1//===- X86.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "ABIInfoImpl.h"
10#include "TargetInfo.h"
11#include "clang/Basic/DiagnosticFrontend.h"
12#include "llvm/ADT/SmallBitVector.h"
13
14using namespace clang;
15using namespace clang::CodeGen;
16
17namespace {
18
19/// IsX86_MMXType - Return true if this is an MMX type.
20bool IsX86_MMXType(llvm::Type *IRType) {
21 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
22 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
23 cast<llvm::VectorType>(Val: IRType)->getElementType()->isIntegerTy() &&
24 IRType->getScalarSizeInBits() != 64;
25}
26
27static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
28 StringRef Constraint,
29 llvm::Type* Ty) {
30 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
31 .Cases(S0: "y", S1: "&y", S2: "^Ym", Value: true)
32 .Default(Value: false);
33 if (IsMMXCons && Ty->isVectorTy()) {
34 if (cast<llvm::VectorType>(Val: Ty)->getPrimitiveSizeInBits().getFixedValue() !=
35 64) {
36 // Invalid MMX constraint
37 return nullptr;
38 }
39
40 return llvm::Type::getX86_MMXTy(C&: CGF.getLLVMContext());
41 }
42
43 if (Constraint == "k") {
44 llvm::Type *Int1Ty = llvm::Type::getInt1Ty(C&: CGF.getLLVMContext());
45 return llvm::FixedVectorType::get(ElementType: Int1Ty, NumElts: Ty->getScalarSizeInBits());
46 }
47
48 // No operation needed
49 return Ty;
50}
51
52/// Returns true if this type can be passed in SSE registers with the
53/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
54static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
55 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
56 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
57 if (BT->getKind() == BuiltinType::LongDouble) {
58 if (&Context.getTargetInfo().getLongDoubleFormat() ==
59 &llvm::APFloat::x87DoubleExtended())
60 return false;
61 }
62 return true;
63 }
64 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
65 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
66 // registers specially.
67 unsigned VecSize = Context.getTypeSize(VT);
68 if (VecSize == 128 || VecSize == 256 || VecSize == 512)
69 return true;
70 }
71 return false;
72}
73
74/// Returns true if this aggregate is small enough to be passed in SSE registers
75/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
76static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
77 return NumMembers <= 4;
78}
79
80/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
81static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
82 auto AI = ABIArgInfo::getDirect(T);
83 AI.setInReg(true);
84 AI.setCanBeFlattened(false);
85 return AI;
86}
87
88//===----------------------------------------------------------------------===//
89// X86-32 ABI Implementation
90//===----------------------------------------------------------------------===//
91
92/// Similar to llvm::CCState, but for Clang.
93struct CCState {
94 CCState(CGFunctionInfo &FI)
95 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()),
96 Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {}
97
98 llvm::SmallBitVector IsPreassigned;
99 unsigned CC = CallingConv::CC_C;
100 unsigned FreeRegs = 0;
101 unsigned FreeSSERegs = 0;
102 RequiredArgs Required;
103 bool IsDelegateCall = false;
104};
105
106/// X86_32ABIInfo - The X86-32 ABI information.
107class X86_32ABIInfo : public ABIInfo {
108 enum Class {
109 Integer,
110 Float
111 };
112
113 static const unsigned MinABIStackAlignInBytes = 4;
114
115 bool IsDarwinVectorABI;
116 bool IsRetSmallStructInRegABI;
117 bool IsWin32StructABI;
118 bool IsSoftFloatABI;
119 bool IsMCUABI;
120 bool IsLinuxABI;
121 unsigned DefaultNumRegisterParameters;
122
123 static bool isRegisterSize(unsigned Size) {
124 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
125 }
126
127 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
128 // FIXME: Assumes vectorcall is in use.
129 return isX86VectorTypeForVectorCall(Context&: getContext(), Ty);
130 }
131
132 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
133 uint64_t NumMembers) const override {
134 // FIXME: Assumes vectorcall is in use.
135 return isX86VectorCallAggregateSmallEnough(NumMembers);
136 }
137
138 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
139
140 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
141 /// such that the argument will be passed in memory.
142 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
143
144 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
145
146 /// Return the alignment to use for the given type on the stack.
147 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
148
149 Class classify(QualType Ty) const;
150 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
151 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State,
152 unsigned ArgIndex) const;
153
154 /// Updates the number of available free registers, returns
155 /// true if any registers were allocated.
156 bool updateFreeRegs(QualType Ty, CCState &State) const;
157
158 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
159 bool &NeedsPadding) const;
160 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
161
162 bool canExpandIndirectArgument(QualType Ty) const;
163
164 /// Rewrite the function info so that all memory arguments use
165 /// inalloca.
166 void rewriteWithInAlloca(CGFunctionInfo &FI) const;
167
168 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
169 CharUnits &StackOffset, ABIArgInfo &Info,
170 QualType Type) const;
171 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
172
173public:
174
175 void computeInfo(CGFunctionInfo &FI) const override;
176 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
177 QualType Ty) const override;
178
179 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
180 bool RetSmallStructInRegABI, bool Win32StructABI,
181 unsigned NumRegisterParameters, bool SoftFloatABI)
182 : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
183 IsRetSmallStructInRegABI(RetSmallStructInRegABI),
184 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
185 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
186 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
187 CGT.getTarget().getTriple().isOSCygMing()),
188 DefaultNumRegisterParameters(NumRegisterParameters) {}
189};
190
191class X86_32SwiftABIInfo : public SwiftABIInfo {
192public:
193 explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
194 : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
195
196 bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
197 bool AsReturnValue) const override {
198 // LLVM's x86-32 lowering currently only assigns up to three
199 // integer registers and three fp registers. Oddly, it'll use up to
200 // four vector registers for vectors, but those can overlap with the
201 // scalar registers.
202 return occupiesMoreThan(scalarTypes: ComponentTys, /*total=*/maxAllRegisters: 3);
203 }
204};
205
206class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
207public:
208 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
209 bool RetSmallStructInRegABI, bool Win32StructABI,
210 unsigned NumRegisterParameters, bool SoftFloatABI)
211 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
212 args&: CGT, args&: DarwinVectorABI, args&: RetSmallStructInRegABI, args&: Win32StructABI,
213 args&: NumRegisterParameters, args&: SoftFloatABI)) {
214 SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(args&: CGT);
215 }
216
217 static bool isStructReturnInRegABI(
218 const llvm::Triple &Triple, const CodeGenOptions &Opts);
219
220 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
221 CodeGen::CodeGenModule &CGM) const override;
222
223 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
224 // Darwin uses different dwarf register numbers for EH.
225 if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
226 return 4;
227 }
228
229 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
230 llvm::Value *Address) const override;
231
232 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
233 StringRef Constraint,
234 llvm::Type* Ty) const override {
235 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
236 }
237
238 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
239 std::string &Constraints,
240 std::vector<llvm::Type *> &ResultRegTypes,
241 std::vector<llvm::Type *> &ResultTruncRegTypes,
242 std::vector<LValue> &ResultRegDests,
243 std::string &AsmString,
244 unsigned NumOutputs) const override;
245
246 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
247 return "movl\t%ebp, %ebp"
248 "\t\t// marker for objc_retainAutoreleaseReturnValue";
249 }
250};
251
252}
253
254/// Rewrite input constraint references after adding some output constraints.
255/// In the case where there is one output and one input and we add one output,
256/// we need to replace all operand references greater than or equal to 1:
257/// mov $0, $1
258/// mov eax, $1
259/// The result will be:
260/// mov $0, $2
261/// mov eax, $2
262static void rewriteInputConstraintReferences(unsigned FirstIn,
263 unsigned NumNewOuts,
264 std::string &AsmString) {
265 std::string Buf;
266 llvm::raw_string_ostream OS(Buf);
267 size_t Pos = 0;
268 while (Pos < AsmString.size()) {
269 size_t DollarStart = AsmString.find(c: '$', pos: Pos);
270 if (DollarStart == std::string::npos)
271 DollarStart = AsmString.size();
272 size_t DollarEnd = AsmString.find_first_not_of(c: '$', pos: DollarStart);
273 if (DollarEnd == std::string::npos)
274 DollarEnd = AsmString.size();
275 OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
276 Pos = DollarEnd;
277 size_t NumDollars = DollarEnd - DollarStart;
278 if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
279 // We have an operand reference.
280 size_t DigitStart = Pos;
281 if (AsmString[DigitStart] == '{') {
282 OS << '{';
283 ++DigitStart;
284 }
285 size_t DigitEnd = AsmString.find_first_not_of(s: "0123456789", pos: DigitStart);
286 if (DigitEnd == std::string::npos)
287 DigitEnd = AsmString.size();
288 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
289 unsigned OperandIndex;
290 if (!OperandStr.getAsInteger(Radix: 10, Result&: OperandIndex)) {
291 if (OperandIndex >= FirstIn)
292 OperandIndex += NumNewOuts;
293 OS << OperandIndex;
294 } else {
295 OS << OperandStr;
296 }
297 Pos = DigitEnd;
298 }
299 }
300 AsmString = std::move(OS.str());
301}
302
303/// Add output constraints for EAX:EDX because they are return registers.
304void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
305 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
306 std::vector<llvm::Type *> &ResultRegTypes,
307 std::vector<llvm::Type *> &ResultTruncRegTypes,
308 std::vector<LValue> &ResultRegDests, std::string &AsmString,
309 unsigned NumOutputs) const {
310 uint64_t RetWidth = CGF.getContext().getTypeSize(T: ReturnSlot.getType());
311
312 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
313 // larger.
314 if (!Constraints.empty())
315 Constraints += ',';
316 if (RetWidth <= 32) {
317 Constraints += "={eax}";
318 ResultRegTypes.push_back(x: CGF.Int32Ty);
319 } else {
320 // Use the 'A' constraint for EAX:EDX.
321 Constraints += "=A";
322 ResultRegTypes.push_back(x: CGF.Int64Ty);
323 }
324
325 // Truncate EAX or EAX:EDX to an integer of the appropriate size.
326 llvm::Type *CoerceTy = llvm::IntegerType::get(C&: CGF.getLLVMContext(), NumBits: RetWidth);
327 ResultTruncRegTypes.push_back(x: CoerceTy);
328
329 // Coerce the integer by bitcasting the return slot pointer.
330 ReturnSlot.setAddress(ReturnSlot.getAddress(CGF).withElementType(ElemTy: CoerceTy));
331 ResultRegDests.push_back(x: ReturnSlot);
332
333 rewriteInputConstraintReferences(FirstIn: NumOutputs, NumNewOuts: 1, AsmString);
334}
335
336/// shouldReturnTypeInRegister - Determine if the given type should be
337/// returned in a register (for the Darwin and MCU ABI).
338bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
339 ASTContext &Context) const {
340 uint64_t Size = Context.getTypeSize(T: Ty);
341
342 // For i386, type must be register sized.
343 // For the MCU ABI, it only needs to be <= 8-byte
344 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
345 return false;
346
347 if (Ty->isVectorType()) {
348 // 64- and 128- bit vectors inside structures are not returned in
349 // registers.
350 if (Size == 64 || Size == 128)
351 return false;
352
353 return true;
354 }
355
356 // If this is a builtin, pointer, enum, complex type, member pointer, or
357 // member function pointer it is ok.
358 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
359 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
360 Ty->isBlockPointerType() || Ty->isMemberPointerType())
361 return true;
362
363 // Arrays are treated like records.
364 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T: Ty))
365 return shouldReturnTypeInRegister(Ty: AT->getElementType(), Context);
366
367 // Otherwise, it must be a record type.
368 const RecordType *RT = Ty->getAs<RecordType>();
369 if (!RT) return false;
370
371 // FIXME: Traverse bases here too.
372
373 // Structure types are passed in register if all fields would be
374 // passed in a register.
375 for (const auto *FD : RT->getDecl()->fields()) {
376 // Empty fields are ignored.
377 if (isEmptyField(Context, FD, AllowArrays: true))
378 continue;
379
380 // Check fields recursively.
381 if (!shouldReturnTypeInRegister(Ty: FD->getType(), Context))
382 return false;
383 }
384 return true;
385}
386
387static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
388 // Treat complex types as the element type.
389 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
390 Ty = CTy->getElementType();
391
392 // Check for a type which we know has a simple scalar argument-passing
393 // convention without any padding. (We're specifically looking for 32
394 // and 64-bit integer and integer-equivalents, float, and double.)
395 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
396 !Ty->isEnumeralType() && !Ty->isBlockPointerType())
397 return false;
398
399 uint64_t Size = Context.getTypeSize(T: Ty);
400 return Size == 32 || Size == 64;
401}
402
403static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
404 uint64_t &Size) {
405 for (const auto *FD : RD->fields()) {
406 // Scalar arguments on the stack get 4 byte alignment on x86. If the
407 // argument is smaller than 32-bits, expanding the struct will create
408 // alignment padding.
409 if (!is32Or64BitBasicType(FD->getType(), Context))
410 return false;
411
412 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
413 // how to expand them yet, and the predicate for telling if a bitfield still
414 // counts as "basic" is more complicated than what we were doing previously.
415 if (FD->isBitField())
416 return false;
417
418 Size += Context.getTypeSize(FD->getType());
419 }
420 return true;
421}
422
423static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
424 uint64_t &Size) {
425 // Don't do this if there are any non-empty bases.
426 for (const CXXBaseSpecifier &Base : RD->bases()) {
427 if (!addBaseAndFieldSizes(Context, RD: Base.getType()->getAsCXXRecordDecl(),
428 Size))
429 return false;
430 }
431 if (!addFieldSizes(Context, RD, Size))
432 return false;
433 return true;
434}
435
436/// Test whether an argument type which is to be passed indirectly (on the
437/// stack) would have the equivalent layout if it was expanded into separate
438/// arguments. If so, we prefer to do the latter to avoid inhibiting
439/// optimizations.
440bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
441 // We can only expand structure types.
442 const RecordType *RT = Ty->getAs<RecordType>();
443 if (!RT)
444 return false;
445 const RecordDecl *RD = RT->getDecl();
446 uint64_t Size = 0;
447 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
448 if (!IsWin32StructABI) {
449 // On non-Windows, we have to conservatively match our old bitcode
450 // prototypes in order to be ABI-compatible at the bitcode level.
451 if (!CXXRD->isCLike())
452 return false;
453 } else {
454 // Don't do this for dynamic classes.
455 if (CXXRD->isDynamicClass())
456 return false;
457 }
458 if (!addBaseAndFieldSizes(Context&: getContext(), RD: CXXRD, Size))
459 return false;
460 } else {
461 if (!addFieldSizes(Context&: getContext(), RD, Size))
462 return false;
463 }
464
465 // We can do this if there was no alignment padding.
466 return Size == getContext().getTypeSize(T: Ty);
467}
468
469ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
470 // If the return value is indirect, then the hidden argument is consuming one
471 // integer register.
472 if (State.FreeRegs) {
473 --State.FreeRegs;
474 if (!IsMCUABI)
475 return getNaturalAlignIndirectInReg(Ty: RetTy);
476 }
477 return getNaturalAlignIndirect(Ty: RetTy, /*ByVal=*/false);
478}
479
480ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
481 CCState &State) const {
482 if (RetTy->isVoidType())
483 return ABIArgInfo::getIgnore();
484
485 const Type *Base = nullptr;
486 uint64_t NumElts = 0;
487 if ((State.CC == llvm::CallingConv::X86_VectorCall ||
488 State.CC == llvm::CallingConv::X86_RegCall) &&
489 isHomogeneousAggregate(Ty: RetTy, Base, Members&: NumElts)) {
490 // The LLVM struct type for such an aggregate should lower properly.
491 return ABIArgInfo::getDirect();
492 }
493
494 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
495 // On Darwin, some vectors are returned in registers.
496 if (IsDarwinVectorABI) {
497 uint64_t Size = getContext().getTypeSize(T: RetTy);
498
499 // 128-bit vectors are a special case; they are returned in
500 // registers and we need to make sure to pick a type the LLVM
501 // backend will like.
502 if (Size == 128)
503 return ABIArgInfo::getDirect(T: llvm::FixedVectorType::get(
504 ElementType: llvm::Type::getInt64Ty(C&: getVMContext()), NumElts: 2));
505
506 // Always return in register if it fits in a general purpose
507 // register, or if it is 64 bits and has a single element.
508 if ((Size == 8 || Size == 16 || Size == 32) ||
509 (Size == 64 && VT->getNumElements() == 1))
510 return ABIArgInfo::getDirect(T: llvm::IntegerType::get(C&: getVMContext(),
511 NumBits: Size));
512
513 return getIndirectReturnResult(RetTy, State);
514 }
515
516 return ABIArgInfo::getDirect();
517 }
518
519 if (isAggregateTypeForABI(T: RetTy)) {
520 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
521 // Structures with flexible arrays are always indirect.
522 if (RT->getDecl()->hasFlexibleArrayMember())
523 return getIndirectReturnResult(RetTy, State);
524 }
525
526 // If specified, structs and unions are always indirect.
527 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
528 return getIndirectReturnResult(RetTy, State);
529
530 // Ignore empty structs/unions.
531 if (isEmptyRecord(Context&: getContext(), T: RetTy, AllowArrays: true))
532 return ABIArgInfo::getIgnore();
533
534 // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
535 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
536 QualType ET = getContext().getCanonicalType(T: CT->getElementType());
537 if (ET->isFloat16Type())
538 return ABIArgInfo::getDirect(T: llvm::FixedVectorType::get(
539 ElementType: llvm::Type::getHalfTy(C&: getVMContext()), NumElts: 2));
540 }
541
542 // Small structures which are register sized are generally returned
543 // in a register.
544 if (shouldReturnTypeInRegister(Ty: RetTy, Context&: getContext())) {
545 uint64_t Size = getContext().getTypeSize(T: RetTy);
546
547 // As a special-case, if the struct is a "single-element" struct, and
548 // the field is of type "float" or "double", return it in a
549 // floating-point register. (MSVC does not apply this special case.)
550 // We apply a similar transformation for pointer types to improve the
551 // quality of the generated IR.
552 if (const Type *SeltTy = isSingleElementStruct(T: RetTy, Context&: getContext()))
553 if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
554 || SeltTy->hasPointerRepresentation())
555 return ABIArgInfo::getDirect(T: CGT.ConvertType(T: QualType(SeltTy, 0)));
556
557 // FIXME: We should be able to narrow this integer in cases with dead
558 // padding.
559 return ABIArgInfo::getDirect(T: llvm::IntegerType::get(C&: getVMContext(),NumBits: Size));
560 }
561
562 return getIndirectReturnResult(RetTy, State);
563 }
564
565 // Treat an enum type as its underlying type.
566 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
567 RetTy = EnumTy->getDecl()->getIntegerType();
568
569 if (const auto *EIT = RetTy->getAs<BitIntType>())
570 if (EIT->getNumBits() > 64)
571 return getIndirectReturnResult(RetTy, State);
572
573 return (isPromotableIntegerTypeForABI(Ty: RetTy) ? ABIArgInfo::getExtend(Ty: RetTy)
574 : ABIArgInfo::getDirect());
575}
576
577unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
578 unsigned Align) const {
579 // Otherwise, if the alignment is less than or equal to the minimum ABI
580 // alignment, just use the default; the backend will handle this.
581 if (Align <= MinABIStackAlignInBytes)
582 return 0; // Use default alignment.
583
584 if (IsLinuxABI) {
585 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
586 // want to spend any effort dealing with the ramifications of ABI breaks.
587 //
588 // If the vector type is __m128/__m256/__m512, return the default alignment.
589 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
590 return Align;
591 }
592 // On non-Darwin, the stack type alignment is always 4.
593 if (!IsDarwinVectorABI) {
594 // Set explicit alignment, since we may need to realign the top.
595 return MinABIStackAlignInBytes;
596 }
597
598 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
599 if (Align >= 16 && (isSIMDVectorType(Context&: getContext(), Ty) ||
600 isRecordWithSIMDVectorType(Context&: getContext(), Ty)))
601 return 16;
602
603 return MinABIStackAlignInBytes;
604}
605
606ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
607 CCState &State) const {
608 if (!ByVal) {
609 if (State.FreeRegs) {
610 --State.FreeRegs; // Non-byval indirects just use one pointer.
611 if (!IsMCUABI)
612 return getNaturalAlignIndirectInReg(Ty);
613 }
614 return getNaturalAlignIndirect(Ty, ByVal: false);
615 }
616
617 // Compute the byval alignment.
618 unsigned TypeAlign = getContext().getTypeAlign(T: Ty) / 8;
619 unsigned StackAlign = getTypeStackAlignInBytes(Ty, Align: TypeAlign);
620 if (StackAlign == 0)
621 return ABIArgInfo::getIndirect(Alignment: CharUnits::fromQuantity(Quantity: 4), /*ByVal=*/true);
622
623 // If the stack alignment is less than the type alignment, realign the
624 // argument.
625 bool Realign = TypeAlign > StackAlign;
626 return ABIArgInfo::getIndirect(Alignment: CharUnits::fromQuantity(Quantity: StackAlign),
627 /*ByVal=*/true, Realign);
628}
629
630X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
631 const Type *T = isSingleElementStruct(T: Ty, Context&: getContext());
632 if (!T)
633 T = Ty.getTypePtr();
634
635 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
636 BuiltinType::Kind K = BT->getKind();
637 if (K == BuiltinType::Float || K == BuiltinType::Double)
638 return Float;
639 }
640 return Integer;
641}
642
643bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
644 if (!IsSoftFloatABI) {
645 Class C = classify(Ty);
646 if (C == Float)
647 return false;
648 }
649
650 unsigned Size = getContext().getTypeSize(T: Ty);
651 unsigned SizeInRegs = (Size + 31) / 32;
652
653 if (SizeInRegs == 0)
654 return false;
655
656 if (!IsMCUABI) {
657 if (SizeInRegs > State.FreeRegs) {
658 State.FreeRegs = 0;
659 return false;
660 }
661 } else {
662 // The MCU psABI allows passing parameters in-reg even if there are
663 // earlier parameters that are passed on the stack. Also,
664 // it does not allow passing >8-byte structs in-register,
665 // even if there are 3 free registers available.
666 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
667 return false;
668 }
669
670 State.FreeRegs -= SizeInRegs;
671 return true;
672}
673
674bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
675 bool &InReg,
676 bool &NeedsPadding) const {
677 // On Windows, aggregates other than HFAs are never passed in registers, and
678 // they do not consume register slots. Homogenous floating-point aggregates
679 // (HFAs) have already been dealt with at this point.
680 if (IsWin32StructABI && isAggregateTypeForABI(T: Ty))
681 return false;
682
683 NeedsPadding = false;
684 InReg = !IsMCUABI;
685
686 if (!updateFreeRegs(Ty, State))
687 return false;
688
689 if (IsMCUABI)
690 return true;
691
692 if (State.CC == llvm::CallingConv::X86_FastCall ||
693 State.CC == llvm::CallingConv::X86_VectorCall ||
694 State.CC == llvm::CallingConv::X86_RegCall) {
695 if (getContext().getTypeSize(T: Ty) <= 32 && State.FreeRegs)
696 NeedsPadding = true;
697
698 return false;
699 }
700
701 return true;
702}
703
704bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
705 bool IsPtrOrInt = (getContext().getTypeSize(T: Ty) <= 32) &&
706 (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
707 Ty->isReferenceType());
708
709 if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
710 State.CC == llvm::CallingConv::X86_VectorCall))
711 return false;
712
713 if (!updateFreeRegs(Ty, State))
714 return false;
715
716 if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
717 return false;
718
719 // Return true to apply inreg to all legal parameters except for MCU targets.
720 return !IsMCUABI;
721}
722
723void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
724 // Vectorcall x86 works subtly different than in x64, so the format is
725 // a bit different than the x64 version. First, all vector types (not HVAs)
726 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
727 // This differs from the x64 implementation, where the first 6 by INDEX get
728 // registers.
729 // In the second pass over the arguments, HVAs are passed in the remaining
730 // vector registers if possible, or indirectly by address. The address will be
731 // passed in ECX/EDX if available. Any other arguments are passed according to
732 // the usual fastcall rules.
733 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
734 for (int I = 0, E = Args.size(); I < E; ++I) {
735 const Type *Base = nullptr;
736 uint64_t NumElts = 0;
737 const QualType &Ty = Args[I].type;
738 if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
739 isHomogeneousAggregate(Ty, Base, Members&: NumElts)) {
740 if (State.FreeSSERegs >= NumElts) {
741 State.FreeSSERegs -= NumElts;
742 Args[I].info = ABIArgInfo::getDirectInReg();
743 State.IsPreassigned.set(I);
744 }
745 }
746 }
747}
748
749ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State,
750 unsigned ArgIndex) const {
751 // FIXME: Set alignment on indirect arguments.
752 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
753 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
754 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
755
756 Ty = useFirstFieldIfTransparentUnion(Ty);
757 TypeInfo TI = getContext().getTypeInfo(T: Ty);
758
759 // Check with the C++ ABI first.
760 const RecordType *RT = Ty->getAs<RecordType>();
761 if (RT) {
762 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, CXXABI&: getCXXABI());
763 if (RAA == CGCXXABI::RAA_Indirect) {
764 return getIndirectResult(Ty, ByVal: false, State);
765 } else if (State.IsDelegateCall) {
766 // Avoid having different alignments on delegate call args by always
767 // setting the alignment to 4, which is what we do for inallocas.
768 ABIArgInfo Res = getIndirectResult(Ty, ByVal: false, State);
769 Res.setIndirectAlign(CharUnits::fromQuantity(Quantity: 4));
770 return Res;
771 } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
772 // The field index doesn't matter, we'll fix it up later.
773 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
774 }
775 }
776
777 // Regcall uses the concept of a homogenous vector aggregate, similar
778 // to other targets.
779 const Type *Base = nullptr;
780 uint64_t NumElts = 0;
781 if ((IsRegCall || IsVectorCall) &&
782 isHomogeneousAggregate(Ty, Base, Members&: NumElts)) {
783 if (State.FreeSSERegs >= NumElts) {
784 State.FreeSSERegs -= NumElts;
785
786 // Vectorcall passes HVAs directly and does not flatten them, but regcall
787 // does.
788 if (IsVectorCall)
789 return getDirectX86Hva();
790
791 if (Ty->isBuiltinType() || Ty->isVectorType())
792 return ABIArgInfo::getDirect();
793 return ABIArgInfo::getExpand();
794 }
795 return getIndirectResult(Ty, /*ByVal=*/false, State);
796 }
797
798 if (isAggregateTypeForABI(T: Ty)) {
799 // Structures with flexible arrays are always indirect.
800 // FIXME: This should not be byval!
801 if (RT && RT->getDecl()->hasFlexibleArrayMember())
802 return getIndirectResult(Ty, ByVal: true, State);
803
804 // Ignore empty structs/unions on non-Windows.
805 if (!IsWin32StructABI && isEmptyRecord(Context&: getContext(), T: Ty, AllowArrays: true))
806 return ABIArgInfo::getIgnore();
807
808 llvm::LLVMContext &LLVMContext = getVMContext();
809 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(C&: LLVMContext);
810 bool NeedsPadding = false;
811 bool InReg;
812 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
813 unsigned SizeInRegs = (TI.Width + 31) / 32;
814 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
815 llvm::Type *Result = llvm::StructType::get(Context&: LLVMContext, Elements);
816 if (InReg)
817 return ABIArgInfo::getDirectInReg(T: Result);
818 else
819 return ABIArgInfo::getDirect(T: Result);
820 }
821 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
822
823 // Pass over-aligned aggregates to non-variadic functions on Windows
824 // indirectly. This behavior was added in MSVC 2015. Use the required
825 // alignment from the record layout, since that may be less than the
826 // regular type alignment, and types with required alignment of less than 4
827 // bytes are not passed indirectly.
828 if (IsWin32StructABI && State.Required.isRequiredArg(argIdx: ArgIndex)) {
829 unsigned AlignInBits = 0;
830 if (RT) {
831 const ASTRecordLayout &Layout =
832 getContext().getASTRecordLayout(D: RT->getDecl());
833 AlignInBits = getContext().toBits(CharSize: Layout.getRequiredAlignment());
834 } else if (TI.isAlignRequired()) {
835 AlignInBits = TI.Align;
836 }
837 if (AlignInBits > 32)
838 return getIndirectResult(Ty, /*ByVal=*/false, State);
839 }
840
841 // Expand small (<= 128-bit) record types when we know that the stack layout
842 // of those arguments will match the struct. This is important because the
843 // LLVM backend isn't smart enough to remove byval, which inhibits many
844 // optimizations.
845 // Don't do this for the MCU if there are still free integer registers
846 // (see X86_64 ABI for full explanation).
847 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
848 canExpandIndirectArgument(Ty))
849 return ABIArgInfo::getExpandWithPadding(
850 PaddingInReg: IsFastCall || IsVectorCall || IsRegCall, Padding: PaddingType);
851
852 return getIndirectResult(Ty, ByVal: true, State);
853 }
854
855 if (const VectorType *VT = Ty->getAs<VectorType>()) {
856 // On Windows, vectors are passed directly if registers are available, or
857 // indirectly if not. This avoids the need to align argument memory. Pass
858 // user-defined vector types larger than 512 bits indirectly for simplicity.
859 if (IsWin32StructABI) {
860 if (TI.Width <= 512 && State.FreeSSERegs > 0) {
861 --State.FreeSSERegs;
862 return ABIArgInfo::getDirectInReg();
863 }
864 return getIndirectResult(Ty, /*ByVal=*/false, State);
865 }
866
867 // On Darwin, some vectors are passed in memory, we handle this by passing
868 // it as an i8/i16/i32/i64.
869 if (IsDarwinVectorABI) {
870 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
871 (TI.Width == 64 && VT->getNumElements() == 1))
872 return ABIArgInfo::getDirect(
873 T: llvm::IntegerType::get(C&: getVMContext(), NumBits: TI.Width));
874 }
875
876 if (IsX86_MMXType(IRType: CGT.ConvertType(T: Ty)))
877 return ABIArgInfo::getDirect(T: llvm::IntegerType::get(C&: getVMContext(), NumBits: 64));
878
879 return ABIArgInfo::getDirect();
880 }
881
882
883 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
884 Ty = EnumTy->getDecl()->getIntegerType();
885
886 bool InReg = shouldPrimitiveUseInReg(Ty, State);
887
888 if (isPromotableIntegerTypeForABI(Ty)) {
889 if (InReg)
890 return ABIArgInfo::getExtendInReg(Ty);
891 return ABIArgInfo::getExtend(Ty);
892 }
893
894 if (const auto *EIT = Ty->getAs<BitIntType>()) {
895 if (EIT->getNumBits() <= 64) {
896 if (InReg)
897 return ABIArgInfo::getDirectInReg();
898 return ABIArgInfo::getDirect();
899 }
900 return getIndirectResult(Ty, /*ByVal=*/false, State);
901 }
902
903 if (InReg)
904 return ABIArgInfo::getDirectInReg();
905 return ABIArgInfo::getDirect();
906}
907
908void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
909 CCState State(FI);
910 if (IsMCUABI)
911 State.FreeRegs = 3;
912 else if (State.CC == llvm::CallingConv::X86_FastCall) {
913 State.FreeRegs = 2;
914 State.FreeSSERegs = 3;
915 } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
916 State.FreeRegs = 2;
917 State.FreeSSERegs = 6;
918 } else if (FI.getHasRegParm())
919 State.FreeRegs = FI.getRegParm();
920 else if (State.CC == llvm::CallingConv::X86_RegCall) {
921 State.FreeRegs = 5;
922 State.FreeSSERegs = 8;
923 } else if (IsWin32StructABI) {
924 // Since MSVC 2015, the first three SSE vectors have been passed in
925 // registers. The rest are passed indirectly.
926 State.FreeRegs = DefaultNumRegisterParameters;
927 State.FreeSSERegs = 3;
928 } else
929 State.FreeRegs = DefaultNumRegisterParameters;
930
931 if (!::classifyReturnType(CXXABI: getCXXABI(), FI, Info: *this)) {
932 FI.getReturnInfo() = classifyReturnType(RetTy: FI.getReturnType(), State);
933 } else if (FI.getReturnInfo().isIndirect()) {
934 // The C++ ABI is not aware of register usage, so we have to check if the
935 // return value was sret and put it in a register ourselves if appropriate.
936 if (State.FreeRegs) {
937 --State.FreeRegs; // The sret parameter consumes a register.
938 if (!IsMCUABI)
939 FI.getReturnInfo().setInReg(true);
940 }
941 }
942
943 // The chain argument effectively gives us another free register.
944 if (FI.isChainCall())
945 ++State.FreeRegs;
946
947 // For vectorcall, do a first pass over the arguments, assigning FP and vector
948 // arguments to XMM registers as available.
949 if (State.CC == llvm::CallingConv::X86_VectorCall)
950 runVectorCallFirstPass(FI, State);
951
952 bool UsedInAlloca = false;
953 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
954 for (unsigned I = 0, E = Args.size(); I < E; ++I) {
955 // Skip arguments that have already been assigned.
956 if (State.IsPreassigned.test(Idx: I))
957 continue;
958
959 Args[I].info =
960 classifyArgumentType(Ty: Args[I].type, State, ArgIndex: I);
961 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
962 }
963
964 // If we needed to use inalloca for any argument, do a second pass and rewrite
965 // all the memory arguments to use inalloca.
966 if (UsedInAlloca)
967 rewriteWithInAlloca(FI);
968}
969
970void
971X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
972 CharUnits &StackOffset, ABIArgInfo &Info,
973 QualType Type) const {
974 // Arguments are always 4-byte-aligned.
975 CharUnits WordSize = CharUnits::fromQuantity(Quantity: 4);
976 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
977
978 // sret pointers and indirect things will require an extra pointer
979 // indirection, unless they are byval. Most things are byval, and will not
980 // require this indirection.
981 bool IsIndirect = false;
982 if (Info.isIndirect() && !Info.getIndirectByVal())
983 IsIndirect = true;
984 Info = ABIArgInfo::getInAlloca(FieldIndex: FrameFields.size(), Indirect: IsIndirect);
985 llvm::Type *LLTy = CGT.ConvertTypeForMem(T: Type);
986 if (IsIndirect)
987 LLTy = llvm::PointerType::getUnqual(C&: getVMContext());
988 FrameFields.push_back(Elt: LLTy);
989 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(T: Type);
990
991 // Insert padding bytes to respect alignment.
992 CharUnits FieldEnd = StackOffset;
993 StackOffset = FieldEnd.alignTo(Align: WordSize);
994 if (StackOffset != FieldEnd) {
995 CharUnits NumBytes = StackOffset - FieldEnd;
996 llvm::Type *Ty = llvm::Type::getInt8Ty(C&: getVMContext());
997 Ty = llvm::ArrayType::get(ElementType: Ty, NumElements: NumBytes.getQuantity());
998 FrameFields.push_back(Elt: Ty);
999 }
1000}
1001
1002static bool isArgInAlloca(const ABIArgInfo &Info) {
1003 // Leave ignored and inreg arguments alone.
1004 switch (Info.getKind()) {
1005 case ABIArgInfo::InAlloca:
1006 return true;
1007 case ABIArgInfo::Ignore:
1008 case ABIArgInfo::IndirectAliased:
1009 return false;
1010 case ABIArgInfo::Indirect:
1011 case ABIArgInfo::Direct:
1012 case ABIArgInfo::Extend:
1013 return !Info.getInReg();
1014 case ABIArgInfo::Expand:
1015 case ABIArgInfo::CoerceAndExpand:
1016 // These are aggregate types which are never passed in registers when
1017 // inalloca is involved.
1018 return true;
1019 }
1020 llvm_unreachable("invalid enum");
1021}
1022
1023void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1024 assert(IsWin32StructABI && "inalloca only supported on win32");
1025
1026 // Build a packed struct type for all of the arguments in memory.
1027 SmallVector<llvm::Type *, 6> FrameFields;
1028
1029 // The stack alignment is always 4.
1030 CharUnits StackAlign = CharUnits::fromQuantity(Quantity: 4);
1031
1032 CharUnits StackOffset;
1033 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1034
1035 // Put 'this' into the struct before 'sret', if necessary.
1036 bool IsThisCall =
1037 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1038 ABIArgInfo &Ret = FI.getReturnInfo();
1039 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1040 isArgInAlloca(Info: I->info)) {
1041 addFieldToArgStruct(FrameFields, StackOffset, Info&: I->info, Type: I->type);
1042 ++I;
1043 }
1044
1045 // Put the sret parameter into the inalloca struct if it's in memory.
1046 if (Ret.isIndirect() && !Ret.getInReg()) {
1047 addFieldToArgStruct(FrameFields, StackOffset, Info&: Ret, Type: FI.getReturnType());
1048 // On Windows, the hidden sret parameter is always returned in eax.
1049 Ret.setInAllocaSRet(IsWin32StructABI);
1050 }
1051
1052 // Skip the 'this' parameter in ecx.
1053 if (IsThisCall)
1054 ++I;
1055
1056 // Put arguments passed in memory into the struct.
1057 for (; I != E; ++I) {
1058 if (isArgInAlloca(Info: I->info))
1059 addFieldToArgStruct(FrameFields, StackOffset, Info&: I->info, Type: I->type);
1060 }
1061
1062 FI.setArgStruct(Ty: llvm::StructType::get(Context&: getVMContext(), Elements: FrameFields,
1063 /*isPacked=*/true),
1064 Align: StackAlign);
1065}
1066
1067Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1068 Address VAListAddr, QualType Ty) const {
1069
1070 auto TypeInfo = getContext().getTypeInfoInChars(T: Ty);
1071
1072 CCState State(*const_cast<CGFunctionInfo *>(CGF.CurFnInfo));
1073 ABIArgInfo AI = classifyArgumentType(Ty, State, /*ArgIndex*/ 0);
1074 // Empty records are ignored for parameter passing purposes.
1075 if (AI.isIgnore())
1076 return CGF.CreateMemTemp(T: Ty);
1077
1078 // x86-32 changes the alignment of certain arguments on the stack.
1079 //
1080 // Just messing with TypeInfo like this works because we never pass
1081 // anything indirectly.
1082 TypeInfo.Align = CharUnits::fromQuantity(
1083 Quantity: getTypeStackAlignInBytes(Ty, Align: TypeInfo.Align.getQuantity()));
1084
1085 return emitVoidPtrVAArg(CGF, VAListAddr, ValueTy: Ty, /*Indirect*/ IsIndirect: false,
1086 ValueInfo: TypeInfo, SlotSizeAndAlign: CharUnits::fromQuantity(Quantity: 4),
1087 /*AllowHigherAlign*/ true);
1088}
1089
1090bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1091 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1092 assert(Triple.getArch() == llvm::Triple::x86);
1093
1094 switch (Opts.getStructReturnConvention()) {
1095 case CodeGenOptions::SRCK_Default:
1096 break;
1097 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
1098 return false;
1099 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
1100 return true;
1101 }
1102
1103 if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1104 return true;
1105
1106 switch (Triple.getOS()) {
1107 case llvm::Triple::DragonFly:
1108 case llvm::Triple::FreeBSD:
1109 case llvm::Triple::OpenBSD:
1110 case llvm::Triple::Win32:
1111 return true;
1112 default:
1113 return false;
1114 }
1115}
1116
1117static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
1118 CodeGen::CodeGenModule &CGM) {
1119 if (!FD->hasAttr<AnyX86InterruptAttr>())
1120 return;
1121
1122 llvm::Function *Fn = cast<llvm::Function>(Val: GV);
1123 Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1124 if (FD->getNumParams() == 0)
1125 return;
1126
1127 auto PtrTy = cast<PointerType>(FD->getParamDecl(i: 0)->getType());
1128 llvm::Type *ByValTy = CGM.getTypes().ConvertType(T: PtrTy->getPointeeType());
1129 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
1130 Context&: Fn->getContext(), Ty: ByValTy);
1131 Fn->addParamAttr(ArgNo: 0, Attr: NewAttr);
1132}
1133
1134void X86_32TargetCodeGenInfo::setTargetAttributes(
1135 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1136 if (GV->isDeclaration())
1137 return;
1138 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D)) {
1139 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1140 llvm::Function *Fn = cast<llvm::Function>(Val: GV);
1141 Fn->addFnAttr(Kind: "stackrealign");
1142 }
1143
1144 addX86InterruptAttrs(FD, GV, CGM);
1145 }
1146}
1147
1148bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1149 CodeGen::CodeGenFunction &CGF,
1150 llvm::Value *Address) const {
1151 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1152
1153 llvm::Value *Four8 = llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 4);
1154
1155 // 0-7 are the eight integer registers; the order is different
1156 // on Darwin (for EH), but the range is the same.
1157 // 8 is %eip.
1158 AssignToArrayRange(Builder, Array: Address, Value: Four8, FirstIndex: 0, LastIndex: 8);
1159
1160 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1161 // 12-16 are st(0..4). Not sure why we stop at 4.
1162 // These have size 16, which is sizeof(long double) on
1163 // platforms with 8-byte alignment for that type.
1164 llvm::Value *Sixteen8 = llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 16);
1165 AssignToArrayRange(Builder, Array: Address, Value: Sixteen8, FirstIndex: 12, LastIndex: 16);
1166
1167 } else {
1168 // 9 is %eflags, which doesn't get a size on Darwin for some
1169 // reason.
1170 Builder.CreateAlignedStore(
1171 Val: Four8, Addr: Builder.CreateConstInBoundsGEP1_32(Ty: CGF.Int8Ty, Ptr: Address, Idx0: 9),
1172 Align: CharUnits::One());
1173
1174 // 11-16 are st(0..5). Not sure why we stop at 5.
1175 // These have size 12, which is sizeof(long double) on
1176 // platforms with 4-byte alignment for that type.
1177 llvm::Value *Twelve8 = llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 12);
1178 AssignToArrayRange(Builder, Array: Address, Value: Twelve8, FirstIndex: 11, LastIndex: 16);
1179 }
1180
1181 return false;
1182}
1183
1184//===----------------------------------------------------------------------===//
1185// X86-64 ABI Implementation
1186//===----------------------------------------------------------------------===//
1187
1188
1189namespace {
1190
1191/// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1192static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1193 switch (AVXLevel) {
1194 case X86AVXABILevel::AVX512:
1195 return 512;
1196 case X86AVXABILevel::AVX:
1197 return 256;
1198 case X86AVXABILevel::None:
1199 return 128;
1200 }
1201 llvm_unreachable("Unknown AVXLevel");
1202}
1203
1204/// X86_64ABIInfo - The X86_64 ABI information.
1205class X86_64ABIInfo : public ABIInfo {
1206 enum Class {
1207 Integer = 0,
1208 SSE,
1209 SSEUp,
1210 X87,
1211 X87Up,
1212 ComplexX87,
1213 NoClass,
1214 Memory
1215 };
1216
1217 /// merge - Implement the X86_64 ABI merging algorithm.
1218 ///
1219 /// Merge an accumulating classification \arg Accum with a field
1220 /// classification \arg Field.
1221 ///
1222 /// \param Accum - The accumulating classification. This should
1223 /// always be either NoClass or the result of a previous merge
1224 /// call. In addition, this should never be Memory (the caller
1225 /// should just return Memory for the aggregate).
1226 static Class merge(Class Accum, Class Field);
1227
1228 /// postMerge - Implement the X86_64 ABI post merging algorithm.
1229 ///
1230 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1231 /// final MEMORY or SSE classes when necessary.
1232 ///
1233 /// \param AggregateSize - The size of the current aggregate in
1234 /// the classification process.
1235 ///
1236 /// \param Lo - The classification for the parts of the type
1237 /// residing in the low word of the containing object.
1238 ///
1239 /// \param Hi - The classification for the parts of the type
1240 /// residing in the higher words of the containing object.
1241 ///
1242 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1243
1244 /// classify - Determine the x86_64 register classes in which the
1245 /// given type T should be passed.
1246 ///
1247 /// \param Lo - The classification for the parts of the type
1248 /// residing in the low word of the containing object.
1249 ///
1250 /// \param Hi - The classification for the parts of the type
1251 /// residing in the high word of the containing object.
1252 ///
1253 /// \param OffsetBase - The bit offset of this type in the
1254 /// containing object. Some parameters are classified different
1255 /// depending on whether they straddle an eightbyte boundary.
1256 ///
1257 /// \param isNamedArg - Whether the argument in question is a "named"
1258 /// argument, as used in AMD64-ABI 3.5.7.
1259 ///
1260 /// \param IsRegCall - Whether the calling conversion is regcall.
1261 ///
1262 /// If a word is unused its result will be NoClass; if a type should
1263 /// be passed in Memory then at least the classification of \arg Lo
1264 /// will be Memory.
1265 ///
1266 /// The \arg Lo class will be NoClass iff the argument is ignored.
1267 ///
1268 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1269 /// also be ComplexX87.
1270 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1271 bool isNamedArg, bool IsRegCall = false) const;
1272
1273 llvm::Type *GetByteVectorType(QualType Ty) const;
1274 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1275 unsigned IROffset, QualType SourceTy,
1276 unsigned SourceOffset) const;
1277 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1278 unsigned IROffset, QualType SourceTy,
1279 unsigned SourceOffset) const;
1280
1281 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1282 /// such that the argument will be returned in memory.
1283 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1284
1285 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1286 /// such that the argument will be passed in memory.
1287 ///
1288 /// \param freeIntRegs - The number of free integer registers remaining
1289 /// available.
1290 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1291
1292 ABIArgInfo classifyReturnType(QualType RetTy) const;
1293
1294 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
1295 unsigned &neededInt, unsigned &neededSSE,
1296 bool isNamedArg,
1297 bool IsRegCall = false) const;
1298
1299 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
1300 unsigned &NeededSSE,
1301 unsigned &MaxVectorWidth) const;
1302
1303 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
1304 unsigned &NeededSSE,
1305 unsigned &MaxVectorWidth) const;
1306
1307 bool IsIllegalVectorType(QualType Ty) const;
1308
1309 /// The 0.98 ABI revision clarified a lot of ambiguities,
1310 /// unfortunately in ways that were not always consistent with
1311 /// certain previous compilers. In particular, platforms which
1312 /// required strict binary compatibility with older versions of GCC
1313 /// may need to exempt themselves.
1314 bool honorsRevision0_98() const {
1315 return !getTarget().getTriple().isOSDarwin();
1316 }
1317
1318 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
1319 /// classify it as INTEGER (for compatibility with older clang compilers).
1320 bool classifyIntegerMMXAsSSE() const {
1321 // Clang <= 3.8 did not do this.
1322 if (getContext().getLangOpts().getClangABICompat() <=
1323 LangOptions::ClangABI::Ver3_8)
1324 return false;
1325
1326 const llvm::Triple &Triple = getTarget().getTriple();
1327 if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
1328 return false;
1329 return true;
1330 }
1331
1332 // GCC classifies vectors of __int128 as memory.
1333 bool passInt128VectorsInMem() const {
1334 // Clang <= 9.0 did not do this.
1335 if (getContext().getLangOpts().getClangABICompat() <=
1336 LangOptions::ClangABI::Ver9)
1337 return false;
1338
1339 const llvm::Triple &T = getTarget().getTriple();
1340 return T.isOSLinux() || T.isOSNetBSD();
1341 }
1342
1343 X86AVXABILevel AVXLevel;
1344 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1345 // 64-bit hardware.
1346 bool Has64BitPointers;
1347
1348public:
1349 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1350 : ABIInfo(CGT), AVXLevel(AVXLevel),
1351 Has64BitPointers(CGT.getDataLayout().getPointerSize(AS: 0) == 8) {}
1352
1353 bool isPassedUsingAVXType(QualType type) const {
1354 unsigned neededInt, neededSSE;
1355 // The freeIntRegs argument doesn't matter here.
1356 ABIArgInfo info = classifyArgumentType(Ty: type, freeIntRegs: 0, neededInt, neededSSE,
1357 /*isNamedArg*/true);
1358 if (info.isDirect()) {
1359 llvm::Type *ty = info.getCoerceToType();
1360 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(Val: ty))
1361 return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
1362 }
1363 return false;
1364 }
1365
1366 void computeInfo(CGFunctionInfo &FI) const override;
1367
1368 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1369 QualType Ty) const override;
1370 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1371 QualType Ty) const override;
1372
1373 bool has64BitPointers() const {
1374 return Has64BitPointers;
1375 }
1376};
1377
1378/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1379class WinX86_64ABIInfo : public ABIInfo {
1380public:
1381 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1382 : ABIInfo(CGT), AVXLevel(AVXLevel),
1383 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1384
1385 void computeInfo(CGFunctionInfo &FI) const override;
1386
1387 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1388 QualType Ty) const override;
1389
1390 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1391 // FIXME: Assumes vectorcall is in use.
1392 return isX86VectorTypeForVectorCall(Context&: getContext(), Ty);
1393 }
1394
1395 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1396 uint64_t NumMembers) const override {
1397 // FIXME: Assumes vectorcall is in use.
1398 return isX86VectorCallAggregateSmallEnough(NumMembers);
1399 }
1400
1401private:
1402 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
1403 bool IsVectorCall, bool IsRegCall) const;
1404 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
1405 const ABIArgInfo &current) const;
1406
1407 X86AVXABILevel AVXLevel;
1408
1409 bool IsMingw64;
1410};
1411
1412class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1413public:
1414 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1415 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(args&: CGT, args&: AVXLevel)) {
1416 SwiftInfo =
1417 std::make_unique<SwiftABIInfo>(args&: CGT, /*SwiftErrorInRegister=*/args: true);
1418 }
1419
1420 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
1421 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
1422 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
1423
1424 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1425 return 7;
1426 }
1427
1428 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1429 llvm::Value *Address) const override {
1430 llvm::Value *Eight8 = llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 8);
1431
1432 // 0-15 are the 16 integer registers.
1433 // 16 is %rip.
1434 AssignToArrayRange(Builder&: CGF.Builder, Array: Address, Value: Eight8, FirstIndex: 0, LastIndex: 16);
1435 return false;
1436 }
1437
1438 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1439 StringRef Constraint,
1440 llvm::Type* Ty) const override {
1441 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1442 }
1443
1444 bool isNoProtoCallVariadic(const CallArgList &args,
1445 const FunctionNoProtoType *fnType) const override {
1446 // The default CC on x86-64 sets %al to the number of SSA
1447 // registers used, and GCC sets this when calling an unprototyped
1448 // function, so we override the default behavior. However, don't do
1449 // that when AVX types are involved: the ABI explicitly states it is
1450 // undefined, and it doesn't work in practice because of how the ABI
1451 // defines varargs anyway.
1452 if (fnType->getCallConv() == CC_C) {
1453 bool HasAVXType = false;
1454 for (CallArgList::const_iterator
1455 it = args.begin(), ie = args.end(); it != ie; ++it) {
1456 if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(type: it->Ty)) {
1457 HasAVXType = true;
1458 break;
1459 }
1460 }
1461
1462 if (!HasAVXType)
1463 return true;
1464 }
1465
1466 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1467 }
1468
1469 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1470 CodeGen::CodeGenModule &CGM) const override {
1471 if (GV->isDeclaration())
1472 return;
1473 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D)) {
1474 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1475 llvm::Function *Fn = cast<llvm::Function>(Val: GV);
1476 Fn->addFnAttr(Kind: "stackrealign");
1477 }
1478
1479 addX86InterruptAttrs(FD, GV, CGM);
1480 }
1481 }
1482
1483 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
1484 const FunctionDecl *Caller,
1485 const FunctionDecl *Callee,
1486 const CallArgList &Args) const override;
1487};
1488} // namespace
1489
1490static void initFeatureMaps(const ASTContext &Ctx,
1491 llvm::StringMap<bool> &CallerMap,
1492 const FunctionDecl *Caller,
1493 llvm::StringMap<bool> &CalleeMap,
1494 const FunctionDecl *Callee) {
1495 if (CalleeMap.empty() && CallerMap.empty()) {
1496 // The caller is potentially nullptr in the case where the call isn't in a
1497 // function. In this case, the getFunctionFeatureMap ensures we just get
1498 // the TU level setting (since it cannot be modified by 'target'..
1499 Ctx.getFunctionFeatureMap(FeatureMap&: CallerMap, Caller);
1500 Ctx.getFunctionFeatureMap(FeatureMap&: CalleeMap, Callee);
1501 }
1502}
1503
1504static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
1505 SourceLocation CallLoc,
1506 const llvm::StringMap<bool> &CallerMap,
1507 const llvm::StringMap<bool> &CalleeMap,
1508 QualType Ty, StringRef Feature,
1509 bool IsArgument) {
1510 bool CallerHasFeat = CallerMap.lookup(Key: Feature);
1511 bool CalleeHasFeat = CalleeMap.lookup(Key: Feature);
1512 if (!CallerHasFeat && !CalleeHasFeat)
1513 return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
1514 << IsArgument << Ty << Feature;
1515
1516 // Mixing calling conventions here is very clearly an error.
1517 if (!CallerHasFeat || !CalleeHasFeat)
1518 return Diag.Report(CallLoc, diag::err_avx_calling_convention)
1519 << IsArgument << Ty << Feature;
1520
1521 // Else, both caller and callee have the required feature, so there is no need
1522 // to diagnose.
1523 return false;
1524}
1525
1526static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag,
1527 SourceLocation CallLoc,
1528 const llvm::StringMap<bool> &CallerMap,
1529 const llvm::StringMap<bool> &CalleeMap,
1530 QualType Ty, bool IsArgument) {
1531 bool Caller256 = CallerMap.lookup(Key: "avx512f") && !CallerMap.lookup(Key: "evex512");
1532 bool Callee256 = CalleeMap.lookup(Key: "avx512f") && !CalleeMap.lookup(Key: "evex512");
1533
1534 // Forbid 512-bit or larger vector pass or return when we disabled ZMM
1535 // instructions.
1536 if (Caller256 || Callee256)
1537 return Diag.Report(CallLoc, diag::err_avx_calling_convention)
1538 << IsArgument << Ty << "evex512";
1539
1540 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
1541 Feature: "avx512f", IsArgument);
1542}
1543
1544static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
1545 SourceLocation CallLoc,
1546 const llvm::StringMap<bool> &CallerMap,
1547 const llvm::StringMap<bool> &CalleeMap, QualType Ty,
1548 bool IsArgument) {
1549 uint64_t Size = Ctx.getTypeSize(T: Ty);
1550 if (Size > 256)
1551 return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
1552 IsArgument);
1553
1554 if (Size > 128)
1555 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, Feature: "avx",
1556 IsArgument);
1557
1558 return false;
1559}
1560
1561void X86_64TargetCodeGenInfo::checkFunctionCallABI(
1562 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
1563 const FunctionDecl *Callee, const CallArgList &Args) const {
1564 llvm::StringMap<bool> CallerMap;
1565 llvm::StringMap<bool> CalleeMap;
1566 unsigned ArgIndex = 0;
1567
1568 // We need to loop through the actual call arguments rather than the
1569 // function's parameters, in case this variadic.
1570 for (const CallArg &Arg : Args) {
1571 // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
1572 // additionally changes how vectors >256 in size are passed. Like GCC, we
1573 // warn when a function is called with an argument where this will change.
1574 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
1575 // the caller and callee features are mismatched.
1576 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
1577 // change its ABI with attribute-target after this call.
1578 if (Arg.getType()->isVectorType() &&
1579 CGM.getContext().getTypeSize(T: Arg.getType()) > 128) {
1580 initFeatureMaps(Ctx: CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1581 QualType Ty = Arg.getType();
1582 // The CallArg seems to have desugared the type already, so for clearer
1583 // diagnostics, replace it with the type in the FunctionDecl if possible.
1584 if (ArgIndex < Callee->getNumParams())
1585 Ty = Callee->getParamDecl(i: ArgIndex)->getType();
1586
1587 if (checkAVXParam(Diag&: CGM.getDiags(), Ctx&: CGM.getContext(), CallLoc, CallerMap,
1588 CalleeMap, Ty, /*IsArgument*/ true))
1589 return;
1590 }
1591 ++ArgIndex;
1592 }
1593
1594 // Check return always, as we don't have a good way of knowing in codegen
1595 // whether this value is used, tail-called, etc.
1596 if (Callee->getReturnType()->isVectorType() &&
1597 CGM.getContext().getTypeSize(T: Callee->getReturnType()) > 128) {
1598 initFeatureMaps(Ctx: CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1599 checkAVXParam(Diag&: CGM.getDiags(), Ctx&: CGM.getContext(), CallLoc, CallerMap,
1600 CalleeMap, Ty: Callee->getReturnType(),
1601 /*IsArgument*/ false);
1602 }
1603}
1604
1605std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
1606 // If the argument does not end in .lib, automatically add the suffix.
1607 // If the argument contains a space, enclose it in quotes.
1608 // This matches the behavior of MSVC.
1609 bool Quote = Lib.contains(C: ' ');
1610 std::string ArgStr = Quote ? "\"" : "";
1611 ArgStr += Lib;
1612 if (!Lib.ends_with_insensitive(Suffix: ".lib") && !Lib.ends_with_insensitive(Suffix: ".a"))
1613 ArgStr += ".lib";
1614 ArgStr += Quote ? "\"" : "";
1615 return ArgStr;
1616}
1617
1618namespace {
1619class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1620public:
1621 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1622 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1623 unsigned NumRegisterParameters)
1624 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1625 Win32StructABI, NumRegisterParameters, false) {}
1626
1627 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1628 CodeGen::CodeGenModule &CGM) const override;
1629
1630 void getDependentLibraryOption(llvm::StringRef Lib,
1631 llvm::SmallString<24> &Opt) const override {
1632 Opt = "/DEFAULTLIB:";
1633 Opt += qualifyWindowsLibrary(Lib);
1634 }
1635
1636 void getDetectMismatchOption(llvm::StringRef Name,
1637 llvm::StringRef Value,
1638 llvm::SmallString<32> &Opt) const override {
1639 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1640 }
1641};
1642} // namespace
1643
1644void WinX86_32TargetCodeGenInfo::setTargetAttributes(
1645 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1646 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1647 if (GV->isDeclaration())
1648 return;
1649 addStackProbeTargetAttributes(D, GV, CGM);
1650}
1651
1652namespace {
1653class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1654public:
1655 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1656 X86AVXABILevel AVXLevel)
1657 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(args&: CGT, args&: AVXLevel)) {
1658 SwiftInfo =
1659 std::make_unique<SwiftABIInfo>(args&: CGT, /*SwiftErrorInRegister=*/args: true);
1660 }
1661
1662 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1663 CodeGen::CodeGenModule &CGM) const override;
1664
1665 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1666 return 7;
1667 }
1668
1669 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1670 llvm::Value *Address) const override {
1671 llvm::Value *Eight8 = llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 8);
1672
1673 // 0-15 are the 16 integer registers.
1674 // 16 is %rip.
1675 AssignToArrayRange(Builder&: CGF.Builder, Array: Address, Value: Eight8, FirstIndex: 0, LastIndex: 16);
1676 return false;
1677 }
1678
1679 void getDependentLibraryOption(llvm::StringRef Lib,
1680 llvm::SmallString<24> &Opt) const override {
1681 Opt = "/DEFAULTLIB:";
1682 Opt += qualifyWindowsLibrary(Lib);
1683 }
1684
1685 void getDetectMismatchOption(llvm::StringRef Name,
1686 llvm::StringRef Value,
1687 llvm::SmallString<32> &Opt) const override {
1688 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1689 }
1690};
1691} // namespace
1692
1693void WinX86_64TargetCodeGenInfo::setTargetAttributes(
1694 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1695 TargetCodeGenInfo::setTargetAttributes(D, GV, M&: CGM);
1696 if (GV->isDeclaration())
1697 return;
1698 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D)) {
1699 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1700 llvm::Function *Fn = cast<llvm::Function>(Val: GV);
1701 Fn->addFnAttr(Kind: "stackrealign");
1702 }
1703
1704 addX86InterruptAttrs(FD, GV, CGM);
1705 }
1706
1707 addStackProbeTargetAttributes(D, GV, CGM);
1708}
1709
1710void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1711 Class &Hi) const {
1712 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1713 //
1714 // (a) If one of the classes is Memory, the whole argument is passed in
1715 // memory.
1716 //
1717 // (b) If X87UP is not preceded by X87, the whole argument is passed in
1718 // memory.
1719 //
1720 // (c) If the size of the aggregate exceeds two eightbytes and the first
1721 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1722 // argument is passed in memory. NOTE: This is necessary to keep the
1723 // ABI working for processors that don't support the __m256 type.
1724 //
1725 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1726 //
1727 // Some of these are enforced by the merging logic. Others can arise
1728 // only with unions; for example:
1729 // union { _Complex double; unsigned; }
1730 //
1731 // Note that clauses (b) and (c) were added in 0.98.
1732 //
1733 if (Hi == Memory)
1734 Lo = Memory;
1735 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1736 Lo = Memory;
1737 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1738 Lo = Memory;
1739 if (Hi == SSEUp && Lo != SSE)
1740 Hi = SSE;
1741}
1742
1743X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1744 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1745 // classified recursively so that always two fields are
1746 // considered. The resulting class is calculated according to
1747 // the classes of the fields in the eightbyte:
1748 //
1749 // (a) If both classes are equal, this is the resulting class.
1750 //
1751 // (b) If one of the classes is NO_CLASS, the resulting class is
1752 // the other class.
1753 //
1754 // (c) If one of the classes is MEMORY, the result is the MEMORY
1755 // class.
1756 //
1757 // (d) If one of the classes is INTEGER, the result is the
1758 // INTEGER.
1759 //
1760 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1761 // MEMORY is used as class.
1762 //
1763 // (f) Otherwise class SSE is used.
1764
1765 // Accum should never be memory (we should have returned) or
1766 // ComplexX87 (because this cannot be passed in a structure).
1767 assert((Accum != Memory && Accum != ComplexX87) &&
1768 "Invalid accumulated classification during merge.");
1769 if (Accum == Field || Field == NoClass)
1770 return Accum;
1771 if (Field == Memory)
1772 return Memory;
1773 if (Accum == NoClass)
1774 return Field;
1775 if (Accum == Integer || Field == Integer)
1776 return Integer;
1777 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1778 Accum == X87 || Accum == X87Up)
1779 return Memory;
1780 return SSE;
1781}
1782
1783void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
1784 Class &Hi, bool isNamedArg, bool IsRegCall) const {
1785 // FIXME: This code can be simplified by introducing a simple value class for
1786 // Class pairs with appropriate constructor methods for the various
1787 // situations.
1788
1789 // FIXME: Some of the split computations are wrong; unaligned vectors
1790 // shouldn't be passed in registers for example, so there is no chance they
1791 // can straddle an eightbyte. Verify & simplify.
1792
1793 Lo = Hi = NoClass;
1794
1795 Class &Current = OffsetBase < 64 ? Lo : Hi;
1796 Current = Memory;
1797
1798 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1799 BuiltinType::Kind k = BT->getKind();
1800
1801 if (k == BuiltinType::Void) {
1802 Current = NoClass;
1803 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1804 Lo = Integer;
1805 Hi = Integer;
1806 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1807 Current = Integer;
1808 } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
1809 k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
1810 Current = SSE;
1811 } else if (k == BuiltinType::Float128) {
1812 Lo = SSE;
1813 Hi = SSEUp;
1814 } else if (k == BuiltinType::LongDouble) {
1815 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1816 if (LDF == &llvm::APFloat::IEEEquad()) {
1817 Lo = SSE;
1818 Hi = SSEUp;
1819 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
1820 Lo = X87;
1821 Hi = X87Up;
1822 } else if (LDF == &llvm::APFloat::IEEEdouble()) {
1823 Current = SSE;
1824 } else
1825 llvm_unreachable("unexpected long double representation!");
1826 }
1827 // FIXME: _Decimal32 and _Decimal64 are SSE.
1828 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1829 return;
1830 }
1831
1832 if (const EnumType *ET = Ty->getAs<EnumType>()) {
1833 // Classify the underlying integer type.
1834 classify(Ty: ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1835 return;
1836 }
1837
1838 if (Ty->hasPointerRepresentation()) {
1839 Current = Integer;
1840 return;
1841 }
1842
1843 if (Ty->isMemberPointerType()) {
1844 if (Ty->isMemberFunctionPointerType()) {
1845 if (Has64BitPointers) {
1846 // If Has64BitPointers, this is an {i64, i64}, so classify both
1847 // Lo and Hi now.
1848 Lo = Hi = Integer;
1849 } else {
1850 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1851 // straddles an eightbyte boundary, Hi should be classified as well.
1852 uint64_t EB_FuncPtr = (OffsetBase) / 64;
1853 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1854 if (EB_FuncPtr != EB_ThisAdj) {
1855 Lo = Hi = Integer;
1856 } else {
1857 Current = Integer;
1858 }
1859 }
1860 } else {
1861 Current = Integer;
1862 }
1863 return;
1864 }
1865
1866 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1867 uint64_t Size = getContext().getTypeSize(VT);
1868 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
1869 // gcc passes the following as integer:
1870 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
1871 // 2 bytes - <2 x char>, <1 x short>
1872 // 1 byte - <1 x char>
1873 Current = Integer;
1874
1875 // If this type crosses an eightbyte boundary, it should be
1876 // split.
1877 uint64_t EB_Lo = (OffsetBase) / 64;
1878 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
1879 if (EB_Lo != EB_Hi)
1880 Hi = Lo;
1881 } else if (Size == 64) {
1882 QualType ElementType = VT->getElementType();
1883
1884 // gcc passes <1 x double> in memory. :(
1885 if (ElementType->isSpecificBuiltinType(K: BuiltinType::Double))
1886 return;
1887
1888 // gcc passes <1 x long long> as SSE but clang used to unconditionally
1889 // pass them as integer. For platforms where clang is the de facto
1890 // platform compiler, we must continue to use integer.
1891 if (!classifyIntegerMMXAsSSE() &&
1892 (ElementType->isSpecificBuiltinType(K: BuiltinType::LongLong) ||
1893 ElementType->isSpecificBuiltinType(K: BuiltinType::ULongLong) ||
1894 ElementType->isSpecificBuiltinType(K: BuiltinType::Long) ||
1895 ElementType->isSpecificBuiltinType(K: BuiltinType::ULong)))
1896 Current = Integer;
1897 else
1898 Current = SSE;
1899
1900 // If this type crosses an eightbyte boundary, it should be
1901 // split.
1902 if (OffsetBase && OffsetBase != 64)
1903 Hi = Lo;
1904 } else if (Size == 128 ||
1905 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
1906 QualType ElementType = VT->getElementType();
1907
1908 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
1909 if (passInt128VectorsInMem() && Size != 128 &&
1910 (ElementType->isSpecificBuiltinType(K: BuiltinType::Int128) ||
1911 ElementType->isSpecificBuiltinType(K: BuiltinType::UInt128)))
1912 return;
1913
1914 // Arguments of 256-bits are split into four eightbyte chunks. The
1915 // least significant one belongs to class SSE and all the others to class
1916 // SSEUP. The original Lo and Hi design considers that types can't be
1917 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1918 // This design isn't correct for 256-bits, but since there're no cases
1919 // where the upper parts would need to be inspected, avoid adding
1920 // complexity and just consider Hi to match the 64-256 part.
1921 //
1922 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1923 // registers if they are "named", i.e. not part of the "..." of a
1924 // variadic function.
1925 //
1926 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
1927 // split into eight eightbyte chunks, one SSE and seven SSEUP.
1928 Lo = SSE;
1929 Hi = SSEUp;
1930 }
1931 return;
1932 }
1933
1934 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1935 QualType ET = getContext().getCanonicalType(T: CT->getElementType());
1936
1937 uint64_t Size = getContext().getTypeSize(T: Ty);
1938 if (ET->isIntegralOrEnumerationType()) {
1939 if (Size <= 64)
1940 Current = Integer;
1941 else if (Size <= 128)
1942 Lo = Hi = Integer;
1943 } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
1944 ET->isBFloat16Type()) {
1945 Current = SSE;
1946 } else if (ET == getContext().DoubleTy) {
1947 Lo = Hi = SSE;
1948 } else if (ET == getContext().LongDoubleTy) {
1949 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1950 if (LDF == &llvm::APFloat::IEEEquad())
1951 Current = Memory;
1952 else if (LDF == &llvm::APFloat::x87DoubleExtended())
1953 Current = ComplexX87;
1954 else if (LDF == &llvm::APFloat::IEEEdouble())
1955 Lo = Hi = SSE;
1956 else
1957 llvm_unreachable("unexpected long double representation!");
1958 }
1959
1960 // If this complex type crosses an eightbyte boundary then it
1961 // should be split.
1962 uint64_t EB_Real = (OffsetBase) / 64;
1963 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(T: ET)) / 64;
1964 if (Hi == NoClass && EB_Real != EB_Imag)
1965 Hi = Lo;
1966
1967 return;
1968 }
1969
1970 if (const auto *EITy = Ty->getAs<BitIntType>()) {
1971 if (EITy->getNumBits() <= 64)
1972 Current = Integer;
1973 else if (EITy->getNumBits() <= 128)
1974 Lo = Hi = Integer;
1975 // Larger values need to get passed in memory.
1976 return;
1977 }
1978
1979 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(T: Ty)) {
1980 // Arrays are treated like structures.
1981
1982 uint64_t Size = getContext().getTypeSize(T: Ty);
1983
1984 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1985 // than eight eightbytes, ..., it has class MEMORY.
1986 // regcall ABI doesn't have limitation to an object. The only limitation
1987 // is the free registers, which will be checked in computeInfo.
1988 if (!IsRegCall && Size > 512)
1989 return;
1990
1991 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1992 // fields, it has class MEMORY.
1993 //
1994 // Only need to check alignment of array base.
1995 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1996 return;
1997
1998 // Otherwise implement simplified merge. We could be smarter about
1999 // this, but it isn't worth it and would be harder to verify.
2000 Current = NoClass;
2001 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2002 uint64_t ArraySize = AT->getZExtSize();
2003
2004 // The only case a 256-bit wide vector could be used is when the array
2005 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2006 // to work for sizes wider than 128, early check and fallback to memory.
2007 //
2008 if (Size > 128 &&
2009 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2010 return;
2011
2012 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2013 Class FieldLo, FieldHi;
2014 classify(Ty: AT->getElementType(), OffsetBase: Offset, Lo&: FieldLo, Hi&: FieldHi, isNamedArg);
2015 Lo = merge(Accum: Lo, Field: FieldLo);
2016 Hi = merge(Accum: Hi, Field: FieldHi);
2017 if (Lo == Memory || Hi == Memory)
2018 break;
2019 }
2020
2021 postMerge(AggregateSize: Size, Lo, Hi);
2022 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2023 return;
2024 }
2025
2026 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2027 uint64_t Size = getContext().getTypeSize(T: Ty);
2028
2029 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2030 // than eight eightbytes, ..., it has class MEMORY.
2031 if (Size > 512)
2032 return;
2033
2034 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2035 // copy constructor or a non-trivial destructor, it is passed by invisible
2036 // reference.
2037 if (getRecordArgABI(RT, CXXABI&: getCXXABI()))
2038 return;
2039
2040 const RecordDecl *RD = RT->getDecl();
2041
2042 // Assume variable sized types are passed in memory.
2043 if (RD->hasFlexibleArrayMember())
2044 return;
2045
2046 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D: RD);
2047
2048 // Reset Lo class, this will be recomputed.
2049 Current = NoClass;
2050
2051 // If this is a C++ record, classify the bases first.
2052 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
2053 for (const auto &I : CXXRD->bases()) {
2054 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2055 "Unexpected base class!");
2056 const auto *Base =
2057 cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl());
2058
2059 // Classify this field.
2060 //
2061 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2062 // single eightbyte, each is classified separately. Each eightbyte gets
2063 // initialized to class NO_CLASS.
2064 Class FieldLo, FieldHi;
2065 uint64_t Offset =
2066 OffsetBase + getContext().toBits(CharSize: Layout.getBaseClassOffset(Base));
2067 classify(Ty: I.getType(), OffsetBase: Offset, Lo&: FieldLo, Hi&: FieldHi, isNamedArg);
2068 Lo = merge(Accum: Lo, Field: FieldLo);
2069 Hi = merge(Accum: Hi, Field: FieldHi);
2070 if (Lo == Memory || Hi == Memory) {
2071 postMerge(AggregateSize: Size, Lo, Hi);
2072 return;
2073 }
2074 }
2075 }
2076
2077 // Classify the fields one at a time, merging the results.
2078 unsigned idx = 0;
2079 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
2080 LangOptions::ClangABI::Ver11 ||
2081 getContext().getTargetInfo().getTriple().isPS();
2082 bool IsUnion = RT->isUnionType() && !UseClang11Compat;
2083
2084 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2085 i != e; ++i, ++idx) {
2086 uint64_t Offset = OffsetBase + Layout.getFieldOffset(FieldNo: idx);
2087 bool BitField = i->isBitField();
2088
2089 // Ignore padding bit-fields.
2090 if (BitField && i->isUnnamedBitField())
2091 continue;
2092
2093 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2094 // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
2095 //
2096 // The only case a 256-bit or a 512-bit wide vector could be used is when
2097 // the struct contains a single 256-bit or 512-bit element. Early check
2098 // and fallback to memory.
2099 //
2100 // FIXME: Extended the Lo and Hi logic properly to work for size wider
2101 // than 128.
2102 if (Size > 128 &&
2103 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
2104 Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2105 Lo = Memory;
2106 postMerge(AggregateSize: Size, Lo, Hi);
2107 return;
2108 }
2109
2110 bool IsInMemory =
2111 Offset % getContext().getTypeAlign(i->getType().getCanonicalType());
2112 // Note, skip this test for bit-fields, see below.
2113 if (!BitField && IsInMemory) {
2114 Lo = Memory;
2115 postMerge(AggregateSize: Size, Lo, Hi);
2116 return;
2117 }
2118
2119 // Classify this field.
2120 //
2121 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2122 // exceeds a single eightbyte, each is classified
2123 // separately. Each eightbyte gets initialized to class
2124 // NO_CLASS.
2125 Class FieldLo, FieldHi;
2126
2127 // Bit-fields require special handling, they do not force the
2128 // structure to be passed in memory even if unaligned, and
2129 // therefore they can straddle an eightbyte.
2130 if (BitField) {
2131 assert(!i->isUnnamedBitField());
2132 uint64_t Offset = OffsetBase + Layout.getFieldOffset(FieldNo: idx);
2133 uint64_t Size = i->getBitWidthValue(Ctx: getContext());
2134
2135 uint64_t EB_Lo = Offset / 64;
2136 uint64_t EB_Hi = (Offset + Size - 1) / 64;
2137
2138 if (EB_Lo) {
2139 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2140 FieldLo = NoClass;
2141 FieldHi = Integer;
2142 } else {
2143 FieldLo = Integer;
2144 FieldHi = EB_Hi ? Integer : NoClass;
2145 }
2146 } else
2147 classify(Ty: i->getType(), OffsetBase: Offset, Lo&: FieldLo, Hi&: FieldHi, isNamedArg);
2148 Lo = merge(Accum: Lo, Field: FieldLo);
2149 Hi = merge(Accum: Hi, Field: FieldHi);
2150 if (Lo == Memory || Hi == Memory)
2151 break;
2152 }
2153
2154 postMerge(AggregateSize: Size, Lo, Hi);
2155 }
2156}
2157
2158ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2159 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2160 // place naturally.
2161 if (!isAggregateTypeForABI(T: Ty)) {
2162 // Treat an enum type as its underlying type.
2163 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2164 Ty = EnumTy->getDecl()->getIntegerType();
2165
2166 if (Ty->isBitIntType())
2167 return getNaturalAlignIndirect(Ty);
2168
2169 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2170 : ABIArgInfo::getDirect());
2171 }
2172
2173 return getNaturalAlignIndirect(Ty);
2174}
2175
2176bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2177 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2178 uint64_t Size = getContext().getTypeSize(VecTy);
2179 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2180 if (Size <= 64 || Size > LargestVector)
2181 return true;
2182 QualType EltTy = VecTy->getElementType();
2183 if (passInt128VectorsInMem() &&
2184 (EltTy->isSpecificBuiltinType(K: BuiltinType::Int128) ||
2185 EltTy->isSpecificBuiltinType(K: BuiltinType::UInt128)))
2186 return true;
2187 }
2188
2189 return false;
2190}
2191
2192ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2193 unsigned freeIntRegs) const {
2194 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2195 // place naturally.
2196 //
2197 // This assumption is optimistic, as there could be free registers available
2198 // when we need to pass this argument in memory, and LLVM could try to pass
2199 // the argument in the free register. This does not seem to happen currently,
2200 // but this code would be much safer if we could mark the argument with
2201 // 'onstack'. See PR12193.
2202 if (!isAggregateTypeForABI(T: Ty) && !IsIllegalVectorType(Ty) &&
2203 !Ty->isBitIntType()) {
2204 // Treat an enum type as its underlying type.
2205 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2206 Ty = EnumTy->getDecl()->getIntegerType();
2207
2208 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2209 : ABIArgInfo::getDirect());
2210 }
2211
2212 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(T: Ty, CXXABI&: getCXXABI()))
2213 return getNaturalAlignIndirect(Ty, ByVal: RAA == CGCXXABI::RAA_DirectInMemory);
2214
2215 // Compute the byval alignment. We specify the alignment of the byval in all
2216 // cases so that the mid-level optimizer knows the alignment of the byval.
2217 unsigned Align = std::max(a: getContext().getTypeAlign(T: Ty) / 8, b: 8U);
2218
2219 // Attempt to avoid passing indirect results using byval when possible. This
2220 // is important for good codegen.
2221 //
2222 // We do this by coercing the value into a scalar type which the backend can
2223 // handle naturally (i.e., without using byval).
2224 //
2225 // For simplicity, we currently only do this when we have exhausted all of the
2226 // free integer registers. Doing this when there are free integer registers
2227 // would require more care, as we would have to ensure that the coerced value
2228 // did not claim the unused register. That would require either reording the
2229 // arguments to the function (so that any subsequent inreg values came first),
2230 // or only doing this optimization when there were no following arguments that
2231 // might be inreg.
2232 //
2233 // We currently expect it to be rare (particularly in well written code) for
2234 // arguments to be passed on the stack when there are still free integer
2235 // registers available (this would typically imply large structs being passed
2236 // by value), so this seems like a fair tradeoff for now.
2237 //
2238 // We can revisit this if the backend grows support for 'onstack' parameter
2239 // attributes. See PR12193.
2240 if (freeIntRegs == 0) {
2241 uint64_t Size = getContext().getTypeSize(T: Ty);
2242
2243 // If this type fits in an eightbyte, coerce it into the matching integral
2244 // type, which will end up on the stack (with alignment 8).
2245 if (Align == 8 && Size <= 64)
2246 return ABIArgInfo::getDirect(T: llvm::IntegerType::get(C&: getVMContext(),
2247 NumBits: Size));
2248 }
2249
2250 return ABIArgInfo::getIndirect(Alignment: CharUnits::fromQuantity(Quantity: Align));
2251}
2252
2253/// The ABI specifies that a value should be passed in a full vector XMM/YMM
2254/// register. Pick an LLVM IR type that will be passed as a vector register.
2255llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2256 // Wrapper structs/arrays that only contain vectors are passed just like
2257 // vectors; strip them off if present.
2258 if (const Type *InnerTy = isSingleElementStruct(T: Ty, Context&: getContext()))
2259 Ty = QualType(InnerTy, 0);
2260
2261 llvm::Type *IRType = CGT.ConvertType(T: Ty);
2262 if (isa<llvm::VectorType>(Val: IRType)) {
2263 // Don't pass vXi128 vectors in their native type, the backend can't
2264 // legalize them.
2265 if (passInt128VectorsInMem() &&
2266 cast<llvm::VectorType>(Val: IRType)->getElementType()->isIntegerTy(Bitwidth: 128)) {
2267 // Use a vXi64 vector.
2268 uint64_t Size = getContext().getTypeSize(T: Ty);
2269 return llvm::FixedVectorType::get(ElementType: llvm::Type::getInt64Ty(C&: getVMContext()),
2270 NumElts: Size / 64);
2271 }
2272
2273 return IRType;
2274 }
2275
2276 if (IRType->getTypeID() == llvm::Type::FP128TyID)
2277 return IRType;
2278
2279 // We couldn't find the preferred IR vector type for 'Ty'.
2280 uint64_t Size = getContext().getTypeSize(T: Ty);
2281 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2282
2283
2284 // Return a LLVM IR vector type based on the size of 'Ty'.
2285 return llvm::FixedVectorType::get(ElementType: llvm::Type::getDoubleTy(C&: getVMContext()),
2286 NumElts: Size / 64);
2287}
2288
2289/// BitsContainNoUserData - Return true if the specified [start,end) bit range
2290/// is known to either be off the end of the specified type or being in
2291/// alignment padding. The user type specified is known to be at most 128 bits
2292/// in size, and have passed through X86_64ABIInfo::classify with a successful
2293/// classification that put one of the two halves in the INTEGER class.
2294///
2295/// It is conservatively correct to return false.
2296static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2297 unsigned EndBit, ASTContext &Context) {
2298 // If the bytes being queried are off the end of the type, there is no user
2299 // data hiding here. This handles analysis of builtins, vectors and other
2300 // types that don't contain interesting padding.
2301 unsigned TySize = (unsigned)Context.getTypeSize(T: Ty);
2302 if (TySize <= StartBit)
2303 return true;
2304
2305 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T: Ty)) {
2306 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2307 unsigned NumElts = (unsigned)AT->getZExtSize();
2308
2309 // Check each element to see if the element overlaps with the queried range.
2310 for (unsigned i = 0; i != NumElts; ++i) {
2311 // If the element is after the span we care about, then we're done..
2312 unsigned EltOffset = i*EltSize;
2313 if (EltOffset >= EndBit) break;
2314
2315 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2316 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2317 EndBit-EltOffset, Context))
2318 return false;
2319 }
2320 // If it overlaps no elements, then it is safe to process as padding.
2321 return true;
2322 }
2323
2324 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2325 const RecordDecl *RD = RT->getDecl();
2326 const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD);
2327
2328 // If this is a C++ record, check the bases first.
2329 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
2330 for (const auto &I : CXXRD->bases()) {
2331 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2332 "Unexpected base class!");
2333 const auto *Base =
2334 cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl());
2335
2336 // If the base is after the span we care about, ignore it.
2337 unsigned BaseOffset = Context.toBits(CharSize: Layout.getBaseClassOffset(Base));
2338 if (BaseOffset >= EndBit) continue;
2339
2340 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2341 if (!BitsContainNoUserData(Ty: I.getType(), StartBit: BaseStart,
2342 EndBit: EndBit-BaseOffset, Context))
2343 return false;
2344 }
2345 }
2346
2347 // Verify that no field has data that overlaps the region of interest. Yes
2348 // this could be sped up a lot by being smarter about queried fields,
2349 // however we're only looking at structs up to 16 bytes, so we don't care
2350 // much.
2351 unsigned idx = 0;
2352 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2353 i != e; ++i, ++idx) {
2354 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(FieldNo: idx);
2355
2356 // If we found a field after the region we care about, then we're done.
2357 if (FieldOffset >= EndBit) break;
2358
2359 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2360 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2361 Context))
2362 return false;
2363 }
2364
2365 // If nothing in this record overlapped the area of interest, then we're
2366 // clean.
2367 return true;
2368 }
2369
2370 return false;
2371}
2372
2373/// getFPTypeAtOffset - Return a floating point type at the specified offset.
2374static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2375 const llvm::DataLayout &TD) {
2376 if (IROffset == 0 && IRType->isFloatingPointTy())
2377 return IRType;
2378
2379 // If this is a struct, recurse into the field at the specified offset.
2380 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val: IRType)) {
2381 if (!STy->getNumContainedTypes())
2382 return nullptr;
2383
2384 const llvm::StructLayout *SL = TD.getStructLayout(Ty: STy);
2385 unsigned Elt = SL->getElementContainingOffset(FixedOffset: IROffset);
2386 IROffset -= SL->getElementOffset(Idx: Elt);
2387 return getFPTypeAtOffset(IRType: STy->getElementType(N: Elt), IROffset, TD);
2388 }
2389
2390 // If this is an array, recurse into the field at the specified offset.
2391 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(Val: IRType)) {
2392 llvm::Type *EltTy = ATy->getElementType();
2393 unsigned EltSize = TD.getTypeAllocSize(Ty: EltTy);
2394 IROffset -= IROffset / EltSize * EltSize;
2395 return getFPTypeAtOffset(IRType: EltTy, IROffset, TD);
2396 }
2397
2398 return nullptr;
2399}
2400
2401/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2402/// low 8 bytes of an XMM register, corresponding to the SSE class.
2403llvm::Type *X86_64ABIInfo::
2404GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2405 QualType SourceTy, unsigned SourceOffset) const {
2406 const llvm::DataLayout &TD = getDataLayout();
2407 unsigned SourceSize =
2408 (unsigned)getContext().getTypeSize(T: SourceTy) / 8 - SourceOffset;
2409 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
2410 if (!T0 || T0->isDoubleTy())
2411 return llvm::Type::getDoubleTy(C&: getVMContext());
2412
2413 // Get the adjacent FP type.
2414 llvm::Type *T1 = nullptr;
2415 unsigned T0Size = TD.getTypeAllocSize(Ty: T0);
2416 if (SourceSize > T0Size)
2417 T1 = getFPTypeAtOffset(IRType, IROffset: IROffset + T0Size, TD);
2418 if (T1 == nullptr) {
2419 // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
2420 // to its alignment.
2421 if (T0->is16bitFPTy() && SourceSize > 4)
2422 T1 = getFPTypeAtOffset(IRType, IROffset: IROffset + 4, TD);
2423 // If we can't get a second FP type, return a simple half or float.
2424 // avx512fp16-abi.c:pr51813_2 shows it works to return float for
2425 // {float, i8} too.
2426 if (T1 == nullptr)
2427 return T0;
2428 }
2429
2430 if (T0->isFloatTy() && T1->isFloatTy())
2431 return llvm::FixedVectorType::get(ElementType: T0, NumElts: 2);
2432
2433 if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
2434 llvm::Type *T2 = nullptr;
2435 if (SourceSize > 4)
2436 T2 = getFPTypeAtOffset(IRType, IROffset: IROffset + 4, TD);
2437 if (T2 == nullptr)
2438 return llvm::FixedVectorType::get(ElementType: T0, NumElts: 2);
2439 return llvm::FixedVectorType::get(ElementType: T0, NumElts: 4);
2440 }
2441
2442 if (T0->is16bitFPTy() || T1->is16bitFPTy())
2443 return llvm::FixedVectorType::get(ElementType: llvm::Type::getHalfTy(C&: getVMContext()), NumElts: 4);
2444
2445 return llvm::Type::getDoubleTy(C&: getVMContext());
2446}
2447
2448
2449/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2450/// an 8-byte GPR. This means that we either have a scalar or we are talking
2451/// about the high or low part of an up-to-16-byte struct. This routine picks
2452/// the best LLVM IR type to represent this, which may be i64 or may be anything
2453/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2454/// etc).
2455///
2456/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2457/// the source type. IROffset is an offset in bytes into the LLVM IR type that
2458/// the 8-byte value references. PrefType may be null.
2459///
2460/// SourceTy is the source-level type for the entire argument. SourceOffset is
2461/// an offset into this that we're processing (which is always either 0 or 8).
2462///
2463llvm::Type *X86_64ABIInfo::
2464GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2465 QualType SourceTy, unsigned SourceOffset) const {
2466 // If we're dealing with an un-offset LLVM IR type, then it means that we're
2467 // returning an 8-byte unit starting with it. See if we can safely use it.
2468 if (IROffset == 0) {
2469 // Pointers and int64's always fill the 8-byte unit.
2470 if ((isa<llvm::PointerType>(Val: IRType) && Has64BitPointers) ||
2471 IRType->isIntegerTy(Bitwidth: 64))
2472 return IRType;
2473
2474 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2475 // goodness in the source type is just tail padding. This is allowed to
2476 // kick in for struct {double,int} on the int, but not on
2477 // struct{double,int,int} because we wouldn't return the second int. We
2478 // have to do this analysis on the source type because we can't depend on
2479 // unions being lowered a specific way etc.
2480 if (IRType->isIntegerTy(Bitwidth: 8) || IRType->isIntegerTy(Bitwidth: 16) ||
2481 IRType->isIntegerTy(Bitwidth: 32) ||
2482 (isa<llvm::PointerType>(Val: IRType) && !Has64BitPointers)) {
2483 unsigned BitWidth = isa<llvm::PointerType>(Val: IRType) ? 32 :
2484 cast<llvm::IntegerType>(Val: IRType)->getBitWidth();
2485
2486 if (BitsContainNoUserData(Ty: SourceTy, StartBit: SourceOffset*8+BitWidth,
2487 EndBit: SourceOffset*8+64, Context&: getContext()))
2488 return IRType;
2489 }
2490 }
2491
2492 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val: IRType)) {
2493 // If this is a struct, recurse into the field at the specified offset.
2494 const llvm::StructLayout *SL = getDataLayout().getStructLayout(Ty: STy);
2495 if (IROffset < SL->getSizeInBytes()) {
2496 unsigned FieldIdx = SL->getElementContainingOffset(FixedOffset: IROffset);
2497 IROffset -= SL->getElementOffset(Idx: FieldIdx);
2498
2499 return GetINTEGERTypeAtOffset(IRType: STy->getElementType(N: FieldIdx), IROffset,
2500 SourceTy, SourceOffset);
2501 }
2502 }
2503
2504 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(Val: IRType)) {
2505 llvm::Type *EltTy = ATy->getElementType();
2506 unsigned EltSize = getDataLayout().getTypeAllocSize(Ty: EltTy);
2507 unsigned EltOffset = IROffset/EltSize*EltSize;
2508 return GetINTEGERTypeAtOffset(IRType: EltTy, IROffset: IROffset-EltOffset, SourceTy,
2509 SourceOffset);
2510 }
2511
2512 // Okay, we don't have any better idea of what to pass, so we pass this in an
2513 // integer register that isn't too big to fit the rest of the struct.
2514 unsigned TySizeInBytes =
2515 (unsigned)getContext().getTypeSizeInChars(T: SourceTy).getQuantity();
2516
2517 assert(TySizeInBytes != SourceOffset && "Empty field?");
2518
2519 // It is always safe to classify this as an integer type up to i64 that
2520 // isn't larger than the structure.
2521 return llvm::IntegerType::get(C&: getVMContext(),
2522 NumBits: std::min(a: TySizeInBytes-SourceOffset, b: 8U)*8);
2523}
2524
2525
2526/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2527/// be used as elements of a two register pair to pass or return, return a
2528/// first class aggregate to represent them. For example, if the low part of
2529/// a by-value argument should be passed as i32* and the high part as float,
2530/// return {i32*, float}.
2531static llvm::Type *
2532GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2533 const llvm::DataLayout &TD) {
2534 // In order to correctly satisfy the ABI, we need to the high part to start
2535 // at offset 8. If the high and low parts we inferred are both 4-byte types
2536 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2537 // the second element at offset 8. Check for this:
2538 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Ty: Lo);
2539 llvm::Align HiAlign = TD.getABITypeAlign(Ty: Hi);
2540 unsigned HiStart = llvm::alignTo(Size: LoSize, A: HiAlign);
2541 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2542
2543 // To handle this, we have to increase the size of the low part so that the
2544 // second element will start at an 8 byte offset. We can't increase the size
2545 // of the second element because it might make us access off the end of the
2546 // struct.
2547 if (HiStart != 8) {
2548 // There are usually two sorts of types the ABI generation code can produce
2549 // for the low part of a pair that aren't 8 bytes in size: half, float or
2550 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and
2551 // NaCl).
2552 // Promote these to a larger type.
2553 if (Lo->isHalfTy() || Lo->isFloatTy())
2554 Lo = llvm::Type::getDoubleTy(C&: Lo->getContext());
2555 else {
2556 assert((Lo->isIntegerTy() || Lo->isPointerTy())
2557 && "Invalid/unknown lo type");
2558 Lo = llvm::Type::getInt64Ty(C&: Lo->getContext());
2559 }
2560 }
2561
2562 llvm::StructType *Result = llvm::StructType::get(elt1: Lo, elts: Hi);
2563
2564 // Verify that the second element is at an 8-byte offset.
2565 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2566 "Invalid x86-64 argument pair!");
2567 return Result;
2568}
2569
2570ABIArgInfo X86_64ABIInfo::
2571classifyReturnType(QualType RetTy) const {
2572 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2573 // classification algorithm.
2574 X86_64ABIInfo::Class Lo, Hi;
2575 classify(Ty: RetTy, OffsetBase: 0, Lo, Hi, /*isNamedArg*/ true);
2576
2577 // Check some invariants.
2578 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2579 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2580
2581 llvm::Type *ResType = nullptr;
2582 switch (Lo) {
2583 case NoClass:
2584 if (Hi == NoClass)
2585 return ABIArgInfo::getIgnore();
2586 // If the low part is just padding, it takes no register, leave ResType
2587 // null.
2588 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2589 "Unknown missing lo part");
2590 break;
2591
2592 case SSEUp:
2593 case X87Up:
2594 llvm_unreachable("Invalid classification for lo word.");
2595
2596 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2597 // hidden argument.
2598 case Memory:
2599 return getIndirectReturnResult(Ty: RetTy);
2600
2601 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2602 // available register of the sequence %rax, %rdx is used.
2603 case Integer:
2604 ResType = GetINTEGERTypeAtOffset(IRType: CGT.ConvertType(T: RetTy), IROffset: 0, SourceTy: RetTy, SourceOffset: 0);
2605
2606 // If we have a sign or zero extended integer, make sure to return Extend
2607 // so that the parameter gets the right LLVM IR attributes.
2608 if (Hi == NoClass && isa<llvm::IntegerType>(Val: ResType)) {
2609 // Treat an enum type as its underlying type.
2610 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2611 RetTy = EnumTy->getDecl()->getIntegerType();
2612
2613 if (RetTy->isIntegralOrEnumerationType() &&
2614 isPromotableIntegerTypeForABI(Ty: RetTy))
2615 return ABIArgInfo::getExtend(Ty: RetTy);
2616 }
2617 break;
2618
2619 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2620 // available SSE register of the sequence %xmm0, %xmm1 is used.
2621 case SSE:
2622 ResType = GetSSETypeAtOffset(IRType: CGT.ConvertType(T: RetTy), IROffset: 0, SourceTy: RetTy, SourceOffset: 0);
2623 break;
2624
2625 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2626 // returned on the X87 stack in %st0 as 80-bit x87 number.
2627 case X87:
2628 ResType = llvm::Type::getX86_FP80Ty(C&: getVMContext());
2629 break;
2630
2631 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2632 // part of the value is returned in %st0 and the imaginary part in
2633 // %st1.
2634 case ComplexX87:
2635 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2636 ResType = llvm::StructType::get(elt1: llvm::Type::getX86_FP80Ty(C&: getVMContext()),
2637 elts: llvm::Type::getX86_FP80Ty(C&: getVMContext()));
2638 break;
2639 }
2640
2641 llvm::Type *HighPart = nullptr;
2642 switch (Hi) {
2643 // Memory was handled previously and X87 should
2644 // never occur as a hi class.
2645 case Memory:
2646 case X87:
2647 llvm_unreachable("Invalid classification for hi word.");
2648
2649 case ComplexX87: // Previously handled.
2650 case NoClass:
2651 break;
2652
2653 case Integer:
2654 HighPart = GetINTEGERTypeAtOffset(IRType: CGT.ConvertType(T: RetTy), IROffset: 8, SourceTy: RetTy, SourceOffset: 8);
2655 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2656 return ABIArgInfo::getDirect(T: HighPart, Offset: 8);
2657 break;
2658 case SSE:
2659 HighPart = GetSSETypeAtOffset(IRType: CGT.ConvertType(T: RetTy), IROffset: 8, SourceTy: RetTy, SourceOffset: 8);
2660 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2661 return ABIArgInfo::getDirect(T: HighPart, Offset: 8);
2662 break;
2663
2664 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2665 // is passed in the next available eightbyte chunk if the last used
2666 // vector register.
2667 //
2668 // SSEUP should always be preceded by SSE, just widen.
2669 case SSEUp:
2670 assert(Lo == SSE && "Unexpected SSEUp classification.");
2671 ResType = GetByteVectorType(Ty: RetTy);
2672 break;
2673
2674 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2675 // returned together with the previous X87 value in %st0.
2676 case X87Up:
2677 // If X87Up is preceded by X87, we don't need to do
2678 // anything. However, in some cases with unions it may not be
2679 // preceded by X87. In such situations we follow gcc and pass the
2680 // extra bits in an SSE reg.
2681 if (Lo != X87) {
2682 HighPart = GetSSETypeAtOffset(IRType: CGT.ConvertType(T: RetTy), IROffset: 8, SourceTy: RetTy, SourceOffset: 8);
2683 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2684 return ABIArgInfo::getDirect(T: HighPart, Offset: 8);
2685 }
2686 break;
2687 }
2688
2689 // If a high part was specified, merge it together with the low part. It is
2690 // known to pass in the high eightbyte of the result. We do this by forming a
2691 // first class struct aggregate with the high and low part: {low, high}
2692 if (HighPart)
2693 ResType = GetX86_64ByValArgumentPair(Lo: ResType, Hi: HighPart, TD: getDataLayout());
2694
2695 return ABIArgInfo::getDirect(T: ResType);
2696}
2697
2698ABIArgInfo
2699X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2700 unsigned &neededInt, unsigned &neededSSE,
2701 bool isNamedArg, bool IsRegCall) const {
2702 Ty = useFirstFieldIfTransparentUnion(Ty);
2703
2704 X86_64ABIInfo::Class Lo, Hi;
2705 classify(Ty, OffsetBase: 0, Lo, Hi, isNamedArg, IsRegCall);
2706
2707 // Check some invariants.
2708 // FIXME: Enforce these by construction.
2709 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2710 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2711
2712 neededInt = 0;
2713 neededSSE = 0;
2714 llvm::Type *ResType = nullptr;
2715 switch (Lo) {
2716 case NoClass:
2717 if (Hi == NoClass)
2718 return ABIArgInfo::getIgnore();
2719 // If the low part is just padding, it takes no register, leave ResType
2720 // null.
2721 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2722 "Unknown missing lo part");
2723 break;
2724
2725 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2726 // on the stack.
2727 case Memory:
2728
2729 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2730 // COMPLEX_X87, it is passed in memory.
2731 case X87:
2732 case ComplexX87:
2733 if (getRecordArgABI(T: Ty, CXXABI&: getCXXABI()) == CGCXXABI::RAA_Indirect)
2734 ++neededInt;
2735 return getIndirectResult(Ty, freeIntRegs);
2736
2737 case SSEUp:
2738 case X87Up:
2739 llvm_unreachable("Invalid classification for lo word.");
2740
2741 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2742 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2743 // and %r9 is used.
2744 case Integer:
2745 ++neededInt;
2746
2747 // Pick an 8-byte type based on the preferred type.
2748 ResType = GetINTEGERTypeAtOffset(IRType: CGT.ConvertType(T: Ty), IROffset: 0, SourceTy: Ty, SourceOffset: 0);
2749
2750 // If we have a sign or zero extended integer, make sure to return Extend
2751 // so that the parameter gets the right LLVM IR attributes.
2752 if (Hi == NoClass && isa<llvm::IntegerType>(Val: ResType)) {
2753 // Treat an enum type as its underlying type.
2754 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2755 Ty = EnumTy->getDecl()->getIntegerType();
2756
2757 if (Ty->isIntegralOrEnumerationType() &&
2758 isPromotableIntegerTypeForABI(Ty))
2759 return ABIArgInfo::getExtend(Ty);
2760 }
2761
2762 break;
2763
2764 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2765 // available SSE register is used, the registers are taken in the
2766 // order from %xmm0 to %xmm7.
2767 case SSE: {
2768 llvm::Type *IRType = CGT.ConvertType(T: Ty);
2769 ResType = GetSSETypeAtOffset(IRType, IROffset: 0, SourceTy: Ty, SourceOffset: 0);
2770 ++neededSSE;
2771 break;
2772 }
2773 }
2774
2775 llvm::Type *HighPart = nullptr;
2776 switch (Hi) {
2777 // Memory was handled previously, ComplexX87 and X87 should
2778 // never occur as hi classes, and X87Up must be preceded by X87,
2779 // which is passed in memory.
2780 case Memory:
2781 case X87:
2782 case ComplexX87:
2783 llvm_unreachable("Invalid classification for hi word.");
2784
2785 case NoClass: break;
2786
2787 case Integer:
2788 ++neededInt;
2789 // Pick an 8-byte type based on the preferred type.
2790 HighPart = GetINTEGERTypeAtOffset(IRType: CGT.ConvertType(T: Ty), IROffset: 8, SourceTy: Ty, SourceOffset: 8);
2791
2792 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2793 return ABIArgInfo::getDirect(T: HighPart, Offset: 8);
2794 break;
2795
2796 // X87Up generally doesn't occur here (long double is passed in
2797 // memory), except in situations involving unions.
2798 case X87Up:
2799 case SSE:
2800 ++neededSSE;
2801 HighPart = GetSSETypeAtOffset(IRType: CGT.ConvertType(T: Ty), IROffset: 8, SourceTy: Ty, SourceOffset: 8);
2802
2803 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2804 return ABIArgInfo::getDirect(T: HighPart, Offset: 8);
2805 break;
2806
2807 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2808 // eightbyte is passed in the upper half of the last used SSE
2809 // register. This only happens when 128-bit vectors are passed.
2810 case SSEUp:
2811 assert(Lo == SSE && "Unexpected SSEUp classification");
2812 ResType = GetByteVectorType(Ty);
2813 break;
2814 }
2815
2816 // If a high part was specified, merge it together with the low part. It is
2817 // known to pass in the high eightbyte of the result. We do this by forming a
2818 // first class struct aggregate with the high and low part: {low, high}
2819 if (HighPart)
2820 ResType = GetX86_64ByValArgumentPair(Lo: ResType, Hi: HighPart, TD: getDataLayout());
2821
2822 return ABIArgInfo::getDirect(T: ResType);
2823}
2824
2825ABIArgInfo
2826X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2827 unsigned &NeededSSE,
2828 unsigned &MaxVectorWidth) const {
2829 auto RT = Ty->getAs<RecordType>();
2830 assert(RT && "classifyRegCallStructType only valid with struct types");
2831
2832 if (RT->getDecl()->hasFlexibleArrayMember())
2833 return getIndirectReturnResult(Ty);
2834
2835 // Sum up bases
2836 if (auto CXXRD = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) {
2837 if (CXXRD->isDynamicClass()) {
2838 NeededInt = NeededSSE = 0;
2839 return getIndirectReturnResult(Ty);
2840 }
2841
2842 for (const auto &I : CXXRD->bases())
2843 if (classifyRegCallStructTypeImpl(Ty: I.getType(), NeededInt, NeededSSE,
2844 MaxVectorWidth)
2845 .isIndirect()) {
2846 NeededInt = NeededSSE = 0;
2847 return getIndirectReturnResult(Ty);
2848 }
2849 }
2850
2851 // Sum up members
2852 for (const auto *FD : RT->getDecl()->fields()) {
2853 QualType MTy = FD->getType();
2854 if (MTy->isRecordType() && !MTy->isUnionType()) {
2855 if (classifyRegCallStructTypeImpl(Ty: MTy, NeededInt, NeededSSE,
2856 MaxVectorWidth)
2857 .isIndirect()) {
2858 NeededInt = NeededSSE = 0;
2859 return getIndirectReturnResult(Ty);
2860 }
2861 } else {
2862 unsigned LocalNeededInt, LocalNeededSSE;
2863 if (classifyArgumentType(Ty: MTy, UINT_MAX, neededInt&: LocalNeededInt, neededSSE&: LocalNeededSSE,
2864 isNamedArg: true, IsRegCall: true)
2865 .isIndirect()) {
2866 NeededInt = NeededSSE = 0;
2867 return getIndirectReturnResult(Ty);
2868 }
2869 if (const auto *AT = getContext().getAsConstantArrayType(MTy))
2870 MTy = AT->getElementType();
2871 if (const auto *VT = MTy->getAs<VectorType>())
2872 if (getContext().getTypeSize(VT) > MaxVectorWidth)
2873 MaxVectorWidth = getContext().getTypeSize(VT);
2874 NeededInt += LocalNeededInt;
2875 NeededSSE += LocalNeededSSE;
2876 }
2877 }
2878
2879 return ABIArgInfo::getDirect();
2880}
2881
2882ABIArgInfo
2883X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2884 unsigned &NeededSSE,
2885 unsigned &MaxVectorWidth) const {
2886
2887 NeededInt = 0;
2888 NeededSSE = 0;
2889 MaxVectorWidth = 0;
2890
2891 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
2892 MaxVectorWidth);
2893}
2894
2895void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2896
2897 const unsigned CallingConv = FI.getCallingConvention();
2898 // It is possible to force Win64 calling convention on any x86_64 target by
2899 // using __attribute__((ms_abi)). In such case to correctly emit Win64
2900 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
2901 if (CallingConv == llvm::CallingConv::Win64) {
2902 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
2903 Win64ABIInfo.computeInfo(FI);
2904 return;
2905 }
2906
2907 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
2908
2909 // Keep track of the number of assigned registers.
2910 unsigned FreeIntRegs = IsRegCall ? 11 : 6;
2911 unsigned FreeSSERegs = IsRegCall ? 16 : 8;
2912 unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
2913
2914 if (!::classifyReturnType(CXXABI: getCXXABI(), FI, Info: *this)) {
2915 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
2916 !FI.getReturnType()->getTypePtr()->isUnionType()) {
2917 FI.getReturnInfo() = classifyRegCallStructType(
2918 Ty: FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
2919 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2920 FreeIntRegs -= NeededInt;
2921 FreeSSERegs -= NeededSSE;
2922 } else {
2923 FI.getReturnInfo() = getIndirectReturnResult(Ty: FI.getReturnType());
2924 }
2925 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
2926 getContext().getCanonicalType(FI.getReturnType()
2927 ->getAs<ComplexType>()
2928 ->getElementType()) ==
2929 getContext().LongDoubleTy)
2930 // Complex Long Double Type is passed in Memory when Regcall
2931 // calling convention is used.
2932 FI.getReturnInfo() = getIndirectReturnResult(Ty: FI.getReturnType());
2933 else
2934 FI.getReturnInfo() = classifyReturnType(RetTy: FI.getReturnType());
2935 }
2936
2937 // If the return value is indirect, then the hidden argument is consuming one
2938 // integer register.
2939 if (FI.getReturnInfo().isIndirect())
2940 --FreeIntRegs;
2941 else if (NeededSSE && MaxVectorWidth > 0)
2942 FI.setMaxVectorWidth(MaxVectorWidth);
2943
2944 // The chain argument effectively gives us another free register.
2945 if (FI.isChainCall())
2946 ++FreeIntRegs;
2947
2948 unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2949 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2950 // get assigned (in left-to-right order) for passing as follows...
2951 unsigned ArgNo = 0;
2952 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2953 it != ie; ++it, ++ArgNo) {
2954 bool IsNamedArg = ArgNo < NumRequiredArgs;
2955
2956 if (IsRegCall && it->type->isStructureOrClassType())
2957 it->info = classifyRegCallStructType(Ty: it->type, NeededInt, NeededSSE,
2958 MaxVectorWidth);
2959 else
2960 it->info = classifyArgumentType(Ty: it->type, freeIntRegs: FreeIntRegs, neededInt&: NeededInt,
2961 neededSSE&: NeededSSE, isNamedArg: IsNamedArg);
2962
2963 // AMD64-ABI 3.2.3p3: If there are no registers available for any
2964 // eightbyte of an argument, the whole argument is passed on the
2965 // stack. If registers have already been assigned for some
2966 // eightbytes of such an argument, the assignments get reverted.
2967 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2968 FreeIntRegs -= NeededInt;
2969 FreeSSERegs -= NeededSSE;
2970 if (MaxVectorWidth > FI.getMaxVectorWidth())
2971 FI.setMaxVectorWidth(MaxVectorWidth);
2972 } else {
2973 it->info = getIndirectResult(Ty: it->type, freeIntRegs: FreeIntRegs);
2974 }
2975 }
2976}
2977
2978static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
2979 Address VAListAddr, QualType Ty) {
2980 Address overflow_arg_area_p =
2981 CGF.Builder.CreateStructGEP(Addr: VAListAddr, Index: 2, Name: "overflow_arg_area_p");
2982 llvm::Value *overflow_arg_area =
2983 CGF.Builder.CreateLoad(Addr: overflow_arg_area_p, Name: "overflow_arg_area");
2984
2985 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2986 // byte boundary if alignment needed by type exceeds 8 byte boundary.
2987 // It isn't stated explicitly in the standard, but in practice we use
2988 // alignment greater than 16 where necessary.
2989 CharUnits Align = CGF.getContext().getTypeAlignInChars(T: Ty);
2990 if (Align > CharUnits::fromQuantity(Quantity: 8)) {
2991 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, Ptr: overflow_arg_area,
2992 Align);
2993 }
2994
2995 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2996 llvm::Type *LTy = CGF.ConvertTypeForMem(T: Ty);
2997 llvm::Value *Res = overflow_arg_area;
2998
2999 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3000 // l->overflow_arg_area + sizeof(type).
3001 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3002 // an 8 byte boundary.
3003
3004 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(T: Ty) + 7) / 8;
3005 llvm::Value *Offset =
3006 llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: (SizeInBytes + 7) & ~7);
3007 overflow_arg_area = CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: overflow_arg_area,
3008 IdxList: Offset, Name: "overflow_arg_area.next");
3009 CGF.Builder.CreateStore(Val: overflow_arg_area, Addr: overflow_arg_area_p);
3010
3011 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3012 return Address(Res, LTy, Align);
3013}
3014
3015Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3016 QualType Ty) const {
3017 // Assume that va_list type is correct; should be pointer to LLVM type:
3018 // struct {
3019 // i32 gp_offset;
3020 // i32 fp_offset;
3021 // i8* overflow_arg_area;
3022 // i8* reg_save_area;
3023 // };
3024 unsigned neededInt, neededSSE;
3025
3026 Ty = getContext().getCanonicalType(T: Ty);
3027 ABIArgInfo AI = classifyArgumentType(Ty, freeIntRegs: 0, neededInt, neededSSE,
3028 /*isNamedArg*/false);
3029
3030 // Empty records are ignored for parameter passing purposes.
3031 if (AI.isIgnore())
3032 return CGF.CreateMemTemp(T: Ty);
3033
3034 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3035 // in the registers. If not go to step 7.
3036 if (!neededInt && !neededSSE)
3037 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3038
3039 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3040 // general purpose registers needed to pass type and num_fp to hold
3041 // the number of floating point registers needed.
3042
3043 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3044 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3045 // l->fp_offset > 304 - num_fp * 16 go to step 7.
3046 //
3047 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3048 // register save space).
3049
3050 llvm::Value *InRegs = nullptr;
3051 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3052 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3053 if (neededInt) {
3054 gp_offset_p = CGF.Builder.CreateStructGEP(Addr: VAListAddr, Index: 0, Name: "gp_offset_p");
3055 gp_offset = CGF.Builder.CreateLoad(Addr: gp_offset_p, Name: "gp_offset");
3056 InRegs = llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 48 - neededInt * 8);
3057 InRegs = CGF.Builder.CreateICmpULE(LHS: gp_offset, RHS: InRegs, Name: "fits_in_gp");
3058 }
3059
3060 if (neededSSE) {
3061 fp_offset_p = CGF.Builder.CreateStructGEP(Addr: VAListAddr, Index: 1, Name: "fp_offset_p");
3062 fp_offset = CGF.Builder.CreateLoad(Addr: fp_offset_p, Name: "fp_offset");
3063 llvm::Value *FitsInFP =
3064 llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 176 - neededSSE * 16);
3065 FitsInFP = CGF.Builder.CreateICmpULE(LHS: fp_offset, RHS: FitsInFP, Name: "fits_in_fp");
3066 InRegs = InRegs ? CGF.Builder.CreateAnd(LHS: InRegs, RHS: FitsInFP) : FitsInFP;
3067 }
3068
3069 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock(name: "vaarg.in_reg");
3070 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock(name: "vaarg.in_mem");
3071 llvm::BasicBlock *ContBlock = CGF.createBasicBlock(name: "vaarg.end");
3072 CGF.Builder.CreateCondBr(Cond: InRegs, True: InRegBlock, False: InMemBlock);
3073
3074 // Emit code to load the value if it was passed in registers.
3075
3076 CGF.EmitBlock(BB: InRegBlock);
3077
3078 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3079 // an offset of l->gp_offset and/or l->fp_offset. This may require
3080 // copying to a temporary location in case the parameter is passed
3081 // in different register classes or requires an alignment greater
3082 // than 8 for general purpose registers and 16 for XMM registers.
3083 //
3084 // FIXME: This really results in shameful code when we end up needing to
3085 // collect arguments from different places; often what should result in a
3086 // simple assembling of a structure from scattered addresses has many more
3087 // loads than necessary. Can we clean this up?
3088 llvm::Type *LTy = CGF.ConvertTypeForMem(T: Ty);
3089 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3090 Addr: CGF.Builder.CreateStructGEP(Addr: VAListAddr, Index: 3), Name: "reg_save_area");
3091
3092 Address RegAddr = Address::invalid();
3093 if (neededInt && neededSSE) {
3094 // FIXME: Cleanup.
3095 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3096 llvm::StructType *ST = cast<llvm::StructType>(Val: AI.getCoerceToType());
3097 Address Tmp = CGF.CreateMemTemp(T: Ty);
3098 Tmp = Tmp.withElementType(ElemTy: ST);
3099 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3100 llvm::Type *TyLo = ST->getElementType(N: 0);
3101 llvm::Type *TyHi = ST->getElementType(N: 1);
3102 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3103 "Unexpected ABI info for mixed regs");
3104 llvm::Value *GPAddr =
3105 CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: RegSaveArea, IdxList: gp_offset);
3106 llvm::Value *FPAddr =
3107 CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: RegSaveArea, IdxList: fp_offset);
3108 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3109 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3110
3111 // Copy the first element.
3112 // FIXME: Our choice of alignment here and below is probably pessimistic.
3113 llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3114 Ty: TyLo, Addr: RegLoAddr,
3115 Align: CharUnits::fromQuantity(Quantity: getDataLayout().getABITypeAlign(Ty: TyLo)));
3116 CGF.Builder.CreateStore(Val: V, Addr: CGF.Builder.CreateStructGEP(Addr: Tmp, Index: 0));
3117
3118 // Copy the second element.
3119 V = CGF.Builder.CreateAlignedLoad(
3120 Ty: TyHi, Addr: RegHiAddr,
3121 Align: CharUnits::fromQuantity(Quantity: getDataLayout().getABITypeAlign(Ty: TyHi)));
3122 CGF.Builder.CreateStore(Val: V, Addr: CGF.Builder.CreateStructGEP(Addr: Tmp, Index: 1));
3123
3124 RegAddr = Tmp.withElementType(ElemTy: LTy);
3125 } else if (neededInt) {
3126 RegAddr = Address(CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: RegSaveArea, IdxList: gp_offset),
3127 LTy, CharUnits::fromQuantity(Quantity: 8));
3128
3129 // Copy to a temporary if necessary to ensure the appropriate alignment.
3130 auto TInfo = getContext().getTypeInfoInChars(T: Ty);
3131 uint64_t TySize = TInfo.Width.getQuantity();
3132 CharUnits TyAlign = TInfo.Align;
3133
3134 // Copy into a temporary if the type is more aligned than the
3135 // register save area.
3136 if (TyAlign.getQuantity() > 8) {
3137 Address Tmp = CGF.CreateMemTemp(T: Ty);
3138 CGF.Builder.CreateMemCpy(Dest: Tmp, Src: RegAddr, Size: TySize, IsVolatile: false);
3139 RegAddr = Tmp;
3140 }
3141
3142 } else if (neededSSE == 1) {
3143 RegAddr = Address(CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: RegSaveArea, IdxList: fp_offset),
3144 LTy, CharUnits::fromQuantity(Quantity: 16));
3145 } else {
3146 assert(neededSSE == 2 && "Invalid number of needed registers!");
3147 // SSE registers are spaced 16 bytes apart in the register save
3148 // area, we need to collect the two eightbytes together.
3149 // The ABI isn't explicit about this, but it seems reasonable
3150 // to assume that the slots are 16-byte aligned, since the stack is
3151 // naturally 16-byte aligned and the prologue is expected to store
3152 // all the SSE registers to the RSA.
3153 Address RegAddrLo = Address(CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: RegSaveArea,
3154 IdxList: fp_offset),
3155 CGF.Int8Ty, CharUnits::fromQuantity(Quantity: 16));
3156 Address RegAddrHi =
3157 CGF.Builder.CreateConstInBoundsByteGEP(Addr: RegAddrLo,
3158 Offset: CharUnits::fromQuantity(Quantity: 16));
3159 llvm::Type *ST = AI.canHaveCoerceToType()
3160 ? AI.getCoerceToType()
3161 : llvm::StructType::get(elt1: CGF.DoubleTy, elts: CGF.DoubleTy);
3162 llvm::Value *V;
3163 Address Tmp = CGF.CreateMemTemp(T: Ty);
3164 Tmp = Tmp.withElementType(ElemTy: ST);
3165 V = CGF.Builder.CreateLoad(
3166 Addr: RegAddrLo.withElementType(ElemTy: ST->getStructElementType(N: 0)));
3167 CGF.Builder.CreateStore(Val: V, Addr: CGF.Builder.CreateStructGEP(Addr: Tmp, Index: 0));
3168 V = CGF.Builder.CreateLoad(
3169 Addr: RegAddrHi.withElementType(ElemTy: ST->getStructElementType(N: 1)));
3170 CGF.Builder.CreateStore(Val: V, Addr: CGF.Builder.CreateStructGEP(Addr: Tmp, Index: 1));
3171
3172 RegAddr = Tmp.withElementType(ElemTy: LTy);
3173 }
3174
3175 // AMD64-ABI 3.5.7p5: Step 5. Set:
3176 // l->gp_offset = l->gp_offset + num_gp * 8
3177 // l->fp_offset = l->fp_offset + num_fp * 16.
3178 if (neededInt) {
3179 llvm::Value *Offset = llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: neededInt * 8);
3180 CGF.Builder.CreateStore(Val: CGF.Builder.CreateAdd(LHS: gp_offset, RHS: Offset),
3181 Addr: gp_offset_p);
3182 }
3183 if (neededSSE) {
3184 llvm::Value *Offset = llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: neededSSE * 16);
3185 CGF.Builder.CreateStore(Val: CGF.Builder.CreateAdd(LHS: fp_offset, RHS: Offset),
3186 Addr: fp_offset_p);
3187 }
3188 CGF.EmitBranch(Block: ContBlock);
3189
3190 // Emit code to load the value if it was passed in memory.
3191
3192 CGF.EmitBlock(BB: InMemBlock);
3193 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3194
3195 // Return the appropriate result.
3196
3197 CGF.EmitBlock(BB: ContBlock);
3198 Address ResAddr = emitMergePHI(CGF, Addr1: RegAddr, Block1: InRegBlock, Addr2: MemAddr, Block2: InMemBlock,
3199 Name: "vaarg.addr");
3200 return ResAddr;
3201}
3202
3203Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3204 QualType Ty) const {
3205 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3206 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3207 uint64_t Width = getContext().getTypeSize(T: Ty);
3208 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Value: Width);
3209
3210 return emitVoidPtrVAArg(CGF, VAListAddr, ValueTy: Ty, IsIndirect,
3211 ValueInfo: CGF.getContext().getTypeInfoInChars(T: Ty),
3212 SlotSizeAndAlign: CharUnits::fromQuantity(Quantity: 8),
3213 /*allowHigherAlign*/ AllowHigherAlign: false);
3214}
3215
3216ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
3217 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
3218 const Type *Base = nullptr;
3219 uint64_t NumElts = 0;
3220
3221 if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3222 isHomogeneousAggregate(Ty, Base, Members&: NumElts) && FreeSSERegs >= NumElts) {
3223 FreeSSERegs -= NumElts;
3224 return getDirectX86Hva();
3225 }
3226 return current;
3227}
3228
3229ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3230 bool IsReturnType, bool IsVectorCall,
3231 bool IsRegCall) const {
3232
3233 if (Ty->isVoidType())
3234 return ABIArgInfo::getIgnore();
3235
3236 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3237 Ty = EnumTy->getDecl()->getIntegerType();
3238
3239 TypeInfo Info = getContext().getTypeInfo(T: Ty);
3240 uint64_t Width = Info.Width;
3241 CharUnits Align = getContext().toCharUnitsFromBits(BitSize: Info.Align);
3242
3243 const RecordType *RT = Ty->getAs<RecordType>();
3244 if (RT) {
3245 if (!IsReturnType) {
3246 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, CXXABI&: getCXXABI()))
3247 return getNaturalAlignIndirect(Ty, ByVal: RAA == CGCXXABI::RAA_DirectInMemory);
3248 }
3249
3250 if (RT->getDecl()->hasFlexibleArrayMember())
3251 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3252
3253 }
3254
3255 const Type *Base = nullptr;
3256 uint64_t NumElts = 0;
3257 // vectorcall adds the concept of a homogenous vector aggregate, similar to
3258 // other targets.
3259 if ((IsVectorCall || IsRegCall) &&
3260 isHomogeneousAggregate(Ty, Base, Members&: NumElts)) {
3261 if (IsRegCall) {
3262 if (FreeSSERegs >= NumElts) {
3263 FreeSSERegs -= NumElts;
3264 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3265 return ABIArgInfo::getDirect();
3266 return ABIArgInfo::getExpand();
3267 }
3268 return ABIArgInfo::getIndirect(Alignment: Align, /*ByVal=*/false);
3269 } else if (IsVectorCall) {
3270 if (FreeSSERegs >= NumElts &&
3271 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3272 FreeSSERegs -= NumElts;
3273 return ABIArgInfo::getDirect();
3274 } else if (IsReturnType) {
3275 return ABIArgInfo::getExpand();
3276 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3277 // HVAs are delayed and reclassified in the 2nd step.
3278 return ABIArgInfo::getIndirect(Alignment: Align, /*ByVal=*/false);
3279 }
3280 }
3281 }
3282
3283 if (Ty->isMemberPointerType()) {
3284 // If the member pointer is represented by an LLVM int or ptr, pass it
3285 // directly.
3286 llvm::Type *LLTy = CGT.ConvertType(T: Ty);
3287 if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3288 return ABIArgInfo::getDirect();
3289 }
3290
3291 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3292 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3293 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3294 if (Width > 64 || !llvm::isPowerOf2_64(Value: Width))
3295 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3296
3297 // Otherwise, coerce it to a small integer.
3298 return ABIArgInfo::getDirect(T: llvm::IntegerType::get(C&: getVMContext(), NumBits: Width));
3299 }
3300
3301 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3302 switch (BT->getKind()) {
3303 case BuiltinType::Bool:
3304 // Bool type is always extended to the ABI, other builtin types are not
3305 // extended.
3306 return ABIArgInfo::getExtend(Ty);
3307
3308 case BuiltinType::LongDouble:
3309 // Mingw64 GCC uses the old 80 bit extended precision floating point
3310 // unit. It passes them indirectly through memory.
3311 if (IsMingw64) {
3312 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3313 if (LDF == &llvm::APFloat::x87DoubleExtended())
3314 return ABIArgInfo::getIndirect(Alignment: Align, /*ByVal=*/false);
3315 }
3316 break;
3317
3318 case BuiltinType::Int128:
3319 case BuiltinType::UInt128:
3320 // If it's a parameter type, the normal ABI rule is that arguments larger
3321 // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3322 // even though it isn't particularly efficient.
3323 if (!IsReturnType)
3324 return ABIArgInfo::getIndirect(Alignment: Align, /*ByVal=*/false);
3325
3326 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3327 // Clang matches them for compatibility.
3328 return ABIArgInfo::getDirect(T: llvm::FixedVectorType::get(
3329 ElementType: llvm::Type::getInt64Ty(C&: getVMContext()), NumElts: 2));
3330
3331 default:
3332 break;
3333 }
3334 }
3335
3336 if (Ty->isBitIntType()) {
3337 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3338 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3339 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
3340 // or 8 bytes anyway as long is it fits in them, so we don't have to check
3341 // the power of 2.
3342 if (Width <= 64)
3343 return ABIArgInfo::getDirect();
3344 return ABIArgInfo::getIndirect(Alignment: Align, /*ByVal=*/false);
3345 }
3346
3347 return ABIArgInfo::getDirect();
3348}
3349
3350void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3351 const unsigned CC = FI.getCallingConvention();
3352 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
3353 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
3354
3355 // If __attribute__((sysv_abi)) is in use, use the SysV argument
3356 // classification rules.
3357 if (CC == llvm::CallingConv::X86_64_SysV) {
3358 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
3359 SysVABIInfo.computeInfo(FI);
3360 return;
3361 }
3362
3363 unsigned FreeSSERegs = 0;
3364 if (IsVectorCall) {
3365 // We can use up to 4 SSE return registers with vectorcall.
3366 FreeSSERegs = 4;
3367 } else if (IsRegCall) {
3368 // RegCall gives us 16 SSE registers.
3369 FreeSSERegs = 16;
3370 }
3371
3372 if (!getCXXABI().classifyReturnType(FI))
3373 FI.getReturnInfo() = classify(Ty: FI.getReturnType(), FreeSSERegs, IsReturnType: true,
3374 IsVectorCall, IsRegCall);
3375
3376 if (IsVectorCall) {
3377 // We can use up to 6 SSE register parameters with vectorcall.
3378 FreeSSERegs = 6;
3379 } else if (IsRegCall) {
3380 // RegCall gives us 16 SSE registers, we can reuse the return registers.
3381 FreeSSERegs = 16;
3382 }
3383
3384 unsigned ArgNum = 0;
3385 unsigned ZeroSSERegs = 0;
3386 for (auto &I : FI.arguments()) {
3387 // Vectorcall in x64 only permits the first 6 arguments to be passed as
3388 // XMM/YMM registers. After the sixth argument, pretend no vector
3389 // registers are left.
3390 unsigned *MaybeFreeSSERegs =
3391 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
3392 I.info =
3393 classify(Ty: I.type, FreeSSERegs&: *MaybeFreeSSERegs, IsReturnType: false, IsVectorCall, IsRegCall);
3394 ++ArgNum;
3395 }
3396
3397 if (IsVectorCall) {
3398 // For vectorcall, assign aggregate HVAs to any free vector registers in a
3399 // second pass.
3400 for (auto &I : FI.arguments())
3401 I.info = reclassifyHvaArgForVectorCall(Ty: I.type, FreeSSERegs, current: I.info);
3402 }
3403}
3404
3405Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3406 QualType Ty) const {
3407 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3408 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3409 uint64_t Width = getContext().getTypeSize(T: Ty);
3410 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Value: Width);
3411
3412 return emitVoidPtrVAArg(CGF, VAListAddr, ValueTy: Ty, IsIndirect,
3413 ValueInfo: CGF.getContext().getTypeInfoInChars(T: Ty),
3414 SlotSizeAndAlign: CharUnits::fromQuantity(Quantity: 8),
3415 /*allowHigherAlign*/ AllowHigherAlign: false);
3416}
3417
3418std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
3419 CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3420 unsigned NumRegisterParameters, bool SoftFloatABI) {
3421 bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3422 Triple: CGM.getTriple(), Opts: CGM.getCodeGenOpts());
3423 return std::make_unique<X86_32TargetCodeGenInfo>(
3424 args&: CGM.getTypes(), args&: DarwinVectorABI, args&: RetSmallStructInRegABI, args&: Win32StructABI,
3425 args&: NumRegisterParameters, args&: SoftFloatABI);
3426}
3427
3428std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
3429 CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3430 unsigned NumRegisterParameters) {
3431 bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3432 Triple: CGM.getTriple(), Opts: CGM.getCodeGenOpts());
3433 return std::make_unique<WinX86_32TargetCodeGenInfo>(
3434 args&: CGM.getTypes(), args&: DarwinVectorABI, args&: RetSmallStructInRegABI, args&: Win32StructABI,
3435 args&: NumRegisterParameters);
3436}
3437
3438std::unique_ptr<TargetCodeGenInfo>
3439CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
3440 X86AVXABILevel AVXLevel) {
3441 return std::make_unique<X86_64TargetCodeGenInfo>(args&: CGM.getTypes(), args&: AVXLevel);
3442}
3443
3444std::unique_ptr<TargetCodeGenInfo>
3445CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
3446 X86AVXABILevel AVXLevel) {
3447 return std::make_unique<WinX86_64TargetCodeGenInfo>(args&: CGM.getTypes(), args&: AVXLevel);
3448}
3449

source code of clang/lib/CodeGen/Targets/X86.cpp