1//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis member access expressions.
10//
11//===----------------------------------------------------------------------===//
12#include "clang/Sema/Overload.h"
13#include "clang/AST/ASTLambda.h"
14#include "clang/AST/DeclCXX.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Sema/Lookup.h"
21#include "clang/Sema/Scope.h"
22#include "clang/Sema/ScopeInfo.h"
23#include "clang/Sema/SemaInternal.h"
24
25using namespace clang;
26using namespace sema;
27
28typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
29
30/// Determines if the given class is provably not derived from all of
31/// the prospective base classes.
32static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
33 const BaseSet &Bases) {
34 auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
35 return !Bases.count(Ptr: Base->getCanonicalDecl());
36 };
37 return BaseIsNotInSet(Record) && Record->forallBases(BaseMatches: BaseIsNotInSet);
38}
39
40enum IMAKind {
41 /// The reference is definitely not an instance member access.
42 IMA_Static,
43
44 /// The reference may be an implicit instance member access.
45 IMA_Mixed,
46
47 /// The reference may be to an instance member, but it might be invalid if
48 /// so, because the context is not an instance method.
49 IMA_Mixed_StaticOrExplicitContext,
50
51 /// The reference may be to an instance member, but it is invalid if
52 /// so, because the context is from an unrelated class.
53 IMA_Mixed_Unrelated,
54
55 /// The reference is definitely an implicit instance member access.
56 IMA_Instance,
57
58 /// The reference may be to an unresolved using declaration.
59 IMA_Unresolved,
60
61 /// The reference is a contextually-permitted abstract member reference.
62 IMA_Abstract,
63
64 /// The reference may be to an unresolved using declaration and the
65 /// context is not an instance method.
66 IMA_Unresolved_StaticOrExplicitContext,
67
68 // The reference refers to a field which is not a member of the containing
69 // class, which is allowed because we're in C++11 mode and the context is
70 // unevaluated.
71 IMA_Field_Uneval_Context,
72
73 /// All possible referrents are instance members and the current
74 /// context is not an instance method.
75 IMA_Error_StaticOrExplicitContext,
76
77 /// All possible referrents are instance members of an unrelated
78 /// class.
79 IMA_Error_Unrelated
80};
81
82/// The given lookup names class member(s) and is not being used for
83/// an address-of-member expression. Classify the type of access
84/// according to whether it's possible that this reference names an
85/// instance member. This is best-effort in dependent contexts; it is okay to
86/// conservatively answer "yes", in which case some errors will simply
87/// not be caught until template-instantiation.
88static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
89 const LookupResult &R) {
90 assert(!R.empty() && (*R.begin())->isCXXClassMember());
91
92 DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
93
94 bool isStaticOrExplicitContext =
95 SemaRef.CXXThisTypeOverride.isNull() &&
96 (!isa<CXXMethodDecl>(Val: DC) || cast<CXXMethodDecl>(Val: DC)->isStatic() ||
97 cast<CXXMethodDecl>(Val: DC)->isExplicitObjectMemberFunction());
98
99 if (R.isUnresolvableResult())
100 return isStaticOrExplicitContext ? IMA_Unresolved_StaticOrExplicitContext
101 : IMA_Unresolved;
102
103 // Collect all the declaring classes of instance members we find.
104 bool hasNonInstance = false;
105 bool isField = false;
106 BaseSet Classes;
107 for (NamedDecl *D : R) {
108 // Look through any using decls.
109 D = D->getUnderlyingDecl();
110
111 if (D->isCXXInstanceMember()) {
112 isField |= isa<FieldDecl>(Val: D) || isa<MSPropertyDecl>(Val: D) ||
113 isa<IndirectFieldDecl>(Val: D);
114
115 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
116 Classes.insert(Ptr: R->getCanonicalDecl());
117 } else
118 hasNonInstance = true;
119 }
120
121 // If we didn't find any instance members, it can't be an implicit
122 // member reference.
123 if (Classes.empty())
124 return IMA_Static;
125
126 // C++11 [expr.prim.general]p12:
127 // An id-expression that denotes a non-static data member or non-static
128 // member function of a class can only be used:
129 // (...)
130 // - if that id-expression denotes a non-static data member and it
131 // appears in an unevaluated operand.
132 //
133 // This rule is specific to C++11. However, we also permit this form
134 // in unevaluated inline assembly operands, like the operand to a SIZE.
135 IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
136 assert(!AbstractInstanceResult);
137 switch (SemaRef.ExprEvalContexts.back().Context) {
138 case Sema::ExpressionEvaluationContext::Unevaluated:
139 case Sema::ExpressionEvaluationContext::UnevaluatedList:
140 if (isField && SemaRef.getLangOpts().CPlusPlus11)
141 AbstractInstanceResult = IMA_Field_Uneval_Context;
142 break;
143
144 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
145 AbstractInstanceResult = IMA_Abstract;
146 break;
147
148 case Sema::ExpressionEvaluationContext::DiscardedStatement:
149 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
150 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
151 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
152 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
153 break;
154 }
155
156 // If the current context is not an instance method, it can't be
157 // an implicit member reference.
158 if (isStaticOrExplicitContext) {
159 if (hasNonInstance)
160 return IMA_Mixed_StaticOrExplicitContext;
161
162 return AbstractInstanceResult ? AbstractInstanceResult
163 : IMA_Error_StaticOrExplicitContext;
164 }
165
166 CXXRecordDecl *contextClass;
167 if (auto *MD = dyn_cast<CXXMethodDecl>(Val: DC))
168 contextClass = MD->getParent()->getCanonicalDecl();
169 else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: DC))
170 contextClass = RD;
171 else
172 return AbstractInstanceResult ? AbstractInstanceResult
173 : IMA_Error_StaticOrExplicitContext;
174
175 // [class.mfct.non-static]p3:
176 // ...is used in the body of a non-static member function of class X,
177 // if name lookup (3.4.1) resolves the name in the id-expression to a
178 // non-static non-type member of some class C [...]
179 // ...if C is not X or a base class of X, the class member access expression
180 // is ill-formed.
181 if (R.getNamingClass() &&
182 contextClass->getCanonicalDecl() !=
183 R.getNamingClass()->getCanonicalDecl()) {
184 // If the naming class is not the current context, this was a qualified
185 // member name lookup, and it's sufficient to check that we have the naming
186 // class as a base class.
187 Classes.clear();
188 Classes.insert(Ptr: R.getNamingClass()->getCanonicalDecl());
189 }
190
191 // If we can prove that the current context is unrelated to all the
192 // declaring classes, it can't be an implicit member reference (in
193 // which case it's an error if any of those members are selected).
194 if (isProvablyNotDerivedFrom(SemaRef, Record: contextClass, Bases: Classes))
195 return hasNonInstance ? IMA_Mixed_Unrelated :
196 AbstractInstanceResult ? AbstractInstanceResult :
197 IMA_Error_Unrelated;
198
199 return (hasNonInstance ? IMA_Mixed : IMA_Instance);
200}
201
202/// Diagnose a reference to a field with no object available.
203static void diagnoseInstanceReference(Sema &SemaRef,
204 const CXXScopeSpec &SS,
205 NamedDecl *Rep,
206 const DeclarationNameInfo &nameInfo) {
207 SourceLocation Loc = nameInfo.getLoc();
208 SourceRange Range(Loc);
209 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
210
211 // Look through using shadow decls and aliases.
212 Rep = Rep->getUnderlyingDecl();
213
214 DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
215 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: FunctionLevelDC);
216 CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
217 CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
218
219 bool InStaticMethod = Method && Method->isStatic();
220 bool InExplicitObjectMethod =
221 Method && Method->isExplicitObjectMemberFunction();
222 bool IsField = isa<FieldDecl>(Val: Rep) || isa<IndirectFieldDecl>(Val: Rep);
223
224 std::string Replacement;
225 if (InExplicitObjectMethod) {
226 DeclarationName N = Method->getParamDecl(0)->getDeclName();
227 if (!N.isEmpty()) {
228 Replacement.append(str: N.getAsString());
229 Replacement.append(s: ".");
230 }
231 }
232 if (IsField && InStaticMethod)
233 // "invalid use of member 'x' in static member function"
234 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method)
235 << Range << nameInfo.getName() << /*static*/ 0;
236 else if (IsField && InExplicitObjectMethod) {
237 auto Diag = SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method)
238 << Range << nameInfo.getName() << /*explicit*/ 1;
239 if (!Replacement.empty())
240 Diag << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: Replacement);
241 } else if (ContextClass && RepClass && SS.isEmpty() &&
242 !InExplicitObjectMethod && !InStaticMethod &&
243 !RepClass->Equals(ContextClass) &&
244 RepClass->Encloses(ContextClass))
245 // Unqualified lookup in a non-static member function found a member of an
246 // enclosing class.
247 SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
248 << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
249 else if (IsField)
250 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
251 << nameInfo.getName() << Range;
252 else if (!InExplicitObjectMethod)
253 SemaRef.Diag(Loc, diag::err_member_call_without_object)
254 << Range << /*static*/ 0;
255 else {
256 if (const auto *Tpl = dyn_cast<FunctionTemplateDecl>(Val: Rep))
257 Rep = Tpl->getTemplatedDecl();
258 const auto *Callee = cast<CXXMethodDecl>(Val: Rep);
259 auto Diag = SemaRef.Diag(Loc, diag::err_member_call_without_object)
260 << Range << Callee->isExplicitObjectMemberFunction();
261 if (!Replacement.empty())
262 Diag << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: Replacement);
263 }
264}
265
266/// Builds an expression which might be an implicit member expression.
267ExprResult Sema::BuildPossibleImplicitMemberExpr(
268 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
269 const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
270 UnresolvedLookupExpr *AsULE) {
271 switch (ClassifyImplicitMemberAccess(SemaRef&: *this, R)) {
272 case IMA_Instance:
273 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, IsDefiniteInstance: true, S);
274
275 case IMA_Mixed:
276 case IMA_Mixed_Unrelated:
277 case IMA_Unresolved:
278 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, IsDefiniteInstance: false,
279 S);
280
281 case IMA_Field_Uneval_Context:
282 Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
283 << R.getLookupNameInfo().getName();
284 [[fallthrough]];
285 case IMA_Static:
286 case IMA_Abstract:
287 case IMA_Mixed_StaticOrExplicitContext:
288 case IMA_Unresolved_StaticOrExplicitContext:
289 if (TemplateArgs || TemplateKWLoc.isValid())
290 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL: false, TemplateArgs);
291 return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, NeedsADL: false);
292
293 case IMA_Error_StaticOrExplicitContext:
294 case IMA_Error_Unrelated:
295 diagnoseInstanceReference(SemaRef&: *this, SS, Rep: R.getRepresentativeDecl(),
296 nameInfo: R.getLookupNameInfo());
297 return ExprError();
298 }
299
300 llvm_unreachable("unexpected instance member access kind");
301}
302
303/// Determine whether input char is from rgba component set.
304static bool
305IsRGBA(char c) {
306 switch (c) {
307 case 'r':
308 case 'g':
309 case 'b':
310 case 'a':
311 return true;
312 default:
313 return false;
314 }
315}
316
317// OpenCL v1.1, s6.1.7
318// The component swizzle length must be in accordance with the acceptable
319// vector sizes.
320static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
321{
322 return (len >= 1 && len <= 4) || len == 8 || len == 16;
323}
324
325/// Check an ext-vector component access expression.
326///
327/// VK should be set in advance to the value kind of the base
328/// expression.
329static QualType
330CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
331 SourceLocation OpLoc, const IdentifierInfo *CompName,
332 SourceLocation CompLoc) {
333 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
334 // see FIXME there.
335 //
336 // FIXME: This logic can be greatly simplified by splitting it along
337 // halving/not halving and reworking the component checking.
338 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
339
340 // The vector accessor can't exceed the number of elements.
341 const char *compStr = CompName->getNameStart();
342
343 // This flag determines whether or not the component is one of the four
344 // special names that indicate a subset of exactly half the elements are
345 // to be selected.
346 bool HalvingSwizzle = false;
347
348 // This flag determines whether or not CompName has an 's' char prefix,
349 // indicating that it is a string of hex values to be used as vector indices.
350 bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
351
352 bool HasRepeated = false;
353 bool HasIndex[16] = {};
354
355 int Idx;
356
357 // Check that we've found one of the special components, or that the component
358 // names must come from the same set.
359 if (!strcmp(s1: compStr, s2: "hi") || !strcmp(s1: compStr, s2: "lo") ||
360 !strcmp(s1: compStr, s2: "even") || !strcmp(s1: compStr, s2: "odd")) {
361 HalvingSwizzle = true;
362 } else if (!HexSwizzle &&
363 (Idx = vecType->getPointAccessorIdx(c: *compStr)) != -1) {
364 bool HasRGBA = IsRGBA(c: *compStr);
365 do {
366 // Ensure that xyzw and rgba components don't intermingle.
367 if (HasRGBA != IsRGBA(c: *compStr))
368 break;
369 if (HasIndex[Idx]) HasRepeated = true;
370 HasIndex[Idx] = true;
371 compStr++;
372 } while (*compStr && (Idx = vecType->getPointAccessorIdx(c: *compStr)) != -1);
373
374 // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
375 if (HasRGBA || (*compStr && IsRGBA(c: *compStr))) {
376 if (S.getLangOpts().OpenCL &&
377 S.getLangOpts().getOpenCLCompatibleVersion() < 300) {
378 const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
379 S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
380 << StringRef(DiagBegin, 1) << SourceRange(CompLoc);
381 }
382 }
383 } else {
384 if (HexSwizzle) compStr++;
385 while ((Idx = vecType->getNumericAccessorIdx(c: *compStr)) != -1) {
386 if (HasIndex[Idx]) HasRepeated = true;
387 HasIndex[Idx] = true;
388 compStr++;
389 }
390 }
391
392 if (!HalvingSwizzle && *compStr) {
393 // We didn't get to the end of the string. This means the component names
394 // didn't come from the same set *or* we encountered an illegal name.
395 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
396 << StringRef(compStr, 1) << SourceRange(CompLoc);
397 return QualType();
398 }
399
400 // Ensure no component accessor exceeds the width of the vector type it
401 // operates on.
402 if (!HalvingSwizzle) {
403 compStr = CompName->getNameStart();
404
405 if (HexSwizzle)
406 compStr++;
407
408 while (*compStr) {
409 if (!vecType->isAccessorWithinNumElements(c: *compStr++, isNumericAccessor: HexSwizzle)) {
410 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
411 << baseType << SourceRange(CompLoc);
412 return QualType();
413 }
414 }
415 }
416
417 // OpenCL mode requires swizzle length to be in accordance with accepted
418 // sizes. Clang however supports arbitrary lengths for other languages.
419 if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
420 unsigned SwizzleLength = CompName->getLength();
421
422 if (HexSwizzle)
423 SwizzleLength--;
424
425 if (IsValidOpenCLComponentSwizzleLength(len: SwizzleLength) == false) {
426 S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
427 << SwizzleLength << SourceRange(CompLoc);
428 return QualType();
429 }
430 }
431
432 // The component accessor looks fine - now we need to compute the actual type.
433 // The vector type is implied by the component accessor. For example,
434 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
435 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
436 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
437 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
438 : CompName->getLength();
439 if (HexSwizzle)
440 CompSize--;
441
442 if (CompSize == 1)
443 return vecType->getElementType();
444
445 if (HasRepeated)
446 VK = VK_PRValue;
447
448 QualType VT = S.Context.getExtVectorType(VectorType: vecType->getElementType(), NumElts: CompSize);
449 // Now look up the TypeDefDecl from the vector type. Without this,
450 // diagostics look bad. We want extended vector types to appear built-in.
451 for (Sema::ExtVectorDeclsType::iterator
452 I = S.ExtVectorDecls.begin(source: S.getExternalSource()),
453 E = S.ExtVectorDecls.end();
454 I != E; ++I) {
455 if ((*I)->getUnderlyingType() == VT)
456 return S.Context.getTypedefType(Decl: *I);
457 }
458
459 return VT; // should never get here (a typedef type should always be found).
460}
461
462static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
463 IdentifierInfo *Member,
464 const Selector &Sel,
465 ASTContext &Context) {
466 if (Member)
467 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
468 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
469 return PD;
470 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
471 return OMD;
472
473 for (const auto *I : PDecl->protocols()) {
474 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(PDecl: I, Member, Sel,
475 Context))
476 return D;
477 }
478 return nullptr;
479}
480
481static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
482 IdentifierInfo *Member,
483 const Selector &Sel,
484 ASTContext &Context) {
485 // Check protocols on qualified interfaces.
486 Decl *GDecl = nullptr;
487 for (const auto *I : QIdTy->quals()) {
488 if (Member)
489 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
490 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
491 GDecl = PD;
492 break;
493 }
494 // Also must look for a getter or setter name which uses property syntax.
495 if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
496 GDecl = OMD;
497 break;
498 }
499 }
500 if (!GDecl) {
501 for (const auto *I : QIdTy->quals()) {
502 // Search in the protocol-qualifier list of current protocol.
503 GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
504 if (GDecl)
505 return GDecl;
506 }
507 }
508 return GDecl;
509}
510
511ExprResult
512Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
513 bool IsArrow, SourceLocation OpLoc,
514 const CXXScopeSpec &SS,
515 SourceLocation TemplateKWLoc,
516 NamedDecl *FirstQualifierInScope,
517 const DeclarationNameInfo &NameInfo,
518 const TemplateArgumentListInfo *TemplateArgs) {
519 // Even in dependent contexts, try to diagnose base expressions with
520 // obviously wrong types, e.g.:
521 //
522 // T* t;
523 // t.f;
524 //
525 // In Obj-C++, however, the above expression is valid, since it could be
526 // accessing the 'f' property if T is an Obj-C interface. The extra check
527 // allows this, while still reporting an error if T is a struct pointer.
528 if (!IsArrow) {
529 const PointerType *PT = BaseType->getAs<PointerType>();
530 if (PT && (!getLangOpts().ObjC ||
531 PT->getPointeeType()->isRecordType())) {
532 assert(BaseExpr && "cannot happen with implicit member accesses");
533 Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
534 << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
535 return ExprError();
536 }
537 }
538
539 assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() ||
540 isDependentScopeSpecifier(SS) ||
541 (TemplateArgs && llvm::any_of(TemplateArgs->arguments(),
542 [](const TemplateArgumentLoc &Arg) {
543 return Arg.getArgument().isDependent();
544 })));
545
546 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
547 // must have pointer type, and the accessed type is the pointee.
548 return CXXDependentScopeMemberExpr::Create(
549 Ctx: Context, Base: BaseExpr, BaseType, IsArrow, OperatorLoc: OpLoc,
550 QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierFoundInScope: FirstQualifierInScope,
551 MemberNameInfo: NameInfo, TemplateArgs);
552}
553
554/// We know that the given qualified member reference points only to
555/// declarations which do not belong to the static type of the base
556/// expression. Diagnose the problem.
557static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
558 Expr *BaseExpr,
559 QualType BaseType,
560 const CXXScopeSpec &SS,
561 NamedDecl *rep,
562 const DeclarationNameInfo &nameInfo) {
563 // If this is an implicit member access, use a different set of
564 // diagnostics.
565 if (!BaseExpr)
566 return diagnoseInstanceReference(SemaRef, SS, Rep: rep, nameInfo);
567
568 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
569 << SS.getRange() << rep << BaseType;
570}
571
572// Check whether the declarations we found through a nested-name
573// specifier in a member expression are actually members of the base
574// type. The restriction here is:
575//
576// C++ [expr.ref]p2:
577// ... In these cases, the id-expression shall name a
578// member of the class or of one of its base classes.
579//
580// So it's perfectly legitimate for the nested-name specifier to name
581// an unrelated class, and for us to find an overload set including
582// decls from classes which are not superclasses, as long as the decl
583// we actually pick through overload resolution is from a superclass.
584bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
585 QualType BaseType,
586 const CXXScopeSpec &SS,
587 const LookupResult &R) {
588 CXXRecordDecl *BaseRecord =
589 cast_or_null<CXXRecordDecl>(Val: computeDeclContext(T: BaseType));
590 if (!BaseRecord) {
591 // We can't check this yet because the base type is still
592 // dependent.
593 assert(BaseType->isDependentType());
594 return false;
595 }
596
597 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
598 // If this is an implicit member reference and we find a
599 // non-instance member, it's not an error.
600 if (!BaseExpr && !(*I)->isCXXInstanceMember())
601 return false;
602
603 // Note that we use the DC of the decl, not the underlying decl.
604 DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext();
605 if (!DC->isRecord())
606 continue;
607
608 CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(Val: DC)->getCanonicalDecl();
609 if (BaseRecord->getCanonicalDecl() == MemberRecord ||
610 !BaseRecord->isProvablyNotDerivedFrom(Base: MemberRecord))
611 return false;
612 }
613
614 DiagnoseQualifiedMemberReference(SemaRef&: *this, BaseExpr, BaseType, SS,
615 rep: R.getRepresentativeDecl(),
616 nameInfo: R.getLookupNameInfo());
617 return true;
618}
619
620namespace {
621
622// Callback to only accept typo corrections that are either a ValueDecl or a
623// FunctionTemplateDecl and are declared in the current record or, for a C++
624// classes, one of its base classes.
625class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
626public:
627 explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
628 : Record(RTy->getDecl()) {
629 // Don't add bare keywords to the consumer since they will always fail
630 // validation by virtue of not being associated with any decls.
631 WantTypeSpecifiers = false;
632 WantExpressionKeywords = false;
633 WantCXXNamedCasts = false;
634 WantFunctionLikeCasts = false;
635 WantRemainingKeywords = false;
636 }
637
638 bool ValidateCandidate(const TypoCorrection &candidate) override {
639 NamedDecl *ND = candidate.getCorrectionDecl();
640 // Don't accept candidates that cannot be member functions, constants,
641 // variables, or templates.
642 if (!ND || !(isa<ValueDecl>(Val: ND) || isa<FunctionTemplateDecl>(Val: ND)))
643 return false;
644
645 // Accept candidates that occur in the current record.
646 if (Record->containsDecl(ND))
647 return true;
648
649 if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: Record)) {
650 // Accept candidates that occur in any of the current class' base classes.
651 for (const auto &BS : RD->bases()) {
652 if (const auto *BSTy = BS.getType()->getAs<RecordType>()) {
653 if (BSTy->getDecl()->containsDecl(ND))
654 return true;
655 }
656 }
657 }
658
659 return false;
660 }
661
662 std::unique_ptr<CorrectionCandidateCallback> clone() override {
663 return std::make_unique<RecordMemberExprValidatorCCC>(args&: *this);
664 }
665
666private:
667 const RecordDecl *const Record;
668};
669
670}
671
672static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
673 Expr *BaseExpr,
674 const RecordType *RTy,
675 SourceLocation OpLoc, bool IsArrow,
676 CXXScopeSpec &SS, bool HasTemplateArgs,
677 SourceLocation TemplateKWLoc,
678 TypoExpr *&TE) {
679 SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
680 RecordDecl *RDecl = RTy->getDecl();
681 if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
682 SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
683 diag::err_typecheck_incomplete_tag,
684 BaseRange))
685 return true;
686
687 if (HasTemplateArgs || TemplateKWLoc.isValid()) {
688 // LookupTemplateName doesn't expect these both to exist simultaneously.
689 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
690
691 bool MOUS;
692 return SemaRef.LookupTemplateName(R, S: nullptr, SS, ObjectType, EnteringContext: false, MemberOfUnknownSpecialization&: MOUS,
693 RequiredTemplate: TemplateKWLoc);
694 }
695
696 DeclContext *DC = RDecl;
697 if (SS.isSet()) {
698 // If the member name was a qualified-id, look into the
699 // nested-name-specifier.
700 DC = SemaRef.computeDeclContext(SS, EnteringContext: false);
701
702 if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
703 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
704 << SS.getRange() << DC;
705 return true;
706 }
707
708 assert(DC && "Cannot handle non-computable dependent contexts in lookup");
709
710 if (!isa<TypeDecl>(Val: DC)) {
711 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
712 << DC << SS.getRange();
713 return true;
714 }
715 }
716
717 // The record definition is complete, now look up the member.
718 SemaRef.LookupQualifiedName(R, LookupCtx: DC, SS);
719
720 if (!R.empty())
721 return false;
722
723 DeclarationName Typo = R.getLookupName();
724 SourceLocation TypoLoc = R.getNameLoc();
725
726 struct QueryState {
727 Sema &SemaRef;
728 DeclarationNameInfo NameInfo;
729 Sema::LookupNameKind LookupKind;
730 Sema::RedeclarationKind Redecl;
731 };
732 QueryState Q = {.SemaRef: R.getSema(), .NameInfo: R.getLookupNameInfo(), .LookupKind: R.getLookupKind(),
733 .Redecl: R.redeclarationKind()};
734 RecordMemberExprValidatorCCC CCC(RTy);
735 TE = SemaRef.CorrectTypoDelayed(
736 Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S: nullptr, SS: &SS, CCC,
737 TDG: [=, &SemaRef](const TypoCorrection &TC) {
738 if (TC) {
739 assert(!TC.isKeyword() &&
740 "Got a keyword as a correction for a member!");
741 bool DroppedSpecifier =
742 TC.WillReplaceSpecifier() &&
743 Typo.getAsString() == TC.getAsString(LO: SemaRef.getLangOpts());
744 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
745 << Typo << DC << DroppedSpecifier
746 << SS.getRange());
747 } else {
748 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
749 }
750 },
751 TRC: [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
752 LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
753 R.clear(); // Ensure there's no decls lingering in the shared state.
754 R.suppressDiagnostics();
755 R.setLookupName(TC.getCorrection());
756 for (NamedDecl *ND : TC)
757 R.addDecl(D: ND);
758 R.resolveKind();
759 return SemaRef.BuildMemberReferenceExpr(
760 Base: BaseExpr, BaseType: BaseExpr->getType(), OpLoc, IsArrow, SS, TemplateKWLoc: SourceLocation(),
761 FirstQualifierInScope: nullptr, R, TemplateArgs: nullptr, S: nullptr);
762 },
763 Mode: Sema::CTK_ErrorRecovery, MemberContext: DC);
764
765 return false;
766}
767
768static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
769 ExprResult &BaseExpr, bool &IsArrow,
770 SourceLocation OpLoc, CXXScopeSpec &SS,
771 Decl *ObjCImpDecl, bool HasTemplateArgs,
772 SourceLocation TemplateKWLoc);
773
774ExprResult
775Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
776 SourceLocation OpLoc, bool IsArrow,
777 CXXScopeSpec &SS,
778 SourceLocation TemplateKWLoc,
779 NamedDecl *FirstQualifierInScope,
780 const DeclarationNameInfo &NameInfo,
781 const TemplateArgumentListInfo *TemplateArgs,
782 const Scope *S,
783 ActOnMemberAccessExtraArgs *ExtraArgs) {
784 if (BaseType->isDependentType() ||
785 (SS.isSet() && isDependentScopeSpecifier(SS)) ||
786 NameInfo.getName().isDependentName())
787 return ActOnDependentMemberExpr(BaseExpr: Base, BaseType,
788 IsArrow, OpLoc,
789 SS, TemplateKWLoc, FirstQualifierInScope,
790 NameInfo, TemplateArgs);
791
792 LookupResult R(*this, NameInfo, LookupMemberName);
793
794 // Implicit member accesses.
795 if (!Base) {
796 TypoExpr *TE = nullptr;
797 QualType RecordTy = BaseType;
798 if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType();
799 if (LookupMemberExprInRecord(
800 SemaRef&: *this, R, BaseExpr: nullptr, RTy: RecordTy->castAs<RecordType>(), OpLoc, IsArrow,
801 SS, HasTemplateArgs: TemplateArgs != nullptr, TemplateKWLoc, TE))
802 return ExprError();
803 if (TE)
804 return TE;
805
806 // Explicit member accesses.
807 } else {
808 ExprResult BaseResult = Base;
809 ExprResult Result =
810 LookupMemberExpr(S&: *this, R, BaseExpr&: BaseResult, IsArrow, OpLoc, SS,
811 ObjCImpDecl: ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
812 HasTemplateArgs: TemplateArgs != nullptr, TemplateKWLoc);
813
814 if (BaseResult.isInvalid())
815 return ExprError();
816 Base = BaseResult.get();
817
818 if (Result.isInvalid())
819 return ExprError();
820
821 if (Result.get())
822 return Result;
823
824 // LookupMemberExpr can modify Base, and thus change BaseType
825 BaseType = Base->getType();
826 }
827
828 return BuildMemberReferenceExpr(Base, BaseType,
829 OpLoc, IsArrow, SS, TemplateKWLoc,
830 FirstQualifierInScope, R, TemplateArgs, S,
831 SuppressQualifierCheck: false, ExtraArgs);
832}
833
834ExprResult
835Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
836 SourceLocation loc,
837 IndirectFieldDecl *indirectField,
838 DeclAccessPair foundDecl,
839 Expr *baseObjectExpr,
840 SourceLocation opLoc) {
841 // First, build the expression that refers to the base object.
842
843 // Case 1: the base of the indirect field is not a field.
844 VarDecl *baseVariable = indirectField->getVarDecl();
845 CXXScopeSpec EmptySS;
846 if (baseVariable) {
847 assert(baseVariable->getType()->isRecordType());
848
849 // In principle we could have a member access expression that
850 // accesses an anonymous struct/union that's a static member of
851 // the base object's class. However, under the current standard,
852 // static data members cannot be anonymous structs or unions.
853 // Supporting this is as easy as building a MemberExpr here.
854 assert(!baseObjectExpr && "anonymous struct/union is static data member?");
855
856 DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
857
858 ExprResult result
859 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
860 if (result.isInvalid()) return ExprError();
861
862 baseObjectExpr = result.get();
863 }
864
865 assert((baseVariable || baseObjectExpr) &&
866 "referencing anonymous struct/union without a base variable or "
867 "expression");
868
869 // Build the implicit member references to the field of the
870 // anonymous struct/union.
871 Expr *result = baseObjectExpr;
872 IndirectFieldDecl::chain_iterator
873 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
874
875 // Case 2: the base of the indirect field is a field and the user
876 // wrote a member expression.
877 if (!baseVariable) {
878 FieldDecl *field = cast<FieldDecl>(Val: *FI);
879
880 bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
881
882 // Make a nameInfo that properly uses the anonymous name.
883 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
884
885 // Build the first member access in the chain with full information.
886 result =
887 BuildFieldReferenceExpr(BaseExpr: result, IsArrow: baseObjectIsPointer, OpLoc: SourceLocation(),
888 SS, Field: field, FoundDecl: foundDecl, MemberNameInfo: memberNameInfo)
889 .get();
890 if (!result)
891 return ExprError();
892 }
893
894 // In all cases, we should now skip the first declaration in the chain.
895 ++FI;
896
897 while (FI != FEnd) {
898 FieldDecl *field = cast<FieldDecl>(Val: *FI++);
899
900 // FIXME: these are somewhat meaningless
901 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
902 DeclAccessPair fakeFoundDecl =
903 DeclAccessPair::make(D: field, AS: field->getAccess());
904
905 result =
906 BuildFieldReferenceExpr(BaseExpr: result, /*isarrow*/ IsArrow: false, OpLoc: SourceLocation(),
907 SS: (FI == FEnd ? SS : EmptySS), Field: field,
908 FoundDecl: fakeFoundDecl, MemberNameInfo: memberNameInfo)
909 .get();
910 }
911
912 return result;
913}
914
915static ExprResult
916BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
917 const CXXScopeSpec &SS,
918 MSPropertyDecl *PD,
919 const DeclarationNameInfo &NameInfo) {
920 // Property names are always simple identifiers and therefore never
921 // require any interesting additional storage.
922 return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
923 S.Context.PseudoObjectTy, VK_LValue,
924 SS.getWithLocInContext(Context&: S.Context),
925 NameInfo.getLoc());
926}
927
928MemberExpr *Sema::BuildMemberExpr(
929 Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS,
930 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
931 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
932 QualType Ty, ExprValueKind VK, ExprObjectKind OK,
933 const TemplateArgumentListInfo *TemplateArgs) {
934 NestedNameSpecifierLoc NNS =
935 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
936 return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member,
937 FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty,
938 VK, OK, TemplateArgs);
939}
940
941MemberExpr *Sema::BuildMemberExpr(
942 Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
943 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
944 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
945 QualType Ty, ExprValueKind VK, ExprObjectKind OK,
946 const TemplateArgumentListInfo *TemplateArgs) {
947 assert((!IsArrow || Base->isPRValue()) &&
948 "-> base must be a pointer prvalue");
949 MemberExpr *E =
950 MemberExpr::Create(C: Context, Base, IsArrow, OperatorLoc: OpLoc, QualifierLoc: NNS, TemplateKWLoc,
951 MemberDecl: Member, FoundDecl, MemberNameInfo, TemplateArgs, T: Ty,
952 VK, OK, NOUR: getNonOdrUseReasonInCurrentContext(D: Member));
953 E->setHadMultipleCandidates(HadMultipleCandidates);
954 MarkMemberReferenced(E);
955
956 // C++ [except.spec]p17:
957 // An exception-specification is considered to be needed when:
958 // - in an expression the function is the unique lookup result or the
959 // selected member of a set of overloaded functions
960 if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
961 if (isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType())) {
962 if (auto *NewFPT = ResolveExceptionSpec(Loc: MemberNameInfo.getLoc(), FPT))
963 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
964 }
965 }
966
967 return E;
968}
969
970/// Determine if the given scope is within a function-try-block handler.
971static bool IsInFnTryBlockHandler(const Scope *S) {
972 // Walk the scope stack until finding a FnTryCatchScope, or leave the
973 // function scope. If a FnTryCatchScope is found, check whether the TryScope
974 // flag is set. If it is not, it's a function-try-block handler.
975 for (; S != S->getFnParent(); S = S->getParent()) {
976 if (S->isFnTryCatchScope())
977 return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
978 }
979 return false;
980}
981
982ExprResult
983Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
984 SourceLocation OpLoc, bool IsArrow,
985 const CXXScopeSpec &SS,
986 SourceLocation TemplateKWLoc,
987 NamedDecl *FirstQualifierInScope,
988 LookupResult &R,
989 const TemplateArgumentListInfo *TemplateArgs,
990 const Scope *S,
991 bool SuppressQualifierCheck,
992 ActOnMemberAccessExtraArgs *ExtraArgs) {
993 QualType BaseType = BaseExprType;
994 if (IsArrow) {
995 assert(BaseType->isPointerType());
996 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
997 }
998 R.setBaseObjectType(BaseType);
999
1000 // C++1z [expr.ref]p2:
1001 // For the first option (dot) the first expression shall be a glvalue [...]
1002 if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) {
1003 ExprResult Converted = TemporaryMaterializationConversion(E: BaseExpr);
1004 if (Converted.isInvalid())
1005 return ExprError();
1006 BaseExpr = Converted.get();
1007 }
1008
1009 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
1010 DeclarationName MemberName = MemberNameInfo.getName();
1011 SourceLocation MemberLoc = MemberNameInfo.getLoc();
1012
1013 if (R.isAmbiguous())
1014 return ExprError();
1015
1016 // [except.handle]p10: Referring to any non-static member or base class of an
1017 // object in the handler for a function-try-block of a constructor or
1018 // destructor for that object results in undefined behavior.
1019 const auto *FD = getCurFunctionDecl();
1020 if (S && BaseExpr && FD &&
1021 (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
1022 isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
1023 IsInFnTryBlockHandler(S))
1024 Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
1025 << isa<CXXDestructorDecl>(FD);
1026
1027 if (R.empty()) {
1028 // Rederive where we looked up.
1029 DeclContext *DC = (SS.isSet()
1030 ? computeDeclContext(SS, EnteringContext: false)
1031 : BaseType->castAs<RecordType>()->getDecl());
1032
1033 if (ExtraArgs) {
1034 ExprResult RetryExpr;
1035 if (!IsArrow && BaseExpr) {
1036 SFINAETrap Trap(*this, true);
1037 ParsedType ObjectType;
1038 bool MayBePseudoDestructor = false;
1039 RetryExpr = ActOnStartCXXMemberReference(S: getCurScope(), Base: BaseExpr,
1040 OpLoc, OpKind: tok::arrow, ObjectType,
1041 MayBePseudoDestructor);
1042 if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1043 CXXScopeSpec TempSS(SS);
1044 RetryExpr = ActOnMemberAccessExpr(
1045 S: ExtraArgs->S, Base: RetryExpr.get(), OpLoc, OpKind: tok::arrow, SS&: TempSS,
1046 TemplateKWLoc, Member&: ExtraArgs->Id, ObjCImpDecl: ExtraArgs->ObjCImpDecl);
1047 }
1048 if (Trap.hasErrorOccurred())
1049 RetryExpr = ExprError();
1050 }
1051 if (RetryExpr.isUsable()) {
1052 Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1053 << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1054 return RetryExpr;
1055 }
1056 }
1057
1058 Diag(R.getNameLoc(), diag::err_no_member)
1059 << MemberName << DC
1060 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1061 return ExprError();
1062 }
1063
1064 // Diagnose lookups that find only declarations from a non-base
1065 // type. This is possible for either qualified lookups (which may
1066 // have been qualified with an unrelated type) or implicit member
1067 // expressions (which were found with unqualified lookup and thus
1068 // may have come from an enclosing scope). Note that it's okay for
1069 // lookup to find declarations from a non-base type as long as those
1070 // aren't the ones picked by overload resolution.
1071 if ((SS.isSet() || !BaseExpr ||
1072 (isa<CXXThisExpr>(Val: BaseExpr) &&
1073 cast<CXXThisExpr>(Val: BaseExpr)->isImplicit())) &&
1074 !SuppressQualifierCheck &&
1075 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1076 return ExprError();
1077
1078 // Construct an unresolved result if we in fact got an unresolved
1079 // result.
1080 if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1081 // Suppress any lookup-related diagnostics; we'll do these when we
1082 // pick a member.
1083 R.suppressDiagnostics();
1084
1085 UnresolvedMemberExpr *MemExpr
1086 = UnresolvedMemberExpr::Create(Context, HasUnresolvedUsing: R.isUnresolvableResult(),
1087 Base: BaseExpr, BaseType: BaseExprType,
1088 IsArrow, OperatorLoc: OpLoc,
1089 QualifierLoc: SS.getWithLocInContext(Context),
1090 TemplateKWLoc, MemberNameInfo,
1091 TemplateArgs, Begin: R.begin(), End: R.end());
1092
1093 return MemExpr;
1094 }
1095
1096 assert(R.isSingleResult());
1097 DeclAccessPair FoundDecl = R.begin().getPair();
1098 NamedDecl *MemberDecl = R.getFoundDecl();
1099
1100 // FIXME: diagnose the presence of template arguments now.
1101
1102 // If the decl being referenced had an error, return an error for this
1103 // sub-expr without emitting another error, in order to avoid cascading
1104 // error cases.
1105 if (MemberDecl->isInvalidDecl())
1106 return ExprError();
1107
1108 // Handle the implicit-member-access case.
1109 if (!BaseExpr) {
1110 // If this is not an instance member, convert to a non-member access.
1111 if (!MemberDecl->isCXXInstanceMember()) {
1112 // We might have a variable template specialization (or maybe one day a
1113 // member concept-id).
1114 if (TemplateArgs || TemplateKWLoc.isValid())
1115 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/RequiresADL: false, TemplateArgs);
1116
1117 return BuildDeclarationNameExpr(SS, NameInfo: R.getLookupNameInfo(), D: MemberDecl,
1118 FoundD: FoundDecl, TemplateArgs);
1119 }
1120 SourceLocation Loc = R.getNameLoc();
1121 if (SS.getRange().isValid())
1122 Loc = SS.getRange().getBegin();
1123 BaseExpr = BuildCXXThisExpr(Loc, Type: BaseExprType, /*IsImplicit=*/true);
1124 }
1125
1126 // Check the use of this member.
1127 if (DiagnoseUseOfDecl(D: MemberDecl, Locs: MemberLoc))
1128 return ExprError();
1129
1130 if (FieldDecl *FD = dyn_cast<FieldDecl>(Val: MemberDecl))
1131 return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, Field: FD, FoundDecl,
1132 MemberNameInfo);
1133
1134 if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(Val: MemberDecl))
1135 return BuildMSPropertyRefExpr(S&: *this, BaseExpr, IsArrow, SS, PD,
1136 NameInfo: MemberNameInfo);
1137
1138 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(Val: MemberDecl))
1139 // We may have found a field within an anonymous union or struct
1140 // (C++ [class.union]).
1141 return BuildAnonymousStructUnionMemberReference(SS, loc: MemberLoc, indirectField: FD,
1142 foundDecl: FoundDecl, baseObjectExpr: BaseExpr,
1143 opLoc: OpLoc);
1144
1145 if (VarDecl *Var = dyn_cast<VarDecl>(Val: MemberDecl)) {
1146 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1147 FoundDecl, /*HadMultipleCandidates=*/false,
1148 MemberNameInfo, Var->getType().getNonReferenceType(),
1149 VK_LValue, OK_Ordinary);
1150 }
1151
1152 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(Val: MemberDecl)) {
1153 ExprValueKind valueKind;
1154 QualType type;
1155 if (MemberFn->isInstance()) {
1156 valueKind = VK_PRValue;
1157 type = Context.BoundMemberTy;
1158 } else {
1159 valueKind = VK_LValue;
1160 type = MemberFn->getType();
1161 }
1162
1163 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc,
1164 MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
1165 MemberNameInfo, type, valueKind, OK_Ordinary);
1166 }
1167 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1168
1169 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(Val: MemberDecl)) {
1170 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum,
1171 FoundDecl, /*HadMultipleCandidates=*/false,
1172 MemberNameInfo, Enum->getType(), VK_PRValue,
1173 OK_Ordinary);
1174 }
1175
1176 if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(Val: MemberDecl)) {
1177 if (!TemplateArgs) {
1178 diagnoseMissingTemplateArguments(Name: TemplateName(VarTempl), Loc: MemberLoc);
1179 return ExprError();
1180 }
1181
1182 DeclResult VDecl = CheckVarTemplateId(Template: VarTempl, TemplateLoc: TemplateKWLoc,
1183 TemplateNameLoc: MemberNameInfo.getLoc(), TemplateArgs: *TemplateArgs);
1184 if (VDecl.isInvalid())
1185 return ExprError();
1186
1187 // Non-dependent member, but dependent template arguments.
1188 if (!VDecl.get())
1189 return ActOnDependentMemberExpr(
1190 BaseExpr, BaseType: BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc,
1191 FirstQualifierInScope, NameInfo: MemberNameInfo, TemplateArgs);
1192
1193 VarDecl *Var = cast<VarDecl>(Val: VDecl.get());
1194 if (!Var->getTemplateSpecializationKind())
1195 Var->setTemplateSpecializationKind(TSK: TSK_ImplicitInstantiation, PointOfInstantiation: MemberLoc);
1196
1197 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1198 FoundDecl, /*HadMultipleCandidates=*/false,
1199 MemberNameInfo, Var->getType().getNonReferenceType(),
1200 VK_LValue, OK_Ordinary, TemplateArgs);
1201 }
1202
1203 // We found something that we didn't expect. Complain.
1204 if (isa<TypeDecl>(MemberDecl))
1205 Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1206 << MemberName << BaseType << int(IsArrow);
1207 else
1208 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1209 << MemberName << BaseType << int(IsArrow);
1210
1211 Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1212 << MemberName;
1213 R.suppressDiagnostics();
1214 return ExprError();
1215}
1216
1217/// Given that normal member access failed on the given expression,
1218/// and given that the expression's type involves builtin-id or
1219/// builtin-Class, decide whether substituting in the redefinition
1220/// types would be profitable. The redefinition type is whatever
1221/// this translation unit tried to typedef to id/Class; we store
1222/// it to the side and then re-use it in places like this.
1223static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1224 const ObjCObjectPointerType *opty
1225 = base.get()->getType()->getAs<ObjCObjectPointerType>();
1226 if (!opty) return false;
1227
1228 const ObjCObjectType *ty = opty->getObjectType();
1229
1230 QualType redef;
1231 if (ty->isObjCId()) {
1232 redef = S.Context.getObjCIdRedefinitionType();
1233 } else if (ty->isObjCClass()) {
1234 redef = S.Context.getObjCClassRedefinitionType();
1235 } else {
1236 return false;
1237 }
1238
1239 // Do the substitution as long as the redefinition type isn't just a
1240 // possibly-qualified pointer to builtin-id or builtin-Class again.
1241 opty = redef->getAs<ObjCObjectPointerType>();
1242 if (opty && !opty->getObjectType()->getInterface())
1243 return false;
1244
1245 base = S.ImpCastExprToType(E: base.get(), Type: redef, CK: CK_BitCast);
1246 return true;
1247}
1248
1249static bool isRecordType(QualType T) {
1250 return T->isRecordType();
1251}
1252static bool isPointerToRecordType(QualType T) {
1253 if (const PointerType *PT = T->getAs<PointerType>())
1254 return PT->getPointeeType()->isRecordType();
1255 return false;
1256}
1257
1258/// Perform conversions on the LHS of a member access expression.
1259ExprResult
1260Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1261 if (IsArrow && !Base->getType()->isFunctionType())
1262 return DefaultFunctionArrayLvalueConversion(E: Base);
1263
1264 return CheckPlaceholderExpr(E: Base);
1265}
1266
1267/// Look up the given member of the given non-type-dependent
1268/// expression. This can return in one of two ways:
1269/// * If it returns a sentinel null-but-valid result, the caller will
1270/// assume that lookup was performed and the results written into
1271/// the provided structure. It will take over from there.
1272/// * Otherwise, the returned expression will be produced in place of
1273/// an ordinary member expression.
1274///
1275/// The ObjCImpDecl bit is a gross hack that will need to be properly
1276/// fixed for ObjC++.
1277static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1278 ExprResult &BaseExpr, bool &IsArrow,
1279 SourceLocation OpLoc, CXXScopeSpec &SS,
1280 Decl *ObjCImpDecl, bool HasTemplateArgs,
1281 SourceLocation TemplateKWLoc) {
1282 assert(BaseExpr.get() && "no base expression");
1283
1284 // Perform default conversions.
1285 BaseExpr = S.PerformMemberExprBaseConversion(Base: BaseExpr.get(), IsArrow);
1286 if (BaseExpr.isInvalid())
1287 return ExprError();
1288
1289 QualType BaseType = BaseExpr.get()->getType();
1290 assert(!BaseType->isDependentType());
1291
1292 DeclarationName MemberName = R.getLookupName();
1293 SourceLocation MemberLoc = R.getNameLoc();
1294
1295 // For later type-checking purposes, turn arrow accesses into dot
1296 // accesses. The only access type we support that doesn't follow
1297 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1298 // and those never use arrows, so this is unaffected.
1299 if (IsArrow) {
1300 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1301 BaseType = Ptr->getPointeeType();
1302 else if (const ObjCObjectPointerType *Ptr
1303 = BaseType->getAs<ObjCObjectPointerType>())
1304 BaseType = Ptr->getPointeeType();
1305 else if (BaseType->isRecordType()) {
1306 // Recover from arrow accesses to records, e.g.:
1307 // struct MyRecord foo;
1308 // foo->bar
1309 // This is actually well-formed in C++ if MyRecord has an
1310 // overloaded operator->, but that should have been dealt with
1311 // by now--or a diagnostic message already issued if a problem
1312 // was encountered while looking for the overloaded operator->.
1313 if (!S.getLangOpts().CPlusPlus) {
1314 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1315 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1316 << FixItHint::CreateReplacement(OpLoc, ".");
1317 }
1318 IsArrow = false;
1319 } else if (BaseType->isFunctionType()) {
1320 goto fail;
1321 } else {
1322 S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1323 << BaseType << BaseExpr.get()->getSourceRange();
1324 return ExprError();
1325 }
1326 }
1327
1328 // If the base type is an atomic type, this access is undefined behavior per
1329 // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user
1330 // about the UB and recover by converting the atomic lvalue into a non-atomic
1331 // lvalue. Because this is inherently unsafe as an atomic operation, the
1332 // warning defaults to an error.
1333 if (const auto *ATy = BaseType->getAs<AtomicType>()) {
1334 S.DiagRuntimeBehavior(OpLoc, nullptr,
1335 S.PDiag(diag::warn_atomic_member_access));
1336 BaseType = ATy->getValueType().getUnqualifiedType();
1337 BaseExpr = ImplicitCastExpr::Create(
1338 Context: S.Context, T: IsArrow ? S.Context.getPointerType(T: BaseType) : BaseType,
1339 Kind: CK_AtomicToNonAtomic, Operand: BaseExpr.get(), BasePath: nullptr,
1340 Cat: BaseExpr.get()->getValueKind(), FPO: FPOptionsOverride());
1341 }
1342
1343 // Handle field access to simple records.
1344 if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1345 TypoExpr *TE = nullptr;
1346 if (LookupMemberExprInRecord(SemaRef&: S, R, BaseExpr: BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
1347 HasTemplateArgs, TemplateKWLoc, TE))
1348 return ExprError();
1349
1350 // Returning valid-but-null is how we indicate to the caller that
1351 // the lookup result was filled in. If typo correction was attempted and
1352 // failed, the lookup result will have been cleared--that combined with the
1353 // valid-but-null ExprResult will trigger the appropriate diagnostics.
1354 return ExprResult(TE);
1355 }
1356
1357 // Handle ivar access to Objective-C objects.
1358 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1359 if (!SS.isEmpty() && !SS.isInvalid()) {
1360 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1361 << 1 << SS.getScopeRep()
1362 << FixItHint::CreateRemoval(SS.getRange());
1363 SS.clear();
1364 }
1365
1366 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1367
1368 // There are three cases for the base type:
1369 // - builtin id (qualified or unqualified)
1370 // - builtin Class (qualified or unqualified)
1371 // - an interface
1372 ObjCInterfaceDecl *IDecl = OTy->getInterface();
1373 if (!IDecl) {
1374 if (S.getLangOpts().ObjCAutoRefCount &&
1375 (OTy->isObjCId() || OTy->isObjCClass()))
1376 goto fail;
1377 // There's an implicit 'isa' ivar on all objects.
1378 // But we only actually find it this way on objects of type 'id',
1379 // apparently.
1380 if (OTy->isObjCId() && Member->isStr(Str: "isa"))
1381 return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1382 OpLoc, S.Context.getObjCClassType());
1383 if (ShouldTryAgainWithRedefinitionType(S, base&: BaseExpr))
1384 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1385 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1386 goto fail;
1387 }
1388
1389 if (S.RequireCompleteType(OpLoc, BaseType,
1390 diag::err_typecheck_incomplete_tag,
1391 BaseExpr.get()))
1392 return ExprError();
1393
1394 ObjCInterfaceDecl *ClassDeclared = nullptr;
1395 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(IVarName: Member, ClassDeclared);
1396
1397 if (!IV) {
1398 // Attempt to correct for typos in ivar names.
1399 DeclFilterCCC<ObjCIvarDecl> Validator{};
1400 Validator.IsObjCIvarLookup = IsArrow;
1401 if (TypoCorrection Corrected = S.CorrectTypo(
1402 R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1403 Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1404 IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1405 S.diagnoseTypo(
1406 Corrected,
1407 S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1408 << IDecl->getDeclName() << MemberName);
1409
1410 // Figure out the class that declares the ivar.
1411 assert(!ClassDeclared);
1412
1413 Decl *D = cast<Decl>(IV->getDeclContext());
1414 if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
1415 D = Category->getClassInterface();
1416
1417 if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
1418 ClassDeclared = Implementation->getClassInterface();
1419 else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
1420 ClassDeclared = Interface;
1421
1422 assert(ClassDeclared && "cannot query interface");
1423 } else {
1424 if (IsArrow &&
1425 IDecl->FindPropertyDeclaration(
1426 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1427 S.Diag(MemberLoc, diag::err_property_found_suggest)
1428 << Member << BaseExpr.get()->getType()
1429 << FixItHint::CreateReplacement(OpLoc, ".");
1430 return ExprError();
1431 }
1432
1433 S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1434 << IDecl->getDeclName() << MemberName
1435 << BaseExpr.get()->getSourceRange();
1436 return ExprError();
1437 }
1438 }
1439
1440 assert(ClassDeclared);
1441
1442 // If the decl being referenced had an error, return an error for this
1443 // sub-expr without emitting another error, in order to avoid cascading
1444 // error cases.
1445 if (IV->isInvalidDecl())
1446 return ExprError();
1447
1448 // Check whether we can reference this field.
1449 if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1450 return ExprError();
1451 if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1452 IV->getAccessControl() != ObjCIvarDecl::Package) {
1453 ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1454 if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1455 ClassOfMethodDecl = MD->getClassInterface();
1456 else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1457 // Case of a c-function declared inside an objc implementation.
1458 // FIXME: For a c-style function nested inside an objc implementation
1459 // class, there is no implementation context available, so we pass
1460 // down the context as argument to this routine. Ideally, this context
1461 // need be passed down in the AST node and somehow calculated from the
1462 // AST for a function decl.
1463 if (ObjCImplementationDecl *IMPD =
1464 dyn_cast<ObjCImplementationDecl>(Val: ObjCImpDecl))
1465 ClassOfMethodDecl = IMPD->getClassInterface();
1466 else if (ObjCCategoryImplDecl* CatImplClass =
1467 dyn_cast<ObjCCategoryImplDecl>(Val: ObjCImpDecl))
1468 ClassOfMethodDecl = CatImplClass->getClassInterface();
1469 }
1470 if (!S.getLangOpts().DebuggerSupport) {
1471 if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1472 if (!declaresSameEntity(ClassDeclared, IDecl) ||
1473 !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1474 S.Diag(MemberLoc, diag::err_private_ivar_access)
1475 << IV->getDeclName();
1476 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1477 // @protected
1478 S.Diag(MemberLoc, diag::err_protected_ivar_access)
1479 << IV->getDeclName();
1480 }
1481 }
1482 bool warn = true;
1483 if (S.getLangOpts().ObjCWeak) {
1484 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1485 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: BaseExp))
1486 if (UO->getOpcode() == UO_Deref)
1487 BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1488
1489 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(Val: BaseExp))
1490 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1491 S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
1492 warn = false;
1493 }
1494 }
1495 if (warn) {
1496 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1497 ObjCMethodFamily MF = MD->getMethodFamily();
1498 warn = (MF != OMF_init && MF != OMF_dealloc &&
1499 MF != OMF_finalize &&
1500 !S.IvarBacksCurrentMethodAccessor(IFace: IDecl, Method: MD, IV));
1501 }
1502 if (warn)
1503 S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1504 }
1505
1506 ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1507 IV, IV->getUsageType(objectType: BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1508 IsArrow);
1509
1510 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1511 if (!S.isUnevaluatedContext() &&
1512 !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1513 S.getCurFunction()->recordUseOfWeak(E: Result);
1514 }
1515
1516 return Result;
1517 }
1518
1519 // Objective-C property access.
1520 const ObjCObjectPointerType *OPT;
1521 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1522 if (!SS.isEmpty() && !SS.isInvalid()) {
1523 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1524 << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1525 SS.clear();
1526 }
1527
1528 // This actually uses the base as an r-value.
1529 BaseExpr = S.DefaultLvalueConversion(E: BaseExpr.get());
1530 if (BaseExpr.isInvalid())
1531 return ExprError();
1532
1533 assert(S.Context.hasSameUnqualifiedType(BaseType,
1534 BaseExpr.get()->getType()));
1535
1536 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1537
1538 const ObjCObjectType *OT = OPT->getObjectType();
1539
1540 // id, with and without qualifiers.
1541 if (OT->isObjCId()) {
1542 // Check protocols on qualified interfaces.
1543 Selector Sel = S.PP.getSelectorTable().getNullarySelector(ID: Member);
1544 if (Decl *PMDecl =
1545 FindGetterSetterNameDecl(QIdTy: OPT, Member, Sel, Context&: S.Context)) {
1546 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(Val: PMDecl)) {
1547 // Check the use of this declaration
1548 if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1549 return ExprError();
1550
1551 return new (S.Context)
1552 ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1553 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1554 }
1555
1556 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(Val: PMDecl)) {
1557 Selector SetterSel =
1558 SelectorTable::constructSetterSelector(Idents&: S.PP.getIdentifierTable(),
1559 SelTable&: S.PP.getSelectorTable(),
1560 Name: Member);
1561 ObjCMethodDecl *SMD = nullptr;
1562 if (Decl *SDecl = FindGetterSetterNameDecl(QIdTy: OPT,
1563 /*Property id*/ Member: nullptr,
1564 Sel: SetterSel, Context&: S.Context))
1565 SMD = dyn_cast<ObjCMethodDecl>(Val: SDecl);
1566
1567 return new (S.Context)
1568 ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1569 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1570 }
1571 }
1572 // Use of id.member can only be for a property reference. Do not
1573 // use the 'id' redefinition in this case.
1574 if (IsArrow && ShouldTryAgainWithRedefinitionType(S, base&: BaseExpr))
1575 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1576 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1577
1578 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1579 << MemberName << BaseType);
1580 }
1581
1582 // 'Class', unqualified only.
1583 if (OT->isObjCClass()) {
1584 // Only works in a method declaration (??!).
1585 ObjCMethodDecl *MD = S.getCurMethodDecl();
1586 if (!MD) {
1587 if (ShouldTryAgainWithRedefinitionType(S, base&: BaseExpr))
1588 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1589 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1590
1591 goto fail;
1592 }
1593
1594 // Also must look for a getter name which uses property syntax.
1595 Selector Sel = S.PP.getSelectorTable().getNullarySelector(ID: Member);
1596 ObjCInterfaceDecl *IFace = MD->getClassInterface();
1597 if (!IFace)
1598 goto fail;
1599
1600 ObjCMethodDecl *Getter;
1601 if ((Getter = IFace->lookupClassMethod(Sel))) {
1602 // Check the use of this method.
1603 if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1604 return ExprError();
1605 } else
1606 Getter = IFace->lookupPrivateMethod(Sel, Instance: false);
1607 // If we found a getter then this may be a valid dot-reference, we
1608 // will look for the matching setter, in case it is needed.
1609 Selector SetterSel =
1610 SelectorTable::constructSetterSelector(Idents&: S.PP.getIdentifierTable(),
1611 SelTable&: S.PP.getSelectorTable(),
1612 Name: Member);
1613 ObjCMethodDecl *Setter = IFace->lookupClassMethod(Sel: SetterSel);
1614 if (!Setter) {
1615 // If this reference is in an @implementation, also check for 'private'
1616 // methods.
1617 Setter = IFace->lookupPrivateMethod(Sel: SetterSel, Instance: false);
1618 }
1619
1620 if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1621 return ExprError();
1622
1623 if (Getter || Setter) {
1624 return new (S.Context) ObjCPropertyRefExpr(
1625 Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1626 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1627 }
1628
1629 if (ShouldTryAgainWithRedefinitionType(S, base&: BaseExpr))
1630 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1631 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1632
1633 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1634 << MemberName << BaseType);
1635 }
1636
1637 // Normal property access.
1638 return S.HandleExprPropertyRefExpr(OPT, BaseExpr: BaseExpr.get(), OpLoc, MemberName,
1639 MemberLoc, SuperLoc: SourceLocation(), SuperType: QualType(),
1640 Super: false);
1641 }
1642
1643 if (BaseType->isExtVectorBoolType()) {
1644 // We disallow element access for ext_vector_type bool. There is no way to
1645 // materialize a reference to a vector element as a pointer (each element is
1646 // one bit in the vector).
1647 S.Diag(R.getNameLoc(), diag::err_ext_vector_component_name_illegal)
1648 << MemberName
1649 << (BaseExpr.get() ? BaseExpr.get()->getSourceRange() : SourceRange());
1650 return ExprError();
1651 }
1652
1653 // Handle 'field access' to vectors, such as 'V.xx'.
1654 if (BaseType->isExtVectorType()) {
1655 // FIXME: this expr should store IsArrow.
1656 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1657 ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1658 QualType ret = CheckExtVectorComponent(S, baseType: BaseType, VK, OpLoc,
1659 CompName: Member, CompLoc: MemberLoc);
1660 if (ret.isNull())
1661 return ExprError();
1662 Qualifiers BaseQ =
1663 S.Context.getCanonicalType(T: BaseExpr.get()->getType()).getQualifiers();
1664 ret = S.Context.getQualifiedType(T: ret, Qs: BaseQ);
1665
1666 return new (S.Context)
1667 ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1668 }
1669
1670 // Adjust builtin-sel to the appropriate redefinition type if that's
1671 // not just a pointer to builtin-sel again.
1672 if (IsArrow && BaseType->isSpecificBuiltinType(K: BuiltinType::ObjCSel) &&
1673 !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1674 BaseExpr = S.ImpCastExprToType(
1675 E: BaseExpr.get(), Type: S.Context.getObjCSelRedefinitionType(), CK: CK_BitCast);
1676 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1677 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1678 }
1679
1680 // Failure cases.
1681 fail:
1682
1683 // Recover from dot accesses to pointers, e.g.:
1684 // type *foo;
1685 // foo.bar
1686 // This is actually well-formed in two cases:
1687 // - 'type' is an Objective C type
1688 // - 'bar' is a pseudo-destructor name which happens to refer to
1689 // the appropriate pointer type
1690 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1691 if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1692 MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1693 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1694 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1695 << FixItHint::CreateReplacement(OpLoc, "->");
1696
1697 if (S.isSFINAEContext())
1698 return ExprError();
1699
1700 // Recurse as an -> access.
1701 IsArrow = true;
1702 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1703 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1704 }
1705 }
1706
1707 // If the user is trying to apply -> or . to a function name, it's probably
1708 // because they forgot parentheses to call that function.
1709 if (S.tryToRecoverWithCall(
1710 BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1711 /*complain*/ false,
1712 IsArrow ? &isPointerToRecordType : &isRecordType)) {
1713 if (BaseExpr.isInvalid())
1714 return ExprError();
1715 BaseExpr = S.DefaultFunctionArrayConversion(E: BaseExpr.get());
1716 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1717 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1718 }
1719
1720 // HLSL supports implicit conversion of scalar types to single element vector
1721 // rvalues in member expressions.
1722 if (S.getLangOpts().HLSL && BaseType->isScalarType()) {
1723 QualType VectorTy = S.Context.getExtVectorType(VectorType: BaseType, NumElts: 1);
1724 BaseExpr = S.ImpCastExprToType(E: BaseExpr.get(), Type: VectorTy, CK: CK_VectorSplat,
1725 VK: BaseExpr.get()->getValueKind());
1726 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl,
1727 HasTemplateArgs, TemplateKWLoc);
1728 }
1729
1730 S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1731 << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1732
1733 return ExprError();
1734}
1735
1736/// The main callback when the parser finds something like
1737/// expression . [nested-name-specifier] identifier
1738/// expression -> [nested-name-specifier] identifier
1739/// where 'identifier' encompasses a fairly broad spectrum of
1740/// possibilities, including destructor and operator references.
1741///
1742/// \param OpKind either tok::arrow or tok::period
1743/// \param ObjCImpDecl the current Objective-C \@implementation
1744/// decl; this is an ugly hack around the fact that Objective-C
1745/// \@implementations aren't properly put in the context chain
1746ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1747 SourceLocation OpLoc,
1748 tok::TokenKind OpKind,
1749 CXXScopeSpec &SS,
1750 SourceLocation TemplateKWLoc,
1751 UnqualifiedId &Id,
1752 Decl *ObjCImpDecl) {
1753 if (SS.isSet() && SS.isInvalid())
1754 return ExprError();
1755
1756 // Warn about the explicit constructor calls Microsoft extension.
1757 if (getLangOpts().MicrosoftExt &&
1758 Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
1759 Diag(Id.getSourceRange().getBegin(),
1760 diag::ext_ms_explicit_constructor_call);
1761
1762 TemplateArgumentListInfo TemplateArgsBuffer;
1763
1764 // Decompose the name into its component parts.
1765 DeclarationNameInfo NameInfo;
1766 const TemplateArgumentListInfo *TemplateArgs;
1767 DecomposeUnqualifiedId(Id, Buffer&: TemplateArgsBuffer,
1768 NameInfo, TemplateArgs);
1769
1770 DeclarationName Name = NameInfo.getName();
1771 bool IsArrow = (OpKind == tok::arrow);
1772
1773 if (getLangOpts().HLSL && IsArrow)
1774 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 2);
1775
1776 NamedDecl *FirstQualifierInScope
1777 = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, NNS: SS.getScopeRep()));
1778
1779 // This is a postfix expression, so get rid of ParenListExprs.
1780 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, ME: Base);
1781 if (Result.isInvalid()) return ExprError();
1782 Base = Result.get();
1783
1784 if (Base->getType()->isDependentType() || Name.isDependentName() ||
1785 isDependentScopeSpecifier(SS)) {
1786 return ActOnDependentMemberExpr(BaseExpr: Base, BaseType: Base->getType(), IsArrow, OpLoc, SS,
1787 TemplateKWLoc, FirstQualifierInScope,
1788 NameInfo, TemplateArgs);
1789 }
1790
1791 ActOnMemberAccessExtraArgs ExtraArgs = {.S: S, .Id: Id, .ObjCImpDecl: ObjCImpDecl};
1792 ExprResult Res = BuildMemberReferenceExpr(
1793 Base, BaseType: Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
1794 FirstQualifierInScope, NameInfo, TemplateArgs, S, ExtraArgs: &ExtraArgs);
1795
1796 if (!Res.isInvalid() && isa<MemberExpr>(Val: Res.get()))
1797 CheckMemberAccessOfNoDeref(E: cast<MemberExpr>(Val: Res.get()));
1798
1799 return Res;
1800}
1801
1802void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
1803 if (isUnevaluatedContext())
1804 return;
1805
1806 QualType ResultTy = E->getType();
1807
1808 // Member accesses have four cases:
1809 // 1: non-array member via "->": dereferences
1810 // 2: non-array member via ".": nothing interesting happens
1811 // 3: array member access via "->": nothing interesting happens
1812 // (this returns an array lvalue and does not actually dereference memory)
1813 // 4: array member access via ".": *adds* a layer of indirection
1814 if (ResultTy->isArrayType()) {
1815 if (!E->isArrow()) {
1816 // This might be something like:
1817 // (*structPtr).arrayMember
1818 // which behaves roughly like:
1819 // &(*structPtr).pointerMember
1820 // in that the apparent dereference in the base expression does not
1821 // actually happen.
1822 CheckAddressOfNoDeref(E: E->getBase());
1823 }
1824 } else if (E->isArrow()) {
1825 if (const auto *Ptr = dyn_cast<PointerType>(
1826 Val: E->getBase()->getType().getDesugaredType(Context))) {
1827 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
1828 ExprEvalContexts.back().PossibleDerefs.insert(E);
1829 }
1830 }
1831}
1832
1833ExprResult
1834Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
1835 SourceLocation OpLoc, const CXXScopeSpec &SS,
1836 FieldDecl *Field, DeclAccessPair FoundDecl,
1837 const DeclarationNameInfo &MemberNameInfo) {
1838 // x.a is an l-value if 'a' has a reference type. Otherwise:
1839 // x.a is an l-value/x-value/pr-value if the base is (and note
1840 // that *x is always an l-value), except that if the base isn't
1841 // an ordinary object then we must have an rvalue.
1842 ExprValueKind VK = VK_LValue;
1843 ExprObjectKind OK = OK_Ordinary;
1844 if (!IsArrow) {
1845 if (BaseExpr->getObjectKind() == OK_Ordinary)
1846 VK = BaseExpr->getValueKind();
1847 else
1848 VK = VK_PRValue;
1849 }
1850 if (VK != VK_PRValue && Field->isBitField())
1851 OK = OK_BitField;
1852
1853 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1854 QualType MemberType = Field->getType();
1855 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1856 MemberType = Ref->getPointeeType();
1857 VK = VK_LValue;
1858 } else {
1859 QualType BaseType = BaseExpr->getType();
1860 if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1861
1862 Qualifiers BaseQuals = BaseType.getQualifiers();
1863
1864 // GC attributes are never picked up by members.
1865 BaseQuals.removeObjCGCAttr();
1866
1867 // CVR attributes from the base are picked up by members,
1868 // except that 'mutable' members don't pick up 'const'.
1869 if (Field->isMutable()) BaseQuals.removeConst();
1870
1871 Qualifiers MemberQuals =
1872 Context.getCanonicalType(T: MemberType).getQualifiers();
1873
1874 assert(!MemberQuals.hasAddressSpace());
1875
1876 Qualifiers Combined = BaseQuals + MemberQuals;
1877 if (Combined != MemberQuals)
1878 MemberType = Context.getQualifiedType(T: MemberType, Qs: Combined);
1879
1880 // Pick up NoDeref from the base in case we end up using AddrOf on the
1881 // result. E.g. the expression
1882 // &someNoDerefPtr->pointerMember
1883 // should be a noderef pointer again.
1884 if (BaseType->hasAttr(attr::NoDeref))
1885 MemberType =
1886 Context.getAttributedType(attr::NoDeref, MemberType, MemberType);
1887 }
1888
1889 auto *CurMethod = dyn_cast<CXXMethodDecl>(Val: CurContext);
1890 if (!(CurMethod && CurMethod->isDefaulted()))
1891 UnusedPrivateFields.remove(Field);
1892
1893 ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1894 FoundDecl, Field);
1895 if (Base.isInvalid())
1896 return ExprError();
1897
1898 // Build a reference to a private copy for non-static data members in
1899 // non-static member functions, privatized by OpenMP constructs.
1900 if (getLangOpts().OpenMP && IsArrow &&
1901 !CurContext->isDependentContext() &&
1902 isa<CXXThisExpr>(Val: Base.get()->IgnoreParenImpCasts())) {
1903 if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
1904 return getOpenMPCapturedExpr(Capture: PrivateCopy, VK, OK,
1905 Loc: MemberNameInfo.getLoc());
1906 }
1907 }
1908
1909 return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS,
1910 /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1911 /*HadMultipleCandidates=*/false, MemberNameInfo,
1912 MemberType, VK, OK);
1913}
1914
1915/// Builds an implicit member access expression. The current context
1916/// is known to be an instance method, and the given unqualified lookup
1917/// set is known to contain only instance members, at least one of which
1918/// is from an appropriate type.
1919ExprResult
1920Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1921 SourceLocation TemplateKWLoc,
1922 LookupResult &R,
1923 const TemplateArgumentListInfo *TemplateArgs,
1924 bool IsKnownInstance, const Scope *S) {
1925 assert(!R.empty() && !R.isAmbiguous());
1926
1927 SourceLocation loc = R.getNameLoc();
1928
1929 // If this is known to be an instance access, go ahead and build an
1930 // implicit 'this' expression now.
1931 QualType ThisTy = getCurrentThisType();
1932 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1933
1934 Expr *baseExpr = nullptr; // null signifies implicit access
1935 if (IsKnownInstance) {
1936 SourceLocation Loc = R.getNameLoc();
1937 if (SS.getRange().isValid())
1938 Loc = SS.getRange().getBegin();
1939 baseExpr = BuildCXXThisExpr(Loc: loc, Type: ThisTy, /*IsImplicit=*/true);
1940 }
1941
1942 return BuildMemberReferenceExpr(
1943 BaseExpr: baseExpr, BaseExprType: ThisTy,
1944 /*OpLoc=*/SourceLocation(),
1945 /*IsArrow=*/!getLangOpts().HLSL, SS, TemplateKWLoc,
1946 /*FirstQualifierInScope=*/nullptr, R, TemplateArgs, S);
1947}
1948

source code of clang/lib/Sema/SemaExprMember.cpp