EltResult);
3238
3239 } else if (EltTy->isFloatingType()) {
3240 assert(LHSElt.getKind() == APValue::Float &&
3241 RHSElt.getKind() == APValue::Float &&
3242 "Mismatched LHS/RHS/Result Type");
3243 APFloat LHSFloat = LHSElt.getFloat();
3244
3245 if (!handleFloatFloatBinOp(Info, E, LHS&: LHSFloat, Opcode,
3246 RHS: RHSElt.getFloat())) {
3247 Info.FFDiag(E);
3248 return false;
3249 }
3250
3251 ResultElements.emplace_back(Args&: LHSFloat);
3252 }
3253 }
3254
3255 LHSValue = APValue(ResultElements.data(), ResultElements.size());
3256 return true;
3257}
3258
3259/// Cast an lvalue referring to a base subobject to a derived class, by
3260/// truncating the lvalue's path to the given length.
3261static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3262 const RecordDecl *TruncatedType,
3263 unsigned TruncatedElements) {
3264 SubobjectDesignator &D = Result.Designator;
3265
3266 // Check we actually point to a derived class object.
3267 if (TruncatedElements == D.Entries.size())
3268 return true;
3269 assert(TruncatedElements >= D.MostDerivedPathLength &&
3270 "not casting to a derived class");
3271 if (!Result.checkSubobject(Info, E, CSK: CSK_Derived))
3272 return false;
3273
3274 // Truncate the path to the subobject, and remove any derived-to-base offsets.
3275 const RecordDecl *RD = TruncatedType;
3276 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3277 if (RD->isInvalidDecl()) return false;
3278 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
3279 const CXXRecordDecl *Base = getAsBaseClass(E: D.Entries[I]);
3280 if (isVirtualBaseClass(E: D.Entries[I]))
3281 Result.Offset -= Layout.getVBaseClassOffset(VBase: Base);
3282 else
3283 Result.Offset -= Layout.getBaseClassOffset(Base);
3284 RD = Base;
3285 }
3286 D.Entries.resize(N: TruncatedElements);
3287 return true;
3288}
3289
3290static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3291 const CXXRecordDecl *Derived,
3292 const CXXRecordDecl *Base,
3293 const ASTRecordLayout *RL = nullptr) {
3294 if (!RL) {
3295 if (Derived->isInvalidDecl()) return false;
3296 RL = &Info.Ctx.getASTRecordLayout(Derived);
3297 }
3298
3299 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3300 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3301 return true;
3302}
3303
3304static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3305 const CXXRecordDecl *DerivedDecl,
3306 const CXXBaseSpecifier *Base) {
3307 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3308
3309 if (!Base->isVirtual())
3310 return HandleLValueDirectBase(Info, E, Obj, Derived: DerivedDecl, Base: BaseDecl);
3311
3312 SubobjectDesignator &D = Obj.Designator;
3313 if (D.Invalid)
3314 return false;
3315
3316 // Extract most-derived object and corresponding type.
3317 // FIXME: After implementing P2280R4 it became possible to get references
3318 // here. We do MostDerivedType->getAsCXXRecordDecl() in several other
3319 // locations and if we see crashes in those locations in the future
3320 // it may make more sense to move this fix into Lvalue::set.
3321 DerivedDecl = D.MostDerivedType.getNonReferenceType()->getAsCXXRecordDecl();
3322 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3323 return false;
3324
3325 // Find the virtual base class.
3326 if (DerivedDecl->isInvalidDecl()) return false;
3327 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3328 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3329 Obj.getLValueOffset() += Layout.getVBaseClassOffset(VBase: BaseDecl);
3330 return true;
3331}
3332
3333static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3334 QualType Type, LValue &Result) {
3335 for (CastExpr::path_const_iterator PathI = E->path_begin(),
3336 PathE = E->path_end();
3337 PathI != PathE; ++PathI) {
3338 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3339 *PathI))
3340 return false;
3341 Type = (*PathI)->getType();
3342 }
3343 return true;
3344}
3345
3346/// Cast an lvalue referring to a derived class to a known base subobject.
3347static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3348 const CXXRecordDecl *DerivedRD,
3349 const CXXRecordDecl *BaseRD) {
3350 CXXBasePaths Paths(/*FindAmbiguities=*/false,
3351 /*RecordPaths=*/true, /*DetectVirtual=*/false);
3352 if (!DerivedRD->isDerivedFrom(Base: BaseRD, Paths))
3353 llvm_unreachable("Class must be derived from the passed in base class!");
3354
3355 for (CXXBasePathElement &Elem : Paths.front())
3356 if (!HandleLValueBase(Info, E, Obj&: Result, DerivedDecl: Elem.Class, Base: Elem.Base))
3357 return false;
3358 return true;
3359}
3360
3361/// Update LVal to refer to the given field, which must be a member of the type
3362/// currently described by LVal.
3363static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3364 const FieldDecl *FD,
3365 const ASTRecordLayout *RL = nullptr) {
3366 if (!RL) {
3367 if (FD->getParent()->isInvalidDecl()) return false;
3368 RL = &Info.Ctx.getASTRecordLayout(D: FD->getParent());
3369 }
3370
3371 unsigned I = FD->getFieldIndex();
3372 LVal.addDecl(Info, E, FD);
3373 LVal.adjustOffset(N: Info.Ctx.toCharUnitsFromBits(BitSize: RL->getFieldOffset(FieldNo: I)));
3374 return true;
3375}
3376
3377/// Update LVal to refer to the given indirect field.
3378static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3379 LValue &LVal,
3380 const IndirectFieldDecl *IFD) {
3381 for (const auto *C : IFD->chain())
3382 if (!HandleLValueMember(Info, E, LVal, FD: cast<FieldDecl>(Val: C)))
3383 return false;
3384 return true;
3385}
3386
3387enum class SizeOfType {
3388 SizeOf,
3389 DataSizeOf,
3390};
3391
3392/// Get the size of the given type in char units.
3393static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, QualType Type,
3394 CharUnits &Size, SizeOfType SOT = SizeOfType::SizeOf) {
3395 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3396 // extension.
3397 if (Type->isVoidType() || Type->isFunctionType()) {
3398 Size = CharUnits::One();
3399 return true;
3400 }
3401
3402 if (Type->isDependentType()) {
3403 Info.FFDiag(Loc);
3404 return false;
3405 }
3406
3407 if (!Type->isConstantSizeType()) {
3408 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3409 // FIXME: Better diagnostic.
3410 Info.FFDiag(Loc);
3411 return false;
3412 }
3413
3414 if (SOT == SizeOfType::SizeOf)
3415 Size = Info.Ctx.getTypeSizeInChars(T: Type);
3416 else
3417 Size = Info.Ctx.getTypeInfoDataSizeInChars(T: Type).Width;
3418 return true;
3419}
3420
3421/// Update a pointer value to model pointer arithmetic.
3422/// \param Info - Information about the ongoing evaluation.
3423/// \param E - The expression being evaluated, for diagnostic purposes.
3424/// \param LVal - The pointer value to be updated.
3425/// \param EltTy - The pointee type represented by LVal.
3426/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3427static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3428 LValue &LVal, QualType EltTy,
3429 APSInt Adjustment) {
3430 CharUnits SizeOfPointee;
3431 if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: EltTy, Size&: SizeOfPointee))
3432 return false;
3433
3434 LVal.adjustOffsetAndIndex(Info, E, Index: Adjustment, ElementSize: SizeOfPointee);
3435 return true;
3436}
3437
3438static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3439 LValue &LVal, QualType EltTy,
3440 int64_t Adjustment) {
3441 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3442 Adjustment: APSInt::get(X: Adjustment));
3443}
3444
3445/// Update an lvalue to refer to a component of a complex number.
3446/// \param Info - Information about the ongoing evaluation.
3447/// \param LVal - The lvalue to be updated.
3448/// \param EltTy - The complex number's component type.
3449/// \param Imag - False for the real component, true for the imaginary.
3450static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3451 LValue &LVal, QualType EltTy,
3452 bool Imag) {
3453 if (Imag) {
3454 CharUnits SizeOfComponent;
3455 if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: EltTy, Size&: SizeOfComponent))
3456 return false;
3457 LVal.Offset += SizeOfComponent;
3458 }
3459 LVal.addComplex(Info, E, EltTy, Imag);
3460 return true;
3461}
3462
3463static bool HandleLValueVectorElement(EvalInfo &Info, const Expr *E,
3464 LValue &LVal, QualType EltTy,
3465 uint64_t Size, uint64_t Idx) {
3466 if (Idx) {
3467 CharUnits SizeOfElement;
3468 if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: EltTy, Size&: SizeOfElement))
3469 return false;
3470 LVal.Offset += SizeOfElement * Idx;
3471 }
3472 LVal.addVectorElement(Info, E, EltTy, Size, Idx);
3473 return true;
3474}
3475
3476/// Try to evaluate the initializer for a variable declaration.
3477///
3478/// \param Info Information about the ongoing evaluation.
3479/// \param E An expression to be used when printing diagnostics.
3480/// \param VD The variable whose initializer should be obtained.
3481/// \param Version The version of the variable within the frame.
3482/// \param Frame The frame in which the variable was created. Must be null
3483/// if this variable is not local to the evaluation.
3484/// \param Result Filled in with a pointer to the value of the variable.
3485static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3486 const VarDecl *VD, CallStackFrame *Frame,
3487 unsigned Version, APValue *&Result) {
3488 // C++23 [expr.const]p8 If we have a reference type allow unknown references
3489 // and pointers.
3490 bool AllowConstexprUnknown =
3491 Info.getLangOpts().CPlusPlus23 && VD->getType()->isReferenceType();
3492
3493 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3494
3495 auto CheckUninitReference = [&](bool IsLocalVariable) {
3496 if (!Result->hasValue() && VD->getType()->isReferenceType()) {
3497 // C++23 [expr.const]p8
3498 // ... For such an object that is not usable in constant expressions, the
3499 // dynamic type of the object is constexpr-unknown. For such a reference
3500 // that is not usable in constant expressions, the reference is treated
3501 // as binding to an unspecified object of the referenced type whose
3502 // lifetime and that of all subobjects includes the entire constant
3503 // evaluation and whose dynamic type is constexpr-unknown.
3504 //
3505 // Variables that are part of the current evaluation are not
3506 // constexpr-unknown.
3507 if (!AllowConstexprUnknown || IsLocalVariable) {
3508 if (!Info.checkingPotentialConstantExpression())
3509 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
3510 return false;
3511 }
3512 Result = &Info.CurrentCall->createConstexprUnknownAPValues(Key: VD, Base);
3513 }
3514 return true;
3515 };
3516
3517 // If this is a local variable, dig out its value.
3518 if (Frame) {
3519 Result = Frame->getTemporary(Key: VD, Version);
3520 if (Result)
3521 return CheckUninitReference(/*IsLocalVariable=*/true);
3522
3523 if (!isa<ParmVarDecl>(Val: VD)) {
3524 // Assume variables referenced within a lambda's call operator that were
3525 // not declared within the call operator are captures and during checking
3526 // of a potential constant expression, assume they are unknown constant
3527 // expressions.
3528 assert(isLambdaCallOperator(Frame->Callee) &&
3529 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3530 "missing value for local variable");
3531 if (Info.checkingPotentialConstantExpression())
3532 return false;
3533 // FIXME: This diagnostic is bogus; we do support captures. Is this code
3534 // still reachable at all?
3535 Info.FFDiag(E->getBeginLoc(),
3536 diag::note_unimplemented_constexpr_lambda_feature_ast)
3537 << "captures not currently allowed";
3538 return false;
3539 }
3540 }
3541
3542 // If we're currently evaluating the initializer of this declaration, use that
3543 // in-flight value.
3544 if (Info.EvaluatingDecl == Base) {
3545 Result = Info.EvaluatingDeclValue;
3546 return CheckUninitReference(/*IsLocalVariable=*/false);
3547 }
3548
3549 // P2280R4 struck the restriction that variable of reference type lifetime
3550 // should begin within the evaluation of E
3551 // Used to be C++20 [expr.const]p5.12.2:
3552 // ... its lifetime began within the evaluation of E;
3553 if (isa<ParmVarDecl>(Val: VD)) {
3554 if (AllowConstexprUnknown) {
3555 Result = &Info.CurrentCall->createConstexprUnknownAPValues(Key: VD, Base);
3556 return true;
3557 }
3558
3559 // Assume parameters of a potential constant expression are usable in
3560 // constant expressions.
3561 if (!Info.checkingPotentialConstantExpression() ||
3562 !Info.CurrentCall->Callee ||
3563 !Info.CurrentCall->Callee->Equals(DC: VD->getDeclContext())) {
3564 if (Info.getLangOpts().CPlusPlus11) {
3565 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3566 << VD;
3567 NoteLValueLocation(Info, Base);
3568 } else {
3569 Info.FFDiag(E);
3570 }
3571 }
3572 return false;
3573 }
3574
3575 if (E->isValueDependent())
3576 return false;
3577
3578 // Dig out the initializer, and use the declaration which it's attached to.
3579 // FIXME: We should eventually check whether the variable has a reachable
3580 // initializing declaration.
3581 const Expr *Init = VD->getAnyInitializer(D&: VD);
3582 // P2280R4 struck the restriction that variable of reference type should have
3583 // a preceding initialization.
3584 // Used to be C++20 [expr.const]p5.12:
3585 // ... reference has a preceding initialization and either ...
3586 if (!Init && !AllowConstexprUnknown) {
3587 // Don't diagnose during potential constant expression checking; an
3588 // initializer might be added later.
3589 if (!Info.checkingPotentialConstantExpression()) {
3590 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3591 << VD;
3592 NoteLValueLocation(Info, Base);
3593 }
3594 return false;
3595 }
3596
3597 // P2280R4 struck the initialization requirement for variables of reference
3598 // type so we can no longer assume we have an Init.
3599 // Used to be C++20 [expr.const]p5.12:
3600 // ... reference has a preceding initialization and either ...
3601 if (Init && Init->isValueDependent()) {
3602 // The DeclRefExpr is not value-dependent, but the variable it refers to
3603 // has a value-dependent initializer. This should only happen in
3604 // constant-folding cases, where the variable is not actually of a suitable
3605 // type for use in a constant expression (otherwise the DeclRefExpr would
3606 // have been value-dependent too), so diagnose that.
3607 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3608 if (!Info.checkingPotentialConstantExpression()) {
3609 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3610 ? diag::note_constexpr_ltor_non_constexpr
3611 : diag::note_constexpr_ltor_non_integral, 1)
3612 << VD << VD->getType();
3613 NoteLValueLocation(Info, Base);
3614 }
3615 return false;
3616 }
3617
3618 // Check that we can fold the initializer. In C++, we will have already done
3619 // this in the cases where it matters for conformance.
3620 // P2280R4 struck the initialization requirement for variables of reference
3621 // type so we can no longer assume we have an Init.
3622 // Used to be C++20 [expr.const]p5.12:
3623 // ... reference has a preceding initialization and either ...
3624 if (Init && !VD->evaluateValue() && !AllowConstexprUnknown) {
3625 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3626 NoteLValueLocation(Info, Base);
3627 return false;
3628 }
3629
3630 // Check that the variable is actually usable in constant expressions. For a
3631 // const integral variable or a reference, we might have a non-constant
3632 // initializer that we can nonetheless evaluate the initializer for. Such
3633 // variables are not usable in constant expressions. In C++98, the
3634 // initializer also syntactically needs to be an ICE.
3635 //
3636 // FIXME: We don't diagnose cases that aren't potentially usable in constant
3637 // expressions here; doing so would regress diagnostics for things like
3638 // reading from a volatile constexpr variable.
3639 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3640 VD->mightBeUsableInConstantExpressions(C: Info.Ctx) &&
3641 !AllowConstexprUnknown) ||
3642 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3643 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Context: Info.Ctx))) {
3644 if (Init) {
3645 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3646 NoteLValueLocation(Info, Base);
3647 } else {
3648 Info.CCEDiag(E);
3649 }
3650 }
3651
3652 // Never use the initializer of a weak variable, not even for constant
3653 // folding. We can't be sure that this is the definition that will be used.
3654 if (VD->isWeak()) {
3655 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3656 NoteLValueLocation(Info, Base);
3657 return false;
3658 }
3659
3660 Result = VD->getEvaluatedValue();
3661
3662 if (!Result) {
3663 if (AllowConstexprUnknown)
3664 Result = &Info.CurrentCall->createConstexprUnknownAPValues(Key: VD, Base);
3665 else
3666 return false;
3667 }
3668
3669 return CheckUninitReference(/*IsLocalVariable=*/false);
3670}
3671
3672/// Get the base index of the given base class within an APValue representing
3673/// the given derived class.
3674static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3675 const CXXRecordDecl *Base) {
3676 Base = Base->getCanonicalDecl();
3677 unsigned Index = 0;
3678 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3679 E = Derived->bases_end(); I != E; ++I, ++Index) {
3680 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3681 return Index;
3682 }
3683
3684 llvm_unreachable("base class missing from derived class's bases list");
3685}
3686
3687/// Extract the value of a character from a string literal.
3688static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3689 uint64_t Index) {
3690 assert(!isa<SourceLocExpr>(Lit) &&
3691 "SourceLocExpr should have already been converted to a StringLiteral");
3692
3693 // FIXME: Support MakeStringConstant
3694 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Val: Lit)) {
3695 std::string Str;
3696 Info.Ctx.getObjCEncodingForType(T: ObjCEnc->getEncodedType(), S&: Str);
3697 assert(Index <= Str.size() && "Index too large");
3698 return APSInt::getUnsigned(X: Str.c_str()[Index]);
3699 }
3700
3701 if (auto PE = dyn_cast<PredefinedExpr>(Val: Lit))
3702 Lit = PE->getFunctionName();
3703 const StringLiteral *S = cast<StringLiteral>(Val: Lit);
3704 const ConstantArrayType *CAT =
3705 Info.Ctx.getAsConstantArrayType(T: S->getType());
3706 assert(CAT && "string literal isn't an array");
3707 QualType CharType = CAT->getElementType();
3708 assert(CharType->isIntegerType() && "unexpected character type");
3709 APSInt Value(Info.Ctx.getTypeSize(T: CharType),
3710 CharType->isUnsignedIntegerType());
3711 if (Index < S->getLength())
3712 Value = S->getCodeUnit(i: Index);
3713 return Value;
3714}
3715
3716// Expand a string literal into an array of characters.
3717//
3718// FIXME: This is inefficient; we should probably introduce something similar
3719// to the LLVM ConstantDataArray to make this cheaper.
3720static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3721 APValue &Result,
3722 QualType AllocType = QualType()) {
3723 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3724 T: AllocType.isNull() ? S->getType() : AllocType);
3725 assert(CAT && "string literal isn't an array");
3726 QualType CharType = CAT->getElementType();
3727 assert(CharType->isIntegerType() && "unexpected character type");
3728
3729 unsigned Elts = CAT->getZExtSize();
3730 Result = APValue(APValue::UninitArray(),
3731 std::min(a: S->getLength(), b: Elts), Elts);
3732 APSInt Value(Info.Ctx.getTypeSize(T: CharType),
3733 CharType->isUnsignedIntegerType());
3734 if (Result.hasArrayFiller())
3735 Result.getArrayFiller() = APValue(Value);
3736 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3737 Value = S->getCodeUnit(i: I);
3738 Result.getArrayInitializedElt(I) = APValue(Value);
3739 }
3740}
3741
3742// Expand an array so that it has more than Index filled elements.
3743static void expandArray(APValue &Array, unsigned Index) {
3744 unsigned Size = Array.getArraySize();
3745 assert(Index < Size);
3746
3747 // Always at least double the number of elements for which we store a value.
3748 unsigned OldElts = Array.getArrayInitializedElts();
3749 unsigned NewElts = std::max(a: Index+1, b: OldElts * 2);
3750 NewElts = std::min(a: Size, b: std::max(a: NewElts, b: 8u));
3751
3752 // Copy the data across.
3753 APValue NewValue(APValue::UninitArray(), NewElts, Size);
3754 for (unsigned I = 0; I != OldElts; ++I)
3755 NewValue.getArrayInitializedElt(I).swap(RHS&: Array.getArrayInitializedElt(I));
3756 for (unsigned I = OldElts; I != NewElts; ++I)
3757 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3758 if (NewValue.hasArrayFiller())
3759 NewValue.getArrayFiller() = Array.getArrayFiller();
3760 Array.swap(RHS&: NewValue);
3761}
3762
3763/// Determine whether a type would actually be read by an lvalue-to-rvalue
3764/// conversion. If it's of class type, we may assume that the copy operation
3765/// is trivial. Note that this is never true for a union type with fields
3766/// (because the copy always "reads" the active member) and always true for
3767/// a non-class type.
3768static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3769static bool isReadByLvalueToRvalueConversion(QualType T) {
3770 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3771 return !RD || isReadByLvalueToRvalueConversion(RD);
3772}
3773static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3774 // FIXME: A trivial copy of a union copies the object representation, even if
3775 // the union is empty.
3776 if (RD->isUnion())
3777 return !RD->field_empty();
3778 if (RD->isEmpty())
3779 return false;
3780
3781 for (auto *Field : RD->fields())
3782 if (!Field->isUnnamedBitField() &&
3783 isReadByLvalueToRvalueConversion(Field->getType()))
3784 return true;
3785
3786 for (auto &BaseSpec : RD->bases())
3787 if (isReadByLvalueToRvalueConversion(T: BaseSpec.getType()))
3788 return true;
3789
3790 return false;
3791}
3792
3793/// Diagnose an attempt to read from any unreadable field within the specified
3794/// type, which might be a class type.
3795static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3796 QualType T) {
3797 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3798 if (!RD)
3799 return false;
3800
3801 if (!RD->hasMutableFields())
3802 return false;
3803
3804 for (auto *Field : RD->fields()) {
3805 // If we're actually going to read this field in some way, then it can't
3806 // be mutable. If we're in a union, then assigning to a mutable field
3807 // (even an empty one) can change the active member, so that's not OK.
3808 // FIXME: Add core issue number for the union case.
3809 if (Field->isMutable() &&
3810 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3811 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3812 Info.Note(Field->getLocation(), diag::note_declared_at);
3813 return true;
3814 }
3815
3816 if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3817 return true;
3818 }
3819
3820 for (auto &BaseSpec : RD->bases())
3821 if (diagnoseMutableFields(Info, E, AK, T: BaseSpec.getType()))
3822 return true;
3823
3824 // All mutable fields were empty, and thus not actually read.
3825 return false;
3826}
3827
3828static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3829 APValue::LValueBase Base,
3830 bool MutableSubobject = false) {
3831 // A temporary or transient heap allocation we created.
3832 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3833 return true;
3834
3835 switch (Info.IsEvaluatingDecl) {
3836 case EvalInfo::EvaluatingDeclKind::None:
3837 return false;
3838
3839 case EvalInfo::EvaluatingDeclKind::Ctor:
3840 // The variable whose initializer we're evaluating.
3841 if (Info.EvaluatingDecl == Base)
3842 return true;
3843
3844 // A temporary lifetime-extended by the variable whose initializer we're
3845 // evaluating.
3846 if (auto *BaseE = Base.dyn_cast<const Expr *>())
3847 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(Val: BaseE))
3848 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3849 return false;
3850
3851 case EvalInfo::EvaluatingDeclKind::Dtor:
3852 // C++2a [expr.const]p6:
3853 // [during constant destruction] the lifetime of a and its non-mutable
3854 // subobjects (but not its mutable subobjects) [are] considered to start
3855 // within e.
3856 if (MutableSubobject || Base != Info.EvaluatingDecl)
3857 return false;
3858 // FIXME: We can meaningfully extend this to cover non-const objects, but
3859 // we will need special handling: we should be able to access only
3860 // subobjects of such objects that are themselves declared const.
3861 QualType T = getType(B: Base);
3862 return T.isConstQualified() || T->isReferenceType();
3863 }
3864
3865 llvm_unreachable("unknown evaluating decl kind");
3866}
3867
3868static bool CheckArraySize(EvalInfo &Info, const ConstantArrayType *CAT,
3869 SourceLocation CallLoc = {}) {
3870 return Info.CheckArraySize(
3871 Loc: CAT->getSizeExpr() ? CAT->getSizeExpr()->getBeginLoc() : CallLoc,
3872 BitWidth: CAT->getNumAddressingBits(Context: Info.Ctx), ElemCount: CAT->getZExtSize(),
3873 /*Diag=*/true);
3874}
3875
3876namespace {
3877/// A handle to a complete object (an object that is not a subobject of
3878/// another object).
3879struct CompleteObject {
3880 /// The identity of the object.
3881 APValue::LValueBase Base;
3882 /// The value of the complete object.
3883 APValue *Value;
3884 /// The type of the complete object.
3885 QualType Type;
3886
3887 CompleteObject() : Value(nullptr) {}
3888 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3889 : Base(Base), Value(Value), Type(Type) {}
3890
3891 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3892 // If this isn't a "real" access (eg, if it's just accessing the type
3893 // info), allow it. We assume the type doesn't change dynamically for
3894 // subobjects of constexpr objects (even though we'd hit UB here if it
3895 // did). FIXME: Is this right?
3896 if (!isAnyAccess(AK))
3897 return true;
3898
3899 // In C++14 onwards, it is permitted to read a mutable member whose
3900 // lifetime began within the evaluation.
3901 // FIXME: Should we also allow this in C++11?
3902 if (!Info.getLangOpts().CPlusPlus14 &&
3903 AK != AccessKinds::AK_IsWithinLifetime)
3904 return false;
3905 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3906 }
3907
3908 explicit operator bool() const { return !Type.isNull(); }
3909};
3910} // end anonymous namespace
3911
3912static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3913 bool IsMutable = false) {
3914 // C++ [basic.type.qualifier]p1:
3915 // - A const object is an object of type const T or a non-mutable subobject
3916 // of a const object.
3917 if (ObjType.isConstQualified() && !IsMutable)
3918 SubobjType.addConst();
3919 // - A volatile object is an object of type const T or a subobject of a
3920 // volatile object.
3921 if (ObjType.isVolatileQualified())
3922 SubobjType.addVolatile();
3923 return SubobjType;
3924}
3925
3926/// Find the designated sub-object of an rvalue.
3927template <typename SubobjectHandler>
3928static typename SubobjectHandler::result_type
3929findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3930 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3931 if (Sub.Invalid)
3932 // A diagnostic will have already been produced.
3933 return handler.failed();
3934 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3935 if (Info.getLangOpts().CPlusPlus11)
3936 Info.FFDiag(E, Sub.isOnePastTheEnd()
3937 ? diag::note_constexpr_access_past_end
3938 : diag::note_constexpr_access_unsized_array)
3939 << handler.AccessKind;
3940 else
3941 Info.FFDiag(E);
3942 return handler.failed();
3943 }
3944
3945 APValue *O = Obj.Value;
3946 QualType ObjType = Obj.Type;
3947 const FieldDecl *LastField = nullptr;
3948 const FieldDecl *VolatileField = nullptr;
3949
3950 // C++23 [expr.const]p8 If we have an unknown reference or pointers and it
3951 // does not have a value then bail out.
3952 if (O->allowConstexprUnknown() && !O->hasValue())
3953 return false;
3954
3955 // Walk the designator's path to find the subobject.
3956 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3957 // Reading an indeterminate value is undefined, but assigning over one is OK.
3958 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3959 (O->isIndeterminate() &&
3960 !isValidIndeterminateAccess(handler.AccessKind))) {
3961 // Object has ended lifetime.
3962 // If I is non-zero, some subobject (member or array element) of a
3963 // complete object has ended its lifetime, so this is valid for
3964 // IsWithinLifetime, resulting in false.
3965 if (I != 0 && handler.AccessKind == AK_IsWithinLifetime)
3966 return false;
3967 if (!Info.checkingPotentialConstantExpression())
3968 Info.FFDiag(E, diag::note_constexpr_access_uninit)
3969 << handler.AccessKind << O->isIndeterminate()
3970 << E->getSourceRange();
3971 return handler.failed();
3972 }
3973
3974 // C++ [class.ctor]p5, C++ [class.dtor]p5:
3975 // const and volatile semantics are not applied on an object under
3976 // {con,de}struction.
3977 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3978 ObjType->isRecordType() &&
3979 Info.isEvaluatingCtorDtor(
3980 Base: Obj.Base,
3981 Path: llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) !=
3982 ConstructionPhase::None) {
3983 ObjType = Info.Ctx.getCanonicalType(T: ObjType);
3984 ObjType.removeLocalConst();
3985 ObjType.removeLocalVolatile();
3986 }
3987
3988 // If this is our last pass, check that the final object type is OK.
3989 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3990 // Accesses to volatile objects are prohibited.
3991 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3992 if (Info.getLangOpts().CPlusPlus) {
3993 int DiagKind;
3994 SourceLocation Loc;
3995 const NamedDecl *Decl = nullptr;
3996 if (VolatileField) {
3997 DiagKind = 2;
3998 Loc = VolatileField->getLocation();
3999 Decl = VolatileField;
4000 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
4001 DiagKind = 1;
4002 Loc = VD->getLocation();
4003 Decl = VD;
4004 } else {
4005 DiagKind = 0;
4006 if (auto *E = Obj.Base.dyn_cast<const Expr *>())
4007 Loc = E->getExprLoc();
4008 }
4009 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
4010 << handler.AccessKind << DiagKind << Decl;
4011 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
4012 } else {
4013 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
4014 }
4015 return handler.failed();
4016 }
4017
4018 // If we are reading an object of class type, there may still be more
4019 // things we need to check: if there are any mutable subobjects, we
4020 // cannot perform this read. (This only happens when performing a trivial
4021 // copy or assignment.)
4022 if (ObjType->isRecordType() &&
4023 !Obj.mayAccessMutableMembers(Info, AK: handler.AccessKind) &&
4024 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
4025 return handler.failed();
4026 }
4027
4028 if (I == N) {
4029 if (!handler.found(*O, ObjType))
4030 return false;
4031
4032 // If we modified a bit-field, truncate it to the right width.
4033 if (isModification(handler.AccessKind) &&
4034 LastField && LastField->isBitField() &&
4035 !truncateBitfieldValue(Info, E, Value&: *O, FD: LastField))
4036 return false;
4037
4038 return true;
4039 }
4040
4041 LastField = nullptr;
4042 if (ObjType->isArrayType()) {
4043 // Next subobject is an array element.
4044 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T: ObjType);
4045 assert(CAT && "vla in literal type?");
4046 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
4047 if (CAT->getSize().ule(RHS: Index)) {
4048 // Note, it should not be possible to form a pointer with a valid
4049 // designator which points more than one past the end of the array.
4050 if (Info.getLangOpts().CPlusPlus11)
4051 Info.FFDiag(E, diag::note_constexpr_access_past_end)
4052 << handler.AccessKind;
4053 else
4054 Info.FFDiag(E);
4055 return handler.failed();
4056 }
4057
4058 ObjType = CAT->getElementType();
4059
4060 if (O->getArrayInitializedElts() > Index)
4061 O = &O->getArrayInitializedElt(I: Index);
4062 else if (!isRead(handler.AccessKind)) {
4063 if (!CheckArraySize(Info, CAT, CallLoc: E->getExprLoc()))
4064 return handler.failed();
4065
4066 expandArray(Array&: *O, Index);
4067 O = &O->getArrayInitializedElt(I: Index);
4068 } else
4069 O = &O->getArrayFiller();
4070 } else if (ObjType->isAnyComplexType()) {
4071 // Next subobject is a complex number.
4072 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
4073 if (Index > 1) {
4074 if (Info.getLangOpts().CPlusPlus11)
4075 Info.FFDiag(E, diag::note_constexpr_access_past_end)
4076 << handler.AccessKind;
4077 else
4078 Info.FFDiag(E);
4079 return handler.failed();
4080 }
4081
4082 ObjType = getSubobjectType(
4083 ObjType, SubobjType: ObjType->castAs<ComplexType>()->getElementType());
4084
4085 assert(I == N - 1 && "extracting subobject of scalar?");
4086 if (O->isComplexInt()) {
4087 return handler.found(Index ? O->getComplexIntImag()
4088 : O->getComplexIntReal(), ObjType);
4089 } else {
4090 assert(O->isComplexFloat());
4091 return handler.found(Index ? O->getComplexFloatImag()
4092 : O->getComplexFloatReal(), ObjType);
4093 }
4094 } else if (const auto *VT = ObjType->getAs<VectorType>()) {
4095 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
4096 unsigned NumElements = VT->getNumElements();
4097 if (Index == NumElements) {
4098 if (Info.getLangOpts().CPlusPlus11)
4099 Info.FFDiag(E, diag::note_constexpr_access_past_end)
4100 << handler.AccessKind;
4101 else
4102 Info.FFDiag(E);
4103 return handler.failed();
4104 }
4105
4106 if (Index > NumElements) {
4107 Info.CCEDiag(E, diag::note_constexpr_array_index)
4108 << Index << /*array*/ 0 << NumElements;
4109 return handler.failed();
4110 }
4111
4112 ObjType = VT->getElementType();
4113 assert(I == N - 1 && "extracting subobject of scalar?");
4114 return handler.found(O->getVectorElt(I: Index), ObjType);
4115 } else if (const FieldDecl *Field = getAsField(E: Sub.Entries[I])) {
4116 if (Field->isMutable() &&
4117 !Obj.mayAccessMutableMembers(Info, AK: handler.AccessKind)) {
4118 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
4119 << handler.AccessKind << Field;
4120 Info.Note(Field->getLocation(), diag::note_declared_at);
4121 return handler.failed();
4122 }
4123
4124 // Next subobject is a class, struct or union field.
4125 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
4126 if (RD->isUnion()) {
4127 const FieldDecl *UnionField = O->getUnionField();
4128 if (!UnionField ||
4129 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
4130 if (I == N - 1 && handler.AccessKind == AK_Construct) {
4131 // Placement new onto an inactive union member makes it active.
4132 O->setUnion(Field, Value: APValue());
4133 } else {
4134 // Pointer to/into inactive union member: Not within lifetime
4135 if (handler.AccessKind == AK_IsWithinLifetime)
4136 return false;
4137 // FIXME: If O->getUnionValue() is absent, report that there's no
4138 // active union member rather than reporting the prior active union
4139 // member. We'll need to fix nullptr_t to not use APValue() as its
4140 // representation first.
4141 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
4142 << handler.AccessKind << Field << !UnionField << UnionField;
4143 return handler.failed();
4144 }
4145 }
4146 O = &O->getUnionValue();
4147 } else
4148 O = &O->getStructField(i: Field->getFieldIndex());
4149
4150 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
4151 LastField = Field;
4152 if (Field->getType().isVolatileQualified())
4153 VolatileField = Field;
4154 } else {
4155 // Next subobject is a base class.
4156 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
4157 const CXXRecordDecl *Base = getAsBaseClass(E: Sub.Entries[I]);
4158 O = &O->getStructBase(i: getBaseIndex(Derived, Base));
4159
4160 ObjType = getSubobjectType(ObjType, SubobjType: Info.Ctx.getRecordType(Base));
4161 }
4162 }
4163}
4164
4165namespace {
4166struct ExtractSubobjectHandler {
4167 EvalInfo &Info;
4168 const Expr *E;
4169 APValue &Result;
4170 const AccessKinds AccessKind;
4171
4172 typedef bool result_type;
4173 bool failed() { return false; }
4174 bool found(APValue &Subobj, QualType SubobjType) {
4175 Result = Subobj;
4176 if (AccessKind == AK_ReadObjectRepresentation)
4177 return true;
4178 return CheckFullyInitialized(Info, DiagLoc: E->getExprLoc(), Type: SubobjType, Value: Result);
4179 }
4180 bool found(APSInt &Value, QualType SubobjType) {
4181 Result = APValue(Value);
4182 return true;
4183 }
4184 bool found(APFloat &Value, QualType SubobjType) {
4185 Result = APValue(Value);
4186 return true;
4187 }
4188};
4189} // end anonymous namespace
4190
4191/// Extract the designated sub-object of an rvalue.
4192static bool extractSubobject(EvalInfo &Info, const Expr *E,
4193 const CompleteObject &Obj,
4194 const SubobjectDesignator &Sub, APValue &Result,
4195 AccessKinds AK = AK_Read) {
4196 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
4197 ExtractSubobjectHandler Handler = {.Info: Info, .E: E, .Result: Result, .AccessKind: AK};
4198 return findSubobject(Info, E, Obj, Sub, handler&: Handler);
4199}
4200
4201namespace {
4202struct ModifySubobjectHandler {
4203 EvalInfo &Info;
4204 APValue &NewVal;
4205 const Expr *E;
4206
4207 typedef bool result_type;
4208 static const AccessKinds AccessKind = AK_Assign;
4209
4210 bool checkConst(QualType QT) {
4211 // Assigning to a const object has undefined behavior.
4212 if (QT.isConstQualified()) {
4213 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4214 return false;
4215 }
4216 return true;
4217 }
4218
4219 bool failed() { return false; }
4220 bool found(APValue &Subobj, QualType SubobjType) {
4221 if (!checkConst(QT: SubobjType))
4222 return false;
4223 // We've been given ownership of NewVal, so just swap it in.
4224 Subobj.swap(RHS&: NewVal);
4225 return true;
4226 }
4227 bool found(APSInt &Value, QualType SubobjType) {
4228 if (!checkConst(QT: SubobjType))
4229 return false;
4230 if (!NewVal.isInt()) {
4231 // Maybe trying to write a cast pointer value into a complex?
4232 Info.FFDiag(E);
4233 return false;
4234 }
4235 Value = NewVal.getInt();
4236 return true;
4237 }
4238 bool found(APFloat &Value, QualType SubobjType) {
4239 if (!checkConst(QT: SubobjType))
4240 return false;
4241 Value = NewVal.getFloat();
4242 return true;
4243 }
4244};
4245} // end anonymous namespace
4246
4247const AccessKinds ModifySubobjectHandler::AccessKind;
4248
4249/// Update the designated sub-object of an rvalue to the given value.
4250static bool modifySubobject(EvalInfo &Info, const Expr *E,
4251 const CompleteObject &Obj,
4252 const SubobjectDesignator &Sub,
4253 APValue &NewVal) {
4254 ModifySubobjectHandler Handler = { .Info: Info, .NewVal: NewVal, .E: E };
4255 return findSubobject(Info, E, Obj, Sub, handler&: Handler);
4256}
4257
4258/// Find the position where two subobject designators diverge, or equivalently
4259/// the length of the common initial subsequence.
4260static unsigned FindDesignatorMismatch(QualType ObjType,
4261 const SubobjectDesignator &A,
4262 const SubobjectDesignator &B,
4263 bool &WasArrayIndex) {
4264 unsigned I = 0, N = std::min(a: A.Entries.size(), b: B.Entries.size());
4265 for (/**/; I != N; ++I) {
4266 if (!ObjType.isNull() &&
4267 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
4268 // Next subobject is an array element.
4269 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
4270 WasArrayIndex = true;
4271 return I;
4272 }
4273 if (ObjType->isAnyComplexType())
4274 ObjType = ObjType->castAs<ComplexType>()->getElementType();
4275 else
4276 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
4277 } else {
4278 if (A.Entries[I].getAsBaseOrMember() !=
4279 B.Entries[I].getAsBaseOrMember()) {
4280 WasArrayIndex = false;
4281 return I;
4282 }
4283 if (const FieldDecl *FD = getAsField(E: A.Entries[I]))
4284 // Next subobject is a field.
4285 ObjType = FD->getType();
4286 else
4287 // Next subobject is a base class.
4288 ObjType = QualType();
4289 }
4290 }
4291 WasArrayIndex = false;
4292 return I;
4293}
4294
4295/// Determine whether the given subobject designators refer to elements of the
4296/// same array object.
4297static bool AreElementsOfSameArray(QualType ObjType,
4298 const SubobjectDesignator &A,
4299 const SubobjectDesignator &B) {
4300 if (A.Entries.size() != B.Entries.size())
4301 return false;
4302
4303 bool IsArray = A.MostDerivedIsArrayElement;
4304 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
4305 // A is a subobject of the array element.
4306 return false;
4307
4308 // If A (and B) designates an array element, the last entry will be the array
4309 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
4310 // of length 1' case, and the entire path must match.
4311 bool WasArrayIndex;
4312 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
4313 return CommonLength >= A.Entries.size() - IsArray;
4314}
4315
4316/// Find the complete object to which an LValue refers.
4317static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
4318 AccessKinds AK, const LValue &LVal,
4319 QualType LValType) {
4320 if (LVal.InvalidBase) {
4321 Info.FFDiag(E);
4322 return CompleteObject();
4323 }
4324
4325 if (!LVal.Base) {
4326 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
4327 return CompleteObject();
4328 }
4329
4330 CallStackFrame *Frame = nullptr;
4331 unsigned Depth = 0;
4332 if (LVal.getLValueCallIndex()) {
4333 std::tie(args&: Frame, args&: Depth) =
4334 Info.getCallFrameAndDepth(CallIndex: LVal.getLValueCallIndex());
4335 if (!Frame) {
4336 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
4337 << AK << LVal.Base.is<const ValueDecl*>();
4338 NoteLValueLocation(Info, Base: LVal.Base);
4339 return CompleteObject();
4340 }
4341 }
4342
4343 bool IsAccess = isAnyAccess(AK);
4344
4345 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
4346 // is not a constant expression (even if the object is non-volatile). We also
4347 // apply this rule to C++98, in order to conform to the expected 'volatile'
4348 // semantics.
4349 if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
4350 if (Info.getLangOpts().CPlusPlus)
4351 Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
4352 << AK << LValType;
4353 else
4354 Info.FFDiag(E);
4355 return CompleteObject();
4356 }
4357
4358 // Compute value storage location and type of base object.
4359 APValue *BaseVal = nullptr;
4360 QualType BaseType = getType(B: LVal.Base);
4361
4362 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4363 lifetimeStartedInEvaluation(Info, Base: LVal.Base)) {
4364 // This is the object whose initializer we're evaluating, so its lifetime
4365 // started in the current evaluation.
4366 BaseVal = Info.EvaluatingDeclValue;
4367 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4368 // Allow reading from a GUID declaration.
4369 if (auto *GD = dyn_cast<MSGuidDecl>(Val: D)) {
4370 if (isModification(AK)) {
4371 // All the remaining cases do not permit modification of the object.
4372 Info.FFDiag(E, diag::note_constexpr_modify_global);
4373 return CompleteObject();
4374 }
4375 APValue &V = GD->getAsAPValue();
4376 if (V.isAbsent()) {
4377 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4378 << GD->getType();
4379 return CompleteObject();
4380 }
4381 return CompleteObject(LVal.Base, &V, GD->getType());
4382 }
4383
4384 // Allow reading the APValue from an UnnamedGlobalConstantDecl.
4385 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(Val: D)) {
4386 if (isModification(AK)) {
4387 Info.FFDiag(E, diag::note_constexpr_modify_global);
4388 return CompleteObject();
4389 }
4390 return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()),
4391 GCD->getType());
4392 }
4393
4394 // Allow reading from template parameter objects.
4395 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: D)) {
4396 if (isModification(AK)) {
4397 Info.FFDiag(E, diag::note_constexpr_modify_global);
4398 return CompleteObject();
4399 }
4400 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4401 TPO->getType());
4402 }
4403
4404 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4405 // In C++11, constexpr, non-volatile variables initialized with constant
4406 // expressions are constant expressions too. Inside constexpr functions,
4407 // parameters are constant expressions even if they're non-const.
4408 // In C++1y, objects local to a constant expression (those with a Frame) are
4409 // both readable and writable inside constant expressions.
4410 // In C, such things can also be folded, although they are not ICEs.
4411 const VarDecl *VD = dyn_cast<VarDecl>(Val: D);
4412 if (VD) {
4413 if (const VarDecl *VDef = VD->getDefinition(C&: Info.Ctx))
4414 VD = VDef;
4415 }
4416 if (!VD || VD->isInvalidDecl()) {
4417 Info.FFDiag(E);
4418 return CompleteObject();
4419 }
4420
4421 bool IsConstant = BaseType.isConstant(Ctx: Info.Ctx);
4422 bool ConstexprVar = false;
4423 if (const auto *VD = dyn_cast_if_present<VarDecl>(
4424 Val: Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
4425 ConstexprVar = VD->isConstexpr();
4426
4427 // Unless we're looking at a local variable or argument in a constexpr call,
4428 // the variable we're reading must be const.
4429 if (!Frame) {
4430 if (IsAccess && isa<ParmVarDecl>(Val: VD)) {
4431 // Access of a parameter that's not associated with a frame isn't going
4432 // to work out, but we can leave it to evaluateVarDeclInit to provide a
4433 // suitable diagnostic.
4434 } else if (Info.getLangOpts().CPlusPlus14 &&
4435 lifetimeStartedInEvaluation(Info, Base: LVal.Base)) {
4436 // OK, we can read and modify an object if we're in the process of
4437 // evaluating its initializer, because its lifetime began in this
4438 // evaluation.
4439 } else if (isModification(AK)) {
4440 // All the remaining cases do not permit modification of the object.
4441 Info.FFDiag(E, diag::note_constexpr_modify_global);
4442 return CompleteObject();
4443 } else if (VD->isConstexpr()) {
4444 // OK, we can read this variable.
4445 } else if (Info.getLangOpts().C23 && ConstexprVar) {
4446 Info.FFDiag(E);
4447 return CompleteObject();
4448 } else if (BaseType->isIntegralOrEnumerationType()) {
4449 if (!IsConstant) {
4450 if (!IsAccess)
4451 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4452 if (Info.getLangOpts().CPlusPlus) {
4453 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4454 Info.Note(VD->getLocation(), diag::note_declared_at);
4455 } else {
4456 Info.FFDiag(E);
4457 }
4458 return CompleteObject();
4459 }
4460 } else if (!IsAccess) {
4461 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4462 } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4463 BaseType->isLiteralType(Ctx: Info.Ctx) && !VD->hasDefinition()) {
4464 // This variable might end up being constexpr. Don't diagnose it yet.
4465 } else if (IsConstant) {
4466 // Keep evaluating to see what we can do. In particular, we support
4467 // folding of const floating-point types, in order to make static const
4468 // data members of such types (supported as an extension) more useful.
4469 if (Info.getLangOpts().CPlusPlus) {
4470 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4471 ? diag::note_constexpr_ltor_non_constexpr
4472 : diag::note_constexpr_ltor_non_integral, 1)
4473 << VD << BaseType;
4474 Info.Note(VD->getLocation(), diag::note_declared_at);
4475 } else {
4476 Info.CCEDiag(E);
4477 }
4478 } else {
4479 // Never allow reading a non-const value.
4480 if (Info.getLangOpts().CPlusPlus) {
4481 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4482 ? diag::note_constexpr_ltor_non_constexpr
4483 : diag::note_constexpr_ltor_non_integral, 1)
4484 << VD << BaseType;
4485 Info.Note(VD->getLocation(), diag::note_declared_at);
4486 } else {
4487 Info.FFDiag(E);
4488 }
4489 return CompleteObject();
4490 }
4491 }
4492
4493 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version: LVal.getLValueVersion(), Result&: BaseVal))
4494 return CompleteObject();
4495 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4496 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
4497 if (!Alloc) {
4498 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4499 return CompleteObject();
4500 }
4501 return CompleteObject(LVal.Base, &(*Alloc)->Value,
4502 LVal.Base.getDynamicAllocType());
4503 } else {
4504 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4505
4506 if (!Frame) {
4507 if (const MaterializeTemporaryExpr *MTE =
4508 dyn_cast_or_null<MaterializeTemporaryExpr>(Val: Base)) {
4509 assert(MTE->getStorageDuration() == SD_Static &&
4510 "should have a frame for a non-global materialized temporary");
4511
4512 // C++20 [expr.const]p4: [DR2126]
4513 // An object or reference is usable in constant expressions if it is
4514 // - a temporary object of non-volatile const-qualified literal type
4515 // whose lifetime is extended to that of a variable that is usable
4516 // in constant expressions
4517 //
4518 // C++20 [expr.const]p5:
4519 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4520 // - a non-volatile glvalue that refers to an object that is usable
4521 // in constant expressions, or
4522 // - a non-volatile glvalue of literal type that refers to a
4523 // non-volatile object whose lifetime began within the evaluation
4524 // of E;
4525 //
4526 // C++11 misses the 'began within the evaluation of e' check and
4527 // instead allows all temporaries, including things like:
4528 // int &&r = 1;
4529 // int x = ++r;
4530 // constexpr int k = r;
4531 // Therefore we use the C++14-onwards rules in C++11 too.
4532 //
4533 // Note that temporaries whose lifetimes began while evaluating a
4534 // variable's constructor are not usable while evaluating the
4535 // corresponding destructor, not even if they're of const-qualified
4536 // types.
4537 if (!MTE->isUsableInConstantExpressions(Context: Info.Ctx) &&
4538 !lifetimeStartedInEvaluation(Info, Base: LVal.Base)) {
4539 if (!IsAccess)
4540 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4541 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4542 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4543 return CompleteObject();
4544 }
4545
4546 BaseVal = MTE->getOrCreateValue(MayCreate: false);
4547 assert(BaseVal && "got reference to unevaluated temporary");
4548 } else {
4549 if (!IsAccess)
4550 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4551 APValue Val;
4552 LVal.moveInto(V&: Val);
4553 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4554 << AK
4555 << Val.getAsString(Info.Ctx,
4556 Info.Ctx.getLValueReferenceType(LValType));
4557 NoteLValueLocation(Info, Base: LVal.Base);
4558 return CompleteObject();
4559 }
4560 } else {
4561 BaseVal = Frame->getTemporary(Key: Base, Version: LVal.Base.getVersion());
4562 assert(BaseVal && "missing value for temporary");
4563 }
4564 }
4565
4566 // In C++14, we can't safely access any mutable state when we might be
4567 // evaluating after an unmodeled side effect. Parameters are modeled as state
4568 // in the caller, but aren't visible once the call returns, so they can be
4569 // modified in a speculatively-evaluated call.
4570 //
4571 // FIXME: Not all local state is mutable. Allow local constant subobjects
4572 // to be read here (but take care with 'mutable' fields).
4573 unsigned VisibleDepth = Depth;
4574 if (llvm::isa_and_nonnull<ParmVarDecl>(
4575 Val: LVal.Base.dyn_cast<const ValueDecl *>()))
4576 ++VisibleDepth;
4577 if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4578 Info.EvalStatus.HasSideEffects) ||
4579 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4580 return CompleteObject();
4581
4582 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4583}
4584
4585/// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4586/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4587/// glvalue referred to by an entity of reference type.
4588///
4589/// \param Info - Information about the ongoing evaluation.
4590/// \param Conv - The expression for which we are performing the conversion.
4591/// Used for diagnostics.
4592/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4593/// case of a non-class type).
4594/// \param LVal - The glvalue on which we are attempting to perform this action.
4595/// \param RVal - The produced value will be placed here.
4596/// \param WantObjectRepresentation - If true, we're looking for the object
4597/// representation rather than the value, and in particular,
4598/// there is no requirement that the result be fully initialized.
4599static bool
4600handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4601 const LValue &LVal, APValue &RVal,
4602 bool WantObjectRepresentation = false) {
4603 if (LVal.Designator.Invalid)
4604 return false;
4605
4606 // Check for special cases where there is no existing APValue to look at.
4607 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4608
4609 AccessKinds AK =
4610 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4611
4612 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4613 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Val: Base)) {
4614 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4615 // initializer until now for such expressions. Such an expression can't be
4616 // an ICE in C, so this only matters for fold.
4617 if (Type.isVolatileQualified()) {
4618 Info.FFDiag(E: Conv);
4619 return false;
4620 }
4621
4622 APValue Lit;
4623 if (!Evaluate(Result&: Lit, Info, E: CLE->getInitializer()))
4624 return false;
4625
4626 // According to GCC info page:
4627 //
4628 // 6.28 Compound Literals
4629 //
4630 // As an optimization, G++ sometimes gives array compound literals longer
4631 // lifetimes: when the array either appears outside a function or has a
4632 // const-qualified type. If foo and its initializer had elements of type
4633 // char *const rather than char *, or if foo were a global variable, the
4634 // array would have static storage duration. But it is probably safest
4635 // just to avoid the use of array compound literals in C++ code.
4636 //
4637 // Obey that rule by checking constness for converted array types.
4638
4639 QualType CLETy = CLE->getType();
4640 if (CLETy->isArrayType() && !Type->isArrayType()) {
4641 if (!CLETy.isConstant(Ctx: Info.Ctx)) {
4642 Info.FFDiag(E: Conv);
4643 Info.Note(CLE->getExprLoc(), diag::note_declared_at);
4644 return false;
4645 }
4646 }
4647
4648 CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4649 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4650 } else if (isa<StringLiteral>(Val: Base) || isa<PredefinedExpr>(Val: Base)) {
4651 // Special-case character extraction so we don't have to construct an
4652 // APValue for the whole string.
4653 assert(LVal.Designator.Entries.size() <= 1 &&
4654 "Can only read characters from string literals");
4655 if (LVal.Designator.Entries.empty()) {
4656 // Fail for now for LValue to RValue conversion of an array.
4657 // (This shouldn't show up in C/C++, but it could be triggered by a
4658 // weird EvaluateAsRValue call from a tool.)
4659 Info.FFDiag(E: Conv);
4660 return false;
4661 }
4662 if (LVal.Designator.isOnePastTheEnd()) {
4663 if (Info.getLangOpts().CPlusPlus11)
4664 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4665 else
4666 Info.FFDiag(E: Conv);
4667 return false;
4668 }
4669 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4670 RVal = APValue(extractStringLiteralCharacter(Info, Lit: Base, Index: CharIndex));
4671 return true;
4672 }
4673 }
4674
4675 CompleteObject Obj = findCompleteObject(Info, E: Conv, AK, LVal, LValType: Type);
4676 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4677}
4678
4679/// Perform an assignment of Val to LVal. Takes ownership of Val.
4680static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4681 QualType LValType, APValue &Val) {
4682 if (LVal.Designator.Invalid)
4683 return false;
4684
4685 if (!Info.getLangOpts().CPlusPlus14) {
4686 Info.FFDiag(E);
4687 return false;
4688 }
4689
4690 CompleteObject Obj = findCompleteObject(Info, E, AK: AK_Assign, LVal, LValType);
4691 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4692}
4693
4694namespace {
4695struct CompoundAssignSubobjectHandler {
4696 EvalInfo &Info;
4697 const CompoundAssignOperator *E;
4698 QualType PromotedLHSType;
4699 BinaryOperatorKind Opcode;
4700 const APValue &RHS;
4701
4702 static const AccessKinds AccessKind = AK_Assign;
4703
4704 typedef bool result_type;
4705
4706 bool checkConst(QualType QT) {
4707 // Assigning to a const object has undefined behavior.
4708 if (QT.isConstQualified()) {
4709 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4710 return false;
4711 }
4712 return true;
4713 }
4714
4715 bool failed() { return false; }
4716 bool found(APValue &Subobj, QualType SubobjType) {
4717 switch (Subobj.getKind()) {
4718 case APValue::Int:
4719 return found(Value&: Subobj.getInt(), SubobjType);
4720 case APValue::Float:
4721 return found(Value&: Subobj.getFloat(), SubobjType);
4722 case APValue::ComplexInt:
4723 case APValue::ComplexFloat:
4724 // FIXME: Implement complex compound assignment.
4725 Info.FFDiag(E);
4726 return false;
4727 case APValue::LValue:
4728 return foundPointer(Subobj, SubobjType);
4729 case APValue::Vector:
4730 return foundVector(Value&: Subobj, SubobjType);
4731 case APValue::Indeterminate:
4732 Info.FFDiag(E, diag::note_constexpr_access_uninit)
4733 << /*read of=*/0 << /*uninitialized object=*/1
4734 << E->getLHS()->getSourceRange();
4735 return false;
4736 default:
4737 // FIXME: can this happen?
4738 Info.FFDiag(E);
4739 return false;
4740 }
4741 }
4742
4743 bool foundVector(APValue &Value, QualType SubobjType) {
4744 if (!checkConst(QT: SubobjType))
4745 return false;
4746
4747 if (!SubobjType->isVectorType()) {
4748 Info.FFDiag(E);
4749 return false;
4750 }
4751 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4752 }
4753
4754 bool found(APSInt &Value, QualType SubobjType) {
4755 if (!checkConst(QT: SubobjType))
4756 return false;
4757
4758 if (!SubobjType->isIntegerType()) {
4759 // We don't support compound assignment on integer-cast-to-pointer
4760 // values.
4761 Info.FFDiag(E);
4762 return false;
4763 }
4764
4765 if (RHS.isInt()) {
4766 APSInt LHS =
4767 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4768 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4769 return false;
4770 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4771 return true;
4772 } else if (RHS.isFloat()) {
4773 const FPOptions FPO = E->getFPFeaturesInEffect(
4774 Info.Ctx.getLangOpts());
4775 APFloat FValue(0.0);
4776 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4777 PromotedLHSType, FValue) &&
4778 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4779 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4780 Value);
4781 }
4782
4783 Info.FFDiag(E);
4784 return false;
4785 }
4786 bool found(APFloat &Value, QualType SubobjType) {
4787 return checkConst(SubobjType) &&
4788 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4789 Value) &&
4790 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4791 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4792 }
4793 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4794 if (!checkConst(QT: SubobjType))
4795 return false;
4796
4797 QualType PointeeType;
4798 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4799 PointeeType = PT->getPointeeType();
4800
4801 if (PointeeType.isNull() || !RHS.isInt() ||
4802 (Opcode != BO_Add && Opcode != BO_Sub)) {
4803 Info.FFDiag(E);
4804 return false;
4805 }
4806
4807 APSInt Offset = RHS.getInt();
4808 if (Opcode == BO_Sub)
4809 negateAsSigned(Int&: Offset);
4810
4811 LValue LVal;
4812 LVal.setFrom(Ctx&: Info.Ctx, V: Subobj);
4813 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4814 return false;
4815 LVal.moveInto(V&: Subobj);
4816 return true;
4817 }
4818};
4819} // end anonymous namespace
4820
4821const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4822
4823/// Perform a compound assignment of LVal <op>= RVal.
4824static bool handleCompoundAssignment(EvalInfo &Info,
4825 const CompoundAssignOperator *E,
4826 const LValue &LVal, QualType LValType,
4827 QualType PromotedLValType,
4828 BinaryOperatorKind Opcode,
4829 const APValue &RVal) {
4830 if (LVal.Designator.Invalid)
4831 return false;
4832
4833 if (!Info.getLangOpts().CPlusPlus14) {
4834 Info.FFDiag(E);
4835 return false;
4836 }
4837
4838 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4839 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4840 RVal };
4841 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4842}
4843
4844namespace {
4845struct IncDecSubobjectHandler {
4846 EvalInfo &Info;
4847 const UnaryOperator *E;
4848 AccessKinds AccessKind;
4849 APValue *Old;
4850
4851 typedef bool result_type;
4852
4853 bool checkConst(QualType QT) {
4854 // Assigning to a const object has undefined behavior.
4855 if (QT.isConstQualified()) {
4856 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4857 return false;
4858 }
4859 return true;
4860 }
4861
4862 bool failed() { return false; }
4863 bool found(APValue &Subobj, QualType SubobjType) {
4864 // Stash the old value. Also clear Old, so we don't clobber it later
4865 // if we're post-incrementing a complex.
4866 if (Old) {
4867 *Old = Subobj;
4868 Old = nullptr;
4869 }
4870
4871 switch (Subobj.getKind()) {
4872 case APValue::Int:
4873 return found(Value&: Subobj.getInt(), SubobjType);
4874 case APValue::Float:
4875 return found(Value&: Subobj.getFloat(), SubobjType);
4876 case APValue::ComplexInt:
4877 return found(Value&: Subobj.getComplexIntReal(),
4878 SubobjType: SubobjType->castAs<ComplexType>()->getElementType()
4879 .withCVRQualifiers(CVR: SubobjType.getCVRQualifiers()));
4880 case APValue::ComplexFloat:
4881 return found(Value&: Subobj.getComplexFloatReal(),
4882 SubobjType: SubobjType->castAs<ComplexType>()->getElementType()
4883 .withCVRQualifiers(CVR: SubobjType.getCVRQualifiers()));
4884 case APValue::LValue:
4885 return foundPointer(Subobj, SubobjType);
4886 default:
4887 // FIXME: can this happen?
4888 Info.FFDiag(E);
4889 return false;
4890 }
4891 }
4892 bool found(APSInt &Value, QualType SubobjType) {
4893 if (!checkConst(QT: SubobjType))
4894 return false;
4895
4896 if (!SubobjType->isIntegerType()) {
4897 // We don't support increment / decrement on integer-cast-to-pointer
4898 // values.
4899 Info.FFDiag(E);
4900 return false;
4901 }
4902
4903 if (Old) *Old = APValue(Value);
4904
4905 // bool arithmetic promotes to int, and the conversion back to bool
4906 // doesn't reduce mod 2^n, so special-case it.
4907 if (SubobjType->isBooleanType()) {
4908 if (AccessKind == AK_Increment)
4909 Value = 1;
4910 else
4911 Value = !Value;
4912 return true;
4913 }
4914
4915 bool WasNegative = Value.isNegative();
4916 if (AccessKind == AK_Increment) {
4917 ++Value;
4918
4919 if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4920 APSInt ActualValue(Value, /*IsUnsigned*/true);
4921 return HandleOverflow(Info, E, ActualValue, SubobjType);
4922 }
4923 } else {
4924 --Value;
4925
4926 if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4927 unsigned BitWidth = Value.getBitWidth();
4928 APSInt ActualValue(Value.sext(width: BitWidth + 1), /*IsUnsigned*/false);
4929 ActualValue.setBit(BitWidth);
4930 return HandleOverflow(Info, E, ActualValue, SubobjType);
4931 }
4932 }
4933 return true;
4934 }
4935 bool found(APFloat &Value, QualType SubobjType) {
4936 if (!checkConst(QT: SubobjType))
4937 return false;
4938
4939 if (Old) *Old = APValue(Value);
4940
4941 APFloat One(Value.getSemantics(), 1);
4942 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
4943 APFloat::opStatus St;
4944 if (AccessKind == AK_Increment)
4945 St = Value.add(RHS: One, RM);
4946 else
4947 St = Value.subtract(RHS: One, RM);
4948 return checkFloatingPointResult(Info, E, St);
4949 }
4950 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4951 if (!checkConst(QT: SubobjType))
4952 return false;
4953
4954 QualType PointeeType;
4955 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4956 PointeeType = PT->getPointeeType();
4957 else {
4958 Info.FFDiag(E);
4959 return false;
4960 }
4961
4962 LValue LVal;
4963 LVal.setFrom(Ctx&: Info.Ctx, V: Subobj);
4964 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4965 AccessKind == AK_Increment ? 1 : -1))
4966 return false;
4967 LVal.moveInto(V&: Subobj);
4968 return true;
4969 }
4970};
4971} // end anonymous namespace
4972
4973/// Perform an increment or decrement on LVal.
4974static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4975 QualType LValType, bool IsIncrement, APValue *Old) {
4976 if (LVal.Designator.Invalid)
4977 return false;
4978
4979 if (!Info.getLangOpts().CPlusPlus14) {
4980 Info.FFDiag(E);
4981 return false;
4982 }
4983
4984 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4985 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4986 IncDecSubobjectHandler Handler = {.Info: Info, .E: cast<UnaryOperator>(Val: E), .AccessKind: AK, .Old: Old};
4987 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4988}
4989
4990/// Build an lvalue for the object argument of a member function call.
4991static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4992 LValue &This) {
4993 if (Object->getType()->isPointerType() && Object->isPRValue())
4994 return EvaluatePointer(E: Object, Result&: This, Info);
4995
4996 if (Object->isGLValue())
4997 return EvaluateLValue(E: Object, Result&: This, Info);
4998
4999 if (Object->getType()->isLiteralType(Ctx: Info.Ctx))
5000 return EvaluateTemporary(E: Object, Result&: This, Info);
5001
5002 if (Object->getType()->isRecordType() && Object->isPRValue())
5003 return EvaluateTemporary(E: Object, Result&: This, Info);
5004
5005 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
5006 return false;
5007}
5008
5009/// HandleMemberPointerAccess - Evaluate a member access operation and build an
5010/// lvalue referring to the result.
5011///
5012/// \param Info - Information about the ongoing evaluation.
5013/// \param LV - An lvalue referring to the base of the member pointer.
5014/// \param RHS - The member pointer expression.
5015/// \param IncludeMember - Specifies whether the member itself is included in
5016/// the resulting LValue subobject designator. This is not possible when
5017/// creating a bound member function.
5018/// \return The field or method declaration to which the member pointer refers,
5019/// or 0 if evaluation fails.
5020static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
5021 QualType LVType,
5022 LValue &LV,
5023 const Expr *RHS,
5024 bool IncludeMember = true) {
5025 MemberPtr MemPtr;
5026 if (!EvaluateMemberPointer(E: RHS, Result&: MemPtr, Info))
5027 return nullptr;
5028
5029 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
5030 // member value, the behavior is undefined.
5031 if (!MemPtr.getDecl()) {
5032 // FIXME: Specific diagnostic.
5033 Info.FFDiag(E: RHS);
5034 return nullptr;
5035 }
5036
5037 if (MemPtr.isDerivedMember()) {
5038 // This is a member of some derived class. Truncate LV appropriately.
5039 // The end of the derived-to-base path for the base object must match the
5040 // derived-to-base path for the member pointer.
5041 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
5042 LV.Designator.Entries.size()) {
5043 Info.FFDiag(E: RHS);
5044 return nullptr;
5045 }
5046 unsigned PathLengthToMember =
5047 LV.Designator.Entries.size() - MemPtr.Path.size();
5048 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
5049 const CXXRecordDecl *LVDecl = getAsBaseClass(
5050 LV.Designator.Entries[PathLengthToMember + I]);
5051 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
5052 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
5053 Info.FFDiag(E: RHS);
5054 return nullptr;
5055 }
5056 }
5057
5058 // Truncate the lvalue to the appropriate derived class.
5059 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
5060 PathLengthToMember))
5061 return nullptr;
5062 } else if (!MemPtr.Path.empty()) {
5063 // Extend the LValue path with the member pointer's path.
5064 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
5065 MemPtr.Path.size() + IncludeMember);
5066
5067 // Walk down to the appropriate base class.
5068 if (const PointerType *PT = LVType->getAs<PointerType>())
5069 LVType = PT->getPointeeType();
5070 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
5071 assert(RD && "member pointer access on non-class-type expression");
5072 // The first class in the path is that of the lvalue.
5073 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
5074 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
5075 if (!HandleLValueDirectBase(Info, E: RHS, Obj&: LV, Derived: RD, Base))
5076 return nullptr;
5077 RD = Base;
5078 }
5079 // Finally cast to the class containing the member.
5080 if (!HandleLValueDirectBase(Info, E: RHS, Obj&: LV, Derived: RD,
5081 Base: MemPtr.getContainingRecord()))
5082 return nullptr;
5083 }
5084
5085 // Add the member. Note that we cannot build bound member functions here.
5086 if (IncludeMember) {
5087 if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: MemPtr.getDecl())) {
5088 if (!HandleLValueMember(Info, E: RHS, LVal&: LV, FD))
5089 return nullptr;
5090 } else if (const IndirectFieldDecl *IFD =
5091 dyn_cast<IndirectFieldDecl>(Val: MemPtr.getDecl())) {
5092 if (!HandleLValueIndirectMember(Info, E: RHS, LVal&: LV, IFD))
5093 return nullptr;
5094 } else {
5095 llvm_unreachable("can't construct reference to bound member function");
5096 }
5097 }
5098
5099 return MemPtr.getDecl();
5100}
5101
5102static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
5103 const BinaryOperator *BO,
5104 LValue &LV,
5105 bool IncludeMember = true) {
5106 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
5107
5108 if (!EvaluateObjectArgument(Info, Object: BO->getLHS(), This&: LV)) {
5109 if (Info.noteFailure()) {
5110 MemberPtr MemPtr;
5111 EvaluateMemberPointer(E: BO->getRHS(), Result&: MemPtr, Info);
5112 }
5113 return nullptr;
5114 }
5115
5116 return HandleMemberPointerAccess(Info, LVType: BO->getLHS()->getType(), LV,
5117 RHS: BO->getRHS(), IncludeMember);
5118}
5119
5120/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
5121/// the provided lvalue, which currently refers to the base object.
5122static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
5123 LValue &Result) {
5124 SubobjectDesignator &D = Result.Designator;
5125 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
5126 return false;
5127
5128 QualType TargetQT = E->getType();
5129 if (const PointerType *PT = TargetQT->getAs<PointerType>())
5130 TargetQT = PT->getPointeeType();
5131
5132 // Check this cast lands within the final derived-to-base subobject path.
5133 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
5134 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
5135 << D.MostDerivedType << TargetQT;
5136 return false;
5137 }
5138
5139 // Check the type of the final cast. We don't need to check the path,
5140 // since a cast can only be formed if the path is unique.
5141 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
5142 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
5143 const CXXRecordDecl *FinalType;
5144 if (NewEntriesSize == D.MostDerivedPathLength)
5145 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
5146 else
5147 FinalType = getAsBaseClass(E: D.Entries[NewEntriesSize - 1]);
5148 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
5149 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
5150 << D.MostDerivedType << TargetQT;
5151 return false;
5152 }
5153
5154 // Truncate the lvalue to the appropriate derived class.
5155 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
5156}
5157
5158/// Get the value to use for a default-initialized object of type T.
5159/// Return false if it encounters something invalid.
5160static bool handleDefaultInitValue(QualType T, APValue &Result) {
5161 bool Success = true;
5162
5163 // If there is already a value present don't overwrite it.
5164 if (!Result.isAbsent())
5165 return true;
5166
5167 if (auto *RD = T->getAsCXXRecordDecl()) {
5168 if (RD->isInvalidDecl()) {
5169 Result = APValue();
5170 return false;
5171 }
5172 if (RD->isUnion()) {
5173 Result = APValue((const FieldDecl *)nullptr);
5174 return true;
5175 }
5176 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
5177 std::distance(RD->field_begin(), RD->field_end()));
5178
5179 unsigned Index = 0;
5180 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
5181 End = RD->bases_end();
5182 I != End; ++I, ++Index)
5183 Success &=
5184 handleDefaultInitValue(T: I->getType(), Result&: Result.getStructBase(i: Index));
5185
5186 for (const auto *I : RD->fields()) {
5187 if (I->isUnnamedBitField())
5188 continue;
5189 Success &= handleDefaultInitValue(
5190 I->getType(), Result.getStructField(I->getFieldIndex()));
5191 }
5192 return Success;
5193 }
5194
5195 if (auto *AT =
5196 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
5197 Result = APValue(APValue::UninitArray(), 0, AT->getZExtSize());
5198 if (Result.hasArrayFiller())
5199 Success &=
5200 handleDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
5201
5202 return Success;
5203 }
5204
5205 Result = APValue::IndeterminateValue();
5206 return true;
5207}
5208
5209namespace {
5210enum EvalStmtResult {
5211 /// Evaluation failed.
5212 ESR_Failed,
5213 /// Hit a 'return' statement.
5214 ESR_Returned,
5215 /// Evaluation succeeded.
5216 ESR_Succeeded,
5217 /// Hit a 'continue' statement.
5218 ESR_Continue,
5219 /// Hit a 'break' statement.
5220 ESR_Break,
5221 /// Still scanning for 'case' or 'default' statement.
5222 ESR_CaseNotFound
5223};
5224}
5225
5226static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
5227 if (VD->isInvalidDecl())
5228 return false;
5229 // We don't need to evaluate the initializer for a static local.
5230 if (!VD->hasLocalStorage())
5231 return true;
5232
5233 LValue Result;
5234 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
5235 ScopeKind::Block, Result);
5236
5237 const Expr *InitE = VD->getInit();
5238 if (!InitE) {
5239 if (VD->getType()->isDependentType())
5240 return Info.noteSideEffect();
5241 return handleDefaultInitValue(VD->getType(), Val);
5242 }
5243 if (InitE->isValueDependent())
5244 return false;
5245
5246 if (!EvaluateInPlace(Result&: Val, Info, This: Result, E: InitE)) {
5247 // Wipe out any partially-computed value, to allow tracking that this
5248 // evaluation failed.
5249 Val = APValue();
5250 return false;
5251 }
5252
5253 return true;
5254}
5255
5256static bool EvaluateDecompositionDeclInit(EvalInfo &Info,
5257 const DecompositionDecl *DD);
5258
5259static bool EvaluateDecl(EvalInfo &Info, const Decl *D,
5260 bool EvaluateConditionDecl = false) {
5261 bool OK = true;
5262 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
5263 OK &= EvaluateVarDecl(Info, VD);
5264
5265 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(Val: D);
5266 EvaluateConditionDecl && DD)
5267 OK &= EvaluateDecompositionDeclInit(Info, DD);
5268
5269 return OK;
5270}
5271
5272static bool EvaluateDecompositionDeclInit(EvalInfo &Info,
5273 const DecompositionDecl *DD) {
5274 bool OK = true;
5275 for (auto *BD : DD->flat_bindings())
5276 if (auto *VD = BD->getHoldingVar())
5277 OK &= EvaluateDecl(Info, VD, /*EvaluateConditionDecl=*/true);
5278
5279 return OK;
5280}
5281
5282static bool MaybeEvaluateDeferredVarDeclInit(EvalInfo &Info,
5283 const VarDecl *VD) {
5284 if (auto *DD = dyn_cast_if_present<DecompositionDecl>(Val: VD)) {
5285 if (!EvaluateDecompositionDeclInit(Info, DD))
5286 return false;
5287 }
5288 return true;
5289}
5290
5291static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
5292 assert(E->isValueDependent());
5293 if (Info.noteSideEffect())
5294 return true;
5295 assert(E->containsErrors() && "valid value-dependent expression should never "
5296 "reach invalid code path.");
5297 return false;
5298}
5299
5300/// Evaluate a condition (either a variable declaration or an expression).
5301static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
5302 const Expr *Cond, bool &Result) {
5303 if (Cond->isValueDependent())
5304 return false;
5305 FullExpressionRAII Scope(Info);
5306 if (CondDecl && !EvaluateDecl(Info, CondDecl))
5307 return false;
5308 if (!EvaluateAsBooleanCondition(E: Cond, Result, Info))
5309 return false;
5310 if (!MaybeEvaluateDeferredVarDeclInit(Info, VD: CondDecl))
5311 return false;
5312 return Scope.destroy();
5313}
5314
5315namespace {
5316/// A location where the result (returned value) of evaluating a
5317/// statement should be stored.
5318struct StmtResult {
5319 /// The APValue that should be filled in with the returned value.
5320 APValue &Value;
5321 /// The location containing the result, if any (used to support RVO).
5322 const LValue *Slot;
5323};
5324
5325struct TempVersionRAII {
5326 CallStackFrame &Frame;
5327
5328 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
5329 Frame.pushTempVersion();
5330 }
5331
5332 ~TempVersionRAII() {
5333 Frame.popTempVersion();
5334 }
5335};
5336
5337}
5338
5339static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5340 const Stmt *S,
5341 const SwitchCase *SC = nullptr);
5342
5343/// Evaluate the body of a loop, and translate the result as appropriate.
5344static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
5345 const Stmt *Body,
5346 const SwitchCase *Case = nullptr) {
5347 BlockScopeRAII Scope(Info);
5348
5349 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Body, SC: Case);
5350 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5351 ESR = ESR_Failed;
5352
5353 switch (ESR) {
5354 case ESR_Break:
5355 return ESR_Succeeded;
5356 case ESR_Succeeded:
5357 case ESR_Continue:
5358 return ESR_Continue;
5359 case ESR_Failed:
5360 case ESR_Returned:
5361 case ESR_CaseNotFound:
5362 return ESR;
5363 }
5364 llvm_unreachable("Invalid EvalStmtResult!");
5365}
5366
5367/// Evaluate a switch statement.
5368static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
5369 const SwitchStmt *SS) {
5370 BlockScopeRAII Scope(Info);
5371
5372 // Evaluate the switch condition.
5373 APSInt Value;
5374 {
5375 if (const Stmt *Init = SS->getInit()) {
5376 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init);
5377 if (ESR != ESR_Succeeded) {
5378 if (ESR != ESR_Failed && !Scope.destroy())
5379 ESR = ESR_Failed;
5380 return ESR;
5381 }
5382 }
5383
5384 FullExpressionRAII CondScope(Info);
5385 if (SS->getConditionVariable() &&
5386 !EvaluateDecl(Info, SS->getConditionVariable()))
5387 return ESR_Failed;
5388 if (SS->getCond()->isValueDependent()) {
5389 // We don't know what the value is, and which branch should jump to.
5390 EvaluateDependentExpr(E: SS->getCond(), Info);
5391 return ESR_Failed;
5392 }
5393 if (!EvaluateInteger(E: SS->getCond(), Result&: Value, Info))
5394 return ESR_Failed;
5395
5396 if (!MaybeEvaluateDeferredVarDeclInit(Info, VD: SS->getConditionVariable()))
5397 return ESR_Failed;
5398
5399 if (!CondScope.destroy())
5400 return ESR_Failed;
5401 }
5402
5403 // Find the switch case corresponding to the value of the condition.
5404 // FIXME: Cache this lookup.
5405 const SwitchCase *Found = nullptr;
5406 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
5407 SC = SC->getNextSwitchCase()) {
5408 if (isa<DefaultStmt>(Val: SC)) {
5409 Found = SC;
5410 continue;
5411 }
5412
5413 const CaseStmt *CS = cast<CaseStmt>(Val: SC);
5414 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Ctx: Info.Ctx);
5415 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Ctx: Info.Ctx)
5416 : LHS;
5417 if (LHS <= Value && Value <= RHS) {
5418 Found = SC;
5419 break;
5420 }
5421 }
5422
5423 if (!Found)
5424 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5425
5426 // Search the switch body for the switch case and evaluate it from there.
5427 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: SS->getBody(), SC: Found);
5428 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5429 return ESR_Failed;
5430
5431 switch (ESR) {
5432 case ESR_Break:
5433 return ESR_Succeeded;
5434 case ESR_Succeeded:
5435 case ESR_Continue:
5436 case ESR_Failed:
5437 case ESR_Returned:
5438 return ESR;
5439 case ESR_CaseNotFound:
5440 // This can only happen if the switch case is nested within a statement
5441 // expression. We have no intention of supporting that.
5442 Info.FFDiag(Found->getBeginLoc(),
5443 diag::note_constexpr_stmt_expr_unsupported);
5444 return ESR_Failed;
5445 }
5446 llvm_unreachable("Invalid EvalStmtResult!");
5447}
5448
5449static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) {
5450 // An expression E is a core constant expression unless the evaluation of E
5451 // would evaluate one of the following: [C++23] - a control flow that passes
5452 // through a declaration of a variable with static or thread storage duration
5453 // unless that variable is usable in constant expressions.
5454 if (VD->isLocalVarDecl() && VD->isStaticLocal() &&
5455 !VD->isUsableInConstantExpressions(C: Info.Ctx)) {
5456 Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local)
5457 << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD;
5458 return false;
5459 }
5460 return true;
5461}
5462
5463// Evaluate a statement.
5464static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5465 const Stmt *S, const SwitchCase *Case) {
5466 if (!Info.nextStep(S))
5467 return ESR_Failed;
5468
5469 // If we're hunting down a 'case' or 'default' label, recurse through
5470 // substatements until we hit the label.
5471 if (Case) {
5472 switch (S->getStmtClass()) {
5473 case Stmt::CompoundStmtClass:
5474 // FIXME: Precompute which substatement of a compound statement we
5475 // would jump to, and go straight there rather than performing a
5476 // linear scan each time.
5477 case Stmt::LabelStmtClass:
5478 case Stmt::AttributedStmtClass:
5479 case Stmt::DoStmtClass:
5480 break;
5481
5482 case Stmt::CaseStmtClass:
5483 case Stmt::DefaultStmtClass:
5484 if (Case == S)
5485 Case = nullptr;
5486 break;
5487
5488 case Stmt::IfStmtClass: {
5489 // FIXME: Precompute which side of an 'if' we would jump to, and go
5490 // straight there rather than scanning both sides.
5491 const IfStmt *IS = cast<IfStmt>(Val: S);
5492
5493 // Wrap the evaluation in a block scope, in case it's a DeclStmt
5494 // preceded by our switch label.
5495 BlockScopeRAII Scope(Info);
5496
5497 // Step into the init statement in case it brings an (uninitialized)
5498 // variable into scope.
5499 if (const Stmt *Init = IS->getInit()) {
5500 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init, Case);
5501 if (ESR != ESR_CaseNotFound) {
5502 assert(ESR != ESR_Succeeded);
5503 return ESR;
5504 }
5505 }
5506
5507 // Condition variable must be initialized if it exists.
5508 // FIXME: We can skip evaluating the body if there's a condition
5509 // variable, as there can't be any case labels within it.
5510 // (The same is true for 'for' statements.)
5511
5512 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: IS->getThen(), Case);
5513 if (ESR == ESR_Failed)
5514 return ESR;
5515 if (ESR != ESR_CaseNotFound)
5516 return Scope.destroy() ? ESR : ESR_Failed;
5517 if (!IS->getElse())
5518 return ESR_CaseNotFound;
5519
5520 ESR = EvaluateStmt(Result, Info, S: IS->getElse(), Case);
5521 if (ESR == ESR_Failed)
5522 return ESR;
5523 if (ESR != ESR_CaseNotFound)
5524 return Scope.destroy() ? ESR : ESR_Failed;
5525 return ESR_CaseNotFound;
5526 }
5527
5528 case Stmt::WhileStmtClass: {
5529 EvalStmtResult ESR =
5530 EvaluateLoopBody(Result, Info, Body: cast<WhileStmt>(Val: S)->getBody(), Case);
5531 if (ESR != ESR_Continue)
5532 return ESR;
5533 break;
5534 }
5535
5536 case Stmt::ForStmtClass: {
5537 const ForStmt *FS = cast<ForStmt>(Val: S);
5538 BlockScopeRAII Scope(Info);
5539
5540 // Step into the init statement in case it brings an (uninitialized)
5541 // variable into scope.
5542 if (const Stmt *Init = FS->getInit()) {
5543 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init, Case);
5544 if (ESR != ESR_CaseNotFound) {
5545 assert(ESR != ESR_Succeeded);
5546 return ESR;
5547 }
5548 }
5549
5550 EvalStmtResult ESR =
5551 EvaluateLoopBody(Result, Info, Body: FS->getBody(), Case);
5552 if (ESR != ESR_Continue)
5553 return ESR;
5554 if (const auto *Inc = FS->getInc()) {
5555 if (Inc->isValueDependent()) {
5556 if (!EvaluateDependentExpr(E: Inc, Info))
5557 return ESR_Failed;
5558 } else {
5559 FullExpressionRAII IncScope(Info);
5560 if (!EvaluateIgnoredValue(Info, E: Inc) || !IncScope.destroy())
5561 return ESR_Failed;
5562 }
5563 }
5564 break;
5565 }
5566
5567 case Stmt::DeclStmtClass: {
5568 // Start the lifetime of any uninitialized variables we encounter. They
5569 // might be used by the selected branch of the switch.
5570 const DeclStmt *DS = cast<DeclStmt>(Val: S);
5571 for (const auto *D : DS->decls()) {
5572 if (const auto *VD = dyn_cast<VarDecl>(Val: D)) {
5573 if (!CheckLocalVariableDeclaration(Info, VD))
5574 return ESR_Failed;
5575 if (VD->hasLocalStorage() && !VD->getInit())
5576 if (!EvaluateVarDecl(Info, VD))
5577 return ESR_Failed;
5578 // FIXME: If the variable has initialization that can't be jumped
5579 // over, bail out of any immediately-surrounding compound-statement
5580 // too. There can't be any case labels here.
5581 }
5582 }
5583 return ESR_CaseNotFound;
5584 }
5585
5586 default:
5587 return ESR_CaseNotFound;
5588 }
5589 }
5590
5591 switch (S->getStmtClass()) {
5592 default:
5593 if (const Expr *E = dyn_cast<Expr>(Val: S)) {
5594 if (E->isValueDependent()) {
5595 if (!EvaluateDependentExpr(E, Info))
5596 return ESR_Failed;
5597 } else {
5598 // Don't bother evaluating beyond an expression-statement which couldn't
5599 // be evaluated.
5600 // FIXME: Do we need the FullExpressionRAII object here?
5601 // VisitExprWithCleanups should create one when necessary.
5602 FullExpressionRAII Scope(Info);
5603 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5604 return ESR_Failed;
5605 }
5606 return ESR_Succeeded;
5607 }
5608
5609 Info.FFDiag(Loc: S->getBeginLoc()) << S->getSourceRange();
5610 return ESR_Failed;
5611
5612 case Stmt::NullStmtClass:
5613 return ESR_Succeeded;
5614
5615 case Stmt::DeclStmtClass: {
5616 const DeclStmt *DS = cast<DeclStmt>(Val: S);
5617 for (const auto *D : DS->decls()) {
5618 const VarDecl *VD = dyn_cast_or_null<VarDecl>(Val: D);
5619 if (VD && !CheckLocalVariableDeclaration(Info, VD))
5620 return ESR_Failed;
5621 // Each declaration initialization is its own full-expression.
5622 FullExpressionRAII Scope(Info);
5623 if (!EvaluateDecl(Info, D, /*EvaluateConditionDecl=*/true) &&
5624 !Info.noteFailure())
5625 return ESR_Failed;
5626 if (!Scope.destroy())
5627 return ESR_Failed;
5628 }
5629 return ESR_Succeeded;
5630 }
5631
5632 case Stmt::ReturnStmtClass: {
5633 const Expr *RetExpr = cast<ReturnStmt>(Val: S)->getRetValue();
5634 FullExpressionRAII Scope(Info);
5635 if (RetExpr && RetExpr->isValueDependent()) {
5636 EvaluateDependentExpr(E: RetExpr, Info);
5637 // We know we returned, but we don't know what the value is.
5638 return ESR_Failed;
5639 }
5640 if (RetExpr &&
5641 !(Result.Slot
5642 ? EvaluateInPlace(Result&: Result.Value, Info, This: *Result.Slot, E: RetExpr)
5643 : Evaluate(Result&: Result.Value, Info, E: RetExpr)))
5644 return ESR_Failed;
5645 return Scope.destroy() ? ESR_Returned : ESR_Failed;
5646 }
5647
5648 case Stmt::CompoundStmtClass: {
5649 BlockScopeRAII Scope(Info);
5650
5651 const CompoundStmt *CS = cast<CompoundStmt>(Val: S);
5652 for (const auto *BI : CS->body()) {
5653 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: BI, Case);
5654 if (ESR == ESR_Succeeded)
5655 Case = nullptr;
5656 else if (ESR != ESR_CaseNotFound) {
5657 if (ESR != ESR_Failed && !Scope.destroy())
5658 return ESR_Failed;
5659 return ESR;
5660 }
5661 }
5662 if (Case)
5663 return ESR_CaseNotFound;
5664 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5665 }
5666
5667 case Stmt::IfStmtClass: {
5668 const IfStmt *IS = cast<IfStmt>(Val: S);
5669
5670 // Evaluate the condition, as either a var decl or as an expression.
5671 BlockScopeRAII Scope(Info);
5672 if (const Stmt *Init = IS->getInit()) {
5673 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: Init);
5674 if (ESR != ESR_Succeeded) {
5675 if (ESR != ESR_Failed && !Scope.destroy())
5676 return ESR_Failed;
5677 return ESR;
5678 }
5679 }
5680 bool Cond;
5681 if (IS->isConsteval()) {
5682 Cond = IS->isNonNegatedConsteval();
5683 // If we are not in a constant context, if consteval should not evaluate
5684 // to true.
5685 if (!Info.InConstantContext)
5686 Cond = !Cond;
5687 } else if (!EvaluateCond(Info, CondDecl: IS->getConditionVariable(), Cond: IS->getCond(),
5688 Result&: Cond))
5689 return ESR_Failed;
5690
5691 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5692 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: SubStmt);
5693 if (ESR != ESR_Succeeded) {
5694 if (ESR != ESR_Failed && !Scope.destroy())
5695 return ESR_Failed;
5696 return ESR;
5697 }
5698 }
5699 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5700 }
5701
5702 case Stmt::WhileStmtClass: {
5703 const WhileStmt *WS = cast<WhileStmt>(Val: S);
5704 while (true) {
5705 BlockScopeRAII Scope(Info);
5706 bool Continue;
5707 if (!EvaluateCond(Info, CondDecl: WS->getConditionVariable(), Cond: WS->getCond(),
5708 Result&: Continue))
5709 return ESR_Failed;
5710 if (!Continue)
5711 break;
5712
5713 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: WS->getBody());
5714 if (ESR != ESR_Continue) {
5715 if (ESR != ESR_Failed && !Scope.destroy())
5716 return ESR_Failed;
5717 return ESR;
5718 }
5719 if (!Scope.destroy())
5720 return ESR_Failed;
5721 }
5722 return ESR_Succeeded;
5723 }
5724
5725 case Stmt::DoStmtClass: {
5726 const DoStmt *DS = cast<DoStmt>(Val: S);
5727 bool Continue;
5728 do {
5729 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: DS->getBody(), Case);
5730 if (ESR != ESR_Continue)
5731 return ESR;
5732 Case = nullptr;
5733
5734 if (DS->getCond()->isValueDependent()) {
5735 EvaluateDependentExpr(E: DS->getCond(), Info);
5736 // Bailout as we don't know whether to keep going or terminate the loop.
5737 return ESR_Failed;
5738 }
5739 FullExpressionRAII CondScope(Info);
5740 if (!EvaluateAsBooleanCondition(E: DS->getCond(), Result&: Continue, Info) ||
5741 !CondScope.destroy())
5742 return ESR_Failed;
5743 } while (Continue);
5744 return ESR_Succeeded;
5745 }
5746
5747 case Stmt::ForStmtClass: {
5748 const ForStmt *FS = cast<ForStmt>(Val: S);
5749 BlockScopeRAII ForScope(Info);
5750 if (FS->getInit()) {
5751 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getInit());
5752 if (ESR != ESR_Succeeded) {
5753 if (ESR != ESR_Failed && !ForScope.destroy())
5754 return ESR_Failed;
5755 return ESR;
5756 }
5757 }
5758 while (true) {
5759 BlockScopeRAII IterScope(Info);
5760 bool Continue = true;
5761 if (FS->getCond() && !EvaluateCond(Info, CondDecl: FS->getConditionVariable(),
5762 Cond: FS->getCond(), Result&: Continue))
5763 return ESR_Failed;
5764
5765 if (!Continue) {
5766 if (!IterScope.destroy())
5767 return ESR_Failed;
5768 break;
5769 }
5770
5771 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, Body: FS->getBody());
5772 if (ESR != ESR_Continue) {
5773 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5774 return ESR_Failed;
5775 return ESR;
5776 }
5777
5778 if (const auto *Inc = FS->getInc()) {
5779 if (Inc->isValueDependent()) {
5780 if (!EvaluateDependentExpr(E: Inc, Info))
5781 return ESR_Failed;
5782 } else {
5783 FullExpressionRAII IncScope(Info);
5784 if (!EvaluateIgnoredValue(Info, E: Inc) || !IncScope.destroy())
5785 return ESR_Failed;
5786 }
5787 }
5788
5789 if (!IterScope.destroy())
5790 return ESR_Failed;
5791 }
5792 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5793 }
5794
5795 case Stmt::CXXForRangeStmtClass: {
5796 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(Val: S);
5797 BlockScopeRAII Scope(Info);
5798
5799 // Evaluate the init-statement if present.
5800 if (FS->getInit()) {
5801 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getInit());
5802 if (ESR != ESR_Succeeded) {
5803 if (ESR != ESR_Failed && !Scope.destroy())
5804 return ESR_Failed;
5805 return ESR;
5806 }
5807 }
5808
5809 // Initialize the __range variable.
5810 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: FS->getRangeStmt());
5811 if (ESR != ESR_Succeeded) {
5812 if (ESR != ESR_Failed && !Scope.destroy())
5813 return ESR_Failed;
5814 return ESR;
5815 }
5816
5817 // In error-recovery cases it's possible to get here even if we failed to
5818 // synthesize the __begin and __end variables.
5819 if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5820 return ESR_Failed;
5821
5822 // Create the __begin and __end iterators.
5823 ESR = EvaluateStmt(Result, Info, S: FS->getBeginStmt());
5824 if (ESR != ESR_Succeeded) {
5825 if (ESR != ESR_Failed && !Scope.destroy())
5826 return ESR_Failed;
5827 return ESR;
5828 }
5829 ESR = EvaluateStmt(Result, Info, S: FS->getEndStmt());
5830 if (ESR != ESR_Succeeded) {
5831 if (ESR != ESR_Failed && !Scope.destroy())
5832 return ESR_Failed;
5833 return ESR;
5834 }
5835
5836 while (true) {
5837 // Condition: __begin != __end.
5838 {
5839 if (FS->getCond()->isValueDependent()) {
5840 EvaluateDependentExpr(E: FS->getCond(), Info);
5841 // We don't know whether to keep going or terminate the loop.
5842 return ESR_Failed;
5843 }
5844 bool Continue = true;
5845 FullExpressionRAII CondExpr(Info);
5846 if (!EvaluateAsBooleanCondition(E: FS->getCond(), Result&: Continue, Info))
5847 return ESR_Failed;
5848 if (!Continue)
5849 break;
5850 }
5851
5852 // User's variable declaration, initialized by *__begin.
5853 BlockScopeRAII InnerScope(Info);
5854 ESR = EvaluateStmt(Result, Info, S: FS->getLoopVarStmt());
5855 if (ESR != ESR_Succeeded) {
5856 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5857 return ESR_Failed;
5858 return ESR;
5859 }
5860
5861 // Loop body.
5862 ESR = EvaluateLoopBody(Result, Info, Body: FS->getBody());
5863 if (ESR != ESR_Continue) {
5864 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5865 return ESR_Failed;
5866 return ESR;
5867 }
5868 if (FS->getInc()->isValueDependent()) {
5869 if (!EvaluateDependentExpr(E: FS->getInc(), Info))
5870 return ESR_Failed;
5871 } else {
5872 // Increment: ++__begin
5873 if (!EvaluateIgnoredValue(Info, E: FS->getInc()))
5874 return ESR_Failed;
5875 }
5876
5877 if (!InnerScope.destroy())
5878 return ESR_Failed;
5879 }
5880
5881 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5882 }
5883
5884 case Stmt::SwitchStmtClass:
5885 return EvaluateSwitch(Result, Info, SS: cast<SwitchStmt>(Val: S));
5886
5887 case Stmt::ContinueStmtClass:
5888 return ESR_Continue;
5889
5890 case Stmt::BreakStmtClass:
5891 return ESR_Break;
5892
5893 case Stmt::LabelStmtClass:
5894 return EvaluateStmt(Result, Info, S: cast<LabelStmt>(Val: S)->getSubStmt(), Case);
5895
5896 case Stmt::AttributedStmtClass: {
5897 const auto *AS = cast<AttributedStmt>(Val: S);
5898 const auto *SS = AS->getSubStmt();
5899 MSConstexprContextRAII ConstexprContext(
5900 *Info.CurrentCall, hasSpecificAttr<MSConstexprAttr>(AS->getAttrs()) &&
5901 isa<ReturnStmt>(SS));
5902
5903 auto LO = Info.getASTContext().getLangOpts();
5904 if (LO.CXXAssumptions && !LO.MSVCCompat) {
5905 for (auto *Attr : AS->getAttrs()) {
5906 auto *AA = dyn_cast<CXXAssumeAttr>(Attr);
5907 if (!AA)
5908 continue;
5909
5910 auto *Assumption = AA->getAssumption();
5911 if (Assumption->isValueDependent())
5912 return ESR_Failed;
5913
5914 if (Assumption->HasSideEffects(Info.getASTContext()))
5915 continue;
5916
5917 bool Value;
5918 if (!EvaluateAsBooleanCondition(Assumption, Value, Info))
5919 return ESR_Failed;
5920 if (!Value) {
5921 Info.CCEDiag(Assumption->getExprLoc(),
5922 diag::note_constexpr_assumption_failed);
5923 return ESR_Failed;
5924 }
5925 }
5926 }
5927
5928 return EvaluateStmt(Result, Info, S: SS, Case);
5929 }
5930
5931 case Stmt::CaseStmtClass:
5932 case Stmt::DefaultStmtClass:
5933 return EvaluateStmt(Result, Info, S: cast<SwitchCase>(Val: S)->getSubStmt(), Case);
5934 case Stmt::CXXTryStmtClass:
5935 // Evaluate try blocks by evaluating all sub statements.
5936 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(Val: S)->getTryBlock(), Case);
5937 }
5938}
5939
5940/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5941/// default constructor. If so, we'll fold it whether or not it's marked as
5942/// constexpr. If it is marked as constexpr, we will never implicitly define it,
5943/// so we need special handling.
5944static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5945 const CXXConstructorDecl *CD,
5946 bool IsValueInitialization) {
5947 if (!CD->isTrivial() || !CD->isDefaultConstructor())
5948 return false;
5949
5950 // Value-initialization does not call a trivial default constructor, so such a
5951 // call is a core constant expression whether or not the constructor is
5952 // constexpr.
5953 if (!CD->isConstexpr() && !IsValueInitialization) {
5954 if (Info.getLangOpts().CPlusPlus11) {
5955 // FIXME: If DiagDecl is an implicitly-declared special member function,
5956 // we should be much more explicit about why it's not constexpr.
5957 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5958 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5959 Info.Note(CD->getLocation(), diag::note_declared_at);
5960 } else {
5961 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5962 }
5963 }
5964 return true;
5965}
5966
5967/// CheckConstexprFunction - Check that a function can be called in a constant
5968/// expression.
5969static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5970 const FunctionDecl *Declaration,
5971 const FunctionDecl *Definition,
5972 const Stmt *Body) {
5973 // Potential constant expressions can contain calls to declared, but not yet
5974 // defined, constexpr functions.
5975 if (Info.checkingPotentialConstantExpression() && !Definition &&
5976 Declaration->isConstexpr())
5977 return false;
5978
5979 // Bail out if the function declaration itself is invalid. We will
5980 // have produced a relevant diagnostic while parsing it, so just
5981 // note the problematic sub-expression.
5982 if (Declaration->isInvalidDecl()) {
5983 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5984 return false;
5985 }
5986
5987 // DR1872: An instantiated virtual constexpr function can't be called in a
5988 // constant expression (prior to C++20). We can still constant-fold such a
5989 // call.
5990 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5991 cast<CXXMethodDecl>(Declaration)->isVirtual())
5992 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5993
5994 if (Definition && Definition->isInvalidDecl()) {
5995 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5996 return false;
5997 }
5998
5999 // Can we evaluate this function call?
6000 if (Definition && Body &&
6001 (Definition->isConstexpr() || (Info.CurrentCall->CanEvalMSConstexpr &&
6002 Definition->hasAttr<MSConstexprAttr>())))
6003 return true;
6004
6005 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
6006 // Special note for the assert() macro, as the normal error message falsely
6007 // implies we cannot use an assertion during constant evaluation.
6008 if (CallLoc.isMacroID() && DiagDecl->getIdentifier()) {
6009 // FIXME: Instead of checking for an implementation-defined function,
6010 // check and evaluate the assert() macro.
6011 StringRef Name = DiagDecl->getName();
6012 bool AssertFailed =
6013 Name == "__assert_rtn" || Name == "__assert_fail" || Name == "_wassert";
6014 if (AssertFailed) {
6015 Info.FFDiag(CallLoc, diag::note_constexpr_assert_failed);
6016 return false;
6017 }
6018 }
6019
6020 if (Info.getLangOpts().CPlusPlus11) {
6021 // If this function is not constexpr because it is an inherited
6022 // non-constexpr constructor, diagnose that directly.
6023 auto *CD = dyn_cast<CXXConstructorDecl>(Val: DiagDecl);
6024 if (CD && CD->isInheritingConstructor()) {
6025 auto *Inherited = CD->getInheritedConstructor().getConstructor();
6026 if (!Inherited->isConstexpr())
6027 DiagDecl = CD = Inherited;
6028 }
6029
6030 // FIXME: If DiagDecl is an implicitly-declared special member function
6031 // or an inheriting constructor, we should be much more explicit about why
6032 // it's not constexpr.
6033 if (CD && CD->isInheritingConstructor())
6034 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
6035 << CD->getInheritedConstructor().getConstructor()->getParent();
6036 else
6037 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
6038 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
6039 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
6040 } else {
6041 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
6042 }
6043 return false;
6044}
6045
6046namespace {
6047struct CheckDynamicTypeHandler {
6048 AccessKinds AccessKind;
6049 typedef bool result_type;
6050 bool failed() { return false; }
6051 bool found(APValue &Subobj, QualType SubobjType) { return true; }
6052 bool found(APSInt &Value, QualType SubobjType) { return true; }
6053 bool found(APFloat &Value, QualType SubobjType) { return true; }
6054};
6055} // end anonymous namespace
6056
6057/// Check that we can access the notional vptr of an object / determine its
6058/// dynamic type.
6059static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
6060 AccessKinds AK, bool Polymorphic) {
6061 // We are not allowed to invoke a virtual function whose dynamic type
6062 // is constexpr-unknown, so stop early and let this fail later on if we
6063 // attempt to do so.
6064 // C++23 [expr.const]p5.6
6065 // an invocation of a virtual function ([class.virtual]) for an object whose
6066 // dynamic type is constexpr-unknown;
6067 if (This.allowConstexprUnknown())
6068 return true;
6069
6070 if (This.Designator.Invalid)
6071 return false;
6072
6073 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal: This, LValType: QualType());
6074
6075 if (!Obj)
6076 return false;
6077
6078 if (!Obj.Value) {
6079 // The object is not usable in constant expressions, so we can't inspect
6080 // its value to see if it's in-lifetime or what the active union members
6081 // are. We can still check for a one-past-the-end lvalue.
6082 if (This.Designator.isOnePastTheEnd() ||
6083 This.Designator.isMostDerivedAnUnsizedArray()) {
6084 Info.FFDiag(E, This.Designator.isOnePastTheEnd()
6085 ? diag::note_constexpr_access_past_end
6086 : diag::note_constexpr_access_unsized_array)
6087 << AK;
6088 return false;
6089 } else if (Polymorphic) {
6090 // Conservatively refuse to perform a polymorphic operation if we would
6091 // not be able to read a notional 'vptr' value.
6092 APValue Val;
6093 This.moveInto(V&: Val);
6094 QualType StarThisType =
6095 Info.Ctx.getLValueReferenceType(T: This.Designator.getType(Info.Ctx));
6096 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
6097 << AK << Val.getAsString(Info.Ctx, StarThisType);
6098 return false;
6099 }
6100 return true;
6101 }
6102
6103 CheckDynamicTypeHandler Handler{.AccessKind: AK};
6104 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6105}
6106
6107/// Check that the pointee of the 'this' pointer in a member function call is
6108/// either within its lifetime or in its period of construction or destruction.
6109static bool
6110checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
6111 const LValue &This,
6112 const CXXMethodDecl *NamedMember) {
6113 return checkDynamicType(
6114 Info, E, This,
6115 AK: isa<CXXDestructorDecl>(Val: NamedMember) ? AK_Destroy : AK_MemberCall, Polymorphic: false);
6116}
6117
6118struct DynamicType {
6119 /// The dynamic class type of the object.
6120 const CXXRecordDecl *Type;
6121 /// The corresponding path length in the lvalue.
6122 unsigned PathLength;
6123};
6124
6125static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
6126 unsigned PathLength) {
6127 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
6128 Designator.Entries.size() && "invalid path length");
6129 return (PathLength == Designator.MostDerivedPathLength)
6130 ? Designator.MostDerivedType->getAsCXXRecordDecl()
6131 : getAsBaseClass(E: Designator.Entries[PathLength - 1]);
6132}
6133
6134/// Determine the dynamic type of an object.
6135static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info,
6136 const Expr *E,
6137 LValue &This,
6138 AccessKinds AK) {
6139 // If we don't have an lvalue denoting an object of class type, there is no
6140 // meaningful dynamic type. (We consider objects of non-class type to have no
6141 // dynamic type.)
6142 if (!checkDynamicType(Info, E, This, AK,
6143 Polymorphic: (AK == AK_TypeId
6144 ? (E->getType()->isReferenceType() ? true : false)
6145 : true)))
6146 return std::nullopt;
6147
6148 if (This.Designator.Invalid)
6149 return std::nullopt;
6150
6151 // Refuse to compute a dynamic type in the presence of virtual bases. This
6152 // shouldn't happen other than in constant-folding situations, since literal
6153 // types can't have virtual bases.
6154 //
6155 // Note that consumers of DynamicType assume that the type has no virtual
6156 // bases, and will need modifications if this restriction is relaxed.
6157 const CXXRecordDecl *Class =
6158 This.Designator.MostDerivedType->getAsCXXRecordDecl();
6159 if (!Class || Class->getNumVBases()) {
6160 Info.FFDiag(E);
6161 return std::nullopt;
6162 }
6163
6164 // FIXME: For very deep class hierarchies, it might be beneficial to use a
6165 // binary search here instead. But the overwhelmingly common case is that
6166 // we're not in the middle of a constructor, so it probably doesn't matter
6167 // in practice.
6168 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
6169 for (unsigned PathLength = This.Designator.MostDerivedPathLength;
6170 PathLength <= Path.size(); ++PathLength) {
6171 switch (Info.isEvaluatingCtorDtor(Base: This.getLValueBase(),
6172 Path: Path.slice(N: 0, M: PathLength))) {
6173 case ConstructionPhase::Bases:
6174 case ConstructionPhase::DestroyingBases:
6175 // We're constructing or destroying a base class. This is not the dynamic
6176 // type.
6177 break;
6178
6179 case ConstructionPhase::None:
6180 case ConstructionPhase::AfterBases:
6181 case ConstructionPhase::AfterFields:
6182 case ConstructionPhase::Destroying:
6183 // We've finished constructing the base classes and not yet started
6184 // destroying them again, so this is the dynamic type.
6185 return DynamicType{getBaseClassType(This.Designator, PathLength),
6186 PathLength};
6187 }
6188 }
6189
6190 // CWG issue 1517: we're constructing a base class of the object described by
6191 // 'This', so that object has not yet begun its period of construction and
6192 // any polymorphic operation on it results in undefined behavior.
6193 Info.FFDiag(E);
6194 return std::nullopt;
6195}
6196
6197/// Perform virtual dispatch.
6198static const CXXMethodDecl *HandleVirtualDispatch(
6199 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
6200 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
6201 std::optional<DynamicType> DynType = ComputeDynamicType(
6202 Info, E, This,
6203 AK: isa<CXXDestructorDecl>(Val: Found) ? AK_Destroy : AK_MemberCall);
6204 if (!DynType)
6205 return nullptr;
6206
6207 // Find the final overrider. It must be declared in one of the classes on the
6208 // path from the dynamic type to the static type.
6209 // FIXME: If we ever allow literal types to have virtual base classes, that
6210 // won't be true.
6211 const CXXMethodDecl *Callee = Found;
6212 unsigned PathLength = DynType->PathLength;
6213 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
6214 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
6215 const CXXMethodDecl *Overrider =
6216 Found->getCorrespondingMethodDeclaredInClass(RD: Class, MayBeBase: false);
6217 if (Overrider) {
6218 Callee = Overrider;
6219 break;
6220 }
6221 }
6222
6223 // C++2a [class.abstract]p6:
6224 // the effect of making a virtual call to a pure virtual function [...] is
6225 // undefined
6226 if (Callee->isPureVirtual()) {
6227 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
6228 Info.Note(Callee->getLocation(), diag::note_declared_at);
6229 return nullptr;
6230 }
6231
6232 // If necessary, walk the rest of the path to determine the sequence of
6233 // covariant adjustment steps to apply.
6234 if (!Info.Ctx.hasSameUnqualifiedType(T1: Callee->getReturnType(),
6235 T2: Found->getReturnType())) {
6236 CovariantAdjustmentPath.push_back(Elt: Callee->getReturnType());
6237 for (unsigned CovariantPathLength = PathLength + 1;
6238 CovariantPathLength != This.Designator.Entries.size();
6239 ++CovariantPathLength) {
6240 const CXXRecordDecl *NextClass =
6241 getBaseClassType(This.Designator, CovariantPathLength);
6242 const CXXMethodDecl *Next =
6243 Found->getCorrespondingMethodDeclaredInClass(RD: NextClass, MayBeBase: false);
6244 if (Next && !Info.Ctx.hasSameUnqualifiedType(
6245 T1: Next->getReturnType(), T2: CovariantAdjustmentPath.back()))
6246 CovariantAdjustmentPath.push_back(Elt: Next->getReturnType());
6247 }
6248 if (!Info.Ctx.hasSameUnqualifiedType(T1: Found->getReturnType(),
6249 T2: CovariantAdjustmentPath.back()))
6250 CovariantAdjustmentPath.push_back(Elt: Found->getReturnType());
6251 }
6252
6253 // Perform 'this' adjustment.
6254 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
6255 return nullptr;
6256
6257 return Callee;
6258}
6259
6260/// Perform the adjustment from a value returned by a virtual function to
6261/// a value of the statically expected type, which may be a pointer or
6262/// reference to a base class of the returned type.
6263static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
6264 APValue &Result,
6265 ArrayRef<QualType> Path) {
6266 assert(Result.isLValue() &&
6267 "unexpected kind of APValue for covariant return");
6268 if (Result.isNullPointer())
6269 return true;
6270
6271 LValue LVal;
6272 LVal.setFrom(Ctx&: Info.Ctx, V: Result);
6273
6274 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
6275 for (unsigned I = 1; I != Path.size(); ++I) {
6276 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
6277 assert(OldClass && NewClass && "unexpected kind of covariant return");
6278 if (OldClass != NewClass &&
6279 !CastToBaseClass(Info, E, Result&: LVal, DerivedRD: OldClass, BaseRD: NewClass))
6280 return false;
6281 OldClass = NewClass;
6282 }
6283
6284 LVal.moveInto(V&: Result);
6285 return true;
6286}
6287
6288/// Determine whether \p Base, which is known to be a direct base class of
6289/// \p Derived, is a public base class.
6290static bool isBaseClassPublic(const CXXRecordDecl *Derived,
6291 const CXXRecordDecl *Base) {
6292 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
6293 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
6294 if (BaseClass && declaresSameEntity(BaseClass, Base))
6295 return BaseSpec.getAccessSpecifier() == AS_public;
6296 }
6297 llvm_unreachable("Base is not a direct base of Derived");
6298}
6299
6300/// Apply the given dynamic cast operation on the provided lvalue.
6301///
6302/// This implements the hard case of dynamic_cast, requiring a "runtime check"
6303/// to find a suitable target subobject.
6304static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
6305 LValue &Ptr) {
6306 // We can't do anything with a non-symbolic pointer value.
6307 SubobjectDesignator &D = Ptr.Designator;
6308 if (D.Invalid)
6309 return false;
6310
6311 // C++ [expr.dynamic.cast]p6:
6312 // If v is a null pointer value, the result is a null pointer value.
6313 if (Ptr.isNullPointer() && !E->isGLValue())
6314 return true;
6315
6316 // For all the other cases, we need the pointer to point to an object within
6317 // its lifetime / period of construction / destruction, and we need to know
6318 // its dynamic type.
6319 std::optional<DynamicType> DynType =
6320 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
6321 if (!DynType)
6322 return false;
6323
6324 // C++ [expr.dynamic.cast]p7:
6325 // If T is "pointer to cv void", then the result is a pointer to the most
6326 // derived object
6327 if (E->getType()->isVoidPointerType())
6328 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
6329
6330 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
6331 assert(C && "dynamic_cast target is not void pointer nor class");
6332 CanQualType CQT = Info.Ctx.getCanonicalType(T: Info.Ctx.getRecordType(C));
6333
6334 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
6335 // C++ [expr.dynamic.cast]p9:
6336 if (!E->isGLValue()) {
6337 // The value of a failed cast to pointer type is the null pointer value
6338 // of the required result type.
6339 Ptr.setNull(Ctx&: Info.Ctx, PointerTy: E->getType());
6340 return true;
6341 }
6342
6343 // A failed cast to reference type throws [...] std::bad_cast.
6344 unsigned DiagKind;
6345 if (!Paths && (declaresSameEntity(DynType->Type, C) ||
6346 DynType->Type->isDerivedFrom(Base: C)))
6347 DiagKind = 0;
6348 else if (!Paths || Paths->begin() == Paths->end())
6349 DiagKind = 1;
6350 else if (Paths->isAmbiguous(BaseType: CQT))
6351 DiagKind = 2;
6352 else {
6353 assert(Paths->front().Access != AS_public && "why did the cast fail?");
6354 DiagKind = 3;
6355 }
6356 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
6357 << DiagKind << Ptr.Designator.getType(Info.Ctx)
6358 << Info.Ctx.getRecordType(DynType->Type)
6359 << E->getType().getUnqualifiedType();
6360 return false;
6361 };
6362
6363 // Runtime check, phase 1:
6364 // Walk from the base subobject towards the derived object looking for the
6365 // target type.
6366 for (int PathLength = Ptr.Designator.Entries.size();
6367 PathLength >= (int)DynType->PathLength; --PathLength) {
6368 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
6369 if (declaresSameEntity(Class, C))
6370 return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
6371 // We can only walk across public inheritance edges.
6372 if (PathLength > (int)DynType->PathLength &&
6373 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
6374 Class))
6375 return RuntimeCheckFailed(nullptr);
6376 }
6377
6378 // Runtime check, phase 2:
6379 // Search the dynamic type for an unambiguous public base of type C.
6380 CXXBasePaths Paths(/*FindAmbiguities=*/true,
6381 /*RecordPaths=*/true, /*DetectVirtual=*/false);
6382 if (DynType->Type->isDerivedFrom(Base: C, Paths) && !Paths.isAmbiguous(BaseType: CQT) &&
6383 Paths.front().Access == AS_public) {
6384 // Downcast to the dynamic type...
6385 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
6386 return false;
6387 // ... then upcast to the chosen base class subobject.
6388 for (CXXBasePathElement &Elem : Paths.front())
6389 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
6390 return false;
6391 return true;
6392 }
6393
6394 // Otherwise, the runtime check fails.
6395 return RuntimeCheckFailed(&Paths);
6396}
6397
6398namespace {
6399struct StartLifetimeOfUnionMemberHandler {
6400 EvalInfo &Info;
6401 const Expr *LHSExpr;
6402 const FieldDecl *Field;
6403 bool DuringInit;
6404 bool Failed = false;
6405 static const AccessKinds AccessKind = AK_Assign;
6406
6407 typedef bool result_type;
6408 bool failed() { return Failed; }
6409 bool found(APValue &Subobj, QualType SubobjType) {
6410 // We are supposed to perform no initialization but begin the lifetime of
6411 // the object. We interpret that as meaning to do what default
6412 // initialization of the object would do if all constructors involved were
6413 // trivial:
6414 // * All base, non-variant member, and array element subobjects' lifetimes
6415 // begin
6416 // * No variant members' lifetimes begin
6417 // * All scalar subobjects whose lifetimes begin have indeterminate values
6418 assert(SubobjType->isUnionType());
6419 if (declaresSameEntity(Subobj.getUnionField(), Field)) {
6420 // This union member is already active. If it's also in-lifetime, there's
6421 // nothing to do.
6422 if (Subobj.getUnionValue().hasValue())
6423 return true;
6424 } else if (DuringInit) {
6425 // We're currently in the process of initializing a different union
6426 // member. If we carried on, that initialization would attempt to
6427 // store to an inactive union member, resulting in undefined behavior.
6428 Info.FFDiag(LHSExpr,
6429 diag::note_constexpr_union_member_change_during_init);
6430 return false;
6431 }
6432 APValue Result;
6433 Failed = !handleDefaultInitValue(Field->getType(), Result);
6434 Subobj.setUnion(Field, Value: Result);
6435 return true;
6436 }
6437 bool found(APSInt &Value, QualType SubobjType) {
6438 llvm_unreachable("wrong value kind for union object");
6439 }
6440 bool found(APFloat &Value, QualType SubobjType) {
6441 llvm_unreachable("wrong value kind for union object");
6442 }
6443};
6444} // end anonymous namespace
6445
6446const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
6447
6448/// Handle a builtin simple-assignment or a call to a trivial assignment
6449/// operator whose left-hand side might involve a union member access. If it
6450/// does, implicitly start the lifetime of any accessed union elements per
6451/// C++20 [class.union]5.
6452static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info,
6453 const Expr *LHSExpr,
6454 const LValue &LHS) {
6455 if (LHS.InvalidBase || LHS.Designator.Invalid)
6456 return false;
6457
6458 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
6459 // C++ [class.union]p5:
6460 // define the set S(E) of subexpressions of E as follows:
6461 unsigned PathLength = LHS.Designator.Entries.size();
6462 for (const Expr *E = LHSExpr; E != nullptr;) {
6463 // -- If E is of the form A.B, S(E) contains the elements of S(A)...
6464 if (auto *ME = dyn_cast<MemberExpr>(Val: E)) {
6465 auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl());
6466 // Note that we can't implicitly start the lifetime of a reference,
6467 // so we don't need to proceed any further if we reach one.
6468 if (!FD || FD->getType()->isReferenceType())
6469 break;
6470
6471 // ... and also contains A.B if B names a union member ...
6472 if (FD->getParent()->isUnion()) {
6473 // ... of a non-class, non-array type, or of a class type with a
6474 // trivial default constructor that is not deleted, or an array of
6475 // such types.
6476 auto *RD =
6477 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6478 if (!RD || RD->hasTrivialDefaultConstructor())
6479 UnionPathLengths.push_back(Elt: {PathLength - 1, FD});
6480 }
6481
6482 E = ME->getBase();
6483 --PathLength;
6484 assert(declaresSameEntity(FD,
6485 LHS.Designator.Entries[PathLength]
6486 .getAsBaseOrMember().getPointer()));
6487
6488 // -- If E is of the form A[B] and is interpreted as a built-in array
6489 // subscripting operator, S(E) is [S(the array operand, if any)].
6490 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: E)) {
6491 // Step over an ArrayToPointerDecay implicit cast.
6492 auto *Base = ASE->getBase()->IgnoreImplicit();
6493 if (!Base->getType()->isArrayType())
6494 break;
6495
6496 E = Base;
6497 --PathLength;
6498
6499 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
6500 // Step over a derived-to-base conversion.
6501 E = ICE->getSubExpr();
6502 if (ICE->getCastKind() == CK_NoOp)
6503 continue;
6504 if (ICE->getCastKind() != CK_DerivedToBase &&
6505 ICE->getCastKind() != CK_UncheckedDerivedToBase)
6506 break;
6507 // Walk path backwards as we walk up from the base to the derived class.
6508 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
6509 if (Elt->isVirtual()) {
6510 // A class with virtual base classes never has a trivial default
6511 // constructor, so S(E) is empty in this case.
6512 E = nullptr;
6513 break;
6514 }
6515
6516 --PathLength;
6517 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
6518 LHS.Designator.Entries[PathLength]
6519 .getAsBaseOrMember().getPointer()));
6520 }
6521
6522 // -- Otherwise, S(E) is empty.
6523 } else {
6524 break;
6525 }
6526 }
6527
6528 // Common case: no unions' lifetimes are started.
6529 if (UnionPathLengths.empty())
6530 return true;
6531
6532 // if modification of X [would access an inactive union member], an object
6533 // of the type of X is implicitly created
6534 CompleteObject Obj =
6535 findCompleteObject(Info, E: LHSExpr, AK: AK_Assign, LVal: LHS, LValType: LHSExpr->getType());
6536 if (!Obj)
6537 return false;
6538 for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6539 llvm::reverse(C&: UnionPathLengths)) {
6540 // Form a designator for the union object.
6541 SubobjectDesignator D = LHS.Designator;
6542 D.truncate(Ctx&: Info.Ctx, Base: LHS.Base, NewLength: LengthAndField.first);
6543
6544 bool DuringInit = Info.isEvaluatingCtorDtor(Base: LHS.Base, Path: D.Entries) ==
6545 ConstructionPhase::AfterBases;
6546 StartLifetimeOfUnionMemberHandler StartLifetime{
6547 .Info: Info, .LHSExpr: LHSExpr, .Field: LengthAndField.second, .DuringInit: DuringInit};
6548 if (!findSubobject(Info, E: LHSExpr, Obj, Sub: D, handler&: StartLifetime))
6549 return false;
6550 }
6551
6552 return true;
6553}
6554
6555static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6556 CallRef Call, EvalInfo &Info, bool NonNull = false,
6557 APValue **EvaluatedArg = nullptr) {
6558 LValue LV;
6559 // Create the parameter slot and register its destruction. For a vararg
6560 // argument, create a temporary.
6561 // FIXME: For calling conventions that destroy parameters in the callee,
6562 // should we consider performing destruction when the function returns
6563 // instead?
6564 APValue &V = PVD ? Info.CurrentCall->createParam(Args: Call, PVD, LV)
6565 : Info.CurrentCall->createTemporary(Key: Arg, T: Arg->getType(),
6566 Scope: ScopeKind::Call, LV);
6567 if (!EvaluateInPlace(Result&: V, Info, This: LV, E: Arg))
6568 return false;
6569
6570 // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6571 // undefined behavior, so is non-constant.
6572 if (NonNull && V.isLValue() && V.isNullPointer()) {
6573 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6574 return false;
6575 }
6576
6577 if (EvaluatedArg)
6578 *EvaluatedArg = &V;
6579
6580 return true;
6581}
6582
6583/// Evaluate the arguments to a function call.
6584static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6585 EvalInfo &Info, const FunctionDecl *Callee,
6586 bool RightToLeft = false,
6587 LValue *ObjectArg = nullptr) {
6588 bool Success = true;
6589 llvm::SmallBitVector ForbiddenNullArgs;
6590 if (Callee->hasAttr<NonNullAttr>()) {
6591 ForbiddenNullArgs.resize(N: Args.size());
6592 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6593 if (!Attr->args_size()) {
6594 ForbiddenNullArgs.set();
6595 break;
6596 } else
6597 for (auto Idx : Attr->args()) {
6598 unsigned ASTIdx = Idx.getASTIndex();
6599 if (ASTIdx >= Args.size())
6600 continue;
6601 ForbiddenNullArgs[ASTIdx] = true;
6602 }
6603 }
6604 }
6605 for (unsigned I = 0; I < Args.size(); I++) {
6606 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6607 const ParmVarDecl *PVD =
6608 Idx < Callee->getNumParams() ? Callee->getParamDecl(i: Idx) : nullptr;
6609 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6610 APValue *That = nullptr;
6611 if (!EvaluateCallArg(PVD, Arg: Args[Idx], Call, Info, NonNull, EvaluatedArg: &That)) {
6612 // If we're checking for a potential constant expression, evaluate all
6613 // initializers even if some of them fail.
6614 if (!Info.noteFailure())
6615 return false;
6616 Success = false;
6617 }
6618 if (PVD && PVD->isExplicitObjectParameter() && That && That->isLValue())
6619 ObjectArg->setFrom(Ctx&: Info.Ctx, V: *That);
6620 }
6621 return Success;
6622}
6623
6624/// Perform a trivial copy from Param, which is the parameter of a copy or move
6625/// constructor or assignment operator.
6626static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6627 const Expr *E, APValue &Result,
6628 bool CopyObjectRepresentation) {
6629 // Find the reference argument.
6630 CallStackFrame *Frame = Info.CurrentCall;
6631 APValue *RefValue = Info.getParamSlot(Call: Frame->Arguments, PVD: Param);
6632 if (!RefValue) {
6633 Info.FFDiag(E);
6634 return false;
6635 }
6636
6637 // Copy out the contents of the RHS object.
6638 LValue RefLValue;
6639 RefLValue.setFrom(Ctx&: Info.Ctx, V: *RefValue);
6640 return handleLValueToRValueConversion(
6641 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6642 CopyObjectRepresentation);
6643}
6644
6645/// Evaluate a function call.
6646static bool HandleFunctionCall(SourceLocation CallLoc,
6647 const FunctionDecl *Callee,
6648 const LValue *ObjectArg, const Expr *E,
6649 ArrayRef<const Expr *> Args, CallRef Call,
6650 const Stmt *Body, EvalInfo &Info,
6651 APValue &Result, const LValue *ResultSlot) {
6652 if (!Info.CheckCallLimit(Loc: CallLoc))
6653 return false;
6654
6655 CallStackFrame Frame(Info, E->getSourceRange(), Callee, ObjectArg, E, Call);
6656
6657 // For a trivial copy or move assignment, perform an APValue copy. This is
6658 // essential for unions, where the operations performed by the assignment
6659 // operator cannot be represented as statements.
6660 //
6661 // Skip this for non-union classes with no fields; in that case, the defaulted
6662 // copy/move does not actually read the object.
6663 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: Callee);
6664 if (MD && MD->isDefaulted() &&
6665 (MD->getParent()->isUnion() ||
6666 (MD->isTrivial() &&
6667 isReadByLvalueToRvalueConversion(RD: MD->getParent())))) {
6668 unsigned ExplicitOffset = MD->isExplicitObjectMemberFunction() ? 1 : 0;
6669 assert(ObjectArg &&
6670 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6671 APValue RHSValue;
6672 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6673 MD->getParent()->isUnion()))
6674 return false;
6675
6676 LValue Obj;
6677 if (!handleAssignment(Info, E: Args[ExplicitOffset], LVal: *ObjectArg,
6678 LValType: MD->getFunctionObjectParameterReferenceType(),
6679 Val&: RHSValue))
6680 return false;
6681 ObjectArg->moveInto(V&: Result);
6682 return true;
6683 } else if (MD && isLambdaCallOperator(MD)) {
6684 // We're in a lambda; determine the lambda capture field maps unless we're
6685 // just constexpr checking a lambda's call operator. constexpr checking is
6686 // done before the captures have been added to the closure object (unless
6687 // we're inferring constexpr-ness), so we don't have access to them in this
6688 // case. But since we don't need the captures to constexpr check, we can
6689 // just ignore them.
6690 if (!Info.checkingPotentialConstantExpression())
6691 MD->getParent()->getCaptureFields(Captures&: Frame.LambdaCaptureFields,
6692 ThisCapture&: Frame.LambdaThisCaptureField);
6693 }
6694
6695 StmtResult Ret = {.Value: Result, .Slot: ResultSlot};
6696 EvalStmtResult ESR = EvaluateStmt(Result&: Ret, Info, S: Body);
6697 if (ESR == ESR_Succeeded) {
6698 if (Callee->getReturnType()->isVoidType())
6699 return true;
6700 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6701 }
6702 return ESR == ESR_Returned;
6703}
6704
6705/// Evaluate a constructor call.
6706static bool HandleConstructorCall(const Expr *E, const LValue &This,
6707 CallRef Call,
6708 const CXXConstructorDecl *Definition,
6709 EvalInfo &Info, APValue &Result) {
6710 SourceLocation CallLoc = E->getExprLoc();
6711 if (!Info.CheckCallLimit(Loc: CallLoc))
6712 return false;
6713
6714 const CXXRecordDecl *RD = Definition->getParent();
6715 if (RD->getNumVBases()) {
6716 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6717 return false;
6718 }
6719
6720 EvalInfo::EvaluatingConstructorRAII EvalObj(
6721 Info,
6722 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6723 RD->getNumBases());
6724 CallStackFrame Frame(Info, E->getSourceRange(), Definition, &This, E, Call);
6725
6726 // FIXME: Creating an APValue just to hold a nonexistent return value is
6727 // wasteful.
6728 APValue RetVal;
6729 StmtResult Ret = {.Value: RetVal, .Slot: nullptr};
6730
6731 // If it's a delegating constructor, delegate.
6732 if (Definition->isDelegatingConstructor()) {
6733 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6734 if ((*I)->getInit()->isValueDependent()) {
6735 if (!EvaluateDependentExpr(E: (*I)->getInit(), Info))
6736 return false;
6737 } else {
6738 FullExpressionRAII InitScope(Info);
6739 if (!EvaluateInPlace(Result, Info, This, E: (*I)->getInit()) ||
6740 !InitScope.destroy())
6741 return false;
6742 }
6743 return EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) != ESR_Failed;
6744 }
6745
6746 // For a trivial copy or move constructor, perform an APValue copy. This is
6747 // essential for unions (or classes with anonymous union members), where the
6748 // operations performed by the constructor cannot be represented by
6749 // ctor-initializers.
6750 //
6751 // Skip this for empty non-union classes; we should not perform an
6752 // lvalue-to-rvalue conversion on them because their copy constructor does not
6753 // actually read them.
6754 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6755 (Definition->getParent()->isUnion() ||
6756 (Definition->isTrivial() &&
6757 isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6758 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6759 Definition->getParent()->isUnion());
6760 }
6761
6762 // Reserve space for the struct members.
6763 if (!Result.hasValue()) {
6764 if (!RD->isUnion())
6765 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6766 std::distance(RD->field_begin(), RD->field_end()));
6767 else
6768 // A union starts with no active member.
6769 Result = APValue((const FieldDecl*)nullptr);
6770 }
6771
6772 if (RD->isInvalidDecl()) return false;
6773 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6774
6775 // A scope for temporaries lifetime-extended by reference members.
6776 BlockScopeRAII LifetimeExtendedScope(Info);
6777
6778 bool Success = true;
6779 unsigned BasesSeen = 0;
6780#ifndef NDEBUG
6781 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6782#endif
6783 CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6784 auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6785 // We might be initializing the same field again if this is an indirect
6786 // field initialization.
6787 if (FieldIt == RD->field_end() ||
6788 FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6789 assert(Indirect && "fields out of order?");
6790 return;
6791 }
6792
6793 // Default-initialize any fields with no explicit initializer.
6794 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6795 assert(FieldIt != RD->field_end() && "missing field?");
6796 if (!FieldIt->isUnnamedBitField())
6797 Success &= handleDefaultInitValue(
6798 FieldIt->getType(),
6799 Result.getStructField(i: FieldIt->getFieldIndex()));
6800 }
6801 ++FieldIt;
6802 };
6803 for (const auto *I : Definition->inits()) {
6804 LValue Subobject = This;
6805 LValue SubobjectParent = This;
6806 APValue *Value = &Result;
6807
6808 // Determine the subobject to initialize.
6809 FieldDecl *FD = nullptr;
6810 if (I->isBaseInitializer()) {
6811 QualType BaseType(I->getBaseClass(), 0);
6812#ifndef NDEBUG
6813 // Non-virtual base classes are initialized in the order in the class
6814 // definition. We have already checked for virtual base classes.
6815 assert(!BaseIt->isVirtual() && "virtual base for literal type");
6816 assert(Info.Ctx.hasSameUnqualifiedType(BaseIt->getType(), BaseType) &&
6817 "base class initializers not in expected order");
6818 ++BaseIt;
6819#endif
6820 if (!HandleLValueDirectBase(Info, E: I->getInit(), Obj&: Subobject, Derived: RD,
6821 Base: BaseType->getAsCXXRecordDecl(), RL: &Layout))
6822 return false;
6823 Value = &Result.getStructBase(i: BasesSeen++);
6824 } else if ((FD = I->getMember())) {
6825 if (!HandleLValueMember(Info, E: I->getInit(), LVal&: Subobject, FD, RL: &Layout))
6826 return false;
6827 if (RD->isUnion()) {
6828 Result = APValue(FD);
6829 Value = &Result.getUnionValue();
6830 } else {
6831 SkipToField(FD, false);
6832 Value = &Result.getStructField(i: FD->getFieldIndex());
6833 }
6834 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6835 // Walk the indirect field decl's chain to find the object to initialize,
6836 // and make sure we've initialized every step along it.
6837 auto IndirectFieldChain = IFD->chain();
6838 for (auto *C : IndirectFieldChain) {
6839 FD = cast<FieldDecl>(Val: C);
6840 CXXRecordDecl *CD = cast<CXXRecordDecl>(Val: FD->getParent());
6841 // Switch the union field if it differs. This happens if we had
6842 // preceding zero-initialization, and we're now initializing a union
6843 // subobject other than the first.
6844 // FIXME: In this case, the values of the other subobjects are
6845 // specified, since zero-initialization sets all padding bits to zero.
6846 if (!Value->hasValue() ||
6847 (Value->isUnion() &&
6848 !declaresSameEntity(Value->getUnionField(), FD))) {
6849 if (CD->isUnion())
6850 *Value = APValue(FD);
6851 else
6852 // FIXME: This immediately starts the lifetime of all members of
6853 // an anonymous struct. It would be preferable to strictly start
6854 // member lifetime in initialization order.
6855 Success &=
6856 handleDefaultInitValue(T: Info.Ctx.getRecordType(CD), Result&: *Value);
6857 }
6858 // Store Subobject as its parent before updating it for the last element
6859 // in the chain.
6860 if (C == IndirectFieldChain.back())
6861 SubobjectParent = Subobject;
6862 if (!HandleLValueMember(Info, E: I->getInit(), LVal&: Subobject, FD))
6863 return false;
6864 if (CD->isUnion())
6865 Value = &Value->getUnionValue();
6866 else {
6867 if (C == IndirectFieldChain.front() && !RD->isUnion())
6868 SkipToField(FD, true);
6869 Value = &Value->getStructField(i: FD->getFieldIndex());
6870 }
6871 }
6872 } else {
6873 llvm_unreachable("unknown base initializer kind");
6874 }
6875
6876 // Need to override This for implicit field initializers as in this case
6877 // This refers to innermost anonymous struct/union containing initializer,
6878 // not to currently constructed class.
6879 const Expr *Init = I->getInit();
6880 if (Init->isValueDependent()) {
6881 if (!EvaluateDependentExpr(E: Init, Info))
6882 return false;
6883 } else {
6884 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6885 isa<CXXDefaultInitExpr>(Val: Init));
6886 FullExpressionRAII InitScope(Info);
6887 if (!EvaluateInPlace(Result&: *Value, Info, This: Subobject, E: Init) ||
6888 (FD && FD->isBitField() &&
6889 !truncateBitfieldValue(Info, E: Init, Value&: *Value, FD))) {
6890 // If we're checking for a potential constant expression, evaluate all
6891 // initializers even if some of them fail.
6892 if (!Info.noteFailure())
6893 return false;
6894 Success = false;
6895 }
6896 }
6897
6898 // This is the point at which the dynamic type of the object becomes this
6899 // class type.
6900 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6901 EvalObj.finishedConstructingBases();
6902 }
6903
6904 // Default-initialize any remaining fields.
6905 if (!RD->isUnion()) {
6906 for (; FieldIt != RD->field_end(); ++FieldIt) {
6907 if (!FieldIt->isUnnamedBitField())
6908 Success &= handleDefaultInitValue(
6909 FieldIt->getType(),
6910 Result.getStructField(i: FieldIt->getFieldIndex()));
6911 }
6912 }
6913
6914 EvalObj.finishedConstructingFields();
6915
6916 return Success &&
6917 EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) != ESR_Failed &&
6918 LifetimeExtendedScope.destroy();
6919}
6920
6921static bool HandleConstructorCall(const Expr *E, const LValue &This,
6922 ArrayRef<const Expr*> Args,
6923 const CXXConstructorDecl *Definition,
6924 EvalInfo &Info, APValue &Result) {
6925 CallScopeRAII CallScope(Info);
6926 CallRef Call = Info.CurrentCall->createCall(Definition);
6927 if (!EvaluateArgs(Args, Call, Info, Definition))
6928 return false;
6929
6930 return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6931 CallScope.destroy();
6932}
6933
6934static bool HandleDestructionImpl(EvalInfo &Info, SourceRange CallRange,
6935 const LValue &This, APValue &Value,
6936 QualType T) {
6937 // Objects can only be destroyed while they're within their lifetimes.
6938 // FIXME: We have no representation for whether an object of type nullptr_t
6939 // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6940 // as indeterminate instead?
6941 if (Value.isAbsent() && !T->isNullPtrType()) {
6942 APValue Printable;
6943 This.moveInto(V&: Printable);
6944 Info.FFDiag(CallRange.getBegin(),
6945 diag::note_constexpr_destroy_out_of_lifetime)
6946 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6947 return false;
6948 }
6949
6950 // Invent an expression for location purposes.
6951 // FIXME: We shouldn't need to do this.
6952 OpaqueValueExpr LocE(CallRange.getBegin(), Info.Ctx.IntTy, VK_PRValue);
6953
6954 // For arrays, destroy elements right-to-left.
6955 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6956 uint64_t Size = CAT->getZExtSize();
6957 QualType ElemT = CAT->getElementType();
6958
6959 if (!CheckArraySize(Info, CAT, CallLoc: CallRange.getBegin()))
6960 return false;
6961
6962 LValue ElemLV = This;
6963 ElemLV.addArray(Info, &LocE, CAT);
6964 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6965 return false;
6966
6967 // Ensure that we have actual array elements available to destroy; the
6968 // destructors might mutate the value, so we can't run them on the array
6969 // filler.
6970 if (Size && Size > Value.getArrayInitializedElts())
6971 expandArray(Array&: Value, Index: Value.getArraySize() - 1);
6972
6973 // The size of the array might have been reduced by
6974 // a placement new.
6975 for (Size = Value.getArraySize(); Size != 0; --Size) {
6976 APValue &Elem = Value.getArrayInitializedElt(I: Size - 1);
6977 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6978 !HandleDestructionImpl(Info, CallRange, This: ElemLV, Value&: Elem, T: ElemT))
6979 return false;
6980 }
6981
6982 // End the lifetime of this array now.
6983 Value = APValue();
6984 return true;
6985 }
6986
6987 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6988 if (!RD) {
6989 if (T.isDestructedType()) {
6990 Info.FFDiag(CallRange.getBegin(),
6991 diag::note_constexpr_unsupported_destruction)
6992 << T;
6993 return false;
6994 }
6995
6996 Value = APValue();
6997 return true;
6998 }
6999
7000 if (RD->getNumVBases()) {
7001 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_virtual_base) << RD;
7002 return false;
7003 }
7004
7005 const CXXDestructorDecl *DD = RD->getDestructor();
7006 if (!DD && !RD->hasTrivialDestructor()) {
7007 Info.FFDiag(Loc: CallRange.getBegin());
7008 return false;
7009 }
7010
7011 if (!DD || DD->isTrivial() ||
7012 (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
7013 // A trivial destructor just ends the lifetime of the object. Check for
7014 // this case before checking for a body, because we might not bother
7015 // building a body for a trivial destructor. Note that it doesn't matter
7016 // whether the destructor is constexpr in this case; all trivial
7017 // destructors are constexpr.
7018 //
7019 // If an anonymous union would be destroyed, some enclosing destructor must
7020 // have been explicitly defined, and the anonymous union destruction should
7021 // have no effect.
7022 Value = APValue();
7023 return true;
7024 }
7025
7026 if (!Info.CheckCallLimit(Loc: CallRange.getBegin()))
7027 return false;
7028
7029 const FunctionDecl *Definition = nullptr;
7030 const Stmt *Body = DD->getBody(Definition);
7031
7032 if (!CheckConstexprFunction(Info, CallRange.getBegin(), DD, Definition, Body))
7033 return false;
7034
7035 CallStackFrame Frame(Info, CallRange, Definition, &This, /*CallExpr=*/nullptr,
7036 CallRef());
7037
7038 // We're now in the period of destruction of this object.
7039 unsigned BasesLeft = RD->getNumBases();
7040 EvalInfo::EvaluatingDestructorRAII EvalObj(
7041 Info,
7042 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
7043 if (!EvalObj.DidInsert) {
7044 // C++2a [class.dtor]p19:
7045 // the behavior is undefined if the destructor is invoked for an object
7046 // whose lifetime has ended
7047 // (Note that formally the lifetime ends when the period of destruction
7048 // begins, even though certain uses of the object remain valid until the
7049 // period of destruction ends.)
7050 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_double_destroy);
7051 return false;
7052 }
7053
7054 // FIXME: Creating an APValue just to hold a nonexistent return value is
7055 // wasteful.
7056 APValue RetVal;
7057 StmtResult Ret = {.Value: RetVal, .Slot: nullptr};
7058 if (EvaluateStmt(Result&: Ret, Info, S: Definition->getBody()) == ESR_Failed)
7059 return false;
7060
7061 // A union destructor does not implicitly destroy its members.
7062 if (RD->isUnion())
7063 return true;
7064
7065 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7066
7067 // We don't have a good way to iterate fields in reverse, so collect all the
7068 // fields first and then walk them backwards.
7069 SmallVector<FieldDecl*, 16> Fields(RD->fields());
7070 for (const FieldDecl *FD : llvm::reverse(Fields)) {
7071 if (FD->isUnnamedBitField())
7072 continue;
7073
7074 LValue Subobject = This;
7075 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
7076 return false;
7077
7078 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
7079 if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue,
7080 FD->getType()))
7081 return false;
7082 }
7083
7084 if (BasesLeft != 0)
7085 EvalObj.startedDestroyingBases();
7086
7087 // Destroy base classes in reverse order.
7088 for (const CXXBaseSpecifier &Base : llvm::reverse(C: RD->bases())) {
7089 --BasesLeft;
7090
7091 QualType BaseType = Base.getType();
7092 LValue Subobject = This;
7093 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
7094 BaseType->getAsCXXRecordDecl(), &Layout))
7095 return false;
7096
7097 APValue *SubobjectValue = &Value.getStructBase(i: BasesLeft);
7098 if (!HandleDestructionImpl(Info, CallRange, This: Subobject, Value&: *SubobjectValue,
7099 T: BaseType))
7100 return false;
7101 }
7102 assert(BasesLeft == 0 && "NumBases was wrong?");
7103
7104 // The period of destruction ends now. The object is gone.
7105 Value = APValue();
7106 return true;
7107}
7108
7109namespace {
7110struct DestroyObjectHandler {
7111 EvalInfo &Info;
7112 const Expr *E;
7113 const LValue &This;
7114 const AccessKinds AccessKind;
7115
7116 typedef bool result_type;
7117 bool failed() { return false; }
7118 bool found(APValue &Subobj, QualType SubobjType) {
7119 return HandleDestructionImpl(Info, E->getSourceRange(), This, Subobj,
7120 SubobjType);
7121 }
7122 bool found(APSInt &Value, QualType SubobjType) {
7123 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
7124 return false;
7125 }
7126 bool found(APFloat &Value, QualType SubobjType) {
7127 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
7128 return false;
7129 }
7130};
7131}
7132
7133/// Perform a destructor or pseudo-destructor call on the given object, which
7134/// might in general not be a complete object.
7135static bool HandleDestruction(EvalInfo &Info, const Expr *E,
7136 const LValue &This, QualType ThisType) {
7137 CompleteObject Obj = findCompleteObject(Info, E, AK: AK_Destroy, LVal: This, LValType: ThisType);
7138 DestroyObjectHandler Handler = {.Info: Info, .E: E, .This: This, .AccessKind: AK_Destroy};
7139 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
7140}
7141
7142/// Destroy and end the lifetime of the given complete object.
7143static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
7144 APValue::LValueBase LVBase, APValue &Value,
7145 QualType T) {
7146 // If we've had an unmodeled side-effect, we can't rely on mutable state
7147 // (such as the object we're about to destroy) being correct.
7148 if (Info.EvalStatus.HasSideEffects)
7149 return false;
7150
7151 LValue LV;
7152 LV.set(B: {LVBase});
7153 return HandleDestructionImpl(Info, CallRange: Loc, This: LV, Value, T);
7154}
7155
7156/// Perform a call to 'operator new' or to `__builtin_operator_new'.
7157static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
7158 LValue &Result) {
7159 if (Info.checkingPotentialConstantExpression() ||
7160 Info.SpeculativeEvaluationDepth)
7161 return false;
7162
7163 // This is permitted only within a call to std::allocator<T>::allocate.
7164 auto Caller = Info.getStdAllocatorCaller(FnName: "allocate");
7165 if (!Caller) {
7166 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
7167 ? diag::note_constexpr_new_untyped
7168 : diag::note_constexpr_new);
7169 return false;
7170 }
7171
7172 QualType ElemType = Caller.ElemType;
7173 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
7174 Info.FFDiag(E->getExprLoc(),
7175 diag::note_constexpr_new_not_complete_object_type)
7176 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
7177 return false;
7178 }
7179
7180 APSInt ByteSize;
7181 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: ByteSize, Info))
7182 return false;
7183 bool IsNothrow = false;
7184 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
7185 EvaluateIgnoredValue(Info, E: E->getArg(Arg: I));
7186 IsNothrow |= E->getType()->isNothrowT();
7187 }
7188
7189 CharUnits ElemSize;
7190 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
7191 return false;
7192 APInt Size, Remainder;
7193 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
7194 APInt::udivrem(LHS: ByteSize, RHS: ElemSizeAP, Quotient&: Size, Remainder);
7195 if (Remainder != 0) {
7196 // This likely indicates a bug in the implementation of 'std::allocator'.
7197 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
7198 << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
7199 return false;
7200 }
7201
7202 if (!Info.CheckArraySize(Loc: E->getBeginLoc(), BitWidth: ByteSize.getActiveBits(),
7203 ElemCount: Size.getZExtValue(), /*Diag=*/!IsNothrow)) {
7204 if (IsNothrow) {
7205 Result.setNull(Ctx&: Info.Ctx, PointerTy: E->getType());
7206 return true;
7207 }
7208 return false;
7209 }
7210
7211 QualType AllocType = Info.Ctx.getConstantArrayType(
7212 EltTy: ElemType, ArySize: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
7213 APValue *Val = Info.createHeapAlloc(E: Caller.Call, T: AllocType, LV&: Result);
7214 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
7215 Result.addArray(Info, E, cast<ConstantArrayType>(Val&: AllocType));
7216 return true;
7217}
7218
7219static bool hasVirtualDestructor(QualType T) {
7220 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
7221 if (CXXDestructorDecl *DD = RD->getDestructor())
7222 return DD->isVirtual();
7223 return false;
7224}
7225
7226static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
7227 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
7228 if (CXXDestructorDecl *DD = RD->getDestructor())
7229 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
7230 return nullptr;
7231}
7232
7233/// Check that the given object is a suitable pointer to a heap allocation that
7234/// still exists and is of the right kind for the purpose of a deletion.
7235///
7236/// On success, returns the heap allocation to deallocate. On failure, produces
7237/// a diagnostic and returns std::nullopt.
7238static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
7239 const LValue &Pointer,
7240 DynAlloc::Kind DeallocKind) {
7241 auto PointerAsString = [&] {
7242 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
7243 };
7244
7245 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
7246 if (!DA) {
7247 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
7248 << PointerAsString();
7249 if (Pointer.Base)
7250 NoteLValueLocation(Info, Base: Pointer.Base);
7251 return std::nullopt;
7252 }
7253
7254 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
7255 if (!Alloc) {
7256 Info.FFDiag(E, diag::note_constexpr_double_delete);
7257 return std::nullopt;
7258 }
7259
7260 if (DeallocKind != (*Alloc)->getKind()) {
7261 QualType AllocType = Pointer.Base.getDynamicAllocType();
7262 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
7263 << DeallocKind << (*Alloc)->getKind() << AllocType;
7264 NoteLValueLocation(Info, Base: Pointer.Base);
7265 return std::nullopt;
7266 }
7267
7268 bool Subobject = false;
7269 if (DeallocKind == DynAlloc::New) {
7270 Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
7271 Pointer.Designator.isOnePastTheEnd();
7272 } else {
7273 Subobject = Pointer.Designator.Entries.size() != 1 ||
7274 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
7275 }
7276 if (Subobject) {
7277 Info.FFDiag(E, diag::note_constexpr_delete_subobject)
7278 << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
7279 return std::nullopt;
7280 }
7281
7282 return Alloc;
7283}
7284
7285// Perform a call to 'operator delete' or '__builtin_operator_delete'.
7286static bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
7287 if (Info.checkingPotentialConstantExpression() ||
7288 Info.SpeculativeEvaluationDepth)
7289 return false;
7290
7291 // This is permitted only within a call to std::allocator<T>::deallocate.
7292 if (!Info.getStdAllocatorCaller(FnName: "deallocate")) {
7293 Info.FFDiag(E->getExprLoc());
7294 return true;
7295 }
7296
7297 LValue Pointer;
7298 if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: Pointer, Info))
7299 return false;
7300 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
7301 EvaluateIgnoredValue(Info, E: E->getArg(Arg: I));
7302
7303 if (Pointer.Designator.Invalid)
7304 return false;
7305
7306 // Deleting a null pointer would have no effect, but it's not permitted by
7307 // std::allocator<T>::deallocate's contract.
7308 if (Pointer.isNullPointer()) {
7309 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
7310 return true;
7311 }
7312
7313 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
7314 return false;
7315
7316 Info.HeapAllocs.erase(x: Pointer.Base.get<DynamicAllocLValue>());
7317 return true;
7318}
7319
7320//===----------------------------------------------------------------------===//
7321// Generic Evaluation
7322//===----------------------------------------------------------------------===//
7323namespace {
7324
7325class BitCastBuffer {
7326 // FIXME: We're going to need bit-level granularity when we support
7327 // bit-fields.
7328 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
7329 // we don't support a host or target where that is the case. Still, we should
7330 // use a more generic type in case we ever do.
7331 SmallVector<std::optional<unsigned char>, 32> Bytes;
7332
7333 static_assert(std::numeric_limits<unsigned char>::digits >= 8,
7334 "Need at least 8 bit unsigned char");
7335
7336 bool TargetIsLittleEndian;
7337
7338public:
7339 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
7340 : Bytes(Width.getQuantity()),
7341 TargetIsLittleEndian(TargetIsLittleEndian) {}
7342
7343 [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width,
7344 SmallVectorImpl<unsigned char> &Output) const {
7345 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
7346 // If a byte of an integer is uninitialized, then the whole integer is
7347 // uninitialized.
7348 if (!Bytes[I.getQuantity()])
7349 return false;
7350 Output.push_back(Elt: *Bytes[I.getQuantity()]);
7351 }
7352 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
7353 std::reverse(first: Output.begin(), last: Output.end());
7354 return true;
7355 }
7356
7357 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
7358 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
7359 std::reverse(first: Input.begin(), last: Input.end());
7360
7361 size_t Index = 0;
7362 for (unsigned char Byte : Input) {
7363 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
7364 Bytes[Offset.getQuantity() + Index] = Byte;
7365 ++Index;
7366 }
7367 }
7368
7369 size_t size() { return Bytes.size(); }
7370};
7371
7372/// Traverse an APValue to produce an BitCastBuffer, emulating how the current
7373/// target would represent the value at runtime.
7374class APValueToBufferConverter {
7375 EvalInfo &Info;
7376 BitCastBuffer Buffer;
7377 const CastExpr *BCE;
7378
7379 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
7380 const CastExpr *BCE)
7381 : Info(Info),
7382 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
7383 BCE(BCE) {}
7384
7385 bool visit(const APValue &Val, QualType Ty) {
7386 return visit(Val, Ty, Offset: CharUnits::fromQuantity(Quantity: 0));
7387 }
7388
7389 // Write out Val with type Ty into Buffer starting at Offset.
7390 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
7391 assert((size_t)Offset.getQuantity() <= Buffer.size());
7392
7393 // As a special case, nullptr_t has an indeterminate value.
7394 if (Ty->isNullPtrType())
7395 return true;
7396
7397 // Dig through Src to find the byte at SrcOffset.
7398 switch (Val.getKind()) {
7399 case APValue::Indeterminate:
7400 case APValue::None:
7401 return true;
7402
7403 case APValue::Int:
7404 return visitInt(Val: Val.getInt(), Ty, Offset);
7405 case APValue::Float:
7406 return visitFloat(Val: Val.getFloat(), Ty, Offset);
7407 case APValue::Array:
7408 return visitArray(Val, Ty, Offset);
7409 case APValue::Struct:
7410 return visitRecord(Val, Ty, Offset);
7411 case APValue::Vector:
7412 return visitVector(Val, Ty, Offset);
7413
7414 case APValue::ComplexInt:
7415 case APValue::ComplexFloat:
7416 return visitComplex(Val, Ty, Offset);
7417 case APValue::FixedPoint:
7418 // FIXME: We should support these.
7419
7420 case APValue::Union:
7421 case APValue::MemberPointer:
7422 case APValue::AddrLabelDiff: {
7423 Info.FFDiag(BCE->getBeginLoc(),
7424 diag::note_constexpr_bit_cast_unsupported_type)
7425 << Ty;
7426 return false;
7427 }
7428
7429 case APValue::LValue:
7430 llvm_unreachable("LValue subobject in bit_cast?");
7431 }
7432 llvm_unreachable("Unhandled APValue::ValueKind");
7433 }
7434
7435 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
7436 const RecordDecl *RD = Ty->getAsRecordDecl();
7437 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
7438
7439 // Visit the base classes.
7440 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
7441 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7442 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7443 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7444 const APValue &Base = Val.getStructBase(i: I);
7445
7446 // Can happen in error cases.
7447 if (!Base.isStruct())
7448 return false;
7449
7450 if (!visitRecord(Val: Base, Ty: BS.getType(),
7451 Offset: Layout.getBaseClassOffset(Base: BaseDecl) + Offset))
7452 return false;
7453 }
7454 }
7455
7456 // Visit the fields.
7457 unsigned FieldIdx = 0;
7458 for (FieldDecl *FD : RD->fields()) {
7459 if (FD->isBitField()) {
7460 Info.FFDiag(BCE->getBeginLoc(),
7461 diag::note_constexpr_bit_cast_unsupported_bitfield);
7462 return false;
7463 }
7464
7465 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldNo: FieldIdx);
7466
7467 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
7468 "only bit-fields can have sub-char alignment");
7469 CharUnits FieldOffset =
7470 Info.Ctx.toCharUnitsFromBits(BitSize: FieldOffsetBits) + Offset;
7471 QualType FieldTy = FD->getType();
7472 if (!visit(Val: Val.getStructField(i: FieldIdx), Ty: FieldTy, Offset: FieldOffset))
7473 return false;
7474 ++FieldIdx;
7475 }
7476
7477 return true;
7478 }
7479
7480 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
7481 const auto *CAT =
7482 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
7483 if (!CAT)
7484 return false;
7485
7486 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
7487 unsigned NumInitializedElts = Val.getArrayInitializedElts();
7488 unsigned ArraySize = Val.getArraySize();
7489 // First, initialize the initialized elements.
7490 for (unsigned I = 0; I != NumInitializedElts; ++I) {
7491 const APValue &SubObj = Val.getArrayInitializedElt(I);
7492 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
7493 return false;
7494 }
7495
7496 // Next, initialize the rest of the array using the filler.
7497 if (Val.hasArrayFiller()) {
7498 const APValue &Filler = Val.getArrayFiller();
7499 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
7500 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
7501 return false;
7502 }
7503 }
7504
7505 return true;
7506 }
7507
7508 bool visitComplex(const APValue &Val, QualType Ty, CharUnits Offset) {
7509 const ComplexType *ComplexTy = Ty->castAs<ComplexType>();
7510 QualType EltTy = ComplexTy->getElementType();
7511 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(T: EltTy);
7512 bool IsInt = Val.isComplexInt();
7513
7514 if (IsInt) {
7515 if (!visitInt(Val: Val.getComplexIntReal(), Ty: EltTy,
7516 Offset: Offset + (0 * EltSizeChars)))
7517 return false;
7518 if (!visitInt(Val: Val.getComplexIntImag(), Ty: EltTy,
7519 Offset: Offset + (1 * EltSizeChars)))
7520 return false;
7521 } else {
7522 if (!visitFloat(Val: Val.getComplexFloatReal(), Ty: EltTy,
7523 Offset: Offset + (0 * EltSizeChars)))
7524 return false;
7525 if (!visitFloat(Val: Val.getComplexFloatImag(), Ty: EltTy,
7526 Offset: Offset + (1 * EltSizeChars)))
7527 return false;
7528 }
7529
7530 return true;
7531 }
7532
7533 bool visitVector(const APValue &Val, QualType Ty, CharUnits Offset) {
7534 const VectorType *VTy = Ty->castAs<VectorType>();
7535 QualType EltTy = VTy->getElementType();
7536 unsigned NElts = VTy->getNumElements();
7537
7538 if (VTy->isPackedVectorBoolType(Info.Ctx)) {
7539 // Special handling for OpenCL bool vectors:
7540 // Since these vectors are stored as packed bits, but we can't write
7541 // individual bits to the BitCastBuffer, we'll buffer all of the elements
7542 // together into an appropriately sized APInt and write them all out at
7543 // once. Because we don't accept vectors where NElts * EltSize isn't a
7544 // multiple of the char size, there will be no padding space, so we don't
7545 // have to worry about writing data which should have been left
7546 // uninitialized.
7547 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7548
7549 llvm::APInt Res = llvm::APInt::getZero(numBits: NElts);
7550 for (unsigned I = 0; I < NElts; ++I) {
7551 const llvm::APSInt &EltAsInt = Val.getVectorElt(I).getInt();
7552 assert(EltAsInt.isUnsigned() && EltAsInt.getBitWidth() == 1 &&
7553 "bool vector element must be 1-bit unsigned integer!");
7554
7555 Res.insertBits(SubBits: EltAsInt, bitPosition: BigEndian ? (NElts - I - 1) : I);
7556 }
7557
7558 SmallVector<uint8_t, 8> Bytes(NElts / 8);
7559 llvm::StoreIntToMemory(IntVal: Res, Dst: &*Bytes.begin(), StoreBytes: NElts / 8);
7560 Buffer.writeObject(Offset, Input&: Bytes);
7561 } else {
7562 // Iterate over each of the elements and write them out to the buffer at
7563 // the appropriate offset.
7564 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(T: EltTy);
7565 for (unsigned I = 0; I < NElts; ++I) {
7566 if (!visit(Val: Val.getVectorElt(I), Ty: EltTy, Offset: Offset + I * EltSizeChars))
7567 return false;
7568 }
7569 }
7570
7571 return true;
7572 }
7573
7574 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
7575 APSInt AdjustedVal = Val;
7576 unsigned Width = AdjustedVal.getBitWidth();
7577 if (Ty->isBooleanType()) {
7578 Width = Info.Ctx.getTypeSize(T: Ty);
7579 AdjustedVal = AdjustedVal.extend(width: Width);
7580 }
7581
7582 SmallVector<uint8_t, 8> Bytes(Width / 8);
7583 llvm::StoreIntToMemory(IntVal: AdjustedVal, Dst: &*Bytes.begin(), StoreBytes: Width / 8);
7584 Buffer.writeObject(Offset, Input&: Bytes);
7585 return true;
7586 }
7587
7588 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
7589 APSInt AsInt(Val.bitcastToAPInt());
7590 return visitInt(Val: AsInt, Ty, Offset);
7591 }
7592
7593public:
7594 static std::optional<BitCastBuffer>
7595 convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) {
7596 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
7597 APValueToBufferConverter Converter(Info, DstSize, BCE);
7598 if (!Converter.visit(Val: Src, Ty: BCE->getSubExpr()->getType()))
7599 return std::nullopt;
7600 return Converter.Buffer;
7601 }
7602};
7603
7604/// Write an BitCastBuffer into an APValue.
7605class BufferToAPValueConverter {
7606 EvalInfo &Info;
7607 const BitCastBuffer &Buffer;
7608 const CastExpr *BCE;
7609
7610 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
7611 const CastExpr *BCE)
7612 : Info(Info), Buffer(Buffer), BCE(BCE) {}
7613
7614 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7615 // with an invalid type, so anything left is a deficiency on our part (FIXME).
7616 // Ideally this will be unreachable.
7617 std::nullopt_t unsupportedType(QualType Ty) {
7618 Info.FFDiag(BCE->getBeginLoc(),
7619 diag::note_constexpr_bit_cast_unsupported_type)
7620 << Ty;
7621 return std::nullopt;
7622 }
7623
7624 std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) {
7625 Info.FFDiag(BCE->getBeginLoc(),
7626 diag::note_constexpr_bit_cast_unrepresentable_value)
7627 << Ty << toString(Val, /*Radix=*/10);
7628 return std::nullopt;
7629 }
7630
7631 std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7632 const EnumType *EnumSugar = nullptr) {
7633 if (T->isNullPtrType()) {
7634 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QT: QualType(T, 0));
7635 return APValue((Expr *)nullptr,
7636 /*Offset=*/CharUnits::fromQuantity(Quantity: NullValue),
7637 APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7638 }
7639
7640 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7641
7642 // Work around floating point types that contain unused padding bytes. This
7643 // is really just `long double` on x86, which is the only fundamental type
7644 // with padding bytes.
7645 if (T->isRealFloatingType()) {
7646 const llvm::fltSemantics &Semantics =
7647 Info.Ctx.getFloatTypeSemantics(T: QualType(T, 0));
7648 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Sem: Semantics);
7649 assert(NumBits % 8 == 0);
7650 CharUnits NumBytes = CharUnits::fromQuantity(Quantity: NumBits / 8);
7651 if (NumBytes != SizeOf)
7652 SizeOf = NumBytes;
7653 }
7654
7655 SmallVector<uint8_t, 8> Bytes;
7656 if (!Buffer.readObject(Offset, Width: SizeOf, Output&: Bytes)) {
7657 // If this is std::byte or unsigned char, then its okay to store an
7658 // indeterminate value.
7659 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7660 bool IsUChar =
7661 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7662 T->isSpecificBuiltinType(BuiltinType::Char_U));
7663 if (!IsStdByte && !IsUChar) {
7664 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7665 Info.FFDiag(BCE->getExprLoc(),
7666 diag::note_constexpr_bit_cast_indet_dest)
7667 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7668 return std::nullopt;
7669 }
7670
7671 return APValue::IndeterminateValue();
7672 }
7673
7674 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7675 llvm::LoadIntFromMemory(IntVal&: Val, Src: &*Bytes.begin(), LoadBytes: Bytes.size());
7676
7677 if (T->isIntegralOrEnumerationType()) {
7678 Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7679
7680 unsigned IntWidth = Info.Ctx.getIntWidth(T: QualType(T, 0));
7681 if (IntWidth != Val.getBitWidth()) {
7682 APSInt Truncated = Val.trunc(width: IntWidth);
7683 if (Truncated.extend(width: Val.getBitWidth()) != Val)
7684 return unrepresentableValue(Ty: QualType(T, 0), Val);
7685 Val = Truncated;
7686 }
7687
7688 return APValue(Val);
7689 }
7690
7691 if (T->isRealFloatingType()) {
7692 const llvm::fltSemantics &Semantics =
7693 Info.Ctx.getFloatTypeSemantics(T: QualType(T, 0));
7694 return APValue(APFloat(Semantics, Val));
7695 }
7696
7697 return unsupportedType(Ty: QualType(T, 0));
7698 }
7699
7700 std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7701 const RecordDecl *RD = RTy->getAsRecordDecl();
7702 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
7703
7704 unsigned NumBases = 0;
7705 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7706 NumBases = CXXRD->getNumBases();
7707
7708 APValue ResultVal(APValue::UninitStruct(), NumBases,
7709 std::distance(RD->field_begin(), RD->field_end()));
7710
7711 // Visit the base classes.
7712 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7713 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7714 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7715 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7716
7717 std::optional<APValue> SubObj = visitType(
7718 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7719 if (!SubObj)
7720 return std::nullopt;
7721 ResultVal.getStructBase(i: I) = *SubObj;
7722 }
7723 }
7724
7725 // Visit the fields.
7726 unsigned FieldIdx = 0;
7727 for (FieldDecl *FD : RD->fields()) {
7728 // FIXME: We don't currently support bit-fields. A lot of the logic for
7729 // this is in CodeGen, so we need to factor it around.
7730 if (FD->isBitField()) {
7731 Info.FFDiag(BCE->getBeginLoc(),
7732 diag::note_constexpr_bit_cast_unsupported_bitfield);
7733 return std::nullopt;
7734 }
7735
7736 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7737 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7738
7739 CharUnits FieldOffset =
7740 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7741 Offset;
7742 QualType FieldTy = FD->getType();
7743 std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7744 if (!SubObj)
7745 return std::nullopt;
7746 ResultVal.getStructField(FieldIdx) = *SubObj;
7747 ++FieldIdx;
7748 }
7749
7750 return ResultVal;
7751 }
7752
7753 std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7754 QualType RepresentationType = Ty->getDecl()->getIntegerType();
7755 assert(!RepresentationType.isNull() &&
7756 "enum forward decl should be caught by Sema");
7757 const auto *AsBuiltin =
7758 RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7759 // Recurse into the underlying type. Treat std::byte transparently as
7760 // unsigned char.
7761 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7762 }
7763
7764 std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7765 size_t Size = Ty->getLimitedSize();
7766 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7767
7768 APValue ArrayValue(APValue::UninitArray(), Size, Size);
7769 for (size_t I = 0; I != Size; ++I) {
7770 std::optional<APValue> ElementValue =
7771 visitType(Ty->getElementType(), Offset + I * ElementWidth);
7772 if (!ElementValue)
7773 return std::nullopt;
7774 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7775 }
7776
7777 return ArrayValue;
7778 }
7779
7780 std::optional<APValue> visit(const ComplexType *Ty, CharUnits Offset) {
7781 QualType ElementType = Ty->getElementType();
7782 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(T: ElementType);
7783 bool IsInt = ElementType->isIntegerType();
7784
7785 std::optional<APValue> Values[2];
7786 for (unsigned I = 0; I != 2; ++I) {
7787 Values[I] = visitType(Ty->getElementType(), Offset + I * ElementWidth);
7788 if (!Values[I])
7789 return std::nullopt;
7790 }
7791
7792 if (IsInt)
7793 return APValue(Values[0]->getInt(), Values[1]->getInt());
7794 return APValue(Values[0]->getFloat(), Values[1]->getFloat());
7795 }
7796
7797 std::optional<APValue> visit(const VectorType *VTy, CharUnits Offset) {
7798 QualType EltTy = VTy->getElementType();
7799 unsigned NElts = VTy->getNumElements();
7800 unsigned EltSize =
7801 VTy->isPackedVectorBoolType(Info.Ctx) ? 1 : Info.Ctx.getTypeSize(T: EltTy);
7802
7803 SmallVector<APValue, 4> Elts;
7804 Elts.reserve(N: NElts);
7805 if (VTy->isPackedVectorBoolType(Info.Ctx)) {
7806 // Special handling for OpenCL bool vectors:
7807 // Since these vectors are stored as packed bits, but we can't read
7808 // individual bits from the BitCastBuffer, we'll buffer all of the
7809 // elements together into an appropriately sized APInt and write them all
7810 // out at once. Because we don't accept vectors where NElts * EltSize
7811 // isn't a multiple of the char size, there will be no padding space, so
7812 // we don't have to worry about reading any padding data which didn't
7813 // actually need to be accessed.
7814 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7815
7816 SmallVector<uint8_t, 8> Bytes;
7817 Bytes.reserve(N: NElts / 8);
7818 if (!Buffer.readObject(Offset, Width: CharUnits::fromQuantity(Quantity: NElts / 8), Output&: Bytes))
7819 return std::nullopt;
7820
7821 APSInt SValInt(NElts, true);
7822 llvm::LoadIntFromMemory(IntVal&: SValInt, Src: &*Bytes.begin(), LoadBytes: Bytes.size());
7823
7824 for (unsigned I = 0; I < NElts; ++I) {
7825 llvm::APInt Elt =
7826 SValInt.extractBits(numBits: 1, bitPosition: (BigEndian ? NElts - I - 1 : I) * EltSize);
7827 Elts.emplace_back(
7828 APSInt(std::move(Elt), !EltTy->isSignedIntegerType()));
7829 }
7830 } else {
7831 // Iterate over each of the elements and read them from the buffer at
7832 // the appropriate offset.
7833 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(T: EltTy);
7834 for (unsigned I = 0; I < NElts; ++I) {
7835 std::optional<APValue> EltValue =
7836 visitType(EltTy, Offset + I * EltSizeChars);
7837 if (!EltValue)
7838 return std::nullopt;
7839 Elts.push_back(std::move(*EltValue));
7840 }
7841 }
7842
7843 return APValue(Elts.data(), Elts.size());
7844 }
7845
7846 std::optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7847 return unsupportedType(Ty: QualType(Ty, 0));
7848 }
7849
7850 std::optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7851 QualType Can = Ty.getCanonicalType();
7852
7853 switch (Can->getTypeClass()) {
7854#define TYPE(Class, Base) \
7855 case Type::Class: \
7856 return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7857#define ABSTRACT_TYPE(Class, Base)
7858#define NON_CANONICAL_TYPE(Class, Base) \
7859 case Type::Class: \
7860 llvm_unreachable("non-canonical type should be impossible!");
7861#define DEPENDENT_TYPE(Class, Base) \
7862 case Type::Class: \
7863 llvm_unreachable( \
7864 "dependent types aren't supported in the constant evaluator!");
7865#define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \
7866 case Type::Class: \
7867 llvm_unreachable("either dependent or not canonical!");
7868#include "clang/AST/TypeNodes.inc"
7869 }
7870 llvm_unreachable("Unhandled Type::TypeClass");
7871 }
7872
7873public:
7874 // Pull out a full value of type DstType.
7875 static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7876 const CastExpr *BCE) {
7877 BufferToAPValueConverter Converter(Info, Buffer, BCE);
7878 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(Quantity: 0));
7879 }
7880};
7881
7882static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7883 QualType Ty, EvalInfo *Info,
7884 const ASTContext &Ctx,
7885 bool CheckingDest) {
7886 Ty = Ty.getCanonicalType();
7887
7888 auto diag = [&](int Reason) {
7889 if (Info)
7890 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7891 << CheckingDest << (Reason == 4) << Reason;
7892 return false;
7893 };
7894 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7895 if (Info)
7896 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7897 << NoteTy << Construct << Ty;
7898 return false;
7899 };
7900
7901 if (Ty->isUnionType())
7902 return diag(0);
7903 if (Ty->isPointerType())
7904 return diag(1);
7905 if (Ty->isMemberPointerType())
7906 return diag(2);
7907 if (Ty.isVolatileQualified())
7908 return diag(3);
7909
7910 if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7911 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7912 for (CXXBaseSpecifier &BS : CXXRD->bases())
7913 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7914 CheckingDest))
7915 return note(1, BS.getType(), BS.getBeginLoc());
7916 }
7917 for (FieldDecl *FD : Record->fields()) {
7918 if (FD->getType()->isReferenceType())
7919 return diag(4);
7920 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7921 CheckingDest))
7922 return note(0, FD->getType(), FD->getBeginLoc());
7923 }
7924 }
7925
7926 if (Ty->isArrayType() &&
7927 !checkBitCastConstexprEligibilityType(Loc, Ty: Ctx.getBaseElementType(QT: Ty),
7928 Info, Ctx, CheckingDest))
7929 return false;
7930
7931 if (const auto *VTy = Ty->getAs<VectorType>()) {
7932 QualType EltTy = VTy->getElementType();
7933 unsigned NElts = VTy->getNumElements();
7934 unsigned EltSize =
7935 VTy->isPackedVectorBoolType(Ctx) ? 1 : Ctx.getTypeSize(T: EltTy);
7936
7937 if ((NElts * EltSize) % Ctx.getCharWidth() != 0) {
7938 // The vector's size in bits is not a multiple of the target's byte size,
7939 // so its layout is unspecified. For now, we'll simply treat these cases
7940 // as unsupported (this should only be possible with OpenCL bool vectors
7941 // whose element count isn't a multiple of the byte size).
7942 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_vector)
7943 << QualType(VTy, 0) << EltSize << NElts << Ctx.getCharWidth();
7944 return false;
7945 }
7946
7947 if (EltTy->isRealFloatingType() &&
7948 &Ctx.getFloatTypeSemantics(T: EltTy) == &APFloat::x87DoubleExtended()) {
7949 // The layout for x86_fp80 vectors seems to be handled very inconsistently
7950 // by both clang and LLVM, so for now we won't allow bit_casts involving
7951 // it in a constexpr context.
7952 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_unsupported_type)
7953 << EltTy;
7954 return false;
7955 }
7956 }
7957
7958 return true;
7959}
7960
7961static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7962 const ASTContext &Ctx,
7963 const CastExpr *BCE) {
7964 bool DestOK = checkBitCastConstexprEligibilityType(
7965 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7966 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7967 BCE->getBeginLoc(),
7968 BCE->getSubExpr()->getType(), Info, Ctx, false);
7969 return SourceOK;
7970}
7971
7972static bool handleRValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7973 const APValue &SourceRValue,
7974 const CastExpr *BCE) {
7975 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7976 "no host or target supports non 8-bit chars");
7977
7978 if (!checkBitCastConstexprEligibility(Info: &Info, Ctx: Info.Ctx, BCE))
7979 return false;
7980
7981 // Read out SourceValue into a char buffer.
7982 std::optional<BitCastBuffer> Buffer =
7983 APValueToBufferConverter::convert(Info, Src: SourceRValue, BCE);
7984 if (!Buffer)
7985 return false;
7986
7987 // Write out the buffer into a new APValue.
7988 std::optional<APValue> MaybeDestValue =
7989 BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7990 if (!MaybeDestValue)
7991 return false;
7992
7993 DestValue = std::move(*MaybeDestValue);
7994 return true;
7995}
7996
7997static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7998 APValue &SourceValue,
7999 const CastExpr *BCE) {
8000 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
8001 "no host or target supports non 8-bit chars");
8002 assert(SourceValue.isLValue() &&
8003 "LValueToRValueBitcast requires an lvalue operand!");
8004
8005 LValue SourceLValue;
8006 APValue SourceRValue;
8007 SourceLValue.setFrom(Ctx&: Info.Ctx, V: SourceValue);
8008 if (!handleLValueToRValueConversion(
8009 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
8010 SourceRValue, /*WantObjectRepresentation=*/true))
8011 return false;
8012
8013 return handleRValueToRValueBitCast(Info, DestValue, SourceRValue, BCE);
8014}
8015
8016template <class Derived>
8017class ExprEvaluatorBase
8018 : public ConstStmtVisitor<Derived, bool> {
8019private:
8020 Derived &getDerived() { return static_cast<Derived&>(*this); }
8021 bool DerivedSuccess(const APValue &V, const Expr *E) {
8022 return getDerived().Success(V, E);
8023 }
8024 bool DerivedZeroInitialization(const Expr *E) {
8025 return getDerived().ZeroInitialization(E);
8026 }
8027
8028 // Check whether a conditional operator with a non-constant condition is a
8029 // potential constant expression. If neither arm is a potential constant
8030 // expression, then the conditional operator is not either.
8031 template<typename ConditionalOperator>
8032 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
8033 assert(Info.checkingPotentialConstantExpression());
8034
8035 // Speculatively evaluate both arms.
8036 SmallVector<PartialDiagnosticAt, 8> Diag;
8037 {
8038 SpeculativeEvaluationRAII Speculate(Info, &Diag);
8039 StmtVisitorTy::Visit(E->getFalseExpr());
8040 if (Diag.empty())
8041 return;
8042 }
8043
8044 {
8045 SpeculativeEvaluationRAII Speculate(Info, &Diag);
8046 Diag.clear();
8047 StmtVisitorTy::Visit(E->getTrueExpr());
8048 if (Diag.empty())
8049 return;
8050 }
8051
8052 Error(E, diag::note_constexpr_conditional_never_const);
8053 }
8054
8055
8056 template<typename ConditionalOperator>
8057 bool HandleConditionalOperator(const ConditionalOperator *E) {
8058 bool BoolResult;
8059 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
8060 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
8061 CheckPotentialConstantConditional(E);
8062 return false;
8063 }
8064 if (Info.noteFailure()) {
8065 StmtVisitorTy::Visit(E->getTrueExpr());
8066 StmtVisitorTy::Visit(E->getFalseExpr());
8067 }
8068 return false;
8069 }
8070
8071 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
8072 return StmtVisitorTy::Visit(EvalExpr);
8073 }
8074
8075protected:
8076 EvalInfo &Info;
8077 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
8078 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
8079
8080 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
8081 return Info.CCEDiag(E, DiagId: D);
8082 }
8083
8084 bool ZeroInitialization(const Expr *E) { return Error(E); }
8085
8086 bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) {
8087 unsigned BuiltinOp = E->getBuiltinCallee();
8088 return BuiltinOp != 0 &&
8089 Info.Ctx.BuiltinInfo.isConstantEvaluated(ID: BuiltinOp);
8090 }
8091
8092public:
8093 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
8094
8095 EvalInfo &getEvalInfo() { return Info; }
8096
8097 /// Report an evaluation error. This should only be called when an error is
8098 /// first discovered. When propagating an error, just return false.
8099 bool Error(const Expr *E, diag::kind D) {
8100 Info.FFDiag(E, DiagId: D) << E->getSourceRange();
8101 return false;
8102 }
8103 bool Error(const Expr *E) {
8104 return Error(E, diag::note_invalid_subexpr_in_const_expr);
8105 }
8106
8107 bool VisitStmt(const Stmt *) {
8108 llvm_unreachable("Expression evaluator should not be called on stmts");
8109 }
8110 bool VisitExpr(const Expr *E) {
8111 return Error(E);
8112 }
8113
8114 bool VisitEmbedExpr(const EmbedExpr *E) {
8115 const auto It = E->begin();
8116 return StmtVisitorTy::Visit(*It);
8117 }
8118
8119 bool VisitPredefinedExpr(const PredefinedExpr *E) {
8120 return StmtVisitorTy::Visit(E->getFunctionName());
8121 }
8122 bool VisitConstantExpr(const ConstantExpr *E) {
8123 if (E->hasAPValueResult())
8124 return DerivedSuccess(V: E->getAPValueResult(), E);
8125
8126 return StmtVisitorTy::Visit(E->getSubExpr());
8127 }
8128
8129 bool VisitParenExpr(const ParenExpr *E)
8130 { return StmtVisitorTy::Visit(E->getSubExpr()); }
8131 bool VisitUnaryExtension(const UnaryOperator *E)
8132 { return StmtVisitorTy::Visit(E->getSubExpr()); }
8133 bool VisitUnaryPlus(const UnaryOperator *E)
8134 { return StmtVisitorTy::Visit(E->getSubExpr()); }
8135 bool VisitChooseExpr(const ChooseExpr *E)
8136 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
8137 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
8138 { return StmtVisitorTy::Visit(E->getResultExpr()); }
8139 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
8140 { return StmtVisitorTy::Visit(E->getReplacement()); }
8141 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
8142 TempVersionRAII RAII(*Info.CurrentCall);
8143 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
8144 return StmtVisitorTy::Visit(E->getExpr());
8145 }
8146 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
8147 TempVersionRAII RAII(*Info.CurrentCall);
8148 // The initializer may not have been parsed yet, or might be erroneous.
8149 if (!E->getExpr())
8150 return Error(E);
8151 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
8152 return StmtVisitorTy::Visit(E->getExpr());
8153 }
8154
8155 bool VisitExprWithCleanups(const ExprWithCleanups *E) {
8156 FullExpressionRAII Scope(Info);
8157 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
8158 }
8159
8160 // Temporaries are registered when created, so we don't care about
8161 // CXXBindTemporaryExpr.
8162 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
8163 return StmtVisitorTy::Visit(E->getSubExpr());
8164 }
8165
8166 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
8167 CCEDiag(E, diag::note_constexpr_invalid_cast)
8168 << diag::ConstexprInvalidCastKind::Reinterpret;
8169 return static_cast<Derived*>(this)->VisitCastExpr(E);
8170 }
8171 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
8172 if (!Info.Ctx.getLangOpts().CPlusPlus20)
8173 CCEDiag(E, diag::note_constexpr_invalid_cast)
8174 << diag::ConstexprInvalidCastKind::Dynamic;
8175 return static_cast<Derived*>(this)->VisitCastExpr(E);
8176 }
8177 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
8178 return static_cast<Derived*>(this)->VisitCastExpr(E);
8179 }
8180
8181 bool VisitBinaryOperator(const BinaryOperator *E) {
8182 switch (E->getOpcode()) {
8183 default:
8184 return Error(E);
8185
8186 case BO_Comma:
8187 VisitIgnoredValue(E: E->getLHS());
8188 return StmtVisitorTy::Visit(E->getRHS());
8189
8190 case BO_PtrMemD:
8191 case BO_PtrMemI: {
8192 LValue Obj;
8193 if (!HandleMemberPointerAccess(Info, BO: E, LV&: Obj))
8194 return false;
8195 APValue Result;
8196 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
8197 return false;
8198 return DerivedSuccess(V: Result, E);
8199 }
8200 }
8201 }
8202
8203 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
8204 return StmtVisitorTy::Visit(E->getSemanticForm());
8205 }
8206
8207 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
8208 // Evaluate and cache the common expression. We treat it as a temporary,
8209 // even though it's not quite the same thing.
8210 LValue CommonLV;
8211 if (!Evaluate(Result&: Info.CurrentCall->createTemporary(
8212 E->getOpaqueValue(),
8213 getStorageType(Info.Ctx, E->getOpaqueValue()),
8214 ScopeKind::FullExpression, CommonLV),
8215 Info, E: E->getCommon()))
8216 return false;
8217
8218 return HandleConditionalOperator(E);
8219 }
8220
8221 bool VisitConditionalOperator(const ConditionalOperator *E) {
8222 bool IsBcpCall = false;
8223 // If the condition (ignoring parens) is a __builtin_constant_p call,
8224 // the result is a constant expression if it can be folded without
8225 // side-effects. This is an important GNU extension. See GCC PR38377
8226 // for discussion.
8227 if (const CallExpr *CallCE =
8228 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
8229 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
8230 IsBcpCall = true;
8231
8232 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
8233 // constant expression; we can't check whether it's potentially foldable.
8234 // FIXME: We should instead treat __builtin_constant_p as non-constant if
8235 // it would return 'false' in this mode.
8236 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
8237 return false;
8238
8239 FoldConstant Fold(Info, IsBcpCall);
8240 if (!HandleConditionalOperator(E)) {
8241 Fold.keepDiagnostics();
8242 return false;
8243 }
8244
8245 return true;
8246 }
8247
8248 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
8249 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(Key: E);
8250 Value && !Value->isAbsent())
8251 return DerivedSuccess(V: *Value, E);
8252
8253 const Expr *Source = E->getSourceExpr();
8254 if (!Source)
8255 return Error(E);
8256 if (Source == E) {
8257 assert(0 && "OpaqueValueExpr recursively refers to itself");
8258 return Error(E);
8259 }
8260 return StmtVisitorTy::Visit(Source);
8261 }
8262
8263 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
8264 for (const Expr *SemE : E->semantics()) {
8265 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
8266 // FIXME: We can't handle the case where an OpaqueValueExpr is also the
8267 // result expression: there could be two different LValues that would
8268 // refer to the same object in that case, and we can't model that.
8269 if (SemE == E->getResultExpr())
8270 return Error(E);
8271
8272 // Unique OVEs get evaluated if and when we encounter them when
8273 // emitting the rest of the semantic form, rather than eagerly.
8274 if (OVE->isUnique())
8275 continue;
8276
8277 LValue LV;
8278 if (!Evaluate(Info.CurrentCall->createTemporary(
8279 OVE, getStorageType(Info.Ctx, OVE),
8280 ScopeKind::FullExpression, LV),
8281 Info, OVE->getSourceExpr()))
8282 return false;
8283 } else if (SemE == E->getResultExpr()) {
8284 if (!StmtVisitorTy::Visit(SemE))
8285 return false;
8286 } else {
8287 if (!EvaluateIgnoredValue(Info, E: SemE))
8288 return false;
8289 }
8290 }
8291 return true;
8292 }
8293
8294 bool VisitCallExpr(const CallExpr *E) {
8295 APValue Result;
8296 if (!handleCallExpr(E, Result, ResultSlot: nullptr))
8297 return false;
8298 return DerivedSuccess(V: Result, E);
8299 }
8300
8301 bool handleCallExpr(const CallExpr *E, APValue &Result,
8302 const LValue *ResultSlot) {
8303 CallScopeRAII CallScope(Info);
8304
8305 const Expr *Callee = E->getCallee()->IgnoreParens();
8306 QualType CalleeType = Callee->getType();
8307
8308 const FunctionDecl *FD = nullptr;
8309 LValue *This = nullptr, ObjectArg;
8310 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
8311 bool HasQualifier = false;
8312
8313 CallRef Call;
8314
8315 // Extract function decl and 'this' pointer from the callee.
8316 if (CalleeType->isSpecificBuiltinType(K: BuiltinType::BoundMember)) {
8317 const CXXMethodDecl *Member = nullptr;
8318 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
8319 // Explicit bound member calls, such as x.f() or p->g();
8320 if (!EvaluateObjectArgument(Info, Object: ME->getBase(), This&: ObjectArg))
8321 return false;
8322 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
8323 if (!Member)
8324 return Error(Callee);
8325 This = &ObjectArg;
8326 HasQualifier = ME->hasQualifier();
8327 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
8328 // Indirect bound member calls ('.*' or '->*').
8329 const ValueDecl *D =
8330 HandleMemberPointerAccess(Info, BO: BE, LV&: ObjectArg, IncludeMember: false);
8331 if (!D)
8332 return false;
8333 Member = dyn_cast<CXXMethodDecl>(D);
8334 if (!Member)
8335 return Error(Callee);
8336 This = &ObjectArg;
8337 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
8338 if (!Info.getLangOpts().CPlusPlus20)
8339 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
8340 return EvaluateObjectArgument(Info, PDE->getBase(), ObjectArg) &&
8341 HandleDestruction(Info, PDE, ObjectArg, PDE->getDestroyedType());
8342 } else
8343 return Error(Callee);
8344 FD = Member;
8345 } else if (CalleeType->isFunctionPointerType()) {
8346 LValue CalleeLV;
8347 if (!EvaluatePointer(E: Callee, Result&: CalleeLV, Info))
8348 return false;
8349
8350 if (!CalleeLV.getLValueOffset().isZero())
8351 return Error(Callee);
8352 if (CalleeLV.isNullPointer()) {
8353 Info.FFDiag(Callee, diag::note_constexpr_null_callee)
8354 << const_cast<Expr *>(Callee);
8355 return false;
8356 }
8357 FD = dyn_cast_or_null<FunctionDecl>(
8358 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
8359 if (!FD)
8360 return Error(Callee);
8361 // Don't call function pointers which have been cast to some other type.
8362 // Per DR (no number yet), the caller and callee can differ in noexcept.
8363 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
8364 T: CalleeType->getPointeeType(), U: FD->getType())) {
8365 return Error(E);
8366 }
8367
8368 // For an (overloaded) assignment expression, evaluate the RHS before the
8369 // LHS.
8370 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
8371 if (OCE && OCE->isAssignmentOp()) {
8372 assert(Args.size() == 2 && "wrong number of arguments in assignment");
8373 Call = Info.CurrentCall->createCall(Callee: FD);
8374 bool HasThis = false;
8375 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
8376 HasThis = MD->isImplicitObjectMemberFunction();
8377 if (!EvaluateArgs(HasThis ? Args.slice(1) : Args, Call, Info, FD,
8378 /*RightToLeft=*/true, &ObjectArg))
8379 return false;
8380 }
8381
8382 // Overloaded operator calls to member functions are represented as normal
8383 // calls with '*this' as the first argument.
8384 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8385 if (MD &&
8386 (MD->isImplicitObjectMemberFunction() || (OCE && MD->isStatic()))) {
8387 // FIXME: When selecting an implicit conversion for an overloaded
8388 // operator delete, we sometimes try to evaluate calls to conversion
8389 // operators without a 'this' parameter!
8390 if (Args.empty())
8391 return Error(E);
8392
8393 if (!EvaluateObjectArgument(Info, Args[0], ObjectArg))
8394 return false;
8395
8396 // If we are calling a static operator, the 'this' argument needs to be
8397 // ignored after being evaluated.
8398 if (MD->isInstance())
8399 This = &ObjectArg;
8400
8401 // If this is syntactically a simple assignment using a trivial
8402 // assignment operator, start the lifetimes of union members as needed,
8403 // per C++20 [class.union]5.
8404 if (Info.getLangOpts().CPlusPlus20 && OCE &&
8405 OCE->getOperator() == OO_Equal && MD->isTrivial() &&
8406 !MaybeHandleUnionActiveMemberChange(Info, Args[0], ObjectArg))
8407 return false;
8408
8409 Args = Args.slice(1);
8410 } else if (MD && MD->isLambdaStaticInvoker()) {
8411 // Map the static invoker for the lambda back to the call operator.
8412 // Conveniently, we don't have to slice out the 'this' argument (as is
8413 // being done for the non-static case), since a static member function
8414 // doesn't have an implicit argument passed in.
8415 const CXXRecordDecl *ClosureClass = MD->getParent();
8416 assert(
8417 ClosureClass->captures_begin() == ClosureClass->captures_end() &&
8418 "Number of captures must be zero for conversion to function-ptr");
8419
8420 const CXXMethodDecl *LambdaCallOp =
8421 ClosureClass->getLambdaCallOperator();
8422
8423 // Set 'FD', the function that will be called below, to the call
8424 // operator. If the closure object represents a generic lambda, find
8425 // the corresponding specialization of the call operator.
8426
8427 if (ClosureClass->isGenericLambda()) {
8428 assert(MD->isFunctionTemplateSpecialization() &&
8429 "A generic lambda's static-invoker function must be a "
8430 "template specialization");
8431 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
8432 FunctionTemplateDecl *CallOpTemplate =
8433 LambdaCallOp->getDescribedFunctionTemplate();
8434 void *InsertPos = nullptr;
8435 FunctionDecl *CorrespondingCallOpSpecialization =
8436 CallOpTemplate->findSpecialization(Args: TAL->asArray(), InsertPos);
8437 assert(CorrespondingCallOpSpecialization &&
8438 "We must always have a function call operator specialization "
8439 "that corresponds to our static invoker specialization");
8440 assert(isa<CXXMethodDecl>(CorrespondingCallOpSpecialization));
8441 FD = CorrespondingCallOpSpecialization;
8442 } else
8443 FD = LambdaCallOp;
8444 } else if (FD->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) {
8445 if (FD->getDeclName().isAnyOperatorNew()) {
8446 LValue Ptr;
8447 if (!HandleOperatorNewCall(Info, E, Result&: Ptr))
8448 return false;
8449 Ptr.moveInto(V&: Result);
8450 return CallScope.destroy();
8451 } else {
8452 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
8453 }
8454 }
8455 } else
8456 return Error(E);
8457
8458 // Evaluate the arguments now if we've not already done so.
8459 if (!Call) {
8460 Call = Info.CurrentCall->createCall(Callee: FD);
8461 if (!EvaluateArgs(Args, Call, Info, FD, /*RightToLeft*/ false,
8462 &ObjectArg))
8463 return false;
8464 }
8465
8466 SmallVector<QualType, 4> CovariantAdjustmentPath;
8467 if (This) {
8468 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
8469 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
8470 // Perform virtual dispatch, if necessary.
8471 FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
8472 CovariantAdjustmentPath);
8473 if (!FD)
8474 return false;
8475 } else if (NamedMember && NamedMember->isImplicitObjectMemberFunction()) {
8476 // Check that the 'this' pointer points to an object of the right type.
8477 // FIXME: If this is an assignment operator call, we may need to change
8478 // the active union member before we check this.
8479 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
8480 return false;
8481 }
8482 }
8483
8484 // Destructor calls are different enough that they have their own codepath.
8485 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
8486 assert(This && "no 'this' pointer for destructor call");
8487 return HandleDestruction(Info, E, *This,
8488 Info.Ctx.getRecordType(Decl: DD->getParent())) &&
8489 CallScope.destroy();
8490 }
8491
8492 const FunctionDecl *Definition = nullptr;
8493 Stmt *Body = FD->getBody(Definition);
8494 SourceLocation Loc = E->getExprLoc();
8495
8496 // Treat the object argument as `this` when evaluating defaulted
8497 // special menmber functions
8498 if (FD->hasCXXExplicitFunctionObjectParameter())
8499 This = &ObjectArg;
8500
8501 if (!CheckConstexprFunction(Info, CallLoc: Loc, Declaration: FD, Definition, Body) ||
8502 !HandleFunctionCall(Loc, Definition, This, E, Args, Call, Body, Info,
8503 Result, ResultSlot))
8504 return false;
8505
8506 if (!CovariantAdjustmentPath.empty() &&
8507 !HandleCovariantReturnAdjustment(Info, E, Result,
8508 CovariantAdjustmentPath))
8509 return false;
8510
8511 return CallScope.destroy();
8512 }
8513
8514 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8515 return StmtVisitorTy::Visit(E->getInitializer());
8516 }
8517 bool VisitInitListExpr(const InitListExpr *E) {
8518 if (E->getNumInits() == 0)
8519 return DerivedZeroInitialization(E);
8520 if (E->getNumInits() == 1)
8521 return StmtVisitorTy::Visit(E->getInit(Init: 0));
8522 return Error(E);
8523 }
8524 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
8525 return DerivedZeroInitialization(E);
8526 }
8527 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
8528 return DerivedZeroInitialization(E);
8529 }
8530 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
8531 return DerivedZeroInitialization(E);
8532 }
8533
8534 /// A member expression where the object is a prvalue is itself a prvalue.
8535 bool VisitMemberExpr(const MemberExpr *E) {
8536 assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
8537 "missing temporary materialization conversion");
8538 assert(!E->isArrow() && "missing call to bound member function?");
8539
8540 APValue Val;
8541 if (!Evaluate(Result&: Val, Info, E: E->getBase()))
8542 return false;
8543
8544 QualType BaseTy = E->getBase()->getType();
8545
8546 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
8547 if (!FD) return Error(E);
8548 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
8549 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8550 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8551
8552 // Note: there is no lvalue base here. But this case should only ever
8553 // happen in C or in C++98, where we cannot be evaluating a constexpr
8554 // constructor, which is the only case the base matters.
8555 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
8556 SubobjectDesignator Designator(BaseTy);
8557 Designator.addDeclUnchecked(FD);
8558
8559 APValue Result;
8560 return extractSubobject(Info, E, Obj, Designator, Result) &&
8561 DerivedSuccess(V: Result, E);
8562 }
8563
8564 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
8565 APValue Val;
8566 if (!Evaluate(Result&: Val, Info, E: E->getBase()))
8567 return false;
8568
8569 if (Val.isVector()) {
8570 SmallVector<uint32_t, 4> Indices;
8571 E->getEncodedElementAccess(Elts&: Indices);
8572 if (Indices.size() == 1) {
8573 // Return scalar.
8574 return DerivedSuccess(V: Val.getVectorElt(Indices[0]), E);
8575 } else {
8576 // Construct new APValue vector.
8577 SmallVector<APValue, 4> Elts;
8578 for (unsigned I = 0; I < Indices.size(); ++I) {
8579 Elts.push_back(Val.getVectorElt(Indices[I]));
8580 }
8581 APValue VecResult(Elts.data(), Indices.size());
8582 return DerivedSuccess(V: VecResult, E);
8583 }
8584 }
8585
8586 return false;
8587 }
8588
8589 bool VisitCastExpr(const CastExpr *E) {
8590 switch (E->getCastKind()) {
8591 default:
8592 break;
8593
8594 case CK_AtomicToNonAtomic: {
8595 APValue AtomicVal;
8596 // This does not need to be done in place even for class/array types:
8597 // atomic-to-non-atomic conversion implies copying the object
8598 // representation.
8599 if (!Evaluate(Result&: AtomicVal, Info, E: E->getSubExpr()))
8600 return false;
8601 return DerivedSuccess(V: AtomicVal, E);
8602 }
8603
8604 case CK_NoOp:
8605 case CK_UserDefinedConversion:
8606 return StmtVisitorTy::Visit(E->getSubExpr());
8607
8608 case CK_LValueToRValue: {
8609 LValue LVal;
8610 if (!EvaluateLValue(E: E->getSubExpr(), Result&: LVal, Info))
8611 return false;
8612 APValue RVal;
8613 // Note, we use the subexpression's type in order to retain cv-qualifiers.
8614 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8615 LVal, RVal))
8616 return false;
8617 return DerivedSuccess(V: RVal, E);
8618 }
8619 case CK_LValueToRValueBitCast: {
8620 APValue DestValue, SourceValue;
8621 if (!Evaluate(Result&: SourceValue, Info, E: E->getSubExpr()))
8622 return false;
8623 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, BCE: E))
8624 return false;
8625 return DerivedSuccess(V: DestValue, E);
8626 }
8627
8628 case CK_AddressSpaceConversion: {
8629 APValue Value;
8630 if (!Evaluate(Result&: Value, Info, E: E->getSubExpr()))
8631 return false;
8632 return DerivedSuccess(V: Value, E);
8633 }
8634 }
8635
8636 return Error(E);
8637 }
8638
8639 bool VisitUnaryPostInc(const UnaryOperator *UO) {
8640 return VisitUnaryPostIncDec(UO);
8641 }
8642 bool VisitUnaryPostDec(const UnaryOperator *UO) {
8643 return VisitUnaryPostIncDec(UO);
8644 }
8645 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
8646 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8647 return Error(UO);
8648
8649 LValue LVal;
8650 if (!EvaluateLValue(E: UO->getSubExpr(), Result&: LVal, Info))
8651 return false;
8652 APValue RVal;
8653 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
8654 UO->isIncrementOp(), &RVal))
8655 return false;
8656 return DerivedSuccess(V: RVal, E: UO);
8657 }
8658
8659 bool VisitStmtExpr(const StmtExpr *E) {
8660 // We will have checked the full-expressions inside the statement expression
8661 // when they were completed, and don't need to check them again now.
8662 llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior,
8663 false);
8664
8665 const CompoundStmt *CS = E->getSubStmt();
8666 if (CS->body_empty())
8667 return true;
8668
8669 BlockScopeRAII Scope(Info);
8670 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
8671 BE = CS->body_end();
8672 /**/; ++BI) {
8673 if (BI + 1 == BE) {
8674 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
8675 if (!FinalExpr) {
8676 Info.FFDiag((*BI)->getBeginLoc(),
8677 diag::note_constexpr_stmt_expr_unsupported);
8678 return false;
8679 }
8680 return this->Visit(FinalExpr) && Scope.destroy();
8681 }
8682
8683 APValue ReturnValue;
8684 StmtResult Result = { .Value: ReturnValue, .Slot: nullptr };
8685 EvalStmtResult ESR = EvaluateStmt(Result, Info, S: *BI);
8686 if (ESR != ESR_Succeeded) {
8687 // FIXME: If the statement-expression terminated due to 'return',
8688 // 'break', or 'continue', it would be nice to propagate that to
8689 // the outer statement evaluation rather than bailing out.
8690 if (ESR != ESR_Failed)
8691 Info.FFDiag((*BI)->getBeginLoc(),
8692 diag::note_constexpr_stmt_expr_unsupported);
8693 return false;
8694 }
8695 }
8696
8697 llvm_unreachable("Return from function from the loop above.");
8698 }
8699
8700 bool VisitPackIndexingExpr(const PackIndexingExpr *E) {
8701 return StmtVisitorTy::Visit(E->getSelectedExpr());
8702 }
8703
8704 /// Visit a value which is evaluated, but whose value is ignored.
8705 void VisitIgnoredValue(const Expr *E) {
8706 EvaluateIgnoredValue(Info, E);
8707 }
8708
8709 /// Potentially visit a MemberExpr's base expression.
8710 void VisitIgnoredBaseExpression(const Expr *E) {
8711 // While MSVC doesn't evaluate the base expression, it does diagnose the
8712 // presence of side-effecting behavior.
8713 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Ctx: Info.Ctx))
8714 return;
8715 VisitIgnoredValue(E);
8716 }
8717};
8718
8719} // namespace
8720
8721//===----------------------------------------------------------------------===//
8722// Common base class for lvalue and temporary evaluation.
8723//===----------------------------------------------------------------------===//
8724namespace {
8725template<class Derived>
8726class LValueExprEvaluatorBase
8727 : public ExprEvaluatorBase<Derived> {
8728protected:
8729 LValue &Result;
8730 bool InvalidBaseOK;
8731 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
8732 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
8733
8734 bool Success(APValue::LValueBase B) {
8735 Result.set(B);
8736 return true;
8737 }
8738
8739 bool evaluatePointer(const Expr *E, LValue &Result) {
8740 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
8741 }
8742
8743public:
8744 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
8745 : ExprEvaluatorBaseTy(Info), Result(Result),
8746 InvalidBaseOK(InvalidBaseOK) {}
8747
8748 bool Success(const APValue &V, const Expr *E) {
8749 Result.setFrom(Ctx&: this->Info.Ctx, V);
8750 return true;
8751 }
8752
8753 bool VisitMemberExpr(const MemberExpr *E) {
8754 // Handle non-static data members.
8755 QualType BaseTy;
8756 bool EvalOK;
8757 if (E->isArrow()) {
8758 EvalOK = evaluatePointer(E: E->getBase(), Result);
8759 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
8760 } else if (E->getBase()->isPRValue()) {
8761 assert(E->getBase()->getType()->isRecordType());
8762 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
8763 BaseTy = E->getBase()->getType();
8764 } else {
8765 EvalOK = this->Visit(E->getBase());
8766 BaseTy = E->getBase()->getType();
8767 }
8768 if (!EvalOK) {
8769 if (!InvalidBaseOK)
8770 return false;
8771 Result.setInvalid(E);
8772 return true;
8773 }
8774
8775 const ValueDecl *MD = E->getMemberDecl();
8776 if (const FieldDecl *FD = dyn_cast<FieldDecl>(Val: E->getMemberDecl())) {
8777 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8778 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8779 (void)BaseTy;
8780 if (!HandleLValueMember(this->Info, E, Result, FD))
8781 return false;
8782 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(Val: MD)) {
8783 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8784 return false;
8785 } else
8786 return this->Error(E);
8787
8788 if (MD->getType()->isReferenceType()) {
8789 APValue RefValue;
8790 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8791 RefValue))
8792 return false;
8793 return Success(RefValue, E);
8794 }
8795 return true;
8796 }
8797
8798 bool VisitBinaryOperator(const BinaryOperator *E) {
8799 switch (E->getOpcode()) {
8800 default:
8801 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8802
8803 case BO_PtrMemD:
8804 case BO_PtrMemI:
8805 return HandleMemberPointerAccess(this->Info, E, Result);
8806 }
8807 }
8808
8809 bool VisitCastExpr(const CastExpr *E) {
8810 switch (E->getCastKind()) {
8811 default:
8812 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8813
8814 case CK_DerivedToBase:
8815 case CK_UncheckedDerivedToBase:
8816 if (!this->Visit(E->getSubExpr()))
8817 return false;
8818
8819 // Now figure out the necessary offset to add to the base LV to get from
8820 // the derived class to the base class.
8821 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8822 Result);
8823 }
8824 }
8825};
8826}
8827
8828//===----------------------------------------------------------------------===//
8829// LValue Evaluation
8830//
8831// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8832// function designators (in C), decl references to void objects (in C), and
8833// temporaries (if building with -Wno-address-of-temporary).
8834//
8835// LValue evaluation produces values comprising a base expression of one of the
8836// following types:
8837// - Declarations
8838// * VarDecl
8839// * FunctionDecl
8840// - Literals
8841// * CompoundLiteralExpr in C (and in global scope in C++)
8842// * StringLiteral
8843// * PredefinedExpr
8844// * ObjCStringLiteralExpr
8845// * ObjCEncodeExpr
8846// * AddrLabelExpr
8847// * BlockExpr
8848// * CallExpr for a MakeStringConstant builtin
8849// - typeid(T) expressions, as TypeInfoLValues
8850// - Locals and temporaries
8851// * MaterializeTemporaryExpr
8852// * Any Expr, with a CallIndex indicating the function in which the temporary
8853// was evaluated, for cases where the MaterializeTemporaryExpr is missing
8854// from the AST (FIXME).
8855// * A MaterializeTemporaryExpr that has static storage duration, with no
8856// CallIndex, for a lifetime-extended temporary.
8857// * The ConstantExpr that is currently being evaluated during evaluation of an
8858// immediate invocation.
8859// plus an offset in bytes.
8860//===----------------------------------------------------------------------===//
8861namespace {
8862class LValueExprEvaluator
8863 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8864public:
8865 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8866 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8867
8868 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8869 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8870
8871 bool VisitCallExpr(const CallExpr *E);
8872 bool VisitDeclRefExpr(const DeclRefExpr *E);
8873 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8874 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8875 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8876 bool VisitMemberExpr(const MemberExpr *E);
8877 bool VisitStringLiteral(const StringLiteral *E) {
8878 return Success(B: APValue::LValueBase(
8879 E, 0, Info.getASTContext().getNextStringLiteralVersion()));
8880 }
8881 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8882 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8883 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8884 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8885 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E);
8886 bool VisitUnaryDeref(const UnaryOperator *E);
8887 bool VisitUnaryReal(const UnaryOperator *E);
8888 bool VisitUnaryImag(const UnaryOperator *E);
8889 bool VisitUnaryPreInc(const UnaryOperator *UO) {
8890 return VisitUnaryPreIncDec(UO);
8891 }
8892 bool VisitUnaryPreDec(const UnaryOperator *UO) {
8893 return VisitUnaryPreIncDec(UO);
8894 }
8895 bool VisitBinAssign(const BinaryOperator *BO);
8896 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8897
8898 bool VisitCastExpr(const CastExpr *E) {
8899 switch (E->getCastKind()) {
8900 default:
8901 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8902
8903 case CK_LValueBitCast:
8904 this->CCEDiag(E, diag::note_constexpr_invalid_cast)
8905 << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret
8906 << Info.Ctx.getLangOpts().CPlusPlus;
8907 if (!Visit(E->getSubExpr()))
8908 return false;
8909 Result.Designator.setInvalid();
8910 return true;
8911
8912 case CK_BaseToDerived:
8913 if (!Visit(E->getSubExpr()))
8914 return false;
8915 return HandleBaseToDerivedCast(Info, E, Result);
8916
8917 case CK_Dynamic:
8918 if (!Visit(E->getSubExpr()))
8919 return false;
8920 return HandleDynamicCast(Info, E: cast<ExplicitCastExpr>(Val: E), Ptr&: Result);
8921 }
8922 }
8923};
8924} // end anonymous namespace
8925
8926/// Get an lvalue to a field of a lambda's closure type.
8927static bool HandleLambdaCapture(EvalInfo &Info, const Expr *E, LValue &Result,
8928 const CXXMethodDecl *MD, const FieldDecl *FD,
8929 bool LValueToRValueConversion) {
8930 // Static lambda function call operators can't have captures. We already
8931 // diagnosed this, so bail out here.
8932 if (MD->isStatic()) {
8933 assert(Info.CurrentCall->This == nullptr &&
8934 "This should not be set for a static call operator");
8935 return false;
8936 }
8937
8938 // Start with 'Result' referring to the complete closure object...
8939 if (MD->isExplicitObjectMemberFunction()) {
8940 // Self may be passed by reference or by value.
8941 const ParmVarDecl *Self = MD->getParamDecl(0);
8942 if (Self->getType()->isReferenceType()) {
8943 APValue *RefValue = Info.getParamSlot(Call: Info.CurrentCall->Arguments, PVD: Self);
8944 if (!RefValue->allowConstexprUnknown() || RefValue->hasValue())
8945 Result.setFrom(Ctx&: Info.Ctx, V: *RefValue);
8946 } else {
8947 const ParmVarDecl *VD = Info.CurrentCall->Arguments.getOrigParam(PVD: Self);
8948 CallStackFrame *Frame =
8949 Info.getCallFrameAndDepth(CallIndex: Info.CurrentCall->Arguments.CallIndex)
8950 .first;
8951 unsigned Version = Info.CurrentCall->Arguments.Version;
8952 Result.set({VD, Frame->Index, Version});
8953 }
8954 } else
8955 Result = *Info.CurrentCall->This;
8956
8957 // ... then update it to refer to the field of the closure object
8958 // that represents the capture.
8959 if (!HandleLValueMember(Info, E, LVal&: Result, FD))
8960 return false;
8961
8962 // And if the field is of reference type (or if we captured '*this' by
8963 // reference), update 'Result' to refer to what
8964 // the field refers to.
8965 if (LValueToRValueConversion) {
8966 APValue RVal;
8967 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, RVal))
8968 return false;
8969 Result.setFrom(Ctx&: Info.Ctx, V: RVal);
8970 }
8971 return true;
8972}
8973
8974/// Evaluate an expression as an lvalue. This can be legitimately called on
8975/// expressions which are not glvalues, in three cases:
8976/// * function designators in C, and
8977/// * "extern void" objects
8978/// * @selector() expressions in Objective-C
8979static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8980 bool InvalidBaseOK) {
8981 assert(!E->isValueDependent());
8982 assert(E->isGLValue() || E->getType()->isFunctionType() ||
8983 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens()));
8984 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8985}
8986
8987bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8988 const NamedDecl *D = E->getDecl();
8989 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl,
8990 UnnamedGlobalConstantDecl>(Val: D))
8991 return Success(B: cast<ValueDecl>(Val: D));
8992 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
8993 return VisitVarDecl(E, VD);
8994 if (const BindingDecl *BD = dyn_cast<BindingDecl>(Val: D))
8995 return Visit(BD->getBinding());
8996 return Error(E);
8997}
8998
8999bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
9000 // If we are within a lambda's call operator, check whether the 'VD' referred
9001 // to within 'E' actually represents a lambda-capture that maps to a
9002 // data-member/field within the closure object, and if so, evaluate to the
9003 // field or what the field refers to.
9004 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
9005 isa<DeclRefExpr>(Val: E) &&
9006 cast<DeclRefExpr>(Val: E)->refersToEnclosingVariableOrCapture()) {
9007 // We don't always have a complete capture-map when checking or inferring if
9008 // the function call operator meets the requirements of a constexpr function
9009 // - but we don't need to evaluate the captures to determine constexprness
9010 // (dcl.constexpr C++17).
9011 if (Info.checkingPotentialConstantExpression())
9012 return false;
9013
9014 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
9015 const auto *MD = cast<CXXMethodDecl>(Val: Info.CurrentCall->Callee);
9016 return HandleLambdaCapture(Info, E, Result, MD, FD,
9017 FD->getType()->isReferenceType());
9018 }
9019 }
9020
9021 CallStackFrame *Frame = nullptr;
9022 unsigned Version = 0;
9023 if (VD->hasLocalStorage()) {
9024 // Only if a local variable was declared in the function currently being
9025 // evaluated, do we expect to be able to find its value in the current
9026 // frame. (Otherwise it was likely declared in an enclosing context and
9027 // could either have a valid evaluatable value (for e.g. a constexpr
9028 // variable) or be ill-formed (and trigger an appropriate evaluation
9029 // diagnostic)).
9030 CallStackFrame *CurrFrame = Info.CurrentCall;
9031 if (CurrFrame->Callee && CurrFrame->Callee->Equals(DC: VD->getDeclContext())) {
9032 // Function parameters are stored in some caller's frame. (Usually the
9033 // immediate caller, but for an inherited constructor they may be more
9034 // distant.)
9035 if (auto *PVD = dyn_cast<ParmVarDecl>(Val: VD)) {
9036 if (CurrFrame->Arguments) {
9037 VD = CurrFrame->Arguments.getOrigParam(PVD);
9038 Frame =
9039 Info.getCallFrameAndDepth(CallIndex: CurrFrame->Arguments.CallIndex).first;
9040 Version = CurrFrame->Arguments.Version;
9041 }
9042 } else {
9043 Frame = CurrFrame;
9044 Version = CurrFrame->getCurrentTemporaryVersion(Key: VD);
9045 }
9046 }
9047 }
9048
9049 if (!VD->getType()->isReferenceType()) {
9050 if (Frame) {
9051 Result.set({VD, Frame->Index, Version});
9052 return true;
9053 }
9054 return Success(VD);
9055 }
9056
9057 if (!Info.getLangOpts().CPlusPlus11) {
9058 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
9059 << VD << VD->getType();
9060 Info.Note(VD->getLocation(), diag::note_declared_at);
9061 }
9062
9063 APValue *V;
9064 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, Result&: V))
9065 return false;
9066
9067 return Success(V: *V, E);
9068}
9069
9070bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) {
9071 if (!IsConstantEvaluatedBuiltinCall(E))
9072 return ExprEvaluatorBaseTy::VisitCallExpr(E);
9073
9074 switch (E->getBuiltinCallee()) {
9075 default:
9076 return false;
9077 case Builtin::BIas_const:
9078 case Builtin::BIforward:
9079 case Builtin::BIforward_like:
9080 case Builtin::BImove:
9081 case Builtin::BImove_if_noexcept:
9082 if (cast<FunctionDecl>(Val: E->getCalleeDecl())->isConstexpr())
9083 return Visit(E->getArg(Arg: 0));
9084 break;
9085 }
9086
9087 return ExprEvaluatorBaseTy::VisitCallExpr(E);
9088}
9089
9090bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
9091 const MaterializeTemporaryExpr *E) {
9092 // Walk through the expression to find the materialized temporary itself.
9093 SmallVector<const Expr *, 2> CommaLHSs;
9094 SmallVector<SubobjectAdjustment, 2> Adjustments;
9095 const Expr *Inner =
9096 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHS&: CommaLHSs, Adjustments);
9097
9098 // If we passed any comma operators, evaluate their LHSs.
9099 for (const Expr *E : CommaLHSs)
9100 if (!EvaluateIgnoredValue(Info, E))
9101 return false;
9102
9103 // A materialized temporary with static storage duration can appear within the
9104 // result of a constant expression evaluation, so we need to preserve its
9105 // value for use outside this evaluation.
9106 APValue *Value;
9107 if (E->getStorageDuration() == SD_Static) {
9108 if (Info.EvalMode == EvalInfo::EM_ConstantFold)
9109 return false;
9110 // FIXME: What about SD_Thread?
9111 Value = E->getOrCreateValue(MayCreate: true);
9112 *Value = APValue();
9113 Result.set(E);
9114 } else {
9115 Value = &Info.CurrentCall->createTemporary(
9116 Key: E, T: Inner->getType(),
9117 Scope: E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
9118 : ScopeKind::Block,
9119 LV&: Result);
9120 }
9121
9122 QualType Type = Inner->getType();
9123
9124 // Materialize the temporary itself.
9125 if (!EvaluateInPlace(Result&: *Value, Info, This: Result, E: Inner)) {
9126 *Value = APValue();
9127 return false;
9128 }
9129
9130 // Adjust our lvalue to refer to the desired subobject.
9131 for (unsigned I = Adjustments.size(); I != 0; /**/) {
9132 --I;
9133 switch (Adjustments[I].Kind) {
9134 case SubobjectAdjustment::DerivedToBaseAdjustment:
9135 if (!HandleLValueBasePath(Info, E: Adjustments[I].DerivedToBase.BasePath,
9136 Type, Result))
9137 return false;
9138 Type = Adjustments[I].DerivedToBase.BasePath->getType();
9139 break;
9140
9141 case SubobjectAdjustment::FieldAdjustment:
9142 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
9143 return false;
9144 Type = Adjustments[I].Field->getType();
9145 break;
9146
9147 case SubobjectAdjustment::MemberPointerAdjustment:
9148 if (!HandleMemberPointerAccess(Info&: this->Info, LVType: Type, LV&: Result,
9149 RHS: Adjustments[I].Ptr.RHS))
9150 return false;
9151 Type = Adjustments[I].Ptr.MPT->getPointeeType();
9152 break;
9153 }
9154 }
9155
9156 return true;
9157}
9158
9159bool
9160LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
9161 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
9162 "lvalue compound literal in c++?");
9163 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
9164 // only see this when folding in C, so there's no standard to follow here.
9165 return Success(E);
9166}
9167
9168bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
9169 TypeInfoLValue TypeInfo;
9170
9171 if (!E->isPotentiallyEvaluated()) {
9172 if (E->isTypeOperand())
9173 TypeInfo = TypeInfoLValue(E->getTypeOperand(Context: Info.Ctx).getTypePtr());
9174 else
9175 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
9176 } else {
9177 if (!Info.Ctx.getLangOpts().CPlusPlus20) {
9178 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
9179 << E->getExprOperand()->getType()
9180 << E->getExprOperand()->getSourceRange();
9181 }
9182
9183 if (!Visit(E->getExprOperand()))
9184 return false;
9185
9186 std::optional<DynamicType> DynType =
9187 ComputeDynamicType(Info, E, Result, AK_TypeId);
9188 if (!DynType)
9189 return false;
9190
9191 TypeInfo =
9192 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
9193 }
9194
9195 return Success(APValue::LValueBase::getTypeInfo(LV: TypeInfo, TypeInfo: E->getType()));
9196}
9197
9198bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
9199 return Success(E->getGuidDecl());
9200}
9201
9202bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
9203 // Handle static data members.
9204 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: E->getMemberDecl())) {
9205 VisitIgnoredBaseExpression(E: E->getBase());
9206 return VisitVarDecl(E, VD);
9207 }
9208
9209 // Handle static member functions.
9210 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: E->getMemberDecl())) {
9211 if (MD->isStatic()) {
9212 VisitIgnoredBaseExpression(E: E->getBase());
9213 return Success(MD);
9214 }
9215 }
9216
9217 // Handle non-static data members.
9218 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
9219}
9220
9221bool LValueExprEvaluator::VisitExtVectorElementExpr(
9222 const ExtVectorElementExpr *E) {
9223 bool Success = true;
9224
9225 APValue Val;
9226 if (!Evaluate(Result&: Val, Info, E: E->getBase())) {
9227 if (!Info.noteFailure())
9228 return false;
9229 Success = false;
9230 }
9231
9232 SmallVector<uint32_t, 4> Indices;
9233 E->getEncodedElementAccess(Elts&: Indices);
9234 // FIXME: support accessing more than one element
9235 if (Indices.size() > 1)
9236 return false;
9237
9238 if (Success) {
9239 Result.setFrom(Ctx&: Info.Ctx, V: Val);
9240 QualType BaseType = E->getBase()->getType();
9241 if (E->isArrow())
9242 BaseType = BaseType->getPointeeType();
9243 const auto *VT = BaseType->castAs<VectorType>();
9244 HandleLValueVectorElement(Info, E, Result, VT->getElementType(),
9245 VT->getNumElements(), Indices[0]);
9246 }
9247
9248 return Success;
9249}
9250
9251bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
9252 if (E->getBase()->getType()->isSveVLSBuiltinType())
9253 return Error(E);
9254
9255 APSInt Index;
9256 bool Success = true;
9257
9258 if (const auto *VT = E->getBase()->getType()->getAs<VectorType>()) {
9259 APValue Val;
9260 if (!Evaluate(Result&: Val, Info, E: E->getBase())) {
9261 if (!Info.noteFailure())
9262 return false;
9263 Success = false;
9264 }
9265
9266 if (!EvaluateInteger(E: E->getIdx(), Result&: Index, Info)) {
9267 if (!Info.noteFailure())
9268 return false;
9269 Success = false;
9270 }
9271
9272 if (Success) {
9273 Result.setFrom(Ctx&: Info.Ctx, V: Val);
9274 HandleLValueVectorElement(Info, E, Result, VT->getElementType(),
9275 VT->getNumElements(), Index.getExtValue());
9276 }
9277
9278 return Success;
9279 }
9280
9281 // C++17's rules require us to evaluate the LHS first, regardless of which
9282 // side is the base.
9283 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
9284 if (SubExpr == E->getBase() ? !evaluatePointer(E: SubExpr, Result)
9285 : !EvaluateInteger(E: SubExpr, Result&: Index, Info)) {
9286 if (!Info.noteFailure())
9287 return false;
9288 Success = false;
9289 }
9290 }
9291
9292 return Success &&
9293 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
9294}
9295
9296bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
9297 return evaluatePointer(E: E->getSubExpr(), Result);
9298}
9299
9300bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
9301 if (!Visit(E->getSubExpr()))
9302 return false;
9303 // __real is a no-op on scalar lvalues.
9304 if (E->getSubExpr()->getType()->isAnyComplexType())
9305 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
9306 return true;
9307}
9308
9309bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
9310 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
9311 "lvalue __imag__ on scalar?");
9312 if (!Visit(E->getSubExpr()))
9313 return false;
9314 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
9315 return true;
9316}
9317
9318bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
9319 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
9320 return Error(UO);
9321
9322 if (!this->Visit(UO->getSubExpr()))
9323 return false;
9324
9325 return handleIncDec(
9326 this->Info, UO, Result, UO->getSubExpr()->getType(),
9327 UO->isIncrementOp(), nullptr);
9328}
9329
9330bool LValueExprEvaluator::VisitCompoundAssignOperator(
9331 const CompoundAssignOperator *CAO) {
9332 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
9333 return Error(CAO);
9334
9335 bool Success = true;
9336
9337 // C++17 onwards require that we evaluate the RHS first.
9338 APValue RHS;
9339 if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
9340 if (!Info.noteFailure())
9341 return false;
9342 Success = false;
9343 }
9344
9345 // The overall lvalue result is the result of evaluating the LHS.
9346 if (!this->Visit(CAO->getLHS()) || !Success)
9347 return false;
9348
9349 return handleCompoundAssignment(
9350 this->Info, CAO,
9351 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
9352 CAO->getOpForCompoundAssignment(Opc: CAO->getOpcode()), RHS);
9353}
9354
9355bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
9356 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
9357 return Error(E);
9358
9359 bool Success = true;
9360
9361 // C++17 onwards require that we evaluate the RHS first.
9362 APValue NewVal;
9363 if (!Evaluate(Result&: NewVal, Info&: this->Info, E: E->getRHS())) {
9364 if (!Info.noteFailure())
9365 return false;
9366 Success = false;
9367 }
9368
9369 if (!this->Visit(E->getLHS()) || !Success)
9370 return false;
9371
9372 if (Info.getLangOpts().CPlusPlus20 &&
9373 !MaybeHandleUnionActiveMemberChange(Info, LHSExpr: E->getLHS(), LHS: Result))
9374 return false;
9375
9376 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
9377 NewVal);
9378}
9379
9380//===----------------------------------------------------------------------===//
9381// Pointer Evaluation
9382//===----------------------------------------------------------------------===//
9383
9384/// Attempts to compute the number of bytes available at the pointer
9385/// returned by a function with the alloc_size attribute. Returns true if we
9386/// were successful. Places an unsigned number into `Result`.
9387///
9388/// This expects the given CallExpr to be a call to a function with an
9389/// alloc_size attribute.
9390static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
9391 const CallExpr *Call,
9392 llvm::APInt &Result) {
9393 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
9394
9395 assert(AllocSize && AllocSize->getElemSizeParam().isValid());
9396 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
9397 unsigned BitsInSizeT = Ctx.getTypeSize(T: Ctx.getSizeType());
9398 if (Call->getNumArgs() <= SizeArgNo)
9399 return false;
9400
9401 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
9402 Expr::EvalResult ExprResult;
9403 if (!E->EvaluateAsInt(Result&: ExprResult, Ctx, AllowSideEffects: Expr::SE_AllowSideEffects))
9404 return false;
9405 Into = ExprResult.Val.getInt();
9406 if (Into.isNegative() || !Into.isIntN(N: BitsInSizeT))
9407 return false;
9408 Into = Into.zext(width: BitsInSizeT);
9409 return true;
9410 };
9411
9412 APSInt SizeOfElem;
9413 if (!EvaluateAsSizeT(Call->getArg(Arg: SizeArgNo), SizeOfElem))
9414 return false;
9415
9416 if (!AllocSize->getNumElemsParam().isValid()) {
9417 Result = std::move(SizeOfElem);
9418 return true;
9419 }
9420
9421 APSInt NumberOfElems;
9422 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
9423 if (!EvaluateAsSizeT(Call->getArg(Arg: NumArgNo), NumberOfElems))
9424 return false;
9425
9426 bool Overflow;
9427 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(RHS: NumberOfElems, Overflow);
9428 if (Overflow)
9429 return false;
9430
9431 Result = std::move(BytesAvailable);
9432 return true;
9433}
9434
9435/// Convenience function. LVal's base must be a call to an alloc_size
9436/// function.
9437static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
9438 const LValue &LVal,
9439 llvm::APInt &Result) {
9440 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
9441 "Can't get the size of a non alloc_size function");
9442 const auto *Base = LVal.getLValueBase().get<const Expr *>();
9443 const CallExpr *CE = tryUnwrapAllocSizeCall(E: Base);
9444 return getBytesReturnedByAllocSizeCall(Ctx, Call: CE, Result);
9445}
9446
9447/// Attempts to evaluate the given LValueBase as the result of a call to
9448/// a function with the alloc_size attribute. If it was possible to do so, this
9449/// function will return true, make Result's Base point to said function call,
9450/// and mark Result's Base as invalid.
9451static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
9452 LValue &Result) {
9453 if (Base.isNull())
9454 return false;
9455
9456 // Because we do no form of static analysis, we only support const variables.
9457 //
9458 // Additionally, we can't support parameters, nor can we support static
9459 // variables (in the latter case, use-before-assign isn't UB; in the former,
9460 // we have no clue what they'll be assigned to).
9461 const auto *VD =
9462 dyn_cast_or_null<VarDecl>(Val: Base.dyn_cast<const ValueDecl *>());
9463 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
9464 return false;
9465
9466 const Expr *Init = VD->getAnyInitializer();
9467 if (!Init || Init->getType().isNull())
9468 return false;
9469
9470 const Expr *E = Init->IgnoreParens();
9471 if (!tryUnwrapAllocSizeCall(E))
9472 return false;
9473
9474 // Store E instead of E unwrapped so that the type of the LValue's base is
9475 // what the user wanted.
9476 Result.setInvalid(B: E);
9477
9478 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
9479 Result.addUnsizedArray(Info, E, ElemTy: Pointee);
9480 return true;
9481}
9482
9483namespace {
9484class PointerExprEvaluator
9485 : public ExprEvaluatorBase<PointerExprEvaluator> {
9486 LValue &Result;
9487 bool InvalidBaseOK;
9488
9489 bool Success(const Expr *E) {
9490 Result.set(B: E);
9491 return true;
9492 }
9493
9494 bool evaluateLValue(const Expr *E, LValue &Result) {
9495 return EvaluateLValue(E, Result, Info, InvalidBaseOK);
9496 }
9497
9498 bool evaluatePointer(const Expr *E, LValue &Result) {
9499 return EvaluatePointer(E, Result, Info, InvalidBaseOK);
9500 }
9501
9502 bool visitNonBuiltinCallExpr(const CallExpr *E);
9503public:
9504
9505 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
9506 : ExprEvaluatorBaseTy(info), Result(Result),
9507 InvalidBaseOK(InvalidBaseOK) {}
9508
9509 bool Success(const APValue &V, const Expr *E) {
9510 Result.setFrom(Ctx&: Info.Ctx, V);
9511 return true;
9512 }
9513 bool ZeroInitialization(const Expr *E) {
9514 Result.setNull(Ctx&: Info.Ctx, PointerTy: E->getType());
9515 return true;
9516 }
9517
9518 bool VisitBinaryOperator(const BinaryOperator *E);
9519 bool VisitCastExpr(const CastExpr* E);
9520 bool VisitUnaryAddrOf(const UnaryOperator *E);
9521 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
9522 { return Success(E); }
9523 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
9524 if (E->isExpressibleAsConstantInitializer())
9525 return Success(E);
9526 if (Info.noteFailure())
9527 EvaluateIgnoredValue(Info, E: E->getSubExpr());
9528 return Error(E);
9529 }
9530 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
9531 { return Success(E); }
9532 bool VisitCallExpr(const CallExpr *E);
9533 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
9534 bool VisitBlockExpr(const BlockExpr *E) {
9535 if (!E->getBlockDecl()->hasCaptures())
9536 return Success(E);
9537 return Error(E);
9538 }
9539 bool VisitCXXThisExpr(const CXXThisExpr *E) {
9540 auto DiagnoseInvalidUseOfThis = [&] {
9541 if (Info.getLangOpts().CPlusPlus11)
9542 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
9543 else
9544 Info.FFDiag(E);
9545 };
9546
9547 // Can't look at 'this' when checking a potential constant expression.
9548 if (Info.checkingPotentialConstantExpression())
9549 return false;
9550
9551 bool IsExplicitLambda =
9552 isLambdaCallWithExplicitObjectParameter(Info.CurrentCall->Callee);
9553 if (!IsExplicitLambda) {
9554 if (!Info.CurrentCall->This) {
9555 DiagnoseInvalidUseOfThis();
9556 return false;
9557 }
9558
9559 Result = *Info.CurrentCall->This;
9560 }
9561
9562 if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
9563 // Ensure we actually have captured 'this'. If something was wrong with
9564 // 'this' capture, the error would have been previously reported.
9565 // Otherwise we can be inside of a default initialization of an object
9566 // declared by lambda's body, so no need to return false.
9567 if (!Info.CurrentCall->LambdaThisCaptureField) {
9568 if (IsExplicitLambda && !Info.CurrentCall->This) {
9569 DiagnoseInvalidUseOfThis();
9570 return false;
9571 }
9572
9573 return true;
9574 }
9575
9576 const auto *MD = cast<CXXMethodDecl>(Val: Info.CurrentCall->Callee);
9577 return HandleLambdaCapture(
9578 Info, E, Result, MD, Info.CurrentCall->LambdaThisCaptureField,
9579 Info.CurrentCall->LambdaThisCaptureField->getType()->isPointerType());
9580 }
9581 return true;
9582 }
9583
9584 bool VisitCXXNewExpr(const CXXNewExpr *E);
9585
9586 bool VisitSourceLocExpr(const SourceLocExpr *E) {
9587 assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?");
9588 APValue LValResult = E->EvaluateInContext(
9589 Ctx: Info.Ctx, DefaultExpr: Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
9590 Result.setFrom(Ctx&: Info.Ctx, V: LValResult);
9591 return true;
9592 }
9593
9594 bool VisitEmbedExpr(const EmbedExpr *E) {
9595 llvm::report_fatal_error(reason: "Not yet implemented for ExprConstant.cpp");
9596 return true;
9597 }
9598
9599 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
9600 std::string ResultStr = E->ComputeName(Context&: Info.Ctx);
9601
9602 QualType CharTy = Info.Ctx.CharTy.withConst();
9603 APInt Size(Info.Ctx.getTypeSize(T: Info.Ctx.getSizeType()),
9604 ResultStr.size() + 1);
9605 QualType ArrayTy = Info.Ctx.getConstantArrayType(
9606 EltTy: CharTy, ArySize: Size, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
9607
9608 StringLiteral *SL =
9609 StringLiteral::Create(Ctx: Info.Ctx, Str: ResultStr, Kind: StringLiteralKind::Ordinary,
9610 /*Pascal*/ false, Ty: ArrayTy, Loc: E->getLocation());
9611
9612 evaluateLValue(SL, Result);
9613 Result.addArray(Info, E, cast<ConstantArrayType>(Val&: ArrayTy));
9614 return true;
9615 }
9616
9617 // FIXME: Missing: @protocol, @selector
9618};
9619} // end anonymous namespace
9620
9621static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
9622 bool InvalidBaseOK) {
9623 assert(!E->isValueDependent());
9624 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
9625 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
9626}
9627
9628bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
9629 if (E->getOpcode() != BO_Add &&
9630 E->getOpcode() != BO_Sub)
9631 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9632
9633 const Expr *PExp = E->getLHS();
9634 const Expr *IExp = E->getRHS();
9635 if (IExp->getType()->isPointerType())
9636 std::swap(a&: PExp, b&: IExp);
9637
9638 bool EvalPtrOK = evaluatePointer(E: PExp, Result);
9639 if (!EvalPtrOK && !Info.noteFailure())
9640 return false;
9641
9642 llvm::APSInt Offset;
9643 if (!EvaluateInteger(E: IExp, Result&: Offset, Info) || !EvalPtrOK)
9644 return false;
9645
9646 if (E->getOpcode() == BO_Sub)
9647 negateAsSigned(Int&: Offset);
9648
9649 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
9650 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
9651}
9652
9653bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9654 return evaluateLValue(E: E->getSubExpr(), Result);
9655}
9656
9657// Is the provided decl 'std::source_location::current'?
9658static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) {
9659 if (!FD)
9660 return false;
9661 const IdentifierInfo *FnII = FD->getIdentifier();
9662 if (!FnII || !FnII->isStr(Str: "current"))
9663 return false;
9664
9665 const auto *RD = dyn_cast<RecordDecl>(FD->getParent());
9666 if (!RD)
9667 return false;
9668
9669 const IdentifierInfo *ClassII = RD->getIdentifier();
9670 return RD->isInStdNamespace() && ClassII && ClassII->isStr(Str: "source_location");
9671}
9672
9673bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9674 const Expr *SubExpr = E->getSubExpr();
9675
9676 switch (E->getCastKind()) {
9677 default:
9678 break;
9679 case CK_BitCast:
9680 case CK_CPointerToObjCPointerCast:
9681 case CK_BlockPointerToObjCPointerCast:
9682 case CK_AnyPointerToBlockPointerCast:
9683 case CK_AddressSpaceConversion:
9684 if (!Visit(SubExpr))
9685 return false;
9686 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
9687 // permitted in constant expressions in C++11. Bitcasts from cv void* are
9688 // also static_casts, but we disallow them as a resolution to DR1312.
9689 if (!E->getType()->isVoidPointerType()) {
9690 // In some circumstances, we permit casting from void* to cv1 T*, when the
9691 // actual pointee object is actually a cv2 T.
9692 bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid &&
9693 !Result.IsNullPtr;
9694 bool VoidPtrCastMaybeOK =
9695 Result.IsNullPtr ||
9696 (HasValidResult &&
9697 Info.Ctx.hasSimilarType(T1: Result.Designator.getType(Info.Ctx),
9698 T2: E->getType()->getPointeeType()));
9699 // 1. We'll allow it in std::allocator::allocate, and anything which that
9700 // calls.
9701 // 2. HACK 2022-03-28: Work around an issue with libstdc++'s
9702 // <source_location> header. Fixed in GCC 12 and later (2022-04-??).
9703 // We'll allow it in the body of std::source_location::current. GCC's
9704 // implementation had a parameter of type `void*`, and casts from
9705 // that back to `const __impl*` in its body.
9706 if (VoidPtrCastMaybeOK &&
9707 (Info.getStdAllocatorCaller(FnName: "allocate") ||
9708 IsDeclSourceLocationCurrent(FD: Info.CurrentCall->Callee) ||
9709 Info.getLangOpts().CPlusPlus26)) {
9710 // Permitted.
9711 } else {
9712 if (SubExpr->getType()->isVoidPointerType() &&
9713 Info.getLangOpts().CPlusPlus) {
9714 if (HasValidResult)
9715 CCEDiag(E, diag::note_constexpr_invalid_void_star_cast)
9716 << SubExpr->getType() << Info.getLangOpts().CPlusPlus26
9717 << Result.Designator.getType(Info.Ctx).getCanonicalType()
9718 << E->getType()->getPointeeType();
9719 else
9720 CCEDiag(E, diag::note_constexpr_invalid_cast)
9721 << diag::ConstexprInvalidCastKind::CastFrom
9722 << SubExpr->getType();
9723 } else
9724 CCEDiag(E, diag::note_constexpr_invalid_cast)
9725 << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret
9726 << Info.Ctx.getLangOpts().CPlusPlus;
9727 Result.Designator.setInvalid();
9728 }
9729 }
9730 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
9731 ZeroInitialization(E);
9732 return true;
9733
9734 case CK_DerivedToBase:
9735 case CK_UncheckedDerivedToBase:
9736 if (!evaluatePointer(E: E->getSubExpr(), Result))
9737 return false;
9738 if (!Result.Base && Result.Offset.isZero())
9739 return true;
9740
9741 // Now figure out the necessary offset to add to the base LV to get from
9742 // the derived class to the base class.
9743 return HandleLValueBasePath(Info, E, Type: E->getSubExpr()->getType()->
9744 castAs<PointerType>()->getPointeeType(),
9745 Result);
9746
9747 case CK_BaseToDerived:
9748 if (!Visit(E->getSubExpr()))
9749 return false;
9750 if (!Result.Base && Result.Offset.isZero())
9751 return true;
9752 return HandleBaseToDerivedCast(Info, E, Result);
9753
9754 case CK_Dynamic:
9755 if (!Visit(E->getSubExpr()))
9756 return false;
9757 return HandleDynamicCast(Info, E: cast<ExplicitCastExpr>(Val: E), Ptr&: Result);
9758
9759 case CK_NullToPointer:
9760 VisitIgnoredValue(E: E->getSubExpr());
9761 return ZeroInitialization(E);
9762
9763 case CK_IntegralToPointer: {
9764 CCEDiag(E, diag::note_constexpr_invalid_cast)
9765 << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret
9766 << Info.Ctx.getLangOpts().CPlusPlus;
9767
9768 APValue Value;
9769 if (!EvaluateIntegerOrLValue(E: SubExpr, Result&: Value, Info))
9770 break;
9771
9772 if (Value.isInt()) {
9773 unsigned Size = Info.Ctx.getTypeSize(E->getType());
9774 uint64_t N = Value.getInt().extOrTrunc(width: Size).getZExtValue();
9775 Result.Base = (Expr*)nullptr;
9776 Result.InvalidBase = false;
9777 Result.Offset = CharUnits::fromQuantity(Quantity: N);
9778 Result.Designator.setInvalid();
9779 Result.IsNullPtr = false;
9780 return true;
9781 } else {
9782 // In rare instances, the value isn't an lvalue.
9783 // For example, when the value is the difference between the addresses of
9784 // two labels. We reject that as a constant expression because we can't
9785 // compute a valid offset to convert into a pointer.
9786 if (!Value.isLValue())
9787 return false;
9788
9789 // Cast is of an lvalue, no need to change value.
9790 Result.setFrom(Ctx&: Info.Ctx, V: Value);
9791 return true;
9792 }
9793 }
9794
9795 case CK_ArrayToPointerDecay: {
9796 if (SubExpr->isGLValue()) {
9797 if (!evaluateLValue(E: SubExpr, Result))
9798 return false;
9799 } else {
9800 APValue &Value = Info.CurrentCall->createTemporary(
9801 Key: SubExpr, T: SubExpr->getType(), Scope: ScopeKind::FullExpression, LV&: Result);
9802 if (!EvaluateInPlace(Result&: Value, Info, This: Result, E: SubExpr))
9803 return false;
9804 }
9805 // The result is a pointer to the first element of the array.
9806 auto *AT = Info.Ctx.getAsArrayType(T: SubExpr->getType());
9807 if (auto *CAT = dyn_cast<ConstantArrayType>(Val: AT))
9808 Result.addArray(Info, E, CAT);
9809 else
9810 Result.addUnsizedArray(Info, E, AT->getElementType());
9811 return true;
9812 }
9813
9814 case CK_FunctionToPointerDecay:
9815 return evaluateLValue(E: SubExpr, Result);
9816
9817 case CK_LValueToRValue: {
9818 LValue LVal;
9819 if (!evaluateLValue(E: E->getSubExpr(), Result&: LVal))
9820 return false;
9821
9822 APValue RVal;
9823 // Note, we use the subexpression's type in order to retain cv-qualifiers.
9824 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
9825 LVal, RVal))
9826 return InvalidBaseOK &&
9827 evaluateLValueAsAllocSize(Info, Base: LVal.Base, Result);
9828 return Success(RVal, E);
9829 }
9830 }
9831
9832 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9833}
9834
9835static CharUnits GetAlignOfType(const ASTContext &Ctx, QualType T,
9836 UnaryExprOrTypeTrait ExprKind) {
9837 // C++ [expr.alignof]p3:
9838 // When alignof is applied to a reference type, the result is the
9839 // alignment of the referenced type.
9840 T = T.getNonReferenceType();
9841
9842 if (T.getQualifiers().hasUnaligned())
9843 return CharUnits::One();
9844
9845 const bool AlignOfReturnsPreferred =
9846 Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
9847
9848 // __alignof is defined to return the preferred alignment.
9849 // Before 8, clang returned the preferred alignment for alignof and _Alignof
9850 // as well.
9851 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
9852 return Ctx.toCharUnitsFromBits(BitSize: Ctx.getPreferredTypeAlign(T: T.getTypePtr()));
9853 // alignof and _Alignof are defined to return the ABI alignment.
9854 else if (ExprKind == UETT_AlignOf)
9855 return Ctx.getTypeAlignInChars(T: T.getTypePtr());
9856 else
9857 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9858}
9859
9860CharUnits GetAlignOfExpr(const ASTContext &Ctx, const Expr *E,
9861 UnaryExprOrTypeTrait ExprKind) {
9862 E = E->IgnoreParens();
9863
9864 // The kinds of expressions that we have special-case logic here for
9865 // should be kept up to date with the special checks for those
9866 // expressions in Sema.
9867
9868 // alignof decl is always accepted, even if it doesn't make sense: we default
9869 // to 1 in those cases.
9870 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E))
9871 return Ctx.getDeclAlign(DRE->getDecl(),
9872 /*RefAsPointee*/ true);
9873
9874 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E))
9875 return Ctx.getDeclAlign(ME->getMemberDecl(),
9876 /*RefAsPointee*/ true);
9877
9878 return GetAlignOfType(Ctx, T: E->getType(), ExprKind);
9879}
9880
9881static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
9882 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
9883 return Info.Ctx.getDeclAlign(VD);
9884 if (const auto *E = Value.Base.dyn_cast<const Expr *>())
9885 return GetAlignOfExpr(Ctx: Info.Ctx, E, ExprKind: UETT_AlignOf);
9886 return GetAlignOfType(Ctx: Info.Ctx, T: Value.Base.getTypeInfoType(), ExprKind: UETT_AlignOf);
9887}
9888
9889/// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9890/// __builtin_is_aligned and __builtin_assume_aligned.
9891static bool getAlignmentArgument(const Expr *E, QualType ForType,
9892 EvalInfo &Info, APSInt &Alignment) {
9893 if (!EvaluateInteger(E, Result&: Alignment, Info))
9894 return false;
9895 if (Alignment < 0 || !Alignment.isPowerOf2()) {
9896 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
9897 return false;
9898 }
9899 unsigned SrcWidth = Info.Ctx.getIntWidth(T: ForType);
9900 APSInt MaxValue(APInt::getOneBitSet(numBits: SrcWidth, BitNo: SrcWidth - 1));
9901 if (APSInt::compareValues(I1: Alignment, I2: MaxValue) > 0) {
9902 Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
9903 << MaxValue << ForType << Alignment;
9904 return false;
9905 }
9906 // Ensure both alignment and source value have the same bit width so that we
9907 // don't assert when computing the resulting value.
9908 APSInt ExtAlignment =
9909 APSInt(Alignment.zextOrTrunc(width: SrcWidth), /*isUnsigned=*/true);
9910 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
9911 "Alignment should not be changed by ext/trunc");
9912 Alignment = ExtAlignment;
9913 assert(Alignment.getBitWidth() == SrcWidth);
9914 return true;
9915}
9916
9917// To be clear: this happily visits unsupported builtins. Better name welcomed.
9918bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
9919 if (ExprEvaluatorBaseTy::VisitCallExpr(E))
9920 return true;
9921
9922 if (!(InvalidBaseOK && getAllocSizeAttr(E)))
9923 return false;
9924
9925 Result.setInvalid(E);
9926 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
9927 Result.addUnsizedArray(Info, E, PointeeTy);
9928 return true;
9929}
9930
9931bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
9932 if (!IsConstantEvaluatedBuiltinCall(E))
9933 return visitNonBuiltinCallExpr(E);
9934 return VisitBuiltinCallExpr(E, BuiltinOp: E->getBuiltinCallee());
9935}
9936
9937// Determine if T is a character type for which we guarantee that
9938// sizeof(T) == 1.
9939static bool isOneByteCharacterType(QualType T) {
9940 return T->isCharType() || T->isChar8Type();
9941}
9942
9943bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9944 unsigned BuiltinOp) {
9945 if (IsOpaqueConstantCall(E))
9946 return Success(E);
9947
9948 switch (BuiltinOp) {
9949 case Builtin::BIaddressof:
9950 case Builtin::BI__addressof:
9951 case Builtin::BI__builtin_addressof:
9952 return evaluateLValue(E: E->getArg(Arg: 0), Result);
9953 case Builtin::BI__builtin_assume_aligned: {
9954 // We need to be very careful here because: if the pointer does not have the
9955 // asserted alignment, then the behavior is undefined, and undefined
9956 // behavior is non-constant.
9957 if (!evaluatePointer(E: E->getArg(Arg: 0), Result))
9958 return false;
9959
9960 LValue OffsetResult(Result);
9961 APSInt Alignment;
9962 if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: E->getArg(Arg: 0)->getType(), Info,
9963 Alignment))
9964 return false;
9965 CharUnits Align = CharUnits::fromQuantity(Quantity: Alignment.getZExtValue());
9966
9967 if (E->getNumArgs() > 2) {
9968 APSInt Offset;
9969 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: Offset, Info))
9970 return false;
9971
9972 int64_t AdditionalOffset = -Offset.getZExtValue();
9973 OffsetResult.Offset += CharUnits::fromQuantity(Quantity: AdditionalOffset);
9974 }
9975
9976 // If there is a base object, then it must have the correct alignment.
9977 if (OffsetResult.Base) {
9978 CharUnits BaseAlignment = getBaseAlignment(Info, Value: OffsetResult);
9979
9980 if (BaseAlignment < Align) {
9981 Result.Designator.setInvalid();
9982 CCEDiag(E->getArg(0), diag::note_constexpr_baa_insufficient_alignment)
9983 << 0 << BaseAlignment.getQuantity() << Align.getQuantity();
9984 return false;
9985 }
9986 }
9987
9988 // The offset must also have the correct alignment.
9989 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9990 Result.Designator.setInvalid();
9991
9992 (OffsetResult.Base
9993 ? CCEDiag(E->getArg(0),
9994 diag::note_constexpr_baa_insufficient_alignment)
9995 << 1
9996 : CCEDiag(E->getArg(0),
9997 diag::note_constexpr_baa_value_insufficient_alignment))
9998 << OffsetResult.Offset.getQuantity() << Align.getQuantity();
9999 return false;
10000 }
10001
10002 return true;
10003 }
10004 case Builtin::BI__builtin_align_up:
10005 case Builtin::BI__builtin_align_down: {
10006 if (!evaluatePointer(E: E->getArg(Arg: 0), Result))
10007 return false;
10008 APSInt Alignment;
10009 if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: E->getArg(Arg: 0)->getType(), Info,
10010 Alignment))
10011 return false;
10012 CharUnits BaseAlignment = getBaseAlignment(Info, Value: Result);
10013 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(offset: Result.Offset);
10014 // For align_up/align_down, we can return the same value if the alignment
10015 // is known to be greater or equal to the requested value.
10016 if (PtrAlign.getQuantity() >= Alignment)
10017 return true;
10018
10019 // The alignment could be greater than the minimum at run-time, so we cannot
10020 // infer much about the resulting pointer value. One case is possible:
10021 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
10022 // can infer the correct index if the requested alignment is smaller than
10023 // the base alignment so we can perform the computation on the offset.
10024 if (BaseAlignment.getQuantity() >= Alignment) {
10025 assert(Alignment.getBitWidth() <= 64 &&
10026 "Cannot handle > 64-bit address-space");
10027 uint64_t Alignment64 = Alignment.getZExtValue();
10028 CharUnits NewOffset = CharUnits::fromQuantity(
10029 BuiltinOp == Builtin::BI__builtin_align_down
10030 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
10031 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
10032 Result.adjustOffset(N: NewOffset - Result.Offset);
10033 // TODO: diagnose out-of-bounds values/only allow for arrays?
10034 return true;
10035 }
10036 // Otherwise, we cannot constant-evaluate the result.
10037 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
10038 << Alignment;
10039 return false;
10040 }
10041 case Builtin::BI__builtin_operator_new:
10042 return HandleOperatorNewCall(Info, E, Result);
10043 case Builtin::BI__builtin_launder:
10044 return evaluatePointer(E: E->getArg(Arg: 0), Result);
10045 case Builtin::BIstrchr:
10046 case Builtin::BIwcschr:
10047 case Builtin::BImemchr:
10048 case Builtin::BIwmemchr:
10049 if (Info.getLangOpts().CPlusPlus11)
10050 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
10051 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
10052 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp);
10053 else
10054 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
10055 [[fallthrough]];
10056 case Builtin::BI__builtin_strchr:
10057 case Builtin::BI__builtin_wcschr:
10058 case Builtin::BI__builtin_memchr:
10059 case Builtin::BI__builtin_char_memchr:
10060 case Builtin::BI__builtin_wmemchr: {
10061 if (!Visit(E->getArg(Arg: 0)))
10062 return false;
10063 APSInt Desired;
10064 if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: Desired, Info))
10065 return false;
10066 uint64_t MaxLength = uint64_t(-1);
10067 if (BuiltinOp != Builtin::BIstrchr &&
10068 BuiltinOp != Builtin::BIwcschr &&
10069 BuiltinOp != Builtin::BI__builtin_strchr &&
10070 BuiltinOp != Builtin::BI__builtin_wcschr) {
10071 APSInt N;
10072 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info))
10073 return false;
10074 MaxLength = N.getZExtValue();
10075 }
10076 // We cannot find the value if there are no candidates to match against.
10077 if (MaxLength == 0u)
10078 return ZeroInitialization(E);
10079 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
10080 Result.Designator.Invalid)
10081 return false;
10082 QualType CharTy = Result.Designator.getType(Info.Ctx);
10083 bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
10084 BuiltinOp == Builtin::BI__builtin_memchr;
10085 assert(IsRawByte ||
10086 Info.Ctx.hasSameUnqualifiedType(
10087 CharTy, E->getArg(0)->getType()->getPointeeType()));
10088 // Pointers to const void may point to objects of incomplete type.
10089 if (IsRawByte && CharTy->isIncompleteType()) {
10090 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
10091 return false;
10092 }
10093 // Give up on byte-oriented matching against multibyte elements.
10094 // FIXME: We can compare the bytes in the correct order.
10095 if (IsRawByte && !isOneByteCharacterType(T: CharTy)) {
10096 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
10097 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp) << CharTy;
10098 return false;
10099 }
10100 // Figure out what value we're actually looking for (after converting to
10101 // the corresponding unsigned type if necessary).
10102 uint64_t DesiredVal;
10103 bool StopAtNull = false;
10104 switch (BuiltinOp) {
10105 case Builtin::BIstrchr:
10106 case Builtin::BI__builtin_strchr:
10107 // strchr compares directly to the passed integer, and therefore
10108 // always fails if given an int that is not a char.
10109 if (!APSInt::isSameValue(I1: HandleIntToIntCast(Info, E, CharTy,
10110 E->getArg(Arg: 1)->getType(),
10111 Desired),
10112 I2: Desired))
10113 return ZeroInitialization(E);
10114 StopAtNull = true;
10115 [[fallthrough]];
10116 case Builtin::BImemchr:
10117 case Builtin::BI__builtin_memchr:
10118 case Builtin::BI__builtin_char_memchr:
10119 // memchr compares by converting both sides to unsigned char. That's also
10120 // correct for strchr if we get this far (to cope with plain char being
10121 // unsigned in the strchr case).
10122 DesiredVal = Desired.trunc(width: Info.Ctx.getCharWidth()).getZExtValue();
10123 break;
10124
10125 case Builtin::BIwcschr:
10126 case Builtin::BI__builtin_wcschr:
10127 StopAtNull = true;
10128 [[fallthrough]];
10129 case Builtin::BIwmemchr:
10130 case Builtin::BI__builtin_wmemchr:
10131 // wcschr and wmemchr are given a wchar_t to look for. Just use it.
10132 DesiredVal = Desired.getZExtValue();
10133 break;
10134 }
10135
10136 for (; MaxLength; --MaxLength) {
10137 APValue Char;
10138 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
10139 !Char.isInt())
10140 return false;
10141 if (Char.getInt().getZExtValue() == DesiredVal)
10142 return true;
10143 if (StopAtNull && !Char.getInt())
10144 break;
10145 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
10146 return false;
10147 }
10148 // Not found: return nullptr.
10149 return ZeroInitialization(E);
10150 }
10151
10152 case Builtin::BImemcpy:
10153 case Builtin::BImemmove:
10154 case Builtin::BIwmemcpy:
10155 case Builtin::BIwmemmove:
10156 if (Info.getLangOpts().CPlusPlus11)
10157 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
10158 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
10159 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp);
10160 else
10161 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
10162 [[fallthrough]];
10163 case Builtin::BI__builtin_memcpy:
10164 case Builtin::BI__builtin_memmove:
10165 case Builtin::BI__builtin_wmemcpy:
10166 case Builtin::BI__builtin_wmemmove: {
10167 bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
10168 BuiltinOp == Builtin::BIwmemmove ||
10169 BuiltinOp == Builtin::BI__builtin_wmemcpy ||
10170 BuiltinOp == Builtin::BI__builtin_wmemmove;
10171 bool Move = BuiltinOp == Builtin::BImemmove ||
10172 BuiltinOp == Builtin::BIwmemmove ||
10173 BuiltinOp == Builtin::BI__builtin_memmove ||
10174 BuiltinOp == Builtin::BI__builtin_wmemmove;
10175
10176 // The result of mem* is the first argument.
10177 if (!Visit(E->getArg(Arg: 0)))
10178 return false;
10179 LValue Dest = Result;
10180
10181 LValue Src;
10182 if (!EvaluatePointer(E: E->getArg(Arg: 1), Result&: Src, Info))
10183 return false;
10184
10185 APSInt N;
10186 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info))
10187 return false;
10188 assert(!N.isSigned() && "memcpy and friends take an unsigned size");
10189
10190 // If the size is zero, we treat this as always being a valid no-op.
10191 // (Even if one of the src and dest pointers is null.)
10192 if (!N)
10193 return true;
10194
10195 // Otherwise, if either of the operands is null, we can't proceed. Don't
10196 // try to determine the type of the copied objects, because there aren't
10197 // any.
10198 if (!Src.Base || !Dest.Base) {
10199 APValue Val;
10200 (!Src.Base ? Src : Dest).moveInto(V&: Val);
10201 Info.FFDiag(E, diag::note_constexpr_memcpy_null)
10202 << Move << WChar << !!Src.Base
10203 << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
10204 return false;
10205 }
10206 if (Src.Designator.Invalid || Dest.Designator.Invalid)
10207 return false;
10208
10209 // We require that Src and Dest are both pointers to arrays of
10210 // trivially-copyable type. (For the wide version, the designator will be
10211 // invalid if the designated object is not a wchar_t.)
10212 QualType T = Dest.Designator.getType(Info.Ctx);
10213 QualType SrcT = Src.Designator.getType(Info.Ctx);
10214 if (!Info.Ctx.hasSameUnqualifiedType(T1: T, T2: SrcT)) {
10215 // FIXME: Consider using our bit_cast implementation to support this.
10216 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
10217 return false;
10218 }
10219 if (T->isIncompleteType()) {
10220 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
10221 return false;
10222 }
10223 if (!T.isTriviallyCopyableType(Context: Info.Ctx)) {
10224 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
10225 return false;
10226 }
10227
10228 // Figure out how many T's we're copying.
10229 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
10230 if (TSize == 0)
10231 return false;
10232 if (!WChar) {
10233 uint64_t Remainder;
10234 llvm::APInt OrigN = N;
10235 llvm::APInt::udivrem(LHS: OrigN, RHS: TSize, Quotient&: N, Remainder);
10236 if (Remainder) {
10237 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
10238 << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
10239 << (unsigned)TSize;
10240 return false;
10241 }
10242 }
10243
10244 // Check that the copying will remain within the arrays, just so that we
10245 // can give a more meaningful diagnostic. This implicitly also checks that
10246 // N fits into 64 bits.
10247 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
10248 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
10249 if (N.ugt(RHS: RemainingSrcSize) || N.ugt(RHS: RemainingDestSize)) {
10250 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
10251 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
10252 << toString(N, 10, /*Signed*/false);
10253 return false;
10254 }
10255 uint64_t NElems = N.getZExtValue();
10256 uint64_t NBytes = NElems * TSize;
10257
10258 // Check for overlap.
10259 int Direction = 1;
10260 if (HasSameBase(A: Src, B: Dest)) {
10261 uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
10262 uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
10263 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
10264 // Dest is inside the source region.
10265 if (!Move) {
10266 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
10267 return false;
10268 }
10269 // For memmove and friends, copy backwards.
10270 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
10271 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
10272 return false;
10273 Direction = -1;
10274 } else if (!Move && SrcOffset >= DestOffset &&
10275 SrcOffset - DestOffset < NBytes) {
10276 // Src is inside the destination region for memcpy: invalid.
10277 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
10278 return false;
10279 }
10280 }
10281
10282 while (true) {
10283 APValue Val;
10284 // FIXME: Set WantObjectRepresentation to true if we're copying a
10285 // char-like type?
10286 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
10287 !handleAssignment(Info, E, Dest, T, Val))
10288 return false;
10289 // Do not iterate past the last element; if we're copying backwards, that
10290 // might take us off the start of the array.
10291 if (--NElems == 0)
10292 return true;
10293 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
10294 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
10295 return false;
10296 }
10297 }
10298
10299 default:
10300 return false;
10301 }
10302}
10303
10304static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10305 APValue &Result, const InitListExpr *ILE,
10306 QualType AllocType);
10307static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10308 APValue &Result,
10309 const CXXConstructExpr *CCE,
10310 QualType AllocType);
10311
10312bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
10313 if (!Info.getLangOpts().CPlusPlus20)
10314 Info.CCEDiag(E, diag::note_constexpr_new);
10315
10316 // We cannot speculatively evaluate a delete expression.
10317 if (Info.SpeculativeEvaluationDepth)
10318 return false;
10319
10320 FunctionDecl *OperatorNew = E->getOperatorNew();
10321 QualType AllocType = E->getAllocatedType();
10322 QualType TargetType = AllocType;
10323
10324 bool IsNothrow = false;
10325 bool IsPlacement = false;
10326
10327 if (E->getNumPlacementArgs() == 1 &&
10328 E->getPlacementArg(I: 0)->getType()->isNothrowT()) {
10329 // The only new-placement list we support is of the form (std::nothrow).
10330 //
10331 // FIXME: There is no restriction on this, but it's not clear that any
10332 // other form makes any sense. We get here for cases such as:
10333 //
10334 // new (std::align_val_t{N}) X(int)
10335 //
10336 // (which should presumably be valid only if N is a multiple of
10337 // alignof(int), and in any case can't be deallocated unless N is
10338 // alignof(X) and X has new-extended alignment).
10339 LValue Nothrow;
10340 if (!EvaluateLValue(E: E->getPlacementArg(I: 0), Result&: Nothrow, Info))
10341 return false;
10342 IsNothrow = true;
10343 } else if (OperatorNew->isReservedGlobalPlacementOperator()) {
10344 if (Info.CurrentCall->isStdFunction() || Info.getLangOpts().CPlusPlus26 ||
10345 (Info.CurrentCall->CanEvalMSConstexpr &&
10346 OperatorNew->hasAttr<MSConstexprAttr>())) {
10347 if (!EvaluatePointer(E: E->getPlacementArg(I: 0), Result, Info))
10348 return false;
10349 if (Result.Designator.Invalid)
10350 return false;
10351 TargetType = E->getPlacementArg(I: 0)->getType();
10352 IsPlacement = true;
10353 } else {
10354 Info.FFDiag(E, diag::note_constexpr_new_placement)
10355 << /*C++26 feature*/ 1 << E->getSourceRange();
10356 return false;
10357 }
10358 } else if (E->getNumPlacementArgs()) {
10359 Info.FFDiag(E, diag::note_constexpr_new_placement)
10360 << /*Unsupported*/ 0 << E->getSourceRange();
10361 return false;
10362 } else if (!OperatorNew
10363 ->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) {
10364 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
10365 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
10366 return false;
10367 }
10368
10369 const Expr *Init = E->getInitializer();
10370 const InitListExpr *ResizedArrayILE = nullptr;
10371 const CXXConstructExpr *ResizedArrayCCE = nullptr;
10372 bool ValueInit = false;
10373
10374 if (std::optional<const Expr *> ArraySize = E->getArraySize()) {
10375 const Expr *Stripped = *ArraySize;
10376 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Stripped);
10377 Stripped = ICE->getSubExpr())
10378 if (ICE->getCastKind() != CK_NoOp &&
10379 ICE->getCastKind() != CK_IntegralCast)
10380 break;
10381
10382 llvm::APSInt ArrayBound;
10383 if (!EvaluateInteger(E: Stripped, Result&: ArrayBound, Info))
10384 return false;
10385
10386 // C++ [expr.new]p9:
10387 // The expression is erroneous if:
10388 // -- [...] its value before converting to size_t [or] applying the
10389 // second standard conversion sequence is less than zero
10390 if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
10391 if (IsNothrow)
10392 return ZeroInitialization(E);
10393
10394 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
10395 << ArrayBound << (*ArraySize)->getSourceRange();
10396 return false;
10397 }
10398
10399 // -- its value is such that the size of the allocated object would
10400 // exceed the implementation-defined limit
10401 if (!Info.CheckArraySize(Loc: ArraySize.value()->getExprLoc(),
10402 BitWidth: ConstantArrayType::getNumAddressingBits(
10403 Context: Info.Ctx, ElementType: AllocType, NumElements: ArrayBound),
10404 ElemCount: ArrayBound.getZExtValue(), /*Diag=*/!IsNothrow)) {
10405 if (IsNothrow)
10406 return ZeroInitialization(E);
10407 return false;
10408 }
10409
10410 // -- the new-initializer is a braced-init-list and the number of
10411 // array elements for which initializers are provided [...]
10412 // exceeds the number of elements to initialize
10413 if (!Init) {
10414 // No initialization is performed.
10415 } else if (isa<CXXScalarValueInitExpr>(Val: Init) ||
10416 isa<ImplicitValueInitExpr>(Val: Init)) {
10417 ValueInit = true;
10418 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Val: Init)) {
10419 ResizedArrayCCE = CCE;
10420 } else {
10421 auto *CAT = Info.Ctx.getAsConstantArrayType(T: Init->getType());
10422 assert(CAT && "unexpected type for array initializer");
10423
10424 unsigned Bits =
10425 std::max(a: CAT->getSizeBitWidth(), b: ArrayBound.getBitWidth());
10426 llvm::APInt InitBound = CAT->getSize().zext(width: Bits);
10427 llvm::APInt AllocBound = ArrayBound.zext(width: Bits);
10428 if (InitBound.ugt(RHS: AllocBound)) {
10429 if (IsNothrow)
10430 return ZeroInitialization(E);
10431
10432 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
10433 << toString(AllocBound, 10, /*Signed=*/false)
10434 << toString(InitBound, 10, /*Signed=*/false)
10435 << (*ArraySize)->getSourceRange();
10436 return false;
10437 }
10438
10439 // If the sizes differ, we must have an initializer list, and we need
10440 // special handling for this case when we initialize.
10441 if (InitBound != AllocBound)
10442 ResizedArrayILE = cast<InitListExpr>(Val: Init);
10443 }
10444
10445 AllocType = Info.Ctx.getConstantArrayType(EltTy: AllocType, ArySize: ArrayBound, SizeExpr: nullptr,
10446 ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
10447 } else {
10448 assert(!AllocType->isArrayType() &&
10449 "array allocation with non-array new");
10450 }
10451
10452 APValue *Val;
10453 if (IsPlacement) {
10454 AccessKinds AK = AK_Construct;
10455 struct FindObjectHandler {
10456 EvalInfo &Info;
10457 const Expr *E;
10458 QualType AllocType;
10459 const AccessKinds AccessKind;
10460 APValue *Value;
10461
10462 typedef bool result_type;
10463 bool failed() { return false; }
10464 bool checkConst(QualType QT) {
10465 if (QT.isConstQualified()) {
10466 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
10467 return false;
10468 }
10469 return true;
10470 }
10471 bool found(APValue &Subobj, QualType SubobjType) {
10472 if (!checkConst(QT: SubobjType))
10473 return false;
10474 // FIXME: Reject the cases where [basic.life]p8 would not permit the
10475 // old name of the object to be used to name the new object.
10476 unsigned SubobjectSize = 1;
10477 unsigned AllocSize = 1;
10478 if (auto *CAT = dyn_cast<ConstantArrayType>(AllocType))
10479 AllocSize = CAT->getZExtSize();
10480 if (auto *CAT = dyn_cast<ConstantArrayType>(Val&: SubobjType))
10481 SubobjectSize = CAT->getZExtSize();
10482 if (SubobjectSize < AllocSize ||
10483 !Info.Ctx.hasSimilarType(Info.Ctx.getBaseElementType(SubobjType),
10484 Info.Ctx.getBaseElementType(AllocType))) {
10485 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type)
10486 << SubobjType << AllocType;
10487 return false;
10488 }
10489 Value = &Subobj;
10490 return true;
10491 }
10492 bool found(APSInt &Value, QualType SubobjType) {
10493 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
10494 return false;
10495 }
10496 bool found(APFloat &Value, QualType SubobjType) {
10497 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
10498 return false;
10499 }
10500 } Handler = {Info, E, AllocType, AK, nullptr};
10501
10502 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
10503 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
10504 return false;
10505
10506 Val = Handler.Value;
10507
10508 // [basic.life]p1:
10509 // The lifetime of an object o of type T ends when [...] the storage
10510 // which the object occupies is [...] reused by an object that is not
10511 // nested within o (6.6.2).
10512 *Val = APValue();
10513 } else {
10514 // Perform the allocation and obtain a pointer to the resulting object.
10515 Val = Info.createHeapAlloc(E, AllocType, Result);
10516 if (!Val)
10517 return false;
10518 }
10519
10520 if (ValueInit) {
10521 ImplicitValueInitExpr VIE(AllocType);
10522 if (!EvaluateInPlace(*Val, Info, Result, &VIE))
10523 return false;
10524 } else if (ResizedArrayILE) {
10525 if (!EvaluateArrayNewInitList(Info, This&: Result, Result&: *Val, ILE: ResizedArrayILE,
10526 AllocType))
10527 return false;
10528 } else if (ResizedArrayCCE) {
10529 if (!EvaluateArrayNewConstructExpr(Info, This&: Result, Result&: *Val, CCE: ResizedArrayCCE,
10530 AllocType))
10531 return false;
10532 } else if (Init) {
10533 if (!EvaluateInPlace(Result&: *Val, Info, This: Result, E: Init))
10534 return false;
10535 } else if (!handleDefaultInitValue(T: AllocType, Result&: *Val)) {
10536 return false;
10537 }
10538
10539 // Array new returns a pointer to the first element, not a pointer to the
10540 // array.
10541 if (auto *AT = AllocType->getAsArrayTypeUnsafe())
10542 Result.addArray(Info, E, CAT: cast<ConstantArrayType>(AT));
10543
10544 return true;
10545}
10546//===----------------------------------------------------------------------===//
10547// Member Pointer Evaluation
10548//===----------------------------------------------------------------------===//
10549
10550namespace {
10551class MemberPointerExprEvaluator
10552 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
10553 MemberPtr &Result;
10554
10555 bool Success(const ValueDecl *D) {
10556 Result = MemberPtr(D);
10557 return true;
10558 }
10559public:
10560
10561 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
10562 : ExprEvaluatorBaseTy(Info), Result(Result) {}
10563
10564 bool Success(const APValue &V, const Expr *E) {
10565 Result.setFrom(V);
10566 return true;
10567 }
10568 bool ZeroInitialization(const Expr *E) {
10569 return Success(D: (const ValueDecl*)nullptr);
10570 }
10571
10572 bool VisitCastExpr(const CastExpr *E);
10573 bool VisitUnaryAddrOf(const UnaryOperator *E);
10574};
10575} // end anonymous namespace
10576
10577static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
10578 EvalInfo &Info) {
10579 assert(!E->isValueDependent());
10580 assert(E->isPRValue() && E->getType()->isMemberPointerType());
10581 return MemberPointerExprEvaluator(Info, Result).Visit(E);
10582}
10583
10584bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
10585 switch (E->getCastKind()) {
10586 default:
10587 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10588
10589 case CK_NullToMemberPointer:
10590 VisitIgnoredValue(E: E->getSubExpr());
10591 return ZeroInitialization(E);
10592
10593 case CK_BaseToDerivedMemberPointer: {
10594 if (!Visit(E->getSubExpr()))
10595 return false;
10596 if (E->path_empty())
10597 return true;
10598 // Base-to-derived member pointer casts store the path in derived-to-base
10599 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
10600 // the wrong end of the derived->base arc, so stagger the path by one class.
10601 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
10602 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
10603 PathI != PathE; ++PathI) {
10604 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10605 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
10606 if (!Result.castToDerived(Derived))
10607 return Error(E);
10608 }
10609 if (!Result.castToDerived(Derived: E->getType()
10610 ->castAs<MemberPointerType>()
10611 ->getMostRecentCXXRecordDecl()))
10612 return Error(E);
10613 return true;
10614 }
10615
10616 case CK_DerivedToBaseMemberPointer:
10617 if (!Visit(E->getSubExpr()))
10618 return false;
10619 for (CastExpr::path_const_iterator PathI = E->path_begin(),
10620 PathE = E->path_end(); PathI != PathE; ++PathI) {
10621 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10622 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10623 if (!Result.castToBase(Base))
10624 return Error(E);
10625 }
10626 return true;
10627 }
10628}
10629
10630bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
10631 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
10632 // member can be formed.
10633 return Success(D: cast<DeclRefExpr>(Val: E->getSubExpr())->getDecl());
10634}
10635
10636//===----------------------------------------------------------------------===//
10637// Record Evaluation
10638//===----------------------------------------------------------------------===//
10639
10640namespace {
10641 class RecordExprEvaluator
10642 : public ExprEvaluatorBase<RecordExprEvaluator> {
10643 const LValue &This;
10644 APValue &Result;
10645 public:
10646
10647 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
10648 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
10649
10650 bool Success(const APValue &V, const Expr *E) {
10651 Result = V;
10652 return true;
10653 }
10654 bool ZeroInitialization(const Expr *E) {
10655 return ZeroInitialization(E, T: E->getType());
10656 }
10657 bool ZeroInitialization(const Expr *E, QualType T);
10658
10659 bool VisitCallExpr(const CallExpr *E) {
10660 return handleCallExpr(E, Result, ResultSlot: &This);
10661 }
10662 bool VisitCastExpr(const CastExpr *E);
10663 bool VisitInitListExpr(const InitListExpr *E);
10664 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10665 return VisitCXXConstructExpr(E, E->getType());
10666 }
10667 bool VisitLambdaExpr(const LambdaExpr *E);
10668 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
10669 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
10670 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
10671 bool VisitBinCmp(const BinaryOperator *E);
10672 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
10673 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
10674 ArrayRef<Expr *> Args);
10675 };
10676}
10677
10678/// Perform zero-initialization on an object of non-union class type.
10679/// C++11 [dcl.init]p5:
10680/// To zero-initialize an object or reference of type T means:
10681/// [...]
10682/// -- if T is a (possibly cv-qualified) non-union class type,
10683/// each non-static data member and each base-class subobject is
10684/// zero-initialized
10685static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
10686 const RecordDecl *RD,
10687 const LValue &This, APValue &Result) {
10688 assert(!RD->isUnion() && "Expected non-union class type");
10689 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD);
10690 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
10691 std::distance(first: RD->field_begin(), last: RD->field_end()));
10692
10693 if (RD->isInvalidDecl()) return false;
10694 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
10695
10696 if (CD) {
10697 unsigned Index = 0;
10698 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
10699 End = CD->bases_end(); I != End; ++I, ++Index) {
10700 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
10701 LValue Subobject = This;
10702 if (!HandleLValueDirectBase(Info, E, Obj&: Subobject, Derived: CD, Base, RL: &Layout))
10703 return false;
10704 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
10705 Result.getStructBase(i: Index)))
10706 return false;
10707 }
10708 }
10709
10710 for (const auto *I : RD->fields()) {
10711 // -- if T is a reference type, no initialization is performed.
10712 if (I->isUnnamedBitField() || I->getType()->isReferenceType())
10713 continue;
10714
10715 LValue Subobject = This;
10716 if (!HandleLValueMember(Info, E, LVal&: Subobject, FD: I, RL: &Layout))
10717 return false;
10718
10719 ImplicitValueInitExpr VIE(I->getType());
10720 if (!EvaluateInPlace(
10721 Result.getStructField(i: I->getFieldIndex()), Info, Subobject, &VIE))
10722 return false;
10723 }
10724
10725 return true;
10726}
10727
10728bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
10729 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
10730 if (RD->isInvalidDecl()) return false;
10731 if (RD->isUnion()) {
10732 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
10733 // object's first non-static named data member is zero-initialized
10734 RecordDecl::field_iterator I = RD->field_begin();
10735 while (I != RD->field_end() && (*I)->isUnnamedBitField())
10736 ++I;
10737 if (I == RD->field_end()) {
10738 Result = APValue((const FieldDecl*)nullptr);
10739 return true;
10740 }
10741
10742 LValue Subobject = This;
10743 if (!HandleLValueMember(Info, E, LVal&: Subobject, FD: *I))
10744 return false;
10745 Result = APValue(*I);
10746 ImplicitValueInitExpr VIE(I->getType());
10747 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
10748 }
10749
10750 if (isa<CXXRecordDecl>(Val: RD) && cast<CXXRecordDecl>(Val: RD)->getNumVBases()) {
10751 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
10752 return false;
10753 }
10754
10755 return HandleClassZeroInitialization(Info, E, RD, This, Result);
10756}
10757
10758bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
10759 switch (E->getCastKind()) {
10760 default:
10761 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10762
10763 case CK_ConstructorConversion:
10764 return Visit(E->getSubExpr());
10765
10766 case CK_DerivedToBase:
10767 case CK_UncheckedDerivedToBase: {
10768 APValue DerivedObject;
10769 if (!Evaluate(Result&: DerivedObject, Info, E: E->getSubExpr()))
10770 return false;
10771 if (!DerivedObject.isStruct())
10772 return Error(E: E->getSubExpr());
10773
10774 // Derived-to-base rvalue conversion: just slice off the derived part.
10775 APValue *Value = &DerivedObject;
10776 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
10777 for (CastExpr::path_const_iterator PathI = E->path_begin(),
10778 PathE = E->path_end(); PathI != PathE; ++PathI) {
10779 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
10780 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10781 Value = &Value->getStructBase(i: getBaseIndex(Derived: RD, Base));
10782 RD = Base;
10783 }
10784 Result = *Value;
10785 return true;
10786 }
10787 }
10788}
10789
10790bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10791 if (E->isTransparent())
10792 return Visit(E->getInit(Init: 0));
10793 return VisitCXXParenListOrInitListExpr(E, E->inits());
10794}
10795
10796bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr(
10797 const Expr *ExprToVisit, ArrayRef<Expr *> Args) {
10798 const RecordDecl *RD =
10799 ExprToVisit->getType()->castAs<RecordType>()->getDecl();
10800 if (RD->isInvalidDecl()) return false;
10801 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(D: RD);
10802 auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD);
10803
10804 EvalInfo::EvaluatingConstructorRAII EvalObj(
10805 Info,
10806 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
10807 CXXRD && CXXRD->getNumBases());
10808
10809 if (RD->isUnion()) {
10810 const FieldDecl *Field;
10811 if (auto *ILE = dyn_cast<InitListExpr>(Val: ExprToVisit)) {
10812 Field = ILE->getInitializedFieldInUnion();
10813 } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(Val: ExprToVisit)) {
10814 Field = PLIE->getInitializedFieldInUnion();
10815 } else {
10816 llvm_unreachable(
10817 "Expression is neither an init list nor a C++ paren list");
10818 }
10819
10820 Result = APValue(Field);
10821 if (!Field)
10822 return true;
10823
10824 // If the initializer list for a union does not contain any elements, the
10825 // first element of the union is value-initialized.
10826 // FIXME: The element should be initialized from an initializer list.
10827 // Is this difference ever observable for initializer lists which
10828 // we don't build?
10829 ImplicitValueInitExpr VIE(Field->getType());
10830 const Expr *InitExpr = Args.empty() ? &VIE : Args[0];
10831
10832 LValue Subobject = This;
10833 if (!HandleLValueMember(Info, E: InitExpr, LVal&: Subobject, FD: Field, RL: &Layout))
10834 return false;
10835
10836 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10837 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10838 isa<CXXDefaultInitExpr>(Val: InitExpr));
10839
10840 if (EvaluateInPlace(Result&: Result.getUnionValue(), Info, This: Subobject, E: InitExpr)) {
10841 if (Field->isBitField())
10842 return truncateBitfieldValue(Info, E: InitExpr, Value&: Result.getUnionValue(),
10843 FD: Field);
10844 return true;
10845 }
10846
10847 return false;
10848 }
10849
10850 if (!Result.hasValue())
10851 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
10852 std::distance(first: RD->field_begin(), last: RD->field_end()));
10853 unsigned ElementNo = 0;
10854 bool Success = true;
10855
10856 // Initialize base classes.
10857 if (CXXRD && CXXRD->getNumBases()) {
10858 for (const auto &Base : CXXRD->bases()) {
10859 assert(ElementNo < Args.size() && "missing init for base class");
10860 const Expr *Init = Args[ElementNo];
10861
10862 LValue Subobject = This;
10863 if (!HandleLValueBase(Info, E: Init, Obj&: Subobject, DerivedDecl: CXXRD, Base: &Base))
10864 return false;
10865
10866 APValue &FieldVal = Result.getStructBase(i: ElementNo);
10867 if (!EvaluateInPlace(Result&: FieldVal, Info, This: Subobject, E: Init)) {
10868 if (!Info.noteFailure())
10869 return false;
10870 Success = false;
10871 }
10872 ++ElementNo;
10873 }
10874
10875 EvalObj.finishedConstructingBases();
10876 }
10877
10878 // Initialize members.
10879 for (const auto *Field : RD->fields()) {
10880 // Anonymous bit-fields are not considered members of the class for
10881 // purposes of aggregate initialization.
10882 if (Field->isUnnamedBitField())
10883 continue;
10884
10885 LValue Subobject = This;
10886
10887 bool HaveInit = ElementNo < Args.size();
10888
10889 // FIXME: Diagnostics here should point to the end of the initializer
10890 // list, not the start.
10891 if (!HandleLValueMember(Info, E: HaveInit ? Args[ElementNo] : ExprToVisit,
10892 LVal&: Subobject, FD: Field, RL: &Layout))
10893 return false;
10894
10895 // Perform an implicit value-initialization for members beyond the end of
10896 // the initializer list.
10897 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
10898 const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE;
10899
10900 if (Field->getType()->isIncompleteArrayType()) {
10901 if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) {
10902 if (!CAT->isZeroSize()) {
10903 // Bail out for now. This might sort of "work", but the rest of the
10904 // code isn't really prepared to handle it.
10905 Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array);
10906 return false;
10907 }
10908 }
10909 }
10910
10911 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10912 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10913 isa<CXXDefaultInitExpr>(Val: Init));
10914
10915 APValue &FieldVal = Result.getStructField(i: Field->getFieldIndex());
10916 if (!EvaluateInPlace(Result&: FieldVal, Info, This: Subobject, E: Init) ||
10917 (Field->isBitField() && !truncateBitfieldValue(Info, E: Init,
10918 Value&: FieldVal, FD: Field))) {
10919 if (!Info.noteFailure())
10920 return false;
10921 Success = false;
10922 }
10923 }
10924
10925 EvalObj.finishedConstructingFields();
10926
10927 return Success;
10928}
10929
10930bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10931 QualType T) {
10932 // Note that E's type is not necessarily the type of our class here; we might
10933 // be initializing an array element instead.
10934 const CXXConstructorDecl *FD = E->getConstructor();
10935 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
10936
10937 bool ZeroInit = E->requiresZeroInitialization();
10938 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
10939 // If we've already performed zero-initialization, we're already done.
10940 if (Result.hasValue())
10941 return true;
10942
10943 if (ZeroInit)
10944 return ZeroInitialization(E, T);
10945
10946 return handleDefaultInitValue(T, Result);
10947 }
10948
10949 const FunctionDecl *Definition = nullptr;
10950 auto Body = FD->getBody(Definition);
10951
10952 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10953 return false;
10954
10955 // Avoid materializing a temporary for an elidable copy/move constructor.
10956 if (E->isElidable() && !ZeroInit) {
10957 // FIXME: This only handles the simplest case, where the source object
10958 // is passed directly as the first argument to the constructor.
10959 // This should also handle stepping though implicit casts and
10960 // and conversion sequences which involve two steps, with a
10961 // conversion operator followed by a converting constructor.
10962 const Expr *SrcObj = E->getArg(Arg: 0);
10963 assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
10964 assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
10965 if (const MaterializeTemporaryExpr *ME =
10966 dyn_cast<MaterializeTemporaryExpr>(Val: SrcObj))
10967 return Visit(ME->getSubExpr());
10968 }
10969
10970 if (ZeroInit && !ZeroInitialization(E, T))
10971 return false;
10972
10973 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
10974 return HandleConstructorCall(E, This, Args,
10975 cast<CXXConstructorDecl>(Val: Definition), Info,
10976 Result);
10977}
10978
10979bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10980 const CXXInheritedCtorInitExpr *E) {
10981 if (!Info.CurrentCall) {
10982 assert(Info.checkingPotentialConstantExpression());
10983 return false;
10984 }
10985
10986 const CXXConstructorDecl *FD = E->getConstructor();
10987 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
10988 return false;
10989
10990 const FunctionDecl *Definition = nullptr;
10991 auto Body = FD->getBody(Definition);
10992
10993 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10994 return false;
10995
10996 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10997 cast<CXXConstructorDecl>(Val: Definition), Info,
10998 Result);
10999}
11000
11001bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
11002 const CXXStdInitializerListExpr *E) {
11003 const ConstantArrayType *ArrayType =
11004 Info.Ctx.getAsConstantArrayType(T: E->getSubExpr()->getType());
11005
11006 LValue Array;
11007 if (!EvaluateLValue(E: E->getSubExpr(), Result&: Array, Info))
11008 return false;
11009
11010 assert(ArrayType && "unexpected type for array initializer");
11011
11012 // Get a pointer to the first element of the array.
11013 Array.addArray(Info, E, ArrayType);
11014
11015 // FIXME: What if the initializer_list type has base classes, etc?
11016 Result = APValue(APValue::UninitStruct(), 0, 2);
11017 Array.moveInto(V&: Result.getStructField(i: 0));
11018
11019 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
11020 RecordDecl::field_iterator Field = Record->field_begin();
11021 assert(Field != Record->field_end() &&
11022 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
11023 ArrayType->getElementType()) &&
11024 "Expected std::initializer_list first field to be const E *");
11025 ++Field;
11026 assert(Field != Record->field_end() &&
11027 "Expected std::initializer_list to have two fields");
11028
11029 if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) {
11030 // Length.
11031 Result.getStructField(i: 1) = APValue(APSInt(ArrayType->getSize()));
11032 } else {
11033 // End pointer.
11034 assert(Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
11035 ArrayType->getElementType()) &&
11036 "Expected std::initializer_list second field to be const E *");
11037 if (!HandleLValueArrayAdjustment(Info, E, Array,
11038 ArrayType->getElementType(),
11039 ArrayType->getZExtSize()))
11040 return false;
11041 Array.moveInto(V&: Result.getStructField(i: 1));
11042 }
11043
11044 assert(++Field == Record->field_end() &&
11045 "Expected std::initializer_list to only have two fields");
11046
11047 return true;
11048}
11049
11050bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
11051 const CXXRecordDecl *ClosureClass = E->getLambdaClass();
11052 if (ClosureClass->isInvalidDecl())
11053 return false;
11054
11055 const size_t NumFields =
11056 std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
11057
11058 assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
11059 E->capture_init_end()) &&
11060 "The number of lambda capture initializers should equal the number of "
11061 "fields within the closure type");
11062
11063 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
11064 // Iterate through all the lambda's closure object's fields and initialize
11065 // them.
11066 auto *CaptureInitIt = E->capture_init_begin();
11067 bool Success = true;
11068 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
11069 for (const auto *Field : ClosureClass->fields()) {
11070 assert(CaptureInitIt != E->capture_init_end());
11071 // Get the initializer for this field
11072 Expr *const CurFieldInit = *CaptureInitIt++;
11073
11074 // If there is no initializer, either this is a VLA or an error has
11075 // occurred.
11076 if (!CurFieldInit || CurFieldInit->containsErrors())
11077 return Error(E);
11078
11079 LValue Subobject = This;
11080
11081 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
11082 return false;
11083
11084 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
11085 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
11086 if (!Info.keepEvaluatingAfterFailure())
11087 return false;
11088 Success = false;
11089 }
11090 }
11091 return Success;
11092}
11093
11094static bool EvaluateRecord(const Expr *E, const LValue &This,
11095 APValue &Result, EvalInfo &Info) {
11096 assert(!E->isValueDependent());
11097 assert(E->isPRValue() && E->getType()->isRecordType() &&
11098 "can't evaluate expression as a record rvalue");
11099 return RecordExprEvaluator(Info, This, Result).Visit(E);
11100}
11101
11102//===----------------------------------------------------------------------===//
11103// Temporary Evaluation
11104//
11105// Temporaries are represented in the AST as rvalues, but generally behave like
11106// lvalues. The full-object of which the temporary is a subobject is implicitly
11107// materialized so that a reference can bind to it.
11108//===----------------------------------------------------------------------===//
11109namespace {
11110class TemporaryExprEvaluator
11111 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
11112public:
11113 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
11114 LValueExprEvaluatorBaseTy(Info, Result, false) {}
11115
11116 /// Visit an expression which constructs the value of this temporary.
11117 bool VisitConstructExpr(const Expr *E) {
11118 APValue &Value = Info.CurrentCall->createTemporary(
11119 Key: E, T: E->getType(), Scope: ScopeKind::FullExpression, LV&: Result);
11120 return EvaluateInPlace(Result&: Value, Info, This: Result, E);
11121 }
11122
11123 bool VisitCastExpr(const CastExpr *E) {
11124 switch (E->getCastKind()) {
11125 default:
11126 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
11127
11128 case CK_ConstructorConversion:
11129 return VisitConstructExpr(E: E->getSubExpr());
11130 }
11131 }
11132 bool VisitInitListExpr(const InitListExpr *E) {
11133 return VisitConstructExpr(E);
11134 }
11135 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
11136 return VisitConstructExpr(E);
11137 }
11138 bool VisitCallExpr(const CallExpr *E) {
11139 return VisitConstructExpr(E);
11140 }
11141 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
11142 return VisitConstructExpr(E);
11143 }
11144 bool VisitLambdaExpr(const LambdaExpr *E) {
11145 return VisitConstructExpr(E);
11146 }
11147};
11148} // end anonymous namespace
11149
11150/// Evaluate an expression of record type as a temporary.
11151static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
11152 assert(!E->isValueDependent());
11153 assert(E->isPRValue() && E->getType()->isRecordType());
11154 return TemporaryExprEvaluator(Info, Result).Visit(E);
11155}
11156
11157//===----------------------------------------------------------------------===//
11158// Vector Evaluation
11159//===----------------------------------------------------------------------===//
11160
11161namespace {
11162 class VectorExprEvaluator
11163 : public ExprEvaluatorBase<VectorExprEvaluator> {
11164 APValue &Result;
11165 public:
11166
11167 VectorExprEvaluator(EvalInfo &info, APValue &Result)
11168 : ExprEvaluatorBaseTy(info), Result(Result) {}
11169
11170 bool Success(ArrayRef<APValue> V, const Expr *E) {
11171 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
11172 // FIXME: remove this APValue copy.
11173 Result = APValue(V.data(), V.size());
11174 return true;
11175 }
11176 bool Success(const APValue &V, const Expr *E) {
11177 assert(V.isVector());
11178 Result = V;
11179 return true;
11180 }
11181 bool ZeroInitialization(const Expr *E);
11182
11183 bool VisitUnaryReal(const UnaryOperator *E)
11184 { return Visit(E->getSubExpr()); }
11185 bool VisitCastExpr(const CastExpr* E);
11186 bool VisitInitListExpr(const InitListExpr *E);
11187 bool VisitUnaryImag(const UnaryOperator *E);
11188 bool VisitBinaryOperator(const BinaryOperator *E);
11189 bool VisitUnaryOperator(const UnaryOperator *E);
11190 bool VisitCallExpr(const CallExpr *E);
11191 bool VisitConvertVectorExpr(const ConvertVectorExpr *E);
11192 bool VisitShuffleVectorExpr(const ShuffleVectorExpr *E);
11193
11194 // FIXME: Missing: conditional operator (for GNU
11195 // conditional select), ExtVectorElementExpr
11196 };
11197} // end anonymous namespace
11198
11199static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
11200 assert(E->isPRValue() && E->getType()->isVectorType() &&
11201 "not a vector prvalue");
11202 return VectorExprEvaluator(Info, Result).Visit(E);
11203}
11204
11205bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
11206 const VectorType *VTy = E->getType()->castAs<VectorType>();
11207 unsigned NElts = VTy->getNumElements();
11208
11209 const Expr *SE = E->getSubExpr();
11210 QualType SETy = SE->getType();
11211
11212 switch (E->getCastKind()) {
11213 case CK_VectorSplat: {
11214 APValue Val = APValue();
11215 if (SETy->isIntegerType()) {
11216 APSInt IntResult;
11217 if (!EvaluateInteger(E: SE, Result&: IntResult, Info))
11218 return false;
11219 Val = APValue(std::move(IntResult));
11220 } else if (SETy->isRealFloatingType()) {
11221 APFloat FloatResult(0.0);
11222 if (!EvaluateFloat(E: SE, Result&: FloatResult, Info))
11223 return false;
11224 Val = APValue(std::move(FloatResult));
11225 } else {
11226 return Error(E);
11227 }
11228
11229 // Splat and create vector APValue.
11230 SmallVector<APValue, 4> Elts(NElts, Val);
11231 return Success(Elts, E);
11232 }
11233 case CK_BitCast: {
11234 APValue SVal;
11235 if (!Evaluate(Result&: SVal, Info, E: SE))
11236 return false;
11237
11238 if (!SVal.isInt() && !SVal.isFloat() && !SVal.isVector()) {
11239 // Give up if the input isn't an int, float, or vector. For example, we
11240 // reject "(v4i16)(intptr_t)&a".
11241 Info.FFDiag(E, diag::note_constexpr_invalid_cast)
11242 << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret
11243 << Info.Ctx.getLangOpts().CPlusPlus;
11244 return false;
11245 }
11246
11247 if (!handleRValueToRValueBitCast(Info, DestValue&: Result, SourceRValue: SVal, BCE: E))
11248 return false;
11249
11250 return true;
11251 }
11252 case CK_HLSLVectorTruncation: {
11253 APValue Val;
11254 SmallVector<APValue, 4> Elements;
11255 if (!EvaluateVector(E: SE, Result&: Val, Info))
11256 return Error(E);
11257 for (unsigned I = 0; I < NElts; I++)
11258 Elements.push_back(Elt: Val.getVectorElt(I));
11259 return Success(Elements, E);
11260 }
11261 default:
11262 return ExprEvaluatorBaseTy::VisitCastExpr(E);
11263 }
11264}
11265
11266bool
11267VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
11268 const VectorType *VT = E->getType()->castAs<VectorType>();
11269 unsigned NumInits = E->getNumInits();
11270 unsigned NumElements = VT->getNumElements();
11271
11272 QualType EltTy = VT->getElementType();
11273 SmallVector<APValue, 4> Elements;
11274
11275 // MFloat8 type doesn't have constants and thus constant folding
11276 // is impossible.
11277 if (EltTy->isMFloat8Type())
11278 return false;
11279
11280 // The number of initializers can be less than the number of
11281 // vector elements. For OpenCL, this can be due to nested vector
11282 // initialization. For GCC compatibility, missing trailing elements
11283 // should be initialized with zeroes.
11284 unsigned CountInits = 0, CountElts = 0;
11285 while (CountElts < NumElements) {
11286 // Handle nested vector initialization.
11287 if (CountInits < NumInits
11288 && E->getInit(Init: CountInits)->getType()->isVectorType()) {
11289 APValue v;
11290 if (!EvaluateVector(E: E->getInit(Init: CountInits), Result&: v, Info))
11291 return Error(E);
11292 unsigned vlen = v.getVectorLength();
11293 for (unsigned j = 0; j < vlen; j++)
11294 Elements.push_back(Elt: v.getVectorElt(I: j));
11295 CountElts += vlen;
11296 } else if (EltTy->isIntegerType()) {
11297 llvm::APSInt sInt(32);
11298 if (CountInits < NumInits) {
11299 if (!EvaluateInteger(E: E->getInit(Init: CountInits), Result&: sInt, Info))
11300 return false;
11301 } else // trailing integer zero.
11302 sInt = Info.Ctx.MakeIntValue(Value: 0, Type: EltTy);
11303 Elements.push_back(Elt: APValue(sInt));
11304 CountElts++;
11305 } else {
11306 llvm::APFloat f(0.0);
11307 if (CountInits < NumInits) {
11308 if (!EvaluateFloat(E: E->getInit(Init: CountInits), Result&: f, Info))
11309 return false;
11310 } else // trailing float zero.
11311 f = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: EltTy));
11312 Elements.push_back(Elt: APValue(f));
11313 CountElts++;
11314 }
11315 CountInits++;
11316 }
11317 return Success(Elements, E);
11318}
11319
11320bool
11321VectorExprEvaluator::ZeroInitialization(const Expr *E) {
11322 const auto *VT = E->getType()->castAs<VectorType>();
11323 QualType EltTy = VT->getElementType();
11324 APValue ZeroElement;
11325 if (EltTy->isIntegerType())
11326 ZeroElement = APValue(Info.Ctx.MakeIntValue(Value: 0, Type: EltTy));
11327 else
11328 ZeroElement =
11329 APValue(APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: EltTy)));
11330
11331 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
11332 return Success(V: Elements, E);
11333}
11334
11335bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
11336 VisitIgnoredValue(E: E->getSubExpr());
11337 return ZeroInitialization(E);
11338}
11339
11340bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
11341 BinaryOperatorKind Op = E->getOpcode();
11342 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
11343 "Operation not supported on vector types");
11344
11345 if (Op == BO_Comma)
11346 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
11347
11348 Expr *LHS = E->getLHS();
11349 Expr *RHS = E->getRHS();
11350
11351 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
11352 "Must both be vector types");
11353 // Checking JUST the types are the same would be fine, except shifts don't
11354 // need to have their types be the same (since you always shift by an int).
11355 assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
11356 E->getType()->castAs<VectorType>()->getNumElements() &&
11357 RHS->getType()->castAs<VectorType>()->getNumElements() ==
11358 E->getType()->castAs<VectorType>()->getNumElements() &&
11359 "All operands must be the same size.");
11360
11361 APValue LHSValue;
11362 APValue RHSValue;
11363 bool LHSOK = Evaluate(Result&: LHSValue, Info, E: LHS);
11364 if (!LHSOK && !Info.noteFailure())
11365 return false;
11366 if (!Evaluate(Result&: RHSValue, Info, E: RHS) || !LHSOK)
11367 return false;
11368
11369 if (!handleVectorVectorBinOp(Info, E, Opcode: Op, LHSValue, RHSValue))
11370 return false;
11371
11372 return Success(LHSValue, E);
11373}
11374
11375static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
11376 QualType ResultTy,
11377 UnaryOperatorKind Op,
11378 APValue Elt) {
11379 switch (Op) {
11380 case UO_Plus:
11381 // Nothing to do here.
11382 return Elt;
11383 case UO_Minus:
11384 if (Elt.getKind() == APValue::Int) {
11385 Elt.getInt().negate();
11386 } else {
11387 assert(Elt.getKind() == APValue::Float &&
11388 "Vector can only be int or float type");
11389 Elt.getFloat().changeSign();
11390 }
11391 return Elt;
11392 case UO_Not:
11393 // This is only valid for integral types anyway, so we don't have to handle
11394 // float here.
11395 assert(Elt.getKind() == APValue::Int &&
11396 "Vector operator ~ can only be int");
11397 Elt.getInt().flipAllBits();
11398 return Elt;
11399 case UO_LNot: {
11400 if (Elt.getKind() == APValue::Int) {
11401 Elt.getInt() = !Elt.getInt();
11402 // operator ! on vectors returns -1 for 'truth', so negate it.
11403 Elt.getInt().negate();
11404 return Elt;
11405 }
11406 assert(Elt.getKind() == APValue::Float &&
11407 "Vector can only be int or float type");
11408 // Float types result in an int of the same size, but -1 for true, or 0 for
11409 // false.
11410 APSInt EltResult{Ctx.getIntWidth(T: ResultTy),
11411 ResultTy->isUnsignedIntegerType()};
11412 if (Elt.getFloat().isZero())
11413 EltResult.setAllBits();
11414 else
11415 EltResult.clearAllBits();
11416
11417 return APValue{EltResult};
11418 }
11419 default:
11420 // FIXME: Implement the rest of the unary operators.
11421 return std::nullopt;
11422 }
11423}
11424
11425bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
11426 Expr *SubExpr = E->getSubExpr();
11427 const auto *VD = SubExpr->getType()->castAs<VectorType>();
11428 // This result element type differs in the case of negating a floating point
11429 // vector, since the result type is the a vector of the equivilant sized
11430 // integer.
11431 const QualType ResultEltTy = VD->getElementType();
11432 UnaryOperatorKind Op = E->getOpcode();
11433
11434 APValue SubExprValue;
11435 if (!Evaluate(Result&: SubExprValue, Info, E: SubExpr))
11436 return false;
11437
11438 // FIXME: This vector evaluator someday needs to be changed to be LValue
11439 // aware/keep LValue information around, rather than dealing with just vector
11440 // types directly. Until then, we cannot handle cases where the operand to
11441 // these unary operators is an LValue. The only case I've been able to see
11442 // cause this is operator++ assigning to a member expression (only valid in
11443 // altivec compilations) in C mode, so this shouldn't limit us too much.
11444 if (SubExprValue.isLValue())
11445 return false;
11446
11447 assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
11448 "Vector length doesn't match type?");
11449
11450 SmallVector<APValue, 4> ResultElements;
11451 for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
11452 std::optional<APValue> Elt = handleVectorUnaryOperator(
11453 Ctx&: Info.Ctx, ResultTy: ResultEltTy, Op, Elt: SubExprValue.getVectorElt(I: EltNum));
11454 if (!Elt)
11455 return false;
11456 ResultElements.push_back(Elt: *Elt);
11457 }
11458 return Success(APValue(ResultElements.data(), ResultElements.size()), E);
11459}
11460
11461static bool handleVectorElementCast(EvalInfo &Info, const FPOptions FPO,
11462 const Expr *E, QualType SourceTy,
11463 QualType DestTy, APValue const &Original,
11464 APValue &Result) {
11465 if (SourceTy->isIntegerType()) {
11466 if (DestTy->isRealFloatingType()) {
11467 Result = APValue(APFloat(0.0));
11468 return HandleIntToFloatCast(Info, E, FPO, SrcType: SourceTy, Value: Original.getInt(),
11469 DestType: DestTy, Result&: Result.getFloat());
11470 }
11471 if (DestTy->isIntegerType()) {
11472 Result = APValue(
11473 HandleIntToIntCast(Info, E, DestType: DestTy, SrcType: SourceTy, Value: Original.getInt()));
11474 return true;
11475 }
11476 } else if (SourceTy->isRealFloatingType()) {
11477 if (DestTy->isRealFloatingType()) {
11478 Result = Original;
11479 return HandleFloatToFloatCast(Info, E, SrcType: SourceTy, DestType: DestTy,
11480 Result&: Result.getFloat());
11481 }
11482 if (DestTy->isIntegerType()) {
11483 Result = APValue(APSInt());
11484 return HandleFloatToIntCast(Info, E, SrcType: SourceTy, Value: Original.getFloat(),
11485 DestType: DestTy, Result&: Result.getInt());
11486 }
11487 }
11488
11489 Info.FFDiag(E, diag::err_convertvector_constexpr_unsupported_vector_cast)
11490 << SourceTy << DestTy;
11491 return false;
11492}
11493
11494bool VectorExprEvaluator::VisitCallExpr(const CallExpr *E) {
11495 if (!IsConstantEvaluatedBuiltinCall(E))
11496 return ExprEvaluatorBaseTy::VisitCallExpr(E);
11497
11498 switch (E->getBuiltinCallee()) {
11499 default:
11500 return false;
11501 case Builtin::BI__builtin_elementwise_popcount:
11502 case Builtin::BI__builtin_elementwise_bitreverse: {
11503 APValue Source;
11504 if (!EvaluateAsRValue(Info, E: E->getArg(Arg: 0), Result&: Source))
11505 return false;
11506
11507 QualType DestEltTy = E->getType()->castAs<VectorType>()->getElementType();
11508 unsigned SourceLen = Source.getVectorLength();
11509 SmallVector<APValue, 4> ResultElements;
11510 ResultElements.reserve(N: SourceLen);
11511
11512 for (unsigned EltNum = 0; EltNum < SourceLen; ++EltNum) {
11513 APSInt Elt = Source.getVectorElt(I: EltNum).getInt();
11514 switch (E->getBuiltinCallee()) {
11515 case Builtin::BI__builtin_elementwise_popcount:
11516 ResultElements.push_back(Elt: APValue(
11517 APSInt(APInt(Info.Ctx.getIntWidth(T: DestEltTy), Elt.popcount()),
11518 DestEltTy->isUnsignedIntegerOrEnumerationType())));
11519 break;
11520 case Builtin::BI__builtin_elementwise_bitreverse:
11521 ResultElements.push_back(
11522 Elt: APValue(APSInt(Elt.reverseBits(),
11523 DestEltTy->isUnsignedIntegerOrEnumerationType())));
11524 break;
11525 }
11526 }
11527
11528 return Success(APValue(ResultElements.data(), ResultElements.size()), E);
11529 }
11530 case Builtin::BI__builtin_elementwise_add_sat:
11531 case Builtin::BI__builtin_elementwise_sub_sat: {
11532 APValue SourceLHS, SourceRHS;
11533 if (!EvaluateAsRValue(Info, E: E->getArg(Arg: 0), Result&: SourceLHS) ||
11534 !EvaluateAsRValue(Info, E: E->getArg(Arg: 1), Result&: SourceRHS))
11535 return false;
11536
11537 QualType DestEltTy = E->getType()->castAs<VectorType>()->getElementType();
11538 unsigned SourceLen = SourceLHS.getVectorLength();
11539 SmallVector<APValue, 4> ResultElements;
11540 ResultElements.reserve(N: SourceLen);
11541
11542 for (unsigned EltNum = 0; EltNum < SourceLen; ++EltNum) {
11543 APSInt LHS = SourceLHS.getVectorElt(I: EltNum).getInt();
11544 APSInt RHS = SourceRHS.getVectorElt(I: EltNum).getInt();
11545 switch (E->getBuiltinCallee()) {
11546 case Builtin::BI__builtin_elementwise_add_sat:
11547 ResultElements.push_back(Elt: APValue(
11548 APSInt(LHS.isSigned() ? LHS.sadd_sat(RHS) : RHS.uadd_sat(RHS),
11549 DestEltTy->isUnsignedIntegerOrEnumerationType())));
11550 break;
11551 case Builtin::BI__builtin_elementwise_sub_sat:
11552 ResultElements.push_back(Elt: APValue(
11553 APSInt(LHS.isSigned() ? LHS.ssub_sat(RHS) : RHS.usub_sat(RHS),
11554 DestEltTy->isUnsignedIntegerOrEnumerationType())));
11555 break;
11556 }
11557 }
11558
11559 return Success(APValue(ResultElements.data(), ResultElements.size()), E);
11560 }
11561 }
11562}
11563
11564bool VectorExprEvaluator::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
11565 APValue Source;
11566 QualType SourceVecType = E->getSrcExpr()->getType();
11567 if (!EvaluateAsRValue(Info, E: E->getSrcExpr(), Result&: Source))
11568 return false;
11569
11570 QualType DestTy = E->getType()->castAs<VectorType>()->getElementType();
11571 QualType SourceTy = SourceVecType->castAs<VectorType>()->getElementType();
11572
11573 const FPOptions FPO = E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts());
11574
11575 auto SourceLen = Source.getVectorLength();
11576 SmallVector<APValue, 4> ResultElements;
11577 ResultElements.reserve(N: SourceLen);
11578 for (unsigned EltNum = 0; EltNum < SourceLen; ++EltNum) {
11579 APValue Elt;
11580 if (!handleVectorElementCast(Info, FPO, E, SourceTy, DestTy,
11581 Source.getVectorElt(I: EltNum), Elt))
11582 return false;
11583 ResultElements.push_back(Elt: std::move(Elt));
11584 }
11585
11586 return Success(APValue(ResultElements.data(), ResultElements.size()), E);
11587}
11588
11589static bool handleVectorShuffle(EvalInfo &Info, const ShuffleVectorExpr *E,
11590 QualType ElemType, APValue const &VecVal1,
11591 APValue const &VecVal2, unsigned EltNum,
11592 APValue &Result) {
11593 unsigned const TotalElementsInInputVector1 = VecVal1.getVectorLength();
11594 unsigned const TotalElementsInInputVector2 = VecVal2.getVectorLength();
11595
11596 APSInt IndexVal = E->getShuffleMaskIdx(N: EltNum);
11597 int64_t index = IndexVal.getExtValue();
11598 // The spec says that -1 should be treated as undef for optimizations,
11599 // but in constexpr we'd have to produce an APValue::Indeterminate,
11600 // which is prohibited from being a top-level constant value. Emit a
11601 // diagnostic instead.
11602 if (index == -1) {
11603 Info.FFDiag(
11604 E, diag::err_shufflevector_minus_one_is_undefined_behavior_constexpr)
11605 << EltNum;
11606 return false;
11607 }
11608
11609 if (index < 0 ||
11610 index >= TotalElementsInInputVector1 + TotalElementsInInputVector2)
11611 llvm_unreachable("Out of bounds shuffle index");
11612
11613 if (index >= TotalElementsInInputVector1)
11614 Result = VecVal2.getVectorElt(I: index - TotalElementsInInputVector1);
11615 else
11616 Result = VecVal1.getVectorElt(I: index);
11617 return true;
11618}
11619
11620bool VectorExprEvaluator::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
11621 APValue VecVal1;
11622 const Expr *Vec1 = E->getExpr(Index: 0);
11623 if (!EvaluateAsRValue(Info, E: Vec1, Result&: VecVal1))
11624 return false;
11625 APValue VecVal2;
11626 const Expr *Vec2 = E->getExpr(Index: 1);
11627 if (!EvaluateAsRValue(Info, E: Vec2, Result&: VecVal2))
11628 return false;
11629
11630 VectorType const *DestVecTy = E->getType()->castAs<VectorType>();
11631 QualType DestElTy = DestVecTy->getElementType();
11632
11633 auto TotalElementsInOutputVector = DestVecTy->getNumElements();
11634
11635 SmallVector<APValue, 4> ResultElements;
11636 ResultElements.reserve(N: TotalElementsInOutputVector);
11637 for (unsigned EltNum = 0; EltNum < TotalElementsInOutputVector; ++EltNum) {
11638 APValue Elt;
11639 if (!handleVectorShuffle(Info, E, ElemType: DestElTy, VecVal1, VecVal2, EltNum, Result&: Elt))
11640 return false;
11641 ResultElements.push_back(Elt: std::move(Elt));
11642 }
11643
11644 return Success(APValue(ResultElements.data(), ResultElements.size()), E);
11645}
11646
11647//===----------------------------------------------------------------------===//
11648// Array Evaluation
11649//===----------------------------------------------------------------------===//
11650
11651namespace {
11652 class ArrayExprEvaluator
11653 : public ExprEvaluatorBase<ArrayExprEvaluator> {
11654 const LValue &This;
11655 APValue &Result;
11656 public:
11657
11658 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
11659 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
11660
11661 bool Success(const APValue &V, const Expr *E) {
11662 assert(V.isArray() && "expected array");
11663 Result = V;
11664 return true;
11665 }
11666
11667 bool ZeroInitialization(const Expr *E) {
11668 const ConstantArrayType *CAT =
11669 Info.Ctx.getAsConstantArrayType(T: E->getType());
11670 if (!CAT) {
11671 if (E->getType()->isIncompleteArrayType()) {
11672 // We can be asked to zero-initialize a flexible array member; this
11673 // is represented as an ImplicitValueInitExpr of incomplete array
11674 // type. In this case, the array has zero elements.
11675 Result = APValue(APValue::UninitArray(), 0, 0);
11676 return true;
11677 }
11678 // FIXME: We could handle VLAs here.
11679 return Error(E);
11680 }
11681
11682 Result = APValue(APValue::UninitArray(), 0, CAT->getZExtSize());
11683 if (!Result.hasArrayFiller())
11684 return true;
11685
11686 // Zero-initialize all elements.
11687 LValue Subobject = This;
11688 Subobject.addArray(Info, E, CAT);
11689 ImplicitValueInitExpr VIE(CAT->getElementType());
11690 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
11691 }
11692
11693 bool VisitCallExpr(const CallExpr *E) {
11694 return handleCallExpr(E, Result, ResultSlot: &This);
11695 }
11696 bool VisitInitListExpr(const InitListExpr *E,
11697 QualType AllocType = QualType());
11698 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
11699 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
11700 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
11701 const LValue &Subobject,
11702 APValue *Value, QualType Type);
11703 bool VisitStringLiteral(const StringLiteral *E,
11704 QualType AllocType = QualType()) {
11705 expandStringLiteral(Info, S: E, Result, AllocType);
11706 return true;
11707 }
11708 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
11709 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
11710 ArrayRef<Expr *> Args,
11711 const Expr *ArrayFiller,
11712 QualType AllocType = QualType());
11713 };
11714} // end anonymous namespace
11715
11716static bool EvaluateArray(const Expr *E, const LValue &This,
11717 APValue &Result, EvalInfo &Info) {
11718 assert(!E->isValueDependent());
11719 assert(E->isPRValue() && E->getType()->isArrayType() &&
11720 "not an array prvalue");
11721 return ArrayExprEvaluator(Info, This, Result).Visit(E);
11722}
11723
11724static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
11725 APValue &Result, const InitListExpr *ILE,
11726 QualType AllocType) {
11727 assert(!ILE->isValueDependent());
11728 assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
11729 "not an array prvalue");
11730 return ArrayExprEvaluator(Info, This, Result)
11731 .VisitInitListExpr(E: ILE, AllocType);
11732}
11733
11734static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
11735 APValue &Result,
11736 const CXXConstructExpr *CCE,
11737 QualType AllocType) {
11738 assert(!CCE->isValueDependent());
11739 assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
11740 "not an array prvalue");
11741 return ArrayExprEvaluator(Info, This, Result)
11742 .VisitCXXConstructExpr(E: CCE, Subobject: This, Value: &Result, Type: AllocType);
11743}
11744
11745// Return true iff the given array filler may depend on the element index.
11746static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
11747 // For now, just allow non-class value-initialization and initialization
11748 // lists comprised of them.
11749 if (isa<ImplicitValueInitExpr>(Val: FillerExpr))
11750 return false;
11751 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: FillerExpr)) {
11752 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
11753 if (MaybeElementDependentArrayFiller(FillerExpr: ILE->getInit(Init: I)))
11754 return true;
11755 }
11756
11757 if (ILE->hasArrayFiller() &&
11758 MaybeElementDependentArrayFiller(FillerExpr: ILE->getArrayFiller()))
11759 return true;
11760
11761 return false;
11762 }
11763 return true;
11764}
11765
11766bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
11767 QualType AllocType) {
11768 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
11769 T: AllocType.isNull() ? E->getType() : AllocType);
11770 if (!CAT)
11771 return Error(E);
11772
11773 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
11774 // an appropriately-typed string literal enclosed in braces.
11775 if (E->isStringLiteralInit()) {
11776 auto *SL = dyn_cast<StringLiteral>(Val: E->getInit(Init: 0)->IgnoreParenImpCasts());
11777 // FIXME: Support ObjCEncodeExpr here once we support it in
11778 // ArrayExprEvaluator generally.
11779 if (!SL)
11780 return Error(E);
11781 return VisitStringLiteral(E: SL, AllocType);
11782 }
11783 // Any other transparent list init will need proper handling of the
11784 // AllocType; we can't just recurse to the inner initializer.
11785 assert(!E->isTransparent() &&
11786 "transparent array list initialization is not string literal init?");
11787
11788 return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(),
11789 AllocType);
11790}
11791
11792bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr(
11793 const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller,
11794 QualType AllocType) {
11795 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
11796 T: AllocType.isNull() ? ExprToVisit->getType() : AllocType);
11797
11798 bool Success = true;
11799
11800 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
11801 "zero-initialized array shouldn't have any initialized elts");
11802 APValue Filler;
11803 if (Result.isArray() && Result.hasArrayFiller())
11804 Filler = Result.getArrayFiller();
11805
11806 unsigned NumEltsToInit = Args.size();
11807 unsigned NumElts = CAT->getZExtSize();
11808
11809 // If the initializer might depend on the array index, run it for each
11810 // array element.
11811 if (NumEltsToInit != NumElts &&
11812 MaybeElementDependentArrayFiller(FillerExpr: ArrayFiller)) {
11813 NumEltsToInit = NumElts;
11814 } else {
11815 for (auto *Init : Args) {
11816 if (auto *EmbedS = dyn_cast<EmbedExpr>(Val: Init->IgnoreParenImpCasts()))
11817 NumEltsToInit += EmbedS->getDataElementCount() - 1;
11818 }
11819 if (NumEltsToInit > NumElts)
11820 NumEltsToInit = NumElts;
11821 }
11822
11823 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
11824 << NumEltsToInit << ".\n");
11825
11826 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
11827
11828 // If the array was previously zero-initialized, preserve the
11829 // zero-initialized values.
11830 if (Filler.hasValue()) {
11831 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
11832 Result.getArrayInitializedElt(I) = Filler;
11833 if (Result.hasArrayFiller())
11834 Result.getArrayFiller() = Filler;
11835 }
11836
11837 LValue Subobject = This;
11838 Subobject.addArray(Info, E: ExprToVisit, CAT);
11839 auto Eval = [&](const Expr *Init, unsigned ArrayIndex) {
11840 if (Init->isValueDependent())
11841 return EvaluateDependentExpr(E: Init, Info);
11842
11843 if (!EvaluateInPlace(Result&: Result.getArrayInitializedElt(I: ArrayIndex), Info,
11844 This: Subobject, E: Init) ||
11845 !HandleLValueArrayAdjustment(Info, Init, Subobject,
11846 CAT->getElementType(), 1)) {
11847 if (!Info.noteFailure())
11848 return false;
11849 Success = false;
11850 }
11851 return true;
11852 };
11853 unsigned ArrayIndex = 0;
11854 QualType DestTy = CAT->getElementType();
11855 APSInt Value(Info.Ctx.getTypeSize(T: DestTy), DestTy->isUnsignedIntegerType());
11856 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
11857 const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller;
11858 if (ArrayIndex >= NumEltsToInit)
11859 break;
11860 if (auto *EmbedS = dyn_cast<EmbedExpr>(Val: Init->IgnoreParenImpCasts())) {
11861 StringLiteral *SL = EmbedS->getDataStringLiteral();
11862 for (unsigned I = EmbedS->getStartingElementPos(),
11863 N = EmbedS->getDataElementCount();
11864 I != EmbedS->getStartingElementPos() + N; ++I) {
11865 Value = SL->getCodeUnit(i: I);
11866 if (DestTy->isIntegerType()) {
11867 Result.getArrayInitializedElt(I: ArrayIndex) = APValue(Value);
11868 } else {
11869 assert(DestTy->isFloatingType() && "unexpected type");
11870 const FPOptions FPO =
11871 Init->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts());
11872 APFloat FValue(0.0);
11873 if (!HandleIntToFloatCast(Info, Init, FPO, EmbedS->getType(), Value,
11874 DestTy, FValue))
11875 return false;
11876 Result.getArrayInitializedElt(I: ArrayIndex) = APValue(FValue);
11877 }
11878 ArrayIndex++;
11879 }
11880 } else {
11881 if (!Eval(Init, ArrayIndex))
11882 return false;
11883 ++ArrayIndex;
11884 }
11885 }
11886
11887 if (!Result.hasArrayFiller())
11888 return Success;
11889
11890 // If we get here, we have a trivial filler, which we can just evaluate
11891 // once and splat over the rest of the array elements.
11892 assert(ArrayFiller && "no array filler for incomplete init list");
11893 return EvaluateInPlace(Result&: Result.getArrayFiller(), Info, This: Subobject,
11894 E: ArrayFiller) &&
11895 Success;
11896}
11897
11898bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
11899 LValue CommonLV;
11900 if (E->getCommonExpr() &&
11901 !Evaluate(Result&: Info.CurrentCall->createTemporary(
11902 Key: E->getCommonExpr(),
11903 T: getStorageType(Info.Ctx, E->getCommonExpr()),
11904 Scope: ScopeKind::FullExpression, LV&: CommonLV),
11905 Info, E: E->getCommonExpr()->getSourceExpr()))
11906 return false;
11907
11908 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
11909
11910 uint64_t Elements = CAT->getZExtSize();
11911 Result = APValue(APValue::UninitArray(), Elements, Elements);
11912
11913 LValue Subobject = This;
11914 Subobject.addArray(Info, E, CAT: CAT);
11915
11916 bool Success = true;
11917 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
11918 // C++ [class.temporary]/5
11919 // There are four contexts in which temporaries are destroyed at a different
11920 // point than the end of the full-expression. [...] The second context is
11921 // when a copy constructor is called to copy an element of an array while
11922 // the entire array is copied [...]. In either case, if the constructor has
11923 // one or more default arguments, the destruction of every temporary created
11924 // in a default argument is sequenced before the construction of the next
11925 // array element, if any.
11926 FullExpressionRAII Scope(Info);
11927
11928 if (!EvaluateInPlace(Result&: Result.getArrayInitializedElt(I: Index),
11929 Info, This: Subobject, E: E->getSubExpr()) ||
11930 !HandleLValueArrayAdjustment(Info, E, Subobject,
11931 CAT->getElementType(), 1)) {
11932 if (!Info.noteFailure())
11933 return false;
11934 Success = false;
11935 }
11936
11937 // Make sure we run the destructors too.
11938 Scope.destroy();
11939 }
11940
11941 return Success;
11942}
11943
11944bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
11945 return VisitCXXConstructExpr(E, This, &Result, E->getType());
11946}
11947
11948bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
11949 const LValue &Subobject,
11950 APValue *Value,
11951 QualType Type) {
11952 bool HadZeroInit = Value->hasValue();
11953
11954 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T: Type)) {
11955 unsigned FinalSize = CAT->getZExtSize();
11956
11957 // Preserve the array filler if we had prior zero-initialization.
11958 APValue Filler =
11959 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
11960 : APValue();
11961
11962 *Value = APValue(APValue::UninitArray(), 0, FinalSize);
11963 if (FinalSize == 0)
11964 return true;
11965
11966 bool HasTrivialConstructor = CheckTrivialDefaultConstructor(
11967 Info, E->getExprLoc(), E->getConstructor(),
11968 E->requiresZeroInitialization());
11969 LValue ArrayElt = Subobject;
11970 ArrayElt.addArray(Info, E, CAT);
11971 // We do the whole initialization in two passes, first for just one element,
11972 // then for the whole array. It's possible we may find out we can't do const
11973 // init in the first pass, in which case we avoid allocating a potentially
11974 // large array. We don't do more passes because expanding array requires
11975 // copying the data, which is wasteful.
11976 for (const unsigned N : {1u, FinalSize}) {
11977 unsigned OldElts = Value->getArrayInitializedElts();
11978 if (OldElts == N)
11979 break;
11980
11981 // Expand the array to appropriate size.
11982 APValue NewValue(APValue::UninitArray(), N, FinalSize);
11983 for (unsigned I = 0; I < OldElts; ++I)
11984 NewValue.getArrayInitializedElt(I).swap(
11985 RHS&: Value->getArrayInitializedElt(I));
11986 Value->swap(RHS&: NewValue);
11987
11988 if (HadZeroInit)
11989 for (unsigned I = OldElts; I < N; ++I)
11990 Value->getArrayInitializedElt(I) = Filler;
11991
11992 if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) {
11993 // If we have a trivial constructor, only evaluate it once and copy
11994 // the result into all the array elements.
11995 APValue &FirstResult = Value->getArrayInitializedElt(I: 0);
11996 for (unsigned I = OldElts; I < FinalSize; ++I)
11997 Value->getArrayInitializedElt(I) = FirstResult;
11998 } else {
11999 for (unsigned I = OldElts; I < N; ++I) {
12000 if (!VisitCXXConstructExpr(E, ArrayElt,
12001 &Value->getArrayInitializedElt(I),
12002 CAT->getElementType()) ||
12003 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
12004 CAT->getElementType(), 1))
12005 return false;
12006 // When checking for const initilization any diagnostic is considered
12007 // an error.
12008 if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
12009 !Info.keepEvaluatingAfterFailure())
12010 return false;
12011 }
12012 }
12013 }
12014
12015 return true;
12016 }
12017
12018 if (!Type->isRecordType())
12019 return Error(E);
12020
12021 return RecordExprEvaluator(Info, Subobject, *Value)
12022 .VisitCXXConstructExpr(E, T: Type);
12023}
12024
12025bool ArrayExprEvaluator::VisitCXXParenListInitExpr(
12026 const CXXParenListInitExpr *E) {
12027 assert(E->getType()->isConstantArrayType() &&
12028 "Expression result is not a constant array type");
12029
12030 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
12031 E->getArrayFiller());
12032}
12033
12034//===----------------------------------------------------------------------===//
12035// Integer Evaluation
12036//
12037// As a GNU extension, we support casting pointers to sufficiently-wide integer
12038// types and back in constant folding. Integer values are thus represented
12039// either as an integer-valued APValue, or as an lvalue-valued APValue.
12040//===----------------------------------------------------------------------===//
12041
12042namespace {
12043class IntExprEvaluator
12044 : public ExprEvaluatorBase<IntExprEvaluator> {
12045 APValue &Result;
12046public:
12047 IntExprEvaluator(EvalInfo &info, APValue &result)
12048 : ExprEvaluatorBaseTy(info), Result(result) {}
12049
12050 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
12051 assert(E->getType()->isIntegralOrEnumerationType() &&
12052 "Invalid evaluation result.");
12053 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
12054 "Invalid evaluation result.");
12055 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
12056 "Invalid evaluation result.");
12057 Result = APValue(SI);
12058 return true;
12059 }
12060 bool Success(const llvm::APSInt &SI, const Expr *E) {
12061 return Success(SI, E, Result);
12062 }
12063
12064 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
12065 assert(E->getType()->isIntegralOrEnumerationType() &&
12066 "Invalid evaluation result.");
12067 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
12068 "Invalid evaluation result.");
12069 Result = APValue(APSInt(I));
12070 Result.getInt().setIsUnsigned(
12071 E->getType()->isUnsignedIntegerOrEnumerationType());
12072 return true;
12073 }
12074 bool Success(const llvm::APInt &I, const Expr *E) {
12075 return Success(I, E, Result);
12076 }
12077
12078 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12079 assert(E->getType()->isIntegralOrEnumerationType() &&
12080 "Invalid evaluation result.");
12081 Result = APValue(Info.Ctx.MakeIntValue(Value, Type: E->getType()));
12082 return true;
12083 }
12084 bool Success(uint64_t Value, const Expr *E) {
12085 return Success(Value, E, Result);
12086 }
12087
12088 bool Success(CharUnits Size, const Expr *E) {
12089 return Success(Value: Size.getQuantity(), E);
12090 }
12091
12092 bool Success(const APValue &V, const Expr *E) {
12093 // C++23 [expr.const]p8 If we have a variable that is unknown reference or
12094 // pointer allow further evaluation of the value.
12095 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate() ||
12096 V.allowConstexprUnknown()) {
12097 Result = V;
12098 return true;
12099 }
12100 return Success(SI: V.getInt(), E);
12101 }
12102
12103 bool ZeroInitialization(const Expr *E) { return Success(Value: 0, E); }
12104
12105 friend std::optional<bool> EvaluateBuiltinIsWithinLifetime(IntExprEvaluator &,
12106 const CallExpr *);
12107
12108 //===--------------------------------------------------------------------===//
12109 // Visitor Methods
12110 //===--------------------------------------------------------------------===//
12111
12112 bool VisitIntegerLiteral(const IntegerLiteral *E) {
12113 return Success(E->getValue(), E);
12114 }
12115 bool VisitCharacterLiteral(const CharacterLiteral *E) {
12116 return Success(E->getValue(), E);
12117 }
12118
12119 bool CheckReferencedDecl(const Expr *E, const Decl *D);
12120 bool VisitDeclRefExpr(const DeclRefExpr *E) {
12121 if (CheckReferencedDecl(E, E->getDecl()))
12122 return true;
12123
12124 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
12125 }
12126 bool VisitMemberExpr(const MemberExpr *E) {
12127 if (CheckReferencedDecl(E, E->getMemberDecl())) {
12128 VisitIgnoredBaseExpression(E: E->getBase());
12129 return true;
12130 }
12131
12132 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
12133 }
12134
12135 bool VisitCallExpr(const CallExpr *E);
12136 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
12137 bool VisitBinaryOperator(const BinaryOperator *E);
12138 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
12139 bool VisitUnaryOperator(const UnaryOperator *E);
12140
12141 bool VisitCastExpr(const CastExpr* E);
12142 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
12143
12144 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
12145 return Success(E->getValue(), E);
12146 }
12147
12148 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
12149 return Success(E->getValue(), E);
12150 }
12151
12152 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
12153 if (Info.ArrayInitIndex == uint64_t(-1)) {
12154 // We were asked to evaluate this subexpression independent of the
12155 // enclosing ArrayInitLoopExpr. We can't do that.
12156 Info.FFDiag(E);
12157 return false;
12158 }
12159 return Success(Info.ArrayInitIndex, E);
12160 }
12161
12162 // Note, GNU defines __null as an integer, not a pointer.
12163 bool VisitGNUNullExpr(const GNUNullExpr *E) {
12164 return ZeroInitialization(E);
12165 }
12166
12167 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
12168 if (E->isStoredAsBoolean())
12169 return Success(E->getBoolValue(), E);
12170 if (E->getAPValue().isAbsent())
12171 return false;
12172 assert(E->getAPValue().isInt() && "APValue type not supported");
12173 return Success(E->getAPValue().getInt(), E);
12174 }
12175
12176 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
12177 return Success(E->getValue(), E);
12178 }
12179
12180 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
12181 return Success(E->getValue(), E);
12182 }
12183
12184 bool VisitOpenACCAsteriskSizeExpr(const OpenACCAsteriskSizeExpr *E) {
12185 // This should not be evaluated during constant expr evaluation, as it
12186 // should always be in an unevaluated context (the args list of a 'gang' or
12187 // 'tile' clause).
12188 return Error(E);
12189 }
12190
12191 bool VisitUnaryReal(const UnaryOperator *E);
12192 bool VisitUnaryImag(const UnaryOperator *E);
12193
12194 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
12195 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
12196 bool VisitSourceLocExpr(const SourceLocExpr *E);
12197 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
12198 bool VisitRequiresExpr(const RequiresExpr *E);
12199 // FIXME: Missing: array subscript of vector, member of vector
12200};
12201
12202class FixedPointExprEvaluator
12203 : public ExprEvaluatorBase<FixedPointExprEvaluator> {
12204 APValue &Result;
12205
12206 public:
12207 FixedPointExprEvaluator(EvalInfo &info, APValue &result)
12208 : ExprEvaluatorBaseTy(info), Result(result) {}
12209
12210 bool Success(const llvm::APInt &I, const Expr *E) {
12211 return Success(
12212 V: APFixedPoint(I, Info.Ctx.getFixedPointSemantics(Ty: E->getType())), E);
12213 }
12214
12215 bool Success(uint64_t Value, const Expr *E) {
12216 return Success(
12217 V: APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(Ty: E->getType())), E);
12218 }
12219
12220 bool Success(const APValue &V, const Expr *E) {
12221 return Success(V: V.getFixedPoint(), E);
12222 }
12223
12224 bool Success(const APFixedPoint &V, const Expr *E) {
12225 assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
12226 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
12227 "Invalid evaluation result.");
12228 Result = APValue(V);
12229 return true;
12230 }
12231
12232 bool ZeroInitialization(const Expr *E) {
12233 return Success(Value: 0, E);
12234 }
12235
12236 //===--------------------------------------------------------------------===//
12237 // Visitor Methods
12238 //===--------------------------------------------------------------------===//
12239
12240 bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
12241 return Success(E->getValue(), E);
12242 }
12243
12244 bool VisitCastExpr(const CastExpr *E);
12245 bool VisitUnaryOperator(const UnaryOperator *E);
12246 bool VisitBinaryOperator(const BinaryOperator *E);
12247};
12248} // end anonymous namespace
12249
12250/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
12251/// produce either the integer value or a pointer.
12252///
12253/// GCC has a heinous extension which folds casts between pointer types and
12254/// pointer-sized integral types. We support this by allowing the evaluation of
12255/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
12256/// Some simple arithmetic on such values is supported (they are treated much
12257/// like char*).
12258static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
12259 EvalInfo &Info) {
12260 assert(!E->isValueDependent());
12261 assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
12262 return IntExprEvaluator(Info, Result).Visit(E);
12263}
12264
12265static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
12266 assert(!E->isValueDependent());
12267 APValue Val;
12268 if (!EvaluateIntegerOrLValue(E, Result&: Val, Info))
12269 return false;
12270 if (!Val.isInt()) {
12271 // FIXME: It would be better to produce the diagnostic for casting
12272 // a pointer to an integer.
12273 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12274 return false;
12275 }
12276 Result = Val.getInt();
12277 return true;
12278}
12279
12280bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
12281 APValue Evaluated = E->EvaluateInContext(
12282 Ctx: Info.Ctx, DefaultExpr: Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
12283 return Success(Evaluated, E);
12284}
12285
12286static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
12287 EvalInfo &Info) {
12288 assert(!E->isValueDependent());
12289 if (E->getType()->isFixedPointType()) {
12290 APValue Val;
12291 if (!FixedPointExprEvaluator(Info, Val).Visit(E))
12292 return false;
12293 if (!Val.isFixedPoint())
12294 return false;
12295
12296 Result = Val.getFixedPoint();
12297 return true;
12298 }
12299 return false;
12300}
12301
12302static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
12303 EvalInfo &Info) {
12304 assert(!E->isValueDependent());
12305 if (E->getType()->isIntegerType()) {
12306 auto FXSema = Info.Ctx.getFixedPointSemantics(Ty: E->getType());
12307 APSInt Val;
12308 if (!EvaluateInteger(E, Result&: Val, Info))
12309 return false;
12310 Result = APFixedPoint(Val, FXSema);
12311 return true;
12312 } else if (E->getType()->isFixedPointType()) {
12313 return EvaluateFixedPoint(E, Result, Info);
12314 }
12315 return false;
12316}
12317
12318/// Check whether the given declaration can be directly converted to an integral
12319/// rvalue. If not, no diagnostic is produced; there are other things we can
12320/// try.
12321bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
12322 // Enums are integer constant exprs.
12323 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(Val: D)) {
12324 // Check for signedness/width mismatches between E type and ECD value.
12325 bool SameSign = (ECD->getInitVal().isSigned()
12326 == E->getType()->isSignedIntegerOrEnumerationType());
12327 bool SameWidth = (ECD->getInitVal().getBitWidth()
12328 == Info.Ctx.getIntWidth(T: E->getType()));
12329 if (SameSign && SameWidth)
12330 return Success(SI: ECD->getInitVal(), E);
12331 else {
12332 // Get rid of mismatch (otherwise Success assertions will fail)
12333 // by computing a new value matching the type of E.
12334 llvm::APSInt Val = ECD->getInitVal();
12335 if (!SameSign)
12336 Val.setIsSigned(!ECD->getInitVal().isSigned());
12337 if (!SameWidth)
12338 Val = Val.extOrTrunc(width: Info.Ctx.getIntWidth(T: E->getType()));
12339 return Success(SI: Val, E);
12340 }
12341 }
12342 return false;
12343}
12344
12345/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
12346/// as GCC.
12347GCCTypeClass EvaluateBuiltinClassifyType(QualType T,
12348 const LangOptions &LangOpts) {
12349 assert(!T->isDependentType() && "unexpected dependent type");
12350
12351 QualType CanTy = T.getCanonicalType();
12352
12353 switch (CanTy->getTypeClass()) {
12354#define TYPE(ID, BASE)
12355#define DEPENDENT_TYPE(ID, BASE) case Type::ID:
12356#define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
12357#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
12358#include "clang/AST/TypeNodes.inc"
12359 case Type::Auto:
12360 case Type::DeducedTemplateSpecialization:
12361 llvm_unreachable("unexpected non-canonical or dependent type");
12362
12363 case Type::Builtin:
12364 switch (cast<BuiltinType>(CanTy)->getKind()) {
12365#define BUILTIN_TYPE(ID, SINGLETON_ID)
12366#define SIGNED_TYPE(ID, SINGLETON_ID) \
12367 case BuiltinType::ID: return GCCTypeClass::Integer;
12368#define FLOATING_TYPE(ID, SINGLETON_ID) \
12369 case BuiltinType::ID: return GCCTypeClass::RealFloat;
12370#define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
12371 case BuiltinType::ID: break;
12372#include "clang/AST/BuiltinTypes.def"
12373 case BuiltinType::Void:
12374 return GCCTypeClass::Void;
12375
12376 case BuiltinType::Bool:
12377 return GCCTypeClass::Bool;
12378
12379 case BuiltinType::Char_U:
12380 case BuiltinType::UChar:
12381 case BuiltinType::WChar_U:
12382 case BuiltinType::Char8:
12383 case BuiltinType::Char16:
12384 case BuiltinType::Char32:
12385 case BuiltinType::UShort:
12386 case BuiltinType::UInt:
12387 case BuiltinType::ULong:
12388 case BuiltinType::ULongLong:
12389 case BuiltinType::UInt128:
12390 return GCCTypeClass::Integer;
12391
12392 case BuiltinType::UShortAccum:
12393 case BuiltinType::UAccum:
12394 case BuiltinType::ULongAccum:
12395 case BuiltinType::UShortFract:
12396 case BuiltinType::UFract:
12397 case BuiltinType::ULongFract:
12398 case BuiltinType::SatUShortAccum:
12399 case BuiltinType::SatUAccum:
12400 case BuiltinType::SatULongAccum:
12401 case BuiltinType::SatUShortFract:
12402 case BuiltinType::SatUFract:
12403 case BuiltinType::SatULongFract:
12404 return GCCTypeClass::None;
12405
12406 case BuiltinType::NullPtr:
12407
12408 case BuiltinType::ObjCId:
12409 case BuiltinType::ObjCClass:
12410 case BuiltinType::ObjCSel:
12411#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
12412 case BuiltinType::Id:
12413#include "clang/Basic/OpenCLImageTypes.def"
12414#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
12415 case BuiltinType::Id:
12416#include "clang/Basic/OpenCLExtensionTypes.def"
12417 case BuiltinType::OCLSampler:
12418 case BuiltinType::OCLEvent:
12419 case BuiltinType::OCLClkEvent:
12420 case BuiltinType::OCLQueue:
12421 case BuiltinType::OCLReserveID:
12422#define SVE_TYPE(Name, Id, SingletonId) \
12423 case BuiltinType::Id:
12424#include "clang/Basic/AArch64ACLETypes.def"
12425#define PPC_VECTOR_TYPE(Name, Id, Size) \
12426 case BuiltinType::Id:
12427#include "clang/Basic/PPCTypes.def"
12428#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
12429#include "clang/Basic/RISCVVTypes.def"
12430#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
12431#include "clang/Basic/WebAssemblyReferenceTypes.def"
12432#define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id:
12433#include "clang/Basic/AMDGPUTypes.def"
12434#define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
12435#include "clang/Basic/HLSLIntangibleTypes.def"
12436 return GCCTypeClass::None;
12437
12438 case BuiltinType::Dependent:
12439 llvm_unreachable("unexpected dependent type");
12440 };
12441 llvm_unreachable("unexpected placeholder type");
12442
12443 case Type::Enum:
12444 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
12445
12446 case Type::Pointer:
12447 case Type::ConstantArray:
12448 case Type::VariableArray:
12449 case Type::IncompleteArray:
12450 case Type::FunctionNoProto:
12451 case Type::FunctionProto:
12452 case Type::ArrayParameter:
12453 return GCCTypeClass::Pointer;
12454
12455 case Type::MemberPointer:
12456 return CanTy->isMemberDataPointerType()
12457 ? GCCTypeClass::PointerToDataMember
12458 : GCCTypeClass::PointerToMemberFunction;
12459
12460 case Type::Complex:
12461 return GCCTypeClass::Complex;
12462
12463 case Type::Record:
12464 return CanTy->isUnionType() ? GCCTypeClass::Union
12465 : GCCTypeClass::ClassOrStruct;
12466
12467 case Type::Atomic:
12468 // GCC classifies _Atomic T the same as T.
12469 return EvaluateBuiltinClassifyType(
12470 CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
12471
12472 case Type::Vector:
12473 case Type::ExtVector:
12474 return GCCTypeClass::Vector;
12475
12476 case Type::BlockPointer:
12477 case Type::ConstantMatrix:
12478 case Type::ObjCObject:
12479 case Type::ObjCInterface:
12480 case Type::ObjCObjectPointer:
12481 case Type::Pipe:
12482 case Type::HLSLAttributedResource:
12483 case Type::HLSLInlineSpirv:
12484 // Classify all other types that don't fit into the regular
12485 // classification the same way.
12486 return GCCTypeClass::None;
12487
12488 case Type::BitInt:
12489 return GCCTypeClass::BitInt;
12490
12491 case Type::LValueReference:
12492 case Type::RValueReference:
12493 llvm_unreachable("invalid type for expression");
12494 }
12495
12496 llvm_unreachable("unexpected type class");
12497}
12498
12499/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
12500/// as GCC.
12501static GCCTypeClass
12502EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
12503 // If no argument was supplied, default to None. This isn't
12504 // ideal, however it is what gcc does.
12505 if (E->getNumArgs() == 0)
12506 return GCCTypeClass::None;
12507
12508 // FIXME: Bizarrely, GCC treats a call with more than one argument as not
12509 // being an ICE, but still folds it to a constant using the type of the first
12510 // argument.
12511 return EvaluateBuiltinClassifyType(T: E->getArg(Arg: 0)->getType(), LangOpts);
12512}
12513
12514/// EvaluateBuiltinConstantPForLValue - Determine the result of
12515/// __builtin_constant_p when applied to the given pointer.
12516///
12517/// A pointer is only "constant" if it is null (or a pointer cast to integer)
12518/// or it points to the first character of a string literal.
12519static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
12520 APValue::LValueBase Base = LV.getLValueBase();
12521 if (Base.isNull()) {
12522 // A null base is acceptable.
12523 return true;
12524 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
12525 if (!isa<StringLiteral>(Val: E))
12526 return false;
12527 return LV.getLValueOffset().isZero();
12528 } else if (Base.is<TypeInfoLValue>()) {
12529 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
12530 // evaluate to true.
12531 return true;
12532 } else {
12533 // Any other base is not constant enough for GCC.
12534 return false;
12535 }
12536}
12537
12538/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
12539/// GCC as we can manage.
12540static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
12541 // This evaluation is not permitted to have side-effects, so evaluate it in
12542 // a speculative evaluation context.
12543 SpeculativeEvaluationRAII SpeculativeEval(Info);
12544
12545 // Constant-folding is always enabled for the operand of __builtin_constant_p
12546 // (even when the enclosing evaluation context otherwise requires a strict
12547 // language-specific constant expression).
12548 FoldConstant Fold(Info, true);
12549
12550 QualType ArgType = Arg->getType();
12551
12552 // __builtin_constant_p always has one operand. The rules which gcc follows
12553 // are not precisely documented, but are as follows:
12554 //
12555 // - If the operand is of integral, floating, complex or enumeration type,
12556 // and can be folded to a known value of that type, it returns 1.
12557 // - If the operand can be folded to a pointer to the first character
12558 // of a string literal (or such a pointer cast to an integral type)
12559 // or to a null pointer or an integer cast to a pointer, it returns 1.
12560 //
12561 // Otherwise, it returns 0.
12562 //
12563 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
12564 // its support for this did not work prior to GCC 9 and is not yet well
12565 // understood.
12566 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
12567 ArgType->isAnyComplexType() || ArgType->isPointerType() ||
12568 ArgType->isNullPtrType()) {
12569 APValue V;
12570 if (!::EvaluateAsRValue(Info, E: Arg, Result&: V) || Info.EvalStatus.HasSideEffects) {
12571 Fold.keepDiagnostics();
12572 return false;
12573 }
12574
12575 // For a pointer (possibly cast to integer), there are special rules.
12576 if (V.getKind() == APValue::LValue)
12577 return EvaluateBuiltinConstantPForLValue(LV: V);
12578
12579 // Otherwise, any constant value is good enough.
12580 return V.hasValue();
12581 }
12582
12583 // Anything else isn't considered to be sufficiently constant.
12584 return false;
12585}
12586
12587/// Retrieves the "underlying object type" of the given expression,
12588/// as used by __builtin_object_size.
12589static QualType getObjectType(APValue::LValueBase B) {
12590 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
12591 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
12592 return VD->getType();
12593 } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
12594 if (isa<CompoundLiteralExpr>(Val: E))
12595 return E->getType();
12596 } else if (B.is<TypeInfoLValue>()) {
12597 return B.getTypeInfoType();
12598 } else if (B.is<DynamicAllocLValue>()) {
12599 return B.getDynamicAllocType();
12600 }
12601
12602 return QualType();
12603}
12604
12605/// A more selective version of E->IgnoreParenCasts for
12606/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
12607/// to change the type of E.
12608/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
12609///
12610/// Always returns an RValue with a pointer representation.
12611static const Expr *ignorePointerCastsAndParens(const Expr *E) {
12612 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
12613
12614 const Expr *NoParens = E->IgnoreParens();
12615 const auto *Cast = dyn_cast<CastExpr>(Val: NoParens);
12616 if (Cast == nullptr)
12617 return NoParens;
12618
12619 // We only conservatively allow a few kinds of casts, because this code is
12620 // inherently a simple solution that seeks to support the common case.
12621 auto CastKind = Cast->getCastKind();
12622 if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
12623 CastKind != CK_AddressSpaceConversion)
12624 return NoParens;
12625
12626 const auto *SubExpr = Cast->getSubExpr();
12627 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
12628 return NoParens;
12629 return ignorePointerCastsAndParens(E: SubExpr);
12630}
12631
12632/// Checks to see if the given LValue's Designator is at the end of the LValue's
12633/// record layout. e.g.
12634/// struct { struct { int a, b; } fst, snd; } obj;
12635/// obj.fst // no
12636/// obj.snd // yes
12637/// obj.fst.a // no
12638/// obj.fst.b // no
12639/// obj.snd.a // no
12640/// obj.snd.b // yes
12641///
12642/// Please note: this function is specialized for how __builtin_object_size
12643/// views "objects".
12644///
12645/// If this encounters an invalid RecordDecl or otherwise cannot determine the
12646/// correct result, it will always return true.
12647static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
12648 assert(!LVal.Designator.Invalid);
12649
12650 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD) {
12651 const RecordDecl *Parent = FD->getParent();
12652 if (Parent->isInvalidDecl() || Parent->isUnion())
12653 return true;
12654 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(D: Parent);
12655 return FD->getFieldIndex() + 1 == Layout.getFieldCount();
12656 };
12657
12658 auto &Base = LVal.getLValueBase();
12659 if (auto *ME = dyn_cast_or_null<MemberExpr>(Val: Base.dyn_cast<const Expr *>())) {
12660 if (auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) {
12661 if (!IsLastOrInvalidFieldDecl(FD))
12662 return false;
12663 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(Val: ME->getMemberDecl())) {
12664 for (auto *FD : IFD->chain()) {
12665 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(Val: FD)))
12666 return false;
12667 }
12668 }
12669 }
12670
12671 unsigned I = 0;
12672 QualType BaseType = getType(B: Base);
12673 if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
12674 // If we don't know the array bound, conservatively assume we're looking at
12675 // the final array element.
12676 ++I;
12677 if (BaseType->isIncompleteArrayType())
12678 BaseType = Ctx.getAsArrayType(T: BaseType)->getElementType();
12679 else
12680 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
12681 }
12682
12683 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
12684 const auto &Entry = LVal.Designator.Entries[I];
12685 if (BaseType->isArrayType()) {
12686 // Because __builtin_object_size treats arrays as objects, we can ignore
12687 // the index iff this is the last array in the Designator.
12688 if (I + 1 == E)
12689 return true;
12690 const auto *CAT = cast<ConstantArrayType>(Val: Ctx.getAsArrayType(T: BaseType));
12691 uint64_t Index = Entry.getAsArrayIndex();
12692 if (Index + 1 != CAT->getZExtSize())
12693 return false;
12694 BaseType = CAT->getElementType();
12695 } else if (BaseType->isAnyComplexType()) {
12696 const auto *CT = BaseType->castAs<ComplexType>();
12697 uint64_t Index = Entry.getAsArrayIndex();
12698 if (Index != 1)
12699 return false;
12700 BaseType = CT->getElementType();
12701 } else if (auto *FD = getAsField(Entry)) {
12702 if (!IsLastOrInvalidFieldDecl(FD))
12703 return false;
12704 BaseType = FD->getType();
12705 } else {
12706 assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
12707 return false;
12708 }
12709 }
12710 return true;
12711}
12712
12713/// Tests to see if the LValue has a user-specified designator (that isn't
12714/// necessarily valid). Note that this always returns 'true' if the LValue has
12715/// an unsized array as its first designator entry, because there's currently no
12716/// way to tell if the user typed *foo or foo[0].
12717static bool refersToCompleteObject(const LValue &LVal) {
12718 if (LVal.Designator.Invalid)
12719 return false;
12720
12721 if (!LVal.Designator.Entries.empty())
12722 return LVal.Designator.isMostDerivedAnUnsizedArray();
12723
12724 if (!LVal.InvalidBase)
12725 return true;
12726
12727 // If `E` is a MemberExpr, then the first part of the designator is hiding in
12728 // the LValueBase.
12729 const auto *E = LVal.Base.dyn_cast<const Expr *>();
12730 return !E || !isa<MemberExpr>(Val: E);
12731}
12732
12733/// Attempts to detect a user writing into a piece of memory that's impossible
12734/// to figure out the size of by just using types.
12735static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
12736 const SubobjectDesignator &Designator = LVal.Designator;
12737 // Notes:
12738 // - Users can only write off of the end when we have an invalid base. Invalid
12739 // bases imply we don't know where the memory came from.
12740 // - We used to be a bit more aggressive here; we'd only be conservative if
12741 // the array at the end was flexible, or if it had 0 or 1 elements. This
12742 // broke some common standard library extensions (PR30346), but was
12743 // otherwise seemingly fine. It may be useful to reintroduce this behavior
12744 // with some sort of list. OTOH, it seems that GCC is always
12745 // conservative with the last element in structs (if it's an array), so our
12746 // current behavior is more compatible than an explicit list approach would
12747 // be.
12748 auto isFlexibleArrayMember = [&] {
12749 using FAMKind = LangOptions::StrictFlexArraysLevelKind;
12750 FAMKind StrictFlexArraysLevel =
12751 Ctx.getLangOpts().getStrictFlexArraysLevel();
12752
12753 if (Designator.isMostDerivedAnUnsizedArray())
12754 return true;
12755
12756 if (StrictFlexArraysLevel == FAMKind::Default)
12757 return true;
12758
12759 if (Designator.getMostDerivedArraySize() == 0 &&
12760 StrictFlexArraysLevel != FAMKind::IncompleteOnly)
12761 return true;
12762
12763 if (Designator.getMostDerivedArraySize() == 1 &&
12764 StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete)
12765 return true;
12766
12767 return false;
12768 };
12769
12770 return LVal.InvalidBase &&
12771 Designator.Entries.size() == Designator.MostDerivedPathLength &&
12772 Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() &&
12773 isDesignatorAtObjectEnd(Ctx, LVal);
12774}
12775
12776/// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
12777/// Fails if the conversion would cause loss of precision.
12778static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
12779 CharUnits &Result) {
12780 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
12781 if (Int.ugt(RHS: CharUnitsMax))
12782 return false;
12783 Result = CharUnits::fromQuantity(Quantity: Int.getZExtValue());
12784 return true;
12785}
12786
12787/// If we're evaluating the object size of an instance of a struct that
12788/// contains a flexible array member, add the size of the initializer.
12789static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T,
12790 const LValue &LV, CharUnits &Size) {
12791 if (!T.isNull() && T->isStructureType() &&
12792 T->getAsStructureType()->getDecl()->hasFlexibleArrayMember())
12793 if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>())
12794 if (const auto *VD = dyn_cast<VarDecl>(Val: V))
12795 if (VD->hasInit())
12796 Size += VD->getFlexibleArrayInitChars(Ctx: Info.Ctx);
12797}
12798
12799/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
12800/// determine how many bytes exist from the beginning of the object to either
12801/// the end of the current subobject, or the end of the object itself, depending
12802/// on what the LValue looks like + the value of Type.
12803///
12804/// If this returns false, the value of Result is undefined.
12805static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
12806 unsigned Type, const LValue &LVal,
12807 CharUnits &EndOffset) {
12808 bool DetermineForCompleteObject = refersToCompleteObject(LVal);
12809
12810 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
12811 if (Ty.isNull())
12812 return false;
12813
12814 Ty = Ty.getNonReferenceType();
12815
12816 if (Ty->isIncompleteType() || Ty->isFunctionType())
12817 return false;
12818
12819 return HandleSizeof(Info, Loc: ExprLoc, Type: Ty, Size&: Result);
12820 };
12821
12822 // We want to evaluate the size of the entire object. This is a valid fallback
12823 // for when Type=1 and the designator is invalid, because we're asked for an
12824 // upper-bound.
12825 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
12826 // Type=3 wants a lower bound, so we can't fall back to this.
12827 if (Type == 3 && !DetermineForCompleteObject)
12828 return false;
12829
12830 llvm::APInt APEndOffset;
12831 if (isBaseAnAllocSizeCall(Base: LVal.getLValueBase()) &&
12832 getBytesReturnedByAllocSizeCall(Ctx: Info.Ctx, LVal, Result&: APEndOffset))
12833 return convertUnsignedAPIntToCharUnits(Int: APEndOffset, Result&: EndOffset);
12834
12835 if (LVal.InvalidBase)
12836 return false;
12837
12838 QualType BaseTy = getObjectType(B: LVal.getLValueBase());
12839 const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset);
12840 addFlexibleArrayMemberInitSize(Info, T: BaseTy, LV: LVal, Size&: EndOffset);
12841 return Ret;
12842 }
12843
12844 // We want to evaluate the size of a subobject.
12845 const SubobjectDesignator &Designator = LVal.Designator;
12846
12847 // The following is a moderately common idiom in C:
12848 //
12849 // struct Foo { int a; char c[1]; };
12850 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
12851 // strcpy(&F->c[0], Bar);
12852 //
12853 // In order to not break too much legacy code, we need to support it.
12854 if (isUserWritingOffTheEnd(Ctx: Info.Ctx, LVal)) {
12855 // If we can resolve this to an alloc_size call, we can hand that back,
12856 // because we know for certain how many bytes there are to write to.
12857 llvm::APInt APEndOffset;
12858 if (isBaseAnAllocSizeCall(Base: LVal.getLValueBase()) &&
12859 getBytesReturnedByAllocSizeCall(Ctx: Info.Ctx, LVal, Result&: APEndOffset))
12860 return convertUnsignedAPIntToCharUnits(Int: APEndOffset, Result&: EndOffset);
12861
12862 // If we cannot determine the size of the initial allocation, then we can't
12863 // given an accurate upper-bound. However, we are still able to give
12864 // conservative lower-bounds for Type=3.
12865 if (Type == 1)
12866 return false;
12867 }
12868
12869 CharUnits BytesPerElem;
12870 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
12871 return false;
12872
12873 // According to the GCC documentation, we want the size of the subobject
12874 // denoted by the pointer. But that's not quite right -- what we actually
12875 // want is the size of the immediately-enclosing array, if there is one.
12876 int64_t ElemsRemaining;
12877 if (Designator.MostDerivedIsArrayElement &&
12878 Designator.Entries.size() == Designator.MostDerivedPathLength) {
12879 uint64_t ArraySize = Designator.getMostDerivedArraySize();
12880 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
12881 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
12882 } else {
12883 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
12884 }
12885
12886 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
12887 return true;
12888}
12889
12890/// Tries to evaluate the __builtin_object_size for @p E. If successful,
12891/// returns true and stores the result in @p Size.
12892///
12893/// If @p WasError is non-null, this will report whether the failure to evaluate
12894/// is to be treated as an Error in IntExprEvaluator.
12895static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
12896 EvalInfo &Info, uint64_t &Size) {
12897 // Determine the denoted object.
12898 LValue LVal;
12899 {
12900 // The operand of __builtin_object_size is never evaluated for side-effects.
12901 // If there are any, but we can determine the pointed-to object anyway, then
12902 // ignore the side-effects.
12903 SpeculativeEvaluationRAII SpeculativeEval(Info);
12904 IgnoreSideEffectsRAII Fold(Info);
12905
12906 if (E->isGLValue()) {
12907 // It's possible for us to be given GLValues if we're called via
12908 // Expr::tryEvaluateObjectSize.
12909 APValue RVal;
12910 if (!EvaluateAsRValue(Info, E, Result&: RVal))
12911 return false;
12912 LVal.setFrom(Ctx&: Info.Ctx, V: RVal);
12913 } else if (!EvaluatePointer(E: ignorePointerCastsAndParens(E), Result&: LVal, Info,
12914 /*InvalidBaseOK=*/true))
12915 return false;
12916 }
12917
12918 // If we point to before the start of the object, there are no accessible
12919 // bytes.
12920 if (LVal.getLValueOffset().isNegative()) {
12921 Size = 0;
12922 return true;
12923 }
12924
12925 CharUnits EndOffset;
12926 if (!determineEndOffset(Info, ExprLoc: E->getExprLoc(), Type, LVal, EndOffset))
12927 return false;
12928
12929 // If we've fallen outside of the end offset, just pretend there's nothing to
12930 // write to/read from.
12931 if (EndOffset <= LVal.getLValueOffset())
12932 Size = 0;
12933 else
12934 Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
12935 return true;
12936}
12937
12938bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
12939 if (!IsConstantEvaluatedBuiltinCall(E))
12940 return ExprEvaluatorBaseTy::VisitCallExpr(E);
12941 return VisitBuiltinCallExpr(E, BuiltinOp: E->getBuiltinCallee());
12942}
12943
12944static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
12945 APValue &Val, APSInt &Alignment) {
12946 QualType SrcTy = E->getArg(Arg: 0)->getType();
12947 if (!getAlignmentArgument(E: E->getArg(Arg: 1), ForType: SrcTy, Info, Alignment))
12948 return false;
12949 // Even though we are evaluating integer expressions we could get a pointer
12950 // argument for the __builtin_is_aligned() case.
12951 if (SrcTy->isPointerType()) {
12952 LValue Ptr;
12953 if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: Ptr, Info))
12954 return false;
12955 Ptr.moveInto(V&: Val);
12956 } else if (!SrcTy->isIntegralOrEnumerationType()) {
12957 Info.FFDiag(E: E->getArg(Arg: 0));
12958 return false;
12959 } else {
12960 APSInt SrcInt;
12961 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: SrcInt, Info))
12962 return false;
12963 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
12964 "Bit widths must be the same");
12965 Val = APValue(SrcInt);
12966 }
12967 assert(Val.hasValue());
12968 return true;
12969}
12970
12971bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
12972 unsigned BuiltinOp) {
12973 switch (BuiltinOp) {
12974 default:
12975 return false;
12976
12977 case Builtin::BI__builtin_dynamic_object_size:
12978 case Builtin::BI__builtin_object_size: {
12979 // The type was checked when we built the expression.
12980 unsigned Type =
12981 E->getArg(Arg: 1)->EvaluateKnownConstInt(Ctx: Info.Ctx).getZExtValue();
12982 assert(Type <= 3 && "unexpected type");
12983
12984 uint64_t Size;
12985 if (tryEvaluateBuiltinObjectSize(E: E->getArg(Arg: 0), Type, Info, Size))
12986 return Success(Size, E);
12987
12988 if (E->getArg(Arg: 0)->HasSideEffects(Ctx: Info.Ctx))
12989 return Success((Type & 2) ? 0 : -1, E);
12990
12991 // Expression had no side effects, but we couldn't statically determine the
12992 // size of the referenced object.
12993 switch (Info.EvalMode) {
12994 case EvalInfo::EM_ConstantExpression:
12995 case EvalInfo::EM_ConstantFold:
12996 case EvalInfo::EM_IgnoreSideEffects:
12997 // Leave it to IR generation.
12998 return Error(E);
12999 case EvalInfo::EM_ConstantExpressionUnevaluated:
13000 // Reduce it to a constant now.
13001 return Success((Type & 2) ? 0 : -1, E);
13002 }
13003
13004 llvm_unreachable("unexpected EvalMode");
13005 }
13006
13007 case Builtin::BI__builtin_os_log_format_buffer_size: {
13008 analyze_os_log::OSLogBufferLayout Layout;
13009 analyze_os_log::computeOSLogBufferLayout(Ctx&: Info.Ctx, E, layout&: Layout);
13010 return Success(Layout.size().getQuantity(), E);
13011 }
13012
13013 case Builtin::BI__builtin_is_aligned: {
13014 APValue Src;
13015 APSInt Alignment;
13016 if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment))
13017 return false;
13018 if (Src.isLValue()) {
13019 // If we evaluated a pointer, check the minimum known alignment.
13020 LValue Ptr;
13021 Ptr.setFrom(Ctx&: Info.Ctx, V: Src);
13022 CharUnits BaseAlignment = getBaseAlignment(Info, Value: Ptr);
13023 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(offset: Ptr.Offset);
13024 // We can return true if the known alignment at the computed offset is
13025 // greater than the requested alignment.
13026 assert(PtrAlign.isPowerOfTwo());
13027 assert(Alignment.isPowerOf2());
13028 if (PtrAlign.getQuantity() >= Alignment)
13029 return Success(1, E);
13030 // If the alignment is not known to be sufficient, some cases could still
13031 // be aligned at run time. However, if the requested alignment is less or
13032 // equal to the base alignment and the offset is not aligned, we know that
13033 // the run-time value can never be aligned.
13034 if (BaseAlignment.getQuantity() >= Alignment &&
13035 PtrAlign.getQuantity() < Alignment)
13036 return Success(0, E);
13037 // Otherwise we can't infer whether the value is sufficiently aligned.
13038 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
13039 // in cases where we can't fully evaluate the pointer.
13040 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
13041 << Alignment;
13042 return false;
13043 }
13044 assert(Src.isInt());
13045 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
13046 }
13047 case Builtin::BI__builtin_align_up: {
13048 APValue Src;
13049 APSInt Alignment;
13050 if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment))
13051 return false;
13052 if (!Src.isInt())
13053 return Error(E);
13054 APSInt AlignedVal =
13055 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
13056 Src.getInt().isUnsigned());
13057 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
13058 return Success(AlignedVal, E);
13059 }
13060 case Builtin::BI__builtin_align_down: {
13061 APValue Src;
13062 APSInt Alignment;
13063 if (!getBuiltinAlignArguments(E, Info, Val&: Src, Alignment))
13064 return false;
13065 if (!Src.isInt())
13066 return Error(E);
13067 APSInt AlignedVal =
13068 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
13069 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
13070 return Success(AlignedVal, E);
13071 }
13072
13073 case Builtin::BI__builtin_bitreverse8:
13074 case Builtin::BI__builtin_bitreverse16:
13075 case Builtin::BI__builtin_bitreverse32:
13076 case Builtin::BI__builtin_bitreverse64:
13077 case Builtin::BI__builtin_elementwise_bitreverse: {
13078 APSInt Val;
13079 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
13080 return false;
13081
13082 return Success(Val.reverseBits(), E);
13083 }
13084
13085 case Builtin::BI__builtin_bswap16:
13086 case Builtin::BI__builtin_bswap32:
13087 case Builtin::BI__builtin_bswap64: {
13088 APSInt Val;
13089 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
13090 return false;
13091
13092 return Success(Val.byteSwap(), E);
13093 }
13094
13095 case Builtin::BI__builtin_classify_type:
13096 return Success((int)EvaluateBuiltinClassifyType(E, LangOpts: Info.getLangOpts()), E);
13097
13098 case Builtin::BI__builtin_clrsb:
13099 case Builtin::BI__builtin_clrsbl:
13100 case Builtin::BI__builtin_clrsbll: {
13101 APSInt Val;
13102 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
13103 return false;
13104
13105 return Success(Val.getBitWidth() - Val.getSignificantBits(), E);
13106 }
13107
13108 case Builtin::BI__builtin_clz:
13109 case Builtin::BI__builtin_clzl:
13110 case Builtin::BI__builtin_clzll:
13111 case Builtin::BI__builtin_clzs:
13112 case Builtin::BI__builtin_clzg:
13113 case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes
13114 case Builtin::BI__lzcnt:
13115 case Builtin::BI__lzcnt64: {
13116 APSInt Val;
13117 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
13118 return false;
13119
13120 std::optional<APSInt> Fallback;
13121 if (BuiltinOp == Builtin::BI__builtin_clzg && E->getNumArgs() > 1) {
13122 APSInt FallbackTemp;
13123 if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: FallbackTemp, Info))
13124 return false;
13125 Fallback = FallbackTemp;
13126 }
13127
13128 if (!Val) {
13129 if (Fallback)
13130 return Success(*Fallback, E);
13131
13132 // When the argument is 0, the result of GCC builtins is undefined,
13133 // whereas for Microsoft intrinsics, the result is the bit-width of the
13134 // argument.
13135 bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 &&
13136 BuiltinOp != Builtin::BI__lzcnt &&
13137 BuiltinOp != Builtin::BI__lzcnt64;
13138
13139 if (ZeroIsUndefined)
13140 return Error(E);
13141 }
13142
13143 return Success(Val.countl_zero(), E);
13144 }
13145
13146 case Builtin::BI__builtin_constant_p: {
13147 const Expr *Arg = E->getArg(Arg: 0);
13148 if (EvaluateBuiltinConstantP(Info, Arg))
13149 return Success(true, E);
13150 if (Info.InConstantContext || Arg->HasSideEffects(Ctx: Info.Ctx)) {
13151 // Outside a constant context, eagerly evaluate to false in the presence
13152 // of side-effects in order to avoid -Wunsequenced false-positives in
13153 // a branch on __builtin_constant_p(expr).
13154 return Success(false, E);
13155 }
13156 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
13157 return false;
13158 }
13159
13160 case Builtin::BI__noop:
13161 // __noop always evaluates successfully and returns 0.
13162 return Success(0, E);
13163
13164 case Builtin::BI__builtin_is_constant_evaluated: {
13165 const auto *Callee = Info.CurrentCall->getCallee();
13166 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
13167 (Info.CallStackDepth == 1 ||
13168 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
13169 Callee->getIdentifier() &&
13170 Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
13171 // FIXME: Find a better way to avoid duplicated diagnostics.
13172 if (Info.EvalStatus.Diag)
13173 Info.report((Info.CallStackDepth == 1)
13174 ? E->getExprLoc()
13175 : Info.CurrentCall->getCallRange().getBegin(),
13176 diag::warn_is_constant_evaluated_always_true_constexpr)
13177 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
13178 : "std::is_constant_evaluated");
13179 }
13180
13181 return Success(Info.InConstantContext, E);
13182 }
13183
13184 case Builtin::BI__builtin_is_within_lifetime:
13185 if (auto result = EvaluateBuiltinIsWithinLifetime(*this, E))
13186 return Success(*result, E);
13187 return false;
13188
13189 case Builtin::BI__builtin_ctz:
13190 case Builtin::BI__builtin_ctzl:
13191 case Builtin::BI__builtin_ctzll:
13192 case Builtin::BI__builtin_ctzs:
13193 case Builtin::BI__builtin_ctzg: {
13194 APSInt Val;
13195 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
13196 return false;
13197
13198 std::optional<APSInt> Fallback;
13199 if (BuiltinOp == Builtin::BI__builtin_ctzg && E->getNumArgs() > 1) {
13200 APSInt FallbackTemp;
13201 if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: FallbackTemp, Info))
13202 return false;
13203 Fallback = FallbackTemp;
13204 }
13205
13206 if (!Val) {
13207 if (Fallback)
13208 return Success(*Fallback, E);
13209
13210 return Error(E);
13211 }
13212
13213 return Success(Val.countr_zero(), E);
13214 }
13215
13216 case Builtin::BI__builtin_eh_return_data_regno: {
13217 int Operand = E->getArg(Arg: 0)->EvaluateKnownConstInt(Ctx: Info.Ctx).getZExtValue();
13218 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(RegNo: Operand);
13219 return Success(Operand, E);
13220 }
13221
13222 case Builtin::BI__builtin_expect:
13223 case Builtin::BI__builtin_expect_with_probability:
13224 return Visit(E->getArg(Arg: 0));
13225
13226 case Builtin::BI__builtin_ptrauth_string_discriminator: {
13227 const auto *Literal =
13228 cast<StringLiteral>(Val: E->getArg(Arg: 0)->IgnoreParenImpCasts());
13229 uint64_t Result = getPointerAuthStableSipHash(S: Literal->getString());
13230 return Success(Result, E);
13231 }
13232
13233 case Builtin::BI__builtin_ffs:
13234 case Builtin::BI__builtin_ffsl:
13235 case Builtin::BI__builtin_ffsll: {
13236 APSInt Val;
13237 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
13238 return false;
13239
13240 unsigned N = Val.countr_zero();
13241 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
13242 }
13243
13244 case Builtin::BI__builtin_fpclassify: {
13245 APFloat Val(0.0);
13246 if (!EvaluateFloat(E: E->getArg(Arg: 5), Result&: Val, Info))
13247 return false;
13248 unsigned Arg;
13249 switch (Val.getCategory()) {
13250 case APFloat::fcNaN: Arg = 0; break;
13251 case APFloat::fcInfinity: Arg = 1; break;
13252 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
13253 case APFloat::fcZero: Arg = 4; break;
13254 }
13255 return Visit(E->getArg(Arg));
13256 }
13257
13258 case Builtin::BI__builtin_isinf_sign: {
13259 APFloat Val(0.0);
13260 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
13261 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
13262 }
13263
13264 case Builtin::BI__builtin_isinf: {
13265 APFloat Val(0.0);
13266 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
13267 Success(Val.isInfinity() ? 1 : 0, E);
13268 }
13269
13270 case Builtin::BI__builtin_isfinite: {
13271 APFloat Val(0.0);
13272 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
13273 Success(Val.isFinite() ? 1 : 0, E);
13274 }
13275
13276 case Builtin::BI__builtin_isnan: {
13277 APFloat Val(0.0);
13278 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
13279 Success(Val.isNaN() ? 1 : 0, E);
13280 }
13281
13282 case Builtin::BI__builtin_isnormal: {
13283 APFloat Val(0.0);
13284 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
13285 Success(Val.isNormal() ? 1 : 0, E);
13286 }
13287
13288 case Builtin::BI__builtin_issubnormal: {
13289 APFloat Val(0.0);
13290 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
13291 Success(Val.isDenormal() ? 1 : 0, E);
13292 }
13293
13294 case Builtin::BI__builtin_iszero: {
13295 APFloat Val(0.0);
13296 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
13297 Success(Val.isZero() ? 1 : 0, E);
13298 }
13299
13300 case Builtin::BI__builtin_signbit:
13301 case Builtin::BI__builtin_signbitf:
13302 case Builtin::BI__builtin_signbitl: {
13303 APFloat Val(0.0);
13304 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
13305 Success(Val.isNegative() ? 1 : 0, E);
13306 }
13307
13308 case Builtin::BI__builtin_isgreater:
13309 case Builtin::BI__builtin_isgreaterequal:
13310 case Builtin::BI__builtin_isless:
13311 case Builtin::BI__builtin_islessequal:
13312 case Builtin::BI__builtin_islessgreater:
13313 case Builtin::BI__builtin_isunordered: {
13314 APFloat LHS(0.0);
13315 APFloat RHS(0.0);
13316 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result&: LHS, Info) ||
13317 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
13318 return false;
13319
13320 return Success(
13321 [&] {
13322 switch (BuiltinOp) {
13323 case Builtin::BI__builtin_isgreater:
13324 return LHS > RHS;
13325 case Builtin::BI__builtin_isgreaterequal:
13326 return LHS >= RHS;
13327 case Builtin::BI__builtin_isless:
13328 return LHS < RHS;
13329 case Builtin::BI__builtin_islessequal:
13330 return LHS <= RHS;
13331 case Builtin::BI__builtin_islessgreater: {
13332 APFloat::cmpResult cmp = LHS.compare(RHS);
13333 return cmp == APFloat::cmpResult::cmpLessThan ||
13334 cmp == APFloat::cmpResult::cmpGreaterThan;
13335 }
13336 case Builtin::BI__builtin_isunordered:
13337 return LHS.compare(RHS) == APFloat::cmpResult::cmpUnordered;
13338 default:
13339 llvm_unreachable("Unexpected builtin ID: Should be a floating "
13340 "point comparison function");
13341 }
13342 }()
13343 ? 1
13344 : 0,
13345 E);
13346 }
13347
13348 case Builtin::BI__builtin_issignaling: {
13349 APFloat Val(0.0);
13350 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
13351 Success(Val.isSignaling() ? 1 : 0, E);
13352 }
13353
13354 case Builtin::BI__builtin_isfpclass: {
13355 APSInt MaskVal;
13356 if (!EvaluateInteger(E: E->getArg(Arg: 1), Result&: MaskVal, Info))
13357 return false;
13358 unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue());
13359 APFloat Val(0.0);
13360 return EvaluateFloat(E: E->getArg(Arg: 0), Result&: Val, Info) &&
13361 Success((Val.classify() & Test) ? 1 : 0, E);
13362 }
13363
13364 case Builtin::BI__builtin_parity:
13365 case Builtin::BI__builtin_parityl:
13366 case Builtin::BI__builtin_parityll: {
13367 APSInt Val;
13368 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
13369 return false;
13370
13371 return Success(Val.popcount() % 2, E);
13372 }
13373
13374 case Builtin::BI__builtin_abs:
13375 case Builtin::BI__builtin_labs:
13376 case Builtin::BI__builtin_llabs: {
13377 APSInt Val;
13378 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
13379 return false;
13380 if (Val == APSInt(APInt::getSignedMinValue(numBits: Val.getBitWidth()),
13381 /*IsUnsigned=*/false))
13382 return false;
13383 if (Val.isNegative())
13384 Val.negate();
13385 return Success(Val, E);
13386 }
13387
13388 case Builtin::BI__builtin_popcount:
13389 case Builtin::BI__builtin_popcountl:
13390 case Builtin::BI__builtin_popcountll:
13391 case Builtin::BI__builtin_popcountg:
13392 case Builtin::BI__builtin_elementwise_popcount:
13393 case Builtin::BI__popcnt16: // Microsoft variants of popcount
13394 case Builtin::BI__popcnt:
13395 case Builtin::BI__popcnt64: {
13396 APSInt Val;
13397 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
13398 return false;
13399
13400 return Success(Val.popcount(), E);
13401 }
13402
13403 case Builtin::BI__builtin_rotateleft8:
13404 case Builtin::BI__builtin_rotateleft16:
13405 case Builtin::BI__builtin_rotateleft32:
13406 case Builtin::BI__builtin_rotateleft64:
13407 case Builtin::BI_rotl8: // Microsoft variants of rotate right
13408 case Builtin::BI_rotl16:
13409 case Builtin::BI_rotl:
13410 case Builtin::BI_lrotl:
13411 case Builtin::BI_rotl64: {
13412 APSInt Val, Amt;
13413 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) ||
13414 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Amt, Info))
13415 return false;
13416
13417 return Success(Val.rotl(rotateAmt: Amt.urem(RHS: Val.getBitWidth())), E);
13418 }
13419
13420 case Builtin::BI__builtin_rotateright8:
13421 case Builtin::BI__builtin_rotateright16:
13422 case Builtin::BI__builtin_rotateright32:
13423 case Builtin::BI__builtin_rotateright64:
13424 case Builtin::BI_rotr8: // Microsoft variants of rotate right
13425 case Builtin::BI_rotr16:
13426 case Builtin::BI_rotr:
13427 case Builtin::BI_lrotr:
13428 case Builtin::BI_rotr64: {
13429 APSInt Val, Amt;
13430 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) ||
13431 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Amt, Info))
13432 return false;
13433
13434 return Success(Val.rotr(rotateAmt: Amt.urem(RHS: Val.getBitWidth())), E);
13435 }
13436
13437 case Builtin::BI__builtin_elementwise_add_sat: {
13438 APSInt LHS, RHS;
13439 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: LHS, Info) ||
13440 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: RHS, Info))
13441 return false;
13442
13443 APInt Result = LHS.isSigned() ? LHS.sadd_sat(RHS) : LHS.uadd_sat(RHS);
13444 return Success(APSInt(Result, !LHS.isSigned()), E);
13445 }
13446 case Builtin::BI__builtin_elementwise_sub_sat: {
13447 APSInt LHS, RHS;
13448 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: LHS, Info) ||
13449 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: RHS, Info))
13450 return false;
13451
13452 APInt Result = LHS.isSigned() ? LHS.ssub_sat(RHS) : LHS.usub_sat(RHS);
13453 return Success(APSInt(Result, !LHS.isSigned()), E);
13454 }
13455
13456 case Builtin::BIstrlen:
13457 case Builtin::BIwcslen:
13458 // A call to strlen is not a constant expression.
13459 if (Info.getLangOpts().CPlusPlus11)
13460 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
13461 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
13462 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp);
13463 else
13464 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
13465 [[fallthrough]];
13466 case Builtin::BI__builtin_strlen:
13467 case Builtin::BI__builtin_wcslen: {
13468 // As an extension, we support __builtin_strlen() as a constant expression,
13469 // and support folding strlen() to a constant.
13470 uint64_t StrLen;
13471 if (EvaluateBuiltinStrLen(E: E->getArg(Arg: 0), Result&: StrLen, Info))
13472 return Success(StrLen, E);
13473 return false;
13474 }
13475
13476 case Builtin::BIstrcmp:
13477 case Builtin::BIwcscmp:
13478 case Builtin::BIstrncmp:
13479 case Builtin::BIwcsncmp:
13480 case Builtin::BImemcmp:
13481 case Builtin::BIbcmp:
13482 case Builtin::BIwmemcmp:
13483 // A call to strlen is not a constant expression.
13484 if (Info.getLangOpts().CPlusPlus11)
13485 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
13486 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
13487 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp);
13488 else
13489 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
13490 [[fallthrough]];
13491 case Builtin::BI__builtin_strcmp:
13492 case Builtin::BI__builtin_wcscmp:
13493 case Builtin::BI__builtin_strncmp:
13494 case Builtin::BI__builtin_wcsncmp:
13495 case Builtin::BI__builtin_memcmp:
13496 case Builtin::BI__builtin_bcmp:
13497 case Builtin::BI__builtin_wmemcmp: {
13498 LValue String1, String2;
13499 if (!EvaluatePointer(E: E->getArg(Arg: 0), Result&: String1, Info) ||
13500 !EvaluatePointer(E: E->getArg(Arg: 1), Result&: String2, Info))
13501 return false;
13502
13503 uint64_t MaxLength = uint64_t(-1);
13504 if (BuiltinOp != Builtin::BIstrcmp &&
13505 BuiltinOp != Builtin::BIwcscmp &&
13506 BuiltinOp != Builtin::BI__builtin_strcmp &&
13507 BuiltinOp != Builtin::BI__builtin_wcscmp) {
13508 APSInt N;
13509 if (!EvaluateInteger(E: E->getArg(Arg: 2), Result&: N, Info))
13510 return false;
13511 MaxLength = N.getZExtValue();
13512 }
13513
13514 // Empty substrings compare equal by definition.
13515 if (MaxLength == 0u)
13516 return Success(0, E);
13517
13518 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
13519 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
13520 String1.Designator.Invalid || String2.Designator.Invalid)
13521 return false;
13522
13523 QualType CharTy1 = String1.Designator.getType(Info.Ctx);
13524 QualType CharTy2 = String2.Designator.getType(Info.Ctx);
13525
13526 bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
13527 BuiltinOp == Builtin::BIbcmp ||
13528 BuiltinOp == Builtin::BI__builtin_memcmp ||
13529 BuiltinOp == Builtin::BI__builtin_bcmp;
13530
13531 assert(IsRawByte ||
13532 (Info.Ctx.hasSameUnqualifiedType(
13533 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
13534 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
13535
13536 // For memcmp, allow comparing any arrays of '[[un]signed] char' or
13537 // 'char8_t', but no other types.
13538 if (IsRawByte &&
13539 !(isOneByteCharacterType(T: CharTy1) && isOneByteCharacterType(T: CharTy2))) {
13540 // FIXME: Consider using our bit_cast implementation to support this.
13541 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
13542 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp) << CharTy1
13543 << CharTy2;
13544 return false;
13545 }
13546
13547 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
13548 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
13549 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
13550 Char1.isInt() && Char2.isInt();
13551 };
13552 const auto &AdvanceElems = [&] {
13553 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
13554 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
13555 };
13556
13557 bool StopAtNull =
13558 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
13559 BuiltinOp != Builtin::BIwmemcmp &&
13560 BuiltinOp != Builtin::BI__builtin_memcmp &&
13561 BuiltinOp != Builtin::BI__builtin_bcmp &&
13562 BuiltinOp != Builtin::BI__builtin_wmemcmp);
13563 bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
13564 BuiltinOp == Builtin::BIwcsncmp ||
13565 BuiltinOp == Builtin::BIwmemcmp ||
13566 BuiltinOp == Builtin::BI__builtin_wcscmp ||
13567 BuiltinOp == Builtin::BI__builtin_wcsncmp ||
13568 BuiltinOp == Builtin::BI__builtin_wmemcmp;
13569
13570 for (; MaxLength; --MaxLength) {
13571 APValue Char1, Char2;
13572 if (!ReadCurElems(Char1, Char2))
13573 return false;
13574 if (Char1.getInt().ne(RHS: Char2.getInt())) {
13575 if (IsWide) // wmemcmp compares with wchar_t signedness.
13576 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
13577 // memcmp always compares unsigned chars.
13578 return Success(Char1.getInt().ult(RHS: Char2.getInt()) ? -1 : 1, E);
13579 }
13580 if (StopAtNull && !Char1.getInt())
13581 return Success(0, E);
13582 assert(!(StopAtNull && !Char2.getInt()));
13583 if (!AdvanceElems())
13584 return false;
13585 }
13586 // We hit the strncmp / memcmp limit.
13587 return Success(0, E);
13588 }
13589
13590 case Builtin::BI__atomic_always_lock_free:
13591 case Builtin::BI__atomic_is_lock_free:
13592 case Builtin::BI__c11_atomic_is_lock_free: {
13593 APSInt SizeVal;
13594 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: SizeVal, Info))
13595 return false;
13596
13597 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
13598 // of two less than or equal to the maximum inline atomic width, we know it
13599 // is lock-free. If the size isn't a power of two, or greater than the
13600 // maximum alignment where we promote atomics, we know it is not lock-free
13601 // (at least not in the sense of atomic_is_lock_free). Otherwise,
13602 // the answer can only be determined at runtime; for example, 16-byte
13603 // atomics have lock-free implementations on some, but not all,
13604 // x86-64 processors.
13605
13606 // Check power-of-two.
13607 CharUnits Size = CharUnits::fromQuantity(Quantity: SizeVal.getZExtValue());
13608 if (Size.isPowerOfTwo()) {
13609 // Check against inlining width.
13610 unsigned InlineWidthBits =
13611 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
13612 if (Size <= Info.Ctx.toCharUnitsFromBits(BitSize: InlineWidthBits)) {
13613 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
13614 Size == CharUnits::One())
13615 return Success(1, E);
13616
13617 // If the pointer argument can be evaluated to a compile-time constant
13618 // integer (or nullptr), check if that value is appropriately aligned.
13619 const Expr *PtrArg = E->getArg(Arg: 1);
13620 Expr::EvalResult ExprResult;
13621 APSInt IntResult;
13622 if (PtrArg->EvaluateAsRValue(Result&: ExprResult, Ctx: Info.Ctx) &&
13623 ExprResult.Val.toIntegralConstant(Result&: IntResult, SrcTy: PtrArg->getType(),
13624 Ctx: Info.Ctx) &&
13625 IntResult.isAligned(A: Size.getAsAlign()))
13626 return Success(1, E);
13627
13628 // Otherwise, check if the type's alignment against Size.
13629 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: PtrArg)) {
13630 // Drop the potential implicit-cast to 'const volatile void*', getting
13631 // the underlying type.
13632 if (ICE->getCastKind() == CK_BitCast)
13633 PtrArg = ICE->getSubExpr();
13634 }
13635
13636 if (auto PtrTy = PtrArg->getType()->getAs<PointerType>()) {
13637 QualType PointeeType = PtrTy->getPointeeType();
13638 if (!PointeeType->isIncompleteType() &&
13639 Info.Ctx.getTypeAlignInChars(T: PointeeType) >= Size) {
13640 // OK, we will inline operations on this object.
13641 return Success(1, E);
13642 }
13643 }
13644 }
13645 }
13646
13647 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
13648 Success(0, E) : Error(E);
13649 }
13650 case Builtin::BI__builtin_addcb:
13651 case Builtin::BI__builtin_addcs:
13652 case Builtin::BI__builtin_addc:
13653 case Builtin::BI__builtin_addcl:
13654 case Builtin::BI__builtin_addcll:
13655 case Builtin::BI__builtin_subcb:
13656 case Builtin::BI__builtin_subcs:
13657 case Builtin::BI__builtin_subc:
13658 case Builtin::BI__builtin_subcl:
13659 case Builtin::BI__builtin_subcll: {
13660 LValue CarryOutLValue;
13661 APSInt LHS, RHS, CarryIn, CarryOut, Result;
13662 QualType ResultType = E->getArg(Arg: 0)->getType();
13663 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: LHS, Info) ||
13664 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: RHS, Info) ||
13665 !EvaluateInteger(E: E->getArg(Arg: 2), Result&: CarryIn, Info) ||
13666 !EvaluatePointer(E: E->getArg(Arg: 3), Result&: CarryOutLValue, Info))
13667 return false;
13668 // Copy the number of bits and sign.
13669 Result = LHS;
13670 CarryOut = LHS;
13671
13672 bool FirstOverflowed = false;
13673 bool SecondOverflowed = false;
13674 switch (BuiltinOp) {
13675 default:
13676 llvm_unreachable("Invalid value for BuiltinOp");
13677 case Builtin::BI__builtin_addcb:
13678 case Builtin::BI__builtin_addcs:
13679 case Builtin::BI__builtin_addc:
13680 case Builtin::BI__builtin_addcl:
13681 case Builtin::BI__builtin_addcll:
13682 Result =
13683 LHS.uadd_ov(RHS, Overflow&: FirstOverflowed).uadd_ov(RHS: CarryIn, Overflow&: SecondOverflowed);
13684 break;
13685 case Builtin::BI__builtin_subcb:
13686 case Builtin::BI__builtin_subcs:
13687 case Builtin::BI__builtin_subc:
13688 case Builtin::BI__builtin_subcl:
13689 case Builtin::BI__builtin_subcll:
13690 Result =
13691 LHS.usub_ov(RHS, Overflow&: FirstOverflowed).usub_ov(RHS: CarryIn, Overflow&: SecondOverflowed);
13692 break;
13693 }
13694
13695 // It is possible for both overflows to happen but CGBuiltin uses an OR so
13696 // this is consistent.
13697 CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed);
13698 APValue APV{CarryOut};
13699 if (!handleAssignment(Info, E, CarryOutLValue, ResultType, APV))
13700 return false;
13701 return Success(Result, E);
13702 }
13703 case Builtin::BI__builtin_add_overflow:
13704 case Builtin::BI__builtin_sub_overflow:
13705 case Builtin::BI__builtin_mul_overflow:
13706 case Builtin::BI__builtin_sadd_overflow:
13707 case Builtin::BI__builtin_uadd_overflow:
13708 case Builtin::BI__builtin_uaddl_overflow:
13709 case Builtin::BI__builtin_uaddll_overflow:
13710 case Builtin::BI__builtin_usub_overflow:
13711 case Builtin::BI__builtin_usubl_overflow:
13712 case Builtin::BI__builtin_usubll_overflow:
13713 case Builtin::BI__builtin_umul_overflow:
13714 case Builtin::BI__builtin_umull_overflow:
13715 case Builtin::BI__builtin_umulll_overflow:
13716 case Builtin::BI__builtin_saddl_overflow:
13717 case Builtin::BI__builtin_saddll_overflow:
13718 case Builtin::BI__builtin_ssub_overflow:
13719 case Builtin::BI__builtin_ssubl_overflow:
13720 case Builtin::BI__builtin_ssubll_overflow:
13721 case Builtin::BI__builtin_smul_overflow:
13722 case Builtin::BI__builtin_smull_overflow:
13723 case Builtin::BI__builtin_smulll_overflow: {
13724 LValue ResultLValue;
13725 APSInt LHS, RHS;
13726
13727 QualType ResultType = E->getArg(Arg: 2)->getType()->getPointeeType();
13728 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: LHS, Info) ||
13729 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: RHS, Info) ||
13730 !EvaluatePointer(E: E->getArg(Arg: 2), Result&: ResultLValue, Info))
13731 return false;
13732
13733 APSInt Result;
13734 bool DidOverflow = false;
13735
13736 // If the types don't have to match, enlarge all 3 to the largest of them.
13737 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
13738 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
13739 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
13740 bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
13741 ResultType->isSignedIntegerOrEnumerationType();
13742 bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
13743 ResultType->isSignedIntegerOrEnumerationType();
13744 uint64_t LHSSize = LHS.getBitWidth();
13745 uint64_t RHSSize = RHS.getBitWidth();
13746 uint64_t ResultSize = Info.Ctx.getTypeSize(T: ResultType);
13747 uint64_t MaxBits = std::max(a: std::max(a: LHSSize, b: RHSSize), b: ResultSize);
13748
13749 // Add an additional bit if the signedness isn't uniformly agreed to. We
13750 // could do this ONLY if there is a signed and an unsigned that both have
13751 // MaxBits, but the code to check that is pretty nasty. The issue will be
13752 // caught in the shrink-to-result later anyway.
13753 if (IsSigned && !AllSigned)
13754 ++MaxBits;
13755
13756 LHS = APSInt(LHS.extOrTrunc(width: MaxBits), !IsSigned);
13757 RHS = APSInt(RHS.extOrTrunc(width: MaxBits), !IsSigned);
13758 Result = APSInt(MaxBits, !IsSigned);
13759 }
13760
13761 // Find largest int.
13762 switch (BuiltinOp) {
13763 default:
13764 llvm_unreachable("Invalid value for BuiltinOp");
13765 case Builtin::BI__builtin_add_overflow:
13766 case Builtin::BI__builtin_sadd_overflow:
13767 case Builtin::BI__builtin_saddl_overflow:
13768 case Builtin::BI__builtin_saddll_overflow:
13769 case Builtin::BI__builtin_uadd_overflow:
13770 case Builtin::BI__builtin_uaddl_overflow:
13771 case Builtin::BI__builtin_uaddll_overflow:
13772 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, Overflow&: DidOverflow)
13773 : LHS.uadd_ov(RHS, Overflow&: DidOverflow);
13774 break;
13775 case Builtin::BI__builtin_sub_overflow:
13776 case Builtin::BI__builtin_ssub_overflow:
13777 case Builtin::BI__builtin_ssubl_overflow:
13778 case Builtin::BI__builtin_ssubll_overflow:
13779 case Builtin::BI__builtin_usub_overflow:
13780 case Builtin::BI__builtin_usubl_overflow:
13781 case Builtin::BI__builtin_usubll_overflow:
13782 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, Overflow&: DidOverflow)
13783 : LHS.usub_ov(RHS, Overflow&: DidOverflow);
13784 break;
13785 case Builtin::BI__builtin_mul_overflow:
13786 case Builtin::BI__builtin_smul_overflow:
13787 case Builtin::BI__builtin_smull_overflow:
13788 case Builtin::BI__builtin_smulll_overflow:
13789 case Builtin::BI__builtin_umul_overflow:
13790 case Builtin::BI__builtin_umull_overflow:
13791 case Builtin::BI__builtin_umulll_overflow:
13792 Result = LHS.isSigned() ? LHS.smul_ov(RHS, Overflow&: DidOverflow)
13793 : LHS.umul_ov(RHS, Overflow&: DidOverflow);
13794 break;
13795 }
13796
13797 // In the case where multiple sizes are allowed, truncate and see if
13798 // the values are the same.
13799 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
13800 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
13801 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
13802 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
13803 // since it will give us the behavior of a TruncOrSelf in the case where
13804 // its parameter <= its size. We previously set Result to be at least the
13805 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
13806 // will work exactly like TruncOrSelf.
13807 APSInt Temp = Result.extOrTrunc(width: Info.Ctx.getTypeSize(T: ResultType));
13808 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
13809
13810 if (!APSInt::isSameValue(I1: Temp, I2: Result))
13811 DidOverflow = true;
13812 Result = Temp;
13813 }
13814
13815 APValue APV{Result};
13816 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
13817 return false;
13818 return Success(DidOverflow, E);
13819 }
13820
13821 case Builtin::BI__builtin_reduce_add:
13822 case Builtin::BI__builtin_reduce_mul:
13823 case Builtin::BI__builtin_reduce_and:
13824 case Builtin::BI__builtin_reduce_or:
13825 case Builtin::BI__builtin_reduce_xor:
13826 case Builtin::BI__builtin_reduce_min:
13827 case Builtin::BI__builtin_reduce_max: {
13828 APValue Source;
13829 if (!EvaluateAsRValue(Info, E: E->getArg(Arg: 0), Result&: Source))
13830 return false;
13831
13832 unsigned SourceLen = Source.getVectorLength();
13833 APSInt Reduced = Source.getVectorElt(I: 0).getInt();
13834 for (unsigned EltNum = 1; EltNum < SourceLen; ++EltNum) {
13835 switch (BuiltinOp) {
13836 default:
13837 return false;
13838 case Builtin::BI__builtin_reduce_add: {
13839 if (!CheckedIntArithmetic(
13840 Info, E, Reduced, Source.getVectorElt(I: EltNum).getInt(),
13841 Reduced.getBitWidth() + 1, std::plus<APSInt>(), Reduced))
13842 return false;
13843 break;
13844 }
13845 case Builtin::BI__builtin_reduce_mul: {
13846 if (!CheckedIntArithmetic(
13847 Info, E, Reduced, Source.getVectorElt(I: EltNum).getInt(),
13848 Reduced.getBitWidth() * 2, std::multiplies<APSInt>(), Reduced))
13849 return false;
13850 break;
13851 }
13852 case Builtin::BI__builtin_reduce_and: {
13853 Reduced &= Source.getVectorElt(I: EltNum).getInt();
13854 break;
13855 }
13856 case Builtin::BI__builtin_reduce_or: {
13857 Reduced |= Source.getVectorElt(I: EltNum).getInt();
13858 break;
13859 }
13860 case Builtin::BI__builtin_reduce_xor: {
13861 Reduced ^= Source.getVectorElt(I: EltNum).getInt();
13862 break;
13863 }
13864 case Builtin::BI__builtin_reduce_min: {
13865 Reduced = std::min(a: Reduced, b: Source.getVectorElt(I: EltNum).getInt());
13866 break;
13867 }
13868 case Builtin::BI__builtin_reduce_max: {
13869 Reduced = std::max(a: Reduced, b: Source.getVectorElt(I: EltNum).getInt());
13870 break;
13871 }
13872 }
13873 }
13874
13875 return Success(Reduced, E);
13876 }
13877
13878 case clang::X86::BI__builtin_ia32_addcarryx_u32:
13879 case clang::X86::BI__builtin_ia32_addcarryx_u64:
13880 case clang::X86::BI__builtin_ia32_subborrow_u32:
13881 case clang::X86::BI__builtin_ia32_subborrow_u64: {
13882 LValue ResultLValue;
13883 APSInt CarryIn, LHS, RHS;
13884 QualType ResultType = E->getArg(Arg: 3)->getType()->getPointeeType();
13885 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: CarryIn, Info) ||
13886 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: LHS, Info) ||
13887 !EvaluateInteger(E: E->getArg(Arg: 2), Result&: RHS, Info) ||
13888 !EvaluatePointer(E: E->getArg(Arg: 3), Result&: ResultLValue, Info))
13889 return false;
13890
13891 bool IsAdd = BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u32 ||
13892 BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u64;
13893
13894 unsigned BitWidth = LHS.getBitWidth();
13895 unsigned CarryInBit = CarryIn.ugt(RHS: 0) ? 1 : 0;
13896 APInt ExResult =
13897 IsAdd
13898 ? (LHS.zext(width: BitWidth + 1) + (RHS.zext(width: BitWidth + 1) + CarryInBit))
13899 : (LHS.zext(width: BitWidth + 1) - (RHS.zext(width: BitWidth + 1) + CarryInBit));
13900
13901 APInt Result = ExResult.extractBits(numBits: BitWidth, bitPosition: 0);
13902 uint64_t CarryOut = ExResult.extractBitsAsZExtValue(numBits: 1, bitPosition: BitWidth);
13903
13904 APValue APV{APSInt(Result, /*isUnsigned=*/true)};
13905 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
13906 return false;
13907 return Success(CarryOut, E);
13908 }
13909
13910 case clang::X86::BI__builtin_ia32_bextr_u32:
13911 case clang::X86::BI__builtin_ia32_bextr_u64:
13912 case clang::X86::BI__builtin_ia32_bextri_u32:
13913 case clang::X86::BI__builtin_ia32_bextri_u64: {
13914 APSInt Val, Idx;
13915 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) ||
13916 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Idx, Info))
13917 return false;
13918
13919 unsigned BitWidth = Val.getBitWidth();
13920 uint64_t Shift = Idx.extractBitsAsZExtValue(numBits: 8, bitPosition: 0);
13921 uint64_t Length = Idx.extractBitsAsZExtValue(numBits: 8, bitPosition: 8);
13922 Length = Length > BitWidth ? BitWidth : Length;
13923
13924 // Handle out of bounds cases.
13925 if (Length == 0 || Shift >= BitWidth)
13926 return Success(0, E);
13927
13928 uint64_t Result = Val.getZExtValue() >> Shift;
13929 Result &= llvm::maskTrailingOnes<uint64_t>(N: Length);
13930 return Success(Result, E);
13931 }
13932
13933 case clang::X86::BI__builtin_ia32_bzhi_si:
13934 case clang::X86::BI__builtin_ia32_bzhi_di: {
13935 APSInt Val, Idx;
13936 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) ||
13937 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Idx, Info))
13938 return false;
13939
13940 unsigned BitWidth = Val.getBitWidth();
13941 unsigned Index = Idx.extractBitsAsZExtValue(numBits: 8, bitPosition: 0);
13942 if (Index < BitWidth)
13943 Val.clearHighBits(hiBits: BitWidth - Index);
13944 return Success(Val, E);
13945 }
13946
13947 case clang::X86::BI__builtin_ia32_lzcnt_u16:
13948 case clang::X86::BI__builtin_ia32_lzcnt_u32:
13949 case clang::X86::BI__builtin_ia32_lzcnt_u64: {
13950 APSInt Val;
13951 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
13952 return false;
13953 return Success(Val.countLeadingZeros(), E);
13954 }
13955
13956 case clang::X86::BI__builtin_ia32_tzcnt_u16:
13957 case clang::X86::BI__builtin_ia32_tzcnt_u32:
13958 case clang::X86::BI__builtin_ia32_tzcnt_u64: {
13959 APSInt Val;
13960 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info))
13961 return false;
13962 return Success(Val.countTrailingZeros(), E);
13963 }
13964
13965 case clang::X86::BI__builtin_ia32_pdep_si:
13966 case clang::X86::BI__builtin_ia32_pdep_di: {
13967 APSInt Val, Msk;
13968 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) ||
13969 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Msk, Info))
13970 return false;
13971
13972 unsigned BitWidth = Val.getBitWidth();
13973 APInt Result = APInt::getZero(numBits: BitWidth);
13974 for (unsigned I = 0, P = 0; I != BitWidth; ++I)
13975 if (Msk[I])
13976 Result.setBitVal(BitPosition: I, BitValue: Val[P++]);
13977 return Success(Result, E);
13978 }
13979
13980 case clang::X86::BI__builtin_ia32_pext_si:
13981 case clang::X86::BI__builtin_ia32_pext_di: {
13982 APSInt Val, Msk;
13983 if (!EvaluateInteger(E: E->getArg(Arg: 0), Result&: Val, Info) ||
13984 !EvaluateInteger(E: E->getArg(Arg: 1), Result&: Msk, Info))
13985 return false;
13986
13987 unsigned BitWidth = Val.getBitWidth();
13988 APInt Result = APInt::getZero(numBits: BitWidth);
13989 for (unsigned I = 0, P = 0; I != BitWidth; ++I)
13990 if (Msk[I])
13991 Result.setBitVal(BitPosition: P++, BitValue: Val[I]);
13992 return Success(Result, E);
13993 }
13994 }
13995}
13996
13997/// Determine whether this is a pointer past the end of the complete
13998/// object referred to by the lvalue.
13999static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
14000 const LValue &LV) {
14001 // A null pointer can be viewed as being "past the end" but we don't
14002 // choose to look at it that way here.
14003 if (!LV.getLValueBase())
14004 return false;
14005
14006 // If the designator is valid and refers to a subobject, we're not pointing
14007 // past the end.
14008 if (!LV.getLValueDesignator().Invalid &&
14009 !LV.getLValueDesignator().isOnePastTheEnd())
14010 return false;
14011
14012 // A pointer to an incomplete type might be past-the-end if the type's size is
14013 // zero. We cannot tell because the type is incomplete.
14014 QualType Ty = getType(B: LV.getLValueBase());
14015 if (Ty->isIncompleteType())
14016 return true;
14017
14018 // Can't be past the end of an invalid object.
14019 if (LV.getLValueDesignator().Invalid)
14020 return false;
14021
14022 // We're a past-the-end pointer if we point to the byte after the object,
14023 // no matter what our type or path is.
14024 auto Size = Ctx.getTypeSizeInChars(T: Ty);
14025 return LV.getLValueOffset() == Size;
14026}
14027
14028namespace {
14029
14030/// Data recursive integer evaluator of certain binary operators.
14031///
14032/// We use a data recursive algorithm for binary operators so that we are able
14033/// to handle extreme cases of chained binary operators without causing stack
14034/// overflow.
14035class DataRecursiveIntBinOpEvaluator {
14036 struct EvalResult {
14037 APValue Val;
14038 bool Failed = false;
14039
14040 EvalResult() = default;
14041
14042 void swap(EvalResult &RHS) {
14043 Val.swap(RHS&: RHS.Val);
14044 Failed = RHS.Failed;
14045 RHS.Failed = false;
14046 }
14047 };
14048
14049 struct Job {
14050 const Expr *E;
14051 EvalResult LHSResult; // meaningful only for binary operator expression.
14052 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
14053
14054 Job() = default;
14055 Job(Job &&) = default;
14056
14057 void startSpeculativeEval(EvalInfo &Info) {
14058 SpecEvalRAII = SpeculativeEvaluationRAII(Info);
14059 }
14060
14061 private:
14062 SpeculativeEvaluationRAII SpecEvalRAII;
14063 };
14064
14065 SmallVector<Job, 16> Queue;
14066
14067 IntExprEvaluator &IntEval;
14068 EvalInfo &Info;
14069 APValue &FinalResult;
14070
14071public:
14072 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
14073 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
14074
14075 /// True if \param E is a binary operator that we are going to handle
14076 /// data recursively.
14077 /// We handle binary operators that are comma, logical, or that have operands
14078 /// with integral or enumeration type.
14079 static bool shouldEnqueue(const BinaryOperator *E) {
14080 return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
14081 (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
14082 E->getLHS()->getType()->isIntegralOrEnumerationType() &&
14083 E->getRHS()->getType()->isIntegralOrEnumerationType());
14084 }
14085
14086 bool Traverse(const BinaryOperator *E) {
14087 enqueue(E);
14088 EvalResult PrevResult;
14089 while (!Queue.empty())
14090 process(Result&: PrevResult);
14091
14092 if (PrevResult.Failed) return false;
14093
14094 FinalResult.swap(RHS&: PrevResult.Val);
14095 return true;
14096 }
14097
14098private:
14099 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
14100 return IntEval.Success(Value, E, Result);
14101 }
14102 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
14103 return IntEval.Success(SI: Value, E, Result);
14104 }
14105 bool Error(const Expr *E) {
14106 return IntEval.Error(E);
14107 }
14108 bool Error(const Expr *E, diag::kind D) {
14109 return IntEval.Error(E, D);
14110 }
14111
14112 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
14113 return Info.CCEDiag(E, DiagId: D);
14114 }
14115
14116 // Returns true if visiting the RHS is necessary, false otherwise.
14117 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
14118 bool &SuppressRHSDiags);
14119
14120 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
14121 const BinaryOperator *E, APValue &Result);
14122
14123 void EvaluateExpr(const Expr *E, EvalResult &Result) {
14124 Result.Failed = !Evaluate(Result&: Result.Val, Info, E);
14125 if (Result.Failed)
14126 Result.Val = APValue();
14127 }
14128
14129 void process(EvalResult &Result);
14130
14131 void enqueue(const Expr *E) {
14132 E = E->IgnoreParens();
14133 Queue.resize(N: Queue.size()+1);
14134 Queue.back().E = E;
14135 Queue.back().Kind = Job::AnyExprKind;
14136 }
14137};
14138
14139}
14140
14141bool DataRecursiveIntBinOpEvaluator::
14142 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
14143 bool &SuppressRHSDiags) {
14144 if (E->getOpcode() == BO_Comma) {
14145 // Ignore LHS but note if we could not evaluate it.
14146 if (LHSResult.Failed)
14147 return Info.noteSideEffect();
14148 return true;
14149 }
14150
14151 if (E->isLogicalOp()) {
14152 bool LHSAsBool;
14153 if (!LHSResult.Failed && HandleConversionToBool(Val: LHSResult.Val, Result&: LHSAsBool)) {
14154 // We were able to evaluate the LHS, see if we can get away with not
14155 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
14156 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
14157 Success(LHSAsBool, E, LHSResult.Val);
14158 return false; // Ignore RHS
14159 }
14160 } else {
14161 LHSResult.Failed = true;
14162
14163 // Since we weren't able to evaluate the left hand side, it
14164 // might have had side effects.
14165 if (!Info.noteSideEffect())
14166 return false;
14167
14168 // We can't evaluate the LHS; however, sometimes the result
14169 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
14170 // Don't ignore RHS and suppress diagnostics from this arm.
14171 SuppressRHSDiags = true;
14172 }
14173
14174 return true;
14175 }
14176
14177 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
14178 E->getRHS()->getType()->isIntegralOrEnumerationType());
14179
14180 if (LHSResult.Failed && !Info.noteFailure())
14181 return false; // Ignore RHS;
14182
14183 return true;
14184}
14185
14186static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
14187 bool IsSub) {
14188 // Compute the new offset in the appropriate width, wrapping at 64 bits.
14189 // FIXME: When compiling for a 32-bit target, we should use 32-bit
14190 // offsets.
14191 assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
14192 CharUnits &Offset = LVal.getLValueOffset();
14193 uint64_t Offset64 = Offset.getQuantity();
14194 uint64_t Index64 = Index.extOrTrunc(width: 64).getZExtValue();
14195 Offset = CharUnits::fromQuantity(Quantity: IsSub ? Offset64 - Index64
14196 : Offset64 + Index64);
14197}
14198
14199bool DataRecursiveIntBinOpEvaluator::
14200 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
14201 const BinaryOperator *E, APValue &Result) {
14202 if (E->getOpcode() == BO_Comma) {
14203 if (RHSResult.Failed)
14204 return false;
14205 Result = RHSResult.Val;
14206 return true;
14207 }
14208
14209 if (E->isLogicalOp()) {
14210 bool lhsResult, rhsResult;
14211 bool LHSIsOK = HandleConversionToBool(Val: LHSResult.Val, Result&: lhsResult);
14212 bool RHSIsOK = HandleConversionToBool(Val: RHSResult.Val, Result&: rhsResult);
14213
14214 if (LHSIsOK) {
14215 if (RHSIsOK) {
14216 if (E->getOpcode() == BO_LOr)
14217 return Success(lhsResult || rhsResult, E, Result);
14218 else
14219 return Success(lhsResult && rhsResult, E, Result);
14220 }
14221 } else {
14222 if (RHSIsOK) {
14223 // We can't evaluate the LHS; however, sometimes the result
14224 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
14225 if (rhsResult == (E->getOpcode() == BO_LOr))
14226 return Success(rhsResult, E, Result);
14227 }
14228 }
14229
14230 return false;
14231 }
14232
14233 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
14234 E->getRHS()->getType()->isIntegralOrEnumerationType());
14235
14236 if (LHSResult.Failed || RHSResult.Failed)
14237 return false;
14238
14239 const APValue &LHSVal = LHSResult.Val;
14240 const APValue &RHSVal = RHSResult.Val;
14241
14242 // Handle cases like (unsigned long)&a + 4.
14243 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
14244 Result = LHSVal;
14245 addOrSubLValueAsInteger(LVal&: Result, Index: RHSVal.getInt(), IsSub: E->getOpcode() == BO_Sub);
14246 return true;
14247 }
14248
14249 // Handle cases like 4 + (unsigned long)&a
14250 if (E->getOpcode() == BO_Add &&
14251 RHSVal.isLValue() && LHSVal.isInt()) {
14252 Result = RHSVal;
14253 addOrSubLValueAsInteger(LVal&: Result, Index: LHSVal.getInt(), /*IsSub*/false);
14254 return true;
14255 }
14256
14257 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
14258 // Handle (intptr_t)&&A - (intptr_t)&&B.
14259 if (!LHSVal.getLValueOffset().isZero() ||
14260 !RHSVal.getLValueOffset().isZero())
14261 return false;
14262 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
14263 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
14264 if (!LHSExpr || !RHSExpr)
14265 return false;
14266 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: LHSExpr);
14267 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: RHSExpr);
14268 if (!LHSAddrExpr || !RHSAddrExpr)
14269 return false;
14270 // Make sure both labels come from the same function.
14271 if (LHSAddrExpr->getLabel()->getDeclContext() !=
14272 RHSAddrExpr->getLabel()->getDeclContext())
14273 return false;
14274 Result = APValue(LHSAddrExpr, RHSAddrExpr);
14275 return true;
14276 }
14277
14278 // All the remaining cases expect both operands to be an integer
14279 if (!LHSVal.isInt() || !RHSVal.isInt())
14280 return Error(E);
14281
14282 // Set up the width and signedness manually, in case it can't be deduced
14283 // from the operation we're performing.
14284 // FIXME: Don't do this in the cases where we can deduce it.
14285 APSInt Value(Info.Ctx.getIntWidth(T: E->getType()),
14286 E->getType()->isUnsignedIntegerOrEnumerationType());
14287 if (!handleIntIntBinOp(Info, E, LHS: LHSVal.getInt(), Opcode: E->getOpcode(),
14288 RHS: RHSVal.getInt(), Result&: Value))
14289 return false;
14290 return Success(Value, E, Result);
14291}
14292
14293void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
14294 Job &job = Queue.back();
14295
14296 switch (job.Kind) {
14297 case Job::AnyExprKind: {
14298 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: job.E)) {
14299 if (shouldEnqueue(E: Bop)) {
14300 job.Kind = Job::BinOpKind;
14301 enqueue(E: Bop->getLHS());
14302 return;
14303 }
14304 }
14305
14306 EvaluateExpr(E: job.E, Result);
14307 Queue.pop_back();
14308 return;
14309 }
14310
14311 case Job::BinOpKind: {
14312 const BinaryOperator *Bop = cast<BinaryOperator>(Val: job.E);
14313 bool SuppressRHSDiags = false;
14314 if (!VisitBinOpLHSOnly(LHSResult&: Result, E: Bop, SuppressRHSDiags)) {
14315 Queue.pop_back();
14316 return;
14317 }
14318 if (SuppressRHSDiags)
14319 job.startSpeculativeEval(Info);
14320 job.LHSResult.swap(RHS&: Result);
14321 job.Kind = Job::BinOpVisitedLHSKind;
14322 enqueue(E: Bop->getRHS());
14323 return;
14324 }
14325
14326 case Job::BinOpVisitedLHSKind: {
14327 const BinaryOperator *Bop = cast<BinaryOperator>(Val: job.E);
14328 EvalResult RHS;
14329 RHS.swap(RHS&: Result);
14330 Result.Failed = !VisitBinOp(LHSResult: job.LHSResult, RHSResult: RHS, E: Bop, Result&: Result.Val);
14331 Queue.pop_back();
14332 return;
14333 }
14334 }
14335
14336 llvm_unreachable("Invalid Job::Kind!");
14337}
14338
14339namespace {
14340enum class CmpResult {
14341 Unequal,
14342 Less,
14343 Equal,
14344 Greater,
14345 Unordered,
14346};
14347}
14348
14349template <class SuccessCB, class AfterCB>
14350static bool
14351EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
14352 SuccessCB &&Success, AfterCB &&DoAfter) {
14353 assert(!E->isValueDependent());
14354 assert(E->isComparisonOp() && "expected comparison operator");
14355 assert((E->getOpcode() == BO_Cmp ||
14356 E->getType()->isIntegralOrEnumerationType()) &&
14357 "unsupported binary expression evaluation");
14358 auto Error = [&](const Expr *E) {
14359 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
14360 return false;
14361 };
14362
14363 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
14364 bool IsEquality = E->isEqualityOp();
14365
14366 QualType LHSTy = E->getLHS()->getType();
14367 QualType RHSTy = E->getRHS()->getType();
14368
14369 if (LHSTy->isIntegralOrEnumerationType() &&
14370 RHSTy->isIntegralOrEnumerationType()) {
14371 APSInt LHS, RHS;
14372 bool LHSOK = EvaluateInteger(E: E->getLHS(), Result&: LHS, Info);
14373 if (!LHSOK && !Info.noteFailure())
14374 return false;
14375 if (!EvaluateInteger(E: E->getRHS(), Result&: RHS, Info) || !LHSOK)
14376 return false;
14377 if (LHS < RHS)
14378 return Success(CmpResult::Less, E);
14379 if (LHS > RHS)
14380 return Success(CmpResult::Greater, E);
14381 return Success(CmpResult::Equal, E);
14382 }
14383
14384 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
14385 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(Ty: LHSTy));
14386 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(Ty: RHSTy));
14387
14388 bool LHSOK = EvaluateFixedPointOrInteger(E: E->getLHS(), Result&: LHSFX, Info);
14389 if (!LHSOK && !Info.noteFailure())
14390 return false;
14391 if (!EvaluateFixedPointOrInteger(E: E->getRHS(), Result&: RHSFX, Info) || !LHSOK)
14392 return false;
14393 if (LHSFX < RHSFX)
14394 return Success(CmpResult::Less, E);
14395 if (LHSFX > RHSFX)
14396 return Success(CmpResult::Greater, E);
14397 return Success(CmpResult::Equal, E);
14398 }
14399
14400 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
14401 ComplexValue LHS, RHS;
14402 bool LHSOK;
14403 if (E->isAssignmentOp()) {
14404 LValue LV;
14405 EvaluateLValue(E: E->getLHS(), Result&: LV, Info);
14406 LHSOK = false;
14407 } else if (LHSTy->isRealFloatingType()) {
14408 LHSOK = EvaluateFloat(E: E->getLHS(), Result&: LHS.FloatReal, Info);
14409 if (LHSOK) {
14410 LHS.makeComplexFloat();
14411 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
14412 }
14413 } else {
14414 LHSOK = EvaluateComplex(E: E->getLHS(), Res&: LHS, Info);
14415 }
14416 if (!LHSOK && !Info.noteFailure())
14417 return false;
14418
14419 if (E->getRHS()->getType()->isRealFloatingType()) {
14420 if (!EvaluateFloat(E: E->getRHS(), Result&: RHS.FloatReal, Info) || !LHSOK)
14421 return false;
14422 RHS.makeComplexFloat();
14423 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
14424 } else if (!EvaluateComplex(E: E->getRHS(), Res&: RHS, Info) || !LHSOK)
14425 return false;
14426
14427 if (LHS.isComplexFloat()) {
14428 APFloat::cmpResult CR_r =
14429 LHS.getComplexFloatReal().compare(RHS: RHS.getComplexFloatReal());
14430 APFloat::cmpResult CR_i =
14431 LHS.getComplexFloatImag().compare(RHS: RHS.getComplexFloatImag());
14432 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
14433 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
14434 } else {
14435 assert(IsEquality && "invalid complex comparison");
14436 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
14437 LHS.getComplexIntImag() == RHS.getComplexIntImag();
14438 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
14439 }
14440 }
14441
14442 if (LHSTy->isRealFloatingType() &&
14443 RHSTy->isRealFloatingType()) {
14444 APFloat RHS(0.0), LHS(0.0);
14445
14446 bool LHSOK = EvaluateFloat(E: E->getRHS(), Result&: RHS, Info);
14447 if (!LHSOK && !Info.noteFailure())
14448 return false;
14449
14450 if (!EvaluateFloat(E: E->getLHS(), Result&: LHS, Info) || !LHSOK)
14451 return false;
14452
14453 assert(E->isComparisonOp() && "Invalid binary operator!");
14454 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
14455 if (!Info.InConstantContext &&
14456 APFloatCmpResult == APFloat::cmpUnordered &&
14457 E->getFPFeaturesInEffect(LO: Info.Ctx.getLangOpts()).isFPConstrained()) {
14458 // Note: Compares may raise invalid in some cases involving NaN or sNaN.
14459 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
14460 return false;
14461 }
14462 auto GetCmpRes = [&]() {
14463 switch (APFloatCmpResult) {
14464 case APFloat::cmpEqual:
14465 return CmpResult::Equal;
14466 case APFloat::cmpLessThan:
14467 return CmpResult::Less;
14468 case APFloat::cmpGreaterThan:
14469 return CmpResult::Greater;
14470 case APFloat::cmpUnordered:
14471 return CmpResult::Unordered;
14472 }
14473 llvm_unreachable("Unrecognised APFloat::cmpResult enum");
14474 };
14475 return Success(GetCmpRes(), E);
14476 }
14477
14478 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
14479 LValue LHSValue, RHSValue;
14480
14481 bool LHSOK = EvaluatePointer(E: E->getLHS(), Result&: LHSValue, Info);
14482 if (!LHSOK && !Info.noteFailure())
14483 return false;
14484
14485 if (!EvaluatePointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK)
14486 return false;
14487
14488 // If we have Unknown pointers we should fail if they are not global values.
14489 if (!(IsGlobalLValue(B: LHSValue.getLValueBase()) &&
14490 IsGlobalLValue(B: RHSValue.getLValueBase())) &&
14491 (LHSValue.AllowConstexprUnknown || RHSValue.AllowConstexprUnknown))
14492 return false;
14493
14494 // Reject differing bases from the normal codepath; we special-case
14495 // comparisons to null.
14496 if (!HasSameBase(A: LHSValue, B: RHSValue)) {
14497 auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) {
14498 std::string LHS = LHSValue.toString(Ctx&: Info.Ctx, T: E->getLHS()->getType());
14499 std::string RHS = RHSValue.toString(Ctx&: Info.Ctx, T: E->getRHS()->getType());
14500 Info.FFDiag(E, DiagID)
14501 << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS);
14502 return false;
14503 };
14504 // Inequalities and subtractions between unrelated pointers have
14505 // unspecified or undefined behavior.
14506 if (!IsEquality)
14507 return DiagComparison(
14508 diag::note_constexpr_pointer_comparison_unspecified);
14509 // A constant address may compare equal to the address of a symbol.
14510 // The one exception is that address of an object cannot compare equal
14511 // to a null pointer constant.
14512 // TODO: Should we restrict this to actual null pointers, and exclude the
14513 // case of zero cast to pointer type?
14514 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
14515 (!RHSValue.Base && !RHSValue.Offset.isZero()))
14516 return DiagComparison(diag::note_constexpr_pointer_constant_comparison,
14517 !RHSValue.Base);
14518 // C++2c [intro.object]/10:
14519 // Two objects [...] may have the same address if [...] they are both
14520 // potentially non-unique objects.
14521 // C++2c [intro.object]/9:
14522 // An object is potentially non-unique if it is a string literal object,
14523 // the backing array of an initializer list, or a subobject thereof.
14524 //
14525 // This makes the comparison result unspecified, so it's not a constant
14526 // expression.
14527 //
14528 // TODO: Do we need to handle the initializer list case here?
14529 if (ArePotentiallyOverlappingStringLiterals(Info, LHSValue, RHSValue))
14530 return DiagComparison(diag::note_constexpr_literal_comparison);
14531 if (IsOpaqueConstantCall(LHSValue) || IsOpaqueConstantCall(RHSValue))
14532 return DiagComparison(diag::note_constexpr_opaque_call_comparison,
14533 !IsOpaqueConstantCall(LHSValue));
14534 // We can't tell whether weak symbols will end up pointing to the same
14535 // object.
14536 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
14537 return DiagComparison(diag::note_constexpr_pointer_weak_comparison,
14538 !IsWeakLValue(LHSValue));
14539 // We can't compare the address of the start of one object with the
14540 // past-the-end address of another object, per C++ DR1652.
14541 if (LHSValue.Base && LHSValue.Offset.isZero() &&
14542 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue))
14543 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
14544 true);
14545 if (RHSValue.Base && RHSValue.Offset.isZero() &&
14546 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))
14547 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
14548 false);
14549 // We can't tell whether an object is at the same address as another
14550 // zero sized object.
14551 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
14552 (LHSValue.Base && isZeroSized(RHSValue)))
14553 return DiagComparison(
14554 diag::note_constexpr_pointer_comparison_zero_sized);
14555 return Success(CmpResult::Unequal, E);
14556 }
14557
14558 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
14559 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
14560
14561 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
14562 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
14563
14564 // C++11 [expr.rel]p2:
14565 // - If two pointers point to non-static data members of the same object,
14566 // or to subobjects or array elements fo such members, recursively, the
14567 // pointer to the later declared member compares greater provided the
14568 // two members have the same access control and provided their class is
14569 // not a union.
14570 // [...]
14571 // - Otherwise pointer comparisons are unspecified.
14572 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
14573 bool WasArrayIndex;
14574 unsigned Mismatch = FindDesignatorMismatch(
14575 ObjType: getType(B: LHSValue.Base), A: LHSDesignator, B: RHSDesignator, WasArrayIndex);
14576 // At the point where the designators diverge, the comparison has a
14577 // specified value if:
14578 // - we are comparing array indices
14579 // - we are comparing fields of a union, or fields with the same access
14580 // Otherwise, the result is unspecified and thus the comparison is not a
14581 // constant expression.
14582 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
14583 Mismatch < RHSDesignator.Entries.size()) {
14584 const FieldDecl *LF = getAsField(E: LHSDesignator.Entries[Mismatch]);
14585 const FieldDecl *RF = getAsField(E: RHSDesignator.Entries[Mismatch]);
14586 if (!LF && !RF)
14587 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
14588 else if (!LF)
14589 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
14590 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
14591 << RF->getParent() << RF;
14592 else if (!RF)
14593 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
14594 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
14595 << LF->getParent() << LF;
14596 else if (!LF->getParent()->isUnion() &&
14597 LF->getAccess() != RF->getAccess())
14598 Info.CCEDiag(E,
14599 diag::note_constexpr_pointer_comparison_differing_access)
14600 << LF << LF->getAccess() << RF << RF->getAccess()
14601 << LF->getParent();
14602 }
14603 }
14604
14605 // The comparison here must be unsigned, and performed with the same
14606 // width as the pointer.
14607 unsigned PtrSize = Info.Ctx.getTypeSize(T: LHSTy);
14608 uint64_t CompareLHS = LHSOffset.getQuantity();
14609 uint64_t CompareRHS = RHSOffset.getQuantity();
14610 assert(PtrSize <= 64 && "Unexpected pointer width");
14611 uint64_t Mask = ~0ULL >> (64 - PtrSize);
14612 CompareLHS &= Mask;
14613 CompareRHS &= Mask;
14614
14615 // If there is a base and this is a relational operator, we can only
14616 // compare pointers within the object in question; otherwise, the result
14617 // depends on where the object is located in memory.
14618 if (!LHSValue.Base.isNull() && IsRelational) {
14619 QualType BaseTy = getType(B: LHSValue.Base);
14620 if (BaseTy->isIncompleteType())
14621 return Error(E);
14622 CharUnits Size = Info.Ctx.getTypeSizeInChars(T: BaseTy);
14623 uint64_t OffsetLimit = Size.getQuantity();
14624 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
14625 return Error(E);
14626 }
14627
14628 if (CompareLHS < CompareRHS)
14629 return Success(CmpResult::Less, E);
14630 if (CompareLHS > CompareRHS)
14631 return Success(CmpResult::Greater, E);
14632 return Success(CmpResult::Equal, E);
14633 }
14634
14635 if (LHSTy->isMemberPointerType()) {
14636 assert(IsEquality && "unexpected member pointer operation");
14637 assert(RHSTy->isMemberPointerType() && "invalid comparison");
14638
14639 MemberPtr LHSValue, RHSValue;
14640
14641 bool LHSOK = EvaluateMemberPointer(E: E->getLHS(), Result&: LHSValue, Info);
14642 if (!LHSOK && !Info.noteFailure())
14643 return false;
14644
14645 if (!EvaluateMemberPointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK)
14646 return false;
14647
14648 // If either operand is a pointer to a weak function, the comparison is not
14649 // constant.
14650 if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) {
14651 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
14652 << LHSValue.getDecl();
14653 return false;
14654 }
14655 if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) {
14656 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
14657 << RHSValue.getDecl();
14658 return false;
14659 }
14660
14661 // C++11 [expr.eq]p2:
14662 // If both operands are null, they compare equal. Otherwise if only one is
14663 // null, they compare unequal.
14664 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
14665 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
14666 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
14667 }
14668
14669 // Otherwise if either is a pointer to a virtual member function, the
14670 // result is unspecified.
14671 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
14672 if (MD->isVirtual())
14673 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
14674 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
14675 if (MD->isVirtual())
14676 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
14677
14678 // Otherwise they compare equal if and only if they would refer to the
14679 // same member of the same most derived object or the same subobject if
14680 // they were dereferenced with a hypothetical object of the associated
14681 // class type.
14682 bool Equal = LHSValue == RHSValue;
14683 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
14684 }
14685
14686 if (LHSTy->isNullPtrType()) {
14687 assert(E->isComparisonOp() && "unexpected nullptr operation");
14688 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
14689 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
14690 // are compared, the result is true of the operator is <=, >= or ==, and
14691 // false otherwise.
14692 LValue Res;
14693 if (!EvaluatePointer(E: E->getLHS(), Result&: Res, Info) ||
14694 !EvaluatePointer(E: E->getRHS(), Result&: Res, Info))
14695 return false;
14696 return Success(CmpResult::Equal, E);
14697 }
14698
14699 return DoAfter();
14700}
14701
14702bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
14703 if (!CheckLiteralType(Info, E))
14704 return false;
14705
14706 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
14707 ComparisonCategoryResult CCR;
14708 switch (CR) {
14709 case CmpResult::Unequal:
14710 llvm_unreachable("should never produce Unequal for three-way comparison");
14711 case CmpResult::Less:
14712 CCR = ComparisonCategoryResult::Less;
14713 break;
14714 case CmpResult::Equal:
14715 CCR = ComparisonCategoryResult::Equal;
14716 break;
14717 case CmpResult::Greater:
14718 CCR = ComparisonCategoryResult::Greater;
14719 break;
14720 case CmpResult::Unordered:
14721 CCR = ComparisonCategoryResult::Unordered;
14722 break;
14723 }
14724 // Evaluation succeeded. Lookup the information for the comparison category
14725 // type and fetch the VarDecl for the result.
14726 const ComparisonCategoryInfo &CmpInfo =
14727 Info.Ctx.CompCategories.getInfoForType(Ty: E->getType());
14728 const VarDecl *VD = CmpInfo.getValueInfo(ValueKind: CmpInfo.makeWeakResult(Res: CCR))->VD;
14729 // Check and evaluate the result as a constant expression.
14730 LValue LV;
14731 LV.set(VD);
14732 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
14733 return false;
14734 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
14735 ConstantExprKind::Normal);
14736 };
14737 return EvaluateComparisonBinaryOperator(Info, E, Success&: OnSuccess, DoAfter: [&]() {
14738 return ExprEvaluatorBaseTy::VisitBinCmp(E);
14739 });
14740}
14741
14742bool RecordExprEvaluator::VisitCXXParenListInitExpr(
14743 const CXXParenListInitExpr *E) {
14744 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs());
14745}
14746
14747bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14748 // We don't support assignment in C. C++ assignments don't get here because
14749 // assignment is an lvalue in C++.
14750 if (E->isAssignmentOp()) {
14751 Error(E);
14752 if (!Info.noteFailure())
14753 return false;
14754 }
14755
14756 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
14757 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
14758
14759 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
14760 !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
14761 "DataRecursiveIntBinOpEvaluator should have handled integral types");
14762
14763 if (E->isComparisonOp()) {
14764 // Evaluate builtin binary comparisons by evaluating them as three-way
14765 // comparisons and then translating the result.
14766 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
14767 assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
14768 "should only produce Unequal for equality comparisons");
14769 bool IsEqual = CR == CmpResult::Equal,
14770 IsLess = CR == CmpResult::Less,
14771 IsGreater = CR == CmpResult::Greater;
14772 auto Op = E->getOpcode();
14773 switch (Op) {
14774 default:
14775 llvm_unreachable("unsupported binary operator");
14776 case BO_EQ:
14777 case BO_NE:
14778 return Success(IsEqual == (Op == BO_EQ), E);
14779 case BO_LT:
14780 return Success(IsLess, E);
14781 case BO_GT:
14782 return Success(IsGreater, E);
14783 case BO_LE:
14784 return Success(IsEqual || IsLess, E);
14785 case BO_GE:
14786 return Success(IsEqual || IsGreater, E);
14787 }
14788 };
14789 return EvaluateComparisonBinaryOperator(Info, E, Success&: OnSuccess, DoAfter: [&]() {
14790 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14791 });
14792 }
14793
14794 QualType LHSTy = E->getLHS()->getType();
14795 QualType RHSTy = E->getRHS()->getType();
14796
14797 if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
14798 E->getOpcode() == BO_Sub) {
14799 LValue LHSValue, RHSValue;
14800
14801 bool LHSOK = EvaluatePointer(E: E->getLHS(), Result&: LHSValue, Info);
14802 if (!LHSOK && !Info.noteFailure())
14803 return false;
14804
14805 if (!EvaluatePointer(E: E->getRHS(), Result&: RHSValue, Info) || !LHSOK)
14806 return false;
14807
14808 // Reject differing bases from the normal codepath; we special-case
14809 // comparisons to null.
14810 if (!HasSameBase(A: LHSValue, B: RHSValue)) {
14811 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
14812 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
14813
14814 auto DiagArith = [&](unsigned DiagID) {
14815 std::string LHS = LHSValue.toString(Ctx&: Info.Ctx, T: E->getLHS()->getType());
14816 std::string RHS = RHSValue.toString(Ctx&: Info.Ctx, T: E->getRHS()->getType());
14817 Info.FFDiag(E, DiagID) << LHS << RHS;
14818 if (LHSExpr && LHSExpr == RHSExpr)
14819 Info.Note(LHSExpr->getExprLoc(),
14820 diag::note_constexpr_repeated_literal_eval)
14821 << LHSExpr->getSourceRange();
14822 return false;
14823 };
14824
14825 if (!LHSExpr || !RHSExpr)
14826 return DiagArith(diag::note_constexpr_pointer_arith_unspecified);
14827
14828 if (ArePotentiallyOverlappingStringLiterals(Info, LHSValue, RHSValue))
14829 return DiagArith(diag::note_constexpr_literal_arith);
14830
14831 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: LHSExpr);
14832 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(Val: RHSExpr);
14833 if (!LHSAddrExpr || !RHSAddrExpr)
14834 return Error(E);
14835 // Make sure both labels come from the same function.
14836 if (LHSAddrExpr->getLabel()->getDeclContext() !=
14837 RHSAddrExpr->getLabel()->getDeclContext())
14838 return Error(E);
14839 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
14840 }
14841 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
14842 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
14843
14844 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
14845 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
14846
14847 // C++11 [expr.add]p6:
14848 // Unless both pointers point to elements of the same array object, or
14849 // one past the last element of the array object, the behavior is
14850 // undefined.
14851 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
14852 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
14853 RHSDesignator))
14854 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
14855
14856 QualType Type = E->getLHS()->getType();
14857 QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
14858
14859 CharUnits ElementSize;
14860 if (!HandleSizeof(Info, Loc: E->getExprLoc(), Type: ElementType, Size&: ElementSize))
14861 return false;
14862
14863 // As an extension, a type may have zero size (empty struct or union in
14864 // C, array of zero length). Pointer subtraction in such cases has
14865 // undefined behavior, so is not constant.
14866 if (ElementSize.isZero()) {
14867 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
14868 << ElementType;
14869 return false;
14870 }
14871
14872 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
14873 // and produce incorrect results when it overflows. Such behavior
14874 // appears to be non-conforming, but is common, so perhaps we should
14875 // assume the standard intended for such cases to be undefined behavior
14876 // and check for them.
14877
14878 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
14879 // overflow in the final conversion to ptrdiff_t.
14880 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
14881 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
14882 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
14883 false);
14884 APSInt TrueResult = (LHS - RHS) / ElemSize;
14885 APSInt Result = TrueResult.trunc(width: Info.Ctx.getIntWidth(T: E->getType()));
14886
14887 if (Result.extend(width: 65) != TrueResult &&
14888 !HandleOverflow(Info, E, TrueResult, E->getType()))
14889 return false;
14890 return Success(Result, E);
14891 }
14892
14893 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14894}
14895
14896/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
14897/// a result as the expression's type.
14898bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
14899 const UnaryExprOrTypeTraitExpr *E) {
14900 switch(E->getKind()) {
14901 case UETT_PreferredAlignOf:
14902 case UETT_AlignOf: {
14903 if (E->isArgumentType())
14904 return Success(
14905 GetAlignOfType(Ctx: Info.Ctx, T: E->getArgumentType(), ExprKind: E->getKind()), E);
14906 else
14907 return Success(
14908 GetAlignOfExpr(Ctx: Info.Ctx, E: E->getArgumentExpr(), ExprKind: E->getKind()), E);
14909 }
14910
14911 case UETT_PtrAuthTypeDiscriminator: {
14912 if (E->getArgumentType()->isDependentType())
14913 return false;
14914 return Success(
14915 Info.Ctx.getPointerAuthTypeDiscriminator(T: E->getArgumentType()), E);
14916 }
14917 case UETT_VecStep: {
14918 QualType Ty = E->getTypeOfArgument();
14919
14920 if (Ty->isVectorType()) {
14921 unsigned n = Ty->castAs<VectorType>()->getNumElements();
14922
14923 // The vec_step built-in functions that take a 3-component
14924 // vector return 4. (OpenCL 1.1 spec 6.11.12)
14925 if (n == 3)
14926 n = 4;
14927
14928 return Success(n, E);
14929 } else
14930 return Success(1, E);
14931 }
14932
14933 case UETT_DataSizeOf:
14934 case UETT_SizeOf: {
14935 QualType SrcTy = E->getTypeOfArgument();
14936 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
14937 // the result is the size of the referenced type."
14938 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
14939 SrcTy = Ref->getPointeeType();
14940
14941 CharUnits Sizeof;
14942 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof,
14943 E->getKind() == UETT_DataSizeOf ? SizeOfType::DataSizeOf
14944 : SizeOfType::SizeOf)) {
14945 return false;
14946 }
14947 return Success(Sizeof, E);
14948 }
14949 case UETT_OpenMPRequiredSimdAlign:
14950 assert(E->isArgumentType());
14951 return Success(
14952 Info.Ctx.toCharUnitsFromBits(
14953 BitSize: Info.Ctx.getOpenMPDefaultSimdAlign(T: E->getArgumentType()))
14954 .getQuantity(),
14955 E);
14956 case UETT_VectorElements: {
14957 QualType Ty = E->getTypeOfArgument();
14958 // If the vector has a fixed size, we can determine the number of elements
14959 // at compile time.
14960 if (const auto *VT = Ty->getAs<VectorType>())
14961 return Success(VT->getNumElements(), E);
14962
14963 assert(Ty->isSizelessVectorType());
14964 if (Info.InConstantContext)
14965 Info.CCEDiag(E, diag::note_constexpr_non_const_vectorelements)
14966 << E->getSourceRange();
14967
14968 return false;
14969 }
14970 case UETT_CountOf: {
14971 QualType Ty = E->getTypeOfArgument();
14972 assert(Ty->isArrayType());
14973
14974 // We don't need to worry about array element qualifiers, so getting the
14975 // unsafe array type is fine.
14976 if (const auto *CAT =
14977 dyn_cast<ConstantArrayType>(Ty->getAsArrayTypeUnsafe())) {
14978 return Success(CAT->getSize(), E);
14979 }
14980
14981 assert(!Ty->isConstantSizeType());
14982
14983 // If it's a variable-length array type, we need to check whether it is a
14984 // multidimensional array. If so, we need to check the size expression of
14985 // the VLA to see if it's a constant size. If so, we can return that value.
14986 const auto *VAT = Info.Ctx.getAsVariableArrayType(T: Ty);
14987 assert(VAT);
14988 if (VAT->getElementType()->isArrayType()) {
14989 std::optional<APSInt> Res =
14990 VAT->getSizeExpr()->getIntegerConstantExpr(Ctx: Info.Ctx);
14991 if (Res) {
14992 // The resulting value always has type size_t, so we need to make the
14993 // returned APInt have the correct sign and bit-width.
14994 APInt Val{
14995 static_cast<unsigned>(Info.Ctx.getTypeSize(T: Info.Ctx.getSizeType())),
14996 Res->getZExtValue()};
14997 return Success(Val, E);
14998 }
14999 }
15000
15001 // Definitely a variable-length type, which is not an ICE.
15002 // FIXME: Better diagnostic.
15003 Info.FFDiag(Loc: E->getBeginLoc());
15004 return false;
15005 }
15006 }
15007
15008 llvm_unreachable("unknown expr/type trait");
15009}
15010
15011bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
15012 CharUnits Result;
15013 unsigned n = OOE->getNumComponents();
15014 if (n == 0)
15015 return Error(OOE);
15016 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
15017 for (unsigned i = 0; i != n; ++i) {
15018 OffsetOfNode ON = OOE->getComponent(Idx: i);
15019 switch (ON.getKind()) {
15020 case OffsetOfNode::Array: {
15021 const Expr *Idx = OOE->getIndexExpr(Idx: ON.getArrayExprIndex());
15022 APSInt IdxResult;
15023 if (!EvaluateInteger(E: Idx, Result&: IdxResult, Info))
15024 return false;
15025 const ArrayType *AT = Info.Ctx.getAsArrayType(T: CurrentType);
15026 if (!AT)
15027 return Error(OOE);
15028 CurrentType = AT->getElementType();
15029 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(T: CurrentType);
15030 Result += IdxResult.getSExtValue() * ElementSize;
15031 break;
15032 }
15033
15034 case OffsetOfNode::Field: {
15035 FieldDecl *MemberDecl = ON.getField();
15036 const RecordType *RT = CurrentType->getAs<RecordType>();
15037 if (!RT)
15038 return Error(OOE);
15039 RecordDecl *RD = RT->getDecl();
15040 if (RD->isInvalidDecl()) return false;
15041 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(D: RD);
15042 unsigned i = MemberDecl->getFieldIndex();
15043 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
15044 Result += Info.Ctx.toCharUnitsFromBits(BitSize: RL.getFieldOffset(FieldNo: i));
15045 CurrentType = MemberDecl->getType().getNonReferenceType();
15046 break;
15047 }
15048
15049 case OffsetOfNode::Identifier:
15050 llvm_unreachable("dependent __builtin_offsetof");
15051
15052 case OffsetOfNode::Base: {
15053 CXXBaseSpecifier *BaseSpec = ON.getBase();
15054 if (BaseSpec->isVirtual())
15055 return Error(OOE);
15056
15057 // Find the layout of the class whose base we are looking into.
15058 const RecordType *RT = CurrentType->getAs<RecordType>();
15059 if (!RT)
15060 return Error(OOE);
15061 RecordDecl *RD = RT->getDecl();
15062 if (RD->isInvalidDecl()) return false;
15063 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(D: RD);
15064
15065 // Find the base class itself.
15066 CurrentType = BaseSpec->getType();
15067 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
15068 if (!BaseRT)
15069 return Error(OOE);
15070
15071 // Add the offset to the base.
15072 Result += RL.getBaseClassOffset(Base: cast<CXXRecordDecl>(Val: BaseRT->getDecl()));
15073 break;
15074 }
15075 }
15076 }
15077 return Success(Result, OOE);
15078}
15079
15080bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
15081 switch (E->getOpcode()) {
15082 default:
15083 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
15084 // See C99 6.6p3.
15085 return Error(E);
15086 case UO_Extension:
15087 // FIXME: Should extension allow i-c-e extension expressions in its scope?
15088 // If so, we could clear the diagnostic ID.
15089 return Visit(E->getSubExpr());
15090 case UO_Plus:
15091 // The result is just the value.
15092 return Visit(E->getSubExpr());
15093 case UO_Minus: {
15094 if (!Visit(E->getSubExpr()))
15095 return false;
15096 if (!Result.isInt()) return Error(E);
15097 const APSInt &Value = Result.getInt();
15098 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) {
15099 if (Info.checkingForUndefinedBehavior())
15100 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
15101 diag::warn_integer_constant_overflow)
15102 << toString(Value, 10, Value.isSigned(), /*formatAsCLiteral=*/false,
15103 /*UpperCase=*/true, /*InsertSeparators=*/true)
15104 << E->getType() << E->getSourceRange();
15105
15106 if (!HandleOverflow(Info, E, -Value.extend(width: Value.getBitWidth() + 1),
15107 E->getType()))
15108 return false;
15109 }
15110 return Success(-Value, E);
15111 }
15112 case UO_Not: {
15113 if (!Visit(E->getSubExpr()))
15114 return false;
15115 if (!Result.isInt()) return Error(E);
15116 return Success(~Result.getInt(), E);
15117 }
15118 case UO_LNot: {
15119 bool bres;
15120 if (!EvaluateAsBooleanCondition(E: E->getSubExpr(), Result&: bres, Info))
15121 return false;
15122 return Success(!bres, E);
15123 }
15124 }
15125}
15126
15127/// HandleCast - This is used to evaluate implicit or explicit casts where the
15128/// result type is integer.
15129bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
15130 const Expr *SubExpr = E->getSubExpr();
15131 QualType DestType = E->getType();
15132 QualType SrcType = SubExpr->getType();
15133
15134 switch (E->getCastKind()) {
15135 case CK_BaseToDerived:
15136 case CK_DerivedToBase:
15137 case CK_UncheckedDerivedToBase:
15138 case CK_Dynamic:
15139 case CK_ToUnion:
15140 case CK_ArrayToPointerDecay:
15141 case CK_FunctionToPointerDecay:
15142 case CK_NullToPointer:
15143 case CK_NullToMemberPointer:
15144 case CK_BaseToDerivedMemberPointer:
15145 case CK_DerivedToBaseMemberPointer:
15146 case CK_ReinterpretMemberPointer:
15147 case CK_ConstructorConversion:
15148 case CK_IntegralToPointer:
15149 case CK_ToVoid:
15150 case CK_VectorSplat:
15151 case CK_IntegralToFloating:
15152 case CK_FloatingCast:
15153 case CK_CPointerToObjCPointerCast:
15154 case CK_BlockPointerToObjCPointerCast:
15155 case CK_AnyPointerToBlockPointerCast:
15156 case CK_ObjCObjectLValueCast:
15157 case CK_FloatingRealToComplex:
15158 case CK_FloatingComplexToReal:
15159 case CK_FloatingComplexCast:
15160 case CK_FloatingComplexToIntegralComplex:
15161 case CK_IntegralRealToComplex:
15162 case CK_IntegralComplexCast:
15163 case CK_IntegralComplexToFloatingComplex:
15164 case CK_BuiltinFnToFnPtr:
15165 case CK_ZeroToOCLOpaqueType:
15166 case CK_NonAtomicToAtomic:
15167 case CK_AddressSpaceConversion:
15168 case CK_IntToOCLSampler:
15169 case CK_FloatingToFixedPoint:
15170 case CK_FixedPointToFloating:
15171 case CK_FixedPointCast:
15172 case CK_IntegralToFixedPoint:
15173 case CK_MatrixCast:
15174 case CK_HLSLAggregateSplatCast:
15175 llvm_unreachable("invalid cast kind for integral value");
15176
15177 case CK_BitCast:
15178 case CK_Dependent:
15179 case CK_LValueBitCast:
15180 case CK_ARCProduceObject:
15181 case CK_ARCConsumeObject:
15182 case CK_ARCReclaimReturnedObject:
15183 case CK_ARCExtendBlockObject:
15184 case CK_CopyAndAutoreleaseBlockObject:
15185 return Error(E);
15186
15187 case CK_UserDefinedConversion:
15188 case CK_LValueToRValue:
15189 case CK_AtomicToNonAtomic:
15190 case CK_NoOp:
15191 case CK_LValueToRValueBitCast:
15192 case CK_HLSLArrayRValue:
15193 case CK_HLSLElementwiseCast:
15194 return ExprEvaluatorBaseTy::VisitCastExpr(E);
15195
15196 case CK_MemberPointerToBoolean:
15197 case CK_PointerToBoolean:
15198 case CK_IntegralToBoolean:
15199 case CK_FloatingToBoolean:
15200 case CK_BooleanToSignedIntegral:
15201 case CK_FloatingComplexToBoolean:
15202 case CK_IntegralComplexToBoolean: {
15203 bool BoolResult;
15204 if (!EvaluateAsBooleanCondition(E: SubExpr, Result&: BoolResult, Info))
15205 return false;
15206 uint64_t IntResult = BoolResult;
15207 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
15208 IntResult = (uint64_t)-1;
15209 return Success(IntResult, E);
15210 }
15211
15212 case CK_FixedPointToIntegral: {
15213 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(Ty: SrcType));
15214 if (!EvaluateFixedPoint(E: SubExpr, Result&: Src, Info))
15215 return false;
15216 bool Overflowed;
15217 llvm::APSInt Result = Src.convertToInt(
15218 DstWidth: Info.Ctx.getIntWidth(T: DestType),
15219 DstSign: DestType->isSignedIntegerOrEnumerationType(), Overflow: &Overflowed);
15220 if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
15221 return false;
15222 return Success(Result, E);
15223 }
15224
15225 case CK_FixedPointToBoolean: {
15226 // Unsigned padding does not affect this.
15227 APValue Val;
15228 if (!Evaluate(Result&: Val, Info, E: SubExpr))
15229 return false;
15230 return Success(Val.getFixedPoint().getBoolValue(), E);
15231 }
15232
15233 case CK_IntegralCast: {
15234 if (!Visit(SubExpr))
15235 return false;
15236
15237 if (!Result.isInt()) {
15238 // Allow casts of address-of-label differences if they are no-ops
15239 // or narrowing. (The narrowing case isn't actually guaranteed to
15240 // be constant-evaluatable except in some narrow cases which are hard
15241 // to detect here. We let it through on the assumption the user knows
15242 // what they are doing.)
15243 if (Result.isAddrLabelDiff())
15244 return Info.Ctx.getTypeSize(T: DestType) <= Info.Ctx.getTypeSize(T: SrcType);
15245 // Only allow casts of lvalues if they are lossless.
15246 return Info.Ctx.getTypeSize(T: DestType) == Info.Ctx.getTypeSize(T: SrcType);
15247 }
15248
15249 if (Info.Ctx.getLangOpts().CPlusPlus && DestType->isEnumeralType()) {
15250 const EnumType *ET = dyn_cast<EnumType>(Val: DestType.getCanonicalType());
15251 const EnumDecl *ED = ET->getDecl();
15252 // Check that the value is within the range of the enumeration values.
15253 //
15254 // This corressponds to [expr.static.cast]p10 which says:
15255 // A value of integral or enumeration type can be explicitly converted
15256 // to a complete enumeration type ... If the enumeration type does not
15257 // have a fixed underlying type, the value is unchanged if the original
15258 // value is within the range of the enumeration values ([dcl.enum]), and
15259 // otherwise, the behavior is undefined.
15260 //
15261 // This was resolved as part of DR2338 which has CD5 status.
15262 if (!ED->isFixed()) {
15263 llvm::APInt Min;
15264 llvm::APInt Max;
15265
15266 ED->getValueRange(Max, Min);
15267 --Max;
15268
15269 if (ED->getNumNegativeBits() &&
15270 (Max.slt(Result.getInt().getSExtValue()) ||
15271 Min.sgt(Result.getInt().getSExtValue())))
15272 Info.CCEDiag(E, diag::note_constexpr_unscoped_enum_out_of_range)
15273 << llvm::toString(Result.getInt(), 10) << Min.getSExtValue()
15274 << Max.getSExtValue() << ED;
15275 else if (!ED->getNumNegativeBits() &&
15276 Max.ult(Result.getInt().getZExtValue()))
15277 Info.CCEDiag(E, diag::note_constexpr_unscoped_enum_out_of_range)
15278 << llvm::toString(Result.getInt(), 10) << Min.getZExtValue()
15279 << Max.getZExtValue() << ED;
15280 }
15281 }
15282
15283 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
15284 Result.getInt()), E);
15285 }
15286
15287 case CK_PointerToIntegral: {
15288 CCEDiag(E, diag::note_constexpr_invalid_cast)
15289 << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret
15290 << Info.Ctx.getLangOpts().CPlusPlus << E->getSourceRange();
15291
15292 LValue LV;
15293 if (!EvaluatePointer(E: SubExpr, Result&: LV, Info))
15294 return false;
15295
15296 if (LV.getLValueBase()) {
15297 // Only allow based lvalue casts if they are lossless.
15298 // FIXME: Allow a larger integer size than the pointer size, and allow
15299 // narrowing back down to pointer width in subsequent integral casts.
15300 // FIXME: Check integer type's active bits, not its type size.
15301 if (Info.Ctx.getTypeSize(T: DestType) != Info.Ctx.getTypeSize(T: SrcType))
15302 return Error(E);
15303
15304 LV.Designator.setInvalid();
15305 LV.moveInto(V&: Result);
15306 return true;
15307 }
15308
15309 APSInt AsInt;
15310 APValue V;
15311 LV.moveInto(V);
15312 if (!V.toIntegralConstant(Result&: AsInt, SrcTy: SrcType, Ctx: Info.Ctx))
15313 llvm_unreachable("Can't cast this!");
15314
15315 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
15316 }
15317
15318 case CK_IntegralComplexToReal: {
15319 ComplexValue C;
15320 if (!EvaluateComplex(E: SubExpr, Res&: C, Info))
15321 return false;
15322 return Success(C.getComplexIntReal(), E);
15323 }
15324
15325 case CK_FloatingToIntegral: {
15326 APFloat F(0.0);
15327 if (!EvaluateFloat(E: SubExpr, Result&: F, Info))
15328 return false;
15329
15330 APSInt Value;
15331 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
15332 return false;
15333 return Success(Value, E);
15334 }
15335 case CK_HLSLVectorTruncation: {
15336 APValue Val;
15337 if (!EvaluateVector(E: SubExpr, Result&: Val, Info))
15338 return Error(E);
15339 return Success(Val.getVectorElt(I: 0), E);
15340 }
15341 }
15342
15343 llvm_unreachable("unknown cast resulting in integral value");
15344}
15345
15346bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
15347 if (E->getSubExpr()->getType()->isAnyComplexType()) {
15348 ComplexValue LV;
15349 if (!EvaluateComplex(E: E->getSubExpr(), Res&: LV, Info))
15350 return false;
15351 if (!LV.isComplexInt())
15352 return Error(E);
15353 return Success(LV.getComplexIntReal(), E);
15354 }
15355
15356 return Visit(E->getSubExpr());
15357}
15358
15359bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
15360 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
15361 ComplexValue LV;
15362 if (!EvaluateComplex(E: E->getSubExpr(), Res&: LV, Info))
15363 return false;
15364 if (!LV.isComplexInt())
15365 return Error(E);
15366 return Success(LV.getComplexIntImag(), E);
15367 }
15368
15369 VisitIgnoredValue(E: E->getSubExpr());
15370 return Success(0, E);
15371}
15372
15373bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
15374 return Success(E->getPackLength(), E);
15375}
15376
15377bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
15378 return Success(E->getValue(), E);
15379}
15380
15381bool IntExprEvaluator::VisitConceptSpecializationExpr(
15382 const ConceptSpecializationExpr *E) {
15383 return Success(E->isSatisfied(), E);
15384}
15385
15386bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
15387 return Success(E->isSatisfied(), E);
15388}
15389
15390bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
15391 switch (E->getOpcode()) {
15392 default:
15393 // Invalid unary operators
15394 return Error(E);
15395 case UO_Plus:
15396 // The result is just the value.
15397 return Visit(E->getSubExpr());
15398 case UO_Minus: {
15399 if (!Visit(E->getSubExpr())) return false;
15400 if (!Result.isFixedPoint())
15401 return Error(E);
15402 bool Overflowed;
15403 APFixedPoint Negated = Result.getFixedPoint().negate(Overflow: &Overflowed);
15404 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
15405 return false;
15406 return Success(Negated, E);
15407 }
15408 case UO_LNot: {
15409 bool bres;
15410 if (!EvaluateAsBooleanCondition(E: E->getSubExpr(), Result&: bres, Info))
15411 return false;
15412 return Success(!bres, E);
15413 }
15414 }
15415}
15416
15417bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
15418 const Expr *SubExpr = E->getSubExpr();
15419 QualType DestType = E->getType();
15420 assert(DestType->isFixedPointType() &&
15421 "Expected destination type to be a fixed point type");
15422 auto DestFXSema = Info.Ctx.getFixedPointSemantics(Ty: DestType);
15423
15424 switch (E->getCastKind()) {
15425 case CK_FixedPointCast: {
15426 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(Ty: SubExpr->getType()));
15427 if (!EvaluateFixedPoint(E: SubExpr, Result&: Src, Info))
15428 return false;
15429 bool Overflowed;
15430 APFixedPoint Result = Src.convert(DstSema: DestFXSema, Overflow: &Overflowed);
15431 if (Overflowed) {
15432 if (Info.checkingForUndefinedBehavior())
15433 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
15434 diag::warn_fixedpoint_constant_overflow)
15435 << Result.toString() << E->getType();
15436 if (!HandleOverflow(Info, E, Result, E->getType()))
15437 return false;
15438 }
15439 return Success(Result, E);
15440 }
15441 case CK_IntegralToFixedPoint: {
15442 APSInt Src;
15443 if (!EvaluateInteger(E: SubExpr, Result&: Src, Info))
15444 return false;
15445
15446 bool Overflowed;
15447 APFixedPoint IntResult = APFixedPoint::getFromIntValue(
15448 Value: Src, DstFXSema: Info.Ctx.getFixedPointSemantics(Ty: DestType), Overflow: &Overflowed);
15449
15450 if (Overflowed) {
15451 if (Info.checkingForUndefinedBehavior())
15452 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
15453 diag::warn_fixedpoint_constant_overflow)
15454 << IntResult.toString() << E->getType();
15455 if (!HandleOverflow(Info, E, IntResult, E->getType()))
15456 return false;
15457 }
15458
15459 return Success(IntResult, E);
15460 }
15461 case CK_FloatingToFixedPoint: {
15462 APFloat Src(0.0);
15463 if (!EvaluateFloat(E: SubExpr, Result&: Src, Info))
15464 return false;
15465
15466 bool Overflowed;
15467 APFixedPoint Result = APFixedPoint::getFromFloatValue(
15468 Value: Src, DstFXSema: Info.Ctx.getFixedPointSemantics(Ty: DestType), Overflow: &Overflowed);
15469
15470 if (Overflowed) {
15471 if (Info.checkingForUndefinedBehavior())
15472 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
15473 diag::warn_fixedpoint_constant_overflow)
15474 << Result.toString() << E->getType();
15475 if (!HandleOverflow(Info, E, Result, E->getType()))
15476 return false;
15477 }
15478
15479 return Success(Result, E);
15480 }
15481 case CK_NoOp:
15482 case CK_LValueToRValue:
15483 return ExprEvaluatorBaseTy::VisitCastExpr(E);
15484 default:
15485 return Error(E);
15486 }
15487}
15488
15489bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
15490 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
15491 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
15492
15493 const Expr *LHS = E->getLHS();
15494 const Expr *RHS = E->getRHS();
15495 FixedPointSemantics ResultFXSema =
15496 Info.Ctx.getFixedPointSemantics(Ty: E->getType());
15497
15498 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(Ty: LHS->getType()));
15499 if (!EvaluateFixedPointOrInteger(E: LHS, Result&: LHSFX, Info))
15500 return false;
15501 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(Ty: RHS->getType()));
15502 if (!EvaluateFixedPointOrInteger(E: RHS, Result&: RHSFX, Info))
15503 return false;
15504
15505 bool OpOverflow = false, ConversionOverflow = false;
15506 APFixedPoint Result(LHSFX.getSemantics());
15507 switch (E->getOpcode()) {
15508 case BO_Add: {
15509 Result = LHSFX.add(Other: RHSFX, Overflow: &OpOverflow)
15510 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
15511 break;
15512 }
15513 case BO_Sub: {
15514 Result = LHSFX.sub(Other: RHSFX, Overflow: &OpOverflow)
15515 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
15516 break;
15517 }
15518 case BO_Mul: {
15519 Result = LHSFX.mul(Other: RHSFX, Overflow: &OpOverflow)
15520 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
15521 break;
15522 }
15523 case BO_Div: {
15524 if (RHSFX.getValue() == 0) {
15525 Info.FFDiag(E, diag::note_expr_divide_by_zero);
15526 return false;
15527 }
15528 Result = LHSFX.div(Other: RHSFX, Overflow: &OpOverflow)
15529 .convert(DstSema: ResultFXSema, Overflow: &ConversionOverflow);
15530 break;
15531 }
15532 case BO_Shl:
15533 case BO_Shr: {
15534 FixedPointSemantics LHSSema = LHSFX.getSemantics();
15535 llvm::APSInt RHSVal = RHSFX.getValue();
15536
15537 unsigned ShiftBW =
15538 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
15539 unsigned Amt = RHSVal.getLimitedValue(Limit: ShiftBW - 1);
15540 // Embedded-C 4.1.6.2.2:
15541 // The right operand must be nonnegative and less than the total number
15542 // of (nonpadding) bits of the fixed-point operand ...
15543 if (RHSVal.isNegative())
15544 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
15545 else if (Amt != RHSVal)
15546 Info.CCEDiag(E, diag::note_constexpr_large_shift)
15547 << RHSVal << E->getType() << ShiftBW;
15548
15549 if (E->getOpcode() == BO_Shl)
15550 Result = LHSFX.shl(Amt, Overflow: &OpOverflow);
15551 else
15552 Result = LHSFX.shr(Amt, Overflow: &OpOverflow);
15553 break;
15554 }
15555 default:
15556 return false;
15557 }
15558 if (OpOverflow || ConversionOverflow) {
15559 if (Info.checkingForUndefinedBehavior())
15560 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
15561 diag::warn_fixedpoint_constant_overflow)
15562 << Result.toString() << E->getType();
15563 if (!HandleOverflow(Info, E, Result, E->getType()))
15564 return false;
15565 }
15566 return Success(Result, E);
15567}
15568
15569//===----------------------------------------------------------------------===//
15570// Float Evaluation
15571//===----------------------------------------------------------------------===//
15572
15573namespace {
15574class FloatExprEvaluator
15575 : public ExprEvaluatorBase<FloatExprEvaluator> {
15576 APFloat &Result;
15577public:
15578 FloatExprEvaluator(EvalInfo &info, APFloat &result)
15579 : ExprEvaluatorBaseTy(info), Result(result) {}
15580
15581 bool Success(const APValue &V, const Expr *e) {
15582 Result = V.getFloat();
15583 return true;
15584 }
15585
15586 bool ZeroInitialization(const Expr *E) {
15587 Result = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: E->getType()));
15588 return true;
15589 }
15590
15591 bool VisitCallExpr(const CallExpr *E);
15592
15593 bool VisitUnaryOperator(const UnaryOperator *E);
15594 bool VisitBinaryOperator(const BinaryOperator *E);
15595 bool VisitFloatingLiteral(const FloatingLiteral *E);
15596 bool VisitCastExpr(const CastExpr *E);
15597
15598 bool VisitUnaryReal(const UnaryOperator *E);
15599 bool VisitUnaryImag(const UnaryOperator *E);
15600
15601 // FIXME: Missing: array subscript of vector, member of vector
15602};
15603} // end anonymous namespace
15604
15605static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
15606 assert(!E->isValueDependent());
15607 assert(E->isPRValue() && E->getType()->isRealFloatingType());
15608 return FloatExprEvaluator(Info, Result).Visit(E);
15609}
15610
15611static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
15612 QualType ResultTy,
15613 const Expr *Arg,
15614 bool SNaN,
15615 llvm::APFloat &Result) {
15616 const StringLiteral *S = dyn_cast<StringLiteral>(Val: Arg->IgnoreParenCasts());
15617 if (!S) return false;
15618
15619 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(T: ResultTy);
15620
15621 llvm::APInt fill;
15622
15623 // Treat empty strings as if they were zero.
15624 if (S->getString().empty())
15625 fill = llvm::APInt(32, 0);
15626 else if (S->getString().getAsInteger(Radix: 0, Result&: fill))
15627 return false;
15628
15629 if (Context.getTargetInfo().isNan2008()) {
15630 if (SNaN)
15631 Result = llvm::APFloat::getSNaN(Sem, Negative: false, payload: &fill);
15632 else
15633 Result = llvm::APFloat::getQNaN(Sem, Negative: false, payload: &fill);
15634 } else {
15635 // Prior to IEEE 754-2008, architectures were allowed to choose whether
15636 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
15637 // a different encoding to what became a standard in 2008, and for pre-
15638 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
15639 // sNaN. This is now known as "legacy NaN" encoding.
15640 if (SNaN)
15641 Result = llvm::APFloat::getQNaN(Sem, Negative: false, payload: &fill);
15642 else
15643 Result = llvm::APFloat::getSNaN(Sem, Negative: false, payload: &fill);
15644 }
15645
15646 return true;
15647}
15648
15649bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
15650 if (!IsConstantEvaluatedBuiltinCall(E))
15651 return ExprEvaluatorBaseTy::VisitCallExpr(E);
15652
15653 switch (E->getBuiltinCallee()) {
15654 default:
15655 return false;
15656
15657 case Builtin::BI__builtin_huge_val:
15658 case Builtin::BI__builtin_huge_valf:
15659 case Builtin::BI__builtin_huge_vall:
15660 case Builtin::BI__builtin_huge_valf16:
15661 case Builtin::BI__builtin_huge_valf128:
15662 case Builtin::BI__builtin_inf:
15663 case Builtin::BI__builtin_inff:
15664 case Builtin::BI__builtin_infl:
15665 case Builtin::BI__builtin_inff16:
15666 case Builtin::BI__builtin_inff128: {
15667 const llvm::fltSemantics &Sem =
15668 Info.Ctx.getFloatTypeSemantics(T: E->getType());
15669 Result = llvm::APFloat::getInf(Sem);
15670 return true;
15671 }
15672
15673 case Builtin::BI__builtin_nans:
15674 case Builtin::BI__builtin_nansf:
15675 case Builtin::BI__builtin_nansl:
15676 case Builtin::BI__builtin_nansf16:
15677 case Builtin::BI__builtin_nansf128:
15678 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(Arg: 0),
15679 true, Result))
15680 return Error(E);
15681 return true;
15682
15683 case Builtin::BI__builtin_nan:
15684 case Builtin::BI__builtin_nanf:
15685 case Builtin::BI__builtin_nanl:
15686 case Builtin::BI__builtin_nanf16:
15687 case Builtin::BI__builtin_nanf128:
15688 // If this is __builtin_nan() turn this into a nan, otherwise we
15689 // can't constant fold it.
15690 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(Arg: 0),
15691 false, Result))
15692 return Error(E);
15693 return true;
15694
15695 case Builtin::BI__builtin_fabs:
15696 case Builtin::BI__builtin_fabsf:
15697 case Builtin::BI__builtin_fabsl:
15698 case Builtin::BI__builtin_fabsf128:
15699 // The C standard says "fabs raises no floating-point exceptions,
15700 // even if x is a signaling NaN. The returned value is independent of
15701 // the current rounding direction mode." Therefore constant folding can
15702 // proceed without regard to the floating point settings.
15703 // Reference, WG14 N2478 F.10.4.3
15704 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info))
15705 return false;
15706
15707 if (Result.isNegative())
15708 Result.changeSign();
15709 return true;
15710
15711 case Builtin::BI__arithmetic_fence:
15712 return EvaluateFloat(E: E->getArg(Arg: 0), Result, Info);
15713
15714 // FIXME: Builtin::BI__builtin_powi
15715 // FIXME: Builtin::BI__builtin_powif
15716 // FIXME: Builtin::BI__builtin_powil
15717
15718 case Builtin::BI__builtin_copysign:
15719 case Builtin::BI__builtin_copysignf:
15720 case Builtin::BI__builtin_copysignl:
15721 case Builtin::BI__builtin_copysignf128: {
15722 APFloat RHS(0.);
15723 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) ||
15724 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
15725 return false;
15726 Result.copySign(RHS);
15727 return true;
15728 }
15729
15730 case Builtin::BI__builtin_fmax:
15731 case Builtin::BI__builtin_fmaxf:
15732 case Builtin::BI__builtin_fmaxl:
15733 case Builtin::BI__builtin_fmaxf16:
15734 case Builtin::BI__builtin_fmaxf128: {
15735 APFloat RHS(0.);
15736 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) ||
15737 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
15738 return false;
15739 Result = maxnum(A: Result, B: RHS);
15740 return true;
15741 }
15742
15743 case Builtin::BI__builtin_fmin:
15744 case Builtin::BI__builtin_fminf:
15745 case Builtin::BI__builtin_fminl:
15746 case Builtin::BI__builtin_fminf16:
15747 case Builtin::BI__builtin_fminf128: {
15748 APFloat RHS(0.);
15749 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) ||
15750 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
15751 return false;
15752 Result = minnum(A: Result, B: RHS);
15753 return true;
15754 }
15755
15756 case Builtin::BI__builtin_fmaximum_num:
15757 case Builtin::BI__builtin_fmaximum_numf:
15758 case Builtin::BI__builtin_fmaximum_numl:
15759 case Builtin::BI__builtin_fmaximum_numf16:
15760 case Builtin::BI__builtin_fmaximum_numf128: {
15761 APFloat RHS(0.);
15762 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) ||
15763 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
15764 return false;
15765 Result = maximumnum(A: Result, B: RHS);
15766 return true;
15767 }
15768
15769 case Builtin::BI__builtin_fminimum_num:
15770 case Builtin::BI__builtin_fminimum_numf:
15771 case Builtin::BI__builtin_fminimum_numl:
15772 case Builtin::BI__builtin_fminimum_numf16:
15773 case Builtin::BI__builtin_fminimum_numf128: {
15774 APFloat RHS(0.);
15775 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result, Info) ||
15776 !EvaluateFloat(E: E->getArg(Arg: 1), Result&: RHS, Info))
15777 return false;
15778 Result = minimumnum(A: Result, B: RHS);
15779 return true;
15780 }
15781 }
15782}
15783
15784bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
15785 if (E->getSubExpr()->getType()->isAnyComplexType()) {
15786 ComplexValue CV;
15787 if (!EvaluateComplex(E: E->getSubExpr(), Res&: CV, Info))
15788 return false;
15789 Result = CV.FloatReal;
15790 return true;
15791 }
15792
15793 return Visit(E->getSubExpr());
15794}
15795
15796bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
15797 if (E->getSubExpr()->getType()->isAnyComplexType()) {
15798 ComplexValue CV;
15799 if (!EvaluateComplex(E: E->getSubExpr(), Res&: CV, Info))
15800 return false;
15801 Result = CV.FloatImag;
15802 return true;
15803 }
15804
15805 VisitIgnoredValue(E: E->getSubExpr());
15806 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(T: E->getType());
15807 Result = llvm::APFloat::getZero(Sem);
15808 return true;
15809}
15810
15811bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
15812 switch (E->getOpcode()) {
15813 default: return Error(E);
15814 case UO_Plus:
15815 return EvaluateFloat(E: E->getSubExpr(), Result, Info);
15816 case UO_Minus:
15817 // In C standard, WG14 N2478 F.3 p4
15818 // "the unary - raises no floating point exceptions,
15819 // even if the operand is signalling."
15820 if (!EvaluateFloat(E: E->getSubExpr(), Result, Info))
15821 return false;
15822 Result.changeSign();
15823 return true;
15824 }
15825}
15826
15827bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
15828 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
15829 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
15830
15831 APFloat RHS(0.0);
15832 bool LHSOK = EvaluateFloat(E: E->getLHS(), Result, Info);
15833 if (!LHSOK && !Info.noteFailure())
15834 return false;
15835 return EvaluateFloat(E: E->getRHS(), Result&: RHS, Info) && LHSOK &&
15836 handleFloatFloatBinOp(Info, E, LHS&: Result, Opcode: E->getOpcode(), RHS);
15837}
15838
15839bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
15840 Result = E->getValue();
15841 return true;
15842}
15843
15844bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
15845 const Expr* SubExpr = E->getSubExpr();
15846
15847 switch (E->getCastKind()) {
15848 default:
15849 return ExprEvaluatorBaseTy::VisitCastExpr(E);
15850
15851 case CK_IntegralToFloating: {
15852 APSInt IntResult;
15853 const FPOptions FPO = E->getFPFeaturesInEffect(
15854 LO: Info.Ctx.getLangOpts());
15855 return EvaluateInteger(E: SubExpr, Result&: IntResult, Info) &&
15856 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
15857 IntResult, E->getType(), Result);
15858 }
15859
15860 case CK_FixedPointToFloating: {
15861 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(Ty: SubExpr->getType()));
15862 if (!EvaluateFixedPoint(E: SubExpr, Result&: FixResult, Info))
15863 return false;
15864 Result =
15865 FixResult.convertToFloat(FloatSema: Info.Ctx.getFloatTypeSemantics(T: E->getType()));
15866 return true;
15867 }
15868
15869 case CK_FloatingCast: {
15870 if (!Visit(SubExpr))
15871 return false;
15872 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
15873 Result);
15874 }
15875
15876 case CK_FloatingComplexToReal: {
15877 ComplexValue V;
15878 if (!EvaluateComplex(E: SubExpr, Res&: V, Info))
15879 return false;
15880 Result = V.getComplexFloatReal();
15881 return true;
15882 }
15883 case CK_HLSLVectorTruncation: {
15884 APValue Val;
15885 if (!EvaluateVector(E: SubExpr, Result&: Val, Info))
15886 return Error(E);
15887 return Success(Val.getVectorElt(I: 0), E);
15888 }
15889 }
15890}
15891
15892//===----------------------------------------------------------------------===//
15893// Complex Evaluation (for float and integer)
15894//===----------------------------------------------------------------------===//
15895
15896namespace {
15897class ComplexExprEvaluator
15898 : public ExprEvaluatorBase<ComplexExprEvaluator> {
15899 ComplexValue &Result;
15900
15901public:
15902 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
15903 : ExprEvaluatorBaseTy(info), Result(Result) {}
15904
15905 bool Success(const APValue &V, const Expr *e) {
15906 Result.setFrom(V);
15907 return true;
15908 }
15909
15910 bool ZeroInitialization(const Expr *E);
15911
15912 //===--------------------------------------------------------------------===//
15913 // Visitor Methods
15914 //===--------------------------------------------------------------------===//
15915
15916 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
15917 bool VisitCastExpr(const CastExpr *E);
15918 bool VisitBinaryOperator(const BinaryOperator *E);
15919 bool VisitUnaryOperator(const UnaryOperator *E);
15920 bool VisitInitListExpr(const InitListExpr *E);
15921 bool VisitCallExpr(const CallExpr *E);
15922};
15923} // end anonymous namespace
15924
15925static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
15926 EvalInfo &Info) {
15927 assert(!E->isValueDependent());
15928 assert(E->isPRValue() && E->getType()->isAnyComplexType());
15929 return ComplexExprEvaluator(Info, Result).Visit(E);
15930}
15931
15932bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
15933 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
15934 if (ElemTy->isRealFloatingType()) {
15935 Result.makeComplexFloat();
15936 APFloat Zero = APFloat::getZero(Sem: Info.Ctx.getFloatTypeSemantics(T: ElemTy));
15937 Result.FloatReal = Zero;
15938 Result.FloatImag = Zero;
15939 } else {
15940 Result.makeComplexInt();
15941 APSInt Zero = Info.Ctx.MakeIntValue(Value: 0, Type: ElemTy);
15942 Result.IntReal = Zero;
15943 Result.IntImag = Zero;
15944 }
15945 return true;
15946}
15947
15948bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
15949 const Expr* SubExpr = E->getSubExpr();
15950
15951 if (SubExpr->getType()->isRealFloatingType()) {
15952 Result.makeComplexFloat();
15953 APFloat &Imag = Result.FloatImag;
15954 if (!EvaluateFloat(E: SubExpr, Result&: Imag, Info))
15955 return false;
15956
15957 Result.FloatReal = APFloat(Imag.getSemantics());
15958 return true;
15959 } else {
15960 assert(SubExpr->getType()->isIntegerType() &&
15961 "Unexpected imaginary literal.");
15962
15963 Result.makeComplexInt();
15964 APSInt &Imag = Result.IntImag;
15965 if (!EvaluateInteger(E: SubExpr, Result&: Imag, Info))
15966 return false;
15967
15968 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
15969 return true;
15970 }
15971}
15972
15973bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
15974
15975 switch (E->getCastKind()) {
15976 case CK_BitCast:
15977 case CK_BaseToDerived:
15978 case CK_DerivedToBase:
15979 case CK_UncheckedDerivedToBase:
15980 case CK_Dynamic:
15981 case CK_ToUnion:
15982 case CK_ArrayToPointerDecay:
15983 case CK_FunctionToPointerDecay:
15984 case CK_NullToPointer:
15985 case CK_NullToMemberPointer:
15986 case CK_BaseToDerivedMemberPointer:
15987 case CK_DerivedToBaseMemberPointer:
15988 case CK_MemberPointerToBoolean:
15989 case CK_ReinterpretMemberPointer:
15990 case CK_ConstructorConversion:
15991 case CK_IntegralToPointer:
15992 case CK_PointerToIntegral:
15993 case CK_PointerToBoolean:
15994 case CK_ToVoid:
15995 case CK_VectorSplat:
15996 case CK_IntegralCast:
15997 case CK_BooleanToSignedIntegral:
15998 case CK_IntegralToBoolean:
15999 case CK_IntegralToFloating:
16000 case CK_FloatingToIntegral:
16001 case CK_FloatingToBoolean:
16002 case CK_FloatingCast:
16003 case CK_CPointerToObjCPointerCast:
16004 case CK_BlockPointerToObjCPointerCast:
16005 case CK_AnyPointerToBlockPointerCast:
16006 case CK_ObjCObjectLValueCast:
16007 case CK_FloatingComplexToReal:
16008 case CK_FloatingComplexToBoolean:
16009 case CK_IntegralComplexToReal:
16010 case CK_IntegralComplexToBoolean:
16011 case CK_ARCProduceObject:
16012 case CK_ARCConsumeObject:
16013 case CK_ARCReclaimReturnedObject:
16014 case CK_ARCExtendBlockObject:
16015 case CK_CopyAndAutoreleaseBlockObject:
16016 case CK_BuiltinFnToFnPtr:
16017 case CK_ZeroToOCLOpaqueType:
16018 case CK_NonAtomicToAtomic:
16019 case CK_AddressSpaceConversion:
16020 case CK_IntToOCLSampler:
16021 case CK_FloatingToFixedPoint:
16022 case CK_FixedPointToFloating:
16023 case CK_FixedPointCast:
16024 case CK_FixedPointToBoolean:
16025 case CK_FixedPointToIntegral:
16026 case CK_IntegralToFixedPoint:
16027 case CK_MatrixCast:
16028 case CK_HLSLVectorTruncation:
16029 case CK_HLSLElementwiseCast:
16030 case CK_HLSLAggregateSplatCast:
16031 llvm_unreachable("invalid cast kind for complex value");
16032
16033 case CK_LValueToRValue:
16034 case CK_AtomicToNonAtomic:
16035 case CK_NoOp:
16036 case CK_LValueToRValueBitCast:
16037 case CK_HLSLArrayRValue:
16038 return ExprEvaluatorBaseTy::VisitCastExpr(E);
16039
16040 case CK_Dependent:
16041 case CK_LValueBitCast:
16042 case CK_UserDefinedConversion:
16043 return Error(E);
16044
16045 case CK_FloatingRealToComplex: {
16046 APFloat &Real = Result.FloatReal;
16047 if (!EvaluateFloat(E: E->getSubExpr(), Result&: Real, Info))
16048 return false;
16049
16050 Result.makeComplexFloat();
16051 Result.FloatImag = APFloat(Real.getSemantics());
16052 return true;
16053 }
16054
16055 case CK_FloatingComplexCast: {
16056 if (!Visit(E->getSubExpr()))
16057 return false;
16058
16059 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
16060 QualType From
16061 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
16062
16063 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
16064 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
16065 }
16066
16067 case CK_FloatingComplexToIntegralComplex: {
16068 if (!Visit(E->getSubExpr()))
16069 return false;
16070
16071 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
16072 QualType From
16073 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
16074 Result.makeComplexInt();
16075 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
16076 To, Result.IntReal) &&
16077 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
16078 To, Result.IntImag);
16079 }
16080
16081 case CK_IntegralRealToComplex: {
16082 APSInt &Real = Result.IntReal;
16083 if (!EvaluateInteger(E: E->getSubExpr(), Result&: Real, Info))
16084 return false;
16085
16086 Result.makeComplexInt();
16087 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
16088 return true;
16089 }
16090
16091 case CK_IntegralComplexCast: {
16092 if (!Visit(E->getSubExpr()))
16093 return false;
16094
16095 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
16096 QualType From
16097 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
16098
16099 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
16100 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
16101 return true;
16102 }
16103
16104 case CK_IntegralComplexToFloatingComplex: {
16105 if (!Visit(E->getSubExpr()))
16106 return false;
16107
16108 const FPOptions FPO = E->getFPFeaturesInEffect(
16109 LO: Info.Ctx.getLangOpts());
16110 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
16111 QualType From
16112 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
16113 Result.makeComplexFloat();
16114 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
16115 To, Result.FloatReal) &&
16116 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
16117 To, Result.FloatImag);
16118 }
16119 }
16120
16121 llvm_unreachable("unknown cast resulting in complex value");
16122}
16123
16124void HandleComplexComplexMul(APFloat A, APFloat B, APFloat C, APFloat D,
16125 APFloat &ResR, APFloat &ResI) {
16126 // This is an implementation of complex multiplication according to the
16127 // constraints laid out in C11 Annex G. The implementation uses the
16128 // following naming scheme:
16129 // (a + ib) * (c + id)
16130
16131 APFloat AC = A * C;
16132 APFloat BD = B * D;
16133 APFloat AD = A * D;
16134 APFloat BC = B * C;
16135 ResR = AC - BD;
16136 ResI = AD + BC;
16137 if (ResR.isNaN() && ResI.isNaN()) {
16138 bool Recalc = false;
16139 if (A.isInfinity() || B.isInfinity()) {
16140 A = APFloat::copySign(Value: APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0),
16141 Sign: A);
16142 B = APFloat::copySign(Value: APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0),
16143 Sign: B);
16144 if (C.isNaN())
16145 C = APFloat::copySign(Value: APFloat(C.getSemantics()), Sign: C);
16146 if (D.isNaN())
16147 D = APFloat::copySign(Value: APFloat(D.getSemantics()), Sign: D);
16148 Recalc = true;
16149 }
16150 if (C.isInfinity() || D.isInfinity()) {
16151 C = APFloat::copySign(Value: APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0),
16152 Sign: C);
16153 D = APFloat::copySign(Value: APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0),
16154 Sign: D);
16155 if (A.isNaN())
16156 A = APFloat::copySign(Value: APFloat(A.getSemantics()), Sign: A);
16157 if (B.isNaN())
16158 B = APFloat::copySign(Value: APFloat(B.getSemantics()), Sign: B);
16159 Recalc = true;
16160 }
16161 if (!Recalc && (AC.isInfinity() || BD.isInfinity() || AD.isInfinity() ||
16162 BC.isInfinity())) {
16163 if (A.isNaN())
16164 A = APFloat::copySign(Value: APFloat(A.getSemantics()), Sign: A);
16165 if (B.isNaN())
16166 B = APFloat::copySign(Value: APFloat(B.getSemantics()), Sign: B);
16167 if (C.isNaN())
16168 C = APFloat::copySign(Value: APFloat(C.getSemantics()), Sign: C);
16169 if (D.isNaN())
16170 D = APFloat::copySign(Value: APFloat(D.getSemantics()), Sign: D);
16171 Recalc = true;
16172 }
16173 if (Recalc) {
16174 ResR = APFloat::getInf(Sem: A.getSemantics()) * (A * C - B * D);
16175 ResI = APFloat::getInf(Sem: A.getSemantics()) * (A * D + B * C);
16176 }
16177 }
16178}
16179
16180void HandleComplexComplexDiv(APFloat A, APFloat B, APFloat C, APFloat D,
16181 APFloat &ResR, APFloat &ResI) {
16182 // This is an implementation of complex division according to the
16183 // constraints laid out in C11 Annex G. The implementation uses the
16184 // following naming scheme:
16185 // (a + ib) / (c + id)
16186
16187 int DenomLogB = 0;
16188 APFloat MaxCD = maxnum(A: abs(X: C), B: abs(X: D));
16189 if (MaxCD.isFinite()) {
16190 DenomLogB = ilogb(Arg: MaxCD);
16191 C = scalbn(X: C, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven);
16192 D = scalbn(X: D, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven);
16193 }
16194 APFloat Denom = C * C + D * D;
16195 ResR =
16196 scalbn(X: (A * C + B * D) / Denom, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven);
16197 ResI =
16198 scalbn(X: (B * C - A * D) / Denom, Exp: -DenomLogB, RM: APFloat::rmNearestTiesToEven);
16199 if (ResR.isNaN() && ResI.isNaN()) {
16200 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
16201 ResR = APFloat::getInf(Sem: ResR.getSemantics(), Negative: C.isNegative()) * A;
16202 ResI = APFloat::getInf(Sem: ResR.getSemantics(), Negative: C.isNegative()) * B;
16203 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
16204 D.isFinite()) {
16205 A = APFloat::copySign(Value: APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0),
16206 Sign: A);
16207 B = APFloat::copySign(Value: APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0),
16208 Sign: B);
16209 ResR = APFloat::getInf(Sem: ResR.getSemantics()) * (A * C + B * D);
16210 ResI = APFloat::getInf(Sem: ResI.getSemantics()) * (B * C - A * D);
16211 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
16212 C = APFloat::copySign(Value: APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0),
16213 Sign: C);
16214 D = APFloat::copySign(Value: APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0),
16215 Sign: D);
16216 ResR = APFloat::getZero(Sem: ResR.getSemantics()) * (A * C + B * D);
16217 ResI = APFloat::getZero(Sem: ResI.getSemantics()) * (B * C - A * D);
16218 }
16219 }
16220}
16221
16222bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
16223 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
16224 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
16225
16226 // Track whether the LHS or RHS is real at the type system level. When this is
16227 // the case we can simplify our evaluation strategy.
16228 bool LHSReal = false, RHSReal = false;
16229
16230 bool LHSOK;
16231 if (E->getLHS()->getType()->isRealFloatingType()) {
16232 LHSReal = true;
16233 APFloat &Real = Result.FloatReal;
16234 LHSOK = EvaluateFloat(E: E->getLHS(), Result&: Real, Info);
16235 if (LHSOK) {
16236 Result.makeComplexFloat();
16237 Result.FloatImag = APFloat(Real.getSemantics());
16238 }
16239 } else {
16240 LHSOK = Visit(E->getLHS());
16241 }
16242 if (!LHSOK && !Info.noteFailure())
16243 return false;
16244
16245 ComplexValue RHS;
16246 if (E->getRHS()->getType()->isRealFloatingType()) {
16247 RHSReal = true;
16248 APFloat &Real = RHS.FloatReal;
16249 if (!EvaluateFloat(E: E->getRHS(), Result&: Real, Info) || !LHSOK)
16250 return false;
16251 RHS.makeComplexFloat();
16252 RHS.FloatImag = APFloat(Real.getSemantics());
16253 } else if (!EvaluateComplex(E: E->getRHS(), Result&: RHS, Info) || !LHSOK)
16254 return false;
16255
16256 assert(!(LHSReal && RHSReal) &&
16257 "Cannot have both operands of a complex operation be real.");
16258 switch (E->getOpcode()) {
16259 default: return Error(E);
16260 case BO_Add:
16261 if (Result.isComplexFloat()) {
16262 Result.getComplexFloatReal().add(RHS: RHS.getComplexFloatReal(),
16263 RM: APFloat::rmNearestTiesToEven);
16264 if (LHSReal)
16265 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
16266 else if (!RHSReal)
16267 Result.getComplexFloatImag().add(RHS: RHS.getComplexFloatImag(),
16268 RM: APFloat::rmNearestTiesToEven);
16269 } else {
16270 Result.getComplexIntReal() += RHS.getComplexIntReal();
16271 Result.getComplexIntImag() += RHS.getComplexIntImag();
16272 }
16273 break;
16274 case BO_Sub:
16275 if (Result.isComplexFloat()) {
16276 Result.getComplexFloatReal().subtract(RHS: RHS.getComplexFloatReal(),
16277 RM: APFloat::rmNearestTiesToEven);
16278 if (LHSReal) {
16279 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
16280 Result.getComplexFloatImag().changeSign();
16281 } else if (!RHSReal) {
16282 Result.getComplexFloatImag().subtract(RHS: RHS.getComplexFloatImag(),
16283 RM: APFloat::rmNearestTiesToEven);
16284 }
16285 } else {
16286 Result.getComplexIntReal() -= RHS.getComplexIntReal();
16287 Result.getComplexIntImag() -= RHS.getComplexIntImag();
16288 }
16289 break;
16290 case BO_Mul:
16291 if (Result.isComplexFloat()) {
16292 // This is an implementation of complex multiplication according to the
16293 // constraints laid out in C11 Annex G. The implementation uses the
16294 // following naming scheme:
16295 // (a + ib) * (c + id)
16296 ComplexValue LHS = Result;
16297 APFloat &A = LHS.getComplexFloatReal();
16298 APFloat &B = LHS.getComplexFloatImag();
16299 APFloat &C = RHS.getComplexFloatReal();
16300 APFloat &D = RHS.getComplexFloatImag();
16301 APFloat &ResR = Result.getComplexFloatReal();
16302 APFloat &ResI = Result.getComplexFloatImag();
16303 if (LHSReal) {
16304 assert(!RHSReal && "Cannot have two real operands for a complex op!");
16305 ResR = A;
16306 ResI = A;
16307 // ResR = A * C;
16308 // ResI = A * D;
16309 if (!handleFloatFloatBinOp(Info, E, LHS&: ResR, Opcode: BO_Mul, RHS: C) ||
16310 !handleFloatFloatBinOp(Info, E, LHS&: ResI, Opcode: BO_Mul, RHS: D))
16311 return false;
16312 } else if (RHSReal) {
16313 // ResR = C * A;
16314 // ResI = C * B;
16315 ResR = C;
16316 ResI = C;
16317 if (!handleFloatFloatBinOp(Info, E, LHS&: ResR, Opcode: BO_Mul, RHS: A) ||
16318 !handleFloatFloatBinOp(Info, E, LHS&: ResI, Opcode: BO_Mul, RHS: B))
16319 return false;
16320 } else {
16321 HandleComplexComplexMul(A, B, C, D, ResR, ResI);
16322 }
16323 } else {
16324 ComplexValue LHS = Result;
16325 Result.getComplexIntReal() =
16326 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
16327 LHS.getComplexIntImag() * RHS.getComplexIntImag());
16328 Result.getComplexIntImag() =
16329 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
16330 LHS.getComplexIntImag() * RHS.getComplexIntReal());
16331 }
16332 break;
16333 case BO_Div:
16334 if (Result.isComplexFloat()) {
16335 // This is an implementation of complex division according to the
16336 // constraints laid out in C11 Annex G. The implementation uses the
16337 // following naming scheme:
16338 // (a + ib) / (c + id)
16339 ComplexValue LHS = Result;
16340 APFloat &A = LHS.getComplexFloatReal();
16341 APFloat &B = LHS.getComplexFloatImag();
16342 APFloat &C = RHS.getComplexFloatReal();
16343 APFloat &D = RHS.getComplexFloatImag();
16344 APFloat &ResR = Result.getComplexFloatReal();
16345 APFloat &ResI = Result.getComplexFloatImag();
16346 if (RHSReal) {
16347 ResR = A;
16348 ResI = B;
16349 // ResR = A / C;
16350 // ResI = B / C;
16351 if (!handleFloatFloatBinOp(Info, E, LHS&: ResR, Opcode: BO_Div, RHS: C) ||
16352 !handleFloatFloatBinOp(Info, E, LHS&: ResI, Opcode: BO_Div, RHS: C))
16353 return false;
16354 } else {
16355 if (LHSReal) {
16356 // No real optimizations we can do here, stub out with zero.
16357 B = APFloat::getZero(Sem: A.getSemantics());
16358 }
16359 HandleComplexComplexDiv(A, B, C, D, ResR, ResI);
16360 }
16361 } else {
16362 ComplexValue LHS = Result;
16363 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
16364 RHS.getComplexIntImag() * RHS.getComplexIntImag();
16365 if (Den.isZero())
16366 return Error(E, diag::note_expr_divide_by_zero);
16367
16368 Result.getComplexIntReal() =
16369 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
16370 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
16371 Result.getComplexIntImag() =
16372 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
16373 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
16374 }
16375 break;
16376 }
16377
16378 return true;
16379}
16380
16381bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
16382 // Get the operand value into 'Result'.
16383 if (!Visit(E->getSubExpr()))
16384 return false;
16385
16386 switch (E->getOpcode()) {
16387 default:
16388 return Error(E);
16389 case UO_Extension:
16390 return true;
16391 case UO_Plus:
16392 // The result is always just the subexpr.
16393 return true;
16394 case UO_Minus:
16395 if (Result.isComplexFloat()) {
16396 Result.getComplexFloatReal().changeSign();
16397 Result.getComplexFloatImag().changeSign();
16398 }
16399 else {
16400 Result.getComplexIntReal() = -Result.getComplexIntReal();
16401 Result.getComplexIntImag() = -Result.getComplexIntImag();
16402 }
16403 return true;
16404 case UO_Not:
16405 if (Result.isComplexFloat())
16406 Result.getComplexFloatImag().changeSign();
16407 else
16408 Result.getComplexIntImag() = -Result.getComplexIntImag();
16409 return true;
16410 }
16411}
16412
16413bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
16414 if (E->getNumInits() == 2) {
16415 if (E->getType()->isComplexType()) {
16416 Result.makeComplexFloat();
16417 if (!EvaluateFloat(E: E->getInit(Init: 0), Result&: Result.FloatReal, Info))
16418 return false;
16419 if (!EvaluateFloat(E: E->getInit(Init: 1), Result&: Result.FloatImag, Info))
16420 return false;
16421 } else {
16422 Result.makeComplexInt();
16423 if (!EvaluateInteger(E: E->getInit(Init: 0), Result&: Result.IntReal, Info))
16424 return false;
16425 if (!EvaluateInteger(E: E->getInit(Init: 1), Result&: Result.IntImag, Info))
16426 return false;
16427 }
16428 return true;
16429 }
16430 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
16431}
16432
16433bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
16434 if (!IsConstantEvaluatedBuiltinCall(E))
16435 return ExprEvaluatorBaseTy::VisitCallExpr(E);
16436
16437 switch (E->getBuiltinCallee()) {
16438 case Builtin::BI__builtin_complex:
16439 Result.makeComplexFloat();
16440 if (!EvaluateFloat(E: E->getArg(Arg: 0), Result&: Result.FloatReal, Info))
16441 return false;
16442 if (!EvaluateFloat(E: E->getArg(Arg: 1), Result&: Result.FloatImag, Info))
16443 return false;
16444 return true;
16445
16446 default:
16447 return false;
16448 }
16449}
16450
16451//===----------------------------------------------------------------------===//
16452// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
16453// implicit conversion.
16454//===----------------------------------------------------------------------===//
16455
16456namespace {
16457class AtomicExprEvaluator :
16458 public ExprEvaluatorBase<AtomicExprEvaluator> {
16459 const LValue *This;
16460 APValue &Result;
16461public:
16462 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
16463 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
16464
16465 bool Success(const APValue &V, const Expr *E) {
16466 Result = V;
16467 return true;
16468 }
16469
16470 bool ZeroInitialization(const Expr *E) {
16471 ImplicitValueInitExpr VIE(
16472 E->getType()->castAs<AtomicType>()->getValueType());
16473 // For atomic-qualified class (and array) types in C++, initialize the
16474 // _Atomic-wrapped subobject directly, in-place.
16475 return This ? EvaluateInPlace(Result, Info, *This, &VIE)
16476 : Evaluate(Result, Info, &VIE);
16477 }
16478
16479 bool VisitCastExpr(const CastExpr *E) {
16480 switch (E->getCastKind()) {
16481 default:
16482 return ExprEvaluatorBaseTy::VisitCastExpr(E);
16483 case CK_NullToPointer:
16484 VisitIgnoredValue(E: E->getSubExpr());
16485 return ZeroInitialization(E);
16486 case CK_NonAtomicToAtomic:
16487 return This ? EvaluateInPlace(Result, Info, This: *This, E: E->getSubExpr())
16488 : Evaluate(Result, Info, E: E->getSubExpr());
16489 }
16490 }
16491};
16492} // end anonymous namespace
16493
16494static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
16495 EvalInfo &Info) {
16496 assert(!E->isValueDependent());
16497 assert(E->isPRValue() && E->getType()->isAtomicType());
16498 return AtomicExprEvaluator(Info, This, Result).Visit(E);
16499}
16500
16501//===----------------------------------------------------------------------===//
16502// Void expression evaluation, primarily for a cast to void on the LHS of a
16503// comma operator
16504//===----------------------------------------------------------------------===//
16505
16506namespace {
16507class VoidExprEvaluator
16508 : public ExprEvaluatorBase<VoidExprEvaluator> {
16509public:
16510 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
16511
16512 bool Success(const APValue &V, const Expr *e) { return true; }
16513
16514 bool ZeroInitialization(const Expr *E) { return true; }
16515
16516 bool VisitCastExpr(const CastExpr *E) {
16517 switch (E->getCastKind()) {
16518 default:
16519 return ExprEvaluatorBaseTy::VisitCastExpr(E);
16520 case CK_ToVoid:
16521 VisitIgnoredValue(E: E->getSubExpr());
16522 return true;
16523 }
16524 }
16525
16526 bool VisitCallExpr(const CallExpr *E) {
16527 if (!IsConstantEvaluatedBuiltinCall(E))
16528 return ExprEvaluatorBaseTy::VisitCallExpr(E);
16529
16530 switch (E->getBuiltinCallee()) {
16531 case Builtin::BI__assume:
16532 case Builtin::BI__builtin_assume:
16533 // The argument is not evaluated!
16534 return true;
16535
16536 case Builtin::BI__builtin_operator_delete:
16537 return HandleOperatorDeleteCall(Info, E);
16538
16539 default:
16540 return false;
16541 }
16542 }
16543
16544 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
16545};
16546} // end anonymous namespace
16547
16548bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
16549 // We cannot speculatively evaluate a delete expression.
16550 if (Info.SpeculativeEvaluationDepth)
16551 return false;
16552
16553 FunctionDecl *OperatorDelete = E->getOperatorDelete();
16554 if (!OperatorDelete
16555 ->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) {
16556 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
16557 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
16558 return false;
16559 }
16560
16561 const Expr *Arg = E->getArgument();
16562
16563 LValue Pointer;
16564 if (!EvaluatePointer(E: Arg, Result&: Pointer, Info))
16565 return false;
16566 if (Pointer.Designator.Invalid)
16567 return false;
16568
16569 // Deleting a null pointer has no effect.
16570 if (Pointer.isNullPointer()) {
16571 // This is the only case where we need to produce an extension warning:
16572 // the only other way we can succeed is if we find a dynamic allocation,
16573 // and we will have warned when we allocated it in that case.
16574 if (!Info.getLangOpts().CPlusPlus20)
16575 Info.CCEDiag(E, diag::note_constexpr_new);
16576 return true;
16577 }
16578
16579 std::optional<DynAlloc *> Alloc = CheckDeleteKind(
16580 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
16581 if (!Alloc)
16582 return false;
16583 QualType AllocType = Pointer.Base.getDynamicAllocType();
16584
16585 // For the non-array case, the designator must be empty if the static type
16586 // does not have a virtual destructor.
16587 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
16588 !hasVirtualDestructor(T: Arg->getType()->getPointeeType())) {
16589 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
16590 << Arg->getType()->getPointeeType() << AllocType;
16591 return false;
16592 }
16593
16594 // For a class type with a virtual destructor, the selected operator delete
16595 // is the one looked up when building the destructor.
16596 if (!E->isArrayForm() && !E->isGlobalDelete()) {
16597 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(T: AllocType);
16598 if (VirtualDelete &&
16599 !VirtualDelete
16600 ->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) {
16601 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
16602 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
16603 return false;
16604 }
16605 }
16606
16607 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
16608 (*Alloc)->Value, AllocType))
16609 return false;
16610
16611 if (!Info.HeapAllocs.erase(x: Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
16612 // The element was already erased. This means the destructor call also
16613 // deleted the object.
16614 // FIXME: This probably results in undefined behavior before we get this
16615 // far, and should be diagnosed elsewhere first.
16616 Info.FFDiag(E, diag::note_constexpr_double_delete);
16617 return false;
16618 }
16619
16620 return true;
16621}
16622
16623static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
16624 assert(!E->isValueDependent());
16625 assert(E->isPRValue() && E->getType()->isVoidType());
16626 return VoidExprEvaluator(Info).Visit(E);
16627}
16628
16629//===----------------------------------------------------------------------===//
16630// Top level Expr::EvaluateAsRValue method.
16631//===----------------------------------------------------------------------===//
16632
16633static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
16634 assert(!E->isValueDependent());
16635 // In C, function designators are not lvalues, but we evaluate them as if they
16636 // are.
16637 QualType T = E->getType();
16638 if (E->isGLValue() || T->isFunctionType()) {
16639 LValue LV;
16640 if (!EvaluateLValue(E, Result&: LV, Info))
16641 return false;
16642 LV.moveInto(V&: Result);
16643 } else if (T->isVectorType()) {
16644 if (!EvaluateVector(E, Result, Info))
16645 return false;
16646 } else if (T->isIntegralOrEnumerationType()) {
16647 if (!IntExprEvaluator(Info, Result).Visit(E))
16648 return false;
16649 } else if (T->hasPointerRepresentation()) {
16650 LValue LV;
16651 if (!EvaluatePointer(E, Result&: LV, Info))
16652 return false;
16653 LV.moveInto(V&: Result);
16654 } else if (T->isRealFloatingType()) {
16655 llvm::APFloat F(0.0);
16656 if (!EvaluateFloat(E, Result&: F, Info))
16657 return false;
16658 Result = APValue(F);
16659 } else if (T->isAnyComplexType()) {
16660 ComplexValue C;
16661 if (!EvaluateComplex(E, Result&: C, Info))
16662 return false;
16663 C.moveInto(v&: Result);
16664 } else if (T->isFixedPointType()) {
16665 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
16666 } else if (T->isMemberPointerType()) {
16667 MemberPtr P;
16668 if (!EvaluateMemberPointer(E, Result&: P, Info))
16669 return false;
16670 P.moveInto(V&: Result);
16671 return true;
16672 } else if (T->isArrayType()) {
16673 LValue LV;
16674 APValue &Value =
16675 Info.CurrentCall->createTemporary(Key: E, T, Scope: ScopeKind::FullExpression, LV);
16676 if (!EvaluateArray(E, This: LV, Result&: Value, Info))
16677 return false;
16678 Result = Value;
16679 } else if (T->isRecordType()) {
16680 LValue LV;
16681 APValue &Value =
16682 Info.CurrentCall->createTemporary(Key: E, T, Scope: ScopeKind::FullExpression, LV);
16683 if (!EvaluateRecord(E, This: LV, Result&: Value, Info))
16684 return false;
16685 Result = Value;
16686 } else if (T->isVoidType()) {
16687 if (!Info.getLangOpts().CPlusPlus11)
16688 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
16689 << E->getType();
16690 if (!EvaluateVoid(E, Info))
16691 return false;
16692 } else if (T->isAtomicType()) {
16693 QualType Unqual = T.getAtomicUnqualifiedType();
16694 if (Unqual->isArrayType() || Unqual->isRecordType()) {
16695 LValue LV;
16696 APValue &Value = Info.CurrentCall->createTemporary(
16697 Key: E, T: Unqual, Scope: ScopeKind::FullExpression, LV);
16698 if (!EvaluateAtomic(E, This: &LV, Result&: Value, Info))
16699 return false;
16700 Result = Value;
16701 } else {
16702 if (!EvaluateAtomic(E, This: nullptr, Result, Info))
16703 return false;
16704 }
16705 } else if (Info.getLangOpts().CPlusPlus11) {
16706 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
16707 return false;
16708 } else {
16709 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
16710 return false;
16711 }
16712
16713 return true;
16714}
16715
16716/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
16717/// cases, the in-place evaluation is essential, since later initializers for
16718/// an object can indirectly refer to subobjects which were initialized earlier.
16719static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
16720 const Expr *E, bool AllowNonLiteralTypes) {
16721 assert(!E->isValueDependent());
16722
16723 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, This: &This))
16724 return false;
16725
16726 if (E->isPRValue()) {
16727 // Evaluate arrays and record types in-place, so that later initializers can
16728 // refer to earlier-initialized members of the object.
16729 QualType T = E->getType();
16730 if (T->isArrayType())
16731 return EvaluateArray(E, This, Result, Info);
16732 else if (T->isRecordType())
16733 return EvaluateRecord(E, This, Result, Info);
16734 else if (T->isAtomicType()) {
16735 QualType Unqual = T.getAtomicUnqualifiedType();
16736 if (Unqual->isArrayType() || Unqual->isRecordType())
16737 return EvaluateAtomic(E, This: &This, Result, Info);
16738 }
16739 }
16740
16741 // For any other type, in-place evaluation is unimportant.
16742 return Evaluate(Result, Info, E);
16743}
16744
16745/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
16746/// lvalue-to-rvalue cast if it is an lvalue.
16747static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
16748 assert(!E->isValueDependent());
16749
16750 if (E->getType().isNull())
16751 return false;
16752
16753 if (!CheckLiteralType(Info, E))
16754 return false;
16755
16756 if (Info.EnableNewConstInterp) {
16757 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Parent&: Info, E, Result))
16758 return false;
16759 return CheckConstantExpression(Info, DiagLoc: E->getExprLoc(), Type: E->getType(), Value: Result,
16760 Kind: ConstantExprKind::Normal);
16761 }
16762
16763 if (!::Evaluate(Result, Info, E))
16764 return false;
16765
16766 // Implicit lvalue-to-rvalue cast.
16767 if (E->isGLValue()) {
16768 LValue LV;
16769 LV.setFrom(Ctx&: Info.Ctx, V: Result);
16770 if (!handleLValueToRValueConversion(Info, Conv: E, Type: E->getType(), LVal: LV, RVal&: Result))
16771 return false;
16772 }
16773
16774 // Check this core constant expression is a constant expression.
16775 return CheckConstantExpression(Info, DiagLoc: E->getExprLoc(), Type: E->getType(), Value: Result,
16776 Kind: ConstantExprKind::Normal) &&
16777 CheckMemoryLeaks(Info);
16778}
16779
16780static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
16781 const ASTContext &Ctx, bool &IsConst) {
16782 // Fast-path evaluations of integer literals, since we sometimes see files
16783 // containing vast quantities of these.
16784 if (const auto *L = dyn_cast<IntegerLiteral>(Val: Exp)) {
16785 Result.Val = APValue(APSInt(L->getValue(),
16786 L->getType()->isUnsignedIntegerType()));
16787 IsConst = true;
16788 return true;
16789 }
16790
16791 if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Val: Exp)) {
16792 Result.Val = APValue(APSInt(APInt(1, L->getValue())));
16793 IsConst = true;
16794 return true;
16795 }
16796
16797 if (const auto *FL = dyn_cast<FloatingLiteral>(Val: Exp)) {
16798 Result.Val = APValue(FL->getValue());
16799 IsConst = true;
16800 return true;
16801 }
16802
16803 if (const auto *L = dyn_cast<CharacterLiteral>(Val: Exp)) {
16804 Result.Val = APValue(Ctx.MakeIntValue(Value: L->getValue(), Type: L->getType()));
16805 IsConst = true;
16806 return true;
16807 }
16808
16809 if (const auto *CE = dyn_cast<ConstantExpr>(Val: Exp)) {
16810 if (CE->hasAPValueResult()) {
16811 APValue APV = CE->getAPValueResult();
16812 if (!APV.isLValue()) {
16813 Result.Val = std::move(APV);
16814 IsConst = true;
16815 return true;
16816 }
16817 }
16818
16819 // The SubExpr is usually just an IntegerLiteral.
16820 return FastEvaluateAsRValue(CE->getSubExpr(), Result, Ctx, IsConst);
16821 }
16822
16823 // This case should be rare, but we need to check it before we check on
16824 // the type below.
16825 if (Exp->getType().isNull()) {
16826 IsConst = false;
16827 return true;
16828 }
16829
16830 return false;
16831}
16832
16833static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
16834 Expr::SideEffectsKind SEK) {
16835 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
16836 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
16837}
16838
16839static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
16840 const ASTContext &Ctx, EvalInfo &Info) {
16841 assert(!E->isValueDependent());
16842 bool IsConst;
16843 if (FastEvaluateAsRValue(Exp: E, Result, Ctx, IsConst))
16844 return IsConst;
16845
16846 return EvaluateAsRValue(Info, E, Result&: Result.Val);
16847}
16848
16849static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
16850 const ASTContext &Ctx,
16851 Expr::SideEffectsKind AllowSideEffects,
16852 EvalInfo &Info) {
16853 assert(!E->isValueDependent());
16854 if (!E->getType()->isIntegralOrEnumerationType())
16855 return false;
16856
16857 if (!::EvaluateAsRValue(E, Result&: ExprResult, Ctx, Info) ||
16858 !ExprResult.Val.isInt() ||
16859 hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects))
16860 return false;
16861
16862 return true;
16863}
16864
16865static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
16866 const ASTContext &Ctx,
16867 Expr::SideEffectsKind AllowSideEffects,
16868 EvalInfo &Info) {
16869 assert(!E->isValueDependent());
16870 if (!E->getType()->isFixedPointType())
16871 return false;
16872
16873 if (!::EvaluateAsRValue(E, Result&: ExprResult, Ctx, Info))
16874 return false;
16875
16876 if (!ExprResult.Val.isFixedPoint() ||
16877 hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects))
16878 return false;
16879
16880 return true;
16881}
16882
16883/// EvaluateAsRValue - Return true if this is a constant which we can fold using
16884/// any crazy technique (that has nothing to do with language standards) that
16885/// we want to. If this function returns true, it returns the folded constant
16886/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
16887/// will be applied to the result.
16888bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
16889 bool InConstantContext) const {
16890 assert(!isValueDependent() &&
16891 "Expression evaluator can't be called on a dependent expression.");
16892 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue");
16893 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
16894 Info.InConstantContext = InConstantContext;
16895 return ::EvaluateAsRValue(E: this, Result, Ctx, Info);
16896}
16897
16898bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
16899 bool InConstantContext) const {
16900 assert(!isValueDependent() &&
16901 "Expression evaluator can't be called on a dependent expression.");
16902 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition");
16903 EvalResult Scratch;
16904 return EvaluateAsRValue(Result&: Scratch, Ctx, InConstantContext) &&
16905 HandleConversionToBool(Val: Scratch.Val, Result);
16906}
16907
16908bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
16909 SideEffectsKind AllowSideEffects,
16910 bool InConstantContext) const {
16911 assert(!isValueDependent() &&
16912 "Expression evaluator can't be called on a dependent expression.");
16913 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt");
16914 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
16915 Info.InConstantContext = InConstantContext;
16916 return ::EvaluateAsInt(E: this, ExprResult&: Result, Ctx, AllowSideEffects, Info);
16917}
16918
16919bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
16920 SideEffectsKind AllowSideEffects,
16921 bool InConstantContext) const {
16922 assert(!isValueDependent() &&
16923 "Expression evaluator can't be called on a dependent expression.");
16924 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint");
16925 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
16926 Info.InConstantContext = InConstantContext;
16927 return ::EvaluateAsFixedPoint(E: this, ExprResult&: Result, Ctx, AllowSideEffects, Info);
16928}
16929
16930bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
16931 SideEffectsKind AllowSideEffects,
16932 bool InConstantContext) const {
16933 assert(!isValueDependent() &&
16934 "Expression evaluator can't be called on a dependent expression.");
16935
16936 if (!getType()->isRealFloatingType())
16937 return false;
16938
16939 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat");
16940 EvalResult ExprResult;
16941 if (!EvaluateAsRValue(Result&: ExprResult, Ctx, InConstantContext) ||
16942 !ExprResult.Val.isFloat() ||
16943 hasUnacceptableSideEffect(Result&: ExprResult, SEK: AllowSideEffects))
16944 return false;
16945
16946 Result = ExprResult.Val.getFloat();
16947 return true;
16948}
16949
16950bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
16951 bool InConstantContext) const {
16952 assert(!isValueDependent() &&
16953 "Expression evaluator can't be called on a dependent expression.");
16954
16955 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue");
16956 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
16957 Info.InConstantContext = InConstantContext;
16958 LValue LV;
16959 CheckedTemporaries CheckedTemps;
16960 if (!EvaluateLValue(E: this, Result&: LV, Info) || !Info.discardCleanups() ||
16961 Result.HasSideEffects ||
16962 !CheckLValueConstantExpression(Info, Loc: getExprLoc(),
16963 Type: Ctx.getLValueReferenceType(T: getType()), LVal: LV,
16964 Kind: ConstantExprKind::Normal, CheckedTemps))
16965 return false;
16966
16967 LV.moveInto(V&: Result.Val);
16968 return true;
16969}
16970
16971static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
16972 APValue DestroyedValue, QualType Type,
16973 SourceLocation Loc, Expr::EvalStatus &EStatus,
16974 bool IsConstantDestruction) {
16975 EvalInfo Info(Ctx, EStatus,
16976 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
16977 : EvalInfo::EM_ConstantFold);
16978 Info.setEvaluatingDecl(Base, Value&: DestroyedValue,
16979 EDK: EvalInfo::EvaluatingDeclKind::Dtor);
16980 Info.InConstantContext = IsConstantDestruction;
16981
16982 LValue LVal;
16983 LVal.set(B: Base);
16984
16985 if (!HandleDestruction(Info, Loc, LVBase: Base, Value&: DestroyedValue, T: Type) ||
16986 EStatus.HasSideEffects)
16987 return false;
16988
16989 if (!Info.discardCleanups())
16990 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
16991
16992 return true;
16993}
16994
16995bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
16996 ConstantExprKind Kind) const {
16997 assert(!isValueDependent() &&
16998 "Expression evaluator can't be called on a dependent expression.");
16999 bool IsConst;
17000 if (FastEvaluateAsRValue(Exp: this, Result, Ctx, IsConst) && Result.Val.hasValue())
17001 return true;
17002
17003 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr");
17004 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
17005 EvalInfo Info(Ctx, Result, EM);
17006 Info.InConstantContext = true;
17007
17008 if (Info.EnableNewConstInterp) {
17009 if (!Info.Ctx.getInterpContext().evaluate(Parent&: Info, E: this, Result&: Result.Val, Kind))
17010 return false;
17011 return CheckConstantExpression(Info, DiagLoc: getExprLoc(),
17012 Type: getStorageType(Ctx, E: this), Value: Result.Val, Kind);
17013 }
17014
17015 // The type of the object we're initializing is 'const T' for a class NTTP.
17016 QualType T = getType();
17017 if (Kind == ConstantExprKind::ClassTemplateArgument)
17018 T.addConst();
17019
17020 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
17021 // represent the result of the evaluation. CheckConstantExpression ensures
17022 // this doesn't escape.
17023 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
17024 APValue::LValueBase Base(&BaseMTE);
17025 Info.setEvaluatingDecl(Base, Value&: Result.Val);
17026
17027 LValue LVal;
17028 LVal.set(B: Base);
17029 // C++23 [intro.execution]/p5
17030 // A full-expression is [...] a constant-expression
17031 // So we need to make sure temporary objects are destroyed after having
17032 // evaluating the expression (per C++23 [class.temporary]/p4).
17033 FullExpressionRAII Scope(Info);
17034 if (!::EvaluateInPlace(Result&: Result.Val, Info, This: LVal, E: this) ||
17035 Result.HasSideEffects || !Scope.destroy())
17036 return false;
17037
17038 if (!Info.discardCleanups())
17039 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
17040
17041 if (!CheckConstantExpression(Info, DiagLoc: getExprLoc(), Type: getStorageType(Ctx, E: this),
17042 Value: Result.Val, Kind))
17043 return false;
17044 if (!CheckMemoryLeaks(Info))
17045 return false;
17046
17047 // If this is a class template argument, it's required to have constant
17048 // destruction too.
17049 if (Kind == ConstantExprKind::ClassTemplateArgument &&
17050 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
17051 true) ||
17052 Result.HasSideEffects)) {
17053 // FIXME: Prefix a note to indicate that the problem is lack of constant
17054 // destruction.
17055 return false;
17056 }
17057
17058 return true;
17059}
17060
17061bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
17062 const VarDecl *VD,
17063 SmallVectorImpl<PartialDiagnosticAt> &Notes,
17064 bool IsConstantInitialization) const {
17065 assert(!isValueDependent() &&
17066 "Expression evaluator can't be called on a dependent expression.");
17067
17068 llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] {
17069 std::string Name;
17070 llvm::raw_string_ostream OS(Name);
17071 VD->printQualifiedName(OS);
17072 return Name;
17073 });
17074
17075 Expr::EvalStatus EStatus;
17076 EStatus.Diag = &Notes;
17077
17078 EvalInfo Info(Ctx, EStatus,
17079 (IsConstantInitialization &&
17080 (Ctx.getLangOpts().CPlusPlus || Ctx.getLangOpts().C23))
17081 ? EvalInfo::EM_ConstantExpression
17082 : EvalInfo::EM_ConstantFold);
17083 Info.setEvaluatingDecl(VD, Value);
17084 Info.InConstantContext = IsConstantInitialization;
17085
17086 SourceLocation DeclLoc = VD->getLocation();
17087 QualType DeclTy = VD->getType();
17088
17089 if (Info.EnableNewConstInterp) {
17090 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
17091 if (!InterpCtx.evaluateAsInitializer(Parent&: Info, VD, Result&: Value))
17092 return false;
17093
17094 return CheckConstantExpression(Info, DiagLoc: DeclLoc, Type: DeclTy, Value,
17095 Kind: ConstantExprKind::Normal);
17096 } else {
17097 LValue LVal;
17098 LVal.set(VD);
17099
17100 {
17101 // C++23 [intro.execution]/p5
17102 // A full-expression is ... an init-declarator ([dcl.decl]) or a
17103 // mem-initializer.
17104 // So we need to make sure temporary objects are destroyed after having
17105 // evaluated the expression (per C++23 [class.temporary]/p4).
17106 //
17107 // FIXME: Otherwise this may break test/Modules/pr68702.cpp because the
17108 // serialization code calls ParmVarDecl::getDefaultArg() which strips the
17109 // outermost FullExpr, such as ExprWithCleanups.
17110 FullExpressionRAII Scope(Info);
17111 if (!EvaluateInPlace(Result&: Value, Info, This: LVal, E: this,
17112 /*AllowNonLiteralTypes=*/true) ||
17113 EStatus.HasSideEffects)
17114 return false;
17115 }
17116
17117 // At this point, any lifetime-extended temporaries are completely
17118 // initialized.
17119 Info.performLifetimeExtension();
17120
17121 if (!Info.discardCleanups())
17122 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
17123 }
17124
17125 return CheckConstantExpression(Info, DiagLoc: DeclLoc, Type: DeclTy, Value,
17126 Kind: ConstantExprKind::Normal) &&
17127 CheckMemoryLeaks(Info);
17128}
17129
17130bool VarDecl::evaluateDestruction(
17131 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
17132 Expr::EvalStatus EStatus;
17133 EStatus.Diag = &Notes;
17134
17135 // Only treat the destruction as constant destruction if we formally have
17136 // constant initialization (or are usable in a constant expression).
17137 bool IsConstantDestruction = hasConstantInitialization();
17138
17139 // Make a copy of the value for the destructor to mutate, if we know it.
17140 // Otherwise, treat the value as default-initialized; if the destructor works
17141 // anyway, then the destruction is constant (and must be essentially empty).
17142 APValue DestroyedValue;
17143 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
17144 DestroyedValue = *getEvaluatedValue();
17145 else if (!handleDefaultInitValue(getType(), DestroyedValue))
17146 return false;
17147
17148 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
17149 getType(), getLocation(), EStatus,
17150 IsConstantDestruction) ||
17151 EStatus.HasSideEffects)
17152 return false;
17153
17154 ensureEvaluatedStmt()->HasConstantDestruction = true;
17155 return true;
17156}
17157
17158/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
17159/// constant folded, but discard the result.
17160bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
17161 assert(!isValueDependent() &&
17162 "Expression evaluator can't be called on a dependent expression.");
17163
17164 EvalResult Result;
17165 return EvaluateAsRValue(Result, Ctx, /* in constant context */ InConstantContext: true) &&
17166 !hasUnacceptableSideEffect(Result, SEK);
17167}
17168
17169APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
17170 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
17171 assert(!isValueDependent() &&
17172 "Expression evaluator can't be called on a dependent expression.");
17173
17174 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt");
17175 EvalResult EVResult;
17176 EVResult.Diag = Diag;
17177 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
17178 Info.InConstantContext = true;
17179
17180 bool Result = ::EvaluateAsRValue(E: this, Result&: EVResult, Ctx, Info);
17181 (void)Result;
17182 assert(Result && "Could not evaluate expression");
17183 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
17184
17185 return EVResult.Val.getInt();
17186}
17187
17188APSInt Expr::EvaluateKnownConstIntCheckOverflow(
17189 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
17190 assert(!isValueDependent() &&
17191 "Expression evaluator can't be called on a dependent expression.");
17192
17193 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow");
17194 EvalResult EVResult;
17195 EVResult.Diag = Diag;
17196 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
17197 Info.InConstantContext = true;
17198 Info.CheckingForUndefinedBehavior = true;
17199
17200 bool Result = ::EvaluateAsRValue(Info, E: this, Result&: EVResult.Val);
17201 (void)Result;
17202 assert(Result && "Could not evaluate expression");
17203 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
17204
17205 return EVResult.Val.getInt();
17206}
17207
17208void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
17209 assert(!isValueDependent() &&
17210 "Expression evaluator can't be called on a dependent expression.");
17211
17212 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow");
17213 bool IsConst;
17214 EvalResult EVResult;
17215 if (!FastEvaluateAsRValue(Exp: this, Result&: EVResult, Ctx, IsConst)) {
17216 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
17217 Info.CheckingForUndefinedBehavior = true;
17218 (void)::EvaluateAsRValue(Info, E: this, Result&: EVResult.Val);
17219 }
17220}
17221
17222bool Expr::EvalResult::isGlobalLValue() const {
17223 assert(Val.isLValue());
17224 return IsGlobalLValue(B: Val.getLValueBase());
17225}
17226
17227/// isIntegerConstantExpr - this recursive routine will test if an expression is
17228/// an integer constant expression.
17229
17230/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
17231/// comma, etc
17232
17233// CheckICE - This function does the fundamental ICE checking: the returned
17234// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
17235// and a (possibly null) SourceLocation indicating the location of the problem.
17236//
17237// Note that to reduce code duplication, this helper does no evaluation
17238// itself; the caller checks whether the expression is evaluatable, and
17239// in the rare cases where CheckICE actually cares about the evaluated
17240// value, it calls into Evaluate.
17241
17242namespace {
17243
17244enum ICEKind {
17245 /// This expression is an ICE.
17246 IK_ICE,
17247 /// This expression is not an ICE, but if it isn't evaluated, it's
17248 /// a legal subexpression for an ICE. This return value is used to handle
17249 /// the comma operator in C99 mode, and non-constant subexpressions.
17250 IK_ICEIfUnevaluated,
17251 /// This expression is not an ICE, and is not a legal subexpression for one.
17252 IK_NotICE
17253};
17254
17255struct ICEDiag {
17256 ICEKind Kind;
17257 SourceLocation Loc;
17258
17259 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
17260};
17261
17262}
17263
17264static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
17265
17266static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
17267
17268static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
17269 Expr::EvalResult EVResult;
17270 Expr::EvalStatus Status;
17271 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
17272
17273 Info.InConstantContext = true;
17274 if (!::EvaluateAsRValue(E, Result&: EVResult, Ctx, Info) || EVResult.HasSideEffects ||
17275 !EVResult.Val.isInt())
17276 return ICEDiag(IK_NotICE, E->getBeginLoc());
17277
17278 return NoDiag();
17279}
17280
17281static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
17282 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
17283 if (!E->getType()->isIntegralOrEnumerationType())
17284 return ICEDiag(IK_NotICE, E->getBeginLoc());
17285
17286 switch (E->getStmtClass()) {
17287#define ABSTRACT_STMT(Node)
17288#define STMT(Node, Base) case Expr::Node##Class:
17289#define EXPR(Node, Base)
17290#include "clang/AST/StmtNodes.inc"
17291 case Expr::PredefinedExprClass:
17292 case Expr::FloatingLiteralClass:
17293 case Expr::ImaginaryLiteralClass:
17294 case Expr::StringLiteralClass:
17295 case Expr::ArraySubscriptExprClass:
17296 case Expr::MatrixSubscriptExprClass:
17297 case Expr::ArraySectionExprClass:
17298 case Expr::OMPArrayShapingExprClass:
17299 case Expr::OMPIteratorExprClass:
17300 case Expr::MemberExprClass:
17301 case Expr::CompoundAssignOperatorClass:
17302 case Expr::CompoundLiteralExprClass:
17303 case Expr::ExtVectorElementExprClass:
17304 case Expr::DesignatedInitExprClass:
17305 case Expr::ArrayInitLoopExprClass:
17306 case Expr::ArrayInitIndexExprClass:
17307 case Expr::NoInitExprClass:
17308 case Expr::DesignatedInitUpdateExprClass:
17309 case Expr::ImplicitValueInitExprClass:
17310 case Expr::ParenListExprClass:
17311 case Expr::VAArgExprClass:
17312 case Expr::AddrLabelExprClass:
17313 case Expr::StmtExprClass:
17314 case Expr::CXXMemberCallExprClass:
17315 case Expr::CUDAKernelCallExprClass:
17316 case Expr::CXXAddrspaceCastExprClass:
17317 case Expr::CXXDynamicCastExprClass:
17318 case Expr::CXXTypeidExprClass:
17319 case Expr::CXXUuidofExprClass:
17320 case Expr::MSPropertyRefExprClass:
17321 case Expr::MSPropertySubscriptExprClass:
17322 case Expr::CXXNullPtrLiteralExprClass:
17323 case Expr::UserDefinedLiteralClass:
17324 case Expr::CXXThisExprClass:
17325 case Expr::CXXThrowExprClass:
17326 case Expr::CXXNewExprClass:
17327 case Expr::CXXDeleteExprClass:
17328 case Expr::CXXPseudoDestructorExprClass:
17329 case Expr::UnresolvedLookupExprClass:
17330 case Expr::TypoExprClass:
17331 case Expr::RecoveryExprClass:
17332 case Expr::DependentScopeDeclRefExprClass:
17333 case Expr::CXXConstructExprClass:
17334 case Expr::CXXInheritedCtorInitExprClass:
17335 case Expr::CXXStdInitializerListExprClass:
17336 case Expr::CXXBindTemporaryExprClass:
17337 case Expr::ExprWithCleanupsClass:
17338 case Expr::CXXTemporaryObjectExprClass:
17339 case Expr::CXXUnresolvedConstructExprClass:
17340 case Expr::CXXDependentScopeMemberExprClass:
17341 case Expr::UnresolvedMemberExprClass:
17342 case Expr::ObjCStringLiteralClass:
17343 case Expr::ObjCBoxedExprClass:
17344 case Expr::ObjCArrayLiteralClass:
17345 case Expr::ObjCDictionaryLiteralClass:
17346 case Expr::ObjCEncodeExprClass:
17347 case Expr::ObjCMessageExprClass:
17348 case Expr::ObjCSelectorExprClass:
17349 case Expr::ObjCProtocolExprClass:
17350 case Expr::ObjCIvarRefExprClass:
17351 case Expr::ObjCPropertyRefExprClass:
17352 case Expr::ObjCSubscriptRefExprClass:
17353 case Expr::ObjCIsaExprClass:
17354 case Expr::ObjCAvailabilityCheckExprClass:
17355 case Expr::ShuffleVectorExprClass:
17356 case Expr::ConvertVectorExprClass:
17357 case Expr::BlockExprClass:
17358 case Expr::NoStmtClass:
17359 case Expr::OpaqueValueExprClass:
17360 case Expr::PackExpansionExprClass:
17361 case Expr::SubstNonTypeTemplateParmPackExprClass:
17362 case Expr::FunctionParmPackExprClass:
17363 case Expr::AsTypeExprClass:
17364 case Expr::ObjCIndirectCopyRestoreExprClass:
17365 case Expr::MaterializeTemporaryExprClass:
17366 case Expr::PseudoObjectExprClass:
17367 case Expr::AtomicExprClass:
17368 case Expr::LambdaExprClass:
17369 case Expr::CXXFoldExprClass:
17370 case Expr::CoawaitExprClass:
17371 case Expr::DependentCoawaitExprClass:
17372 case Expr::CoyieldExprClass:
17373 case Expr::SYCLUniqueStableNameExprClass:
17374 case Expr::CXXParenListInitExprClass:
17375 case Expr::HLSLOutArgExprClass:
17376 return ICEDiag(IK_NotICE, E->getBeginLoc());
17377
17378 case Expr::InitListExprClass: {
17379 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
17380 // form "T x = { a };" is equivalent to "T x = a;".
17381 // Unless we're initializing a reference, T is a scalar as it is known to be
17382 // of integral or enumeration type.
17383 if (E->isPRValue())
17384 if (cast<InitListExpr>(E)->getNumInits() == 1)
17385 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
17386 return ICEDiag(IK_NotICE, E->getBeginLoc());
17387 }
17388
17389 case Expr::SizeOfPackExprClass:
17390 case Expr::GNUNullExprClass:
17391 case Expr::SourceLocExprClass:
17392 case Expr::EmbedExprClass:
17393 case Expr::OpenACCAsteriskSizeExprClass:
17394 return NoDiag();
17395
17396 case Expr::PackIndexingExprClass:
17397 return CheckICE(cast<PackIndexingExpr>(E)->getSelectedExpr(), Ctx);
17398
17399 case Expr::SubstNonTypeTemplateParmExprClass:
17400 return
17401 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
17402
17403 case Expr::ConstantExprClass:
17404 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
17405
17406 case Expr::ParenExprClass:
17407 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
17408 case Expr::GenericSelectionExprClass:
17409 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
17410 case Expr::IntegerLiteralClass:
17411 case Expr::FixedPointLiteralClass:
17412 case Expr::CharacterLiteralClass:
17413 case Expr::ObjCBoolLiteralExprClass:
17414 case Expr::CXXBoolLiteralExprClass:
17415 case Expr::CXXScalarValueInitExprClass:
17416 case Expr::TypeTraitExprClass:
17417 case Expr::ConceptSpecializationExprClass:
17418 case Expr::RequiresExprClass:
17419 case Expr::ArrayTypeTraitExprClass:
17420 case Expr::ExpressionTraitExprClass:
17421 case Expr::CXXNoexceptExprClass:
17422 return NoDiag();
17423 case Expr::CallExprClass:
17424 case Expr::CXXOperatorCallExprClass: {
17425 // C99 6.6/3 allows function calls within unevaluated subexpressions of
17426 // constant expressions, but they can never be ICEs because an ICE cannot
17427 // contain an operand of (pointer to) function type.
17428 const CallExpr *CE = cast<CallExpr>(E);
17429 if (CE->getBuiltinCallee())
17430 return CheckEvalInICE(E, Ctx);
17431 return ICEDiag(IK_NotICE, E->getBeginLoc());
17432 }
17433 case Expr::CXXRewrittenBinaryOperatorClass:
17434 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
17435 Ctx);
17436 case Expr::DeclRefExprClass: {
17437 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
17438 if (isa<EnumConstantDecl>(D))
17439 return NoDiag();
17440
17441 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
17442 // integer variables in constant expressions:
17443 //
17444 // C++ 7.1.5.1p2
17445 // A variable of non-volatile const-qualified integral or enumeration
17446 // type initialized by an ICE can be used in ICEs.
17447 //
17448 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
17449 // that mode, use of reference variables should not be allowed.
17450 const VarDecl *VD = dyn_cast<VarDecl>(D);
17451 if (VD && VD->isUsableInConstantExpressions(C: Ctx) &&
17452 !VD->getType()->isReferenceType())
17453 return NoDiag();
17454
17455 return ICEDiag(IK_NotICE, E->getBeginLoc());
17456 }
17457 case Expr::UnaryOperatorClass: {
17458 const UnaryOperator *Exp = cast<UnaryOperator>(E);
17459 switch (Exp->getOpcode()) {
17460 case UO_PostInc:
17461 case UO_PostDec:
17462 case UO_PreInc:
17463 case UO_PreDec:
17464 case UO_AddrOf:
17465 case UO_Deref:
17466 case UO_Coawait:
17467 // C99 6.6/3 allows increment and decrement within unevaluated
17468 // subexpressions of constant expressions, but they can never be ICEs
17469 // because an ICE cannot contain an lvalue operand.
17470 return ICEDiag(IK_NotICE, E->getBeginLoc());
17471 case UO_Extension:
17472 case UO_LNot:
17473 case UO_Plus:
17474 case UO_Minus:
17475 case UO_Not:
17476 case UO_Real:
17477 case UO_Imag:
17478 return CheckICE(E: Exp->getSubExpr(), Ctx);
17479 }
17480 llvm_unreachable("invalid unary operator class");
17481 }
17482 case Expr::OffsetOfExprClass: {
17483 // Note that per C99, offsetof must be an ICE. And AFAIK, using
17484 // EvaluateAsRValue matches the proposed gcc behavior for cases like
17485 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
17486 // compliance: we should warn earlier for offsetof expressions with
17487 // array subscripts that aren't ICEs, and if the array subscripts
17488 // are ICEs, the value of the offsetof must be an integer constant.
17489 return CheckEvalInICE(E, Ctx);
17490 }
17491 case Expr::UnaryExprOrTypeTraitExprClass: {
17492 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
17493 if ((Exp->getKind() == UETT_SizeOf) &&
17494 Exp->getTypeOfArgument()->isVariableArrayType())
17495 return ICEDiag(IK_NotICE, E->getBeginLoc());
17496 if (Exp->getKind() == UETT_CountOf) {
17497 QualType ArgTy = Exp->getTypeOfArgument();
17498 if (ArgTy->isVariableArrayType()) {
17499 // We need to look whether the array is multidimensional. If it is,
17500 // then we want to check the size expression manually to see whether
17501 // it is an ICE or not.
17502 const auto *VAT = Ctx.getAsVariableArrayType(T: ArgTy);
17503 if (VAT->getElementType()->isArrayType())
17504 return CheckICE(VAT->getSizeExpr(), Ctx);
17505
17506 // Otherwise, this is a regular VLA, which is definitely not an ICE.
17507 return ICEDiag(IK_NotICE, E->getBeginLoc());
17508 }
17509 }
17510 return NoDiag();
17511 }
17512 case Expr::BinaryOperatorClass: {
17513 const BinaryOperator *Exp = cast<BinaryOperator>(E);
17514 switch (Exp->getOpcode()) {
17515 case BO_PtrMemD:
17516 case BO_PtrMemI:
17517 case BO_Assign:
17518 case BO_MulAssign:
17519 case BO_DivAssign:
17520 case BO_RemAssign:
17521 case BO_AddAssign:
17522 case BO_SubAssign:
17523 case BO_ShlAssign:
17524 case BO_ShrAssign:
17525 case BO_AndAssign:
17526 case BO_XorAssign:
17527 case BO_OrAssign:
17528 // C99 6.6/3 allows assignments within unevaluated subexpressions of
17529 // constant expressions, but they can never be ICEs because an ICE cannot
17530 // contain an lvalue operand.
17531 return ICEDiag(IK_NotICE, E->getBeginLoc());
17532
17533 case BO_Mul:
17534 case BO_Div:
17535 case BO_Rem:
17536 case BO_Add:
17537 case BO_Sub:
17538 case BO_Shl:
17539 case BO_Shr:
17540 case BO_LT:
17541 case BO_GT:
17542 case BO_LE:
17543 case BO_GE:
17544 case BO_EQ:
17545 case BO_NE:
17546 case BO_And:
17547 case BO_Xor:
17548 case BO_Or:
17549 case BO_Comma:
17550 case BO_Cmp: {
17551 ICEDiag LHSResult = CheckICE(E: Exp->getLHS(), Ctx);
17552 ICEDiag RHSResult = CheckICE(E: Exp->getRHS(), Ctx);
17553 if (Exp->getOpcode() == BO_Div ||
17554 Exp->getOpcode() == BO_Rem) {
17555 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
17556 // we don't evaluate one.
17557 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
17558 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
17559 if (REval == 0)
17560 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
17561 if (REval.isSigned() && REval.isAllOnes()) {
17562 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
17563 if (LEval.isMinSignedValue())
17564 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
17565 }
17566 }
17567 }
17568 if (Exp->getOpcode() == BO_Comma) {
17569 if (Ctx.getLangOpts().C99) {
17570 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
17571 // if it isn't evaluated.
17572 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
17573 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
17574 } else {
17575 // In both C89 and C++, commas in ICEs are illegal.
17576 return ICEDiag(IK_NotICE, E->getBeginLoc());
17577 }
17578 }
17579 return Worst(A: LHSResult, B: RHSResult);
17580 }
17581 case BO_LAnd:
17582 case BO_LOr: {
17583 ICEDiag LHSResult = CheckICE(E: Exp->getLHS(), Ctx);
17584 ICEDiag RHSResult = CheckICE(E: Exp->getRHS(), Ctx);
17585 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
17586 // Rare case where the RHS has a comma "side-effect"; we need
17587 // to actually check the condition to see whether the side
17588 // with the comma is evaluated.
17589 if ((Exp->getOpcode() == BO_LAnd) !=
17590 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
17591 return RHSResult;
17592 return NoDiag();
17593 }
17594
17595 return Worst(A: LHSResult, B: RHSResult);
17596 }
17597 }
17598 llvm_unreachable("invalid binary operator kind");
17599 }
17600 case Expr::ImplicitCastExprClass:
17601 case Expr::CStyleCastExprClass:
17602 case Expr::CXXFunctionalCastExprClass:
17603 case Expr::CXXStaticCastExprClass:
17604 case Expr::CXXReinterpretCastExprClass:
17605 case Expr::CXXConstCastExprClass:
17606 case Expr::ObjCBridgedCastExprClass: {
17607 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
17608 if (isa<ExplicitCastExpr>(E)) {
17609 if (const FloatingLiteral *FL
17610 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
17611 unsigned DestWidth = Ctx.getIntWidth(T: E->getType());
17612 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
17613 APSInt IgnoredVal(DestWidth, !DestSigned);
17614 bool Ignored;
17615 // If the value does not fit in the destination type, the behavior is
17616 // undefined, so we are not required to treat it as a constant
17617 // expression.
17618 if (FL->getValue().convertToInteger(Result&: IgnoredVal,
17619 RM: llvm::APFloat::rmTowardZero,
17620 IsExact: &Ignored) & APFloat::opInvalidOp)
17621 return ICEDiag(IK_NotICE, E->getBeginLoc());
17622 return NoDiag();
17623 }
17624 }
17625 switch (cast<CastExpr>(E)->getCastKind()) {
17626 case CK_LValueToRValue:
17627 case CK_AtomicToNonAtomic:
17628 case CK_NonAtomicToAtomic:
17629 case CK_NoOp:
17630 case CK_IntegralToBoolean:
17631 case CK_IntegralCast:
17632 return CheckICE(E: SubExpr, Ctx);
17633 default:
17634 return ICEDiag(IK_NotICE, E->getBeginLoc());
17635 }
17636 }
17637 case Expr::BinaryConditionalOperatorClass: {
17638 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
17639 ICEDiag CommonResult = CheckICE(E: Exp->getCommon(), Ctx);
17640 if (CommonResult.Kind == IK_NotICE) return CommonResult;
17641 ICEDiag FalseResult = CheckICE(E: Exp->getFalseExpr(), Ctx);
17642 if (FalseResult.Kind == IK_NotICE) return FalseResult;
17643 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
17644 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
17645 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
17646 return FalseResult;
17647 }
17648 case Expr::ConditionalOperatorClass: {
17649 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
17650 // If the condition (ignoring parens) is a __builtin_constant_p call,
17651 // then only the true side is actually considered in an integer constant
17652 // expression, and it is fully evaluated. This is an important GNU
17653 // extension. See GCC PR38377 for discussion.
17654 if (const CallExpr *CallCE
17655 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
17656 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
17657 return CheckEvalInICE(E, Ctx);
17658 ICEDiag CondResult = CheckICE(E: Exp->getCond(), Ctx);
17659 if (CondResult.Kind == IK_NotICE)
17660 return CondResult;
17661
17662 ICEDiag TrueResult = CheckICE(E: Exp->getTrueExpr(), Ctx);
17663 ICEDiag FalseResult = CheckICE(E: Exp->getFalseExpr(), Ctx);
17664
17665 if (TrueResult.Kind == IK_NotICE)
17666 return TrueResult;
17667 if (FalseResult.Kind == IK_NotICE)
17668 return FalseResult;
17669 if (CondResult.Kind == IK_ICEIfUnevaluated)
17670 return CondResult;
17671 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
17672 return NoDiag();
17673 // Rare case where the diagnostics depend on which side is evaluated
17674 // Note that if we get here, CondResult is 0, and at least one of
17675 // TrueResult and FalseResult is non-zero.
17676 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
17677 return FalseResult;
17678 return TrueResult;
17679 }
17680 case Expr::CXXDefaultArgExprClass:
17681 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
17682 case Expr::CXXDefaultInitExprClass:
17683 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
17684 case Expr::ChooseExprClass: {
17685 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
17686 }
17687 case Expr::BuiltinBitCastExprClass: {
17688 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
17689 return ICEDiag(IK_NotICE, E->getBeginLoc());
17690 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
17691 }
17692 }
17693
17694 llvm_unreachable("Invalid StmtClass!");
17695}
17696
17697/// Evaluate an expression as a C++11 integral constant expression.
17698static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
17699 const Expr *E,
17700 llvm::APSInt *Value,
17701 SourceLocation *Loc) {
17702 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17703 if (Loc) *Loc = E->getExprLoc();
17704 return false;
17705 }
17706
17707 APValue Result;
17708 if (!E->isCXX11ConstantExpr(Ctx, Result: &Result, Loc))
17709 return false;
17710
17711 if (!Result.isInt()) {
17712 if (Loc) *Loc = E->getExprLoc();
17713 return false;
17714 }
17715
17716 if (Value) *Value = Result.getInt();
17717 return true;
17718}
17719
17720bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
17721 SourceLocation *Loc) const {
17722 assert(!isValueDependent() &&
17723 "Expression evaluator can't be called on a dependent expression.");
17724
17725 ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr");
17726
17727 if (Ctx.getLangOpts().CPlusPlus11)
17728 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, E: this, Value: nullptr, Loc);
17729
17730 ICEDiag D = CheckICE(E: this, Ctx);
17731 if (D.Kind != IK_ICE) {
17732 if (Loc) *Loc = D.Loc;
17733 return false;
17734 }
17735 return true;
17736}
17737
17738std::optional<llvm::APSInt>
17739Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc) const {
17740 if (isValueDependent()) {
17741 // Expression evaluator can't succeed on a dependent expression.
17742 return std::nullopt;
17743 }
17744
17745 APSInt Value;
17746
17747 if (Ctx.getLangOpts().CPlusPlus11) {
17748 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, E: this, Value: &Value, Loc))
17749 return Value;
17750 return std::nullopt;
17751 }
17752
17753 if (!isIntegerConstantExpr(Ctx, Loc))
17754 return std::nullopt;
17755
17756 // The only possible side-effects here are due to UB discovered in the
17757 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
17758 // required to treat the expression as an ICE, so we produce the folded
17759 // value.
17760 EvalResult ExprResult;
17761 Expr::EvalStatus Status;
17762 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
17763 Info.InConstantContext = true;
17764
17765 if (!::EvaluateAsInt(E: this, ExprResult, Ctx, AllowSideEffects: SE_AllowSideEffects, Info))
17766 llvm_unreachable("ICE cannot be evaluated!");
17767
17768 return ExprResult.Val.getInt();
17769}
17770
17771bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
17772 assert(!isValueDependent() &&
17773 "Expression evaluator can't be called on a dependent expression.");
17774
17775 return CheckICE(E: this, Ctx).Kind == IK_ICE;
17776}
17777
17778bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
17779 SourceLocation *Loc) const {
17780 assert(!isValueDependent() &&
17781 "Expression evaluator can't be called on a dependent expression.");
17782
17783 // We support this checking in C++98 mode in order to diagnose compatibility
17784 // issues.
17785 assert(Ctx.getLangOpts().CPlusPlus);
17786
17787 // Build evaluation settings.
17788 Expr::EvalStatus Status;
17789 SmallVector<PartialDiagnosticAt, 8> Diags;
17790 Status.Diag = &Diags;
17791 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
17792
17793 APValue Scratch;
17794 bool IsConstExpr =
17795 ::EvaluateAsRValue(Info, E: this, Result&: Result ? *Result : Scratch) &&
17796 // FIXME: We don't produce a diagnostic for this, but the callers that
17797 // call us on arbitrary full-expressions should generally not care.
17798 Info.discardCleanups() && !Status.HasSideEffects;
17799
17800 if (!Diags.empty()) {
17801 IsConstExpr = false;
17802 if (Loc) *Loc = Diags[0].first;
17803 } else if (!IsConstExpr) {
17804 // FIXME: This shouldn't happen.
17805 if (Loc) *Loc = getExprLoc();
17806 }
17807
17808 return IsConstExpr;
17809}
17810
17811bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
17812 const FunctionDecl *Callee,
17813 ArrayRef<const Expr*> Args,
17814 const Expr *This) const {
17815 assert(!isValueDependent() &&
17816 "Expression evaluator can't be called on a dependent expression.");
17817
17818 llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] {
17819 std::string Name;
17820 llvm::raw_string_ostream OS(Name);
17821 Callee->getNameForDiagnostic(OS, Policy: Ctx.getPrintingPolicy(),
17822 /*Qualified=*/true);
17823 return Name;
17824 });
17825
17826 Expr::EvalStatus Status;
17827 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
17828 Info.InConstantContext = true;
17829
17830 LValue ThisVal;
17831 const LValue *ThisPtr = nullptr;
17832 if (This) {
17833#ifndef NDEBUG
17834 auto *MD = dyn_cast<CXXMethodDecl>(Val: Callee);
17835 assert(MD && "Don't provide `this` for non-methods.");
17836 assert(MD->isImplicitObjectMemberFunction() &&
17837 "Don't provide `this` for methods without an implicit object.");
17838#endif
17839 if (!This->isValueDependent() &&
17840 EvaluateObjectArgument(Info, Object: This, This&: ThisVal) &&
17841 !Info.EvalStatus.HasSideEffects)
17842 ThisPtr = &ThisVal;
17843
17844 // Ignore any side-effects from a failed evaluation. This is safe because
17845 // they can't interfere with any other argument evaluation.
17846 Info.EvalStatus.HasSideEffects = false;
17847 }
17848
17849 CallRef Call = Info.CurrentCall->createCall(Callee);
17850 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
17851 I != E; ++I) {
17852 unsigned Idx = I - Args.begin();
17853 if (Idx >= Callee->getNumParams())
17854 break;
17855 const ParmVarDecl *PVD = Callee->getParamDecl(i: Idx);
17856 if ((*I)->isValueDependent() ||
17857 !EvaluateCallArg(PVD, Arg: *I, Call, Info) ||
17858 Info.EvalStatus.HasSideEffects) {
17859 // If evaluation fails, throw away the argument entirely.
17860 if (APValue *Slot = Info.getParamSlot(Call, PVD))
17861 *Slot = APValue();
17862 }
17863
17864 // Ignore any side-effects from a failed evaluation. This is safe because
17865 // they can't interfere with any other argument evaluation.
17866 Info.EvalStatus.HasSideEffects = false;
17867 }
17868
17869 // Parameter cleanups happen in the caller and are not part of this
17870 // evaluation.
17871 Info.discardCleanups();
17872 Info.EvalStatus.HasSideEffects = false;
17873
17874 // Build fake call to Callee.
17875 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This,
17876 Call);
17877 // FIXME: Missing ExprWithCleanups in enable_if conditions?
17878 FullExpressionRAII Scope(Info);
17879 return Evaluate(Result&: Value, Info, E: this) && Scope.destroy() &&
17880 !Info.EvalStatus.HasSideEffects;
17881}
17882
17883bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
17884 SmallVectorImpl<
17885 PartialDiagnosticAt> &Diags) {
17886 // FIXME: It would be useful to check constexpr function templates, but at the
17887 // moment the constant expression evaluator cannot cope with the non-rigorous
17888 // ASTs which we build for dependent expressions.
17889 if (FD->isDependentContext())
17890 return true;
17891
17892 llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] {
17893 std::string Name;
17894 llvm::raw_string_ostream OS(Name);
17895 FD->getNameForDiagnostic(OS, Policy: FD->getASTContext().getPrintingPolicy(),
17896 /*Qualified=*/true);
17897 return Name;
17898 });
17899
17900 Expr::EvalStatus Status;
17901 Status.Diag = &Diags;
17902
17903 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
17904 Info.InConstantContext = true;
17905 Info.CheckingPotentialConstantExpression = true;
17906
17907 // The constexpr VM attempts to compile all methods to bytecode here.
17908 if (Info.EnableNewConstInterp) {
17909 Info.Ctx.getInterpContext().isPotentialConstantExpr(Parent&: Info, FnDecl: FD);
17910 return Diags.empty();
17911 }
17912
17913 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD);
17914 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
17915
17916 // Fabricate an arbitrary expression on the stack and pretend that it
17917 // is a temporary being used as the 'this' pointer.
17918 LValue This;
17919 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
17920 This.set({&VIE, Info.CurrentCall->Index});
17921
17922 ArrayRef<const Expr*> Args;
17923
17924 APValue Scratch;
17925 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: FD)) {
17926 // Evaluate the call as a constant initializer, to allow the construction
17927 // of objects of non-literal types.
17928 Info.setEvaluatingDecl(Base: This.getLValueBase(), Value&: Scratch);
17929 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
17930 } else {
17931 SourceLocation Loc = FD->getLocation();
17932 HandleFunctionCall(
17933 Loc, FD, (MD && MD->isImplicitObjectMemberFunction()) ? &This : nullptr,
17934 &VIE, Args, CallRef(), FD->getBody(), Info, Scratch,
17935 /*ResultSlot=*/nullptr);
17936 }
17937
17938 return Diags.empty();
17939}
17940
17941bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
17942 const FunctionDecl *FD,
17943 SmallVectorImpl<
17944 PartialDiagnosticAt> &Diags) {
17945 assert(!E->isValueDependent() &&
17946 "Expression evaluator can't be called on a dependent expression.");
17947
17948 Expr::EvalStatus Status;
17949 Status.Diag = &Diags;
17950
17951 EvalInfo Info(FD->getASTContext(), Status,
17952 EvalInfo::EM_ConstantExpressionUnevaluated);
17953 Info.InConstantContext = true;
17954 Info.CheckingPotentialConstantExpression = true;
17955
17956 // Fabricate a call stack frame to give the arguments a plausible cover story.
17957 CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr,
17958 /*CallExpr=*/nullptr, CallRef());
17959
17960 APValue ResultScratch;
17961 Evaluate(Result&: ResultScratch, Info, E);
17962 return Diags.empty();
17963}
17964
17965bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
17966 unsigned Type) const {
17967 if (!getType()->isPointerType())
17968 return false;
17969
17970 Expr::EvalStatus Status;
17971 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
17972 return tryEvaluateBuiltinObjectSize(E: this, Type, Info, Size&: Result);
17973}
17974
17975static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
17976 EvalInfo &Info, std::string *StringResult) {
17977 if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
17978 return false;
17979
17980 LValue String;
17981
17982 if (!EvaluatePointer(E, Result&: String, Info))
17983 return false;
17984
17985 QualType CharTy = E->getType()->getPointeeType();
17986
17987 // Fast path: if it's a string literal, search the string value.
17988 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
17989 Val: String.getLValueBase().dyn_cast<const Expr *>())) {
17990 StringRef Str = S->getBytes();
17991 int64_t Off = String.Offset.getQuantity();
17992 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
17993 S->getCharByteWidth() == 1 &&
17994 // FIXME: Add fast-path for wchar_t too.
17995 Info.Ctx.hasSameUnqualifiedType(T1: CharTy, T2: Info.Ctx.CharTy)) {
17996 Str = Str.substr(Start: Off);
17997
17998 StringRef::size_type Pos = Str.find(C: 0);
17999 if (Pos != StringRef::npos)
18000 Str = Str.substr(Start: 0, N: Pos);
18001
18002 Result = Str.size();
18003 if (StringResult)
18004 *StringResult = Str;
18005 return true;
18006 }
18007
18008 // Fall through to slow path.
18009 }
18010
18011 // Slow path: scan the bytes of the string looking for the terminating 0.
18012 for (uint64_t Strlen = 0; /**/; ++Strlen) {
18013 APValue Char;
18014 if (!handleLValueToRValueConversion(Info, Conv: E, Type: CharTy, LVal: String, RVal&: Char) ||
18015 !Char.isInt())
18016 return false;
18017 if (!Char.getInt()) {
18018 Result = Strlen;
18019 return true;
18020 } else if (StringResult)
18021 StringResult->push_back(c: Char.getInt().getExtValue());
18022 if (!HandleLValueArrayAdjustment(Info, E, LVal&: String, EltTy: CharTy, Adjustment: 1))
18023 return false;
18024 }
18025}
18026
18027std::optional<std::string> Expr::tryEvaluateString(ASTContext &Ctx) const {
18028 Expr::EvalStatus Status;
18029 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
18030 uint64_t Result;
18031 std::string StringResult;
18032
18033 if (EvaluateBuiltinStrLen(E: this, Result, Info, StringResult: &StringResult))
18034 return StringResult;
18035 return {};
18036}
18037
18038template <typename T>
18039static bool EvaluateCharRangeAsStringImpl(const Expr *, T &Result,
18040 const Expr *SizeExpression,
18041 const Expr *PtrExpression,
18042 ASTContext &Ctx,
18043 Expr::EvalResult &Status) {
18044 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
18045 Info.InConstantContext = true;
18046
18047 if (Info.EnableNewConstInterp)
18048 return Info.Ctx.getInterpContext().evaluateCharRange(Info, SizeExpression,
18049 PtrExpression, Result);
18050
18051 LValue String;
18052 FullExpressionRAII Scope(Info);
18053 APSInt SizeValue;
18054 if (!::EvaluateInteger(E: SizeExpression, Result&: SizeValue, Info))
18055 return false;
18056
18057 uint64_t Size = SizeValue.getZExtValue();
18058
18059 // FIXME: better protect against invalid or excessive sizes
18060 if constexpr (std::is_same_v<APValue, T>)
18061 Result = APValue(APValue::UninitArray{}, Size, Size);
18062 else {
18063 if (Size < Result.max_size())
18064 Result.reserve(Size);
18065 }
18066 if (!::EvaluatePointer(E: PtrExpression, Result&: String, Info))
18067 return false;
18068
18069 QualType CharTy = PtrExpression->getType()->getPointeeType();
18070 for (uint64_t I = 0; I < Size; ++I) {
18071 APValue Char;
18072 if (!handleLValueToRValueConversion(Info, Conv: PtrExpression, Type: CharTy, LVal: String,
18073 RVal&: Char))
18074 return false;
18075
18076 if constexpr (std::is_same_v<APValue, T>) {
18077 Result.getArrayInitializedElt(I) = std::move(Char);
18078 } else {
18079 APSInt C = Char.getInt();
18080
18081 assert(C.getBitWidth() <= 8 &&
18082 "string element not representable in char");
18083
18084 Result.push_back(static_cast<char>(C.getExtValue()));
18085 }
18086
18087 if (!HandleLValueArrayAdjustment(Info, E: PtrExpression, LVal&: String, EltTy: CharTy, Adjustment: 1))
18088 return false;
18089 }
18090
18091 return Scope.destroy() && CheckMemoryLeaks(Info);
18092}
18093
18094bool Expr::EvaluateCharRangeAsString(std::string &Result,
18095 const Expr *SizeExpression,
18096 const Expr *PtrExpression, ASTContext &Ctx,
18097 EvalResult &Status) const {
18098 return EvaluateCharRangeAsStringImpl(this, Result, SizeExpression,
18099 PtrExpression, Ctx, Status);
18100}
18101
18102bool Expr::EvaluateCharRangeAsString(APValue &Result,
18103 const Expr *SizeExpression,
18104 const Expr *PtrExpression, ASTContext &Ctx,
18105 EvalResult &Status) const {
18106 return EvaluateCharRangeAsStringImpl(this, Result, SizeExpression,
18107 PtrExpression, Ctx, Status);
18108}
18109
18110bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
18111 Expr::EvalStatus Status;
18112 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
18113 return EvaluateBuiltinStrLen(E: this, Result, Info);
18114}
18115
18116namespace {
18117struct IsWithinLifetimeHandler {
18118 EvalInfo &Info;
18119 static constexpr AccessKinds AccessKind = AccessKinds::AK_IsWithinLifetime;
18120 using result_type = std::optional<bool>;
18121 std::optional<bool> failed() { return std::nullopt; }
18122 template <typename T>
18123 std::optional<bool> found(T &Subobj, QualType SubobjType) {
18124 return true;
18125 }
18126};
18127
18128std::optional<bool> EvaluateBuiltinIsWithinLifetime(IntExprEvaluator &IEE,
18129 const CallExpr *E) {
18130 EvalInfo &Info = IEE.Info;
18131 // Sometimes this is called during some sorts of constant folding / early
18132 // evaluation. These are meant for non-constant expressions and are not
18133 // necessary since this consteval builtin will never be evaluated at runtime.
18134 // Just fail to evaluate when not in a constant context.
18135 if (!Info.InConstantContext)
18136 return std::nullopt;
18137 assert(E->getBuiltinCallee() == Builtin::BI__builtin_is_within_lifetime);
18138 const Expr *Arg = E->getArg(Arg: 0);
18139 if (Arg->isValueDependent())
18140 return std::nullopt;
18141 LValue Val;
18142 if (!EvaluatePointer(E: Arg, Result&: Val, Info))
18143 return std::nullopt;
18144
18145 if (Val.allowConstexprUnknown())
18146 return true;
18147
18148 auto Error = [&](int Diag) {
18149 bool CalledFromStd = false;
18150 const auto *Callee = Info.CurrentCall->getCallee();
18151 if (Callee && Callee->isInStdNamespace()) {
18152 const IdentifierInfo *Identifier = Callee->getIdentifier();
18153 CalledFromStd = Identifier && Identifier->isStr(Str: "is_within_lifetime");
18154 }
18155 Info.CCEDiag(CalledFromStd ? Info.CurrentCall->getCallRange().getBegin()
18156 : E->getExprLoc(),
18157 diag::err_invalid_is_within_lifetime)
18158 << (CalledFromStd ? "std::is_within_lifetime"
18159 : "__builtin_is_within_lifetime")
18160 << Diag;
18161 return std::nullopt;
18162 };
18163 // C++2c [meta.const.eval]p4:
18164 // During the evaluation of an expression E as a core constant expression, a
18165 // call to this function is ill-formed unless p points to an object that is
18166 // usable in constant expressions or whose complete object's lifetime began
18167 // within E.
18168
18169 // Make sure it points to an object
18170 // nullptr does not point to an object
18171 if (Val.isNullPointer() || Val.getLValueBase().isNull())
18172 return Error(0);
18173 QualType T = Val.getLValueBase().getType();
18174 assert(!T->isFunctionType() &&
18175 "Pointers to functions should have been typed as function pointers "
18176 "which would have been rejected earlier");
18177 assert(T->isObjectType());
18178 // Hypothetical array element is not an object
18179 if (Val.getLValueDesignator().isOnePastTheEnd())
18180 return Error(1);
18181 assert(Val.getLValueDesignator().isValidSubobject() &&
18182 "Unchecked case for valid subobject");
18183 // All other ill-formed values should have failed EvaluatePointer, so the
18184 // object should be a pointer to an object that is usable in a constant
18185 // expression or whose complete lifetime began within the expression
18186 CompleteObject CO =
18187 findCompleteObject(Info, E, AccessKinds::AK_IsWithinLifetime, Val, T);
18188 // The lifetime hasn't begun yet if we are still evaluating the
18189 // initializer ([basic.life]p(1.2))
18190 if (Info.EvaluatingDeclValue && CO.Value == Info.EvaluatingDeclValue)
18191 return Error(2);
18192
18193 if (!CO)
18194 return false;
18195 IsWithinLifetimeHandler handler{.Info: Info};
18196 return findSubobject(Info, E, CO, Val.getLValueDesignator(), handler);
18197}
18198} // namespace
18199

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of clang/lib/AST/ExprConstant.cpp