1 | //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file provides Sema routines for C++ exception specification testing. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/Sema/SemaInternal.h" |
14 | #include "clang/AST/ASTMutationListener.h" |
15 | #include "clang/AST/CXXInheritance.h" |
16 | #include "clang/AST/Expr.h" |
17 | #include "clang/AST/ExprCXX.h" |
18 | #include "clang/AST/StmtObjC.h" |
19 | #include "clang/AST/TypeLoc.h" |
20 | #include "clang/Basic/Diagnostic.h" |
21 | #include "clang/Basic/SourceManager.h" |
22 | #include "llvm/ADT/SmallPtrSet.h" |
23 | #include "llvm/ADT/SmallString.h" |
24 | #include <optional> |
25 | |
26 | namespace clang { |
27 | |
28 | static const FunctionProtoType *GetUnderlyingFunction(QualType T) |
29 | { |
30 | if (const PointerType *PtrTy = T->getAs<PointerType>()) |
31 | T = PtrTy->getPointeeType(); |
32 | else if (const ReferenceType *RefTy = T->getAs<ReferenceType>()) |
33 | T = RefTy->getPointeeType(); |
34 | else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) |
35 | T = MPTy->getPointeeType(); |
36 | return T->getAs<FunctionProtoType>(); |
37 | } |
38 | |
39 | /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a |
40 | /// member swap function then tries to call std::swap unqualified from the |
41 | /// exception specification of that function. This function detects whether |
42 | /// we're in such a case and turns off delay-parsing of exception |
43 | /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have |
44 | /// resolved it as side-effect of commit ddb63209a8d (2015-06-05). |
45 | bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) { |
46 | auto *RD = dyn_cast<CXXRecordDecl>(Val: CurContext); |
47 | |
48 | // All the problem cases are member functions named "swap" within class |
49 | // templates declared directly within namespace std or std::__debug or |
50 | // std::__profile. |
51 | if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() || |
52 | !D.getIdentifier() || !D.getIdentifier()->isStr(Str: "swap" )) |
53 | return false; |
54 | |
55 | auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext()); |
56 | if (!ND) |
57 | return false; |
58 | |
59 | bool IsInStd = ND->isStdNamespace(); |
60 | if (!IsInStd) { |
61 | // This isn't a direct member of namespace std, but it might still be |
62 | // libstdc++'s std::__debug::array or std::__profile::array. |
63 | IdentifierInfo *II = ND->getIdentifier(); |
64 | if (!II || !(II->isStr(Str: "__debug" ) || II->isStr(Str: "__profile" )) || |
65 | !ND->isInStdNamespace()) |
66 | return false; |
67 | } |
68 | |
69 | // Only apply this hack within a system header. |
70 | if (!Context.getSourceManager().isInSystemHeader(Loc: D.getBeginLoc())) |
71 | return false; |
72 | |
73 | return llvm::StringSwitch<bool>(RD->getIdentifier()->getName()) |
74 | .Case(S: "array" , Value: true) |
75 | .Case(S: "pair" , Value: IsInStd) |
76 | .Case(S: "priority_queue" , Value: IsInStd) |
77 | .Case(S: "stack" , Value: IsInStd) |
78 | .Case(S: "queue" , Value: IsInStd) |
79 | .Default(Value: false); |
80 | } |
81 | |
82 | ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr, |
83 | ExceptionSpecificationType &EST) { |
84 | |
85 | if (NoexceptExpr->isTypeDependent() || |
86 | NoexceptExpr->containsUnexpandedParameterPack()) { |
87 | EST = EST_DependentNoexcept; |
88 | return NoexceptExpr; |
89 | } |
90 | |
91 | llvm::APSInt Result; |
92 | ExprResult Converted = CheckConvertedConstantExpression( |
93 | NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept); |
94 | |
95 | if (Converted.isInvalid()) { |
96 | EST = EST_NoexceptFalse; |
97 | // Fill in an expression of 'false' as a fixup. |
98 | auto *BoolExpr = new (Context) |
99 | CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc()); |
100 | llvm::APSInt Value{1}; |
101 | Value = 0; |
102 | return ConstantExpr::Create(Context, BoolExpr, APValue{Value}); |
103 | } |
104 | |
105 | if (Converted.get()->isValueDependent()) { |
106 | EST = EST_DependentNoexcept; |
107 | return Converted; |
108 | } |
109 | |
110 | if (!Converted.isInvalid()) |
111 | EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue; |
112 | return Converted; |
113 | } |
114 | |
115 | /// CheckSpecifiedExceptionType - Check if the given type is valid in an |
116 | /// exception specification. Incomplete types, or pointers to incomplete types |
117 | /// other than void are not allowed. |
118 | /// |
119 | /// \param[in,out] T The exception type. This will be decayed to a pointer type |
120 | /// when the input is an array or a function type. |
121 | bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) { |
122 | // C++11 [except.spec]p2: |
123 | // A type cv T, "array of T", or "function returning T" denoted |
124 | // in an exception-specification is adjusted to type T, "pointer to T", or |
125 | // "pointer to function returning T", respectively. |
126 | // |
127 | // We also apply this rule in C++98. |
128 | if (T->isArrayType()) |
129 | T = Context.getArrayDecayedType(T); |
130 | else if (T->isFunctionType()) |
131 | T = Context.getPointerType(T); |
132 | |
133 | int Kind = 0; |
134 | QualType PointeeT = T; |
135 | if (const PointerType *PT = T->getAs<PointerType>()) { |
136 | PointeeT = PT->getPointeeType(); |
137 | Kind = 1; |
138 | |
139 | // cv void* is explicitly permitted, despite being a pointer to an |
140 | // incomplete type. |
141 | if (PointeeT->isVoidType()) |
142 | return false; |
143 | } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { |
144 | PointeeT = RT->getPointeeType(); |
145 | Kind = 2; |
146 | |
147 | if (RT->isRValueReferenceType()) { |
148 | // C++11 [except.spec]p2: |
149 | // A type denoted in an exception-specification shall not denote [...] |
150 | // an rvalue reference type. |
151 | Diag(Range.getBegin(), diag::err_rref_in_exception_spec) |
152 | << T << Range; |
153 | return true; |
154 | } |
155 | } |
156 | |
157 | // C++11 [except.spec]p2: |
158 | // A type denoted in an exception-specification shall not denote an |
159 | // incomplete type other than a class currently being defined [...]. |
160 | // A type denoted in an exception-specification shall not denote a |
161 | // pointer or reference to an incomplete type, other than (cv) void* or a |
162 | // pointer or reference to a class currently being defined. |
163 | // In Microsoft mode, downgrade this to a warning. |
164 | unsigned DiagID = diag::err_incomplete_in_exception_spec; |
165 | bool ReturnValueOnError = true; |
166 | if (getLangOpts().MSVCCompat) { |
167 | DiagID = diag::ext_incomplete_in_exception_spec; |
168 | ReturnValueOnError = false; |
169 | } |
170 | if (!(PointeeT->isRecordType() && |
171 | PointeeT->castAs<RecordType>()->isBeingDefined()) && |
172 | RequireCompleteType(Loc: Range.getBegin(), T: PointeeT, DiagID, Args: Kind, Args: Range)) |
173 | return ReturnValueOnError; |
174 | |
175 | // WebAssembly reference types can't be used in exception specifications. |
176 | if (PointeeT.isWebAssemblyReferenceType()) { |
177 | Diag(Range.getBegin(), diag::err_wasm_reftype_exception_spec); |
178 | return true; |
179 | } |
180 | |
181 | // The MSVC compatibility mode doesn't extend to sizeless types, |
182 | // so diagnose them separately. |
183 | if (PointeeT->isSizelessType() && Kind != 1) { |
184 | Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec) |
185 | << (Kind == 2 ? 1 : 0) << PointeeT << Range; |
186 | return true; |
187 | } |
188 | |
189 | return false; |
190 | } |
191 | |
192 | /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer |
193 | /// to member to a function with an exception specification. This means that |
194 | /// it is invalid to add another level of indirection. |
195 | bool Sema::CheckDistantExceptionSpec(QualType T) { |
196 | // C++17 removes this rule in favor of putting exception specifications into |
197 | // the type system. |
198 | if (getLangOpts().CPlusPlus17) |
199 | return false; |
200 | |
201 | if (const PointerType *PT = T->getAs<PointerType>()) |
202 | T = PT->getPointeeType(); |
203 | else if (const MemberPointerType *PT = T->getAs<MemberPointerType>()) |
204 | T = PT->getPointeeType(); |
205 | else |
206 | return false; |
207 | |
208 | const FunctionProtoType *FnT = T->getAs<FunctionProtoType>(); |
209 | if (!FnT) |
210 | return false; |
211 | |
212 | return FnT->hasExceptionSpec(); |
213 | } |
214 | |
215 | const FunctionProtoType * |
216 | Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) { |
217 | if (FPT->getExceptionSpecType() == EST_Unparsed) { |
218 | Diag(Loc, diag::err_exception_spec_not_parsed); |
219 | return nullptr; |
220 | } |
221 | |
222 | if (!isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType())) |
223 | return FPT; |
224 | |
225 | FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl(); |
226 | const FunctionProtoType *SourceFPT = |
227 | SourceDecl->getType()->castAs<FunctionProtoType>(); |
228 | |
229 | // If the exception specification has already been resolved, just return it. |
230 | if (!isUnresolvedExceptionSpec(ESpecType: SourceFPT->getExceptionSpecType())) |
231 | return SourceFPT; |
232 | |
233 | // Compute or instantiate the exception specification now. |
234 | if (SourceFPT->getExceptionSpecType() == EST_Unevaluated) |
235 | EvaluateImplicitExceptionSpec(Loc, FD: SourceDecl); |
236 | else |
237 | InstantiateExceptionSpec(PointOfInstantiation: Loc, Function: SourceDecl); |
238 | |
239 | const FunctionProtoType *Proto = |
240 | SourceDecl->getType()->castAs<FunctionProtoType>(); |
241 | if (Proto->getExceptionSpecType() == clang::EST_Unparsed) { |
242 | Diag(Loc, diag::err_exception_spec_not_parsed); |
243 | Proto = nullptr; |
244 | } |
245 | return Proto; |
246 | } |
247 | |
248 | void |
249 | Sema::UpdateExceptionSpec(FunctionDecl *FD, |
250 | const FunctionProtoType::ExceptionSpecInfo &ESI) { |
251 | // If we've fully resolved the exception specification, notify listeners. |
252 | if (!isUnresolvedExceptionSpec(ESpecType: ESI.Type)) |
253 | if (auto *Listener = getASTMutationListener()) |
254 | Listener->ResolvedExceptionSpec(FD); |
255 | |
256 | for (FunctionDecl *Redecl : FD->redecls()) |
257 | Context.adjustExceptionSpec(Redecl, ESI); |
258 | } |
259 | |
260 | static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) { |
261 | auto *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
262 | if (!MD) |
263 | return false; |
264 | |
265 | auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType(); |
266 | return EST == EST_Unparsed || |
267 | (EST == EST_Unevaluated && MD->getParent()->isBeingDefined()); |
268 | } |
269 | |
270 | static bool CheckEquivalentExceptionSpecImpl( |
271 | Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, |
272 | const FunctionProtoType *Old, SourceLocation OldLoc, |
273 | const FunctionProtoType *New, SourceLocation NewLoc, |
274 | bool *MissingExceptionSpecification = nullptr, |
275 | bool *MissingEmptyExceptionSpecification = nullptr, |
276 | bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false); |
277 | |
278 | /// Determine whether a function has an implicitly-generated exception |
279 | /// specification. |
280 | static bool hasImplicitExceptionSpec(FunctionDecl *Decl) { |
281 | if (!isa<CXXDestructorDecl>(Val: Decl) && |
282 | Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete && |
283 | Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) |
284 | return false; |
285 | |
286 | // For a function that the user didn't declare: |
287 | // - if this is a destructor, its exception specification is implicit. |
288 | // - if this is 'operator delete' or 'operator delete[]', the exception |
289 | // specification is as-if an explicit exception specification was given |
290 | // (per [basic.stc.dynamic]p2). |
291 | if (!Decl->getTypeSourceInfo()) |
292 | return isa<CXXDestructorDecl>(Val: Decl); |
293 | |
294 | auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); |
295 | return !Ty->hasExceptionSpec(); |
296 | } |
297 | |
298 | bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) { |
299 | // Just completely ignore this under -fno-exceptions prior to C++17. |
300 | // In C++17 onwards, the exception specification is part of the type and |
301 | // we will diagnose mismatches anyway, so it's better to check for them here. |
302 | if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17) |
303 | return false; |
304 | |
305 | OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator(); |
306 | bool IsOperatorNew = OO == OO_New || OO == OO_Array_New; |
307 | bool MissingExceptionSpecification = false; |
308 | bool MissingEmptyExceptionSpecification = false; |
309 | |
310 | unsigned DiagID = diag::err_mismatched_exception_spec; |
311 | bool ReturnValueOnError = true; |
312 | if (getLangOpts().MSVCCompat) { |
313 | DiagID = diag::ext_mismatched_exception_spec; |
314 | ReturnValueOnError = false; |
315 | } |
316 | |
317 | // If we're befriending a member function of a class that's currently being |
318 | // defined, we might not be able to work out its exception specification yet. |
319 | // If not, defer the check until later. |
320 | if (exceptionSpecNotKnownYet(FD: Old) || exceptionSpecNotKnownYet(FD: New)) { |
321 | DelayedEquivalentExceptionSpecChecks.push_back(Elt: {New, Old}); |
322 | return false; |
323 | } |
324 | |
325 | // Check the types as written: they must match before any exception |
326 | // specification adjustment is applied. |
327 | if (!CheckEquivalentExceptionSpecImpl( |
328 | *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), |
329 | Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), |
330 | New->getType()->getAs<FunctionProtoType>(), New->getLocation(), |
331 | &MissingExceptionSpecification, &MissingEmptyExceptionSpecification, |
332 | /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) { |
333 | // C++11 [except.spec]p4 [DR1492]: |
334 | // If a declaration of a function has an implicit |
335 | // exception-specification, other declarations of the function shall |
336 | // not specify an exception-specification. |
337 | if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions && |
338 | hasImplicitExceptionSpec(Decl: Old) != hasImplicitExceptionSpec(Decl: New)) { |
339 | Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch) |
340 | << hasImplicitExceptionSpec(Old); |
341 | if (Old->getLocation().isValid()) |
342 | Diag(Old->getLocation(), diag::note_previous_declaration); |
343 | } |
344 | return false; |
345 | } |
346 | |
347 | // The failure was something other than an missing exception |
348 | // specification; return an error, except in MS mode where this is a warning. |
349 | if (!MissingExceptionSpecification) |
350 | return ReturnValueOnError; |
351 | |
352 | const auto *NewProto = New->getType()->castAs<FunctionProtoType>(); |
353 | |
354 | // The new function declaration is only missing an empty exception |
355 | // specification "throw()". If the throw() specification came from a |
356 | // function in a system header that has C linkage, just add an empty |
357 | // exception specification to the "new" declaration. Note that C library |
358 | // implementations are permitted to add these nothrow exception |
359 | // specifications. |
360 | // |
361 | // Likewise if the old function is a builtin. |
362 | if (MissingEmptyExceptionSpecification && |
363 | (Old->getLocation().isInvalid() || |
364 | Context.getSourceManager().isInSystemHeader(Loc: Old->getLocation()) || |
365 | Old->getBuiltinID()) && |
366 | Old->isExternC()) { |
367 | New->setType(Context.getFunctionType( |
368 | ResultTy: NewProto->getReturnType(), Args: NewProto->getParamTypes(), |
369 | EPI: NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone))); |
370 | return false; |
371 | } |
372 | |
373 | const auto *OldProto = Old->getType()->castAs<FunctionProtoType>(); |
374 | |
375 | FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType(); |
376 | if (ESI.Type == EST_Dynamic) { |
377 | // FIXME: What if the exceptions are described in terms of the old |
378 | // prototype's parameters? |
379 | ESI.Exceptions = OldProto->exceptions(); |
380 | } |
381 | |
382 | if (ESI.Type == EST_NoexceptFalse) |
383 | ESI.Type = EST_None; |
384 | if (ESI.Type == EST_NoexceptTrue) |
385 | ESI.Type = EST_BasicNoexcept; |
386 | |
387 | // For dependent noexcept, we can't just take the expression from the old |
388 | // prototype. It likely contains references to the old prototype's parameters. |
389 | if (ESI.Type == EST_DependentNoexcept) { |
390 | New->setInvalidDecl(); |
391 | } else { |
392 | // Update the type of the function with the appropriate exception |
393 | // specification. |
394 | New->setType(Context.getFunctionType( |
395 | ResultTy: NewProto->getReturnType(), Args: NewProto->getParamTypes(), |
396 | EPI: NewProto->getExtProtoInfo().withExceptionSpec(ESI))); |
397 | } |
398 | |
399 | if (getLangOpts().MSVCCompat && isDynamicExceptionSpec(ESpecType: ESI.Type)) { |
400 | DiagID = diag::ext_missing_exception_specification; |
401 | ReturnValueOnError = false; |
402 | } else if (New->isReplaceableGlobalAllocationFunction() && |
403 | ESI.Type != EST_DependentNoexcept) { |
404 | // Allow missing exception specifications in redeclarations as an extension, |
405 | // when declaring a replaceable global allocation function. |
406 | DiagID = diag::ext_missing_exception_specification; |
407 | ReturnValueOnError = false; |
408 | } else if (ESI.Type == EST_NoThrow) { |
409 | // Don't emit any warning for missing 'nothrow' in MSVC. |
410 | if (getLangOpts().MSVCCompat) { |
411 | return false; |
412 | } |
413 | // Allow missing attribute 'nothrow' in redeclarations, since this is a very |
414 | // common omission. |
415 | DiagID = diag::ext_missing_exception_specification; |
416 | ReturnValueOnError = false; |
417 | } else { |
418 | DiagID = diag::err_missing_exception_specification; |
419 | ReturnValueOnError = true; |
420 | } |
421 | |
422 | // Warn about the lack of exception specification. |
423 | SmallString<128> ExceptionSpecString; |
424 | llvm::raw_svector_ostream OS(ExceptionSpecString); |
425 | switch (OldProto->getExceptionSpecType()) { |
426 | case EST_DynamicNone: |
427 | OS << "throw()" ; |
428 | break; |
429 | |
430 | case EST_Dynamic: { |
431 | OS << "throw(" ; |
432 | bool OnFirstException = true; |
433 | for (const auto &E : OldProto->exceptions()) { |
434 | if (OnFirstException) |
435 | OnFirstException = false; |
436 | else |
437 | OS << ", " ; |
438 | |
439 | OS << E.getAsString(getPrintingPolicy()); |
440 | } |
441 | OS << ")" ; |
442 | break; |
443 | } |
444 | |
445 | case EST_BasicNoexcept: |
446 | OS << "noexcept" ; |
447 | break; |
448 | |
449 | case EST_DependentNoexcept: |
450 | case EST_NoexceptFalse: |
451 | case EST_NoexceptTrue: |
452 | OS << "noexcept(" ; |
453 | assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr" ); |
454 | OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy()); |
455 | OS << ")" ; |
456 | break; |
457 | case EST_NoThrow: |
458 | OS <<"__attribute__((nothrow))" ; |
459 | break; |
460 | case EST_None: |
461 | case EST_MSAny: |
462 | case EST_Unevaluated: |
463 | case EST_Uninstantiated: |
464 | case EST_Unparsed: |
465 | llvm_unreachable("This spec type is compatible with none." ); |
466 | } |
467 | |
468 | SourceLocation FixItLoc; |
469 | if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) { |
470 | TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); |
471 | // FIXME: Preserve enough information so that we can produce a correct fixit |
472 | // location when there is a trailing return type. |
473 | if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>()) |
474 | if (!FTLoc.getTypePtr()->hasTrailingReturn()) |
475 | FixItLoc = getLocForEndOfToken(Loc: FTLoc.getLocalRangeEnd()); |
476 | } |
477 | |
478 | if (FixItLoc.isInvalid()) |
479 | Diag(New->getLocation(), DiagID) |
480 | << New << OS.str(); |
481 | else { |
482 | Diag(New->getLocation(), DiagID) |
483 | << New << OS.str() |
484 | << FixItHint::CreateInsertion(InsertionLoc: FixItLoc, Code: " " + OS.str().str()); |
485 | } |
486 | |
487 | if (Old->getLocation().isValid()) |
488 | Diag(Old->getLocation(), diag::note_previous_declaration); |
489 | |
490 | return ReturnValueOnError; |
491 | } |
492 | |
493 | /// CheckEquivalentExceptionSpec - Check if the two types have equivalent |
494 | /// exception specifications. Exception specifications are equivalent if |
495 | /// they allow exactly the same set of exception types. It does not matter how |
496 | /// that is achieved. See C++ [except.spec]p2. |
497 | bool Sema::CheckEquivalentExceptionSpec( |
498 | const FunctionProtoType *Old, SourceLocation OldLoc, |
499 | const FunctionProtoType *New, SourceLocation NewLoc) { |
500 | if (!getLangOpts().CXXExceptions) |
501 | return false; |
502 | |
503 | unsigned DiagID = diag::err_mismatched_exception_spec; |
504 | if (getLangOpts().MSVCCompat) |
505 | DiagID = diag::ext_mismatched_exception_spec; |
506 | bool Result = CheckEquivalentExceptionSpecImpl( |
507 | *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), |
508 | Old, OldLoc, New, NewLoc); |
509 | |
510 | // In Microsoft mode, mismatching exception specifications just cause a warning. |
511 | if (getLangOpts().MSVCCompat) |
512 | return false; |
513 | return Result; |
514 | } |
515 | |
516 | /// CheckEquivalentExceptionSpec - Check if the two types have compatible |
517 | /// exception specifications. See C++ [except.spec]p3. |
518 | /// |
519 | /// \return \c false if the exception specifications match, \c true if there is |
520 | /// a problem. If \c true is returned, either a diagnostic has already been |
521 | /// produced or \c *MissingExceptionSpecification is set to \c true. |
522 | static bool CheckEquivalentExceptionSpecImpl( |
523 | Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, |
524 | const FunctionProtoType *Old, SourceLocation OldLoc, |
525 | const FunctionProtoType *New, SourceLocation NewLoc, |
526 | bool *MissingExceptionSpecification, |
527 | bool *MissingEmptyExceptionSpecification, |
528 | bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) { |
529 | if (MissingExceptionSpecification) |
530 | *MissingExceptionSpecification = false; |
531 | |
532 | if (MissingEmptyExceptionSpecification) |
533 | *MissingEmptyExceptionSpecification = false; |
534 | |
535 | Old = S.ResolveExceptionSpec(Loc: NewLoc, FPT: Old); |
536 | if (!Old) |
537 | return false; |
538 | New = S.ResolveExceptionSpec(Loc: NewLoc, FPT: New); |
539 | if (!New) |
540 | return false; |
541 | |
542 | // C++0x [except.spec]p3: Two exception-specifications are compatible if: |
543 | // - both are non-throwing, regardless of their form, |
544 | // - both have the form noexcept(constant-expression) and the constant- |
545 | // expressions are equivalent, |
546 | // - both are dynamic-exception-specifications that have the same set of |
547 | // adjusted types. |
548 | // |
549 | // C++0x [except.spec]p12: An exception-specification is non-throwing if it is |
550 | // of the form throw(), noexcept, or noexcept(constant-expression) where the |
551 | // constant-expression yields true. |
552 | // |
553 | // C++0x [except.spec]p4: If any declaration of a function has an exception- |
554 | // specifier that is not a noexcept-specification allowing all exceptions, |
555 | // all declarations [...] of that function shall have a compatible |
556 | // exception-specification. |
557 | // |
558 | // That last point basically means that noexcept(false) matches no spec. |
559 | // It's considered when AllowNoexceptAllMatchWithNoSpec is true. |
560 | |
561 | ExceptionSpecificationType OldEST = Old->getExceptionSpecType(); |
562 | ExceptionSpecificationType NewEST = New->getExceptionSpecType(); |
563 | |
564 | assert(!isUnresolvedExceptionSpec(OldEST) && |
565 | !isUnresolvedExceptionSpec(NewEST) && |
566 | "Shouldn't see unknown exception specifications here" ); |
567 | |
568 | CanThrowResult OldCanThrow = Old->canThrow(); |
569 | CanThrowResult NewCanThrow = New->canThrow(); |
570 | |
571 | // Any non-throwing specifications are compatible. |
572 | if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot) |
573 | return false; |
574 | |
575 | // Any throws-anything specifications are usually compatible. |
576 | if (OldCanThrow == CT_Can && OldEST != EST_Dynamic && |
577 | NewCanThrow == CT_Can && NewEST != EST_Dynamic) { |
578 | // The exception is that the absence of an exception specification only |
579 | // matches noexcept(false) for functions, as described above. |
580 | if (!AllowNoexceptAllMatchWithNoSpec && |
581 | ((OldEST == EST_None && NewEST == EST_NoexceptFalse) || |
582 | (OldEST == EST_NoexceptFalse && NewEST == EST_None))) { |
583 | // This is the disallowed case. |
584 | } else { |
585 | return false; |
586 | } |
587 | } |
588 | |
589 | // C++14 [except.spec]p3: |
590 | // Two exception-specifications are compatible if [...] both have the form |
591 | // noexcept(constant-expression) and the constant-expressions are equivalent |
592 | if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) { |
593 | llvm::FoldingSetNodeID OldFSN, NewFSN; |
594 | Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true); |
595 | New->getNoexceptExpr()->Profile(NewFSN, S.Context, true); |
596 | if (OldFSN == NewFSN) |
597 | return false; |
598 | } |
599 | |
600 | // Dynamic exception specifications with the same set of adjusted types |
601 | // are compatible. |
602 | if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) { |
603 | bool Success = true; |
604 | // Both have a dynamic exception spec. Collect the first set, then compare |
605 | // to the second. |
606 | llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes; |
607 | for (const auto &I : Old->exceptions()) |
608 | OldTypes.insert(Ptr: S.Context.getCanonicalType(T: I).getUnqualifiedType()); |
609 | |
610 | for (const auto &I : New->exceptions()) { |
611 | CanQualType TypePtr = S.Context.getCanonicalType(T: I).getUnqualifiedType(); |
612 | if (OldTypes.count(Ptr: TypePtr)) |
613 | NewTypes.insert(Ptr: TypePtr); |
614 | else { |
615 | Success = false; |
616 | break; |
617 | } |
618 | } |
619 | |
620 | if (Success && OldTypes.size() == NewTypes.size()) |
621 | return false; |
622 | } |
623 | |
624 | // As a special compatibility feature, under C++0x we accept no spec and |
625 | // throw(std::bad_alloc) as equivalent for operator new and operator new[]. |
626 | // This is because the implicit declaration changed, but old code would break. |
627 | if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) { |
628 | const FunctionProtoType *WithExceptions = nullptr; |
629 | if (OldEST == EST_None && NewEST == EST_Dynamic) |
630 | WithExceptions = New; |
631 | else if (OldEST == EST_Dynamic && NewEST == EST_None) |
632 | WithExceptions = Old; |
633 | if (WithExceptions && WithExceptions->getNumExceptions() == 1) { |
634 | // One has no spec, the other throw(something). If that something is |
635 | // std::bad_alloc, all conditions are met. |
636 | QualType Exception = *WithExceptions->exception_begin(); |
637 | if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) { |
638 | IdentifierInfo* Name = ExRecord->getIdentifier(); |
639 | if (Name && Name->getName() == "bad_alloc" ) { |
640 | // It's called bad_alloc, but is it in std? |
641 | if (ExRecord->isInStdNamespace()) { |
642 | return false; |
643 | } |
644 | } |
645 | } |
646 | } |
647 | } |
648 | |
649 | // If the caller wants to handle the case that the new function is |
650 | // incompatible due to a missing exception specification, let it. |
651 | if (MissingExceptionSpecification && OldEST != EST_None && |
652 | NewEST == EST_None) { |
653 | // The old type has an exception specification of some sort, but |
654 | // the new type does not. |
655 | *MissingExceptionSpecification = true; |
656 | |
657 | if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) { |
658 | // The old type has a throw() or noexcept(true) exception specification |
659 | // and the new type has no exception specification, and the caller asked |
660 | // to handle this itself. |
661 | *MissingEmptyExceptionSpecification = true; |
662 | } |
663 | |
664 | return true; |
665 | } |
666 | |
667 | S.Diag(NewLoc, DiagID); |
668 | if (NoteID.getDiagID() != 0 && OldLoc.isValid()) |
669 | S.Diag(OldLoc, NoteID); |
670 | return true; |
671 | } |
672 | |
673 | bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID, |
674 | const PartialDiagnostic &NoteID, |
675 | const FunctionProtoType *Old, |
676 | SourceLocation OldLoc, |
677 | const FunctionProtoType *New, |
678 | SourceLocation NewLoc) { |
679 | if (!getLangOpts().CXXExceptions) |
680 | return false; |
681 | return CheckEquivalentExceptionSpecImpl(S&: *this, DiagID, NoteID, Old, OldLoc, |
682 | New, NewLoc); |
683 | } |
684 | |
685 | bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) { |
686 | // [except.handle]p3: |
687 | // A handler is a match for an exception object of type E if: |
688 | |
689 | // HandlerType must be ExceptionType or derived from it, or pointer or |
690 | // reference to such types. |
691 | const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>(); |
692 | if (RefTy) |
693 | HandlerType = RefTy->getPointeeType(); |
694 | |
695 | // -- the handler is of type cv T or cv T& and E and T are the same type |
696 | if (Context.hasSameUnqualifiedType(T1: ExceptionType, T2: HandlerType)) |
697 | return true; |
698 | |
699 | // FIXME: ObjC pointer types? |
700 | if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) { |
701 | if (RefTy && (!HandlerType.isConstQualified() || |
702 | HandlerType.isVolatileQualified())) |
703 | return false; |
704 | |
705 | // -- the handler is of type cv T or const T& where T is a pointer or |
706 | // pointer to member type and E is std::nullptr_t |
707 | if (ExceptionType->isNullPtrType()) |
708 | return true; |
709 | |
710 | // -- the handler is of type cv T or const T& where T is a pointer or |
711 | // pointer to member type and E is a pointer or pointer to member type |
712 | // that can be converted to T by one or more of |
713 | // -- a qualification conversion |
714 | // -- a function pointer conversion |
715 | bool LifetimeConv; |
716 | QualType Result; |
717 | // FIXME: Should we treat the exception as catchable if a lifetime |
718 | // conversion is required? |
719 | if (IsQualificationConversion(FromType: ExceptionType, ToType: HandlerType, CStyle: false, |
720 | ObjCLifetimeConversion&: LifetimeConv) || |
721 | IsFunctionConversion(FromType: ExceptionType, ToType: HandlerType, ResultTy&: Result)) |
722 | return true; |
723 | |
724 | // -- a standard pointer conversion [...] |
725 | if (!ExceptionType->isPointerType() || !HandlerType->isPointerType()) |
726 | return false; |
727 | |
728 | // Handle the "qualification conversion" portion. |
729 | Qualifiers EQuals, HQuals; |
730 | ExceptionType = Context.getUnqualifiedArrayType( |
731 | T: ExceptionType->getPointeeType(), Quals&: EQuals); |
732 | HandlerType = Context.getUnqualifiedArrayType( |
733 | T: HandlerType->getPointeeType(), Quals&: HQuals); |
734 | if (!HQuals.compatiblyIncludes(other: EQuals)) |
735 | return false; |
736 | |
737 | if (HandlerType->isVoidType() && ExceptionType->isObjectType()) |
738 | return true; |
739 | |
740 | // The only remaining case is a derived-to-base conversion. |
741 | } |
742 | |
743 | // -- the handler is of type cg T or cv T& and T is an unambiguous public |
744 | // base class of E |
745 | if (!ExceptionType->isRecordType() || !HandlerType->isRecordType()) |
746 | return false; |
747 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
748 | /*DetectVirtual=*/false); |
749 | if (!IsDerivedFrom(Loc: SourceLocation(), Derived: ExceptionType, Base: HandlerType, Paths) || |
750 | Paths.isAmbiguous(BaseType: Context.getCanonicalType(T: HandlerType))) |
751 | return false; |
752 | |
753 | // Do this check from a context without privileges. |
754 | switch (CheckBaseClassAccess(AccessLoc: SourceLocation(), Base: HandlerType, Derived: ExceptionType, |
755 | Path: Paths.front(), |
756 | /*Diagnostic*/ DiagID: 0, |
757 | /*ForceCheck*/ true, |
758 | /*ForceUnprivileged*/ true)) { |
759 | case AR_accessible: return true; |
760 | case AR_inaccessible: return false; |
761 | case AR_dependent: |
762 | llvm_unreachable("access check dependent for unprivileged context" ); |
763 | case AR_delayed: |
764 | llvm_unreachable("access check delayed in non-declaration" ); |
765 | } |
766 | llvm_unreachable("unexpected access check result" ); |
767 | } |
768 | |
769 | /// CheckExceptionSpecSubset - Check whether the second function type's |
770 | /// exception specification is a subset (or equivalent) of the first function |
771 | /// type. This is used by override and pointer assignment checks. |
772 | bool Sema::CheckExceptionSpecSubset( |
773 | const PartialDiagnostic &DiagID, const PartialDiagnostic &NestedDiagID, |
774 | const PartialDiagnostic &NoteID, const PartialDiagnostic &NoThrowDiagID, |
775 | const FunctionProtoType *Superset, bool SkipSupersetFirstParameter, |
776 | SourceLocation SuperLoc, const FunctionProtoType *Subset, |
777 | bool SkipSubsetFirstParameter, SourceLocation SubLoc) { |
778 | |
779 | // Just auto-succeed under -fno-exceptions. |
780 | if (!getLangOpts().CXXExceptions) |
781 | return false; |
782 | |
783 | // FIXME: As usual, we could be more specific in our error messages, but |
784 | // that better waits until we've got types with source locations. |
785 | |
786 | if (!SubLoc.isValid()) |
787 | SubLoc = SuperLoc; |
788 | |
789 | // Resolve the exception specifications, if needed. |
790 | Superset = ResolveExceptionSpec(Loc: SuperLoc, FPT: Superset); |
791 | if (!Superset) |
792 | return false; |
793 | Subset = ResolveExceptionSpec(Loc: SubLoc, FPT: Subset); |
794 | if (!Subset) |
795 | return false; |
796 | |
797 | ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType(); |
798 | ExceptionSpecificationType SubEST = Subset->getExceptionSpecType(); |
799 | assert(!isUnresolvedExceptionSpec(SuperEST) && |
800 | !isUnresolvedExceptionSpec(SubEST) && |
801 | "Shouldn't see unknown exception specifications here" ); |
802 | |
803 | // If there are dependent noexcept specs, assume everything is fine. Unlike |
804 | // with the equivalency check, this is safe in this case, because we don't |
805 | // want to merge declarations. Checks after instantiation will catch any |
806 | // omissions we make here. |
807 | if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept) |
808 | return false; |
809 | |
810 | CanThrowResult SuperCanThrow = Superset->canThrow(); |
811 | CanThrowResult SubCanThrow = Subset->canThrow(); |
812 | |
813 | // If the superset contains everything or the subset contains nothing, we're |
814 | // done. |
815 | if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) || |
816 | SubCanThrow == CT_Cannot) |
817 | return CheckParamExceptionSpec(NestedDiagID, NoteID, Target: Superset, |
818 | SkipTargetFirstParameter: SkipSupersetFirstParameter, TargetLoc: SuperLoc, Source: Subset, |
819 | SkipSourceFirstParameter: SkipSubsetFirstParameter, SourceLoc: SubLoc); |
820 | |
821 | // Allow __declspec(nothrow) to be missing on redeclaration as an extension in |
822 | // some cases. |
823 | if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can && |
824 | SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) { |
825 | Diag(SubLoc, NoThrowDiagID); |
826 | if (NoteID.getDiagID() != 0) |
827 | Diag(SuperLoc, NoteID); |
828 | return true; |
829 | } |
830 | |
831 | // If the subset contains everything or the superset contains nothing, we've |
832 | // failed. |
833 | if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) || |
834 | SuperCanThrow == CT_Cannot) { |
835 | Diag(SubLoc, DiagID); |
836 | if (NoteID.getDiagID() != 0) |
837 | Diag(SuperLoc, NoteID); |
838 | return true; |
839 | } |
840 | |
841 | assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic && |
842 | "Exception spec subset: non-dynamic case slipped through." ); |
843 | |
844 | // Neither contains everything or nothing. Do a proper comparison. |
845 | for (QualType SubI : Subset->exceptions()) { |
846 | if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>()) |
847 | SubI = RefTy->getPointeeType(); |
848 | |
849 | // Make sure it's in the superset. |
850 | bool Contained = false; |
851 | for (QualType SuperI : Superset->exceptions()) { |
852 | // [except.spec]p5: |
853 | // the target entity shall allow at least the exceptions allowed by the |
854 | // source |
855 | // |
856 | // We interpret this as meaning that a handler for some target type would |
857 | // catch an exception of each source type. |
858 | if (handlerCanCatch(HandlerType: SuperI, ExceptionType: SubI)) { |
859 | Contained = true; |
860 | break; |
861 | } |
862 | } |
863 | if (!Contained) { |
864 | Diag(SubLoc, DiagID); |
865 | if (NoteID.getDiagID() != 0) |
866 | Diag(SuperLoc, NoteID); |
867 | return true; |
868 | } |
869 | } |
870 | // We've run half the gauntlet. |
871 | return CheckParamExceptionSpec(NestedDiagID, NoteID, Target: Superset, |
872 | SkipTargetFirstParameter: SkipSupersetFirstParameter, TargetLoc: SuperLoc, Source: Subset, |
873 | SkipSourceFirstParameter: SkipSupersetFirstParameter, SourceLoc: SubLoc); |
874 | } |
875 | |
876 | static bool |
877 | CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID, |
878 | const PartialDiagnostic &NoteID, QualType Target, |
879 | SourceLocation TargetLoc, QualType Source, |
880 | SourceLocation SourceLoc) { |
881 | const FunctionProtoType *TFunc = GetUnderlyingFunction(T: Target); |
882 | if (!TFunc) |
883 | return false; |
884 | const FunctionProtoType *SFunc = GetUnderlyingFunction(T: Source); |
885 | if (!SFunc) |
886 | return false; |
887 | |
888 | return S.CheckEquivalentExceptionSpec(DiagID, NoteID, Old: TFunc, OldLoc: TargetLoc, |
889 | New: SFunc, NewLoc: SourceLoc); |
890 | } |
891 | |
892 | /// CheckParamExceptionSpec - Check if the parameter and return types of the |
893 | /// two functions have equivalent exception specs. This is part of the |
894 | /// assignment and override compatibility check. We do not check the parameters |
895 | /// of parameter function pointers recursively, as no sane programmer would |
896 | /// even be able to write such a function type. |
897 | bool Sema::CheckParamExceptionSpec( |
898 | const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, |
899 | const FunctionProtoType *Target, bool SkipTargetFirstParameter, |
900 | SourceLocation TargetLoc, const FunctionProtoType *Source, |
901 | bool SkipSourceFirstParameter, SourceLocation SourceLoc) { |
902 | auto RetDiag = DiagID; |
903 | RetDiag << 0; |
904 | if (CheckSpecForTypesEquivalent( |
905 | *this, RetDiag, PDiag(), |
906 | Target->getReturnType(), TargetLoc, Source->getReturnType(), |
907 | SourceLoc)) |
908 | return true; |
909 | |
910 | // We shouldn't even be testing this unless the arguments are otherwise |
911 | // compatible. |
912 | assert((Target->getNumParams() - (unsigned)SkipTargetFirstParameter) == |
913 | (Source->getNumParams() - (unsigned)SkipSourceFirstParameter) && |
914 | "Functions have different argument counts." ); |
915 | for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) { |
916 | auto ParamDiag = DiagID; |
917 | ParamDiag << 1; |
918 | if (CheckSpecForTypesEquivalent( |
919 | S&: *this, DiagID: ParamDiag, NoteID: PDiag(), |
920 | Target: Target->getParamType(i: i + (SkipTargetFirstParameter ? 1 : 0)), |
921 | TargetLoc, Source: Source->getParamType(i: SkipSourceFirstParameter ? 1 : 0), |
922 | SourceLoc)) |
923 | return true; |
924 | } |
925 | return false; |
926 | } |
927 | |
928 | bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) { |
929 | // First we check for applicability. |
930 | // Target type must be a function, function pointer or function reference. |
931 | const FunctionProtoType *ToFunc = GetUnderlyingFunction(T: ToType); |
932 | if (!ToFunc || ToFunc->hasDependentExceptionSpec()) |
933 | return false; |
934 | |
935 | // SourceType must be a function or function pointer. |
936 | const FunctionProtoType *FromFunc = GetUnderlyingFunction(T: From->getType()); |
937 | if (!FromFunc || FromFunc->hasDependentExceptionSpec()) |
938 | return false; |
939 | |
940 | unsigned DiagID = diag::err_incompatible_exception_specs; |
941 | unsigned NestedDiagID = diag::err_deep_exception_specs_differ; |
942 | // This is not an error in C++17 onwards, unless the noexceptness doesn't |
943 | // match, but in that case we have a full-on type mismatch, not just a |
944 | // type sugar mismatch. |
945 | if (getLangOpts().CPlusPlus17) { |
946 | DiagID = diag::warn_incompatible_exception_specs; |
947 | NestedDiagID = diag::warn_deep_exception_specs_differ; |
948 | } |
949 | |
950 | // Now we've got the correct types on both sides, check their compatibility. |
951 | // This means that the source of the conversion can only throw a subset of |
952 | // the exceptions of the target, and any exception specs on arguments or |
953 | // return types must be equivalent. |
954 | // |
955 | // FIXME: If there is a nested dependent exception specification, we should |
956 | // not be checking it here. This is fine: |
957 | // template<typename T> void f() { |
958 | // void (*p)(void (*) throw(T)); |
959 | // void (*q)(void (*) throw(int)) = p; |
960 | // } |
961 | // ... because it might be instantiated with T=int. |
962 | return CheckExceptionSpecSubset(DiagID: PDiag(DiagID), NestedDiagID: PDiag(DiagID: NestedDiagID), NoteID: PDiag(), |
963 | NoThrowDiagID: PDiag(), Superset: ToFunc, SkipSupersetFirstParameter: 0, |
964 | SuperLoc: From->getSourceRange().getBegin(), Subset: FromFunc, |
965 | SkipSubsetFirstParameter: 0, SubLoc: SourceLocation()) && |
966 | !getLangOpts().CPlusPlus17; |
967 | } |
968 | |
969 | bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, |
970 | const CXXMethodDecl *Old) { |
971 | // If the new exception specification hasn't been parsed yet, skip the check. |
972 | // We'll get called again once it's been parsed. |
973 | if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == |
974 | EST_Unparsed) |
975 | return false; |
976 | |
977 | // Don't check uninstantiated template destructors at all. We can only |
978 | // synthesize correct specs after the template is instantiated. |
979 | if (isa<CXXDestructorDecl>(Val: New) && New->getParent()->isDependentType()) |
980 | return false; |
981 | |
982 | // If the old exception specification hasn't been parsed yet, or the new |
983 | // exception specification can't be computed yet, remember that we need to |
984 | // perform this check when we get to the end of the outermost |
985 | // lexically-surrounding class. |
986 | if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { |
987 | DelayedOverridingExceptionSpecChecks.push_back(Elt: {New, Old}); |
988 | return false; |
989 | } |
990 | |
991 | unsigned DiagID = diag::err_override_exception_spec; |
992 | if (getLangOpts().MSVCCompat) |
993 | DiagID = diag::ext_override_exception_spec; |
994 | return CheckExceptionSpecSubset( |
995 | PDiag(DiagID), PDiag(diag::err_deep_exception_specs_differ), |
996 | PDiag(diag::note_overridden_virtual_function), |
997 | PDiag(diag::ext_override_exception_spec), |
998 | Old->getType()->castAs<FunctionProtoType>(), |
999 | Old->hasCXXExplicitFunctionObjectParameter(), Old->getLocation(), |
1000 | New->getType()->castAs<FunctionProtoType>(), |
1001 | New->hasCXXExplicitFunctionObjectParameter(), New->getLocation()); |
1002 | } |
1003 | |
1004 | static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) { |
1005 | CanThrowResult R = CT_Cannot; |
1006 | for (const Stmt *SubStmt : S->children()) { |
1007 | if (!SubStmt) |
1008 | continue; |
1009 | R = mergeCanThrow(CT1: R, CT2: Self.canThrow(E: SubStmt)); |
1010 | if (R == CT_Can) |
1011 | break; |
1012 | } |
1013 | return R; |
1014 | } |
1015 | |
1016 | CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D, |
1017 | SourceLocation Loc) { |
1018 | // As an extension, we assume that __attribute__((nothrow)) functions don't |
1019 | // throw. |
1020 | if (isa_and_nonnull<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) |
1021 | return CT_Cannot; |
1022 | |
1023 | QualType T; |
1024 | |
1025 | // In C++1z, just look at the function type of the callee. |
1026 | if (S.getLangOpts().CPlusPlus17 && isa_and_nonnull<CallExpr>(Val: E)) { |
1027 | E = cast<CallExpr>(Val: E)->getCallee(); |
1028 | T = E->getType(); |
1029 | if (T->isSpecificPlaceholderType(K: BuiltinType::BoundMember)) { |
1030 | // Sadly we don't preserve the actual type as part of the "bound member" |
1031 | // placeholder, so we need to reconstruct it. |
1032 | E = E->IgnoreParenImpCasts(); |
1033 | |
1034 | // Could be a call to a pointer-to-member or a plain member access. |
1035 | if (auto *Op = dyn_cast<BinaryOperator>(Val: E)) { |
1036 | assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI); |
1037 | T = Op->getRHS()->getType() |
1038 | ->castAs<MemberPointerType>()->getPointeeType(); |
1039 | } else { |
1040 | T = cast<MemberExpr>(Val: E)->getMemberDecl()->getType(); |
1041 | } |
1042 | } |
1043 | } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(Val: D)) |
1044 | T = VD->getType(); |
1045 | else |
1046 | // If we have no clue what we're calling, assume the worst. |
1047 | return CT_Can; |
1048 | |
1049 | const FunctionProtoType *FT; |
1050 | if ((FT = T->getAs<FunctionProtoType>())) { |
1051 | } else if (const PointerType *PT = T->getAs<PointerType>()) |
1052 | FT = PT->getPointeeType()->getAs<FunctionProtoType>(); |
1053 | else if (const ReferenceType *RT = T->getAs<ReferenceType>()) |
1054 | FT = RT->getPointeeType()->getAs<FunctionProtoType>(); |
1055 | else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) |
1056 | FT = MT->getPointeeType()->getAs<FunctionProtoType>(); |
1057 | else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) |
1058 | FT = BT->getPointeeType()->getAs<FunctionProtoType>(); |
1059 | |
1060 | if (!FT) |
1061 | return CT_Can; |
1062 | |
1063 | if (Loc.isValid() || (Loc.isInvalid() && E)) |
1064 | FT = S.ResolveExceptionSpec(Loc: Loc.isInvalid() ? E->getBeginLoc() : Loc, FPT: FT); |
1065 | if (!FT) |
1066 | return CT_Can; |
1067 | |
1068 | return FT->canThrow(); |
1069 | } |
1070 | |
1071 | static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) { |
1072 | CanThrowResult CT = CT_Cannot; |
1073 | |
1074 | // Initialization might throw. |
1075 | if (!VD->isUsableInConstantExpressions(C: Self.Context)) |
1076 | if (const Expr *Init = VD->getInit()) |
1077 | CT = mergeCanThrow(CT1: CT, CT2: Self.canThrow(Init)); |
1078 | |
1079 | // Destructor might throw. |
1080 | if (VD->needsDestruction(Ctx: Self.Context) == QualType::DK_cxx_destructor) { |
1081 | if (auto *RD = |
1082 | VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { |
1083 | if (auto *Dtor = RD->getDestructor()) { |
1084 | CT = mergeCanThrow( |
1085 | CT, Sema::canCalleeThrow(S&: Self, E: nullptr, D: Dtor, Loc: VD->getLocation())); |
1086 | } |
1087 | } |
1088 | } |
1089 | |
1090 | // If this is a decomposition declaration, bindings might throw. |
1091 | if (auto *DD = dyn_cast<DecompositionDecl>(Val: VD)) |
1092 | for (auto *B : DD->bindings()) |
1093 | if (auto *HD = B->getHoldingVar()) |
1094 | CT = mergeCanThrow(CT1: CT, CT2: canVarDeclThrow(Self, VD: HD)); |
1095 | |
1096 | return CT; |
1097 | } |
1098 | |
1099 | static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) { |
1100 | if (DC->isTypeDependent()) |
1101 | return CT_Dependent; |
1102 | |
1103 | if (!DC->getTypeAsWritten()->isReferenceType()) |
1104 | return CT_Cannot; |
1105 | |
1106 | if (DC->getSubExpr()->isTypeDependent()) |
1107 | return CT_Dependent; |
1108 | |
1109 | return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot; |
1110 | } |
1111 | |
1112 | static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) { |
1113 | if (DC->isTypeOperand()) |
1114 | return CT_Cannot; |
1115 | |
1116 | Expr *Op = DC->getExprOperand(); |
1117 | if (Op->isTypeDependent()) |
1118 | return CT_Dependent; |
1119 | |
1120 | const RecordType *RT = Op->getType()->getAs<RecordType>(); |
1121 | if (!RT) |
1122 | return CT_Cannot; |
1123 | |
1124 | if (!cast<CXXRecordDecl>(Val: RT->getDecl())->isPolymorphic()) |
1125 | return CT_Cannot; |
1126 | |
1127 | if (Op->Classify(Ctx&: S.Context).isPRValue()) |
1128 | return CT_Cannot; |
1129 | |
1130 | return CT_Can; |
1131 | } |
1132 | |
1133 | CanThrowResult Sema::canThrow(const Stmt *S) { |
1134 | // C++ [expr.unary.noexcept]p3: |
1135 | // [Can throw] if in a potentially-evaluated context the expression would |
1136 | // contain: |
1137 | switch (S->getStmtClass()) { |
1138 | case Expr::ConstantExprClass: |
1139 | return canThrow(S: cast<ConstantExpr>(Val: S)->getSubExpr()); |
1140 | |
1141 | case Expr::CXXThrowExprClass: |
1142 | // - a potentially evaluated throw-expression |
1143 | return CT_Can; |
1144 | |
1145 | case Expr::CXXDynamicCastExprClass: { |
1146 | // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), |
1147 | // where T is a reference type, that requires a run-time check |
1148 | auto *CE = cast<CXXDynamicCastExpr>(Val: S); |
1149 | // FIXME: Properly determine whether a variably-modified type can throw. |
1150 | if (CE->getType()->isVariablyModifiedType()) |
1151 | return CT_Can; |
1152 | CanThrowResult CT = canDynamicCastThrow(DC: CE); |
1153 | if (CT == CT_Can) |
1154 | return CT; |
1155 | return mergeCanThrow(CT1: CT, CT2: canSubStmtsThrow(*this, CE)); |
1156 | } |
1157 | |
1158 | case Expr::CXXTypeidExprClass: |
1159 | // - a potentially evaluated typeid expression applied to a glvalue |
1160 | // expression whose type is a polymorphic class type |
1161 | return canTypeidThrow(S&: *this, DC: cast<CXXTypeidExpr>(Val: S)); |
1162 | |
1163 | // - a potentially evaluated call to a function, member function, function |
1164 | // pointer, or member function pointer that does not have a non-throwing |
1165 | // exception-specification |
1166 | case Expr::CallExprClass: |
1167 | case Expr::CXXMemberCallExprClass: |
1168 | case Expr::CXXOperatorCallExprClass: |
1169 | case Expr::UserDefinedLiteralClass: { |
1170 | const CallExpr *CE = cast<CallExpr>(Val: S); |
1171 | CanThrowResult CT; |
1172 | if (CE->isTypeDependent()) |
1173 | CT = CT_Dependent; |
1174 | else if (isa<CXXPseudoDestructorExpr>(Val: CE->getCallee()->IgnoreParens())) |
1175 | CT = CT_Cannot; |
1176 | else |
1177 | CT = canCalleeThrow(*this, CE, CE->getCalleeDecl()); |
1178 | if (CT == CT_Can) |
1179 | return CT; |
1180 | return mergeCanThrow(CT1: CT, CT2: canSubStmtsThrow(*this, CE)); |
1181 | } |
1182 | |
1183 | case Expr::CXXConstructExprClass: |
1184 | case Expr::CXXTemporaryObjectExprClass: { |
1185 | auto *CE = cast<CXXConstructExpr>(Val: S); |
1186 | // FIXME: Properly determine whether a variably-modified type can throw. |
1187 | if (CE->getType()->isVariablyModifiedType()) |
1188 | return CT_Can; |
1189 | CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor()); |
1190 | if (CT == CT_Can) |
1191 | return CT; |
1192 | return mergeCanThrow(CT1: CT, CT2: canSubStmtsThrow(*this, CE)); |
1193 | } |
1194 | |
1195 | case Expr::CXXInheritedCtorInitExprClass: { |
1196 | auto *ICIE = cast<CXXInheritedCtorInitExpr>(Val: S); |
1197 | return canCalleeThrow(*this, ICIE, ICIE->getConstructor()); |
1198 | } |
1199 | |
1200 | case Expr::LambdaExprClass: { |
1201 | const LambdaExpr *Lambda = cast<LambdaExpr>(Val: S); |
1202 | CanThrowResult CT = CT_Cannot; |
1203 | for (LambdaExpr::const_capture_init_iterator |
1204 | Cap = Lambda->capture_init_begin(), |
1205 | CapEnd = Lambda->capture_init_end(); |
1206 | Cap != CapEnd; ++Cap) |
1207 | CT = mergeCanThrow(CT1: CT, CT2: canThrow(*Cap)); |
1208 | return CT; |
1209 | } |
1210 | |
1211 | case Expr::CXXNewExprClass: { |
1212 | auto *NE = cast<CXXNewExpr>(Val: S); |
1213 | CanThrowResult CT; |
1214 | if (NE->isTypeDependent()) |
1215 | CT = CT_Dependent; |
1216 | else |
1217 | CT = canCalleeThrow(*this, NE, NE->getOperatorNew()); |
1218 | if (CT == CT_Can) |
1219 | return CT; |
1220 | return mergeCanThrow(CT1: CT, CT2: canSubStmtsThrow(*this, NE)); |
1221 | } |
1222 | |
1223 | case Expr::CXXDeleteExprClass: { |
1224 | auto *DE = cast<CXXDeleteExpr>(Val: S); |
1225 | CanThrowResult CT; |
1226 | QualType DTy = DE->getDestroyedType(); |
1227 | if (DTy.isNull() || DTy->isDependentType()) { |
1228 | CT = CT_Dependent; |
1229 | } else { |
1230 | CT = canCalleeThrow(*this, DE, DE->getOperatorDelete()); |
1231 | if (const RecordType *RT = DTy->getAs<RecordType>()) { |
1232 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
1233 | const CXXDestructorDecl *DD = RD->getDestructor(); |
1234 | if (DD) |
1235 | CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD)); |
1236 | } |
1237 | if (CT == CT_Can) |
1238 | return CT; |
1239 | } |
1240 | return mergeCanThrow(CT1: CT, CT2: canSubStmtsThrow(*this, DE)); |
1241 | } |
1242 | |
1243 | case Expr::CXXBindTemporaryExprClass: { |
1244 | auto *BTE = cast<CXXBindTemporaryExpr>(Val: S); |
1245 | // The bound temporary has to be destroyed again, which might throw. |
1246 | CanThrowResult CT = |
1247 | canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor()); |
1248 | if (CT == CT_Can) |
1249 | return CT; |
1250 | return mergeCanThrow(CT1: CT, CT2: canSubStmtsThrow(*this, BTE)); |
1251 | } |
1252 | |
1253 | case Expr::PseudoObjectExprClass: { |
1254 | auto *POE = cast<PseudoObjectExpr>(Val: S); |
1255 | CanThrowResult CT = CT_Cannot; |
1256 | for (const Expr *E : POE->semantics()) { |
1257 | CT = mergeCanThrow(CT1: CT, CT2: canThrow(E)); |
1258 | if (CT == CT_Can) |
1259 | break; |
1260 | } |
1261 | return CT; |
1262 | } |
1263 | |
1264 | // ObjC message sends are like function calls, but never have exception |
1265 | // specs. |
1266 | case Expr::ObjCMessageExprClass: |
1267 | case Expr::ObjCPropertyRefExprClass: |
1268 | case Expr::ObjCSubscriptRefExprClass: |
1269 | return CT_Can; |
1270 | |
1271 | // All the ObjC literals that are implemented as calls are |
1272 | // potentially throwing unless we decide to close off that |
1273 | // possibility. |
1274 | case Expr::ObjCArrayLiteralClass: |
1275 | case Expr::ObjCDictionaryLiteralClass: |
1276 | case Expr::ObjCBoxedExprClass: |
1277 | return CT_Can; |
1278 | |
1279 | // Many other things have subexpressions, so we have to test those. |
1280 | // Some are simple: |
1281 | case Expr::CoawaitExprClass: |
1282 | case Expr::ConditionalOperatorClass: |
1283 | case Expr::CoyieldExprClass: |
1284 | case Expr::CXXRewrittenBinaryOperatorClass: |
1285 | case Expr::CXXStdInitializerListExprClass: |
1286 | case Expr::DesignatedInitExprClass: |
1287 | case Expr::DesignatedInitUpdateExprClass: |
1288 | case Expr::ExprWithCleanupsClass: |
1289 | case Expr::ExtVectorElementExprClass: |
1290 | case Expr::InitListExprClass: |
1291 | case Expr::ArrayInitLoopExprClass: |
1292 | case Expr::MemberExprClass: |
1293 | case Expr::ObjCIsaExprClass: |
1294 | case Expr::ObjCIvarRefExprClass: |
1295 | case Expr::ParenExprClass: |
1296 | case Expr::ParenListExprClass: |
1297 | case Expr::ShuffleVectorExprClass: |
1298 | case Expr::StmtExprClass: |
1299 | case Expr::ConvertVectorExprClass: |
1300 | case Expr::VAArgExprClass: |
1301 | case Expr::CXXParenListInitExprClass: |
1302 | return canSubStmtsThrow(Self&: *this, S); |
1303 | |
1304 | case Expr::CompoundLiteralExprClass: |
1305 | case Expr::CXXConstCastExprClass: |
1306 | case Expr::CXXAddrspaceCastExprClass: |
1307 | case Expr::CXXReinterpretCastExprClass: |
1308 | case Expr::BuiltinBitCastExprClass: |
1309 | // FIXME: Properly determine whether a variably-modified type can throw. |
1310 | if (cast<Expr>(Val: S)->getType()->isVariablyModifiedType()) |
1311 | return CT_Can; |
1312 | return canSubStmtsThrow(Self&: *this, S); |
1313 | |
1314 | // Some might be dependent for other reasons. |
1315 | case Expr::ArraySubscriptExprClass: |
1316 | case Expr::MatrixSubscriptExprClass: |
1317 | case Expr::OMPArraySectionExprClass: |
1318 | case Expr::OMPArrayShapingExprClass: |
1319 | case Expr::OMPIteratorExprClass: |
1320 | case Expr::BinaryOperatorClass: |
1321 | case Expr::DependentCoawaitExprClass: |
1322 | case Expr::CompoundAssignOperatorClass: |
1323 | case Expr::CStyleCastExprClass: |
1324 | case Expr::CXXStaticCastExprClass: |
1325 | case Expr::CXXFunctionalCastExprClass: |
1326 | case Expr::ImplicitCastExprClass: |
1327 | case Expr::MaterializeTemporaryExprClass: |
1328 | case Expr::UnaryOperatorClass: { |
1329 | // FIXME: Properly determine whether a variably-modified type can throw. |
1330 | if (auto *CE = dyn_cast<CastExpr>(Val: S)) |
1331 | if (CE->getType()->isVariablyModifiedType()) |
1332 | return CT_Can; |
1333 | CanThrowResult CT = |
1334 | cast<Expr>(Val: S)->isTypeDependent() ? CT_Dependent : CT_Cannot; |
1335 | return mergeCanThrow(CT1: CT, CT2: canSubStmtsThrow(Self&: *this, S)); |
1336 | } |
1337 | |
1338 | case Expr::CXXDefaultArgExprClass: |
1339 | return canThrow(cast<CXXDefaultArgExpr>(Val: S)->getExpr()); |
1340 | |
1341 | case Expr::CXXDefaultInitExprClass: |
1342 | return canThrow(cast<CXXDefaultInitExpr>(Val: S)->getExpr()); |
1343 | |
1344 | case Expr::ChooseExprClass: { |
1345 | auto *CE = cast<ChooseExpr>(Val: S); |
1346 | if (CE->isTypeDependent() || CE->isValueDependent()) |
1347 | return CT_Dependent; |
1348 | return canThrow(CE->getChosenSubExpr()); |
1349 | } |
1350 | |
1351 | case Expr::GenericSelectionExprClass: |
1352 | if (cast<GenericSelectionExpr>(Val: S)->isResultDependent()) |
1353 | return CT_Dependent; |
1354 | return canThrow(cast<GenericSelectionExpr>(Val: S)->getResultExpr()); |
1355 | |
1356 | // Some expressions are always dependent. |
1357 | case Expr::CXXDependentScopeMemberExprClass: |
1358 | case Expr::CXXUnresolvedConstructExprClass: |
1359 | case Expr::DependentScopeDeclRefExprClass: |
1360 | case Expr::CXXFoldExprClass: |
1361 | case Expr::RecoveryExprClass: |
1362 | return CT_Dependent; |
1363 | |
1364 | case Expr::AsTypeExprClass: |
1365 | case Expr::BinaryConditionalOperatorClass: |
1366 | case Expr::BlockExprClass: |
1367 | case Expr::CUDAKernelCallExprClass: |
1368 | case Expr::DeclRefExprClass: |
1369 | case Expr::ObjCBridgedCastExprClass: |
1370 | case Expr::ObjCIndirectCopyRestoreExprClass: |
1371 | case Expr::ObjCProtocolExprClass: |
1372 | case Expr::ObjCSelectorExprClass: |
1373 | case Expr::ObjCAvailabilityCheckExprClass: |
1374 | case Expr::OffsetOfExprClass: |
1375 | case Expr::PackExpansionExprClass: |
1376 | case Expr::SubstNonTypeTemplateParmExprClass: |
1377 | case Expr::SubstNonTypeTemplateParmPackExprClass: |
1378 | case Expr::FunctionParmPackExprClass: |
1379 | case Expr::UnaryExprOrTypeTraitExprClass: |
1380 | case Expr::UnresolvedLookupExprClass: |
1381 | case Expr::UnresolvedMemberExprClass: |
1382 | case Expr::TypoExprClass: |
1383 | // FIXME: Many of the above can throw. |
1384 | return CT_Cannot; |
1385 | |
1386 | case Expr::AddrLabelExprClass: |
1387 | case Expr::ArrayTypeTraitExprClass: |
1388 | case Expr::AtomicExprClass: |
1389 | case Expr::TypeTraitExprClass: |
1390 | case Expr::CXXBoolLiteralExprClass: |
1391 | case Expr::CXXNoexceptExprClass: |
1392 | case Expr::CXXNullPtrLiteralExprClass: |
1393 | case Expr::CXXPseudoDestructorExprClass: |
1394 | case Expr::CXXScalarValueInitExprClass: |
1395 | case Expr::CXXThisExprClass: |
1396 | case Expr::CXXUuidofExprClass: |
1397 | case Expr::CharacterLiteralClass: |
1398 | case Expr::ExpressionTraitExprClass: |
1399 | case Expr::FloatingLiteralClass: |
1400 | case Expr::GNUNullExprClass: |
1401 | case Expr::ImaginaryLiteralClass: |
1402 | case Expr::ImplicitValueInitExprClass: |
1403 | case Expr::IntegerLiteralClass: |
1404 | case Expr::FixedPointLiteralClass: |
1405 | case Expr::ArrayInitIndexExprClass: |
1406 | case Expr::NoInitExprClass: |
1407 | case Expr::ObjCEncodeExprClass: |
1408 | case Expr::ObjCStringLiteralClass: |
1409 | case Expr::ObjCBoolLiteralExprClass: |
1410 | case Expr::OpaqueValueExprClass: |
1411 | case Expr::PredefinedExprClass: |
1412 | case Expr::SizeOfPackExprClass: |
1413 | case Expr::PackIndexingExprClass: |
1414 | case Expr::StringLiteralClass: |
1415 | case Expr::SourceLocExprClass: |
1416 | case Expr::ConceptSpecializationExprClass: |
1417 | case Expr::RequiresExprClass: |
1418 | // These expressions can never throw. |
1419 | return CT_Cannot; |
1420 | |
1421 | case Expr::MSPropertyRefExprClass: |
1422 | case Expr::MSPropertySubscriptExprClass: |
1423 | llvm_unreachable("Invalid class for expression" ); |
1424 | |
1425 | // Most statements can throw if any substatement can throw. |
1426 | case Stmt::OpenACCComputeConstructClass: |
1427 | case Stmt::AttributedStmtClass: |
1428 | case Stmt::BreakStmtClass: |
1429 | case Stmt::CapturedStmtClass: |
1430 | case Stmt::CaseStmtClass: |
1431 | case Stmt::CompoundStmtClass: |
1432 | case Stmt::ContinueStmtClass: |
1433 | case Stmt::CoreturnStmtClass: |
1434 | case Stmt::CoroutineBodyStmtClass: |
1435 | case Stmt::CXXCatchStmtClass: |
1436 | case Stmt::CXXForRangeStmtClass: |
1437 | case Stmt::DefaultStmtClass: |
1438 | case Stmt::DoStmtClass: |
1439 | case Stmt::ForStmtClass: |
1440 | case Stmt::GCCAsmStmtClass: |
1441 | case Stmt::GotoStmtClass: |
1442 | case Stmt::IndirectGotoStmtClass: |
1443 | case Stmt::LabelStmtClass: |
1444 | case Stmt::MSAsmStmtClass: |
1445 | case Stmt::MSDependentExistsStmtClass: |
1446 | case Stmt::NullStmtClass: |
1447 | case Stmt::ObjCAtCatchStmtClass: |
1448 | case Stmt::ObjCAtFinallyStmtClass: |
1449 | case Stmt::ObjCAtSynchronizedStmtClass: |
1450 | case Stmt::ObjCAutoreleasePoolStmtClass: |
1451 | case Stmt::ObjCForCollectionStmtClass: |
1452 | case Stmt::OMPAtomicDirectiveClass: |
1453 | case Stmt::OMPBarrierDirectiveClass: |
1454 | case Stmt::OMPCancelDirectiveClass: |
1455 | case Stmt::OMPCancellationPointDirectiveClass: |
1456 | case Stmt::OMPCriticalDirectiveClass: |
1457 | case Stmt::OMPDistributeDirectiveClass: |
1458 | case Stmt::OMPDistributeParallelForDirectiveClass: |
1459 | case Stmt::OMPDistributeParallelForSimdDirectiveClass: |
1460 | case Stmt::OMPDistributeSimdDirectiveClass: |
1461 | case Stmt::OMPFlushDirectiveClass: |
1462 | case Stmt::OMPDepobjDirectiveClass: |
1463 | case Stmt::OMPScanDirectiveClass: |
1464 | case Stmt::OMPForDirectiveClass: |
1465 | case Stmt::OMPForSimdDirectiveClass: |
1466 | case Stmt::OMPMasterDirectiveClass: |
1467 | case Stmt::OMPMasterTaskLoopDirectiveClass: |
1468 | case Stmt::OMPMaskedTaskLoopDirectiveClass: |
1469 | case Stmt::OMPMasterTaskLoopSimdDirectiveClass: |
1470 | case Stmt::OMPMaskedTaskLoopSimdDirectiveClass: |
1471 | case Stmt::OMPOrderedDirectiveClass: |
1472 | case Stmt::OMPCanonicalLoopClass: |
1473 | case Stmt::OMPParallelDirectiveClass: |
1474 | case Stmt::OMPParallelForDirectiveClass: |
1475 | case Stmt::OMPParallelForSimdDirectiveClass: |
1476 | case Stmt::OMPParallelMasterDirectiveClass: |
1477 | case Stmt::OMPParallelMaskedDirectiveClass: |
1478 | case Stmt::OMPParallelMasterTaskLoopDirectiveClass: |
1479 | case Stmt::OMPParallelMaskedTaskLoopDirectiveClass: |
1480 | case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: |
1481 | case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass: |
1482 | case Stmt::OMPParallelSectionsDirectiveClass: |
1483 | case Stmt::OMPSectionDirectiveClass: |
1484 | case Stmt::OMPSectionsDirectiveClass: |
1485 | case Stmt::OMPSimdDirectiveClass: |
1486 | case Stmt::OMPTileDirectiveClass: |
1487 | case Stmt::OMPUnrollDirectiveClass: |
1488 | case Stmt::OMPSingleDirectiveClass: |
1489 | case Stmt::OMPTargetDataDirectiveClass: |
1490 | case Stmt::OMPTargetDirectiveClass: |
1491 | case Stmt::OMPTargetEnterDataDirectiveClass: |
1492 | case Stmt::OMPTargetExitDataDirectiveClass: |
1493 | case Stmt::OMPTargetParallelDirectiveClass: |
1494 | case Stmt::OMPTargetParallelForDirectiveClass: |
1495 | case Stmt::OMPTargetParallelForSimdDirectiveClass: |
1496 | case Stmt::OMPTargetSimdDirectiveClass: |
1497 | case Stmt::OMPTargetTeamsDirectiveClass: |
1498 | case Stmt::OMPTargetTeamsDistributeDirectiveClass: |
1499 | case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: |
1500 | case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: |
1501 | case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: |
1502 | case Stmt::OMPTargetUpdateDirectiveClass: |
1503 | case Stmt::OMPScopeDirectiveClass: |
1504 | case Stmt::OMPTaskDirectiveClass: |
1505 | case Stmt::OMPTaskgroupDirectiveClass: |
1506 | case Stmt::OMPTaskLoopDirectiveClass: |
1507 | case Stmt::OMPTaskLoopSimdDirectiveClass: |
1508 | case Stmt::OMPTaskwaitDirectiveClass: |
1509 | case Stmt::OMPTaskyieldDirectiveClass: |
1510 | case Stmt::OMPErrorDirectiveClass: |
1511 | case Stmt::OMPTeamsDirectiveClass: |
1512 | case Stmt::OMPTeamsDistributeDirectiveClass: |
1513 | case Stmt::OMPTeamsDistributeParallelForDirectiveClass: |
1514 | case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: |
1515 | case Stmt::OMPTeamsDistributeSimdDirectiveClass: |
1516 | case Stmt::OMPInteropDirectiveClass: |
1517 | case Stmt::OMPDispatchDirectiveClass: |
1518 | case Stmt::OMPMaskedDirectiveClass: |
1519 | case Stmt::OMPMetaDirectiveClass: |
1520 | case Stmt::OMPGenericLoopDirectiveClass: |
1521 | case Stmt::OMPTeamsGenericLoopDirectiveClass: |
1522 | case Stmt::OMPTargetTeamsGenericLoopDirectiveClass: |
1523 | case Stmt::OMPParallelGenericLoopDirectiveClass: |
1524 | case Stmt::OMPTargetParallelGenericLoopDirectiveClass: |
1525 | case Stmt::ReturnStmtClass: |
1526 | case Stmt::SEHExceptStmtClass: |
1527 | case Stmt::SEHFinallyStmtClass: |
1528 | case Stmt::SEHLeaveStmtClass: |
1529 | case Stmt::SEHTryStmtClass: |
1530 | case Stmt::SwitchStmtClass: |
1531 | case Stmt::WhileStmtClass: |
1532 | return canSubStmtsThrow(Self&: *this, S); |
1533 | |
1534 | case Stmt::DeclStmtClass: { |
1535 | CanThrowResult CT = CT_Cannot; |
1536 | for (const Decl *D : cast<DeclStmt>(Val: S)->decls()) { |
1537 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) |
1538 | CT = mergeCanThrow(CT1: CT, CT2: canVarDeclThrow(Self&: *this, VD)); |
1539 | |
1540 | // FIXME: Properly determine whether a variably-modified type can throw. |
1541 | if (auto *TND = dyn_cast<TypedefNameDecl>(Val: D)) |
1542 | if (TND->getUnderlyingType()->isVariablyModifiedType()) |
1543 | return CT_Can; |
1544 | if (auto *VD = dyn_cast<ValueDecl>(Val: D)) |
1545 | if (VD->getType()->isVariablyModifiedType()) |
1546 | return CT_Can; |
1547 | } |
1548 | return CT; |
1549 | } |
1550 | |
1551 | case Stmt::IfStmtClass: { |
1552 | auto *IS = cast<IfStmt>(Val: S); |
1553 | CanThrowResult CT = CT_Cannot; |
1554 | if (const Stmt *Init = IS->getInit()) |
1555 | CT = mergeCanThrow(CT1: CT, CT2: canThrow(S: Init)); |
1556 | if (const Stmt *CondDS = IS->getConditionVariableDeclStmt()) |
1557 | CT = mergeCanThrow(CT1: CT, CT2: canThrow(S: CondDS)); |
1558 | CT = mergeCanThrow(CT1: CT, CT2: canThrow(IS->getCond())); |
1559 | |
1560 | // For 'if constexpr', consider only the non-discarded case. |
1561 | // FIXME: We should add a DiscardedStmt marker to the AST. |
1562 | if (std::optional<const Stmt *> Case = IS->getNondiscardedCase(Ctx: Context)) |
1563 | return *Case ? mergeCanThrow(CT1: CT, CT2: canThrow(S: *Case)) : CT; |
1564 | |
1565 | CanThrowResult Then = canThrow(S: IS->getThen()); |
1566 | CanThrowResult Else = IS->getElse() ? canThrow(S: IS->getElse()) : CT_Cannot; |
1567 | if (Then == Else) |
1568 | return mergeCanThrow(CT1: CT, CT2: Then); |
1569 | |
1570 | // For a dependent 'if constexpr', the result is dependent if it depends on |
1571 | // the value of the condition. |
1572 | return mergeCanThrow(CT1: CT, CT2: IS->isConstexpr() ? CT_Dependent |
1573 | : mergeCanThrow(CT1: Then, CT2: Else)); |
1574 | } |
1575 | |
1576 | case Stmt::CXXTryStmtClass: { |
1577 | auto *TS = cast<CXXTryStmt>(Val: S); |
1578 | // try /*...*/ catch (...) { H } can throw only if H can throw. |
1579 | // Any other try-catch can throw if any substatement can throw. |
1580 | const CXXCatchStmt *FinalHandler = TS->getHandler(i: TS->getNumHandlers() - 1); |
1581 | if (!FinalHandler->getExceptionDecl()) |
1582 | return canThrow(S: FinalHandler->getHandlerBlock()); |
1583 | return canSubStmtsThrow(Self&: *this, S); |
1584 | } |
1585 | |
1586 | case Stmt::ObjCAtThrowStmtClass: |
1587 | return CT_Can; |
1588 | |
1589 | case Stmt::ObjCAtTryStmtClass: { |
1590 | auto *TS = cast<ObjCAtTryStmt>(Val: S); |
1591 | |
1592 | // @catch(...) need not be last in Objective-C. Walk backwards until we |
1593 | // see one or hit the @try. |
1594 | CanThrowResult CT = CT_Cannot; |
1595 | if (const Stmt *Finally = TS->getFinallyStmt()) |
1596 | CT = mergeCanThrow(CT1: CT, CT2: canThrow(S: Finally)); |
1597 | for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) { |
1598 | const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I: I - 1); |
1599 | CT = mergeCanThrow(CT1: CT, CT2: canThrow(S: Catch)); |
1600 | // If we reach a @catch(...), no earlier exceptions can escape. |
1601 | if (Catch->hasEllipsis()) |
1602 | return CT; |
1603 | } |
1604 | |
1605 | // Didn't find an @catch(...). Exceptions from the @try body can escape. |
1606 | return mergeCanThrow(CT1: CT, CT2: canThrow(S: TS->getTryBody())); |
1607 | } |
1608 | |
1609 | case Stmt::SYCLUniqueStableNameExprClass: |
1610 | return CT_Cannot; |
1611 | case Stmt::NoStmtClass: |
1612 | llvm_unreachable("Invalid class for statement" ); |
1613 | } |
1614 | llvm_unreachable("Bogus StmtClass" ); |
1615 | } |
1616 | |
1617 | } // end namespace clang |
1618 | |