1 | //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Implements C++ name mangling according to the Itanium C++ ABI, |
10 | // which is used in GCC 3.2 and newer (and many compilers that are |
11 | // ABI-compatible with GCC): |
12 | // |
13 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "clang/AST/ASTContext.h" |
18 | #include "clang/AST/Attr.h" |
19 | #include "clang/AST/Decl.h" |
20 | #include "clang/AST/DeclCXX.h" |
21 | #include "clang/AST/DeclObjC.h" |
22 | #include "clang/AST/DeclOpenMP.h" |
23 | #include "clang/AST/DeclTemplate.h" |
24 | #include "clang/AST/Expr.h" |
25 | #include "clang/AST/ExprCXX.h" |
26 | #include "clang/AST/ExprConcepts.h" |
27 | #include "clang/AST/ExprObjC.h" |
28 | #include "clang/AST/Mangle.h" |
29 | #include "clang/AST/TypeLoc.h" |
30 | #include "clang/Basic/ABI.h" |
31 | #include "clang/Basic/Module.h" |
32 | #include "clang/Basic/TargetInfo.h" |
33 | #include "clang/Basic/Thunk.h" |
34 | #include "llvm/ADT/StringExtras.h" |
35 | #include "llvm/Support/ErrorHandling.h" |
36 | #include "llvm/Support/raw_ostream.h" |
37 | #include "llvm/TargetParser/RISCVTargetParser.h" |
38 | #include <optional> |
39 | |
40 | using namespace clang; |
41 | |
42 | namespace { |
43 | |
44 | static bool isLocalContainerContext(const DeclContext *DC) { |
45 | return isa<FunctionDecl>(Val: DC) || isa<ObjCMethodDecl>(Val: DC) || isa<BlockDecl>(Val: DC); |
46 | } |
47 | |
48 | static const FunctionDecl *getStructor(const FunctionDecl *fn) { |
49 | if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) |
50 | return ftd->getTemplatedDecl(); |
51 | |
52 | return fn; |
53 | } |
54 | |
55 | static const NamedDecl *getStructor(const NamedDecl *decl) { |
56 | const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(Val: decl); |
57 | return (fn ? getStructor(fn) : decl); |
58 | } |
59 | |
60 | static bool isLambda(const NamedDecl *ND) { |
61 | const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: ND); |
62 | if (!Record) |
63 | return false; |
64 | |
65 | return Record->isLambda(); |
66 | } |
67 | |
68 | static const unsigned UnknownArity = ~0U; |
69 | |
70 | class ItaniumMangleContextImpl : public ItaniumMangleContext { |
71 | typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; |
72 | llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; |
73 | llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; |
74 | const DiscriminatorOverrideTy DiscriminatorOverride = nullptr; |
75 | NamespaceDecl *StdNamespace = nullptr; |
76 | |
77 | bool NeedsUniqueInternalLinkageNames = false; |
78 | |
79 | public: |
80 | explicit ItaniumMangleContextImpl( |
81 | ASTContext &Context, DiagnosticsEngine &Diags, |
82 | DiscriminatorOverrideTy DiscriminatorOverride, bool IsAux = false) |
83 | : ItaniumMangleContext(Context, Diags, IsAux), |
84 | DiscriminatorOverride(DiscriminatorOverride) {} |
85 | |
86 | /// @name Mangler Entry Points |
87 | /// @{ |
88 | |
89 | bool shouldMangleCXXName(const NamedDecl *D) override; |
90 | bool shouldMangleStringLiteral(const StringLiteral *) override { |
91 | return false; |
92 | } |
93 | |
94 | bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override; |
95 | void needsUniqueInternalLinkageNames() override { |
96 | NeedsUniqueInternalLinkageNames = true; |
97 | } |
98 | |
99 | void mangleCXXName(GlobalDecl GD, raw_ostream &) override; |
100 | void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, bool, |
101 | raw_ostream &) override; |
102 | void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, |
103 | const ThunkInfo &Thunk, bool, raw_ostream &) override; |
104 | void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, |
105 | raw_ostream &) override; |
106 | void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; |
107 | void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; |
108 | void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, |
109 | const CXXRecordDecl *Type, raw_ostream &) override; |
110 | void mangleCXXRTTI(QualType T, raw_ostream &) override; |
111 | void mangleCXXRTTIName(QualType T, raw_ostream &, |
112 | bool NormalizeIntegers) override; |
113 | void mangleCanonicalTypeName(QualType T, raw_ostream &, |
114 | bool NormalizeIntegers) override; |
115 | |
116 | void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; |
117 | void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; |
118 | void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; |
119 | void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; |
120 | void mangleDynamicAtExitDestructor(const VarDecl *D, |
121 | raw_ostream &Out) override; |
122 | void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override; |
123 | void mangleSEHFilterExpression(GlobalDecl EnclosingDecl, |
124 | raw_ostream &Out) override; |
125 | void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl, |
126 | raw_ostream &Out) override; |
127 | void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; |
128 | void mangleItaniumThreadLocalWrapper(const VarDecl *D, |
129 | raw_ostream &) override; |
130 | |
131 | void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; |
132 | |
133 | void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override; |
134 | |
135 | void mangleModuleInitializer(const Module *Module, raw_ostream &) override; |
136 | |
137 | bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { |
138 | // Lambda closure types are already numbered. |
139 | if (isLambda(ND)) |
140 | return false; |
141 | |
142 | // Anonymous tags are already numbered. |
143 | if (const TagDecl *Tag = dyn_cast<TagDecl>(Val: ND)) { |
144 | if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) |
145 | return false; |
146 | } |
147 | |
148 | // Use the canonical number for externally visible decls. |
149 | if (ND->isExternallyVisible()) { |
150 | unsigned discriminator = getASTContext().getManglingNumber(ND, ForAuxTarget: isAux()); |
151 | if (discriminator == 1) |
152 | return false; |
153 | disc = discriminator - 2; |
154 | return true; |
155 | } |
156 | |
157 | // Make up a reasonable number for internal decls. |
158 | unsigned &discriminator = Uniquifier[ND]; |
159 | if (!discriminator) { |
160 | const DeclContext *DC = getEffectiveDeclContext(ND); |
161 | discriminator = ++Discriminator[std::make_pair(x&: DC, y: ND->getIdentifier())]; |
162 | } |
163 | if (discriminator == 1) |
164 | return false; |
165 | disc = discriminator-2; |
166 | return true; |
167 | } |
168 | |
169 | std::string getLambdaString(const CXXRecordDecl *Lambda) override { |
170 | // This function matches the one in MicrosoftMangle, which returns |
171 | // the string that is used in lambda mangled names. |
172 | assert(Lambda->isLambda() && "RD must be a lambda!"); |
173 | std::string Name("<lambda"); |
174 | Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); |
175 | unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); |
176 | unsigned LambdaId; |
177 | const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(Val: LambdaContextDecl); |
178 | const FunctionDecl *Func = |
179 | Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; |
180 | |
181 | if (Func) { |
182 | unsigned DefaultArgNo = |
183 | Func->getNumParams() - Parm->getFunctionScopeIndex(); |
184 | Name += llvm::utostr(X: DefaultArgNo); |
185 | Name += "_"; |
186 | } |
187 | |
188 | if (LambdaManglingNumber) |
189 | LambdaId = LambdaManglingNumber; |
190 | else |
191 | LambdaId = getAnonymousStructIdForDebugInfo(Lambda); |
192 | |
193 | Name += llvm::utostr(X: LambdaId); |
194 | Name += '>'; |
195 | return Name; |
196 | } |
197 | |
198 | DiscriminatorOverrideTy getDiscriminatorOverride() const override { |
199 | return DiscriminatorOverride; |
200 | } |
201 | |
202 | NamespaceDecl *getStdNamespace(); |
203 | |
204 | const DeclContext *getEffectiveDeclContext(const Decl *D); |
205 | const DeclContext *getEffectiveParentContext(const DeclContext *DC) { |
206 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
207 | } |
208 | |
209 | bool isInternalLinkageDecl(const NamedDecl *ND); |
210 | |
211 | /// @} |
212 | }; |
213 | |
214 | /// Manage the mangling of a single name. |
215 | class CXXNameMangler { |
216 | ItaniumMangleContextImpl &Context; |
217 | raw_ostream &Out; |
218 | /// Normalize integer types for cross-language CFI support with other |
219 | /// languages that can't represent and encode C/C++ integer types. |
220 | bool NormalizeIntegers = false; |
221 | |
222 | bool NullOut = false; |
223 | /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. |
224 | /// This mode is used when mangler creates another mangler recursively to |
225 | /// calculate ABI tags for the function return value or the variable type. |
226 | /// Also it is required to avoid infinite recursion in some cases. |
227 | bool DisableDerivedAbiTags = false; |
228 | |
229 | /// The "structor" is the top-level declaration being mangled, if |
230 | /// that's not a template specialization; otherwise it's the pattern |
231 | /// for that specialization. |
232 | const NamedDecl *Structor; |
233 | unsigned StructorType = 0; |
234 | |
235 | // An offset to add to all template parameter depths while mangling. Used |
236 | // when mangling a template parameter list to see if it matches a template |
237 | // template parameter exactly. |
238 | unsigned TemplateDepthOffset = 0; |
239 | |
240 | /// The next substitution sequence number. |
241 | unsigned SeqID = 0; |
242 | |
243 | class FunctionTypeDepthState { |
244 | unsigned Bits = 0; |
245 | |
246 | enum { InResultTypeMask = 1 }; |
247 | |
248 | public: |
249 | FunctionTypeDepthState() = default; |
250 | |
251 | /// The number of function types we're inside. |
252 | unsigned getDepth() const { |
253 | return Bits >> 1; |
254 | } |
255 | |
256 | /// True if we're in the return type of the innermost function type. |
257 | bool isInResultType() const { |
258 | return Bits & InResultTypeMask; |
259 | } |
260 | |
261 | FunctionTypeDepthState push() { |
262 | FunctionTypeDepthState tmp = *this; |
263 | Bits = (Bits & ~InResultTypeMask) + 2; |
264 | return tmp; |
265 | } |
266 | |
267 | void enterResultType() { |
268 | Bits |= InResultTypeMask; |
269 | } |
270 | |
271 | void leaveResultType() { |
272 | Bits &= ~InResultTypeMask; |
273 | } |
274 | |
275 | void pop(FunctionTypeDepthState saved) { |
276 | assert(getDepth() == saved.getDepth() + 1); |
277 | Bits = saved.Bits; |
278 | } |
279 | |
280 | } FunctionTypeDepth; |
281 | |
282 | // abi_tag is a gcc attribute, taking one or more strings called "tags". |
283 | // The goal is to annotate against which version of a library an object was |
284 | // built and to be able to provide backwards compatibility ("dual abi"). |
285 | // For more information see docs/ItaniumMangleAbiTags.rst. |
286 | typedef SmallVector<StringRef, 4> AbiTagList; |
287 | |
288 | // State to gather all implicit and explicit tags used in a mangled name. |
289 | // Must always have an instance of this while emitting any name to keep |
290 | // track. |
291 | class AbiTagState final { |
292 | public: |
293 | explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { |
294 | Parent = LinkHead; |
295 | LinkHead = this; |
296 | } |
297 | |
298 | // No copy, no move. |
299 | AbiTagState(const AbiTagState &) = delete; |
300 | AbiTagState &operator=(const AbiTagState &) = delete; |
301 | |
302 | ~AbiTagState() { pop(); } |
303 | |
304 | void write(raw_ostream &Out, const NamedDecl *ND, |
305 | const AbiTagList *AdditionalAbiTags) { |
306 | ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
307 | if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { |
308 | assert( |
309 | !AdditionalAbiTags && |
310 | "only function and variables need a list of additional abi tags"); |
311 | if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { |
312 | if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) |
313 | llvm::append_range(UsedAbiTags, AbiTag->tags()); |
314 | // Don't emit abi tags for namespaces. |
315 | return; |
316 | } |
317 | } |
318 | |
319 | AbiTagList TagList; |
320 | if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { |
321 | llvm::append_range(UsedAbiTags, AbiTag->tags()); |
322 | llvm::append_range(TagList, AbiTag->tags()); |
323 | } |
324 | |
325 | if (AdditionalAbiTags) { |
326 | llvm::append_range(UsedAbiTags, *AdditionalAbiTags); |
327 | llvm::append_range(TagList, *AdditionalAbiTags); |
328 | } |
329 | |
330 | llvm::sort(TagList); |
331 | TagList.erase(llvm::unique(TagList), TagList.end()); |
332 | |
333 | writeSortedUniqueAbiTags(Out, AbiTags: TagList); |
334 | } |
335 | |
336 | const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } |
337 | void setUsedAbiTags(const AbiTagList &AbiTags) { |
338 | UsedAbiTags = AbiTags; |
339 | } |
340 | |
341 | const AbiTagList &getEmittedAbiTags() const { |
342 | return EmittedAbiTags; |
343 | } |
344 | |
345 | const AbiTagList &getSortedUniqueUsedAbiTags() { |
346 | llvm::sort(UsedAbiTags); |
347 | UsedAbiTags.erase(llvm::unique(UsedAbiTags), UsedAbiTags.end()); |
348 | return UsedAbiTags; |
349 | } |
350 | |
351 | private: |
352 | //! All abi tags used implicitly or explicitly. |
353 | AbiTagList UsedAbiTags; |
354 | //! All explicit abi tags (i.e. not from namespace). |
355 | AbiTagList EmittedAbiTags; |
356 | |
357 | AbiTagState *&LinkHead; |
358 | AbiTagState *Parent = nullptr; |
359 | |
360 | void pop() { |
361 | assert(LinkHead == this && |
362 | "abi tag link head must point to us on destruction"); |
363 | if (Parent) { |
364 | Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), |
365 | UsedAbiTags.begin(), UsedAbiTags.end()); |
366 | Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), |
367 | EmittedAbiTags.begin(), |
368 | EmittedAbiTags.end()); |
369 | } |
370 | LinkHead = Parent; |
371 | } |
372 | |
373 | void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { |
374 | for (const auto &Tag : AbiTags) { |
375 | EmittedAbiTags.push_back(Elt: Tag); |
376 | Out << "B"; |
377 | Out << Tag.size(); |
378 | Out << Tag; |
379 | } |
380 | } |
381 | }; |
382 | |
383 | AbiTagState *AbiTags = nullptr; |
384 | AbiTagState AbiTagsRoot; |
385 | |
386 | llvm::DenseMap<uintptr_t, unsigned> Substitutions; |
387 | llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; |
388 | |
389 | ASTContext &getASTContext() const { return Context.getASTContext(); } |
390 | |
391 | bool isCompatibleWith(LangOptions::ClangABI Ver) { |
392 | return Context.getASTContext().getLangOpts().getClangABICompat() <= Ver; |
393 | } |
394 | |
395 | bool isStd(const NamespaceDecl *NS); |
396 | bool isStdNamespace(const DeclContext *DC); |
397 | |
398 | const RecordDecl *GetLocalClassDecl(const Decl *D); |
399 | bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A); |
400 | bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD, |
401 | llvm::StringRef Name, bool HasAllocator); |
402 | |
403 | public: |
404 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
405 | const NamedDecl *D = nullptr, bool NullOut_ = false) |
406 | : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(decl: D)), |
407 | AbiTagsRoot(AbiTags) { |
408 | // These can't be mangled without a ctor type or dtor type. |
409 | assert(!D || (!isa<CXXDestructorDecl>(D) && |
410 | !isa<CXXConstructorDecl>(D))); |
411 | } |
412 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
413 | const CXXConstructorDecl *D, CXXCtorType Type) |
414 | : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
415 | AbiTagsRoot(AbiTags) {} |
416 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
417 | const CXXDestructorDecl *D, CXXDtorType Type) |
418 | : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
419 | AbiTagsRoot(AbiTags) {} |
420 | |
421 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
422 | bool NormalizeIntegers_) |
423 | : Context(C), Out(Out_), NormalizeIntegers(NormalizeIntegers_), |
424 | NullOut(false), Structor(nullptr), AbiTagsRoot(AbiTags) {} |
425 | CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) |
426 | : Context(Outer.Context), Out(Out_), Structor(Outer.Structor), |
427 | StructorType(Outer.StructorType), SeqID(Outer.SeqID), |
428 | FunctionTypeDepth(Outer.FunctionTypeDepth), AbiTagsRoot(AbiTags), |
429 | Substitutions(Outer.Substitutions), |
430 | ModuleSubstitutions(Outer.ModuleSubstitutions) {} |
431 | |
432 | CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) |
433 | : CXXNameMangler(Outer, (raw_ostream &)Out_) { |
434 | NullOut = true; |
435 | } |
436 | |
437 | struct WithTemplateDepthOffset { unsigned Offset; }; |
438 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out, |
439 | WithTemplateDepthOffset Offset) |
440 | : CXXNameMangler(C, Out) { |
441 | TemplateDepthOffset = Offset.Offset; |
442 | } |
443 | |
444 | raw_ostream &getStream() { return Out; } |
445 | |
446 | void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } |
447 | static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); |
448 | |
449 | void mangle(GlobalDecl GD); |
450 | void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); |
451 | void mangleNumber(const llvm::APSInt &I); |
452 | void mangleNumber(int64_t Number); |
453 | void mangleFloat(const llvm::APFloat &F); |
454 | void mangleFunctionEncoding(GlobalDecl GD); |
455 | void mangleSeqID(unsigned SeqID); |
456 | void mangleName(GlobalDecl GD); |
457 | void mangleType(QualType T); |
458 | void mangleCXXRecordDecl(const CXXRecordDecl *Record, |
459 | bool SuppressSubstitution = false); |
460 | void mangleLambdaSig(const CXXRecordDecl *Lambda); |
461 | void mangleModuleNamePrefix(StringRef Name, bool IsPartition = false); |
462 | void mangleVendorQualifier(StringRef Name); |
463 | void mangleVendorType(StringRef Name); |
464 | |
465 | private: |
466 | |
467 | bool mangleSubstitution(const NamedDecl *ND); |
468 | bool mangleSubstitution(NestedNameSpecifier *NNS); |
469 | bool mangleSubstitution(QualType T); |
470 | bool mangleSubstitution(TemplateName Template); |
471 | bool mangleSubstitution(uintptr_t Ptr); |
472 | |
473 | void mangleExistingSubstitution(TemplateName name); |
474 | |
475 | bool mangleStandardSubstitution(const NamedDecl *ND); |
476 | |
477 | void addSubstitution(const NamedDecl *ND) { |
478 | ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
479 | |
480 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(ND)); |
481 | } |
482 | void addSubstitution(NestedNameSpecifier *NNS) { |
483 | NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); |
484 | |
485 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(NNS)); |
486 | } |
487 | void addSubstitution(QualType T); |
488 | void addSubstitution(TemplateName Template); |
489 | void addSubstitution(uintptr_t Ptr); |
490 | // Destructive copy substitutions from other mangler. |
491 | void extendSubstitutions(CXXNameMangler* Other); |
492 | |
493 | void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
494 | bool recursive = false); |
495 | void mangleUnresolvedName(NestedNameSpecifier *qualifier, |
496 | DeclarationName name, |
497 | const TemplateArgumentLoc *TemplateArgs, |
498 | unsigned NumTemplateArgs, |
499 | unsigned KnownArity = UnknownArity); |
500 | |
501 | void mangleFunctionEncodingBareType(const FunctionDecl *FD); |
502 | |
503 | void mangleNameWithAbiTags(GlobalDecl GD, |
504 | const AbiTagList *AdditionalAbiTags); |
505 | void mangleModuleName(const NamedDecl *ND); |
506 | void mangleTemplateName(const TemplateDecl *TD, |
507 | ArrayRef<TemplateArgument> Args); |
508 | void mangleUnqualifiedName(GlobalDecl GD, const DeclContext *DC, |
509 | const AbiTagList *AdditionalAbiTags) { |
510 | mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), DC, |
511 | UnknownArity, AdditionalAbiTags); |
512 | } |
513 | void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name, |
514 | const DeclContext *DC, unsigned KnownArity, |
515 | const AbiTagList *AdditionalAbiTags); |
516 | void mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, |
517 | const AbiTagList *AdditionalAbiTags); |
518 | void mangleUnscopedTemplateName(GlobalDecl GD, const DeclContext *DC, |
519 | const AbiTagList *AdditionalAbiTags); |
520 | void mangleSourceName(const IdentifierInfo *II); |
521 | void mangleRegCallName(const IdentifierInfo *II); |
522 | void mangleDeviceStubName(const IdentifierInfo *II); |
523 | void mangleOCLDeviceStubName(const IdentifierInfo *II); |
524 | void mangleSourceNameWithAbiTags( |
525 | const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); |
526 | void mangleLocalName(GlobalDecl GD, |
527 | const AbiTagList *AdditionalAbiTags); |
528 | void mangleBlockForPrefix(const BlockDecl *Block); |
529 | void mangleUnqualifiedBlock(const BlockDecl *Block); |
530 | void mangleTemplateParamDecl(const NamedDecl *Decl); |
531 | void mangleTemplateParameterList(const TemplateParameterList *Params); |
532 | void mangleTypeConstraint(const ConceptDecl *Concept, |
533 | ArrayRef<TemplateArgument> Arguments); |
534 | void mangleTypeConstraint(const TypeConstraint *Constraint); |
535 | void mangleRequiresClause(const Expr *RequiresClause); |
536 | void mangleLambda(const CXXRecordDecl *Lambda); |
537 | void mangleNestedName(GlobalDecl GD, const DeclContext *DC, |
538 | const AbiTagList *AdditionalAbiTags, |
539 | bool NoFunction=false); |
540 | void mangleNestedName(const TemplateDecl *TD, |
541 | ArrayRef<TemplateArgument> Args); |
542 | void mangleNestedNameWithClosurePrefix(GlobalDecl GD, |
543 | const NamedDecl *PrefixND, |
544 | const AbiTagList *AdditionalAbiTags); |
545 | void manglePrefix(NestedNameSpecifier *qualifier); |
546 | void manglePrefix(const DeclContext *DC, bool NoFunction=false); |
547 | void manglePrefix(QualType type); |
548 | void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false); |
549 | void mangleTemplatePrefix(TemplateName Template); |
550 | const NamedDecl *getClosurePrefix(const Decl *ND); |
551 | void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false); |
552 | bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, |
553 | StringRef Prefix = ""); |
554 | void mangleOperatorName(DeclarationName Name, unsigned Arity); |
555 | void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); |
556 | void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); |
557 | void mangleRefQualifier(RefQualifierKind RefQualifier); |
558 | |
559 | void mangleObjCMethodName(const ObjCMethodDecl *MD); |
560 | |
561 | // Declare manglers for every type class. |
562 | #define ABSTRACT_TYPE(CLASS, PARENT) |
563 | #define NON_CANONICAL_TYPE(CLASS, PARENT) |
564 | #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); |
565 | #include "clang/AST/TypeNodes.inc" |
566 | |
567 | void mangleType(const TagType*); |
568 | void mangleType(TemplateName); |
569 | static StringRef getCallingConvQualifierName(CallingConv CC); |
570 | void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); |
571 | void mangleExtFunctionInfo(const FunctionType *T); |
572 | void mangleSMEAttrs(unsigned SMEAttrs); |
573 | void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, |
574 | const FunctionDecl *FD = nullptr); |
575 | void mangleNeonVectorType(const VectorType *T); |
576 | void mangleNeonVectorType(const DependentVectorType *T); |
577 | void mangleAArch64NeonVectorType(const VectorType *T); |
578 | void mangleAArch64NeonVectorType(const DependentVectorType *T); |
579 | void mangleAArch64FixedSveVectorType(const VectorType *T); |
580 | void mangleAArch64FixedSveVectorType(const DependentVectorType *T); |
581 | void mangleRISCVFixedRVVVectorType(const VectorType *T); |
582 | void mangleRISCVFixedRVVVectorType(const DependentVectorType *T); |
583 | |
584 | void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); |
585 | void mangleFloatLiteral(QualType T, const llvm::APFloat &V); |
586 | void mangleFixedPointLiteral(); |
587 | void mangleNullPointer(QualType T); |
588 | |
589 | void mangleMemberExprBase(const Expr *base, bool isArrow); |
590 | void mangleMemberExpr(const Expr *base, bool isArrow, |
591 | NestedNameSpecifier *qualifier, |
592 | NamedDecl *firstQualifierLookup, |
593 | DeclarationName name, |
594 | const TemplateArgumentLoc *TemplateArgs, |
595 | unsigned NumTemplateArgs, |
596 | unsigned knownArity); |
597 | void mangleCastExpression(const Expr *E, StringRef CastEncoding); |
598 | void mangleInitListElements(const InitListExpr *InitList); |
599 | void mangleRequirement(SourceLocation RequiresExprLoc, |
600 | const concepts::Requirement *Req); |
601 | void mangleExpression(const Expr *E, unsigned Arity = UnknownArity, |
602 | bool AsTemplateArg = false); |
603 | void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); |
604 | void mangleCXXDtorType(CXXDtorType T); |
605 | |
606 | struct TemplateArgManglingInfo; |
607 | void mangleTemplateArgs(TemplateName TN, |
608 | const TemplateArgumentLoc *TemplateArgs, |
609 | unsigned NumTemplateArgs); |
610 | void mangleTemplateArgs(TemplateName TN, ArrayRef<TemplateArgument> Args); |
611 | void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL); |
612 | void mangleTemplateArg(TemplateArgManglingInfo &Info, unsigned Index, |
613 | TemplateArgument A); |
614 | void mangleTemplateArg(TemplateArgument A, bool NeedExactType); |
615 | void mangleTemplateArgExpr(const Expr *E); |
616 | void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel, |
617 | bool NeedExactType = false); |
618 | |
619 | void mangleTemplateParameter(unsigned Depth, unsigned Index); |
620 | |
621 | void mangleFunctionParam(const ParmVarDecl *parm); |
622 | |
623 | void writeAbiTags(const NamedDecl *ND, |
624 | const AbiTagList *AdditionalAbiTags); |
625 | |
626 | // Returns sorted unique list of ABI tags. |
627 | AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); |
628 | // Returns sorted unique list of ABI tags. |
629 | AbiTagList makeVariableTypeTags(const VarDecl *VD); |
630 | }; |
631 | |
632 | } |
633 | |
634 | NamespaceDecl *ItaniumMangleContextImpl::getStdNamespace() { |
635 | if (!StdNamespace) { |
636 | StdNamespace = NamespaceDecl::Create( |
637 | getASTContext(), getASTContext().getTranslationUnitDecl(), |
638 | /*Inline=*/false, SourceLocation(), SourceLocation(), |
639 | &getASTContext().Idents.get(Name: "std"), |
640 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
641 | StdNamespace->setImplicit(); |
642 | } |
643 | return StdNamespace; |
644 | } |
645 | |
646 | /// Retrieve the declaration context that should be used when mangling the given |
647 | /// declaration. |
648 | const DeclContext * |
649 | ItaniumMangleContextImpl::getEffectiveDeclContext(const Decl *D) { |
650 | // The ABI assumes that lambda closure types that occur within |
651 | // default arguments live in the context of the function. However, due to |
652 | // the way in which Clang parses and creates function declarations, this is |
653 | // not the case: the lambda closure type ends up living in the context |
654 | // where the function itself resides, because the function declaration itself |
655 | // had not yet been created. Fix the context here. |
656 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
657 | if (RD->isLambda()) |
658 | if (ParmVarDecl *ContextParam = |
659 | dyn_cast_or_null<ParmVarDecl>(Val: RD->getLambdaContextDecl())) |
660 | return ContextParam->getDeclContext(); |
661 | } |
662 | |
663 | // Perform the same check for block literals. |
664 | if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
665 | if (ParmVarDecl *ContextParam = |
666 | dyn_cast_or_null<ParmVarDecl>(Val: BD->getBlockManglingContextDecl())) |
667 | return ContextParam->getDeclContext(); |
668 | } |
669 | |
670 | // On ARM and AArch64, the va_list tag is always mangled as if in the std |
671 | // namespace. We do not represent va_list as actually being in the std |
672 | // namespace in C because this would result in incorrect debug info in C, |
673 | // among other things. It is important for both languages to have the same |
674 | // mangling in order for -fsanitize=cfi-icall to work. |
675 | if (D == getASTContext().getVaListTagDecl()) { |
676 | const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); |
677 | if (T.isARM() || T.isThumb() || T.isAArch64()) |
678 | return getStdNamespace(); |
679 | } |
680 | |
681 | const DeclContext *DC = D->getDeclContext(); |
682 | if (isa<CapturedDecl>(Val: DC) || isa<OMPDeclareReductionDecl>(Val: DC) || |
683 | isa<OMPDeclareMapperDecl>(Val: DC)) { |
684 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
685 | } |
686 | |
687 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) |
688 | if (VD->isExternC()) |
689 | return getASTContext().getTranslationUnitDecl(); |
690 | |
691 | if (const auto *FD = getASTContext().getLangOpts().getClangABICompat() > |
692 | LangOptions::ClangABI::Ver19 |
693 | ? D->getAsFunction() |
694 | : dyn_cast<FunctionDecl>(Val: D)) { |
695 | if (FD->isExternC()) |
696 | return getASTContext().getTranslationUnitDecl(); |
697 | // Member-like constrained friends are mangled as if they were members of |
698 | // the enclosing class. |
699 | if (FD->isMemberLikeConstrainedFriend() && |
700 | getASTContext().getLangOpts().getClangABICompat() > |
701 | LangOptions::ClangABI::Ver17) |
702 | return D->getLexicalDeclContext()->getRedeclContext(); |
703 | } |
704 | |
705 | return DC->getRedeclContext(); |
706 | } |
707 | |
708 | bool ItaniumMangleContextImpl::isInternalLinkageDecl(const NamedDecl *ND) { |
709 | if (ND && ND->getFormalLinkage() == Linkage::Internal && |
710 | !ND->isExternallyVisible() && |
711 | getEffectiveDeclContext(ND)->isFileContext() && |
712 | !ND->isInAnonymousNamespace()) |
713 | return true; |
714 | return false; |
715 | } |
716 | |
717 | // Check if this Function Decl needs a unique internal linkage name. |
718 | bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl( |
719 | const NamedDecl *ND) { |
720 | if (!NeedsUniqueInternalLinkageNames || !ND) |
721 | return false; |
722 | |
723 | const auto *FD = dyn_cast<FunctionDecl>(Val: ND); |
724 | if (!FD) |
725 | return false; |
726 | |
727 | // For C functions without prototypes, return false as their |
728 | // names should not be mangled. |
729 | if (!FD->getType()->getAs<FunctionProtoType>()) |
730 | return false; |
731 | |
732 | if (isInternalLinkageDecl(ND)) |
733 | return true; |
734 | |
735 | return false; |
736 | } |
737 | |
738 | bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { |
739 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
740 | LanguageLinkage L = FD->getLanguageLinkage(); |
741 | // Overloadable functions need mangling. |
742 | if (FD->hasAttr<OverloadableAttr>()) |
743 | return true; |
744 | |
745 | // "main" is not mangled. |
746 | if (FD->isMain()) |
747 | return false; |
748 | |
749 | // The Windows ABI expects that we would never mangle "typical" |
750 | // user-defined entry points regardless of visibility or freestanding-ness. |
751 | // |
752 | // N.B. This is distinct from asking about "main". "main" has a lot of |
753 | // special rules associated with it in the standard while these |
754 | // user-defined entry points are outside of the purview of the standard. |
755 | // For example, there can be only one definition for "main" in a standards |
756 | // compliant program; however nothing forbids the existence of wmain and |
757 | // WinMain in the same translation unit. |
758 | if (FD->isMSVCRTEntryPoint()) |
759 | return false; |
760 | |
761 | // C++ functions and those whose names are not a simple identifier need |
762 | // mangling. |
763 | if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) |
764 | return true; |
765 | |
766 | // C functions are not mangled. |
767 | if (L == CLanguageLinkage) |
768 | return false; |
769 | } |
770 | |
771 | // Otherwise, no mangling is done outside C++ mode. |
772 | if (!getASTContext().getLangOpts().CPlusPlus) |
773 | return false; |
774 | |
775 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
776 | // Decompositions are mangled. |
777 | if (isa<DecompositionDecl>(Val: VD)) |
778 | return true; |
779 | |
780 | // C variables are not mangled. |
781 | if (VD->isExternC()) |
782 | return false; |
783 | |
784 | // Variables at global scope are not mangled unless they have internal |
785 | // linkage or are specializations or are attached to a named module. |
786 | const DeclContext *DC = getEffectiveDeclContext(D); |
787 | // Check for extern variable declared locally. |
788 | if (DC->isFunctionOrMethod() && D->hasLinkage()) |
789 | while (!DC->isFileContext()) |
790 | DC = getEffectiveParentContext(DC); |
791 | if (DC->isTranslationUnit() && D->getFormalLinkage() != Linkage::Internal && |
792 | !CXXNameMangler::shouldHaveAbiTags(C&: *this, VD) && |
793 | !isa<VarTemplateSpecializationDecl>(Val: VD) && |
794 | !VD->getOwningModuleForLinkage()) |
795 | return false; |
796 | } |
797 | |
798 | return true; |
799 | } |
800 | |
801 | void CXXNameMangler::writeAbiTags(const NamedDecl *ND, |
802 | const AbiTagList *AdditionalAbiTags) { |
803 | assert(AbiTags && "require AbiTagState"); |
804 | AbiTags->write(Out, ND, AdditionalAbiTags: DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); |
805 | } |
806 | |
807 | void CXXNameMangler::mangleSourceNameWithAbiTags( |
808 | const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { |
809 | mangleSourceName(II: ND->getIdentifier()); |
810 | writeAbiTags(ND, AdditionalAbiTags); |
811 | } |
812 | |
813 | void CXXNameMangler::mangle(GlobalDecl GD) { |
814 | // <mangled-name> ::= _Z <encoding> |
815 | // ::= <data name> |
816 | // ::= <special-name> |
817 | Out << "_Z"; |
818 | if (isa<FunctionDecl>(Val: GD.getDecl())) |
819 | mangleFunctionEncoding(GD); |
820 | else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl, |
821 | BindingDecl>(Val: GD.getDecl())) |
822 | mangleName(GD); |
823 | else if (const IndirectFieldDecl *IFD = |
824 | dyn_cast<IndirectFieldDecl>(Val: GD.getDecl())) |
825 | mangleName(IFD->getAnonField()); |
826 | else |
827 | llvm_unreachable("unexpected kind of global decl"); |
828 | } |
829 | |
830 | void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) { |
831 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
832 | // <encoding> ::= <function name> <bare-function-type> |
833 | |
834 | // Don't mangle in the type if this isn't a decl we should typically mangle. |
835 | if (!Context.shouldMangleDeclName(FD)) { |
836 | mangleName(GD); |
837 | return; |
838 | } |
839 | |
840 | AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); |
841 | if (ReturnTypeAbiTags.empty()) { |
842 | // There are no tags for return type, the simplest case. Enter the function |
843 | // parameter scope before mangling the name, because a template using |
844 | // constrained `auto` can have references to its parameters within its |
845 | // template argument list: |
846 | // |
847 | // template<typename T> void f(T x, C<decltype(x)> auto) |
848 | // ... is mangled as ... |
849 | // template<typename T, C<decltype(param 1)> U> void f(T, U) |
850 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
851 | mangleName(GD); |
852 | FunctionTypeDepth.pop(saved: Saved); |
853 | mangleFunctionEncodingBareType(FD); |
854 | return; |
855 | } |
856 | |
857 | // Mangle function name and encoding to temporary buffer. |
858 | // We have to output name and encoding to the same mangler to get the same |
859 | // substitution as it will be in final mangling. |
860 | SmallString<256> FunctionEncodingBuf; |
861 | llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); |
862 | CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); |
863 | // Output name of the function. |
864 | FunctionEncodingMangler.disableDerivedAbiTags(); |
865 | |
866 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
867 | FunctionEncodingMangler.mangleNameWithAbiTags(GD: FD, AdditionalAbiTags: nullptr); |
868 | FunctionTypeDepth.pop(saved: Saved); |
869 | |
870 | // Remember length of the function name in the buffer. |
871 | size_t EncodingPositionStart = FunctionEncodingStream.str().size(); |
872 | FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); |
873 | |
874 | // Get tags from return type that are not present in function name or |
875 | // encoding. |
876 | const AbiTagList &UsedAbiTags = |
877 | FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
878 | AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); |
879 | AdditionalAbiTags.erase( |
880 | CS: std::set_difference(first1: ReturnTypeAbiTags.begin(), last1: ReturnTypeAbiTags.end(), |
881 | first2: UsedAbiTags.begin(), last2: UsedAbiTags.end(), |
882 | result: AdditionalAbiTags.begin()), |
883 | CE: AdditionalAbiTags.end()); |
884 | |
885 | // Output name with implicit tags and function encoding from temporary buffer. |
886 | Saved = FunctionTypeDepth.push(); |
887 | mangleNameWithAbiTags(GD: FD, AdditionalAbiTags: &AdditionalAbiTags); |
888 | FunctionTypeDepth.pop(saved: Saved); |
889 | Out << FunctionEncodingStream.str().substr(Start: EncodingPositionStart); |
890 | |
891 | // Function encoding could create new substitutions so we have to add |
892 | // temp mangled substitutions to main mangler. |
893 | extendSubstitutions(Other: &FunctionEncodingMangler); |
894 | } |
895 | |
896 | void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { |
897 | if (FD->hasAttr<EnableIfAttr>()) { |
898 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
899 | Out << "Ua9enable_ifI"; |
900 | for (AttrVec::const_iterator I = FD->getAttrs().begin(), |
901 | E = FD->getAttrs().end(); |
902 | I != E; ++I) { |
903 | EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); |
904 | if (!EIA) |
905 | continue; |
906 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
907 | // Prior to Clang 12, we hardcoded the X/E around enable-if's argument, |
908 | // even though <template-arg> should not include an X/E around |
909 | // <expr-primary>. |
910 | Out << 'X'; |
911 | mangleExpression(E: EIA->getCond()); |
912 | Out << 'E'; |
913 | } else { |
914 | mangleTemplateArgExpr(E: EIA->getCond()); |
915 | } |
916 | } |
917 | Out << 'E'; |
918 | FunctionTypeDepth.pop(saved: Saved); |
919 | } |
920 | |
921 | // When mangling an inheriting constructor, the bare function type used is |
922 | // that of the inherited constructor. |
923 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: FD)) |
924 | if (auto Inherited = CD->getInheritedConstructor()) |
925 | FD = Inherited.getConstructor(); |
926 | |
927 | // Whether the mangling of a function type includes the return type depends on |
928 | // the context and the nature of the function. The rules for deciding whether |
929 | // the return type is included are: |
930 | // |
931 | // 1. Template functions (names or types) have return types encoded, with |
932 | // the exceptions listed below. |
933 | // 2. Function types not appearing as part of a function name mangling, |
934 | // e.g. parameters, pointer types, etc., have return type encoded, with the |
935 | // exceptions listed below. |
936 | // 3. Non-template function names do not have return types encoded. |
937 | // |
938 | // The exceptions mentioned in (1) and (2) above, for which the return type is |
939 | // never included, are |
940 | // 1. Constructors. |
941 | // 2. Destructors. |
942 | // 3. Conversion operator functions, e.g. operator int. |
943 | bool MangleReturnType = false; |
944 | if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { |
945 | if (!(isa<CXXConstructorDecl>(Val: FD) || isa<CXXDestructorDecl>(Val: FD) || |
946 | isa<CXXConversionDecl>(Val: FD))) |
947 | MangleReturnType = true; |
948 | |
949 | // Mangle the type of the primary template. |
950 | FD = PrimaryTemplate->getTemplatedDecl(); |
951 | } |
952 | |
953 | mangleBareFunctionType(T: FD->getType()->castAs<FunctionProtoType>(), |
954 | MangleReturnType, FD); |
955 | } |
956 | |
957 | /// Return whether a given namespace is the 'std' namespace. |
958 | bool CXXNameMangler::isStd(const NamespaceDecl *NS) { |
959 | if (!Context.getEffectiveParentContext(NS)->isTranslationUnit()) |
960 | return false; |
961 | |
962 | const IdentifierInfo *II = NS->getFirstDecl()->getIdentifier(); |
963 | return II && II->isStr(Str: "std"); |
964 | } |
965 | |
966 | // isStdNamespace - Return whether a given decl context is a toplevel 'std' |
967 | // namespace. |
968 | bool CXXNameMangler::isStdNamespace(const DeclContext *DC) { |
969 | if (!DC->isNamespace()) |
970 | return false; |
971 | |
972 | return isStd(NS: cast<NamespaceDecl>(Val: DC)); |
973 | } |
974 | |
975 | static const GlobalDecl |
976 | isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) { |
977 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
978 | // Check if we have a function template. |
979 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
980 | if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { |
981 | TemplateArgs = FD->getTemplateSpecializationArgs(); |
982 | return GD.getWithDecl(TD); |
983 | } |
984 | } |
985 | |
986 | // Check if we have a class template. |
987 | if (const ClassTemplateSpecializationDecl *Spec = |
988 | dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) { |
989 | TemplateArgs = &Spec->getTemplateArgs(); |
990 | return GD.getWithDecl(Spec->getSpecializedTemplate()); |
991 | } |
992 | |
993 | // Check if we have a variable template. |
994 | if (const VarTemplateSpecializationDecl *Spec = |
995 | dyn_cast<VarTemplateSpecializationDecl>(Val: ND)) { |
996 | TemplateArgs = &Spec->getTemplateArgs(); |
997 | return GD.getWithDecl(Spec->getSpecializedTemplate()); |
998 | } |
999 | |
1000 | return GlobalDecl(); |
1001 | } |
1002 | |
1003 | static TemplateName asTemplateName(GlobalDecl GD) { |
1004 | const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(Val: GD.getDecl()); |
1005 | return TemplateName(const_cast<TemplateDecl*>(TD)); |
1006 | } |
1007 | |
1008 | void CXXNameMangler::mangleName(GlobalDecl GD) { |
1009 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1010 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) { |
1011 | // Variables should have implicit tags from its type. |
1012 | AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); |
1013 | if (VariableTypeAbiTags.empty()) { |
1014 | // Simple case no variable type tags. |
1015 | mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: nullptr); |
1016 | return; |
1017 | } |
1018 | |
1019 | // Mangle variable name to null stream to collect tags. |
1020 | llvm::raw_null_ostream NullOutStream; |
1021 | CXXNameMangler VariableNameMangler(*this, NullOutStream); |
1022 | VariableNameMangler.disableDerivedAbiTags(); |
1023 | VariableNameMangler.mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: nullptr); |
1024 | |
1025 | // Get tags from variable type that are not present in its name. |
1026 | const AbiTagList &UsedAbiTags = |
1027 | VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
1028 | AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); |
1029 | AdditionalAbiTags.erase( |
1030 | CS: std::set_difference(first1: VariableTypeAbiTags.begin(), |
1031 | last1: VariableTypeAbiTags.end(), first2: UsedAbiTags.begin(), |
1032 | last2: UsedAbiTags.end(), result: AdditionalAbiTags.begin()), |
1033 | CE: AdditionalAbiTags.end()); |
1034 | |
1035 | // Output name with implicit tags. |
1036 | mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: &AdditionalAbiTags); |
1037 | } else { |
1038 | mangleNameWithAbiTags(GD, AdditionalAbiTags: nullptr); |
1039 | } |
1040 | } |
1041 | |
1042 | const RecordDecl *CXXNameMangler::GetLocalClassDecl(const Decl *D) { |
1043 | const DeclContext *DC = Context.getEffectiveDeclContext(D); |
1044 | while (!DC->isNamespace() && !DC->isTranslationUnit()) { |
1045 | if (isLocalContainerContext(DC)) |
1046 | return dyn_cast<RecordDecl>(Val: D); |
1047 | D = cast<Decl>(Val: DC); |
1048 | DC = Context.getEffectiveDeclContext(D); |
1049 | } |
1050 | return nullptr; |
1051 | } |
1052 | |
1053 | void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD, |
1054 | const AbiTagList *AdditionalAbiTags) { |
1055 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1056 | // <name> ::= [<module-name>] <nested-name> |
1057 | // ::= [<module-name>] <unscoped-name> |
1058 | // ::= [<module-name>] <unscoped-template-name> <template-args> |
1059 | // ::= <local-name> |
1060 | // |
1061 | const DeclContext *DC = Context.getEffectiveDeclContext(ND); |
1062 | bool IsLambda = isLambda(ND); |
1063 | |
1064 | // If this is an extern variable declared locally, the relevant DeclContext |
1065 | // is that of the containing namespace, or the translation unit. |
1066 | // FIXME: This is a hack; extern variables declared locally should have |
1067 | // a proper semantic declaration context! |
1068 | if (isLocalContainerContext(DC) && ND->hasLinkage() && !IsLambda) |
1069 | while (!DC->isNamespace() && !DC->isTranslationUnit()) |
1070 | DC = Context.getEffectiveParentContext(DC); |
1071 | else if (GetLocalClassDecl(ND) && |
1072 | (!IsLambda || isCompatibleWith(Ver: LangOptions::ClangABI::Ver18))) { |
1073 | mangleLocalName(GD, AdditionalAbiTags); |
1074 | return; |
1075 | } |
1076 | |
1077 | assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl"); |
1078 | |
1079 | // Closures can require a nested-name mangling even if they're semantically |
1080 | // in the global namespace. |
1081 | if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { |
1082 | mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags); |
1083 | return; |
1084 | } |
1085 | |
1086 | if (isLocalContainerContext(DC)) { |
1087 | mangleLocalName(GD, AdditionalAbiTags); |
1088 | return; |
1089 | } |
1090 | |
1091 | if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
1092 | // Check if we have a template. |
1093 | const TemplateArgumentList *TemplateArgs = nullptr; |
1094 | if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { |
1095 | mangleUnscopedTemplateName(GD: TD, DC, AdditionalAbiTags); |
1096 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
1097 | return; |
1098 | } |
1099 | |
1100 | mangleUnscopedName(GD, DC, AdditionalAbiTags); |
1101 | return; |
1102 | } |
1103 | |
1104 | mangleNestedName(GD, DC, AdditionalAbiTags); |
1105 | } |
1106 | |
1107 | void CXXNameMangler::mangleModuleName(const NamedDecl *ND) { |
1108 | if (ND->isExternallyVisible()) |
1109 | if (Module *M = ND->getOwningModuleForLinkage()) |
1110 | mangleModuleNamePrefix(Name: M->getPrimaryModuleInterfaceName()); |
1111 | } |
1112 | |
1113 | // <module-name> ::= <module-subname> |
1114 | // ::= <module-name> <module-subname> |
1115 | // ::= <substitution> |
1116 | // <module-subname> ::= W <source-name> |
1117 | // ::= W P <source-name> |
1118 | void CXXNameMangler::mangleModuleNamePrefix(StringRef Name, bool IsPartition) { |
1119 | // <substitution> ::= S <seq-id> _ |
1120 | auto It = ModuleSubstitutions.find(Val: Name); |
1121 | if (It != ModuleSubstitutions.end()) { |
1122 | Out << 'S'; |
1123 | mangleSeqID(SeqID: It->second); |
1124 | return; |
1125 | } |
1126 | |
1127 | // FIXME: Preserve hierarchy in module names rather than flattening |
1128 | // them to strings; use Module*s as substitution keys. |
1129 | auto Parts = Name.rsplit(Separator: '.'); |
1130 | if (Parts.second.empty()) |
1131 | Parts.second = Parts.first; |
1132 | else { |
1133 | mangleModuleNamePrefix(Name: Parts.first, IsPartition); |
1134 | IsPartition = false; |
1135 | } |
1136 | |
1137 | Out << 'W'; |
1138 | if (IsPartition) |
1139 | Out << 'P'; |
1140 | Out << Parts.second.size() << Parts.second; |
1141 | ModuleSubstitutions.insert(KV: {Name, SeqID++}); |
1142 | } |
1143 | |
1144 | void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, |
1145 | ArrayRef<TemplateArgument> Args) { |
1146 | const DeclContext *DC = Context.getEffectiveDeclContext(TD); |
1147 | |
1148 | if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
1149 | mangleUnscopedTemplateName(TD, DC, nullptr); |
1150 | mangleTemplateArgs(TN: asTemplateName(TD), Args); |
1151 | } else { |
1152 | mangleNestedName(TD, Args); |
1153 | } |
1154 | } |
1155 | |
1156 | void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, |
1157 | const AbiTagList *AdditionalAbiTags) { |
1158 | // <unscoped-name> ::= <unqualified-name> |
1159 | // ::= St <unqualified-name> # ::std:: |
1160 | |
1161 | assert(!isa<LinkageSpecDecl>(DC) && "unskipped LinkageSpecDecl"); |
1162 | if (isStdNamespace(DC)) { |
1163 | if (getASTContext().getTargetInfo().getTriple().isOSSolaris()) { |
1164 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1165 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(Val: ND)) { |
1166 | // Issue #33114: Need non-standard mangling of std::tm etc. for |
1167 | // Solaris ABI compatibility. |
1168 | // |
1169 | // <substitution> ::= tm # ::std::tm, same for the others |
1170 | if (const IdentifierInfo *II = RD->getIdentifier()) { |
1171 | StringRef type = II->getName(); |
1172 | if (llvm::is_contained(Set: {"div_t", "ldiv_t", "lconv", "tm"}, Element: type)) { |
1173 | Out << type.size() << type; |
1174 | return; |
1175 | } |
1176 | } |
1177 | } |
1178 | } |
1179 | Out << "St"; |
1180 | } |
1181 | |
1182 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
1183 | } |
1184 | |
1185 | void CXXNameMangler::mangleUnscopedTemplateName( |
1186 | GlobalDecl GD, const DeclContext *DC, const AbiTagList *AdditionalAbiTags) { |
1187 | const TemplateDecl *ND = cast<TemplateDecl>(Val: GD.getDecl()); |
1188 | // <unscoped-template-name> ::= <unscoped-name> |
1189 | // ::= <substitution> |
1190 | if (mangleSubstitution(ND)) |
1191 | return; |
1192 | |
1193 | // <template-template-param> ::= <template-param> |
1194 | if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: ND)) { |
1195 | assert(!AdditionalAbiTags && |
1196 | "template template param cannot have abi tags"); |
1197 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
1198 | } else if (isa<BuiltinTemplateDecl>(Val: ND) || isa<ConceptDecl>(Val: ND)) { |
1199 | mangleUnscopedName(GD, DC, AdditionalAbiTags); |
1200 | } else { |
1201 | mangleUnscopedName(GD: GD.getWithDecl(ND->getTemplatedDecl()), DC, |
1202 | AdditionalAbiTags); |
1203 | } |
1204 | |
1205 | addSubstitution(ND); |
1206 | } |
1207 | |
1208 | void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { |
1209 | // ABI: |
1210 | // Floating-point literals are encoded using a fixed-length |
1211 | // lowercase hexadecimal string corresponding to the internal |
1212 | // representation (IEEE on Itanium), high-order bytes first, |
1213 | // without leading zeroes. For example: "Lf bf800000 E" is -1.0f |
1214 | // on Itanium. |
1215 | // The 'without leading zeroes' thing seems to be an editorial |
1216 | // mistake; see the discussion on cxx-abi-dev beginning on |
1217 | // 2012-01-16. |
1218 | |
1219 | // Our requirements here are just barely weird enough to justify |
1220 | // using a custom algorithm instead of post-processing APInt::toString(). |
1221 | |
1222 | llvm::APInt valueBits = f.bitcastToAPInt(); |
1223 | unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; |
1224 | assert(numCharacters != 0); |
1225 | |
1226 | // Allocate a buffer of the right number of characters. |
1227 | SmallVector<char, 20> buffer(numCharacters); |
1228 | |
1229 | // Fill the buffer left-to-right. |
1230 | for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { |
1231 | // The bit-index of the next hex digit. |
1232 | unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); |
1233 | |
1234 | // Project out 4 bits starting at 'digitIndex'. |
1235 | uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; |
1236 | hexDigit >>= (digitBitIndex % 64); |
1237 | hexDigit &= 0xF; |
1238 | |
1239 | // Map that over to a lowercase hex digit. |
1240 | static const char charForHex[16] = { |
1241 | '0', '1', '2', '3', '4', '5', '6', '7', |
1242 | '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' |
1243 | }; |
1244 | buffer[stringIndex] = charForHex[hexDigit]; |
1245 | } |
1246 | |
1247 | Out.write(Ptr: buffer.data(), Size: numCharacters); |
1248 | } |
1249 | |
1250 | void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) { |
1251 | Out << 'L'; |
1252 | mangleType(T); |
1253 | mangleFloat(f: V); |
1254 | Out << 'E'; |
1255 | } |
1256 | |
1257 | void CXXNameMangler::mangleFixedPointLiteral() { |
1258 | DiagnosticsEngine &Diags = Context.getDiags(); |
1259 | unsigned DiagID = Diags.getCustomDiagID( |
1260 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle fixed point literals yet"); |
1261 | Diags.Report(DiagID); |
1262 | } |
1263 | |
1264 | void CXXNameMangler::mangleNullPointer(QualType T) { |
1265 | // <expr-primary> ::= L <type> 0 E |
1266 | Out << 'L'; |
1267 | mangleType(T); |
1268 | Out << "0E"; |
1269 | } |
1270 | |
1271 | void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { |
1272 | if (Value.isSigned() && Value.isNegative()) { |
1273 | Out << 'n'; |
1274 | Value.abs().print(OS&: Out, /*signed*/ isSigned: false); |
1275 | } else { |
1276 | Value.print(OS&: Out, /*signed*/ isSigned: false); |
1277 | } |
1278 | } |
1279 | |
1280 | void CXXNameMangler::mangleNumber(int64_t Number) { |
1281 | // <number> ::= [n] <non-negative decimal integer> |
1282 | if (Number < 0) { |
1283 | Out << 'n'; |
1284 | Number = -Number; |
1285 | } |
1286 | |
1287 | Out << Number; |
1288 | } |
1289 | |
1290 | void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { |
1291 | // <call-offset> ::= h <nv-offset> _ |
1292 | // ::= v <v-offset> _ |
1293 | // <nv-offset> ::= <offset number> # non-virtual base override |
1294 | // <v-offset> ::= <offset number> _ <virtual offset number> |
1295 | // # virtual base override, with vcall offset |
1296 | if (!Virtual) { |
1297 | Out << 'h'; |
1298 | mangleNumber(Number: NonVirtual); |
1299 | Out << '_'; |
1300 | return; |
1301 | } |
1302 | |
1303 | Out << 'v'; |
1304 | mangleNumber(Number: NonVirtual); |
1305 | Out << '_'; |
1306 | mangleNumber(Number: Virtual); |
1307 | Out << '_'; |
1308 | } |
1309 | |
1310 | void CXXNameMangler::manglePrefix(QualType type) { |
1311 | if (const auto *TST = type->getAs<TemplateSpecializationType>()) { |
1312 | if (!mangleSubstitution(T: QualType(TST, 0))) { |
1313 | mangleTemplatePrefix(Template: TST->getTemplateName()); |
1314 | |
1315 | // FIXME: GCC does not appear to mangle the template arguments when |
1316 | // the template in question is a dependent template name. Should we |
1317 | // emulate that badness? |
1318 | mangleTemplateArgs(TN: TST->getTemplateName(), Args: TST->template_arguments()); |
1319 | addSubstitution(T: QualType(TST, 0)); |
1320 | } |
1321 | } else if (const auto *DTST = |
1322 | type->getAs<DependentTemplateSpecializationType>()) { |
1323 | if (!mangleSubstitution(T: QualType(DTST, 0))) { |
1324 | TemplateName Template = getASTContext().getDependentTemplateName( |
1325 | Name: DTST->getDependentTemplateName()); |
1326 | mangleTemplatePrefix(Template); |
1327 | |
1328 | // FIXME: GCC does not appear to mangle the template arguments when |
1329 | // the template in question is a dependent template name. Should we |
1330 | // emulate that badness? |
1331 | mangleTemplateArgs(TN: Template, Args: DTST->template_arguments()); |
1332 | addSubstitution(T: QualType(DTST, 0)); |
1333 | } |
1334 | } else { |
1335 | // We use the QualType mangle type variant here because it handles |
1336 | // substitutions. |
1337 | mangleType(T: type); |
1338 | } |
1339 | } |
1340 | |
1341 | /// Mangle everything prior to the base-unresolved-name in an unresolved-name. |
1342 | /// |
1343 | /// \param recursive - true if this is being called recursively, |
1344 | /// i.e. if there is more prefix "to the right". |
1345 | void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
1346 | bool recursive) { |
1347 | |
1348 | // x, ::x |
1349 | // <unresolved-name> ::= [gs] <base-unresolved-name> |
1350 | |
1351 | // T::x / decltype(p)::x |
1352 | // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> |
1353 | |
1354 | // T::N::x /decltype(p)::N::x |
1355 | // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E |
1356 | // <base-unresolved-name> |
1357 | |
1358 | // A::x, N::y, A<T>::z; "gs" means leading "::" |
1359 | // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E |
1360 | // <base-unresolved-name> |
1361 | |
1362 | switch (qualifier->getKind()) { |
1363 | case NestedNameSpecifier::Global: |
1364 | Out << "gs"; |
1365 | |
1366 | // We want an 'sr' unless this is the entire NNS. |
1367 | if (recursive) |
1368 | Out << "sr"; |
1369 | |
1370 | // We never want an 'E' here. |
1371 | return; |
1372 | |
1373 | case NestedNameSpecifier::Super: |
1374 | llvm_unreachable("Can't mangle __super specifier"); |
1375 | |
1376 | case NestedNameSpecifier::Namespace: |
1377 | if (qualifier->getPrefix()) |
1378 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
1379 | /*recursive*/ true); |
1380 | else |
1381 | Out << "sr"; |
1382 | mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); |
1383 | break; |
1384 | case NestedNameSpecifier::NamespaceAlias: |
1385 | if (qualifier->getPrefix()) |
1386 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
1387 | /*recursive*/ true); |
1388 | else |
1389 | Out << "sr"; |
1390 | mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); |
1391 | break; |
1392 | |
1393 | case NestedNameSpecifier::TypeSpec: { |
1394 | const Type *type = qualifier->getAsType(); |
1395 | |
1396 | // We only want to use an unresolved-type encoding if this is one of: |
1397 | // - a decltype |
1398 | // - a template type parameter |
1399 | // - a template template parameter with arguments |
1400 | // In all of these cases, we should have no prefix. |
1401 | if (NestedNameSpecifier *Prefix = qualifier->getPrefix()) { |
1402 | mangleUnresolvedPrefix(qualifier: Prefix, |
1403 | /*recursive=*/true); |
1404 | } else { |
1405 | // Otherwise, all the cases want this. |
1406 | Out << "sr"; |
1407 | } |
1408 | |
1409 | if (mangleUnresolvedTypeOrSimpleId(DestroyedType: QualType(type, 0), Prefix: recursive ? "N": "")) |
1410 | return; |
1411 | |
1412 | break; |
1413 | } |
1414 | |
1415 | case NestedNameSpecifier::Identifier: |
1416 | // Member expressions can have these without prefixes. |
1417 | if (qualifier->getPrefix()) |
1418 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
1419 | /*recursive*/ true); |
1420 | else |
1421 | Out << "sr"; |
1422 | |
1423 | mangleSourceName(II: qualifier->getAsIdentifier()); |
1424 | // An Identifier has no type information, so we can't emit abi tags for it. |
1425 | break; |
1426 | } |
1427 | |
1428 | // If this was the innermost part of the NNS, and we fell out to |
1429 | // here, append an 'E'. |
1430 | if (!recursive) |
1431 | Out << 'E'; |
1432 | } |
1433 | |
1434 | /// Mangle an unresolved-name, which is generally used for names which |
1435 | /// weren't resolved to specific entities. |
1436 | void CXXNameMangler::mangleUnresolvedName( |
1437 | NestedNameSpecifier *qualifier, DeclarationName name, |
1438 | const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, |
1439 | unsigned knownArity) { |
1440 | if (qualifier) mangleUnresolvedPrefix(qualifier); |
1441 | switch (name.getNameKind()) { |
1442 | // <base-unresolved-name> ::= <simple-id> |
1443 | case DeclarationName::Identifier: |
1444 | mangleSourceName(II: name.getAsIdentifierInfo()); |
1445 | break; |
1446 | // <base-unresolved-name> ::= dn <destructor-name> |
1447 | case DeclarationName::CXXDestructorName: |
1448 | Out << "dn"; |
1449 | mangleUnresolvedTypeOrSimpleId(DestroyedType: name.getCXXNameType()); |
1450 | break; |
1451 | // <base-unresolved-name> ::= on <operator-name> |
1452 | case DeclarationName::CXXConversionFunctionName: |
1453 | case DeclarationName::CXXLiteralOperatorName: |
1454 | case DeclarationName::CXXOperatorName: |
1455 | Out << "on"; |
1456 | mangleOperatorName(Name: name, Arity: knownArity); |
1457 | break; |
1458 | case DeclarationName::CXXConstructorName: |
1459 | llvm_unreachable("Can't mangle a constructor name!"); |
1460 | case DeclarationName::CXXUsingDirective: |
1461 | llvm_unreachable("Can't mangle a using directive name!"); |
1462 | case DeclarationName::CXXDeductionGuideName: |
1463 | llvm_unreachable("Can't mangle a deduction guide name!"); |
1464 | case DeclarationName::ObjCMultiArgSelector: |
1465 | case DeclarationName::ObjCOneArgSelector: |
1466 | case DeclarationName::ObjCZeroArgSelector: |
1467 | llvm_unreachable("Can't mangle Objective-C selector names here!"); |
1468 | } |
1469 | |
1470 | // The <simple-id> and on <operator-name> productions end in an optional |
1471 | // <template-args>. |
1472 | if (TemplateArgs) |
1473 | mangleTemplateArgs(TN: TemplateName(), TemplateArgs, NumTemplateArgs); |
1474 | } |
1475 | |
1476 | void CXXNameMangler::mangleUnqualifiedName( |
1477 | GlobalDecl GD, DeclarationName Name, const DeclContext *DC, |
1478 | unsigned KnownArity, const AbiTagList *AdditionalAbiTags) { |
1479 | const NamedDecl *ND = cast_or_null<NamedDecl>(Val: GD.getDecl()); |
1480 | // <unqualified-name> ::= [<module-name>] [F] <operator-name> |
1481 | // ::= <ctor-dtor-name> |
1482 | // ::= [<module-name>] [F] <source-name> |
1483 | // ::= [<module-name>] DC <source-name>* E |
1484 | |
1485 | if (ND && DC && DC->isFileContext()) |
1486 | mangleModuleName(ND); |
1487 | |
1488 | // A member-like constrained friend is mangled with a leading 'F'. |
1489 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
1490 | auto *FD = dyn_cast<FunctionDecl>(Val: ND); |
1491 | auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND); |
1492 | if ((FD && FD->isMemberLikeConstrainedFriend()) || |
1493 | (FTD && FTD->getTemplatedDecl()->isMemberLikeConstrainedFriend())) { |
1494 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) |
1495 | Out << 'F'; |
1496 | } |
1497 | |
1498 | unsigned Arity = KnownArity; |
1499 | switch (Name.getNameKind()) { |
1500 | case DeclarationName::Identifier: { |
1501 | const IdentifierInfo *II = Name.getAsIdentifierInfo(); |
1502 | |
1503 | // We mangle decomposition declarations as the names of their bindings. |
1504 | if (auto *DD = dyn_cast<DecompositionDecl>(Val: ND)) { |
1505 | // FIXME: Non-standard mangling for decomposition declarations: |
1506 | // |
1507 | // <unqualified-name> ::= DC <source-name>* E |
1508 | // |
1509 | // Proposed on cxx-abi-dev on 2016-08-12 |
1510 | Out << "DC"; |
1511 | for (auto *BD : DD->bindings()) |
1512 | mangleSourceName(II: BD->getDeclName().getAsIdentifierInfo()); |
1513 | Out << 'E'; |
1514 | writeAbiTags(ND, AdditionalAbiTags); |
1515 | break; |
1516 | } |
1517 | |
1518 | if (auto *GD = dyn_cast<MSGuidDecl>(Val: ND)) { |
1519 | // We follow MSVC in mangling GUID declarations as if they were variables |
1520 | // with a particular reserved name. Continue the pretense here. |
1521 | SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; |
1522 | llvm::raw_svector_ostream GUIDOS(GUID); |
1523 | Context.mangleMSGuidDecl(GD, GUIDOS); |
1524 | Out << GUID.size() << GUID; |
1525 | break; |
1526 | } |
1527 | |
1528 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: ND)) { |
1529 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. |
1530 | Out << "TA"; |
1531 | mangleValueInTemplateArg(T: TPO->getType().getUnqualifiedType(), |
1532 | V: TPO->getValue(), /*TopLevel=*/true); |
1533 | break; |
1534 | } |
1535 | |
1536 | if (II) { |
1537 | // Match GCC's naming convention for internal linkage symbols, for |
1538 | // symbols that are not actually visible outside of this TU. GCC |
1539 | // distinguishes between internal and external linkage symbols in |
1540 | // its mangling, to support cases like this that were valid C++ prior |
1541 | // to DR426: |
1542 | // |
1543 | // void test() { extern void foo(); } |
1544 | // static void foo(); |
1545 | // |
1546 | // Don't bother with the L marker for names in anonymous namespaces; the |
1547 | // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better |
1548 | // matches GCC anyway, because GCC does not treat anonymous namespaces as |
1549 | // implying internal linkage. |
1550 | if (Context.isInternalLinkageDecl(ND)) |
1551 | Out << 'L'; |
1552 | |
1553 | bool IsRegCall = FD && |
1554 | FD->getType()->castAs<FunctionType>()->getCallConv() == |
1555 | clang::CC_X86RegCall; |
1556 | bool IsDeviceStub = |
1557 | FD && FD->hasAttr<CUDAGlobalAttr>() && |
1558 | GD.getKernelReferenceKind() == KernelReferenceKind::Stub; |
1559 | bool IsOCLDeviceStub = |
1560 | FD && |
1561 | DeviceKernelAttr::isOpenCLSpelling(FD->getAttr<DeviceKernelAttr>()) && |
1562 | GD.getKernelReferenceKind() == KernelReferenceKind::Stub; |
1563 | if (IsDeviceStub) |
1564 | mangleDeviceStubName(II); |
1565 | else if (IsOCLDeviceStub) |
1566 | mangleOCLDeviceStubName(II); |
1567 | else if (IsRegCall) |
1568 | mangleRegCallName(II); |
1569 | else |
1570 | mangleSourceName(II); |
1571 | |
1572 | writeAbiTags(ND, AdditionalAbiTags); |
1573 | break; |
1574 | } |
1575 | |
1576 | // Otherwise, an anonymous entity. We must have a declaration. |
1577 | assert(ND && "mangling empty name without declaration"); |
1578 | |
1579 | if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
1580 | if (NS->isAnonymousNamespace()) { |
1581 | // This is how gcc mangles these names. |
1582 | Out << "12_GLOBAL__N_1"; |
1583 | break; |
1584 | } |
1585 | } |
1586 | |
1587 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) { |
1588 | // We must have an anonymous union or struct declaration. |
1589 | const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl(); |
1590 | |
1591 | // Itanium C++ ABI 5.1.2: |
1592 | // |
1593 | // For the purposes of mangling, the name of an anonymous union is |
1594 | // considered to be the name of the first named data member found by a |
1595 | // pre-order, depth-first, declaration-order walk of the data members of |
1596 | // the anonymous union. If there is no such data member (i.e., if all of |
1597 | // the data members in the union are unnamed), then there is no way for |
1598 | // a program to refer to the anonymous union, and there is therefore no |
1599 | // need to mangle its name. |
1600 | assert(RD->isAnonymousStructOrUnion() |
1601 | && "Expected anonymous struct or union!"); |
1602 | const FieldDecl *FD = RD->findFirstNamedDataMember(); |
1603 | |
1604 | // It's actually possible for various reasons for us to get here |
1605 | // with an empty anonymous struct / union. Fortunately, it |
1606 | // doesn't really matter what name we generate. |
1607 | if (!FD) break; |
1608 | assert(FD->getIdentifier() && "Data member name isn't an identifier!"); |
1609 | |
1610 | mangleSourceName(II: FD->getIdentifier()); |
1611 | // Not emitting abi tags: internal name anyway. |
1612 | break; |
1613 | } |
1614 | |
1615 | // Class extensions have no name as a category, and it's possible |
1616 | // for them to be the semantic parent of certain declarations |
1617 | // (primarily, tag decls defined within declarations). Such |
1618 | // declarations will always have internal linkage, so the name |
1619 | // doesn't really matter, but we shouldn't crash on them. For |
1620 | // safety, just handle all ObjC containers here. |
1621 | if (isa<ObjCContainerDecl>(Val: ND)) |
1622 | break; |
1623 | |
1624 | // We must have an anonymous struct. |
1625 | const TagDecl *TD = cast<TagDecl>(Val: ND); |
1626 | if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { |
1627 | assert(TD->getDeclContext() == D->getDeclContext() && |
1628 | "Typedef should not be in another decl context!"); |
1629 | assert(D->getDeclName().getAsIdentifierInfo() && |
1630 | "Typedef was not named!"); |
1631 | mangleSourceName(II: D->getDeclName().getAsIdentifierInfo()); |
1632 | assert(!AdditionalAbiTags && "Type cannot have additional abi tags"); |
1633 | // Explicit abi tags are still possible; take from underlying type, not |
1634 | // from typedef. |
1635 | writeAbiTags(TD, nullptr); |
1636 | break; |
1637 | } |
1638 | |
1639 | // <unnamed-type-name> ::= <closure-type-name> |
1640 | // |
1641 | // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ |
1642 | // <lambda-sig> ::= <template-param-decl>* <parameter-type>+ |
1643 | // # Parameter types or 'v' for 'void'. |
1644 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: TD)) { |
1645 | UnsignedOrNone DeviceNumber = |
1646 | Context.getDiscriminatorOverride()(Context.getASTContext(), Record); |
1647 | |
1648 | // If we have a device-number via the discriminator, use that to mangle |
1649 | // the lambda, otherwise use the typical lambda-mangling-number. In either |
1650 | // case, a '0' should be mangled as a normal unnamed class instead of as a |
1651 | // lambda. |
1652 | if (Record->isLambda() && |
1653 | ((DeviceNumber && *DeviceNumber > 0) || |
1654 | (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) { |
1655 | assert(!AdditionalAbiTags && |
1656 | "Lambda type cannot have additional abi tags"); |
1657 | mangleLambda(Lambda: Record); |
1658 | break; |
1659 | } |
1660 | } |
1661 | |
1662 | if (TD->isExternallyVisible()) { |
1663 | unsigned UnnamedMangle = |
1664 | getASTContext().getManglingNumber(TD, Context.isAux()); |
1665 | Out << "Ut"; |
1666 | if (UnnamedMangle > 1) |
1667 | Out << UnnamedMangle - 2; |
1668 | Out << '_'; |
1669 | writeAbiTags(TD, AdditionalAbiTags); |
1670 | break; |
1671 | } |
1672 | |
1673 | // Get a unique id for the anonymous struct. If it is not a real output |
1674 | // ID doesn't matter so use fake one. |
1675 | unsigned AnonStructId = |
1676 | NullOut ? 0 |
1677 | : Context.getAnonymousStructId(TD, dyn_cast<FunctionDecl>(Val: DC)); |
1678 | |
1679 | // Mangle it as a source name in the form |
1680 | // [n] $_<id> |
1681 | // where n is the length of the string. |
1682 | SmallString<8> Str; |
1683 | Str += "$_"; |
1684 | Str += llvm::utostr(X: AnonStructId); |
1685 | |
1686 | Out << Str.size(); |
1687 | Out << Str; |
1688 | break; |
1689 | } |
1690 | |
1691 | case DeclarationName::ObjCZeroArgSelector: |
1692 | case DeclarationName::ObjCOneArgSelector: |
1693 | case DeclarationName::ObjCMultiArgSelector: |
1694 | llvm_unreachable("Can't mangle Objective-C selector names here!"); |
1695 | |
1696 | case DeclarationName::CXXConstructorName: { |
1697 | const CXXRecordDecl *InheritedFrom = nullptr; |
1698 | TemplateName InheritedTemplateName; |
1699 | const TemplateArgumentList *InheritedTemplateArgs = nullptr; |
1700 | if (auto Inherited = |
1701 | cast<CXXConstructorDecl>(Val: ND)->getInheritedConstructor()) { |
1702 | InheritedFrom = Inherited.getConstructor()->getParent(); |
1703 | InheritedTemplateName = |
1704 | TemplateName(Inherited.getConstructor()->getPrimaryTemplate()); |
1705 | InheritedTemplateArgs = |
1706 | Inherited.getConstructor()->getTemplateSpecializationArgs(); |
1707 | } |
1708 | |
1709 | if (ND == Structor) |
1710 | // If the named decl is the C++ constructor we're mangling, use the type |
1711 | // we were given. |
1712 | mangleCXXCtorType(T: static_cast<CXXCtorType>(StructorType), InheritedFrom); |
1713 | else |
1714 | // Otherwise, use the complete constructor name. This is relevant if a |
1715 | // class with a constructor is declared within a constructor. |
1716 | mangleCXXCtorType(T: Ctor_Complete, InheritedFrom); |
1717 | |
1718 | // FIXME: The template arguments are part of the enclosing prefix or |
1719 | // nested-name, but it's more convenient to mangle them here. |
1720 | if (InheritedTemplateArgs) |
1721 | mangleTemplateArgs(TN: InheritedTemplateName, AL: *InheritedTemplateArgs); |
1722 | |
1723 | writeAbiTags(ND, AdditionalAbiTags); |
1724 | break; |
1725 | } |
1726 | |
1727 | case DeclarationName::CXXDestructorName: |
1728 | if (ND == Structor) |
1729 | // If the named decl is the C++ destructor we're mangling, use the type we |
1730 | // were given. |
1731 | mangleCXXDtorType(T: static_cast<CXXDtorType>(StructorType)); |
1732 | else |
1733 | // Otherwise, use the complete destructor name. This is relevant if a |
1734 | // class with a destructor is declared within a destructor. |
1735 | mangleCXXDtorType(T: Dtor_Complete); |
1736 | assert(ND); |
1737 | writeAbiTags(ND, AdditionalAbiTags); |
1738 | break; |
1739 | |
1740 | case DeclarationName::CXXOperatorName: |
1741 | if (ND && Arity == UnknownArity) { |
1742 | Arity = cast<FunctionDecl>(Val: ND)->getNumParams(); |
1743 | |
1744 | // If we have a member function, we need to include the 'this' pointer. |
1745 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: ND)) |
1746 | if (MD->isImplicitObjectMemberFunction()) |
1747 | Arity++; |
1748 | } |
1749 | [[fallthrough]]; |
1750 | case DeclarationName::CXXConversionFunctionName: |
1751 | case DeclarationName::CXXLiteralOperatorName: |
1752 | mangleOperatorName(Name, Arity); |
1753 | writeAbiTags(ND, AdditionalAbiTags); |
1754 | break; |
1755 | |
1756 | case DeclarationName::CXXDeductionGuideName: |
1757 | llvm_unreachable("Can't mangle a deduction guide name!"); |
1758 | |
1759 | case DeclarationName::CXXUsingDirective: |
1760 | llvm_unreachable("Can't mangle a using directive name!"); |
1761 | } |
1762 | } |
1763 | |
1764 | void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { |
1765 | // <source-name> ::= <positive length number> __regcall3__ <identifier> |
1766 | // <number> ::= [n] <non-negative decimal integer> |
1767 | // <identifier> ::= <unqualified source code identifier> |
1768 | if (getASTContext().getLangOpts().RegCall4) |
1769 | Out << II->getLength() + sizeof("__regcall4__") - 1 << "__regcall4__" |
1770 | << II->getName(); |
1771 | else |
1772 | Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__" |
1773 | << II->getName(); |
1774 | } |
1775 | |
1776 | void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) { |
1777 | // <source-name> ::= <positive length number> __device_stub__ <identifier> |
1778 | // <number> ::= [n] <non-negative decimal integer> |
1779 | // <identifier> ::= <unqualified source code identifier> |
1780 | Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__" |
1781 | << II->getName(); |
1782 | } |
1783 | |
1784 | void CXXNameMangler::mangleOCLDeviceStubName(const IdentifierInfo *II) { |
1785 | // <source-name> ::= <positive length number> __clang_ocl_kern_imp_ |
1786 | // <identifier> <number> ::= [n] <non-negative decimal integer> <identifier> |
1787 | // ::= <unqualified source code identifier> |
1788 | StringRef OCLDeviceStubNamePrefix = "__clang_ocl_kern_imp_"; |
1789 | Out << II->getLength() + OCLDeviceStubNamePrefix.size() |
1790 | << OCLDeviceStubNamePrefix << II->getName(); |
1791 | } |
1792 | |
1793 | void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { |
1794 | // <source-name> ::= <positive length number> <identifier> |
1795 | // <number> ::= [n] <non-negative decimal integer> |
1796 | // <identifier> ::= <unqualified source code identifier> |
1797 | Out << II->getLength() << II->getName(); |
1798 | } |
1799 | |
1800 | void CXXNameMangler::mangleNestedName(GlobalDecl GD, |
1801 | const DeclContext *DC, |
1802 | const AbiTagList *AdditionalAbiTags, |
1803 | bool NoFunction) { |
1804 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1805 | // <nested-name> |
1806 | // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E |
1807 | // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> |
1808 | // <template-args> E |
1809 | |
1810 | Out << 'N'; |
1811 | if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: ND)) { |
1812 | Qualifiers MethodQuals = Method->getMethodQualifiers(); |
1813 | // We do not consider restrict a distinguishing attribute for overloading |
1814 | // purposes so we must not mangle it. |
1815 | if (Method->isExplicitObjectMemberFunction()) |
1816 | Out << 'H'; |
1817 | MethodQuals.removeRestrict(); |
1818 | mangleQualifiers(Quals: MethodQuals); |
1819 | mangleRefQualifier(RefQualifier: Method->getRefQualifier()); |
1820 | } |
1821 | |
1822 | // Check if we have a template. |
1823 | const TemplateArgumentList *TemplateArgs = nullptr; |
1824 | if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { |
1825 | mangleTemplatePrefix(GD: TD, NoFunction); |
1826 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
1827 | } else { |
1828 | manglePrefix(DC, NoFunction); |
1829 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
1830 | } |
1831 | |
1832 | Out << 'E'; |
1833 | } |
1834 | void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, |
1835 | ArrayRef<TemplateArgument> Args) { |
1836 | // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E |
1837 | |
1838 | Out << 'N'; |
1839 | |
1840 | mangleTemplatePrefix(TD); |
1841 | mangleTemplateArgs(TN: asTemplateName(TD), Args); |
1842 | |
1843 | Out << 'E'; |
1844 | } |
1845 | |
1846 | void CXXNameMangler::mangleNestedNameWithClosurePrefix( |
1847 | GlobalDecl GD, const NamedDecl *PrefixND, |
1848 | const AbiTagList *AdditionalAbiTags) { |
1849 | // A <closure-prefix> represents a variable or field, not a regular |
1850 | // DeclContext, so needs special handling. In this case we're mangling a |
1851 | // limited form of <nested-name>: |
1852 | // |
1853 | // <nested-name> ::= N <closure-prefix> <closure-type-name> E |
1854 | |
1855 | Out << 'N'; |
1856 | |
1857 | mangleClosurePrefix(ND: PrefixND); |
1858 | mangleUnqualifiedName(GD, DC: nullptr, AdditionalAbiTags); |
1859 | |
1860 | Out << 'E'; |
1861 | } |
1862 | |
1863 | static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) { |
1864 | GlobalDecl GD; |
1865 | // The Itanium spec says: |
1866 | // For entities in constructors and destructors, the mangling of the |
1867 | // complete object constructor or destructor is used as the base function |
1868 | // name, i.e. the C1 or D1 version. |
1869 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: DC)) |
1870 | GD = GlobalDecl(CD, Ctor_Complete); |
1871 | else if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: DC)) |
1872 | GD = GlobalDecl(DD, Dtor_Complete); |
1873 | else |
1874 | GD = GlobalDecl(cast<FunctionDecl>(Val: DC)); |
1875 | return GD; |
1876 | } |
1877 | |
1878 | void CXXNameMangler::mangleLocalName(GlobalDecl GD, |
1879 | const AbiTagList *AdditionalAbiTags) { |
1880 | const Decl *D = GD.getDecl(); |
1881 | // <local-name> := Z <function encoding> E <entity name> [<discriminator>] |
1882 | // := Z <function encoding> E s [<discriminator>] |
1883 | // <local-name> := Z <function encoding> E d [ <parameter number> ] |
1884 | // _ <entity name> |
1885 | // <discriminator> := _ <non-negative number> |
1886 | assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); |
1887 | const RecordDecl *RD = GetLocalClassDecl(D); |
1888 | const DeclContext *DC = Context.getEffectiveDeclContext(D: RD ? RD : D); |
1889 | |
1890 | Out << 'Z'; |
1891 | |
1892 | { |
1893 | AbiTagState LocalAbiTags(AbiTags); |
1894 | |
1895 | if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Val: DC)) |
1896 | mangleObjCMethodName(MD); |
1897 | else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: DC)) |
1898 | mangleBlockForPrefix(Block: BD); |
1899 | else |
1900 | mangleFunctionEncoding(GD: getParentOfLocalEntity(DC)); |
1901 | |
1902 | // Implicit ABI tags (from namespace) are not available in the following |
1903 | // entity; reset to actually emitted tags, which are available. |
1904 | LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); |
1905 | } |
1906 | |
1907 | Out << 'E'; |
1908 | |
1909 | // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to |
1910 | // be a bug that is fixed in trunk. |
1911 | |
1912 | if (RD) { |
1913 | // The parameter number is omitted for the last parameter, 0 for the |
1914 | // second-to-last parameter, 1 for the third-to-last parameter, etc. The |
1915 | // <entity name> will of course contain a <closure-type-name>: Its |
1916 | // numbering will be local to the particular argument in which it appears |
1917 | // -- other default arguments do not affect its encoding. |
1918 | const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
1919 | if (CXXRD && CXXRD->isLambda()) { |
1920 | if (const ParmVarDecl *Parm |
1921 | = dyn_cast_or_null<ParmVarDecl>(Val: CXXRD->getLambdaContextDecl())) { |
1922 | if (const FunctionDecl *Func |
1923 | = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { |
1924 | Out << 'd'; |
1925 | unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
1926 | if (Num > 1) |
1927 | mangleNumber(Number: Num - 2); |
1928 | Out << '_'; |
1929 | } |
1930 | } |
1931 | } |
1932 | |
1933 | // Mangle the name relative to the closest enclosing function. |
1934 | // equality ok because RD derived from ND above |
1935 | if (D == RD) { |
1936 | mangleUnqualifiedName(RD, DC, AdditionalAbiTags); |
1937 | } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
1938 | if (const NamedDecl *PrefixND = getClosurePrefix(BD)) |
1939 | mangleClosurePrefix(ND: PrefixND, NoFunction: true /*NoFunction*/); |
1940 | else |
1941 | manglePrefix(DC: Context.getEffectiveDeclContext(BD), NoFunction: true /*NoFunction*/); |
1942 | assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); |
1943 | mangleUnqualifiedBlock(Block: BD); |
1944 | } else { |
1945 | const NamedDecl *ND = cast<NamedDecl>(Val: D); |
1946 | mangleNestedName(GD, DC: Context.getEffectiveDeclContext(ND), |
1947 | AdditionalAbiTags, NoFunction: true /*NoFunction*/); |
1948 | } |
1949 | } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
1950 | // Mangle a block in a default parameter; see above explanation for |
1951 | // lambdas. |
1952 | if (const ParmVarDecl *Parm |
1953 | = dyn_cast_or_null<ParmVarDecl>(Val: BD->getBlockManglingContextDecl())) { |
1954 | if (const FunctionDecl *Func |
1955 | = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { |
1956 | Out << 'd'; |
1957 | unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
1958 | if (Num > 1) |
1959 | mangleNumber(Number: Num - 2); |
1960 | Out << '_'; |
1961 | } |
1962 | } |
1963 | |
1964 | assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); |
1965 | mangleUnqualifiedBlock(Block: BD); |
1966 | } else { |
1967 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
1968 | } |
1969 | |
1970 | if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { |
1971 | unsigned disc; |
1972 | if (Context.getNextDiscriminator(ND, disc)) { |
1973 | if (disc < 10) |
1974 | Out << '_' << disc; |
1975 | else |
1976 | Out << "__"<< disc << '_'; |
1977 | } |
1978 | } |
1979 | } |
1980 | |
1981 | void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { |
1982 | if (GetLocalClassDecl(Block)) { |
1983 | mangleLocalName(GD: Block, /* AdditionalAbiTags */ nullptr); |
1984 | return; |
1985 | } |
1986 | const DeclContext *DC = Context.getEffectiveDeclContext(Block); |
1987 | if (isLocalContainerContext(DC)) { |
1988 | mangleLocalName(GD: Block, /* AdditionalAbiTags */ nullptr); |
1989 | return; |
1990 | } |
1991 | if (const NamedDecl *PrefixND = getClosurePrefix(Block)) |
1992 | mangleClosurePrefix(ND: PrefixND); |
1993 | else |
1994 | manglePrefix(DC); |
1995 | mangleUnqualifiedBlock(Block); |
1996 | } |
1997 | |
1998 | void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { |
1999 | // When trying to be ABI-compatibility with clang 12 and before, mangle a |
2000 | // <data-member-prefix> now, with no substitutions and no <template-args>. |
2001 | if (Decl *Context = Block->getBlockManglingContextDecl()) { |
2002 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12) && |
2003 | (isa<VarDecl>(Val: Context) || isa<FieldDecl>(Val: Context)) && |
2004 | Context->getDeclContext()->isRecord()) { |
2005 | const auto *ND = cast<NamedDecl>(Val: Context); |
2006 | if (ND->getIdentifier()) { |
2007 | mangleSourceNameWithAbiTags(ND); |
2008 | Out << 'M'; |
2009 | } |
2010 | } |
2011 | } |
2012 | |
2013 | // If we have a block mangling number, use it. |
2014 | unsigned Number = Block->getBlockManglingNumber(); |
2015 | // Otherwise, just make up a number. It doesn't matter what it is because |
2016 | // the symbol in question isn't externally visible. |
2017 | if (!Number) |
2018 | Number = Context.getBlockId(BD: Block, Local: false); |
2019 | else { |
2020 | // Stored mangling numbers are 1-based. |
2021 | --Number; |
2022 | } |
2023 | Out << "Ub"; |
2024 | if (Number > 0) |
2025 | Out << Number - 1; |
2026 | Out << '_'; |
2027 | } |
2028 | |
2029 | // <template-param-decl> |
2030 | // ::= Ty # template type parameter |
2031 | // ::= Tk <concept name> [<template-args>] # constrained type parameter |
2032 | // ::= Tn <type> # template non-type parameter |
2033 | // ::= Tt <template-param-decl>* E [Q <requires-clause expr>] |
2034 | // # template template parameter |
2035 | // ::= Tp <template-param-decl> # template parameter pack |
2036 | void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) { |
2037 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
2038 | if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Val: Decl)) { |
2039 | if (Ty->isParameterPack()) |
2040 | Out << "Tp"; |
2041 | const TypeConstraint *Constraint = Ty->getTypeConstraint(); |
2042 | if (Constraint && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
2043 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
2044 | Out << "Tk"; |
2045 | mangleTypeConstraint(Constraint); |
2046 | } else { |
2047 | Out << "Ty"; |
2048 | } |
2049 | } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Val: Decl)) { |
2050 | if (Tn->isExpandedParameterPack()) { |
2051 | for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) { |
2052 | Out << "Tn"; |
2053 | mangleType(T: Tn->getExpansionType(I)); |
2054 | } |
2055 | } else { |
2056 | QualType T = Tn->getType(); |
2057 | if (Tn->isParameterPack()) { |
2058 | Out << "Tp"; |
2059 | if (auto *PackExpansion = T->getAs<PackExpansionType>()) |
2060 | T = PackExpansion->getPattern(); |
2061 | } |
2062 | Out << "Tn"; |
2063 | mangleType(T); |
2064 | } |
2065 | } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Val: Decl)) { |
2066 | if (Tt->isExpandedParameterPack()) { |
2067 | for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N; |
2068 | ++I) |
2069 | mangleTemplateParameterList(Params: Tt->getExpansionTemplateParameters(I)); |
2070 | } else { |
2071 | if (Tt->isParameterPack()) |
2072 | Out << "Tp"; |
2073 | mangleTemplateParameterList(Params: Tt->getTemplateParameters()); |
2074 | } |
2075 | } |
2076 | } |
2077 | |
2078 | void CXXNameMangler::mangleTemplateParameterList( |
2079 | const TemplateParameterList *Params) { |
2080 | Out << "Tt"; |
2081 | for (auto *Param : *Params) |
2082 | mangleTemplateParamDecl(Decl: Param); |
2083 | mangleRequiresClause(RequiresClause: Params->getRequiresClause()); |
2084 | Out << "E"; |
2085 | } |
2086 | |
2087 | void CXXNameMangler::mangleTypeConstraint( |
2088 | const ConceptDecl *Concept, ArrayRef<TemplateArgument> Arguments) { |
2089 | const DeclContext *DC = Context.getEffectiveDeclContext(Concept); |
2090 | if (!Arguments.empty()) |
2091 | mangleTemplateName(Concept, Arguments); |
2092 | else if (DC->isTranslationUnit() || isStdNamespace(DC)) |
2093 | mangleUnscopedName(Concept, DC, nullptr); |
2094 | else |
2095 | mangleNestedName(Concept, DC, nullptr); |
2096 | } |
2097 | |
2098 | void CXXNameMangler::mangleTypeConstraint(const TypeConstraint *Constraint) { |
2099 | llvm::SmallVector<TemplateArgument, 8> Args; |
2100 | if (Constraint->getTemplateArgsAsWritten()) { |
2101 | for (const TemplateArgumentLoc &ArgLoc : |
2102 | Constraint->getTemplateArgsAsWritten()->arguments()) |
2103 | Args.push_back(Elt: ArgLoc.getArgument()); |
2104 | } |
2105 | return mangleTypeConstraint(Concept: Constraint->getNamedConcept(), Arguments: Args); |
2106 | } |
2107 | |
2108 | void CXXNameMangler::mangleRequiresClause(const Expr *RequiresClause) { |
2109 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
2110 | if (RequiresClause && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
2111 | Out << 'Q'; |
2112 | mangleExpression(E: RequiresClause); |
2113 | } |
2114 | } |
2115 | |
2116 | void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { |
2117 | // When trying to be ABI-compatibility with clang 12 and before, mangle a |
2118 | // <data-member-prefix> now, with no substitutions. |
2119 | if (Decl *Context = Lambda->getLambdaContextDecl()) { |
2120 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12) && |
2121 | (isa<VarDecl>(Val: Context) || isa<FieldDecl>(Val: Context)) && |
2122 | !isa<ParmVarDecl>(Val: Context)) { |
2123 | if (const IdentifierInfo *Name |
2124 | = cast<NamedDecl>(Val: Context)->getIdentifier()) { |
2125 | mangleSourceName(II: Name); |
2126 | const TemplateArgumentList *TemplateArgs = nullptr; |
2127 | if (GlobalDecl TD = isTemplate(GD: cast<NamedDecl>(Val: Context), TemplateArgs)) |
2128 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
2129 | Out << 'M'; |
2130 | } |
2131 | } |
2132 | } |
2133 | |
2134 | Out << "Ul"; |
2135 | mangleLambdaSig(Lambda); |
2136 | Out << "E"; |
2137 | |
2138 | // The number is omitted for the first closure type with a given |
2139 | // <lambda-sig> in a given context; it is n-2 for the nth closure type |
2140 | // (in lexical order) with that same <lambda-sig> and context. |
2141 | // |
2142 | // The AST keeps track of the number for us. |
2143 | // |
2144 | // In CUDA/HIP, to ensure the consistent lamba numbering between the device- |
2145 | // and host-side compilations, an extra device mangle context may be created |
2146 | // if the host-side CXX ABI has different numbering for lambda. In such case, |
2147 | // if the mangle context is that device-side one, use the device-side lambda |
2148 | // mangling number for this lambda. |
2149 | UnsignedOrNone DeviceNumber = |
2150 | Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda); |
2151 | unsigned Number = |
2152 | DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber(); |
2153 | |
2154 | assert(Number > 0 && "Lambda should be mangled as an unnamed class"); |
2155 | if (Number > 1) |
2156 | mangleNumber(Number: Number - 2); |
2157 | Out << '_'; |
2158 | } |
2159 | |
2160 | void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) { |
2161 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/31. |
2162 | for (auto *D : Lambda->getLambdaExplicitTemplateParameters()) |
2163 | mangleTemplateParamDecl(Decl: D); |
2164 | |
2165 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
2166 | if (auto *TPL = Lambda->getGenericLambdaTemplateParameterList()) |
2167 | mangleRequiresClause(RequiresClause: TPL->getRequiresClause()); |
2168 | |
2169 | auto *Proto = |
2170 | Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>(); |
2171 | mangleBareFunctionType(Proto, /*MangleReturnType=*/false, |
2172 | Lambda->getLambdaStaticInvoker()); |
2173 | } |
2174 | |
2175 | void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { |
2176 | switch (qualifier->getKind()) { |
2177 | case NestedNameSpecifier::Global: |
2178 | // nothing |
2179 | return; |
2180 | |
2181 | case NestedNameSpecifier::Super: |
2182 | llvm_unreachable("Can't mangle __super specifier"); |
2183 | |
2184 | case NestedNameSpecifier::Namespace: |
2185 | mangleName(qualifier->getAsNamespace()); |
2186 | return; |
2187 | |
2188 | case NestedNameSpecifier::NamespaceAlias: |
2189 | mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); |
2190 | return; |
2191 | |
2192 | case NestedNameSpecifier::TypeSpec: |
2193 | if (NestedNameSpecifier *Prefix = qualifier->getPrefix()) { |
2194 | const auto *DTST = |
2195 | cast<DependentTemplateSpecializationType>(Val: qualifier->getAsType()); |
2196 | QualType NewT = getASTContext().getDependentTemplateSpecializationType( |
2197 | DTST->getKeyword(), |
2198 | {Prefix, DTST->getDependentTemplateName().getName(), |
2199 | /*HasTemplateKeyword=*/true}, |
2200 | DTST->template_arguments(), /*IsCanonical=*/true); |
2201 | manglePrefix(type: NewT); |
2202 | return; |
2203 | } |
2204 | manglePrefix(type: QualType(qualifier->getAsType(), 0)); |
2205 | return; |
2206 | |
2207 | case NestedNameSpecifier::Identifier: |
2208 | // Clang 14 and before did not consider this substitutable. |
2209 | bool Clang14Compat = isCompatibleWith(Ver: LangOptions::ClangABI::Ver14); |
2210 | if (!Clang14Compat && mangleSubstitution(NNS: qualifier)) |
2211 | return; |
2212 | |
2213 | // Member expressions can have these without prefixes, but that |
2214 | // should end up in mangleUnresolvedPrefix instead. |
2215 | assert(qualifier->getPrefix()); |
2216 | manglePrefix(qualifier: qualifier->getPrefix()); |
2217 | |
2218 | mangleSourceName(II: qualifier->getAsIdentifier()); |
2219 | |
2220 | if (!Clang14Compat) |
2221 | addSubstitution(NNS: qualifier); |
2222 | return; |
2223 | } |
2224 | |
2225 | llvm_unreachable("unexpected nested name specifier"); |
2226 | } |
2227 | |
2228 | void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { |
2229 | // <prefix> ::= <prefix> <unqualified-name> |
2230 | // ::= <template-prefix> <template-args> |
2231 | // ::= <closure-prefix> |
2232 | // ::= <template-param> |
2233 | // ::= # empty |
2234 | // ::= <substitution> |
2235 | |
2236 | assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl"); |
2237 | |
2238 | if (DC->isTranslationUnit()) |
2239 | return; |
2240 | |
2241 | if (NoFunction && isLocalContainerContext(DC)) |
2242 | return; |
2243 | |
2244 | const NamedDecl *ND = cast<NamedDecl>(Val: DC); |
2245 | if (mangleSubstitution(ND)) |
2246 | return; |
2247 | |
2248 | // Check if we have a template-prefix or a closure-prefix. |
2249 | const TemplateArgumentList *TemplateArgs = nullptr; |
2250 | if (GlobalDecl TD = isTemplate(GD: ND, TemplateArgs)) { |
2251 | mangleTemplatePrefix(GD: TD); |
2252 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
2253 | } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { |
2254 | mangleClosurePrefix(ND: PrefixND, NoFunction); |
2255 | mangleUnqualifiedName(GD: ND, DC: nullptr, AdditionalAbiTags: nullptr); |
2256 | } else { |
2257 | const DeclContext *DC = Context.getEffectiveDeclContext(ND); |
2258 | manglePrefix(DC, NoFunction); |
2259 | mangleUnqualifiedName(GD: ND, DC, AdditionalAbiTags: nullptr); |
2260 | } |
2261 | |
2262 | addSubstitution(ND); |
2263 | } |
2264 | |
2265 | void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { |
2266 | // <template-prefix> ::= <prefix> <template unqualified-name> |
2267 | // ::= <template-param> |
2268 | // ::= <substitution> |
2269 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
2270 | return mangleTemplatePrefix(TD); |
2271 | |
2272 | DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); |
2273 | assert(Dependent && "unexpected template name kind"); |
2274 | |
2275 | // Clang 11 and before mangled the substitution for a dependent template name |
2276 | // after already having emitted (a substitution for) the prefix. |
2277 | bool Clang11Compat = isCompatibleWith(Ver: LangOptions::ClangABI::Ver11); |
2278 | if (!Clang11Compat && mangleSubstitution(Template)) |
2279 | return; |
2280 | |
2281 | if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) |
2282 | manglePrefix(qualifier: Qualifier); |
2283 | |
2284 | if (Clang11Compat && mangleSubstitution(Template)) |
2285 | return; |
2286 | |
2287 | if (IdentifierOrOverloadedOperator Name = Dependent->getName(); |
2288 | const IdentifierInfo *Id = Name.getIdentifier()) |
2289 | mangleSourceName(II: Id); |
2290 | else |
2291 | mangleOperatorName(OO: Name.getOperator(), Arity: UnknownArity); |
2292 | |
2293 | addSubstitution(Template); |
2294 | } |
2295 | |
2296 | void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD, |
2297 | bool NoFunction) { |
2298 | const TemplateDecl *ND = cast<TemplateDecl>(Val: GD.getDecl()); |
2299 | // <template-prefix> ::= <prefix> <template unqualified-name> |
2300 | // ::= <template-param> |
2301 | // ::= <substitution> |
2302 | // <template-template-param> ::= <template-param> |
2303 | // <substitution> |
2304 | |
2305 | if (mangleSubstitution(ND)) |
2306 | return; |
2307 | |
2308 | // <template-template-param> ::= <template-param> |
2309 | if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: ND)) { |
2310 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
2311 | } else { |
2312 | const DeclContext *DC = Context.getEffectiveDeclContext(ND); |
2313 | manglePrefix(DC, NoFunction); |
2314 | if (isa<BuiltinTemplateDecl>(Val: ND) || isa<ConceptDecl>(Val: ND)) |
2315 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags: nullptr); |
2316 | else |
2317 | mangleUnqualifiedName(GD: GD.getWithDecl(ND->getTemplatedDecl()), DC, |
2318 | AdditionalAbiTags: nullptr); |
2319 | } |
2320 | |
2321 | addSubstitution(ND); |
2322 | } |
2323 | |
2324 | const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) { |
2325 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12)) |
2326 | return nullptr; |
2327 | |
2328 | const NamedDecl *Context = nullptr; |
2329 | if (auto *Block = dyn_cast<BlockDecl>(Val: ND)) { |
2330 | Context = dyn_cast_or_null<NamedDecl>(Val: Block->getBlockManglingContextDecl()); |
2331 | } else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) { |
2332 | if (RD->isLambda()) |
2333 | Context = dyn_cast_or_null<NamedDecl>(Val: RD->getLambdaContextDecl()); |
2334 | } |
2335 | if (!Context) |
2336 | return nullptr; |
2337 | |
2338 | // Only lambdas within the initializer of a non-local variable or non-static |
2339 | // data member get a <closure-prefix>. |
2340 | if ((isa<VarDecl>(Val: Context) && cast<VarDecl>(Val: Context)->hasGlobalStorage()) || |
2341 | isa<FieldDecl>(Val: Context)) |
2342 | return Context; |
2343 | |
2344 | return nullptr; |
2345 | } |
2346 | |
2347 | void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) { |
2348 | // <closure-prefix> ::= [ <prefix> ] <unqualified-name> M |
2349 | // ::= <template-prefix> <template-args> M |
2350 | if (mangleSubstitution(ND)) |
2351 | return; |
2352 | |
2353 | const TemplateArgumentList *TemplateArgs = nullptr; |
2354 | if (GlobalDecl TD = isTemplate(GD: ND, TemplateArgs)) { |
2355 | mangleTemplatePrefix(GD: TD, NoFunction); |
2356 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
2357 | } else { |
2358 | const auto *DC = Context.getEffectiveDeclContext(ND); |
2359 | manglePrefix(DC, NoFunction); |
2360 | mangleUnqualifiedName(ND, DC, nullptr); |
2361 | } |
2362 | |
2363 | Out << 'M'; |
2364 | |
2365 | addSubstitution(ND); |
2366 | } |
2367 | |
2368 | /// Mangles a template name under the production <type>. Required for |
2369 | /// template template arguments. |
2370 | /// <type> ::= <class-enum-type> |
2371 | /// ::= <template-param> |
2372 | /// ::= <substitution> |
2373 | void CXXNameMangler::mangleType(TemplateName TN) { |
2374 | if (mangleSubstitution(Template: TN)) |
2375 | return; |
2376 | |
2377 | TemplateDecl *TD = nullptr; |
2378 | |
2379 | switch (TN.getKind()) { |
2380 | case TemplateName::QualifiedTemplate: |
2381 | case TemplateName::UsingTemplate: |
2382 | case TemplateName::Template: |
2383 | TD = TN.getAsTemplateDecl(); |
2384 | goto HaveDecl; |
2385 | |
2386 | HaveDecl: |
2387 | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: TD)) |
2388 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
2389 | else |
2390 | mangleName(TD); |
2391 | break; |
2392 | |
2393 | case TemplateName::OverloadedTemplate: |
2394 | case TemplateName::AssumedTemplate: |
2395 | llvm_unreachable("can't mangle an overloaded template name as a <type>"); |
2396 | |
2397 | case TemplateName::DependentTemplate: { |
2398 | const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); |
2399 | const IdentifierInfo *II = Dependent->getName().getIdentifier(); |
2400 | assert(II); |
2401 | |
2402 | // <class-enum-type> ::= <name> |
2403 | // <name> ::= <nested-name> |
2404 | mangleUnresolvedPrefix(qualifier: Dependent->getQualifier()); |
2405 | mangleSourceName(II); |
2406 | break; |
2407 | } |
2408 | |
2409 | case TemplateName::SubstTemplateTemplateParm: { |
2410 | // Substituted template parameters are mangled as the substituted |
2411 | // template. This will check for the substitution twice, which is |
2412 | // fine, but we have to return early so that we don't try to *add* |
2413 | // the substitution twice. |
2414 | SubstTemplateTemplateParmStorage *subst |
2415 | = TN.getAsSubstTemplateTemplateParm(); |
2416 | mangleType(TN: subst->getReplacement()); |
2417 | return; |
2418 | } |
2419 | |
2420 | case TemplateName::SubstTemplateTemplateParmPack: { |
2421 | // FIXME: not clear how to mangle this! |
2422 | // template <template <class> class T...> class A { |
2423 | // template <template <class> class U...> void foo(B<T,U> x...); |
2424 | // }; |
2425 | Out << "_SUBSTPACK_"; |
2426 | break; |
2427 | } |
2428 | case TemplateName::DeducedTemplate: |
2429 | llvm_unreachable("Unexpected DeducedTemplate"); |
2430 | } |
2431 | |
2432 | addSubstitution(Template: TN); |
2433 | } |
2434 | |
2435 | bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, |
2436 | StringRef Prefix) { |
2437 | // Only certain other types are valid as prefixes; enumerate them. |
2438 | switch (Ty->getTypeClass()) { |
2439 | case Type::Builtin: |
2440 | case Type::Complex: |
2441 | case Type::Adjusted: |
2442 | case Type::Decayed: |
2443 | case Type::ArrayParameter: |
2444 | case Type::Pointer: |
2445 | case Type::BlockPointer: |
2446 | case Type::LValueReference: |
2447 | case Type::RValueReference: |
2448 | case Type::MemberPointer: |
2449 | case Type::ConstantArray: |
2450 | case Type::IncompleteArray: |
2451 | case Type::VariableArray: |
2452 | case Type::DependentSizedArray: |
2453 | case Type::DependentAddressSpace: |
2454 | case Type::DependentVector: |
2455 | case Type::DependentSizedExtVector: |
2456 | case Type::Vector: |
2457 | case Type::ExtVector: |
2458 | case Type::ConstantMatrix: |
2459 | case Type::DependentSizedMatrix: |
2460 | case Type::FunctionProto: |
2461 | case Type::FunctionNoProto: |
2462 | case Type::Paren: |
2463 | case Type::Attributed: |
2464 | case Type::BTFTagAttributed: |
2465 | case Type::HLSLAttributedResource: |
2466 | case Type::HLSLInlineSpirv: |
2467 | case Type::Auto: |
2468 | case Type::DeducedTemplateSpecialization: |
2469 | case Type::PackExpansion: |
2470 | case Type::ObjCObject: |
2471 | case Type::ObjCInterface: |
2472 | case Type::ObjCObjectPointer: |
2473 | case Type::ObjCTypeParam: |
2474 | case Type::Atomic: |
2475 | case Type::Pipe: |
2476 | case Type::MacroQualified: |
2477 | case Type::BitInt: |
2478 | case Type::DependentBitInt: |
2479 | case Type::CountAttributed: |
2480 | llvm_unreachable("type is illegal as a nested name specifier"); |
2481 | |
2482 | case Type::SubstTemplateTypeParmPack: |
2483 | // FIXME: not clear how to mangle this! |
2484 | // template <class T...> class A { |
2485 | // template <class U...> void foo(decltype(T::foo(U())) x...); |
2486 | // }; |
2487 | Out << "_SUBSTPACK_"; |
2488 | break; |
2489 | |
2490 | // <unresolved-type> ::= <template-param> |
2491 | // ::= <decltype> |
2492 | // ::= <template-template-param> <template-args> |
2493 | // (this last is not official yet) |
2494 | case Type::TypeOfExpr: |
2495 | case Type::TypeOf: |
2496 | case Type::Decltype: |
2497 | case Type::PackIndexing: |
2498 | case Type::TemplateTypeParm: |
2499 | case Type::UnaryTransform: |
2500 | unresolvedType: |
2501 | // Some callers want a prefix before the mangled type. |
2502 | Out << Prefix; |
2503 | |
2504 | // This seems to do everything we want. It's not really |
2505 | // sanctioned for a substituted template parameter, though. |
2506 | mangleType(T: Ty); |
2507 | |
2508 | // We never want to print 'E' directly after an unresolved-type, |
2509 | // so we return directly. |
2510 | return true; |
2511 | |
2512 | case Type::SubstTemplateTypeParm: { |
2513 | auto *ST = cast<SubstTemplateTypeParmType>(Val&: Ty); |
2514 | // If this was replaced from a type alias, this is not substituted |
2515 | // from an outer template parameter, so it's not an unresolved-type. |
2516 | if (auto *TD = dyn_cast<TemplateDecl>(Val: ST->getAssociatedDecl()); |
2517 | TD && TD->isTypeAlias()) |
2518 | return mangleUnresolvedTypeOrSimpleId(Ty: ST->getReplacementType(), Prefix); |
2519 | goto unresolvedType; |
2520 | } |
2521 | |
2522 | case Type::Typedef: |
2523 | mangleSourceNameWithAbiTags(cast<TypedefType>(Val&: Ty)->getDecl()); |
2524 | break; |
2525 | |
2526 | case Type::UnresolvedUsing: |
2527 | mangleSourceNameWithAbiTags( |
2528 | cast<UnresolvedUsingType>(Val&: Ty)->getDecl()); |
2529 | break; |
2530 | |
2531 | case Type::Enum: |
2532 | case Type::Record: |
2533 | mangleSourceNameWithAbiTags(cast<TagType>(Val&: Ty)->getDecl()); |
2534 | break; |
2535 | |
2536 | case Type::TemplateSpecialization: { |
2537 | const TemplateSpecializationType *TST = |
2538 | cast<TemplateSpecializationType>(Val&: Ty); |
2539 | TemplateName TN = TST->getTemplateName(); |
2540 | switch (TN.getKind()) { |
2541 | case TemplateName::Template: |
2542 | case TemplateName::QualifiedTemplate: { |
2543 | TemplateDecl *TD = TN.getAsTemplateDecl(); |
2544 | |
2545 | // If the base is a template template parameter, this is an |
2546 | // unresolved type. |
2547 | assert(TD && "no template for template specialization type"); |
2548 | if (isa<TemplateTemplateParmDecl>(Val: TD)) |
2549 | goto unresolvedType; |
2550 | |
2551 | mangleSourceNameWithAbiTags(TD); |
2552 | break; |
2553 | } |
2554 | |
2555 | case TemplateName::OverloadedTemplate: |
2556 | case TemplateName::AssumedTemplate: |
2557 | case TemplateName::DependentTemplate: |
2558 | case TemplateName::DeducedTemplate: |
2559 | llvm_unreachable("invalid base for a template specialization type"); |
2560 | |
2561 | case TemplateName::SubstTemplateTemplateParm: { |
2562 | SubstTemplateTemplateParmStorage *subst = |
2563 | TN.getAsSubstTemplateTemplateParm(); |
2564 | mangleExistingSubstitution(name: subst->getReplacement()); |
2565 | break; |
2566 | } |
2567 | |
2568 | case TemplateName::SubstTemplateTemplateParmPack: { |
2569 | // FIXME: not clear how to mangle this! |
2570 | // template <template <class U> class T...> class A { |
2571 | // template <class U...> void foo(decltype(T<U>::foo) x...); |
2572 | // }; |
2573 | Out << "_SUBSTPACK_"; |
2574 | break; |
2575 | } |
2576 | case TemplateName::UsingTemplate: { |
2577 | TemplateDecl *TD = TN.getAsTemplateDecl(); |
2578 | assert(TD && !isa<TemplateTemplateParmDecl>(TD)); |
2579 | mangleSourceNameWithAbiTags(TD); |
2580 | break; |
2581 | } |
2582 | } |
2583 | |
2584 | // Note: we don't pass in the template name here. We are mangling the |
2585 | // original source-level template arguments, so we shouldn't consider |
2586 | // conversions to the corresponding template parameter. |
2587 | // FIXME: Other compilers mangle partially-resolved template arguments in |
2588 | // unresolved-qualifier-levels. |
2589 | mangleTemplateArgs(TN: TemplateName(), Args: TST->template_arguments()); |
2590 | break; |
2591 | } |
2592 | |
2593 | case Type::InjectedClassName: |
2594 | mangleSourceNameWithAbiTags( |
2595 | cast<InjectedClassNameType>(Val&: Ty)->getDecl()); |
2596 | break; |
2597 | |
2598 | case Type::DependentName: |
2599 | mangleSourceName(II: cast<DependentNameType>(Val&: Ty)->getIdentifier()); |
2600 | break; |
2601 | |
2602 | case Type::DependentTemplateSpecialization: { |
2603 | const DependentTemplateSpecializationType *DTST = |
2604 | cast<DependentTemplateSpecializationType>(Val&: Ty); |
2605 | TemplateName Template = getASTContext().getDependentTemplateName( |
2606 | Name: DTST->getDependentTemplateName()); |
2607 | const DependentTemplateStorage &S = DTST->getDependentTemplateName(); |
2608 | mangleSourceName(II: S.getName().getIdentifier()); |
2609 | mangleTemplateArgs(TN: Template, Args: DTST->template_arguments()); |
2610 | break; |
2611 | } |
2612 | |
2613 | case Type::Using: |
2614 | return mangleUnresolvedTypeOrSimpleId(Ty: cast<UsingType>(Val&: Ty)->desugar(), |
2615 | Prefix); |
2616 | case Type::Elaborated: |
2617 | return mangleUnresolvedTypeOrSimpleId( |
2618 | Ty: cast<ElaboratedType>(Val&: Ty)->getNamedType(), Prefix); |
2619 | } |
2620 | |
2621 | return false; |
2622 | } |
2623 | |
2624 | void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { |
2625 | switch (Name.getNameKind()) { |
2626 | case DeclarationName::CXXConstructorName: |
2627 | case DeclarationName::CXXDestructorName: |
2628 | case DeclarationName::CXXDeductionGuideName: |
2629 | case DeclarationName::CXXUsingDirective: |
2630 | case DeclarationName::Identifier: |
2631 | case DeclarationName::ObjCMultiArgSelector: |
2632 | case DeclarationName::ObjCOneArgSelector: |
2633 | case DeclarationName::ObjCZeroArgSelector: |
2634 | llvm_unreachable("Not an operator name"); |
2635 | |
2636 | case DeclarationName::CXXConversionFunctionName: |
2637 | // <operator-name> ::= cv <type> # (cast) |
2638 | Out << "cv"; |
2639 | mangleType(T: Name.getCXXNameType()); |
2640 | break; |
2641 | |
2642 | case DeclarationName::CXXLiteralOperatorName: |
2643 | Out << "li"; |
2644 | mangleSourceName(II: Name.getCXXLiteralIdentifier()); |
2645 | return; |
2646 | |
2647 | case DeclarationName::CXXOperatorName: |
2648 | mangleOperatorName(OO: Name.getCXXOverloadedOperator(), Arity); |
2649 | break; |
2650 | } |
2651 | } |
2652 | |
2653 | void |
2654 | CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { |
2655 | switch (OO) { |
2656 | // <operator-name> ::= nw # new |
2657 | case OO_New: Out << "nw"; break; |
2658 | // ::= na # new[] |
2659 | case OO_Array_New: Out << "na"; break; |
2660 | // ::= dl # delete |
2661 | case OO_Delete: Out << "dl"; break; |
2662 | // ::= da # delete[] |
2663 | case OO_Array_Delete: Out << "da"; break; |
2664 | // ::= ps # + (unary) |
2665 | // ::= pl # + (binary or unknown) |
2666 | case OO_Plus: |
2667 | Out << (Arity == 1? "ps": "pl"); break; |
2668 | // ::= ng # - (unary) |
2669 | // ::= mi # - (binary or unknown) |
2670 | case OO_Minus: |
2671 | Out << (Arity == 1? "ng": "mi"); break; |
2672 | // ::= ad # & (unary) |
2673 | // ::= an # & (binary or unknown) |
2674 | case OO_Amp: |
2675 | Out << (Arity == 1? "ad": "an"); break; |
2676 | // ::= de # * (unary) |
2677 | // ::= ml # * (binary or unknown) |
2678 | case OO_Star: |
2679 | // Use binary when unknown. |
2680 | Out << (Arity == 1? "de": "ml"); break; |
2681 | // ::= co # ~ |
2682 | case OO_Tilde: Out << "co"; break; |
2683 | // ::= dv # / |
2684 | case OO_Slash: Out << "dv"; break; |
2685 | // ::= rm # % |
2686 | case OO_Percent: Out << "rm"; break; |
2687 | // ::= or # | |
2688 | case OO_Pipe: Out << "or"; break; |
2689 | // ::= eo # ^ |
2690 | case OO_Caret: Out << "eo"; break; |
2691 | // ::= aS # = |
2692 | case OO_Equal: Out << "aS"; break; |
2693 | // ::= pL # += |
2694 | case OO_PlusEqual: Out << "pL"; break; |
2695 | // ::= mI # -= |
2696 | case OO_MinusEqual: Out << "mI"; break; |
2697 | // ::= mL # *= |
2698 | case OO_StarEqual: Out << "mL"; break; |
2699 | // ::= dV # /= |
2700 | case OO_SlashEqual: Out << "dV"; break; |
2701 | // ::= rM # %= |
2702 | case OO_PercentEqual: Out << "rM"; break; |
2703 | // ::= aN # &= |
2704 | case OO_AmpEqual: Out << "aN"; break; |
2705 | // ::= oR # |= |
2706 | case OO_PipeEqual: Out << "oR"; break; |
2707 | // ::= eO # ^= |
2708 | case OO_CaretEqual: Out << "eO"; break; |
2709 | // ::= ls # << |
2710 | case OO_LessLess: Out << "ls"; break; |
2711 | // ::= rs # >> |
2712 | case OO_GreaterGreater: Out << "rs"; break; |
2713 | // ::= lS # <<= |
2714 | case OO_LessLessEqual: Out << "lS"; break; |
2715 | // ::= rS # >>= |
2716 | case OO_GreaterGreaterEqual: Out << "rS"; break; |
2717 | // ::= eq # == |
2718 | case OO_EqualEqual: Out << "eq"; break; |
2719 | // ::= ne # != |
2720 | case OO_ExclaimEqual: Out << "ne"; break; |
2721 | // ::= lt # < |
2722 | case OO_Less: Out << "lt"; break; |
2723 | // ::= gt # > |
2724 | case OO_Greater: Out << "gt"; break; |
2725 | // ::= le # <= |
2726 | case OO_LessEqual: Out << "le"; break; |
2727 | // ::= ge # >= |
2728 | case OO_GreaterEqual: Out << "ge"; break; |
2729 | // ::= nt # ! |
2730 | case OO_Exclaim: Out << "nt"; break; |
2731 | // ::= aa # && |
2732 | case OO_AmpAmp: Out << "aa"; break; |
2733 | // ::= oo # || |
2734 | case OO_PipePipe: Out << "oo"; break; |
2735 | // ::= pp # ++ |
2736 | case OO_PlusPlus: Out << "pp"; break; |
2737 | // ::= mm # -- |
2738 | case OO_MinusMinus: Out << "mm"; break; |
2739 | // ::= cm # , |
2740 | case OO_Comma: Out << "cm"; break; |
2741 | // ::= pm # ->* |
2742 | case OO_ArrowStar: Out << "pm"; break; |
2743 | // ::= pt # -> |
2744 | case OO_Arrow: Out << "pt"; break; |
2745 | // ::= cl # () |
2746 | case OO_Call: Out << "cl"; break; |
2747 | // ::= ix # [] |
2748 | case OO_Subscript: Out << "ix"; break; |
2749 | |
2750 | // ::= qu # ? |
2751 | // The conditional operator can't be overloaded, but we still handle it when |
2752 | // mangling expressions. |
2753 | case OO_Conditional: Out << "qu"; break; |
2754 | // Proposal on cxx-abi-dev, 2015-10-21. |
2755 | // ::= aw # co_await |
2756 | case OO_Coawait: Out << "aw"; break; |
2757 | // Proposed in cxx-abi github issue 43. |
2758 | // ::= ss # <=> |
2759 | case OO_Spaceship: Out << "ss"; break; |
2760 | |
2761 | case OO_None: |
2762 | case NUM_OVERLOADED_OPERATORS: |
2763 | llvm_unreachable("Not an overloaded operator"); |
2764 | } |
2765 | } |
2766 | |
2767 | void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { |
2768 | // Vendor qualifiers come first and if they are order-insensitive they must |
2769 | // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. |
2770 | |
2771 | // <type> ::= U <addrspace-expr> |
2772 | if (DAST) { |
2773 | Out << "U2ASI"; |
2774 | mangleExpression(E: DAST->getAddrSpaceExpr()); |
2775 | Out << "E"; |
2776 | } |
2777 | |
2778 | // Address space qualifiers start with an ordinary letter. |
2779 | if (Quals.hasAddressSpace()) { |
2780 | // Address space extension: |
2781 | // |
2782 | // <type> ::= U <target-addrspace> |
2783 | // <type> ::= U <OpenCL-addrspace> |
2784 | // <type> ::= U <CUDA-addrspace> |
2785 | |
2786 | SmallString<64> ASString; |
2787 | LangAS AS = Quals.getAddressSpace(); |
2788 | |
2789 | if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { |
2790 | // <target-addrspace> ::= "AS" <address-space-number> |
2791 | unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); |
2792 | if (TargetAS != 0 || |
2793 | Context.getASTContext().getTargetAddressSpace(AS: LangAS::Default) != 0) |
2794 | ASString = "AS"+ llvm::utostr(X: TargetAS); |
2795 | } else { |
2796 | switch (AS) { |
2797 | default: llvm_unreachable("Not a language specific address space"); |
2798 | // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | |
2799 | // "private"| "generic" | "device" | |
2800 | // "host" ] |
2801 | case LangAS::opencl_global: |
2802 | ASString = "CLglobal"; |
2803 | break; |
2804 | case LangAS::opencl_global_device: |
2805 | ASString = "CLdevice"; |
2806 | break; |
2807 | case LangAS::opencl_global_host: |
2808 | ASString = "CLhost"; |
2809 | break; |
2810 | case LangAS::opencl_local: |
2811 | ASString = "CLlocal"; |
2812 | break; |
2813 | case LangAS::opencl_constant: |
2814 | ASString = "CLconstant"; |
2815 | break; |
2816 | case LangAS::opencl_private: |
2817 | ASString = "CLprivate"; |
2818 | break; |
2819 | case LangAS::opencl_generic: |
2820 | ASString = "CLgeneric"; |
2821 | break; |
2822 | // <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" | |
2823 | // "device" | "host" ] |
2824 | case LangAS::sycl_global: |
2825 | ASString = "SYglobal"; |
2826 | break; |
2827 | case LangAS::sycl_global_device: |
2828 | ASString = "SYdevice"; |
2829 | break; |
2830 | case LangAS::sycl_global_host: |
2831 | ASString = "SYhost"; |
2832 | break; |
2833 | case LangAS::sycl_local: |
2834 | ASString = "SYlocal"; |
2835 | break; |
2836 | case LangAS::sycl_private: |
2837 | ASString = "SYprivate"; |
2838 | break; |
2839 | // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] |
2840 | case LangAS::cuda_device: |
2841 | ASString = "CUdevice"; |
2842 | break; |
2843 | case LangAS::cuda_constant: |
2844 | ASString = "CUconstant"; |
2845 | break; |
2846 | case LangAS::cuda_shared: |
2847 | ASString = "CUshared"; |
2848 | break; |
2849 | // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ] |
2850 | case LangAS::ptr32_sptr: |
2851 | ASString = "ptr32_sptr"; |
2852 | break; |
2853 | case LangAS::ptr32_uptr: |
2854 | // For z/OS, there are no special mangling rules applied to the ptr32 |
2855 | // qualifier. Ex: void foo(int * __ptr32 p) -> _Z3f2Pi. The mangling for |
2856 | // "p" is treated the same as a regular integer pointer. |
2857 | if (!getASTContext().getTargetInfo().getTriple().isOSzOS()) |
2858 | ASString = "ptr32_uptr"; |
2859 | break; |
2860 | case LangAS::ptr64: |
2861 | ASString = "ptr64"; |
2862 | break; |
2863 | } |
2864 | } |
2865 | if (!ASString.empty()) |
2866 | mangleVendorQualifier(Name: ASString); |
2867 | } |
2868 | |
2869 | // The ARC ownership qualifiers start with underscores. |
2870 | // Objective-C ARC Extension: |
2871 | // |
2872 | // <type> ::= U "__strong" |
2873 | // <type> ::= U "__weak" |
2874 | // <type> ::= U "__autoreleasing" |
2875 | // |
2876 | // Note: we emit __weak first to preserve the order as |
2877 | // required by the Itanium ABI. |
2878 | if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) |
2879 | mangleVendorQualifier(Name: "__weak"); |
2880 | |
2881 | // __unaligned (from -fms-extensions) |
2882 | if (Quals.hasUnaligned()) |
2883 | mangleVendorQualifier(Name: "__unaligned"); |
2884 | |
2885 | // __ptrauth. Note that this is parameterized. |
2886 | if (PointerAuthQualifier PtrAuth = Quals.getPointerAuth()) { |
2887 | mangleVendorQualifier(Name: "__ptrauth"); |
2888 | // For now, since we only allow non-dependent arguments, we can just |
2889 | // inline the mangling of those arguments as literals. We treat the |
2890 | // key and extra-discriminator arguments as 'unsigned int' and the |
2891 | // address-discriminated argument as 'bool'. |
2892 | Out << "I" |
2893 | "Lj" |
2894 | << PtrAuth.getKey() |
2895 | << "E" |
2896 | "Lb" |
2897 | << unsigned(PtrAuth.isAddressDiscriminated()) |
2898 | << "E" |
2899 | "Lj" |
2900 | << PtrAuth.getExtraDiscriminator() |
2901 | << "E" |
2902 | "E"; |
2903 | } |
2904 | |
2905 | // Remaining ARC ownership qualifiers. |
2906 | switch (Quals.getObjCLifetime()) { |
2907 | case Qualifiers::OCL_None: |
2908 | break; |
2909 | |
2910 | case Qualifiers::OCL_Weak: |
2911 | // Do nothing as we already handled this case above. |
2912 | break; |
2913 | |
2914 | case Qualifiers::OCL_Strong: |
2915 | mangleVendorQualifier(Name: "__strong"); |
2916 | break; |
2917 | |
2918 | case Qualifiers::OCL_Autoreleasing: |
2919 | mangleVendorQualifier(Name: "__autoreleasing"); |
2920 | break; |
2921 | |
2922 | case Qualifiers::OCL_ExplicitNone: |
2923 | // The __unsafe_unretained qualifier is *not* mangled, so that |
2924 | // __unsafe_unretained types in ARC produce the same manglings as the |
2925 | // equivalent (but, naturally, unqualified) types in non-ARC, providing |
2926 | // better ABI compatibility. |
2927 | // |
2928 | // It's safe to do this because unqualified 'id' won't show up |
2929 | // in any type signatures that need to be mangled. |
2930 | break; |
2931 | } |
2932 | |
2933 | // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const |
2934 | if (Quals.hasRestrict()) |
2935 | Out << 'r'; |
2936 | if (Quals.hasVolatile()) |
2937 | Out << 'V'; |
2938 | if (Quals.hasConst()) |
2939 | Out << 'K'; |
2940 | } |
2941 | |
2942 | void CXXNameMangler::mangleVendorQualifier(StringRef name) { |
2943 | Out << 'U' << name.size() << name; |
2944 | } |
2945 | |
2946 | void CXXNameMangler::mangleVendorType(StringRef name) { |
2947 | Out << 'u' << name.size() << name; |
2948 | } |
2949 | |
2950 | void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { |
2951 | // <ref-qualifier> ::= R # lvalue reference |
2952 | // ::= O # rvalue-reference |
2953 | switch (RefQualifier) { |
2954 | case RQ_None: |
2955 | break; |
2956 | |
2957 | case RQ_LValue: |
2958 | Out << 'R'; |
2959 | break; |
2960 | |
2961 | case RQ_RValue: |
2962 | Out << 'O'; |
2963 | break; |
2964 | } |
2965 | } |
2966 | |
2967 | void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { |
2968 | Context.mangleObjCMethodNameAsSourceName(MD, Out); |
2969 | } |
2970 | |
2971 | static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, |
2972 | ASTContext &Ctx) { |
2973 | if (Quals) |
2974 | return true; |
2975 | if (Ty->isSpecificBuiltinType(K: BuiltinType::ObjCSel)) |
2976 | return true; |
2977 | if (Ty->isOpenCLSpecificType()) |
2978 | return true; |
2979 | // From Clang 18.0 we correctly treat SVE types as substitution candidates. |
2980 | if (Ty->isSVESizelessBuiltinType() && |
2981 | Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver17) |
2982 | return true; |
2983 | if (Ty->isBuiltinType()) |
2984 | return false; |
2985 | // Through to Clang 6.0, we accidentally treated undeduced auto types as |
2986 | // substitution candidates. |
2987 | if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && |
2988 | isa<AutoType>(Val: Ty)) |
2989 | return false; |
2990 | // A placeholder type for class template deduction is substitutable with |
2991 | // its corresponding template name; this is handled specially when mangling |
2992 | // the type. |
2993 | if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>()) |
2994 | if (DeducedTST->getDeducedType().isNull()) |
2995 | return false; |
2996 | return true; |
2997 | } |
2998 | |
2999 | void CXXNameMangler::mangleType(QualType T) { |
3000 | // If our type is instantiation-dependent but not dependent, we mangle |
3001 | // it as it was written in the source, removing any top-level sugar. |
3002 | // Otherwise, use the canonical type. |
3003 | // |
3004 | // FIXME: This is an approximation of the instantiation-dependent name |
3005 | // mangling rules, since we should really be using the type as written and |
3006 | // augmented via semantic analysis (i.e., with implicit conversions and |
3007 | // default template arguments) for any instantiation-dependent type. |
3008 | // Unfortunately, that requires several changes to our AST: |
3009 | // - Instantiation-dependent TemplateSpecializationTypes will need to be |
3010 | // uniqued, so that we can handle substitutions properly |
3011 | // - Default template arguments will need to be represented in the |
3012 | // TemplateSpecializationType, since they need to be mangled even though |
3013 | // they aren't written. |
3014 | // - Conversions on non-type template arguments need to be expressed, since |
3015 | // they can affect the mangling of sizeof/alignof. |
3016 | // |
3017 | // FIXME: This is wrong when mapping to the canonical type for a dependent |
3018 | // type discards instantiation-dependent portions of the type, such as for: |
3019 | // |
3020 | // template<typename T, int N> void f(T (&)[sizeof(N)]); |
3021 | // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) |
3022 | // |
3023 | // It's also wrong in the opposite direction when instantiation-dependent, |
3024 | // canonically-equivalent types differ in some irrelevant portion of inner |
3025 | // type sugar. In such cases, we fail to form correct substitutions, eg: |
3026 | // |
3027 | // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); |
3028 | // |
3029 | // We should instead canonicalize the non-instantiation-dependent parts, |
3030 | // regardless of whether the type as a whole is dependent or instantiation |
3031 | // dependent. |
3032 | if (!T->isInstantiationDependentType() || T->isDependentType()) |
3033 | T = T.getCanonicalType(); |
3034 | else { |
3035 | // Desugar any types that are purely sugar. |
3036 | do { |
3037 | // Don't desugar through template specialization types that aren't |
3038 | // type aliases. We need to mangle the template arguments as written. |
3039 | if (const TemplateSpecializationType *TST |
3040 | = dyn_cast<TemplateSpecializationType>(Val&: T)) |
3041 | if (!TST->isTypeAlias()) |
3042 | break; |
3043 | |
3044 | // FIXME: We presumably shouldn't strip off ElaboratedTypes with |
3045 | // instantation-dependent qualifiers. See |
3046 | // https://github.com/itanium-cxx-abi/cxx-abi/issues/114. |
3047 | |
3048 | QualType Desugared |
3049 | = T.getSingleStepDesugaredType(Context: Context.getASTContext()); |
3050 | if (Desugared == T) |
3051 | break; |
3052 | |
3053 | T = Desugared; |
3054 | } while (true); |
3055 | } |
3056 | SplitQualType split = T.split(); |
3057 | Qualifiers quals = split.Quals; |
3058 | const Type *ty = split.Ty; |
3059 | |
3060 | bool isSubstitutable = |
3061 | isTypeSubstitutable(Quals: quals, Ty: ty, Ctx&: Context.getASTContext()); |
3062 | if (isSubstitutable && mangleSubstitution(T)) |
3063 | return; |
3064 | |
3065 | // If we're mangling a qualified array type, push the qualifiers to |
3066 | // the element type. |
3067 | if (quals && isa<ArrayType>(Val: T)) { |
3068 | ty = Context.getASTContext().getAsArrayType(T); |
3069 | quals = Qualifiers(); |
3070 | |
3071 | // Note that we don't update T: we want to add the |
3072 | // substitution at the original type. |
3073 | } |
3074 | |
3075 | if (quals || ty->isDependentAddressSpaceType()) { |
3076 | if (const DependentAddressSpaceType *DAST = |
3077 | dyn_cast<DependentAddressSpaceType>(Val: ty)) { |
3078 | SplitQualType splitDAST = DAST->getPointeeType().split(); |
3079 | mangleQualifiers(Quals: splitDAST.Quals, DAST); |
3080 | mangleType(T: QualType(splitDAST.Ty, 0)); |
3081 | } else { |
3082 | mangleQualifiers(Quals: quals); |
3083 | |
3084 | // Recurse: even if the qualified type isn't yet substitutable, |
3085 | // the unqualified type might be. |
3086 | mangleType(T: QualType(ty, 0)); |
3087 | } |
3088 | } else { |
3089 | switch (ty->getTypeClass()) { |
3090 | #define ABSTRACT_TYPE(CLASS, PARENT) |
3091 | #define NON_CANONICAL_TYPE(CLASS, PARENT) \ |
3092 | case Type::CLASS: \ |
3093 | llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ |
3094 | return; |
3095 | #define TYPE(CLASS, PARENT) \ |
3096 | case Type::CLASS: \ |
3097 | mangleType(static_cast<const CLASS##Type*>(ty)); \ |
3098 | break; |
3099 | #include "clang/AST/TypeNodes.inc" |
3100 | } |
3101 | } |
3102 | |
3103 | // Add the substitution. |
3104 | if (isSubstitutable) |
3105 | addSubstitution(T); |
3106 | } |
3107 | |
3108 | void CXXNameMangler::mangleCXXRecordDecl(const CXXRecordDecl *Record, |
3109 | bool SuppressSubstitution) { |
3110 | if (mangleSubstitution(Record)) |
3111 | return; |
3112 | mangleName(Record); |
3113 | if (SuppressSubstitution) |
3114 | return; |
3115 | addSubstitution(Record); |
3116 | } |
3117 | |
3118 | void CXXNameMangler::mangleType(const BuiltinType *T) { |
3119 | // <type> ::= <builtin-type> |
3120 | // <builtin-type> ::= v # void |
3121 | // ::= w # wchar_t |
3122 | // ::= b # bool |
3123 | // ::= c # char |
3124 | // ::= a # signed char |
3125 | // ::= h # unsigned char |
3126 | // ::= s # short |
3127 | // ::= t # unsigned short |
3128 | // ::= i # int |
3129 | // ::= j # unsigned int |
3130 | // ::= l # long |
3131 | // ::= m # unsigned long |
3132 | // ::= x # long long, __int64 |
3133 | // ::= y # unsigned long long, __int64 |
3134 | // ::= n # __int128 |
3135 | // ::= o # unsigned __int128 |
3136 | // ::= f # float |
3137 | // ::= d # double |
3138 | // ::= e # long double, __float80 |
3139 | // ::= g # __float128 |
3140 | // ::= g # __ibm128 |
3141 | // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) |
3142 | // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) |
3143 | // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) |
3144 | // ::= Dh # IEEE 754r half-precision floating point (16 bits) |
3145 | // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); |
3146 | // ::= Di # char32_t |
3147 | // ::= Ds # char16_t |
3148 | // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) |
3149 | // ::= [DS] DA # N1169 fixed-point [_Sat] T _Accum |
3150 | // ::= [DS] DR # N1169 fixed-point [_Sat] T _Fract |
3151 | // ::= u <source-name> # vendor extended type |
3152 | // |
3153 | // <fixed-point-size> |
3154 | // ::= s # short |
3155 | // ::= t # unsigned short |
3156 | // ::= i # plain |
3157 | // ::= j # unsigned |
3158 | // ::= l # long |
3159 | // ::= m # unsigned long |
3160 | std::string type_name; |
3161 | // Normalize integer types as vendor extended types: |
3162 | // u<length>i<type size> |
3163 | // u<length>u<type size> |
3164 | if (NormalizeIntegers && T->isInteger()) { |
3165 | if (T->isSignedInteger()) { |
3166 | switch (getASTContext().getTypeSize(T)) { |
3167 | case 8: |
3168 | // Pick a representative for each integer size in the substitution |
3169 | // dictionary. (Its actual defined size is not relevant.) |
3170 | if (mangleSubstitution(Ptr: BuiltinType::SChar)) |
3171 | break; |
3172 | Out << "u2i8"; |
3173 | addSubstitution(Ptr: BuiltinType::SChar); |
3174 | break; |
3175 | case 16: |
3176 | if (mangleSubstitution(Ptr: BuiltinType::Short)) |
3177 | break; |
3178 | Out << "u3i16"; |
3179 | addSubstitution(Ptr: BuiltinType::Short); |
3180 | break; |
3181 | case 32: |
3182 | if (mangleSubstitution(Ptr: BuiltinType::Int)) |
3183 | break; |
3184 | Out << "u3i32"; |
3185 | addSubstitution(Ptr: BuiltinType::Int); |
3186 | break; |
3187 | case 64: |
3188 | if (mangleSubstitution(Ptr: BuiltinType::Long)) |
3189 | break; |
3190 | Out << "u3i64"; |
3191 | addSubstitution(Ptr: BuiltinType::Long); |
3192 | break; |
3193 | case 128: |
3194 | if (mangleSubstitution(Ptr: BuiltinType::Int128)) |
3195 | break; |
3196 | Out << "u4i128"; |
3197 | addSubstitution(Ptr: BuiltinType::Int128); |
3198 | break; |
3199 | default: |
3200 | llvm_unreachable("Unknown integer size for normalization"); |
3201 | } |
3202 | } else { |
3203 | switch (getASTContext().getTypeSize(T)) { |
3204 | case 8: |
3205 | if (mangleSubstitution(Ptr: BuiltinType::UChar)) |
3206 | break; |
3207 | Out << "u2u8"; |
3208 | addSubstitution(Ptr: BuiltinType::UChar); |
3209 | break; |
3210 | case 16: |
3211 | if (mangleSubstitution(Ptr: BuiltinType::UShort)) |
3212 | break; |
3213 | Out << "u3u16"; |
3214 | addSubstitution(Ptr: BuiltinType::UShort); |
3215 | break; |
3216 | case 32: |
3217 | if (mangleSubstitution(Ptr: BuiltinType::UInt)) |
3218 | break; |
3219 | Out << "u3u32"; |
3220 | addSubstitution(Ptr: BuiltinType::UInt); |
3221 | break; |
3222 | case 64: |
3223 | if (mangleSubstitution(Ptr: BuiltinType::ULong)) |
3224 | break; |
3225 | Out << "u3u64"; |
3226 | addSubstitution(Ptr: BuiltinType::ULong); |
3227 | break; |
3228 | case 128: |
3229 | if (mangleSubstitution(Ptr: BuiltinType::UInt128)) |
3230 | break; |
3231 | Out << "u4u128"; |
3232 | addSubstitution(Ptr: BuiltinType::UInt128); |
3233 | break; |
3234 | default: |
3235 | llvm_unreachable("Unknown integer size for normalization"); |
3236 | } |
3237 | } |
3238 | return; |
3239 | } |
3240 | switch (T->getKind()) { |
3241 | case BuiltinType::Void: |
3242 | Out << 'v'; |
3243 | break; |
3244 | case BuiltinType::Bool: |
3245 | Out << 'b'; |
3246 | break; |
3247 | case BuiltinType::Char_U: |
3248 | case BuiltinType::Char_S: |
3249 | Out << 'c'; |
3250 | break; |
3251 | case BuiltinType::UChar: |
3252 | Out << 'h'; |
3253 | break; |
3254 | case BuiltinType::UShort: |
3255 | Out << 't'; |
3256 | break; |
3257 | case BuiltinType::UInt: |
3258 | Out << 'j'; |
3259 | break; |
3260 | case BuiltinType::ULong: |
3261 | Out << 'm'; |
3262 | break; |
3263 | case BuiltinType::ULongLong: |
3264 | Out << 'y'; |
3265 | break; |
3266 | case BuiltinType::UInt128: |
3267 | Out << 'o'; |
3268 | break; |
3269 | case BuiltinType::SChar: |
3270 | Out << 'a'; |
3271 | break; |
3272 | case BuiltinType::WChar_S: |
3273 | case BuiltinType::WChar_U: |
3274 | Out << 'w'; |
3275 | break; |
3276 | case BuiltinType::Char8: |
3277 | Out << "Du"; |
3278 | break; |
3279 | case BuiltinType::Char16: |
3280 | Out << "Ds"; |
3281 | break; |
3282 | case BuiltinType::Char32: |
3283 | Out << "Di"; |
3284 | break; |
3285 | case BuiltinType::Short: |
3286 | Out << 's'; |
3287 | break; |
3288 | case BuiltinType::Int: |
3289 | Out << 'i'; |
3290 | break; |
3291 | case BuiltinType::Long: |
3292 | Out << 'l'; |
3293 | break; |
3294 | case BuiltinType::LongLong: |
3295 | Out << 'x'; |
3296 | break; |
3297 | case BuiltinType::Int128: |
3298 | Out << 'n'; |
3299 | break; |
3300 | case BuiltinType::Float16: |
3301 | Out << "DF16_"; |
3302 | break; |
3303 | case BuiltinType::ShortAccum: |
3304 | Out << "DAs"; |
3305 | break; |
3306 | case BuiltinType::Accum: |
3307 | Out << "DAi"; |
3308 | break; |
3309 | case BuiltinType::LongAccum: |
3310 | Out << "DAl"; |
3311 | break; |
3312 | case BuiltinType::UShortAccum: |
3313 | Out << "DAt"; |
3314 | break; |
3315 | case BuiltinType::UAccum: |
3316 | Out << "DAj"; |
3317 | break; |
3318 | case BuiltinType::ULongAccum: |
3319 | Out << "DAm"; |
3320 | break; |
3321 | case BuiltinType::ShortFract: |
3322 | Out << "DRs"; |
3323 | break; |
3324 | case BuiltinType::Fract: |
3325 | Out << "DRi"; |
3326 | break; |
3327 | case BuiltinType::LongFract: |
3328 | Out << "DRl"; |
3329 | break; |
3330 | case BuiltinType::UShortFract: |
3331 | Out << "DRt"; |
3332 | break; |
3333 | case BuiltinType::UFract: |
3334 | Out << "DRj"; |
3335 | break; |
3336 | case BuiltinType::ULongFract: |
3337 | Out << "DRm"; |
3338 | break; |
3339 | case BuiltinType::SatShortAccum: |
3340 | Out << "DSDAs"; |
3341 | break; |
3342 | case BuiltinType::SatAccum: |
3343 | Out << "DSDAi"; |
3344 | break; |
3345 | case BuiltinType::SatLongAccum: |
3346 | Out << "DSDAl"; |
3347 | break; |
3348 | case BuiltinType::SatUShortAccum: |
3349 | Out << "DSDAt"; |
3350 | break; |
3351 | case BuiltinType::SatUAccum: |
3352 | Out << "DSDAj"; |
3353 | break; |
3354 | case BuiltinType::SatULongAccum: |
3355 | Out << "DSDAm"; |
3356 | break; |
3357 | case BuiltinType::SatShortFract: |
3358 | Out << "DSDRs"; |
3359 | break; |
3360 | case BuiltinType::SatFract: |
3361 | Out << "DSDRi"; |
3362 | break; |
3363 | case BuiltinType::SatLongFract: |
3364 | Out << "DSDRl"; |
3365 | break; |
3366 | case BuiltinType::SatUShortFract: |
3367 | Out << "DSDRt"; |
3368 | break; |
3369 | case BuiltinType::SatUFract: |
3370 | Out << "DSDRj"; |
3371 | break; |
3372 | case BuiltinType::SatULongFract: |
3373 | Out << "DSDRm"; |
3374 | break; |
3375 | case BuiltinType::Half: |
3376 | Out << "Dh"; |
3377 | break; |
3378 | case BuiltinType::Float: |
3379 | Out << 'f'; |
3380 | break; |
3381 | case BuiltinType::Double: |
3382 | Out << 'd'; |
3383 | break; |
3384 | case BuiltinType::LongDouble: { |
3385 | const TargetInfo *TI = |
3386 | getASTContext().getLangOpts().OpenMP && |
3387 | getASTContext().getLangOpts().OpenMPIsTargetDevice |
3388 | ? getASTContext().getAuxTargetInfo() |
3389 | : &getASTContext().getTargetInfo(); |
3390 | Out << TI->getLongDoubleMangling(); |
3391 | break; |
3392 | } |
3393 | case BuiltinType::Float128: { |
3394 | const TargetInfo *TI = |
3395 | getASTContext().getLangOpts().OpenMP && |
3396 | getASTContext().getLangOpts().OpenMPIsTargetDevice |
3397 | ? getASTContext().getAuxTargetInfo() |
3398 | : &getASTContext().getTargetInfo(); |
3399 | Out << TI->getFloat128Mangling(); |
3400 | break; |
3401 | } |
3402 | case BuiltinType::BFloat16: { |
3403 | const TargetInfo *TI = |
3404 | ((getASTContext().getLangOpts().OpenMP && |
3405 | getASTContext().getLangOpts().OpenMPIsTargetDevice) || |
3406 | getASTContext().getLangOpts().SYCLIsDevice) |
3407 | ? getASTContext().getAuxTargetInfo() |
3408 | : &getASTContext().getTargetInfo(); |
3409 | Out << TI->getBFloat16Mangling(); |
3410 | break; |
3411 | } |
3412 | case BuiltinType::Ibm128: { |
3413 | const TargetInfo *TI = &getASTContext().getTargetInfo(); |
3414 | Out << TI->getIbm128Mangling(); |
3415 | break; |
3416 | } |
3417 | case BuiltinType::NullPtr: |
3418 | Out << "Dn"; |
3419 | break; |
3420 | |
3421 | #define BUILTIN_TYPE(Id, SingletonId) |
3422 | #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
3423 | case BuiltinType::Id: |
3424 | #include "clang/AST/BuiltinTypes.def" |
3425 | case BuiltinType::Dependent: |
3426 | if (!NullOut) |
3427 | llvm_unreachable("mangling a placeholder type"); |
3428 | break; |
3429 | case BuiltinType::ObjCId: |
3430 | Out << "11objc_object"; |
3431 | break; |
3432 | case BuiltinType::ObjCClass: |
3433 | Out << "10objc_class"; |
3434 | break; |
3435 | case BuiltinType::ObjCSel: |
3436 | Out << "13objc_selector"; |
3437 | break; |
3438 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
3439 | case BuiltinType::Id: \ |
3440 | type_name = "ocl_" #ImgType "_" #Suffix; \ |
3441 | Out << type_name.size() << type_name; \ |
3442 | break; |
3443 | #include "clang/Basic/OpenCLImageTypes.def" |
3444 | case BuiltinType::OCLSampler: |
3445 | Out << "11ocl_sampler"; |
3446 | break; |
3447 | case BuiltinType::OCLEvent: |
3448 | Out << "9ocl_event"; |
3449 | break; |
3450 | case BuiltinType::OCLClkEvent: |
3451 | Out << "12ocl_clkevent"; |
3452 | break; |
3453 | case BuiltinType::OCLQueue: |
3454 | Out << "9ocl_queue"; |
3455 | break; |
3456 | case BuiltinType::OCLReserveID: |
3457 | Out << "13ocl_reserveid"; |
3458 | break; |
3459 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
3460 | case BuiltinType::Id: \ |
3461 | type_name = "ocl_" #ExtType; \ |
3462 | Out << type_name.size() << type_name; \ |
3463 | break; |
3464 | #include "clang/Basic/OpenCLExtensionTypes.def" |
3465 | // The SVE types are effectively target-specific. The mangling scheme |
3466 | // is defined in the appendices to the Procedure Call Standard for the |
3467 | // Arm Architecture. |
3468 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId) \ |
3469 | case BuiltinType::Id: \ |
3470 | if (T->getKind() == BuiltinType::SveBFloat16 && \ |
3471 | isCompatibleWith(LangOptions::ClangABI::Ver17)) { \ |
3472 | /* Prior to Clang 18.0 we used this incorrect mangled name */ \ |
3473 | mangleVendorType("__SVBFloat16_t"); \ |
3474 | } else { \ |
3475 | type_name = #MangledName; \ |
3476 | Out << (type_name == #Name ? "u" : "") << type_name.size() << type_name; \ |
3477 | } \ |
3478 | break; |
3479 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId) \ |
3480 | case BuiltinType::Id: \ |
3481 | type_name = #MangledName; \ |
3482 | Out << (type_name == #Name ? "u" : "") << type_name.size() << type_name; \ |
3483 | break; |
3484 | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId) \ |
3485 | case BuiltinType::Id: \ |
3486 | type_name = #MangledName; \ |
3487 | Out << (type_name == #Name ? "u" : "") << type_name.size() << type_name; \ |
3488 | break; |
3489 | #define SVE_SCALAR_TYPE(Name, MangledName, Id, SingletonId, Bits) \ |
3490 | case BuiltinType::Id: \ |
3491 | type_name = #MangledName; \ |
3492 | Out << (type_name == #Name ? "u" : "") << type_name.size() << type_name; \ |
3493 | break; |
3494 | #include "clang/Basic/AArch64ACLETypes.def" |
3495 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
3496 | case BuiltinType::Id: \ |
3497 | mangleVendorType(#Name); \ |
3498 | break; |
3499 | #include "clang/Basic/PPCTypes.def" |
3500 | // TODO: Check the mangling scheme for RISC-V V. |
3501 | #define RVV_TYPE(Name, Id, SingletonId) \ |
3502 | case BuiltinType::Id: \ |
3503 | mangleVendorType(Name); \ |
3504 | break; |
3505 | #include "clang/Basic/RISCVVTypes.def" |
3506 | #define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \ |
3507 | case BuiltinType::Id: \ |
3508 | mangleVendorType(MangledName); \ |
3509 | break; |
3510 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
3511 | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) \ |
3512 | case BuiltinType::Id: \ |
3513 | mangleVendorType(Name); \ |
3514 | break; |
3515 | #include "clang/Basic/AMDGPUTypes.def" |
3516 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \ |
3517 | case BuiltinType::Id: \ |
3518 | mangleVendorType(#Name); \ |
3519 | break; |
3520 | #include "clang/Basic/HLSLIntangibleTypes.def" |
3521 | } |
3522 | } |
3523 | |
3524 | StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { |
3525 | switch (CC) { |
3526 | case CC_C: |
3527 | return ""; |
3528 | |
3529 | case CC_X86VectorCall: |
3530 | case CC_X86Pascal: |
3531 | case CC_X86RegCall: |
3532 | case CC_AAPCS: |
3533 | case CC_AAPCS_VFP: |
3534 | case CC_AArch64VectorCall: |
3535 | case CC_AArch64SVEPCS: |
3536 | case CC_IntelOclBicc: |
3537 | case CC_SpirFunction: |
3538 | case CC_DeviceKernel: |
3539 | case CC_PreserveMost: |
3540 | case CC_PreserveAll: |
3541 | case CC_M68kRTD: |
3542 | case CC_PreserveNone: |
3543 | case CC_RISCVVectorCall: |
3544 | #define CC_VLS_CASE(ABI_VLEN) case CC_RISCVVLSCall_##ABI_VLEN: |
3545 | CC_VLS_CASE(32) |
3546 | CC_VLS_CASE(64) |
3547 | CC_VLS_CASE(128) |
3548 | CC_VLS_CASE(256) |
3549 | CC_VLS_CASE(512) |
3550 | CC_VLS_CASE(1024) |
3551 | CC_VLS_CASE(2048) |
3552 | CC_VLS_CASE(4096) |
3553 | CC_VLS_CASE(8192) |
3554 | CC_VLS_CASE(16384) |
3555 | CC_VLS_CASE(32768) |
3556 | CC_VLS_CASE(65536) |
3557 | #undef CC_VLS_CASE |
3558 | // FIXME: we should be mangling all of the above. |
3559 | return ""; |
3560 | |
3561 | case CC_X86ThisCall: |
3562 | // FIXME: To match mingw GCC, thiscall should only be mangled in when it is |
3563 | // used explicitly. At this point, we don't have that much information in |
3564 | // the AST, since clang tends to bake the convention into the canonical |
3565 | // function type. thiscall only rarely used explicitly, so don't mangle it |
3566 | // for now. |
3567 | return ""; |
3568 | |
3569 | case CC_X86StdCall: |
3570 | return "stdcall"; |
3571 | case CC_X86FastCall: |
3572 | return "fastcall"; |
3573 | case CC_X86_64SysV: |
3574 | return "sysv_abi"; |
3575 | case CC_Win64: |
3576 | return "ms_abi"; |
3577 | case CC_Swift: |
3578 | return "swiftcall"; |
3579 | case CC_SwiftAsync: |
3580 | return "swiftasynccall"; |
3581 | } |
3582 | llvm_unreachable("bad calling convention"); |
3583 | } |
3584 | |
3585 | void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { |
3586 | // Fast path. |
3587 | if (T->getExtInfo() == FunctionType::ExtInfo()) |
3588 | return; |
3589 | |
3590 | // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
3591 | // This will get more complicated in the future if we mangle other |
3592 | // things here; but for now, since we mangle ns_returns_retained as |
3593 | // a qualifier on the result type, we can get away with this: |
3594 | StringRef CCQualifier = getCallingConvQualifierName(CC: T->getExtInfo().getCC()); |
3595 | if (!CCQualifier.empty()) |
3596 | mangleVendorQualifier(name: CCQualifier); |
3597 | |
3598 | // FIXME: regparm |
3599 | // FIXME: noreturn |
3600 | } |
3601 | |
3602 | enum class AAPCSBitmaskSME : unsigned { |
3603 | ArmStreamingBit = 1 << 0, |
3604 | ArmStreamingCompatibleBit = 1 << 1, |
3605 | ArmAgnosticSMEZAStateBit = 1 << 2, |
3606 | ZA_Shift = 3, |
3607 | ZT0_Shift = 6, |
3608 | NoState = 0b000, |
3609 | ArmIn = 0b001, |
3610 | ArmOut = 0b010, |
3611 | ArmInOut = 0b011, |
3612 | ArmPreserves = 0b100, |
3613 | LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ArmPreserves << ZT0_Shift) |
3614 | }; |
3615 | |
3616 | static AAPCSBitmaskSME encodeAAPCSZAState(unsigned SMEAttrs) { |
3617 | switch (SMEAttrs) { |
3618 | case FunctionType::ARM_None: |
3619 | return AAPCSBitmaskSME::NoState; |
3620 | case FunctionType::ARM_In: |
3621 | return AAPCSBitmaskSME::ArmIn; |
3622 | case FunctionType::ARM_Out: |
3623 | return AAPCSBitmaskSME::ArmOut; |
3624 | case FunctionType::ARM_InOut: |
3625 | return AAPCSBitmaskSME::ArmInOut; |
3626 | case FunctionType::ARM_Preserves: |
3627 | return AAPCSBitmaskSME::ArmPreserves; |
3628 | default: |
3629 | llvm_unreachable("Unrecognised SME attribute"); |
3630 | } |
3631 | } |
3632 | |
3633 | // The mangling scheme for function types which have SME attributes is |
3634 | // implemented as a "pseudo" template: |
3635 | // |
3636 | // '__SME_ATTRS<<normal_function_type>, <sme_state>>' |
3637 | // |
3638 | // Combining the function type with a bitmask representing the streaming and ZA |
3639 | // properties of the function's interface. |
3640 | // |
3641 | // Mangling of SME keywords is described in more detail in the AArch64 ACLE: |
3642 | // https://github.com/ARM-software/acle/blob/main/main/acle.md#c-mangling-of-sme-keywords |
3643 | // |
3644 | void CXXNameMangler::mangleSMEAttrs(unsigned SMEAttrs) { |
3645 | if (!SMEAttrs) |
3646 | return; |
3647 | |
3648 | AAPCSBitmaskSME Bitmask = AAPCSBitmaskSME(0); |
3649 | if (SMEAttrs & FunctionType::SME_PStateSMEnabledMask) |
3650 | Bitmask |= AAPCSBitmaskSME::ArmStreamingBit; |
3651 | else if (SMEAttrs & FunctionType::SME_PStateSMCompatibleMask) |
3652 | Bitmask |= AAPCSBitmaskSME::ArmStreamingCompatibleBit; |
3653 | |
3654 | if (SMEAttrs & FunctionType::SME_AgnosticZAStateMask) |
3655 | Bitmask |= AAPCSBitmaskSME::ArmAgnosticSMEZAStateBit; |
3656 | else { |
3657 | Bitmask |= encodeAAPCSZAState(SMEAttrs: FunctionType::getArmZAState(AttrBits: SMEAttrs)) |
3658 | << AAPCSBitmaskSME::ZA_Shift; |
3659 | |
3660 | Bitmask |= encodeAAPCSZAState(SMEAttrs: FunctionType::getArmZT0State(AttrBits: SMEAttrs)) |
3661 | << AAPCSBitmaskSME::ZT0_Shift; |
3662 | } |
3663 | |
3664 | Out << "Lj"<< static_cast<unsigned>(Bitmask) << "EE"; |
3665 | } |
3666 | |
3667 | void |
3668 | CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { |
3669 | // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
3670 | |
3671 | // Note that these are *not* substitution candidates. Demanglers might |
3672 | // have trouble with this if the parameter type is fully substituted. |
3673 | |
3674 | switch (PI.getABI()) { |
3675 | case ParameterABI::Ordinary: |
3676 | break; |
3677 | |
3678 | // HLSL parameter mangling. |
3679 | case ParameterABI::HLSLOut: |
3680 | case ParameterABI::HLSLInOut: |
3681 | mangleVendorQualifier(name: getParameterABISpelling(kind: PI.getABI())); |
3682 | break; |
3683 | |
3684 | // All of these start with "swift", so they come before "ns_consumed". |
3685 | case ParameterABI::SwiftContext: |
3686 | case ParameterABI::SwiftAsyncContext: |
3687 | case ParameterABI::SwiftErrorResult: |
3688 | case ParameterABI::SwiftIndirectResult: |
3689 | mangleVendorQualifier(name: getParameterABISpelling(kind: PI.getABI())); |
3690 | break; |
3691 | } |
3692 | |
3693 | if (PI.isConsumed()) |
3694 | mangleVendorQualifier(name: "ns_consumed"); |
3695 | |
3696 | if (PI.isNoEscape()) |
3697 | mangleVendorQualifier(name: "noescape"); |
3698 | } |
3699 | |
3700 | // <type> ::= <function-type> |
3701 | // <function-type> ::= [<CV-qualifiers>] F [Y] |
3702 | // <bare-function-type> [<ref-qualifier>] E |
3703 | void CXXNameMangler::mangleType(const FunctionProtoType *T) { |
3704 | unsigned SMEAttrs = T->getAArch64SMEAttributes(); |
3705 | |
3706 | if (SMEAttrs) |
3707 | Out << "11__SME_ATTRSI"; |
3708 | |
3709 | mangleExtFunctionInfo(T); |
3710 | |
3711 | // Mangle CV-qualifiers, if present. These are 'this' qualifiers, |
3712 | // e.g. "const" in "int (A::*)() const". |
3713 | mangleQualifiers(Quals: T->getMethodQuals()); |
3714 | |
3715 | // Mangle instantiation-dependent exception-specification, if present, |
3716 | // per cxx-abi-dev proposal on 2016-10-11. |
3717 | if (T->hasInstantiationDependentExceptionSpec()) { |
3718 | if (isComputedNoexcept(ESpecType: T->getExceptionSpecType())) { |
3719 | Out << "DO"; |
3720 | mangleExpression(E: T->getNoexceptExpr()); |
3721 | Out << "E"; |
3722 | } else { |
3723 | assert(T->getExceptionSpecType() == EST_Dynamic); |
3724 | Out << "Dw"; |
3725 | for (auto ExceptTy : T->exceptions()) |
3726 | mangleType(T: ExceptTy); |
3727 | Out << "E"; |
3728 | } |
3729 | } else if (T->isNothrow()) { |
3730 | Out << "Do"; |
3731 | } |
3732 | |
3733 | Out << 'F'; |
3734 | |
3735 | // FIXME: We don't have enough information in the AST to produce the 'Y' |
3736 | // encoding for extern "C" function types. |
3737 | mangleBareFunctionType(T, /*MangleReturnType=*/true); |
3738 | |
3739 | // Mangle the ref-qualifier, if present. |
3740 | mangleRefQualifier(RefQualifier: T->getRefQualifier()); |
3741 | |
3742 | Out << 'E'; |
3743 | |
3744 | mangleSMEAttrs(SMEAttrs); |
3745 | } |
3746 | |
3747 | void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { |
3748 | // Function types without prototypes can arise when mangling a function type |
3749 | // within an overloadable function in C. We mangle these as the absence of any |
3750 | // parameter types (not even an empty parameter list). |
3751 | Out << 'F'; |
3752 | |
3753 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
3754 | |
3755 | FunctionTypeDepth.enterResultType(); |
3756 | mangleType(T->getReturnType()); |
3757 | FunctionTypeDepth.leaveResultType(); |
3758 | |
3759 | FunctionTypeDepth.pop(saved); |
3760 | Out << 'E'; |
3761 | } |
3762 | |
3763 | void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, |
3764 | bool MangleReturnType, |
3765 | const FunctionDecl *FD) { |
3766 | // Record that we're in a function type. See mangleFunctionParam |
3767 | // for details on what we're trying to achieve here. |
3768 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
3769 | |
3770 | // <bare-function-type> ::= <signature type>+ |
3771 | if (MangleReturnType) { |
3772 | FunctionTypeDepth.enterResultType(); |
3773 | |
3774 | // Mangle ns_returns_retained as an order-sensitive qualifier here. |
3775 | if (Proto->getExtInfo().getProducesResult() && FD == nullptr) |
3776 | mangleVendorQualifier(name: "ns_returns_retained"); |
3777 | |
3778 | // Mangle the return type without any direct ARC ownership qualifiers. |
3779 | QualType ReturnTy = Proto->getReturnType(); |
3780 | if (ReturnTy.getObjCLifetime()) { |
3781 | auto SplitReturnTy = ReturnTy.split(); |
3782 | SplitReturnTy.Quals.removeObjCLifetime(); |
3783 | ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); |
3784 | } |
3785 | mangleType(T: ReturnTy); |
3786 | |
3787 | FunctionTypeDepth.leaveResultType(); |
3788 | } |
3789 | |
3790 | if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { |
3791 | // <builtin-type> ::= v # void |
3792 | Out << 'v'; |
3793 | } else { |
3794 | assert(!FD || FD->getNumParams() == Proto->getNumParams()); |
3795 | for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { |
3796 | // Mangle extended parameter info as order-sensitive qualifiers here. |
3797 | if (Proto->hasExtParameterInfos() && FD == nullptr) { |
3798 | mangleExtParameterInfo(PI: Proto->getExtParameterInfo(I)); |
3799 | } |
3800 | |
3801 | // Mangle the type. |
3802 | QualType ParamTy = Proto->getParamType(i: I); |
3803 | mangleType(T: Context.getASTContext().getSignatureParameterType(T: ParamTy)); |
3804 | |
3805 | if (FD) { |
3806 | if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { |
3807 | // Attr can only take 1 character, so we can hardcode the length |
3808 | // below. |
3809 | assert(Attr->getType() <= 9 && Attr->getType() >= 0); |
3810 | if (Attr->isDynamic()) |
3811 | Out << "U25pass_dynamic_object_size"<< Attr->getType(); |
3812 | else |
3813 | Out << "U17pass_object_size"<< Attr->getType(); |
3814 | } |
3815 | } |
3816 | } |
3817 | |
3818 | // <builtin-type> ::= z # ellipsis |
3819 | if (Proto->isVariadic()) |
3820 | Out << 'z'; |
3821 | } |
3822 | |
3823 | if (FD) { |
3824 | FunctionTypeDepth.enterResultType(); |
3825 | mangleRequiresClause(RequiresClause: FD->getTrailingRequiresClause().ConstraintExpr); |
3826 | } |
3827 | |
3828 | FunctionTypeDepth.pop(saved); |
3829 | } |
3830 | |
3831 | // <type> ::= <class-enum-type> |
3832 | // <class-enum-type> ::= <name> |
3833 | void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { |
3834 | mangleName(T->getDecl()); |
3835 | } |
3836 | |
3837 | // <type> ::= <class-enum-type> |
3838 | // <class-enum-type> ::= <name> |
3839 | void CXXNameMangler::mangleType(const EnumType *T) { |
3840 | mangleType(static_cast<const TagType*>(T)); |
3841 | } |
3842 | void CXXNameMangler::mangleType(const RecordType *T) { |
3843 | mangleType(static_cast<const TagType*>(T)); |
3844 | } |
3845 | void CXXNameMangler::mangleType(const TagType *T) { |
3846 | mangleName(T->getDecl()); |
3847 | } |
3848 | |
3849 | // <type> ::= <array-type> |
3850 | // <array-type> ::= A <positive dimension number> _ <element type> |
3851 | // ::= A [<dimension expression>] _ <element type> |
3852 | void CXXNameMangler::mangleType(const ConstantArrayType *T) { |
3853 | Out << 'A' << T->getSize() << '_'; |
3854 | mangleType(T->getElementType()); |
3855 | } |
3856 | void CXXNameMangler::mangleType(const VariableArrayType *T) { |
3857 | Out << 'A'; |
3858 | // decayed vla types (size 0) will just be skipped. |
3859 | if (T->getSizeExpr()) |
3860 | mangleExpression(E: T->getSizeExpr()); |
3861 | Out << '_'; |
3862 | mangleType(T->getElementType()); |
3863 | } |
3864 | void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { |
3865 | Out << 'A'; |
3866 | // A DependentSizedArrayType might not have size expression as below |
3867 | // |
3868 | // template<int ...N> int arr[] = {N...}; |
3869 | if (T->getSizeExpr()) |
3870 | mangleExpression(E: T->getSizeExpr()); |
3871 | Out << '_'; |
3872 | mangleType(T->getElementType()); |
3873 | } |
3874 | void CXXNameMangler::mangleType(const IncompleteArrayType *T) { |
3875 | Out << "A_"; |
3876 | mangleType(T->getElementType()); |
3877 | } |
3878 | |
3879 | // <type> ::= <pointer-to-member-type> |
3880 | // <pointer-to-member-type> ::= M <class type> <member type> |
3881 | void CXXNameMangler::mangleType(const MemberPointerType *T) { |
3882 | Out << 'M'; |
3883 | if (auto *RD = T->getMostRecentCXXRecordDecl()) { |
3884 | mangleCXXRecordDecl(Record: RD); |
3885 | } else { |
3886 | NestedNameSpecifier *NNS = T->getQualifier(); |
3887 | if (auto *II = NNS->getAsIdentifier()) |
3888 | mangleType(T: getASTContext().getDependentNameType( |
3889 | Keyword: ElaboratedTypeKeyword::None, NNS: NNS->getPrefix(), Name: II)); |
3890 | else |
3891 | manglePrefix(qualifier: NNS); |
3892 | } |
3893 | QualType PointeeType = T->getPointeeType(); |
3894 | if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Val&: PointeeType)) { |
3895 | mangleType(FPT); |
3896 | |
3897 | // Itanium C++ ABI 5.1.8: |
3898 | // |
3899 | // The type of a non-static member function is considered to be different, |
3900 | // for the purposes of substitution, from the type of a namespace-scope or |
3901 | // static member function whose type appears similar. The types of two |
3902 | // non-static member functions are considered to be different, for the |
3903 | // purposes of substitution, if the functions are members of different |
3904 | // classes. In other words, for the purposes of substitution, the class of |
3905 | // which the function is a member is considered part of the type of |
3906 | // function. |
3907 | |
3908 | // Given that we already substitute member function pointers as a |
3909 | // whole, the net effect of this rule is just to unconditionally |
3910 | // suppress substitution on the function type in a member pointer. |
3911 | // We increment the SeqID here to emulate adding an entry to the |
3912 | // substitution table. |
3913 | ++SeqID; |
3914 | } else |
3915 | mangleType(T: PointeeType); |
3916 | } |
3917 | |
3918 | // <type> ::= <template-param> |
3919 | void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { |
3920 | mangleTemplateParameter(Depth: T->getDepth(), Index: T->getIndex()); |
3921 | } |
3922 | |
3923 | // <type> ::= <template-param> |
3924 | void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { |
3925 | // FIXME: not clear how to mangle this! |
3926 | // template <class T...> class A { |
3927 | // template <class U...> void foo(T(*)(U) x...); |
3928 | // }; |
3929 | Out << "_SUBSTPACK_"; |
3930 | } |
3931 | |
3932 | // <type> ::= P <type> # pointer-to |
3933 | void CXXNameMangler::mangleType(const PointerType *T) { |
3934 | Out << 'P'; |
3935 | mangleType(T: T->getPointeeType()); |
3936 | } |
3937 | void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { |
3938 | Out << 'P'; |
3939 | mangleType(T: T->getPointeeType()); |
3940 | } |
3941 | |
3942 | // <type> ::= R <type> # reference-to |
3943 | void CXXNameMangler::mangleType(const LValueReferenceType *T) { |
3944 | Out << 'R'; |
3945 | mangleType(T->getPointeeType()); |
3946 | } |
3947 | |
3948 | // <type> ::= O <type> # rvalue reference-to (C++0x) |
3949 | void CXXNameMangler::mangleType(const RValueReferenceType *T) { |
3950 | Out << 'O'; |
3951 | mangleType(T->getPointeeType()); |
3952 | } |
3953 | |
3954 | // <type> ::= C <type> # complex pair (C 2000) |
3955 | void CXXNameMangler::mangleType(const ComplexType *T) { |
3956 | Out << 'C'; |
3957 | mangleType(T: T->getElementType()); |
3958 | } |
3959 | |
3960 | // ARM's ABI for Neon vector types specifies that they should be mangled as |
3961 | // if they are structs (to match ARM's initial implementation). The |
3962 | // vector type must be one of the special types predefined by ARM. |
3963 | void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { |
3964 | QualType EltType = T->getElementType(); |
3965 | assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); |
3966 | const char *EltName = nullptr; |
3967 | if (T->getVectorKind() == VectorKind::NeonPoly) { |
3968 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
3969 | case BuiltinType::SChar: |
3970 | case BuiltinType::UChar: |
3971 | EltName = "poly8_t"; |
3972 | break; |
3973 | case BuiltinType::Short: |
3974 | case BuiltinType::UShort: |
3975 | EltName = "poly16_t"; |
3976 | break; |
3977 | case BuiltinType::LongLong: |
3978 | case BuiltinType::ULongLong: |
3979 | EltName = "poly64_t"; |
3980 | break; |
3981 | default: llvm_unreachable("unexpected Neon polynomial vector element type"); |
3982 | } |
3983 | } else { |
3984 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
3985 | case BuiltinType::SChar: EltName = "int8_t"; break; |
3986 | case BuiltinType::UChar: EltName = "uint8_t"; break; |
3987 | case BuiltinType::Short: EltName = "int16_t"; break; |
3988 | case BuiltinType::UShort: EltName = "uint16_t"; break; |
3989 | case BuiltinType::Int: EltName = "int32_t"; break; |
3990 | case BuiltinType::UInt: EltName = "uint32_t"; break; |
3991 | case BuiltinType::LongLong: EltName = "int64_t"; break; |
3992 | case BuiltinType::ULongLong: EltName = "uint64_t"; break; |
3993 | case BuiltinType::Double: EltName = "float64_t"; break; |
3994 | case BuiltinType::Float: EltName = "float32_t"; break; |
3995 | case BuiltinType::Half: EltName = "float16_t"; break; |
3996 | case BuiltinType::BFloat16: EltName = "bfloat16_t"; break; |
3997 | case BuiltinType::MFloat8: |
3998 | EltName = "mfloat8_t"; |
3999 | break; |
4000 | default: |
4001 | llvm_unreachable("unexpected Neon vector element type"); |
4002 | } |
4003 | } |
4004 | const char *BaseName = nullptr; |
4005 | unsigned BitSize = (T->getNumElements() * |
4006 | getASTContext().getTypeSize(T: EltType)); |
4007 | if (BitSize == 64) |
4008 | BaseName = "__simd64_"; |
4009 | else { |
4010 | assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); |
4011 | BaseName = "__simd128_"; |
4012 | } |
4013 | Out << strlen(s: BaseName) + strlen(s: EltName); |
4014 | Out << BaseName << EltName; |
4015 | } |
4016 | |
4017 | void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { |
4018 | DiagnosticsEngine &Diags = Context.getDiags(); |
4019 | unsigned DiagID = Diags.getCustomDiagID( |
4020 | L: DiagnosticsEngine::Error, |
4021 | FormatString: "cannot mangle this dependent neon vector type yet"); |
4022 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
4023 | } |
4024 | |
4025 | static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { |
4026 | switch (EltType->getKind()) { |
4027 | case BuiltinType::SChar: |
4028 | return "Int8"; |
4029 | case BuiltinType::Short: |
4030 | return "Int16"; |
4031 | case BuiltinType::Int: |
4032 | return "Int32"; |
4033 | case BuiltinType::Long: |
4034 | case BuiltinType::LongLong: |
4035 | return "Int64"; |
4036 | case BuiltinType::UChar: |
4037 | return "Uint8"; |
4038 | case BuiltinType::UShort: |
4039 | return "Uint16"; |
4040 | case BuiltinType::UInt: |
4041 | return "Uint32"; |
4042 | case BuiltinType::ULong: |
4043 | case BuiltinType::ULongLong: |
4044 | return "Uint64"; |
4045 | case BuiltinType::Half: |
4046 | return "Float16"; |
4047 | case BuiltinType::Float: |
4048 | return "Float32"; |
4049 | case BuiltinType::Double: |
4050 | return "Float64"; |
4051 | case BuiltinType::BFloat16: |
4052 | return "Bfloat16"; |
4053 | case BuiltinType::MFloat8: |
4054 | return "Mfloat8"; |
4055 | default: |
4056 | llvm_unreachable("Unexpected vector element base type"); |
4057 | } |
4058 | } |
4059 | |
4060 | // AArch64's ABI for Neon vector types specifies that they should be mangled as |
4061 | // the equivalent internal name. The vector type must be one of the special |
4062 | // types predefined by ARM. |
4063 | void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { |
4064 | QualType EltType = T->getElementType(); |
4065 | assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); |
4066 | unsigned BitSize = |
4067 | (T->getNumElements() * getASTContext().getTypeSize(T: EltType)); |
4068 | (void)BitSize; // Silence warning. |
4069 | |
4070 | assert((BitSize == 64 || BitSize == 128) && |
4071 | "Neon vector type not 64 or 128 bits"); |
4072 | |
4073 | StringRef EltName; |
4074 | if (T->getVectorKind() == VectorKind::NeonPoly) { |
4075 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
4076 | case BuiltinType::UChar: |
4077 | EltName = "Poly8"; |
4078 | break; |
4079 | case BuiltinType::UShort: |
4080 | EltName = "Poly16"; |
4081 | break; |
4082 | case BuiltinType::ULong: |
4083 | case BuiltinType::ULongLong: |
4084 | EltName = "Poly64"; |
4085 | break; |
4086 | default: |
4087 | llvm_unreachable("unexpected Neon polynomial vector element type"); |
4088 | } |
4089 | } else |
4090 | EltName = mangleAArch64VectorBase(EltType: cast<BuiltinType>(Val&: EltType)); |
4091 | |
4092 | std::string TypeName = |
4093 | ("__"+ EltName + "x"+ Twine(T->getNumElements()) + "_t").str(); |
4094 | Out << TypeName.length() << TypeName; |
4095 | } |
4096 | void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { |
4097 | DiagnosticsEngine &Diags = Context.getDiags(); |
4098 | unsigned DiagID = Diags.getCustomDiagID( |
4099 | L: DiagnosticsEngine::Error, |
4100 | FormatString: "cannot mangle this dependent neon vector type yet"); |
4101 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
4102 | } |
4103 | |
4104 | // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types |
4105 | // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64 |
4106 | // type as the sizeless variants. |
4107 | // |
4108 | // The mangling scheme for VLS types is implemented as a "pseudo" template: |
4109 | // |
4110 | // '__SVE_VLS<<type>, <vector length>>' |
4111 | // |
4112 | // Combining the existing SVE type and a specific vector length (in bits). |
4113 | // For example: |
4114 | // |
4115 | // typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512))); |
4116 | // |
4117 | // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as: |
4118 | // |
4119 | // "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE" |
4120 | // |
4121 | // i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE |
4122 | // |
4123 | // The latest ACLE specification (00bet5) does not contain details of this |
4124 | // mangling scheme, it will be specified in the next revision. The mangling |
4125 | // scheme is otherwise defined in the appendices to the Procedure Call Standard |
4126 | // for the Arm Architecture, see |
4127 | // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling |
4128 | void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) { |
4129 | assert((T->getVectorKind() == VectorKind::SveFixedLengthData || |
4130 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) && |
4131 | "expected fixed-length SVE vector!"); |
4132 | |
4133 | QualType EltType = T->getElementType(); |
4134 | assert(EltType->isBuiltinType() && |
4135 | "expected builtin type for fixed-length SVE vector!"); |
4136 | |
4137 | StringRef TypeName; |
4138 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
4139 | case BuiltinType::SChar: |
4140 | TypeName = "__SVInt8_t"; |
4141 | break; |
4142 | case BuiltinType::UChar: { |
4143 | if (T->getVectorKind() == VectorKind::SveFixedLengthData) |
4144 | TypeName = "__SVUint8_t"; |
4145 | else |
4146 | TypeName = "__SVBool_t"; |
4147 | break; |
4148 | } |
4149 | case BuiltinType::Short: |
4150 | TypeName = "__SVInt16_t"; |
4151 | break; |
4152 | case BuiltinType::UShort: |
4153 | TypeName = "__SVUint16_t"; |
4154 | break; |
4155 | case BuiltinType::Int: |
4156 | TypeName = "__SVInt32_t"; |
4157 | break; |
4158 | case BuiltinType::UInt: |
4159 | TypeName = "__SVUint32_t"; |
4160 | break; |
4161 | case BuiltinType::Long: |
4162 | TypeName = "__SVInt64_t"; |
4163 | break; |
4164 | case BuiltinType::ULong: |
4165 | TypeName = "__SVUint64_t"; |
4166 | break; |
4167 | case BuiltinType::Half: |
4168 | TypeName = "__SVFloat16_t"; |
4169 | break; |
4170 | case BuiltinType::Float: |
4171 | TypeName = "__SVFloat32_t"; |
4172 | break; |
4173 | case BuiltinType::Double: |
4174 | TypeName = "__SVFloat64_t"; |
4175 | break; |
4176 | case BuiltinType::BFloat16: |
4177 | TypeName = "__SVBfloat16_t"; |
4178 | break; |
4179 | default: |
4180 | llvm_unreachable("unexpected element type for fixed-length SVE vector!"); |
4181 | } |
4182 | |
4183 | unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; |
4184 | |
4185 | if (T->getVectorKind() == VectorKind::SveFixedLengthPredicate) |
4186 | VecSizeInBits *= 8; |
4187 | |
4188 | Out << "9__SVE_VLSI"; |
4189 | mangleVendorType(name: TypeName); |
4190 | Out << "Lj"<< VecSizeInBits << "EE"; |
4191 | } |
4192 | |
4193 | void CXXNameMangler::mangleAArch64FixedSveVectorType( |
4194 | const DependentVectorType *T) { |
4195 | DiagnosticsEngine &Diags = Context.getDiags(); |
4196 | unsigned DiagID = Diags.getCustomDiagID( |
4197 | L: DiagnosticsEngine::Error, |
4198 | FormatString: "cannot mangle this dependent fixed-length SVE vector type yet"); |
4199 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
4200 | } |
4201 | |
4202 | void CXXNameMangler::mangleRISCVFixedRVVVectorType(const VectorType *T) { |
4203 | assert((T->getVectorKind() == VectorKind::RVVFixedLengthData || |
4204 | T->getVectorKind() == VectorKind::RVVFixedLengthMask || |
4205 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_1 || |
4206 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_2 || |
4207 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_4) && |
4208 | "expected fixed-length RVV vector!"); |
4209 | |
4210 | QualType EltType = T->getElementType(); |
4211 | assert(EltType->isBuiltinType() && |
4212 | "expected builtin type for fixed-length RVV vector!"); |
4213 | |
4214 | SmallString<20> TypeNameStr; |
4215 | llvm::raw_svector_ostream TypeNameOS(TypeNameStr); |
4216 | TypeNameOS << "__rvv_"; |
4217 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
4218 | case BuiltinType::SChar: |
4219 | TypeNameOS << "int8"; |
4220 | break; |
4221 | case BuiltinType::UChar: |
4222 | if (T->getVectorKind() == VectorKind::RVVFixedLengthData) |
4223 | TypeNameOS << "uint8"; |
4224 | else |
4225 | TypeNameOS << "bool"; |
4226 | break; |
4227 | case BuiltinType::Short: |
4228 | TypeNameOS << "int16"; |
4229 | break; |
4230 | case BuiltinType::UShort: |
4231 | TypeNameOS << "uint16"; |
4232 | break; |
4233 | case BuiltinType::Int: |
4234 | TypeNameOS << "int32"; |
4235 | break; |
4236 | case BuiltinType::UInt: |
4237 | TypeNameOS << "uint32"; |
4238 | break; |
4239 | case BuiltinType::Long: |
4240 | TypeNameOS << "int64"; |
4241 | break; |
4242 | case BuiltinType::ULong: |
4243 | TypeNameOS << "uint64"; |
4244 | break; |
4245 | case BuiltinType::Float16: |
4246 | TypeNameOS << "float16"; |
4247 | break; |
4248 | case BuiltinType::Float: |
4249 | TypeNameOS << "float32"; |
4250 | break; |
4251 | case BuiltinType::Double: |
4252 | TypeNameOS << "float64"; |
4253 | break; |
4254 | default: |
4255 | llvm_unreachable("unexpected element type for fixed-length RVV vector!"); |
4256 | } |
4257 | |
4258 | unsigned VecSizeInBits; |
4259 | switch (T->getVectorKind()) { |
4260 | case VectorKind::RVVFixedLengthMask_1: |
4261 | VecSizeInBits = 1; |
4262 | break; |
4263 | case VectorKind::RVVFixedLengthMask_2: |
4264 | VecSizeInBits = 2; |
4265 | break; |
4266 | case VectorKind::RVVFixedLengthMask_4: |
4267 | VecSizeInBits = 4; |
4268 | break; |
4269 | default: |
4270 | VecSizeInBits = getASTContext().getTypeInfo(T).Width; |
4271 | break; |
4272 | } |
4273 | |
4274 | // Apend the LMUL suffix. |
4275 | auto VScale = getASTContext().getTargetInfo().getVScaleRange( |
4276 | LangOpts: getASTContext().getLangOpts(), IsArmStreamingFunction: false); |
4277 | unsigned VLen = VScale->first * llvm::RISCV::RVVBitsPerBlock; |
4278 | |
4279 | if (T->getVectorKind() == VectorKind::RVVFixedLengthData) { |
4280 | TypeNameOS << 'm'; |
4281 | if (VecSizeInBits >= VLen) |
4282 | TypeNameOS << (VecSizeInBits / VLen); |
4283 | else |
4284 | TypeNameOS << 'f' << (VLen / VecSizeInBits); |
4285 | } else { |
4286 | TypeNameOS << (VLen / VecSizeInBits); |
4287 | } |
4288 | TypeNameOS << "_t"; |
4289 | |
4290 | Out << "9__RVV_VLSI"; |
4291 | mangleVendorType(name: TypeNameStr); |
4292 | Out << "Lj"<< VecSizeInBits << "EE"; |
4293 | } |
4294 | |
4295 | void CXXNameMangler::mangleRISCVFixedRVVVectorType( |
4296 | const DependentVectorType *T) { |
4297 | DiagnosticsEngine &Diags = Context.getDiags(); |
4298 | unsigned DiagID = Diags.getCustomDiagID( |
4299 | L: DiagnosticsEngine::Error, |
4300 | FormatString: "cannot mangle this dependent fixed-length RVV vector type yet"); |
4301 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
4302 | } |
4303 | |
4304 | // GNU extension: vector types |
4305 | // <type> ::= <vector-type> |
4306 | // <vector-type> ::= Dv <positive dimension number> _ |
4307 | // <extended element type> |
4308 | // ::= Dv [<dimension expression>] _ <element type> |
4309 | // <extended element type> ::= <element type> |
4310 | // ::= p # AltiVec vector pixel |
4311 | // ::= b # Altivec vector bool |
4312 | void CXXNameMangler::mangleType(const VectorType *T) { |
4313 | if ((T->getVectorKind() == VectorKind::Neon || |
4314 | T->getVectorKind() == VectorKind::NeonPoly)) { |
4315 | llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); |
4316 | llvm::Triple::ArchType Arch = |
4317 | getASTContext().getTargetInfo().getTriple().getArch(); |
4318 | if ((Arch == llvm::Triple::aarch64 || |
4319 | Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) |
4320 | mangleAArch64NeonVectorType(T); |
4321 | else |
4322 | mangleNeonVectorType(T); |
4323 | return; |
4324 | } else if (T->getVectorKind() == VectorKind::SveFixedLengthData || |
4325 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) { |
4326 | mangleAArch64FixedSveVectorType(T); |
4327 | return; |
4328 | } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData || |
4329 | T->getVectorKind() == VectorKind::RVVFixedLengthMask || |
4330 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_1 || |
4331 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_2 || |
4332 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_4) { |
4333 | mangleRISCVFixedRVVVectorType(T); |
4334 | return; |
4335 | } |
4336 | Out << "Dv"<< T->getNumElements() << '_'; |
4337 | if (T->getVectorKind() == VectorKind::AltiVecPixel) |
4338 | Out << 'p'; |
4339 | else if (T->getVectorKind() == VectorKind::AltiVecBool) |
4340 | Out << 'b'; |
4341 | else |
4342 | mangleType(T: T->getElementType()); |
4343 | } |
4344 | |
4345 | void CXXNameMangler::mangleType(const DependentVectorType *T) { |
4346 | if ((T->getVectorKind() == VectorKind::Neon || |
4347 | T->getVectorKind() == VectorKind::NeonPoly)) { |
4348 | llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); |
4349 | llvm::Triple::ArchType Arch = |
4350 | getASTContext().getTargetInfo().getTriple().getArch(); |
4351 | if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && |
4352 | !Target.isOSDarwin()) |
4353 | mangleAArch64NeonVectorType(T); |
4354 | else |
4355 | mangleNeonVectorType(T); |
4356 | return; |
4357 | } else if (T->getVectorKind() == VectorKind::SveFixedLengthData || |
4358 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) { |
4359 | mangleAArch64FixedSveVectorType(T); |
4360 | return; |
4361 | } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData) { |
4362 | mangleRISCVFixedRVVVectorType(T); |
4363 | return; |
4364 | } |
4365 | |
4366 | Out << "Dv"; |
4367 | mangleExpression(E: T->getSizeExpr()); |
4368 | Out << '_'; |
4369 | if (T->getVectorKind() == VectorKind::AltiVecPixel) |
4370 | Out << 'p'; |
4371 | else if (T->getVectorKind() == VectorKind::AltiVecBool) |
4372 | Out << 'b'; |
4373 | else |
4374 | mangleType(T: T->getElementType()); |
4375 | } |
4376 | |
4377 | void CXXNameMangler::mangleType(const ExtVectorType *T) { |
4378 | mangleType(static_cast<const VectorType*>(T)); |
4379 | } |
4380 | void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { |
4381 | Out << "Dv"; |
4382 | mangleExpression(E: T->getSizeExpr()); |
4383 | Out << '_'; |
4384 | mangleType(T: T->getElementType()); |
4385 | } |
4386 | |
4387 | void CXXNameMangler::mangleType(const ConstantMatrixType *T) { |
4388 | // Mangle matrix types as a vendor extended type: |
4389 | // u<Len>matrix_typeI<Rows><Columns><element type>E |
4390 | |
4391 | mangleVendorType(name: "matrix_type"); |
4392 | |
4393 | Out << "I"; |
4394 | auto &ASTCtx = getASTContext(); |
4395 | unsigned BitWidth = ASTCtx.getTypeSize(T: ASTCtx.getSizeType()); |
4396 | llvm::APSInt Rows(BitWidth); |
4397 | Rows = T->getNumRows(); |
4398 | mangleIntegerLiteral(T: ASTCtx.getSizeType(), Value: Rows); |
4399 | llvm::APSInt Columns(BitWidth); |
4400 | Columns = T->getNumColumns(); |
4401 | mangleIntegerLiteral(T: ASTCtx.getSizeType(), Value: Columns); |
4402 | mangleType(T->getElementType()); |
4403 | Out << "E"; |
4404 | } |
4405 | |
4406 | void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) { |
4407 | // Mangle matrix types as a vendor extended type: |
4408 | // u<Len>matrix_typeI<row expr><column expr><element type>E |
4409 | mangleVendorType(name: "matrix_type"); |
4410 | |
4411 | Out << "I"; |
4412 | mangleTemplateArgExpr(E: T->getRowExpr()); |
4413 | mangleTemplateArgExpr(E: T->getColumnExpr()); |
4414 | mangleType(T->getElementType()); |
4415 | Out << "E"; |
4416 | } |
4417 | |
4418 | void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { |
4419 | SplitQualType split = T->getPointeeType().split(); |
4420 | mangleQualifiers(Quals: split.Quals, DAST: T); |
4421 | mangleType(T: QualType(split.Ty, 0)); |
4422 | } |
4423 | |
4424 | void CXXNameMangler::mangleType(const PackExpansionType *T) { |
4425 | // <type> ::= Dp <type> # pack expansion (C++0x) |
4426 | Out << "Dp"; |
4427 | mangleType(T: T->getPattern()); |
4428 | } |
4429 | |
4430 | void CXXNameMangler::mangleType(const PackIndexingType *T) { |
4431 | if (!T->hasSelectedType()) |
4432 | mangleType(T: T->getPattern()); |
4433 | else |
4434 | mangleType(T: T->getSelectedType()); |
4435 | } |
4436 | |
4437 | void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { |
4438 | mangleSourceName(II: T->getDecl()->getIdentifier()); |
4439 | } |
4440 | |
4441 | void CXXNameMangler::mangleType(const ObjCObjectType *T) { |
4442 | // Treat __kindof as a vendor extended type qualifier. |
4443 | if (T->isKindOfType()) |
4444 | Out << "U8__kindof"; |
4445 | |
4446 | if (!T->qual_empty()) { |
4447 | // Mangle protocol qualifiers. |
4448 | SmallString<64> QualStr; |
4449 | llvm::raw_svector_ostream QualOS(QualStr); |
4450 | QualOS << "objcproto"; |
4451 | for (const auto *I : T->quals()) { |
4452 | StringRef name = I->getName(); |
4453 | QualOS << name.size() << name; |
4454 | } |
4455 | mangleVendorQualifier(name: QualStr); |
4456 | } |
4457 | |
4458 | mangleType(T: T->getBaseType()); |
4459 | |
4460 | if (T->isSpecialized()) { |
4461 | // Mangle type arguments as I <type>+ E |
4462 | Out << 'I'; |
4463 | for (auto typeArg : T->getTypeArgs()) |
4464 | mangleType(T: typeArg); |
4465 | Out << 'E'; |
4466 | } |
4467 | } |
4468 | |
4469 | void CXXNameMangler::mangleType(const BlockPointerType *T) { |
4470 | Out << "U13block_pointer"; |
4471 | mangleType(T: T->getPointeeType()); |
4472 | } |
4473 | |
4474 | void CXXNameMangler::mangleType(const InjectedClassNameType *T) { |
4475 | // Mangle injected class name types as if the user had written the |
4476 | // specialization out fully. It may not actually be possible to see |
4477 | // this mangling, though. |
4478 | mangleType(T: T->getInjectedSpecializationType()); |
4479 | } |
4480 | |
4481 | void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { |
4482 | if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { |
4483 | mangleTemplateName(TD, Args: T->template_arguments()); |
4484 | } else { |
4485 | if (mangleSubstitution(T: QualType(T, 0))) |
4486 | return; |
4487 | |
4488 | mangleTemplatePrefix(Template: T->getTemplateName()); |
4489 | |
4490 | // FIXME: GCC does not appear to mangle the template arguments when |
4491 | // the template in question is a dependent template name. Should we |
4492 | // emulate that badness? |
4493 | mangleTemplateArgs(TN: T->getTemplateName(), Args: T->template_arguments()); |
4494 | addSubstitution(T: QualType(T, 0)); |
4495 | } |
4496 | } |
4497 | |
4498 | void CXXNameMangler::mangleType(const DependentNameType *T) { |
4499 | // Proposal by cxx-abi-dev, 2014-03-26 |
4500 | // <class-enum-type> ::= <name> # non-dependent or dependent type name or |
4501 | // # dependent elaborated type specifier using |
4502 | // # 'typename' |
4503 | // ::= Ts <name> # dependent elaborated type specifier using |
4504 | // # 'struct' or 'class' |
4505 | // ::= Tu <name> # dependent elaborated type specifier using |
4506 | // # 'union' |
4507 | // ::= Te <name> # dependent elaborated type specifier using |
4508 | // # 'enum' |
4509 | switch (T->getKeyword()) { |
4510 | case ElaboratedTypeKeyword::None: |
4511 | case ElaboratedTypeKeyword::Typename: |
4512 | break; |
4513 | case ElaboratedTypeKeyword::Struct: |
4514 | case ElaboratedTypeKeyword::Class: |
4515 | case ElaboratedTypeKeyword::Interface: |
4516 | Out << "Ts"; |
4517 | break; |
4518 | case ElaboratedTypeKeyword::Union: |
4519 | Out << "Tu"; |
4520 | break; |
4521 | case ElaboratedTypeKeyword::Enum: |
4522 | Out << "Te"; |
4523 | break; |
4524 | } |
4525 | // Typename types are always nested |
4526 | Out << 'N'; |
4527 | manglePrefix(qualifier: T->getQualifier()); |
4528 | mangleSourceName(II: T->getIdentifier()); |
4529 | Out << 'E'; |
4530 | } |
4531 | |
4532 | void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { |
4533 | // Dependently-scoped template types are nested if they have a prefix. |
4534 | Out << 'N'; |
4535 | |
4536 | TemplateName Prefix = |
4537 | getASTContext().getDependentTemplateName(Name: T->getDependentTemplateName()); |
4538 | mangleTemplatePrefix(Template: Prefix); |
4539 | |
4540 | // FIXME: GCC does not appear to mangle the template arguments when |
4541 | // the template in question is a dependent template name. Should we |
4542 | // emulate that badness? |
4543 | mangleTemplateArgs(TN: Prefix, Args: T->template_arguments()); |
4544 | Out << 'E'; |
4545 | } |
4546 | |
4547 | void CXXNameMangler::mangleType(const TypeOfType *T) { |
4548 | // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
4549 | // "extension with parameters" mangling. |
4550 | Out << "u6typeof"; |
4551 | } |
4552 | |
4553 | void CXXNameMangler::mangleType(const TypeOfExprType *T) { |
4554 | // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
4555 | // "extension with parameters" mangling. |
4556 | Out << "u6typeof"; |
4557 | } |
4558 | |
4559 | void CXXNameMangler::mangleType(const DecltypeType *T) { |
4560 | Expr *E = T->getUnderlyingExpr(); |
4561 | |
4562 | // type ::= Dt <expression> E # decltype of an id-expression |
4563 | // # or class member access |
4564 | // ::= DT <expression> E # decltype of an expression |
4565 | |
4566 | // This purports to be an exhaustive list of id-expressions and |
4567 | // class member accesses. Note that we do not ignore parentheses; |
4568 | // parentheses change the semantics of decltype for these |
4569 | // expressions (and cause the mangler to use the other form). |
4570 | if (isa<DeclRefExpr>(Val: E) || |
4571 | isa<MemberExpr>(Val: E) || |
4572 | isa<UnresolvedLookupExpr>(Val: E) || |
4573 | isa<DependentScopeDeclRefExpr>(Val: E) || |
4574 | isa<CXXDependentScopeMemberExpr>(Val: E) || |
4575 | isa<UnresolvedMemberExpr>(Val: E)) |
4576 | Out << "Dt"; |
4577 | else |
4578 | Out << "DT"; |
4579 | mangleExpression(E); |
4580 | Out << 'E'; |
4581 | } |
4582 | |
4583 | void CXXNameMangler::mangleType(const UnaryTransformType *T) { |
4584 | // If this is dependent, we need to record that. If not, we simply |
4585 | // mangle it as the underlying type since they are equivalent. |
4586 | if (T->isDependentType()) { |
4587 | StringRef BuiltinName; |
4588 | switch (T->getUTTKind()) { |
4589 | #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \ |
4590 | case UnaryTransformType::Enum: \ |
4591 | BuiltinName = "__" #Trait; \ |
4592 | break; |
4593 | #include "clang/Basic/TransformTypeTraits.def" |
4594 | } |
4595 | mangleVendorType(name: BuiltinName); |
4596 | } |
4597 | |
4598 | Out << "I"; |
4599 | mangleType(T: T->getBaseType()); |
4600 | Out << "E"; |
4601 | } |
4602 | |
4603 | void CXXNameMangler::mangleType(const AutoType *T) { |
4604 | assert(T->getDeducedType().isNull() && |
4605 | "Deduced AutoType shouldn't be handled here!"); |
4606 | assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && |
4607 | "shouldn't need to mangle __auto_type!"); |
4608 | // <builtin-type> ::= Da # auto |
4609 | // ::= Dc # decltype(auto) |
4610 | // ::= Dk # constrained auto |
4611 | // ::= DK # constrained decltype(auto) |
4612 | if (T->isConstrained() && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
4613 | Out << (T->isDecltypeAuto() ? "DK": "Dk"); |
4614 | mangleTypeConstraint(Concept: T->getTypeConstraintConcept(), |
4615 | Arguments: T->getTypeConstraintArguments()); |
4616 | } else { |
4617 | Out << (T->isDecltypeAuto() ? "Dc": "Da"); |
4618 | } |
4619 | } |
4620 | |
4621 | void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { |
4622 | QualType Deduced = T->getDeducedType(); |
4623 | if (!Deduced.isNull()) |
4624 | return mangleType(T: Deduced); |
4625 | |
4626 | TemplateName TN = T->getTemplateName(); |
4627 | assert(TN.getAsTemplateDecl() && |
4628 | "shouldn't form deduced TST unless we know we have a template"); |
4629 | mangleType(TN); |
4630 | } |
4631 | |
4632 | void CXXNameMangler::mangleType(const AtomicType *T) { |
4633 | // <type> ::= U <source-name> <type> # vendor extended type qualifier |
4634 | // (Until there's a standardized mangling...) |
4635 | Out << "U7_Atomic"; |
4636 | mangleType(T: T->getValueType()); |
4637 | } |
4638 | |
4639 | void CXXNameMangler::mangleType(const PipeType *T) { |
4640 | // Pipe type mangling rules are described in SPIR 2.0 specification |
4641 | // A.1 Data types and A.3 Summary of changes |
4642 | // <type> ::= 8ocl_pipe |
4643 | Out << "8ocl_pipe"; |
4644 | } |
4645 | |
4646 | void CXXNameMangler::mangleType(const BitIntType *T) { |
4647 | // 5.1.5.2 Builtin types |
4648 | // <type> ::= DB <number | instantiation-dependent expression> _ |
4649 | // ::= DU <number | instantiation-dependent expression> _ |
4650 | Out << "D"<< (T->isUnsigned() ? "U": "B") << T->getNumBits() << "_"; |
4651 | } |
4652 | |
4653 | void CXXNameMangler::mangleType(const DependentBitIntType *T) { |
4654 | // 5.1.5.2 Builtin types |
4655 | // <type> ::= DB <number | instantiation-dependent expression> _ |
4656 | // ::= DU <number | instantiation-dependent expression> _ |
4657 | Out << "D"<< (T->isUnsigned() ? "U": "B"); |
4658 | mangleExpression(E: T->getNumBitsExpr()); |
4659 | Out << "_"; |
4660 | } |
4661 | |
4662 | void CXXNameMangler::mangleType(const ArrayParameterType *T) { |
4663 | mangleType(cast<ConstantArrayType>(Val: T)); |
4664 | } |
4665 | |
4666 | void CXXNameMangler::mangleType(const HLSLAttributedResourceType *T) { |
4667 | llvm::SmallString<64> Str("_Res"); |
4668 | const HLSLAttributedResourceType::Attributes &Attrs = T->getAttrs(); |
4669 | // map resource class to HLSL virtual register letter |
4670 | switch (Attrs.ResourceClass) { |
4671 | case llvm::dxil::ResourceClass::UAV: |
4672 | Str += "_u"; |
4673 | break; |
4674 | case llvm::dxil::ResourceClass::SRV: |
4675 | Str += "_t"; |
4676 | break; |
4677 | case llvm::dxil::ResourceClass::CBuffer: |
4678 | Str += "_b"; |
4679 | break; |
4680 | case llvm::dxil::ResourceClass::Sampler: |
4681 | Str += "_s"; |
4682 | break; |
4683 | } |
4684 | if (Attrs.IsROV) |
4685 | Str += "_ROV"; |
4686 | if (Attrs.RawBuffer) |
4687 | Str += "_Raw"; |
4688 | if (T->hasContainedType()) |
4689 | Str += "_CT"; |
4690 | mangleVendorQualifier(name: Str); |
4691 | |
4692 | if (T->hasContainedType()) { |
4693 | mangleType(T: T->getContainedType()); |
4694 | } |
4695 | mangleType(T: T->getWrappedType()); |
4696 | } |
4697 | |
4698 | void CXXNameMangler::mangleType(const HLSLInlineSpirvType *T) { |
4699 | SmallString<20> TypeNameStr; |
4700 | llvm::raw_svector_ostream TypeNameOS(TypeNameStr); |
4701 | |
4702 | TypeNameOS << "spirv_type"; |
4703 | |
4704 | TypeNameOS << "_"<< T->getOpcode(); |
4705 | TypeNameOS << "_"<< T->getSize(); |
4706 | TypeNameOS << "_"<< T->getAlignment(); |
4707 | |
4708 | mangleVendorType(name: TypeNameStr); |
4709 | |
4710 | for (auto &Operand : T->getOperands()) { |
4711 | using SpirvOperandKind = SpirvOperand::SpirvOperandKind; |
4712 | |
4713 | switch (Operand.getKind()) { |
4714 | case SpirvOperandKind::ConstantId: |
4715 | mangleVendorQualifier(name: "_Const"); |
4716 | mangleIntegerLiteral(T: Operand.getResultType(), |
4717 | Value: llvm::APSInt(Operand.getValue())); |
4718 | break; |
4719 | case SpirvOperandKind::Literal: |
4720 | mangleVendorQualifier(name: "_Lit"); |
4721 | mangleIntegerLiteral(T: Context.getASTContext().IntTy, |
4722 | Value: llvm::APSInt(Operand.getValue())); |
4723 | break; |
4724 | case SpirvOperandKind::TypeId: |
4725 | mangleVendorQualifier(name: "_Type"); |
4726 | mangleType(T: Operand.getResultType()); |
4727 | break; |
4728 | default: |
4729 | llvm_unreachable("Invalid SpirvOperand kind"); |
4730 | break; |
4731 | } |
4732 | TypeNameOS << Operand.getKind(); |
4733 | } |
4734 | } |
4735 | |
4736 | void CXXNameMangler::mangleIntegerLiteral(QualType T, |
4737 | const llvm::APSInt &Value) { |
4738 | // <expr-primary> ::= L <type> <value number> E # integer literal |
4739 | Out << 'L'; |
4740 | |
4741 | mangleType(T); |
4742 | if (T->isBooleanType()) { |
4743 | // Boolean values are encoded as 0/1. |
4744 | Out << (Value.getBoolValue() ? '1' : '0'); |
4745 | } else { |
4746 | mangleNumber(Value); |
4747 | } |
4748 | Out << 'E'; |
4749 | } |
4750 | |
4751 | void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { |
4752 | // Ignore member expressions involving anonymous unions. |
4753 | while (const auto *RT = Base->getType()->getAs<RecordType>()) { |
4754 | if (!RT->getDecl()->isAnonymousStructOrUnion()) |
4755 | break; |
4756 | const auto *ME = dyn_cast<MemberExpr>(Val: Base); |
4757 | if (!ME) |
4758 | break; |
4759 | Base = ME->getBase(); |
4760 | IsArrow = ME->isArrow(); |
4761 | } |
4762 | |
4763 | if (Base->isImplicitCXXThis()) { |
4764 | // Note: GCC mangles member expressions to the implicit 'this' as |
4765 | // *this., whereas we represent them as this->. The Itanium C++ ABI |
4766 | // does not specify anything here, so we follow GCC. |
4767 | Out << "dtdefpT"; |
4768 | } else { |
4769 | Out << (IsArrow ? "pt": "dt"); |
4770 | mangleExpression(E: Base); |
4771 | } |
4772 | } |
4773 | |
4774 | /// Mangles a member expression. |
4775 | void CXXNameMangler::mangleMemberExpr(const Expr *base, |
4776 | bool isArrow, |
4777 | NestedNameSpecifier *qualifier, |
4778 | NamedDecl *firstQualifierLookup, |
4779 | DeclarationName member, |
4780 | const TemplateArgumentLoc *TemplateArgs, |
4781 | unsigned NumTemplateArgs, |
4782 | unsigned arity) { |
4783 | // <expression> ::= dt <expression> <unresolved-name> |
4784 | // ::= pt <expression> <unresolved-name> |
4785 | if (base) |
4786 | mangleMemberExprBase(Base: base, IsArrow: isArrow); |
4787 | mangleUnresolvedName(qualifier, name: member, TemplateArgs, NumTemplateArgs, knownArity: arity); |
4788 | } |
4789 | |
4790 | /// Look at the callee of the given call expression and determine if |
4791 | /// it's a parenthesized id-expression which would have triggered ADL |
4792 | /// otherwise. |
4793 | static bool isParenthesizedADLCallee(const CallExpr *call) { |
4794 | const Expr *callee = call->getCallee(); |
4795 | const Expr *fn = callee->IgnoreParens(); |
4796 | |
4797 | // Must be parenthesized. IgnoreParens() skips __extension__ nodes, |
4798 | // too, but for those to appear in the callee, it would have to be |
4799 | // parenthesized. |
4800 | if (callee == fn) return false; |
4801 | |
4802 | // Must be an unresolved lookup. |
4803 | const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(Val: fn); |
4804 | if (!lookup) return false; |
4805 | |
4806 | assert(!lookup->requiresADL()); |
4807 | |
4808 | // Must be an unqualified lookup. |
4809 | if (lookup->getQualifier()) return false; |
4810 | |
4811 | // Must not have found a class member. Note that if one is a class |
4812 | // member, they're all class members. |
4813 | if (lookup->getNumDecls() > 0 && |
4814 | (*lookup->decls_begin())->isCXXClassMember()) |
4815 | return false; |
4816 | |
4817 | // Otherwise, ADL would have been triggered. |
4818 | return true; |
4819 | } |
4820 | |
4821 | void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { |
4822 | const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(Val: E); |
4823 | Out << CastEncoding; |
4824 | mangleType(ECE->getType()); |
4825 | mangleExpression(E: ECE->getSubExpr()); |
4826 | } |
4827 | |
4828 | void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { |
4829 | if (auto *Syntactic = InitList->getSyntacticForm()) |
4830 | InitList = Syntactic; |
4831 | for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) |
4832 | mangleExpression(E: InitList->getInit(Init: i)); |
4833 | } |
4834 | |
4835 | void CXXNameMangler::mangleRequirement(SourceLocation RequiresExprLoc, |
4836 | const concepts::Requirement *Req) { |
4837 | using concepts::Requirement; |
4838 | |
4839 | // TODO: We can't mangle the result of a failed substitution. It's not clear |
4840 | // whether we should be mangling the original form prior to any substitution |
4841 | // instead. See https://lists.isocpp.org/core/2023/04/14118.php |
4842 | auto HandleSubstitutionFailure = |
4843 | [&](SourceLocation Loc) { |
4844 | DiagnosticsEngine &Diags = Context.getDiags(); |
4845 | unsigned DiagID = Diags.getCustomDiagID( |
4846 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this requires-expression " |
4847 | "containing a substitution failure"); |
4848 | Diags.Report(Loc, DiagID); |
4849 | Out << 'F'; |
4850 | }; |
4851 | |
4852 | switch (Req->getKind()) { |
4853 | case Requirement::RK_Type: { |
4854 | const auto *TR = cast<concepts::TypeRequirement>(Val: Req); |
4855 | if (TR->isSubstitutionFailure()) |
4856 | return HandleSubstitutionFailure( |
4857 | TR->getSubstitutionDiagnostic()->DiagLoc); |
4858 | |
4859 | Out << 'T'; |
4860 | mangleType(T: TR->getType()->getType()); |
4861 | break; |
4862 | } |
4863 | |
4864 | case Requirement::RK_Simple: |
4865 | case Requirement::RK_Compound: { |
4866 | const auto *ER = cast<concepts::ExprRequirement>(Val: Req); |
4867 | if (ER->isExprSubstitutionFailure()) |
4868 | return HandleSubstitutionFailure( |
4869 | ER->getExprSubstitutionDiagnostic()->DiagLoc); |
4870 | |
4871 | Out << 'X'; |
4872 | mangleExpression(E: ER->getExpr()); |
4873 | |
4874 | if (ER->hasNoexceptRequirement()) |
4875 | Out << 'N'; |
4876 | |
4877 | if (!ER->getReturnTypeRequirement().isEmpty()) { |
4878 | if (ER->getReturnTypeRequirement().isSubstitutionFailure()) |
4879 | return HandleSubstitutionFailure(ER->getReturnTypeRequirement() |
4880 | .getSubstitutionDiagnostic() |
4881 | ->DiagLoc); |
4882 | |
4883 | Out << 'R'; |
4884 | mangleTypeConstraint(Constraint: ER->getReturnTypeRequirement().getTypeConstraint()); |
4885 | } |
4886 | break; |
4887 | } |
4888 | |
4889 | case Requirement::RK_Nested: |
4890 | const auto *NR = cast<concepts::NestedRequirement>(Val: Req); |
4891 | if (NR->hasInvalidConstraint()) { |
4892 | // FIXME: NestedRequirement should track the location of its requires |
4893 | // keyword. |
4894 | return HandleSubstitutionFailure(RequiresExprLoc); |
4895 | } |
4896 | |
4897 | Out << 'Q'; |
4898 | mangleExpression(E: NR->getConstraintExpr()); |
4899 | break; |
4900 | } |
4901 | } |
4902 | |
4903 | void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity, |
4904 | bool AsTemplateArg) { |
4905 | // <expression> ::= <unary operator-name> <expression> |
4906 | // ::= <binary operator-name> <expression> <expression> |
4907 | // ::= <trinary operator-name> <expression> <expression> <expression> |
4908 | // ::= cv <type> expression # conversion with one argument |
4909 | // ::= cv <type> _ <expression>* E # conversion with a different number of arguments |
4910 | // ::= dc <type> <expression> # dynamic_cast<type> (expression) |
4911 | // ::= sc <type> <expression> # static_cast<type> (expression) |
4912 | // ::= cc <type> <expression> # const_cast<type> (expression) |
4913 | // ::= rc <type> <expression> # reinterpret_cast<type> (expression) |
4914 | // ::= st <type> # sizeof (a type) |
4915 | // ::= at <type> # alignof (a type) |
4916 | // ::= <template-param> |
4917 | // ::= <function-param> |
4918 | // ::= fpT # 'this' expression (part of <function-param>) |
4919 | // ::= sr <type> <unqualified-name> # dependent name |
4920 | // ::= sr <type> <unqualified-name> <template-args> # dependent template-id |
4921 | // ::= ds <expression> <expression> # expr.*expr |
4922 | // ::= sZ <template-param> # size of a parameter pack |
4923 | // ::= sZ <function-param> # size of a function parameter pack |
4924 | // ::= u <source-name> <template-arg>* E # vendor extended expression |
4925 | // ::= <expr-primary> |
4926 | // <expr-primary> ::= L <type> <value number> E # integer literal |
4927 | // ::= L <type> <value float> E # floating literal |
4928 | // ::= L <type> <string type> E # string literal |
4929 | // ::= L <nullptr type> E # nullptr literal "LDnE" |
4930 | // ::= L <pointer type> 0 E # null pointer template argument |
4931 | // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang |
4932 | // ::= L <mangled-name> E # external name |
4933 | QualType ImplicitlyConvertedToType; |
4934 | |
4935 | // A top-level expression that's not <expr-primary> needs to be wrapped in |
4936 | // X...E in a template arg. |
4937 | bool IsPrimaryExpr = true; |
4938 | auto NotPrimaryExpr = [&] { |
4939 | if (AsTemplateArg && IsPrimaryExpr) |
4940 | Out << 'X'; |
4941 | IsPrimaryExpr = false; |
4942 | }; |
4943 | |
4944 | auto MangleDeclRefExpr = [&](const NamedDecl *D) { |
4945 | switch (D->getKind()) { |
4946 | default: |
4947 | // <expr-primary> ::= L <mangled-name> E # external name |
4948 | Out << 'L'; |
4949 | mangle(GD: D); |
4950 | Out << 'E'; |
4951 | break; |
4952 | |
4953 | case Decl::ParmVar: |
4954 | NotPrimaryExpr(); |
4955 | mangleFunctionParam(parm: cast<ParmVarDecl>(Val: D)); |
4956 | break; |
4957 | |
4958 | case Decl::EnumConstant: { |
4959 | // <expr-primary> |
4960 | const EnumConstantDecl *ED = cast<EnumConstantDecl>(Val: D); |
4961 | mangleIntegerLiteral(T: ED->getType(), Value: ED->getInitVal()); |
4962 | break; |
4963 | } |
4964 | |
4965 | case Decl::NonTypeTemplateParm: |
4966 | NotPrimaryExpr(); |
4967 | const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(Val: D); |
4968 | mangleTemplateParameter(Depth: PD->getDepth(), Index: PD->getIndex()); |
4969 | break; |
4970 | } |
4971 | }; |
4972 | |
4973 | // 'goto recurse' is used when handling a simple "unwrapping" node which |
4974 | // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need |
4975 | // to be preserved. |
4976 | recurse: |
4977 | switch (E->getStmtClass()) { |
4978 | case Expr::NoStmtClass: |
4979 | #define ABSTRACT_STMT(Type) |
4980 | #define EXPR(Type, Base) |
4981 | #define STMT(Type, Base) \ |
4982 | case Expr::Type##Class: |
4983 | #include "clang/AST/StmtNodes.inc" |
4984 | // fallthrough |
4985 | |
4986 | // These all can only appear in local or variable-initialization |
4987 | // contexts and so should never appear in a mangling. |
4988 | case Expr::AddrLabelExprClass: |
4989 | case Expr::DesignatedInitUpdateExprClass: |
4990 | case Expr::ImplicitValueInitExprClass: |
4991 | case Expr::ArrayInitLoopExprClass: |
4992 | case Expr::ArrayInitIndexExprClass: |
4993 | case Expr::NoInitExprClass: |
4994 | case Expr::ParenListExprClass: |
4995 | case Expr::MSPropertyRefExprClass: |
4996 | case Expr::MSPropertySubscriptExprClass: |
4997 | case Expr::TypoExprClass: // This should no longer exist in the AST by now. |
4998 | case Expr::RecoveryExprClass: |
4999 | case Expr::ArraySectionExprClass: |
5000 | case Expr::OMPArrayShapingExprClass: |
5001 | case Expr::OMPIteratorExprClass: |
5002 | case Expr::CXXInheritedCtorInitExprClass: |
5003 | case Expr::CXXParenListInitExprClass: |
5004 | case Expr::PackIndexingExprClass: |
5005 | llvm_unreachable("unexpected statement kind"); |
5006 | |
5007 | case Expr::ConstantExprClass: |
5008 | E = cast<ConstantExpr>(E)->getSubExpr(); |
5009 | goto recurse; |
5010 | |
5011 | // FIXME: invent manglings for all these. |
5012 | case Expr::BlockExprClass: |
5013 | case Expr::ChooseExprClass: |
5014 | case Expr::CompoundLiteralExprClass: |
5015 | case Expr::ExtVectorElementExprClass: |
5016 | case Expr::GenericSelectionExprClass: |
5017 | case Expr::ObjCEncodeExprClass: |
5018 | case Expr::ObjCIsaExprClass: |
5019 | case Expr::ObjCIvarRefExprClass: |
5020 | case Expr::ObjCMessageExprClass: |
5021 | case Expr::ObjCPropertyRefExprClass: |
5022 | case Expr::ObjCProtocolExprClass: |
5023 | case Expr::ObjCSelectorExprClass: |
5024 | case Expr::ObjCStringLiteralClass: |
5025 | case Expr::ObjCBoxedExprClass: |
5026 | case Expr::ObjCArrayLiteralClass: |
5027 | case Expr::ObjCDictionaryLiteralClass: |
5028 | case Expr::ObjCSubscriptRefExprClass: |
5029 | case Expr::ObjCIndirectCopyRestoreExprClass: |
5030 | case Expr::ObjCAvailabilityCheckExprClass: |
5031 | case Expr::OffsetOfExprClass: |
5032 | case Expr::PredefinedExprClass: |
5033 | case Expr::ShuffleVectorExprClass: |
5034 | case Expr::ConvertVectorExprClass: |
5035 | case Expr::StmtExprClass: |
5036 | case Expr::ArrayTypeTraitExprClass: |
5037 | case Expr::ExpressionTraitExprClass: |
5038 | case Expr::VAArgExprClass: |
5039 | case Expr::CUDAKernelCallExprClass: |
5040 | case Expr::AsTypeExprClass: |
5041 | case Expr::PseudoObjectExprClass: |
5042 | case Expr::AtomicExprClass: |
5043 | case Expr::SourceLocExprClass: |
5044 | case Expr::EmbedExprClass: |
5045 | case Expr::BuiltinBitCastExprClass: { |
5046 | NotPrimaryExpr(); |
5047 | if (!NullOut) { |
5048 | // As bad as this diagnostic is, it's better than crashing. |
5049 | DiagnosticsEngine &Diags = Context.getDiags(); |
5050 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
5051 | "cannot yet mangle expression type %0"); |
5052 | Diags.Report(Loc: E->getExprLoc(), DiagID) |
5053 | << E->getStmtClassName() << E->getSourceRange(); |
5054 | return; |
5055 | } |
5056 | break; |
5057 | } |
5058 | |
5059 | case Expr::CXXUuidofExprClass: { |
5060 | NotPrimaryExpr(); |
5061 | const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E); |
5062 | // As of clang 12, uuidof uses the vendor extended expression |
5063 | // mangling. Previously, it used a special-cased nonstandard extension. |
5064 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
5065 | Out << "u8__uuidof"; |
5066 | if (UE->isTypeOperand()) |
5067 | mangleType(T: UE->getTypeOperand(Context&: Context.getASTContext())); |
5068 | else |
5069 | mangleTemplateArgExpr(E: UE->getExprOperand()); |
5070 | Out << 'E'; |
5071 | } else { |
5072 | if (UE->isTypeOperand()) { |
5073 | QualType UuidT = UE->getTypeOperand(Context&: Context.getASTContext()); |
5074 | Out << "u8__uuidoft"; |
5075 | mangleType(T: UuidT); |
5076 | } else { |
5077 | Expr *UuidExp = UE->getExprOperand(); |
5078 | Out << "u8__uuidofz"; |
5079 | mangleExpression(E: UuidExp); |
5080 | } |
5081 | } |
5082 | break; |
5083 | } |
5084 | |
5085 | // Even gcc-4.5 doesn't mangle this. |
5086 | case Expr::BinaryConditionalOperatorClass: { |
5087 | NotPrimaryExpr(); |
5088 | DiagnosticsEngine &Diags = Context.getDiags(); |
5089 | unsigned DiagID = |
5090 | Diags.getCustomDiagID(DiagnosticsEngine::Error, |
5091 | "?: operator with omitted middle operand cannot be mangled"); |
5092 | Diags.Report(Loc: E->getExprLoc(), DiagID) |
5093 | << E->getStmtClassName() << E->getSourceRange(); |
5094 | return; |
5095 | } |
5096 | |
5097 | // These are used for internal purposes and cannot be meaningfully mangled. |
5098 | case Expr::OpaqueValueExprClass: |
5099 | llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); |
5100 | |
5101 | case Expr::InitListExprClass: { |
5102 | NotPrimaryExpr(); |
5103 | Out << "il"; |
5104 | mangleInitListElements(InitList: cast<InitListExpr>(E)); |
5105 | Out << "E"; |
5106 | break; |
5107 | } |
5108 | |
5109 | case Expr::DesignatedInitExprClass: { |
5110 | NotPrimaryExpr(); |
5111 | auto *DIE = cast<DesignatedInitExpr>(E); |
5112 | for (const auto &Designator : DIE->designators()) { |
5113 | if (Designator.isFieldDesignator()) { |
5114 | Out << "di"; |
5115 | mangleSourceName(Designator.getFieldName()); |
5116 | } else if (Designator.isArrayDesignator()) { |
5117 | Out << "dx"; |
5118 | mangleExpression(DIE->getArrayIndex(Designator)); |
5119 | } else { |
5120 | assert(Designator.isArrayRangeDesignator() && |
5121 | "unknown designator kind"); |
5122 | Out << "dX"; |
5123 | mangleExpression(DIE->getArrayRangeStart(Designator)); |
5124 | mangleExpression(DIE->getArrayRangeEnd(Designator)); |
5125 | } |
5126 | } |
5127 | mangleExpression(E: DIE->getInit()); |
5128 | break; |
5129 | } |
5130 | |
5131 | case Expr::CXXDefaultArgExprClass: |
5132 | E = cast<CXXDefaultArgExpr>(E)->getExpr(); |
5133 | goto recurse; |
5134 | |
5135 | case Expr::CXXDefaultInitExprClass: |
5136 | E = cast<CXXDefaultInitExpr>(E)->getExpr(); |
5137 | goto recurse; |
5138 | |
5139 | case Expr::CXXStdInitializerListExprClass: |
5140 | E = cast<CXXStdInitializerListExpr>(E)->getSubExpr(); |
5141 | goto recurse; |
5142 | |
5143 | case Expr::SubstNonTypeTemplateParmExprClass: { |
5144 | // Mangle a substituted parameter the same way we mangle the template |
5145 | // argument. |
5146 | auto *SNTTPE = cast<SubstNonTypeTemplateParmExpr>(E); |
5147 | if (auto *CE = dyn_cast<ConstantExpr>(SNTTPE->getReplacement())) { |
5148 | // Pull out the constant value and mangle it as a template argument. |
5149 | QualType ParamType = SNTTPE->getParameterType(Context.getASTContext()); |
5150 | assert(CE->hasAPValueResult() && "expected the NTTP to have an APValue"); |
5151 | mangleValueInTemplateArg(T: ParamType, V: CE->getAPValueResult(), TopLevel: false, |
5152 | /*NeedExactType=*/true); |
5153 | break; |
5154 | } |
5155 | // The remaining cases all happen to be substituted with expressions that |
5156 | // mangle the same as a corresponding template argument anyway. |
5157 | E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(); |
5158 | goto recurse; |
5159 | } |
5160 | |
5161 | case Expr::UserDefinedLiteralClass: |
5162 | // We follow g++'s approach of mangling a UDL as a call to the literal |
5163 | // operator. |
5164 | case Expr::CXXMemberCallExprClass: // fallthrough |
5165 | case Expr::CallExprClass: { |
5166 | NotPrimaryExpr(); |
5167 | const CallExpr *CE = cast<CallExpr>(E); |
5168 | |
5169 | // <expression> ::= cp <simple-id> <expression>* E |
5170 | // We use this mangling only when the call would use ADL except |
5171 | // for being parenthesized. Per discussion with David |
5172 | // Vandervoorde, 2011.04.25. |
5173 | if (isParenthesizedADLCallee(call: CE)) { |
5174 | Out << "cp"; |
5175 | // The callee here is a parenthesized UnresolvedLookupExpr with |
5176 | // no qualifier and should always get mangled as a <simple-id> |
5177 | // anyway. |
5178 | |
5179 | // <expression> ::= cl <expression>* E |
5180 | } else { |
5181 | Out << "cl"; |
5182 | } |
5183 | |
5184 | unsigned CallArity = CE->getNumArgs(); |
5185 | for (const Expr *Arg : CE->arguments()) |
5186 | if (isa<PackExpansionExpr>(Arg)) |
5187 | CallArity = UnknownArity; |
5188 | |
5189 | mangleExpression(E: CE->getCallee(), Arity: CallArity); |
5190 | for (const Expr *Arg : CE->arguments()) |
5191 | mangleExpression(Arg); |
5192 | Out << 'E'; |
5193 | break; |
5194 | } |
5195 | |
5196 | case Expr::CXXNewExprClass: { |
5197 | NotPrimaryExpr(); |
5198 | const CXXNewExpr *New = cast<CXXNewExpr>(E); |
5199 | if (New->isGlobalNew()) Out << "gs"; |
5200 | Out << (New->isArray() ? "na": "nw"); |
5201 | for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), |
5202 | E = New->placement_arg_end(); I != E; ++I) |
5203 | mangleExpression(*I); |
5204 | Out << '_'; |
5205 | mangleType(T: New->getAllocatedType()); |
5206 | if (New->hasInitializer()) { |
5207 | if (New->getInitializationStyle() == CXXNewInitializationStyle::Braces) |
5208 | Out << "il"; |
5209 | else |
5210 | Out << "pi"; |
5211 | const Expr *Init = New->getInitializer(); |
5212 | if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { |
5213 | // Directly inline the initializers. |
5214 | for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), |
5215 | E = CCE->arg_end(); |
5216 | I != E; ++I) |
5217 | mangleExpression(*I); |
5218 | } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { |
5219 | for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) |
5220 | mangleExpression(E: PLE->getExpr(Init: i)); |
5221 | } else if (New->getInitializationStyle() == |
5222 | CXXNewInitializationStyle::Braces && |
5223 | isa<InitListExpr>(Init)) { |
5224 | // Only take InitListExprs apart for list-initialization. |
5225 | mangleInitListElements(InitList: cast<InitListExpr>(Init)); |
5226 | } else |
5227 | mangleExpression(E: Init); |
5228 | } |
5229 | Out << 'E'; |
5230 | break; |
5231 | } |
5232 | |
5233 | case Expr::CXXPseudoDestructorExprClass: { |
5234 | NotPrimaryExpr(); |
5235 | const auto *PDE = cast<CXXPseudoDestructorExpr>(E); |
5236 | if (const Expr *Base = PDE->getBase()) |
5237 | mangleMemberExprBase(Base, IsArrow: PDE->isArrow()); |
5238 | NestedNameSpecifier *Qualifier = PDE->getQualifier(); |
5239 | if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { |
5240 | if (Qualifier) { |
5241 | mangleUnresolvedPrefix(qualifier: Qualifier, |
5242 | /*recursive=*/true); |
5243 | mangleUnresolvedTypeOrSimpleId(Ty: ScopeInfo->getType()); |
5244 | Out << 'E'; |
5245 | } else { |
5246 | Out << "sr"; |
5247 | if (!mangleUnresolvedTypeOrSimpleId(Ty: ScopeInfo->getType())) |
5248 | Out << 'E'; |
5249 | } |
5250 | } else if (Qualifier) { |
5251 | mangleUnresolvedPrefix(qualifier: Qualifier); |
5252 | } |
5253 | // <base-unresolved-name> ::= dn <destructor-name> |
5254 | Out << "dn"; |
5255 | QualType DestroyedType = PDE->getDestroyedType(); |
5256 | mangleUnresolvedTypeOrSimpleId(Ty: DestroyedType); |
5257 | break; |
5258 | } |
5259 | |
5260 | case Expr::MemberExprClass: { |
5261 | NotPrimaryExpr(); |
5262 | const MemberExpr *ME = cast<MemberExpr>(E); |
5263 | mangleMemberExpr(base: ME->getBase(), isArrow: ME->isArrow(), |
5264 | qualifier: ME->getQualifier(), firstQualifierLookup: nullptr, |
5265 | member: ME->getMemberDecl()->getDeclName(), |
5266 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
5267 | arity: Arity); |
5268 | break; |
5269 | } |
5270 | |
5271 | case Expr::UnresolvedMemberExprClass: { |
5272 | NotPrimaryExpr(); |
5273 | const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); |
5274 | mangleMemberExpr(base: ME->isImplicitAccess() ? nullptr : ME->getBase(), |
5275 | isArrow: ME->isArrow(), qualifier: ME->getQualifier(), firstQualifierLookup: nullptr, |
5276 | member: ME->getMemberName(), |
5277 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
5278 | arity: Arity); |
5279 | break; |
5280 | } |
5281 | |
5282 | case Expr::CXXDependentScopeMemberExprClass: { |
5283 | NotPrimaryExpr(); |
5284 | const CXXDependentScopeMemberExpr *ME |
5285 | = cast<CXXDependentScopeMemberExpr>(E); |
5286 | mangleMemberExpr(base: ME->isImplicitAccess() ? nullptr : ME->getBase(), |
5287 | isArrow: ME->isArrow(), qualifier: ME->getQualifier(), |
5288 | firstQualifierLookup: ME->getFirstQualifierFoundInScope(), |
5289 | member: ME->getMember(), |
5290 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
5291 | arity: Arity); |
5292 | break; |
5293 | } |
5294 | |
5295 | case Expr::UnresolvedLookupExprClass: { |
5296 | NotPrimaryExpr(); |
5297 | const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); |
5298 | mangleUnresolvedName(qualifier: ULE->getQualifier(), name: ULE->getName(), |
5299 | TemplateArgs: ULE->getTemplateArgs(), NumTemplateArgs: ULE->getNumTemplateArgs(), |
5300 | knownArity: Arity); |
5301 | break; |
5302 | } |
5303 | |
5304 | case Expr::CXXUnresolvedConstructExprClass: { |
5305 | NotPrimaryExpr(); |
5306 | const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); |
5307 | unsigned N = CE->getNumArgs(); |
5308 | |
5309 | if (CE->isListInitialization()) { |
5310 | assert(N == 1 && "unexpected form for list initialization"); |
5311 | auto *IL = cast<InitListExpr>(CE->getArg(I: 0)); |
5312 | Out << "tl"; |
5313 | mangleType(CE->getType()); |
5314 | mangleInitListElements(InitList: IL); |
5315 | Out << "E"; |
5316 | break; |
5317 | } |
5318 | |
5319 | Out << "cv"; |
5320 | mangleType(CE->getType()); |
5321 | if (N != 1) Out << '_'; |
5322 | for (unsigned I = 0; I != N; ++I) mangleExpression(E: CE->getArg(I)); |
5323 | if (N != 1) Out << 'E'; |
5324 | break; |
5325 | } |
5326 | |
5327 | case Expr::CXXConstructExprClass: { |
5328 | // An implicit cast is silent, thus may contain <expr-primary>. |
5329 | const auto *CE = cast<CXXConstructExpr>(E); |
5330 | if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { |
5331 | assert( |
5332 | CE->getNumArgs() >= 1 && |
5333 | (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && |
5334 | "implicit CXXConstructExpr must have one argument"); |
5335 | E = cast<CXXConstructExpr>(E)->getArg(0); |
5336 | goto recurse; |
5337 | } |
5338 | NotPrimaryExpr(); |
5339 | Out << "il"; |
5340 | for (auto *E : CE->arguments()) |
5341 | mangleExpression(E); |
5342 | Out << "E"; |
5343 | break; |
5344 | } |
5345 | |
5346 | case Expr::CXXTemporaryObjectExprClass: { |
5347 | NotPrimaryExpr(); |
5348 | const auto *CE = cast<CXXTemporaryObjectExpr>(E); |
5349 | unsigned N = CE->getNumArgs(); |
5350 | bool List = CE->isListInitialization(); |
5351 | |
5352 | if (List) |
5353 | Out << "tl"; |
5354 | else |
5355 | Out << "cv"; |
5356 | mangleType(CE->getType()); |
5357 | if (!List && N != 1) |
5358 | Out << '_'; |
5359 | if (CE->isStdInitListInitialization()) { |
5360 | // We implicitly created a std::initializer_list<T> for the first argument |
5361 | // of a constructor of type U in an expression of the form U{a, b, c}. |
5362 | // Strip all the semantic gunk off the initializer list. |
5363 | auto *SILE = |
5364 | cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit()); |
5365 | auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit()); |
5366 | mangleInitListElements(InitList: ILE); |
5367 | } else { |
5368 | for (auto *E : CE->arguments()) |
5369 | mangleExpression(E); |
5370 | } |
5371 | if (List || N != 1) |
5372 | Out << 'E'; |
5373 | break; |
5374 | } |
5375 | |
5376 | case Expr::CXXScalarValueInitExprClass: |
5377 | NotPrimaryExpr(); |
5378 | Out << "cv"; |
5379 | mangleType(T: E->getType()); |
5380 | Out << "_E"; |
5381 | break; |
5382 | |
5383 | case Expr::CXXNoexceptExprClass: |
5384 | NotPrimaryExpr(); |
5385 | Out << "nx"; |
5386 | mangleExpression(E: cast<CXXNoexceptExpr>(E)->getOperand()); |
5387 | break; |
5388 | |
5389 | case Expr::UnaryExprOrTypeTraitExprClass: { |
5390 | // Non-instantiation-dependent traits are an <expr-primary> integer literal. |
5391 | const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); |
5392 | |
5393 | if (!SAE->isInstantiationDependent()) { |
5394 | // Itanium C++ ABI: |
5395 | // If the operand of a sizeof or alignof operator is not |
5396 | // instantiation-dependent it is encoded as an integer literal |
5397 | // reflecting the result of the operator. |
5398 | // |
5399 | // If the result of the operator is implicitly converted to a known |
5400 | // integer type, that type is used for the literal; otherwise, the type |
5401 | // of std::size_t or std::ptrdiff_t is used. |
5402 | // |
5403 | // FIXME: We still include the operand in the profile in this case. This |
5404 | // can lead to mangling collisions between function templates that we |
5405 | // consider to be different. |
5406 | QualType T = (ImplicitlyConvertedToType.isNull() || |
5407 | !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() |
5408 | : ImplicitlyConvertedToType; |
5409 | llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); |
5410 | mangleIntegerLiteral(T, Value: V); |
5411 | break; |
5412 | } |
5413 | |
5414 | NotPrimaryExpr(); // But otherwise, they are not. |
5415 | |
5416 | auto MangleAlignofSizeofArg = [&] { |
5417 | if (SAE->isArgumentType()) { |
5418 | Out << 't'; |
5419 | mangleType(T: SAE->getArgumentType()); |
5420 | } else { |
5421 | Out << 'z'; |
5422 | mangleExpression(E: SAE->getArgumentExpr()); |
5423 | } |
5424 | }; |
5425 | |
5426 | auto MangleExtensionBuiltin = [&](const UnaryExprOrTypeTraitExpr *E, |
5427 | StringRef Name = {}) { |
5428 | if (Name.empty()) |
5429 | Name = getTraitSpelling(T: E->getKind()); |
5430 | mangleVendorType(name: Name); |
5431 | if (SAE->isArgumentType()) |
5432 | mangleType(T: SAE->getArgumentType()); |
5433 | else |
5434 | mangleTemplateArgExpr(E: SAE->getArgumentExpr()); |
5435 | Out << 'E'; |
5436 | }; |
5437 | |
5438 | switch (SAE->getKind()) { |
5439 | case UETT_SizeOf: |
5440 | Out << 's'; |
5441 | MangleAlignofSizeofArg(); |
5442 | break; |
5443 | case UETT_PreferredAlignOf: |
5444 | // As of clang 12, we mangle __alignof__ differently than alignof. (They |
5445 | // have acted differently since Clang 8, but were previously mangled the |
5446 | // same.) |
5447 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
5448 | MangleExtensionBuiltin(SAE, "__alignof__"); |
5449 | break; |
5450 | } |
5451 | [[fallthrough]]; |
5452 | case UETT_AlignOf: |
5453 | Out << 'a'; |
5454 | MangleAlignofSizeofArg(); |
5455 | break; |
5456 | |
5457 | case UETT_CountOf: |
5458 | case UETT_VectorElements: |
5459 | case UETT_OpenMPRequiredSimdAlign: |
5460 | case UETT_VecStep: |
5461 | case UETT_PtrAuthTypeDiscriminator: |
5462 | case UETT_DataSizeOf: { |
5463 | DiagnosticsEngine &Diags = Context.getDiags(); |
5464 | unsigned DiagID = Diags.getCustomDiagID( |
5465 | DiagnosticsEngine::Error, "cannot yet mangle %0 expression"); |
5466 | Diags.Report(Loc: E->getExprLoc(), DiagID) << getTraitSpelling(T: SAE->getKind()); |
5467 | return; |
5468 | } |
5469 | } |
5470 | break; |
5471 | } |
5472 | |
5473 | case Expr::TypeTraitExprClass: { |
5474 | // <expression> ::= u <source-name> <template-arg>* E # vendor extension |
5475 | const TypeTraitExpr *TTE = cast<TypeTraitExpr>(E); |
5476 | NotPrimaryExpr(); |
5477 | llvm::StringRef Spelling = getTraitSpelling(T: TTE->getTrait()); |
5478 | mangleVendorType(name: Spelling); |
5479 | for (TypeSourceInfo *TSI : TTE->getArgs()) { |
5480 | mangleType(TSI->getType()); |
5481 | } |
5482 | Out << 'E'; |
5483 | break; |
5484 | } |
5485 | |
5486 | case Expr::CXXThrowExprClass: { |
5487 | NotPrimaryExpr(); |
5488 | const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); |
5489 | // <expression> ::= tw <expression> # throw expression |
5490 | // ::= tr # rethrow |
5491 | if (TE->getSubExpr()) { |
5492 | Out << "tw"; |
5493 | mangleExpression(E: TE->getSubExpr()); |
5494 | } else { |
5495 | Out << "tr"; |
5496 | } |
5497 | break; |
5498 | } |
5499 | |
5500 | case Expr::CXXTypeidExprClass: { |
5501 | NotPrimaryExpr(); |
5502 | const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); |
5503 | // <expression> ::= ti <type> # typeid (type) |
5504 | // ::= te <expression> # typeid (expression) |
5505 | if (TIE->isTypeOperand()) { |
5506 | Out << "ti"; |
5507 | mangleType(T: TIE->getTypeOperand(Context: Context.getASTContext())); |
5508 | } else { |
5509 | Out << "te"; |
5510 | mangleExpression(E: TIE->getExprOperand()); |
5511 | } |
5512 | break; |
5513 | } |
5514 | |
5515 | case Expr::CXXDeleteExprClass: { |
5516 | NotPrimaryExpr(); |
5517 | const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); |
5518 | // <expression> ::= [gs] dl <expression> # [::] delete expr |
5519 | // ::= [gs] da <expression> # [::] delete [] expr |
5520 | if (DE->isGlobalDelete()) Out << "gs"; |
5521 | Out << (DE->isArrayForm() ? "da": "dl"); |
5522 | mangleExpression(E: DE->getArgument()); |
5523 | break; |
5524 | } |
5525 | |
5526 | case Expr::UnaryOperatorClass: { |
5527 | NotPrimaryExpr(); |
5528 | const UnaryOperator *UO = cast<UnaryOperator>(E); |
5529 | mangleOperatorName(OO: UnaryOperator::getOverloadedOperator(Opc: UO->getOpcode()), |
5530 | /*Arity=*/1); |
5531 | mangleExpression(E: UO->getSubExpr()); |
5532 | break; |
5533 | } |
5534 | |
5535 | case Expr::ArraySubscriptExprClass: { |
5536 | NotPrimaryExpr(); |
5537 | const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); |
5538 | |
5539 | // Array subscript is treated as a syntactically weird form of |
5540 | // binary operator. |
5541 | Out << "ix"; |
5542 | mangleExpression(E: AE->getLHS()); |
5543 | mangleExpression(E: AE->getRHS()); |
5544 | break; |
5545 | } |
5546 | |
5547 | case Expr::MatrixSubscriptExprClass: { |
5548 | NotPrimaryExpr(); |
5549 | const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E); |
5550 | Out << "ixix"; |
5551 | mangleExpression(E: ME->getBase()); |
5552 | mangleExpression(E: ME->getRowIdx()); |
5553 | mangleExpression(E: ME->getColumnIdx()); |
5554 | break; |
5555 | } |
5556 | |
5557 | case Expr::CompoundAssignOperatorClass: // fallthrough |
5558 | case Expr::BinaryOperatorClass: { |
5559 | NotPrimaryExpr(); |
5560 | const BinaryOperator *BO = cast<BinaryOperator>(E); |
5561 | if (BO->getOpcode() == BO_PtrMemD) |
5562 | Out << "ds"; |
5563 | else |
5564 | mangleOperatorName(OO: BinaryOperator::getOverloadedOperator(Opc: BO->getOpcode()), |
5565 | /*Arity=*/2); |
5566 | mangleExpression(E: BO->getLHS()); |
5567 | mangleExpression(E: BO->getRHS()); |
5568 | break; |
5569 | } |
5570 | |
5571 | case Expr::CXXRewrittenBinaryOperatorClass: { |
5572 | NotPrimaryExpr(); |
5573 | // The mangled form represents the original syntax. |
5574 | CXXRewrittenBinaryOperator::DecomposedForm Decomposed = |
5575 | cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm(); |
5576 | mangleOperatorName(OO: BinaryOperator::getOverloadedOperator(Opc: Decomposed.Opcode), |
5577 | /*Arity=*/2); |
5578 | mangleExpression(E: Decomposed.LHS); |
5579 | mangleExpression(E: Decomposed.RHS); |
5580 | break; |
5581 | } |
5582 | |
5583 | case Expr::ConditionalOperatorClass: { |
5584 | NotPrimaryExpr(); |
5585 | const ConditionalOperator *CO = cast<ConditionalOperator>(E); |
5586 | mangleOperatorName(OO: OO_Conditional, /*Arity=*/3); |
5587 | mangleExpression(E: CO->getCond()); |
5588 | mangleExpression(E: CO->getLHS(), Arity); |
5589 | mangleExpression(E: CO->getRHS(), Arity); |
5590 | break; |
5591 | } |
5592 | |
5593 | case Expr::ImplicitCastExprClass: { |
5594 | ImplicitlyConvertedToType = E->getType(); |
5595 | E = cast<ImplicitCastExpr>(E)->getSubExpr(); |
5596 | goto recurse; |
5597 | } |
5598 | |
5599 | case Expr::ObjCBridgedCastExprClass: { |
5600 | NotPrimaryExpr(); |
5601 | // Mangle ownership casts as a vendor extended operator __bridge, |
5602 | // __bridge_transfer, or __bridge_retain. |
5603 | StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); |
5604 | Out << "v1U"<< Kind.size() << Kind; |
5605 | mangleCastExpression(E, CastEncoding: "cv"); |
5606 | break; |
5607 | } |
5608 | |
5609 | case Expr::CStyleCastExprClass: |
5610 | NotPrimaryExpr(); |
5611 | mangleCastExpression(E, CastEncoding: "cv"); |
5612 | break; |
5613 | |
5614 | case Expr::CXXFunctionalCastExprClass: { |
5615 | NotPrimaryExpr(); |
5616 | auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit(); |
5617 | // FIXME: Add isImplicit to CXXConstructExpr. |
5618 | if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub)) |
5619 | if (CCE->getParenOrBraceRange().isInvalid()) |
5620 | Sub = CCE->getArg(0)->IgnoreImplicit(); |
5621 | if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub)) |
5622 | Sub = StdInitList->getSubExpr()->IgnoreImplicit(); |
5623 | if (auto *IL = dyn_cast<InitListExpr>(Sub)) { |
5624 | Out << "tl"; |
5625 | mangleType(T: E->getType()); |
5626 | mangleInitListElements(InitList: IL); |
5627 | Out << "E"; |
5628 | } else { |
5629 | mangleCastExpression(E, CastEncoding: "cv"); |
5630 | } |
5631 | break; |
5632 | } |
5633 | |
5634 | case Expr::CXXStaticCastExprClass: |
5635 | NotPrimaryExpr(); |
5636 | mangleCastExpression(E, CastEncoding: "sc"); |
5637 | break; |
5638 | case Expr::CXXDynamicCastExprClass: |
5639 | NotPrimaryExpr(); |
5640 | mangleCastExpression(E, CastEncoding: "dc"); |
5641 | break; |
5642 | case Expr::CXXReinterpretCastExprClass: |
5643 | NotPrimaryExpr(); |
5644 | mangleCastExpression(E, CastEncoding: "rc"); |
5645 | break; |
5646 | case Expr::CXXConstCastExprClass: |
5647 | NotPrimaryExpr(); |
5648 | mangleCastExpression(E, CastEncoding: "cc"); |
5649 | break; |
5650 | case Expr::CXXAddrspaceCastExprClass: |
5651 | NotPrimaryExpr(); |
5652 | mangleCastExpression(E, CastEncoding: "ac"); |
5653 | break; |
5654 | |
5655 | case Expr::CXXOperatorCallExprClass: { |
5656 | NotPrimaryExpr(); |
5657 | const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); |
5658 | unsigned NumArgs = CE->getNumArgs(); |
5659 | // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax |
5660 | // (the enclosing MemberExpr covers the syntactic portion). |
5661 | if (CE->getOperator() != OO_Arrow) |
5662 | mangleOperatorName(OO: CE->getOperator(), /*Arity=*/NumArgs); |
5663 | // Mangle the arguments. |
5664 | for (unsigned i = 0; i != NumArgs; ++i) |
5665 | mangleExpression(E: CE->getArg(i)); |
5666 | break; |
5667 | } |
5668 | |
5669 | case Expr::ParenExprClass: |
5670 | E = cast<ParenExpr>(E)->getSubExpr(); |
5671 | goto recurse; |
5672 | |
5673 | case Expr::ConceptSpecializationExprClass: { |
5674 | auto *CSE = cast<ConceptSpecializationExpr>(E); |
5675 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
5676 | // Clang 17 and before mangled concept-ids as if they resolved to an |
5677 | // entity, meaning that references to enclosing template arguments don't |
5678 | // work. |
5679 | Out << "L_Z"; |
5680 | mangleTemplateName(TD: CSE->getNamedConcept(), Args: CSE->getTemplateArguments()); |
5681 | Out << 'E'; |
5682 | break; |
5683 | } |
5684 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
5685 | NotPrimaryExpr(); |
5686 | mangleUnresolvedName( |
5687 | qualifier: CSE->getNestedNameSpecifierLoc().getNestedNameSpecifier(), |
5688 | name: CSE->getConceptNameInfo().getName(), |
5689 | TemplateArgs: CSE->getTemplateArgsAsWritten()->getTemplateArgs(), |
5690 | NumTemplateArgs: CSE->getTemplateArgsAsWritten()->getNumTemplateArgs()); |
5691 | break; |
5692 | } |
5693 | |
5694 | case Expr::RequiresExprClass: { |
5695 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
5696 | auto *RE = cast<RequiresExpr>(E); |
5697 | // This is a primary-expression in the C++ grammar, but does not have an |
5698 | // <expr-primary> mangling (starting with 'L'). |
5699 | NotPrimaryExpr(); |
5700 | if (RE->getLParenLoc().isValid()) { |
5701 | Out << "rQ"; |
5702 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
5703 | if (RE->getLocalParameters().empty()) { |
5704 | Out << 'v'; |
5705 | } else { |
5706 | for (ParmVarDecl *Param : RE->getLocalParameters()) { |
5707 | mangleType(Context.getASTContext().getSignatureParameterType( |
5708 | Param->getType())); |
5709 | } |
5710 | } |
5711 | Out << '_'; |
5712 | |
5713 | // The rest of the mangling is in the immediate scope of the parameters. |
5714 | FunctionTypeDepth.enterResultType(); |
5715 | for (const concepts::Requirement *Req : RE->getRequirements()) |
5716 | mangleRequirement(RE->getExprLoc(), Req); |
5717 | FunctionTypeDepth.pop(saved); |
5718 | Out << 'E'; |
5719 | } else { |
5720 | Out << "rq"; |
5721 | for (const concepts::Requirement *Req : RE->getRequirements()) |
5722 | mangleRequirement(RE->getExprLoc(), Req); |
5723 | Out << 'E'; |
5724 | } |
5725 | break; |
5726 | } |
5727 | |
5728 | case Expr::DeclRefExprClass: |
5729 | // MangleDeclRefExpr helper handles primary-vs-nonprimary |
5730 | MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl()); |
5731 | break; |
5732 | |
5733 | case Expr::SubstNonTypeTemplateParmPackExprClass: |
5734 | NotPrimaryExpr(); |
5735 | // FIXME: not clear how to mangle this! |
5736 | // template <unsigned N...> class A { |
5737 | // template <class U...> void foo(U (&x)[N]...); |
5738 | // }; |
5739 | Out << "_SUBSTPACK_"; |
5740 | break; |
5741 | |
5742 | case Expr::FunctionParmPackExprClass: { |
5743 | NotPrimaryExpr(); |
5744 | // FIXME: not clear how to mangle this! |
5745 | const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); |
5746 | Out << "v110_SUBSTPACK"; |
5747 | MangleDeclRefExpr(FPPE->getParameterPack()); |
5748 | break; |
5749 | } |
5750 | |
5751 | case Expr::DependentScopeDeclRefExprClass: { |
5752 | NotPrimaryExpr(); |
5753 | const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); |
5754 | mangleUnresolvedName(qualifier: DRE->getQualifier(), name: DRE->getDeclName(), |
5755 | TemplateArgs: DRE->getTemplateArgs(), NumTemplateArgs: DRE->getNumTemplateArgs(), |
5756 | knownArity: Arity); |
5757 | break; |
5758 | } |
5759 | |
5760 | case Expr::CXXBindTemporaryExprClass: |
5761 | E = cast<CXXBindTemporaryExpr>(E)->getSubExpr(); |
5762 | goto recurse; |
5763 | |
5764 | case Expr::ExprWithCleanupsClass: |
5765 | E = cast<ExprWithCleanups>(E)->getSubExpr(); |
5766 | goto recurse; |
5767 | |
5768 | case Expr::FloatingLiteralClass: { |
5769 | // <expr-primary> |
5770 | const FloatingLiteral *FL = cast<FloatingLiteral>(E); |
5771 | mangleFloatLiteral(T: FL->getType(), V: FL->getValue()); |
5772 | break; |
5773 | } |
5774 | |
5775 | case Expr::FixedPointLiteralClass: |
5776 | // Currently unimplemented -- might be <expr-primary> in future? |
5777 | mangleFixedPointLiteral(); |
5778 | break; |
5779 | |
5780 | case Expr::CharacterLiteralClass: |
5781 | // <expr-primary> |
5782 | Out << 'L'; |
5783 | mangleType(T: E->getType()); |
5784 | Out << cast<CharacterLiteral>(E)->getValue(); |
5785 | Out << 'E'; |
5786 | break; |
5787 | |
5788 | // FIXME. __objc_yes/__objc_no are mangled same as true/false |
5789 | case Expr::ObjCBoolLiteralExprClass: |
5790 | // <expr-primary> |
5791 | Out << "Lb"; |
5792 | Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); |
5793 | Out << 'E'; |
5794 | break; |
5795 | |
5796 | case Expr::CXXBoolLiteralExprClass: |
5797 | // <expr-primary> |
5798 | Out << "Lb"; |
5799 | Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); |
5800 | Out << 'E'; |
5801 | break; |
5802 | |
5803 | case Expr::IntegerLiteralClass: { |
5804 | // <expr-primary> |
5805 | llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); |
5806 | if (E->getType()->isSignedIntegerType()) |
5807 | Value.setIsSigned(true); |
5808 | mangleIntegerLiteral(T: E->getType(), Value); |
5809 | break; |
5810 | } |
5811 | |
5812 | case Expr::ImaginaryLiteralClass: { |
5813 | // <expr-primary> |
5814 | const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); |
5815 | // Mangle as if a complex literal. |
5816 | // Proposal from David Vandevoorde, 2010.06.30. |
5817 | Out << 'L'; |
5818 | mangleType(T: E->getType()); |
5819 | if (const FloatingLiteral *Imag = |
5820 | dyn_cast<FloatingLiteral>(IE->getSubExpr())) { |
5821 | // Mangle a floating-point zero of the appropriate type. |
5822 | mangleFloat(f: llvm::APFloat(Imag->getValue().getSemantics())); |
5823 | Out << '_'; |
5824 | mangleFloat(f: Imag->getValue()); |
5825 | } else { |
5826 | Out << "0_"; |
5827 | llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); |
5828 | if (IE->getSubExpr()->getType()->isSignedIntegerType()) |
5829 | Value.setIsSigned(true); |
5830 | mangleNumber(Value); |
5831 | } |
5832 | Out << 'E'; |
5833 | break; |
5834 | } |
5835 | |
5836 | case Expr::StringLiteralClass: { |
5837 | // <expr-primary> |
5838 | // Revised proposal from David Vandervoorde, 2010.07.15. |
5839 | Out << 'L'; |
5840 | assert(isa<ConstantArrayType>(E->getType())); |
5841 | mangleType(T: E->getType()); |
5842 | Out << 'E'; |
5843 | break; |
5844 | } |
5845 | |
5846 | case Expr::GNUNullExprClass: |
5847 | // <expr-primary> |
5848 | // Mangle as if an integer literal 0. |
5849 | mangleIntegerLiteral(T: E->getType(), Value: llvm::APSInt(32)); |
5850 | break; |
5851 | |
5852 | case Expr::CXXNullPtrLiteralExprClass: { |
5853 | // <expr-primary> |
5854 | Out << "LDnE"; |
5855 | break; |
5856 | } |
5857 | |
5858 | case Expr::LambdaExprClass: { |
5859 | // A lambda-expression can't appear in the signature of an |
5860 | // externally-visible declaration, so there's no standard mangling for |
5861 | // this, but mangling as a literal of the closure type seems reasonable. |
5862 | Out << "L"; |
5863 | mangleType(Context.getASTContext().getRecordType(Decl: cast<LambdaExpr>(E)->getLambdaClass())); |
5864 | Out << "E"; |
5865 | break; |
5866 | } |
5867 | |
5868 | case Expr::PackExpansionExprClass: |
5869 | NotPrimaryExpr(); |
5870 | Out << "sp"; |
5871 | mangleExpression(E: cast<PackExpansionExpr>(E)->getPattern()); |
5872 | break; |
5873 | |
5874 | case Expr::SizeOfPackExprClass: { |
5875 | NotPrimaryExpr(); |
5876 | auto *SPE = cast<SizeOfPackExpr>(E); |
5877 | if (SPE->isPartiallySubstituted()) { |
5878 | Out << "sP"; |
5879 | for (const auto &A : SPE->getPartialArguments()) |
5880 | mangleTemplateArg(A, false); |
5881 | Out << "E"; |
5882 | break; |
5883 | } |
5884 | |
5885 | Out << "sZ"; |
5886 | const NamedDecl *Pack = SPE->getPack(); |
5887 | if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) |
5888 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
5889 | else if (const NonTypeTemplateParmDecl *NTTP |
5890 | = dyn_cast<NonTypeTemplateParmDecl>(Pack)) |
5891 | mangleTemplateParameter(Depth: NTTP->getDepth(), Index: NTTP->getIndex()); |
5892 | else if (const TemplateTemplateParmDecl *TempTP |
5893 | = dyn_cast<TemplateTemplateParmDecl>(Pack)) |
5894 | mangleTemplateParameter(Depth: TempTP->getDepth(), Index: TempTP->getIndex()); |
5895 | else |
5896 | mangleFunctionParam(parm: cast<ParmVarDecl>(Pack)); |
5897 | break; |
5898 | } |
5899 | |
5900 | case Expr::MaterializeTemporaryExprClass: |
5901 | E = cast<MaterializeTemporaryExpr>(E)->getSubExpr(); |
5902 | goto recurse; |
5903 | |
5904 | case Expr::CXXFoldExprClass: { |
5905 | NotPrimaryExpr(); |
5906 | auto *FE = cast<CXXFoldExpr>(E); |
5907 | if (FE->isLeftFold()) |
5908 | Out << (FE->getInit() ? "fL": "fl"); |
5909 | else |
5910 | Out << (FE->getInit() ? "fR": "fr"); |
5911 | |
5912 | if (FE->getOperator() == BO_PtrMemD) |
5913 | Out << "ds"; |
5914 | else |
5915 | mangleOperatorName( |
5916 | BinaryOperator::getOverloadedOperator(Opc: FE->getOperator()), |
5917 | /*Arity=*/2); |
5918 | |
5919 | if (FE->getLHS()) |
5920 | mangleExpression(E: FE->getLHS()); |
5921 | if (FE->getRHS()) |
5922 | mangleExpression(E: FE->getRHS()); |
5923 | break; |
5924 | } |
5925 | |
5926 | case Expr::CXXThisExprClass: |
5927 | NotPrimaryExpr(); |
5928 | Out << "fpT"; |
5929 | break; |
5930 | |
5931 | case Expr::CoawaitExprClass: |
5932 | // FIXME: Propose a non-vendor mangling. |
5933 | NotPrimaryExpr(); |
5934 | Out << "v18co_await"; |
5935 | mangleExpression(E: cast<CoawaitExpr>(E)->getOperand()); |
5936 | break; |
5937 | |
5938 | case Expr::DependentCoawaitExprClass: |
5939 | // FIXME: Propose a non-vendor mangling. |
5940 | NotPrimaryExpr(); |
5941 | Out << "v18co_await"; |
5942 | mangleExpression(E: cast<DependentCoawaitExpr>(E)->getOperand()); |
5943 | break; |
5944 | |
5945 | case Expr::CoyieldExprClass: |
5946 | // FIXME: Propose a non-vendor mangling. |
5947 | NotPrimaryExpr(); |
5948 | Out << "v18co_yield"; |
5949 | mangleExpression(E: cast<CoawaitExpr>(E)->getOperand()); |
5950 | break; |
5951 | case Expr::SYCLUniqueStableNameExprClass: { |
5952 | const auto *USN = cast<SYCLUniqueStableNameExpr>(E); |
5953 | NotPrimaryExpr(); |
5954 | |
5955 | Out << "u33__builtin_sycl_unique_stable_name"; |
5956 | mangleType(USN->getTypeSourceInfo()->getType()); |
5957 | |
5958 | Out << "E"; |
5959 | break; |
5960 | } |
5961 | case Expr::HLSLOutArgExprClass: |
5962 | llvm_unreachable( |
5963 | "cannot mangle hlsl temporary value; mangling wrong thing?"); |
5964 | case Expr::OpenACCAsteriskSizeExprClass: { |
5965 | // We shouldn't ever be able to get here, but diagnose anyway. |
5966 | DiagnosticsEngine &Diags = Context.getDiags(); |
5967 | unsigned DiagID = Diags.getCustomDiagID( |
5968 | DiagnosticsEngine::Error, |
5969 | "cannot yet mangle OpenACC Asterisk Size expression"); |
5970 | Diags.Report(DiagID); |
5971 | return; |
5972 | } |
5973 | } |
5974 | |
5975 | if (AsTemplateArg && !IsPrimaryExpr) |
5976 | Out << 'E'; |
5977 | } |
5978 | |
5979 | /// Mangle an expression which refers to a parameter variable. |
5980 | /// |
5981 | /// <expression> ::= <function-param> |
5982 | /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 |
5983 | /// <function-param> ::= fp <top-level CV-qualifiers> |
5984 | /// <parameter-2 non-negative number> _ # L == 0, I > 0 |
5985 | /// <function-param> ::= fL <L-1 non-negative number> |
5986 | /// p <top-level CV-qualifiers> _ # L > 0, I == 0 |
5987 | /// <function-param> ::= fL <L-1 non-negative number> |
5988 | /// p <top-level CV-qualifiers> |
5989 | /// <I-1 non-negative number> _ # L > 0, I > 0 |
5990 | /// |
5991 | /// L is the nesting depth of the parameter, defined as 1 if the |
5992 | /// parameter comes from the innermost function prototype scope |
5993 | /// enclosing the current context, 2 if from the next enclosing |
5994 | /// function prototype scope, and so on, with one special case: if |
5995 | /// we've processed the full parameter clause for the innermost |
5996 | /// function type, then L is one less. This definition conveniently |
5997 | /// makes it irrelevant whether a function's result type was written |
5998 | /// trailing or leading, but is otherwise overly complicated; the |
5999 | /// numbering was first designed without considering references to |
6000 | /// parameter in locations other than return types, and then the |
6001 | /// mangling had to be generalized without changing the existing |
6002 | /// manglings. |
6003 | /// |
6004 | /// I is the zero-based index of the parameter within its parameter |
6005 | /// declaration clause. Note that the original ABI document describes |
6006 | /// this using 1-based ordinals. |
6007 | void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { |
6008 | unsigned parmDepth = parm->getFunctionScopeDepth(); |
6009 | unsigned parmIndex = parm->getFunctionScopeIndex(); |
6010 | |
6011 | // Compute 'L'. |
6012 | // parmDepth does not include the declaring function prototype. |
6013 | // FunctionTypeDepth does account for that. |
6014 | assert(parmDepth < FunctionTypeDepth.getDepth()); |
6015 | unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; |
6016 | if (FunctionTypeDepth.isInResultType()) |
6017 | nestingDepth--; |
6018 | |
6019 | if (nestingDepth == 0) { |
6020 | Out << "fp"; |
6021 | } else { |
6022 | Out << "fL"<< (nestingDepth - 1) << 'p'; |
6023 | } |
6024 | |
6025 | // Top-level qualifiers. We don't have to worry about arrays here, |
6026 | // because parameters declared as arrays should already have been |
6027 | // transformed to have pointer type. FIXME: apparently these don't |
6028 | // get mangled if used as an rvalue of a known non-class type? |
6029 | assert(!parm->getType()->isArrayType() |
6030 | && "parameter's type is still an array type?"); |
6031 | |
6032 | if (const DependentAddressSpaceType *DAST = |
6033 | dyn_cast<DependentAddressSpaceType>(parm->getType())) { |
6034 | mangleQualifiers(Quals: DAST->getPointeeType().getQualifiers(), DAST); |
6035 | } else { |
6036 | mangleQualifiers(Quals: parm->getType().getQualifiers()); |
6037 | } |
6038 | |
6039 | // Parameter index. |
6040 | if (parmIndex != 0) { |
6041 | Out << (parmIndex - 1); |
6042 | } |
6043 | Out << '_'; |
6044 | } |
6045 | |
6046 | void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, |
6047 | const CXXRecordDecl *InheritedFrom) { |
6048 | // <ctor-dtor-name> ::= C1 # complete object constructor |
6049 | // ::= C2 # base object constructor |
6050 | // ::= CI1 <type> # complete inheriting constructor |
6051 | // ::= CI2 <type> # base inheriting constructor |
6052 | // |
6053 | // In addition, C5 is a comdat name with C1 and C2 in it. |
6054 | Out << 'C'; |
6055 | if (InheritedFrom) |
6056 | Out << 'I'; |
6057 | switch (T) { |
6058 | case Ctor_Complete: |
6059 | Out << '1'; |
6060 | break; |
6061 | case Ctor_Base: |
6062 | Out << '2'; |
6063 | break; |
6064 | case Ctor_Comdat: |
6065 | Out << '5'; |
6066 | break; |
6067 | case Ctor_DefaultClosure: |
6068 | case Ctor_CopyingClosure: |
6069 | llvm_unreachable("closure constructors don't exist for the Itanium ABI!"); |
6070 | } |
6071 | if (InheritedFrom) |
6072 | mangleName(InheritedFrom); |
6073 | } |
6074 | |
6075 | void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { |
6076 | // <ctor-dtor-name> ::= D0 # deleting destructor |
6077 | // ::= D1 # complete object destructor |
6078 | // ::= D2 # base object destructor |
6079 | // |
6080 | // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. |
6081 | switch (T) { |
6082 | case Dtor_Deleting: |
6083 | Out << "D0"; |
6084 | break; |
6085 | case Dtor_Complete: |
6086 | Out << "D1"; |
6087 | break; |
6088 | case Dtor_Base: |
6089 | Out << "D2"; |
6090 | break; |
6091 | case Dtor_Comdat: |
6092 | Out << "D5"; |
6093 | break; |
6094 | } |
6095 | } |
6096 | |
6097 | // Helper to provide ancillary information on a template used to mangle its |
6098 | // arguments. |
6099 | struct CXXNameMangler::TemplateArgManglingInfo { |
6100 | const CXXNameMangler &Mangler; |
6101 | TemplateDecl *ResolvedTemplate = nullptr; |
6102 | bool SeenPackExpansionIntoNonPack = false; |
6103 | const NamedDecl *UnresolvedExpandedPack = nullptr; |
6104 | |
6105 | TemplateArgManglingInfo(const CXXNameMangler &Mangler, TemplateName TN) |
6106 | : Mangler(Mangler) { |
6107 | if (TemplateDecl *TD = TN.getAsTemplateDecl()) |
6108 | ResolvedTemplate = TD; |
6109 | } |
6110 | |
6111 | /// Information about how to mangle a template argument. |
6112 | struct Info { |
6113 | /// Do we need to mangle the template argument with an exactly correct type? |
6114 | bool NeedExactType; |
6115 | /// If we need to prefix the mangling with a mangling of the template |
6116 | /// parameter, the corresponding parameter. |
6117 | const NamedDecl *TemplateParameterToMangle; |
6118 | }; |
6119 | |
6120 | /// Determine whether the resolved template might be overloaded on its |
6121 | /// template parameter list. If so, the mangling needs to include enough |
6122 | /// information to reconstruct the template parameter list. |
6123 | bool isOverloadable() { |
6124 | // Function templates are generally overloadable. As a special case, a |
6125 | // member function template of a generic lambda is not overloadable. |
6126 | if (auto *FTD = dyn_cast_or_null<FunctionTemplateDecl>(Val: ResolvedTemplate)) { |
6127 | auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext()); |
6128 | if (!RD || !RD->isGenericLambda()) |
6129 | return true; |
6130 | } |
6131 | |
6132 | // All other templates are not overloadable. Partial specializations would |
6133 | // be, but we never mangle them. |
6134 | return false; |
6135 | } |
6136 | |
6137 | /// Determine whether we need to prefix this <template-arg> mangling with a |
6138 | /// <template-param-decl>. This happens if the natural template parameter for |
6139 | /// the argument mangling is not the same as the actual template parameter. |
6140 | bool needToMangleTemplateParam(const NamedDecl *Param, |
6141 | const TemplateArgument &Arg) { |
6142 | // For a template type parameter, the natural parameter is 'typename T'. |
6143 | // The actual parameter might be constrained. |
6144 | if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) |
6145 | return TTP->hasTypeConstraint(); |
6146 | |
6147 | if (Arg.getKind() == TemplateArgument::Pack) { |
6148 | // For an empty pack, the natural parameter is `typename...`. |
6149 | if (Arg.pack_size() == 0) |
6150 | return true; |
6151 | |
6152 | // For any other pack, we use the first argument to determine the natural |
6153 | // template parameter. |
6154 | return needToMangleTemplateParam(Param, Arg: *Arg.pack_begin()); |
6155 | } |
6156 | |
6157 | // For a non-type template parameter, the natural parameter is `T V` (for a |
6158 | // prvalue argument) or `T &V` (for a glvalue argument), where `T` is the |
6159 | // type of the argument, which we require to exactly match. If the actual |
6160 | // parameter has a deduced or instantiation-dependent type, it is not |
6161 | // equivalent to the natural parameter. |
6162 | if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) |
6163 | return NTTP->getType()->isInstantiationDependentType() || |
6164 | NTTP->getType()->getContainedDeducedType(); |
6165 | |
6166 | // For a template template parameter, the template-head might differ from |
6167 | // that of the template. |
6168 | auto *TTP = cast<TemplateTemplateParmDecl>(Val: Param); |
6169 | TemplateName ArgTemplateName = Arg.getAsTemplateOrTemplatePattern(); |
6170 | assert(!ArgTemplateName.getTemplateDeclAndDefaultArgs().second && |
6171 | "A DeducedTemplateName shouldn't escape partial ordering"); |
6172 | const TemplateDecl *ArgTemplate = |
6173 | ArgTemplateName.getAsTemplateDecl(/*IgnoreDeduced=*/true); |
6174 | if (!ArgTemplate) |
6175 | return true; |
6176 | |
6177 | // Mangle the template parameter list of the parameter and argument to see |
6178 | // if they are the same. We can't use Profile for this, because it can't |
6179 | // model the depth difference between parameter and argument and might not |
6180 | // necessarily have the same definition of "identical" that we use here -- |
6181 | // that is, same mangling. |
6182 | auto MangleTemplateParamListToString = |
6183 | [&](SmallVectorImpl<char> &Buffer, const TemplateParameterList *Params, |
6184 | unsigned DepthOffset) { |
6185 | llvm::raw_svector_ostream Stream(Buffer); |
6186 | CXXNameMangler(Mangler.Context, Stream, |
6187 | WithTemplateDepthOffset{.Offset: DepthOffset}) |
6188 | .mangleTemplateParameterList(Params); |
6189 | }; |
6190 | llvm::SmallString<128> ParamTemplateHead, ArgTemplateHead; |
6191 | MangleTemplateParamListToString(ParamTemplateHead, |
6192 | TTP->getTemplateParameters(), 0); |
6193 | // Add the depth of the parameter's template parameter list to all |
6194 | // parameters appearing in the argument to make the indexes line up |
6195 | // properly. |
6196 | MangleTemplateParamListToString(ArgTemplateHead, |
6197 | ArgTemplate->getTemplateParameters(), |
6198 | TTP->getTemplateParameters()->getDepth()); |
6199 | return ParamTemplateHead != ArgTemplateHead; |
6200 | } |
6201 | |
6202 | /// Determine information about how this template argument should be mangled. |
6203 | /// This should be called exactly once for each parameter / argument pair, in |
6204 | /// order. |
6205 | Info getArgInfo(unsigned ParamIdx, const TemplateArgument &Arg) { |
6206 | // We need correct types when the template-name is unresolved or when it |
6207 | // names a template that is able to be overloaded. |
6208 | if (!ResolvedTemplate || SeenPackExpansionIntoNonPack) |
6209 | return {.NeedExactType: true, .TemplateParameterToMangle: nullptr}; |
6210 | |
6211 | // Move to the next parameter. |
6212 | const NamedDecl *Param = UnresolvedExpandedPack; |
6213 | if (!Param) { |
6214 | assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() && |
6215 | "no parameter for argument"); |
6216 | Param = ResolvedTemplate->getTemplateParameters()->getParam(Idx: ParamIdx); |
6217 | |
6218 | // If we reach a parameter pack whose argument isn't in pack form, that |
6219 | // means Sema couldn't or didn't figure out which arguments belonged to |
6220 | // it, because it contains a pack expansion or because Sema bailed out of |
6221 | // computing parameter / argument correspondence before this point. Track |
6222 | // the pack as the corresponding parameter for all further template |
6223 | // arguments until we hit a pack expansion, at which point we don't know |
6224 | // the correspondence between parameters and arguments at all. |
6225 | if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) { |
6226 | UnresolvedExpandedPack = Param; |
6227 | } |
6228 | } |
6229 | |
6230 | // If we encounter a pack argument that is expanded into a non-pack |
6231 | // parameter, we can no longer track parameter / argument correspondence, |
6232 | // and need to use exact types from this point onwards. |
6233 | if (Arg.isPackExpansion() && |
6234 | (!Param->isParameterPack() || UnresolvedExpandedPack)) { |
6235 | SeenPackExpansionIntoNonPack = true; |
6236 | return {.NeedExactType: true, .TemplateParameterToMangle: nullptr}; |
6237 | } |
6238 | |
6239 | // We need exact types for arguments of a template that might be overloaded |
6240 | // on template parameter type. |
6241 | if (isOverloadable()) |
6242 | return {.NeedExactType: true, .TemplateParameterToMangle: needToMangleTemplateParam(Param, Arg) ? Param : nullptr}; |
6243 | |
6244 | // Otherwise, we only need a correct type if the parameter has a deduced |
6245 | // type. |
6246 | // |
6247 | // Note: for an expanded parameter pack, getType() returns the type prior |
6248 | // to expansion. We could ask for the expanded type with getExpansionType(), |
6249 | // but it doesn't matter because substitution and expansion don't affect |
6250 | // whether a deduced type appears in the type. |
6251 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param); |
6252 | bool NeedExactType = NTTP && NTTP->getType()->getContainedDeducedType(); |
6253 | return {.NeedExactType: NeedExactType, .TemplateParameterToMangle: nullptr}; |
6254 | } |
6255 | |
6256 | /// Determine if we should mangle a requires-clause after the template |
6257 | /// argument list. If so, returns the expression to mangle. |
6258 | const Expr *getTrailingRequiresClauseToMangle() { |
6259 | if (!isOverloadable()) |
6260 | return nullptr; |
6261 | return ResolvedTemplate->getTemplateParameters()->getRequiresClause(); |
6262 | } |
6263 | }; |
6264 | |
6265 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
6266 | const TemplateArgumentLoc *TemplateArgs, |
6267 | unsigned NumTemplateArgs) { |
6268 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
6269 | Out << 'I'; |
6270 | TemplateArgManglingInfo Info(*this, TN); |
6271 | for (unsigned i = 0; i != NumTemplateArgs; ++i) { |
6272 | mangleTemplateArg(Info, Index: i, A: TemplateArgs[i].getArgument()); |
6273 | } |
6274 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
6275 | Out << 'E'; |
6276 | } |
6277 | |
6278 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
6279 | const TemplateArgumentList &AL) { |
6280 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
6281 | Out << 'I'; |
6282 | TemplateArgManglingInfo Info(*this, TN); |
6283 | for (unsigned i = 0, e = AL.size(); i != e; ++i) { |
6284 | mangleTemplateArg(Info, Index: i, A: AL[i]); |
6285 | } |
6286 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
6287 | Out << 'E'; |
6288 | } |
6289 | |
6290 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
6291 | ArrayRef<TemplateArgument> Args) { |
6292 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
6293 | Out << 'I'; |
6294 | TemplateArgManglingInfo Info(*this, TN); |
6295 | for (unsigned i = 0; i != Args.size(); ++i) { |
6296 | mangleTemplateArg(Info, Index: i, A: Args[i]); |
6297 | } |
6298 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
6299 | Out << 'E'; |
6300 | } |
6301 | |
6302 | void CXXNameMangler::mangleTemplateArg(TemplateArgManglingInfo &Info, |
6303 | unsigned Index, TemplateArgument A) { |
6304 | TemplateArgManglingInfo::Info ArgInfo = Info.getArgInfo(ParamIdx: Index, Arg: A); |
6305 | |
6306 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
6307 | if (ArgInfo.TemplateParameterToMangle && |
6308 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
6309 | // The template parameter is mangled if the mangling would otherwise be |
6310 | // ambiguous. |
6311 | // |
6312 | // <template-arg> ::= <template-param-decl> <template-arg> |
6313 | // |
6314 | // Clang 17 and before did not do this. |
6315 | mangleTemplateParamDecl(Decl: ArgInfo.TemplateParameterToMangle); |
6316 | } |
6317 | |
6318 | mangleTemplateArg(A, NeedExactType: ArgInfo.NeedExactType); |
6319 | } |
6320 | |
6321 | void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) { |
6322 | // <template-arg> ::= <type> # type or template |
6323 | // ::= X <expression> E # expression |
6324 | // ::= <expr-primary> # simple expressions |
6325 | // ::= J <template-arg>* E # argument pack |
6326 | if (!A.isInstantiationDependent() || A.isDependent()) |
6327 | A = Context.getASTContext().getCanonicalTemplateArgument(Arg: A); |
6328 | |
6329 | switch (A.getKind()) { |
6330 | case TemplateArgument::Null: |
6331 | llvm_unreachable("Cannot mangle NULL template argument"); |
6332 | |
6333 | case TemplateArgument::Type: |
6334 | mangleType(T: A.getAsType()); |
6335 | break; |
6336 | case TemplateArgument::Template: |
6337 | // This is mangled as <type>. |
6338 | mangleType(TN: A.getAsTemplate()); |
6339 | break; |
6340 | case TemplateArgument::TemplateExpansion: |
6341 | // <type> ::= Dp <type> # pack expansion (C++0x) |
6342 | Out << "Dp"; |
6343 | mangleType(TN: A.getAsTemplateOrTemplatePattern()); |
6344 | break; |
6345 | case TemplateArgument::Expression: |
6346 | mangleTemplateArgExpr(E: A.getAsExpr()); |
6347 | break; |
6348 | case TemplateArgument::Integral: |
6349 | mangleIntegerLiteral(T: A.getIntegralType(), Value: A.getAsIntegral()); |
6350 | break; |
6351 | case TemplateArgument::Declaration: { |
6352 | // <expr-primary> ::= L <mangled-name> E # external name |
6353 | ValueDecl *D = A.getAsDecl(); |
6354 | |
6355 | // Template parameter objects are modeled by reproducing a source form |
6356 | // produced as if by aggregate initialization. |
6357 | if (A.getParamTypeForDecl()->isRecordType()) { |
6358 | auto *TPO = cast<TemplateParamObjectDecl>(Val: D); |
6359 | mangleValueInTemplateArg(T: TPO->getType().getUnqualifiedType(), |
6360 | V: TPO->getValue(), /*TopLevel=*/true, |
6361 | NeedExactType); |
6362 | break; |
6363 | } |
6364 | |
6365 | ASTContext &Ctx = Context.getASTContext(); |
6366 | APValue Value; |
6367 | if (D->isCXXInstanceMember()) |
6368 | // Simple pointer-to-member with no conversion. |
6369 | Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{}); |
6370 | else if (D->getType()->isArrayType() && |
6371 | Ctx.hasSimilarType(T1: Ctx.getDecayedType(T: D->getType()), |
6372 | T2: A.getParamTypeForDecl()) && |
6373 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) |
6374 | // Build a value corresponding to this implicit array-to-pointer decay. |
6375 | Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), |
6376 | {APValue::LValuePathEntry::ArrayIndex(Index: 0)}, |
6377 | /*OnePastTheEnd=*/false); |
6378 | else |
6379 | // Regular pointer or reference to a declaration. |
6380 | Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), |
6381 | ArrayRef<APValue::LValuePathEntry>(), |
6382 | /*OnePastTheEnd=*/false); |
6383 | mangleValueInTemplateArg(T: A.getParamTypeForDecl(), V: Value, /*TopLevel=*/true, |
6384 | NeedExactType); |
6385 | break; |
6386 | } |
6387 | case TemplateArgument::NullPtr: { |
6388 | mangleNullPointer(T: A.getNullPtrType()); |
6389 | break; |
6390 | } |
6391 | case TemplateArgument::StructuralValue: |
6392 | mangleValueInTemplateArg(T: A.getStructuralValueType(), |
6393 | V: A.getAsStructuralValue(), |
6394 | /*TopLevel=*/true, NeedExactType); |
6395 | break; |
6396 | case TemplateArgument::Pack: { |
6397 | // <template-arg> ::= J <template-arg>* E |
6398 | Out << 'J'; |
6399 | for (const auto &P : A.pack_elements()) |
6400 | mangleTemplateArg(A: P, NeedExactType); |
6401 | Out << 'E'; |
6402 | } |
6403 | } |
6404 | } |
6405 | |
6406 | void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) { |
6407 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
6408 | mangleExpression(E, Arity: UnknownArity, /*AsTemplateArg=*/true); |
6409 | return; |
6410 | } |
6411 | |
6412 | // Prior to Clang 12, we didn't omit the X .. E around <expr-primary> |
6413 | // correctly in cases where the template argument was |
6414 | // constructed from an expression rather than an already-evaluated |
6415 | // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of |
6416 | // 'Li0E'. |
6417 | // |
6418 | // We did special-case DeclRefExpr to attempt to DTRT for that one |
6419 | // expression-kind, but while doing so, unfortunately handled ParmVarDecl |
6420 | // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of |
6421 | // the proper 'Xfp_E'. |
6422 | E = E->IgnoreParenImpCasts(); |
6423 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
6424 | const ValueDecl *D = DRE->getDecl(); |
6425 | if (isa<VarDecl>(Val: D) || isa<FunctionDecl>(Val: D)) { |
6426 | Out << 'L'; |
6427 | mangle(D); |
6428 | Out << 'E'; |
6429 | return; |
6430 | } |
6431 | } |
6432 | Out << 'X'; |
6433 | mangleExpression(E); |
6434 | Out << 'E'; |
6435 | } |
6436 | |
6437 | /// Determine whether a given value is equivalent to zero-initialization for |
6438 | /// the purpose of discarding a trailing portion of a 'tl' mangling. |
6439 | /// |
6440 | /// Note that this is not in general equivalent to determining whether the |
6441 | /// value has an all-zeroes bit pattern. |
6442 | static bool isZeroInitialized(QualType T, const APValue &V) { |
6443 | // FIXME: mangleValueInTemplateArg has quadratic time complexity in |
6444 | // pathological cases due to using this, but it's a little awkward |
6445 | // to do this in linear time in general. |
6446 | switch (V.getKind()) { |
6447 | case APValue::None: |
6448 | case APValue::Indeterminate: |
6449 | case APValue::AddrLabelDiff: |
6450 | return false; |
6451 | |
6452 | case APValue::Struct: { |
6453 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
6454 | assert(RD && "unexpected type for record value"); |
6455 | unsigned I = 0; |
6456 | for (const CXXBaseSpecifier &BS : RD->bases()) { |
6457 | if (!isZeroInitialized(T: BS.getType(), V: V.getStructBase(i: I))) |
6458 | return false; |
6459 | ++I; |
6460 | } |
6461 | I = 0; |
6462 | for (const FieldDecl *FD : RD->fields()) { |
6463 | if (!FD->isUnnamedBitField() && |
6464 | !isZeroInitialized(FD->getType(), V.getStructField(I))) |
6465 | return false; |
6466 | ++I; |
6467 | } |
6468 | return true; |
6469 | } |
6470 | |
6471 | case APValue::Union: { |
6472 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
6473 | assert(RD && "unexpected type for union value"); |
6474 | // Zero-initialization zeroes the first non-unnamed-bitfield field, if any. |
6475 | for (const FieldDecl *FD : RD->fields()) { |
6476 | if (!FD->isUnnamedBitField()) |
6477 | return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) && |
6478 | isZeroInitialized(FD->getType(), V.getUnionValue()); |
6479 | } |
6480 | // If there are no fields (other than unnamed bitfields), the value is |
6481 | // necessarily zero-initialized. |
6482 | return true; |
6483 | } |
6484 | |
6485 | case APValue::Array: { |
6486 | QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); |
6487 | for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) |
6488 | if (!isZeroInitialized(T: ElemT, V: V.getArrayInitializedElt(I))) |
6489 | return false; |
6490 | return !V.hasArrayFiller() || isZeroInitialized(T: ElemT, V: V.getArrayFiller()); |
6491 | } |
6492 | |
6493 | case APValue::Vector: { |
6494 | const VectorType *VT = T->castAs<VectorType>(); |
6495 | for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) |
6496 | if (!isZeroInitialized(T: VT->getElementType(), V: V.getVectorElt(I))) |
6497 | return false; |
6498 | return true; |
6499 | } |
6500 | |
6501 | case APValue::Int: |
6502 | return !V.getInt(); |
6503 | |
6504 | case APValue::Float: |
6505 | return V.getFloat().isPosZero(); |
6506 | |
6507 | case APValue::FixedPoint: |
6508 | return !V.getFixedPoint().getValue(); |
6509 | |
6510 | case APValue::ComplexFloat: |
6511 | return V.getComplexFloatReal().isPosZero() && |
6512 | V.getComplexFloatImag().isPosZero(); |
6513 | |
6514 | case APValue::ComplexInt: |
6515 | return !V.getComplexIntReal() && !V.getComplexIntImag(); |
6516 | |
6517 | case APValue::LValue: |
6518 | return V.isNullPointer(); |
6519 | |
6520 | case APValue::MemberPointer: |
6521 | return !V.getMemberPointerDecl(); |
6522 | } |
6523 | |
6524 | llvm_unreachable("Unhandled APValue::ValueKind enum"); |
6525 | } |
6526 | |
6527 | static QualType getLValueType(ASTContext &Ctx, const APValue &LV) { |
6528 | QualType T = LV.getLValueBase().getType(); |
6529 | for (APValue::LValuePathEntry E : LV.getLValuePath()) { |
6530 | if (const ArrayType *AT = Ctx.getAsArrayType(T)) |
6531 | T = AT->getElementType(); |
6532 | else if (const FieldDecl *FD = |
6533 | dyn_cast<FieldDecl>(Val: E.getAsBaseOrMember().getPointer())) |
6534 | T = FD->getType(); |
6535 | else |
6536 | T = Ctx.getRecordType( |
6537 | cast<CXXRecordDecl>(Val: E.getAsBaseOrMember().getPointer())); |
6538 | } |
6539 | return T; |
6540 | } |
6541 | |
6542 | static IdentifierInfo *getUnionInitName(SourceLocation UnionLoc, |
6543 | DiagnosticsEngine &Diags, |
6544 | const FieldDecl *FD) { |
6545 | // According to: |
6546 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling.anonymous |
6547 | // For the purposes of mangling, the name of an anonymous union is considered |
6548 | // to be the name of the first named data member found by a pre-order, |
6549 | // depth-first, declaration-order walk of the data members of the anonymous |
6550 | // union. |
6551 | |
6552 | if (FD->getIdentifier()) |
6553 | return FD->getIdentifier(); |
6554 | |
6555 | // The only cases where the identifer of a FieldDecl would be blank is if the |
6556 | // field represents an anonymous record type or if it is an unnamed bitfield. |
6557 | // There is no type to descend into in the case of a bitfield, so we can just |
6558 | // return nullptr in that case. |
6559 | if (FD->isBitField()) |
6560 | return nullptr; |
6561 | const CXXRecordDecl *RD = FD->getType()->getAsCXXRecordDecl(); |
6562 | |
6563 | // Consider only the fields in declaration order, searched depth-first. We |
6564 | // don't care about the active member of the union, as all we are doing is |
6565 | // looking for a valid name. We also don't check bases, due to guidance from |
6566 | // the Itanium ABI folks. |
6567 | for (const FieldDecl *RDField : RD->fields()) { |
6568 | if (IdentifierInfo *II = getUnionInitName(UnionLoc, Diags, RDField)) |
6569 | return II; |
6570 | } |
6571 | |
6572 | // According to the Itanium ABI: If there is no such data member (i.e., if all |
6573 | // of the data members in the union are unnamed), then there is no way for a |
6574 | // program to refer to the anonymous union, and there is therefore no need to |
6575 | // mangle its name. However, we should diagnose this anyway. |
6576 | unsigned DiagID = Diags.getCustomDiagID( |
6577 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this unnamed union NTTP yet"); |
6578 | Diags.Report(Loc: UnionLoc, DiagID); |
6579 | |
6580 | return nullptr; |
6581 | } |
6582 | |
6583 | void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V, |
6584 | bool TopLevel, |
6585 | bool NeedExactType) { |
6586 | // Ignore all top-level cv-qualifiers, to match GCC. |
6587 | Qualifiers Quals; |
6588 | T = getASTContext().getUnqualifiedArrayType(T, Quals); |
6589 | |
6590 | // A top-level expression that's not a primary expression is wrapped in X...E. |
6591 | bool IsPrimaryExpr = true; |
6592 | auto NotPrimaryExpr = [&] { |
6593 | if (TopLevel && IsPrimaryExpr) |
6594 | Out << 'X'; |
6595 | IsPrimaryExpr = false; |
6596 | }; |
6597 | |
6598 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. |
6599 | switch (V.getKind()) { |
6600 | case APValue::None: |
6601 | case APValue::Indeterminate: |
6602 | Out << 'L'; |
6603 | mangleType(T); |
6604 | Out << 'E'; |
6605 | break; |
6606 | |
6607 | case APValue::AddrLabelDiff: |
6608 | llvm_unreachable("unexpected value kind in template argument"); |
6609 | |
6610 | case APValue::Struct: { |
6611 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
6612 | assert(RD && "unexpected type for record value"); |
6613 | |
6614 | // Drop trailing zero-initialized elements. |
6615 | llvm::SmallVector<const FieldDecl *, 16> Fields(RD->fields()); |
6616 | while ( |
6617 | !Fields.empty() && |
6618 | (Fields.back()->isUnnamedBitField() || |
6619 | isZeroInitialized(Fields.back()->getType(), |
6620 | V.getStructField(i: Fields.back()->getFieldIndex())))) { |
6621 | Fields.pop_back(); |
6622 | } |
6623 | llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end()); |
6624 | if (Fields.empty()) { |
6625 | while (!Bases.empty() && |
6626 | isZeroInitialized(T: Bases.back().getType(), |
6627 | V: V.getStructBase(i: Bases.size() - 1))) |
6628 | Bases = Bases.drop_back(); |
6629 | } |
6630 | |
6631 | // <expression> ::= tl <type> <braced-expression>* E |
6632 | NotPrimaryExpr(); |
6633 | Out << "tl"; |
6634 | mangleType(T); |
6635 | for (unsigned I = 0, N = Bases.size(); I != N; ++I) |
6636 | mangleValueInTemplateArg(T: Bases[I].getType(), V: V.getStructBase(i: I), TopLevel: false); |
6637 | for (unsigned I = 0, N = Fields.size(); I != N; ++I) { |
6638 | if (Fields[I]->isUnnamedBitField()) |
6639 | continue; |
6640 | mangleValueInTemplateArg(T: Fields[I]->getType(), |
6641 | V: V.getStructField(i: Fields[I]->getFieldIndex()), |
6642 | TopLevel: false); |
6643 | } |
6644 | Out << 'E'; |
6645 | break; |
6646 | } |
6647 | |
6648 | case APValue::Union: { |
6649 | assert(T->getAsCXXRecordDecl() && "unexpected type for union value"); |
6650 | const FieldDecl *FD = V.getUnionField(); |
6651 | |
6652 | if (!FD) { |
6653 | Out << 'L'; |
6654 | mangleType(T); |
6655 | Out << 'E'; |
6656 | break; |
6657 | } |
6658 | |
6659 | // <braced-expression> ::= di <field source-name> <braced-expression> |
6660 | NotPrimaryExpr(); |
6661 | Out << "tl"; |
6662 | mangleType(T); |
6663 | if (!isZeroInitialized(T, V)) { |
6664 | Out << "di"; |
6665 | IdentifierInfo *II = (getUnionInitName( |
6666 | T->getAsCXXRecordDecl()->getLocation(), Context.getDiags(), FD)); |
6667 | if (II) |
6668 | mangleSourceName(II); |
6669 | mangleValueInTemplateArg(T: FD->getType(), V: V.getUnionValue(), TopLevel: false); |
6670 | } |
6671 | Out << 'E'; |
6672 | break; |
6673 | } |
6674 | |
6675 | case APValue::Array: { |
6676 | QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); |
6677 | |
6678 | NotPrimaryExpr(); |
6679 | Out << "tl"; |
6680 | mangleType(T); |
6681 | |
6682 | // Drop trailing zero-initialized elements. |
6683 | unsigned N = V.getArraySize(); |
6684 | if (!V.hasArrayFiller() || isZeroInitialized(T: ElemT, V: V.getArrayFiller())) { |
6685 | N = V.getArrayInitializedElts(); |
6686 | while (N && isZeroInitialized(T: ElemT, V: V.getArrayInitializedElt(I: N - 1))) |
6687 | --N; |
6688 | } |
6689 | |
6690 | for (unsigned I = 0; I != N; ++I) { |
6691 | const APValue &Elem = I < V.getArrayInitializedElts() |
6692 | ? V.getArrayInitializedElt(I) |
6693 | : V.getArrayFiller(); |
6694 | mangleValueInTemplateArg(T: ElemT, V: Elem, TopLevel: false); |
6695 | } |
6696 | Out << 'E'; |
6697 | break; |
6698 | } |
6699 | |
6700 | case APValue::Vector: { |
6701 | const VectorType *VT = T->castAs<VectorType>(); |
6702 | |
6703 | NotPrimaryExpr(); |
6704 | Out << "tl"; |
6705 | mangleType(T); |
6706 | unsigned N = V.getVectorLength(); |
6707 | while (N && isZeroInitialized(T: VT->getElementType(), V: V.getVectorElt(I: N - 1))) |
6708 | --N; |
6709 | for (unsigned I = 0; I != N; ++I) |
6710 | mangleValueInTemplateArg(T: VT->getElementType(), V: V.getVectorElt(I), TopLevel: false); |
6711 | Out << 'E'; |
6712 | break; |
6713 | } |
6714 | |
6715 | case APValue::Int: |
6716 | mangleIntegerLiteral(T, Value: V.getInt()); |
6717 | break; |
6718 | |
6719 | case APValue::Float: |
6720 | mangleFloatLiteral(T, V: V.getFloat()); |
6721 | break; |
6722 | |
6723 | case APValue::FixedPoint: |
6724 | mangleFixedPointLiteral(); |
6725 | break; |
6726 | |
6727 | case APValue::ComplexFloat: { |
6728 | const ComplexType *CT = T->castAs<ComplexType>(); |
6729 | NotPrimaryExpr(); |
6730 | Out << "tl"; |
6731 | mangleType(T); |
6732 | if (!V.getComplexFloatReal().isPosZero() || |
6733 | !V.getComplexFloatImag().isPosZero()) |
6734 | mangleFloatLiteral(T: CT->getElementType(), V: V.getComplexFloatReal()); |
6735 | if (!V.getComplexFloatImag().isPosZero()) |
6736 | mangleFloatLiteral(T: CT->getElementType(), V: V.getComplexFloatImag()); |
6737 | Out << 'E'; |
6738 | break; |
6739 | } |
6740 | |
6741 | case APValue::ComplexInt: { |
6742 | const ComplexType *CT = T->castAs<ComplexType>(); |
6743 | NotPrimaryExpr(); |
6744 | Out << "tl"; |
6745 | mangleType(T); |
6746 | if (V.getComplexIntReal().getBoolValue() || |
6747 | V.getComplexIntImag().getBoolValue()) |
6748 | mangleIntegerLiteral(T: CT->getElementType(), Value: V.getComplexIntReal()); |
6749 | if (V.getComplexIntImag().getBoolValue()) |
6750 | mangleIntegerLiteral(T: CT->getElementType(), Value: V.getComplexIntImag()); |
6751 | Out << 'E'; |
6752 | break; |
6753 | } |
6754 | |
6755 | case APValue::LValue: { |
6756 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
6757 | assert((T->isPointerOrReferenceType()) && |
6758 | "unexpected type for LValue template arg"); |
6759 | |
6760 | if (V.isNullPointer()) { |
6761 | mangleNullPointer(T); |
6762 | break; |
6763 | } |
6764 | |
6765 | APValue::LValueBase B = V.getLValueBase(); |
6766 | if (!B) { |
6767 | // Non-standard mangling for integer cast to a pointer; this can only |
6768 | // occur as an extension. |
6769 | CharUnits Offset = V.getLValueOffset(); |
6770 | if (Offset.isZero()) { |
6771 | // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as |
6772 | // a cast, because L <type> 0 E means something else. |
6773 | NotPrimaryExpr(); |
6774 | Out << "rc"; |
6775 | mangleType(T); |
6776 | Out << "Li0E"; |
6777 | if (TopLevel) |
6778 | Out << 'E'; |
6779 | } else { |
6780 | Out << "L"; |
6781 | mangleType(T); |
6782 | Out << Offset.getQuantity() << 'E'; |
6783 | } |
6784 | break; |
6785 | } |
6786 | |
6787 | ASTContext &Ctx = Context.getASTContext(); |
6788 | |
6789 | enum { Base, Offset, Path } Kind; |
6790 | if (!V.hasLValuePath()) { |
6791 | // Mangle as (T*)((char*)&base + N). |
6792 | if (T->isReferenceType()) { |
6793 | NotPrimaryExpr(); |
6794 | Out << "decvP"; |
6795 | mangleType(T: T->getPointeeType()); |
6796 | } else { |
6797 | NotPrimaryExpr(); |
6798 | Out << "cv"; |
6799 | mangleType(T); |
6800 | } |
6801 | Out << "plcvPcad"; |
6802 | Kind = Offset; |
6803 | } else { |
6804 | // Clang 11 and before mangled an array subject to array-to-pointer decay |
6805 | // as if it were the declaration itself. |
6806 | bool IsArrayToPointerDecayMangledAsDecl = false; |
6807 | if (TopLevel && Ctx.getLangOpts().getClangABICompat() <= |
6808 | LangOptions::ClangABI::Ver11) { |
6809 | QualType BType = B.getType(); |
6810 | IsArrayToPointerDecayMangledAsDecl = |
6811 | BType->isArrayType() && V.getLValuePath().size() == 1 && |
6812 | V.getLValuePath()[0].getAsArrayIndex() == 0 && |
6813 | Ctx.hasSimilarType(T1: T, T2: Ctx.getDecayedType(T: BType)); |
6814 | } |
6815 | |
6816 | if ((!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) && |
6817 | !IsArrayToPointerDecayMangledAsDecl) { |
6818 | NotPrimaryExpr(); |
6819 | // A final conversion to the template parameter's type is usually |
6820 | // folded into the 'so' mangling, but we can't do that for 'void*' |
6821 | // parameters without introducing collisions. |
6822 | if (NeedExactType && T->isVoidPointerType()) { |
6823 | Out << "cv"; |
6824 | mangleType(T); |
6825 | } |
6826 | if (T->isPointerType()) |
6827 | Out << "ad"; |
6828 | Out << "so"; |
6829 | mangleType(T: T->isVoidPointerType() |
6830 | ? getLValueType(Ctx, LV: V).getUnqualifiedType() |
6831 | : T->getPointeeType()); |
6832 | Kind = Path; |
6833 | } else { |
6834 | if (NeedExactType && |
6835 | !Ctx.hasSameType(T1: T->getPointeeType(), T2: getLValueType(Ctx, LV: V)) && |
6836 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
6837 | NotPrimaryExpr(); |
6838 | Out << "cv"; |
6839 | mangleType(T); |
6840 | } |
6841 | if (T->isPointerType()) { |
6842 | NotPrimaryExpr(); |
6843 | Out << "ad"; |
6844 | } |
6845 | Kind = Base; |
6846 | } |
6847 | } |
6848 | |
6849 | QualType TypeSoFar = B.getType(); |
6850 | if (auto *VD = B.dyn_cast<const ValueDecl*>()) { |
6851 | Out << 'L'; |
6852 | mangle(VD); |
6853 | Out << 'E'; |
6854 | } else if (auto *E = B.dyn_cast<const Expr*>()) { |
6855 | NotPrimaryExpr(); |
6856 | mangleExpression(E); |
6857 | } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) { |
6858 | NotPrimaryExpr(); |
6859 | Out << "ti"; |
6860 | mangleType(T: QualType(TI.getType(), 0)); |
6861 | } else { |
6862 | // We should never see dynamic allocations here. |
6863 | llvm_unreachable("unexpected lvalue base kind in template argument"); |
6864 | } |
6865 | |
6866 | switch (Kind) { |
6867 | case Base: |
6868 | break; |
6869 | |
6870 | case Offset: |
6871 | Out << 'L'; |
6872 | mangleType(T: Ctx.getPointerDiffType()); |
6873 | mangleNumber(Number: V.getLValueOffset().getQuantity()); |
6874 | Out << 'E'; |
6875 | break; |
6876 | |
6877 | case Path: |
6878 | // <expression> ::= so <referent type> <expr> [<offset number>] |
6879 | // <union-selector>* [p] E |
6880 | if (!V.getLValueOffset().isZero()) |
6881 | mangleNumber(Number: V.getLValueOffset().getQuantity()); |
6882 | |
6883 | // We model a past-the-end array pointer as array indexing with index N, |
6884 | // not with the "past the end" flag. Compensate for that. |
6885 | bool OnePastTheEnd = V.isLValueOnePastTheEnd(); |
6886 | |
6887 | for (APValue::LValuePathEntry E : V.getLValuePath()) { |
6888 | if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) { |
6889 | if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) |
6890 | OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex(); |
6891 | TypeSoFar = AT->getElementType(); |
6892 | } else { |
6893 | const Decl *D = E.getAsBaseOrMember().getPointer(); |
6894 | if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
6895 | // <union-selector> ::= _ <number> |
6896 | if (FD->getParent()->isUnion()) { |
6897 | Out << '_'; |
6898 | if (FD->getFieldIndex()) |
6899 | Out << (FD->getFieldIndex() - 1); |
6900 | } |
6901 | TypeSoFar = FD->getType(); |
6902 | } else { |
6903 | TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(Val: D)); |
6904 | } |
6905 | } |
6906 | } |
6907 | |
6908 | if (OnePastTheEnd) |
6909 | Out << 'p'; |
6910 | Out << 'E'; |
6911 | break; |
6912 | } |
6913 | |
6914 | break; |
6915 | } |
6916 | |
6917 | case APValue::MemberPointer: |
6918 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
6919 | if (!V.getMemberPointerDecl()) { |
6920 | mangleNullPointer(T); |
6921 | break; |
6922 | } |
6923 | |
6924 | ASTContext &Ctx = Context.getASTContext(); |
6925 | |
6926 | NotPrimaryExpr(); |
6927 | if (!V.getMemberPointerPath().empty()) { |
6928 | Out << "mc"; |
6929 | mangleType(T); |
6930 | } else if (NeedExactType && |
6931 | !Ctx.hasSameType( |
6932 | T1: T->castAs<MemberPointerType>()->getPointeeType(), |
6933 | T2: V.getMemberPointerDecl()->getType()) && |
6934 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
6935 | Out << "cv"; |
6936 | mangleType(T); |
6937 | } |
6938 | Out << "adL"; |
6939 | mangle(V.getMemberPointerDecl()); |
6940 | Out << 'E'; |
6941 | if (!V.getMemberPointerPath().empty()) { |
6942 | CharUnits Offset = |
6943 | Context.getASTContext().getMemberPointerPathAdjustment(MP: V); |
6944 | if (!Offset.isZero()) |
6945 | mangleNumber(Number: Offset.getQuantity()); |
6946 | Out << 'E'; |
6947 | } |
6948 | break; |
6949 | } |
6950 | |
6951 | if (TopLevel && !IsPrimaryExpr) |
6952 | Out << 'E'; |
6953 | } |
6954 | |
6955 | void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) { |
6956 | // <template-param> ::= T_ # first template parameter |
6957 | // ::= T <parameter-2 non-negative number> _ |
6958 | // ::= TL <L-1 non-negative number> __ |
6959 | // ::= TL <L-1 non-negative number> _ |
6960 | // <parameter-2 non-negative number> _ |
6961 | // |
6962 | // The latter two manglings are from a proposal here: |
6963 | // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117 |
6964 | Out << 'T'; |
6965 | Depth += TemplateDepthOffset; |
6966 | if (Depth != 0) |
6967 | Out << 'L' << (Depth - 1) << '_'; |
6968 | if (Index != 0) |
6969 | Out << (Index - 1); |
6970 | Out << '_'; |
6971 | } |
6972 | |
6973 | void CXXNameMangler::mangleSeqID(unsigned SeqID) { |
6974 | if (SeqID == 0) { |
6975 | // Nothing. |
6976 | } else if (SeqID == 1) { |
6977 | Out << '0'; |
6978 | } else { |
6979 | SeqID--; |
6980 | |
6981 | // <seq-id> is encoded in base-36, using digits and upper case letters. |
6982 | char Buffer[7]; // log(2**32) / log(36) ~= 7 |
6983 | MutableArrayRef<char> BufferRef(Buffer); |
6984 | MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); |
6985 | |
6986 | for (; SeqID != 0; SeqID /= 36) { |
6987 | unsigned C = SeqID % 36; |
6988 | *I++ = (C < 10 ? '0' + C : 'A' + C - 10); |
6989 | } |
6990 | |
6991 | Out.write(Ptr: I.base(), Size: I - BufferRef.rbegin()); |
6992 | } |
6993 | Out << '_'; |
6994 | } |
6995 | |
6996 | void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { |
6997 | bool result = mangleSubstitution(Template: tname); |
6998 | assert(result && "no existing substitution for template name"); |
6999 | (void) result; |
7000 | } |
7001 | |
7002 | // <substitution> ::= S <seq-id> _ |
7003 | // ::= S_ |
7004 | bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { |
7005 | // Try one of the standard substitutions first. |
7006 | if (mangleStandardSubstitution(ND)) |
7007 | return true; |
7008 | |
7009 | ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
7010 | return mangleSubstitution(Ptr: reinterpret_cast<uintptr_t>(ND)); |
7011 | } |
7012 | |
7013 | bool CXXNameMangler::mangleSubstitution(NestedNameSpecifier *NNS) { |
7014 | assert(NNS->getKind() == NestedNameSpecifier::Identifier && |
7015 | "mangleSubstitution(NestedNameSpecifier *) is only used for " |
7016 | "identifier nested name specifiers."); |
7017 | NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); |
7018 | return mangleSubstitution(Ptr: reinterpret_cast<uintptr_t>(NNS)); |
7019 | } |
7020 | |
7021 | /// Determine whether the given type has any qualifiers that are relevant for |
7022 | /// substitutions. |
7023 | static bool hasMangledSubstitutionQualifiers(QualType T) { |
7024 | Qualifiers Qs = T.getQualifiers(); |
7025 | return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); |
7026 | } |
7027 | |
7028 | bool CXXNameMangler::mangleSubstitution(QualType T) { |
7029 | if (!hasMangledSubstitutionQualifiers(T)) { |
7030 | if (const RecordType *RT = T->getAs<RecordType>()) |
7031 | return mangleSubstitution(RT->getDecl()); |
7032 | } |
7033 | |
7034 | uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
7035 | |
7036 | return mangleSubstitution(Ptr: TypePtr); |
7037 | } |
7038 | |
7039 | bool CXXNameMangler::mangleSubstitution(TemplateName Template) { |
7040 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
7041 | return mangleSubstitution(TD); |
7042 | |
7043 | Template = Context.getASTContext().getCanonicalTemplateName(Name: Template); |
7044 | return mangleSubstitution( |
7045 | Ptr: reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
7046 | } |
7047 | |
7048 | bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { |
7049 | llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Val: Ptr); |
7050 | if (I == Substitutions.end()) |
7051 | return false; |
7052 | |
7053 | unsigned SeqID = I->second; |
7054 | Out << 'S'; |
7055 | mangleSeqID(SeqID); |
7056 | |
7057 | return true; |
7058 | } |
7059 | |
7060 | /// Returns whether S is a template specialization of std::Name with a single |
7061 | /// argument of type A. |
7062 | bool CXXNameMangler::isSpecializedAs(QualType S, llvm::StringRef Name, |
7063 | QualType A) { |
7064 | if (S.isNull()) |
7065 | return false; |
7066 | |
7067 | const RecordType *RT = S->getAs<RecordType>(); |
7068 | if (!RT) |
7069 | return false; |
7070 | |
7071 | const ClassTemplateSpecializationDecl *SD = |
7072 | dyn_cast<ClassTemplateSpecializationDecl>(Val: RT->getDecl()); |
7073 | if (!SD || !SD->getIdentifier()->isStr(Name)) |
7074 | return false; |
7075 | |
7076 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(SD))) |
7077 | return false; |
7078 | |
7079 | const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
7080 | if (TemplateArgs.size() != 1) |
7081 | return false; |
7082 | |
7083 | if (TemplateArgs[0].getAsType() != A) |
7084 | return false; |
7085 | |
7086 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
7087 | return false; |
7088 | |
7089 | return true; |
7090 | } |
7091 | |
7092 | /// Returns whether SD is a template specialization std::Name<char, |
7093 | /// std::char_traits<char> [, std::allocator<char>]> |
7094 | /// HasAllocator controls whether the 3rd template argument is needed. |
7095 | bool CXXNameMangler::isStdCharSpecialization( |
7096 | const ClassTemplateSpecializationDecl *SD, llvm::StringRef Name, |
7097 | bool HasAllocator) { |
7098 | if (!SD->getIdentifier()->isStr(Name)) |
7099 | return false; |
7100 | |
7101 | const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
7102 | if (TemplateArgs.size() != (HasAllocator ? 3 : 2)) |
7103 | return false; |
7104 | |
7105 | QualType A = TemplateArgs[0].getAsType(); |
7106 | if (A.isNull()) |
7107 | return false; |
7108 | // Plain 'char' is named Char_S or Char_U depending on the target ABI. |
7109 | if (!A->isSpecificBuiltinType(K: BuiltinType::Char_S) && |
7110 | !A->isSpecificBuiltinType(K: BuiltinType::Char_U)) |
7111 | return false; |
7112 | |
7113 | if (!isSpecializedAs(S: TemplateArgs[1].getAsType(), Name: "char_traits", A)) |
7114 | return false; |
7115 | |
7116 | if (HasAllocator && |
7117 | !isSpecializedAs(S: TemplateArgs[2].getAsType(), Name: "allocator", A)) |
7118 | return false; |
7119 | |
7120 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
7121 | return false; |
7122 | |
7123 | return true; |
7124 | } |
7125 | |
7126 | bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { |
7127 | // <substitution> ::= St # ::std:: |
7128 | if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
7129 | if (isStd(NS)) { |
7130 | Out << "St"; |
7131 | return true; |
7132 | } |
7133 | return false; |
7134 | } |
7135 | |
7136 | if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(Val: ND)) { |
7137 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(TD))) |
7138 | return false; |
7139 | |
7140 | if (TD->getOwningModuleForLinkage()) |
7141 | return false; |
7142 | |
7143 | // <substitution> ::= Sa # ::std::allocator |
7144 | if (TD->getIdentifier()->isStr("allocator")) { |
7145 | Out << "Sa"; |
7146 | return true; |
7147 | } |
7148 | |
7149 | // <<substitution> ::= Sb # ::std::basic_string |
7150 | if (TD->getIdentifier()->isStr("basic_string")) { |
7151 | Out << "Sb"; |
7152 | return true; |
7153 | } |
7154 | return false; |
7155 | } |
7156 | |
7157 | if (const ClassTemplateSpecializationDecl *SD = |
7158 | dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) { |
7159 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(SD))) |
7160 | return false; |
7161 | |
7162 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
7163 | return false; |
7164 | |
7165 | // <substitution> ::= Ss # ::std::basic_string<char, |
7166 | // ::std::char_traits<char>, |
7167 | // ::std::allocator<char> > |
7168 | if (isStdCharSpecialization(SD, Name: "basic_string", /*HasAllocator=*/true)) { |
7169 | Out << "Ss"; |
7170 | return true; |
7171 | } |
7172 | |
7173 | // <substitution> ::= Si # ::std::basic_istream<char, |
7174 | // ::std::char_traits<char> > |
7175 | if (isStdCharSpecialization(SD, Name: "basic_istream", /*HasAllocator=*/false)) { |
7176 | Out << "Si"; |
7177 | return true; |
7178 | } |
7179 | |
7180 | // <substitution> ::= So # ::std::basic_ostream<char, |
7181 | // ::std::char_traits<char> > |
7182 | if (isStdCharSpecialization(SD, Name: "basic_ostream", /*HasAllocator=*/false)) { |
7183 | Out << "So"; |
7184 | return true; |
7185 | } |
7186 | |
7187 | // <substitution> ::= Sd # ::std::basic_iostream<char, |
7188 | // ::std::char_traits<char> > |
7189 | if (isStdCharSpecialization(SD, Name: "basic_iostream", /*HasAllocator=*/false)) { |
7190 | Out << "Sd"; |
7191 | return true; |
7192 | } |
7193 | return false; |
7194 | } |
7195 | |
7196 | return false; |
7197 | } |
7198 | |
7199 | void CXXNameMangler::addSubstitution(QualType T) { |
7200 | if (!hasMangledSubstitutionQualifiers(T)) { |
7201 | if (const RecordType *RT = T->getAs<RecordType>()) { |
7202 | addSubstitution(RT->getDecl()); |
7203 | return; |
7204 | } |
7205 | } |
7206 | |
7207 | uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
7208 | addSubstitution(Ptr: TypePtr); |
7209 | } |
7210 | |
7211 | void CXXNameMangler::addSubstitution(TemplateName Template) { |
7212 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
7213 | return addSubstitution(TD); |
7214 | |
7215 | Template = Context.getASTContext().getCanonicalTemplateName(Name: Template); |
7216 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
7217 | } |
7218 | |
7219 | void CXXNameMangler::addSubstitution(uintptr_t Ptr) { |
7220 | assert(!Substitutions.count(Ptr) && "Substitution already exists!"); |
7221 | Substitutions[Ptr] = SeqID++; |
7222 | } |
7223 | |
7224 | void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { |
7225 | assert(Other->SeqID >= SeqID && "Must be superset of substitutions!"); |
7226 | if (Other->SeqID > SeqID) { |
7227 | Substitutions.swap(RHS&: Other->Substitutions); |
7228 | SeqID = Other->SeqID; |
7229 | } |
7230 | } |
7231 | |
7232 | CXXNameMangler::AbiTagList |
7233 | CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { |
7234 | // When derived abi tags are disabled there is no need to make any list. |
7235 | if (DisableDerivedAbiTags) |
7236 | return AbiTagList(); |
7237 | |
7238 | llvm::raw_null_ostream NullOutStream; |
7239 | CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); |
7240 | TrackReturnTypeTags.disableDerivedAbiTags(); |
7241 | |
7242 | const FunctionProtoType *Proto = |
7243 | cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>()); |
7244 | FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); |
7245 | TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); |
7246 | TrackReturnTypeTags.mangleType(Proto->getReturnType()); |
7247 | TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); |
7248 | TrackReturnTypeTags.FunctionTypeDepth.pop(saved); |
7249 | |
7250 | return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
7251 | } |
7252 | |
7253 | CXXNameMangler::AbiTagList |
7254 | CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { |
7255 | // When derived abi tags are disabled there is no need to make any list. |
7256 | if (DisableDerivedAbiTags) |
7257 | return AbiTagList(); |
7258 | |
7259 | llvm::raw_null_ostream NullOutStream; |
7260 | CXXNameMangler TrackVariableType(*this, NullOutStream); |
7261 | TrackVariableType.disableDerivedAbiTags(); |
7262 | |
7263 | TrackVariableType.mangleType(VD->getType()); |
7264 | |
7265 | return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
7266 | } |
7267 | |
7268 | bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, |
7269 | const VarDecl *VD) { |
7270 | llvm::raw_null_ostream NullOutStream; |
7271 | CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); |
7272 | TrackAbiTags.mangle(GD: VD); |
7273 | return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); |
7274 | } |
7275 | |
7276 | // |
7277 | |
7278 | /// Mangles the name of the declaration D and emits that name to the given |
7279 | /// output stream. |
7280 | /// |
7281 | /// If the declaration D requires a mangled name, this routine will emit that |
7282 | /// mangled name to \p os and return true. Otherwise, \p os will be unchanged |
7283 | /// and this routine will return false. In this case, the caller should just |
7284 | /// emit the identifier of the declaration (\c D->getIdentifier()) as its |
7285 | /// name. |
7286 | void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD, |
7287 | raw_ostream &Out) { |
7288 | const NamedDecl *D = cast<NamedDecl>(Val: GD.getDecl()); |
7289 | assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) && |
7290 | "Invalid mangleName() call, argument is not a variable or function!"); |
7291 | |
7292 | PrettyStackTraceDecl CrashInfo(D, SourceLocation(), |
7293 | getASTContext().getSourceManager(), |
7294 | "Mangling declaration"); |
7295 | |
7296 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: D)) { |
7297 | auto Type = GD.getCtorType(); |
7298 | CXXNameMangler Mangler(*this, Out, CD, Type); |
7299 | return Mangler.mangle(GD: GlobalDecl(CD, Type)); |
7300 | } |
7301 | |
7302 | if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: D)) { |
7303 | auto Type = GD.getDtorType(); |
7304 | CXXNameMangler Mangler(*this, Out, DD, Type); |
7305 | return Mangler.mangle(GD: GlobalDecl(DD, Type)); |
7306 | } |
7307 | |
7308 | CXXNameMangler Mangler(*this, Out, D); |
7309 | Mangler.mangle(GD); |
7310 | } |
7311 | |
7312 | void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, |
7313 | raw_ostream &Out) { |
7314 | CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); |
7315 | Mangler.mangle(GD: GlobalDecl(D, Ctor_Comdat)); |
7316 | } |
7317 | |
7318 | void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, |
7319 | raw_ostream &Out) { |
7320 | CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); |
7321 | Mangler.mangle(GD: GlobalDecl(D, Dtor_Comdat)); |
7322 | } |
7323 | |
7324 | /// Mangles the pointer authentication override attribute for classes |
7325 | /// that have explicit overrides for the vtable authentication schema. |
7326 | /// |
7327 | /// The override is mangled as a parameterized vendor extension as follows |
7328 | /// |
7329 | /// <type> ::= U "__vtptrauth" I |
7330 | /// <key> |
7331 | /// <addressDiscriminated> |
7332 | /// <extraDiscriminator> |
7333 | /// E |
7334 | /// |
7335 | /// The extra discriminator encodes the explicit value derived from the |
7336 | /// override schema, e.g. if the override has specified type based |
7337 | /// discrimination the encoded value will be the discriminator derived from the |
7338 | /// type name. |
7339 | static void mangleOverrideDiscrimination(CXXNameMangler &Mangler, |
7340 | ASTContext &Context, |
7341 | const ThunkInfo &Thunk) { |
7342 | auto &LangOpts = Context.getLangOpts(); |
7343 | const CXXRecordDecl *ThisRD = Thunk.ThisType->getPointeeCXXRecordDecl(); |
7344 | const CXXRecordDecl *PtrauthClassRD = |
7345 | Context.baseForVTableAuthentication(ThisClass: ThisRD); |
7346 | unsigned TypedDiscriminator = |
7347 | Context.getPointerAuthVTablePointerDiscriminator(RD: ThisRD); |
7348 | Mangler.mangleVendorQualifier(name: "__vtptrauth"); |
7349 | auto &ManglerStream = Mangler.getStream(); |
7350 | ManglerStream << "I"; |
7351 | if (const auto *ExplicitAuth = |
7352 | PtrauthClassRD->getAttr<VTablePointerAuthenticationAttr>()) { |
7353 | ManglerStream << "Lj"<< ExplicitAuth->getKey(); |
7354 | |
7355 | if (ExplicitAuth->getAddressDiscrimination() == |
7356 | VTablePointerAuthenticationAttr::DefaultAddressDiscrimination) |
7357 | ManglerStream << "Lb"<< LangOpts.PointerAuthVTPtrAddressDiscrimination; |
7358 | else |
7359 | ManglerStream << "Lb" |
7360 | << (ExplicitAuth->getAddressDiscrimination() == |
7361 | VTablePointerAuthenticationAttr::AddressDiscrimination); |
7362 | |
7363 | switch (ExplicitAuth->getExtraDiscrimination()) { |
7364 | case VTablePointerAuthenticationAttr::DefaultExtraDiscrimination: { |
7365 | if (LangOpts.PointerAuthVTPtrTypeDiscrimination) |
7366 | ManglerStream << "Lj"<< TypedDiscriminator; |
7367 | else |
7368 | ManglerStream << "Lj"<< 0; |
7369 | break; |
7370 | } |
7371 | case VTablePointerAuthenticationAttr::TypeDiscrimination: |
7372 | ManglerStream << "Lj"<< TypedDiscriminator; |
7373 | break; |
7374 | case VTablePointerAuthenticationAttr::CustomDiscrimination: |
7375 | ManglerStream << "Lj"<< ExplicitAuth->getCustomDiscriminationValue(); |
7376 | break; |
7377 | case VTablePointerAuthenticationAttr::NoExtraDiscrimination: |
7378 | ManglerStream << "Lj"<< 0; |
7379 | break; |
7380 | } |
7381 | } else { |
7382 | ManglerStream << "Lj" |
7383 | << (unsigned)VTablePointerAuthenticationAttr::DefaultKey; |
7384 | ManglerStream << "Lb"<< LangOpts.PointerAuthVTPtrAddressDiscrimination; |
7385 | if (LangOpts.PointerAuthVTPtrTypeDiscrimination) |
7386 | ManglerStream << "Lj"<< TypedDiscriminator; |
7387 | else |
7388 | ManglerStream << "Lj"<< 0; |
7389 | } |
7390 | ManglerStream << "E"; |
7391 | } |
7392 | |
7393 | void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, |
7394 | const ThunkInfo &Thunk, |
7395 | bool ElideOverrideInfo, |
7396 | raw_ostream &Out) { |
7397 | // <special-name> ::= T <call-offset> <base encoding> |
7398 | // # base is the nominal target function of thunk |
7399 | // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> |
7400 | // # base is the nominal target function of thunk |
7401 | // # first call-offset is 'this' adjustment |
7402 | // # second call-offset is result adjustment |
7403 | |
7404 | assert(!isa<CXXDestructorDecl>(MD) && |
7405 | "Use mangleCXXDtor for destructor decls!"); |
7406 | CXXNameMangler Mangler(*this, Out); |
7407 | Mangler.getStream() << "_ZT"; |
7408 | if (!Thunk.Return.isEmpty()) |
7409 | Mangler.getStream() << 'c'; |
7410 | |
7411 | // Mangle the 'this' pointer adjustment. |
7412 | Mangler.mangleCallOffset(NonVirtual: Thunk.This.NonVirtual, |
7413 | Virtual: Thunk.This.Virtual.Itanium.VCallOffsetOffset); |
7414 | |
7415 | // Mangle the return pointer adjustment if there is one. |
7416 | if (!Thunk.Return.isEmpty()) |
7417 | Mangler.mangleCallOffset(NonVirtual: Thunk.Return.NonVirtual, |
7418 | Virtual: Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); |
7419 | |
7420 | Mangler.mangleFunctionEncoding(MD); |
7421 | if (!ElideOverrideInfo) |
7422 | mangleOverrideDiscrimination(Mangler, Context&: getASTContext(), Thunk); |
7423 | } |
7424 | |
7425 | void ItaniumMangleContextImpl::mangleCXXDtorThunk(const CXXDestructorDecl *DD, |
7426 | CXXDtorType Type, |
7427 | const ThunkInfo &Thunk, |
7428 | bool ElideOverrideInfo, |
7429 | raw_ostream &Out) { |
7430 | // <special-name> ::= T <call-offset> <base encoding> |
7431 | // # base is the nominal target function of thunk |
7432 | CXXNameMangler Mangler(*this, Out, DD, Type); |
7433 | Mangler.getStream() << "_ZT"; |
7434 | |
7435 | auto &ThisAdjustment = Thunk.This; |
7436 | // Mangle the 'this' pointer adjustment. |
7437 | Mangler.mangleCallOffset(NonVirtual: ThisAdjustment.NonVirtual, |
7438 | Virtual: ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); |
7439 | |
7440 | Mangler.mangleFunctionEncoding(GD: GlobalDecl(DD, Type)); |
7441 | if (!ElideOverrideInfo) |
7442 | mangleOverrideDiscrimination(Mangler, Context&: getASTContext(), Thunk); |
7443 | } |
7444 | |
7445 | /// Returns the mangled name for a guard variable for the passed in VarDecl. |
7446 | void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, |
7447 | raw_ostream &Out) { |
7448 | // <special-name> ::= GV <object name> # Guard variable for one-time |
7449 | // # initialization |
7450 | CXXNameMangler Mangler(*this, Out); |
7451 | // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to |
7452 | // be a bug that is fixed in trunk. |
7453 | Mangler.getStream() << "_ZGV"; |
7454 | Mangler.mangleName(GD: D); |
7455 | } |
7456 | |
7457 | void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, |
7458 | raw_ostream &Out) { |
7459 | // These symbols are internal in the Itanium ABI, so the names don't matter. |
7460 | // Clang has traditionally used this symbol and allowed LLVM to adjust it to |
7461 | // avoid duplicate symbols. |
7462 | Out << "__cxx_global_var_init"; |
7463 | } |
7464 | |
7465 | void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, |
7466 | raw_ostream &Out) { |
7467 | // Prefix the mangling of D with __dtor_. |
7468 | CXXNameMangler Mangler(*this, Out); |
7469 | Mangler.getStream() << "__dtor_"; |
7470 | if (shouldMangleDeclName(D)) |
7471 | Mangler.mangle(GD: D); |
7472 | else |
7473 | Mangler.getStream() << D->getName(); |
7474 | } |
7475 | |
7476 | void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D, |
7477 | raw_ostream &Out) { |
7478 | // Clang generates these internal-linkage functions as part of its |
7479 | // implementation of the XL ABI. |
7480 | CXXNameMangler Mangler(*this, Out); |
7481 | Mangler.getStream() << "__finalize_"; |
7482 | if (shouldMangleDeclName(D)) |
7483 | Mangler.mangle(GD: D); |
7484 | else |
7485 | Mangler.getStream() << D->getName(); |
7486 | } |
7487 | |
7488 | void ItaniumMangleContextImpl::mangleSEHFilterExpression( |
7489 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
7490 | CXXNameMangler Mangler(*this, Out); |
7491 | Mangler.getStream() << "__filt_"; |
7492 | auto *EnclosingFD = cast<FunctionDecl>(Val: EnclosingDecl.getDecl()); |
7493 | if (shouldMangleDeclName(EnclosingFD)) |
7494 | Mangler.mangle(GD: EnclosingDecl); |
7495 | else |
7496 | Mangler.getStream() << EnclosingFD->getName(); |
7497 | } |
7498 | |
7499 | void ItaniumMangleContextImpl::mangleSEHFinallyBlock( |
7500 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
7501 | CXXNameMangler Mangler(*this, Out); |
7502 | Mangler.getStream() << "__fin_"; |
7503 | auto *EnclosingFD = cast<FunctionDecl>(Val: EnclosingDecl.getDecl()); |
7504 | if (shouldMangleDeclName(EnclosingFD)) |
7505 | Mangler.mangle(GD: EnclosingDecl); |
7506 | else |
7507 | Mangler.getStream() << EnclosingFD->getName(); |
7508 | } |
7509 | |
7510 | void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, |
7511 | raw_ostream &Out) { |
7512 | // <special-name> ::= TH <object name> |
7513 | CXXNameMangler Mangler(*this, Out); |
7514 | Mangler.getStream() << "_ZTH"; |
7515 | Mangler.mangleName(GD: D); |
7516 | } |
7517 | |
7518 | void |
7519 | ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, |
7520 | raw_ostream &Out) { |
7521 | // <special-name> ::= TW <object name> |
7522 | CXXNameMangler Mangler(*this, Out); |
7523 | Mangler.getStream() << "_ZTW"; |
7524 | Mangler.mangleName(GD: D); |
7525 | } |
7526 | |
7527 | void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, |
7528 | unsigned ManglingNumber, |
7529 | raw_ostream &Out) { |
7530 | // We match the GCC mangling here. |
7531 | // <special-name> ::= GR <object name> |
7532 | CXXNameMangler Mangler(*this, Out); |
7533 | Mangler.getStream() << "_ZGR"; |
7534 | Mangler.mangleName(GD: D); |
7535 | assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!"); |
7536 | Mangler.mangleSeqID(SeqID: ManglingNumber - 1); |
7537 | } |
7538 | |
7539 | void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, |
7540 | raw_ostream &Out) { |
7541 | // <special-name> ::= TV <type> # virtual table |
7542 | CXXNameMangler Mangler(*this, Out); |
7543 | Mangler.getStream() << "_ZTV"; |
7544 | Mangler.mangleCXXRecordDecl(Record: RD); |
7545 | } |
7546 | |
7547 | void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, |
7548 | raw_ostream &Out) { |
7549 | // <special-name> ::= TT <type> # VTT structure |
7550 | CXXNameMangler Mangler(*this, Out); |
7551 | Mangler.getStream() << "_ZTT"; |
7552 | Mangler.mangleCXXRecordDecl(Record: RD); |
7553 | } |
7554 | |
7555 | void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, |
7556 | int64_t Offset, |
7557 | const CXXRecordDecl *Type, |
7558 | raw_ostream &Out) { |
7559 | // <special-name> ::= TC <type> <offset number> _ <base type> |
7560 | CXXNameMangler Mangler(*this, Out); |
7561 | Mangler.getStream() << "_ZTC"; |
7562 | // Older versions of clang did not add the record as a substitution candidate |
7563 | // here. |
7564 | bool SuppressSubstitution = |
7565 | getASTContext().getLangOpts().getClangABICompat() <= |
7566 | LangOptions::ClangABI::Ver19; |
7567 | Mangler.mangleCXXRecordDecl(Record: RD, SuppressSubstitution); |
7568 | Mangler.getStream() << Offset; |
7569 | Mangler.getStream() << '_'; |
7570 | Mangler.mangleCXXRecordDecl(Record: Type); |
7571 | } |
7572 | |
7573 | void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { |
7574 | // <special-name> ::= TI <type> # typeinfo structure |
7575 | assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); |
7576 | CXXNameMangler Mangler(*this, Out); |
7577 | Mangler.getStream() << "_ZTI"; |
7578 | Mangler.mangleType(T: Ty); |
7579 | } |
7580 | |
7581 | void ItaniumMangleContextImpl::mangleCXXRTTIName( |
7582 | QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) { |
7583 | // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) |
7584 | CXXNameMangler Mangler(*this, Out, NormalizeIntegers); |
7585 | Mangler.getStream() << "_ZTS"; |
7586 | Mangler.mangleType(T: Ty); |
7587 | } |
7588 | |
7589 | void ItaniumMangleContextImpl::mangleCanonicalTypeName( |
7590 | QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) { |
7591 | mangleCXXRTTIName(Ty, Out, NormalizeIntegers); |
7592 | } |
7593 | |
7594 | void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { |
7595 | llvm_unreachable("Can't mangle string literals"); |
7596 | } |
7597 | |
7598 | void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda, |
7599 | raw_ostream &Out) { |
7600 | CXXNameMangler Mangler(*this, Out); |
7601 | Mangler.mangleLambdaSig(Lambda); |
7602 | } |
7603 | |
7604 | void ItaniumMangleContextImpl::mangleModuleInitializer(const Module *M, |
7605 | raw_ostream &Out) { |
7606 | // <special-name> ::= GI <module-name> # module initializer function |
7607 | CXXNameMangler Mangler(*this, Out); |
7608 | Mangler.getStream() << "_ZGI"; |
7609 | Mangler.mangleModuleNamePrefix(Name: M->getPrimaryModuleInterfaceName()); |
7610 | if (M->isModulePartition()) { |
7611 | // The partition needs including, as partitions can have them too. |
7612 | auto Partition = M->Name.find(c: ':'); |
7613 | Mangler.mangleModuleNamePrefix( |
7614 | Name: StringRef(&M->Name[Partition + 1], M->Name.size() - Partition - 1), |
7615 | /*IsPartition*/ true); |
7616 | } |
7617 | } |
7618 | |
7619 | ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context, |
7620 | DiagnosticsEngine &Diags, |
7621 | bool IsAux) { |
7622 | return new ItaniumMangleContextImpl( |
7623 | Context, Diags, |
7624 | [](ASTContext &, const NamedDecl *) -> UnsignedOrNone { |
7625 | return std::nullopt; |
7626 | }, |
7627 | IsAux); |
7628 | } |
7629 | |
7630 | ItaniumMangleContext * |
7631 | ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags, |
7632 | DiscriminatorOverrideTy DiscriminatorOverride, |
7633 | bool IsAux) { |
7634 | return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride, |
7635 | IsAux); |
7636 | } |
7637 |
Definitions
- isLocalContainerContext
- getStructor
- getStructor
- isLambda
- UnknownArity
- ItaniumMangleContextImpl
- ItaniumMangleContextImpl
- shouldMangleStringLiteral
- needsUniqueInternalLinkageNames
- getNextDiscriminator
- getLambdaString
- getDiscriminatorOverride
- getEffectiveParentContext
- CXXNameMangler
- FunctionTypeDepthState
- FunctionTypeDepthState
- getDepth
- isInResultType
- push
- enterResultType
- leaveResultType
- pop
- AbiTagState
- AbiTagState
- AbiTagState
- operator=
- ~AbiTagState
- write
- getUsedAbiTags
- setUsedAbiTags
- getEmittedAbiTags
- getSortedUniqueUsedAbiTags
- pop
- writeSortedUniqueAbiTags
- getASTContext
- isCompatibleWith
- CXXNameMangler
- CXXNameMangler
- CXXNameMangler
- CXXNameMangler
- CXXNameMangler
- CXXNameMangler
- WithTemplateDepthOffset
- CXXNameMangler
- getStream
- disableDerivedAbiTags
- addSubstitution
- addSubstitution
- mangleUnqualifiedName
- getStdNamespace
- getEffectiveDeclContext
- isInternalLinkageDecl
- isUniqueInternalLinkageDecl
- shouldMangleCXXName
- writeAbiTags
- mangleSourceNameWithAbiTags
- mangle
- mangleFunctionEncoding
- mangleFunctionEncodingBareType
- isStd
- isStdNamespace
- isTemplate
- asTemplateName
- mangleName
- GetLocalClassDecl
- mangleNameWithAbiTags
- mangleModuleName
- mangleModuleNamePrefix
- mangleTemplateName
- mangleUnscopedName
- mangleUnscopedTemplateName
- mangleFloat
- mangleFloatLiteral
- mangleFixedPointLiteral
- mangleNullPointer
- mangleNumber
- mangleNumber
- mangleCallOffset
- manglePrefix
- mangleUnresolvedPrefix
- mangleUnresolvedName
- mangleUnqualifiedName
- mangleRegCallName
- mangleDeviceStubName
- mangleOCLDeviceStubName
- mangleSourceName
- mangleNestedName
- mangleNestedName
- mangleNestedNameWithClosurePrefix
- getParentOfLocalEntity
- mangleLocalName
- mangleBlockForPrefix
- mangleUnqualifiedBlock
- mangleTemplateParamDecl
- mangleTemplateParameterList
- mangleTypeConstraint
- mangleTypeConstraint
- mangleRequiresClause
- mangleLambda
- mangleLambdaSig
- manglePrefix
- manglePrefix
- mangleTemplatePrefix
- mangleTemplatePrefix
- getClosurePrefix
- mangleClosurePrefix
- mangleType
- mangleUnresolvedTypeOrSimpleId
- mangleOperatorName
- mangleOperatorName
- mangleQualifiers
- mangleVendorQualifier
- mangleVendorType
- mangleRefQualifier
- mangleObjCMethodName
- isTypeSubstitutable
- mangleType
- mangleCXXRecordDecl
- mangleType
- getCallingConvQualifierName
- mangleExtFunctionInfo
- AAPCSBitmaskSME
- encodeAAPCSZAState
- mangleSMEAttrs
- mangleExtParameterInfo
- mangleType
- mangleType
- mangleBareFunctionType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleNeonVectorType
- mangleNeonVectorType
- mangleAArch64VectorBase
- mangleAArch64NeonVectorType
- mangleAArch64NeonVectorType
- mangleAArch64FixedSveVectorType
- mangleAArch64FixedSveVectorType
- mangleRISCVFixedRVVVectorType
- mangleRISCVFixedRVVVectorType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleType
- mangleIntegerLiteral
- mangleMemberExprBase
- mangleMemberExpr
- isParenthesizedADLCallee
- mangleCastExpression
- mangleInitListElements
- mangleRequirement
- mangleExpression
- mangleFunctionParam
- mangleCXXCtorType
- mangleCXXDtorType
- TemplateArgManglingInfo
- TemplateArgManglingInfo
- Info
- isOverloadable
- needToMangleTemplateParam
- getArgInfo
- getTrailingRequiresClauseToMangle
- mangleTemplateArgs
- mangleTemplateArgs
- mangleTemplateArgs
- mangleTemplateArg
- mangleTemplateArg
- mangleTemplateArgExpr
- isZeroInitialized
- getLValueType
- getUnionInitName
- mangleValueInTemplateArg
- mangleTemplateParameter
- mangleSeqID
- mangleExistingSubstitution
- mangleSubstitution
- mangleSubstitution
- hasMangledSubstitutionQualifiers
- mangleSubstitution
- mangleSubstitution
- mangleSubstitution
- isSpecializedAs
- isStdCharSpecialization
- mangleStandardSubstitution
- addSubstitution
- addSubstitution
- addSubstitution
- extendSubstitutions
- makeFunctionReturnTypeTags
- makeVariableTypeTags
- shouldHaveAbiTags
- mangleCXXName
- mangleCXXCtorComdat
- mangleCXXDtorComdat
- mangleOverrideDiscrimination
- mangleThunk
- mangleCXXDtorThunk
- mangleStaticGuardVariable
- mangleDynamicInitializer
- mangleDynamicAtExitDestructor
- mangleDynamicStermFinalizer
- mangleSEHFilterExpression
- mangleSEHFinallyBlock
- mangleItaniumThreadLocalInit
- mangleItaniumThreadLocalWrapper
- mangleReferenceTemporary
- mangleCXXVTable
- mangleCXXVTT
- mangleCXXCtorVTable
- mangleCXXRTTI
- mangleCXXRTTIName
- mangleCanonicalTypeName
- mangleStringLiteral
- mangleLambdaSig
- mangleModuleInitializer
- create
Improve your Profiling and Debugging skills
Find out more