1 | //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Implements C++ name mangling according to the Itanium C++ ABI, |
10 | // which is used in GCC 3.2 and newer (and many compilers that are |
11 | // ABI-compatible with GCC): |
12 | // |
13 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "clang/AST/ASTContext.h" |
18 | #include "clang/AST/Attr.h" |
19 | #include "clang/AST/Decl.h" |
20 | #include "clang/AST/DeclCXX.h" |
21 | #include "clang/AST/DeclObjC.h" |
22 | #include "clang/AST/DeclOpenMP.h" |
23 | #include "clang/AST/DeclTemplate.h" |
24 | #include "clang/AST/Expr.h" |
25 | #include "clang/AST/ExprCXX.h" |
26 | #include "clang/AST/ExprConcepts.h" |
27 | #include "clang/AST/ExprObjC.h" |
28 | #include "clang/AST/Mangle.h" |
29 | #include "clang/AST/TypeLoc.h" |
30 | #include "clang/Basic/ABI.h" |
31 | #include "clang/Basic/DiagnosticAST.h" |
32 | #include "clang/Basic/Module.h" |
33 | #include "clang/Basic/SourceManager.h" |
34 | #include "clang/Basic/TargetInfo.h" |
35 | #include "clang/Basic/Thunk.h" |
36 | #include "llvm/ADT/StringExtras.h" |
37 | #include "llvm/Support/ErrorHandling.h" |
38 | #include "llvm/Support/raw_ostream.h" |
39 | #include "llvm/TargetParser/RISCVTargetParser.h" |
40 | #include <optional> |
41 | |
42 | using namespace clang; |
43 | |
44 | namespace { |
45 | |
46 | static bool isLocalContainerContext(const DeclContext *DC) { |
47 | return isa<FunctionDecl>(Val: DC) || isa<ObjCMethodDecl>(Val: DC) || isa<BlockDecl>(Val: DC); |
48 | } |
49 | |
50 | static const FunctionDecl *getStructor(const FunctionDecl *fn) { |
51 | if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) |
52 | return ftd->getTemplatedDecl(); |
53 | |
54 | return fn; |
55 | } |
56 | |
57 | static const NamedDecl *getStructor(const NamedDecl *decl) { |
58 | const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(Val: decl); |
59 | return (fn ? getStructor(fn) : decl); |
60 | } |
61 | |
62 | static bool isLambda(const NamedDecl *ND) { |
63 | const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: ND); |
64 | if (!Record) |
65 | return false; |
66 | |
67 | return Record->isLambda(); |
68 | } |
69 | |
70 | static const unsigned UnknownArity = ~0U; |
71 | |
72 | class ItaniumMangleContextImpl : public ItaniumMangleContext { |
73 | typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; |
74 | llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; |
75 | llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; |
76 | const DiscriminatorOverrideTy DiscriminatorOverride = nullptr; |
77 | NamespaceDecl *StdNamespace = nullptr; |
78 | |
79 | bool NeedsUniqueInternalLinkageNames = false; |
80 | |
81 | public: |
82 | explicit ItaniumMangleContextImpl( |
83 | ASTContext &Context, DiagnosticsEngine &Diags, |
84 | DiscriminatorOverrideTy DiscriminatorOverride, bool IsAux = false) |
85 | : ItaniumMangleContext(Context, Diags, IsAux), |
86 | DiscriminatorOverride(DiscriminatorOverride) {} |
87 | |
88 | /// @name Mangler Entry Points |
89 | /// @{ |
90 | |
91 | bool shouldMangleCXXName(const NamedDecl *D) override; |
92 | bool shouldMangleStringLiteral(const StringLiteral *) override { |
93 | return false; |
94 | } |
95 | |
96 | bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override; |
97 | void needsUniqueInternalLinkageNames() override { |
98 | NeedsUniqueInternalLinkageNames = true; |
99 | } |
100 | |
101 | void mangleCXXName(GlobalDecl GD, raw_ostream &) override; |
102 | void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, |
103 | raw_ostream &) override; |
104 | void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, |
105 | const ThisAdjustment &ThisAdjustment, |
106 | raw_ostream &) override; |
107 | void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, |
108 | raw_ostream &) override; |
109 | void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; |
110 | void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; |
111 | void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, |
112 | const CXXRecordDecl *Type, raw_ostream &) override; |
113 | void mangleCXXRTTI(QualType T, raw_ostream &) override; |
114 | void mangleCXXRTTIName(QualType T, raw_ostream &, |
115 | bool NormalizeIntegers) override; |
116 | void mangleCanonicalTypeName(QualType T, raw_ostream &, |
117 | bool NormalizeIntegers) override; |
118 | |
119 | void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; |
120 | void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; |
121 | void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; |
122 | void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; |
123 | void mangleDynamicAtExitDestructor(const VarDecl *D, |
124 | raw_ostream &Out) override; |
125 | void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override; |
126 | void mangleSEHFilterExpression(GlobalDecl EnclosingDecl, |
127 | raw_ostream &Out) override; |
128 | void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl, |
129 | raw_ostream &Out) override; |
130 | void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; |
131 | void mangleItaniumThreadLocalWrapper(const VarDecl *D, |
132 | raw_ostream &) override; |
133 | |
134 | void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; |
135 | |
136 | void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override; |
137 | |
138 | void mangleModuleInitializer(const Module *Module, raw_ostream &) override; |
139 | |
140 | bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { |
141 | // Lambda closure types are already numbered. |
142 | if (isLambda(ND)) |
143 | return false; |
144 | |
145 | // Anonymous tags are already numbered. |
146 | if (const TagDecl *Tag = dyn_cast<TagDecl>(Val: ND)) { |
147 | if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) |
148 | return false; |
149 | } |
150 | |
151 | // Use the canonical number for externally visible decls. |
152 | if (ND->isExternallyVisible()) { |
153 | unsigned discriminator = getASTContext().getManglingNumber(ND, ForAuxTarget: isAux()); |
154 | if (discriminator == 1) |
155 | return false; |
156 | disc = discriminator - 2; |
157 | return true; |
158 | } |
159 | |
160 | // Make up a reasonable number for internal decls. |
161 | unsigned &discriminator = Uniquifier[ND]; |
162 | if (!discriminator) { |
163 | const DeclContext *DC = getEffectiveDeclContext(ND); |
164 | discriminator = ++Discriminator[std::make_pair(x&: DC, y: ND->getIdentifier())]; |
165 | } |
166 | if (discriminator == 1) |
167 | return false; |
168 | disc = discriminator-2; |
169 | return true; |
170 | } |
171 | |
172 | std::string getLambdaString(const CXXRecordDecl *Lambda) override { |
173 | // This function matches the one in MicrosoftMangle, which returns |
174 | // the string that is used in lambda mangled names. |
175 | assert(Lambda->isLambda() && "RD must be a lambda!" ); |
176 | std::string Name("<lambda" ); |
177 | Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); |
178 | unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); |
179 | unsigned LambdaId; |
180 | const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(Val: LambdaContextDecl); |
181 | const FunctionDecl *Func = |
182 | Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; |
183 | |
184 | if (Func) { |
185 | unsigned DefaultArgNo = |
186 | Func->getNumParams() - Parm->getFunctionScopeIndex(); |
187 | Name += llvm::utostr(X: DefaultArgNo); |
188 | Name += "_" ; |
189 | } |
190 | |
191 | if (LambdaManglingNumber) |
192 | LambdaId = LambdaManglingNumber; |
193 | else |
194 | LambdaId = getAnonymousStructIdForDebugInfo(Lambda); |
195 | |
196 | Name += llvm::utostr(X: LambdaId); |
197 | Name += '>'; |
198 | return Name; |
199 | } |
200 | |
201 | DiscriminatorOverrideTy getDiscriminatorOverride() const override { |
202 | return DiscriminatorOverride; |
203 | } |
204 | |
205 | NamespaceDecl *getStdNamespace(); |
206 | |
207 | const DeclContext *getEffectiveDeclContext(const Decl *D); |
208 | const DeclContext *getEffectiveParentContext(const DeclContext *DC) { |
209 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
210 | } |
211 | |
212 | bool isInternalLinkageDecl(const NamedDecl *ND); |
213 | |
214 | /// @} |
215 | }; |
216 | |
217 | /// Manage the mangling of a single name. |
218 | class CXXNameMangler { |
219 | ItaniumMangleContextImpl &Context; |
220 | raw_ostream &Out; |
221 | /// Normalize integer types for cross-language CFI support with other |
222 | /// languages that can't represent and encode C/C++ integer types. |
223 | bool NormalizeIntegers = false; |
224 | |
225 | bool NullOut = false; |
226 | /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. |
227 | /// This mode is used when mangler creates another mangler recursively to |
228 | /// calculate ABI tags for the function return value or the variable type. |
229 | /// Also it is required to avoid infinite recursion in some cases. |
230 | bool DisableDerivedAbiTags = false; |
231 | |
232 | /// The "structor" is the top-level declaration being mangled, if |
233 | /// that's not a template specialization; otherwise it's the pattern |
234 | /// for that specialization. |
235 | const NamedDecl *Structor; |
236 | unsigned StructorType = 0; |
237 | |
238 | // An offset to add to all template parameter depths while mangling. Used |
239 | // when mangling a template parameter list to see if it matches a template |
240 | // template parameter exactly. |
241 | unsigned TemplateDepthOffset = 0; |
242 | |
243 | /// The next substitution sequence number. |
244 | unsigned SeqID = 0; |
245 | |
246 | class FunctionTypeDepthState { |
247 | unsigned Bits = 0; |
248 | |
249 | enum { InResultTypeMask = 1 }; |
250 | |
251 | public: |
252 | FunctionTypeDepthState() = default; |
253 | |
254 | /// The number of function types we're inside. |
255 | unsigned getDepth() const { |
256 | return Bits >> 1; |
257 | } |
258 | |
259 | /// True if we're in the return type of the innermost function type. |
260 | bool isInResultType() const { |
261 | return Bits & InResultTypeMask; |
262 | } |
263 | |
264 | FunctionTypeDepthState push() { |
265 | FunctionTypeDepthState tmp = *this; |
266 | Bits = (Bits & ~InResultTypeMask) + 2; |
267 | return tmp; |
268 | } |
269 | |
270 | void enterResultType() { |
271 | Bits |= InResultTypeMask; |
272 | } |
273 | |
274 | void leaveResultType() { |
275 | Bits &= ~InResultTypeMask; |
276 | } |
277 | |
278 | void pop(FunctionTypeDepthState saved) { |
279 | assert(getDepth() == saved.getDepth() + 1); |
280 | Bits = saved.Bits; |
281 | } |
282 | |
283 | } FunctionTypeDepth; |
284 | |
285 | // abi_tag is a gcc attribute, taking one or more strings called "tags". |
286 | // The goal is to annotate against which version of a library an object was |
287 | // built and to be able to provide backwards compatibility ("dual abi"). |
288 | // For more information see docs/ItaniumMangleAbiTags.rst. |
289 | typedef SmallVector<StringRef, 4> AbiTagList; |
290 | |
291 | // State to gather all implicit and explicit tags used in a mangled name. |
292 | // Must always have an instance of this while emitting any name to keep |
293 | // track. |
294 | class AbiTagState final { |
295 | public: |
296 | explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { |
297 | Parent = LinkHead; |
298 | LinkHead = this; |
299 | } |
300 | |
301 | // No copy, no move. |
302 | AbiTagState(const AbiTagState &) = delete; |
303 | AbiTagState &operator=(const AbiTagState &) = delete; |
304 | |
305 | ~AbiTagState() { pop(); } |
306 | |
307 | void write(raw_ostream &Out, const NamedDecl *ND, |
308 | const AbiTagList *AdditionalAbiTags) { |
309 | ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
310 | if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { |
311 | assert( |
312 | !AdditionalAbiTags && |
313 | "only function and variables need a list of additional abi tags" ); |
314 | if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { |
315 | if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { |
316 | UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), |
317 | AbiTag->tags().end()); |
318 | } |
319 | // Don't emit abi tags for namespaces. |
320 | return; |
321 | } |
322 | } |
323 | |
324 | AbiTagList TagList; |
325 | if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { |
326 | UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), |
327 | AbiTag->tags().end()); |
328 | TagList.insert(TagList.end(), AbiTag->tags().begin(), |
329 | AbiTag->tags().end()); |
330 | } |
331 | |
332 | if (AdditionalAbiTags) { |
333 | UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(), |
334 | AdditionalAbiTags->end()); |
335 | TagList.insert(TagList.end(), AdditionalAbiTags->begin(), |
336 | AdditionalAbiTags->end()); |
337 | } |
338 | |
339 | llvm::sort(TagList); |
340 | TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end()); |
341 | |
342 | writeSortedUniqueAbiTags(Out, AbiTags: TagList); |
343 | } |
344 | |
345 | const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } |
346 | void setUsedAbiTags(const AbiTagList &AbiTags) { |
347 | UsedAbiTags = AbiTags; |
348 | } |
349 | |
350 | const AbiTagList &getEmittedAbiTags() const { |
351 | return EmittedAbiTags; |
352 | } |
353 | |
354 | const AbiTagList &getSortedUniqueUsedAbiTags() { |
355 | llvm::sort(UsedAbiTags); |
356 | UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()), |
357 | UsedAbiTags.end()); |
358 | return UsedAbiTags; |
359 | } |
360 | |
361 | private: |
362 | //! All abi tags used implicitly or explicitly. |
363 | AbiTagList UsedAbiTags; |
364 | //! All explicit abi tags (i.e. not from namespace). |
365 | AbiTagList EmittedAbiTags; |
366 | |
367 | AbiTagState *&LinkHead; |
368 | AbiTagState *Parent = nullptr; |
369 | |
370 | void pop() { |
371 | assert(LinkHead == this && |
372 | "abi tag link head must point to us on destruction" ); |
373 | if (Parent) { |
374 | Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), |
375 | UsedAbiTags.begin(), UsedAbiTags.end()); |
376 | Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), |
377 | EmittedAbiTags.begin(), |
378 | EmittedAbiTags.end()); |
379 | } |
380 | LinkHead = Parent; |
381 | } |
382 | |
383 | void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { |
384 | for (const auto &Tag : AbiTags) { |
385 | EmittedAbiTags.push_back(Elt: Tag); |
386 | Out << "B" ; |
387 | Out << Tag.size(); |
388 | Out << Tag; |
389 | } |
390 | } |
391 | }; |
392 | |
393 | AbiTagState *AbiTags = nullptr; |
394 | AbiTagState AbiTagsRoot; |
395 | |
396 | llvm::DenseMap<uintptr_t, unsigned> Substitutions; |
397 | llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; |
398 | |
399 | ASTContext &getASTContext() const { return Context.getASTContext(); } |
400 | |
401 | bool isCompatibleWith(LangOptions::ClangABI Ver) { |
402 | return Context.getASTContext().getLangOpts().getClangABICompat() <= Ver; |
403 | } |
404 | |
405 | bool isStd(const NamespaceDecl *NS); |
406 | bool isStdNamespace(const DeclContext *DC); |
407 | |
408 | const RecordDecl *GetLocalClassDecl(const Decl *D); |
409 | bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A); |
410 | bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD, |
411 | llvm::StringRef Name, bool HasAllocator); |
412 | |
413 | public: |
414 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
415 | const NamedDecl *D = nullptr, bool NullOut_ = false) |
416 | : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(decl: D)), |
417 | AbiTagsRoot(AbiTags) { |
418 | // These can't be mangled without a ctor type or dtor type. |
419 | assert(!D || (!isa<CXXDestructorDecl>(D) && |
420 | !isa<CXXConstructorDecl>(D))); |
421 | } |
422 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
423 | const CXXConstructorDecl *D, CXXCtorType Type) |
424 | : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
425 | AbiTagsRoot(AbiTags) {} |
426 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
427 | const CXXDestructorDecl *D, CXXDtorType Type) |
428 | : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
429 | AbiTagsRoot(AbiTags) {} |
430 | |
431 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
432 | bool NormalizeIntegers_) |
433 | : Context(C), Out(Out_), NormalizeIntegers(NormalizeIntegers_), |
434 | NullOut(false), Structor(nullptr), AbiTagsRoot(AbiTags) {} |
435 | CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) |
436 | : Context(Outer.Context), Out(Out_), Structor(Outer.Structor), |
437 | StructorType(Outer.StructorType), SeqID(Outer.SeqID), |
438 | FunctionTypeDepth(Outer.FunctionTypeDepth), AbiTagsRoot(AbiTags), |
439 | Substitutions(Outer.Substitutions), |
440 | ModuleSubstitutions(Outer.ModuleSubstitutions) {} |
441 | |
442 | CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) |
443 | : CXXNameMangler(Outer, (raw_ostream &)Out_) { |
444 | NullOut = true; |
445 | } |
446 | |
447 | struct WithTemplateDepthOffset { unsigned Offset; }; |
448 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out, |
449 | WithTemplateDepthOffset Offset) |
450 | : CXXNameMangler(C, Out) { |
451 | TemplateDepthOffset = Offset.Offset; |
452 | } |
453 | |
454 | raw_ostream &getStream() { return Out; } |
455 | |
456 | void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } |
457 | static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); |
458 | |
459 | void mangle(GlobalDecl GD); |
460 | void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); |
461 | void mangleNumber(const llvm::APSInt &I); |
462 | void mangleNumber(int64_t Number); |
463 | void mangleFloat(const llvm::APFloat &F); |
464 | void mangleFunctionEncoding(GlobalDecl GD); |
465 | void mangleSeqID(unsigned SeqID); |
466 | void mangleName(GlobalDecl GD); |
467 | void mangleType(QualType T); |
468 | void mangleNameOrStandardSubstitution(const NamedDecl *ND); |
469 | void mangleLambdaSig(const CXXRecordDecl *Lambda); |
470 | void mangleModuleNamePrefix(StringRef Name, bool IsPartition = false); |
471 | |
472 | private: |
473 | |
474 | bool mangleSubstitution(const NamedDecl *ND); |
475 | bool mangleSubstitution(NestedNameSpecifier *NNS); |
476 | bool mangleSubstitution(QualType T); |
477 | bool mangleSubstitution(TemplateName Template); |
478 | bool mangleSubstitution(uintptr_t Ptr); |
479 | |
480 | void mangleExistingSubstitution(TemplateName name); |
481 | |
482 | bool mangleStandardSubstitution(const NamedDecl *ND); |
483 | |
484 | void addSubstitution(const NamedDecl *ND) { |
485 | ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
486 | |
487 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(ND)); |
488 | } |
489 | void addSubstitution(NestedNameSpecifier *NNS) { |
490 | NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); |
491 | |
492 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(NNS)); |
493 | } |
494 | void addSubstitution(QualType T); |
495 | void addSubstitution(TemplateName Template); |
496 | void addSubstitution(uintptr_t Ptr); |
497 | // Destructive copy substitutions from other mangler. |
498 | void extendSubstitutions(CXXNameMangler* Other); |
499 | |
500 | void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
501 | bool recursive = false); |
502 | void mangleUnresolvedName(NestedNameSpecifier *qualifier, |
503 | DeclarationName name, |
504 | const TemplateArgumentLoc *TemplateArgs, |
505 | unsigned NumTemplateArgs, |
506 | unsigned KnownArity = UnknownArity); |
507 | |
508 | void mangleFunctionEncodingBareType(const FunctionDecl *FD); |
509 | |
510 | void mangleNameWithAbiTags(GlobalDecl GD, |
511 | const AbiTagList *AdditionalAbiTags); |
512 | void mangleModuleName(const NamedDecl *ND); |
513 | void mangleTemplateName(const TemplateDecl *TD, |
514 | ArrayRef<TemplateArgument> Args); |
515 | void mangleUnqualifiedName(GlobalDecl GD, const DeclContext *DC, |
516 | const AbiTagList *AdditionalAbiTags) { |
517 | mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), DC, |
518 | UnknownArity, AdditionalAbiTags); |
519 | } |
520 | void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name, |
521 | const DeclContext *DC, unsigned KnownArity, |
522 | const AbiTagList *AdditionalAbiTags); |
523 | void mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, |
524 | const AbiTagList *AdditionalAbiTags); |
525 | void mangleUnscopedTemplateName(GlobalDecl GD, const DeclContext *DC, |
526 | const AbiTagList *AdditionalAbiTags); |
527 | void mangleSourceName(const IdentifierInfo *II); |
528 | void mangleRegCallName(const IdentifierInfo *II); |
529 | void mangleDeviceStubName(const IdentifierInfo *II); |
530 | void mangleSourceNameWithAbiTags( |
531 | const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); |
532 | void mangleLocalName(GlobalDecl GD, |
533 | const AbiTagList *AdditionalAbiTags); |
534 | void mangleBlockForPrefix(const BlockDecl *Block); |
535 | void mangleUnqualifiedBlock(const BlockDecl *Block); |
536 | void mangleTemplateParamDecl(const NamedDecl *Decl); |
537 | void mangleTemplateParameterList(const TemplateParameterList *Params); |
538 | void mangleTypeConstraint(const ConceptDecl *Concept, |
539 | ArrayRef<TemplateArgument> Arguments); |
540 | void mangleTypeConstraint(const TypeConstraint *Constraint); |
541 | void mangleRequiresClause(const Expr *RequiresClause); |
542 | void mangleLambda(const CXXRecordDecl *Lambda); |
543 | void mangleNestedName(GlobalDecl GD, const DeclContext *DC, |
544 | const AbiTagList *AdditionalAbiTags, |
545 | bool NoFunction=false); |
546 | void mangleNestedName(const TemplateDecl *TD, |
547 | ArrayRef<TemplateArgument> Args); |
548 | void mangleNestedNameWithClosurePrefix(GlobalDecl GD, |
549 | const NamedDecl *PrefixND, |
550 | const AbiTagList *AdditionalAbiTags); |
551 | void manglePrefix(NestedNameSpecifier *qualifier); |
552 | void manglePrefix(const DeclContext *DC, bool NoFunction=false); |
553 | void manglePrefix(QualType type); |
554 | void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false); |
555 | void mangleTemplatePrefix(TemplateName Template); |
556 | const NamedDecl *getClosurePrefix(const Decl *ND); |
557 | void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false); |
558 | bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, |
559 | StringRef Prefix = "" ); |
560 | void mangleOperatorName(DeclarationName Name, unsigned Arity); |
561 | void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); |
562 | void mangleVendorQualifier(StringRef qualifier); |
563 | void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); |
564 | void mangleRefQualifier(RefQualifierKind RefQualifier); |
565 | |
566 | void mangleObjCMethodName(const ObjCMethodDecl *MD); |
567 | |
568 | // Declare manglers for every type class. |
569 | #define ABSTRACT_TYPE(CLASS, PARENT) |
570 | #define NON_CANONICAL_TYPE(CLASS, PARENT) |
571 | #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); |
572 | #include "clang/AST/TypeNodes.inc" |
573 | |
574 | void mangleType(const TagType*); |
575 | void mangleType(TemplateName); |
576 | static StringRef getCallingConvQualifierName(CallingConv CC); |
577 | void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); |
578 | void mangleExtFunctionInfo(const FunctionType *T); |
579 | void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, |
580 | const FunctionDecl *FD = nullptr); |
581 | void mangleNeonVectorType(const VectorType *T); |
582 | void mangleNeonVectorType(const DependentVectorType *T); |
583 | void mangleAArch64NeonVectorType(const VectorType *T); |
584 | void mangleAArch64NeonVectorType(const DependentVectorType *T); |
585 | void mangleAArch64FixedSveVectorType(const VectorType *T); |
586 | void mangleAArch64FixedSveVectorType(const DependentVectorType *T); |
587 | void mangleRISCVFixedRVVVectorType(const VectorType *T); |
588 | void mangleRISCVFixedRVVVectorType(const DependentVectorType *T); |
589 | |
590 | void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); |
591 | void mangleFloatLiteral(QualType T, const llvm::APFloat &V); |
592 | void mangleFixedPointLiteral(); |
593 | void mangleNullPointer(QualType T); |
594 | |
595 | void mangleMemberExprBase(const Expr *base, bool isArrow); |
596 | void mangleMemberExpr(const Expr *base, bool isArrow, |
597 | NestedNameSpecifier *qualifier, |
598 | NamedDecl *firstQualifierLookup, |
599 | DeclarationName name, |
600 | const TemplateArgumentLoc *TemplateArgs, |
601 | unsigned NumTemplateArgs, |
602 | unsigned knownArity); |
603 | void mangleCastExpression(const Expr *E, StringRef CastEncoding); |
604 | void mangleInitListElements(const InitListExpr *InitList); |
605 | void mangleRequirement(SourceLocation RequiresExprLoc, |
606 | const concepts::Requirement *Req); |
607 | void mangleExpression(const Expr *E, unsigned Arity = UnknownArity, |
608 | bool AsTemplateArg = false); |
609 | void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); |
610 | void mangleCXXDtorType(CXXDtorType T); |
611 | |
612 | struct TemplateArgManglingInfo; |
613 | void mangleTemplateArgs(TemplateName TN, |
614 | const TemplateArgumentLoc *TemplateArgs, |
615 | unsigned NumTemplateArgs); |
616 | void mangleTemplateArgs(TemplateName TN, ArrayRef<TemplateArgument> Args); |
617 | void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL); |
618 | void mangleTemplateArg(TemplateArgManglingInfo &Info, unsigned Index, |
619 | TemplateArgument A); |
620 | void mangleTemplateArg(TemplateArgument A, bool NeedExactType); |
621 | void mangleTemplateArgExpr(const Expr *E); |
622 | void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel, |
623 | bool NeedExactType = false); |
624 | |
625 | void mangleTemplateParameter(unsigned Depth, unsigned Index); |
626 | |
627 | void mangleFunctionParam(const ParmVarDecl *parm); |
628 | |
629 | void writeAbiTags(const NamedDecl *ND, |
630 | const AbiTagList *AdditionalAbiTags); |
631 | |
632 | // Returns sorted unique list of ABI tags. |
633 | AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); |
634 | // Returns sorted unique list of ABI tags. |
635 | AbiTagList makeVariableTypeTags(const VarDecl *VD); |
636 | }; |
637 | |
638 | } |
639 | |
640 | NamespaceDecl *ItaniumMangleContextImpl::getStdNamespace() { |
641 | if (!StdNamespace) { |
642 | StdNamespace = NamespaceDecl::Create( |
643 | getASTContext(), getASTContext().getTranslationUnitDecl(), |
644 | /*Inline=*/false, SourceLocation(), SourceLocation(), |
645 | &getASTContext().Idents.get(Name: "std" ), |
646 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
647 | StdNamespace->setImplicit(); |
648 | } |
649 | return StdNamespace; |
650 | } |
651 | |
652 | /// Retrieve the declaration context that should be used when mangling the given |
653 | /// declaration. |
654 | const DeclContext * |
655 | ItaniumMangleContextImpl::getEffectiveDeclContext(const Decl *D) { |
656 | // The ABI assumes that lambda closure types that occur within |
657 | // default arguments live in the context of the function. However, due to |
658 | // the way in which Clang parses and creates function declarations, this is |
659 | // not the case: the lambda closure type ends up living in the context |
660 | // where the function itself resides, because the function declaration itself |
661 | // had not yet been created. Fix the context here. |
662 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
663 | if (RD->isLambda()) |
664 | if (ParmVarDecl *ContextParam = |
665 | dyn_cast_or_null<ParmVarDecl>(Val: RD->getLambdaContextDecl())) |
666 | return ContextParam->getDeclContext(); |
667 | } |
668 | |
669 | // Perform the same check for block literals. |
670 | if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
671 | if (ParmVarDecl *ContextParam = |
672 | dyn_cast_or_null<ParmVarDecl>(Val: BD->getBlockManglingContextDecl())) |
673 | return ContextParam->getDeclContext(); |
674 | } |
675 | |
676 | // On ARM and AArch64, the va_list tag is always mangled as if in the std |
677 | // namespace. We do not represent va_list as actually being in the std |
678 | // namespace in C because this would result in incorrect debug info in C, |
679 | // among other things. It is important for both languages to have the same |
680 | // mangling in order for -fsanitize=cfi-icall to work. |
681 | if (D == getASTContext().getVaListTagDecl()) { |
682 | const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); |
683 | if (T.isARM() || T.isThumb() || T.isAArch64()) |
684 | return getStdNamespace(); |
685 | } |
686 | |
687 | const DeclContext *DC = D->getDeclContext(); |
688 | if (isa<CapturedDecl>(Val: DC) || isa<OMPDeclareReductionDecl>(Val: DC) || |
689 | isa<OMPDeclareMapperDecl>(Val: DC)) { |
690 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
691 | } |
692 | |
693 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) |
694 | if (VD->isExternC()) |
695 | return getASTContext().getTranslationUnitDecl(); |
696 | |
697 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
698 | if (FD->isExternC()) |
699 | return getASTContext().getTranslationUnitDecl(); |
700 | // Member-like constrained friends are mangled as if they were members of |
701 | // the enclosing class. |
702 | if (FD->isMemberLikeConstrainedFriend() && |
703 | getASTContext().getLangOpts().getClangABICompat() > |
704 | LangOptions::ClangABI::Ver17) |
705 | return D->getLexicalDeclContext()->getRedeclContext(); |
706 | } |
707 | |
708 | return DC->getRedeclContext(); |
709 | } |
710 | |
711 | bool ItaniumMangleContextImpl::isInternalLinkageDecl(const NamedDecl *ND) { |
712 | if (ND && ND->getFormalLinkage() == Linkage::Internal && |
713 | !ND->isExternallyVisible() && |
714 | getEffectiveDeclContext(ND)->isFileContext() && |
715 | !ND->isInAnonymousNamespace()) |
716 | return true; |
717 | return false; |
718 | } |
719 | |
720 | // Check if this Function Decl needs a unique internal linkage name. |
721 | bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl( |
722 | const NamedDecl *ND) { |
723 | if (!NeedsUniqueInternalLinkageNames || !ND) |
724 | return false; |
725 | |
726 | const auto *FD = dyn_cast<FunctionDecl>(Val: ND); |
727 | if (!FD) |
728 | return false; |
729 | |
730 | // For C functions without prototypes, return false as their |
731 | // names should not be mangled. |
732 | if (!FD->getType()->getAs<FunctionProtoType>()) |
733 | return false; |
734 | |
735 | if (isInternalLinkageDecl(ND)) |
736 | return true; |
737 | |
738 | return false; |
739 | } |
740 | |
741 | bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { |
742 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
743 | LanguageLinkage L = FD->getLanguageLinkage(); |
744 | // Overloadable functions need mangling. |
745 | if (FD->hasAttr<OverloadableAttr>()) |
746 | return true; |
747 | |
748 | // "main" is not mangled. |
749 | if (FD->isMain()) |
750 | return false; |
751 | |
752 | // The Windows ABI expects that we would never mangle "typical" |
753 | // user-defined entry points regardless of visibility or freestanding-ness. |
754 | // |
755 | // N.B. This is distinct from asking about "main". "main" has a lot of |
756 | // special rules associated with it in the standard while these |
757 | // user-defined entry points are outside of the purview of the standard. |
758 | // For example, there can be only one definition for "main" in a standards |
759 | // compliant program; however nothing forbids the existence of wmain and |
760 | // WinMain in the same translation unit. |
761 | if (FD->isMSVCRTEntryPoint()) |
762 | return false; |
763 | |
764 | // C++ functions and those whose names are not a simple identifier need |
765 | // mangling. |
766 | if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) |
767 | return true; |
768 | |
769 | // C functions are not mangled. |
770 | if (L == CLanguageLinkage) |
771 | return false; |
772 | } |
773 | |
774 | // Otherwise, no mangling is done outside C++ mode. |
775 | if (!getASTContext().getLangOpts().CPlusPlus) |
776 | return false; |
777 | |
778 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
779 | // Decompositions are mangled. |
780 | if (isa<DecompositionDecl>(Val: VD)) |
781 | return true; |
782 | |
783 | // C variables are not mangled. |
784 | if (VD->isExternC()) |
785 | return false; |
786 | |
787 | // Variables at global scope are not mangled unless they have internal |
788 | // linkage or are specializations or are attached to a named module. |
789 | const DeclContext *DC = getEffectiveDeclContext(D); |
790 | // Check for extern variable declared locally. |
791 | if (DC->isFunctionOrMethod() && D->hasLinkage()) |
792 | while (!DC->isFileContext()) |
793 | DC = getEffectiveParentContext(DC); |
794 | if (DC->isTranslationUnit() && D->getFormalLinkage() != Linkage::Internal && |
795 | !CXXNameMangler::shouldHaveAbiTags(C&: *this, VD) && |
796 | !isa<VarTemplateSpecializationDecl>(Val: VD) && |
797 | !VD->getOwningModuleForLinkage()) |
798 | return false; |
799 | } |
800 | |
801 | return true; |
802 | } |
803 | |
804 | void CXXNameMangler::writeAbiTags(const NamedDecl *ND, |
805 | const AbiTagList *AdditionalAbiTags) { |
806 | assert(AbiTags && "require AbiTagState" ); |
807 | AbiTags->write(Out, ND, AdditionalAbiTags: DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); |
808 | } |
809 | |
810 | void CXXNameMangler::mangleSourceNameWithAbiTags( |
811 | const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { |
812 | mangleSourceName(II: ND->getIdentifier()); |
813 | writeAbiTags(ND, AdditionalAbiTags); |
814 | } |
815 | |
816 | void CXXNameMangler::mangle(GlobalDecl GD) { |
817 | // <mangled-name> ::= _Z <encoding> |
818 | // ::= <data name> |
819 | // ::= <special-name> |
820 | Out << "_Z" ; |
821 | if (isa<FunctionDecl>(Val: GD.getDecl())) |
822 | mangleFunctionEncoding(GD); |
823 | else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl, |
824 | BindingDecl>(Val: GD.getDecl())) |
825 | mangleName(GD); |
826 | else if (const IndirectFieldDecl *IFD = |
827 | dyn_cast<IndirectFieldDecl>(Val: GD.getDecl())) |
828 | mangleName(IFD->getAnonField()); |
829 | else |
830 | llvm_unreachable("unexpected kind of global decl" ); |
831 | } |
832 | |
833 | void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) { |
834 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
835 | // <encoding> ::= <function name> <bare-function-type> |
836 | |
837 | // Don't mangle in the type if this isn't a decl we should typically mangle. |
838 | if (!Context.shouldMangleDeclName(FD)) { |
839 | mangleName(GD); |
840 | return; |
841 | } |
842 | |
843 | AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); |
844 | if (ReturnTypeAbiTags.empty()) { |
845 | // There are no tags for return type, the simplest case. Enter the function |
846 | // parameter scope before mangling the name, because a template using |
847 | // constrained `auto` can have references to its parameters within its |
848 | // template argument list: |
849 | // |
850 | // template<typename T> void f(T x, C<decltype(x)> auto) |
851 | // ... is mangled as ... |
852 | // template<typename T, C<decltype(param 1)> U> void f(T, U) |
853 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
854 | mangleName(GD); |
855 | FunctionTypeDepth.pop(saved: Saved); |
856 | mangleFunctionEncodingBareType(FD); |
857 | return; |
858 | } |
859 | |
860 | // Mangle function name and encoding to temporary buffer. |
861 | // We have to output name and encoding to the same mangler to get the same |
862 | // substitution as it will be in final mangling. |
863 | SmallString<256> FunctionEncodingBuf; |
864 | llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); |
865 | CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); |
866 | // Output name of the function. |
867 | FunctionEncodingMangler.disableDerivedAbiTags(); |
868 | |
869 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
870 | FunctionEncodingMangler.mangleNameWithAbiTags(GD: FD, AdditionalAbiTags: nullptr); |
871 | FunctionTypeDepth.pop(saved: Saved); |
872 | |
873 | // Remember length of the function name in the buffer. |
874 | size_t EncodingPositionStart = FunctionEncodingStream.str().size(); |
875 | FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); |
876 | |
877 | // Get tags from return type that are not present in function name or |
878 | // encoding. |
879 | const AbiTagList &UsedAbiTags = |
880 | FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
881 | AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); |
882 | AdditionalAbiTags.erase( |
883 | CS: std::set_difference(first1: ReturnTypeAbiTags.begin(), last1: ReturnTypeAbiTags.end(), |
884 | first2: UsedAbiTags.begin(), last2: UsedAbiTags.end(), |
885 | result: AdditionalAbiTags.begin()), |
886 | CE: AdditionalAbiTags.end()); |
887 | |
888 | // Output name with implicit tags and function encoding from temporary buffer. |
889 | Saved = FunctionTypeDepth.push(); |
890 | mangleNameWithAbiTags(GD: FD, AdditionalAbiTags: &AdditionalAbiTags); |
891 | FunctionTypeDepth.pop(saved: Saved); |
892 | Out << FunctionEncodingStream.str().substr(Start: EncodingPositionStart); |
893 | |
894 | // Function encoding could create new substitutions so we have to add |
895 | // temp mangled substitutions to main mangler. |
896 | extendSubstitutions(Other: &FunctionEncodingMangler); |
897 | } |
898 | |
899 | void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { |
900 | if (FD->hasAttr<EnableIfAttr>()) { |
901 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
902 | Out << "Ua9enable_ifI" ; |
903 | for (AttrVec::const_iterator I = FD->getAttrs().begin(), |
904 | E = FD->getAttrs().end(); |
905 | I != E; ++I) { |
906 | EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); |
907 | if (!EIA) |
908 | continue; |
909 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
910 | // Prior to Clang 12, we hardcoded the X/E around enable-if's argument, |
911 | // even though <template-arg> should not include an X/E around |
912 | // <expr-primary>. |
913 | Out << 'X'; |
914 | mangleExpression(E: EIA->getCond()); |
915 | Out << 'E'; |
916 | } else { |
917 | mangleTemplateArgExpr(E: EIA->getCond()); |
918 | } |
919 | } |
920 | Out << 'E'; |
921 | FunctionTypeDepth.pop(saved: Saved); |
922 | } |
923 | |
924 | // When mangling an inheriting constructor, the bare function type used is |
925 | // that of the inherited constructor. |
926 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: FD)) |
927 | if (auto Inherited = CD->getInheritedConstructor()) |
928 | FD = Inherited.getConstructor(); |
929 | |
930 | // Whether the mangling of a function type includes the return type depends on |
931 | // the context and the nature of the function. The rules for deciding whether |
932 | // the return type is included are: |
933 | // |
934 | // 1. Template functions (names or types) have return types encoded, with |
935 | // the exceptions listed below. |
936 | // 2. Function types not appearing as part of a function name mangling, |
937 | // e.g. parameters, pointer types, etc., have return type encoded, with the |
938 | // exceptions listed below. |
939 | // 3. Non-template function names do not have return types encoded. |
940 | // |
941 | // The exceptions mentioned in (1) and (2) above, for which the return type is |
942 | // never included, are |
943 | // 1. Constructors. |
944 | // 2. Destructors. |
945 | // 3. Conversion operator functions, e.g. operator int. |
946 | bool MangleReturnType = false; |
947 | if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { |
948 | if (!(isa<CXXConstructorDecl>(Val: FD) || isa<CXXDestructorDecl>(Val: FD) || |
949 | isa<CXXConversionDecl>(Val: FD))) |
950 | MangleReturnType = true; |
951 | |
952 | // Mangle the type of the primary template. |
953 | FD = PrimaryTemplate->getTemplatedDecl(); |
954 | } |
955 | |
956 | mangleBareFunctionType(T: FD->getType()->castAs<FunctionProtoType>(), |
957 | MangleReturnType, FD); |
958 | } |
959 | |
960 | /// Return whether a given namespace is the 'std' namespace. |
961 | bool CXXNameMangler::isStd(const NamespaceDecl *NS) { |
962 | if (!Context.getEffectiveParentContext(NS)->isTranslationUnit()) |
963 | return false; |
964 | |
965 | const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); |
966 | return II && II->isStr(Str: "std" ); |
967 | } |
968 | |
969 | // isStdNamespace - Return whether a given decl context is a toplevel 'std' |
970 | // namespace. |
971 | bool CXXNameMangler::isStdNamespace(const DeclContext *DC) { |
972 | if (!DC->isNamespace()) |
973 | return false; |
974 | |
975 | return isStd(NS: cast<NamespaceDecl>(Val: DC)); |
976 | } |
977 | |
978 | static const GlobalDecl |
979 | isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) { |
980 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
981 | // Check if we have a function template. |
982 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
983 | if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { |
984 | TemplateArgs = FD->getTemplateSpecializationArgs(); |
985 | return GD.getWithDecl(TD); |
986 | } |
987 | } |
988 | |
989 | // Check if we have a class template. |
990 | if (const ClassTemplateSpecializationDecl *Spec = |
991 | dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) { |
992 | TemplateArgs = &Spec->getTemplateArgs(); |
993 | return GD.getWithDecl(Spec->getSpecializedTemplate()); |
994 | } |
995 | |
996 | // Check if we have a variable template. |
997 | if (const VarTemplateSpecializationDecl *Spec = |
998 | dyn_cast<VarTemplateSpecializationDecl>(Val: ND)) { |
999 | TemplateArgs = &Spec->getTemplateArgs(); |
1000 | return GD.getWithDecl(Spec->getSpecializedTemplate()); |
1001 | } |
1002 | |
1003 | return GlobalDecl(); |
1004 | } |
1005 | |
1006 | static TemplateName asTemplateName(GlobalDecl GD) { |
1007 | const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(Val: GD.getDecl()); |
1008 | return TemplateName(const_cast<TemplateDecl*>(TD)); |
1009 | } |
1010 | |
1011 | void CXXNameMangler::mangleName(GlobalDecl GD) { |
1012 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1013 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) { |
1014 | // Variables should have implicit tags from its type. |
1015 | AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); |
1016 | if (VariableTypeAbiTags.empty()) { |
1017 | // Simple case no variable type tags. |
1018 | mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: nullptr); |
1019 | return; |
1020 | } |
1021 | |
1022 | // Mangle variable name to null stream to collect tags. |
1023 | llvm::raw_null_ostream NullOutStream; |
1024 | CXXNameMangler VariableNameMangler(*this, NullOutStream); |
1025 | VariableNameMangler.disableDerivedAbiTags(); |
1026 | VariableNameMangler.mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: nullptr); |
1027 | |
1028 | // Get tags from variable type that are not present in its name. |
1029 | const AbiTagList &UsedAbiTags = |
1030 | VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
1031 | AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); |
1032 | AdditionalAbiTags.erase( |
1033 | CS: std::set_difference(first1: VariableTypeAbiTags.begin(), |
1034 | last1: VariableTypeAbiTags.end(), first2: UsedAbiTags.begin(), |
1035 | last2: UsedAbiTags.end(), result: AdditionalAbiTags.begin()), |
1036 | CE: AdditionalAbiTags.end()); |
1037 | |
1038 | // Output name with implicit tags. |
1039 | mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: &AdditionalAbiTags); |
1040 | } else { |
1041 | mangleNameWithAbiTags(GD, AdditionalAbiTags: nullptr); |
1042 | } |
1043 | } |
1044 | |
1045 | const RecordDecl *CXXNameMangler::GetLocalClassDecl(const Decl *D) { |
1046 | const DeclContext *DC = Context.getEffectiveDeclContext(D); |
1047 | while (!DC->isNamespace() && !DC->isTranslationUnit()) { |
1048 | if (isLocalContainerContext(DC)) |
1049 | return dyn_cast<RecordDecl>(Val: D); |
1050 | D = cast<Decl>(Val: DC); |
1051 | DC = Context.getEffectiveDeclContext(D); |
1052 | } |
1053 | return nullptr; |
1054 | } |
1055 | |
1056 | void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD, |
1057 | const AbiTagList *AdditionalAbiTags) { |
1058 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1059 | // <name> ::= [<module-name>] <nested-name> |
1060 | // ::= [<module-name>] <unscoped-name> |
1061 | // ::= [<module-name>] <unscoped-template-name> <template-args> |
1062 | // ::= <local-name> |
1063 | // |
1064 | const DeclContext *DC = Context.getEffectiveDeclContext(ND); |
1065 | bool IsLambda = isLambda(ND); |
1066 | |
1067 | // If this is an extern variable declared locally, the relevant DeclContext |
1068 | // is that of the containing namespace, or the translation unit. |
1069 | // FIXME: This is a hack; extern variables declared locally should have |
1070 | // a proper semantic declaration context! |
1071 | if (isLocalContainerContext(DC) && ND->hasLinkage() && !IsLambda) |
1072 | while (!DC->isNamespace() && !DC->isTranslationUnit()) |
1073 | DC = Context.getEffectiveParentContext(DC); |
1074 | else if (GetLocalClassDecl(ND) && |
1075 | (!IsLambda || isCompatibleWith(Ver: LangOptions::ClangABI::Ver18))) { |
1076 | mangleLocalName(GD, AdditionalAbiTags); |
1077 | return; |
1078 | } |
1079 | |
1080 | assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl" ); |
1081 | |
1082 | // Closures can require a nested-name mangling even if they're semantically |
1083 | // in the global namespace. |
1084 | if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { |
1085 | mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags); |
1086 | return; |
1087 | } |
1088 | |
1089 | if (isLocalContainerContext(DC)) { |
1090 | mangleLocalName(GD, AdditionalAbiTags); |
1091 | return; |
1092 | } |
1093 | |
1094 | if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
1095 | // Check if we have a template. |
1096 | const TemplateArgumentList *TemplateArgs = nullptr; |
1097 | if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { |
1098 | mangleUnscopedTemplateName(GD: TD, DC, AdditionalAbiTags); |
1099 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
1100 | return; |
1101 | } |
1102 | |
1103 | mangleUnscopedName(GD, DC, AdditionalAbiTags); |
1104 | return; |
1105 | } |
1106 | |
1107 | mangleNestedName(GD, DC, AdditionalAbiTags); |
1108 | } |
1109 | |
1110 | void CXXNameMangler::mangleModuleName(const NamedDecl *ND) { |
1111 | if (ND->isExternallyVisible()) |
1112 | if (Module *M = ND->getOwningModuleForLinkage()) |
1113 | mangleModuleNamePrefix(Name: M->getPrimaryModuleInterfaceName()); |
1114 | } |
1115 | |
1116 | // <module-name> ::= <module-subname> |
1117 | // ::= <module-name> <module-subname> |
1118 | // ::= <substitution> |
1119 | // <module-subname> ::= W <source-name> |
1120 | // ::= W P <source-name> |
1121 | void CXXNameMangler::mangleModuleNamePrefix(StringRef Name, bool IsPartition) { |
1122 | // <substitution> ::= S <seq-id> _ |
1123 | auto It = ModuleSubstitutions.find(Val: Name); |
1124 | if (It != ModuleSubstitutions.end()) { |
1125 | Out << 'S'; |
1126 | mangleSeqID(SeqID: It->second); |
1127 | return; |
1128 | } |
1129 | |
1130 | // FIXME: Preserve hierarchy in module names rather than flattening |
1131 | // them to strings; use Module*s as substitution keys. |
1132 | auto Parts = Name.rsplit(Separator: '.'); |
1133 | if (Parts.second.empty()) |
1134 | Parts.second = Parts.first; |
1135 | else { |
1136 | mangleModuleNamePrefix(Name: Parts.first, IsPartition); |
1137 | IsPartition = false; |
1138 | } |
1139 | |
1140 | Out << 'W'; |
1141 | if (IsPartition) |
1142 | Out << 'P'; |
1143 | Out << Parts.second.size() << Parts.second; |
1144 | ModuleSubstitutions.insert(KV: {Name, SeqID++}); |
1145 | } |
1146 | |
1147 | void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, |
1148 | ArrayRef<TemplateArgument> Args) { |
1149 | const DeclContext *DC = Context.getEffectiveDeclContext(TD); |
1150 | |
1151 | if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
1152 | mangleUnscopedTemplateName(TD, DC, nullptr); |
1153 | mangleTemplateArgs(TN: asTemplateName(TD), Args); |
1154 | } else { |
1155 | mangleNestedName(TD, Args); |
1156 | } |
1157 | } |
1158 | |
1159 | void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, |
1160 | const AbiTagList *AdditionalAbiTags) { |
1161 | // <unscoped-name> ::= <unqualified-name> |
1162 | // ::= St <unqualified-name> # ::std:: |
1163 | |
1164 | assert(!isa<LinkageSpecDecl>(DC) && "unskipped LinkageSpecDecl" ); |
1165 | if (isStdNamespace(DC)) |
1166 | Out << "St" ; |
1167 | |
1168 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
1169 | } |
1170 | |
1171 | void CXXNameMangler::mangleUnscopedTemplateName( |
1172 | GlobalDecl GD, const DeclContext *DC, const AbiTagList *AdditionalAbiTags) { |
1173 | const TemplateDecl *ND = cast<TemplateDecl>(Val: GD.getDecl()); |
1174 | // <unscoped-template-name> ::= <unscoped-name> |
1175 | // ::= <substitution> |
1176 | if (mangleSubstitution(ND)) |
1177 | return; |
1178 | |
1179 | // <template-template-param> ::= <template-param> |
1180 | if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: ND)) { |
1181 | assert(!AdditionalAbiTags && |
1182 | "template template param cannot have abi tags" ); |
1183 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
1184 | } else if (isa<BuiltinTemplateDecl>(Val: ND) || isa<ConceptDecl>(Val: ND)) { |
1185 | mangleUnscopedName(GD, DC, AdditionalAbiTags); |
1186 | } else { |
1187 | mangleUnscopedName(GD: GD.getWithDecl(ND->getTemplatedDecl()), DC, |
1188 | AdditionalAbiTags); |
1189 | } |
1190 | |
1191 | addSubstitution(ND); |
1192 | } |
1193 | |
1194 | void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { |
1195 | // ABI: |
1196 | // Floating-point literals are encoded using a fixed-length |
1197 | // lowercase hexadecimal string corresponding to the internal |
1198 | // representation (IEEE on Itanium), high-order bytes first, |
1199 | // without leading zeroes. For example: "Lf bf800000 E" is -1.0f |
1200 | // on Itanium. |
1201 | // The 'without leading zeroes' thing seems to be an editorial |
1202 | // mistake; see the discussion on cxx-abi-dev beginning on |
1203 | // 2012-01-16. |
1204 | |
1205 | // Our requirements here are just barely weird enough to justify |
1206 | // using a custom algorithm instead of post-processing APInt::toString(). |
1207 | |
1208 | llvm::APInt valueBits = f.bitcastToAPInt(); |
1209 | unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; |
1210 | assert(numCharacters != 0); |
1211 | |
1212 | // Allocate a buffer of the right number of characters. |
1213 | SmallVector<char, 20> buffer(numCharacters); |
1214 | |
1215 | // Fill the buffer left-to-right. |
1216 | for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { |
1217 | // The bit-index of the next hex digit. |
1218 | unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); |
1219 | |
1220 | // Project out 4 bits starting at 'digitIndex'. |
1221 | uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; |
1222 | hexDigit >>= (digitBitIndex % 64); |
1223 | hexDigit &= 0xF; |
1224 | |
1225 | // Map that over to a lowercase hex digit. |
1226 | static const char charForHex[16] = { |
1227 | '0', '1', '2', '3', '4', '5', '6', '7', |
1228 | '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' |
1229 | }; |
1230 | buffer[stringIndex] = charForHex[hexDigit]; |
1231 | } |
1232 | |
1233 | Out.write(Ptr: buffer.data(), Size: numCharacters); |
1234 | } |
1235 | |
1236 | void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) { |
1237 | Out << 'L'; |
1238 | mangleType(T); |
1239 | mangleFloat(f: V); |
1240 | Out << 'E'; |
1241 | } |
1242 | |
1243 | void CXXNameMangler::mangleFixedPointLiteral() { |
1244 | DiagnosticsEngine &Diags = Context.getDiags(); |
1245 | unsigned DiagID = Diags.getCustomDiagID( |
1246 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle fixed point literals yet" ); |
1247 | Diags.Report(DiagID); |
1248 | } |
1249 | |
1250 | void CXXNameMangler::mangleNullPointer(QualType T) { |
1251 | // <expr-primary> ::= L <type> 0 E |
1252 | Out << 'L'; |
1253 | mangleType(T); |
1254 | Out << "0E" ; |
1255 | } |
1256 | |
1257 | void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { |
1258 | if (Value.isSigned() && Value.isNegative()) { |
1259 | Out << 'n'; |
1260 | Value.abs().print(OS&: Out, /*signed*/ isSigned: false); |
1261 | } else { |
1262 | Value.print(OS&: Out, /*signed*/ isSigned: false); |
1263 | } |
1264 | } |
1265 | |
1266 | void CXXNameMangler::mangleNumber(int64_t Number) { |
1267 | // <number> ::= [n] <non-negative decimal integer> |
1268 | if (Number < 0) { |
1269 | Out << 'n'; |
1270 | Number = -Number; |
1271 | } |
1272 | |
1273 | Out << Number; |
1274 | } |
1275 | |
1276 | void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { |
1277 | // <call-offset> ::= h <nv-offset> _ |
1278 | // ::= v <v-offset> _ |
1279 | // <nv-offset> ::= <offset number> # non-virtual base override |
1280 | // <v-offset> ::= <offset number> _ <virtual offset number> |
1281 | // # virtual base override, with vcall offset |
1282 | if (!Virtual) { |
1283 | Out << 'h'; |
1284 | mangleNumber(Number: NonVirtual); |
1285 | Out << '_'; |
1286 | return; |
1287 | } |
1288 | |
1289 | Out << 'v'; |
1290 | mangleNumber(Number: NonVirtual); |
1291 | Out << '_'; |
1292 | mangleNumber(Number: Virtual); |
1293 | Out << '_'; |
1294 | } |
1295 | |
1296 | void CXXNameMangler::manglePrefix(QualType type) { |
1297 | if (const auto *TST = type->getAs<TemplateSpecializationType>()) { |
1298 | if (!mangleSubstitution(T: QualType(TST, 0))) { |
1299 | mangleTemplatePrefix(Template: TST->getTemplateName()); |
1300 | |
1301 | // FIXME: GCC does not appear to mangle the template arguments when |
1302 | // the template in question is a dependent template name. Should we |
1303 | // emulate that badness? |
1304 | mangleTemplateArgs(TN: TST->getTemplateName(), Args: TST->template_arguments()); |
1305 | addSubstitution(T: QualType(TST, 0)); |
1306 | } |
1307 | } else if (const auto *DTST = |
1308 | type->getAs<DependentTemplateSpecializationType>()) { |
1309 | if (!mangleSubstitution(T: QualType(DTST, 0))) { |
1310 | TemplateName Template = getASTContext().getDependentTemplateName( |
1311 | NNS: DTST->getQualifier(), Name: DTST->getIdentifier()); |
1312 | mangleTemplatePrefix(Template); |
1313 | |
1314 | // FIXME: GCC does not appear to mangle the template arguments when |
1315 | // the template in question is a dependent template name. Should we |
1316 | // emulate that badness? |
1317 | mangleTemplateArgs(TN: Template, Args: DTST->template_arguments()); |
1318 | addSubstitution(T: QualType(DTST, 0)); |
1319 | } |
1320 | } else { |
1321 | // We use the QualType mangle type variant here because it handles |
1322 | // substitutions. |
1323 | mangleType(T: type); |
1324 | } |
1325 | } |
1326 | |
1327 | /// Mangle everything prior to the base-unresolved-name in an unresolved-name. |
1328 | /// |
1329 | /// \param recursive - true if this is being called recursively, |
1330 | /// i.e. if there is more prefix "to the right". |
1331 | void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
1332 | bool recursive) { |
1333 | |
1334 | // x, ::x |
1335 | // <unresolved-name> ::= [gs] <base-unresolved-name> |
1336 | |
1337 | // T::x / decltype(p)::x |
1338 | // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> |
1339 | |
1340 | // T::N::x /decltype(p)::N::x |
1341 | // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E |
1342 | // <base-unresolved-name> |
1343 | |
1344 | // A::x, N::y, A<T>::z; "gs" means leading "::" |
1345 | // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E |
1346 | // <base-unresolved-name> |
1347 | |
1348 | switch (qualifier->getKind()) { |
1349 | case NestedNameSpecifier::Global: |
1350 | Out << "gs" ; |
1351 | |
1352 | // We want an 'sr' unless this is the entire NNS. |
1353 | if (recursive) |
1354 | Out << "sr" ; |
1355 | |
1356 | // We never want an 'E' here. |
1357 | return; |
1358 | |
1359 | case NestedNameSpecifier::Super: |
1360 | llvm_unreachable("Can't mangle __super specifier" ); |
1361 | |
1362 | case NestedNameSpecifier::Namespace: |
1363 | if (qualifier->getPrefix()) |
1364 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
1365 | /*recursive*/ true); |
1366 | else |
1367 | Out << "sr" ; |
1368 | mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); |
1369 | break; |
1370 | case NestedNameSpecifier::NamespaceAlias: |
1371 | if (qualifier->getPrefix()) |
1372 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
1373 | /*recursive*/ true); |
1374 | else |
1375 | Out << "sr" ; |
1376 | mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); |
1377 | break; |
1378 | |
1379 | case NestedNameSpecifier::TypeSpec: |
1380 | case NestedNameSpecifier::TypeSpecWithTemplate: { |
1381 | const Type *type = qualifier->getAsType(); |
1382 | |
1383 | // We only want to use an unresolved-type encoding if this is one of: |
1384 | // - a decltype |
1385 | // - a template type parameter |
1386 | // - a template template parameter with arguments |
1387 | // In all of these cases, we should have no prefix. |
1388 | if (qualifier->getPrefix()) { |
1389 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
1390 | /*recursive*/ true); |
1391 | } else { |
1392 | // Otherwise, all the cases want this. |
1393 | Out << "sr" ; |
1394 | } |
1395 | |
1396 | if (mangleUnresolvedTypeOrSimpleId(DestroyedType: QualType(type, 0), Prefix: recursive ? "N" : "" )) |
1397 | return; |
1398 | |
1399 | break; |
1400 | } |
1401 | |
1402 | case NestedNameSpecifier::Identifier: |
1403 | // Member expressions can have these without prefixes. |
1404 | if (qualifier->getPrefix()) |
1405 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
1406 | /*recursive*/ true); |
1407 | else |
1408 | Out << "sr" ; |
1409 | |
1410 | mangleSourceName(II: qualifier->getAsIdentifier()); |
1411 | // An Identifier has no type information, so we can't emit abi tags for it. |
1412 | break; |
1413 | } |
1414 | |
1415 | // If this was the innermost part of the NNS, and we fell out to |
1416 | // here, append an 'E'. |
1417 | if (!recursive) |
1418 | Out << 'E'; |
1419 | } |
1420 | |
1421 | /// Mangle an unresolved-name, which is generally used for names which |
1422 | /// weren't resolved to specific entities. |
1423 | void CXXNameMangler::mangleUnresolvedName( |
1424 | NestedNameSpecifier *qualifier, DeclarationName name, |
1425 | const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, |
1426 | unsigned knownArity) { |
1427 | if (qualifier) mangleUnresolvedPrefix(qualifier); |
1428 | switch (name.getNameKind()) { |
1429 | // <base-unresolved-name> ::= <simple-id> |
1430 | case DeclarationName::Identifier: |
1431 | mangleSourceName(II: name.getAsIdentifierInfo()); |
1432 | break; |
1433 | // <base-unresolved-name> ::= dn <destructor-name> |
1434 | case DeclarationName::CXXDestructorName: |
1435 | Out << "dn" ; |
1436 | mangleUnresolvedTypeOrSimpleId(DestroyedType: name.getCXXNameType()); |
1437 | break; |
1438 | // <base-unresolved-name> ::= on <operator-name> |
1439 | case DeclarationName::CXXConversionFunctionName: |
1440 | case DeclarationName::CXXLiteralOperatorName: |
1441 | case DeclarationName::CXXOperatorName: |
1442 | Out << "on" ; |
1443 | mangleOperatorName(Name: name, Arity: knownArity); |
1444 | break; |
1445 | case DeclarationName::CXXConstructorName: |
1446 | llvm_unreachable("Can't mangle a constructor name!" ); |
1447 | case DeclarationName::CXXUsingDirective: |
1448 | llvm_unreachable("Can't mangle a using directive name!" ); |
1449 | case DeclarationName::CXXDeductionGuideName: |
1450 | llvm_unreachable("Can't mangle a deduction guide name!" ); |
1451 | case DeclarationName::ObjCMultiArgSelector: |
1452 | case DeclarationName::ObjCOneArgSelector: |
1453 | case DeclarationName::ObjCZeroArgSelector: |
1454 | llvm_unreachable("Can't mangle Objective-C selector names here!" ); |
1455 | } |
1456 | |
1457 | // The <simple-id> and on <operator-name> productions end in an optional |
1458 | // <template-args>. |
1459 | if (TemplateArgs) |
1460 | mangleTemplateArgs(TN: TemplateName(), TemplateArgs, NumTemplateArgs); |
1461 | } |
1462 | |
1463 | void CXXNameMangler::mangleUnqualifiedName( |
1464 | GlobalDecl GD, DeclarationName Name, const DeclContext *DC, |
1465 | unsigned KnownArity, const AbiTagList *AdditionalAbiTags) { |
1466 | const NamedDecl *ND = cast_or_null<NamedDecl>(Val: GD.getDecl()); |
1467 | // <unqualified-name> ::= [<module-name>] [F] <operator-name> |
1468 | // ::= <ctor-dtor-name> |
1469 | // ::= [<module-name>] [F] <source-name> |
1470 | // ::= [<module-name>] DC <source-name>* E |
1471 | |
1472 | if (ND && DC && DC->isFileContext()) |
1473 | mangleModuleName(ND); |
1474 | |
1475 | // A member-like constrained friend is mangled with a leading 'F'. |
1476 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
1477 | auto *FD = dyn_cast<FunctionDecl>(Val: ND); |
1478 | auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND); |
1479 | if ((FD && FD->isMemberLikeConstrainedFriend()) || |
1480 | (FTD && FTD->getTemplatedDecl()->isMemberLikeConstrainedFriend())) { |
1481 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) |
1482 | Out << 'F'; |
1483 | } |
1484 | |
1485 | unsigned Arity = KnownArity; |
1486 | switch (Name.getNameKind()) { |
1487 | case DeclarationName::Identifier: { |
1488 | const IdentifierInfo *II = Name.getAsIdentifierInfo(); |
1489 | |
1490 | // We mangle decomposition declarations as the names of their bindings. |
1491 | if (auto *DD = dyn_cast<DecompositionDecl>(Val: ND)) { |
1492 | // FIXME: Non-standard mangling for decomposition declarations: |
1493 | // |
1494 | // <unqualified-name> ::= DC <source-name>* E |
1495 | // |
1496 | // Proposed on cxx-abi-dev on 2016-08-12 |
1497 | Out << "DC" ; |
1498 | for (auto *BD : DD->bindings()) |
1499 | mangleSourceName(II: BD->getDeclName().getAsIdentifierInfo()); |
1500 | Out << 'E'; |
1501 | writeAbiTags(ND, AdditionalAbiTags); |
1502 | break; |
1503 | } |
1504 | |
1505 | if (auto *GD = dyn_cast<MSGuidDecl>(Val: ND)) { |
1506 | // We follow MSVC in mangling GUID declarations as if they were variables |
1507 | // with a particular reserved name. Continue the pretense here. |
1508 | SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab" )> GUID; |
1509 | llvm::raw_svector_ostream GUIDOS(GUID); |
1510 | Context.mangleMSGuidDecl(GD, GUIDOS); |
1511 | Out << GUID.size() << GUID; |
1512 | break; |
1513 | } |
1514 | |
1515 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: ND)) { |
1516 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. |
1517 | Out << "TA" ; |
1518 | mangleValueInTemplateArg(T: TPO->getType().getUnqualifiedType(), |
1519 | V: TPO->getValue(), /*TopLevel=*/true); |
1520 | break; |
1521 | } |
1522 | |
1523 | if (II) { |
1524 | // Match GCC's naming convention for internal linkage symbols, for |
1525 | // symbols that are not actually visible outside of this TU. GCC |
1526 | // distinguishes between internal and external linkage symbols in |
1527 | // its mangling, to support cases like this that were valid C++ prior |
1528 | // to DR426: |
1529 | // |
1530 | // void test() { extern void foo(); } |
1531 | // static void foo(); |
1532 | // |
1533 | // Don't bother with the L marker for names in anonymous namespaces; the |
1534 | // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better |
1535 | // matches GCC anyway, because GCC does not treat anonymous namespaces as |
1536 | // implying internal linkage. |
1537 | if (Context.isInternalLinkageDecl(ND)) |
1538 | Out << 'L'; |
1539 | |
1540 | bool IsRegCall = FD && |
1541 | FD->getType()->castAs<FunctionType>()->getCallConv() == |
1542 | clang::CC_X86RegCall; |
1543 | bool IsDeviceStub = |
1544 | FD && FD->hasAttr<CUDAGlobalAttr>() && |
1545 | GD.getKernelReferenceKind() == KernelReferenceKind::Stub; |
1546 | if (IsDeviceStub) |
1547 | mangleDeviceStubName(II); |
1548 | else if (IsRegCall) |
1549 | mangleRegCallName(II); |
1550 | else |
1551 | mangleSourceName(II); |
1552 | |
1553 | writeAbiTags(ND, AdditionalAbiTags); |
1554 | break; |
1555 | } |
1556 | |
1557 | // Otherwise, an anonymous entity. We must have a declaration. |
1558 | assert(ND && "mangling empty name without declaration" ); |
1559 | |
1560 | if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
1561 | if (NS->isAnonymousNamespace()) { |
1562 | // This is how gcc mangles these names. |
1563 | Out << "12_GLOBAL__N_1" ; |
1564 | break; |
1565 | } |
1566 | } |
1567 | |
1568 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) { |
1569 | // We must have an anonymous union or struct declaration. |
1570 | const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl(); |
1571 | |
1572 | // Itanium C++ ABI 5.1.2: |
1573 | // |
1574 | // For the purposes of mangling, the name of an anonymous union is |
1575 | // considered to be the name of the first named data member found by a |
1576 | // pre-order, depth-first, declaration-order walk of the data members of |
1577 | // the anonymous union. If there is no such data member (i.e., if all of |
1578 | // the data members in the union are unnamed), then there is no way for |
1579 | // a program to refer to the anonymous union, and there is therefore no |
1580 | // need to mangle its name. |
1581 | assert(RD->isAnonymousStructOrUnion() |
1582 | && "Expected anonymous struct or union!" ); |
1583 | const FieldDecl *FD = RD->findFirstNamedDataMember(); |
1584 | |
1585 | // It's actually possible for various reasons for us to get here |
1586 | // with an empty anonymous struct / union. Fortunately, it |
1587 | // doesn't really matter what name we generate. |
1588 | if (!FD) break; |
1589 | assert(FD->getIdentifier() && "Data member name isn't an identifier!" ); |
1590 | |
1591 | mangleSourceName(II: FD->getIdentifier()); |
1592 | // Not emitting abi tags: internal name anyway. |
1593 | break; |
1594 | } |
1595 | |
1596 | // Class extensions have no name as a category, and it's possible |
1597 | // for them to be the semantic parent of certain declarations |
1598 | // (primarily, tag decls defined within declarations). Such |
1599 | // declarations will always have internal linkage, so the name |
1600 | // doesn't really matter, but we shouldn't crash on them. For |
1601 | // safety, just handle all ObjC containers here. |
1602 | if (isa<ObjCContainerDecl>(Val: ND)) |
1603 | break; |
1604 | |
1605 | // We must have an anonymous struct. |
1606 | const TagDecl *TD = cast<TagDecl>(Val: ND); |
1607 | if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { |
1608 | assert(TD->getDeclContext() == D->getDeclContext() && |
1609 | "Typedef should not be in another decl context!" ); |
1610 | assert(D->getDeclName().getAsIdentifierInfo() && |
1611 | "Typedef was not named!" ); |
1612 | mangleSourceName(II: D->getDeclName().getAsIdentifierInfo()); |
1613 | assert(!AdditionalAbiTags && "Type cannot have additional abi tags" ); |
1614 | // Explicit abi tags are still possible; take from underlying type, not |
1615 | // from typedef. |
1616 | writeAbiTags(TD, nullptr); |
1617 | break; |
1618 | } |
1619 | |
1620 | // <unnamed-type-name> ::= <closure-type-name> |
1621 | // |
1622 | // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ |
1623 | // <lambda-sig> ::= <template-param-decl>* <parameter-type>+ |
1624 | // # Parameter types or 'v' for 'void'. |
1625 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: TD)) { |
1626 | std::optional<unsigned> DeviceNumber = |
1627 | Context.getDiscriminatorOverride()(Context.getASTContext(), Record); |
1628 | |
1629 | // If we have a device-number via the discriminator, use that to mangle |
1630 | // the lambda, otherwise use the typical lambda-mangling-number. In either |
1631 | // case, a '0' should be mangled as a normal unnamed class instead of as a |
1632 | // lambda. |
1633 | if (Record->isLambda() && |
1634 | ((DeviceNumber && *DeviceNumber > 0) || |
1635 | (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) { |
1636 | assert(!AdditionalAbiTags && |
1637 | "Lambda type cannot have additional abi tags" ); |
1638 | mangleLambda(Lambda: Record); |
1639 | break; |
1640 | } |
1641 | } |
1642 | |
1643 | if (TD->isExternallyVisible()) { |
1644 | unsigned UnnamedMangle = |
1645 | getASTContext().getManglingNumber(TD, Context.isAux()); |
1646 | Out << "Ut" ; |
1647 | if (UnnamedMangle > 1) |
1648 | Out << UnnamedMangle - 2; |
1649 | Out << '_'; |
1650 | writeAbiTags(TD, AdditionalAbiTags); |
1651 | break; |
1652 | } |
1653 | |
1654 | // Get a unique id for the anonymous struct. If it is not a real output |
1655 | // ID doesn't matter so use fake one. |
1656 | unsigned AnonStructId = |
1657 | NullOut ? 0 |
1658 | : Context.getAnonymousStructId(TD, dyn_cast<FunctionDecl>(Val: DC)); |
1659 | |
1660 | // Mangle it as a source name in the form |
1661 | // [n] $_<id> |
1662 | // where n is the length of the string. |
1663 | SmallString<8> Str; |
1664 | Str += "$_" ; |
1665 | Str += llvm::utostr(X: AnonStructId); |
1666 | |
1667 | Out << Str.size(); |
1668 | Out << Str; |
1669 | break; |
1670 | } |
1671 | |
1672 | case DeclarationName::ObjCZeroArgSelector: |
1673 | case DeclarationName::ObjCOneArgSelector: |
1674 | case DeclarationName::ObjCMultiArgSelector: |
1675 | llvm_unreachable("Can't mangle Objective-C selector names here!" ); |
1676 | |
1677 | case DeclarationName::CXXConstructorName: { |
1678 | const CXXRecordDecl *InheritedFrom = nullptr; |
1679 | TemplateName InheritedTemplateName; |
1680 | const TemplateArgumentList *InheritedTemplateArgs = nullptr; |
1681 | if (auto Inherited = |
1682 | cast<CXXConstructorDecl>(Val: ND)->getInheritedConstructor()) { |
1683 | InheritedFrom = Inherited.getConstructor()->getParent(); |
1684 | InheritedTemplateName = |
1685 | TemplateName(Inherited.getConstructor()->getPrimaryTemplate()); |
1686 | InheritedTemplateArgs = |
1687 | Inherited.getConstructor()->getTemplateSpecializationArgs(); |
1688 | } |
1689 | |
1690 | if (ND == Structor) |
1691 | // If the named decl is the C++ constructor we're mangling, use the type |
1692 | // we were given. |
1693 | mangleCXXCtorType(T: static_cast<CXXCtorType>(StructorType), InheritedFrom); |
1694 | else |
1695 | // Otherwise, use the complete constructor name. This is relevant if a |
1696 | // class with a constructor is declared within a constructor. |
1697 | mangleCXXCtorType(T: Ctor_Complete, InheritedFrom); |
1698 | |
1699 | // FIXME: The template arguments are part of the enclosing prefix or |
1700 | // nested-name, but it's more convenient to mangle them here. |
1701 | if (InheritedTemplateArgs) |
1702 | mangleTemplateArgs(TN: InheritedTemplateName, AL: *InheritedTemplateArgs); |
1703 | |
1704 | writeAbiTags(ND, AdditionalAbiTags); |
1705 | break; |
1706 | } |
1707 | |
1708 | case DeclarationName::CXXDestructorName: |
1709 | if (ND == Structor) |
1710 | // If the named decl is the C++ destructor we're mangling, use the type we |
1711 | // were given. |
1712 | mangleCXXDtorType(T: static_cast<CXXDtorType>(StructorType)); |
1713 | else |
1714 | // Otherwise, use the complete destructor name. This is relevant if a |
1715 | // class with a destructor is declared within a destructor. |
1716 | mangleCXXDtorType(T: Dtor_Complete); |
1717 | assert(ND); |
1718 | writeAbiTags(ND, AdditionalAbiTags); |
1719 | break; |
1720 | |
1721 | case DeclarationName::CXXOperatorName: |
1722 | if (ND && Arity == UnknownArity) { |
1723 | Arity = cast<FunctionDecl>(Val: ND)->getNumParams(); |
1724 | |
1725 | // If we have a member function, we need to include the 'this' pointer. |
1726 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: ND)) |
1727 | if (MD->isImplicitObjectMemberFunction()) |
1728 | Arity++; |
1729 | } |
1730 | [[fallthrough]]; |
1731 | case DeclarationName::CXXConversionFunctionName: |
1732 | case DeclarationName::CXXLiteralOperatorName: |
1733 | mangleOperatorName(Name, Arity); |
1734 | writeAbiTags(ND, AdditionalAbiTags); |
1735 | break; |
1736 | |
1737 | case DeclarationName::CXXDeductionGuideName: |
1738 | llvm_unreachable("Can't mangle a deduction guide name!" ); |
1739 | |
1740 | case DeclarationName::CXXUsingDirective: |
1741 | llvm_unreachable("Can't mangle a using directive name!" ); |
1742 | } |
1743 | } |
1744 | |
1745 | void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { |
1746 | // <source-name> ::= <positive length number> __regcall3__ <identifier> |
1747 | // <number> ::= [n] <non-negative decimal integer> |
1748 | // <identifier> ::= <unqualified source code identifier> |
1749 | if (getASTContext().getLangOpts().RegCall4) |
1750 | Out << II->getLength() + sizeof("__regcall4__" ) - 1 << "__regcall4__" |
1751 | << II->getName(); |
1752 | else |
1753 | Out << II->getLength() + sizeof("__regcall3__" ) - 1 << "__regcall3__" |
1754 | << II->getName(); |
1755 | } |
1756 | |
1757 | void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) { |
1758 | // <source-name> ::= <positive length number> __device_stub__ <identifier> |
1759 | // <number> ::= [n] <non-negative decimal integer> |
1760 | // <identifier> ::= <unqualified source code identifier> |
1761 | Out << II->getLength() + sizeof("__device_stub__" ) - 1 << "__device_stub__" |
1762 | << II->getName(); |
1763 | } |
1764 | |
1765 | void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { |
1766 | // <source-name> ::= <positive length number> <identifier> |
1767 | // <number> ::= [n] <non-negative decimal integer> |
1768 | // <identifier> ::= <unqualified source code identifier> |
1769 | Out << II->getLength() << II->getName(); |
1770 | } |
1771 | |
1772 | void CXXNameMangler::mangleNestedName(GlobalDecl GD, |
1773 | const DeclContext *DC, |
1774 | const AbiTagList *AdditionalAbiTags, |
1775 | bool NoFunction) { |
1776 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1777 | // <nested-name> |
1778 | // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E |
1779 | // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> |
1780 | // <template-args> E |
1781 | |
1782 | Out << 'N'; |
1783 | if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: ND)) { |
1784 | Qualifiers MethodQuals = Method->getMethodQualifiers(); |
1785 | // We do not consider restrict a distinguishing attribute for overloading |
1786 | // purposes so we must not mangle it. |
1787 | if (Method->isExplicitObjectMemberFunction()) |
1788 | Out << 'H'; |
1789 | MethodQuals.removeRestrict(); |
1790 | mangleQualifiers(Quals: MethodQuals); |
1791 | mangleRefQualifier(RefQualifier: Method->getRefQualifier()); |
1792 | } |
1793 | |
1794 | // Check if we have a template. |
1795 | const TemplateArgumentList *TemplateArgs = nullptr; |
1796 | if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { |
1797 | mangleTemplatePrefix(GD: TD, NoFunction); |
1798 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
1799 | } else { |
1800 | manglePrefix(DC, NoFunction); |
1801 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
1802 | } |
1803 | |
1804 | Out << 'E'; |
1805 | } |
1806 | void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, |
1807 | ArrayRef<TemplateArgument> Args) { |
1808 | // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E |
1809 | |
1810 | Out << 'N'; |
1811 | |
1812 | mangleTemplatePrefix(TD); |
1813 | mangleTemplateArgs(TN: asTemplateName(TD), Args); |
1814 | |
1815 | Out << 'E'; |
1816 | } |
1817 | |
1818 | void CXXNameMangler::mangleNestedNameWithClosurePrefix( |
1819 | GlobalDecl GD, const NamedDecl *PrefixND, |
1820 | const AbiTagList *AdditionalAbiTags) { |
1821 | // A <closure-prefix> represents a variable or field, not a regular |
1822 | // DeclContext, so needs special handling. In this case we're mangling a |
1823 | // limited form of <nested-name>: |
1824 | // |
1825 | // <nested-name> ::= N <closure-prefix> <closure-type-name> E |
1826 | |
1827 | Out << 'N'; |
1828 | |
1829 | mangleClosurePrefix(ND: PrefixND); |
1830 | mangleUnqualifiedName(GD, DC: nullptr, AdditionalAbiTags); |
1831 | |
1832 | Out << 'E'; |
1833 | } |
1834 | |
1835 | static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) { |
1836 | GlobalDecl GD; |
1837 | // The Itanium spec says: |
1838 | // For entities in constructors and destructors, the mangling of the |
1839 | // complete object constructor or destructor is used as the base function |
1840 | // name, i.e. the C1 or D1 version. |
1841 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: DC)) |
1842 | GD = GlobalDecl(CD, Ctor_Complete); |
1843 | else if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: DC)) |
1844 | GD = GlobalDecl(DD, Dtor_Complete); |
1845 | else |
1846 | GD = GlobalDecl(cast<FunctionDecl>(Val: DC)); |
1847 | return GD; |
1848 | } |
1849 | |
1850 | void CXXNameMangler::mangleLocalName(GlobalDecl GD, |
1851 | const AbiTagList *AdditionalAbiTags) { |
1852 | const Decl *D = GD.getDecl(); |
1853 | // <local-name> := Z <function encoding> E <entity name> [<discriminator>] |
1854 | // := Z <function encoding> E s [<discriminator>] |
1855 | // <local-name> := Z <function encoding> E d [ <parameter number> ] |
1856 | // _ <entity name> |
1857 | // <discriminator> := _ <non-negative number> |
1858 | assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); |
1859 | const RecordDecl *RD = GetLocalClassDecl(D); |
1860 | const DeclContext *DC = Context.getEffectiveDeclContext(D: RD ? RD : D); |
1861 | |
1862 | Out << 'Z'; |
1863 | |
1864 | { |
1865 | AbiTagState LocalAbiTags(AbiTags); |
1866 | |
1867 | if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Val: DC)) |
1868 | mangleObjCMethodName(MD); |
1869 | else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: DC)) |
1870 | mangleBlockForPrefix(Block: BD); |
1871 | else |
1872 | mangleFunctionEncoding(GD: getParentOfLocalEntity(DC)); |
1873 | |
1874 | // Implicit ABI tags (from namespace) are not available in the following |
1875 | // entity; reset to actually emitted tags, which are available. |
1876 | LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); |
1877 | } |
1878 | |
1879 | Out << 'E'; |
1880 | |
1881 | // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to |
1882 | // be a bug that is fixed in trunk. |
1883 | |
1884 | if (RD) { |
1885 | // The parameter number is omitted for the last parameter, 0 for the |
1886 | // second-to-last parameter, 1 for the third-to-last parameter, etc. The |
1887 | // <entity name> will of course contain a <closure-type-name>: Its |
1888 | // numbering will be local to the particular argument in which it appears |
1889 | // -- other default arguments do not affect its encoding. |
1890 | const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
1891 | if (CXXRD && CXXRD->isLambda()) { |
1892 | if (const ParmVarDecl *Parm |
1893 | = dyn_cast_or_null<ParmVarDecl>(Val: CXXRD->getLambdaContextDecl())) { |
1894 | if (const FunctionDecl *Func |
1895 | = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { |
1896 | Out << 'd'; |
1897 | unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
1898 | if (Num > 1) |
1899 | mangleNumber(Number: Num - 2); |
1900 | Out << '_'; |
1901 | } |
1902 | } |
1903 | } |
1904 | |
1905 | // Mangle the name relative to the closest enclosing function. |
1906 | // equality ok because RD derived from ND above |
1907 | if (D == RD) { |
1908 | mangleUnqualifiedName(RD, DC, AdditionalAbiTags); |
1909 | } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
1910 | if (const NamedDecl *PrefixND = getClosurePrefix(BD)) |
1911 | mangleClosurePrefix(ND: PrefixND, NoFunction: true /*NoFunction*/); |
1912 | else |
1913 | manglePrefix(DC: Context.getEffectiveDeclContext(BD), NoFunction: true /*NoFunction*/); |
1914 | assert(!AdditionalAbiTags && "Block cannot have additional abi tags" ); |
1915 | mangleUnqualifiedBlock(Block: BD); |
1916 | } else { |
1917 | const NamedDecl *ND = cast<NamedDecl>(Val: D); |
1918 | mangleNestedName(GD, DC: Context.getEffectiveDeclContext(ND), |
1919 | AdditionalAbiTags, NoFunction: true /*NoFunction*/); |
1920 | } |
1921 | } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
1922 | // Mangle a block in a default parameter; see above explanation for |
1923 | // lambdas. |
1924 | if (const ParmVarDecl *Parm |
1925 | = dyn_cast_or_null<ParmVarDecl>(Val: BD->getBlockManglingContextDecl())) { |
1926 | if (const FunctionDecl *Func |
1927 | = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { |
1928 | Out << 'd'; |
1929 | unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
1930 | if (Num > 1) |
1931 | mangleNumber(Number: Num - 2); |
1932 | Out << '_'; |
1933 | } |
1934 | } |
1935 | |
1936 | assert(!AdditionalAbiTags && "Block cannot have additional abi tags" ); |
1937 | mangleUnqualifiedBlock(Block: BD); |
1938 | } else { |
1939 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
1940 | } |
1941 | |
1942 | if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { |
1943 | unsigned disc; |
1944 | if (Context.getNextDiscriminator(ND, disc)) { |
1945 | if (disc < 10) |
1946 | Out << '_' << disc; |
1947 | else |
1948 | Out << "__" << disc << '_'; |
1949 | } |
1950 | } |
1951 | } |
1952 | |
1953 | void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { |
1954 | if (GetLocalClassDecl(Block)) { |
1955 | mangleLocalName(GD: Block, /* AdditionalAbiTags */ nullptr); |
1956 | return; |
1957 | } |
1958 | const DeclContext *DC = Context.getEffectiveDeclContext(Block); |
1959 | if (isLocalContainerContext(DC)) { |
1960 | mangleLocalName(GD: Block, /* AdditionalAbiTags */ nullptr); |
1961 | return; |
1962 | } |
1963 | if (const NamedDecl *PrefixND = getClosurePrefix(Block)) |
1964 | mangleClosurePrefix(ND: PrefixND); |
1965 | else |
1966 | manglePrefix(DC); |
1967 | mangleUnqualifiedBlock(Block); |
1968 | } |
1969 | |
1970 | void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { |
1971 | // When trying to be ABI-compatibility with clang 12 and before, mangle a |
1972 | // <data-member-prefix> now, with no substitutions and no <template-args>. |
1973 | if (Decl *Context = Block->getBlockManglingContextDecl()) { |
1974 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12) && |
1975 | (isa<VarDecl>(Val: Context) || isa<FieldDecl>(Val: Context)) && |
1976 | Context->getDeclContext()->isRecord()) { |
1977 | const auto *ND = cast<NamedDecl>(Val: Context); |
1978 | if (ND->getIdentifier()) { |
1979 | mangleSourceNameWithAbiTags(ND); |
1980 | Out << 'M'; |
1981 | } |
1982 | } |
1983 | } |
1984 | |
1985 | // If we have a block mangling number, use it. |
1986 | unsigned Number = Block->getBlockManglingNumber(); |
1987 | // Otherwise, just make up a number. It doesn't matter what it is because |
1988 | // the symbol in question isn't externally visible. |
1989 | if (!Number) |
1990 | Number = Context.getBlockId(BD: Block, Local: false); |
1991 | else { |
1992 | // Stored mangling numbers are 1-based. |
1993 | --Number; |
1994 | } |
1995 | Out << "Ub" ; |
1996 | if (Number > 0) |
1997 | Out << Number - 1; |
1998 | Out << '_'; |
1999 | } |
2000 | |
2001 | // <template-param-decl> |
2002 | // ::= Ty # template type parameter |
2003 | // ::= Tk <concept name> [<template-args>] # constrained type parameter |
2004 | // ::= Tn <type> # template non-type parameter |
2005 | // ::= Tt <template-param-decl>* E [Q <requires-clause expr>] |
2006 | // # template template parameter |
2007 | // ::= Tp <template-param-decl> # template parameter pack |
2008 | void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) { |
2009 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
2010 | if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Val: Decl)) { |
2011 | if (Ty->isParameterPack()) |
2012 | Out << "Tp" ; |
2013 | const TypeConstraint *Constraint = Ty->getTypeConstraint(); |
2014 | if (Constraint && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
2015 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
2016 | Out << "Tk" ; |
2017 | mangleTypeConstraint(Constraint); |
2018 | } else { |
2019 | Out << "Ty" ; |
2020 | } |
2021 | } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Val: Decl)) { |
2022 | if (Tn->isExpandedParameterPack()) { |
2023 | for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) { |
2024 | Out << "Tn" ; |
2025 | mangleType(T: Tn->getExpansionType(I)); |
2026 | } |
2027 | } else { |
2028 | QualType T = Tn->getType(); |
2029 | if (Tn->isParameterPack()) { |
2030 | Out << "Tp" ; |
2031 | if (auto *PackExpansion = T->getAs<PackExpansionType>()) |
2032 | T = PackExpansion->getPattern(); |
2033 | } |
2034 | Out << "Tn" ; |
2035 | mangleType(T); |
2036 | } |
2037 | } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Val: Decl)) { |
2038 | if (Tt->isExpandedParameterPack()) { |
2039 | for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N; |
2040 | ++I) |
2041 | mangleTemplateParameterList(Params: Tt->getExpansionTemplateParameters(I)); |
2042 | } else { |
2043 | if (Tt->isParameterPack()) |
2044 | Out << "Tp" ; |
2045 | mangleTemplateParameterList(Params: Tt->getTemplateParameters()); |
2046 | } |
2047 | } |
2048 | } |
2049 | |
2050 | void CXXNameMangler::mangleTemplateParameterList( |
2051 | const TemplateParameterList *Params) { |
2052 | Out << "Tt" ; |
2053 | for (auto *Param : *Params) |
2054 | mangleTemplateParamDecl(Decl: Param); |
2055 | mangleRequiresClause(RequiresClause: Params->getRequiresClause()); |
2056 | Out << "E" ; |
2057 | } |
2058 | |
2059 | void CXXNameMangler::mangleTypeConstraint( |
2060 | const ConceptDecl *Concept, ArrayRef<TemplateArgument> Arguments) { |
2061 | const DeclContext *DC = Context.getEffectiveDeclContext(Concept); |
2062 | if (!Arguments.empty()) |
2063 | mangleTemplateName(Concept, Arguments); |
2064 | else if (DC->isTranslationUnit() || isStdNamespace(DC)) |
2065 | mangleUnscopedName(Concept, DC, nullptr); |
2066 | else |
2067 | mangleNestedName(Concept, DC, nullptr); |
2068 | } |
2069 | |
2070 | void CXXNameMangler::mangleTypeConstraint(const TypeConstraint *Constraint) { |
2071 | llvm::SmallVector<TemplateArgument, 8> Args; |
2072 | if (Constraint->getTemplateArgsAsWritten()) { |
2073 | for (const TemplateArgumentLoc &ArgLoc : |
2074 | Constraint->getTemplateArgsAsWritten()->arguments()) |
2075 | Args.push_back(Elt: ArgLoc.getArgument()); |
2076 | } |
2077 | return mangleTypeConstraint(Concept: Constraint->getNamedConcept(), Arguments: Args); |
2078 | } |
2079 | |
2080 | void CXXNameMangler::mangleRequiresClause(const Expr *RequiresClause) { |
2081 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
2082 | if (RequiresClause && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
2083 | Out << 'Q'; |
2084 | mangleExpression(E: RequiresClause); |
2085 | } |
2086 | } |
2087 | |
2088 | void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { |
2089 | // When trying to be ABI-compatibility with clang 12 and before, mangle a |
2090 | // <data-member-prefix> now, with no substitutions. |
2091 | if (Decl *Context = Lambda->getLambdaContextDecl()) { |
2092 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12) && |
2093 | (isa<VarDecl>(Val: Context) || isa<FieldDecl>(Val: Context)) && |
2094 | !isa<ParmVarDecl>(Val: Context)) { |
2095 | if (const IdentifierInfo *Name |
2096 | = cast<NamedDecl>(Val: Context)->getIdentifier()) { |
2097 | mangleSourceName(II: Name); |
2098 | const TemplateArgumentList *TemplateArgs = nullptr; |
2099 | if (GlobalDecl TD = isTemplate(GD: cast<NamedDecl>(Val: Context), TemplateArgs)) |
2100 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
2101 | Out << 'M'; |
2102 | } |
2103 | } |
2104 | } |
2105 | |
2106 | Out << "Ul" ; |
2107 | mangleLambdaSig(Lambda); |
2108 | Out << "E" ; |
2109 | |
2110 | // The number is omitted for the first closure type with a given |
2111 | // <lambda-sig> in a given context; it is n-2 for the nth closure type |
2112 | // (in lexical order) with that same <lambda-sig> and context. |
2113 | // |
2114 | // The AST keeps track of the number for us. |
2115 | // |
2116 | // In CUDA/HIP, to ensure the consistent lamba numbering between the device- |
2117 | // and host-side compilations, an extra device mangle context may be created |
2118 | // if the host-side CXX ABI has different numbering for lambda. In such case, |
2119 | // if the mangle context is that device-side one, use the device-side lambda |
2120 | // mangling number for this lambda. |
2121 | std::optional<unsigned> DeviceNumber = |
2122 | Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda); |
2123 | unsigned Number = |
2124 | DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber(); |
2125 | |
2126 | assert(Number > 0 && "Lambda should be mangled as an unnamed class" ); |
2127 | if (Number > 1) |
2128 | mangleNumber(Number: Number - 2); |
2129 | Out << '_'; |
2130 | } |
2131 | |
2132 | void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) { |
2133 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/31. |
2134 | for (auto *D : Lambda->getLambdaExplicitTemplateParameters()) |
2135 | mangleTemplateParamDecl(Decl: D); |
2136 | |
2137 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
2138 | if (auto *TPL = Lambda->getGenericLambdaTemplateParameterList()) |
2139 | mangleRequiresClause(RequiresClause: TPL->getRequiresClause()); |
2140 | |
2141 | auto *Proto = |
2142 | Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>(); |
2143 | mangleBareFunctionType(Proto, /*MangleReturnType=*/false, |
2144 | Lambda->getLambdaStaticInvoker()); |
2145 | } |
2146 | |
2147 | void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { |
2148 | switch (qualifier->getKind()) { |
2149 | case NestedNameSpecifier::Global: |
2150 | // nothing |
2151 | return; |
2152 | |
2153 | case NestedNameSpecifier::Super: |
2154 | llvm_unreachable("Can't mangle __super specifier" ); |
2155 | |
2156 | case NestedNameSpecifier::Namespace: |
2157 | mangleName(qualifier->getAsNamespace()); |
2158 | return; |
2159 | |
2160 | case NestedNameSpecifier::NamespaceAlias: |
2161 | mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); |
2162 | return; |
2163 | |
2164 | case NestedNameSpecifier::TypeSpec: |
2165 | case NestedNameSpecifier::TypeSpecWithTemplate: |
2166 | manglePrefix(type: QualType(qualifier->getAsType(), 0)); |
2167 | return; |
2168 | |
2169 | case NestedNameSpecifier::Identifier: |
2170 | // Clang 14 and before did not consider this substitutable. |
2171 | bool Clang14Compat = isCompatibleWith(Ver: LangOptions::ClangABI::Ver14); |
2172 | if (!Clang14Compat && mangleSubstitution(NNS: qualifier)) |
2173 | return; |
2174 | |
2175 | // Member expressions can have these without prefixes, but that |
2176 | // should end up in mangleUnresolvedPrefix instead. |
2177 | assert(qualifier->getPrefix()); |
2178 | manglePrefix(qualifier: qualifier->getPrefix()); |
2179 | |
2180 | mangleSourceName(II: qualifier->getAsIdentifier()); |
2181 | |
2182 | if (!Clang14Compat) |
2183 | addSubstitution(NNS: qualifier); |
2184 | return; |
2185 | } |
2186 | |
2187 | llvm_unreachable("unexpected nested name specifier" ); |
2188 | } |
2189 | |
2190 | void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { |
2191 | // <prefix> ::= <prefix> <unqualified-name> |
2192 | // ::= <template-prefix> <template-args> |
2193 | // ::= <closure-prefix> |
2194 | // ::= <template-param> |
2195 | // ::= # empty |
2196 | // ::= <substitution> |
2197 | |
2198 | assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl" ); |
2199 | |
2200 | if (DC->isTranslationUnit()) |
2201 | return; |
2202 | |
2203 | if (NoFunction && isLocalContainerContext(DC)) |
2204 | return; |
2205 | |
2206 | const NamedDecl *ND = cast<NamedDecl>(Val: DC); |
2207 | if (mangleSubstitution(ND)) |
2208 | return; |
2209 | |
2210 | // Check if we have a template-prefix or a closure-prefix. |
2211 | const TemplateArgumentList *TemplateArgs = nullptr; |
2212 | if (GlobalDecl TD = isTemplate(GD: ND, TemplateArgs)) { |
2213 | mangleTemplatePrefix(GD: TD); |
2214 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
2215 | } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { |
2216 | mangleClosurePrefix(ND: PrefixND, NoFunction); |
2217 | mangleUnqualifiedName(GD: ND, DC: nullptr, AdditionalAbiTags: nullptr); |
2218 | } else { |
2219 | const DeclContext *DC = Context.getEffectiveDeclContext(ND); |
2220 | manglePrefix(DC, NoFunction); |
2221 | mangleUnqualifiedName(GD: ND, DC, AdditionalAbiTags: nullptr); |
2222 | } |
2223 | |
2224 | addSubstitution(ND); |
2225 | } |
2226 | |
2227 | void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { |
2228 | // <template-prefix> ::= <prefix> <template unqualified-name> |
2229 | // ::= <template-param> |
2230 | // ::= <substitution> |
2231 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
2232 | return mangleTemplatePrefix(TD); |
2233 | |
2234 | DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); |
2235 | assert(Dependent && "unexpected template name kind" ); |
2236 | |
2237 | // Clang 11 and before mangled the substitution for a dependent template name |
2238 | // after already having emitted (a substitution for) the prefix. |
2239 | bool Clang11Compat = isCompatibleWith(Ver: LangOptions::ClangABI::Ver11); |
2240 | if (!Clang11Compat && mangleSubstitution(Template)) |
2241 | return; |
2242 | |
2243 | if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) |
2244 | manglePrefix(qualifier: Qualifier); |
2245 | |
2246 | if (Clang11Compat && mangleSubstitution(Template)) |
2247 | return; |
2248 | |
2249 | if (const IdentifierInfo *Id = Dependent->getIdentifier()) |
2250 | mangleSourceName(II: Id); |
2251 | else |
2252 | mangleOperatorName(OO: Dependent->getOperator(), Arity: UnknownArity); |
2253 | |
2254 | addSubstitution(Template); |
2255 | } |
2256 | |
2257 | void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD, |
2258 | bool NoFunction) { |
2259 | const TemplateDecl *ND = cast<TemplateDecl>(Val: GD.getDecl()); |
2260 | // <template-prefix> ::= <prefix> <template unqualified-name> |
2261 | // ::= <template-param> |
2262 | // ::= <substitution> |
2263 | // <template-template-param> ::= <template-param> |
2264 | // <substitution> |
2265 | |
2266 | if (mangleSubstitution(ND)) |
2267 | return; |
2268 | |
2269 | // <template-template-param> ::= <template-param> |
2270 | if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: ND)) { |
2271 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
2272 | } else { |
2273 | const DeclContext *DC = Context.getEffectiveDeclContext(ND); |
2274 | manglePrefix(DC, NoFunction); |
2275 | if (isa<BuiltinTemplateDecl>(Val: ND) || isa<ConceptDecl>(Val: ND)) |
2276 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags: nullptr); |
2277 | else |
2278 | mangleUnqualifiedName(GD: GD.getWithDecl(ND->getTemplatedDecl()), DC, |
2279 | AdditionalAbiTags: nullptr); |
2280 | } |
2281 | |
2282 | addSubstitution(ND); |
2283 | } |
2284 | |
2285 | const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) { |
2286 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12)) |
2287 | return nullptr; |
2288 | |
2289 | const NamedDecl *Context = nullptr; |
2290 | if (auto *Block = dyn_cast<BlockDecl>(Val: ND)) { |
2291 | Context = dyn_cast_or_null<NamedDecl>(Val: Block->getBlockManglingContextDecl()); |
2292 | } else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) { |
2293 | if (RD->isLambda()) |
2294 | Context = dyn_cast_or_null<NamedDecl>(Val: RD->getLambdaContextDecl()); |
2295 | } |
2296 | if (!Context) |
2297 | return nullptr; |
2298 | |
2299 | // Only lambdas within the initializer of a non-local variable or non-static |
2300 | // data member get a <closure-prefix>. |
2301 | if ((isa<VarDecl>(Val: Context) && cast<VarDecl>(Val: Context)->hasGlobalStorage()) || |
2302 | isa<FieldDecl>(Val: Context)) |
2303 | return Context; |
2304 | |
2305 | return nullptr; |
2306 | } |
2307 | |
2308 | void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) { |
2309 | // <closure-prefix> ::= [ <prefix> ] <unqualified-name> M |
2310 | // ::= <template-prefix> <template-args> M |
2311 | if (mangleSubstitution(ND)) |
2312 | return; |
2313 | |
2314 | const TemplateArgumentList *TemplateArgs = nullptr; |
2315 | if (GlobalDecl TD = isTemplate(GD: ND, TemplateArgs)) { |
2316 | mangleTemplatePrefix(GD: TD, NoFunction); |
2317 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
2318 | } else { |
2319 | const auto *DC = Context.getEffectiveDeclContext(ND); |
2320 | manglePrefix(DC, NoFunction); |
2321 | mangleUnqualifiedName(ND, DC, nullptr); |
2322 | } |
2323 | |
2324 | Out << 'M'; |
2325 | |
2326 | addSubstitution(ND); |
2327 | } |
2328 | |
2329 | /// Mangles a template name under the production <type>. Required for |
2330 | /// template template arguments. |
2331 | /// <type> ::= <class-enum-type> |
2332 | /// ::= <template-param> |
2333 | /// ::= <substitution> |
2334 | void CXXNameMangler::mangleType(TemplateName TN) { |
2335 | if (mangleSubstitution(Template: TN)) |
2336 | return; |
2337 | |
2338 | TemplateDecl *TD = nullptr; |
2339 | |
2340 | switch (TN.getKind()) { |
2341 | case TemplateName::QualifiedTemplate: |
2342 | case TemplateName::UsingTemplate: |
2343 | case TemplateName::Template: |
2344 | TD = TN.getAsTemplateDecl(); |
2345 | goto HaveDecl; |
2346 | |
2347 | HaveDecl: |
2348 | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: TD)) |
2349 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
2350 | else |
2351 | mangleName(TD); |
2352 | break; |
2353 | |
2354 | case TemplateName::OverloadedTemplate: |
2355 | case TemplateName::AssumedTemplate: |
2356 | llvm_unreachable("can't mangle an overloaded template name as a <type>" ); |
2357 | |
2358 | case TemplateName::DependentTemplate: { |
2359 | const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); |
2360 | assert(Dependent->isIdentifier()); |
2361 | |
2362 | // <class-enum-type> ::= <name> |
2363 | // <name> ::= <nested-name> |
2364 | mangleUnresolvedPrefix(qualifier: Dependent->getQualifier()); |
2365 | mangleSourceName(II: Dependent->getIdentifier()); |
2366 | break; |
2367 | } |
2368 | |
2369 | case TemplateName::SubstTemplateTemplateParm: { |
2370 | // Substituted template parameters are mangled as the substituted |
2371 | // template. This will check for the substitution twice, which is |
2372 | // fine, but we have to return early so that we don't try to *add* |
2373 | // the substitution twice. |
2374 | SubstTemplateTemplateParmStorage *subst |
2375 | = TN.getAsSubstTemplateTemplateParm(); |
2376 | mangleType(TN: subst->getReplacement()); |
2377 | return; |
2378 | } |
2379 | |
2380 | case TemplateName::SubstTemplateTemplateParmPack: { |
2381 | // FIXME: not clear how to mangle this! |
2382 | // template <template <class> class T...> class A { |
2383 | // template <template <class> class U...> void foo(B<T,U> x...); |
2384 | // }; |
2385 | Out << "_SUBSTPACK_" ; |
2386 | break; |
2387 | } |
2388 | } |
2389 | |
2390 | addSubstitution(Template: TN); |
2391 | } |
2392 | |
2393 | bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, |
2394 | StringRef Prefix) { |
2395 | // Only certain other types are valid as prefixes; enumerate them. |
2396 | switch (Ty->getTypeClass()) { |
2397 | case Type::Builtin: |
2398 | case Type::Complex: |
2399 | case Type::Adjusted: |
2400 | case Type::Decayed: |
2401 | case Type::ArrayParameter: |
2402 | case Type::Pointer: |
2403 | case Type::BlockPointer: |
2404 | case Type::LValueReference: |
2405 | case Type::RValueReference: |
2406 | case Type::MemberPointer: |
2407 | case Type::ConstantArray: |
2408 | case Type::IncompleteArray: |
2409 | case Type::VariableArray: |
2410 | case Type::DependentSizedArray: |
2411 | case Type::DependentAddressSpace: |
2412 | case Type::DependentVector: |
2413 | case Type::DependentSizedExtVector: |
2414 | case Type::Vector: |
2415 | case Type::ExtVector: |
2416 | case Type::ConstantMatrix: |
2417 | case Type::DependentSizedMatrix: |
2418 | case Type::FunctionProto: |
2419 | case Type::FunctionNoProto: |
2420 | case Type::Paren: |
2421 | case Type::Attributed: |
2422 | case Type::BTFTagAttributed: |
2423 | case Type::Auto: |
2424 | case Type::DeducedTemplateSpecialization: |
2425 | case Type::PackExpansion: |
2426 | case Type::ObjCObject: |
2427 | case Type::ObjCInterface: |
2428 | case Type::ObjCObjectPointer: |
2429 | case Type::ObjCTypeParam: |
2430 | case Type::Atomic: |
2431 | case Type::Pipe: |
2432 | case Type::MacroQualified: |
2433 | case Type::BitInt: |
2434 | case Type::DependentBitInt: |
2435 | case Type::CountAttributed: |
2436 | llvm_unreachable("type is illegal as a nested name specifier" ); |
2437 | |
2438 | case Type::SubstTemplateTypeParmPack: |
2439 | // FIXME: not clear how to mangle this! |
2440 | // template <class T...> class A { |
2441 | // template <class U...> void foo(decltype(T::foo(U())) x...); |
2442 | // }; |
2443 | Out << "_SUBSTPACK_" ; |
2444 | break; |
2445 | |
2446 | // <unresolved-type> ::= <template-param> |
2447 | // ::= <decltype> |
2448 | // ::= <template-template-param> <template-args> |
2449 | // (this last is not official yet) |
2450 | case Type::TypeOfExpr: |
2451 | case Type::TypeOf: |
2452 | case Type::Decltype: |
2453 | case Type::PackIndexing: |
2454 | case Type::TemplateTypeParm: |
2455 | case Type::UnaryTransform: |
2456 | case Type::SubstTemplateTypeParm: |
2457 | unresolvedType: |
2458 | // Some callers want a prefix before the mangled type. |
2459 | Out << Prefix; |
2460 | |
2461 | // This seems to do everything we want. It's not really |
2462 | // sanctioned for a substituted template parameter, though. |
2463 | mangleType(T: Ty); |
2464 | |
2465 | // We never want to print 'E' directly after an unresolved-type, |
2466 | // so we return directly. |
2467 | return true; |
2468 | |
2469 | case Type::Typedef: |
2470 | mangleSourceNameWithAbiTags(cast<TypedefType>(Val&: Ty)->getDecl()); |
2471 | break; |
2472 | |
2473 | case Type::UnresolvedUsing: |
2474 | mangleSourceNameWithAbiTags( |
2475 | cast<UnresolvedUsingType>(Val&: Ty)->getDecl()); |
2476 | break; |
2477 | |
2478 | case Type::Enum: |
2479 | case Type::Record: |
2480 | mangleSourceNameWithAbiTags(cast<TagType>(Val&: Ty)->getDecl()); |
2481 | break; |
2482 | |
2483 | case Type::TemplateSpecialization: { |
2484 | const TemplateSpecializationType *TST = |
2485 | cast<TemplateSpecializationType>(Val&: Ty); |
2486 | TemplateName TN = TST->getTemplateName(); |
2487 | switch (TN.getKind()) { |
2488 | case TemplateName::Template: |
2489 | case TemplateName::QualifiedTemplate: { |
2490 | TemplateDecl *TD = TN.getAsTemplateDecl(); |
2491 | |
2492 | // If the base is a template template parameter, this is an |
2493 | // unresolved type. |
2494 | assert(TD && "no template for template specialization type" ); |
2495 | if (isa<TemplateTemplateParmDecl>(Val: TD)) |
2496 | goto unresolvedType; |
2497 | |
2498 | mangleSourceNameWithAbiTags(TD); |
2499 | break; |
2500 | } |
2501 | |
2502 | case TemplateName::OverloadedTemplate: |
2503 | case TemplateName::AssumedTemplate: |
2504 | case TemplateName::DependentTemplate: |
2505 | llvm_unreachable("invalid base for a template specialization type" ); |
2506 | |
2507 | case TemplateName::SubstTemplateTemplateParm: { |
2508 | SubstTemplateTemplateParmStorage *subst = |
2509 | TN.getAsSubstTemplateTemplateParm(); |
2510 | mangleExistingSubstitution(name: subst->getReplacement()); |
2511 | break; |
2512 | } |
2513 | |
2514 | case TemplateName::SubstTemplateTemplateParmPack: { |
2515 | // FIXME: not clear how to mangle this! |
2516 | // template <template <class U> class T...> class A { |
2517 | // template <class U...> void foo(decltype(T<U>::foo) x...); |
2518 | // }; |
2519 | Out << "_SUBSTPACK_" ; |
2520 | break; |
2521 | } |
2522 | case TemplateName::UsingTemplate: { |
2523 | TemplateDecl *TD = TN.getAsTemplateDecl(); |
2524 | assert(TD && !isa<TemplateTemplateParmDecl>(TD)); |
2525 | mangleSourceNameWithAbiTags(TD); |
2526 | break; |
2527 | } |
2528 | } |
2529 | |
2530 | // Note: we don't pass in the template name here. We are mangling the |
2531 | // original source-level template arguments, so we shouldn't consider |
2532 | // conversions to the corresponding template parameter. |
2533 | // FIXME: Other compilers mangle partially-resolved template arguments in |
2534 | // unresolved-qualifier-levels. |
2535 | mangleTemplateArgs(TN: TemplateName(), Args: TST->template_arguments()); |
2536 | break; |
2537 | } |
2538 | |
2539 | case Type::InjectedClassName: |
2540 | mangleSourceNameWithAbiTags( |
2541 | cast<InjectedClassNameType>(Val&: Ty)->getDecl()); |
2542 | break; |
2543 | |
2544 | case Type::DependentName: |
2545 | mangleSourceName(II: cast<DependentNameType>(Val&: Ty)->getIdentifier()); |
2546 | break; |
2547 | |
2548 | case Type::DependentTemplateSpecialization: { |
2549 | const DependentTemplateSpecializationType *DTST = |
2550 | cast<DependentTemplateSpecializationType>(Val&: Ty); |
2551 | TemplateName Template = getASTContext().getDependentTemplateName( |
2552 | NNS: DTST->getQualifier(), Name: DTST->getIdentifier()); |
2553 | mangleSourceName(II: DTST->getIdentifier()); |
2554 | mangleTemplateArgs(TN: Template, Args: DTST->template_arguments()); |
2555 | break; |
2556 | } |
2557 | |
2558 | case Type::Using: |
2559 | return mangleUnresolvedTypeOrSimpleId(Ty: cast<UsingType>(Val&: Ty)->desugar(), |
2560 | Prefix); |
2561 | case Type::Elaborated: |
2562 | return mangleUnresolvedTypeOrSimpleId( |
2563 | Ty: cast<ElaboratedType>(Val&: Ty)->getNamedType(), Prefix); |
2564 | } |
2565 | |
2566 | return false; |
2567 | } |
2568 | |
2569 | void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { |
2570 | switch (Name.getNameKind()) { |
2571 | case DeclarationName::CXXConstructorName: |
2572 | case DeclarationName::CXXDestructorName: |
2573 | case DeclarationName::CXXDeductionGuideName: |
2574 | case DeclarationName::CXXUsingDirective: |
2575 | case DeclarationName::Identifier: |
2576 | case DeclarationName::ObjCMultiArgSelector: |
2577 | case DeclarationName::ObjCOneArgSelector: |
2578 | case DeclarationName::ObjCZeroArgSelector: |
2579 | llvm_unreachable("Not an operator name" ); |
2580 | |
2581 | case DeclarationName::CXXConversionFunctionName: |
2582 | // <operator-name> ::= cv <type> # (cast) |
2583 | Out << "cv" ; |
2584 | mangleType(T: Name.getCXXNameType()); |
2585 | break; |
2586 | |
2587 | case DeclarationName::CXXLiteralOperatorName: |
2588 | Out << "li" ; |
2589 | mangleSourceName(II: Name.getCXXLiteralIdentifier()); |
2590 | return; |
2591 | |
2592 | case DeclarationName::CXXOperatorName: |
2593 | mangleOperatorName(OO: Name.getCXXOverloadedOperator(), Arity); |
2594 | break; |
2595 | } |
2596 | } |
2597 | |
2598 | void |
2599 | CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { |
2600 | switch (OO) { |
2601 | // <operator-name> ::= nw # new |
2602 | case OO_New: Out << "nw" ; break; |
2603 | // ::= na # new[] |
2604 | case OO_Array_New: Out << "na" ; break; |
2605 | // ::= dl # delete |
2606 | case OO_Delete: Out << "dl" ; break; |
2607 | // ::= da # delete[] |
2608 | case OO_Array_Delete: Out << "da" ; break; |
2609 | // ::= ps # + (unary) |
2610 | // ::= pl # + (binary or unknown) |
2611 | case OO_Plus: |
2612 | Out << (Arity == 1? "ps" : "pl" ); break; |
2613 | // ::= ng # - (unary) |
2614 | // ::= mi # - (binary or unknown) |
2615 | case OO_Minus: |
2616 | Out << (Arity == 1? "ng" : "mi" ); break; |
2617 | // ::= ad # & (unary) |
2618 | // ::= an # & (binary or unknown) |
2619 | case OO_Amp: |
2620 | Out << (Arity == 1? "ad" : "an" ); break; |
2621 | // ::= de # * (unary) |
2622 | // ::= ml # * (binary or unknown) |
2623 | case OO_Star: |
2624 | // Use binary when unknown. |
2625 | Out << (Arity == 1? "de" : "ml" ); break; |
2626 | // ::= co # ~ |
2627 | case OO_Tilde: Out << "co" ; break; |
2628 | // ::= dv # / |
2629 | case OO_Slash: Out << "dv" ; break; |
2630 | // ::= rm # % |
2631 | case OO_Percent: Out << "rm" ; break; |
2632 | // ::= or # | |
2633 | case OO_Pipe: Out << "or" ; break; |
2634 | // ::= eo # ^ |
2635 | case OO_Caret: Out << "eo" ; break; |
2636 | // ::= aS # = |
2637 | case OO_Equal: Out << "aS" ; break; |
2638 | // ::= pL # += |
2639 | case OO_PlusEqual: Out << "pL" ; break; |
2640 | // ::= mI # -= |
2641 | case OO_MinusEqual: Out << "mI" ; break; |
2642 | // ::= mL # *= |
2643 | case OO_StarEqual: Out << "mL" ; break; |
2644 | // ::= dV # /= |
2645 | case OO_SlashEqual: Out << "dV" ; break; |
2646 | // ::= rM # %= |
2647 | case OO_PercentEqual: Out << "rM" ; break; |
2648 | // ::= aN # &= |
2649 | case OO_AmpEqual: Out << "aN" ; break; |
2650 | // ::= oR # |= |
2651 | case OO_PipeEqual: Out << "oR" ; break; |
2652 | // ::= eO # ^= |
2653 | case OO_CaretEqual: Out << "eO" ; break; |
2654 | // ::= ls # << |
2655 | case OO_LessLess: Out << "ls" ; break; |
2656 | // ::= rs # >> |
2657 | case OO_GreaterGreater: Out << "rs" ; break; |
2658 | // ::= lS # <<= |
2659 | case OO_LessLessEqual: Out << "lS" ; break; |
2660 | // ::= rS # >>= |
2661 | case OO_GreaterGreaterEqual: Out << "rS" ; break; |
2662 | // ::= eq # == |
2663 | case OO_EqualEqual: Out << "eq" ; break; |
2664 | // ::= ne # != |
2665 | case OO_ExclaimEqual: Out << "ne" ; break; |
2666 | // ::= lt # < |
2667 | case OO_Less: Out << "lt" ; break; |
2668 | // ::= gt # > |
2669 | case OO_Greater: Out << "gt" ; break; |
2670 | // ::= le # <= |
2671 | case OO_LessEqual: Out << "le" ; break; |
2672 | // ::= ge # >= |
2673 | case OO_GreaterEqual: Out << "ge" ; break; |
2674 | // ::= nt # ! |
2675 | case OO_Exclaim: Out << "nt" ; break; |
2676 | // ::= aa # && |
2677 | case OO_AmpAmp: Out << "aa" ; break; |
2678 | // ::= oo # || |
2679 | case OO_PipePipe: Out << "oo" ; break; |
2680 | // ::= pp # ++ |
2681 | case OO_PlusPlus: Out << "pp" ; break; |
2682 | // ::= mm # -- |
2683 | case OO_MinusMinus: Out << "mm" ; break; |
2684 | // ::= cm # , |
2685 | case OO_Comma: Out << "cm" ; break; |
2686 | // ::= pm # ->* |
2687 | case OO_ArrowStar: Out << "pm" ; break; |
2688 | // ::= pt # -> |
2689 | case OO_Arrow: Out << "pt" ; break; |
2690 | // ::= cl # () |
2691 | case OO_Call: Out << "cl" ; break; |
2692 | // ::= ix # [] |
2693 | case OO_Subscript: Out << "ix" ; break; |
2694 | |
2695 | // ::= qu # ? |
2696 | // The conditional operator can't be overloaded, but we still handle it when |
2697 | // mangling expressions. |
2698 | case OO_Conditional: Out << "qu" ; break; |
2699 | // Proposal on cxx-abi-dev, 2015-10-21. |
2700 | // ::= aw # co_await |
2701 | case OO_Coawait: Out << "aw" ; break; |
2702 | // Proposed in cxx-abi github issue 43. |
2703 | // ::= ss # <=> |
2704 | case OO_Spaceship: Out << "ss" ; break; |
2705 | |
2706 | case OO_None: |
2707 | case NUM_OVERLOADED_OPERATORS: |
2708 | llvm_unreachable("Not an overloaded operator" ); |
2709 | } |
2710 | } |
2711 | |
2712 | void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { |
2713 | // Vendor qualifiers come first and if they are order-insensitive they must |
2714 | // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. |
2715 | |
2716 | // <type> ::= U <addrspace-expr> |
2717 | if (DAST) { |
2718 | Out << "U2ASI" ; |
2719 | mangleExpression(E: DAST->getAddrSpaceExpr()); |
2720 | Out << "E" ; |
2721 | } |
2722 | |
2723 | // Address space qualifiers start with an ordinary letter. |
2724 | if (Quals.hasAddressSpace()) { |
2725 | // Address space extension: |
2726 | // |
2727 | // <type> ::= U <target-addrspace> |
2728 | // <type> ::= U <OpenCL-addrspace> |
2729 | // <type> ::= U <CUDA-addrspace> |
2730 | |
2731 | SmallString<64> ASString; |
2732 | LangAS AS = Quals.getAddressSpace(); |
2733 | |
2734 | if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { |
2735 | // <target-addrspace> ::= "AS" <address-space-number> |
2736 | unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); |
2737 | if (TargetAS != 0 || |
2738 | Context.getASTContext().getTargetAddressSpace(AS: LangAS::Default) != 0) |
2739 | ASString = "AS" + llvm::utostr(X: TargetAS); |
2740 | } else { |
2741 | switch (AS) { |
2742 | default: llvm_unreachable("Not a language specific address space" ); |
2743 | // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | |
2744 | // "private"| "generic" | "device" | |
2745 | // "host" ] |
2746 | case LangAS::opencl_global: |
2747 | ASString = "CLglobal" ; |
2748 | break; |
2749 | case LangAS::opencl_global_device: |
2750 | ASString = "CLdevice" ; |
2751 | break; |
2752 | case LangAS::opencl_global_host: |
2753 | ASString = "CLhost" ; |
2754 | break; |
2755 | case LangAS::opencl_local: |
2756 | ASString = "CLlocal" ; |
2757 | break; |
2758 | case LangAS::opencl_constant: |
2759 | ASString = "CLconstant" ; |
2760 | break; |
2761 | case LangAS::opencl_private: |
2762 | ASString = "CLprivate" ; |
2763 | break; |
2764 | case LangAS::opencl_generic: |
2765 | ASString = "CLgeneric" ; |
2766 | break; |
2767 | // <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" | |
2768 | // "device" | "host" ] |
2769 | case LangAS::sycl_global: |
2770 | ASString = "SYglobal" ; |
2771 | break; |
2772 | case LangAS::sycl_global_device: |
2773 | ASString = "SYdevice" ; |
2774 | break; |
2775 | case LangAS::sycl_global_host: |
2776 | ASString = "SYhost" ; |
2777 | break; |
2778 | case LangAS::sycl_local: |
2779 | ASString = "SYlocal" ; |
2780 | break; |
2781 | case LangAS::sycl_private: |
2782 | ASString = "SYprivate" ; |
2783 | break; |
2784 | // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] |
2785 | case LangAS::cuda_device: |
2786 | ASString = "CUdevice" ; |
2787 | break; |
2788 | case LangAS::cuda_constant: |
2789 | ASString = "CUconstant" ; |
2790 | break; |
2791 | case LangAS::cuda_shared: |
2792 | ASString = "CUshared" ; |
2793 | break; |
2794 | // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ] |
2795 | case LangAS::ptr32_sptr: |
2796 | ASString = "ptr32_sptr" ; |
2797 | break; |
2798 | case LangAS::ptr32_uptr: |
2799 | ASString = "ptr32_uptr" ; |
2800 | break; |
2801 | case LangAS::ptr64: |
2802 | ASString = "ptr64" ; |
2803 | break; |
2804 | } |
2805 | } |
2806 | if (!ASString.empty()) |
2807 | mangleVendorQualifier(qualifier: ASString); |
2808 | } |
2809 | |
2810 | // The ARC ownership qualifiers start with underscores. |
2811 | // Objective-C ARC Extension: |
2812 | // |
2813 | // <type> ::= U "__strong" |
2814 | // <type> ::= U "__weak" |
2815 | // <type> ::= U "__autoreleasing" |
2816 | // |
2817 | // Note: we emit __weak first to preserve the order as |
2818 | // required by the Itanium ABI. |
2819 | if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) |
2820 | mangleVendorQualifier(qualifier: "__weak" ); |
2821 | |
2822 | // __unaligned (from -fms-extensions) |
2823 | if (Quals.hasUnaligned()) |
2824 | mangleVendorQualifier(qualifier: "__unaligned" ); |
2825 | |
2826 | // Remaining ARC ownership qualifiers. |
2827 | switch (Quals.getObjCLifetime()) { |
2828 | case Qualifiers::OCL_None: |
2829 | break; |
2830 | |
2831 | case Qualifiers::OCL_Weak: |
2832 | // Do nothing as we already handled this case above. |
2833 | break; |
2834 | |
2835 | case Qualifiers::OCL_Strong: |
2836 | mangleVendorQualifier(qualifier: "__strong" ); |
2837 | break; |
2838 | |
2839 | case Qualifiers::OCL_Autoreleasing: |
2840 | mangleVendorQualifier(qualifier: "__autoreleasing" ); |
2841 | break; |
2842 | |
2843 | case Qualifiers::OCL_ExplicitNone: |
2844 | // The __unsafe_unretained qualifier is *not* mangled, so that |
2845 | // __unsafe_unretained types in ARC produce the same manglings as the |
2846 | // equivalent (but, naturally, unqualified) types in non-ARC, providing |
2847 | // better ABI compatibility. |
2848 | // |
2849 | // It's safe to do this because unqualified 'id' won't show up |
2850 | // in any type signatures that need to be mangled. |
2851 | break; |
2852 | } |
2853 | |
2854 | // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const |
2855 | if (Quals.hasRestrict()) |
2856 | Out << 'r'; |
2857 | if (Quals.hasVolatile()) |
2858 | Out << 'V'; |
2859 | if (Quals.hasConst()) |
2860 | Out << 'K'; |
2861 | } |
2862 | |
2863 | void CXXNameMangler::mangleVendorQualifier(StringRef name) { |
2864 | Out << 'U' << name.size() << name; |
2865 | } |
2866 | |
2867 | void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { |
2868 | // <ref-qualifier> ::= R # lvalue reference |
2869 | // ::= O # rvalue-reference |
2870 | switch (RefQualifier) { |
2871 | case RQ_None: |
2872 | break; |
2873 | |
2874 | case RQ_LValue: |
2875 | Out << 'R'; |
2876 | break; |
2877 | |
2878 | case RQ_RValue: |
2879 | Out << 'O'; |
2880 | break; |
2881 | } |
2882 | } |
2883 | |
2884 | void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { |
2885 | Context.mangleObjCMethodNameAsSourceName(MD, Out); |
2886 | } |
2887 | |
2888 | static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, |
2889 | ASTContext &Ctx) { |
2890 | if (Quals) |
2891 | return true; |
2892 | if (Ty->isSpecificBuiltinType(K: BuiltinType::ObjCSel)) |
2893 | return true; |
2894 | if (Ty->isOpenCLSpecificType()) |
2895 | return true; |
2896 | // From Clang 18.0 we correctly treat SVE types as substitution candidates. |
2897 | if (Ty->isSVESizelessBuiltinType() && |
2898 | Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver17) |
2899 | return true; |
2900 | if (Ty->isBuiltinType()) |
2901 | return false; |
2902 | // Through to Clang 6.0, we accidentally treated undeduced auto types as |
2903 | // substitution candidates. |
2904 | if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && |
2905 | isa<AutoType>(Val: Ty)) |
2906 | return false; |
2907 | // A placeholder type for class template deduction is substitutable with |
2908 | // its corresponding template name; this is handled specially when mangling |
2909 | // the type. |
2910 | if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>()) |
2911 | if (DeducedTST->getDeducedType().isNull()) |
2912 | return false; |
2913 | return true; |
2914 | } |
2915 | |
2916 | void CXXNameMangler::mangleType(QualType T) { |
2917 | // If our type is instantiation-dependent but not dependent, we mangle |
2918 | // it as it was written in the source, removing any top-level sugar. |
2919 | // Otherwise, use the canonical type. |
2920 | // |
2921 | // FIXME: This is an approximation of the instantiation-dependent name |
2922 | // mangling rules, since we should really be using the type as written and |
2923 | // augmented via semantic analysis (i.e., with implicit conversions and |
2924 | // default template arguments) for any instantiation-dependent type. |
2925 | // Unfortunately, that requires several changes to our AST: |
2926 | // - Instantiation-dependent TemplateSpecializationTypes will need to be |
2927 | // uniqued, so that we can handle substitutions properly |
2928 | // - Default template arguments will need to be represented in the |
2929 | // TemplateSpecializationType, since they need to be mangled even though |
2930 | // they aren't written. |
2931 | // - Conversions on non-type template arguments need to be expressed, since |
2932 | // they can affect the mangling of sizeof/alignof. |
2933 | // |
2934 | // FIXME: This is wrong when mapping to the canonical type for a dependent |
2935 | // type discards instantiation-dependent portions of the type, such as for: |
2936 | // |
2937 | // template<typename T, int N> void f(T (&)[sizeof(N)]); |
2938 | // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) |
2939 | // |
2940 | // It's also wrong in the opposite direction when instantiation-dependent, |
2941 | // canonically-equivalent types differ in some irrelevant portion of inner |
2942 | // type sugar. In such cases, we fail to form correct substitutions, eg: |
2943 | // |
2944 | // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); |
2945 | // |
2946 | // We should instead canonicalize the non-instantiation-dependent parts, |
2947 | // regardless of whether the type as a whole is dependent or instantiation |
2948 | // dependent. |
2949 | if (!T->isInstantiationDependentType() || T->isDependentType()) |
2950 | T = T.getCanonicalType(); |
2951 | else { |
2952 | // Desugar any types that are purely sugar. |
2953 | do { |
2954 | // Don't desugar through template specialization types that aren't |
2955 | // type aliases. We need to mangle the template arguments as written. |
2956 | if (const TemplateSpecializationType *TST |
2957 | = dyn_cast<TemplateSpecializationType>(Val&: T)) |
2958 | if (!TST->isTypeAlias()) |
2959 | break; |
2960 | |
2961 | // FIXME: We presumably shouldn't strip off ElaboratedTypes with |
2962 | // instantation-dependent qualifiers. See |
2963 | // https://github.com/itanium-cxx-abi/cxx-abi/issues/114. |
2964 | |
2965 | QualType Desugared |
2966 | = T.getSingleStepDesugaredType(Context: Context.getASTContext()); |
2967 | if (Desugared == T) |
2968 | break; |
2969 | |
2970 | T = Desugared; |
2971 | } while (true); |
2972 | } |
2973 | SplitQualType split = T.split(); |
2974 | Qualifiers quals = split.Quals; |
2975 | const Type *ty = split.Ty; |
2976 | |
2977 | bool isSubstitutable = |
2978 | isTypeSubstitutable(Quals: quals, Ty: ty, Ctx&: Context.getASTContext()); |
2979 | if (isSubstitutable && mangleSubstitution(T)) |
2980 | return; |
2981 | |
2982 | // If we're mangling a qualified array type, push the qualifiers to |
2983 | // the element type. |
2984 | if (quals && isa<ArrayType>(Val: T)) { |
2985 | ty = Context.getASTContext().getAsArrayType(T); |
2986 | quals = Qualifiers(); |
2987 | |
2988 | // Note that we don't update T: we want to add the |
2989 | // substitution at the original type. |
2990 | } |
2991 | |
2992 | if (quals || ty->isDependentAddressSpaceType()) { |
2993 | if (const DependentAddressSpaceType *DAST = |
2994 | dyn_cast<DependentAddressSpaceType>(Val: ty)) { |
2995 | SplitQualType splitDAST = DAST->getPointeeType().split(); |
2996 | mangleQualifiers(Quals: splitDAST.Quals, DAST); |
2997 | mangleType(T: QualType(splitDAST.Ty, 0)); |
2998 | } else { |
2999 | mangleQualifiers(Quals: quals); |
3000 | |
3001 | // Recurse: even if the qualified type isn't yet substitutable, |
3002 | // the unqualified type might be. |
3003 | mangleType(T: QualType(ty, 0)); |
3004 | } |
3005 | } else { |
3006 | switch (ty->getTypeClass()) { |
3007 | #define ABSTRACT_TYPE(CLASS, PARENT) |
3008 | #define NON_CANONICAL_TYPE(CLASS, PARENT) \ |
3009 | case Type::CLASS: \ |
3010 | llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ |
3011 | return; |
3012 | #define TYPE(CLASS, PARENT) \ |
3013 | case Type::CLASS: \ |
3014 | mangleType(static_cast<const CLASS##Type*>(ty)); \ |
3015 | break; |
3016 | #include "clang/AST/TypeNodes.inc" |
3017 | } |
3018 | } |
3019 | |
3020 | // Add the substitution. |
3021 | if (isSubstitutable) |
3022 | addSubstitution(T); |
3023 | } |
3024 | |
3025 | void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { |
3026 | if (!mangleStandardSubstitution(ND)) |
3027 | mangleName(GD: ND); |
3028 | } |
3029 | |
3030 | void CXXNameMangler::mangleType(const BuiltinType *T) { |
3031 | // <type> ::= <builtin-type> |
3032 | // <builtin-type> ::= v # void |
3033 | // ::= w # wchar_t |
3034 | // ::= b # bool |
3035 | // ::= c # char |
3036 | // ::= a # signed char |
3037 | // ::= h # unsigned char |
3038 | // ::= s # short |
3039 | // ::= t # unsigned short |
3040 | // ::= i # int |
3041 | // ::= j # unsigned int |
3042 | // ::= l # long |
3043 | // ::= m # unsigned long |
3044 | // ::= x # long long, __int64 |
3045 | // ::= y # unsigned long long, __int64 |
3046 | // ::= n # __int128 |
3047 | // ::= o # unsigned __int128 |
3048 | // ::= f # float |
3049 | // ::= d # double |
3050 | // ::= e # long double, __float80 |
3051 | // ::= g # __float128 |
3052 | // ::= g # __ibm128 |
3053 | // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) |
3054 | // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) |
3055 | // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) |
3056 | // ::= Dh # IEEE 754r half-precision floating point (16 bits) |
3057 | // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); |
3058 | // ::= Di # char32_t |
3059 | // ::= Ds # char16_t |
3060 | // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) |
3061 | // ::= [DS] DA # N1169 fixed-point [_Sat] T _Accum |
3062 | // ::= [DS] DR # N1169 fixed-point [_Sat] T _Fract |
3063 | // ::= u <source-name> # vendor extended type |
3064 | // |
3065 | // <fixed-point-size> |
3066 | // ::= s # short |
3067 | // ::= t # unsigned short |
3068 | // ::= i # plain |
3069 | // ::= j # unsigned |
3070 | // ::= l # long |
3071 | // ::= m # unsigned long |
3072 | std::string type_name; |
3073 | // Normalize integer types as vendor extended types: |
3074 | // u<length>i<type size> |
3075 | // u<length>u<type size> |
3076 | if (NormalizeIntegers && T->isInteger()) { |
3077 | if (T->isSignedInteger()) { |
3078 | switch (getASTContext().getTypeSize(T)) { |
3079 | case 8: |
3080 | // Pick a representative for each integer size in the substitution |
3081 | // dictionary. (Its actual defined size is not relevant.) |
3082 | if (mangleSubstitution(Ptr: BuiltinType::SChar)) |
3083 | break; |
3084 | Out << "u2i8" ; |
3085 | addSubstitution(Ptr: BuiltinType::SChar); |
3086 | break; |
3087 | case 16: |
3088 | if (mangleSubstitution(Ptr: BuiltinType::Short)) |
3089 | break; |
3090 | Out << "u3i16" ; |
3091 | addSubstitution(Ptr: BuiltinType::Short); |
3092 | break; |
3093 | case 32: |
3094 | if (mangleSubstitution(Ptr: BuiltinType::Int)) |
3095 | break; |
3096 | Out << "u3i32" ; |
3097 | addSubstitution(Ptr: BuiltinType::Int); |
3098 | break; |
3099 | case 64: |
3100 | if (mangleSubstitution(Ptr: BuiltinType::Long)) |
3101 | break; |
3102 | Out << "u3i64" ; |
3103 | addSubstitution(Ptr: BuiltinType::Long); |
3104 | break; |
3105 | case 128: |
3106 | if (mangleSubstitution(Ptr: BuiltinType::Int128)) |
3107 | break; |
3108 | Out << "u4i128" ; |
3109 | addSubstitution(Ptr: BuiltinType::Int128); |
3110 | break; |
3111 | default: |
3112 | llvm_unreachable("Unknown integer size for normalization" ); |
3113 | } |
3114 | } else { |
3115 | switch (getASTContext().getTypeSize(T)) { |
3116 | case 8: |
3117 | if (mangleSubstitution(Ptr: BuiltinType::UChar)) |
3118 | break; |
3119 | Out << "u2u8" ; |
3120 | addSubstitution(Ptr: BuiltinType::UChar); |
3121 | break; |
3122 | case 16: |
3123 | if (mangleSubstitution(Ptr: BuiltinType::UShort)) |
3124 | break; |
3125 | Out << "u3u16" ; |
3126 | addSubstitution(Ptr: BuiltinType::UShort); |
3127 | break; |
3128 | case 32: |
3129 | if (mangleSubstitution(Ptr: BuiltinType::UInt)) |
3130 | break; |
3131 | Out << "u3u32" ; |
3132 | addSubstitution(Ptr: BuiltinType::UInt); |
3133 | break; |
3134 | case 64: |
3135 | if (mangleSubstitution(Ptr: BuiltinType::ULong)) |
3136 | break; |
3137 | Out << "u3u64" ; |
3138 | addSubstitution(Ptr: BuiltinType::ULong); |
3139 | break; |
3140 | case 128: |
3141 | if (mangleSubstitution(Ptr: BuiltinType::UInt128)) |
3142 | break; |
3143 | Out << "u4u128" ; |
3144 | addSubstitution(Ptr: BuiltinType::UInt128); |
3145 | break; |
3146 | default: |
3147 | llvm_unreachable("Unknown integer size for normalization" ); |
3148 | } |
3149 | } |
3150 | return; |
3151 | } |
3152 | switch (T->getKind()) { |
3153 | case BuiltinType::Void: |
3154 | Out << 'v'; |
3155 | break; |
3156 | case BuiltinType::Bool: |
3157 | Out << 'b'; |
3158 | break; |
3159 | case BuiltinType::Char_U: |
3160 | case BuiltinType::Char_S: |
3161 | Out << 'c'; |
3162 | break; |
3163 | case BuiltinType::UChar: |
3164 | Out << 'h'; |
3165 | break; |
3166 | case BuiltinType::UShort: |
3167 | Out << 't'; |
3168 | break; |
3169 | case BuiltinType::UInt: |
3170 | Out << 'j'; |
3171 | break; |
3172 | case BuiltinType::ULong: |
3173 | Out << 'm'; |
3174 | break; |
3175 | case BuiltinType::ULongLong: |
3176 | Out << 'y'; |
3177 | break; |
3178 | case BuiltinType::UInt128: |
3179 | Out << 'o'; |
3180 | break; |
3181 | case BuiltinType::SChar: |
3182 | Out << 'a'; |
3183 | break; |
3184 | case BuiltinType::WChar_S: |
3185 | case BuiltinType::WChar_U: |
3186 | Out << 'w'; |
3187 | break; |
3188 | case BuiltinType::Char8: |
3189 | Out << "Du" ; |
3190 | break; |
3191 | case BuiltinType::Char16: |
3192 | Out << "Ds" ; |
3193 | break; |
3194 | case BuiltinType::Char32: |
3195 | Out << "Di" ; |
3196 | break; |
3197 | case BuiltinType::Short: |
3198 | Out << 's'; |
3199 | break; |
3200 | case BuiltinType::Int: |
3201 | Out << 'i'; |
3202 | break; |
3203 | case BuiltinType::Long: |
3204 | Out << 'l'; |
3205 | break; |
3206 | case BuiltinType::LongLong: |
3207 | Out << 'x'; |
3208 | break; |
3209 | case BuiltinType::Int128: |
3210 | Out << 'n'; |
3211 | break; |
3212 | case BuiltinType::Float16: |
3213 | Out << "DF16_" ; |
3214 | break; |
3215 | case BuiltinType::ShortAccum: |
3216 | Out << "DAs" ; |
3217 | break; |
3218 | case BuiltinType::Accum: |
3219 | Out << "DAi" ; |
3220 | break; |
3221 | case BuiltinType::LongAccum: |
3222 | Out << "DAl" ; |
3223 | break; |
3224 | case BuiltinType::UShortAccum: |
3225 | Out << "DAt" ; |
3226 | break; |
3227 | case BuiltinType::UAccum: |
3228 | Out << "DAj" ; |
3229 | break; |
3230 | case BuiltinType::ULongAccum: |
3231 | Out << "DAm" ; |
3232 | break; |
3233 | case BuiltinType::ShortFract: |
3234 | Out << "DRs" ; |
3235 | break; |
3236 | case BuiltinType::Fract: |
3237 | Out << "DRi" ; |
3238 | break; |
3239 | case BuiltinType::LongFract: |
3240 | Out << "DRl" ; |
3241 | break; |
3242 | case BuiltinType::UShortFract: |
3243 | Out << "DRt" ; |
3244 | break; |
3245 | case BuiltinType::UFract: |
3246 | Out << "DRj" ; |
3247 | break; |
3248 | case BuiltinType::ULongFract: |
3249 | Out << "DRm" ; |
3250 | break; |
3251 | case BuiltinType::SatShortAccum: |
3252 | Out << "DSDAs" ; |
3253 | break; |
3254 | case BuiltinType::SatAccum: |
3255 | Out << "DSDAi" ; |
3256 | break; |
3257 | case BuiltinType::SatLongAccum: |
3258 | Out << "DSDAl" ; |
3259 | break; |
3260 | case BuiltinType::SatUShortAccum: |
3261 | Out << "DSDAt" ; |
3262 | break; |
3263 | case BuiltinType::SatUAccum: |
3264 | Out << "DSDAj" ; |
3265 | break; |
3266 | case BuiltinType::SatULongAccum: |
3267 | Out << "DSDAm" ; |
3268 | break; |
3269 | case BuiltinType::SatShortFract: |
3270 | Out << "DSDRs" ; |
3271 | break; |
3272 | case BuiltinType::SatFract: |
3273 | Out << "DSDRi" ; |
3274 | break; |
3275 | case BuiltinType::SatLongFract: |
3276 | Out << "DSDRl" ; |
3277 | break; |
3278 | case BuiltinType::SatUShortFract: |
3279 | Out << "DSDRt" ; |
3280 | break; |
3281 | case BuiltinType::SatUFract: |
3282 | Out << "DSDRj" ; |
3283 | break; |
3284 | case BuiltinType::SatULongFract: |
3285 | Out << "DSDRm" ; |
3286 | break; |
3287 | case BuiltinType::Half: |
3288 | Out << "Dh" ; |
3289 | break; |
3290 | case BuiltinType::Float: |
3291 | Out << 'f'; |
3292 | break; |
3293 | case BuiltinType::Double: |
3294 | Out << 'd'; |
3295 | break; |
3296 | case BuiltinType::LongDouble: { |
3297 | const TargetInfo *TI = |
3298 | getASTContext().getLangOpts().OpenMP && |
3299 | getASTContext().getLangOpts().OpenMPIsTargetDevice |
3300 | ? getASTContext().getAuxTargetInfo() |
3301 | : &getASTContext().getTargetInfo(); |
3302 | Out << TI->getLongDoubleMangling(); |
3303 | break; |
3304 | } |
3305 | case BuiltinType::Float128: { |
3306 | const TargetInfo *TI = |
3307 | getASTContext().getLangOpts().OpenMP && |
3308 | getASTContext().getLangOpts().OpenMPIsTargetDevice |
3309 | ? getASTContext().getAuxTargetInfo() |
3310 | : &getASTContext().getTargetInfo(); |
3311 | Out << TI->getFloat128Mangling(); |
3312 | break; |
3313 | } |
3314 | case BuiltinType::BFloat16: { |
3315 | const TargetInfo *TI = |
3316 | ((getASTContext().getLangOpts().OpenMP && |
3317 | getASTContext().getLangOpts().OpenMPIsTargetDevice) || |
3318 | getASTContext().getLangOpts().SYCLIsDevice) |
3319 | ? getASTContext().getAuxTargetInfo() |
3320 | : &getASTContext().getTargetInfo(); |
3321 | Out << TI->getBFloat16Mangling(); |
3322 | break; |
3323 | } |
3324 | case BuiltinType::Ibm128: { |
3325 | const TargetInfo *TI = &getASTContext().getTargetInfo(); |
3326 | Out << TI->getIbm128Mangling(); |
3327 | break; |
3328 | } |
3329 | case BuiltinType::NullPtr: |
3330 | Out << "Dn" ; |
3331 | break; |
3332 | |
3333 | #define BUILTIN_TYPE(Id, SingletonId) |
3334 | #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
3335 | case BuiltinType::Id: |
3336 | #include "clang/AST/BuiltinTypes.def" |
3337 | case BuiltinType::Dependent: |
3338 | if (!NullOut) |
3339 | llvm_unreachable("mangling a placeholder type" ); |
3340 | break; |
3341 | case BuiltinType::ObjCId: |
3342 | Out << "11objc_object" ; |
3343 | break; |
3344 | case BuiltinType::ObjCClass: |
3345 | Out << "10objc_class" ; |
3346 | break; |
3347 | case BuiltinType::ObjCSel: |
3348 | Out << "13objc_selector" ; |
3349 | break; |
3350 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
3351 | case BuiltinType::Id: \ |
3352 | type_name = "ocl_" #ImgType "_" #Suffix; \ |
3353 | Out << type_name.size() << type_name; \ |
3354 | break; |
3355 | #include "clang/Basic/OpenCLImageTypes.def" |
3356 | case BuiltinType::OCLSampler: |
3357 | Out << "11ocl_sampler" ; |
3358 | break; |
3359 | case BuiltinType::OCLEvent: |
3360 | Out << "9ocl_event" ; |
3361 | break; |
3362 | case BuiltinType::OCLClkEvent: |
3363 | Out << "12ocl_clkevent" ; |
3364 | break; |
3365 | case BuiltinType::OCLQueue: |
3366 | Out << "9ocl_queue" ; |
3367 | break; |
3368 | case BuiltinType::OCLReserveID: |
3369 | Out << "13ocl_reserveid" ; |
3370 | break; |
3371 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
3372 | case BuiltinType::Id: \ |
3373 | type_name = "ocl_" #ExtType; \ |
3374 | Out << type_name.size() << type_name; \ |
3375 | break; |
3376 | #include "clang/Basic/OpenCLExtensionTypes.def" |
3377 | // The SVE types are effectively target-specific. The mangling scheme |
3378 | // is defined in the appendices to the Procedure Call Standard for the |
3379 | // Arm Architecture. |
3380 | #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls, \ |
3381 | ElBits, IsSigned, IsFP, IsBF) \ |
3382 | case BuiltinType::Id: \ |
3383 | if (T->getKind() == BuiltinType::SveBFloat16 && \ |
3384 | isCompatibleWith(LangOptions::ClangABI::Ver17)) { \ |
3385 | /* Prior to Clang 18.0 we used this incorrect mangled name */ \ |
3386 | type_name = "__SVBFloat16_t"; \ |
3387 | Out << "u" << type_name.size() << type_name; \ |
3388 | } else { \ |
3389 | type_name = MangledName; \ |
3390 | Out << (type_name == InternalName ? "u" : "") << type_name.size() \ |
3391 | << type_name; \ |
3392 | } \ |
3393 | break; |
3394 | #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \ |
3395 | case BuiltinType::Id: \ |
3396 | type_name = MangledName; \ |
3397 | Out << (type_name == InternalName ? "u" : "") << type_name.size() \ |
3398 | << type_name; \ |
3399 | break; |
3400 | #define SVE_OPAQUE_TYPE(InternalName, MangledName, Id, SingletonId) \ |
3401 | case BuiltinType::Id: \ |
3402 | type_name = MangledName; \ |
3403 | Out << (type_name == InternalName ? "u" : "") << type_name.size() \ |
3404 | << type_name; \ |
3405 | break; |
3406 | #include "clang/Basic/AArch64SVEACLETypes.def" |
3407 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
3408 | case BuiltinType::Id: \ |
3409 | type_name = #Name; \ |
3410 | Out << 'u' << type_name.size() << type_name; \ |
3411 | break; |
3412 | #include "clang/Basic/PPCTypes.def" |
3413 | // TODO: Check the mangling scheme for RISC-V V. |
3414 | #define RVV_TYPE(Name, Id, SingletonId) \ |
3415 | case BuiltinType::Id: \ |
3416 | type_name = Name; \ |
3417 | Out << 'u' << type_name.size() << type_name; \ |
3418 | break; |
3419 | #include "clang/Basic/RISCVVTypes.def" |
3420 | #define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \ |
3421 | case BuiltinType::Id: \ |
3422 | type_name = MangledName; \ |
3423 | Out << 'u' << type_name.size() << type_name; \ |
3424 | break; |
3425 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
3426 | } |
3427 | } |
3428 | |
3429 | StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { |
3430 | switch (CC) { |
3431 | case CC_C: |
3432 | return "" ; |
3433 | |
3434 | case CC_X86VectorCall: |
3435 | case CC_X86Pascal: |
3436 | case CC_X86RegCall: |
3437 | case CC_AAPCS: |
3438 | case CC_AAPCS_VFP: |
3439 | case CC_AArch64VectorCall: |
3440 | case CC_AArch64SVEPCS: |
3441 | case CC_AMDGPUKernelCall: |
3442 | case CC_IntelOclBicc: |
3443 | case CC_SpirFunction: |
3444 | case CC_OpenCLKernel: |
3445 | case CC_PreserveMost: |
3446 | case CC_PreserveAll: |
3447 | case CC_M68kRTD: |
3448 | case CC_PreserveNone: |
3449 | case CC_RISCVVectorCall: |
3450 | // FIXME: we should be mangling all of the above. |
3451 | return "" ; |
3452 | |
3453 | case CC_X86ThisCall: |
3454 | // FIXME: To match mingw GCC, thiscall should only be mangled in when it is |
3455 | // used explicitly. At this point, we don't have that much information in |
3456 | // the AST, since clang tends to bake the convention into the canonical |
3457 | // function type. thiscall only rarely used explicitly, so don't mangle it |
3458 | // for now. |
3459 | return "" ; |
3460 | |
3461 | case CC_X86StdCall: |
3462 | return "stdcall" ; |
3463 | case CC_X86FastCall: |
3464 | return "fastcall" ; |
3465 | case CC_X86_64SysV: |
3466 | return "sysv_abi" ; |
3467 | case CC_Win64: |
3468 | return "ms_abi" ; |
3469 | case CC_Swift: |
3470 | return "swiftcall" ; |
3471 | case CC_SwiftAsync: |
3472 | return "swiftasynccall" ; |
3473 | } |
3474 | llvm_unreachable("bad calling convention" ); |
3475 | } |
3476 | |
3477 | void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { |
3478 | // Fast path. |
3479 | if (T->getExtInfo() == FunctionType::ExtInfo()) |
3480 | return; |
3481 | |
3482 | // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
3483 | // This will get more complicated in the future if we mangle other |
3484 | // things here; but for now, since we mangle ns_returns_retained as |
3485 | // a qualifier on the result type, we can get away with this: |
3486 | StringRef CCQualifier = getCallingConvQualifierName(CC: T->getExtInfo().getCC()); |
3487 | if (!CCQualifier.empty()) |
3488 | mangleVendorQualifier(name: CCQualifier); |
3489 | |
3490 | // FIXME: regparm |
3491 | // FIXME: noreturn |
3492 | } |
3493 | |
3494 | void |
3495 | CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { |
3496 | // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
3497 | |
3498 | // Note that these are *not* substitution candidates. Demanglers might |
3499 | // have trouble with this if the parameter type is fully substituted. |
3500 | |
3501 | switch (PI.getABI()) { |
3502 | case ParameterABI::Ordinary: |
3503 | break; |
3504 | |
3505 | // All of these start with "swift", so they come before "ns_consumed". |
3506 | case ParameterABI::SwiftContext: |
3507 | case ParameterABI::SwiftAsyncContext: |
3508 | case ParameterABI::SwiftErrorResult: |
3509 | case ParameterABI::SwiftIndirectResult: |
3510 | mangleVendorQualifier(name: getParameterABISpelling(kind: PI.getABI())); |
3511 | break; |
3512 | } |
3513 | |
3514 | if (PI.isConsumed()) |
3515 | mangleVendorQualifier(name: "ns_consumed" ); |
3516 | |
3517 | if (PI.isNoEscape()) |
3518 | mangleVendorQualifier(name: "noescape" ); |
3519 | } |
3520 | |
3521 | // <type> ::= <function-type> |
3522 | // <function-type> ::= [<CV-qualifiers>] F [Y] |
3523 | // <bare-function-type> [<ref-qualifier>] E |
3524 | void CXXNameMangler::mangleType(const FunctionProtoType *T) { |
3525 | mangleExtFunctionInfo(T); |
3526 | |
3527 | // Mangle CV-qualifiers, if present. These are 'this' qualifiers, |
3528 | // e.g. "const" in "int (A::*)() const". |
3529 | mangleQualifiers(Quals: T->getMethodQuals()); |
3530 | |
3531 | // Mangle instantiation-dependent exception-specification, if present, |
3532 | // per cxx-abi-dev proposal on 2016-10-11. |
3533 | if (T->hasInstantiationDependentExceptionSpec()) { |
3534 | if (isComputedNoexcept(ESpecType: T->getExceptionSpecType())) { |
3535 | Out << "DO" ; |
3536 | mangleExpression(E: T->getNoexceptExpr()); |
3537 | Out << "E" ; |
3538 | } else { |
3539 | assert(T->getExceptionSpecType() == EST_Dynamic); |
3540 | Out << "Dw" ; |
3541 | for (auto ExceptTy : T->exceptions()) |
3542 | mangleType(T: ExceptTy); |
3543 | Out << "E" ; |
3544 | } |
3545 | } else if (T->isNothrow()) { |
3546 | Out << "Do" ; |
3547 | } |
3548 | |
3549 | Out << 'F'; |
3550 | |
3551 | // FIXME: We don't have enough information in the AST to produce the 'Y' |
3552 | // encoding for extern "C" function types. |
3553 | mangleBareFunctionType(T, /*MangleReturnType=*/true); |
3554 | |
3555 | // Mangle the ref-qualifier, if present. |
3556 | mangleRefQualifier(RefQualifier: T->getRefQualifier()); |
3557 | |
3558 | Out << 'E'; |
3559 | } |
3560 | |
3561 | void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { |
3562 | // Function types without prototypes can arise when mangling a function type |
3563 | // within an overloadable function in C. We mangle these as the absence of any |
3564 | // parameter types (not even an empty parameter list). |
3565 | Out << 'F'; |
3566 | |
3567 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
3568 | |
3569 | FunctionTypeDepth.enterResultType(); |
3570 | mangleType(T->getReturnType()); |
3571 | FunctionTypeDepth.leaveResultType(); |
3572 | |
3573 | FunctionTypeDepth.pop(saved); |
3574 | Out << 'E'; |
3575 | } |
3576 | |
3577 | void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, |
3578 | bool MangleReturnType, |
3579 | const FunctionDecl *FD) { |
3580 | // Record that we're in a function type. See mangleFunctionParam |
3581 | // for details on what we're trying to achieve here. |
3582 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
3583 | |
3584 | // <bare-function-type> ::= <signature type>+ |
3585 | if (MangleReturnType) { |
3586 | FunctionTypeDepth.enterResultType(); |
3587 | |
3588 | // Mangle ns_returns_retained as an order-sensitive qualifier here. |
3589 | if (Proto->getExtInfo().getProducesResult() && FD == nullptr) |
3590 | mangleVendorQualifier(name: "ns_returns_retained" ); |
3591 | |
3592 | // Mangle the return type without any direct ARC ownership qualifiers. |
3593 | QualType ReturnTy = Proto->getReturnType(); |
3594 | if (ReturnTy.getObjCLifetime()) { |
3595 | auto SplitReturnTy = ReturnTy.split(); |
3596 | SplitReturnTy.Quals.removeObjCLifetime(); |
3597 | ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); |
3598 | } |
3599 | mangleType(T: ReturnTy); |
3600 | |
3601 | FunctionTypeDepth.leaveResultType(); |
3602 | } |
3603 | |
3604 | if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { |
3605 | // <builtin-type> ::= v # void |
3606 | Out << 'v'; |
3607 | } else { |
3608 | assert(!FD || FD->getNumParams() == Proto->getNumParams()); |
3609 | for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { |
3610 | // Mangle extended parameter info as order-sensitive qualifiers here. |
3611 | if (Proto->hasExtParameterInfos() && FD == nullptr) { |
3612 | mangleExtParameterInfo(PI: Proto->getExtParameterInfo(I)); |
3613 | } |
3614 | |
3615 | // Mangle the type. |
3616 | QualType ParamTy = Proto->getParamType(i: I); |
3617 | mangleType(T: Context.getASTContext().getSignatureParameterType(T: ParamTy)); |
3618 | |
3619 | if (FD) { |
3620 | if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { |
3621 | // Attr can only take 1 character, so we can hardcode the length |
3622 | // below. |
3623 | assert(Attr->getType() <= 9 && Attr->getType() >= 0); |
3624 | if (Attr->isDynamic()) |
3625 | Out << "U25pass_dynamic_object_size" << Attr->getType(); |
3626 | else |
3627 | Out << "U17pass_object_size" << Attr->getType(); |
3628 | } |
3629 | } |
3630 | } |
3631 | |
3632 | // <builtin-type> ::= z # ellipsis |
3633 | if (Proto->isVariadic()) |
3634 | Out << 'z'; |
3635 | } |
3636 | |
3637 | if (FD) { |
3638 | FunctionTypeDepth.enterResultType(); |
3639 | mangleRequiresClause(RequiresClause: FD->getTrailingRequiresClause()); |
3640 | } |
3641 | |
3642 | FunctionTypeDepth.pop(saved); |
3643 | } |
3644 | |
3645 | // <type> ::= <class-enum-type> |
3646 | // <class-enum-type> ::= <name> |
3647 | void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { |
3648 | mangleName(T->getDecl()); |
3649 | } |
3650 | |
3651 | // <type> ::= <class-enum-type> |
3652 | // <class-enum-type> ::= <name> |
3653 | void CXXNameMangler::mangleType(const EnumType *T) { |
3654 | mangleType(static_cast<const TagType*>(T)); |
3655 | } |
3656 | void CXXNameMangler::mangleType(const RecordType *T) { |
3657 | mangleType(static_cast<const TagType*>(T)); |
3658 | } |
3659 | void CXXNameMangler::mangleType(const TagType *T) { |
3660 | mangleName(T->getDecl()); |
3661 | } |
3662 | |
3663 | // <type> ::= <array-type> |
3664 | // <array-type> ::= A <positive dimension number> _ <element type> |
3665 | // ::= A [<dimension expression>] _ <element type> |
3666 | void CXXNameMangler::mangleType(const ConstantArrayType *T) { |
3667 | Out << 'A' << T->getSize() << '_'; |
3668 | mangleType(T->getElementType()); |
3669 | } |
3670 | void CXXNameMangler::mangleType(const VariableArrayType *T) { |
3671 | Out << 'A'; |
3672 | // decayed vla types (size 0) will just be skipped. |
3673 | if (T->getSizeExpr()) |
3674 | mangleExpression(E: T->getSizeExpr()); |
3675 | Out << '_'; |
3676 | mangleType(T->getElementType()); |
3677 | } |
3678 | void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { |
3679 | Out << 'A'; |
3680 | // A DependentSizedArrayType might not have size expression as below |
3681 | // |
3682 | // template<int ...N> int arr[] = {N...}; |
3683 | if (T->getSizeExpr()) |
3684 | mangleExpression(E: T->getSizeExpr()); |
3685 | Out << '_'; |
3686 | mangleType(T->getElementType()); |
3687 | } |
3688 | void CXXNameMangler::mangleType(const IncompleteArrayType *T) { |
3689 | Out << "A_" ; |
3690 | mangleType(T->getElementType()); |
3691 | } |
3692 | |
3693 | // <type> ::= <pointer-to-member-type> |
3694 | // <pointer-to-member-type> ::= M <class type> <member type> |
3695 | void CXXNameMangler::mangleType(const MemberPointerType *T) { |
3696 | Out << 'M'; |
3697 | mangleType(T: QualType(T->getClass(), 0)); |
3698 | QualType PointeeType = T->getPointeeType(); |
3699 | if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Val&: PointeeType)) { |
3700 | mangleType(FPT); |
3701 | |
3702 | // Itanium C++ ABI 5.1.8: |
3703 | // |
3704 | // The type of a non-static member function is considered to be different, |
3705 | // for the purposes of substitution, from the type of a namespace-scope or |
3706 | // static member function whose type appears similar. The types of two |
3707 | // non-static member functions are considered to be different, for the |
3708 | // purposes of substitution, if the functions are members of different |
3709 | // classes. In other words, for the purposes of substitution, the class of |
3710 | // which the function is a member is considered part of the type of |
3711 | // function. |
3712 | |
3713 | // Given that we already substitute member function pointers as a |
3714 | // whole, the net effect of this rule is just to unconditionally |
3715 | // suppress substitution on the function type in a member pointer. |
3716 | // We increment the SeqID here to emulate adding an entry to the |
3717 | // substitution table. |
3718 | ++SeqID; |
3719 | } else |
3720 | mangleType(T: PointeeType); |
3721 | } |
3722 | |
3723 | // <type> ::= <template-param> |
3724 | void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { |
3725 | mangleTemplateParameter(Depth: T->getDepth(), Index: T->getIndex()); |
3726 | } |
3727 | |
3728 | // <type> ::= <template-param> |
3729 | void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { |
3730 | // FIXME: not clear how to mangle this! |
3731 | // template <class T...> class A { |
3732 | // template <class U...> void foo(T(*)(U) x...); |
3733 | // }; |
3734 | Out << "_SUBSTPACK_" ; |
3735 | } |
3736 | |
3737 | // <type> ::= P <type> # pointer-to |
3738 | void CXXNameMangler::mangleType(const PointerType *T) { |
3739 | Out << 'P'; |
3740 | mangleType(T: T->getPointeeType()); |
3741 | } |
3742 | void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { |
3743 | Out << 'P'; |
3744 | mangleType(T: T->getPointeeType()); |
3745 | } |
3746 | |
3747 | // <type> ::= R <type> # reference-to |
3748 | void CXXNameMangler::mangleType(const LValueReferenceType *T) { |
3749 | Out << 'R'; |
3750 | mangleType(T->getPointeeType()); |
3751 | } |
3752 | |
3753 | // <type> ::= O <type> # rvalue reference-to (C++0x) |
3754 | void CXXNameMangler::mangleType(const RValueReferenceType *T) { |
3755 | Out << 'O'; |
3756 | mangleType(T->getPointeeType()); |
3757 | } |
3758 | |
3759 | // <type> ::= C <type> # complex pair (C 2000) |
3760 | void CXXNameMangler::mangleType(const ComplexType *T) { |
3761 | Out << 'C'; |
3762 | mangleType(T: T->getElementType()); |
3763 | } |
3764 | |
3765 | // ARM's ABI for Neon vector types specifies that they should be mangled as |
3766 | // if they are structs (to match ARM's initial implementation). The |
3767 | // vector type must be one of the special types predefined by ARM. |
3768 | void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { |
3769 | QualType EltType = T->getElementType(); |
3770 | assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType" ); |
3771 | const char *EltName = nullptr; |
3772 | if (T->getVectorKind() == VectorKind::NeonPoly) { |
3773 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
3774 | case BuiltinType::SChar: |
3775 | case BuiltinType::UChar: |
3776 | EltName = "poly8_t" ; |
3777 | break; |
3778 | case BuiltinType::Short: |
3779 | case BuiltinType::UShort: |
3780 | EltName = "poly16_t" ; |
3781 | break; |
3782 | case BuiltinType::LongLong: |
3783 | case BuiltinType::ULongLong: |
3784 | EltName = "poly64_t" ; |
3785 | break; |
3786 | default: llvm_unreachable("unexpected Neon polynomial vector element type" ); |
3787 | } |
3788 | } else { |
3789 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
3790 | case BuiltinType::SChar: EltName = "int8_t" ; break; |
3791 | case BuiltinType::UChar: EltName = "uint8_t" ; break; |
3792 | case BuiltinType::Short: EltName = "int16_t" ; break; |
3793 | case BuiltinType::UShort: EltName = "uint16_t" ; break; |
3794 | case BuiltinType::Int: EltName = "int32_t" ; break; |
3795 | case BuiltinType::UInt: EltName = "uint32_t" ; break; |
3796 | case BuiltinType::LongLong: EltName = "int64_t" ; break; |
3797 | case BuiltinType::ULongLong: EltName = "uint64_t" ; break; |
3798 | case BuiltinType::Double: EltName = "float64_t" ; break; |
3799 | case BuiltinType::Float: EltName = "float32_t" ; break; |
3800 | case BuiltinType::Half: EltName = "float16_t" ; break; |
3801 | case BuiltinType::BFloat16: EltName = "bfloat16_t" ; break; |
3802 | default: |
3803 | llvm_unreachable("unexpected Neon vector element type" ); |
3804 | } |
3805 | } |
3806 | const char *BaseName = nullptr; |
3807 | unsigned BitSize = (T->getNumElements() * |
3808 | getASTContext().getTypeSize(T: EltType)); |
3809 | if (BitSize == 64) |
3810 | BaseName = "__simd64_" ; |
3811 | else { |
3812 | assert(BitSize == 128 && "Neon vector type not 64 or 128 bits" ); |
3813 | BaseName = "__simd128_" ; |
3814 | } |
3815 | Out << strlen(s: BaseName) + strlen(s: EltName); |
3816 | Out << BaseName << EltName; |
3817 | } |
3818 | |
3819 | void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { |
3820 | DiagnosticsEngine &Diags = Context.getDiags(); |
3821 | unsigned DiagID = Diags.getCustomDiagID( |
3822 | L: DiagnosticsEngine::Error, |
3823 | FormatString: "cannot mangle this dependent neon vector type yet" ); |
3824 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
3825 | } |
3826 | |
3827 | static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { |
3828 | switch (EltType->getKind()) { |
3829 | case BuiltinType::SChar: |
3830 | return "Int8" ; |
3831 | case BuiltinType::Short: |
3832 | return "Int16" ; |
3833 | case BuiltinType::Int: |
3834 | return "Int32" ; |
3835 | case BuiltinType::Long: |
3836 | case BuiltinType::LongLong: |
3837 | return "Int64" ; |
3838 | case BuiltinType::UChar: |
3839 | return "Uint8" ; |
3840 | case BuiltinType::UShort: |
3841 | return "Uint16" ; |
3842 | case BuiltinType::UInt: |
3843 | return "Uint32" ; |
3844 | case BuiltinType::ULong: |
3845 | case BuiltinType::ULongLong: |
3846 | return "Uint64" ; |
3847 | case BuiltinType::Half: |
3848 | return "Float16" ; |
3849 | case BuiltinType::Float: |
3850 | return "Float32" ; |
3851 | case BuiltinType::Double: |
3852 | return "Float64" ; |
3853 | case BuiltinType::BFloat16: |
3854 | return "Bfloat16" ; |
3855 | default: |
3856 | llvm_unreachable("Unexpected vector element base type" ); |
3857 | } |
3858 | } |
3859 | |
3860 | // AArch64's ABI for Neon vector types specifies that they should be mangled as |
3861 | // the equivalent internal name. The vector type must be one of the special |
3862 | // types predefined by ARM. |
3863 | void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { |
3864 | QualType EltType = T->getElementType(); |
3865 | assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType" ); |
3866 | unsigned BitSize = |
3867 | (T->getNumElements() * getASTContext().getTypeSize(T: EltType)); |
3868 | (void)BitSize; // Silence warning. |
3869 | |
3870 | assert((BitSize == 64 || BitSize == 128) && |
3871 | "Neon vector type not 64 or 128 bits" ); |
3872 | |
3873 | StringRef EltName; |
3874 | if (T->getVectorKind() == VectorKind::NeonPoly) { |
3875 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
3876 | case BuiltinType::UChar: |
3877 | EltName = "Poly8" ; |
3878 | break; |
3879 | case BuiltinType::UShort: |
3880 | EltName = "Poly16" ; |
3881 | break; |
3882 | case BuiltinType::ULong: |
3883 | case BuiltinType::ULongLong: |
3884 | EltName = "Poly64" ; |
3885 | break; |
3886 | default: |
3887 | llvm_unreachable("unexpected Neon polynomial vector element type" ); |
3888 | } |
3889 | } else |
3890 | EltName = mangleAArch64VectorBase(EltType: cast<BuiltinType>(Val&: EltType)); |
3891 | |
3892 | std::string TypeName = |
3893 | ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t" ).str(); |
3894 | Out << TypeName.length() << TypeName; |
3895 | } |
3896 | void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { |
3897 | DiagnosticsEngine &Diags = Context.getDiags(); |
3898 | unsigned DiagID = Diags.getCustomDiagID( |
3899 | L: DiagnosticsEngine::Error, |
3900 | FormatString: "cannot mangle this dependent neon vector type yet" ); |
3901 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
3902 | } |
3903 | |
3904 | // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types |
3905 | // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64 |
3906 | // type as the sizeless variants. |
3907 | // |
3908 | // The mangling scheme for VLS types is implemented as a "pseudo" template: |
3909 | // |
3910 | // '__SVE_VLS<<type>, <vector length>>' |
3911 | // |
3912 | // Combining the existing SVE type and a specific vector length (in bits). |
3913 | // For example: |
3914 | // |
3915 | // typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512))); |
3916 | // |
3917 | // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as: |
3918 | // |
3919 | // "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE" |
3920 | // |
3921 | // i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE |
3922 | // |
3923 | // The latest ACLE specification (00bet5) does not contain details of this |
3924 | // mangling scheme, it will be specified in the next revision. The mangling |
3925 | // scheme is otherwise defined in the appendices to the Procedure Call Standard |
3926 | // for the Arm Architecture, see |
3927 | // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling |
3928 | void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) { |
3929 | assert((T->getVectorKind() == VectorKind::SveFixedLengthData || |
3930 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) && |
3931 | "expected fixed-length SVE vector!" ); |
3932 | |
3933 | QualType EltType = T->getElementType(); |
3934 | assert(EltType->isBuiltinType() && |
3935 | "expected builtin type for fixed-length SVE vector!" ); |
3936 | |
3937 | StringRef TypeName; |
3938 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
3939 | case BuiltinType::SChar: |
3940 | TypeName = "__SVInt8_t" ; |
3941 | break; |
3942 | case BuiltinType::UChar: { |
3943 | if (T->getVectorKind() == VectorKind::SveFixedLengthData) |
3944 | TypeName = "__SVUint8_t" ; |
3945 | else |
3946 | TypeName = "__SVBool_t" ; |
3947 | break; |
3948 | } |
3949 | case BuiltinType::Short: |
3950 | TypeName = "__SVInt16_t" ; |
3951 | break; |
3952 | case BuiltinType::UShort: |
3953 | TypeName = "__SVUint16_t" ; |
3954 | break; |
3955 | case BuiltinType::Int: |
3956 | TypeName = "__SVInt32_t" ; |
3957 | break; |
3958 | case BuiltinType::UInt: |
3959 | TypeName = "__SVUint32_t" ; |
3960 | break; |
3961 | case BuiltinType::Long: |
3962 | TypeName = "__SVInt64_t" ; |
3963 | break; |
3964 | case BuiltinType::ULong: |
3965 | TypeName = "__SVUint64_t" ; |
3966 | break; |
3967 | case BuiltinType::Half: |
3968 | TypeName = "__SVFloat16_t" ; |
3969 | break; |
3970 | case BuiltinType::Float: |
3971 | TypeName = "__SVFloat32_t" ; |
3972 | break; |
3973 | case BuiltinType::Double: |
3974 | TypeName = "__SVFloat64_t" ; |
3975 | break; |
3976 | case BuiltinType::BFloat16: |
3977 | TypeName = "__SVBfloat16_t" ; |
3978 | break; |
3979 | default: |
3980 | llvm_unreachable("unexpected element type for fixed-length SVE vector!" ); |
3981 | } |
3982 | |
3983 | unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; |
3984 | |
3985 | if (T->getVectorKind() == VectorKind::SveFixedLengthPredicate) |
3986 | VecSizeInBits *= 8; |
3987 | |
3988 | Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj" |
3989 | << VecSizeInBits << "EE" ; |
3990 | } |
3991 | |
3992 | void CXXNameMangler::mangleAArch64FixedSveVectorType( |
3993 | const DependentVectorType *T) { |
3994 | DiagnosticsEngine &Diags = Context.getDiags(); |
3995 | unsigned DiagID = Diags.getCustomDiagID( |
3996 | L: DiagnosticsEngine::Error, |
3997 | FormatString: "cannot mangle this dependent fixed-length SVE vector type yet" ); |
3998 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
3999 | } |
4000 | |
4001 | void CXXNameMangler::mangleRISCVFixedRVVVectorType(const VectorType *T) { |
4002 | assert((T->getVectorKind() == VectorKind::RVVFixedLengthData || |
4003 | T->getVectorKind() == VectorKind::RVVFixedLengthMask) && |
4004 | "expected fixed-length RVV vector!" ); |
4005 | |
4006 | QualType EltType = T->getElementType(); |
4007 | assert(EltType->isBuiltinType() && |
4008 | "expected builtin type for fixed-length RVV vector!" ); |
4009 | |
4010 | SmallString<20> TypeNameStr; |
4011 | llvm::raw_svector_ostream TypeNameOS(TypeNameStr); |
4012 | TypeNameOS << "__rvv_" ; |
4013 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
4014 | case BuiltinType::SChar: |
4015 | TypeNameOS << "int8" ; |
4016 | break; |
4017 | case BuiltinType::UChar: |
4018 | if (T->getVectorKind() == VectorKind::RVVFixedLengthData) |
4019 | TypeNameOS << "uint8" ; |
4020 | else |
4021 | TypeNameOS << "bool" ; |
4022 | break; |
4023 | case BuiltinType::Short: |
4024 | TypeNameOS << "int16" ; |
4025 | break; |
4026 | case BuiltinType::UShort: |
4027 | TypeNameOS << "uint16" ; |
4028 | break; |
4029 | case BuiltinType::Int: |
4030 | TypeNameOS << "int32" ; |
4031 | break; |
4032 | case BuiltinType::UInt: |
4033 | TypeNameOS << "uint32" ; |
4034 | break; |
4035 | case BuiltinType::Long: |
4036 | TypeNameOS << "int64" ; |
4037 | break; |
4038 | case BuiltinType::ULong: |
4039 | TypeNameOS << "uint64" ; |
4040 | break; |
4041 | case BuiltinType::Float16: |
4042 | TypeNameOS << "float16" ; |
4043 | break; |
4044 | case BuiltinType::Float: |
4045 | TypeNameOS << "float32" ; |
4046 | break; |
4047 | case BuiltinType::Double: |
4048 | TypeNameOS << "float64" ; |
4049 | break; |
4050 | default: |
4051 | llvm_unreachable("unexpected element type for fixed-length RVV vector!" ); |
4052 | } |
4053 | |
4054 | unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; |
4055 | |
4056 | // Apend the LMUL suffix. |
4057 | auto VScale = getASTContext().getTargetInfo().getVScaleRange( |
4058 | LangOpts: getASTContext().getLangOpts()); |
4059 | unsigned VLen = VScale->first * llvm::RISCV::RVVBitsPerBlock; |
4060 | |
4061 | if (T->getVectorKind() == VectorKind::RVVFixedLengthData) { |
4062 | TypeNameOS << 'm'; |
4063 | if (VecSizeInBits >= VLen) |
4064 | TypeNameOS << (VecSizeInBits / VLen); |
4065 | else |
4066 | TypeNameOS << 'f' << (VLen / VecSizeInBits); |
4067 | } else { |
4068 | TypeNameOS << (VLen / VecSizeInBits); |
4069 | } |
4070 | TypeNameOS << "_t" ; |
4071 | |
4072 | Out << "9__RVV_VLSI" << 'u' << TypeNameStr.size() << TypeNameStr << "Lj" |
4073 | << VecSizeInBits << "EE" ; |
4074 | } |
4075 | |
4076 | void CXXNameMangler::mangleRISCVFixedRVVVectorType( |
4077 | const DependentVectorType *T) { |
4078 | DiagnosticsEngine &Diags = Context.getDiags(); |
4079 | unsigned DiagID = Diags.getCustomDiagID( |
4080 | L: DiagnosticsEngine::Error, |
4081 | FormatString: "cannot mangle this dependent fixed-length RVV vector type yet" ); |
4082 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
4083 | } |
4084 | |
4085 | // GNU extension: vector types |
4086 | // <type> ::= <vector-type> |
4087 | // <vector-type> ::= Dv <positive dimension number> _ |
4088 | // <extended element type> |
4089 | // ::= Dv [<dimension expression>] _ <element type> |
4090 | // <extended element type> ::= <element type> |
4091 | // ::= p # AltiVec vector pixel |
4092 | // ::= b # Altivec vector bool |
4093 | void CXXNameMangler::mangleType(const VectorType *T) { |
4094 | if ((T->getVectorKind() == VectorKind::Neon || |
4095 | T->getVectorKind() == VectorKind::NeonPoly)) { |
4096 | llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); |
4097 | llvm::Triple::ArchType Arch = |
4098 | getASTContext().getTargetInfo().getTriple().getArch(); |
4099 | if ((Arch == llvm::Triple::aarch64 || |
4100 | Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) |
4101 | mangleAArch64NeonVectorType(T); |
4102 | else |
4103 | mangleNeonVectorType(T); |
4104 | return; |
4105 | } else if (T->getVectorKind() == VectorKind::SveFixedLengthData || |
4106 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) { |
4107 | mangleAArch64FixedSveVectorType(T); |
4108 | return; |
4109 | } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData || |
4110 | T->getVectorKind() == VectorKind::RVVFixedLengthMask) { |
4111 | mangleRISCVFixedRVVVectorType(T); |
4112 | return; |
4113 | } |
4114 | Out << "Dv" << T->getNumElements() << '_'; |
4115 | if (T->getVectorKind() == VectorKind::AltiVecPixel) |
4116 | Out << 'p'; |
4117 | else if (T->getVectorKind() == VectorKind::AltiVecBool) |
4118 | Out << 'b'; |
4119 | else |
4120 | mangleType(T: T->getElementType()); |
4121 | } |
4122 | |
4123 | void CXXNameMangler::mangleType(const DependentVectorType *T) { |
4124 | if ((T->getVectorKind() == VectorKind::Neon || |
4125 | T->getVectorKind() == VectorKind::NeonPoly)) { |
4126 | llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); |
4127 | llvm::Triple::ArchType Arch = |
4128 | getASTContext().getTargetInfo().getTriple().getArch(); |
4129 | if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && |
4130 | !Target.isOSDarwin()) |
4131 | mangleAArch64NeonVectorType(T); |
4132 | else |
4133 | mangleNeonVectorType(T); |
4134 | return; |
4135 | } else if (T->getVectorKind() == VectorKind::SveFixedLengthData || |
4136 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) { |
4137 | mangleAArch64FixedSveVectorType(T); |
4138 | return; |
4139 | } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData) { |
4140 | mangleRISCVFixedRVVVectorType(T); |
4141 | return; |
4142 | } |
4143 | |
4144 | Out << "Dv" ; |
4145 | mangleExpression(E: T->getSizeExpr()); |
4146 | Out << '_'; |
4147 | if (T->getVectorKind() == VectorKind::AltiVecPixel) |
4148 | Out << 'p'; |
4149 | else if (T->getVectorKind() == VectorKind::AltiVecBool) |
4150 | Out << 'b'; |
4151 | else |
4152 | mangleType(T: T->getElementType()); |
4153 | } |
4154 | |
4155 | void CXXNameMangler::mangleType(const ExtVectorType *T) { |
4156 | mangleType(static_cast<const VectorType*>(T)); |
4157 | } |
4158 | void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { |
4159 | Out << "Dv" ; |
4160 | mangleExpression(E: T->getSizeExpr()); |
4161 | Out << '_'; |
4162 | mangleType(T: T->getElementType()); |
4163 | } |
4164 | |
4165 | void CXXNameMangler::mangleType(const ConstantMatrixType *T) { |
4166 | // Mangle matrix types as a vendor extended type: |
4167 | // u<Len>matrix_typeI<Rows><Columns><element type>E |
4168 | |
4169 | StringRef VendorQualifier = "matrix_type" ; |
4170 | Out << "u" << VendorQualifier.size() << VendorQualifier; |
4171 | |
4172 | Out << "I" ; |
4173 | auto &ASTCtx = getASTContext(); |
4174 | unsigned BitWidth = ASTCtx.getTypeSize(T: ASTCtx.getSizeType()); |
4175 | llvm::APSInt Rows(BitWidth); |
4176 | Rows = T->getNumRows(); |
4177 | mangleIntegerLiteral(T: ASTCtx.getSizeType(), Value: Rows); |
4178 | llvm::APSInt Columns(BitWidth); |
4179 | Columns = T->getNumColumns(); |
4180 | mangleIntegerLiteral(T: ASTCtx.getSizeType(), Value: Columns); |
4181 | mangleType(T->getElementType()); |
4182 | Out << "E" ; |
4183 | } |
4184 | |
4185 | void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) { |
4186 | // Mangle matrix types as a vendor extended type: |
4187 | // u<Len>matrix_typeI<row expr><column expr><element type>E |
4188 | StringRef VendorQualifier = "matrix_type" ; |
4189 | Out << "u" << VendorQualifier.size() << VendorQualifier; |
4190 | |
4191 | Out << "I" ; |
4192 | mangleTemplateArgExpr(E: T->getRowExpr()); |
4193 | mangleTemplateArgExpr(E: T->getColumnExpr()); |
4194 | mangleType(T->getElementType()); |
4195 | Out << "E" ; |
4196 | } |
4197 | |
4198 | void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { |
4199 | SplitQualType split = T->getPointeeType().split(); |
4200 | mangleQualifiers(Quals: split.Quals, DAST: T); |
4201 | mangleType(T: QualType(split.Ty, 0)); |
4202 | } |
4203 | |
4204 | void CXXNameMangler::mangleType(const PackExpansionType *T) { |
4205 | // <type> ::= Dp <type> # pack expansion (C++0x) |
4206 | Out << "Dp" ; |
4207 | mangleType(T: T->getPattern()); |
4208 | } |
4209 | |
4210 | void CXXNameMangler::mangleType(const PackIndexingType *T) { |
4211 | if (!T->hasSelectedType()) |
4212 | mangleType(T: T->getPattern()); |
4213 | else |
4214 | mangleType(T: T->getSelectedType()); |
4215 | } |
4216 | |
4217 | void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { |
4218 | mangleSourceName(II: T->getDecl()->getIdentifier()); |
4219 | } |
4220 | |
4221 | void CXXNameMangler::mangleType(const ObjCObjectType *T) { |
4222 | // Treat __kindof as a vendor extended type qualifier. |
4223 | if (T->isKindOfType()) |
4224 | Out << "U8__kindof" ; |
4225 | |
4226 | if (!T->qual_empty()) { |
4227 | // Mangle protocol qualifiers. |
4228 | SmallString<64> QualStr; |
4229 | llvm::raw_svector_ostream QualOS(QualStr); |
4230 | QualOS << "objcproto" ; |
4231 | for (const auto *I : T->quals()) { |
4232 | StringRef name = I->getName(); |
4233 | QualOS << name.size() << name; |
4234 | } |
4235 | Out << 'U' << QualStr.size() << QualStr; |
4236 | } |
4237 | |
4238 | mangleType(T: T->getBaseType()); |
4239 | |
4240 | if (T->isSpecialized()) { |
4241 | // Mangle type arguments as I <type>+ E |
4242 | Out << 'I'; |
4243 | for (auto typeArg : T->getTypeArgs()) |
4244 | mangleType(T: typeArg); |
4245 | Out << 'E'; |
4246 | } |
4247 | } |
4248 | |
4249 | void CXXNameMangler::mangleType(const BlockPointerType *T) { |
4250 | Out << "U13block_pointer" ; |
4251 | mangleType(T: T->getPointeeType()); |
4252 | } |
4253 | |
4254 | void CXXNameMangler::mangleType(const InjectedClassNameType *T) { |
4255 | // Mangle injected class name types as if the user had written the |
4256 | // specialization out fully. It may not actually be possible to see |
4257 | // this mangling, though. |
4258 | mangleType(T: T->getInjectedSpecializationType()); |
4259 | } |
4260 | |
4261 | void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { |
4262 | if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { |
4263 | mangleTemplateName(TD, Args: T->template_arguments()); |
4264 | } else { |
4265 | if (mangleSubstitution(T: QualType(T, 0))) |
4266 | return; |
4267 | |
4268 | mangleTemplatePrefix(Template: T->getTemplateName()); |
4269 | |
4270 | // FIXME: GCC does not appear to mangle the template arguments when |
4271 | // the template in question is a dependent template name. Should we |
4272 | // emulate that badness? |
4273 | mangleTemplateArgs(TN: T->getTemplateName(), Args: T->template_arguments()); |
4274 | addSubstitution(T: QualType(T, 0)); |
4275 | } |
4276 | } |
4277 | |
4278 | void CXXNameMangler::mangleType(const DependentNameType *T) { |
4279 | // Proposal by cxx-abi-dev, 2014-03-26 |
4280 | // <class-enum-type> ::= <name> # non-dependent or dependent type name or |
4281 | // # dependent elaborated type specifier using |
4282 | // # 'typename' |
4283 | // ::= Ts <name> # dependent elaborated type specifier using |
4284 | // # 'struct' or 'class' |
4285 | // ::= Tu <name> # dependent elaborated type specifier using |
4286 | // # 'union' |
4287 | // ::= Te <name> # dependent elaborated type specifier using |
4288 | // # 'enum' |
4289 | switch (T->getKeyword()) { |
4290 | case ElaboratedTypeKeyword::None: |
4291 | case ElaboratedTypeKeyword::Typename: |
4292 | break; |
4293 | case ElaboratedTypeKeyword::Struct: |
4294 | case ElaboratedTypeKeyword::Class: |
4295 | case ElaboratedTypeKeyword::Interface: |
4296 | Out << "Ts" ; |
4297 | break; |
4298 | case ElaboratedTypeKeyword::Union: |
4299 | Out << "Tu" ; |
4300 | break; |
4301 | case ElaboratedTypeKeyword::Enum: |
4302 | Out << "Te" ; |
4303 | break; |
4304 | } |
4305 | // Typename types are always nested |
4306 | Out << 'N'; |
4307 | manglePrefix(qualifier: T->getQualifier()); |
4308 | mangleSourceName(II: T->getIdentifier()); |
4309 | Out << 'E'; |
4310 | } |
4311 | |
4312 | void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { |
4313 | // Dependently-scoped template types are nested if they have a prefix. |
4314 | Out << 'N'; |
4315 | |
4316 | // TODO: avoid making this TemplateName. |
4317 | TemplateName Prefix = |
4318 | getASTContext().getDependentTemplateName(NNS: T->getQualifier(), |
4319 | Name: T->getIdentifier()); |
4320 | mangleTemplatePrefix(Template: Prefix); |
4321 | |
4322 | // FIXME: GCC does not appear to mangle the template arguments when |
4323 | // the template in question is a dependent template name. Should we |
4324 | // emulate that badness? |
4325 | mangleTemplateArgs(TN: Prefix, Args: T->template_arguments()); |
4326 | Out << 'E'; |
4327 | } |
4328 | |
4329 | void CXXNameMangler::mangleType(const TypeOfType *T) { |
4330 | // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
4331 | // "extension with parameters" mangling. |
4332 | Out << "u6typeof" ; |
4333 | } |
4334 | |
4335 | void CXXNameMangler::mangleType(const TypeOfExprType *T) { |
4336 | // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
4337 | // "extension with parameters" mangling. |
4338 | Out << "u6typeof" ; |
4339 | } |
4340 | |
4341 | void CXXNameMangler::mangleType(const DecltypeType *T) { |
4342 | Expr *E = T->getUnderlyingExpr(); |
4343 | |
4344 | // type ::= Dt <expression> E # decltype of an id-expression |
4345 | // # or class member access |
4346 | // ::= DT <expression> E # decltype of an expression |
4347 | |
4348 | // This purports to be an exhaustive list of id-expressions and |
4349 | // class member accesses. Note that we do not ignore parentheses; |
4350 | // parentheses change the semantics of decltype for these |
4351 | // expressions (and cause the mangler to use the other form). |
4352 | if (isa<DeclRefExpr>(Val: E) || |
4353 | isa<MemberExpr>(Val: E) || |
4354 | isa<UnresolvedLookupExpr>(Val: E) || |
4355 | isa<DependentScopeDeclRefExpr>(Val: E) || |
4356 | isa<CXXDependentScopeMemberExpr>(Val: E) || |
4357 | isa<UnresolvedMemberExpr>(Val: E)) |
4358 | Out << "Dt" ; |
4359 | else |
4360 | Out << "DT" ; |
4361 | mangleExpression(E); |
4362 | Out << 'E'; |
4363 | } |
4364 | |
4365 | void CXXNameMangler::mangleType(const UnaryTransformType *T) { |
4366 | // If this is dependent, we need to record that. If not, we simply |
4367 | // mangle it as the underlying type since they are equivalent. |
4368 | if (T->isDependentType()) { |
4369 | Out << "u" ; |
4370 | |
4371 | StringRef BuiltinName; |
4372 | switch (T->getUTTKind()) { |
4373 | #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \ |
4374 | case UnaryTransformType::Enum: \ |
4375 | BuiltinName = "__" #Trait; \ |
4376 | break; |
4377 | #include "clang/Basic/TransformTypeTraits.def" |
4378 | } |
4379 | Out << BuiltinName.size() << BuiltinName; |
4380 | } |
4381 | |
4382 | Out << "I" ; |
4383 | mangleType(T: T->getBaseType()); |
4384 | Out << "E" ; |
4385 | } |
4386 | |
4387 | void CXXNameMangler::mangleType(const AutoType *T) { |
4388 | assert(T->getDeducedType().isNull() && |
4389 | "Deduced AutoType shouldn't be handled here!" ); |
4390 | assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && |
4391 | "shouldn't need to mangle __auto_type!" ); |
4392 | // <builtin-type> ::= Da # auto |
4393 | // ::= Dc # decltype(auto) |
4394 | // ::= Dk # constrained auto |
4395 | // ::= DK # constrained decltype(auto) |
4396 | if (T->isConstrained() && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
4397 | Out << (T->isDecltypeAuto() ? "DK" : "Dk" ); |
4398 | mangleTypeConstraint(Concept: T->getTypeConstraintConcept(), |
4399 | Arguments: T->getTypeConstraintArguments()); |
4400 | } else { |
4401 | Out << (T->isDecltypeAuto() ? "Dc" : "Da" ); |
4402 | } |
4403 | } |
4404 | |
4405 | void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { |
4406 | QualType Deduced = T->getDeducedType(); |
4407 | if (!Deduced.isNull()) |
4408 | return mangleType(T: Deduced); |
4409 | |
4410 | TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl(); |
4411 | assert(TD && "shouldn't form deduced TST unless we know we have a template" ); |
4412 | |
4413 | if (mangleSubstitution(TD)) |
4414 | return; |
4415 | |
4416 | mangleName(GD: GlobalDecl(TD)); |
4417 | addSubstitution(TD); |
4418 | } |
4419 | |
4420 | void CXXNameMangler::mangleType(const AtomicType *T) { |
4421 | // <type> ::= U <source-name> <type> # vendor extended type qualifier |
4422 | // (Until there's a standardized mangling...) |
4423 | Out << "U7_Atomic" ; |
4424 | mangleType(T: T->getValueType()); |
4425 | } |
4426 | |
4427 | void CXXNameMangler::mangleType(const PipeType *T) { |
4428 | // Pipe type mangling rules are described in SPIR 2.0 specification |
4429 | // A.1 Data types and A.3 Summary of changes |
4430 | // <type> ::= 8ocl_pipe |
4431 | Out << "8ocl_pipe" ; |
4432 | } |
4433 | |
4434 | void CXXNameMangler::mangleType(const BitIntType *T) { |
4435 | // 5.1.5.2 Builtin types |
4436 | // <type> ::= DB <number | instantiation-dependent expression> _ |
4437 | // ::= DU <number | instantiation-dependent expression> _ |
4438 | Out << "D" << (T->isUnsigned() ? "U" : "B" ) << T->getNumBits() << "_" ; |
4439 | } |
4440 | |
4441 | void CXXNameMangler::mangleType(const DependentBitIntType *T) { |
4442 | // 5.1.5.2 Builtin types |
4443 | // <type> ::= DB <number | instantiation-dependent expression> _ |
4444 | // ::= DU <number | instantiation-dependent expression> _ |
4445 | Out << "D" << (T->isUnsigned() ? "U" : "B" ); |
4446 | mangleExpression(E: T->getNumBitsExpr()); |
4447 | Out << "_" ; |
4448 | } |
4449 | |
4450 | void CXXNameMangler::mangleType(const ArrayParameterType *T) { |
4451 | mangleType(cast<ConstantArrayType>(Val: T)); |
4452 | } |
4453 | |
4454 | void CXXNameMangler::mangleIntegerLiteral(QualType T, |
4455 | const llvm::APSInt &Value) { |
4456 | // <expr-primary> ::= L <type> <value number> E # integer literal |
4457 | Out << 'L'; |
4458 | |
4459 | mangleType(T); |
4460 | if (T->isBooleanType()) { |
4461 | // Boolean values are encoded as 0/1. |
4462 | Out << (Value.getBoolValue() ? '1' : '0'); |
4463 | } else { |
4464 | mangleNumber(Value); |
4465 | } |
4466 | Out << 'E'; |
4467 | |
4468 | } |
4469 | |
4470 | void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { |
4471 | // Ignore member expressions involving anonymous unions. |
4472 | while (const auto *RT = Base->getType()->getAs<RecordType>()) { |
4473 | if (!RT->getDecl()->isAnonymousStructOrUnion()) |
4474 | break; |
4475 | const auto *ME = dyn_cast<MemberExpr>(Val: Base); |
4476 | if (!ME) |
4477 | break; |
4478 | Base = ME->getBase(); |
4479 | IsArrow = ME->isArrow(); |
4480 | } |
4481 | |
4482 | if (Base->isImplicitCXXThis()) { |
4483 | // Note: GCC mangles member expressions to the implicit 'this' as |
4484 | // *this., whereas we represent them as this->. The Itanium C++ ABI |
4485 | // does not specify anything here, so we follow GCC. |
4486 | Out << "dtdefpT" ; |
4487 | } else { |
4488 | Out << (IsArrow ? "pt" : "dt" ); |
4489 | mangleExpression(E: Base); |
4490 | } |
4491 | } |
4492 | |
4493 | /// Mangles a member expression. |
4494 | void CXXNameMangler::mangleMemberExpr(const Expr *base, |
4495 | bool isArrow, |
4496 | NestedNameSpecifier *qualifier, |
4497 | NamedDecl *firstQualifierLookup, |
4498 | DeclarationName member, |
4499 | const TemplateArgumentLoc *TemplateArgs, |
4500 | unsigned NumTemplateArgs, |
4501 | unsigned arity) { |
4502 | // <expression> ::= dt <expression> <unresolved-name> |
4503 | // ::= pt <expression> <unresolved-name> |
4504 | if (base) |
4505 | mangleMemberExprBase(Base: base, IsArrow: isArrow); |
4506 | mangleUnresolvedName(qualifier, name: member, TemplateArgs, NumTemplateArgs, knownArity: arity); |
4507 | } |
4508 | |
4509 | /// Look at the callee of the given call expression and determine if |
4510 | /// it's a parenthesized id-expression which would have triggered ADL |
4511 | /// otherwise. |
4512 | static bool isParenthesizedADLCallee(const CallExpr *call) { |
4513 | const Expr *callee = call->getCallee(); |
4514 | const Expr *fn = callee->IgnoreParens(); |
4515 | |
4516 | // Must be parenthesized. IgnoreParens() skips __extension__ nodes, |
4517 | // too, but for those to appear in the callee, it would have to be |
4518 | // parenthesized. |
4519 | if (callee == fn) return false; |
4520 | |
4521 | // Must be an unresolved lookup. |
4522 | const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(Val: fn); |
4523 | if (!lookup) return false; |
4524 | |
4525 | assert(!lookup->requiresADL()); |
4526 | |
4527 | // Must be an unqualified lookup. |
4528 | if (lookup->getQualifier()) return false; |
4529 | |
4530 | // Must not have found a class member. Note that if one is a class |
4531 | // member, they're all class members. |
4532 | if (lookup->getNumDecls() > 0 && |
4533 | (*lookup->decls_begin())->isCXXClassMember()) |
4534 | return false; |
4535 | |
4536 | // Otherwise, ADL would have been triggered. |
4537 | return true; |
4538 | } |
4539 | |
4540 | void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { |
4541 | const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(Val: E); |
4542 | Out << CastEncoding; |
4543 | mangleType(ECE->getType()); |
4544 | mangleExpression(E: ECE->getSubExpr()); |
4545 | } |
4546 | |
4547 | void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { |
4548 | if (auto *Syntactic = InitList->getSyntacticForm()) |
4549 | InitList = Syntactic; |
4550 | for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) |
4551 | mangleExpression(E: InitList->getInit(Init: i)); |
4552 | } |
4553 | |
4554 | void CXXNameMangler::mangleRequirement(SourceLocation RequiresExprLoc, |
4555 | const concepts::Requirement *Req) { |
4556 | using concepts::Requirement; |
4557 | |
4558 | // TODO: We can't mangle the result of a failed substitution. It's not clear |
4559 | // whether we should be mangling the original form prior to any substitution |
4560 | // instead. See https://lists.isocpp.org/core/2023/04/14118.php |
4561 | auto HandleSubstitutionFailure = |
4562 | [&](SourceLocation Loc) { |
4563 | DiagnosticsEngine &Diags = Context.getDiags(); |
4564 | unsigned DiagID = Diags.getCustomDiagID( |
4565 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this requires-expression " |
4566 | "containing a substitution failure" ); |
4567 | Diags.Report(Loc, DiagID); |
4568 | Out << 'F'; |
4569 | }; |
4570 | |
4571 | switch (Req->getKind()) { |
4572 | case Requirement::RK_Type: { |
4573 | const auto *TR = cast<concepts::TypeRequirement>(Val: Req); |
4574 | if (TR->isSubstitutionFailure()) |
4575 | return HandleSubstitutionFailure( |
4576 | TR->getSubstitutionDiagnostic()->DiagLoc); |
4577 | |
4578 | Out << 'T'; |
4579 | mangleType(T: TR->getType()->getType()); |
4580 | break; |
4581 | } |
4582 | |
4583 | case Requirement::RK_Simple: |
4584 | case Requirement::RK_Compound: { |
4585 | const auto *ER = cast<concepts::ExprRequirement>(Val: Req); |
4586 | if (ER->isExprSubstitutionFailure()) |
4587 | return HandleSubstitutionFailure( |
4588 | ER->getExprSubstitutionDiagnostic()->DiagLoc); |
4589 | |
4590 | Out << 'X'; |
4591 | mangleExpression(E: ER->getExpr()); |
4592 | |
4593 | if (ER->hasNoexceptRequirement()) |
4594 | Out << 'N'; |
4595 | |
4596 | if (!ER->getReturnTypeRequirement().isEmpty()) { |
4597 | if (ER->getReturnTypeRequirement().isSubstitutionFailure()) |
4598 | return HandleSubstitutionFailure(ER->getReturnTypeRequirement() |
4599 | .getSubstitutionDiagnostic() |
4600 | ->DiagLoc); |
4601 | |
4602 | Out << 'R'; |
4603 | mangleTypeConstraint(Constraint: ER->getReturnTypeRequirement().getTypeConstraint()); |
4604 | } |
4605 | break; |
4606 | } |
4607 | |
4608 | case Requirement::RK_Nested: |
4609 | const auto *NR = cast<concepts::NestedRequirement>(Val: Req); |
4610 | if (NR->hasInvalidConstraint()) { |
4611 | // FIXME: NestedRequirement should track the location of its requires |
4612 | // keyword. |
4613 | return HandleSubstitutionFailure(RequiresExprLoc); |
4614 | } |
4615 | |
4616 | Out << 'Q'; |
4617 | mangleExpression(E: NR->getConstraintExpr()); |
4618 | break; |
4619 | } |
4620 | } |
4621 | |
4622 | void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity, |
4623 | bool AsTemplateArg) { |
4624 | // <expression> ::= <unary operator-name> <expression> |
4625 | // ::= <binary operator-name> <expression> <expression> |
4626 | // ::= <trinary operator-name> <expression> <expression> <expression> |
4627 | // ::= cv <type> expression # conversion with one argument |
4628 | // ::= cv <type> _ <expression>* E # conversion with a different number of arguments |
4629 | // ::= dc <type> <expression> # dynamic_cast<type> (expression) |
4630 | // ::= sc <type> <expression> # static_cast<type> (expression) |
4631 | // ::= cc <type> <expression> # const_cast<type> (expression) |
4632 | // ::= rc <type> <expression> # reinterpret_cast<type> (expression) |
4633 | // ::= st <type> # sizeof (a type) |
4634 | // ::= at <type> # alignof (a type) |
4635 | // ::= <template-param> |
4636 | // ::= <function-param> |
4637 | // ::= fpT # 'this' expression (part of <function-param>) |
4638 | // ::= sr <type> <unqualified-name> # dependent name |
4639 | // ::= sr <type> <unqualified-name> <template-args> # dependent template-id |
4640 | // ::= ds <expression> <expression> # expr.*expr |
4641 | // ::= sZ <template-param> # size of a parameter pack |
4642 | // ::= sZ <function-param> # size of a function parameter pack |
4643 | // ::= u <source-name> <template-arg>* E # vendor extended expression |
4644 | // ::= <expr-primary> |
4645 | // <expr-primary> ::= L <type> <value number> E # integer literal |
4646 | // ::= L <type> <value float> E # floating literal |
4647 | // ::= L <type> <string type> E # string literal |
4648 | // ::= L <nullptr type> E # nullptr literal "LDnE" |
4649 | // ::= L <pointer type> 0 E # null pointer template argument |
4650 | // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang |
4651 | // ::= L <mangled-name> E # external name |
4652 | QualType ImplicitlyConvertedToType; |
4653 | |
4654 | // A top-level expression that's not <expr-primary> needs to be wrapped in |
4655 | // X...E in a template arg. |
4656 | bool IsPrimaryExpr = true; |
4657 | auto NotPrimaryExpr = [&] { |
4658 | if (AsTemplateArg && IsPrimaryExpr) |
4659 | Out << 'X'; |
4660 | IsPrimaryExpr = false; |
4661 | }; |
4662 | |
4663 | auto MangleDeclRefExpr = [&](const NamedDecl *D) { |
4664 | switch (D->getKind()) { |
4665 | default: |
4666 | // <expr-primary> ::= L <mangled-name> E # external name |
4667 | Out << 'L'; |
4668 | mangle(GD: D); |
4669 | Out << 'E'; |
4670 | break; |
4671 | |
4672 | case Decl::ParmVar: |
4673 | NotPrimaryExpr(); |
4674 | mangleFunctionParam(parm: cast<ParmVarDecl>(Val: D)); |
4675 | break; |
4676 | |
4677 | case Decl::EnumConstant: { |
4678 | // <expr-primary> |
4679 | const EnumConstantDecl *ED = cast<EnumConstantDecl>(Val: D); |
4680 | mangleIntegerLiteral(T: ED->getType(), Value: ED->getInitVal()); |
4681 | break; |
4682 | } |
4683 | |
4684 | case Decl::NonTypeTemplateParm: |
4685 | NotPrimaryExpr(); |
4686 | const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(Val: D); |
4687 | mangleTemplateParameter(Depth: PD->getDepth(), Index: PD->getIndex()); |
4688 | break; |
4689 | } |
4690 | }; |
4691 | |
4692 | // 'goto recurse' is used when handling a simple "unwrapping" node which |
4693 | // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need |
4694 | // to be preserved. |
4695 | recurse: |
4696 | switch (E->getStmtClass()) { |
4697 | case Expr::NoStmtClass: |
4698 | #define ABSTRACT_STMT(Type) |
4699 | #define EXPR(Type, Base) |
4700 | #define STMT(Type, Base) \ |
4701 | case Expr::Type##Class: |
4702 | #include "clang/AST/StmtNodes.inc" |
4703 | // fallthrough |
4704 | |
4705 | // These all can only appear in local or variable-initialization |
4706 | // contexts and so should never appear in a mangling. |
4707 | case Expr::AddrLabelExprClass: |
4708 | case Expr::DesignatedInitUpdateExprClass: |
4709 | case Expr::ImplicitValueInitExprClass: |
4710 | case Expr::ArrayInitLoopExprClass: |
4711 | case Expr::ArrayInitIndexExprClass: |
4712 | case Expr::NoInitExprClass: |
4713 | case Expr::ParenListExprClass: |
4714 | case Expr::MSPropertyRefExprClass: |
4715 | case Expr::MSPropertySubscriptExprClass: |
4716 | case Expr::TypoExprClass: // This should no longer exist in the AST by now. |
4717 | case Expr::RecoveryExprClass: |
4718 | case Expr::OMPArraySectionExprClass: |
4719 | case Expr::OMPArrayShapingExprClass: |
4720 | case Expr::OMPIteratorExprClass: |
4721 | case Expr::CXXInheritedCtorInitExprClass: |
4722 | case Expr::CXXParenListInitExprClass: |
4723 | case Expr::PackIndexingExprClass: |
4724 | llvm_unreachable("unexpected statement kind" ); |
4725 | |
4726 | case Expr::ConstantExprClass: |
4727 | E = cast<ConstantExpr>(E)->getSubExpr(); |
4728 | goto recurse; |
4729 | |
4730 | // FIXME: invent manglings for all these. |
4731 | case Expr::BlockExprClass: |
4732 | case Expr::ChooseExprClass: |
4733 | case Expr::CompoundLiteralExprClass: |
4734 | case Expr::ExtVectorElementExprClass: |
4735 | case Expr::GenericSelectionExprClass: |
4736 | case Expr::ObjCEncodeExprClass: |
4737 | case Expr::ObjCIsaExprClass: |
4738 | case Expr::ObjCIvarRefExprClass: |
4739 | case Expr::ObjCMessageExprClass: |
4740 | case Expr::ObjCPropertyRefExprClass: |
4741 | case Expr::ObjCProtocolExprClass: |
4742 | case Expr::ObjCSelectorExprClass: |
4743 | case Expr::ObjCStringLiteralClass: |
4744 | case Expr::ObjCBoxedExprClass: |
4745 | case Expr::ObjCArrayLiteralClass: |
4746 | case Expr::ObjCDictionaryLiteralClass: |
4747 | case Expr::ObjCSubscriptRefExprClass: |
4748 | case Expr::ObjCIndirectCopyRestoreExprClass: |
4749 | case Expr::ObjCAvailabilityCheckExprClass: |
4750 | case Expr::OffsetOfExprClass: |
4751 | case Expr::PredefinedExprClass: |
4752 | case Expr::ShuffleVectorExprClass: |
4753 | case Expr::ConvertVectorExprClass: |
4754 | case Expr::StmtExprClass: |
4755 | case Expr::ArrayTypeTraitExprClass: |
4756 | case Expr::ExpressionTraitExprClass: |
4757 | case Expr::VAArgExprClass: |
4758 | case Expr::CUDAKernelCallExprClass: |
4759 | case Expr::AsTypeExprClass: |
4760 | case Expr::PseudoObjectExprClass: |
4761 | case Expr::AtomicExprClass: |
4762 | case Expr::SourceLocExprClass: |
4763 | case Expr::BuiltinBitCastExprClass: |
4764 | { |
4765 | NotPrimaryExpr(); |
4766 | if (!NullOut) { |
4767 | // As bad as this diagnostic is, it's better than crashing. |
4768 | DiagnosticsEngine &Diags = Context.getDiags(); |
4769 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
4770 | "cannot yet mangle expression type %0" ); |
4771 | Diags.Report(Loc: E->getExprLoc(), DiagID) |
4772 | << E->getStmtClassName() << E->getSourceRange(); |
4773 | return; |
4774 | } |
4775 | break; |
4776 | } |
4777 | |
4778 | case Expr::CXXUuidofExprClass: { |
4779 | NotPrimaryExpr(); |
4780 | const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E); |
4781 | // As of clang 12, uuidof uses the vendor extended expression |
4782 | // mangling. Previously, it used a special-cased nonstandard extension. |
4783 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
4784 | Out << "u8__uuidof" ; |
4785 | if (UE->isTypeOperand()) |
4786 | mangleType(T: UE->getTypeOperand(Context&: Context.getASTContext())); |
4787 | else |
4788 | mangleTemplateArgExpr(E: UE->getExprOperand()); |
4789 | Out << 'E'; |
4790 | } else { |
4791 | if (UE->isTypeOperand()) { |
4792 | QualType UuidT = UE->getTypeOperand(Context&: Context.getASTContext()); |
4793 | Out << "u8__uuidoft" ; |
4794 | mangleType(T: UuidT); |
4795 | } else { |
4796 | Expr *UuidExp = UE->getExprOperand(); |
4797 | Out << "u8__uuidofz" ; |
4798 | mangleExpression(E: UuidExp); |
4799 | } |
4800 | } |
4801 | break; |
4802 | } |
4803 | |
4804 | // Even gcc-4.5 doesn't mangle this. |
4805 | case Expr::BinaryConditionalOperatorClass: { |
4806 | NotPrimaryExpr(); |
4807 | DiagnosticsEngine &Diags = Context.getDiags(); |
4808 | unsigned DiagID = |
4809 | Diags.getCustomDiagID(DiagnosticsEngine::Error, |
4810 | "?: operator with omitted middle operand cannot be mangled" ); |
4811 | Diags.Report(Loc: E->getExprLoc(), DiagID) |
4812 | << E->getStmtClassName() << E->getSourceRange(); |
4813 | return; |
4814 | } |
4815 | |
4816 | // These are used for internal purposes and cannot be meaningfully mangled. |
4817 | case Expr::OpaqueValueExprClass: |
4818 | llvm_unreachable("cannot mangle opaque value; mangling wrong thing?" ); |
4819 | |
4820 | case Expr::InitListExprClass: { |
4821 | NotPrimaryExpr(); |
4822 | Out << "il" ; |
4823 | mangleInitListElements(InitList: cast<InitListExpr>(E)); |
4824 | Out << "E" ; |
4825 | break; |
4826 | } |
4827 | |
4828 | case Expr::DesignatedInitExprClass: { |
4829 | NotPrimaryExpr(); |
4830 | auto *DIE = cast<DesignatedInitExpr>(E); |
4831 | for (const auto &Designator : DIE->designators()) { |
4832 | if (Designator.isFieldDesignator()) { |
4833 | Out << "di" ; |
4834 | mangleSourceName(Designator.getFieldName()); |
4835 | } else if (Designator.isArrayDesignator()) { |
4836 | Out << "dx" ; |
4837 | mangleExpression(DIE->getArrayIndex(Designator)); |
4838 | } else { |
4839 | assert(Designator.isArrayRangeDesignator() && |
4840 | "unknown designator kind" ); |
4841 | Out << "dX" ; |
4842 | mangleExpression(DIE->getArrayRangeStart(Designator)); |
4843 | mangleExpression(DIE->getArrayRangeEnd(Designator)); |
4844 | } |
4845 | } |
4846 | mangleExpression(E: DIE->getInit()); |
4847 | break; |
4848 | } |
4849 | |
4850 | case Expr::CXXDefaultArgExprClass: |
4851 | E = cast<CXXDefaultArgExpr>(E)->getExpr(); |
4852 | goto recurse; |
4853 | |
4854 | case Expr::CXXDefaultInitExprClass: |
4855 | E = cast<CXXDefaultInitExpr>(E)->getExpr(); |
4856 | goto recurse; |
4857 | |
4858 | case Expr::CXXStdInitializerListExprClass: |
4859 | E = cast<CXXStdInitializerListExpr>(E)->getSubExpr(); |
4860 | goto recurse; |
4861 | |
4862 | case Expr::SubstNonTypeTemplateParmExprClass: { |
4863 | // Mangle a substituted parameter the same way we mangle the template |
4864 | // argument. |
4865 | auto *SNTTPE = cast<SubstNonTypeTemplateParmExpr>(E); |
4866 | if (auto *CE = dyn_cast<ConstantExpr>(SNTTPE->getReplacement())) { |
4867 | // Pull out the constant value and mangle it as a template argument. |
4868 | QualType ParamType = SNTTPE->getParameterType(Context.getASTContext()); |
4869 | assert(CE->hasAPValueResult() && "expected the NTTP to have an APValue" ); |
4870 | mangleValueInTemplateArg(T: ParamType, V: CE->getAPValueResult(), TopLevel: false, |
4871 | /*NeedExactType=*/true); |
4872 | break; |
4873 | } |
4874 | // The remaining cases all happen to be substituted with expressions that |
4875 | // mangle the same as a corresponding template argument anyway. |
4876 | E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(); |
4877 | goto recurse; |
4878 | } |
4879 | |
4880 | case Expr::UserDefinedLiteralClass: |
4881 | // We follow g++'s approach of mangling a UDL as a call to the literal |
4882 | // operator. |
4883 | case Expr::CXXMemberCallExprClass: // fallthrough |
4884 | case Expr::CallExprClass: { |
4885 | NotPrimaryExpr(); |
4886 | const CallExpr *CE = cast<CallExpr>(E); |
4887 | |
4888 | // <expression> ::= cp <simple-id> <expression>* E |
4889 | // We use this mangling only when the call would use ADL except |
4890 | // for being parenthesized. Per discussion with David |
4891 | // Vandervoorde, 2011.04.25. |
4892 | if (isParenthesizedADLCallee(call: CE)) { |
4893 | Out << "cp" ; |
4894 | // The callee here is a parenthesized UnresolvedLookupExpr with |
4895 | // no qualifier and should always get mangled as a <simple-id> |
4896 | // anyway. |
4897 | |
4898 | // <expression> ::= cl <expression>* E |
4899 | } else { |
4900 | Out << "cl" ; |
4901 | } |
4902 | |
4903 | unsigned CallArity = CE->getNumArgs(); |
4904 | for (const Expr *Arg : CE->arguments()) |
4905 | if (isa<PackExpansionExpr>(Arg)) |
4906 | CallArity = UnknownArity; |
4907 | |
4908 | mangleExpression(E: CE->getCallee(), Arity: CallArity); |
4909 | for (const Expr *Arg : CE->arguments()) |
4910 | mangleExpression(Arg); |
4911 | Out << 'E'; |
4912 | break; |
4913 | } |
4914 | |
4915 | case Expr::CXXNewExprClass: { |
4916 | NotPrimaryExpr(); |
4917 | const CXXNewExpr *New = cast<CXXNewExpr>(E); |
4918 | if (New->isGlobalNew()) Out << "gs" ; |
4919 | Out << (New->isArray() ? "na" : "nw" ); |
4920 | for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), |
4921 | E = New->placement_arg_end(); I != E; ++I) |
4922 | mangleExpression(*I); |
4923 | Out << '_'; |
4924 | mangleType(T: New->getAllocatedType()); |
4925 | if (New->hasInitializer()) { |
4926 | if (New->getInitializationStyle() == CXXNewInitializationStyle::Braces) |
4927 | Out << "il" ; |
4928 | else |
4929 | Out << "pi" ; |
4930 | const Expr *Init = New->getInitializer(); |
4931 | if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { |
4932 | // Directly inline the initializers. |
4933 | for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), |
4934 | E = CCE->arg_end(); |
4935 | I != E; ++I) |
4936 | mangleExpression(*I); |
4937 | } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { |
4938 | for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) |
4939 | mangleExpression(E: PLE->getExpr(Init: i)); |
4940 | } else if (New->getInitializationStyle() == |
4941 | CXXNewInitializationStyle::Braces && |
4942 | isa<InitListExpr>(Init)) { |
4943 | // Only take InitListExprs apart for list-initialization. |
4944 | mangleInitListElements(InitList: cast<InitListExpr>(Init)); |
4945 | } else |
4946 | mangleExpression(E: Init); |
4947 | } |
4948 | Out << 'E'; |
4949 | break; |
4950 | } |
4951 | |
4952 | case Expr::CXXPseudoDestructorExprClass: { |
4953 | NotPrimaryExpr(); |
4954 | const auto *PDE = cast<CXXPseudoDestructorExpr>(E); |
4955 | if (const Expr *Base = PDE->getBase()) |
4956 | mangleMemberExprBase(Base, IsArrow: PDE->isArrow()); |
4957 | NestedNameSpecifier *Qualifier = PDE->getQualifier(); |
4958 | if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { |
4959 | if (Qualifier) { |
4960 | mangleUnresolvedPrefix(qualifier: Qualifier, |
4961 | /*recursive=*/true); |
4962 | mangleUnresolvedTypeOrSimpleId(Ty: ScopeInfo->getType()); |
4963 | Out << 'E'; |
4964 | } else { |
4965 | Out << "sr" ; |
4966 | if (!mangleUnresolvedTypeOrSimpleId(Ty: ScopeInfo->getType())) |
4967 | Out << 'E'; |
4968 | } |
4969 | } else if (Qualifier) { |
4970 | mangleUnresolvedPrefix(qualifier: Qualifier); |
4971 | } |
4972 | // <base-unresolved-name> ::= dn <destructor-name> |
4973 | Out << "dn" ; |
4974 | QualType DestroyedType = PDE->getDestroyedType(); |
4975 | mangleUnresolvedTypeOrSimpleId(Ty: DestroyedType); |
4976 | break; |
4977 | } |
4978 | |
4979 | case Expr::MemberExprClass: { |
4980 | NotPrimaryExpr(); |
4981 | const MemberExpr *ME = cast<MemberExpr>(E); |
4982 | mangleMemberExpr(base: ME->getBase(), isArrow: ME->isArrow(), |
4983 | qualifier: ME->getQualifier(), firstQualifierLookup: nullptr, |
4984 | member: ME->getMemberDecl()->getDeclName(), |
4985 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
4986 | arity: Arity); |
4987 | break; |
4988 | } |
4989 | |
4990 | case Expr::UnresolvedMemberExprClass: { |
4991 | NotPrimaryExpr(); |
4992 | const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); |
4993 | mangleMemberExpr(base: ME->isImplicitAccess() ? nullptr : ME->getBase(), |
4994 | isArrow: ME->isArrow(), qualifier: ME->getQualifier(), firstQualifierLookup: nullptr, |
4995 | member: ME->getMemberName(), |
4996 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
4997 | arity: Arity); |
4998 | break; |
4999 | } |
5000 | |
5001 | case Expr::CXXDependentScopeMemberExprClass: { |
5002 | NotPrimaryExpr(); |
5003 | const CXXDependentScopeMemberExpr *ME |
5004 | = cast<CXXDependentScopeMemberExpr>(E); |
5005 | mangleMemberExpr(base: ME->isImplicitAccess() ? nullptr : ME->getBase(), |
5006 | isArrow: ME->isArrow(), qualifier: ME->getQualifier(), |
5007 | firstQualifierLookup: ME->getFirstQualifierFoundInScope(), |
5008 | member: ME->getMember(), |
5009 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
5010 | arity: Arity); |
5011 | break; |
5012 | } |
5013 | |
5014 | case Expr::UnresolvedLookupExprClass: { |
5015 | NotPrimaryExpr(); |
5016 | const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); |
5017 | mangleUnresolvedName(qualifier: ULE->getQualifier(), name: ULE->getName(), |
5018 | TemplateArgs: ULE->getTemplateArgs(), NumTemplateArgs: ULE->getNumTemplateArgs(), |
5019 | knownArity: Arity); |
5020 | break; |
5021 | } |
5022 | |
5023 | case Expr::CXXUnresolvedConstructExprClass: { |
5024 | NotPrimaryExpr(); |
5025 | const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); |
5026 | unsigned N = CE->getNumArgs(); |
5027 | |
5028 | if (CE->isListInitialization()) { |
5029 | assert(N == 1 && "unexpected form for list initialization" ); |
5030 | auto *IL = cast<InitListExpr>(CE->getArg(I: 0)); |
5031 | Out << "tl" ; |
5032 | mangleType(CE->getType()); |
5033 | mangleInitListElements(InitList: IL); |
5034 | Out << "E" ; |
5035 | break; |
5036 | } |
5037 | |
5038 | Out << "cv" ; |
5039 | mangleType(CE->getType()); |
5040 | if (N != 1) Out << '_'; |
5041 | for (unsigned I = 0; I != N; ++I) mangleExpression(E: CE->getArg(I)); |
5042 | if (N != 1) Out << 'E'; |
5043 | break; |
5044 | } |
5045 | |
5046 | case Expr::CXXConstructExprClass: { |
5047 | // An implicit cast is silent, thus may contain <expr-primary>. |
5048 | const auto *CE = cast<CXXConstructExpr>(E); |
5049 | if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { |
5050 | assert( |
5051 | CE->getNumArgs() >= 1 && |
5052 | (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && |
5053 | "implicit CXXConstructExpr must have one argument" ); |
5054 | E = cast<CXXConstructExpr>(E)->getArg(0); |
5055 | goto recurse; |
5056 | } |
5057 | NotPrimaryExpr(); |
5058 | Out << "il" ; |
5059 | for (auto *E : CE->arguments()) |
5060 | mangleExpression(E); |
5061 | Out << "E" ; |
5062 | break; |
5063 | } |
5064 | |
5065 | case Expr::CXXTemporaryObjectExprClass: { |
5066 | NotPrimaryExpr(); |
5067 | const auto *CE = cast<CXXTemporaryObjectExpr>(E); |
5068 | unsigned N = CE->getNumArgs(); |
5069 | bool List = CE->isListInitialization(); |
5070 | |
5071 | if (List) |
5072 | Out << "tl" ; |
5073 | else |
5074 | Out << "cv" ; |
5075 | mangleType(CE->getType()); |
5076 | if (!List && N != 1) |
5077 | Out << '_'; |
5078 | if (CE->isStdInitListInitialization()) { |
5079 | // We implicitly created a std::initializer_list<T> for the first argument |
5080 | // of a constructor of type U in an expression of the form U{a, b, c}. |
5081 | // Strip all the semantic gunk off the initializer list. |
5082 | auto *SILE = |
5083 | cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit()); |
5084 | auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit()); |
5085 | mangleInitListElements(InitList: ILE); |
5086 | } else { |
5087 | for (auto *E : CE->arguments()) |
5088 | mangleExpression(E); |
5089 | } |
5090 | if (List || N != 1) |
5091 | Out << 'E'; |
5092 | break; |
5093 | } |
5094 | |
5095 | case Expr::CXXScalarValueInitExprClass: |
5096 | NotPrimaryExpr(); |
5097 | Out << "cv" ; |
5098 | mangleType(T: E->getType()); |
5099 | Out << "_E" ; |
5100 | break; |
5101 | |
5102 | case Expr::CXXNoexceptExprClass: |
5103 | NotPrimaryExpr(); |
5104 | Out << "nx" ; |
5105 | mangleExpression(E: cast<CXXNoexceptExpr>(E)->getOperand()); |
5106 | break; |
5107 | |
5108 | case Expr::UnaryExprOrTypeTraitExprClass: { |
5109 | // Non-instantiation-dependent traits are an <expr-primary> integer literal. |
5110 | const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); |
5111 | |
5112 | if (!SAE->isInstantiationDependent()) { |
5113 | // Itanium C++ ABI: |
5114 | // If the operand of a sizeof or alignof operator is not |
5115 | // instantiation-dependent it is encoded as an integer literal |
5116 | // reflecting the result of the operator. |
5117 | // |
5118 | // If the result of the operator is implicitly converted to a known |
5119 | // integer type, that type is used for the literal; otherwise, the type |
5120 | // of std::size_t or std::ptrdiff_t is used. |
5121 | // |
5122 | // FIXME: We still include the operand in the profile in this case. This |
5123 | // can lead to mangling collisions between function templates that we |
5124 | // consider to be different. |
5125 | QualType T = (ImplicitlyConvertedToType.isNull() || |
5126 | !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() |
5127 | : ImplicitlyConvertedToType; |
5128 | llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); |
5129 | mangleIntegerLiteral(T, Value: V); |
5130 | break; |
5131 | } |
5132 | |
5133 | NotPrimaryExpr(); // But otherwise, they are not. |
5134 | |
5135 | auto MangleAlignofSizeofArg = [&] { |
5136 | if (SAE->isArgumentType()) { |
5137 | Out << 't'; |
5138 | mangleType(T: SAE->getArgumentType()); |
5139 | } else { |
5140 | Out << 'z'; |
5141 | mangleExpression(E: SAE->getArgumentExpr()); |
5142 | } |
5143 | }; |
5144 | |
5145 | switch(SAE->getKind()) { |
5146 | case UETT_SizeOf: |
5147 | Out << 's'; |
5148 | MangleAlignofSizeofArg(); |
5149 | break; |
5150 | case UETT_PreferredAlignOf: |
5151 | // As of clang 12, we mangle __alignof__ differently than alignof. (They |
5152 | // have acted differently since Clang 8, but were previously mangled the |
5153 | // same.) |
5154 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
5155 | Out << "u11__alignof__" ; |
5156 | if (SAE->isArgumentType()) |
5157 | mangleType(T: SAE->getArgumentType()); |
5158 | else |
5159 | mangleTemplateArgExpr(E: SAE->getArgumentExpr()); |
5160 | Out << 'E'; |
5161 | break; |
5162 | } |
5163 | [[fallthrough]]; |
5164 | case UETT_AlignOf: |
5165 | Out << 'a'; |
5166 | MangleAlignofSizeofArg(); |
5167 | break; |
5168 | case UETT_DataSizeOf: { |
5169 | DiagnosticsEngine &Diags = Context.getDiags(); |
5170 | unsigned DiagID = |
5171 | Diags.getCustomDiagID(DiagnosticsEngine::Error, |
5172 | "cannot yet mangle __datasizeof expression" ); |
5173 | Diags.Report(DiagID); |
5174 | return; |
5175 | } |
5176 | case UETT_VecStep: { |
5177 | DiagnosticsEngine &Diags = Context.getDiags(); |
5178 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
5179 | "cannot yet mangle vec_step expression" ); |
5180 | Diags.Report(DiagID); |
5181 | return; |
5182 | } |
5183 | case UETT_OpenMPRequiredSimdAlign: { |
5184 | DiagnosticsEngine &Diags = Context.getDiags(); |
5185 | unsigned DiagID = Diags.getCustomDiagID( |
5186 | DiagnosticsEngine::Error, |
5187 | "cannot yet mangle __builtin_omp_required_simd_align expression" ); |
5188 | Diags.Report(DiagID); |
5189 | return; |
5190 | } |
5191 | case UETT_VectorElements: { |
5192 | DiagnosticsEngine &Diags = Context.getDiags(); |
5193 | unsigned DiagID = Diags.getCustomDiagID( |
5194 | DiagnosticsEngine::Error, |
5195 | "cannot yet mangle __builtin_vectorelements expression" ); |
5196 | Diags.Report(DiagID); |
5197 | return; |
5198 | } |
5199 | } |
5200 | break; |
5201 | } |
5202 | |
5203 | case Expr::TypeTraitExprClass: { |
5204 | // <expression> ::= u <source-name> <template-arg>* E # vendor extension |
5205 | const TypeTraitExpr *TTE = cast<TypeTraitExpr>(E); |
5206 | NotPrimaryExpr(); |
5207 | Out << 'u'; |
5208 | llvm::StringRef Spelling = getTraitSpelling(T: TTE->getTrait()); |
5209 | Out << Spelling.size() << Spelling; |
5210 | for (TypeSourceInfo *TSI : TTE->getArgs()) { |
5211 | mangleType(TSI->getType()); |
5212 | } |
5213 | Out << 'E'; |
5214 | break; |
5215 | } |
5216 | |
5217 | case Expr::CXXThrowExprClass: { |
5218 | NotPrimaryExpr(); |
5219 | const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); |
5220 | // <expression> ::= tw <expression> # throw expression |
5221 | // ::= tr # rethrow |
5222 | if (TE->getSubExpr()) { |
5223 | Out << "tw" ; |
5224 | mangleExpression(E: TE->getSubExpr()); |
5225 | } else { |
5226 | Out << "tr" ; |
5227 | } |
5228 | break; |
5229 | } |
5230 | |
5231 | case Expr::CXXTypeidExprClass: { |
5232 | NotPrimaryExpr(); |
5233 | const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); |
5234 | // <expression> ::= ti <type> # typeid (type) |
5235 | // ::= te <expression> # typeid (expression) |
5236 | if (TIE->isTypeOperand()) { |
5237 | Out << "ti" ; |
5238 | mangleType(T: TIE->getTypeOperand(Context&: Context.getASTContext())); |
5239 | } else { |
5240 | Out << "te" ; |
5241 | mangleExpression(E: TIE->getExprOperand()); |
5242 | } |
5243 | break; |
5244 | } |
5245 | |
5246 | case Expr::CXXDeleteExprClass: { |
5247 | NotPrimaryExpr(); |
5248 | const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); |
5249 | // <expression> ::= [gs] dl <expression> # [::] delete expr |
5250 | // ::= [gs] da <expression> # [::] delete [] expr |
5251 | if (DE->isGlobalDelete()) Out << "gs" ; |
5252 | Out << (DE->isArrayForm() ? "da" : "dl" ); |
5253 | mangleExpression(E: DE->getArgument()); |
5254 | break; |
5255 | } |
5256 | |
5257 | case Expr::UnaryOperatorClass: { |
5258 | NotPrimaryExpr(); |
5259 | const UnaryOperator *UO = cast<UnaryOperator>(E); |
5260 | mangleOperatorName(OO: UnaryOperator::getOverloadedOperator(Opc: UO->getOpcode()), |
5261 | /*Arity=*/1); |
5262 | mangleExpression(E: UO->getSubExpr()); |
5263 | break; |
5264 | } |
5265 | |
5266 | case Expr::ArraySubscriptExprClass: { |
5267 | NotPrimaryExpr(); |
5268 | const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); |
5269 | |
5270 | // Array subscript is treated as a syntactically weird form of |
5271 | // binary operator. |
5272 | Out << "ix" ; |
5273 | mangleExpression(E: AE->getLHS()); |
5274 | mangleExpression(E: AE->getRHS()); |
5275 | break; |
5276 | } |
5277 | |
5278 | case Expr::MatrixSubscriptExprClass: { |
5279 | NotPrimaryExpr(); |
5280 | const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E); |
5281 | Out << "ixix" ; |
5282 | mangleExpression(E: ME->getBase()); |
5283 | mangleExpression(E: ME->getRowIdx()); |
5284 | mangleExpression(E: ME->getColumnIdx()); |
5285 | break; |
5286 | } |
5287 | |
5288 | case Expr::CompoundAssignOperatorClass: // fallthrough |
5289 | case Expr::BinaryOperatorClass: { |
5290 | NotPrimaryExpr(); |
5291 | const BinaryOperator *BO = cast<BinaryOperator>(E); |
5292 | if (BO->getOpcode() == BO_PtrMemD) |
5293 | Out << "ds" ; |
5294 | else |
5295 | mangleOperatorName(OO: BinaryOperator::getOverloadedOperator(Opc: BO->getOpcode()), |
5296 | /*Arity=*/2); |
5297 | mangleExpression(E: BO->getLHS()); |
5298 | mangleExpression(E: BO->getRHS()); |
5299 | break; |
5300 | } |
5301 | |
5302 | case Expr::CXXRewrittenBinaryOperatorClass: { |
5303 | NotPrimaryExpr(); |
5304 | // The mangled form represents the original syntax. |
5305 | CXXRewrittenBinaryOperator::DecomposedForm Decomposed = |
5306 | cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm(); |
5307 | mangleOperatorName(OO: BinaryOperator::getOverloadedOperator(Opc: Decomposed.Opcode), |
5308 | /*Arity=*/2); |
5309 | mangleExpression(E: Decomposed.LHS); |
5310 | mangleExpression(E: Decomposed.RHS); |
5311 | break; |
5312 | } |
5313 | |
5314 | case Expr::ConditionalOperatorClass: { |
5315 | NotPrimaryExpr(); |
5316 | const ConditionalOperator *CO = cast<ConditionalOperator>(E); |
5317 | mangleOperatorName(OO: OO_Conditional, /*Arity=*/3); |
5318 | mangleExpression(E: CO->getCond()); |
5319 | mangleExpression(E: CO->getLHS(), Arity); |
5320 | mangleExpression(E: CO->getRHS(), Arity); |
5321 | break; |
5322 | } |
5323 | |
5324 | case Expr::ImplicitCastExprClass: { |
5325 | ImplicitlyConvertedToType = E->getType(); |
5326 | E = cast<ImplicitCastExpr>(E)->getSubExpr(); |
5327 | goto recurse; |
5328 | } |
5329 | |
5330 | case Expr::ObjCBridgedCastExprClass: { |
5331 | NotPrimaryExpr(); |
5332 | // Mangle ownership casts as a vendor extended operator __bridge, |
5333 | // __bridge_transfer, or __bridge_retain. |
5334 | StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); |
5335 | Out << "v1U" << Kind.size() << Kind; |
5336 | mangleCastExpression(E, CastEncoding: "cv" ); |
5337 | break; |
5338 | } |
5339 | |
5340 | case Expr::CStyleCastExprClass: |
5341 | NotPrimaryExpr(); |
5342 | mangleCastExpression(E, CastEncoding: "cv" ); |
5343 | break; |
5344 | |
5345 | case Expr::CXXFunctionalCastExprClass: { |
5346 | NotPrimaryExpr(); |
5347 | auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit(); |
5348 | // FIXME: Add isImplicit to CXXConstructExpr. |
5349 | if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub)) |
5350 | if (CCE->getParenOrBraceRange().isInvalid()) |
5351 | Sub = CCE->getArg(0)->IgnoreImplicit(); |
5352 | if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub)) |
5353 | Sub = StdInitList->getSubExpr()->IgnoreImplicit(); |
5354 | if (auto *IL = dyn_cast<InitListExpr>(Sub)) { |
5355 | Out << "tl" ; |
5356 | mangleType(T: E->getType()); |
5357 | mangleInitListElements(InitList: IL); |
5358 | Out << "E" ; |
5359 | } else { |
5360 | mangleCastExpression(E, CastEncoding: "cv" ); |
5361 | } |
5362 | break; |
5363 | } |
5364 | |
5365 | case Expr::CXXStaticCastExprClass: |
5366 | NotPrimaryExpr(); |
5367 | mangleCastExpression(E, CastEncoding: "sc" ); |
5368 | break; |
5369 | case Expr::CXXDynamicCastExprClass: |
5370 | NotPrimaryExpr(); |
5371 | mangleCastExpression(E, CastEncoding: "dc" ); |
5372 | break; |
5373 | case Expr::CXXReinterpretCastExprClass: |
5374 | NotPrimaryExpr(); |
5375 | mangleCastExpression(E, CastEncoding: "rc" ); |
5376 | break; |
5377 | case Expr::CXXConstCastExprClass: |
5378 | NotPrimaryExpr(); |
5379 | mangleCastExpression(E, CastEncoding: "cc" ); |
5380 | break; |
5381 | case Expr::CXXAddrspaceCastExprClass: |
5382 | NotPrimaryExpr(); |
5383 | mangleCastExpression(E, CastEncoding: "ac" ); |
5384 | break; |
5385 | |
5386 | case Expr::CXXOperatorCallExprClass: { |
5387 | NotPrimaryExpr(); |
5388 | const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); |
5389 | unsigned NumArgs = CE->getNumArgs(); |
5390 | // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax |
5391 | // (the enclosing MemberExpr covers the syntactic portion). |
5392 | if (CE->getOperator() != OO_Arrow) |
5393 | mangleOperatorName(OO: CE->getOperator(), /*Arity=*/NumArgs); |
5394 | // Mangle the arguments. |
5395 | for (unsigned i = 0; i != NumArgs; ++i) |
5396 | mangleExpression(E: CE->getArg(i)); |
5397 | break; |
5398 | } |
5399 | |
5400 | case Expr::ParenExprClass: |
5401 | E = cast<ParenExpr>(E)->getSubExpr(); |
5402 | goto recurse; |
5403 | |
5404 | case Expr::ConceptSpecializationExprClass: { |
5405 | auto *CSE = cast<ConceptSpecializationExpr>(E); |
5406 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
5407 | // Clang 17 and before mangled concept-ids as if they resolved to an |
5408 | // entity, meaning that references to enclosing template arguments don't |
5409 | // work. |
5410 | Out << "L_Z" ; |
5411 | mangleTemplateName(TD: CSE->getNamedConcept(), Args: CSE->getTemplateArguments()); |
5412 | Out << 'E'; |
5413 | break; |
5414 | } |
5415 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
5416 | NotPrimaryExpr(); |
5417 | mangleUnresolvedName( |
5418 | qualifier: CSE->getNestedNameSpecifierLoc().getNestedNameSpecifier(), |
5419 | name: CSE->getConceptNameInfo().getName(), |
5420 | TemplateArgs: CSE->getTemplateArgsAsWritten()->getTemplateArgs(), |
5421 | NumTemplateArgs: CSE->getTemplateArgsAsWritten()->getNumTemplateArgs()); |
5422 | break; |
5423 | } |
5424 | |
5425 | case Expr::RequiresExprClass: { |
5426 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
5427 | auto *RE = cast<RequiresExpr>(E); |
5428 | // This is a primary-expression in the C++ grammar, but does not have an |
5429 | // <expr-primary> mangling (starting with 'L'). |
5430 | NotPrimaryExpr(); |
5431 | if (RE->getLParenLoc().isValid()) { |
5432 | Out << "rQ" ; |
5433 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
5434 | if (RE->getLocalParameters().empty()) { |
5435 | Out << 'v'; |
5436 | } else { |
5437 | for (ParmVarDecl *Param : RE->getLocalParameters()) { |
5438 | mangleType(Context.getASTContext().getSignatureParameterType( |
5439 | Param->getType())); |
5440 | } |
5441 | } |
5442 | Out << '_'; |
5443 | |
5444 | // The rest of the mangling is in the immediate scope of the parameters. |
5445 | FunctionTypeDepth.enterResultType(); |
5446 | for (const concepts::Requirement *Req : RE->getRequirements()) |
5447 | mangleRequirement(RE->getExprLoc(), Req); |
5448 | FunctionTypeDepth.pop(saved); |
5449 | Out << 'E'; |
5450 | } else { |
5451 | Out << "rq" ; |
5452 | for (const concepts::Requirement *Req : RE->getRequirements()) |
5453 | mangleRequirement(RE->getExprLoc(), Req); |
5454 | Out << 'E'; |
5455 | } |
5456 | break; |
5457 | } |
5458 | |
5459 | case Expr::DeclRefExprClass: |
5460 | // MangleDeclRefExpr helper handles primary-vs-nonprimary |
5461 | MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl()); |
5462 | break; |
5463 | |
5464 | case Expr::SubstNonTypeTemplateParmPackExprClass: |
5465 | NotPrimaryExpr(); |
5466 | // FIXME: not clear how to mangle this! |
5467 | // template <unsigned N...> class A { |
5468 | // template <class U...> void foo(U (&x)[N]...); |
5469 | // }; |
5470 | Out << "_SUBSTPACK_" ; |
5471 | break; |
5472 | |
5473 | case Expr::FunctionParmPackExprClass: { |
5474 | NotPrimaryExpr(); |
5475 | // FIXME: not clear how to mangle this! |
5476 | const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); |
5477 | Out << "v110_SUBSTPACK" ; |
5478 | MangleDeclRefExpr(FPPE->getParameterPack()); |
5479 | break; |
5480 | } |
5481 | |
5482 | case Expr::DependentScopeDeclRefExprClass: { |
5483 | NotPrimaryExpr(); |
5484 | const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); |
5485 | mangleUnresolvedName(qualifier: DRE->getQualifier(), name: DRE->getDeclName(), |
5486 | TemplateArgs: DRE->getTemplateArgs(), NumTemplateArgs: DRE->getNumTemplateArgs(), |
5487 | knownArity: Arity); |
5488 | break; |
5489 | } |
5490 | |
5491 | case Expr::CXXBindTemporaryExprClass: |
5492 | E = cast<CXXBindTemporaryExpr>(E)->getSubExpr(); |
5493 | goto recurse; |
5494 | |
5495 | case Expr::ExprWithCleanupsClass: |
5496 | E = cast<ExprWithCleanups>(E)->getSubExpr(); |
5497 | goto recurse; |
5498 | |
5499 | case Expr::FloatingLiteralClass: { |
5500 | // <expr-primary> |
5501 | const FloatingLiteral *FL = cast<FloatingLiteral>(E); |
5502 | mangleFloatLiteral(T: FL->getType(), V: FL->getValue()); |
5503 | break; |
5504 | } |
5505 | |
5506 | case Expr::FixedPointLiteralClass: |
5507 | // Currently unimplemented -- might be <expr-primary> in future? |
5508 | mangleFixedPointLiteral(); |
5509 | break; |
5510 | |
5511 | case Expr::CharacterLiteralClass: |
5512 | // <expr-primary> |
5513 | Out << 'L'; |
5514 | mangleType(T: E->getType()); |
5515 | Out << cast<CharacterLiteral>(E)->getValue(); |
5516 | Out << 'E'; |
5517 | break; |
5518 | |
5519 | // FIXME. __objc_yes/__objc_no are mangled same as true/false |
5520 | case Expr::ObjCBoolLiteralExprClass: |
5521 | // <expr-primary> |
5522 | Out << "Lb" ; |
5523 | Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); |
5524 | Out << 'E'; |
5525 | break; |
5526 | |
5527 | case Expr::CXXBoolLiteralExprClass: |
5528 | // <expr-primary> |
5529 | Out << "Lb" ; |
5530 | Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); |
5531 | Out << 'E'; |
5532 | break; |
5533 | |
5534 | case Expr::IntegerLiteralClass: { |
5535 | // <expr-primary> |
5536 | llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); |
5537 | if (E->getType()->isSignedIntegerType()) |
5538 | Value.setIsSigned(true); |
5539 | mangleIntegerLiteral(T: E->getType(), Value); |
5540 | break; |
5541 | } |
5542 | |
5543 | case Expr::ImaginaryLiteralClass: { |
5544 | // <expr-primary> |
5545 | const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); |
5546 | // Mangle as if a complex literal. |
5547 | // Proposal from David Vandevoorde, 2010.06.30. |
5548 | Out << 'L'; |
5549 | mangleType(T: E->getType()); |
5550 | if (const FloatingLiteral *Imag = |
5551 | dyn_cast<FloatingLiteral>(IE->getSubExpr())) { |
5552 | // Mangle a floating-point zero of the appropriate type. |
5553 | mangleFloat(f: llvm::APFloat(Imag->getValue().getSemantics())); |
5554 | Out << '_'; |
5555 | mangleFloat(f: Imag->getValue()); |
5556 | } else { |
5557 | Out << "0_" ; |
5558 | llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); |
5559 | if (IE->getSubExpr()->getType()->isSignedIntegerType()) |
5560 | Value.setIsSigned(true); |
5561 | mangleNumber(Value); |
5562 | } |
5563 | Out << 'E'; |
5564 | break; |
5565 | } |
5566 | |
5567 | case Expr::StringLiteralClass: { |
5568 | // <expr-primary> |
5569 | // Revised proposal from David Vandervoorde, 2010.07.15. |
5570 | Out << 'L'; |
5571 | assert(isa<ConstantArrayType>(E->getType())); |
5572 | mangleType(T: E->getType()); |
5573 | Out << 'E'; |
5574 | break; |
5575 | } |
5576 | |
5577 | case Expr::GNUNullExprClass: |
5578 | // <expr-primary> |
5579 | // Mangle as if an integer literal 0. |
5580 | mangleIntegerLiteral(T: E->getType(), Value: llvm::APSInt(32)); |
5581 | break; |
5582 | |
5583 | case Expr::CXXNullPtrLiteralExprClass: { |
5584 | // <expr-primary> |
5585 | Out << "LDnE" ; |
5586 | break; |
5587 | } |
5588 | |
5589 | case Expr::LambdaExprClass: { |
5590 | // A lambda-expression can't appear in the signature of an |
5591 | // externally-visible declaration, so there's no standard mangling for |
5592 | // this, but mangling as a literal of the closure type seems reasonable. |
5593 | Out << "L" ; |
5594 | mangleType(Context.getASTContext().getRecordType(Decl: cast<LambdaExpr>(E)->getLambdaClass())); |
5595 | Out << "E" ; |
5596 | break; |
5597 | } |
5598 | |
5599 | case Expr::PackExpansionExprClass: |
5600 | NotPrimaryExpr(); |
5601 | Out << "sp" ; |
5602 | mangleExpression(E: cast<PackExpansionExpr>(E)->getPattern()); |
5603 | break; |
5604 | |
5605 | case Expr::SizeOfPackExprClass: { |
5606 | NotPrimaryExpr(); |
5607 | auto *SPE = cast<SizeOfPackExpr>(E); |
5608 | if (SPE->isPartiallySubstituted()) { |
5609 | Out << "sP" ; |
5610 | for (const auto &A : SPE->getPartialArguments()) |
5611 | mangleTemplateArg(A, false); |
5612 | Out << "E" ; |
5613 | break; |
5614 | } |
5615 | |
5616 | Out << "sZ" ; |
5617 | const NamedDecl *Pack = SPE->getPack(); |
5618 | if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) |
5619 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
5620 | else if (const NonTypeTemplateParmDecl *NTTP |
5621 | = dyn_cast<NonTypeTemplateParmDecl>(Pack)) |
5622 | mangleTemplateParameter(Depth: NTTP->getDepth(), Index: NTTP->getIndex()); |
5623 | else if (const TemplateTemplateParmDecl *TempTP |
5624 | = dyn_cast<TemplateTemplateParmDecl>(Pack)) |
5625 | mangleTemplateParameter(Depth: TempTP->getDepth(), Index: TempTP->getIndex()); |
5626 | else |
5627 | mangleFunctionParam(parm: cast<ParmVarDecl>(Pack)); |
5628 | break; |
5629 | } |
5630 | |
5631 | case Expr::MaterializeTemporaryExprClass: |
5632 | E = cast<MaterializeTemporaryExpr>(E)->getSubExpr(); |
5633 | goto recurse; |
5634 | |
5635 | case Expr::CXXFoldExprClass: { |
5636 | NotPrimaryExpr(); |
5637 | auto *FE = cast<CXXFoldExpr>(E); |
5638 | if (FE->isLeftFold()) |
5639 | Out << (FE->getInit() ? "fL" : "fl" ); |
5640 | else |
5641 | Out << (FE->getInit() ? "fR" : "fr" ); |
5642 | |
5643 | if (FE->getOperator() == BO_PtrMemD) |
5644 | Out << "ds" ; |
5645 | else |
5646 | mangleOperatorName( |
5647 | BinaryOperator::getOverloadedOperator(Opc: FE->getOperator()), |
5648 | /*Arity=*/2); |
5649 | |
5650 | if (FE->getLHS()) |
5651 | mangleExpression(E: FE->getLHS()); |
5652 | if (FE->getRHS()) |
5653 | mangleExpression(E: FE->getRHS()); |
5654 | break; |
5655 | } |
5656 | |
5657 | case Expr::CXXThisExprClass: |
5658 | NotPrimaryExpr(); |
5659 | Out << "fpT" ; |
5660 | break; |
5661 | |
5662 | case Expr::CoawaitExprClass: |
5663 | // FIXME: Propose a non-vendor mangling. |
5664 | NotPrimaryExpr(); |
5665 | Out << "v18co_await" ; |
5666 | mangleExpression(E: cast<CoawaitExpr>(E)->getOperand()); |
5667 | break; |
5668 | |
5669 | case Expr::DependentCoawaitExprClass: |
5670 | // FIXME: Propose a non-vendor mangling. |
5671 | NotPrimaryExpr(); |
5672 | Out << "v18co_await" ; |
5673 | mangleExpression(E: cast<DependentCoawaitExpr>(E)->getOperand()); |
5674 | break; |
5675 | |
5676 | case Expr::CoyieldExprClass: |
5677 | // FIXME: Propose a non-vendor mangling. |
5678 | NotPrimaryExpr(); |
5679 | Out << "v18co_yield" ; |
5680 | mangleExpression(E: cast<CoawaitExpr>(E)->getOperand()); |
5681 | break; |
5682 | case Expr::SYCLUniqueStableNameExprClass: { |
5683 | const auto *USN = cast<SYCLUniqueStableNameExpr>(E); |
5684 | NotPrimaryExpr(); |
5685 | |
5686 | Out << "u33__builtin_sycl_unique_stable_name" ; |
5687 | mangleType(USN->getTypeSourceInfo()->getType()); |
5688 | |
5689 | Out << "E" ; |
5690 | break; |
5691 | } |
5692 | } |
5693 | |
5694 | if (AsTemplateArg && !IsPrimaryExpr) |
5695 | Out << 'E'; |
5696 | } |
5697 | |
5698 | /// Mangle an expression which refers to a parameter variable. |
5699 | /// |
5700 | /// <expression> ::= <function-param> |
5701 | /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 |
5702 | /// <function-param> ::= fp <top-level CV-qualifiers> |
5703 | /// <parameter-2 non-negative number> _ # L == 0, I > 0 |
5704 | /// <function-param> ::= fL <L-1 non-negative number> |
5705 | /// p <top-level CV-qualifiers> _ # L > 0, I == 0 |
5706 | /// <function-param> ::= fL <L-1 non-negative number> |
5707 | /// p <top-level CV-qualifiers> |
5708 | /// <I-1 non-negative number> _ # L > 0, I > 0 |
5709 | /// |
5710 | /// L is the nesting depth of the parameter, defined as 1 if the |
5711 | /// parameter comes from the innermost function prototype scope |
5712 | /// enclosing the current context, 2 if from the next enclosing |
5713 | /// function prototype scope, and so on, with one special case: if |
5714 | /// we've processed the full parameter clause for the innermost |
5715 | /// function type, then L is one less. This definition conveniently |
5716 | /// makes it irrelevant whether a function's result type was written |
5717 | /// trailing or leading, but is otherwise overly complicated; the |
5718 | /// numbering was first designed without considering references to |
5719 | /// parameter in locations other than return types, and then the |
5720 | /// mangling had to be generalized without changing the existing |
5721 | /// manglings. |
5722 | /// |
5723 | /// I is the zero-based index of the parameter within its parameter |
5724 | /// declaration clause. Note that the original ABI document describes |
5725 | /// this using 1-based ordinals. |
5726 | void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { |
5727 | unsigned parmDepth = parm->getFunctionScopeDepth(); |
5728 | unsigned parmIndex = parm->getFunctionScopeIndex(); |
5729 | |
5730 | // Compute 'L'. |
5731 | // parmDepth does not include the declaring function prototype. |
5732 | // FunctionTypeDepth does account for that. |
5733 | assert(parmDepth < FunctionTypeDepth.getDepth()); |
5734 | unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; |
5735 | if (FunctionTypeDepth.isInResultType()) |
5736 | nestingDepth--; |
5737 | |
5738 | if (nestingDepth == 0) { |
5739 | Out << "fp" ; |
5740 | } else { |
5741 | Out << "fL" << (nestingDepth - 1) << 'p'; |
5742 | } |
5743 | |
5744 | // Top-level qualifiers. We don't have to worry about arrays here, |
5745 | // because parameters declared as arrays should already have been |
5746 | // transformed to have pointer type. FIXME: apparently these don't |
5747 | // get mangled if used as an rvalue of a known non-class type? |
5748 | assert(!parm->getType()->isArrayType() |
5749 | && "parameter's type is still an array type?" ); |
5750 | |
5751 | if (const DependentAddressSpaceType *DAST = |
5752 | dyn_cast<DependentAddressSpaceType>(parm->getType())) { |
5753 | mangleQualifiers(Quals: DAST->getPointeeType().getQualifiers(), DAST); |
5754 | } else { |
5755 | mangleQualifiers(Quals: parm->getType().getQualifiers()); |
5756 | } |
5757 | |
5758 | // Parameter index. |
5759 | if (parmIndex != 0) { |
5760 | Out << (parmIndex - 1); |
5761 | } |
5762 | Out << '_'; |
5763 | } |
5764 | |
5765 | void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, |
5766 | const CXXRecordDecl *InheritedFrom) { |
5767 | // <ctor-dtor-name> ::= C1 # complete object constructor |
5768 | // ::= C2 # base object constructor |
5769 | // ::= CI1 <type> # complete inheriting constructor |
5770 | // ::= CI2 <type> # base inheriting constructor |
5771 | // |
5772 | // In addition, C5 is a comdat name with C1 and C2 in it. |
5773 | Out << 'C'; |
5774 | if (InheritedFrom) |
5775 | Out << 'I'; |
5776 | switch (T) { |
5777 | case Ctor_Complete: |
5778 | Out << '1'; |
5779 | break; |
5780 | case Ctor_Base: |
5781 | Out << '2'; |
5782 | break; |
5783 | case Ctor_Comdat: |
5784 | Out << '5'; |
5785 | break; |
5786 | case Ctor_DefaultClosure: |
5787 | case Ctor_CopyingClosure: |
5788 | llvm_unreachable("closure constructors don't exist for the Itanium ABI!" ); |
5789 | } |
5790 | if (InheritedFrom) |
5791 | mangleName(InheritedFrom); |
5792 | } |
5793 | |
5794 | void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { |
5795 | // <ctor-dtor-name> ::= D0 # deleting destructor |
5796 | // ::= D1 # complete object destructor |
5797 | // ::= D2 # base object destructor |
5798 | // |
5799 | // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. |
5800 | switch (T) { |
5801 | case Dtor_Deleting: |
5802 | Out << "D0" ; |
5803 | break; |
5804 | case Dtor_Complete: |
5805 | Out << "D1" ; |
5806 | break; |
5807 | case Dtor_Base: |
5808 | Out << "D2" ; |
5809 | break; |
5810 | case Dtor_Comdat: |
5811 | Out << "D5" ; |
5812 | break; |
5813 | } |
5814 | } |
5815 | |
5816 | // Helper to provide ancillary information on a template used to mangle its |
5817 | // arguments. |
5818 | struct CXXNameMangler::TemplateArgManglingInfo { |
5819 | const CXXNameMangler &Mangler; |
5820 | TemplateDecl *ResolvedTemplate = nullptr; |
5821 | bool SeenPackExpansionIntoNonPack = false; |
5822 | const NamedDecl *UnresolvedExpandedPack = nullptr; |
5823 | |
5824 | TemplateArgManglingInfo(const CXXNameMangler &Mangler, TemplateName TN) |
5825 | : Mangler(Mangler) { |
5826 | if (TemplateDecl *TD = TN.getAsTemplateDecl()) |
5827 | ResolvedTemplate = TD; |
5828 | } |
5829 | |
5830 | /// Information about how to mangle a template argument. |
5831 | struct Info { |
5832 | /// Do we need to mangle the template argument with an exactly correct type? |
5833 | bool NeedExactType; |
5834 | /// If we need to prefix the mangling with a mangling of the template |
5835 | /// parameter, the corresponding parameter. |
5836 | const NamedDecl *TemplateParameterToMangle; |
5837 | }; |
5838 | |
5839 | /// Determine whether the resolved template might be overloaded on its |
5840 | /// template parameter list. If so, the mangling needs to include enough |
5841 | /// information to reconstruct the template parameter list. |
5842 | bool isOverloadable() { |
5843 | // Function templates are generally overloadable. As a special case, a |
5844 | // member function template of a generic lambda is not overloadable. |
5845 | if (auto *FTD = dyn_cast_or_null<FunctionTemplateDecl>(Val: ResolvedTemplate)) { |
5846 | auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext()); |
5847 | if (!RD || !RD->isGenericLambda()) |
5848 | return true; |
5849 | } |
5850 | |
5851 | // All other templates are not overloadable. Partial specializations would |
5852 | // be, but we never mangle them. |
5853 | return false; |
5854 | } |
5855 | |
5856 | /// Determine whether we need to prefix this <template-arg> mangling with a |
5857 | /// <template-param-decl>. This happens if the natural template parameter for |
5858 | /// the argument mangling is not the same as the actual template parameter. |
5859 | bool needToMangleTemplateParam(const NamedDecl *Param, |
5860 | const TemplateArgument &Arg) { |
5861 | // For a template type parameter, the natural parameter is 'typename T'. |
5862 | // The actual parameter might be constrained. |
5863 | if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) |
5864 | return TTP->hasTypeConstraint(); |
5865 | |
5866 | if (Arg.getKind() == TemplateArgument::Pack) { |
5867 | // For an empty pack, the natural parameter is `typename...`. |
5868 | if (Arg.pack_size() == 0) |
5869 | return true; |
5870 | |
5871 | // For any other pack, we use the first argument to determine the natural |
5872 | // template parameter. |
5873 | return needToMangleTemplateParam(Param, Arg: *Arg.pack_begin()); |
5874 | } |
5875 | |
5876 | // For a non-type template parameter, the natural parameter is `T V` (for a |
5877 | // prvalue argument) or `T &V` (for a glvalue argument), where `T` is the |
5878 | // type of the argument, which we require to exactly match. If the actual |
5879 | // parameter has a deduced or instantiation-dependent type, it is not |
5880 | // equivalent to the natural parameter. |
5881 | if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) |
5882 | return NTTP->getType()->isInstantiationDependentType() || |
5883 | NTTP->getType()->getContainedDeducedType(); |
5884 | |
5885 | // For a template template parameter, the template-head might differ from |
5886 | // that of the template. |
5887 | auto *TTP = cast<TemplateTemplateParmDecl>(Val: Param); |
5888 | TemplateName ArgTemplateName = Arg.getAsTemplateOrTemplatePattern(); |
5889 | const TemplateDecl *ArgTemplate = ArgTemplateName.getAsTemplateDecl(); |
5890 | if (!ArgTemplate) |
5891 | return true; |
5892 | |
5893 | // Mangle the template parameter list of the parameter and argument to see |
5894 | // if they are the same. We can't use Profile for this, because it can't |
5895 | // model the depth difference between parameter and argument and might not |
5896 | // necessarily have the same definition of "identical" that we use here -- |
5897 | // that is, same mangling. |
5898 | auto MangleTemplateParamListToString = |
5899 | [&](SmallVectorImpl<char> &Buffer, const TemplateParameterList *Params, |
5900 | unsigned DepthOffset) { |
5901 | llvm::raw_svector_ostream Stream(Buffer); |
5902 | CXXNameMangler(Mangler.Context, Stream, |
5903 | WithTemplateDepthOffset{.Offset: DepthOffset}) |
5904 | .mangleTemplateParameterList(Params); |
5905 | }; |
5906 | llvm::SmallString<128> ParamTemplateHead, ArgTemplateHead; |
5907 | MangleTemplateParamListToString(ParamTemplateHead, |
5908 | TTP->getTemplateParameters(), 0); |
5909 | // Add the depth of the parameter's template parameter list to all |
5910 | // parameters appearing in the argument to make the indexes line up |
5911 | // properly. |
5912 | MangleTemplateParamListToString(ArgTemplateHead, |
5913 | ArgTemplate->getTemplateParameters(), |
5914 | TTP->getTemplateParameters()->getDepth()); |
5915 | return ParamTemplateHead != ArgTemplateHead; |
5916 | } |
5917 | |
5918 | /// Determine information about how this template argument should be mangled. |
5919 | /// This should be called exactly once for each parameter / argument pair, in |
5920 | /// order. |
5921 | Info getArgInfo(unsigned ParamIdx, const TemplateArgument &Arg) { |
5922 | // We need correct types when the template-name is unresolved or when it |
5923 | // names a template that is able to be overloaded. |
5924 | if (!ResolvedTemplate || SeenPackExpansionIntoNonPack) |
5925 | return {.NeedExactType: true, .TemplateParameterToMangle: nullptr}; |
5926 | |
5927 | // Move to the next parameter. |
5928 | const NamedDecl *Param = UnresolvedExpandedPack; |
5929 | if (!Param) { |
5930 | assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() && |
5931 | "no parameter for argument" ); |
5932 | Param = ResolvedTemplate->getTemplateParameters()->getParam(Idx: ParamIdx); |
5933 | |
5934 | // If we reach a parameter pack whose argument isn't in pack form, that |
5935 | // means Sema couldn't or didn't figure out which arguments belonged to |
5936 | // it, because it contains a pack expansion or because Sema bailed out of |
5937 | // computing parameter / argument correspondence before this point. Track |
5938 | // the pack as the corresponding parameter for all further template |
5939 | // arguments until we hit a pack expansion, at which point we don't know |
5940 | // the correspondence between parameters and arguments at all. |
5941 | if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) { |
5942 | UnresolvedExpandedPack = Param; |
5943 | } |
5944 | } |
5945 | |
5946 | // If we encounter a pack argument that is expanded into a non-pack |
5947 | // parameter, we can no longer track parameter / argument correspondence, |
5948 | // and need to use exact types from this point onwards. |
5949 | if (Arg.isPackExpansion() && |
5950 | (!Param->isParameterPack() || UnresolvedExpandedPack)) { |
5951 | SeenPackExpansionIntoNonPack = true; |
5952 | return {.NeedExactType: true, .TemplateParameterToMangle: nullptr}; |
5953 | } |
5954 | |
5955 | // We need exact types for arguments of a template that might be overloaded |
5956 | // on template parameter type. |
5957 | if (isOverloadable()) |
5958 | return {.NeedExactType: true, .TemplateParameterToMangle: needToMangleTemplateParam(Param, Arg) ? Param : nullptr}; |
5959 | |
5960 | // Otherwise, we only need a correct type if the parameter has a deduced |
5961 | // type. |
5962 | // |
5963 | // Note: for an expanded parameter pack, getType() returns the type prior |
5964 | // to expansion. We could ask for the expanded type with getExpansionType(), |
5965 | // but it doesn't matter because substitution and expansion don't affect |
5966 | // whether a deduced type appears in the type. |
5967 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param); |
5968 | bool NeedExactType = NTTP && NTTP->getType()->getContainedDeducedType(); |
5969 | return {.NeedExactType: NeedExactType, .TemplateParameterToMangle: nullptr}; |
5970 | } |
5971 | |
5972 | /// Determine if we should mangle a requires-clause after the template |
5973 | /// argument list. If so, returns the expression to mangle. |
5974 | const Expr *getTrailingRequiresClauseToMangle() { |
5975 | if (!isOverloadable()) |
5976 | return nullptr; |
5977 | return ResolvedTemplate->getTemplateParameters()->getRequiresClause(); |
5978 | } |
5979 | }; |
5980 | |
5981 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
5982 | const TemplateArgumentLoc *TemplateArgs, |
5983 | unsigned NumTemplateArgs) { |
5984 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
5985 | Out << 'I'; |
5986 | TemplateArgManglingInfo Info(*this, TN); |
5987 | for (unsigned i = 0; i != NumTemplateArgs; ++i) { |
5988 | mangleTemplateArg(Info, Index: i, A: TemplateArgs[i].getArgument()); |
5989 | } |
5990 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
5991 | Out << 'E'; |
5992 | } |
5993 | |
5994 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
5995 | const TemplateArgumentList &AL) { |
5996 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
5997 | Out << 'I'; |
5998 | TemplateArgManglingInfo Info(*this, TN); |
5999 | for (unsigned i = 0, e = AL.size(); i != e; ++i) { |
6000 | mangleTemplateArg(Info, Index: i, A: AL[i]); |
6001 | } |
6002 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
6003 | Out << 'E'; |
6004 | } |
6005 | |
6006 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
6007 | ArrayRef<TemplateArgument> Args) { |
6008 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
6009 | Out << 'I'; |
6010 | TemplateArgManglingInfo Info(*this, TN); |
6011 | for (unsigned i = 0; i != Args.size(); ++i) { |
6012 | mangleTemplateArg(Info, Index: i, A: Args[i]); |
6013 | } |
6014 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
6015 | Out << 'E'; |
6016 | } |
6017 | |
6018 | void CXXNameMangler::mangleTemplateArg(TemplateArgManglingInfo &Info, |
6019 | unsigned Index, TemplateArgument A) { |
6020 | TemplateArgManglingInfo::Info ArgInfo = Info.getArgInfo(ParamIdx: Index, Arg: A); |
6021 | |
6022 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
6023 | if (ArgInfo.TemplateParameterToMangle && |
6024 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
6025 | // The template parameter is mangled if the mangling would otherwise be |
6026 | // ambiguous. |
6027 | // |
6028 | // <template-arg> ::= <template-param-decl> <template-arg> |
6029 | // |
6030 | // Clang 17 and before did not do this. |
6031 | mangleTemplateParamDecl(Decl: ArgInfo.TemplateParameterToMangle); |
6032 | } |
6033 | |
6034 | mangleTemplateArg(A, NeedExactType: ArgInfo.NeedExactType); |
6035 | } |
6036 | |
6037 | void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) { |
6038 | // <template-arg> ::= <type> # type or template |
6039 | // ::= X <expression> E # expression |
6040 | // ::= <expr-primary> # simple expressions |
6041 | // ::= J <template-arg>* E # argument pack |
6042 | if (!A.isInstantiationDependent() || A.isDependent()) |
6043 | A = Context.getASTContext().getCanonicalTemplateArgument(Arg: A); |
6044 | |
6045 | switch (A.getKind()) { |
6046 | case TemplateArgument::Null: |
6047 | llvm_unreachable("Cannot mangle NULL template argument" ); |
6048 | |
6049 | case TemplateArgument::Type: |
6050 | mangleType(T: A.getAsType()); |
6051 | break; |
6052 | case TemplateArgument::Template: |
6053 | // This is mangled as <type>. |
6054 | mangleType(TN: A.getAsTemplate()); |
6055 | break; |
6056 | case TemplateArgument::TemplateExpansion: |
6057 | // <type> ::= Dp <type> # pack expansion (C++0x) |
6058 | Out << "Dp" ; |
6059 | mangleType(TN: A.getAsTemplateOrTemplatePattern()); |
6060 | break; |
6061 | case TemplateArgument::Expression: |
6062 | mangleTemplateArgExpr(E: A.getAsExpr()); |
6063 | break; |
6064 | case TemplateArgument::Integral: |
6065 | mangleIntegerLiteral(T: A.getIntegralType(), Value: A.getAsIntegral()); |
6066 | break; |
6067 | case TemplateArgument::Declaration: { |
6068 | // <expr-primary> ::= L <mangled-name> E # external name |
6069 | ValueDecl *D = A.getAsDecl(); |
6070 | |
6071 | // Template parameter objects are modeled by reproducing a source form |
6072 | // produced as if by aggregate initialization. |
6073 | if (A.getParamTypeForDecl()->isRecordType()) { |
6074 | auto *TPO = cast<TemplateParamObjectDecl>(Val: D); |
6075 | mangleValueInTemplateArg(T: TPO->getType().getUnqualifiedType(), |
6076 | V: TPO->getValue(), /*TopLevel=*/true, |
6077 | NeedExactType); |
6078 | break; |
6079 | } |
6080 | |
6081 | ASTContext &Ctx = Context.getASTContext(); |
6082 | APValue Value; |
6083 | if (D->isCXXInstanceMember()) |
6084 | // Simple pointer-to-member with no conversion. |
6085 | Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{}); |
6086 | else if (D->getType()->isArrayType() && |
6087 | Ctx.hasSimilarType(T1: Ctx.getDecayedType(T: D->getType()), |
6088 | T2: A.getParamTypeForDecl()) && |
6089 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) |
6090 | // Build a value corresponding to this implicit array-to-pointer decay. |
6091 | Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), |
6092 | {APValue::LValuePathEntry::ArrayIndex(Index: 0)}, |
6093 | /*OnePastTheEnd=*/false); |
6094 | else |
6095 | // Regular pointer or reference to a declaration. |
6096 | Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), |
6097 | ArrayRef<APValue::LValuePathEntry>(), |
6098 | /*OnePastTheEnd=*/false); |
6099 | mangleValueInTemplateArg(T: A.getParamTypeForDecl(), V: Value, /*TopLevel=*/true, |
6100 | NeedExactType); |
6101 | break; |
6102 | } |
6103 | case TemplateArgument::NullPtr: { |
6104 | mangleNullPointer(T: A.getNullPtrType()); |
6105 | break; |
6106 | } |
6107 | case TemplateArgument::StructuralValue: |
6108 | mangleValueInTemplateArg(T: A.getStructuralValueType(), |
6109 | V: A.getAsStructuralValue(), |
6110 | /*TopLevel=*/true, NeedExactType); |
6111 | break; |
6112 | case TemplateArgument::Pack: { |
6113 | // <template-arg> ::= J <template-arg>* E |
6114 | Out << 'J'; |
6115 | for (const auto &P : A.pack_elements()) |
6116 | mangleTemplateArg(A: P, NeedExactType); |
6117 | Out << 'E'; |
6118 | } |
6119 | } |
6120 | } |
6121 | |
6122 | void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) { |
6123 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
6124 | mangleExpression(E, Arity: UnknownArity, /*AsTemplateArg=*/true); |
6125 | return; |
6126 | } |
6127 | |
6128 | // Prior to Clang 12, we didn't omit the X .. E around <expr-primary> |
6129 | // correctly in cases where the template argument was |
6130 | // constructed from an expression rather than an already-evaluated |
6131 | // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of |
6132 | // 'Li0E'. |
6133 | // |
6134 | // We did special-case DeclRefExpr to attempt to DTRT for that one |
6135 | // expression-kind, but while doing so, unfortunately handled ParmVarDecl |
6136 | // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of |
6137 | // the proper 'Xfp_E'. |
6138 | E = E->IgnoreParenImpCasts(); |
6139 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
6140 | const ValueDecl *D = DRE->getDecl(); |
6141 | if (isa<VarDecl>(Val: D) || isa<FunctionDecl>(Val: D)) { |
6142 | Out << 'L'; |
6143 | mangle(D); |
6144 | Out << 'E'; |
6145 | return; |
6146 | } |
6147 | } |
6148 | Out << 'X'; |
6149 | mangleExpression(E); |
6150 | Out << 'E'; |
6151 | } |
6152 | |
6153 | /// Determine whether a given value is equivalent to zero-initialization for |
6154 | /// the purpose of discarding a trailing portion of a 'tl' mangling. |
6155 | /// |
6156 | /// Note that this is not in general equivalent to determining whether the |
6157 | /// value has an all-zeroes bit pattern. |
6158 | static bool isZeroInitialized(QualType T, const APValue &V) { |
6159 | // FIXME: mangleValueInTemplateArg has quadratic time complexity in |
6160 | // pathological cases due to using this, but it's a little awkward |
6161 | // to do this in linear time in general. |
6162 | switch (V.getKind()) { |
6163 | case APValue::None: |
6164 | case APValue::Indeterminate: |
6165 | case APValue::AddrLabelDiff: |
6166 | return false; |
6167 | |
6168 | case APValue::Struct: { |
6169 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
6170 | assert(RD && "unexpected type for record value" ); |
6171 | unsigned I = 0; |
6172 | for (const CXXBaseSpecifier &BS : RD->bases()) { |
6173 | if (!isZeroInitialized(T: BS.getType(), V: V.getStructBase(i: I))) |
6174 | return false; |
6175 | ++I; |
6176 | } |
6177 | I = 0; |
6178 | for (const FieldDecl *FD : RD->fields()) { |
6179 | if (!FD->isUnnamedBitField() && |
6180 | !isZeroInitialized(FD->getType(), V.getStructField(I))) |
6181 | return false; |
6182 | ++I; |
6183 | } |
6184 | return true; |
6185 | } |
6186 | |
6187 | case APValue::Union: { |
6188 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
6189 | assert(RD && "unexpected type for union value" ); |
6190 | // Zero-initialization zeroes the first non-unnamed-bitfield field, if any. |
6191 | for (const FieldDecl *FD : RD->fields()) { |
6192 | if (!FD->isUnnamedBitField()) |
6193 | return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) && |
6194 | isZeroInitialized(FD->getType(), V.getUnionValue()); |
6195 | } |
6196 | // If there are no fields (other than unnamed bitfields), the value is |
6197 | // necessarily zero-initialized. |
6198 | return true; |
6199 | } |
6200 | |
6201 | case APValue::Array: { |
6202 | QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); |
6203 | for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) |
6204 | if (!isZeroInitialized(T: ElemT, V: V.getArrayInitializedElt(I))) |
6205 | return false; |
6206 | return !V.hasArrayFiller() || isZeroInitialized(T: ElemT, V: V.getArrayFiller()); |
6207 | } |
6208 | |
6209 | case APValue::Vector: { |
6210 | const VectorType *VT = T->castAs<VectorType>(); |
6211 | for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) |
6212 | if (!isZeroInitialized(T: VT->getElementType(), V: V.getVectorElt(I))) |
6213 | return false; |
6214 | return true; |
6215 | } |
6216 | |
6217 | case APValue::Int: |
6218 | return !V.getInt(); |
6219 | |
6220 | case APValue::Float: |
6221 | return V.getFloat().isPosZero(); |
6222 | |
6223 | case APValue::FixedPoint: |
6224 | return !V.getFixedPoint().getValue(); |
6225 | |
6226 | case APValue::ComplexFloat: |
6227 | return V.getComplexFloatReal().isPosZero() && |
6228 | V.getComplexFloatImag().isPosZero(); |
6229 | |
6230 | case APValue::ComplexInt: |
6231 | return !V.getComplexIntReal() && !V.getComplexIntImag(); |
6232 | |
6233 | case APValue::LValue: |
6234 | return V.isNullPointer(); |
6235 | |
6236 | case APValue::MemberPointer: |
6237 | return !V.getMemberPointerDecl(); |
6238 | } |
6239 | |
6240 | llvm_unreachable("Unhandled APValue::ValueKind enum" ); |
6241 | } |
6242 | |
6243 | static QualType getLValueType(ASTContext &Ctx, const APValue &LV) { |
6244 | QualType T = LV.getLValueBase().getType(); |
6245 | for (APValue::LValuePathEntry E : LV.getLValuePath()) { |
6246 | if (const ArrayType *AT = Ctx.getAsArrayType(T)) |
6247 | T = AT->getElementType(); |
6248 | else if (const FieldDecl *FD = |
6249 | dyn_cast<FieldDecl>(Val: E.getAsBaseOrMember().getPointer())) |
6250 | T = FD->getType(); |
6251 | else |
6252 | T = Ctx.getRecordType( |
6253 | cast<CXXRecordDecl>(Val: E.getAsBaseOrMember().getPointer())); |
6254 | } |
6255 | return T; |
6256 | } |
6257 | |
6258 | static IdentifierInfo *getUnionInitName(SourceLocation UnionLoc, |
6259 | DiagnosticsEngine &Diags, |
6260 | const FieldDecl *FD) { |
6261 | // According to: |
6262 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling.anonymous |
6263 | // For the purposes of mangling, the name of an anonymous union is considered |
6264 | // to be the name of the first named data member found by a pre-order, |
6265 | // depth-first, declaration-order walk of the data members of the anonymous |
6266 | // union. |
6267 | |
6268 | if (FD->getIdentifier()) |
6269 | return FD->getIdentifier(); |
6270 | |
6271 | // The only cases where the identifer of a FieldDecl would be blank is if the |
6272 | // field represents an anonymous record type or if it is an unnamed bitfield. |
6273 | // There is no type to descend into in the case of a bitfield, so we can just |
6274 | // return nullptr in that case. |
6275 | if (FD->isBitField()) |
6276 | return nullptr; |
6277 | const CXXRecordDecl *RD = FD->getType()->getAsCXXRecordDecl(); |
6278 | |
6279 | // Consider only the fields in declaration order, searched depth-first. We |
6280 | // don't care about the active member of the union, as all we are doing is |
6281 | // looking for a valid name. We also don't check bases, due to guidance from |
6282 | // the Itanium ABI folks. |
6283 | for (const FieldDecl *RDField : RD->fields()) { |
6284 | if (IdentifierInfo *II = getUnionInitName(UnionLoc, Diags, RDField)) |
6285 | return II; |
6286 | } |
6287 | |
6288 | // According to the Itanium ABI: If there is no such data member (i.e., if all |
6289 | // of the data members in the union are unnamed), then there is no way for a |
6290 | // program to refer to the anonymous union, and there is therefore no need to |
6291 | // mangle its name. However, we should diagnose this anyway. |
6292 | unsigned DiagID = Diags.getCustomDiagID( |
6293 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this unnamed union NTTP yet" ); |
6294 | Diags.Report(Loc: UnionLoc, DiagID); |
6295 | |
6296 | return nullptr; |
6297 | } |
6298 | |
6299 | void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V, |
6300 | bool TopLevel, |
6301 | bool NeedExactType) { |
6302 | // Ignore all top-level cv-qualifiers, to match GCC. |
6303 | Qualifiers Quals; |
6304 | T = getASTContext().getUnqualifiedArrayType(T, Quals); |
6305 | |
6306 | // A top-level expression that's not a primary expression is wrapped in X...E. |
6307 | bool IsPrimaryExpr = true; |
6308 | auto NotPrimaryExpr = [&] { |
6309 | if (TopLevel && IsPrimaryExpr) |
6310 | Out << 'X'; |
6311 | IsPrimaryExpr = false; |
6312 | }; |
6313 | |
6314 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. |
6315 | switch (V.getKind()) { |
6316 | case APValue::None: |
6317 | case APValue::Indeterminate: |
6318 | Out << 'L'; |
6319 | mangleType(T); |
6320 | Out << 'E'; |
6321 | break; |
6322 | |
6323 | case APValue::AddrLabelDiff: |
6324 | llvm_unreachable("unexpected value kind in template argument" ); |
6325 | |
6326 | case APValue::Struct: { |
6327 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
6328 | assert(RD && "unexpected type for record value" ); |
6329 | |
6330 | // Drop trailing zero-initialized elements. |
6331 | llvm::SmallVector<const FieldDecl *, 16> Fields(RD->fields()); |
6332 | while ( |
6333 | !Fields.empty() && |
6334 | (Fields.back()->isUnnamedBitField() || |
6335 | isZeroInitialized(Fields.back()->getType(), |
6336 | V.getStructField(i: Fields.back()->getFieldIndex())))) { |
6337 | Fields.pop_back(); |
6338 | } |
6339 | llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end()); |
6340 | if (Fields.empty()) { |
6341 | while (!Bases.empty() && |
6342 | isZeroInitialized(T: Bases.back().getType(), |
6343 | V: V.getStructBase(i: Bases.size() - 1))) |
6344 | Bases = Bases.drop_back(); |
6345 | } |
6346 | |
6347 | // <expression> ::= tl <type> <braced-expression>* E |
6348 | NotPrimaryExpr(); |
6349 | Out << "tl" ; |
6350 | mangleType(T); |
6351 | for (unsigned I = 0, N = Bases.size(); I != N; ++I) |
6352 | mangleValueInTemplateArg(T: Bases[I].getType(), V: V.getStructBase(i: I), TopLevel: false); |
6353 | for (unsigned I = 0, N = Fields.size(); I != N; ++I) { |
6354 | if (Fields[I]->isUnnamedBitField()) |
6355 | continue; |
6356 | mangleValueInTemplateArg(T: Fields[I]->getType(), |
6357 | V: V.getStructField(i: Fields[I]->getFieldIndex()), |
6358 | TopLevel: false); |
6359 | } |
6360 | Out << 'E'; |
6361 | break; |
6362 | } |
6363 | |
6364 | case APValue::Union: { |
6365 | assert(T->getAsCXXRecordDecl() && "unexpected type for union value" ); |
6366 | const FieldDecl *FD = V.getUnionField(); |
6367 | |
6368 | if (!FD) { |
6369 | Out << 'L'; |
6370 | mangleType(T); |
6371 | Out << 'E'; |
6372 | break; |
6373 | } |
6374 | |
6375 | // <braced-expression> ::= di <field source-name> <braced-expression> |
6376 | NotPrimaryExpr(); |
6377 | Out << "tl" ; |
6378 | mangleType(T); |
6379 | if (!isZeroInitialized(T, V)) { |
6380 | Out << "di" ; |
6381 | IdentifierInfo *II = (getUnionInitName( |
6382 | T->getAsCXXRecordDecl()->getLocation(), Context.getDiags(), FD)); |
6383 | if (II) |
6384 | mangleSourceName(II); |
6385 | mangleValueInTemplateArg(T: FD->getType(), V: V.getUnionValue(), TopLevel: false); |
6386 | } |
6387 | Out << 'E'; |
6388 | break; |
6389 | } |
6390 | |
6391 | case APValue::Array: { |
6392 | QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); |
6393 | |
6394 | NotPrimaryExpr(); |
6395 | Out << "tl" ; |
6396 | mangleType(T); |
6397 | |
6398 | // Drop trailing zero-initialized elements. |
6399 | unsigned N = V.getArraySize(); |
6400 | if (!V.hasArrayFiller() || isZeroInitialized(T: ElemT, V: V.getArrayFiller())) { |
6401 | N = V.getArrayInitializedElts(); |
6402 | while (N && isZeroInitialized(T: ElemT, V: V.getArrayInitializedElt(I: N - 1))) |
6403 | --N; |
6404 | } |
6405 | |
6406 | for (unsigned I = 0; I != N; ++I) { |
6407 | const APValue &Elem = I < V.getArrayInitializedElts() |
6408 | ? V.getArrayInitializedElt(I) |
6409 | : V.getArrayFiller(); |
6410 | mangleValueInTemplateArg(T: ElemT, V: Elem, TopLevel: false); |
6411 | } |
6412 | Out << 'E'; |
6413 | break; |
6414 | } |
6415 | |
6416 | case APValue::Vector: { |
6417 | const VectorType *VT = T->castAs<VectorType>(); |
6418 | |
6419 | NotPrimaryExpr(); |
6420 | Out << "tl" ; |
6421 | mangleType(T); |
6422 | unsigned N = V.getVectorLength(); |
6423 | while (N && isZeroInitialized(T: VT->getElementType(), V: V.getVectorElt(I: N - 1))) |
6424 | --N; |
6425 | for (unsigned I = 0; I != N; ++I) |
6426 | mangleValueInTemplateArg(T: VT->getElementType(), V: V.getVectorElt(I), TopLevel: false); |
6427 | Out << 'E'; |
6428 | break; |
6429 | } |
6430 | |
6431 | case APValue::Int: |
6432 | mangleIntegerLiteral(T, Value: V.getInt()); |
6433 | break; |
6434 | |
6435 | case APValue::Float: |
6436 | mangleFloatLiteral(T, V: V.getFloat()); |
6437 | break; |
6438 | |
6439 | case APValue::FixedPoint: |
6440 | mangleFixedPointLiteral(); |
6441 | break; |
6442 | |
6443 | case APValue::ComplexFloat: { |
6444 | const ComplexType *CT = T->castAs<ComplexType>(); |
6445 | NotPrimaryExpr(); |
6446 | Out << "tl" ; |
6447 | mangleType(T); |
6448 | if (!V.getComplexFloatReal().isPosZero() || |
6449 | !V.getComplexFloatImag().isPosZero()) |
6450 | mangleFloatLiteral(T: CT->getElementType(), V: V.getComplexFloatReal()); |
6451 | if (!V.getComplexFloatImag().isPosZero()) |
6452 | mangleFloatLiteral(T: CT->getElementType(), V: V.getComplexFloatImag()); |
6453 | Out << 'E'; |
6454 | break; |
6455 | } |
6456 | |
6457 | case APValue::ComplexInt: { |
6458 | const ComplexType *CT = T->castAs<ComplexType>(); |
6459 | NotPrimaryExpr(); |
6460 | Out << "tl" ; |
6461 | mangleType(T); |
6462 | if (V.getComplexIntReal().getBoolValue() || |
6463 | V.getComplexIntImag().getBoolValue()) |
6464 | mangleIntegerLiteral(T: CT->getElementType(), Value: V.getComplexIntReal()); |
6465 | if (V.getComplexIntImag().getBoolValue()) |
6466 | mangleIntegerLiteral(T: CT->getElementType(), Value: V.getComplexIntImag()); |
6467 | Out << 'E'; |
6468 | break; |
6469 | } |
6470 | |
6471 | case APValue::LValue: { |
6472 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
6473 | assert((T->isPointerType() || T->isReferenceType()) && |
6474 | "unexpected type for LValue template arg" ); |
6475 | |
6476 | if (V.isNullPointer()) { |
6477 | mangleNullPointer(T); |
6478 | break; |
6479 | } |
6480 | |
6481 | APValue::LValueBase B = V.getLValueBase(); |
6482 | if (!B) { |
6483 | // Non-standard mangling for integer cast to a pointer; this can only |
6484 | // occur as an extension. |
6485 | CharUnits Offset = V.getLValueOffset(); |
6486 | if (Offset.isZero()) { |
6487 | // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as |
6488 | // a cast, because L <type> 0 E means something else. |
6489 | NotPrimaryExpr(); |
6490 | Out << "rc" ; |
6491 | mangleType(T); |
6492 | Out << "Li0E" ; |
6493 | if (TopLevel) |
6494 | Out << 'E'; |
6495 | } else { |
6496 | Out << "L" ; |
6497 | mangleType(T); |
6498 | Out << Offset.getQuantity() << 'E'; |
6499 | } |
6500 | break; |
6501 | } |
6502 | |
6503 | ASTContext &Ctx = Context.getASTContext(); |
6504 | |
6505 | enum { Base, Offset, Path } Kind; |
6506 | if (!V.hasLValuePath()) { |
6507 | // Mangle as (T*)((char*)&base + N). |
6508 | if (T->isReferenceType()) { |
6509 | NotPrimaryExpr(); |
6510 | Out << "decvP" ; |
6511 | mangleType(T: T->getPointeeType()); |
6512 | } else { |
6513 | NotPrimaryExpr(); |
6514 | Out << "cv" ; |
6515 | mangleType(T); |
6516 | } |
6517 | Out << "plcvPcad" ; |
6518 | Kind = Offset; |
6519 | } else { |
6520 | // Clang 11 and before mangled an array subject to array-to-pointer decay |
6521 | // as if it were the declaration itself. |
6522 | bool IsArrayToPointerDecayMangledAsDecl = false; |
6523 | if (TopLevel && Ctx.getLangOpts().getClangABICompat() <= |
6524 | LangOptions::ClangABI::Ver11) { |
6525 | QualType BType = B.getType(); |
6526 | IsArrayToPointerDecayMangledAsDecl = |
6527 | BType->isArrayType() && V.getLValuePath().size() == 1 && |
6528 | V.getLValuePath()[0].getAsArrayIndex() == 0 && |
6529 | Ctx.hasSimilarType(T1: T, T2: Ctx.getDecayedType(T: BType)); |
6530 | } |
6531 | |
6532 | if ((!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) && |
6533 | !IsArrayToPointerDecayMangledAsDecl) { |
6534 | NotPrimaryExpr(); |
6535 | // A final conversion to the template parameter's type is usually |
6536 | // folded into the 'so' mangling, but we can't do that for 'void*' |
6537 | // parameters without introducing collisions. |
6538 | if (NeedExactType && T->isVoidPointerType()) { |
6539 | Out << "cv" ; |
6540 | mangleType(T); |
6541 | } |
6542 | if (T->isPointerType()) |
6543 | Out << "ad" ; |
6544 | Out << "so" ; |
6545 | mangleType(T: T->isVoidPointerType() |
6546 | ? getLValueType(Ctx, LV: V).getUnqualifiedType() |
6547 | : T->getPointeeType()); |
6548 | Kind = Path; |
6549 | } else { |
6550 | if (NeedExactType && |
6551 | !Ctx.hasSameType(T1: T->getPointeeType(), T2: getLValueType(Ctx, LV: V)) && |
6552 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
6553 | NotPrimaryExpr(); |
6554 | Out << "cv" ; |
6555 | mangleType(T); |
6556 | } |
6557 | if (T->isPointerType()) { |
6558 | NotPrimaryExpr(); |
6559 | Out << "ad" ; |
6560 | } |
6561 | Kind = Base; |
6562 | } |
6563 | } |
6564 | |
6565 | QualType TypeSoFar = B.getType(); |
6566 | if (auto *VD = B.dyn_cast<const ValueDecl*>()) { |
6567 | Out << 'L'; |
6568 | mangle(VD); |
6569 | Out << 'E'; |
6570 | } else if (auto *E = B.dyn_cast<const Expr*>()) { |
6571 | NotPrimaryExpr(); |
6572 | mangleExpression(E); |
6573 | } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) { |
6574 | NotPrimaryExpr(); |
6575 | Out << "ti" ; |
6576 | mangleType(T: QualType(TI.getType(), 0)); |
6577 | } else { |
6578 | // We should never see dynamic allocations here. |
6579 | llvm_unreachable("unexpected lvalue base kind in template argument" ); |
6580 | } |
6581 | |
6582 | switch (Kind) { |
6583 | case Base: |
6584 | break; |
6585 | |
6586 | case Offset: |
6587 | Out << 'L'; |
6588 | mangleType(T: Ctx.getPointerDiffType()); |
6589 | mangleNumber(Number: V.getLValueOffset().getQuantity()); |
6590 | Out << 'E'; |
6591 | break; |
6592 | |
6593 | case Path: |
6594 | // <expression> ::= so <referent type> <expr> [<offset number>] |
6595 | // <union-selector>* [p] E |
6596 | if (!V.getLValueOffset().isZero()) |
6597 | mangleNumber(Number: V.getLValueOffset().getQuantity()); |
6598 | |
6599 | // We model a past-the-end array pointer as array indexing with index N, |
6600 | // not with the "past the end" flag. Compensate for that. |
6601 | bool OnePastTheEnd = V.isLValueOnePastTheEnd(); |
6602 | |
6603 | for (APValue::LValuePathEntry E : V.getLValuePath()) { |
6604 | if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) { |
6605 | if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) |
6606 | OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex(); |
6607 | TypeSoFar = AT->getElementType(); |
6608 | } else { |
6609 | const Decl *D = E.getAsBaseOrMember().getPointer(); |
6610 | if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
6611 | // <union-selector> ::= _ <number> |
6612 | if (FD->getParent()->isUnion()) { |
6613 | Out << '_'; |
6614 | if (FD->getFieldIndex()) |
6615 | Out << (FD->getFieldIndex() - 1); |
6616 | } |
6617 | TypeSoFar = FD->getType(); |
6618 | } else { |
6619 | TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(Val: D)); |
6620 | } |
6621 | } |
6622 | } |
6623 | |
6624 | if (OnePastTheEnd) |
6625 | Out << 'p'; |
6626 | Out << 'E'; |
6627 | break; |
6628 | } |
6629 | |
6630 | break; |
6631 | } |
6632 | |
6633 | case APValue::MemberPointer: |
6634 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
6635 | if (!V.getMemberPointerDecl()) { |
6636 | mangleNullPointer(T); |
6637 | break; |
6638 | } |
6639 | |
6640 | ASTContext &Ctx = Context.getASTContext(); |
6641 | |
6642 | NotPrimaryExpr(); |
6643 | if (!V.getMemberPointerPath().empty()) { |
6644 | Out << "mc" ; |
6645 | mangleType(T); |
6646 | } else if (NeedExactType && |
6647 | !Ctx.hasSameType( |
6648 | T1: T->castAs<MemberPointerType>()->getPointeeType(), |
6649 | T2: V.getMemberPointerDecl()->getType()) && |
6650 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
6651 | Out << "cv" ; |
6652 | mangleType(T); |
6653 | } |
6654 | Out << "adL" ; |
6655 | mangle(V.getMemberPointerDecl()); |
6656 | Out << 'E'; |
6657 | if (!V.getMemberPointerPath().empty()) { |
6658 | CharUnits Offset = |
6659 | Context.getASTContext().getMemberPointerPathAdjustment(MP: V); |
6660 | if (!Offset.isZero()) |
6661 | mangleNumber(Number: Offset.getQuantity()); |
6662 | Out << 'E'; |
6663 | } |
6664 | break; |
6665 | } |
6666 | |
6667 | if (TopLevel && !IsPrimaryExpr) |
6668 | Out << 'E'; |
6669 | } |
6670 | |
6671 | void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) { |
6672 | // <template-param> ::= T_ # first template parameter |
6673 | // ::= T <parameter-2 non-negative number> _ |
6674 | // ::= TL <L-1 non-negative number> __ |
6675 | // ::= TL <L-1 non-negative number> _ |
6676 | // <parameter-2 non-negative number> _ |
6677 | // |
6678 | // The latter two manglings are from a proposal here: |
6679 | // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117 |
6680 | Out << 'T'; |
6681 | Depth += TemplateDepthOffset; |
6682 | if (Depth != 0) |
6683 | Out << 'L' << (Depth - 1) << '_'; |
6684 | if (Index != 0) |
6685 | Out << (Index - 1); |
6686 | Out << '_'; |
6687 | } |
6688 | |
6689 | void CXXNameMangler::mangleSeqID(unsigned SeqID) { |
6690 | if (SeqID == 0) { |
6691 | // Nothing. |
6692 | } else if (SeqID == 1) { |
6693 | Out << '0'; |
6694 | } else { |
6695 | SeqID--; |
6696 | |
6697 | // <seq-id> is encoded in base-36, using digits and upper case letters. |
6698 | char Buffer[7]; // log(2**32) / log(36) ~= 7 |
6699 | MutableArrayRef<char> BufferRef(Buffer); |
6700 | MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); |
6701 | |
6702 | for (; SeqID != 0; SeqID /= 36) { |
6703 | unsigned C = SeqID % 36; |
6704 | *I++ = (C < 10 ? '0' + C : 'A' + C - 10); |
6705 | } |
6706 | |
6707 | Out.write(Ptr: I.base(), Size: I - BufferRef.rbegin()); |
6708 | } |
6709 | Out << '_'; |
6710 | } |
6711 | |
6712 | void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { |
6713 | bool result = mangleSubstitution(Template: tname); |
6714 | assert(result && "no existing substitution for template name" ); |
6715 | (void) result; |
6716 | } |
6717 | |
6718 | // <substitution> ::= S <seq-id> _ |
6719 | // ::= S_ |
6720 | bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { |
6721 | // Try one of the standard substitutions first. |
6722 | if (mangleStandardSubstitution(ND)) |
6723 | return true; |
6724 | |
6725 | ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
6726 | return mangleSubstitution(Ptr: reinterpret_cast<uintptr_t>(ND)); |
6727 | } |
6728 | |
6729 | bool CXXNameMangler::mangleSubstitution(NestedNameSpecifier *NNS) { |
6730 | assert(NNS->getKind() == NestedNameSpecifier::Identifier && |
6731 | "mangleSubstitution(NestedNameSpecifier *) is only used for " |
6732 | "identifier nested name specifiers." ); |
6733 | NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); |
6734 | return mangleSubstitution(Ptr: reinterpret_cast<uintptr_t>(NNS)); |
6735 | } |
6736 | |
6737 | /// Determine whether the given type has any qualifiers that are relevant for |
6738 | /// substitutions. |
6739 | static bool hasMangledSubstitutionQualifiers(QualType T) { |
6740 | Qualifiers Qs = T.getQualifiers(); |
6741 | return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); |
6742 | } |
6743 | |
6744 | bool CXXNameMangler::mangleSubstitution(QualType T) { |
6745 | if (!hasMangledSubstitutionQualifiers(T)) { |
6746 | if (const RecordType *RT = T->getAs<RecordType>()) |
6747 | return mangleSubstitution(RT->getDecl()); |
6748 | } |
6749 | |
6750 | uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
6751 | |
6752 | return mangleSubstitution(Ptr: TypePtr); |
6753 | } |
6754 | |
6755 | bool CXXNameMangler::mangleSubstitution(TemplateName Template) { |
6756 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
6757 | return mangleSubstitution(TD); |
6758 | |
6759 | Template = Context.getASTContext().getCanonicalTemplateName(Name: Template); |
6760 | return mangleSubstitution( |
6761 | Ptr: reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
6762 | } |
6763 | |
6764 | bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { |
6765 | llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Val: Ptr); |
6766 | if (I == Substitutions.end()) |
6767 | return false; |
6768 | |
6769 | unsigned SeqID = I->second; |
6770 | Out << 'S'; |
6771 | mangleSeqID(SeqID); |
6772 | |
6773 | return true; |
6774 | } |
6775 | |
6776 | /// Returns whether S is a template specialization of std::Name with a single |
6777 | /// argument of type A. |
6778 | bool CXXNameMangler::isSpecializedAs(QualType S, llvm::StringRef Name, |
6779 | QualType A) { |
6780 | if (S.isNull()) |
6781 | return false; |
6782 | |
6783 | const RecordType *RT = S->getAs<RecordType>(); |
6784 | if (!RT) |
6785 | return false; |
6786 | |
6787 | const ClassTemplateSpecializationDecl *SD = |
6788 | dyn_cast<ClassTemplateSpecializationDecl>(Val: RT->getDecl()); |
6789 | if (!SD || !SD->getIdentifier()->isStr(Name)) |
6790 | return false; |
6791 | |
6792 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(SD))) |
6793 | return false; |
6794 | |
6795 | const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
6796 | if (TemplateArgs.size() != 1) |
6797 | return false; |
6798 | |
6799 | if (TemplateArgs[0].getAsType() != A) |
6800 | return false; |
6801 | |
6802 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
6803 | return false; |
6804 | |
6805 | return true; |
6806 | } |
6807 | |
6808 | /// Returns whether SD is a template specialization std::Name<char, |
6809 | /// std::char_traits<char> [, std::allocator<char>]> |
6810 | /// HasAllocator controls whether the 3rd template argument is needed. |
6811 | bool CXXNameMangler::isStdCharSpecialization( |
6812 | const ClassTemplateSpecializationDecl *SD, llvm::StringRef Name, |
6813 | bool HasAllocator) { |
6814 | if (!SD->getIdentifier()->isStr(Name)) |
6815 | return false; |
6816 | |
6817 | const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
6818 | if (TemplateArgs.size() != (HasAllocator ? 3 : 2)) |
6819 | return false; |
6820 | |
6821 | QualType A = TemplateArgs[0].getAsType(); |
6822 | if (A.isNull()) |
6823 | return false; |
6824 | // Plain 'char' is named Char_S or Char_U depending on the target ABI. |
6825 | if (!A->isSpecificBuiltinType(K: BuiltinType::Char_S) && |
6826 | !A->isSpecificBuiltinType(K: BuiltinType::Char_U)) |
6827 | return false; |
6828 | |
6829 | if (!isSpecializedAs(S: TemplateArgs[1].getAsType(), Name: "char_traits" , A)) |
6830 | return false; |
6831 | |
6832 | if (HasAllocator && |
6833 | !isSpecializedAs(S: TemplateArgs[2].getAsType(), Name: "allocator" , A)) |
6834 | return false; |
6835 | |
6836 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
6837 | return false; |
6838 | |
6839 | return true; |
6840 | } |
6841 | |
6842 | bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { |
6843 | // <substitution> ::= St # ::std:: |
6844 | if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
6845 | if (isStd(NS)) { |
6846 | Out << "St" ; |
6847 | return true; |
6848 | } |
6849 | return false; |
6850 | } |
6851 | |
6852 | if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(Val: ND)) { |
6853 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(TD))) |
6854 | return false; |
6855 | |
6856 | if (TD->getOwningModuleForLinkage()) |
6857 | return false; |
6858 | |
6859 | // <substitution> ::= Sa # ::std::allocator |
6860 | if (TD->getIdentifier()->isStr("allocator" )) { |
6861 | Out << "Sa" ; |
6862 | return true; |
6863 | } |
6864 | |
6865 | // <<substitution> ::= Sb # ::std::basic_string |
6866 | if (TD->getIdentifier()->isStr("basic_string" )) { |
6867 | Out << "Sb" ; |
6868 | return true; |
6869 | } |
6870 | return false; |
6871 | } |
6872 | |
6873 | if (const ClassTemplateSpecializationDecl *SD = |
6874 | dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) { |
6875 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(SD))) |
6876 | return false; |
6877 | |
6878 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
6879 | return false; |
6880 | |
6881 | // <substitution> ::= Ss # ::std::basic_string<char, |
6882 | // ::std::char_traits<char>, |
6883 | // ::std::allocator<char> > |
6884 | if (isStdCharSpecialization(SD, Name: "basic_string" , /*HasAllocator=*/true)) { |
6885 | Out << "Ss" ; |
6886 | return true; |
6887 | } |
6888 | |
6889 | // <substitution> ::= Si # ::std::basic_istream<char, |
6890 | // ::std::char_traits<char> > |
6891 | if (isStdCharSpecialization(SD, Name: "basic_istream" , /*HasAllocator=*/false)) { |
6892 | Out << "Si" ; |
6893 | return true; |
6894 | } |
6895 | |
6896 | // <substitution> ::= So # ::std::basic_ostream<char, |
6897 | // ::std::char_traits<char> > |
6898 | if (isStdCharSpecialization(SD, Name: "basic_ostream" , /*HasAllocator=*/false)) { |
6899 | Out << "So" ; |
6900 | return true; |
6901 | } |
6902 | |
6903 | // <substitution> ::= Sd # ::std::basic_iostream<char, |
6904 | // ::std::char_traits<char> > |
6905 | if (isStdCharSpecialization(SD, Name: "basic_iostream" , /*HasAllocator=*/false)) { |
6906 | Out << "Sd" ; |
6907 | return true; |
6908 | } |
6909 | return false; |
6910 | } |
6911 | |
6912 | return false; |
6913 | } |
6914 | |
6915 | void CXXNameMangler::addSubstitution(QualType T) { |
6916 | if (!hasMangledSubstitutionQualifiers(T)) { |
6917 | if (const RecordType *RT = T->getAs<RecordType>()) { |
6918 | addSubstitution(RT->getDecl()); |
6919 | return; |
6920 | } |
6921 | } |
6922 | |
6923 | uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
6924 | addSubstitution(Ptr: TypePtr); |
6925 | } |
6926 | |
6927 | void CXXNameMangler::addSubstitution(TemplateName Template) { |
6928 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
6929 | return addSubstitution(TD); |
6930 | |
6931 | Template = Context.getASTContext().getCanonicalTemplateName(Name: Template); |
6932 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
6933 | } |
6934 | |
6935 | void CXXNameMangler::addSubstitution(uintptr_t Ptr) { |
6936 | assert(!Substitutions.count(Ptr) && "Substitution already exists!" ); |
6937 | Substitutions[Ptr] = SeqID++; |
6938 | } |
6939 | |
6940 | void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { |
6941 | assert(Other->SeqID >= SeqID && "Must be superset of substitutions!" ); |
6942 | if (Other->SeqID > SeqID) { |
6943 | Substitutions.swap(RHS&: Other->Substitutions); |
6944 | SeqID = Other->SeqID; |
6945 | } |
6946 | } |
6947 | |
6948 | CXXNameMangler::AbiTagList |
6949 | CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { |
6950 | // When derived abi tags are disabled there is no need to make any list. |
6951 | if (DisableDerivedAbiTags) |
6952 | return AbiTagList(); |
6953 | |
6954 | llvm::raw_null_ostream NullOutStream; |
6955 | CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); |
6956 | TrackReturnTypeTags.disableDerivedAbiTags(); |
6957 | |
6958 | const FunctionProtoType *Proto = |
6959 | cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>()); |
6960 | FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); |
6961 | TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); |
6962 | TrackReturnTypeTags.mangleType(Proto->getReturnType()); |
6963 | TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); |
6964 | TrackReturnTypeTags.FunctionTypeDepth.pop(saved); |
6965 | |
6966 | return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
6967 | } |
6968 | |
6969 | CXXNameMangler::AbiTagList |
6970 | CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { |
6971 | // When derived abi tags are disabled there is no need to make any list. |
6972 | if (DisableDerivedAbiTags) |
6973 | return AbiTagList(); |
6974 | |
6975 | llvm::raw_null_ostream NullOutStream; |
6976 | CXXNameMangler TrackVariableType(*this, NullOutStream); |
6977 | TrackVariableType.disableDerivedAbiTags(); |
6978 | |
6979 | TrackVariableType.mangleType(VD->getType()); |
6980 | |
6981 | return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
6982 | } |
6983 | |
6984 | bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, |
6985 | const VarDecl *VD) { |
6986 | llvm::raw_null_ostream NullOutStream; |
6987 | CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); |
6988 | TrackAbiTags.mangle(GD: VD); |
6989 | return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); |
6990 | } |
6991 | |
6992 | // |
6993 | |
6994 | /// Mangles the name of the declaration D and emits that name to the given |
6995 | /// output stream. |
6996 | /// |
6997 | /// If the declaration D requires a mangled name, this routine will emit that |
6998 | /// mangled name to \p os and return true. Otherwise, \p os will be unchanged |
6999 | /// and this routine will return false. In this case, the caller should just |
7000 | /// emit the identifier of the declaration (\c D->getIdentifier()) as its |
7001 | /// name. |
7002 | void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD, |
7003 | raw_ostream &Out) { |
7004 | const NamedDecl *D = cast<NamedDecl>(Val: GD.getDecl()); |
7005 | assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) && |
7006 | "Invalid mangleName() call, argument is not a variable or function!" ); |
7007 | |
7008 | PrettyStackTraceDecl CrashInfo(D, SourceLocation(), |
7009 | getASTContext().getSourceManager(), |
7010 | "Mangling declaration" ); |
7011 | |
7012 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: D)) { |
7013 | auto Type = GD.getCtorType(); |
7014 | CXXNameMangler Mangler(*this, Out, CD, Type); |
7015 | return Mangler.mangle(GD: GlobalDecl(CD, Type)); |
7016 | } |
7017 | |
7018 | if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: D)) { |
7019 | auto Type = GD.getDtorType(); |
7020 | CXXNameMangler Mangler(*this, Out, DD, Type); |
7021 | return Mangler.mangle(GD: GlobalDecl(DD, Type)); |
7022 | } |
7023 | |
7024 | CXXNameMangler Mangler(*this, Out, D); |
7025 | Mangler.mangle(GD); |
7026 | } |
7027 | |
7028 | void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, |
7029 | raw_ostream &Out) { |
7030 | CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); |
7031 | Mangler.mangle(GD: GlobalDecl(D, Ctor_Comdat)); |
7032 | } |
7033 | |
7034 | void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, |
7035 | raw_ostream &Out) { |
7036 | CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); |
7037 | Mangler.mangle(GD: GlobalDecl(D, Dtor_Comdat)); |
7038 | } |
7039 | |
7040 | void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, |
7041 | const ThunkInfo &Thunk, |
7042 | raw_ostream &Out) { |
7043 | // <special-name> ::= T <call-offset> <base encoding> |
7044 | // # base is the nominal target function of thunk |
7045 | // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> |
7046 | // # base is the nominal target function of thunk |
7047 | // # first call-offset is 'this' adjustment |
7048 | // # second call-offset is result adjustment |
7049 | |
7050 | assert(!isa<CXXDestructorDecl>(MD) && |
7051 | "Use mangleCXXDtor for destructor decls!" ); |
7052 | CXXNameMangler Mangler(*this, Out); |
7053 | Mangler.getStream() << "_ZT" ; |
7054 | if (!Thunk.Return.isEmpty()) |
7055 | Mangler.getStream() << 'c'; |
7056 | |
7057 | // Mangle the 'this' pointer adjustment. |
7058 | Mangler.mangleCallOffset(NonVirtual: Thunk.This.NonVirtual, |
7059 | Virtual: Thunk.This.Virtual.Itanium.VCallOffsetOffset); |
7060 | |
7061 | // Mangle the return pointer adjustment if there is one. |
7062 | if (!Thunk.Return.isEmpty()) |
7063 | Mangler.mangleCallOffset(NonVirtual: Thunk.Return.NonVirtual, |
7064 | Virtual: Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); |
7065 | |
7066 | Mangler.mangleFunctionEncoding(MD); |
7067 | } |
7068 | |
7069 | void ItaniumMangleContextImpl::mangleCXXDtorThunk( |
7070 | const CXXDestructorDecl *DD, CXXDtorType Type, |
7071 | const ThisAdjustment &ThisAdjustment, raw_ostream &Out) { |
7072 | // <special-name> ::= T <call-offset> <base encoding> |
7073 | // # base is the nominal target function of thunk |
7074 | CXXNameMangler Mangler(*this, Out, DD, Type); |
7075 | Mangler.getStream() << "_ZT" ; |
7076 | |
7077 | // Mangle the 'this' pointer adjustment. |
7078 | Mangler.mangleCallOffset(NonVirtual: ThisAdjustment.NonVirtual, |
7079 | Virtual: ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); |
7080 | |
7081 | Mangler.mangleFunctionEncoding(GD: GlobalDecl(DD, Type)); |
7082 | } |
7083 | |
7084 | /// Returns the mangled name for a guard variable for the passed in VarDecl. |
7085 | void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, |
7086 | raw_ostream &Out) { |
7087 | // <special-name> ::= GV <object name> # Guard variable for one-time |
7088 | // # initialization |
7089 | CXXNameMangler Mangler(*this, Out); |
7090 | // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to |
7091 | // be a bug that is fixed in trunk. |
7092 | Mangler.getStream() << "_ZGV" ; |
7093 | Mangler.mangleName(GD: D); |
7094 | } |
7095 | |
7096 | void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, |
7097 | raw_ostream &Out) { |
7098 | // These symbols are internal in the Itanium ABI, so the names don't matter. |
7099 | // Clang has traditionally used this symbol and allowed LLVM to adjust it to |
7100 | // avoid duplicate symbols. |
7101 | Out << "__cxx_global_var_init" ; |
7102 | } |
7103 | |
7104 | void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, |
7105 | raw_ostream &Out) { |
7106 | // Prefix the mangling of D with __dtor_. |
7107 | CXXNameMangler Mangler(*this, Out); |
7108 | Mangler.getStream() << "__dtor_" ; |
7109 | if (shouldMangleDeclName(D)) |
7110 | Mangler.mangle(GD: D); |
7111 | else |
7112 | Mangler.getStream() << D->getName(); |
7113 | } |
7114 | |
7115 | void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D, |
7116 | raw_ostream &Out) { |
7117 | // Clang generates these internal-linkage functions as part of its |
7118 | // implementation of the XL ABI. |
7119 | CXXNameMangler Mangler(*this, Out); |
7120 | Mangler.getStream() << "__finalize_" ; |
7121 | if (shouldMangleDeclName(D)) |
7122 | Mangler.mangle(GD: D); |
7123 | else |
7124 | Mangler.getStream() << D->getName(); |
7125 | } |
7126 | |
7127 | void ItaniumMangleContextImpl::mangleSEHFilterExpression( |
7128 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
7129 | CXXNameMangler Mangler(*this, Out); |
7130 | Mangler.getStream() << "__filt_" ; |
7131 | auto *EnclosingFD = cast<FunctionDecl>(Val: EnclosingDecl.getDecl()); |
7132 | if (shouldMangleDeclName(EnclosingFD)) |
7133 | Mangler.mangle(GD: EnclosingDecl); |
7134 | else |
7135 | Mangler.getStream() << EnclosingFD->getName(); |
7136 | } |
7137 | |
7138 | void ItaniumMangleContextImpl::mangleSEHFinallyBlock( |
7139 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
7140 | CXXNameMangler Mangler(*this, Out); |
7141 | Mangler.getStream() << "__fin_" ; |
7142 | auto *EnclosingFD = cast<FunctionDecl>(Val: EnclosingDecl.getDecl()); |
7143 | if (shouldMangleDeclName(EnclosingFD)) |
7144 | Mangler.mangle(GD: EnclosingDecl); |
7145 | else |
7146 | Mangler.getStream() << EnclosingFD->getName(); |
7147 | } |
7148 | |
7149 | void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, |
7150 | raw_ostream &Out) { |
7151 | // <special-name> ::= TH <object name> |
7152 | CXXNameMangler Mangler(*this, Out); |
7153 | Mangler.getStream() << "_ZTH" ; |
7154 | Mangler.mangleName(GD: D); |
7155 | } |
7156 | |
7157 | void |
7158 | ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, |
7159 | raw_ostream &Out) { |
7160 | // <special-name> ::= TW <object name> |
7161 | CXXNameMangler Mangler(*this, Out); |
7162 | Mangler.getStream() << "_ZTW" ; |
7163 | Mangler.mangleName(GD: D); |
7164 | } |
7165 | |
7166 | void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, |
7167 | unsigned ManglingNumber, |
7168 | raw_ostream &Out) { |
7169 | // We match the GCC mangling here. |
7170 | // <special-name> ::= GR <object name> |
7171 | CXXNameMangler Mangler(*this, Out); |
7172 | Mangler.getStream() << "_ZGR" ; |
7173 | Mangler.mangleName(GD: D); |
7174 | assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!" ); |
7175 | Mangler.mangleSeqID(SeqID: ManglingNumber - 1); |
7176 | } |
7177 | |
7178 | void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, |
7179 | raw_ostream &Out) { |
7180 | // <special-name> ::= TV <type> # virtual table |
7181 | CXXNameMangler Mangler(*this, Out); |
7182 | Mangler.getStream() << "_ZTV" ; |
7183 | Mangler.mangleNameOrStandardSubstitution(RD); |
7184 | } |
7185 | |
7186 | void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, |
7187 | raw_ostream &Out) { |
7188 | // <special-name> ::= TT <type> # VTT structure |
7189 | CXXNameMangler Mangler(*this, Out); |
7190 | Mangler.getStream() << "_ZTT" ; |
7191 | Mangler.mangleNameOrStandardSubstitution(RD); |
7192 | } |
7193 | |
7194 | void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, |
7195 | int64_t Offset, |
7196 | const CXXRecordDecl *Type, |
7197 | raw_ostream &Out) { |
7198 | // <special-name> ::= TC <type> <offset number> _ <base type> |
7199 | CXXNameMangler Mangler(*this, Out); |
7200 | Mangler.getStream() << "_ZTC" ; |
7201 | Mangler.mangleNameOrStandardSubstitution(RD); |
7202 | Mangler.getStream() << Offset; |
7203 | Mangler.getStream() << '_'; |
7204 | Mangler.mangleNameOrStandardSubstitution(Type); |
7205 | } |
7206 | |
7207 | void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { |
7208 | // <special-name> ::= TI <type> # typeinfo structure |
7209 | assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers" ); |
7210 | CXXNameMangler Mangler(*this, Out); |
7211 | Mangler.getStream() << "_ZTI" ; |
7212 | Mangler.mangleType(T: Ty); |
7213 | } |
7214 | |
7215 | void ItaniumMangleContextImpl::mangleCXXRTTIName( |
7216 | QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) { |
7217 | // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) |
7218 | CXXNameMangler Mangler(*this, Out, NormalizeIntegers); |
7219 | Mangler.getStream() << "_ZTS" ; |
7220 | Mangler.mangleType(T: Ty); |
7221 | } |
7222 | |
7223 | void ItaniumMangleContextImpl::mangleCanonicalTypeName( |
7224 | QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) { |
7225 | mangleCXXRTTIName(Ty, Out, NormalizeIntegers); |
7226 | } |
7227 | |
7228 | void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { |
7229 | llvm_unreachable("Can't mangle string literals" ); |
7230 | } |
7231 | |
7232 | void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda, |
7233 | raw_ostream &Out) { |
7234 | CXXNameMangler Mangler(*this, Out); |
7235 | Mangler.mangleLambdaSig(Lambda); |
7236 | } |
7237 | |
7238 | void ItaniumMangleContextImpl::mangleModuleInitializer(const Module *M, |
7239 | raw_ostream &Out) { |
7240 | // <special-name> ::= GI <module-name> # module initializer function |
7241 | CXXNameMangler Mangler(*this, Out); |
7242 | Mangler.getStream() << "_ZGI" ; |
7243 | Mangler.mangleModuleNamePrefix(Name: M->getPrimaryModuleInterfaceName()); |
7244 | if (M->isModulePartition()) { |
7245 | // The partition needs including, as partitions can have them too. |
7246 | auto Partition = M->Name.find(c: ':'); |
7247 | Mangler.mangleModuleNamePrefix( |
7248 | Name: StringRef(&M->Name[Partition + 1], M->Name.size() - Partition - 1), |
7249 | /*IsPartition*/ true); |
7250 | } |
7251 | } |
7252 | |
7253 | ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context, |
7254 | DiagnosticsEngine &Diags, |
7255 | bool IsAux) { |
7256 | return new ItaniumMangleContextImpl( |
7257 | Context, Diags, |
7258 | [](ASTContext &, const NamedDecl *) -> std::optional<unsigned> { |
7259 | return std::nullopt; |
7260 | }, |
7261 | IsAux); |
7262 | } |
7263 | |
7264 | ItaniumMangleContext * |
7265 | ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags, |
7266 | DiscriminatorOverrideTy DiscriminatorOverride, |
7267 | bool IsAux) { |
7268 | return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride, |
7269 | IsAux); |
7270 | } |
7271 | |