1 | //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This provides a generalized class for OpenMP runtime code generation |
10 | // specialized by GPU targets NVPTX and AMDGCN. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "CGOpenMPRuntimeGPU.h" |
15 | #include "CodeGenFunction.h" |
16 | #include "clang/AST/Attr.h" |
17 | #include "clang/AST/DeclOpenMP.h" |
18 | #include "clang/AST/OpenMPClause.h" |
19 | #include "clang/AST/StmtOpenMP.h" |
20 | #include "clang/AST/StmtVisitor.h" |
21 | #include "clang/Basic/Cuda.h" |
22 | #include "llvm/ADT/SmallPtrSet.h" |
23 | #include "llvm/Frontend/OpenMP/OMPGridValues.h" |
24 | #include "llvm/Support/MathExtras.h" |
25 | |
26 | using namespace clang; |
27 | using namespace CodeGen; |
28 | using namespace llvm::omp; |
29 | |
30 | namespace { |
31 | /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. |
32 | class NVPTXActionTy final : public PrePostActionTy { |
33 | llvm::FunctionCallee EnterCallee = nullptr; |
34 | ArrayRef<llvm::Value *> EnterArgs; |
35 | llvm::FunctionCallee ExitCallee = nullptr; |
36 | ArrayRef<llvm::Value *> ExitArgs; |
37 | bool Conditional = false; |
38 | llvm::BasicBlock *ContBlock = nullptr; |
39 | |
40 | public: |
41 | NVPTXActionTy(llvm::FunctionCallee EnterCallee, |
42 | ArrayRef<llvm::Value *> EnterArgs, |
43 | llvm::FunctionCallee ExitCallee, |
44 | ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) |
45 | : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), |
46 | ExitArgs(ExitArgs), Conditional(Conditional) {} |
47 | void Enter(CodeGenFunction &CGF) override { |
48 | llvm::Value *EnterRes = CGF.EmitRuntimeCall(callee: EnterCallee, args: EnterArgs); |
49 | if (Conditional) { |
50 | llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(Arg: EnterRes); |
51 | auto *ThenBlock = CGF.createBasicBlock(name: "omp_if.then" ); |
52 | ContBlock = CGF.createBasicBlock(name: "omp_if.end" ); |
53 | // Generate the branch (If-stmt) |
54 | CGF.Builder.CreateCondBr(Cond: CallBool, True: ThenBlock, False: ContBlock); |
55 | CGF.EmitBlock(BB: ThenBlock); |
56 | } |
57 | } |
58 | void Done(CodeGenFunction &CGF) { |
59 | // Emit the rest of blocks/branches |
60 | CGF.EmitBranch(Block: ContBlock); |
61 | CGF.EmitBlock(BB: ContBlock, IsFinished: true); |
62 | } |
63 | void Exit(CodeGenFunction &CGF) override { |
64 | CGF.EmitRuntimeCall(callee: ExitCallee, args: ExitArgs); |
65 | } |
66 | }; |
67 | |
68 | /// A class to track the execution mode when codegening directives within |
69 | /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry |
70 | /// to the target region and used by containing directives such as 'parallel' |
71 | /// to emit optimized code. |
72 | class ExecutionRuntimeModesRAII { |
73 | private: |
74 | CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = |
75 | CGOpenMPRuntimeGPU::EM_Unknown; |
76 | CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; |
77 | |
78 | public: |
79 | ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, |
80 | CGOpenMPRuntimeGPU::ExecutionMode EntryMode) |
81 | : ExecMode(ExecMode) { |
82 | SavedExecMode = ExecMode; |
83 | ExecMode = EntryMode; |
84 | } |
85 | ~ExecutionRuntimeModesRAII() { ExecMode = SavedExecMode; } |
86 | }; |
87 | |
88 | static const ValueDecl *getPrivateItem(const Expr *RefExpr) { |
89 | RefExpr = RefExpr->IgnoreParens(); |
90 | if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: RefExpr)) { |
91 | const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); |
92 | while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Val: Base)) |
93 | Base = TempASE->getBase()->IgnoreParenImpCasts(); |
94 | RefExpr = Base; |
95 | } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(Val: RefExpr)) { |
96 | const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); |
97 | while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Val: Base)) |
98 | Base = TempOASE->getBase()->IgnoreParenImpCasts(); |
99 | while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Val: Base)) |
100 | Base = TempASE->getBase()->IgnoreParenImpCasts(); |
101 | RefExpr = Base; |
102 | } |
103 | RefExpr = RefExpr->IgnoreParenImpCasts(); |
104 | if (const auto *DE = dyn_cast<DeclRefExpr>(Val: RefExpr)) |
105 | return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); |
106 | const auto *ME = cast<MemberExpr>(Val: RefExpr); |
107 | return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); |
108 | } |
109 | |
110 | static RecordDecl *buildRecordForGlobalizedVars( |
111 | ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, |
112 | ArrayRef<const ValueDecl *> EscapedDeclsForTeams, |
113 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
114 | &MappedDeclsFields, |
115 | int BufSize) { |
116 | using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; |
117 | if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) |
118 | return nullptr; |
119 | SmallVector<VarsDataTy, 4> GlobalizedVars; |
120 | for (const ValueDecl *D : EscapedDecls) |
121 | GlobalizedVars.emplace_back(Args: C.getDeclAlign(D), Args&: D); |
122 | for (const ValueDecl *D : EscapedDeclsForTeams) |
123 | GlobalizedVars.emplace_back(Args: C.getDeclAlign(D), Args&: D); |
124 | |
125 | // Build struct _globalized_locals_ty { |
126 | // /* globalized vars */[WarSize] align (decl_align) |
127 | // /* globalized vars */ for EscapedDeclsForTeams |
128 | // }; |
129 | RecordDecl *GlobalizedRD = C.buildImplicitRecord(Name: "_globalized_locals_ty" ); |
130 | GlobalizedRD->startDefinition(); |
131 | llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( |
132 | EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); |
133 | for (const auto &Pair : GlobalizedVars) { |
134 | const ValueDecl *VD = Pair.second; |
135 | QualType Type = VD->getType(); |
136 | if (Type->isLValueReferenceType()) |
137 | Type = C.getPointerType(T: Type.getNonReferenceType()); |
138 | else |
139 | Type = Type.getNonReferenceType(); |
140 | SourceLocation Loc = VD->getLocation(); |
141 | FieldDecl *Field; |
142 | if (SingleEscaped.count(Ptr: VD)) { |
143 | Field = FieldDecl::Create( |
144 | C, DC: GlobalizedRD, StartLoc: Loc, IdLoc: Loc, Id: VD->getIdentifier(), T: Type, |
145 | TInfo: C.getTrivialTypeSourceInfo(T: Type, Loc: SourceLocation()), |
146 | /*BW=*/nullptr, /*Mutable=*/false, |
147 | /*InitStyle=*/ICIS_NoInit); |
148 | Field->setAccess(AS_public); |
149 | if (VD->hasAttrs()) { |
150 | for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), |
151 | E(VD->getAttrs().end()); |
152 | I != E; ++I) |
153 | Field->addAttr(*I); |
154 | } |
155 | } else { |
156 | if (BufSize > 1) { |
157 | llvm::APInt ArraySize(32, BufSize); |
158 | Type = C.getConstantArrayType(EltTy: Type, ArySize: ArraySize, SizeExpr: nullptr, |
159 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
160 | } |
161 | Field = FieldDecl::Create( |
162 | C, DC: GlobalizedRD, StartLoc: Loc, IdLoc: Loc, Id: VD->getIdentifier(), T: Type, |
163 | TInfo: C.getTrivialTypeSourceInfo(T: Type, Loc: SourceLocation()), |
164 | /*BW=*/nullptr, /*Mutable=*/false, |
165 | /*InitStyle=*/ICIS_NoInit); |
166 | Field->setAccess(AS_public); |
167 | llvm::APInt Align(32, Pair.first.getQuantity()); |
168 | Field->addAttr(AlignedAttr::CreateImplicit( |
169 | C, /*IsAlignmentExpr=*/true, |
170 | IntegerLiteral::Create(C, Align, |
171 | C.getIntTypeForBitwidth(32, /*Signed=*/0), |
172 | SourceLocation()), |
173 | {}, AlignedAttr::GNU_aligned)); |
174 | } |
175 | GlobalizedRD->addDecl(Field); |
176 | MappedDeclsFields.try_emplace(Key: VD, Args&: Field); |
177 | } |
178 | GlobalizedRD->completeDefinition(); |
179 | return GlobalizedRD; |
180 | } |
181 | |
182 | /// Get the list of variables that can escape their declaration context. |
183 | class CheckVarsEscapingDeclContext final |
184 | : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { |
185 | CodeGenFunction &CGF; |
186 | llvm::SetVector<const ValueDecl *> EscapedDecls; |
187 | llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; |
188 | llvm::SetVector<const ValueDecl *> DelayedVariableLengthDecls; |
189 | llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; |
190 | RecordDecl *GlobalizedRD = nullptr; |
191 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; |
192 | bool AllEscaped = false; |
193 | bool IsForCombinedParallelRegion = false; |
194 | |
195 | void markAsEscaped(const ValueDecl *VD) { |
196 | // Do not globalize declare target variables. |
197 | if (!isa<VarDecl>(VD) || |
198 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
199 | return; |
200 | VD = cast<ValueDecl>(VD->getCanonicalDecl()); |
201 | // Use user-specified allocation. |
202 | if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) |
203 | return; |
204 | // Variables captured by value must be globalized. |
205 | bool IsCaptured = false; |
206 | if (auto *CSI = CGF.CapturedStmtInfo) { |
207 | if (const FieldDecl *FD = CSI->lookup(VD: cast<VarDecl>(Val: VD))) { |
208 | // Check if need to capture the variable that was already captured by |
209 | // value in the outer region. |
210 | IsCaptured = true; |
211 | if (!IsForCombinedParallelRegion) { |
212 | if (!FD->hasAttrs()) |
213 | return; |
214 | const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); |
215 | if (!Attr) |
216 | return; |
217 | if (((Attr->getCaptureKind() != OMPC_map) && |
218 | !isOpenMPPrivate(Attr->getCaptureKind())) || |
219 | ((Attr->getCaptureKind() == OMPC_map) && |
220 | !FD->getType()->isAnyPointerType())) |
221 | return; |
222 | } |
223 | if (!FD->getType()->isReferenceType()) { |
224 | assert(!VD->getType()->isVariablyModifiedType() && |
225 | "Parameter captured by value with variably modified type" ); |
226 | EscapedParameters.insert(VD); |
227 | } else if (!IsForCombinedParallelRegion) { |
228 | return; |
229 | } |
230 | } |
231 | } |
232 | if ((!CGF.CapturedStmtInfo || |
233 | (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && |
234 | VD->getType()->isReferenceType()) |
235 | // Do not globalize variables with reference type. |
236 | return; |
237 | if (VD->getType()->isVariablyModifiedType()) { |
238 | // If not captured at the target region level then mark the escaped |
239 | // variable as delayed. |
240 | if (IsCaptured) |
241 | EscapedVariableLengthDecls.insert(X: VD); |
242 | else |
243 | DelayedVariableLengthDecls.insert(X: VD); |
244 | } else |
245 | EscapedDecls.insert(X: VD); |
246 | } |
247 | |
248 | void VisitValueDecl(const ValueDecl *VD) { |
249 | if (VD->getType()->isLValueReferenceType()) |
250 | markAsEscaped(VD); |
251 | if (const auto *VarD = dyn_cast<VarDecl>(Val: VD)) { |
252 | if (!isa<ParmVarDecl>(Val: VarD) && VarD->hasInit()) { |
253 | const bool SavedAllEscaped = AllEscaped; |
254 | AllEscaped = VD->getType()->isLValueReferenceType(); |
255 | Visit(VarD->getInit()); |
256 | AllEscaped = SavedAllEscaped; |
257 | } |
258 | } |
259 | } |
260 | void VisitOpenMPCapturedStmt(const CapturedStmt *S, |
261 | ArrayRef<OMPClause *> Clauses, |
262 | bool IsCombinedParallelRegion) { |
263 | if (!S) |
264 | return; |
265 | for (const CapturedStmt::Capture &C : S->captures()) { |
266 | if (C.capturesVariable() && !C.capturesVariableByCopy()) { |
267 | const ValueDecl *VD = C.getCapturedVar(); |
268 | bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; |
269 | if (IsCombinedParallelRegion) { |
270 | // Check if the variable is privatized in the combined construct and |
271 | // those private copies must be shared in the inner parallel |
272 | // directive. |
273 | IsForCombinedParallelRegion = false; |
274 | for (const OMPClause *C : Clauses) { |
275 | if (!isOpenMPPrivate(C->getClauseKind()) || |
276 | C->getClauseKind() == OMPC_reduction || |
277 | C->getClauseKind() == OMPC_linear || |
278 | C->getClauseKind() == OMPC_private) |
279 | continue; |
280 | ArrayRef<const Expr *> Vars; |
281 | if (const auto *PC = dyn_cast<OMPFirstprivateClause>(Val: C)) |
282 | Vars = PC->getVarRefs(); |
283 | else if (const auto *PC = dyn_cast<OMPLastprivateClause>(Val: C)) |
284 | Vars = PC->getVarRefs(); |
285 | else |
286 | llvm_unreachable("Unexpected clause." ); |
287 | for (const auto *E : Vars) { |
288 | const Decl *D = |
289 | cast<DeclRefExpr>(Val: E)->getDecl()->getCanonicalDecl(); |
290 | if (D == VD->getCanonicalDecl()) { |
291 | IsForCombinedParallelRegion = true; |
292 | break; |
293 | } |
294 | } |
295 | if (IsForCombinedParallelRegion) |
296 | break; |
297 | } |
298 | } |
299 | markAsEscaped(VD); |
300 | if (isa<OMPCapturedExprDecl>(Val: VD)) |
301 | VisitValueDecl(VD); |
302 | IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; |
303 | } |
304 | } |
305 | } |
306 | |
307 | void buildRecordForGlobalizedVars(bool IsInTTDRegion) { |
308 | assert(!GlobalizedRD && |
309 | "Record for globalized variables is built already." ); |
310 | ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; |
311 | unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; |
312 | if (IsInTTDRegion) |
313 | EscapedDeclsForTeams = EscapedDecls.getArrayRef(); |
314 | else |
315 | EscapedDeclsForParallel = EscapedDecls.getArrayRef(); |
316 | GlobalizedRD = ::buildRecordForGlobalizedVars( |
317 | C&: CGF.getContext(), EscapedDecls: EscapedDeclsForParallel, EscapedDeclsForTeams, |
318 | MappedDeclsFields, BufSize: WarpSize); |
319 | } |
320 | |
321 | public: |
322 | CheckVarsEscapingDeclContext(CodeGenFunction &CGF, |
323 | ArrayRef<const ValueDecl *> TeamsReductions) |
324 | : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { |
325 | } |
326 | virtual ~CheckVarsEscapingDeclContext() = default; |
327 | void VisitDeclStmt(const DeclStmt *S) { |
328 | if (!S) |
329 | return; |
330 | for (const Decl *D : S->decls()) |
331 | if (const auto *VD = dyn_cast_or_null<ValueDecl>(Val: D)) |
332 | VisitValueDecl(VD); |
333 | } |
334 | void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { |
335 | if (!D) |
336 | return; |
337 | if (!D->hasAssociatedStmt()) |
338 | return; |
339 | if (const auto *S = |
340 | dyn_cast_or_null<CapturedStmt>(Val: D->getAssociatedStmt())) { |
341 | // Do not analyze directives that do not actually require capturing, |
342 | // like `omp for` or `omp simd` directives. |
343 | llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; |
344 | getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); |
345 | if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { |
346 | VisitStmt(S: S->getCapturedStmt()); |
347 | return; |
348 | } |
349 | VisitOpenMPCapturedStmt( |
350 | S, D->clauses(), |
351 | CaptureRegions.back() == OMPD_parallel && |
352 | isOpenMPDistributeDirective(D->getDirectiveKind())); |
353 | } |
354 | } |
355 | void VisitCapturedStmt(const CapturedStmt *S) { |
356 | if (!S) |
357 | return; |
358 | for (const CapturedStmt::Capture &C : S->captures()) { |
359 | if (C.capturesVariable() && !C.capturesVariableByCopy()) { |
360 | const ValueDecl *VD = C.getCapturedVar(); |
361 | markAsEscaped(VD); |
362 | if (isa<OMPCapturedExprDecl>(Val: VD)) |
363 | VisitValueDecl(VD); |
364 | } |
365 | } |
366 | } |
367 | void VisitLambdaExpr(const LambdaExpr *E) { |
368 | if (!E) |
369 | return; |
370 | for (const LambdaCapture &C : E->captures()) { |
371 | if (C.capturesVariable()) { |
372 | if (C.getCaptureKind() == LCK_ByRef) { |
373 | const ValueDecl *VD = C.getCapturedVar(); |
374 | markAsEscaped(VD); |
375 | if (E->isInitCapture(Capture: &C) || isa<OMPCapturedExprDecl>(Val: VD)) |
376 | VisitValueDecl(VD); |
377 | } |
378 | } |
379 | } |
380 | } |
381 | void VisitBlockExpr(const BlockExpr *E) { |
382 | if (!E) |
383 | return; |
384 | for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { |
385 | if (C.isByRef()) { |
386 | const VarDecl *VD = C.getVariable(); |
387 | markAsEscaped(VD); |
388 | if (isa<OMPCapturedExprDecl>(Val: VD) || VD->isInitCapture()) |
389 | VisitValueDecl(VD); |
390 | } |
391 | } |
392 | } |
393 | void VisitCallExpr(const CallExpr *E) { |
394 | if (!E) |
395 | return; |
396 | for (const Expr *Arg : E->arguments()) { |
397 | if (!Arg) |
398 | continue; |
399 | if (Arg->isLValue()) { |
400 | const bool SavedAllEscaped = AllEscaped; |
401 | AllEscaped = true; |
402 | Visit(Arg); |
403 | AllEscaped = SavedAllEscaped; |
404 | } else { |
405 | Visit(Arg); |
406 | } |
407 | } |
408 | Visit(E->getCallee()); |
409 | } |
410 | void VisitDeclRefExpr(const DeclRefExpr *E) { |
411 | if (!E) |
412 | return; |
413 | const ValueDecl *VD = E->getDecl(); |
414 | if (AllEscaped) |
415 | markAsEscaped(VD); |
416 | if (isa<OMPCapturedExprDecl>(Val: VD)) |
417 | VisitValueDecl(VD); |
418 | else if (VD->isInitCapture()) |
419 | VisitValueDecl(VD); |
420 | } |
421 | void VisitUnaryOperator(const UnaryOperator *E) { |
422 | if (!E) |
423 | return; |
424 | if (E->getOpcode() == UO_AddrOf) { |
425 | const bool SavedAllEscaped = AllEscaped; |
426 | AllEscaped = true; |
427 | Visit(E->getSubExpr()); |
428 | AllEscaped = SavedAllEscaped; |
429 | } else { |
430 | Visit(E->getSubExpr()); |
431 | } |
432 | } |
433 | void VisitImplicitCastExpr(const ImplicitCastExpr *E) { |
434 | if (!E) |
435 | return; |
436 | if (E->getCastKind() == CK_ArrayToPointerDecay) { |
437 | const bool SavedAllEscaped = AllEscaped; |
438 | AllEscaped = true; |
439 | Visit(E->getSubExpr()); |
440 | AllEscaped = SavedAllEscaped; |
441 | } else { |
442 | Visit(E->getSubExpr()); |
443 | } |
444 | } |
445 | void VisitExpr(const Expr *E) { |
446 | if (!E) |
447 | return; |
448 | bool SavedAllEscaped = AllEscaped; |
449 | if (!E->isLValue()) |
450 | AllEscaped = false; |
451 | for (const Stmt *Child : E->children()) |
452 | if (Child) |
453 | Visit(Child); |
454 | AllEscaped = SavedAllEscaped; |
455 | } |
456 | void VisitStmt(const Stmt *S) { |
457 | if (!S) |
458 | return; |
459 | for (const Stmt *Child : S->children()) |
460 | if (Child) |
461 | Visit(Child); |
462 | } |
463 | |
464 | /// Returns the record that handles all the escaped local variables and used |
465 | /// instead of their original storage. |
466 | const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { |
467 | if (!GlobalizedRD) |
468 | buildRecordForGlobalizedVars(IsInTTDRegion); |
469 | return GlobalizedRD; |
470 | } |
471 | |
472 | /// Returns the field in the globalized record for the escaped variable. |
473 | const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { |
474 | assert(GlobalizedRD && |
475 | "Record for globalized variables must be generated already." ); |
476 | return MappedDeclsFields.lookup(Val: VD); |
477 | } |
478 | |
479 | /// Returns the list of the escaped local variables/parameters. |
480 | ArrayRef<const ValueDecl *> getEscapedDecls() const { |
481 | return EscapedDecls.getArrayRef(); |
482 | } |
483 | |
484 | /// Checks if the escaped local variable is actually a parameter passed by |
485 | /// value. |
486 | const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { |
487 | return EscapedParameters; |
488 | } |
489 | |
490 | /// Returns the list of the escaped variables with the variably modified |
491 | /// types. |
492 | ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { |
493 | return EscapedVariableLengthDecls.getArrayRef(); |
494 | } |
495 | |
496 | /// Returns the list of the delayed variables with the variably modified |
497 | /// types. |
498 | ArrayRef<const ValueDecl *> getDelayedVariableLengthDecls() const { |
499 | return DelayedVariableLengthDecls.getArrayRef(); |
500 | } |
501 | }; |
502 | } // anonymous namespace |
503 | |
504 | /// Get the id of the warp in the block. |
505 | /// We assume that the warp size is 32, which is always the case |
506 | /// on the NVPTX device, to generate more efficient code. |
507 | static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { |
508 | CGBuilderTy &Bld = CGF.Builder; |
509 | unsigned LaneIDBits = |
510 | llvm::Log2_32(Value: CGF.getTarget().getGridValue().GV_Warp_Size); |
511 | auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
512 | return Bld.CreateAShr(LHS: RT.getGPUThreadID(CGF), RHS: LaneIDBits, Name: "nvptx_warp_id" ); |
513 | } |
514 | |
515 | /// Get the id of the current lane in the Warp. |
516 | /// We assume that the warp size is 32, which is always the case |
517 | /// on the NVPTX device, to generate more efficient code. |
518 | static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { |
519 | CGBuilderTy &Bld = CGF.Builder; |
520 | unsigned LaneIDBits = |
521 | llvm::Log2_32(Value: CGF.getTarget().getGridValue().GV_Warp_Size); |
522 | assert(LaneIDBits < 32 && "Invalid LaneIDBits size in NVPTX device." ); |
523 | unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); |
524 | auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
525 | return Bld.CreateAnd(LHS: RT.getGPUThreadID(CGF), RHS: Bld.getInt32(C: LaneIDMask), |
526 | Name: "nvptx_lane_id" ); |
527 | } |
528 | |
529 | CGOpenMPRuntimeGPU::ExecutionMode |
530 | CGOpenMPRuntimeGPU::getExecutionMode() const { |
531 | return CurrentExecutionMode; |
532 | } |
533 | |
534 | CGOpenMPRuntimeGPU::DataSharingMode |
535 | CGOpenMPRuntimeGPU::getDataSharingMode() const { |
536 | return CurrentDataSharingMode; |
537 | } |
538 | |
539 | /// Check for inner (nested) SPMD construct, if any |
540 | static bool hasNestedSPMDDirective(ASTContext &Ctx, |
541 | const OMPExecutableDirective &D) { |
542 | const auto *CS = D.getInnermostCapturedStmt(); |
543 | const auto *Body = |
544 | CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); |
545 | const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
546 | |
547 | if (const auto *NestedDir = |
548 | dyn_cast_or_null<OMPExecutableDirective>(Val: ChildStmt)) { |
549 | OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); |
550 | switch (D.getDirectiveKind()) { |
551 | case OMPD_target: |
552 | if (isOpenMPParallelDirective(DKind)) |
553 | return true; |
554 | if (DKind == OMPD_teams) { |
555 | Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( |
556 | /*IgnoreCaptured=*/true); |
557 | if (!Body) |
558 | return false; |
559 | ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
560 | if (const auto *NND = |
561 | dyn_cast_or_null<OMPExecutableDirective>(Val: ChildStmt)) { |
562 | DKind = NND->getDirectiveKind(); |
563 | if (isOpenMPParallelDirective(DKind)) |
564 | return true; |
565 | } |
566 | } |
567 | return false; |
568 | case OMPD_target_teams: |
569 | return isOpenMPParallelDirective(DKind); |
570 | case OMPD_target_simd: |
571 | case OMPD_target_parallel: |
572 | case OMPD_target_parallel_for: |
573 | case OMPD_target_parallel_for_simd: |
574 | case OMPD_target_teams_distribute: |
575 | case OMPD_target_teams_distribute_simd: |
576 | case OMPD_target_teams_distribute_parallel_for: |
577 | case OMPD_target_teams_distribute_parallel_for_simd: |
578 | case OMPD_parallel: |
579 | case OMPD_for: |
580 | case OMPD_parallel_for: |
581 | case OMPD_parallel_master: |
582 | case OMPD_parallel_sections: |
583 | case OMPD_for_simd: |
584 | case OMPD_parallel_for_simd: |
585 | case OMPD_cancel: |
586 | case OMPD_cancellation_point: |
587 | case OMPD_ordered: |
588 | case OMPD_threadprivate: |
589 | case OMPD_allocate: |
590 | case OMPD_task: |
591 | case OMPD_simd: |
592 | case OMPD_sections: |
593 | case OMPD_section: |
594 | case OMPD_single: |
595 | case OMPD_master: |
596 | case OMPD_critical: |
597 | case OMPD_taskyield: |
598 | case OMPD_barrier: |
599 | case OMPD_taskwait: |
600 | case OMPD_taskgroup: |
601 | case OMPD_atomic: |
602 | case OMPD_flush: |
603 | case OMPD_depobj: |
604 | case OMPD_scan: |
605 | case OMPD_teams: |
606 | case OMPD_target_data: |
607 | case OMPD_target_exit_data: |
608 | case OMPD_target_enter_data: |
609 | case OMPD_distribute: |
610 | case OMPD_distribute_simd: |
611 | case OMPD_distribute_parallel_for: |
612 | case OMPD_distribute_parallel_for_simd: |
613 | case OMPD_teams_distribute: |
614 | case OMPD_teams_distribute_simd: |
615 | case OMPD_teams_distribute_parallel_for: |
616 | case OMPD_teams_distribute_parallel_for_simd: |
617 | case OMPD_target_update: |
618 | case OMPD_declare_simd: |
619 | case OMPD_declare_variant: |
620 | case OMPD_begin_declare_variant: |
621 | case OMPD_end_declare_variant: |
622 | case OMPD_declare_target: |
623 | case OMPD_end_declare_target: |
624 | case OMPD_declare_reduction: |
625 | case OMPD_declare_mapper: |
626 | case OMPD_taskloop: |
627 | case OMPD_taskloop_simd: |
628 | case OMPD_master_taskloop: |
629 | case OMPD_master_taskloop_simd: |
630 | case OMPD_parallel_master_taskloop: |
631 | case OMPD_parallel_master_taskloop_simd: |
632 | case OMPD_requires: |
633 | case OMPD_unknown: |
634 | default: |
635 | llvm_unreachable("Unexpected directive." ); |
636 | } |
637 | } |
638 | |
639 | return false; |
640 | } |
641 | |
642 | static bool supportsSPMDExecutionMode(ASTContext &Ctx, |
643 | const OMPExecutableDirective &D) { |
644 | OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); |
645 | switch (DirectiveKind) { |
646 | case OMPD_target: |
647 | case OMPD_target_teams: |
648 | return hasNestedSPMDDirective(Ctx, D); |
649 | case OMPD_target_parallel_loop: |
650 | case OMPD_target_parallel: |
651 | case OMPD_target_parallel_for: |
652 | case OMPD_target_parallel_for_simd: |
653 | case OMPD_target_teams_distribute_parallel_for: |
654 | case OMPD_target_teams_distribute_parallel_for_simd: |
655 | case OMPD_target_simd: |
656 | case OMPD_target_teams_distribute_simd: |
657 | return true; |
658 | case OMPD_target_teams_distribute: |
659 | return false; |
660 | case OMPD_target_teams_loop: |
661 | // Whether this is true or not depends on how the directive will |
662 | // eventually be emitted. |
663 | if (auto *TTLD = dyn_cast<OMPTargetTeamsGenericLoopDirective>(Val: &D)) |
664 | return TTLD->canBeParallelFor(); |
665 | return false; |
666 | case OMPD_parallel: |
667 | case OMPD_for: |
668 | case OMPD_parallel_for: |
669 | case OMPD_parallel_master: |
670 | case OMPD_parallel_sections: |
671 | case OMPD_for_simd: |
672 | case OMPD_parallel_for_simd: |
673 | case OMPD_cancel: |
674 | case OMPD_cancellation_point: |
675 | case OMPD_ordered: |
676 | case OMPD_threadprivate: |
677 | case OMPD_allocate: |
678 | case OMPD_task: |
679 | case OMPD_simd: |
680 | case OMPD_sections: |
681 | case OMPD_section: |
682 | case OMPD_single: |
683 | case OMPD_master: |
684 | case OMPD_critical: |
685 | case OMPD_taskyield: |
686 | case OMPD_barrier: |
687 | case OMPD_taskwait: |
688 | case OMPD_taskgroup: |
689 | case OMPD_atomic: |
690 | case OMPD_flush: |
691 | case OMPD_depobj: |
692 | case OMPD_scan: |
693 | case OMPD_teams: |
694 | case OMPD_target_data: |
695 | case OMPD_target_exit_data: |
696 | case OMPD_target_enter_data: |
697 | case OMPD_distribute: |
698 | case OMPD_distribute_simd: |
699 | case OMPD_distribute_parallel_for: |
700 | case OMPD_distribute_parallel_for_simd: |
701 | case OMPD_teams_distribute: |
702 | case OMPD_teams_distribute_simd: |
703 | case OMPD_teams_distribute_parallel_for: |
704 | case OMPD_teams_distribute_parallel_for_simd: |
705 | case OMPD_target_update: |
706 | case OMPD_declare_simd: |
707 | case OMPD_declare_variant: |
708 | case OMPD_begin_declare_variant: |
709 | case OMPD_end_declare_variant: |
710 | case OMPD_declare_target: |
711 | case OMPD_end_declare_target: |
712 | case OMPD_declare_reduction: |
713 | case OMPD_declare_mapper: |
714 | case OMPD_taskloop: |
715 | case OMPD_taskloop_simd: |
716 | case OMPD_master_taskloop: |
717 | case OMPD_master_taskloop_simd: |
718 | case OMPD_parallel_master_taskloop: |
719 | case OMPD_parallel_master_taskloop_simd: |
720 | case OMPD_requires: |
721 | case OMPD_unknown: |
722 | default: |
723 | break; |
724 | } |
725 | llvm_unreachable( |
726 | "Unknown programming model for OpenMP directive on NVPTX target." ); |
727 | } |
728 | |
729 | void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, |
730 | StringRef ParentName, |
731 | llvm::Function *&OutlinedFn, |
732 | llvm::Constant *&OutlinedFnID, |
733 | bool IsOffloadEntry, |
734 | const RegionCodeGenTy &CodeGen) { |
735 | ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_NonSPMD); |
736 | EntryFunctionState EST; |
737 | WrapperFunctionsMap.clear(); |
738 | |
739 | [[maybe_unused]] bool IsBareKernel = D.getSingleClause<OMPXBareClause>(); |
740 | assert(!IsBareKernel && "bare kernel should not be at generic mode" ); |
741 | |
742 | // Emit target region as a standalone region. |
743 | class NVPTXPrePostActionTy : public PrePostActionTy { |
744 | CGOpenMPRuntimeGPU::EntryFunctionState &EST; |
745 | const OMPExecutableDirective &D; |
746 | |
747 | public: |
748 | NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST, |
749 | const OMPExecutableDirective &D) |
750 | : EST(EST), D(D) {} |
751 | void Enter(CodeGenFunction &CGF) override { |
752 | auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
753 | RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ false); |
754 | // Skip target region initialization. |
755 | RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); |
756 | } |
757 | void Exit(CodeGenFunction &CGF) override { |
758 | auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
759 | RT.clearLocThreadIdInsertPt(CGF); |
760 | RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); |
761 | } |
762 | } Action(EST, D); |
763 | CodeGen.setAction(Action); |
764 | IsInTTDRegion = true; |
765 | emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, |
766 | IsOffloadEntry, CodeGen); |
767 | IsInTTDRegion = false; |
768 | } |
769 | |
770 | void CGOpenMPRuntimeGPU::emitKernelInit(const OMPExecutableDirective &D, |
771 | CodeGenFunction &CGF, |
772 | EntryFunctionState &EST, bool IsSPMD) { |
773 | int32_t MinThreadsVal = 1, MaxThreadsVal = -1, MinTeamsVal = 1, |
774 | MaxTeamsVal = -1; |
775 | computeMinAndMaxThreadsAndTeams(D, CGF, MinThreadsVal, MaxThreadsVal, |
776 | MinTeamsVal, MaxTeamsVal); |
777 | |
778 | CGBuilderTy &Bld = CGF.Builder; |
779 | Bld.restoreIP(IP: OMPBuilder.createTargetInit( |
780 | Loc: Bld, IsSPMD, MinThreadsVal, MaxThreadsVal, MinTeamsVal, MaxTeamsVal)); |
781 | if (!IsSPMD) |
782 | emitGenericVarsProlog(CGF, Loc: EST.Loc); |
783 | } |
784 | |
785 | void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, |
786 | EntryFunctionState &EST, |
787 | bool IsSPMD) { |
788 | if (!IsSPMD) |
789 | emitGenericVarsEpilog(CGF); |
790 | |
791 | // This is temporary until we remove the fixed sized buffer. |
792 | ASTContext &C = CGM.getContext(); |
793 | RecordDecl *StaticRD = C.buildImplicitRecord( |
794 | Name: "_openmp_teams_reduction_type_$_" , TK: RecordDecl::TagKind::Union); |
795 | StaticRD->startDefinition(); |
796 | for (const RecordDecl *TeamReductionRec : TeamsReductions) { |
797 | QualType RecTy = C.getRecordType(Decl: TeamReductionRec); |
798 | auto *Field = FieldDecl::Create( |
799 | C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, |
800 | C.getTrivialTypeSourceInfo(T: RecTy, Loc: SourceLocation()), |
801 | /*BW=*/nullptr, /*Mutable=*/false, |
802 | /*InitStyle=*/ICIS_NoInit); |
803 | Field->setAccess(AS_public); |
804 | StaticRD->addDecl(D: Field); |
805 | } |
806 | StaticRD->completeDefinition(); |
807 | QualType StaticTy = C.getRecordType(Decl: StaticRD); |
808 | llvm::Type *LLVMReductionsBufferTy = |
809 | CGM.getTypes().ConvertTypeForMem(T: StaticTy); |
810 | const auto &DL = CGM.getModule().getDataLayout(); |
811 | uint64_t ReductionDataSize = |
812 | TeamsReductions.empty() |
813 | ? 0 |
814 | : DL.getTypeAllocSize(Ty: LLVMReductionsBufferTy).getFixedValue(); |
815 | CGBuilderTy &Bld = CGF.Builder; |
816 | OMPBuilder.createTargetDeinit(Loc: Bld, TeamsReductionDataSize: ReductionDataSize, |
817 | TeamsReductionBufferLength: C.getLangOpts().OpenMPCUDAReductionBufNum); |
818 | TeamsReductions.clear(); |
819 | } |
820 | |
821 | void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, |
822 | StringRef ParentName, |
823 | llvm::Function *&OutlinedFn, |
824 | llvm::Constant *&OutlinedFnID, |
825 | bool IsOffloadEntry, |
826 | const RegionCodeGenTy &CodeGen) { |
827 | ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_SPMD); |
828 | EntryFunctionState EST; |
829 | |
830 | bool IsBareKernel = D.getSingleClause<OMPXBareClause>(); |
831 | |
832 | // Emit target region as a standalone region. |
833 | class NVPTXPrePostActionTy : public PrePostActionTy { |
834 | CGOpenMPRuntimeGPU &RT; |
835 | CGOpenMPRuntimeGPU::EntryFunctionState &EST; |
836 | bool IsBareKernel; |
837 | DataSharingMode Mode; |
838 | const OMPExecutableDirective &D; |
839 | |
840 | public: |
841 | NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, |
842 | CGOpenMPRuntimeGPU::EntryFunctionState &EST, |
843 | bool IsBareKernel, const OMPExecutableDirective &D) |
844 | : RT(RT), EST(EST), IsBareKernel(IsBareKernel), |
845 | Mode(RT.CurrentDataSharingMode), D(D) {} |
846 | void Enter(CodeGenFunction &CGF) override { |
847 | if (IsBareKernel) { |
848 | RT.CurrentDataSharingMode = DataSharingMode::DS_CUDA; |
849 | return; |
850 | } |
851 | RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ true); |
852 | // Skip target region initialization. |
853 | RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); |
854 | } |
855 | void Exit(CodeGenFunction &CGF) override { |
856 | if (IsBareKernel) { |
857 | RT.CurrentDataSharingMode = Mode; |
858 | return; |
859 | } |
860 | RT.clearLocThreadIdInsertPt(CGF); |
861 | RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); |
862 | } |
863 | } Action(*this, EST, IsBareKernel, D); |
864 | CodeGen.setAction(Action); |
865 | IsInTTDRegion = true; |
866 | emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, |
867 | IsOffloadEntry, CodeGen); |
868 | IsInTTDRegion = false; |
869 | } |
870 | |
871 | void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( |
872 | const OMPExecutableDirective &D, StringRef ParentName, |
873 | llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, |
874 | bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { |
875 | if (!IsOffloadEntry) // Nothing to do. |
876 | return; |
877 | |
878 | assert(!ParentName.empty() && "Invalid target region parent name!" ); |
879 | |
880 | bool Mode = supportsSPMDExecutionMode(Ctx&: CGM.getContext(), D); |
881 | bool IsBareKernel = D.getSingleClause<OMPXBareClause>(); |
882 | if (Mode || IsBareKernel) |
883 | emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, |
884 | CodeGen); |
885 | else |
886 | emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, |
887 | CodeGen); |
888 | } |
889 | |
890 | CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) |
891 | : CGOpenMPRuntime(CGM) { |
892 | llvm::OpenMPIRBuilderConfig Config( |
893 | CGM.getLangOpts().OpenMPIsTargetDevice, isGPU(), |
894 | CGM.getLangOpts().OpenMPOffloadMandatory, |
895 | /*HasRequiresReverseOffload*/ false, /*HasRequiresUnifiedAddress*/ false, |
896 | hasRequiresUnifiedSharedMemory(), /*HasRequiresDynamicAllocators*/ false); |
897 | OMPBuilder.setConfig(Config); |
898 | |
899 | if (!CGM.getLangOpts().OpenMPIsTargetDevice) |
900 | llvm_unreachable("OpenMP can only handle device code." ); |
901 | |
902 | if (CGM.getLangOpts().OpenMPCUDAMode) |
903 | CurrentDataSharingMode = CGOpenMPRuntimeGPU::DS_CUDA; |
904 | |
905 | llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); |
906 | if (CGM.getLangOpts().NoGPULib || CGM.getLangOpts().OMPHostIRFile.empty()) |
907 | return; |
908 | |
909 | OMPBuilder.createGlobalFlag(Value: CGM.getLangOpts().OpenMPTargetDebug, |
910 | Name: "__omp_rtl_debug_kind" ); |
911 | OMPBuilder.createGlobalFlag(Value: CGM.getLangOpts().OpenMPTeamSubscription, |
912 | Name: "__omp_rtl_assume_teams_oversubscription" ); |
913 | OMPBuilder.createGlobalFlag(Value: CGM.getLangOpts().OpenMPThreadSubscription, |
914 | Name: "__omp_rtl_assume_threads_oversubscription" ); |
915 | OMPBuilder.createGlobalFlag(Value: CGM.getLangOpts().OpenMPNoThreadState, |
916 | Name: "__omp_rtl_assume_no_thread_state" ); |
917 | OMPBuilder.createGlobalFlag(Value: CGM.getLangOpts().OpenMPNoNestedParallelism, |
918 | Name: "__omp_rtl_assume_no_nested_parallelism" ); |
919 | } |
920 | |
921 | void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, |
922 | ProcBindKind ProcBind, |
923 | SourceLocation Loc) { |
924 | // Nothing to do. |
925 | } |
926 | |
927 | void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, |
928 | llvm::Value *NumThreads, |
929 | SourceLocation Loc) { |
930 | // Nothing to do. |
931 | } |
932 | |
933 | void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, |
934 | const Expr *NumTeams, |
935 | const Expr *ThreadLimit, |
936 | SourceLocation Loc) {} |
937 | |
938 | llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( |
939 | CodeGenFunction &CGF, const OMPExecutableDirective &D, |
940 | const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, |
941 | const RegionCodeGenTy &CodeGen) { |
942 | // Emit target region as a standalone region. |
943 | bool PrevIsInTTDRegion = IsInTTDRegion; |
944 | IsInTTDRegion = false; |
945 | auto *OutlinedFun = |
946 | cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( |
947 | CGF, D, ThreadIDVar, InnermostKind, CodeGen)); |
948 | IsInTTDRegion = PrevIsInTTDRegion; |
949 | if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) { |
950 | llvm::Function *WrapperFun = |
951 | createParallelDataSharingWrapper(OutlinedParallelFn: OutlinedFun, D); |
952 | WrapperFunctionsMap[OutlinedFun] = WrapperFun; |
953 | } |
954 | |
955 | return OutlinedFun; |
956 | } |
957 | |
958 | /// Get list of lastprivate variables from the teams distribute ... or |
959 | /// teams {distribute ...} directives. |
960 | static void |
961 | getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, |
962 | llvm::SmallVectorImpl<const ValueDecl *> &Vars) { |
963 | assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && |
964 | "expected teams directive." ); |
965 | const OMPExecutableDirective *Dir = &D; |
966 | if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { |
967 | if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( |
968 | Ctx, |
969 | Body: D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( |
970 | /*IgnoreCaptured=*/true))) { |
971 | Dir = dyn_cast_or_null<OMPExecutableDirective>(Val: S); |
972 | if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) |
973 | Dir = nullptr; |
974 | } |
975 | } |
976 | if (!Dir) |
977 | return; |
978 | for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { |
979 | for (const Expr *E : C->getVarRefs()) |
980 | Vars.push_back(getPrivateItem(E)); |
981 | } |
982 | } |
983 | |
984 | /// Get list of reduction variables from the teams ... directives. |
985 | static void |
986 | getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, |
987 | llvm::SmallVectorImpl<const ValueDecl *> &Vars) { |
988 | assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && |
989 | "expected teams directive." ); |
990 | for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { |
991 | for (const Expr *E : C->privates()) |
992 | Vars.push_back(Elt: getPrivateItem(RefExpr: E)); |
993 | } |
994 | } |
995 | |
996 | llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( |
997 | CodeGenFunction &CGF, const OMPExecutableDirective &D, |
998 | const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, |
999 | const RegionCodeGenTy &CodeGen) { |
1000 | SourceLocation Loc = D.getBeginLoc(); |
1001 | |
1002 | const RecordDecl *GlobalizedRD = nullptr; |
1003 | llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; |
1004 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; |
1005 | unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; |
1006 | // Globalize team reductions variable unconditionally in all modes. |
1007 | if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) |
1008 | getTeamsReductionVars(Ctx&: CGM.getContext(), D, Vars&: LastPrivatesReductions); |
1009 | if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { |
1010 | getDistributeLastprivateVars(Ctx&: CGM.getContext(), D, Vars&: LastPrivatesReductions); |
1011 | if (!LastPrivatesReductions.empty()) { |
1012 | GlobalizedRD = ::buildRecordForGlobalizedVars( |
1013 | C&: CGM.getContext(), EscapedDecls: std::nullopt, EscapedDeclsForTeams: LastPrivatesReductions, |
1014 | MappedDeclsFields, BufSize: WarpSize); |
1015 | } |
1016 | } else if (!LastPrivatesReductions.empty()) { |
1017 | assert(!TeamAndReductions.first && |
1018 | "Previous team declaration is not expected." ); |
1019 | TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); |
1020 | std::swap(LHS&: TeamAndReductions.second, RHS&: LastPrivatesReductions); |
1021 | } |
1022 | |
1023 | // Emit target region as a standalone region. |
1024 | class NVPTXPrePostActionTy : public PrePostActionTy { |
1025 | SourceLocation &Loc; |
1026 | const RecordDecl *GlobalizedRD; |
1027 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
1028 | &MappedDeclsFields; |
1029 | |
1030 | public: |
1031 | NVPTXPrePostActionTy( |
1032 | SourceLocation &Loc, const RecordDecl *GlobalizedRD, |
1033 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
1034 | &MappedDeclsFields) |
1035 | : Loc(Loc), GlobalizedRD(GlobalizedRD), |
1036 | MappedDeclsFields(MappedDeclsFields) {} |
1037 | void Enter(CodeGenFunction &CGF) override { |
1038 | auto &Rt = |
1039 | static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
1040 | if (GlobalizedRD) { |
1041 | auto I = Rt.FunctionGlobalizedDecls.try_emplace(Key: CGF.CurFn).first; |
1042 | I->getSecond().MappedParams = |
1043 | std::make_unique<CodeGenFunction::OMPMapVars>(); |
1044 | DeclToAddrMapTy &Data = I->getSecond().LocalVarData; |
1045 | for (const auto &Pair : MappedDeclsFields) { |
1046 | assert(Pair.getFirst()->isCanonicalDecl() && |
1047 | "Expected canonical declaration" ); |
1048 | Data.insert(std::make_pair(x: Pair.getFirst(), y: MappedVarData())); |
1049 | } |
1050 | } |
1051 | Rt.emitGenericVarsProlog(CGF, Loc); |
1052 | } |
1053 | void Exit(CodeGenFunction &CGF) override { |
1054 | static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) |
1055 | .emitGenericVarsEpilog(CGF); |
1056 | } |
1057 | } Action(Loc, GlobalizedRD, MappedDeclsFields); |
1058 | CodeGen.setAction(Action); |
1059 | llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( |
1060 | CGF, D, ThreadIDVar, InnermostKind, CodeGen); |
1061 | |
1062 | return OutlinedFun; |
1063 | } |
1064 | |
1065 | void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, |
1066 | SourceLocation Loc) { |
1067 | if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) |
1068 | return; |
1069 | |
1070 | CGBuilderTy &Bld = CGF.Builder; |
1071 | |
1072 | const auto I = FunctionGlobalizedDecls.find(Val: CGF.CurFn); |
1073 | if (I == FunctionGlobalizedDecls.end()) |
1074 | return; |
1075 | |
1076 | for (auto &Rec : I->getSecond().LocalVarData) { |
1077 | const auto *VD = cast<VarDecl>(Val: Rec.first); |
1078 | bool EscapedParam = I->getSecond().EscapedParameters.count(Ptr: Rec.first); |
1079 | QualType VarTy = VD->getType(); |
1080 | |
1081 | // Get the local allocation of a firstprivate variable before sharing |
1082 | llvm::Value *ParValue; |
1083 | if (EscapedParam) { |
1084 | LValue ParLVal = |
1085 | CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); |
1086 | ParValue = CGF.EmitLoadOfScalar(lvalue: ParLVal, Loc); |
1087 | } |
1088 | |
1089 | // Allocate space for the variable to be globalized |
1090 | llvm::Value *AllocArgs[] = {CGF.getTypeSize(Ty: VD->getType())}; |
1091 | llvm::CallBase *VoidPtr = |
1092 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
1093 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_alloc_shared), |
1094 | AllocArgs, VD->getName()); |
1095 | // FIXME: We should use the variables actual alignment as an argument. |
1096 | VoidPtr->addRetAttr(llvm::Attribute::get( |
1097 | CGM.getLLVMContext(), llvm::Attribute::Alignment, |
1098 | CGM.getContext().getTargetInfo().getNewAlign() / 8)); |
1099 | |
1100 | // Cast the void pointer and get the address of the globalized variable. |
1101 | llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(T: VarTy)->getPointerTo(); |
1102 | llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
1103 | VoidPtr, VarPtrTy, VD->getName() + "_on_stack" ); |
1104 | LValue VarAddr = |
1105 | CGF.MakeNaturalAlignPointeeRawAddrLValue(V: CastedVoidPtr, T: VarTy); |
1106 | Rec.second.PrivateAddr = VarAddr.getAddress(CGF); |
1107 | Rec.second.GlobalizedVal = VoidPtr; |
1108 | |
1109 | // Assign the local allocation to the newly globalized location. |
1110 | if (EscapedParam) { |
1111 | CGF.EmitStoreOfScalar(value: ParValue, lvalue: VarAddr); |
1112 | I->getSecond().MappedParams->setVarAddr(CGF, LocalVD: VD, TempAddr: VarAddr.getAddress(CGF)); |
1113 | } |
1114 | if (auto *DI = CGF.getDebugInfo()) |
1115 | VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(Loc: VD->getLocation())); |
1116 | } |
1117 | |
1118 | for (const auto *ValueD : I->getSecond().EscapedVariableLengthDecls) { |
1119 | const auto *VD = cast<VarDecl>(Val: ValueD); |
1120 | std::pair<llvm::Value *, llvm::Value *> AddrSizePair = |
1121 | getKmpcAllocShared(CGF, VD); |
1122 | I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(Args&: AddrSizePair); |
1123 | LValue Base = CGF.MakeAddrLValue(AddrSizePair.first, VD->getType(), |
1124 | CGM.getContext().getDeclAlign(VD), |
1125 | AlignmentSource::Decl); |
1126 | I->getSecond().MappedParams->setVarAddr(CGF, LocalVD: VD, TempAddr: Base.getAddress(CGF)); |
1127 | } |
1128 | I->getSecond().MappedParams->apply(CGF); |
1129 | } |
1130 | |
1131 | bool CGOpenMPRuntimeGPU::isDelayedVariableLengthDecl(CodeGenFunction &CGF, |
1132 | const VarDecl *VD) const { |
1133 | const auto I = FunctionGlobalizedDecls.find(Val: CGF.CurFn); |
1134 | if (I == FunctionGlobalizedDecls.end()) |
1135 | return false; |
1136 | |
1137 | // Check variable declaration is delayed: |
1138 | return llvm::is_contained(Range: I->getSecond().DelayedVariableLengthDecls, Element: VD); |
1139 | } |
1140 | |
1141 | std::pair<llvm::Value *, llvm::Value *> |
1142 | CGOpenMPRuntimeGPU::getKmpcAllocShared(CodeGenFunction &CGF, |
1143 | const VarDecl *VD) { |
1144 | CGBuilderTy &Bld = CGF.Builder; |
1145 | |
1146 | // Compute size and alignment. |
1147 | llvm::Value *Size = CGF.getTypeSize(Ty: VD->getType()); |
1148 | CharUnits Align = CGM.getContext().getDeclAlign(VD); |
1149 | Size = Bld.CreateNUWAdd( |
1150 | LHS: Size, RHS: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: Align.getQuantity() - 1)); |
1151 | llvm::Value *AlignVal = |
1152 | llvm::ConstantInt::get(Ty: CGF.SizeTy, V: Align.getQuantity()); |
1153 | Size = Bld.CreateUDiv(LHS: Size, RHS: AlignVal); |
1154 | Size = Bld.CreateNUWMul(LHS: Size, RHS: AlignVal); |
1155 | |
1156 | // Allocate space for this VLA object to be globalized. |
1157 | llvm::Value *AllocArgs[] = {Size}; |
1158 | llvm::CallBase *VoidPtr = |
1159 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
1160 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_alloc_shared), |
1161 | AllocArgs, VD->getName()); |
1162 | VoidPtr->addRetAttr(llvm::Attribute::get( |
1163 | CGM.getLLVMContext(), llvm::Attribute::Alignment, Align.getQuantity())); |
1164 | |
1165 | return std::make_pair(x&: VoidPtr, y&: Size); |
1166 | } |
1167 | |
1168 | void CGOpenMPRuntimeGPU::getKmpcFreeShared( |
1169 | CodeGenFunction &CGF, |
1170 | const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair) { |
1171 | // Deallocate the memory for each globalized VLA object |
1172 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1173 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_free_shared), |
1174 | args: {AddrSizePair.first, AddrSizePair.second}); |
1175 | } |
1176 | |
1177 | void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF) { |
1178 | if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) |
1179 | return; |
1180 | |
1181 | const auto I = FunctionGlobalizedDecls.find(Val: CGF.CurFn); |
1182 | if (I != FunctionGlobalizedDecls.end()) { |
1183 | // Deallocate the memory for each globalized VLA object that was |
1184 | // globalized in the prolog (i.e. emitGenericVarsProlog). |
1185 | for (const auto &AddrSizePair : |
1186 | llvm::reverse(C&: I->getSecond().EscapedVariableLengthDeclsAddrs)) { |
1187 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1188 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_free_shared), |
1189 | args: {AddrSizePair.first, AddrSizePair.second}); |
1190 | } |
1191 | // Deallocate the memory for each globalized value |
1192 | for (auto &Rec : llvm::reverse(C&: I->getSecond().LocalVarData)) { |
1193 | const auto *VD = cast<VarDecl>(Val: Rec.first); |
1194 | I->getSecond().MappedParams->restore(CGF); |
1195 | |
1196 | llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, |
1197 | CGF.getTypeSize(Ty: VD->getType())}; |
1198 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
1199 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_free_shared), |
1200 | FreeArgs); |
1201 | } |
1202 | } |
1203 | } |
1204 | |
1205 | void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, |
1206 | const OMPExecutableDirective &D, |
1207 | SourceLocation Loc, |
1208 | llvm::Function *OutlinedFn, |
1209 | ArrayRef<llvm::Value *> CapturedVars) { |
1210 | if (!CGF.HaveInsertPoint()) |
1211 | return; |
1212 | |
1213 | bool IsBareKernel = D.getSingleClause<OMPXBareClause>(); |
1214 | |
1215 | RawAddress ZeroAddr = CGF.CreateDefaultAlignTempAlloca(Ty: CGF.Int32Ty, |
1216 | /*Name=*/".zero.addr" ); |
1217 | CGF.Builder.CreateStore(Val: CGF.Builder.getInt32(/*C*/ 0), Addr: ZeroAddr); |
1218 | llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; |
1219 | // We don't emit any thread id function call in bare kernel, but because the |
1220 | // outlined function has a pointer argument, we emit a nullptr here. |
1221 | if (IsBareKernel) |
1222 | OutlinedFnArgs.push_back(Elt: llvm::ConstantPointerNull::get(T: CGM.VoidPtrTy)); |
1223 | else |
1224 | OutlinedFnArgs.push_back(Elt: emitThreadIDAddress(CGF, Loc).emitRawPointer(CGF)); |
1225 | OutlinedFnArgs.push_back(Elt: ZeroAddr.getPointer()); |
1226 | OutlinedFnArgs.append(in_start: CapturedVars.begin(), in_end: CapturedVars.end()); |
1227 | emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, Args: OutlinedFnArgs); |
1228 | } |
1229 | |
1230 | void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, |
1231 | SourceLocation Loc, |
1232 | llvm::Function *OutlinedFn, |
1233 | ArrayRef<llvm::Value *> CapturedVars, |
1234 | const Expr *IfCond, |
1235 | llvm::Value *NumThreads) { |
1236 | if (!CGF.HaveInsertPoint()) |
1237 | return; |
1238 | |
1239 | auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond, |
1240 | NumThreads](CodeGenFunction &CGF, |
1241 | PrePostActionTy &Action) { |
1242 | CGBuilderTy &Bld = CGF.Builder; |
1243 | llvm::Value *NumThreadsVal = NumThreads; |
1244 | llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; |
1245 | llvm::Value *ID = llvm::ConstantPointerNull::get(T: CGM.Int8PtrTy); |
1246 | if (WFn) |
1247 | ID = Bld.CreateBitOrPointerCast(V: WFn, DestTy: CGM.Int8PtrTy); |
1248 | llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(V: OutlinedFn, DestTy: CGM.Int8PtrTy); |
1249 | |
1250 | // Create a private scope that will globalize the arguments |
1251 | // passed from the outside of the target region. |
1252 | // TODO: Is that needed? |
1253 | CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); |
1254 | |
1255 | Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( |
1256 | Ty: llvm::ArrayType::get(ElementType: CGM.VoidPtrTy, NumElements: CapturedVars.size()), |
1257 | Name: "captured_vars_addrs" ); |
1258 | // There's something to share. |
1259 | if (!CapturedVars.empty()) { |
1260 | // Prepare for parallel region. Indicate the outlined function. |
1261 | ASTContext &Ctx = CGF.getContext(); |
1262 | unsigned Idx = 0; |
1263 | for (llvm::Value *V : CapturedVars) { |
1264 | Address Dst = Bld.CreateConstArrayGEP(Addr: CapturedVarsAddrs, Index: Idx); |
1265 | llvm::Value *PtrV; |
1266 | if (V->getType()->isIntegerTy()) |
1267 | PtrV = Bld.CreateIntToPtr(V, DestTy: CGF.VoidPtrTy); |
1268 | else |
1269 | PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, DestTy: CGF.VoidPtrTy); |
1270 | CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, |
1271 | Ctx.getPointerType(Ctx.VoidPtrTy)); |
1272 | ++Idx; |
1273 | } |
1274 | } |
1275 | |
1276 | llvm::Value *IfCondVal = nullptr; |
1277 | if (IfCond) |
1278 | IfCondVal = Bld.CreateIntCast(V: CGF.EvaluateExprAsBool(E: IfCond), DestTy: CGF.Int32Ty, |
1279 | /* isSigned */ false); |
1280 | else |
1281 | IfCondVal = llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 1); |
1282 | |
1283 | if (!NumThreadsVal) |
1284 | NumThreadsVal = llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -1); |
1285 | else |
1286 | NumThreadsVal = Bld.CreateZExtOrTrunc(V: NumThreadsVal, DestTy: CGF.Int32Ty), |
1287 | |
1288 | assert(IfCondVal && "Expected a value" ); |
1289 | llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
1290 | llvm::Value *Args[] = { |
1291 | RTLoc, |
1292 | getThreadID(CGF, Loc), |
1293 | IfCondVal, |
1294 | NumThreadsVal, |
1295 | llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -1), |
1296 | FnPtr, |
1297 | ID, |
1298 | Bld.CreateBitOrPointerCast(V: CapturedVarsAddrs.emitRawPointer(CGF), |
1299 | DestTy: CGF.VoidPtrPtrTy), |
1300 | llvm::ConstantInt::get(Ty: CGM.SizeTy, V: CapturedVars.size())}; |
1301 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
1302 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_parallel_51), |
1303 | Args); |
1304 | }; |
1305 | |
1306 | RegionCodeGenTy RCG(ParallelGen); |
1307 | RCG(CGF); |
1308 | } |
1309 | |
1310 | void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { |
1311 | // Always emit simple barriers! |
1312 | if (!CGF.HaveInsertPoint()) |
1313 | return; |
1314 | // Build call __kmpc_barrier_simple_spmd(nullptr, 0); |
1315 | // This function does not use parameters, so we can emit just default values. |
1316 | llvm::Value *Args[] = { |
1317 | llvm::ConstantPointerNull::get( |
1318 | T: cast<llvm::PointerType>(getIdentTyPointerTy())), |
1319 | llvm::ConstantInt::get(Ty: CGF.Int32Ty, /*V=*/0, /*isSigned=*/IsSigned: true)}; |
1320 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
1321 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_barrier_simple_spmd), |
1322 | Args); |
1323 | } |
1324 | |
1325 | void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, |
1326 | SourceLocation Loc, |
1327 | OpenMPDirectiveKind Kind, bool, |
1328 | bool) { |
1329 | // Always emit simple barriers! |
1330 | if (!CGF.HaveInsertPoint()) |
1331 | return; |
1332 | // Build call __kmpc_cancel_barrier(loc, thread_id); |
1333 | unsigned Flags = getDefaultFlagsForBarriers(Kind); |
1334 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), |
1335 | getThreadID(CGF, Loc)}; |
1336 | |
1337 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
1338 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_barrier), |
1339 | Args); |
1340 | } |
1341 | |
1342 | void CGOpenMPRuntimeGPU::emitCriticalRegion( |
1343 | CodeGenFunction &CGF, StringRef CriticalName, |
1344 | const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, |
1345 | const Expr *Hint) { |
1346 | llvm::BasicBlock *LoopBB = CGF.createBasicBlock(name: "omp.critical.loop" ); |
1347 | llvm::BasicBlock *TestBB = CGF.createBasicBlock(name: "omp.critical.test" ); |
1348 | llvm::BasicBlock *SyncBB = CGF.createBasicBlock(name: "omp.critical.sync" ); |
1349 | llvm::BasicBlock *BodyBB = CGF.createBasicBlock(name: "omp.critical.body" ); |
1350 | llvm::BasicBlock *ExitBB = CGF.createBasicBlock(name: "omp.critical.exit" ); |
1351 | |
1352 | auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
1353 | |
1354 | // Get the mask of active threads in the warp. |
1355 | llvm::Value *Mask = CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1356 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_warp_active_thread_mask)); |
1357 | // Fetch team-local id of the thread. |
1358 | llvm::Value *ThreadID = RT.getGPUThreadID(CGF); |
1359 | |
1360 | // Get the width of the team. |
1361 | llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); |
1362 | |
1363 | // Initialize the counter variable for the loop. |
1364 | QualType Int32Ty = |
1365 | CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); |
1366 | Address Counter = CGF.CreateMemTemp(T: Int32Ty, Name: "critical_counter" ); |
1367 | LValue CounterLVal = CGF.MakeAddrLValue(Addr: Counter, T: Int32Ty); |
1368 | CGF.EmitStoreOfScalar(value: llvm::Constant::getNullValue(Ty: CGM.Int32Ty), lvalue: CounterLVal, |
1369 | /*isInit=*/true); |
1370 | |
1371 | // Block checks if loop counter exceeds upper bound. |
1372 | CGF.EmitBlock(BB: LoopBB); |
1373 | llvm::Value *CounterVal = CGF.EmitLoadOfScalar(lvalue: CounterLVal, Loc); |
1374 | llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(LHS: CounterVal, RHS: TeamWidth); |
1375 | CGF.Builder.CreateCondBr(Cond: CmpLoopBound, True: TestBB, False: ExitBB); |
1376 | |
1377 | // Block tests which single thread should execute region, and which threads |
1378 | // should go straight to synchronisation point. |
1379 | CGF.EmitBlock(BB: TestBB); |
1380 | CounterVal = CGF.EmitLoadOfScalar(lvalue: CounterLVal, Loc); |
1381 | llvm::Value *CmpThreadToCounter = |
1382 | CGF.Builder.CreateICmpEQ(LHS: ThreadID, RHS: CounterVal); |
1383 | CGF.Builder.CreateCondBr(Cond: CmpThreadToCounter, True: BodyBB, False: SyncBB); |
1384 | |
1385 | // Block emits the body of the critical region. |
1386 | CGF.EmitBlock(BB: BodyBB); |
1387 | |
1388 | // Output the critical statement. |
1389 | CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, |
1390 | Hint); |
1391 | |
1392 | // After the body surrounded by the critical region, the single executing |
1393 | // thread will jump to the synchronisation point. |
1394 | // Block waits for all threads in current team to finish then increments the |
1395 | // counter variable and returns to the loop. |
1396 | CGF.EmitBlock(BB: SyncBB); |
1397 | // Reconverge active threads in the warp. |
1398 | (void)CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
1399 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_syncwarp), |
1400 | args: Mask); |
1401 | |
1402 | llvm::Value *IncCounterVal = |
1403 | CGF.Builder.CreateNSWAdd(LHS: CounterVal, RHS: CGF.Builder.getInt32(C: 1)); |
1404 | CGF.EmitStoreOfScalar(value: IncCounterVal, lvalue: CounterLVal); |
1405 | CGF.EmitBranch(Block: LoopBB); |
1406 | |
1407 | // Block that is reached when all threads in the team complete the region. |
1408 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
1409 | } |
1410 | |
1411 | /// Cast value to the specified type. |
1412 | static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, |
1413 | QualType ValTy, QualType CastTy, |
1414 | SourceLocation Loc) { |
1415 | assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && |
1416 | "Cast type must sized." ); |
1417 | assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && |
1418 | "Val type must sized." ); |
1419 | llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(T: CastTy); |
1420 | if (ValTy == CastTy) |
1421 | return Val; |
1422 | if (CGF.getContext().getTypeSizeInChars(T: ValTy) == |
1423 | CGF.getContext().getTypeSizeInChars(T: CastTy)) |
1424 | return CGF.Builder.CreateBitCast(V: Val, DestTy: LLVMCastTy); |
1425 | if (CastTy->isIntegerType() && ValTy->isIntegerType()) |
1426 | return CGF.Builder.CreateIntCast(V: Val, DestTy: LLVMCastTy, |
1427 | isSigned: CastTy->hasSignedIntegerRepresentation()); |
1428 | Address CastItem = CGF.CreateMemTemp(T: CastTy); |
1429 | Address ValCastItem = CastItem.withElementType(ElemTy: Val->getType()); |
1430 | CGF.EmitStoreOfScalar(Value: Val, Addr: ValCastItem, /*Volatile=*/false, Ty: ValTy, |
1431 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
1432 | TBAAInfo: TBAAAccessInfo()); |
1433 | return CGF.EmitLoadOfScalar(Addr: CastItem, /*Volatile=*/false, Ty: CastTy, Loc, |
1434 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
1435 | TBAAInfo: TBAAAccessInfo()); |
1436 | } |
1437 | |
1438 | /// This function creates calls to one of two shuffle functions to copy |
1439 | /// variables between lanes in a warp. |
1440 | static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, |
1441 | llvm::Value *Elem, |
1442 | QualType ElemType, |
1443 | llvm::Value *Offset, |
1444 | SourceLocation Loc) { |
1445 | CodeGenModule &CGM = CGF.CGM; |
1446 | CGBuilderTy &Bld = CGF.Builder; |
1447 | CGOpenMPRuntimeGPU &RT = |
1448 | *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); |
1449 | llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); |
1450 | |
1451 | CharUnits Size = CGF.getContext().getTypeSizeInChars(T: ElemType); |
1452 | assert(Size.getQuantity() <= 8 && |
1453 | "Unsupported bitwidth in shuffle instruction." ); |
1454 | |
1455 | RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 |
1456 | ? OMPRTL___kmpc_shuffle_int32 |
1457 | : OMPRTL___kmpc_shuffle_int64; |
1458 | |
1459 | // Cast all types to 32- or 64-bit values before calling shuffle routines. |
1460 | QualType CastTy = CGF.getContext().getIntTypeForBitwidth( |
1461 | DestWidth: Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); |
1462 | llvm::Value *ElemCast = castValueToType(CGF, Val: Elem, ValTy: ElemType, CastTy, Loc); |
1463 | llvm::Value *WarpSize = |
1464 | Bld.CreateIntCast(V: RT.getGPUWarpSize(CGF), DestTy: CGM.Int16Ty, /*isSigned=*/true); |
1465 | |
1466 | llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( |
1467 | callee: OMPBuilder.getOrCreateRuntimeFunction(M&: CGM.getModule(), FnID: ShuffleFn), |
1468 | args: {ElemCast, Offset, WarpSize}); |
1469 | |
1470 | return castValueToType(CGF, Val: ShuffledVal, ValTy: CastTy, CastTy: ElemType, Loc); |
1471 | } |
1472 | |
1473 | static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, |
1474 | Address DestAddr, QualType ElemType, |
1475 | llvm::Value *Offset, SourceLocation Loc) { |
1476 | CGBuilderTy &Bld = CGF.Builder; |
1477 | |
1478 | CharUnits Size = CGF.getContext().getTypeSizeInChars(T: ElemType); |
1479 | // Create the loop over the big sized data. |
1480 | // ptr = (void*)Elem; |
1481 | // ptrEnd = (void*) Elem + 1; |
1482 | // Step = 8; |
1483 | // while (ptr + Step < ptrEnd) |
1484 | // shuffle((int64_t)*ptr); |
1485 | // Step = 4; |
1486 | // while (ptr + Step < ptrEnd) |
1487 | // shuffle((int32_t)*ptr); |
1488 | // ... |
1489 | Address ElemPtr = DestAddr; |
1490 | Address Ptr = SrcAddr; |
1491 | Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( |
1492 | Addr: Bld.CreateConstGEP(Addr: SrcAddr, Index: 1), Ty: CGF.VoidPtrTy, ElementTy: CGF.Int8Ty); |
1493 | for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { |
1494 | if (Size < CharUnits::fromQuantity(Quantity: IntSize)) |
1495 | continue; |
1496 | QualType IntType = CGF.getContext().getIntTypeForBitwidth( |
1497 | DestWidth: CGF.getContext().toBits(CharSize: CharUnits::fromQuantity(Quantity: IntSize)), |
1498 | /*Signed=*/1); |
1499 | llvm::Type *IntTy = CGF.ConvertTypeForMem(T: IntType); |
1500 | Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Addr: Ptr, Ty: IntTy->getPointerTo(), |
1501 | ElementTy: IntTy); |
1502 | ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
1503 | Addr: ElemPtr, Ty: IntTy->getPointerTo(), ElementTy: IntTy); |
1504 | if (Size.getQuantity() / IntSize > 1) { |
1505 | llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(name: ".shuffle.pre_cond" ); |
1506 | llvm::BasicBlock *ThenBB = CGF.createBasicBlock(name: ".shuffle.then" ); |
1507 | llvm::BasicBlock *ExitBB = CGF.createBasicBlock(name: ".shuffle.exit" ); |
1508 | llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); |
1509 | CGF.EmitBlock(BB: PreCondBB); |
1510 | llvm::PHINode *PhiSrc = |
1511 | Bld.CreatePHI(Ty: Ptr.getType(), /*NumReservedValues=*/2); |
1512 | PhiSrc->addIncoming(V: Ptr.emitRawPointer(CGF), BB: CurrentBB); |
1513 | llvm::PHINode *PhiDest = |
1514 | Bld.CreatePHI(Ty: ElemPtr.getType(), /*NumReservedValues=*/2); |
1515 | PhiDest->addIncoming(V: ElemPtr.emitRawPointer(CGF), BB: CurrentBB); |
1516 | Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment()); |
1517 | ElemPtr = |
1518 | Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment()); |
1519 | llvm::Value *PtrEndRaw = PtrEnd.emitRawPointer(CGF); |
1520 | llvm::Value *PtrRaw = Ptr.emitRawPointer(CGF); |
1521 | llvm::Value *PtrDiff = Bld.CreatePtrDiff( |
1522 | ElemTy: CGF.Int8Ty, LHS: PtrEndRaw, |
1523 | RHS: Bld.CreatePointerBitCastOrAddrSpaceCast(V: PtrRaw, DestTy: CGF.VoidPtrTy)); |
1524 | Bld.CreateCondBr(Cond: Bld.CreateICmpSGT(LHS: PtrDiff, RHS: Bld.getInt64(C: IntSize - 1)), |
1525 | True: ThenBB, False: ExitBB); |
1526 | CGF.EmitBlock(BB: ThenBB); |
1527 | llvm::Value *Res = createRuntimeShuffleFunction( |
1528 | CGF, |
1529 | Elem: CGF.EmitLoadOfScalar(Addr: Ptr, /*Volatile=*/false, Ty: IntType, Loc, |
1530 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
1531 | TBAAInfo: TBAAAccessInfo()), |
1532 | ElemType: IntType, Offset, Loc); |
1533 | CGF.EmitStoreOfScalar(Value: Res, Addr: ElemPtr, /*Volatile=*/false, Ty: IntType, |
1534 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
1535 | TBAAInfo: TBAAAccessInfo()); |
1536 | Address LocalPtr = Bld.CreateConstGEP(Addr: Ptr, Index: 1); |
1537 | Address LocalElemPtr = Bld.CreateConstGEP(Addr: ElemPtr, Index: 1); |
1538 | PhiSrc->addIncoming(V: LocalPtr.emitRawPointer(CGF), BB: ThenBB); |
1539 | PhiDest->addIncoming(V: LocalElemPtr.emitRawPointer(CGF), BB: ThenBB); |
1540 | CGF.EmitBranch(Block: PreCondBB); |
1541 | CGF.EmitBlock(BB: ExitBB); |
1542 | } else { |
1543 | llvm::Value *Res = createRuntimeShuffleFunction( |
1544 | CGF, |
1545 | Elem: CGF.EmitLoadOfScalar(Addr: Ptr, /*Volatile=*/false, Ty: IntType, Loc, |
1546 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
1547 | TBAAInfo: TBAAAccessInfo()), |
1548 | ElemType: IntType, Offset, Loc); |
1549 | CGF.EmitStoreOfScalar(Value: Res, Addr: ElemPtr, /*Volatile=*/false, Ty: IntType, |
1550 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
1551 | TBAAInfo: TBAAAccessInfo()); |
1552 | Ptr = Bld.CreateConstGEP(Addr: Ptr, Index: 1); |
1553 | ElemPtr = Bld.CreateConstGEP(Addr: ElemPtr, Index: 1); |
1554 | } |
1555 | Size = Size % IntSize; |
1556 | } |
1557 | } |
1558 | |
1559 | namespace { |
1560 | enum CopyAction : unsigned { |
1561 | // RemoteLaneToThread: Copy over a Reduce list from a remote lane in |
1562 | // the warp using shuffle instructions. |
1563 | RemoteLaneToThread, |
1564 | // ThreadCopy: Make a copy of a Reduce list on the thread's stack. |
1565 | ThreadCopy, |
1566 | }; |
1567 | } // namespace |
1568 | |
1569 | struct CopyOptionsTy { |
1570 | llvm::Value *RemoteLaneOffset; |
1571 | llvm::Value *ScratchpadIndex; |
1572 | llvm::Value *ScratchpadWidth; |
1573 | }; |
1574 | |
1575 | /// Emit instructions to copy a Reduce list, which contains partially |
1576 | /// aggregated values, in the specified direction. |
1577 | static void emitReductionListCopy( |
1578 | CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, |
1579 | ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, |
1580 | CopyOptionsTy CopyOptions = {.RemoteLaneOffset: nullptr, .ScratchpadIndex: nullptr, .ScratchpadWidth: nullptr}) { |
1581 | |
1582 | CodeGenModule &CGM = CGF.CGM; |
1583 | ASTContext &C = CGM.getContext(); |
1584 | CGBuilderTy &Bld = CGF.Builder; |
1585 | |
1586 | llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; |
1587 | |
1588 | // Iterates, element-by-element, through the source Reduce list and |
1589 | // make a copy. |
1590 | unsigned Idx = 0; |
1591 | for (const Expr *Private : Privates) { |
1592 | Address SrcElementAddr = Address::invalid(); |
1593 | Address DestElementAddr = Address::invalid(); |
1594 | Address DestElementPtrAddr = Address::invalid(); |
1595 | // Should we shuffle in an element from a remote lane? |
1596 | bool ShuffleInElement = false; |
1597 | // Set to true to update the pointer in the dest Reduce list to a |
1598 | // newly created element. |
1599 | bool UpdateDestListPtr = false; |
1600 | QualType PrivatePtrType = C.getPointerType(T: Private->getType()); |
1601 | llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(T: PrivatePtrType); |
1602 | |
1603 | switch (Action) { |
1604 | case RemoteLaneToThread: { |
1605 | // Step 1.1: Get the address for the src element in the Reduce list. |
1606 | Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(Addr: SrcBase, Index: Idx); |
1607 | SrcElementAddr = CGF.EmitLoadOfPointer( |
1608 | Ptr: SrcElementPtrAddr.withElementType(ElemTy: PrivateLlvmPtrType), |
1609 | PtrTy: PrivatePtrType->castAs<PointerType>()); |
1610 | |
1611 | // Step 1.2: Create a temporary to store the element in the destination |
1612 | // Reduce list. |
1613 | DestElementPtrAddr = Bld.CreateConstArrayGEP(Addr: DestBase, Index: Idx); |
1614 | DestElementAddr = |
1615 | CGF.CreateMemTemp(T: Private->getType(), Name: ".omp.reduction.element" ); |
1616 | ShuffleInElement = true; |
1617 | UpdateDestListPtr = true; |
1618 | break; |
1619 | } |
1620 | case ThreadCopy: { |
1621 | // Step 1.1: Get the address for the src element in the Reduce list. |
1622 | Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(Addr: SrcBase, Index: Idx); |
1623 | SrcElementAddr = CGF.EmitLoadOfPointer( |
1624 | Ptr: SrcElementPtrAddr.withElementType(ElemTy: PrivateLlvmPtrType), |
1625 | PtrTy: PrivatePtrType->castAs<PointerType>()); |
1626 | |
1627 | // Step 1.2: Get the address for dest element. The destination |
1628 | // element has already been created on the thread's stack. |
1629 | DestElementPtrAddr = Bld.CreateConstArrayGEP(Addr: DestBase, Index: Idx); |
1630 | DestElementAddr = CGF.EmitLoadOfPointer( |
1631 | Ptr: DestElementPtrAddr.withElementType(ElemTy: PrivateLlvmPtrType), |
1632 | PtrTy: PrivatePtrType->castAs<PointerType>()); |
1633 | break; |
1634 | } |
1635 | } |
1636 | |
1637 | // Regardless of src and dest of copy, we emit the load of src |
1638 | // element as this is required in all directions |
1639 | SrcElementAddr = SrcElementAddr.withElementType( |
1640 | ElemTy: CGF.ConvertTypeForMem(T: Private->getType())); |
1641 | DestElementAddr = |
1642 | DestElementAddr.withElementType(ElemTy: SrcElementAddr.getElementType()); |
1643 | |
1644 | // Now that all active lanes have read the element in the |
1645 | // Reduce list, shuffle over the value from the remote lane. |
1646 | if (ShuffleInElement) { |
1647 | shuffleAndStore(CGF, SrcAddr: SrcElementAddr, DestAddr: DestElementAddr, ElemType: Private->getType(), |
1648 | Offset: RemoteLaneOffset, Loc: Private->getExprLoc()); |
1649 | } else { |
1650 | switch (CGF.getEvaluationKind(T: Private->getType())) { |
1651 | case TEK_Scalar: { |
1652 | llvm::Value *Elem = CGF.EmitLoadOfScalar( |
1653 | Addr: SrcElementAddr, /*Volatile=*/false, Ty: Private->getType(), |
1654 | Loc: Private->getExprLoc(), BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
1655 | TBAAInfo: TBAAAccessInfo()); |
1656 | // Store the source element value to the dest element address. |
1657 | CGF.EmitStoreOfScalar( |
1658 | Value: Elem, Addr: DestElementAddr, /*Volatile=*/false, Ty: Private->getType(), |
1659 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), TBAAInfo: TBAAAccessInfo()); |
1660 | break; |
1661 | } |
1662 | case TEK_Complex: { |
1663 | CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( |
1664 | src: CGF.MakeAddrLValue(Addr: SrcElementAddr, T: Private->getType()), |
1665 | loc: Private->getExprLoc()); |
1666 | CGF.EmitStoreOfComplex( |
1667 | V: Elem, dest: CGF.MakeAddrLValue(Addr: DestElementAddr, T: Private->getType()), |
1668 | /*isInit=*/false); |
1669 | break; |
1670 | } |
1671 | case TEK_Aggregate: |
1672 | CGF.EmitAggregateCopy( |
1673 | Dest: CGF.MakeAddrLValue(Addr: DestElementAddr, T: Private->getType()), |
1674 | Src: CGF.MakeAddrLValue(Addr: SrcElementAddr, T: Private->getType()), |
1675 | EltTy: Private->getType(), MayOverlap: AggValueSlot::DoesNotOverlap); |
1676 | break; |
1677 | } |
1678 | } |
1679 | |
1680 | // Step 3.1: Modify reference in dest Reduce list as needed. |
1681 | // Modifying the reference in Reduce list to point to the newly |
1682 | // created element. The element is live in the current function |
1683 | // scope and that of functions it invokes (i.e., reduce_function). |
1684 | // RemoteReduceData[i] = (void*)&RemoteElem |
1685 | if (UpdateDestListPtr) { |
1686 | CGF.EmitStoreOfScalar( |
1687 | Bld.CreatePointerBitCastOrAddrSpaceCast( |
1688 | V: DestElementAddr.emitRawPointer(CGF), DestTy: CGF.VoidPtrTy), |
1689 | DestElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy); |
1690 | } |
1691 | |
1692 | ++Idx; |
1693 | } |
1694 | } |
1695 | |
1696 | /// This function emits a helper that gathers Reduce lists from the first |
1697 | /// lane of every active warp to lanes in the first warp. |
1698 | /// |
1699 | /// void inter_warp_copy_func(void* reduce_data, num_warps) |
1700 | /// shared smem[warp_size]; |
1701 | /// For all data entries D in reduce_data: |
1702 | /// sync |
1703 | /// If (I am the first lane in each warp) |
1704 | /// Copy my local D to smem[warp_id] |
1705 | /// sync |
1706 | /// if (I am the first warp) |
1707 | /// Copy smem[thread_id] to my local D |
1708 | static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, |
1709 | ArrayRef<const Expr *> Privates, |
1710 | QualType ReductionArrayTy, |
1711 | SourceLocation Loc) { |
1712 | ASTContext &C = CGM.getContext(); |
1713 | llvm::Module &M = CGM.getModule(); |
1714 | |
1715 | // ReduceList: thread local Reduce list. |
1716 | // At the stage of the computation when this function is called, partially |
1717 | // aggregated values reside in the first lane of every active warp. |
1718 | ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
1719 | C.VoidPtrTy, ImplicitParamKind::Other); |
1720 | // NumWarps: number of warps active in the parallel region. This could |
1721 | // be smaller than 32 (max warps in a CTA) for partial block reduction. |
1722 | ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
1723 | C.getIntTypeForBitwidth(DestWidth: 32, /* Signed */ true), |
1724 | ImplicitParamKind::Other); |
1725 | FunctionArgList Args; |
1726 | Args.push_back(&ReduceListArg); |
1727 | Args.push_back(&NumWarpsArg); |
1728 | |
1729 | const CGFunctionInfo &CGFI = |
1730 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
1731 | auto *Fn = llvm::Function::Create(Ty: CGM.getTypes().GetFunctionType(Info: CGFI), |
1732 | Linkage: llvm::GlobalValue::InternalLinkage, |
1733 | N: "_omp_reduction_inter_warp_copy_func" , M: &M); |
1734 | CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI: CGFI); |
1735 | Fn->setDoesNotRecurse(); |
1736 | CodeGenFunction CGF(CGM); |
1737 | CGF.StartFunction(GD: GlobalDecl(), RetTy: C.VoidTy, Fn: Fn, FnInfo: CGFI, Args, Loc, StartLoc: Loc); |
1738 | |
1739 | CGBuilderTy &Bld = CGF.Builder; |
1740 | |
1741 | // This array is used as a medium to transfer, one reduce element at a time, |
1742 | // the data from the first lane of every warp to lanes in the first warp |
1743 | // in order to perform the final step of a reduction in a parallel region |
1744 | // (reduction across warps). The array is placed in NVPTX __shared__ memory |
1745 | // for reduced latency, as well as to have a distinct copy for concurrently |
1746 | // executing target regions. The array is declared with common linkage so |
1747 | // as to be shared across compilation units. |
1748 | StringRef TransferMediumName = |
1749 | "__openmp_nvptx_data_transfer_temporary_storage" ; |
1750 | llvm::GlobalVariable *TransferMedium = |
1751 | M.getGlobalVariable(Name: TransferMediumName); |
1752 | unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; |
1753 | if (!TransferMedium) { |
1754 | auto *Ty = llvm::ArrayType::get(ElementType: CGM.Int32Ty, NumElements: WarpSize); |
1755 | unsigned SharedAddressSpace = C.getTargetAddressSpace(AS: LangAS::cuda_shared); |
1756 | TransferMedium = new llvm::GlobalVariable( |
1757 | M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, |
1758 | llvm::UndefValue::get(T: Ty), TransferMediumName, |
1759 | /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, |
1760 | SharedAddressSpace); |
1761 | CGM.addCompilerUsedGlobal(GV: TransferMedium); |
1762 | } |
1763 | |
1764 | auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
1765 | // Get the CUDA thread id of the current OpenMP thread on the GPU. |
1766 | llvm::Value *ThreadID = RT.getGPUThreadID(CGF); |
1767 | // nvptx_lane_id = nvptx_id % warpsize |
1768 | llvm::Value *LaneID = getNVPTXLaneID(CGF); |
1769 | // nvptx_warp_id = nvptx_id / warpsize |
1770 | llvm::Value *WarpID = getNVPTXWarpID(CGF); |
1771 | |
1772 | Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
1773 | llvm::Type *ElemTy = CGF.ConvertTypeForMem(T: ReductionArrayTy); |
1774 | Address LocalReduceList( |
1775 | Bld.CreatePointerBitCastOrAddrSpaceCast( |
1776 | CGF.EmitLoadOfScalar( |
1777 | AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, |
1778 | LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), |
1779 | ElemTy->getPointerTo()), |
1780 | ElemTy, CGF.getPointerAlign()); |
1781 | |
1782 | unsigned Idx = 0; |
1783 | for (const Expr *Private : Privates) { |
1784 | // |
1785 | // Warp master copies reduce element to transfer medium in __shared__ |
1786 | // memory. |
1787 | // |
1788 | unsigned RealTySize = |
1789 | C.getTypeSizeInChars(T: Private->getType()) |
1790 | .alignTo(Align: C.getTypeAlignInChars(T: Private->getType())) |
1791 | .getQuantity(); |
1792 | for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { |
1793 | unsigned NumIters = RealTySize / TySize; |
1794 | if (NumIters == 0) |
1795 | continue; |
1796 | QualType CType = C.getIntTypeForBitwidth( |
1797 | DestWidth: C.toBits(CharSize: CharUnits::fromQuantity(Quantity: TySize)), /*Signed=*/1); |
1798 | llvm::Type *CopyType = CGF.ConvertTypeForMem(T: CType); |
1799 | CharUnits Align = CharUnits::fromQuantity(Quantity: TySize); |
1800 | llvm::Value *Cnt = nullptr; |
1801 | Address CntAddr = Address::invalid(); |
1802 | llvm::BasicBlock *PrecondBB = nullptr; |
1803 | llvm::BasicBlock *ExitBB = nullptr; |
1804 | if (NumIters > 1) { |
1805 | CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr" ); |
1806 | CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(Ty: CGM.IntTy), CntAddr, |
1807 | /*Volatile=*/false, C.IntTy); |
1808 | PrecondBB = CGF.createBasicBlock(name: "precond" ); |
1809 | ExitBB = CGF.createBasicBlock(name: "exit" ); |
1810 | llvm::BasicBlock *BodyBB = CGF.createBasicBlock(name: "body" ); |
1811 | // There is no need to emit line number for unconditional branch. |
1812 | (void)ApplyDebugLocation::CreateEmpty(CGF); |
1813 | CGF.EmitBlock(BB: PrecondBB); |
1814 | Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); |
1815 | llvm::Value *Cmp = |
1816 | Bld.CreateICmpULT(LHS: Cnt, RHS: llvm::ConstantInt::get(Ty: CGM.IntTy, V: NumIters)); |
1817 | Bld.CreateCondBr(Cond: Cmp, True: BodyBB, False: ExitBB); |
1818 | CGF.EmitBlock(BB: BodyBB); |
1819 | } |
1820 | // kmpc_barrier. |
1821 | CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, |
1822 | /*EmitChecks=*/false, |
1823 | /*ForceSimpleCall=*/true); |
1824 | llvm::BasicBlock *ThenBB = CGF.createBasicBlock(name: "then" ); |
1825 | llvm::BasicBlock *ElseBB = CGF.createBasicBlock(name: "else" ); |
1826 | llvm::BasicBlock *MergeBB = CGF.createBasicBlock(name: "ifcont" ); |
1827 | |
1828 | // if (lane_id == 0) |
1829 | llvm::Value *IsWarpMaster = Bld.CreateIsNull(Arg: LaneID, Name: "warp_master" ); |
1830 | Bld.CreateCondBr(Cond: IsWarpMaster, True: ThenBB, False: ElseBB); |
1831 | CGF.EmitBlock(BB: ThenBB); |
1832 | |
1833 | // Reduce element = LocalReduceList[i] |
1834 | Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(Addr: LocalReduceList, Index: Idx); |
1835 | llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( |
1836 | ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
1837 | // elemptr = ((CopyType*)(elemptrptr)) + I |
1838 | Address ElemPtr(ElemPtrPtr, CopyType, Align); |
1839 | if (NumIters > 1) |
1840 | ElemPtr = Bld.CreateGEP(CGF, Addr: ElemPtr, Index: Cnt); |
1841 | |
1842 | // Get pointer to location in transfer medium. |
1843 | // MediumPtr = &medium[warp_id] |
1844 | llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( |
1845 | Ty: TransferMedium->getValueType(), Ptr: TransferMedium, |
1846 | IdxList: {llvm::Constant::getNullValue(Ty: CGM.Int64Ty), WarpID}); |
1847 | // Casting to actual data type. |
1848 | // MediumPtr = (CopyType*)MediumPtrAddr; |
1849 | Address MediumPtr(MediumPtrVal, CopyType, Align); |
1850 | |
1851 | // elem = *elemptr |
1852 | //*MediumPtr = elem |
1853 | llvm::Value *Elem = CGF.EmitLoadOfScalar( |
1854 | Addr: ElemPtr, /*Volatile=*/false, Ty: CType, Loc, |
1855 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), TBAAInfo: TBAAAccessInfo()); |
1856 | // Store the source element value to the dest element address. |
1857 | CGF.EmitStoreOfScalar(Value: Elem, Addr: MediumPtr, /*Volatile=*/true, Ty: CType, |
1858 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
1859 | TBAAInfo: TBAAAccessInfo()); |
1860 | |
1861 | Bld.CreateBr(Dest: MergeBB); |
1862 | |
1863 | CGF.EmitBlock(BB: ElseBB); |
1864 | Bld.CreateBr(Dest: MergeBB); |
1865 | |
1866 | CGF.EmitBlock(BB: MergeBB); |
1867 | |
1868 | // kmpc_barrier. |
1869 | CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, |
1870 | /*EmitChecks=*/false, |
1871 | /*ForceSimpleCall=*/true); |
1872 | |
1873 | // |
1874 | // Warp 0 copies reduce element from transfer medium. |
1875 | // |
1876 | llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock(name: "then" ); |
1877 | llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock(name: "else" ); |
1878 | llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock(name: "ifcont" ); |
1879 | |
1880 | Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); |
1881 | llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( |
1882 | AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); |
1883 | |
1884 | // Up to 32 threads in warp 0 are active. |
1885 | llvm::Value *IsActiveThread = |
1886 | Bld.CreateICmpULT(LHS: ThreadID, RHS: NumWarpsVal, Name: "is_active_thread" ); |
1887 | Bld.CreateCondBr(Cond: IsActiveThread, True: W0ThenBB, False: W0ElseBB); |
1888 | |
1889 | CGF.EmitBlock(BB: W0ThenBB); |
1890 | |
1891 | // SrcMediumPtr = &medium[tid] |
1892 | llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( |
1893 | Ty: TransferMedium->getValueType(), Ptr: TransferMedium, |
1894 | IdxList: {llvm::Constant::getNullValue(Ty: CGM.Int64Ty), ThreadID}); |
1895 | // SrcMediumVal = *SrcMediumPtr; |
1896 | Address SrcMediumPtr(SrcMediumPtrVal, CopyType, Align); |
1897 | |
1898 | // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I |
1899 | Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(Addr: LocalReduceList, Index: Idx); |
1900 | llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( |
1901 | TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); |
1902 | Address TargetElemPtr(TargetElemPtrVal, CopyType, Align); |
1903 | if (NumIters > 1) |
1904 | TargetElemPtr = Bld.CreateGEP(CGF, Addr: TargetElemPtr, Index: Cnt); |
1905 | |
1906 | // *TargetElemPtr = SrcMediumVal; |
1907 | llvm::Value *SrcMediumValue = |
1908 | CGF.EmitLoadOfScalar(Addr: SrcMediumPtr, /*Volatile=*/true, Ty: CType, Loc); |
1909 | CGF.EmitStoreOfScalar(Value: SrcMediumValue, Addr: TargetElemPtr, /*Volatile=*/false, |
1910 | Ty: CType); |
1911 | Bld.CreateBr(Dest: W0MergeBB); |
1912 | |
1913 | CGF.EmitBlock(BB: W0ElseBB); |
1914 | Bld.CreateBr(Dest: W0MergeBB); |
1915 | |
1916 | CGF.EmitBlock(BB: W0MergeBB); |
1917 | |
1918 | if (NumIters > 1) { |
1919 | Cnt = Bld.CreateNSWAdd(LHS: Cnt, RHS: llvm::ConstantInt::get(Ty: CGM.IntTy, /*V=*/1)); |
1920 | CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); |
1921 | CGF.EmitBranch(Block: PrecondBB); |
1922 | (void)ApplyDebugLocation::CreateEmpty(CGF); |
1923 | CGF.EmitBlock(BB: ExitBB); |
1924 | } |
1925 | RealTySize %= TySize; |
1926 | } |
1927 | ++Idx; |
1928 | } |
1929 | |
1930 | CGF.FinishFunction(); |
1931 | return Fn; |
1932 | } |
1933 | |
1934 | /// Emit a helper that reduces data across two OpenMP threads (lanes) |
1935 | /// in the same warp. It uses shuffle instructions to copy over data from |
1936 | /// a remote lane's stack. The reduction algorithm performed is specified |
1937 | /// by the fourth parameter. |
1938 | /// |
1939 | /// Algorithm Versions. |
1940 | /// Full Warp Reduce (argument value 0): |
1941 | /// This algorithm assumes that all 32 lanes are active and gathers |
1942 | /// data from these 32 lanes, producing a single resultant value. |
1943 | /// Contiguous Partial Warp Reduce (argument value 1): |
1944 | /// This algorithm assumes that only a *contiguous* subset of lanes |
1945 | /// are active. This happens for the last warp in a parallel region |
1946 | /// when the user specified num_threads is not an integer multiple of |
1947 | /// 32. This contiguous subset always starts with the zeroth lane. |
1948 | /// Partial Warp Reduce (argument value 2): |
1949 | /// This algorithm gathers data from any number of lanes at any position. |
1950 | /// All reduced values are stored in the lowest possible lane. The set |
1951 | /// of problems every algorithm addresses is a super set of those |
1952 | /// addressable by algorithms with a lower version number. Overhead |
1953 | /// increases as algorithm version increases. |
1954 | /// |
1955 | /// Terminology |
1956 | /// Reduce element: |
1957 | /// Reduce element refers to the individual data field with primitive |
1958 | /// data types to be combined and reduced across threads. |
1959 | /// Reduce list: |
1960 | /// Reduce list refers to a collection of local, thread-private |
1961 | /// reduce elements. |
1962 | /// Remote Reduce list: |
1963 | /// Remote Reduce list refers to a collection of remote (relative to |
1964 | /// the current thread) reduce elements. |
1965 | /// |
1966 | /// We distinguish between three states of threads that are important to |
1967 | /// the implementation of this function. |
1968 | /// Alive threads: |
1969 | /// Threads in a warp executing the SIMT instruction, as distinguished from |
1970 | /// threads that are inactive due to divergent control flow. |
1971 | /// Active threads: |
1972 | /// The minimal set of threads that has to be alive upon entry to this |
1973 | /// function. The computation is correct iff active threads are alive. |
1974 | /// Some threads are alive but they are not active because they do not |
1975 | /// contribute to the computation in any useful manner. Turning them off |
1976 | /// may introduce control flow overheads without any tangible benefits. |
1977 | /// Effective threads: |
1978 | /// In order to comply with the argument requirements of the shuffle |
1979 | /// function, we must keep all lanes holding data alive. But at most |
1980 | /// half of them perform value aggregation; we refer to this half of |
1981 | /// threads as effective. The other half is simply handing off their |
1982 | /// data. |
1983 | /// |
1984 | /// Procedure |
1985 | /// Value shuffle: |
1986 | /// In this step active threads transfer data from higher lane positions |
1987 | /// in the warp to lower lane positions, creating Remote Reduce list. |
1988 | /// Value aggregation: |
1989 | /// In this step, effective threads combine their thread local Reduce list |
1990 | /// with Remote Reduce list and store the result in the thread local |
1991 | /// Reduce list. |
1992 | /// Value copy: |
1993 | /// In this step, we deal with the assumption made by algorithm 2 |
1994 | /// (i.e. contiguity assumption). When we have an odd number of lanes |
1995 | /// active, say 2k+1, only k threads will be effective and therefore k |
1996 | /// new values will be produced. However, the Reduce list owned by the |
1997 | /// (2k+1)th thread is ignored in the value aggregation. Therefore |
1998 | /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so |
1999 | /// that the contiguity assumption still holds. |
2000 | static llvm::Function *emitShuffleAndReduceFunction( |
2001 | CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
2002 | QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { |
2003 | ASTContext &C = CGM.getContext(); |
2004 | |
2005 | // Thread local Reduce list used to host the values of data to be reduced. |
2006 | ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
2007 | C.VoidPtrTy, ImplicitParamKind::Other); |
2008 | // Current lane id; could be logical. |
2009 | ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, |
2010 | ImplicitParamKind::Other); |
2011 | // Offset of the remote source lane relative to the current lane. |
2012 | ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
2013 | C.ShortTy, ImplicitParamKind::Other); |
2014 | // Algorithm version. This is expected to be known at compile time. |
2015 | ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
2016 | C.ShortTy, ImplicitParamKind::Other); |
2017 | FunctionArgList Args; |
2018 | Args.push_back(&ReduceListArg); |
2019 | Args.push_back(&LaneIDArg); |
2020 | Args.push_back(&RemoteLaneOffsetArg); |
2021 | Args.push_back(&AlgoVerArg); |
2022 | |
2023 | const CGFunctionInfo &CGFI = |
2024 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
2025 | auto *Fn = llvm::Function::Create( |
2026 | Ty: CGM.getTypes().GetFunctionType(Info: CGFI), Linkage: llvm::GlobalValue::InternalLinkage, |
2027 | N: "_omp_reduction_shuffle_and_reduce_func" , M: &CGM.getModule()); |
2028 | CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI: CGFI); |
2029 | Fn->setDoesNotRecurse(); |
2030 | |
2031 | CodeGenFunction CGF(CGM); |
2032 | CGF.StartFunction(GD: GlobalDecl(), RetTy: C.VoidTy, Fn: Fn, FnInfo: CGFI, Args, Loc, StartLoc: Loc); |
2033 | |
2034 | CGBuilderTy &Bld = CGF.Builder; |
2035 | |
2036 | Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
2037 | llvm::Type *ElemTy = CGF.ConvertTypeForMem(T: ReductionArrayTy); |
2038 | Address LocalReduceList( |
2039 | Bld.CreatePointerBitCastOrAddrSpaceCast( |
2040 | CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
2041 | C.VoidPtrTy, SourceLocation()), |
2042 | ElemTy->getPointerTo()), |
2043 | ElemTy, CGF.getPointerAlign()); |
2044 | |
2045 | Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); |
2046 | llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( |
2047 | AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
2048 | |
2049 | Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); |
2050 | llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( |
2051 | AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
2052 | |
2053 | Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); |
2054 | llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( |
2055 | AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
2056 | |
2057 | // Create a local thread-private variable to host the Reduce list |
2058 | // from a remote lane. |
2059 | Address RemoteReduceList = |
2060 | CGF.CreateMemTemp(T: ReductionArrayTy, Name: ".omp.reduction.remote_reduce_list" ); |
2061 | |
2062 | // This loop iterates through the list of reduce elements and copies, |
2063 | // element by element, from a remote lane in the warp to RemoteReduceList, |
2064 | // hosted on the thread's stack. |
2065 | emitReductionListCopy(Action: RemoteLaneToThread, CGF, ReductionArrayTy, Privates, |
2066 | SrcBase: LocalReduceList, DestBase: RemoteReduceList, |
2067 | CopyOptions: {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, |
2068 | /*ScratchpadIndex=*/nullptr, |
2069 | /*ScratchpadWidth=*/nullptr}); |
2070 | |
2071 | // The actions to be performed on the Remote Reduce list is dependent |
2072 | // on the algorithm version. |
2073 | // |
2074 | // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && |
2075 | // LaneId % 2 == 0 && Offset > 0): |
2076 | // do the reduction value aggregation |
2077 | // |
2078 | // The thread local variable Reduce list is mutated in place to host the |
2079 | // reduced data, which is the aggregated value produced from local and |
2080 | // remote lanes. |
2081 | // |
2082 | // Note that AlgoVer is expected to be a constant integer known at compile |
2083 | // time. |
2084 | // When AlgoVer==0, the first conjunction evaluates to true, making |
2085 | // the entire predicate true during compile time. |
2086 | // When AlgoVer==1, the second conjunction has only the second part to be |
2087 | // evaluated during runtime. Other conjunctions evaluates to false |
2088 | // during compile time. |
2089 | // When AlgoVer==2, the third conjunction has only the second part to be |
2090 | // evaluated during runtime. Other conjunctions evaluates to false |
2091 | // during compile time. |
2092 | llvm::Value *CondAlgo0 = Bld.CreateIsNull(Arg: AlgoVerArgVal); |
2093 | |
2094 | llvm::Value *Algo1 = Bld.CreateICmpEQ(LHS: AlgoVerArgVal, RHS: Bld.getInt16(C: 1)); |
2095 | llvm::Value *CondAlgo1 = Bld.CreateAnd( |
2096 | LHS: Algo1, RHS: Bld.CreateICmpULT(LHS: LaneIDArgVal, RHS: RemoteLaneOffsetArgVal)); |
2097 | |
2098 | llvm::Value *Algo2 = Bld.CreateICmpEQ(LHS: AlgoVerArgVal, RHS: Bld.getInt16(C: 2)); |
2099 | llvm::Value *CondAlgo2 = Bld.CreateAnd( |
2100 | LHS: Algo2, RHS: Bld.CreateIsNull(Arg: Bld.CreateAnd(LHS: LaneIDArgVal, RHS: Bld.getInt16(C: 1)))); |
2101 | CondAlgo2 = Bld.CreateAnd( |
2102 | LHS: CondAlgo2, RHS: Bld.CreateICmpSGT(LHS: RemoteLaneOffsetArgVal, RHS: Bld.getInt16(C: 0))); |
2103 | |
2104 | llvm::Value *CondReduce = Bld.CreateOr(LHS: CondAlgo0, RHS: CondAlgo1); |
2105 | CondReduce = Bld.CreateOr(LHS: CondReduce, RHS: CondAlgo2); |
2106 | |
2107 | llvm::BasicBlock *ThenBB = CGF.createBasicBlock(name: "then" ); |
2108 | llvm::BasicBlock *ElseBB = CGF.createBasicBlock(name: "else" ); |
2109 | llvm::BasicBlock *MergeBB = CGF.createBasicBlock(name: "ifcont" ); |
2110 | Bld.CreateCondBr(Cond: CondReduce, True: ThenBB, False: ElseBB); |
2111 | |
2112 | CGF.EmitBlock(BB: ThenBB); |
2113 | // reduce_function(LocalReduceList, RemoteReduceList) |
2114 | llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
2115 | V: LocalReduceList.emitRawPointer(CGF), DestTy: CGF.VoidPtrTy); |
2116 | llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
2117 | V: RemoteReduceList.emitRawPointer(CGF), DestTy: CGF.VoidPtrTy); |
2118 | CGM.getOpenMPRuntime().emitOutlinedFunctionCall( |
2119 | CGF, Loc, OutlinedFn: ReduceFn, Args: {LocalReduceListPtr, RemoteReduceListPtr}); |
2120 | Bld.CreateBr(Dest: MergeBB); |
2121 | |
2122 | CGF.EmitBlock(BB: ElseBB); |
2123 | Bld.CreateBr(Dest: MergeBB); |
2124 | |
2125 | CGF.EmitBlock(BB: MergeBB); |
2126 | |
2127 | // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local |
2128 | // Reduce list. |
2129 | Algo1 = Bld.CreateICmpEQ(LHS: AlgoVerArgVal, RHS: Bld.getInt16(C: 1)); |
2130 | llvm::Value *CondCopy = Bld.CreateAnd( |
2131 | LHS: Algo1, RHS: Bld.CreateICmpUGE(LHS: LaneIDArgVal, RHS: RemoteLaneOffsetArgVal)); |
2132 | |
2133 | llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock(name: "then" ); |
2134 | llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock(name: "else" ); |
2135 | llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock(name: "ifcont" ); |
2136 | Bld.CreateCondBr(Cond: CondCopy, True: CpyThenBB, False: CpyElseBB); |
2137 | |
2138 | CGF.EmitBlock(BB: CpyThenBB); |
2139 | emitReductionListCopy(Action: ThreadCopy, CGF, ReductionArrayTy, Privates, |
2140 | SrcBase: RemoteReduceList, DestBase: LocalReduceList); |
2141 | Bld.CreateBr(Dest: CpyMergeBB); |
2142 | |
2143 | CGF.EmitBlock(BB: CpyElseBB); |
2144 | Bld.CreateBr(Dest: CpyMergeBB); |
2145 | |
2146 | CGF.EmitBlock(BB: CpyMergeBB); |
2147 | |
2148 | CGF.FinishFunction(); |
2149 | return Fn; |
2150 | } |
2151 | |
2152 | /// This function emits a helper that copies all the reduction variables from |
2153 | /// the team into the provided global buffer for the reduction variables. |
2154 | /// |
2155 | /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) |
2156 | /// For all data entries D in reduce_data: |
2157 | /// Copy local D to buffer.D[Idx] |
2158 | static llvm::Value *emitListToGlobalCopyFunction( |
2159 | CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
2160 | QualType ReductionArrayTy, SourceLocation Loc, |
2161 | const RecordDecl *TeamReductionRec, |
2162 | const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
2163 | &VarFieldMap) { |
2164 | ASTContext &C = CGM.getContext(); |
2165 | |
2166 | // Buffer: global reduction buffer. |
2167 | ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
2168 | C.VoidPtrTy, ImplicitParamKind::Other); |
2169 | // Idx: index of the buffer. |
2170 | ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, |
2171 | ImplicitParamKind::Other); |
2172 | // ReduceList: thread local Reduce list. |
2173 | ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
2174 | C.VoidPtrTy, ImplicitParamKind::Other); |
2175 | FunctionArgList Args; |
2176 | Args.push_back(&BufferArg); |
2177 | Args.push_back(&IdxArg); |
2178 | Args.push_back(&ReduceListArg); |
2179 | |
2180 | const CGFunctionInfo &CGFI = |
2181 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
2182 | auto *Fn = llvm::Function::Create( |
2183 | Ty: CGM.getTypes().GetFunctionType(Info: CGFI), Linkage: llvm::GlobalValue::InternalLinkage, |
2184 | N: "_omp_reduction_list_to_global_copy_func" , M: &CGM.getModule()); |
2185 | CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI: CGFI); |
2186 | Fn->setDoesNotRecurse(); |
2187 | CodeGenFunction CGF(CGM); |
2188 | CGF.StartFunction(GD: GlobalDecl(), RetTy: C.VoidTy, Fn: Fn, FnInfo: CGFI, Args, Loc, StartLoc: Loc); |
2189 | |
2190 | CGBuilderTy &Bld = CGF.Builder; |
2191 | |
2192 | Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
2193 | Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); |
2194 | llvm::Type *ElemTy = CGF.ConvertTypeForMem(T: ReductionArrayTy); |
2195 | Address LocalReduceList( |
2196 | Bld.CreatePointerBitCastOrAddrSpaceCast( |
2197 | CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
2198 | C.VoidPtrTy, Loc), |
2199 | ElemTy->getPointerTo()), |
2200 | ElemTy, CGF.getPointerAlign()); |
2201 | QualType StaticTy = C.getRecordType(Decl: TeamReductionRec); |
2202 | llvm::Type *LLVMReductionsBufferTy = |
2203 | CGM.getTypes().ConvertTypeForMem(T: StaticTy); |
2204 | llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
2205 | CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), |
2206 | LLVMReductionsBufferTy->getPointerTo()); |
2207 | llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), |
2208 | /*Volatile=*/false, C.IntTy, |
2209 | Loc)}; |
2210 | unsigned Idx = 0; |
2211 | for (const Expr *Private : Privates) { |
2212 | // Reduce element = LocalReduceList[i] |
2213 | Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(Addr: LocalReduceList, Index: Idx); |
2214 | llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( |
2215 | ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
2216 | // elemptr = ((CopyType*)(elemptrptr)) + I |
2217 | ElemTy = CGF.ConvertTypeForMem(T: Private->getType()); |
2218 | ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
2219 | V: ElemPtrPtr, DestTy: ElemTy->getPointerTo()); |
2220 | Address ElemPtr = |
2221 | Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(T: Private->getType())); |
2222 | const ValueDecl *VD = cast<DeclRefExpr>(Val: Private)->getDecl(); |
2223 | // Global = Buffer.VD[Idx]; |
2224 | const FieldDecl *FD = VarFieldMap.lookup(Val: VD); |
2225 | llvm::Value *BufferPtr = |
2226 | Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs); |
2227 | LValue GlobLVal = CGF.EmitLValueForField( |
2228 | Base: CGF.MakeNaturalAlignRawAddrLValue(V: BufferPtr, T: StaticTy), Field: FD); |
2229 | Address GlobAddr = GlobLVal.getAddress(CGF); |
2230 | GlobLVal.setAddress(Address(GlobAddr.emitRawPointer(CGF), |
2231 | CGF.ConvertTypeForMem(T: Private->getType()), |
2232 | GlobAddr.getAlignment())); |
2233 | switch (CGF.getEvaluationKind(T: Private->getType())) { |
2234 | case TEK_Scalar: { |
2235 | llvm::Value *V = CGF.EmitLoadOfScalar( |
2236 | Addr: ElemPtr, /*Volatile=*/false, Ty: Private->getType(), Loc, |
2237 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), TBAAInfo: TBAAAccessInfo()); |
2238 | CGF.EmitStoreOfScalar(value: V, lvalue: GlobLVal); |
2239 | break; |
2240 | } |
2241 | case TEK_Complex: { |
2242 | CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( |
2243 | src: CGF.MakeAddrLValue(Addr: ElemPtr, T: Private->getType()), loc: Loc); |
2244 | CGF.EmitStoreOfComplex(V, dest: GlobLVal, /*isInit=*/false); |
2245 | break; |
2246 | } |
2247 | case TEK_Aggregate: |
2248 | CGF.EmitAggregateCopy(Dest: GlobLVal, |
2249 | Src: CGF.MakeAddrLValue(Addr: ElemPtr, T: Private->getType()), |
2250 | EltTy: Private->getType(), MayOverlap: AggValueSlot::DoesNotOverlap); |
2251 | break; |
2252 | } |
2253 | ++Idx; |
2254 | } |
2255 | |
2256 | CGF.FinishFunction(); |
2257 | return Fn; |
2258 | } |
2259 | |
2260 | /// This function emits a helper that reduces all the reduction variables from |
2261 | /// the team into the provided global buffer for the reduction variables. |
2262 | /// |
2263 | /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) |
2264 | /// void *GlobPtrs[]; |
2265 | /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; |
2266 | /// ... |
2267 | /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; |
2268 | /// reduce_function(GlobPtrs, reduce_data); |
2269 | static llvm::Value *emitListToGlobalReduceFunction( |
2270 | CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
2271 | QualType ReductionArrayTy, SourceLocation Loc, |
2272 | const RecordDecl *TeamReductionRec, |
2273 | const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
2274 | &VarFieldMap, |
2275 | llvm::Function *ReduceFn) { |
2276 | ASTContext &C = CGM.getContext(); |
2277 | |
2278 | // Buffer: global reduction buffer. |
2279 | ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
2280 | C.VoidPtrTy, ImplicitParamKind::Other); |
2281 | // Idx: index of the buffer. |
2282 | ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, |
2283 | ImplicitParamKind::Other); |
2284 | // ReduceList: thread local Reduce list. |
2285 | ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
2286 | C.VoidPtrTy, ImplicitParamKind::Other); |
2287 | FunctionArgList Args; |
2288 | Args.push_back(&BufferArg); |
2289 | Args.push_back(&IdxArg); |
2290 | Args.push_back(&ReduceListArg); |
2291 | |
2292 | const CGFunctionInfo &CGFI = |
2293 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
2294 | auto *Fn = llvm::Function::Create( |
2295 | Ty: CGM.getTypes().GetFunctionType(Info: CGFI), Linkage: llvm::GlobalValue::InternalLinkage, |
2296 | N: "_omp_reduction_list_to_global_reduce_func" , M: &CGM.getModule()); |
2297 | CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI: CGFI); |
2298 | Fn->setDoesNotRecurse(); |
2299 | CodeGenFunction CGF(CGM); |
2300 | CGF.StartFunction(GD: GlobalDecl(), RetTy: C.VoidTy, Fn: Fn, FnInfo: CGFI, Args, Loc, StartLoc: Loc); |
2301 | |
2302 | CGBuilderTy &Bld = CGF.Builder; |
2303 | |
2304 | Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); |
2305 | QualType StaticTy = C.getRecordType(Decl: TeamReductionRec); |
2306 | llvm::Type *LLVMReductionsBufferTy = |
2307 | CGM.getTypes().ConvertTypeForMem(T: StaticTy); |
2308 | llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
2309 | CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), |
2310 | LLVMReductionsBufferTy->getPointerTo()); |
2311 | |
2312 | // 1. Build a list of reduction variables. |
2313 | // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; |
2314 | RawAddress ReductionList = |
2315 | CGF.CreateMemTemp(T: ReductionArrayTy, Name: ".omp.reduction.red_list" ); |
2316 | auto IPriv = Privates.begin(); |
2317 | llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), |
2318 | /*Volatile=*/false, C.IntTy, |
2319 | Loc)}; |
2320 | unsigned Idx = 0; |
2321 | for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { |
2322 | Address Elem = CGF.Builder.CreateConstArrayGEP(Addr: ReductionList, Index: Idx); |
2323 | // Global = Buffer.VD[Idx]; |
2324 | const ValueDecl *VD = cast<DeclRefExpr>(Val: *IPriv)->getDecl(); |
2325 | const FieldDecl *FD = VarFieldMap.lookup(Val: VD); |
2326 | llvm::Value *BufferPtr = |
2327 | Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs); |
2328 | LValue GlobLVal = CGF.EmitLValueForField( |
2329 | Base: CGF.MakeNaturalAlignRawAddrLValue(V: BufferPtr, T: StaticTy), Field: FD); |
2330 | Address GlobAddr = GlobLVal.getAddress(CGF); |
2331 | CGF.EmitStoreOfScalar(GlobAddr.emitRawPointer(CGF), Elem, |
2332 | /*Volatile=*/false, C.VoidPtrTy); |
2333 | if ((*IPriv)->getType()->isVariablyModifiedType()) { |
2334 | // Store array size. |
2335 | ++Idx; |
2336 | Elem = CGF.Builder.CreateConstArrayGEP(Addr: ReductionList, Index: Idx); |
2337 | llvm::Value *Size = CGF.Builder.CreateIntCast( |
2338 | V: CGF.getVLASize( |
2339 | vla: CGF.getContext().getAsVariableArrayType(T: (*IPriv)->getType())) |
2340 | .NumElts, |
2341 | DestTy: CGF.SizeTy, /*isSigned=*/false); |
2342 | CGF.Builder.CreateStore(Val: CGF.Builder.CreateIntToPtr(V: Size, DestTy: CGF.VoidPtrTy), |
2343 | Addr: Elem); |
2344 | } |
2345 | } |
2346 | |
2347 | // Call reduce_function(GlobalReduceList, ReduceList) |
2348 | llvm::Value *GlobalReduceList = ReductionList.getPointer(); |
2349 | Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
2350 | llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( |
2351 | AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); |
2352 | CGM.getOpenMPRuntime().emitOutlinedFunctionCall( |
2353 | CGF, Loc, OutlinedFn: ReduceFn, Args: {GlobalReduceList, ReducedPtr}); |
2354 | CGF.FinishFunction(); |
2355 | return Fn; |
2356 | } |
2357 | |
2358 | /// This function emits a helper that copies all the reduction variables from |
2359 | /// the team into the provided global buffer for the reduction variables. |
2360 | /// |
2361 | /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) |
2362 | /// For all data entries D in reduce_data: |
2363 | /// Copy buffer.D[Idx] to local D; |
2364 | static llvm::Value *emitGlobalToListCopyFunction( |
2365 | CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
2366 | QualType ReductionArrayTy, SourceLocation Loc, |
2367 | const RecordDecl *TeamReductionRec, |
2368 | const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
2369 | &VarFieldMap) { |
2370 | ASTContext &C = CGM.getContext(); |
2371 | |
2372 | // Buffer: global reduction buffer. |
2373 | ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
2374 | C.VoidPtrTy, ImplicitParamKind::Other); |
2375 | // Idx: index of the buffer. |
2376 | ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, |
2377 | ImplicitParamKind::Other); |
2378 | // ReduceList: thread local Reduce list. |
2379 | ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
2380 | C.VoidPtrTy, ImplicitParamKind::Other); |
2381 | FunctionArgList Args; |
2382 | Args.push_back(&BufferArg); |
2383 | Args.push_back(&IdxArg); |
2384 | Args.push_back(&ReduceListArg); |
2385 | |
2386 | const CGFunctionInfo &CGFI = |
2387 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
2388 | auto *Fn = llvm::Function::Create( |
2389 | Ty: CGM.getTypes().GetFunctionType(Info: CGFI), Linkage: llvm::GlobalValue::InternalLinkage, |
2390 | N: "_omp_reduction_global_to_list_copy_func" , M: &CGM.getModule()); |
2391 | CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI: CGFI); |
2392 | Fn->setDoesNotRecurse(); |
2393 | CodeGenFunction CGF(CGM); |
2394 | CGF.StartFunction(GD: GlobalDecl(), RetTy: C.VoidTy, Fn: Fn, FnInfo: CGFI, Args, Loc, StartLoc: Loc); |
2395 | |
2396 | CGBuilderTy &Bld = CGF.Builder; |
2397 | |
2398 | Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
2399 | Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); |
2400 | llvm::Type *ElemTy = CGF.ConvertTypeForMem(T: ReductionArrayTy); |
2401 | Address LocalReduceList( |
2402 | Bld.CreatePointerBitCastOrAddrSpaceCast( |
2403 | CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
2404 | C.VoidPtrTy, Loc), |
2405 | ElemTy->getPointerTo()), |
2406 | ElemTy, CGF.getPointerAlign()); |
2407 | QualType StaticTy = C.getRecordType(Decl: TeamReductionRec); |
2408 | llvm::Type *LLVMReductionsBufferTy = |
2409 | CGM.getTypes().ConvertTypeForMem(T: StaticTy); |
2410 | llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
2411 | CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), |
2412 | LLVMReductionsBufferTy->getPointerTo()); |
2413 | |
2414 | llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), |
2415 | /*Volatile=*/false, C.IntTy, |
2416 | Loc)}; |
2417 | unsigned Idx = 0; |
2418 | for (const Expr *Private : Privates) { |
2419 | // Reduce element = LocalReduceList[i] |
2420 | Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(Addr: LocalReduceList, Index: Idx); |
2421 | llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( |
2422 | ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
2423 | // elemptr = ((CopyType*)(elemptrptr)) + I |
2424 | ElemTy = CGF.ConvertTypeForMem(T: Private->getType()); |
2425 | ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
2426 | V: ElemPtrPtr, DestTy: ElemTy->getPointerTo()); |
2427 | Address ElemPtr = |
2428 | Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(T: Private->getType())); |
2429 | const ValueDecl *VD = cast<DeclRefExpr>(Val: Private)->getDecl(); |
2430 | // Global = Buffer.VD[Idx]; |
2431 | const FieldDecl *FD = VarFieldMap.lookup(Val: VD); |
2432 | llvm::Value *BufferPtr = |
2433 | Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs); |
2434 | LValue GlobLVal = CGF.EmitLValueForField( |
2435 | Base: CGF.MakeNaturalAlignRawAddrLValue(V: BufferPtr, T: StaticTy), Field: FD); |
2436 | Address GlobAddr = GlobLVal.getAddress(CGF); |
2437 | GlobLVal.setAddress(Address(GlobAddr.emitRawPointer(CGF), |
2438 | CGF.ConvertTypeForMem(T: Private->getType()), |
2439 | GlobAddr.getAlignment())); |
2440 | switch (CGF.getEvaluationKind(T: Private->getType())) { |
2441 | case TEK_Scalar: { |
2442 | llvm::Value *V = CGF.EmitLoadOfScalar(lvalue: GlobLVal, Loc); |
2443 | CGF.EmitStoreOfScalar(Value: V, Addr: ElemPtr, /*Volatile=*/false, Ty: Private->getType(), |
2444 | BaseInfo: LValueBaseInfo(AlignmentSource::Type), |
2445 | TBAAInfo: TBAAAccessInfo()); |
2446 | break; |
2447 | } |
2448 | case TEK_Complex: { |
2449 | CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(src: GlobLVal, loc: Loc); |
2450 | CGF.EmitStoreOfComplex(V, dest: CGF.MakeAddrLValue(Addr: ElemPtr, T: Private->getType()), |
2451 | /*isInit=*/false); |
2452 | break; |
2453 | } |
2454 | case TEK_Aggregate: |
2455 | CGF.EmitAggregateCopy(Dest: CGF.MakeAddrLValue(Addr: ElemPtr, T: Private->getType()), |
2456 | Src: GlobLVal, EltTy: Private->getType(), |
2457 | MayOverlap: AggValueSlot::DoesNotOverlap); |
2458 | break; |
2459 | } |
2460 | ++Idx; |
2461 | } |
2462 | |
2463 | CGF.FinishFunction(); |
2464 | return Fn; |
2465 | } |
2466 | |
2467 | /// This function emits a helper that reduces all the reduction variables from |
2468 | /// the team into the provided global buffer for the reduction variables. |
2469 | /// |
2470 | /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) |
2471 | /// void *GlobPtrs[]; |
2472 | /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; |
2473 | /// ... |
2474 | /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; |
2475 | /// reduce_function(reduce_data, GlobPtrs); |
2476 | static llvm::Value *emitGlobalToListReduceFunction( |
2477 | CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
2478 | QualType ReductionArrayTy, SourceLocation Loc, |
2479 | const RecordDecl *TeamReductionRec, |
2480 | const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
2481 | &VarFieldMap, |
2482 | llvm::Function *ReduceFn) { |
2483 | ASTContext &C = CGM.getContext(); |
2484 | |
2485 | // Buffer: global reduction buffer. |
2486 | ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
2487 | C.VoidPtrTy, ImplicitParamKind::Other); |
2488 | // Idx: index of the buffer. |
2489 | ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, |
2490 | ImplicitParamKind::Other); |
2491 | // ReduceList: thread local Reduce list. |
2492 | ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
2493 | C.VoidPtrTy, ImplicitParamKind::Other); |
2494 | FunctionArgList Args; |
2495 | Args.push_back(&BufferArg); |
2496 | Args.push_back(&IdxArg); |
2497 | Args.push_back(&ReduceListArg); |
2498 | |
2499 | const CGFunctionInfo &CGFI = |
2500 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
2501 | auto *Fn = llvm::Function::Create( |
2502 | Ty: CGM.getTypes().GetFunctionType(Info: CGFI), Linkage: llvm::GlobalValue::InternalLinkage, |
2503 | N: "_omp_reduction_global_to_list_reduce_func" , M: &CGM.getModule()); |
2504 | CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI: CGFI); |
2505 | Fn->setDoesNotRecurse(); |
2506 | CodeGenFunction CGF(CGM); |
2507 | CGF.StartFunction(GD: GlobalDecl(), RetTy: C.VoidTy, Fn: Fn, FnInfo: CGFI, Args, Loc, StartLoc: Loc); |
2508 | |
2509 | CGBuilderTy &Bld = CGF.Builder; |
2510 | |
2511 | Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); |
2512 | QualType StaticTy = C.getRecordType(Decl: TeamReductionRec); |
2513 | llvm::Type *LLVMReductionsBufferTy = |
2514 | CGM.getTypes().ConvertTypeForMem(T: StaticTy); |
2515 | llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
2516 | CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), |
2517 | LLVMReductionsBufferTy->getPointerTo()); |
2518 | |
2519 | // 1. Build a list of reduction variables. |
2520 | // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; |
2521 | Address ReductionList = |
2522 | CGF.CreateMemTemp(T: ReductionArrayTy, Name: ".omp.reduction.red_list" ); |
2523 | auto IPriv = Privates.begin(); |
2524 | llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), |
2525 | /*Volatile=*/false, C.IntTy, |
2526 | Loc)}; |
2527 | unsigned Idx = 0; |
2528 | for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { |
2529 | Address Elem = CGF.Builder.CreateConstArrayGEP(Addr: ReductionList, Index: Idx); |
2530 | // Global = Buffer.VD[Idx]; |
2531 | const ValueDecl *VD = cast<DeclRefExpr>(Val: *IPriv)->getDecl(); |
2532 | const FieldDecl *FD = VarFieldMap.lookup(Val: VD); |
2533 | llvm::Value *BufferPtr = |
2534 | Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs); |
2535 | LValue GlobLVal = CGF.EmitLValueForField( |
2536 | Base: CGF.MakeNaturalAlignRawAddrLValue(V: BufferPtr, T: StaticTy), Field: FD); |
2537 | Address GlobAddr = GlobLVal.getAddress(CGF); |
2538 | CGF.EmitStoreOfScalar(GlobAddr.emitRawPointer(CGF), Elem, |
2539 | /*Volatile=*/false, C.VoidPtrTy); |
2540 | if ((*IPriv)->getType()->isVariablyModifiedType()) { |
2541 | // Store array size. |
2542 | ++Idx; |
2543 | Elem = CGF.Builder.CreateConstArrayGEP(Addr: ReductionList, Index: Idx); |
2544 | llvm::Value *Size = CGF.Builder.CreateIntCast( |
2545 | V: CGF.getVLASize( |
2546 | vla: CGF.getContext().getAsVariableArrayType(T: (*IPriv)->getType())) |
2547 | .NumElts, |
2548 | DestTy: CGF.SizeTy, /*isSigned=*/false); |
2549 | CGF.Builder.CreateStore(Val: CGF.Builder.CreateIntToPtr(V: Size, DestTy: CGF.VoidPtrTy), |
2550 | Addr: Elem); |
2551 | } |
2552 | } |
2553 | |
2554 | // Call reduce_function(ReduceList, GlobalReduceList) |
2555 | llvm::Value *GlobalReduceList = ReductionList.emitRawPointer(CGF); |
2556 | Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
2557 | llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( |
2558 | AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); |
2559 | CGM.getOpenMPRuntime().emitOutlinedFunctionCall( |
2560 | CGF, Loc, OutlinedFn: ReduceFn, Args: {ReducedPtr, GlobalReduceList}); |
2561 | CGF.FinishFunction(); |
2562 | return Fn; |
2563 | } |
2564 | |
2565 | /// |
2566 | /// Design of OpenMP reductions on the GPU |
2567 | /// |
2568 | /// Consider a typical OpenMP program with one or more reduction |
2569 | /// clauses: |
2570 | /// |
2571 | /// float foo; |
2572 | /// double bar; |
2573 | /// #pragma omp target teams distribute parallel for \ |
2574 | /// reduction(+:foo) reduction(*:bar) |
2575 | /// for (int i = 0; i < N; i++) { |
2576 | /// foo += A[i]; bar *= B[i]; |
2577 | /// } |
2578 | /// |
2579 | /// where 'foo' and 'bar' are reduced across all OpenMP threads in |
2580 | /// all teams. In our OpenMP implementation on the NVPTX device an |
2581 | /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads |
2582 | /// within a team are mapped to CUDA threads within a threadblock. |
2583 | /// Our goal is to efficiently aggregate values across all OpenMP |
2584 | /// threads such that: |
2585 | /// |
2586 | /// - the compiler and runtime are logically concise, and |
2587 | /// - the reduction is performed efficiently in a hierarchical |
2588 | /// manner as follows: within OpenMP threads in the same warp, |
2589 | /// across warps in a threadblock, and finally across teams on |
2590 | /// the NVPTX device. |
2591 | /// |
2592 | /// Introduction to Decoupling |
2593 | /// |
2594 | /// We would like to decouple the compiler and the runtime so that the |
2595 | /// latter is ignorant of the reduction variables (number, data types) |
2596 | /// and the reduction operators. This allows a simpler interface |
2597 | /// and implementation while still attaining good performance. |
2598 | /// |
2599 | /// Pseudocode for the aforementioned OpenMP program generated by the |
2600 | /// compiler is as follows: |
2601 | /// |
2602 | /// 1. Create private copies of reduction variables on each OpenMP |
2603 | /// thread: 'foo_private', 'bar_private' |
2604 | /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned |
2605 | /// to it and writes the result in 'foo_private' and 'bar_private' |
2606 | /// respectively. |
2607 | /// 3. Call the OpenMP runtime on the GPU to reduce within a team |
2608 | /// and store the result on the team master: |
2609 | /// |
2610 | /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., |
2611 | /// reduceData, shuffleReduceFn, interWarpCpyFn) |
2612 | /// |
2613 | /// where: |
2614 | /// struct ReduceData { |
2615 | /// double *foo; |
2616 | /// double *bar; |
2617 | /// } reduceData |
2618 | /// reduceData.foo = &foo_private |
2619 | /// reduceData.bar = &bar_private |
2620 | /// |
2621 | /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two |
2622 | /// auxiliary functions generated by the compiler that operate on |
2623 | /// variables of type 'ReduceData'. They aid the runtime perform |
2624 | /// algorithmic steps in a data agnostic manner. |
2625 | /// |
2626 | /// 'shuffleReduceFn' is a pointer to a function that reduces data |
2627 | /// of type 'ReduceData' across two OpenMP threads (lanes) in the |
2628 | /// same warp. It takes the following arguments as input: |
2629 | /// |
2630 | /// a. variable of type 'ReduceData' on the calling lane, |
2631 | /// b. its lane_id, |
2632 | /// c. an offset relative to the current lane_id to generate a |
2633 | /// remote_lane_id. The remote lane contains the second |
2634 | /// variable of type 'ReduceData' that is to be reduced. |
2635 | /// d. an algorithm version parameter determining which reduction |
2636 | /// algorithm to use. |
2637 | /// |
2638 | /// 'shuffleReduceFn' retrieves data from the remote lane using |
2639 | /// efficient GPU shuffle intrinsics and reduces, using the |
2640 | /// algorithm specified by the 4th parameter, the two operands |
2641 | /// element-wise. The result is written to the first operand. |
2642 | /// |
2643 | /// Different reduction algorithms are implemented in different |
2644 | /// runtime functions, all calling 'shuffleReduceFn' to perform |
2645 | /// the essential reduction step. Therefore, based on the 4th |
2646 | /// parameter, this function behaves slightly differently to |
2647 | /// cooperate with the runtime to ensure correctness under |
2648 | /// different circumstances. |
2649 | /// |
2650 | /// 'InterWarpCpyFn' is a pointer to a function that transfers |
2651 | /// reduced variables across warps. It tunnels, through CUDA |
2652 | /// shared memory, the thread-private data of type 'ReduceData' |
2653 | /// from lane 0 of each warp to a lane in the first warp. |
2654 | /// 4. Call the OpenMP runtime on the GPU to reduce across teams. |
2655 | /// The last team writes the global reduced value to memory. |
2656 | /// |
2657 | /// ret = __kmpc_nvptx_teams_reduce_nowait(..., |
2658 | /// reduceData, shuffleReduceFn, interWarpCpyFn, |
2659 | /// scratchpadCopyFn, loadAndReduceFn) |
2660 | /// |
2661 | /// 'scratchpadCopyFn' is a helper that stores reduced |
2662 | /// data from the team master to a scratchpad array in |
2663 | /// global memory. |
2664 | /// |
2665 | /// 'loadAndReduceFn' is a helper that loads data from |
2666 | /// the scratchpad array and reduces it with the input |
2667 | /// operand. |
2668 | /// |
2669 | /// These compiler generated functions hide address |
2670 | /// calculation and alignment information from the runtime. |
2671 | /// 5. if ret == 1: |
2672 | /// The team master of the last team stores the reduced |
2673 | /// result to the globals in memory. |
2674 | /// foo += reduceData.foo; bar *= reduceData.bar |
2675 | /// |
2676 | /// |
2677 | /// Warp Reduction Algorithms |
2678 | /// |
2679 | /// On the warp level, we have three algorithms implemented in the |
2680 | /// OpenMP runtime depending on the number of active lanes: |
2681 | /// |
2682 | /// Full Warp Reduction |
2683 | /// |
2684 | /// The reduce algorithm within a warp where all lanes are active |
2685 | /// is implemented in the runtime as follows: |
2686 | /// |
2687 | /// full_warp_reduce(void *reduce_data, |
2688 | /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { |
2689 | /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) |
2690 | /// ShuffleReduceFn(reduce_data, 0, offset, 0); |
2691 | /// } |
2692 | /// |
2693 | /// The algorithm completes in log(2, WARPSIZE) steps. |
2694 | /// |
2695 | /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is |
2696 | /// not used therefore we save instructions by not retrieving lane_id |
2697 | /// from the corresponding special registers. The 4th parameter, which |
2698 | /// represents the version of the algorithm being used, is set to 0 to |
2699 | /// signify full warp reduction. |
2700 | /// |
2701 | /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
2702 | /// |
2703 | /// #reduce_elem refers to an element in the local lane's data structure |
2704 | /// #remote_elem is retrieved from a remote lane |
2705 | /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
2706 | /// reduce_elem = reduce_elem REDUCE_OP remote_elem; |
2707 | /// |
2708 | /// Contiguous Partial Warp Reduction |
2709 | /// |
2710 | /// This reduce algorithm is used within a warp where only the first |
2711 | /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the |
2712 | /// number of OpenMP threads in a parallel region is not a multiple of |
2713 | /// WARPSIZE. The algorithm is implemented in the runtime as follows: |
2714 | /// |
2715 | /// void |
2716 | /// contiguous_partial_reduce(void *reduce_data, |
2717 | /// kmp_ShuffleReductFctPtr ShuffleReduceFn, |
2718 | /// int size, int lane_id) { |
2719 | /// int curr_size; |
2720 | /// int offset; |
2721 | /// curr_size = size; |
2722 | /// mask = curr_size/2; |
2723 | /// while (offset>0) { |
2724 | /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); |
2725 | /// curr_size = (curr_size+1)/2; |
2726 | /// offset = curr_size/2; |
2727 | /// } |
2728 | /// } |
2729 | /// |
2730 | /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
2731 | /// |
2732 | /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
2733 | /// if (lane_id < offset) |
2734 | /// reduce_elem = reduce_elem REDUCE_OP remote_elem |
2735 | /// else |
2736 | /// reduce_elem = remote_elem |
2737 | /// |
2738 | /// This algorithm assumes that the data to be reduced are located in a |
2739 | /// contiguous subset of lanes starting from the first. When there is |
2740 | /// an odd number of active lanes, the data in the last lane is not |
2741 | /// aggregated with any other lane's dat but is instead copied over. |
2742 | /// |
2743 | /// Dispersed Partial Warp Reduction |
2744 | /// |
2745 | /// This algorithm is used within a warp when any discontiguous subset of |
2746 | /// lanes are active. It is used to implement the reduction operation |
2747 | /// across lanes in an OpenMP simd region or in a nested parallel region. |
2748 | /// |
2749 | /// void |
2750 | /// dispersed_partial_reduce(void *reduce_data, |
2751 | /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { |
2752 | /// int size, remote_id; |
2753 | /// int logical_lane_id = number_of_active_lanes_before_me() * 2; |
2754 | /// do { |
2755 | /// remote_id = next_active_lane_id_right_after_me(); |
2756 | /// # the above function returns 0 of no active lane |
2757 | /// # is present right after the current lane. |
2758 | /// size = number_of_active_lanes_in_this_warp(); |
2759 | /// logical_lane_id /= 2; |
2760 | /// ShuffleReduceFn(reduce_data, logical_lane_id, |
2761 | /// remote_id-1-threadIdx.x, 2); |
2762 | /// } while (logical_lane_id % 2 == 0 && size > 1); |
2763 | /// } |
2764 | /// |
2765 | /// There is no assumption made about the initial state of the reduction. |
2766 | /// Any number of lanes (>=1) could be active at any position. The reduction |
2767 | /// result is returned in the first active lane. |
2768 | /// |
2769 | /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
2770 | /// |
2771 | /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
2772 | /// if (lane_id % 2 == 0 && offset > 0) |
2773 | /// reduce_elem = reduce_elem REDUCE_OP remote_elem |
2774 | /// else |
2775 | /// reduce_elem = remote_elem |
2776 | /// |
2777 | /// |
2778 | /// Intra-Team Reduction |
2779 | /// |
2780 | /// This function, as implemented in the runtime call |
2781 | /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP |
2782 | /// threads in a team. It first reduces within a warp using the |
2783 | /// aforementioned algorithms. We then proceed to gather all such |
2784 | /// reduced values at the first warp. |
2785 | /// |
2786 | /// The runtime makes use of the function 'InterWarpCpyFn', which copies |
2787 | /// data from each of the "warp master" (zeroth lane of each warp, where |
2788 | /// warp-reduced data is held) to the zeroth warp. This step reduces (in |
2789 | /// a mathematical sense) the problem of reduction across warp masters in |
2790 | /// a block to the problem of warp reduction. |
2791 | /// |
2792 | /// |
2793 | /// Inter-Team Reduction |
2794 | /// |
2795 | /// Once a team has reduced its data to a single value, it is stored in |
2796 | /// a global scratchpad array. Since each team has a distinct slot, this |
2797 | /// can be done without locking. |
2798 | /// |
2799 | /// The last team to write to the scratchpad array proceeds to reduce the |
2800 | /// scratchpad array. One or more workers in the last team use the helper |
2801 | /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., |
2802 | /// the k'th worker reduces every k'th element. |
2803 | /// |
2804 | /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to |
2805 | /// reduce across workers and compute a globally reduced value. |
2806 | /// |
2807 | void CGOpenMPRuntimeGPU::emitReduction( |
2808 | CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, |
2809 | ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, |
2810 | ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { |
2811 | if (!CGF.HaveInsertPoint()) |
2812 | return; |
2813 | |
2814 | bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); |
2815 | #ifndef NDEBUG |
2816 | bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); |
2817 | #endif |
2818 | |
2819 | if (Options.SimpleReduction) { |
2820 | assert(!TeamsReduction && !ParallelReduction && |
2821 | "Invalid reduction selection in emitReduction." ); |
2822 | CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, |
2823 | ReductionOps, Options); |
2824 | return; |
2825 | } |
2826 | |
2827 | assert((TeamsReduction || ParallelReduction) && |
2828 | "Invalid reduction selection in emitReduction." ); |
2829 | |
2830 | llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; |
2831 | llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); |
2832 | int Cnt = 0; |
2833 | for (const Expr *DRE : Privates) { |
2834 | PrivatesReductions[Cnt] = cast<DeclRefExpr>(Val: DRE)->getDecl(); |
2835 | ++Cnt; |
2836 | } |
2837 | |
2838 | ASTContext &C = CGM.getContext(); |
2839 | const RecordDecl *ReductionRec = ::buildRecordForGlobalizedVars( |
2840 | C&: CGM.getContext(), EscapedDecls: PrivatesReductions, EscapedDeclsForTeams: std::nullopt, MappedDeclsFields&: VarFieldMap, BufSize: 1); |
2841 | |
2842 | // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), |
2843 | // RedList, shuffle_reduce_func, interwarp_copy_func); |
2844 | // or |
2845 | // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); |
2846 | llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
2847 | |
2848 | llvm::Value *Res; |
2849 | // 1. Build a list of reduction variables. |
2850 | // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; |
2851 | auto Size = RHSExprs.size(); |
2852 | for (const Expr *E : Privates) { |
2853 | if (E->getType()->isVariablyModifiedType()) |
2854 | // Reserve place for array size. |
2855 | ++Size; |
2856 | } |
2857 | llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); |
2858 | QualType ReductionArrayTy = C.getConstantArrayType( |
2859 | EltTy: C.VoidPtrTy, ArySize: ArraySize, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, |
2860 | /*IndexTypeQuals=*/0); |
2861 | Address ReductionList = |
2862 | CGF.CreateMemTemp(T: ReductionArrayTy, Name: ".omp.reduction.red_list" ); |
2863 | auto IPriv = Privates.begin(); |
2864 | unsigned Idx = 0; |
2865 | for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { |
2866 | Address Elem = CGF.Builder.CreateConstArrayGEP(Addr: ReductionList, Index: Idx); |
2867 | CGF.Builder.CreateStore( |
2868 | Val: CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
2869 | V: CGF.EmitLValue(E: RHSExprs[I]).getPointer(CGF), DestTy: CGF.VoidPtrTy), |
2870 | Addr: Elem); |
2871 | if ((*IPriv)->getType()->isVariablyModifiedType()) { |
2872 | // Store array size. |
2873 | ++Idx; |
2874 | Elem = CGF.Builder.CreateConstArrayGEP(Addr: ReductionList, Index: Idx); |
2875 | llvm::Value *Size = CGF.Builder.CreateIntCast( |
2876 | V: CGF.getVLASize( |
2877 | vla: CGF.getContext().getAsVariableArrayType(T: (*IPriv)->getType())) |
2878 | .NumElts, |
2879 | DestTy: CGF.SizeTy, /*isSigned=*/false); |
2880 | CGF.Builder.CreateStore(Val: CGF.Builder.CreateIntToPtr(V: Size, DestTy: CGF.VoidPtrTy), |
2881 | Addr: Elem); |
2882 | } |
2883 | } |
2884 | |
2885 | llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
2886 | V: ReductionList.emitRawPointer(CGF), DestTy: CGF.VoidPtrTy); |
2887 | llvm::Function *ReductionFn = emitReductionFunction( |
2888 | CGF.CurFn->getName(), Loc, CGF.ConvertTypeForMem(T: ReductionArrayTy), |
2889 | Privates, LHSExprs, RHSExprs, ReductionOps); |
2890 | llvm::Value *ReductionDataSize = |
2891 | CGF.getTypeSize(Ty: C.getRecordType(Decl: ReductionRec)); |
2892 | ReductionDataSize = |
2893 | CGF.Builder.CreateSExtOrTrunc(V: ReductionDataSize, DestTy: CGF.Int64Ty); |
2894 | llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( |
2895 | CGM, Privates, ReductionArrayTy, ReduceFn: ReductionFn, Loc); |
2896 | llvm::Value *InterWarpCopyFn = |
2897 | emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); |
2898 | |
2899 | if (ParallelReduction) { |
2900 | llvm::Value *Args[] = {RTLoc, ReductionDataSize, RL, ShuffleAndReduceFn, |
2901 | InterWarpCopyFn}; |
2902 | |
2903 | Res = CGF.EmitRuntimeCall( |
2904 | callee: OMPBuilder.getOrCreateRuntimeFunction( |
2905 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), |
2906 | args: Args); |
2907 | } else { |
2908 | assert(TeamsReduction && "expected teams reduction." ); |
2909 | TeamsReductions.push_back(Elt: ReductionRec); |
2910 | auto *KernelTeamsReductionPtr = CGF.EmitRuntimeCall( |
2911 | callee: OMPBuilder.getOrCreateRuntimeFunction( |
2912 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_reduction_get_fixed_buffer), |
2913 | args: {}, name: "_openmp_teams_reductions_buffer_$_$ptr" ); |
2914 | llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( |
2915 | CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec: ReductionRec, VarFieldMap); |
2916 | llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( |
2917 | CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec: ReductionRec, VarFieldMap, |
2918 | ReduceFn: ReductionFn); |
2919 | llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( |
2920 | CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec: ReductionRec, VarFieldMap); |
2921 | llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( |
2922 | CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec: ReductionRec, VarFieldMap, |
2923 | ReduceFn: ReductionFn); |
2924 | |
2925 | llvm::Value *Args[] = { |
2926 | RTLoc, |
2927 | KernelTeamsReductionPtr, |
2928 | CGF.Builder.getInt32(C: C.getLangOpts().OpenMPCUDAReductionBufNum), |
2929 | ReductionDataSize, |
2930 | RL, |
2931 | ShuffleAndReduceFn, |
2932 | InterWarpCopyFn, |
2933 | GlobalToBufferCpyFn, |
2934 | GlobalToBufferRedFn, |
2935 | BufferToGlobalCpyFn, |
2936 | BufferToGlobalRedFn}; |
2937 | |
2938 | Res = CGF.EmitRuntimeCall( |
2939 | callee: OMPBuilder.getOrCreateRuntimeFunction( |
2940 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), |
2941 | args: Args); |
2942 | } |
2943 | |
2944 | // 5. Build if (res == 1) |
2945 | llvm::BasicBlock *ExitBB = CGF.createBasicBlock(name: ".omp.reduction.done" ); |
2946 | llvm::BasicBlock *ThenBB = CGF.createBasicBlock(name: ".omp.reduction.then" ); |
2947 | llvm::Value *Cond = CGF.Builder.CreateICmpEQ( |
2948 | LHS: Res, RHS: llvm::ConstantInt::get(Ty: CGM.Int32Ty, /*V=*/1)); |
2949 | CGF.Builder.CreateCondBr(Cond, True: ThenBB, False: ExitBB); |
2950 | |
2951 | // 6. Build then branch: where we have reduced values in the master |
2952 | // thread in each team. |
2953 | // __kmpc_end_reduce{_nowait}(<gtid>); |
2954 | // break; |
2955 | CGF.EmitBlock(BB: ThenBB); |
2956 | |
2957 | // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); |
2958 | auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, |
2959 | this](CodeGenFunction &CGF, PrePostActionTy &Action) { |
2960 | auto IPriv = Privates.begin(); |
2961 | auto ILHS = LHSExprs.begin(); |
2962 | auto IRHS = RHSExprs.begin(); |
2963 | for (const Expr *E : ReductionOps) { |
2964 | emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(Val: *ILHS), |
2965 | cast<DeclRefExpr>(Val: *IRHS)); |
2966 | ++IPriv; |
2967 | ++ILHS; |
2968 | ++IRHS; |
2969 | } |
2970 | }; |
2971 | RegionCodeGenTy RCG(CodeGen); |
2972 | RCG(CGF); |
2973 | // There is no need to emit line number for unconditional branch. |
2974 | (void)ApplyDebugLocation::CreateEmpty(CGF); |
2975 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
2976 | } |
2977 | |
2978 | const VarDecl * |
2979 | CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, |
2980 | const VarDecl *NativeParam) const { |
2981 | if (!NativeParam->getType()->isReferenceType()) |
2982 | return NativeParam; |
2983 | QualType ArgType = NativeParam->getType(); |
2984 | QualifierCollector QC; |
2985 | const Type *NonQualTy = QC.strip(type: ArgType); |
2986 | QualType PointeeTy = cast<ReferenceType>(Val: NonQualTy)->getPointeeType(); |
2987 | if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { |
2988 | if (Attr->getCaptureKind() == OMPC_map) { |
2989 | PointeeTy = CGM.getContext().getAddrSpaceQualType(T: PointeeTy, |
2990 | AddressSpace: LangAS::opencl_global); |
2991 | } |
2992 | } |
2993 | ArgType = CGM.getContext().getPointerType(T: PointeeTy); |
2994 | QC.addRestrict(); |
2995 | enum { NVPTX_local_addr = 5 }; |
2996 | QC.addAddressSpace(space: getLangASFromTargetAS(TargetAS: NVPTX_local_addr)); |
2997 | ArgType = QC.apply(Context: CGM.getContext(), QT: ArgType); |
2998 | if (isa<ImplicitParamDecl>(Val: NativeParam)) |
2999 | return ImplicitParamDecl::Create( |
3000 | CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), |
3001 | NativeParam->getIdentifier(), ArgType, ImplicitParamKind::Other); |
3002 | return ParmVarDecl::Create( |
3003 | C&: CGM.getContext(), |
3004 | DC: const_cast<DeclContext *>(NativeParam->getDeclContext()), |
3005 | StartLoc: NativeParam->getBeginLoc(), IdLoc: NativeParam->getLocation(), |
3006 | Id: NativeParam->getIdentifier(), T: ArgType, |
3007 | /*TInfo=*/nullptr, S: SC_None, /*DefArg=*/nullptr); |
3008 | } |
3009 | |
3010 | Address |
3011 | CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, |
3012 | const VarDecl *NativeParam, |
3013 | const VarDecl *TargetParam) const { |
3014 | assert(NativeParam != TargetParam && |
3015 | NativeParam->getType()->isReferenceType() && |
3016 | "Native arg must not be the same as target arg." ); |
3017 | Address LocalAddr = CGF.GetAddrOfLocalVar(VD: TargetParam); |
3018 | QualType NativeParamType = NativeParam->getType(); |
3019 | QualifierCollector QC; |
3020 | const Type *NonQualTy = QC.strip(type: NativeParamType); |
3021 | QualType NativePointeeTy = cast<ReferenceType>(Val: NonQualTy)->getPointeeType(); |
3022 | unsigned NativePointeeAddrSpace = |
3023 | CGF.getTypes().getTargetAddressSpace(T: NativePointeeTy); |
3024 | QualType TargetTy = TargetParam->getType(); |
3025 | llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(Addr: LocalAddr, /*Volatile=*/false, |
3026 | Ty: TargetTy, Loc: SourceLocation()); |
3027 | // Cast to native address space. |
3028 | TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
3029 | V: TargetAddr, |
3030 | DestTy: llvm::PointerType::get(C&: CGF.getLLVMContext(), AddressSpace: NativePointeeAddrSpace)); |
3031 | Address NativeParamAddr = CGF.CreateMemTemp(T: NativeParamType); |
3032 | CGF.EmitStoreOfScalar(Value: TargetAddr, Addr: NativeParamAddr, /*Volatile=*/false, |
3033 | Ty: NativeParamType); |
3034 | return NativeParamAddr; |
3035 | } |
3036 | |
3037 | void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( |
3038 | CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, |
3039 | ArrayRef<llvm::Value *> Args) const { |
3040 | SmallVector<llvm::Value *, 4> TargetArgs; |
3041 | TargetArgs.reserve(N: Args.size()); |
3042 | auto *FnType = OutlinedFn.getFunctionType(); |
3043 | for (unsigned I = 0, E = Args.size(); I < E; ++I) { |
3044 | if (FnType->isVarArg() && FnType->getNumParams() <= I) { |
3045 | TargetArgs.append(in_start: std::next(x: Args.begin(), n: I), in_end: Args.end()); |
3046 | break; |
3047 | } |
3048 | llvm::Type *TargetType = FnType->getParamType(i: I); |
3049 | llvm::Value *NativeArg = Args[I]; |
3050 | if (!TargetType->isPointerTy()) { |
3051 | TargetArgs.emplace_back(Args&: NativeArg); |
3052 | continue; |
3053 | } |
3054 | TargetArgs.emplace_back( |
3055 | Args: CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(V: NativeArg, DestTy: TargetType)); |
3056 | } |
3057 | CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); |
3058 | } |
3059 | |
3060 | /// Emit function which wraps the outline parallel region |
3061 | /// and controls the arguments which are passed to this function. |
3062 | /// The wrapper ensures that the outlined function is called |
3063 | /// with the correct arguments when data is shared. |
3064 | llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( |
3065 | llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { |
3066 | ASTContext &Ctx = CGM.getContext(); |
3067 | const auto &CS = *D.getCapturedStmt(OMPD_parallel); |
3068 | |
3069 | // Create a function that takes as argument the source thread. |
3070 | FunctionArgList WrapperArgs; |
3071 | QualType Int16QTy = |
3072 | Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); |
3073 | QualType Int32QTy = |
3074 | Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); |
3075 | ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), |
3076 | /*Id=*/nullptr, Int16QTy, |
3077 | ImplicitParamKind::Other); |
3078 | ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), |
3079 | /*Id=*/nullptr, Int32QTy, |
3080 | ImplicitParamKind::Other); |
3081 | WrapperArgs.emplace_back(Args: &ParallelLevelArg); |
3082 | WrapperArgs.emplace_back(Args: &WrapperArg); |
3083 | |
3084 | const CGFunctionInfo &CGFI = |
3085 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); |
3086 | |
3087 | auto *Fn = llvm::Function::Create( |
3088 | Ty: CGM.getTypes().GetFunctionType(Info: CGFI), Linkage: llvm::GlobalValue::InternalLinkage, |
3089 | N: Twine(OutlinedParallelFn->getName(), "_wrapper" ), M: &CGM.getModule()); |
3090 | |
3091 | // Ensure we do not inline the function. This is trivially true for the ones |
3092 | // passed to __kmpc_fork_call but the ones calles in serialized regions |
3093 | // could be inlined. This is not a perfect but it is closer to the invariant |
3094 | // we want, namely, every data environment starts with a new function. |
3095 | // TODO: We should pass the if condition to the runtime function and do the |
3096 | // handling there. Much cleaner code. |
3097 | Fn->addFnAttr(llvm::Attribute::NoInline); |
3098 | |
3099 | CGM.SetInternalFunctionAttributes(GD: GlobalDecl(), F: Fn, FI: CGFI); |
3100 | Fn->setLinkage(llvm::GlobalValue::InternalLinkage); |
3101 | Fn->setDoesNotRecurse(); |
3102 | |
3103 | CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); |
3104 | CGF.StartFunction(GD: GlobalDecl(), RetTy: Ctx.VoidTy, Fn: Fn, FnInfo: CGFI, Args: WrapperArgs, |
3105 | Loc: D.getBeginLoc(), StartLoc: D.getBeginLoc()); |
3106 | |
3107 | const auto *RD = CS.getCapturedRecordDecl(); |
3108 | auto CurField = RD->field_begin(); |
3109 | |
3110 | Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(Ty: CGF.Int32Ty, |
3111 | /*Name=*/".zero.addr" ); |
3112 | CGF.Builder.CreateStore(Val: CGF.Builder.getInt32(/*C*/ 0), Addr: ZeroAddr); |
3113 | // Get the array of arguments. |
3114 | SmallVector<llvm::Value *, 8> Args; |
3115 | |
3116 | Args.emplace_back(Args: CGF.GetAddrOfLocalVar(&WrapperArg).emitRawPointer(CGF)); |
3117 | Args.emplace_back(Args: ZeroAddr.emitRawPointer(CGF)); |
3118 | |
3119 | CGBuilderTy &Bld = CGF.Builder; |
3120 | auto CI = CS.capture_begin(); |
3121 | |
3122 | // Use global memory for data sharing. |
3123 | // Handle passing of global args to workers. |
3124 | RawAddress GlobalArgs = |
3125 | CGF.CreateDefaultAlignTempAlloca(Ty: CGF.VoidPtrPtrTy, Name: "global_args" ); |
3126 | llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); |
3127 | llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; |
3128 | CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
3129 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_get_shared_variables), |
3130 | args: DataSharingArgs); |
3131 | |
3132 | // Retrieve the shared variables from the list of references returned |
3133 | // by the runtime. Pass the variables to the outlined function. |
3134 | Address SharedArgListAddress = Address::invalid(); |
3135 | if (CS.capture_size() > 0 || |
3136 | isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { |
3137 | SharedArgListAddress = CGF.EmitLoadOfPointer( |
3138 | Ptr: GlobalArgs, PtrTy: CGF.getContext() |
3139 | .getPointerType(CGF.getContext().VoidPtrTy) |
3140 | .castAs<PointerType>()); |
3141 | } |
3142 | unsigned Idx = 0; |
3143 | if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { |
3144 | Address Src = Bld.CreateConstInBoundsGEP(Addr: SharedArgListAddress, Index: Idx); |
3145 | Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( |
3146 | Addr: Src, Ty: CGF.SizeTy->getPointerTo(), ElementTy: CGF.SizeTy); |
3147 | llvm::Value *LB = CGF.EmitLoadOfScalar( |
3148 | Addr: TypedAddress, |
3149 | /*Volatile=*/false, |
3150 | Ty: CGF.getContext().getPointerType(T: CGF.getContext().getSizeType()), |
3151 | Loc: cast<OMPLoopDirective>(Val: D).getLowerBoundVariable()->getExprLoc()); |
3152 | Args.emplace_back(Args&: LB); |
3153 | ++Idx; |
3154 | Src = Bld.CreateConstInBoundsGEP(Addr: SharedArgListAddress, Index: Idx); |
3155 | TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( |
3156 | Addr: Src, Ty: CGF.SizeTy->getPointerTo(), ElementTy: CGF.SizeTy); |
3157 | llvm::Value *UB = CGF.EmitLoadOfScalar( |
3158 | Addr: TypedAddress, |
3159 | /*Volatile=*/false, |
3160 | Ty: CGF.getContext().getPointerType(T: CGF.getContext().getSizeType()), |
3161 | Loc: cast<OMPLoopDirective>(Val: D).getUpperBoundVariable()->getExprLoc()); |
3162 | Args.emplace_back(Args&: UB); |
3163 | ++Idx; |
3164 | } |
3165 | if (CS.capture_size() > 0) { |
3166 | ASTContext &CGFContext = CGF.getContext(); |
3167 | for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { |
3168 | QualType ElemTy = CurField->getType(); |
3169 | Address Src = Bld.CreateConstInBoundsGEP(Addr: SharedArgListAddress, Index: I + Idx); |
3170 | Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( |
3171 | Addr: Src, Ty: CGF.ConvertTypeForMem(T: CGFContext.getPointerType(T: ElemTy)), |
3172 | ElementTy: CGF.ConvertTypeForMem(T: ElemTy)); |
3173 | llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, |
3174 | /*Volatile=*/false, |
3175 | CGFContext.getPointerType(T: ElemTy), |
3176 | CI->getLocation()); |
3177 | if (CI->capturesVariableByCopy() && |
3178 | !CI->getCapturedVar()->getType()->isAnyPointerType()) { |
3179 | Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), |
3180 | CI->getLocation()); |
3181 | } |
3182 | Args.emplace_back(Args&: Arg); |
3183 | } |
3184 | } |
3185 | |
3186 | emitOutlinedFunctionCall(CGF, Loc: D.getBeginLoc(), OutlinedFn: OutlinedParallelFn, Args); |
3187 | CGF.FinishFunction(); |
3188 | return Fn; |
3189 | } |
3190 | |
3191 | void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, |
3192 | const Decl *D) { |
3193 | if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) |
3194 | return; |
3195 | |
3196 | assert(D && "Expected function or captured|block decl." ); |
3197 | assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && |
3198 | "Function is registered already." ); |
3199 | assert((!TeamAndReductions.first || TeamAndReductions.first == D) && |
3200 | "Team is set but not processed." ); |
3201 | const Stmt *Body = nullptr; |
3202 | bool NeedToDelayGlobalization = false; |
3203 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
3204 | Body = FD->getBody(); |
3205 | } else if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) { |
3206 | Body = BD->getBody(); |
3207 | } else if (const auto *CD = dyn_cast<CapturedDecl>(Val: D)) { |
3208 | Body = CD->getBody(); |
3209 | NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; |
3210 | if (NeedToDelayGlobalization && |
3211 | getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) |
3212 | return; |
3213 | } |
3214 | if (!Body) |
3215 | return; |
3216 | CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); |
3217 | VarChecker.Visit(Body); |
3218 | const RecordDecl *GlobalizedVarsRecord = |
3219 | VarChecker.getGlobalizedRecord(IsInTTDRegion); |
3220 | TeamAndReductions.first = nullptr; |
3221 | TeamAndReductions.second.clear(); |
3222 | ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = |
3223 | VarChecker.getEscapedVariableLengthDecls(); |
3224 | ArrayRef<const ValueDecl *> DelayedVariableLengthDecls = |
3225 | VarChecker.getDelayedVariableLengthDecls(); |
3226 | if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty() && |
3227 | DelayedVariableLengthDecls.empty()) |
3228 | return; |
3229 | auto I = FunctionGlobalizedDecls.try_emplace(Key: CGF.CurFn).first; |
3230 | I->getSecond().MappedParams = |
3231 | std::make_unique<CodeGenFunction::OMPMapVars>(); |
3232 | I->getSecond().EscapedParameters.insert( |
3233 | I: VarChecker.getEscapedParameters().begin(), |
3234 | E: VarChecker.getEscapedParameters().end()); |
3235 | I->getSecond().EscapedVariableLengthDecls.append( |
3236 | in_start: EscapedVariableLengthDecls.begin(), in_end: EscapedVariableLengthDecls.end()); |
3237 | I->getSecond().DelayedVariableLengthDecls.append( |
3238 | in_start: DelayedVariableLengthDecls.begin(), in_end: DelayedVariableLengthDecls.end()); |
3239 | DeclToAddrMapTy &Data = I->getSecond().LocalVarData; |
3240 | for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { |
3241 | assert(VD->isCanonicalDecl() && "Expected canonical declaration" ); |
3242 | Data.insert(std::make_pair(x&: VD, y: MappedVarData())); |
3243 | } |
3244 | if (!NeedToDelayGlobalization) { |
3245 | emitGenericVarsProlog(CGF, Loc: D->getBeginLoc()); |
3246 | struct GlobalizationScope final : EHScopeStack::Cleanup { |
3247 | GlobalizationScope() = default; |
3248 | |
3249 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
3250 | static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) |
3251 | .emitGenericVarsEpilog(CGF); |
3252 | } |
3253 | }; |
3254 | CGF.EHStack.pushCleanup<GlobalizationScope>(Kind: NormalAndEHCleanup); |
3255 | } |
3256 | } |
3257 | |
3258 | Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, |
3259 | const VarDecl *VD) { |
3260 | if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { |
3261 | const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); |
3262 | auto AS = LangAS::Default; |
3263 | switch (A->getAllocatorType()) { |
3264 | // Use the default allocator here as by default local vars are |
3265 | // threadlocal. |
3266 | case OMPAllocateDeclAttr::OMPNullMemAlloc: |
3267 | case OMPAllocateDeclAttr::OMPDefaultMemAlloc: |
3268 | case OMPAllocateDeclAttr::OMPThreadMemAlloc: |
3269 | case OMPAllocateDeclAttr::OMPHighBWMemAlloc: |
3270 | case OMPAllocateDeclAttr::OMPLowLatMemAlloc: |
3271 | // Follow the user decision - use default allocation. |
3272 | return Address::invalid(); |
3273 | case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: |
3274 | // TODO: implement aupport for user-defined allocators. |
3275 | return Address::invalid(); |
3276 | case OMPAllocateDeclAttr::OMPConstMemAlloc: |
3277 | AS = LangAS::cuda_constant; |
3278 | break; |
3279 | case OMPAllocateDeclAttr::OMPPTeamMemAlloc: |
3280 | AS = LangAS::cuda_shared; |
3281 | break; |
3282 | case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: |
3283 | case OMPAllocateDeclAttr::OMPCGroupMemAlloc: |
3284 | break; |
3285 | } |
3286 | llvm::Type *VarTy = CGF.ConvertTypeForMem(T: VD->getType()); |
3287 | auto *GV = new llvm::GlobalVariable( |
3288 | CGM.getModule(), VarTy, /*isConstant=*/false, |
3289 | llvm::GlobalValue::InternalLinkage, llvm::PoisonValue::get(T: VarTy), |
3290 | VD->getName(), |
3291 | /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, |
3292 | CGM.getContext().getTargetAddressSpace(AS)); |
3293 | CharUnits Align = CGM.getContext().getDeclAlign(VD); |
3294 | GV->setAlignment(Align.getAsAlign()); |
3295 | return Address( |
3296 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
3297 | GV, VarTy->getPointerTo(AddrSpace: CGM.getContext().getTargetAddressSpace( |
3298 | AS: VD->getType().getAddressSpace()))), |
3299 | VarTy, Align); |
3300 | } |
3301 | |
3302 | if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) |
3303 | return Address::invalid(); |
3304 | |
3305 | VD = VD->getCanonicalDecl(); |
3306 | auto I = FunctionGlobalizedDecls.find(Val: CGF.CurFn); |
3307 | if (I == FunctionGlobalizedDecls.end()) |
3308 | return Address::invalid(); |
3309 | auto VDI = I->getSecond().LocalVarData.find(VD); |
3310 | if (VDI != I->getSecond().LocalVarData.end()) |
3311 | return VDI->second.PrivateAddr; |
3312 | if (VD->hasAttrs()) { |
3313 | for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), |
3314 | E(VD->attr_end()); |
3315 | IT != E; ++IT) { |
3316 | auto VDI = I->getSecond().LocalVarData.find( |
3317 | cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) |
3318 | ->getCanonicalDecl()); |
3319 | if (VDI != I->getSecond().LocalVarData.end()) |
3320 | return VDI->second.PrivateAddr; |
3321 | } |
3322 | } |
3323 | |
3324 | return Address::invalid(); |
3325 | } |
3326 | |
3327 | void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { |
3328 | FunctionGlobalizedDecls.erase(Val: CGF.CurFn); |
3329 | CGOpenMPRuntime::functionFinished(CGF); |
3330 | } |
3331 | |
3332 | void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( |
3333 | CodeGenFunction &CGF, const OMPLoopDirective &S, |
3334 | OpenMPDistScheduleClauseKind &ScheduleKind, |
3335 | llvm::Value *&Chunk) const { |
3336 | auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
3337 | if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { |
3338 | ScheduleKind = OMPC_DIST_SCHEDULE_static; |
3339 | Chunk = CGF.EmitScalarConversion( |
3340 | Src: RT.getGPUNumThreads(CGF), |
3341 | SrcTy: CGF.getContext().getIntTypeForBitwidth(DestWidth: 32, /*Signed=*/0), |
3342 | DstTy: S.getIterationVariable()->getType(), Loc: S.getBeginLoc()); |
3343 | return; |
3344 | } |
3345 | CGOpenMPRuntime::getDefaultDistScheduleAndChunk( |
3346 | CGF, S, ScheduleKind, Chunk); |
3347 | } |
3348 | |
3349 | void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( |
3350 | CodeGenFunction &CGF, const OMPLoopDirective &S, |
3351 | OpenMPScheduleClauseKind &ScheduleKind, |
3352 | const Expr *&ChunkExpr) const { |
3353 | ScheduleKind = OMPC_SCHEDULE_static; |
3354 | // Chunk size is 1 in this case. |
3355 | llvm::APInt ChunkSize(32, 1); |
3356 | ChunkExpr = IntegerLiteral::Create(C: CGF.getContext(), V: ChunkSize, |
3357 | type: CGF.getContext().getIntTypeForBitwidth(DestWidth: 32, /*Signed=*/0), |
3358 | l: SourceLocation()); |
3359 | } |
3360 | |
3361 | void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( |
3362 | CodeGenFunction &CGF, const OMPExecutableDirective &D) const { |
3363 | assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && |
3364 | " Expected target-based directive." ); |
3365 | const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); |
3366 | for (const CapturedStmt::Capture &C : CS->captures()) { |
3367 | // Capture variables captured by reference in lambdas for target-based |
3368 | // directives. |
3369 | if (!C.capturesVariable()) |
3370 | continue; |
3371 | const VarDecl *VD = C.getCapturedVar(); |
3372 | const auto *RD = VD->getType() |
3373 | .getCanonicalType() |
3374 | .getNonReferenceType() |
3375 | ->getAsCXXRecordDecl(); |
3376 | if (!RD || !RD->isLambda()) |
3377 | continue; |
3378 | Address VDAddr = CGF.GetAddrOfLocalVar(VD); |
3379 | LValue VDLVal; |
3380 | if (VD->getType().getCanonicalType()->isReferenceType()) |
3381 | VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); |
3382 | else |
3383 | VDLVal = CGF.MakeAddrLValue( |
3384 | VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); |
3385 | llvm::DenseMap<const ValueDecl *, FieldDecl *> Captures; |
3386 | FieldDecl *ThisCapture = nullptr; |
3387 | RD->getCaptureFields(Captures, ThisCapture); |
3388 | if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { |
3389 | LValue ThisLVal = |
3390 | CGF.EmitLValueForFieldInitialization(Base: VDLVal, Field: ThisCapture); |
3391 | llvm::Value *CXXThis = CGF.LoadCXXThis(); |
3392 | CGF.EmitStoreOfScalar(value: CXXThis, lvalue: ThisLVal); |
3393 | } |
3394 | for (const LambdaCapture &LC : RD->captures()) { |
3395 | if (LC.getCaptureKind() != LCK_ByRef) |
3396 | continue; |
3397 | const ValueDecl *VD = LC.getCapturedVar(); |
3398 | // FIXME: For now VD is always a VarDecl because OpenMP does not support |
3399 | // capturing structured bindings in lambdas yet. |
3400 | if (!CS->capturesVariable(cast<VarDecl>(VD))) |
3401 | continue; |
3402 | auto It = Captures.find(VD); |
3403 | assert(It != Captures.end() && "Found lambda capture without field." ); |
3404 | LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); |
3405 | Address VDAddr = CGF.GetAddrOfLocalVar(cast<VarDecl>(VD)); |
3406 | if (VD->getType().getCanonicalType()->isReferenceType()) |
3407 | VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, |
3408 | VD->getType().getCanonicalType()) |
3409 | .getAddress(CGF); |
3410 | CGF.EmitStoreOfScalar(VDAddr.emitRawPointer(CGF), VarLVal); |
3411 | } |
3412 | } |
3413 | } |
3414 | |
3415 | bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, |
3416 | LangAS &AS) { |
3417 | if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) |
3418 | return false; |
3419 | const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); |
3420 | switch(A->getAllocatorType()) { |
3421 | case OMPAllocateDeclAttr::OMPNullMemAlloc: |
3422 | case OMPAllocateDeclAttr::OMPDefaultMemAlloc: |
3423 | // Not supported, fallback to the default mem space. |
3424 | case OMPAllocateDeclAttr::OMPThreadMemAlloc: |
3425 | case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: |
3426 | case OMPAllocateDeclAttr::OMPCGroupMemAlloc: |
3427 | case OMPAllocateDeclAttr::OMPHighBWMemAlloc: |
3428 | case OMPAllocateDeclAttr::OMPLowLatMemAlloc: |
3429 | AS = LangAS::Default; |
3430 | return true; |
3431 | case OMPAllocateDeclAttr::OMPConstMemAlloc: |
3432 | AS = LangAS::cuda_constant; |
3433 | return true; |
3434 | case OMPAllocateDeclAttr::OMPPTeamMemAlloc: |
3435 | AS = LangAS::cuda_shared; |
3436 | return true; |
3437 | case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: |
3438 | llvm_unreachable("Expected predefined allocator for the variables with the " |
3439 | "static storage." ); |
3440 | } |
3441 | return false; |
3442 | } |
3443 | |
3444 | // Get current CudaArch and ignore any unknown values |
3445 | static CudaArch getCudaArch(CodeGenModule &CGM) { |
3446 | if (!CGM.getTarget().hasFeature(Feature: "ptx" )) |
3447 | return CudaArch::UNKNOWN; |
3448 | for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { |
3449 | if (Feature.getValue()) { |
3450 | CudaArch Arch = StringToCudaArch(S: Feature.getKey()); |
3451 | if (Arch != CudaArch::UNKNOWN) |
3452 | return Arch; |
3453 | } |
3454 | } |
3455 | return CudaArch::UNKNOWN; |
3456 | } |
3457 | |
3458 | /// Check to see if target architecture supports unified addressing which is |
3459 | /// a restriction for OpenMP requires clause "unified_shared_memory". |
3460 | void CGOpenMPRuntimeGPU::processRequiresDirective( |
3461 | const OMPRequiresDecl *D) { |
3462 | for (const OMPClause *Clause : D->clauselists()) { |
3463 | if (Clause->getClauseKind() == OMPC_unified_shared_memory) { |
3464 | CudaArch Arch = getCudaArch(CGM); |
3465 | switch (Arch) { |
3466 | case CudaArch::SM_20: |
3467 | case CudaArch::SM_21: |
3468 | case CudaArch::SM_30: |
3469 | case CudaArch::SM_32_: |
3470 | case CudaArch::SM_35: |
3471 | case CudaArch::SM_37: |
3472 | case CudaArch::SM_50: |
3473 | case CudaArch::SM_52: |
3474 | case CudaArch::SM_53: { |
3475 | SmallString<256> Buffer; |
3476 | llvm::raw_svector_ostream Out(Buffer); |
3477 | Out << "Target architecture " << CudaArchToString(A: Arch) |
3478 | << " does not support unified addressing" ; |
3479 | CGM.Error(loc: Clause->getBeginLoc(), error: Out.str()); |
3480 | return; |
3481 | } |
3482 | case CudaArch::SM_60: |
3483 | case CudaArch::SM_61: |
3484 | case CudaArch::SM_62: |
3485 | case CudaArch::SM_70: |
3486 | case CudaArch::SM_72: |
3487 | case CudaArch::SM_75: |
3488 | case CudaArch::SM_80: |
3489 | case CudaArch::SM_86: |
3490 | case CudaArch::SM_87: |
3491 | case CudaArch::SM_89: |
3492 | case CudaArch::SM_90: |
3493 | case CudaArch::SM_90a: |
3494 | case CudaArch::GFX600: |
3495 | case CudaArch::GFX601: |
3496 | case CudaArch::GFX602: |
3497 | case CudaArch::GFX700: |
3498 | case CudaArch::GFX701: |
3499 | case CudaArch::GFX702: |
3500 | case CudaArch::GFX703: |
3501 | case CudaArch::GFX704: |
3502 | case CudaArch::GFX705: |
3503 | case CudaArch::GFX801: |
3504 | case CudaArch::GFX802: |
3505 | case CudaArch::GFX803: |
3506 | case CudaArch::GFX805: |
3507 | case CudaArch::GFX810: |
3508 | case CudaArch::GFX900: |
3509 | case CudaArch::GFX902: |
3510 | case CudaArch::GFX904: |
3511 | case CudaArch::GFX906: |
3512 | case CudaArch::GFX908: |
3513 | case CudaArch::GFX909: |
3514 | case CudaArch::GFX90a: |
3515 | case CudaArch::GFX90c: |
3516 | case CudaArch::GFX940: |
3517 | case CudaArch::GFX941: |
3518 | case CudaArch::GFX942: |
3519 | case CudaArch::GFX1010: |
3520 | case CudaArch::GFX1011: |
3521 | case CudaArch::GFX1012: |
3522 | case CudaArch::GFX1013: |
3523 | case CudaArch::GFX1030: |
3524 | case CudaArch::GFX1031: |
3525 | case CudaArch::GFX1032: |
3526 | case CudaArch::GFX1033: |
3527 | case CudaArch::GFX1034: |
3528 | case CudaArch::GFX1035: |
3529 | case CudaArch::GFX1036: |
3530 | case CudaArch::GFX1100: |
3531 | case CudaArch::GFX1101: |
3532 | case CudaArch::GFX1102: |
3533 | case CudaArch::GFX1103: |
3534 | case CudaArch::GFX1150: |
3535 | case CudaArch::GFX1151: |
3536 | case CudaArch::GFX1200: |
3537 | case CudaArch::GFX1201: |
3538 | case CudaArch::Generic: |
3539 | case CudaArch::UNUSED: |
3540 | case CudaArch::UNKNOWN: |
3541 | break; |
3542 | case CudaArch::LAST: |
3543 | llvm_unreachable("Unexpected Cuda arch." ); |
3544 | } |
3545 | } |
3546 | } |
3547 | CGOpenMPRuntime::processRequiresDirective(D); |
3548 | } |
3549 | |
3550 | llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { |
3551 | CGBuilderTy &Bld = CGF.Builder; |
3552 | llvm::Module *M = &CGF.CGM.getModule(); |
3553 | const char *LocSize = "__kmpc_get_hardware_num_threads_in_block" ; |
3554 | llvm::Function *F = M->getFunction(Name: LocSize); |
3555 | if (!F) { |
3556 | F = llvm::Function::Create( |
3557 | Ty: llvm::FunctionType::get(Result: CGF.Int32Ty, Params: std::nullopt, isVarArg: false), |
3558 | Linkage: llvm::GlobalVariable::ExternalLinkage, N: LocSize, M: &CGF.CGM.getModule()); |
3559 | } |
3560 | return Bld.CreateCall(Callee: F, Args: std::nullopt, Name: "nvptx_num_threads" ); |
3561 | } |
3562 | |
3563 | llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) { |
3564 | ArrayRef<llvm::Value *> Args{}; |
3565 | return CGF.EmitRuntimeCall( |
3566 | callee: OMPBuilder.getOrCreateRuntimeFunction( |
3567 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_get_hardware_thread_id_in_block), |
3568 | args: Args); |
3569 | } |
3570 | |
3571 | llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) { |
3572 | ArrayRef<llvm::Value *> Args{}; |
3573 | return CGF.EmitRuntimeCall(callee: OMPBuilder.getOrCreateRuntimeFunction( |
3574 | M&: CGM.getModule(), FnID: OMPRTL___kmpc_get_warp_size), |
3575 | args: Args); |
3576 | } |
3577 | |