1//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Constant Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CGRecordLayout.h"
16#include "CodeGenFunction.h"
17#include "CodeGenModule.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Attr.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Basic/Builtins.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/Sequence.h"
28#include "llvm/Analysis/ConstantFolding.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalVariable.h"
33#include <optional>
34using namespace clang;
35using namespace CodeGen;
36
37//===----------------------------------------------------------------------===//
38// ConstantAggregateBuilder
39//===----------------------------------------------------------------------===//
40
41namespace {
42class ConstExprEmitter;
43
44struct ConstantAggregateBuilderUtils {
45 CodeGenModule &CGM;
46
47 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
48
49 CharUnits getAlignment(const llvm::Constant *C) const {
50 return CharUnits::fromQuantity(
51 Quantity: CGM.getDataLayout().getABITypeAlign(Ty: C->getType()));
52 }
53
54 CharUnits getSize(llvm::Type *Ty) const {
55 return CharUnits::fromQuantity(Quantity: CGM.getDataLayout().getTypeAllocSize(Ty));
56 }
57
58 CharUnits getSize(const llvm::Constant *C) const {
59 return getSize(Ty: C->getType());
60 }
61
62 llvm::Constant *getPadding(CharUnits PadSize) const {
63 llvm::Type *Ty = CGM.CharTy;
64 if (PadSize > CharUnits::One())
65 Ty = llvm::ArrayType::get(ElementType: Ty, NumElements: PadSize.getQuantity());
66 return llvm::UndefValue::get(T: Ty);
67 }
68
69 llvm::Constant *getZeroes(CharUnits ZeroSize) const {
70 llvm::Type *Ty = llvm::ArrayType::get(ElementType: CGM.CharTy, NumElements: ZeroSize.getQuantity());
71 return llvm::ConstantAggregateZero::get(Ty);
72 }
73};
74
75/// Incremental builder for an llvm::Constant* holding a struct or array
76/// constant.
77class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
78 /// The elements of the constant. These two arrays must have the same size;
79 /// Offsets[i] describes the offset of Elems[i] within the constant. The
80 /// elements are kept in increasing offset order, and we ensure that there
81 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
82 ///
83 /// This may contain explicit padding elements (in order to create a
84 /// natural layout), but need not. Gaps between elements are implicitly
85 /// considered to be filled with undef.
86 llvm::SmallVector<llvm::Constant*, 32> Elems;
87 llvm::SmallVector<CharUnits, 32> Offsets;
88
89 /// The size of the constant (the maximum end offset of any added element).
90 /// May be larger than the end of Elems.back() if we split the last element
91 /// and removed some trailing undefs.
92 CharUnits Size = CharUnits::Zero();
93
94 /// This is true only if laying out Elems in order as the elements of a
95 /// non-packed LLVM struct will give the correct layout.
96 bool NaturalLayout = true;
97
98 bool split(size_t Index, CharUnits Hint);
99 std::optional<size_t> splitAt(CharUnits Pos);
100
101 static llvm::Constant *buildFrom(CodeGenModule &CGM,
102 ArrayRef<llvm::Constant *> Elems,
103 ArrayRef<CharUnits> Offsets,
104 CharUnits StartOffset, CharUnits Size,
105 bool NaturalLayout, llvm::Type *DesiredTy,
106 bool AllowOversized);
107
108public:
109 ConstantAggregateBuilder(CodeGenModule &CGM)
110 : ConstantAggregateBuilderUtils(CGM) {}
111
112 /// Update or overwrite the value starting at \p Offset with \c C.
113 ///
114 /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
115 /// a constant that has already been added. This flag is only used to
116 /// detect bugs.
117 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
118
119 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
120 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
121
122 /// Attempt to condense the value starting at \p Offset to a constant of type
123 /// \p DesiredTy.
124 void condense(CharUnits Offset, llvm::Type *DesiredTy);
125
126 /// Produce a constant representing the entire accumulated value, ideally of
127 /// the specified type. If \p AllowOversized, the constant might be larger
128 /// than implied by \p DesiredTy (eg, if there is a flexible array member).
129 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
130 /// even if we can't represent it as that type.
131 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
132 return buildFrom(CGM, Elems, Offsets, StartOffset: CharUnits::Zero(), Size,
133 NaturalLayout, DesiredTy, AllowOversized);
134 }
135};
136
137template<typename Container, typename Range = std::initializer_list<
138 typename Container::value_type>>
139static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
140 assert(BeginOff <= EndOff && "invalid replacement range");
141 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
142}
143
144bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
145 bool AllowOverwrite) {
146 // Common case: appending to a layout.
147 if (Offset >= Size) {
148 CharUnits Align = getAlignment(C);
149 CharUnits AlignedSize = Size.alignTo(Align);
150 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
151 NaturalLayout = false;
152 else if (AlignedSize < Offset) {
153 Elems.push_back(Elt: getPadding(PadSize: Offset - Size));
154 Offsets.push_back(Elt: Size);
155 }
156 Elems.push_back(Elt: C);
157 Offsets.push_back(Elt: Offset);
158 Size = Offset + getSize(C);
159 return true;
160 }
161
162 // Uncommon case: constant overlaps what we've already created.
163 std::optional<size_t> FirstElemToReplace = splitAt(Pos: Offset);
164 if (!FirstElemToReplace)
165 return false;
166
167 CharUnits CSize = getSize(C);
168 std::optional<size_t> LastElemToReplace = splitAt(Pos: Offset + CSize);
169 if (!LastElemToReplace)
170 return false;
171
172 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
173 "unexpectedly overwriting field");
174
175 replace(C&: Elems, BeginOff: *FirstElemToReplace, EndOff: *LastElemToReplace, Vals: {C});
176 replace(C&: Offsets, BeginOff: *FirstElemToReplace, EndOff: *LastElemToReplace, Vals: {Offset});
177 Size = std::max(a: Size, b: Offset + CSize);
178 NaturalLayout = false;
179 return true;
180}
181
182bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
183 bool AllowOverwrite) {
184 const ASTContext &Context = CGM.getContext();
185 const uint64_t CharWidth = CGM.getContext().getCharWidth();
186
187 // Offset of where we want the first bit to go within the bits of the
188 // current char.
189 unsigned OffsetWithinChar = OffsetInBits % CharWidth;
190
191 // We split bit-fields up into individual bytes. Walk over the bytes and
192 // update them.
193 for (CharUnits OffsetInChars =
194 Context.toCharUnitsFromBits(BitSize: OffsetInBits - OffsetWithinChar);
195 /**/; ++OffsetInChars) {
196 // Number of bits we want to fill in this char.
197 unsigned WantedBits =
198 std::min(a: (uint64_t)Bits.getBitWidth(), b: CharWidth - OffsetWithinChar);
199
200 // Get a char containing the bits we want in the right places. The other
201 // bits have unspecified values.
202 llvm::APInt BitsThisChar = Bits;
203 if (BitsThisChar.getBitWidth() < CharWidth)
204 BitsThisChar = BitsThisChar.zext(width: CharWidth);
205 if (CGM.getDataLayout().isBigEndian()) {
206 // Figure out how much to shift by. We may need to left-shift if we have
207 // less than one byte of Bits left.
208 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
209 if (Shift > 0)
210 BitsThisChar.lshrInPlace(ShiftAmt: Shift);
211 else if (Shift < 0)
212 BitsThisChar = BitsThisChar.shl(shiftAmt: -Shift);
213 } else {
214 BitsThisChar = BitsThisChar.shl(shiftAmt: OffsetWithinChar);
215 }
216 if (BitsThisChar.getBitWidth() > CharWidth)
217 BitsThisChar = BitsThisChar.trunc(width: CharWidth);
218
219 if (WantedBits == CharWidth) {
220 // Got a full byte: just add it directly.
221 add(C: llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: BitsThisChar),
222 Offset: OffsetInChars, AllowOverwrite);
223 } else {
224 // Partial byte: update the existing integer if there is one. If we
225 // can't split out a 1-CharUnit range to update, then we can't add
226 // these bits and fail the entire constant emission.
227 std::optional<size_t> FirstElemToUpdate = splitAt(Pos: OffsetInChars);
228 if (!FirstElemToUpdate)
229 return false;
230 std::optional<size_t> LastElemToUpdate =
231 splitAt(Pos: OffsetInChars + CharUnits::One());
232 if (!LastElemToUpdate)
233 return false;
234 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
235 "should have at most one element covering one byte");
236
237 // Figure out which bits we want and discard the rest.
238 llvm::APInt UpdateMask(CharWidth, 0);
239 if (CGM.getDataLayout().isBigEndian())
240 UpdateMask.setBits(loBit: CharWidth - OffsetWithinChar - WantedBits,
241 hiBit: CharWidth - OffsetWithinChar);
242 else
243 UpdateMask.setBits(loBit: OffsetWithinChar, hiBit: OffsetWithinChar + WantedBits);
244 BitsThisChar &= UpdateMask;
245
246 if (*FirstElemToUpdate == *LastElemToUpdate ||
247 Elems[*FirstElemToUpdate]->isNullValue() ||
248 isa<llvm::UndefValue>(Val: Elems[*FirstElemToUpdate])) {
249 // All existing bits are either zero or undef.
250 add(C: llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: BitsThisChar),
251 Offset: OffsetInChars, /*AllowOverwrite*/ true);
252 } else {
253 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
254 // In order to perform a partial update, we need the existing bitwise
255 // value, which we can only extract for a constant int.
256 auto *CI = dyn_cast<llvm::ConstantInt>(Val: ToUpdate);
257 if (!CI)
258 return false;
259 // Because this is a 1-CharUnit range, the constant occupying it must
260 // be exactly one CharUnit wide.
261 assert(CI->getBitWidth() == CharWidth && "splitAt failed");
262 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
263 "unexpectedly overwriting bitfield");
264 BitsThisChar |= (CI->getValue() & ~UpdateMask);
265 ToUpdate = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: BitsThisChar);
266 }
267 }
268
269 // Stop if we've added all the bits.
270 if (WantedBits == Bits.getBitWidth())
271 break;
272
273 // Remove the consumed bits from Bits.
274 if (!CGM.getDataLayout().isBigEndian())
275 Bits.lshrInPlace(ShiftAmt: WantedBits);
276 Bits = Bits.trunc(width: Bits.getBitWidth() - WantedBits);
277
278 // The remanining bits go at the start of the following bytes.
279 OffsetWithinChar = 0;
280 }
281
282 return true;
283}
284
285/// Returns a position within Elems and Offsets such that all elements
286/// before the returned index end before Pos and all elements at or after
287/// the returned index begin at or after Pos. Splits elements as necessary
288/// to ensure this. Returns std::nullopt if we find something we can't split.
289std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
290 if (Pos >= Size)
291 return Offsets.size();
292
293 while (true) {
294 auto FirstAfterPos = llvm::upper_bound(Range&: Offsets, Value&: Pos);
295 if (FirstAfterPos == Offsets.begin())
296 return 0;
297
298 // If we already have an element starting at Pos, we're done.
299 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
300 if (Offsets[LastAtOrBeforePosIndex] == Pos)
301 return LastAtOrBeforePosIndex;
302
303 // We found an element starting before Pos. Check for overlap.
304 if (Offsets[LastAtOrBeforePosIndex] +
305 getSize(C: Elems[LastAtOrBeforePosIndex]) <= Pos)
306 return LastAtOrBeforePosIndex + 1;
307
308 // Try to decompose it into smaller constants.
309 if (!split(Index: LastAtOrBeforePosIndex, Hint: Pos))
310 return std::nullopt;
311 }
312}
313
314/// Split the constant at index Index, if possible. Return true if we did.
315/// Hint indicates the location at which we'd like to split, but may be
316/// ignored.
317bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
318 NaturalLayout = false;
319 llvm::Constant *C = Elems[Index];
320 CharUnits Offset = Offsets[Index];
321
322 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(Val: C)) {
323 // Expand the sequence into its contained elements.
324 // FIXME: This assumes vector elements are byte-sized.
325 replace(C&: Elems, BeginOff: Index, EndOff: Index + 1,
326 Vals: llvm::map_range(C: llvm::seq(Begin: 0u, End: CA->getNumOperands()),
327 F: [&](unsigned Op) { return CA->getOperand(i_nocapture: Op); }));
328 if (isa<llvm::ArrayType>(Val: CA->getType()) ||
329 isa<llvm::VectorType>(Val: CA->getType())) {
330 // Array or vector.
331 llvm::Type *ElemTy =
332 llvm::GetElementPtrInst::getTypeAtIndex(Ty: CA->getType(), Idx: (uint64_t)0);
333 CharUnits ElemSize = getSize(Ty: ElemTy);
334 replace(
335 C&: Offsets, BeginOff: Index, EndOff: Index + 1,
336 Vals: llvm::map_range(C: llvm::seq(Begin: 0u, End: CA->getNumOperands()),
337 F: [&](unsigned Op) { return Offset + Op * ElemSize; }));
338 } else {
339 // Must be a struct.
340 auto *ST = cast<llvm::StructType>(Val: CA->getType());
341 const llvm::StructLayout *Layout =
342 CGM.getDataLayout().getStructLayout(Ty: ST);
343 replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1,
344 Vals: llvm::map_range(
345 C: llvm::seq(Begin: 0u, End: CA->getNumOperands()), F: [&](unsigned Op) {
346 return Offset + CharUnits::fromQuantity(
347 Quantity: Layout->getElementOffset(Idx: Op));
348 }));
349 }
350 return true;
351 }
352
353 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(Val: C)) {
354 // Expand the sequence into its contained elements.
355 // FIXME: This assumes vector elements are byte-sized.
356 // FIXME: If possible, split into two ConstantDataSequentials at Hint.
357 CharUnits ElemSize = getSize(Ty: CDS->getElementType());
358 replace(C&: Elems, BeginOff: Index, EndOff: Index + 1,
359 Vals: llvm::map_range(C: llvm::seq(Begin: 0u, End: CDS->getNumElements()),
360 F: [&](unsigned Elem) {
361 return CDS->getElementAsConstant(i: Elem);
362 }));
363 replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1,
364 Vals: llvm::map_range(
365 C: llvm::seq(Begin: 0u, End: CDS->getNumElements()),
366 F: [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
367 return true;
368 }
369
370 if (isa<llvm::ConstantAggregateZero>(Val: C)) {
371 // Split into two zeros at the hinted offset.
372 CharUnits ElemSize = getSize(C);
373 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
374 replace(C&: Elems, BeginOff: Index, EndOff: Index + 1,
375 Vals: {getZeroes(ZeroSize: Hint - Offset), getZeroes(ZeroSize: Offset + ElemSize - Hint)});
376 replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1, Vals: {Offset, Hint});
377 return true;
378 }
379
380 if (isa<llvm::UndefValue>(Val: C)) {
381 // Drop undef; it doesn't contribute to the final layout.
382 replace(C&: Elems, BeginOff: Index, EndOff: Index + 1, Vals: {});
383 replace(C&: Offsets, BeginOff: Index, EndOff: Index + 1, Vals: {});
384 return true;
385 }
386
387 // FIXME: We could split a ConstantInt if the need ever arose.
388 // We don't need to do this to handle bit-fields because we always eagerly
389 // split them into 1-byte chunks.
390
391 return false;
392}
393
394static llvm::Constant *
395EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
396 llvm::Type *CommonElementType, unsigned ArrayBound,
397 SmallVectorImpl<llvm::Constant *> &Elements,
398 llvm::Constant *Filler);
399
400llvm::Constant *ConstantAggregateBuilder::buildFrom(
401 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
402 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
403 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
404 ConstantAggregateBuilderUtils Utils(CGM);
405
406 if (Elems.empty())
407 return llvm::UndefValue::get(T: DesiredTy);
408
409 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
410
411 // If we want an array type, see if all the elements are the same type and
412 // appropriately spaced.
413 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(Val: DesiredTy)) {
414 assert(!AllowOversized && "oversized array emission not supported");
415
416 bool CanEmitArray = true;
417 llvm::Type *CommonType = Elems[0]->getType();
418 llvm::Constant *Filler = llvm::Constant::getNullValue(Ty: CommonType);
419 CharUnits ElemSize = Utils.getSize(Ty: ATy->getElementType());
420 SmallVector<llvm::Constant*, 32> ArrayElements;
421 for (size_t I = 0; I != Elems.size(); ++I) {
422 // Skip zeroes; we'll use a zero value as our array filler.
423 if (Elems[I]->isNullValue())
424 continue;
425
426 // All remaining elements must be the same type.
427 if (Elems[I]->getType() != CommonType ||
428 Offset(I) % ElemSize != 0) {
429 CanEmitArray = false;
430 break;
431 }
432 ArrayElements.resize(N: Offset(I) / ElemSize + 1, NV: Filler);
433 ArrayElements.back() = Elems[I];
434 }
435
436 if (CanEmitArray) {
437 return EmitArrayConstant(CGM, DesiredType: ATy, CommonElementType: CommonType, ArrayBound: ATy->getNumElements(),
438 Elements&: ArrayElements, Filler);
439 }
440
441 // Can't emit as an array, carry on to emit as a struct.
442 }
443
444 // The size of the constant we plan to generate. This is usually just
445 // the size of the initialized type, but in AllowOversized mode (i.e.
446 // flexible array init), it can be larger.
447 CharUnits DesiredSize = Utils.getSize(Ty: DesiredTy);
448 if (Size > DesiredSize) {
449 assert(AllowOversized && "Elems are oversized");
450 DesiredSize = Size;
451 }
452
453 // The natural alignment of an unpacked LLVM struct with the given elements.
454 CharUnits Align = CharUnits::One();
455 for (llvm::Constant *C : Elems)
456 Align = std::max(a: Align, b: Utils.getAlignment(C));
457
458 // The natural size of an unpacked LLVM struct with the given elements.
459 CharUnits AlignedSize = Size.alignTo(Align);
460
461 bool Packed = false;
462 ArrayRef<llvm::Constant*> UnpackedElems = Elems;
463 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
464 if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
465 // The natural layout would be too big; force use of a packed layout.
466 NaturalLayout = false;
467 Packed = true;
468 } else if (DesiredSize > AlignedSize) {
469 // The natural layout would be too small. Add padding to fix it. (This
470 // is ignored if we choose a packed layout.)
471 UnpackedElemStorage.assign(in_start: Elems.begin(), in_end: Elems.end());
472 UnpackedElemStorage.push_back(Elt: Utils.getPadding(PadSize: DesiredSize - Size));
473 UnpackedElems = UnpackedElemStorage;
474 }
475
476 // If we don't have a natural layout, insert padding as necessary.
477 // As we go, double-check to see if we can actually just emit Elems
478 // as a non-packed struct and do so opportunistically if possible.
479 llvm::SmallVector<llvm::Constant*, 32> PackedElems;
480 if (!NaturalLayout) {
481 CharUnits SizeSoFar = CharUnits::Zero();
482 for (size_t I = 0; I != Elems.size(); ++I) {
483 CharUnits Align = Utils.getAlignment(C: Elems[I]);
484 CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
485 CharUnits DesiredOffset = Offset(I);
486 assert(DesiredOffset >= SizeSoFar && "elements out of order");
487
488 if (DesiredOffset != NaturalOffset)
489 Packed = true;
490 if (DesiredOffset != SizeSoFar)
491 PackedElems.push_back(Elt: Utils.getPadding(PadSize: DesiredOffset - SizeSoFar));
492 PackedElems.push_back(Elt: Elems[I]);
493 SizeSoFar = DesiredOffset + Utils.getSize(C: Elems[I]);
494 }
495 // If we're using the packed layout, pad it out to the desired size if
496 // necessary.
497 if (Packed) {
498 assert(SizeSoFar <= DesiredSize &&
499 "requested size is too small for contents");
500 if (SizeSoFar < DesiredSize)
501 PackedElems.push_back(Elt: Utils.getPadding(PadSize: DesiredSize - SizeSoFar));
502 }
503 }
504
505 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
506 Ctx&: CGM.getLLVMContext(), V: Packed ? PackedElems : UnpackedElems, Packed);
507
508 // Pick the type to use. If the type is layout identical to the desired
509 // type then use it, otherwise use whatever the builder produced for us.
510 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(Val: DesiredTy)) {
511 if (DesiredSTy->isLayoutIdentical(Other: STy))
512 STy = DesiredSTy;
513 }
514
515 return llvm::ConstantStruct::get(T: STy, V: Packed ? PackedElems : UnpackedElems);
516}
517
518void ConstantAggregateBuilder::condense(CharUnits Offset,
519 llvm::Type *DesiredTy) {
520 CharUnits Size = getSize(Ty: DesiredTy);
521
522 std::optional<size_t> FirstElemToReplace = splitAt(Pos: Offset);
523 if (!FirstElemToReplace)
524 return;
525 size_t First = *FirstElemToReplace;
526
527 std::optional<size_t> LastElemToReplace = splitAt(Pos: Offset + Size);
528 if (!LastElemToReplace)
529 return;
530 size_t Last = *LastElemToReplace;
531
532 size_t Length = Last - First;
533 if (Length == 0)
534 return;
535
536 if (Length == 1 && Offsets[First] == Offset &&
537 getSize(C: Elems[First]) == Size) {
538 // Re-wrap single element structs if necessary. Otherwise, leave any single
539 // element constant of the right size alone even if it has the wrong type.
540 auto *STy = dyn_cast<llvm::StructType>(Val: DesiredTy);
541 if (STy && STy->getNumElements() == 1 &&
542 STy->getElementType(N: 0) == Elems[First]->getType())
543 Elems[First] = llvm::ConstantStruct::get(T: STy, Vs: Elems[First]);
544 return;
545 }
546
547 llvm::Constant *Replacement = buildFrom(
548 CGM, Elems: ArrayRef(Elems).slice(N: First, M: Length),
549 Offsets: ArrayRef(Offsets).slice(N: First, M: Length), StartOffset: Offset, Size: getSize(Ty: DesiredTy),
550 /*known to have natural layout=*/NaturalLayout: false, DesiredTy, AllowOversized: false);
551 replace(C&: Elems, BeginOff: First, EndOff: Last, Vals: {Replacement});
552 replace(C&: Offsets, BeginOff: First, EndOff: Last, Vals: {Offset});
553}
554
555//===----------------------------------------------------------------------===//
556// ConstStructBuilder
557//===----------------------------------------------------------------------===//
558
559class ConstStructBuilder {
560 CodeGenModule &CGM;
561 ConstantEmitter &Emitter;
562 ConstantAggregateBuilder &Builder;
563 CharUnits StartOffset;
564
565public:
566 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
567 const InitListExpr *ILE,
568 QualType StructTy);
569 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
570 const APValue &Value, QualType ValTy);
571 static bool UpdateStruct(ConstantEmitter &Emitter,
572 ConstantAggregateBuilder &Const, CharUnits Offset,
573 const InitListExpr *Updater);
574
575private:
576 ConstStructBuilder(ConstantEmitter &Emitter,
577 ConstantAggregateBuilder &Builder, CharUnits StartOffset)
578 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
579 StartOffset(StartOffset) {}
580
581 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
582 llvm::Constant *InitExpr, bool AllowOverwrite = false);
583
584 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
585 bool AllowOverwrite = false);
586
587 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
588 llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
589
590 bool Build(const InitListExpr *ILE, bool AllowOverwrite);
591 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
592 const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
593 llvm::Constant *Finalize(QualType Ty);
594};
595
596bool ConstStructBuilder::AppendField(
597 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
598 bool AllowOverwrite) {
599 const ASTContext &Context = CGM.getContext();
600
601 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(BitSize: FieldOffset);
602
603 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
604}
605
606bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
607 llvm::Constant *InitCst,
608 bool AllowOverwrite) {
609 return Builder.add(C: InitCst, Offset: StartOffset + FieldOffsetInChars, AllowOverwrite);
610}
611
612bool ConstStructBuilder::AppendBitField(
613 const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
614 bool AllowOverwrite) {
615 const CGRecordLayout &RL =
616 CGM.getTypes().getCGRecordLayout(Field->getParent());
617 const CGBitFieldInfo &Info = RL.getBitFieldInfo(FD: Field);
618 llvm::APInt FieldValue = CI->getValue();
619
620 // Promote the size of FieldValue if necessary
621 // FIXME: This should never occur, but currently it can because initializer
622 // constants are cast to bool, and because clang is not enforcing bitfield
623 // width limits.
624 if (Info.Size > FieldValue.getBitWidth())
625 FieldValue = FieldValue.zext(width: Info.Size);
626
627 // Truncate the size of FieldValue to the bit field size.
628 if (Info.Size < FieldValue.getBitWidth())
629 FieldValue = FieldValue.trunc(width: Info.Size);
630
631 return Builder.addBits(Bits: FieldValue,
632 OffsetInBits: CGM.getContext().toBits(CharSize: StartOffset) + FieldOffset,
633 AllowOverwrite);
634}
635
636static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
637 ConstantAggregateBuilder &Const,
638 CharUnits Offset, QualType Type,
639 const InitListExpr *Updater) {
640 if (Type->isRecordType())
641 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
642
643 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(T: Type);
644 if (!CAT)
645 return false;
646 QualType ElemType = CAT->getElementType();
647 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(T: ElemType);
648 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(T: ElemType);
649
650 llvm::Constant *FillC = nullptr;
651 if (const Expr *Filler = Updater->getArrayFiller()) {
652 if (!isa<NoInitExpr>(Val: Filler)) {
653 FillC = Emitter.tryEmitAbstractForMemory(E: Filler, T: ElemType);
654 if (!FillC)
655 return false;
656 }
657 }
658
659 unsigned NumElementsToUpdate =
660 FillC ? CAT->getZExtSize() : Updater->getNumInits();
661 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
662 const Expr *Init = nullptr;
663 if (I < Updater->getNumInits())
664 Init = Updater->getInit(Init: I);
665
666 if (!Init && FillC) {
667 if (!Const.add(C: FillC, Offset, AllowOverwrite: true))
668 return false;
669 } else if (!Init || isa<NoInitExpr>(Val: Init)) {
670 continue;
671 } else if (const auto *ChildILE = dyn_cast<InitListExpr>(Val: Init)) {
672 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, Type: ElemType,
673 Updater: ChildILE))
674 return false;
675 // Attempt to reduce the array element to a single constant if necessary.
676 Const.condense(Offset, DesiredTy: ElemTy);
677 } else {
678 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(E: Init, T: ElemType);
679 if (!Const.add(C: Val, Offset, AllowOverwrite: true))
680 return false;
681 }
682 }
683
684 return true;
685}
686
687bool ConstStructBuilder::Build(const InitListExpr *ILE, bool AllowOverwrite) {
688 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
689 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(D: RD);
690
691 unsigned FieldNo = -1;
692 unsigned ElementNo = 0;
693
694 // Bail out if we have base classes. We could support these, but they only
695 // arise in C++1z where we will have already constant folded most interesting
696 // cases. FIXME: There are still a few more cases we can handle this way.
697 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
698 if (CXXRD->getNumBases())
699 return false;
700
701 for (FieldDecl *Field : RD->fields()) {
702 ++FieldNo;
703
704 // If this is a union, skip all the fields that aren't being initialized.
705 if (RD->isUnion() &&
706 !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
707 continue;
708
709 // Don't emit anonymous bitfields.
710 if (Field->isUnnamedBitField())
711 continue;
712
713 // Get the initializer. A struct can include fields without initializers,
714 // we just use explicit null values for them.
715 const Expr *Init = nullptr;
716 if (ElementNo < ILE->getNumInits())
717 Init = ILE->getInit(ElementNo++);
718 if (Init && isa<NoInitExpr>(Init))
719 continue;
720
721 // Zero-sized fields are not emitted, but their initializers may still
722 // prevent emission of this struct as a constant.
723 if (Field->isZeroSize(CGM.getContext())) {
724 if (Init->HasSideEffects(CGM.getContext()))
725 return false;
726 continue;
727 }
728
729 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
730 // represents additional overwriting of our current constant value, and not
731 // a new constant to emit independently.
732 if (AllowOverwrite &&
733 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
734 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
735 CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
736 Layout.getFieldOffset(FieldNo));
737 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
738 Field->getType(), SubILE))
739 return false;
740 // If we split apart the field's value, try to collapse it down to a
741 // single value now.
742 Builder.condense(StartOffset + Offset,
743 CGM.getTypes().ConvertTypeForMem(Field->getType()));
744 continue;
745 }
746 }
747
748 llvm::Constant *EltInit =
749 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
750 : Emitter.emitNullForMemory(Field->getType());
751 if (!EltInit)
752 return false;
753
754 if (!Field->isBitField()) {
755 // Handle non-bitfield members.
756 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
757 AllowOverwrite))
758 return false;
759 // After emitting a non-empty field with [[no_unique_address]], we may
760 // need to overwrite its tail padding.
761 if (Field->hasAttr<NoUniqueAddressAttr>())
762 AllowOverwrite = true;
763 } else {
764 // Otherwise we have a bitfield.
765 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
766 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
767 AllowOverwrite))
768 return false;
769 } else {
770 // We are trying to initialize a bitfield with a non-trivial constant,
771 // this must require run-time code.
772 return false;
773 }
774 }
775 }
776
777 return true;
778}
779
780namespace {
781struct BaseInfo {
782 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
783 : Decl(Decl), Offset(Offset), Index(Index) {
784 }
785
786 const CXXRecordDecl *Decl;
787 CharUnits Offset;
788 unsigned Index;
789
790 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
791};
792}
793
794bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
795 bool IsPrimaryBase,
796 const CXXRecordDecl *VTableClass,
797 CharUnits Offset) {
798 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(D: RD);
799
800 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD)) {
801 // Add a vtable pointer, if we need one and it hasn't already been added.
802 if (Layout.hasOwnVFPtr()) {
803 llvm::Constant *VTableAddressPoint =
804 CGM.getCXXABI().getVTableAddressPoint(Base: BaseSubobject(CD, Offset),
805 VTableClass);
806 if (!AppendBytes(FieldOffsetInChars: Offset, InitCst: VTableAddressPoint))
807 return false;
808 }
809
810 // Accumulate and sort bases, in order to visit them in address order, which
811 // may not be the same as declaration order.
812 SmallVector<BaseInfo, 8> Bases;
813 Bases.reserve(N: CD->getNumBases());
814 unsigned BaseNo = 0;
815 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
816 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
817 assert(!Base->isVirtual() && "should not have virtual bases here");
818 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
819 CharUnits BaseOffset = Layout.getBaseClassOffset(Base: BD);
820 Bases.push_back(Elt: BaseInfo(BD, BaseOffset, BaseNo));
821 }
822 llvm::stable_sort(Range&: Bases);
823
824 for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
825 BaseInfo &Base = Bases[I];
826
827 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
828 Build(Val.getStructBase(i: Base.Index), Base.Decl, IsPrimaryBase,
829 VTableClass, Offset + Base.Offset);
830 }
831 }
832
833 unsigned FieldNo = 0;
834 uint64_t OffsetBits = CGM.getContext().toBits(CharSize: Offset);
835
836 bool AllowOverwrite = false;
837 for (RecordDecl::field_iterator Field = RD->field_begin(),
838 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
839 // If this is a union, skip all the fields that aren't being initialized.
840 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
841 continue;
842
843 // Don't emit anonymous bitfields or zero-sized fields.
844 if (Field->isUnnamedBitField() || Field->isZeroSize(Ctx: CGM.getContext()))
845 continue;
846
847 // Emit the value of the initializer.
848 const APValue &FieldValue =
849 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(i: FieldNo);
850 llvm::Constant *EltInit =
851 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
852 if (!EltInit)
853 return false;
854
855 if (!Field->isBitField()) {
856 // Handle non-bitfield members.
857 if (!AppendField(Field: *Field, FieldOffset: Layout.getFieldOffset(FieldNo) + OffsetBits,
858 InitCst: EltInit, AllowOverwrite))
859 return false;
860 // After emitting a non-empty field with [[no_unique_address]], we may
861 // need to overwrite its tail padding.
862 if (Field->hasAttr<NoUniqueAddressAttr>())
863 AllowOverwrite = true;
864 } else {
865 // Otherwise we have a bitfield.
866 if (!AppendBitField(Field: *Field, FieldOffset: Layout.getFieldOffset(FieldNo) + OffsetBits,
867 CI: cast<llvm::ConstantInt>(Val: EltInit), AllowOverwrite))
868 return false;
869 }
870 }
871
872 return true;
873}
874
875llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
876 Type = Type.getNonReferenceType();
877 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
878 llvm::Type *ValTy = CGM.getTypes().ConvertType(T: Type);
879 return Builder.build(DesiredTy: ValTy, AllowOversized: RD->hasFlexibleArrayMember());
880}
881
882llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
883 const InitListExpr *ILE,
884 QualType ValTy) {
885 ConstantAggregateBuilder Const(Emitter.CGM);
886 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
887
888 if (!Builder.Build(ILE, /*AllowOverwrite*/false))
889 return nullptr;
890
891 return Builder.Finalize(Type: ValTy);
892}
893
894llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
895 const APValue &Val,
896 QualType ValTy) {
897 ConstantAggregateBuilder Const(Emitter.CGM);
898 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
899
900 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
901 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(Val: RD);
902 if (!Builder.Build(Val, RD, IsPrimaryBase: false, VTableClass: CD, Offset: CharUnits::Zero()))
903 return nullptr;
904
905 return Builder.Finalize(Type: ValTy);
906}
907
908bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
909 ConstantAggregateBuilder &Const,
910 CharUnits Offset,
911 const InitListExpr *Updater) {
912 return ConstStructBuilder(Emitter, Const, Offset)
913 .Build(ILE: Updater, /*AllowOverwrite*/ true);
914}
915
916//===----------------------------------------------------------------------===//
917// ConstExprEmitter
918//===----------------------------------------------------------------------===//
919
920static ConstantAddress
921tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter,
922 const CompoundLiteralExpr *E) {
923 CodeGenModule &CGM = emitter.CGM;
924 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
925 if (llvm::GlobalVariable *Addr =
926 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
927 return ConstantAddress(Addr, Addr->getValueType(), Align);
928
929 LangAS addressSpace = E->getType().getAddressSpace();
930 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
931 addressSpace, E->getType());
932 if (!C) {
933 assert(!E->isFileScope() &&
934 "file-scope compound literal did not have constant initializer!");
935 return ConstantAddress::invalid();
936 }
937
938 auto GV = new llvm::GlobalVariable(
939 CGM.getModule(), C->getType(),
940 E->getType().isConstantStorage(CGM.getContext(), true, false),
941 llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr,
942 llvm::GlobalVariable::NotThreadLocal,
943 CGM.getContext().getTargetAddressSpace(AS: addressSpace));
944 emitter.finalize(global: GV);
945 GV->setAlignment(Align.getAsAlign());
946 CGM.setAddrOfConstantCompoundLiteral(CLE: E, GV: GV);
947 return ConstantAddress(GV, GV->getValueType(), Align);
948}
949
950static llvm::Constant *
951EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
952 llvm::Type *CommonElementType, unsigned ArrayBound,
953 SmallVectorImpl<llvm::Constant *> &Elements,
954 llvm::Constant *Filler) {
955 // Figure out how long the initial prefix of non-zero elements is.
956 unsigned NonzeroLength = ArrayBound;
957 if (Elements.size() < NonzeroLength && Filler->isNullValue())
958 NonzeroLength = Elements.size();
959 if (NonzeroLength == Elements.size()) {
960 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
961 --NonzeroLength;
962 }
963
964 if (NonzeroLength == 0)
965 return llvm::ConstantAggregateZero::get(Ty: DesiredType);
966
967 // Add a zeroinitializer array filler if we have lots of trailing zeroes.
968 unsigned TrailingZeroes = ArrayBound - NonzeroLength;
969 if (TrailingZeroes >= 8) {
970 assert(Elements.size() >= NonzeroLength &&
971 "missing initializer for non-zero element");
972
973 // If all the elements had the same type up to the trailing zeroes, emit a
974 // struct of two arrays (the nonzero data and the zeroinitializer).
975 if (CommonElementType && NonzeroLength >= 8) {
976 llvm::Constant *Initial = llvm::ConstantArray::get(
977 T: llvm::ArrayType::get(ElementType: CommonElementType, NumElements: NonzeroLength),
978 V: ArrayRef(Elements).take_front(N: NonzeroLength));
979 Elements.resize(N: 2);
980 Elements[0] = Initial;
981 } else {
982 Elements.resize(N: NonzeroLength + 1);
983 }
984
985 auto *FillerType =
986 CommonElementType ? CommonElementType : DesiredType->getElementType();
987 FillerType = llvm::ArrayType::get(ElementType: FillerType, NumElements: TrailingZeroes);
988 Elements.back() = llvm::ConstantAggregateZero::get(Ty: FillerType);
989 CommonElementType = nullptr;
990 } else if (Elements.size() != ArrayBound) {
991 // Otherwise pad to the right size with the filler if necessary.
992 Elements.resize(N: ArrayBound, NV: Filler);
993 if (Filler->getType() != CommonElementType)
994 CommonElementType = nullptr;
995 }
996
997 // If all elements have the same type, just emit an array constant.
998 if (CommonElementType)
999 return llvm::ConstantArray::get(
1000 T: llvm::ArrayType::get(ElementType: CommonElementType, NumElements: ArrayBound), V: Elements);
1001
1002 // We have mixed types. Use a packed struct.
1003 llvm::SmallVector<llvm::Type *, 16> Types;
1004 Types.reserve(N: Elements.size());
1005 for (llvm::Constant *Elt : Elements)
1006 Types.push_back(Elt: Elt->getType());
1007 llvm::StructType *SType =
1008 llvm::StructType::get(Context&: CGM.getLLVMContext(), Elements: Types, isPacked: true);
1009 return llvm::ConstantStruct::get(T: SType, V: Elements);
1010}
1011
1012// This class only needs to handle arrays, structs and unions. Outside C++11
1013// mode, we don't currently constant fold those types. All other types are
1014// handled by constant folding.
1015//
1016// Constant folding is currently missing support for a few features supported
1017// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1018class ConstExprEmitter
1019 : public ConstStmtVisitor<ConstExprEmitter, llvm::Constant *, QualType> {
1020 CodeGenModule &CGM;
1021 ConstantEmitter &Emitter;
1022 llvm::LLVMContext &VMContext;
1023public:
1024 ConstExprEmitter(ConstantEmitter &emitter)
1025 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1026 }
1027
1028 //===--------------------------------------------------------------------===//
1029 // Visitor Methods
1030 //===--------------------------------------------------------------------===//
1031
1032 llvm::Constant *VisitStmt(const Stmt *S, QualType T) { return nullptr; }
1033
1034 llvm::Constant *VisitConstantExpr(const ConstantExpr *CE, QualType T) {
1035 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1036 return Result;
1037 return Visit(CE->getSubExpr(), T);
1038 }
1039
1040 llvm::Constant *VisitParenExpr(const ParenExpr *PE, QualType T) {
1041 return Visit(PE->getSubExpr(), T);
1042 }
1043
1044 llvm::Constant *
1045 VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *PE,
1046 QualType T) {
1047 return Visit(PE->getReplacement(), T);
1048 }
1049
1050 llvm::Constant *VisitGenericSelectionExpr(const GenericSelectionExpr *GE,
1051 QualType T) {
1052 return Visit(GE->getResultExpr(), T);
1053 }
1054
1055 llvm::Constant *VisitChooseExpr(const ChooseExpr *CE, QualType T) {
1056 return Visit(CE->getChosenSubExpr(), T);
1057 }
1058
1059 llvm::Constant *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E,
1060 QualType T) {
1061 return Visit(E->getInitializer(), T);
1062 }
1063
1064 llvm::Constant *VisitCastExpr(const CastExpr *E, QualType destType) {
1065 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(Val: E))
1066 CGM.EmitExplicitCastExprType(E: ECE, CGF: Emitter.CGF);
1067 const Expr *subExpr = E->getSubExpr();
1068
1069 switch (E->getCastKind()) {
1070 case CK_ToUnion: {
1071 // GCC cast to union extension
1072 assert(E->getType()->isUnionType() &&
1073 "Destination type is not union type!");
1074
1075 auto field = E->getTargetUnionField();
1076
1077 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1078 if (!C) return nullptr;
1079
1080 auto destTy = ConvertType(T: destType);
1081 if (C->getType() == destTy) return C;
1082
1083 // Build a struct with the union sub-element as the first member,
1084 // and padded to the appropriate size.
1085 SmallVector<llvm::Constant*, 2> Elts;
1086 SmallVector<llvm::Type*, 2> Types;
1087 Elts.push_back(Elt: C);
1088 Types.push_back(Elt: C->getType());
1089 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(Ty: C->getType());
1090 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(Ty: destTy);
1091
1092 assert(CurSize <= TotalSize && "Union size mismatch!");
1093 if (unsigned NumPadBytes = TotalSize - CurSize) {
1094 llvm::Type *Ty = CGM.CharTy;
1095 if (NumPadBytes > 1)
1096 Ty = llvm::ArrayType::get(ElementType: Ty, NumElements: NumPadBytes);
1097
1098 Elts.push_back(Elt: llvm::UndefValue::get(T: Ty));
1099 Types.push_back(Elt: Ty);
1100 }
1101
1102 llvm::StructType *STy = llvm::StructType::get(Context&: VMContext, Elements: Types, isPacked: false);
1103 return llvm::ConstantStruct::get(T: STy, V: Elts);
1104 }
1105
1106 case CK_AddressSpaceConversion: {
1107 auto C = Emitter.tryEmitPrivate(E: subExpr, T: subExpr->getType());
1108 if (!C) return nullptr;
1109 LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1110 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1111 llvm::Type *destTy = ConvertType(T: E->getType());
1112 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, V: C, SrcAddr: srcAS,
1113 DestAddr: destAS, DestTy: destTy);
1114 }
1115
1116 case CK_LValueToRValue: {
1117 // We don't really support doing lvalue-to-rvalue conversions here; any
1118 // interesting conversions should be done in Evaluate(). But as a
1119 // special case, allow compound literals to support the gcc extension
1120 // allowing "struct x {int x;} x = (struct x) {};".
1121 if (const auto *E =
1122 dyn_cast<CompoundLiteralExpr>(Val: subExpr->IgnoreParens()))
1123 return Visit(E->getInitializer(), destType);
1124 return nullptr;
1125 }
1126
1127 case CK_AtomicToNonAtomic:
1128 case CK_NonAtomicToAtomic:
1129 case CK_NoOp:
1130 case CK_ConstructorConversion:
1131 return Visit(subExpr, destType);
1132
1133 case CK_ArrayToPointerDecay:
1134 if (const auto *S = dyn_cast<StringLiteral>(Val: subExpr))
1135 return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer();
1136 return nullptr;
1137 case CK_NullToPointer:
1138 if (Visit(subExpr, destType))
1139 return CGM.EmitNullConstant(T: destType);
1140 return nullptr;
1141
1142 case CK_IntToOCLSampler:
1143 llvm_unreachable("global sampler variables are not generated");
1144
1145 case CK_IntegralCast: {
1146 QualType FromType = subExpr->getType();
1147 // See also HandleIntToIntCast in ExprConstant.cpp
1148 if (FromType->isIntegerType())
1149 if (llvm::Constant *C = Visit(subExpr, FromType))
1150 if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) {
1151 unsigned SrcWidth = CGM.getContext().getIntWidth(T: FromType);
1152 unsigned DstWidth = CGM.getContext().getIntWidth(T: destType);
1153 if (DstWidth == SrcWidth)
1154 return CI;
1155 llvm::APInt A = FromType->isSignedIntegerType()
1156 ? CI->getValue().sextOrTrunc(DstWidth)
1157 : CI->getValue().zextOrTrunc(DstWidth);
1158 return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: A);
1159 }
1160 return nullptr;
1161 }
1162
1163 case CK_Dependent: llvm_unreachable("saw dependent cast!");
1164
1165 case CK_BuiltinFnToFnPtr:
1166 llvm_unreachable("builtin functions are handled elsewhere");
1167
1168 case CK_ReinterpretMemberPointer:
1169 case CK_DerivedToBaseMemberPointer:
1170 case CK_BaseToDerivedMemberPointer: {
1171 auto C = Emitter.tryEmitPrivate(E: subExpr, T: subExpr->getType());
1172 if (!C) return nullptr;
1173 return CGM.getCXXABI().EmitMemberPointerConversion(E, Src: C);
1174 }
1175
1176 // These will never be supported.
1177 case CK_ObjCObjectLValueCast:
1178 case CK_ARCProduceObject:
1179 case CK_ARCConsumeObject:
1180 case CK_ARCReclaimReturnedObject:
1181 case CK_ARCExtendBlockObject:
1182 case CK_CopyAndAutoreleaseBlockObject:
1183 return nullptr;
1184
1185 // These don't need to be handled here because Evaluate knows how to
1186 // evaluate them in the cases where they can be folded.
1187 case CK_BitCast:
1188 case CK_ToVoid:
1189 case CK_Dynamic:
1190 case CK_LValueBitCast:
1191 case CK_LValueToRValueBitCast:
1192 case CK_NullToMemberPointer:
1193 case CK_UserDefinedConversion:
1194 case CK_CPointerToObjCPointerCast:
1195 case CK_BlockPointerToObjCPointerCast:
1196 case CK_AnyPointerToBlockPointerCast:
1197 case CK_FunctionToPointerDecay:
1198 case CK_BaseToDerived:
1199 case CK_DerivedToBase:
1200 case CK_UncheckedDerivedToBase:
1201 case CK_MemberPointerToBoolean:
1202 case CK_VectorSplat:
1203 case CK_FloatingRealToComplex:
1204 case CK_FloatingComplexToReal:
1205 case CK_FloatingComplexToBoolean:
1206 case CK_FloatingComplexCast:
1207 case CK_FloatingComplexToIntegralComplex:
1208 case CK_IntegralRealToComplex:
1209 case CK_IntegralComplexToReal:
1210 case CK_IntegralComplexToBoolean:
1211 case CK_IntegralComplexCast:
1212 case CK_IntegralComplexToFloatingComplex:
1213 case CK_PointerToIntegral:
1214 case CK_PointerToBoolean:
1215 case CK_BooleanToSignedIntegral:
1216 case CK_IntegralToPointer:
1217 case CK_IntegralToBoolean:
1218 case CK_IntegralToFloating:
1219 case CK_FloatingToIntegral:
1220 case CK_FloatingToBoolean:
1221 case CK_FloatingCast:
1222 case CK_FloatingToFixedPoint:
1223 case CK_FixedPointToFloating:
1224 case CK_FixedPointCast:
1225 case CK_FixedPointToBoolean:
1226 case CK_FixedPointToIntegral:
1227 case CK_IntegralToFixedPoint:
1228 case CK_ZeroToOCLOpaqueType:
1229 case CK_MatrixCast:
1230 case CK_HLSLVectorTruncation:
1231 case CK_HLSLArrayRValue:
1232 return nullptr;
1233 }
1234 llvm_unreachable("Invalid CastKind");
1235 }
1236
1237 llvm::Constant *VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *DIE,
1238 QualType T) {
1239 // No need for a DefaultInitExprScope: we don't handle 'this' in a
1240 // constant expression.
1241 return Visit(DIE->getExpr(), T);
1242 }
1243
1244 llvm::Constant *VisitExprWithCleanups(const ExprWithCleanups *E, QualType T) {
1245 return Visit(E->getSubExpr(), T);
1246 }
1247
1248 llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *I, QualType T) {
1249 return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue());
1250 }
1251
1252 llvm::Constant *EmitArrayInitialization(const InitListExpr *ILE, QualType T) {
1253 auto *CAT = CGM.getContext().getAsConstantArrayType(T: ILE->getType());
1254 assert(CAT && "can't emit array init for non-constant-bound array");
1255 unsigned NumInitElements = ILE->getNumInits();
1256 unsigned NumElements = CAT->getZExtSize();
1257
1258 // Initialising an array requires us to automatically
1259 // initialise any elements that have not been initialised explicitly
1260 unsigned NumInitableElts = std::min(a: NumInitElements, b: NumElements);
1261
1262 QualType EltType = CAT->getElementType();
1263
1264 // Initialize remaining array elements.
1265 llvm::Constant *fillC = nullptr;
1266 if (const Expr *filler = ILE->getArrayFiller()) {
1267 fillC = Emitter.tryEmitAbstractForMemory(E: filler, T: EltType);
1268 if (!fillC)
1269 return nullptr;
1270 }
1271
1272 // Copy initializer elements.
1273 SmallVector<llvm::Constant*, 16> Elts;
1274 if (fillC && fillC->isNullValue())
1275 Elts.reserve(N: NumInitableElts + 1);
1276 else
1277 Elts.reserve(N: NumElements);
1278
1279 llvm::Type *CommonElementType = nullptr;
1280 for (unsigned i = 0; i < NumInitableElts; ++i) {
1281 const Expr *Init = ILE->getInit(Init: i);
1282 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(E: Init, T: EltType);
1283 if (!C)
1284 return nullptr;
1285 if (i == 0)
1286 CommonElementType = C->getType();
1287 else if (C->getType() != CommonElementType)
1288 CommonElementType = nullptr;
1289 Elts.push_back(Elt: C);
1290 }
1291
1292 llvm::ArrayType *Desired =
1293 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(T: ILE->getType()));
1294 return EmitArrayConstant(CGM, DesiredType: Desired, CommonElementType, ArrayBound: NumElements, Elements&: Elts,
1295 Filler: fillC);
1296 }
1297
1298 llvm::Constant *EmitRecordInitialization(const InitListExpr *ILE,
1299 QualType T) {
1300 return ConstStructBuilder::BuildStruct(Emitter, ILE, ValTy: T);
1301 }
1302
1303 llvm::Constant *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E,
1304 QualType T) {
1305 return CGM.EmitNullConstant(T);
1306 }
1307
1308 llvm::Constant *VisitInitListExpr(const InitListExpr *ILE, QualType T) {
1309 if (ILE->isTransparent())
1310 return Visit(ILE->getInit(Init: 0), T);
1311
1312 if (ILE->getType()->isArrayType())
1313 return EmitArrayInitialization(ILE, T);
1314
1315 if (ILE->getType()->isRecordType())
1316 return EmitRecordInitialization(ILE, T);
1317
1318 return nullptr;
1319 }
1320
1321 llvm::Constant *
1322 VisitDesignatedInitUpdateExpr(const DesignatedInitUpdateExpr *E,
1323 QualType destType) {
1324 auto C = Visit(E->getBase(), destType);
1325 if (!C)
1326 return nullptr;
1327
1328 ConstantAggregateBuilder Const(CGM);
1329 Const.add(C: C, Offset: CharUnits::Zero(), AllowOverwrite: false);
1330
1331 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset: CharUnits::Zero(), Type: destType,
1332 Updater: E->getUpdater()))
1333 return nullptr;
1334
1335 llvm::Type *ValTy = CGM.getTypes().ConvertType(T: destType);
1336 bool HasFlexibleArray = false;
1337 if (const auto *RT = destType->getAs<RecordType>())
1338 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1339 return Const.build(DesiredTy: ValTy, AllowOversized: HasFlexibleArray);
1340 }
1341
1342 llvm::Constant *VisitCXXConstructExpr(const CXXConstructExpr *E,
1343 QualType Ty) {
1344 if (!E->getConstructor()->isTrivial())
1345 return nullptr;
1346
1347 // Only default and copy/move constructors can be trivial.
1348 if (E->getNumArgs()) {
1349 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1350 assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1351 "trivial ctor has argument but isn't a copy/move ctor");
1352
1353 const Expr *Arg = E->getArg(Arg: 0);
1354 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1355 "argument to copy ctor is of wrong type");
1356
1357 // Look through the temporary; it's just converting the value to an
1358 // lvalue to pass it to the constructor.
1359 if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: Arg))
1360 return Visit(MTE->getSubExpr(), Ty);
1361 // Don't try to support arbitrary lvalue-to-rvalue conversions for now.
1362 return nullptr;
1363 }
1364
1365 return CGM.EmitNullConstant(T: Ty);
1366 }
1367
1368 llvm::Constant *VisitStringLiteral(const StringLiteral *E, QualType T) {
1369 // This is a string literal initializing an array in an initializer.
1370 return CGM.GetConstantArrayFromStringLiteral(E);
1371 }
1372
1373 llvm::Constant *VisitObjCEncodeExpr(const ObjCEncodeExpr *E, QualType T) {
1374 // This must be an @encode initializing an array in a static initializer.
1375 // Don't emit it as the address of the string, emit the string data itself
1376 // as an inline array.
1377 std::string Str;
1378 CGM.getContext().getObjCEncodingForType(T: E->getEncodedType(), S&: Str);
1379 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1380 assert(CAT && "String data not of constant array type!");
1381
1382 // Resize the string to the right size, adding zeros at the end, or
1383 // truncating as needed.
1384 Str.resize(n: CAT->getZExtSize(), c: '\0');
1385 return llvm::ConstantDataArray::getString(Context&: VMContext, Initializer: Str, AddNull: false);
1386 }
1387
1388 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1389 return Visit(E->getSubExpr(), T);
1390 }
1391
1392 llvm::Constant *VisitUnaryMinus(const UnaryOperator *U, QualType T) {
1393 if (llvm::Constant *C = Visit(U->getSubExpr(), T))
1394 if (auto *CI = dyn_cast<llvm::ConstantInt>(C))
1395 return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue());
1396 return nullptr;
1397 }
1398
1399 llvm::Constant *VisitPackIndexingExpr(const PackIndexingExpr *E, QualType T) {
1400 return Visit(E->getSelectedExpr(), T);
1401 }
1402
1403 // Utility methods
1404 llvm::Type *ConvertType(QualType T) {
1405 return CGM.getTypes().ConvertType(T);
1406 }
1407};
1408
1409} // end anonymous namespace.
1410
1411llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1412 AbstractState saved) {
1413 Abstract = saved.OldValue;
1414
1415 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1416 "created a placeholder while doing an abstract emission?");
1417
1418 // No validation necessary for now.
1419 // No cleanup to do for now.
1420 return C;
1421}
1422
1423llvm::Constant *
1424ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1425 auto state = pushAbstract();
1426 auto C = tryEmitPrivateForVarInit(D);
1427 return validateAndPopAbstract(C, saved: state);
1428}
1429
1430llvm::Constant *
1431ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1432 auto state = pushAbstract();
1433 auto C = tryEmitPrivate(E, T: destType);
1434 return validateAndPopAbstract(C, saved: state);
1435}
1436
1437llvm::Constant *
1438ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1439 auto state = pushAbstract();
1440 auto C = tryEmitPrivate(value, T: destType);
1441 return validateAndPopAbstract(C, saved: state);
1442}
1443
1444llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
1445 if (!CE->hasAPValueResult())
1446 return nullptr;
1447
1448 QualType RetType = CE->getType();
1449 if (CE->isGLValue())
1450 RetType = CGM.getContext().getLValueReferenceType(T: RetType);
1451
1452 return emitAbstract(loc: CE->getBeginLoc(), value: CE->getAPValueResult(), T: RetType);
1453}
1454
1455llvm::Constant *
1456ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1457 auto state = pushAbstract();
1458 auto C = tryEmitPrivate(E, T: destType);
1459 C = validateAndPopAbstract(C, saved: state);
1460 if (!C) {
1461 CGM.Error(loc: E->getExprLoc(),
1462 error: "internal error: could not emit constant value \"abstractly\"");
1463 C = CGM.EmitNullConstant(T: destType);
1464 }
1465 return C;
1466}
1467
1468llvm::Constant *
1469ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1470 QualType destType) {
1471 auto state = pushAbstract();
1472 auto C = tryEmitPrivate(value, T: destType);
1473 C = validateAndPopAbstract(C, saved: state);
1474 if (!C) {
1475 CGM.Error(loc,
1476 error: "internal error: could not emit constant value \"abstractly\"");
1477 C = CGM.EmitNullConstant(T: destType);
1478 }
1479 return C;
1480}
1481
1482llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1483 initializeNonAbstract(destAS: D.getType().getAddressSpace());
1484 return markIfFailed(init: tryEmitPrivateForVarInit(D));
1485}
1486
1487llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1488 LangAS destAddrSpace,
1489 QualType destType) {
1490 initializeNonAbstract(destAS: destAddrSpace);
1491 return markIfFailed(init: tryEmitPrivateForMemory(E, T: destType));
1492}
1493
1494llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1495 LangAS destAddrSpace,
1496 QualType destType) {
1497 initializeNonAbstract(destAS: destAddrSpace);
1498 auto C = tryEmitPrivateForMemory(value, T: destType);
1499 assert(C && "couldn't emit constant value non-abstractly?");
1500 return C;
1501}
1502
1503llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1504 assert(!Abstract && "cannot get current address for abstract constant");
1505
1506
1507
1508 // Make an obviously ill-formed global that should blow up compilation
1509 // if it survives.
1510 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1511 llvm::GlobalValue::PrivateLinkage,
1512 /*init*/ nullptr,
1513 /*name*/ "",
1514 /*before*/ nullptr,
1515 llvm::GlobalVariable::NotThreadLocal,
1516 CGM.getContext().getTargetAddressSpace(AS: DestAddressSpace));
1517
1518 PlaceholderAddresses.push_back(Elt: std::make_pair(x: nullptr, y&: global));
1519
1520 return global;
1521}
1522
1523void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1524 llvm::GlobalValue *placeholder) {
1525 assert(!PlaceholderAddresses.empty());
1526 assert(PlaceholderAddresses.back().first == nullptr);
1527 assert(PlaceholderAddresses.back().second == placeholder);
1528 PlaceholderAddresses.back().first = signal;
1529}
1530
1531namespace {
1532 struct ReplacePlaceholders {
1533 CodeGenModule &CGM;
1534
1535 /// The base address of the global.
1536 llvm::Constant *Base;
1537 llvm::Type *BaseValueTy = nullptr;
1538
1539 /// The placeholder addresses that were registered during emission.
1540 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1541
1542 /// The locations of the placeholder signals.
1543 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1544
1545 /// The current index stack. We use a simple unsigned stack because
1546 /// we assume that placeholders will be relatively sparse in the
1547 /// initializer, but we cache the index values we find just in case.
1548 llvm::SmallVector<unsigned, 8> Indices;
1549 llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1550
1551 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1552 ArrayRef<std::pair<llvm::Constant*,
1553 llvm::GlobalVariable*>> addresses)
1554 : CGM(CGM), Base(base),
1555 PlaceholderAddresses(addresses.begin(), addresses.end()) {
1556 }
1557
1558 void replaceInInitializer(llvm::Constant *init) {
1559 // Remember the type of the top-most initializer.
1560 BaseValueTy = init->getType();
1561
1562 // Initialize the stack.
1563 Indices.push_back(Elt: 0);
1564 IndexValues.push_back(Elt: nullptr);
1565
1566 // Recurse into the initializer.
1567 findLocations(init);
1568
1569 // Check invariants.
1570 assert(IndexValues.size() == Indices.size() && "mismatch");
1571 assert(Indices.size() == 1 && "didn't pop all indices");
1572
1573 // Do the replacement; this basically invalidates 'init'.
1574 assert(Locations.size() == PlaceholderAddresses.size() &&
1575 "missed a placeholder?");
1576
1577 // We're iterating over a hashtable, so this would be a source of
1578 // non-determinism in compiler output *except* that we're just
1579 // messing around with llvm::Constant structures, which never itself
1580 // does anything that should be visible in compiler output.
1581 for (auto &entry : Locations) {
1582 assert(entry.first->getParent() == nullptr && "not a placeholder!");
1583 entry.first->replaceAllUsesWith(V: entry.second);
1584 entry.first->eraseFromParent();
1585 }
1586 }
1587
1588 private:
1589 void findLocations(llvm::Constant *init) {
1590 // Recurse into aggregates.
1591 if (auto agg = dyn_cast<llvm::ConstantAggregate>(Val: init)) {
1592 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1593 Indices.push_back(Elt: i);
1594 IndexValues.push_back(Elt: nullptr);
1595
1596 findLocations(init: agg->getOperand(i_nocapture: i));
1597
1598 IndexValues.pop_back();
1599 Indices.pop_back();
1600 }
1601 return;
1602 }
1603
1604 // Otherwise, check for registered constants.
1605 while (true) {
1606 auto it = PlaceholderAddresses.find(Val: init);
1607 if (it != PlaceholderAddresses.end()) {
1608 setLocation(it->second);
1609 break;
1610 }
1611
1612 // Look through bitcasts or other expressions.
1613 if (auto expr = dyn_cast<llvm::ConstantExpr>(Val: init)) {
1614 init = expr->getOperand(i_nocapture: 0);
1615 } else {
1616 break;
1617 }
1618 }
1619 }
1620
1621 void setLocation(llvm::GlobalVariable *placeholder) {
1622 assert(!Locations.contains(placeholder) &&
1623 "already found location for placeholder!");
1624
1625 // Lazily fill in IndexValues with the values from Indices.
1626 // We do this in reverse because we should always have a strict
1627 // prefix of indices from the start.
1628 assert(Indices.size() == IndexValues.size());
1629 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1630 if (IndexValues[i]) {
1631#ifndef NDEBUG
1632 for (size_t j = 0; j != i + 1; ++j) {
1633 assert(IndexValues[j] &&
1634 isa<llvm::ConstantInt>(IndexValues[j]) &&
1635 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1636 == Indices[j]);
1637 }
1638#endif
1639 break;
1640 }
1641
1642 IndexValues[i] = llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Indices[i]);
1643 }
1644
1645 llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr(
1646 Ty: BaseValueTy, C: Base, IdxList: IndexValues);
1647
1648 Locations.insert(KV: {placeholder, location});
1649 }
1650 };
1651}
1652
1653void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1654 assert(InitializedNonAbstract &&
1655 "finalizing emitter that was used for abstract emission?");
1656 assert(!Finalized && "finalizing emitter multiple times");
1657 assert(global->getInitializer());
1658
1659 // Note that we might also be Failed.
1660 Finalized = true;
1661
1662 if (!PlaceholderAddresses.empty()) {
1663 ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1664 .replaceInInitializer(init: global->getInitializer());
1665 PlaceholderAddresses.clear(); // satisfy
1666 }
1667}
1668
1669ConstantEmitter::~ConstantEmitter() {
1670 assert((!InitializedNonAbstract || Finalized || Failed) &&
1671 "not finalized after being initialized for non-abstract emission");
1672 assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1673}
1674
1675static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1676 if (auto AT = type->getAs<AtomicType>()) {
1677 return CGM.getContext().getQualifiedType(T: AT->getValueType(),
1678 Qs: type.getQualifiers());
1679 }
1680 return type;
1681}
1682
1683llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1684 // Make a quick check if variable can be default NULL initialized
1685 // and avoid going through rest of code which may do, for c++11,
1686 // initialization of memory to all NULLs.
1687 if (!D.hasLocalStorage()) {
1688 QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1689 if (Ty->isRecordType())
1690 if (const CXXConstructExpr *E =
1691 dyn_cast_or_null<CXXConstructExpr>(Val: D.getInit())) {
1692 const CXXConstructorDecl *CD = E->getConstructor();
1693 if (CD->isTrivial() && CD->isDefaultConstructor())
1694 return CGM.EmitNullConstant(T: D.getType());
1695 }
1696 }
1697 InConstantContext = D.hasConstantInitialization();
1698
1699 QualType destType = D.getType();
1700 const Expr *E = D.getInit();
1701 assert(E && "No initializer to emit");
1702
1703 if (!destType->isReferenceType()) {
1704 QualType nonMemoryDestType = getNonMemoryType(CGM, type: destType);
1705 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, nonMemoryDestType))
1706 return emitForMemory(C, T: destType);
1707 }
1708
1709 // Try to emit the initializer. Note that this can allow some things that
1710 // are not allowed by tryEmitPrivateForMemory alone.
1711 if (APValue *value = D.evaluateValue())
1712 return tryEmitPrivateForMemory(value: *value, T: destType);
1713
1714 return nullptr;
1715}
1716
1717llvm::Constant *
1718ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1719 auto nonMemoryDestType = getNonMemoryType(CGM, type: destType);
1720 auto C = tryEmitAbstract(E, destType: nonMemoryDestType);
1721 return (C ? emitForMemory(C, T: destType) : nullptr);
1722}
1723
1724llvm::Constant *
1725ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1726 QualType destType) {
1727 auto nonMemoryDestType = getNonMemoryType(CGM, type: destType);
1728 auto C = tryEmitAbstract(value, destType: nonMemoryDestType);
1729 return (C ? emitForMemory(C, T: destType) : nullptr);
1730}
1731
1732llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1733 QualType destType) {
1734 auto nonMemoryDestType = getNonMemoryType(CGM, type: destType);
1735 llvm::Constant *C = tryEmitPrivate(E, T: nonMemoryDestType);
1736 return (C ? emitForMemory(C, T: destType) : nullptr);
1737}
1738
1739llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1740 QualType destType) {
1741 auto nonMemoryDestType = getNonMemoryType(CGM, type: destType);
1742 auto C = tryEmitPrivate(value, T: nonMemoryDestType);
1743 return (C ? emitForMemory(C, T: destType) : nullptr);
1744}
1745
1746llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1747 llvm::Constant *C,
1748 QualType destType) {
1749 // For an _Atomic-qualified constant, we may need to add tail padding.
1750 if (auto AT = destType->getAs<AtomicType>()) {
1751 QualType destValueType = AT->getValueType();
1752 C = emitForMemory(CGM, C, destType: destValueType);
1753
1754 uint64_t innerSize = CGM.getContext().getTypeSize(T: destValueType);
1755 uint64_t outerSize = CGM.getContext().getTypeSize(T: destType);
1756 if (innerSize == outerSize)
1757 return C;
1758
1759 assert(innerSize < outerSize && "emitted over-large constant for atomic");
1760 llvm::Constant *elts[] = {
1761 C,
1762 llvm::ConstantAggregateZero::get(
1763 Ty: llvm::ArrayType::get(ElementType: CGM.Int8Ty, NumElements: (outerSize - innerSize) / 8))
1764 };
1765 return llvm::ConstantStruct::getAnon(V: elts);
1766 }
1767
1768 // Zero-extend bool.
1769 if (C->getType()->isIntegerTy(Bitwidth: 1) && !destType->isBitIntType()) {
1770 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(T: destType);
1771 llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1772 Opcode: llvm::Instruction::ZExt, C, DestTy: boolTy, DL: CGM.getDataLayout());
1773 assert(Res && "Constant folding must succeed");
1774 return Res;
1775 }
1776
1777 return C;
1778}
1779
1780llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1781 QualType destType) {
1782 assert(!destType->isVoidType() && "can't emit a void constant");
1783
1784 if (!destType->isReferenceType())
1785 if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, destType))
1786 return C;
1787
1788 Expr::EvalResult Result;
1789
1790 bool Success = false;
1791
1792 if (destType->isReferenceType())
1793 Success = E->EvaluateAsLValue(Result, Ctx: CGM.getContext());
1794 else
1795 Success = E->EvaluateAsRValue(Result, Ctx: CGM.getContext(), InConstantContext);
1796
1797 if (Success && !Result.HasSideEffects)
1798 return tryEmitPrivate(value: Result.Val, T: destType);
1799
1800 return nullptr;
1801}
1802
1803llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1804 return getTargetCodeGenInfo().getNullPointer(CGM: *this, T, QT);
1805}
1806
1807namespace {
1808/// A struct which can be used to peephole certain kinds of finalization
1809/// that normally happen during l-value emission.
1810struct ConstantLValue {
1811 llvm::Constant *Value;
1812 bool HasOffsetApplied;
1813
1814 /*implicit*/ ConstantLValue(llvm::Constant *value,
1815 bool hasOffsetApplied = false)
1816 : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1817
1818 /*implicit*/ ConstantLValue(ConstantAddress address)
1819 : ConstantLValue(address.getPointer()) {}
1820};
1821
1822/// A helper class for emitting constant l-values.
1823class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1824 ConstantLValue> {
1825 CodeGenModule &CGM;
1826 ConstantEmitter &Emitter;
1827 const APValue &Value;
1828 QualType DestType;
1829
1830 // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1831 friend StmtVisitorBase;
1832
1833public:
1834 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1835 QualType destType)
1836 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1837
1838 llvm::Constant *tryEmit();
1839
1840private:
1841 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1842 ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1843
1844 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1845 ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1846 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1847 ConstantLValue VisitStringLiteral(const StringLiteral *E);
1848 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1849 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1850 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1851 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1852 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1853 ConstantLValue VisitCallExpr(const CallExpr *E);
1854 ConstantLValue VisitBlockExpr(const BlockExpr *E);
1855 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1856 ConstantLValue VisitMaterializeTemporaryExpr(
1857 const MaterializeTemporaryExpr *E);
1858
1859 bool hasNonZeroOffset() const {
1860 return !Value.getLValueOffset().isZero();
1861 }
1862
1863 /// Return the value offset.
1864 llvm::Constant *getOffset() {
1865 return llvm::ConstantInt::get(Ty: CGM.Int64Ty,
1866 V: Value.getLValueOffset().getQuantity());
1867 }
1868
1869 /// Apply the value offset to the given constant.
1870 llvm::Constant *applyOffset(llvm::Constant *C) {
1871 if (!hasNonZeroOffset())
1872 return C;
1873
1874 return llvm::ConstantExpr::getGetElementPtr(Ty: CGM.Int8Ty, C, Idx: getOffset());
1875 }
1876};
1877
1878}
1879
1880llvm::Constant *ConstantLValueEmitter::tryEmit() {
1881 const APValue::LValueBase &base = Value.getLValueBase();
1882
1883 // The destination type should be a pointer or reference
1884 // type, but it might also be a cast thereof.
1885 //
1886 // FIXME: the chain of casts required should be reflected in the APValue.
1887 // We need this in order to correctly handle things like a ptrtoint of a
1888 // non-zero null pointer and addrspace casts that aren't trivially
1889 // represented in LLVM IR.
1890 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1891 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1892
1893 // If there's no base at all, this is a null or absolute pointer,
1894 // possibly cast back to an integer type.
1895 if (!base) {
1896 return tryEmitAbsolute(destTy: destTy);
1897 }
1898
1899 // Otherwise, try to emit the base.
1900 ConstantLValue result = tryEmitBase(base);
1901
1902 // If that failed, we're done.
1903 llvm::Constant *value = result.Value;
1904 if (!value) return nullptr;
1905
1906 // Apply the offset if necessary and not already done.
1907 if (!result.HasOffsetApplied) {
1908 value = applyOffset(C: value);
1909 }
1910
1911 // Convert to the appropriate type; this could be an lvalue for
1912 // an integer. FIXME: performAddrSpaceCast
1913 if (isa<llvm::PointerType>(destTy))
1914 return llvm::ConstantExpr::getPointerCast(C: value, Ty: destTy);
1915
1916 return llvm::ConstantExpr::getPtrToInt(C: value, Ty: destTy);
1917}
1918
1919/// Try to emit an absolute l-value, such as a null pointer or an integer
1920/// bitcast to pointer type.
1921llvm::Constant *
1922ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1923 // If we're producing a pointer, this is easy.
1924 auto destPtrTy = cast<llvm::PointerType>(Val: destTy);
1925 if (Value.isNullPointer()) {
1926 // FIXME: integer offsets from non-zero null pointers.
1927 return CGM.getNullPointer(destPtrTy, DestType);
1928 }
1929
1930 // Convert the integer to a pointer-sized integer before converting it
1931 // to a pointer.
1932 // FIXME: signedness depends on the original integer type.
1933 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1934 llvm::Constant *C;
1935 C = llvm::ConstantFoldIntegerCast(C: getOffset(), DestTy: intptrTy, /*isSigned*/ IsSigned: false,
1936 DL: CGM.getDataLayout());
1937 assert(C && "Must have folded, as Offset is a ConstantInt");
1938 C = llvm::ConstantExpr::getIntToPtr(C, Ty: destPtrTy);
1939 return C;
1940}
1941
1942ConstantLValue
1943ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1944 // Handle values.
1945 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1946 // The constant always points to the canonical declaration. We want to look
1947 // at properties of the most recent declaration at the point of emission.
1948 D = cast<ValueDecl>(D->getMostRecentDecl());
1949
1950 if (D->hasAttr<WeakRefAttr>())
1951 return CGM.GetWeakRefReference(VD: D).getPointer();
1952
1953 if (auto FD = dyn_cast<FunctionDecl>(Val: D))
1954 return CGM.GetAddrOfFunction(GD: FD);
1955
1956 if (auto VD = dyn_cast<VarDecl>(Val: D)) {
1957 // We can never refer to a variable with local storage.
1958 if (!VD->hasLocalStorage()) {
1959 if (VD->isFileVarDecl() || VD->hasExternalStorage())
1960 return CGM.GetAddrOfGlobalVar(D: VD);
1961
1962 if (VD->isLocalVarDecl()) {
1963 return CGM.getOrCreateStaticVarDecl(
1964 D: *VD, Linkage: CGM.getLLVMLinkageVarDefinition(VD));
1965 }
1966 }
1967 }
1968
1969 if (auto *GD = dyn_cast<MSGuidDecl>(Val: D))
1970 return CGM.GetAddrOfMSGuidDecl(GD);
1971
1972 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(Val: D))
1973 return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
1974
1975 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: D))
1976 return CGM.GetAddrOfTemplateParamObject(TPO);
1977
1978 return nullptr;
1979 }
1980
1981 // Handle typeid(T).
1982 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>())
1983 return CGM.GetAddrOfRTTIDescriptor(Ty: QualType(TI.getType(), 0));
1984
1985 // Otherwise, it must be an expression.
1986 return Visit(base.get<const Expr*>());
1987}
1988
1989ConstantLValue
1990ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1991 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE: E))
1992 return Result;
1993 return Visit(E->getSubExpr());
1994}
1995
1996ConstantLValue
1997ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1998 ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF);
1999 CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext());
2000 return tryEmitGlobalCompoundLiteral(emitter&: CompoundLiteralEmitter, E);
2001}
2002
2003ConstantLValue
2004ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
2005 return CGM.GetAddrOfConstantStringFromLiteral(S: E);
2006}
2007
2008ConstantLValue
2009ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2010 return CGM.GetAddrOfConstantStringFromObjCEncode(E);
2011}
2012
2013static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
2014 QualType T,
2015 CodeGenModule &CGM) {
2016 auto C = CGM.getObjCRuntime().GenerateConstantString(S);
2017 return C.withElementType(ElemTy: CGM.getTypes().ConvertTypeForMem(T));
2018}
2019
2020ConstantLValue
2021ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2022 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
2023}
2024
2025ConstantLValue
2026ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
2027 assert(E->isExpressibleAsConstantInitializer() &&
2028 "this boxed expression can't be emitted as a compile-time constant");
2029 const auto *SL = cast<StringLiteral>(Val: E->getSubExpr()->IgnoreParenCasts());
2030 return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
2031}
2032
2033ConstantLValue
2034ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2035 return CGM.GetAddrOfConstantStringFromLiteral(S: E->getFunctionName());
2036}
2037
2038ConstantLValue
2039ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2040 assert(Emitter.CGF && "Invalid address of label expression outside function");
2041 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(L: E->getLabel());
2042 return Ptr;
2043}
2044
2045ConstantLValue
2046ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2047 unsigned builtin = E->getBuiltinCallee();
2048 if (builtin == Builtin::BI__builtin_function_start)
2049 return CGM.GetFunctionStart(
2050 Decl: E->getArg(Arg: 0)->getAsBuiltinConstantDeclRef(Context: CGM.getContext()));
2051 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2052 builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2053 return nullptr;
2054
2055 const auto *Literal = cast<StringLiteral>(Val: E->getArg(Arg: 0)->IgnoreParenCasts());
2056 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2057 return CGM.getObjCRuntime().GenerateConstantString(Literal);
2058 } else {
2059 // FIXME: need to deal with UCN conversion issues.
2060 return CGM.GetAddrOfConstantCFString(Literal);
2061 }
2062}
2063
2064ConstantLValue
2065ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2066 StringRef functionName;
2067 if (auto CGF = Emitter.CGF)
2068 functionName = CGF->CurFn->getName();
2069 else
2070 functionName = "global";
2071
2072 return CGM.GetAddrOfGlobalBlock(BE: E, Name: functionName);
2073}
2074
2075ConstantLValue
2076ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2077 QualType T;
2078 if (E->isTypeOperand())
2079 T = E->getTypeOperand(Context&: CGM.getContext());
2080 else
2081 T = E->getExprOperand()->getType();
2082 return CGM.GetAddrOfRTTIDescriptor(Ty: T);
2083}
2084
2085ConstantLValue
2086ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2087 const MaterializeTemporaryExpr *E) {
2088 assert(E->getStorageDuration() == SD_Static);
2089 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2090 return CGM.GetAddrOfGlobalTemporary(E, Inner);
2091}
2092
2093llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2094 QualType DestType) {
2095 switch (Value.getKind()) {
2096 case APValue::None:
2097 case APValue::Indeterminate:
2098 // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2099 return llvm::UndefValue::get(T: CGM.getTypes().ConvertType(T: DestType));
2100 case APValue::LValue:
2101 return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2102 case APValue::Int:
2103 return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: Value.getInt());
2104 case APValue::FixedPoint:
2105 return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(),
2106 V: Value.getFixedPoint().getValue());
2107 case APValue::ComplexInt: {
2108 llvm::Constant *Complex[2];
2109
2110 Complex[0] = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(),
2111 V: Value.getComplexIntReal());
2112 Complex[1] = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(),
2113 V: Value.getComplexIntImag());
2114
2115 // FIXME: the target may want to specify that this is packed.
2116 llvm::StructType *STy =
2117 llvm::StructType::get(elt1: Complex[0]->getType(), elts: Complex[1]->getType());
2118 return llvm::ConstantStruct::get(T: STy, V: Complex);
2119 }
2120 case APValue::Float: {
2121 const llvm::APFloat &Init = Value.getFloat();
2122 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2123 !CGM.getContext().getLangOpts().NativeHalfType &&
2124 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2125 return llvm::ConstantInt::get(Context&: CGM.getLLVMContext(),
2126 V: Init.bitcastToAPInt());
2127 else
2128 return llvm::ConstantFP::get(Context&: CGM.getLLVMContext(), V: Init);
2129 }
2130 case APValue::ComplexFloat: {
2131 llvm::Constant *Complex[2];
2132
2133 Complex[0] = llvm::ConstantFP::get(Context&: CGM.getLLVMContext(),
2134 V: Value.getComplexFloatReal());
2135 Complex[1] = llvm::ConstantFP::get(Context&: CGM.getLLVMContext(),
2136 V: Value.getComplexFloatImag());
2137
2138 // FIXME: the target may want to specify that this is packed.
2139 llvm::StructType *STy =
2140 llvm::StructType::get(elt1: Complex[0]->getType(), elts: Complex[1]->getType());
2141 return llvm::ConstantStruct::get(T: STy, V: Complex);
2142 }
2143 case APValue::Vector: {
2144 unsigned NumElts = Value.getVectorLength();
2145 SmallVector<llvm::Constant *, 4> Inits(NumElts);
2146
2147 for (unsigned I = 0; I != NumElts; ++I) {
2148 const APValue &Elt = Value.getVectorElt(I);
2149 if (Elt.isInt())
2150 Inits[I] = llvm::ConstantInt::get(Context&: CGM.getLLVMContext(), V: Elt.getInt());
2151 else if (Elt.isFloat())
2152 Inits[I] = llvm::ConstantFP::get(Context&: CGM.getLLVMContext(), V: Elt.getFloat());
2153 else if (Elt.isIndeterminate())
2154 Inits[I] = llvm::UndefValue::get(T: CGM.getTypes().ConvertType(
2155 T: DestType->castAs<VectorType>()->getElementType()));
2156 else
2157 llvm_unreachable("unsupported vector element type");
2158 }
2159 return llvm::ConstantVector::get(V: Inits);
2160 }
2161 case APValue::AddrLabelDiff: {
2162 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2163 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2164 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2165 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2166 if (!LHS || !RHS) return nullptr;
2167
2168 // Compute difference
2169 llvm::Type *ResultType = CGM.getTypes().ConvertType(T: DestType);
2170 LHS = llvm::ConstantExpr::getPtrToInt(C: LHS, Ty: CGM.IntPtrTy);
2171 RHS = llvm::ConstantExpr::getPtrToInt(C: RHS, Ty: CGM.IntPtrTy);
2172 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(C1: LHS, C2: RHS);
2173
2174 // LLVM is a bit sensitive about the exact format of the
2175 // address-of-label difference; make sure to truncate after
2176 // the subtraction.
2177 return llvm::ConstantExpr::getTruncOrBitCast(C: AddrLabelDiff, Ty: ResultType);
2178 }
2179 case APValue::Struct:
2180 case APValue::Union:
2181 return ConstStructBuilder::BuildStruct(Emitter&: *this, Val: Value, ValTy: DestType);
2182 case APValue::Array: {
2183 const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(T: DestType);
2184 unsigned NumElements = Value.getArraySize();
2185 unsigned NumInitElts = Value.getArrayInitializedElts();
2186
2187 // Emit array filler, if there is one.
2188 llvm::Constant *Filler = nullptr;
2189 if (Value.hasArrayFiller()) {
2190 Filler = tryEmitAbstractForMemory(value: Value.getArrayFiller(),
2191 destType: ArrayTy->getElementType());
2192 if (!Filler)
2193 return nullptr;
2194 }
2195
2196 // Emit initializer elements.
2197 SmallVector<llvm::Constant*, 16> Elts;
2198 if (Filler && Filler->isNullValue())
2199 Elts.reserve(N: NumInitElts + 1);
2200 else
2201 Elts.reserve(N: NumElements);
2202
2203 llvm::Type *CommonElementType = nullptr;
2204 for (unsigned I = 0; I < NumInitElts; ++I) {
2205 llvm::Constant *C = tryEmitPrivateForMemory(
2206 value: Value.getArrayInitializedElt(I), destType: ArrayTy->getElementType());
2207 if (!C) return nullptr;
2208
2209 if (I == 0)
2210 CommonElementType = C->getType();
2211 else if (C->getType() != CommonElementType)
2212 CommonElementType = nullptr;
2213 Elts.push_back(Elt: C);
2214 }
2215
2216 llvm::ArrayType *Desired =
2217 cast<llvm::ArrayType>(Val: CGM.getTypes().ConvertType(T: DestType));
2218
2219 // Fix the type of incomplete arrays if the initializer isn't empty.
2220 if (DestType->isIncompleteArrayType() && !Elts.empty())
2221 Desired = llvm::ArrayType::get(ElementType: Desired->getElementType(), NumElements: Elts.size());
2222
2223 return EmitArrayConstant(CGM, DesiredType: Desired, CommonElementType, ArrayBound: NumElements, Elements&: Elts,
2224 Filler);
2225 }
2226 case APValue::MemberPointer:
2227 return CGM.getCXXABI().EmitMemberPointer(MP: Value, MPT: DestType);
2228 }
2229 llvm_unreachable("Unknown APValue kind");
2230}
2231
2232llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2233 const CompoundLiteralExpr *E) {
2234 return EmittedCompoundLiterals.lookup(Val: E);
2235}
2236
2237void CodeGenModule::setAddrOfConstantCompoundLiteral(
2238 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2239 bool Ok = EmittedCompoundLiterals.insert(KV: std::make_pair(x&: CLE, y&: GV)).second;
2240 (void)Ok;
2241 assert(Ok && "CLE has already been emitted!");
2242}
2243
2244ConstantAddress
2245CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2246 assert(E->isFileScope() && "not a file-scope compound literal expr");
2247 ConstantEmitter emitter(*this);
2248 return tryEmitGlobalCompoundLiteral(emitter, E);
2249}
2250
2251llvm::Constant *
2252CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2253 // Member pointer constants always have a very particular form.
2254 const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2255 const ValueDecl *decl = cast<DeclRefExpr>(Val: uo->getSubExpr())->getDecl();
2256
2257 // A member function pointer.
2258 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(Val: decl))
2259 return getCXXABI().EmitMemberFunctionPointer(MD: method);
2260
2261 // Otherwise, a member data pointer.
2262 uint64_t fieldOffset = getContext().getFieldOffset(FD: decl);
2263 CharUnits chars = getContext().toCharUnitsFromBits(BitSize: (int64_t) fieldOffset);
2264 return getCXXABI().EmitMemberDataPointer(MPT: type, offset: chars);
2265}
2266
2267static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2268 llvm::Type *baseType,
2269 const CXXRecordDecl *base);
2270
2271static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2272 const RecordDecl *record,
2273 bool asCompleteObject) {
2274 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2275 llvm::StructType *structure =
2276 (asCompleteObject ? layout.getLLVMType()
2277 : layout.getBaseSubobjectLLVMType());
2278
2279 unsigned numElements = structure->getNumElements();
2280 std::vector<llvm::Constant *> elements(numElements);
2281
2282 auto CXXR = dyn_cast<CXXRecordDecl>(Val: record);
2283 // Fill in all the bases.
2284 if (CXXR) {
2285 for (const auto &I : CXXR->bases()) {
2286 if (I.isVirtual()) {
2287 // Ignore virtual bases; if we're laying out for a complete
2288 // object, we'll lay these out later.
2289 continue;
2290 }
2291
2292 const CXXRecordDecl *base =
2293 cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl());
2294
2295 // Ignore empty bases.
2296 if (base->isEmpty() ||
2297 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2298 .isZero())
2299 continue;
2300
2301 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(RD: base);
2302 llvm::Type *baseType = structure->getElementType(N: fieldIndex);
2303 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2304 }
2305 }
2306
2307 // Fill in all the fields.
2308 for (const auto *Field : record->fields()) {
2309 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2310 // will fill in later.)
2311 if (!Field->isBitField() && !Field->isZeroSize(Ctx: CGM.getContext())) {
2312 unsigned fieldIndex = layout.getLLVMFieldNo(FD: Field);
2313 elements[fieldIndex] = CGM.EmitNullConstant(T: Field->getType());
2314 }
2315
2316 // For unions, stop after the first named field.
2317 if (record->isUnion()) {
2318 if (Field->getIdentifier())
2319 break;
2320 if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2321 if (FieldRD->findFirstNamedDataMember())
2322 break;
2323 }
2324 }
2325
2326 // Fill in the virtual bases, if we're working with the complete object.
2327 if (CXXR && asCompleteObject) {
2328 for (const auto &I : CXXR->vbases()) {
2329 const CXXRecordDecl *base =
2330 cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl());
2331
2332 // Ignore empty bases.
2333 if (base->isEmpty())
2334 continue;
2335
2336 unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2337
2338 // We might have already laid this field out.
2339 if (elements[fieldIndex]) continue;
2340
2341 llvm::Type *baseType = structure->getElementType(N: fieldIndex);
2342 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2343 }
2344 }
2345
2346 // Now go through all other fields and zero them out.
2347 for (unsigned i = 0; i != numElements; ++i) {
2348 if (!elements[i])
2349 elements[i] = llvm::Constant::getNullValue(Ty: structure->getElementType(N: i));
2350 }
2351
2352 return llvm::ConstantStruct::get(T: structure, V: elements);
2353}
2354
2355/// Emit the null constant for a base subobject.
2356static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2357 llvm::Type *baseType,
2358 const CXXRecordDecl *base) {
2359 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2360
2361 // Just zero out bases that don't have any pointer to data members.
2362 if (baseLayout.isZeroInitializableAsBase())
2363 return llvm::Constant::getNullValue(Ty: baseType);
2364
2365 // Otherwise, we can just use its null constant.
2366 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2367}
2368
2369llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2370 QualType T) {
2371 return emitForMemory(CGM, C: CGM.EmitNullConstant(T), destType: T);
2372}
2373
2374llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2375 if (T->getAs<PointerType>())
2376 return getNullPointer(
2377 T: cast<llvm::PointerType>(Val: getTypes().ConvertTypeForMem(T)), QT: T);
2378
2379 if (getTypes().isZeroInitializable(T))
2380 return llvm::Constant::getNullValue(Ty: getTypes().ConvertTypeForMem(T));
2381
2382 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2383 llvm::ArrayType *ATy =
2384 cast<llvm::ArrayType>(Val: getTypes().ConvertTypeForMem(T));
2385
2386 QualType ElementTy = CAT->getElementType();
2387
2388 llvm::Constant *Element =
2389 ConstantEmitter::emitNullForMemory(CGM&: *this, T: ElementTy);
2390 unsigned NumElements = CAT->getZExtSize();
2391 SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2392 return llvm::ConstantArray::get(T: ATy, V: Array);
2393 }
2394
2395 if (const RecordType *RT = T->getAs<RecordType>())
2396 return ::EmitNullConstant(CGM&: *this, record: RT->getDecl(), /*complete object*/ asCompleteObject: true);
2397
2398 assert(T->isMemberDataPointerType() &&
2399 "Should only see pointers to data members here!");
2400
2401 return getCXXABI().EmitNullMemberPointer(MPT: T->castAs<MemberPointerType>());
2402}
2403
2404llvm::Constant *
2405CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2406 return ::EmitNullConstant(*this, Record, false);
2407}
2408

source code of clang/lib/CodeGen/CGExprConstant.cpp