1 | //===- Type.cpp - Type representation and manipulation --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements type-related functionality. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/Type.h" |
14 | #include "Linkage.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/Attr.h" |
17 | #include "clang/AST/CharUnits.h" |
18 | #include "clang/AST/Decl.h" |
19 | #include "clang/AST/DeclBase.h" |
20 | #include "clang/AST/DeclCXX.h" |
21 | #include "clang/AST/DeclFriend.h" |
22 | #include "clang/AST/DeclObjC.h" |
23 | #include "clang/AST/DeclTemplate.h" |
24 | #include "clang/AST/DependenceFlags.h" |
25 | #include "clang/AST/Expr.h" |
26 | #include "clang/AST/NestedNameSpecifier.h" |
27 | #include "clang/AST/NonTrivialTypeVisitor.h" |
28 | #include "clang/AST/PrettyPrinter.h" |
29 | #include "clang/AST/TemplateBase.h" |
30 | #include "clang/AST/TemplateName.h" |
31 | #include "clang/AST/TypeVisitor.h" |
32 | #include "clang/Basic/AddressSpaces.h" |
33 | #include "clang/Basic/ExceptionSpecificationType.h" |
34 | #include "clang/Basic/IdentifierTable.h" |
35 | #include "clang/Basic/LLVM.h" |
36 | #include "clang/Basic/LangOptions.h" |
37 | #include "clang/Basic/Linkage.h" |
38 | #include "clang/Basic/Specifiers.h" |
39 | #include "clang/Basic/TargetCXXABI.h" |
40 | #include "clang/Basic/TargetInfo.h" |
41 | #include "clang/Basic/Visibility.h" |
42 | #include "llvm/ADT/APInt.h" |
43 | #include "llvm/ADT/APSInt.h" |
44 | #include "llvm/ADT/ArrayRef.h" |
45 | #include "llvm/ADT/FoldingSet.h" |
46 | #include "llvm/ADT/SmallVector.h" |
47 | #include "llvm/Support/Casting.h" |
48 | #include "llvm/Support/ErrorHandling.h" |
49 | #include "llvm/Support/MathExtras.h" |
50 | #include "llvm/TargetParser/RISCVTargetParser.h" |
51 | #include <algorithm> |
52 | #include <cassert> |
53 | #include <cstdint> |
54 | #include <cstring> |
55 | #include <optional> |
56 | #include <type_traits> |
57 | |
58 | using namespace clang; |
59 | |
60 | bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const { |
61 | return (*this != Other) && |
62 | // CVR qualifiers superset |
63 | (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) && |
64 | // ObjC GC qualifiers superset |
65 | ((getObjCGCAttr() == Other.getObjCGCAttr()) || |
66 | (hasObjCGCAttr() && !Other.hasObjCGCAttr())) && |
67 | // Address space superset. |
68 | ((getAddressSpace() == Other.getAddressSpace()) || |
69 | (hasAddressSpace()&& !Other.hasAddressSpace())) && |
70 | // Lifetime qualifier superset. |
71 | ((getObjCLifetime() == Other.getObjCLifetime()) || |
72 | (hasObjCLifetime() && !Other.hasObjCLifetime())); |
73 | } |
74 | |
75 | const IdentifierInfo* QualType::getBaseTypeIdentifier() const { |
76 | const Type* ty = getTypePtr(); |
77 | NamedDecl *ND = nullptr; |
78 | if (ty->isPointerType() || ty->isReferenceType()) |
79 | return ty->getPointeeType().getBaseTypeIdentifier(); |
80 | else if (ty->isRecordType()) |
81 | ND = ty->castAs<RecordType>()->getDecl(); |
82 | else if (ty->isEnumeralType()) |
83 | ND = ty->castAs<EnumType>()->getDecl(); |
84 | else if (ty->getTypeClass() == Type::Typedef) |
85 | ND = ty->castAs<TypedefType>()->getDecl(); |
86 | else if (ty->isArrayType()) |
87 | return ty->castAsArrayTypeUnsafe()-> |
88 | getElementType().getBaseTypeIdentifier(); |
89 | |
90 | if (ND) |
91 | return ND->getIdentifier(); |
92 | return nullptr; |
93 | } |
94 | |
95 | bool QualType::mayBeDynamicClass() const { |
96 | const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl(); |
97 | return ClassDecl && ClassDecl->mayBeDynamicClass(); |
98 | } |
99 | |
100 | bool QualType::mayBeNotDynamicClass() const { |
101 | const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl(); |
102 | return !ClassDecl || ClassDecl->mayBeNonDynamicClass(); |
103 | } |
104 | |
105 | bool QualType::isConstant(QualType T, const ASTContext &Ctx) { |
106 | if (T.isConstQualified()) |
107 | return true; |
108 | |
109 | if (const ArrayType *AT = Ctx.getAsArrayType(T)) |
110 | return AT->getElementType().isConstant(Ctx); |
111 | |
112 | return T.getAddressSpace() == LangAS::opencl_constant; |
113 | } |
114 | |
115 | std::optional<QualType::NonConstantStorageReason> |
116 | QualType::isNonConstantStorage(const ASTContext &Ctx, bool ExcludeCtor, |
117 | bool ExcludeDtor) { |
118 | if (!isConstant(Ctx) && !(*this)->isReferenceType()) |
119 | return NonConstantStorageReason::NonConstNonReferenceType; |
120 | if (!Ctx.getLangOpts().CPlusPlus) |
121 | return std::nullopt; |
122 | if (const CXXRecordDecl *Record = |
123 | Ctx.getBaseElementType(QT: *this)->getAsCXXRecordDecl()) { |
124 | if (!ExcludeCtor) |
125 | return NonConstantStorageReason::NonTrivialCtor; |
126 | if (Record->hasMutableFields()) |
127 | return NonConstantStorageReason::MutableField; |
128 | if (!Record->hasTrivialDestructor() && !ExcludeDtor) |
129 | return NonConstantStorageReason::NonTrivialDtor; |
130 | } |
131 | return std::nullopt; |
132 | } |
133 | |
134 | // C++ [temp.dep.type]p1: |
135 | // A type is dependent if it is... |
136 | // - an array type constructed from any dependent type or whose |
137 | // size is specified by a constant expression that is |
138 | // value-dependent, |
139 | ArrayType::ArrayType(TypeClass tc, QualType et, QualType can, |
140 | ArraySizeModifier sm, unsigned tq, const Expr *sz) |
141 | // Note, we need to check for DependentSizedArrayType explicitly here |
142 | // because we use a DependentSizedArrayType with no size expression as the |
143 | // type of a dependent array of unknown bound with a dependent braced |
144 | // initializer: |
145 | // |
146 | // template<int ...N> int arr[] = {N...}; |
147 | : Type(tc, can, |
148 | et->getDependence() | |
149 | (sz ? toTypeDependence( |
150 | turnValueToTypeDependence(sz->getDependence())) |
151 | : TypeDependence::None) | |
152 | (tc == VariableArray ? TypeDependence::VariablyModified |
153 | : TypeDependence::None) | |
154 | (tc == DependentSizedArray |
155 | ? TypeDependence::DependentInstantiation |
156 | : TypeDependence::None)), |
157 | ElementType(et) { |
158 | ArrayTypeBits.IndexTypeQuals = tq; |
159 | ArrayTypeBits.SizeModifier = llvm::to_underlying(E: sm); |
160 | } |
161 | |
162 | ConstantArrayType * |
163 | ConstantArrayType::Create(const ASTContext &Ctx, QualType ET, QualType Can, |
164 | const llvm::APInt &Sz, const Expr *SzExpr, |
165 | ArraySizeModifier SzMod, unsigned Qual) { |
166 | bool NeedsExternalSize = SzExpr != nullptr || Sz.ugt(RHS: 0x0FFFFFFFFFFFFFFF) || |
167 | Sz.getBitWidth() > 0xFF; |
168 | if (!NeedsExternalSize) |
169 | return new (Ctx, alignof(ConstantArrayType)) ConstantArrayType( |
170 | ET, Can, Sz.getBitWidth(), Sz.getZExtValue(), SzMod, Qual); |
171 | |
172 | auto *SzPtr = new (Ctx, alignof(ConstantArrayType::ExternalSize)) |
173 | ConstantArrayType::ExternalSize(Sz, SzExpr); |
174 | return new (Ctx, alignof(ConstantArrayType)) |
175 | ConstantArrayType(ET, Can, SzPtr, SzMod, Qual); |
176 | } |
177 | |
178 | unsigned ConstantArrayType::getNumAddressingBits(const ASTContext &Context, |
179 | QualType ElementType, |
180 | const llvm::APInt &NumElements) { |
181 | uint64_t ElementSize = Context.getTypeSizeInChars(T: ElementType).getQuantity(); |
182 | |
183 | // Fast path the common cases so we can avoid the conservative computation |
184 | // below, which in common cases allocates "large" APSInt values, which are |
185 | // slow. |
186 | |
187 | // If the element size is a power of 2, we can directly compute the additional |
188 | // number of addressing bits beyond those required for the element count. |
189 | if (llvm::isPowerOf2_64(Value: ElementSize)) { |
190 | return NumElements.getActiveBits() + llvm::Log2_64(Value: ElementSize); |
191 | } |
192 | |
193 | // If both the element count and element size fit in 32-bits, we can do the |
194 | // computation directly in 64-bits. |
195 | if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 && |
196 | (NumElements.getZExtValue() >> 32) == 0) { |
197 | uint64_t TotalSize = NumElements.getZExtValue() * ElementSize; |
198 | return llvm::bit_width(Value: TotalSize); |
199 | } |
200 | |
201 | // Otherwise, use APSInt to handle arbitrary sized values. |
202 | llvm::APSInt SizeExtended(NumElements, true); |
203 | unsigned SizeTypeBits = Context.getTypeSize(T: Context.getSizeType()); |
204 | SizeExtended = SizeExtended.extend(width: std::max(a: SizeTypeBits, |
205 | b: SizeExtended.getBitWidth()) * 2); |
206 | |
207 | llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize)); |
208 | TotalSize *= SizeExtended; |
209 | |
210 | return TotalSize.getActiveBits(); |
211 | } |
212 | |
213 | unsigned |
214 | ConstantArrayType::getNumAddressingBits(const ASTContext &Context) const { |
215 | return getNumAddressingBits(Context, getElementType(), getSize()); |
216 | } |
217 | |
218 | unsigned ConstantArrayType::getMaxSizeBits(const ASTContext &Context) { |
219 | unsigned Bits = Context.getTypeSize(T: Context.getSizeType()); |
220 | |
221 | // Limit the number of bits in size_t so that maximal bit size fits 64 bit |
222 | // integer (see PR8256). We can do this as currently there is no hardware |
223 | // that supports full 64-bit virtual space. |
224 | if (Bits > 61) |
225 | Bits = 61; |
226 | |
227 | return Bits; |
228 | } |
229 | |
230 | void ConstantArrayType::Profile(llvm::FoldingSetNodeID &ID, |
231 | const ASTContext &Context, QualType ET, |
232 | uint64_t ArraySize, const Expr *SizeExpr, |
233 | ArraySizeModifier SizeMod, unsigned TypeQuals) { |
234 | ID.AddPointer(Ptr: ET.getAsOpaquePtr()); |
235 | ID.AddInteger(I: ArraySize); |
236 | ID.AddInteger(I: llvm::to_underlying(E: SizeMod)); |
237 | ID.AddInteger(I: TypeQuals); |
238 | ID.AddBoolean(B: SizeExpr != nullptr); |
239 | if (SizeExpr) |
240 | SizeExpr->Profile(ID, Context, true); |
241 | } |
242 | |
243 | DependentSizedArrayType::DependentSizedArrayType(QualType et, QualType can, |
244 | Expr *e, ArraySizeModifier sm, |
245 | unsigned tq, |
246 | SourceRange brackets) |
247 | : ArrayType(DependentSizedArray, et, can, sm, tq, e), SizeExpr((Stmt *)e), |
248 | Brackets(brackets) {} |
249 | |
250 | void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID, |
251 | const ASTContext &Context, |
252 | QualType ET, |
253 | ArraySizeModifier SizeMod, |
254 | unsigned TypeQuals, |
255 | Expr *E) { |
256 | ID.AddPointer(Ptr: ET.getAsOpaquePtr()); |
257 | ID.AddInteger(I: llvm::to_underlying(E: SizeMod)); |
258 | ID.AddInteger(I: TypeQuals); |
259 | E->Profile(ID, Context, true); |
260 | } |
261 | |
262 | DependentVectorType::DependentVectorType(QualType ElementType, |
263 | QualType CanonType, Expr *SizeExpr, |
264 | SourceLocation Loc, VectorKind VecKind) |
265 | : Type(DependentVector, CanonType, |
266 | TypeDependence::DependentInstantiation | |
267 | ElementType->getDependence() | |
268 | (SizeExpr ? toTypeDependence(SizeExpr->getDependence()) |
269 | : TypeDependence::None)), |
270 | ElementType(ElementType), SizeExpr(SizeExpr), Loc(Loc) { |
271 | VectorTypeBits.VecKind = llvm::to_underlying(E: VecKind); |
272 | } |
273 | |
274 | void DependentVectorType::Profile(llvm::FoldingSetNodeID &ID, |
275 | const ASTContext &Context, |
276 | QualType ElementType, const Expr *SizeExpr, |
277 | VectorKind VecKind) { |
278 | ID.AddPointer(Ptr: ElementType.getAsOpaquePtr()); |
279 | ID.AddInteger(I: llvm::to_underlying(E: VecKind)); |
280 | SizeExpr->Profile(ID, Context, true); |
281 | } |
282 | |
283 | DependentSizedExtVectorType::DependentSizedExtVectorType(QualType ElementType, |
284 | QualType can, |
285 | Expr *SizeExpr, |
286 | SourceLocation loc) |
287 | : Type(DependentSizedExtVector, can, |
288 | TypeDependence::DependentInstantiation | |
289 | ElementType->getDependence() | |
290 | (SizeExpr ? toTypeDependence(SizeExpr->getDependence()) |
291 | : TypeDependence::None)), |
292 | SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {} |
293 | |
294 | void |
295 | DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID, |
296 | const ASTContext &Context, |
297 | QualType ElementType, Expr *SizeExpr) { |
298 | ID.AddPointer(Ptr: ElementType.getAsOpaquePtr()); |
299 | SizeExpr->Profile(ID, Context, true); |
300 | } |
301 | |
302 | DependentAddressSpaceType::DependentAddressSpaceType(QualType PointeeType, |
303 | QualType can, |
304 | Expr *AddrSpaceExpr, |
305 | SourceLocation loc) |
306 | : Type(DependentAddressSpace, can, |
307 | TypeDependence::DependentInstantiation | |
308 | PointeeType->getDependence() | |
309 | (AddrSpaceExpr ? toTypeDependence(AddrSpaceExpr->getDependence()) |
310 | : TypeDependence::None)), |
311 | AddrSpaceExpr(AddrSpaceExpr), PointeeType(PointeeType), loc(loc) {} |
312 | |
313 | void DependentAddressSpaceType::Profile(llvm::FoldingSetNodeID &ID, |
314 | const ASTContext &Context, |
315 | QualType PointeeType, |
316 | Expr *AddrSpaceExpr) { |
317 | ID.AddPointer(Ptr: PointeeType.getAsOpaquePtr()); |
318 | AddrSpaceExpr->Profile(ID, Context, true); |
319 | } |
320 | |
321 | MatrixType::MatrixType(TypeClass tc, QualType matrixType, QualType canonType, |
322 | const Expr *RowExpr, const Expr *ColumnExpr) |
323 | : Type(tc, canonType, |
324 | (RowExpr ? (matrixType->getDependence() | TypeDependence::Dependent | |
325 | TypeDependence::Instantiation | |
326 | (matrixType->isVariablyModifiedType() |
327 | ? TypeDependence::VariablyModified |
328 | : TypeDependence::None) | |
329 | (matrixType->containsUnexpandedParameterPack() || |
330 | (RowExpr && |
331 | RowExpr->containsUnexpandedParameterPack()) || |
332 | (ColumnExpr && |
333 | ColumnExpr->containsUnexpandedParameterPack()) |
334 | ? TypeDependence::UnexpandedPack |
335 | : TypeDependence::None)) |
336 | : matrixType->getDependence())), |
337 | ElementType(matrixType) {} |
338 | |
339 | ConstantMatrixType::ConstantMatrixType(QualType matrixType, unsigned nRows, |
340 | unsigned nColumns, QualType canonType) |
341 | : ConstantMatrixType(ConstantMatrix, matrixType, nRows, nColumns, |
342 | canonType) {} |
343 | |
344 | ConstantMatrixType::ConstantMatrixType(TypeClass tc, QualType matrixType, |
345 | unsigned nRows, unsigned nColumns, |
346 | QualType canonType) |
347 | : MatrixType(tc, matrixType, canonType), NumRows(nRows), |
348 | NumColumns(nColumns) {} |
349 | |
350 | DependentSizedMatrixType::DependentSizedMatrixType(QualType ElementType, |
351 | QualType CanonicalType, |
352 | Expr *RowExpr, |
353 | Expr *ColumnExpr, |
354 | SourceLocation loc) |
355 | : MatrixType(DependentSizedMatrix, ElementType, CanonicalType, RowExpr, |
356 | ColumnExpr), |
357 | RowExpr(RowExpr), ColumnExpr(ColumnExpr), loc(loc) {} |
358 | |
359 | void DependentSizedMatrixType::Profile(llvm::FoldingSetNodeID &ID, |
360 | const ASTContext &CTX, |
361 | QualType ElementType, Expr *RowExpr, |
362 | Expr *ColumnExpr) { |
363 | ID.AddPointer(Ptr: ElementType.getAsOpaquePtr()); |
364 | RowExpr->Profile(ID, CTX, true); |
365 | ColumnExpr->Profile(ID, CTX, true); |
366 | } |
367 | |
368 | VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType, |
369 | VectorKind vecKind) |
370 | : VectorType(Vector, vecType, nElements, canonType, vecKind) {} |
371 | |
372 | VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements, |
373 | QualType canonType, VectorKind vecKind) |
374 | : Type(tc, canonType, vecType->getDependence()), ElementType(vecType) { |
375 | VectorTypeBits.VecKind = llvm::to_underlying(E: vecKind); |
376 | VectorTypeBits.NumElements = nElements; |
377 | } |
378 | |
379 | BitIntType::BitIntType(bool IsUnsigned, unsigned NumBits) |
380 | : Type(BitInt, QualType{}, TypeDependence::None), IsUnsigned(IsUnsigned), |
381 | NumBits(NumBits) {} |
382 | |
383 | DependentBitIntType::DependentBitIntType(bool IsUnsigned, Expr *NumBitsExpr) |
384 | : Type(DependentBitInt, QualType{}, |
385 | toTypeDependence(NumBitsExpr->getDependence())), |
386 | ExprAndUnsigned(NumBitsExpr, IsUnsigned) {} |
387 | |
388 | bool DependentBitIntType::isUnsigned() const { |
389 | return ExprAndUnsigned.getInt(); |
390 | } |
391 | |
392 | clang::Expr *DependentBitIntType::getNumBitsExpr() const { |
393 | return ExprAndUnsigned.getPointer(); |
394 | } |
395 | |
396 | void DependentBitIntType::Profile(llvm::FoldingSetNodeID &ID, |
397 | const ASTContext &Context, bool IsUnsigned, |
398 | Expr *NumBitsExpr) { |
399 | ID.AddBoolean(B: IsUnsigned); |
400 | NumBitsExpr->Profile(ID, Context, true); |
401 | } |
402 | |
403 | bool BoundsAttributedType::referencesFieldDecls() const { |
404 | return llvm::any_of(Range: dependent_decls(), |
405 | P: [](const TypeCoupledDeclRefInfo &Info) { |
406 | return isa<FieldDecl>(Val: Info.getDecl()); |
407 | }); |
408 | } |
409 | |
410 | void CountAttributedType::Profile(llvm::FoldingSetNodeID &ID, |
411 | QualType WrappedTy, Expr *CountExpr, |
412 | bool CountInBytes, bool OrNull) { |
413 | ID.AddPointer(Ptr: WrappedTy.getAsOpaquePtr()); |
414 | ID.AddBoolean(B: CountInBytes); |
415 | ID.AddBoolean(B: OrNull); |
416 | // We profile it as a pointer as the StmtProfiler considers parameter |
417 | // expressions on function declaration and function definition as the |
418 | // same, resulting in count expression being evaluated with ParamDecl |
419 | // not in the function scope. |
420 | ID.AddPointer(Ptr: CountExpr); |
421 | } |
422 | |
423 | /// getArrayElementTypeNoTypeQual - If this is an array type, return the |
424 | /// element type of the array, potentially with type qualifiers missing. |
425 | /// This method should never be used when type qualifiers are meaningful. |
426 | const Type *Type::getArrayElementTypeNoTypeQual() const { |
427 | // If this is directly an array type, return it. |
428 | if (const auto *ATy = dyn_cast<ArrayType>(Val: this)) |
429 | return ATy->getElementType().getTypePtr(); |
430 | |
431 | // If the canonical form of this type isn't the right kind, reject it. |
432 | if (!isa<ArrayType>(CanonicalType)) |
433 | return nullptr; |
434 | |
435 | // If this is a typedef for an array type, strip the typedef off without |
436 | // losing all typedef information. |
437 | return cast<ArrayType>(Val: getUnqualifiedDesugaredType()) |
438 | ->getElementType().getTypePtr(); |
439 | } |
440 | |
441 | /// getDesugaredType - Return the specified type with any "sugar" removed from |
442 | /// the type. This takes off typedefs, typeof's etc. If the outer level of |
443 | /// the type is already concrete, it returns it unmodified. This is similar |
444 | /// to getting the canonical type, but it doesn't remove *all* typedefs. For |
445 | /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is |
446 | /// concrete. |
447 | QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) { |
448 | SplitQualType split = getSplitDesugaredType(T); |
449 | return Context.getQualifiedType(T: split.Ty, Qs: split.Quals); |
450 | } |
451 | |
452 | QualType QualType::getSingleStepDesugaredTypeImpl(QualType type, |
453 | const ASTContext &Context) { |
454 | SplitQualType split = type.split(); |
455 | QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType(); |
456 | return Context.getQualifiedType(T: desugar, Qs: split.Quals); |
457 | } |
458 | |
459 | // Check that no type class is polymorphic. LLVM style RTTI should be used |
460 | // instead. If absolutely needed an exception can still be added here by |
461 | // defining the appropriate macro (but please don't do this). |
462 | #define TYPE(CLASS, BASE) \ |
463 | static_assert(!std::is_polymorphic<CLASS##Type>::value, \ |
464 | #CLASS "Type should not be polymorphic!"); |
465 | #include "clang/AST/TypeNodes.inc" |
466 | |
467 | // Check that no type class has a non-trival destructor. Types are |
468 | // allocated with the BumpPtrAllocator from ASTContext and therefore |
469 | // their destructor is not executed. |
470 | #define TYPE(CLASS, BASE) \ |
471 | static_assert(std::is_trivially_destructible<CLASS##Type>::value, \ |
472 | #CLASS "Type should be trivially destructible!"); |
473 | #include "clang/AST/TypeNodes.inc" |
474 | |
475 | QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const { |
476 | switch (getTypeClass()) { |
477 | #define ABSTRACT_TYPE(Class, Parent) |
478 | #define TYPE(Class, Parent) \ |
479 | case Type::Class: { \ |
480 | const auto *ty = cast<Class##Type>(this); \ |
481 | if (!ty->isSugared()) return QualType(ty, 0); \ |
482 | return ty->desugar(); \ |
483 | } |
484 | #include "clang/AST/TypeNodes.inc" |
485 | } |
486 | llvm_unreachable("bad type kind!" ); |
487 | } |
488 | |
489 | SplitQualType QualType::getSplitDesugaredType(QualType T) { |
490 | QualifierCollector Qs; |
491 | |
492 | QualType Cur = T; |
493 | while (true) { |
494 | const Type *CurTy = Qs.strip(type: Cur); |
495 | switch (CurTy->getTypeClass()) { |
496 | #define ABSTRACT_TYPE(Class, Parent) |
497 | #define TYPE(Class, Parent) \ |
498 | case Type::Class: { \ |
499 | const auto *Ty = cast<Class##Type>(CurTy); \ |
500 | if (!Ty->isSugared()) \ |
501 | return SplitQualType(Ty, Qs); \ |
502 | Cur = Ty->desugar(); \ |
503 | break; \ |
504 | } |
505 | #include "clang/AST/TypeNodes.inc" |
506 | } |
507 | } |
508 | } |
509 | |
510 | SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) { |
511 | SplitQualType split = type.split(); |
512 | |
513 | // All the qualifiers we've seen so far. |
514 | Qualifiers quals = split.Quals; |
515 | |
516 | // The last type node we saw with any nodes inside it. |
517 | const Type *lastTypeWithQuals = split.Ty; |
518 | |
519 | while (true) { |
520 | QualType next; |
521 | |
522 | // Do a single-step desugar, aborting the loop if the type isn't |
523 | // sugared. |
524 | switch (split.Ty->getTypeClass()) { |
525 | #define ABSTRACT_TYPE(Class, Parent) |
526 | #define TYPE(Class, Parent) \ |
527 | case Type::Class: { \ |
528 | const auto *ty = cast<Class##Type>(split.Ty); \ |
529 | if (!ty->isSugared()) goto done; \ |
530 | next = ty->desugar(); \ |
531 | break; \ |
532 | } |
533 | #include "clang/AST/TypeNodes.inc" |
534 | } |
535 | |
536 | // Otherwise, split the underlying type. If that yields qualifiers, |
537 | // update the information. |
538 | split = next.split(); |
539 | if (!split.Quals.empty()) { |
540 | lastTypeWithQuals = split.Ty; |
541 | quals.addConsistentQualifiers(qs: split.Quals); |
542 | } |
543 | } |
544 | |
545 | done: |
546 | return SplitQualType(lastTypeWithQuals, quals); |
547 | } |
548 | |
549 | QualType QualType::IgnoreParens(QualType T) { |
550 | // FIXME: this seems inherently un-qualifiers-safe. |
551 | while (const auto *PT = T->getAs<ParenType>()) |
552 | T = PT->getInnerType(); |
553 | return T; |
554 | } |
555 | |
556 | /// This will check for a T (which should be a Type which can act as |
557 | /// sugar, such as a TypedefType) by removing any existing sugar until it |
558 | /// reaches a T or a non-sugared type. |
559 | template<typename T> static const T *getAsSugar(const Type *Cur) { |
560 | while (true) { |
561 | if (const auto *Sugar = dyn_cast<T>(Cur)) |
562 | return Sugar; |
563 | switch (Cur->getTypeClass()) { |
564 | #define ABSTRACT_TYPE(Class, Parent) |
565 | #define TYPE(Class, Parent) \ |
566 | case Type::Class: { \ |
567 | const auto *Ty = cast<Class##Type>(Cur); \ |
568 | if (!Ty->isSugared()) return 0; \ |
569 | Cur = Ty->desugar().getTypePtr(); \ |
570 | break; \ |
571 | } |
572 | #include "clang/AST/TypeNodes.inc" |
573 | } |
574 | } |
575 | } |
576 | |
577 | template <> const TypedefType *Type::getAs() const { |
578 | return getAsSugar<TypedefType>(this); |
579 | } |
580 | |
581 | template <> const UsingType *Type::getAs() const { |
582 | return getAsSugar<UsingType>(Cur: this); |
583 | } |
584 | |
585 | template <> const TemplateSpecializationType *Type::getAs() const { |
586 | return getAsSugar<TemplateSpecializationType>(Cur: this); |
587 | } |
588 | |
589 | template <> const AttributedType *Type::getAs() const { |
590 | return getAsSugar<AttributedType>(Cur: this); |
591 | } |
592 | |
593 | template <> const BoundsAttributedType *Type::getAs() const { |
594 | return getAsSugar<BoundsAttributedType>(Cur: this); |
595 | } |
596 | |
597 | template <> const CountAttributedType *Type::getAs() const { |
598 | return getAsSugar<CountAttributedType>(Cur: this); |
599 | } |
600 | |
601 | /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic |
602 | /// sugar off the given type. This should produce an object of the |
603 | /// same dynamic type as the canonical type. |
604 | const Type *Type::getUnqualifiedDesugaredType() const { |
605 | const Type *Cur = this; |
606 | |
607 | while (true) { |
608 | switch (Cur->getTypeClass()) { |
609 | #define ABSTRACT_TYPE(Class, Parent) |
610 | #define TYPE(Class, Parent) \ |
611 | case Class: { \ |
612 | const auto *Ty = cast<Class##Type>(Cur); \ |
613 | if (!Ty->isSugared()) return Cur; \ |
614 | Cur = Ty->desugar().getTypePtr(); \ |
615 | break; \ |
616 | } |
617 | #include "clang/AST/TypeNodes.inc" |
618 | } |
619 | } |
620 | } |
621 | |
622 | bool Type::isClassType() const { |
623 | if (const auto *RT = getAs<RecordType>()) |
624 | return RT->getDecl()->isClass(); |
625 | return false; |
626 | } |
627 | |
628 | bool Type::isStructureType() const { |
629 | if (const auto *RT = getAs<RecordType>()) |
630 | return RT->getDecl()->isStruct(); |
631 | return false; |
632 | } |
633 | |
634 | bool Type::isObjCBoxableRecordType() const { |
635 | if (const auto *RT = getAs<RecordType>()) |
636 | return RT->getDecl()->hasAttr<ObjCBoxableAttr>(); |
637 | return false; |
638 | } |
639 | |
640 | bool Type::isInterfaceType() const { |
641 | if (const auto *RT = getAs<RecordType>()) |
642 | return RT->getDecl()->isInterface(); |
643 | return false; |
644 | } |
645 | |
646 | bool Type::isStructureOrClassType() const { |
647 | if (const auto *RT = getAs<RecordType>()) { |
648 | RecordDecl *RD = RT->getDecl(); |
649 | return RD->isStruct() || RD->isClass() || RD->isInterface(); |
650 | } |
651 | return false; |
652 | } |
653 | |
654 | bool Type::isVoidPointerType() const { |
655 | if (const auto *PT = getAs<PointerType>()) |
656 | return PT->getPointeeType()->isVoidType(); |
657 | return false; |
658 | } |
659 | |
660 | bool Type::isUnionType() const { |
661 | if (const auto *RT = getAs<RecordType>()) |
662 | return RT->getDecl()->isUnion(); |
663 | return false; |
664 | } |
665 | |
666 | bool Type::isComplexType() const { |
667 | if (const auto *CT = dyn_cast<ComplexType>(CanonicalType)) |
668 | return CT->getElementType()->isFloatingType(); |
669 | return false; |
670 | } |
671 | |
672 | bool Type::isComplexIntegerType() const { |
673 | // Check for GCC complex integer extension. |
674 | return getAsComplexIntegerType(); |
675 | } |
676 | |
677 | bool Type::isScopedEnumeralType() const { |
678 | if (const auto *ET = getAs<EnumType>()) |
679 | return ET->getDecl()->isScoped(); |
680 | return false; |
681 | } |
682 | |
683 | bool Type::isCountAttributedType() const { |
684 | return getAs<CountAttributedType>(); |
685 | } |
686 | |
687 | const ComplexType *Type::getAsComplexIntegerType() const { |
688 | if (const auto *Complex = getAs<ComplexType>()) |
689 | if (Complex->getElementType()->isIntegerType()) |
690 | return Complex; |
691 | return nullptr; |
692 | } |
693 | |
694 | QualType Type::getPointeeType() const { |
695 | if (const auto *PT = getAs<PointerType>()) |
696 | return PT->getPointeeType(); |
697 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) |
698 | return OPT->getPointeeType(); |
699 | if (const auto *BPT = getAs<BlockPointerType>()) |
700 | return BPT->getPointeeType(); |
701 | if (const auto *RT = getAs<ReferenceType>()) |
702 | return RT->getPointeeType(); |
703 | if (const auto *MPT = getAs<MemberPointerType>()) |
704 | return MPT->getPointeeType(); |
705 | if (const auto *DT = getAs<DecayedType>()) |
706 | return DT->getPointeeType(); |
707 | return {}; |
708 | } |
709 | |
710 | const RecordType *Type::getAsStructureType() const { |
711 | // If this is directly a structure type, return it. |
712 | if (const auto *RT = dyn_cast<RecordType>(Val: this)) { |
713 | if (RT->getDecl()->isStruct()) |
714 | return RT; |
715 | } |
716 | |
717 | // If the canonical form of this type isn't the right kind, reject it. |
718 | if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) { |
719 | if (!RT->getDecl()->isStruct()) |
720 | return nullptr; |
721 | |
722 | // If this is a typedef for a structure type, strip the typedef off without |
723 | // losing all typedef information. |
724 | return cast<RecordType>(Val: getUnqualifiedDesugaredType()); |
725 | } |
726 | return nullptr; |
727 | } |
728 | |
729 | const RecordType *Type::getAsUnionType() const { |
730 | // If this is directly a union type, return it. |
731 | if (const auto *RT = dyn_cast<RecordType>(Val: this)) { |
732 | if (RT->getDecl()->isUnion()) |
733 | return RT; |
734 | } |
735 | |
736 | // If the canonical form of this type isn't the right kind, reject it. |
737 | if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) { |
738 | if (!RT->getDecl()->isUnion()) |
739 | return nullptr; |
740 | |
741 | // If this is a typedef for a union type, strip the typedef off without |
742 | // losing all typedef information. |
743 | return cast<RecordType>(Val: getUnqualifiedDesugaredType()); |
744 | } |
745 | |
746 | return nullptr; |
747 | } |
748 | |
749 | bool Type::isObjCIdOrObjectKindOfType(const ASTContext &ctx, |
750 | const ObjCObjectType *&bound) const { |
751 | bound = nullptr; |
752 | |
753 | const auto *OPT = getAs<ObjCObjectPointerType>(); |
754 | if (!OPT) |
755 | return false; |
756 | |
757 | // Easy case: id. |
758 | if (OPT->isObjCIdType()) |
759 | return true; |
760 | |
761 | // If it's not a __kindof type, reject it now. |
762 | if (!OPT->isKindOfType()) |
763 | return false; |
764 | |
765 | // If it's Class or qualified Class, it's not an object type. |
766 | if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) |
767 | return false; |
768 | |
769 | // Figure out the type bound for the __kindof type. |
770 | bound = OPT->getObjectType()->stripObjCKindOfTypeAndQuals(ctx) |
771 | ->getAs<ObjCObjectType>(); |
772 | return true; |
773 | } |
774 | |
775 | bool Type::isObjCClassOrClassKindOfType() const { |
776 | const auto *OPT = getAs<ObjCObjectPointerType>(); |
777 | if (!OPT) |
778 | return false; |
779 | |
780 | // Easy case: Class. |
781 | if (OPT->isObjCClassType()) |
782 | return true; |
783 | |
784 | // If it's not a __kindof type, reject it now. |
785 | if (!OPT->isKindOfType()) |
786 | return false; |
787 | |
788 | // If it's Class or qualified Class, it's a class __kindof type. |
789 | return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType(); |
790 | } |
791 | |
792 | ObjCTypeParamType::ObjCTypeParamType(const ObjCTypeParamDecl *D, QualType can, |
793 | ArrayRef<ObjCProtocolDecl *> protocols) |
794 | : Type(ObjCTypeParam, can, toSemanticDependence(can->getDependence())), |
795 | OTPDecl(const_cast<ObjCTypeParamDecl *>(D)) { |
796 | initialize(protocols); |
797 | } |
798 | |
799 | ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base, |
800 | ArrayRef<QualType> typeArgs, |
801 | ArrayRef<ObjCProtocolDecl *> protocols, |
802 | bool isKindOf) |
803 | : Type(ObjCObject, Canonical, Base->getDependence()), BaseType(Base) { |
804 | ObjCObjectTypeBits.IsKindOf = isKindOf; |
805 | |
806 | ObjCObjectTypeBits.NumTypeArgs = typeArgs.size(); |
807 | assert(getTypeArgsAsWritten().size() == typeArgs.size() && |
808 | "bitfield overflow in type argument count" ); |
809 | if (!typeArgs.empty()) |
810 | memcpy(dest: getTypeArgStorage(), src: typeArgs.data(), |
811 | n: typeArgs.size() * sizeof(QualType)); |
812 | |
813 | for (auto typeArg : typeArgs) { |
814 | addDependence(typeArg->getDependence() & ~TypeDependence::VariablyModified); |
815 | } |
816 | // Initialize the protocol qualifiers. The protocol storage is known |
817 | // after we set number of type arguments. |
818 | initialize(protocols); |
819 | } |
820 | |
821 | bool ObjCObjectType::isSpecialized() const { |
822 | // If we have type arguments written here, the type is specialized. |
823 | if (ObjCObjectTypeBits.NumTypeArgs > 0) |
824 | return true; |
825 | |
826 | // Otherwise, check whether the base type is specialized. |
827 | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { |
828 | // Terminate when we reach an interface type. |
829 | if (isa<ObjCInterfaceType>(Val: objcObject)) |
830 | return false; |
831 | |
832 | return objcObject->isSpecialized(); |
833 | } |
834 | |
835 | // Not specialized. |
836 | return false; |
837 | } |
838 | |
839 | ArrayRef<QualType> ObjCObjectType::getTypeArgs() const { |
840 | // We have type arguments written on this type. |
841 | if (isSpecializedAsWritten()) |
842 | return getTypeArgsAsWritten(); |
843 | |
844 | // Look at the base type, which might have type arguments. |
845 | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { |
846 | // Terminate when we reach an interface type. |
847 | if (isa<ObjCInterfaceType>(Val: objcObject)) |
848 | return {}; |
849 | |
850 | return objcObject->getTypeArgs(); |
851 | } |
852 | |
853 | // No type arguments. |
854 | return {}; |
855 | } |
856 | |
857 | bool ObjCObjectType::isKindOfType() const { |
858 | if (isKindOfTypeAsWritten()) |
859 | return true; |
860 | |
861 | // Look at the base type, which might have type arguments. |
862 | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { |
863 | // Terminate when we reach an interface type. |
864 | if (isa<ObjCInterfaceType>(Val: objcObject)) |
865 | return false; |
866 | |
867 | return objcObject->isKindOfType(); |
868 | } |
869 | |
870 | // Not a "__kindof" type. |
871 | return false; |
872 | } |
873 | |
874 | QualType ObjCObjectType::stripObjCKindOfTypeAndQuals( |
875 | const ASTContext &ctx) const { |
876 | if (!isKindOfType() && qual_empty()) |
877 | return QualType(this, 0); |
878 | |
879 | // Recursively strip __kindof. |
880 | SplitQualType splitBaseType = getBaseType().split(); |
881 | QualType baseType(splitBaseType.Ty, 0); |
882 | if (const auto *baseObj = splitBaseType.Ty->getAs<ObjCObjectType>()) |
883 | baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx); |
884 | |
885 | return ctx.getObjCObjectType(Base: ctx.getQualifiedType(T: baseType, |
886 | Qs: splitBaseType.Quals), |
887 | typeArgs: getTypeArgsAsWritten(), |
888 | /*protocols=*/{}, |
889 | /*isKindOf=*/false); |
890 | } |
891 | |
892 | ObjCInterfaceDecl *ObjCInterfaceType::getDecl() const { |
893 | ObjCInterfaceDecl *Canon = Decl->getCanonicalDecl(); |
894 | if (ObjCInterfaceDecl *Def = Canon->getDefinition()) |
895 | return Def; |
896 | return Canon; |
897 | } |
898 | |
899 | const ObjCObjectPointerType *ObjCObjectPointerType::stripObjCKindOfTypeAndQuals( |
900 | const ASTContext &ctx) const { |
901 | if (!isKindOfType() && qual_empty()) |
902 | return this; |
903 | |
904 | QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx); |
905 | return ctx.getObjCObjectPointerType(OIT: obj)->castAs<ObjCObjectPointerType>(); |
906 | } |
907 | |
908 | namespace { |
909 | |
910 | /// Visitor used to perform a simple type transformation that does not change |
911 | /// the semantics of the type. |
912 | template <typename Derived> |
913 | struct SimpleTransformVisitor : public TypeVisitor<Derived, QualType> { |
914 | ASTContext &Ctx; |
915 | |
916 | QualType recurse(QualType type) { |
917 | // Split out the qualifiers from the type. |
918 | SplitQualType splitType = type.split(); |
919 | |
920 | // Visit the type itself. |
921 | QualType result = static_cast<Derived *>(this)->Visit(splitType.Ty); |
922 | if (result.isNull()) |
923 | return result; |
924 | |
925 | // Reconstruct the transformed type by applying the local qualifiers |
926 | // from the split type. |
927 | return Ctx.getQualifiedType(T: result, Qs: splitType.Quals); |
928 | } |
929 | |
930 | public: |
931 | explicit SimpleTransformVisitor(ASTContext &ctx) : Ctx(ctx) {} |
932 | |
933 | // None of the clients of this transformation can occur where |
934 | // there are dependent types, so skip dependent types. |
935 | #define TYPE(Class, Base) |
936 | #define DEPENDENT_TYPE(Class, Base) \ |
937 | QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); } |
938 | #include "clang/AST/TypeNodes.inc" |
939 | |
940 | #define TRIVIAL_TYPE_CLASS(Class) \ |
941 | QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); } |
942 | #define SUGARED_TYPE_CLASS(Class) \ |
943 | QualType Visit##Class##Type(const Class##Type *T) { \ |
944 | if (!T->isSugared()) \ |
945 | return QualType(T, 0); \ |
946 | QualType desugaredType = recurse(T->desugar()); \ |
947 | if (desugaredType.isNull()) \ |
948 | return {}; \ |
949 | if (desugaredType.getAsOpaquePtr() == T->desugar().getAsOpaquePtr()) \ |
950 | return QualType(T, 0); \ |
951 | return desugaredType; \ |
952 | } |
953 | |
954 | TRIVIAL_TYPE_CLASS(Builtin) |
955 | |
956 | QualType VisitComplexType(const ComplexType *T) { |
957 | QualType elementType = recurse(type: T->getElementType()); |
958 | if (elementType.isNull()) |
959 | return {}; |
960 | |
961 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
962 | return QualType(T, 0); |
963 | |
964 | return Ctx.getComplexType(T: elementType); |
965 | } |
966 | |
967 | QualType VisitPointerType(const PointerType *T) { |
968 | QualType pointeeType = recurse(type: T->getPointeeType()); |
969 | if (pointeeType.isNull()) |
970 | return {}; |
971 | |
972 | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) |
973 | return QualType(T, 0); |
974 | |
975 | return Ctx.getPointerType(T: pointeeType); |
976 | } |
977 | |
978 | QualType VisitBlockPointerType(const BlockPointerType *T) { |
979 | QualType pointeeType = recurse(type: T->getPointeeType()); |
980 | if (pointeeType.isNull()) |
981 | return {}; |
982 | |
983 | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) |
984 | return QualType(T, 0); |
985 | |
986 | return Ctx.getBlockPointerType(T: pointeeType); |
987 | } |
988 | |
989 | QualType VisitLValueReferenceType(const LValueReferenceType *T) { |
990 | QualType pointeeType = recurse(type: T->getPointeeTypeAsWritten()); |
991 | if (pointeeType.isNull()) |
992 | return {}; |
993 | |
994 | if (pointeeType.getAsOpaquePtr() |
995 | == T->getPointeeTypeAsWritten().getAsOpaquePtr()) |
996 | return QualType(T, 0); |
997 | |
998 | return Ctx.getLValueReferenceType(T: pointeeType, SpelledAsLValue: T->isSpelledAsLValue()); |
999 | } |
1000 | |
1001 | QualType VisitRValueReferenceType(const RValueReferenceType *T) { |
1002 | QualType pointeeType = recurse(type: T->getPointeeTypeAsWritten()); |
1003 | if (pointeeType.isNull()) |
1004 | return {}; |
1005 | |
1006 | if (pointeeType.getAsOpaquePtr() |
1007 | == T->getPointeeTypeAsWritten().getAsOpaquePtr()) |
1008 | return QualType(T, 0); |
1009 | |
1010 | return Ctx.getRValueReferenceType(T: pointeeType); |
1011 | } |
1012 | |
1013 | QualType VisitMemberPointerType(const MemberPointerType *T) { |
1014 | QualType pointeeType = recurse(type: T->getPointeeType()); |
1015 | if (pointeeType.isNull()) |
1016 | return {}; |
1017 | |
1018 | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) |
1019 | return QualType(T, 0); |
1020 | |
1021 | return Ctx.getMemberPointerType(T: pointeeType, Cls: T->getClass()); |
1022 | } |
1023 | |
1024 | QualType VisitConstantArrayType(const ConstantArrayType *T) { |
1025 | QualType elementType = recurse(type: T->getElementType()); |
1026 | if (elementType.isNull()) |
1027 | return {}; |
1028 | |
1029 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1030 | return QualType(T, 0); |
1031 | |
1032 | return Ctx.getConstantArrayType(EltTy: elementType, ArySize: T->getSize(), SizeExpr: T->getSizeExpr(), |
1033 | ASM: T->getSizeModifier(), |
1034 | IndexTypeQuals: T->getIndexTypeCVRQualifiers()); |
1035 | } |
1036 | |
1037 | QualType VisitVariableArrayType(const VariableArrayType *T) { |
1038 | QualType elementType = recurse(type: T->getElementType()); |
1039 | if (elementType.isNull()) |
1040 | return {}; |
1041 | |
1042 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1043 | return QualType(T, 0); |
1044 | |
1045 | return Ctx.getVariableArrayType(EltTy: elementType, NumElts: T->getSizeExpr(), |
1046 | ASM: T->getSizeModifier(), |
1047 | IndexTypeQuals: T->getIndexTypeCVRQualifiers(), |
1048 | Brackets: T->getBracketsRange()); |
1049 | } |
1050 | |
1051 | QualType VisitIncompleteArrayType(const IncompleteArrayType *T) { |
1052 | QualType elementType = recurse(type: T->getElementType()); |
1053 | if (elementType.isNull()) |
1054 | return {}; |
1055 | |
1056 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1057 | return QualType(T, 0); |
1058 | |
1059 | return Ctx.getIncompleteArrayType(EltTy: elementType, ASM: T->getSizeModifier(), |
1060 | IndexTypeQuals: T->getIndexTypeCVRQualifiers()); |
1061 | } |
1062 | |
1063 | QualType VisitVectorType(const VectorType *T) { |
1064 | QualType elementType = recurse(type: T->getElementType()); |
1065 | if (elementType.isNull()) |
1066 | return {}; |
1067 | |
1068 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1069 | return QualType(T, 0); |
1070 | |
1071 | return Ctx.getVectorType(VectorType: elementType, NumElts: T->getNumElements(), |
1072 | VecKind: T->getVectorKind()); |
1073 | } |
1074 | |
1075 | QualType VisitExtVectorType(const ExtVectorType *T) { |
1076 | QualType elementType = recurse(type: T->getElementType()); |
1077 | if (elementType.isNull()) |
1078 | return {}; |
1079 | |
1080 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1081 | return QualType(T, 0); |
1082 | |
1083 | return Ctx.getExtVectorType(VectorType: elementType, NumElts: T->getNumElements()); |
1084 | } |
1085 | |
1086 | QualType VisitConstantMatrixType(const ConstantMatrixType *T) { |
1087 | QualType elementType = recurse(type: T->getElementType()); |
1088 | if (elementType.isNull()) |
1089 | return {}; |
1090 | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) |
1091 | return QualType(T, 0); |
1092 | |
1093 | return Ctx.getConstantMatrixType(ElementType: elementType, NumRows: T->getNumRows(), |
1094 | NumColumns: T->getNumColumns()); |
1095 | } |
1096 | |
1097 | QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) { |
1098 | QualType returnType = recurse(type: T->getReturnType()); |
1099 | if (returnType.isNull()) |
1100 | return {}; |
1101 | |
1102 | if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr()) |
1103 | return QualType(T, 0); |
1104 | |
1105 | return Ctx.getFunctionNoProtoType(returnType, T->getExtInfo()); |
1106 | } |
1107 | |
1108 | QualType VisitFunctionProtoType(const FunctionProtoType *T) { |
1109 | QualType returnType = recurse(type: T->getReturnType()); |
1110 | if (returnType.isNull()) |
1111 | return {}; |
1112 | |
1113 | // Transform parameter types. |
1114 | SmallVector<QualType, 4> paramTypes; |
1115 | bool paramChanged = false; |
1116 | for (auto paramType : T->getParamTypes()) { |
1117 | QualType newParamType = recurse(type: paramType); |
1118 | if (newParamType.isNull()) |
1119 | return {}; |
1120 | |
1121 | if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr()) |
1122 | paramChanged = true; |
1123 | |
1124 | paramTypes.push_back(newParamType); |
1125 | } |
1126 | |
1127 | // Transform extended info. |
1128 | FunctionProtoType::ExtProtoInfo info = T->getExtProtoInfo(); |
1129 | bool exceptionChanged = false; |
1130 | if (info.ExceptionSpec.Type == EST_Dynamic) { |
1131 | SmallVector<QualType, 4> exceptionTypes; |
1132 | for (auto exceptionType : info.ExceptionSpec.Exceptions) { |
1133 | QualType newExceptionType = recurse(exceptionType); |
1134 | if (newExceptionType.isNull()) |
1135 | return {}; |
1136 | |
1137 | if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr()) |
1138 | exceptionChanged = true; |
1139 | |
1140 | exceptionTypes.push_back(newExceptionType); |
1141 | } |
1142 | |
1143 | if (exceptionChanged) { |
1144 | info.ExceptionSpec.Exceptions = |
1145 | llvm::ArrayRef(exceptionTypes).copy(Ctx); |
1146 | } |
1147 | } |
1148 | |
1149 | if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() && |
1150 | !paramChanged && !exceptionChanged) |
1151 | return QualType(T, 0); |
1152 | |
1153 | return Ctx.getFunctionType(ResultTy: returnType, Args: paramTypes, EPI: info); |
1154 | } |
1155 | |
1156 | QualType VisitParenType(const ParenType *T) { |
1157 | QualType innerType = recurse(type: T->getInnerType()); |
1158 | if (innerType.isNull()) |
1159 | return {}; |
1160 | |
1161 | if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr()) |
1162 | return QualType(T, 0); |
1163 | |
1164 | return Ctx.getParenType(NamedType: innerType); |
1165 | } |
1166 | |
1167 | SUGARED_TYPE_CLASS(Typedef) |
1168 | SUGARED_TYPE_CLASS(ObjCTypeParam) |
1169 | SUGARED_TYPE_CLASS(MacroQualified) |
1170 | |
1171 | QualType VisitAdjustedType(const AdjustedType *T) { |
1172 | QualType originalType = recurse(type: T->getOriginalType()); |
1173 | if (originalType.isNull()) |
1174 | return {}; |
1175 | |
1176 | QualType adjustedType = recurse(type: T->getAdjustedType()); |
1177 | if (adjustedType.isNull()) |
1178 | return {}; |
1179 | |
1180 | if (originalType.getAsOpaquePtr() |
1181 | == T->getOriginalType().getAsOpaquePtr() && |
1182 | adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr()) |
1183 | return QualType(T, 0); |
1184 | |
1185 | return Ctx.getAdjustedType(Orig: originalType, New: adjustedType); |
1186 | } |
1187 | |
1188 | QualType VisitDecayedType(const DecayedType *T) { |
1189 | QualType originalType = recurse(type: T->getOriginalType()); |
1190 | if (originalType.isNull()) |
1191 | return {}; |
1192 | |
1193 | if (originalType.getAsOpaquePtr() |
1194 | == T->getOriginalType().getAsOpaquePtr()) |
1195 | return QualType(T, 0); |
1196 | |
1197 | return Ctx.getDecayedType(T: originalType); |
1198 | } |
1199 | |
1200 | QualType VisitArrayParameterType(const ArrayParameterType *T) { |
1201 | QualType ArrTy = VisitConstantArrayType(T); |
1202 | if (ArrTy.isNull()) |
1203 | return {}; |
1204 | |
1205 | return Ctx.getArrayParameterType(Ty: ArrTy); |
1206 | } |
1207 | |
1208 | SUGARED_TYPE_CLASS(TypeOfExpr) |
1209 | SUGARED_TYPE_CLASS(TypeOf) |
1210 | SUGARED_TYPE_CLASS(Decltype) |
1211 | SUGARED_TYPE_CLASS(UnaryTransform) |
1212 | TRIVIAL_TYPE_CLASS(Record) |
1213 | TRIVIAL_TYPE_CLASS(Enum) |
1214 | |
1215 | // FIXME: Non-trivial to implement, but important for C++ |
1216 | SUGARED_TYPE_CLASS(Elaborated) |
1217 | |
1218 | QualType VisitAttributedType(const AttributedType *T) { |
1219 | QualType modifiedType = recurse(type: T->getModifiedType()); |
1220 | if (modifiedType.isNull()) |
1221 | return {}; |
1222 | |
1223 | QualType equivalentType = recurse(type: T->getEquivalentType()); |
1224 | if (equivalentType.isNull()) |
1225 | return {}; |
1226 | |
1227 | if (modifiedType.getAsOpaquePtr() |
1228 | == T->getModifiedType().getAsOpaquePtr() && |
1229 | equivalentType.getAsOpaquePtr() |
1230 | == T->getEquivalentType().getAsOpaquePtr()) |
1231 | return QualType(T, 0); |
1232 | |
1233 | return Ctx.getAttributedType(attrKind: T->getAttrKind(), modifiedType, |
1234 | equivalentType); |
1235 | } |
1236 | |
1237 | QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { |
1238 | QualType replacementType = recurse(type: T->getReplacementType()); |
1239 | if (replacementType.isNull()) |
1240 | return {}; |
1241 | |
1242 | if (replacementType.getAsOpaquePtr() |
1243 | == T->getReplacementType().getAsOpaquePtr()) |
1244 | return QualType(T, 0); |
1245 | |
1246 | return Ctx.getSubstTemplateTypeParmType(Replacement: replacementType, |
1247 | AssociatedDecl: T->getAssociatedDecl(), |
1248 | Index: T->getIndex(), PackIndex: T->getPackIndex()); |
1249 | } |
1250 | |
1251 | // FIXME: Non-trivial to implement, but important for C++ |
1252 | SUGARED_TYPE_CLASS(TemplateSpecialization) |
1253 | |
1254 | QualType VisitAutoType(const AutoType *T) { |
1255 | if (!T->isDeduced()) |
1256 | return QualType(T, 0); |
1257 | |
1258 | QualType deducedType = recurse(type: T->getDeducedType()); |
1259 | if (deducedType.isNull()) |
1260 | return {}; |
1261 | |
1262 | if (deducedType.getAsOpaquePtr() |
1263 | == T->getDeducedType().getAsOpaquePtr()) |
1264 | return QualType(T, 0); |
1265 | |
1266 | return Ctx.getAutoType(DeducedType: deducedType, Keyword: T->getKeyword(), |
1267 | IsDependent: T->isDependentType(), /*IsPack=*/false, |
1268 | TypeConstraintConcept: T->getTypeConstraintConcept(), |
1269 | TypeConstraintArgs: T->getTypeConstraintArguments()); |
1270 | } |
1271 | |
1272 | QualType VisitObjCObjectType(const ObjCObjectType *T) { |
1273 | QualType baseType = recurse(type: T->getBaseType()); |
1274 | if (baseType.isNull()) |
1275 | return {}; |
1276 | |
1277 | // Transform type arguments. |
1278 | bool typeArgChanged = false; |
1279 | SmallVector<QualType, 4> typeArgs; |
1280 | for (auto typeArg : T->getTypeArgsAsWritten()) { |
1281 | QualType newTypeArg = recurse(type: typeArg); |
1282 | if (newTypeArg.isNull()) |
1283 | return {}; |
1284 | |
1285 | if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) |
1286 | typeArgChanged = true; |
1287 | |
1288 | typeArgs.push_back(newTypeArg); |
1289 | } |
1290 | |
1291 | if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() && |
1292 | !typeArgChanged) |
1293 | return QualType(T, 0); |
1294 | |
1295 | return Ctx.getObjCObjectType( |
1296 | baseType, typeArgs, |
1297 | llvm::ArrayRef(T->qual_begin(), T->getNumProtocols()), |
1298 | T->isKindOfTypeAsWritten()); |
1299 | } |
1300 | |
1301 | TRIVIAL_TYPE_CLASS(ObjCInterface) |
1302 | |
1303 | QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) { |
1304 | QualType pointeeType = recurse(type: T->getPointeeType()); |
1305 | if (pointeeType.isNull()) |
1306 | return {}; |
1307 | |
1308 | if (pointeeType.getAsOpaquePtr() |
1309 | == T->getPointeeType().getAsOpaquePtr()) |
1310 | return QualType(T, 0); |
1311 | |
1312 | return Ctx.getObjCObjectPointerType(OIT: pointeeType); |
1313 | } |
1314 | |
1315 | QualType VisitAtomicType(const AtomicType *T) { |
1316 | QualType valueType = recurse(type: T->getValueType()); |
1317 | if (valueType.isNull()) |
1318 | return {}; |
1319 | |
1320 | if (valueType.getAsOpaquePtr() |
1321 | == T->getValueType().getAsOpaquePtr()) |
1322 | return QualType(T, 0); |
1323 | |
1324 | return Ctx.getAtomicType(T: valueType); |
1325 | } |
1326 | |
1327 | #undef TRIVIAL_TYPE_CLASS |
1328 | #undef SUGARED_TYPE_CLASS |
1329 | }; |
1330 | |
1331 | struct SubstObjCTypeArgsVisitor |
1332 | : public SimpleTransformVisitor<SubstObjCTypeArgsVisitor> { |
1333 | using BaseType = SimpleTransformVisitor<SubstObjCTypeArgsVisitor>; |
1334 | |
1335 | ArrayRef<QualType> TypeArgs; |
1336 | ObjCSubstitutionContext SubstContext; |
1337 | |
1338 | SubstObjCTypeArgsVisitor(ASTContext &ctx, ArrayRef<QualType> typeArgs, |
1339 | ObjCSubstitutionContext context) |
1340 | : BaseType(ctx), TypeArgs(typeArgs), SubstContext(context) {} |
1341 | |
1342 | QualType VisitObjCTypeParamType(const ObjCTypeParamType *OTPTy) { |
1343 | // Replace an Objective-C type parameter reference with the corresponding |
1344 | // type argument. |
1345 | ObjCTypeParamDecl *typeParam = OTPTy->getDecl(); |
1346 | // If we have type arguments, use them. |
1347 | if (!TypeArgs.empty()) { |
1348 | QualType argType = TypeArgs[typeParam->getIndex()]; |
1349 | if (OTPTy->qual_empty()) |
1350 | return argType; |
1351 | |
1352 | // Apply protocol lists if exists. |
1353 | bool hasError; |
1354 | SmallVector<ObjCProtocolDecl *, 8> protocolsVec; |
1355 | protocolsVec.append(OTPTy->qual_begin(), OTPTy->qual_end()); |
1356 | ArrayRef<ObjCProtocolDecl *> protocolsToApply = protocolsVec; |
1357 | return Ctx.applyObjCProtocolQualifiers( |
1358 | argType, protocolsToApply, hasError, true/*allowOnPointerType*/); |
1359 | } |
1360 | |
1361 | switch (SubstContext) { |
1362 | case ObjCSubstitutionContext::Ordinary: |
1363 | case ObjCSubstitutionContext::Parameter: |
1364 | case ObjCSubstitutionContext::Superclass: |
1365 | // Substitute the bound. |
1366 | return typeParam->getUnderlyingType(); |
1367 | |
1368 | case ObjCSubstitutionContext::Result: |
1369 | case ObjCSubstitutionContext::Property: { |
1370 | // Substitute the __kindof form of the underlying type. |
1371 | const auto *objPtr = |
1372 | typeParam->getUnderlyingType()->castAs<ObjCObjectPointerType>(); |
1373 | |
1374 | // __kindof types, id, and Class don't need an additional |
1375 | // __kindof. |
1376 | if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType()) |
1377 | return typeParam->getUnderlyingType(); |
1378 | |
1379 | // Add __kindof. |
1380 | const auto *obj = objPtr->getObjectType(); |
1381 | QualType resultTy = Ctx.getObjCObjectType( |
1382 | obj->getBaseType(), obj->getTypeArgsAsWritten(), obj->getProtocols(), |
1383 | /*isKindOf=*/true); |
1384 | |
1385 | // Rebuild object pointer type. |
1386 | return Ctx.getObjCObjectPointerType(resultTy); |
1387 | } |
1388 | } |
1389 | llvm_unreachable("Unexpected ObjCSubstitutionContext!" ); |
1390 | } |
1391 | |
1392 | QualType VisitFunctionType(const FunctionType *funcType) { |
1393 | // If we have a function type, update the substitution context |
1394 | // appropriately. |
1395 | |
1396 | //Substitute result type. |
1397 | QualType returnType = funcType->getReturnType().substObjCTypeArgs( |
1398 | Ctx, TypeArgs, ObjCSubstitutionContext::Result); |
1399 | if (returnType.isNull()) |
1400 | return {}; |
1401 | |
1402 | // Handle non-prototyped functions, which only substitute into the result |
1403 | // type. |
1404 | if (isa<FunctionNoProtoType>(funcType)) { |
1405 | // If the return type was unchanged, do nothing. |
1406 | if (returnType.getAsOpaquePtr() == |
1407 | funcType->getReturnType().getAsOpaquePtr()) |
1408 | return BaseType::VisitFunctionType(funcType); |
1409 | |
1410 | // Otherwise, build a new type. |
1411 | return Ctx.getFunctionNoProtoType(returnType, funcType->getExtInfo()); |
1412 | } |
1413 | |
1414 | const auto *funcProtoType = cast<FunctionProtoType>(funcType); |
1415 | |
1416 | // Transform parameter types. |
1417 | SmallVector<QualType, 4> paramTypes; |
1418 | bool paramChanged = false; |
1419 | for (auto paramType : funcProtoType->getParamTypes()) { |
1420 | QualType newParamType = paramType.substObjCTypeArgs( |
1421 | Ctx, TypeArgs, ObjCSubstitutionContext::Parameter); |
1422 | if (newParamType.isNull()) |
1423 | return {}; |
1424 | |
1425 | if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr()) |
1426 | paramChanged = true; |
1427 | |
1428 | paramTypes.push_back(newParamType); |
1429 | } |
1430 | |
1431 | // Transform extended info. |
1432 | FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo(); |
1433 | bool exceptionChanged = false; |
1434 | if (info.ExceptionSpec.Type == EST_Dynamic) { |
1435 | SmallVector<QualType, 4> exceptionTypes; |
1436 | for (auto exceptionType : info.ExceptionSpec.Exceptions) { |
1437 | QualType newExceptionType = exceptionType.substObjCTypeArgs( |
1438 | Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary); |
1439 | if (newExceptionType.isNull()) |
1440 | return {}; |
1441 | |
1442 | if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr()) |
1443 | exceptionChanged = true; |
1444 | |
1445 | exceptionTypes.push_back(newExceptionType); |
1446 | } |
1447 | |
1448 | if (exceptionChanged) { |
1449 | info.ExceptionSpec.Exceptions = |
1450 | llvm::ArrayRef(exceptionTypes).copy(Ctx); |
1451 | } |
1452 | } |
1453 | |
1454 | if (returnType.getAsOpaquePtr() == |
1455 | funcProtoType->getReturnType().getAsOpaquePtr() && |
1456 | !paramChanged && !exceptionChanged) |
1457 | return BaseType::VisitFunctionType(funcType); |
1458 | |
1459 | return Ctx.getFunctionType(returnType, paramTypes, info); |
1460 | } |
1461 | |
1462 | QualType VisitObjCObjectType(const ObjCObjectType *objcObjectType) { |
1463 | // Substitute into the type arguments of a specialized Objective-C object |
1464 | // type. |
1465 | if (objcObjectType->isSpecializedAsWritten()) { |
1466 | SmallVector<QualType, 4> newTypeArgs; |
1467 | bool anyChanged = false; |
1468 | for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) { |
1469 | QualType newTypeArg = typeArg.substObjCTypeArgs( |
1470 | Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary); |
1471 | if (newTypeArg.isNull()) |
1472 | return {}; |
1473 | |
1474 | if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) { |
1475 | // If we're substituting based on an unspecialized context type, |
1476 | // produce an unspecialized type. |
1477 | ArrayRef<ObjCProtocolDecl *> protocols( |
1478 | objcObjectType->qual_begin(), objcObjectType->getNumProtocols()); |
1479 | if (TypeArgs.empty() && |
1480 | SubstContext != ObjCSubstitutionContext::Superclass) { |
1481 | return Ctx.getObjCObjectType( |
1482 | objcObjectType->getBaseType(), {}, protocols, |
1483 | objcObjectType->isKindOfTypeAsWritten()); |
1484 | } |
1485 | |
1486 | anyChanged = true; |
1487 | } |
1488 | |
1489 | newTypeArgs.push_back(newTypeArg); |
1490 | } |
1491 | |
1492 | if (anyChanged) { |
1493 | ArrayRef<ObjCProtocolDecl *> protocols( |
1494 | objcObjectType->qual_begin(), objcObjectType->getNumProtocols()); |
1495 | return Ctx.getObjCObjectType(objcObjectType->getBaseType(), newTypeArgs, |
1496 | protocols, |
1497 | objcObjectType->isKindOfTypeAsWritten()); |
1498 | } |
1499 | } |
1500 | |
1501 | return BaseType::VisitObjCObjectType(objcObjectType); |
1502 | } |
1503 | |
1504 | QualType VisitAttributedType(const AttributedType *attrType) { |
1505 | QualType newType = BaseType::VisitAttributedType(attrType); |
1506 | if (newType.isNull()) |
1507 | return {}; |
1508 | |
1509 | const auto *newAttrType = dyn_cast<AttributedType>(newType.getTypePtr()); |
1510 | if (!newAttrType || newAttrType->getAttrKind() != attr::ObjCKindOf) |
1511 | return newType; |
1512 | |
1513 | // Find out if it's an Objective-C object or object pointer type; |
1514 | QualType newEquivType = newAttrType->getEquivalentType(); |
1515 | const ObjCObjectPointerType *ptrType = |
1516 | newEquivType->getAs<ObjCObjectPointerType>(); |
1517 | const ObjCObjectType *objType = ptrType |
1518 | ? ptrType->getObjectType() |
1519 | : newEquivType->getAs<ObjCObjectType>(); |
1520 | if (!objType) |
1521 | return newType; |
1522 | |
1523 | // Rebuild the "equivalent" type, which pushes __kindof down into |
1524 | // the object type. |
1525 | newEquivType = Ctx.getObjCObjectType( |
1526 | objType->getBaseType(), objType->getTypeArgsAsWritten(), |
1527 | objType->getProtocols(), |
1528 | // There is no need to apply kindof on an unqualified id type. |
1529 | /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true); |
1530 | |
1531 | // If we started with an object pointer type, rebuild it. |
1532 | if (ptrType) |
1533 | newEquivType = Ctx.getObjCObjectPointerType(newEquivType); |
1534 | |
1535 | // Rebuild the attributed type. |
1536 | return Ctx.getAttributedType(newAttrType->getAttrKind(), |
1537 | newAttrType->getModifiedType(), newEquivType); |
1538 | } |
1539 | }; |
1540 | |
1541 | struct StripObjCKindOfTypeVisitor |
1542 | : public SimpleTransformVisitor<StripObjCKindOfTypeVisitor> { |
1543 | using BaseType = SimpleTransformVisitor<StripObjCKindOfTypeVisitor>; |
1544 | |
1545 | explicit StripObjCKindOfTypeVisitor(ASTContext &ctx) : BaseType(ctx) {} |
1546 | |
1547 | QualType VisitObjCObjectType(const ObjCObjectType *objType) { |
1548 | if (!objType->isKindOfType()) |
1549 | return BaseType::VisitObjCObjectType(objType); |
1550 | |
1551 | QualType baseType = objType->getBaseType().stripObjCKindOfType(Ctx); |
1552 | return Ctx.getObjCObjectType(baseType, objType->getTypeArgsAsWritten(), |
1553 | objType->getProtocols(), |
1554 | /*isKindOf=*/false); |
1555 | } |
1556 | }; |
1557 | |
1558 | } // namespace |
1559 | |
1560 | bool QualType::UseExcessPrecision(const ASTContext &Ctx) { |
1561 | const BuiltinType *BT = getTypePtr()->getAs<BuiltinType>(); |
1562 | if (!BT) { |
1563 | const VectorType *VT = getTypePtr()->getAs<VectorType>(); |
1564 | if (VT) { |
1565 | QualType ElementType = VT->getElementType(); |
1566 | return ElementType.UseExcessPrecision(Ctx); |
1567 | } |
1568 | } else { |
1569 | switch (BT->getKind()) { |
1570 | case BuiltinType::Kind::Float16: { |
1571 | const TargetInfo &TI = Ctx.getTargetInfo(); |
1572 | if (TI.hasFloat16Type() && !TI.hasLegalHalfType() && |
1573 | Ctx.getLangOpts().getFloat16ExcessPrecision() != |
1574 | Ctx.getLangOpts().ExcessPrecisionKind::FPP_None) |
1575 | return true; |
1576 | break; |
1577 | } |
1578 | case BuiltinType::Kind::BFloat16: { |
1579 | const TargetInfo &TI = Ctx.getTargetInfo(); |
1580 | if (TI.hasBFloat16Type() && !TI.hasFullBFloat16Type() && |
1581 | Ctx.getLangOpts().getBFloat16ExcessPrecision() != |
1582 | Ctx.getLangOpts().ExcessPrecisionKind::FPP_None) |
1583 | return true; |
1584 | break; |
1585 | } |
1586 | default: |
1587 | return false; |
1588 | } |
1589 | } |
1590 | return false; |
1591 | } |
1592 | |
1593 | /// Substitute the given type arguments for Objective-C type |
1594 | /// parameters within the given type, recursively. |
1595 | QualType QualType::substObjCTypeArgs(ASTContext &ctx, |
1596 | ArrayRef<QualType> typeArgs, |
1597 | ObjCSubstitutionContext context) const { |
1598 | SubstObjCTypeArgsVisitor visitor(ctx, typeArgs, context); |
1599 | return visitor.recurse(*this); |
1600 | } |
1601 | |
1602 | QualType QualType::substObjCMemberType(QualType objectType, |
1603 | const DeclContext *dc, |
1604 | ObjCSubstitutionContext context) const { |
1605 | if (auto subs = objectType->getObjCSubstitutions(dc)) |
1606 | return substObjCTypeArgs(ctx&: dc->getParentASTContext(), typeArgs: *subs, context); |
1607 | |
1608 | return *this; |
1609 | } |
1610 | |
1611 | QualType QualType::stripObjCKindOfType(const ASTContext &constCtx) const { |
1612 | // FIXME: Because ASTContext::getAttributedType() is non-const. |
1613 | auto &ctx = const_cast<ASTContext &>(constCtx); |
1614 | StripObjCKindOfTypeVisitor visitor(ctx); |
1615 | return visitor.recurse(*this); |
1616 | } |
1617 | |
1618 | QualType QualType::getAtomicUnqualifiedType() const { |
1619 | if (const auto AT = getTypePtr()->getAs<AtomicType>()) |
1620 | return AT->getValueType().getUnqualifiedType(); |
1621 | return getUnqualifiedType(); |
1622 | } |
1623 | |
1624 | std::optional<ArrayRef<QualType>> |
1625 | Type::getObjCSubstitutions(const DeclContext *dc) const { |
1626 | // Look through method scopes. |
1627 | if (const auto method = dyn_cast<ObjCMethodDecl>(Val: dc)) |
1628 | dc = method->getDeclContext(); |
1629 | |
1630 | // Find the class or category in which the type we're substituting |
1631 | // was declared. |
1632 | const auto *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(Val: dc); |
1633 | const ObjCCategoryDecl *dcCategoryDecl = nullptr; |
1634 | ObjCTypeParamList *dcTypeParams = nullptr; |
1635 | if (dcClassDecl) { |
1636 | // If the class does not have any type parameters, there's no |
1637 | // substitution to do. |
1638 | dcTypeParams = dcClassDecl->getTypeParamList(); |
1639 | if (!dcTypeParams) |
1640 | return std::nullopt; |
1641 | } else { |
1642 | // If we are in neither a class nor a category, there's no |
1643 | // substitution to perform. |
1644 | dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(Val: dc); |
1645 | if (!dcCategoryDecl) |
1646 | return std::nullopt; |
1647 | |
1648 | // If the category does not have any type parameters, there's no |
1649 | // substitution to do. |
1650 | dcTypeParams = dcCategoryDecl->getTypeParamList(); |
1651 | if (!dcTypeParams) |
1652 | return std::nullopt; |
1653 | |
1654 | dcClassDecl = dcCategoryDecl->getClassInterface(); |
1655 | if (!dcClassDecl) |
1656 | return std::nullopt; |
1657 | } |
1658 | assert(dcTypeParams && "No substitutions to perform" ); |
1659 | assert(dcClassDecl && "No class context" ); |
1660 | |
1661 | // Find the underlying object type. |
1662 | const ObjCObjectType *objectType; |
1663 | if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) { |
1664 | objectType = objectPointerType->getObjectType(); |
1665 | } else if (getAs<BlockPointerType>()) { |
1666 | ASTContext &ctx = dc->getParentASTContext(); |
1667 | objectType = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, {}, {}) |
1668 | ->castAs<ObjCObjectType>(); |
1669 | } else { |
1670 | objectType = getAs<ObjCObjectType>(); |
1671 | } |
1672 | |
1673 | /// Extract the class from the receiver object type. |
1674 | ObjCInterfaceDecl *curClassDecl = objectType ? objectType->getInterface() |
1675 | : nullptr; |
1676 | if (!curClassDecl) { |
1677 | // If we don't have a context type (e.g., this is "id" or some |
1678 | // variant thereof), substitute the bounds. |
1679 | return llvm::ArrayRef<QualType>(); |
1680 | } |
1681 | |
1682 | // Follow the superclass chain until we've mapped the receiver type |
1683 | // to the same class as the context. |
1684 | while (curClassDecl != dcClassDecl) { |
1685 | // Map to the superclass type. |
1686 | QualType superType = objectType->getSuperClassType(); |
1687 | if (superType.isNull()) { |
1688 | objectType = nullptr; |
1689 | break; |
1690 | } |
1691 | |
1692 | objectType = superType->castAs<ObjCObjectType>(); |
1693 | curClassDecl = objectType->getInterface(); |
1694 | } |
1695 | |
1696 | // If we don't have a receiver type, or the receiver type does not |
1697 | // have type arguments, substitute in the defaults. |
1698 | if (!objectType || objectType->isUnspecialized()) { |
1699 | return llvm::ArrayRef<QualType>(); |
1700 | } |
1701 | |
1702 | // The receiver type has the type arguments we want. |
1703 | return objectType->getTypeArgs(); |
1704 | } |
1705 | |
1706 | bool Type::acceptsObjCTypeParams() const { |
1707 | if (auto *IfaceT = getAsObjCInterfaceType()) { |
1708 | if (auto *ID = IfaceT->getInterface()) { |
1709 | if (ID->getTypeParamList()) |
1710 | return true; |
1711 | } |
1712 | } |
1713 | |
1714 | return false; |
1715 | } |
1716 | |
1717 | void ObjCObjectType::computeSuperClassTypeSlow() const { |
1718 | // Retrieve the class declaration for this type. If there isn't one |
1719 | // (e.g., this is some variant of "id" or "Class"), then there is no |
1720 | // superclass type. |
1721 | ObjCInterfaceDecl *classDecl = getInterface(); |
1722 | if (!classDecl) { |
1723 | CachedSuperClassType.setInt(true); |
1724 | return; |
1725 | } |
1726 | |
1727 | // Extract the superclass type. |
1728 | const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType(); |
1729 | if (!superClassObjTy) { |
1730 | CachedSuperClassType.setInt(true); |
1731 | return; |
1732 | } |
1733 | |
1734 | ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface(); |
1735 | if (!superClassDecl) { |
1736 | CachedSuperClassType.setInt(true); |
1737 | return; |
1738 | } |
1739 | |
1740 | // If the superclass doesn't have type parameters, then there is no |
1741 | // substitution to perform. |
1742 | QualType superClassType(superClassObjTy, 0); |
1743 | ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList(); |
1744 | if (!superClassTypeParams) { |
1745 | CachedSuperClassType.setPointerAndInt( |
1746 | superClassType->castAs<ObjCObjectType>(), true); |
1747 | return; |
1748 | } |
1749 | |
1750 | // If the superclass reference is unspecialized, return it. |
1751 | if (superClassObjTy->isUnspecialized()) { |
1752 | CachedSuperClassType.setPointerAndInt(superClassObjTy, true); |
1753 | return; |
1754 | } |
1755 | |
1756 | // If the subclass is not parameterized, there aren't any type |
1757 | // parameters in the superclass reference to substitute. |
1758 | ObjCTypeParamList *typeParams = classDecl->getTypeParamList(); |
1759 | if (!typeParams) { |
1760 | CachedSuperClassType.setPointerAndInt( |
1761 | superClassType->castAs<ObjCObjectType>(), true); |
1762 | return; |
1763 | } |
1764 | |
1765 | // If the subclass type isn't specialized, return the unspecialized |
1766 | // superclass. |
1767 | if (isUnspecialized()) { |
1768 | QualType unspecializedSuper |
1769 | = classDecl->getASTContext().getObjCInterfaceType( |
1770 | superClassObjTy->getInterface()); |
1771 | CachedSuperClassType.setPointerAndInt( |
1772 | unspecializedSuper->castAs<ObjCObjectType>(), |
1773 | true); |
1774 | return; |
1775 | } |
1776 | |
1777 | // Substitute the provided type arguments into the superclass type. |
1778 | ArrayRef<QualType> typeArgs = getTypeArgs(); |
1779 | assert(typeArgs.size() == typeParams->size()); |
1780 | CachedSuperClassType.setPointerAndInt( |
1781 | superClassType.substObjCTypeArgs(classDecl->getASTContext(), typeArgs, |
1782 | ObjCSubstitutionContext::Superclass) |
1783 | ->castAs<ObjCObjectType>(), |
1784 | true); |
1785 | } |
1786 | |
1787 | const ObjCInterfaceType *ObjCObjectPointerType::getInterfaceType() const { |
1788 | if (auto interfaceDecl = getObjectType()->getInterface()) { |
1789 | return interfaceDecl->getASTContext().getObjCInterfaceType(interfaceDecl) |
1790 | ->castAs<ObjCInterfaceType>(); |
1791 | } |
1792 | |
1793 | return nullptr; |
1794 | } |
1795 | |
1796 | QualType ObjCObjectPointerType::getSuperClassType() const { |
1797 | QualType superObjectType = getObjectType()->getSuperClassType(); |
1798 | if (superObjectType.isNull()) |
1799 | return superObjectType; |
1800 | |
1801 | ASTContext &ctx = getInterfaceDecl()->getASTContext(); |
1802 | return ctx.getObjCObjectPointerType(OIT: superObjectType); |
1803 | } |
1804 | |
1805 | const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const { |
1806 | // There is no sugar for ObjCObjectType's, just return the canonical |
1807 | // type pointer if it is the right class. There is no typedef information to |
1808 | // return and these cannot be Address-space qualified. |
1809 | if (const auto *T = getAs<ObjCObjectType>()) |
1810 | if (T->getNumProtocols() && T->getInterface()) |
1811 | return T; |
1812 | return nullptr; |
1813 | } |
1814 | |
1815 | bool Type::isObjCQualifiedInterfaceType() const { |
1816 | return getAsObjCQualifiedInterfaceType() != nullptr; |
1817 | } |
1818 | |
1819 | const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const { |
1820 | // There is no sugar for ObjCQualifiedIdType's, just return the canonical |
1821 | // type pointer if it is the right class. |
1822 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { |
1823 | if (OPT->isObjCQualifiedIdType()) |
1824 | return OPT; |
1825 | } |
1826 | return nullptr; |
1827 | } |
1828 | |
1829 | const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const { |
1830 | // There is no sugar for ObjCQualifiedClassType's, just return the canonical |
1831 | // type pointer if it is the right class. |
1832 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { |
1833 | if (OPT->isObjCQualifiedClassType()) |
1834 | return OPT; |
1835 | } |
1836 | return nullptr; |
1837 | } |
1838 | |
1839 | const ObjCObjectType *Type::getAsObjCInterfaceType() const { |
1840 | if (const auto *OT = getAs<ObjCObjectType>()) { |
1841 | if (OT->getInterface()) |
1842 | return OT; |
1843 | } |
1844 | return nullptr; |
1845 | } |
1846 | |
1847 | const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const { |
1848 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { |
1849 | if (OPT->getInterfaceType()) |
1850 | return OPT; |
1851 | } |
1852 | return nullptr; |
1853 | } |
1854 | |
1855 | const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const { |
1856 | QualType PointeeType; |
1857 | if (const auto *PT = getAs<PointerType>()) |
1858 | PointeeType = PT->getPointeeType(); |
1859 | else if (const auto *RT = getAs<ReferenceType>()) |
1860 | PointeeType = RT->getPointeeType(); |
1861 | else |
1862 | return nullptr; |
1863 | |
1864 | if (const auto *RT = PointeeType->getAs<RecordType>()) |
1865 | return dyn_cast<CXXRecordDecl>(Val: RT->getDecl()); |
1866 | |
1867 | return nullptr; |
1868 | } |
1869 | |
1870 | CXXRecordDecl *Type::getAsCXXRecordDecl() const { |
1871 | return dyn_cast_or_null<CXXRecordDecl>(Val: getAsTagDecl()); |
1872 | } |
1873 | |
1874 | RecordDecl *Type::getAsRecordDecl() const { |
1875 | return dyn_cast_or_null<RecordDecl>(Val: getAsTagDecl()); |
1876 | } |
1877 | |
1878 | TagDecl *Type::getAsTagDecl() const { |
1879 | if (const auto *TT = getAs<TagType>()) |
1880 | return TT->getDecl(); |
1881 | if (const auto *Injected = getAs<InjectedClassNameType>()) |
1882 | return Injected->getDecl(); |
1883 | |
1884 | return nullptr; |
1885 | } |
1886 | |
1887 | bool Type::hasAttr(attr::Kind AK) const { |
1888 | const Type *Cur = this; |
1889 | while (const auto *AT = Cur->getAs<AttributedType>()) { |
1890 | if (AT->getAttrKind() == AK) |
1891 | return true; |
1892 | Cur = AT->getEquivalentType().getTypePtr(); |
1893 | } |
1894 | return false; |
1895 | } |
1896 | |
1897 | namespace { |
1898 | |
1899 | class GetContainedDeducedTypeVisitor : |
1900 | public TypeVisitor<GetContainedDeducedTypeVisitor, Type*> { |
1901 | bool Syntactic; |
1902 | |
1903 | public: |
1904 | GetContainedDeducedTypeVisitor(bool Syntactic = false) |
1905 | : Syntactic(Syntactic) {} |
1906 | |
1907 | using TypeVisitor<GetContainedDeducedTypeVisitor, Type*>::Visit; |
1908 | |
1909 | Type *Visit(QualType T) { |
1910 | if (T.isNull()) |
1911 | return nullptr; |
1912 | return Visit(T: T.getTypePtr()); |
1913 | } |
1914 | |
1915 | // The deduced type itself. |
1916 | Type *VisitDeducedType(const DeducedType *AT) { |
1917 | return const_cast<DeducedType*>(AT); |
1918 | } |
1919 | |
1920 | // Only these types can contain the desired 'auto' type. |
1921 | Type *VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { |
1922 | return Visit(T: T->getReplacementType()); |
1923 | } |
1924 | |
1925 | Type *VisitElaboratedType(const ElaboratedType *T) { |
1926 | return Visit(T: T->getNamedType()); |
1927 | } |
1928 | |
1929 | Type *VisitPointerType(const PointerType *T) { |
1930 | return Visit(T: T->getPointeeType()); |
1931 | } |
1932 | |
1933 | Type *VisitBlockPointerType(const BlockPointerType *T) { |
1934 | return Visit(T: T->getPointeeType()); |
1935 | } |
1936 | |
1937 | Type *VisitReferenceType(const ReferenceType *T) { |
1938 | return Visit(T: T->getPointeeTypeAsWritten()); |
1939 | } |
1940 | |
1941 | Type *VisitMemberPointerType(const MemberPointerType *T) { |
1942 | return Visit(T: T->getPointeeType()); |
1943 | } |
1944 | |
1945 | Type *VisitArrayType(const ArrayType *T) { |
1946 | return Visit(T: T->getElementType()); |
1947 | } |
1948 | |
1949 | Type *VisitDependentSizedExtVectorType( |
1950 | const DependentSizedExtVectorType *T) { |
1951 | return Visit(T: T->getElementType()); |
1952 | } |
1953 | |
1954 | Type *VisitVectorType(const VectorType *T) { |
1955 | return Visit(T: T->getElementType()); |
1956 | } |
1957 | |
1958 | Type *VisitDependentSizedMatrixType(const DependentSizedMatrixType *T) { |
1959 | return Visit(T->getElementType()); |
1960 | } |
1961 | |
1962 | Type *VisitConstantMatrixType(const ConstantMatrixType *T) { |
1963 | return Visit(T->getElementType()); |
1964 | } |
1965 | |
1966 | Type *VisitFunctionProtoType(const FunctionProtoType *T) { |
1967 | if (Syntactic && T->hasTrailingReturn()) |
1968 | return const_cast<FunctionProtoType*>(T); |
1969 | return VisitFunctionType(T); |
1970 | } |
1971 | |
1972 | Type *VisitFunctionType(const FunctionType *T) { |
1973 | return Visit(T: T->getReturnType()); |
1974 | } |
1975 | |
1976 | Type *VisitParenType(const ParenType *T) { |
1977 | return Visit(T: T->getInnerType()); |
1978 | } |
1979 | |
1980 | Type *VisitAttributedType(const AttributedType *T) { |
1981 | return Visit(T: T->getModifiedType()); |
1982 | } |
1983 | |
1984 | Type *VisitMacroQualifiedType(const MacroQualifiedType *T) { |
1985 | return Visit(T: T->getUnderlyingType()); |
1986 | } |
1987 | |
1988 | Type *VisitAdjustedType(const AdjustedType *T) { |
1989 | return Visit(T: T->getOriginalType()); |
1990 | } |
1991 | |
1992 | Type *VisitPackExpansionType(const PackExpansionType *T) { |
1993 | return Visit(T: T->getPattern()); |
1994 | } |
1995 | }; |
1996 | |
1997 | } // namespace |
1998 | |
1999 | DeducedType *Type::getContainedDeducedType() const { |
2000 | return cast_or_null<DeducedType>( |
2001 | Val: GetContainedDeducedTypeVisitor().Visit(T: this)); |
2002 | } |
2003 | |
2004 | bool Type::hasAutoForTrailingReturnType() const { |
2005 | return isa_and_nonnull<FunctionType>( |
2006 | Val: GetContainedDeducedTypeVisitor(true).Visit(T: this)); |
2007 | } |
2008 | |
2009 | bool Type::hasIntegerRepresentation() const { |
2010 | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) |
2011 | return VT->getElementType()->isIntegerType(); |
2012 | if (CanonicalType->isSveVLSBuiltinType()) { |
2013 | const auto *VT = cast<BuiltinType>(CanonicalType); |
2014 | return VT->getKind() == BuiltinType::SveBool || |
2015 | (VT->getKind() >= BuiltinType::SveInt8 && |
2016 | VT->getKind() <= BuiltinType::SveUint64); |
2017 | } |
2018 | if (CanonicalType->isRVVVLSBuiltinType()) { |
2019 | const auto *VT = cast<BuiltinType>(CanonicalType); |
2020 | return (VT->getKind() >= BuiltinType::RvvInt8mf8 && |
2021 | VT->getKind() <= BuiltinType::RvvUint64m8); |
2022 | } |
2023 | |
2024 | return isIntegerType(); |
2025 | } |
2026 | |
2027 | /// Determine whether this type is an integral type. |
2028 | /// |
2029 | /// This routine determines whether the given type is an integral type per |
2030 | /// C++ [basic.fundamental]p7. Although the C standard does not define the |
2031 | /// term "integral type", it has a similar term "integer type", and in C++ |
2032 | /// the two terms are equivalent. However, C's "integer type" includes |
2033 | /// enumeration types, while C++'s "integer type" does not. The \c ASTContext |
2034 | /// parameter is used to determine whether we should be following the C or |
2035 | /// C++ rules when determining whether this type is an integral/integer type. |
2036 | /// |
2037 | /// For cases where C permits "an integer type" and C++ permits "an integral |
2038 | /// type", use this routine. |
2039 | /// |
2040 | /// For cases where C permits "an integer type" and C++ permits "an integral |
2041 | /// or enumeration type", use \c isIntegralOrEnumerationType() instead. |
2042 | /// |
2043 | /// \param Ctx The context in which this type occurs. |
2044 | /// |
2045 | /// \returns true if the type is considered an integral type, false otherwise. |
2046 | bool Type::isIntegralType(const ASTContext &Ctx) const { |
2047 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2048 | return BT->getKind() >= BuiltinType::Bool && |
2049 | BT->getKind() <= BuiltinType::Int128; |
2050 | |
2051 | // Complete enum types are integral in C. |
2052 | if (!Ctx.getLangOpts().CPlusPlus) |
2053 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) |
2054 | return ET->getDecl()->isComplete(); |
2055 | |
2056 | return isBitIntType(); |
2057 | } |
2058 | |
2059 | bool Type::isIntegralOrUnscopedEnumerationType() const { |
2060 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2061 | return BT->getKind() >= BuiltinType::Bool && |
2062 | BT->getKind() <= BuiltinType::Int128; |
2063 | |
2064 | if (isBitIntType()) |
2065 | return true; |
2066 | |
2067 | return isUnscopedEnumerationType(); |
2068 | } |
2069 | |
2070 | bool Type::isUnscopedEnumerationType() const { |
2071 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) |
2072 | return !ET->getDecl()->isScoped(); |
2073 | |
2074 | return false; |
2075 | } |
2076 | |
2077 | bool Type::isCharType() const { |
2078 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2079 | return BT->getKind() == BuiltinType::Char_U || |
2080 | BT->getKind() == BuiltinType::UChar || |
2081 | BT->getKind() == BuiltinType::Char_S || |
2082 | BT->getKind() == BuiltinType::SChar; |
2083 | return false; |
2084 | } |
2085 | |
2086 | bool Type::isWideCharType() const { |
2087 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2088 | return BT->getKind() == BuiltinType::WChar_S || |
2089 | BT->getKind() == BuiltinType::WChar_U; |
2090 | return false; |
2091 | } |
2092 | |
2093 | bool Type::isChar8Type() const { |
2094 | if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2095 | return BT->getKind() == BuiltinType::Char8; |
2096 | return false; |
2097 | } |
2098 | |
2099 | bool Type::isChar16Type() const { |
2100 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2101 | return BT->getKind() == BuiltinType::Char16; |
2102 | return false; |
2103 | } |
2104 | |
2105 | bool Type::isChar32Type() const { |
2106 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2107 | return BT->getKind() == BuiltinType::Char32; |
2108 | return false; |
2109 | } |
2110 | |
2111 | /// Determine whether this type is any of the built-in character |
2112 | /// types. |
2113 | bool Type::isAnyCharacterType() const { |
2114 | const auto *BT = dyn_cast<BuiltinType>(CanonicalType); |
2115 | if (!BT) return false; |
2116 | switch (BT->getKind()) { |
2117 | default: return false; |
2118 | case BuiltinType::Char_U: |
2119 | case BuiltinType::UChar: |
2120 | case BuiltinType::WChar_U: |
2121 | case BuiltinType::Char8: |
2122 | case BuiltinType::Char16: |
2123 | case BuiltinType::Char32: |
2124 | case BuiltinType::Char_S: |
2125 | case BuiltinType::SChar: |
2126 | case BuiltinType::WChar_S: |
2127 | return true; |
2128 | } |
2129 | } |
2130 | |
2131 | /// isSignedIntegerType - Return true if this is an integer type that is |
2132 | /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], |
2133 | /// an enum decl which has a signed representation |
2134 | bool Type::isSignedIntegerType() const { |
2135 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { |
2136 | return BT->getKind() >= BuiltinType::Char_S && |
2137 | BT->getKind() <= BuiltinType::Int128; |
2138 | } |
2139 | |
2140 | if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) { |
2141 | // Incomplete enum types are not treated as integer types. |
2142 | // FIXME: In C++, enum types are never integer types. |
2143 | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
2144 | return ET->getDecl()->getIntegerType()->isSignedIntegerType(); |
2145 | } |
2146 | |
2147 | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) |
2148 | return IT->isSigned(); |
2149 | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) |
2150 | return IT->isSigned(); |
2151 | |
2152 | return false; |
2153 | } |
2154 | |
2155 | bool Type::isSignedIntegerOrEnumerationType() const { |
2156 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { |
2157 | return BT->getKind() >= BuiltinType::Char_S && |
2158 | BT->getKind() <= BuiltinType::Int128; |
2159 | } |
2160 | |
2161 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) { |
2162 | if (ET->getDecl()->isComplete()) |
2163 | return ET->getDecl()->getIntegerType()->isSignedIntegerType(); |
2164 | } |
2165 | |
2166 | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) |
2167 | return IT->isSigned(); |
2168 | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) |
2169 | return IT->isSigned(); |
2170 | |
2171 | return false; |
2172 | } |
2173 | |
2174 | bool Type::hasSignedIntegerRepresentation() const { |
2175 | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) |
2176 | return VT->getElementType()->isSignedIntegerOrEnumerationType(); |
2177 | else |
2178 | return isSignedIntegerOrEnumerationType(); |
2179 | } |
2180 | |
2181 | /// isUnsignedIntegerType - Return true if this is an integer type that is |
2182 | /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum |
2183 | /// decl which has an unsigned representation |
2184 | bool Type::isUnsignedIntegerType() const { |
2185 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { |
2186 | return BT->getKind() >= BuiltinType::Bool && |
2187 | BT->getKind() <= BuiltinType::UInt128; |
2188 | } |
2189 | |
2190 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) { |
2191 | // Incomplete enum types are not treated as integer types. |
2192 | // FIXME: In C++, enum types are never integer types. |
2193 | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
2194 | return ET->getDecl()->getIntegerType()->isUnsignedIntegerType(); |
2195 | } |
2196 | |
2197 | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) |
2198 | return IT->isUnsigned(); |
2199 | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) |
2200 | return IT->isUnsigned(); |
2201 | |
2202 | return false; |
2203 | } |
2204 | |
2205 | bool Type::isUnsignedIntegerOrEnumerationType() const { |
2206 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { |
2207 | return BT->getKind() >= BuiltinType::Bool && |
2208 | BT->getKind() <= BuiltinType::UInt128; |
2209 | } |
2210 | |
2211 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) { |
2212 | if (ET->getDecl()->isComplete()) |
2213 | return ET->getDecl()->getIntegerType()->isUnsignedIntegerType(); |
2214 | } |
2215 | |
2216 | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) |
2217 | return IT->isUnsigned(); |
2218 | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) |
2219 | return IT->isUnsigned(); |
2220 | |
2221 | return false; |
2222 | } |
2223 | |
2224 | bool Type::hasUnsignedIntegerRepresentation() const { |
2225 | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) |
2226 | return VT->getElementType()->isUnsignedIntegerOrEnumerationType(); |
2227 | if (const auto *VT = dyn_cast<MatrixType>(CanonicalType)) |
2228 | return VT->getElementType()->isUnsignedIntegerOrEnumerationType(); |
2229 | if (CanonicalType->isSveVLSBuiltinType()) { |
2230 | const auto *VT = cast<BuiltinType>(CanonicalType); |
2231 | return VT->getKind() >= BuiltinType::SveUint8 && |
2232 | VT->getKind() <= BuiltinType::SveUint64; |
2233 | } |
2234 | return isUnsignedIntegerOrEnumerationType(); |
2235 | } |
2236 | |
2237 | bool Type::isFloatingType() const { |
2238 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2239 | return BT->getKind() >= BuiltinType::Half && |
2240 | BT->getKind() <= BuiltinType::Ibm128; |
2241 | if (const auto *CT = dyn_cast<ComplexType>(CanonicalType)) |
2242 | return CT->getElementType()->isFloatingType(); |
2243 | return false; |
2244 | } |
2245 | |
2246 | bool Type::hasFloatingRepresentation() const { |
2247 | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) |
2248 | return VT->getElementType()->isFloatingType(); |
2249 | if (const auto *MT = dyn_cast<MatrixType>(CanonicalType)) |
2250 | return MT->getElementType()->isFloatingType(); |
2251 | return isFloatingType(); |
2252 | } |
2253 | |
2254 | bool Type::isRealFloatingType() const { |
2255 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2256 | return BT->isFloatingPoint(); |
2257 | return false; |
2258 | } |
2259 | |
2260 | bool Type::isRealType() const { |
2261 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2262 | return BT->getKind() >= BuiltinType::Bool && |
2263 | BT->getKind() <= BuiltinType::Ibm128; |
2264 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) |
2265 | return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped(); |
2266 | return isBitIntType(); |
2267 | } |
2268 | |
2269 | bool Type::isArithmeticType() const { |
2270 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
2271 | return BT->getKind() >= BuiltinType::Bool && |
2272 | BT->getKind() <= BuiltinType::Ibm128; |
2273 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) |
2274 | // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2). |
2275 | // If a body isn't seen by the time we get here, return false. |
2276 | // |
2277 | // C++0x: Enumerations are not arithmetic types. For now, just return |
2278 | // false for scoped enumerations since that will disable any |
2279 | // unwanted implicit conversions. |
2280 | return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete(); |
2281 | return isa<ComplexType>(CanonicalType) || isBitIntType(); |
2282 | } |
2283 | |
2284 | Type::ScalarTypeKind Type::getScalarTypeKind() const { |
2285 | assert(isScalarType()); |
2286 | |
2287 | const Type *T = CanonicalType.getTypePtr(); |
2288 | if (const auto *BT = dyn_cast<BuiltinType>(Val: T)) { |
2289 | if (BT->getKind() == BuiltinType::Bool) return STK_Bool; |
2290 | if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer; |
2291 | if (BT->isInteger()) return STK_Integral; |
2292 | if (BT->isFloatingPoint()) return STK_Floating; |
2293 | if (BT->isFixedPointType()) return STK_FixedPoint; |
2294 | llvm_unreachable("unknown scalar builtin type" ); |
2295 | } else if (isa<PointerType>(Val: T)) { |
2296 | return STK_CPointer; |
2297 | } else if (isa<BlockPointerType>(Val: T)) { |
2298 | return STK_BlockPointer; |
2299 | } else if (isa<ObjCObjectPointerType>(Val: T)) { |
2300 | return STK_ObjCObjectPointer; |
2301 | } else if (isa<MemberPointerType>(Val: T)) { |
2302 | return STK_MemberPointer; |
2303 | } else if (isa<EnumType>(Val: T)) { |
2304 | assert(cast<EnumType>(T)->getDecl()->isComplete()); |
2305 | return STK_Integral; |
2306 | } else if (const auto *CT = dyn_cast<ComplexType>(Val: T)) { |
2307 | if (CT->getElementType()->isRealFloatingType()) |
2308 | return STK_FloatingComplex; |
2309 | return STK_IntegralComplex; |
2310 | } else if (isBitIntType()) { |
2311 | return STK_Integral; |
2312 | } |
2313 | |
2314 | llvm_unreachable("unknown scalar type" ); |
2315 | } |
2316 | |
2317 | /// Determines whether the type is a C++ aggregate type or C |
2318 | /// aggregate or union type. |
2319 | /// |
2320 | /// An aggregate type is an array or a class type (struct, union, or |
2321 | /// class) that has no user-declared constructors, no private or |
2322 | /// protected non-static data members, no base classes, and no virtual |
2323 | /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type |
2324 | /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also |
2325 | /// includes union types. |
2326 | bool Type::isAggregateType() const { |
2327 | if (const auto *Record = dyn_cast<RecordType>(CanonicalType)) { |
2328 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl())) |
2329 | return ClassDecl->isAggregate(); |
2330 | |
2331 | return true; |
2332 | } |
2333 | |
2334 | return isa<ArrayType>(CanonicalType); |
2335 | } |
2336 | |
2337 | /// isConstantSizeType - Return true if this is not a variable sized type, |
2338 | /// according to the rules of C99 6.7.5p3. It is not legal to call this on |
2339 | /// incomplete types or dependent types. |
2340 | bool Type::isConstantSizeType() const { |
2341 | assert(!isIncompleteType() && "This doesn't make sense for incomplete types" ); |
2342 | assert(!isDependentType() && "This doesn't make sense for dependent types" ); |
2343 | // The VAT must have a size, as it is known to be complete. |
2344 | return !isa<VariableArrayType>(CanonicalType); |
2345 | } |
2346 | |
2347 | /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1) |
2348 | /// - a type that can describe objects, but which lacks information needed to |
2349 | /// determine its size. |
2350 | bool Type::isIncompleteType(NamedDecl **Def) const { |
2351 | if (Def) |
2352 | *Def = nullptr; |
2353 | |
2354 | switch (CanonicalType->getTypeClass()) { |
2355 | default: return false; |
2356 | case Builtin: |
2357 | // Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never |
2358 | // be completed. |
2359 | return isVoidType(); |
2360 | case Enum: { |
2361 | EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl(); |
2362 | if (Def) |
2363 | *Def = EnumD; |
2364 | return !EnumD->isComplete(); |
2365 | } |
2366 | case Record: { |
2367 | // A tagged type (struct/union/enum/class) is incomplete if the decl is a |
2368 | // forward declaration, but not a full definition (C99 6.2.5p22). |
2369 | RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl(); |
2370 | if (Def) |
2371 | *Def = Rec; |
2372 | return !Rec->isCompleteDefinition(); |
2373 | } |
2374 | case ConstantArray: |
2375 | case VariableArray: |
2376 | // An array is incomplete if its element type is incomplete |
2377 | // (C++ [dcl.array]p1). |
2378 | // We don't handle dependent-sized arrays (dependent types are never treated |
2379 | // as incomplete). |
2380 | return cast<ArrayType>(CanonicalType)->getElementType() |
2381 | ->isIncompleteType(Def); |
2382 | case IncompleteArray: |
2383 | // An array of unknown size is an incomplete type (C99 6.2.5p22). |
2384 | return true; |
2385 | case MemberPointer: { |
2386 | // Member pointers in the MS ABI have special behavior in |
2387 | // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl |
2388 | // to indicate which inheritance model to use. |
2389 | auto *MPTy = cast<MemberPointerType>(CanonicalType); |
2390 | const Type *ClassTy = MPTy->getClass(); |
2391 | // Member pointers with dependent class types don't get special treatment. |
2392 | if (ClassTy->isDependentType()) |
2393 | return false; |
2394 | const CXXRecordDecl *RD = ClassTy->getAsCXXRecordDecl(); |
2395 | ASTContext &Context = RD->getASTContext(); |
2396 | // Member pointers not in the MS ABI don't get special treatment. |
2397 | if (!Context.getTargetInfo().getCXXABI().isMicrosoft()) |
2398 | return false; |
2399 | // The inheritance attribute might only be present on the most recent |
2400 | // CXXRecordDecl, use that one. |
2401 | RD = RD->getMostRecentNonInjectedDecl(); |
2402 | // Nothing interesting to do if the inheritance attribute is already set. |
2403 | if (RD->hasAttr<MSInheritanceAttr>()) |
2404 | return false; |
2405 | return true; |
2406 | } |
2407 | case ObjCObject: |
2408 | return cast<ObjCObjectType>(CanonicalType)->getBaseType() |
2409 | ->isIncompleteType(Def); |
2410 | case ObjCInterface: { |
2411 | // ObjC interfaces are incomplete if they are @class, not @interface. |
2412 | ObjCInterfaceDecl *Interface |
2413 | = cast<ObjCInterfaceType>(CanonicalType)->getDecl(); |
2414 | if (Def) |
2415 | *Def = Interface; |
2416 | return !Interface->hasDefinition(); |
2417 | } |
2418 | } |
2419 | } |
2420 | |
2421 | bool Type::isSizelessBuiltinType() const { |
2422 | if (isSizelessVectorType()) |
2423 | return true; |
2424 | |
2425 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2426 | switch (BT->getKind()) { |
2427 | // WebAssembly reference types |
2428 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2429 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
2430 | return true; |
2431 | default: |
2432 | return false; |
2433 | } |
2434 | } |
2435 | return false; |
2436 | } |
2437 | |
2438 | bool Type::isWebAssemblyExternrefType() const { |
2439 | if (const auto *BT = getAs<BuiltinType>()) |
2440 | return BT->getKind() == BuiltinType::WasmExternRef; |
2441 | return false; |
2442 | } |
2443 | |
2444 | bool Type::isWebAssemblyTableType() const { |
2445 | if (const auto *ATy = dyn_cast<ArrayType>(Val: this)) |
2446 | return ATy->getElementType().isWebAssemblyReferenceType(); |
2447 | |
2448 | if (const auto *PTy = dyn_cast<PointerType>(Val: this)) |
2449 | return PTy->getPointeeType().isWebAssemblyReferenceType(); |
2450 | |
2451 | return false; |
2452 | } |
2453 | |
2454 | bool Type::isSizelessType() const { return isSizelessBuiltinType(); } |
2455 | |
2456 | bool Type::isSizelessVectorType() const { |
2457 | return isSVESizelessBuiltinType() || isRVVSizelessBuiltinType(); |
2458 | } |
2459 | |
2460 | bool Type::isSVESizelessBuiltinType() const { |
2461 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2462 | switch (BT->getKind()) { |
2463 | // SVE Types |
2464 | #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2465 | #include "clang/Basic/AArch64SVEACLETypes.def" |
2466 | return true; |
2467 | default: |
2468 | return false; |
2469 | } |
2470 | } |
2471 | return false; |
2472 | } |
2473 | |
2474 | bool Type::isRVVSizelessBuiltinType() const { |
2475 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2476 | switch (BT->getKind()) { |
2477 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2478 | #include "clang/Basic/RISCVVTypes.def" |
2479 | return true; |
2480 | default: |
2481 | return false; |
2482 | } |
2483 | } |
2484 | return false; |
2485 | } |
2486 | |
2487 | bool Type::isSveVLSBuiltinType() const { |
2488 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2489 | switch (BT->getKind()) { |
2490 | case BuiltinType::SveInt8: |
2491 | case BuiltinType::SveInt16: |
2492 | case BuiltinType::SveInt32: |
2493 | case BuiltinType::SveInt64: |
2494 | case BuiltinType::SveUint8: |
2495 | case BuiltinType::SveUint16: |
2496 | case BuiltinType::SveUint32: |
2497 | case BuiltinType::SveUint64: |
2498 | case BuiltinType::SveFloat16: |
2499 | case BuiltinType::SveFloat32: |
2500 | case BuiltinType::SveFloat64: |
2501 | case BuiltinType::SveBFloat16: |
2502 | case BuiltinType::SveBool: |
2503 | case BuiltinType::SveBoolx2: |
2504 | case BuiltinType::SveBoolx4: |
2505 | return true; |
2506 | default: |
2507 | return false; |
2508 | } |
2509 | } |
2510 | return false; |
2511 | } |
2512 | |
2513 | QualType Type::getSveEltType(const ASTContext &Ctx) const { |
2514 | assert(isSveVLSBuiltinType() && "unsupported type!" ); |
2515 | |
2516 | const BuiltinType *BTy = castAs<BuiltinType>(); |
2517 | if (BTy->getKind() == BuiltinType::SveBool) |
2518 | // Represent predicates as i8 rather than i1 to avoid any layout issues. |
2519 | // The type is bitcasted to a scalable predicate type when casting between |
2520 | // scalable and fixed-length vectors. |
2521 | return Ctx.UnsignedCharTy; |
2522 | else |
2523 | return Ctx.getBuiltinVectorTypeInfo(VecTy: BTy).ElementType; |
2524 | } |
2525 | |
2526 | bool Type::isRVVVLSBuiltinType() const { |
2527 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
2528 | switch (BT->getKind()) { |
2529 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned, \ |
2530 | IsFP, IsBF) \ |
2531 | case BuiltinType::Id: \ |
2532 | return NF == 1; |
2533 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
2534 | case BuiltinType::Id: \ |
2535 | return true; |
2536 | #include "clang/Basic/RISCVVTypes.def" |
2537 | default: |
2538 | return false; |
2539 | } |
2540 | } |
2541 | return false; |
2542 | } |
2543 | |
2544 | QualType Type::getRVVEltType(const ASTContext &Ctx) const { |
2545 | assert(isRVVVLSBuiltinType() && "unsupported type!" ); |
2546 | |
2547 | const BuiltinType *BTy = castAs<BuiltinType>(); |
2548 | |
2549 | switch (BTy->getKind()) { |
2550 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
2551 | case BuiltinType::Id: \ |
2552 | return Ctx.UnsignedCharTy; |
2553 | default: |
2554 | return Ctx.getBuiltinVectorTypeInfo(VecTy: BTy).ElementType; |
2555 | #include "clang/Basic/RISCVVTypes.def" |
2556 | } |
2557 | |
2558 | llvm_unreachable("Unhandled type" ); |
2559 | } |
2560 | |
2561 | bool QualType::isPODType(const ASTContext &Context) const { |
2562 | // C++11 has a more relaxed definition of POD. |
2563 | if (Context.getLangOpts().CPlusPlus11) |
2564 | return isCXX11PODType(Context); |
2565 | |
2566 | return isCXX98PODType(Context); |
2567 | } |
2568 | |
2569 | bool QualType::isCXX98PODType(const ASTContext &Context) const { |
2570 | // The compiler shouldn't query this for incomplete types, but the user might. |
2571 | // We return false for that case. Except for incomplete arrays of PODs, which |
2572 | // are PODs according to the standard. |
2573 | if (isNull()) |
2574 | return false; |
2575 | |
2576 | if ((*this)->isIncompleteArrayType()) |
2577 | return Context.getBaseElementType(QT: *this).isCXX98PODType(Context); |
2578 | |
2579 | if ((*this)->isIncompleteType()) |
2580 | return false; |
2581 | |
2582 | if (hasNonTrivialObjCLifetime()) |
2583 | return false; |
2584 | |
2585 | QualType CanonicalType = getTypePtr()->CanonicalType; |
2586 | switch (CanonicalType->getTypeClass()) { |
2587 | // Everything not explicitly mentioned is not POD. |
2588 | default: return false; |
2589 | case Type::VariableArray: |
2590 | case Type::ConstantArray: |
2591 | // IncompleteArray is handled above. |
2592 | return Context.getBaseElementType(QT: *this).isCXX98PODType(Context); |
2593 | |
2594 | case Type::ObjCObjectPointer: |
2595 | case Type::BlockPointer: |
2596 | case Type::Builtin: |
2597 | case Type::Complex: |
2598 | case Type::Pointer: |
2599 | case Type::MemberPointer: |
2600 | case Type::Vector: |
2601 | case Type::ExtVector: |
2602 | case Type::BitInt: |
2603 | return true; |
2604 | |
2605 | case Type::Enum: |
2606 | return true; |
2607 | |
2608 | case Type::Record: |
2609 | if (const auto *ClassDecl = |
2610 | dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl())) |
2611 | return ClassDecl->isPOD(); |
2612 | |
2613 | // C struct/union is POD. |
2614 | return true; |
2615 | } |
2616 | } |
2617 | |
2618 | bool QualType::isTrivialType(const ASTContext &Context) const { |
2619 | // The compiler shouldn't query this for incomplete types, but the user might. |
2620 | // We return false for that case. Except for incomplete arrays of PODs, which |
2621 | // are PODs according to the standard. |
2622 | if (isNull()) |
2623 | return false; |
2624 | |
2625 | if ((*this)->isArrayType()) |
2626 | return Context.getBaseElementType(QT: *this).isTrivialType(Context); |
2627 | |
2628 | if ((*this)->isSizelessBuiltinType()) |
2629 | return true; |
2630 | |
2631 | // Return false for incomplete types after skipping any incomplete array |
2632 | // types which are expressly allowed by the standard and thus our API. |
2633 | if ((*this)->isIncompleteType()) |
2634 | return false; |
2635 | |
2636 | if (hasNonTrivialObjCLifetime()) |
2637 | return false; |
2638 | |
2639 | QualType CanonicalType = getTypePtr()->CanonicalType; |
2640 | if (CanonicalType->isDependentType()) |
2641 | return false; |
2642 | |
2643 | // C++0x [basic.types]p9: |
2644 | // Scalar types, trivial class types, arrays of such types, and |
2645 | // cv-qualified versions of these types are collectively called trivial |
2646 | // types. |
2647 | |
2648 | // As an extension, Clang treats vector types as Scalar types. |
2649 | if (CanonicalType->isScalarType() || CanonicalType->isVectorType()) |
2650 | return true; |
2651 | if (const auto *RT = CanonicalType->getAs<RecordType>()) { |
2652 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { |
2653 | // C++20 [class]p6: |
2654 | // A trivial class is a class that is trivially copyable, and |
2655 | // has one or more eligible default constructors such that each is |
2656 | // trivial. |
2657 | // FIXME: We should merge this definition of triviality into |
2658 | // CXXRecordDecl::isTrivial. Currently it computes the wrong thing. |
2659 | return ClassDecl->hasTrivialDefaultConstructor() && |
2660 | !ClassDecl->hasNonTrivialDefaultConstructor() && |
2661 | ClassDecl->isTriviallyCopyable(); |
2662 | } |
2663 | |
2664 | return true; |
2665 | } |
2666 | |
2667 | // No other types can match. |
2668 | return false; |
2669 | } |
2670 | |
2671 | static bool isTriviallyCopyableTypeImpl(const QualType &type, |
2672 | const ASTContext &Context, |
2673 | bool IsCopyConstructible) { |
2674 | if (type->isArrayType()) |
2675 | return isTriviallyCopyableTypeImpl(type: Context.getBaseElementType(QT: type), |
2676 | Context, IsCopyConstructible); |
2677 | |
2678 | if (type.hasNonTrivialObjCLifetime()) |
2679 | return false; |
2680 | |
2681 | // C++11 [basic.types]p9 - See Core 2094 |
2682 | // Scalar types, trivially copyable class types, arrays of such types, and |
2683 | // cv-qualified versions of these types are collectively |
2684 | // called trivially copy constructible types. |
2685 | |
2686 | QualType CanonicalType = type.getCanonicalType(); |
2687 | if (CanonicalType->isDependentType()) |
2688 | return false; |
2689 | |
2690 | if (CanonicalType->isSizelessBuiltinType()) |
2691 | return true; |
2692 | |
2693 | // Return false for incomplete types after skipping any incomplete array types |
2694 | // which are expressly allowed by the standard and thus our API. |
2695 | if (CanonicalType->isIncompleteType()) |
2696 | return false; |
2697 | |
2698 | // As an extension, Clang treats vector types as Scalar types. |
2699 | if (CanonicalType->isScalarType() || CanonicalType->isVectorType()) |
2700 | return true; |
2701 | |
2702 | if (const auto *RT = CanonicalType->getAs<RecordType>()) { |
2703 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) { |
2704 | if (IsCopyConstructible) { |
2705 | return ClassDecl->isTriviallyCopyConstructible(); |
2706 | } else { |
2707 | return ClassDecl->isTriviallyCopyable(); |
2708 | } |
2709 | } |
2710 | return true; |
2711 | } |
2712 | // No other types can match. |
2713 | return false; |
2714 | } |
2715 | |
2716 | bool QualType::isTriviallyCopyableType(const ASTContext &Context) const { |
2717 | return isTriviallyCopyableTypeImpl(type: *this, Context, |
2718 | /*IsCopyConstructible=*/false); |
2719 | } |
2720 | |
2721 | bool QualType::isTriviallyCopyConstructibleType( |
2722 | const ASTContext &Context) const { |
2723 | return isTriviallyCopyableTypeImpl(type: *this, Context, |
2724 | /*IsCopyConstructible=*/true); |
2725 | } |
2726 | |
2727 | bool QualType::isTriviallyRelocatableType(const ASTContext &Context) const { |
2728 | QualType BaseElementType = Context.getBaseElementType(QT: *this); |
2729 | |
2730 | if (BaseElementType->isIncompleteType()) { |
2731 | return false; |
2732 | } else if (!BaseElementType->isObjectType()) { |
2733 | return false; |
2734 | } else if (const auto *RD = BaseElementType->getAsRecordDecl()) { |
2735 | return RD->canPassInRegisters(); |
2736 | } else if (BaseElementType.isTriviallyCopyableType(Context)) { |
2737 | return true; |
2738 | } else { |
2739 | switch (isNonTrivialToPrimitiveDestructiveMove()) { |
2740 | case PCK_Trivial: |
2741 | return !isDestructedType(); |
2742 | case PCK_ARCStrong: |
2743 | return true; |
2744 | default: |
2745 | return false; |
2746 | } |
2747 | } |
2748 | } |
2749 | |
2750 | static bool |
2751 | HasNonDeletedDefaultedEqualityComparison(const CXXRecordDecl *Decl) { |
2752 | if (Decl->isUnion()) |
2753 | return false; |
2754 | if (Decl->isLambda()) |
2755 | return Decl->isCapturelessLambda(); |
2756 | |
2757 | auto IsDefaultedOperatorEqualEqual = [&](const FunctionDecl *Function) { |
2758 | return Function->getOverloadedOperator() == |
2759 | OverloadedOperatorKind::OO_EqualEqual && |
2760 | Function->isDefaulted() && Function->getNumParams() > 0 && |
2761 | (Function->getParamDecl(0)->getType()->isReferenceType() || |
2762 | Decl->isTriviallyCopyable()); |
2763 | }; |
2764 | |
2765 | if (llvm::none_of(Range: Decl->methods(), P: IsDefaultedOperatorEqualEqual) && |
2766 | llvm::none_of(Range: Decl->friends(), P: [&](const FriendDecl *Friend) { |
2767 | if (NamedDecl *ND = Friend->getFriendDecl()) { |
2768 | return ND->isFunctionOrFunctionTemplate() && |
2769 | IsDefaultedOperatorEqualEqual(ND->getAsFunction()); |
2770 | } |
2771 | return false; |
2772 | })) |
2773 | return false; |
2774 | |
2775 | return llvm::all_of(Range: Decl->bases(), |
2776 | P: [](const CXXBaseSpecifier &BS) { |
2777 | if (const auto *RD = BS.getType()->getAsCXXRecordDecl()) |
2778 | return HasNonDeletedDefaultedEqualityComparison(Decl: RD); |
2779 | return true; |
2780 | }) && |
2781 | llvm::all_of(Decl->fields(), [](const FieldDecl *FD) { |
2782 | auto Type = FD->getType(); |
2783 | if (Type->isArrayType()) |
2784 | Type = Type->getBaseElementTypeUnsafe()->getCanonicalTypeUnqualified(); |
2785 | |
2786 | if (Type->isReferenceType() || Type->isEnumeralType()) |
2787 | return false; |
2788 | if (const auto *RD = Type->getAsCXXRecordDecl()) |
2789 | return HasNonDeletedDefaultedEqualityComparison(RD); |
2790 | return true; |
2791 | }); |
2792 | } |
2793 | |
2794 | bool QualType::isTriviallyEqualityComparableType( |
2795 | const ASTContext &Context) const { |
2796 | QualType CanonicalType = getCanonicalType(); |
2797 | if (CanonicalType->isIncompleteType() || CanonicalType->isDependentType() || |
2798 | CanonicalType->isEnumeralType() || CanonicalType->isArrayType()) |
2799 | return false; |
2800 | |
2801 | if (const auto *RD = CanonicalType->getAsCXXRecordDecl()) { |
2802 | if (!HasNonDeletedDefaultedEqualityComparison(Decl: RD)) |
2803 | return false; |
2804 | } |
2805 | |
2806 | return Context.hasUniqueObjectRepresentations( |
2807 | Ty: CanonicalType, /*CheckIfTriviallyCopyable=*/false); |
2808 | } |
2809 | |
2810 | bool QualType::isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const { |
2811 | return !Context.getLangOpts().ObjCAutoRefCount && |
2812 | Context.getLangOpts().ObjCWeak && |
2813 | getObjCLifetime() != Qualifiers::OCL_Weak; |
2814 | } |
2815 | |
2816 | bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD) { |
2817 | return RD->hasNonTrivialToPrimitiveDefaultInitializeCUnion(); |
2818 | } |
2819 | |
2820 | bool QualType::hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD) { |
2821 | return RD->hasNonTrivialToPrimitiveDestructCUnion(); |
2822 | } |
2823 | |
2824 | bool QualType::hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD) { |
2825 | return RD->hasNonTrivialToPrimitiveCopyCUnion(); |
2826 | } |
2827 | |
2828 | bool QualType::isWebAssemblyReferenceType() const { |
2829 | return isWebAssemblyExternrefType() || isWebAssemblyFuncrefType(); |
2830 | } |
2831 | |
2832 | bool QualType::isWebAssemblyExternrefType() const { |
2833 | return getTypePtr()->isWebAssemblyExternrefType(); |
2834 | } |
2835 | |
2836 | bool QualType::isWebAssemblyFuncrefType() const { |
2837 | return getTypePtr()->isFunctionPointerType() && |
2838 | getAddressSpace() == LangAS::wasm_funcref; |
2839 | } |
2840 | |
2841 | QualType::PrimitiveDefaultInitializeKind |
2842 | QualType::isNonTrivialToPrimitiveDefaultInitialize() const { |
2843 | if (const auto *RT = |
2844 | getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>()) |
2845 | if (RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) |
2846 | return PDIK_Struct; |
2847 | |
2848 | switch (getQualifiers().getObjCLifetime()) { |
2849 | case Qualifiers::OCL_Strong: |
2850 | return PDIK_ARCStrong; |
2851 | case Qualifiers::OCL_Weak: |
2852 | return PDIK_ARCWeak; |
2853 | default: |
2854 | return PDIK_Trivial; |
2855 | } |
2856 | } |
2857 | |
2858 | QualType::PrimitiveCopyKind QualType::isNonTrivialToPrimitiveCopy() const { |
2859 | if (const auto *RT = |
2860 | getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>()) |
2861 | if (RT->getDecl()->isNonTrivialToPrimitiveCopy()) |
2862 | return PCK_Struct; |
2863 | |
2864 | Qualifiers Qs = getQualifiers(); |
2865 | switch (Qs.getObjCLifetime()) { |
2866 | case Qualifiers::OCL_Strong: |
2867 | return PCK_ARCStrong; |
2868 | case Qualifiers::OCL_Weak: |
2869 | return PCK_ARCWeak; |
2870 | default: |
2871 | return Qs.hasVolatile() ? PCK_VolatileTrivial : PCK_Trivial; |
2872 | } |
2873 | } |
2874 | |
2875 | QualType::PrimitiveCopyKind |
2876 | QualType::isNonTrivialToPrimitiveDestructiveMove() const { |
2877 | return isNonTrivialToPrimitiveCopy(); |
2878 | } |
2879 | |
2880 | bool Type::isLiteralType(const ASTContext &Ctx) const { |
2881 | if (isDependentType()) |
2882 | return false; |
2883 | |
2884 | // C++1y [basic.types]p10: |
2885 | // A type is a literal type if it is: |
2886 | // -- cv void; or |
2887 | if (Ctx.getLangOpts().CPlusPlus14 && isVoidType()) |
2888 | return true; |
2889 | |
2890 | // C++11 [basic.types]p10: |
2891 | // A type is a literal type if it is: |
2892 | // [...] |
2893 | // -- an array of literal type other than an array of runtime bound; or |
2894 | if (isVariableArrayType()) |
2895 | return false; |
2896 | const Type *BaseTy = getBaseElementTypeUnsafe(); |
2897 | assert(BaseTy && "NULL element type" ); |
2898 | |
2899 | // Return false for incomplete types after skipping any incomplete array |
2900 | // types; those are expressly allowed by the standard and thus our API. |
2901 | if (BaseTy->isIncompleteType()) |
2902 | return false; |
2903 | |
2904 | // C++11 [basic.types]p10: |
2905 | // A type is a literal type if it is: |
2906 | // -- a scalar type; or |
2907 | // As an extension, Clang treats vector types and complex types as |
2908 | // literal types. |
2909 | if (BaseTy->isScalarType() || BaseTy->isVectorType() || |
2910 | BaseTy->isAnyComplexType()) |
2911 | return true; |
2912 | // -- a reference type; or |
2913 | if (BaseTy->isReferenceType()) |
2914 | return true; |
2915 | // -- a class type that has all of the following properties: |
2916 | if (const auto *RT = BaseTy->getAs<RecordType>()) { |
2917 | // -- a trivial destructor, |
2918 | // -- every constructor call and full-expression in the |
2919 | // brace-or-equal-initializers for non-static data members (if any) |
2920 | // is a constant expression, |
2921 | // -- it is an aggregate type or has at least one constexpr |
2922 | // constructor or constructor template that is not a copy or move |
2923 | // constructor, and |
2924 | // -- all non-static data members and base classes of literal types |
2925 | // |
2926 | // We resolve DR1361 by ignoring the second bullet. |
2927 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) |
2928 | return ClassDecl->isLiteral(); |
2929 | |
2930 | return true; |
2931 | } |
2932 | |
2933 | // We treat _Atomic T as a literal type if T is a literal type. |
2934 | if (const auto *AT = BaseTy->getAs<AtomicType>()) |
2935 | return AT->getValueType()->isLiteralType(Ctx); |
2936 | |
2937 | // If this type hasn't been deduced yet, then conservatively assume that |
2938 | // it'll work out to be a literal type. |
2939 | if (isa<AutoType>(Val: BaseTy->getCanonicalTypeInternal())) |
2940 | return true; |
2941 | |
2942 | return false; |
2943 | } |
2944 | |
2945 | bool Type::isStructuralType() const { |
2946 | // C++20 [temp.param]p6: |
2947 | // A structural type is one of the following: |
2948 | // -- a scalar type; or |
2949 | // -- a vector type [Clang extension]; or |
2950 | if (isScalarType() || isVectorType()) |
2951 | return true; |
2952 | // -- an lvalue reference type; or |
2953 | if (isLValueReferenceType()) |
2954 | return true; |
2955 | // -- a literal class type [...under some conditions] |
2956 | if (const CXXRecordDecl *RD = getAsCXXRecordDecl()) |
2957 | return RD->isStructural(); |
2958 | return false; |
2959 | } |
2960 | |
2961 | bool Type::isStandardLayoutType() const { |
2962 | if (isDependentType()) |
2963 | return false; |
2964 | |
2965 | // C++0x [basic.types]p9: |
2966 | // Scalar types, standard-layout class types, arrays of such types, and |
2967 | // cv-qualified versions of these types are collectively called |
2968 | // standard-layout types. |
2969 | const Type *BaseTy = getBaseElementTypeUnsafe(); |
2970 | assert(BaseTy && "NULL element type" ); |
2971 | |
2972 | // Return false for incomplete types after skipping any incomplete array |
2973 | // types which are expressly allowed by the standard and thus our API. |
2974 | if (BaseTy->isIncompleteType()) |
2975 | return false; |
2976 | |
2977 | // As an extension, Clang treats vector types as Scalar types. |
2978 | if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true; |
2979 | if (const auto *RT = BaseTy->getAs<RecordType>()) { |
2980 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) |
2981 | if (!ClassDecl->isStandardLayout()) |
2982 | return false; |
2983 | |
2984 | // Default to 'true' for non-C++ class types. |
2985 | // FIXME: This is a bit dubious, but plain C structs should trivially meet |
2986 | // all the requirements of standard layout classes. |
2987 | return true; |
2988 | } |
2989 | |
2990 | // No other types can match. |
2991 | return false; |
2992 | } |
2993 | |
2994 | // This is effectively the intersection of isTrivialType and |
2995 | // isStandardLayoutType. We implement it directly to avoid redundant |
2996 | // conversions from a type to a CXXRecordDecl. |
2997 | bool QualType::isCXX11PODType(const ASTContext &Context) const { |
2998 | const Type *ty = getTypePtr(); |
2999 | if (ty->isDependentType()) |
3000 | return false; |
3001 | |
3002 | if (hasNonTrivialObjCLifetime()) |
3003 | return false; |
3004 | |
3005 | // C++11 [basic.types]p9: |
3006 | // Scalar types, POD classes, arrays of such types, and cv-qualified |
3007 | // versions of these types are collectively called trivial types. |
3008 | const Type *BaseTy = ty->getBaseElementTypeUnsafe(); |
3009 | assert(BaseTy && "NULL element type" ); |
3010 | |
3011 | if (BaseTy->isSizelessBuiltinType()) |
3012 | return true; |
3013 | |
3014 | // Return false for incomplete types after skipping any incomplete array |
3015 | // types which are expressly allowed by the standard and thus our API. |
3016 | if (BaseTy->isIncompleteType()) |
3017 | return false; |
3018 | |
3019 | // As an extension, Clang treats vector types as Scalar types. |
3020 | if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true; |
3021 | if (const auto *RT = BaseTy->getAs<RecordType>()) { |
3022 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) { |
3023 | // C++11 [class]p10: |
3024 | // A POD struct is a non-union class that is both a trivial class [...] |
3025 | if (!ClassDecl->isTrivial()) return false; |
3026 | |
3027 | // C++11 [class]p10: |
3028 | // A POD struct is a non-union class that is both a trivial class and |
3029 | // a standard-layout class [...] |
3030 | if (!ClassDecl->isStandardLayout()) return false; |
3031 | |
3032 | // C++11 [class]p10: |
3033 | // A POD struct is a non-union class that is both a trivial class and |
3034 | // a standard-layout class, and has no non-static data members of type |
3035 | // non-POD struct, non-POD union (or array of such types). [...] |
3036 | // |
3037 | // We don't directly query the recursive aspect as the requirements for |
3038 | // both standard-layout classes and trivial classes apply recursively |
3039 | // already. |
3040 | } |
3041 | |
3042 | return true; |
3043 | } |
3044 | |
3045 | // No other types can match. |
3046 | return false; |
3047 | } |
3048 | |
3049 | bool Type::isNothrowT() const { |
3050 | if (const auto *RD = getAsCXXRecordDecl()) { |
3051 | IdentifierInfo *II = RD->getIdentifier(); |
3052 | if (II && II->isStr(Str: "nothrow_t" ) && RD->isInStdNamespace()) |
3053 | return true; |
3054 | } |
3055 | return false; |
3056 | } |
3057 | |
3058 | bool Type::isAlignValT() const { |
3059 | if (const auto *ET = getAs<EnumType>()) { |
3060 | IdentifierInfo *II = ET->getDecl()->getIdentifier(); |
3061 | if (II && II->isStr(Str: "align_val_t" ) && ET->getDecl()->isInStdNamespace()) |
3062 | return true; |
3063 | } |
3064 | return false; |
3065 | } |
3066 | |
3067 | bool Type::isStdByteType() const { |
3068 | if (const auto *ET = getAs<EnumType>()) { |
3069 | IdentifierInfo *II = ET->getDecl()->getIdentifier(); |
3070 | if (II && II->isStr(Str: "byte" ) && ET->getDecl()->isInStdNamespace()) |
3071 | return true; |
3072 | } |
3073 | return false; |
3074 | } |
3075 | |
3076 | bool Type::isSpecifierType() const { |
3077 | // Note that this intentionally does not use the canonical type. |
3078 | switch (getTypeClass()) { |
3079 | case Builtin: |
3080 | case Record: |
3081 | case Enum: |
3082 | case Typedef: |
3083 | case Complex: |
3084 | case TypeOfExpr: |
3085 | case TypeOf: |
3086 | case TemplateTypeParm: |
3087 | case SubstTemplateTypeParm: |
3088 | case TemplateSpecialization: |
3089 | case Elaborated: |
3090 | case DependentName: |
3091 | case DependentTemplateSpecialization: |
3092 | case ObjCInterface: |
3093 | case ObjCObject: |
3094 | return true; |
3095 | default: |
3096 | return false; |
3097 | } |
3098 | } |
3099 | |
3100 | ElaboratedTypeKeyword |
3101 | TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) { |
3102 | switch (TypeSpec) { |
3103 | default: |
3104 | return ElaboratedTypeKeyword::None; |
3105 | case TST_typename: |
3106 | return ElaboratedTypeKeyword::Typename; |
3107 | case TST_class: |
3108 | return ElaboratedTypeKeyword::Class; |
3109 | case TST_struct: |
3110 | return ElaboratedTypeKeyword::Struct; |
3111 | case TST_interface: |
3112 | return ElaboratedTypeKeyword::Interface; |
3113 | case TST_union: |
3114 | return ElaboratedTypeKeyword::Union; |
3115 | case TST_enum: |
3116 | return ElaboratedTypeKeyword::Enum; |
3117 | } |
3118 | } |
3119 | |
3120 | TagTypeKind |
3121 | TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) { |
3122 | switch(TypeSpec) { |
3123 | case TST_class: |
3124 | return TagTypeKind::Class; |
3125 | case TST_struct: |
3126 | return TagTypeKind::Struct; |
3127 | case TST_interface: |
3128 | return TagTypeKind::Interface; |
3129 | case TST_union: |
3130 | return TagTypeKind::Union; |
3131 | case TST_enum: |
3132 | return TagTypeKind::Enum; |
3133 | } |
3134 | |
3135 | llvm_unreachable("Type specifier is not a tag type kind." ); |
3136 | } |
3137 | |
3138 | ElaboratedTypeKeyword |
3139 | TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) { |
3140 | switch (Kind) { |
3141 | case TagTypeKind::Class: |
3142 | return ElaboratedTypeKeyword::Class; |
3143 | case TagTypeKind::Struct: |
3144 | return ElaboratedTypeKeyword::Struct; |
3145 | case TagTypeKind::Interface: |
3146 | return ElaboratedTypeKeyword::Interface; |
3147 | case TagTypeKind::Union: |
3148 | return ElaboratedTypeKeyword::Union; |
3149 | case TagTypeKind::Enum: |
3150 | return ElaboratedTypeKeyword::Enum; |
3151 | } |
3152 | llvm_unreachable("Unknown tag type kind." ); |
3153 | } |
3154 | |
3155 | TagTypeKind |
3156 | TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) { |
3157 | switch (Keyword) { |
3158 | case ElaboratedTypeKeyword::Class: |
3159 | return TagTypeKind::Class; |
3160 | case ElaboratedTypeKeyword::Struct: |
3161 | return TagTypeKind::Struct; |
3162 | case ElaboratedTypeKeyword::Interface: |
3163 | return TagTypeKind::Interface; |
3164 | case ElaboratedTypeKeyword::Union: |
3165 | return TagTypeKind::Union; |
3166 | case ElaboratedTypeKeyword::Enum: |
3167 | return TagTypeKind::Enum; |
3168 | case ElaboratedTypeKeyword::None: // Fall through. |
3169 | case ElaboratedTypeKeyword::Typename: |
3170 | llvm_unreachable("Elaborated type keyword is not a tag type kind." ); |
3171 | } |
3172 | llvm_unreachable("Unknown elaborated type keyword." ); |
3173 | } |
3174 | |
3175 | bool |
3176 | TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) { |
3177 | switch (Keyword) { |
3178 | case ElaboratedTypeKeyword::None: |
3179 | case ElaboratedTypeKeyword::Typename: |
3180 | return false; |
3181 | case ElaboratedTypeKeyword::Class: |
3182 | case ElaboratedTypeKeyword::Struct: |
3183 | case ElaboratedTypeKeyword::Interface: |
3184 | case ElaboratedTypeKeyword::Union: |
3185 | case ElaboratedTypeKeyword::Enum: |
3186 | return true; |
3187 | } |
3188 | llvm_unreachable("Unknown elaborated type keyword." ); |
3189 | } |
3190 | |
3191 | StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) { |
3192 | switch (Keyword) { |
3193 | case ElaboratedTypeKeyword::None: |
3194 | return {}; |
3195 | case ElaboratedTypeKeyword::Typename: |
3196 | return "typename" ; |
3197 | case ElaboratedTypeKeyword::Class: |
3198 | return "class" ; |
3199 | case ElaboratedTypeKeyword::Struct: |
3200 | return "struct" ; |
3201 | case ElaboratedTypeKeyword::Interface: |
3202 | return "__interface" ; |
3203 | case ElaboratedTypeKeyword::Union: |
3204 | return "union" ; |
3205 | case ElaboratedTypeKeyword::Enum: |
3206 | return "enum" ; |
3207 | } |
3208 | |
3209 | llvm_unreachable("Unknown elaborated type keyword." ); |
3210 | } |
3211 | |
3212 | DependentTemplateSpecializationType::DependentTemplateSpecializationType( |
3213 | ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, |
3214 | const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args, QualType Canon) |
3215 | : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, |
3216 | TypeDependence::DependentInstantiation | |
3217 | (NNS ? toTypeDependence(NNS->getDependence()) |
3218 | : TypeDependence::None)), |
3219 | NNS(NNS), Name(Name) { |
3220 | DependentTemplateSpecializationTypeBits.NumArgs = Args.size(); |
3221 | assert((!NNS || NNS->isDependent()) && |
3222 | "DependentTemplateSpecializatonType requires dependent qualifier" ); |
3223 | auto *ArgBuffer = const_cast<TemplateArgument *>(template_arguments().data()); |
3224 | for (const TemplateArgument &Arg : Args) { |
3225 | addDependence(toTypeDependence(D: Arg.getDependence() & |
3226 | TemplateArgumentDependence::UnexpandedPack)); |
3227 | |
3228 | new (ArgBuffer++) TemplateArgument(Arg); |
3229 | } |
3230 | } |
3231 | |
3232 | void |
3233 | DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, |
3234 | const ASTContext &Context, |
3235 | ElaboratedTypeKeyword Keyword, |
3236 | NestedNameSpecifier *Qualifier, |
3237 | const IdentifierInfo *Name, |
3238 | ArrayRef<TemplateArgument> Args) { |
3239 | ID.AddInteger(I: llvm::to_underlying(E: Keyword)); |
3240 | ID.AddPointer(Ptr: Qualifier); |
3241 | ID.AddPointer(Ptr: Name); |
3242 | for (const TemplateArgument &Arg : Args) |
3243 | Arg.Profile(ID, Context); |
3244 | } |
3245 | |
3246 | bool Type::isElaboratedTypeSpecifier() const { |
3247 | ElaboratedTypeKeyword Keyword; |
3248 | if (const auto *Elab = dyn_cast<ElaboratedType>(Val: this)) |
3249 | Keyword = Elab->getKeyword(); |
3250 | else if (const auto *DepName = dyn_cast<DependentNameType>(Val: this)) |
3251 | Keyword = DepName->getKeyword(); |
3252 | else if (const auto *DepTST = |
3253 | dyn_cast<DependentTemplateSpecializationType>(Val: this)) |
3254 | Keyword = DepTST->getKeyword(); |
3255 | else |
3256 | return false; |
3257 | |
3258 | return TypeWithKeyword::KeywordIsTagTypeKind(Keyword); |
3259 | } |
3260 | |
3261 | const char *Type::getTypeClassName() const { |
3262 | switch (TypeBits.TC) { |
3263 | #define ABSTRACT_TYPE(Derived, Base) |
3264 | #define TYPE(Derived, Base) case Derived: return #Derived; |
3265 | #include "clang/AST/TypeNodes.inc" |
3266 | } |
3267 | |
3268 | llvm_unreachable("Invalid type class." ); |
3269 | } |
3270 | |
3271 | StringRef BuiltinType::getName(const PrintingPolicy &Policy) const { |
3272 | switch (getKind()) { |
3273 | case Void: |
3274 | return "void" ; |
3275 | case Bool: |
3276 | return Policy.Bool ? "bool" : "_Bool" ; |
3277 | case Char_S: |
3278 | return "char" ; |
3279 | case Char_U: |
3280 | return "char" ; |
3281 | case SChar: |
3282 | return "signed char" ; |
3283 | case Short: |
3284 | return "short" ; |
3285 | case Int: |
3286 | return "int" ; |
3287 | case Long: |
3288 | return "long" ; |
3289 | case LongLong: |
3290 | return "long long" ; |
3291 | case Int128: |
3292 | return "__int128" ; |
3293 | case UChar: |
3294 | return "unsigned char" ; |
3295 | case UShort: |
3296 | return "unsigned short" ; |
3297 | case UInt: |
3298 | return "unsigned int" ; |
3299 | case ULong: |
3300 | return "unsigned long" ; |
3301 | case ULongLong: |
3302 | return "unsigned long long" ; |
3303 | case UInt128: |
3304 | return "unsigned __int128" ; |
3305 | case Half: |
3306 | return Policy.Half ? "half" : "__fp16" ; |
3307 | case BFloat16: |
3308 | return "__bf16" ; |
3309 | case Float: |
3310 | return "float" ; |
3311 | case Double: |
3312 | return "double" ; |
3313 | case LongDouble: |
3314 | return "long double" ; |
3315 | case ShortAccum: |
3316 | return "short _Accum" ; |
3317 | case Accum: |
3318 | return "_Accum" ; |
3319 | case LongAccum: |
3320 | return "long _Accum" ; |
3321 | case UShortAccum: |
3322 | return "unsigned short _Accum" ; |
3323 | case UAccum: |
3324 | return "unsigned _Accum" ; |
3325 | case ULongAccum: |
3326 | return "unsigned long _Accum" ; |
3327 | case BuiltinType::ShortFract: |
3328 | return "short _Fract" ; |
3329 | case BuiltinType::Fract: |
3330 | return "_Fract" ; |
3331 | case BuiltinType::LongFract: |
3332 | return "long _Fract" ; |
3333 | case BuiltinType::UShortFract: |
3334 | return "unsigned short _Fract" ; |
3335 | case BuiltinType::UFract: |
3336 | return "unsigned _Fract" ; |
3337 | case BuiltinType::ULongFract: |
3338 | return "unsigned long _Fract" ; |
3339 | case BuiltinType::SatShortAccum: |
3340 | return "_Sat short _Accum" ; |
3341 | case BuiltinType::SatAccum: |
3342 | return "_Sat _Accum" ; |
3343 | case BuiltinType::SatLongAccum: |
3344 | return "_Sat long _Accum" ; |
3345 | case BuiltinType::SatUShortAccum: |
3346 | return "_Sat unsigned short _Accum" ; |
3347 | case BuiltinType::SatUAccum: |
3348 | return "_Sat unsigned _Accum" ; |
3349 | case BuiltinType::SatULongAccum: |
3350 | return "_Sat unsigned long _Accum" ; |
3351 | case BuiltinType::SatShortFract: |
3352 | return "_Sat short _Fract" ; |
3353 | case BuiltinType::SatFract: |
3354 | return "_Sat _Fract" ; |
3355 | case BuiltinType::SatLongFract: |
3356 | return "_Sat long _Fract" ; |
3357 | case BuiltinType::SatUShortFract: |
3358 | return "_Sat unsigned short _Fract" ; |
3359 | case BuiltinType::SatUFract: |
3360 | return "_Sat unsigned _Fract" ; |
3361 | case BuiltinType::SatULongFract: |
3362 | return "_Sat unsigned long _Fract" ; |
3363 | case Float16: |
3364 | return "_Float16" ; |
3365 | case Float128: |
3366 | return "__float128" ; |
3367 | case Ibm128: |
3368 | return "__ibm128" ; |
3369 | case WChar_S: |
3370 | case WChar_U: |
3371 | return Policy.MSWChar ? "__wchar_t" : "wchar_t" ; |
3372 | case Char8: |
3373 | return "char8_t" ; |
3374 | case Char16: |
3375 | return "char16_t" ; |
3376 | case Char32: |
3377 | return "char32_t" ; |
3378 | case NullPtr: |
3379 | return Policy.NullptrTypeInNamespace ? "std::nullptr_t" : "nullptr_t" ; |
3380 | case Overload: |
3381 | return "<overloaded function type>" ; |
3382 | case BoundMember: |
3383 | return "<bound member function type>" ; |
3384 | case PseudoObject: |
3385 | return "<pseudo-object type>" ; |
3386 | case Dependent: |
3387 | return "<dependent type>" ; |
3388 | case UnknownAny: |
3389 | return "<unknown type>" ; |
3390 | case ARCUnbridgedCast: |
3391 | return "<ARC unbridged cast type>" ; |
3392 | case BuiltinFn: |
3393 | return "<builtin fn type>" ; |
3394 | case ObjCId: |
3395 | return "id" ; |
3396 | case ObjCClass: |
3397 | return "Class" ; |
3398 | case ObjCSel: |
3399 | return "SEL" ; |
3400 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
3401 | case Id: \ |
3402 | return "__" #Access " " #ImgType "_t"; |
3403 | #include "clang/Basic/OpenCLImageTypes.def" |
3404 | case OCLSampler: |
3405 | return "sampler_t" ; |
3406 | case OCLEvent: |
3407 | return "event_t" ; |
3408 | case OCLClkEvent: |
3409 | return "clk_event_t" ; |
3410 | case OCLQueue: |
3411 | return "queue_t" ; |
3412 | case OCLReserveID: |
3413 | return "reserve_id_t" ; |
3414 | case IncompleteMatrixIdx: |
3415 | return "<incomplete matrix index type>" ; |
3416 | case OMPArraySection: |
3417 | return "<OpenMP array section type>" ; |
3418 | case OMPArrayShaping: |
3419 | return "<OpenMP array shaping type>" ; |
3420 | case OMPIterator: |
3421 | return "<OpenMP iterator type>" ; |
3422 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
3423 | case Id: \ |
3424 | return #ExtType; |
3425 | #include "clang/Basic/OpenCLExtensionTypes.def" |
3426 | #define SVE_TYPE(Name, Id, SingletonId) \ |
3427 | case Id: \ |
3428 | return Name; |
3429 | #include "clang/Basic/AArch64SVEACLETypes.def" |
3430 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
3431 | case Id: \ |
3432 | return #Name; |
3433 | #include "clang/Basic/PPCTypes.def" |
3434 | #define RVV_TYPE(Name, Id, SingletonId) \ |
3435 | case Id: \ |
3436 | return Name; |
3437 | #include "clang/Basic/RISCVVTypes.def" |
3438 | #define WASM_TYPE(Name, Id, SingletonId) \ |
3439 | case Id: \ |
3440 | return Name; |
3441 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
3442 | } |
3443 | |
3444 | llvm_unreachable("Invalid builtin type." ); |
3445 | } |
3446 | |
3447 | QualType QualType::getNonPackExpansionType() const { |
3448 | // We never wrap type sugar around a PackExpansionType. |
3449 | if (auto *PET = dyn_cast<PackExpansionType>(Val: getTypePtr())) |
3450 | return PET->getPattern(); |
3451 | return *this; |
3452 | } |
3453 | |
3454 | QualType QualType::getNonLValueExprType(const ASTContext &Context) const { |
3455 | if (const auto *RefType = getTypePtr()->getAs<ReferenceType>()) |
3456 | return RefType->getPointeeType(); |
3457 | |
3458 | // C++0x [basic.lval]: |
3459 | // Class prvalues can have cv-qualified types; non-class prvalues always |
3460 | // have cv-unqualified types. |
3461 | // |
3462 | // See also C99 6.3.2.1p2. |
3463 | if (!Context.getLangOpts().CPlusPlus || |
3464 | (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType())) |
3465 | return getUnqualifiedType(); |
3466 | |
3467 | return *this; |
3468 | } |
3469 | |
3470 | StringRef FunctionType::getNameForCallConv(CallingConv CC) { |
3471 | switch (CC) { |
3472 | case CC_C: return "cdecl" ; |
3473 | case CC_X86StdCall: return "stdcall" ; |
3474 | case CC_X86FastCall: return "fastcall" ; |
3475 | case CC_X86ThisCall: return "thiscall" ; |
3476 | case CC_X86Pascal: return "pascal" ; |
3477 | case CC_X86VectorCall: return "vectorcall" ; |
3478 | case CC_Win64: return "ms_abi" ; |
3479 | case CC_X86_64SysV: return "sysv_abi" ; |
3480 | case CC_X86RegCall : return "regcall" ; |
3481 | case CC_AAPCS: return "aapcs" ; |
3482 | case CC_AAPCS_VFP: return "aapcs-vfp" ; |
3483 | case CC_AArch64VectorCall: return "aarch64_vector_pcs" ; |
3484 | case CC_AArch64SVEPCS: return "aarch64_sve_pcs" ; |
3485 | case CC_AMDGPUKernelCall: return "amdgpu_kernel" ; |
3486 | case CC_IntelOclBicc: return "intel_ocl_bicc" ; |
3487 | case CC_SpirFunction: return "spir_function" ; |
3488 | case CC_OpenCLKernel: return "opencl_kernel" ; |
3489 | case CC_Swift: return "swiftcall" ; |
3490 | case CC_SwiftAsync: return "swiftasynccall" ; |
3491 | case CC_PreserveMost: return "preserve_most" ; |
3492 | case CC_PreserveAll: return "preserve_all" ; |
3493 | case CC_M68kRTD: return "m68k_rtd" ; |
3494 | case CC_PreserveNone: return "preserve_none" ; |
3495 | // clang-format off |
3496 | case CC_RISCVVectorCall: return "riscv_vector_cc" ; |
3497 | // clang-format on |
3498 | } |
3499 | |
3500 | llvm_unreachable("Invalid calling convention." ); |
3501 | } |
3502 | |
3503 | void FunctionProtoType::ExceptionSpecInfo::instantiate() { |
3504 | assert(Type == EST_Uninstantiated); |
3505 | NoexceptExpr = |
3506 | cast<FunctionProtoType>(SourceTemplate->getType())->getNoexceptExpr(); |
3507 | Type = EST_DependentNoexcept; |
3508 | } |
3509 | |
3510 | FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params, |
3511 | QualType canonical, |
3512 | const ExtProtoInfo &epi) |
3513 | : FunctionType(FunctionProto, result, canonical, result->getDependence(), |
3514 | epi.ExtInfo) { |
3515 | FunctionTypeBits.FastTypeQuals = epi.TypeQuals.getFastQualifiers(); |
3516 | FunctionTypeBits.RefQualifier = epi.RefQualifier; |
3517 | FunctionTypeBits.NumParams = params.size(); |
3518 | assert(getNumParams() == params.size() && "NumParams overflow!" ); |
3519 | FunctionTypeBits.ExceptionSpecType = epi.ExceptionSpec.Type; |
3520 | FunctionTypeBits.HasExtParameterInfos = !!epi.ExtParameterInfos; |
3521 | FunctionTypeBits.Variadic = epi.Variadic; |
3522 | FunctionTypeBits.HasTrailingReturn = epi.HasTrailingReturn; |
3523 | |
3524 | if (epi.requiresFunctionProtoTypeExtraBitfields()) { |
3525 | FunctionTypeBits.HasExtraBitfields = true; |
3526 | auto & = *getTrailingObjects<FunctionTypeExtraBitfields>(); |
3527 | ExtraBits = FunctionTypeExtraBitfields(); |
3528 | } else { |
3529 | FunctionTypeBits.HasExtraBitfields = false; |
3530 | } |
3531 | |
3532 | if (epi.requiresFunctionProtoTypeArmAttributes()) { |
3533 | auto &ArmTypeAttrs = *getTrailingObjects<FunctionTypeArmAttributes>(); |
3534 | ArmTypeAttrs = FunctionTypeArmAttributes(); |
3535 | |
3536 | // Also set the bit in FunctionTypeExtraBitfields |
3537 | auto & = *getTrailingObjects<FunctionTypeExtraBitfields>(); |
3538 | ExtraBits.HasArmTypeAttributes = true; |
3539 | } |
3540 | |
3541 | // Fill in the trailing argument array. |
3542 | auto *argSlot = getTrailingObjects<QualType>(); |
3543 | for (unsigned i = 0; i != getNumParams(); ++i) { |
3544 | addDependence(params[i]->getDependence() & |
3545 | ~TypeDependence::VariablyModified); |
3546 | argSlot[i] = params[i]; |
3547 | } |
3548 | |
3549 | // Propagate the SME ACLE attributes. |
3550 | if (epi.AArch64SMEAttributes != SME_NormalFunction) { |
3551 | auto &ArmTypeAttrs = *getTrailingObjects<FunctionTypeArmAttributes>(); |
3552 | assert(epi.AArch64SMEAttributes <= SME_AttributeMask && |
3553 | "Not enough bits to encode SME attributes" ); |
3554 | ArmTypeAttrs.AArch64SMEAttributes = epi.AArch64SMEAttributes; |
3555 | } |
3556 | |
3557 | // Fill in the exception type array if present. |
3558 | if (getExceptionSpecType() == EST_Dynamic) { |
3559 | auto & = *getTrailingObjects<FunctionTypeExtraBitfields>(); |
3560 | size_t NumExceptions = epi.ExceptionSpec.Exceptions.size(); |
3561 | assert(NumExceptions <= 1023 && "Not enough bits to encode exceptions" ); |
3562 | ExtraBits.NumExceptionType = NumExceptions; |
3563 | |
3564 | assert(hasExtraBitfields() && "missing trailing extra bitfields!" ); |
3565 | auto *exnSlot = |
3566 | reinterpret_cast<QualType *>(getTrailingObjects<ExceptionType>()); |
3567 | unsigned I = 0; |
3568 | for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) { |
3569 | // Note that, before C++17, a dependent exception specification does |
3570 | // *not* make a type dependent; it's not even part of the C++ type |
3571 | // system. |
3572 | addDependence( |
3573 | ExceptionType->getDependence() & |
3574 | (TypeDependence::Instantiation | TypeDependence::UnexpandedPack)); |
3575 | |
3576 | exnSlot[I++] = ExceptionType; |
3577 | } |
3578 | } |
3579 | // Fill in the Expr * in the exception specification if present. |
3580 | else if (isComputedNoexcept(ESpecType: getExceptionSpecType())) { |
3581 | assert(epi.ExceptionSpec.NoexceptExpr && "computed noexcept with no expr" ); |
3582 | assert((getExceptionSpecType() == EST_DependentNoexcept) == |
3583 | epi.ExceptionSpec.NoexceptExpr->isValueDependent()); |
3584 | |
3585 | // Store the noexcept expression and context. |
3586 | *getTrailingObjects<Expr *>() = epi.ExceptionSpec.NoexceptExpr; |
3587 | |
3588 | addDependence( |
3589 | D: toTypeDependence(epi.ExceptionSpec.NoexceptExpr->getDependence()) & |
3590 | (TypeDependence::Instantiation | TypeDependence::UnexpandedPack)); |
3591 | } |
3592 | // Fill in the FunctionDecl * in the exception specification if present. |
3593 | else if (getExceptionSpecType() == EST_Uninstantiated) { |
3594 | // Store the function decl from which we will resolve our |
3595 | // exception specification. |
3596 | auto **slot = getTrailingObjects<FunctionDecl *>(); |
3597 | slot[0] = epi.ExceptionSpec.SourceDecl; |
3598 | slot[1] = epi.ExceptionSpec.SourceTemplate; |
3599 | // This exception specification doesn't make the type dependent, because |
3600 | // it's not instantiated as part of instantiating the type. |
3601 | } else if (getExceptionSpecType() == EST_Unevaluated) { |
3602 | // Store the function decl from which we will resolve our |
3603 | // exception specification. |
3604 | auto **slot = getTrailingObjects<FunctionDecl *>(); |
3605 | slot[0] = epi.ExceptionSpec.SourceDecl; |
3606 | } |
3607 | |
3608 | // If this is a canonical type, and its exception specification is dependent, |
3609 | // then it's a dependent type. This only happens in C++17 onwards. |
3610 | if (isCanonicalUnqualified()) { |
3611 | if (getExceptionSpecType() == EST_Dynamic || |
3612 | getExceptionSpecType() == EST_DependentNoexcept) { |
3613 | assert(hasDependentExceptionSpec() && "type should not be canonical" ); |
3614 | addDependence(TypeDependence::DependentInstantiation); |
3615 | } |
3616 | } else if (getCanonicalTypeInternal()->isDependentType()) { |
3617 | // Ask our canonical type whether our exception specification was dependent. |
3618 | addDependence(TypeDependence::DependentInstantiation); |
3619 | } |
3620 | |
3621 | // Fill in the extra parameter info if present. |
3622 | if (epi.ExtParameterInfos) { |
3623 | auto *extParamInfos = getTrailingObjects<ExtParameterInfo>(); |
3624 | for (unsigned i = 0; i != getNumParams(); ++i) |
3625 | extParamInfos[i] = epi.ExtParameterInfos[i]; |
3626 | } |
3627 | |
3628 | if (epi.TypeQuals.hasNonFastQualifiers()) { |
3629 | FunctionTypeBits.HasExtQuals = 1; |
3630 | *getTrailingObjects<Qualifiers>() = epi.TypeQuals; |
3631 | } else { |
3632 | FunctionTypeBits.HasExtQuals = 0; |
3633 | } |
3634 | |
3635 | // Fill in the Ellipsis location info if present. |
3636 | if (epi.Variadic) { |
3637 | auto &EllipsisLoc = *getTrailingObjects<SourceLocation>(); |
3638 | EllipsisLoc = epi.EllipsisLoc; |
3639 | } |
3640 | } |
3641 | |
3642 | bool FunctionProtoType::hasDependentExceptionSpec() const { |
3643 | if (Expr *NE = getNoexceptExpr()) |
3644 | return NE->isValueDependent(); |
3645 | for (QualType ET : exceptions()) |
3646 | // A pack expansion with a non-dependent pattern is still dependent, |
3647 | // because we don't know whether the pattern is in the exception spec |
3648 | // or not (that depends on whether the pack has 0 expansions). |
3649 | if (ET->isDependentType() || ET->getAs<PackExpansionType>()) |
3650 | return true; |
3651 | return false; |
3652 | } |
3653 | |
3654 | bool FunctionProtoType::hasInstantiationDependentExceptionSpec() const { |
3655 | if (Expr *NE = getNoexceptExpr()) |
3656 | return NE->isInstantiationDependent(); |
3657 | for (QualType ET : exceptions()) |
3658 | if (ET->isInstantiationDependentType()) |
3659 | return true; |
3660 | return false; |
3661 | } |
3662 | |
3663 | CanThrowResult FunctionProtoType::canThrow() const { |
3664 | switch (getExceptionSpecType()) { |
3665 | case EST_Unparsed: |
3666 | case EST_Unevaluated: |
3667 | llvm_unreachable("should not call this with unresolved exception specs" ); |
3668 | |
3669 | case EST_DynamicNone: |
3670 | case EST_BasicNoexcept: |
3671 | case EST_NoexceptTrue: |
3672 | case EST_NoThrow: |
3673 | return CT_Cannot; |
3674 | |
3675 | case EST_None: |
3676 | case EST_MSAny: |
3677 | case EST_NoexceptFalse: |
3678 | return CT_Can; |
3679 | |
3680 | case EST_Dynamic: |
3681 | // A dynamic exception specification is throwing unless every exception |
3682 | // type is an (unexpanded) pack expansion type. |
3683 | for (unsigned I = 0; I != getNumExceptions(); ++I) |
3684 | if (!getExceptionType(i: I)->getAs<PackExpansionType>()) |
3685 | return CT_Can; |
3686 | return CT_Dependent; |
3687 | |
3688 | case EST_Uninstantiated: |
3689 | case EST_DependentNoexcept: |
3690 | return CT_Dependent; |
3691 | } |
3692 | |
3693 | llvm_unreachable("unexpected exception specification kind" ); |
3694 | } |
3695 | |
3696 | bool FunctionProtoType::isTemplateVariadic() const { |
3697 | for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx) |
3698 | if (isa<PackExpansionType>(Val: getParamType(i: ArgIdx - 1))) |
3699 | return true; |
3700 | |
3701 | return false; |
3702 | } |
3703 | |
3704 | void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result, |
3705 | const QualType *ArgTys, unsigned NumParams, |
3706 | const ExtProtoInfo &epi, |
3707 | const ASTContext &Context, bool Canonical) { |
3708 | // We have to be careful not to get ambiguous profile encodings. |
3709 | // Note that valid type pointers are never ambiguous with anything else. |
3710 | // |
3711 | // The encoding grammar begins: |
3712 | // type type* bool int bool |
3713 | // If that final bool is true, then there is a section for the EH spec: |
3714 | // bool type* |
3715 | // This is followed by an optional "consumed argument" section of the |
3716 | // same length as the first type sequence: |
3717 | // bool* |
3718 | // This is followed by the ext info: |
3719 | // int |
3720 | // Finally we have a trailing return type flag (bool) |
3721 | // combined with AArch64 SME Attributes, to save space: |
3722 | // int |
3723 | // |
3724 | // There is no ambiguity between the consumed arguments and an empty EH |
3725 | // spec because of the leading 'bool' which unambiguously indicates |
3726 | // whether the following bool is the EH spec or part of the arguments. |
3727 | |
3728 | ID.AddPointer(Ptr: Result.getAsOpaquePtr()); |
3729 | for (unsigned i = 0; i != NumParams; ++i) |
3730 | ID.AddPointer(Ptr: ArgTys[i].getAsOpaquePtr()); |
3731 | // This method is relatively performance sensitive, so as a performance |
3732 | // shortcut, use one AddInteger call instead of four for the next four |
3733 | // fields. |
3734 | assert(!(unsigned(epi.Variadic) & ~1) && |
3735 | !(unsigned(epi.RefQualifier) & ~3) && |
3736 | !(unsigned(epi.ExceptionSpec.Type) & ~15) && |
3737 | "Values larger than expected." ); |
3738 | ID.AddInteger(unsigned(epi.Variadic) + |
3739 | (epi.RefQualifier << 1) + |
3740 | (epi.ExceptionSpec.Type << 3)); |
3741 | ID.Add(x: epi.TypeQuals); |
3742 | if (epi.ExceptionSpec.Type == EST_Dynamic) { |
3743 | for (QualType Ex : epi.ExceptionSpec.Exceptions) |
3744 | ID.AddPointer(Ex.getAsOpaquePtr()); |
3745 | } else if (isComputedNoexcept(epi.ExceptionSpec.Type)) { |
3746 | epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, Canonical); |
3747 | } else if (epi.ExceptionSpec.Type == EST_Uninstantiated || |
3748 | epi.ExceptionSpec.Type == EST_Unevaluated) { |
3749 | ID.AddPointer(Ptr: epi.ExceptionSpec.SourceDecl->getCanonicalDecl()); |
3750 | } |
3751 | if (epi.ExtParameterInfos) { |
3752 | for (unsigned i = 0; i != NumParams; ++i) |
3753 | ID.AddInteger(I: epi.ExtParameterInfos[i].getOpaqueValue()); |
3754 | } |
3755 | |
3756 | epi.ExtInfo.Profile(ID); |
3757 | ID.AddInteger(I: (epi.AArch64SMEAttributes << 1) | epi.HasTrailingReturn); |
3758 | } |
3759 | |
3760 | void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, |
3761 | const ASTContext &Ctx) { |
3762 | Profile(ID, getReturnType(), param_type_begin(), getNumParams(), |
3763 | getExtProtoInfo(), Ctx, isCanonicalUnqualified()); |
3764 | } |
3765 | |
3766 | TypeCoupledDeclRefInfo::TypeCoupledDeclRefInfo(ValueDecl *D, bool Deref) |
3767 | : Data(D, Deref << DerefShift) {} |
3768 | |
3769 | bool TypeCoupledDeclRefInfo::isDeref() const { |
3770 | return Data.getInt() & DerefMask; |
3771 | } |
3772 | ValueDecl *TypeCoupledDeclRefInfo::getDecl() const { return Data.getPointer(); } |
3773 | unsigned TypeCoupledDeclRefInfo::getInt() const { return Data.getInt(); } |
3774 | void *TypeCoupledDeclRefInfo::getOpaqueValue() const { |
3775 | return Data.getOpaqueValue(); |
3776 | } |
3777 | bool TypeCoupledDeclRefInfo::operator==( |
3778 | const TypeCoupledDeclRefInfo &Other) const { |
3779 | return getOpaqueValue() == Other.getOpaqueValue(); |
3780 | } |
3781 | void TypeCoupledDeclRefInfo::setFromOpaqueValue(void *V) { |
3782 | Data.setFromOpaqueValue(V); |
3783 | } |
3784 | |
3785 | BoundsAttributedType::BoundsAttributedType(TypeClass TC, QualType Wrapped, |
3786 | QualType Canon) |
3787 | : Type(TC, Canon, Wrapped->getDependence()), WrappedTy(Wrapped) {} |
3788 | |
3789 | CountAttributedType::CountAttributedType( |
3790 | QualType Wrapped, QualType Canon, Expr *CountExpr, bool CountInBytes, |
3791 | bool OrNull, ArrayRef<TypeCoupledDeclRefInfo> CoupledDecls) |
3792 | : BoundsAttributedType(CountAttributed, Wrapped, Canon), |
3793 | CountExpr(CountExpr) { |
3794 | CountAttributedTypeBits.NumCoupledDecls = CoupledDecls.size(); |
3795 | CountAttributedTypeBits.CountInBytes = CountInBytes; |
3796 | CountAttributedTypeBits.OrNull = OrNull; |
3797 | auto *DeclSlot = getTrailingObjects<TypeCoupledDeclRefInfo>(); |
3798 | Decls = llvm::ArrayRef(DeclSlot, CoupledDecls.size()); |
3799 | for (unsigned i = 0; i != CoupledDecls.size(); ++i) |
3800 | DeclSlot[i] = CoupledDecls[i]; |
3801 | } |
3802 | |
3803 | TypedefType::TypedefType(TypeClass tc, const TypedefNameDecl *D, |
3804 | QualType Underlying, QualType can) |
3805 | : Type(tc, can, toSemanticDependence(D: can->getDependence())), |
3806 | Decl(const_cast<TypedefNameDecl *>(D)) { |
3807 | assert(!isa<TypedefType>(can) && "Invalid canonical type" ); |
3808 | TypedefBits.hasTypeDifferentFromDecl = !Underlying.isNull(); |
3809 | if (!typeMatchesDecl()) |
3810 | *getTrailingObjects<QualType>() = Underlying; |
3811 | } |
3812 | |
3813 | QualType TypedefType::desugar() const { |
3814 | return typeMatchesDecl() ? Decl->getUnderlyingType() |
3815 | : *getTrailingObjects<QualType>(); |
3816 | } |
3817 | |
3818 | UsingType::UsingType(const UsingShadowDecl *Found, QualType Underlying, |
3819 | QualType Canon) |
3820 | : Type(Using, Canon, toSemanticDependence(Canon->getDependence())), |
3821 | Found(const_cast<UsingShadowDecl *>(Found)) { |
3822 | UsingBits.hasTypeDifferentFromDecl = !Underlying.isNull(); |
3823 | if (!typeMatchesDecl()) |
3824 | *getTrailingObjects<QualType>() = Underlying; |
3825 | } |
3826 | |
3827 | QualType UsingType::getUnderlyingType() const { |
3828 | return typeMatchesDecl() |
3829 | ? QualType( |
3830 | cast<TypeDecl>(Val: Found->getTargetDecl())->getTypeForDecl(), 0) |
3831 | : *getTrailingObjects<QualType>(); |
3832 | } |
3833 | |
3834 | QualType MacroQualifiedType::desugar() const { return getUnderlyingType(); } |
3835 | |
3836 | QualType MacroQualifiedType::getModifiedType() const { |
3837 | // Step over MacroQualifiedTypes from the same macro to find the type |
3838 | // ultimately qualified by the macro qualifier. |
3839 | QualType Inner = cast<AttributedType>(Val: getUnderlyingType())->getModifiedType(); |
3840 | while (auto *InnerMQT = dyn_cast<MacroQualifiedType>(Val&: Inner)) { |
3841 | if (InnerMQT->getMacroIdentifier() != getMacroIdentifier()) |
3842 | break; |
3843 | Inner = InnerMQT->getModifiedType(); |
3844 | } |
3845 | return Inner; |
3846 | } |
3847 | |
3848 | TypeOfExprType::TypeOfExprType(Expr *E, TypeOfKind Kind, QualType Can) |
3849 | : Type(TypeOfExpr, |
3850 | // We have to protect against 'Can' being invalid through its |
3851 | // default argument. |
3852 | Kind == TypeOfKind::Unqualified && !Can.isNull() |
3853 | ? Can.getAtomicUnqualifiedType() |
3854 | : Can, |
3855 | toTypeDependence(E->getDependence()) | |
3856 | (E->getType()->getDependence() & |
3857 | TypeDependence::VariablyModified)), |
3858 | TOExpr(E) { |
3859 | TypeOfBits.IsUnqual = Kind == TypeOfKind::Unqualified; |
3860 | } |
3861 | |
3862 | bool TypeOfExprType::isSugared() const { |
3863 | return !TOExpr->isTypeDependent(); |
3864 | } |
3865 | |
3866 | QualType TypeOfExprType::desugar() const { |
3867 | if (isSugared()) { |
3868 | QualType QT = getUnderlyingExpr()->getType(); |
3869 | return TypeOfBits.IsUnqual ? QT.getAtomicUnqualifiedType() : QT; |
3870 | } |
3871 | return QualType(this, 0); |
3872 | } |
3873 | |
3874 | void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID, |
3875 | const ASTContext &Context, Expr *E, |
3876 | bool IsUnqual) { |
3877 | E->Profile(ID, Context, true); |
3878 | ID.AddBoolean(B: IsUnqual); |
3879 | } |
3880 | |
3881 | DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can) |
3882 | // C++11 [temp.type]p2: "If an expression e involves a template parameter, |
3883 | // decltype(e) denotes a unique dependent type." Hence a decltype type is |
3884 | // type-dependent even if its expression is only instantiation-dependent. |
3885 | : Type(Decltype, can, |
3886 | toTypeDependence(E->getDependence()) | |
3887 | (E->isInstantiationDependent() ? TypeDependence::Dependent |
3888 | : TypeDependence::None) | |
3889 | (E->getType()->getDependence() & |
3890 | TypeDependence::VariablyModified)), |
3891 | E(E), UnderlyingType(underlyingType) {} |
3892 | |
3893 | bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); } |
3894 | |
3895 | QualType DecltypeType::desugar() const { |
3896 | if (isSugared()) |
3897 | return getUnderlyingType(); |
3898 | |
3899 | return QualType(this, 0); |
3900 | } |
3901 | |
3902 | DependentDecltypeType::DependentDecltypeType(Expr *E, QualType UnderlyingType) |
3903 | : DecltypeType(E, UnderlyingType) {} |
3904 | |
3905 | void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID, |
3906 | const ASTContext &Context, Expr *E) { |
3907 | E->Profile(ID, Context, true); |
3908 | } |
3909 | |
3910 | PackIndexingType::PackIndexingType(const ASTContext &Context, |
3911 | QualType Canonical, QualType Pattern, |
3912 | Expr *IndexExpr, |
3913 | ArrayRef<QualType> Expansions) |
3914 | : Type(PackIndexing, Canonical, |
3915 | computeDependence(Pattern, IndexExpr, Expansions)), |
3916 | Context(Context), Pattern(Pattern), IndexExpr(IndexExpr), |
3917 | Size(Expansions.size()) { |
3918 | |
3919 | std::uninitialized_copy(Expansions.begin(), Expansions.end(), |
3920 | getTrailingObjects<QualType>()); |
3921 | } |
3922 | |
3923 | std::optional<unsigned> PackIndexingType::getSelectedIndex() const { |
3924 | if (isInstantiationDependentType()) |
3925 | return std::nullopt; |
3926 | // Should only be not a constant for error recovery. |
3927 | ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: getIndexExpr()); |
3928 | if (!CE) |
3929 | return std::nullopt; |
3930 | auto Index = CE->getResultAsAPSInt(); |
3931 | assert(Index.isNonNegative() && "Invalid index" ); |
3932 | return static_cast<unsigned>(Index.getExtValue()); |
3933 | } |
3934 | |
3935 | TypeDependence |
3936 | PackIndexingType::computeDependence(QualType Pattern, Expr *IndexExpr, |
3937 | ArrayRef<QualType> Expansions) { |
3938 | TypeDependence IndexD = toTypeDependence(D: IndexExpr->getDependence()); |
3939 | |
3940 | TypeDependence TD = IndexD | (IndexExpr->isInstantiationDependent() |
3941 | ? TypeDependence::DependentInstantiation |
3942 | : TypeDependence::None); |
3943 | if (Expansions.empty()) |
3944 | TD |= Pattern->getDependence() & TypeDependence::DependentInstantiation; |
3945 | else |
3946 | for (const QualType &T : Expansions) |
3947 | TD |= T->getDependence(); |
3948 | |
3949 | if (!(IndexD & TypeDependence::UnexpandedPack)) |
3950 | TD &= ~TypeDependence::UnexpandedPack; |
3951 | |
3952 | // If the pattern does not contain an unexpended pack, |
3953 | // the type is still dependent, and invalid |
3954 | if (!Pattern->containsUnexpandedParameterPack()) |
3955 | TD |= TypeDependence::Error | TypeDependence::DependentInstantiation; |
3956 | |
3957 | return TD; |
3958 | } |
3959 | |
3960 | void PackIndexingType::Profile(llvm::FoldingSetNodeID &ID, |
3961 | const ASTContext &Context, QualType Pattern, |
3962 | Expr *E) { |
3963 | Pattern.Profile(ID); |
3964 | E->Profile(ID, Context, true); |
3965 | } |
3966 | |
3967 | UnaryTransformType::UnaryTransformType(QualType BaseType, |
3968 | QualType UnderlyingType, UTTKind UKind, |
3969 | QualType CanonicalType) |
3970 | : Type(UnaryTransform, CanonicalType, BaseType->getDependence()), |
3971 | BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {} |
3972 | |
3973 | DependentUnaryTransformType::DependentUnaryTransformType(const ASTContext &C, |
3974 | QualType BaseType, |
3975 | UTTKind UKind) |
3976 | : UnaryTransformType(BaseType, C.DependentTy, UKind, QualType()) {} |
3977 | |
3978 | TagType::TagType(TypeClass TC, const TagDecl *D, QualType can) |
3979 | : Type(TC, can, |
3980 | D->isDependentType() ? TypeDependence::DependentInstantiation |
3981 | : TypeDependence::None), |
3982 | decl(const_cast<TagDecl *>(D)) {} |
3983 | |
3984 | static TagDecl *getInterestingTagDecl(TagDecl *decl) { |
3985 | for (auto *I : decl->redecls()) { |
3986 | if (I->isCompleteDefinition() || I->isBeingDefined()) |
3987 | return I; |
3988 | } |
3989 | // If there's no definition (not even in progress), return what we have. |
3990 | return decl; |
3991 | } |
3992 | |
3993 | TagDecl *TagType::getDecl() const { |
3994 | return getInterestingTagDecl(decl); |
3995 | } |
3996 | |
3997 | bool TagType::isBeingDefined() const { |
3998 | return getDecl()->isBeingDefined(); |
3999 | } |
4000 | |
4001 | bool RecordType::hasConstFields() const { |
4002 | std::vector<const RecordType*> RecordTypeList; |
4003 | RecordTypeList.push_back(x: this); |
4004 | unsigned NextToCheckIndex = 0; |
4005 | |
4006 | while (RecordTypeList.size() > NextToCheckIndex) { |
4007 | for (FieldDecl *FD : |
4008 | RecordTypeList[NextToCheckIndex]->getDecl()->fields()) { |
4009 | QualType FieldTy = FD->getType(); |
4010 | if (FieldTy.isConstQualified()) |
4011 | return true; |
4012 | FieldTy = FieldTy.getCanonicalType(); |
4013 | if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) { |
4014 | if (!llvm::is_contained(RecordTypeList, FieldRecTy)) |
4015 | RecordTypeList.push_back(FieldRecTy); |
4016 | } |
4017 | } |
4018 | ++NextToCheckIndex; |
4019 | } |
4020 | return false; |
4021 | } |
4022 | |
4023 | bool AttributedType::isQualifier() const { |
4024 | // FIXME: Generate this with TableGen. |
4025 | switch (getAttrKind()) { |
4026 | // These are type qualifiers in the traditional C sense: they annotate |
4027 | // something about a specific value/variable of a type. (They aren't |
4028 | // always part of the canonical type, though.) |
4029 | case attr::ObjCGC: |
4030 | case attr::ObjCOwnership: |
4031 | case attr::ObjCInertUnsafeUnretained: |
4032 | case attr::TypeNonNull: |
4033 | case attr::TypeNullable: |
4034 | case attr::TypeNullableResult: |
4035 | case attr::TypeNullUnspecified: |
4036 | case attr::LifetimeBound: |
4037 | case attr::AddressSpace: |
4038 | return true; |
4039 | |
4040 | // All other type attributes aren't qualifiers; they rewrite the modified |
4041 | // type to be a semantically different type. |
4042 | default: |
4043 | return false; |
4044 | } |
4045 | } |
4046 | |
4047 | bool AttributedType::isMSTypeSpec() const { |
4048 | // FIXME: Generate this with TableGen? |
4049 | switch (getAttrKind()) { |
4050 | default: return false; |
4051 | case attr::Ptr32: |
4052 | case attr::Ptr64: |
4053 | case attr::SPtr: |
4054 | case attr::UPtr: |
4055 | return true; |
4056 | } |
4057 | llvm_unreachable("invalid attr kind" ); |
4058 | } |
4059 | |
4060 | bool AttributedType::isWebAssemblyFuncrefSpec() const { |
4061 | return getAttrKind() == attr::WebAssemblyFuncref; |
4062 | } |
4063 | |
4064 | bool AttributedType::isCallingConv() const { |
4065 | // FIXME: Generate this with TableGen. |
4066 | switch (getAttrKind()) { |
4067 | default: return false; |
4068 | case attr::Pcs: |
4069 | case attr::CDecl: |
4070 | case attr::FastCall: |
4071 | case attr::StdCall: |
4072 | case attr::ThisCall: |
4073 | case attr::RegCall: |
4074 | case attr::SwiftCall: |
4075 | case attr::SwiftAsyncCall: |
4076 | case attr::VectorCall: |
4077 | case attr::AArch64VectorPcs: |
4078 | case attr::AArch64SVEPcs: |
4079 | case attr::AMDGPUKernelCall: |
4080 | case attr::Pascal: |
4081 | case attr::MSABI: |
4082 | case attr::SysVABI: |
4083 | case attr::IntelOclBicc: |
4084 | case attr::PreserveMost: |
4085 | case attr::PreserveAll: |
4086 | case attr::M68kRTD: |
4087 | case attr::PreserveNone: |
4088 | case attr::RISCVVectorCC: |
4089 | return true; |
4090 | } |
4091 | llvm_unreachable("invalid attr kind" ); |
4092 | } |
4093 | |
4094 | CXXRecordDecl *InjectedClassNameType::getDecl() const { |
4095 | return cast<CXXRecordDecl>(Val: getInterestingTagDecl(Decl)); |
4096 | } |
4097 | |
4098 | IdentifierInfo *TemplateTypeParmType::getIdentifier() const { |
4099 | return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier(); |
4100 | } |
4101 | |
4102 | static const TemplateTypeParmDecl *getReplacedParameter(Decl *D, |
4103 | unsigned Index) { |
4104 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: D)) |
4105 | return TTP; |
4106 | return cast<TemplateTypeParmDecl>( |
4107 | Val: getReplacedTemplateParameterList(D)->getParam(Idx: Index)); |
4108 | } |
4109 | |
4110 | SubstTemplateTypeParmType::SubstTemplateTypeParmType( |
4111 | QualType Replacement, Decl *AssociatedDecl, unsigned Index, |
4112 | std::optional<unsigned> PackIndex) |
4113 | : Type(SubstTemplateTypeParm, Replacement.getCanonicalType(), |
4114 | Replacement->getDependence()), |
4115 | AssociatedDecl(AssociatedDecl) { |
4116 | SubstTemplateTypeParmTypeBits.HasNonCanonicalUnderlyingType = |
4117 | Replacement != getCanonicalTypeInternal(); |
4118 | if (SubstTemplateTypeParmTypeBits.HasNonCanonicalUnderlyingType) |
4119 | *getTrailingObjects<QualType>() = Replacement; |
4120 | |
4121 | SubstTemplateTypeParmTypeBits.Index = Index; |
4122 | SubstTemplateTypeParmTypeBits.PackIndex = PackIndex ? *PackIndex + 1 : 0; |
4123 | assert(AssociatedDecl != nullptr); |
4124 | } |
4125 | |
4126 | const TemplateTypeParmDecl * |
4127 | SubstTemplateTypeParmType::getReplacedParameter() const { |
4128 | return ::getReplacedParameter(D: getAssociatedDecl(), Index: getIndex()); |
4129 | } |
4130 | |
4131 | SubstTemplateTypeParmPackType::SubstTemplateTypeParmPackType( |
4132 | QualType Canon, Decl *AssociatedDecl, unsigned Index, bool Final, |
4133 | const TemplateArgument &ArgPack) |
4134 | : Type(SubstTemplateTypeParmPack, Canon, |
4135 | TypeDependence::DependentInstantiation | |
4136 | TypeDependence::UnexpandedPack), |
4137 | Arguments(ArgPack.pack_begin()), |
4138 | AssociatedDeclAndFinal(AssociatedDecl, Final) { |
4139 | SubstTemplateTypeParmPackTypeBits.Index = Index; |
4140 | SubstTemplateTypeParmPackTypeBits.NumArgs = ArgPack.pack_size(); |
4141 | assert(AssociatedDecl != nullptr); |
4142 | } |
4143 | |
4144 | Decl *SubstTemplateTypeParmPackType::getAssociatedDecl() const { |
4145 | return AssociatedDeclAndFinal.getPointer(); |
4146 | } |
4147 | |
4148 | bool SubstTemplateTypeParmPackType::getFinal() const { |
4149 | return AssociatedDeclAndFinal.getInt(); |
4150 | } |
4151 | |
4152 | const TemplateTypeParmDecl * |
4153 | SubstTemplateTypeParmPackType::getReplacedParameter() const { |
4154 | return ::getReplacedParameter(D: getAssociatedDecl(), Index: getIndex()); |
4155 | } |
4156 | |
4157 | IdentifierInfo *SubstTemplateTypeParmPackType::getIdentifier() const { |
4158 | return getReplacedParameter()->getIdentifier(); |
4159 | } |
4160 | |
4161 | TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const { |
4162 | return TemplateArgument(llvm::ArrayRef(Arguments, getNumArgs())); |
4163 | } |
4164 | |
4165 | void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) { |
4166 | Profile(ID, AssociatedDecl: getAssociatedDecl(), Index: getIndex(), Final: getFinal(), ArgPack: getArgumentPack()); |
4167 | } |
4168 | |
4169 | void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID, |
4170 | const Decl *AssociatedDecl, |
4171 | unsigned Index, bool Final, |
4172 | const TemplateArgument &ArgPack) { |
4173 | ID.AddPointer(Ptr: AssociatedDecl); |
4174 | ID.AddInteger(I: Index); |
4175 | ID.AddBoolean(B: Final); |
4176 | ID.AddInteger(I: ArgPack.pack_size()); |
4177 | for (const auto &P : ArgPack.pack_elements()) |
4178 | ID.AddPointer(Ptr: P.getAsType().getAsOpaquePtr()); |
4179 | } |
4180 | |
4181 | bool TemplateSpecializationType::anyDependentTemplateArguments( |
4182 | const TemplateArgumentListInfo &Args, ArrayRef<TemplateArgument> Converted) { |
4183 | return anyDependentTemplateArguments(Args: Args.arguments(), Converted); |
4184 | } |
4185 | |
4186 | bool TemplateSpecializationType::anyDependentTemplateArguments( |
4187 | ArrayRef<TemplateArgumentLoc> Args, ArrayRef<TemplateArgument> Converted) { |
4188 | for (const TemplateArgument &Arg : Converted) |
4189 | if (Arg.isDependent()) |
4190 | return true; |
4191 | return false; |
4192 | } |
4193 | |
4194 | bool TemplateSpecializationType::anyInstantiationDependentTemplateArguments( |
4195 | ArrayRef<TemplateArgumentLoc> Args) { |
4196 | for (const TemplateArgumentLoc &ArgLoc : Args) { |
4197 | if (ArgLoc.getArgument().isInstantiationDependent()) |
4198 | return true; |
4199 | } |
4200 | return false; |
4201 | } |
4202 | |
4203 | TemplateSpecializationType::TemplateSpecializationType( |
4204 | TemplateName T, ArrayRef<TemplateArgument> Args, QualType Canon, |
4205 | QualType AliasedType) |
4206 | : Type(TemplateSpecialization, Canon.isNull() ? QualType(this, 0) : Canon, |
4207 | (Canon.isNull() |
4208 | ? TypeDependence::DependentInstantiation |
4209 | : toSemanticDependence(Canon->getDependence())) | |
4210 | (toTypeDependence(T.getDependence()) & |
4211 | TypeDependence::UnexpandedPack)), |
4212 | Template(T) { |
4213 | TemplateSpecializationTypeBits.NumArgs = Args.size(); |
4214 | TemplateSpecializationTypeBits.TypeAlias = !AliasedType.isNull(); |
4215 | |
4216 | assert(!T.getAsDependentTemplateName() && |
4217 | "Use DependentTemplateSpecializationType for dependent template-name" ); |
4218 | assert((T.getKind() == TemplateName::Template || |
4219 | T.getKind() == TemplateName::SubstTemplateTemplateParm || |
4220 | T.getKind() == TemplateName::SubstTemplateTemplateParmPack || |
4221 | T.getKind() == TemplateName::UsingTemplate) && |
4222 | "Unexpected template name for TemplateSpecializationType" ); |
4223 | |
4224 | auto *TemplateArgs = reinterpret_cast<TemplateArgument *>(this + 1); |
4225 | for (const TemplateArgument &Arg : Args) { |
4226 | // Update instantiation-dependent, variably-modified, and error bits. |
4227 | // If the canonical type exists and is non-dependent, the template |
4228 | // specialization type can be non-dependent even if one of the type |
4229 | // arguments is. Given: |
4230 | // template<typename T> using U = int; |
4231 | // U<T> is always non-dependent, irrespective of the type T. |
4232 | // However, U<Ts> contains an unexpanded parameter pack, even though |
4233 | // its expansion (and thus its desugared type) doesn't. |
4234 | addDependence(toTypeDependence(D: Arg.getDependence()) & |
4235 | ~TypeDependence::Dependent); |
4236 | if (Arg.getKind() == TemplateArgument::Type) |
4237 | addDependence(Arg.getAsType()->getDependence() & |
4238 | TypeDependence::VariablyModified); |
4239 | new (TemplateArgs++) TemplateArgument(Arg); |
4240 | } |
4241 | |
4242 | // Store the aliased type if this is a type alias template specialization. |
4243 | if (isTypeAlias()) { |
4244 | auto *Begin = reinterpret_cast<TemplateArgument *>(this + 1); |
4245 | *reinterpret_cast<QualType *>(Begin + Args.size()) = AliasedType; |
4246 | } |
4247 | } |
4248 | |
4249 | QualType TemplateSpecializationType::getAliasedType() const { |
4250 | assert(isTypeAlias() && "not a type alias template specialization" ); |
4251 | return *reinterpret_cast<const QualType *>(template_arguments().end()); |
4252 | } |
4253 | |
4254 | void TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, |
4255 | const ASTContext &Ctx) { |
4256 | Profile(ID, T: Template, Args: template_arguments(), Context: Ctx); |
4257 | if (isTypeAlias()) |
4258 | getAliasedType().Profile(ID); |
4259 | } |
4260 | |
4261 | void |
4262 | TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, |
4263 | TemplateName T, |
4264 | ArrayRef<TemplateArgument> Args, |
4265 | const ASTContext &Context) { |
4266 | T.Profile(ID); |
4267 | for (const TemplateArgument &Arg : Args) |
4268 | Arg.Profile(ID, Context); |
4269 | } |
4270 | |
4271 | QualType |
4272 | QualifierCollector::apply(const ASTContext &Context, QualType QT) const { |
4273 | if (!hasNonFastQualifiers()) |
4274 | return QT.withFastQualifiers(TQs: getFastQualifiers()); |
4275 | |
4276 | return Context.getQualifiedType(T: QT, Qs: *this); |
4277 | } |
4278 | |
4279 | QualType |
4280 | QualifierCollector::apply(const ASTContext &Context, const Type *T) const { |
4281 | if (!hasNonFastQualifiers()) |
4282 | return QualType(T, getFastQualifiers()); |
4283 | |
4284 | return Context.getQualifiedType(T, Qs: *this); |
4285 | } |
4286 | |
4287 | void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID, |
4288 | QualType BaseType, |
4289 | ArrayRef<QualType> typeArgs, |
4290 | ArrayRef<ObjCProtocolDecl *> protocols, |
4291 | bool isKindOf) { |
4292 | ID.AddPointer(Ptr: BaseType.getAsOpaquePtr()); |
4293 | ID.AddInteger(I: typeArgs.size()); |
4294 | for (auto typeArg : typeArgs) |
4295 | ID.AddPointer(Ptr: typeArg.getAsOpaquePtr()); |
4296 | ID.AddInteger(I: protocols.size()); |
4297 | for (auto *proto : protocols) |
4298 | ID.AddPointer(Ptr: proto); |
4299 | ID.AddBoolean(B: isKindOf); |
4300 | } |
4301 | |
4302 | void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) { |
4303 | Profile(ID, getBaseType(), getTypeArgsAsWritten(), |
4304 | llvm::ArrayRef(qual_begin(), getNumProtocols()), |
4305 | isKindOfTypeAsWritten()); |
4306 | } |
4307 | |
4308 | void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID, |
4309 | const ObjCTypeParamDecl *OTPDecl, |
4310 | QualType CanonicalType, |
4311 | ArrayRef<ObjCProtocolDecl *> protocols) { |
4312 | ID.AddPointer(Ptr: OTPDecl); |
4313 | ID.AddPointer(Ptr: CanonicalType.getAsOpaquePtr()); |
4314 | ID.AddInteger(I: protocols.size()); |
4315 | for (auto *proto : protocols) |
4316 | ID.AddPointer(Ptr: proto); |
4317 | } |
4318 | |
4319 | void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID) { |
4320 | Profile(ID, getDecl(), getCanonicalTypeInternal(), |
4321 | llvm::ArrayRef(qual_begin(), getNumProtocols())); |
4322 | } |
4323 | |
4324 | namespace { |
4325 | |
4326 | /// The cached properties of a type. |
4327 | class CachedProperties { |
4328 | Linkage L; |
4329 | bool local; |
4330 | |
4331 | public: |
4332 | CachedProperties(Linkage L, bool local) : L(L), local(local) {} |
4333 | |
4334 | Linkage getLinkage() const { return L; } |
4335 | bool hasLocalOrUnnamedType() const { return local; } |
4336 | |
4337 | friend CachedProperties merge(CachedProperties L, CachedProperties R) { |
4338 | Linkage MergedLinkage = minLinkage(L1: L.L, L2: R.L); |
4339 | return CachedProperties(MergedLinkage, L.hasLocalOrUnnamedType() || |
4340 | R.hasLocalOrUnnamedType()); |
4341 | } |
4342 | }; |
4343 | |
4344 | } // namespace |
4345 | |
4346 | static CachedProperties computeCachedProperties(const Type *T); |
4347 | |
4348 | namespace clang { |
4349 | |
4350 | /// The type-property cache. This is templated so as to be |
4351 | /// instantiated at an internal type to prevent unnecessary symbol |
4352 | /// leakage. |
4353 | template <class Private> class TypePropertyCache { |
4354 | public: |
4355 | static CachedProperties get(QualType T) { |
4356 | return get(T.getTypePtr()); |
4357 | } |
4358 | |
4359 | static CachedProperties get(const Type *T) { |
4360 | ensure(T); |
4361 | return CachedProperties(T->TypeBits.getLinkage(), |
4362 | T->TypeBits.hasLocalOrUnnamedType()); |
4363 | } |
4364 | |
4365 | static void ensure(const Type *T) { |
4366 | // If the cache is valid, we're okay. |
4367 | if (T->TypeBits.isCacheValid()) return; |
4368 | |
4369 | // If this type is non-canonical, ask its canonical type for the |
4370 | // relevant information. |
4371 | if (!T->isCanonicalUnqualified()) { |
4372 | const Type *CT = T->getCanonicalTypeInternal().getTypePtr(); |
4373 | ensure(T: CT); |
4374 | T->TypeBits.CacheValid = true; |
4375 | T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage; |
4376 | T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed; |
4377 | return; |
4378 | } |
4379 | |
4380 | // Compute the cached properties and then set the cache. |
4381 | CachedProperties Result = computeCachedProperties(T); |
4382 | T->TypeBits.CacheValid = true; |
4383 | T->TypeBits.CachedLinkage = llvm::to_underlying(E: Result.getLinkage()); |
4384 | T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType(); |
4385 | } |
4386 | }; |
4387 | |
4388 | } // namespace clang |
4389 | |
4390 | // Instantiate the friend template at a private class. In a |
4391 | // reasonable implementation, these symbols will be internal. |
4392 | // It is terrible that this is the best way to accomplish this. |
4393 | namespace { |
4394 | |
4395 | class Private {}; |
4396 | |
4397 | } // namespace |
4398 | |
4399 | using Cache = TypePropertyCache<Private>; |
4400 | |
4401 | static CachedProperties computeCachedProperties(const Type *T) { |
4402 | switch (T->getTypeClass()) { |
4403 | #define TYPE(Class,Base) |
4404 | #define NON_CANONICAL_TYPE(Class,Base) case Type::Class: |
4405 | #include "clang/AST/TypeNodes.inc" |
4406 | llvm_unreachable("didn't expect a non-canonical type here" ); |
4407 | |
4408 | #define TYPE(Class,Base) |
4409 | #define DEPENDENT_TYPE(Class,Base) case Type::Class: |
4410 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class: |
4411 | #include "clang/AST/TypeNodes.inc" |
4412 | // Treat instantiation-dependent types as external. |
4413 | if (!T->isInstantiationDependentType()) T->dump(); |
4414 | assert(T->isInstantiationDependentType()); |
4415 | return CachedProperties(Linkage::External, false); |
4416 | |
4417 | case Type::Auto: |
4418 | case Type::DeducedTemplateSpecialization: |
4419 | // Give non-deduced 'auto' types external linkage. We should only see them |
4420 | // here in error recovery. |
4421 | return CachedProperties(Linkage::External, false); |
4422 | |
4423 | case Type::BitInt: |
4424 | case Type::Builtin: |
4425 | // C++ [basic.link]p8: |
4426 | // A type is said to have linkage if and only if: |
4427 | // - it is a fundamental type (3.9.1); or |
4428 | return CachedProperties(Linkage::External, false); |
4429 | |
4430 | case Type::Record: |
4431 | case Type::Enum: { |
4432 | const TagDecl *Tag = cast<TagType>(T)->getDecl(); |
4433 | |
4434 | // C++ [basic.link]p8: |
4435 | // - it is a class or enumeration type that is named (or has a name |
4436 | // for linkage purposes (7.1.3)) and the name has linkage; or |
4437 | // - it is a specialization of a class template (14); or |
4438 | Linkage L = Tag->getLinkageInternal(); |
4439 | bool IsLocalOrUnnamed = |
4440 | Tag->getDeclContext()->isFunctionOrMethod() || |
4441 | !Tag->hasNameForLinkage(); |
4442 | return CachedProperties(L, IsLocalOrUnnamed); |
4443 | } |
4444 | |
4445 | // C++ [basic.link]p8: |
4446 | // - it is a compound type (3.9.2) other than a class or enumeration, |
4447 | // compounded exclusively from types that have linkage; or |
4448 | case Type::Complex: |
4449 | return Cache::get(cast<ComplexType>(T)->getElementType()); |
4450 | case Type::Pointer: |
4451 | return Cache::get(cast<PointerType>(T)->getPointeeType()); |
4452 | case Type::BlockPointer: |
4453 | return Cache::get(cast<BlockPointerType>(T)->getPointeeType()); |
4454 | case Type::LValueReference: |
4455 | case Type::RValueReference: |
4456 | return Cache::get(cast<ReferenceType>(T)->getPointeeType()); |
4457 | case Type::MemberPointer: { |
4458 | const auto *MPT = cast<MemberPointerType>(T); |
4459 | return merge(Cache::get(MPT->getClass()), |
4460 | Cache::get(MPT->getPointeeType())); |
4461 | } |
4462 | case Type::ConstantArray: |
4463 | case Type::IncompleteArray: |
4464 | case Type::VariableArray: |
4465 | case Type::ArrayParameter: |
4466 | return Cache::get(cast<ArrayType>(T)->getElementType()); |
4467 | case Type::Vector: |
4468 | case Type::ExtVector: |
4469 | return Cache::get(cast<VectorType>(T)->getElementType()); |
4470 | case Type::ConstantMatrix: |
4471 | return Cache::get(cast<ConstantMatrixType>(T)->getElementType()); |
4472 | case Type::FunctionNoProto: |
4473 | return Cache::get(cast<FunctionType>(T)->getReturnType()); |
4474 | case Type::FunctionProto: { |
4475 | const auto *FPT = cast<FunctionProtoType>(T); |
4476 | CachedProperties result = Cache::get(FPT->getReturnType()); |
4477 | for (const auto &ai : FPT->param_types()) |
4478 | result = merge(result, Cache::get(ai)); |
4479 | return result; |
4480 | } |
4481 | case Type::ObjCInterface: { |
4482 | Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal(); |
4483 | return CachedProperties(L, false); |
4484 | } |
4485 | case Type::ObjCObject: |
4486 | return Cache::get(cast<ObjCObjectType>(T)->getBaseType()); |
4487 | case Type::ObjCObjectPointer: |
4488 | return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType()); |
4489 | case Type::Atomic: |
4490 | return Cache::get(cast<AtomicType>(T)->getValueType()); |
4491 | case Type::Pipe: |
4492 | return Cache::get(cast<PipeType>(T)->getElementType()); |
4493 | } |
4494 | |
4495 | llvm_unreachable("unhandled type class" ); |
4496 | } |
4497 | |
4498 | /// Determine the linkage of this type. |
4499 | Linkage Type::getLinkage() const { |
4500 | Cache::ensure(T: this); |
4501 | return TypeBits.getLinkage(); |
4502 | } |
4503 | |
4504 | bool Type::hasUnnamedOrLocalType() const { |
4505 | Cache::ensure(T: this); |
4506 | return TypeBits.hasLocalOrUnnamedType(); |
4507 | } |
4508 | |
4509 | LinkageInfo LinkageComputer::computeTypeLinkageInfo(const Type *T) { |
4510 | switch (T->getTypeClass()) { |
4511 | #define TYPE(Class,Base) |
4512 | #define NON_CANONICAL_TYPE(Class,Base) case Type::Class: |
4513 | #include "clang/AST/TypeNodes.inc" |
4514 | llvm_unreachable("didn't expect a non-canonical type here" ); |
4515 | |
4516 | #define TYPE(Class,Base) |
4517 | #define DEPENDENT_TYPE(Class,Base) case Type::Class: |
4518 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class: |
4519 | #include "clang/AST/TypeNodes.inc" |
4520 | // Treat instantiation-dependent types as external. |
4521 | assert(T->isInstantiationDependentType()); |
4522 | return LinkageInfo::external(); |
4523 | |
4524 | case Type::BitInt: |
4525 | case Type::Builtin: |
4526 | return LinkageInfo::external(); |
4527 | |
4528 | case Type::Auto: |
4529 | case Type::DeducedTemplateSpecialization: |
4530 | return LinkageInfo::external(); |
4531 | |
4532 | case Type::Record: |
4533 | case Type::Enum: |
4534 | return getDeclLinkageAndVisibility(D: cast<TagType>(T)->getDecl()); |
4535 | |
4536 | case Type::Complex: |
4537 | return computeTypeLinkageInfo(cast<ComplexType>(T)->getElementType()); |
4538 | case Type::Pointer: |
4539 | return computeTypeLinkageInfo(cast<PointerType>(T)->getPointeeType()); |
4540 | case Type::BlockPointer: |
4541 | return computeTypeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType()); |
4542 | case Type::LValueReference: |
4543 | case Type::RValueReference: |
4544 | return computeTypeLinkageInfo(cast<ReferenceType>(T)->getPointeeType()); |
4545 | case Type::MemberPointer: { |
4546 | const auto *MPT = cast<MemberPointerType>(T); |
4547 | LinkageInfo LV = computeTypeLinkageInfo(MPT->getClass()); |
4548 | LV.merge(other: computeTypeLinkageInfo(MPT->getPointeeType())); |
4549 | return LV; |
4550 | } |
4551 | case Type::ConstantArray: |
4552 | case Type::IncompleteArray: |
4553 | case Type::VariableArray: |
4554 | case Type::ArrayParameter: |
4555 | return computeTypeLinkageInfo(cast<ArrayType>(T)->getElementType()); |
4556 | case Type::Vector: |
4557 | case Type::ExtVector: |
4558 | return computeTypeLinkageInfo(cast<VectorType>(T)->getElementType()); |
4559 | case Type::ConstantMatrix: |
4560 | return computeTypeLinkageInfo( |
4561 | cast<ConstantMatrixType>(T)->getElementType()); |
4562 | case Type::FunctionNoProto: |
4563 | return computeTypeLinkageInfo(cast<FunctionType>(T)->getReturnType()); |
4564 | case Type::FunctionProto: { |
4565 | const auto *FPT = cast<FunctionProtoType>(T); |
4566 | LinkageInfo LV = computeTypeLinkageInfo(FPT->getReturnType()); |
4567 | for (const auto &ai : FPT->param_types()) |
4568 | LV.merge(computeTypeLinkageInfo(ai)); |
4569 | return LV; |
4570 | } |
4571 | case Type::ObjCInterface: |
4572 | return getDeclLinkageAndVisibility(D: cast<ObjCInterfaceType>(T)->getDecl()); |
4573 | case Type::ObjCObject: |
4574 | return computeTypeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType()); |
4575 | case Type::ObjCObjectPointer: |
4576 | return computeTypeLinkageInfo( |
4577 | cast<ObjCObjectPointerType>(T)->getPointeeType()); |
4578 | case Type::Atomic: |
4579 | return computeTypeLinkageInfo(cast<AtomicType>(T)->getValueType()); |
4580 | case Type::Pipe: |
4581 | return computeTypeLinkageInfo(cast<PipeType>(T)->getElementType()); |
4582 | } |
4583 | |
4584 | llvm_unreachable("unhandled type class" ); |
4585 | } |
4586 | |
4587 | bool Type::isLinkageValid() const { |
4588 | if (!TypeBits.isCacheValid()) |
4589 | return true; |
4590 | |
4591 | Linkage L = LinkageComputer{} |
4592 | .computeTypeLinkageInfo(T: getCanonicalTypeInternal()) |
4593 | .getLinkage(); |
4594 | return L == TypeBits.getLinkage(); |
4595 | } |
4596 | |
4597 | LinkageInfo LinkageComputer::getTypeLinkageAndVisibility(const Type *T) { |
4598 | if (!T->isCanonicalUnqualified()) |
4599 | return computeTypeLinkageInfo(T: T->getCanonicalTypeInternal()); |
4600 | |
4601 | LinkageInfo LV = computeTypeLinkageInfo(T); |
4602 | assert(LV.getLinkage() == T->getLinkage()); |
4603 | return LV; |
4604 | } |
4605 | |
4606 | LinkageInfo Type::getLinkageAndVisibility() const { |
4607 | return LinkageComputer{}.getTypeLinkageAndVisibility(T: this); |
4608 | } |
4609 | |
4610 | std::optional<NullabilityKind> Type::getNullability() const { |
4611 | QualType Type(this, 0); |
4612 | while (const auto *AT = Type->getAs<AttributedType>()) { |
4613 | // Check whether this is an attributed type with nullability |
4614 | // information. |
4615 | if (auto Nullability = AT->getImmediateNullability()) |
4616 | return Nullability; |
4617 | |
4618 | Type = AT->getEquivalentType(); |
4619 | } |
4620 | return std::nullopt; |
4621 | } |
4622 | |
4623 | bool Type::canHaveNullability(bool ResultIfUnknown) const { |
4624 | QualType type = getCanonicalTypeInternal(); |
4625 | |
4626 | switch (type->getTypeClass()) { |
4627 | // We'll only see canonical types here. |
4628 | #define NON_CANONICAL_TYPE(Class, Parent) \ |
4629 | case Type::Class: \ |
4630 | llvm_unreachable("non-canonical type"); |
4631 | #define TYPE(Class, Parent) |
4632 | #include "clang/AST/TypeNodes.inc" |
4633 | |
4634 | // Pointer types. |
4635 | case Type::Pointer: |
4636 | case Type::BlockPointer: |
4637 | case Type::MemberPointer: |
4638 | case Type::ObjCObjectPointer: |
4639 | return true; |
4640 | |
4641 | // Dependent types that could instantiate to pointer types. |
4642 | case Type::UnresolvedUsing: |
4643 | case Type::TypeOfExpr: |
4644 | case Type::TypeOf: |
4645 | case Type::Decltype: |
4646 | case Type::PackIndexing: |
4647 | case Type::UnaryTransform: |
4648 | case Type::TemplateTypeParm: |
4649 | case Type::SubstTemplateTypeParmPack: |
4650 | case Type::DependentName: |
4651 | case Type::DependentTemplateSpecialization: |
4652 | case Type::Auto: |
4653 | return ResultIfUnknown; |
4654 | |
4655 | // Dependent template specializations could instantiate to pointer types. |
4656 | case Type::TemplateSpecialization: |
4657 | // If it's a known class template, we can already check if it's nullable. |
4658 | if (TemplateDecl *templateDecl = |
4659 | cast<TemplateSpecializationType>(type.getTypePtr()) |
4660 | ->getTemplateName() |
4661 | .getAsTemplateDecl()) |
4662 | if (auto *CTD = dyn_cast<ClassTemplateDecl>(templateDecl)) |
4663 | return CTD->getTemplatedDecl()->hasAttr<TypeNullableAttr>(); |
4664 | return ResultIfUnknown; |
4665 | |
4666 | case Type::Builtin: |
4667 | switch (cast<BuiltinType>(type.getTypePtr())->getKind()) { |
4668 | // Signed, unsigned, and floating-point types cannot have nullability. |
4669 | #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id: |
4670 | #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id: |
4671 | #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id: |
4672 | #define BUILTIN_TYPE(Id, SingletonId) |
4673 | #include "clang/AST/BuiltinTypes.def" |
4674 | return false; |
4675 | |
4676 | // Dependent types that could instantiate to a pointer type. |
4677 | case BuiltinType::Dependent: |
4678 | case BuiltinType::Overload: |
4679 | case BuiltinType::BoundMember: |
4680 | case BuiltinType::PseudoObject: |
4681 | case BuiltinType::UnknownAny: |
4682 | case BuiltinType::ARCUnbridgedCast: |
4683 | return ResultIfUnknown; |
4684 | |
4685 | case BuiltinType::Void: |
4686 | case BuiltinType::ObjCId: |
4687 | case BuiltinType::ObjCClass: |
4688 | case BuiltinType::ObjCSel: |
4689 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
4690 | case BuiltinType::Id: |
4691 | #include "clang/Basic/OpenCLImageTypes.def" |
4692 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
4693 | case BuiltinType::Id: |
4694 | #include "clang/Basic/OpenCLExtensionTypes.def" |
4695 | case BuiltinType::OCLSampler: |
4696 | case BuiltinType::OCLEvent: |
4697 | case BuiltinType::OCLClkEvent: |
4698 | case BuiltinType::OCLQueue: |
4699 | case BuiltinType::OCLReserveID: |
4700 | #define SVE_TYPE(Name, Id, SingletonId) \ |
4701 | case BuiltinType::Id: |
4702 | #include "clang/Basic/AArch64SVEACLETypes.def" |
4703 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
4704 | case BuiltinType::Id: |
4705 | #include "clang/Basic/PPCTypes.def" |
4706 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
4707 | #include "clang/Basic/RISCVVTypes.def" |
4708 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
4709 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
4710 | case BuiltinType::BuiltinFn: |
4711 | case BuiltinType::NullPtr: |
4712 | case BuiltinType::IncompleteMatrixIdx: |
4713 | case BuiltinType::OMPArraySection: |
4714 | case BuiltinType::OMPArrayShaping: |
4715 | case BuiltinType::OMPIterator: |
4716 | return false; |
4717 | } |
4718 | llvm_unreachable("unknown builtin type" ); |
4719 | |
4720 | case Type::Record: { |
4721 | const RecordDecl *RD = cast<RecordType>(type)->getDecl(); |
4722 | // For template specializations, look only at primary template attributes. |
4723 | // This is a consistent regardless of whether the instantiation is known. |
4724 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) |
4725 | return CTSD->getSpecializedTemplate() |
4726 | ->getTemplatedDecl() |
4727 | ->hasAttr<TypeNullableAttr>(); |
4728 | return RD->hasAttr<TypeNullableAttr>(); |
4729 | } |
4730 | |
4731 | // Non-pointer types. |
4732 | case Type::Complex: |
4733 | case Type::LValueReference: |
4734 | case Type::RValueReference: |
4735 | case Type::ConstantArray: |
4736 | case Type::IncompleteArray: |
4737 | case Type::VariableArray: |
4738 | case Type::DependentSizedArray: |
4739 | case Type::DependentVector: |
4740 | case Type::DependentSizedExtVector: |
4741 | case Type::Vector: |
4742 | case Type::ExtVector: |
4743 | case Type::ConstantMatrix: |
4744 | case Type::DependentSizedMatrix: |
4745 | case Type::DependentAddressSpace: |
4746 | case Type::FunctionProto: |
4747 | case Type::FunctionNoProto: |
4748 | case Type::DeducedTemplateSpecialization: |
4749 | case Type::Enum: |
4750 | case Type::InjectedClassName: |
4751 | case Type::PackExpansion: |
4752 | case Type::ObjCObject: |
4753 | case Type::ObjCInterface: |
4754 | case Type::Atomic: |
4755 | case Type::Pipe: |
4756 | case Type::BitInt: |
4757 | case Type::DependentBitInt: |
4758 | case Type::ArrayParameter: |
4759 | return false; |
4760 | } |
4761 | llvm_unreachable("bad type kind!" ); |
4762 | } |
4763 | |
4764 | std::optional<NullabilityKind> AttributedType::getImmediateNullability() const { |
4765 | if (getAttrKind() == attr::TypeNonNull) |
4766 | return NullabilityKind::NonNull; |
4767 | if (getAttrKind() == attr::TypeNullable) |
4768 | return NullabilityKind::Nullable; |
4769 | if (getAttrKind() == attr::TypeNullUnspecified) |
4770 | return NullabilityKind::Unspecified; |
4771 | if (getAttrKind() == attr::TypeNullableResult) |
4772 | return NullabilityKind::NullableResult; |
4773 | return std::nullopt; |
4774 | } |
4775 | |
4776 | std::optional<NullabilityKind> |
4777 | AttributedType::stripOuterNullability(QualType &T) { |
4778 | QualType AttrTy = T; |
4779 | if (auto MacroTy = dyn_cast<MacroQualifiedType>(Val&: T)) |
4780 | AttrTy = MacroTy->getUnderlyingType(); |
4781 | |
4782 | if (auto attributed = dyn_cast<AttributedType>(Val&: AttrTy)) { |
4783 | if (auto nullability = attributed->getImmediateNullability()) { |
4784 | T = attributed->getModifiedType(); |
4785 | return nullability; |
4786 | } |
4787 | } |
4788 | |
4789 | return std::nullopt; |
4790 | } |
4791 | |
4792 | bool Type::isBlockCompatibleObjCPointerType(ASTContext &ctx) const { |
4793 | const auto *objcPtr = getAs<ObjCObjectPointerType>(); |
4794 | if (!objcPtr) |
4795 | return false; |
4796 | |
4797 | if (objcPtr->isObjCIdType()) { |
4798 | // id is always okay. |
4799 | return true; |
4800 | } |
4801 | |
4802 | // Blocks are NSObjects. |
4803 | if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) { |
4804 | if (iface->getIdentifier() != ctx.getNSObjectName()) |
4805 | return false; |
4806 | |
4807 | // Continue to check qualifiers, below. |
4808 | } else if (objcPtr->isObjCQualifiedIdType()) { |
4809 | // Continue to check qualifiers, below. |
4810 | } else { |
4811 | return false; |
4812 | } |
4813 | |
4814 | // Check protocol qualifiers. |
4815 | for (ObjCProtocolDecl *proto : objcPtr->quals()) { |
4816 | // Blocks conform to NSObject and NSCopying. |
4817 | if (proto->getIdentifier() != ctx.getNSObjectName() && |
4818 | proto->getIdentifier() != ctx.getNSCopyingName()) |
4819 | return false; |
4820 | } |
4821 | |
4822 | return true; |
4823 | } |
4824 | |
4825 | Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const { |
4826 | if (isObjCARCImplicitlyUnretainedType()) |
4827 | return Qualifiers::OCL_ExplicitNone; |
4828 | return Qualifiers::OCL_Strong; |
4829 | } |
4830 | |
4831 | bool Type::isObjCARCImplicitlyUnretainedType() const { |
4832 | assert(isObjCLifetimeType() && |
4833 | "cannot query implicit lifetime for non-inferrable type" ); |
4834 | |
4835 | const Type *canon = getCanonicalTypeInternal().getTypePtr(); |
4836 | |
4837 | // Walk down to the base type. We don't care about qualifiers for this. |
4838 | while (const auto *array = dyn_cast<ArrayType>(Val: canon)) |
4839 | canon = array->getElementType().getTypePtr(); |
4840 | |
4841 | if (const auto *opt = dyn_cast<ObjCObjectPointerType>(Val: canon)) { |
4842 | // Class and Class<Protocol> don't require retention. |
4843 | if (opt->getObjectType()->isObjCClass()) |
4844 | return true; |
4845 | } |
4846 | |
4847 | return false; |
4848 | } |
4849 | |
4850 | bool Type::isObjCNSObjectType() const { |
4851 | if (const auto *typedefType = getAs<TypedefType>()) |
4852 | return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>(); |
4853 | return false; |
4854 | } |
4855 | |
4856 | bool Type::isObjCIndependentClassType() const { |
4857 | if (const auto *typedefType = getAs<TypedefType>()) |
4858 | return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>(); |
4859 | return false; |
4860 | } |
4861 | |
4862 | bool Type::isObjCRetainableType() const { |
4863 | return isObjCObjectPointerType() || |
4864 | isBlockPointerType() || |
4865 | isObjCNSObjectType(); |
4866 | } |
4867 | |
4868 | bool Type::isObjCIndirectLifetimeType() const { |
4869 | if (isObjCLifetimeType()) |
4870 | return true; |
4871 | if (const auto *OPT = getAs<PointerType>()) |
4872 | return OPT->getPointeeType()->isObjCIndirectLifetimeType(); |
4873 | if (const auto *Ref = getAs<ReferenceType>()) |
4874 | return Ref->getPointeeType()->isObjCIndirectLifetimeType(); |
4875 | if (const auto *MemPtr = getAs<MemberPointerType>()) |
4876 | return MemPtr->getPointeeType()->isObjCIndirectLifetimeType(); |
4877 | return false; |
4878 | } |
4879 | |
4880 | /// Returns true if objects of this type have lifetime semantics under |
4881 | /// ARC. |
4882 | bool Type::isObjCLifetimeType() const { |
4883 | const Type *type = this; |
4884 | while (const ArrayType *array = type->getAsArrayTypeUnsafe()) |
4885 | type = array->getElementType().getTypePtr(); |
4886 | return type->isObjCRetainableType(); |
4887 | } |
4888 | |
4889 | /// Determine whether the given type T is a "bridgable" Objective-C type, |
4890 | /// which is either an Objective-C object pointer type or an |
4891 | bool Type::isObjCARCBridgableType() const { |
4892 | return isObjCObjectPointerType() || isBlockPointerType(); |
4893 | } |
4894 | |
4895 | /// Determine whether the given type T is a "bridgeable" C type. |
4896 | bool Type::isCARCBridgableType() const { |
4897 | const auto *Pointer = getAs<PointerType>(); |
4898 | if (!Pointer) |
4899 | return false; |
4900 | |
4901 | QualType Pointee = Pointer->getPointeeType(); |
4902 | return Pointee->isVoidType() || Pointee->isRecordType(); |
4903 | } |
4904 | |
4905 | /// Check if the specified type is the CUDA device builtin surface type. |
4906 | bool Type::isCUDADeviceBuiltinSurfaceType() const { |
4907 | if (const auto *RT = getAs<RecordType>()) |
4908 | return RT->getDecl()->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>(); |
4909 | return false; |
4910 | } |
4911 | |
4912 | /// Check if the specified type is the CUDA device builtin texture type. |
4913 | bool Type::isCUDADeviceBuiltinTextureType() const { |
4914 | if (const auto *RT = getAs<RecordType>()) |
4915 | return RT->getDecl()->hasAttr<CUDADeviceBuiltinTextureTypeAttr>(); |
4916 | return false; |
4917 | } |
4918 | |
4919 | bool Type::hasSizedVLAType() const { |
4920 | if (!isVariablyModifiedType()) return false; |
4921 | |
4922 | if (const auto *ptr = getAs<PointerType>()) |
4923 | return ptr->getPointeeType()->hasSizedVLAType(); |
4924 | if (const auto *ref = getAs<ReferenceType>()) |
4925 | return ref->getPointeeType()->hasSizedVLAType(); |
4926 | if (const ArrayType *arr = getAsArrayTypeUnsafe()) { |
4927 | if (isa<VariableArrayType>(Val: arr) && |
4928 | cast<VariableArrayType>(Val: arr)->getSizeExpr()) |
4929 | return true; |
4930 | |
4931 | return arr->getElementType()->hasSizedVLAType(); |
4932 | } |
4933 | |
4934 | return false; |
4935 | } |
4936 | |
4937 | QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) { |
4938 | switch (type.getObjCLifetime()) { |
4939 | case Qualifiers::OCL_None: |
4940 | case Qualifiers::OCL_ExplicitNone: |
4941 | case Qualifiers::OCL_Autoreleasing: |
4942 | break; |
4943 | |
4944 | case Qualifiers::OCL_Strong: |
4945 | return DK_objc_strong_lifetime; |
4946 | case Qualifiers::OCL_Weak: |
4947 | return DK_objc_weak_lifetime; |
4948 | } |
4949 | |
4950 | if (const auto *RT = |
4951 | type->getBaseElementTypeUnsafe()->getAs<RecordType>()) { |
4952 | const RecordDecl *RD = RT->getDecl(); |
4953 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
4954 | /// Check if this is a C++ object with a non-trivial destructor. |
4955 | if (CXXRD->hasDefinition() && !CXXRD->hasTrivialDestructor()) |
4956 | return DK_cxx_destructor; |
4957 | } else { |
4958 | /// Check if this is a C struct that is non-trivial to destroy or an array |
4959 | /// that contains such a struct. |
4960 | if (RD->isNonTrivialToPrimitiveDestroy()) |
4961 | return DK_nontrivial_c_struct; |
4962 | } |
4963 | } |
4964 | |
4965 | return DK_none; |
4966 | } |
4967 | |
4968 | CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const { |
4969 | return getClass()->getAsCXXRecordDecl()->getMostRecentNonInjectedDecl(); |
4970 | } |
4971 | |
4972 | void clang::FixedPointValueToString(SmallVectorImpl<char> &Str, |
4973 | llvm::APSInt Val, unsigned Scale) { |
4974 | llvm::FixedPointSemantics FXSema(Val.getBitWidth(), Scale, Val.isSigned(), |
4975 | /*IsSaturated=*/false, |
4976 | /*HasUnsignedPadding=*/false); |
4977 | llvm::APFixedPoint(Val, FXSema).toString(Str); |
4978 | } |
4979 | |
4980 | AutoType::AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword, |
4981 | TypeDependence , QualType Canon, |
4982 | ConceptDecl *TypeConstraintConcept, |
4983 | ArrayRef<TemplateArgument> TypeConstraintArgs) |
4984 | : DeducedType(Auto, DeducedAsType, ExtraDependence, Canon) { |
4985 | AutoTypeBits.Keyword = llvm::to_underlying(E: Keyword); |
4986 | AutoTypeBits.NumArgs = TypeConstraintArgs.size(); |
4987 | this->TypeConstraintConcept = TypeConstraintConcept; |
4988 | assert(TypeConstraintConcept || AutoTypeBits.NumArgs == 0); |
4989 | if (TypeConstraintConcept) { |
4990 | auto *ArgBuffer = |
4991 | const_cast<TemplateArgument *>(getTypeConstraintArguments().data()); |
4992 | for (const TemplateArgument &Arg : TypeConstraintArgs) { |
4993 | // We only syntactically depend on the constraint arguments. They don't |
4994 | // affect the deduced type, only its validity. |
4995 | addDependence( |
4996 | toSyntacticDependence(D: toTypeDependence(D: Arg.getDependence()))); |
4997 | |
4998 | new (ArgBuffer++) TemplateArgument(Arg); |
4999 | } |
5000 | } |
5001 | } |
5002 | |
5003 | void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
5004 | QualType Deduced, AutoTypeKeyword Keyword, |
5005 | bool IsDependent, ConceptDecl *CD, |
5006 | ArrayRef<TemplateArgument> Arguments) { |
5007 | ID.AddPointer(Ptr: Deduced.getAsOpaquePtr()); |
5008 | ID.AddInteger(I: (unsigned)Keyword); |
5009 | ID.AddBoolean(B: IsDependent); |
5010 | ID.AddPointer(Ptr: CD); |
5011 | for (const TemplateArgument &Arg : Arguments) |
5012 | Arg.Profile(ID, Context); |
5013 | } |
5014 | |
5015 | void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) { |
5016 | Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(), |
5017 | getTypeConstraintConcept(), getTypeConstraintArguments()); |
5018 | } |
5019 | |