1 | //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This provides C++ code generation targeting the Microsoft Visual C++ ABI. |
10 | // The class in this file generates structures that follow the Microsoft |
11 | // Visual C++ ABI, which is actually not very well documented at all outside |
12 | // of Microsoft. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "ABIInfo.h" |
17 | #include "CGCXXABI.h" |
18 | #include "CGCleanup.h" |
19 | #include "CGVTables.h" |
20 | #include "CodeGenModule.h" |
21 | #include "CodeGenTypes.h" |
22 | #include "TargetInfo.h" |
23 | #include "clang/AST/Attr.h" |
24 | #include "clang/AST/CXXInheritance.h" |
25 | #include "clang/AST/Decl.h" |
26 | #include "clang/AST/DeclCXX.h" |
27 | #include "clang/AST/StmtCXX.h" |
28 | #include "clang/AST/VTableBuilder.h" |
29 | #include "clang/CodeGen/ConstantInitBuilder.h" |
30 | #include "llvm/ADT/StringExtras.h" |
31 | #include "llvm/ADT/StringSet.h" |
32 | #include "llvm/IR/Intrinsics.h" |
33 | |
34 | using namespace clang; |
35 | using namespace CodeGen; |
36 | |
37 | namespace { |
38 | |
39 | /// Holds all the vbtable globals for a given class. |
40 | struct VBTableGlobals { |
41 | const VPtrInfoVector *VBTables; |
42 | SmallVector<llvm::GlobalVariable *, 2> Globals; |
43 | }; |
44 | |
45 | class MicrosoftCXXABI : public CGCXXABI { |
46 | public: |
47 | MicrosoftCXXABI(CodeGenModule &CGM) |
48 | : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), |
49 | ClassHierarchyDescriptorType(nullptr), |
50 | CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), |
51 | ThrowInfoType(nullptr) { |
52 | assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() || |
53 | CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) && |
54 | "visibility export mapping option unimplemented in this ABI" ); |
55 | } |
56 | |
57 | bool HasThisReturn(GlobalDecl GD) const override; |
58 | bool hasMostDerivedReturn(GlobalDecl GD) const override; |
59 | |
60 | bool classifyReturnType(CGFunctionInfo &FI) const override; |
61 | |
62 | RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; |
63 | |
64 | bool isSRetParameterAfterThis() const override { return true; } |
65 | |
66 | bool isThisCompleteObject(GlobalDecl GD) const override { |
67 | // The Microsoft ABI doesn't use separate complete-object vs. |
68 | // base-object variants of constructors, but it does of destructors. |
69 | if (isa<CXXDestructorDecl>(Val: GD.getDecl())) { |
70 | switch (GD.getDtorType()) { |
71 | case Dtor_Complete: |
72 | case Dtor_Deleting: |
73 | return true; |
74 | |
75 | case Dtor_Base: |
76 | return false; |
77 | |
78 | case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?" ); |
79 | } |
80 | llvm_unreachable("bad dtor kind" ); |
81 | } |
82 | |
83 | // No other kinds. |
84 | return false; |
85 | } |
86 | |
87 | size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, |
88 | FunctionArgList &Args) const override { |
89 | assert(Args.size() >= 2 && |
90 | "expected the arglist to have at least two args!" ); |
91 | // The 'most_derived' parameter goes second if the ctor is variadic and |
92 | // has v-bases. |
93 | if (CD->getParent()->getNumVBases() > 0 && |
94 | CD->getType()->castAs<FunctionProtoType>()->isVariadic()) |
95 | return 2; |
96 | return 1; |
97 | } |
98 | |
99 | std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { |
100 | std::vector<CharUnits> VBPtrOffsets; |
101 | const ASTContext &Context = getContext(); |
102 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
103 | |
104 | const VBTableGlobals &VBGlobals = enumerateVBTables(RD); |
105 | for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { |
106 | const ASTRecordLayout &SubobjectLayout = |
107 | Context.getASTRecordLayout(VBT->IntroducingObject); |
108 | CharUnits Offs = VBT->NonVirtualOffset; |
109 | Offs += SubobjectLayout.getVBPtrOffset(); |
110 | if (VBT->getVBaseWithVPtr()) |
111 | Offs += Layout.getVBaseClassOffset(VBase: VBT->getVBaseWithVPtr()); |
112 | VBPtrOffsets.push_back(x: Offs); |
113 | } |
114 | llvm::array_pod_sort(Start: VBPtrOffsets.begin(), End: VBPtrOffsets.end()); |
115 | return VBPtrOffsets; |
116 | } |
117 | |
118 | StringRef GetPureVirtualCallName() override { return "_purecall" ; } |
119 | StringRef GetDeletedVirtualCallName() override { return "_purecall" ; } |
120 | |
121 | void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, |
122 | Address Ptr, QualType ElementType, |
123 | const CXXDestructorDecl *Dtor) override; |
124 | |
125 | void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; |
126 | void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; |
127 | |
128 | void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; |
129 | |
130 | llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, |
131 | const VPtrInfo &Info); |
132 | |
133 | llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; |
134 | CatchTypeInfo |
135 | getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; |
136 | |
137 | /// MSVC needs an extra flag to indicate a catchall. |
138 | CatchTypeInfo getCatchAllTypeInfo() override { |
139 | // For -EHa catch(...) must handle HW exception |
140 | // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions |
141 | if (getContext().getLangOpts().EHAsynch) |
142 | return CatchTypeInfo{.RTTI: nullptr, .Flags: 0}; |
143 | else |
144 | return CatchTypeInfo{.RTTI: nullptr, .Flags: 0x40}; |
145 | } |
146 | |
147 | bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; |
148 | void EmitBadTypeidCall(CodeGenFunction &CGF) override; |
149 | llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, |
150 | Address ThisPtr, |
151 | llvm::Type *StdTypeInfoPtrTy) override; |
152 | |
153 | bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
154 | QualType SrcRecordTy) override; |
155 | |
156 | bool shouldEmitExactDynamicCast(QualType DestRecordTy) override { |
157 | // TODO: Add support for exact dynamic_casts. |
158 | return false; |
159 | } |
160 | llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address Value, |
161 | QualType SrcRecordTy, QualType DestTy, |
162 | QualType DestRecordTy, |
163 | llvm::BasicBlock *CastSuccess, |
164 | llvm::BasicBlock *CastFail) override { |
165 | llvm_unreachable("unsupported" ); |
166 | } |
167 | |
168 | llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value, |
169 | QualType SrcRecordTy, QualType DestTy, |
170 | QualType DestRecordTy, |
171 | llvm::BasicBlock *CastEnd) override; |
172 | |
173 | llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, |
174 | QualType SrcRecordTy) override; |
175 | |
176 | bool EmitBadCastCall(CodeGenFunction &CGF) override; |
177 | bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { |
178 | return false; |
179 | } |
180 | |
181 | llvm::Value * |
182 | GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, |
183 | const CXXRecordDecl *ClassDecl, |
184 | const CXXRecordDecl *BaseClassDecl) override; |
185 | |
186 | llvm::BasicBlock * |
187 | EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, |
188 | const CXXRecordDecl *RD) override; |
189 | |
190 | llvm::BasicBlock * |
191 | EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); |
192 | |
193 | void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, |
194 | const CXXRecordDecl *RD) override; |
195 | |
196 | void EmitCXXConstructors(const CXXConstructorDecl *D) override; |
197 | |
198 | // Background on MSVC destructors |
199 | // ============================== |
200 | // |
201 | // Both Itanium and MSVC ABIs have destructor variants. The variant names |
202 | // roughly correspond in the following way: |
203 | // Itanium Microsoft |
204 | // Base -> no name, just ~Class |
205 | // Complete -> vbase destructor |
206 | // Deleting -> scalar deleting destructor |
207 | // vector deleting destructor |
208 | // |
209 | // The base and complete destructors are the same as in Itanium, although the |
210 | // complete destructor does not accept a VTT parameter when there are virtual |
211 | // bases. A separate mechanism involving vtordisps is used to ensure that |
212 | // virtual methods of destroyed subobjects are not called. |
213 | // |
214 | // The deleting destructors accept an i32 bitfield as a second parameter. Bit |
215 | // 1 indicates if the memory should be deleted. Bit 2 indicates if the this |
216 | // pointer points to an array. The scalar deleting destructor assumes that |
217 | // bit 2 is zero, and therefore does not contain a loop. |
218 | // |
219 | // For virtual destructors, only one entry is reserved in the vftable, and it |
220 | // always points to the vector deleting destructor. The vector deleting |
221 | // destructor is the most general, so it can be used to destroy objects in |
222 | // place, delete single heap objects, or delete arrays. |
223 | // |
224 | // A TU defining a non-inline destructor is only guaranteed to emit a base |
225 | // destructor, and all of the other variants are emitted on an as-needed basis |
226 | // in COMDATs. Because a non-base destructor can be emitted in a TU that |
227 | // lacks a definition for the destructor, non-base destructors must always |
228 | // delegate to or alias the base destructor. |
229 | |
230 | AddedStructorArgCounts |
231 | buildStructorSignature(GlobalDecl GD, |
232 | SmallVectorImpl<CanQualType> &ArgTys) override; |
233 | |
234 | /// Non-base dtors should be emitted as delegating thunks in this ABI. |
235 | bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, |
236 | CXXDtorType DT) const override { |
237 | return DT != Dtor_Base; |
238 | } |
239 | |
240 | void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, |
241 | const CXXDestructorDecl *Dtor, |
242 | CXXDtorType DT) const override; |
243 | |
244 | llvm::GlobalValue::LinkageTypes |
245 | getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, |
246 | CXXDtorType DT) const override; |
247 | |
248 | void EmitCXXDestructors(const CXXDestructorDecl *D) override; |
249 | |
250 | const CXXRecordDecl *getThisArgumentTypeForMethod(GlobalDecl GD) override { |
251 | auto *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
252 | |
253 | if (MD->isVirtual()) { |
254 | GlobalDecl LookupGD = GD; |
255 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
256 | // Complete dtors take a pointer to the complete object, |
257 | // thus don't need adjustment. |
258 | if (GD.getDtorType() == Dtor_Complete) |
259 | return MD->getParent(); |
260 | |
261 | // There's only Dtor_Deleting in vftable but it shares the this |
262 | // adjustment with the base one, so look up the deleting one instead. |
263 | LookupGD = GlobalDecl(DD, Dtor_Deleting); |
264 | } |
265 | MethodVFTableLocation ML = |
266 | CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD: LookupGD); |
267 | |
268 | // The vbases might be ordered differently in the final overrider object |
269 | // and the complete object, so the "this" argument may sometimes point to |
270 | // memory that has no particular type (e.g. past the complete object). |
271 | // In this case, we just use a generic pointer type. |
272 | // FIXME: might want to have a more precise type in the non-virtual |
273 | // multiple inheritance case. |
274 | if (ML.VBase || !ML.VFPtrOffset.isZero()) |
275 | return nullptr; |
276 | } |
277 | return MD->getParent(); |
278 | } |
279 | |
280 | Address |
281 | adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, |
282 | Address This, |
283 | bool VirtualCall) override; |
284 | |
285 | void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, |
286 | FunctionArgList &Params) override; |
287 | |
288 | void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; |
289 | |
290 | AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, |
291 | const CXXConstructorDecl *D, |
292 | CXXCtorType Type, |
293 | bool ForVirtualBase, |
294 | bool Delegating) override; |
295 | |
296 | llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, |
297 | const CXXDestructorDecl *DD, |
298 | CXXDtorType Type, |
299 | bool ForVirtualBase, |
300 | bool Delegating) override; |
301 | |
302 | void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, |
303 | CXXDtorType Type, bool ForVirtualBase, |
304 | bool Delegating, Address This, |
305 | QualType ThisTy) override; |
306 | |
307 | void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, |
308 | llvm::GlobalVariable *VTable); |
309 | |
310 | void emitVTableDefinitions(CodeGenVTables &CGVT, |
311 | const CXXRecordDecl *RD) override; |
312 | |
313 | bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, |
314 | CodeGenFunction::VPtr Vptr) override; |
315 | |
316 | /// Don't initialize vptrs if dynamic class |
317 | /// is marked with the 'novtable' attribute. |
318 | bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { |
319 | return !VTableClass->hasAttr<MSNoVTableAttr>(); |
320 | } |
321 | |
322 | llvm::Constant * |
323 | getVTableAddressPoint(BaseSubobject Base, |
324 | const CXXRecordDecl *VTableClass) override; |
325 | |
326 | llvm::Value *getVTableAddressPointInStructor( |
327 | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, |
328 | BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; |
329 | |
330 | llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, |
331 | CharUnits VPtrOffset) override; |
332 | |
333 | CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, |
334 | Address This, llvm::Type *Ty, |
335 | SourceLocation Loc) override; |
336 | |
337 | llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, |
338 | const CXXDestructorDecl *Dtor, |
339 | CXXDtorType DtorType, Address This, |
340 | DeleteOrMemberCallExpr E) override; |
341 | |
342 | void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, |
343 | CallArgList &CallArgs) override { |
344 | assert(GD.getDtorType() == Dtor_Deleting && |
345 | "Only deleting destructor thunks are available in this ABI" ); |
346 | CallArgs.add(rvalue: RValue::get(V: getStructorImplicitParamValue(CGF)), |
347 | type: getContext().IntTy); |
348 | } |
349 | |
350 | void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; |
351 | |
352 | llvm::GlobalVariable * |
353 | getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, |
354 | llvm::GlobalVariable::LinkageTypes Linkage); |
355 | |
356 | llvm::GlobalVariable * |
357 | getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, |
358 | const CXXRecordDecl *DstRD) { |
359 | SmallString<256> OutName; |
360 | llvm::raw_svector_ostream Out(OutName); |
361 | getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); |
362 | StringRef MangledName = OutName.str(); |
363 | |
364 | if (auto *VDispMap = CGM.getModule().getNamedGlobal(Name: MangledName)) |
365 | return VDispMap; |
366 | |
367 | MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); |
368 | unsigned NumEntries = 1 + SrcRD->getNumVBases(); |
369 | SmallVector<llvm::Constant *, 4> Map(NumEntries, |
370 | llvm::UndefValue::get(T: CGM.IntTy)); |
371 | Map[0] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0); |
372 | bool AnyDifferent = false; |
373 | for (const auto &I : SrcRD->vbases()) { |
374 | const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); |
375 | if (!DstRD->isVirtuallyDerivedFrom(Base: VBase)) |
376 | continue; |
377 | |
378 | unsigned SrcVBIndex = VTContext.getVBTableIndex(Derived: SrcRD, VBase); |
379 | unsigned DstVBIndex = VTContext.getVBTableIndex(Derived: DstRD, VBase); |
380 | Map[SrcVBIndex] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: DstVBIndex * 4); |
381 | AnyDifferent |= SrcVBIndex != DstVBIndex; |
382 | } |
383 | // This map would be useless, don't use it. |
384 | if (!AnyDifferent) |
385 | return nullptr; |
386 | |
387 | llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(ElementType: CGM.IntTy, NumElements: Map.size()); |
388 | llvm::Constant *Init = llvm::ConstantArray::get(T: VDispMapTy, V: Map); |
389 | llvm::GlobalValue::LinkageTypes Linkage = |
390 | SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() |
391 | ? llvm::GlobalValue::LinkOnceODRLinkage |
392 | : llvm::GlobalValue::InternalLinkage; |
393 | auto *VDispMap = new llvm::GlobalVariable( |
394 | CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, |
395 | /*Initializer=*/Init, MangledName); |
396 | return VDispMap; |
397 | } |
398 | |
399 | void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, |
400 | llvm::GlobalVariable *GV) const; |
401 | |
402 | void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, |
403 | GlobalDecl GD, bool ReturnAdjustment) override { |
404 | GVALinkage Linkage = |
405 | getContext().GetGVALinkageForFunction(FD: cast<FunctionDecl>(Val: GD.getDecl())); |
406 | |
407 | if (Linkage == GVA_Internal) |
408 | Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); |
409 | else if (ReturnAdjustment) |
410 | Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); |
411 | else |
412 | Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); |
413 | } |
414 | |
415 | bool exportThunk() override { return false; } |
416 | |
417 | llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, |
418 | const ThisAdjustment &TA) override; |
419 | |
420 | llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, |
421 | const ReturnAdjustment &RA) override; |
422 | |
423 | void EmitThreadLocalInitFuncs( |
424 | CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, |
425 | ArrayRef<llvm::Function *> CXXThreadLocalInits, |
426 | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; |
427 | |
428 | bool usesThreadWrapperFunction(const VarDecl *VD) const override { |
429 | return getContext().getLangOpts().isCompatibleWithMSVC( |
430 | MajorVersion: LangOptions::MSVC2019_5) && |
431 | (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD)); |
432 | } |
433 | LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, |
434 | QualType LValType) override; |
435 | |
436 | void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, |
437 | llvm::GlobalVariable *DeclPtr, |
438 | bool PerformInit) override; |
439 | void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
440 | llvm::FunctionCallee Dtor, |
441 | llvm::Constant *Addr) override; |
442 | |
443 | // ==== Notes on array cookies ========= |
444 | // |
445 | // MSVC seems to only use cookies when the class has a destructor; a |
446 | // two-argument usual array deallocation function isn't sufficient. |
447 | // |
448 | // For example, this code prints "100" and "1": |
449 | // struct A { |
450 | // char x; |
451 | // void *operator new[](size_t sz) { |
452 | // printf("%u\n", sz); |
453 | // return malloc(sz); |
454 | // } |
455 | // void operator delete[](void *p, size_t sz) { |
456 | // printf("%u\n", sz); |
457 | // free(p); |
458 | // } |
459 | // }; |
460 | // int main() { |
461 | // A *p = new A[100]; |
462 | // delete[] p; |
463 | // } |
464 | // Whereas it prints "104" and "104" if you give A a destructor. |
465 | |
466 | bool requiresArrayCookie(const CXXDeleteExpr *expr, |
467 | QualType elementType) override; |
468 | bool requiresArrayCookie(const CXXNewExpr *expr) override; |
469 | CharUnits getArrayCookieSizeImpl(QualType type) override; |
470 | Address InitializeArrayCookie(CodeGenFunction &CGF, |
471 | Address NewPtr, |
472 | llvm::Value *NumElements, |
473 | const CXXNewExpr *expr, |
474 | QualType ElementType) override; |
475 | llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, |
476 | Address allocPtr, |
477 | CharUnits cookieSize) override; |
478 | |
479 | friend struct MSRTTIBuilder; |
480 | |
481 | bool isImageRelative() const { |
482 | return CGM.getTarget().getPointerWidth(AddrSpace: LangAS::Default) == 64; |
483 | } |
484 | |
485 | // 5 routines for constructing the llvm types for MS RTTI structs. |
486 | llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { |
487 | llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor" ); |
488 | TDTypeName += llvm::utostr(X: TypeInfoString.size()); |
489 | llvm::StructType *&TypeDescriptorType = |
490 | TypeDescriptorTypeMap[TypeInfoString.size()]; |
491 | if (TypeDescriptorType) |
492 | return TypeDescriptorType; |
493 | llvm::Type *FieldTypes[] = { |
494 | CGM.Int8PtrPtrTy, |
495 | CGM.Int8PtrTy, |
496 | llvm::ArrayType::get(ElementType: CGM.Int8Ty, NumElements: TypeInfoString.size() + 1)}; |
497 | TypeDescriptorType = |
498 | llvm::StructType::create(Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: TDTypeName); |
499 | return TypeDescriptorType; |
500 | } |
501 | |
502 | llvm::Type *getImageRelativeType(llvm::Type *PtrType) { |
503 | if (!isImageRelative()) |
504 | return PtrType; |
505 | return CGM.IntTy; |
506 | } |
507 | |
508 | llvm::StructType *getBaseClassDescriptorType() { |
509 | if (BaseClassDescriptorType) |
510 | return BaseClassDescriptorType; |
511 | llvm::Type *FieldTypes[] = { |
512 | getImageRelativeType(PtrType: CGM.Int8PtrTy), |
513 | CGM.IntTy, |
514 | CGM.IntTy, |
515 | CGM.IntTy, |
516 | CGM.IntTy, |
517 | CGM.IntTy, |
518 | getImageRelativeType(PtrType: getClassHierarchyDescriptorType()->getPointerTo()), |
519 | }; |
520 | BaseClassDescriptorType = llvm::StructType::create( |
521 | Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: "rtti.BaseClassDescriptor" ); |
522 | return BaseClassDescriptorType; |
523 | } |
524 | |
525 | llvm::StructType *getClassHierarchyDescriptorType() { |
526 | if (ClassHierarchyDescriptorType) |
527 | return ClassHierarchyDescriptorType; |
528 | // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. |
529 | ClassHierarchyDescriptorType = llvm::StructType::create( |
530 | Context&: CGM.getLLVMContext(), Name: "rtti.ClassHierarchyDescriptor" ); |
531 | llvm::Type *FieldTypes[] = { |
532 | CGM.IntTy, |
533 | CGM.IntTy, |
534 | CGM.IntTy, |
535 | getImageRelativeType( |
536 | PtrType: getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), |
537 | }; |
538 | ClassHierarchyDescriptorType->setBody(Elements: FieldTypes); |
539 | return ClassHierarchyDescriptorType; |
540 | } |
541 | |
542 | llvm::StructType *getCompleteObjectLocatorType() { |
543 | if (CompleteObjectLocatorType) |
544 | return CompleteObjectLocatorType; |
545 | CompleteObjectLocatorType = llvm::StructType::create( |
546 | Context&: CGM.getLLVMContext(), Name: "rtti.CompleteObjectLocator" ); |
547 | llvm::Type *FieldTypes[] = { |
548 | CGM.IntTy, |
549 | CGM.IntTy, |
550 | CGM.IntTy, |
551 | getImageRelativeType(PtrType: CGM.Int8PtrTy), |
552 | getImageRelativeType(PtrType: getClassHierarchyDescriptorType()->getPointerTo()), |
553 | getImageRelativeType(PtrType: CompleteObjectLocatorType), |
554 | }; |
555 | llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); |
556 | if (!isImageRelative()) |
557 | FieldTypesRef = FieldTypesRef.drop_back(); |
558 | CompleteObjectLocatorType->setBody(Elements: FieldTypesRef); |
559 | return CompleteObjectLocatorType; |
560 | } |
561 | |
562 | llvm::GlobalVariable *getImageBase() { |
563 | StringRef Name = "__ImageBase" ; |
564 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) |
565 | return GV; |
566 | |
567 | auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, |
568 | /*isConstant=*/true, |
569 | llvm::GlobalValue::ExternalLinkage, |
570 | /*Initializer=*/nullptr, Name); |
571 | CGM.setDSOLocal(GV); |
572 | return GV; |
573 | } |
574 | |
575 | llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { |
576 | if (!isImageRelative()) |
577 | return PtrVal; |
578 | |
579 | if (PtrVal->isNullValue()) |
580 | return llvm::Constant::getNullValue(Ty: CGM.IntTy); |
581 | |
582 | llvm::Constant *ImageBaseAsInt = |
583 | llvm::ConstantExpr::getPtrToInt(C: getImageBase(), Ty: CGM.IntPtrTy); |
584 | llvm::Constant *PtrValAsInt = |
585 | llvm::ConstantExpr::getPtrToInt(C: PtrVal, Ty: CGM.IntPtrTy); |
586 | llvm::Constant *Diff = |
587 | llvm::ConstantExpr::getSub(C1: PtrValAsInt, C2: ImageBaseAsInt, |
588 | /*HasNUW=*/true, /*HasNSW=*/true); |
589 | return llvm::ConstantExpr::getTrunc(C: Diff, Ty: CGM.IntTy); |
590 | } |
591 | |
592 | private: |
593 | MicrosoftMangleContext &getMangleContext() { |
594 | return cast<MicrosoftMangleContext>(Val&: CodeGen::CGCXXABI::getMangleContext()); |
595 | } |
596 | |
597 | llvm::Constant *getZeroInt() { |
598 | return llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0); |
599 | } |
600 | |
601 | llvm::Constant *getAllOnesInt() { |
602 | return llvm::Constant::getAllOnesValue(Ty: CGM.IntTy); |
603 | } |
604 | |
605 | CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; |
606 | |
607 | void |
608 | GetNullMemberPointerFields(const MemberPointerType *MPT, |
609 | llvm::SmallVectorImpl<llvm::Constant *> &fields); |
610 | |
611 | /// Shared code for virtual base adjustment. Returns the offset from |
612 | /// the vbptr to the virtual base. Optionally returns the address of the |
613 | /// vbptr itself. |
614 | llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, |
615 | Address Base, |
616 | llvm::Value *VBPtrOffset, |
617 | llvm::Value *VBTableOffset, |
618 | llvm::Value **VBPtr = nullptr); |
619 | |
620 | llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, |
621 | Address Base, |
622 | int32_t VBPtrOffset, |
623 | int32_t VBTableOffset, |
624 | llvm::Value **VBPtr = nullptr) { |
625 | assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s" ); |
626 | llvm::Value *VBPOffset = llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBPtrOffset), |
627 | *VBTOffset = llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBTableOffset); |
628 | return GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset: VBPOffset, VBTableOffset: VBTOffset, VBPtr); |
629 | } |
630 | |
631 | std::tuple<Address, llvm::Value *, const CXXRecordDecl *> |
632 | performBaseAdjustment(CodeGenFunction &CGF, Address Value, |
633 | QualType SrcRecordTy); |
634 | |
635 | /// Performs a full virtual base adjustment. Used to dereference |
636 | /// pointers to members of virtual bases. |
637 | llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, |
638 | const CXXRecordDecl *RD, Address Base, |
639 | llvm::Value *VirtualBaseAdjustmentOffset, |
640 | llvm::Value *VBPtrOffset /* optional */); |
641 | |
642 | /// Emits a full member pointer with the fields common to data and |
643 | /// function member pointers. |
644 | llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, |
645 | bool IsMemberFunction, |
646 | const CXXRecordDecl *RD, |
647 | CharUnits NonVirtualBaseAdjustment, |
648 | unsigned VBTableIndex); |
649 | |
650 | bool MemberPointerConstantIsNull(const MemberPointerType *MPT, |
651 | llvm::Constant *MP); |
652 | |
653 | /// - Initialize all vbptrs of 'this' with RD as the complete type. |
654 | void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); |
655 | |
656 | /// Caching wrapper around VBTableBuilder::enumerateVBTables(). |
657 | const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); |
658 | |
659 | /// Generate a thunk for calling a virtual member function MD. |
660 | llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, |
661 | const MethodVFTableLocation &ML); |
662 | |
663 | llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, |
664 | CharUnits offset); |
665 | |
666 | public: |
667 | llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; |
668 | |
669 | bool isZeroInitializable(const MemberPointerType *MPT) override; |
670 | |
671 | bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { |
672 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
673 | return RD->hasAttr<MSInheritanceAttr>(); |
674 | } |
675 | |
676 | llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; |
677 | |
678 | llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, |
679 | CharUnits offset) override; |
680 | llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; |
681 | llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; |
682 | |
683 | llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, |
684 | llvm::Value *L, |
685 | llvm::Value *R, |
686 | const MemberPointerType *MPT, |
687 | bool Inequality) override; |
688 | |
689 | llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
690 | llvm::Value *MemPtr, |
691 | const MemberPointerType *MPT) override; |
692 | |
693 | llvm::Value * |
694 | EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, |
695 | Address Base, llvm::Value *MemPtr, |
696 | const MemberPointerType *MPT) override; |
697 | |
698 | llvm::Value *EmitNonNullMemberPointerConversion( |
699 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, |
700 | CastKind CK, CastExpr::path_const_iterator PathBegin, |
701 | CastExpr::path_const_iterator PathEnd, llvm::Value *Src, |
702 | CGBuilderTy &Builder); |
703 | |
704 | llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, |
705 | const CastExpr *E, |
706 | llvm::Value *Src) override; |
707 | |
708 | llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, |
709 | llvm::Constant *Src) override; |
710 | |
711 | llvm::Constant *EmitMemberPointerConversion( |
712 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, |
713 | CastKind CK, CastExpr::path_const_iterator PathBegin, |
714 | CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); |
715 | |
716 | CGCallee |
717 | EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, |
718 | Address This, llvm::Value *&ThisPtrForCall, |
719 | llvm::Value *MemPtr, |
720 | const MemberPointerType *MPT) override; |
721 | |
722 | void emitCXXStructor(GlobalDecl GD) override; |
723 | |
724 | llvm::StructType *getCatchableTypeType() { |
725 | if (CatchableTypeType) |
726 | return CatchableTypeType; |
727 | llvm::Type *FieldTypes[] = { |
728 | CGM.IntTy, // Flags |
729 | getImageRelativeType(PtrType: CGM.Int8PtrTy), // TypeDescriptor |
730 | CGM.IntTy, // NonVirtualAdjustment |
731 | CGM.IntTy, // OffsetToVBPtr |
732 | CGM.IntTy, // VBTableIndex |
733 | CGM.IntTy, // Size |
734 | getImageRelativeType(PtrType: CGM.Int8PtrTy) // CopyCtor |
735 | }; |
736 | CatchableTypeType = llvm::StructType::create( |
737 | Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: "eh.CatchableType" ); |
738 | return CatchableTypeType; |
739 | } |
740 | |
741 | llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { |
742 | llvm::StructType *&CatchableTypeArrayType = |
743 | CatchableTypeArrayTypeMap[NumEntries]; |
744 | if (CatchableTypeArrayType) |
745 | return CatchableTypeArrayType; |
746 | |
747 | llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray." ); |
748 | CTATypeName += llvm::utostr(X: NumEntries); |
749 | llvm::Type *CTType = |
750 | getImageRelativeType(PtrType: getCatchableTypeType()->getPointerTo()); |
751 | llvm::Type *FieldTypes[] = { |
752 | CGM.IntTy, // NumEntries |
753 | llvm::ArrayType::get(ElementType: CTType, NumElements: NumEntries) // CatchableTypes |
754 | }; |
755 | CatchableTypeArrayType = |
756 | llvm::StructType::create(Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: CTATypeName); |
757 | return CatchableTypeArrayType; |
758 | } |
759 | |
760 | llvm::StructType *getThrowInfoType() { |
761 | if (ThrowInfoType) |
762 | return ThrowInfoType; |
763 | llvm::Type *FieldTypes[] = { |
764 | CGM.IntTy, // Flags |
765 | getImageRelativeType(PtrType: CGM.Int8PtrTy), // CleanupFn |
766 | getImageRelativeType(PtrType: CGM.Int8PtrTy), // ForwardCompat |
767 | getImageRelativeType(PtrType: CGM.Int8PtrTy) // CatchableTypeArray |
768 | }; |
769 | ThrowInfoType = llvm::StructType::create(Context&: CGM.getLLVMContext(), Elements: FieldTypes, |
770 | Name: "eh.ThrowInfo" ); |
771 | return ThrowInfoType; |
772 | } |
773 | |
774 | llvm::FunctionCallee getThrowFn() { |
775 | // _CxxThrowException is passed an exception object and a ThrowInfo object |
776 | // which describes the exception. |
777 | llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; |
778 | llvm::FunctionType *FTy = |
779 | llvm::FunctionType::get(Result: CGM.VoidTy, Params: Args, /*isVarArg=*/false); |
780 | llvm::FunctionCallee Throw = |
781 | CGM.CreateRuntimeFunction(Ty: FTy, Name: "_CxxThrowException" ); |
782 | // _CxxThrowException is stdcall on 32-bit x86 platforms. |
783 | if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { |
784 | if (auto *Fn = dyn_cast<llvm::Function>(Val: Throw.getCallee())) |
785 | Fn->setCallingConv(llvm::CallingConv::X86_StdCall); |
786 | } |
787 | return Throw; |
788 | } |
789 | |
790 | llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, |
791 | CXXCtorType CT); |
792 | |
793 | llvm::Constant *getCatchableType(QualType T, |
794 | uint32_t NVOffset = 0, |
795 | int32_t VBPtrOffset = -1, |
796 | uint32_t VBIndex = 0); |
797 | |
798 | llvm::GlobalVariable *getCatchableTypeArray(QualType T); |
799 | |
800 | llvm::GlobalVariable *getThrowInfo(QualType T) override; |
801 | |
802 | std::pair<llvm::Value *, const CXXRecordDecl *> |
803 | LoadVTablePtr(CodeGenFunction &CGF, Address This, |
804 | const CXXRecordDecl *RD) override; |
805 | |
806 | bool |
807 | isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override; |
808 | |
809 | private: |
810 | typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; |
811 | typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; |
812 | typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; |
813 | /// All the vftables that have been referenced. |
814 | VFTablesMapTy VFTablesMap; |
815 | VTablesMapTy VTablesMap; |
816 | |
817 | /// This set holds the record decls we've deferred vtable emission for. |
818 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; |
819 | |
820 | |
821 | /// All the vbtables which have been referenced. |
822 | llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; |
823 | |
824 | /// Info on the global variable used to guard initialization of static locals. |
825 | /// The BitIndex field is only used for externally invisible declarations. |
826 | struct GuardInfo { |
827 | GuardInfo() = default; |
828 | llvm::GlobalVariable *Guard = nullptr; |
829 | unsigned BitIndex = 0; |
830 | }; |
831 | |
832 | /// Map from DeclContext to the current guard variable. We assume that the |
833 | /// AST is visited in source code order. |
834 | llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; |
835 | llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; |
836 | llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; |
837 | |
838 | llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; |
839 | llvm::StructType *BaseClassDescriptorType; |
840 | llvm::StructType *ClassHierarchyDescriptorType; |
841 | llvm::StructType *CompleteObjectLocatorType; |
842 | |
843 | llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; |
844 | |
845 | llvm::StructType *CatchableTypeType; |
846 | llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; |
847 | llvm::StructType *ThrowInfoType; |
848 | }; |
849 | |
850 | } |
851 | |
852 | CGCXXABI::RecordArgABI |
853 | MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { |
854 | // Use the default C calling convention rules for things that can be passed in |
855 | // registers, i.e. non-trivially copyable records or records marked with |
856 | // [[trivial_abi]]. |
857 | if (RD->canPassInRegisters()) |
858 | return RAA_Default; |
859 | |
860 | switch (CGM.getTarget().getTriple().getArch()) { |
861 | default: |
862 | // FIXME: Implement for other architectures. |
863 | return RAA_Indirect; |
864 | |
865 | case llvm::Triple::thumb: |
866 | // Pass things indirectly for now because it is simple. |
867 | // FIXME: This is incompatible with MSVC for arguments with a dtor and no |
868 | // copy ctor. |
869 | return RAA_Indirect; |
870 | |
871 | case llvm::Triple::x86: { |
872 | // If the argument has *required* alignment greater than four bytes, pass |
873 | // it indirectly. Prior to MSVC version 19.14, passing overaligned |
874 | // arguments was not supported and resulted in a compiler error. In 19.14 |
875 | // and later versions, such arguments are now passed indirectly. |
876 | TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl()); |
877 | if (Info.isAlignRequired() && Info.Align > 4) |
878 | return RAA_Indirect; |
879 | |
880 | // If C++ prohibits us from making a copy, construct the arguments directly |
881 | // into argument memory. |
882 | return RAA_DirectInMemory; |
883 | } |
884 | |
885 | case llvm::Triple::x86_64: |
886 | case llvm::Triple::aarch64: |
887 | return RAA_Indirect; |
888 | } |
889 | |
890 | llvm_unreachable("invalid enum" ); |
891 | } |
892 | |
893 | void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, |
894 | const CXXDeleteExpr *DE, |
895 | Address Ptr, |
896 | QualType ElementType, |
897 | const CXXDestructorDecl *Dtor) { |
898 | // FIXME: Provide a source location here even though there's no |
899 | // CXXMemberCallExpr for dtor call. |
900 | bool UseGlobalDelete = DE->isGlobalDelete(); |
901 | CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; |
902 | llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, This: Ptr, E: DE); |
903 | if (UseGlobalDelete) |
904 | CGF.EmitDeleteCall(DeleteFD: DE->getOperatorDelete(), Ptr: MDThis, DeleteTy: ElementType); |
905 | } |
906 | |
907 | void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { |
908 | llvm::Value *Args[] = { |
909 | llvm::ConstantPointerNull::get(T: CGM.Int8PtrTy), |
910 | llvm::ConstantPointerNull::get(T: getThrowInfoType()->getPointerTo())}; |
911 | llvm::FunctionCallee Fn = getThrowFn(); |
912 | if (isNoReturn) |
913 | CGF.EmitNoreturnRuntimeCallOrInvoke(callee: Fn, args: Args); |
914 | else |
915 | CGF.EmitRuntimeCallOrInvoke(callee: Fn, args: Args); |
916 | } |
917 | |
918 | void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, |
919 | const CXXCatchStmt *S) { |
920 | // In the MS ABI, the runtime handles the copy, and the catch handler is |
921 | // responsible for destruction. |
922 | VarDecl *CatchParam = S->getExceptionDecl(); |
923 | llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); |
924 | llvm::CatchPadInst *CPI = |
925 | cast<llvm::CatchPadInst>(Val: CatchPadBB->getFirstNonPHI()); |
926 | CGF.CurrentFuncletPad = CPI; |
927 | |
928 | // If this is a catch-all or the catch parameter is unnamed, we don't need to |
929 | // emit an alloca to the object. |
930 | if (!CatchParam || !CatchParam->getDeclName()) { |
931 | CGF.EHStack.pushCleanup<CatchRetScope>(Kind: NormalCleanup, A: CPI); |
932 | return; |
933 | } |
934 | |
935 | CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(var: *CatchParam); |
936 | CPI->setArgOperand(i: 2, v: var.getObjectAddress(CGF).emitRawPointer(CGF)); |
937 | CGF.EHStack.pushCleanup<CatchRetScope>(Kind: NormalCleanup, A: CPI); |
938 | CGF.EmitAutoVarCleanups(emission: var); |
939 | } |
940 | |
941 | /// We need to perform a generic polymorphic operation (like a typeid |
942 | /// or a cast), which requires an object with a vfptr. Adjust the |
943 | /// address to point to an object with a vfptr. |
944 | std::tuple<Address, llvm::Value *, const CXXRecordDecl *> |
945 | MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, |
946 | QualType SrcRecordTy) { |
947 | Value = Value.withElementType(ElemTy: CGF.Int8Ty); |
948 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
949 | const ASTContext &Context = getContext(); |
950 | |
951 | // If the class itself has a vfptr, great. This check implicitly |
952 | // covers non-virtual base subobjects: a class with its own virtual |
953 | // functions would be a candidate to be a primary base. |
954 | if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) |
955 | return std::make_tuple(args&: Value, args: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 0), |
956 | args&: SrcDecl); |
957 | |
958 | // Okay, one of the vbases must have a vfptr, or else this isn't |
959 | // actually a polymorphic class. |
960 | const CXXRecordDecl *PolymorphicBase = nullptr; |
961 | for (auto &Base : SrcDecl->vbases()) { |
962 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
963 | if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { |
964 | PolymorphicBase = BaseDecl; |
965 | break; |
966 | } |
967 | } |
968 | assert(PolymorphicBase && "polymorphic class has no apparent vfptr?" ); |
969 | |
970 | llvm::Value *Offset = |
971 | GetVirtualBaseClassOffset(CGF, This: Value, ClassDecl: SrcDecl, BaseClassDecl: PolymorphicBase); |
972 | llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( |
973 | Ty: Value.getElementType(), Ptr: Value.emitRawPointer(CGF), IdxList: Offset); |
974 | CharUnits VBaseAlign = |
975 | CGF.CGM.getVBaseAlignment(DerivedAlign: Value.getAlignment(), Derived: SrcDecl, VBase: PolymorphicBase); |
976 | return std::make_tuple(args: Address(Ptr, CGF.Int8Ty, VBaseAlign), args&: Offset, |
977 | args&: PolymorphicBase); |
978 | } |
979 | |
980 | bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, |
981 | QualType SrcRecordTy) { |
982 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
983 | return IsDeref && |
984 | !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); |
985 | } |
986 | |
987 | static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, |
988 | llvm::Value *Argument) { |
989 | llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; |
990 | llvm::FunctionType *FTy = |
991 | llvm::FunctionType::get(Result: CGF.Int8PtrTy, Params: ArgTypes, isVarArg: false); |
992 | llvm::Value *Args[] = {Argument}; |
993 | llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(Ty: FTy, Name: "__RTtypeid" ); |
994 | return CGF.EmitRuntimeCallOrInvoke(callee: Fn, args: Args); |
995 | } |
996 | |
997 | void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { |
998 | llvm::CallBase *Call = |
999 | emitRTtypeidCall(CGF, Argument: llvm::Constant::getNullValue(Ty: CGM.VoidPtrTy)); |
1000 | Call->setDoesNotReturn(); |
1001 | CGF.Builder.CreateUnreachable(); |
1002 | } |
1003 | |
1004 | llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, |
1005 | QualType SrcRecordTy, |
1006 | Address ThisPtr, |
1007 | llvm::Type *StdTypeInfoPtrTy) { |
1008 | std::tie(args&: ThisPtr, args: std::ignore, args: std::ignore) = |
1009 | performBaseAdjustment(CGF, Value: ThisPtr, SrcRecordTy); |
1010 | llvm::CallBase *Typeid = emitRTtypeidCall(CGF, Argument: ThisPtr.emitRawPointer(CGF)); |
1011 | return CGF.Builder.CreateBitCast(V: Typeid, DestTy: StdTypeInfoPtrTy); |
1012 | } |
1013 | |
1014 | bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
1015 | QualType SrcRecordTy) { |
1016 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
1017 | return SrcIsPtr && |
1018 | !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); |
1019 | } |
1020 | |
1021 | llvm::Value *MicrosoftCXXABI::emitDynamicCastCall( |
1022 | CodeGenFunction &CGF, Address This, QualType SrcRecordTy, QualType DestTy, |
1023 | QualType DestRecordTy, llvm::BasicBlock *CastEnd) { |
1024 | llvm::Value *SrcRTTI = |
1025 | CGF.CGM.GetAddrOfRTTIDescriptor(Ty: SrcRecordTy.getUnqualifiedType()); |
1026 | llvm::Value *DestRTTI = |
1027 | CGF.CGM.GetAddrOfRTTIDescriptor(Ty: DestRecordTy.getUnqualifiedType()); |
1028 | |
1029 | llvm::Value *Offset; |
1030 | std::tie(args&: This, args&: Offset, args: std::ignore) = |
1031 | performBaseAdjustment(CGF, Value: This, SrcRecordTy); |
1032 | llvm::Value *ThisPtr = This.emitRawPointer(CGF); |
1033 | Offset = CGF.Builder.CreateTrunc(V: Offset, DestTy: CGF.Int32Ty); |
1034 | |
1035 | // PVOID __RTDynamicCast( |
1036 | // PVOID inptr, |
1037 | // LONG VfDelta, |
1038 | // PVOID SrcType, |
1039 | // PVOID TargetType, |
1040 | // BOOL isReference) |
1041 | llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, |
1042 | CGF.Int8PtrTy, CGF.Int32Ty}; |
1043 | llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( |
1044 | Ty: llvm::FunctionType::get(Result: CGF.Int8PtrTy, Params: ArgTypes, isVarArg: false), |
1045 | Name: "__RTDynamicCast" ); |
1046 | llvm::Value *Args[] = { |
1047 | ThisPtr, Offset, SrcRTTI, DestRTTI, |
1048 | llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: DestTy->isReferenceType())}; |
1049 | return CGF.EmitRuntimeCallOrInvoke(callee: Function, args: Args); |
1050 | } |
1051 | |
1052 | llvm::Value *MicrosoftCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF, |
1053 | Address Value, |
1054 | QualType SrcRecordTy) { |
1055 | std::tie(args&: Value, args: std::ignore, args: std::ignore) = |
1056 | performBaseAdjustment(CGF, Value, SrcRecordTy); |
1057 | |
1058 | // PVOID __RTCastToVoid( |
1059 | // PVOID inptr) |
1060 | llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; |
1061 | llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( |
1062 | Ty: llvm::FunctionType::get(Result: CGF.Int8PtrTy, Params: ArgTypes, isVarArg: false), |
1063 | Name: "__RTCastToVoid" ); |
1064 | llvm::Value *Args[] = {Value.emitRawPointer(CGF)}; |
1065 | return CGF.EmitRuntimeCall(callee: Function, args: Args); |
1066 | } |
1067 | |
1068 | bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { |
1069 | return false; |
1070 | } |
1071 | |
1072 | llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( |
1073 | CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, |
1074 | const CXXRecordDecl *BaseClassDecl) { |
1075 | const ASTContext &Context = getContext(); |
1076 | int64_t VBPtrChars = |
1077 | Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); |
1078 | llvm::Value *VBPtrOffset = llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: VBPtrChars); |
1079 | CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); |
1080 | CharUnits VBTableChars = |
1081 | IntSize * |
1082 | CGM.getMicrosoftVTableContext().getVBTableIndex(Derived: ClassDecl, VBase: BaseClassDecl); |
1083 | llvm::Value *VBTableOffset = |
1084 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBTableChars.getQuantity()); |
1085 | |
1086 | llvm::Value *VBPtrToNewBase = |
1087 | GetVBaseOffsetFromVBPtr(CGF, Base: This, VBPtrOffset, VBTableOffset); |
1088 | VBPtrToNewBase = |
1089 | CGF.Builder.CreateSExtOrBitCast(V: VBPtrToNewBase, DestTy: CGM.PtrDiffTy); |
1090 | return CGF.Builder.CreateNSWAdd(LHS: VBPtrOffset, RHS: VBPtrToNewBase); |
1091 | } |
1092 | |
1093 | bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { |
1094 | return isa<CXXConstructorDecl>(Val: GD.getDecl()); |
1095 | } |
1096 | |
1097 | static bool isDeletingDtor(GlobalDecl GD) { |
1098 | return isa<CXXDestructorDecl>(Val: GD.getDecl()) && |
1099 | GD.getDtorType() == Dtor_Deleting; |
1100 | } |
1101 | |
1102 | bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { |
1103 | return isDeletingDtor(GD); |
1104 | } |
1105 | |
1106 | static bool isTrivialForMSVC(const CXXRecordDecl *RD, QualType Ty, |
1107 | CodeGenModule &CGM) { |
1108 | // On AArch64, HVAs that can be passed in registers can also be returned |
1109 | // in registers. (Note this is using the MSVC definition of an HVA; see |
1110 | // isPermittedToBeHomogeneousAggregate().) |
1111 | const Type *Base = nullptr; |
1112 | uint64_t NumElts = 0; |
1113 | if (CGM.getTarget().getTriple().isAArch64() && |
1114 | CGM.getTypes().getABIInfo().isHomogeneousAggregate(Ty, Base, Members&: NumElts) && |
1115 | isa<VectorType>(Val: Base)) { |
1116 | return true; |
1117 | } |
1118 | |
1119 | // We use the C++14 definition of an aggregate, so we also |
1120 | // check for: |
1121 | // No private or protected non static data members. |
1122 | // No base classes |
1123 | // No virtual functions |
1124 | // Additionally, we need to ensure that there is a trivial copy assignment |
1125 | // operator, a trivial destructor and no user-provided constructors. |
1126 | if (RD->hasProtectedFields() || RD->hasPrivateFields()) |
1127 | return false; |
1128 | if (RD->getNumBases() > 0) |
1129 | return false; |
1130 | if (RD->isPolymorphic()) |
1131 | return false; |
1132 | if (RD->hasNonTrivialCopyAssignment()) |
1133 | return false; |
1134 | for (const CXXConstructorDecl *Ctor : RD->ctors()) |
1135 | if (Ctor->isUserProvided()) |
1136 | return false; |
1137 | if (RD->hasNonTrivialDestructor()) |
1138 | return false; |
1139 | return true; |
1140 | } |
1141 | |
1142 | bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { |
1143 | const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); |
1144 | if (!RD) |
1145 | return false; |
1146 | |
1147 | bool isTrivialForABI = RD->canPassInRegisters() && |
1148 | isTrivialForMSVC(RD, Ty: FI.getReturnType(), CGM); |
1149 | |
1150 | // MSVC always returns structs indirectly from C++ instance methods. |
1151 | bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod(); |
1152 | |
1153 | if (isIndirectReturn) { |
1154 | CharUnits Align = CGM.getContext().getTypeAlignInChars(T: FI.getReturnType()); |
1155 | FI.getReturnInfo() = ABIArgInfo::getIndirect(Alignment: Align, /*ByVal=*/false); |
1156 | |
1157 | // MSVC always passes `this` before the `sret` parameter. |
1158 | FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); |
1159 | |
1160 | // On AArch64, use the `inreg` attribute if the object is considered to not |
1161 | // be trivially copyable, or if this is an instance method struct return. |
1162 | FI.getReturnInfo().setInReg(CGM.getTarget().getTriple().isAArch64()); |
1163 | |
1164 | return true; |
1165 | } |
1166 | |
1167 | // Otherwise, use the C ABI rules. |
1168 | return false; |
1169 | } |
1170 | |
1171 | llvm::BasicBlock * |
1172 | MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, |
1173 | const CXXRecordDecl *RD) { |
1174 | llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); |
1175 | assert(IsMostDerivedClass && |
1176 | "ctor for a class with virtual bases must have an implicit parameter" ); |
1177 | llvm::Value *IsCompleteObject = |
1178 | CGF.Builder.CreateIsNotNull(Arg: IsMostDerivedClass, Name: "is_complete_object" ); |
1179 | |
1180 | llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock(name: "ctor.init_vbases" ); |
1181 | llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock(name: "ctor.skip_vbases" ); |
1182 | CGF.Builder.CreateCondBr(Cond: IsCompleteObject, |
1183 | True: CallVbaseCtorsBB, False: SkipVbaseCtorsBB); |
1184 | |
1185 | CGF.EmitBlock(BB: CallVbaseCtorsBB); |
1186 | |
1187 | // Fill in the vbtable pointers here. |
1188 | EmitVBPtrStores(CGF, RD); |
1189 | |
1190 | // CGF will put the base ctor calls in this basic block for us later. |
1191 | |
1192 | return SkipVbaseCtorsBB; |
1193 | } |
1194 | |
1195 | llvm::BasicBlock * |
1196 | MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { |
1197 | llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); |
1198 | assert(IsMostDerivedClass && |
1199 | "ctor for a class with virtual bases must have an implicit parameter" ); |
1200 | llvm::Value *IsCompleteObject = |
1201 | CGF.Builder.CreateIsNotNull(Arg: IsMostDerivedClass, Name: "is_complete_object" ); |
1202 | |
1203 | llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock(name: "Dtor.dtor_vbases" ); |
1204 | llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock(name: "Dtor.skip_vbases" ); |
1205 | CGF.Builder.CreateCondBr(Cond: IsCompleteObject, |
1206 | True: CallVbaseDtorsBB, False: SkipVbaseDtorsBB); |
1207 | |
1208 | CGF.EmitBlock(BB: CallVbaseDtorsBB); |
1209 | // CGF will put the base dtor calls in this basic block for us later. |
1210 | |
1211 | return SkipVbaseDtorsBB; |
1212 | } |
1213 | |
1214 | void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( |
1215 | CodeGenFunction &CGF, const CXXRecordDecl *RD) { |
1216 | // In most cases, an override for a vbase virtual method can adjust |
1217 | // the "this" parameter by applying a constant offset. |
1218 | // However, this is not enough while a constructor or a destructor of some |
1219 | // class X is being executed if all the following conditions are met: |
1220 | // - X has virtual bases, (1) |
1221 | // - X overrides a virtual method M of a vbase Y, (2) |
1222 | // - X itself is a vbase of the most derived class. |
1223 | // |
1224 | // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X |
1225 | // which holds the extra amount of "this" adjustment we must do when we use |
1226 | // the X vftables (i.e. during X ctor or dtor). |
1227 | // Outside the ctors and dtors, the values of vtorDisps are zero. |
1228 | |
1229 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
1230 | typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; |
1231 | const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); |
1232 | CGBuilderTy &Builder = CGF.Builder; |
1233 | |
1234 | llvm::Value *Int8This = nullptr; // Initialize lazily. |
1235 | |
1236 | for (const CXXBaseSpecifier &S : RD->vbases()) { |
1237 | const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); |
1238 | auto I = VBaseMap.find(Val: VBase); |
1239 | assert(I != VBaseMap.end()); |
1240 | if (!I->second.hasVtorDisp()) |
1241 | continue; |
1242 | |
1243 | llvm::Value *VBaseOffset = |
1244 | GetVirtualBaseClassOffset(CGF, This: getThisAddress(CGF), ClassDecl: RD, BaseClassDecl: VBase); |
1245 | uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); |
1246 | |
1247 | // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). |
1248 | llvm::Value *VtorDispValue = Builder.CreateSub( |
1249 | LHS: VBaseOffset, RHS: llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: ConstantVBaseOffset), |
1250 | Name: "vtordisp.value" ); |
1251 | VtorDispValue = Builder.CreateTruncOrBitCast(V: VtorDispValue, DestTy: CGF.Int32Ty); |
1252 | |
1253 | if (!Int8This) |
1254 | Int8This = getThisValue(CGF); |
1255 | |
1256 | llvm::Value *VtorDispPtr = |
1257 | Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: Int8This, IdxList: VBaseOffset); |
1258 | // vtorDisp is always the 32-bits before the vbase in the class layout. |
1259 | VtorDispPtr = Builder.CreateConstGEP1_32(Ty: CGF.Int8Ty, Ptr: VtorDispPtr, Idx0: -4); |
1260 | |
1261 | Builder.CreateAlignedStore(Val: VtorDispValue, Addr: VtorDispPtr, |
1262 | Align: CharUnits::fromQuantity(Quantity: 4)); |
1263 | } |
1264 | } |
1265 | |
1266 | static bool hasDefaultCXXMethodCC(ASTContext &Context, |
1267 | const CXXMethodDecl *MD) { |
1268 | CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( |
1269 | /*IsVariadic=*/false, /*IsCXXMethod=*/true); |
1270 | CallingConv ActualCallingConv = |
1271 | MD->getType()->castAs<FunctionProtoType>()->getCallConv(); |
1272 | return ExpectedCallingConv == ActualCallingConv; |
1273 | } |
1274 | |
1275 | void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { |
1276 | // There's only one constructor type in this ABI. |
1277 | CGM.EmitGlobal(D: GlobalDecl(D, Ctor_Complete)); |
1278 | |
1279 | // Exported default constructors either have a simple call-site where they use |
1280 | // the typical calling convention and have a single 'this' pointer for an |
1281 | // argument -or- they get a wrapper function which appropriately thunks to the |
1282 | // real default constructor. This thunk is the default constructor closure. |
1283 | if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() && |
1284 | D->isDefined()) { |
1285 | if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { |
1286 | llvm::Function *Fn = getAddrOfCXXCtorClosure(CD: D, CT: Ctor_DefaultClosure); |
1287 | Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); |
1288 | CGM.setGVProperties(Fn, D); |
1289 | } |
1290 | } |
1291 | } |
1292 | |
1293 | void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, |
1294 | const CXXRecordDecl *RD) { |
1295 | Address This = getThisAddress(CGF); |
1296 | This = This.withElementType(ElemTy: CGM.Int8Ty); |
1297 | const ASTContext &Context = getContext(); |
1298 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
1299 | |
1300 | const VBTableGlobals &VBGlobals = enumerateVBTables(RD); |
1301 | for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { |
1302 | const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; |
1303 | llvm::GlobalVariable *GV = VBGlobals.Globals[I]; |
1304 | const ASTRecordLayout &SubobjectLayout = |
1305 | Context.getASTRecordLayout(VBT->IntroducingObject); |
1306 | CharUnits Offs = VBT->NonVirtualOffset; |
1307 | Offs += SubobjectLayout.getVBPtrOffset(); |
1308 | if (VBT->getVBaseWithVPtr()) |
1309 | Offs += Layout.getVBaseClassOffset(VBase: VBT->getVBaseWithVPtr()); |
1310 | Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(Addr: This, Offset: Offs); |
1311 | llvm::Value *GVPtr = |
1312 | CGF.Builder.CreateConstInBoundsGEP2_32(Ty: GV->getValueType(), Ptr: GV, Idx0: 0, Idx1: 0); |
1313 | VBPtr = VBPtr.withElementType(ElemTy: GVPtr->getType()); |
1314 | CGF.Builder.CreateStore(Val: GVPtr, Addr: VBPtr); |
1315 | } |
1316 | } |
1317 | |
1318 | CGCXXABI::AddedStructorArgCounts |
1319 | MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, |
1320 | SmallVectorImpl<CanQualType> &ArgTys) { |
1321 | AddedStructorArgCounts Added; |
1322 | // TODO: 'for base' flag |
1323 | if (isa<CXXDestructorDecl>(Val: GD.getDecl()) && |
1324 | GD.getDtorType() == Dtor_Deleting) { |
1325 | // The scalar deleting destructor takes an implicit int parameter. |
1326 | ArgTys.push_back(Elt: getContext().IntTy); |
1327 | ++Added.Suffix; |
1328 | } |
1329 | auto *CD = dyn_cast<CXXConstructorDecl>(Val: GD.getDecl()); |
1330 | if (!CD) |
1331 | return Added; |
1332 | |
1333 | // All parameters are already in place except is_most_derived, which goes |
1334 | // after 'this' if it's variadic and last if it's not. |
1335 | |
1336 | const CXXRecordDecl *Class = CD->getParent(); |
1337 | const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); |
1338 | if (Class->getNumVBases()) { |
1339 | if (FPT->isVariadic()) { |
1340 | ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); |
1341 | ++Added.Prefix; |
1342 | } else { |
1343 | ArgTys.push_back(Elt: getContext().IntTy); |
1344 | ++Added.Suffix; |
1345 | } |
1346 | } |
1347 | |
1348 | return Added; |
1349 | } |
1350 | |
1351 | void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, |
1352 | const CXXDestructorDecl *Dtor, |
1353 | CXXDtorType DT) const { |
1354 | // Deleting destructor variants are never imported or exported. Give them the |
1355 | // default storage class. |
1356 | if (DT == Dtor_Deleting) { |
1357 | GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
1358 | } else { |
1359 | const NamedDecl *ND = Dtor; |
1360 | CGM.setDLLImportDLLExport(GV, D: ND); |
1361 | } |
1362 | } |
1363 | |
1364 | llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( |
1365 | GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { |
1366 | // Internal things are always internal, regardless of attributes. After this, |
1367 | // we know the thunk is externally visible. |
1368 | if (Linkage == GVA_Internal) |
1369 | return llvm::GlobalValue::InternalLinkage; |
1370 | |
1371 | switch (DT) { |
1372 | case Dtor_Base: |
1373 | // The base destructor most closely tracks the user-declared constructor, so |
1374 | // we delegate back to the normal declarator case. |
1375 | return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage); |
1376 | case Dtor_Complete: |
1377 | // The complete destructor is like an inline function, but it may be |
1378 | // imported and therefore must be exported as well. This requires changing |
1379 | // the linkage if a DLL attribute is present. |
1380 | if (Dtor->hasAttr<DLLExportAttr>()) |
1381 | return llvm::GlobalValue::WeakODRLinkage; |
1382 | if (Dtor->hasAttr<DLLImportAttr>()) |
1383 | return llvm::GlobalValue::AvailableExternallyLinkage; |
1384 | return llvm::GlobalValue::LinkOnceODRLinkage; |
1385 | case Dtor_Deleting: |
1386 | // Deleting destructors are like inline functions. They have vague linkage |
1387 | // and are emitted everywhere they are used. They are internal if the class |
1388 | // is internal. |
1389 | return llvm::GlobalValue::LinkOnceODRLinkage; |
1390 | case Dtor_Comdat: |
1391 | llvm_unreachable("MS C++ ABI does not support comdat dtors" ); |
1392 | } |
1393 | llvm_unreachable("invalid dtor type" ); |
1394 | } |
1395 | |
1396 | void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { |
1397 | // The TU defining a dtor is only guaranteed to emit a base destructor. All |
1398 | // other destructor variants are delegating thunks. |
1399 | CGM.EmitGlobal(D: GlobalDecl(D, Dtor_Base)); |
1400 | |
1401 | // If the class is dllexported, emit the complete (vbase) destructor wherever |
1402 | // the base dtor is emitted. |
1403 | // FIXME: To match MSVC, this should only be done when the class is exported |
1404 | // with -fdllexport-inlines enabled. |
1405 | if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) |
1406 | CGM.EmitGlobal(D: GlobalDecl(D, Dtor_Complete)); |
1407 | } |
1408 | |
1409 | CharUnits |
1410 | MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { |
1411 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
1412 | |
1413 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
1414 | // Complete destructors take a pointer to the complete object as a |
1415 | // parameter, thus don't need this adjustment. |
1416 | if (GD.getDtorType() == Dtor_Complete) |
1417 | return CharUnits(); |
1418 | |
1419 | // There's no Dtor_Base in vftable but it shares the this adjustment with |
1420 | // the deleting one, so look it up instead. |
1421 | GD = GlobalDecl(DD, Dtor_Deleting); |
1422 | } |
1423 | |
1424 | MethodVFTableLocation ML = |
1425 | CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); |
1426 | CharUnits Adjustment = ML.VFPtrOffset; |
1427 | |
1428 | // Normal virtual instance methods need to adjust from the vfptr that first |
1429 | // defined the virtual method to the virtual base subobject, but destructors |
1430 | // do not. The vector deleting destructor thunk applies this adjustment for |
1431 | // us if necessary. |
1432 | if (isa<CXXDestructorDecl>(Val: MD)) |
1433 | Adjustment = CharUnits::Zero(); |
1434 | |
1435 | if (ML.VBase) { |
1436 | const ASTRecordLayout &DerivedLayout = |
1437 | getContext().getASTRecordLayout(MD->getParent()); |
1438 | Adjustment += DerivedLayout.getVBaseClassOffset(VBase: ML.VBase); |
1439 | } |
1440 | |
1441 | return Adjustment; |
1442 | } |
1443 | |
1444 | Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( |
1445 | CodeGenFunction &CGF, GlobalDecl GD, Address This, |
1446 | bool VirtualCall) { |
1447 | if (!VirtualCall) { |
1448 | // If the call of a virtual function is not virtual, we just have to |
1449 | // compensate for the adjustment the virtual function does in its prologue. |
1450 | CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); |
1451 | if (Adjustment.isZero()) |
1452 | return This; |
1453 | |
1454 | This = This.withElementType(ElemTy: CGF.Int8Ty); |
1455 | assert(Adjustment.isPositive()); |
1456 | return CGF.Builder.CreateConstByteGEP(Addr: This, Offset: Adjustment); |
1457 | } |
1458 | |
1459 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
1460 | |
1461 | GlobalDecl LookupGD = GD; |
1462 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
1463 | // Complete dtors take a pointer to the complete object, |
1464 | // thus don't need adjustment. |
1465 | if (GD.getDtorType() == Dtor_Complete) |
1466 | return This; |
1467 | |
1468 | // There's only Dtor_Deleting in vftable but it shares the this adjustment |
1469 | // with the base one, so look up the deleting one instead. |
1470 | LookupGD = GlobalDecl(DD, Dtor_Deleting); |
1471 | } |
1472 | MethodVFTableLocation ML = |
1473 | CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD: LookupGD); |
1474 | |
1475 | CharUnits StaticOffset = ML.VFPtrOffset; |
1476 | |
1477 | // Base destructors expect 'this' to point to the beginning of the base |
1478 | // subobject, not the first vfptr that happens to contain the virtual dtor. |
1479 | // However, we still need to apply the virtual base adjustment. |
1480 | if (isa<CXXDestructorDecl>(Val: MD) && GD.getDtorType() == Dtor_Base) |
1481 | StaticOffset = CharUnits::Zero(); |
1482 | |
1483 | Address Result = This; |
1484 | if (ML.VBase) { |
1485 | Result = Result.withElementType(ElemTy: CGF.Int8Ty); |
1486 | |
1487 | const CXXRecordDecl *Derived = MD->getParent(); |
1488 | const CXXRecordDecl *VBase = ML.VBase; |
1489 | llvm::Value *VBaseOffset = |
1490 | GetVirtualBaseClassOffset(CGF, This: Result, ClassDecl: Derived, BaseClassDecl: VBase); |
1491 | llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP( |
1492 | Ty: Result.getElementType(), Ptr: Result.emitRawPointer(CGF), IdxList: VBaseOffset); |
1493 | CharUnits VBaseAlign = |
1494 | CGF.CGM.getVBaseAlignment(DerivedAlign: Result.getAlignment(), Derived, VBase); |
1495 | Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign); |
1496 | } |
1497 | if (!StaticOffset.isZero()) { |
1498 | assert(StaticOffset.isPositive()); |
1499 | Result = Result.withElementType(ElemTy: CGF.Int8Ty); |
1500 | if (ML.VBase) { |
1501 | // Non-virtual adjustment might result in a pointer outside the allocated |
1502 | // object, e.g. if the final overrider class is laid out after the virtual |
1503 | // base that declares a method in the most derived class. |
1504 | // FIXME: Update the code that emits this adjustment in thunks prologues. |
1505 | Result = CGF.Builder.CreateConstByteGEP(Addr: Result, Offset: StaticOffset); |
1506 | } else { |
1507 | Result = CGF.Builder.CreateConstInBoundsByteGEP(Addr: Result, Offset: StaticOffset); |
1508 | } |
1509 | } |
1510 | return Result; |
1511 | } |
1512 | |
1513 | void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, |
1514 | QualType &ResTy, |
1515 | FunctionArgList &Params) { |
1516 | ASTContext &Context = getContext(); |
1517 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: CGF.CurGD.getDecl()); |
1518 | assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); |
1519 | if (isa<CXXConstructorDecl>(Val: MD) && MD->getParent()->getNumVBases()) { |
1520 | auto *IsMostDerived = ImplicitParamDecl::Create( |
1521 | Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), |
1522 | &Context.Idents.get(Name: "is_most_derived" ), Context.IntTy, |
1523 | ImplicitParamKind::Other); |
1524 | // The 'most_derived' parameter goes second if the ctor is variadic and last |
1525 | // if it's not. Dtors can't be variadic. |
1526 | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
1527 | if (FPT->isVariadic()) |
1528 | Params.insert(Params.begin() + 1, IsMostDerived); |
1529 | else |
1530 | Params.push_back(Elt: IsMostDerived); |
1531 | getStructorImplicitParamDecl(CGF) = IsMostDerived; |
1532 | } else if (isDeletingDtor(GD: CGF.CurGD)) { |
1533 | auto *ShouldDelete = ImplicitParamDecl::Create( |
1534 | Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), |
1535 | &Context.Idents.get(Name: "should_call_delete" ), Context.IntTy, |
1536 | ImplicitParamKind::Other); |
1537 | Params.push_back(Elt: ShouldDelete); |
1538 | getStructorImplicitParamDecl(CGF) = ShouldDelete; |
1539 | } |
1540 | } |
1541 | |
1542 | void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { |
1543 | // Naked functions have no prolog. |
1544 | if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) |
1545 | return; |
1546 | |
1547 | // Overridden virtual methods of non-primary bases need to adjust the incoming |
1548 | // 'this' pointer in the prologue. In this hierarchy, C::b will subtract |
1549 | // sizeof(void*) to adjust from B* to C*: |
1550 | // struct A { virtual void a(); }; |
1551 | // struct B { virtual void b(); }; |
1552 | // struct C : A, B { virtual void b(); }; |
1553 | // |
1554 | // Leave the value stored in the 'this' alloca unadjusted, so that the |
1555 | // debugger sees the unadjusted value. Microsoft debuggers require this, and |
1556 | // will apply the ThisAdjustment in the method type information. |
1557 | // FIXME: Do something better for DWARF debuggers, which won't expect this, |
1558 | // without making our codegen depend on debug info settings. |
1559 | llvm::Value *This = loadIncomingCXXThis(CGF); |
1560 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: CGF.CurGD.getDecl()); |
1561 | if (!CGF.CurFuncIsThunk && MD->isVirtual()) { |
1562 | CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD: CGF.CurGD); |
1563 | if (!Adjustment.isZero()) { |
1564 | assert(Adjustment.isPositive()); |
1565 | This = CGF.Builder.CreateConstInBoundsGEP1_32(Ty: CGF.Int8Ty, Ptr: This, |
1566 | Idx0: -Adjustment.getQuantity()); |
1567 | } |
1568 | } |
1569 | setCXXABIThisValue(CGF, ThisPtr: This); |
1570 | |
1571 | // If this is a function that the ABI specifies returns 'this', initialize |
1572 | // the return slot to 'this' at the start of the function. |
1573 | // |
1574 | // Unlike the setting of return types, this is done within the ABI |
1575 | // implementation instead of by clients of CGCXXABI because: |
1576 | // 1) getThisValue is currently protected |
1577 | // 2) in theory, an ABI could implement 'this' returns some other way; |
1578 | // HasThisReturn only specifies a contract, not the implementation |
1579 | if (HasThisReturn(GD: CGF.CurGD) || hasMostDerivedReturn(GD: CGF.CurGD)) |
1580 | CGF.Builder.CreateStore(Val: getThisValue(CGF), Addr: CGF.ReturnValue); |
1581 | |
1582 | if (isa<CXXConstructorDecl>(Val: MD) && MD->getParent()->getNumVBases()) { |
1583 | assert(getStructorImplicitParamDecl(CGF) && |
1584 | "no implicit parameter for a constructor with virtual bases?" ); |
1585 | getStructorImplicitParamValue(CGF) |
1586 | = CGF.Builder.CreateLoad( |
1587 | Addr: CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), |
1588 | Name: "is_most_derived" ); |
1589 | } |
1590 | |
1591 | if (isDeletingDtor(GD: CGF.CurGD)) { |
1592 | assert(getStructorImplicitParamDecl(CGF) && |
1593 | "no implicit parameter for a deleting destructor?" ); |
1594 | getStructorImplicitParamValue(CGF) |
1595 | = CGF.Builder.CreateLoad( |
1596 | Addr: CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), |
1597 | Name: "should_call_delete" ); |
1598 | } |
1599 | } |
1600 | |
1601 | CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( |
1602 | CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, |
1603 | bool ForVirtualBase, bool Delegating) { |
1604 | assert(Type == Ctor_Complete || Type == Ctor_Base); |
1605 | |
1606 | // Check if we need a 'most_derived' parameter. |
1607 | if (!D->getParent()->getNumVBases()) |
1608 | return AddedStructorArgs{}; |
1609 | |
1610 | // Add the 'most_derived' argument second if we are variadic or last if not. |
1611 | const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); |
1612 | llvm::Value *MostDerivedArg; |
1613 | if (Delegating) { |
1614 | MostDerivedArg = getStructorImplicitParamValue(CGF); |
1615 | } else { |
1616 | MostDerivedArg = llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Type == Ctor_Complete); |
1617 | } |
1618 | if (FPT->isVariadic()) { |
1619 | return AddedStructorArgs::prefix(Args: {{MostDerivedArg, getContext().IntTy}}); |
1620 | } |
1621 | return AddedStructorArgs::suffix(Args: {{MostDerivedArg, getContext().IntTy}}); |
1622 | } |
1623 | |
1624 | llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( |
1625 | CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, |
1626 | bool ForVirtualBase, bool Delegating) { |
1627 | return nullptr; |
1628 | } |
1629 | |
1630 | void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, |
1631 | const CXXDestructorDecl *DD, |
1632 | CXXDtorType Type, bool ForVirtualBase, |
1633 | bool Delegating, Address This, |
1634 | QualType ThisTy) { |
1635 | // Use the base destructor variant in place of the complete destructor variant |
1636 | // if the class has no virtual bases. This effectively implements some of the |
1637 | // -mconstructor-aliases optimization, but as part of the MS C++ ABI. |
1638 | if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) |
1639 | Type = Dtor_Base; |
1640 | |
1641 | GlobalDecl GD(DD, Type); |
1642 | CGCallee Callee = CGCallee::forDirect(functionPtr: CGM.getAddrOfCXXStructor(GD), abstractInfo: GD); |
1643 | |
1644 | if (DD->isVirtual()) { |
1645 | assert(Type != CXXDtorType::Dtor_Deleting && |
1646 | "The deleting destructor should only be called via a virtual call" ); |
1647 | This = adjustThisArgumentForVirtualFunctionCall(CGF, GD: GlobalDecl(DD, Type), |
1648 | This, VirtualCall: false); |
1649 | } |
1650 | |
1651 | llvm::BasicBlock *BaseDtorEndBB = nullptr; |
1652 | if (ForVirtualBase && isa<CXXConstructorDecl>(Val: CGF.CurCodeDecl)) { |
1653 | BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); |
1654 | } |
1655 | |
1656 | llvm::Value *Implicit = |
1657 | getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, |
1658 | Delegating); // = nullptr |
1659 | CGF.EmitCXXDestructorCall(Dtor: GD, Callee, This: CGF.getAsNaturalPointerTo(Addr: This, PointeeType: ThisTy), |
1660 | ThisTy, |
1661 | /*ImplicitParam=*/Implicit, |
1662 | /*ImplicitParamTy=*/QualType(), E: nullptr); |
1663 | if (BaseDtorEndBB) { |
1664 | // Complete object handler should continue to be the remaining |
1665 | CGF.Builder.CreateBr(Dest: BaseDtorEndBB); |
1666 | CGF.EmitBlock(BB: BaseDtorEndBB); |
1667 | } |
1668 | } |
1669 | |
1670 | void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, |
1671 | const CXXRecordDecl *RD, |
1672 | llvm::GlobalVariable *VTable) { |
1673 | // Emit type metadata on vtables with LTO or IR instrumentation. |
1674 | // In IR instrumentation, the type metadata could be used to find out vtable |
1675 | // definitions (for type profiling) among all global variables. |
1676 | if (!CGM.getCodeGenOpts().LTOUnit && |
1677 | !CGM.getCodeGenOpts().hasProfileIRInstr()) |
1678 | return; |
1679 | |
1680 | // TODO: Should VirtualFunctionElimination also be supported here? |
1681 | // See similar handling in CodeGenModule::EmitVTableTypeMetadata. |
1682 | if (CGM.getCodeGenOpts().WholeProgramVTables) { |
1683 | llvm::DenseSet<const CXXRecordDecl *> Visited; |
1684 | llvm::GlobalObject::VCallVisibility TypeVis = |
1685 | CGM.GetVCallVisibilityLevel(RD, Visited); |
1686 | if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) |
1687 | VTable->setVCallVisibilityMetadata(TypeVis); |
1688 | } |
1689 | |
1690 | // The location of the first virtual function pointer in the virtual table, |
1691 | // aka the "address point" on Itanium. This is at offset 0 if RTTI is |
1692 | // disabled, or sizeof(void*) if RTTI is enabled. |
1693 | CharUnits AddressPoint = |
1694 | getContext().getLangOpts().RTTIData |
1695 | ? getContext().toCharUnitsFromBits( |
1696 | BitSize: getContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)) |
1697 | : CharUnits::Zero(); |
1698 | |
1699 | if (Info.PathToIntroducingObject.empty()) { |
1700 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, RD); |
1701 | return; |
1702 | } |
1703 | |
1704 | // Add a bitset entry for the least derived base belonging to this vftable. |
1705 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, |
1706 | RD: Info.PathToIntroducingObject.back()); |
1707 | |
1708 | // Add a bitset entry for each derived class that is laid out at the same |
1709 | // offset as the least derived base. |
1710 | for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { |
1711 | const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; |
1712 | const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; |
1713 | |
1714 | const ASTRecordLayout &Layout = |
1715 | getContext().getASTRecordLayout(DerivedRD); |
1716 | CharUnits Offset; |
1717 | auto VBI = Layout.getVBaseOffsetsMap().find(Val: BaseRD); |
1718 | if (VBI == Layout.getVBaseOffsetsMap().end()) |
1719 | Offset = Layout.getBaseClassOffset(Base: BaseRD); |
1720 | else |
1721 | Offset = VBI->second.VBaseOffset; |
1722 | if (!Offset.isZero()) |
1723 | return; |
1724 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, RD: DerivedRD); |
1725 | } |
1726 | |
1727 | // Finally do the same for the most derived class. |
1728 | if (Info.FullOffsetInMDC.isZero()) |
1729 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, RD); |
1730 | } |
1731 | |
1732 | void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, |
1733 | const CXXRecordDecl *RD) { |
1734 | MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); |
1735 | const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); |
1736 | |
1737 | for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { |
1738 | llvm::GlobalVariable *VTable = getAddrOfVTable(RD, VPtrOffset: Info->FullOffsetInMDC); |
1739 | if (VTable->hasInitializer()) |
1740 | continue; |
1741 | |
1742 | const VTableLayout &VTLayout = |
1743 | VFTContext.getVFTableLayout(RD, VFPtrOffset: Info->FullOffsetInMDC); |
1744 | |
1745 | llvm::Constant *RTTI = nullptr; |
1746 | if (any_of(Range: VTLayout.vtable_components(), |
1747 | P: [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) |
1748 | RTTI = getMSCompleteObjectLocator(RD, Info: *Info); |
1749 | |
1750 | ConstantInitBuilder builder(CGM); |
1751 | auto components = builder.beginStruct(); |
1752 | CGVT.createVTableInitializer(builder&: components, layout: VTLayout, rtti: RTTI, |
1753 | vtableHasLocalLinkage: VTable->hasLocalLinkage()); |
1754 | components.finishAndSetAsInitializer(global: VTable); |
1755 | |
1756 | emitVTableTypeMetadata(Info: *Info, RD, VTable); |
1757 | } |
1758 | } |
1759 | |
1760 | bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( |
1761 | CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { |
1762 | return Vptr.NearestVBase != nullptr; |
1763 | } |
1764 | |
1765 | llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( |
1766 | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, |
1767 | const CXXRecordDecl *NearestVBase) { |
1768 | llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); |
1769 | if (!VTableAddressPoint) { |
1770 | assert(Base.getBase()->getNumVBases() && |
1771 | !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); |
1772 | } |
1773 | return VTableAddressPoint; |
1774 | } |
1775 | |
1776 | static void mangleVFTableName(MicrosoftMangleContext &MangleContext, |
1777 | const CXXRecordDecl *RD, const VPtrInfo &VFPtr, |
1778 | SmallString<256> &Name) { |
1779 | llvm::raw_svector_ostream Out(Name); |
1780 | MangleContext.mangleCXXVFTable(Derived: RD, BasePath: VFPtr.MangledPath, Out); |
1781 | } |
1782 | |
1783 | llvm::Constant * |
1784 | MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, |
1785 | const CXXRecordDecl *VTableClass) { |
1786 | (void)getAddrOfVTable(RD: VTableClass, VPtrOffset: Base.getBaseOffset()); |
1787 | VFTableIdTy ID(VTableClass, Base.getBaseOffset()); |
1788 | return VFTablesMap[ID]; |
1789 | } |
1790 | |
1791 | llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, |
1792 | CharUnits VPtrOffset) { |
1793 | // getAddrOfVTable may return 0 if asked to get an address of a vtable which |
1794 | // shouldn't be used in the given record type. We want to cache this result in |
1795 | // VFTablesMap, thus a simple zero check is not sufficient. |
1796 | |
1797 | VFTableIdTy ID(RD, VPtrOffset); |
1798 | VTablesMapTy::iterator I; |
1799 | bool Inserted; |
1800 | std::tie(args&: I, args&: Inserted) = VTablesMap.insert(KV: std::make_pair(x&: ID, y: nullptr)); |
1801 | if (!Inserted) |
1802 | return I->second; |
1803 | |
1804 | llvm::GlobalVariable *&VTable = I->second; |
1805 | |
1806 | MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); |
1807 | const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); |
1808 | |
1809 | if (DeferredVFTables.insert(Ptr: RD).second) { |
1810 | // We haven't processed this record type before. |
1811 | // Queue up this vtable for possible deferred emission. |
1812 | CGM.addDeferredVTable(RD); |
1813 | |
1814 | #ifndef NDEBUG |
1815 | // Create all the vftables at once in order to make sure each vftable has |
1816 | // a unique mangled name. |
1817 | llvm::StringSet<> ObservedMangledNames; |
1818 | for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { |
1819 | SmallString<256> Name; |
1820 | mangleVFTableName(MangleContext&: getMangleContext(), RD, VFPtr: *VFPtrs[J], Name); |
1821 | if (!ObservedMangledNames.insert(key: Name.str()).second) |
1822 | llvm_unreachable("Already saw this mangling before?" ); |
1823 | } |
1824 | #endif |
1825 | } |
1826 | |
1827 | const std::unique_ptr<VPtrInfo> *VFPtrI = |
1828 | llvm::find_if(Range: VFPtrs, P: [&](const std::unique_ptr<VPtrInfo> &VPI) { |
1829 | return VPI->FullOffsetInMDC == VPtrOffset; |
1830 | }); |
1831 | if (VFPtrI == VFPtrs.end()) { |
1832 | VFTablesMap[ID] = nullptr; |
1833 | return nullptr; |
1834 | } |
1835 | const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; |
1836 | |
1837 | SmallString<256> VFTableName; |
1838 | mangleVFTableName(MangleContext&: getMangleContext(), RD, VFPtr: *VFPtr, Name&: VFTableName); |
1839 | |
1840 | // Classes marked __declspec(dllimport) need vftables generated on the |
1841 | // import-side in order to support features like constexpr. No other |
1842 | // translation unit relies on the emission of the local vftable, translation |
1843 | // units are expected to generate them as needed. |
1844 | // |
1845 | // Because of this unique behavior, we maintain this logic here instead of |
1846 | // getVTableLinkage. |
1847 | llvm::GlobalValue::LinkageTypes VFTableLinkage = |
1848 | RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage |
1849 | : CGM.getVTableLinkage(RD); |
1850 | bool VFTableComesFromAnotherTU = |
1851 | llvm::GlobalValue::isAvailableExternallyLinkage(Linkage: VFTableLinkage) || |
1852 | llvm::GlobalValue::isExternalLinkage(Linkage: VFTableLinkage); |
1853 | bool VTableAliasIsRequred = |
1854 | !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; |
1855 | |
1856 | if (llvm::GlobalValue *VFTable = |
1857 | CGM.getModule().getNamedGlobal(Name: VFTableName)) { |
1858 | VFTablesMap[ID] = VFTable; |
1859 | VTable = VTableAliasIsRequred |
1860 | ? cast<llvm::GlobalVariable>( |
1861 | Val: cast<llvm::GlobalAlias>(Val: VFTable)->getAliaseeObject()) |
1862 | : cast<llvm::GlobalVariable>(Val: VFTable); |
1863 | return VTable; |
1864 | } |
1865 | |
1866 | const VTableLayout &VTLayout = |
1867 | VTContext.getVFTableLayout(RD, VFPtrOffset: VFPtr->FullOffsetInMDC); |
1868 | llvm::GlobalValue::LinkageTypes VTableLinkage = |
1869 | VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; |
1870 | |
1871 | StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); |
1872 | |
1873 | llvm::Type *VTableType = CGM.getVTables().getVTableType(layout: VTLayout); |
1874 | |
1875 | // Create a backing variable for the contents of VTable. The VTable may |
1876 | // or may not include space for a pointer to RTTI data. |
1877 | llvm::GlobalValue *VFTable; |
1878 | VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, |
1879 | /*isConstant=*/true, VTableLinkage, |
1880 | /*Initializer=*/nullptr, VTableName); |
1881 | VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
1882 | |
1883 | llvm::Comdat *C = nullptr; |
1884 | if (!VFTableComesFromAnotherTU && |
1885 | llvm::GlobalValue::isWeakForLinker(Linkage: VFTableLinkage)) |
1886 | C = CGM.getModule().getOrInsertComdat(Name: VFTableName.str()); |
1887 | |
1888 | // Only insert a pointer into the VFTable for RTTI data if we are not |
1889 | // importing it. We never reference the RTTI data directly so there is no |
1890 | // need to make room for it. |
1891 | if (VTableAliasIsRequred) { |
1892 | llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 0), |
1893 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 0), |
1894 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 1)}; |
1895 | // Create a GEP which points just after the first entry in the VFTable, |
1896 | // this should be the location of the first virtual method. |
1897 | llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( |
1898 | Ty: VTable->getValueType(), C: VTable, IdxList: GEPIndices); |
1899 | if (llvm::GlobalValue::isWeakForLinker(Linkage: VFTableLinkage)) { |
1900 | VFTableLinkage = llvm::GlobalValue::ExternalLinkage; |
1901 | if (C) |
1902 | C->setSelectionKind(llvm::Comdat::Largest); |
1903 | } |
1904 | VFTable = llvm::GlobalAlias::create(Ty: CGM.Int8PtrTy, |
1905 | /*AddressSpace=*/0, Linkage: VFTableLinkage, |
1906 | Name: VFTableName.str(), Aliasee: VTableGEP, |
1907 | Parent: &CGM.getModule()); |
1908 | VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
1909 | } else { |
1910 | // We don't need a GlobalAlias to be a symbol for the VTable if we won't |
1911 | // be referencing any RTTI data. |
1912 | // The GlobalVariable will end up being an appropriate definition of the |
1913 | // VFTable. |
1914 | VFTable = VTable; |
1915 | } |
1916 | if (C) |
1917 | VTable->setComdat(C); |
1918 | |
1919 | if (RD->hasAttr<DLLExportAttr>()) |
1920 | VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
1921 | |
1922 | VFTablesMap[ID] = VFTable; |
1923 | return VTable; |
1924 | } |
1925 | |
1926 | CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, |
1927 | GlobalDecl GD, |
1928 | Address This, |
1929 | llvm::Type *Ty, |
1930 | SourceLocation Loc) { |
1931 | CGBuilderTy &Builder = CGF.Builder; |
1932 | |
1933 | Ty = Ty->getPointerTo(); |
1934 | Address VPtr = |
1935 | adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, VirtualCall: true); |
1936 | |
1937 | auto *MethodDecl = cast<CXXMethodDecl>(Val: GD.getDecl()); |
1938 | llvm::Value *VTable = CGF.GetVTablePtr(This: VPtr, VTableTy: Ty->getPointerTo(), |
1939 | VTableClass: MethodDecl->getParent()); |
1940 | |
1941 | MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); |
1942 | MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); |
1943 | |
1944 | // Compute the identity of the most derived class whose virtual table is |
1945 | // located at the MethodVFTableLocation ML. |
1946 | auto getObjectWithVPtr = [&] { |
1947 | return llvm::find_if(Range: VFTContext.getVFPtrOffsets( |
1948 | RD: ML.VBase ? ML.VBase : MethodDecl->getParent()), |
1949 | P: [&](const std::unique_ptr<VPtrInfo> &Info) { |
1950 | return Info->FullOffsetInMDC == ML.VFPtrOffset; |
1951 | }) |
1952 | ->get() |
1953 | ->ObjectWithVPtr; |
1954 | }; |
1955 | |
1956 | llvm::Value *VFunc; |
1957 | if (CGF.ShouldEmitVTableTypeCheckedLoad(RD: MethodDecl->getParent())) { |
1958 | VFunc = CGF.EmitVTableTypeCheckedLoad( |
1959 | RD: getObjectWithVPtr(), VTable, VTableTy: Ty, |
1960 | VTableByteOffset: ML.Index * |
1961 | CGM.getContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) / |
1962 | 8); |
1963 | } else { |
1964 | if (CGM.getCodeGenOpts().PrepareForLTO) |
1965 | CGF.EmitTypeMetadataCodeForVCall(RD: getObjectWithVPtr(), VTable, Loc); |
1966 | |
1967 | llvm::Value *VFuncPtr = |
1968 | Builder.CreateConstInBoundsGEP1_64(Ty, Ptr: VTable, Idx0: ML.Index, Name: "vfn" ); |
1969 | VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign()); |
1970 | } |
1971 | |
1972 | CGCallee Callee(GD, VFunc); |
1973 | return Callee; |
1974 | } |
1975 | |
1976 | llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( |
1977 | CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, |
1978 | Address This, DeleteOrMemberCallExpr E) { |
1979 | auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); |
1980 | auto *D = E.dyn_cast<const CXXDeleteExpr *>(); |
1981 | assert((CE != nullptr) ^ (D != nullptr)); |
1982 | assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); |
1983 | assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); |
1984 | |
1985 | // We have only one destructor in the vftable but can get both behaviors |
1986 | // by passing an implicit int parameter. |
1987 | GlobalDecl GD(Dtor, Dtor_Deleting); |
1988 | const CGFunctionInfo *FInfo = |
1989 | &CGM.getTypes().arrangeCXXStructorDeclaration(GD); |
1990 | llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(Info: *FInfo); |
1991 | CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); |
1992 | |
1993 | ASTContext &Context = getContext(); |
1994 | llvm::Value *ImplicitParam = llvm::ConstantInt::get( |
1995 | Ty: llvm::IntegerType::getInt32Ty(C&: CGF.getLLVMContext()), |
1996 | V: DtorType == Dtor_Deleting); |
1997 | |
1998 | QualType ThisTy; |
1999 | if (CE) { |
2000 | ThisTy = CE->getObjectType(); |
2001 | } else { |
2002 | ThisTy = D->getDestroyedType(); |
2003 | } |
2004 | |
2005 | This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, VirtualCall: true); |
2006 | RValue RV = |
2007 | CGF.EmitCXXDestructorCall(GD, Callee, This.emitRawPointer(CGF), ThisTy, |
2008 | ImplicitParam, Context.IntTy, CE); |
2009 | return RV.getScalarVal(); |
2010 | } |
2011 | |
2012 | const VBTableGlobals & |
2013 | MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { |
2014 | // At this layer, we can key the cache off of a single class, which is much |
2015 | // easier than caching each vbtable individually. |
2016 | llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; |
2017 | bool Added; |
2018 | std::tie(args&: Entry, args&: Added) = |
2019 | VBTablesMap.insert(KV: std::make_pair(x&: RD, y: VBTableGlobals())); |
2020 | VBTableGlobals &VBGlobals = Entry->second; |
2021 | if (!Added) |
2022 | return VBGlobals; |
2023 | |
2024 | MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); |
2025 | VBGlobals.VBTables = &Context.enumerateVBTables(RD); |
2026 | |
2027 | // Cache the globals for all vbtables so we don't have to recompute the |
2028 | // mangled names. |
2029 | llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); |
2030 | for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), |
2031 | E = VBGlobals.VBTables->end(); |
2032 | I != E; ++I) { |
2033 | VBGlobals.Globals.push_back(Elt: getAddrOfVBTable(VBT: **I, RD, Linkage)); |
2034 | } |
2035 | |
2036 | return VBGlobals; |
2037 | } |
2038 | |
2039 | llvm::Function * |
2040 | MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, |
2041 | const MethodVFTableLocation &ML) { |
2042 | assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && |
2043 | "can't form pointers to ctors or virtual dtors" ); |
2044 | |
2045 | // Calculate the mangled name. |
2046 | SmallString<256> ThunkName; |
2047 | llvm::raw_svector_ostream Out(ThunkName); |
2048 | getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); |
2049 | |
2050 | // If the thunk has been generated previously, just return it. |
2051 | if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(Name: ThunkName)) |
2052 | return cast<llvm::Function>(Val: GV); |
2053 | |
2054 | // Create the llvm::Function. |
2055 | const CGFunctionInfo &FnInfo = |
2056 | CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); |
2057 | llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(Info: FnInfo); |
2058 | llvm::Function *ThunkFn = |
2059 | llvm::Function::Create(Ty: ThunkTy, Linkage: llvm::Function::ExternalLinkage, |
2060 | N: ThunkName.str(), M: &CGM.getModule()); |
2061 | assert(ThunkFn->getName() == ThunkName && "name was uniqued!" ); |
2062 | |
2063 | ThunkFn->setLinkage(MD->isExternallyVisible() |
2064 | ? llvm::GlobalValue::LinkOnceODRLinkage |
2065 | : llvm::GlobalValue::InternalLinkage); |
2066 | if (MD->isExternallyVisible()) |
2067 | ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(Name: ThunkFn->getName())); |
2068 | |
2069 | CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); |
2070 | CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); |
2071 | |
2072 | // Add the "thunk" attribute so that LLVM knows that the return type is |
2073 | // meaningless. These thunks can be used to call functions with differing |
2074 | // return types, and the caller is required to cast the prototype |
2075 | // appropriately to extract the correct value. |
2076 | ThunkFn->addFnAttr(Kind: "thunk" ); |
2077 | |
2078 | // These thunks can be compared, so they are not unnamed. |
2079 | ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); |
2080 | |
2081 | // Start codegen. |
2082 | CodeGenFunction CGF(CGM); |
2083 | CGF.CurGD = GlobalDecl(MD); |
2084 | CGF.CurFuncIsThunk = true; |
2085 | |
2086 | // Build FunctionArgs, but only include the implicit 'this' parameter |
2087 | // declaration. |
2088 | FunctionArgList FunctionArgs; |
2089 | buildThisParam(CGF, Params&: FunctionArgs); |
2090 | |
2091 | // Start defining the function. |
2092 | CGF.StartFunction(GD: GlobalDecl(), RetTy: FnInfo.getReturnType(), Fn: ThunkFn, FnInfo, |
2093 | Args: FunctionArgs, Loc: MD->getLocation(), StartLoc: SourceLocation()); |
2094 | |
2095 | ApplyDebugLocation AL(CGF, MD->getLocation()); |
2096 | setCXXABIThisValue(CGF, ThisPtr: loadIncomingCXXThis(CGF)); |
2097 | |
2098 | // Load the vfptr and then callee from the vftable. The callee should have |
2099 | // adjusted 'this' so that the vfptr is at offset zero. |
2100 | llvm::Type *ThunkPtrTy = ThunkTy->getPointerTo(); |
2101 | llvm::Value *VTable = CGF.GetVTablePtr( |
2102 | This: getThisAddress(CGF), VTableTy: ThunkPtrTy->getPointerTo(), VTableClass: MD->getParent()); |
2103 | |
2104 | llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
2105 | Ty: ThunkPtrTy, Ptr: VTable, Idx0: ML.Index, Name: "vfn" ); |
2106 | llvm::Value *Callee = |
2107 | CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign()); |
2108 | |
2109 | CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); |
2110 | |
2111 | return ThunkFn; |
2112 | } |
2113 | |
2114 | void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { |
2115 | const VBTableGlobals &VBGlobals = enumerateVBTables(RD); |
2116 | for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { |
2117 | const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; |
2118 | llvm::GlobalVariable *GV = VBGlobals.Globals[I]; |
2119 | if (GV->isDeclaration()) |
2120 | emitVBTableDefinition(VBT: *VBT, RD, GV); |
2121 | } |
2122 | } |
2123 | |
2124 | llvm::GlobalVariable * |
2125 | MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, |
2126 | llvm::GlobalVariable::LinkageTypes Linkage) { |
2127 | SmallString<256> OutName; |
2128 | llvm::raw_svector_ostream Out(OutName); |
2129 | getMangleContext().mangleCXXVBTable(Derived: RD, BasePath: VBT.MangledPath, Out); |
2130 | StringRef Name = OutName.str(); |
2131 | |
2132 | llvm::ArrayType *VBTableType = |
2133 | llvm::ArrayType::get(ElementType: CGM.IntTy, NumElements: 1 + VBT.ObjectWithVPtr->getNumVBases()); |
2134 | |
2135 | assert(!CGM.getModule().getNamedGlobal(Name) && |
2136 | "vbtable with this name already exists: mangling bug?" ); |
2137 | CharUnits Alignment = |
2138 | CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); |
2139 | llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( |
2140 | Name, Ty: VBTableType, Linkage, Alignment: Alignment.getAsAlign()); |
2141 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
2142 | |
2143 | if (RD->hasAttr<DLLImportAttr>()) |
2144 | GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); |
2145 | else if (RD->hasAttr<DLLExportAttr>()) |
2146 | GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
2147 | |
2148 | if (!GV->hasExternalLinkage()) |
2149 | emitVBTableDefinition(VBT, RD, GV); |
2150 | |
2151 | return GV; |
2152 | } |
2153 | |
2154 | void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, |
2155 | const CXXRecordDecl *RD, |
2156 | llvm::GlobalVariable *GV) const { |
2157 | const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; |
2158 | |
2159 | assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && |
2160 | "should only emit vbtables for classes with vbtables" ); |
2161 | |
2162 | const ASTRecordLayout &BaseLayout = |
2163 | getContext().getASTRecordLayout(VBT.IntroducingObject); |
2164 | const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); |
2165 | |
2166 | SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), |
2167 | nullptr); |
2168 | |
2169 | // The offset from ObjectWithVPtr's vbptr to itself always leads. |
2170 | CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); |
2171 | Offsets[0] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: -VBPtrOffset.getQuantity()); |
2172 | |
2173 | MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); |
2174 | for (const auto &I : ObjectWithVPtr->vbases()) { |
2175 | const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); |
2176 | CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); |
2177 | assert(!Offset.isNegative()); |
2178 | |
2179 | // Make it relative to the subobject vbptr. |
2180 | CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; |
2181 | if (VBT.getVBaseWithVPtr()) |
2182 | CompleteVBPtrOffset += |
2183 | DerivedLayout.getVBaseClassOffset(VBase: VBT.getVBaseWithVPtr()); |
2184 | Offset -= CompleteVBPtrOffset; |
2185 | |
2186 | unsigned VBIndex = Context.getVBTableIndex(Derived: ObjectWithVPtr, VBase); |
2187 | assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?" ); |
2188 | Offsets[VBIndex] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: Offset.getQuantity()); |
2189 | } |
2190 | |
2191 | assert(Offsets.size() == |
2192 | cast<llvm::ArrayType>(GV->getValueType())->getNumElements()); |
2193 | llvm::ArrayType *VBTableType = |
2194 | llvm::ArrayType::get(ElementType: CGM.IntTy, NumElements: Offsets.size()); |
2195 | llvm::Constant *Init = llvm::ConstantArray::get(T: VBTableType, V: Offsets); |
2196 | GV->setInitializer(Init); |
2197 | |
2198 | if (RD->hasAttr<DLLImportAttr>()) |
2199 | GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); |
2200 | } |
2201 | |
2202 | llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, |
2203 | Address This, |
2204 | const ThisAdjustment &TA) { |
2205 | if (TA.isEmpty()) |
2206 | return This.emitRawPointer(CGF); |
2207 | |
2208 | This = This.withElementType(ElemTy: CGF.Int8Ty); |
2209 | |
2210 | llvm::Value *V; |
2211 | if (TA.Virtual.isEmpty()) { |
2212 | V = This.emitRawPointer(CGF); |
2213 | } else { |
2214 | assert(TA.Virtual.Microsoft.VtordispOffset < 0); |
2215 | // Adjust the this argument based on the vtordisp value. |
2216 | Address VtorDispPtr = |
2217 | CGF.Builder.CreateConstInBoundsByteGEP(Addr: This, |
2218 | Offset: CharUnits::fromQuantity(Quantity: TA.Virtual.Microsoft.VtordispOffset)); |
2219 | VtorDispPtr = VtorDispPtr.withElementType(ElemTy: CGF.Int32Ty); |
2220 | llvm::Value *VtorDisp = CGF.Builder.CreateLoad(Addr: VtorDispPtr, Name: "vtordisp" ); |
2221 | V = CGF.Builder.CreateGEP(Ty: This.getElementType(), Ptr: This.emitRawPointer(CGF), |
2222 | IdxList: CGF.Builder.CreateNeg(V: VtorDisp)); |
2223 | |
2224 | // Unfortunately, having applied the vtordisp means that we no |
2225 | // longer really have a known alignment for the vbptr step. |
2226 | // We'll assume the vbptr is pointer-aligned. |
2227 | |
2228 | if (TA.Virtual.Microsoft.VBPtrOffset) { |
2229 | // If the final overrider is defined in a virtual base other than the one |
2230 | // that holds the vfptr, we have to use a vtordispex thunk which looks up |
2231 | // the vbtable of the derived class. |
2232 | assert(TA.Virtual.Microsoft.VBPtrOffset > 0); |
2233 | assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); |
2234 | llvm::Value *VBPtr; |
2235 | llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr( |
2236 | CGF, Base: Address(V, CGF.Int8Ty, CGF.getPointerAlign()), |
2237 | VBPtrOffset: -TA.Virtual.Microsoft.VBPtrOffset, |
2238 | VBTableOffset: TA.Virtual.Microsoft.VBOffsetOffset, VBPtr: &VBPtr); |
2239 | V = CGF.Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: VBPtr, IdxList: VBaseOffset); |
2240 | } |
2241 | } |
2242 | |
2243 | if (TA.NonVirtual) { |
2244 | // Non-virtual adjustment might result in a pointer outside the allocated |
2245 | // object, e.g. if the final overrider class is laid out after the virtual |
2246 | // base that declares a method in the most derived class. |
2247 | V = CGF.Builder.CreateConstGEP1_32(Ty: CGF.Int8Ty, Ptr: V, Idx0: TA.NonVirtual); |
2248 | } |
2249 | |
2250 | // Don't need to bitcast back, the call CodeGen will handle this. |
2251 | return V; |
2252 | } |
2253 | |
2254 | llvm::Value * |
2255 | MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, |
2256 | const ReturnAdjustment &RA) { |
2257 | if (RA.isEmpty()) |
2258 | return Ret.emitRawPointer(CGF); |
2259 | |
2260 | Ret = Ret.withElementType(ElemTy: CGF.Int8Ty); |
2261 | |
2262 | llvm::Value *V = Ret.emitRawPointer(CGF); |
2263 | if (RA.Virtual.Microsoft.VBIndex) { |
2264 | assert(RA.Virtual.Microsoft.VBIndex > 0); |
2265 | int32_t IntSize = CGF.getIntSize().getQuantity(); |
2266 | llvm::Value *VBPtr; |
2267 | llvm::Value *VBaseOffset = |
2268 | GetVBaseOffsetFromVBPtr(CGF, Base: Ret, VBPtrOffset: RA.Virtual.Microsoft.VBPtrOffset, |
2269 | VBTableOffset: IntSize * RA.Virtual.Microsoft.VBIndex, VBPtr: &VBPtr); |
2270 | V = CGF.Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: VBPtr, IdxList: VBaseOffset); |
2271 | } |
2272 | |
2273 | if (RA.NonVirtual) |
2274 | V = CGF.Builder.CreateConstInBoundsGEP1_32(Ty: CGF.Int8Ty, Ptr: V, Idx0: RA.NonVirtual); |
2275 | |
2276 | return V; |
2277 | } |
2278 | |
2279 | bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, |
2280 | QualType elementType) { |
2281 | // Microsoft seems to completely ignore the possibility of a |
2282 | // two-argument usual deallocation function. |
2283 | return elementType.isDestructedType(); |
2284 | } |
2285 | |
2286 | bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { |
2287 | // Microsoft seems to completely ignore the possibility of a |
2288 | // two-argument usual deallocation function. |
2289 | return expr->getAllocatedType().isDestructedType(); |
2290 | } |
2291 | |
2292 | CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { |
2293 | // The array cookie is always a size_t; we then pad that out to the |
2294 | // alignment of the element type. |
2295 | ASTContext &Ctx = getContext(); |
2296 | return std::max(a: Ctx.getTypeSizeInChars(T: Ctx.getSizeType()), |
2297 | b: Ctx.getTypeAlignInChars(T: type)); |
2298 | } |
2299 | |
2300 | llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, |
2301 | Address allocPtr, |
2302 | CharUnits cookieSize) { |
2303 | Address numElementsPtr = allocPtr.withElementType(ElemTy: CGF.SizeTy); |
2304 | return CGF.Builder.CreateLoad(Addr: numElementsPtr); |
2305 | } |
2306 | |
2307 | Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, |
2308 | Address newPtr, |
2309 | llvm::Value *numElements, |
2310 | const CXXNewExpr *expr, |
2311 | QualType elementType) { |
2312 | assert(requiresArrayCookie(expr)); |
2313 | |
2314 | // The size of the cookie. |
2315 | CharUnits cookieSize = getArrayCookieSizeImpl(type: elementType); |
2316 | |
2317 | // Compute an offset to the cookie. |
2318 | Address cookiePtr = newPtr; |
2319 | |
2320 | // Write the number of elements into the appropriate slot. |
2321 | Address numElementsPtr = cookiePtr.withElementType(ElemTy: CGF.SizeTy); |
2322 | CGF.Builder.CreateStore(Val: numElements, Addr: numElementsPtr); |
2323 | |
2324 | // Finally, compute a pointer to the actual data buffer by skipping |
2325 | // over the cookie completely. |
2326 | return CGF.Builder.CreateConstInBoundsByteGEP(Addr: newPtr, Offset: cookieSize); |
2327 | } |
2328 | |
2329 | static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, |
2330 | llvm::FunctionCallee Dtor, |
2331 | llvm::Constant *Addr) { |
2332 | // Create a function which calls the destructor. |
2333 | llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); |
2334 | |
2335 | // extern "C" int __tlregdtor(void (*f)(void)); |
2336 | llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( |
2337 | Result: CGF.IntTy, Params: DtorStub->getType(), /*isVarArg=*/false); |
2338 | |
2339 | llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( |
2340 | Ty: TLRegDtorTy, Name: "__tlregdtor" , ExtraAttrs: llvm::AttributeList(), /*Local=*/true); |
2341 | if (llvm::Function *TLRegDtorFn = |
2342 | dyn_cast<llvm::Function>(Val: TLRegDtor.getCallee())) |
2343 | TLRegDtorFn->setDoesNotThrow(); |
2344 | |
2345 | CGF.EmitNounwindRuntimeCall(callee: TLRegDtor, args: DtorStub); |
2346 | } |
2347 | |
2348 | void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
2349 | llvm::FunctionCallee Dtor, |
2350 | llvm::Constant *Addr) { |
2351 | if (D.isNoDestroy(CGM.getContext())) |
2352 | return; |
2353 | |
2354 | if (D.getTLSKind()) |
2355 | return emitGlobalDtorWithTLRegDtor(CGF, VD: D, Dtor, Addr); |
2356 | |
2357 | // HLSL doesn't support atexit. |
2358 | if (CGM.getLangOpts().HLSL) |
2359 | return CGM.AddCXXDtorEntry(DtorFn: Dtor, Object: Addr); |
2360 | |
2361 | // The default behavior is to use atexit. |
2362 | CGF.registerGlobalDtorWithAtExit(D, fn: Dtor, addr: Addr); |
2363 | } |
2364 | |
2365 | void MicrosoftCXXABI::EmitThreadLocalInitFuncs( |
2366 | CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, |
2367 | ArrayRef<llvm::Function *> CXXThreadLocalInits, |
2368 | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { |
2369 | if (CXXThreadLocalInits.empty()) |
2370 | return; |
2371 | |
2372 | CGM.AppendLinkerOptions(Opts: CGM.getTarget().getTriple().getArch() == |
2373 | llvm::Triple::x86 |
2374 | ? "/include:___dyn_tls_init@12" |
2375 | : "/include:__dyn_tls_init" ); |
2376 | |
2377 | // This will create a GV in the .CRT$XDU section. It will point to our |
2378 | // initialization function. The CRT will call all of these function |
2379 | // pointers at start-up time and, eventually, at thread-creation time. |
2380 | auto AddToXDU = [&CGM](llvm::Function *InitFunc) { |
2381 | llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( |
2382 | CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, |
2383 | llvm::GlobalVariable::InternalLinkage, InitFunc, |
2384 | Twine(InitFunc->getName(), "$initializer$" )); |
2385 | InitFuncPtr->setSection(".CRT$XDU" ); |
2386 | // This variable has discardable linkage, we have to add it to @llvm.used to |
2387 | // ensure it won't get discarded. |
2388 | CGM.addUsedGlobal(GV: InitFuncPtr); |
2389 | return InitFuncPtr; |
2390 | }; |
2391 | |
2392 | std::vector<llvm::Function *> NonComdatInits; |
2393 | for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { |
2394 | llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( |
2395 | Val: CGM.GetGlobalValue(Ref: CGM.getMangledName(GD: CXXThreadLocalInitVars[I]))); |
2396 | llvm::Function *F = CXXThreadLocalInits[I]; |
2397 | |
2398 | // If the GV is already in a comdat group, then we have to join it. |
2399 | if (llvm::Comdat *C = GV->getComdat()) |
2400 | AddToXDU(F)->setComdat(C); |
2401 | else |
2402 | NonComdatInits.push_back(x: F); |
2403 | } |
2404 | |
2405 | if (!NonComdatInits.empty()) { |
2406 | llvm::FunctionType *FTy = |
2407 | llvm::FunctionType::get(Result: CGM.VoidTy, /*isVarArg=*/false); |
2408 | llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( |
2409 | ty: FTy, name: "__tls_init" , FI: CGM.getTypes().arrangeNullaryFunction(), |
2410 | Loc: SourceLocation(), /*TLS=*/true); |
2411 | CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(Fn: InitFunc, CXXThreadLocals: NonComdatInits); |
2412 | |
2413 | AddToXDU(InitFunc); |
2414 | } |
2415 | } |
2416 | |
2417 | static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) { |
2418 | // __tls_guard comes from the MSVC runtime and reflects |
2419 | // whether TLS has been initialized for a particular thread. |
2420 | // It is set from within __dyn_tls_init by the runtime. |
2421 | // Every library and executable has its own variable. |
2422 | llvm::Type *VTy = llvm::Type::getInt8Ty(C&: CGM.getLLVMContext()); |
2423 | llvm::Constant *TlsGuardConstant = |
2424 | CGM.CreateRuntimeVariable(Ty: VTy, Name: "__tls_guard" ); |
2425 | llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(Val: TlsGuardConstant); |
2426 | |
2427 | TlsGuard->setThreadLocal(true); |
2428 | |
2429 | return TlsGuard; |
2430 | } |
2431 | |
2432 | static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) { |
2433 | // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers |
2434 | // dynamic TLS initialization by calling __dyn_tls_init internally. |
2435 | llvm::FunctionType *FTy = |
2436 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), Params: {}, |
2437 | /*isVarArg=*/false); |
2438 | return CGM.CreateRuntimeFunction( |
2439 | FTy, "__dyn_tls_on_demand_init" , |
2440 | llvm::AttributeList::get(CGM.getLLVMContext(), |
2441 | llvm::AttributeList::FunctionIndex, |
2442 | llvm::Attribute::NoUnwind), |
2443 | /*Local=*/true); |
2444 | } |
2445 | |
2446 | static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard, |
2447 | llvm::BasicBlock *DynInitBB, |
2448 | llvm::BasicBlock *ContinueBB) { |
2449 | llvm::LoadInst *TlsGuardValue = |
2450 | CGF.Builder.CreateLoad(Addr: Address(TlsGuard, CGF.Int8Ty, CharUnits::One())); |
2451 | llvm::Value *CmpResult = |
2452 | CGF.Builder.CreateICmpEQ(LHS: TlsGuardValue, RHS: CGF.Builder.getInt8(C: 0)); |
2453 | CGF.Builder.CreateCondBr(Cond: CmpResult, True: DynInitBB, False: ContinueBB); |
2454 | } |
2455 | |
2456 | static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF, |
2457 | llvm::GlobalValue *TlsGuard, |
2458 | llvm::BasicBlock *ContinueBB) { |
2459 | llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGM&: CGF.CGM); |
2460 | llvm::Function *InitializerFunction = |
2461 | cast<llvm::Function>(Val: Initializer.getCallee()); |
2462 | llvm::CallInst *CallVal = CGF.Builder.CreateCall(Callee: InitializerFunction); |
2463 | CallVal->setCallingConv(InitializerFunction->getCallingConv()); |
2464 | |
2465 | CGF.Builder.CreateBr(Dest: ContinueBB); |
2466 | } |
2467 | |
2468 | static void emitDynamicTlsInitialization(CodeGenFunction &CGF) { |
2469 | llvm::BasicBlock *DynInitBB = |
2470 | CGF.createBasicBlock(name: "dyntls.dyn_init" , parent: CGF.CurFn); |
2471 | llvm::BasicBlock *ContinueBB = |
2472 | CGF.createBasicBlock(name: "dyntls.continue" , parent: CGF.CurFn); |
2473 | |
2474 | llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGM&: CGF.CGM); |
2475 | |
2476 | emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB); |
2477 | CGF.Builder.SetInsertPoint(DynInitBB); |
2478 | emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB); |
2479 | CGF.Builder.SetInsertPoint(ContinueBB); |
2480 | } |
2481 | |
2482 | LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, |
2483 | const VarDecl *VD, |
2484 | QualType LValType) { |
2485 | // Dynamic TLS initialization works by checking the state of a |
2486 | // guard variable (__tls_guard) to see whether TLS initialization |
2487 | // for a thread has happend yet. |
2488 | // If not, the initialization is triggered on-demand |
2489 | // by calling __dyn_tls_on_demand_init. |
2490 | emitDynamicTlsInitialization(CGF); |
2491 | |
2492 | // Emit the variable just like any regular global variable. |
2493 | |
2494 | llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(D: VD); |
2495 | llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(T: VD->getType()); |
2496 | |
2497 | CharUnits Alignment = CGF.getContext().getDeclAlign(VD); |
2498 | Address Addr(V, RealVarTy, Alignment); |
2499 | |
2500 | LValue LV = VD->getType()->isReferenceType() |
2501 | ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), |
2502 | AlignmentSource::Decl) |
2503 | : CGF.MakeAddrLValue(Addr, T: LValType, Source: AlignmentSource::Decl); |
2504 | return LV; |
2505 | } |
2506 | |
2507 | static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { |
2508 | StringRef VarName("_Init_thread_epoch" ); |
2509 | CharUnits Align = CGM.getIntAlign(); |
2510 | if (auto *GV = CGM.getModule().getNamedGlobal(Name: VarName)) |
2511 | return ConstantAddress(GV, GV->getValueType(), Align); |
2512 | auto *GV = new llvm::GlobalVariable( |
2513 | CGM.getModule(), CGM.IntTy, |
2514 | /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, |
2515 | /*Initializer=*/nullptr, VarName, |
2516 | /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); |
2517 | GV->setAlignment(Align.getAsAlign()); |
2518 | return ConstantAddress(GV, GV->getValueType(), Align); |
2519 | } |
2520 | |
2521 | static llvm::FunctionCallee (CodeGenModule &CGM) { |
2522 | llvm::FunctionType *FTy = |
2523 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), |
2524 | Params: CGM.IntTy->getPointerTo(), /*isVarArg=*/false); |
2525 | return CGM.CreateRuntimeFunction( |
2526 | FTy, "_Init_thread_header" , |
2527 | llvm::AttributeList::get(CGM.getLLVMContext(), |
2528 | llvm::AttributeList::FunctionIndex, |
2529 | llvm::Attribute::NoUnwind), |
2530 | /*Local=*/true); |
2531 | } |
2532 | |
2533 | static llvm::FunctionCallee (CodeGenModule &CGM) { |
2534 | llvm::FunctionType *FTy = |
2535 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), |
2536 | Params: CGM.IntTy->getPointerTo(), /*isVarArg=*/false); |
2537 | return CGM.CreateRuntimeFunction( |
2538 | FTy, "_Init_thread_footer" , |
2539 | llvm::AttributeList::get(CGM.getLLVMContext(), |
2540 | llvm::AttributeList::FunctionIndex, |
2541 | llvm::Attribute::NoUnwind), |
2542 | /*Local=*/true); |
2543 | } |
2544 | |
2545 | static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { |
2546 | llvm::FunctionType *FTy = |
2547 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), |
2548 | Params: CGM.IntTy->getPointerTo(), /*isVarArg=*/false); |
2549 | return CGM.CreateRuntimeFunction( |
2550 | FTy, "_Init_thread_abort" , |
2551 | llvm::AttributeList::get(CGM.getLLVMContext(), |
2552 | llvm::AttributeList::FunctionIndex, |
2553 | llvm::Attribute::NoUnwind), |
2554 | /*Local=*/true); |
2555 | } |
2556 | |
2557 | namespace { |
2558 | struct ResetGuardBit final : EHScopeStack::Cleanup { |
2559 | Address Guard; |
2560 | unsigned GuardNum; |
2561 | ResetGuardBit(Address Guard, unsigned GuardNum) |
2562 | : Guard(Guard), GuardNum(GuardNum) {} |
2563 | |
2564 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
2565 | // Reset the bit in the mask so that the static variable may be |
2566 | // reinitialized. |
2567 | CGBuilderTy &Builder = CGF.Builder; |
2568 | llvm::LoadInst *LI = Builder.CreateLoad(Addr: Guard); |
2569 | llvm::ConstantInt *Mask = |
2570 | llvm::ConstantInt::get(Ty: CGF.IntTy, V: ~(1ULL << GuardNum)); |
2571 | Builder.CreateStore(Val: Builder.CreateAnd(LHS: LI, RHS: Mask), Addr: Guard); |
2572 | } |
2573 | }; |
2574 | |
2575 | struct CallInitThreadAbort final : EHScopeStack::Cleanup { |
2576 | llvm::Value *Guard; |
2577 | CallInitThreadAbort(RawAddress Guard) : Guard(Guard.getPointer()) {} |
2578 | |
2579 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
2580 | // Calling _Init_thread_abort will reset the guard's state. |
2581 | CGF.EmitNounwindRuntimeCall(callee: getInitThreadAbortFn(CGM&: CGF.CGM), args: Guard); |
2582 | } |
2583 | }; |
2584 | } |
2585 | |
2586 | void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, |
2587 | llvm::GlobalVariable *GV, |
2588 | bool PerformInit) { |
2589 | // MSVC only uses guards for static locals. |
2590 | if (!D.isStaticLocal()) { |
2591 | assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); |
2592 | // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. |
2593 | llvm::Function *F = CGF.CurFn; |
2594 | F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); |
2595 | F->setComdat(CGM.getModule().getOrInsertComdat(Name: F->getName())); |
2596 | CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); |
2597 | return; |
2598 | } |
2599 | |
2600 | bool ThreadlocalStatic = D.getTLSKind(); |
2601 | bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; |
2602 | |
2603 | // Thread-safe static variables which aren't thread-specific have a |
2604 | // per-variable guard. |
2605 | bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; |
2606 | |
2607 | CGBuilderTy &Builder = CGF.Builder; |
2608 | llvm::IntegerType *GuardTy = CGF.Int32Ty; |
2609 | llvm::ConstantInt *Zero = llvm::ConstantInt::get(Ty: GuardTy, V: 0); |
2610 | CharUnits GuardAlign = CharUnits::fromQuantity(Quantity: 4); |
2611 | |
2612 | // Get the guard variable for this function if we have one already. |
2613 | GuardInfo *GI = nullptr; |
2614 | if (ThreadlocalStatic) |
2615 | GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; |
2616 | else if (!ThreadsafeStatic) |
2617 | GI = &GuardVariableMap[D.getDeclContext()]; |
2618 | |
2619 | llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; |
2620 | unsigned GuardNum; |
2621 | if (D.isExternallyVisible()) { |
2622 | // Externally visible variables have to be numbered in Sema to properly |
2623 | // handle unreachable VarDecls. |
2624 | GuardNum = getContext().getStaticLocalNumber(VD: &D); |
2625 | assert(GuardNum > 0); |
2626 | GuardNum--; |
2627 | } else if (HasPerVariableGuard) { |
2628 | GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; |
2629 | } else { |
2630 | // Non-externally visible variables are numbered here in CodeGen. |
2631 | GuardNum = GI->BitIndex++; |
2632 | } |
2633 | |
2634 | if (!HasPerVariableGuard && GuardNum >= 32) { |
2635 | if (D.isExternallyVisible()) |
2636 | ErrorUnsupportedABI(CGF, S: "more than 32 guarded initializations" ); |
2637 | GuardNum %= 32; |
2638 | GuardVar = nullptr; |
2639 | } |
2640 | |
2641 | if (!GuardVar) { |
2642 | // Mangle the name for the guard. |
2643 | SmallString<256> GuardName; |
2644 | { |
2645 | llvm::raw_svector_ostream Out(GuardName); |
2646 | if (HasPerVariableGuard) |
2647 | getMangleContext().mangleThreadSafeStaticGuardVariable(VD: &D, GuardNum, |
2648 | Out); |
2649 | else |
2650 | getMangleContext().mangleStaticGuardVariable(D: &D, Out); |
2651 | } |
2652 | |
2653 | // Create the guard variable with a zero-initializer. Just absorb linkage, |
2654 | // visibility and dll storage class from the guarded variable. |
2655 | GuardVar = |
2656 | new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, |
2657 | GV->getLinkage(), Zero, GuardName.str()); |
2658 | GuardVar->setVisibility(GV->getVisibility()); |
2659 | GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); |
2660 | GuardVar->setAlignment(GuardAlign.getAsAlign()); |
2661 | if (GuardVar->isWeakForLinker()) |
2662 | GuardVar->setComdat( |
2663 | CGM.getModule().getOrInsertComdat(Name: GuardVar->getName())); |
2664 | if (D.getTLSKind()) |
2665 | CGM.setTLSMode(GV: GuardVar, D); |
2666 | if (GI && !HasPerVariableGuard) |
2667 | GI->Guard = GuardVar; |
2668 | } |
2669 | |
2670 | ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign); |
2671 | |
2672 | assert(GuardVar->getLinkage() == GV->getLinkage() && |
2673 | "static local from the same function had different linkage" ); |
2674 | |
2675 | if (!HasPerVariableGuard) { |
2676 | // Pseudo code for the test: |
2677 | // if (!(GuardVar & MyGuardBit)) { |
2678 | // GuardVar |= MyGuardBit; |
2679 | // ... initialize the object ...; |
2680 | // } |
2681 | |
2682 | // Test our bit from the guard variable. |
2683 | llvm::ConstantInt *Bit = llvm::ConstantInt::get(Ty: GuardTy, V: 1ULL << GuardNum); |
2684 | llvm::LoadInst *LI = Builder.CreateLoad(Addr: GuardAddr); |
2685 | llvm::Value *NeedsInit = |
2686 | Builder.CreateICmpEQ(LHS: Builder.CreateAnd(LHS: LI, RHS: Bit), RHS: Zero); |
2687 | llvm::BasicBlock *InitBlock = CGF.createBasicBlock(name: "init" ); |
2688 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock(name: "init.end" ); |
2689 | CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, NoInitBlock: EndBlock, |
2690 | Kind: CodeGenFunction::GuardKind::VariableGuard, D: &D); |
2691 | |
2692 | // Set our bit in the guard variable and emit the initializer and add a global |
2693 | // destructor if appropriate. |
2694 | CGF.EmitBlock(BB: InitBlock); |
2695 | Builder.CreateStore(Val: Builder.CreateOr(LHS: LI, RHS: Bit), Addr: GuardAddr); |
2696 | CGF.EHStack.pushCleanup<ResetGuardBit>(Kind: EHCleanup, A: GuardAddr, A: GuardNum); |
2697 | CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); |
2698 | CGF.PopCleanupBlock(); |
2699 | Builder.CreateBr(Dest: EndBlock); |
2700 | |
2701 | // Continue. |
2702 | CGF.EmitBlock(BB: EndBlock); |
2703 | } else { |
2704 | // Pseudo code for the test: |
2705 | // if (TSS > _Init_thread_epoch) { |
2706 | // _Init_thread_header(&TSS); |
2707 | // if (TSS == -1) { |
2708 | // ... initialize the object ...; |
2709 | // _Init_thread_footer(&TSS); |
2710 | // } |
2711 | // } |
2712 | // |
2713 | // The algorithm is almost identical to what can be found in the appendix |
2714 | // found in N2325. |
2715 | |
2716 | // This BasicBLock determines whether or not we have any work to do. |
2717 | llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(Addr: GuardAddr); |
2718 | FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); |
2719 | llvm::LoadInst *InitThreadEpoch = |
2720 | Builder.CreateLoad(Addr: getInitThreadEpochPtr(CGM)); |
2721 | llvm::Value *IsUninitialized = |
2722 | Builder.CreateICmpSGT(LHS: FirstGuardLoad, RHS: InitThreadEpoch); |
2723 | llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock(name: "init.attempt" ); |
2724 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock(name: "init.end" ); |
2725 | CGF.EmitCXXGuardedInitBranch(NeedsInit: IsUninitialized, InitBlock: AttemptInitBlock, NoInitBlock: EndBlock, |
2726 | Kind: CodeGenFunction::GuardKind::VariableGuard, D: &D); |
2727 | |
2728 | // This BasicBlock attempts to determine whether or not this thread is |
2729 | // responsible for doing the initialization. |
2730 | CGF.EmitBlock(BB: AttemptInitBlock); |
2731 | CGF.EmitNounwindRuntimeCall(callee: getInitThreadHeaderFn(CGM), |
2732 | args: GuardAddr.getPointer()); |
2733 | llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(Addr: GuardAddr); |
2734 | SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); |
2735 | llvm::Value *ShouldDoInit = |
2736 | Builder.CreateICmpEQ(LHS: SecondGuardLoad, RHS: getAllOnesInt()); |
2737 | llvm::BasicBlock *InitBlock = CGF.createBasicBlock(name: "init" ); |
2738 | Builder.CreateCondBr(Cond: ShouldDoInit, True: InitBlock, False: EndBlock); |
2739 | |
2740 | // Ok, we ended up getting selected as the initializing thread. |
2741 | CGF.EmitBlock(BB: InitBlock); |
2742 | CGF.EHStack.pushCleanup<CallInitThreadAbort>(Kind: EHCleanup, A: GuardAddr); |
2743 | CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); |
2744 | CGF.PopCleanupBlock(); |
2745 | CGF.EmitNounwindRuntimeCall(callee: getInitThreadFooterFn(CGM), |
2746 | args: GuardAddr.getPointer()); |
2747 | Builder.CreateBr(Dest: EndBlock); |
2748 | |
2749 | CGF.EmitBlock(BB: EndBlock); |
2750 | } |
2751 | } |
2752 | |
2753 | bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { |
2754 | // Null-ness for function memptrs only depends on the first field, which is |
2755 | // the function pointer. The rest don't matter, so we can zero initialize. |
2756 | if (MPT->isMemberFunctionPointer()) |
2757 | return true; |
2758 | |
2759 | // The virtual base adjustment field is always -1 for null, so if we have one |
2760 | // we can't zero initialize. The field offset is sometimes also -1 if 0 is a |
2761 | // valid field offset. |
2762 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
2763 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
2764 | return (!inheritanceModelHasVBTableOffsetField(Inheritance) && |
2765 | RD->nullFieldOffsetIsZero()); |
2766 | } |
2767 | |
2768 | llvm::Type * |
2769 | MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { |
2770 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
2771 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
2772 | llvm::SmallVector<llvm::Type *, 4> fields; |
2773 | if (MPT->isMemberFunctionPointer()) |
2774 | fields.push_back(Elt: CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk |
2775 | else |
2776 | fields.push_back(Elt: CGM.IntTy); // FieldOffset |
2777 | |
2778 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: MPT->isMemberFunctionPointer(), |
2779 | Inheritance)) |
2780 | fields.push_back(Elt: CGM.IntTy); |
2781 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
2782 | fields.push_back(Elt: CGM.IntTy); |
2783 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
2784 | fields.push_back(Elt: CGM.IntTy); // VirtualBaseAdjustmentOffset |
2785 | |
2786 | if (fields.size() == 1) |
2787 | return fields[0]; |
2788 | return llvm::StructType::get(Context&: CGM.getLLVMContext(), Elements: fields); |
2789 | } |
2790 | |
2791 | void MicrosoftCXXABI:: |
2792 | GetNullMemberPointerFields(const MemberPointerType *MPT, |
2793 | llvm::SmallVectorImpl<llvm::Constant *> &fields) { |
2794 | assert(fields.empty()); |
2795 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
2796 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
2797 | if (MPT->isMemberFunctionPointer()) { |
2798 | // FunctionPointerOrVirtualThunk |
2799 | fields.push_back(Elt: llvm::Constant::getNullValue(Ty: CGM.VoidPtrTy)); |
2800 | } else { |
2801 | if (RD->nullFieldOffsetIsZero()) |
2802 | fields.push_back(Elt: getZeroInt()); // FieldOffset |
2803 | else |
2804 | fields.push_back(Elt: getAllOnesInt()); // FieldOffset |
2805 | } |
2806 | |
2807 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: MPT->isMemberFunctionPointer(), |
2808 | Inheritance)) |
2809 | fields.push_back(Elt: getZeroInt()); |
2810 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
2811 | fields.push_back(Elt: getZeroInt()); |
2812 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
2813 | fields.push_back(Elt: getAllOnesInt()); |
2814 | } |
2815 | |
2816 | llvm::Constant * |
2817 | MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { |
2818 | llvm::SmallVector<llvm::Constant *, 4> fields; |
2819 | GetNullMemberPointerFields(MPT, fields); |
2820 | if (fields.size() == 1) |
2821 | return fields[0]; |
2822 | llvm::Constant *Res = llvm::ConstantStruct::getAnon(V: fields); |
2823 | assert(Res->getType() == ConvertMemberPointerType(MPT)); |
2824 | return Res; |
2825 | } |
2826 | |
2827 | llvm::Constant * |
2828 | MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, |
2829 | bool IsMemberFunction, |
2830 | const CXXRecordDecl *RD, |
2831 | CharUnits NonVirtualBaseAdjustment, |
2832 | unsigned VBTableIndex) { |
2833 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
2834 | |
2835 | // Single inheritance class member pointer are represented as scalars instead |
2836 | // of aggregates. |
2837 | if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) |
2838 | return FirstField; |
2839 | |
2840 | llvm::SmallVector<llvm::Constant *, 4> fields; |
2841 | fields.push_back(Elt: FirstField); |
2842 | |
2843 | if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) |
2844 | fields.push_back(Elt: llvm::ConstantInt::get( |
2845 | Ty: CGM.IntTy, V: NonVirtualBaseAdjustment.getQuantity())); |
2846 | |
2847 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { |
2848 | CharUnits Offs = CharUnits::Zero(); |
2849 | if (VBTableIndex) |
2850 | Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); |
2851 | fields.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.IntTy, V: Offs.getQuantity())); |
2852 | } |
2853 | |
2854 | // The rest of the fields are adjusted by conversions to a more derived class. |
2855 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
2856 | fields.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBTableIndex)); |
2857 | |
2858 | return llvm::ConstantStruct::getAnon(V: fields); |
2859 | } |
2860 | |
2861 | llvm::Constant * |
2862 | MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, |
2863 | CharUnits offset) { |
2864 | return EmitMemberDataPointer(RD: MPT->getMostRecentCXXRecordDecl(), offset); |
2865 | } |
2866 | |
2867 | llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, |
2868 | CharUnits offset) { |
2869 | if (RD->getMSInheritanceModel() == |
2870 | MSInheritanceModel::Virtual) |
2871 | offset -= getContext().getOffsetOfBaseWithVBPtr(RD); |
2872 | llvm::Constant *FirstField = |
2873 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: offset.getQuantity()); |
2874 | return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, |
2875 | NonVirtualBaseAdjustment: CharUnits::Zero(), /*VBTableIndex=*/0); |
2876 | } |
2877 | |
2878 | llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, |
2879 | QualType MPType) { |
2880 | const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); |
2881 | const ValueDecl *MPD = MP.getMemberPointerDecl(); |
2882 | if (!MPD) |
2883 | return EmitNullMemberPointer(MPT: DstTy); |
2884 | |
2885 | ASTContext &Ctx = getContext(); |
2886 | ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); |
2887 | |
2888 | llvm::Constant *C; |
2889 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: MPD)) { |
2890 | C = EmitMemberFunctionPointer(MD); |
2891 | } else { |
2892 | // For a pointer to data member, start off with the offset of the field in |
2893 | // the class in which it was declared, and convert from there if necessary. |
2894 | // For indirect field decls, get the outermost anonymous field and use the |
2895 | // parent class. |
2896 | CharUnits FieldOffset = Ctx.toCharUnitsFromBits(BitSize: Ctx.getFieldOffset(FD: MPD)); |
2897 | const FieldDecl *FD = dyn_cast<FieldDecl>(Val: MPD); |
2898 | if (!FD) |
2899 | FD = cast<FieldDecl>(Val: *cast<IndirectFieldDecl>(Val: MPD)->chain_begin()); |
2900 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: FD->getParent()); |
2901 | RD = RD->getMostRecentNonInjectedDecl(); |
2902 | C = EmitMemberDataPointer(RD, offset: FieldOffset); |
2903 | } |
2904 | |
2905 | if (!MemberPointerPath.empty()) { |
2906 | const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); |
2907 | const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); |
2908 | const MemberPointerType *SrcTy = |
2909 | Ctx.getMemberPointerType(T: DstTy->getPointeeType(), Cls: SrcRecTy) |
2910 | ->castAs<MemberPointerType>(); |
2911 | |
2912 | bool DerivedMember = MP.isMemberPointerToDerivedMember(); |
2913 | SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; |
2914 | const CXXRecordDecl *PrevRD = SrcRD; |
2915 | for (const CXXRecordDecl *PathElem : MemberPointerPath) { |
2916 | const CXXRecordDecl *Base = nullptr; |
2917 | const CXXRecordDecl *Derived = nullptr; |
2918 | if (DerivedMember) { |
2919 | Base = PathElem; |
2920 | Derived = PrevRD; |
2921 | } else { |
2922 | Base = PrevRD; |
2923 | Derived = PathElem; |
2924 | } |
2925 | for (const CXXBaseSpecifier &BS : Derived->bases()) |
2926 | if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == |
2927 | Base->getCanonicalDecl()) |
2928 | DerivedToBasePath.push_back(Elt: &BS); |
2929 | PrevRD = PathElem; |
2930 | } |
2931 | assert(DerivedToBasePath.size() == MemberPointerPath.size()); |
2932 | |
2933 | CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer |
2934 | : CK_BaseToDerivedMemberPointer; |
2935 | C = EmitMemberPointerConversion(SrcTy, DstTy, CK, PathBegin: DerivedToBasePath.begin(), |
2936 | PathEnd: DerivedToBasePath.end(), Src: C); |
2937 | } |
2938 | return C; |
2939 | } |
2940 | |
2941 | llvm::Constant * |
2942 | MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { |
2943 | assert(MD->isInstance() && "Member function must not be static!" ); |
2944 | |
2945 | CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); |
2946 | const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); |
2947 | CodeGenTypes &Types = CGM.getTypes(); |
2948 | |
2949 | unsigned VBTableIndex = 0; |
2950 | llvm::Constant *FirstField; |
2951 | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
2952 | if (!MD->isVirtual()) { |
2953 | llvm::Type *Ty; |
2954 | // Check whether the function has a computable LLVM signature. |
2955 | if (Types.isFuncTypeConvertible(FPT)) { |
2956 | // The function has a computable LLVM signature; use the correct type. |
2957 | Ty = Types.GetFunctionType(Info: Types.arrangeCXXMethodDeclaration(MD)); |
2958 | } else { |
2959 | // Use an arbitrary non-function type to tell GetAddrOfFunction that the |
2960 | // function type is incomplete. |
2961 | Ty = CGM.PtrDiffTy; |
2962 | } |
2963 | FirstField = CGM.GetAddrOfFunction(MD, Ty); |
2964 | } else { |
2965 | auto &VTableContext = CGM.getMicrosoftVTableContext(); |
2966 | MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); |
2967 | FirstField = EmitVirtualMemPtrThunk(MD, ML); |
2968 | // Include the vfptr adjustment if the method is in a non-primary vftable. |
2969 | NonVirtualBaseAdjustment += ML.VFPtrOffset; |
2970 | if (ML.VBase) |
2971 | VBTableIndex = VTableContext.getVBTableIndex(Derived: RD, VBase: ML.VBase) * 4; |
2972 | } |
2973 | |
2974 | if (VBTableIndex == 0 && |
2975 | RD->getMSInheritanceModel() == |
2976 | MSInheritanceModel::Virtual) |
2977 | NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); |
2978 | |
2979 | // The rest of the fields are common with data member pointers. |
2980 | return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, |
2981 | NonVirtualBaseAdjustment, VBTableIndex); |
2982 | } |
2983 | |
2984 | /// Member pointers are the same if they're either bitwise identical *or* both |
2985 | /// null. Null-ness for function members is determined by the first field, |
2986 | /// while for data member pointers we must compare all fields. |
2987 | llvm::Value * |
2988 | MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, |
2989 | llvm::Value *L, |
2990 | llvm::Value *R, |
2991 | const MemberPointerType *MPT, |
2992 | bool Inequality) { |
2993 | CGBuilderTy &Builder = CGF.Builder; |
2994 | |
2995 | // Handle != comparisons by switching the sense of all boolean operations. |
2996 | llvm::ICmpInst::Predicate Eq; |
2997 | llvm::Instruction::BinaryOps And, Or; |
2998 | if (Inequality) { |
2999 | Eq = llvm::ICmpInst::ICMP_NE; |
3000 | And = llvm::Instruction::Or; |
3001 | Or = llvm::Instruction::And; |
3002 | } else { |
3003 | Eq = llvm::ICmpInst::ICMP_EQ; |
3004 | And = llvm::Instruction::And; |
3005 | Or = llvm::Instruction::Or; |
3006 | } |
3007 | |
3008 | // If this is a single field member pointer (single inheritance), this is a |
3009 | // single icmp. |
3010 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
3011 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
3012 | if (inheritanceModelHasOnlyOneField(IsMemberFunction: MPT->isMemberFunctionPointer(), |
3013 | Inheritance)) |
3014 | return Builder.CreateICmp(P: Eq, LHS: L, RHS: R); |
3015 | |
3016 | // Compare the first field. |
3017 | llvm::Value *L0 = Builder.CreateExtractValue(Agg: L, Idxs: 0, Name: "lhs.0" ); |
3018 | llvm::Value *R0 = Builder.CreateExtractValue(Agg: R, Idxs: 0, Name: "rhs.0" ); |
3019 | llvm::Value *Cmp0 = Builder.CreateICmp(P: Eq, LHS: L0, RHS: R0, Name: "memptr.cmp.first" ); |
3020 | |
3021 | // Compare everything other than the first field. |
3022 | llvm::Value *Res = nullptr; |
3023 | llvm::StructType *LType = cast<llvm::StructType>(Val: L->getType()); |
3024 | for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { |
3025 | llvm::Value *LF = Builder.CreateExtractValue(Agg: L, Idxs: I); |
3026 | llvm::Value *RF = Builder.CreateExtractValue(Agg: R, Idxs: I); |
3027 | llvm::Value *Cmp = Builder.CreateICmp(P: Eq, LHS: LF, RHS: RF, Name: "memptr.cmp.rest" ); |
3028 | if (Res) |
3029 | Res = Builder.CreateBinOp(Opc: And, LHS: Res, RHS: Cmp); |
3030 | else |
3031 | Res = Cmp; |
3032 | } |
3033 | |
3034 | // Check if the first field is 0 if this is a function pointer. |
3035 | if (MPT->isMemberFunctionPointer()) { |
3036 | // (l1 == r1 && ...) || l0 == 0 |
3037 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: L0->getType()); |
3038 | llvm::Value *IsZero = Builder.CreateICmp(P: Eq, LHS: L0, RHS: Zero, Name: "memptr.cmp.iszero" ); |
3039 | Res = Builder.CreateBinOp(Opc: Or, LHS: Res, RHS: IsZero); |
3040 | } |
3041 | |
3042 | // Combine the comparison of the first field, which must always be true for |
3043 | // this comparison to succeeed. |
3044 | return Builder.CreateBinOp(Opc: And, LHS: Res, RHS: Cmp0, Name: "memptr.cmp" ); |
3045 | } |
3046 | |
3047 | llvm::Value * |
3048 | MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
3049 | llvm::Value *MemPtr, |
3050 | const MemberPointerType *MPT) { |
3051 | CGBuilderTy &Builder = CGF.Builder; |
3052 | llvm::SmallVector<llvm::Constant *, 4> fields; |
3053 | // We only need one field for member functions. |
3054 | if (MPT->isMemberFunctionPointer()) |
3055 | fields.push_back(Elt: llvm::Constant::getNullValue(Ty: CGM.VoidPtrTy)); |
3056 | else |
3057 | GetNullMemberPointerFields(MPT, fields); |
3058 | assert(!fields.empty()); |
3059 | llvm::Value *FirstField = MemPtr; |
3060 | if (MemPtr->getType()->isStructTy()) |
3061 | FirstField = Builder.CreateExtractValue(Agg: MemPtr, Idxs: 0); |
3062 | llvm::Value *Res = Builder.CreateICmpNE(LHS: FirstField, RHS: fields[0], Name: "memptr.cmp0" ); |
3063 | |
3064 | // For function member pointers, we only need to test the function pointer |
3065 | // field. The other fields if any can be garbage. |
3066 | if (MPT->isMemberFunctionPointer()) |
3067 | return Res; |
3068 | |
3069 | // Otherwise, emit a series of compares and combine the results. |
3070 | for (int I = 1, E = fields.size(); I < E; ++I) { |
3071 | llvm::Value *Field = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I); |
3072 | llvm::Value *Next = Builder.CreateICmpNE(LHS: Field, RHS: fields[I], Name: "memptr.cmp" ); |
3073 | Res = Builder.CreateOr(LHS: Res, RHS: Next, Name: "memptr.tobool" ); |
3074 | } |
3075 | return Res; |
3076 | } |
3077 | |
3078 | bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, |
3079 | llvm::Constant *Val) { |
3080 | // Function pointers are null if the pointer in the first field is null. |
3081 | if (MPT->isMemberFunctionPointer()) { |
3082 | llvm::Constant *FirstField = Val->getType()->isStructTy() ? |
3083 | Val->getAggregateElement(Elt: 0U) : Val; |
3084 | return FirstField->isNullValue(); |
3085 | } |
3086 | |
3087 | // If it's not a function pointer and it's zero initializable, we can easily |
3088 | // check zero. |
3089 | if (isZeroInitializable(MPT) && Val->isNullValue()) |
3090 | return true; |
3091 | |
3092 | // Otherwise, break down all the fields for comparison. Hopefully these |
3093 | // little Constants are reused, while a big null struct might not be. |
3094 | llvm::SmallVector<llvm::Constant *, 4> Fields; |
3095 | GetNullMemberPointerFields(MPT, fields&: Fields); |
3096 | if (Fields.size() == 1) { |
3097 | assert(Val->getType()->isIntegerTy()); |
3098 | return Val == Fields[0]; |
3099 | } |
3100 | |
3101 | unsigned I, E; |
3102 | for (I = 0, E = Fields.size(); I != E; ++I) { |
3103 | if (Val->getAggregateElement(Elt: I) != Fields[I]) |
3104 | break; |
3105 | } |
3106 | return I == E; |
3107 | } |
3108 | |
3109 | llvm::Value * |
3110 | MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, |
3111 | Address This, |
3112 | llvm::Value *VBPtrOffset, |
3113 | llvm::Value *VBTableOffset, |
3114 | llvm::Value **VBPtrOut) { |
3115 | CGBuilderTy &Builder = CGF.Builder; |
3116 | // Load the vbtable pointer from the vbptr in the instance. |
3117 | llvm::Value *VBPtr = Builder.CreateInBoundsGEP( |
3118 | Ty: CGM.Int8Ty, Ptr: This.emitRawPointer(CGF), IdxList: VBPtrOffset, Name: "vbptr" ); |
3119 | if (VBPtrOut) |
3120 | *VBPtrOut = VBPtr; |
3121 | |
3122 | CharUnits VBPtrAlign; |
3123 | if (auto CI = dyn_cast<llvm::ConstantInt>(Val: VBPtrOffset)) { |
3124 | VBPtrAlign = This.getAlignment().alignmentAtOffset( |
3125 | offset: CharUnits::fromQuantity(Quantity: CI->getSExtValue())); |
3126 | } else { |
3127 | VBPtrAlign = CGF.getPointerAlign(); |
3128 | } |
3129 | |
3130 | llvm::Value *VBTable = Builder.CreateAlignedLoad( |
3131 | Ty: CGM.Int32Ty->getPointerTo(AddrSpace: 0), Addr: VBPtr, Align: VBPtrAlign, Name: "vbtable" ); |
3132 | |
3133 | // Translate from byte offset to table index. It improves analyzability. |
3134 | llvm::Value *VBTableIndex = Builder.CreateAShr( |
3135 | LHS: VBTableOffset, RHS: llvm::ConstantInt::get(Ty: VBTableOffset->getType(), V: 2), |
3136 | Name: "vbtindex" , /*isExact=*/true); |
3137 | |
3138 | // Load an i32 offset from the vb-table. |
3139 | llvm::Value *VBaseOffs = |
3140 | Builder.CreateInBoundsGEP(Ty: CGM.Int32Ty, Ptr: VBTable, IdxList: VBTableIndex); |
3141 | return Builder.CreateAlignedLoad(Ty: CGM.Int32Ty, Addr: VBaseOffs, |
3142 | Align: CharUnits::fromQuantity(Quantity: 4), Name: "vbase_offs" ); |
3143 | } |
3144 | |
3145 | // Returns an adjusted base cast to i8*, since we do more address arithmetic on |
3146 | // it. |
3147 | llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( |
3148 | CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, |
3149 | Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { |
3150 | CGBuilderTy &Builder = CGF.Builder; |
3151 | Base = Base.withElementType(ElemTy: CGM.Int8Ty); |
3152 | llvm::BasicBlock *OriginalBB = nullptr; |
3153 | llvm::BasicBlock *SkipAdjustBB = nullptr; |
3154 | llvm::BasicBlock *VBaseAdjustBB = nullptr; |
3155 | |
3156 | // In the unspecified inheritance model, there might not be a vbtable at all, |
3157 | // in which case we need to skip the virtual base lookup. If there is a |
3158 | // vbtable, the first entry is a no-op entry that gives back the original |
3159 | // base, so look for a virtual base adjustment offset of zero. |
3160 | if (VBPtrOffset) { |
3161 | OriginalBB = Builder.GetInsertBlock(); |
3162 | VBaseAdjustBB = CGF.createBasicBlock(name: "memptr.vadjust" ); |
3163 | SkipAdjustBB = CGF.createBasicBlock(name: "memptr.skip_vadjust" ); |
3164 | llvm::Value *IsVirtual = |
3165 | Builder.CreateICmpNE(LHS: VBTableOffset, RHS: getZeroInt(), |
3166 | Name: "memptr.is_vbase" ); |
3167 | Builder.CreateCondBr(Cond: IsVirtual, True: VBaseAdjustBB, False: SkipAdjustBB); |
3168 | CGF.EmitBlock(BB: VBaseAdjustBB); |
3169 | } |
3170 | |
3171 | // If we weren't given a dynamic vbptr offset, RD should be complete and we'll |
3172 | // know the vbptr offset. |
3173 | if (!VBPtrOffset) { |
3174 | CharUnits offs = CharUnits::Zero(); |
3175 | if (!RD->hasDefinition()) { |
3176 | DiagnosticsEngine &Diags = CGF.CGM.getDiags(); |
3177 | unsigned DiagID = Diags.getCustomDiagID( |
3178 | L: DiagnosticsEngine::Error, |
3179 | FormatString: "member pointer representation requires a " |
3180 | "complete class type for %0 to perform this expression" ); |
3181 | Diags.Report(Loc: E->getExprLoc(), DiagID) << RD << E->getSourceRange(); |
3182 | } else if (RD->getNumVBases()) |
3183 | offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); |
3184 | VBPtrOffset = llvm::ConstantInt::get(Ty: CGM.IntTy, V: offs.getQuantity()); |
3185 | } |
3186 | llvm::Value *VBPtr = nullptr; |
3187 | llvm::Value *VBaseOffs = |
3188 | GetVBaseOffsetFromVBPtr(CGF, This: Base, VBPtrOffset, VBTableOffset, VBPtrOut: &VBPtr); |
3189 | llvm::Value *AdjustedBase = |
3190 | Builder.CreateInBoundsGEP(Ty: CGM.Int8Ty, Ptr: VBPtr, IdxList: VBaseOffs); |
3191 | |
3192 | // Merge control flow with the case where we didn't have to adjust. |
3193 | if (VBaseAdjustBB) { |
3194 | Builder.CreateBr(Dest: SkipAdjustBB); |
3195 | CGF.EmitBlock(BB: SkipAdjustBB); |
3196 | llvm::PHINode *Phi = Builder.CreatePHI(Ty: CGM.Int8PtrTy, NumReservedValues: 2, Name: "memptr.base" ); |
3197 | Phi->addIncoming(V: Base.emitRawPointer(CGF), BB: OriginalBB); |
3198 | Phi->addIncoming(V: AdjustedBase, BB: VBaseAdjustBB); |
3199 | return Phi; |
3200 | } |
3201 | return AdjustedBase; |
3202 | } |
3203 | |
3204 | llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( |
3205 | CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, |
3206 | const MemberPointerType *MPT) { |
3207 | assert(MPT->isMemberDataPointer()); |
3208 | CGBuilderTy &Builder = CGF.Builder; |
3209 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
3210 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
3211 | |
3212 | // Extract the fields we need, regardless of model. We'll apply them if we |
3213 | // have them. |
3214 | llvm::Value *FieldOffset = MemPtr; |
3215 | llvm::Value *VirtualBaseAdjustmentOffset = nullptr; |
3216 | llvm::Value *VBPtrOffset = nullptr; |
3217 | if (MemPtr->getType()->isStructTy()) { |
3218 | // We need to extract values. |
3219 | unsigned I = 0; |
3220 | FieldOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3221 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
3222 | VBPtrOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3223 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
3224 | VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3225 | } |
3226 | |
3227 | llvm::Value *Addr; |
3228 | if (VirtualBaseAdjustmentOffset) { |
3229 | Addr = AdjustVirtualBase(CGF, E, RD, Base, VBTableOffset: VirtualBaseAdjustmentOffset, |
3230 | VBPtrOffset); |
3231 | } else { |
3232 | Addr = Base.emitRawPointer(CGF); |
3233 | } |
3234 | |
3235 | // Apply the offset, which we assume is non-null. |
3236 | return Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: Addr, IdxList: FieldOffset, |
3237 | Name: "memptr.offset" ); |
3238 | } |
3239 | |
3240 | llvm::Value * |
3241 | MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, |
3242 | const CastExpr *E, |
3243 | llvm::Value *Src) { |
3244 | assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || |
3245 | E->getCastKind() == CK_BaseToDerivedMemberPointer || |
3246 | E->getCastKind() == CK_ReinterpretMemberPointer); |
3247 | |
3248 | // Use constant emission if we can. |
3249 | if (isa<llvm::Constant>(Val: Src)) |
3250 | return EmitMemberPointerConversion(E, Src: cast<llvm::Constant>(Val: Src)); |
3251 | |
3252 | // We may be adding or dropping fields from the member pointer, so we need |
3253 | // both types and the inheritance models of both records. |
3254 | const MemberPointerType *SrcTy = |
3255 | E->getSubExpr()->getType()->castAs<MemberPointerType>(); |
3256 | const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); |
3257 | bool IsFunc = SrcTy->isMemberFunctionPointer(); |
3258 | |
3259 | // If the classes use the same null representation, reinterpret_cast is a nop. |
3260 | bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; |
3261 | if (IsReinterpret && IsFunc) |
3262 | return Src; |
3263 | |
3264 | CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); |
3265 | CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); |
3266 | if (IsReinterpret && |
3267 | SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) |
3268 | return Src; |
3269 | |
3270 | CGBuilderTy &Builder = CGF.Builder; |
3271 | |
3272 | // Branch past the conversion if Src is null. |
3273 | llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, MemPtr: Src, MPT: SrcTy); |
3274 | llvm::Constant *DstNull = EmitNullMemberPointer(MPT: DstTy); |
3275 | |
3276 | // C++ 5.2.10p9: The null member pointer value is converted to the null member |
3277 | // pointer value of the destination type. |
3278 | if (IsReinterpret) { |
3279 | // For reinterpret casts, sema ensures that src and dst are both functions |
3280 | // or data and have the same size, which means the LLVM types should match. |
3281 | assert(Src->getType() == DstNull->getType()); |
3282 | return Builder.CreateSelect(C: IsNotNull, True: Src, False: DstNull); |
3283 | } |
3284 | |
3285 | llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); |
3286 | llvm::BasicBlock *ConvertBB = CGF.createBasicBlock(name: "memptr.convert" ); |
3287 | llvm::BasicBlock *ContinueBB = CGF.createBasicBlock(name: "memptr.converted" ); |
3288 | Builder.CreateCondBr(Cond: IsNotNull, True: ConvertBB, False: ContinueBB); |
3289 | CGF.EmitBlock(BB: ConvertBB); |
3290 | |
3291 | llvm::Value *Dst = EmitNonNullMemberPointerConversion( |
3292 | SrcTy, DstTy, CK: E->getCastKind(), PathBegin: E->path_begin(), PathEnd: E->path_end(), Src, |
3293 | Builder); |
3294 | |
3295 | Builder.CreateBr(Dest: ContinueBB); |
3296 | |
3297 | // In the continuation, choose between DstNull and Dst. |
3298 | CGF.EmitBlock(BB: ContinueBB); |
3299 | llvm::PHINode *Phi = Builder.CreatePHI(Ty: DstNull->getType(), NumReservedValues: 2, Name: "memptr.converted" ); |
3300 | Phi->addIncoming(V: DstNull, BB: OriginalBB); |
3301 | Phi->addIncoming(V: Dst, BB: ConvertBB); |
3302 | return Phi; |
3303 | } |
3304 | |
3305 | llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( |
3306 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, |
3307 | CastExpr::path_const_iterator PathBegin, |
3308 | CastExpr::path_const_iterator PathEnd, llvm::Value *Src, |
3309 | CGBuilderTy &Builder) { |
3310 | const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); |
3311 | const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); |
3312 | MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); |
3313 | MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); |
3314 | bool IsFunc = SrcTy->isMemberFunctionPointer(); |
3315 | bool IsConstant = isa<llvm::Constant>(Val: Src); |
3316 | |
3317 | // Decompose src. |
3318 | llvm::Value *FirstField = Src; |
3319 | llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); |
3320 | llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); |
3321 | llvm::Value *VBPtrOffset = getZeroInt(); |
3322 | if (!inheritanceModelHasOnlyOneField(IsMemberFunction: IsFunc, Inheritance: SrcInheritance)) { |
3323 | // We need to extract values. |
3324 | unsigned I = 0; |
3325 | FirstField = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
3326 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: IsFunc, Inheritance: SrcInheritance)) |
3327 | NonVirtualBaseAdjustment = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
3328 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: SrcInheritance)) |
3329 | VBPtrOffset = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
3330 | if (inheritanceModelHasVBTableOffsetField(Inheritance: SrcInheritance)) |
3331 | VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
3332 | } |
3333 | |
3334 | bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); |
3335 | const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; |
3336 | const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); |
3337 | |
3338 | // For data pointers, we adjust the field offset directly. For functions, we |
3339 | // have a separate field. |
3340 | llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; |
3341 | |
3342 | // The virtual inheritance model has a quirk: the virtual base table is always |
3343 | // referenced when dereferencing a member pointer even if the member pointer |
3344 | // is non-virtual. This is accounted for by adjusting the non-virtual offset |
3345 | // to point backwards to the top of the MDC from the first VBase. Undo this |
3346 | // adjustment to normalize the member pointer. |
3347 | llvm::Value *SrcVBIndexEqZero = |
3348 | Builder.CreateICmpEQ(LHS: VirtualBaseAdjustmentOffset, RHS: getZeroInt()); |
3349 | if (SrcInheritance == MSInheritanceModel::Virtual) { |
3350 | if (int64_t SrcOffsetToFirstVBase = |
3351 | getContext().getOffsetOfBaseWithVBPtr(RD: SrcRD).getQuantity()) { |
3352 | llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( |
3353 | C: SrcVBIndexEqZero, |
3354 | True: llvm::ConstantInt::get(Ty: CGM.IntTy, V: SrcOffsetToFirstVBase), |
3355 | False: getZeroInt()); |
3356 | NVAdjustField = Builder.CreateNSWAdd(LHS: NVAdjustField, RHS: UndoSrcAdjustment); |
3357 | } |
3358 | } |
3359 | |
3360 | // A non-zero vbindex implies that we are dealing with a source member in a |
3361 | // floating virtual base in addition to some non-virtual offset. If the |
3362 | // vbindex is zero, we are dealing with a source that exists in a non-virtual, |
3363 | // fixed, base. The difference between these two cases is that the vbindex + |
3364 | // nvoffset *always* point to the member regardless of what context they are |
3365 | // evaluated in so long as the vbindex is adjusted. A member inside a fixed |
3366 | // base requires explicit nv adjustment. |
3367 | llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( |
3368 | Ty: CGM.IntTy, |
3369 | V: CGM.computeNonVirtualBaseClassOffset(DerivedClass, Start: PathBegin, End: PathEnd) |
3370 | .getQuantity()); |
3371 | |
3372 | llvm::Value *NVDisp; |
3373 | if (IsDerivedToBase) |
3374 | NVDisp = Builder.CreateNSWSub(LHS: NVAdjustField, RHS: BaseClassOffset, Name: "adj" ); |
3375 | else |
3376 | NVDisp = Builder.CreateNSWAdd(LHS: NVAdjustField, RHS: BaseClassOffset, Name: "adj" ); |
3377 | |
3378 | NVAdjustField = Builder.CreateSelect(C: SrcVBIndexEqZero, True: NVDisp, False: getZeroInt()); |
3379 | |
3380 | // Update the vbindex to an appropriate value in the destination because |
3381 | // SrcRD's vbtable might not be a strict prefix of the one in DstRD. |
3382 | llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; |
3383 | if (inheritanceModelHasVBTableOffsetField(Inheritance: DstInheritance) && |
3384 | inheritanceModelHasVBTableOffsetField(Inheritance: SrcInheritance)) { |
3385 | if (llvm::GlobalVariable *VDispMap = |
3386 | getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { |
3387 | llvm::Value *VBIndex = Builder.CreateExactUDiv( |
3388 | LHS: VirtualBaseAdjustmentOffset, RHS: llvm::ConstantInt::get(Ty: CGM.IntTy, V: 4)); |
3389 | if (IsConstant) { |
3390 | llvm::Constant *Mapping = VDispMap->getInitializer(); |
3391 | VirtualBaseAdjustmentOffset = |
3392 | Mapping->getAggregateElement(Elt: cast<llvm::Constant>(Val: VBIndex)); |
3393 | } else { |
3394 | llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; |
3395 | VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad( |
3396 | Ty: CGM.IntTy, Addr: Builder.CreateInBoundsGEP(Ty: VDispMap->getValueType(), |
3397 | Ptr: VDispMap, IdxList: Idxs), |
3398 | Align: CharUnits::fromQuantity(Quantity: 4)); |
3399 | } |
3400 | |
3401 | DstVBIndexEqZero = |
3402 | Builder.CreateICmpEQ(LHS: VirtualBaseAdjustmentOffset, RHS: getZeroInt()); |
3403 | } |
3404 | } |
3405 | |
3406 | // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize |
3407 | // it to the offset of the vbptr. |
3408 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: DstInheritance)) { |
3409 | llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( |
3410 | Ty: CGM.IntTy, |
3411 | V: getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); |
3412 | VBPtrOffset = |
3413 | Builder.CreateSelect(C: DstVBIndexEqZero, True: getZeroInt(), False: DstVBPtrOffset); |
3414 | } |
3415 | |
3416 | // Likewise, apply a similar adjustment so that dereferencing the member |
3417 | // pointer correctly accounts for the distance between the start of the first |
3418 | // virtual base and the top of the MDC. |
3419 | if (DstInheritance == MSInheritanceModel::Virtual) { |
3420 | if (int64_t DstOffsetToFirstVBase = |
3421 | getContext().getOffsetOfBaseWithVBPtr(RD: DstRD).getQuantity()) { |
3422 | llvm::Value *DoDstAdjustment = Builder.CreateSelect( |
3423 | C: DstVBIndexEqZero, |
3424 | True: llvm::ConstantInt::get(Ty: CGM.IntTy, V: DstOffsetToFirstVBase), |
3425 | False: getZeroInt()); |
3426 | NVAdjustField = Builder.CreateNSWSub(LHS: NVAdjustField, RHS: DoDstAdjustment); |
3427 | } |
3428 | } |
3429 | |
3430 | // Recompose dst from the null struct and the adjusted fields from src. |
3431 | llvm::Value *Dst; |
3432 | if (inheritanceModelHasOnlyOneField(IsMemberFunction: IsFunc, Inheritance: DstInheritance)) { |
3433 | Dst = FirstField; |
3434 | } else { |
3435 | Dst = llvm::UndefValue::get(T: ConvertMemberPointerType(MPT: DstTy)); |
3436 | unsigned Idx = 0; |
3437 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: FirstField, Idxs: Idx++); |
3438 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: IsFunc, Inheritance: DstInheritance)) |
3439 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: NonVirtualBaseAdjustment, Idxs: Idx++); |
3440 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: DstInheritance)) |
3441 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: VBPtrOffset, Idxs: Idx++); |
3442 | if (inheritanceModelHasVBTableOffsetField(Inheritance: DstInheritance)) |
3443 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: VirtualBaseAdjustmentOffset, Idxs: Idx++); |
3444 | } |
3445 | return Dst; |
3446 | } |
3447 | |
3448 | llvm::Constant * |
3449 | MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, |
3450 | llvm::Constant *Src) { |
3451 | const MemberPointerType *SrcTy = |
3452 | E->getSubExpr()->getType()->castAs<MemberPointerType>(); |
3453 | const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); |
3454 | |
3455 | CastKind CK = E->getCastKind(); |
3456 | |
3457 | return EmitMemberPointerConversion(SrcTy, DstTy, CK, PathBegin: E->path_begin(), |
3458 | PathEnd: E->path_end(), Src); |
3459 | } |
3460 | |
3461 | llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( |
3462 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, |
3463 | CastExpr::path_const_iterator PathBegin, |
3464 | CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { |
3465 | assert(CK == CK_DerivedToBaseMemberPointer || |
3466 | CK == CK_BaseToDerivedMemberPointer || |
3467 | CK == CK_ReinterpretMemberPointer); |
3468 | // If src is null, emit a new null for dst. We can't return src because dst |
3469 | // might have a new representation. |
3470 | if (MemberPointerConstantIsNull(MPT: SrcTy, Val: Src)) |
3471 | return EmitNullMemberPointer(MPT: DstTy); |
3472 | |
3473 | // We don't need to do anything for reinterpret_casts of non-null member |
3474 | // pointers. We should only get here when the two type representations have |
3475 | // the same size. |
3476 | if (CK == CK_ReinterpretMemberPointer) |
3477 | return Src; |
3478 | |
3479 | CGBuilderTy Builder(CGM, CGM.getLLVMContext()); |
3480 | auto *Dst = cast<llvm::Constant>(Val: EmitNonNullMemberPointerConversion( |
3481 | SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); |
3482 | |
3483 | return Dst; |
3484 | } |
3485 | |
3486 | CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( |
3487 | CodeGenFunction &CGF, const Expr *E, Address This, |
3488 | llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, |
3489 | const MemberPointerType *MPT) { |
3490 | assert(MPT->isMemberFunctionPointer()); |
3491 | const FunctionProtoType *FPT = |
3492 | MPT->getPointeeType()->castAs<FunctionProtoType>(); |
3493 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
3494 | CGBuilderTy &Builder = CGF.Builder; |
3495 | |
3496 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
3497 | |
3498 | // Extract the fields we need, regardless of model. We'll apply them if we |
3499 | // have them. |
3500 | llvm::Value *FunctionPointer = MemPtr; |
3501 | llvm::Value *NonVirtualBaseAdjustment = nullptr; |
3502 | llvm::Value *VirtualBaseAdjustmentOffset = nullptr; |
3503 | llvm::Value *VBPtrOffset = nullptr; |
3504 | if (MemPtr->getType()->isStructTy()) { |
3505 | // We need to extract values. |
3506 | unsigned I = 0; |
3507 | FunctionPointer = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3508 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: MPT, Inheritance)) |
3509 | NonVirtualBaseAdjustment = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3510 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
3511 | VBPtrOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3512 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
3513 | VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3514 | } |
3515 | |
3516 | if (VirtualBaseAdjustmentOffset) { |
3517 | ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, Base: This, |
3518 | VBTableOffset: VirtualBaseAdjustmentOffset, VBPtrOffset); |
3519 | } else { |
3520 | ThisPtrForCall = This.emitRawPointer(CGF); |
3521 | } |
3522 | |
3523 | if (NonVirtualBaseAdjustment) |
3524 | ThisPtrForCall = Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: ThisPtrForCall, |
3525 | IdxList: NonVirtualBaseAdjustment); |
3526 | |
3527 | CGCallee Callee(FPT, FunctionPointer); |
3528 | return Callee; |
3529 | } |
3530 | |
3531 | CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { |
3532 | return new MicrosoftCXXABI(CGM); |
3533 | } |
3534 | |
3535 | // MS RTTI Overview: |
3536 | // The run time type information emitted by cl.exe contains 5 distinct types of |
3537 | // structures. Many of them reference each other. |
3538 | // |
3539 | // TypeInfo: Static classes that are returned by typeid. |
3540 | // |
3541 | // CompleteObjectLocator: Referenced by vftables. They contain information |
3542 | // required for dynamic casting, including OffsetFromTop. They also contain |
3543 | // a reference to the TypeInfo for the type and a reference to the |
3544 | // CompleteHierarchyDescriptor for the type. |
3545 | // |
3546 | // ClassHierarchyDescriptor: Contains information about a class hierarchy. |
3547 | // Used during dynamic_cast to walk a class hierarchy. References a base |
3548 | // class array and the size of said array. |
3549 | // |
3550 | // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is |
3551 | // somewhat of a misnomer because the most derived class is also in the list |
3552 | // as well as multiple copies of virtual bases (if they occur multiple times |
3553 | // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for |
3554 | // every path in the hierarchy, in pre-order depth first order. Note, we do |
3555 | // not declare a specific llvm type for BaseClassArray, it's merely an array |
3556 | // of BaseClassDescriptor pointers. |
3557 | // |
3558 | // BaseClassDescriptor: Contains information about a class in a class hierarchy. |
3559 | // BaseClassDescriptor is also somewhat of a misnomer for the same reason that |
3560 | // BaseClassArray is. It contains information about a class within a |
3561 | // hierarchy such as: is this base is ambiguous and what is its offset in the |
3562 | // vbtable. The names of the BaseClassDescriptors have all of their fields |
3563 | // mangled into them so they can be aggressively deduplicated by the linker. |
3564 | |
3565 | static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { |
3566 | StringRef MangledName("??_7type_info@@6B@" ); |
3567 | if (auto VTable = CGM.getModule().getNamedGlobal(Name: MangledName)) |
3568 | return VTable; |
3569 | return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, |
3570 | /*isConstant=*/true, |
3571 | llvm::GlobalVariable::ExternalLinkage, |
3572 | /*Initializer=*/nullptr, MangledName); |
3573 | } |
3574 | |
3575 | namespace { |
3576 | |
3577 | /// A Helper struct that stores information about a class in a class |
3578 | /// hierarchy. The information stored in these structs struct is used during |
3579 | /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. |
3580 | // During RTTI creation, MSRTTIClasses are stored in a contiguous array with |
3581 | // implicit depth first pre-order tree connectivity. getFirstChild and |
3582 | // getNextSibling allow us to walk the tree efficiently. |
3583 | struct MSRTTIClass { |
3584 | enum { |
3585 | IsPrivateOnPath = 1 | 8, |
3586 | IsAmbiguous = 2, |
3587 | IsPrivate = 4, |
3588 | IsVirtual = 16, |
3589 | HasHierarchyDescriptor = 64 |
3590 | }; |
3591 | MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} |
3592 | uint32_t initialize(const MSRTTIClass *Parent, |
3593 | const CXXBaseSpecifier *Specifier); |
3594 | |
3595 | MSRTTIClass *getFirstChild() { return this + 1; } |
3596 | static MSRTTIClass *getNextChild(MSRTTIClass *Child) { |
3597 | return Child + 1 + Child->NumBases; |
3598 | } |
3599 | |
3600 | const CXXRecordDecl *RD, *VirtualRoot; |
3601 | uint32_t Flags, NumBases, OffsetInVBase; |
3602 | }; |
3603 | |
3604 | /// Recursively initialize the base class array. |
3605 | uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, |
3606 | const CXXBaseSpecifier *Specifier) { |
3607 | Flags = HasHierarchyDescriptor; |
3608 | if (!Parent) { |
3609 | VirtualRoot = nullptr; |
3610 | OffsetInVBase = 0; |
3611 | } else { |
3612 | if (Specifier->getAccessSpecifier() != AS_public) |
3613 | Flags |= IsPrivate | IsPrivateOnPath; |
3614 | if (Specifier->isVirtual()) { |
3615 | Flags |= IsVirtual; |
3616 | VirtualRoot = RD; |
3617 | OffsetInVBase = 0; |
3618 | } else { |
3619 | if (Parent->Flags & IsPrivateOnPath) |
3620 | Flags |= IsPrivateOnPath; |
3621 | VirtualRoot = Parent->VirtualRoot; |
3622 | OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() |
3623 | .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); |
3624 | } |
3625 | } |
3626 | NumBases = 0; |
3627 | MSRTTIClass *Child = getFirstChild(); |
3628 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
3629 | NumBases += Child->initialize(Parent: this, Specifier: &Base) + 1; |
3630 | Child = getNextChild(Child); |
3631 | } |
3632 | return NumBases; |
3633 | } |
3634 | |
3635 | static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { |
3636 | switch (Ty->getLinkage()) { |
3637 | case Linkage::Invalid: |
3638 | llvm_unreachable("Linkage hasn't been computed!" ); |
3639 | |
3640 | case Linkage::None: |
3641 | case Linkage::Internal: |
3642 | case Linkage::UniqueExternal: |
3643 | return llvm::GlobalValue::InternalLinkage; |
3644 | |
3645 | case Linkage::VisibleNone: |
3646 | case Linkage::Module: |
3647 | case Linkage::External: |
3648 | return llvm::GlobalValue::LinkOnceODRLinkage; |
3649 | } |
3650 | llvm_unreachable("Invalid linkage!" ); |
3651 | } |
3652 | |
3653 | /// An ephemeral helper class for building MS RTTI types. It caches some |
3654 | /// calls to the module and information about the most derived class in a |
3655 | /// hierarchy. |
3656 | struct MSRTTIBuilder { |
3657 | enum { |
3658 | HasBranchingHierarchy = 1, |
3659 | HasVirtualBranchingHierarchy = 2, |
3660 | HasAmbiguousBases = 4 |
3661 | }; |
3662 | |
3663 | MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) |
3664 | : CGM(ABI.CGM), Context(CGM.getContext()), |
3665 | VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), |
3666 | Linkage(getLinkageForRTTI(Ty: CGM.getContext().getTagDeclType(RD))), |
3667 | ABI(ABI) {} |
3668 | |
3669 | llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); |
3670 | llvm::GlobalVariable * |
3671 | getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); |
3672 | llvm::GlobalVariable *getClassHierarchyDescriptor(); |
3673 | llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); |
3674 | |
3675 | CodeGenModule &CGM; |
3676 | ASTContext &Context; |
3677 | llvm::LLVMContext &VMContext; |
3678 | llvm::Module &Module; |
3679 | const CXXRecordDecl *RD; |
3680 | llvm::GlobalVariable::LinkageTypes Linkage; |
3681 | MicrosoftCXXABI &ABI; |
3682 | }; |
3683 | |
3684 | } // namespace |
3685 | |
3686 | /// Recursively serializes a class hierarchy in pre-order depth first |
3687 | /// order. |
3688 | static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, |
3689 | const CXXRecordDecl *RD) { |
3690 | Classes.push_back(Elt: MSRTTIClass(RD)); |
3691 | for (const CXXBaseSpecifier &Base : RD->bases()) |
3692 | serializeClassHierarchy(Classes, RD: Base.getType()->getAsCXXRecordDecl()); |
3693 | } |
3694 | |
3695 | /// Find ambiguity among base classes. |
3696 | static void |
3697 | detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { |
3698 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; |
3699 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; |
3700 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; |
3701 | for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { |
3702 | if ((Class->Flags & MSRTTIClass::IsVirtual) && |
3703 | !VirtualBases.insert(Ptr: Class->RD).second) { |
3704 | Class = MSRTTIClass::getNextChild(Child: Class); |
3705 | continue; |
3706 | } |
3707 | if (!UniqueBases.insert(Ptr: Class->RD).second) |
3708 | AmbiguousBases.insert(Ptr: Class->RD); |
3709 | Class++; |
3710 | } |
3711 | if (AmbiguousBases.empty()) |
3712 | return; |
3713 | for (MSRTTIClass &Class : Classes) |
3714 | if (AmbiguousBases.count(Ptr: Class.RD)) |
3715 | Class.Flags |= MSRTTIClass::IsAmbiguous; |
3716 | } |
3717 | |
3718 | llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { |
3719 | SmallString<256> MangledName; |
3720 | { |
3721 | llvm::raw_svector_ostream Out(MangledName); |
3722 | ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(Derived: RD, Out); |
3723 | } |
3724 | |
3725 | // Check to see if we've already declared this ClassHierarchyDescriptor. |
3726 | if (auto CHD = Module.getNamedGlobal(Name: MangledName)) |
3727 | return CHD; |
3728 | |
3729 | // Serialize the class hierarchy and initialize the CHD Fields. |
3730 | SmallVector<MSRTTIClass, 8> Classes; |
3731 | serializeClassHierarchy(Classes, RD); |
3732 | Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); |
3733 | detectAmbiguousBases(Classes); |
3734 | int Flags = 0; |
3735 | for (const MSRTTIClass &Class : Classes) { |
3736 | if (Class.RD->getNumBases() > 1) |
3737 | Flags |= HasBranchingHierarchy; |
3738 | // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We |
3739 | // believe the field isn't actually used. |
3740 | if (Class.Flags & MSRTTIClass::IsAmbiguous) |
3741 | Flags |= HasAmbiguousBases; |
3742 | } |
3743 | if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) |
3744 | Flags |= HasVirtualBranchingHierarchy; |
3745 | // These gep indices are used to get the address of the first element of the |
3746 | // base class array. |
3747 | llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0), |
3748 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0)}; |
3749 | |
3750 | // Forward-declare the class hierarchy descriptor |
3751 | auto Type = ABI.getClassHierarchyDescriptorType(); |
3752 | auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, |
3753 | /*Initializer=*/nullptr, |
3754 | MangledName); |
3755 | if (CHD->isWeakForLinker()) |
3756 | CHD->setComdat(CGM.getModule().getOrInsertComdat(Name: CHD->getName())); |
3757 | |
3758 | auto *Bases = getBaseClassArray(Classes); |
3759 | |
3760 | // Initialize the base class ClassHierarchyDescriptor. |
3761 | llvm::Constant *Fields[] = { |
3762 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0), // reserved by the runtime |
3763 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Flags), |
3764 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Classes.size()), |
3765 | ABI.getImageRelativeConstant(PtrVal: llvm::ConstantExpr::getInBoundsGetElementPtr( |
3766 | Ty: Bases->getValueType(), C: Bases, |
3767 | IdxList: llvm::ArrayRef<llvm::Value *>(GEPIndices))), |
3768 | }; |
3769 | CHD->setInitializer(llvm::ConstantStruct::get(T: Type, V: Fields)); |
3770 | return CHD; |
3771 | } |
3772 | |
3773 | llvm::GlobalVariable * |
3774 | MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { |
3775 | SmallString<256> MangledName; |
3776 | { |
3777 | llvm::raw_svector_ostream Out(MangledName); |
3778 | ABI.getMangleContext().mangleCXXRTTIBaseClassArray(Derived: RD, Out); |
3779 | } |
3780 | |
3781 | // Forward-declare the base class array. |
3782 | // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit |
3783 | // mode) bytes of padding. We provide a pointer sized amount of padding by |
3784 | // adding +1 to Classes.size(). The sections have pointer alignment and are |
3785 | // marked pick-any so it shouldn't matter. |
3786 | llvm::Type *PtrType = ABI.getImageRelativeType( |
3787 | PtrType: ABI.getBaseClassDescriptorType()->getPointerTo()); |
3788 | auto *ArrType = llvm::ArrayType::get(ElementType: PtrType, NumElements: Classes.size() + 1); |
3789 | auto *BCA = |
3790 | new llvm::GlobalVariable(Module, ArrType, |
3791 | /*isConstant=*/true, Linkage, |
3792 | /*Initializer=*/nullptr, MangledName); |
3793 | if (BCA->isWeakForLinker()) |
3794 | BCA->setComdat(CGM.getModule().getOrInsertComdat(Name: BCA->getName())); |
3795 | |
3796 | // Initialize the BaseClassArray. |
3797 | SmallVector<llvm::Constant *, 8> BaseClassArrayData; |
3798 | for (MSRTTIClass &Class : Classes) |
3799 | BaseClassArrayData.push_back( |
3800 | Elt: ABI.getImageRelativeConstant(PtrVal: getBaseClassDescriptor(Classes: Class))); |
3801 | BaseClassArrayData.push_back(Elt: llvm::Constant::getNullValue(Ty: PtrType)); |
3802 | BCA->setInitializer(llvm::ConstantArray::get(T: ArrType, V: BaseClassArrayData)); |
3803 | return BCA; |
3804 | } |
3805 | |
3806 | llvm::GlobalVariable * |
3807 | MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { |
3808 | // Compute the fields for the BaseClassDescriptor. They are computed up front |
3809 | // because they are mangled into the name of the object. |
3810 | uint32_t OffsetInVBTable = 0; |
3811 | int32_t VBPtrOffset = -1; |
3812 | if (Class.VirtualRoot) { |
3813 | auto &VTableContext = CGM.getMicrosoftVTableContext(); |
3814 | OffsetInVBTable = VTableContext.getVBTableIndex(Derived: RD, VBase: Class.VirtualRoot) * 4; |
3815 | VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); |
3816 | } |
3817 | |
3818 | SmallString<256> MangledName; |
3819 | { |
3820 | llvm::raw_svector_ostream Out(MangledName); |
3821 | ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( |
3822 | Derived: Class.RD, NVOffset: Class.OffsetInVBase, VBPtrOffset, VBTableOffset: OffsetInVBTable, |
3823 | Flags: Class.Flags, Out); |
3824 | } |
3825 | |
3826 | // Check to see if we've already declared this object. |
3827 | if (auto BCD = Module.getNamedGlobal(Name: MangledName)) |
3828 | return BCD; |
3829 | |
3830 | // Forward-declare the base class descriptor. |
3831 | auto Type = ABI.getBaseClassDescriptorType(); |
3832 | auto BCD = |
3833 | new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, |
3834 | /*Initializer=*/nullptr, MangledName); |
3835 | if (BCD->isWeakForLinker()) |
3836 | BCD->setComdat(CGM.getModule().getOrInsertComdat(Name: BCD->getName())); |
3837 | |
3838 | // Initialize the BaseClassDescriptor. |
3839 | llvm::Constant *Fields[] = { |
3840 | ABI.getImageRelativeConstant( |
3841 | PtrVal: ABI.getAddrOfRTTIDescriptor(Ty: Context.getTypeDeclType(Class.RD))), |
3842 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Class.NumBases), |
3843 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Class.OffsetInVBase), |
3844 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBPtrOffset), |
3845 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: OffsetInVBTable), |
3846 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Class.Flags), |
3847 | ABI.getImageRelativeConstant( |
3848 | PtrVal: MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), |
3849 | }; |
3850 | BCD->setInitializer(llvm::ConstantStruct::get(T: Type, V: Fields)); |
3851 | return BCD; |
3852 | } |
3853 | |
3854 | llvm::GlobalVariable * |
3855 | MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { |
3856 | SmallString<256> MangledName; |
3857 | { |
3858 | llvm::raw_svector_ostream Out(MangledName); |
3859 | ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(Derived: RD, BasePath: Info.MangledPath, Out); |
3860 | } |
3861 | |
3862 | // Check to see if we've already computed this complete object locator. |
3863 | if (auto COL = Module.getNamedGlobal(Name: MangledName)) |
3864 | return COL; |
3865 | |
3866 | // Compute the fields of the complete object locator. |
3867 | int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); |
3868 | int VFPtrOffset = 0; |
3869 | // The offset includes the vtordisp if one exists. |
3870 | if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) |
3871 | if (Context.getASTRecordLayout(RD) |
3872 | .getVBaseOffsetsMap() |
3873 | .find(Val: VBase) |
3874 | ->second.hasVtorDisp()) |
3875 | VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; |
3876 | |
3877 | // Forward-declare the complete object locator. |
3878 | llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); |
3879 | auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, |
3880 | /*Initializer=*/nullptr, MangledName); |
3881 | |
3882 | // Initialize the CompleteObjectLocator. |
3883 | llvm::Constant *Fields[] = { |
3884 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: ABI.isImageRelative()), |
3885 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: OffsetToTop), |
3886 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VFPtrOffset), |
3887 | ABI.getImageRelativeConstant( |
3888 | PtrVal: CGM.GetAddrOfRTTIDescriptor(Ty: Context.getTypeDeclType(RD))), |
3889 | ABI.getImageRelativeConstant(PtrVal: getClassHierarchyDescriptor()), |
3890 | ABI.getImageRelativeConstant(PtrVal: COL), |
3891 | }; |
3892 | llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); |
3893 | if (!ABI.isImageRelative()) |
3894 | FieldsRef = FieldsRef.drop_back(); |
3895 | COL->setInitializer(llvm::ConstantStruct::get(T: Type, V: FieldsRef)); |
3896 | if (COL->isWeakForLinker()) |
3897 | COL->setComdat(CGM.getModule().getOrInsertComdat(Name: COL->getName())); |
3898 | return COL; |
3899 | } |
3900 | |
3901 | static QualType decomposeTypeForEH(ASTContext &Context, QualType T, |
3902 | bool &IsConst, bool &IsVolatile, |
3903 | bool &IsUnaligned) { |
3904 | T = Context.getExceptionObjectType(T); |
3905 | |
3906 | // C++14 [except.handle]p3: |
3907 | // A handler is a match for an exception object of type E if [...] |
3908 | // - the handler is of type cv T or const T& where T is a pointer type and |
3909 | // E is a pointer type that can be converted to T by [...] |
3910 | // - a qualification conversion |
3911 | IsConst = false; |
3912 | IsVolatile = false; |
3913 | IsUnaligned = false; |
3914 | QualType PointeeType = T->getPointeeType(); |
3915 | if (!PointeeType.isNull()) { |
3916 | IsConst = PointeeType.isConstQualified(); |
3917 | IsVolatile = PointeeType.isVolatileQualified(); |
3918 | IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); |
3919 | } |
3920 | |
3921 | // Member pointer types like "const int A::*" are represented by having RTTI |
3922 | // for "int A::*" and separately storing the const qualifier. |
3923 | if (const auto *MPTy = T->getAs<MemberPointerType>()) |
3924 | T = Context.getMemberPointerType(T: PointeeType.getUnqualifiedType(), |
3925 | Cls: MPTy->getClass()); |
3926 | |
3927 | // Pointer types like "const int * const *" are represented by having RTTI |
3928 | // for "const int **" and separately storing the const qualifier. |
3929 | if (T->isPointerType()) |
3930 | T = Context.getPointerType(T: PointeeType.getUnqualifiedType()); |
3931 | |
3932 | return T; |
3933 | } |
3934 | |
3935 | CatchTypeInfo |
3936 | MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, |
3937 | QualType CatchHandlerType) { |
3938 | // TypeDescriptors for exceptions never have qualified pointer types, |
3939 | // qualifiers are stored separately in order to support qualification |
3940 | // conversions. |
3941 | bool IsConst, IsVolatile, IsUnaligned; |
3942 | Type = |
3943 | decomposeTypeForEH(Context&: getContext(), T: Type, IsConst, IsVolatile, IsUnaligned); |
3944 | |
3945 | bool IsReference = CatchHandlerType->isReferenceType(); |
3946 | |
3947 | uint32_t Flags = 0; |
3948 | if (IsConst) |
3949 | Flags |= 1; |
3950 | if (IsVolatile) |
3951 | Flags |= 2; |
3952 | if (IsUnaligned) |
3953 | Flags |= 4; |
3954 | if (IsReference) |
3955 | Flags |= 8; |
3956 | |
3957 | return CatchTypeInfo{.RTTI: getAddrOfRTTIDescriptor(Ty: Type)->stripPointerCasts(), |
3958 | .Flags: Flags}; |
3959 | } |
3960 | |
3961 | /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a |
3962 | /// llvm::GlobalVariable * because different type descriptors have different |
3963 | /// types, and need to be abstracted. They are abstracting by casting the |
3964 | /// address to an Int8PtrTy. |
3965 | llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { |
3966 | SmallString<256> MangledName; |
3967 | { |
3968 | llvm::raw_svector_ostream Out(MangledName); |
3969 | getMangleContext().mangleCXXRTTI(T: Type, Out); |
3970 | } |
3971 | |
3972 | // Check to see if we've already declared this TypeDescriptor. |
3973 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name: MangledName)) |
3974 | return GV; |
3975 | |
3976 | // Note for the future: If we would ever like to do deferred emission of |
3977 | // RTTI, check if emitting vtables opportunistically need any adjustment. |
3978 | |
3979 | // Compute the fields for the TypeDescriptor. |
3980 | SmallString<256> TypeInfoString; |
3981 | { |
3982 | llvm::raw_svector_ostream Out(TypeInfoString); |
3983 | getMangleContext().mangleCXXRTTIName(T: Type, Out); |
3984 | } |
3985 | |
3986 | // Declare and initialize the TypeDescriptor. |
3987 | llvm::Constant *Fields[] = { |
3988 | getTypeInfoVTable(CGM), // VFPtr |
3989 | llvm::ConstantPointerNull::get(T: CGM.Int8PtrTy), // Runtime data |
3990 | llvm::ConstantDataArray::getString(Context&: CGM.getLLVMContext(), Initializer: TypeInfoString)}; |
3991 | llvm::StructType *TypeDescriptorType = |
3992 | getTypeDescriptorType(TypeInfoString); |
3993 | auto *Var = new llvm::GlobalVariable( |
3994 | CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, |
3995 | getLinkageForRTTI(Ty: Type), |
3996 | llvm::ConstantStruct::get(T: TypeDescriptorType, V: Fields), |
3997 | MangledName); |
3998 | if (Var->isWeakForLinker()) |
3999 | Var->setComdat(CGM.getModule().getOrInsertComdat(Name: Var->getName())); |
4000 | return Var; |
4001 | } |
4002 | |
4003 | /// Gets or a creates a Microsoft CompleteObjectLocator. |
4004 | llvm::GlobalVariable * |
4005 | MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, |
4006 | const VPtrInfo &Info) { |
4007 | return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); |
4008 | } |
4009 | |
4010 | void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { |
4011 | if (auto *ctor = dyn_cast<CXXConstructorDecl>(Val: GD.getDecl())) { |
4012 | // There are no constructor variants, always emit the complete destructor. |
4013 | llvm::Function *Fn = |
4014 | CGM.codegenCXXStructor(GD: GD.getWithCtorType(Type: Ctor_Complete)); |
4015 | CGM.maybeSetTrivialComdat(*ctor, *Fn); |
4016 | return; |
4017 | } |
4018 | |
4019 | auto *dtor = cast<CXXDestructorDecl>(Val: GD.getDecl()); |
4020 | |
4021 | // Emit the base destructor if the base and complete (vbase) destructors are |
4022 | // equivalent. This effectively implements -mconstructor-aliases as part of |
4023 | // the ABI. |
4024 | if (GD.getDtorType() == Dtor_Complete && |
4025 | dtor->getParent()->getNumVBases() == 0) |
4026 | GD = GD.getWithDtorType(Type: Dtor_Base); |
4027 | |
4028 | // The base destructor is equivalent to the base destructor of its |
4029 | // base class if there is exactly one non-virtual base class with a |
4030 | // non-trivial destructor, there are no fields with a non-trivial |
4031 | // destructor, and the body of the destructor is trivial. |
4032 | if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(D: dtor)) |
4033 | return; |
4034 | |
4035 | llvm::Function *Fn = CGM.codegenCXXStructor(GD); |
4036 | if (Fn->isWeakForLinker()) |
4037 | Fn->setComdat(CGM.getModule().getOrInsertComdat(Name: Fn->getName())); |
4038 | } |
4039 | |
4040 | llvm::Function * |
4041 | MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, |
4042 | CXXCtorType CT) { |
4043 | assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); |
4044 | |
4045 | // Calculate the mangled name. |
4046 | SmallString<256> ThunkName; |
4047 | llvm::raw_svector_ostream Out(ThunkName); |
4048 | getMangleContext().mangleName(GD: GlobalDecl(CD, CT), Out); |
4049 | |
4050 | // If the thunk has been generated previously, just return it. |
4051 | if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(Name: ThunkName)) |
4052 | return cast<llvm::Function>(Val: GV); |
4053 | |
4054 | // Create the llvm::Function. |
4055 | const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); |
4056 | llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(Info: FnInfo); |
4057 | const CXXRecordDecl *RD = CD->getParent(); |
4058 | QualType RecordTy = getContext().getRecordType(RD); |
4059 | llvm::Function *ThunkFn = llvm::Function::Create( |
4060 | Ty: ThunkTy, Linkage: getLinkageForRTTI(Ty: RecordTy), N: ThunkName.str(), M: &CGM.getModule()); |
4061 | ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( |
4062 | FnInfo.getEffectiveCallingConvention())); |
4063 | if (ThunkFn->isWeakForLinker()) |
4064 | ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(Name: ThunkFn->getName())); |
4065 | bool IsCopy = CT == Ctor_CopyingClosure; |
4066 | |
4067 | // Start codegen. |
4068 | CodeGenFunction CGF(CGM); |
4069 | CGF.CurGD = GlobalDecl(CD, Ctor_Complete); |
4070 | |
4071 | // Build FunctionArgs. |
4072 | FunctionArgList FunctionArgs; |
4073 | |
4074 | // A constructor always starts with a 'this' pointer as its first argument. |
4075 | buildThisParam(CGF, Params&: FunctionArgs); |
4076 | |
4077 | // Following the 'this' pointer is a reference to the source object that we |
4078 | // are copying from. |
4079 | ImplicitParamDecl SrcParam( |
4080 | getContext(), /*DC=*/nullptr, SourceLocation(), |
4081 | &getContext().Idents.get(Name: "src" ), |
4082 | getContext().getLValueReferenceType(T: RecordTy, |
4083 | /*SpelledAsLValue=*/true), |
4084 | ImplicitParamKind::Other); |
4085 | if (IsCopy) |
4086 | FunctionArgs.push_back(&SrcParam); |
4087 | |
4088 | // Constructors for classes which utilize virtual bases have an additional |
4089 | // parameter which indicates whether or not it is being delegated to by a more |
4090 | // derived constructor. |
4091 | ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, |
4092 | SourceLocation(), |
4093 | &getContext().Idents.get(Name: "is_most_derived" ), |
4094 | getContext().IntTy, ImplicitParamKind::Other); |
4095 | // Only add the parameter to the list if the class has virtual bases. |
4096 | if (RD->getNumVBases() > 0) |
4097 | FunctionArgs.push_back(&IsMostDerived); |
4098 | |
4099 | // Start defining the function. |
4100 | auto NL = ApplyDebugLocation::CreateEmpty(CGF); |
4101 | CGF.StartFunction(GD: GlobalDecl(), RetTy: FnInfo.getReturnType(), Fn: ThunkFn, FnInfo, |
4102 | Args: FunctionArgs, Loc: CD->getLocation(), StartLoc: SourceLocation()); |
4103 | // Create a scope with an artificial location for the body of this function. |
4104 | auto AL = ApplyDebugLocation::CreateArtificial(CGF); |
4105 | setCXXABIThisValue(CGF, ThisPtr: loadIncomingCXXThis(CGF)); |
4106 | llvm::Value *This = getThisValue(CGF); |
4107 | |
4108 | llvm::Value *SrcVal = |
4109 | IsCopy ? CGF.Builder.CreateLoad(Addr: CGF.GetAddrOfLocalVar(&SrcParam), Name: "src" ) |
4110 | : nullptr; |
4111 | |
4112 | CallArgList Args; |
4113 | |
4114 | // Push the this ptr. |
4115 | Args.add(rvalue: RValue::get(V: This), type: CD->getThisType()); |
4116 | |
4117 | // Push the src ptr. |
4118 | if (SrcVal) |
4119 | Args.add(rvalue: RValue::get(V: SrcVal), type: SrcParam.getType()); |
4120 | |
4121 | // Add the rest of the default arguments. |
4122 | SmallVector<const Stmt *, 4> ArgVec; |
4123 | ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); |
4124 | for (const ParmVarDecl *PD : params) { |
4125 | assert(PD->hasDefaultArg() && "ctor closure lacks default args" ); |
4126 | ArgVec.push_back(PD->getDefaultArg()); |
4127 | } |
4128 | |
4129 | CodeGenFunction::RunCleanupsScope Cleanups(CGF); |
4130 | |
4131 | const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); |
4132 | CGF.EmitCallArgs(Args, Prototype: FPT, ArgRange: llvm::ArrayRef(ArgVec), AC: CD, ParamsToSkip: IsCopy ? 1 : 0); |
4133 | |
4134 | // Insert any ABI-specific implicit constructor arguments. |
4135 | AddedStructorArgCounts = |
4136 | addImplicitConstructorArgs(CGF, D: CD, Type: Ctor_Complete, |
4137 | /*ForVirtualBase=*/false, |
4138 | /*Delegating=*/false, Args); |
4139 | // Call the destructor with our arguments. |
4140 | llvm::Constant *CalleePtr = |
4141 | CGM.getAddrOfCXXStructor(GD: GlobalDecl(CD, Ctor_Complete)); |
4142 | CGCallee Callee = |
4143 | CGCallee::forDirect(functionPtr: CalleePtr, abstractInfo: GlobalDecl(CD, Ctor_Complete)); |
4144 | const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( |
4145 | Args, D: CD, CtorKind: Ctor_Complete, ExtraPrefixArgs: ExtraArgs.Prefix, ExtraSuffixArgs: ExtraArgs.Suffix); |
4146 | CGF.EmitCall(CallInfo: CalleeInfo, Callee, ReturnValue: ReturnValueSlot(), Args); |
4147 | |
4148 | Cleanups.ForceCleanup(); |
4149 | |
4150 | // Emit the ret instruction, remove any temporary instructions created for the |
4151 | // aid of CodeGen. |
4152 | CGF.FinishFunction(EndLoc: SourceLocation()); |
4153 | |
4154 | return ThunkFn; |
4155 | } |
4156 | |
4157 | llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, |
4158 | uint32_t NVOffset, |
4159 | int32_t VBPtrOffset, |
4160 | uint32_t VBIndex) { |
4161 | assert(!T->isReferenceType()); |
4162 | |
4163 | CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
4164 | const CXXConstructorDecl *CD = |
4165 | RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; |
4166 | CXXCtorType CT = Ctor_Complete; |
4167 | if (CD) |
4168 | if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) |
4169 | CT = Ctor_CopyingClosure; |
4170 | |
4171 | uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); |
4172 | SmallString<256> MangledName; |
4173 | { |
4174 | llvm::raw_svector_ostream Out(MangledName); |
4175 | getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, |
4176 | VBPtrOffset, VBIndex, Out); |
4177 | } |
4178 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name: MangledName)) |
4179 | return getImageRelativeConstant(PtrVal: GV); |
4180 | |
4181 | // The TypeDescriptor is used by the runtime to determine if a catch handler |
4182 | // is appropriate for the exception object. |
4183 | llvm::Constant *TD = getImageRelativeConstant(PtrVal: getAddrOfRTTIDescriptor(Type: T)); |
4184 | |
4185 | // The runtime is responsible for calling the copy constructor if the |
4186 | // exception is caught by value. |
4187 | llvm::Constant *CopyCtor; |
4188 | if (CD) { |
4189 | if (CT == Ctor_CopyingClosure) |
4190 | CopyCtor = getAddrOfCXXCtorClosure(CD, CT: Ctor_CopyingClosure); |
4191 | else |
4192 | CopyCtor = CGM.getAddrOfCXXStructor(GD: GlobalDecl(CD, Ctor_Complete)); |
4193 | } else { |
4194 | CopyCtor = llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy); |
4195 | } |
4196 | CopyCtor = getImageRelativeConstant(PtrVal: CopyCtor); |
4197 | |
4198 | bool IsScalar = !RD; |
4199 | bool HasVirtualBases = false; |
4200 | bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. |
4201 | QualType PointeeType = T; |
4202 | if (T->isPointerType()) |
4203 | PointeeType = T->getPointeeType(); |
4204 | if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { |
4205 | HasVirtualBases = RD->getNumVBases() > 0; |
4206 | if (IdentifierInfo *II = RD->getIdentifier()) |
4207 | IsStdBadAlloc = II->isStr(Str: "bad_alloc" ) && RD->isInStdNamespace(); |
4208 | } |
4209 | |
4210 | // Encode the relevant CatchableType properties into the Flags bitfield. |
4211 | // FIXME: Figure out how bits 2 or 8 can get set. |
4212 | uint32_t Flags = 0; |
4213 | if (IsScalar) |
4214 | Flags |= 1; |
4215 | if (HasVirtualBases) |
4216 | Flags |= 4; |
4217 | if (IsStdBadAlloc) |
4218 | Flags |= 16; |
4219 | |
4220 | llvm::Constant *Fields[] = { |
4221 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Flags), // Flags |
4222 | TD, // TypeDescriptor |
4223 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: NVOffset), // NonVirtualAdjustment |
4224 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBPtrOffset), // OffsetToVBPtr |
4225 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBIndex), // VBTableIndex |
4226 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Size), // Size |
4227 | CopyCtor // CopyCtor |
4228 | }; |
4229 | llvm::StructType *CTType = getCatchableTypeType(); |
4230 | auto *GV = new llvm::GlobalVariable( |
4231 | CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(Ty: T), |
4232 | llvm::ConstantStruct::get(T: CTType, V: Fields), MangledName); |
4233 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
4234 | GV->setSection(".xdata" ); |
4235 | if (GV->isWeakForLinker()) |
4236 | GV->setComdat(CGM.getModule().getOrInsertComdat(Name: GV->getName())); |
4237 | return getImageRelativeConstant(PtrVal: GV); |
4238 | } |
4239 | |
4240 | llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { |
4241 | assert(!T->isReferenceType()); |
4242 | |
4243 | // See if we've already generated a CatchableTypeArray for this type before. |
4244 | llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; |
4245 | if (CTA) |
4246 | return CTA; |
4247 | |
4248 | // Ensure that we don't have duplicate entries in our CatchableTypeArray by |
4249 | // using a SmallSetVector. Duplicates may arise due to virtual bases |
4250 | // occurring more than once in the hierarchy. |
4251 | llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; |
4252 | |
4253 | // C++14 [except.handle]p3: |
4254 | // A handler is a match for an exception object of type E if [...] |
4255 | // - the handler is of type cv T or cv T& and T is an unambiguous public |
4256 | // base class of E, or |
4257 | // - the handler is of type cv T or const T& where T is a pointer type and |
4258 | // E is a pointer type that can be converted to T by [...] |
4259 | // - a standard pointer conversion (4.10) not involving conversions to |
4260 | // pointers to private or protected or ambiguous classes |
4261 | const CXXRecordDecl *MostDerivedClass = nullptr; |
4262 | bool IsPointer = T->isPointerType(); |
4263 | if (IsPointer) |
4264 | MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); |
4265 | else |
4266 | MostDerivedClass = T->getAsCXXRecordDecl(); |
4267 | |
4268 | // Collect all the unambiguous public bases of the MostDerivedClass. |
4269 | if (MostDerivedClass) { |
4270 | const ASTContext &Context = getContext(); |
4271 | const ASTRecordLayout &MostDerivedLayout = |
4272 | Context.getASTRecordLayout(MostDerivedClass); |
4273 | MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); |
4274 | SmallVector<MSRTTIClass, 8> Classes; |
4275 | serializeClassHierarchy(Classes, RD: MostDerivedClass); |
4276 | Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); |
4277 | detectAmbiguousBases(Classes); |
4278 | for (const MSRTTIClass &Class : Classes) { |
4279 | // Skip any ambiguous or private bases. |
4280 | if (Class.Flags & |
4281 | (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) |
4282 | continue; |
4283 | // Write down how to convert from a derived pointer to a base pointer. |
4284 | uint32_t OffsetInVBTable = 0; |
4285 | int32_t VBPtrOffset = -1; |
4286 | if (Class.VirtualRoot) { |
4287 | OffsetInVBTable = |
4288 | VTableContext.getVBTableIndex(Derived: MostDerivedClass, VBase: Class.VirtualRoot)*4; |
4289 | VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); |
4290 | } |
4291 | |
4292 | // Turn our record back into a pointer if the exception object is a |
4293 | // pointer. |
4294 | QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); |
4295 | if (IsPointer) |
4296 | RTTITy = Context.getPointerType(T: RTTITy); |
4297 | CatchableTypes.insert(X: getCatchableType(T: RTTITy, NVOffset: Class.OffsetInVBase, |
4298 | VBPtrOffset, VBIndex: OffsetInVBTable)); |
4299 | } |
4300 | } |
4301 | |
4302 | // C++14 [except.handle]p3: |
4303 | // A handler is a match for an exception object of type E if |
4304 | // - The handler is of type cv T or cv T& and E and T are the same type |
4305 | // (ignoring the top-level cv-qualifiers) |
4306 | CatchableTypes.insert(X: getCatchableType(T)); |
4307 | |
4308 | // C++14 [except.handle]p3: |
4309 | // A handler is a match for an exception object of type E if |
4310 | // - the handler is of type cv T or const T& where T is a pointer type and |
4311 | // E is a pointer type that can be converted to T by [...] |
4312 | // - a standard pointer conversion (4.10) not involving conversions to |
4313 | // pointers to private or protected or ambiguous classes |
4314 | // |
4315 | // C++14 [conv.ptr]p2: |
4316 | // A prvalue of type "pointer to cv T," where T is an object type, can be |
4317 | // converted to a prvalue of type "pointer to cv void". |
4318 | if (IsPointer && T->getPointeeType()->isObjectType()) |
4319 | CatchableTypes.insert(getCatchableType(T: getContext().VoidPtrTy)); |
4320 | |
4321 | // C++14 [except.handle]p3: |
4322 | // A handler is a match for an exception object of type E if [...] |
4323 | // - the handler is of type cv T or const T& where T is a pointer or |
4324 | // pointer to member type and E is std::nullptr_t. |
4325 | // |
4326 | // We cannot possibly list all possible pointer types here, making this |
4327 | // implementation incompatible with the standard. However, MSVC includes an |
4328 | // entry for pointer-to-void in this case. Let's do the same. |
4329 | if (T->isNullPtrType()) |
4330 | CatchableTypes.insert(getCatchableType(T: getContext().VoidPtrTy)); |
4331 | |
4332 | uint32_t NumEntries = CatchableTypes.size(); |
4333 | llvm::Type *CTType = |
4334 | getImageRelativeType(PtrType: getCatchableTypeType()->getPointerTo()); |
4335 | llvm::ArrayType *AT = llvm::ArrayType::get(ElementType: CTType, NumElements: NumEntries); |
4336 | llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); |
4337 | llvm::Constant *Fields[] = { |
4338 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: NumEntries), // NumEntries |
4339 | llvm::ConstantArray::get( |
4340 | T: AT, V: llvm::ArrayRef(CatchableTypes.begin(), |
4341 | CatchableTypes.end())) // CatchableTypes |
4342 | }; |
4343 | SmallString<256> MangledName; |
4344 | { |
4345 | llvm::raw_svector_ostream Out(MangledName); |
4346 | getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); |
4347 | } |
4348 | CTA = new llvm::GlobalVariable( |
4349 | CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(Ty: T), |
4350 | llvm::ConstantStruct::get(T: CTAType, V: Fields), MangledName); |
4351 | CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
4352 | CTA->setSection(".xdata" ); |
4353 | if (CTA->isWeakForLinker()) |
4354 | CTA->setComdat(CGM.getModule().getOrInsertComdat(Name: CTA->getName())); |
4355 | return CTA; |
4356 | } |
4357 | |
4358 | llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { |
4359 | bool IsConst, IsVolatile, IsUnaligned; |
4360 | T = decomposeTypeForEH(Context&: getContext(), T, IsConst, IsVolatile, IsUnaligned); |
4361 | |
4362 | // The CatchableTypeArray enumerates the various (CV-unqualified) types that |
4363 | // the exception object may be caught as. |
4364 | llvm::GlobalVariable *CTA = getCatchableTypeArray(T); |
4365 | // The first field in a CatchableTypeArray is the number of CatchableTypes. |
4366 | // This is used as a component of the mangled name which means that we need to |
4367 | // know what it is in order to see if we have previously generated the |
4368 | // ThrowInfo. |
4369 | uint32_t NumEntries = |
4370 | cast<llvm::ConstantInt>(Val: CTA->getInitializer()->getAggregateElement(Elt: 0U)) |
4371 | ->getLimitedValue(); |
4372 | |
4373 | SmallString<256> MangledName; |
4374 | { |
4375 | llvm::raw_svector_ostream Out(MangledName); |
4376 | getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, |
4377 | NumEntries, Out); |
4378 | } |
4379 | |
4380 | // Reuse a previously generated ThrowInfo if we have generated an appropriate |
4381 | // one before. |
4382 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name: MangledName)) |
4383 | return GV; |
4384 | |
4385 | // The RTTI TypeDescriptor uses an unqualified type but catch clauses must |
4386 | // be at least as CV qualified. Encode this requirement into the Flags |
4387 | // bitfield. |
4388 | uint32_t Flags = 0; |
4389 | if (IsConst) |
4390 | Flags |= 1; |
4391 | if (IsVolatile) |
4392 | Flags |= 2; |
4393 | if (IsUnaligned) |
4394 | Flags |= 4; |
4395 | |
4396 | // The cleanup-function (a destructor) must be called when the exception |
4397 | // object's lifetime ends. |
4398 | llvm::Constant *CleanupFn = llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy); |
4399 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
4400 | if (CXXDestructorDecl *DtorD = RD->getDestructor()) |
4401 | if (!DtorD->isTrivial()) |
4402 | CleanupFn = CGM.getAddrOfCXXStructor(GD: GlobalDecl(DtorD, Dtor_Complete)); |
4403 | // This is unused as far as we can tell, initialize it to null. |
4404 | llvm::Constant *ForwardCompat = |
4405 | getImageRelativeConstant(PtrVal: llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy)); |
4406 | llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(PtrVal: CTA); |
4407 | llvm::StructType *TIType = getThrowInfoType(); |
4408 | llvm::Constant *Fields[] = { |
4409 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Flags), // Flags |
4410 | getImageRelativeConstant(PtrVal: CleanupFn), // CleanupFn |
4411 | ForwardCompat, // ForwardCompat |
4412 | PointerToCatchableTypes // CatchableTypeArray |
4413 | }; |
4414 | auto *GV = new llvm::GlobalVariable( |
4415 | CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(Ty: T), |
4416 | llvm::ConstantStruct::get(T: TIType, V: Fields), MangledName.str()); |
4417 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
4418 | GV->setSection(".xdata" ); |
4419 | if (GV->isWeakForLinker()) |
4420 | GV->setComdat(CGM.getModule().getOrInsertComdat(Name: GV->getName())); |
4421 | return GV; |
4422 | } |
4423 | |
4424 | void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { |
4425 | const Expr *SubExpr = E->getSubExpr(); |
4426 | assert(SubExpr && "SubExpr cannot be null" ); |
4427 | QualType ThrowType = SubExpr->getType(); |
4428 | // The exception object lives on the stack and it's address is passed to the |
4429 | // runtime function. |
4430 | Address AI = CGF.CreateMemTemp(T: ThrowType); |
4431 | CGF.EmitAnyExprToMem(E: SubExpr, Location: AI, Quals: ThrowType.getQualifiers(), |
4432 | /*IsInit=*/IsInitializer: true); |
4433 | |
4434 | // The so-called ThrowInfo is used to describe how the exception object may be |
4435 | // caught. |
4436 | llvm::GlobalVariable *TI = getThrowInfo(T: ThrowType); |
4437 | |
4438 | // Call into the runtime to throw the exception. |
4439 | llvm::Value *Args[] = {AI.emitRawPointer(CGF), TI}; |
4440 | CGF.EmitNoreturnRuntimeCallOrInvoke(callee: getThrowFn(), args: Args); |
4441 | } |
4442 | |
4443 | std::pair<llvm::Value *, const CXXRecordDecl *> |
4444 | MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, |
4445 | const CXXRecordDecl *RD) { |
4446 | std::tie(args&: This, args: std::ignore, args&: RD) = |
4447 | performBaseAdjustment(CGF, Value: This, SrcRecordTy: QualType(RD->getTypeForDecl(), 0)); |
4448 | return {CGF.GetVTablePtr(This, VTableTy: CGM.Int8PtrTy, VTableClass: RD), RD}; |
4449 | } |
4450 | |
4451 | bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate( |
4452 | const CXXRecordDecl *RD) const { |
4453 | // All aggregates are permitted to be HFA on non-ARM platforms, which mostly |
4454 | // affects vectorcall on x64/x86. |
4455 | if (!CGM.getTarget().getTriple().isAArch64()) |
4456 | return true; |
4457 | // MSVC Windows on Arm64 has its own rules for determining if a type is HFA |
4458 | // that are inconsistent with the AAPCS64 ABI. The following are our best |
4459 | // determination of those rules so far, based on observation of MSVC's |
4460 | // behavior. |
4461 | if (RD->isEmpty()) |
4462 | return false; |
4463 | if (RD->isPolymorphic()) |
4464 | return false; |
4465 | if (RD->hasNonTrivialCopyAssignment()) |
4466 | return false; |
4467 | if (RD->hasNonTrivialDestructor()) |
4468 | return false; |
4469 | if (RD->hasNonTrivialDefaultConstructor()) |
4470 | return false; |
4471 | // These two are somewhat redundant given the caller |
4472 | // (ABIInfo::isHomogeneousAggregate) checks the bases and fields, but that |
4473 | // caller doesn't consider empty bases/fields to be non-homogenous, but it |
4474 | // looks like Microsoft's AArch64 ABI does care about these empty types & |
4475 | // anything containing/derived from one is non-homogeneous. |
4476 | // Instead we could add another CXXABI entry point to query this property and |
4477 | // have ABIInfo::isHomogeneousAggregate use that property. |
4478 | // I don't think any other of the features listed above could be true of a |
4479 | // base/field while not true of the outer struct. For example, if you have a |
4480 | // base/field that has an non-trivial copy assignment/dtor/default ctor, then |
4481 | // the outer struct's corresponding operation must be non-trivial. |
4482 | for (const CXXBaseSpecifier &B : RD->bases()) { |
4483 | if (const CXXRecordDecl *FRD = B.getType()->getAsCXXRecordDecl()) { |
4484 | if (!isPermittedToBeHomogeneousAggregate(RD: FRD)) |
4485 | return false; |
4486 | } |
4487 | } |
4488 | // empty fields seem to be caught by the ABIInfo::isHomogeneousAggregate |
4489 | // checking for padding - but maybe there are ways to end up with an empty |
4490 | // field without padding? Not that I know of, so don't check fields here & |
4491 | // rely on the padding check. |
4492 | return true; |
4493 | } |
4494 | |