1 | //===- Type.cpp - Type representation and manipulation --------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements type-related functionality. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/Type.h" |
14 | #include "Linkage.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/Attr.h" |
17 | #include "clang/AST/CharUnits.h" |
18 | #include "clang/AST/Decl.h" |
19 | #include "clang/AST/DeclBase.h" |
20 | #include "clang/AST/DeclCXX.h" |
21 | #include "clang/AST/DeclFriend.h" |
22 | #include "clang/AST/DeclObjC.h" |
23 | #include "clang/AST/DeclTemplate.h" |
24 | #include "clang/AST/DependenceFlags.h" |
25 | #include "clang/AST/Expr.h" |
26 | #include "clang/AST/NestedNameSpecifier.h" |
27 | #include "clang/AST/PrettyPrinter.h" |
28 | #include "clang/AST/TemplateBase.h" |
29 | #include "clang/AST/TemplateName.h" |
30 | #include "clang/AST/TypeVisitor.h" |
31 | #include "clang/Basic/AddressSpaces.h" |
32 | #include "clang/Basic/ExceptionSpecificationType.h" |
33 | #include "clang/Basic/IdentifierTable.h" |
34 | #include "clang/Basic/LLVM.h" |
35 | #include "clang/Basic/LangOptions.h" |
36 | #include "clang/Basic/Linkage.h" |
37 | #include "clang/Basic/Specifiers.h" |
38 | #include "clang/Basic/TargetCXXABI.h" |
39 | #include "clang/Basic/TargetInfo.h" |
40 | #include "clang/Basic/Visibility.h" |
41 | #include "llvm/ADT/APInt.h" |
42 | #include "llvm/ADT/APSInt.h" |
43 | #include "llvm/ADT/ArrayRef.h" |
44 | #include "llvm/ADT/FoldingSet.h" |
45 | #include "llvm/ADT/STLExtras.h" |
46 | #include "llvm/ADT/SmallVector.h" |
47 | #include "llvm/Support/ErrorHandling.h" |
48 | #include "llvm/Support/MathExtras.h" |
49 | #include <algorithm> |
50 | #include <cassert> |
51 | #include <cstdint> |
52 | #include <cstring> |
53 | #include <optional> |
54 | |
55 | using namespace clang; |
56 | |
57 | bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const { |
58 | return (*this != Other) && |
59 | // CVR qualifiers superset |
60 | (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) && |
61 | // ObjC GC qualifiers superset |
62 | ((getObjCGCAttr() == Other.getObjCGCAttr()) || |
63 | (hasObjCGCAttr() && !Other.hasObjCGCAttr())) && |
64 | // Address space superset. |
65 | ((getAddressSpace() == Other.getAddressSpace()) || |
66 | (hasAddressSpace() && !Other.hasAddressSpace())) && |
67 | // Lifetime qualifier superset. |
68 | ((getObjCLifetime() == Other.getObjCLifetime()) || |
69 | (hasObjCLifetime() && !Other.hasObjCLifetime())); |
70 | } |
71 | |
72 | bool Qualifiers::isTargetAddressSpaceSupersetOf(LangAS A, LangAS B, |
73 | const ASTContext &Ctx) { |
74 | // In OpenCLC v2.0 s6.5.5: every address space except for __constant can be |
75 | // used as __generic. |
76 | return (A == LangAS::opencl_generic && B != LangAS::opencl_constant) || |
77 | // We also define global_device and global_host address spaces, |
78 | // to distinguish global pointers allocated on host from pointers |
79 | // allocated on device, which are a subset of __global. |
80 | (A == LangAS::opencl_global && (B == LangAS::opencl_global_device || |
81 | B == LangAS::opencl_global_host)) || |
82 | (A == LangAS::sycl_global && |
83 | (B == LangAS::sycl_global_device || B == LangAS::sycl_global_host)) || |
84 | // Consider pointer size address spaces to be equivalent to default. |
85 | ((isPtrSizeAddressSpace(AS: A) || A == LangAS::Default) && |
86 | (isPtrSizeAddressSpace(AS: B) || B == LangAS::Default)) || |
87 | // Default is a superset of SYCL address spaces. |
88 | (A == LangAS::Default && |
89 | (B == LangAS::sycl_private || B == LangAS::sycl_local || |
90 | B == LangAS::sycl_global || B == LangAS::sycl_global_device || |
91 | B == LangAS::sycl_global_host)) || |
92 | // In HIP device compilation, any cuda address space is allowed |
93 | // to implicitly cast into the default address space. |
94 | (A == LangAS::Default && |
95 | (B == LangAS::cuda_constant || B == LangAS::cuda_device || |
96 | B == LangAS::cuda_shared)) || |
97 | // In HLSL, the this pointer for member functions points to the default |
98 | // address space. This causes a problem if the structure is in |
99 | // a different address space. We want to allow casting from these |
100 | // address spaces to default to work around this problem. |
101 | (A == LangAS::Default && B == LangAS::hlsl_private) || |
102 | (A == LangAS::Default && B == LangAS::hlsl_device) || |
103 | (A == LangAS::Default && B == LangAS::hlsl_input) || |
104 | // Conversions from target specific address spaces may be legal |
105 | // depending on the target information. |
106 | Ctx.getTargetInfo().isAddressSpaceSupersetOf(A, B); |
107 | } |
108 | |
109 | const IdentifierInfo *QualType::getBaseTypeIdentifier() const { |
110 | const Type *ty = getTypePtr(); |
111 | NamedDecl *ND = nullptr; |
112 | if (ty->isPointerOrReferenceType()) |
113 | return ty->getPointeeType().getBaseTypeIdentifier(); |
114 | else if (ty->isRecordType()) |
115 | ND = ty->castAs<RecordType>()->getDecl(); |
116 | else if (ty->isEnumeralType()) |
117 | ND = ty->castAs<EnumType>()->getDecl(); |
118 | else if (ty->getTypeClass() == Type::Typedef) |
119 | ND = ty->castAs<TypedefType>()->getDecl(); |
120 | else if (ty->isArrayType()) |
121 | return ty->castAsArrayTypeUnsafe() |
122 | ->getElementType() |
123 | .getBaseTypeIdentifier(); |
124 | |
125 | if (ND) |
126 | return ND->getIdentifier(); |
127 | return nullptr; |
128 | } |
129 | |
130 | bool QualType::mayBeDynamicClass() const { |
131 | const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl(); |
132 | return ClassDecl && ClassDecl->mayBeDynamicClass(); |
133 | } |
134 | |
135 | bool QualType::mayBeNotDynamicClass() const { |
136 | const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl(); |
137 | return !ClassDecl || ClassDecl->mayBeNonDynamicClass(); |
138 | } |
139 | |
140 | bool QualType::isConstant(QualType T, const ASTContext &Ctx) { |
141 | if (T.isConstQualified()) |
142 | return true; |
143 | |
144 | if (const ArrayType *AT = Ctx.getAsArrayType(T)) |
145 | return AT->getElementType().isConstant(Ctx); |
146 | |
147 | return T.getAddressSpace() == LangAS::opencl_constant; |
148 | } |
149 | |
150 | std::optional<QualType::NonConstantStorageReason> |
151 | QualType::isNonConstantStorage(const ASTContext &Ctx, bool ExcludeCtor, |
152 | bool ExcludeDtor) { |
153 | if (!isConstant(Ctx) && !(*this)->isReferenceType()) |
154 | return NonConstantStorageReason::NonConstNonReferenceType; |
155 | if (!Ctx.getLangOpts().CPlusPlus) |
156 | return std::nullopt; |
157 | if (const CXXRecordDecl *Record = |
158 | Ctx.getBaseElementType(QT: *this)->getAsCXXRecordDecl()) { |
159 | if (!ExcludeCtor) |
160 | return NonConstantStorageReason::NonTrivialCtor; |
161 | if (Record->hasMutableFields()) |
162 | return NonConstantStorageReason::MutableField; |
163 | if (!Record->hasTrivialDestructor() && !ExcludeDtor) |
164 | return NonConstantStorageReason::NonTrivialDtor; |
165 | } |
166 | return std::nullopt; |
167 | } |
168 | |
169 | // C++ [temp.dep.type]p1: |
170 | // A type is dependent if it is... |
171 | // - an array type constructed from any dependent type or whose |
172 | // size is specified by a constant expression that is |
173 | // value-dependent, |
174 | ArrayType::ArrayType(TypeClass tc, QualType et, QualType can, |
175 | ArraySizeModifier sm, unsigned tq, const Expr *sz) |
176 | // Note, we need to check for DependentSizedArrayType explicitly here |
177 | // because we use a DependentSizedArrayType with no size expression as the |
178 | // type of a dependent array of unknown bound with a dependent braced |
179 | // initializer: |
180 | // |
181 | // template<int ...N> int arr[] = {N...}; |
182 | : Type(tc, can, |
183 | et->getDependence() | |
184 | (sz ? toTypeDependence( |
185 | turnValueToTypeDependence(sz->getDependence())) |
186 | : TypeDependence::None) | |
187 | (tc == VariableArray ? TypeDependence::VariablyModified |
188 | : TypeDependence::None) | |
189 | (tc == DependentSizedArray |
190 | ? TypeDependence::DependentInstantiation |
191 | : TypeDependence::None)), |
192 | ElementType(et) { |
193 | ArrayTypeBits.IndexTypeQuals = tq; |
194 | ArrayTypeBits.SizeModifier = llvm::to_underlying(E: sm); |
195 | } |
196 | |
197 | ConstantArrayType * |
198 | ConstantArrayType::Create(const ASTContext &Ctx, QualType ET, QualType Can, |
199 | const llvm::APInt &Sz, const Expr *SzExpr, |
200 | ArraySizeModifier SzMod, unsigned Qual) { |
201 | bool NeedsExternalSize = SzExpr != nullptr || Sz.ugt(RHS: 0x0FFFFFFFFFFFFFFF) || |
202 | Sz.getBitWidth() > 0xFF; |
203 | if (!NeedsExternalSize) |
204 | return new (Ctx, alignof(ConstantArrayType)) ConstantArrayType( |
205 | ET, Can, Sz.getBitWidth(), Sz.getZExtValue(), SzMod, Qual); |
206 | |
207 | auto *SzPtr = new (Ctx, alignof(ConstantArrayType::ExternalSize)) |
208 | ConstantArrayType::ExternalSize(Sz, SzExpr); |
209 | return new (Ctx, alignof(ConstantArrayType)) |
210 | ConstantArrayType(ET, Can, SzPtr, SzMod, Qual); |
211 | } |
212 | |
213 | unsigned |
214 | ConstantArrayType::getNumAddressingBits(const ASTContext &Context, |
215 | QualType ElementType, |
216 | const llvm::APInt &NumElements) { |
217 | uint64_t ElementSize = Context.getTypeSizeInChars(T: ElementType).getQuantity(); |
218 | |
219 | // Fast path the common cases so we can avoid the conservative computation |
220 | // below, which in common cases allocates "large" APSInt values, which are |
221 | // slow. |
222 | |
223 | // If the element size is a power of 2, we can directly compute the additional |
224 | // number of addressing bits beyond those required for the element count. |
225 | if (llvm::isPowerOf2_64(Value: ElementSize)) { |
226 | return NumElements.getActiveBits() + llvm::Log2_64(Value: ElementSize); |
227 | } |
228 | |
229 | // If both the element count and element size fit in 32-bits, we can do the |
230 | // computation directly in 64-bits. |
231 | if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 && |
232 | (NumElements.getZExtValue() >> 32) == 0) { |
233 | uint64_t TotalSize = NumElements.getZExtValue() * ElementSize; |
234 | return llvm::bit_width(Value: TotalSize); |
235 | } |
236 | |
237 | // Otherwise, use APSInt to handle arbitrary sized values. |
238 | llvm::APSInt SizeExtended(NumElements, true); |
239 | unsigned SizeTypeBits = Context.getTypeSize(T: Context.getSizeType()); |
240 | SizeExtended = SizeExtended.extend( |
241 | width: std::max(a: SizeTypeBits, b: SizeExtended.getBitWidth()) * 2); |
242 | |
243 | llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize)); |
244 | TotalSize *= SizeExtended; |
245 | |
246 | return TotalSize.getActiveBits(); |
247 | } |
248 | |
249 | unsigned |
250 | ConstantArrayType::getNumAddressingBits(const ASTContext &Context) const { |
251 | return getNumAddressingBits(Context, getElementType(), getSize()); |
252 | } |
253 | |
254 | unsigned ConstantArrayType::getMaxSizeBits(const ASTContext &Context) { |
255 | unsigned Bits = Context.getTypeSize(T: Context.getSizeType()); |
256 | |
257 | // Limit the number of bits in size_t so that maximal bit size fits 64 bit |
258 | // integer (see PR8256). We can do this as currently there is no hardware |
259 | // that supports full 64-bit virtual space. |
260 | if (Bits > 61) |
261 | Bits = 61; |
262 | |
263 | return Bits; |
264 | } |
265 | |
266 | void ConstantArrayType::Profile(llvm::FoldingSetNodeID &ID, |
267 | const ASTContext &Context, QualType ET, |
268 | uint64_t ArraySize, const Expr *SizeExpr, |
269 | ArraySizeModifier SizeMod, unsigned TypeQuals) { |
270 | ID.AddPointer(Ptr: ET.getAsOpaquePtr()); |
271 | ID.AddInteger(I: ArraySize); |
272 | ID.AddInteger(I: llvm::to_underlying(E: SizeMod)); |
273 | ID.AddInteger(I: TypeQuals); |
274 | ID.AddBoolean(B: SizeExpr != nullptr); |
275 | if (SizeExpr) |
276 | SizeExpr->Profile(ID, Context, true); |
277 | } |
278 | |
279 | QualType ArrayParameterType::getConstantArrayType(const ASTContext &Ctx) const { |
280 | return Ctx.getConstantArrayType(EltTy: getElementType(), ArySize: getSize(), SizeExpr: getSizeExpr(), |
281 | ASM: getSizeModifier(), |
282 | IndexTypeQuals: getIndexTypeQualifiers().getAsOpaqueValue()); |
283 | } |
284 | |
285 | DependentSizedArrayType::DependentSizedArrayType(QualType et, QualType can, |
286 | Expr *e, ArraySizeModifier sm, |
287 | unsigned tq) |
288 | : ArrayType(DependentSizedArray, et, can, sm, tq, e), SizeExpr((Stmt *)e) {} |
289 | |
290 | void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID, |
291 | const ASTContext &Context, QualType ET, |
292 | ArraySizeModifier SizeMod, |
293 | unsigned TypeQuals, Expr *E) { |
294 | ID.AddPointer(Ptr: ET.getAsOpaquePtr()); |
295 | ID.AddInteger(I: llvm::to_underlying(E: SizeMod)); |
296 | ID.AddInteger(I: TypeQuals); |
297 | if (E) |
298 | E->Profile(ID, Context, true); |
299 | } |
300 | |
301 | DependentVectorType::DependentVectorType(QualType ElementType, |
302 | QualType CanonType, Expr *SizeExpr, |
303 | SourceLocation Loc, VectorKind VecKind) |
304 | : Type(DependentVector, CanonType, |
305 | TypeDependence::DependentInstantiation | |
306 | ElementType->getDependence() | |
307 | (SizeExpr ? toTypeDependence(SizeExpr->getDependence()) |
308 | : TypeDependence::None)), |
309 | ElementType(ElementType), SizeExpr(SizeExpr), Loc(Loc) { |
310 | VectorTypeBits.VecKind = llvm::to_underlying(E: VecKind); |
311 | } |
312 | |
313 | void DependentVectorType::Profile(llvm::FoldingSetNodeID &ID, |
314 | const ASTContext &Context, |
315 | QualType ElementType, const Expr *SizeExpr, |
316 | VectorKind VecKind) { |
317 | ID.AddPointer(Ptr: ElementType.getAsOpaquePtr()); |
318 | ID.AddInteger(I: llvm::to_underlying(E: VecKind)); |
319 | SizeExpr->Profile(ID, Context, true); |
320 | } |
321 | |
322 | DependentSizedExtVectorType::DependentSizedExtVectorType(QualType ElementType, |
323 | QualType can, |
324 | Expr *SizeExpr, |
325 | SourceLocation loc) |
326 | : Type(DependentSizedExtVector, can, |
327 | TypeDependence::DependentInstantiation | |
328 | ElementType->getDependence() | |
329 | (SizeExpr ? toTypeDependence(SizeExpr->getDependence()) |
330 | : TypeDependence::None)), |
331 | SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {} |
332 | |
333 | void DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID, |
334 | const ASTContext &Context, |
335 | QualType ElementType, |
336 | Expr *SizeExpr) { |
337 | ID.AddPointer(Ptr: ElementType.getAsOpaquePtr()); |
338 | SizeExpr->Profile(ID, Context, true); |
339 | } |
340 | |
341 | DependentAddressSpaceType::DependentAddressSpaceType(QualType PointeeType, |
342 | QualType can, |
343 | Expr *AddrSpaceExpr, |
344 | SourceLocation loc) |
345 | : Type(DependentAddressSpace, can, |
346 | TypeDependence::DependentInstantiation | |
347 | PointeeType->getDependence() | |
348 | (AddrSpaceExpr ? toTypeDependence(AddrSpaceExpr->getDependence()) |
349 | : TypeDependence::None)), |
350 | AddrSpaceExpr(AddrSpaceExpr), PointeeType(PointeeType), loc(loc) {} |
351 | |
352 | void DependentAddressSpaceType::Profile(llvm::FoldingSetNodeID &ID, |
353 | const ASTContext &Context, |
354 | QualType PointeeType, |
355 | Expr *AddrSpaceExpr) { |
356 | ID.AddPointer(Ptr: PointeeType.getAsOpaquePtr()); |
357 | AddrSpaceExpr->Profile(ID, Context, true); |
358 | } |
359 | |
360 | MatrixType::MatrixType(TypeClass tc, QualType matrixType, QualType canonType, |
361 | const Expr *RowExpr, const Expr *ColumnExpr) |
362 | : Type(tc, canonType, |
363 | (RowExpr ? (matrixType->getDependence() | TypeDependence::Dependent | |
364 | TypeDependence::Instantiation | |
365 | (matrixType->isVariablyModifiedType() |
366 | ? TypeDependence::VariablyModified |
367 | : TypeDependence::None) | |
368 | (matrixType->containsUnexpandedParameterPack() || |
369 | (RowExpr && |
370 | RowExpr->containsUnexpandedParameterPack()) || |
371 | (ColumnExpr && |
372 | ColumnExpr->containsUnexpandedParameterPack()) |
373 | ? TypeDependence::UnexpandedPack |
374 | : TypeDependence::None)) |
375 | : matrixType->getDependence())), |
376 | ElementType(matrixType) {} |
377 | |
378 | ConstantMatrixType::ConstantMatrixType(QualType matrixType, unsigned nRows, |
379 | unsigned nColumns, QualType canonType) |
380 | : ConstantMatrixType(ConstantMatrix, matrixType, nRows, nColumns, |
381 | canonType) {} |
382 | |
383 | ConstantMatrixType::ConstantMatrixType(TypeClass tc, QualType matrixType, |
384 | unsigned nRows, unsigned nColumns, |
385 | QualType canonType) |
386 | : MatrixType(tc, matrixType, canonType), NumRows(nRows), |
387 | NumColumns(nColumns) {} |
388 | |
389 | DependentSizedMatrixType::DependentSizedMatrixType(QualType ElementType, |
390 | QualType CanonicalType, |
391 | Expr *RowExpr, |
392 | Expr *ColumnExpr, |
393 | SourceLocation loc) |
394 | : MatrixType(DependentSizedMatrix, ElementType, CanonicalType, RowExpr, |
395 | ColumnExpr), |
396 | RowExpr(RowExpr), ColumnExpr(ColumnExpr), loc(loc) {} |
397 | |
398 | void DependentSizedMatrixType::Profile(llvm::FoldingSetNodeID &ID, |
399 | const ASTContext &CTX, |
400 | QualType ElementType, Expr *RowExpr, |
401 | Expr *ColumnExpr) { |
402 | ID.AddPointer(Ptr: ElementType.getAsOpaquePtr()); |
403 | RowExpr->Profile(ID, CTX, true); |
404 | ColumnExpr->Profile(ID, CTX, true); |
405 | } |
406 | |
407 | VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType, |
408 | VectorKind vecKind) |
409 | : VectorType(Vector, vecType, nElements, canonType, vecKind) {} |
410 | |
411 | VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements, |
412 | QualType canonType, VectorKind vecKind) |
413 | : Type(tc, canonType, vecType->getDependence()), ElementType(vecType) { |
414 | VectorTypeBits.VecKind = llvm::to_underlying(E: vecKind); |
415 | VectorTypeBits.NumElements = nElements; |
416 | } |
417 | |
418 | bool Type::isPackedVectorBoolType(const ASTContext &ctx) const { |
419 | if (ctx.getLangOpts().HLSL) |
420 | return false; |
421 | return isExtVectorBoolType(); |
422 | } |
423 | |
424 | BitIntType::BitIntType(bool IsUnsigned, unsigned NumBits) |
425 | : Type(BitInt, QualType{}, TypeDependence::None), IsUnsigned(IsUnsigned), |
426 | NumBits(NumBits) {} |
427 | |
428 | DependentBitIntType::DependentBitIntType(bool IsUnsigned, Expr *NumBitsExpr) |
429 | : Type(DependentBitInt, QualType{}, |
430 | toTypeDependence(NumBitsExpr->getDependence())), |
431 | ExprAndUnsigned(NumBitsExpr, IsUnsigned) {} |
432 | |
433 | bool DependentBitIntType::isUnsigned() const { |
434 | return ExprAndUnsigned.getInt(); |
435 | } |
436 | |
437 | clang::Expr *DependentBitIntType::getNumBitsExpr() const { |
438 | return ExprAndUnsigned.getPointer(); |
439 | } |
440 | |
441 | void DependentBitIntType::Profile(llvm::FoldingSetNodeID &ID, |
442 | const ASTContext &Context, bool IsUnsigned, |
443 | Expr *NumBitsExpr) { |
444 | ID.AddBoolean(B: IsUnsigned); |
445 | NumBitsExpr->Profile(ID, Context, true); |
446 | } |
447 | |
448 | bool BoundsAttributedType::referencesFieldDecls() const { |
449 | return llvm::any_of(Range: dependent_decls(), |
450 | P: [](const TypeCoupledDeclRefInfo &Info) { |
451 | return isa<FieldDecl>(Val: Info.getDecl()); |
452 | }); |
453 | } |
454 | |
455 | void CountAttributedType::Profile(llvm::FoldingSetNodeID &ID, |
456 | QualType WrappedTy, Expr *CountExpr, |
457 | bool CountInBytes, bool OrNull) { |
458 | ID.AddPointer(Ptr: WrappedTy.getAsOpaquePtr()); |
459 | ID.AddBoolean(B: CountInBytes); |
460 | ID.AddBoolean(B: OrNull); |
461 | // We profile it as a pointer as the StmtProfiler considers parameter |
462 | // expressions on function declaration and function definition as the |
463 | // same, resulting in count expression being evaluated with ParamDecl |
464 | // not in the function scope. |
465 | ID.AddPointer(Ptr: CountExpr); |
466 | } |
467 | |
468 | /// getArrayElementTypeNoTypeQual - If this is an array type, return the |
469 | /// element type of the array, potentially with type qualifiers missing. |
470 | /// This method should never be used when type qualifiers are meaningful. |
471 | const Type *Type::getArrayElementTypeNoTypeQual() const { |
472 | // If this is directly an array type, return it. |
473 | if (const auto *ATy = dyn_cast<ArrayType>(Val: this)) |
474 | return ATy->getElementType().getTypePtr(); |
475 | |
476 | // If the canonical form of this type isn't the right kind, reject it. |
477 | if (!isa<ArrayType>(CanonicalType)) |
478 | return nullptr; |
479 | |
480 | // If this is a typedef for an array type, strip the typedef off without |
481 | // losing all typedef information. |
482 | return cast<ArrayType>(Val: getUnqualifiedDesugaredType()) |
483 | ->getElementType() |
484 | .getTypePtr(); |
485 | } |
486 | |
487 | /// getDesugaredType - Return the specified type with any "sugar" removed from |
488 | /// the type. This takes off typedefs, typeof's etc. If the outer level of |
489 | /// the type is already concrete, it returns it unmodified. This is similar |
490 | /// to getting the canonical type, but it doesn't remove *all* typedefs. For |
491 | /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is |
492 | /// concrete. |
493 | QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) { |
494 | SplitQualType split = getSplitDesugaredType(T); |
495 | return Context.getQualifiedType(T: split.Ty, Qs: split.Quals); |
496 | } |
497 | |
498 | QualType QualType::getSingleStepDesugaredTypeImpl(QualType type, |
499 | const ASTContext &Context) { |
500 | SplitQualType split = type.split(); |
501 | QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType(); |
502 | return Context.getQualifiedType(T: desugar, Qs: split.Quals); |
503 | } |
504 | |
505 | // Check that no type class is polymorphic. LLVM style RTTI should be used |
506 | // instead. If absolutely needed an exception can still be added here by |
507 | // defining the appropriate macro (but please don't do this). |
508 | #define TYPE(CLASS, BASE) \ |
509 | static_assert(!std::is_polymorphic<CLASS##Type>::value, \ |
510 | #CLASS "Type should not be polymorphic!"); |
511 | #include "clang/AST/TypeNodes.inc" |
512 | |
513 | // Check that no type class has a non-trival destructor. Types are |
514 | // allocated with the BumpPtrAllocator from ASTContext and therefore |
515 | // their destructor is not executed. |
516 | #define TYPE(CLASS, BASE) \ |
517 | static_assert(std::is_trivially_destructible<CLASS##Type>::value, \ |
518 | #CLASS "Type should be trivially destructible!"); |
519 | #include "clang/AST/TypeNodes.inc" |
520 | |
521 | QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const { |
522 | switch (getTypeClass()) { |
523 | #define ABSTRACT_TYPE(Class, Parent) |
524 | #define TYPE(Class, Parent) \ |
525 | case Type::Class: { \ |
526 | const auto *ty = cast<Class##Type>(this); \ |
527 | if (!ty->isSugared()) \ |
528 | return QualType(ty, 0); \ |
529 | return ty->desugar(); \ |
530 | } |
531 | #include "clang/AST/TypeNodes.inc" |
532 | } |
533 | llvm_unreachable("bad type kind!"); |
534 | } |
535 | |
536 | SplitQualType QualType::getSplitDesugaredType(QualType T) { |
537 | QualifierCollector Qs; |
538 | |
539 | QualType Cur = T; |
540 | while (true) { |
541 | const Type *CurTy = Qs.strip(type: Cur); |
542 | switch (CurTy->getTypeClass()) { |
543 | #define ABSTRACT_TYPE(Class, Parent) |
544 | #define TYPE(Class, Parent) \ |
545 | case Type::Class: { \ |
546 | const auto *Ty = cast<Class##Type>(CurTy); \ |
547 | if (!Ty->isSugared()) \ |
548 | return SplitQualType(Ty, Qs); \ |
549 | Cur = Ty->desugar(); \ |
550 | break; \ |
551 | } |
552 | #include "clang/AST/TypeNodes.inc" |
553 | } |
554 | } |
555 | } |
556 | |
557 | SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) { |
558 | SplitQualType split = type.split(); |
559 | |
560 | // All the qualifiers we've seen so far. |
561 | Qualifiers quals = split.Quals; |
562 | |
563 | // The last type node we saw with any nodes inside it. |
564 | const Type *lastTypeWithQuals = split.Ty; |
565 | |
566 | while (true) { |
567 | QualType next; |
568 | |
569 | // Do a single-step desugar, aborting the loop if the type isn't |
570 | // sugared. |
571 | switch (split.Ty->getTypeClass()) { |
572 | #define ABSTRACT_TYPE(Class, Parent) |
573 | #define TYPE(Class, Parent) \ |
574 | case Type::Class: { \ |
575 | const auto *ty = cast<Class##Type>(split.Ty); \ |
576 | if (!ty->isSugared()) \ |
577 | goto done; \ |
578 | next = ty->desugar(); \ |
579 | break; \ |
580 | } |
581 | #include "clang/AST/TypeNodes.inc" |
582 | } |
583 | |
584 | // Otherwise, split the underlying type. If that yields qualifiers, |
585 | // update the information. |
586 | split = next.split(); |
587 | if (!split.Quals.empty()) { |
588 | lastTypeWithQuals = split.Ty; |
589 | quals.addConsistentQualifiers(qs: split.Quals); |
590 | } |
591 | } |
592 | |
593 | done: |
594 | return SplitQualType(lastTypeWithQuals, quals); |
595 | } |
596 | |
597 | QualType QualType::IgnoreParens(QualType T) { |
598 | // FIXME: this seems inherently un-qualifiers-safe. |
599 | while (const auto *PT = T->getAs<ParenType>()) |
600 | T = PT->getInnerType(); |
601 | return T; |
602 | } |
603 | |
604 | /// This will check for a T (which should be a Type which can act as |
605 | /// sugar, such as a TypedefType) by removing any existing sugar until it |
606 | /// reaches a T or a non-sugared type. |
607 | template <typename T> static const T *getAsSugar(const Type *Cur) { |
608 | while (true) { |
609 | if (const auto *Sugar = dyn_cast<T>(Cur)) |
610 | return Sugar; |
611 | switch (Cur->getTypeClass()) { |
612 | #define ABSTRACT_TYPE(Class, Parent) |
613 | #define TYPE(Class, Parent) \ |
614 | case Type::Class: { \ |
615 | const auto *Ty = cast<Class##Type>(Cur); \ |
616 | if (!Ty->isSugared()) \ |
617 | return 0; \ |
618 | Cur = Ty->desugar().getTypePtr(); \ |
619 | break; \ |
620 | } |
621 | #include "clang/AST/TypeNodes.inc" |
622 | } |
623 | } |
624 | } |
625 | |
626 | template <> const TypedefType *Type::getAs() const { |
627 | return getAsSugar<TypedefType>(this); |
628 | } |
629 | |
630 | template <> const UsingType *Type::getAs() const { |
631 | return getAsSugar<UsingType>(Cur: this); |
632 | } |
633 | |
634 | template <> const TemplateSpecializationType *Type::getAs() const { |
635 | return getAsSugar<TemplateSpecializationType>(Cur: this); |
636 | } |
637 | |
638 | template <> const AttributedType *Type::getAs() const { |
639 | return getAsSugar<AttributedType>(Cur: this); |
640 | } |
641 | |
642 | template <> const BoundsAttributedType *Type::getAs() const { |
643 | return getAsSugar<BoundsAttributedType>(Cur: this); |
644 | } |
645 | |
646 | template <> const CountAttributedType *Type::getAs() const { |
647 | return getAsSugar<CountAttributedType>(Cur: this); |
648 | } |
649 | |
650 | /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic |
651 | /// sugar off the given type. This should produce an object of the |
652 | /// same dynamic type as the canonical type. |
653 | const Type *Type::getUnqualifiedDesugaredType() const { |
654 | const Type *Cur = this; |
655 | |
656 | while (true) { |
657 | switch (Cur->getTypeClass()) { |
658 | #define ABSTRACT_TYPE(Class, Parent) |
659 | #define TYPE(Class, Parent) \ |
660 | case Class: { \ |
661 | const auto *Ty = cast<Class##Type>(Cur); \ |
662 | if (!Ty->isSugared()) \ |
663 | return Cur; \ |
664 | Cur = Ty->desugar().getTypePtr(); \ |
665 | break; \ |
666 | } |
667 | #include "clang/AST/TypeNodes.inc" |
668 | } |
669 | } |
670 | } |
671 | |
672 | bool Type::isClassType() const { |
673 | if (const auto *RT = getAs<RecordType>()) |
674 | return RT->getDecl()->isClass(); |
675 | return false; |
676 | } |
677 | |
678 | bool Type::isStructureType() const { |
679 | if (const auto *RT = getAs<RecordType>()) |
680 | return RT->getDecl()->isStruct(); |
681 | return false; |
682 | } |
683 | |
684 | bool Type::isStructureTypeWithFlexibleArrayMember() const { |
685 | const auto *RT = getAs<RecordType>(); |
686 | if (!RT) |
687 | return false; |
688 | const auto *Decl = RT->getDecl(); |
689 | if (!Decl->isStruct()) |
690 | return false; |
691 | return Decl->hasFlexibleArrayMember(); |
692 | } |
693 | |
694 | bool Type::isObjCBoxableRecordType() const { |
695 | if (const auto *RT = getAs<RecordType>()) |
696 | return RT->getDecl()->hasAttr<ObjCBoxableAttr>(); |
697 | return false; |
698 | } |
699 | |
700 | bool Type::isInterfaceType() const { |
701 | if (const auto *RT = getAs<RecordType>()) |
702 | return RT->getDecl()->isInterface(); |
703 | return false; |
704 | } |
705 | |
706 | bool Type::isStructureOrClassType() const { |
707 | if (const auto *RT = getAs<RecordType>()) { |
708 | RecordDecl *RD = RT->getDecl(); |
709 | return RD->isStruct() || RD->isClass() || RD->isInterface(); |
710 | } |
711 | return false; |
712 | } |
713 | |
714 | bool Type::isVoidPointerType() const { |
715 | if (const auto *PT = getAs<PointerType>()) |
716 | return PT->getPointeeType()->isVoidType(); |
717 | return false; |
718 | } |
719 | |
720 | bool Type::isUnionType() const { |
721 | if (const auto *RT = getAs<RecordType>()) |
722 | return RT->getDecl()->isUnion(); |
723 | return false; |
724 | } |
725 | |
726 | bool Type::isComplexType() const { |
727 | if (const auto *CT = dyn_cast<ComplexType>(CanonicalType)) |
728 | return CT->getElementType()->isFloatingType(); |
729 | return false; |
730 | } |
731 | |
732 | bool Type::isComplexIntegerType() const { |
733 | // Check for GCC complex integer extension. |
734 | return getAsComplexIntegerType(); |
735 | } |
736 | |
737 | bool Type::isScopedEnumeralType() const { |
738 | if (const auto *ET = getAs<EnumType>()) |
739 | return ET->getDecl()->isScoped(); |
740 | return false; |
741 | } |
742 | |
743 | bool Type::isCountAttributedType() const { |
744 | return getAs<CountAttributedType>(); |
745 | } |
746 | |
747 | const ComplexType *Type::getAsComplexIntegerType() const { |
748 | if (const auto *Complex = getAs<ComplexType>()) |
749 | if (Complex->getElementType()->isIntegerType()) |
750 | return Complex; |
751 | return nullptr; |
752 | } |
753 | |
754 | QualType Type::getPointeeType() const { |
755 | if (const auto *PT = getAs<PointerType>()) |
756 | return PT->getPointeeType(); |
757 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) |
758 | return OPT->getPointeeType(); |
759 | if (const auto *BPT = getAs<BlockPointerType>()) |
760 | return BPT->getPointeeType(); |
761 | if (const auto *RT = getAs<ReferenceType>()) |
762 | return RT->getPointeeType(); |
763 | if (const auto *MPT = getAs<MemberPointerType>()) |
764 | return MPT->getPointeeType(); |
765 | if (const auto *DT = getAs<DecayedType>()) |
766 | return DT->getPointeeType(); |
767 | return {}; |
768 | } |
769 | |
770 | const RecordType *Type::getAsStructureType() const { |
771 | // If this is directly a structure type, return it. |
772 | if (const auto *RT = dyn_cast<RecordType>(Val: this)) { |
773 | if (RT->getDecl()->isStruct()) |
774 | return RT; |
775 | } |
776 | |
777 | // If the canonical form of this type isn't the right kind, reject it. |
778 | if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) { |
779 | if (!RT->getDecl()->isStruct()) |
780 | return nullptr; |
781 | |
782 | // If this is a typedef for a structure type, strip the typedef off without |
783 | // losing all typedef information. |
784 | return cast<RecordType>(Val: getUnqualifiedDesugaredType()); |
785 | } |
786 | return nullptr; |
787 | } |
788 | |
789 | const RecordType *Type::getAsUnionType() const { |
790 | // If this is directly a union type, return it. |
791 | if (const auto *RT = dyn_cast<RecordType>(Val: this)) { |
792 | if (RT->getDecl()->isUnion()) |
793 | return RT; |
794 | } |
795 | |
796 | // If the canonical form of this type isn't the right kind, reject it. |
797 | if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) { |
798 | if (!RT->getDecl()->isUnion()) |
799 | return nullptr; |
800 | |
801 | // If this is a typedef for a union type, strip the typedef off without |
802 | // losing all typedef information. |
803 | return cast<RecordType>(Val: getUnqualifiedDesugaredType()); |
804 | } |
805 | |
806 | return nullptr; |
807 | } |
808 | |
809 | bool Type::isObjCIdOrObjectKindOfType(const ASTContext &ctx, |
810 | const ObjCObjectType *&bound) const { |
811 | bound = nullptr; |
812 | |
813 | const auto *OPT = getAs<ObjCObjectPointerType>(); |
814 | if (!OPT) |
815 | return false; |
816 | |
817 | // Easy case: id. |
818 | if (OPT->isObjCIdType()) |
819 | return true; |
820 | |
821 | // If it's not a __kindof type, reject it now. |
822 | if (!OPT->isKindOfType()) |
823 | return false; |
824 | |
825 | // If it's Class or qualified Class, it's not an object type. |
826 | if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) |
827 | return false; |
828 | |
829 | // Figure out the type bound for the __kindof type. |
830 | bound = OPT->getObjectType() |
831 | ->stripObjCKindOfTypeAndQuals(ctx) |
832 | ->getAs<ObjCObjectType>(); |
833 | return true; |
834 | } |
835 | |
836 | bool Type::isObjCClassOrClassKindOfType() const { |
837 | const auto *OPT = getAs<ObjCObjectPointerType>(); |
838 | if (!OPT) |
839 | return false; |
840 | |
841 | // Easy case: Class. |
842 | if (OPT->isObjCClassType()) |
843 | return true; |
844 | |
845 | // If it's not a __kindof type, reject it now. |
846 | if (!OPT->isKindOfType()) |
847 | return false; |
848 | |
849 | // If it's Class or qualified Class, it's a class __kindof type. |
850 | return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType(); |
851 | } |
852 | |
853 | ObjCTypeParamType::ObjCTypeParamType(const ObjCTypeParamDecl *D, QualType can, |
854 | ArrayRef<ObjCProtocolDecl *> protocols) |
855 | : Type(ObjCTypeParam, can, toSemanticDependence(can->getDependence())), |
856 | OTPDecl(const_cast<ObjCTypeParamDecl *>(D)) { |
857 | initialize(protocols); |
858 | } |
859 | |
860 | ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base, |
861 | ArrayRef<QualType> typeArgs, |
862 | ArrayRef<ObjCProtocolDecl *> protocols, |
863 | bool isKindOf) |
864 | : Type(ObjCObject, Canonical, Base->getDependence()), BaseType(Base) { |
865 | ObjCObjectTypeBits.IsKindOf = isKindOf; |
866 | |
867 | ObjCObjectTypeBits.NumTypeArgs = typeArgs.size(); |
868 | assert(getTypeArgsAsWritten().size() == typeArgs.size() && |
869 | "bitfield overflow in type argument count"); |
870 | if (!typeArgs.empty()) |
871 | memcpy(dest: getTypeArgStorage(), src: typeArgs.data(), |
872 | n: typeArgs.size() * sizeof(QualType)); |
873 | |
874 | for (auto typeArg : typeArgs) { |
875 | addDependence(typeArg->getDependence() & ~TypeDependence::VariablyModified); |
876 | } |
877 | // Initialize the protocol qualifiers. The protocol storage is known |
878 | // after we set number of type arguments. |
879 | initialize(protocols); |
880 | } |
881 | |
882 | bool ObjCObjectType::isSpecialized() const { |
883 | // If we have type arguments written here, the type is specialized. |
884 | if (ObjCObjectTypeBits.NumTypeArgs > 0) |
885 | return true; |
886 | |
887 | // Otherwise, check whether the base type is specialized. |
888 | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { |
889 | // Terminate when we reach an interface type. |
890 | if (isa<ObjCInterfaceType>(Val: objcObject)) |
891 | return false; |
892 | |
893 | return objcObject->isSpecialized(); |
894 | } |
895 | |
896 | // Not specialized. |
897 | return false; |
898 | } |
899 | |
900 | ArrayRef<QualType> ObjCObjectType::getTypeArgs() const { |
901 | // We have type arguments written on this type. |
902 | if (isSpecializedAsWritten()) |
903 | return getTypeArgsAsWritten(); |
904 | |
905 | // Look at the base type, which might have type arguments. |
906 | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { |
907 | // Terminate when we reach an interface type. |
908 | if (isa<ObjCInterfaceType>(Val: objcObject)) |
909 | return {}; |
910 | |
911 | return objcObject->getTypeArgs(); |
912 | } |
913 | |
914 | // No type arguments. |
915 | return {}; |
916 | } |
917 | |
918 | bool ObjCObjectType::isKindOfType() const { |
919 | if (isKindOfTypeAsWritten()) |
920 | return true; |
921 | |
922 | // Look at the base type, which might have type arguments. |
923 | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { |
924 | // Terminate when we reach an interface type. |
925 | if (isa<ObjCInterfaceType>(Val: objcObject)) |
926 | return false; |
927 | |
928 | return objcObject->isKindOfType(); |
929 | } |
930 | |
931 | // Not a "__kindof" type. |
932 | return false; |
933 | } |
934 | |
935 | QualType |
936 | ObjCObjectType::stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const { |
937 | if (!isKindOfType() && qual_empty()) |
938 | return QualType(this, 0); |
939 | |
940 | // Recursively strip __kindof. |
941 | SplitQualType splitBaseType = getBaseType().split(); |
942 | QualType baseType(splitBaseType.Ty, 0); |
943 | if (const auto *baseObj = splitBaseType.Ty->getAs<ObjCObjectType>()) |
944 | baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx); |
945 | |
946 | return ctx.getObjCObjectType( |
947 | Base: ctx.getQualifiedType(T: baseType, Qs: splitBaseType.Quals), |
948 | typeArgs: getTypeArgsAsWritten(), |
949 | /*protocols=*/{}, |
950 | /*isKindOf=*/false); |
951 | } |
952 | |
953 | ObjCInterfaceDecl *ObjCInterfaceType::getDecl() const { |
954 | ObjCInterfaceDecl *Canon = Decl->getCanonicalDecl(); |
955 | if (ObjCInterfaceDecl *Def = Canon->getDefinition()) |
956 | return Def; |
957 | return Canon; |
958 | } |
959 | |
960 | const ObjCObjectPointerType *ObjCObjectPointerType::stripObjCKindOfTypeAndQuals( |
961 | const ASTContext &ctx) const { |
962 | if (!isKindOfType() && qual_empty()) |
963 | return this; |
964 | |
965 | QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx); |
966 | return ctx.getObjCObjectPointerType(OIT: obj)->castAs<ObjCObjectPointerType>(); |
967 | } |
968 | |
969 | namespace { |
970 | |
971 | /// Visitor used to perform a simple type transformation that does not change |
972 | /// the semantics of the type. |
973 | template <typename Derived> |
974 | struct SimpleTransformVisitor : public TypeVisitor<Derived, QualType> { |
975 | ASTContext &Ctx; |
976 | |
977 | QualType recurse(QualType type) { |
978 | // Split out the qualifiers from the type. |
979 | SplitQualType splitType = type.split(); |
980 | |
981 | // Visit the type itself. |
982 | QualType result = static_cast<Derived *>(this)->Visit(splitType.Ty); |
983 | if (result.isNull()) |
984 | return result; |
985 | |
986 | // Reconstruct the transformed type by applying the local qualifiers |
987 | // from the split type. |
988 | return Ctx.getQualifiedType(T: result, Qs: splitType.Quals); |
989 | } |
990 | |
991 | public: |
992 | explicit SimpleTransformVisitor(ASTContext &ctx) : Ctx(ctx) {} |
993 | |
994 | // None of the clients of this transformation can occur where |
995 | // there are dependent types, so skip dependent types. |
996 | #define TYPE(Class, Base) |
997 | #define DEPENDENT_TYPE(Class, Base) \ |
998 | QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); } |
999 | #include "clang/AST/TypeNodes.inc" |
1000 | |
1001 | #define TRIVIAL_TYPE_CLASS(Class) \ |
1002 | QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); } |
1003 | #define SUGARED_TYPE_CLASS(Class) \ |
1004 | QualType Visit##Class##Type(const Class##Type *T) { \ |
1005 | if (!T->isSugared()) \ |
1006 | return QualType(T, 0); \ |
1007 | QualType desugaredType = recurse(T->desugar()); \ |
1008 | if (desugaredType.isNull()) \ |
1009 | return {}; \ |
1010 | if (desugaredType.getAsOpaquePtr() == T->desugar().getAsOpaquePtr()) \ |
1011 | return QualType(T, 0); \ |
1012 | return desugaredType; \ |
1013 | } |
1014 | |
1015 | TRIVIAL_TYPE_CLASS(Builtin) |
1016 | |
1017 | QualType VisitComplexType(const ComplexType *T) { |
1018 | QualType elementType = recurse(type: T->getElementType()); |
1019 | if (elementType.isNull()) |
1020 | return {}; |
1021 | |
1022 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1023 | return QualType(T, 0); |
1024 | |
1025 | return Ctx.getComplexType(T: elementType); |
1026 | } |
1027 | |
1028 | QualType VisitPointerType(const PointerType *T) { |
1029 | QualType pointeeType = recurse(type: T->getPointeeType()); |
1030 | if (pointeeType.isNull()) |
1031 | return {}; |
1032 | |
1033 | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) |
1034 | return QualType(T, 0); |
1035 | |
1036 | return Ctx.getPointerType(T: pointeeType); |
1037 | } |
1038 | |
1039 | QualType VisitBlockPointerType(const BlockPointerType *T) { |
1040 | QualType pointeeType = recurse(type: T->getPointeeType()); |
1041 | if (pointeeType.isNull()) |
1042 | return {}; |
1043 | |
1044 | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) |
1045 | return QualType(T, 0); |
1046 | |
1047 | return Ctx.getBlockPointerType(T: pointeeType); |
1048 | } |
1049 | |
1050 | QualType VisitLValueReferenceType(const LValueReferenceType *T) { |
1051 | QualType pointeeType = recurse(type: T->getPointeeTypeAsWritten()); |
1052 | if (pointeeType.isNull()) |
1053 | return {}; |
1054 | |
1055 | if (pointeeType.getAsOpaquePtr() == |
1056 | T->getPointeeTypeAsWritten().getAsOpaquePtr()) |
1057 | return QualType(T, 0); |
1058 | |
1059 | return Ctx.getLValueReferenceType(T: pointeeType, SpelledAsLValue: T->isSpelledAsLValue()); |
1060 | } |
1061 | |
1062 | QualType VisitRValueReferenceType(const RValueReferenceType *T) { |
1063 | QualType pointeeType = recurse(type: T->getPointeeTypeAsWritten()); |
1064 | if (pointeeType.isNull()) |
1065 | return {}; |
1066 | |
1067 | if (pointeeType.getAsOpaquePtr() == |
1068 | T->getPointeeTypeAsWritten().getAsOpaquePtr()) |
1069 | return QualType(T, 0); |
1070 | |
1071 | return Ctx.getRValueReferenceType(T: pointeeType); |
1072 | } |
1073 | |
1074 | QualType VisitMemberPointerType(const MemberPointerType *T) { |
1075 | QualType pointeeType = recurse(type: T->getPointeeType()); |
1076 | if (pointeeType.isNull()) |
1077 | return {}; |
1078 | |
1079 | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) |
1080 | return QualType(T, 0); |
1081 | |
1082 | return Ctx.getMemberPointerType(T: pointeeType, Qualifier: T->getQualifier(), |
1083 | Cls: T->getMostRecentCXXRecordDecl()); |
1084 | } |
1085 | |
1086 | QualType VisitConstantArrayType(const ConstantArrayType *T) { |
1087 | QualType elementType = recurse(type: T->getElementType()); |
1088 | if (elementType.isNull()) |
1089 | return {}; |
1090 | |
1091 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1092 | return QualType(T, 0); |
1093 | |
1094 | return Ctx.getConstantArrayType(EltTy: elementType, ArySize: T->getSize(), SizeExpr: T->getSizeExpr(), |
1095 | ASM: T->getSizeModifier(), |
1096 | IndexTypeQuals: T->getIndexTypeCVRQualifiers()); |
1097 | } |
1098 | |
1099 | QualType VisitVariableArrayType(const VariableArrayType *T) { |
1100 | QualType elementType = recurse(type: T->getElementType()); |
1101 | if (elementType.isNull()) |
1102 | return {}; |
1103 | |
1104 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1105 | return QualType(T, 0); |
1106 | |
1107 | return Ctx.getVariableArrayType(EltTy: elementType, NumElts: T->getSizeExpr(), |
1108 | ASM: T->getSizeModifier(), |
1109 | IndexTypeQuals: T->getIndexTypeCVRQualifiers()); |
1110 | } |
1111 | |
1112 | QualType VisitIncompleteArrayType(const IncompleteArrayType *T) { |
1113 | QualType elementType = recurse(type: T->getElementType()); |
1114 | if (elementType.isNull()) |
1115 | return {}; |
1116 | |
1117 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1118 | return QualType(T, 0); |
1119 | |
1120 | return Ctx.getIncompleteArrayType(EltTy: elementType, ASM: T->getSizeModifier(), |
1121 | IndexTypeQuals: T->getIndexTypeCVRQualifiers()); |
1122 | } |
1123 | |
1124 | QualType VisitVectorType(const VectorType *T) { |
1125 | QualType elementType = recurse(type: T->getElementType()); |
1126 | if (elementType.isNull()) |
1127 | return {}; |
1128 | |
1129 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1130 | return QualType(T, 0); |
1131 | |
1132 | return Ctx.getVectorType(VectorType: elementType, NumElts: T->getNumElements(), |
1133 | VecKind: T->getVectorKind()); |
1134 | } |
1135 | |
1136 | QualType VisitExtVectorType(const ExtVectorType *T) { |
1137 | QualType elementType = recurse(type: T->getElementType()); |
1138 | if (elementType.isNull()) |
1139 | return {}; |
1140 | |
1141 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1142 | return QualType(T, 0); |
1143 | |
1144 | return Ctx.getExtVectorType(VectorType: elementType, NumElts: T->getNumElements()); |
1145 | } |
1146 | |
1147 | QualType VisitConstantMatrixType(const ConstantMatrixType *T) { |
1148 | QualType elementType = recurse(type: T->getElementType()); |
1149 | if (elementType.isNull()) |
1150 | return {}; |
1151 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1152 | return QualType(T, 0); |
1153 | |
1154 | return Ctx.getConstantMatrixType(ElementType: elementType, NumRows: T->getNumRows(), |
1155 | NumColumns: T->getNumColumns()); |
1156 | } |
1157 | |
1158 | QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) { |
1159 | QualType returnType = recurse(type: T->getReturnType()); |
1160 | if (returnType.isNull()) |
1161 | return {}; |
1162 | |
1163 | if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr()) |
1164 | return QualType(T, 0); |
1165 | |
1166 | return Ctx.getFunctionNoProtoType(returnType, T->getExtInfo()); |
1167 | } |
1168 | |
1169 | QualType VisitFunctionProtoType(const FunctionProtoType *T) { |
1170 | QualType returnType = recurse(type: T->getReturnType()); |
1171 | if (returnType.isNull()) |
1172 | return {}; |
1173 | |
1174 | // Transform parameter types. |
1175 | SmallVector<QualType, 4> paramTypes; |
1176 | bool paramChanged = false; |
1177 | for (auto paramType : T->getParamTypes()) { |
1178 | QualType newParamType = recurse(type: paramType); |
1179 | if (newParamType.isNull()) |
1180 | return {}; |
1181 | |
1182 | if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr()) |
1183 | paramChanged = true; |
1184 | |
1185 | paramTypes.push_back(newParamType); |
1186 | } |
1187 | |
1188 | // Transform extended info. |
1189 | FunctionProtoType::ExtProtoInfo info = T->getExtProtoInfo(); |
1190 | bool exceptionChanged = false; |
1191 | if (info.ExceptionSpec.Type == EST_Dynamic) { |
1192 | SmallVector<QualType, 4> exceptionTypes; |
1193 | for (auto exceptionType : info.ExceptionSpec.Exceptions) { |
1194 | QualType newExceptionType = recurse(exceptionType); |
1195 | if (newExceptionType.isNull()) |
1196 | return {}; |
1197 | |
1198 | if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr()) |
1199 | exceptionChanged = true; |
1200 | |
1201 | exceptionTypes.push_back(newExceptionType); |
1202 | } |
1203 | |
1204 | if (exceptionChanged) { |
1205 | info.ExceptionSpec.Exceptions = |
1206 | llvm::ArrayRef(exceptionTypes).copy(Ctx); |
1207 | } |
1208 | } |
1209 | |
1210 | if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() && |
1211 | !paramChanged && !exceptionChanged) |
1212 | return QualType(T, 0); |
1213 | |
1214 | return Ctx.getFunctionType(ResultTy: returnType, Args: paramTypes, EPI: info); |
1215 | } |
1216 | |
1217 | QualType VisitParenType(const ParenType *T) { |
1218 | QualType innerType = recurse(type: T->getInnerType()); |
1219 | if (innerType.isNull()) |
1220 | return {}; |
1221 | |
1222 | if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr()) |
1223 | return QualType(T, 0); |
1224 | |
1225 | return Ctx.getParenType(NamedType: innerType); |
1226 | } |
1227 | |
1228 | SUGARED_TYPE_CLASS(Typedef) |
1229 | SUGARED_TYPE_CLASS(ObjCTypeParam) |
1230 | SUGARED_TYPE_CLASS(MacroQualified) |
1231 | |
1232 | QualType VisitAdjustedType(const AdjustedType *T) { |
1233 | QualType originalType = recurse(type: T->getOriginalType()); |
1234 | if (originalType.isNull()) |
1235 | return {}; |
1236 | |
1237 | QualType adjustedType = recurse(type: T->getAdjustedType()); |
1238 | if (adjustedType.isNull()) |
1239 | return {}; |
1240 | |
1241 | if (originalType.getAsOpaquePtr() == |
1242 | T->getOriginalType().getAsOpaquePtr() && |
1243 | adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr()) |
1244 | return QualType(T, 0); |
1245 | |
1246 | return Ctx.getAdjustedType(Orig: originalType, New: adjustedType); |
1247 | } |
1248 | |
1249 | QualType VisitDecayedType(const DecayedType *T) { |
1250 | QualType originalType = recurse(type: T->getOriginalType()); |
1251 | if (originalType.isNull()) |
1252 | return {}; |
1253 | |
1254 | if (originalType.getAsOpaquePtr() == T->getOriginalType().getAsOpaquePtr()) |
1255 | return QualType(T, 0); |
1256 | |
1257 | return Ctx.getDecayedType(T: originalType); |
1258 | } |
1259 | |
1260 | QualType VisitArrayParameterType(const ArrayParameterType *T) { |
1261 | QualType ArrTy = VisitConstantArrayType(T); |
1262 | if (ArrTy.isNull()) |
1263 | return {}; |
1264 | |
1265 | return Ctx.getArrayParameterType(Ty: ArrTy); |
1266 | } |
1267 | |
1268 | SUGARED_TYPE_CLASS(TypeOfExpr) |
1269 | SUGARED_TYPE_CLASS(TypeOf) |
1270 | SUGARED_TYPE_CLASS(Decltype) |
1271 | SUGARED_TYPE_CLASS(UnaryTransform) |
1272 | TRIVIAL_TYPE_CLASS(Record) |
1273 | TRIVIAL_TYPE_CLASS(Enum) |
1274 | |
1275 | // FIXME: Non-trivial to implement, but important for C++ |
1276 | SUGARED_TYPE_CLASS(Elaborated) |
1277 | |
1278 | QualType VisitAttributedType(const AttributedType *T) { |
1279 | QualType modifiedType = recurse(type: T->getModifiedType()); |
1280 | if (modifiedType.isNull()) |
1281 | return {}; |
1282 | |
1283 | QualType equivalentType = recurse(type: T->getEquivalentType()); |
1284 | if (equivalentType.isNull()) |
1285 | return {}; |
1286 | |
1287 | if (modifiedType.getAsOpaquePtr() == |
1288 | T->getModifiedType().getAsOpaquePtr() && |
1289 | equivalentType.getAsOpaquePtr() == |
1290 | T->getEquivalentType().getAsOpaquePtr()) |
1291 | return QualType(T, 0); |
1292 | |
1293 | return Ctx.getAttributedType(attrKind: T->getAttrKind(), modifiedType, equivalentType, |
1294 | attr: T->getAttr()); |
1295 | } |
1296 | |
1297 | QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { |
1298 | QualType replacementType = recurse(type: T->getReplacementType()); |
1299 | if (replacementType.isNull()) |
1300 | return {}; |
1301 | |
1302 | if (replacementType.getAsOpaquePtr() == |
1303 | T->getReplacementType().getAsOpaquePtr()) |
1304 | return QualType(T, 0); |
1305 | |
1306 | return Ctx.getSubstTemplateTypeParmType( |
1307 | Replacement: replacementType, AssociatedDecl: T->getAssociatedDecl(), Index: T->getIndex(), |
1308 | PackIndex: T->getPackIndex(), Final: T->getFinal()); |
1309 | } |
1310 | |
1311 | // FIXME: Non-trivial to implement, but important for C++ |
1312 | SUGARED_TYPE_CLASS(TemplateSpecialization) |
1313 | |
1314 | QualType VisitAutoType(const AutoType *T) { |
1315 | if (!T->isDeduced()) |
1316 | return QualType(T, 0); |
1317 | |
1318 | QualType deducedType = recurse(type: T->getDeducedType()); |
1319 | if (deducedType.isNull()) |
1320 | return {}; |
1321 | |
1322 | if (deducedType.getAsOpaquePtr() == T->getDeducedType().getAsOpaquePtr()) |
1323 | return QualType(T, 0); |
1324 | |
1325 | return Ctx.getAutoType(DeducedType: deducedType, Keyword: T->getKeyword(), IsDependent: T->isDependentType(), |
1326 | /*IsPack=*/false, TypeConstraintConcept: T->getTypeConstraintConcept(), |
1327 | TypeConstraintArgs: T->getTypeConstraintArguments()); |
1328 | } |
1329 | |
1330 | QualType VisitObjCObjectType(const ObjCObjectType *T) { |
1331 | QualType baseType = recurse(type: T->getBaseType()); |
1332 | if (baseType.isNull()) |
1333 | return {}; |
1334 | |
1335 | // Transform type arguments. |
1336 | bool typeArgChanged = false; |
1337 | SmallVector<QualType, 4> typeArgs; |
1338 | for (auto typeArg : T->getTypeArgsAsWritten()) { |
1339 | QualType newTypeArg = recurse(type: typeArg); |
1340 | if (newTypeArg.isNull()) |
1341 | return {}; |
1342 | |
1343 | if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) |
1344 | typeArgChanged = true; |
1345 | |
1346 | typeArgs.push_back(newTypeArg); |
1347 | } |
1348 | |
1349 | if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() && |
1350 | !typeArgChanged) |
1351 | return QualType(T, 0); |
1352 | |
1353 | return Ctx.getObjCObjectType( |
1354 | baseType, typeArgs, |
1355 | llvm::ArrayRef(T->qual_begin(), T->getNumProtocols()), |
1356 | T->isKindOfTypeAsWritten()); |
1357 | } |
1358 | |
1359 | TRIVIAL_TYPE_CLASS(ObjCInterface) |
1360 | |
1361 | QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) { |
1362 | QualType pointeeType = recurse(type: T->getPointeeType()); |
1363 | if (pointeeType.isNull()) |
1364 | return {}; |
1365 | |
1366 | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) |
1367 | return QualType(T, 0); |
1368 | |
1369 | return Ctx.getObjCObjectPointerType(OIT: pointeeType); |
1370 | } |
1371 | |
1372 | QualType VisitAtomicType(const AtomicType *T) { |
1373 | QualType valueType = recurse(type: T->getValueType()); |
1374 | if (valueType.isNull()) |
1375 | return {}; |
1376 | |
1377 | if (valueType.getAsOpaquePtr() == T->getValueType().getAsOpaquePtr()) |
1378 | return QualType(T, 0); |
1379 | |
1380 | return Ctx.getAtomicType(T: valueType); |
1381 | } |
1382 | |
1383 | #undef TRIVIAL_TYPE_CLASS |
1384 | #undef SUGARED_TYPE_CLASS |
1385 | }; |
1386 | |
1387 | struct SubstObjCTypeArgsVisitor |
1388 | : public SimpleTransformVisitor<SubstObjCTypeArgsVisitor> { |
1389 | using BaseType = SimpleTransformVisitor<SubstObjCTypeArgsVisitor>; |
1390 | |
1391 | ArrayRef<QualType> TypeArgs; |
1392 | ObjCSubstitutionContext SubstContext; |
1393 | |
1394 | SubstObjCTypeArgsVisitor(ASTContext &ctx, ArrayRef<QualType> typeArgs, |
1395 | ObjCSubstitutionContext context) |
1396 | : BaseType(ctx), TypeArgs(typeArgs), SubstContext(context) {} |
1397 | |
1398 | QualType VisitObjCTypeParamType(const ObjCTypeParamType *OTPTy) { |
1399 | // Replace an Objective-C type parameter reference with the corresponding |
1400 | // type argument. |
1401 | ObjCTypeParamDecl *typeParam = OTPTy->getDecl(); |
1402 | // If we have type arguments, use them. |
1403 | if (!TypeArgs.empty()) { |
1404 | QualType argType = TypeArgs[typeParam->getIndex()]; |
1405 | if (OTPTy->qual_empty()) |
1406 | return argType; |
1407 | |
1408 | // Apply protocol lists if exists. |
1409 | bool hasError; |
1410 | SmallVector<ObjCProtocolDecl *, 8> protocolsVec; |
1411 | protocolsVec.append(OTPTy->qual_begin(), OTPTy->qual_end()); |
1412 | ArrayRef<ObjCProtocolDecl *> protocolsToApply = protocolsVec; |
1413 | return Ctx.applyObjCProtocolQualifiers( |
1414 | argType, protocolsToApply, hasError, true /*allowOnPointerType*/); |
1415 | } |
1416 | |
1417 | switch (SubstContext) { |
1418 | case ObjCSubstitutionContext::Ordinary: |
1419 | case ObjCSubstitutionContext::Parameter: |
1420 | case ObjCSubstitutionContext::Superclass: |
1421 | // Substitute the bound. |
1422 | return typeParam->getUnderlyingType(); |
1423 | |
1424 | case ObjCSubstitutionContext::Result: |
1425 | case ObjCSubstitutionContext::Property: { |
1426 | // Substitute the __kindof form of the underlying type. |
1427 | const auto *objPtr = |
1428 | typeParam->getUnderlyingType()->castAs<ObjCObjectPointerType>(); |
1429 | |
1430 | // __kindof types, id, and Class don't need an additional |
1431 | // __kindof. |
1432 | if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType()) |
1433 | return typeParam->getUnderlyingType(); |
1434 | |
1435 | // Add __kindof. |
1436 | const auto *obj = objPtr->getObjectType(); |
1437 | QualType resultTy = Ctx.getObjCObjectType( |
1438 | obj->getBaseType(), obj->getTypeArgsAsWritten(), obj->getProtocols(), |
1439 | /*isKindOf=*/true); |
1440 | |
1441 | // Rebuild object pointer type. |
1442 | return Ctx.getObjCObjectPointerType(resultTy); |
1443 | } |
1444 | } |
1445 | llvm_unreachable("Unexpected ObjCSubstitutionContext!"); |
1446 | } |
1447 | |
1448 | QualType VisitFunctionType(const FunctionType *funcType) { |
1449 | // If we have a function type, update the substitution context |
1450 | // appropriately. |
1451 | |
1452 | // Substitute result type. |
1453 | QualType returnType = funcType->getReturnType().substObjCTypeArgs( |
1454 | Ctx, TypeArgs, ObjCSubstitutionContext::Result); |
1455 | if (returnType.isNull()) |
1456 | return {}; |
1457 | |
1458 | // Handle non-prototyped functions, which only substitute into the result |
1459 | // type. |
1460 | if (isa<FunctionNoProtoType>(funcType)) { |
1461 | // If the return type was unchanged, do nothing. |
1462 | if (returnType.getAsOpaquePtr() == |
1463 | funcType->getReturnType().getAsOpaquePtr()) |
1464 | return BaseType::VisitFunctionType(funcType); |
1465 | |
1466 | // Otherwise, build a new type. |
1467 | return Ctx.getFunctionNoProtoType(returnType, funcType->getExtInfo()); |
1468 | } |
1469 | |
1470 | const auto *funcProtoType = cast<FunctionProtoType>(funcType); |
1471 | |
1472 | // Transform parameter types. |
1473 | SmallVector<QualType, 4> paramTypes; |
1474 | bool paramChanged = false; |
1475 | for (auto paramType : funcProtoType->getParamTypes()) { |
1476 | QualType newParamType = paramType.substObjCTypeArgs( |
1477 | Ctx, TypeArgs, ObjCSubstitutionContext::Parameter); |
1478 | if (newParamType.isNull()) |
1479 | return {}; |
1480 | |
1481 | if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr()) |
1482 | paramChanged = true; |
1483 | |
1484 | paramTypes.push_back(newParamType); |
1485 | } |
1486 | |
1487 | // Transform extended info. |
1488 | FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo(); |
1489 | bool exceptionChanged = false; |
1490 | if (info.ExceptionSpec.Type == EST_Dynamic) { |
1491 | SmallVector<QualType, 4> exceptionTypes; |
1492 | for (auto exceptionType : info.ExceptionSpec.Exceptions) { |
1493 | QualType newExceptionType = exceptionType.substObjCTypeArgs( |
1494 | Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary); |
1495 | if (newExceptionType.isNull()) |
1496 | return {}; |
1497 | |
1498 | if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr()) |
1499 | exceptionChanged = true; |
1500 | |
1501 | exceptionTypes.push_back(newExceptionType); |
1502 | } |
1503 | |
1504 | if (exceptionChanged) { |
1505 | info.ExceptionSpec.Exceptions = |
1506 | llvm::ArrayRef(exceptionTypes).copy(Ctx); |
1507 | } |
1508 | } |
1509 | |
1510 | if (returnType.getAsOpaquePtr() == |
1511 | funcProtoType->getReturnType().getAsOpaquePtr() && |
1512 | !paramChanged && !exceptionChanged) |
1513 | return BaseType::VisitFunctionType(funcType); |
1514 | |
1515 | return Ctx.getFunctionType(returnType, paramTypes, info); |
1516 | } |
1517 | |
1518 | QualType VisitObjCObjectType(const ObjCObjectType *objcObjectType) { |
1519 | // Substitute into the type arguments of a specialized Objective-C object |
1520 | // type. |
1521 | if (objcObjectType->isSpecializedAsWritten()) { |
1522 | SmallVector<QualType, 4> newTypeArgs; |
1523 | bool anyChanged = false; |
1524 | for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) { |
1525 | QualType newTypeArg = typeArg.substObjCTypeArgs( |
1526 | Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary); |
1527 | if (newTypeArg.isNull()) |
1528 | return {}; |
1529 | |
1530 | if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) { |
1531 | // If we're substituting based on an unspecialized context type, |
1532 | // produce an unspecialized type. |
1533 | ArrayRef<ObjCProtocolDecl *> protocols( |
1534 | objcObjectType->qual_begin(), objcObjectType->getNumProtocols()); |
1535 | if (TypeArgs.empty() && |
1536 | SubstContext != ObjCSubstitutionContext::Superclass) { |
1537 | return Ctx.getObjCObjectType( |
1538 | objcObjectType->getBaseType(), {}, protocols, |
1539 | objcObjectType->isKindOfTypeAsWritten()); |
1540 | } |
1541 | |
1542 | anyChanged = true; |
1543 | } |
1544 | |
1545 | newTypeArgs.push_back(newTypeArg); |
1546 | } |
1547 | |
1548 | if (anyChanged) { |
1549 | ArrayRef<ObjCProtocolDecl *> protocols( |
1550 | objcObjectType->qual_begin(), objcObjectType->getNumProtocols()); |
1551 | return Ctx.getObjCObjectType(objcObjectType->getBaseType(), newTypeArgs, |
1552 | protocols, |
1553 | objcObjectType->isKindOfTypeAsWritten()); |
1554 | } |
1555 | } |
1556 | |
1557 | return BaseType::VisitObjCObjectType(objcObjectType); |
1558 | } |
1559 | |
1560 | QualType VisitAttributedType(const AttributedType *attrType) { |
1561 | QualType newType = BaseType::VisitAttributedType(attrType); |
1562 | if (newType.isNull()) |
1563 | return {}; |
1564 | |
1565 | const auto *newAttrType = dyn_cast<AttributedType>(newType.getTypePtr()); |
1566 | if (!newAttrType || newAttrType->getAttrKind() != attr::ObjCKindOf) |
1567 | return newType; |
1568 | |
1569 | // Find out if it's an Objective-C object or object pointer type; |
1570 | QualType newEquivType = newAttrType->getEquivalentType(); |
1571 | const ObjCObjectPointerType *ptrType = |
1572 | newEquivType->getAs<ObjCObjectPointerType>(); |
1573 | const ObjCObjectType *objType = ptrType |
1574 | ? ptrType->getObjectType() |
1575 | : newEquivType->getAs<ObjCObjectType>(); |
1576 | if (!objType) |
1577 | return newType; |
1578 | |
1579 | // Rebuild the "equivalent" type, which pushes __kindof down into |
1580 | // the object type. |
1581 | newEquivType = Ctx.getObjCObjectType( |
1582 | objType->getBaseType(), objType->getTypeArgsAsWritten(), |
1583 | objType->getProtocols(), |
1584 | // There is no need to apply kindof on an unqualified id type. |
1585 | /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true); |
1586 | |
1587 | // If we started with an object pointer type, rebuild it. |
1588 | if (ptrType) |
1589 | newEquivType = Ctx.getObjCObjectPointerType(newEquivType); |
1590 | |
1591 | // Rebuild the attributed type. |
1592 | return Ctx.getAttributedType(newAttrType->getAttrKind(), |
1593 | newAttrType->getModifiedType(), newEquivType, |
1594 | newAttrType->getAttr()); |
1595 | } |
1596 | }; |
1597 | |
1598 | struct StripObjCKindOfTypeVisitor |
1599 | : public SimpleTransformVisitor<StripObjCKindOfTypeVisitor> { |
1600 | using BaseType = SimpleTransformVisitor<StripObjCKindOfTypeVisitor>; |
1601 | |
1602 | explicit StripObjCKindOfTypeVisitor(ASTContext &ctx) : BaseType(ctx) {} |
1603 | |
1604 | QualType VisitObjCObjectType(const ObjCObjectType *objType) { |
1605 | if (!objType->isKindOfType()) |
1606 | return BaseType::VisitObjCObjectType(objType); |
1607 | |
1608 | QualType baseType = objType->getBaseType().stripObjCKindOfType(Ctx); |
1609 | return Ctx.getObjCObjectType(baseType, objType->getTypeArgsAsWritten(), |
1610 | objType->getProtocols(), |
1611 | /*isKindOf=*/false); |
1612 | } |
1613 | }; |
1614 | |
1615 | } // namespace |
1616 | |
1617 | bool QualType::UseExcessPrecision(const ASTContext &Ctx) { |
1618 | const BuiltinType *BT = getTypePtr()->getAs<BuiltinType>(); |
1619 | if (!BT) { |
1620 | const VectorType *VT = getTypePtr()->getAs<VectorType>(); |
1621 | if (VT) { |
1622 | QualType ElementType = VT->getElementType(); |
1623 | return ElementType.UseExcessPrecision(Ctx); |
1624 | } |
1625 | } else { |
1626 | switch (BT->getKind()) { |
1627 | case BuiltinType::Kind::Float16: { |
1628 | const TargetInfo &TI = Ctx.getTargetInfo(); |
1629 | if (TI.hasFloat16Type() && !TI.hasLegalHalfType() && |
1630 | Ctx.getLangOpts().getFloat16ExcessPrecision() != |
1631 | Ctx.getLangOpts().ExcessPrecisionKind::FPP_None) |
1632 | return true; |
1633 | break; |
1634 | } |
1635 | case BuiltinType::Kind::BFloat16: { |
1636 | const TargetInfo &TI = Ctx.getTargetInfo(); |
1637 | if (TI.hasBFloat16Type() && !TI.hasFullBFloat16Type() && |
1638 | Ctx.getLangOpts().getBFloat16ExcessPrecision() != |
1639 | Ctx.getLangOpts().ExcessPrecisionKind::FPP_None) |
1640 | return true; |
1641 | break; |
1642 | } |
1643 | default: |
1644 | return false; |
1645 | } |
1646 | } |
1647 | return false; |
1648 | } |
1649 | |
1650 | /// Substitute the given type arguments for Objective-C type |
1651 | /// parameters within the given type, recursively. |
1652 | QualType QualType::substObjCTypeArgs(ASTContext &ctx, |
1653 | ArrayRef<QualType> typeArgs, |
1654 | ObjCSubstitutionContext context) const { |
1655 | SubstObjCTypeArgsVisitor visitor(ctx, typeArgs, context); |
1656 | return visitor.recurse(*this); |
1657 | } |
1658 | |
1659 | QualType QualType::substObjCMemberType(QualType objectType, |
1660 | const DeclContext *dc, |
1661 | ObjCSubstitutionContext context) const { |
1662 | if (auto subs = objectType->getObjCSubstitutions(dc)) |
1663 | return substObjCTypeArgs(ctx&: dc->getParentASTContext(), typeArgs: *subs, context); |
1664 | |
1665 | return *this; |
1666 | } |
1667 | |
1668 | QualType QualType::stripObjCKindOfType(const ASTContext &constCtx) const { |
1669 | // FIXME: Because ASTContext::getAttributedType() is non-const. |
1670 | auto &ctx = const_cast<ASTContext &>(constCtx); |
1671 | StripObjCKindOfTypeVisitor visitor(ctx); |
1672 | return visitor.recurse(*this); |
1673 | } |
1674 | |
1675 | QualType QualType::getAtomicUnqualifiedType() const { |
1676 | QualType T = *this; |
1677 | if (const auto AT = T.getTypePtr()->getAs<AtomicType>()) |
1678 | T = AT->getValueType(); |
1679 | return T.getUnqualifiedType(); |
1680 | } |
1681 | |
1682 | std::optional<ArrayRef<QualType>> |
1683 | Type::getObjCSubstitutions(const DeclContext *dc) const { |
1684 | // Look through method scopes. |
1685 | if (const auto method = dyn_cast<ObjCMethodDecl>(Val: dc)) |
1686 | dc = method->getDeclContext(); |
1687 | |
1688 | // Find the class or category in which the type we're substituting |
1689 | // was declared. |
1690 | const auto *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(Val: dc); |
1691 | const ObjCCategoryDecl *dcCategoryDecl = nullptr; |
1692 | ObjCTypeParamList *dcTypeParams = nullptr; |
1693 | if (dcClassDecl) { |
1694 | // If the class does not have any type parameters, there's no |
1695 | // substitution to do. |
1696 | dcTypeParams = dcClassDecl->getTypeParamList(); |
1697 | if (!dcTypeParams) |
1698 | return std::nullopt; |
1699 | } else { |
1700 | // If we are in neither a class nor a category, there's no |
1701 | // substitution to perform. |
1702 | dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(Val: dc); |
1703 | if (!dcCategoryDecl) |
1704 | return std::nullopt; |
1705 | |
1706 | // If the category does not have any type parameters, there's no |
1707 | // substitution to do. |
1708 | dcTypeParams = dcCategoryDecl->getTypeParamList(); |
1709 | if (!dcTypeParams) |
1710 | return std::nullopt; |
1711 | |
1712 | dcClassDecl = dcCategoryDecl->getClassInterface(); |
1713 | if (!dcClassDecl) |
1714 | return std::nullopt; |
1715 | } |
1716 | assert(dcTypeParams && "No substitutions to perform"); |
1717 | assert(dcClassDecl && "No class context"); |
1718 | |
1719 | // Find the underlying object type. |
1720 | const ObjCObjectType *objectType; |
1721 | if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) { |
1722 | objectType = objectPointerType->getObjectType(); |
1723 | } else if (getAs<BlockPointerType>()) { |
1724 | ASTContext &ctx = dc->getParentASTContext(); |
1725 | objectType = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, {}, {}) |
1726 | ->castAs<ObjCObjectType>(); |
1727 | } else { |
1728 | objectType = getAs<ObjCObjectType>(); |
1729 | } |
1730 | |
1731 | /// Extract the class from the receiver object type. |
1732 | ObjCInterfaceDecl *curClassDecl = |
1733 | objectType ? objectType->getInterface() : nullptr; |
1734 | if (!curClassDecl) { |
1735 | // If we don't have a context type (e.g., this is "id" or some |
1736 | // variant thereof), substitute the bounds. |
1737 | return llvm::ArrayRef<QualType>(); |
1738 | } |
1739 | |
1740 | // Follow the superclass chain until we've mapped the receiver type |
1741 | // to the same class as the context. |
1742 | while (curClassDecl != dcClassDecl) { |
1743 | // Map to the superclass type. |
1744 | QualType superType = objectType->getSuperClassType(); |
1745 | if (superType.isNull()) { |
1746 | objectType = nullptr; |
1747 | break; |
1748 | } |
1749 | |
1750 | objectType = superType->castAs<ObjCObjectType>(); |
1751 | curClassDecl = objectType->getInterface(); |
1752 | } |
1753 | |
1754 | // If we don't have a receiver type, or the receiver type does not |
1755 | // have type arguments, substitute in the defaults. |
1756 | if (!objectType || objectType->isUnspecialized()) { |
1757 | return llvm::ArrayRef<QualType>(); |
1758 | } |
1759 | |
1760 | // The receiver type has the type arguments we want. |
1761 | return objectType->getTypeArgs(); |
1762 | } |
1763 | |
1764 | bool Type::acceptsObjCTypeParams() const { |
1765 | if (auto *IfaceT = getAsObjCInterfaceType()) { |
1766 | if (auto *ID = IfaceT->getInterface()) { |
1767 | if (ID->getTypeParamList()) |
1768 | return true; |
1769 | } |
1770 | } |
1771 | |
1772 | return false; |
1773 | } |
1774 | |
1775 | void ObjCObjectType::computeSuperClassTypeSlow() const { |
1776 | // Retrieve the class declaration for this type. If there isn't one |
1777 | // (e.g., this is some variant of "id" or "Class"), then there is no |
1778 | // superclass type. |
1779 | ObjCInterfaceDecl *classDecl = getInterface(); |
1780 | if (!classDecl) { |
1781 | CachedSuperClassType.setInt(true); |
1782 | return; |
1783 | } |
1784 | |
1785 | // Extract the superclass type. |
1786 | const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType(); |
1787 | if (!superClassObjTy) { |
1788 | CachedSuperClassType.setInt(true); |
1789 | return; |
1790 | } |
1791 | |
1792 | ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface(); |
1793 | if (!superClassDecl) { |
1794 | CachedSuperClassType.setInt(true); |
1795 | return; |
1796 | } |
1797 | |
1798 | // If the superclass doesn't have type parameters, then there is no |
1799 | // substitution to perform. |
1800 | QualType superClassType(superClassObjTy, 0); |
1801 | ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList(); |
1802 | if (!superClassTypeParams) { |
1803 | CachedSuperClassType.setPointerAndInt( |
1804 | superClassType->castAs<ObjCObjectType>(), true); |
1805 | return; |
1806 | } |
1807 | |
1808 | // If the superclass reference is unspecialized, return it. |
1809 | if (superClassObjTy->isUnspecialized()) { |
1810 | CachedSuperClassType.setPointerAndInt(superClassObjTy, true); |
1811 | return; |
1812 | } |
1813 | |
1814 | // If the subclass is not parameterized, there aren't any type |
1815 | // parameters in the superclass reference to substitute. |
1816 | ObjCTypeParamList *typeParams = classDecl->getTypeParamList(); |
1817 | if (!typeParams) { |
1818 | CachedSuperClassType.setPointerAndInt( |
1819 | superClassType->castAs<ObjCObjectType>(), true); |
1820 | return; |
1821 | } |
1822 | |
1823 | // If the subclass type isn't specialized, return the unspecialized |
1824 | // superclass. |
1825 | if (isUnspecialized()) { |
1826 | QualType unspecializedSuper = |
1827 | classDecl->getASTContext().getObjCInterfaceType( |
1828 | superClassObjTy->getInterface()); |
1829 | CachedSuperClassType.setPointerAndInt( |
1830 | unspecializedSuper->castAs<ObjCObjectType>(), true); |
1831 | return; |
1832 | } |
1833 | |
1834 | // Substitute the provided type arguments into the superclass type. |
1835 | ArrayRef<QualType> typeArgs = getTypeArgs(); |
1836 | assert(typeArgs.size() == typeParams->size()); |
1837 | CachedSuperClassType.setPointerAndInt( |
1838 | superClassType |
1839 | .substObjCTypeArgs(classDecl->getASTContext(), typeArgs, |
1840 | ObjCSubstitutionContext::Superclass) |
1841 | ->castAs<ObjCObjectType>(), |
1842 | true); |
1843 | } |
1844 | |
1845 | const ObjCInterfaceType *ObjCObjectPointerType::getInterfaceType() const { |
1846 | if (auto interfaceDecl = getObjectType()->getInterface()) { |
1847 | return interfaceDecl->getASTContext() |
1848 | .getObjCInterfaceType(interfaceDecl) |
1849 | ->castAs<ObjCInterfaceType>(); |
1850 | } |
1851 | |
1852 | return nullptr; |
1853 | } |
1854 | |
1855 | QualType ObjCObjectPointerType::getSuperClassType() const { |
1856 | QualType superObjectType = getObjectType()->getSuperClassType(); |
1857 | if (superObjectType.isNull()) |
1858 | return superObjectType; |
1859 | |
1860 | ASTContext &ctx = getInterfaceDecl()->getASTContext(); |
1861 | return ctx.getObjCObjectPointerType(OIT: superObjectType); |
1862 | } |
1863 | |
1864 | const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const { |
1865 | // There is no sugar for ObjCObjectType's, just return the canonical |
1866 | // type pointer if it is the right class. There is no typedef information to |
1867 | // return and these cannot be Address-space qualified. |
1868 | if (const auto *T = getAs<ObjCObjectType>()) |
1869 | if (T->getNumProtocols() && T->getInterface()) |
1870 | return T; |
1871 | return nullptr; |
1872 | } |
1873 | |
1874 | bool Type::isObjCQualifiedInterfaceType() const { |
1875 | return getAsObjCQualifiedInterfaceType() != nullptr; |
1876 | } |
1877 | |
1878 | const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const { |
1879 | // There is no sugar for ObjCQualifiedIdType's, just return the canonical |
1880 | // type pointer if it is the right class. |
1881 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { |
1882 | if (OPT->isObjCQualifiedIdType()) |
1883 | return OPT; |
1884 | } |
1885 | return nullptr; |
1886 | } |
1887 | |
1888 | const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const { |
1889 | // There is no sugar for ObjCQualifiedClassType's, just return the canonical |
1890 | // type pointer if it is the right class. |
1891 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { |
1892 | if (OPT->isObjCQualifiedClassType()) |
1893 | return OPT; |
1894 | } |
1895 | return nullptr; |
1896 | } |
1897 | |
1898 | const ObjCObjectType *Type::getAsObjCInterfaceType() const { |
1899 | if (const auto *OT = getAs<ObjCObjectType>()) { |
1900 | if (OT->getInterface()) |
1901 | return OT; |
1902 | } |
1903 | return nullptr; |
1904 | } |
1905 | |
1906 | const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const { |
1907 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { |
1908 | if (OPT->getInterfaceType()) |
1909 | return OPT; |
1910 | } |
1911 | return nullptr; |
1912 | } |
1913 | |
1914 | const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const { |
1915 | QualType PointeeType; |
1916 | if (const auto *PT = getAs<PointerType>()) |
1917 | PointeeType = PT->getPointeeType(); |
1918 | else if (const auto *RT = getAs<ReferenceType>()) |
1919 | PointeeType = RT->getPointeeType(); |
1920 | else |
1921 | return nullptr; |
1922 | |
1923 | if (const auto *RT = PointeeType->getAs<RecordType>()) |
1924 | return dyn_cast<CXXRecordDecl>(Val: RT->getDecl()); |
1925 | |
1926 | return nullptr; |
1927 | } |
1928 | |
1929 | CXXRecordDecl *Type::getAsCXXRecordDecl() const { |
1930 | return dyn_cast_or_null<CXXRecordDecl>(Val: getAsTagDecl()); |
1931 | } |
1932 | |
1933 | RecordDecl *Type::getAsRecordDecl() const { |
1934 | return dyn_cast_or_null<RecordDecl>(Val: getAsTagDecl()); |
1935 | } |
1936 | |
1937 | TagDecl *Type::getAsTagDecl() const { |
1938 | if (const auto *TT = getAs<TagType>()) |
1939 | return TT->getDecl(); |
1940 | if (const auto *Injected = getAs<InjectedClassNameType>()) |
1941 | return Injected->getDecl(); |
1942 | |
1943 | return nullptr; |
1944 | } |
1945 | |
1946 | const TemplateSpecializationType * |
1947 | Type::getAsNonAliasTemplateSpecializationType() const { |
1948 | const auto *TST = getAs<TemplateSpecializationType>(); |
1949 | while (TST && TST->isTypeAlias()) |
1950 | TST = TST->desugar()->getAs<TemplateSpecializationType>(); |
1951 | return TST; |
1952 | } |
1953 | |
1954 | bool Type::hasAttr(attr::Kind AK) const { |
1955 | const Type *Cur = this; |
1956 | while (const auto *AT = Cur->getAs<AttributedType>()) { |
1957 | if (AT->getAttrKind() == AK) |
1958 | return true; |
1959 | Cur = AT->getEquivalentType().getTypePtr(); |
1960 | } |
1961 | return false; |
1962 | } |
1963 | |
1964 | namespace { |
1965 | |
1966 | class GetContainedDeducedTypeVisitor |
1967 | : public TypeVisitor<GetContainedDeducedTypeVisitor, Type *> { |
1968 | bool Syntactic; |
1969 | |
1970 | public: |
1971 | GetContainedDeducedTypeVisitor(bool Syntactic = false) |
1972 | : Syntactic(Syntactic) {} |
1973 | |
1974 | using TypeVisitor<GetContainedDeducedTypeVisitor, Type *>::Visit; |
1975 | |
1976 | Type *Visit(QualType T) { |
1977 | if (T.isNull()) |
1978 | return nullptr; |
1979 | return Visit(T: T.getTypePtr()); |
1980 | } |
1981 | |
1982 | // The deduced type itself. |
1983 | Type *VisitDeducedType(const DeducedType *AT) { |
1984 | return const_cast<DeducedType *>(AT); |
1985 | } |
1986 | |
1987 | // Only these types can contain the desired 'auto' type. |
1988 | Type *VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { |
1989 | return Visit(T: T->getReplacementType()); |
1990 | } |
1991 | |
1992 | Type *VisitElaboratedType(const ElaboratedType *T) { |
1993 | return Visit(T: T->getNamedType()); |
1994 | } |
1995 | |
1996 | Type *VisitPointerType(const PointerType *T) { |
1997 | return Visit(T: T->getPointeeType()); |
1998 | } |
1999 | |
2000 | Type *VisitBlockPointerType(const BlockPointerType *T) { |
2001 | return Visit(T: T->getPointeeType()); |
2002 | } |
2003 | |
2004 | Type *VisitReferenceType(const ReferenceType *T) { |
2005 | return Visit(T: T->getPointeeTypeAsWritten()); |
2006 | } |
2007 | |
2008 | Type *VisitMemberPointerType(const MemberPointerType *T) { |
2009 | return Visit(T: T->getPointeeType()); |
2010 | } |
2011 | |
2012 | Type *VisitArrayType(const ArrayType *T) { |
2013 | return Visit(T: T->getElementType()); |
2014 | } |
2015 | |
2016 | Type *VisitDependentSizedExtVectorType(const DependentSizedExtVectorType *T) { |
2017 | return Visit(T: T->getElementType()); |
2018 | } |
2019 | |
2020 | Type *VisitVectorType(const VectorType *T) { |
2021 | return Visit(T: T->getElementType()); |
2022 | } |
2023 | |
2024 | Type *VisitDependentSizedMatrixType(const DependentSizedMatrixType *T) { |
2025 | return Visit(T->getElementType()); |
2026 | } |
2027 | |
2028 | Type *VisitConstantMatrixType(const ConstantMatrixType *T) { |
2029 | return Visit(T->getElementType()); |
2030 | } |
2031 | |
2032 | Type *VisitFunctionProtoType(const FunctionProtoType *T) { |
2033 | if (Syntactic && T->hasTrailingReturn()) |
2034 | return const_cast<FunctionProtoType *>(T); |
2035 | return VisitFunctionType(T); |
2036 | } |
2037 | |
2038 | Type *VisitFunctionType(const FunctionType *T) { |
2039 | return Visit(T: T->getReturnType()); |
2040 | } |
2041 | |
2042 | Type *VisitParenType(const ParenType *T) { return Visit(T: T->getInnerType()); } |
2043 | |
2044 | Type *VisitAttributedType(const AttributedType *T) { |
2045 | return Visit(T: T->getModifiedType()); |
2046 | } |
2047 | |
2048 | Type *VisitMacroQualifiedType(const MacroQualifiedType *T) { |
2049 | return Visit(T: T->getUnderlyingType()); |
2050 | } |
2051 | |
2052 | Type *VisitAdjustedType(const AdjustedType *T) { |
2053 | return Visit(T: T->getOriginalType()); |
2054 | } |
2055 | |
2056 | Type *VisitPackExpansionType(const PackExpansionType *T) { |
2057 | return Visit(T: T->getPattern()); |
2058 | } |
2059 | }; |
2060 | |
2061 | } // namespace |
2062 | |
2063 | DeducedType *Type::getContainedDeducedType() const { |
2064 | return cast_or_null<DeducedType>( |
2065 | Val: GetContainedDeducedTypeVisitor().Visit(T: this)); |
2066 | } |
2067 | |
2068 | bool Type::hasAutoForTrailingReturnType() const { |
2069 | return isa_and_nonnull<FunctionType>( |
2070 | Val: GetContainedDeducedTypeVisitor(true).Visit(T: this)); |
2071 | } |
2072 | |
2073 | bool Type::hasIntegerRepresentation() const { |
2074 | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) |
2075 | return VT->getElementType()->isIntegerType(); |
2076 | if (CanonicalType->isSveVLSBuiltinType()) { |
2077 | const auto *VT = cast<BuiltinType>(CanonicalType); |
2078 | return VT->getKind() == BuiltinType::SveBool || |
2079 | (VT->getKind() >= BuiltinType::SveInt8 && |
2080 | VT->getKind() <= BuiltinType::SveUint64); |
2081 | } |
2082 | if (CanonicalType->isRVVVLSBuiltinType()) { |
2083 | const auto *VT = cast<BuiltinType>(CanonicalType); |
2084 | return (VT->getKind() >= BuiltinType::RvvInt8mf8 && |
2085 | VT->getKind() <= BuiltinType::RvvUint64m8); |
2086 | } |
2087 | |
2088 | return isIntegerType(); |
2089 | } |
2090 | |
2091 | /// Determine whether this type is an integral type. |
2092 | /// |
2093 | /// This routine determines whether the given type is an integral type per |
2094 | /// C++ [basic.fundamental]p7. Although the C standard does not define the |
2095 | /// term "integral type", it has a similar term "integer type", and in C++ |
2096 | /// the two terms are equivalent. However, C's "integer type" includes |
2097 | /// enumeration types, while C++'s "integer type" does not. The \c ASTContext |
2098 | /// parameter is used to determine whether we should be following the C or |
2099 | /// C++ rules when determining whether this type is an integral/integer type. |
2100 | /// |
2101 | /// For cases where C permits "an integer type" and C++ permits "an integral |
2102 | /// type", use this routine. |
2103 | /// |
2104 | /// For cases where C permits "an integer type" and C++ permits "an integral |
2105 | /// or enumeration type", use \c isIntegralOrEnumerationType() instead. |
2106 | /// |
2107 | /// \param Ctx The context in which this type occurs. |
2108 | /// |
2109 | /// \returns true if the type is considered an integral type, false otherwise. |
2110 | bool Type::isIntegralType(const ASTContext &Ctx) const { |
2111 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2112 | return BT->isInteger(); |
2113 | |
2114 | // Complete enum types are integral in C. |
2115 | if (!Ctx.getLangOpts().CPlusPlus) |
2116 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) |
2117 | return ET->getDecl()->isComplete(); |
2118 | |
2119 | return isBitIntType(); |
2120 | } |
2121 | |
2122 | bool Type::isIntegralOrUnscopedEnumerationType() const { |
2123 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2124 | return BT->isInteger(); |
2125 | |
2126 | if (isBitIntType()) |
2127 | return true; |
2128 | |
2129 | return isUnscopedEnumerationType(); |
2130 | } |
2131 | |
2132 | bool Type::isUnscopedEnumerationType() const { |
2133 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) |
2134 | return !ET->getDecl()->isScoped(); |
2135 | |
2136 | return false; |
2137 | } |
2138 | |
2139 | bool Type::isCharType() const { |
2140 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2141 | return BT->getKind() == BuiltinType::Char_U || |
2142 | BT->getKind() == BuiltinType::UChar || |
2143 | BT->getKind() == BuiltinType::Char_S || |
2144 | BT->getKind() == BuiltinType::SChar; |
2145 | return false; |
2146 | } |
2147 | |
2148 | bool Type::isWideCharType() const { |
2149 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2150 | return BT->getKind() == BuiltinType::WChar_S || |
2151 | BT->getKind() == BuiltinType::WChar_U; |
2152 | return false; |
2153 | } |
2154 | |
2155 | bool Type::isChar8Type() const { |
2156 | if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2157 | return BT->getKind() == BuiltinType::Char8; |
2158 | return false; |
2159 | } |
2160 | |
2161 | bool Type::isChar16Type() const { |
2162 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2163 | return BT->getKind() == BuiltinType::Char16; |
2164 | return false; |
2165 | } |
2166 | |
2167 | bool Type::isChar32Type() const { |
2168 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2169 | return BT->getKind() == BuiltinType::Char32; |
2170 | return false; |
2171 | } |
2172 | |
2173 | /// Determine whether this type is any of the built-in character |
2174 | /// types. |
2175 | bool Type::isAnyCharacterType() const { |
2176 | const auto *BT = dyn_cast<BuiltinType>(CanonicalType); |
2177 | if (!BT) |
2178 | return false; |
2179 | switch (BT->getKind()) { |
2180 | default: |
2181 | return false; |
2182 | case BuiltinType::Char_U: |
2183 | case BuiltinType::UChar: |
2184 | case BuiltinType::WChar_U: |
2185 | case BuiltinType::Char8: |
2186 | case BuiltinType::Char16: |
2187 | case BuiltinType::Char32: |
2188 | case BuiltinType::Char_S: |
2189 | case BuiltinType::SChar: |
2190 | case BuiltinType::WChar_S: |
2191 | return true; |
2192 | } |
2193 | } |
2194 | |
2195 | bool Type::isUnicodeCharacterType() const { |
2196 | const auto *BT = dyn_cast<BuiltinType>(CanonicalType); |
2197 | if (!BT) |
2198 | return false; |
2199 | switch (BT->getKind()) { |
2200 | default: |
2201 | return false; |
2202 | case BuiltinType::Char8: |
2203 | case BuiltinType::Char16: |
2204 | case BuiltinType::Char32: |
2205 | return true; |
2206 | } |
2207 | } |
2208 | |
2209 | /// isSignedIntegerType - Return true if this is an integer type that is |
2210 | /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], |
2211 | /// an enum decl which has a signed representation |
2212 | bool Type::isSignedIntegerType() const { |
2213 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2214 | return BT->isSignedInteger(); |
2215 | |
2216 | if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) { |
2217 | // Incomplete enum types are not treated as integer types. |
2218 | // FIXME: In C++, enum types are never integer types. |
2219 | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
2220 | return ET->getDecl()->getIntegerType()->isSignedIntegerType(); |
2221 | } |
2222 | |
2223 | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) |
2224 | return IT->isSigned(); |
2225 | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) |
2226 | return IT->isSigned(); |
2227 | |
2228 | return false; |
2229 | } |
2230 | |
2231 | bool Type::isSignedIntegerOrEnumerationType() const { |
2232 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2233 | return BT->isSignedInteger(); |
2234 | |
2235 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType); |
2236 | ET && ET->getDecl()->isComplete()) |
2237 | return ET->getDecl()->getIntegerType()->isSignedIntegerType(); |
2238 | |
2239 | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) |
2240 | return IT->isSigned(); |
2241 | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) |
2242 | return IT->isSigned(); |
2243 | |
2244 | return false; |
2245 | } |
2246 | |
2247 | bool Type::hasSignedIntegerRepresentation() const { |
2248 | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) |
2249 | return VT->getElementType()->isSignedIntegerOrEnumerationType(); |
2250 | else |
2251 | return isSignedIntegerOrEnumerationType(); |
2252 | } |
2253 | |
2254 | /// isUnsignedIntegerType - Return true if this is an integer type that is |
2255 | /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum |
2256 | /// decl which has an unsigned representation |
2257 | bool Type::isUnsignedIntegerType() const { |
2258 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2259 | return BT->isUnsignedInteger(); |
2260 | |
2261 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) { |
2262 | // Incomplete enum types are not treated as integer types. |
2263 | // FIXME: In C++, enum types are never integer types. |
2264 | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
2265 | return ET->getDecl()->getIntegerType()->isUnsignedIntegerType(); |
2266 | } |
2267 | |
2268 | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) |
2269 | return IT->isUnsigned(); |
2270 | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) |
2271 | return IT->isUnsigned(); |
2272 | |
2273 | return false; |
2274 | } |
2275 | |
2276 | bool Type::isUnsignedIntegerOrEnumerationType() const { |
2277 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2278 | return BT->isUnsignedInteger(); |
2279 | |
2280 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType); |
2281 | ET && ET->getDecl()->isComplete()) |
2282 | return ET->getDecl()->getIntegerType()->isUnsignedIntegerType(); |
2283 | |
2284 | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) |
2285 | return IT->isUnsigned(); |
2286 | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) |
2287 | return IT->isUnsigned(); |
2288 | |
2289 | return false; |
2290 | } |
2291 | |
2292 | bool Type::hasUnsignedIntegerRepresentation() const { |
2293 | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) |
2294 | return VT->getElementType()->isUnsignedIntegerOrEnumerationType(); |
2295 | if (const auto *VT = dyn_cast<MatrixType>(CanonicalType)) |
2296 | return VT->getElementType()->isUnsignedIntegerOrEnumerationType(); |
2297 | if (CanonicalType->isSveVLSBuiltinType()) { |
2298 | const auto *VT = cast<BuiltinType>(CanonicalType); |
2299 | return VT->getKind() >= BuiltinType::SveUint8 && |
2300 | VT->getKind() <= BuiltinType::SveUint64; |
2301 | } |
2302 | return isUnsignedIntegerOrEnumerationType(); |
2303 | } |
2304 | |
2305 | bool Type::isFloatingType() const { |
2306 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2307 | return BT->isFloatingPoint(); |
2308 | if (const auto *CT = dyn_cast<ComplexType>(CanonicalType)) |
2309 | return CT->getElementType()->isFloatingType(); |
2310 | return false; |
2311 | } |
2312 | |
2313 | bool Type::hasFloatingRepresentation() const { |
2314 | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) |
2315 | return VT->getElementType()->isFloatingType(); |
2316 | if (const auto *MT = dyn_cast<MatrixType>(CanonicalType)) |
2317 | return MT->getElementType()->isFloatingType(); |
2318 | return isFloatingType(); |
2319 | } |
2320 | |
2321 | bool Type::isRealFloatingType() const { |
2322 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2323 | return BT->isFloatingPoint(); |
2324 | return false; |
2325 | } |
2326 | |
2327 | bool Type::isRealType() const { |
2328 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2329 | return BT->getKind() >= BuiltinType::Bool && |
2330 | BT->getKind() <= BuiltinType::Ibm128; |
2331 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) |
2332 | return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped(); |
2333 | return isBitIntType(); |
2334 | } |
2335 | |
2336 | bool Type::isArithmeticType() const { |
2337 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2338 | return BT->getKind() >= BuiltinType::Bool && |
2339 | BT->getKind() <= BuiltinType::Ibm128; |
2340 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) |
2341 | // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2). |
2342 | // If a body isn't seen by the time we get here, return false. |
2343 | // |
2344 | // C++0x: Enumerations are not arithmetic types. For now, just return |
2345 | // false for scoped enumerations since that will disable any |
2346 | // unwanted implicit conversions. |
2347 | return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete(); |
2348 | return isa<ComplexType>(CanonicalType) || isBitIntType(); |
2349 | } |
2350 | |
2351 | bool Type::hasBooleanRepresentation() const { |
2352 | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) |
2353 | return VT->getElementType()->isBooleanType(); |
2354 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) { |
2355 | return ET->getDecl()->isComplete() && |
2356 | ET->getDecl()->getIntegerType()->isBooleanType(); |
2357 | } |
2358 | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) |
2359 | return IT->getNumBits() == 1; |
2360 | return isBooleanType(); |
2361 | } |
2362 | |
2363 | Type::ScalarTypeKind Type::getScalarTypeKind() const { |
2364 | assert(isScalarType()); |
2365 | |
2366 | const Type *T = CanonicalType.getTypePtr(); |
2367 | if (const auto *BT = dyn_cast<BuiltinType>(Val: T)) { |
2368 | if (BT->getKind() == BuiltinType::Bool) |
2369 | return STK_Bool; |
2370 | if (BT->getKind() == BuiltinType::NullPtr) |
2371 | return STK_CPointer; |
2372 | if (BT->isInteger()) |
2373 | return STK_Integral; |
2374 | if (BT->isFloatingPoint()) |
2375 | return STK_Floating; |
2376 | if (BT->isFixedPointType()) |
2377 | return STK_FixedPoint; |
2378 | llvm_unreachable("unknown scalar builtin type"); |
2379 | } else if (isa<PointerType>(Val: T)) { |
2380 | return STK_CPointer; |
2381 | } else if (isa<BlockPointerType>(Val: T)) { |
2382 | return STK_BlockPointer; |
2383 | } else if (isa<ObjCObjectPointerType>(Val: T)) { |
2384 | return STK_ObjCObjectPointer; |
2385 | } else if (isa<MemberPointerType>(Val: T)) { |
2386 | return STK_MemberPointer; |
2387 | } else if (isa<EnumType>(Val: T)) { |
2388 | assert(cast<EnumType>(T)->getDecl()->isComplete()); |
2389 | return STK_Integral; |
2390 | } else if (const auto *CT = dyn_cast<ComplexType>(Val: T)) { |
2391 | if (CT->getElementType()->isRealFloatingType()) |
2392 | return STK_FloatingComplex; |
2393 | return STK_IntegralComplex; |
2394 | } else if (isBitIntType()) { |
2395 | return STK_Integral; |
2396 | } |
2397 | |
2398 | llvm_unreachable("unknown scalar type"); |
2399 | } |
2400 | |
2401 | /// Determines whether the type is a C++ aggregate type or C |
2402 | /// aggregate or union type. |
2403 | /// |
2404 | /// An aggregate type is an array or a class type (struct, union, or |
2405 | /// class) that has no user-declared constructors, no private or |
2406 | /// protected non-static data members, no base classes, and no virtual |
2407 | /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type |
2408 | /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also |
2409 | /// includes union types. |
2410 | bool Type::isAggregateType() const { |
2411 | if (const auto *Record = dyn_cast<RecordType>(CanonicalType)) { |
2412 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl())) |
2413 | return ClassDecl->isAggregate(); |
2414 | |
2415 | return true; |
2416 | } |
2417 | |
2418 | return isa<ArrayType>(CanonicalType); |
2419 | } |
2420 | |
2421 | /// isConstantSizeType - Return true if this is not a variable sized type, |
2422 | /// according to the rules of C99 6.7.5p3. It is not legal to call this on |
2423 | /// incomplete types or dependent types. |
2424 | bool Type::isConstantSizeType() const { |
2425 | assert(!isIncompleteType() && "This doesn't make sense for incomplete types"); |
2426 | assert(!isDependentType() && "This doesn't make sense for dependent types"); |
2427 | // The VAT must have a size, as it is known to be complete. |
2428 | return !isa<VariableArrayType>(CanonicalType); |
2429 | } |
2430 | |
2431 | /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1) |
2432 | /// - a type that can describe objects, but which lacks information needed to |
2433 | /// determine its size. |
2434 | bool Type::isIncompleteType(NamedDecl **Def) const { |
2435 | if (Def) |
2436 | *Def = nullptr; |
2437 | |
2438 | switch (CanonicalType->getTypeClass()) { |
2439 | default: |
2440 | return false; |
2441 | case Builtin: |
2442 | // Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never |
2443 | // be completed. |
2444 | return isVoidType(); |
2445 | case Enum: { |
2446 | EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl(); |
2447 | if (Def) |
2448 | *Def = EnumD; |
2449 | return !EnumD->isComplete(); |
2450 | } |
2451 | case Record: { |
2452 | // A tagged type (struct/union/enum/class) is incomplete if the decl is a |
2453 | // forward declaration, but not a full definition (C99 6.2.5p22). |
2454 | RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl(); |
2455 | if (Def) |
2456 | *Def = Rec; |
2457 | return !Rec->isCompleteDefinition(); |
2458 | } |
2459 | case InjectedClassName: { |
2460 | CXXRecordDecl *Rec = cast<InjectedClassNameType>(CanonicalType)->getDecl(); |
2461 | if (!Rec->isBeingDefined()) |
2462 | return false; |
2463 | if (Def) |
2464 | *Def = Rec; |
2465 | return true; |
2466 | } |
2467 | case ConstantArray: |
2468 | case VariableArray: |
2469 | // An array is incomplete if its element type is incomplete |
2470 | // (C++ [dcl.array]p1). |
2471 | // We don't handle dependent-sized arrays (dependent types are never treated |
2472 | // as incomplete). |
2473 | return cast<ArrayType>(CanonicalType) |
2474 | ->getElementType() |
2475 | ->isIncompleteType(Def); |
2476 | case IncompleteArray: |
2477 | // An array of unknown size is an incomplete type (C99 6.2.5p22). |
2478 | return true; |
2479 | case MemberPointer: { |
2480 | // Member pointers in the MS ABI have special behavior in |
2481 | // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl |
2482 | // to indicate which inheritance model to use. |
2483 | // The inheritance attribute might only be present on the most recent |
2484 | // CXXRecordDecl. |
2485 | const CXXRecordDecl *RD = |
2486 | cast<MemberPointerType>(CanonicalType)->getMostRecentCXXRecordDecl(); |
2487 | // Member pointers with dependent class types don't get special treatment. |
2488 | if (!RD || RD->isDependentType()) |
2489 | return false; |
2490 | ASTContext &Context = RD->getASTContext(); |
2491 | // Member pointers not in the MS ABI don't get special treatment. |
2492 | if (!Context.getTargetInfo().getCXXABI().isMicrosoft()) |
2493 | return false; |
2494 | // Nothing interesting to do if the inheritance attribute is already set. |
2495 | if (RD->hasAttr<MSInheritanceAttr>()) |
2496 | return false; |
2497 | return true; |
2498 | } |
2499 | case ObjCObject: |
2500 | return cast<ObjCObjectType>(CanonicalType) |
2501 | ->getBaseType() |
2502 | ->isIncompleteType(Def); |
2503 | case ObjCInterface: { |
2504 | // ObjC interfaces are incomplete if they are @class, not @interface. |
2505 | ObjCInterfaceDecl *Interface = |
2506 | cast<ObjCInterfaceType>(CanonicalType)->getDecl(); |
2507 | if (Def) |
2508 | *Def = Interface; |
2509 | return !Interface->hasDefinition(); |
2510 | } |
2511 | } |
2512 | } |
2513 | |
2514 | bool Type::isAlwaysIncompleteType() const { |
2515 | if (!isIncompleteType()) |
2516 | return false; |
2517 | |
2518 | // Forward declarations of structs, classes, enums, and unions could be later |
2519 | // completed in a compilation unit by providing a type definition. |
2520 | if (getAsTagDecl()) |
2521 | return false; |
2522 | |
2523 | // Other types are incompletable. |
2524 | // |
2525 | // E.g. `char[]` and `void`. The type is incomplete and no future |
2526 | // type declarations can make the type complete. |
2527 | return true; |
2528 | } |
2529 | |
2530 | bool Type::isSizelessBuiltinType() const { |
2531 | if (isSizelessVectorType()) |
2532 | return true; |
2533 | |
2534 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2535 | switch (BT->getKind()) { |
2536 | // WebAssembly reference types |
2537 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2538 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
2539 | // HLSL intangible types |
2540 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2541 | #include "clang/Basic/HLSLIntangibleTypes.def" |
2542 | return true; |
2543 | default: |
2544 | return false; |
2545 | } |
2546 | } |
2547 | return false; |
2548 | } |
2549 | |
2550 | bool Type::isWebAssemblyExternrefType() const { |
2551 | if (const auto *BT = getAs<BuiltinType>()) |
2552 | return BT->getKind() == BuiltinType::WasmExternRef; |
2553 | return false; |
2554 | } |
2555 | |
2556 | bool Type::isWebAssemblyTableType() const { |
2557 | if (const auto *ATy = dyn_cast<ArrayType>(Val: this)) |
2558 | return ATy->getElementType().isWebAssemblyReferenceType(); |
2559 | |
2560 | if (const auto *PTy = dyn_cast<PointerType>(Val: this)) |
2561 | return PTy->getPointeeType().isWebAssemblyReferenceType(); |
2562 | |
2563 | return false; |
2564 | } |
2565 | |
2566 | bool Type::isSizelessType() const { return isSizelessBuiltinType(); } |
2567 | |
2568 | bool Type::isSizelessVectorType() const { |
2569 | return isSVESizelessBuiltinType() || isRVVSizelessBuiltinType(); |
2570 | } |
2571 | |
2572 | bool Type::isSVESizelessBuiltinType() const { |
2573 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2574 | switch (BT->getKind()) { |
2575 | // SVE Types |
2576 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId) \ |
2577 | case BuiltinType::Id: \ |
2578 | return true; |
2579 | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId) \ |
2580 | case BuiltinType::Id: \ |
2581 | return true; |
2582 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId) \ |
2583 | case BuiltinType::Id: \ |
2584 | return true; |
2585 | #include "clang/Basic/AArch64ACLETypes.def" |
2586 | default: |
2587 | return false; |
2588 | } |
2589 | } |
2590 | return false; |
2591 | } |
2592 | |
2593 | bool Type::isRVVSizelessBuiltinType() const { |
2594 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2595 | switch (BT->getKind()) { |
2596 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2597 | #include "clang/Basic/RISCVVTypes.def" |
2598 | return true; |
2599 | default: |
2600 | return false; |
2601 | } |
2602 | } |
2603 | return false; |
2604 | } |
2605 | |
2606 | bool Type::isSveVLSBuiltinType() const { |
2607 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2608 | switch (BT->getKind()) { |
2609 | case BuiltinType::SveInt8: |
2610 | case BuiltinType::SveInt16: |
2611 | case BuiltinType::SveInt32: |
2612 | case BuiltinType::SveInt64: |
2613 | case BuiltinType::SveUint8: |
2614 | case BuiltinType::SveUint16: |
2615 | case BuiltinType::SveUint32: |
2616 | case BuiltinType::SveUint64: |
2617 | case BuiltinType::SveFloat16: |
2618 | case BuiltinType::SveFloat32: |
2619 | case BuiltinType::SveFloat64: |
2620 | case BuiltinType::SveBFloat16: |
2621 | case BuiltinType::SveBool: |
2622 | case BuiltinType::SveBoolx2: |
2623 | case BuiltinType::SveBoolx4: |
2624 | case BuiltinType::SveMFloat8: |
2625 | return true; |
2626 | default: |
2627 | return false; |
2628 | } |
2629 | } |
2630 | return false; |
2631 | } |
2632 | |
2633 | QualType Type::getSizelessVectorEltType(const ASTContext &Ctx) const { |
2634 | assert(isSizelessVectorType() && "Must be sizeless vector type"); |
2635 | // Currently supports SVE and RVV |
2636 | if (isSVESizelessBuiltinType()) |
2637 | return getSveEltType(Ctx); |
2638 | |
2639 | if (isRVVSizelessBuiltinType()) |
2640 | return getRVVEltType(Ctx); |
2641 | |
2642 | llvm_unreachable("Unhandled type"); |
2643 | } |
2644 | |
2645 | QualType Type::getSveEltType(const ASTContext &Ctx) const { |
2646 | assert(isSveVLSBuiltinType() && "unsupported type!"); |
2647 | |
2648 | const BuiltinType *BTy = castAs<BuiltinType>(); |
2649 | if (BTy->getKind() == BuiltinType::SveBool) |
2650 | // Represent predicates as i8 rather than i1 to avoid any layout issues. |
2651 | // The type is bitcasted to a scalable predicate type when casting between |
2652 | // scalable and fixed-length vectors. |
2653 | return Ctx.UnsignedCharTy; |
2654 | else |
2655 | return Ctx.getBuiltinVectorTypeInfo(VecTy: BTy).ElementType; |
2656 | } |
2657 | |
2658 | bool Type::isRVVVLSBuiltinType() const { |
2659 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2660 | switch (BT->getKind()) { |
2661 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned, \ |
2662 | IsFP, IsBF) \ |
2663 | case BuiltinType::Id: \ |
2664 | return NF == 1; |
2665 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
2666 | case BuiltinType::Id: \ |
2667 | return true; |
2668 | #include "clang/Basic/RISCVVTypes.def" |
2669 | default: |
2670 | return false; |
2671 | } |
2672 | } |
2673 | return false; |
2674 | } |
2675 | |
2676 | QualType Type::getRVVEltType(const ASTContext &Ctx) const { |
2677 | assert(isRVVVLSBuiltinType() && "unsupported type!"); |
2678 | |
2679 | const BuiltinType *BTy = castAs<BuiltinType>(); |
2680 | |
2681 | switch (BTy->getKind()) { |
2682 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
2683 | case BuiltinType::Id: \ |
2684 | return Ctx.UnsignedCharTy; |
2685 | default: |
2686 | return Ctx.getBuiltinVectorTypeInfo(VecTy: BTy).ElementType; |
2687 | #include "clang/Basic/RISCVVTypes.def" |
2688 | } |
2689 | |
2690 | llvm_unreachable("Unhandled type"); |
2691 | } |
2692 | |
2693 | bool QualType::isPODType(const ASTContext &Context) const { |
2694 | // C++11 has a more relaxed definition of POD. |
2695 | if (Context.getLangOpts().CPlusPlus11) |
2696 | return isCXX11PODType(Context); |
2697 | |
2698 | return isCXX98PODType(Context); |
2699 | } |
2700 | |
2701 | bool QualType::isCXX98PODType(const ASTContext &Context) const { |
2702 | // The compiler shouldn't query this for incomplete types, but the user might. |
2703 | // We return false for that case. Except for incomplete arrays of PODs, which |
2704 | // are PODs according to the standard. |
2705 | if (isNull()) |
2706 | return false; |
2707 | |
2708 | if ((*this)->isIncompleteArrayType()) |
2709 | return Context.getBaseElementType(QT: *this).isCXX98PODType(Context); |
2710 | |
2711 | if ((*this)->isIncompleteType()) |
2712 | return false; |
2713 | |
2714 | if (hasNonTrivialObjCLifetime()) |
2715 | return false; |
2716 | |
2717 | QualType CanonicalType = getTypePtr()->CanonicalType; |
2718 | switch (CanonicalType->getTypeClass()) { |
2719 | // Everything not explicitly mentioned is not POD. |
2720 | default: |
2721 | return false; |
2722 | case Type::VariableArray: |
2723 | case Type::ConstantArray: |
2724 | // IncompleteArray is handled above. |
2725 | return Context.getBaseElementType(QT: *this).isCXX98PODType(Context); |
2726 | |
2727 | case Type::ObjCObjectPointer: |
2728 | case Type::BlockPointer: |
2729 | case Type::Builtin: |
2730 | case Type::Complex: |
2731 | case Type::Pointer: |
2732 | case Type::MemberPointer: |
2733 | case Type::Vector: |
2734 | case Type::ExtVector: |
2735 | case Type::BitInt: |
2736 | return true; |
2737 | |
2738 | case Type::Enum: |
2739 | return true; |
2740 | |
2741 | case Type::Record: |
2742 | if (const auto *ClassDecl = |
2743 | dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl())) |
2744 | return ClassDecl->isPOD(); |
2745 | |
2746 | // C struct/union is POD. |
2747 | return true; |
2748 | } |
2749 | } |
2750 | |
2751 | bool QualType::isTrivialType(const ASTContext &Context) const { |
2752 | // The compiler shouldn't query this for incomplete types, but the user might. |
2753 | // We return false for that case. Except for incomplete arrays of PODs, which |
2754 | // are PODs according to the standard. |
2755 | if (isNull()) |
2756 | return false; |
2757 | |
2758 | if ((*this)->isArrayType()) |
2759 | return Context.getBaseElementType(QT: *this).isTrivialType(Context); |
2760 | |
2761 | if ((*this)->isSizelessBuiltinType()) |
2762 | return true; |
2763 | |
2764 | // Return false for incomplete types after skipping any incomplete array |
2765 | // types which are expressly allowed by the standard and thus our API. |
2766 | if ((*this)->isIncompleteType()) |
2767 | return false; |
2768 | |
2769 | if (hasNonTrivialObjCLifetime()) |
2770 | return false; |
2771 | |
2772 | QualType CanonicalType = getTypePtr()->CanonicalType; |
2773 | if (CanonicalType->isDependentType()) |
2774 | return false; |
2775 | |
2776 | // C++0x [basic.types]p9: |
2777 | // Scalar types, trivial class types, arrays of such types, and |
2778 | // cv-qualified versions of these types are collectively called trivial |
2779 | // types. |
2780 | |
2781 | // As an extension, Clang treats vector types as Scalar types. |
2782 | if (CanonicalType->isScalarType() || CanonicalType->isVectorType()) |
2783 | return true; |
2784 | if (const auto *RT = CanonicalType->getAs<RecordType>()) { |
2785 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { |
2786 | // C++20 [class]p6: |
2787 | // A trivial class is a class that is trivially copyable, and |
2788 | // has one or more eligible default constructors such that each is |
2789 | // trivial. |
2790 | // FIXME: We should merge this definition of triviality into |
2791 | // CXXRecordDecl::isTrivial. Currently it computes the wrong thing. |
2792 | return ClassDecl->hasTrivialDefaultConstructor() && |
2793 | !ClassDecl->hasNonTrivialDefaultConstructor() && |
2794 | ClassDecl->isTriviallyCopyable(); |
2795 | } |
2796 | |
2797 | return true; |
2798 | } |
2799 | |
2800 | // No other types can match. |
2801 | return false; |
2802 | } |
2803 | |
2804 | static bool isTriviallyCopyableTypeImpl(const QualType &type, |
2805 | const ASTContext &Context, |
2806 | bool IsCopyConstructible) { |
2807 | if (type->isArrayType()) |
2808 | return isTriviallyCopyableTypeImpl(type: Context.getBaseElementType(QT: type), |
2809 | Context, IsCopyConstructible); |
2810 | |
2811 | if (type.hasNonTrivialObjCLifetime()) |
2812 | return false; |
2813 | |
2814 | // C++11 [basic.types]p9 - See Core 2094 |
2815 | // Scalar types, trivially copyable class types, arrays of such types, and |
2816 | // cv-qualified versions of these types are collectively |
2817 | // called trivially copy constructible types. |
2818 | |
2819 | QualType CanonicalType = type.getCanonicalType(); |
2820 | if (CanonicalType->isDependentType()) |
2821 | return false; |
2822 | |
2823 | if (CanonicalType->isSizelessBuiltinType()) |
2824 | return true; |
2825 | |
2826 | // Return false for incomplete types after skipping any incomplete array types |
2827 | // which are expressly allowed by the standard and thus our API. |
2828 | if (CanonicalType->isIncompleteType()) |
2829 | return false; |
2830 | |
2831 | if (CanonicalType.hasAddressDiscriminatedPointerAuth()) |
2832 | return false; |
2833 | |
2834 | // As an extension, Clang treats vector types as Scalar types. |
2835 | if (CanonicalType->isScalarType() || CanonicalType->isVectorType()) |
2836 | return true; |
2837 | |
2838 | // Mfloat8 type is a special case as it not scalar, but is still trivially |
2839 | // copyable. |
2840 | if (CanonicalType->isMFloat8Type()) |
2841 | return true; |
2842 | |
2843 | if (const auto *RT = CanonicalType->getAs<RecordType>()) { |
2844 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) { |
2845 | if (IsCopyConstructible) { |
2846 | return ClassDecl->isTriviallyCopyConstructible(); |
2847 | } else { |
2848 | return ClassDecl->isTriviallyCopyable(); |
2849 | } |
2850 | } |
2851 | return !RT->getDecl()->isNonTrivialToPrimitiveCopy(); |
2852 | } |
2853 | // No other types can match. |
2854 | return false; |
2855 | } |
2856 | |
2857 | bool QualType::isTriviallyCopyableType(const ASTContext &Context) const { |
2858 | return isTriviallyCopyableTypeImpl(type: *this, Context, |
2859 | /*IsCopyConstructible=*/false); |
2860 | } |
2861 | |
2862 | // FIXME: each call will trigger a full computation, cache the result. |
2863 | bool QualType::isBitwiseCloneableType(const ASTContext &Context) const { |
2864 | auto CanonicalType = getCanonicalType(); |
2865 | if (CanonicalType.hasNonTrivialObjCLifetime()) |
2866 | return false; |
2867 | if (CanonicalType->isArrayType()) |
2868 | return Context.getBaseElementType(QT: CanonicalType) |
2869 | .isBitwiseCloneableType(Context); |
2870 | |
2871 | if (CanonicalType->isIncompleteType()) |
2872 | return false; |
2873 | const auto *RD = CanonicalType->getAsRecordDecl(); // struct/union/class |
2874 | if (!RD) |
2875 | return true; |
2876 | |
2877 | // Never allow memcpy when we're adding poisoned padding bits to the struct. |
2878 | // Accessing these posioned bits will trigger false alarms on |
2879 | // SanitizeAddressFieldPadding etc. |
2880 | if (RD->mayInsertExtraPadding()) |
2881 | return false; |
2882 | |
2883 | for (auto *const Field : RD->fields()) { |
2884 | if (!Field->getType().isBitwiseCloneableType(Context)) |
2885 | return false; |
2886 | } |
2887 | |
2888 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
2889 | for (auto Base : CXXRD->bases()) |
2890 | if (!Base.getType().isBitwiseCloneableType(Context)) |
2891 | return false; |
2892 | for (auto VBase : CXXRD->vbases()) |
2893 | if (!VBase.getType().isBitwiseCloneableType(Context)) |
2894 | return false; |
2895 | } |
2896 | return true; |
2897 | } |
2898 | |
2899 | bool QualType::isTriviallyCopyConstructibleType( |
2900 | const ASTContext &Context) const { |
2901 | return isTriviallyCopyableTypeImpl(type: *this, Context, |
2902 | /*IsCopyConstructible=*/true); |
2903 | } |
2904 | |
2905 | bool QualType::isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const { |
2906 | return !Context.getLangOpts().ObjCAutoRefCount && |
2907 | Context.getLangOpts().ObjCWeak && |
2908 | getObjCLifetime() != Qualifiers::OCL_Weak; |
2909 | } |
2910 | |
2911 | bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion( |
2912 | const RecordDecl *RD) { |
2913 | return RD->hasNonTrivialToPrimitiveDefaultInitializeCUnion(); |
2914 | } |
2915 | |
2916 | bool QualType::hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD) { |
2917 | return RD->hasNonTrivialToPrimitiveDestructCUnion(); |
2918 | } |
2919 | |
2920 | bool QualType::hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD) { |
2921 | return RD->hasNonTrivialToPrimitiveCopyCUnion(); |
2922 | } |
2923 | |
2924 | bool QualType::isWebAssemblyReferenceType() const { |
2925 | return isWebAssemblyExternrefType() || isWebAssemblyFuncrefType(); |
2926 | } |
2927 | |
2928 | bool QualType::isWebAssemblyExternrefType() const { |
2929 | return getTypePtr()->isWebAssemblyExternrefType(); |
2930 | } |
2931 | |
2932 | bool QualType::isWebAssemblyFuncrefType() const { |
2933 | return getTypePtr()->isFunctionPointerType() && |
2934 | getAddressSpace() == LangAS::wasm_funcref; |
2935 | } |
2936 | |
2937 | QualType::PrimitiveDefaultInitializeKind |
2938 | QualType::isNonTrivialToPrimitiveDefaultInitialize() const { |
2939 | if (const auto *RT = |
2940 | getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>()) |
2941 | if (RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) |
2942 | return PDIK_Struct; |
2943 | |
2944 | switch (getQualifiers().getObjCLifetime()) { |
2945 | case Qualifiers::OCL_Strong: |
2946 | return PDIK_ARCStrong; |
2947 | case Qualifiers::OCL_Weak: |
2948 | return PDIK_ARCWeak; |
2949 | default: |
2950 | return PDIK_Trivial; |
2951 | } |
2952 | } |
2953 | |
2954 | QualType::PrimitiveCopyKind QualType::isNonTrivialToPrimitiveCopy() const { |
2955 | if (const auto *RT = |
2956 | getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>()) |
2957 | if (RT->getDecl()->isNonTrivialToPrimitiveCopy()) |
2958 | return PCK_Struct; |
2959 | |
2960 | Qualifiers Qs = getQualifiers(); |
2961 | switch (Qs.getObjCLifetime()) { |
2962 | case Qualifiers::OCL_Strong: |
2963 | return PCK_ARCStrong; |
2964 | case Qualifiers::OCL_Weak: |
2965 | return PCK_ARCWeak; |
2966 | default: |
2967 | if (hasAddressDiscriminatedPointerAuth()) |
2968 | return PCK_PtrAuth; |
2969 | return Qs.hasVolatile() ? PCK_VolatileTrivial : PCK_Trivial; |
2970 | } |
2971 | } |
2972 | |
2973 | QualType::PrimitiveCopyKind |
2974 | QualType::isNonTrivialToPrimitiveDestructiveMove() const { |
2975 | return isNonTrivialToPrimitiveCopy(); |
2976 | } |
2977 | |
2978 | bool Type::isLiteralType(const ASTContext &Ctx) const { |
2979 | if (isDependentType()) |
2980 | return false; |
2981 | |
2982 | // C++1y [basic.types]p10: |
2983 | // A type is a literal type if it is: |
2984 | // -- cv void; or |
2985 | if (Ctx.getLangOpts().CPlusPlus14 && isVoidType()) |
2986 | return true; |
2987 | |
2988 | // C++11 [basic.types]p10: |
2989 | // A type is a literal type if it is: |
2990 | // [...] |
2991 | // -- an array of literal type other than an array of runtime bound; or |
2992 | if (isVariableArrayType()) |
2993 | return false; |
2994 | const Type *BaseTy = getBaseElementTypeUnsafe(); |
2995 | assert(BaseTy && "NULL element type"); |
2996 | |
2997 | // Return false for incomplete types after skipping any incomplete array |
2998 | // types; those are expressly allowed by the standard and thus our API. |
2999 | if (BaseTy->isIncompleteType()) |
3000 | return false; |
3001 | |
3002 | // C++11 [basic.types]p10: |
3003 | // A type is a literal type if it is: |
3004 | // -- a scalar type; or |
3005 | // As an extension, Clang treats vector types and complex types as |
3006 | // literal types. |
3007 | if (BaseTy->isScalarType() || BaseTy->isVectorType() || |
3008 | BaseTy->isAnyComplexType()) |
3009 | return true; |
3010 | // -- a reference type; or |
3011 | if (BaseTy->isReferenceType()) |
3012 | return true; |
3013 | // -- a class type that has all of the following properties: |
3014 | if (const auto *RT = BaseTy->getAs<RecordType>()) { |
3015 | // -- a trivial destructor, |
3016 | // -- every constructor call and full-expression in the |
3017 | // brace-or-equal-initializers for non-static data members (if any) |
3018 | // is a constant expression, |
3019 | // -- it is an aggregate type or has at least one constexpr |
3020 | // constructor or constructor template that is not a copy or move |
3021 | // constructor, and |
3022 | // -- all non-static data members and base classes of literal types |
3023 | // |
3024 | // We resolve DR1361 by ignoring the second bullet. |
3025 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) |
3026 | return ClassDecl->isLiteral(); |
3027 | |
3028 | return true; |
3029 | } |
3030 | |
3031 | // We treat _Atomic T as a literal type if T is a literal type. |
3032 | if (const auto *AT = BaseTy->getAs<AtomicType>()) |
3033 | return AT->getValueType()->isLiteralType(Ctx); |
3034 | |
3035 | // If this type hasn't been deduced yet, then conservatively assume that |
3036 | // it'll work out to be a literal type. |
3037 | if (isa<AutoType>(Val: BaseTy->getCanonicalTypeInternal())) |
3038 | return true; |
3039 | |
3040 | return false; |
3041 | } |
3042 | |
3043 | bool Type::isStructuralType() const { |
3044 | // C++20 [temp.param]p6: |
3045 | // A structural type is one of the following: |
3046 | // -- a scalar type; or |
3047 | // -- a vector type [Clang extension]; or |
3048 | if (isScalarType() || isVectorType()) |
3049 | return true; |
3050 | // -- an lvalue reference type; or |
3051 | if (isLValueReferenceType()) |
3052 | return true; |
3053 | // -- a literal class type [...under some conditions] |
3054 | if (const CXXRecordDecl *RD = getAsCXXRecordDecl()) |
3055 | return RD->isStructural(); |
3056 | return false; |
3057 | } |
3058 | |
3059 | bool Type::isStandardLayoutType() const { |
3060 | if (isDependentType()) |
3061 | return false; |
3062 | |
3063 | // C++0x [basic.types]p9: |
3064 | // Scalar types, standard-layout class types, arrays of such types, and |
3065 | // cv-qualified versions of these types are collectively called |
3066 | // standard-layout types. |
3067 | const Type *BaseTy = getBaseElementTypeUnsafe(); |
3068 | assert(BaseTy && "NULL element type"); |
3069 | |
3070 | // Return false for incomplete types after skipping any incomplete array |
3071 | // types which are expressly allowed by the standard and thus our API. |
3072 | if (BaseTy->isIncompleteType()) |
3073 | return false; |
3074 | |
3075 | // As an extension, Clang treats vector types as Scalar types. |
3076 | if (BaseTy->isScalarType() || BaseTy->isVectorType()) |
3077 | return true; |
3078 | if (const auto *RT = BaseTy->getAs<RecordType>()) { |
3079 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) |
3080 | if (!ClassDecl->isStandardLayout()) |
3081 | return false; |
3082 | |
3083 | // Default to 'true' for non-C++ class types. |
3084 | // FIXME: This is a bit dubious, but plain C structs should trivially meet |
3085 | // all the requirements of standard layout classes. |
3086 | return true; |
3087 | } |
3088 | |
3089 | // No other types can match. |
3090 | return false; |
3091 | } |
3092 | |
3093 | // This is effectively the intersection of isTrivialType and |
3094 | // isStandardLayoutType. We implement it directly to avoid redundant |
3095 | // conversions from a type to a CXXRecordDecl. |
3096 | bool QualType::isCXX11PODType(const ASTContext &Context) const { |
3097 | const Type *ty = getTypePtr(); |
3098 | if (ty->isDependentType()) |
3099 | return false; |
3100 | |
3101 | if (hasNonTrivialObjCLifetime()) |
3102 | return false; |
3103 | |
3104 | // C++11 [basic.types]p9: |
3105 | // Scalar types, POD classes, arrays of such types, and cv-qualified |
3106 | // versions of these types are collectively called trivial types. |
3107 | const Type *BaseTy = ty->getBaseElementTypeUnsafe(); |
3108 | assert(BaseTy && "NULL element type"); |
3109 | |
3110 | if (BaseTy->isSizelessBuiltinType()) |
3111 | return true; |
3112 | |
3113 | // Return false for incomplete types after skipping any incomplete array |
3114 | // types which are expressly allowed by the standard and thus our API. |
3115 | if (BaseTy->isIncompleteType()) |
3116 | return false; |
3117 | |
3118 | // As an extension, Clang treats vector types as Scalar types. |
3119 | if (BaseTy->isScalarType() || BaseTy->isVectorType()) |
3120 | return true; |
3121 | if (const auto *RT = BaseTy->getAs<RecordType>()) { |
3122 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) { |
3123 | // C++11 [class]p10: |
3124 | // A POD struct is a non-union class that is both a trivial class [...] |
3125 | if (!ClassDecl->isTrivial()) |
3126 | return false; |
3127 | |
3128 | // C++11 [class]p10: |
3129 | // A POD struct is a non-union class that is both a trivial class and |
3130 | // a standard-layout class [...] |
3131 | if (!ClassDecl->isStandardLayout()) |
3132 | return false; |
3133 | |
3134 | // C++11 [class]p10: |
3135 | // A POD struct is a non-union class that is both a trivial class and |
3136 | // a standard-layout class, and has no non-static data members of type |
3137 | // non-POD struct, non-POD union (or array of such types). [...] |
3138 | // |
3139 | // We don't directly query the recursive aspect as the requirements for |
3140 | // both standard-layout classes and trivial classes apply recursively |
3141 | // already. |
3142 | } |
3143 | |
3144 | return true; |
3145 | } |
3146 | |
3147 | // No other types can match. |
3148 | return false; |
3149 | } |
3150 | |
3151 | bool Type::isNothrowT() const { |
3152 | if (const auto *RD = getAsCXXRecordDecl()) { |
3153 | IdentifierInfo *II = RD->getIdentifier(); |
3154 | if (II && II->isStr(Str: "nothrow_t") && RD->isInStdNamespace()) |
3155 | return true; |
3156 | } |
3157 | return false; |
3158 | } |
3159 | |
3160 | bool Type::isAlignValT() const { |
3161 | if (const auto *ET = getAs<EnumType>()) { |
3162 | IdentifierInfo *II = ET->getDecl()->getIdentifier(); |
3163 | if (II && II->isStr(Str: "align_val_t") && ET->getDecl()->isInStdNamespace()) |
3164 | return true; |
3165 | } |
3166 | return false; |
3167 | } |
3168 | |
3169 | bool Type::isStdByteType() const { |
3170 | if (const auto *ET = getAs<EnumType>()) { |
3171 | IdentifierInfo *II = ET->getDecl()->getIdentifier(); |
3172 | if (II && II->isStr(Str: "byte") && ET->getDecl()->isInStdNamespace()) |
3173 | return true; |
3174 | } |
3175 | return false; |
3176 | } |
3177 | |
3178 | bool Type::isSpecifierType() const { |
3179 | // Note that this intentionally does not use the canonical type. |
3180 | switch (getTypeClass()) { |
3181 | case Builtin: |
3182 | case Record: |
3183 | case Enum: |
3184 | case Typedef: |
3185 | case Complex: |
3186 | case TypeOfExpr: |
3187 | case TypeOf: |
3188 | case TemplateTypeParm: |
3189 | case SubstTemplateTypeParm: |
3190 | case TemplateSpecialization: |
3191 | case Elaborated: |
3192 | case DependentName: |
3193 | case DependentTemplateSpecialization: |
3194 | case ObjCInterface: |
3195 | case ObjCObject: |
3196 | return true; |
3197 | default: |
3198 | return false; |
3199 | } |
3200 | } |
3201 | |
3202 | ElaboratedTypeKeyword |
3203 | TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) { |
3204 | switch (TypeSpec) { |
3205 | default: |
3206 | return ElaboratedTypeKeyword::None; |
3207 | case TST_typename: |
3208 | return ElaboratedTypeKeyword::Typename; |
3209 | case TST_class: |
3210 | return ElaboratedTypeKeyword::Class; |
3211 | case TST_struct: |
3212 | return ElaboratedTypeKeyword::Struct; |
3213 | case TST_interface: |
3214 | return ElaboratedTypeKeyword::Interface; |
3215 | case TST_union: |
3216 | return ElaboratedTypeKeyword::Union; |
3217 | case TST_enum: |
3218 | return ElaboratedTypeKeyword::Enum; |
3219 | } |
3220 | } |
3221 | |
3222 | TagTypeKind TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) { |
3223 | switch (TypeSpec) { |
3224 | case TST_class: |
3225 | return TagTypeKind::Class; |
3226 | case TST_struct: |
3227 | return TagTypeKind::Struct; |
3228 | case TST_interface: |
3229 | return TagTypeKind::Interface; |
3230 | case TST_union: |
3231 | return TagTypeKind::Union; |
3232 | case TST_enum: |
3233 | return TagTypeKind::Enum; |
3234 | } |
3235 | |
3236 | llvm_unreachable("Type specifier is not a tag type kind."); |
3237 | } |
3238 | |
3239 | ElaboratedTypeKeyword |
3240 | TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) { |
3241 | switch (Kind) { |
3242 | case TagTypeKind::Class: |
3243 | return ElaboratedTypeKeyword::Class; |
3244 | case TagTypeKind::Struct: |
3245 | return ElaboratedTypeKeyword::Struct; |
3246 | case TagTypeKind::Interface: |
3247 | return ElaboratedTypeKeyword::Interface; |
3248 | case TagTypeKind::Union: |
3249 | return ElaboratedTypeKeyword::Union; |
3250 | case TagTypeKind::Enum: |
3251 | return ElaboratedTypeKeyword::Enum; |
3252 | } |
3253 | llvm_unreachable("Unknown tag type kind."); |
3254 | } |
3255 | |
3256 | TagTypeKind |
3257 | TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) { |
3258 | switch (Keyword) { |
3259 | case ElaboratedTypeKeyword::Class: |
3260 | return TagTypeKind::Class; |
3261 | case ElaboratedTypeKeyword::Struct: |
3262 | return TagTypeKind::Struct; |
3263 | case ElaboratedTypeKeyword::Interface: |
3264 | return TagTypeKind::Interface; |
3265 | case ElaboratedTypeKeyword::Union: |
3266 | return TagTypeKind::Union; |
3267 | case ElaboratedTypeKeyword::Enum: |
3268 | return TagTypeKind::Enum; |
3269 | case ElaboratedTypeKeyword::None: // Fall through. |
3270 | case ElaboratedTypeKeyword::Typename: |
3271 | llvm_unreachable("Elaborated type keyword is not a tag type kind."); |
3272 | } |
3273 | llvm_unreachable("Unknown elaborated type keyword."); |
3274 | } |
3275 | |
3276 | bool TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) { |
3277 | switch (Keyword) { |
3278 | case ElaboratedTypeKeyword::None: |
3279 | case ElaboratedTypeKeyword::Typename: |
3280 | return false; |
3281 | case ElaboratedTypeKeyword::Class: |
3282 | case ElaboratedTypeKeyword::Struct: |
3283 | case ElaboratedTypeKeyword::Interface: |
3284 | case ElaboratedTypeKeyword::Union: |
3285 | case ElaboratedTypeKeyword::Enum: |
3286 | return true; |
3287 | } |
3288 | llvm_unreachable("Unknown elaborated type keyword."); |
3289 | } |
3290 | |
3291 | StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) { |
3292 | switch (Keyword) { |
3293 | case ElaboratedTypeKeyword::None: |
3294 | return {}; |
3295 | case ElaboratedTypeKeyword::Typename: |
3296 | return "typename"; |
3297 | case ElaboratedTypeKeyword::Class: |
3298 | return "class"; |
3299 | case ElaboratedTypeKeyword::Struct: |
3300 | return "struct"; |
3301 | case ElaboratedTypeKeyword::Interface: |
3302 | return "__interface"; |
3303 | case ElaboratedTypeKeyword::Union: |
3304 | return "union"; |
3305 | case ElaboratedTypeKeyword::Enum: |
3306 | return "enum"; |
3307 | } |
3308 | |
3309 | llvm_unreachable("Unknown elaborated type keyword."); |
3310 | } |
3311 | |
3312 | DependentTemplateSpecializationType::DependentTemplateSpecializationType( |
3313 | ElaboratedTypeKeyword Keyword, const DependentTemplateStorage &Name, |
3314 | ArrayRef<TemplateArgument> Args, QualType Canon) |
3315 | : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, |
3316 | |
3317 | toTypeDependence(Name.getDependence())), |
3318 | Name(Name) { |
3319 | DependentTemplateSpecializationTypeBits.NumArgs = Args.size(); |
3320 | auto *ArgBuffer = const_cast<TemplateArgument *>(template_arguments().data()); |
3321 | for (const TemplateArgument &Arg : Args) { |
3322 | addDependence(toTypeDependence(D: Arg.getDependence() & |
3323 | TemplateArgumentDependence::UnexpandedPack)); |
3324 | |
3325 | new (ArgBuffer++) TemplateArgument(Arg); |
3326 | } |
3327 | } |
3328 | |
3329 | void DependentTemplateSpecializationType::Profile( |
3330 | llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
3331 | ElaboratedTypeKeyword Keyword, const DependentTemplateStorage &Name, |
3332 | ArrayRef<TemplateArgument> Args) { |
3333 | ID.AddInteger(I: llvm::to_underlying(E: Keyword)); |
3334 | Name.Profile(ID); |
3335 | for (const TemplateArgument &Arg : Args) |
3336 | Arg.Profile(ID, Context); |
3337 | } |
3338 | |
3339 | bool Type::isElaboratedTypeSpecifier() const { |
3340 | ElaboratedTypeKeyword Keyword; |
3341 | if (const auto *Elab = dyn_cast<ElaboratedType>(Val: this)) |
3342 | Keyword = Elab->getKeyword(); |
3343 | else if (const auto *DepName = dyn_cast<DependentNameType>(Val: this)) |
3344 | Keyword = DepName->getKeyword(); |
3345 | else if (const auto *DepTST = |
3346 | dyn_cast<DependentTemplateSpecializationType>(Val: this)) |
3347 | Keyword = DepTST->getKeyword(); |
3348 | else |
3349 | return false; |
3350 | |
3351 | return TypeWithKeyword::KeywordIsTagTypeKind(Keyword); |
3352 | } |
3353 | |
3354 | const char *Type::getTypeClassName() const { |
3355 | switch (TypeBits.TC) { |
3356 | #define ABSTRACT_TYPE(Derived, Base) |
3357 | #define TYPE(Derived, Base) \ |
3358 | case Derived: \ |
3359 | return #Derived; |
3360 | #include "clang/AST/TypeNodes.inc" |
3361 | } |
3362 | |
3363 | llvm_unreachable("Invalid type class."); |
3364 | } |
3365 | |
3366 | StringRef BuiltinType::getName(const PrintingPolicy &Policy) const { |
3367 | switch (getKind()) { |
3368 | case Void: |
3369 | return "void"; |
3370 | case Bool: |
3371 | return Policy.Bool ? "bool": "_Bool"; |
3372 | case Char_S: |
3373 | return "char"; |
3374 | case Char_U: |
3375 | return "char"; |
3376 | case SChar: |
3377 | return "signed char"; |
3378 | case Short: |
3379 | return "short"; |
3380 | case Int: |
3381 | return "int"; |
3382 | case Long: |
3383 | return "long"; |
3384 | case LongLong: |
3385 | return "long long"; |
3386 | case Int128: |
3387 | return "__int128"; |
3388 | case UChar: |
3389 | return "unsigned char"; |
3390 | case UShort: |
3391 | return "unsigned short"; |
3392 | case UInt: |
3393 | return "unsigned int"; |
3394 | case ULong: |
3395 | return "unsigned long"; |
3396 | case ULongLong: |
3397 | return "unsigned long long"; |
3398 | case UInt128: |
3399 | return "unsigned __int128"; |
3400 | case Half: |
3401 | return Policy.Half ? "half": "__fp16"; |
3402 | case BFloat16: |
3403 | return "__bf16"; |
3404 | case Float: |
3405 | return "float"; |
3406 | case Double: |
3407 | return "double"; |
3408 | case LongDouble: |
3409 | return "long double"; |
3410 | case ShortAccum: |
3411 | return "short _Accum"; |
3412 | case Accum: |
3413 | return "_Accum"; |
3414 | case LongAccum: |
3415 | return "long _Accum"; |
3416 | case UShortAccum: |
3417 | return "unsigned short _Accum"; |
3418 | case UAccum: |
3419 | return "unsigned _Accum"; |
3420 | case ULongAccum: |
3421 | return "unsigned long _Accum"; |
3422 | case BuiltinType::ShortFract: |
3423 | return "short _Fract"; |
3424 | case BuiltinType::Fract: |
3425 | return "_Fract"; |
3426 | case BuiltinType::LongFract: |
3427 | return "long _Fract"; |
3428 | case BuiltinType::UShortFract: |
3429 | return "unsigned short _Fract"; |
3430 | case BuiltinType::UFract: |
3431 | return "unsigned _Fract"; |
3432 | case BuiltinType::ULongFract: |
3433 | return "unsigned long _Fract"; |
3434 | case BuiltinType::SatShortAccum: |
3435 | return "_Sat short _Accum"; |
3436 | case BuiltinType::SatAccum: |
3437 | return "_Sat _Accum"; |
3438 | case BuiltinType::SatLongAccum: |
3439 | return "_Sat long _Accum"; |
3440 | case BuiltinType::SatUShortAccum: |
3441 | return "_Sat unsigned short _Accum"; |
3442 | case BuiltinType::SatUAccum: |
3443 | return "_Sat unsigned _Accum"; |
3444 | case BuiltinType::SatULongAccum: |
3445 | return "_Sat unsigned long _Accum"; |
3446 | case BuiltinType::SatShortFract: |
3447 | return "_Sat short _Fract"; |
3448 | case BuiltinType::SatFract: |
3449 | return "_Sat _Fract"; |
3450 | case BuiltinType::SatLongFract: |
3451 | return "_Sat long _Fract"; |
3452 | case BuiltinType::SatUShortFract: |
3453 | return "_Sat unsigned short _Fract"; |
3454 | case BuiltinType::SatUFract: |
3455 | return "_Sat unsigned _Fract"; |
3456 | case BuiltinType::SatULongFract: |
3457 | return "_Sat unsigned long _Fract"; |
3458 | case Float16: |
3459 | return "_Float16"; |
3460 | case Float128: |
3461 | return "__float128"; |
3462 | case Ibm128: |
3463 | return "__ibm128"; |
3464 | case WChar_S: |
3465 | case WChar_U: |
3466 | return Policy.MSWChar ? "__wchar_t": "wchar_t"; |
3467 | case Char8: |
3468 | return "char8_t"; |
3469 | case Char16: |
3470 | return "char16_t"; |
3471 | case Char32: |
3472 | return "char32_t"; |
3473 | case NullPtr: |
3474 | return Policy.NullptrTypeInNamespace ? "std::nullptr_t": "nullptr_t"; |
3475 | case Overload: |
3476 | return "<overloaded function type>"; |
3477 | case BoundMember: |
3478 | return "<bound member function type>"; |
3479 | case UnresolvedTemplate: |
3480 | return "<unresolved template type>"; |
3481 | case PseudoObject: |
3482 | return "<pseudo-object type>"; |
3483 | case Dependent: |
3484 | return "<dependent type>"; |
3485 | case UnknownAny: |
3486 | return "<unknown type>"; |
3487 | case ARCUnbridgedCast: |
3488 | return "<ARC unbridged cast type>"; |
3489 | case BuiltinFn: |
3490 | return "<builtin fn type>"; |
3491 | case ObjCId: |
3492 | return "id"; |
3493 | case ObjCClass: |
3494 | return "Class"; |
3495 | case ObjCSel: |
3496 | return "SEL"; |
3497 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
3498 | case Id: \ |
3499 | return "__" #Access " " #ImgType "_t"; |
3500 | #include "clang/Basic/OpenCLImageTypes.def" |
3501 | case OCLSampler: |
3502 | return "sampler_t"; |
3503 | case OCLEvent: |
3504 | return "event_t"; |
3505 | case OCLClkEvent: |
3506 | return "clk_event_t"; |
3507 | case OCLQueue: |
3508 | return "queue_t"; |
3509 | case OCLReserveID: |
3510 | return "reserve_id_t"; |
3511 | case IncompleteMatrixIdx: |
3512 | return "<incomplete matrix index type>"; |
3513 | case ArraySection: |
3514 | return "<array section type>"; |
3515 | case OMPArrayShaping: |
3516 | return "<OpenMP array shaping type>"; |
3517 | case OMPIterator: |
3518 | return "<OpenMP iterator type>"; |
3519 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
3520 | case Id: \ |
3521 | return #ExtType; |
3522 | #include "clang/Basic/OpenCLExtensionTypes.def" |
3523 | #define SVE_TYPE(Name, Id, SingletonId) \ |
3524 | case Id: \ |
3525 | return #Name; |
3526 | #include "clang/Basic/AArch64ACLETypes.def" |
3527 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
3528 | case Id: \ |
3529 | return #Name; |
3530 | #include "clang/Basic/PPCTypes.def" |
3531 | #define RVV_TYPE(Name, Id, SingletonId) \ |
3532 | case Id: \ |
3533 | return Name; |
3534 | #include "clang/Basic/RISCVVTypes.def" |
3535 | #define WASM_TYPE(Name, Id, SingletonId) \ |
3536 | case Id: \ |
3537 | return Name; |
3538 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
3539 | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) \ |
3540 | case Id: \ |
3541 | return Name; |
3542 | #include "clang/Basic/AMDGPUTypes.def" |
3543 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \ |
3544 | case Id: \ |
3545 | return #Name; |
3546 | #include "clang/Basic/HLSLIntangibleTypes.def" |
3547 | } |
3548 | |
3549 | llvm_unreachable("Invalid builtin type."); |
3550 | } |
3551 | |
3552 | QualType QualType::getNonPackExpansionType() const { |
3553 | // We never wrap type sugar around a PackExpansionType. |
3554 | if (auto *PET = dyn_cast<PackExpansionType>(Val: getTypePtr())) |
3555 | return PET->getPattern(); |
3556 | return *this; |
3557 | } |
3558 | |
3559 | QualType QualType::getNonLValueExprType(const ASTContext &Context) const { |
3560 | if (const auto *RefType = getTypePtr()->getAs<ReferenceType>()) |
3561 | return RefType->getPointeeType(); |
3562 | |
3563 | // C++0x [basic.lval]: |
3564 | // Class prvalues can have cv-qualified types; non-class prvalues always |
3565 | // have cv-unqualified types. |
3566 | // |
3567 | // See also C99 6.3.2.1p2. |
3568 | if (!Context.getLangOpts().CPlusPlus || |
3569 | (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType())) |
3570 | return getUnqualifiedType(); |
3571 | |
3572 | return *this; |
3573 | } |
3574 | |
3575 | bool FunctionType::getCFIUncheckedCalleeAttr() const { |
3576 | if (const auto *FPT = getAs<FunctionProtoType>()) |
3577 | return FPT->hasCFIUncheckedCallee(); |
3578 | return false; |
3579 | } |
3580 | |
3581 | StringRef FunctionType::getNameForCallConv(CallingConv CC) { |
3582 | switch (CC) { |
3583 | case CC_C: |
3584 | return "cdecl"; |
3585 | case CC_X86StdCall: |
3586 | return "stdcall"; |
3587 | case CC_X86FastCall: |
3588 | return "fastcall"; |
3589 | case CC_X86ThisCall: |
3590 | return "thiscall"; |
3591 | case CC_X86Pascal: |
3592 | return "pascal"; |
3593 | case CC_X86VectorCall: |
3594 | return "vectorcall"; |
3595 | case CC_Win64: |
3596 | return "ms_abi"; |
3597 | case CC_X86_64SysV: |
3598 | return "sysv_abi"; |
3599 | case CC_X86RegCall: |
3600 | return "regcall"; |
3601 | case CC_AAPCS: |
3602 | return "aapcs"; |
3603 | case CC_AAPCS_VFP: |
3604 | return "aapcs-vfp"; |
3605 | case CC_AArch64VectorCall: |
3606 | return "aarch64_vector_pcs"; |
3607 | case CC_AArch64SVEPCS: |
3608 | return "aarch64_sve_pcs"; |
3609 | case CC_IntelOclBicc: |
3610 | return "intel_ocl_bicc"; |
3611 | case CC_SpirFunction: |
3612 | return "spir_function"; |
3613 | case CC_DeviceKernel: |
3614 | return "device_kernel"; |
3615 | case CC_Swift: |
3616 | return "swiftcall"; |
3617 | case CC_SwiftAsync: |
3618 | return "swiftasynccall"; |
3619 | case CC_PreserveMost: |
3620 | return "preserve_most"; |
3621 | case CC_PreserveAll: |
3622 | return "preserve_all"; |
3623 | case CC_M68kRTD: |
3624 | return "m68k_rtd"; |
3625 | case CC_PreserveNone: |
3626 | return "preserve_none"; |
3627 | // clang-format off |
3628 | case CC_RISCVVectorCall: return "riscv_vector_cc"; |
3629 | #define CC_VLS_CASE(ABI_VLEN) \ |
3630 | case CC_RISCVVLSCall_##ABI_VLEN: return "riscv_vls_cc(" #ABI_VLEN ")"; |
3631 | CC_VLS_CASE(32) |
3632 | CC_VLS_CASE(64) |
3633 | CC_VLS_CASE(128) |
3634 | CC_VLS_CASE(256) |
3635 | CC_VLS_CASE(512) |
3636 | CC_VLS_CASE(1024) |
3637 | CC_VLS_CASE(2048) |
3638 | CC_VLS_CASE(4096) |
3639 | CC_VLS_CASE(8192) |
3640 | CC_VLS_CASE(16384) |
3641 | CC_VLS_CASE(32768) |
3642 | CC_VLS_CASE(65536) |
3643 | #undef CC_VLS_CASE |
3644 | // clang-format on |
3645 | } |
3646 | |
3647 | llvm_unreachable("Invalid calling convention."); |
3648 | } |
3649 | |
3650 | void FunctionProtoType::ExceptionSpecInfo::instantiate() { |
3651 | assert(Type == EST_Uninstantiated); |
3652 | NoexceptExpr = |
3653 | cast<FunctionProtoType>(SourceTemplate->getType())->getNoexceptExpr(); |
3654 | Type = EST_DependentNoexcept; |
3655 | } |
3656 | |
3657 | FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params, |
3658 | QualType canonical, |
3659 | const ExtProtoInfo &epi) |
3660 | : FunctionType(FunctionProto, result, canonical, result->getDependence(), |
3661 | epi.ExtInfo) { |
3662 | FunctionTypeBits.FastTypeQuals = epi.TypeQuals.getFastQualifiers(); |
3663 | FunctionTypeBits.RefQualifier = epi.RefQualifier; |
3664 | FunctionTypeBits.NumParams = params.size(); |
3665 | assert(getNumParams() == params.size() && "NumParams overflow!"); |
3666 | FunctionTypeBits.ExceptionSpecType = epi.ExceptionSpec.Type; |
3667 | FunctionTypeBits.HasExtParameterInfos = !!epi.ExtParameterInfos; |
3668 | FunctionTypeBits.Variadic = epi.Variadic; |
3669 | FunctionTypeBits.HasTrailingReturn = epi.HasTrailingReturn; |
3670 | FunctionTypeBits.CFIUncheckedCallee = epi.CFIUncheckedCallee; |
3671 | |
3672 | if (epi.requiresFunctionProtoTypeExtraBitfields()) { |
3673 | FunctionTypeBits.HasExtraBitfields = true; |
3674 | auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>(); |
3675 | ExtraBits = FunctionTypeExtraBitfields(); |
3676 | } else { |
3677 | FunctionTypeBits.HasExtraBitfields = false; |
3678 | } |
3679 | |
3680 | if (epi.requiresFunctionProtoTypeArmAttributes()) { |
3681 | auto &ArmTypeAttrs = *getTrailingObjects<FunctionTypeArmAttributes>(); |
3682 | ArmTypeAttrs = FunctionTypeArmAttributes(); |
3683 | |
3684 | // Also set the bit in FunctionTypeExtraBitfields |
3685 | auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>(); |
3686 | ExtraBits.HasArmTypeAttributes = true; |
3687 | } |
3688 | |
3689 | // Fill in the trailing argument array. |
3690 | auto *argSlot = getTrailingObjects<QualType>(); |
3691 | for (unsigned i = 0; i != getNumParams(); ++i) { |
3692 | addDependence(params[i]->getDependence() & |
3693 | ~TypeDependence::VariablyModified); |
3694 | argSlot[i] = params[i]; |
3695 | } |
3696 | |
3697 | // Propagate the SME ACLE attributes. |
3698 | if (epi.AArch64SMEAttributes != SME_NormalFunction) { |
3699 | auto &ArmTypeAttrs = *getTrailingObjects<FunctionTypeArmAttributes>(); |
3700 | assert(epi.AArch64SMEAttributes <= SME_AttributeMask && |
3701 | "Not enough bits to encode SME attributes"); |
3702 | ArmTypeAttrs.AArch64SMEAttributes = epi.AArch64SMEAttributes; |
3703 | } |
3704 | |
3705 | // Fill in the exception type array if present. |
3706 | if (getExceptionSpecType() == EST_Dynamic) { |
3707 | auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>(); |
3708 | size_t NumExceptions = epi.ExceptionSpec.Exceptions.size(); |
3709 | assert(NumExceptions <= 1023 && "Not enough bits to encode exceptions"); |
3710 | ExtraBits.NumExceptionType = NumExceptions; |
3711 | |
3712 | assert(hasExtraBitfields() && "missing trailing extra bitfields!"); |
3713 | auto *exnSlot = |
3714 | reinterpret_cast<QualType *>(getTrailingObjects<ExceptionType>()); |
3715 | unsigned I = 0; |
3716 | for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) { |
3717 | // Note that, before C++17, a dependent exception specification does |
3718 | // *not* make a type dependent; it's not even part of the C++ type |
3719 | // system. |
3720 | addDependence( |
3721 | ExceptionType->getDependence() & |
3722 | (TypeDependence::Instantiation | TypeDependence::UnexpandedPack)); |
3723 | |
3724 | exnSlot[I++] = ExceptionType; |
3725 | } |
3726 | } |
3727 | // Fill in the Expr * in the exception specification if present. |
3728 | else if (isComputedNoexcept(ESpecType: getExceptionSpecType())) { |
3729 | assert(epi.ExceptionSpec.NoexceptExpr && "computed noexcept with no expr"); |
3730 | assert((getExceptionSpecType() == EST_DependentNoexcept) == |
3731 | epi.ExceptionSpec.NoexceptExpr->isValueDependent()); |
3732 | |
3733 | // Store the noexcept expression and context. |
3734 | *getTrailingObjects<Expr *>() = epi.ExceptionSpec.NoexceptExpr; |
3735 | |
3736 | addDependence( |
3737 | D: toTypeDependence(epi.ExceptionSpec.NoexceptExpr->getDependence()) & |
3738 | (TypeDependence::Instantiation | TypeDependence::UnexpandedPack)); |
3739 | } |
3740 | // Fill in the FunctionDecl * in the exception specification if present. |
3741 | else if (getExceptionSpecType() == EST_Uninstantiated) { |
3742 | // Store the function decl from which we will resolve our |
3743 | // exception specification. |
3744 | auto **slot = getTrailingObjects<FunctionDecl *>(); |
3745 | slot[0] = epi.ExceptionSpec.SourceDecl; |
3746 | slot[1] = epi.ExceptionSpec.SourceTemplate; |
3747 | // This exception specification doesn't make the type dependent, because |
3748 | // it's not instantiated as part of instantiating the type. |
3749 | } else if (getExceptionSpecType() == EST_Unevaluated) { |
3750 | // Store the function decl from which we will resolve our |
3751 | // exception specification. |
3752 | auto **slot = getTrailingObjects<FunctionDecl *>(); |
3753 | slot[0] = epi.ExceptionSpec.SourceDecl; |
3754 | } |
3755 | |
3756 | // If this is a canonical type, and its exception specification is dependent, |
3757 | // then it's a dependent type. This only happens in C++17 onwards. |
3758 | if (isCanonicalUnqualified()) { |
3759 | if (getExceptionSpecType() == EST_Dynamic || |
3760 | getExceptionSpecType() == EST_DependentNoexcept) { |
3761 | assert(hasDependentExceptionSpec() && "type should not be canonical"); |
3762 | addDependence(TypeDependence::DependentInstantiation); |
3763 | } |
3764 | } else if (getCanonicalTypeInternal()->isDependentType()) { |
3765 | // Ask our canonical type whether our exception specification was dependent. |
3766 | addDependence(TypeDependence::DependentInstantiation); |
3767 | } |
3768 | |
3769 | // Fill in the extra parameter info if present. |
3770 | if (epi.ExtParameterInfos) { |
3771 | auto *extParamInfos = getTrailingObjects<ExtParameterInfo>(); |
3772 | for (unsigned i = 0; i != getNumParams(); ++i) |
3773 | extParamInfos[i] = epi.ExtParameterInfos[i]; |
3774 | } |
3775 | |
3776 | if (epi.TypeQuals.hasNonFastQualifiers()) { |
3777 | FunctionTypeBits.HasExtQuals = 1; |
3778 | *getTrailingObjects<Qualifiers>() = epi.TypeQuals; |
3779 | } else { |
3780 | FunctionTypeBits.HasExtQuals = 0; |
3781 | } |
3782 | |
3783 | // Fill in the Ellipsis location info if present. |
3784 | if (epi.Variadic) { |
3785 | auto &EllipsisLoc = *getTrailingObjects<SourceLocation>(); |
3786 | EllipsisLoc = epi.EllipsisLoc; |
3787 | } |
3788 | |
3789 | if (!epi.FunctionEffects.empty()) { |
3790 | auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>(); |
3791 | size_t EffectsCount = epi.FunctionEffects.size(); |
3792 | ExtraBits.NumFunctionEffects = EffectsCount; |
3793 | assert(ExtraBits.NumFunctionEffects == EffectsCount && |
3794 | "effect bitfield overflow"); |
3795 | |
3796 | ArrayRef<FunctionEffect> SrcFX = epi.FunctionEffects.effects(); |
3797 | auto *DestFX = getTrailingObjects<FunctionEffect>(); |
3798 | llvm::uninitialized_copy(SrcFX, DestFX); |
3799 | |
3800 | ArrayRef<EffectConditionExpr> SrcConds = epi.FunctionEffects.conditions(); |
3801 | if (!SrcConds.empty()) { |
3802 | ExtraBits.EffectsHaveConditions = true; |
3803 | auto *DestConds = getTrailingObjects<EffectConditionExpr>(); |
3804 | llvm::uninitialized_copy(SrcConds, DestConds); |
3805 | assert(llvm::any_of(SrcConds, |
3806 | [](const EffectConditionExpr &EC) { |
3807 | if (const Expr *E = EC.getCondition()) |
3808 | return E->isTypeDependent() || |
3809 | E->isValueDependent(); |
3810 | return false; |
3811 | }) && |
3812 | "expected a dependent expression among the conditions"); |
3813 | addDependence(TypeDependence::DependentInstantiation); |
3814 | } |
3815 | } |
3816 | } |
3817 | |
3818 | bool FunctionProtoType::hasDependentExceptionSpec() const { |
3819 | if (Expr *NE = getNoexceptExpr()) |
3820 | return NE->isValueDependent(); |
3821 | for (QualType ET : exceptions()) |
3822 | // A pack expansion with a non-dependent pattern is still dependent, |
3823 | // because we don't know whether the pattern is in the exception spec |
3824 | // or not (that depends on whether the pack has 0 expansions). |
3825 | if (ET->isDependentType() || ET->getAs<PackExpansionType>()) |
3826 | return true; |
3827 | return false; |
3828 | } |
3829 | |
3830 | bool FunctionProtoType::hasInstantiationDependentExceptionSpec() const { |
3831 | if (Expr *NE = getNoexceptExpr()) |
3832 | return NE->isInstantiationDependent(); |
3833 | for (QualType ET : exceptions()) |
3834 | if (ET->isInstantiationDependentType()) |
3835 | return true; |
3836 | return false; |
3837 | } |
3838 | |
3839 | CanThrowResult FunctionProtoType::canThrow() const { |
3840 | switch (getExceptionSpecType()) { |
3841 | case EST_Unparsed: |
3842 | case EST_Unevaluated: |
3843 | llvm_unreachable("should not call this with unresolved exception specs"); |
3844 | |
3845 | case EST_DynamicNone: |
3846 | case EST_BasicNoexcept: |
3847 | case EST_NoexceptTrue: |
3848 | case EST_NoThrow: |
3849 | return CT_Cannot; |
3850 | |
3851 | case EST_None: |
3852 | case EST_MSAny: |
3853 | case EST_NoexceptFalse: |
3854 | return CT_Can; |
3855 | |
3856 | case EST_Dynamic: |
3857 | // A dynamic exception specification is throwing unless every exception |
3858 | // type is an (unexpanded) pack expansion type. |
3859 | for (unsigned I = 0; I != getNumExceptions(); ++I) |
3860 | if (!getExceptionType(i: I)->getAs<PackExpansionType>()) |
3861 | return CT_Can; |
3862 | return CT_Dependent; |
3863 | |
3864 | case EST_Uninstantiated: |
3865 | case EST_DependentNoexcept: |
3866 | return CT_Dependent; |
3867 | } |
3868 | |
3869 | llvm_unreachable("unexpected exception specification kind"); |
3870 | } |
3871 | |
3872 | bool FunctionProtoType::isTemplateVariadic() const { |
3873 | for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx) |
3874 | if (isa<PackExpansionType>(Val: getParamType(i: ArgIdx - 1))) |
3875 | return true; |
3876 | |
3877 | return false; |
3878 | } |
3879 | |
3880 | void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result, |
3881 | const QualType *ArgTys, unsigned NumParams, |
3882 | const ExtProtoInfo &epi, |
3883 | const ASTContext &Context, bool Canonical) { |
3884 | // We have to be careful not to get ambiguous profile encodings. |
3885 | // Note that valid type pointers are never ambiguous with anything else. |
3886 | // |
3887 | // The encoding grammar begins: |
3888 | // type type* bool int bool |
3889 | // If that final bool is true, then there is a section for the EH spec: |
3890 | // bool type* |
3891 | // This is followed by an optional "consumed argument" section of the |
3892 | // same length as the first type sequence: |
3893 | // bool* |
3894 | // This is followed by the ext info: |
3895 | // int |
3896 | // Finally we have a trailing return type flag (bool) |
3897 | // combined with AArch64 SME Attributes, to save space: |
3898 | // int |
3899 | // combined with any FunctionEffects |
3900 | // |
3901 | // There is no ambiguity between the consumed arguments and an empty EH |
3902 | // spec because of the leading 'bool' which unambiguously indicates |
3903 | // whether the following bool is the EH spec or part of the arguments. |
3904 | |
3905 | ID.AddPointer(Ptr: Result.getAsOpaquePtr()); |
3906 | for (unsigned i = 0; i != NumParams; ++i) |
3907 | ID.AddPointer(Ptr: ArgTys[i].getAsOpaquePtr()); |
3908 | // This method is relatively performance sensitive, so as a performance |
3909 | // shortcut, use one AddInteger call instead of four for the next four |
3910 | // fields. |
3911 | assert(!(unsigned(epi.Variadic) & ~1) && !(unsigned(epi.RefQualifier) & ~3) && |
3912 | !(unsigned(epi.ExceptionSpec.Type) & ~15) && |
3913 | "Values larger than expected."); |
3914 | ID.AddInteger(unsigned(epi.Variadic) + (epi.RefQualifier << 1) + |
3915 | (epi.ExceptionSpec.Type << 3)); |
3916 | ID.Add(x: epi.TypeQuals); |
3917 | if (epi.ExceptionSpec.Type == EST_Dynamic) { |
3918 | for (QualType Ex : epi.ExceptionSpec.Exceptions) |
3919 | ID.AddPointer(Ex.getAsOpaquePtr()); |
3920 | } else if (isComputedNoexcept(epi.ExceptionSpec.Type)) { |
3921 | epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, Canonical); |
3922 | } else if (epi.ExceptionSpec.Type == EST_Uninstantiated || |
3923 | epi.ExceptionSpec.Type == EST_Unevaluated) { |
3924 | ID.AddPointer(Ptr: epi.ExceptionSpec.SourceDecl->getCanonicalDecl()); |
3925 | } |
3926 | if (epi.ExtParameterInfos) { |
3927 | for (unsigned i = 0; i != NumParams; ++i) |
3928 | ID.AddInteger(I: epi.ExtParameterInfos[i].getOpaqueValue()); |
3929 | } |
3930 | |
3931 | epi.ExtInfo.Profile(ID); |
3932 | |
3933 | unsigned EffectCount = epi.FunctionEffects.size(); |
3934 | bool HasConds = !epi.FunctionEffects.Conditions.empty(); |
3935 | |
3936 | ID.AddInteger(I: (EffectCount << 3) | (HasConds << 2) | |
3937 | (epi.AArch64SMEAttributes << 1) | epi.HasTrailingReturn); |
3938 | ID.AddInteger(I: epi.CFIUncheckedCallee); |
3939 | |
3940 | for (unsigned Idx = 0; Idx != EffectCount; ++Idx) { |
3941 | ID.AddInteger(epi.FunctionEffects.Effects[Idx].toOpaqueInt32()); |
3942 | if (HasConds) |
3943 | ID.AddPointer(Ptr: epi.FunctionEffects.Conditions[Idx].getCondition()); |
3944 | } |
3945 | } |
3946 | |
3947 | void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, |
3948 | const ASTContext &Ctx) { |
3949 | Profile(ID, getReturnType(), param_type_begin(), getNumParams(), |
3950 | getExtProtoInfo(), Ctx, isCanonicalUnqualified()); |
3951 | } |
3952 | |
3953 | TypeCoupledDeclRefInfo::TypeCoupledDeclRefInfo(ValueDecl *D, bool Deref) |
3954 | : Data(D, Deref << DerefShift) {} |
3955 | |
3956 | bool TypeCoupledDeclRefInfo::isDeref() const { |
3957 | return Data.getInt() & DerefMask; |
3958 | } |
3959 | ValueDecl *TypeCoupledDeclRefInfo::getDecl() const { return Data.getPointer(); } |
3960 | unsigned TypeCoupledDeclRefInfo::getInt() const { return Data.getInt(); } |
3961 | void *TypeCoupledDeclRefInfo::getOpaqueValue() const { |
3962 | return Data.getOpaqueValue(); |
3963 | } |
3964 | bool TypeCoupledDeclRefInfo::operator==( |
3965 | const TypeCoupledDeclRefInfo &Other) const { |
3966 | return getOpaqueValue() == Other.getOpaqueValue(); |
3967 | } |
3968 | void TypeCoupledDeclRefInfo::setFromOpaqueValue(void *V) { |
3969 | Data.setFromOpaqueValue(V); |
3970 | } |
3971 | |
3972 | BoundsAttributedType::BoundsAttributedType(TypeClass TC, QualType Wrapped, |
3973 | QualType Canon) |
3974 | : Type(TC, Canon, Wrapped->getDependence()), WrappedTy(Wrapped) {} |
3975 | |
3976 | CountAttributedType::CountAttributedType( |
3977 | QualType Wrapped, QualType Canon, Expr *CountExpr, bool CountInBytes, |
3978 | bool OrNull, ArrayRef<TypeCoupledDeclRefInfo> CoupledDecls) |
3979 | : BoundsAttributedType(CountAttributed, Wrapped, Canon), |
3980 | CountExpr(CountExpr) { |
3981 | CountAttributedTypeBits.NumCoupledDecls = CoupledDecls.size(); |
3982 | CountAttributedTypeBits.CountInBytes = CountInBytes; |
3983 | CountAttributedTypeBits.OrNull = OrNull; |
3984 | auto *DeclSlot = getTrailingObjects<TypeCoupledDeclRefInfo>(); |
3985 | Decls = llvm::ArrayRef(DeclSlot, CoupledDecls.size()); |
3986 | for (unsigned i = 0; i != CoupledDecls.size(); ++i) |
3987 | DeclSlot[i] = CoupledDecls[i]; |
3988 | } |
3989 | |
3990 | StringRef CountAttributedType::getAttributeName(bool WithMacroPrefix) const { |
3991 | // TODO: This method isn't really ideal because it doesn't return the spelling |
3992 | // of the attribute that was used in the user's code. This method is used for |
3993 | // diagnostics so the fact it doesn't use the spelling of the attribute in |
3994 | // the user's code could be confusing (#113585). |
3995 | #define ENUMERATE_ATTRS(PREFIX) \ |
3996 | do { \ |
3997 | if (isCountInBytes()) { \ |
3998 | if (isOrNull()) \ |
3999 | return PREFIX "sized_by_or_null"; \ |
4000 | return PREFIX "sized_by"; \ |
4001 | } \ |
4002 | if (isOrNull()) \ |
4003 | return PREFIX "counted_by_or_null"; \ |
4004 | return PREFIX "counted_by"; \ |
4005 | } while (0) |
4006 | |
4007 | if (WithMacroPrefix) |
4008 | ENUMERATE_ATTRS("__"); |
4009 | else |
4010 | ENUMERATE_ATTRS(""); |
4011 | |
4012 | #undef ENUMERATE_ATTRS |
4013 | } |
4014 | |
4015 | TypedefType::TypedefType(TypeClass tc, const TypedefNameDecl *D, |
4016 | QualType UnderlyingType, bool HasTypeDifferentFromDecl) |
4017 | : Type(tc, UnderlyingType.getCanonicalType(), |
4018 | toSemanticDependence(D: UnderlyingType->getDependence())), |
4019 | Decl(const_cast<TypedefNameDecl *>(D)) { |
4020 | TypedefBits.hasTypeDifferentFromDecl = HasTypeDifferentFromDecl; |
4021 | if (!typeMatchesDecl()) |
4022 | *getTrailingObjects() = UnderlyingType; |
4023 | } |
4024 | |
4025 | QualType TypedefType::desugar() const { |
4026 | return typeMatchesDecl() ? Decl->getUnderlyingType() : *getTrailingObjects(); |
4027 | } |
4028 | |
4029 | UsingType::UsingType(const UsingShadowDecl *Found, QualType Underlying, |
4030 | QualType Canon) |
4031 | : Type(Using, Canon, toSemanticDependence(Canon->getDependence())), |
4032 | Found(const_cast<UsingShadowDecl *>(Found)) { |
4033 | UsingBits.hasTypeDifferentFromDecl = !Underlying.isNull(); |
4034 | if (!typeMatchesDecl()) |
4035 | *getTrailingObjects() = Underlying; |
4036 | } |
4037 | |
4038 | QualType UsingType::getUnderlyingType() const { |
4039 | return typeMatchesDecl() |
4040 | ? QualType( |
4041 | cast<TypeDecl>(Val: Found->getTargetDecl())->getTypeForDecl(), 0) |
4042 | : *getTrailingObjects(); |
4043 | } |
4044 | |
4045 | QualType MacroQualifiedType::desugar() const { return getUnderlyingType(); } |
4046 | |
4047 | QualType MacroQualifiedType::getModifiedType() const { |
4048 | // Step over MacroQualifiedTypes from the same macro to find the type |
4049 | // ultimately qualified by the macro qualifier. |
4050 | QualType Inner = cast<AttributedType>(Val: getUnderlyingType())->getModifiedType(); |
4051 | while (auto *InnerMQT = dyn_cast<MacroQualifiedType>(Val&: Inner)) { |
4052 | if (InnerMQT->getMacroIdentifier() != getMacroIdentifier()) |
4053 | break; |
4054 | Inner = InnerMQT->getModifiedType(); |
4055 | } |
4056 | return Inner; |
4057 | } |
4058 | |
4059 | TypeOfExprType::TypeOfExprType(const ASTContext &Context, Expr *E, |
4060 | TypeOfKind Kind, QualType Can) |
4061 | : Type(TypeOfExpr, |
4062 | // We have to protect against 'Can' being invalid through its |
4063 | // default argument. |
4064 | Kind == TypeOfKind::Unqualified && !Can.isNull() |
4065 | ? Context.getUnqualifiedArrayType(Can).getAtomicUnqualifiedType() |
4066 | : Can, |
4067 | toTypeDependence(E->getDependence()) | |
4068 | (E->getType()->getDependence() & |
4069 | TypeDependence::VariablyModified)), |
4070 | TOExpr(E), Context(Context) { |
4071 | TypeOfBits.Kind = static_cast<unsigned>(Kind); |
4072 | } |
4073 | |
4074 | bool TypeOfExprType::isSugared() const { return !TOExpr->isTypeDependent(); } |
4075 | |
4076 | QualType TypeOfExprType::desugar() const { |
4077 | if (isSugared()) { |
4078 | QualType QT = getUnderlyingExpr()->getType(); |
4079 | return getKind() == TypeOfKind::Unqualified |
4080 | ? Context.getUnqualifiedArrayType(T: QT).getAtomicUnqualifiedType() |
4081 | : QT; |
4082 | } |
4083 | return QualType(this, 0); |
4084 | } |
4085 | |
4086 | void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID, |
4087 | const ASTContext &Context, Expr *E, |
4088 | bool IsUnqual) { |
4089 | E->Profile(ID, Context, true); |
4090 | ID.AddBoolean(B: IsUnqual); |
4091 | } |
4092 | |
4093 | TypeOfType::TypeOfType(const ASTContext &Context, QualType T, QualType Can, |
4094 | TypeOfKind Kind) |
4095 | : Type(TypeOf, |
4096 | Kind == TypeOfKind::Unqualified |
4097 | ? Context.getUnqualifiedArrayType(Can).getAtomicUnqualifiedType() |
4098 | : Can, |
4099 | T->getDependence()), |
4100 | TOType(T), Context(Context) { |
4101 | TypeOfBits.Kind = static_cast<unsigned>(Kind); |
4102 | } |
4103 | |
4104 | QualType TypeOfType::desugar() const { |
4105 | QualType QT = getUnmodifiedType(); |
4106 | return getKind() == TypeOfKind::Unqualified |
4107 | ? Context.getUnqualifiedArrayType(T: QT).getAtomicUnqualifiedType() |
4108 | : QT; |
4109 | } |
4110 | |
4111 | DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can) |
4112 | // C++11 [temp.type]p2: "If an expression e involves a template parameter, |
4113 | // decltype(e) denotes a unique dependent type." Hence a decltype type is |
4114 | // type-dependent even if its expression is only instantiation-dependent. |
4115 | : Type(Decltype, can, |
4116 | toTypeDependence(E->getDependence()) | |
4117 | (E->isInstantiationDependent() ? TypeDependence::Dependent |
4118 | : TypeDependence::None) | |
4119 | (E->getType()->getDependence() & |
4120 | TypeDependence::VariablyModified)), |
4121 | E(E), UnderlyingType(underlyingType) {} |
4122 | |
4123 | bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); } |
4124 | |
4125 | QualType DecltypeType::desugar() const { |
4126 | if (isSugared()) |
4127 | return getUnderlyingType(); |
4128 | |
4129 | return QualType(this, 0); |
4130 | } |
4131 | |
4132 | DependentDecltypeType::DependentDecltypeType(Expr *E) |
4133 | : DecltypeType(E, QualType()) {} |
4134 | |
4135 | void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID, |
4136 | const ASTContext &Context, Expr *E) { |
4137 | E->Profile(ID, Context, true); |
4138 | } |
4139 | |
4140 | PackIndexingType::PackIndexingType(QualType Canonical, QualType Pattern, |
4141 | Expr *IndexExpr, bool FullySubstituted, |
4142 | ArrayRef<QualType> Expansions) |
4143 | : Type(PackIndexing, Canonical, |
4144 | computeDependence(Pattern, IndexExpr, Expansions)), |
4145 | Pattern(Pattern), IndexExpr(IndexExpr), Size(Expansions.size()), |
4146 | FullySubstituted(FullySubstituted) { |
4147 | |
4148 | llvm::uninitialized_copy(Expansions, getTrailingObjects()); |
4149 | } |
4150 | |
4151 | UnsignedOrNone PackIndexingType::getSelectedIndex() const { |
4152 | if (isInstantiationDependentType()) |
4153 | return std::nullopt; |
4154 | // Should only be not a constant for error recovery. |
4155 | ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: getIndexExpr()); |
4156 | if (!CE) |
4157 | return std::nullopt; |
4158 | auto Index = CE->getResultAsAPSInt(); |
4159 | assert(Index.isNonNegative() && "Invalid index"); |
4160 | return static_cast<unsigned>(Index.getExtValue()); |
4161 | } |
4162 | |
4163 | TypeDependence |
4164 | PackIndexingType::computeDependence(QualType Pattern, Expr *IndexExpr, |
4165 | ArrayRef<QualType> Expansions) { |
4166 | TypeDependence IndexD = toTypeDependence(D: IndexExpr->getDependence()); |
4167 | |
4168 | TypeDependence TD = IndexD | (IndexExpr->isInstantiationDependent() |
4169 | ? TypeDependence::DependentInstantiation |
4170 | : TypeDependence::None); |
4171 | if (Expansions.empty()) |
4172 | TD |= Pattern->getDependence() & TypeDependence::DependentInstantiation; |
4173 | else |
4174 | for (const QualType &T : Expansions) |
4175 | TD |= T->getDependence(); |
4176 | |
4177 | if (!(IndexD & TypeDependence::UnexpandedPack)) |
4178 | TD &= ~TypeDependence::UnexpandedPack; |
4179 | |
4180 | // If the pattern does not contain an unexpended pack, |
4181 | // the type is still dependent, and invalid |
4182 | if (!Pattern->containsUnexpandedParameterPack()) |
4183 | TD |= TypeDependence::Error | TypeDependence::DependentInstantiation; |
4184 | |
4185 | return TD; |
4186 | } |
4187 | |
4188 | void PackIndexingType::Profile(llvm::FoldingSetNodeID &ID, |
4189 | const ASTContext &Context) { |
4190 | Profile(ID, Context, Pattern: getPattern(), E: getIndexExpr(), FullySubstituted: isFullySubstituted(), |
4191 | Expansions: getExpansions()); |
4192 | } |
4193 | |
4194 | void PackIndexingType::Profile(llvm::FoldingSetNodeID &ID, |
4195 | const ASTContext &Context, QualType Pattern, |
4196 | Expr *E, bool FullySubstituted, |
4197 | ArrayRef<QualType> Expansions) { |
4198 | |
4199 | E->Profile(ID, Context, true); |
4200 | ID.AddBoolean(B: FullySubstituted); |
4201 | if (!Expansions.empty()) { |
4202 | ID.AddInteger(I: Expansions.size()); |
4203 | for (QualType T : Expansions) |
4204 | T.getCanonicalType().Profile(ID); |
4205 | } else { |
4206 | Pattern.Profile(ID); |
4207 | } |
4208 | } |
4209 | |
4210 | UnaryTransformType::UnaryTransformType(QualType BaseType, |
4211 | QualType UnderlyingType, UTTKind UKind, |
4212 | QualType CanonicalType) |
4213 | : Type(UnaryTransform, CanonicalType, BaseType->getDependence()), |
4214 | BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {} |
4215 | |
4216 | TagType::TagType(TypeClass TC, const TagDecl *D, QualType can) |
4217 | : Type(TC, can, |
4218 | D->isDependentType() ? TypeDependence::DependentInstantiation |
4219 | : TypeDependence::None), |
4220 | decl(const_cast<TagDecl *>(D)) {} |
4221 | |
4222 | static TagDecl *getInterestingTagDecl(TagDecl *decl) { |
4223 | for (auto *I : decl->redecls()) { |
4224 | if (I->isCompleteDefinition() || I->isBeingDefined()) |
4225 | return I; |
4226 | } |
4227 | // If there's no definition (not even in progress), return what we have. |
4228 | return decl; |
4229 | } |
4230 | |
4231 | TagDecl *TagType::getDecl() const { return getInterestingTagDecl(decl); } |
4232 | |
4233 | bool TagType::isBeingDefined() const { return getDecl()->isBeingDefined(); } |
4234 | |
4235 | bool RecordType::hasConstFields() const { |
4236 | std::vector<const RecordType *> RecordTypeList; |
4237 | RecordTypeList.push_back(x: this); |
4238 | unsigned NextToCheckIndex = 0; |
4239 | |
4240 | while (RecordTypeList.size() > NextToCheckIndex) { |
4241 | for (FieldDecl *FD : |
4242 | RecordTypeList[NextToCheckIndex]->getDecl()->fields()) { |
4243 | QualType FieldTy = FD->getType(); |
4244 | if (FieldTy.isConstQualified()) |
4245 | return true; |
4246 | FieldTy = FieldTy.getCanonicalType(); |
4247 | if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) { |
4248 | if (!llvm::is_contained(RecordTypeList, FieldRecTy)) |
4249 | RecordTypeList.push_back(FieldRecTy); |
4250 | } |
4251 | } |
4252 | ++NextToCheckIndex; |
4253 | } |
4254 | return false; |
4255 | } |
4256 | |
4257 | AttributedType::AttributedType(QualType canon, const Attr *attr, |
4258 | QualType modified, QualType equivalent) |
4259 | : AttributedType(canon, attr->getKind(), attr, modified, equivalent) {} |
4260 | |
4261 | AttributedType::AttributedType(QualType canon, attr::Kind attrKind, |
4262 | const Attr *attr, QualType modified, |
4263 | QualType equivalent) |
4264 | : Type(Attributed, canon, equivalent->getDependence()), Attribute(attr), |
4265 | ModifiedType(modified), EquivalentType(equivalent) { |
4266 | AttributedTypeBits.AttrKind = attrKind; |
4267 | assert(!attr || attr->getKind() == attrKind); |
4268 | } |
4269 | |
4270 | bool AttributedType::isQualifier() const { |
4271 | // FIXME: Generate this with TableGen. |
4272 | switch (getAttrKind()) { |
4273 | // These are type qualifiers in the traditional C sense: they annotate |
4274 | // something about a specific value/variable of a type. (They aren't |
4275 | // always part of the canonical type, though.) |
4276 | case attr::ObjCGC: |
4277 | case attr::ObjCOwnership: |
4278 | case attr::ObjCInertUnsafeUnretained: |
4279 | case attr::TypeNonNull: |
4280 | case attr::TypeNullable: |
4281 | case attr::TypeNullableResult: |
4282 | case attr::TypeNullUnspecified: |
4283 | case attr::LifetimeBound: |
4284 | case attr::AddressSpace: |
4285 | return true; |
4286 | |
4287 | // All other type attributes aren't qualifiers; they rewrite the modified |
4288 | // type to be a semantically different type. |
4289 | default: |
4290 | return false; |
4291 | } |
4292 | } |
4293 | |
4294 | bool AttributedType::isMSTypeSpec() const { |
4295 | // FIXME: Generate this with TableGen? |
4296 | switch (getAttrKind()) { |
4297 | default: |
4298 | return false; |
4299 | case attr::Ptr32: |
4300 | case attr::Ptr64: |
4301 | case attr::SPtr: |
4302 | case attr::UPtr: |
4303 | return true; |
4304 | } |
4305 | llvm_unreachable("invalid attr kind"); |
4306 | } |
4307 | |
4308 | bool AttributedType::isWebAssemblyFuncrefSpec() const { |
4309 | return getAttrKind() == attr::WebAssemblyFuncref; |
4310 | } |
4311 | |
4312 | bool AttributedType::isCallingConv() const { |
4313 | // FIXME: Generate this with TableGen. |
4314 | switch (getAttrKind()) { |
4315 | default: |
4316 | return false; |
4317 | case attr::Pcs: |
4318 | case attr::CDecl: |
4319 | case attr::FastCall: |
4320 | case attr::StdCall: |
4321 | case attr::ThisCall: |
4322 | case attr::RegCall: |
4323 | case attr::SwiftCall: |
4324 | case attr::SwiftAsyncCall: |
4325 | case attr::VectorCall: |
4326 | case attr::AArch64VectorPcs: |
4327 | case attr::AArch64SVEPcs: |
4328 | case attr::DeviceKernel: |
4329 | case attr::Pascal: |
4330 | case attr::MSABI: |
4331 | case attr::SysVABI: |
4332 | case attr::IntelOclBicc: |
4333 | case attr::PreserveMost: |
4334 | case attr::PreserveAll: |
4335 | case attr::M68kRTD: |
4336 | case attr::PreserveNone: |
4337 | case attr::RISCVVectorCC: |
4338 | case attr::RISCVVLSCC: |
4339 | return true; |
4340 | } |
4341 | llvm_unreachable("invalid attr kind"); |
4342 | } |
4343 | |
4344 | CXXRecordDecl *InjectedClassNameType::getDecl() const { |
4345 | return cast<CXXRecordDecl>(Val: getInterestingTagDecl(Decl)); |
4346 | } |
4347 | |
4348 | IdentifierInfo *TemplateTypeParmType::getIdentifier() const { |
4349 | return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier(); |
4350 | } |
4351 | |
4352 | static const TemplateTypeParmDecl *getReplacedParameter(Decl *D, |
4353 | unsigned Index) { |
4354 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: D)) |
4355 | return TTP; |
4356 | return cast<TemplateTypeParmDecl>( |
4357 | Val: getReplacedTemplateParameterList(D)->getParam(Idx: Index)); |
4358 | } |
4359 | |
4360 | SubstTemplateTypeParmType::SubstTemplateTypeParmType(QualType Replacement, |
4361 | Decl *AssociatedDecl, |
4362 | unsigned Index, |
4363 | UnsignedOrNone PackIndex, |
4364 | bool Final) |
4365 | : Type(SubstTemplateTypeParm, Replacement.getCanonicalType(), |
4366 | Replacement->getDependence()), |
4367 | AssociatedDecl(AssociatedDecl) { |
4368 | SubstTemplateTypeParmTypeBits.HasNonCanonicalUnderlyingType = |
4369 | Replacement != getCanonicalTypeInternal(); |
4370 | if (SubstTemplateTypeParmTypeBits.HasNonCanonicalUnderlyingType) |
4371 | *getTrailingObjects() = Replacement; |
4372 | |
4373 | SubstTemplateTypeParmTypeBits.Index = Index; |
4374 | SubstTemplateTypeParmTypeBits.Final = Final; |
4375 | SubstTemplateTypeParmTypeBits.PackIndex = |
4376 | PackIndex.toInternalRepresentation(); |
4377 | assert(AssociatedDecl != nullptr); |
4378 | } |
4379 | |
4380 | const TemplateTypeParmDecl * |
4381 | SubstTemplateTypeParmType::getReplacedParameter() const { |
4382 | return ::getReplacedParameter(D: getAssociatedDecl(), Index: getIndex()); |
4383 | } |
4384 | |
4385 | void SubstTemplateTypeParmType::Profile(llvm::FoldingSetNodeID &ID, |
4386 | QualType Replacement, |
4387 | const Decl *AssociatedDecl, |
4388 | unsigned Index, |
4389 | UnsignedOrNone PackIndex, bool Final) { |
4390 | Replacement.Profile(ID); |
4391 | ID.AddPointer(Ptr: AssociatedDecl); |
4392 | ID.AddInteger(I: Index); |
4393 | ID.AddInteger(I: PackIndex.toInternalRepresentation()); |
4394 | ID.AddBoolean(B: Final); |
4395 | } |
4396 | |
4397 | SubstTemplateTypeParmPackType::SubstTemplateTypeParmPackType( |
4398 | QualType Canon, Decl *AssociatedDecl, unsigned Index, bool Final, |
4399 | const TemplateArgument &ArgPack) |
4400 | : Type(SubstTemplateTypeParmPack, Canon, |
4401 | TypeDependence::DependentInstantiation | |
4402 | TypeDependence::UnexpandedPack), |
4403 | Arguments(ArgPack.pack_begin()), |
4404 | AssociatedDeclAndFinal(AssociatedDecl, Final) { |
4405 | SubstTemplateTypeParmPackTypeBits.Index = Index; |
4406 | SubstTemplateTypeParmPackTypeBits.NumArgs = ArgPack.pack_size(); |
4407 | assert(AssociatedDecl != nullptr); |
4408 | } |
4409 | |
4410 | Decl *SubstTemplateTypeParmPackType::getAssociatedDecl() const { |
4411 | return AssociatedDeclAndFinal.getPointer(); |
4412 | } |
4413 | |
4414 | bool SubstTemplateTypeParmPackType::getFinal() const { |
4415 | return AssociatedDeclAndFinal.getInt(); |
4416 | } |
4417 | |
4418 | const TemplateTypeParmDecl * |
4419 | SubstTemplateTypeParmPackType::getReplacedParameter() const { |
4420 | return ::getReplacedParameter(D: getAssociatedDecl(), Index: getIndex()); |
4421 | } |
4422 | |
4423 | IdentifierInfo *SubstTemplateTypeParmPackType::getIdentifier() const { |
4424 | return getReplacedParameter()->getIdentifier(); |
4425 | } |
4426 | |
4427 | TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const { |
4428 | return TemplateArgument(llvm::ArrayRef(Arguments, getNumArgs())); |
4429 | } |
4430 | |
4431 | void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) { |
4432 | Profile(ID, AssociatedDecl: getAssociatedDecl(), Index: getIndex(), Final: getFinal(), ArgPack: getArgumentPack()); |
4433 | } |
4434 | |
4435 | void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID, |
4436 | const Decl *AssociatedDecl, |
4437 | unsigned Index, bool Final, |
4438 | const TemplateArgument &ArgPack) { |
4439 | ID.AddPointer(Ptr: AssociatedDecl); |
4440 | ID.AddInteger(I: Index); |
4441 | ID.AddBoolean(B: Final); |
4442 | ID.AddInteger(I: ArgPack.pack_size()); |
4443 | for (const auto &P : ArgPack.pack_elements()) |
4444 | ID.AddPointer(Ptr: P.getAsType().getAsOpaquePtr()); |
4445 | } |
4446 | |
4447 | bool TemplateSpecializationType::anyDependentTemplateArguments( |
4448 | const TemplateArgumentListInfo &Args, |
4449 | ArrayRef<TemplateArgument> Converted) { |
4450 | return anyDependentTemplateArguments(Args: Args.arguments(), Converted); |
4451 | } |
4452 | |
4453 | bool TemplateSpecializationType::anyDependentTemplateArguments( |
4454 | ArrayRef<TemplateArgumentLoc> Args, ArrayRef<TemplateArgument> Converted) { |
4455 | for (const TemplateArgument &Arg : Converted) |
4456 | if (Arg.isDependent()) |
4457 | return true; |
4458 | return false; |
4459 | } |
4460 | |
4461 | bool TemplateSpecializationType::anyInstantiationDependentTemplateArguments( |
4462 | ArrayRef<TemplateArgumentLoc> Args) { |
4463 | for (const TemplateArgumentLoc &ArgLoc : Args) { |
4464 | if (ArgLoc.getArgument().isInstantiationDependent()) |
4465 | return true; |
4466 | } |
4467 | return false; |
4468 | } |
4469 | |
4470 | TemplateSpecializationType::TemplateSpecializationType( |
4471 | TemplateName T, bool IsAlias, ArrayRef<TemplateArgument> Args, |
4472 | QualType Underlying) |
4473 | : Type(TemplateSpecialization, |
4474 | Underlying.isNull() ? QualType(this, 0) |
4475 | : Underlying.getCanonicalType(), |
4476 | (Underlying.isNull() |
4477 | ? TypeDependence::DependentInstantiation |
4478 | : toSemanticDependence(Underlying->getDependence())) | |
4479 | (toTypeDependence(T.getDependence()) & |
4480 | TypeDependence::UnexpandedPack)), |
4481 | Template(T) { |
4482 | TemplateSpecializationTypeBits.NumArgs = Args.size(); |
4483 | TemplateSpecializationTypeBits.TypeAlias = IsAlias; |
4484 | |
4485 | assert(!T.getAsDependentTemplateName() && |
4486 | "Use DependentTemplateSpecializationType for dependent template-name"); |
4487 | assert((T.getKind() == TemplateName::Template || |
4488 | T.getKind() == TemplateName::SubstTemplateTemplateParm || |
4489 | T.getKind() == TemplateName::SubstTemplateTemplateParmPack || |
4490 | T.getKind() == TemplateName::UsingTemplate || |
4491 | T.getKind() == TemplateName::QualifiedTemplate || |
4492 | T.getKind() == TemplateName::DeducedTemplate || |
4493 | T.getKind() == TemplateName::AssumedTemplate) && |
4494 | "Unexpected template name for TemplateSpecializationType"); |
4495 | |
4496 | auto *TemplateArgs = |
4497 | const_cast<TemplateArgument *>(template_arguments().data()); |
4498 | for (const TemplateArgument &Arg : Args) { |
4499 | // Update instantiation-dependent, variably-modified, and error bits. |
4500 | // If the canonical type exists and is non-dependent, the template |
4501 | // specialization type can be non-dependent even if one of the type |
4502 | // arguments is. Given: |
4503 | // template<typename T> using U = int; |
4504 | // U<T> is always non-dependent, irrespective of the type T. |
4505 | // However, U<Ts> contains an unexpanded parameter pack, even though |
4506 | // its expansion (and thus its desugared type) doesn't. |
4507 | addDependence(toTypeDependence(D: Arg.getDependence()) & |
4508 | ~TypeDependence::Dependent); |
4509 | if (Arg.getKind() == TemplateArgument::Type) |
4510 | addDependence(Arg.getAsType()->getDependence() & |
4511 | TypeDependence::VariablyModified); |
4512 | new (TemplateArgs++) TemplateArgument(Arg); |
4513 | } |
4514 | |
4515 | // Store the aliased type after the template arguments, if this is a type |
4516 | // alias template specialization. |
4517 | if (IsAlias) |
4518 | *reinterpret_cast<QualType *>(TemplateArgs) = Underlying; |
4519 | } |
4520 | |
4521 | QualType TemplateSpecializationType::getAliasedType() const { |
4522 | assert(isTypeAlias() && "not a type alias template specialization"); |
4523 | return *reinterpret_cast<const QualType *>(template_arguments().end()); |
4524 | } |
4525 | |
4526 | void TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, |
4527 | const ASTContext &Ctx) { |
4528 | Profile(ID, T: Template, Args: template_arguments(), |
4529 | Underlying: isSugared() ? desugar() : QualType(), Context: Ctx); |
4530 | } |
4531 | |
4532 | void TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, |
4533 | TemplateName T, |
4534 | ArrayRef<TemplateArgument> Args, |
4535 | QualType Underlying, |
4536 | const ASTContext &Context) { |
4537 | T.Profile(ID); |
4538 | Underlying.Profile(ID); |
4539 | |
4540 | ID.AddInteger(I: Args.size()); |
4541 | for (const TemplateArgument &Arg : Args) |
4542 | Arg.Profile(ID, Context); |
4543 | } |
4544 | |
4545 | QualType QualifierCollector::apply(const ASTContext &Context, |
4546 | QualType QT) const { |
4547 | if (!hasNonFastQualifiers()) |
4548 | return QT.withFastQualifiers(TQs: getFastQualifiers()); |
4549 | |
4550 | return Context.getQualifiedType(T: QT, Qs: *this); |
4551 | } |
4552 | |
4553 | QualType QualifierCollector::apply(const ASTContext &Context, |
4554 | const Type *T) const { |
4555 | if (!hasNonFastQualifiers()) |
4556 | return QualType(T, getFastQualifiers()); |
4557 | |
4558 | return Context.getQualifiedType(T, Qs: *this); |
4559 | } |
4560 | |
4561 | void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID, QualType BaseType, |
4562 | ArrayRef<QualType> typeArgs, |
4563 | ArrayRef<ObjCProtocolDecl *> protocols, |
4564 | bool isKindOf) { |
4565 | ID.AddPointer(Ptr: BaseType.getAsOpaquePtr()); |
4566 | ID.AddInteger(I: typeArgs.size()); |
4567 | for (auto typeArg : typeArgs) |
4568 | ID.AddPointer(Ptr: typeArg.getAsOpaquePtr()); |
4569 | ID.AddInteger(I: protocols.size()); |
4570 | for (auto *proto : protocols) |
4571 | ID.AddPointer(Ptr: proto); |
4572 | ID.AddBoolean(B: isKindOf); |
4573 | } |
4574 | |
4575 | void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) { |
4576 | Profile(ID, getBaseType(), getTypeArgsAsWritten(), |
4577 | llvm::ArrayRef(qual_begin(), getNumProtocols()), |
4578 | isKindOfTypeAsWritten()); |
4579 | } |
4580 | |
4581 | void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID, |
4582 | const ObjCTypeParamDecl *OTPDecl, |
4583 | QualType CanonicalType, |
4584 | ArrayRef<ObjCProtocolDecl *> protocols) { |
4585 | ID.AddPointer(Ptr: OTPDecl); |
4586 | ID.AddPointer(Ptr: CanonicalType.getAsOpaquePtr()); |
4587 | ID.AddInteger(I: protocols.size()); |
4588 | for (auto *proto : protocols) |
4589 | ID.AddPointer(Ptr: proto); |
4590 | } |
4591 | |
4592 | void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID) { |
4593 | Profile(ID, getDecl(), getCanonicalTypeInternal(), |
4594 | llvm::ArrayRef(qual_begin(), getNumProtocols())); |
4595 | } |
4596 | |
4597 | namespace { |
4598 | |
4599 | /// The cached properties of a type. |
4600 | class CachedProperties { |
4601 | Linkage L; |
4602 | bool local; |
4603 | |
4604 | public: |
4605 | CachedProperties(Linkage L, bool local) : L(L), local(local) {} |
4606 | |
4607 | Linkage getLinkage() const { return L; } |
4608 | bool hasLocalOrUnnamedType() const { return local; } |
4609 | |
4610 | friend CachedProperties merge(CachedProperties L, CachedProperties R) { |
4611 | Linkage MergedLinkage = minLinkage(L1: L.L, L2: R.L); |
4612 | return CachedProperties(MergedLinkage, L.hasLocalOrUnnamedType() || |
4613 | R.hasLocalOrUnnamedType()); |
4614 | } |
4615 | }; |
4616 | |
4617 | } // namespace |
4618 | |
4619 | static CachedProperties computeCachedProperties(const Type *T); |
4620 | |
4621 | namespace clang { |
4622 | |
4623 | /// The type-property cache. This is templated so as to be |
4624 | /// instantiated at an internal type to prevent unnecessary symbol |
4625 | /// leakage. |
4626 | template <class Private> class TypePropertyCache { |
4627 | public: |
4628 | static CachedProperties get(QualType T) { return get(T.getTypePtr()); } |
4629 | |
4630 | static CachedProperties get(const Type *T) { |
4631 | ensure(T); |
4632 | return CachedProperties(T->TypeBits.getLinkage(), |
4633 | T->TypeBits.hasLocalOrUnnamedType()); |
4634 | } |
4635 | |
4636 | static void ensure(const Type *T) { |
4637 | // If the cache is valid, we're okay. |
4638 | if (T->TypeBits.isCacheValid()) |
4639 | return; |
4640 | |
4641 | // If this type is non-canonical, ask its canonical type for the |
4642 | // relevant information. |
4643 | if (!T->isCanonicalUnqualified()) { |
4644 | const Type *CT = T->getCanonicalTypeInternal().getTypePtr(); |
4645 | ensure(T: CT); |
4646 | T->TypeBits.CacheValid = true; |
4647 | T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage; |
4648 | T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed; |
4649 | return; |
4650 | } |
4651 | |
4652 | // Compute the cached properties and then set the cache. |
4653 | CachedProperties Result = computeCachedProperties(T); |
4654 | T->TypeBits.CacheValid = true; |
4655 | T->TypeBits.CachedLinkage = llvm::to_underlying(E: Result.getLinkage()); |
4656 | T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType(); |
4657 | } |
4658 | }; |
4659 | |
4660 | } // namespace clang |
4661 | |
4662 | // Instantiate the friend template at a private class. In a |
4663 | // reasonable implementation, these symbols will be internal. |
4664 | // It is terrible that this is the best way to accomplish this. |
4665 | namespace { |
4666 | |
4667 | class Private {}; |
4668 | |
4669 | } // namespace |
4670 | |
4671 | using Cache = TypePropertyCache<Private>; |
4672 | |
4673 | static CachedProperties computeCachedProperties(const Type *T) { |
4674 | switch (T->getTypeClass()) { |
4675 | #define TYPE(Class, Base) |
4676 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
4677 | #include "clang/AST/TypeNodes.inc" |
4678 | llvm_unreachable("didn't expect a non-canonical type here"); |
4679 | |
4680 | #define TYPE(Class, Base) |
4681 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
4682 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
4683 | #include "clang/AST/TypeNodes.inc" |
4684 | // Treat instantiation-dependent types as external. |
4685 | assert(T->isInstantiationDependentType()); |
4686 | return CachedProperties(Linkage::External, false); |
4687 | |
4688 | case Type::Auto: |
4689 | case Type::DeducedTemplateSpecialization: |
4690 | // Give non-deduced 'auto' types external linkage. We should only see them |
4691 | // here in error recovery. |
4692 | return CachedProperties(Linkage::External, false); |
4693 | |
4694 | case Type::BitInt: |
4695 | case Type::Builtin: |
4696 | // C++ [basic.link]p8: |
4697 | // A type is said to have linkage if and only if: |
4698 | // - it is a fundamental type (3.9.1); or |
4699 | return CachedProperties(Linkage::External, false); |
4700 | |
4701 | case Type::Record: |
4702 | case Type::Enum: { |
4703 | const TagDecl *Tag = cast<TagType>(T)->getDecl(); |
4704 | |
4705 | // C++ [basic.link]p8: |
4706 | // - it is a class or enumeration type that is named (or has a name |
4707 | // for linkage purposes (7.1.3)) and the name has linkage; or |
4708 | // - it is a specialization of a class template (14); or |
4709 | Linkage L = Tag->getLinkageInternal(); |
4710 | bool IsLocalOrUnnamed = Tag->getDeclContext()->isFunctionOrMethod() || |
4711 | !Tag->hasNameForLinkage(); |
4712 | return CachedProperties(L, IsLocalOrUnnamed); |
4713 | } |
4714 | |
4715 | // C++ [basic.link]p8: |
4716 | // - it is a compound type (3.9.2) other than a class or enumeration, |
4717 | // compounded exclusively from types that have linkage; or |
4718 | case Type::Complex: |
4719 | return Cache::get(cast<ComplexType>(T)->getElementType()); |
4720 | case Type::Pointer: |
4721 | return Cache::get(cast<PointerType>(T)->getPointeeType()); |
4722 | case Type::BlockPointer: |
4723 | return Cache::get(cast<BlockPointerType>(T)->getPointeeType()); |
4724 | case Type::LValueReference: |
4725 | case Type::RValueReference: |
4726 | return Cache::get(cast<ReferenceType>(T)->getPointeeType()); |
4727 | case Type::MemberPointer: { |
4728 | const auto *MPT = cast<MemberPointerType>(T); |
4729 | CachedProperties Cls = [&] { |
4730 | if (auto *RD = MPT->getMostRecentCXXRecordDecl()) |
4731 | return Cache::get(QualType(RD->getTypeForDecl(), 0)); |
4732 | if (const Type *T = MPT->getQualifier()->getAsType()) |
4733 | return Cache::get(T); |
4734 | // Treat as a dependent type. |
4735 | return CachedProperties(Linkage::External, false); |
4736 | }(); |
4737 | return merge(Cls, Cache::get(MPT->getPointeeType())); |
4738 | } |
4739 | case Type::ConstantArray: |
4740 | case Type::IncompleteArray: |
4741 | case Type::VariableArray: |
4742 | case Type::ArrayParameter: |
4743 | return Cache::get(cast<ArrayType>(T)->getElementType()); |
4744 | case Type::Vector: |
4745 | case Type::ExtVector: |
4746 | return Cache::get(cast<VectorType>(T)->getElementType()); |
4747 | case Type::ConstantMatrix: |
4748 | return Cache::get(cast<ConstantMatrixType>(T)->getElementType()); |
4749 | case Type::FunctionNoProto: |
4750 | return Cache::get(cast<FunctionType>(T)->getReturnType()); |
4751 | case Type::FunctionProto: { |
4752 | const auto *FPT = cast<FunctionProtoType>(T); |
4753 | CachedProperties result = Cache::get(FPT->getReturnType()); |
4754 | for (const auto &ai : FPT->param_types()) |
4755 | result = merge(result, Cache::get(ai)); |
4756 | return result; |
4757 | } |
4758 | case Type::ObjCInterface: { |
4759 | Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal(); |
4760 | return CachedProperties(L, false); |
4761 | } |
4762 | case Type::ObjCObject: |
4763 | return Cache::get(cast<ObjCObjectType>(T)->getBaseType()); |
4764 | case Type::ObjCObjectPointer: |
4765 | return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType()); |
4766 | case Type::Atomic: |
4767 | return Cache::get(cast<AtomicType>(T)->getValueType()); |
4768 | case Type::Pipe: |
4769 | return Cache::get(cast<PipeType>(T)->getElementType()); |
4770 | case Type::HLSLAttributedResource: |
4771 | return Cache::get(cast<HLSLAttributedResourceType>(T)->getWrappedType()); |
4772 | case Type::HLSLInlineSpirv: |
4773 | return CachedProperties(Linkage::External, false); |
4774 | } |
4775 | |
4776 | llvm_unreachable("unhandled type class"); |
4777 | } |
4778 | |
4779 | /// Determine the linkage of this type. |
4780 | Linkage Type::getLinkage() const { |
4781 | Cache::ensure(T: this); |
4782 | return TypeBits.getLinkage(); |
4783 | } |
4784 | |
4785 | bool Type::hasUnnamedOrLocalType() const { |
4786 | Cache::ensure(T: this); |
4787 | return TypeBits.hasLocalOrUnnamedType(); |
4788 | } |
4789 | |
4790 | LinkageInfo LinkageComputer::computeTypeLinkageInfo(const Type *T) { |
4791 | switch (T->getTypeClass()) { |
4792 | #define TYPE(Class, Base) |
4793 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
4794 | #include "clang/AST/TypeNodes.inc" |
4795 | llvm_unreachable("didn't expect a non-canonical type here"); |
4796 | |
4797 | #define TYPE(Class, Base) |
4798 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
4799 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
4800 | #include "clang/AST/TypeNodes.inc" |
4801 | // Treat instantiation-dependent types as external. |
4802 | assert(T->isInstantiationDependentType()); |
4803 | return LinkageInfo::external(); |
4804 | |
4805 | case Type::BitInt: |
4806 | case Type::Builtin: |
4807 | return LinkageInfo::external(); |
4808 | |
4809 | case Type::Auto: |
4810 | case Type::DeducedTemplateSpecialization: |
4811 | return LinkageInfo::external(); |
4812 | |
4813 | case Type::Record: |
4814 | case Type::Enum: |
4815 | return getDeclLinkageAndVisibility(D: cast<TagType>(T)->getDecl()); |
4816 | |
4817 | case Type::Complex: |
4818 | return computeTypeLinkageInfo(cast<ComplexType>(T)->getElementType()); |
4819 | case Type::Pointer: |
4820 | return computeTypeLinkageInfo(cast<PointerType>(T)->getPointeeType()); |
4821 | case Type::BlockPointer: |
4822 | return computeTypeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType()); |
4823 | case Type::LValueReference: |
4824 | case Type::RValueReference: |
4825 | return computeTypeLinkageInfo(cast<ReferenceType>(T)->getPointeeType()); |
4826 | case Type::MemberPointer: { |
4827 | const auto *MPT = cast<MemberPointerType>(T); |
4828 | LinkageInfo LV; |
4829 | if (auto *D = MPT->getMostRecentCXXRecordDecl()) { |
4830 | LV.merge(other: getDeclLinkageAndVisibility(D: D)); |
4831 | } else if (auto *Ty = MPT->getQualifier()->getAsType()) { |
4832 | LV.merge(other: computeTypeLinkageInfo(Ty)); |
4833 | } |
4834 | LV.merge(other: computeTypeLinkageInfo(MPT->getPointeeType())); |
4835 | return LV; |
4836 | } |
4837 | case Type::ConstantArray: |
4838 | case Type::IncompleteArray: |
4839 | case Type::VariableArray: |
4840 | case Type::ArrayParameter: |
4841 | return computeTypeLinkageInfo(cast<ArrayType>(T)->getElementType()); |
4842 | case Type::Vector: |
4843 | case Type::ExtVector: |
4844 | return computeTypeLinkageInfo(cast<VectorType>(T)->getElementType()); |
4845 | case Type::ConstantMatrix: |
4846 | return computeTypeLinkageInfo( |
4847 | cast<ConstantMatrixType>(T)->getElementType()); |
4848 | case Type::FunctionNoProto: |
4849 | return computeTypeLinkageInfo(cast<FunctionType>(T)->getReturnType()); |
4850 | case Type::FunctionProto: { |
4851 | const auto *FPT = cast<FunctionProtoType>(T); |
4852 | LinkageInfo LV = computeTypeLinkageInfo(FPT->getReturnType()); |
4853 | for (const auto &ai : FPT->param_types()) |
4854 | LV.merge(computeTypeLinkageInfo(ai)); |
4855 | return LV; |
4856 | } |
4857 | case Type::ObjCInterface: |
4858 | return getDeclLinkageAndVisibility(D: cast<ObjCInterfaceType>(T)->getDecl()); |
4859 | case Type::ObjCObject: |
4860 | return computeTypeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType()); |
4861 | case Type::ObjCObjectPointer: |
4862 | return computeTypeLinkageInfo( |
4863 | cast<ObjCObjectPointerType>(T)->getPointeeType()); |
4864 | case Type::Atomic: |
4865 | return computeTypeLinkageInfo(cast<AtomicType>(T)->getValueType()); |
4866 | case Type::Pipe: |
4867 | return computeTypeLinkageInfo(cast<PipeType>(T)->getElementType()); |
4868 | case Type::HLSLAttributedResource: |
4869 | return computeTypeLinkageInfo(cast<HLSLAttributedResourceType>(T) |
4870 | ->getContainedType() |
4871 | ->getCanonicalTypeInternal()); |
4872 | case Type::HLSLInlineSpirv: |
4873 | return LinkageInfo::external(); |
4874 | { |
4875 | const auto *ST = cast<HLSLInlineSpirvType>(T); |
4876 | LinkageInfo LV = LinkageInfo::external(); |
4877 | for (auto &Operand : ST->getOperands()) { |
4878 | if (Operand.isConstant() || Operand.isType()) |
4879 | LV.merge(computeTypeLinkageInfo(Operand.getResultType())); |
4880 | } |
4881 | return LV; |
4882 | } |
4883 | } |
4884 | |
4885 | llvm_unreachable("unhandled type class"); |
4886 | } |
4887 | |
4888 | bool Type::isLinkageValid() const { |
4889 | if (!TypeBits.isCacheValid()) |
4890 | return true; |
4891 | |
4892 | Linkage L = LinkageComputer{} |
4893 | .computeTypeLinkageInfo(T: getCanonicalTypeInternal()) |
4894 | .getLinkage(); |
4895 | return L == TypeBits.getLinkage(); |
4896 | } |
4897 | |
4898 | LinkageInfo LinkageComputer::getTypeLinkageAndVisibility(const Type *T) { |
4899 | if (!T->isCanonicalUnqualified()) |
4900 | return computeTypeLinkageInfo(T: T->getCanonicalTypeInternal()); |
4901 | |
4902 | LinkageInfo LV = computeTypeLinkageInfo(T); |
4903 | assert(LV.getLinkage() == T->getLinkage()); |
4904 | return LV; |
4905 | } |
4906 | |
4907 | LinkageInfo Type::getLinkageAndVisibility() const { |
4908 | return LinkageComputer{}.getTypeLinkageAndVisibility(T: this); |
4909 | } |
4910 | |
4911 | std::optional<NullabilityKind> Type::getNullability() const { |
4912 | QualType Type(this, 0); |
4913 | while (const auto *AT = Type->getAs<AttributedType>()) { |
4914 | // Check whether this is an attributed type with nullability |
4915 | // information. |
4916 | if (auto Nullability = AT->getImmediateNullability()) |
4917 | return Nullability; |
4918 | |
4919 | Type = AT->getEquivalentType(); |
4920 | } |
4921 | return std::nullopt; |
4922 | } |
4923 | |
4924 | bool Type::canHaveNullability(bool ResultIfUnknown) const { |
4925 | QualType type = getCanonicalTypeInternal(); |
4926 | |
4927 | switch (type->getTypeClass()) { |
4928 | #define NON_CANONICAL_TYPE(Class, Parent) \ |
4929 | /* We'll only see canonical types here. */ \ |
4930 | case Type::Class: \ |
4931 | llvm_unreachable("non-canonical type"); |
4932 | #define TYPE(Class, Parent) |
4933 | #include "clang/AST/TypeNodes.inc" |
4934 | |
4935 | // Pointer types. |
4936 | case Type::Pointer: |
4937 | case Type::BlockPointer: |
4938 | case Type::MemberPointer: |
4939 | case Type::ObjCObjectPointer: |
4940 | return true; |
4941 | |
4942 | // Dependent types that could instantiate to pointer types. |
4943 | case Type::UnresolvedUsing: |
4944 | case Type::TypeOfExpr: |
4945 | case Type::TypeOf: |
4946 | case Type::Decltype: |
4947 | case Type::PackIndexing: |
4948 | case Type::UnaryTransform: |
4949 | case Type::TemplateTypeParm: |
4950 | case Type::SubstTemplateTypeParmPack: |
4951 | case Type::DependentName: |
4952 | case Type::DependentTemplateSpecialization: |
4953 | case Type::Auto: |
4954 | return ResultIfUnknown; |
4955 | |
4956 | // Dependent template specializations could instantiate to pointer types. |
4957 | case Type::TemplateSpecialization: |
4958 | // If it's a known class template, we can already check if it's nullable. |
4959 | if (TemplateDecl *templateDecl = |
4960 | cast<TemplateSpecializationType>(type.getTypePtr()) |
4961 | ->getTemplateName() |
4962 | .getAsTemplateDecl()) |
4963 | if (auto *CTD = dyn_cast<ClassTemplateDecl>(templateDecl)) |
4964 | return llvm::any_of( |
4965 | CTD->redecls(), [](const RedeclarableTemplateDecl *RTD) { |
4966 | return RTD->getTemplatedDecl()->hasAttr<TypeNullableAttr>(); |
4967 | }); |
4968 | return ResultIfUnknown; |
4969 | |
4970 | case Type::Builtin: |
4971 | switch (cast<BuiltinType>(type.getTypePtr())->getKind()) { |
4972 | // Signed, unsigned, and floating-point types cannot have nullability. |
4973 | #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id: |
4974 | #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id: |
4975 | #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id: |
4976 | #define BUILTIN_TYPE(Id, SingletonId) |
4977 | #include "clang/AST/BuiltinTypes.def" |
4978 | return false; |
4979 | |
4980 | case BuiltinType::UnresolvedTemplate: |
4981 | // Dependent types that could instantiate to a pointer type. |
4982 | case BuiltinType::Dependent: |
4983 | case BuiltinType::Overload: |
4984 | case BuiltinType::BoundMember: |
4985 | case BuiltinType::PseudoObject: |
4986 | case BuiltinType::UnknownAny: |
4987 | case BuiltinType::ARCUnbridgedCast: |
4988 | return ResultIfUnknown; |
4989 | |
4990 | case BuiltinType::Void: |
4991 | case BuiltinType::ObjCId: |
4992 | case BuiltinType::ObjCClass: |
4993 | case BuiltinType::ObjCSel: |
4994 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
4995 | case BuiltinType::Id: |
4996 | #include "clang/Basic/OpenCLImageTypes.def" |
4997 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) case BuiltinType::Id: |
4998 | #include "clang/Basic/OpenCLExtensionTypes.def" |
4999 | case BuiltinType::OCLSampler: |
5000 | case BuiltinType::OCLEvent: |
5001 | case BuiltinType::OCLClkEvent: |
5002 | case BuiltinType::OCLQueue: |
5003 | case BuiltinType::OCLReserveID: |
5004 | #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
5005 | #include "clang/Basic/AArch64ACLETypes.def" |
5006 | #define PPC_VECTOR_TYPE(Name, Id, Size) case BuiltinType::Id: |
5007 | #include "clang/Basic/PPCTypes.def" |
5008 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
5009 | #include "clang/Basic/RISCVVTypes.def" |
5010 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
5011 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
5012 | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: |
5013 | #include "clang/Basic/AMDGPUTypes.def" |
5014 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
5015 | #include "clang/Basic/HLSLIntangibleTypes.def" |
5016 | case BuiltinType::BuiltinFn: |
5017 | case BuiltinType::NullPtr: |
5018 | case BuiltinType::IncompleteMatrixIdx: |
5019 | case BuiltinType::ArraySection: |
5020 | case BuiltinType::OMPArrayShaping: |
5021 | case BuiltinType::OMPIterator: |
5022 | return false; |
5023 | } |
5024 | llvm_unreachable("unknown builtin type"); |
5025 | |
5026 | case Type::Record: { |
5027 | const RecordDecl *RD = cast<RecordType>(type)->getDecl(); |
5028 | // For template specializations, look only at primary template attributes. |
5029 | // This is a consistent regardless of whether the instantiation is known. |
5030 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) |
5031 | return llvm::any_of( |
5032 | CTSD->getSpecializedTemplate()->redecls(), |
5033 | [](const RedeclarableTemplateDecl *RTD) { |
5034 | return RTD->getTemplatedDecl()->hasAttr<TypeNullableAttr>(); |
5035 | }); |
5036 | return llvm::any_of(RD->redecls(), [](const TagDecl *RD) { |
5037 | return RD->hasAttr<TypeNullableAttr>(); |
5038 | }); |
5039 | } |
5040 | |
5041 | // Non-pointer types. |
5042 | case Type::Complex: |
5043 | case Type::LValueReference: |
5044 | case Type::RValueReference: |
5045 | case Type::ConstantArray: |
5046 | case Type::IncompleteArray: |
5047 | case Type::VariableArray: |
5048 | case Type::DependentSizedArray: |
5049 | case Type::DependentVector: |
5050 | case Type::DependentSizedExtVector: |
5051 | case Type::Vector: |
5052 | case Type::ExtVector: |
5053 | case Type::ConstantMatrix: |
5054 | case Type::DependentSizedMatrix: |
5055 | case Type::DependentAddressSpace: |
5056 | case Type::FunctionProto: |
5057 | case Type::FunctionNoProto: |
5058 | case Type::DeducedTemplateSpecialization: |
5059 | case Type::Enum: |
5060 | case Type::InjectedClassName: |
5061 | case Type::PackExpansion: |
5062 | case Type::ObjCObject: |
5063 | case Type::ObjCInterface: |
5064 | case Type::Atomic: |
5065 | case Type::Pipe: |
5066 | case Type::BitInt: |
5067 | case Type::DependentBitInt: |
5068 | case Type::ArrayParameter: |
5069 | case Type::HLSLAttributedResource: |
5070 | case Type::HLSLInlineSpirv: |
5071 | return false; |
5072 | } |
5073 | llvm_unreachable("bad type kind!"); |
5074 | } |
5075 | |
5076 | std::optional<NullabilityKind> AttributedType::getImmediateNullability() const { |
5077 | if (getAttrKind() == attr::TypeNonNull) |
5078 | return NullabilityKind::NonNull; |
5079 | if (getAttrKind() == attr::TypeNullable) |
5080 | return NullabilityKind::Nullable; |
5081 | if (getAttrKind() == attr::TypeNullUnspecified) |
5082 | return NullabilityKind::Unspecified; |
5083 | if (getAttrKind() == attr::TypeNullableResult) |
5084 | return NullabilityKind::NullableResult; |
5085 | return std::nullopt; |
5086 | } |
5087 | |
5088 | std::optional<NullabilityKind> |
5089 | AttributedType::stripOuterNullability(QualType &T) { |
5090 | QualType AttrTy = T; |
5091 | if (auto MacroTy = dyn_cast<MacroQualifiedType>(Val&: T)) |
5092 | AttrTy = MacroTy->getUnderlyingType(); |
5093 | |
5094 | if (auto attributed = dyn_cast<AttributedType>(Val&: AttrTy)) { |
5095 | if (auto nullability = attributed->getImmediateNullability()) { |
5096 | T = attributed->getModifiedType(); |
5097 | return nullability; |
5098 | } |
5099 | } |
5100 | |
5101 | return std::nullopt; |
5102 | } |
5103 | |
5104 | bool Type::isSignableIntegerType(const ASTContext &Ctx) const { |
5105 | if (!isIntegralType(Ctx) || isEnumeralType()) |
5106 | return false; |
5107 | return Ctx.getTypeSize(T: this) == Ctx.getTypeSize(Ctx.VoidPtrTy); |
5108 | } |
5109 | |
5110 | bool Type::isBlockCompatibleObjCPointerType(ASTContext &ctx) const { |
5111 | const auto *objcPtr = getAs<ObjCObjectPointerType>(); |
5112 | if (!objcPtr) |
5113 | return false; |
5114 | |
5115 | if (objcPtr->isObjCIdType()) { |
5116 | // id is always okay. |
5117 | return true; |
5118 | } |
5119 | |
5120 | // Blocks are NSObjects. |
5121 | if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) { |
5122 | if (iface->getIdentifier() != ctx.getNSObjectName()) |
5123 | return false; |
5124 | |
5125 | // Continue to check qualifiers, below. |
5126 | } else if (objcPtr->isObjCQualifiedIdType()) { |
5127 | // Continue to check qualifiers, below. |
5128 | } else { |
5129 | return false; |
5130 | } |
5131 | |
5132 | // Check protocol qualifiers. |
5133 | for (ObjCProtocolDecl *proto : objcPtr->quals()) { |
5134 | // Blocks conform to NSObject and NSCopying. |
5135 | if (proto->getIdentifier() != ctx.getNSObjectName() && |
5136 | proto->getIdentifier() != ctx.getNSCopyingName()) |
5137 | return false; |
5138 | } |
5139 | |
5140 | return true; |
5141 | } |
5142 | |
5143 | Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const { |
5144 | if (isObjCARCImplicitlyUnretainedType()) |
5145 | return Qualifiers::OCL_ExplicitNone; |
5146 | return Qualifiers::OCL_Strong; |
5147 | } |
5148 | |
5149 | bool Type::isObjCARCImplicitlyUnretainedType() const { |
5150 | assert(isObjCLifetimeType() && |
5151 | "cannot query implicit lifetime for non-inferrable type"); |
5152 | |
5153 | const Type *canon = getCanonicalTypeInternal().getTypePtr(); |
5154 | |
5155 | // Walk down to the base type. We don't care about qualifiers for this. |
5156 | while (const auto *array = dyn_cast<ArrayType>(Val: canon)) |
5157 | canon = array->getElementType().getTypePtr(); |
5158 | |
5159 | if (const auto *opt = dyn_cast<ObjCObjectPointerType>(Val: canon)) { |
5160 | // Class and Class<Protocol> don't require retention. |
5161 | if (opt->getObjectType()->isObjCClass()) |
5162 | return true; |
5163 | } |
5164 | |
5165 | return false; |
5166 | } |
5167 | |
5168 | bool Type::isObjCNSObjectType() const { |
5169 | if (const auto *typedefType = getAs<TypedefType>()) |
5170 | return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>(); |
5171 | return false; |
5172 | } |
5173 | |
5174 | bool Type::isObjCIndependentClassType() const { |
5175 | if (const auto *typedefType = getAs<TypedefType>()) |
5176 | return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>(); |
5177 | return false; |
5178 | } |
5179 | |
5180 | bool Type::isObjCRetainableType() const { |
5181 | return isObjCObjectPointerType() || isBlockPointerType() || |
5182 | isObjCNSObjectType(); |
5183 | } |
5184 | |
5185 | bool Type::isObjCIndirectLifetimeType() const { |
5186 | if (isObjCLifetimeType()) |
5187 | return true; |
5188 | if (const auto *OPT = getAs<PointerType>()) |
5189 | return OPT->getPointeeType()->isObjCIndirectLifetimeType(); |
5190 | if (const auto *Ref = getAs<ReferenceType>()) |
5191 | return Ref->getPointeeType()->isObjCIndirectLifetimeType(); |
5192 | if (const auto *MemPtr = getAs<MemberPointerType>()) |
5193 | return MemPtr->getPointeeType()->isObjCIndirectLifetimeType(); |
5194 | return false; |
5195 | } |
5196 | |
5197 | /// Returns true if objects of this type have lifetime semantics under |
5198 | /// ARC. |
5199 | bool Type::isObjCLifetimeType() const { |
5200 | const Type *type = this; |
5201 | while (const ArrayType *array = type->getAsArrayTypeUnsafe()) |
5202 | type = array->getElementType().getTypePtr(); |
5203 | return type->isObjCRetainableType(); |
5204 | } |
5205 | |
5206 | /// Determine whether the given type T is a "bridgable" Objective-C type, |
5207 | /// which is either an Objective-C object pointer type or an |
5208 | bool Type::isObjCARCBridgableType() const { |
5209 | return isObjCObjectPointerType() || isBlockPointerType(); |
5210 | } |
5211 | |
5212 | /// Determine whether the given type T is a "bridgeable" C type. |
5213 | bool Type::isCARCBridgableType() const { |
5214 | const auto *Pointer = getAs<PointerType>(); |
5215 | if (!Pointer) |
5216 | return false; |
5217 | |
5218 | QualType Pointee = Pointer->getPointeeType(); |
5219 | return Pointee->isVoidType() || Pointee->isRecordType(); |
5220 | } |
5221 | |
5222 | /// Check if the specified type is the CUDA device builtin surface type. |
5223 | bool Type::isCUDADeviceBuiltinSurfaceType() const { |
5224 | if (const auto *RT = getAs<RecordType>()) |
5225 | return RT->getDecl()->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>(); |
5226 | return false; |
5227 | } |
5228 | |
5229 | /// Check if the specified type is the CUDA device builtin texture type. |
5230 | bool Type::isCUDADeviceBuiltinTextureType() const { |
5231 | if (const auto *RT = getAs<RecordType>()) |
5232 | return RT->getDecl()->hasAttr<CUDADeviceBuiltinTextureTypeAttr>(); |
5233 | return false; |
5234 | } |
5235 | |
5236 | bool Type::hasSizedVLAType() const { |
5237 | if (!isVariablyModifiedType()) |
5238 | return false; |
5239 | |
5240 | if (const auto *ptr = getAs<PointerType>()) |
5241 | return ptr->getPointeeType()->hasSizedVLAType(); |
5242 | if (const auto *ref = getAs<ReferenceType>()) |
5243 | return ref->getPointeeType()->hasSizedVLAType(); |
5244 | if (const ArrayType *arr = getAsArrayTypeUnsafe()) { |
5245 | if (isa<VariableArrayType>(Val: arr) && |
5246 | cast<VariableArrayType>(Val: arr)->getSizeExpr()) |
5247 | return true; |
5248 | |
5249 | return arr->getElementType()->hasSizedVLAType(); |
5250 | } |
5251 | |
5252 | return false; |
5253 | } |
5254 | |
5255 | bool Type::isHLSLResourceRecord() const { |
5256 | return HLSLAttributedResourceType::findHandleTypeOnResource(RT: this) != nullptr; |
5257 | } |
5258 | |
5259 | bool Type::isHLSLIntangibleType() const { |
5260 | const Type *Ty = getUnqualifiedDesugaredType(); |
5261 | |
5262 | // check if it's a builtin type first |
5263 | if (Ty->isBuiltinType()) |
5264 | return Ty->isHLSLBuiltinIntangibleType(); |
5265 | |
5266 | // unwrap arrays |
5267 | while (isa<ConstantArrayType>(Val: Ty)) |
5268 | Ty = Ty->getArrayElementTypeNoTypeQual(); |
5269 | |
5270 | const RecordType *RT = |
5271 | dyn_cast<RecordType>(Val: Ty->getUnqualifiedDesugaredType()); |
5272 | if (!RT) |
5273 | return false; |
5274 | |
5275 | CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); |
5276 | assert(RD != nullptr && |
5277 | "all HLSL structs and classes should be CXXRecordDecl"); |
5278 | assert(RD->isCompleteDefinition() && "expecting complete type"); |
5279 | return RD->isHLSLIntangible(); |
5280 | } |
5281 | |
5282 | QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) { |
5283 | switch (type.getObjCLifetime()) { |
5284 | case Qualifiers::OCL_None: |
5285 | case Qualifiers::OCL_ExplicitNone: |
5286 | case Qualifiers::OCL_Autoreleasing: |
5287 | break; |
5288 | |
5289 | case Qualifiers::OCL_Strong: |
5290 | return DK_objc_strong_lifetime; |
5291 | case Qualifiers::OCL_Weak: |
5292 | return DK_objc_weak_lifetime; |
5293 | } |
5294 | |
5295 | if (const auto *RT = type->getBaseElementTypeUnsafe()->getAs<RecordType>()) { |
5296 | const RecordDecl *RD = RT->getDecl(); |
5297 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
5298 | /// Check if this is a C++ object with a non-trivial destructor. |
5299 | if (CXXRD->hasDefinition() && !CXXRD->hasTrivialDestructor()) |
5300 | return DK_cxx_destructor; |
5301 | } else { |
5302 | /// Check if this is a C struct that is non-trivial to destroy or an array |
5303 | /// that contains such a struct. |
5304 | if (RD->isNonTrivialToPrimitiveDestroy()) |
5305 | return DK_nontrivial_c_struct; |
5306 | } |
5307 | } |
5308 | |
5309 | return DK_none; |
5310 | } |
5311 | |
5312 | bool MemberPointerType::isSugared() const { |
5313 | CXXRecordDecl *D1 = getMostRecentCXXRecordDecl(), |
5314 | *D2 = getQualifier()->getAsRecordDecl(); |
5315 | assert(!D1 == !D2); |
5316 | return D1 != D2 && D1->getCanonicalDecl() != D2->getCanonicalDecl(); |
5317 | } |
5318 | |
5319 | void MemberPointerType::Profile(llvm::FoldingSetNodeID &ID, QualType Pointee, |
5320 | const NestedNameSpecifier *Qualifier, |
5321 | const CXXRecordDecl *Cls) { |
5322 | ID.AddPointer(Ptr: Pointee.getAsOpaquePtr()); |
5323 | ID.AddPointer(Ptr: Qualifier); |
5324 | if (Cls) |
5325 | ID.AddPointer(Ptr: Cls->getCanonicalDecl()); |
5326 | } |
5327 | |
5328 | CXXRecordDecl *MemberPointerType::getCXXRecordDecl() const { |
5329 | return dyn_cast<MemberPointerType>(getCanonicalTypeInternal()) |
5330 | ->getQualifier() |
5331 | ->getAsRecordDecl(); |
5332 | } |
5333 | |
5334 | CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const { |
5335 | auto *RD = getCXXRecordDecl(); |
5336 | if (!RD) |
5337 | return nullptr; |
5338 | return RD->getMostRecentNonInjectedDecl(); |
5339 | } |
5340 | |
5341 | void clang::FixedPointValueToString(SmallVectorImpl<char> &Str, |
5342 | llvm::APSInt Val, unsigned Scale) { |
5343 | llvm::FixedPointSemantics FXSema(Val.getBitWidth(), Scale, Val.isSigned(), |
5344 | /*IsSaturated=*/false, |
5345 | /*HasUnsignedPadding=*/false); |
5346 | llvm::APFixedPoint(Val, FXSema).toString(Str); |
5347 | } |
5348 | |
5349 | AutoType::AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword, |
5350 | TypeDependence ExtraDependence, QualType Canon, |
5351 | ConceptDecl *TypeConstraintConcept, |
5352 | ArrayRef<TemplateArgument> TypeConstraintArgs) |
5353 | : DeducedType(Auto, DeducedAsType, ExtraDependence, Canon) { |
5354 | AutoTypeBits.Keyword = llvm::to_underlying(E: Keyword); |
5355 | AutoTypeBits.NumArgs = TypeConstraintArgs.size(); |
5356 | this->TypeConstraintConcept = TypeConstraintConcept; |
5357 | assert(TypeConstraintConcept || AutoTypeBits.NumArgs == 0); |
5358 | if (TypeConstraintConcept) { |
5359 | auto *ArgBuffer = |
5360 | const_cast<TemplateArgument *>(getTypeConstraintArguments().data()); |
5361 | for (const TemplateArgument &Arg : TypeConstraintArgs) { |
5362 | // We only syntactically depend on the constraint arguments. They don't |
5363 | // affect the deduced type, only its validity. |
5364 | addDependence( |
5365 | toSyntacticDependence(D: toTypeDependence(D: Arg.getDependence()))); |
5366 | |
5367 | new (ArgBuffer++) TemplateArgument(Arg); |
5368 | } |
5369 | } |
5370 | } |
5371 | |
5372 | void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
5373 | QualType Deduced, AutoTypeKeyword Keyword, |
5374 | bool IsDependent, ConceptDecl *CD, |
5375 | ArrayRef<TemplateArgument> Arguments) { |
5376 | ID.AddPointer(Ptr: Deduced.getAsOpaquePtr()); |
5377 | ID.AddInteger(I: (unsigned)Keyword); |
5378 | ID.AddBoolean(B: IsDependent); |
5379 | ID.AddPointer(Ptr: CD); |
5380 | for (const TemplateArgument &Arg : Arguments) |
5381 | Arg.Profile(ID, Context); |
5382 | } |
5383 | |
5384 | void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) { |
5385 | Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(), |
5386 | getTypeConstraintConcept(), getTypeConstraintArguments()); |
5387 | } |
5388 | |
5389 | FunctionEffect::Kind FunctionEffect::oppositeKind() const { |
5390 | switch (kind()) { |
5391 | case Kind::NonBlocking: |
5392 | return Kind::Blocking; |
5393 | case Kind::Blocking: |
5394 | return Kind::NonBlocking; |
5395 | case Kind::NonAllocating: |
5396 | return Kind::Allocating; |
5397 | case Kind::Allocating: |
5398 | return Kind::NonAllocating; |
5399 | } |
5400 | llvm_unreachable("unknown effect kind"); |
5401 | } |
5402 | |
5403 | StringRef FunctionEffect::name() const { |
5404 | switch (kind()) { |
5405 | case Kind::NonBlocking: |
5406 | return "nonblocking"; |
5407 | case Kind::NonAllocating: |
5408 | return "nonallocating"; |
5409 | case Kind::Blocking: |
5410 | return "blocking"; |
5411 | case Kind::Allocating: |
5412 | return "allocating"; |
5413 | } |
5414 | llvm_unreachable("unknown effect kind"); |
5415 | } |
5416 | |
5417 | std::optional<FunctionEffect> FunctionEffect::effectProhibitingInference( |
5418 | const Decl &Callee, FunctionEffectKindSet CalleeFX) const { |
5419 | switch (kind()) { |
5420 | case Kind::NonAllocating: |
5421 | case Kind::NonBlocking: { |
5422 | for (FunctionEffect Effect : CalleeFX) { |
5423 | // nonblocking/nonallocating cannot call allocating. |
5424 | if (Effect.kind() == Kind::Allocating) |
5425 | return Effect; |
5426 | // nonblocking cannot call blocking. |
5427 | if (kind() == Kind::NonBlocking && Effect.kind() == Kind::Blocking) |
5428 | return Effect; |
5429 | } |
5430 | return std::nullopt; |
5431 | } |
5432 | |
5433 | case Kind::Allocating: |
5434 | case Kind::Blocking: |
5435 | assert(0 && "effectProhibitingInference with non-inferable effect kind"); |
5436 | break; |
5437 | } |
5438 | llvm_unreachable("unknown effect kind"); |
5439 | } |
5440 | |
5441 | bool FunctionEffect::shouldDiagnoseFunctionCall( |
5442 | bool Direct, FunctionEffectKindSet CalleeFX) const { |
5443 | switch (kind()) { |
5444 | case Kind::NonAllocating: |
5445 | case Kind::NonBlocking: { |
5446 | const Kind CallerKind = kind(); |
5447 | for (FunctionEffect Effect : CalleeFX) { |
5448 | const Kind EK = Effect.kind(); |
5449 | // Does callee have same or stronger constraint? |
5450 | if (EK == CallerKind || |
5451 | (CallerKind == Kind::NonAllocating && EK == Kind::NonBlocking)) { |
5452 | return false; // no diagnostic |
5453 | } |
5454 | } |
5455 | return true; // warning |
5456 | } |
5457 | case Kind::Allocating: |
5458 | case Kind::Blocking: |
5459 | return false; |
5460 | } |
5461 | llvm_unreachable("unknown effect kind"); |
5462 | } |
5463 | |
5464 | // ===== |
5465 | |
5466 | bool FunctionEffectSet::insert(const FunctionEffectWithCondition &NewEC, |
5467 | Conflicts &Errs) { |
5468 | FunctionEffect::Kind NewOppositeKind = NewEC.Effect.oppositeKind(); |
5469 | Expr *NewCondition = NewEC.Cond.getCondition(); |
5470 | |
5471 | // The index at which insertion will take place; default is at end |
5472 | // but we might find an earlier insertion point. |
5473 | unsigned InsertIdx = Effects.size(); |
5474 | unsigned Idx = 0; |
5475 | for (const FunctionEffectWithCondition &EC : *this) { |
5476 | // Note about effects with conditions: They are considered distinct from |
5477 | // those without conditions; they are potentially unique, redundant, or |
5478 | // in conflict, but we can't tell which until the condition is evaluated. |
5479 | if (EC.Cond.getCondition() == nullptr && NewCondition == nullptr) { |
5480 | if (EC.Effect.kind() == NewEC.Effect.kind()) { |
5481 | // There is no condition, and the effect kind is already present, |
5482 | // so just fail to insert the new one (creating a duplicate), |
5483 | // and return success. |
5484 | return true; |
5485 | } |
5486 | |
5487 | if (EC.Effect.kind() == NewOppositeKind) { |
5488 | Errs.push_back({EC, NewEC}); |
5489 | return false; |
5490 | } |
5491 | } |
5492 | |
5493 | if (NewEC.Effect.kind() < EC.Effect.kind() && InsertIdx > Idx) |
5494 | InsertIdx = Idx; |
5495 | |
5496 | ++Idx; |
5497 | } |
5498 | |
5499 | if (NewCondition || !Conditions.empty()) { |
5500 | if (Conditions.empty() && !Effects.empty()) |
5501 | Conditions.resize(Effects.size()); |
5502 | Conditions.insert(Conditions.begin() + InsertIdx, |
5503 | NewEC.Cond.getCondition()); |
5504 | } |
5505 | Effects.insert(Effects.begin() + InsertIdx, NewEC.Effect); |
5506 | return true; |
5507 | } |
5508 | |
5509 | bool FunctionEffectSet::insert(const FunctionEffectsRef &Set, Conflicts &Errs) { |
5510 | for (const auto &Item : Set) |
5511 | insert(Item, Errs); |
5512 | return Errs.empty(); |
5513 | } |
5514 | |
5515 | FunctionEffectSet FunctionEffectSet::getIntersection(FunctionEffectsRef LHS, |
5516 | FunctionEffectsRef RHS) { |
5517 | FunctionEffectSet Result; |
5518 | FunctionEffectSet::Conflicts Errs; |
5519 | |
5520 | // We could use std::set_intersection but that would require expanding the |
5521 | // container interface to include push_back, making it available to clients |
5522 | // who might fail to maintain invariants. |
5523 | auto IterA = LHS.begin(), EndA = LHS.end(); |
5524 | auto IterB = RHS.begin(), EndB = RHS.end(); |
5525 | |
5526 | auto FEWCLess = [](const FunctionEffectWithCondition &LHS, |
5527 | const FunctionEffectWithCondition &RHS) { |
5528 | return std::tuple(LHS.Effect, uintptr_t(LHS.Cond.getCondition())) < |
5529 | std::tuple(RHS.Effect, uintptr_t(RHS.Cond.getCondition())); |
5530 | }; |
5531 | |
5532 | while (IterA != EndA && IterB != EndB) { |
5533 | FunctionEffectWithCondition A = *IterA; |
5534 | FunctionEffectWithCondition B = *IterB; |
5535 | if (FEWCLess(A, B)) |
5536 | ++IterA; |
5537 | else if (FEWCLess(B, A)) |
5538 | ++IterB; |
5539 | else { |
5540 | Result.insert(A, Errs); |
5541 | ++IterA; |
5542 | ++IterB; |
5543 | } |
5544 | } |
5545 | |
5546 | // Insertion shouldn't be able to fail; that would mean both input |
5547 | // sets contained conflicts. |
5548 | assert(Errs.empty() && "conflict shouldn't be possible in getIntersection"); |
5549 | |
5550 | return Result; |
5551 | } |
5552 | |
5553 | FunctionEffectSet FunctionEffectSet::getUnion(FunctionEffectsRef LHS, |
5554 | FunctionEffectsRef RHS, |
5555 | Conflicts &Errs) { |
5556 | // Optimize for either of the two sets being empty (very common). |
5557 | if (LHS.empty()) |
5558 | return FunctionEffectSet(RHS); |
5559 | |
5560 | FunctionEffectSet Combined(LHS); |
5561 | Combined.insert(RHS, Errs); |
5562 | return Combined; |
5563 | } |
5564 | |
5565 | namespace clang { |
5566 | |
5567 | raw_ostream &operator<<(raw_ostream &OS, |
5568 | const FunctionEffectWithCondition &CFE) { |
5569 | OS << CFE.Effect.name(); |
5570 | if (Expr *E = CFE.Cond.getCondition()) { |
5571 | OS << '('; |
5572 | E->dump(); |
5573 | OS << ')'; |
5574 | } |
5575 | return OS; |
5576 | } |
5577 | |
5578 | } // namespace clang |
5579 | |
5580 | LLVM_DUMP_METHOD void FunctionEffectsRef::dump(llvm::raw_ostream &OS) const { |
5581 | OS << "Effects{"; |
5582 | llvm::interleaveComma(c: *this, os&: OS); |
5583 | OS << "}"; |
5584 | } |
5585 | |
5586 | LLVM_DUMP_METHOD void FunctionEffectSet::dump(llvm::raw_ostream &OS) const { |
5587 | FunctionEffectsRef(*this).dump(OS); |
5588 | } |
5589 | |
5590 | LLVM_DUMP_METHOD void FunctionEffectKindSet::dump(llvm::raw_ostream &OS) const { |
5591 | OS << "Effects{"; |
5592 | llvm::interleaveComma(c: *this, os&: OS); |
5593 | OS << "}"; |
5594 | } |
5595 | |
5596 | FunctionEffectsRef |
5597 | FunctionEffectsRef::create(ArrayRef<FunctionEffect> FX, |
5598 | ArrayRef<EffectConditionExpr> Conds) { |
5599 | assert(llvm::is_sorted(FX) && "effects should be sorted"); |
5600 | assert((Conds.empty() || Conds.size() == FX.size()) && |
5601 | "effects size should match conditions size"); |
5602 | return FunctionEffectsRef(FX, Conds); |
5603 | } |
5604 | |
5605 | std::string FunctionEffectWithCondition::description() const { |
5606 | std::string Result(Effect.name().str()); |
5607 | if (Cond.getCondition() != nullptr) |
5608 | Result += "(expr)"; |
5609 | return Result; |
5610 | } |
5611 | |
5612 | const HLSLAttributedResourceType * |
5613 | HLSLAttributedResourceType::findHandleTypeOnResource(const Type *RT) { |
5614 | // If the type RT is an HLSL resource class, the first field must |
5615 | // be the resource handle of type HLSLAttributedResourceType |
5616 | const clang::Type *Ty = RT->getUnqualifiedDesugaredType(); |
5617 | if (const RecordDecl *RD = Ty->getAsCXXRecordDecl()) { |
5618 | if (!RD->fields().empty()) { |
5619 | const auto &FirstFD = RD->fields().begin(); |
5620 | return dyn_cast<HLSLAttributedResourceType>( |
5621 | FirstFD->getType().getTypePtr()); |
5622 | } |
5623 | } |
5624 | return nullptr; |
5625 | } |
5626 |
Definitions
- isStrictSupersetOf
- isTargetAddressSpaceSupersetOf
- getBaseTypeIdentifier
- mayBeDynamicClass
- mayBeNotDynamicClass
- isConstant
- isNonConstantStorage
- ArrayType
- Create
- getNumAddressingBits
- getNumAddressingBits
- getMaxSizeBits
- Profile
- getConstantArrayType
- DependentSizedArrayType
- Profile
- DependentVectorType
- Profile
- DependentSizedExtVectorType
- Profile
- DependentAddressSpaceType
- Profile
- MatrixType
- ConstantMatrixType
- ConstantMatrixType
- DependentSizedMatrixType
- Profile
- VectorType
- VectorType
- isPackedVectorBoolType
- BitIntType
- DependentBitIntType
- isUnsigned
- getNumBitsExpr
- Profile
- referencesFieldDecls
- Profile
- getArrayElementTypeNoTypeQual
- getDesugaredType
- getSingleStepDesugaredTypeImpl
- getLocallyUnqualifiedSingleStepDesugaredType
- getSplitDesugaredType
- getSplitUnqualifiedTypeImpl
- IgnoreParens
- getAsSugar
- getAs
- getAs
- getAs
- getAs
- getAs
- getAs
- getUnqualifiedDesugaredType
- isClassType
- isStructureType
- isStructureTypeWithFlexibleArrayMember
- isObjCBoxableRecordType
- isInterfaceType
- isStructureOrClassType
- isVoidPointerType
- isUnionType
- isComplexType
- isComplexIntegerType
- isScopedEnumeralType
- isCountAttributedType
- getAsComplexIntegerType
- getPointeeType
- getAsStructureType
- getAsUnionType
- isObjCIdOrObjectKindOfType
- isObjCClassOrClassKindOfType
- ObjCTypeParamType
- ObjCObjectType
- isSpecialized
- getTypeArgs
- isKindOfType
- stripObjCKindOfTypeAndQuals
- getDecl
- stripObjCKindOfTypeAndQuals
- SimpleTransformVisitor
- recurse
- SimpleTransformVisitor
- VisitComplexType
- VisitPointerType
- VisitBlockPointerType
- VisitLValueReferenceType
- VisitRValueReferenceType
- VisitMemberPointerType
- VisitConstantArrayType
- VisitVariableArrayType
- VisitIncompleteArrayType
- VisitVectorType
- VisitExtVectorType
- VisitConstantMatrixType
- VisitFunctionNoProtoType
- VisitFunctionProtoType
- VisitParenType
- VisitAdjustedType
- VisitDecayedType
- VisitArrayParameterType
- VisitAttributedType
- VisitSubstTemplateTypeParmType
- VisitAutoType
- VisitObjCObjectType
- VisitObjCObjectPointerType
- VisitAtomicType
- SubstObjCTypeArgsVisitor
- SubstObjCTypeArgsVisitor
- VisitObjCTypeParamType
- VisitFunctionType
- VisitObjCObjectType
- VisitAttributedType
- StripObjCKindOfTypeVisitor
- StripObjCKindOfTypeVisitor
- VisitObjCObjectType
- UseExcessPrecision
- substObjCTypeArgs
- substObjCMemberType
- stripObjCKindOfType
- getAtomicUnqualifiedType
- getObjCSubstitutions
- acceptsObjCTypeParams
- computeSuperClassTypeSlow
- getInterfaceType
- getSuperClassType
- getAsObjCQualifiedInterfaceType
- isObjCQualifiedInterfaceType
- getAsObjCQualifiedIdType
- getAsObjCQualifiedClassType
- getAsObjCInterfaceType
- getAsObjCInterfacePointerType
- getPointeeCXXRecordDecl
- getAsCXXRecordDecl
- getAsRecordDecl
- getAsTagDecl
- getAsNonAliasTemplateSpecializationType
- hasAttr
- GetContainedDeducedTypeVisitor
- GetContainedDeducedTypeVisitor
- Visit
- VisitDeducedType
- VisitSubstTemplateTypeParmType
- VisitElaboratedType
- VisitPointerType
- VisitBlockPointerType
- VisitReferenceType
- VisitMemberPointerType
- VisitArrayType
- VisitDependentSizedExtVectorType
- VisitVectorType
- VisitDependentSizedMatrixType
- VisitConstantMatrixType
- VisitFunctionProtoType
- VisitFunctionType
- VisitParenType
- VisitAttributedType
- VisitMacroQualifiedType
- VisitAdjustedType
- VisitPackExpansionType
- getContainedDeducedType
- hasAutoForTrailingReturnType
- hasIntegerRepresentation
- isIntegralType
- isIntegralOrUnscopedEnumerationType
- isUnscopedEnumerationType
- isCharType
- isWideCharType
- isChar8Type
- isChar16Type
- isChar32Type
- isAnyCharacterType
- isUnicodeCharacterType
- isSignedIntegerType
- isSignedIntegerOrEnumerationType
- hasSignedIntegerRepresentation
- isUnsignedIntegerType
- isUnsignedIntegerOrEnumerationType
- hasUnsignedIntegerRepresentation
- isFloatingType
- hasFloatingRepresentation
- isRealFloatingType
- isRealType
- isArithmeticType
- hasBooleanRepresentation
- getScalarTypeKind
- isAggregateType
- isConstantSizeType
- isIncompleteType
- isAlwaysIncompleteType
- isSizelessBuiltinType
- isWebAssemblyExternrefType
- isWebAssemblyTableType
- isSizelessType
- isSizelessVectorType
- isSVESizelessBuiltinType
- isRVVSizelessBuiltinType
- isSveVLSBuiltinType
- getSizelessVectorEltType
- getSveEltType
- isRVVVLSBuiltinType
- getRVVEltType
- isPODType
- isCXX98PODType
- isTrivialType
- isTriviallyCopyableTypeImpl
- isTriviallyCopyableType
- isBitwiseCloneableType
- isTriviallyCopyConstructibleType
- isNonWeakInMRRWithObjCWeak
- hasNonTrivialToPrimitiveDefaultInitializeCUnion
- hasNonTrivialToPrimitiveDestructCUnion
- hasNonTrivialToPrimitiveCopyCUnion
- isWebAssemblyReferenceType
- isWebAssemblyExternrefType
- isWebAssemblyFuncrefType
- isNonTrivialToPrimitiveDefaultInitialize
- isNonTrivialToPrimitiveCopy
- isNonTrivialToPrimitiveDestructiveMove
- isLiteralType
- isStructuralType
- isStandardLayoutType
- isCXX11PODType
- isNothrowT
- isAlignValT
- isStdByteType
- isSpecifierType
- getKeywordForTypeSpec
- getTagTypeKindForTypeSpec
- getKeywordForTagTypeKind
- getTagTypeKindForKeyword
- KeywordIsTagTypeKind
- getKeywordName
- DependentTemplateSpecializationType
- Profile
- isElaboratedTypeSpecifier
- getTypeClassName
- getName
- getNonPackExpansionType
- getNonLValueExprType
- getCFIUncheckedCalleeAttr
- getNameForCallConv
- instantiate
- FunctionProtoType
- hasDependentExceptionSpec
- hasInstantiationDependentExceptionSpec
- canThrow
- isTemplateVariadic
- Profile
- Profile
- TypeCoupledDeclRefInfo
- isDeref
- getDecl
- getInt
- getOpaqueValue
- operator==
- setFromOpaqueValue
- BoundsAttributedType
- CountAttributedType
- getAttributeName
- TypedefType
- desugar
- UsingType
- getUnderlyingType
- desugar
- getModifiedType
- TypeOfExprType
- isSugared
- desugar
- Profile
- TypeOfType
- desugar
- DecltypeType
- isSugared
- desugar
- DependentDecltypeType
- Profile
- PackIndexingType
- getSelectedIndex
- computeDependence
- Profile
- Profile
- UnaryTransformType
- TagType
- getInterestingTagDecl
- getDecl
- isBeingDefined
- hasConstFields
- AttributedType
- AttributedType
- isQualifier
- isMSTypeSpec
- isWebAssemblyFuncrefSpec
- isCallingConv
- getDecl
- getIdentifier
- getReplacedParameter
- SubstTemplateTypeParmType
- getReplacedParameter
- Profile
- SubstTemplateTypeParmPackType
- getAssociatedDecl
- getFinal
- getReplacedParameter
- getIdentifier
- getArgumentPack
- Profile
- Profile
- anyDependentTemplateArguments
- anyDependentTemplateArguments
- anyInstantiationDependentTemplateArguments
- TemplateSpecializationType
- getAliasedType
- Profile
- Profile
- apply
- apply
- Profile
- Profile
- Profile
- Profile
- CachedProperties
- CachedProperties
- getLinkage
- hasLocalOrUnnamedType
- merge
- TypePropertyCache
- get
- get
- ensure
- Private
- computeCachedProperties
- getLinkage
- hasUnnamedOrLocalType
- computeTypeLinkageInfo
- isLinkageValid
- getTypeLinkageAndVisibility
- getLinkageAndVisibility
- getNullability
- canHaveNullability
- getImmediateNullability
- stripOuterNullability
- isSignableIntegerType
- isBlockCompatibleObjCPointerType
- getObjCARCImplicitLifetime
- isObjCARCImplicitlyUnretainedType
- isObjCNSObjectType
- isObjCIndependentClassType
- isObjCRetainableType
- isObjCIndirectLifetimeType
- isObjCLifetimeType
- isObjCARCBridgableType
- isCARCBridgableType
- isCUDADeviceBuiltinSurfaceType
- isCUDADeviceBuiltinTextureType
- hasSizedVLAType
- isHLSLResourceRecord
- isHLSLIntangibleType
- isDestructedTypeImpl
- isSugared
- Profile
- getCXXRecordDecl
- getMostRecentCXXRecordDecl
- FixedPointValueToString
- AutoType
- Profile
- Profile
- oppositeKind
- name
- effectProhibitingInference
- shouldDiagnoseFunctionCall
- insert
- insert
- getIntersection
- getUnion
- operator<<
- dump
- dump
- dump
- create
- description
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more