1 | //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis member access expressions. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | #include "clang/AST/ASTLambda.h" |
13 | #include "clang/AST/DeclCXX.h" |
14 | #include "clang/AST/DeclObjC.h" |
15 | #include "clang/AST/DeclTemplate.h" |
16 | #include "clang/AST/ExprCXX.h" |
17 | #include "clang/AST/ExprObjC.h" |
18 | #include "clang/Lex/Preprocessor.h" |
19 | #include "clang/Sema/Lookup.h" |
20 | #include "clang/Sema/Overload.h" |
21 | #include "clang/Sema/Scope.h" |
22 | #include "clang/Sema/ScopeInfo.h" |
23 | #include "clang/Sema/SemaInternal.h" |
24 | #include "clang/Sema/SemaOpenMP.h" |
25 | |
26 | using namespace clang; |
27 | using namespace sema; |
28 | |
29 | typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet; |
30 | |
31 | /// Determines if the given class is provably not derived from all of |
32 | /// the prospective base classes. |
33 | static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record, |
34 | const BaseSet &Bases) { |
35 | auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) { |
36 | return !Bases.count(Ptr: Base->getCanonicalDecl()); |
37 | }; |
38 | return BaseIsNotInSet(Record) && Record->forallBases(BaseMatches: BaseIsNotInSet); |
39 | } |
40 | |
41 | enum IMAKind { |
42 | /// The reference is definitely not an instance member access. |
43 | IMA_Static, |
44 | |
45 | /// The reference may be an implicit instance member access. |
46 | IMA_Mixed, |
47 | |
48 | /// The reference may be to an instance member, but it might be invalid if |
49 | /// so, because the context is not an instance method. |
50 | IMA_Mixed_StaticOrExplicitContext, |
51 | |
52 | /// The reference may be to an instance member, but it is invalid if |
53 | /// so, because the context is from an unrelated class. |
54 | IMA_Mixed_Unrelated, |
55 | |
56 | /// The reference is definitely an implicit instance member access. |
57 | IMA_Instance, |
58 | |
59 | /// The reference may be to an unresolved using declaration. |
60 | IMA_Unresolved, |
61 | |
62 | /// The reference is a contextually-permitted abstract member reference. |
63 | IMA_Abstract, |
64 | |
65 | /// Whether the context is static is dependent on the enclosing template (i.e. |
66 | /// in a dependent class scope explicit specialization). |
67 | IMA_Dependent, |
68 | |
69 | /// The reference may be to an unresolved using declaration and the |
70 | /// context is not an instance method. |
71 | IMA_Unresolved_StaticOrExplicitContext, |
72 | |
73 | // The reference refers to a field which is not a member of the containing |
74 | // class, which is allowed because we're in C++11 mode and the context is |
75 | // unevaluated. |
76 | IMA_Field_Uneval_Context, |
77 | |
78 | /// All possible referrents are instance members and the current |
79 | /// context is not an instance method. |
80 | IMA_Error_StaticOrExplicitContext, |
81 | |
82 | /// All possible referrents are instance members of an unrelated |
83 | /// class. |
84 | IMA_Error_Unrelated |
85 | }; |
86 | |
87 | /// The given lookup names class member(s) and is not being used for |
88 | /// an address-of-member expression. Classify the type of access |
89 | /// according to whether it's possible that this reference names an |
90 | /// instance member. This is best-effort in dependent contexts; it is okay to |
91 | /// conservatively answer "yes", in which case some errors will simply |
92 | /// not be caught until template-instantiation. |
93 | static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, |
94 | const LookupResult &R) { |
95 | assert(!R.empty() && (*R.begin())->isCXXClassMember()); |
96 | |
97 | DeclContext *DC = SemaRef.getFunctionLevelDeclContext(); |
98 | |
99 | bool couldInstantiateToStatic = false; |
100 | bool isStaticOrExplicitContext = SemaRef.CXXThisTypeOverride.isNull(); |
101 | |
102 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: DC)) { |
103 | if (MD->isImplicitObjectMemberFunction()) { |
104 | isStaticOrExplicitContext = false; |
105 | // A dependent class scope function template explicit specialization |
106 | // that is neither declared 'static' nor with an explicit object |
107 | // parameter could instantiate to a static or non-static member function. |
108 | couldInstantiateToStatic = MD->getDependentSpecializationInfo(); |
109 | } |
110 | } |
111 | |
112 | if (R.isUnresolvableResult()) { |
113 | if (couldInstantiateToStatic) |
114 | return IMA_Dependent; |
115 | return isStaticOrExplicitContext ? IMA_Unresolved_StaticOrExplicitContext |
116 | : IMA_Unresolved; |
117 | } |
118 | |
119 | // Collect all the declaring classes of instance members we find. |
120 | bool hasNonInstance = false; |
121 | bool isField = false; |
122 | BaseSet Classes; |
123 | for (NamedDecl *D : R) { |
124 | // Look through any using decls. |
125 | D = D->getUnderlyingDecl(); |
126 | |
127 | if (D->isCXXInstanceMember()) { |
128 | isField |= isa<FieldDecl>(Val: D) || isa<MSPropertyDecl>(Val: D) || |
129 | isa<IndirectFieldDecl>(Val: D); |
130 | |
131 | CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext()); |
132 | Classes.insert(Ptr: R->getCanonicalDecl()); |
133 | } else |
134 | hasNonInstance = true; |
135 | } |
136 | |
137 | // If we didn't find any instance members, it can't be an implicit |
138 | // member reference. |
139 | if (Classes.empty()) |
140 | return IMA_Static; |
141 | |
142 | if (couldInstantiateToStatic) |
143 | return IMA_Dependent; |
144 | |
145 | // C++11 [expr.prim.general]p12: |
146 | // An id-expression that denotes a non-static data member or non-static |
147 | // member function of a class can only be used: |
148 | // (...) |
149 | // - if that id-expression denotes a non-static data member and it |
150 | // appears in an unevaluated operand. |
151 | // |
152 | // This rule is specific to C++11. However, we also permit this form |
153 | // in unevaluated inline assembly operands, like the operand to a SIZE. |
154 | IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false' |
155 | assert(!AbstractInstanceResult); |
156 | switch (SemaRef.ExprEvalContexts.back().Context) { |
157 | case Sema::ExpressionEvaluationContext::Unevaluated: |
158 | case Sema::ExpressionEvaluationContext::UnevaluatedList: |
159 | if (isField && SemaRef.getLangOpts().CPlusPlus11) |
160 | AbstractInstanceResult = IMA_Field_Uneval_Context; |
161 | break; |
162 | |
163 | case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: |
164 | AbstractInstanceResult = IMA_Abstract; |
165 | break; |
166 | |
167 | case Sema::ExpressionEvaluationContext::DiscardedStatement: |
168 | case Sema::ExpressionEvaluationContext::ConstantEvaluated: |
169 | case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: |
170 | case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: |
171 | case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: |
172 | break; |
173 | } |
174 | |
175 | // If the current context is not an instance method, it can't be |
176 | // an implicit member reference. |
177 | if (isStaticOrExplicitContext) { |
178 | if (hasNonInstance) |
179 | return IMA_Mixed_StaticOrExplicitContext; |
180 | |
181 | return AbstractInstanceResult ? AbstractInstanceResult |
182 | : IMA_Error_StaticOrExplicitContext; |
183 | } |
184 | |
185 | CXXRecordDecl *contextClass; |
186 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: DC)) |
187 | contextClass = MD->getParent()->getCanonicalDecl(); |
188 | else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: DC)) |
189 | contextClass = RD; |
190 | else |
191 | return AbstractInstanceResult ? AbstractInstanceResult |
192 | : IMA_Error_StaticOrExplicitContext; |
193 | |
194 | // [class.mfct.non-static]p3: |
195 | // ...is used in the body of a non-static member function of class X, |
196 | // if name lookup (3.4.1) resolves the name in the id-expression to a |
197 | // non-static non-type member of some class C [...] |
198 | // ...if C is not X or a base class of X, the class member access expression |
199 | // is ill-formed. |
200 | if (R.getNamingClass() && |
201 | contextClass->getCanonicalDecl() != |
202 | R.getNamingClass()->getCanonicalDecl()) { |
203 | // If the naming class is not the current context, this was a qualified |
204 | // member name lookup, and it's sufficient to check that we have the naming |
205 | // class as a base class. |
206 | Classes.clear(); |
207 | Classes.insert(Ptr: R.getNamingClass()->getCanonicalDecl()); |
208 | } |
209 | |
210 | // If we can prove that the current context is unrelated to all the |
211 | // declaring classes, it can't be an implicit member reference (in |
212 | // which case it's an error if any of those members are selected). |
213 | if (isProvablyNotDerivedFrom(SemaRef, Record: contextClass, Bases: Classes)) |
214 | return hasNonInstance ? IMA_Mixed_Unrelated : |
215 | AbstractInstanceResult ? AbstractInstanceResult : |
216 | IMA_Error_Unrelated; |
217 | |
218 | return (hasNonInstance ? IMA_Mixed : IMA_Instance); |
219 | } |
220 | |
221 | /// Diagnose a reference to a field with no object available. |
222 | static void diagnoseInstanceReference(Sema &SemaRef, |
223 | const CXXScopeSpec &SS, |
224 | NamedDecl *Rep, |
225 | const DeclarationNameInfo &nameInfo) { |
226 | SourceLocation Loc = nameInfo.getLoc(); |
227 | SourceRange Range(Loc); |
228 | if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); |
229 | |
230 | // Look through using shadow decls and aliases. |
231 | Rep = Rep->getUnderlyingDecl(); |
232 | |
233 | DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext(); |
234 | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: FunctionLevelDC); |
235 | CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr; |
236 | CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext()); |
237 | |
238 | bool InStaticMethod = Method && Method->isStatic(); |
239 | bool InExplicitObjectMethod = |
240 | Method && Method->isExplicitObjectMemberFunction(); |
241 | bool IsField = isa<FieldDecl>(Val: Rep) || isa<IndirectFieldDecl>(Val: Rep); |
242 | |
243 | std::string Replacement; |
244 | if (InExplicitObjectMethod) { |
245 | DeclarationName N = Method->getParamDecl(0)->getDeclName(); |
246 | if (!N.isEmpty()) { |
247 | Replacement.append(str: N.getAsString()); |
248 | Replacement.append(s: "." ); |
249 | } |
250 | } |
251 | if (IsField && InStaticMethod) |
252 | // "invalid use of member 'x' in static member function" |
253 | SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method) |
254 | << Range << nameInfo.getName() << /*static*/ 0; |
255 | else if (IsField && InExplicitObjectMethod) { |
256 | auto Diag = SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method) |
257 | << Range << nameInfo.getName() << /*explicit*/ 1; |
258 | if (!Replacement.empty()) |
259 | Diag << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: Replacement); |
260 | } else if (ContextClass && RepClass && SS.isEmpty() && |
261 | !InExplicitObjectMethod && !InStaticMethod && |
262 | !RepClass->Equals(ContextClass) && |
263 | RepClass->Encloses(ContextClass)) |
264 | // Unqualified lookup in a non-static member function found a member of an |
265 | // enclosing class. |
266 | SemaRef.Diag(Loc, diag::err_nested_non_static_member_use) |
267 | << IsField << RepClass << nameInfo.getName() << ContextClass << Range; |
268 | else if (IsField) |
269 | SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) |
270 | << nameInfo.getName() << Range; |
271 | else if (!InExplicitObjectMethod) |
272 | SemaRef.Diag(Loc, diag::err_member_call_without_object) |
273 | << Range << /*static*/ 0; |
274 | else { |
275 | if (const auto *Tpl = dyn_cast<FunctionTemplateDecl>(Val: Rep)) |
276 | Rep = Tpl->getTemplatedDecl(); |
277 | const auto *Callee = cast<CXXMethodDecl>(Val: Rep); |
278 | auto Diag = SemaRef.Diag(Loc, diag::err_member_call_without_object) |
279 | << Range << Callee->isExplicitObjectMemberFunction(); |
280 | if (!Replacement.empty()) |
281 | Diag << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: Replacement); |
282 | } |
283 | } |
284 | |
285 | bool Sema::isPotentialImplicitMemberAccess(const CXXScopeSpec &SS, |
286 | LookupResult &R, |
287 | bool IsAddressOfOperand) { |
288 | if (!getLangOpts().CPlusPlus) |
289 | return false; |
290 | else if (R.empty() || !R.begin()->isCXXClassMember()) |
291 | return false; |
292 | else if (!IsAddressOfOperand) |
293 | return true; |
294 | else if (!SS.isEmpty()) |
295 | return false; |
296 | else if (R.isOverloadedResult()) |
297 | return false; |
298 | else if (R.isUnresolvableResult()) |
299 | return true; |
300 | else |
301 | return isa<FieldDecl, IndirectFieldDecl, MSPropertyDecl>(Val: R.getFoundDecl()); |
302 | } |
303 | |
304 | /// Builds an expression which might be an implicit member expression. |
305 | ExprResult Sema::BuildPossibleImplicitMemberExpr( |
306 | const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, |
307 | const TemplateArgumentListInfo *TemplateArgs, const Scope *S) { |
308 | switch (IMAKind Classification = ClassifyImplicitMemberAccess(SemaRef&: *this, R)) { |
309 | case IMA_Instance: |
310 | case IMA_Mixed: |
311 | case IMA_Mixed_Unrelated: |
312 | case IMA_Unresolved: |
313 | return BuildImplicitMemberExpr( |
314 | SS, TemplateKWLoc, R, TemplateArgs, |
315 | /*IsKnownInstance=*/IsDefiniteInstance: Classification == IMA_Instance, S); |
316 | case IMA_Field_Uneval_Context: |
317 | Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use) |
318 | << R.getLookupNameInfo().getName(); |
319 | [[fallthrough]]; |
320 | case IMA_Static: |
321 | case IMA_Abstract: |
322 | case IMA_Mixed_StaticOrExplicitContext: |
323 | case IMA_Unresolved_StaticOrExplicitContext: |
324 | if (TemplateArgs || TemplateKWLoc.isValid()) |
325 | return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*RequiresADL=*/false, |
326 | TemplateArgs); |
327 | return BuildDeclarationNameExpr(SS, R, /*NeedsADL=*/false, |
328 | /*AcceptInvalidDecl=*/false); |
329 | case IMA_Dependent: |
330 | R.suppressDiagnostics(); |
331 | return UnresolvedLookupExpr::Create( |
332 | Context, NamingClass: R.getNamingClass(), QualifierLoc: SS.getWithLocInContext(Context), |
333 | TemplateKWLoc, NameInfo: R.getLookupNameInfo(), /*RequiresADL=*/false, |
334 | Args: TemplateArgs, Begin: R.begin(), End: R.end(), /*KnownDependent=*/true); |
335 | |
336 | case IMA_Error_StaticOrExplicitContext: |
337 | case IMA_Error_Unrelated: |
338 | diagnoseInstanceReference(SemaRef&: *this, SS, Rep: R.getRepresentativeDecl(), |
339 | nameInfo: R.getLookupNameInfo()); |
340 | return ExprError(); |
341 | } |
342 | |
343 | llvm_unreachable("unexpected instance member access kind" ); |
344 | } |
345 | |
346 | /// Determine whether input char is from rgba component set. |
347 | static bool |
348 | IsRGBA(char c) { |
349 | switch (c) { |
350 | case 'r': |
351 | case 'g': |
352 | case 'b': |
353 | case 'a': |
354 | return true; |
355 | default: |
356 | return false; |
357 | } |
358 | } |
359 | |
360 | // OpenCL v1.1, s6.1.7 |
361 | // The component swizzle length must be in accordance with the acceptable |
362 | // vector sizes. |
363 | static bool IsValidOpenCLComponentSwizzleLength(unsigned len) |
364 | { |
365 | return (len >= 1 && len <= 4) || len == 8 || len == 16; |
366 | } |
367 | |
368 | /// Check an ext-vector component access expression. |
369 | /// |
370 | /// VK should be set in advance to the value kind of the base |
371 | /// expression. |
372 | static QualType |
373 | CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK, |
374 | SourceLocation OpLoc, const IdentifierInfo *CompName, |
375 | SourceLocation CompLoc) { |
376 | // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, |
377 | // see FIXME there. |
378 | // |
379 | // FIXME: This logic can be greatly simplified by splitting it along |
380 | // halving/not halving and reworking the component checking. |
381 | const ExtVectorType *vecType = baseType->getAs<ExtVectorType>(); |
382 | |
383 | // The vector accessor can't exceed the number of elements. |
384 | const char *compStr = CompName->getNameStart(); |
385 | |
386 | // This flag determines whether or not the component is one of the four |
387 | // special names that indicate a subset of exactly half the elements are |
388 | // to be selected. |
389 | bool HalvingSwizzle = false; |
390 | |
391 | // This flag determines whether or not CompName has an 's' char prefix, |
392 | // indicating that it is a string of hex values to be used as vector indices. |
393 | bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1]; |
394 | |
395 | bool HasRepeated = false; |
396 | bool HasIndex[16] = {}; |
397 | |
398 | int Idx; |
399 | |
400 | // Check that we've found one of the special components, or that the component |
401 | // names must come from the same set. |
402 | if (!strcmp(s1: compStr, s2: "hi" ) || !strcmp(s1: compStr, s2: "lo" ) || |
403 | !strcmp(s1: compStr, s2: "even" ) || !strcmp(s1: compStr, s2: "odd" )) { |
404 | HalvingSwizzle = true; |
405 | } else if (!HexSwizzle && |
406 | (Idx = vecType->getPointAccessorIdx(c: *compStr)) != -1) { |
407 | bool HasRGBA = IsRGBA(c: *compStr); |
408 | do { |
409 | // Ensure that xyzw and rgba components don't intermingle. |
410 | if (HasRGBA != IsRGBA(c: *compStr)) |
411 | break; |
412 | if (HasIndex[Idx]) HasRepeated = true; |
413 | HasIndex[Idx] = true; |
414 | compStr++; |
415 | } while (*compStr && (Idx = vecType->getPointAccessorIdx(c: *compStr)) != -1); |
416 | |
417 | // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0. |
418 | if (HasRGBA || (*compStr && IsRGBA(c: *compStr))) { |
419 | if (S.getLangOpts().OpenCL && |
420 | S.getLangOpts().getOpenCLCompatibleVersion() < 300) { |
421 | const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr; |
422 | S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector) |
423 | << StringRef(DiagBegin, 1) << SourceRange(CompLoc); |
424 | } |
425 | } |
426 | } else { |
427 | if (HexSwizzle) compStr++; |
428 | while ((Idx = vecType->getNumericAccessorIdx(c: *compStr)) != -1) { |
429 | if (HasIndex[Idx]) HasRepeated = true; |
430 | HasIndex[Idx] = true; |
431 | compStr++; |
432 | } |
433 | } |
434 | |
435 | if (!HalvingSwizzle && *compStr) { |
436 | // We didn't get to the end of the string. This means the component names |
437 | // didn't come from the same set *or* we encountered an illegal name. |
438 | S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal) |
439 | << StringRef(compStr, 1) << SourceRange(CompLoc); |
440 | return QualType(); |
441 | } |
442 | |
443 | // Ensure no component accessor exceeds the width of the vector type it |
444 | // operates on. |
445 | if (!HalvingSwizzle) { |
446 | compStr = CompName->getNameStart(); |
447 | |
448 | if (HexSwizzle) |
449 | compStr++; |
450 | |
451 | while (*compStr) { |
452 | if (!vecType->isAccessorWithinNumElements(c: *compStr++, isNumericAccessor: HexSwizzle)) { |
453 | S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) |
454 | << baseType << SourceRange(CompLoc); |
455 | return QualType(); |
456 | } |
457 | } |
458 | } |
459 | |
460 | // OpenCL mode requires swizzle length to be in accordance with accepted |
461 | // sizes. Clang however supports arbitrary lengths for other languages. |
462 | if (S.getLangOpts().OpenCL && !HalvingSwizzle) { |
463 | unsigned SwizzleLength = CompName->getLength(); |
464 | |
465 | if (HexSwizzle) |
466 | SwizzleLength--; |
467 | |
468 | if (IsValidOpenCLComponentSwizzleLength(len: SwizzleLength) == false) { |
469 | S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length) |
470 | << SwizzleLength << SourceRange(CompLoc); |
471 | return QualType(); |
472 | } |
473 | } |
474 | |
475 | // The component accessor looks fine - now we need to compute the actual type. |
476 | // The vector type is implied by the component accessor. For example, |
477 | // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. |
478 | // vec4.s0 is a float, vec4.s23 is a vec3, etc. |
479 | // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. |
480 | unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2 |
481 | : CompName->getLength(); |
482 | if (HexSwizzle) |
483 | CompSize--; |
484 | |
485 | if (CompSize == 1) |
486 | return vecType->getElementType(); |
487 | |
488 | if (HasRepeated) |
489 | VK = VK_PRValue; |
490 | |
491 | QualType VT = S.Context.getExtVectorType(VectorType: vecType->getElementType(), NumElts: CompSize); |
492 | // Now look up the TypeDefDecl from the vector type. Without this, |
493 | // diagostics look bad. We want extended vector types to appear built-in. |
494 | for (Sema::ExtVectorDeclsType::iterator |
495 | I = S.ExtVectorDecls.begin(source: S.getExternalSource()), |
496 | E = S.ExtVectorDecls.end(); |
497 | I != E; ++I) { |
498 | if ((*I)->getUnderlyingType() == VT) |
499 | return S.Context.getTypedefType(Decl: *I); |
500 | } |
501 | |
502 | return VT; // should never get here (a typedef type should always be found). |
503 | } |
504 | |
505 | static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, |
506 | IdentifierInfo *Member, |
507 | const Selector &Sel, |
508 | ASTContext &Context) { |
509 | if (Member) |
510 | if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration( |
511 | Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) |
512 | return PD; |
513 | if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) |
514 | return OMD; |
515 | |
516 | for (const auto *I : PDecl->protocols()) { |
517 | if (Decl *D = FindGetterSetterNameDeclFromProtocolList(PDecl: I, Member, Sel, |
518 | Context)) |
519 | return D; |
520 | } |
521 | return nullptr; |
522 | } |
523 | |
524 | static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy, |
525 | IdentifierInfo *Member, |
526 | const Selector &Sel, |
527 | ASTContext &Context) { |
528 | // Check protocols on qualified interfaces. |
529 | Decl *GDecl = nullptr; |
530 | for (const auto *I : QIdTy->quals()) { |
531 | if (Member) |
532 | if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( |
533 | Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { |
534 | GDecl = PD; |
535 | break; |
536 | } |
537 | // Also must look for a getter or setter name which uses property syntax. |
538 | if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) { |
539 | GDecl = OMD; |
540 | break; |
541 | } |
542 | } |
543 | if (!GDecl) { |
544 | for (const auto *I : QIdTy->quals()) { |
545 | // Search in the protocol-qualifier list of current protocol. |
546 | GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context); |
547 | if (GDecl) |
548 | return GDecl; |
549 | } |
550 | } |
551 | return GDecl; |
552 | } |
553 | |
554 | ExprResult |
555 | Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType, |
556 | bool IsArrow, SourceLocation OpLoc, |
557 | const CXXScopeSpec &SS, |
558 | SourceLocation TemplateKWLoc, |
559 | NamedDecl *FirstQualifierInScope, |
560 | const DeclarationNameInfo &NameInfo, |
561 | const TemplateArgumentListInfo *TemplateArgs) { |
562 | // Even in dependent contexts, try to diagnose base expressions with |
563 | // obviously wrong types, e.g.: |
564 | // |
565 | // T* t; |
566 | // t.f; |
567 | // |
568 | // In Obj-C++, however, the above expression is valid, since it could be |
569 | // accessing the 'f' property if T is an Obj-C interface. The extra check |
570 | // allows this, while still reporting an error if T is a struct pointer. |
571 | if (!IsArrow) { |
572 | const PointerType *PT = BaseType->getAs<PointerType>(); |
573 | if (PT && (!getLangOpts().ObjC || |
574 | PT->getPointeeType()->isRecordType())) { |
575 | assert(BaseExpr && "cannot happen with implicit member accesses" ); |
576 | Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) |
577 | << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange(); |
578 | return ExprError(); |
579 | } |
580 | } |
581 | |
582 | assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() || |
583 | isDependentScopeSpecifier(SS) || |
584 | (TemplateArgs && llvm::any_of(TemplateArgs->arguments(), |
585 | [](const TemplateArgumentLoc &Arg) { |
586 | return Arg.getArgument().isDependent(); |
587 | }))); |
588 | |
589 | // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr |
590 | // must have pointer type, and the accessed type is the pointee. |
591 | return CXXDependentScopeMemberExpr::Create( |
592 | Ctx: Context, Base: BaseExpr, BaseType, IsArrow, OperatorLoc: OpLoc, |
593 | QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierFoundInScope: FirstQualifierInScope, |
594 | MemberNameInfo: NameInfo, TemplateArgs); |
595 | } |
596 | |
597 | /// We know that the given qualified member reference points only to |
598 | /// declarations which do not belong to the static type of the base |
599 | /// expression. Diagnose the problem. |
600 | static void DiagnoseQualifiedMemberReference(Sema &SemaRef, |
601 | Expr *BaseExpr, |
602 | QualType BaseType, |
603 | const CXXScopeSpec &SS, |
604 | NamedDecl *rep, |
605 | const DeclarationNameInfo &nameInfo) { |
606 | // If this is an implicit member access, use a different set of |
607 | // diagnostics. |
608 | if (!BaseExpr) |
609 | return diagnoseInstanceReference(SemaRef, SS, Rep: rep, nameInfo); |
610 | |
611 | SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated) |
612 | << SS.getRange() << rep << BaseType; |
613 | } |
614 | |
615 | // Check whether the declarations we found through a nested-name |
616 | // specifier in a member expression are actually members of the base |
617 | // type. The restriction here is: |
618 | // |
619 | // C++ [expr.ref]p2: |
620 | // ... In these cases, the id-expression shall name a |
621 | // member of the class or of one of its base classes. |
622 | // |
623 | // So it's perfectly legitimate for the nested-name specifier to name |
624 | // an unrelated class, and for us to find an overload set including |
625 | // decls from classes which are not superclasses, as long as the decl |
626 | // we actually pick through overload resolution is from a superclass. |
627 | bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, |
628 | QualType BaseType, |
629 | const CXXScopeSpec &SS, |
630 | const LookupResult &R) { |
631 | CXXRecordDecl *BaseRecord = |
632 | cast_or_null<CXXRecordDecl>(Val: computeDeclContext(T: BaseType)); |
633 | if (!BaseRecord) { |
634 | // We can't check this yet because the base type is still |
635 | // dependent. |
636 | assert(BaseType->isDependentType()); |
637 | return false; |
638 | } |
639 | |
640 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
641 | // If this is an implicit member reference and we find a |
642 | // non-instance member, it's not an error. |
643 | if (!BaseExpr && !(*I)->isCXXInstanceMember()) |
644 | return false; |
645 | |
646 | // Note that we use the DC of the decl, not the underlying decl. |
647 | DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext(); |
648 | if (!DC->isRecord()) |
649 | continue; |
650 | |
651 | CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(Val: DC)->getCanonicalDecl(); |
652 | if (BaseRecord->getCanonicalDecl() == MemberRecord || |
653 | !BaseRecord->isProvablyNotDerivedFrom(Base: MemberRecord)) |
654 | return false; |
655 | } |
656 | |
657 | DiagnoseQualifiedMemberReference(SemaRef&: *this, BaseExpr, BaseType, SS, |
658 | rep: R.getRepresentativeDecl(), |
659 | nameInfo: R.getLookupNameInfo()); |
660 | return true; |
661 | } |
662 | |
663 | namespace { |
664 | |
665 | // Callback to only accept typo corrections that are either a ValueDecl or a |
666 | // FunctionTemplateDecl and are declared in the current record or, for a C++ |
667 | // classes, one of its base classes. |
668 | class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback { |
669 | public: |
670 | explicit RecordMemberExprValidatorCCC(const RecordType *RTy) |
671 | : Record(RTy->getDecl()) { |
672 | // Don't add bare keywords to the consumer since they will always fail |
673 | // validation by virtue of not being associated with any decls. |
674 | WantTypeSpecifiers = false; |
675 | WantExpressionKeywords = false; |
676 | WantCXXNamedCasts = false; |
677 | WantFunctionLikeCasts = false; |
678 | WantRemainingKeywords = false; |
679 | } |
680 | |
681 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
682 | NamedDecl *ND = candidate.getCorrectionDecl(); |
683 | // Don't accept candidates that cannot be member functions, constants, |
684 | // variables, or templates. |
685 | if (!ND || !(isa<ValueDecl>(Val: ND) || isa<FunctionTemplateDecl>(Val: ND))) |
686 | return false; |
687 | |
688 | // Accept candidates that occur in the current record. |
689 | if (Record->containsDecl(ND)) |
690 | return true; |
691 | |
692 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: Record)) { |
693 | // Accept candidates that occur in any of the current class' base classes. |
694 | for (const auto &BS : RD->bases()) { |
695 | if (const auto *BSTy = BS.getType()->getAs<RecordType>()) { |
696 | if (BSTy->getDecl()->containsDecl(ND)) |
697 | return true; |
698 | } |
699 | } |
700 | } |
701 | |
702 | return false; |
703 | } |
704 | |
705 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
706 | return std::make_unique<RecordMemberExprValidatorCCC>(args&: *this); |
707 | } |
708 | |
709 | private: |
710 | const RecordDecl *const Record; |
711 | }; |
712 | |
713 | } |
714 | |
715 | static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, |
716 | Expr *BaseExpr, |
717 | const RecordType *RTy, |
718 | SourceLocation OpLoc, bool IsArrow, |
719 | CXXScopeSpec &SS, bool HasTemplateArgs, |
720 | SourceLocation TemplateKWLoc, |
721 | TypoExpr *&TE) { |
722 | SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange(); |
723 | RecordDecl *RDecl = RTy->getDecl(); |
724 | if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) && |
725 | SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0), |
726 | diag::err_typecheck_incomplete_tag, |
727 | BaseRange)) |
728 | return true; |
729 | |
730 | if (HasTemplateArgs || TemplateKWLoc.isValid()) { |
731 | // LookupTemplateName doesn't expect these both to exist simultaneously. |
732 | QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0); |
733 | |
734 | bool MOUS; |
735 | return SemaRef.LookupTemplateName(R, S: nullptr, SS, ObjectType, EnteringContext: false, MemberOfUnknownSpecialization&: MOUS, |
736 | RequiredTemplate: TemplateKWLoc); |
737 | } |
738 | |
739 | DeclContext *DC = RDecl; |
740 | if (SS.isSet()) { |
741 | // If the member name was a qualified-id, look into the |
742 | // nested-name-specifier. |
743 | DC = SemaRef.computeDeclContext(SS, EnteringContext: false); |
744 | |
745 | if (SemaRef.RequireCompleteDeclContext(SS, DC)) { |
746 | SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag) |
747 | << SS.getRange() << DC; |
748 | return true; |
749 | } |
750 | |
751 | assert(DC && "Cannot handle non-computable dependent contexts in lookup" ); |
752 | |
753 | if (!isa<TypeDecl>(Val: DC)) { |
754 | SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass) |
755 | << DC << SS.getRange(); |
756 | return true; |
757 | } |
758 | } |
759 | |
760 | // The record definition is complete, now look up the member. |
761 | SemaRef.LookupQualifiedName(R, LookupCtx: DC, SS); |
762 | |
763 | if (!R.empty()) |
764 | return false; |
765 | |
766 | DeclarationName Typo = R.getLookupName(); |
767 | SourceLocation TypoLoc = R.getNameLoc(); |
768 | |
769 | struct QueryState { |
770 | Sema &SemaRef; |
771 | DeclarationNameInfo NameInfo; |
772 | Sema::LookupNameKind LookupKind; |
773 | RedeclarationKind Redecl; |
774 | }; |
775 | QueryState Q = {.SemaRef: R.getSema(), .NameInfo: R.getLookupNameInfo(), .LookupKind: R.getLookupKind(), |
776 | .Redecl: R.redeclarationKind()}; |
777 | RecordMemberExprValidatorCCC CCC(RTy); |
778 | TE = SemaRef.CorrectTypoDelayed( |
779 | Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S: nullptr, SS: &SS, CCC, |
780 | TDG: [=, &SemaRef](const TypoCorrection &TC) { |
781 | if (TC) { |
782 | assert(!TC.isKeyword() && |
783 | "Got a keyword as a correction for a member!" ); |
784 | bool DroppedSpecifier = |
785 | TC.WillReplaceSpecifier() && |
786 | Typo.getAsString() == TC.getAsString(LO: SemaRef.getLangOpts()); |
787 | SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) |
788 | << Typo << DC << DroppedSpecifier |
789 | << SS.getRange()); |
790 | } else { |
791 | SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange; |
792 | } |
793 | }, |
794 | TRC: [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable { |
795 | LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl); |
796 | R.clear(); // Ensure there's no decls lingering in the shared state. |
797 | R.suppressDiagnostics(); |
798 | R.setLookupName(TC.getCorrection()); |
799 | for (NamedDecl *ND : TC) |
800 | R.addDecl(D: ND); |
801 | R.resolveKind(); |
802 | return SemaRef.BuildMemberReferenceExpr( |
803 | Base: BaseExpr, BaseType: BaseExpr->getType(), OpLoc, IsArrow, SS, TemplateKWLoc: SourceLocation(), |
804 | FirstQualifierInScope: nullptr, R, TemplateArgs: nullptr, S: nullptr); |
805 | }, |
806 | Mode: Sema::CTK_ErrorRecovery, MemberContext: DC); |
807 | |
808 | return false; |
809 | } |
810 | |
811 | static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, |
812 | ExprResult &BaseExpr, bool &IsArrow, |
813 | SourceLocation OpLoc, CXXScopeSpec &SS, |
814 | Decl *ObjCImpDecl, bool HasTemplateArgs, |
815 | SourceLocation TemplateKWLoc); |
816 | |
817 | ExprResult |
818 | Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType, |
819 | SourceLocation OpLoc, bool IsArrow, |
820 | CXXScopeSpec &SS, |
821 | SourceLocation TemplateKWLoc, |
822 | NamedDecl *FirstQualifierInScope, |
823 | const DeclarationNameInfo &NameInfo, |
824 | const TemplateArgumentListInfo *TemplateArgs, |
825 | const Scope *S, |
826 | ActOnMemberAccessExtraArgs *) { |
827 | if (BaseType->isDependentType() || |
828 | (SS.isSet() && isDependentScopeSpecifier(SS)) || |
829 | NameInfo.getName().isDependentName()) |
830 | return ActOnDependentMemberExpr(BaseExpr: Base, BaseType, |
831 | IsArrow, OpLoc, |
832 | SS, TemplateKWLoc, FirstQualifierInScope, |
833 | NameInfo, TemplateArgs); |
834 | |
835 | LookupResult R(*this, NameInfo, LookupMemberName); |
836 | |
837 | // Implicit member accesses. |
838 | if (!Base) { |
839 | TypoExpr *TE = nullptr; |
840 | QualType RecordTy = BaseType; |
841 | if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType(); |
842 | if (LookupMemberExprInRecord( |
843 | SemaRef&: *this, R, BaseExpr: nullptr, RTy: RecordTy->castAs<RecordType>(), OpLoc, IsArrow, |
844 | SS, HasTemplateArgs: TemplateArgs != nullptr, TemplateKWLoc, TE)) |
845 | return ExprError(); |
846 | if (TE) |
847 | return TE; |
848 | |
849 | // Explicit member accesses. |
850 | } else { |
851 | ExprResult BaseResult = Base; |
852 | ExprResult Result = |
853 | LookupMemberExpr(S&: *this, R, BaseExpr&: BaseResult, IsArrow, OpLoc, SS, |
854 | ObjCImpDecl: ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr, |
855 | HasTemplateArgs: TemplateArgs != nullptr, TemplateKWLoc); |
856 | |
857 | if (BaseResult.isInvalid()) |
858 | return ExprError(); |
859 | Base = BaseResult.get(); |
860 | |
861 | if (Result.isInvalid()) |
862 | return ExprError(); |
863 | |
864 | if (Result.get()) |
865 | return Result; |
866 | |
867 | // LookupMemberExpr can modify Base, and thus change BaseType |
868 | BaseType = Base->getType(); |
869 | } |
870 | |
871 | return BuildMemberReferenceExpr(Base, BaseType, |
872 | OpLoc, IsArrow, SS, TemplateKWLoc, |
873 | FirstQualifierInScope, R, TemplateArgs, S, |
874 | SuppressQualifierCheck: false, ExtraArgs); |
875 | } |
876 | |
877 | ExprResult |
878 | Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS, |
879 | SourceLocation loc, |
880 | IndirectFieldDecl *indirectField, |
881 | DeclAccessPair foundDecl, |
882 | Expr *baseObjectExpr, |
883 | SourceLocation opLoc) { |
884 | // First, build the expression that refers to the base object. |
885 | |
886 | // Case 1: the base of the indirect field is not a field. |
887 | VarDecl *baseVariable = indirectField->getVarDecl(); |
888 | CXXScopeSpec EmptySS; |
889 | if (baseVariable) { |
890 | assert(baseVariable->getType()->isRecordType()); |
891 | |
892 | // In principle we could have a member access expression that |
893 | // accesses an anonymous struct/union that's a static member of |
894 | // the base object's class. However, under the current standard, |
895 | // static data members cannot be anonymous structs or unions. |
896 | // Supporting this is as easy as building a MemberExpr here. |
897 | assert(!baseObjectExpr && "anonymous struct/union is static data member?" ); |
898 | |
899 | DeclarationNameInfo baseNameInfo(DeclarationName(), loc); |
900 | |
901 | ExprResult result |
902 | = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable); |
903 | if (result.isInvalid()) return ExprError(); |
904 | |
905 | baseObjectExpr = result.get(); |
906 | } |
907 | |
908 | assert((baseVariable || baseObjectExpr) && |
909 | "referencing anonymous struct/union without a base variable or " |
910 | "expression" ); |
911 | |
912 | // Build the implicit member references to the field of the |
913 | // anonymous struct/union. |
914 | Expr *result = baseObjectExpr; |
915 | IndirectFieldDecl::chain_iterator |
916 | FI = indirectField->chain_begin(), FEnd = indirectField->chain_end(); |
917 | |
918 | // Case 2: the base of the indirect field is a field and the user |
919 | // wrote a member expression. |
920 | if (!baseVariable) { |
921 | FieldDecl *field = cast<FieldDecl>(Val: *FI); |
922 | |
923 | bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType(); |
924 | |
925 | // Make a nameInfo that properly uses the anonymous name. |
926 | DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); |
927 | |
928 | // Build the first member access in the chain with full information. |
929 | result = |
930 | BuildFieldReferenceExpr(BaseExpr: result, IsArrow: baseObjectIsPointer, OpLoc: SourceLocation(), |
931 | SS, Field: field, FoundDecl: foundDecl, MemberNameInfo: memberNameInfo) |
932 | .get(); |
933 | if (!result) |
934 | return ExprError(); |
935 | } |
936 | |
937 | // In all cases, we should now skip the first declaration in the chain. |
938 | ++FI; |
939 | |
940 | while (FI != FEnd) { |
941 | FieldDecl *field = cast<FieldDecl>(Val: *FI++); |
942 | |
943 | // FIXME: these are somewhat meaningless |
944 | DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); |
945 | DeclAccessPair fakeFoundDecl = |
946 | DeclAccessPair::make(D: field, AS: field->getAccess()); |
947 | |
948 | result = |
949 | BuildFieldReferenceExpr(BaseExpr: result, /*isarrow*/ IsArrow: false, OpLoc: SourceLocation(), |
950 | SS: (FI == FEnd ? SS : EmptySS), Field: field, |
951 | FoundDecl: fakeFoundDecl, MemberNameInfo: memberNameInfo) |
952 | .get(); |
953 | } |
954 | |
955 | return result; |
956 | } |
957 | |
958 | static ExprResult |
959 | BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow, |
960 | const CXXScopeSpec &SS, |
961 | MSPropertyDecl *PD, |
962 | const DeclarationNameInfo &NameInfo) { |
963 | // Property names are always simple identifiers and therefore never |
964 | // require any interesting additional storage. |
965 | return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow, |
966 | S.Context.PseudoObjectTy, VK_LValue, |
967 | SS.getWithLocInContext(Context&: S.Context), |
968 | NameInfo.getLoc()); |
969 | } |
970 | |
971 | MemberExpr *Sema::BuildMemberExpr( |
972 | Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS, |
973 | SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, |
974 | bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, |
975 | QualType Ty, ExprValueKind VK, ExprObjectKind OK, |
976 | const TemplateArgumentListInfo *TemplateArgs) { |
977 | NestedNameSpecifierLoc NNS = |
978 | SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); |
979 | return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member, |
980 | FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty, |
981 | VK, OK, TemplateArgs); |
982 | } |
983 | |
984 | MemberExpr *Sema::BuildMemberExpr( |
985 | Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS, |
986 | SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, |
987 | bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, |
988 | QualType Ty, ExprValueKind VK, ExprObjectKind OK, |
989 | const TemplateArgumentListInfo *TemplateArgs) { |
990 | assert((!IsArrow || Base->isPRValue()) && |
991 | "-> base must be a pointer prvalue" ); |
992 | MemberExpr *E = |
993 | MemberExpr::Create(C: Context, Base, IsArrow, OperatorLoc: OpLoc, QualifierLoc: NNS, TemplateKWLoc, |
994 | MemberDecl: Member, FoundDecl, MemberNameInfo, TemplateArgs, T: Ty, |
995 | VK, OK, NOUR: getNonOdrUseReasonInCurrentContext(D: Member)); |
996 | E->setHadMultipleCandidates(HadMultipleCandidates); |
997 | MarkMemberReferenced(E); |
998 | |
999 | // C++ [except.spec]p17: |
1000 | // An exception-specification is considered to be needed when: |
1001 | // - in an expression the function is the unique lookup result or the |
1002 | // selected member of a set of overloaded functions |
1003 | if (auto *FPT = Ty->getAs<FunctionProtoType>()) { |
1004 | if (isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType())) { |
1005 | if (auto *NewFPT = ResolveExceptionSpec(Loc: MemberNameInfo.getLoc(), FPT)) |
1006 | E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); |
1007 | } |
1008 | } |
1009 | |
1010 | return E; |
1011 | } |
1012 | |
1013 | /// Determine if the given scope is within a function-try-block handler. |
1014 | static bool IsInFnTryBlockHandler(const Scope *S) { |
1015 | // Walk the scope stack until finding a FnTryCatchScope, or leave the |
1016 | // function scope. If a FnTryCatchScope is found, check whether the TryScope |
1017 | // flag is set. If it is not, it's a function-try-block handler. |
1018 | for (; S != S->getFnParent(); S = S->getParent()) { |
1019 | if (S->isFnTryCatchScope()) |
1020 | return (S->getFlags() & Scope::TryScope) != Scope::TryScope; |
1021 | } |
1022 | return false; |
1023 | } |
1024 | |
1025 | ExprResult |
1026 | Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType, |
1027 | SourceLocation OpLoc, bool IsArrow, |
1028 | const CXXScopeSpec &SS, |
1029 | SourceLocation TemplateKWLoc, |
1030 | NamedDecl *FirstQualifierInScope, |
1031 | LookupResult &R, |
1032 | const TemplateArgumentListInfo *TemplateArgs, |
1033 | const Scope *S, |
1034 | bool SuppressQualifierCheck, |
1035 | ActOnMemberAccessExtraArgs *) { |
1036 | QualType BaseType = BaseExprType; |
1037 | if (IsArrow) { |
1038 | assert(BaseType->isPointerType()); |
1039 | BaseType = BaseType->castAs<PointerType>()->getPointeeType(); |
1040 | } |
1041 | R.setBaseObjectType(BaseType); |
1042 | |
1043 | // C++1z [expr.ref]p2: |
1044 | // For the first option (dot) the first expression shall be a glvalue [...] |
1045 | if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) { |
1046 | ExprResult Converted = TemporaryMaterializationConversion(E: BaseExpr); |
1047 | if (Converted.isInvalid()) |
1048 | return ExprError(); |
1049 | BaseExpr = Converted.get(); |
1050 | } |
1051 | |
1052 | const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo(); |
1053 | DeclarationName MemberName = MemberNameInfo.getName(); |
1054 | SourceLocation MemberLoc = MemberNameInfo.getLoc(); |
1055 | |
1056 | if (R.isAmbiguous()) |
1057 | return ExprError(); |
1058 | |
1059 | // [except.handle]p10: Referring to any non-static member or base class of an |
1060 | // object in the handler for a function-try-block of a constructor or |
1061 | // destructor for that object results in undefined behavior. |
1062 | const auto *FD = getCurFunctionDecl(); |
1063 | if (S && BaseExpr && FD && |
1064 | (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) && |
1065 | isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) && |
1066 | IsInFnTryBlockHandler(S)) |
1067 | Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr) |
1068 | << isa<CXXDestructorDecl>(FD); |
1069 | |
1070 | if (R.empty()) { |
1071 | // Rederive where we looked up. |
1072 | DeclContext *DC = (SS.isSet() |
1073 | ? computeDeclContext(SS, EnteringContext: false) |
1074 | : BaseType->castAs<RecordType>()->getDecl()); |
1075 | |
1076 | if (ExtraArgs) { |
1077 | ExprResult RetryExpr; |
1078 | if (!IsArrow && BaseExpr) { |
1079 | SFINAETrap Trap(*this, true); |
1080 | ParsedType ObjectType; |
1081 | bool MayBePseudoDestructor = false; |
1082 | RetryExpr = ActOnStartCXXMemberReference(S: getCurScope(), Base: BaseExpr, |
1083 | OpLoc, OpKind: tok::arrow, ObjectType, |
1084 | MayBePseudoDestructor); |
1085 | if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) { |
1086 | CXXScopeSpec TempSS(SS); |
1087 | RetryExpr = ActOnMemberAccessExpr( |
1088 | S: ExtraArgs->S, Base: RetryExpr.get(), OpLoc, OpKind: tok::arrow, SS&: TempSS, |
1089 | TemplateKWLoc, Member&: ExtraArgs->Id, ObjCImpDecl: ExtraArgs->ObjCImpDecl); |
1090 | } |
1091 | if (Trap.hasErrorOccurred()) |
1092 | RetryExpr = ExprError(); |
1093 | } |
1094 | if (RetryExpr.isUsable()) { |
1095 | Diag(OpLoc, diag::err_no_member_overloaded_arrow) |
1096 | << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->" ); |
1097 | return RetryExpr; |
1098 | } |
1099 | } |
1100 | |
1101 | Diag(R.getNameLoc(), diag::err_no_member) |
1102 | << MemberName << DC |
1103 | << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); |
1104 | return ExprError(); |
1105 | } |
1106 | |
1107 | // Diagnose lookups that find only declarations from a non-base |
1108 | // type. This is possible for either qualified lookups (which may |
1109 | // have been qualified with an unrelated type) or implicit member |
1110 | // expressions (which were found with unqualified lookup and thus |
1111 | // may have come from an enclosing scope). Note that it's okay for |
1112 | // lookup to find declarations from a non-base type as long as those |
1113 | // aren't the ones picked by overload resolution. |
1114 | if ((SS.isSet() || !BaseExpr || |
1115 | (isa<CXXThisExpr>(Val: BaseExpr) && |
1116 | cast<CXXThisExpr>(Val: BaseExpr)->isImplicit())) && |
1117 | !SuppressQualifierCheck && |
1118 | CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) |
1119 | return ExprError(); |
1120 | |
1121 | // Construct an unresolved result if we in fact got an unresolved |
1122 | // result. |
1123 | if (R.isOverloadedResult() || R.isUnresolvableResult()) { |
1124 | // Suppress any lookup-related diagnostics; we'll do these when we |
1125 | // pick a member. |
1126 | R.suppressDiagnostics(); |
1127 | |
1128 | UnresolvedMemberExpr *MemExpr |
1129 | = UnresolvedMemberExpr::Create(Context, HasUnresolvedUsing: R.isUnresolvableResult(), |
1130 | Base: BaseExpr, BaseType: BaseExprType, |
1131 | IsArrow, OperatorLoc: OpLoc, |
1132 | QualifierLoc: SS.getWithLocInContext(Context), |
1133 | TemplateKWLoc, MemberNameInfo, |
1134 | TemplateArgs, Begin: R.begin(), End: R.end()); |
1135 | |
1136 | return MemExpr; |
1137 | } |
1138 | |
1139 | assert(R.isSingleResult()); |
1140 | DeclAccessPair FoundDecl = R.begin().getPair(); |
1141 | NamedDecl *MemberDecl = R.getFoundDecl(); |
1142 | |
1143 | // FIXME: diagnose the presence of template arguments now. |
1144 | |
1145 | // If the decl being referenced had an error, return an error for this |
1146 | // sub-expr without emitting another error, in order to avoid cascading |
1147 | // error cases. |
1148 | if (MemberDecl->isInvalidDecl()) |
1149 | return ExprError(); |
1150 | |
1151 | // Handle the implicit-member-access case. |
1152 | if (!BaseExpr) { |
1153 | // If this is not an instance member, convert to a non-member access. |
1154 | if (!MemberDecl->isCXXInstanceMember()) { |
1155 | // We might have a variable template specialization (or maybe one day a |
1156 | // member concept-id). |
1157 | if (TemplateArgs || TemplateKWLoc.isValid()) |
1158 | return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/RequiresADL: false, TemplateArgs); |
1159 | |
1160 | return BuildDeclarationNameExpr(SS, NameInfo: R.getLookupNameInfo(), D: MemberDecl, |
1161 | FoundD: FoundDecl, TemplateArgs); |
1162 | } |
1163 | SourceLocation Loc = R.getNameLoc(); |
1164 | if (SS.getRange().isValid()) |
1165 | Loc = SS.getRange().getBegin(); |
1166 | BaseExpr = BuildCXXThisExpr(Loc, Type: BaseExprType, /*IsImplicit=*/true); |
1167 | } |
1168 | |
1169 | // Check the use of this member. |
1170 | if (DiagnoseUseOfDecl(D: MemberDecl, Locs: MemberLoc)) |
1171 | return ExprError(); |
1172 | |
1173 | if (FieldDecl *FD = dyn_cast<FieldDecl>(Val: MemberDecl)) |
1174 | return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, Field: FD, FoundDecl, |
1175 | MemberNameInfo); |
1176 | |
1177 | if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(Val: MemberDecl)) |
1178 | return BuildMSPropertyRefExpr(S&: *this, BaseExpr, IsArrow, SS, PD, |
1179 | NameInfo: MemberNameInfo); |
1180 | |
1181 | if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(Val: MemberDecl)) |
1182 | // We may have found a field within an anonymous union or struct |
1183 | // (C++ [class.union]). |
1184 | return BuildAnonymousStructUnionMemberReference(SS, loc: MemberLoc, indirectField: FD, |
1185 | foundDecl: FoundDecl, baseObjectExpr: BaseExpr, |
1186 | opLoc: OpLoc); |
1187 | |
1188 | if (VarDecl *Var = dyn_cast<VarDecl>(Val: MemberDecl)) { |
1189 | return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, |
1190 | FoundDecl, /*HadMultipleCandidates=*/false, |
1191 | MemberNameInfo, Var->getType().getNonReferenceType(), |
1192 | VK_LValue, OK_Ordinary); |
1193 | } |
1194 | |
1195 | if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(Val: MemberDecl)) { |
1196 | ExprValueKind valueKind; |
1197 | QualType type; |
1198 | if (MemberFn->isInstance()) { |
1199 | valueKind = VK_PRValue; |
1200 | type = Context.BoundMemberTy; |
1201 | } else { |
1202 | valueKind = VK_LValue; |
1203 | type = MemberFn->getType(); |
1204 | } |
1205 | |
1206 | return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, |
1207 | MemberFn, FoundDecl, /*HadMultipleCandidates=*/false, |
1208 | MemberNameInfo, type, valueKind, OK_Ordinary); |
1209 | } |
1210 | assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?" ); |
1211 | |
1212 | if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(Val: MemberDecl)) { |
1213 | return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum, |
1214 | FoundDecl, /*HadMultipleCandidates=*/false, |
1215 | MemberNameInfo, Enum->getType(), VK_PRValue, |
1216 | OK_Ordinary); |
1217 | } |
1218 | |
1219 | if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(Val: MemberDecl)) { |
1220 | if (!TemplateArgs) { |
1221 | diagnoseMissingTemplateArguments(Name: TemplateName(VarTempl), Loc: MemberLoc); |
1222 | return ExprError(); |
1223 | } |
1224 | |
1225 | DeclResult VDecl = CheckVarTemplateId(Template: VarTempl, TemplateLoc: TemplateKWLoc, |
1226 | TemplateNameLoc: MemberNameInfo.getLoc(), TemplateArgs: *TemplateArgs); |
1227 | if (VDecl.isInvalid()) |
1228 | return ExprError(); |
1229 | |
1230 | // Non-dependent member, but dependent template arguments. |
1231 | if (!VDecl.get()) |
1232 | return ActOnDependentMemberExpr( |
1233 | BaseExpr, BaseType: BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc, |
1234 | FirstQualifierInScope, NameInfo: MemberNameInfo, TemplateArgs); |
1235 | |
1236 | VarDecl *Var = cast<VarDecl>(Val: VDecl.get()); |
1237 | if (!Var->getTemplateSpecializationKind()) |
1238 | Var->setTemplateSpecializationKind(TSK: TSK_ImplicitInstantiation, PointOfInstantiation: MemberLoc); |
1239 | |
1240 | return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, |
1241 | FoundDecl, /*HadMultipleCandidates=*/false, |
1242 | MemberNameInfo, Var->getType().getNonReferenceType(), |
1243 | VK_LValue, OK_Ordinary, TemplateArgs); |
1244 | } |
1245 | |
1246 | // We found something that we didn't expect. Complain. |
1247 | if (isa<TypeDecl>(MemberDecl)) |
1248 | Diag(MemberLoc, diag::err_typecheck_member_reference_type) |
1249 | << MemberName << BaseType << int(IsArrow); |
1250 | else |
1251 | Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) |
1252 | << MemberName << BaseType << int(IsArrow); |
1253 | |
1254 | Diag(MemberDecl->getLocation(), diag::note_member_declared_here) |
1255 | << MemberName; |
1256 | R.suppressDiagnostics(); |
1257 | return ExprError(); |
1258 | } |
1259 | |
1260 | /// Given that normal member access failed on the given expression, |
1261 | /// and given that the expression's type involves builtin-id or |
1262 | /// builtin-Class, decide whether substituting in the redefinition |
1263 | /// types would be profitable. The redefinition type is whatever |
1264 | /// this translation unit tried to typedef to id/Class; we store |
1265 | /// it to the side and then re-use it in places like this. |
1266 | static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) { |
1267 | const ObjCObjectPointerType *opty |
1268 | = base.get()->getType()->getAs<ObjCObjectPointerType>(); |
1269 | if (!opty) return false; |
1270 | |
1271 | const ObjCObjectType *ty = opty->getObjectType(); |
1272 | |
1273 | QualType redef; |
1274 | if (ty->isObjCId()) { |
1275 | redef = S.Context.getObjCIdRedefinitionType(); |
1276 | } else if (ty->isObjCClass()) { |
1277 | redef = S.Context.getObjCClassRedefinitionType(); |
1278 | } else { |
1279 | return false; |
1280 | } |
1281 | |
1282 | // Do the substitution as long as the redefinition type isn't just a |
1283 | // possibly-qualified pointer to builtin-id or builtin-Class again. |
1284 | opty = redef->getAs<ObjCObjectPointerType>(); |
1285 | if (opty && !opty->getObjectType()->getInterface()) |
1286 | return false; |
1287 | |
1288 | base = S.ImpCastExprToType(E: base.get(), Type: redef, CK: CK_BitCast); |
1289 | return true; |
1290 | } |
1291 | |
1292 | static bool isRecordType(QualType T) { |
1293 | return T->isRecordType(); |
1294 | } |
1295 | static bool isPointerToRecordType(QualType T) { |
1296 | if (const PointerType *PT = T->getAs<PointerType>()) |
1297 | return PT->getPointeeType()->isRecordType(); |
1298 | return false; |
1299 | } |
1300 | |
1301 | /// Perform conversions on the LHS of a member access expression. |
1302 | ExprResult |
1303 | Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) { |
1304 | if (IsArrow && !Base->getType()->isFunctionType()) |
1305 | return DefaultFunctionArrayLvalueConversion(E: Base); |
1306 | |
1307 | return CheckPlaceholderExpr(E: Base); |
1308 | } |
1309 | |
1310 | /// Look up the given member of the given non-type-dependent |
1311 | /// expression. This can return in one of two ways: |
1312 | /// * If it returns a sentinel null-but-valid result, the caller will |
1313 | /// assume that lookup was performed and the results written into |
1314 | /// the provided structure. It will take over from there. |
1315 | /// * Otherwise, the returned expression will be produced in place of |
1316 | /// an ordinary member expression. |
1317 | /// |
1318 | /// The ObjCImpDecl bit is a gross hack that will need to be properly |
1319 | /// fixed for ObjC++. |
1320 | static ExprResult LookupMemberExpr(Sema &S, LookupResult &R, |
1321 | ExprResult &BaseExpr, bool &IsArrow, |
1322 | SourceLocation OpLoc, CXXScopeSpec &SS, |
1323 | Decl *ObjCImpDecl, bool HasTemplateArgs, |
1324 | SourceLocation TemplateKWLoc) { |
1325 | assert(BaseExpr.get() && "no base expression" ); |
1326 | |
1327 | // Perform default conversions. |
1328 | BaseExpr = S.PerformMemberExprBaseConversion(Base: BaseExpr.get(), IsArrow); |
1329 | if (BaseExpr.isInvalid()) |
1330 | return ExprError(); |
1331 | |
1332 | QualType BaseType = BaseExpr.get()->getType(); |
1333 | assert(!BaseType->isDependentType()); |
1334 | |
1335 | DeclarationName MemberName = R.getLookupName(); |
1336 | SourceLocation MemberLoc = R.getNameLoc(); |
1337 | |
1338 | // For later type-checking purposes, turn arrow accesses into dot |
1339 | // accesses. The only access type we support that doesn't follow |
1340 | // the C equivalence "a->b === (*a).b" is ObjC property accesses, |
1341 | // and those never use arrows, so this is unaffected. |
1342 | if (IsArrow) { |
1343 | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) |
1344 | BaseType = Ptr->getPointeeType(); |
1345 | else if (const ObjCObjectPointerType *Ptr |
1346 | = BaseType->getAs<ObjCObjectPointerType>()) |
1347 | BaseType = Ptr->getPointeeType(); |
1348 | else if (BaseType->isRecordType()) { |
1349 | // Recover from arrow accesses to records, e.g.: |
1350 | // struct MyRecord foo; |
1351 | // foo->bar |
1352 | // This is actually well-formed in C++ if MyRecord has an |
1353 | // overloaded operator->, but that should have been dealt with |
1354 | // by now--or a diagnostic message already issued if a problem |
1355 | // was encountered while looking for the overloaded operator->. |
1356 | if (!S.getLangOpts().CPlusPlus) { |
1357 | S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
1358 | << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() |
1359 | << FixItHint::CreateReplacement(OpLoc, "." ); |
1360 | } |
1361 | IsArrow = false; |
1362 | } else if (BaseType->isFunctionType()) { |
1363 | goto fail; |
1364 | } else { |
1365 | S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) |
1366 | << BaseType << BaseExpr.get()->getSourceRange(); |
1367 | return ExprError(); |
1368 | } |
1369 | } |
1370 | |
1371 | // If the base type is an atomic type, this access is undefined behavior per |
1372 | // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user |
1373 | // about the UB and recover by converting the atomic lvalue into a non-atomic |
1374 | // lvalue. Because this is inherently unsafe as an atomic operation, the |
1375 | // warning defaults to an error. |
1376 | if (const auto *ATy = BaseType->getAs<AtomicType>()) { |
1377 | S.DiagRuntimeBehavior(OpLoc, nullptr, |
1378 | S.PDiag(diag::warn_atomic_member_access)); |
1379 | BaseType = ATy->getValueType().getUnqualifiedType(); |
1380 | BaseExpr = ImplicitCastExpr::Create( |
1381 | Context: S.Context, T: IsArrow ? S.Context.getPointerType(T: BaseType) : BaseType, |
1382 | Kind: CK_AtomicToNonAtomic, Operand: BaseExpr.get(), BasePath: nullptr, |
1383 | Cat: BaseExpr.get()->getValueKind(), FPO: FPOptionsOverride()); |
1384 | } |
1385 | |
1386 | // Handle field access to simple records. |
1387 | if (const RecordType *RTy = BaseType->getAs<RecordType>()) { |
1388 | TypoExpr *TE = nullptr; |
1389 | if (LookupMemberExprInRecord(SemaRef&: S, R, BaseExpr: BaseExpr.get(), RTy, OpLoc, IsArrow, SS, |
1390 | HasTemplateArgs, TemplateKWLoc, TE)) |
1391 | return ExprError(); |
1392 | |
1393 | // Returning valid-but-null is how we indicate to the caller that |
1394 | // the lookup result was filled in. If typo correction was attempted and |
1395 | // failed, the lookup result will have been cleared--that combined with the |
1396 | // valid-but-null ExprResult will trigger the appropriate diagnostics. |
1397 | return ExprResult(TE); |
1398 | } |
1399 | |
1400 | // Handle ivar access to Objective-C objects. |
1401 | if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) { |
1402 | if (!SS.isEmpty() && !SS.isInvalid()) { |
1403 | S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) |
1404 | << 1 << SS.getScopeRep() |
1405 | << FixItHint::CreateRemoval(SS.getRange()); |
1406 | SS.clear(); |
1407 | } |
1408 | |
1409 | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
1410 | |
1411 | // There are three cases for the base type: |
1412 | // - builtin id (qualified or unqualified) |
1413 | // - builtin Class (qualified or unqualified) |
1414 | // - an interface |
1415 | ObjCInterfaceDecl *IDecl = OTy->getInterface(); |
1416 | if (!IDecl) { |
1417 | if (S.getLangOpts().ObjCAutoRefCount && |
1418 | (OTy->isObjCId() || OTy->isObjCClass())) |
1419 | goto fail; |
1420 | // There's an implicit 'isa' ivar on all objects. |
1421 | // But we only actually find it this way on objects of type 'id', |
1422 | // apparently. |
1423 | if (OTy->isObjCId() && Member->isStr(Str: "isa" )) |
1424 | return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc, |
1425 | OpLoc, S.Context.getObjCClassType()); |
1426 | if (ShouldTryAgainWithRedefinitionType(S, base&: BaseExpr)) |
1427 | return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, |
1428 | ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); |
1429 | goto fail; |
1430 | } |
1431 | |
1432 | if (S.RequireCompleteType(OpLoc, BaseType, |
1433 | diag::err_typecheck_incomplete_tag, |
1434 | BaseExpr.get())) |
1435 | return ExprError(); |
1436 | |
1437 | ObjCInterfaceDecl *ClassDeclared = nullptr; |
1438 | ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(IVarName: Member, ClassDeclared); |
1439 | |
1440 | if (!IV) { |
1441 | // Attempt to correct for typos in ivar names. |
1442 | DeclFilterCCC<ObjCIvarDecl> Validator{}; |
1443 | Validator.IsObjCIvarLookup = IsArrow; |
1444 | if (TypoCorrection Corrected = S.CorrectTypo( |
1445 | R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr, |
1446 | Validator, Sema::CTK_ErrorRecovery, IDecl)) { |
1447 | IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>(); |
1448 | S.diagnoseTypo( |
1449 | Corrected, |
1450 | S.PDiag(diag::err_typecheck_member_reference_ivar_suggest) |
1451 | << IDecl->getDeclName() << MemberName); |
1452 | |
1453 | // Figure out the class that declares the ivar. |
1454 | assert(!ClassDeclared); |
1455 | |
1456 | Decl *D = cast<Decl>(IV->getDeclContext()); |
1457 | if (auto *Category = dyn_cast<ObjCCategoryDecl>(D)) |
1458 | D = Category->getClassInterface(); |
1459 | |
1460 | if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D)) |
1461 | ClassDeclared = Implementation->getClassInterface(); |
1462 | else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D)) |
1463 | ClassDeclared = Interface; |
1464 | |
1465 | assert(ClassDeclared && "cannot query interface" ); |
1466 | } else { |
1467 | if (IsArrow && |
1468 | IDecl->FindPropertyDeclaration( |
1469 | Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { |
1470 | S.Diag(MemberLoc, diag::err_property_found_suggest) |
1471 | << Member << BaseExpr.get()->getType() |
1472 | << FixItHint::CreateReplacement(OpLoc, "." ); |
1473 | return ExprError(); |
1474 | } |
1475 | |
1476 | S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) |
1477 | << IDecl->getDeclName() << MemberName |
1478 | << BaseExpr.get()->getSourceRange(); |
1479 | return ExprError(); |
1480 | } |
1481 | } |
1482 | |
1483 | assert(ClassDeclared); |
1484 | |
1485 | // If the decl being referenced had an error, return an error for this |
1486 | // sub-expr without emitting another error, in order to avoid cascading |
1487 | // error cases. |
1488 | if (IV->isInvalidDecl()) |
1489 | return ExprError(); |
1490 | |
1491 | // Check whether we can reference this field. |
1492 | if (S.DiagnoseUseOfDecl(IV, MemberLoc)) |
1493 | return ExprError(); |
1494 | if (IV->getAccessControl() != ObjCIvarDecl::Public && |
1495 | IV->getAccessControl() != ObjCIvarDecl::Package) { |
1496 | ObjCInterfaceDecl *ClassOfMethodDecl = nullptr; |
1497 | if (ObjCMethodDecl *MD = S.getCurMethodDecl()) |
1498 | ClassOfMethodDecl = MD->getClassInterface(); |
1499 | else if (ObjCImpDecl && S.getCurFunctionDecl()) { |
1500 | // Case of a c-function declared inside an objc implementation. |
1501 | // FIXME: For a c-style function nested inside an objc implementation |
1502 | // class, there is no implementation context available, so we pass |
1503 | // down the context as argument to this routine. Ideally, this context |
1504 | // need be passed down in the AST node and somehow calculated from the |
1505 | // AST for a function decl. |
1506 | if (ObjCImplementationDecl *IMPD = |
1507 | dyn_cast<ObjCImplementationDecl>(Val: ObjCImpDecl)) |
1508 | ClassOfMethodDecl = IMPD->getClassInterface(); |
1509 | else if (ObjCCategoryImplDecl* CatImplClass = |
1510 | dyn_cast<ObjCCategoryImplDecl>(Val: ObjCImpDecl)) |
1511 | ClassOfMethodDecl = CatImplClass->getClassInterface(); |
1512 | } |
1513 | if (!S.getLangOpts().DebuggerSupport) { |
1514 | if (IV->getAccessControl() == ObjCIvarDecl::Private) { |
1515 | if (!declaresSameEntity(ClassDeclared, IDecl) || |
1516 | !declaresSameEntity(ClassOfMethodDecl, ClassDeclared)) |
1517 | S.Diag(MemberLoc, diag::err_private_ivar_access) |
1518 | << IV->getDeclName(); |
1519 | } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) |
1520 | // @protected |
1521 | S.Diag(MemberLoc, diag::err_protected_ivar_access) |
1522 | << IV->getDeclName(); |
1523 | } |
1524 | } |
1525 | bool warn = true; |
1526 | if (S.getLangOpts().ObjCWeak) { |
1527 | Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts(); |
1528 | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: BaseExp)) |
1529 | if (UO->getOpcode() == UO_Deref) |
1530 | BaseExp = UO->getSubExpr()->IgnoreParenCasts(); |
1531 | |
1532 | if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(Val: BaseExp)) |
1533 | if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
1534 | S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access); |
1535 | warn = false; |
1536 | } |
1537 | } |
1538 | if (warn) { |
1539 | if (ObjCMethodDecl *MD = S.getCurMethodDecl()) { |
1540 | ObjCMethodFamily MF = MD->getMethodFamily(); |
1541 | warn = (MF != OMF_init && MF != OMF_dealloc && |
1542 | MF != OMF_finalize && |
1543 | !S.IvarBacksCurrentMethodAccessor(IFace: IDecl, Method: MD, IV)); |
1544 | } |
1545 | if (warn) |
1546 | S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName(); |
1547 | } |
1548 | |
1549 | ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr( |
1550 | IV, IV->getUsageType(objectType: BaseType), MemberLoc, OpLoc, BaseExpr.get(), |
1551 | IsArrow); |
1552 | |
1553 | if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
1554 | if (!S.isUnevaluatedContext() && |
1555 | !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc)) |
1556 | S.getCurFunction()->recordUseOfWeak(E: Result); |
1557 | } |
1558 | |
1559 | return Result; |
1560 | } |
1561 | |
1562 | // Objective-C property access. |
1563 | const ObjCObjectPointerType *OPT; |
1564 | if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) { |
1565 | if (!SS.isEmpty() && !SS.isInvalid()) { |
1566 | S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) |
1567 | << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange()); |
1568 | SS.clear(); |
1569 | } |
1570 | |
1571 | // This actually uses the base as an r-value. |
1572 | BaseExpr = S.DefaultLvalueConversion(E: BaseExpr.get()); |
1573 | if (BaseExpr.isInvalid()) |
1574 | return ExprError(); |
1575 | |
1576 | assert(S.Context.hasSameUnqualifiedType(BaseType, |
1577 | BaseExpr.get()->getType())); |
1578 | |
1579 | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
1580 | |
1581 | const ObjCObjectType *OT = OPT->getObjectType(); |
1582 | |
1583 | // id, with and without qualifiers. |
1584 | if (OT->isObjCId()) { |
1585 | // Check protocols on qualified interfaces. |
1586 | Selector Sel = S.PP.getSelectorTable().getNullarySelector(ID: Member); |
1587 | if (Decl *PMDecl = |
1588 | FindGetterSetterNameDecl(QIdTy: OPT, Member, Sel, Context&: S.Context)) { |
1589 | if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(Val: PMDecl)) { |
1590 | // Check the use of this declaration |
1591 | if (S.DiagnoseUseOfDecl(PD, MemberLoc)) |
1592 | return ExprError(); |
1593 | |
1594 | return new (S.Context) |
1595 | ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue, |
1596 | OK_ObjCProperty, MemberLoc, BaseExpr.get()); |
1597 | } |
1598 | |
1599 | if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(Val: PMDecl)) { |
1600 | Selector SetterSel = |
1601 | SelectorTable::constructSetterSelector(Idents&: S.PP.getIdentifierTable(), |
1602 | SelTable&: S.PP.getSelectorTable(), |
1603 | Name: Member); |
1604 | ObjCMethodDecl *SMD = nullptr; |
1605 | if (Decl *SDecl = FindGetterSetterNameDecl(QIdTy: OPT, |
1606 | /*Property id*/ Member: nullptr, |
1607 | Sel: SetterSel, Context&: S.Context)) |
1608 | SMD = dyn_cast<ObjCMethodDecl>(Val: SDecl); |
1609 | |
1610 | return new (S.Context) |
1611 | ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue, |
1612 | OK_ObjCProperty, MemberLoc, BaseExpr.get()); |
1613 | } |
1614 | } |
1615 | // Use of id.member can only be for a property reference. Do not |
1616 | // use the 'id' redefinition in this case. |
1617 | if (IsArrow && ShouldTryAgainWithRedefinitionType(S, base&: BaseExpr)) |
1618 | return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, |
1619 | ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); |
1620 | |
1621 | return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) |
1622 | << MemberName << BaseType); |
1623 | } |
1624 | |
1625 | // 'Class', unqualified only. |
1626 | if (OT->isObjCClass()) { |
1627 | // Only works in a method declaration (??!). |
1628 | ObjCMethodDecl *MD = S.getCurMethodDecl(); |
1629 | if (!MD) { |
1630 | if (ShouldTryAgainWithRedefinitionType(S, base&: BaseExpr)) |
1631 | return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, |
1632 | ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); |
1633 | |
1634 | goto fail; |
1635 | } |
1636 | |
1637 | // Also must look for a getter name which uses property syntax. |
1638 | Selector Sel = S.PP.getSelectorTable().getNullarySelector(ID: Member); |
1639 | ObjCInterfaceDecl *IFace = MD->getClassInterface(); |
1640 | if (!IFace) |
1641 | goto fail; |
1642 | |
1643 | ObjCMethodDecl *Getter; |
1644 | if ((Getter = IFace->lookupClassMethod(Sel))) { |
1645 | // Check the use of this method. |
1646 | if (S.DiagnoseUseOfDecl(Getter, MemberLoc)) |
1647 | return ExprError(); |
1648 | } else |
1649 | Getter = IFace->lookupPrivateMethod(Sel, Instance: false); |
1650 | // If we found a getter then this may be a valid dot-reference, we |
1651 | // will look for the matching setter, in case it is needed. |
1652 | Selector SetterSel = |
1653 | SelectorTable::constructSetterSelector(Idents&: S.PP.getIdentifierTable(), |
1654 | SelTable&: S.PP.getSelectorTable(), |
1655 | Name: Member); |
1656 | ObjCMethodDecl *Setter = IFace->lookupClassMethod(Sel: SetterSel); |
1657 | if (!Setter) { |
1658 | // If this reference is in an @implementation, also check for 'private' |
1659 | // methods. |
1660 | Setter = IFace->lookupPrivateMethod(Sel: SetterSel, Instance: false); |
1661 | } |
1662 | |
1663 | if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc)) |
1664 | return ExprError(); |
1665 | |
1666 | if (Getter || Setter) { |
1667 | return new (S.Context) ObjCPropertyRefExpr( |
1668 | Getter, Setter, S.Context.PseudoObjectTy, VK_LValue, |
1669 | OK_ObjCProperty, MemberLoc, BaseExpr.get()); |
1670 | } |
1671 | |
1672 | if (ShouldTryAgainWithRedefinitionType(S, base&: BaseExpr)) |
1673 | return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, |
1674 | ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); |
1675 | |
1676 | return ExprError(S.Diag(MemberLoc, diag::err_property_not_found) |
1677 | << MemberName << BaseType); |
1678 | } |
1679 | |
1680 | // Normal property access. |
1681 | return S.HandleExprPropertyRefExpr(OPT, BaseExpr: BaseExpr.get(), OpLoc, MemberName, |
1682 | MemberLoc, SuperLoc: SourceLocation(), SuperType: QualType(), |
1683 | Super: false); |
1684 | } |
1685 | |
1686 | if (BaseType->isExtVectorBoolType()) { |
1687 | // We disallow element access for ext_vector_type bool. There is no way to |
1688 | // materialize a reference to a vector element as a pointer (each element is |
1689 | // one bit in the vector). |
1690 | S.Diag(R.getNameLoc(), diag::err_ext_vector_component_name_illegal) |
1691 | << MemberName |
1692 | << (BaseExpr.get() ? BaseExpr.get()->getSourceRange() : SourceRange()); |
1693 | return ExprError(); |
1694 | } |
1695 | |
1696 | // Handle 'field access' to vectors, such as 'V.xx'. |
1697 | if (BaseType->isExtVectorType()) { |
1698 | // FIXME: this expr should store IsArrow. |
1699 | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
1700 | ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind()); |
1701 | QualType ret = CheckExtVectorComponent(S, baseType: BaseType, VK, OpLoc, |
1702 | CompName: Member, CompLoc: MemberLoc); |
1703 | if (ret.isNull()) |
1704 | return ExprError(); |
1705 | Qualifiers BaseQ = |
1706 | S.Context.getCanonicalType(T: BaseExpr.get()->getType()).getQualifiers(); |
1707 | ret = S.Context.getQualifiedType(T: ret, Qs: BaseQ); |
1708 | |
1709 | return new (S.Context) |
1710 | ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc); |
1711 | } |
1712 | |
1713 | // Adjust builtin-sel to the appropriate redefinition type if that's |
1714 | // not just a pointer to builtin-sel again. |
1715 | if (IsArrow && BaseType->isSpecificBuiltinType(K: BuiltinType::ObjCSel) && |
1716 | !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) { |
1717 | BaseExpr = S.ImpCastExprToType( |
1718 | E: BaseExpr.get(), Type: S.Context.getObjCSelRedefinitionType(), CK: CK_BitCast); |
1719 | return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, |
1720 | ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); |
1721 | } |
1722 | |
1723 | // Failure cases. |
1724 | fail: |
1725 | |
1726 | // Recover from dot accesses to pointers, e.g.: |
1727 | // type *foo; |
1728 | // foo.bar |
1729 | // This is actually well-formed in two cases: |
1730 | // - 'type' is an Objective C type |
1731 | // - 'bar' is a pseudo-destructor name which happens to refer to |
1732 | // the appropriate pointer type |
1733 | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { |
1734 | if (!IsArrow && Ptr->getPointeeType()->isRecordType() && |
1735 | MemberName.getNameKind() != DeclarationName::CXXDestructorName) { |
1736 | S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
1737 | << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() |
1738 | << FixItHint::CreateReplacement(OpLoc, "->" ); |
1739 | |
1740 | if (S.isSFINAEContext()) |
1741 | return ExprError(); |
1742 | |
1743 | // Recurse as an -> access. |
1744 | IsArrow = true; |
1745 | return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, |
1746 | ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); |
1747 | } |
1748 | } |
1749 | |
1750 | // If the user is trying to apply -> or . to a function name, it's probably |
1751 | // because they forgot parentheses to call that function. |
1752 | if (S.tryToRecoverWithCall( |
1753 | BaseExpr, S.PDiag(diag::err_member_reference_needs_call), |
1754 | /*complain*/ false, |
1755 | IsArrow ? &isPointerToRecordType : &isRecordType)) { |
1756 | if (BaseExpr.isInvalid()) |
1757 | return ExprError(); |
1758 | BaseExpr = S.DefaultFunctionArrayConversion(E: BaseExpr.get()); |
1759 | return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, |
1760 | ObjCImpDecl, HasTemplateArgs, TemplateKWLoc); |
1761 | } |
1762 | |
1763 | // HLSL supports implicit conversion of scalar types to single element vector |
1764 | // rvalues in member expressions. |
1765 | if (S.getLangOpts().HLSL && BaseType->isScalarType()) { |
1766 | QualType VectorTy = S.Context.getExtVectorType(VectorType: BaseType, NumElts: 1); |
1767 | BaseExpr = S.ImpCastExprToType(E: BaseExpr.get(), Type: VectorTy, CK: CK_VectorSplat, |
1768 | VK: BaseExpr.get()->getValueKind()); |
1769 | return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl, |
1770 | HasTemplateArgs, TemplateKWLoc); |
1771 | } |
1772 | |
1773 | S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) |
1774 | << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc; |
1775 | |
1776 | return ExprError(); |
1777 | } |
1778 | |
1779 | /// The main callback when the parser finds something like |
1780 | /// expression . [nested-name-specifier] identifier |
1781 | /// expression -> [nested-name-specifier] identifier |
1782 | /// where 'identifier' encompasses a fairly broad spectrum of |
1783 | /// possibilities, including destructor and operator references. |
1784 | /// |
1785 | /// \param OpKind either tok::arrow or tok::period |
1786 | /// \param ObjCImpDecl the current Objective-C \@implementation |
1787 | /// decl; this is an ugly hack around the fact that Objective-C |
1788 | /// \@implementations aren't properly put in the context chain |
1789 | ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base, |
1790 | SourceLocation OpLoc, |
1791 | tok::TokenKind OpKind, |
1792 | CXXScopeSpec &SS, |
1793 | SourceLocation TemplateKWLoc, |
1794 | UnqualifiedId &Id, |
1795 | Decl *ObjCImpDecl) { |
1796 | if (SS.isSet() && SS.isInvalid()) |
1797 | return ExprError(); |
1798 | |
1799 | // Warn about the explicit constructor calls Microsoft extension. |
1800 | if (getLangOpts().MicrosoftExt && |
1801 | Id.getKind() == UnqualifiedIdKind::IK_ConstructorName) |
1802 | Diag(Id.getSourceRange().getBegin(), |
1803 | diag::ext_ms_explicit_constructor_call); |
1804 | |
1805 | TemplateArgumentListInfo TemplateArgsBuffer; |
1806 | |
1807 | // Decompose the name into its component parts. |
1808 | DeclarationNameInfo NameInfo; |
1809 | const TemplateArgumentListInfo *TemplateArgs; |
1810 | DecomposeUnqualifiedId(Id, Buffer&: TemplateArgsBuffer, |
1811 | NameInfo, TemplateArgs); |
1812 | |
1813 | DeclarationName Name = NameInfo.getName(); |
1814 | bool IsArrow = (OpKind == tok::arrow); |
1815 | |
1816 | if (getLangOpts().HLSL && IsArrow) |
1817 | return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 2); |
1818 | |
1819 | NamedDecl *FirstQualifierInScope |
1820 | = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, NNS: SS.getScopeRep())); |
1821 | |
1822 | // This is a postfix expression, so get rid of ParenListExprs. |
1823 | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, ME: Base); |
1824 | if (Result.isInvalid()) return ExprError(); |
1825 | Base = Result.get(); |
1826 | |
1827 | if (Base->getType()->isDependentType() || Name.isDependentName() || |
1828 | isDependentScopeSpecifier(SS)) { |
1829 | return ActOnDependentMemberExpr(BaseExpr: Base, BaseType: Base->getType(), IsArrow, OpLoc, SS, |
1830 | TemplateKWLoc, FirstQualifierInScope, |
1831 | NameInfo, TemplateArgs); |
1832 | } |
1833 | |
1834 | ActOnMemberAccessExtraArgs = {.S: S, .Id: Id, .ObjCImpDecl: ObjCImpDecl}; |
1835 | ExprResult Res = BuildMemberReferenceExpr( |
1836 | Base, BaseType: Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc, |
1837 | FirstQualifierInScope, NameInfo, TemplateArgs, S, ExtraArgs: &ExtraArgs); |
1838 | |
1839 | if (!Res.isInvalid() && isa<MemberExpr>(Val: Res.get())) |
1840 | CheckMemberAccessOfNoDeref(E: cast<MemberExpr>(Val: Res.get())); |
1841 | |
1842 | return Res; |
1843 | } |
1844 | |
1845 | void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) { |
1846 | if (isUnevaluatedContext()) |
1847 | return; |
1848 | |
1849 | QualType ResultTy = E->getType(); |
1850 | |
1851 | // Member accesses have four cases: |
1852 | // 1: non-array member via "->": dereferences |
1853 | // 2: non-array member via ".": nothing interesting happens |
1854 | // 3: array member access via "->": nothing interesting happens |
1855 | // (this returns an array lvalue and does not actually dereference memory) |
1856 | // 4: array member access via ".": *adds* a layer of indirection |
1857 | if (ResultTy->isArrayType()) { |
1858 | if (!E->isArrow()) { |
1859 | // This might be something like: |
1860 | // (*structPtr).arrayMember |
1861 | // which behaves roughly like: |
1862 | // &(*structPtr).pointerMember |
1863 | // in that the apparent dereference in the base expression does not |
1864 | // actually happen. |
1865 | CheckAddressOfNoDeref(E: E->getBase()); |
1866 | } |
1867 | } else if (E->isArrow()) { |
1868 | if (const auto *Ptr = dyn_cast<PointerType>( |
1869 | Val: E->getBase()->getType().getDesugaredType(Context))) { |
1870 | if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) |
1871 | ExprEvalContexts.back().PossibleDerefs.insert(E); |
1872 | } |
1873 | } |
1874 | } |
1875 | |
1876 | ExprResult |
1877 | Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow, |
1878 | SourceLocation OpLoc, const CXXScopeSpec &SS, |
1879 | FieldDecl *Field, DeclAccessPair FoundDecl, |
1880 | const DeclarationNameInfo &MemberNameInfo) { |
1881 | // x.a is an l-value if 'a' has a reference type. Otherwise: |
1882 | // x.a is an l-value/x-value/pr-value if the base is (and note |
1883 | // that *x is always an l-value), except that if the base isn't |
1884 | // an ordinary object then we must have an rvalue. |
1885 | ExprValueKind VK = VK_LValue; |
1886 | ExprObjectKind OK = OK_Ordinary; |
1887 | if (!IsArrow) { |
1888 | if (BaseExpr->getObjectKind() == OK_Ordinary) |
1889 | VK = BaseExpr->getValueKind(); |
1890 | else |
1891 | VK = VK_PRValue; |
1892 | } |
1893 | if (VK != VK_PRValue && Field->isBitField()) |
1894 | OK = OK_BitField; |
1895 | |
1896 | // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] |
1897 | QualType MemberType = Field->getType(); |
1898 | if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) { |
1899 | MemberType = Ref->getPointeeType(); |
1900 | VK = VK_LValue; |
1901 | } else { |
1902 | QualType BaseType = BaseExpr->getType(); |
1903 | if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType(); |
1904 | |
1905 | Qualifiers BaseQuals = BaseType.getQualifiers(); |
1906 | |
1907 | // GC attributes are never picked up by members. |
1908 | BaseQuals.removeObjCGCAttr(); |
1909 | |
1910 | // CVR attributes from the base are picked up by members, |
1911 | // except that 'mutable' members don't pick up 'const'. |
1912 | if (Field->isMutable()) BaseQuals.removeConst(); |
1913 | |
1914 | Qualifiers MemberQuals = |
1915 | Context.getCanonicalType(T: MemberType).getQualifiers(); |
1916 | |
1917 | assert(!MemberQuals.hasAddressSpace()); |
1918 | |
1919 | Qualifiers Combined = BaseQuals + MemberQuals; |
1920 | if (Combined != MemberQuals) |
1921 | MemberType = Context.getQualifiedType(T: MemberType, Qs: Combined); |
1922 | |
1923 | // Pick up NoDeref from the base in case we end up using AddrOf on the |
1924 | // result. E.g. the expression |
1925 | // &someNoDerefPtr->pointerMember |
1926 | // should be a noderef pointer again. |
1927 | if (BaseType->hasAttr(attr::NoDeref)) |
1928 | MemberType = |
1929 | Context.getAttributedType(attr::NoDeref, MemberType, MemberType); |
1930 | } |
1931 | |
1932 | auto *CurMethod = dyn_cast<CXXMethodDecl>(Val: CurContext); |
1933 | if (!(CurMethod && CurMethod->isDefaulted())) |
1934 | UnusedPrivateFields.remove(Field); |
1935 | |
1936 | ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(), |
1937 | FoundDecl, Field); |
1938 | if (Base.isInvalid()) |
1939 | return ExprError(); |
1940 | |
1941 | // Build a reference to a private copy for non-static data members in |
1942 | // non-static member functions, privatized by OpenMP constructs. |
1943 | if (getLangOpts().OpenMP && IsArrow && |
1944 | !CurContext->isDependentContext() && |
1945 | isa<CXXThisExpr>(Val: Base.get()->IgnoreParenImpCasts())) { |
1946 | if (auto *PrivateCopy = OpenMP().isOpenMPCapturedDecl(Field)) { |
1947 | return OpenMP().getOpenMPCapturedExpr(Capture: PrivateCopy, VK, OK, |
1948 | Loc: MemberNameInfo.getLoc()); |
1949 | } |
1950 | } |
1951 | |
1952 | return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS, |
1953 | /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl, |
1954 | /*HadMultipleCandidates=*/false, MemberNameInfo, |
1955 | MemberType, VK, OK); |
1956 | } |
1957 | |
1958 | /// Builds an implicit member access expression. The current context |
1959 | /// is known to be an instance method, and the given unqualified lookup |
1960 | /// set is known to contain only instance members, at least one of which |
1961 | /// is from an appropriate type. |
1962 | ExprResult |
1963 | Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, |
1964 | SourceLocation TemplateKWLoc, |
1965 | LookupResult &R, |
1966 | const TemplateArgumentListInfo *TemplateArgs, |
1967 | bool IsKnownInstance, const Scope *S) { |
1968 | assert(!R.empty() && !R.isAmbiguous()); |
1969 | |
1970 | SourceLocation loc = R.getNameLoc(); |
1971 | |
1972 | // If this is known to be an instance access, go ahead and build an |
1973 | // implicit 'this' expression now. |
1974 | QualType ThisTy = getCurrentThisType(); |
1975 | assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'" ); |
1976 | |
1977 | Expr *baseExpr = nullptr; // null signifies implicit access |
1978 | if (IsKnownInstance) { |
1979 | SourceLocation Loc = R.getNameLoc(); |
1980 | if (SS.getRange().isValid()) |
1981 | Loc = SS.getRange().getBegin(); |
1982 | baseExpr = BuildCXXThisExpr(Loc: loc, Type: ThisTy, /*IsImplicit=*/true); |
1983 | } |
1984 | |
1985 | return BuildMemberReferenceExpr( |
1986 | BaseExpr: baseExpr, BaseExprType: ThisTy, |
1987 | /*OpLoc=*/SourceLocation(), |
1988 | /*IsArrow=*/!getLangOpts().HLSL, SS, TemplateKWLoc, |
1989 | /*FirstQualifierInScope=*/nullptr, R, TemplateArgs, S); |
1990 | } |
1991 | |