| 1 | //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements semantic analysis for initializers. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CheckExprLifetime.h" |
| 14 | #include "clang/AST/ASTContext.h" |
| 15 | #include "clang/AST/DeclObjC.h" |
| 16 | #include "clang/AST/Expr.h" |
| 17 | #include "clang/AST/ExprCXX.h" |
| 18 | #include "clang/AST/ExprObjC.h" |
| 19 | #include "clang/AST/IgnoreExpr.h" |
| 20 | #include "clang/AST/TypeLoc.h" |
| 21 | #include "clang/Basic/SourceManager.h" |
| 22 | #include "clang/Basic/Specifiers.h" |
| 23 | #include "clang/Basic/TargetInfo.h" |
| 24 | #include "clang/Lex/Preprocessor.h" |
| 25 | #include "clang/Sema/Designator.h" |
| 26 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| 27 | #include "clang/Sema/Initialization.h" |
| 28 | #include "clang/Sema/Lookup.h" |
| 29 | #include "clang/Sema/Ownership.h" |
| 30 | #include "clang/Sema/SemaHLSL.h" |
| 31 | #include "clang/Sema/SemaObjC.h" |
| 32 | #include "llvm/ADT/APInt.h" |
| 33 | #include "llvm/ADT/FoldingSet.h" |
| 34 | #include "llvm/ADT/PointerIntPair.h" |
| 35 | #include "llvm/ADT/SmallVector.h" |
| 36 | #include "llvm/ADT/StringExtras.h" |
| 37 | #include "llvm/Support/ErrorHandling.h" |
| 38 | #include "llvm/Support/raw_ostream.h" |
| 39 | |
| 40 | using namespace clang; |
| 41 | |
| 42 | //===----------------------------------------------------------------------===// |
| 43 | // Sema Initialization Checking |
| 44 | //===----------------------------------------------------------------------===// |
| 45 | |
| 46 | /// Check whether T is compatible with a wide character type (wchar_t, |
| 47 | /// char16_t or char32_t). |
| 48 | static bool IsWideCharCompatible(QualType T, ASTContext &Context) { |
| 49 | if (Context.typesAreCompatible(T1: Context.getWideCharType(), T2: T)) |
| 50 | return true; |
| 51 | if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { |
| 52 | return Context.typesAreCompatible(T1: Context.Char16Ty, T2: T) || |
| 53 | Context.typesAreCompatible(T1: Context.Char32Ty, T2: T); |
| 54 | } |
| 55 | return false; |
| 56 | } |
| 57 | |
| 58 | enum StringInitFailureKind { |
| 59 | SIF_None, |
| 60 | SIF_NarrowStringIntoWideChar, |
| 61 | SIF_WideStringIntoChar, |
| 62 | SIF_IncompatWideStringIntoWideChar, |
| 63 | SIF_UTF8StringIntoPlainChar, |
| 64 | SIF_PlainStringIntoUTF8Char, |
| 65 | SIF_Other |
| 66 | }; |
| 67 | |
| 68 | /// Check whether the array of type AT can be initialized by the Init |
| 69 | /// expression by means of string initialization. Returns SIF_None if so, |
| 70 | /// otherwise returns a StringInitFailureKind that describes why the |
| 71 | /// initialization would not work. |
| 72 | static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, |
| 73 | ASTContext &Context) { |
| 74 | if (!isa<ConstantArrayType>(Val: AT) && !isa<IncompleteArrayType>(Val: AT)) |
| 75 | return SIF_Other; |
| 76 | |
| 77 | // See if this is a string literal or @encode. |
| 78 | Init = Init->IgnoreParens(); |
| 79 | |
| 80 | // Handle @encode, which is a narrow string. |
| 81 | if (isa<ObjCEncodeExpr>(Val: Init) && AT->getElementType()->isCharType()) |
| 82 | return SIF_None; |
| 83 | |
| 84 | // Otherwise we can only handle string literals. |
| 85 | StringLiteral *SL = dyn_cast<StringLiteral>(Val: Init); |
| 86 | if (!SL) |
| 87 | return SIF_Other; |
| 88 | |
| 89 | const QualType ElemTy = |
| 90 | Context.getCanonicalType(T: AT->getElementType()).getUnqualifiedType(); |
| 91 | |
| 92 | auto IsCharOrUnsignedChar = [](const QualType &T) { |
| 93 | const BuiltinType *BT = dyn_cast<BuiltinType>(Val: T.getTypePtr()); |
| 94 | return BT && BT->isCharType() && BT->getKind() != BuiltinType::SChar; |
| 95 | }; |
| 96 | |
| 97 | switch (SL->getKind()) { |
| 98 | case StringLiteralKind::UTF8: |
| 99 | // char8_t array can be initialized with a UTF-8 string. |
| 100 | // - C++20 [dcl.init.string] (DR) |
| 101 | // Additionally, an array of char or unsigned char may be initialized |
| 102 | // by a UTF-8 string literal. |
| 103 | if (ElemTy->isChar8Type() || |
| 104 | (Context.getLangOpts().Char8 && |
| 105 | IsCharOrUnsignedChar(ElemTy.getCanonicalType()))) |
| 106 | return SIF_None; |
| 107 | [[fallthrough]]; |
| 108 | case StringLiteralKind::Ordinary: |
| 109 | case StringLiteralKind::Binary: |
| 110 | // char array can be initialized with a narrow string. |
| 111 | // Only allow char x[] = "foo"; not char x[] = L"foo"; |
| 112 | if (ElemTy->isCharType()) |
| 113 | return (SL->getKind() == StringLiteralKind::UTF8 && |
| 114 | Context.getLangOpts().Char8) |
| 115 | ? SIF_UTF8StringIntoPlainChar |
| 116 | : SIF_None; |
| 117 | if (ElemTy->isChar8Type()) |
| 118 | return SIF_PlainStringIntoUTF8Char; |
| 119 | if (IsWideCharCompatible(T: ElemTy, Context)) |
| 120 | return SIF_NarrowStringIntoWideChar; |
| 121 | return SIF_Other; |
| 122 | // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: |
| 123 | // "An array with element type compatible with a qualified or unqualified |
| 124 | // version of wchar_t, char16_t, or char32_t may be initialized by a wide |
| 125 | // string literal with the corresponding encoding prefix (L, u, or U, |
| 126 | // respectively), optionally enclosed in braces. |
| 127 | case StringLiteralKind::UTF16: |
| 128 | if (Context.typesAreCompatible(T1: Context.Char16Ty, T2: ElemTy)) |
| 129 | return SIF_None; |
| 130 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
| 131 | return SIF_WideStringIntoChar; |
| 132 | if (IsWideCharCompatible(T: ElemTy, Context)) |
| 133 | return SIF_IncompatWideStringIntoWideChar; |
| 134 | return SIF_Other; |
| 135 | case StringLiteralKind::UTF32: |
| 136 | if (Context.typesAreCompatible(T1: Context.Char32Ty, T2: ElemTy)) |
| 137 | return SIF_None; |
| 138 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
| 139 | return SIF_WideStringIntoChar; |
| 140 | if (IsWideCharCompatible(T: ElemTy, Context)) |
| 141 | return SIF_IncompatWideStringIntoWideChar; |
| 142 | return SIF_Other; |
| 143 | case StringLiteralKind::Wide: |
| 144 | if (Context.typesAreCompatible(T1: Context.getWideCharType(), T2: ElemTy)) |
| 145 | return SIF_None; |
| 146 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
| 147 | return SIF_WideStringIntoChar; |
| 148 | if (IsWideCharCompatible(T: ElemTy, Context)) |
| 149 | return SIF_IncompatWideStringIntoWideChar; |
| 150 | return SIF_Other; |
| 151 | case StringLiteralKind::Unevaluated: |
| 152 | assert(false && "Unevaluated string literal in initialization" ); |
| 153 | break; |
| 154 | } |
| 155 | |
| 156 | llvm_unreachable("missed a StringLiteral kind?" ); |
| 157 | } |
| 158 | |
| 159 | static StringInitFailureKind IsStringInit(Expr *init, QualType declType, |
| 160 | ASTContext &Context) { |
| 161 | const ArrayType *arrayType = Context.getAsArrayType(T: declType); |
| 162 | if (!arrayType) |
| 163 | return SIF_Other; |
| 164 | return IsStringInit(Init: init, AT: arrayType, Context); |
| 165 | } |
| 166 | |
| 167 | bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { |
| 168 | return ::IsStringInit(Init, AT, Context) == SIF_None; |
| 169 | } |
| 170 | |
| 171 | /// Update the type of a string literal, including any surrounding parentheses, |
| 172 | /// to match the type of the object which it is initializing. |
| 173 | static void updateStringLiteralType(Expr *E, QualType Ty) { |
| 174 | while (true) { |
| 175 | E->setType(Ty); |
| 176 | E->setValueKind(VK_PRValue); |
| 177 | if (isa<StringLiteral>(Val: E) || isa<ObjCEncodeExpr>(Val: E)) |
| 178 | break; |
| 179 | E = IgnoreParensSingleStep(E); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | /// Fix a compound literal initializing an array so it's correctly marked |
| 184 | /// as an rvalue. |
| 185 | static void updateGNUCompoundLiteralRValue(Expr *E) { |
| 186 | while (true) { |
| 187 | E->setValueKind(VK_PRValue); |
| 188 | if (isa<CompoundLiteralExpr>(Val: E)) |
| 189 | break; |
| 190 | E = IgnoreParensSingleStep(E); |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | static bool initializingConstexprVariable(const InitializedEntity &Entity) { |
| 195 | Decl *D = Entity.getDecl(); |
| 196 | const InitializedEntity *Parent = &Entity; |
| 197 | |
| 198 | while (Parent) { |
| 199 | D = Parent->getDecl(); |
| 200 | Parent = Parent->getParent(); |
| 201 | } |
| 202 | |
| 203 | if (const auto *VD = dyn_cast_if_present<VarDecl>(Val: D); VD && VD->isConstexpr()) |
| 204 | return true; |
| 205 | |
| 206 | return false; |
| 207 | } |
| 208 | |
| 209 | static void CheckC23ConstexprInitStringLiteral(const StringLiteral *SE, |
| 210 | Sema &SemaRef, QualType &TT); |
| 211 | |
| 212 | static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, |
| 213 | Sema &S, const InitializedEntity &Entity, |
| 214 | bool CheckC23ConstexprInit = false) { |
| 215 | // Get the length of the string as parsed. |
| 216 | auto *ConstantArrayTy = |
| 217 | cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); |
| 218 | uint64_t StrLength = ConstantArrayTy->getZExtSize(); |
| 219 | |
| 220 | if (CheckC23ConstexprInit) |
| 221 | if (const StringLiteral *SL = dyn_cast<StringLiteral>(Val: Str->IgnoreParens())) |
| 222 | CheckC23ConstexprInitStringLiteral(SE: SL, SemaRef&: S, TT&: DeclT); |
| 223 | |
| 224 | if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(Val: AT)) { |
| 225 | // C99 6.7.8p14. We have an array of character type with unknown size |
| 226 | // being initialized to a string literal. |
| 227 | llvm::APInt ConstVal(32, StrLength); |
| 228 | // Return a new array type (C99 6.7.8p22). |
| 229 | DeclT = S.Context.getConstantArrayType( |
| 230 | EltTy: IAT->getElementType(), ArySize: ConstVal, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 231 | updateStringLiteralType(E: Str, Ty: DeclT); |
| 232 | return; |
| 233 | } |
| 234 | |
| 235 | const ConstantArrayType *CAT = cast<ConstantArrayType>(Val: AT); |
| 236 | uint64_t ArrayLen = CAT->getZExtSize(); |
| 237 | |
| 238 | // We have an array of character type with known size. However, |
| 239 | // the size may be smaller or larger than the string we are initializing. |
| 240 | // FIXME: Avoid truncation for 64-bit length strings. |
| 241 | if (S.getLangOpts().CPlusPlus) { |
| 242 | if (StringLiteral *SL = dyn_cast<StringLiteral>(Val: Str->IgnoreParens())) { |
| 243 | // For Pascal strings it's OK to strip off the terminating null character, |
| 244 | // so the example below is valid: |
| 245 | // |
| 246 | // unsigned char a[2] = "\pa"; |
| 247 | if (SL->isPascal()) |
| 248 | StrLength--; |
| 249 | } |
| 250 | |
| 251 | // [dcl.init.string]p2 |
| 252 | if (StrLength > ArrayLen) |
| 253 | S.Diag(Str->getBeginLoc(), |
| 254 | diag::err_initializer_string_for_char_array_too_long) |
| 255 | << ArrayLen << StrLength << Str->getSourceRange(); |
| 256 | } else { |
| 257 | // C99 6.7.8p14. |
| 258 | if (StrLength - 1 > ArrayLen) |
| 259 | S.Diag(Str->getBeginLoc(), |
| 260 | diag::ext_initializer_string_for_char_array_too_long) |
| 261 | << Str->getSourceRange(); |
| 262 | else if (StrLength - 1 == ArrayLen) { |
| 263 | // If the entity being initialized has the nonstring attribute, then |
| 264 | // silence the "missing nonstring" diagnostic. If there's no entity, |
| 265 | // check whether we're initializing an array of arrays; if so, walk the |
| 266 | // parents to find an entity. |
| 267 | auto FindCorrectEntity = |
| 268 | [](const InitializedEntity *Entity) -> const ValueDecl * { |
| 269 | while (Entity) { |
| 270 | if (const ValueDecl *VD = Entity->getDecl()) |
| 271 | return VD; |
| 272 | if (!Entity->getType()->isArrayType()) |
| 273 | return nullptr; |
| 274 | Entity = Entity->getParent(); |
| 275 | } |
| 276 | |
| 277 | return nullptr; |
| 278 | }; |
| 279 | if (const ValueDecl *D = FindCorrectEntity(&Entity); |
| 280 | !D || !D->hasAttr<NonStringAttr>()) |
| 281 | S.Diag( |
| 282 | Str->getBeginLoc(), |
| 283 | diag::warn_initializer_string_for_char_array_too_long_no_nonstring) |
| 284 | << ArrayLen << StrLength << Str->getSourceRange(); |
| 285 | |
| 286 | // Always emit the C++ compatibility diagnostic. |
| 287 | S.Diag(Str->getBeginLoc(), |
| 288 | diag::warn_initializer_string_for_char_array_too_long_for_cpp) |
| 289 | << ArrayLen << StrLength << Str->getSourceRange(); |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | // Set the type to the actual size that we are initializing. If we have |
| 294 | // something like: |
| 295 | // char x[1] = "foo"; |
| 296 | // then this will set the string literal's type to char[1]. |
| 297 | updateStringLiteralType(E: Str, Ty: DeclT); |
| 298 | } |
| 299 | |
| 300 | void emitUninitializedExplicitInitFields(Sema &S, const RecordDecl *R) { |
| 301 | for (const FieldDecl *Field : R->fields()) { |
| 302 | if (Field->hasAttr<ExplicitInitAttr>()) |
| 303 | S.Diag(Field->getLocation(), diag::note_entity_declared_at) << Field; |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | //===----------------------------------------------------------------------===// |
| 308 | // Semantic checking for initializer lists. |
| 309 | //===----------------------------------------------------------------------===// |
| 310 | |
| 311 | namespace { |
| 312 | |
| 313 | /// Semantic checking for initializer lists. |
| 314 | /// |
| 315 | /// The InitListChecker class contains a set of routines that each |
| 316 | /// handle the initialization of a certain kind of entity, e.g., |
| 317 | /// arrays, vectors, struct/union types, scalars, etc. The |
| 318 | /// InitListChecker itself performs a recursive walk of the subobject |
| 319 | /// structure of the type to be initialized, while stepping through |
| 320 | /// the initializer list one element at a time. The IList and Index |
| 321 | /// parameters to each of the Check* routines contain the active |
| 322 | /// (syntactic) initializer list and the index into that initializer |
| 323 | /// list that represents the current initializer. Each routine is |
| 324 | /// responsible for moving that Index forward as it consumes elements. |
| 325 | /// |
| 326 | /// Each Check* routine also has a StructuredList/StructuredIndex |
| 327 | /// arguments, which contains the current "structured" (semantic) |
| 328 | /// initializer list and the index into that initializer list where we |
| 329 | /// are copying initializers as we map them over to the semantic |
| 330 | /// list. Once we have completed our recursive walk of the subobject |
| 331 | /// structure, we will have constructed a full semantic initializer |
| 332 | /// list. |
| 333 | /// |
| 334 | /// C99 designators cause changes in the initializer list traversal, |
| 335 | /// because they make the initialization "jump" into a specific |
| 336 | /// subobject and then continue the initialization from that |
| 337 | /// point. CheckDesignatedInitializer() recursively steps into the |
| 338 | /// designated subobject and manages backing out the recursion to |
| 339 | /// initialize the subobjects after the one designated. |
| 340 | /// |
| 341 | /// If an initializer list contains any designators, we build a placeholder |
| 342 | /// structured list even in 'verify only' mode, so that we can track which |
| 343 | /// elements need 'empty' initializtion. |
| 344 | class InitListChecker { |
| 345 | Sema &SemaRef; |
| 346 | bool hadError = false; |
| 347 | bool VerifyOnly; // No diagnostics. |
| 348 | bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. |
| 349 | bool InOverloadResolution; |
| 350 | InitListExpr *FullyStructuredList = nullptr; |
| 351 | NoInitExpr *DummyExpr = nullptr; |
| 352 | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr; |
| 353 | EmbedExpr *CurEmbed = nullptr; // Save current embed we're processing. |
| 354 | unsigned CurEmbedIndex = 0; |
| 355 | |
| 356 | NoInitExpr *getDummyInit() { |
| 357 | if (!DummyExpr) |
| 358 | DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); |
| 359 | return DummyExpr; |
| 360 | } |
| 361 | |
| 362 | void CheckImplicitInitList(const InitializedEntity &Entity, |
| 363 | InitListExpr *ParentIList, QualType T, |
| 364 | unsigned &Index, InitListExpr *StructuredList, |
| 365 | unsigned &StructuredIndex); |
| 366 | void CheckExplicitInitList(const InitializedEntity &Entity, |
| 367 | InitListExpr *IList, QualType &T, |
| 368 | InitListExpr *StructuredList, |
| 369 | bool TopLevelObject = false); |
| 370 | void CheckListElementTypes(const InitializedEntity &Entity, |
| 371 | InitListExpr *IList, QualType &DeclType, |
| 372 | bool SubobjectIsDesignatorContext, |
| 373 | unsigned &Index, |
| 374 | InitListExpr *StructuredList, |
| 375 | unsigned &StructuredIndex, |
| 376 | bool TopLevelObject = false); |
| 377 | void CheckSubElementType(const InitializedEntity &Entity, |
| 378 | InitListExpr *IList, QualType ElemType, |
| 379 | unsigned &Index, |
| 380 | InitListExpr *StructuredList, |
| 381 | unsigned &StructuredIndex, |
| 382 | bool DirectlyDesignated = false); |
| 383 | void CheckComplexType(const InitializedEntity &Entity, |
| 384 | InitListExpr *IList, QualType DeclType, |
| 385 | unsigned &Index, |
| 386 | InitListExpr *StructuredList, |
| 387 | unsigned &StructuredIndex); |
| 388 | void CheckScalarType(const InitializedEntity &Entity, |
| 389 | InitListExpr *IList, QualType DeclType, |
| 390 | unsigned &Index, |
| 391 | InitListExpr *StructuredList, |
| 392 | unsigned &StructuredIndex); |
| 393 | void CheckReferenceType(const InitializedEntity &Entity, |
| 394 | InitListExpr *IList, QualType DeclType, |
| 395 | unsigned &Index, |
| 396 | InitListExpr *StructuredList, |
| 397 | unsigned &StructuredIndex); |
| 398 | void CheckVectorType(const InitializedEntity &Entity, |
| 399 | InitListExpr *IList, QualType DeclType, unsigned &Index, |
| 400 | InitListExpr *StructuredList, |
| 401 | unsigned &StructuredIndex); |
| 402 | void CheckStructUnionTypes(const InitializedEntity &Entity, |
| 403 | InitListExpr *IList, QualType DeclType, |
| 404 | CXXRecordDecl::base_class_const_range Bases, |
| 405 | RecordDecl::field_iterator Field, |
| 406 | bool SubobjectIsDesignatorContext, unsigned &Index, |
| 407 | InitListExpr *StructuredList, |
| 408 | unsigned &StructuredIndex, |
| 409 | bool TopLevelObject = false); |
| 410 | void CheckArrayType(const InitializedEntity &Entity, |
| 411 | InitListExpr *IList, QualType &DeclType, |
| 412 | llvm::APSInt elementIndex, |
| 413 | bool SubobjectIsDesignatorContext, unsigned &Index, |
| 414 | InitListExpr *StructuredList, |
| 415 | unsigned &StructuredIndex); |
| 416 | bool CheckDesignatedInitializer(const InitializedEntity &Entity, |
| 417 | InitListExpr *IList, DesignatedInitExpr *DIE, |
| 418 | unsigned DesigIdx, |
| 419 | QualType &CurrentObjectType, |
| 420 | RecordDecl::field_iterator *NextField, |
| 421 | llvm::APSInt *NextElementIndex, |
| 422 | unsigned &Index, |
| 423 | InitListExpr *StructuredList, |
| 424 | unsigned &StructuredIndex, |
| 425 | bool FinishSubobjectInit, |
| 426 | bool TopLevelObject); |
| 427 | InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
| 428 | QualType CurrentObjectType, |
| 429 | InitListExpr *StructuredList, |
| 430 | unsigned StructuredIndex, |
| 431 | SourceRange InitRange, |
| 432 | bool IsFullyOverwritten = false); |
| 433 | void UpdateStructuredListElement(InitListExpr *StructuredList, |
| 434 | unsigned &StructuredIndex, |
| 435 | Expr *expr); |
| 436 | InitListExpr *createInitListExpr(QualType CurrentObjectType, |
| 437 | SourceRange InitRange, |
| 438 | unsigned ExpectedNumInits); |
| 439 | int numArrayElements(QualType DeclType); |
| 440 | int numStructUnionElements(QualType DeclType); |
| 441 | static RecordDecl *getRecordDecl(QualType DeclType); |
| 442 | |
| 443 | ExprResult PerformEmptyInit(SourceLocation Loc, |
| 444 | const InitializedEntity &Entity); |
| 445 | |
| 446 | /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. |
| 447 | void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, |
| 448 | bool UnionOverride = false, |
| 449 | bool FullyOverwritten = true) { |
| 450 | // Overriding an initializer via a designator is valid with C99 designated |
| 451 | // initializers, but ill-formed with C++20 designated initializers. |
| 452 | unsigned DiagID = |
| 453 | SemaRef.getLangOpts().CPlusPlus |
| 454 | ? (UnionOverride ? diag::ext_initializer_union_overrides |
| 455 | : diag::ext_initializer_overrides) |
| 456 | : diag::warn_initializer_overrides; |
| 457 | |
| 458 | if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { |
| 459 | // In overload resolution, we have to strictly enforce the rules, and so |
| 460 | // don't allow any overriding of prior initializers. This matters for a |
| 461 | // case such as: |
| 462 | // |
| 463 | // union U { int a, b; }; |
| 464 | // struct S { int a, b; }; |
| 465 | // void f(U), f(S); |
| 466 | // |
| 467 | // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For |
| 468 | // consistency, we disallow all overriding of prior initializers in |
| 469 | // overload resolution, not only overriding of union members. |
| 470 | hadError = true; |
| 471 | } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { |
| 472 | // If we'll be keeping around the old initializer but overwriting part of |
| 473 | // the object it initialized, and that object is not trivially |
| 474 | // destructible, this can leak. Don't allow that, not even as an |
| 475 | // extension. |
| 476 | // |
| 477 | // FIXME: It might be reasonable to allow this in cases where the part of |
| 478 | // the initializer that we're overriding has trivial destruction. |
| 479 | DiagID = diag::err_initializer_overrides_destructed; |
| 480 | } else if (!OldInit->getSourceRange().isValid()) { |
| 481 | // We need to check on source range validity because the previous |
| 482 | // initializer does not have to be an explicit initializer. e.g., |
| 483 | // |
| 484 | // struct P { int a, b; }; |
| 485 | // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; |
| 486 | // |
| 487 | // There is an overwrite taking place because the first braced initializer |
| 488 | // list "{ .a = 2 }" already provides value for .p.b (which is zero). |
| 489 | // |
| 490 | // Such overwrites are harmless, so we don't diagnose them. (Note that in |
| 491 | // C++, this cannot be reached unless we've already seen and diagnosed a |
| 492 | // different conformance issue, such as a mixture of designated and |
| 493 | // non-designated initializers or a multi-level designator.) |
| 494 | return; |
| 495 | } |
| 496 | |
| 497 | if (!VerifyOnly) { |
| 498 | SemaRef.Diag(NewInitRange.getBegin(), DiagID) |
| 499 | << NewInitRange << FullyOverwritten << OldInit->getType(); |
| 500 | SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) |
| 501 | << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) |
| 502 | << OldInit->getSourceRange(); |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | // Explanation on the "FillWithNoInit" mode: |
| 507 | // |
| 508 | // Assume we have the following definitions (Case#1): |
| 509 | // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; |
| 510 | // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; |
| 511 | // |
| 512 | // l.lp.x[1][0..1] should not be filled with implicit initializers because the |
| 513 | // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". |
| 514 | // |
| 515 | // But if we have (Case#2): |
| 516 | // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; |
| 517 | // |
| 518 | // l.lp.x[1][0..1] are implicitly initialized and do not use values from the |
| 519 | // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". |
| 520 | // |
| 521 | // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" |
| 522 | // in the InitListExpr, the "holes" in Case#1 are filled not with empty |
| 523 | // initializers but with special "NoInitExpr" place holders, which tells the |
| 524 | // CodeGen not to generate any initializers for these parts. |
| 525 | void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, |
| 526 | const InitializedEntity &ParentEntity, |
| 527 | InitListExpr *ILE, bool &RequiresSecondPass, |
| 528 | bool FillWithNoInit); |
| 529 | void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
| 530 | const InitializedEntity &ParentEntity, |
| 531 | InitListExpr *ILE, bool &RequiresSecondPass, |
| 532 | bool FillWithNoInit = false); |
| 533 | void FillInEmptyInitializations(const InitializedEntity &Entity, |
| 534 | InitListExpr *ILE, bool &RequiresSecondPass, |
| 535 | InitListExpr *OuterILE, unsigned OuterIndex, |
| 536 | bool FillWithNoInit = false); |
| 537 | bool CheckFlexibleArrayInit(const InitializedEntity &Entity, |
| 538 | Expr *InitExpr, FieldDecl *Field, |
| 539 | bool TopLevelObject); |
| 540 | void CheckEmptyInitializable(const InitializedEntity &Entity, |
| 541 | SourceLocation Loc); |
| 542 | |
| 543 | Expr *HandleEmbed(EmbedExpr *Embed, const InitializedEntity &Entity) { |
| 544 | Expr *Result = nullptr; |
| 545 | // Undrestand which part of embed we'd like to reference. |
| 546 | if (!CurEmbed) { |
| 547 | CurEmbed = Embed; |
| 548 | CurEmbedIndex = 0; |
| 549 | } |
| 550 | // Reference just one if we're initializing a single scalar. |
| 551 | uint64_t ElsCount = 1; |
| 552 | // Otherwise try to fill whole array with embed data. |
| 553 | if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { |
| 554 | unsigned ArrIndex = Entity.getElementIndex(); |
| 555 | auto *AType = |
| 556 | SemaRef.Context.getAsArrayType(T: Entity.getParent()->getType()); |
| 557 | assert(AType && "expected array type when initializing array" ); |
| 558 | ElsCount = Embed->getDataElementCount(); |
| 559 | if (const auto *CAType = dyn_cast<ConstantArrayType>(Val: AType)) |
| 560 | ElsCount = std::min(a: CAType->getSize().getZExtValue() - ArrIndex, |
| 561 | b: ElsCount - CurEmbedIndex); |
| 562 | if (ElsCount == Embed->getDataElementCount()) { |
| 563 | CurEmbed = nullptr; |
| 564 | CurEmbedIndex = 0; |
| 565 | return Embed; |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | Result = new (SemaRef.Context) |
| 570 | EmbedExpr(SemaRef.Context, Embed->getLocation(), Embed->getData(), |
| 571 | CurEmbedIndex, ElsCount); |
| 572 | CurEmbedIndex += ElsCount; |
| 573 | if (CurEmbedIndex >= Embed->getDataElementCount()) { |
| 574 | CurEmbed = nullptr; |
| 575 | CurEmbedIndex = 0; |
| 576 | } |
| 577 | return Result; |
| 578 | } |
| 579 | |
| 580 | public: |
| 581 | InitListChecker( |
| 582 | Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, |
| 583 | bool VerifyOnly, bool TreatUnavailableAsInvalid, |
| 584 | bool InOverloadResolution = false, |
| 585 | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr); |
| 586 | InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, |
| 587 | QualType &T, |
| 588 | SmallVectorImpl<QualType> &AggrDeductionCandidateParamTypes) |
| 589 | : InitListChecker(S, Entity, IL, T, /*VerifyOnly=*/true, |
| 590 | /*TreatUnavailableAsInvalid=*/false, |
| 591 | /*InOverloadResolution=*/false, |
| 592 | &AggrDeductionCandidateParamTypes) {} |
| 593 | |
| 594 | bool HadError() { return hadError; } |
| 595 | |
| 596 | // Retrieves the fully-structured initializer list used for |
| 597 | // semantic analysis and code generation. |
| 598 | InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } |
| 599 | }; |
| 600 | |
| 601 | } // end anonymous namespace |
| 602 | |
| 603 | ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, |
| 604 | const InitializedEntity &Entity) { |
| 605 | InitializationKind Kind = InitializationKind::CreateValue(InitLoc: Loc, LParenLoc: Loc, RParenLoc: Loc, |
| 606 | isImplicit: true); |
| 607 | MultiExprArg SubInit; |
| 608 | Expr *InitExpr; |
| 609 | InitListExpr DummyInitList(SemaRef.Context, Loc, {}, Loc); |
| 610 | |
| 611 | // C++ [dcl.init.aggr]p7: |
| 612 | // If there are fewer initializer-clauses in the list than there are |
| 613 | // members in the aggregate, then each member not explicitly initialized |
| 614 | // ... |
| 615 | bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && |
| 616 | Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); |
| 617 | if (EmptyInitList) { |
| 618 | // C++1y / DR1070: |
| 619 | // shall be initialized [...] from an empty initializer list. |
| 620 | // |
| 621 | // We apply the resolution of this DR to C++11 but not C++98, since C++98 |
| 622 | // does not have useful semantics for initialization from an init list. |
| 623 | // We treat this as copy-initialization, because aggregate initialization |
| 624 | // always performs copy-initialization on its elements. |
| 625 | // |
| 626 | // Only do this if we're initializing a class type, to avoid filling in |
| 627 | // the initializer list where possible. |
| 628 | InitExpr = VerifyOnly ? &DummyInitList |
| 629 | : new (SemaRef.Context) |
| 630 | InitListExpr(SemaRef.Context, Loc, {}, Loc); |
| 631 | InitExpr->setType(SemaRef.Context.VoidTy); |
| 632 | SubInit = InitExpr; |
| 633 | Kind = InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: Loc); |
| 634 | } else { |
| 635 | // C++03: |
| 636 | // shall be value-initialized. |
| 637 | } |
| 638 | |
| 639 | InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); |
| 640 | // HACK: libstdc++ prior to 4.9 marks the vector default constructor |
| 641 | // as explicit in _GLIBCXX_DEBUG mode, so recover using the C++03 logic |
| 642 | // in that case. stlport does so too. |
| 643 | // Look for std::__debug for libstdc++, and for std:: for stlport. |
| 644 | // This is effectively a compiler-side implementation of LWG2193. |
| 645 | if (!InitSeq && EmptyInitList && |
| 646 | InitSeq.getFailureKind() == |
| 647 | InitializationSequence::FK_ExplicitConstructor && |
| 648 | SemaRef.getPreprocessor().NeedsStdLibCxxWorkaroundBefore(FixedVersion: 2014'04'22)) { |
| 649 | OverloadCandidateSet::iterator Best; |
| 650 | OverloadingResult O = |
| 651 | InitSeq.getFailedCandidateSet() |
| 652 | .BestViableFunction(S&: SemaRef, Loc: Kind.getLocation(), Best); |
| 653 | (void)O; |
| 654 | assert(O == OR_Success && "Inconsistent overload resolution" ); |
| 655 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Val: Best->Function); |
| 656 | CXXRecordDecl *R = CtorDecl->getParent(); |
| 657 | |
| 658 | if (CtorDecl->getMinRequiredArguments() == 0 && |
| 659 | CtorDecl->isExplicit() && R->getDeclName() && |
| 660 | SemaRef.SourceMgr.isInSystemHeader(Loc: CtorDecl->getLocation())) { |
| 661 | bool IsInStd = false; |
| 662 | for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); |
| 663 | ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { |
| 664 | if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) |
| 665 | IsInStd = true; |
| 666 | } |
| 667 | |
| 668 | if (IsInStd && llvm::StringSwitch<bool>(R->getName()) |
| 669 | .Cases(S0: "basic_string" , S1: "deque" , S2: "forward_list" , Value: true) |
| 670 | .Cases(S0: "list" , S1: "map" , S2: "multimap" , S3: "multiset" , Value: true) |
| 671 | .Cases(S0: "priority_queue" , S1: "queue" , S2: "set" , S3: "stack" , Value: true) |
| 672 | .Cases(S0: "unordered_map" , S1: "unordered_set" , S2: "vector" , Value: true) |
| 673 | .Default(Value: false)) { |
| 674 | InitSeq.InitializeFrom( |
| 675 | S&: SemaRef, Entity, |
| 676 | Kind: InitializationKind::CreateValue(InitLoc: Loc, LParenLoc: Loc, RParenLoc: Loc, isImplicit: true), |
| 677 | Args: MultiExprArg(), /*TopLevelOfInitList=*/false, |
| 678 | TreatUnavailableAsInvalid); |
| 679 | // Emit a warning for this. System header warnings aren't shown |
| 680 | // by default, but people working on system headers should see it. |
| 681 | if (!VerifyOnly) { |
| 682 | SemaRef.Diag(CtorDecl->getLocation(), |
| 683 | diag::warn_invalid_initializer_from_system_header); |
| 684 | if (Entity.getKind() == InitializedEntity::EK_Member) |
| 685 | SemaRef.Diag(Entity.getDecl()->getLocation(), |
| 686 | diag::note_used_in_initialization_here); |
| 687 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) |
| 688 | SemaRef.Diag(Loc, diag::note_used_in_initialization_here); |
| 689 | } |
| 690 | } |
| 691 | } |
| 692 | } |
| 693 | if (!InitSeq) { |
| 694 | if (!VerifyOnly) { |
| 695 | InitSeq.Diagnose(S&: SemaRef, Entity, Kind, Args: SubInit); |
| 696 | if (Entity.getKind() == InitializedEntity::EK_Member) |
| 697 | SemaRef.Diag(Entity.getDecl()->getLocation(), |
| 698 | diag::note_in_omitted_aggregate_initializer) |
| 699 | << /*field*/1 << Entity.getDecl(); |
| 700 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { |
| 701 | bool IsTrailingArrayNewMember = |
| 702 | Entity.getParent() && |
| 703 | Entity.getParent()->isVariableLengthArrayNew(); |
| 704 | SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) |
| 705 | << (IsTrailingArrayNewMember ? 2 : /*array element*/0) |
| 706 | << Entity.getElementIndex(); |
| 707 | } |
| 708 | } |
| 709 | hadError = true; |
| 710 | return ExprError(); |
| 711 | } |
| 712 | |
| 713 | return VerifyOnly ? ExprResult() |
| 714 | : InitSeq.Perform(S&: SemaRef, Entity, Kind, Args: SubInit); |
| 715 | } |
| 716 | |
| 717 | void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, |
| 718 | SourceLocation Loc) { |
| 719 | // If we're building a fully-structured list, we'll check this at the end |
| 720 | // once we know which elements are actually initialized. Otherwise, we know |
| 721 | // that there are no designators so we can just check now. |
| 722 | if (FullyStructuredList) |
| 723 | return; |
| 724 | PerformEmptyInit(Loc, Entity); |
| 725 | } |
| 726 | |
| 727 | void InitListChecker::FillInEmptyInitForBase( |
| 728 | unsigned Init, const CXXBaseSpecifier &Base, |
| 729 | const InitializedEntity &ParentEntity, InitListExpr *ILE, |
| 730 | bool &RequiresSecondPass, bool FillWithNoInit) { |
| 731 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
| 732 | Context&: SemaRef.Context, Base: &Base, IsInheritedVirtualBase: false, Parent: &ParentEntity); |
| 733 | |
| 734 | if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { |
| 735 | ExprResult BaseInit = FillWithNoInit |
| 736 | ? new (SemaRef.Context) NoInitExpr(Base.getType()) |
| 737 | : PerformEmptyInit(Loc: ILE->getEndLoc(), Entity: BaseEntity); |
| 738 | if (BaseInit.isInvalid()) { |
| 739 | hadError = true; |
| 740 | return; |
| 741 | } |
| 742 | |
| 743 | if (!VerifyOnly) { |
| 744 | assert(Init < ILE->getNumInits() && "should have been expanded" ); |
| 745 | ILE->setInit(Init, expr: BaseInit.getAs<Expr>()); |
| 746 | } |
| 747 | } else if (InitListExpr *InnerILE = |
| 748 | dyn_cast<InitListExpr>(Val: ILE->getInit(Init))) { |
| 749 | FillInEmptyInitializations(Entity: BaseEntity, ILE: InnerILE, RequiresSecondPass, |
| 750 | OuterILE: ILE, OuterIndex: Init, FillWithNoInit); |
| 751 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
| 752 | dyn_cast<DesignatedInitUpdateExpr>(Val: ILE->getInit(Init))) { |
| 753 | FillInEmptyInitializations(Entity: BaseEntity, ILE: InnerDIUE->getUpdater(), |
| 754 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, |
| 755 | /*FillWithNoInit =*/true); |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
| 760 | const InitializedEntity &ParentEntity, |
| 761 | InitListExpr *ILE, |
| 762 | bool &RequiresSecondPass, |
| 763 | bool FillWithNoInit) { |
| 764 | SourceLocation Loc = ILE->getEndLoc(); |
| 765 | unsigned NumInits = ILE->getNumInits(); |
| 766 | InitializedEntity MemberEntity |
| 767 | = InitializedEntity::InitializeMember(Member: Field, Parent: &ParentEntity); |
| 768 | |
| 769 | if (Init >= NumInits || !ILE->getInit(Init)) { |
| 770 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) |
| 771 | if (!RType->getDecl()->isUnion()) |
| 772 | assert((Init < NumInits || VerifyOnly) && |
| 773 | "This ILE should have been expanded" ); |
| 774 | |
| 775 | if (FillWithNoInit) { |
| 776 | assert(!VerifyOnly && "should not fill with no-init in verify-only mode" ); |
| 777 | Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); |
| 778 | if (Init < NumInits) |
| 779 | ILE->setInit(Init, expr: Filler); |
| 780 | else |
| 781 | ILE->updateInit(C: SemaRef.Context, Init, expr: Filler); |
| 782 | return; |
| 783 | } |
| 784 | |
| 785 | if (!VerifyOnly && Field->hasAttr<ExplicitInitAttr>()) { |
| 786 | SemaRef.Diag(ILE->getExprLoc(), diag::warn_field_requires_explicit_init) |
| 787 | << /* Var-in-Record */ 0 << Field; |
| 788 | SemaRef.Diag(Field->getLocation(), diag::note_entity_declared_at) |
| 789 | << Field; |
| 790 | } |
| 791 | |
| 792 | // C++1y [dcl.init.aggr]p7: |
| 793 | // If there are fewer initializer-clauses in the list than there are |
| 794 | // members in the aggregate, then each member not explicitly initialized |
| 795 | // shall be initialized from its brace-or-equal-initializer [...] |
| 796 | if (Field->hasInClassInitializer()) { |
| 797 | if (VerifyOnly) |
| 798 | return; |
| 799 | |
| 800 | ExprResult DIE; |
| 801 | { |
| 802 | // Enter a default initializer rebuild context, then we can support |
| 803 | // lifetime extension of temporary created by aggregate initialization |
| 804 | // using a default member initializer. |
| 805 | // CWG1815 (https://wg21.link/CWG1815). |
| 806 | EnterExpressionEvaluationContext RebuildDefaultInit( |
| 807 | SemaRef, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
| 808 | SemaRef.currentEvaluationContext().RebuildDefaultArgOrDefaultInit = |
| 809 | true; |
| 810 | SemaRef.currentEvaluationContext().DelayedDefaultInitializationContext = |
| 811 | SemaRef.parentEvaluationContext() |
| 812 | .DelayedDefaultInitializationContext; |
| 813 | SemaRef.currentEvaluationContext().InLifetimeExtendingContext = |
| 814 | SemaRef.parentEvaluationContext().InLifetimeExtendingContext; |
| 815 | DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); |
| 816 | } |
| 817 | if (DIE.isInvalid()) { |
| 818 | hadError = true; |
| 819 | return; |
| 820 | } |
| 821 | SemaRef.checkInitializerLifetime(Entity: MemberEntity, Init: DIE.get()); |
| 822 | if (Init < NumInits) |
| 823 | ILE->setInit(Init, expr: DIE.get()); |
| 824 | else { |
| 825 | ILE->updateInit(C: SemaRef.Context, Init, expr: DIE.get()); |
| 826 | RequiresSecondPass = true; |
| 827 | } |
| 828 | return; |
| 829 | } |
| 830 | |
| 831 | if (Field->getType()->isReferenceType()) { |
| 832 | if (!VerifyOnly) { |
| 833 | // C++ [dcl.init.aggr]p9: |
| 834 | // If an incomplete or empty initializer-list leaves a |
| 835 | // member of reference type uninitialized, the program is |
| 836 | // ill-formed. |
| 837 | SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) |
| 838 | << Field->getType() |
| 839 | << (ILE->isSyntacticForm() ? ILE : ILE->getSyntacticForm()) |
| 840 | ->getSourceRange(); |
| 841 | SemaRef.Diag(Field->getLocation(), diag::note_uninit_reference_member); |
| 842 | } |
| 843 | hadError = true; |
| 844 | return; |
| 845 | } |
| 846 | |
| 847 | ExprResult MemberInit = PerformEmptyInit(Loc, Entity: MemberEntity); |
| 848 | if (MemberInit.isInvalid()) { |
| 849 | hadError = true; |
| 850 | return; |
| 851 | } |
| 852 | |
| 853 | if (hadError || VerifyOnly) { |
| 854 | // Do nothing |
| 855 | } else if (Init < NumInits) { |
| 856 | ILE->setInit(Init, expr: MemberInit.getAs<Expr>()); |
| 857 | } else if (!isa<ImplicitValueInitExpr>(Val: MemberInit.get())) { |
| 858 | // Empty initialization requires a constructor call, so |
| 859 | // extend the initializer list to include the constructor |
| 860 | // call and make a note that we'll need to take another pass |
| 861 | // through the initializer list. |
| 862 | ILE->updateInit(C: SemaRef.Context, Init, expr: MemberInit.getAs<Expr>()); |
| 863 | RequiresSecondPass = true; |
| 864 | } |
| 865 | } else if (InitListExpr *InnerILE |
| 866 | = dyn_cast<InitListExpr>(Val: ILE->getInit(Init))) { |
| 867 | FillInEmptyInitializations(Entity: MemberEntity, ILE: InnerILE, |
| 868 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, FillWithNoInit); |
| 869 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
| 870 | dyn_cast<DesignatedInitUpdateExpr>(Val: ILE->getInit(Init))) { |
| 871 | FillInEmptyInitializations(Entity: MemberEntity, ILE: InnerDIUE->getUpdater(), |
| 872 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, |
| 873 | /*FillWithNoInit =*/true); |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | /// Recursively replaces NULL values within the given initializer list |
| 878 | /// with expressions that perform value-initialization of the |
| 879 | /// appropriate type, and finish off the InitListExpr formation. |
| 880 | void |
| 881 | InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, |
| 882 | InitListExpr *ILE, |
| 883 | bool &RequiresSecondPass, |
| 884 | InitListExpr *OuterILE, |
| 885 | unsigned OuterIndex, |
| 886 | bool FillWithNoInit) { |
| 887 | assert((ILE->getType() != SemaRef.Context.VoidTy) && |
| 888 | "Should not have void type" ); |
| 889 | |
| 890 | // We don't need to do any checks when just filling NoInitExprs; that can't |
| 891 | // fail. |
| 892 | if (FillWithNoInit && VerifyOnly) |
| 893 | return; |
| 894 | |
| 895 | // If this is a nested initializer list, we might have changed its contents |
| 896 | // (and therefore some of its properties, such as instantiation-dependence) |
| 897 | // while filling it in. Inform the outer initializer list so that its state |
| 898 | // can be updated to match. |
| 899 | // FIXME: We should fully build the inner initializers before constructing |
| 900 | // the outer InitListExpr instead of mutating AST nodes after they have |
| 901 | // been used as subexpressions of other nodes. |
| 902 | struct UpdateOuterILEWithUpdatedInit { |
| 903 | InitListExpr *Outer; |
| 904 | unsigned OuterIndex; |
| 905 | ~UpdateOuterILEWithUpdatedInit() { |
| 906 | if (Outer) |
| 907 | Outer->setInit(Init: OuterIndex, expr: Outer->getInit(Init: OuterIndex)); |
| 908 | } |
| 909 | } UpdateOuterRAII = {.Outer: OuterILE, .OuterIndex: OuterIndex}; |
| 910 | |
| 911 | // A transparent ILE is not performing aggregate initialization and should |
| 912 | // not be filled in. |
| 913 | if (ILE->isTransparent()) |
| 914 | return; |
| 915 | |
| 916 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { |
| 917 | const RecordDecl *RDecl = RType->getDecl(); |
| 918 | if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) { |
| 919 | FillInEmptyInitForField(Init: 0, Field: ILE->getInitializedFieldInUnion(), ParentEntity: Entity, ILE, |
| 920 | RequiresSecondPass, FillWithNoInit); |
| 921 | } else { |
| 922 | assert((!RDecl->isUnion() || !isa<CXXRecordDecl>(RDecl) || |
| 923 | !cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) && |
| 924 | "We should have computed initialized fields already" ); |
| 925 | // The fields beyond ILE->getNumInits() are default initialized, so in |
| 926 | // order to leave them uninitialized, the ILE is expanded and the extra |
| 927 | // fields are then filled with NoInitExpr. |
| 928 | unsigned NumElems = numStructUnionElements(DeclType: ILE->getType()); |
| 929 | if (!RDecl->isUnion() && RDecl->hasFlexibleArrayMember()) |
| 930 | ++NumElems; |
| 931 | if (!VerifyOnly && ILE->getNumInits() < NumElems) |
| 932 | ILE->resizeInits(Context: SemaRef.Context, NumInits: NumElems); |
| 933 | |
| 934 | unsigned Init = 0; |
| 935 | |
| 936 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { |
| 937 | for (auto &Base : CXXRD->bases()) { |
| 938 | if (hadError) |
| 939 | return; |
| 940 | |
| 941 | FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, |
| 942 | FillWithNoInit); |
| 943 | ++Init; |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | for (auto *Field : RDecl->fields()) { |
| 948 | if (Field->isUnnamedBitField()) |
| 949 | continue; |
| 950 | |
| 951 | if (hadError) |
| 952 | return; |
| 953 | |
| 954 | FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, |
| 955 | FillWithNoInit); |
| 956 | if (hadError) |
| 957 | return; |
| 958 | |
| 959 | ++Init; |
| 960 | |
| 961 | // Only look at the first initialization of a union. |
| 962 | if (RDecl->isUnion()) |
| 963 | break; |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | return; |
| 968 | } |
| 969 | |
| 970 | QualType ElementType; |
| 971 | |
| 972 | InitializedEntity ElementEntity = Entity; |
| 973 | unsigned NumInits = ILE->getNumInits(); |
| 974 | uint64_t NumElements = NumInits; |
| 975 | if (const ArrayType *AType = SemaRef.Context.getAsArrayType(T: ILE->getType())) { |
| 976 | ElementType = AType->getElementType(); |
| 977 | if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) |
| 978 | NumElements = CAType->getZExtSize(); |
| 979 | // For an array new with an unknown bound, ask for one additional element |
| 980 | // in order to populate the array filler. |
| 981 | if (Entity.isVariableLengthArrayNew()) |
| 982 | ++NumElements; |
| 983 | ElementEntity = InitializedEntity::InitializeElement(Context&: SemaRef.Context, |
| 984 | Index: 0, Parent: Entity); |
| 985 | } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { |
| 986 | ElementType = VType->getElementType(); |
| 987 | NumElements = VType->getNumElements(); |
| 988 | ElementEntity = InitializedEntity::InitializeElement(Context&: SemaRef.Context, |
| 989 | Index: 0, Parent: Entity); |
| 990 | } else |
| 991 | ElementType = ILE->getType(); |
| 992 | |
| 993 | bool SkipEmptyInitChecks = false; |
| 994 | for (uint64_t Init = 0; Init != NumElements; ++Init) { |
| 995 | if (hadError) |
| 996 | return; |
| 997 | |
| 998 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || |
| 999 | ElementEntity.getKind() == InitializedEntity::EK_VectorElement) |
| 1000 | ElementEntity.setElementIndex(Init); |
| 1001 | |
| 1002 | if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) |
| 1003 | return; |
| 1004 | |
| 1005 | Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); |
| 1006 | if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) |
| 1007 | ILE->setInit(Init, expr: ILE->getArrayFiller()); |
| 1008 | else if (!InitExpr && !ILE->hasArrayFiller()) { |
| 1009 | // In VerifyOnly mode, there's no point performing empty initialization |
| 1010 | // more than once. |
| 1011 | if (SkipEmptyInitChecks) |
| 1012 | continue; |
| 1013 | |
| 1014 | Expr *Filler = nullptr; |
| 1015 | |
| 1016 | if (FillWithNoInit) |
| 1017 | Filler = new (SemaRef.Context) NoInitExpr(ElementType); |
| 1018 | else { |
| 1019 | ExprResult ElementInit = |
| 1020 | PerformEmptyInit(Loc: ILE->getEndLoc(), Entity: ElementEntity); |
| 1021 | if (ElementInit.isInvalid()) { |
| 1022 | hadError = true; |
| 1023 | return; |
| 1024 | } |
| 1025 | |
| 1026 | Filler = ElementInit.getAs<Expr>(); |
| 1027 | } |
| 1028 | |
| 1029 | if (hadError) { |
| 1030 | // Do nothing |
| 1031 | } else if (VerifyOnly) { |
| 1032 | SkipEmptyInitChecks = true; |
| 1033 | } else if (Init < NumInits) { |
| 1034 | // For arrays, just set the expression used for value-initialization |
| 1035 | // of the "holes" in the array. |
| 1036 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) |
| 1037 | ILE->setArrayFiller(Filler); |
| 1038 | else |
| 1039 | ILE->setInit(Init, expr: Filler); |
| 1040 | } else { |
| 1041 | // For arrays, just set the expression used for value-initialization |
| 1042 | // of the rest of elements and exit. |
| 1043 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { |
| 1044 | ILE->setArrayFiller(Filler); |
| 1045 | return; |
| 1046 | } |
| 1047 | |
| 1048 | if (!isa<ImplicitValueInitExpr>(Val: Filler) && !isa<NoInitExpr>(Val: Filler)) { |
| 1049 | // Empty initialization requires a constructor call, so |
| 1050 | // extend the initializer list to include the constructor |
| 1051 | // call and make a note that we'll need to take another pass |
| 1052 | // through the initializer list. |
| 1053 | ILE->updateInit(C: SemaRef.Context, Init, expr: Filler); |
| 1054 | RequiresSecondPass = true; |
| 1055 | } |
| 1056 | } |
| 1057 | } else if (InitListExpr *InnerILE |
| 1058 | = dyn_cast_or_null<InitListExpr>(Val: InitExpr)) { |
| 1059 | FillInEmptyInitializations(Entity: ElementEntity, ILE: InnerILE, RequiresSecondPass, |
| 1060 | OuterILE: ILE, OuterIndex: Init, FillWithNoInit); |
| 1061 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
| 1062 | dyn_cast_or_null<DesignatedInitUpdateExpr>(Val: InitExpr)) { |
| 1063 | FillInEmptyInitializations(Entity: ElementEntity, ILE: InnerDIUE->getUpdater(), |
| 1064 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, |
| 1065 | /*FillWithNoInit =*/true); |
| 1066 | } |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | static bool hasAnyDesignatedInits(const InitListExpr *IL) { |
| 1071 | for (const Stmt *Init : *IL) |
| 1072 | if (isa_and_nonnull<DesignatedInitExpr>(Val: Init)) |
| 1073 | return true; |
| 1074 | return false; |
| 1075 | } |
| 1076 | |
| 1077 | InitListChecker::InitListChecker( |
| 1078 | Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, |
| 1079 | bool VerifyOnly, bool TreatUnavailableAsInvalid, bool InOverloadResolution, |
| 1080 | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes) |
| 1081 | : SemaRef(S), VerifyOnly(VerifyOnly), |
| 1082 | TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), |
| 1083 | InOverloadResolution(InOverloadResolution), |
| 1084 | AggrDeductionCandidateParamTypes(AggrDeductionCandidateParamTypes) { |
| 1085 | if (!VerifyOnly || hasAnyDesignatedInits(IL)) { |
| 1086 | FullyStructuredList = |
| 1087 | createInitListExpr(CurrentObjectType: T, InitRange: IL->getSourceRange(), ExpectedNumInits: IL->getNumInits()); |
| 1088 | |
| 1089 | // FIXME: Check that IL isn't already the semantic form of some other |
| 1090 | // InitListExpr. If it is, we'd create a broken AST. |
| 1091 | if (!VerifyOnly) |
| 1092 | FullyStructuredList->setSyntacticForm(IL); |
| 1093 | } |
| 1094 | |
| 1095 | CheckExplicitInitList(Entity, IList: IL, T, StructuredList: FullyStructuredList, |
| 1096 | /*TopLevelObject=*/true); |
| 1097 | |
| 1098 | if (!hadError && !AggrDeductionCandidateParamTypes && FullyStructuredList) { |
| 1099 | bool RequiresSecondPass = false; |
| 1100 | FillInEmptyInitializations(Entity, ILE: FullyStructuredList, RequiresSecondPass, |
| 1101 | /*OuterILE=*/nullptr, /*OuterIndex=*/0); |
| 1102 | if (RequiresSecondPass && !hadError) |
| 1103 | FillInEmptyInitializations(Entity, ILE: FullyStructuredList, |
| 1104 | RequiresSecondPass, OuterILE: nullptr, OuterIndex: 0); |
| 1105 | } |
| 1106 | if (hadError && FullyStructuredList) |
| 1107 | FullyStructuredList->markError(); |
| 1108 | } |
| 1109 | |
| 1110 | int InitListChecker::numArrayElements(QualType DeclType) { |
| 1111 | // FIXME: use a proper constant |
| 1112 | int maxElements = 0x7FFFFFFF; |
| 1113 | if (const ConstantArrayType *CAT = |
| 1114 | SemaRef.Context.getAsConstantArrayType(T: DeclType)) { |
| 1115 | maxElements = static_cast<int>(CAT->getZExtSize()); |
| 1116 | } |
| 1117 | return maxElements; |
| 1118 | } |
| 1119 | |
| 1120 | int InitListChecker::numStructUnionElements(QualType DeclType) { |
| 1121 | RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); |
| 1122 | int InitializableMembers = 0; |
| 1123 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: structDecl)) |
| 1124 | InitializableMembers += CXXRD->getNumBases(); |
| 1125 | for (const auto *Field : structDecl->fields()) |
| 1126 | if (!Field->isUnnamedBitField()) |
| 1127 | ++InitializableMembers; |
| 1128 | |
| 1129 | if (structDecl->isUnion()) |
| 1130 | return std::min(a: InitializableMembers, b: 1); |
| 1131 | return InitializableMembers - structDecl->hasFlexibleArrayMember(); |
| 1132 | } |
| 1133 | |
| 1134 | RecordDecl *InitListChecker::getRecordDecl(QualType DeclType) { |
| 1135 | if (const auto *RT = DeclType->getAs<RecordType>()) |
| 1136 | return RT->getDecl(); |
| 1137 | if (const auto *Inject = DeclType->getAs<InjectedClassNameType>()) |
| 1138 | return Inject->getDecl(); |
| 1139 | return nullptr; |
| 1140 | } |
| 1141 | |
| 1142 | /// Determine whether Entity is an entity for which it is idiomatic to elide |
| 1143 | /// the braces in aggregate initialization. |
| 1144 | static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { |
| 1145 | // Recursive initialization of the one and only field within an aggregate |
| 1146 | // class is considered idiomatic. This case arises in particular for |
| 1147 | // initialization of std::array, where the C++ standard suggests the idiom of |
| 1148 | // |
| 1149 | // std::array<T, N> arr = {1, 2, 3}; |
| 1150 | // |
| 1151 | // (where std::array is an aggregate struct containing a single array field. |
| 1152 | |
| 1153 | if (!Entity.getParent()) |
| 1154 | return false; |
| 1155 | |
| 1156 | // Allows elide brace initialization for aggregates with empty base. |
| 1157 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
| 1158 | auto *ParentRD = |
| 1159 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); |
| 1160 | CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(Val: ParentRD); |
| 1161 | return CXXRD->getNumBases() == 1 && CXXRD->field_empty(); |
| 1162 | } |
| 1163 | |
| 1164 | // Allow brace elision if the only subobject is a field. |
| 1165 | if (Entity.getKind() == InitializedEntity::EK_Member) { |
| 1166 | auto *ParentRD = |
| 1167 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); |
| 1168 | if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: ParentRD)) { |
| 1169 | if (CXXRD->getNumBases()) { |
| 1170 | return false; |
| 1171 | } |
| 1172 | } |
| 1173 | auto FieldIt = ParentRD->field_begin(); |
| 1174 | assert(FieldIt != ParentRD->field_end() && |
| 1175 | "no fields but have initializer for member?" ); |
| 1176 | return ++FieldIt == ParentRD->field_end(); |
| 1177 | } |
| 1178 | |
| 1179 | return false; |
| 1180 | } |
| 1181 | |
| 1182 | /// Check whether the range of the initializer \p ParentIList from element |
| 1183 | /// \p Index onwards can be used to initialize an object of type \p T. Update |
| 1184 | /// \p Index to indicate how many elements of the list were consumed. |
| 1185 | /// |
| 1186 | /// This also fills in \p StructuredList, from element \p StructuredIndex |
| 1187 | /// onwards, with the fully-braced, desugared form of the initialization. |
| 1188 | void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, |
| 1189 | InitListExpr *ParentIList, |
| 1190 | QualType T, unsigned &Index, |
| 1191 | InitListExpr *StructuredList, |
| 1192 | unsigned &StructuredIndex) { |
| 1193 | int maxElements = 0; |
| 1194 | |
| 1195 | if (T->isArrayType()) |
| 1196 | maxElements = numArrayElements(DeclType: T); |
| 1197 | else if (T->isRecordType()) |
| 1198 | maxElements = numStructUnionElements(DeclType: T); |
| 1199 | else if (T->isVectorType()) |
| 1200 | maxElements = T->castAs<VectorType>()->getNumElements(); |
| 1201 | else |
| 1202 | llvm_unreachable("CheckImplicitInitList(): Illegal type" ); |
| 1203 | |
| 1204 | if (maxElements == 0) { |
| 1205 | if (!VerifyOnly) |
| 1206 | SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), |
| 1207 | diag::err_implicit_empty_initializer); |
| 1208 | ++Index; |
| 1209 | hadError = true; |
| 1210 | return; |
| 1211 | } |
| 1212 | |
| 1213 | // Build a structured initializer list corresponding to this subobject. |
| 1214 | InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( |
| 1215 | IList: ParentIList, Index, CurrentObjectType: T, StructuredList, StructuredIndex, |
| 1216 | InitRange: SourceRange(ParentIList->getInit(Init: Index)->getBeginLoc(), |
| 1217 | ParentIList->getSourceRange().getEnd())); |
| 1218 | unsigned StructuredSubobjectInitIndex = 0; |
| 1219 | |
| 1220 | // Check the element types and build the structural subobject. |
| 1221 | unsigned StartIndex = Index; |
| 1222 | CheckListElementTypes(Entity, IList: ParentIList, DeclType&: T, |
| 1223 | /*SubobjectIsDesignatorContext=*/false, Index, |
| 1224 | StructuredList: StructuredSubobjectInitList, |
| 1225 | StructuredIndex&: StructuredSubobjectInitIndex); |
| 1226 | |
| 1227 | if (StructuredSubobjectInitList) { |
| 1228 | StructuredSubobjectInitList->setType(T); |
| 1229 | |
| 1230 | unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); |
| 1231 | // Update the structured sub-object initializer so that it's ending |
| 1232 | // range corresponds with the end of the last initializer it used. |
| 1233 | if (EndIndex < ParentIList->getNumInits() && |
| 1234 | ParentIList->getInit(Init: EndIndex)) { |
| 1235 | SourceLocation EndLoc |
| 1236 | = ParentIList->getInit(Init: EndIndex)->getSourceRange().getEnd(); |
| 1237 | StructuredSubobjectInitList->setRBraceLoc(EndLoc); |
| 1238 | } |
| 1239 | |
| 1240 | // Complain about missing braces. |
| 1241 | if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && |
| 1242 | !ParentIList->isIdiomaticZeroInitializer(LangOpts: SemaRef.getLangOpts()) && |
| 1243 | !isIdiomaticBraceElisionEntity(Entity)) { |
| 1244 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), |
| 1245 | diag::warn_missing_braces) |
| 1246 | << StructuredSubobjectInitList->getSourceRange() |
| 1247 | << FixItHint::CreateInsertion( |
| 1248 | StructuredSubobjectInitList->getBeginLoc(), "{" ) |
| 1249 | << FixItHint::CreateInsertion( |
| 1250 | SemaRef.getLocForEndOfToken( |
| 1251 | StructuredSubobjectInitList->getEndLoc()), |
| 1252 | "}" ); |
| 1253 | } |
| 1254 | |
| 1255 | // Warn if this type won't be an aggregate in future versions of C++. |
| 1256 | auto *CXXRD = T->getAsCXXRecordDecl(); |
| 1257 | if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
| 1258 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), |
| 1259 | diag::warn_cxx20_compat_aggregate_init_with_ctors) |
| 1260 | << StructuredSubobjectInitList->getSourceRange() << T; |
| 1261 | } |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | /// Warn that \p Entity was of scalar type and was initialized by a |
| 1266 | /// single-element braced initializer list. |
| 1267 | static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, |
| 1268 | SourceRange Braces) { |
| 1269 | // Don't warn during template instantiation. If the initialization was |
| 1270 | // non-dependent, we warned during the initial parse; otherwise, the |
| 1271 | // type might not be scalar in some uses of the template. |
| 1272 | if (S.inTemplateInstantiation()) |
| 1273 | return; |
| 1274 | |
| 1275 | unsigned DiagID = 0; |
| 1276 | |
| 1277 | switch (Entity.getKind()) { |
| 1278 | case InitializedEntity::EK_VectorElement: |
| 1279 | case InitializedEntity::EK_ComplexElement: |
| 1280 | case InitializedEntity::EK_ArrayElement: |
| 1281 | case InitializedEntity::EK_Parameter: |
| 1282 | case InitializedEntity::EK_Parameter_CF_Audited: |
| 1283 | case InitializedEntity::EK_TemplateParameter: |
| 1284 | case InitializedEntity::EK_Result: |
| 1285 | case InitializedEntity::EK_ParenAggInitMember: |
| 1286 | // Extra braces here are suspicious. |
| 1287 | DiagID = diag::warn_braces_around_init; |
| 1288 | break; |
| 1289 | |
| 1290 | case InitializedEntity::EK_Member: |
| 1291 | // Warn on aggregate initialization but not on ctor init list or |
| 1292 | // default member initializer. |
| 1293 | if (Entity.getParent()) |
| 1294 | DiagID = diag::warn_braces_around_init; |
| 1295 | break; |
| 1296 | |
| 1297 | case InitializedEntity::EK_Variable: |
| 1298 | case InitializedEntity::EK_LambdaCapture: |
| 1299 | // No warning, might be direct-list-initialization. |
| 1300 | // FIXME: Should we warn for copy-list-initialization in these cases? |
| 1301 | break; |
| 1302 | |
| 1303 | case InitializedEntity::EK_New: |
| 1304 | case InitializedEntity::EK_Temporary: |
| 1305 | case InitializedEntity::EK_CompoundLiteralInit: |
| 1306 | // No warning, braces are part of the syntax of the underlying construct. |
| 1307 | break; |
| 1308 | |
| 1309 | case InitializedEntity::EK_RelatedResult: |
| 1310 | // No warning, we already warned when initializing the result. |
| 1311 | break; |
| 1312 | |
| 1313 | case InitializedEntity::EK_Exception: |
| 1314 | case InitializedEntity::EK_Base: |
| 1315 | case InitializedEntity::EK_Delegating: |
| 1316 | case InitializedEntity::EK_BlockElement: |
| 1317 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| 1318 | case InitializedEntity::EK_Binding: |
| 1319 | case InitializedEntity::EK_StmtExprResult: |
| 1320 | llvm_unreachable("unexpected braced scalar init" ); |
| 1321 | } |
| 1322 | |
| 1323 | if (DiagID) { |
| 1324 | S.Diag(Braces.getBegin(), DiagID) |
| 1325 | << Entity.getType()->isSizelessBuiltinType() << Braces |
| 1326 | << FixItHint::CreateRemoval(RemoveRange: Braces.getBegin()) |
| 1327 | << FixItHint::CreateRemoval(RemoveRange: Braces.getEnd()); |
| 1328 | } |
| 1329 | } |
| 1330 | |
| 1331 | /// Check whether the initializer \p IList (that was written with explicit |
| 1332 | /// braces) can be used to initialize an object of type \p T. |
| 1333 | /// |
| 1334 | /// This also fills in \p StructuredList with the fully-braced, desugared |
| 1335 | /// form of the initialization. |
| 1336 | void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, |
| 1337 | InitListExpr *IList, QualType &T, |
| 1338 | InitListExpr *StructuredList, |
| 1339 | bool TopLevelObject) { |
| 1340 | unsigned Index = 0, StructuredIndex = 0; |
| 1341 | CheckListElementTypes(Entity, IList, DeclType&: T, /*SubobjectIsDesignatorContext=*/true, |
| 1342 | Index, StructuredList, StructuredIndex, TopLevelObject); |
| 1343 | if (StructuredList) { |
| 1344 | QualType ExprTy = T; |
| 1345 | if (!ExprTy->isArrayType()) |
| 1346 | ExprTy = ExprTy.getNonLValueExprType(Context: SemaRef.Context); |
| 1347 | if (!VerifyOnly) |
| 1348 | IList->setType(ExprTy); |
| 1349 | StructuredList->setType(ExprTy); |
| 1350 | } |
| 1351 | if (hadError) |
| 1352 | return; |
| 1353 | |
| 1354 | // Don't complain for incomplete types, since we'll get an error elsewhere. |
| 1355 | if ((Index < IList->getNumInits() || CurEmbed) && !T->isIncompleteType()) { |
| 1356 | // We have leftover initializers |
| 1357 | bool = SemaRef.getLangOpts().CPlusPlus || |
| 1358 | (SemaRef.getLangOpts().OpenCL && T->isVectorType()); |
| 1359 | hadError = ExtraInitsIsError; |
| 1360 | if (VerifyOnly) { |
| 1361 | return; |
| 1362 | } else if (StructuredIndex == 1 && |
| 1363 | IsStringInit(init: StructuredList->getInit(Init: 0), declType: T, Context&: SemaRef.Context) == |
| 1364 | SIF_None) { |
| 1365 | unsigned DK = |
| 1366 | ExtraInitsIsError |
| 1367 | ? diag::err_excess_initializers_in_char_array_initializer |
| 1368 | : diag::ext_excess_initializers_in_char_array_initializer; |
| 1369 | SemaRef.Diag(IList->getInit(Init: Index)->getBeginLoc(), DK) |
| 1370 | << IList->getInit(Init: Index)->getSourceRange(); |
| 1371 | } else if (T->isSizelessBuiltinType()) { |
| 1372 | unsigned DK = ExtraInitsIsError |
| 1373 | ? diag::err_excess_initializers_for_sizeless_type |
| 1374 | : diag::ext_excess_initializers_for_sizeless_type; |
| 1375 | SemaRef.Diag(IList->getInit(Init: Index)->getBeginLoc(), DK) |
| 1376 | << T << IList->getInit(Init: Index)->getSourceRange(); |
| 1377 | } else { |
| 1378 | int initKind = T->isArrayType() ? 0 : |
| 1379 | T->isVectorType() ? 1 : |
| 1380 | T->isScalarType() ? 2 : |
| 1381 | T->isUnionType() ? 3 : |
| 1382 | 4; |
| 1383 | |
| 1384 | unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers |
| 1385 | : diag::ext_excess_initializers; |
| 1386 | SemaRef.Diag(IList->getInit(Init: Index)->getBeginLoc(), DK) |
| 1387 | << initKind << IList->getInit(Init: Index)->getSourceRange(); |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | if (!VerifyOnly) { |
| 1392 | if (T->isScalarType() && IList->getNumInits() == 1 && |
| 1393 | !isa<InitListExpr>(Val: IList->getInit(Init: 0))) |
| 1394 | warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); |
| 1395 | |
| 1396 | // Warn if this is a class type that won't be an aggregate in future |
| 1397 | // versions of C++. |
| 1398 | auto *CXXRD = T->getAsCXXRecordDecl(); |
| 1399 | if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
| 1400 | // Don't warn if there's an equivalent default constructor that would be |
| 1401 | // used instead. |
| 1402 | bool HasEquivCtor = false; |
| 1403 | if (IList->getNumInits() == 0) { |
| 1404 | auto *CD = SemaRef.LookupDefaultConstructor(Class: CXXRD); |
| 1405 | HasEquivCtor = CD && !CD->isDeleted(); |
| 1406 | } |
| 1407 | |
| 1408 | if (!HasEquivCtor) { |
| 1409 | SemaRef.Diag(IList->getBeginLoc(), |
| 1410 | diag::warn_cxx20_compat_aggregate_init_with_ctors) |
| 1411 | << IList->getSourceRange() << T; |
| 1412 | } |
| 1413 | } |
| 1414 | } |
| 1415 | } |
| 1416 | |
| 1417 | void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, |
| 1418 | InitListExpr *IList, |
| 1419 | QualType &DeclType, |
| 1420 | bool SubobjectIsDesignatorContext, |
| 1421 | unsigned &Index, |
| 1422 | InitListExpr *StructuredList, |
| 1423 | unsigned &StructuredIndex, |
| 1424 | bool TopLevelObject) { |
| 1425 | if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { |
| 1426 | // Explicitly braced initializer for complex type can be real+imaginary |
| 1427 | // parts. |
| 1428 | CheckComplexType(Entity, IList, DeclType, Index, |
| 1429 | StructuredList, StructuredIndex); |
| 1430 | } else if (DeclType->isScalarType()) { |
| 1431 | CheckScalarType(Entity, IList, DeclType, Index, |
| 1432 | StructuredList, StructuredIndex); |
| 1433 | } else if (DeclType->isVectorType()) { |
| 1434 | CheckVectorType(Entity, IList, DeclType, Index, |
| 1435 | StructuredList, StructuredIndex); |
| 1436 | } else if (const RecordDecl *RD = getRecordDecl(DeclType)) { |
| 1437 | auto Bases = |
| 1438 | CXXRecordDecl::base_class_const_range(CXXRecordDecl::base_class_const_iterator(), |
| 1439 | CXXRecordDecl::base_class_const_iterator()); |
| 1440 | if (DeclType->isRecordType()) { |
| 1441 | assert(DeclType->isAggregateType() && |
| 1442 | "non-aggregate records should be handed in CheckSubElementType" ); |
| 1443 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
| 1444 | Bases = CXXRD->bases(); |
| 1445 | } else { |
| 1446 | Bases = cast<CXXRecordDecl>(Val: RD)->bases(); |
| 1447 | } |
| 1448 | CheckStructUnionTypes(Entity, IList, DeclType, Bases, Field: RD->field_begin(), |
| 1449 | SubobjectIsDesignatorContext, Index, StructuredList, |
| 1450 | StructuredIndex, TopLevelObject); |
| 1451 | } else if (DeclType->isArrayType()) { |
| 1452 | llvm::APSInt Zero( |
| 1453 | SemaRef.Context.getTypeSize(T: SemaRef.Context.getSizeType()), |
| 1454 | false); |
| 1455 | CheckArrayType(Entity, IList, DeclType, elementIndex: Zero, |
| 1456 | SubobjectIsDesignatorContext, Index, |
| 1457 | StructuredList, StructuredIndex); |
| 1458 | } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { |
| 1459 | // This type is invalid, issue a diagnostic. |
| 1460 | ++Index; |
| 1461 | if (!VerifyOnly) |
| 1462 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) |
| 1463 | << DeclType; |
| 1464 | hadError = true; |
| 1465 | } else if (DeclType->isReferenceType()) { |
| 1466 | CheckReferenceType(Entity, IList, DeclType, Index, |
| 1467 | StructuredList, StructuredIndex); |
| 1468 | } else if (DeclType->isObjCObjectType()) { |
| 1469 | if (!VerifyOnly) |
| 1470 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; |
| 1471 | hadError = true; |
| 1472 | } else if (DeclType->isOCLIntelSubgroupAVCType() || |
| 1473 | DeclType->isSizelessBuiltinType()) { |
| 1474 | // Checks for scalar type are sufficient for these types too. |
| 1475 | CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
| 1476 | StructuredIndex); |
| 1477 | } else if (DeclType->isDependentType()) { |
| 1478 | // C++ [over.match.class.deduct]p1.5: |
| 1479 | // brace elision is not considered for any aggregate element that has a |
| 1480 | // dependent non-array type or an array type with a value-dependent bound |
| 1481 | ++Index; |
| 1482 | assert(AggrDeductionCandidateParamTypes); |
| 1483 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
| 1484 | } else { |
| 1485 | if (!VerifyOnly) |
| 1486 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) |
| 1487 | << DeclType; |
| 1488 | hadError = true; |
| 1489 | } |
| 1490 | } |
| 1491 | |
| 1492 | void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, |
| 1493 | InitListExpr *IList, |
| 1494 | QualType ElemType, |
| 1495 | unsigned &Index, |
| 1496 | InitListExpr *StructuredList, |
| 1497 | unsigned &StructuredIndex, |
| 1498 | bool DirectlyDesignated) { |
| 1499 | Expr *expr = IList->getInit(Init: Index); |
| 1500 | |
| 1501 | if (ElemType->isReferenceType()) |
| 1502 | return CheckReferenceType(Entity, IList, DeclType: ElemType, Index, |
| 1503 | StructuredList, StructuredIndex); |
| 1504 | |
| 1505 | if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(Val: expr)) { |
| 1506 | if (SubInitList->getNumInits() == 1 && |
| 1507 | IsStringInit(init: SubInitList->getInit(Init: 0), declType: ElemType, Context&: SemaRef.Context) == |
| 1508 | SIF_None) { |
| 1509 | // FIXME: It would be more faithful and no less correct to include an |
| 1510 | // InitListExpr in the semantic form of the initializer list in this case. |
| 1511 | expr = SubInitList->getInit(Init: 0); |
| 1512 | } |
| 1513 | // Nested aggregate initialization and C++ initialization are handled later. |
| 1514 | } else if (isa<ImplicitValueInitExpr>(Val: expr)) { |
| 1515 | // This happens during template instantiation when we see an InitListExpr |
| 1516 | // that we've already checked once. |
| 1517 | assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && |
| 1518 | "found implicit initialization for the wrong type" ); |
| 1519 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
| 1520 | ++Index; |
| 1521 | return; |
| 1522 | } |
| 1523 | |
| 1524 | if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(Val: expr)) { |
| 1525 | // C++ [dcl.init.aggr]p2: |
| 1526 | // Each member is copy-initialized from the corresponding |
| 1527 | // initializer-clause. |
| 1528 | |
| 1529 | // FIXME: Better EqualLoc? |
| 1530 | InitializationKind Kind = |
| 1531 | InitializationKind::CreateCopy(InitLoc: expr->getBeginLoc(), EqualLoc: SourceLocation()); |
| 1532 | |
| 1533 | // Vector elements can be initialized from other vectors in which case |
| 1534 | // we need initialization entity with a type of a vector (and not a vector |
| 1535 | // element!) initializing multiple vector elements. |
| 1536 | auto TmpEntity = |
| 1537 | (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) |
| 1538 | ? InitializedEntity::InitializeTemporary(Type: ElemType) |
| 1539 | : Entity; |
| 1540 | |
| 1541 | if (TmpEntity.getType()->isDependentType()) { |
| 1542 | // C++ [over.match.class.deduct]p1.5: |
| 1543 | // brace elision is not considered for any aggregate element that has a |
| 1544 | // dependent non-array type or an array type with a value-dependent |
| 1545 | // bound |
| 1546 | assert(AggrDeductionCandidateParamTypes); |
| 1547 | |
| 1548 | // In the presence of a braced-init-list within the initializer, we should |
| 1549 | // not perform brace-elision, even if brace elision would otherwise be |
| 1550 | // applicable. For example, given: |
| 1551 | // |
| 1552 | // template <class T> struct Foo { |
| 1553 | // T t[2]; |
| 1554 | // }; |
| 1555 | // |
| 1556 | // Foo t = {{1, 2}}; |
| 1557 | // |
| 1558 | // we don't want the (T, T) but rather (T [2]) in terms of the initializer |
| 1559 | // {{1, 2}}. |
| 1560 | if (isa<InitListExpr, DesignatedInitExpr>(Val: expr) || |
| 1561 | !isa_and_present<ConstantArrayType>( |
| 1562 | Val: SemaRef.Context.getAsArrayType(T: ElemType))) { |
| 1563 | ++Index; |
| 1564 | AggrDeductionCandidateParamTypes->push_back(Elt: ElemType); |
| 1565 | return; |
| 1566 | } |
| 1567 | } else { |
| 1568 | InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, |
| 1569 | /*TopLevelOfInitList*/ true); |
| 1570 | // C++14 [dcl.init.aggr]p13: |
| 1571 | // If the assignment-expression can initialize a member, the member is |
| 1572 | // initialized. Otherwise [...] brace elision is assumed |
| 1573 | // |
| 1574 | // Brace elision is never performed if the element is not an |
| 1575 | // assignment-expression. |
| 1576 | if (Seq || isa<InitListExpr>(Val: expr)) { |
| 1577 | if (auto *Embed = dyn_cast<EmbedExpr>(Val: expr)) { |
| 1578 | expr = HandleEmbed(Embed, Entity); |
| 1579 | } |
| 1580 | if (!VerifyOnly) { |
| 1581 | ExprResult Result = Seq.Perform(S&: SemaRef, Entity: TmpEntity, Kind, Args: expr); |
| 1582 | if (Result.isInvalid()) |
| 1583 | hadError = true; |
| 1584 | |
| 1585 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
| 1586 | expr: Result.getAs<Expr>()); |
| 1587 | } else if (!Seq) { |
| 1588 | hadError = true; |
| 1589 | } else if (StructuredList) { |
| 1590 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
| 1591 | getDummyInit()); |
| 1592 | } |
| 1593 | if (!CurEmbed) |
| 1594 | ++Index; |
| 1595 | if (AggrDeductionCandidateParamTypes) |
| 1596 | AggrDeductionCandidateParamTypes->push_back(Elt: ElemType); |
| 1597 | return; |
| 1598 | } |
| 1599 | } |
| 1600 | |
| 1601 | // Fall through for subaggregate initialization |
| 1602 | } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { |
| 1603 | // FIXME: Need to handle atomic aggregate types with implicit init lists. |
| 1604 | return CheckScalarType(Entity, IList, DeclType: ElemType, Index, |
| 1605 | StructuredList, StructuredIndex); |
| 1606 | } else if (const ArrayType *arrayType = |
| 1607 | SemaRef.Context.getAsArrayType(T: ElemType)) { |
| 1608 | // arrayType can be incomplete if we're initializing a flexible |
| 1609 | // array member. There's nothing we can do with the completed |
| 1610 | // type here, though. |
| 1611 | |
| 1612 | if (IsStringInit(Init: expr, AT: arrayType, Context&: SemaRef.Context) == SIF_None) { |
| 1613 | // FIXME: Should we do this checking in verify-only mode? |
| 1614 | if (!VerifyOnly) |
| 1615 | CheckStringInit(Str: expr, DeclT&: ElemType, AT: arrayType, S&: SemaRef, Entity, |
| 1616 | CheckC23ConstexprInit: SemaRef.getLangOpts().C23 && |
| 1617 | initializingConstexprVariable(Entity)); |
| 1618 | if (StructuredList) |
| 1619 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
| 1620 | ++Index; |
| 1621 | return; |
| 1622 | } |
| 1623 | |
| 1624 | // Fall through for subaggregate initialization. |
| 1625 | |
| 1626 | } else { |
| 1627 | assert((ElemType->isRecordType() || ElemType->isVectorType() || |
| 1628 | ElemType->isOpenCLSpecificType() || ElemType->isMFloat8Type()) && |
| 1629 | "Unexpected type" ); |
| 1630 | |
| 1631 | // C99 6.7.8p13: |
| 1632 | // |
| 1633 | // The initializer for a structure or union object that has |
| 1634 | // automatic storage duration shall be either an initializer |
| 1635 | // list as described below, or a single expression that has |
| 1636 | // compatible structure or union type. In the latter case, the |
| 1637 | // initial value of the object, including unnamed members, is |
| 1638 | // that of the expression. |
| 1639 | ExprResult ExprRes = expr; |
| 1640 | if (SemaRef.CheckSingleAssignmentConstraints(LHSType: ElemType, RHS&: ExprRes, |
| 1641 | Diagnose: !VerifyOnly) != |
| 1642 | AssignConvertType::Incompatible) { |
| 1643 | if (ExprRes.isInvalid()) |
| 1644 | hadError = true; |
| 1645 | else { |
| 1646 | ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(E: ExprRes.get()); |
| 1647 | if (ExprRes.isInvalid()) |
| 1648 | hadError = true; |
| 1649 | } |
| 1650 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
| 1651 | expr: ExprRes.getAs<Expr>()); |
| 1652 | ++Index; |
| 1653 | return; |
| 1654 | } |
| 1655 | ExprRes.get(); |
| 1656 | // Fall through for subaggregate initialization |
| 1657 | } |
| 1658 | |
| 1659 | // C++ [dcl.init.aggr]p12: |
| 1660 | // |
| 1661 | // [...] Otherwise, if the member is itself a non-empty |
| 1662 | // subaggregate, brace elision is assumed and the initializer is |
| 1663 | // considered for the initialization of the first member of |
| 1664 | // the subaggregate. |
| 1665 | // OpenCL vector initializer is handled elsewhere. |
| 1666 | if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || |
| 1667 | ElemType->isAggregateType()) { |
| 1668 | CheckImplicitInitList(Entity, ParentIList: IList, T: ElemType, Index, StructuredList, |
| 1669 | StructuredIndex); |
| 1670 | ++StructuredIndex; |
| 1671 | |
| 1672 | // In C++20, brace elision is not permitted for a designated initializer. |
| 1673 | if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) { |
| 1674 | if (InOverloadResolution) |
| 1675 | hadError = true; |
| 1676 | if (!VerifyOnly) { |
| 1677 | SemaRef.Diag(expr->getBeginLoc(), |
| 1678 | diag::ext_designated_init_brace_elision) |
| 1679 | << expr->getSourceRange() |
| 1680 | << FixItHint::CreateInsertion(expr->getBeginLoc(), "{" ) |
| 1681 | << FixItHint::CreateInsertion( |
| 1682 | SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}" ); |
| 1683 | } |
| 1684 | } |
| 1685 | } else { |
| 1686 | if (!VerifyOnly) { |
| 1687 | // We cannot initialize this element, so let PerformCopyInitialization |
| 1688 | // produce the appropriate diagnostic. We already checked that this |
| 1689 | // initialization will fail. |
| 1690 | ExprResult Copy = |
| 1691 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: expr, |
| 1692 | /*TopLevelOfInitList=*/true); |
| 1693 | (void)Copy; |
| 1694 | assert(Copy.isInvalid() && |
| 1695 | "expected non-aggregate initialization to fail" ); |
| 1696 | } |
| 1697 | hadError = true; |
| 1698 | ++Index; |
| 1699 | ++StructuredIndex; |
| 1700 | } |
| 1701 | } |
| 1702 | |
| 1703 | void InitListChecker::CheckComplexType(const InitializedEntity &Entity, |
| 1704 | InitListExpr *IList, QualType DeclType, |
| 1705 | unsigned &Index, |
| 1706 | InitListExpr *StructuredList, |
| 1707 | unsigned &StructuredIndex) { |
| 1708 | assert(Index == 0 && "Index in explicit init list must be zero" ); |
| 1709 | |
| 1710 | // As an extension, clang supports complex initializers, which initialize |
| 1711 | // a complex number component-wise. When an explicit initializer list for |
| 1712 | // a complex number contains two initializers, this extension kicks in: |
| 1713 | // it expects the initializer list to contain two elements convertible to |
| 1714 | // the element type of the complex type. The first element initializes |
| 1715 | // the real part, and the second element intitializes the imaginary part. |
| 1716 | |
| 1717 | if (IList->getNumInits() < 2) |
| 1718 | return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
| 1719 | StructuredIndex); |
| 1720 | |
| 1721 | // This is an extension in C. (The builtin _Complex type does not exist |
| 1722 | // in the C++ standard.) |
| 1723 | if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) |
| 1724 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) |
| 1725 | << IList->getSourceRange(); |
| 1726 | |
| 1727 | // Initialize the complex number. |
| 1728 | QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); |
| 1729 | InitializedEntity ElementEntity = |
| 1730 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
| 1731 | |
| 1732 | for (unsigned i = 0; i < 2; ++i) { |
| 1733 | ElementEntity.setElementIndex(Index); |
| 1734 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
| 1735 | StructuredList, StructuredIndex); |
| 1736 | } |
| 1737 | } |
| 1738 | |
| 1739 | void InitListChecker::CheckScalarType(const InitializedEntity &Entity, |
| 1740 | InitListExpr *IList, QualType DeclType, |
| 1741 | unsigned &Index, |
| 1742 | InitListExpr *StructuredList, |
| 1743 | unsigned &StructuredIndex) { |
| 1744 | if (Index >= IList->getNumInits()) { |
| 1745 | if (!VerifyOnly) { |
| 1746 | if (SemaRef.getLangOpts().CPlusPlus) { |
| 1747 | if (DeclType->isSizelessBuiltinType()) |
| 1748 | SemaRef.Diag(IList->getBeginLoc(), |
| 1749 | SemaRef.getLangOpts().CPlusPlus11 |
| 1750 | ? diag::warn_cxx98_compat_empty_sizeless_initializer |
| 1751 | : diag::err_empty_sizeless_initializer) |
| 1752 | << DeclType << IList->getSourceRange(); |
| 1753 | else |
| 1754 | SemaRef.Diag(IList->getBeginLoc(), |
| 1755 | SemaRef.getLangOpts().CPlusPlus11 |
| 1756 | ? diag::warn_cxx98_compat_empty_scalar_initializer |
| 1757 | : diag::err_empty_scalar_initializer) |
| 1758 | << IList->getSourceRange(); |
| 1759 | } |
| 1760 | } |
| 1761 | hadError = |
| 1762 | SemaRef.getLangOpts().CPlusPlus && !SemaRef.getLangOpts().CPlusPlus11; |
| 1763 | ++Index; |
| 1764 | ++StructuredIndex; |
| 1765 | return; |
| 1766 | } |
| 1767 | |
| 1768 | Expr *expr = IList->getInit(Init: Index); |
| 1769 | if (InitListExpr *SubIList = dyn_cast<InitListExpr>(Val: expr)) { |
| 1770 | // FIXME: This is invalid, and accepting it causes overload resolution |
| 1771 | // to pick the wrong overload in some corner cases. |
| 1772 | if (!VerifyOnly) |
| 1773 | SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) |
| 1774 | << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); |
| 1775 | |
| 1776 | CheckScalarType(Entity, IList: SubIList, DeclType, Index, StructuredList, |
| 1777 | StructuredIndex); |
| 1778 | return; |
| 1779 | } else if (isa<DesignatedInitExpr>(Val: expr)) { |
| 1780 | if (!VerifyOnly) |
| 1781 | SemaRef.Diag(expr->getBeginLoc(), |
| 1782 | diag::err_designator_for_scalar_or_sizeless_init) |
| 1783 | << DeclType->isSizelessBuiltinType() << DeclType |
| 1784 | << expr->getSourceRange(); |
| 1785 | hadError = true; |
| 1786 | ++Index; |
| 1787 | ++StructuredIndex; |
| 1788 | return; |
| 1789 | } else if (auto *Embed = dyn_cast<EmbedExpr>(Val: expr)) { |
| 1790 | expr = HandleEmbed(Embed, Entity); |
| 1791 | } |
| 1792 | |
| 1793 | ExprResult Result; |
| 1794 | if (VerifyOnly) { |
| 1795 | if (SemaRef.CanPerformCopyInitialization(Entity, Init: expr)) |
| 1796 | Result = getDummyInit(); |
| 1797 | else |
| 1798 | Result = ExprError(); |
| 1799 | } else { |
| 1800 | Result = |
| 1801 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: expr->getBeginLoc(), Init: expr, |
| 1802 | /*TopLevelOfInitList=*/true); |
| 1803 | } |
| 1804 | |
| 1805 | Expr *ResultExpr = nullptr; |
| 1806 | |
| 1807 | if (Result.isInvalid()) |
| 1808 | hadError = true; // types weren't compatible. |
| 1809 | else { |
| 1810 | ResultExpr = Result.getAs<Expr>(); |
| 1811 | |
| 1812 | if (ResultExpr != expr && !VerifyOnly && !CurEmbed) { |
| 1813 | // The type was promoted, update initializer list. |
| 1814 | // FIXME: Why are we updating the syntactic init list? |
| 1815 | IList->setInit(Init: Index, expr: ResultExpr); |
| 1816 | } |
| 1817 | } |
| 1818 | |
| 1819 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr: ResultExpr); |
| 1820 | if (!CurEmbed) |
| 1821 | ++Index; |
| 1822 | if (AggrDeductionCandidateParamTypes) |
| 1823 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
| 1824 | } |
| 1825 | |
| 1826 | void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, |
| 1827 | InitListExpr *IList, QualType DeclType, |
| 1828 | unsigned &Index, |
| 1829 | InitListExpr *StructuredList, |
| 1830 | unsigned &StructuredIndex) { |
| 1831 | if (Index >= IList->getNumInits()) { |
| 1832 | // FIXME: It would be wonderful if we could point at the actual member. In |
| 1833 | // general, it would be useful to pass location information down the stack, |
| 1834 | // so that we know the location (or decl) of the "current object" being |
| 1835 | // initialized. |
| 1836 | if (!VerifyOnly) |
| 1837 | SemaRef.Diag(IList->getBeginLoc(), |
| 1838 | diag::err_init_reference_member_uninitialized) |
| 1839 | << DeclType << IList->getSourceRange(); |
| 1840 | hadError = true; |
| 1841 | ++Index; |
| 1842 | ++StructuredIndex; |
| 1843 | return; |
| 1844 | } |
| 1845 | |
| 1846 | Expr *expr = IList->getInit(Init: Index); |
| 1847 | if (isa<InitListExpr>(Val: expr) && !SemaRef.getLangOpts().CPlusPlus11) { |
| 1848 | if (!VerifyOnly) |
| 1849 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) |
| 1850 | << DeclType << IList->getSourceRange(); |
| 1851 | hadError = true; |
| 1852 | ++Index; |
| 1853 | ++StructuredIndex; |
| 1854 | return; |
| 1855 | } |
| 1856 | |
| 1857 | ExprResult Result; |
| 1858 | if (VerifyOnly) { |
| 1859 | if (SemaRef.CanPerformCopyInitialization(Entity,Init: expr)) |
| 1860 | Result = getDummyInit(); |
| 1861 | else |
| 1862 | Result = ExprError(); |
| 1863 | } else { |
| 1864 | Result = |
| 1865 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: expr->getBeginLoc(), Init: expr, |
| 1866 | /*TopLevelOfInitList=*/true); |
| 1867 | } |
| 1868 | |
| 1869 | if (Result.isInvalid()) |
| 1870 | hadError = true; |
| 1871 | |
| 1872 | expr = Result.getAs<Expr>(); |
| 1873 | // FIXME: Why are we updating the syntactic init list? |
| 1874 | if (!VerifyOnly && expr) |
| 1875 | IList->setInit(Init: Index, expr); |
| 1876 | |
| 1877 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
| 1878 | ++Index; |
| 1879 | if (AggrDeductionCandidateParamTypes) |
| 1880 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
| 1881 | } |
| 1882 | |
| 1883 | void InitListChecker::CheckVectorType(const InitializedEntity &Entity, |
| 1884 | InitListExpr *IList, QualType DeclType, |
| 1885 | unsigned &Index, |
| 1886 | InitListExpr *StructuredList, |
| 1887 | unsigned &StructuredIndex) { |
| 1888 | const VectorType *VT = DeclType->castAs<VectorType>(); |
| 1889 | unsigned maxElements = VT->getNumElements(); |
| 1890 | unsigned numEltsInit = 0; |
| 1891 | QualType elementType = VT->getElementType(); |
| 1892 | |
| 1893 | if (Index >= IList->getNumInits()) { |
| 1894 | // Make sure the element type can be value-initialized. |
| 1895 | CheckEmptyInitializable( |
| 1896 | Entity: InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity), |
| 1897 | Loc: IList->getEndLoc()); |
| 1898 | return; |
| 1899 | } |
| 1900 | |
| 1901 | if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) { |
| 1902 | // If the initializing element is a vector, try to copy-initialize |
| 1903 | // instead of breaking it apart (which is doomed to failure anyway). |
| 1904 | Expr *Init = IList->getInit(Init: Index); |
| 1905 | if (!isa<InitListExpr>(Val: Init) && Init->getType()->isVectorType()) { |
| 1906 | ExprResult Result; |
| 1907 | if (VerifyOnly) { |
| 1908 | if (SemaRef.CanPerformCopyInitialization(Entity, Init)) |
| 1909 | Result = getDummyInit(); |
| 1910 | else |
| 1911 | Result = ExprError(); |
| 1912 | } else { |
| 1913 | Result = |
| 1914 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: Init->getBeginLoc(), Init, |
| 1915 | /*TopLevelOfInitList=*/true); |
| 1916 | } |
| 1917 | |
| 1918 | Expr *ResultExpr = nullptr; |
| 1919 | if (Result.isInvalid()) |
| 1920 | hadError = true; // types weren't compatible. |
| 1921 | else { |
| 1922 | ResultExpr = Result.getAs<Expr>(); |
| 1923 | |
| 1924 | if (ResultExpr != Init && !VerifyOnly) { |
| 1925 | // The type was promoted, update initializer list. |
| 1926 | // FIXME: Why are we updating the syntactic init list? |
| 1927 | IList->setInit(Init: Index, expr: ResultExpr); |
| 1928 | } |
| 1929 | } |
| 1930 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr: ResultExpr); |
| 1931 | ++Index; |
| 1932 | if (AggrDeductionCandidateParamTypes) |
| 1933 | AggrDeductionCandidateParamTypes->push_back(Elt: elementType); |
| 1934 | return; |
| 1935 | } |
| 1936 | |
| 1937 | InitializedEntity ElementEntity = |
| 1938 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
| 1939 | |
| 1940 | for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { |
| 1941 | // Don't attempt to go past the end of the init list |
| 1942 | if (Index >= IList->getNumInits()) { |
| 1943 | CheckEmptyInitializable(Entity: ElementEntity, Loc: IList->getEndLoc()); |
| 1944 | break; |
| 1945 | } |
| 1946 | |
| 1947 | ElementEntity.setElementIndex(Index); |
| 1948 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
| 1949 | StructuredList, StructuredIndex); |
| 1950 | } |
| 1951 | |
| 1952 | if (VerifyOnly) |
| 1953 | return; |
| 1954 | |
| 1955 | bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); |
| 1956 | const VectorType *T = Entity.getType()->castAs<VectorType>(); |
| 1957 | if (isBigEndian && (T->getVectorKind() == VectorKind::Neon || |
| 1958 | T->getVectorKind() == VectorKind::NeonPoly)) { |
| 1959 | // The ability to use vector initializer lists is a GNU vector extension |
| 1960 | // and is unrelated to the NEON intrinsics in arm_neon.h. On little |
| 1961 | // endian machines it works fine, however on big endian machines it |
| 1962 | // exhibits surprising behaviour: |
| 1963 | // |
| 1964 | // uint32x2_t x = {42, 64}; |
| 1965 | // return vget_lane_u32(x, 0); // Will return 64. |
| 1966 | // |
| 1967 | // Because of this, explicitly call out that it is non-portable. |
| 1968 | // |
| 1969 | SemaRef.Diag(IList->getBeginLoc(), |
| 1970 | diag::warn_neon_vector_initializer_non_portable); |
| 1971 | |
| 1972 | const char *typeCode; |
| 1973 | unsigned typeSize = SemaRef.Context.getTypeSize(T: elementType); |
| 1974 | |
| 1975 | if (elementType->isFloatingType()) |
| 1976 | typeCode = "f" ; |
| 1977 | else if (elementType->isSignedIntegerType()) |
| 1978 | typeCode = "s" ; |
| 1979 | else if (elementType->isUnsignedIntegerType()) |
| 1980 | typeCode = "u" ; |
| 1981 | else if (elementType->isMFloat8Type()) |
| 1982 | typeCode = "mf" ; |
| 1983 | else |
| 1984 | llvm_unreachable("Invalid element type!" ); |
| 1985 | |
| 1986 | SemaRef.Diag(IList->getBeginLoc(), |
| 1987 | SemaRef.Context.getTypeSize(VT) > 64 |
| 1988 | ? diag::note_neon_vector_initializer_non_portable_q |
| 1989 | : diag::note_neon_vector_initializer_non_portable) |
| 1990 | << typeCode << typeSize; |
| 1991 | } |
| 1992 | |
| 1993 | return; |
| 1994 | } |
| 1995 | |
| 1996 | InitializedEntity ElementEntity = |
| 1997 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
| 1998 | |
| 1999 | // OpenCL and HLSL initializers allow vectors to be constructed from vectors. |
| 2000 | for (unsigned i = 0; i < maxElements; ++i) { |
| 2001 | // Don't attempt to go past the end of the init list |
| 2002 | if (Index >= IList->getNumInits()) |
| 2003 | break; |
| 2004 | |
| 2005 | ElementEntity.setElementIndex(Index); |
| 2006 | |
| 2007 | QualType IType = IList->getInit(Init: Index)->getType(); |
| 2008 | if (!IType->isVectorType()) { |
| 2009 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
| 2010 | StructuredList, StructuredIndex); |
| 2011 | ++numEltsInit; |
| 2012 | } else { |
| 2013 | QualType VecType; |
| 2014 | const VectorType *IVT = IType->castAs<VectorType>(); |
| 2015 | unsigned numIElts = IVT->getNumElements(); |
| 2016 | |
| 2017 | if (IType->isExtVectorType()) |
| 2018 | VecType = SemaRef.Context.getExtVectorType(VectorType: elementType, NumElts: numIElts); |
| 2019 | else |
| 2020 | VecType = SemaRef.Context.getVectorType(VectorType: elementType, NumElts: numIElts, |
| 2021 | VecKind: IVT->getVectorKind()); |
| 2022 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: VecType, Index, |
| 2023 | StructuredList, StructuredIndex); |
| 2024 | numEltsInit += numIElts; |
| 2025 | } |
| 2026 | } |
| 2027 | |
| 2028 | // OpenCL and HLSL require all elements to be initialized. |
| 2029 | if (numEltsInit != maxElements) { |
| 2030 | if (!VerifyOnly) |
| 2031 | SemaRef.Diag(IList->getBeginLoc(), |
| 2032 | diag::err_vector_incorrect_num_elements) |
| 2033 | << (numEltsInit < maxElements) << maxElements << numEltsInit |
| 2034 | << /*initialization*/ 0; |
| 2035 | hadError = true; |
| 2036 | } |
| 2037 | } |
| 2038 | |
| 2039 | /// Check if the type of a class element has an accessible destructor, and marks |
| 2040 | /// it referenced. Returns true if we shouldn't form a reference to the |
| 2041 | /// destructor. |
| 2042 | /// |
| 2043 | /// Aggregate initialization requires a class element's destructor be |
| 2044 | /// accessible per 11.6.1 [dcl.init.aggr]: |
| 2045 | /// |
| 2046 | /// The destructor for each element of class type is potentially invoked |
| 2047 | /// (15.4 [class.dtor]) from the context where the aggregate initialization |
| 2048 | /// occurs. |
| 2049 | static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, |
| 2050 | Sema &SemaRef) { |
| 2051 | auto *CXXRD = ElementType->getAsCXXRecordDecl(); |
| 2052 | if (!CXXRD) |
| 2053 | return false; |
| 2054 | |
| 2055 | CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Class: CXXRD); |
| 2056 | if (!Destructor) |
| 2057 | return false; |
| 2058 | |
| 2059 | SemaRef.CheckDestructorAccess(Loc, Destructor, |
| 2060 | SemaRef.PDiag(diag::err_access_dtor_temp) |
| 2061 | << ElementType); |
| 2062 | SemaRef.MarkFunctionReferenced(Loc, Destructor); |
| 2063 | return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); |
| 2064 | } |
| 2065 | |
| 2066 | static bool |
| 2067 | canInitializeArrayWithEmbedDataString(ArrayRef<Expr *> ExprList, |
| 2068 | const InitializedEntity &Entity, |
| 2069 | ASTContext &Context) { |
| 2070 | QualType InitType = Entity.getType(); |
| 2071 | const InitializedEntity *Parent = &Entity; |
| 2072 | |
| 2073 | while (Parent) { |
| 2074 | InitType = Parent->getType(); |
| 2075 | Parent = Parent->getParent(); |
| 2076 | } |
| 2077 | |
| 2078 | // Only one initializer, it's an embed and the types match; |
| 2079 | EmbedExpr *EE = |
| 2080 | ExprList.size() == 1 |
| 2081 | ? dyn_cast_if_present<EmbedExpr>(Val: ExprList[0]->IgnoreParens()) |
| 2082 | : nullptr; |
| 2083 | if (!EE) |
| 2084 | return false; |
| 2085 | |
| 2086 | if (InitType->isArrayType()) { |
| 2087 | const ArrayType *InitArrayType = InitType->getAsArrayTypeUnsafe(); |
| 2088 | StringLiteral *SL = EE->getDataStringLiteral(); |
| 2089 | return IsStringInit(SL, InitArrayType, Context) == SIF_None; |
| 2090 | } |
| 2091 | return false; |
| 2092 | } |
| 2093 | |
| 2094 | void InitListChecker::CheckArrayType(const InitializedEntity &Entity, |
| 2095 | InitListExpr *IList, QualType &DeclType, |
| 2096 | llvm::APSInt elementIndex, |
| 2097 | bool SubobjectIsDesignatorContext, |
| 2098 | unsigned &Index, |
| 2099 | InitListExpr *StructuredList, |
| 2100 | unsigned &StructuredIndex) { |
| 2101 | const ArrayType *arrayType = SemaRef.Context.getAsArrayType(T: DeclType); |
| 2102 | |
| 2103 | if (!VerifyOnly) { |
| 2104 | if (checkDestructorReference(ElementType: arrayType->getElementType(), |
| 2105 | Loc: IList->getEndLoc(), SemaRef)) { |
| 2106 | hadError = true; |
| 2107 | return; |
| 2108 | } |
| 2109 | } |
| 2110 | |
| 2111 | if (canInitializeArrayWithEmbedDataString(ExprList: IList->inits(), Entity, |
| 2112 | Context&: SemaRef.Context)) { |
| 2113 | EmbedExpr *Embed = cast<EmbedExpr>(Val: IList->inits()[0]); |
| 2114 | IList->setInit(0, Embed->getDataStringLiteral()); |
| 2115 | } |
| 2116 | |
| 2117 | // Check for the special-case of initializing an array with a string. |
| 2118 | if (Index < IList->getNumInits()) { |
| 2119 | if (IsStringInit(Init: IList->getInit(Init: Index), AT: arrayType, Context&: SemaRef.Context) == |
| 2120 | SIF_None) { |
| 2121 | // We place the string literal directly into the resulting |
| 2122 | // initializer list. This is the only place where the structure |
| 2123 | // of the structured initializer list doesn't match exactly, |
| 2124 | // because doing so would involve allocating one character |
| 2125 | // constant for each string. |
| 2126 | // FIXME: Should we do these checks in verify-only mode too? |
| 2127 | if (!VerifyOnly) |
| 2128 | CheckStringInit( |
| 2129 | Str: IList->getInit(Init: Index), DeclT&: DeclType, AT: arrayType, S&: SemaRef, Entity, |
| 2130 | CheckC23ConstexprInit: SemaRef.getLangOpts().C23 && initializingConstexprVariable(Entity)); |
| 2131 | if (StructuredList) { |
| 2132 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
| 2133 | expr: IList->getInit(Init: Index)); |
| 2134 | StructuredList->resizeInits(Context: SemaRef.Context, NumInits: StructuredIndex); |
| 2135 | } |
| 2136 | ++Index; |
| 2137 | if (AggrDeductionCandidateParamTypes) |
| 2138 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
| 2139 | return; |
| 2140 | } |
| 2141 | } |
| 2142 | if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(Val: arrayType)) { |
| 2143 | // Check for VLAs; in standard C it would be possible to check this |
| 2144 | // earlier, but I don't know where clang accepts VLAs (gcc accepts |
| 2145 | // them in all sorts of strange places). |
| 2146 | bool HasErr = IList->getNumInits() != 0 || SemaRef.getLangOpts().CPlusPlus; |
| 2147 | if (!VerifyOnly) { |
| 2148 | // C23 6.7.10p4: An entity of variable length array type shall not be |
| 2149 | // initialized except by an empty initializer. |
| 2150 | // |
| 2151 | // The C extension warnings are issued from ParseBraceInitializer() and |
| 2152 | // do not need to be issued here. However, we continue to issue an error |
| 2153 | // in the case there are initializers or we are compiling C++. We allow |
| 2154 | // use of VLAs in C++, but it's not clear we want to allow {} to zero |
| 2155 | // init a VLA in C++ in all cases (such as with non-trivial constructors). |
| 2156 | // FIXME: should we allow this construct in C++ when it makes sense to do |
| 2157 | // so? |
| 2158 | if (HasErr) |
| 2159 | SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), |
| 2160 | diag::err_variable_object_no_init) |
| 2161 | << VAT->getSizeExpr()->getSourceRange(); |
| 2162 | } |
| 2163 | hadError = HasErr; |
| 2164 | ++Index; |
| 2165 | ++StructuredIndex; |
| 2166 | return; |
| 2167 | } |
| 2168 | |
| 2169 | // We might know the maximum number of elements in advance. |
| 2170 | llvm::APSInt maxElements(elementIndex.getBitWidth(), |
| 2171 | elementIndex.isUnsigned()); |
| 2172 | bool maxElementsKnown = false; |
| 2173 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: arrayType)) { |
| 2174 | maxElements = CAT->getSize(); |
| 2175 | elementIndex = elementIndex.extOrTrunc(width: maxElements.getBitWidth()); |
| 2176 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
| 2177 | maxElementsKnown = true; |
| 2178 | } |
| 2179 | |
| 2180 | QualType elementType = arrayType->getElementType(); |
| 2181 | while (Index < IList->getNumInits()) { |
| 2182 | Expr *Init = IList->getInit(Init: Index); |
| 2183 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Val: Init)) { |
| 2184 | // If we're not the subobject that matches up with the '{' for |
| 2185 | // the designator, we shouldn't be handling the |
| 2186 | // designator. Return immediately. |
| 2187 | if (!SubobjectIsDesignatorContext) |
| 2188 | return; |
| 2189 | |
| 2190 | // Handle this designated initializer. elementIndex will be |
| 2191 | // updated to be the next array element we'll initialize. |
| 2192 | if (CheckDesignatedInitializer(Entity, IList, DIE, DesigIdx: 0, |
| 2193 | CurrentObjectType&: DeclType, NextField: nullptr, NextElementIndex: &elementIndex, Index, |
| 2194 | StructuredList, StructuredIndex, FinishSubobjectInit: true, |
| 2195 | TopLevelObject: false)) { |
| 2196 | hadError = true; |
| 2197 | continue; |
| 2198 | } |
| 2199 | |
| 2200 | if (elementIndex.getBitWidth() > maxElements.getBitWidth()) |
| 2201 | maxElements = maxElements.extend(width: elementIndex.getBitWidth()); |
| 2202 | else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) |
| 2203 | elementIndex = elementIndex.extend(width: maxElements.getBitWidth()); |
| 2204 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
| 2205 | |
| 2206 | // If the array is of incomplete type, keep track of the number of |
| 2207 | // elements in the initializer. |
| 2208 | if (!maxElementsKnown && elementIndex > maxElements) |
| 2209 | maxElements = elementIndex; |
| 2210 | |
| 2211 | continue; |
| 2212 | } |
| 2213 | |
| 2214 | // If we know the maximum number of elements, and we've already |
| 2215 | // hit it, stop consuming elements in the initializer list. |
| 2216 | if (maxElementsKnown && elementIndex == maxElements) |
| 2217 | break; |
| 2218 | |
| 2219 | InitializedEntity ElementEntity = InitializedEntity::InitializeElement( |
| 2220 | Context&: SemaRef.Context, Index: StructuredIndex, Parent: Entity); |
| 2221 | ElementEntity.setElementIndex(elementIndex.getExtValue()); |
| 2222 | |
| 2223 | unsigned EmbedElementIndexBeforeInit = CurEmbedIndex; |
| 2224 | // Check this element. |
| 2225 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
| 2226 | StructuredList, StructuredIndex); |
| 2227 | ++elementIndex; |
| 2228 | if ((CurEmbed || isa<EmbedExpr>(Val: Init)) && elementType->isScalarType()) { |
| 2229 | if (CurEmbed) { |
| 2230 | elementIndex = |
| 2231 | elementIndex + CurEmbedIndex - EmbedElementIndexBeforeInit - 1; |
| 2232 | } else { |
| 2233 | auto Embed = cast<EmbedExpr>(Val: Init); |
| 2234 | elementIndex = elementIndex + Embed->getDataElementCount() - |
| 2235 | EmbedElementIndexBeforeInit - 1; |
| 2236 | } |
| 2237 | } |
| 2238 | |
| 2239 | // If the array is of incomplete type, keep track of the number of |
| 2240 | // elements in the initializer. |
| 2241 | if (!maxElementsKnown && elementIndex > maxElements) |
| 2242 | maxElements = elementIndex; |
| 2243 | } |
| 2244 | if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { |
| 2245 | // If this is an incomplete array type, the actual type needs to |
| 2246 | // be calculated here. |
| 2247 | llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); |
| 2248 | if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { |
| 2249 | // Sizing an array implicitly to zero is not allowed by ISO C, |
| 2250 | // but is supported by GNU. |
| 2251 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); |
| 2252 | } |
| 2253 | |
| 2254 | DeclType = SemaRef.Context.getConstantArrayType( |
| 2255 | EltTy: elementType, ArySize: maxElements, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 2256 | } |
| 2257 | if (!hadError) { |
| 2258 | // If there are any members of the array that get value-initialized, check |
| 2259 | // that is possible. That happens if we know the bound and don't have |
| 2260 | // enough elements, or if we're performing an array new with an unknown |
| 2261 | // bound. |
| 2262 | if ((maxElementsKnown && elementIndex < maxElements) || |
| 2263 | Entity.isVariableLengthArrayNew()) |
| 2264 | CheckEmptyInitializable( |
| 2265 | Entity: InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity), |
| 2266 | Loc: IList->getEndLoc()); |
| 2267 | } |
| 2268 | } |
| 2269 | |
| 2270 | bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, |
| 2271 | Expr *InitExpr, |
| 2272 | FieldDecl *Field, |
| 2273 | bool TopLevelObject) { |
| 2274 | // Handle GNU flexible array initializers. |
| 2275 | unsigned FlexArrayDiag; |
| 2276 | if (isa<InitListExpr>(Val: InitExpr) && |
| 2277 | cast<InitListExpr>(Val: InitExpr)->getNumInits() == 0) { |
| 2278 | // Empty flexible array init always allowed as an extension |
| 2279 | FlexArrayDiag = diag::ext_flexible_array_init; |
| 2280 | } else if (!TopLevelObject) { |
| 2281 | // Disallow flexible array init on non-top-level object |
| 2282 | FlexArrayDiag = diag::err_flexible_array_init; |
| 2283 | } else if (Entity.getKind() != InitializedEntity::EK_Variable) { |
| 2284 | // Disallow flexible array init on anything which is not a variable. |
| 2285 | FlexArrayDiag = diag::err_flexible_array_init; |
| 2286 | } else if (cast<VarDecl>(Val: Entity.getDecl())->hasLocalStorage()) { |
| 2287 | // Disallow flexible array init on local variables. |
| 2288 | FlexArrayDiag = diag::err_flexible_array_init; |
| 2289 | } else { |
| 2290 | // Allow other cases. |
| 2291 | FlexArrayDiag = diag::ext_flexible_array_init; |
| 2292 | } |
| 2293 | |
| 2294 | if (!VerifyOnly) { |
| 2295 | SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) |
| 2296 | << InitExpr->getBeginLoc(); |
| 2297 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
| 2298 | << Field; |
| 2299 | } |
| 2300 | |
| 2301 | return FlexArrayDiag != diag::ext_flexible_array_init; |
| 2302 | } |
| 2303 | |
| 2304 | static bool isInitializedStructuredList(const InitListExpr *StructuredList) { |
| 2305 | return StructuredList && StructuredList->getNumInits() == 1U; |
| 2306 | } |
| 2307 | |
| 2308 | void InitListChecker::CheckStructUnionTypes( |
| 2309 | const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, |
| 2310 | CXXRecordDecl::base_class_const_range Bases, RecordDecl::field_iterator Field, |
| 2311 | bool SubobjectIsDesignatorContext, unsigned &Index, |
| 2312 | InitListExpr *StructuredList, unsigned &StructuredIndex, |
| 2313 | bool TopLevelObject) { |
| 2314 | const RecordDecl *RD = getRecordDecl(DeclType); |
| 2315 | |
| 2316 | // If the record is invalid, some of it's members are invalid. To avoid |
| 2317 | // confusion, we forgo checking the initializer for the entire record. |
| 2318 | if (RD->isInvalidDecl()) { |
| 2319 | // Assume it was supposed to consume a single initializer. |
| 2320 | ++Index; |
| 2321 | hadError = true; |
| 2322 | return; |
| 2323 | } |
| 2324 | |
| 2325 | if (RD->isUnion() && IList->getNumInits() == 0) { |
| 2326 | if (!VerifyOnly) |
| 2327 | for (FieldDecl *FD : RD->fields()) { |
| 2328 | QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); |
| 2329 | if (checkDestructorReference(ElementType: ET, Loc: IList->getEndLoc(), SemaRef)) { |
| 2330 | hadError = true; |
| 2331 | return; |
| 2332 | } |
| 2333 | } |
| 2334 | |
| 2335 | // If there's a default initializer, use it. |
| 2336 | if (isa<CXXRecordDecl>(Val: RD) && |
| 2337 | cast<CXXRecordDecl>(Val: RD)->hasInClassInitializer()) { |
| 2338 | if (!StructuredList) |
| 2339 | return; |
| 2340 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
| 2341 | Field != FieldEnd; ++Field) { |
| 2342 | if (Field->hasInClassInitializer() || |
| 2343 | (Field->isAnonymousStructOrUnion() && |
| 2344 | Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { |
| 2345 | StructuredList->setInitializedFieldInUnion(*Field); |
| 2346 | // FIXME: Actually build a CXXDefaultInitExpr? |
| 2347 | return; |
| 2348 | } |
| 2349 | } |
| 2350 | llvm_unreachable("Couldn't find in-class initializer" ); |
| 2351 | } |
| 2352 | |
| 2353 | // Value-initialize the first member of the union that isn't an unnamed |
| 2354 | // bitfield. |
| 2355 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
| 2356 | Field != FieldEnd; ++Field) { |
| 2357 | if (!Field->isUnnamedBitField()) { |
| 2358 | CheckEmptyInitializable( |
| 2359 | Entity: InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity), |
| 2360 | Loc: IList->getEndLoc()); |
| 2361 | if (StructuredList) |
| 2362 | StructuredList->setInitializedFieldInUnion(*Field); |
| 2363 | break; |
| 2364 | } |
| 2365 | } |
| 2366 | return; |
| 2367 | } |
| 2368 | |
| 2369 | bool InitializedSomething = false; |
| 2370 | |
| 2371 | // If we have any base classes, they are initialized prior to the fields. |
| 2372 | for (auto I = Bases.begin(), E = Bases.end(); I != E; ++I) { |
| 2373 | auto &Base = *I; |
| 2374 | Expr *Init = Index < IList->getNumInits() ? IList->getInit(Init: Index) : nullptr; |
| 2375 | |
| 2376 | // Designated inits always initialize fields, so if we see one, all |
| 2377 | // remaining base classes have no explicit initializer. |
| 2378 | if (isa_and_nonnull<DesignatedInitExpr>(Val: Init)) |
| 2379 | Init = nullptr; |
| 2380 | |
| 2381 | // C++ [over.match.class.deduct]p1.6: |
| 2382 | // each non-trailing aggregate element that is a pack expansion is assumed |
| 2383 | // to correspond to no elements of the initializer list, and (1.7) a |
| 2384 | // trailing aggregate element that is a pack expansion is assumed to |
| 2385 | // correspond to all remaining elements of the initializer list (if any). |
| 2386 | |
| 2387 | // C++ [over.match.class.deduct]p1.9: |
| 2388 | // ... except that additional parameter packs of the form P_j... are |
| 2389 | // inserted into the parameter list in their original aggregate element |
| 2390 | // position corresponding to each non-trailing aggregate element of |
| 2391 | // type P_j that was skipped because it was a parameter pack, and the |
| 2392 | // trailing sequence of parameters corresponding to a trailing |
| 2393 | // aggregate element that is a pack expansion (if any) is replaced |
| 2394 | // by a single parameter of the form T_n.... |
| 2395 | if (AggrDeductionCandidateParamTypes && Base.isPackExpansion()) { |
| 2396 | AggrDeductionCandidateParamTypes->push_back( |
| 2397 | Elt: SemaRef.Context.getPackExpansionType(Pattern: Base.getType(), NumExpansions: std::nullopt)); |
| 2398 | |
| 2399 | // Trailing pack expansion |
| 2400 | if (I + 1 == E && RD->field_empty()) { |
| 2401 | if (Index < IList->getNumInits()) |
| 2402 | Index = IList->getNumInits(); |
| 2403 | return; |
| 2404 | } |
| 2405 | |
| 2406 | continue; |
| 2407 | } |
| 2408 | |
| 2409 | SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); |
| 2410 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
| 2411 | Context&: SemaRef.Context, Base: &Base, IsInheritedVirtualBase: false, Parent: &Entity); |
| 2412 | if (Init) { |
| 2413 | CheckSubElementType(Entity: BaseEntity, IList, ElemType: Base.getType(), Index, |
| 2414 | StructuredList, StructuredIndex); |
| 2415 | InitializedSomething = true; |
| 2416 | } else { |
| 2417 | CheckEmptyInitializable(Entity: BaseEntity, Loc: InitLoc); |
| 2418 | } |
| 2419 | |
| 2420 | if (!VerifyOnly) |
| 2421 | if (checkDestructorReference(ElementType: Base.getType(), Loc: InitLoc, SemaRef)) { |
| 2422 | hadError = true; |
| 2423 | return; |
| 2424 | } |
| 2425 | } |
| 2426 | |
| 2427 | // If structDecl is a forward declaration, this loop won't do |
| 2428 | // anything except look at designated initializers; That's okay, |
| 2429 | // because an error should get printed out elsewhere. It might be |
| 2430 | // worthwhile to skip over the rest of the initializer, though. |
| 2431 | RecordDecl::field_iterator FieldEnd = RD->field_end(); |
| 2432 | size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) { |
| 2433 | return isa<FieldDecl>(Val: D) || isa<RecordDecl>(Val: D); |
| 2434 | }); |
| 2435 | bool HasDesignatedInit = false; |
| 2436 | |
| 2437 | llvm::SmallPtrSet<FieldDecl *, 4> InitializedFields; |
| 2438 | |
| 2439 | while (Index < IList->getNumInits()) { |
| 2440 | Expr *Init = IList->getInit(Init: Index); |
| 2441 | SourceLocation InitLoc = Init->getBeginLoc(); |
| 2442 | |
| 2443 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Val: Init)) { |
| 2444 | // If we're not the subobject that matches up with the '{' for |
| 2445 | // the designator, we shouldn't be handling the |
| 2446 | // designator. Return immediately. |
| 2447 | if (!SubobjectIsDesignatorContext) |
| 2448 | return; |
| 2449 | |
| 2450 | HasDesignatedInit = true; |
| 2451 | |
| 2452 | // Handle this designated initializer. Field will be updated to |
| 2453 | // the next field that we'll be initializing. |
| 2454 | bool DesignatedInitFailed = CheckDesignatedInitializer( |
| 2455 | Entity, IList, DIE, DesigIdx: 0, CurrentObjectType&: DeclType, NextField: &Field, NextElementIndex: nullptr, Index, |
| 2456 | StructuredList, StructuredIndex, FinishSubobjectInit: true, TopLevelObject); |
| 2457 | if (DesignatedInitFailed) |
| 2458 | hadError = true; |
| 2459 | |
| 2460 | // Find the field named by the designated initializer. |
| 2461 | DesignatedInitExpr::Designator *D = DIE->getDesignator(Idx: 0); |
| 2462 | if (!VerifyOnly && D->isFieldDesignator()) { |
| 2463 | FieldDecl *F = D->getFieldDecl(); |
| 2464 | InitializedFields.insert(Ptr: F); |
| 2465 | if (!DesignatedInitFailed) { |
| 2466 | QualType ET = SemaRef.Context.getBaseElementType(F->getType()); |
| 2467 | if (checkDestructorReference(ElementType: ET, Loc: InitLoc, SemaRef)) { |
| 2468 | hadError = true; |
| 2469 | return; |
| 2470 | } |
| 2471 | } |
| 2472 | } |
| 2473 | |
| 2474 | InitializedSomething = true; |
| 2475 | continue; |
| 2476 | } |
| 2477 | |
| 2478 | // Check if this is an initializer of forms: |
| 2479 | // |
| 2480 | // struct foo f = {}; |
| 2481 | // struct foo g = {0}; |
| 2482 | // |
| 2483 | // These are okay for randomized structures. [C99 6.7.8p19] |
| 2484 | // |
| 2485 | // Also, if there is only one element in the structure, we allow something |
| 2486 | // like this, because it's really not randomized in the traditional sense. |
| 2487 | // |
| 2488 | // struct foo h = {bar}; |
| 2489 | auto IsZeroInitializer = [&](const Expr *I) { |
| 2490 | if (IList->getNumInits() == 1) { |
| 2491 | if (NumRecordDecls == 1) |
| 2492 | return true; |
| 2493 | if (const auto *IL = dyn_cast<IntegerLiteral>(I)) |
| 2494 | return IL->getValue().isZero(); |
| 2495 | } |
| 2496 | return false; |
| 2497 | }; |
| 2498 | |
| 2499 | // Don't allow non-designated initializers on randomized structures. |
| 2500 | if (RD->isRandomized() && !IsZeroInitializer(Init)) { |
| 2501 | if (!VerifyOnly) |
| 2502 | SemaRef.Diag(InitLoc, diag::err_non_designated_init_used); |
| 2503 | hadError = true; |
| 2504 | break; |
| 2505 | } |
| 2506 | |
| 2507 | if (Field == FieldEnd) { |
| 2508 | // We've run out of fields. We're done. |
| 2509 | break; |
| 2510 | } |
| 2511 | |
| 2512 | // We've already initialized a member of a union. We can stop entirely. |
| 2513 | if (InitializedSomething && RD->isUnion()) |
| 2514 | return; |
| 2515 | |
| 2516 | // Stop if we've hit a flexible array member. |
| 2517 | if (Field->getType()->isIncompleteArrayType()) |
| 2518 | break; |
| 2519 | |
| 2520 | if (Field->isUnnamedBitField()) { |
| 2521 | // Don't initialize unnamed bitfields, e.g. "int : 20;" |
| 2522 | ++Field; |
| 2523 | continue; |
| 2524 | } |
| 2525 | |
| 2526 | // Make sure we can use this declaration. |
| 2527 | bool InvalidUse; |
| 2528 | if (VerifyOnly) |
| 2529 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
| 2530 | else |
| 2531 | InvalidUse = SemaRef.DiagnoseUseOfDecl( |
| 2532 | D: *Field, Locs: IList->getInit(Init: Index)->getBeginLoc()); |
| 2533 | if (InvalidUse) { |
| 2534 | ++Index; |
| 2535 | ++Field; |
| 2536 | hadError = true; |
| 2537 | continue; |
| 2538 | } |
| 2539 | |
| 2540 | if (!VerifyOnly) { |
| 2541 | QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); |
| 2542 | if (checkDestructorReference(ElementType: ET, Loc: InitLoc, SemaRef)) { |
| 2543 | hadError = true; |
| 2544 | return; |
| 2545 | } |
| 2546 | } |
| 2547 | |
| 2548 | InitializedEntity MemberEntity = |
| 2549 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
| 2550 | CheckSubElementType(Entity: MemberEntity, IList, ElemType: Field->getType(), Index, |
| 2551 | StructuredList, StructuredIndex); |
| 2552 | InitializedSomething = true; |
| 2553 | InitializedFields.insert(Ptr: *Field); |
| 2554 | if (RD->isUnion() && isInitializedStructuredList(StructuredList)) { |
| 2555 | // Initialize the first field within the union. |
| 2556 | StructuredList->setInitializedFieldInUnion(*Field); |
| 2557 | } |
| 2558 | |
| 2559 | ++Field; |
| 2560 | } |
| 2561 | |
| 2562 | // Emit warnings for missing struct field initializers. |
| 2563 | // This check is disabled for designated initializers in C. |
| 2564 | // This matches gcc behaviour. |
| 2565 | bool IsCDesignatedInitializer = |
| 2566 | HasDesignatedInit && !SemaRef.getLangOpts().CPlusPlus; |
| 2567 | if (!VerifyOnly && InitializedSomething && !RD->isUnion() && |
| 2568 | !IList->isIdiomaticZeroInitializer(LangOpts: SemaRef.getLangOpts()) && |
| 2569 | !IsCDesignatedInitializer) { |
| 2570 | // It is possible we have one or more unnamed bitfields remaining. |
| 2571 | // Find first (if any) named field and emit warning. |
| 2572 | for (RecordDecl::field_iterator it = HasDesignatedInit ? RD->field_begin() |
| 2573 | : Field, |
| 2574 | end = RD->field_end(); |
| 2575 | it != end; ++it) { |
| 2576 | if (HasDesignatedInit && InitializedFields.count(Ptr: *it)) |
| 2577 | continue; |
| 2578 | |
| 2579 | if (!it->isUnnamedBitField() && !it->hasInClassInitializer() && |
| 2580 | !it->getType()->isIncompleteArrayType()) { |
| 2581 | auto Diag = HasDesignatedInit |
| 2582 | ? diag::warn_missing_designated_field_initializers |
| 2583 | : diag::warn_missing_field_initializers; |
| 2584 | SemaRef.Diag(IList->getSourceRange().getEnd(), Diag) << *it; |
| 2585 | break; |
| 2586 | } |
| 2587 | } |
| 2588 | } |
| 2589 | |
| 2590 | // Check that any remaining fields can be value-initialized if we're not |
| 2591 | // building a structured list. (If we are, we'll check this later.) |
| 2592 | if (!StructuredList && Field != FieldEnd && !RD->isUnion() && |
| 2593 | !Field->getType()->isIncompleteArrayType()) { |
| 2594 | for (; Field != FieldEnd && !hadError; ++Field) { |
| 2595 | if (!Field->isUnnamedBitField() && !Field->hasInClassInitializer()) |
| 2596 | CheckEmptyInitializable( |
| 2597 | Entity: InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity), |
| 2598 | Loc: IList->getEndLoc()); |
| 2599 | } |
| 2600 | } |
| 2601 | |
| 2602 | // Check that the types of the remaining fields have accessible destructors. |
| 2603 | if (!VerifyOnly) { |
| 2604 | // If the initializer expression has a designated initializer, check the |
| 2605 | // elements for which a designated initializer is not provided too. |
| 2606 | RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() |
| 2607 | : Field; |
| 2608 | for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { |
| 2609 | QualType ET = SemaRef.Context.getBaseElementType(I->getType()); |
| 2610 | if (checkDestructorReference(ElementType: ET, Loc: IList->getEndLoc(), SemaRef)) { |
| 2611 | hadError = true; |
| 2612 | return; |
| 2613 | } |
| 2614 | } |
| 2615 | } |
| 2616 | |
| 2617 | if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || |
| 2618 | Index >= IList->getNumInits()) |
| 2619 | return; |
| 2620 | |
| 2621 | if (CheckFlexibleArrayInit(Entity, InitExpr: IList->getInit(Init: Index), Field: *Field, |
| 2622 | TopLevelObject)) { |
| 2623 | hadError = true; |
| 2624 | ++Index; |
| 2625 | return; |
| 2626 | } |
| 2627 | |
| 2628 | InitializedEntity MemberEntity = |
| 2629 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
| 2630 | |
| 2631 | if (isa<InitListExpr>(Val: IList->getInit(Init: Index)) || |
| 2632 | AggrDeductionCandidateParamTypes) |
| 2633 | CheckSubElementType(Entity: MemberEntity, IList, ElemType: Field->getType(), Index, |
| 2634 | StructuredList, StructuredIndex); |
| 2635 | else |
| 2636 | CheckImplicitInitList(Entity: MemberEntity, ParentIList: IList, T: Field->getType(), Index, |
| 2637 | StructuredList, StructuredIndex); |
| 2638 | |
| 2639 | if (RD->isUnion() && isInitializedStructuredList(StructuredList)) { |
| 2640 | // Initialize the first field within the union. |
| 2641 | StructuredList->setInitializedFieldInUnion(*Field); |
| 2642 | } |
| 2643 | } |
| 2644 | |
| 2645 | /// Expand a field designator that refers to a member of an |
| 2646 | /// anonymous struct or union into a series of field designators that |
| 2647 | /// refers to the field within the appropriate subobject. |
| 2648 | /// |
| 2649 | static void ExpandAnonymousFieldDesignator(Sema &SemaRef, |
| 2650 | DesignatedInitExpr *DIE, |
| 2651 | unsigned DesigIdx, |
| 2652 | IndirectFieldDecl *IndirectField) { |
| 2653 | typedef DesignatedInitExpr::Designator Designator; |
| 2654 | |
| 2655 | // Build the replacement designators. |
| 2656 | SmallVector<Designator, 4> Replacements; |
| 2657 | for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), |
| 2658 | PE = IndirectField->chain_end(); PI != PE; ++PI) { |
| 2659 | if (PI + 1 == PE) |
| 2660 | Replacements.push_back(Elt: Designator::CreateFieldDesignator( |
| 2661 | FieldName: (IdentifierInfo *)nullptr, DotLoc: DIE->getDesignator(Idx: DesigIdx)->getDotLoc(), |
| 2662 | FieldLoc: DIE->getDesignator(Idx: DesigIdx)->getFieldLoc())); |
| 2663 | else |
| 2664 | Replacements.push_back(Elt: Designator::CreateFieldDesignator( |
| 2665 | FieldName: (IdentifierInfo *)nullptr, DotLoc: SourceLocation(), FieldLoc: SourceLocation())); |
| 2666 | assert(isa<FieldDecl>(*PI)); |
| 2667 | Replacements.back().setFieldDecl(cast<FieldDecl>(Val: *PI)); |
| 2668 | } |
| 2669 | |
| 2670 | // Expand the current designator into the set of replacement |
| 2671 | // designators, so we have a full subobject path down to where the |
| 2672 | // member of the anonymous struct/union is actually stored. |
| 2673 | DIE->ExpandDesignator(C: SemaRef.Context, Idx: DesigIdx, First: &Replacements[0], |
| 2674 | Last: &Replacements[0] + Replacements.size()); |
| 2675 | } |
| 2676 | |
| 2677 | static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, |
| 2678 | DesignatedInitExpr *DIE) { |
| 2679 | unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; |
| 2680 | SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); |
| 2681 | for (unsigned I = 0; I < NumIndexExprs; ++I) |
| 2682 | IndexExprs[I] = DIE->getSubExpr(Idx: I + 1); |
| 2683 | return DesignatedInitExpr::Create(C: SemaRef.Context, Designators: DIE->designators(), |
| 2684 | IndexExprs, |
| 2685 | EqualOrColonLoc: DIE->getEqualOrColonLoc(), |
| 2686 | GNUSyntax: DIE->usesGNUSyntax(), Init: DIE->getInit()); |
| 2687 | } |
| 2688 | |
| 2689 | namespace { |
| 2690 | |
| 2691 | // Callback to only accept typo corrections that are for field members of |
| 2692 | // the given struct or union. |
| 2693 | class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { |
| 2694 | public: |
| 2695 | explicit FieldInitializerValidatorCCC(const RecordDecl *RD) |
| 2696 | : Record(RD) {} |
| 2697 | |
| 2698 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
| 2699 | FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); |
| 2700 | return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); |
| 2701 | } |
| 2702 | |
| 2703 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| 2704 | return std::make_unique<FieldInitializerValidatorCCC>(args&: *this); |
| 2705 | } |
| 2706 | |
| 2707 | private: |
| 2708 | const RecordDecl *Record; |
| 2709 | }; |
| 2710 | |
| 2711 | } // end anonymous namespace |
| 2712 | |
| 2713 | /// Check the well-formedness of a C99 designated initializer. |
| 2714 | /// |
| 2715 | /// Determines whether the designated initializer @p DIE, which |
| 2716 | /// resides at the given @p Index within the initializer list @p |
| 2717 | /// IList, is well-formed for a current object of type @p DeclType |
| 2718 | /// (C99 6.7.8). The actual subobject that this designator refers to |
| 2719 | /// within the current subobject is returned in either |
| 2720 | /// @p NextField or @p NextElementIndex (whichever is appropriate). |
| 2721 | /// |
| 2722 | /// @param IList The initializer list in which this designated |
| 2723 | /// initializer occurs. |
| 2724 | /// |
| 2725 | /// @param DIE The designated initializer expression. |
| 2726 | /// |
| 2727 | /// @param DesigIdx The index of the current designator. |
| 2728 | /// |
| 2729 | /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), |
| 2730 | /// into which the designation in @p DIE should refer. |
| 2731 | /// |
| 2732 | /// @param NextField If non-NULL and the first designator in @p DIE is |
| 2733 | /// a field, this will be set to the field declaration corresponding |
| 2734 | /// to the field named by the designator. On input, this is expected to be |
| 2735 | /// the next field that would be initialized in the absence of designation, |
| 2736 | /// if the complete object being initialized is a struct. |
| 2737 | /// |
| 2738 | /// @param NextElementIndex If non-NULL and the first designator in @p |
| 2739 | /// DIE is an array designator or GNU array-range designator, this |
| 2740 | /// will be set to the last index initialized by this designator. |
| 2741 | /// |
| 2742 | /// @param Index Index into @p IList where the designated initializer |
| 2743 | /// @p DIE occurs. |
| 2744 | /// |
| 2745 | /// @param StructuredList The initializer list expression that |
| 2746 | /// describes all of the subobject initializers in the order they'll |
| 2747 | /// actually be initialized. |
| 2748 | /// |
| 2749 | /// @returns true if there was an error, false otherwise. |
| 2750 | bool |
| 2751 | InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, |
| 2752 | InitListExpr *IList, |
| 2753 | DesignatedInitExpr *DIE, |
| 2754 | unsigned DesigIdx, |
| 2755 | QualType &CurrentObjectType, |
| 2756 | RecordDecl::field_iterator *NextField, |
| 2757 | llvm::APSInt *NextElementIndex, |
| 2758 | unsigned &Index, |
| 2759 | InitListExpr *StructuredList, |
| 2760 | unsigned &StructuredIndex, |
| 2761 | bool FinishSubobjectInit, |
| 2762 | bool TopLevelObject) { |
| 2763 | if (DesigIdx == DIE->size()) { |
| 2764 | // C++20 designated initialization can result in direct-list-initialization |
| 2765 | // of the designated subobject. This is the only way that we can end up |
| 2766 | // performing direct initialization as part of aggregate initialization, so |
| 2767 | // it needs special handling. |
| 2768 | if (DIE->isDirectInit()) { |
| 2769 | Expr *Init = DIE->getInit(); |
| 2770 | assert(isa<InitListExpr>(Init) && |
| 2771 | "designator result in direct non-list initialization?" ); |
| 2772 | InitializationKind Kind = InitializationKind::CreateDirectList( |
| 2773 | DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); |
| 2774 | InitializationSequence Seq(SemaRef, Entity, Kind, Init, |
| 2775 | /*TopLevelOfInitList*/ true); |
| 2776 | if (StructuredList) { |
| 2777 | ExprResult Result = VerifyOnly |
| 2778 | ? getDummyInit() |
| 2779 | : Seq.Perform(S&: SemaRef, Entity, Kind, Args: Init); |
| 2780 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
| 2781 | expr: Result.get()); |
| 2782 | } |
| 2783 | ++Index; |
| 2784 | if (AggrDeductionCandidateParamTypes) |
| 2785 | AggrDeductionCandidateParamTypes->push_back(Elt: CurrentObjectType); |
| 2786 | return !Seq; |
| 2787 | } |
| 2788 | |
| 2789 | // Check the actual initialization for the designated object type. |
| 2790 | bool prevHadError = hadError; |
| 2791 | |
| 2792 | // Temporarily remove the designator expression from the |
| 2793 | // initializer list that the child calls see, so that we don't try |
| 2794 | // to re-process the designator. |
| 2795 | unsigned OldIndex = Index; |
| 2796 | auto *OldDIE = |
| 2797 | dyn_cast_if_present<DesignatedInitExpr>(Val: IList->getInit(Init: OldIndex)); |
| 2798 | if (!OldDIE) |
| 2799 | OldDIE = DIE; |
| 2800 | IList->setInit(Init: OldIndex, expr: OldDIE->getInit()); |
| 2801 | |
| 2802 | CheckSubElementType(Entity, IList, ElemType: CurrentObjectType, Index, StructuredList, |
| 2803 | StructuredIndex, /*DirectlyDesignated=*/true); |
| 2804 | |
| 2805 | // Restore the designated initializer expression in the syntactic |
| 2806 | // form of the initializer list. |
| 2807 | if (IList->getInit(Init: OldIndex) != OldDIE->getInit()) |
| 2808 | OldDIE->setInit(IList->getInit(Init: OldIndex)); |
| 2809 | IList->setInit(OldIndex, OldDIE); |
| 2810 | |
| 2811 | return hadError && !prevHadError; |
| 2812 | } |
| 2813 | |
| 2814 | DesignatedInitExpr::Designator *D = DIE->getDesignator(Idx: DesigIdx); |
| 2815 | bool IsFirstDesignator = (DesigIdx == 0); |
| 2816 | if (IsFirstDesignator ? FullyStructuredList : StructuredList) { |
| 2817 | // Determine the structural initializer list that corresponds to the |
| 2818 | // current subobject. |
| 2819 | if (IsFirstDesignator) |
| 2820 | StructuredList = FullyStructuredList; |
| 2821 | else { |
| 2822 | Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? |
| 2823 | StructuredList->getInit(Init: StructuredIndex) : nullptr; |
| 2824 | if (!ExistingInit && StructuredList->hasArrayFiller()) |
| 2825 | ExistingInit = StructuredList->getArrayFiller(); |
| 2826 | |
| 2827 | if (!ExistingInit) |
| 2828 | StructuredList = getStructuredSubobjectInit( |
| 2829 | IList, Index, CurrentObjectType, StructuredList, StructuredIndex, |
| 2830 | InitRange: SourceRange(D->getBeginLoc(), DIE->getEndLoc())); |
| 2831 | else if (InitListExpr *Result = dyn_cast<InitListExpr>(Val: ExistingInit)) |
| 2832 | StructuredList = Result; |
| 2833 | else { |
| 2834 | // We are creating an initializer list that initializes the |
| 2835 | // subobjects of the current object, but there was already an |
| 2836 | // initialization that completely initialized the current |
| 2837 | // subobject, e.g., by a compound literal: |
| 2838 | // |
| 2839 | // struct X { int a, b; }; |
| 2840 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
| 2841 | // |
| 2842 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
| 2843 | // designated initializer re-initializes only its current object |
| 2844 | // subobject [0].b. |
| 2845 | diagnoseInitOverride(OldInit: ExistingInit, |
| 2846 | NewInitRange: SourceRange(D->getBeginLoc(), DIE->getEndLoc()), |
| 2847 | /*UnionOverride=*/false, |
| 2848 | /*FullyOverwritten=*/false); |
| 2849 | |
| 2850 | if (!VerifyOnly) { |
| 2851 | if (DesignatedInitUpdateExpr *E = |
| 2852 | dyn_cast<DesignatedInitUpdateExpr>(Val: ExistingInit)) |
| 2853 | StructuredList = E->getUpdater(); |
| 2854 | else { |
| 2855 | DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) |
| 2856 | DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), |
| 2857 | ExistingInit, DIE->getEndLoc()); |
| 2858 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); |
| 2859 | StructuredList = DIUE->getUpdater(); |
| 2860 | } |
| 2861 | } else { |
| 2862 | // We don't need to track the structured representation of a |
| 2863 | // designated init update of an already-fully-initialized object in |
| 2864 | // verify-only mode. The only reason we would need the structure is |
| 2865 | // to determine where the uninitialized "holes" are, and in this |
| 2866 | // case, we know there aren't any and we can't introduce any. |
| 2867 | StructuredList = nullptr; |
| 2868 | } |
| 2869 | } |
| 2870 | } |
| 2871 | } |
| 2872 | |
| 2873 | if (D->isFieldDesignator()) { |
| 2874 | // C99 6.7.8p7: |
| 2875 | // |
| 2876 | // If a designator has the form |
| 2877 | // |
| 2878 | // . identifier |
| 2879 | // |
| 2880 | // then the current object (defined below) shall have |
| 2881 | // structure or union type and the identifier shall be the |
| 2882 | // name of a member of that type. |
| 2883 | RecordDecl *RD = getRecordDecl(DeclType: CurrentObjectType); |
| 2884 | if (!RD) { |
| 2885 | SourceLocation Loc = D->getDotLoc(); |
| 2886 | if (Loc.isInvalid()) |
| 2887 | Loc = D->getFieldLoc(); |
| 2888 | if (!VerifyOnly) |
| 2889 | SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) |
| 2890 | << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; |
| 2891 | ++Index; |
| 2892 | return true; |
| 2893 | } |
| 2894 | |
| 2895 | FieldDecl *KnownField = D->getFieldDecl(); |
| 2896 | if (!KnownField) { |
| 2897 | const IdentifierInfo *FieldName = D->getFieldName(); |
| 2898 | ValueDecl *VD = SemaRef.tryLookupUnambiguousFieldDecl(ClassDecl: RD, MemberOrBase: FieldName); |
| 2899 | if (auto *FD = dyn_cast_if_present<FieldDecl>(Val: VD)) { |
| 2900 | KnownField = FD; |
| 2901 | } else if (auto *IFD = dyn_cast_if_present<IndirectFieldDecl>(Val: VD)) { |
| 2902 | // In verify mode, don't modify the original. |
| 2903 | if (VerifyOnly) |
| 2904 | DIE = CloneDesignatedInitExpr(SemaRef, DIE); |
| 2905 | ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IndirectField: IFD); |
| 2906 | D = DIE->getDesignator(Idx: DesigIdx); |
| 2907 | KnownField = cast<FieldDecl>(Val: *IFD->chain_begin()); |
| 2908 | } |
| 2909 | if (!KnownField) { |
| 2910 | if (VerifyOnly) { |
| 2911 | ++Index; |
| 2912 | return true; // No typo correction when just trying this out. |
| 2913 | } |
| 2914 | |
| 2915 | // We found a placeholder variable |
| 2916 | if (SemaRef.DiagRedefinedPlaceholderFieldDecl(Loc: DIE->getBeginLoc(), ClassDecl: RD, |
| 2917 | Name: FieldName)) { |
| 2918 | ++Index; |
| 2919 | return true; |
| 2920 | } |
| 2921 | // Name lookup found something, but it wasn't a field. |
| 2922 | if (DeclContextLookupResult Lookup = RD->lookup(FieldName); |
| 2923 | !Lookup.empty()) { |
| 2924 | SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) |
| 2925 | << FieldName; |
| 2926 | SemaRef.Diag(Lookup.front()->getLocation(), |
| 2927 | diag::note_field_designator_found); |
| 2928 | ++Index; |
| 2929 | return true; |
| 2930 | } |
| 2931 | |
| 2932 | // Name lookup didn't find anything. |
| 2933 | // Determine whether this was a typo for another field name. |
| 2934 | FieldInitializerValidatorCCC CCC(RD); |
| 2935 | if (TypoCorrection Corrected = SemaRef.CorrectTypo( |
| 2936 | DeclarationNameInfo(FieldName, D->getFieldLoc()), |
| 2937 | Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, |
| 2938 | CorrectTypoKind::ErrorRecovery, RD)) { |
| 2939 | SemaRef.diagnoseTypo( |
| 2940 | Corrected, |
| 2941 | SemaRef.PDiag(diag::err_field_designator_unknown_suggest) |
| 2942 | << FieldName << CurrentObjectType); |
| 2943 | KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); |
| 2944 | hadError = true; |
| 2945 | } else { |
| 2946 | // Typo correction didn't find anything. |
| 2947 | SourceLocation Loc = D->getFieldLoc(); |
| 2948 | |
| 2949 | // The loc can be invalid with a "null" designator (i.e. an anonymous |
| 2950 | // union/struct). Do our best to approximate the location. |
| 2951 | if (Loc.isInvalid()) |
| 2952 | Loc = IList->getBeginLoc(); |
| 2953 | |
| 2954 | SemaRef.Diag(Loc, diag::err_field_designator_unknown) |
| 2955 | << FieldName << CurrentObjectType << DIE->getSourceRange(); |
| 2956 | ++Index; |
| 2957 | return true; |
| 2958 | } |
| 2959 | } |
| 2960 | } |
| 2961 | |
| 2962 | unsigned NumBases = 0; |
| 2963 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
| 2964 | NumBases = CXXRD->getNumBases(); |
| 2965 | |
| 2966 | unsigned FieldIndex = NumBases; |
| 2967 | |
| 2968 | for (auto *FI : RD->fields()) { |
| 2969 | if (FI->isUnnamedBitField()) |
| 2970 | continue; |
| 2971 | if (declaresSameEntity(KnownField, FI)) { |
| 2972 | KnownField = FI; |
| 2973 | break; |
| 2974 | } |
| 2975 | ++FieldIndex; |
| 2976 | } |
| 2977 | |
| 2978 | RecordDecl::field_iterator Field = |
| 2979 | RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); |
| 2980 | |
| 2981 | // All of the fields of a union are located at the same place in |
| 2982 | // the initializer list. |
| 2983 | if (RD->isUnion()) { |
| 2984 | FieldIndex = 0; |
| 2985 | if (StructuredList) { |
| 2986 | FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); |
| 2987 | if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { |
| 2988 | assert(StructuredList->getNumInits() == 1 |
| 2989 | && "A union should never have more than one initializer!" ); |
| 2990 | |
| 2991 | Expr *ExistingInit = StructuredList->getInit(Init: 0); |
| 2992 | if (ExistingInit) { |
| 2993 | // We're about to throw away an initializer, emit warning. |
| 2994 | diagnoseInitOverride( |
| 2995 | OldInit: ExistingInit, NewInitRange: SourceRange(D->getBeginLoc(), DIE->getEndLoc()), |
| 2996 | /*UnionOverride=*/true, |
| 2997 | /*FullyOverwritten=*/SemaRef.getLangOpts().CPlusPlus ? false |
| 2998 | : true); |
| 2999 | } |
| 3000 | |
| 3001 | // remove existing initializer |
| 3002 | StructuredList->resizeInits(Context: SemaRef.Context, NumInits: 0); |
| 3003 | StructuredList->setInitializedFieldInUnion(nullptr); |
| 3004 | } |
| 3005 | |
| 3006 | StructuredList->setInitializedFieldInUnion(*Field); |
| 3007 | } |
| 3008 | } |
| 3009 | |
| 3010 | // Make sure we can use this declaration. |
| 3011 | bool InvalidUse; |
| 3012 | if (VerifyOnly) |
| 3013 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
| 3014 | else |
| 3015 | InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); |
| 3016 | if (InvalidUse) { |
| 3017 | ++Index; |
| 3018 | return true; |
| 3019 | } |
| 3020 | |
| 3021 | // C++20 [dcl.init.list]p3: |
| 3022 | // The ordered identifiers in the designators of the designated- |
| 3023 | // initializer-list shall form a subsequence of the ordered identifiers |
| 3024 | // in the direct non-static data members of T. |
| 3025 | // |
| 3026 | // Note that this is not a condition on forming the aggregate |
| 3027 | // initialization, only on actually performing initialization, |
| 3028 | // so it is not checked in VerifyOnly mode. |
| 3029 | // |
| 3030 | // FIXME: This is the only reordering diagnostic we produce, and it only |
| 3031 | // catches cases where we have a top-level field designator that jumps |
| 3032 | // backwards. This is the only such case that is reachable in an |
| 3033 | // otherwise-valid C++20 program, so is the only case that's required for |
| 3034 | // conformance, but for consistency, we should diagnose all the other |
| 3035 | // cases where a designator takes us backwards too. |
| 3036 | if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && |
| 3037 | NextField && |
| 3038 | (*NextField == RD->field_end() || |
| 3039 | (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { |
| 3040 | // Find the field that we just initialized. |
| 3041 | FieldDecl *PrevField = nullptr; |
| 3042 | for (auto FI = RD->field_begin(); FI != RD->field_end(); ++FI) { |
| 3043 | if (FI->isUnnamedBitField()) |
| 3044 | continue; |
| 3045 | if (*NextField != RD->field_end() && |
| 3046 | declaresSameEntity(*FI, **NextField)) |
| 3047 | break; |
| 3048 | PrevField = *FI; |
| 3049 | } |
| 3050 | |
| 3051 | if (PrevField && |
| 3052 | PrevField->getFieldIndex() > KnownField->getFieldIndex()) { |
| 3053 | SemaRef.Diag(DIE->getInit()->getBeginLoc(), |
| 3054 | diag::ext_designated_init_reordered) |
| 3055 | << KnownField << PrevField << DIE->getSourceRange(); |
| 3056 | |
| 3057 | unsigned OldIndex = StructuredIndex - 1; |
| 3058 | if (StructuredList && OldIndex <= StructuredList->getNumInits()) { |
| 3059 | if (Expr *PrevInit = StructuredList->getInit(Init: OldIndex)) { |
| 3060 | SemaRef.Diag(PrevInit->getBeginLoc(), |
| 3061 | diag::note_previous_field_init) |
| 3062 | << PrevField << PrevInit->getSourceRange(); |
| 3063 | } |
| 3064 | } |
| 3065 | } |
| 3066 | } |
| 3067 | |
| 3068 | |
| 3069 | // Update the designator with the field declaration. |
| 3070 | if (!VerifyOnly) |
| 3071 | D->setFieldDecl(*Field); |
| 3072 | |
| 3073 | // Make sure that our non-designated initializer list has space |
| 3074 | // for a subobject corresponding to this field. |
| 3075 | if (StructuredList && FieldIndex >= StructuredList->getNumInits()) |
| 3076 | StructuredList->resizeInits(Context: SemaRef.Context, NumInits: FieldIndex + 1); |
| 3077 | |
| 3078 | // This designator names a flexible array member. |
| 3079 | if (Field->getType()->isIncompleteArrayType()) { |
| 3080 | bool Invalid = false; |
| 3081 | if ((DesigIdx + 1) != DIE->size()) { |
| 3082 | // We can't designate an object within the flexible array |
| 3083 | // member (because GCC doesn't allow it). |
| 3084 | if (!VerifyOnly) { |
| 3085 | DesignatedInitExpr::Designator *NextD |
| 3086 | = DIE->getDesignator(Idx: DesigIdx + 1); |
| 3087 | SemaRef.Diag(NextD->getBeginLoc(), |
| 3088 | diag::err_designator_into_flexible_array_member) |
| 3089 | << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); |
| 3090 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
| 3091 | << *Field; |
| 3092 | } |
| 3093 | Invalid = true; |
| 3094 | } |
| 3095 | |
| 3096 | if (!hadError && !isa<InitListExpr>(Val: DIE->getInit()) && |
| 3097 | !isa<StringLiteral>(Val: DIE->getInit())) { |
| 3098 | // The initializer is not an initializer list. |
| 3099 | if (!VerifyOnly) { |
| 3100 | SemaRef.Diag(DIE->getInit()->getBeginLoc(), |
| 3101 | diag::err_flexible_array_init_needs_braces) |
| 3102 | << DIE->getInit()->getSourceRange(); |
| 3103 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
| 3104 | << *Field; |
| 3105 | } |
| 3106 | Invalid = true; |
| 3107 | } |
| 3108 | |
| 3109 | // Check GNU flexible array initializer. |
| 3110 | if (!Invalid && CheckFlexibleArrayInit(Entity, InitExpr: DIE->getInit(), Field: *Field, |
| 3111 | TopLevelObject)) |
| 3112 | Invalid = true; |
| 3113 | |
| 3114 | if (Invalid) { |
| 3115 | ++Index; |
| 3116 | return true; |
| 3117 | } |
| 3118 | |
| 3119 | // Initialize the array. |
| 3120 | bool prevHadError = hadError; |
| 3121 | unsigned newStructuredIndex = FieldIndex; |
| 3122 | unsigned OldIndex = Index; |
| 3123 | IList->setInit(Init: Index, expr: DIE->getInit()); |
| 3124 | |
| 3125 | InitializedEntity MemberEntity = |
| 3126 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
| 3127 | CheckSubElementType(Entity: MemberEntity, IList, ElemType: Field->getType(), Index, |
| 3128 | StructuredList, StructuredIndex&: newStructuredIndex); |
| 3129 | |
| 3130 | IList->setInit(OldIndex, DIE); |
| 3131 | if (hadError && !prevHadError) { |
| 3132 | ++Field; |
| 3133 | ++FieldIndex; |
| 3134 | if (NextField) |
| 3135 | *NextField = Field; |
| 3136 | StructuredIndex = FieldIndex; |
| 3137 | return true; |
| 3138 | } |
| 3139 | } else { |
| 3140 | // Recurse to check later designated subobjects. |
| 3141 | QualType FieldType = Field->getType(); |
| 3142 | unsigned newStructuredIndex = FieldIndex; |
| 3143 | |
| 3144 | InitializedEntity MemberEntity = |
| 3145 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
| 3146 | if (CheckDesignatedInitializer(Entity: MemberEntity, IList, DIE, DesigIdx: DesigIdx + 1, |
| 3147 | CurrentObjectType&: FieldType, NextField: nullptr, NextElementIndex: nullptr, Index, |
| 3148 | StructuredList, StructuredIndex&: newStructuredIndex, |
| 3149 | FinishSubobjectInit, TopLevelObject: false)) |
| 3150 | return true; |
| 3151 | } |
| 3152 | |
| 3153 | // Find the position of the next field to be initialized in this |
| 3154 | // subobject. |
| 3155 | ++Field; |
| 3156 | ++FieldIndex; |
| 3157 | |
| 3158 | // If this the first designator, our caller will continue checking |
| 3159 | // the rest of this struct/class/union subobject. |
| 3160 | if (IsFirstDesignator) { |
| 3161 | if (Field != RD->field_end() && Field->isUnnamedBitField()) |
| 3162 | ++Field; |
| 3163 | |
| 3164 | if (NextField) |
| 3165 | *NextField = Field; |
| 3166 | |
| 3167 | StructuredIndex = FieldIndex; |
| 3168 | return false; |
| 3169 | } |
| 3170 | |
| 3171 | if (!FinishSubobjectInit) |
| 3172 | return false; |
| 3173 | |
| 3174 | // We've already initialized something in the union; we're done. |
| 3175 | if (RD->isUnion()) |
| 3176 | return hadError; |
| 3177 | |
| 3178 | // Check the remaining fields within this class/struct/union subobject. |
| 3179 | bool prevHadError = hadError; |
| 3180 | |
| 3181 | auto NoBases = |
| 3182 | CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), |
| 3183 | CXXRecordDecl::base_class_iterator()); |
| 3184 | CheckStructUnionTypes(Entity, IList, DeclType: CurrentObjectType, Bases: NoBases, Field, |
| 3185 | SubobjectIsDesignatorContext: false, Index, StructuredList, StructuredIndex&: FieldIndex); |
| 3186 | return hadError && !prevHadError; |
| 3187 | } |
| 3188 | |
| 3189 | // C99 6.7.8p6: |
| 3190 | // |
| 3191 | // If a designator has the form |
| 3192 | // |
| 3193 | // [ constant-expression ] |
| 3194 | // |
| 3195 | // then the current object (defined below) shall have array |
| 3196 | // type and the expression shall be an integer constant |
| 3197 | // expression. If the array is of unknown size, any |
| 3198 | // nonnegative value is valid. |
| 3199 | // |
| 3200 | // Additionally, cope with the GNU extension that permits |
| 3201 | // designators of the form |
| 3202 | // |
| 3203 | // [ constant-expression ... constant-expression ] |
| 3204 | const ArrayType *AT = SemaRef.Context.getAsArrayType(T: CurrentObjectType); |
| 3205 | if (!AT) { |
| 3206 | if (!VerifyOnly) |
| 3207 | SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) |
| 3208 | << CurrentObjectType; |
| 3209 | ++Index; |
| 3210 | return true; |
| 3211 | } |
| 3212 | |
| 3213 | Expr *IndexExpr = nullptr; |
| 3214 | llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; |
| 3215 | if (D->isArrayDesignator()) { |
| 3216 | IndexExpr = DIE->getArrayIndex(D: *D); |
| 3217 | DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(Ctx: SemaRef.Context); |
| 3218 | DesignatedEndIndex = DesignatedStartIndex; |
| 3219 | } else { |
| 3220 | assert(D->isArrayRangeDesignator() && "Need array-range designator" ); |
| 3221 | |
| 3222 | DesignatedStartIndex = |
| 3223 | DIE->getArrayRangeStart(D: *D)->EvaluateKnownConstInt(Ctx: SemaRef.Context); |
| 3224 | DesignatedEndIndex = |
| 3225 | DIE->getArrayRangeEnd(D: *D)->EvaluateKnownConstInt(Ctx: SemaRef.Context); |
| 3226 | IndexExpr = DIE->getArrayRangeEnd(D: *D); |
| 3227 | |
| 3228 | // Codegen can't handle evaluating array range designators that have side |
| 3229 | // effects, because we replicate the AST value for each initialized element. |
| 3230 | // As such, set the sawArrayRangeDesignator() bit if we initialize multiple |
| 3231 | // elements with something that has a side effect, so codegen can emit an |
| 3232 | // "error unsupported" error instead of miscompiling the app. |
| 3233 | if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& |
| 3234 | DIE->getInit()->HasSideEffects(Ctx: SemaRef.Context) && !VerifyOnly) |
| 3235 | FullyStructuredList->sawArrayRangeDesignator(); |
| 3236 | } |
| 3237 | |
| 3238 | if (isa<ConstantArrayType>(Val: AT)) { |
| 3239 | llvm::APSInt MaxElements(cast<ConstantArrayType>(Val: AT)->getSize(), false); |
| 3240 | DesignatedStartIndex |
| 3241 | = DesignatedStartIndex.extOrTrunc(width: MaxElements.getBitWidth()); |
| 3242 | DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); |
| 3243 | DesignatedEndIndex |
| 3244 | = DesignatedEndIndex.extOrTrunc(width: MaxElements.getBitWidth()); |
| 3245 | DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); |
| 3246 | if (DesignatedEndIndex >= MaxElements) { |
| 3247 | if (!VerifyOnly) |
| 3248 | SemaRef.Diag(IndexExpr->getBeginLoc(), |
| 3249 | diag::err_array_designator_too_large) |
| 3250 | << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10) |
| 3251 | << IndexExpr->getSourceRange(); |
| 3252 | ++Index; |
| 3253 | return true; |
| 3254 | } |
| 3255 | } else { |
| 3256 | unsigned DesignatedIndexBitWidth = |
| 3257 | ConstantArrayType::getMaxSizeBits(Context: SemaRef.Context); |
| 3258 | DesignatedStartIndex = |
| 3259 | DesignatedStartIndex.extOrTrunc(width: DesignatedIndexBitWidth); |
| 3260 | DesignatedEndIndex = |
| 3261 | DesignatedEndIndex.extOrTrunc(width: DesignatedIndexBitWidth); |
| 3262 | DesignatedStartIndex.setIsUnsigned(true); |
| 3263 | DesignatedEndIndex.setIsUnsigned(true); |
| 3264 | } |
| 3265 | |
| 3266 | bool IsStringLiteralInitUpdate = |
| 3267 | StructuredList && StructuredList->isStringLiteralInit(); |
| 3268 | if (IsStringLiteralInitUpdate && VerifyOnly) { |
| 3269 | // We're just verifying an update to a string literal init. We don't need |
| 3270 | // to split the string up into individual characters to do that. |
| 3271 | StructuredList = nullptr; |
| 3272 | } else if (IsStringLiteralInitUpdate) { |
| 3273 | // We're modifying a string literal init; we have to decompose the string |
| 3274 | // so we can modify the individual characters. |
| 3275 | ASTContext &Context = SemaRef.Context; |
| 3276 | Expr *SubExpr = StructuredList->getInit(Init: 0)->IgnoreParenImpCasts(); |
| 3277 | |
| 3278 | // Compute the character type |
| 3279 | QualType CharTy = AT->getElementType(); |
| 3280 | |
| 3281 | // Compute the type of the integer literals. |
| 3282 | QualType PromotedCharTy = CharTy; |
| 3283 | if (Context.isPromotableIntegerType(T: CharTy)) |
| 3284 | PromotedCharTy = Context.getPromotedIntegerType(PromotableType: CharTy); |
| 3285 | unsigned PromotedCharTyWidth = Context.getTypeSize(T: PromotedCharTy); |
| 3286 | |
| 3287 | if (StringLiteral *SL = dyn_cast<StringLiteral>(Val: SubExpr)) { |
| 3288 | // Get the length of the string. |
| 3289 | uint64_t StrLen = SL->getLength(); |
| 3290 | if (cast<ConstantArrayType>(Val: AT)->getSize().ult(RHS: StrLen)) |
| 3291 | StrLen = cast<ConstantArrayType>(Val: AT)->getZExtSize(); |
| 3292 | StructuredList->resizeInits(Context, NumInits: StrLen); |
| 3293 | |
| 3294 | // Build a literal for each character in the string, and put them into |
| 3295 | // the init list. |
| 3296 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
| 3297 | llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); |
| 3298 | Expr *Init = new (Context) IntegerLiteral( |
| 3299 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
| 3300 | if (CharTy != PromotedCharTy) |
| 3301 | Init = ImplicitCastExpr::Create(Context, T: CharTy, Kind: CK_IntegralCast, |
| 3302 | Operand: Init, BasePath: nullptr, Cat: VK_PRValue, |
| 3303 | FPO: FPOptionsOverride()); |
| 3304 | StructuredList->updateInit(C: Context, Init: i, expr: Init); |
| 3305 | } |
| 3306 | } else { |
| 3307 | ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(Val: SubExpr); |
| 3308 | std::string Str; |
| 3309 | Context.getObjCEncodingForType(T: E->getEncodedType(), S&: Str); |
| 3310 | |
| 3311 | // Get the length of the string. |
| 3312 | uint64_t StrLen = Str.size(); |
| 3313 | if (cast<ConstantArrayType>(Val: AT)->getSize().ult(RHS: StrLen)) |
| 3314 | StrLen = cast<ConstantArrayType>(Val: AT)->getZExtSize(); |
| 3315 | StructuredList->resizeInits(Context, NumInits: StrLen); |
| 3316 | |
| 3317 | // Build a literal for each character in the string, and put them into |
| 3318 | // the init list. |
| 3319 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
| 3320 | llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); |
| 3321 | Expr *Init = new (Context) IntegerLiteral( |
| 3322 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
| 3323 | if (CharTy != PromotedCharTy) |
| 3324 | Init = ImplicitCastExpr::Create(Context, T: CharTy, Kind: CK_IntegralCast, |
| 3325 | Operand: Init, BasePath: nullptr, Cat: VK_PRValue, |
| 3326 | FPO: FPOptionsOverride()); |
| 3327 | StructuredList->updateInit(C: Context, Init: i, expr: Init); |
| 3328 | } |
| 3329 | } |
| 3330 | } |
| 3331 | |
| 3332 | // Make sure that our non-designated initializer list has space |
| 3333 | // for a subobject corresponding to this array element. |
| 3334 | if (StructuredList && |
| 3335 | DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) |
| 3336 | StructuredList->resizeInits(Context: SemaRef.Context, |
| 3337 | NumInits: DesignatedEndIndex.getZExtValue() + 1); |
| 3338 | |
| 3339 | // Repeatedly perform subobject initializations in the range |
| 3340 | // [DesignatedStartIndex, DesignatedEndIndex]. |
| 3341 | |
| 3342 | // Move to the next designator |
| 3343 | unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); |
| 3344 | unsigned OldIndex = Index; |
| 3345 | |
| 3346 | InitializedEntity ElementEntity = |
| 3347 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
| 3348 | |
| 3349 | while (DesignatedStartIndex <= DesignatedEndIndex) { |
| 3350 | // Recurse to check later designated subobjects. |
| 3351 | QualType ElementType = AT->getElementType(); |
| 3352 | Index = OldIndex; |
| 3353 | |
| 3354 | ElementEntity.setElementIndex(ElementIndex); |
| 3355 | if (CheckDesignatedInitializer( |
| 3356 | Entity: ElementEntity, IList, DIE, DesigIdx: DesigIdx + 1, CurrentObjectType&: ElementType, NextField: nullptr, |
| 3357 | NextElementIndex: nullptr, Index, StructuredList, StructuredIndex&: ElementIndex, |
| 3358 | FinishSubobjectInit: FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), |
| 3359 | TopLevelObject: false)) |
| 3360 | return true; |
| 3361 | |
| 3362 | // Move to the next index in the array that we'll be initializing. |
| 3363 | ++DesignatedStartIndex; |
| 3364 | ElementIndex = DesignatedStartIndex.getZExtValue(); |
| 3365 | } |
| 3366 | |
| 3367 | // If this the first designator, our caller will continue checking |
| 3368 | // the rest of this array subobject. |
| 3369 | if (IsFirstDesignator) { |
| 3370 | if (NextElementIndex) |
| 3371 | *NextElementIndex = DesignatedStartIndex; |
| 3372 | StructuredIndex = ElementIndex; |
| 3373 | return false; |
| 3374 | } |
| 3375 | |
| 3376 | if (!FinishSubobjectInit) |
| 3377 | return false; |
| 3378 | |
| 3379 | // Check the remaining elements within this array subobject. |
| 3380 | bool prevHadError = hadError; |
| 3381 | CheckArrayType(Entity, IList, DeclType&: CurrentObjectType, elementIndex: DesignatedStartIndex, |
| 3382 | /*SubobjectIsDesignatorContext=*/false, Index, |
| 3383 | StructuredList, StructuredIndex&: ElementIndex); |
| 3384 | return hadError && !prevHadError; |
| 3385 | } |
| 3386 | |
| 3387 | // Get the structured initializer list for a subobject of type |
| 3388 | // @p CurrentObjectType. |
| 3389 | InitListExpr * |
| 3390 | InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
| 3391 | QualType CurrentObjectType, |
| 3392 | InitListExpr *StructuredList, |
| 3393 | unsigned StructuredIndex, |
| 3394 | SourceRange InitRange, |
| 3395 | bool IsFullyOverwritten) { |
| 3396 | if (!StructuredList) |
| 3397 | return nullptr; |
| 3398 | |
| 3399 | Expr *ExistingInit = nullptr; |
| 3400 | if (StructuredIndex < StructuredList->getNumInits()) |
| 3401 | ExistingInit = StructuredList->getInit(Init: StructuredIndex); |
| 3402 | |
| 3403 | if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(Val: ExistingInit)) |
| 3404 | // There might have already been initializers for subobjects of the current |
| 3405 | // object, but a subsequent initializer list will overwrite the entirety |
| 3406 | // of the current object. (See DR 253 and C99 6.7.8p21). e.g., |
| 3407 | // |
| 3408 | // struct P { char x[6]; }; |
| 3409 | // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; |
| 3410 | // |
| 3411 | // The first designated initializer is ignored, and l.x is just "f". |
| 3412 | if (!IsFullyOverwritten) |
| 3413 | return Result; |
| 3414 | |
| 3415 | if (ExistingInit) { |
| 3416 | // We are creating an initializer list that initializes the |
| 3417 | // subobjects of the current object, but there was already an |
| 3418 | // initialization that completely initialized the current |
| 3419 | // subobject: |
| 3420 | // |
| 3421 | // struct X { int a, b; }; |
| 3422 | // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; |
| 3423 | // |
| 3424 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
| 3425 | // designated initializer overwrites the [0].b initializer |
| 3426 | // from the prior initialization. |
| 3427 | // |
| 3428 | // When the existing initializer is an expression rather than an |
| 3429 | // initializer list, we cannot decompose and update it in this way. |
| 3430 | // For example: |
| 3431 | // |
| 3432 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
| 3433 | // |
| 3434 | // This case is handled by CheckDesignatedInitializer. |
| 3435 | diagnoseInitOverride(OldInit: ExistingInit, NewInitRange: InitRange); |
| 3436 | } |
| 3437 | |
| 3438 | unsigned ExpectedNumInits = 0; |
| 3439 | if (Index < IList->getNumInits()) { |
| 3440 | if (auto *Init = dyn_cast_or_null<InitListExpr>(Val: IList->getInit(Init: Index))) |
| 3441 | ExpectedNumInits = Init->getNumInits(); |
| 3442 | else |
| 3443 | ExpectedNumInits = IList->getNumInits() - Index; |
| 3444 | } |
| 3445 | |
| 3446 | InitListExpr *Result = |
| 3447 | createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); |
| 3448 | |
| 3449 | // Link this new initializer list into the structured initializer |
| 3450 | // lists. |
| 3451 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); |
| 3452 | return Result; |
| 3453 | } |
| 3454 | |
| 3455 | InitListExpr * |
| 3456 | InitListChecker::createInitListExpr(QualType CurrentObjectType, |
| 3457 | SourceRange InitRange, |
| 3458 | unsigned ExpectedNumInits) { |
| 3459 | InitListExpr *Result = new (SemaRef.Context) InitListExpr( |
| 3460 | SemaRef.Context, InitRange.getBegin(), {}, InitRange.getEnd()); |
| 3461 | |
| 3462 | QualType ResultType = CurrentObjectType; |
| 3463 | if (!ResultType->isArrayType()) |
| 3464 | ResultType = ResultType.getNonLValueExprType(Context: SemaRef.Context); |
| 3465 | Result->setType(ResultType); |
| 3466 | |
| 3467 | // Pre-allocate storage for the structured initializer list. |
| 3468 | unsigned NumElements = 0; |
| 3469 | |
| 3470 | if (const ArrayType *AType |
| 3471 | = SemaRef.Context.getAsArrayType(T: CurrentObjectType)) { |
| 3472 | if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(Val: AType)) { |
| 3473 | NumElements = CAType->getZExtSize(); |
| 3474 | // Simple heuristic so that we don't allocate a very large |
| 3475 | // initializer with many empty entries at the end. |
| 3476 | if (NumElements > ExpectedNumInits) |
| 3477 | NumElements = 0; |
| 3478 | } |
| 3479 | } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { |
| 3480 | NumElements = VType->getNumElements(); |
| 3481 | } else if (CurrentObjectType->isRecordType()) { |
| 3482 | NumElements = numStructUnionElements(DeclType: CurrentObjectType); |
| 3483 | } else if (CurrentObjectType->isDependentType()) { |
| 3484 | NumElements = 1; |
| 3485 | } |
| 3486 | |
| 3487 | Result->reserveInits(C: SemaRef.Context, NumInits: NumElements); |
| 3488 | |
| 3489 | return Result; |
| 3490 | } |
| 3491 | |
| 3492 | /// Update the initializer at index @p StructuredIndex within the |
| 3493 | /// structured initializer list to the value @p expr. |
| 3494 | void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, |
| 3495 | unsigned &StructuredIndex, |
| 3496 | Expr *expr) { |
| 3497 | // No structured initializer list to update |
| 3498 | if (!StructuredList) |
| 3499 | return; |
| 3500 | |
| 3501 | if (Expr *PrevInit = StructuredList->updateInit(C: SemaRef.Context, |
| 3502 | Init: StructuredIndex, expr)) { |
| 3503 | // This initializer overwrites a previous initializer. |
| 3504 | // No need to diagnose when `expr` is nullptr because a more relevant |
| 3505 | // diagnostic has already been issued and this diagnostic is potentially |
| 3506 | // noise. |
| 3507 | if (expr) |
| 3508 | diagnoseInitOverride(OldInit: PrevInit, NewInitRange: expr->getSourceRange()); |
| 3509 | } |
| 3510 | |
| 3511 | ++StructuredIndex; |
| 3512 | } |
| 3513 | |
| 3514 | bool Sema::CanPerformAggregateInitializationForOverloadResolution( |
| 3515 | const InitializedEntity &Entity, InitListExpr *From) { |
| 3516 | QualType Type = Entity.getType(); |
| 3517 | InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, |
| 3518 | /*TreatUnavailableAsInvalid=*/false, |
| 3519 | /*InOverloadResolution=*/true); |
| 3520 | return !Check.HadError(); |
| 3521 | } |
| 3522 | |
| 3523 | /// Check that the given Index expression is a valid array designator |
| 3524 | /// value. This is essentially just a wrapper around |
| 3525 | /// VerifyIntegerConstantExpression that also checks for negative values |
| 3526 | /// and produces a reasonable diagnostic if there is a |
| 3527 | /// failure. Returns the index expression, possibly with an implicit cast |
| 3528 | /// added, on success. If everything went okay, Value will receive the |
| 3529 | /// value of the constant expression. |
| 3530 | static ExprResult |
| 3531 | CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { |
| 3532 | SourceLocation Loc = Index->getBeginLoc(); |
| 3533 | |
| 3534 | // Make sure this is an integer constant expression. |
| 3535 | ExprResult Result = |
| 3536 | S.VerifyIntegerConstantExpression(E: Index, Result: &Value, CanFold: AllowFoldKind::Allow); |
| 3537 | if (Result.isInvalid()) |
| 3538 | return Result; |
| 3539 | |
| 3540 | if (Value.isSigned() && Value.isNegative()) |
| 3541 | return S.Diag(Loc, diag::err_array_designator_negative) |
| 3542 | << toString(Value, 10) << Index->getSourceRange(); |
| 3543 | |
| 3544 | Value.setIsUnsigned(true); |
| 3545 | return Result; |
| 3546 | } |
| 3547 | |
| 3548 | ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, |
| 3549 | SourceLocation EqualOrColonLoc, |
| 3550 | bool GNUSyntax, |
| 3551 | ExprResult Init) { |
| 3552 | typedef DesignatedInitExpr::Designator ASTDesignator; |
| 3553 | |
| 3554 | bool Invalid = false; |
| 3555 | SmallVector<ASTDesignator, 32> Designators; |
| 3556 | SmallVector<Expr *, 32> InitExpressions; |
| 3557 | |
| 3558 | // Build designators and check array designator expressions. |
| 3559 | for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { |
| 3560 | const Designator &D = Desig.getDesignator(Idx); |
| 3561 | |
| 3562 | if (D.isFieldDesignator()) { |
| 3563 | Designators.push_back(Elt: ASTDesignator::CreateFieldDesignator( |
| 3564 | FieldName: D.getFieldDecl(), DotLoc: D.getDotLoc(), FieldLoc: D.getFieldLoc())); |
| 3565 | } else if (D.isArrayDesignator()) { |
| 3566 | Expr *Index = static_cast<Expr *>(D.getArrayIndex()); |
| 3567 | llvm::APSInt IndexValue; |
| 3568 | if (!Index->isTypeDependent() && !Index->isValueDependent()) |
| 3569 | Index = CheckArrayDesignatorExpr(S&: *this, Index, Value&: IndexValue).get(); |
| 3570 | if (!Index) |
| 3571 | Invalid = true; |
| 3572 | else { |
| 3573 | Designators.push_back(Elt: ASTDesignator::CreateArrayDesignator( |
| 3574 | Index: InitExpressions.size(), LBracketLoc: D.getLBracketLoc(), RBracketLoc: D.getRBracketLoc())); |
| 3575 | InitExpressions.push_back(Elt: Index); |
| 3576 | } |
| 3577 | } else if (D.isArrayRangeDesignator()) { |
| 3578 | Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); |
| 3579 | Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); |
| 3580 | llvm::APSInt StartValue; |
| 3581 | llvm::APSInt EndValue; |
| 3582 | bool StartDependent = StartIndex->isTypeDependent() || |
| 3583 | StartIndex->isValueDependent(); |
| 3584 | bool EndDependent = EndIndex->isTypeDependent() || |
| 3585 | EndIndex->isValueDependent(); |
| 3586 | if (!StartDependent) |
| 3587 | StartIndex = |
| 3588 | CheckArrayDesignatorExpr(S&: *this, Index: StartIndex, Value&: StartValue).get(); |
| 3589 | if (!EndDependent) |
| 3590 | EndIndex = CheckArrayDesignatorExpr(S&: *this, Index: EndIndex, Value&: EndValue).get(); |
| 3591 | |
| 3592 | if (!StartIndex || !EndIndex) |
| 3593 | Invalid = true; |
| 3594 | else { |
| 3595 | // Make sure we're comparing values with the same bit width. |
| 3596 | if (StartDependent || EndDependent) { |
| 3597 | // Nothing to compute. |
| 3598 | } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) |
| 3599 | EndValue = EndValue.extend(width: StartValue.getBitWidth()); |
| 3600 | else if (StartValue.getBitWidth() < EndValue.getBitWidth()) |
| 3601 | StartValue = StartValue.extend(width: EndValue.getBitWidth()); |
| 3602 | |
| 3603 | if (!StartDependent && !EndDependent && EndValue < StartValue) { |
| 3604 | Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) |
| 3605 | << toString(StartValue, 10) << toString(EndValue, 10) |
| 3606 | << StartIndex->getSourceRange() << EndIndex->getSourceRange(); |
| 3607 | Invalid = true; |
| 3608 | } else { |
| 3609 | Designators.push_back(Elt: ASTDesignator::CreateArrayRangeDesignator( |
| 3610 | Index: InitExpressions.size(), LBracketLoc: D.getLBracketLoc(), EllipsisLoc: D.getEllipsisLoc(), |
| 3611 | RBracketLoc: D.getRBracketLoc())); |
| 3612 | InitExpressions.push_back(Elt: StartIndex); |
| 3613 | InitExpressions.push_back(Elt: EndIndex); |
| 3614 | } |
| 3615 | } |
| 3616 | } |
| 3617 | } |
| 3618 | |
| 3619 | if (Invalid || Init.isInvalid()) |
| 3620 | return ExprError(); |
| 3621 | |
| 3622 | return DesignatedInitExpr::Create(C: Context, Designators, IndexExprs: InitExpressions, |
| 3623 | EqualOrColonLoc, GNUSyntax, |
| 3624 | Init: Init.getAs<Expr>()); |
| 3625 | } |
| 3626 | |
| 3627 | //===----------------------------------------------------------------------===// |
| 3628 | // Initialization entity |
| 3629 | //===----------------------------------------------------------------------===// |
| 3630 | |
| 3631 | InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, |
| 3632 | const InitializedEntity &Parent) |
| 3633 | : Parent(&Parent), Index(Index) |
| 3634 | { |
| 3635 | if (const ArrayType *AT = Context.getAsArrayType(T: Parent.getType())) { |
| 3636 | Kind = EK_ArrayElement; |
| 3637 | Type = AT->getElementType(); |
| 3638 | } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { |
| 3639 | Kind = EK_VectorElement; |
| 3640 | Type = VT->getElementType(); |
| 3641 | } else { |
| 3642 | const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); |
| 3643 | assert(CT && "Unexpected type" ); |
| 3644 | Kind = EK_ComplexElement; |
| 3645 | Type = CT->getElementType(); |
| 3646 | } |
| 3647 | } |
| 3648 | |
| 3649 | InitializedEntity |
| 3650 | InitializedEntity::InitializeBase(ASTContext &Context, |
| 3651 | const CXXBaseSpecifier *Base, |
| 3652 | bool IsInheritedVirtualBase, |
| 3653 | const InitializedEntity *Parent) { |
| 3654 | InitializedEntity Result; |
| 3655 | Result.Kind = EK_Base; |
| 3656 | Result.Parent = Parent; |
| 3657 | Result.Base = {Base, IsInheritedVirtualBase}; |
| 3658 | Result.Type = Base->getType(); |
| 3659 | return Result; |
| 3660 | } |
| 3661 | |
| 3662 | DeclarationName InitializedEntity::getName() const { |
| 3663 | switch (getKind()) { |
| 3664 | case EK_Parameter: |
| 3665 | case EK_Parameter_CF_Audited: { |
| 3666 | ParmVarDecl *D = Parameter.getPointer(); |
| 3667 | return (D ? D->getDeclName() : DeclarationName()); |
| 3668 | } |
| 3669 | |
| 3670 | case EK_Variable: |
| 3671 | case EK_Member: |
| 3672 | case EK_ParenAggInitMember: |
| 3673 | case EK_Binding: |
| 3674 | case EK_TemplateParameter: |
| 3675 | return Variable.VariableOrMember->getDeclName(); |
| 3676 | |
| 3677 | case EK_LambdaCapture: |
| 3678 | return DeclarationName(Capture.VarID); |
| 3679 | |
| 3680 | case EK_Result: |
| 3681 | case EK_StmtExprResult: |
| 3682 | case EK_Exception: |
| 3683 | case EK_New: |
| 3684 | case EK_Temporary: |
| 3685 | case EK_Base: |
| 3686 | case EK_Delegating: |
| 3687 | case EK_ArrayElement: |
| 3688 | case EK_VectorElement: |
| 3689 | case EK_ComplexElement: |
| 3690 | case EK_BlockElement: |
| 3691 | case EK_LambdaToBlockConversionBlockElement: |
| 3692 | case EK_CompoundLiteralInit: |
| 3693 | case EK_RelatedResult: |
| 3694 | return DeclarationName(); |
| 3695 | } |
| 3696 | |
| 3697 | llvm_unreachable("Invalid EntityKind!" ); |
| 3698 | } |
| 3699 | |
| 3700 | ValueDecl *InitializedEntity::getDecl() const { |
| 3701 | switch (getKind()) { |
| 3702 | case EK_Variable: |
| 3703 | case EK_Member: |
| 3704 | case EK_ParenAggInitMember: |
| 3705 | case EK_Binding: |
| 3706 | case EK_TemplateParameter: |
| 3707 | return Variable.VariableOrMember; |
| 3708 | |
| 3709 | case EK_Parameter: |
| 3710 | case EK_Parameter_CF_Audited: |
| 3711 | return Parameter.getPointer(); |
| 3712 | |
| 3713 | case EK_Result: |
| 3714 | case EK_StmtExprResult: |
| 3715 | case EK_Exception: |
| 3716 | case EK_New: |
| 3717 | case EK_Temporary: |
| 3718 | case EK_Base: |
| 3719 | case EK_Delegating: |
| 3720 | case EK_ArrayElement: |
| 3721 | case EK_VectorElement: |
| 3722 | case EK_ComplexElement: |
| 3723 | case EK_BlockElement: |
| 3724 | case EK_LambdaToBlockConversionBlockElement: |
| 3725 | case EK_LambdaCapture: |
| 3726 | case EK_CompoundLiteralInit: |
| 3727 | case EK_RelatedResult: |
| 3728 | return nullptr; |
| 3729 | } |
| 3730 | |
| 3731 | llvm_unreachable("Invalid EntityKind!" ); |
| 3732 | } |
| 3733 | |
| 3734 | bool InitializedEntity::allowsNRVO() const { |
| 3735 | switch (getKind()) { |
| 3736 | case EK_Result: |
| 3737 | case EK_Exception: |
| 3738 | return LocAndNRVO.NRVO; |
| 3739 | |
| 3740 | case EK_StmtExprResult: |
| 3741 | case EK_Variable: |
| 3742 | case EK_Parameter: |
| 3743 | case EK_Parameter_CF_Audited: |
| 3744 | case EK_TemplateParameter: |
| 3745 | case EK_Member: |
| 3746 | case EK_ParenAggInitMember: |
| 3747 | case EK_Binding: |
| 3748 | case EK_New: |
| 3749 | case EK_Temporary: |
| 3750 | case EK_CompoundLiteralInit: |
| 3751 | case EK_Base: |
| 3752 | case EK_Delegating: |
| 3753 | case EK_ArrayElement: |
| 3754 | case EK_VectorElement: |
| 3755 | case EK_ComplexElement: |
| 3756 | case EK_BlockElement: |
| 3757 | case EK_LambdaToBlockConversionBlockElement: |
| 3758 | case EK_LambdaCapture: |
| 3759 | case EK_RelatedResult: |
| 3760 | break; |
| 3761 | } |
| 3762 | |
| 3763 | return false; |
| 3764 | } |
| 3765 | |
| 3766 | unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { |
| 3767 | assert(getParent() != this); |
| 3768 | unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; |
| 3769 | for (unsigned I = 0; I != Depth; ++I) |
| 3770 | OS << "`-" ; |
| 3771 | |
| 3772 | switch (getKind()) { |
| 3773 | case EK_Variable: OS << "Variable" ; break; |
| 3774 | case EK_Parameter: OS << "Parameter" ; break; |
| 3775 | case EK_Parameter_CF_Audited: OS << "CF audited function Parameter" ; |
| 3776 | break; |
| 3777 | case EK_TemplateParameter: OS << "TemplateParameter" ; break; |
| 3778 | case EK_Result: OS << "Result" ; break; |
| 3779 | case EK_StmtExprResult: OS << "StmtExprResult" ; break; |
| 3780 | case EK_Exception: OS << "Exception" ; break; |
| 3781 | case EK_Member: |
| 3782 | case EK_ParenAggInitMember: |
| 3783 | OS << "Member" ; |
| 3784 | break; |
| 3785 | case EK_Binding: OS << "Binding" ; break; |
| 3786 | case EK_New: OS << "New" ; break; |
| 3787 | case EK_Temporary: OS << "Temporary" ; break; |
| 3788 | case EK_CompoundLiteralInit: OS << "CompoundLiteral" ;break; |
| 3789 | case EK_RelatedResult: OS << "RelatedResult" ; break; |
| 3790 | case EK_Base: OS << "Base" ; break; |
| 3791 | case EK_Delegating: OS << "Delegating" ; break; |
| 3792 | case EK_ArrayElement: OS << "ArrayElement " << Index; break; |
| 3793 | case EK_VectorElement: OS << "VectorElement " << Index; break; |
| 3794 | case EK_ComplexElement: OS << "ComplexElement " << Index; break; |
| 3795 | case EK_BlockElement: OS << "Block" ; break; |
| 3796 | case EK_LambdaToBlockConversionBlockElement: |
| 3797 | OS << "Block (lambda)" ; |
| 3798 | break; |
| 3799 | case EK_LambdaCapture: |
| 3800 | OS << "LambdaCapture " ; |
| 3801 | OS << DeclarationName(Capture.VarID); |
| 3802 | break; |
| 3803 | } |
| 3804 | |
| 3805 | if (auto *D = getDecl()) { |
| 3806 | OS << " " ; |
| 3807 | D->printQualifiedName(OS); |
| 3808 | } |
| 3809 | |
| 3810 | OS << " '" << getType() << "'\n" ; |
| 3811 | |
| 3812 | return Depth + 1; |
| 3813 | } |
| 3814 | |
| 3815 | LLVM_DUMP_METHOD void InitializedEntity::dump() const { |
| 3816 | dumpImpl(OS&: llvm::errs()); |
| 3817 | } |
| 3818 | |
| 3819 | //===----------------------------------------------------------------------===// |
| 3820 | // Initialization sequence |
| 3821 | //===----------------------------------------------------------------------===// |
| 3822 | |
| 3823 | void InitializationSequence::Step::Destroy() { |
| 3824 | switch (Kind) { |
| 3825 | case SK_ResolveAddressOfOverloadedFunction: |
| 3826 | case SK_CastDerivedToBasePRValue: |
| 3827 | case SK_CastDerivedToBaseXValue: |
| 3828 | case SK_CastDerivedToBaseLValue: |
| 3829 | case SK_BindReference: |
| 3830 | case SK_BindReferenceToTemporary: |
| 3831 | case SK_FinalCopy: |
| 3832 | case SK_ExtraneousCopyToTemporary: |
| 3833 | case SK_UserConversion: |
| 3834 | case SK_QualificationConversionPRValue: |
| 3835 | case SK_QualificationConversionXValue: |
| 3836 | case SK_QualificationConversionLValue: |
| 3837 | case SK_FunctionReferenceConversion: |
| 3838 | case SK_AtomicConversion: |
| 3839 | case SK_ListInitialization: |
| 3840 | case SK_UnwrapInitList: |
| 3841 | case SK_RewrapInitList: |
| 3842 | case SK_ConstructorInitialization: |
| 3843 | case SK_ConstructorInitializationFromList: |
| 3844 | case SK_ZeroInitialization: |
| 3845 | case SK_CAssignment: |
| 3846 | case SK_StringInit: |
| 3847 | case SK_ObjCObjectConversion: |
| 3848 | case SK_ArrayLoopIndex: |
| 3849 | case SK_ArrayLoopInit: |
| 3850 | case SK_ArrayInit: |
| 3851 | case SK_GNUArrayInit: |
| 3852 | case SK_ParenthesizedArrayInit: |
| 3853 | case SK_PassByIndirectCopyRestore: |
| 3854 | case SK_PassByIndirectRestore: |
| 3855 | case SK_ProduceObjCObject: |
| 3856 | case SK_StdInitializerList: |
| 3857 | case SK_StdInitializerListConstructorCall: |
| 3858 | case SK_OCLSamplerInit: |
| 3859 | case SK_OCLZeroOpaqueType: |
| 3860 | case SK_ParenthesizedListInit: |
| 3861 | break; |
| 3862 | |
| 3863 | case SK_ConversionSequence: |
| 3864 | case SK_ConversionSequenceNoNarrowing: |
| 3865 | delete ICS; |
| 3866 | } |
| 3867 | } |
| 3868 | |
| 3869 | bool InitializationSequence::isDirectReferenceBinding() const { |
| 3870 | // There can be some lvalue adjustments after the SK_BindReference step. |
| 3871 | for (const Step &S : llvm::reverse(C: Steps)) { |
| 3872 | if (S.Kind == SK_BindReference) |
| 3873 | return true; |
| 3874 | if (S.Kind == SK_BindReferenceToTemporary) |
| 3875 | return false; |
| 3876 | } |
| 3877 | return false; |
| 3878 | } |
| 3879 | |
| 3880 | bool InitializationSequence::isAmbiguous() const { |
| 3881 | if (!Failed()) |
| 3882 | return false; |
| 3883 | |
| 3884 | switch (getFailureKind()) { |
| 3885 | case FK_TooManyInitsForReference: |
| 3886 | case FK_ParenthesizedListInitForReference: |
| 3887 | case FK_ArrayNeedsInitList: |
| 3888 | case FK_ArrayNeedsInitListOrStringLiteral: |
| 3889 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
| 3890 | case FK_NarrowStringIntoWideCharArray: |
| 3891 | case FK_WideStringIntoCharArray: |
| 3892 | case FK_IncompatWideStringIntoWideChar: |
| 3893 | case FK_PlainStringIntoUTF8Char: |
| 3894 | case FK_UTF8StringIntoPlainChar: |
| 3895 | case FK_AddressOfOverloadFailed: // FIXME: Could do better |
| 3896 | case FK_NonConstLValueReferenceBindingToTemporary: |
| 3897 | case FK_NonConstLValueReferenceBindingToBitfield: |
| 3898 | case FK_NonConstLValueReferenceBindingToVectorElement: |
| 3899 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
| 3900 | case FK_NonConstLValueReferenceBindingToUnrelated: |
| 3901 | case FK_RValueReferenceBindingToLValue: |
| 3902 | case FK_ReferenceAddrspaceMismatchTemporary: |
| 3903 | case FK_ReferenceInitDropsQualifiers: |
| 3904 | case FK_ReferenceInitFailed: |
| 3905 | case FK_ConversionFailed: |
| 3906 | case FK_ConversionFromPropertyFailed: |
| 3907 | case FK_TooManyInitsForScalar: |
| 3908 | case FK_ParenthesizedListInitForScalar: |
| 3909 | case FK_ReferenceBindingToInitList: |
| 3910 | case FK_InitListBadDestinationType: |
| 3911 | case FK_DefaultInitOfConst: |
| 3912 | case FK_Incomplete: |
| 3913 | case FK_ArrayTypeMismatch: |
| 3914 | case FK_NonConstantArrayInit: |
| 3915 | case FK_ListInitializationFailed: |
| 3916 | case FK_VariableLengthArrayHasInitializer: |
| 3917 | case FK_PlaceholderType: |
| 3918 | case FK_ExplicitConstructor: |
| 3919 | case FK_AddressOfUnaddressableFunction: |
| 3920 | case FK_ParenthesizedListInitFailed: |
| 3921 | case FK_DesignatedInitForNonAggregate: |
| 3922 | return false; |
| 3923 | |
| 3924 | case FK_ReferenceInitOverloadFailed: |
| 3925 | case FK_UserConversionOverloadFailed: |
| 3926 | case FK_ConstructorOverloadFailed: |
| 3927 | case FK_ListConstructorOverloadFailed: |
| 3928 | return FailedOverloadResult == OR_Ambiguous; |
| 3929 | } |
| 3930 | |
| 3931 | llvm_unreachable("Invalid EntityKind!" ); |
| 3932 | } |
| 3933 | |
| 3934 | bool InitializationSequence::isConstructorInitialization() const { |
| 3935 | return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; |
| 3936 | } |
| 3937 | |
| 3938 | void |
| 3939 | InitializationSequence |
| 3940 | ::AddAddressOverloadResolutionStep(FunctionDecl *Function, |
| 3941 | DeclAccessPair Found, |
| 3942 | bool HadMultipleCandidates) { |
| 3943 | Step S; |
| 3944 | S.Kind = SK_ResolveAddressOfOverloadedFunction; |
| 3945 | S.Type = Function->getType(); |
| 3946 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
| 3947 | S.Function.Function = Function; |
| 3948 | S.Function.FoundDecl = Found; |
| 3949 | Steps.push_back(Elt: S); |
| 3950 | } |
| 3951 | |
| 3952 | void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, |
| 3953 | ExprValueKind VK) { |
| 3954 | Step S; |
| 3955 | switch (VK) { |
| 3956 | case VK_PRValue: |
| 3957 | S.Kind = SK_CastDerivedToBasePRValue; |
| 3958 | break; |
| 3959 | case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; |
| 3960 | case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; |
| 3961 | } |
| 3962 | S.Type = BaseType; |
| 3963 | Steps.push_back(Elt: S); |
| 3964 | } |
| 3965 | |
| 3966 | void InitializationSequence::AddReferenceBindingStep(QualType T, |
| 3967 | bool BindingTemporary) { |
| 3968 | Step S; |
| 3969 | S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; |
| 3970 | S.Type = T; |
| 3971 | Steps.push_back(Elt: S); |
| 3972 | } |
| 3973 | |
| 3974 | void InitializationSequence::AddFinalCopy(QualType T) { |
| 3975 | Step S; |
| 3976 | S.Kind = SK_FinalCopy; |
| 3977 | S.Type = T; |
| 3978 | Steps.push_back(Elt: S); |
| 3979 | } |
| 3980 | |
| 3981 | void InitializationSequence::(QualType T) { |
| 3982 | Step S; |
| 3983 | S.Kind = SK_ExtraneousCopyToTemporary; |
| 3984 | S.Type = T; |
| 3985 | Steps.push_back(Elt: S); |
| 3986 | } |
| 3987 | |
| 3988 | void |
| 3989 | InitializationSequence::AddUserConversionStep(FunctionDecl *Function, |
| 3990 | DeclAccessPair FoundDecl, |
| 3991 | QualType T, |
| 3992 | bool HadMultipleCandidates) { |
| 3993 | Step S; |
| 3994 | S.Kind = SK_UserConversion; |
| 3995 | S.Type = T; |
| 3996 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
| 3997 | S.Function.Function = Function; |
| 3998 | S.Function.FoundDecl = FoundDecl; |
| 3999 | Steps.push_back(Elt: S); |
| 4000 | } |
| 4001 | |
| 4002 | void InitializationSequence::AddQualificationConversionStep(QualType Ty, |
| 4003 | ExprValueKind VK) { |
| 4004 | Step S; |
| 4005 | S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning |
| 4006 | switch (VK) { |
| 4007 | case VK_PRValue: |
| 4008 | S.Kind = SK_QualificationConversionPRValue; |
| 4009 | break; |
| 4010 | case VK_XValue: |
| 4011 | S.Kind = SK_QualificationConversionXValue; |
| 4012 | break; |
| 4013 | case VK_LValue: |
| 4014 | S.Kind = SK_QualificationConversionLValue; |
| 4015 | break; |
| 4016 | } |
| 4017 | S.Type = Ty; |
| 4018 | Steps.push_back(Elt: S); |
| 4019 | } |
| 4020 | |
| 4021 | void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) { |
| 4022 | Step S; |
| 4023 | S.Kind = SK_FunctionReferenceConversion; |
| 4024 | S.Type = Ty; |
| 4025 | Steps.push_back(Elt: S); |
| 4026 | } |
| 4027 | |
| 4028 | void InitializationSequence::AddAtomicConversionStep(QualType Ty) { |
| 4029 | Step S; |
| 4030 | S.Kind = SK_AtomicConversion; |
| 4031 | S.Type = Ty; |
| 4032 | Steps.push_back(Elt: S); |
| 4033 | } |
| 4034 | |
| 4035 | void InitializationSequence::AddConversionSequenceStep( |
| 4036 | const ImplicitConversionSequence &ICS, QualType T, |
| 4037 | bool TopLevelOfInitList) { |
| 4038 | Step S; |
| 4039 | S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing |
| 4040 | : SK_ConversionSequence; |
| 4041 | S.Type = T; |
| 4042 | S.ICS = new ImplicitConversionSequence(ICS); |
| 4043 | Steps.push_back(Elt: S); |
| 4044 | } |
| 4045 | |
| 4046 | void InitializationSequence::AddListInitializationStep(QualType T) { |
| 4047 | Step S; |
| 4048 | S.Kind = SK_ListInitialization; |
| 4049 | S.Type = T; |
| 4050 | Steps.push_back(Elt: S); |
| 4051 | } |
| 4052 | |
| 4053 | void InitializationSequence::AddConstructorInitializationStep( |
| 4054 | DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, |
| 4055 | bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { |
| 4056 | Step S; |
| 4057 | S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall |
| 4058 | : SK_ConstructorInitializationFromList |
| 4059 | : SK_ConstructorInitialization; |
| 4060 | S.Type = T; |
| 4061 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
| 4062 | S.Function.Function = Constructor; |
| 4063 | S.Function.FoundDecl = FoundDecl; |
| 4064 | Steps.push_back(Elt: S); |
| 4065 | } |
| 4066 | |
| 4067 | void InitializationSequence::AddZeroInitializationStep(QualType T) { |
| 4068 | Step S; |
| 4069 | S.Kind = SK_ZeroInitialization; |
| 4070 | S.Type = T; |
| 4071 | Steps.push_back(Elt: S); |
| 4072 | } |
| 4073 | |
| 4074 | void InitializationSequence::AddCAssignmentStep(QualType T) { |
| 4075 | Step S; |
| 4076 | S.Kind = SK_CAssignment; |
| 4077 | S.Type = T; |
| 4078 | Steps.push_back(Elt: S); |
| 4079 | } |
| 4080 | |
| 4081 | void InitializationSequence::AddStringInitStep(QualType T) { |
| 4082 | Step S; |
| 4083 | S.Kind = SK_StringInit; |
| 4084 | S.Type = T; |
| 4085 | Steps.push_back(Elt: S); |
| 4086 | } |
| 4087 | |
| 4088 | void InitializationSequence::AddObjCObjectConversionStep(QualType T) { |
| 4089 | Step S; |
| 4090 | S.Kind = SK_ObjCObjectConversion; |
| 4091 | S.Type = T; |
| 4092 | Steps.push_back(Elt: S); |
| 4093 | } |
| 4094 | |
| 4095 | void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { |
| 4096 | Step S; |
| 4097 | S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; |
| 4098 | S.Type = T; |
| 4099 | Steps.push_back(Elt: S); |
| 4100 | } |
| 4101 | |
| 4102 | void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { |
| 4103 | Step S; |
| 4104 | S.Kind = SK_ArrayLoopIndex; |
| 4105 | S.Type = EltT; |
| 4106 | Steps.insert(I: Steps.begin(), Elt: S); |
| 4107 | |
| 4108 | S.Kind = SK_ArrayLoopInit; |
| 4109 | S.Type = T; |
| 4110 | Steps.push_back(Elt: S); |
| 4111 | } |
| 4112 | |
| 4113 | void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { |
| 4114 | Step S; |
| 4115 | S.Kind = SK_ParenthesizedArrayInit; |
| 4116 | S.Type = T; |
| 4117 | Steps.push_back(Elt: S); |
| 4118 | } |
| 4119 | |
| 4120 | void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, |
| 4121 | bool shouldCopy) { |
| 4122 | Step s; |
| 4123 | s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore |
| 4124 | : SK_PassByIndirectRestore); |
| 4125 | s.Type = type; |
| 4126 | Steps.push_back(Elt: s); |
| 4127 | } |
| 4128 | |
| 4129 | void InitializationSequence::AddProduceObjCObjectStep(QualType T) { |
| 4130 | Step S; |
| 4131 | S.Kind = SK_ProduceObjCObject; |
| 4132 | S.Type = T; |
| 4133 | Steps.push_back(Elt: S); |
| 4134 | } |
| 4135 | |
| 4136 | void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { |
| 4137 | Step S; |
| 4138 | S.Kind = SK_StdInitializerList; |
| 4139 | S.Type = T; |
| 4140 | Steps.push_back(Elt: S); |
| 4141 | } |
| 4142 | |
| 4143 | void InitializationSequence::AddOCLSamplerInitStep(QualType T) { |
| 4144 | Step S; |
| 4145 | S.Kind = SK_OCLSamplerInit; |
| 4146 | S.Type = T; |
| 4147 | Steps.push_back(Elt: S); |
| 4148 | } |
| 4149 | |
| 4150 | void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { |
| 4151 | Step S; |
| 4152 | S.Kind = SK_OCLZeroOpaqueType; |
| 4153 | S.Type = T; |
| 4154 | Steps.push_back(Elt: S); |
| 4155 | } |
| 4156 | |
| 4157 | void InitializationSequence::AddParenthesizedListInitStep(QualType T) { |
| 4158 | Step S; |
| 4159 | S.Kind = SK_ParenthesizedListInit; |
| 4160 | S.Type = T; |
| 4161 | Steps.push_back(Elt: S); |
| 4162 | } |
| 4163 | |
| 4164 | void InitializationSequence::AddUnwrapInitListInitStep( |
| 4165 | InitListExpr *Syntactic) { |
| 4166 | assert(Syntactic->getNumInits() == 1 && |
| 4167 | "Can only unwrap trivial init lists." ); |
| 4168 | Step S; |
| 4169 | S.Kind = SK_UnwrapInitList; |
| 4170 | S.Type = Syntactic->getInit(Init: 0)->getType(); |
| 4171 | Steps.insert(I: Steps.begin(), Elt: S); |
| 4172 | } |
| 4173 | |
| 4174 | void InitializationSequence::RewrapReferenceInitList(QualType T, |
| 4175 | InitListExpr *Syntactic) { |
| 4176 | assert(Syntactic->getNumInits() == 1 && |
| 4177 | "Can only rewrap trivial init lists." ); |
| 4178 | Step S; |
| 4179 | S.Kind = SK_UnwrapInitList; |
| 4180 | S.Type = Syntactic->getInit(Init: 0)->getType(); |
| 4181 | Steps.insert(I: Steps.begin(), Elt: S); |
| 4182 | |
| 4183 | S.Kind = SK_RewrapInitList; |
| 4184 | S.Type = T; |
| 4185 | S.WrappingSyntacticList = Syntactic; |
| 4186 | Steps.push_back(Elt: S); |
| 4187 | } |
| 4188 | |
| 4189 | void InitializationSequence::SetOverloadFailure(FailureKind Failure, |
| 4190 | OverloadingResult Result) { |
| 4191 | setSequenceKind(FailedSequence); |
| 4192 | this->Failure = Failure; |
| 4193 | this->FailedOverloadResult = Result; |
| 4194 | } |
| 4195 | |
| 4196 | //===----------------------------------------------------------------------===// |
| 4197 | // Attempt initialization |
| 4198 | //===----------------------------------------------------------------------===// |
| 4199 | |
| 4200 | /// Tries to add a zero initializer. Returns true if that worked. |
| 4201 | static bool |
| 4202 | maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, |
| 4203 | const InitializedEntity &Entity) { |
| 4204 | if (Entity.getKind() != InitializedEntity::EK_Variable) |
| 4205 | return false; |
| 4206 | |
| 4207 | VarDecl *VD = cast<VarDecl>(Val: Entity.getDecl()); |
| 4208 | if (VD->getInit() || VD->getEndLoc().isMacroID()) |
| 4209 | return false; |
| 4210 | |
| 4211 | QualType VariableTy = VD->getType().getCanonicalType(); |
| 4212 | SourceLocation Loc = S.getLocForEndOfToken(Loc: VD->getEndLoc()); |
| 4213 | std::string Init = S.getFixItZeroInitializerForType(T: VariableTy, Loc); |
| 4214 | if (!Init.empty()) { |
| 4215 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
| 4216 | Sequence.SetZeroInitializationFixit(Fixit: Init, L: Loc); |
| 4217 | return true; |
| 4218 | } |
| 4219 | return false; |
| 4220 | } |
| 4221 | |
| 4222 | static void MaybeProduceObjCObject(Sema &S, |
| 4223 | InitializationSequence &Sequence, |
| 4224 | const InitializedEntity &Entity) { |
| 4225 | if (!S.getLangOpts().ObjCAutoRefCount) return; |
| 4226 | |
| 4227 | /// When initializing a parameter, produce the value if it's marked |
| 4228 | /// __attribute__((ns_consumed)). |
| 4229 | if (Entity.isParameterKind()) { |
| 4230 | if (!Entity.isParameterConsumed()) |
| 4231 | return; |
| 4232 | |
| 4233 | assert(Entity.getType()->isObjCRetainableType() && |
| 4234 | "consuming an object of unretainable type?" ); |
| 4235 | Sequence.AddProduceObjCObjectStep(T: Entity.getType()); |
| 4236 | |
| 4237 | /// When initializing a return value, if the return type is a |
| 4238 | /// retainable type, then returns need to immediately retain the |
| 4239 | /// object. If an autorelease is required, it will be done at the |
| 4240 | /// last instant. |
| 4241 | } else if (Entity.getKind() == InitializedEntity::EK_Result || |
| 4242 | Entity.getKind() == InitializedEntity::EK_StmtExprResult) { |
| 4243 | if (!Entity.getType()->isObjCRetainableType()) |
| 4244 | return; |
| 4245 | |
| 4246 | Sequence.AddProduceObjCObjectStep(T: Entity.getType()); |
| 4247 | } |
| 4248 | } |
| 4249 | |
| 4250 | /// Initialize an array from another array |
| 4251 | static void TryArrayCopy(Sema &S, const InitializationKind &Kind, |
| 4252 | const InitializedEntity &Entity, Expr *Initializer, |
| 4253 | QualType DestType, InitializationSequence &Sequence, |
| 4254 | bool TreatUnavailableAsInvalid) { |
| 4255 | // If source is a prvalue, use it directly. |
| 4256 | if (Initializer->isPRValue()) { |
| 4257 | Sequence.AddArrayInitStep(T: DestType, /*IsGNUExtension*/ false); |
| 4258 | return; |
| 4259 | } |
| 4260 | |
| 4261 | // Emit element-at-a-time copy loop. |
| 4262 | InitializedEntity Element = |
| 4263 | InitializedEntity::InitializeElement(Context&: S.Context, Index: 0, Parent: Entity); |
| 4264 | QualType InitEltT = |
| 4265 | S.Context.getAsArrayType(T: Initializer->getType())->getElementType(); |
| 4266 | OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, |
| 4267 | Initializer->getValueKind(), |
| 4268 | Initializer->getObjectKind()); |
| 4269 | Expr *OVEAsExpr = &OVE; |
| 4270 | Sequence.InitializeFrom(S, Entity: Element, Kind, Args: OVEAsExpr, |
| 4271 | /*TopLevelOfInitList*/ false, |
| 4272 | TreatUnavailableAsInvalid); |
| 4273 | if (Sequence) |
| 4274 | Sequence.AddArrayInitLoopStep(T: Entity.getType(), EltT: InitEltT); |
| 4275 | } |
| 4276 | |
| 4277 | static void TryListInitialization(Sema &S, |
| 4278 | const InitializedEntity &Entity, |
| 4279 | const InitializationKind &Kind, |
| 4280 | InitListExpr *InitList, |
| 4281 | InitializationSequence &Sequence, |
| 4282 | bool TreatUnavailableAsInvalid); |
| 4283 | |
| 4284 | /// When initializing from init list via constructor, handle |
| 4285 | /// initialization of an object of type std::initializer_list<T>. |
| 4286 | /// |
| 4287 | /// \return true if we have handled initialization of an object of type |
| 4288 | /// std::initializer_list<T>, false otherwise. |
| 4289 | static bool TryInitializerListConstruction(Sema &S, |
| 4290 | InitListExpr *List, |
| 4291 | QualType DestType, |
| 4292 | InitializationSequence &Sequence, |
| 4293 | bool TreatUnavailableAsInvalid) { |
| 4294 | QualType E; |
| 4295 | if (!S.isStdInitializerList(Ty: DestType, Element: &E)) |
| 4296 | return false; |
| 4297 | |
| 4298 | if (!S.isCompleteType(Loc: List->getExprLoc(), T: E)) { |
| 4299 | Sequence.setIncompleteTypeFailure(E); |
| 4300 | return true; |
| 4301 | } |
| 4302 | |
| 4303 | // Try initializing a temporary array from the init list. |
| 4304 | QualType ArrayType = S.Context.getConstantArrayType( |
| 4305 | EltTy: E.withConst(), |
| 4306 | ArySize: llvm::APInt(S.Context.getTypeSize(T: S.Context.getSizeType()), |
| 4307 | List->getNumInitsWithEmbedExpanded()), |
| 4308 | SizeExpr: nullptr, ASM: clang::ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 4309 | InitializedEntity HiddenArray = |
| 4310 | InitializedEntity::InitializeTemporary(Type: ArrayType); |
| 4311 | InitializationKind Kind = InitializationKind::CreateDirectList( |
| 4312 | List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); |
| 4313 | TryListInitialization(S, Entity: HiddenArray, Kind, InitList: List, Sequence, |
| 4314 | TreatUnavailableAsInvalid); |
| 4315 | if (Sequence) |
| 4316 | Sequence.AddStdInitializerListConstructionStep(T: DestType); |
| 4317 | return true; |
| 4318 | } |
| 4319 | |
| 4320 | /// Determine if the constructor has the signature of a copy or move |
| 4321 | /// constructor for the type T of the class in which it was found. That is, |
| 4322 | /// determine if its first parameter is of type T or reference to (possibly |
| 4323 | /// cv-qualified) T. |
| 4324 | static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, |
| 4325 | const ConstructorInfo &Info) { |
| 4326 | if (Info.Constructor->getNumParams() == 0) |
| 4327 | return false; |
| 4328 | |
| 4329 | QualType ParmT = |
| 4330 | Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); |
| 4331 | QualType ClassT = |
| 4332 | Ctx.getRecordType(Decl: cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); |
| 4333 | |
| 4334 | return Ctx.hasSameUnqualifiedType(T1: ParmT, T2: ClassT); |
| 4335 | } |
| 4336 | |
| 4337 | static OverloadingResult ResolveConstructorOverload( |
| 4338 | Sema &S, SourceLocation DeclLoc, MultiExprArg Args, |
| 4339 | OverloadCandidateSet &CandidateSet, QualType DestType, |
| 4340 | DeclContext::lookup_result Ctors, OverloadCandidateSet::iterator &Best, |
| 4341 | bool CopyInitializing, bool AllowExplicit, bool OnlyListConstructors, |
| 4342 | bool IsListInit, bool RequireActualConstructor, |
| 4343 | bool SecondStepOfCopyInit = false) { |
| 4344 | CandidateSet.clear(CSK: OverloadCandidateSet::CSK_InitByConstructor); |
| 4345 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
| 4346 | |
| 4347 | for (NamedDecl *D : Ctors) { |
| 4348 | auto Info = getConstructorInfo(ND: D); |
| 4349 | if (!Info.Constructor || Info.Constructor->isInvalidDecl()) |
| 4350 | continue; |
| 4351 | |
| 4352 | if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) |
| 4353 | continue; |
| 4354 | |
| 4355 | // C++11 [over.best.ics]p4: |
| 4356 | // ... and the constructor or user-defined conversion function is a |
| 4357 | // candidate by |
| 4358 | // - 13.3.1.3, when the argument is the temporary in the second step |
| 4359 | // of a class copy-initialization, or |
| 4360 | // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] |
| 4361 | // - the second phase of 13.3.1.7 when the initializer list has exactly |
| 4362 | // one element that is itself an initializer list, and the target is |
| 4363 | // the first parameter of a constructor of class X, and the conversion |
| 4364 | // is to X or reference to (possibly cv-qualified X), |
| 4365 | // user-defined conversion sequences are not considered. |
| 4366 | bool SuppressUserConversions = |
| 4367 | SecondStepOfCopyInit || |
| 4368 | (IsListInit && Args.size() == 1 && isa<InitListExpr>(Val: Args[0]) && |
| 4369 | hasCopyOrMoveCtorParam(Ctx&: S.Context, Info)); |
| 4370 | |
| 4371 | if (Info.ConstructorTmpl) |
| 4372 | S.AddTemplateOverloadCandidate( |
| 4373 | FunctionTemplate: Info.ConstructorTmpl, FoundDecl: Info.FoundDecl, |
| 4374 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, Args, CandidateSet, SuppressUserConversions, |
| 4375 | /*PartialOverloading=*/false, AllowExplicit); |
| 4376 | else { |
| 4377 | // C++ [over.match.copy]p1: |
| 4378 | // - When initializing a temporary to be bound to the first parameter |
| 4379 | // of a constructor [for type T] that takes a reference to possibly |
| 4380 | // cv-qualified T as its first argument, called with a single |
| 4381 | // argument in the context of direct-initialization, explicit |
| 4382 | // conversion functions are also considered. |
| 4383 | // FIXME: What if a constructor template instantiates to such a signature? |
| 4384 | bool AllowExplicitConv = AllowExplicit && !CopyInitializing && |
| 4385 | Args.size() == 1 && |
| 4386 | hasCopyOrMoveCtorParam(Ctx&: S.Context, Info); |
| 4387 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, |
| 4388 | CandidateSet, SuppressUserConversions, |
| 4389 | /*PartialOverloading=*/false, AllowExplicit, |
| 4390 | AllowExplicitConv); |
| 4391 | } |
| 4392 | } |
| 4393 | |
| 4394 | // FIXME: Work around a bug in C++17 guaranteed copy elision. |
| 4395 | // |
| 4396 | // When initializing an object of class type T by constructor |
| 4397 | // ([over.match.ctor]) or by list-initialization ([over.match.list]) |
| 4398 | // from a single expression of class type U, conversion functions of |
| 4399 | // U that convert to the non-reference type cv T are candidates. |
| 4400 | // Explicit conversion functions are only candidates during |
| 4401 | // direct-initialization. |
| 4402 | // |
| 4403 | // Note: SecondStepOfCopyInit is only ever true in this case when |
| 4404 | // evaluating whether to produce a C++98 compatibility warning. |
| 4405 | if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && |
| 4406 | !RequireActualConstructor && !SecondStepOfCopyInit) { |
| 4407 | Expr *Initializer = Args[0]; |
| 4408 | auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); |
| 4409 | if (SourceRD && S.isCompleteType(Loc: DeclLoc, T: Initializer->getType())) { |
| 4410 | const auto &Conversions = SourceRD->getVisibleConversionFunctions(); |
| 4411 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| 4412 | NamedDecl *D = *I; |
| 4413 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| 4414 | D = D->getUnderlyingDecl(); |
| 4415 | |
| 4416 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D); |
| 4417 | CXXConversionDecl *Conv; |
| 4418 | if (ConvTemplate) |
| 4419 | Conv = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
| 4420 | else |
| 4421 | Conv = cast<CXXConversionDecl>(Val: D); |
| 4422 | |
| 4423 | if (ConvTemplate) |
| 4424 | S.AddTemplateConversionCandidate( |
| 4425 | FunctionTemplate: ConvTemplate, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, |
| 4426 | CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, AllowExplicit, |
| 4427 | /*AllowResultConversion*/ false); |
| 4428 | else |
| 4429 | S.AddConversionCandidate(Conversion: Conv, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, |
| 4430 | ToType: DestType, CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, |
| 4431 | AllowExplicit, |
| 4432 | /*AllowResultConversion*/ false); |
| 4433 | } |
| 4434 | } |
| 4435 | } |
| 4436 | |
| 4437 | // Perform overload resolution and return the result. |
| 4438 | return CandidateSet.BestViableFunction(S, Loc: DeclLoc, Best); |
| 4439 | } |
| 4440 | |
| 4441 | /// Attempt initialization by constructor (C++ [dcl.init]), which |
| 4442 | /// enumerates the constructors of the initialized entity and performs overload |
| 4443 | /// resolution to select the best. |
| 4444 | /// \param DestType The destination class type. |
| 4445 | /// \param DestArrayType The destination type, which is either DestType or |
| 4446 | /// a (possibly multidimensional) array of DestType. |
| 4447 | /// \param IsListInit Is this list-initialization? |
| 4448 | /// \param IsInitListCopy Is this non-list-initialization resulting from a |
| 4449 | /// list-initialization from {x} where x is the same |
| 4450 | /// aggregate type as the entity? |
| 4451 | static void TryConstructorInitialization(Sema &S, |
| 4452 | const InitializedEntity &Entity, |
| 4453 | const InitializationKind &Kind, |
| 4454 | MultiExprArg Args, QualType DestType, |
| 4455 | QualType DestArrayType, |
| 4456 | InitializationSequence &Sequence, |
| 4457 | bool IsListInit = false, |
| 4458 | bool IsInitListCopy = false) { |
| 4459 | assert(((!IsListInit && !IsInitListCopy) || |
| 4460 | (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && |
| 4461 | "IsListInit/IsInitListCopy must come with a single initializer list " |
| 4462 | "argument." ); |
| 4463 | InitListExpr *ILE = |
| 4464 | (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Val: Args[0]) : nullptr; |
| 4465 | MultiExprArg UnwrappedArgs = |
| 4466 | ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; |
| 4467 | |
| 4468 | // The type we're constructing needs to be complete. |
| 4469 | if (!S.isCompleteType(Loc: Kind.getLocation(), T: DestType)) { |
| 4470 | Sequence.setIncompleteTypeFailure(DestType); |
| 4471 | return; |
| 4472 | } |
| 4473 | |
| 4474 | bool RequireActualConstructor = |
| 4475 | !(Entity.getKind() != InitializedEntity::EK_Base && |
| 4476 | Entity.getKind() != InitializedEntity::EK_Delegating && |
| 4477 | Entity.getKind() != |
| 4478 | InitializedEntity::EK_LambdaToBlockConversionBlockElement); |
| 4479 | |
| 4480 | bool CopyElisionPossible = false; |
| 4481 | auto ElideConstructor = [&] { |
| 4482 | // Convert qualifications if necessary. |
| 4483 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
| 4484 | if (ILE) |
| 4485 | Sequence.RewrapReferenceInitList(T: DestType, Syntactic: ILE); |
| 4486 | }; |
| 4487 | |
| 4488 | // C++17 [dcl.init]p17: |
| 4489 | // - If the initializer expression is a prvalue and the cv-unqualified |
| 4490 | // version of the source type is the same class as the class of the |
| 4491 | // destination, the initializer expression is used to initialize the |
| 4492 | // destination object. |
| 4493 | // Per DR (no number yet), this does not apply when initializing a base |
| 4494 | // class or delegating to another constructor from a mem-initializer. |
| 4495 | // ObjC++: Lambda captured by the block in the lambda to block conversion |
| 4496 | // should avoid copy elision. |
| 4497 | if (S.getLangOpts().CPlusPlus17 && !RequireActualConstructor && |
| 4498 | UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() && |
| 4499 | S.Context.hasSameUnqualifiedType(T1: UnwrappedArgs[0]->getType(), T2: DestType)) { |
| 4500 | if (ILE && !DestType->isAggregateType()) { |
| 4501 | // CWG2311: T{ prvalue_of_type_T } is not eligible for copy elision |
| 4502 | // Make this an elision if this won't call an initializer-list |
| 4503 | // constructor. (Always on an aggregate type or check constructors first.) |
| 4504 | |
| 4505 | // This effectively makes our resolution as follows. The parts in angle |
| 4506 | // brackets are additions. |
| 4507 | // C++17 [over.match.list]p(1.2): |
| 4508 | // - If no viable initializer-list constructor is found <and the |
| 4509 | // initializer list does not consist of exactly a single element with |
| 4510 | // the same cv-unqualified class type as T>, [...] |
| 4511 | // C++17 [dcl.init.list]p(3.6): |
| 4512 | // - Otherwise, if T is a class type, constructors are considered. The |
| 4513 | // applicable constructors are enumerated and the best one is chosen |
| 4514 | // through overload resolution. <If no constructor is found and the |
| 4515 | // initializer list consists of exactly a single element with the same |
| 4516 | // cv-unqualified class type as T, the object is initialized from that |
| 4517 | // element (by copy-initialization for copy-list-initialization, or by |
| 4518 | // direct-initialization for direct-list-initialization). Otherwise, > |
| 4519 | // if a narrowing conversion [...] |
| 4520 | assert(!IsInitListCopy && |
| 4521 | "IsInitListCopy only possible with aggregate types" ); |
| 4522 | CopyElisionPossible = true; |
| 4523 | } else { |
| 4524 | ElideConstructor(); |
| 4525 | return; |
| 4526 | } |
| 4527 | } |
| 4528 | |
| 4529 | const RecordType *DestRecordType = DestType->getAs<RecordType>(); |
| 4530 | assert(DestRecordType && "Constructor initialization requires record type" ); |
| 4531 | CXXRecordDecl *DestRecordDecl |
| 4532 | = cast<CXXRecordDecl>(Val: DestRecordType->getDecl()); |
| 4533 | |
| 4534 | // Build the candidate set directly in the initialization sequence |
| 4535 | // structure, so that it will persist if we fail. |
| 4536 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
| 4537 | |
| 4538 | // Determine whether we are allowed to call explicit constructors or |
| 4539 | // explicit conversion operators. |
| 4540 | bool AllowExplicit = Kind.AllowExplicit() || IsListInit; |
| 4541 | bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; |
| 4542 | |
| 4543 | // - Otherwise, if T is a class type, constructors are considered. The |
| 4544 | // applicable constructors are enumerated, and the best one is chosen |
| 4545 | // through overload resolution. |
| 4546 | DeclContext::lookup_result Ctors = S.LookupConstructors(Class: DestRecordDecl); |
| 4547 | |
| 4548 | OverloadingResult Result = OR_No_Viable_Function; |
| 4549 | OverloadCandidateSet::iterator Best; |
| 4550 | bool AsInitializerList = false; |
| 4551 | |
| 4552 | // C++11 [over.match.list]p1, per DR1467: |
| 4553 | // When objects of non-aggregate type T are list-initialized, such that |
| 4554 | // 8.5.4 [dcl.init.list] specifies that overload resolution is performed |
| 4555 | // according to the rules in this section, overload resolution selects |
| 4556 | // the constructor in two phases: |
| 4557 | // |
| 4558 | // - Initially, the candidate functions are the initializer-list |
| 4559 | // constructors of the class T and the argument list consists of the |
| 4560 | // initializer list as a single argument. |
| 4561 | if (IsListInit) { |
| 4562 | AsInitializerList = true; |
| 4563 | |
| 4564 | // If the initializer list has no elements and T has a default constructor, |
| 4565 | // the first phase is omitted. |
| 4566 | if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(Class: DestRecordDecl))) |
| 4567 | Result = ResolveConstructorOverload( |
| 4568 | S, DeclLoc: Kind.getLocation(), Args, CandidateSet, DestType, Ctors, Best, |
| 4569 | CopyInitializing: CopyInitialization, AllowExplicit, |
| 4570 | /*OnlyListConstructors=*/true, IsListInit, RequireActualConstructor); |
| 4571 | |
| 4572 | if (CopyElisionPossible && Result == OR_No_Viable_Function) { |
| 4573 | // No initializer list candidate |
| 4574 | ElideConstructor(); |
| 4575 | return; |
| 4576 | } |
| 4577 | } |
| 4578 | |
| 4579 | // C++11 [over.match.list]p1: |
| 4580 | // - If no viable initializer-list constructor is found, overload resolution |
| 4581 | // is performed again, where the candidate functions are all the |
| 4582 | // constructors of the class T and the argument list consists of the |
| 4583 | // elements of the initializer list. |
| 4584 | if (Result == OR_No_Viable_Function) { |
| 4585 | AsInitializerList = false; |
| 4586 | Result = ResolveConstructorOverload( |
| 4587 | S, DeclLoc: Kind.getLocation(), Args: UnwrappedArgs, CandidateSet, DestType, Ctors, |
| 4588 | Best, CopyInitializing: CopyInitialization, AllowExplicit, |
| 4589 | /*OnlyListConstructors=*/false, IsListInit, RequireActualConstructor); |
| 4590 | } |
| 4591 | if (Result) { |
| 4592 | Sequence.SetOverloadFailure( |
| 4593 | Failure: IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed |
| 4594 | : InitializationSequence::FK_ConstructorOverloadFailed, |
| 4595 | Result); |
| 4596 | |
| 4597 | if (Result != OR_Deleted) |
| 4598 | return; |
| 4599 | } |
| 4600 | |
| 4601 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 4602 | |
| 4603 | // In C++17, ResolveConstructorOverload can select a conversion function |
| 4604 | // instead of a constructor. |
| 4605 | if (auto *CD = dyn_cast<CXXConversionDecl>(Val: Best->Function)) { |
| 4606 | // Add the user-defined conversion step that calls the conversion function. |
| 4607 | QualType ConvType = CD->getConversionType(); |
| 4608 | assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && |
| 4609 | "should not have selected this conversion function" ); |
| 4610 | Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, |
| 4611 | HadMultipleCandidates); |
| 4612 | if (!S.Context.hasSameType(T1: ConvType, T2: DestType)) |
| 4613 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
| 4614 | if (IsListInit) |
| 4615 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: ILE); |
| 4616 | return; |
| 4617 | } |
| 4618 | |
| 4619 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Val: Best->Function); |
| 4620 | if (Result != OR_Deleted) { |
| 4621 | if (!IsListInit && |
| 4622 | (Kind.getKind() == InitializationKind::IK_Default || |
| 4623 | Kind.getKind() == InitializationKind::IK_Direct) && |
| 4624 | !(CtorDecl->isCopyOrMoveConstructor() && CtorDecl->isImplicit()) && |
| 4625 | DestRecordDecl->isAggregate() && |
| 4626 | DestRecordDecl->hasUninitializedExplicitInitFields()) { |
| 4627 | S.Diag(Kind.getLocation(), diag::warn_field_requires_explicit_init) |
| 4628 | << /* Var-in-Record */ 1 << DestRecordDecl; |
| 4629 | emitUninitializedExplicitInitFields(S, DestRecordDecl); |
| 4630 | } |
| 4631 | |
| 4632 | // C++11 [dcl.init]p6: |
| 4633 | // If a program calls for the default initialization of an object |
| 4634 | // of a const-qualified type T, T shall be a class type with a |
| 4635 | // user-provided default constructor. |
| 4636 | // C++ core issue 253 proposal: |
| 4637 | // If the implicit default constructor initializes all subobjects, no |
| 4638 | // initializer should be required. |
| 4639 | // The 253 proposal is for example needed to process libstdc++ headers |
| 4640 | // in 5.x. |
| 4641 | if (Kind.getKind() == InitializationKind::IK_Default && |
| 4642 | Entity.getType().isConstQualified()) { |
| 4643 | if (!CtorDecl->getParent()->allowConstDefaultInit()) { |
| 4644 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
| 4645 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
| 4646 | return; |
| 4647 | } |
| 4648 | } |
| 4649 | |
| 4650 | // C++11 [over.match.list]p1: |
| 4651 | // In copy-list-initialization, if an explicit constructor is chosen, the |
| 4652 | // initializer is ill-formed. |
| 4653 | if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { |
| 4654 | Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); |
| 4655 | return; |
| 4656 | } |
| 4657 | } |
| 4658 | |
| 4659 | // [class.copy.elision]p3: |
| 4660 | // In some copy-initialization contexts, a two-stage overload resolution |
| 4661 | // is performed. |
| 4662 | // If the first overload resolution selects a deleted function, we also |
| 4663 | // need the initialization sequence to decide whether to perform the second |
| 4664 | // overload resolution. |
| 4665 | // For deleted functions in other contexts, there is no need to get the |
| 4666 | // initialization sequence. |
| 4667 | if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy) |
| 4668 | return; |
| 4669 | |
| 4670 | // Add the constructor initialization step. Any cv-qualification conversion is |
| 4671 | // subsumed by the initialization. |
| 4672 | Sequence.AddConstructorInitializationStep( |
| 4673 | FoundDecl: Best->FoundDecl, Constructor: CtorDecl, T: DestArrayType, HadMultipleCandidates, |
| 4674 | FromInitList: IsListInit | IsInitListCopy, AsInitList: AsInitializerList); |
| 4675 | } |
| 4676 | |
| 4677 | static void TryOrBuildParenListInitialization( |
| 4678 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
| 4679 | ArrayRef<Expr *> Args, InitializationSequence &Sequence, bool VerifyOnly, |
| 4680 | ExprResult *Result = nullptr); |
| 4681 | |
| 4682 | /// Attempt to initialize an object of a class type either by |
| 4683 | /// direct-initialization, or by copy-initialization from an |
| 4684 | /// expression of the same or derived class type. This corresponds |
| 4685 | /// to the first two sub-bullets of C++2c [dcl.init.general] p16.6. |
| 4686 | /// |
| 4687 | /// \param IsAggrListInit Is this non-list-initialization being done as |
| 4688 | /// part of a list-initialization of an aggregate |
| 4689 | /// from a single expression of the same or |
| 4690 | /// derived class type (C++2c [dcl.init.list] p3.2)? |
| 4691 | static void TryConstructorOrParenListInitialization( |
| 4692 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
| 4693 | MultiExprArg Args, QualType DestType, InitializationSequence &Sequence, |
| 4694 | bool IsAggrListInit) { |
| 4695 | // C++2c [dcl.init.general] p16.6: |
| 4696 | // * Otherwise, if the destination type is a class type: |
| 4697 | // * If the initializer expression is a prvalue and |
| 4698 | // the cv-unqualified version of the source type is the same |
| 4699 | // as the destination type, the initializer expression is used |
| 4700 | // to initialize the destination object. |
| 4701 | // * Otherwise, if the initialization is direct-initialization, |
| 4702 | // or if it is copy-initialization where the cv-unqualified |
| 4703 | // version of the source type is the same as or is derived from |
| 4704 | // the class of the destination type, constructors are considered. |
| 4705 | // The applicable constructors are enumerated, and the best one |
| 4706 | // is chosen through overload resolution. Then: |
| 4707 | // * If overload resolution is successful, the selected |
| 4708 | // constructor is called to initialize the object, with |
| 4709 | // the initializer expression or expression-list as its |
| 4710 | // argument(s). |
| 4711 | TryConstructorInitialization(S, Entity, Kind, Args, DestType, DestArrayType: DestType, |
| 4712 | Sequence, /*IsListInit=*/false, IsInitListCopy: IsAggrListInit); |
| 4713 | |
| 4714 | // * Otherwise, if no constructor is viable, the destination type |
| 4715 | // is an aggregate class, and the initializer is a parenthesized |
| 4716 | // expression-list, the object is initialized as follows. [...] |
| 4717 | // Parenthesized initialization of aggregates is a C++20 feature. |
| 4718 | if (S.getLangOpts().CPlusPlus20 && |
| 4719 | Kind.getKind() == InitializationKind::IK_Direct && Sequence.Failed() && |
| 4720 | Sequence.getFailureKind() == |
| 4721 | InitializationSequence::FK_ConstructorOverloadFailed && |
| 4722 | Sequence.getFailedOverloadResult() == OR_No_Viable_Function && |
| 4723 | (IsAggrListInit || DestType->isAggregateType())) |
| 4724 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence, |
| 4725 | /*VerifyOnly=*/true); |
| 4726 | |
| 4727 | // * Otherwise, the initialization is ill-formed. |
| 4728 | } |
| 4729 | |
| 4730 | static bool |
| 4731 | ResolveOverloadedFunctionForReferenceBinding(Sema &S, |
| 4732 | Expr *Initializer, |
| 4733 | QualType &SourceType, |
| 4734 | QualType &UnqualifiedSourceType, |
| 4735 | QualType UnqualifiedTargetType, |
| 4736 | InitializationSequence &Sequence) { |
| 4737 | if (S.Context.getCanonicalType(T: UnqualifiedSourceType) == |
| 4738 | S.Context.OverloadTy) { |
| 4739 | DeclAccessPair Found; |
| 4740 | bool HadMultipleCandidates = false; |
| 4741 | if (FunctionDecl *Fn |
| 4742 | = S.ResolveAddressOfOverloadedFunction(AddressOfExpr: Initializer, |
| 4743 | TargetType: UnqualifiedTargetType, |
| 4744 | Complain: false, Found, |
| 4745 | pHadMultipleCandidates: &HadMultipleCandidates)) { |
| 4746 | Sequence.AddAddressOverloadResolutionStep(Function: Fn, Found, |
| 4747 | HadMultipleCandidates); |
| 4748 | SourceType = Fn->getType(); |
| 4749 | UnqualifiedSourceType = SourceType.getUnqualifiedType(); |
| 4750 | } else if (!UnqualifiedTargetType->isRecordType()) { |
| 4751 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| 4752 | return true; |
| 4753 | } |
| 4754 | } |
| 4755 | return false; |
| 4756 | } |
| 4757 | |
| 4758 | static void TryReferenceInitializationCore(Sema &S, |
| 4759 | const InitializedEntity &Entity, |
| 4760 | const InitializationKind &Kind, |
| 4761 | Expr *Initializer, |
| 4762 | QualType cv1T1, QualType T1, |
| 4763 | Qualifiers T1Quals, |
| 4764 | QualType cv2T2, QualType T2, |
| 4765 | Qualifiers T2Quals, |
| 4766 | InitializationSequence &Sequence, |
| 4767 | bool TopLevelOfInitList); |
| 4768 | |
| 4769 | static void TryValueInitialization(Sema &S, |
| 4770 | const InitializedEntity &Entity, |
| 4771 | const InitializationKind &Kind, |
| 4772 | InitializationSequence &Sequence, |
| 4773 | InitListExpr *InitList = nullptr); |
| 4774 | |
| 4775 | /// Attempt list initialization of a reference. |
| 4776 | static void TryReferenceListInitialization(Sema &S, |
| 4777 | const InitializedEntity &Entity, |
| 4778 | const InitializationKind &Kind, |
| 4779 | InitListExpr *InitList, |
| 4780 | InitializationSequence &Sequence, |
| 4781 | bool TreatUnavailableAsInvalid) { |
| 4782 | // First, catch C++03 where this isn't possible. |
| 4783 | if (!S.getLangOpts().CPlusPlus11) { |
| 4784 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
| 4785 | return; |
| 4786 | } |
| 4787 | // Can't reference initialize a compound literal. |
| 4788 | if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { |
| 4789 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
| 4790 | return; |
| 4791 | } |
| 4792 | |
| 4793 | QualType DestType = Entity.getType(); |
| 4794 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
| 4795 | Qualifiers T1Quals; |
| 4796 | QualType T1 = S.Context.getUnqualifiedArrayType(T: cv1T1, Quals&: T1Quals); |
| 4797 | |
| 4798 | // Reference initialization via an initializer list works thus: |
| 4799 | // If the initializer list consists of a single element that is |
| 4800 | // reference-related to the referenced type, bind directly to that element |
| 4801 | // (possibly creating temporaries). |
| 4802 | // Otherwise, initialize a temporary with the initializer list and |
| 4803 | // bind to that. |
| 4804 | if (InitList->getNumInits() == 1) { |
| 4805 | Expr *Initializer = InitList->getInit(Init: 0); |
| 4806 | QualType cv2T2 = S.getCompletedType(E: Initializer); |
| 4807 | Qualifiers T2Quals; |
| 4808 | QualType T2 = S.Context.getUnqualifiedArrayType(T: cv2T2, Quals&: T2Quals); |
| 4809 | |
| 4810 | // If this fails, creating a temporary wouldn't work either. |
| 4811 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, SourceType&: cv2T2, UnqualifiedSourceType&: T2, |
| 4812 | UnqualifiedTargetType: T1, Sequence)) |
| 4813 | return; |
| 4814 | |
| 4815 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
| 4816 | Sema::ReferenceCompareResult RefRelationship |
| 4817 | = S.CompareReferenceRelationship(Loc: DeclLoc, T1: cv1T1, T2: cv2T2); |
| 4818 | if (RefRelationship >= Sema::Ref_Related) { |
| 4819 | // Try to bind the reference here. |
| 4820 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
| 4821 | T1Quals, cv2T2, T2, T2Quals, Sequence, |
| 4822 | /*TopLevelOfInitList=*/true); |
| 4823 | if (Sequence) |
| 4824 | Sequence.RewrapReferenceInitList(T: cv1T1, Syntactic: InitList); |
| 4825 | return; |
| 4826 | } |
| 4827 | |
| 4828 | // Update the initializer if we've resolved an overloaded function. |
| 4829 | if (Sequence.step_begin() != Sequence.step_end()) |
| 4830 | Sequence.RewrapReferenceInitList(T: cv1T1, Syntactic: InitList); |
| 4831 | } |
| 4832 | // Perform address space compatibility check. |
| 4833 | QualType cv1T1IgnoreAS = cv1T1; |
| 4834 | if (T1Quals.hasAddressSpace()) { |
| 4835 | Qualifiers T2Quals; |
| 4836 | (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals); |
| 4837 | if (!T1Quals.isAddressSpaceSupersetOf(other: T2Quals, Ctx: S.getASTContext())) { |
| 4838 | Sequence.SetFailed( |
| 4839 | InitializationSequence::FK_ReferenceInitDropsQualifiers); |
| 4840 | return; |
| 4841 | } |
| 4842 | // Ignore address space of reference type at this point and perform address |
| 4843 | // space conversion after the reference binding step. |
| 4844 | cv1T1IgnoreAS = |
| 4845 | S.Context.getQualifiedType(T: T1, Qs: T1Quals.withoutAddressSpace()); |
| 4846 | } |
| 4847 | // Not reference-related. Create a temporary and bind to that. |
| 4848 | InitializedEntity TempEntity = |
| 4849 | InitializedEntity::InitializeTemporary(Type: cv1T1IgnoreAS); |
| 4850 | |
| 4851 | TryListInitialization(S, Entity: TempEntity, Kind, InitList, Sequence, |
| 4852 | TreatUnavailableAsInvalid); |
| 4853 | if (Sequence) { |
| 4854 | if (DestType->isRValueReferenceType() || |
| 4855 | (T1Quals.hasConst() && !T1Quals.hasVolatile())) { |
| 4856 | if (S.getLangOpts().CPlusPlus20 && |
| 4857 | isa<IncompleteArrayType>(Val: T1->getUnqualifiedDesugaredType()) && |
| 4858 | DestType->isRValueReferenceType()) { |
| 4859 | // C++20 [dcl.init.list]p3.10: |
| 4860 | // List-initialization of an object or reference of type T is defined as |
| 4861 | // follows: |
| 4862 | // ..., unless T is “reference to array of unknown bound of U”, in which |
| 4863 | // case the type of the prvalue is the type of x in the declaration U |
| 4864 | // x[] H, where H is the initializer list. |
| 4865 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK: clang::VK_PRValue); |
| 4866 | } |
| 4867 | Sequence.AddReferenceBindingStep(T: cv1T1IgnoreAS, |
| 4868 | /*BindingTemporary=*/true); |
| 4869 | if (T1Quals.hasAddressSpace()) |
| 4870 | Sequence.AddQualificationConversionStep( |
| 4871 | Ty: cv1T1, VK: DestType->isRValueReferenceType() ? VK_XValue : VK_LValue); |
| 4872 | } else |
| 4873 | Sequence.SetFailed( |
| 4874 | InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); |
| 4875 | } |
| 4876 | } |
| 4877 | |
| 4878 | /// Attempt list initialization (C++0x [dcl.init.list]) |
| 4879 | static void TryListInitialization(Sema &S, |
| 4880 | const InitializedEntity &Entity, |
| 4881 | const InitializationKind &Kind, |
| 4882 | InitListExpr *InitList, |
| 4883 | InitializationSequence &Sequence, |
| 4884 | bool TreatUnavailableAsInvalid) { |
| 4885 | QualType DestType = Entity.getType(); |
| 4886 | |
| 4887 | if (S.getLangOpts().HLSL && !S.HLSL().transformInitList(Entity, Init: InitList)) |
| 4888 | return; |
| 4889 | |
| 4890 | // C++ doesn't allow scalar initialization with more than one argument. |
| 4891 | // But C99 complex numbers are scalars and it makes sense there. |
| 4892 | if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && |
| 4893 | !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { |
| 4894 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); |
| 4895 | return; |
| 4896 | } |
| 4897 | if (DestType->isReferenceType()) { |
| 4898 | TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, |
| 4899 | TreatUnavailableAsInvalid); |
| 4900 | return; |
| 4901 | } |
| 4902 | |
| 4903 | if (DestType->isRecordType() && |
| 4904 | !S.isCompleteType(Loc: InitList->getBeginLoc(), T: DestType)) { |
| 4905 | Sequence.setIncompleteTypeFailure(DestType); |
| 4906 | return; |
| 4907 | } |
| 4908 | |
| 4909 | // C++20 [dcl.init.list]p3: |
| 4910 | // - If the braced-init-list contains a designated-initializer-list, T shall |
| 4911 | // be an aggregate class. [...] Aggregate initialization is performed. |
| 4912 | // |
| 4913 | // We allow arrays here too in order to support array designators. |
| 4914 | // |
| 4915 | // FIXME: This check should precede the handling of reference initialization. |
| 4916 | // We follow other compilers in allowing things like 'Aggr &&a = {.x = 1};' |
| 4917 | // as a tentative DR resolution. |
| 4918 | bool IsDesignatedInit = InitList->hasDesignatedInit(); |
| 4919 | if (!DestType->isAggregateType() && IsDesignatedInit) { |
| 4920 | Sequence.SetFailed( |
| 4921 | InitializationSequence::FK_DesignatedInitForNonAggregate); |
| 4922 | return; |
| 4923 | } |
| 4924 | |
| 4925 | // C++11 [dcl.init.list]p3, per DR1467 and DR2137: |
| 4926 | // - If T is an aggregate class and the initializer list has a single element |
| 4927 | // of type cv U, where U is T or a class derived from T, the object is |
| 4928 | // initialized from that element (by copy-initialization for |
| 4929 | // copy-list-initialization, or by direct-initialization for |
| 4930 | // direct-list-initialization). |
| 4931 | // - Otherwise, if T is a character array and the initializer list has a |
| 4932 | // single element that is an appropriately-typed string literal |
| 4933 | // (8.5.2 [dcl.init.string]), initialization is performed as described |
| 4934 | // in that section. |
| 4935 | // - Otherwise, if T is an aggregate, [...] (continue below). |
| 4936 | if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1 && |
| 4937 | !IsDesignatedInit) { |
| 4938 | if (DestType->isRecordType() && DestType->isAggregateType()) { |
| 4939 | QualType InitType = InitList->getInit(Init: 0)->getType(); |
| 4940 | if (S.Context.hasSameUnqualifiedType(T1: InitType, T2: DestType) || |
| 4941 | S.IsDerivedFrom(Loc: InitList->getBeginLoc(), Derived: InitType, Base: DestType)) { |
| 4942 | InitializationKind SubKind = |
| 4943 | Kind.getKind() == InitializationKind::IK_DirectList |
| 4944 | ? InitializationKind::CreateDirect(InitLoc: Kind.getLocation(), |
| 4945 | LParenLoc: InitList->getLBraceLoc(), |
| 4946 | RParenLoc: InitList->getRBraceLoc()) |
| 4947 | : Kind; |
| 4948 | Expr *InitListAsExpr = InitList; |
| 4949 | TryConstructorOrParenListInitialization( |
| 4950 | S, Entity, Kind: SubKind, Args: InitListAsExpr, DestType, Sequence, |
| 4951 | /*IsAggrListInit=*/true); |
| 4952 | return; |
| 4953 | } |
| 4954 | } |
| 4955 | if (const ArrayType *DestAT = S.Context.getAsArrayType(T: DestType)) { |
| 4956 | Expr *SubInit[1] = {InitList->getInit(Init: 0)}; |
| 4957 | |
| 4958 | // C++17 [dcl.struct.bind]p1: |
| 4959 | // ... If the assignment-expression in the initializer has array type A |
| 4960 | // and no ref-qualifier is present, e has type cv A and each element is |
| 4961 | // copy-initialized or direct-initialized from the corresponding element |
| 4962 | // of the assignment-expression as specified by the form of the |
| 4963 | // initializer. ... |
| 4964 | // |
| 4965 | // This is a special case not following list-initialization. |
| 4966 | if (isa<ConstantArrayType>(Val: DestAT) && |
| 4967 | Entity.getKind() == InitializedEntity::EK_Variable && |
| 4968 | isa<DecompositionDecl>(Val: Entity.getDecl())) { |
| 4969 | assert( |
| 4970 | S.Context.hasSameUnqualifiedType(SubInit[0]->getType(), DestType) && |
| 4971 | "Deduced to other type?" ); |
| 4972 | assert(Kind.getKind() == clang::InitializationKind::IK_DirectList && |
| 4973 | "List-initialize structured bindings but not " |
| 4974 | "direct-list-initialization?" ); |
| 4975 | TryArrayCopy(S, |
| 4976 | Kind: InitializationKind::CreateDirect(InitLoc: Kind.getLocation(), |
| 4977 | LParenLoc: InitList->getLBraceLoc(), |
| 4978 | RParenLoc: InitList->getRBraceLoc()), |
| 4979 | Entity, Initializer: SubInit[0], DestType, Sequence, |
| 4980 | TreatUnavailableAsInvalid); |
| 4981 | if (Sequence) |
| 4982 | Sequence.AddUnwrapInitListInitStep(Syntactic: InitList); |
| 4983 | return; |
| 4984 | } |
| 4985 | |
| 4986 | if (!isa<VariableArrayType>(Val: DestAT) && |
| 4987 | IsStringInit(Init: SubInit[0], AT: DestAT, Context&: S.Context) == SIF_None) { |
| 4988 | InitializationKind SubKind = |
| 4989 | Kind.getKind() == InitializationKind::IK_DirectList |
| 4990 | ? InitializationKind::CreateDirect(InitLoc: Kind.getLocation(), |
| 4991 | LParenLoc: InitList->getLBraceLoc(), |
| 4992 | RParenLoc: InitList->getRBraceLoc()) |
| 4993 | : Kind; |
| 4994 | Sequence.InitializeFrom(S, Entity, Kind: SubKind, Args: SubInit, |
| 4995 | /*TopLevelOfInitList*/ true, |
| 4996 | TreatUnavailableAsInvalid); |
| 4997 | |
| 4998 | // TryStringLiteralInitialization() (in InitializeFrom()) will fail if |
| 4999 | // the element is not an appropriately-typed string literal, in which |
| 5000 | // case we should proceed as in C++11 (below). |
| 5001 | if (Sequence) { |
| 5002 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: InitList); |
| 5003 | return; |
| 5004 | } |
| 5005 | } |
| 5006 | } |
| 5007 | } |
| 5008 | |
| 5009 | // C++11 [dcl.init.list]p3: |
| 5010 | // - If T is an aggregate, aggregate initialization is performed. |
| 5011 | if ((DestType->isRecordType() && !DestType->isAggregateType()) || |
| 5012 | (S.getLangOpts().CPlusPlus11 && |
| 5013 | S.isStdInitializerList(Ty: DestType, Element: nullptr) && !IsDesignatedInit)) { |
| 5014 | if (S.getLangOpts().CPlusPlus11) { |
| 5015 | // - Otherwise, if the initializer list has no elements and T is a |
| 5016 | // class type with a default constructor, the object is |
| 5017 | // value-initialized. |
| 5018 | if (InitList->getNumInits() == 0) { |
| 5019 | CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); |
| 5020 | if (S.LookupDefaultConstructor(Class: RD)) { |
| 5021 | TryValueInitialization(S, Entity, Kind, Sequence, InitList); |
| 5022 | return; |
| 5023 | } |
| 5024 | } |
| 5025 | |
| 5026 | // - Otherwise, if T is a specialization of std::initializer_list<E>, |
| 5027 | // an initializer_list object constructed [...] |
| 5028 | if (TryInitializerListConstruction(S, List: InitList, DestType, Sequence, |
| 5029 | TreatUnavailableAsInvalid)) |
| 5030 | return; |
| 5031 | |
| 5032 | // - Otherwise, if T is a class type, constructors are considered. |
| 5033 | Expr *InitListAsExpr = InitList; |
| 5034 | TryConstructorInitialization(S, Entity, Kind, Args: InitListAsExpr, DestType, |
| 5035 | DestArrayType: DestType, Sequence, /*InitListSyntax*/IsListInit: true); |
| 5036 | } else |
| 5037 | Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); |
| 5038 | return; |
| 5039 | } |
| 5040 | |
| 5041 | if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && |
| 5042 | InitList->getNumInits() == 1) { |
| 5043 | Expr *E = InitList->getInit(Init: 0); |
| 5044 | |
| 5045 | // - Otherwise, if T is an enumeration with a fixed underlying type, |
| 5046 | // the initializer-list has a single element v, and the initialization |
| 5047 | // is direct-list-initialization, the object is initialized with the |
| 5048 | // value T(v); if a narrowing conversion is required to convert v to |
| 5049 | // the underlying type of T, the program is ill-formed. |
| 5050 | auto *ET = DestType->getAs<EnumType>(); |
| 5051 | if (S.getLangOpts().CPlusPlus17 && |
| 5052 | Kind.getKind() == InitializationKind::IK_DirectList && |
| 5053 | ET && ET->getDecl()->isFixed() && |
| 5054 | !S.Context.hasSameUnqualifiedType(T1: E->getType(), T2: DestType) && |
| 5055 | (E->getType()->isIntegralOrUnscopedEnumerationType() || |
| 5056 | E->getType()->isFloatingType())) { |
| 5057 | // There are two ways that T(v) can work when T is an enumeration type. |
| 5058 | // If there is either an implicit conversion sequence from v to T or |
| 5059 | // a conversion function that can convert from v to T, then we use that. |
| 5060 | // Otherwise, if v is of integral, unscoped enumeration, or floating-point |
| 5061 | // type, it is converted to the enumeration type via its underlying type. |
| 5062 | // There is no overlap possible between these two cases (except when the |
| 5063 | // source value is already of the destination type), and the first |
| 5064 | // case is handled by the general case for single-element lists below. |
| 5065 | ImplicitConversionSequence ICS; |
| 5066 | ICS.setStandard(); |
| 5067 | ICS.Standard.setAsIdentityConversion(); |
| 5068 | if (!E->isPRValue()) |
| 5069 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
| 5070 | // If E is of a floating-point type, then the conversion is ill-formed |
| 5071 | // due to narrowing, but go through the motions in order to produce the |
| 5072 | // right diagnostic. |
| 5073 | ICS.Standard.Second = E->getType()->isFloatingType() |
| 5074 | ? ICK_Floating_Integral |
| 5075 | : ICK_Integral_Conversion; |
| 5076 | ICS.Standard.setFromType(E->getType()); |
| 5077 | ICS.Standard.setToType(Idx: 0, T: E->getType()); |
| 5078 | ICS.Standard.setToType(Idx: 1, T: DestType); |
| 5079 | ICS.Standard.setToType(Idx: 2, T: DestType); |
| 5080 | Sequence.AddConversionSequenceStep(ICS, T: ICS.Standard.getToType(Idx: 2), |
| 5081 | /*TopLevelOfInitList*/true); |
| 5082 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: InitList); |
| 5083 | return; |
| 5084 | } |
| 5085 | |
| 5086 | // - Otherwise, if the initializer list has a single element of type E |
| 5087 | // [...references are handled above...], the object or reference is |
| 5088 | // initialized from that element (by copy-initialization for |
| 5089 | // copy-list-initialization, or by direct-initialization for |
| 5090 | // direct-list-initialization); if a narrowing conversion is required |
| 5091 | // to convert the element to T, the program is ill-formed. |
| 5092 | // |
| 5093 | // Per core-24034, this is direct-initialization if we were performing |
| 5094 | // direct-list-initialization and copy-initialization otherwise. |
| 5095 | // We can't use InitListChecker for this, because it always performs |
| 5096 | // copy-initialization. This only matters if we might use an 'explicit' |
| 5097 | // conversion operator, or for the special case conversion of nullptr_t to |
| 5098 | // bool, so we only need to handle those cases. |
| 5099 | // |
| 5100 | // FIXME: Why not do this in all cases? |
| 5101 | Expr *Init = InitList->getInit(Init: 0); |
| 5102 | if (Init->getType()->isRecordType() || |
| 5103 | (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { |
| 5104 | InitializationKind SubKind = |
| 5105 | Kind.getKind() == InitializationKind::IK_DirectList |
| 5106 | ? InitializationKind::CreateDirect(InitLoc: Kind.getLocation(), |
| 5107 | LParenLoc: InitList->getLBraceLoc(), |
| 5108 | RParenLoc: InitList->getRBraceLoc()) |
| 5109 | : Kind; |
| 5110 | Expr *SubInit[1] = { Init }; |
| 5111 | Sequence.InitializeFrom(S, Entity, Kind: SubKind, Args: SubInit, |
| 5112 | /*TopLevelOfInitList*/true, |
| 5113 | TreatUnavailableAsInvalid); |
| 5114 | if (Sequence) |
| 5115 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: InitList); |
| 5116 | return; |
| 5117 | } |
| 5118 | } |
| 5119 | |
| 5120 | InitListChecker CheckInitList(S, Entity, InitList, |
| 5121 | DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); |
| 5122 | if (CheckInitList.HadError()) { |
| 5123 | Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); |
| 5124 | return; |
| 5125 | } |
| 5126 | |
| 5127 | // Add the list initialization step with the built init list. |
| 5128 | Sequence.AddListInitializationStep(T: DestType); |
| 5129 | } |
| 5130 | |
| 5131 | /// Try a reference initialization that involves calling a conversion |
| 5132 | /// function. |
| 5133 | static OverloadingResult TryRefInitWithConversionFunction( |
| 5134 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
| 5135 | Expr *Initializer, bool AllowRValues, bool IsLValueRef, |
| 5136 | InitializationSequence &Sequence) { |
| 5137 | QualType DestType = Entity.getType(); |
| 5138 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
| 5139 | QualType T1 = cv1T1.getUnqualifiedType(); |
| 5140 | QualType cv2T2 = Initializer->getType(); |
| 5141 | QualType T2 = cv2T2.getUnqualifiedType(); |
| 5142 | |
| 5143 | assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && |
| 5144 | "Must have incompatible references when binding via conversion" ); |
| 5145 | |
| 5146 | // Build the candidate set directly in the initialization sequence |
| 5147 | // structure, so that it will persist if we fail. |
| 5148 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
| 5149 | CandidateSet.clear(CSK: OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| 5150 | |
| 5151 | // Determine whether we are allowed to call explicit conversion operators. |
| 5152 | // Note that none of [over.match.copy], [over.match.conv], nor |
| 5153 | // [over.match.ref] permit an explicit constructor to be chosen when |
| 5154 | // initializing a reference, not even for direct-initialization. |
| 5155 | bool AllowExplicitCtors = false; |
| 5156 | bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); |
| 5157 | |
| 5158 | const RecordType *T1RecordType = nullptr; |
| 5159 | if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && |
| 5160 | S.isCompleteType(Loc: Kind.getLocation(), T: T1)) { |
| 5161 | // The type we're converting to is a class type. Enumerate its constructors |
| 5162 | // to see if there is a suitable conversion. |
| 5163 | CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(Val: T1RecordType->getDecl()); |
| 5164 | |
| 5165 | for (NamedDecl *D : S.LookupConstructors(Class: T1RecordDecl)) { |
| 5166 | auto Info = getConstructorInfo(ND: D); |
| 5167 | if (!Info.Constructor) |
| 5168 | continue; |
| 5169 | |
| 5170 | if (!Info.Constructor->isInvalidDecl() && |
| 5171 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { |
| 5172 | if (Info.ConstructorTmpl) |
| 5173 | S.AddTemplateOverloadCandidate( |
| 5174 | FunctionTemplate: Info.ConstructorTmpl, FoundDecl: Info.FoundDecl, |
| 5175 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, Args: Initializer, CandidateSet, |
| 5176 | /*SuppressUserConversions=*/true, |
| 5177 | /*PartialOverloading*/ false, AllowExplicit: AllowExplicitCtors); |
| 5178 | else |
| 5179 | S.AddOverloadCandidate( |
| 5180 | Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, |
| 5181 | /*SuppressUserConversions=*/true, |
| 5182 | /*PartialOverloading*/ false, AllowExplicitCtors); |
| 5183 | } |
| 5184 | } |
| 5185 | } |
| 5186 | if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) |
| 5187 | return OR_No_Viable_Function; |
| 5188 | |
| 5189 | const RecordType *T2RecordType = nullptr; |
| 5190 | if ((T2RecordType = T2->getAs<RecordType>()) && |
| 5191 | S.isCompleteType(Loc: Kind.getLocation(), T: T2)) { |
| 5192 | // The type we're converting from is a class type, enumerate its conversion |
| 5193 | // functions. |
| 5194 | CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(Val: T2RecordType->getDecl()); |
| 5195 | |
| 5196 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
| 5197 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| 5198 | NamedDecl *D = *I; |
| 5199 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| 5200 | if (isa<UsingShadowDecl>(Val: D)) |
| 5201 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
| 5202 | |
| 5203 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D); |
| 5204 | CXXConversionDecl *Conv; |
| 5205 | if (ConvTemplate) |
| 5206 | Conv = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
| 5207 | else |
| 5208 | Conv = cast<CXXConversionDecl>(Val: D); |
| 5209 | |
| 5210 | // If the conversion function doesn't return a reference type, |
| 5211 | // it can't be considered for this conversion unless we're allowed to |
| 5212 | // consider rvalues. |
| 5213 | // FIXME: Do we need to make sure that we only consider conversion |
| 5214 | // candidates with reference-compatible results? That might be needed to |
| 5215 | // break recursion. |
| 5216 | if ((AllowRValues || |
| 5217 | Conv->getConversionType()->isLValueReferenceType())) { |
| 5218 | if (ConvTemplate) |
| 5219 | S.AddTemplateConversionCandidate( |
| 5220 | FunctionTemplate: ConvTemplate, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, |
| 5221 | CandidateSet, |
| 5222 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit: AllowExplicitConvs); |
| 5223 | else |
| 5224 | S.AddConversionCandidate( |
| 5225 | Conversion: Conv, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, CandidateSet, |
| 5226 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit: AllowExplicitConvs); |
| 5227 | } |
| 5228 | } |
| 5229 | } |
| 5230 | if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) |
| 5231 | return OR_No_Viable_Function; |
| 5232 | |
| 5233 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
| 5234 | |
| 5235 | // Perform overload resolution. If it fails, return the failed result. |
| 5236 | OverloadCandidateSet::iterator Best; |
| 5237 | if (OverloadingResult Result |
| 5238 | = CandidateSet.BestViableFunction(S, Loc: DeclLoc, Best)) |
| 5239 | return Result; |
| 5240 | |
| 5241 | FunctionDecl *Function = Best->Function; |
| 5242 | // This is the overload that will be used for this initialization step if we |
| 5243 | // use this initialization. Mark it as referenced. |
| 5244 | Function->setReferenced(); |
| 5245 | |
| 5246 | // Compute the returned type and value kind of the conversion. |
| 5247 | QualType cv3T3; |
| 5248 | if (isa<CXXConversionDecl>(Val: Function)) |
| 5249 | cv3T3 = Function->getReturnType(); |
| 5250 | else |
| 5251 | cv3T3 = T1; |
| 5252 | |
| 5253 | ExprValueKind VK = VK_PRValue; |
| 5254 | if (cv3T3->isLValueReferenceType()) |
| 5255 | VK = VK_LValue; |
| 5256 | else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) |
| 5257 | VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; |
| 5258 | cv3T3 = cv3T3.getNonLValueExprType(Context: S.Context); |
| 5259 | |
| 5260 | // Add the user-defined conversion step. |
| 5261 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 5262 | Sequence.AddUserConversionStep(Function, FoundDecl: Best->FoundDecl, T: cv3T3, |
| 5263 | HadMultipleCandidates); |
| 5264 | |
| 5265 | // Determine whether we'll need to perform derived-to-base adjustments or |
| 5266 | // other conversions. |
| 5267 | Sema::ReferenceConversions RefConv; |
| 5268 | Sema::ReferenceCompareResult NewRefRelationship = |
| 5269 | S.CompareReferenceRelationship(Loc: DeclLoc, T1, T2: cv3T3, Conv: &RefConv); |
| 5270 | |
| 5271 | // Add the final conversion sequence, if necessary. |
| 5272 | if (NewRefRelationship == Sema::Ref_Incompatible) { |
| 5273 | assert(Best->HasFinalConversion && !isa<CXXConstructorDecl>(Function) && |
| 5274 | "should not have conversion after constructor" ); |
| 5275 | |
| 5276 | ImplicitConversionSequence ICS; |
| 5277 | ICS.setStandard(); |
| 5278 | ICS.Standard = Best->FinalConversion; |
| 5279 | Sequence.AddConversionSequenceStep(ICS, T: ICS.Standard.getToType(Idx: 2)); |
| 5280 | |
| 5281 | // Every implicit conversion results in a prvalue, except for a glvalue |
| 5282 | // derived-to-base conversion, which we handle below. |
| 5283 | cv3T3 = ICS.Standard.getToType(Idx: 2); |
| 5284 | VK = VK_PRValue; |
| 5285 | } |
| 5286 | |
| 5287 | // If the converted initializer is a prvalue, its type T4 is adjusted to |
| 5288 | // type "cv1 T4" and the temporary materialization conversion is applied. |
| 5289 | // |
| 5290 | // We adjust the cv-qualifications to match the reference regardless of |
| 5291 | // whether we have a prvalue so that the AST records the change. In this |
| 5292 | // case, T4 is "cv3 T3". |
| 5293 | QualType cv1T4 = S.Context.getQualifiedType(T: cv3T3, Qs: cv1T1.getQualifiers()); |
| 5294 | if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) |
| 5295 | Sequence.AddQualificationConversionStep(Ty: cv1T4, VK); |
| 5296 | Sequence.AddReferenceBindingStep(T: cv1T4, BindingTemporary: VK == VK_PRValue); |
| 5297 | VK = IsLValueRef ? VK_LValue : VK_XValue; |
| 5298 | |
| 5299 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
| 5300 | Sequence.AddDerivedToBaseCastStep(BaseType: cv1T1, VK); |
| 5301 | else if (RefConv & Sema::ReferenceConversions::ObjC) |
| 5302 | Sequence.AddObjCObjectConversionStep(T: cv1T1); |
| 5303 | else if (RefConv & Sema::ReferenceConversions::Function) |
| 5304 | Sequence.AddFunctionReferenceConversionStep(Ty: cv1T1); |
| 5305 | else if (RefConv & Sema::ReferenceConversions::Qualification) { |
| 5306 | if (!S.Context.hasSameType(T1: cv1T4, T2: cv1T1)) |
| 5307 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK); |
| 5308 | } |
| 5309 | |
| 5310 | return OR_Success; |
| 5311 | } |
| 5312 | |
| 5313 | static void CheckCXX98CompatAccessibleCopy(Sema &S, |
| 5314 | const InitializedEntity &Entity, |
| 5315 | Expr *CurInitExpr); |
| 5316 | |
| 5317 | /// Attempt reference initialization (C++0x [dcl.init.ref]) |
| 5318 | static void TryReferenceInitialization(Sema &S, const InitializedEntity &Entity, |
| 5319 | const InitializationKind &Kind, |
| 5320 | Expr *Initializer, |
| 5321 | InitializationSequence &Sequence, |
| 5322 | bool TopLevelOfInitList) { |
| 5323 | QualType DestType = Entity.getType(); |
| 5324 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
| 5325 | Qualifiers T1Quals; |
| 5326 | QualType T1 = S.Context.getUnqualifiedArrayType(T: cv1T1, Quals&: T1Quals); |
| 5327 | QualType cv2T2 = S.getCompletedType(E: Initializer); |
| 5328 | Qualifiers T2Quals; |
| 5329 | QualType T2 = S.Context.getUnqualifiedArrayType(T: cv2T2, Quals&: T2Quals); |
| 5330 | |
| 5331 | // If the initializer is the address of an overloaded function, try |
| 5332 | // to resolve the overloaded function. If all goes well, T2 is the |
| 5333 | // type of the resulting function. |
| 5334 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, SourceType&: cv2T2, UnqualifiedSourceType&: T2, |
| 5335 | UnqualifiedTargetType: T1, Sequence)) |
| 5336 | return; |
| 5337 | |
| 5338 | // Delegate everything else to a subfunction. |
| 5339 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
| 5340 | T1Quals, cv2T2, T2, T2Quals, Sequence, |
| 5341 | TopLevelOfInitList); |
| 5342 | } |
| 5343 | |
| 5344 | /// Determine whether an expression is a non-referenceable glvalue (one to |
| 5345 | /// which a reference can never bind). Attempting to bind a reference to |
| 5346 | /// such a glvalue will always create a temporary. |
| 5347 | static bool isNonReferenceableGLValue(Expr *E) { |
| 5348 | return E->refersToBitField() || E->refersToVectorElement() || |
| 5349 | E->refersToMatrixElement(); |
| 5350 | } |
| 5351 | |
| 5352 | /// Reference initialization without resolving overloaded functions. |
| 5353 | /// |
| 5354 | /// We also can get here in C if we call a builtin which is declared as |
| 5355 | /// a function with a parameter of reference type (such as __builtin_va_end()). |
| 5356 | static void TryReferenceInitializationCore(Sema &S, |
| 5357 | const InitializedEntity &Entity, |
| 5358 | const InitializationKind &Kind, |
| 5359 | Expr *Initializer, |
| 5360 | QualType cv1T1, QualType T1, |
| 5361 | Qualifiers T1Quals, |
| 5362 | QualType cv2T2, QualType T2, |
| 5363 | Qualifiers T2Quals, |
| 5364 | InitializationSequence &Sequence, |
| 5365 | bool TopLevelOfInitList) { |
| 5366 | QualType DestType = Entity.getType(); |
| 5367 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
| 5368 | |
| 5369 | // Compute some basic properties of the types and the initializer. |
| 5370 | bool isLValueRef = DestType->isLValueReferenceType(); |
| 5371 | bool isRValueRef = !isLValueRef; |
| 5372 | Expr::Classification InitCategory = Initializer->Classify(Ctx&: S.Context); |
| 5373 | |
| 5374 | Sema::ReferenceConversions RefConv; |
| 5375 | Sema::ReferenceCompareResult RefRelationship = |
| 5376 | S.CompareReferenceRelationship(Loc: DeclLoc, T1: cv1T1, T2: cv2T2, Conv: &RefConv); |
| 5377 | |
| 5378 | // C++0x [dcl.init.ref]p5: |
| 5379 | // A reference to type "cv1 T1" is initialized by an expression of type |
| 5380 | // "cv2 T2" as follows: |
| 5381 | // |
| 5382 | // - If the reference is an lvalue reference and the initializer |
| 5383 | // expression |
| 5384 | // Note the analogous bullet points for rvalue refs to functions. Because |
| 5385 | // there are no function rvalues in C++, rvalue refs to functions are treated |
| 5386 | // like lvalue refs. |
| 5387 | OverloadingResult ConvOvlResult = OR_Success; |
| 5388 | bool T1Function = T1->isFunctionType(); |
| 5389 | if (isLValueRef || T1Function) { |
| 5390 | if (InitCategory.isLValue() && !isNonReferenceableGLValue(E: Initializer) && |
| 5391 | (RefRelationship == Sema::Ref_Compatible || |
| 5392 | (Kind.isCStyleOrFunctionalCast() && |
| 5393 | RefRelationship == Sema::Ref_Related))) { |
| 5394 | // - is an lvalue (but is not a bit-field), and "cv1 T1" is |
| 5395 | // reference-compatible with "cv2 T2," or |
| 5396 | if (RefConv & (Sema::ReferenceConversions::DerivedToBase | |
| 5397 | Sema::ReferenceConversions::ObjC)) { |
| 5398 | // If we're converting the pointee, add any qualifiers first; |
| 5399 | // these qualifiers must all be top-level, so just convert to "cv1 T2". |
| 5400 | if (RefConv & (Sema::ReferenceConversions::Qualification)) |
| 5401 | Sequence.AddQualificationConversionStep( |
| 5402 | Ty: S.Context.getQualifiedType(T: T2, Qs: T1Quals), |
| 5403 | VK: Initializer->getValueKind()); |
| 5404 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
| 5405 | Sequence.AddDerivedToBaseCastStep(BaseType: cv1T1, VK: VK_LValue); |
| 5406 | else |
| 5407 | Sequence.AddObjCObjectConversionStep(T: cv1T1); |
| 5408 | } else if (RefConv & Sema::ReferenceConversions::Qualification) { |
| 5409 | // Perform a (possibly multi-level) qualification conversion. |
| 5410 | Sequence.AddQualificationConversionStep(Ty: cv1T1, |
| 5411 | VK: Initializer->getValueKind()); |
| 5412 | } else if (RefConv & Sema::ReferenceConversions::Function) { |
| 5413 | Sequence.AddFunctionReferenceConversionStep(Ty: cv1T1); |
| 5414 | } |
| 5415 | |
| 5416 | // We only create a temporary here when binding a reference to a |
| 5417 | // bit-field or vector element. Those cases are't supposed to be |
| 5418 | // handled by this bullet, but the outcome is the same either way. |
| 5419 | Sequence.AddReferenceBindingStep(T: cv1T1, BindingTemporary: false); |
| 5420 | return; |
| 5421 | } |
| 5422 | |
| 5423 | // - has a class type (i.e., T2 is a class type), where T1 is not |
| 5424 | // reference-related to T2, and can be implicitly converted to an |
| 5425 | // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible |
| 5426 | // with "cv3 T3" (this conversion is selected by enumerating the |
| 5427 | // applicable conversion functions (13.3.1.6) and choosing the best |
| 5428 | // one through overload resolution (13.3)), |
| 5429 | // If we have an rvalue ref to function type here, the rhs must be |
| 5430 | // an rvalue. DR1287 removed the "implicitly" here. |
| 5431 | if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && |
| 5432 | (isLValueRef || InitCategory.isRValue())) { |
| 5433 | if (S.getLangOpts().CPlusPlus) { |
| 5434 | // Try conversion functions only for C++. |
| 5435 | ConvOvlResult = TryRefInitWithConversionFunction( |
| 5436 | S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, |
| 5437 | /*IsLValueRef*/ isLValueRef, Sequence); |
| 5438 | if (ConvOvlResult == OR_Success) |
| 5439 | return; |
| 5440 | if (ConvOvlResult != OR_No_Viable_Function) |
| 5441 | Sequence.SetOverloadFailure( |
| 5442 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
| 5443 | Result: ConvOvlResult); |
| 5444 | } else { |
| 5445 | ConvOvlResult = OR_No_Viable_Function; |
| 5446 | } |
| 5447 | } |
| 5448 | } |
| 5449 | |
| 5450 | // - Otherwise, the reference shall be an lvalue reference to a |
| 5451 | // non-volatile const type (i.e., cv1 shall be const), or the reference |
| 5452 | // shall be an rvalue reference. |
| 5453 | // For address spaces, we interpret this to mean that an addr space |
| 5454 | // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". |
| 5455 | if (isLValueRef && |
| 5456 | !(T1Quals.hasConst() && !T1Quals.hasVolatile() && |
| 5457 | T1Quals.isAddressSpaceSupersetOf(other: T2Quals, Ctx: S.getASTContext()))) { |
| 5458 | if (S.Context.getCanonicalType(T: T2) == S.Context.OverloadTy) |
| 5459 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| 5460 | else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
| 5461 | Sequence.SetOverloadFailure( |
| 5462 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
| 5463 | Result: ConvOvlResult); |
| 5464 | else if (!InitCategory.isLValue()) |
| 5465 | Sequence.SetFailed( |
| 5466 | T1Quals.isAddressSpaceSupersetOf(other: T2Quals, Ctx: S.getASTContext()) |
| 5467 | ? InitializationSequence:: |
| 5468 | FK_NonConstLValueReferenceBindingToTemporary |
| 5469 | : InitializationSequence::FK_ReferenceInitDropsQualifiers); |
| 5470 | else { |
| 5471 | InitializationSequence::FailureKind FK; |
| 5472 | switch (RefRelationship) { |
| 5473 | case Sema::Ref_Compatible: |
| 5474 | if (Initializer->refersToBitField()) |
| 5475 | FK = InitializationSequence:: |
| 5476 | FK_NonConstLValueReferenceBindingToBitfield; |
| 5477 | else if (Initializer->refersToVectorElement()) |
| 5478 | FK = InitializationSequence:: |
| 5479 | FK_NonConstLValueReferenceBindingToVectorElement; |
| 5480 | else if (Initializer->refersToMatrixElement()) |
| 5481 | FK = InitializationSequence:: |
| 5482 | FK_NonConstLValueReferenceBindingToMatrixElement; |
| 5483 | else |
| 5484 | llvm_unreachable("unexpected kind of compatible initializer" ); |
| 5485 | break; |
| 5486 | case Sema::Ref_Related: |
| 5487 | FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; |
| 5488 | break; |
| 5489 | case Sema::Ref_Incompatible: |
| 5490 | FK = InitializationSequence:: |
| 5491 | FK_NonConstLValueReferenceBindingToUnrelated; |
| 5492 | break; |
| 5493 | } |
| 5494 | Sequence.SetFailed(FK); |
| 5495 | } |
| 5496 | return; |
| 5497 | } |
| 5498 | |
| 5499 | // - If the initializer expression |
| 5500 | // - is an |
| 5501 | // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or |
| 5502 | // [1z] rvalue (but not a bit-field) or |
| 5503 | // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" |
| 5504 | // |
| 5505 | // Note: functions are handled above and below rather than here... |
| 5506 | if (!T1Function && |
| 5507 | (RefRelationship == Sema::Ref_Compatible || |
| 5508 | (Kind.isCStyleOrFunctionalCast() && |
| 5509 | RefRelationship == Sema::Ref_Related)) && |
| 5510 | ((InitCategory.isXValue() && !isNonReferenceableGLValue(E: Initializer)) || |
| 5511 | (InitCategory.isPRValue() && |
| 5512 | (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || |
| 5513 | T2->isArrayType())))) { |
| 5514 | ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue; |
| 5515 | if (InitCategory.isPRValue() && T2->isRecordType()) { |
| 5516 | // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the |
| 5517 | // compiler the freedom to perform a copy here or bind to the |
| 5518 | // object, while C++0x requires that we bind directly to the |
| 5519 | // object. Hence, we always bind to the object without making an |
| 5520 | // extra copy. However, in C++03 requires that we check for the |
| 5521 | // presence of a suitable copy constructor: |
| 5522 | // |
| 5523 | // The constructor that would be used to make the copy shall |
| 5524 | // be callable whether or not the copy is actually done. |
| 5525 | if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) |
| 5526 | Sequence.AddExtraneousCopyToTemporary(T: cv2T2); |
| 5527 | else if (S.getLangOpts().CPlusPlus11) |
| 5528 | CheckCXX98CompatAccessibleCopy(S, Entity, CurInitExpr: Initializer); |
| 5529 | } |
| 5530 | |
| 5531 | // C++1z [dcl.init.ref]/5.2.1.2: |
| 5532 | // If the converted initializer is a prvalue, its type T4 is adjusted |
| 5533 | // to type "cv1 T4" and the temporary materialization conversion is |
| 5534 | // applied. |
| 5535 | // Postpone address space conversions to after the temporary materialization |
| 5536 | // conversion to allow creating temporaries in the alloca address space. |
| 5537 | auto T1QualsIgnoreAS = T1Quals; |
| 5538 | auto T2QualsIgnoreAS = T2Quals; |
| 5539 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
| 5540 | T1QualsIgnoreAS.removeAddressSpace(); |
| 5541 | T2QualsIgnoreAS.removeAddressSpace(); |
| 5542 | } |
| 5543 | QualType cv1T4 = S.Context.getQualifiedType(T: cv2T2, Qs: T1QualsIgnoreAS); |
| 5544 | if (T1QualsIgnoreAS != T2QualsIgnoreAS) |
| 5545 | Sequence.AddQualificationConversionStep(Ty: cv1T4, VK: ValueKind); |
| 5546 | Sequence.AddReferenceBindingStep(T: cv1T4, BindingTemporary: ValueKind == VK_PRValue); |
| 5547 | ValueKind = isLValueRef ? VK_LValue : VK_XValue; |
| 5548 | // Add addr space conversion if required. |
| 5549 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
| 5550 | auto T4Quals = cv1T4.getQualifiers(); |
| 5551 | T4Quals.addAddressSpace(space: T1Quals.getAddressSpace()); |
| 5552 | QualType cv1T4WithAS = S.Context.getQualifiedType(T: T2, Qs: T4Quals); |
| 5553 | Sequence.AddQualificationConversionStep(Ty: cv1T4WithAS, VK: ValueKind); |
| 5554 | cv1T4 = cv1T4WithAS; |
| 5555 | } |
| 5556 | |
| 5557 | // In any case, the reference is bound to the resulting glvalue (or to |
| 5558 | // an appropriate base class subobject). |
| 5559 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
| 5560 | Sequence.AddDerivedToBaseCastStep(BaseType: cv1T1, VK: ValueKind); |
| 5561 | else if (RefConv & Sema::ReferenceConversions::ObjC) |
| 5562 | Sequence.AddObjCObjectConversionStep(T: cv1T1); |
| 5563 | else if (RefConv & Sema::ReferenceConversions::Qualification) { |
| 5564 | if (!S.Context.hasSameType(T1: cv1T4, T2: cv1T1)) |
| 5565 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK: ValueKind); |
| 5566 | } |
| 5567 | return; |
| 5568 | } |
| 5569 | |
| 5570 | // - has a class type (i.e., T2 is a class type), where T1 is not |
| 5571 | // reference-related to T2, and can be implicitly converted to an |
| 5572 | // xvalue, class prvalue, or function lvalue of type "cv3 T3", |
| 5573 | // where "cv1 T1" is reference-compatible with "cv3 T3", |
| 5574 | // |
| 5575 | // DR1287 removes the "implicitly" here. |
| 5576 | if (T2->isRecordType()) { |
| 5577 | if (RefRelationship == Sema::Ref_Incompatible) { |
| 5578 | ConvOvlResult = TryRefInitWithConversionFunction( |
| 5579 | S, Entity, Kind, Initializer, /*AllowRValues*/ true, |
| 5580 | /*IsLValueRef*/ isLValueRef, Sequence); |
| 5581 | if (ConvOvlResult) |
| 5582 | Sequence.SetOverloadFailure( |
| 5583 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
| 5584 | Result: ConvOvlResult); |
| 5585 | |
| 5586 | return; |
| 5587 | } |
| 5588 | |
| 5589 | if (RefRelationship == Sema::Ref_Compatible && |
| 5590 | isRValueRef && InitCategory.isLValue()) { |
| 5591 | Sequence.SetFailed( |
| 5592 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
| 5593 | return; |
| 5594 | } |
| 5595 | |
| 5596 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
| 5597 | return; |
| 5598 | } |
| 5599 | |
| 5600 | // - Otherwise, a temporary of type "cv1 T1" is created and initialized |
| 5601 | // from the initializer expression using the rules for a non-reference |
| 5602 | // copy-initialization (8.5). The reference is then bound to the |
| 5603 | // temporary. [...] |
| 5604 | |
| 5605 | // Ignore address space of reference type at this point and perform address |
| 5606 | // space conversion after the reference binding step. |
| 5607 | QualType cv1T1IgnoreAS = |
| 5608 | T1Quals.hasAddressSpace() |
| 5609 | ? S.Context.getQualifiedType(T: T1, Qs: T1Quals.withoutAddressSpace()) |
| 5610 | : cv1T1; |
| 5611 | |
| 5612 | InitializedEntity TempEntity = |
| 5613 | InitializedEntity::InitializeTemporary(Type: cv1T1IgnoreAS); |
| 5614 | |
| 5615 | // FIXME: Why do we use an implicit conversion here rather than trying |
| 5616 | // copy-initialization? |
| 5617 | ImplicitConversionSequence ICS |
| 5618 | = S.TryImplicitConversion(From: Initializer, ToType: TempEntity.getType(), |
| 5619 | /*SuppressUserConversions=*/false, |
| 5620 | AllowExplicit: Sema::AllowedExplicit::None, |
| 5621 | /*FIXME:InOverloadResolution=*/InOverloadResolution: false, |
| 5622 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
| 5623 | /*AllowObjCWritebackConversion=*/false); |
| 5624 | |
| 5625 | if (ICS.isBad()) { |
| 5626 | // FIXME: Use the conversion function set stored in ICS to turn |
| 5627 | // this into an overloading ambiguity diagnostic. However, we need |
| 5628 | // to keep that set as an OverloadCandidateSet rather than as some |
| 5629 | // other kind of set. |
| 5630 | if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
| 5631 | Sequence.SetOverloadFailure( |
| 5632 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
| 5633 | Result: ConvOvlResult); |
| 5634 | else if (S.Context.getCanonicalType(T: T2) == S.Context.OverloadTy) |
| 5635 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| 5636 | else |
| 5637 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); |
| 5638 | return; |
| 5639 | } else { |
| 5640 | Sequence.AddConversionSequenceStep(ICS, T: TempEntity.getType(), |
| 5641 | TopLevelOfInitList); |
| 5642 | } |
| 5643 | |
| 5644 | // [...] If T1 is reference-related to T2, cv1 must be the |
| 5645 | // same cv-qualification as, or greater cv-qualification |
| 5646 | // than, cv2; otherwise, the program is ill-formed. |
| 5647 | unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); |
| 5648 | unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); |
| 5649 | if (RefRelationship == Sema::Ref_Related && |
| 5650 | ((T1CVRQuals | T2CVRQuals) != T1CVRQuals || |
| 5651 | !T1Quals.isAddressSpaceSupersetOf(other: T2Quals, Ctx: S.getASTContext()))) { |
| 5652 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
| 5653 | return; |
| 5654 | } |
| 5655 | |
| 5656 | // [...] If T1 is reference-related to T2 and the reference is an rvalue |
| 5657 | // reference, the initializer expression shall not be an lvalue. |
| 5658 | if (RefRelationship >= Sema::Ref_Related && !isLValueRef && |
| 5659 | InitCategory.isLValue()) { |
| 5660 | Sequence.SetFailed( |
| 5661 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
| 5662 | return; |
| 5663 | } |
| 5664 | |
| 5665 | Sequence.AddReferenceBindingStep(T: cv1T1IgnoreAS, /*BindingTemporary=*/true); |
| 5666 | |
| 5667 | if (T1Quals.hasAddressSpace()) { |
| 5668 | if (!Qualifiers::isAddressSpaceSupersetOf( |
| 5669 | A: T1Quals.getAddressSpace(), B: LangAS::Default, Ctx: S.getASTContext())) { |
| 5670 | Sequence.SetFailed( |
| 5671 | InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); |
| 5672 | return; |
| 5673 | } |
| 5674 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK: isLValueRef ? VK_LValue |
| 5675 | : VK_XValue); |
| 5676 | } |
| 5677 | } |
| 5678 | |
| 5679 | /// Attempt character array initialization from a string literal |
| 5680 | /// (C++ [dcl.init.string], C99 6.7.8). |
| 5681 | static void TryStringLiteralInitialization(Sema &S, |
| 5682 | const InitializedEntity &Entity, |
| 5683 | const InitializationKind &Kind, |
| 5684 | Expr *Initializer, |
| 5685 | InitializationSequence &Sequence) { |
| 5686 | Sequence.AddStringInitStep(T: Entity.getType()); |
| 5687 | } |
| 5688 | |
| 5689 | /// Attempt value initialization (C++ [dcl.init]p7). |
| 5690 | static void TryValueInitialization(Sema &S, |
| 5691 | const InitializedEntity &Entity, |
| 5692 | const InitializationKind &Kind, |
| 5693 | InitializationSequence &Sequence, |
| 5694 | InitListExpr *InitList) { |
| 5695 | assert((!InitList || InitList->getNumInits() == 0) && |
| 5696 | "Shouldn't use value-init for non-empty init lists" ); |
| 5697 | |
| 5698 | // C++98 [dcl.init]p5, C++11 [dcl.init]p7: |
| 5699 | // |
| 5700 | // To value-initialize an object of type T means: |
| 5701 | QualType T = Entity.getType(); |
| 5702 | assert(!T->isVoidType() && "Cannot value-init void" ); |
| 5703 | |
| 5704 | // -- if T is an array type, then each element is value-initialized; |
| 5705 | T = S.Context.getBaseElementType(QT: T); |
| 5706 | |
| 5707 | if (const RecordType *RT = T->getAs<RecordType>()) { |
| 5708 | if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) { |
| 5709 | bool NeedZeroInitialization = true; |
| 5710 | // C++98: |
| 5711 | // -- if T is a class type (clause 9) with a user-declared constructor |
| 5712 | // (12.1), then the default constructor for T is called (and the |
| 5713 | // initialization is ill-formed if T has no accessible default |
| 5714 | // constructor); |
| 5715 | // C++11: |
| 5716 | // -- if T is a class type (clause 9) with either no default constructor |
| 5717 | // (12.1 [class.ctor]) or a default constructor that is user-provided |
| 5718 | // or deleted, then the object is default-initialized; |
| 5719 | // |
| 5720 | // Note that the C++11 rule is the same as the C++98 rule if there are no |
| 5721 | // defaulted or deleted constructors, so we just use it unconditionally. |
| 5722 | CXXConstructorDecl *CD = S.LookupDefaultConstructor(Class: ClassDecl); |
| 5723 | if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) |
| 5724 | NeedZeroInitialization = false; |
| 5725 | |
| 5726 | // -- if T is a (possibly cv-qualified) non-union class type without a |
| 5727 | // user-provided or deleted default constructor, then the object is |
| 5728 | // zero-initialized and, if T has a non-trivial default constructor, |
| 5729 | // default-initialized; |
| 5730 | // The 'non-union' here was removed by DR1502. The 'non-trivial default |
| 5731 | // constructor' part was removed by DR1507. |
| 5732 | if (NeedZeroInitialization) |
| 5733 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
| 5734 | |
| 5735 | // C++03: |
| 5736 | // -- if T is a non-union class type without a user-declared constructor, |
| 5737 | // then every non-static data member and base class component of T is |
| 5738 | // value-initialized; |
| 5739 | // [...] A program that calls for [...] value-initialization of an |
| 5740 | // entity of reference type is ill-formed. |
| 5741 | // |
| 5742 | // C++11 doesn't need this handling, because value-initialization does not |
| 5743 | // occur recursively there, and the implicit default constructor is |
| 5744 | // defined as deleted in the problematic cases. |
| 5745 | if (!S.getLangOpts().CPlusPlus11 && |
| 5746 | ClassDecl->hasUninitializedReferenceMember()) { |
| 5747 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); |
| 5748 | return; |
| 5749 | } |
| 5750 | |
| 5751 | // If this is list-value-initialization, pass the empty init list on when |
| 5752 | // building the constructor call. This affects the semantics of a few |
| 5753 | // things (such as whether an explicit default constructor can be called). |
| 5754 | Expr *InitListAsExpr = InitList; |
| 5755 | MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); |
| 5756 | bool InitListSyntax = InitList; |
| 5757 | |
| 5758 | // FIXME: Instead of creating a CXXConstructExpr of array type here, |
| 5759 | // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. |
| 5760 | return TryConstructorInitialization( |
| 5761 | S, Entity, Kind, Args, DestType: T, DestArrayType: Entity.getType(), Sequence, IsListInit: InitListSyntax); |
| 5762 | } |
| 5763 | } |
| 5764 | |
| 5765 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
| 5766 | } |
| 5767 | |
| 5768 | /// Attempt default initialization (C++ [dcl.init]p6). |
| 5769 | static void TryDefaultInitialization(Sema &S, |
| 5770 | const InitializedEntity &Entity, |
| 5771 | const InitializationKind &Kind, |
| 5772 | InitializationSequence &Sequence) { |
| 5773 | assert(Kind.getKind() == InitializationKind::IK_Default); |
| 5774 | |
| 5775 | // C++ [dcl.init]p6: |
| 5776 | // To default-initialize an object of type T means: |
| 5777 | // - if T is an array type, each element is default-initialized; |
| 5778 | QualType DestType = S.Context.getBaseElementType(QT: Entity.getType()); |
| 5779 | |
| 5780 | // - if T is a (possibly cv-qualified) class type (Clause 9), the default |
| 5781 | // constructor for T is called (and the initialization is ill-formed if |
| 5782 | // T has no accessible default constructor); |
| 5783 | if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { |
| 5784 | TryConstructorInitialization(S, Entity, Kind, Args: {}, DestType, |
| 5785 | DestArrayType: Entity.getType(), Sequence); |
| 5786 | return; |
| 5787 | } |
| 5788 | |
| 5789 | // - otherwise, no initialization is performed. |
| 5790 | |
| 5791 | // If a program calls for the default initialization of an object of |
| 5792 | // a const-qualified type T, T shall be a class type with a user-provided |
| 5793 | // default constructor. |
| 5794 | if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { |
| 5795 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
| 5796 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
| 5797 | return; |
| 5798 | } |
| 5799 | |
| 5800 | // If the destination type has a lifetime property, zero-initialize it. |
| 5801 | if (DestType.getQualifiers().hasObjCLifetime()) { |
| 5802 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
| 5803 | return; |
| 5804 | } |
| 5805 | } |
| 5806 | |
| 5807 | static void TryOrBuildParenListInitialization( |
| 5808 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
| 5809 | ArrayRef<Expr *> Args, InitializationSequence &Sequence, bool VerifyOnly, |
| 5810 | ExprResult *Result) { |
| 5811 | unsigned EntityIndexToProcess = 0; |
| 5812 | SmallVector<Expr *, 4> InitExprs; |
| 5813 | QualType ResultType; |
| 5814 | Expr *ArrayFiller = nullptr; |
| 5815 | FieldDecl *InitializedFieldInUnion = nullptr; |
| 5816 | |
| 5817 | auto HandleInitializedEntity = [&](const InitializedEntity &SubEntity, |
| 5818 | const InitializationKind &SubKind, |
| 5819 | Expr *Arg, Expr **InitExpr = nullptr) { |
| 5820 | InitializationSequence IS = InitializationSequence( |
| 5821 | S, SubEntity, SubKind, |
| 5822 | Arg ? MultiExprArg(Arg) : MutableArrayRef<Expr *>()); |
| 5823 | |
| 5824 | if (IS.Failed()) { |
| 5825 | if (!VerifyOnly) { |
| 5826 | IS.Diagnose(S, Entity: SubEntity, Kind: SubKind, |
| 5827 | Args: Arg ? ArrayRef(Arg) : ArrayRef<Expr *>()); |
| 5828 | } else { |
| 5829 | Sequence.SetFailed( |
| 5830 | InitializationSequence::FK_ParenthesizedListInitFailed); |
| 5831 | } |
| 5832 | |
| 5833 | return false; |
| 5834 | } |
| 5835 | if (!VerifyOnly) { |
| 5836 | ExprResult ER; |
| 5837 | ER = IS.Perform(S, Entity: SubEntity, Kind: SubKind, |
| 5838 | Args: Arg ? MultiExprArg(Arg) : MutableArrayRef<Expr *>()); |
| 5839 | |
| 5840 | if (ER.isInvalid()) |
| 5841 | return false; |
| 5842 | |
| 5843 | if (InitExpr) |
| 5844 | *InitExpr = ER.get(); |
| 5845 | else |
| 5846 | InitExprs.push_back(Elt: ER.get()); |
| 5847 | } |
| 5848 | return true; |
| 5849 | }; |
| 5850 | |
| 5851 | if (const ArrayType *AT = |
| 5852 | S.getASTContext().getAsArrayType(T: Entity.getType())) { |
| 5853 | uint64_t ArrayLength; |
| 5854 | // C++ [dcl.init]p16.5 |
| 5855 | // if the destination type is an array, the object is initialized as |
| 5856 | // follows. Let x1, . . . , xk be the elements of the expression-list. If |
| 5857 | // the destination type is an array of unknown bound, it is defined as |
| 5858 | // having k elements. |
| 5859 | if (const ConstantArrayType *CAT = |
| 5860 | S.getASTContext().getAsConstantArrayType(T: Entity.getType())) { |
| 5861 | ArrayLength = CAT->getZExtSize(); |
| 5862 | ResultType = Entity.getType(); |
| 5863 | } else if (const VariableArrayType *VAT = |
| 5864 | S.getASTContext().getAsVariableArrayType(T: Entity.getType())) { |
| 5865 | // Braced-initialization of variable array types is not allowed, even if |
| 5866 | // the size is greater than or equal to the number of args, so we don't |
| 5867 | // allow them to be initialized via parenthesized aggregate initialization |
| 5868 | // either. |
| 5869 | const Expr *SE = VAT->getSizeExpr(); |
| 5870 | S.Diag(SE->getBeginLoc(), diag::err_variable_object_no_init) |
| 5871 | << SE->getSourceRange(); |
| 5872 | return; |
| 5873 | } else { |
| 5874 | assert(Entity.getType()->isIncompleteArrayType()); |
| 5875 | ArrayLength = Args.size(); |
| 5876 | } |
| 5877 | EntityIndexToProcess = ArrayLength; |
| 5878 | |
| 5879 | // ...the ith array element is copy-initialized with xi for each |
| 5880 | // 1 <= i <= k |
| 5881 | for (Expr *E : Args) { |
| 5882 | InitializedEntity SubEntity = InitializedEntity::InitializeElement( |
| 5883 | Context&: S.getASTContext(), Index: EntityIndexToProcess, Parent: Entity); |
| 5884 | InitializationKind SubKind = InitializationKind::CreateForInit( |
| 5885 | Loc: E->getExprLoc(), /*isDirectInit=*/DirectInit: false, Init: E); |
| 5886 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
| 5887 | return; |
| 5888 | } |
| 5889 | // ...and value-initialized for each k < i <= n; |
| 5890 | if (ArrayLength > Args.size() || Entity.isVariableLengthArrayNew()) { |
| 5891 | InitializedEntity SubEntity = InitializedEntity::InitializeElement( |
| 5892 | Context&: S.getASTContext(), Index: Args.size(), Parent: Entity); |
| 5893 | InitializationKind SubKind = InitializationKind::CreateValue( |
| 5894 | InitLoc: Kind.getLocation(), LParenLoc: Kind.getLocation(), RParenLoc: Kind.getLocation(), isImplicit: true); |
| 5895 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr, &ArrayFiller)) |
| 5896 | return; |
| 5897 | } |
| 5898 | |
| 5899 | if (ResultType.isNull()) { |
| 5900 | ResultType = S.Context.getConstantArrayType( |
| 5901 | EltTy: AT->getElementType(), ArySize: llvm::APInt(/*numBits=*/32, ArrayLength), |
| 5902 | /*SizeExpr=*/nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 5903 | } |
| 5904 | } else if (auto *RT = Entity.getType()->getAs<RecordType>()) { |
| 5905 | bool IsUnion = RT->isUnionType(); |
| 5906 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 5907 | if (RD->isInvalidDecl()) { |
| 5908 | // Exit early to avoid confusion when processing members. |
| 5909 | // We do the same for braced list initialization in |
| 5910 | // `CheckStructUnionTypes`. |
| 5911 | Sequence.SetFailed( |
| 5912 | clang::InitializationSequence::FK_ParenthesizedListInitFailed); |
| 5913 | return; |
| 5914 | } |
| 5915 | |
| 5916 | if (!IsUnion) { |
| 5917 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
| 5918 | InitializedEntity SubEntity = InitializedEntity::InitializeBase( |
| 5919 | Context&: S.getASTContext(), Base: &Base, IsInheritedVirtualBase: false, Parent: &Entity); |
| 5920 | if (EntityIndexToProcess < Args.size()) { |
| 5921 | // C++ [dcl.init]p16.6.2.2. |
| 5922 | // ...the object is initialized is follows. Let e1, ..., en be the |
| 5923 | // elements of the aggregate([dcl.init.aggr]). Let x1, ..., xk be |
| 5924 | // the elements of the expression-list...The element ei is |
| 5925 | // copy-initialized with xi for 1 <= i <= k. |
| 5926 | Expr *E = Args[EntityIndexToProcess]; |
| 5927 | InitializationKind SubKind = InitializationKind::CreateForInit( |
| 5928 | Loc: E->getExprLoc(), /*isDirectInit=*/DirectInit: false, Init: E); |
| 5929 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
| 5930 | return; |
| 5931 | } else { |
| 5932 | // We've processed all of the args, but there are still base classes |
| 5933 | // that have to be initialized. |
| 5934 | // C++ [dcl.init]p17.6.2.2 |
| 5935 | // The remaining elements...otherwise are value initialzed |
| 5936 | InitializationKind SubKind = InitializationKind::CreateValue( |
| 5937 | InitLoc: Kind.getLocation(), LParenLoc: Kind.getLocation(), RParenLoc: Kind.getLocation(), |
| 5938 | /*IsImplicit=*/isImplicit: true); |
| 5939 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) |
| 5940 | return; |
| 5941 | } |
| 5942 | EntityIndexToProcess++; |
| 5943 | } |
| 5944 | } |
| 5945 | |
| 5946 | for (FieldDecl *FD : RD->fields()) { |
| 5947 | // Unnamed bitfields should not be initialized at all, either with an arg |
| 5948 | // or by default. |
| 5949 | if (FD->isUnnamedBitField()) |
| 5950 | continue; |
| 5951 | |
| 5952 | InitializedEntity SubEntity = |
| 5953 | InitializedEntity::InitializeMemberFromParenAggInit(FD); |
| 5954 | |
| 5955 | if (EntityIndexToProcess < Args.size()) { |
| 5956 | // ...The element ei is copy-initialized with xi for 1 <= i <= k. |
| 5957 | Expr *E = Args[EntityIndexToProcess]; |
| 5958 | |
| 5959 | // Incomplete array types indicate flexible array members. Do not allow |
| 5960 | // paren list initializations of structs with these members, as GCC |
| 5961 | // doesn't either. |
| 5962 | if (FD->getType()->isIncompleteArrayType()) { |
| 5963 | if (!VerifyOnly) { |
| 5964 | S.Diag(E->getBeginLoc(), diag::err_flexible_array_init) |
| 5965 | << SourceRange(E->getBeginLoc(), E->getEndLoc()); |
| 5966 | S.Diag(FD->getLocation(), diag::note_flexible_array_member) << FD; |
| 5967 | } |
| 5968 | Sequence.SetFailed( |
| 5969 | InitializationSequence::FK_ParenthesizedListInitFailed); |
| 5970 | return; |
| 5971 | } |
| 5972 | |
| 5973 | InitializationKind SubKind = InitializationKind::CreateForInit( |
| 5974 | E->getExprLoc(), /*isDirectInit=*/false, E); |
| 5975 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
| 5976 | return; |
| 5977 | |
| 5978 | // Unions should have only one initializer expression, so we bail out |
| 5979 | // after processing the first field. If there are more initializers then |
| 5980 | // it will be caught when we later check whether EntityIndexToProcess is |
| 5981 | // less than Args.size(); |
| 5982 | if (IsUnion) { |
| 5983 | InitializedFieldInUnion = FD; |
| 5984 | EntityIndexToProcess = 1; |
| 5985 | break; |
| 5986 | } |
| 5987 | } else { |
| 5988 | // We've processed all of the args, but there are still members that |
| 5989 | // have to be initialized. |
| 5990 | if (!VerifyOnly && FD->hasAttr<ExplicitInitAttr>()) { |
| 5991 | S.Diag(Kind.getLocation(), diag::warn_field_requires_explicit_init) |
| 5992 | << /* Var-in-Record */ 0 << FD; |
| 5993 | S.Diag(FD->getLocation(), diag::note_entity_declared_at) << FD; |
| 5994 | } |
| 5995 | |
| 5996 | if (FD->hasInClassInitializer()) { |
| 5997 | if (!VerifyOnly) { |
| 5998 | // C++ [dcl.init]p16.6.2.2 |
| 5999 | // The remaining elements are initialized with their default |
| 6000 | // member initializers, if any |
| 6001 | ExprResult DIE = S.BuildCXXDefaultInitExpr( |
| 6002 | Kind.getParenOrBraceRange().getEnd(), FD); |
| 6003 | if (DIE.isInvalid()) |
| 6004 | return; |
| 6005 | S.checkInitializerLifetime(SubEntity, DIE.get()); |
| 6006 | InitExprs.push_back(DIE.get()); |
| 6007 | } |
| 6008 | } else { |
| 6009 | // C++ [dcl.init]p17.6.2.2 |
| 6010 | // The remaining elements...otherwise are value initialzed |
| 6011 | if (FD->getType()->isReferenceType()) { |
| 6012 | Sequence.SetFailed( |
| 6013 | InitializationSequence::FK_ParenthesizedListInitFailed); |
| 6014 | if (!VerifyOnly) { |
| 6015 | SourceRange SR = Kind.getParenOrBraceRange(); |
| 6016 | S.Diag(SR.getEnd(), diag::err_init_reference_member_uninitialized) |
| 6017 | << FD->getType() << SR; |
| 6018 | S.Diag(FD->getLocation(), diag::note_uninit_reference_member); |
| 6019 | } |
| 6020 | return; |
| 6021 | } |
| 6022 | InitializationKind SubKind = InitializationKind::CreateValue( |
| 6023 | Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true); |
| 6024 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) |
| 6025 | return; |
| 6026 | } |
| 6027 | } |
| 6028 | EntityIndexToProcess++; |
| 6029 | } |
| 6030 | ResultType = Entity.getType(); |
| 6031 | } |
| 6032 | |
| 6033 | // Not all of the args have been processed, so there must've been more args |
| 6034 | // than were required to initialize the element. |
| 6035 | if (EntityIndexToProcess < Args.size()) { |
| 6036 | Sequence.SetFailed(InitializationSequence::FK_ParenthesizedListInitFailed); |
| 6037 | if (!VerifyOnly) { |
| 6038 | QualType T = Entity.getType(); |
| 6039 | int InitKind = T->isArrayType() ? 0 : T->isUnionType() ? 3 : 4; |
| 6040 | SourceRange ExcessInitSR(Args[EntityIndexToProcess]->getBeginLoc(), |
| 6041 | Args.back()->getEndLoc()); |
| 6042 | S.Diag(Kind.getLocation(), diag::err_excess_initializers) |
| 6043 | << InitKind << ExcessInitSR; |
| 6044 | } |
| 6045 | return; |
| 6046 | } |
| 6047 | |
| 6048 | if (VerifyOnly) { |
| 6049 | Sequence.setSequenceKind(InitializationSequence::NormalSequence); |
| 6050 | Sequence.AddParenthesizedListInitStep(T: Entity.getType()); |
| 6051 | } else if (Result) { |
| 6052 | SourceRange SR = Kind.getParenOrBraceRange(); |
| 6053 | auto *CPLIE = CXXParenListInitExpr::Create( |
| 6054 | C&: S.getASTContext(), Args: InitExprs, T: ResultType, NumUserSpecifiedExprs: Args.size(), |
| 6055 | InitLoc: Kind.getLocation(), LParenLoc: SR.getBegin(), RParenLoc: SR.getEnd()); |
| 6056 | if (ArrayFiller) |
| 6057 | CPLIE->setArrayFiller(ArrayFiller); |
| 6058 | if (InitializedFieldInUnion) |
| 6059 | CPLIE->setInitializedFieldInUnion(InitializedFieldInUnion); |
| 6060 | *Result = CPLIE; |
| 6061 | S.Diag(Kind.getLocation(), |
| 6062 | diag::warn_cxx17_compat_aggregate_init_paren_list) |
| 6063 | << Kind.getLocation() << SR << ResultType; |
| 6064 | } |
| 6065 | } |
| 6066 | |
| 6067 | /// Attempt a user-defined conversion between two types (C++ [dcl.init]), |
| 6068 | /// which enumerates all conversion functions and performs overload resolution |
| 6069 | /// to select the best. |
| 6070 | static void TryUserDefinedConversion(Sema &S, |
| 6071 | QualType DestType, |
| 6072 | const InitializationKind &Kind, |
| 6073 | Expr *Initializer, |
| 6074 | InitializationSequence &Sequence, |
| 6075 | bool TopLevelOfInitList) { |
| 6076 | assert(!DestType->isReferenceType() && "References are handled elsewhere" ); |
| 6077 | QualType SourceType = Initializer->getType(); |
| 6078 | assert((DestType->isRecordType() || SourceType->isRecordType()) && |
| 6079 | "Must have a class type to perform a user-defined conversion" ); |
| 6080 | |
| 6081 | // Build the candidate set directly in the initialization sequence |
| 6082 | // structure, so that it will persist if we fail. |
| 6083 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
| 6084 | CandidateSet.clear(CSK: OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| 6085 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
| 6086 | |
| 6087 | // Determine whether we are allowed to call explicit constructors or |
| 6088 | // explicit conversion operators. |
| 6089 | bool AllowExplicit = Kind.AllowExplicit(); |
| 6090 | |
| 6091 | if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { |
| 6092 | // The type we're converting to is a class type. Enumerate its constructors |
| 6093 | // to see if there is a suitable conversion. |
| 6094 | CXXRecordDecl *DestRecordDecl |
| 6095 | = cast<CXXRecordDecl>(Val: DestRecordType->getDecl()); |
| 6096 | |
| 6097 | // Try to complete the type we're converting to. |
| 6098 | if (S.isCompleteType(Loc: Kind.getLocation(), T: DestType)) { |
| 6099 | for (NamedDecl *D : S.LookupConstructors(Class: DestRecordDecl)) { |
| 6100 | auto Info = getConstructorInfo(ND: D); |
| 6101 | if (!Info.Constructor) |
| 6102 | continue; |
| 6103 | |
| 6104 | if (!Info.Constructor->isInvalidDecl() && |
| 6105 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { |
| 6106 | if (Info.ConstructorTmpl) |
| 6107 | S.AddTemplateOverloadCandidate( |
| 6108 | FunctionTemplate: Info.ConstructorTmpl, FoundDecl: Info.FoundDecl, |
| 6109 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, Args: Initializer, CandidateSet, |
| 6110 | /*SuppressUserConversions=*/true, |
| 6111 | /*PartialOverloading*/ false, AllowExplicit); |
| 6112 | else |
| 6113 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, |
| 6114 | Initializer, CandidateSet, |
| 6115 | /*SuppressUserConversions=*/true, |
| 6116 | /*PartialOverloading*/ false, AllowExplicit); |
| 6117 | } |
| 6118 | } |
| 6119 | } |
| 6120 | } |
| 6121 | |
| 6122 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
| 6123 | |
| 6124 | if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { |
| 6125 | // The type we're converting from is a class type, enumerate its conversion |
| 6126 | // functions. |
| 6127 | |
| 6128 | // We can only enumerate the conversion functions for a complete type; if |
| 6129 | // the type isn't complete, simply skip this step. |
| 6130 | if (S.isCompleteType(Loc: DeclLoc, T: SourceType)) { |
| 6131 | CXXRecordDecl *SourceRecordDecl |
| 6132 | = cast<CXXRecordDecl>(Val: SourceRecordType->getDecl()); |
| 6133 | |
| 6134 | const auto &Conversions = |
| 6135 | SourceRecordDecl->getVisibleConversionFunctions(); |
| 6136 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| 6137 | NamedDecl *D = *I; |
| 6138 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| 6139 | if (isa<UsingShadowDecl>(Val: D)) |
| 6140 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
| 6141 | |
| 6142 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D); |
| 6143 | CXXConversionDecl *Conv; |
| 6144 | if (ConvTemplate) |
| 6145 | Conv = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
| 6146 | else |
| 6147 | Conv = cast<CXXConversionDecl>(Val: D); |
| 6148 | |
| 6149 | if (ConvTemplate) |
| 6150 | S.AddTemplateConversionCandidate( |
| 6151 | FunctionTemplate: ConvTemplate, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, |
| 6152 | CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, AllowExplicit); |
| 6153 | else |
| 6154 | S.AddConversionCandidate(Conversion: Conv, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, |
| 6155 | ToType: DestType, CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, |
| 6156 | AllowExplicit); |
| 6157 | } |
| 6158 | } |
| 6159 | } |
| 6160 | |
| 6161 | // Perform overload resolution. If it fails, return the failed result. |
| 6162 | OverloadCandidateSet::iterator Best; |
| 6163 | if (OverloadingResult Result |
| 6164 | = CandidateSet.BestViableFunction(S, Loc: DeclLoc, Best)) { |
| 6165 | Sequence.SetOverloadFailure( |
| 6166 | Failure: InitializationSequence::FK_UserConversionOverloadFailed, Result); |
| 6167 | |
| 6168 | // [class.copy.elision]p3: |
| 6169 | // In some copy-initialization contexts, a two-stage overload resolution |
| 6170 | // is performed. |
| 6171 | // If the first overload resolution selects a deleted function, we also |
| 6172 | // need the initialization sequence to decide whether to perform the second |
| 6173 | // overload resolution. |
| 6174 | if (!(Result == OR_Deleted && |
| 6175 | Kind.getKind() == InitializationKind::IK_Copy)) |
| 6176 | return; |
| 6177 | } |
| 6178 | |
| 6179 | FunctionDecl *Function = Best->Function; |
| 6180 | Function->setReferenced(); |
| 6181 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 6182 | |
| 6183 | if (isa<CXXConstructorDecl>(Val: Function)) { |
| 6184 | // Add the user-defined conversion step. Any cv-qualification conversion is |
| 6185 | // subsumed by the initialization. Per DR5, the created temporary is of the |
| 6186 | // cv-unqualified type of the destination. |
| 6187 | Sequence.AddUserConversionStep(Function, FoundDecl: Best->FoundDecl, |
| 6188 | T: DestType.getUnqualifiedType(), |
| 6189 | HadMultipleCandidates); |
| 6190 | |
| 6191 | // C++14 and before: |
| 6192 | // - if the function is a constructor, the call initializes a temporary |
| 6193 | // of the cv-unqualified version of the destination type. The [...] |
| 6194 | // temporary [...] is then used to direct-initialize, according to the |
| 6195 | // rules above, the object that is the destination of the |
| 6196 | // copy-initialization. |
| 6197 | // Note that this just performs a simple object copy from the temporary. |
| 6198 | // |
| 6199 | // C++17: |
| 6200 | // - if the function is a constructor, the call is a prvalue of the |
| 6201 | // cv-unqualified version of the destination type whose return object |
| 6202 | // is initialized by the constructor. The call is used to |
| 6203 | // direct-initialize, according to the rules above, the object that |
| 6204 | // is the destination of the copy-initialization. |
| 6205 | // Therefore we need to do nothing further. |
| 6206 | // |
| 6207 | // FIXME: Mark this copy as extraneous. |
| 6208 | if (!S.getLangOpts().CPlusPlus17) |
| 6209 | Sequence.AddFinalCopy(T: DestType); |
| 6210 | else if (DestType.hasQualifiers()) |
| 6211 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
| 6212 | return; |
| 6213 | } |
| 6214 | |
| 6215 | // Add the user-defined conversion step that calls the conversion function. |
| 6216 | QualType ConvType = Function->getCallResultType(); |
| 6217 | Sequence.AddUserConversionStep(Function, FoundDecl: Best->FoundDecl, T: ConvType, |
| 6218 | HadMultipleCandidates); |
| 6219 | |
| 6220 | if (ConvType->getAs<RecordType>()) { |
| 6221 | // The call is used to direct-initialize [...] the object that is the |
| 6222 | // destination of the copy-initialization. |
| 6223 | // |
| 6224 | // In C++17, this does not call a constructor if we enter /17.6.1: |
| 6225 | // - If the initializer expression is a prvalue and the cv-unqualified |
| 6226 | // version of the source type is the same as the class of the |
| 6227 | // destination [... do not make an extra copy] |
| 6228 | // |
| 6229 | // FIXME: Mark this copy as extraneous. |
| 6230 | if (!S.getLangOpts().CPlusPlus17 || |
| 6231 | Function->getReturnType()->isReferenceType() || |
| 6232 | !S.Context.hasSameUnqualifiedType(T1: ConvType, T2: DestType)) |
| 6233 | Sequence.AddFinalCopy(T: DestType); |
| 6234 | else if (!S.Context.hasSameType(T1: ConvType, T2: DestType)) |
| 6235 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
| 6236 | return; |
| 6237 | } |
| 6238 | |
| 6239 | // If the conversion following the call to the conversion function |
| 6240 | // is interesting, add it as a separate step. |
| 6241 | assert(Best->HasFinalConversion); |
| 6242 | if (Best->FinalConversion.First || Best->FinalConversion.Second || |
| 6243 | Best->FinalConversion.Third) { |
| 6244 | ImplicitConversionSequence ICS; |
| 6245 | ICS.setStandard(); |
| 6246 | ICS.Standard = Best->FinalConversion; |
| 6247 | Sequence.AddConversionSequenceStep(ICS, T: DestType, TopLevelOfInitList); |
| 6248 | } |
| 6249 | } |
| 6250 | |
| 6251 | /// The non-zero enum values here are indexes into diagnostic alternatives. |
| 6252 | enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; |
| 6253 | |
| 6254 | /// Determines whether this expression is an acceptable ICR source. |
| 6255 | static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, |
| 6256 | bool isAddressOf, bool &isWeakAccess) { |
| 6257 | // Skip parens. |
| 6258 | e = e->IgnoreParens(); |
| 6259 | |
| 6260 | // Skip address-of nodes. |
| 6261 | if (UnaryOperator *op = dyn_cast<UnaryOperator>(Val: e)) { |
| 6262 | if (op->getOpcode() == UO_AddrOf) |
| 6263 | return isInvalidICRSource(C, e: op->getSubExpr(), /*addressof*/ isAddressOf: true, |
| 6264 | isWeakAccess); |
| 6265 | |
| 6266 | // Skip certain casts. |
| 6267 | } else if (CastExpr *ce = dyn_cast<CastExpr>(Val: e)) { |
| 6268 | switch (ce->getCastKind()) { |
| 6269 | case CK_Dependent: |
| 6270 | case CK_BitCast: |
| 6271 | case CK_LValueBitCast: |
| 6272 | case CK_NoOp: |
| 6273 | return isInvalidICRSource(C, e: ce->getSubExpr(), isAddressOf, isWeakAccess); |
| 6274 | |
| 6275 | case CK_ArrayToPointerDecay: |
| 6276 | return IIK_nonscalar; |
| 6277 | |
| 6278 | case CK_NullToPointer: |
| 6279 | return IIK_okay; |
| 6280 | |
| 6281 | default: |
| 6282 | break; |
| 6283 | } |
| 6284 | |
| 6285 | // If we have a declaration reference, it had better be a local variable. |
| 6286 | } else if (isa<DeclRefExpr>(Val: e)) { |
| 6287 | // set isWeakAccess to true, to mean that there will be an implicit |
| 6288 | // load which requires a cleanup. |
| 6289 | if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
| 6290 | isWeakAccess = true; |
| 6291 | |
| 6292 | if (!isAddressOf) return IIK_nonlocal; |
| 6293 | |
| 6294 | VarDecl *var = dyn_cast<VarDecl>(Val: cast<DeclRefExpr>(Val: e)->getDecl()); |
| 6295 | if (!var) return IIK_nonlocal; |
| 6296 | |
| 6297 | return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); |
| 6298 | |
| 6299 | // If we have a conditional operator, check both sides. |
| 6300 | } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(Val: e)) { |
| 6301 | if (InvalidICRKind iik = isInvalidICRSource(C, e: cond->getLHS(), isAddressOf, |
| 6302 | isWeakAccess)) |
| 6303 | return iik; |
| 6304 | |
| 6305 | return isInvalidICRSource(C, e: cond->getRHS(), isAddressOf, isWeakAccess); |
| 6306 | |
| 6307 | // These are never scalar. |
| 6308 | } else if (isa<ArraySubscriptExpr>(Val: e)) { |
| 6309 | return IIK_nonscalar; |
| 6310 | |
| 6311 | // Otherwise, it needs to be a null pointer constant. |
| 6312 | } else { |
| 6313 | return (e->isNullPointerConstant(Ctx&: C, NPC: Expr::NPC_ValueDependentIsNull) |
| 6314 | ? IIK_okay : IIK_nonlocal); |
| 6315 | } |
| 6316 | |
| 6317 | return IIK_nonlocal; |
| 6318 | } |
| 6319 | |
| 6320 | /// Check whether the given expression is a valid operand for an |
| 6321 | /// indirect copy/restore. |
| 6322 | static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { |
| 6323 | assert(src->isPRValue()); |
| 6324 | bool isWeakAccess = false; |
| 6325 | InvalidICRKind iik = isInvalidICRSource(C&: S.Context, e: src, isAddressOf: false, isWeakAccess); |
| 6326 | // If isWeakAccess to true, there will be an implicit |
| 6327 | // load which requires a cleanup. |
| 6328 | if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) |
| 6329 | S.Cleanup.setExprNeedsCleanups(true); |
| 6330 | |
| 6331 | if (iik == IIK_okay) return; |
| 6332 | |
| 6333 | S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) |
| 6334 | << ((unsigned) iik - 1) // shift index into diagnostic explanations |
| 6335 | << src->getSourceRange(); |
| 6336 | } |
| 6337 | |
| 6338 | /// Determine whether we have compatible array types for the |
| 6339 | /// purposes of GNU by-copy array initialization. |
| 6340 | static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, |
| 6341 | const ArrayType *Source) { |
| 6342 | // If the source and destination array types are equivalent, we're |
| 6343 | // done. |
| 6344 | if (Context.hasSameType(T1: QualType(Dest, 0), T2: QualType(Source, 0))) |
| 6345 | return true; |
| 6346 | |
| 6347 | // Make sure that the element types are the same. |
| 6348 | if (!Context.hasSameType(T1: Dest->getElementType(), T2: Source->getElementType())) |
| 6349 | return false; |
| 6350 | |
| 6351 | // The only mismatch we allow is when the destination is an |
| 6352 | // incomplete array type and the source is a constant array type. |
| 6353 | return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); |
| 6354 | } |
| 6355 | |
| 6356 | static bool tryObjCWritebackConversion(Sema &S, |
| 6357 | InitializationSequence &Sequence, |
| 6358 | const InitializedEntity &Entity, |
| 6359 | Expr *Initializer) { |
| 6360 | bool ArrayDecay = false; |
| 6361 | QualType ArgType = Initializer->getType(); |
| 6362 | QualType ArgPointee; |
| 6363 | if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(T: ArgType)) { |
| 6364 | ArrayDecay = true; |
| 6365 | ArgPointee = ArgArrayType->getElementType(); |
| 6366 | ArgType = S.Context.getPointerType(T: ArgPointee); |
| 6367 | } |
| 6368 | |
| 6369 | // Handle write-back conversion. |
| 6370 | QualType ConvertedArgType; |
| 6371 | if (!S.ObjC().isObjCWritebackConversion(FromType: ArgType, ToType: Entity.getType(), |
| 6372 | ConvertedType&: ConvertedArgType)) |
| 6373 | return false; |
| 6374 | |
| 6375 | // We should copy unless we're passing to an argument explicitly |
| 6376 | // marked 'out'. |
| 6377 | bool ShouldCopy = true; |
| 6378 | if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Val: Entity.getDecl())) |
| 6379 | ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
| 6380 | |
| 6381 | // Do we need an lvalue conversion? |
| 6382 | if (ArrayDecay || Initializer->isGLValue()) { |
| 6383 | ImplicitConversionSequence ICS; |
| 6384 | ICS.setStandard(); |
| 6385 | ICS.Standard.setAsIdentityConversion(); |
| 6386 | |
| 6387 | QualType ResultType; |
| 6388 | if (ArrayDecay) { |
| 6389 | ICS.Standard.First = ICK_Array_To_Pointer; |
| 6390 | ResultType = S.Context.getPointerType(T: ArgPointee); |
| 6391 | } else { |
| 6392 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
| 6393 | ResultType = Initializer->getType().getNonLValueExprType(Context: S.Context); |
| 6394 | } |
| 6395 | |
| 6396 | Sequence.AddConversionSequenceStep(ICS, T: ResultType); |
| 6397 | } |
| 6398 | |
| 6399 | Sequence.AddPassByIndirectCopyRestoreStep(type: Entity.getType(), shouldCopy: ShouldCopy); |
| 6400 | return true; |
| 6401 | } |
| 6402 | |
| 6403 | static bool TryOCLSamplerInitialization(Sema &S, |
| 6404 | InitializationSequence &Sequence, |
| 6405 | QualType DestType, |
| 6406 | Expr *Initializer) { |
| 6407 | if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || |
| 6408 | (!Initializer->isIntegerConstantExpr(Ctx: S.Context) && |
| 6409 | !Initializer->getType()->isSamplerT())) |
| 6410 | return false; |
| 6411 | |
| 6412 | Sequence.AddOCLSamplerInitStep(T: DestType); |
| 6413 | return true; |
| 6414 | } |
| 6415 | |
| 6416 | static bool IsZeroInitializer(const Expr *Init, ASTContext &Ctx) { |
| 6417 | std::optional<llvm::APSInt> Value = Init->getIntegerConstantExpr(Ctx); |
| 6418 | return Value && Value->isZero(); |
| 6419 | } |
| 6420 | |
| 6421 | static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, |
| 6422 | InitializationSequence &Sequence, |
| 6423 | QualType DestType, |
| 6424 | Expr *Initializer) { |
| 6425 | if (!S.getLangOpts().OpenCL) |
| 6426 | return false; |
| 6427 | |
| 6428 | // |
| 6429 | // OpenCL 1.2 spec, s6.12.10 |
| 6430 | // |
| 6431 | // The event argument can also be used to associate the |
| 6432 | // async_work_group_copy with a previous async copy allowing |
| 6433 | // an event to be shared by multiple async copies; otherwise |
| 6434 | // event should be zero. |
| 6435 | // |
| 6436 | if (DestType->isEventT() || DestType->isQueueT()) { |
| 6437 | if (!IsZeroInitializer(Init: Initializer, Ctx&: S.getASTContext())) |
| 6438 | return false; |
| 6439 | |
| 6440 | Sequence.AddOCLZeroOpaqueTypeStep(T: DestType); |
| 6441 | return true; |
| 6442 | } |
| 6443 | |
| 6444 | // We should allow zero initialization for all types defined in the |
| 6445 | // cl_intel_device_side_avc_motion_estimation extension, except |
| 6446 | // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. |
| 6447 | if (S.getOpenCLOptions().isAvailableOption( |
| 6448 | Ext: "cl_intel_device_side_avc_motion_estimation" , LO: S.getLangOpts()) && |
| 6449 | DestType->isOCLIntelSubgroupAVCType()) { |
| 6450 | if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || |
| 6451 | DestType->isOCLIntelSubgroupAVCMceResultType()) |
| 6452 | return false; |
| 6453 | if (!IsZeroInitializer(Init: Initializer, Ctx&: S.getASTContext())) |
| 6454 | return false; |
| 6455 | |
| 6456 | Sequence.AddOCLZeroOpaqueTypeStep(T: DestType); |
| 6457 | return true; |
| 6458 | } |
| 6459 | |
| 6460 | return false; |
| 6461 | } |
| 6462 | |
| 6463 | InitializationSequence::InitializationSequence( |
| 6464 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
| 6465 | MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) |
| 6466 | : FailedOverloadResult(OR_Success), |
| 6467 | FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { |
| 6468 | InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, |
| 6469 | TreatUnavailableAsInvalid); |
| 6470 | } |
| 6471 | |
| 6472 | /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the |
| 6473 | /// address of that function, this returns true. Otherwise, it returns false. |
| 6474 | static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { |
| 6475 | auto *DRE = dyn_cast<DeclRefExpr>(Val: E); |
| 6476 | if (!DRE || !isa<FunctionDecl>(Val: DRE->getDecl())) |
| 6477 | return false; |
| 6478 | |
| 6479 | return !S.checkAddressOfFunctionIsAvailable( |
| 6480 | Function: cast<FunctionDecl>(Val: DRE->getDecl())); |
| 6481 | } |
| 6482 | |
| 6483 | /// Determine whether we can perform an elementwise array copy for this kind |
| 6484 | /// of entity. |
| 6485 | static bool canPerformArrayCopy(const InitializedEntity &Entity) { |
| 6486 | switch (Entity.getKind()) { |
| 6487 | case InitializedEntity::EK_LambdaCapture: |
| 6488 | // C++ [expr.prim.lambda]p24: |
| 6489 | // For array members, the array elements are direct-initialized in |
| 6490 | // increasing subscript order. |
| 6491 | return true; |
| 6492 | |
| 6493 | case InitializedEntity::EK_Variable: |
| 6494 | // C++ [dcl.decomp]p1: |
| 6495 | // [...] each element is copy-initialized or direct-initialized from the |
| 6496 | // corresponding element of the assignment-expression [...] |
| 6497 | return isa<DecompositionDecl>(Val: Entity.getDecl()); |
| 6498 | |
| 6499 | case InitializedEntity::EK_Member: |
| 6500 | // C++ [class.copy.ctor]p14: |
| 6501 | // - if the member is an array, each element is direct-initialized with |
| 6502 | // the corresponding subobject of x |
| 6503 | return Entity.isImplicitMemberInitializer(); |
| 6504 | |
| 6505 | case InitializedEntity::EK_ArrayElement: |
| 6506 | // All the above cases are intended to apply recursively, even though none |
| 6507 | // of them actually say that. |
| 6508 | if (auto *E = Entity.getParent()) |
| 6509 | return canPerformArrayCopy(Entity: *E); |
| 6510 | break; |
| 6511 | |
| 6512 | default: |
| 6513 | break; |
| 6514 | } |
| 6515 | |
| 6516 | return false; |
| 6517 | } |
| 6518 | |
| 6519 | static const FieldDecl *getConstField(const RecordDecl *RD) { |
| 6520 | assert(!isa<CXXRecordDecl>(RD) && "Only expect to call this in C mode" ); |
| 6521 | for (const FieldDecl *FD : RD->fields()) { |
| 6522 | // If the field is a flexible array member, we don't want to consider it |
| 6523 | // as a const field because there's no way to initialize the FAM anyway. |
| 6524 | const ASTContext &Ctx = FD->getASTContext(); |
| 6525 | if (Decl::isFlexibleArrayMemberLike( |
| 6526 | Context: Ctx, D: FD, Ty: FD->getType(), |
| 6527 | StrictFlexArraysLevel: Ctx.getLangOpts().getStrictFlexArraysLevel(), |
| 6528 | /*IgnoreTemplateOrMacroSubstitution=*/true)) |
| 6529 | continue; |
| 6530 | |
| 6531 | QualType QT = FD->getType(); |
| 6532 | if (QT.isConstQualified()) |
| 6533 | return FD; |
| 6534 | if (const auto *RD = QT->getAsRecordDecl()) { |
| 6535 | if (const FieldDecl *FD = getConstField(RD)) |
| 6536 | return FD; |
| 6537 | } |
| 6538 | } |
| 6539 | return nullptr; |
| 6540 | } |
| 6541 | |
| 6542 | void InitializationSequence::InitializeFrom(Sema &S, |
| 6543 | const InitializedEntity &Entity, |
| 6544 | const InitializationKind &Kind, |
| 6545 | MultiExprArg Args, |
| 6546 | bool TopLevelOfInitList, |
| 6547 | bool TreatUnavailableAsInvalid) { |
| 6548 | ASTContext &Context = S.Context; |
| 6549 | |
| 6550 | // Eliminate non-overload placeholder types in the arguments. We |
| 6551 | // need to do this before checking whether types are dependent |
| 6552 | // because lowering a pseudo-object expression might well give us |
| 6553 | // something of dependent type. |
| 6554 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
| 6555 | if (Args[I]->getType()->isNonOverloadPlaceholderType()) { |
| 6556 | // FIXME: should we be doing this here? |
| 6557 | ExprResult result = S.CheckPlaceholderExpr(E: Args[I]); |
| 6558 | if (result.isInvalid()) { |
| 6559 | SetFailed(FK_PlaceholderType); |
| 6560 | return; |
| 6561 | } |
| 6562 | Args[I] = result.get(); |
| 6563 | } |
| 6564 | |
| 6565 | // C++0x [dcl.init]p16: |
| 6566 | // The semantics of initializers are as follows. The destination type is |
| 6567 | // the type of the object or reference being initialized and the source |
| 6568 | // type is the type of the initializer expression. The source type is not |
| 6569 | // defined when the initializer is a braced-init-list or when it is a |
| 6570 | // parenthesized list of expressions. |
| 6571 | QualType DestType = Entity.getType(); |
| 6572 | |
| 6573 | if (DestType->isDependentType() || |
| 6574 | Expr::hasAnyTypeDependentArguments(Exprs: Args)) { |
| 6575 | SequenceKind = DependentSequence; |
| 6576 | return; |
| 6577 | } |
| 6578 | |
| 6579 | // Almost everything is a normal sequence. |
| 6580 | setSequenceKind(NormalSequence); |
| 6581 | |
| 6582 | QualType SourceType; |
| 6583 | Expr *Initializer = nullptr; |
| 6584 | if (Args.size() == 1) { |
| 6585 | Initializer = Args[0]; |
| 6586 | if (S.getLangOpts().ObjC) { |
| 6587 | if (S.ObjC().CheckObjCBridgeRelatedConversions( |
| 6588 | Loc: Initializer->getBeginLoc(), DestType, SrcType: Initializer->getType(), |
| 6589 | SrcExpr&: Initializer) || |
| 6590 | S.ObjC().CheckConversionToObjCLiteral(DstType: DestType, SrcExpr&: Initializer)) |
| 6591 | Args[0] = Initializer; |
| 6592 | } |
| 6593 | if (!isa<InitListExpr>(Val: Initializer)) |
| 6594 | SourceType = Initializer->getType(); |
| 6595 | } |
| 6596 | |
| 6597 | // - If the initializer is a (non-parenthesized) braced-init-list, the |
| 6598 | // object is list-initialized (8.5.4). |
| 6599 | if (Kind.getKind() != InitializationKind::IK_Direct) { |
| 6600 | if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Val: Initializer)) { |
| 6601 | TryListInitialization(S, Entity, Kind, InitList, Sequence&: *this, |
| 6602 | TreatUnavailableAsInvalid); |
| 6603 | return; |
| 6604 | } |
| 6605 | } |
| 6606 | |
| 6607 | if (!S.getLangOpts().CPlusPlus && |
| 6608 | Kind.getKind() == InitializationKind::IK_Default) { |
| 6609 | if (RecordDecl *Rec = DestType->getAsRecordDecl()) { |
| 6610 | VarDecl *Var = dyn_cast_or_null<VarDecl>(Val: Entity.getDecl()); |
| 6611 | if (Rec->hasUninitializedExplicitInitFields()) { |
| 6612 | if (Var && !Initializer) { |
| 6613 | S.Diag(Var->getLocation(), diag::warn_field_requires_explicit_init) |
| 6614 | << /* Var-in-Record */ 1 << Rec; |
| 6615 | emitUninitializedExplicitInitFields(S, R: Rec); |
| 6616 | } |
| 6617 | } |
| 6618 | // If the record has any members which are const (recursively checked), |
| 6619 | // then we want to diagnose those as being uninitialized if there is no |
| 6620 | // initializer present. However, we only do this for structure types, not |
| 6621 | // union types, because an unitialized field in a union is generally |
| 6622 | // reasonable, especially in C where unions can be used for type punning. |
| 6623 | if (Var && !Initializer && !Rec->isUnion() && !Rec->isInvalidDecl()) { |
| 6624 | if (const FieldDecl *FD = getConstField(RD: Rec)) { |
| 6625 | unsigned DiagID = diag::warn_default_init_const_field_unsafe; |
| 6626 | if (Var->getStorageDuration() == SD_Static || |
| 6627 | Var->getStorageDuration() == SD_Thread) |
| 6628 | DiagID = diag::warn_default_init_const_field; |
| 6629 | |
| 6630 | bool EmitCppCompat = !S.Diags.isIgnored( |
| 6631 | diag::warn_cxx_compat_hack_fake_diagnostic_do_not_emit, |
| 6632 | Var->getLocation()); |
| 6633 | |
| 6634 | S.Diag(Var->getLocation(), DiagID) << Var->getType() << EmitCppCompat; |
| 6635 | S.Diag(FD->getLocation(), diag::note_default_init_const_member) << FD; |
| 6636 | } |
| 6637 | } |
| 6638 | } |
| 6639 | } |
| 6640 | |
| 6641 | // - If the destination type is a reference type, see 8.5.3. |
| 6642 | if (DestType->isReferenceType()) { |
| 6643 | // C++0x [dcl.init.ref]p1: |
| 6644 | // A variable declared to be a T& or T&&, that is, "reference to type T" |
| 6645 | // (8.3.2), shall be initialized by an object, or function, of type T or |
| 6646 | // by an object that can be converted into a T. |
| 6647 | // (Therefore, multiple arguments are not permitted.) |
| 6648 | if (Args.size() != 1) |
| 6649 | SetFailed(FK_TooManyInitsForReference); |
| 6650 | // C++17 [dcl.init.ref]p5: |
| 6651 | // A reference [...] is initialized by an expression [...] as follows: |
| 6652 | // If the initializer is not an expression, presumably we should reject, |
| 6653 | // but the standard fails to actually say so. |
| 6654 | else if (isa<InitListExpr>(Val: Args[0])) |
| 6655 | SetFailed(FK_ParenthesizedListInitForReference); |
| 6656 | else |
| 6657 | TryReferenceInitialization(S, Entity, Kind, Initializer: Args[0], Sequence&: *this, |
| 6658 | TopLevelOfInitList); |
| 6659 | return; |
| 6660 | } |
| 6661 | |
| 6662 | // - If the initializer is (), the object is value-initialized. |
| 6663 | if (Kind.getKind() == InitializationKind::IK_Value || |
| 6664 | (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { |
| 6665 | TryValueInitialization(S, Entity, Kind, Sequence&: *this); |
| 6666 | return; |
| 6667 | } |
| 6668 | |
| 6669 | // Handle default initialization. |
| 6670 | if (Kind.getKind() == InitializationKind::IK_Default) { |
| 6671 | TryDefaultInitialization(S, Entity, Kind, Sequence&: *this); |
| 6672 | return; |
| 6673 | } |
| 6674 | |
| 6675 | // - If the destination type is an array of characters, an array of |
| 6676 | // char16_t, an array of char32_t, or an array of wchar_t, and the |
| 6677 | // initializer is a string literal, see 8.5.2. |
| 6678 | // - Otherwise, if the destination type is an array, the program is |
| 6679 | // ill-formed. |
| 6680 | // - Except in HLSL, where non-decaying array parameters behave like |
| 6681 | // non-array types for initialization. |
| 6682 | if (DestType->isArrayType() && !DestType->isArrayParameterType()) { |
| 6683 | const ArrayType *DestAT = Context.getAsArrayType(T: DestType); |
| 6684 | if (Initializer && isa<VariableArrayType>(Val: DestAT)) { |
| 6685 | SetFailed(FK_VariableLengthArrayHasInitializer); |
| 6686 | return; |
| 6687 | } |
| 6688 | |
| 6689 | if (Initializer) { |
| 6690 | switch (IsStringInit(Init: Initializer, AT: DestAT, Context)) { |
| 6691 | case SIF_None: |
| 6692 | TryStringLiteralInitialization(S, Entity, Kind, Initializer, Sequence&: *this); |
| 6693 | return; |
| 6694 | case SIF_NarrowStringIntoWideChar: |
| 6695 | SetFailed(FK_NarrowStringIntoWideCharArray); |
| 6696 | return; |
| 6697 | case SIF_WideStringIntoChar: |
| 6698 | SetFailed(FK_WideStringIntoCharArray); |
| 6699 | return; |
| 6700 | case SIF_IncompatWideStringIntoWideChar: |
| 6701 | SetFailed(FK_IncompatWideStringIntoWideChar); |
| 6702 | return; |
| 6703 | case SIF_PlainStringIntoUTF8Char: |
| 6704 | SetFailed(FK_PlainStringIntoUTF8Char); |
| 6705 | return; |
| 6706 | case SIF_UTF8StringIntoPlainChar: |
| 6707 | SetFailed(FK_UTF8StringIntoPlainChar); |
| 6708 | return; |
| 6709 | case SIF_Other: |
| 6710 | break; |
| 6711 | } |
| 6712 | } |
| 6713 | |
| 6714 | if (S.getLangOpts().HLSL && Initializer && isa<ConstantArrayType>(Val: DestAT)) { |
| 6715 | QualType SrcType = Entity.getType(); |
| 6716 | if (SrcType->isArrayParameterType()) |
| 6717 | SrcType = |
| 6718 | cast<ArrayParameterType>(Val&: SrcType)->getConstantArrayType(Ctx: Context); |
| 6719 | if (S.Context.hasSameUnqualifiedType(T1: DestType, T2: SrcType)) { |
| 6720 | TryArrayCopy(S, Kind, Entity, Initializer, DestType, Sequence&: *this, |
| 6721 | TreatUnavailableAsInvalid); |
| 6722 | return; |
| 6723 | } |
| 6724 | } |
| 6725 | |
| 6726 | // Some kinds of initialization permit an array to be initialized from |
| 6727 | // another array of the same type, and perform elementwise initialization. |
| 6728 | if (Initializer && isa<ConstantArrayType>(Val: DestAT) && |
| 6729 | S.Context.hasSameUnqualifiedType(T1: Initializer->getType(), |
| 6730 | T2: Entity.getType()) && |
| 6731 | canPerformArrayCopy(Entity)) { |
| 6732 | TryArrayCopy(S, Kind, Entity, Initializer, DestType, Sequence&: *this, |
| 6733 | TreatUnavailableAsInvalid); |
| 6734 | return; |
| 6735 | } |
| 6736 | |
| 6737 | // Note: as an GNU C extension, we allow initialization of an |
| 6738 | // array from a compound literal that creates an array of the same |
| 6739 | // type, so long as the initializer has no side effects. |
| 6740 | if (!S.getLangOpts().CPlusPlus && Initializer && |
| 6741 | isa<CompoundLiteralExpr>(Val: Initializer->IgnoreParens()) && |
| 6742 | Initializer->getType()->isArrayType()) { |
| 6743 | const ArrayType *SourceAT |
| 6744 | = Context.getAsArrayType(T: Initializer->getType()); |
| 6745 | if (!hasCompatibleArrayTypes(Context&: S.Context, Dest: DestAT, Source: SourceAT)) |
| 6746 | SetFailed(FK_ArrayTypeMismatch); |
| 6747 | else if (Initializer->HasSideEffects(Ctx: S.Context)) |
| 6748 | SetFailed(FK_NonConstantArrayInit); |
| 6749 | else { |
| 6750 | AddArrayInitStep(T: DestType, /*IsGNUExtension*/true); |
| 6751 | } |
| 6752 | } |
| 6753 | // Note: as a GNU C++ extension, we allow list-initialization of a |
| 6754 | // class member of array type from a parenthesized initializer list. |
| 6755 | else if (S.getLangOpts().CPlusPlus && |
| 6756 | Entity.getKind() == InitializedEntity::EK_Member && |
| 6757 | isa_and_nonnull<InitListExpr>(Val: Initializer)) { |
| 6758 | TryListInitialization(S, Entity, Kind, InitList: cast<InitListExpr>(Val: Initializer), |
| 6759 | Sequence&: *this, TreatUnavailableAsInvalid); |
| 6760 | AddParenthesizedArrayInitStep(T: DestType); |
| 6761 | } else if (S.getLangOpts().CPlusPlus20 && !TopLevelOfInitList && |
| 6762 | Kind.getKind() == InitializationKind::IK_Direct) |
| 6763 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence&: *this, |
| 6764 | /*VerifyOnly=*/true); |
| 6765 | else if (DestAT->getElementType()->isCharType()) |
| 6766 | SetFailed(FK_ArrayNeedsInitListOrStringLiteral); |
| 6767 | else if (IsWideCharCompatible(T: DestAT->getElementType(), Context)) |
| 6768 | SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); |
| 6769 | else |
| 6770 | SetFailed(FK_ArrayNeedsInitList); |
| 6771 | |
| 6772 | return; |
| 6773 | } |
| 6774 | |
| 6775 | // Determine whether we should consider writeback conversions for |
| 6776 | // Objective-C ARC. |
| 6777 | bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && |
| 6778 | Entity.isParameterKind(); |
| 6779 | |
| 6780 | if (TryOCLSamplerInitialization(S, Sequence&: *this, DestType, Initializer)) |
| 6781 | return; |
| 6782 | |
| 6783 | // We're at the end of the line for C: it's either a write-back conversion |
| 6784 | // or it's a C assignment. There's no need to check anything else. |
| 6785 | if (!S.getLangOpts().CPlusPlus) { |
| 6786 | assert(Initializer && "Initializer must be non-null" ); |
| 6787 | // If allowed, check whether this is an Objective-C writeback conversion. |
| 6788 | if (allowObjCWritebackConversion && |
| 6789 | tryObjCWritebackConversion(S, Sequence&: *this, Entity, Initializer)) { |
| 6790 | return; |
| 6791 | } |
| 6792 | |
| 6793 | if (TryOCLZeroOpaqueTypeInitialization(S, Sequence&: *this, DestType, Initializer)) |
| 6794 | return; |
| 6795 | |
| 6796 | // Handle initialization in C |
| 6797 | AddCAssignmentStep(T: DestType); |
| 6798 | MaybeProduceObjCObject(S, Sequence&: *this, Entity); |
| 6799 | return; |
| 6800 | } |
| 6801 | |
| 6802 | assert(S.getLangOpts().CPlusPlus); |
| 6803 | |
| 6804 | // - If the destination type is a (possibly cv-qualified) class type: |
| 6805 | if (DestType->isRecordType()) { |
| 6806 | // - If the initialization is direct-initialization, or if it is |
| 6807 | // copy-initialization where the cv-unqualified version of the |
| 6808 | // source type is the same class as, or a derived class of, the |
| 6809 | // class of the destination, constructors are considered. [...] |
| 6810 | if (Kind.getKind() == InitializationKind::IK_Direct || |
| 6811 | (Kind.getKind() == InitializationKind::IK_Copy && |
| 6812 | (Context.hasSameUnqualifiedType(T1: SourceType, T2: DestType) || |
| 6813 | (Initializer && S.IsDerivedFrom(Initializer->getBeginLoc(), |
| 6814 | SourceType, DestType))))) { |
| 6815 | TryConstructorOrParenListInitialization(S, Entity, Kind, Args, DestType, |
| 6816 | Sequence&: *this, /*IsAggrListInit=*/false); |
| 6817 | } else { |
| 6818 | // - Otherwise (i.e., for the remaining copy-initialization cases), |
| 6819 | // user-defined conversion sequences that can convert from the |
| 6820 | // source type to the destination type or (when a conversion |
| 6821 | // function is used) to a derived class thereof are enumerated as |
| 6822 | // described in 13.3.1.4, and the best one is chosen through |
| 6823 | // overload resolution (13.3). |
| 6824 | assert(Initializer && "Initializer must be non-null" ); |
| 6825 | TryUserDefinedConversion(S, DestType, Kind, Initializer, Sequence&: *this, |
| 6826 | TopLevelOfInitList); |
| 6827 | } |
| 6828 | return; |
| 6829 | } |
| 6830 | |
| 6831 | assert(Args.size() >= 1 && "Zero-argument case handled above" ); |
| 6832 | |
| 6833 | // For HLSL ext vector types we allow list initialization behavior for C++ |
| 6834 | // constructor syntax. This is accomplished by converting initialization |
| 6835 | // arguments an InitListExpr late. |
| 6836 | if (S.getLangOpts().HLSL && Args.size() > 1 && DestType->isExtVectorType() && |
| 6837 | (SourceType.isNull() || |
| 6838 | !Context.hasSameUnqualifiedType(T1: SourceType, T2: DestType))) { |
| 6839 | |
| 6840 | llvm::SmallVector<Expr *> InitArgs; |
| 6841 | for (auto *Arg : Args) { |
| 6842 | if (Arg->getType()->isExtVectorType()) { |
| 6843 | const auto *VTy = Arg->getType()->castAs<ExtVectorType>(); |
| 6844 | unsigned Elm = VTy->getNumElements(); |
| 6845 | for (unsigned Idx = 0; Idx < Elm; ++Idx) { |
| 6846 | InitArgs.emplace_back(Args: new (Context) ArraySubscriptExpr( |
| 6847 | Arg, |
| 6848 | IntegerLiteral::Create( |
| 6849 | Context, llvm::APInt(Context.getIntWidth(T: Context.IntTy), Idx), |
| 6850 | Context.IntTy, SourceLocation()), |
| 6851 | VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(), |
| 6852 | SourceLocation())); |
| 6853 | } |
| 6854 | } else |
| 6855 | InitArgs.emplace_back(Args&: Arg); |
| 6856 | } |
| 6857 | InitListExpr *ILE = new (Context) InitListExpr( |
| 6858 | S.getASTContext(), SourceLocation(), InitArgs, SourceLocation()); |
| 6859 | Args[0] = ILE; |
| 6860 | AddListInitializationStep(T: DestType); |
| 6861 | return; |
| 6862 | } |
| 6863 | |
| 6864 | // The remaining cases all need a source type. |
| 6865 | if (Args.size() > 1) { |
| 6866 | SetFailed(FK_TooManyInitsForScalar); |
| 6867 | return; |
| 6868 | } else if (isa<InitListExpr>(Val: Args[0])) { |
| 6869 | SetFailed(FK_ParenthesizedListInitForScalar); |
| 6870 | return; |
| 6871 | } |
| 6872 | |
| 6873 | // - Otherwise, if the source type is a (possibly cv-qualified) class |
| 6874 | // type, conversion functions are considered. |
| 6875 | if (!SourceType.isNull() && SourceType->isRecordType()) { |
| 6876 | assert(Initializer && "Initializer must be non-null" ); |
| 6877 | // For a conversion to _Atomic(T) from either T or a class type derived |
| 6878 | // from T, initialize the T object then convert to _Atomic type. |
| 6879 | bool NeedAtomicConversion = false; |
| 6880 | if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { |
| 6881 | if (Context.hasSameUnqualifiedType(T1: SourceType, T2: Atomic->getValueType()) || |
| 6882 | S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, |
| 6883 | Atomic->getValueType())) { |
| 6884 | DestType = Atomic->getValueType(); |
| 6885 | NeedAtomicConversion = true; |
| 6886 | } |
| 6887 | } |
| 6888 | |
| 6889 | TryUserDefinedConversion(S, DestType, Kind, Initializer, Sequence&: *this, |
| 6890 | TopLevelOfInitList); |
| 6891 | MaybeProduceObjCObject(S, Sequence&: *this, Entity); |
| 6892 | if (!Failed() && NeedAtomicConversion) |
| 6893 | AddAtomicConversionStep(Ty: Entity.getType()); |
| 6894 | return; |
| 6895 | } |
| 6896 | |
| 6897 | // - Otherwise, if the initialization is direct-initialization, the source |
| 6898 | // type is std::nullptr_t, and the destination type is bool, the initial |
| 6899 | // value of the object being initialized is false. |
| 6900 | if (!SourceType.isNull() && SourceType->isNullPtrType() && |
| 6901 | DestType->isBooleanType() && |
| 6902 | Kind.getKind() == InitializationKind::IK_Direct) { |
| 6903 | AddConversionSequenceStep( |
| 6904 | ICS: ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, |
| 6905 | NeedLValToRVal: Initializer->isGLValue()), |
| 6906 | T: DestType); |
| 6907 | return; |
| 6908 | } |
| 6909 | |
| 6910 | // - Otherwise, the initial value of the object being initialized is the |
| 6911 | // (possibly converted) value of the initializer expression. Standard |
| 6912 | // conversions (Clause 4) will be used, if necessary, to convert the |
| 6913 | // initializer expression to the cv-unqualified version of the |
| 6914 | // destination type; no user-defined conversions are considered. |
| 6915 | |
| 6916 | ImplicitConversionSequence ICS |
| 6917 | = S.TryImplicitConversion(From: Initializer, ToType: DestType, |
| 6918 | /*SuppressUserConversions*/true, |
| 6919 | AllowExplicit: Sema::AllowedExplicit::None, |
| 6920 | /*InOverloadResolution*/ false, |
| 6921 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
| 6922 | AllowObjCWritebackConversion: allowObjCWritebackConversion); |
| 6923 | |
| 6924 | if (ICS.isStandard() && |
| 6925 | ICS.Standard.Second == ICK_Writeback_Conversion) { |
| 6926 | // Objective-C ARC writeback conversion. |
| 6927 | |
| 6928 | // We should copy unless we're passing to an argument explicitly |
| 6929 | // marked 'out'. |
| 6930 | bool ShouldCopy = true; |
| 6931 | if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Val: Entity.getDecl())) |
| 6932 | ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
| 6933 | |
| 6934 | // If there was an lvalue adjustment, add it as a separate conversion. |
| 6935 | if (ICS.Standard.First == ICK_Array_To_Pointer || |
| 6936 | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { |
| 6937 | ImplicitConversionSequence LvalueICS; |
| 6938 | LvalueICS.setStandard(); |
| 6939 | LvalueICS.Standard.setAsIdentityConversion(); |
| 6940 | LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(Idx: 0)); |
| 6941 | LvalueICS.Standard.First = ICS.Standard.First; |
| 6942 | AddConversionSequenceStep(ICS: LvalueICS, T: ICS.Standard.getToType(Idx: 0)); |
| 6943 | } |
| 6944 | |
| 6945 | AddPassByIndirectCopyRestoreStep(type: DestType, shouldCopy: ShouldCopy); |
| 6946 | } else if (ICS.isBad()) { |
| 6947 | if (DeclAccessPair Found; |
| 6948 | Initializer->getType() == Context.OverloadTy && |
| 6949 | !S.ResolveAddressOfOverloadedFunction(AddressOfExpr: Initializer, TargetType: DestType, |
| 6950 | /*Complain=*/false, Found)) |
| 6951 | SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| 6952 | else if (Initializer->getType()->isFunctionType() && |
| 6953 | isExprAnUnaddressableFunction(S, E: Initializer)) |
| 6954 | SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); |
| 6955 | else |
| 6956 | SetFailed(InitializationSequence::FK_ConversionFailed); |
| 6957 | } else { |
| 6958 | AddConversionSequenceStep(ICS, T: DestType, TopLevelOfInitList); |
| 6959 | |
| 6960 | MaybeProduceObjCObject(S, Sequence&: *this, Entity); |
| 6961 | } |
| 6962 | } |
| 6963 | |
| 6964 | InitializationSequence::~InitializationSequence() { |
| 6965 | for (auto &S : Steps) |
| 6966 | S.Destroy(); |
| 6967 | } |
| 6968 | |
| 6969 | //===----------------------------------------------------------------------===// |
| 6970 | // Perform initialization |
| 6971 | //===----------------------------------------------------------------------===// |
| 6972 | static AssignmentAction getAssignmentAction(const InitializedEntity &Entity, |
| 6973 | bool Diagnose = false) { |
| 6974 | switch(Entity.getKind()) { |
| 6975 | case InitializedEntity::EK_Variable: |
| 6976 | case InitializedEntity::EK_New: |
| 6977 | case InitializedEntity::EK_Exception: |
| 6978 | case InitializedEntity::EK_Base: |
| 6979 | case InitializedEntity::EK_Delegating: |
| 6980 | return AssignmentAction::Initializing; |
| 6981 | |
| 6982 | case InitializedEntity::EK_Parameter: |
| 6983 | if (Entity.getDecl() && |
| 6984 | isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) |
| 6985 | return AssignmentAction::Sending; |
| 6986 | |
| 6987 | return AssignmentAction::Passing; |
| 6988 | |
| 6989 | case InitializedEntity::EK_Parameter_CF_Audited: |
| 6990 | if (Entity.getDecl() && |
| 6991 | isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) |
| 6992 | return AssignmentAction::Sending; |
| 6993 | |
| 6994 | return !Diagnose ? AssignmentAction::Passing |
| 6995 | : AssignmentAction::Passing_CFAudited; |
| 6996 | |
| 6997 | case InitializedEntity::EK_Result: |
| 6998 | case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. |
| 6999 | return AssignmentAction::Returning; |
| 7000 | |
| 7001 | case InitializedEntity::EK_Temporary: |
| 7002 | case InitializedEntity::EK_RelatedResult: |
| 7003 | // FIXME: Can we tell apart casting vs. converting? |
| 7004 | return AssignmentAction::Casting; |
| 7005 | |
| 7006 | case InitializedEntity::EK_TemplateParameter: |
| 7007 | // This is really initialization, but refer to it as conversion for |
| 7008 | // consistency with CheckConvertedConstantExpression. |
| 7009 | return AssignmentAction::Converting; |
| 7010 | |
| 7011 | case InitializedEntity::EK_Member: |
| 7012 | case InitializedEntity::EK_ParenAggInitMember: |
| 7013 | case InitializedEntity::EK_Binding: |
| 7014 | case InitializedEntity::EK_ArrayElement: |
| 7015 | case InitializedEntity::EK_VectorElement: |
| 7016 | case InitializedEntity::EK_ComplexElement: |
| 7017 | case InitializedEntity::EK_BlockElement: |
| 7018 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| 7019 | case InitializedEntity::EK_LambdaCapture: |
| 7020 | case InitializedEntity::EK_CompoundLiteralInit: |
| 7021 | return AssignmentAction::Initializing; |
| 7022 | } |
| 7023 | |
| 7024 | llvm_unreachable("Invalid EntityKind!" ); |
| 7025 | } |
| 7026 | |
| 7027 | /// Whether we should bind a created object as a temporary when |
| 7028 | /// initializing the given entity. |
| 7029 | static bool shouldBindAsTemporary(const InitializedEntity &Entity) { |
| 7030 | switch (Entity.getKind()) { |
| 7031 | case InitializedEntity::EK_ArrayElement: |
| 7032 | case InitializedEntity::EK_Member: |
| 7033 | case InitializedEntity::EK_ParenAggInitMember: |
| 7034 | case InitializedEntity::EK_Result: |
| 7035 | case InitializedEntity::EK_StmtExprResult: |
| 7036 | case InitializedEntity::EK_New: |
| 7037 | case InitializedEntity::EK_Variable: |
| 7038 | case InitializedEntity::EK_Base: |
| 7039 | case InitializedEntity::EK_Delegating: |
| 7040 | case InitializedEntity::EK_VectorElement: |
| 7041 | case InitializedEntity::EK_ComplexElement: |
| 7042 | case InitializedEntity::EK_Exception: |
| 7043 | case InitializedEntity::EK_BlockElement: |
| 7044 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| 7045 | case InitializedEntity::EK_LambdaCapture: |
| 7046 | case InitializedEntity::EK_CompoundLiteralInit: |
| 7047 | case InitializedEntity::EK_TemplateParameter: |
| 7048 | return false; |
| 7049 | |
| 7050 | case InitializedEntity::EK_Parameter: |
| 7051 | case InitializedEntity::EK_Parameter_CF_Audited: |
| 7052 | case InitializedEntity::EK_Temporary: |
| 7053 | case InitializedEntity::EK_RelatedResult: |
| 7054 | case InitializedEntity::EK_Binding: |
| 7055 | return true; |
| 7056 | } |
| 7057 | |
| 7058 | llvm_unreachable("missed an InitializedEntity kind?" ); |
| 7059 | } |
| 7060 | |
| 7061 | /// Whether the given entity, when initialized with an object |
| 7062 | /// created for that initialization, requires destruction. |
| 7063 | static bool shouldDestroyEntity(const InitializedEntity &Entity) { |
| 7064 | switch (Entity.getKind()) { |
| 7065 | case InitializedEntity::EK_Result: |
| 7066 | case InitializedEntity::EK_StmtExprResult: |
| 7067 | case InitializedEntity::EK_New: |
| 7068 | case InitializedEntity::EK_Base: |
| 7069 | case InitializedEntity::EK_Delegating: |
| 7070 | case InitializedEntity::EK_VectorElement: |
| 7071 | case InitializedEntity::EK_ComplexElement: |
| 7072 | case InitializedEntity::EK_BlockElement: |
| 7073 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| 7074 | case InitializedEntity::EK_LambdaCapture: |
| 7075 | return false; |
| 7076 | |
| 7077 | case InitializedEntity::EK_Member: |
| 7078 | case InitializedEntity::EK_ParenAggInitMember: |
| 7079 | case InitializedEntity::EK_Binding: |
| 7080 | case InitializedEntity::EK_Variable: |
| 7081 | case InitializedEntity::EK_Parameter: |
| 7082 | case InitializedEntity::EK_Parameter_CF_Audited: |
| 7083 | case InitializedEntity::EK_TemplateParameter: |
| 7084 | case InitializedEntity::EK_Temporary: |
| 7085 | case InitializedEntity::EK_ArrayElement: |
| 7086 | case InitializedEntity::EK_Exception: |
| 7087 | case InitializedEntity::EK_CompoundLiteralInit: |
| 7088 | case InitializedEntity::EK_RelatedResult: |
| 7089 | return true; |
| 7090 | } |
| 7091 | |
| 7092 | llvm_unreachable("missed an InitializedEntity kind?" ); |
| 7093 | } |
| 7094 | |
| 7095 | /// Get the location at which initialization diagnostics should appear. |
| 7096 | static SourceLocation getInitializationLoc(const InitializedEntity &Entity, |
| 7097 | Expr *Initializer) { |
| 7098 | switch (Entity.getKind()) { |
| 7099 | case InitializedEntity::EK_Result: |
| 7100 | case InitializedEntity::EK_StmtExprResult: |
| 7101 | return Entity.getReturnLoc(); |
| 7102 | |
| 7103 | case InitializedEntity::EK_Exception: |
| 7104 | return Entity.getThrowLoc(); |
| 7105 | |
| 7106 | case InitializedEntity::EK_Variable: |
| 7107 | case InitializedEntity::EK_Binding: |
| 7108 | return Entity.getDecl()->getLocation(); |
| 7109 | |
| 7110 | case InitializedEntity::EK_LambdaCapture: |
| 7111 | return Entity.getCaptureLoc(); |
| 7112 | |
| 7113 | case InitializedEntity::EK_ArrayElement: |
| 7114 | case InitializedEntity::EK_Member: |
| 7115 | case InitializedEntity::EK_ParenAggInitMember: |
| 7116 | case InitializedEntity::EK_Parameter: |
| 7117 | case InitializedEntity::EK_Parameter_CF_Audited: |
| 7118 | case InitializedEntity::EK_TemplateParameter: |
| 7119 | case InitializedEntity::EK_Temporary: |
| 7120 | case InitializedEntity::EK_New: |
| 7121 | case InitializedEntity::EK_Base: |
| 7122 | case InitializedEntity::EK_Delegating: |
| 7123 | case InitializedEntity::EK_VectorElement: |
| 7124 | case InitializedEntity::EK_ComplexElement: |
| 7125 | case InitializedEntity::EK_BlockElement: |
| 7126 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| 7127 | case InitializedEntity::EK_CompoundLiteralInit: |
| 7128 | case InitializedEntity::EK_RelatedResult: |
| 7129 | return Initializer->getBeginLoc(); |
| 7130 | } |
| 7131 | llvm_unreachable("missed an InitializedEntity kind?" ); |
| 7132 | } |
| 7133 | |
| 7134 | /// Make a (potentially elidable) temporary copy of the object |
| 7135 | /// provided by the given initializer by calling the appropriate copy |
| 7136 | /// constructor. |
| 7137 | /// |
| 7138 | /// \param S The Sema object used for type-checking. |
| 7139 | /// |
| 7140 | /// \param T The type of the temporary object, which must either be |
| 7141 | /// the type of the initializer expression or a superclass thereof. |
| 7142 | /// |
| 7143 | /// \param Entity The entity being initialized. |
| 7144 | /// |
| 7145 | /// \param CurInit The initializer expression. |
| 7146 | /// |
| 7147 | /// \param IsExtraneousCopy Whether this is an "extraneous" copy that |
| 7148 | /// is permitted in C++03 (but not C++0x) when binding a reference to |
| 7149 | /// an rvalue. |
| 7150 | /// |
| 7151 | /// \returns An expression that copies the initializer expression into |
| 7152 | /// a temporary object, or an error expression if a copy could not be |
| 7153 | /// created. |
| 7154 | static ExprResult CopyObject(Sema &S, |
| 7155 | QualType T, |
| 7156 | const InitializedEntity &Entity, |
| 7157 | ExprResult CurInit, |
| 7158 | bool ) { |
| 7159 | if (CurInit.isInvalid()) |
| 7160 | return CurInit; |
| 7161 | // Determine which class type we're copying to. |
| 7162 | Expr *CurInitExpr = (Expr *)CurInit.get(); |
| 7163 | CXXRecordDecl *Class = nullptr; |
| 7164 | if (const RecordType *Record = T->getAs<RecordType>()) |
| 7165 | Class = cast<CXXRecordDecl>(Val: Record->getDecl()); |
| 7166 | if (!Class) |
| 7167 | return CurInit; |
| 7168 | |
| 7169 | SourceLocation Loc = getInitializationLoc(Entity, Initializer: CurInit.get()); |
| 7170 | |
| 7171 | // Make sure that the type we are copying is complete. |
| 7172 | if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) |
| 7173 | return CurInit; |
| 7174 | |
| 7175 | // Perform overload resolution using the class's constructors. Per |
| 7176 | // C++11 [dcl.init]p16, second bullet for class types, this initialization |
| 7177 | // is direct-initialization. |
| 7178 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
| 7179 | DeclContext::lookup_result Ctors = S.LookupConstructors(Class); |
| 7180 | |
| 7181 | OverloadCandidateSet::iterator Best; |
| 7182 | switch (ResolveConstructorOverload( |
| 7183 | S, DeclLoc: Loc, Args: CurInitExpr, CandidateSet, DestType: T, Ctors, Best, |
| 7184 | /*CopyInitializing=*/false, /*AllowExplicit=*/true, |
| 7185 | /*OnlyListConstructors=*/false, /*IsListInit=*/false, |
| 7186 | /*RequireActualConstructor=*/false, |
| 7187 | /*SecondStepOfCopyInit=*/true)) { |
| 7188 | case OR_Success: |
| 7189 | break; |
| 7190 | |
| 7191 | case OR_No_Viable_Function: |
| 7192 | CandidateSet.NoteCandidates( |
| 7193 | PartialDiagnosticAt( |
| 7194 | Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() |
| 7195 | ? diag::ext_rvalue_to_reference_temp_copy_no_viable |
| 7196 | : diag::err_temp_copy_no_viable) |
| 7197 | << (int)Entity.getKind() << CurInitExpr->getType() |
| 7198 | << CurInitExpr->getSourceRange()), |
| 7199 | S, OCD_AllCandidates, CurInitExpr); |
| 7200 | if (!IsExtraneousCopy || S.isSFINAEContext()) |
| 7201 | return ExprError(); |
| 7202 | return CurInit; |
| 7203 | |
| 7204 | case OR_Ambiguous: |
| 7205 | CandidateSet.NoteCandidates( |
| 7206 | PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) |
| 7207 | << (int)Entity.getKind() |
| 7208 | << CurInitExpr->getType() |
| 7209 | << CurInitExpr->getSourceRange()), |
| 7210 | S, OCD_AmbiguousCandidates, CurInitExpr); |
| 7211 | return ExprError(); |
| 7212 | |
| 7213 | case OR_Deleted: |
| 7214 | S.Diag(Loc, diag::err_temp_copy_deleted) |
| 7215 | << (int)Entity.getKind() << CurInitExpr->getType() |
| 7216 | << CurInitExpr->getSourceRange(); |
| 7217 | S.NoteDeletedFunction(FD: Best->Function); |
| 7218 | return ExprError(); |
| 7219 | } |
| 7220 | |
| 7221 | bool HadMultipleCandidates = CandidateSet.size() > 1; |
| 7222 | |
| 7223 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Val: Best->Function); |
| 7224 | SmallVector<Expr*, 8> ConstructorArgs; |
| 7225 | CurInit.get(); // Ownership transferred into MultiExprArg, below. |
| 7226 | |
| 7227 | S.CheckConstructorAccess(Loc, D: Constructor, FoundDecl: Best->FoundDecl, Entity, |
| 7228 | IsCopyBindingRefToTemp: IsExtraneousCopy); |
| 7229 | |
| 7230 | if (IsExtraneousCopy) { |
| 7231 | // If this is a totally extraneous copy for C++03 reference |
| 7232 | // binding purposes, just return the original initialization |
| 7233 | // expression. We don't generate an (elided) copy operation here |
| 7234 | // because doing so would require us to pass down a flag to avoid |
| 7235 | // infinite recursion, where each step adds another extraneous, |
| 7236 | // elidable copy. |
| 7237 | |
| 7238 | // Instantiate the default arguments of any extra parameters in |
| 7239 | // the selected copy constructor, as if we were going to create a |
| 7240 | // proper call to the copy constructor. |
| 7241 | for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { |
| 7242 | ParmVarDecl *Parm = Constructor->getParamDecl(I); |
| 7243 | if (S.RequireCompleteType(Loc, Parm->getType(), |
| 7244 | diag::err_call_incomplete_argument)) |
| 7245 | break; |
| 7246 | |
| 7247 | // Build the default argument expression; we don't actually care |
| 7248 | // if this succeeds or not, because this routine will complain |
| 7249 | // if there was a problem. |
| 7250 | S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); |
| 7251 | } |
| 7252 | |
| 7253 | return CurInitExpr; |
| 7254 | } |
| 7255 | |
| 7256 | // Determine the arguments required to actually perform the |
| 7257 | // constructor call (we might have derived-to-base conversions, or |
| 7258 | // the copy constructor may have default arguments). |
| 7259 | if (S.CompleteConstructorCall(Constructor, DeclInitType: T, ArgsPtr: CurInitExpr, Loc, |
| 7260 | ConvertedArgs&: ConstructorArgs)) |
| 7261 | return ExprError(); |
| 7262 | |
| 7263 | // C++0x [class.copy]p32: |
| 7264 | // When certain criteria are met, an implementation is allowed to |
| 7265 | // omit the copy/move construction of a class object, even if the |
| 7266 | // copy/move constructor and/or destructor for the object have |
| 7267 | // side effects. [...] |
| 7268 | // - when a temporary class object that has not been bound to a |
| 7269 | // reference (12.2) would be copied/moved to a class object |
| 7270 | // with the same cv-unqualified type, the copy/move operation |
| 7271 | // can be omitted by constructing the temporary object |
| 7272 | // directly into the target of the omitted copy/move |
| 7273 | // |
| 7274 | // Note that the other three bullets are handled elsewhere. Copy |
| 7275 | // elision for return statements and throw expressions are handled as part |
| 7276 | // of constructor initialization, while copy elision for exception handlers |
| 7277 | // is handled by the run-time. |
| 7278 | // |
| 7279 | // FIXME: If the function parameter is not the same type as the temporary, we |
| 7280 | // should still be able to elide the copy, but we don't have a way to |
| 7281 | // represent in the AST how much should be elided in this case. |
| 7282 | bool Elidable = |
| 7283 | CurInitExpr->isTemporaryObject(Ctx&: S.Context, TempTy: Class) && |
| 7284 | S.Context.hasSameUnqualifiedType( |
| 7285 | T1: Best->Function->getParamDecl(i: 0)->getType().getNonReferenceType(), |
| 7286 | T2: CurInitExpr->getType()); |
| 7287 | |
| 7288 | // Actually perform the constructor call. |
| 7289 | CurInit = S.BuildCXXConstructExpr( |
| 7290 | ConstructLoc: Loc, DeclInitType: T, FoundDecl: Best->FoundDecl, Constructor, Elidable, Exprs: ConstructorArgs, |
| 7291 | HadMultipleCandidates, |
| 7292 | /*ListInit*/ IsListInitialization: false, |
| 7293 | /*StdInitListInit*/ IsStdInitListInitialization: false, |
| 7294 | /*ZeroInit*/ RequiresZeroInit: false, ConstructKind: CXXConstructionKind::Complete, ParenRange: SourceRange()); |
| 7295 | |
| 7296 | // If we're supposed to bind temporaries, do so. |
| 7297 | if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) |
| 7298 | CurInit = S.MaybeBindToTemporary(E: CurInit.getAs<Expr>()); |
| 7299 | return CurInit; |
| 7300 | } |
| 7301 | |
| 7302 | /// Check whether elidable copy construction for binding a reference to |
| 7303 | /// a temporary would have succeeded if we were building in C++98 mode, for |
| 7304 | /// -Wc++98-compat. |
| 7305 | static void CheckCXX98CompatAccessibleCopy(Sema &S, |
| 7306 | const InitializedEntity &Entity, |
| 7307 | Expr *CurInitExpr) { |
| 7308 | assert(S.getLangOpts().CPlusPlus11); |
| 7309 | |
| 7310 | const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); |
| 7311 | if (!Record) |
| 7312 | return; |
| 7313 | |
| 7314 | SourceLocation Loc = getInitializationLoc(Entity, Initializer: CurInitExpr); |
| 7315 | if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) |
| 7316 | return; |
| 7317 | |
| 7318 | // Find constructors which would have been considered. |
| 7319 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
| 7320 | DeclContext::lookup_result Ctors = |
| 7321 | S.LookupConstructors(Class: cast<CXXRecordDecl>(Val: Record->getDecl())); |
| 7322 | |
| 7323 | // Perform overload resolution. |
| 7324 | OverloadCandidateSet::iterator Best; |
| 7325 | OverloadingResult OR = ResolveConstructorOverload( |
| 7326 | S, DeclLoc: Loc, Args: CurInitExpr, CandidateSet, DestType: CurInitExpr->getType(), Ctors, Best, |
| 7327 | /*CopyInitializing=*/false, /*AllowExplicit=*/true, |
| 7328 | /*OnlyListConstructors=*/false, /*IsListInit=*/false, |
| 7329 | /*RequireActualConstructor=*/false, |
| 7330 | /*SecondStepOfCopyInit=*/true); |
| 7331 | |
| 7332 | PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) |
| 7333 | << OR << (int)Entity.getKind() << CurInitExpr->getType() |
| 7334 | << CurInitExpr->getSourceRange(); |
| 7335 | |
| 7336 | switch (OR) { |
| 7337 | case OR_Success: |
| 7338 | S.CheckConstructorAccess(Loc, D: cast<CXXConstructorDecl>(Val: Best->Function), |
| 7339 | FoundDecl: Best->FoundDecl, Entity, PDiag: Diag); |
| 7340 | // FIXME: Check default arguments as far as that's possible. |
| 7341 | break; |
| 7342 | |
| 7343 | case OR_No_Viable_Function: |
| 7344 | CandidateSet.NoteCandidates(PA: PartialDiagnosticAt(Loc, Diag), S, |
| 7345 | OCD: OCD_AllCandidates, Args: CurInitExpr); |
| 7346 | break; |
| 7347 | |
| 7348 | case OR_Ambiguous: |
| 7349 | CandidateSet.NoteCandidates(PA: PartialDiagnosticAt(Loc, Diag), S, |
| 7350 | OCD: OCD_AmbiguousCandidates, Args: CurInitExpr); |
| 7351 | break; |
| 7352 | |
| 7353 | case OR_Deleted: |
| 7354 | S.Diag(Loc, Diag); |
| 7355 | S.NoteDeletedFunction(FD: Best->Function); |
| 7356 | break; |
| 7357 | } |
| 7358 | } |
| 7359 | |
| 7360 | void InitializationSequence::PrintInitLocationNote(Sema &S, |
| 7361 | const InitializedEntity &Entity) { |
| 7362 | if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) { |
| 7363 | if (Entity.getDecl()->getLocation().isInvalid()) |
| 7364 | return; |
| 7365 | |
| 7366 | if (Entity.getDecl()->getDeclName()) |
| 7367 | S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) |
| 7368 | << Entity.getDecl()->getDeclName(); |
| 7369 | else |
| 7370 | S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); |
| 7371 | } |
| 7372 | else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && |
| 7373 | Entity.getMethodDecl()) |
| 7374 | S.Diag(Entity.getMethodDecl()->getLocation(), |
| 7375 | diag::note_method_return_type_change) |
| 7376 | << Entity.getMethodDecl()->getDeclName(); |
| 7377 | } |
| 7378 | |
| 7379 | /// Returns true if the parameters describe a constructor initialization of |
| 7380 | /// an explicit temporary object, e.g. "Point(x, y)". |
| 7381 | static bool isExplicitTemporary(const InitializedEntity &Entity, |
| 7382 | const InitializationKind &Kind, |
| 7383 | unsigned NumArgs) { |
| 7384 | switch (Entity.getKind()) { |
| 7385 | case InitializedEntity::EK_Temporary: |
| 7386 | case InitializedEntity::EK_CompoundLiteralInit: |
| 7387 | case InitializedEntity::EK_RelatedResult: |
| 7388 | break; |
| 7389 | default: |
| 7390 | return false; |
| 7391 | } |
| 7392 | |
| 7393 | switch (Kind.getKind()) { |
| 7394 | case InitializationKind::IK_DirectList: |
| 7395 | return true; |
| 7396 | // FIXME: Hack to work around cast weirdness. |
| 7397 | case InitializationKind::IK_Direct: |
| 7398 | case InitializationKind::IK_Value: |
| 7399 | return NumArgs != 1; |
| 7400 | default: |
| 7401 | return false; |
| 7402 | } |
| 7403 | } |
| 7404 | |
| 7405 | static ExprResult |
| 7406 | PerformConstructorInitialization(Sema &S, |
| 7407 | const InitializedEntity &Entity, |
| 7408 | const InitializationKind &Kind, |
| 7409 | MultiExprArg Args, |
| 7410 | const InitializationSequence::Step& Step, |
| 7411 | bool &ConstructorInitRequiresZeroInit, |
| 7412 | bool IsListInitialization, |
| 7413 | bool IsStdInitListInitialization, |
| 7414 | SourceLocation LBraceLoc, |
| 7415 | SourceLocation RBraceLoc) { |
| 7416 | unsigned NumArgs = Args.size(); |
| 7417 | CXXConstructorDecl *Constructor |
| 7418 | = cast<CXXConstructorDecl>(Val: Step.Function.Function); |
| 7419 | bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; |
| 7420 | |
| 7421 | // Build a call to the selected constructor. |
| 7422 | SmallVector<Expr*, 8> ConstructorArgs; |
| 7423 | SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) |
| 7424 | ? Kind.getEqualLoc() |
| 7425 | : Kind.getLocation(); |
| 7426 | |
| 7427 | if (Kind.getKind() == InitializationKind::IK_Default) { |
| 7428 | // Force even a trivial, implicit default constructor to be |
| 7429 | // semantically checked. We do this explicitly because we don't build |
| 7430 | // the definition for completely trivial constructors. |
| 7431 | assert(Constructor->getParent() && "No parent class for constructor." ); |
| 7432 | if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && |
| 7433 | Constructor->isTrivial() && !Constructor->isUsed(false)) { |
| 7434 | S.runWithSufficientStackSpace(Loc, Fn: [&] { |
| 7435 | S.DefineImplicitDefaultConstructor(CurrentLocation: Loc, Constructor); |
| 7436 | }); |
| 7437 | } |
| 7438 | } |
| 7439 | |
| 7440 | ExprResult CurInit((Expr *)nullptr); |
| 7441 | |
| 7442 | // C++ [over.match.copy]p1: |
| 7443 | // - When initializing a temporary to be bound to the first parameter |
| 7444 | // of a constructor that takes a reference to possibly cv-qualified |
| 7445 | // T as its first argument, called with a single argument in the |
| 7446 | // context of direct-initialization, explicit conversion functions |
| 7447 | // are also considered. |
| 7448 | bool AllowExplicitConv = |
| 7449 | Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && |
| 7450 | hasCopyOrMoveCtorParam(Ctx&: S.Context, |
| 7451 | Info: getConstructorInfo(ND: Step.Function.FoundDecl)); |
| 7452 | |
| 7453 | // A smart pointer constructed from a nullable pointer is nullable. |
| 7454 | if (NumArgs == 1 && !Kind.isExplicitCast()) |
| 7455 | S.diagnoseNullableToNonnullConversion( |
| 7456 | DstType: Entity.getType(), SrcType: Args.front()->getType(), Loc: Kind.getLocation()); |
| 7457 | |
| 7458 | // Determine the arguments required to actually perform the constructor |
| 7459 | // call. |
| 7460 | if (S.CompleteConstructorCall(Constructor, DeclInitType: Step.Type, ArgsPtr: Args, Loc, |
| 7461 | ConvertedArgs&: ConstructorArgs, AllowExplicit: AllowExplicitConv, |
| 7462 | IsListInitialization)) |
| 7463 | return ExprError(); |
| 7464 | |
| 7465 | if (isExplicitTemporary(Entity, Kind, NumArgs)) { |
| 7466 | // An explicitly-constructed temporary, e.g., X(1, 2). |
| 7467 | if (S.DiagnoseUseOfDecl(D: Step.Function.FoundDecl, Locs: Loc)) |
| 7468 | return ExprError(); |
| 7469 | |
| 7470 | if (Kind.getKind() == InitializationKind::IK_Value && |
| 7471 | Constructor->isImplicit()) { |
| 7472 | auto *RD = Step.Type.getCanonicalType()->getAsCXXRecordDecl(); |
| 7473 | if (RD && RD->isAggregate() && RD->hasUninitializedExplicitInitFields()) { |
| 7474 | unsigned I = 0; |
| 7475 | for (const FieldDecl *FD : RD->fields()) { |
| 7476 | if (I >= ConstructorArgs.size() && FD->hasAttr<ExplicitInitAttr>()) { |
| 7477 | S.Diag(Loc, diag::warn_field_requires_explicit_init) |
| 7478 | << /* Var-in-Record */ 0 << FD; |
| 7479 | S.Diag(FD->getLocation(), diag::note_entity_declared_at) << FD; |
| 7480 | } |
| 7481 | ++I; |
| 7482 | } |
| 7483 | } |
| 7484 | } |
| 7485 | |
| 7486 | TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
| 7487 | if (!TSInfo) |
| 7488 | TSInfo = S.Context.getTrivialTypeSourceInfo(T: Entity.getType(), Loc); |
| 7489 | SourceRange ParenOrBraceRange = |
| 7490 | (Kind.getKind() == InitializationKind::IK_DirectList) |
| 7491 | ? SourceRange(LBraceLoc, RBraceLoc) |
| 7492 | : Kind.getParenOrBraceRange(); |
| 7493 | |
| 7494 | CXXConstructorDecl *CalleeDecl = Constructor; |
| 7495 | if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( |
| 7496 | Val: Step.Function.FoundDecl.getDecl())) { |
| 7497 | CalleeDecl = S.findInheritingConstructor(Loc, BaseCtor: Constructor, DerivedShadow: Shadow); |
| 7498 | } |
| 7499 | S.MarkFunctionReferenced(Loc, CalleeDecl); |
| 7500 | |
| 7501 | CurInit = S.CheckForImmediateInvocation( |
| 7502 | CXXTemporaryObjectExpr::Create( |
| 7503 | Ctx: S.Context, Cons: CalleeDecl, |
| 7504 | Ty: Entity.getType().getNonLValueExprType(Context: S.Context), TSI: TSInfo, |
| 7505 | Args: ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, |
| 7506 | ListInitialization: IsListInitialization, StdInitListInitialization: IsStdInitListInitialization, |
| 7507 | ZeroInitialization: ConstructorInitRequiresZeroInit), |
| 7508 | CalleeDecl); |
| 7509 | } else { |
| 7510 | CXXConstructionKind ConstructKind = CXXConstructionKind::Complete; |
| 7511 | |
| 7512 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
| 7513 | ConstructKind = Entity.getBaseSpecifier()->isVirtual() |
| 7514 | ? CXXConstructionKind::VirtualBase |
| 7515 | : CXXConstructionKind::NonVirtualBase; |
| 7516 | } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { |
| 7517 | ConstructKind = CXXConstructionKind::Delegating; |
| 7518 | } |
| 7519 | |
| 7520 | // Only get the parenthesis or brace range if it is a list initialization or |
| 7521 | // direct construction. |
| 7522 | SourceRange ParenOrBraceRange; |
| 7523 | if (IsListInitialization) |
| 7524 | ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); |
| 7525 | else if (Kind.getKind() == InitializationKind::IK_Direct) |
| 7526 | ParenOrBraceRange = Kind.getParenOrBraceRange(); |
| 7527 | |
| 7528 | // If the entity allows NRVO, mark the construction as elidable |
| 7529 | // unconditionally. |
| 7530 | if (Entity.allowsNRVO()) |
| 7531 | CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, |
| 7532 | Step.Function.FoundDecl, |
| 7533 | Constructor, /*Elidable=*/true, |
| 7534 | ConstructorArgs, |
| 7535 | HadMultipleCandidates, |
| 7536 | IsListInitialization, |
| 7537 | IsStdInitListInitialization, |
| 7538 | ConstructorInitRequiresZeroInit, |
| 7539 | ConstructKind, |
| 7540 | ParenOrBraceRange); |
| 7541 | else |
| 7542 | CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, |
| 7543 | Step.Function.FoundDecl, |
| 7544 | Constructor, |
| 7545 | ConstructorArgs, |
| 7546 | HadMultipleCandidates, |
| 7547 | IsListInitialization, |
| 7548 | IsStdInitListInitialization, |
| 7549 | ConstructorInitRequiresZeroInit, |
| 7550 | ConstructKind, |
| 7551 | ParenOrBraceRange); |
| 7552 | } |
| 7553 | if (CurInit.isInvalid()) |
| 7554 | return ExprError(); |
| 7555 | |
| 7556 | // Only check access if all of that succeeded. |
| 7557 | S.CheckConstructorAccess(Loc, D: Constructor, FoundDecl: Step.Function.FoundDecl, Entity); |
| 7558 | if (S.DiagnoseUseOfDecl(D: Step.Function.FoundDecl, Locs: Loc)) |
| 7559 | return ExprError(); |
| 7560 | |
| 7561 | if (const ArrayType *AT = S.Context.getAsArrayType(T: Entity.getType())) |
| 7562 | if (checkDestructorReference(ElementType: S.Context.getBaseElementType(VAT: AT), Loc, SemaRef&: S)) |
| 7563 | return ExprError(); |
| 7564 | |
| 7565 | if (shouldBindAsTemporary(Entity)) |
| 7566 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
| 7567 | |
| 7568 | return CurInit; |
| 7569 | } |
| 7570 | |
| 7571 | void Sema::checkInitializerLifetime(const InitializedEntity &Entity, |
| 7572 | Expr *Init) { |
| 7573 | return sema::checkInitLifetime(SemaRef&: *this, Entity, Init); |
| 7574 | } |
| 7575 | |
| 7576 | static void DiagnoseNarrowingInInitList(Sema &S, |
| 7577 | const ImplicitConversionSequence &ICS, |
| 7578 | QualType PreNarrowingType, |
| 7579 | QualType EntityType, |
| 7580 | const Expr *PostInit); |
| 7581 | |
| 7582 | static void CheckC23ConstexprInitConversion(Sema &S, QualType FromType, |
| 7583 | QualType ToType, Expr *Init); |
| 7584 | |
| 7585 | /// Provide warnings when std::move is used on construction. |
| 7586 | static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, |
| 7587 | bool IsReturnStmt) { |
| 7588 | if (!InitExpr) |
| 7589 | return; |
| 7590 | |
| 7591 | if (S.inTemplateInstantiation()) |
| 7592 | return; |
| 7593 | |
| 7594 | QualType DestType = InitExpr->getType(); |
| 7595 | if (!DestType->isRecordType()) |
| 7596 | return; |
| 7597 | |
| 7598 | unsigned DiagID = 0; |
| 7599 | if (IsReturnStmt) { |
| 7600 | const CXXConstructExpr *CCE = |
| 7601 | dyn_cast<CXXConstructExpr>(Val: InitExpr->IgnoreParens()); |
| 7602 | if (!CCE || CCE->getNumArgs() != 1) |
| 7603 | return; |
| 7604 | |
| 7605 | if (!CCE->getConstructor()->isCopyOrMoveConstructor()) |
| 7606 | return; |
| 7607 | |
| 7608 | InitExpr = CCE->getArg(Arg: 0)->IgnoreImpCasts(); |
| 7609 | } |
| 7610 | |
| 7611 | // Find the std::move call and get the argument. |
| 7612 | const CallExpr *CE = dyn_cast<CallExpr>(Val: InitExpr->IgnoreParens()); |
| 7613 | if (!CE || !CE->isCallToStdMove()) |
| 7614 | return; |
| 7615 | |
| 7616 | const Expr *Arg = CE->getArg(Arg: 0)->IgnoreImplicit(); |
| 7617 | |
| 7618 | if (IsReturnStmt) { |
| 7619 | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Arg->IgnoreParenImpCasts()); |
| 7620 | if (!DRE || DRE->refersToEnclosingVariableOrCapture()) |
| 7621 | return; |
| 7622 | |
| 7623 | const VarDecl *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()); |
| 7624 | if (!VD || !VD->hasLocalStorage()) |
| 7625 | return; |
| 7626 | |
| 7627 | // __block variables are not moved implicitly. |
| 7628 | if (VD->hasAttr<BlocksAttr>()) |
| 7629 | return; |
| 7630 | |
| 7631 | QualType SourceType = VD->getType(); |
| 7632 | if (!SourceType->isRecordType()) |
| 7633 | return; |
| 7634 | |
| 7635 | if (!S.Context.hasSameUnqualifiedType(T1: DestType, T2: SourceType)) { |
| 7636 | return; |
| 7637 | } |
| 7638 | |
| 7639 | // If we're returning a function parameter, copy elision |
| 7640 | // is not possible. |
| 7641 | if (isa<ParmVarDecl>(VD)) |
| 7642 | DiagID = diag::warn_redundant_move_on_return; |
| 7643 | else |
| 7644 | DiagID = diag::warn_pessimizing_move_on_return; |
| 7645 | } else { |
| 7646 | DiagID = diag::warn_pessimizing_move_on_initialization; |
| 7647 | const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); |
| 7648 | if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType()) |
| 7649 | return; |
| 7650 | } |
| 7651 | |
| 7652 | S.Diag(CE->getBeginLoc(), DiagID); |
| 7653 | |
| 7654 | // Get all the locations for a fix-it. Don't emit the fix-it if any location |
| 7655 | // is within a macro. |
| 7656 | SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); |
| 7657 | if (CallBegin.isMacroID()) |
| 7658 | return; |
| 7659 | SourceLocation RParen = CE->getRParenLoc(); |
| 7660 | if (RParen.isMacroID()) |
| 7661 | return; |
| 7662 | SourceLocation LParen; |
| 7663 | SourceLocation ArgLoc = Arg->getBeginLoc(); |
| 7664 | |
| 7665 | // Special testing for the argument location. Since the fix-it needs the |
| 7666 | // location right before the argument, the argument location can be in a |
| 7667 | // macro only if it is at the beginning of the macro. |
| 7668 | while (ArgLoc.isMacroID() && |
| 7669 | S.getSourceManager().isAtStartOfImmediateMacroExpansion(Loc: ArgLoc)) { |
| 7670 | ArgLoc = S.getSourceManager().getImmediateExpansionRange(Loc: ArgLoc).getBegin(); |
| 7671 | } |
| 7672 | |
| 7673 | if (LParen.isMacroID()) |
| 7674 | return; |
| 7675 | |
| 7676 | LParen = ArgLoc.getLocWithOffset(Offset: -1); |
| 7677 | |
| 7678 | S.Diag(CE->getBeginLoc(), diag::note_remove_move) |
| 7679 | << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) |
| 7680 | << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); |
| 7681 | } |
| 7682 | |
| 7683 | static void CheckForNullPointerDereference(Sema &S, const Expr *E) { |
| 7684 | // Check to see if we are dereferencing a null pointer. If so, this is |
| 7685 | // undefined behavior, so warn about it. This only handles the pattern |
| 7686 | // "*null", which is a very syntactic check. |
| 7687 | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E->IgnoreParenCasts())) |
| 7688 | if (UO->getOpcode() == UO_Deref && |
| 7689 | UO->getSubExpr()->IgnoreParenCasts()-> |
| 7690 | isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNotNull)) { |
| 7691 | S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
| 7692 | S.PDiag(diag::warn_binding_null_to_reference) |
| 7693 | << UO->getSubExpr()->getSourceRange()); |
| 7694 | } |
| 7695 | } |
| 7696 | |
| 7697 | MaterializeTemporaryExpr * |
| 7698 | Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, |
| 7699 | bool BoundToLvalueReference) { |
| 7700 | auto MTE = new (Context) |
| 7701 | MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); |
| 7702 | |
| 7703 | // Order an ExprWithCleanups for lifetime marks. |
| 7704 | // |
| 7705 | // TODO: It'll be good to have a single place to check the access of the |
| 7706 | // destructor and generate ExprWithCleanups for various uses. Currently these |
| 7707 | // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, |
| 7708 | // but there may be a chance to merge them. |
| 7709 | Cleanup.setExprNeedsCleanups(false); |
| 7710 | if (isInLifetimeExtendingContext()) |
| 7711 | currentEvaluationContext().ForRangeLifetimeExtendTemps.push_back(Elt: MTE); |
| 7712 | return MTE; |
| 7713 | } |
| 7714 | |
| 7715 | ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { |
| 7716 | // In C++98, we don't want to implicitly create an xvalue. C11 added the |
| 7717 | // same rule, but C99 is broken without this behavior and so we treat the |
| 7718 | // change as applying to all C language modes. |
| 7719 | // FIXME: This means that AST consumers need to deal with "prvalues" that |
| 7720 | // denote materialized temporaries. Maybe we should add another ValueKind |
| 7721 | // for "xvalue pretending to be a prvalue" for C++98 support. |
| 7722 | if (!E->isPRValue() || |
| 7723 | (!getLangOpts().CPlusPlus11 && getLangOpts().CPlusPlus)) |
| 7724 | return E; |
| 7725 | |
| 7726 | // C++1z [conv.rval]/1: T shall be a complete type. |
| 7727 | // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? |
| 7728 | // If so, we should check for a non-abstract class type here too. |
| 7729 | QualType T = E->getType(); |
| 7730 | if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) |
| 7731 | return ExprError(); |
| 7732 | |
| 7733 | return CreateMaterializeTemporaryExpr(T: E->getType(), Temporary: E, BoundToLvalueReference: false); |
| 7734 | } |
| 7735 | |
| 7736 | ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, |
| 7737 | ExprValueKind VK, |
| 7738 | CheckedConversionKind CCK) { |
| 7739 | |
| 7740 | CastKind CK = CK_NoOp; |
| 7741 | |
| 7742 | if (VK == VK_PRValue) { |
| 7743 | auto PointeeTy = Ty->getPointeeType(); |
| 7744 | auto ExprPointeeTy = E->getType()->getPointeeType(); |
| 7745 | if (!PointeeTy.isNull() && |
| 7746 | PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) |
| 7747 | CK = CK_AddressSpaceConversion; |
| 7748 | } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { |
| 7749 | CK = CK_AddressSpaceConversion; |
| 7750 | } |
| 7751 | |
| 7752 | return ImpCastExprToType(E, Type: Ty, CK, VK, /*BasePath=*/nullptr, CCK); |
| 7753 | } |
| 7754 | |
| 7755 | ExprResult InitializationSequence::Perform(Sema &S, |
| 7756 | const InitializedEntity &Entity, |
| 7757 | const InitializationKind &Kind, |
| 7758 | MultiExprArg Args, |
| 7759 | QualType *ResultType) { |
| 7760 | if (Failed()) { |
| 7761 | Diagnose(S, Entity, Kind, Args); |
| 7762 | return ExprError(); |
| 7763 | } |
| 7764 | if (!ZeroInitializationFixit.empty()) { |
| 7765 | const Decl *D = Entity.getDecl(); |
| 7766 | const auto *VD = dyn_cast_or_null<VarDecl>(Val: D); |
| 7767 | QualType DestType = Entity.getType(); |
| 7768 | |
| 7769 | // The initialization would have succeeded with this fixit. Since the fixit |
| 7770 | // is on the error, we need to build a valid AST in this case, so this isn't |
| 7771 | // handled in the Failed() branch above. |
| 7772 | if (!DestType->isRecordType() && VD && VD->isConstexpr()) { |
| 7773 | // Use a more useful diagnostic for constexpr variables. |
| 7774 | S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init) |
| 7775 | << VD |
| 7776 | << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, |
| 7777 | ZeroInitializationFixit); |
| 7778 | } else { |
| 7779 | unsigned DiagID = diag::err_default_init_const; |
| 7780 | if (S.getLangOpts().MSVCCompat && D && D->hasAttr<SelectAnyAttr>()) |
| 7781 | DiagID = diag::ext_default_init_const; |
| 7782 | |
| 7783 | S.Diag(Kind.getLocation(), DiagID) |
| 7784 | << DestType << (bool)DestType->getAs<RecordType>() |
| 7785 | << FixItHint::CreateInsertion(InsertionLoc: ZeroInitializationFixitLoc, |
| 7786 | Code: ZeroInitializationFixit); |
| 7787 | } |
| 7788 | } |
| 7789 | |
| 7790 | if (getKind() == DependentSequence) { |
| 7791 | // If the declaration is a non-dependent, incomplete array type |
| 7792 | // that has an initializer, then its type will be completed once |
| 7793 | // the initializer is instantiated. |
| 7794 | if (ResultType && !Entity.getType()->isDependentType() && |
| 7795 | Args.size() == 1) { |
| 7796 | QualType DeclType = Entity.getType(); |
| 7797 | if (const IncompleteArrayType *ArrayT |
| 7798 | = S.Context.getAsIncompleteArrayType(T: DeclType)) { |
| 7799 | // FIXME: We don't currently have the ability to accurately |
| 7800 | // compute the length of an initializer list without |
| 7801 | // performing full type-checking of the initializer list |
| 7802 | // (since we have to determine where braces are implicitly |
| 7803 | // introduced and such). So, we fall back to making the array |
| 7804 | // type a dependently-sized array type with no specified |
| 7805 | // bound. |
| 7806 | if (isa<InitListExpr>(Val: (Expr *)Args[0])) |
| 7807 | *ResultType = S.Context.getDependentSizedArrayType( |
| 7808 | EltTy: ArrayT->getElementType(), |
| 7809 | /*NumElts=*/nullptr, ASM: ArrayT->getSizeModifier(), |
| 7810 | IndexTypeQuals: ArrayT->getIndexTypeCVRQualifiers()); |
| 7811 | } |
| 7812 | } |
| 7813 | if (Kind.getKind() == InitializationKind::IK_Direct && |
| 7814 | !Kind.isExplicitCast()) { |
| 7815 | // Rebuild the ParenListExpr. |
| 7816 | SourceRange ParenRange = Kind.getParenOrBraceRange(); |
| 7817 | return S.ActOnParenListExpr(L: ParenRange.getBegin(), R: ParenRange.getEnd(), |
| 7818 | Val: Args); |
| 7819 | } |
| 7820 | assert(Kind.getKind() == InitializationKind::IK_Copy || |
| 7821 | Kind.isExplicitCast() || |
| 7822 | Kind.getKind() == InitializationKind::IK_DirectList); |
| 7823 | return ExprResult(Args[0]); |
| 7824 | } |
| 7825 | |
| 7826 | // No steps means no initialization. |
| 7827 | if (Steps.empty()) |
| 7828 | return ExprResult((Expr *)nullptr); |
| 7829 | |
| 7830 | if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && |
| 7831 | Args.size() == 1 && isa<InitListExpr>(Val: Args[0]) && |
| 7832 | !Entity.isParamOrTemplateParamKind()) { |
| 7833 | // Produce a C++98 compatibility warning if we are initializing a reference |
| 7834 | // from an initializer list. For parameters, we produce a better warning |
| 7835 | // elsewhere. |
| 7836 | Expr *Init = Args[0]; |
| 7837 | S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) |
| 7838 | << Init->getSourceRange(); |
| 7839 | } |
| 7840 | |
| 7841 | if (S.getLangOpts().MicrosoftExt && Args.size() == 1 && |
| 7842 | isa<PredefinedExpr>(Val: Args[0]) && Entity.getType()->isArrayType()) { |
| 7843 | // Produce a Microsoft compatibility warning when initializing from a |
| 7844 | // predefined expression since MSVC treats predefined expressions as string |
| 7845 | // literals. |
| 7846 | Expr *Init = Args[0]; |
| 7847 | S.Diag(Init->getBeginLoc(), diag::ext_init_from_predefined) << Init; |
| 7848 | } |
| 7849 | |
| 7850 | // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope |
| 7851 | QualType ETy = Entity.getType(); |
| 7852 | bool HasGlobalAS = ETy.hasAddressSpace() && |
| 7853 | ETy.getAddressSpace() == LangAS::opencl_global; |
| 7854 | |
| 7855 | if (S.getLangOpts().OpenCLVersion >= 200 && |
| 7856 | ETy->isAtomicType() && !HasGlobalAS && |
| 7857 | Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { |
| 7858 | S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) |
| 7859 | << 1 |
| 7860 | << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); |
| 7861 | return ExprError(); |
| 7862 | } |
| 7863 | |
| 7864 | QualType DestType = Entity.getType().getNonReferenceType(); |
| 7865 | // FIXME: Ugly hack around the fact that Entity.getType() is not |
| 7866 | // the same as Entity.getDecl()->getType() in cases involving type merging, |
| 7867 | // and we want latter when it makes sense. |
| 7868 | if (ResultType) |
| 7869 | *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : |
| 7870 | Entity.getType(); |
| 7871 | |
| 7872 | ExprResult CurInit((Expr *)nullptr); |
| 7873 | SmallVector<Expr*, 4> ArrayLoopCommonExprs; |
| 7874 | |
| 7875 | // HLSL allows vector initialization to function like list initialization, but |
| 7876 | // use the syntax of a C++-like constructor. |
| 7877 | bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() && |
| 7878 | isa<InitListExpr>(Val: Args[0]); |
| 7879 | (void)IsHLSLVectorInit; |
| 7880 | |
| 7881 | // For initialization steps that start with a single initializer, |
| 7882 | // grab the only argument out the Args and place it into the "current" |
| 7883 | // initializer. |
| 7884 | switch (Steps.front().Kind) { |
| 7885 | case SK_ResolveAddressOfOverloadedFunction: |
| 7886 | case SK_CastDerivedToBasePRValue: |
| 7887 | case SK_CastDerivedToBaseXValue: |
| 7888 | case SK_CastDerivedToBaseLValue: |
| 7889 | case SK_BindReference: |
| 7890 | case SK_BindReferenceToTemporary: |
| 7891 | case SK_FinalCopy: |
| 7892 | case SK_ExtraneousCopyToTemporary: |
| 7893 | case SK_UserConversion: |
| 7894 | case SK_QualificationConversionLValue: |
| 7895 | case SK_QualificationConversionXValue: |
| 7896 | case SK_QualificationConversionPRValue: |
| 7897 | case SK_FunctionReferenceConversion: |
| 7898 | case SK_AtomicConversion: |
| 7899 | case SK_ConversionSequence: |
| 7900 | case SK_ConversionSequenceNoNarrowing: |
| 7901 | case SK_ListInitialization: |
| 7902 | case SK_UnwrapInitList: |
| 7903 | case SK_RewrapInitList: |
| 7904 | case SK_CAssignment: |
| 7905 | case SK_StringInit: |
| 7906 | case SK_ObjCObjectConversion: |
| 7907 | case SK_ArrayLoopIndex: |
| 7908 | case SK_ArrayLoopInit: |
| 7909 | case SK_ArrayInit: |
| 7910 | case SK_GNUArrayInit: |
| 7911 | case SK_ParenthesizedArrayInit: |
| 7912 | case SK_PassByIndirectCopyRestore: |
| 7913 | case SK_PassByIndirectRestore: |
| 7914 | case SK_ProduceObjCObject: |
| 7915 | case SK_StdInitializerList: |
| 7916 | case SK_OCLSamplerInit: |
| 7917 | case SK_OCLZeroOpaqueType: { |
| 7918 | assert(Args.size() == 1 || IsHLSLVectorInit); |
| 7919 | CurInit = Args[0]; |
| 7920 | if (!CurInit.get()) return ExprError(); |
| 7921 | break; |
| 7922 | } |
| 7923 | |
| 7924 | case SK_ConstructorInitialization: |
| 7925 | case SK_ConstructorInitializationFromList: |
| 7926 | case SK_StdInitializerListConstructorCall: |
| 7927 | case SK_ZeroInitialization: |
| 7928 | case SK_ParenthesizedListInit: |
| 7929 | break; |
| 7930 | } |
| 7931 | |
| 7932 | // Promote from an unevaluated context to an unevaluated list context in |
| 7933 | // C++11 list-initialization; we need to instantiate entities usable in |
| 7934 | // constant expressions here in order to perform narrowing checks =( |
| 7935 | EnterExpressionEvaluationContext Evaluated( |
| 7936 | S, EnterExpressionEvaluationContext::InitList, |
| 7937 | isa_and_nonnull<InitListExpr>(Val: CurInit.get())); |
| 7938 | |
| 7939 | // C++ [class.abstract]p2: |
| 7940 | // no objects of an abstract class can be created except as subobjects |
| 7941 | // of a class derived from it |
| 7942 | auto checkAbstractType = [&](QualType T) -> bool { |
| 7943 | if (Entity.getKind() == InitializedEntity::EK_Base || |
| 7944 | Entity.getKind() == InitializedEntity::EK_Delegating) |
| 7945 | return false; |
| 7946 | return S.RequireNonAbstractType(Kind.getLocation(), T, |
| 7947 | diag::err_allocation_of_abstract_type); |
| 7948 | }; |
| 7949 | |
| 7950 | // Walk through the computed steps for the initialization sequence, |
| 7951 | // performing the specified conversions along the way. |
| 7952 | bool ConstructorInitRequiresZeroInit = false; |
| 7953 | for (step_iterator Step = step_begin(), StepEnd = step_end(); |
| 7954 | Step != StepEnd; ++Step) { |
| 7955 | if (CurInit.isInvalid()) |
| 7956 | return ExprError(); |
| 7957 | |
| 7958 | QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); |
| 7959 | |
| 7960 | switch (Step->Kind) { |
| 7961 | case SK_ResolveAddressOfOverloadedFunction: |
| 7962 | // Overload resolution determined which function invoke; update the |
| 7963 | // initializer to reflect that choice. |
| 7964 | S.CheckAddressOfMemberAccess(OvlExpr: CurInit.get(), FoundDecl: Step->Function.FoundDecl); |
| 7965 | if (S.DiagnoseUseOfDecl(D: Step->Function.FoundDecl, Locs: Kind.getLocation())) |
| 7966 | return ExprError(); |
| 7967 | CurInit = S.FixOverloadedFunctionReference(CurInit, |
| 7968 | FoundDecl: Step->Function.FoundDecl, |
| 7969 | Fn: Step->Function.Function); |
| 7970 | // We might get back another placeholder expression if we resolved to a |
| 7971 | // builtin. |
| 7972 | if (!CurInit.isInvalid()) |
| 7973 | CurInit = S.CheckPlaceholderExpr(E: CurInit.get()); |
| 7974 | break; |
| 7975 | |
| 7976 | case SK_CastDerivedToBasePRValue: |
| 7977 | case SK_CastDerivedToBaseXValue: |
| 7978 | case SK_CastDerivedToBaseLValue: { |
| 7979 | // We have a derived-to-base cast that produces either an rvalue or an |
| 7980 | // lvalue. Perform that cast. |
| 7981 | |
| 7982 | CXXCastPath BasePath; |
| 7983 | |
| 7984 | // Casts to inaccessible base classes are allowed with C-style casts. |
| 7985 | bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); |
| 7986 | if (S.CheckDerivedToBaseConversion( |
| 7987 | SourceType, Step->Type, CurInit.get()->getBeginLoc(), |
| 7988 | CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) |
| 7989 | return ExprError(); |
| 7990 | |
| 7991 | ExprValueKind VK = |
| 7992 | Step->Kind == SK_CastDerivedToBaseLValue |
| 7993 | ? VK_LValue |
| 7994 | : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue |
| 7995 | : VK_PRValue); |
| 7996 | CurInit = ImplicitCastExpr::Create(Context: S.Context, T: Step->Type, |
| 7997 | Kind: CK_DerivedToBase, Operand: CurInit.get(), |
| 7998 | BasePath: &BasePath, Cat: VK, FPO: FPOptionsOverride()); |
| 7999 | break; |
| 8000 | } |
| 8001 | |
| 8002 | case SK_BindReference: |
| 8003 | // Reference binding does not have any corresponding ASTs. |
| 8004 | |
| 8005 | // Check exception specifications |
| 8006 | if (S.CheckExceptionSpecCompatibility(From: CurInit.get(), ToType: DestType)) |
| 8007 | return ExprError(); |
| 8008 | |
| 8009 | // We don't check for e.g. function pointers here, since address |
| 8010 | // availability checks should only occur when the function first decays |
| 8011 | // into a pointer or reference. |
| 8012 | if (CurInit.get()->getType()->isFunctionProtoType()) { |
| 8013 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CurInit.get()->IgnoreParens())) { |
| 8014 | if (auto *FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl())) { |
| 8015 | if (!S.checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true, |
| 8016 | Loc: DRE->getBeginLoc())) |
| 8017 | return ExprError(); |
| 8018 | } |
| 8019 | } |
| 8020 | } |
| 8021 | |
| 8022 | CheckForNullPointerDereference(S, E: CurInit.get()); |
| 8023 | break; |
| 8024 | |
| 8025 | case SK_BindReferenceToTemporary: { |
| 8026 | // Make sure the "temporary" is actually an rvalue. |
| 8027 | assert(CurInit.get()->isPRValue() && "not a temporary" ); |
| 8028 | |
| 8029 | // Check exception specifications |
| 8030 | if (S.CheckExceptionSpecCompatibility(From: CurInit.get(), ToType: DestType)) |
| 8031 | return ExprError(); |
| 8032 | |
| 8033 | QualType MTETy = Step->Type; |
| 8034 | |
| 8035 | // When this is an incomplete array type (such as when this is |
| 8036 | // initializing an array of unknown bounds from an init list), use THAT |
| 8037 | // type instead so that we propagate the array bounds. |
| 8038 | if (MTETy->isIncompleteArrayType() && |
| 8039 | !CurInit.get()->getType()->isIncompleteArrayType() && |
| 8040 | S.Context.hasSameType( |
| 8041 | T1: MTETy->getPointeeOrArrayElementType(), |
| 8042 | T2: CurInit.get()->getType()->getPointeeOrArrayElementType())) |
| 8043 | MTETy = CurInit.get()->getType(); |
| 8044 | |
| 8045 | // Materialize the temporary into memory. |
| 8046 | MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( |
| 8047 | T: MTETy, Temporary: CurInit.get(), BoundToLvalueReference: Entity.getType()->isLValueReferenceType()); |
| 8048 | CurInit = MTE; |
| 8049 | |
| 8050 | // If we're extending this temporary to automatic storage duration -- we |
| 8051 | // need to register its cleanup during the full-expression's cleanups. |
| 8052 | if (MTE->getStorageDuration() == SD_Automatic && |
| 8053 | MTE->getType().isDestructedType()) |
| 8054 | S.Cleanup.setExprNeedsCleanups(true); |
| 8055 | break; |
| 8056 | } |
| 8057 | |
| 8058 | case SK_FinalCopy: |
| 8059 | if (checkAbstractType(Step->Type)) |
| 8060 | return ExprError(); |
| 8061 | |
| 8062 | // If the overall initialization is initializing a temporary, we already |
| 8063 | // bound our argument if it was necessary to do so. If not (if we're |
| 8064 | // ultimately initializing a non-temporary), our argument needs to be |
| 8065 | // bound since it's initializing a function parameter. |
| 8066 | // FIXME: This is a mess. Rationalize temporary destruction. |
| 8067 | if (!shouldBindAsTemporary(Entity)) |
| 8068 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
| 8069 | CurInit = CopyObject(S, Step->Type, Entity, CurInit, |
| 8070 | /*IsExtraneousCopy=*/false); |
| 8071 | break; |
| 8072 | |
| 8073 | case SK_ExtraneousCopyToTemporary: |
| 8074 | CurInit = CopyObject(S, Step->Type, Entity, CurInit, |
| 8075 | /*IsExtraneousCopy=*/true); |
| 8076 | break; |
| 8077 | |
| 8078 | case SK_UserConversion: { |
| 8079 | // We have a user-defined conversion that invokes either a constructor |
| 8080 | // or a conversion function. |
| 8081 | CastKind CastKind; |
| 8082 | FunctionDecl *Fn = Step->Function.Function; |
| 8083 | DeclAccessPair FoundFn = Step->Function.FoundDecl; |
| 8084 | bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; |
| 8085 | bool CreatedObject = false; |
| 8086 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: Fn)) { |
| 8087 | // Build a call to the selected constructor. |
| 8088 | SmallVector<Expr*, 8> ConstructorArgs; |
| 8089 | SourceLocation Loc = CurInit.get()->getBeginLoc(); |
| 8090 | |
| 8091 | // Determine the arguments required to actually perform the constructor |
| 8092 | // call. |
| 8093 | Expr *Arg = CurInit.get(); |
| 8094 | if (S.CompleteConstructorCall(Constructor, DeclInitType: Step->Type, |
| 8095 | ArgsPtr: MultiExprArg(&Arg, 1), Loc, |
| 8096 | ConvertedArgs&: ConstructorArgs)) |
| 8097 | return ExprError(); |
| 8098 | |
| 8099 | // Build an expression that constructs a temporary. |
| 8100 | CurInit = S.BuildCXXConstructExpr( |
| 8101 | Loc, Step->Type, FoundFn, Constructor, ConstructorArgs, |
| 8102 | HadMultipleCandidates, |
| 8103 | /*ListInit*/ false, |
| 8104 | /*StdInitListInit*/ false, |
| 8105 | /*ZeroInit*/ false, CXXConstructionKind::Complete, SourceRange()); |
| 8106 | if (CurInit.isInvalid()) |
| 8107 | return ExprError(); |
| 8108 | |
| 8109 | S.CheckConstructorAccess(Loc: Kind.getLocation(), D: Constructor, FoundDecl: FoundFn, |
| 8110 | Entity); |
| 8111 | if (S.DiagnoseUseOfDecl(D: FoundFn, Locs: Kind.getLocation())) |
| 8112 | return ExprError(); |
| 8113 | |
| 8114 | CastKind = CK_ConstructorConversion; |
| 8115 | CreatedObject = true; |
| 8116 | } else { |
| 8117 | // Build a call to the conversion function. |
| 8118 | CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Val: Fn); |
| 8119 | S.CheckMemberOperatorAccess(Loc: Kind.getLocation(), ObjectExpr: CurInit.get(), ArgExpr: nullptr, |
| 8120 | FoundDecl: FoundFn); |
| 8121 | if (S.DiagnoseUseOfDecl(D: FoundFn, Locs: Kind.getLocation())) |
| 8122 | return ExprError(); |
| 8123 | |
| 8124 | CurInit = S.BuildCXXMemberCallExpr(Exp: CurInit.get(), FoundDecl: FoundFn, Method: Conversion, |
| 8125 | HadMultipleCandidates); |
| 8126 | if (CurInit.isInvalid()) |
| 8127 | return ExprError(); |
| 8128 | |
| 8129 | CastKind = CK_UserDefinedConversion; |
| 8130 | CreatedObject = Conversion->getReturnType()->isRecordType(); |
| 8131 | } |
| 8132 | |
| 8133 | if (CreatedObject && checkAbstractType(CurInit.get()->getType())) |
| 8134 | return ExprError(); |
| 8135 | |
| 8136 | CurInit = ImplicitCastExpr::Create( |
| 8137 | Context: S.Context, T: CurInit.get()->getType(), Kind: CastKind, Operand: CurInit.get(), BasePath: nullptr, |
| 8138 | Cat: CurInit.get()->getValueKind(), FPO: S.CurFPFeatureOverrides()); |
| 8139 | |
| 8140 | if (shouldBindAsTemporary(Entity)) |
| 8141 | // The overall entity is temporary, so this expression should be |
| 8142 | // destroyed at the end of its full-expression. |
| 8143 | CurInit = S.MaybeBindToTemporary(E: CurInit.getAs<Expr>()); |
| 8144 | else if (CreatedObject && shouldDestroyEntity(Entity)) { |
| 8145 | // The object outlasts the full-expression, but we need to prepare for |
| 8146 | // a destructor being run on it. |
| 8147 | // FIXME: It makes no sense to do this here. This should happen |
| 8148 | // regardless of how we initialized the entity. |
| 8149 | QualType T = CurInit.get()->getType(); |
| 8150 | if (const RecordType *Record = T->getAs<RecordType>()) { |
| 8151 | CXXDestructorDecl *Destructor |
| 8152 | = S.LookupDestructor(Class: cast<CXXRecordDecl>(Val: Record->getDecl())); |
| 8153 | S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, |
| 8154 | S.PDiag(diag::err_access_dtor_temp) << T); |
| 8155 | S.MarkFunctionReferenced(Loc: CurInit.get()->getBeginLoc(), Func: Destructor); |
| 8156 | if (S.DiagnoseUseOfDecl(D: Destructor, Locs: CurInit.get()->getBeginLoc())) |
| 8157 | return ExprError(); |
| 8158 | } |
| 8159 | } |
| 8160 | break; |
| 8161 | } |
| 8162 | |
| 8163 | case SK_QualificationConversionLValue: |
| 8164 | case SK_QualificationConversionXValue: |
| 8165 | case SK_QualificationConversionPRValue: { |
| 8166 | // Perform a qualification conversion; these can never go wrong. |
| 8167 | ExprValueKind VK = |
| 8168 | Step->Kind == SK_QualificationConversionLValue |
| 8169 | ? VK_LValue |
| 8170 | : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue |
| 8171 | : VK_PRValue); |
| 8172 | CurInit = S.PerformQualificationConversion(E: CurInit.get(), Ty: Step->Type, VK); |
| 8173 | break; |
| 8174 | } |
| 8175 | |
| 8176 | case SK_FunctionReferenceConversion: |
| 8177 | assert(CurInit.get()->isLValue() && |
| 8178 | "function reference should be lvalue" ); |
| 8179 | CurInit = |
| 8180 | S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, CK: CK_NoOp, VK: VK_LValue); |
| 8181 | break; |
| 8182 | |
| 8183 | case SK_AtomicConversion: { |
| 8184 | assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic" ); |
| 8185 | CurInit = S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, |
| 8186 | CK: CK_NonAtomicToAtomic, VK: VK_PRValue); |
| 8187 | break; |
| 8188 | } |
| 8189 | |
| 8190 | case SK_ConversionSequence: |
| 8191 | case SK_ConversionSequenceNoNarrowing: { |
| 8192 | if (const auto *FromPtrType = |
| 8193 | CurInit.get()->getType()->getAs<PointerType>()) { |
| 8194 | if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { |
| 8195 | if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && |
| 8196 | !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { |
| 8197 | // Do not check static casts here because they are checked earlier |
| 8198 | // in Sema::ActOnCXXNamedCast() |
| 8199 | if (!Kind.isStaticCast()) { |
| 8200 | S.Diag(CurInit.get()->getExprLoc(), |
| 8201 | diag::warn_noderef_to_dereferenceable_pointer) |
| 8202 | << CurInit.get()->getSourceRange(); |
| 8203 | } |
| 8204 | } |
| 8205 | } |
| 8206 | } |
| 8207 | Expr *Init = CurInit.get(); |
| 8208 | CheckedConversionKind CCK = |
| 8209 | Kind.isCStyleCast() ? CheckedConversionKind::CStyleCast |
| 8210 | : Kind.isFunctionalCast() ? CheckedConversionKind::FunctionalCast |
| 8211 | : Kind.isExplicitCast() ? CheckedConversionKind::OtherCast |
| 8212 | : CheckedConversionKind::Implicit; |
| 8213 | ExprResult CurInitExprRes = S.PerformImplicitConversion( |
| 8214 | Init, Step->Type, *Step->ICS, getAssignmentAction(Entity), CCK); |
| 8215 | if (CurInitExprRes.isInvalid()) |
| 8216 | return ExprError(); |
| 8217 | |
| 8218 | S.DiscardMisalignedMemberAddress(T: Step->Type.getTypePtr(), E: Init); |
| 8219 | |
| 8220 | CurInit = CurInitExprRes; |
| 8221 | |
| 8222 | if (Step->Kind == SK_ConversionSequenceNoNarrowing && |
| 8223 | S.getLangOpts().CPlusPlus) |
| 8224 | DiagnoseNarrowingInInitList(S, ICS: *Step->ICS, PreNarrowingType: SourceType, EntityType: Entity.getType(), |
| 8225 | PostInit: CurInit.get()); |
| 8226 | |
| 8227 | break; |
| 8228 | } |
| 8229 | |
| 8230 | case SK_ListInitialization: { |
| 8231 | if (checkAbstractType(Step->Type)) |
| 8232 | return ExprError(); |
| 8233 | |
| 8234 | InitListExpr *InitList = cast<InitListExpr>(Val: CurInit.get()); |
| 8235 | // If we're not initializing the top-level entity, we need to create an |
| 8236 | // InitializeTemporary entity for our target type. |
| 8237 | QualType Ty = Step->Type; |
| 8238 | bool IsTemporary = !S.Context.hasSameType(T1: Entity.getType(), T2: Ty); |
| 8239 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Type: Ty); |
| 8240 | InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; |
| 8241 | InitListChecker PerformInitList(S, InitEntity, |
| 8242 | InitList, Ty, /*VerifyOnly=*/false, |
| 8243 | /*TreatUnavailableAsInvalid=*/false); |
| 8244 | if (PerformInitList.HadError()) |
| 8245 | return ExprError(); |
| 8246 | |
| 8247 | // Hack: We must update *ResultType if available in order to set the |
| 8248 | // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. |
| 8249 | // Worst case: 'const int (&arref)[] = {1, 2, 3};'. |
| 8250 | if (ResultType && |
| 8251 | ResultType->getNonReferenceType()->isIncompleteArrayType()) { |
| 8252 | if ((*ResultType)->isRValueReferenceType()) |
| 8253 | Ty = S.Context.getRValueReferenceType(T: Ty); |
| 8254 | else if ((*ResultType)->isLValueReferenceType()) |
| 8255 | Ty = S.Context.getLValueReferenceType(T: Ty, |
| 8256 | SpelledAsLValue: (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); |
| 8257 | *ResultType = Ty; |
| 8258 | } |
| 8259 | |
| 8260 | InitListExpr *StructuredInitList = |
| 8261 | PerformInitList.getFullyStructuredList(); |
| 8262 | CurInit.get(); |
| 8263 | CurInit = shouldBindAsTemporary(Entity: InitEntity) |
| 8264 | ? S.MaybeBindToTemporary(StructuredInitList) |
| 8265 | : StructuredInitList; |
| 8266 | break; |
| 8267 | } |
| 8268 | |
| 8269 | case SK_ConstructorInitializationFromList: { |
| 8270 | if (checkAbstractType(Step->Type)) |
| 8271 | return ExprError(); |
| 8272 | |
| 8273 | // When an initializer list is passed for a parameter of type "reference |
| 8274 | // to object", we don't get an EK_Temporary entity, but instead an |
| 8275 | // EK_Parameter entity with reference type. |
| 8276 | // FIXME: This is a hack. What we really should do is create a user |
| 8277 | // conversion step for this case, but this makes it considerably more |
| 8278 | // complicated. For now, this will do. |
| 8279 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
| 8280 | Type: Entity.getType().getNonReferenceType()); |
| 8281 | bool UseTemporary = Entity.getType()->isReferenceType(); |
| 8282 | assert(Args.size() == 1 && "expected a single argument for list init" ); |
| 8283 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
| 8284 | S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) |
| 8285 | << InitList->getSourceRange(); |
| 8286 | MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); |
| 8287 | CurInit = PerformConstructorInitialization(S, Entity: UseTemporary ? TempEntity : |
| 8288 | Entity, |
| 8289 | Kind, Args: Arg, Step: *Step, |
| 8290 | ConstructorInitRequiresZeroInit, |
| 8291 | /*IsListInitialization*/true, |
| 8292 | /*IsStdInitListInit*/IsStdInitListInitialization: false, |
| 8293 | LBraceLoc: InitList->getLBraceLoc(), |
| 8294 | RBraceLoc: InitList->getRBraceLoc()); |
| 8295 | break; |
| 8296 | } |
| 8297 | |
| 8298 | case SK_UnwrapInitList: |
| 8299 | CurInit = cast<InitListExpr>(Val: CurInit.get())->getInit(Init: 0); |
| 8300 | break; |
| 8301 | |
| 8302 | case SK_RewrapInitList: { |
| 8303 | Expr *E = CurInit.get(); |
| 8304 | InitListExpr *Syntactic = Step->WrappingSyntacticList; |
| 8305 | InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, |
| 8306 | Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); |
| 8307 | ILE->setSyntacticForm(Syntactic); |
| 8308 | ILE->setType(E->getType()); |
| 8309 | ILE->setValueKind(E->getValueKind()); |
| 8310 | CurInit = ILE; |
| 8311 | break; |
| 8312 | } |
| 8313 | |
| 8314 | case SK_ConstructorInitialization: |
| 8315 | case SK_StdInitializerListConstructorCall: { |
| 8316 | if (checkAbstractType(Step->Type)) |
| 8317 | return ExprError(); |
| 8318 | |
| 8319 | // When an initializer list is passed for a parameter of type "reference |
| 8320 | // to object", we don't get an EK_Temporary entity, but instead an |
| 8321 | // EK_Parameter entity with reference type. |
| 8322 | // FIXME: This is a hack. What we really should do is create a user |
| 8323 | // conversion step for this case, but this makes it considerably more |
| 8324 | // complicated. For now, this will do. |
| 8325 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
| 8326 | Type: Entity.getType().getNonReferenceType()); |
| 8327 | bool UseTemporary = Entity.getType()->isReferenceType(); |
| 8328 | bool IsStdInitListInit = |
| 8329 | Step->Kind == SK_StdInitializerListConstructorCall; |
| 8330 | Expr *Source = CurInit.get(); |
| 8331 | SourceRange Range = Kind.hasParenOrBraceRange() |
| 8332 | ? Kind.getParenOrBraceRange() |
| 8333 | : SourceRange(); |
| 8334 | CurInit = PerformConstructorInitialization( |
| 8335 | S, Entity: UseTemporary ? TempEntity : Entity, Kind, |
| 8336 | Args: Source ? MultiExprArg(Source) : Args, Step: *Step, |
| 8337 | ConstructorInitRequiresZeroInit, |
| 8338 | /*IsListInitialization*/ IsStdInitListInit, |
| 8339 | /*IsStdInitListInitialization*/ IsStdInitListInit, |
| 8340 | /*LBraceLoc*/ Range.getBegin(), |
| 8341 | /*RBraceLoc*/ Range.getEnd()); |
| 8342 | break; |
| 8343 | } |
| 8344 | |
| 8345 | case SK_ZeroInitialization: { |
| 8346 | step_iterator NextStep = Step; |
| 8347 | ++NextStep; |
| 8348 | if (NextStep != StepEnd && |
| 8349 | (NextStep->Kind == SK_ConstructorInitialization || |
| 8350 | NextStep->Kind == SK_ConstructorInitializationFromList)) { |
| 8351 | // The need for zero-initialization is recorded directly into |
| 8352 | // the call to the object's constructor within the next step. |
| 8353 | ConstructorInitRequiresZeroInit = true; |
| 8354 | } else if (Kind.getKind() == InitializationKind::IK_Value && |
| 8355 | S.getLangOpts().CPlusPlus && |
| 8356 | !Kind.isImplicitValueInit()) { |
| 8357 | TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
| 8358 | if (!TSInfo) |
| 8359 | TSInfo = S.Context.getTrivialTypeSourceInfo(T: Step->Type, |
| 8360 | Loc: Kind.getRange().getBegin()); |
| 8361 | |
| 8362 | CurInit = new (S.Context) CXXScalarValueInitExpr( |
| 8363 | Entity.getType().getNonLValueExprType(Context: S.Context), TSInfo, |
| 8364 | Kind.getRange().getEnd()); |
| 8365 | } else { |
| 8366 | CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); |
| 8367 | // Note the return value isn't used to return a ExprError() when |
| 8368 | // initialization fails . For struct initialization allows all field |
| 8369 | // assignments to be checked rather than bailing on the first error. |
| 8370 | S.BoundsSafetyCheckInitialization(Entity, Kind, |
| 8371 | Action: AssignmentAction::Initializing, |
| 8372 | LHSType: Step->Type, RHSExpr: CurInit.get()); |
| 8373 | } |
| 8374 | break; |
| 8375 | } |
| 8376 | |
| 8377 | case SK_CAssignment: { |
| 8378 | QualType SourceType = CurInit.get()->getType(); |
| 8379 | Expr *Init = CurInit.get(); |
| 8380 | |
| 8381 | // Save off the initial CurInit in case we need to emit a diagnostic |
| 8382 | ExprResult InitialCurInit = Init; |
| 8383 | ExprResult Result = Init; |
| 8384 | AssignConvertType ConvTy = S.CheckSingleAssignmentConstraints( |
| 8385 | LHSType: Step->Type, RHS&: Result, Diagnose: true, |
| 8386 | DiagnoseCFAudited: Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); |
| 8387 | if (Result.isInvalid()) |
| 8388 | return ExprError(); |
| 8389 | CurInit = Result; |
| 8390 | |
| 8391 | // If this is a call, allow conversion to a transparent union. |
| 8392 | ExprResult CurInitExprRes = CurInit; |
| 8393 | if (!S.IsAssignConvertCompatible(ConvTy) && Entity.isParameterKind() && |
| 8394 | S.CheckTransparentUnionArgumentConstraints( |
| 8395 | ArgType: Step->Type, RHS&: CurInitExprRes) == AssignConvertType::Compatible) |
| 8396 | ConvTy = AssignConvertType::Compatible; |
| 8397 | if (CurInitExprRes.isInvalid()) |
| 8398 | return ExprError(); |
| 8399 | CurInit = CurInitExprRes; |
| 8400 | |
| 8401 | if (S.getLangOpts().C23 && initializingConstexprVariable(Entity)) { |
| 8402 | CheckC23ConstexprInitConversion(S, FromType: SourceType, ToType: Entity.getType(), |
| 8403 | Init: CurInit.get()); |
| 8404 | |
| 8405 | // C23 6.7.1p6: If an object or subobject declared with storage-class |
| 8406 | // specifier constexpr has pointer, integer, or arithmetic type, any |
| 8407 | // explicit initializer value for it shall be null, an integer |
| 8408 | // constant expression, or an arithmetic constant expression, |
| 8409 | // respectively. |
| 8410 | Expr::EvalResult ER; |
| 8411 | if (Entity.getType()->getAs<PointerType>() && |
| 8412 | CurInit.get()->EvaluateAsRValue(Result&: ER, Ctx: S.Context) && |
| 8413 | !ER.Val.isNullPointer()) { |
| 8414 | S.Diag(Kind.getLocation(), diag::err_c23_constexpr_pointer_not_null); |
| 8415 | } |
| 8416 | } |
| 8417 | |
| 8418 | // Note the return value isn't used to return a ExprError() when |
| 8419 | // initialization fails. For struct initialization this allows all field |
| 8420 | // assignments to be checked rather than bailing on the first error. |
| 8421 | S.BoundsSafetyCheckInitialization(Entity, Kind, |
| 8422 | Action: getAssignmentAction(Entity, Diagnose: true), |
| 8423 | LHSType: Step->Type, RHSExpr: InitialCurInit.get()); |
| 8424 | |
| 8425 | bool Complained; |
| 8426 | if (S.DiagnoseAssignmentResult(ConvTy, Loc: Kind.getLocation(), |
| 8427 | DstType: Step->Type, SrcType: SourceType, |
| 8428 | SrcExpr: InitialCurInit.get(), |
| 8429 | Action: getAssignmentAction(Entity, Diagnose: true), |
| 8430 | Complained: &Complained)) { |
| 8431 | PrintInitLocationNote(S, Entity); |
| 8432 | return ExprError(); |
| 8433 | } else if (Complained) |
| 8434 | PrintInitLocationNote(S, Entity); |
| 8435 | break; |
| 8436 | } |
| 8437 | |
| 8438 | case SK_StringInit: { |
| 8439 | QualType Ty = Step->Type; |
| 8440 | bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType(); |
| 8441 | CheckStringInit(Str: CurInit.get(), DeclT&: UpdateType ? *ResultType : Ty, |
| 8442 | AT: S.Context.getAsArrayType(T: Ty), S, Entity, |
| 8443 | CheckC23ConstexprInit: S.getLangOpts().C23 && |
| 8444 | initializingConstexprVariable(Entity)); |
| 8445 | break; |
| 8446 | } |
| 8447 | |
| 8448 | case SK_ObjCObjectConversion: |
| 8449 | CurInit = S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, |
| 8450 | CK: CK_ObjCObjectLValueCast, |
| 8451 | VK: CurInit.get()->getValueKind()); |
| 8452 | break; |
| 8453 | |
| 8454 | case SK_ArrayLoopIndex: { |
| 8455 | Expr *Cur = CurInit.get(); |
| 8456 | Expr *BaseExpr = new (S.Context) |
| 8457 | OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), |
| 8458 | Cur->getValueKind(), Cur->getObjectKind(), Cur); |
| 8459 | Expr *IndexExpr = |
| 8460 | new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); |
| 8461 | CurInit = S.CreateBuiltinArraySubscriptExpr( |
| 8462 | Base: BaseExpr, LLoc: Kind.getLocation(), Idx: IndexExpr, RLoc: Kind.getLocation()); |
| 8463 | ArrayLoopCommonExprs.push_back(Elt: BaseExpr); |
| 8464 | break; |
| 8465 | } |
| 8466 | |
| 8467 | case SK_ArrayLoopInit: { |
| 8468 | assert(!ArrayLoopCommonExprs.empty() && |
| 8469 | "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit" ); |
| 8470 | Expr *Common = ArrayLoopCommonExprs.pop_back_val(); |
| 8471 | CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, |
| 8472 | CurInit.get()); |
| 8473 | break; |
| 8474 | } |
| 8475 | |
| 8476 | case SK_GNUArrayInit: |
| 8477 | // Okay: we checked everything before creating this step. Note that |
| 8478 | // this is a GNU extension. |
| 8479 | S.Diag(Kind.getLocation(), diag::ext_array_init_copy) |
| 8480 | << Step->Type << CurInit.get()->getType() |
| 8481 | << CurInit.get()->getSourceRange(); |
| 8482 | updateGNUCompoundLiteralRValue(E: CurInit.get()); |
| 8483 | [[fallthrough]]; |
| 8484 | case SK_ArrayInit: |
| 8485 | // If the destination type is an incomplete array type, update the |
| 8486 | // type accordingly. |
| 8487 | if (ResultType) { |
| 8488 | if (const IncompleteArrayType *IncompleteDest |
| 8489 | = S.Context.getAsIncompleteArrayType(T: Step->Type)) { |
| 8490 | if (const ConstantArrayType *ConstantSource |
| 8491 | = S.Context.getAsConstantArrayType(T: CurInit.get()->getType())) { |
| 8492 | *ResultType = S.Context.getConstantArrayType( |
| 8493 | EltTy: IncompleteDest->getElementType(), ArySize: ConstantSource->getSize(), |
| 8494 | SizeExpr: ConstantSource->getSizeExpr(), ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 8495 | } |
| 8496 | } |
| 8497 | } |
| 8498 | break; |
| 8499 | |
| 8500 | case SK_ParenthesizedArrayInit: |
| 8501 | // Okay: we checked everything before creating this step. Note that |
| 8502 | // this is a GNU extension. |
| 8503 | S.Diag(Kind.getLocation(), diag::ext_array_init_parens) |
| 8504 | << CurInit.get()->getSourceRange(); |
| 8505 | break; |
| 8506 | |
| 8507 | case SK_PassByIndirectCopyRestore: |
| 8508 | case SK_PassByIndirectRestore: |
| 8509 | checkIndirectCopyRestoreSource(S, src: CurInit.get()); |
| 8510 | CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( |
| 8511 | CurInit.get(), Step->Type, |
| 8512 | Step->Kind == SK_PassByIndirectCopyRestore); |
| 8513 | break; |
| 8514 | |
| 8515 | case SK_ProduceObjCObject: |
| 8516 | CurInit = ImplicitCastExpr::Create( |
| 8517 | Context: S.Context, T: Step->Type, Kind: CK_ARCProduceObject, Operand: CurInit.get(), BasePath: nullptr, |
| 8518 | Cat: VK_PRValue, FPO: FPOptionsOverride()); |
| 8519 | break; |
| 8520 | |
| 8521 | case SK_StdInitializerList: { |
| 8522 | S.Diag(CurInit.get()->getExprLoc(), |
| 8523 | diag::warn_cxx98_compat_initializer_list_init) |
| 8524 | << CurInit.get()->getSourceRange(); |
| 8525 | |
| 8526 | // Materialize the temporary into memory. |
| 8527 | MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( |
| 8528 | T: CurInit.get()->getType(), Temporary: CurInit.get(), |
| 8529 | /*BoundToLvalueReference=*/false); |
| 8530 | |
| 8531 | // Wrap it in a construction of a std::initializer_list<T>. |
| 8532 | CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); |
| 8533 | |
| 8534 | if (!Step->Type->isDependentType()) { |
| 8535 | QualType ElementType; |
| 8536 | [[maybe_unused]] bool IsStdInitializerList = |
| 8537 | S.isStdInitializerList(Ty: Step->Type, Element: &ElementType); |
| 8538 | assert(IsStdInitializerList && |
| 8539 | "StdInitializerList step to non-std::initializer_list" ); |
| 8540 | const CXXRecordDecl *Record = |
| 8541 | Step->Type->getAsCXXRecordDecl()->getDefinition(); |
| 8542 | assert(Record && Record->isCompleteDefinition() && |
| 8543 | "std::initializer_list should have already be " |
| 8544 | "complete/instantiated by this point" ); |
| 8545 | |
| 8546 | auto InvalidType = [&] { |
| 8547 | S.Diag(Record->getLocation(), |
| 8548 | diag::err_std_initializer_list_malformed) |
| 8549 | << Step->Type.getUnqualifiedType(); |
| 8550 | return ExprError(); |
| 8551 | }; |
| 8552 | |
| 8553 | if (Record->isUnion() || Record->getNumBases() != 0 || |
| 8554 | Record->isPolymorphic()) |
| 8555 | return InvalidType(); |
| 8556 | |
| 8557 | RecordDecl::field_iterator Field = Record->field_begin(); |
| 8558 | if (Field == Record->field_end()) |
| 8559 | return InvalidType(); |
| 8560 | |
| 8561 | // Start pointer |
| 8562 | if (!Field->getType()->isPointerType() || |
| 8563 | !S.Context.hasSameType(Field->getType()->getPointeeType(), |
| 8564 | ElementType.withConst())) |
| 8565 | return InvalidType(); |
| 8566 | |
| 8567 | if (++Field == Record->field_end()) |
| 8568 | return InvalidType(); |
| 8569 | |
| 8570 | // Size or end pointer |
| 8571 | if (const auto *PT = Field->getType()->getAs<PointerType>()) { |
| 8572 | if (!S.Context.hasSameType(PT->getPointeeType(), |
| 8573 | ElementType.withConst())) |
| 8574 | return InvalidType(); |
| 8575 | } else { |
| 8576 | if (Field->isBitField() || |
| 8577 | !S.Context.hasSameType(Field->getType(), S.Context.getSizeType())) |
| 8578 | return InvalidType(); |
| 8579 | } |
| 8580 | |
| 8581 | if (++Field != Record->field_end()) |
| 8582 | return InvalidType(); |
| 8583 | } |
| 8584 | |
| 8585 | // Bind the result, in case the library has given initializer_list a |
| 8586 | // non-trivial destructor. |
| 8587 | if (shouldBindAsTemporary(Entity)) |
| 8588 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
| 8589 | break; |
| 8590 | } |
| 8591 | |
| 8592 | case SK_OCLSamplerInit: { |
| 8593 | // Sampler initialization have 5 cases: |
| 8594 | // 1. function argument passing |
| 8595 | // 1a. argument is a file-scope variable |
| 8596 | // 1b. argument is a function-scope variable |
| 8597 | // 1c. argument is one of caller function's parameters |
| 8598 | // 2. variable initialization |
| 8599 | // 2a. initializing a file-scope variable |
| 8600 | // 2b. initializing a function-scope variable |
| 8601 | // |
| 8602 | // For file-scope variables, since they cannot be initialized by function |
| 8603 | // call of __translate_sampler_initializer in LLVM IR, their references |
| 8604 | // need to be replaced by a cast from their literal initializers to |
| 8605 | // sampler type. Since sampler variables can only be used in function |
| 8606 | // calls as arguments, we only need to replace them when handling the |
| 8607 | // argument passing. |
| 8608 | assert(Step->Type->isSamplerT() && |
| 8609 | "Sampler initialization on non-sampler type." ); |
| 8610 | Expr *Init = CurInit.get()->IgnoreParens(); |
| 8611 | QualType SourceType = Init->getType(); |
| 8612 | // Case 1 |
| 8613 | if (Entity.isParameterKind()) { |
| 8614 | if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { |
| 8615 | S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) |
| 8616 | << SourceType; |
| 8617 | break; |
| 8618 | } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Init)) { |
| 8619 | auto Var = cast<VarDecl>(Val: DRE->getDecl()); |
| 8620 | // Case 1b and 1c |
| 8621 | // No cast from integer to sampler is needed. |
| 8622 | if (!Var->hasGlobalStorage()) { |
| 8623 | CurInit = ImplicitCastExpr::Create( |
| 8624 | Context: S.Context, T: Step->Type, Kind: CK_LValueToRValue, Operand: Init, |
| 8625 | /*BasePath=*/nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride()); |
| 8626 | break; |
| 8627 | } |
| 8628 | // Case 1a |
| 8629 | // For function call with a file-scope sampler variable as argument, |
| 8630 | // get the integer literal. |
| 8631 | // Do not diagnose if the file-scope variable does not have initializer |
| 8632 | // since this has already been diagnosed when parsing the variable |
| 8633 | // declaration. |
| 8634 | if (!Var->getInit() || !isa<ImplicitCastExpr>(Val: Var->getInit())) |
| 8635 | break; |
| 8636 | Init = cast<ImplicitCastExpr>(Val: const_cast<Expr*>( |
| 8637 | Var->getInit()))->getSubExpr(); |
| 8638 | SourceType = Init->getType(); |
| 8639 | } |
| 8640 | } else { |
| 8641 | // Case 2 |
| 8642 | // Check initializer is 32 bit integer constant. |
| 8643 | // If the initializer is taken from global variable, do not diagnose since |
| 8644 | // this has already been done when parsing the variable declaration. |
| 8645 | if (!Init->isConstantInitializer(Ctx&: S.Context, ForRef: false)) |
| 8646 | break; |
| 8647 | |
| 8648 | if (!SourceType->isIntegerType() || |
| 8649 | 32 != S.Context.getIntWidth(T: SourceType)) { |
| 8650 | S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) |
| 8651 | << SourceType; |
| 8652 | break; |
| 8653 | } |
| 8654 | |
| 8655 | Expr::EvalResult EVResult; |
| 8656 | Init->EvaluateAsInt(Result&: EVResult, Ctx: S.Context); |
| 8657 | llvm::APSInt Result = EVResult.Val.getInt(); |
| 8658 | const uint64_t SamplerValue = Result.getLimitedValue(); |
| 8659 | // 32-bit value of sampler's initializer is interpreted as |
| 8660 | // bit-field with the following structure: |
| 8661 | // |unspecified|Filter|Addressing Mode| Normalized Coords| |
| 8662 | // |31 6|5 4|3 1| 0| |
| 8663 | // This structure corresponds to enum values of sampler properties |
| 8664 | // defined in SPIR spec v1.2 and also opencl-c.h |
| 8665 | unsigned AddressingMode = (0x0E & SamplerValue) >> 1; |
| 8666 | unsigned FilterMode = (0x30 & SamplerValue) >> 4; |
| 8667 | if (FilterMode != 1 && FilterMode != 2 && |
| 8668 | !S.getOpenCLOptions().isAvailableOption( |
| 8669 | "cl_intel_device_side_avc_motion_estimation" , S.getLangOpts())) |
| 8670 | S.Diag(Kind.getLocation(), |
| 8671 | diag::warn_sampler_initializer_invalid_bits) |
| 8672 | << "Filter Mode" ; |
| 8673 | if (AddressingMode > 4) |
| 8674 | S.Diag(Kind.getLocation(), |
| 8675 | diag::warn_sampler_initializer_invalid_bits) |
| 8676 | << "Addressing Mode" ; |
| 8677 | } |
| 8678 | |
| 8679 | // Cases 1a, 2a and 2b |
| 8680 | // Insert cast from integer to sampler. |
| 8681 | CurInit = S.ImpCastExprToType(E: Init, Type: S.Context.OCLSamplerTy, |
| 8682 | CK: CK_IntToOCLSampler); |
| 8683 | break; |
| 8684 | } |
| 8685 | case SK_OCLZeroOpaqueType: { |
| 8686 | assert((Step->Type->isEventT() || Step->Type->isQueueT() || |
| 8687 | Step->Type->isOCLIntelSubgroupAVCType()) && |
| 8688 | "Wrong type for initialization of OpenCL opaque type." ); |
| 8689 | |
| 8690 | CurInit = S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, |
| 8691 | CK: CK_ZeroToOCLOpaqueType, |
| 8692 | VK: CurInit.get()->getValueKind()); |
| 8693 | break; |
| 8694 | } |
| 8695 | case SK_ParenthesizedListInit: { |
| 8696 | CurInit = nullptr; |
| 8697 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence&: *this, |
| 8698 | /*VerifyOnly=*/false, Result: &CurInit); |
| 8699 | if (CurInit.get() && ResultType) |
| 8700 | *ResultType = CurInit.get()->getType(); |
| 8701 | if (shouldBindAsTemporary(Entity)) |
| 8702 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
| 8703 | break; |
| 8704 | } |
| 8705 | } |
| 8706 | } |
| 8707 | |
| 8708 | Expr *Init = CurInit.get(); |
| 8709 | if (!Init) |
| 8710 | return ExprError(); |
| 8711 | |
| 8712 | // Check whether the initializer has a shorter lifetime than the initialized |
| 8713 | // entity, and if not, either lifetime-extend or warn as appropriate. |
| 8714 | S.checkInitializerLifetime(Entity, Init); |
| 8715 | |
| 8716 | // Diagnose non-fatal problems with the completed initialization. |
| 8717 | if (InitializedEntity::EntityKind EK = Entity.getKind(); |
| 8718 | (EK == InitializedEntity::EK_Member || |
| 8719 | EK == InitializedEntity::EK_ParenAggInitMember) && |
| 8720 | cast<FieldDecl>(Val: Entity.getDecl())->isBitField()) |
| 8721 | S.CheckBitFieldInitialization(InitLoc: Kind.getLocation(), |
| 8722 | Field: cast<FieldDecl>(Val: Entity.getDecl()), Init); |
| 8723 | |
| 8724 | // Check for std::move on construction. |
| 8725 | CheckMoveOnConstruction(S, InitExpr: Init, |
| 8726 | IsReturnStmt: Entity.getKind() == InitializedEntity::EK_Result); |
| 8727 | |
| 8728 | return Init; |
| 8729 | } |
| 8730 | |
| 8731 | /// Somewhere within T there is an uninitialized reference subobject. |
| 8732 | /// Dig it out and diagnose it. |
| 8733 | static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, |
| 8734 | QualType T) { |
| 8735 | if (T->isReferenceType()) { |
| 8736 | S.Diag(Loc, diag::err_reference_without_init) |
| 8737 | << T.getNonReferenceType(); |
| 8738 | return true; |
| 8739 | } |
| 8740 | |
| 8741 | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| 8742 | if (!RD || !RD->hasUninitializedReferenceMember()) |
| 8743 | return false; |
| 8744 | |
| 8745 | for (const auto *FI : RD->fields()) { |
| 8746 | if (FI->isUnnamedBitField()) |
| 8747 | continue; |
| 8748 | |
| 8749 | if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { |
| 8750 | S.Diag(Loc, diag::note_value_initialization_here) << RD; |
| 8751 | return true; |
| 8752 | } |
| 8753 | } |
| 8754 | |
| 8755 | for (const auto &BI : RD->bases()) { |
| 8756 | if (DiagnoseUninitializedReference(S, Loc: BI.getBeginLoc(), T: BI.getType())) { |
| 8757 | S.Diag(Loc, diag::note_value_initialization_here) << RD; |
| 8758 | return true; |
| 8759 | } |
| 8760 | } |
| 8761 | |
| 8762 | return false; |
| 8763 | } |
| 8764 | |
| 8765 | |
| 8766 | //===----------------------------------------------------------------------===// |
| 8767 | // Diagnose initialization failures |
| 8768 | //===----------------------------------------------------------------------===// |
| 8769 | |
| 8770 | /// Emit notes associated with an initialization that failed due to a |
| 8771 | /// "simple" conversion failure. |
| 8772 | static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, |
| 8773 | Expr *op) { |
| 8774 | QualType destType = entity.getType(); |
| 8775 | if (destType.getNonReferenceType()->isObjCObjectPointerType() && |
| 8776 | op->getType()->isObjCObjectPointerType()) { |
| 8777 | |
| 8778 | // Emit a possible note about the conversion failing because the |
| 8779 | // operand is a message send with a related result type. |
| 8780 | S.ObjC().EmitRelatedResultTypeNote(E: op); |
| 8781 | |
| 8782 | // Emit a possible note about a return failing because we're |
| 8783 | // expecting a related result type. |
| 8784 | if (entity.getKind() == InitializedEntity::EK_Result) |
| 8785 | S.ObjC().EmitRelatedResultTypeNoteForReturn(destType); |
| 8786 | } |
| 8787 | QualType fromType = op->getType(); |
| 8788 | QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType(); |
| 8789 | QualType destPointeeType = destType.getCanonicalType()->getPointeeType(); |
| 8790 | auto *fromDecl = fromType->getPointeeCXXRecordDecl(); |
| 8791 | auto *destDecl = destType->getPointeeCXXRecordDecl(); |
| 8792 | if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord && |
| 8793 | destDecl->getDeclKind() == Decl::CXXRecord && |
| 8794 | !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() && |
| 8795 | !fromDecl->hasDefinition() && |
| 8796 | destPointeeType.getQualifiers().compatiblyIncludes( |
| 8797 | fromPointeeType.getQualifiers(), S.getASTContext())) |
| 8798 | S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion) |
| 8799 | << S.getASTContext().getTagDeclType(fromDecl) |
| 8800 | << S.getASTContext().getTagDeclType(destDecl); |
| 8801 | } |
| 8802 | |
| 8803 | static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, |
| 8804 | InitListExpr *InitList) { |
| 8805 | QualType DestType = Entity.getType(); |
| 8806 | |
| 8807 | QualType E; |
| 8808 | if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(Ty: DestType, Element: &E)) { |
| 8809 | QualType ArrayType = S.Context.getConstantArrayType( |
| 8810 | EltTy: E.withConst(), |
| 8811 | ArySize: llvm::APInt(S.Context.getTypeSize(T: S.Context.getSizeType()), |
| 8812 | InitList->getNumInits()), |
| 8813 | SizeExpr: nullptr, ASM: clang::ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 8814 | InitializedEntity HiddenArray = |
| 8815 | InitializedEntity::InitializeTemporary(Type: ArrayType); |
| 8816 | return diagnoseListInit(S, Entity: HiddenArray, InitList); |
| 8817 | } |
| 8818 | |
| 8819 | if (DestType->isReferenceType()) { |
| 8820 | // A list-initialization failure for a reference means that we tried to |
| 8821 | // create a temporary of the inner type (per [dcl.init.list]p3.6) and the |
| 8822 | // inner initialization failed. |
| 8823 | QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); |
| 8824 | diagnoseListInit(S, Entity: InitializedEntity::InitializeTemporary(Type: T), InitList); |
| 8825 | SourceLocation Loc = InitList->getBeginLoc(); |
| 8826 | if (auto *D = Entity.getDecl()) |
| 8827 | Loc = D->getLocation(); |
| 8828 | S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; |
| 8829 | return; |
| 8830 | } |
| 8831 | |
| 8832 | InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, |
| 8833 | /*VerifyOnly=*/false, |
| 8834 | /*TreatUnavailableAsInvalid=*/false); |
| 8835 | assert(DiagnoseInitList.HadError() && |
| 8836 | "Inconsistent init list check result." ); |
| 8837 | } |
| 8838 | |
| 8839 | bool InitializationSequence::Diagnose(Sema &S, |
| 8840 | const InitializedEntity &Entity, |
| 8841 | const InitializationKind &Kind, |
| 8842 | ArrayRef<Expr *> Args) { |
| 8843 | if (!Failed()) |
| 8844 | return false; |
| 8845 | |
| 8846 | QualType DestType = Entity.getType(); |
| 8847 | |
| 8848 | // When we want to diagnose only one element of a braced-init-list, |
| 8849 | // we need to factor it out. |
| 8850 | Expr *OnlyArg; |
| 8851 | if (Args.size() == 1) { |
| 8852 | auto *List = dyn_cast<InitListExpr>(Val: Args[0]); |
| 8853 | if (List && List->getNumInits() == 1) |
| 8854 | OnlyArg = List->getInit(Init: 0); |
| 8855 | else |
| 8856 | OnlyArg = Args[0]; |
| 8857 | |
| 8858 | if (OnlyArg->getType() == S.Context.OverloadTy) { |
| 8859 | DeclAccessPair Found; |
| 8860 | if (FunctionDecl *FD = S.ResolveAddressOfOverloadedFunction( |
| 8861 | AddressOfExpr: OnlyArg, TargetType: DestType.getNonReferenceType(), /*Complain=*/false, |
| 8862 | Found)) { |
| 8863 | if (Expr *Resolved = |
| 8864 | S.FixOverloadedFunctionReference(E: OnlyArg, FoundDecl: Found, Fn: FD).get()) |
| 8865 | OnlyArg = Resolved; |
| 8866 | } |
| 8867 | } |
| 8868 | } |
| 8869 | else |
| 8870 | OnlyArg = nullptr; |
| 8871 | |
| 8872 | switch (Failure) { |
| 8873 | case FK_TooManyInitsForReference: |
| 8874 | // FIXME: Customize for the initialized entity? |
| 8875 | if (Args.empty()) { |
| 8876 | // Dig out the reference subobject which is uninitialized and diagnose it. |
| 8877 | // If this is value-initialization, this could be nested some way within |
| 8878 | // the target type. |
| 8879 | assert(Kind.getKind() == InitializationKind::IK_Value || |
| 8880 | DestType->isReferenceType()); |
| 8881 | bool Diagnosed = |
| 8882 | DiagnoseUninitializedReference(S, Loc: Kind.getLocation(), T: DestType); |
| 8883 | assert(Diagnosed && "couldn't find uninitialized reference to diagnose" ); |
| 8884 | (void)Diagnosed; |
| 8885 | } else // FIXME: diagnostic below could be better! |
| 8886 | S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) |
| 8887 | << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); |
| 8888 | break; |
| 8889 | case FK_ParenthesizedListInitForReference: |
| 8890 | S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) |
| 8891 | << 1 << Entity.getType() << Args[0]->getSourceRange(); |
| 8892 | break; |
| 8893 | |
| 8894 | case FK_ArrayNeedsInitList: |
| 8895 | S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; |
| 8896 | break; |
| 8897 | case FK_ArrayNeedsInitListOrStringLiteral: |
| 8898 | S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; |
| 8899 | break; |
| 8900 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
| 8901 | S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; |
| 8902 | break; |
| 8903 | case FK_NarrowStringIntoWideCharArray: |
| 8904 | S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); |
| 8905 | break; |
| 8906 | case FK_WideStringIntoCharArray: |
| 8907 | S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); |
| 8908 | break; |
| 8909 | case FK_IncompatWideStringIntoWideChar: |
| 8910 | S.Diag(Kind.getLocation(), |
| 8911 | diag::err_array_init_incompat_wide_string_into_wchar); |
| 8912 | break; |
| 8913 | case FK_PlainStringIntoUTF8Char: |
| 8914 | S.Diag(Kind.getLocation(), |
| 8915 | diag::err_array_init_plain_string_into_char8_t); |
| 8916 | S.Diag(Args.front()->getBeginLoc(), |
| 8917 | diag::note_array_init_plain_string_into_char8_t) |
| 8918 | << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8" ); |
| 8919 | break; |
| 8920 | case FK_UTF8StringIntoPlainChar: |
| 8921 | S.Diag(Kind.getLocation(), diag::err_array_init_utf8_string_into_char) |
| 8922 | << DestType->isSignedIntegerType() << S.getLangOpts().CPlusPlus20; |
| 8923 | break; |
| 8924 | case FK_ArrayTypeMismatch: |
| 8925 | case FK_NonConstantArrayInit: |
| 8926 | S.Diag(Kind.getLocation(), |
| 8927 | (Failure == FK_ArrayTypeMismatch |
| 8928 | ? diag::err_array_init_different_type |
| 8929 | : diag::err_array_init_non_constant_array)) |
| 8930 | << DestType.getNonReferenceType() |
| 8931 | << OnlyArg->getType() |
| 8932 | << Args[0]->getSourceRange(); |
| 8933 | break; |
| 8934 | |
| 8935 | case FK_VariableLengthArrayHasInitializer: |
| 8936 | S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) |
| 8937 | << Args[0]->getSourceRange(); |
| 8938 | break; |
| 8939 | |
| 8940 | case FK_AddressOfOverloadFailed: { |
| 8941 | DeclAccessPair Found; |
| 8942 | S.ResolveAddressOfOverloadedFunction(AddressOfExpr: OnlyArg, |
| 8943 | TargetType: DestType.getNonReferenceType(), |
| 8944 | Complain: true, |
| 8945 | Found); |
| 8946 | break; |
| 8947 | } |
| 8948 | |
| 8949 | case FK_AddressOfUnaddressableFunction: { |
| 8950 | auto *FD = cast<FunctionDecl>(Val: cast<DeclRefExpr>(Val: OnlyArg)->getDecl()); |
| 8951 | S.checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true, |
| 8952 | Loc: OnlyArg->getBeginLoc()); |
| 8953 | break; |
| 8954 | } |
| 8955 | |
| 8956 | case FK_ReferenceInitOverloadFailed: |
| 8957 | case FK_UserConversionOverloadFailed: |
| 8958 | switch (FailedOverloadResult) { |
| 8959 | case OR_Ambiguous: |
| 8960 | |
| 8961 | FailedCandidateSet.NoteCandidates( |
| 8962 | PartialDiagnosticAt( |
| 8963 | Kind.getLocation(), |
| 8964 | Failure == FK_UserConversionOverloadFailed |
| 8965 | ? (S.PDiag(diag::err_typecheck_ambiguous_condition) |
| 8966 | << OnlyArg->getType() << DestType |
| 8967 | << Args[0]->getSourceRange()) |
| 8968 | : (S.PDiag(diag::err_ref_init_ambiguous) |
| 8969 | << DestType << OnlyArg->getType() |
| 8970 | << Args[0]->getSourceRange())), |
| 8971 | S, OCD_AmbiguousCandidates, Args); |
| 8972 | break; |
| 8973 | |
| 8974 | case OR_No_Viable_Function: { |
| 8975 | auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD: OCD_AllCandidates, Args); |
| 8976 | if (!S.RequireCompleteType(Kind.getLocation(), |
| 8977 | DestType.getNonReferenceType(), |
| 8978 | diag::err_typecheck_nonviable_condition_incomplete, |
| 8979 | OnlyArg->getType(), Args[0]->getSourceRange())) |
| 8980 | S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) |
| 8981 | << (Entity.getKind() == InitializedEntity::EK_Result) |
| 8982 | << OnlyArg->getType() << Args[0]->getSourceRange() |
| 8983 | << DestType.getNonReferenceType(); |
| 8984 | |
| 8985 | FailedCandidateSet.NoteCandidates(S, Args, Cands); |
| 8986 | break; |
| 8987 | } |
| 8988 | case OR_Deleted: { |
| 8989 | OverloadCandidateSet::iterator Best; |
| 8990 | OverloadingResult Ovl |
| 8991 | = FailedCandidateSet.BestViableFunction(S, Loc: Kind.getLocation(), Best); |
| 8992 | |
| 8993 | StringLiteral *Msg = Best->Function->getDeletedMessage(); |
| 8994 | S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) |
| 8995 | << OnlyArg->getType() << DestType.getNonReferenceType() |
| 8996 | << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef()) |
| 8997 | << Args[0]->getSourceRange(); |
| 8998 | if (Ovl == OR_Deleted) { |
| 8999 | S.NoteDeletedFunction(FD: Best->Function); |
| 9000 | } else { |
| 9001 | llvm_unreachable("Inconsistent overload resolution?" ); |
| 9002 | } |
| 9003 | break; |
| 9004 | } |
| 9005 | |
| 9006 | case OR_Success: |
| 9007 | llvm_unreachable("Conversion did not fail!" ); |
| 9008 | } |
| 9009 | break; |
| 9010 | |
| 9011 | case FK_NonConstLValueReferenceBindingToTemporary: |
| 9012 | if (isa<InitListExpr>(Val: Args[0])) { |
| 9013 | S.Diag(Kind.getLocation(), |
| 9014 | diag::err_lvalue_reference_bind_to_initlist) |
| 9015 | << DestType.getNonReferenceType().isVolatileQualified() |
| 9016 | << DestType.getNonReferenceType() |
| 9017 | << Args[0]->getSourceRange(); |
| 9018 | break; |
| 9019 | } |
| 9020 | [[fallthrough]]; |
| 9021 | |
| 9022 | case FK_NonConstLValueReferenceBindingToUnrelated: |
| 9023 | S.Diag(Kind.getLocation(), |
| 9024 | Failure == FK_NonConstLValueReferenceBindingToTemporary |
| 9025 | ? diag::err_lvalue_reference_bind_to_temporary |
| 9026 | : diag::err_lvalue_reference_bind_to_unrelated) |
| 9027 | << DestType.getNonReferenceType().isVolatileQualified() |
| 9028 | << DestType.getNonReferenceType() |
| 9029 | << OnlyArg->getType() |
| 9030 | << Args[0]->getSourceRange(); |
| 9031 | break; |
| 9032 | |
| 9033 | case FK_NonConstLValueReferenceBindingToBitfield: { |
| 9034 | // We don't necessarily have an unambiguous source bit-field. |
| 9035 | FieldDecl *BitField = Args[0]->getSourceBitField(); |
| 9036 | S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) |
| 9037 | << DestType.isVolatileQualified() |
| 9038 | << (BitField ? BitField->getDeclName() : DeclarationName()) |
| 9039 | << (BitField != nullptr) |
| 9040 | << Args[0]->getSourceRange(); |
| 9041 | if (BitField) |
| 9042 | S.Diag(BitField->getLocation(), diag::note_bitfield_decl); |
| 9043 | break; |
| 9044 | } |
| 9045 | |
| 9046 | case FK_NonConstLValueReferenceBindingToVectorElement: |
| 9047 | S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) |
| 9048 | << DestType.isVolatileQualified() |
| 9049 | << Args[0]->getSourceRange(); |
| 9050 | break; |
| 9051 | |
| 9052 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
| 9053 | S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element) |
| 9054 | << DestType.isVolatileQualified() << Args[0]->getSourceRange(); |
| 9055 | break; |
| 9056 | |
| 9057 | case FK_RValueReferenceBindingToLValue: |
| 9058 | S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) |
| 9059 | << DestType.getNonReferenceType() << OnlyArg->getType() |
| 9060 | << Args[0]->getSourceRange(); |
| 9061 | break; |
| 9062 | |
| 9063 | case FK_ReferenceAddrspaceMismatchTemporary: |
| 9064 | S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) |
| 9065 | << DestType << Args[0]->getSourceRange(); |
| 9066 | break; |
| 9067 | |
| 9068 | case FK_ReferenceInitDropsQualifiers: { |
| 9069 | QualType SourceType = OnlyArg->getType(); |
| 9070 | QualType NonRefType = DestType.getNonReferenceType(); |
| 9071 | Qualifiers DroppedQualifiers = |
| 9072 | SourceType.getQualifiers() - NonRefType.getQualifiers(); |
| 9073 | |
| 9074 | if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( |
| 9075 | SourceType.getQualifiers(), S.getASTContext())) |
| 9076 | S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) |
| 9077 | << NonRefType << SourceType << 1 /*addr space*/ |
| 9078 | << Args[0]->getSourceRange(); |
| 9079 | else if (DroppedQualifiers.hasQualifiers()) |
| 9080 | S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) |
| 9081 | << NonRefType << SourceType << 0 /*cv quals*/ |
| 9082 | << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) |
| 9083 | << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); |
| 9084 | else |
| 9085 | // FIXME: Consider decomposing the type and explaining which qualifiers |
| 9086 | // were dropped where, or on which level a 'const' is missing, etc. |
| 9087 | S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) |
| 9088 | << NonRefType << SourceType << 2 /*incompatible quals*/ |
| 9089 | << Args[0]->getSourceRange(); |
| 9090 | break; |
| 9091 | } |
| 9092 | |
| 9093 | case FK_ReferenceInitFailed: |
| 9094 | S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) |
| 9095 | << DestType.getNonReferenceType() |
| 9096 | << DestType.getNonReferenceType()->isIncompleteType() |
| 9097 | << OnlyArg->isLValue() |
| 9098 | << OnlyArg->getType() |
| 9099 | << Args[0]->getSourceRange(); |
| 9100 | emitBadConversionNotes(S, entity: Entity, op: Args[0]); |
| 9101 | break; |
| 9102 | |
| 9103 | case FK_ConversionFailed: { |
| 9104 | QualType FromType = OnlyArg->getType(); |
| 9105 | PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) |
| 9106 | << (int)Entity.getKind() |
| 9107 | << DestType |
| 9108 | << OnlyArg->isLValue() |
| 9109 | << FromType |
| 9110 | << Args[0]->getSourceRange(); |
| 9111 | S.HandleFunctionTypeMismatch(PDiag, FromType, ToType: DestType); |
| 9112 | S.Diag(Kind.getLocation(), PDiag); |
| 9113 | emitBadConversionNotes(S, entity: Entity, op: Args[0]); |
| 9114 | break; |
| 9115 | } |
| 9116 | |
| 9117 | case FK_ConversionFromPropertyFailed: |
| 9118 | // No-op. This error has already been reported. |
| 9119 | break; |
| 9120 | |
| 9121 | case FK_TooManyInitsForScalar: { |
| 9122 | SourceRange R; |
| 9123 | |
| 9124 | auto *InitList = dyn_cast<InitListExpr>(Val: Args[0]); |
| 9125 | if (InitList && InitList->getNumInits() >= 1) { |
| 9126 | R = SourceRange(InitList->getInit(Init: 0)->getEndLoc(), InitList->getEndLoc()); |
| 9127 | } else { |
| 9128 | assert(Args.size() > 1 && "Expected multiple initializers!" ); |
| 9129 | R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); |
| 9130 | } |
| 9131 | |
| 9132 | R.setBegin(S.getLocForEndOfToken(Loc: R.getBegin())); |
| 9133 | if (Kind.isCStyleOrFunctionalCast()) |
| 9134 | S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) |
| 9135 | << R; |
| 9136 | else |
| 9137 | S.Diag(Kind.getLocation(), diag::err_excess_initializers) |
| 9138 | << /*scalar=*/2 << R; |
| 9139 | break; |
| 9140 | } |
| 9141 | |
| 9142 | case FK_ParenthesizedListInitForScalar: |
| 9143 | S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) |
| 9144 | << 0 << Entity.getType() << Args[0]->getSourceRange(); |
| 9145 | break; |
| 9146 | |
| 9147 | case FK_ReferenceBindingToInitList: |
| 9148 | S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) |
| 9149 | << DestType.getNonReferenceType() << Args[0]->getSourceRange(); |
| 9150 | break; |
| 9151 | |
| 9152 | case FK_InitListBadDestinationType: |
| 9153 | S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) |
| 9154 | << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); |
| 9155 | break; |
| 9156 | |
| 9157 | case FK_ListConstructorOverloadFailed: |
| 9158 | case FK_ConstructorOverloadFailed: { |
| 9159 | SourceRange ArgsRange; |
| 9160 | if (Args.size()) |
| 9161 | ArgsRange = |
| 9162 | SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); |
| 9163 | |
| 9164 | if (Failure == FK_ListConstructorOverloadFailed) { |
| 9165 | assert(Args.size() == 1 && |
| 9166 | "List construction from other than 1 argument." ); |
| 9167 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
| 9168 | Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); |
| 9169 | } |
| 9170 | |
| 9171 | // FIXME: Using "DestType" for the entity we're printing is probably |
| 9172 | // bad. |
| 9173 | switch (FailedOverloadResult) { |
| 9174 | case OR_Ambiguous: |
| 9175 | FailedCandidateSet.NoteCandidates( |
| 9176 | PartialDiagnosticAt(Kind.getLocation(), |
| 9177 | S.PDiag(diag::err_ovl_ambiguous_init) |
| 9178 | << DestType << ArgsRange), |
| 9179 | S, OCD_AmbiguousCandidates, Args); |
| 9180 | break; |
| 9181 | |
| 9182 | case OR_No_Viable_Function: |
| 9183 | if (Kind.getKind() == InitializationKind::IK_Default && |
| 9184 | (Entity.getKind() == InitializedEntity::EK_Base || |
| 9185 | Entity.getKind() == InitializedEntity::EK_Member || |
| 9186 | Entity.getKind() == InitializedEntity::EK_ParenAggInitMember) && |
| 9187 | isa<CXXConstructorDecl>(Val: S.CurContext)) { |
| 9188 | // This is implicit default initialization of a member or |
| 9189 | // base within a constructor. If no viable function was |
| 9190 | // found, notify the user that they need to explicitly |
| 9191 | // initialize this base/member. |
| 9192 | CXXConstructorDecl *Constructor |
| 9193 | = cast<CXXConstructorDecl>(Val: S.CurContext); |
| 9194 | const CXXRecordDecl *InheritedFrom = nullptr; |
| 9195 | if (auto Inherited = Constructor->getInheritedConstructor()) |
| 9196 | InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); |
| 9197 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
| 9198 | S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) |
| 9199 | << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) |
| 9200 | << S.Context.getTypeDeclType(Constructor->getParent()) |
| 9201 | << /*base=*/0 |
| 9202 | << Entity.getType() |
| 9203 | << InheritedFrom; |
| 9204 | |
| 9205 | RecordDecl *BaseDecl |
| 9206 | = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() |
| 9207 | ->getDecl(); |
| 9208 | S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) |
| 9209 | << S.Context.getTagDeclType(BaseDecl); |
| 9210 | } else { |
| 9211 | S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) |
| 9212 | << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) |
| 9213 | << S.Context.getTypeDeclType(Constructor->getParent()) |
| 9214 | << /*member=*/1 |
| 9215 | << Entity.getName() |
| 9216 | << InheritedFrom; |
| 9217 | S.Diag(Entity.getDecl()->getLocation(), |
| 9218 | diag::note_member_declared_at); |
| 9219 | |
| 9220 | if (const RecordType *Record |
| 9221 | = Entity.getType()->getAs<RecordType>()) |
| 9222 | S.Diag(Record->getDecl()->getLocation(), |
| 9223 | diag::note_previous_decl) |
| 9224 | << S.Context.getTagDeclType(Record->getDecl()); |
| 9225 | } |
| 9226 | break; |
| 9227 | } |
| 9228 | |
| 9229 | FailedCandidateSet.NoteCandidates( |
| 9230 | PartialDiagnosticAt( |
| 9231 | Kind.getLocation(), |
| 9232 | S.PDiag(diag::err_ovl_no_viable_function_in_init) |
| 9233 | << DestType << ArgsRange), |
| 9234 | S, OCD_AllCandidates, Args); |
| 9235 | break; |
| 9236 | |
| 9237 | case OR_Deleted: { |
| 9238 | OverloadCandidateSet::iterator Best; |
| 9239 | OverloadingResult Ovl |
| 9240 | = FailedCandidateSet.BestViableFunction(S, Loc: Kind.getLocation(), Best); |
| 9241 | if (Ovl != OR_Deleted) { |
| 9242 | S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) |
| 9243 | << DestType << ArgsRange; |
| 9244 | llvm_unreachable("Inconsistent overload resolution?" ); |
| 9245 | break; |
| 9246 | } |
| 9247 | |
| 9248 | // If this is a defaulted or implicitly-declared function, then |
| 9249 | // it was implicitly deleted. Make it clear that the deletion was |
| 9250 | // implicit. |
| 9251 | if (S.isImplicitlyDeleted(FD: Best->Function)) |
| 9252 | S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) |
| 9253 | << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) |
| 9254 | << DestType << ArgsRange; |
| 9255 | else { |
| 9256 | StringLiteral *Msg = Best->Function->getDeletedMessage(); |
| 9257 | S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) |
| 9258 | << DestType << (Msg != nullptr) |
| 9259 | << (Msg ? Msg->getString() : StringRef()) << ArgsRange; |
| 9260 | } |
| 9261 | |
| 9262 | // If it's a default constructed member, but it's not in the |
| 9263 | // constructor's initializer list, explicitly note where the member is |
| 9264 | // declared so the user can see which member is erroneously initialized |
| 9265 | // with a deleted default constructor. |
| 9266 | if (Kind.getKind() == InitializationKind::IK_Default && |
| 9267 | (Entity.getKind() == InitializedEntity::EK_Member || |
| 9268 | Entity.getKind() == InitializedEntity::EK_ParenAggInitMember)) { |
| 9269 | S.Diag(Entity.getDecl()->getLocation(), |
| 9270 | diag::note_default_constructed_field) |
| 9271 | << Entity.getDecl(); |
| 9272 | } |
| 9273 | S.NoteDeletedFunction(FD: Best->Function); |
| 9274 | break; |
| 9275 | } |
| 9276 | |
| 9277 | case OR_Success: |
| 9278 | llvm_unreachable("Conversion did not fail!" ); |
| 9279 | } |
| 9280 | } |
| 9281 | break; |
| 9282 | |
| 9283 | case FK_DefaultInitOfConst: |
| 9284 | if (Entity.getKind() == InitializedEntity::EK_Member && |
| 9285 | isa<CXXConstructorDecl>(Val: S.CurContext)) { |
| 9286 | // This is implicit default-initialization of a const member in |
| 9287 | // a constructor. Complain that it needs to be explicitly |
| 9288 | // initialized. |
| 9289 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Val: S.CurContext); |
| 9290 | S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) |
| 9291 | << (Constructor->getInheritedConstructor() ? 2 : |
| 9292 | Constructor->isImplicit() ? 1 : 0) |
| 9293 | << S.Context.getTypeDeclType(Constructor->getParent()) |
| 9294 | << /*const=*/1 |
| 9295 | << Entity.getName(); |
| 9296 | S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) |
| 9297 | << Entity.getName(); |
| 9298 | } else if (const auto *VD = dyn_cast_if_present<VarDecl>(Val: Entity.getDecl()); |
| 9299 | VD && VD->isConstexpr()) { |
| 9300 | S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init) |
| 9301 | << VD; |
| 9302 | } else { |
| 9303 | S.Diag(Kind.getLocation(), diag::err_default_init_const) |
| 9304 | << DestType << (bool)DestType->getAs<RecordType>(); |
| 9305 | } |
| 9306 | break; |
| 9307 | |
| 9308 | case FK_Incomplete: |
| 9309 | S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, |
| 9310 | diag::err_init_incomplete_type); |
| 9311 | break; |
| 9312 | |
| 9313 | case FK_ListInitializationFailed: { |
| 9314 | // Run the init list checker again to emit diagnostics. |
| 9315 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
| 9316 | diagnoseListInit(S, Entity, InitList); |
| 9317 | break; |
| 9318 | } |
| 9319 | |
| 9320 | case FK_PlaceholderType: { |
| 9321 | // FIXME: Already diagnosed! |
| 9322 | break; |
| 9323 | } |
| 9324 | |
| 9325 | case FK_ExplicitConstructor: { |
| 9326 | S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) |
| 9327 | << Args[0]->getSourceRange(); |
| 9328 | OverloadCandidateSet::iterator Best; |
| 9329 | OverloadingResult Ovl |
| 9330 | = FailedCandidateSet.BestViableFunction(S, Loc: Kind.getLocation(), Best); |
| 9331 | (void)Ovl; |
| 9332 | assert(Ovl == OR_Success && "Inconsistent overload resolution" ); |
| 9333 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Val: Best->Function); |
| 9334 | S.Diag(CtorDecl->getLocation(), |
| 9335 | diag::note_explicit_ctor_deduction_guide_here) << false; |
| 9336 | break; |
| 9337 | } |
| 9338 | |
| 9339 | case FK_ParenthesizedListInitFailed: |
| 9340 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence&: *this, |
| 9341 | /*VerifyOnly=*/false); |
| 9342 | break; |
| 9343 | |
| 9344 | case FK_DesignatedInitForNonAggregate: |
| 9345 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
| 9346 | S.Diag(Kind.getLocation(), diag::err_designated_init_for_non_aggregate) |
| 9347 | << Entity.getType() << InitList->getSourceRange(); |
| 9348 | break; |
| 9349 | } |
| 9350 | |
| 9351 | PrintInitLocationNote(S, Entity); |
| 9352 | return true; |
| 9353 | } |
| 9354 | |
| 9355 | void InitializationSequence::dump(raw_ostream &OS) const { |
| 9356 | switch (SequenceKind) { |
| 9357 | case FailedSequence: { |
| 9358 | OS << "Failed sequence: " ; |
| 9359 | switch (Failure) { |
| 9360 | case FK_TooManyInitsForReference: |
| 9361 | OS << "too many initializers for reference" ; |
| 9362 | break; |
| 9363 | |
| 9364 | case FK_ParenthesizedListInitForReference: |
| 9365 | OS << "parenthesized list init for reference" ; |
| 9366 | break; |
| 9367 | |
| 9368 | case FK_ArrayNeedsInitList: |
| 9369 | OS << "array requires initializer list" ; |
| 9370 | break; |
| 9371 | |
| 9372 | case FK_AddressOfUnaddressableFunction: |
| 9373 | OS << "address of unaddressable function was taken" ; |
| 9374 | break; |
| 9375 | |
| 9376 | case FK_ArrayNeedsInitListOrStringLiteral: |
| 9377 | OS << "array requires initializer list or string literal" ; |
| 9378 | break; |
| 9379 | |
| 9380 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
| 9381 | OS << "array requires initializer list or wide string literal" ; |
| 9382 | break; |
| 9383 | |
| 9384 | case FK_NarrowStringIntoWideCharArray: |
| 9385 | OS << "narrow string into wide char array" ; |
| 9386 | break; |
| 9387 | |
| 9388 | case FK_WideStringIntoCharArray: |
| 9389 | OS << "wide string into char array" ; |
| 9390 | break; |
| 9391 | |
| 9392 | case FK_IncompatWideStringIntoWideChar: |
| 9393 | OS << "incompatible wide string into wide char array" ; |
| 9394 | break; |
| 9395 | |
| 9396 | case FK_PlainStringIntoUTF8Char: |
| 9397 | OS << "plain string literal into char8_t array" ; |
| 9398 | break; |
| 9399 | |
| 9400 | case FK_UTF8StringIntoPlainChar: |
| 9401 | OS << "u8 string literal into char array" ; |
| 9402 | break; |
| 9403 | |
| 9404 | case FK_ArrayTypeMismatch: |
| 9405 | OS << "array type mismatch" ; |
| 9406 | break; |
| 9407 | |
| 9408 | case FK_NonConstantArrayInit: |
| 9409 | OS << "non-constant array initializer" ; |
| 9410 | break; |
| 9411 | |
| 9412 | case FK_AddressOfOverloadFailed: |
| 9413 | OS << "address of overloaded function failed" ; |
| 9414 | break; |
| 9415 | |
| 9416 | case FK_ReferenceInitOverloadFailed: |
| 9417 | OS << "overload resolution for reference initialization failed" ; |
| 9418 | break; |
| 9419 | |
| 9420 | case FK_NonConstLValueReferenceBindingToTemporary: |
| 9421 | OS << "non-const lvalue reference bound to temporary" ; |
| 9422 | break; |
| 9423 | |
| 9424 | case FK_NonConstLValueReferenceBindingToBitfield: |
| 9425 | OS << "non-const lvalue reference bound to bit-field" ; |
| 9426 | break; |
| 9427 | |
| 9428 | case FK_NonConstLValueReferenceBindingToVectorElement: |
| 9429 | OS << "non-const lvalue reference bound to vector element" ; |
| 9430 | break; |
| 9431 | |
| 9432 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
| 9433 | OS << "non-const lvalue reference bound to matrix element" ; |
| 9434 | break; |
| 9435 | |
| 9436 | case FK_NonConstLValueReferenceBindingToUnrelated: |
| 9437 | OS << "non-const lvalue reference bound to unrelated type" ; |
| 9438 | break; |
| 9439 | |
| 9440 | case FK_RValueReferenceBindingToLValue: |
| 9441 | OS << "rvalue reference bound to an lvalue" ; |
| 9442 | break; |
| 9443 | |
| 9444 | case FK_ReferenceInitDropsQualifiers: |
| 9445 | OS << "reference initialization drops qualifiers" ; |
| 9446 | break; |
| 9447 | |
| 9448 | case FK_ReferenceAddrspaceMismatchTemporary: |
| 9449 | OS << "reference with mismatching address space bound to temporary" ; |
| 9450 | break; |
| 9451 | |
| 9452 | case FK_ReferenceInitFailed: |
| 9453 | OS << "reference initialization failed" ; |
| 9454 | break; |
| 9455 | |
| 9456 | case FK_ConversionFailed: |
| 9457 | OS << "conversion failed" ; |
| 9458 | break; |
| 9459 | |
| 9460 | case FK_ConversionFromPropertyFailed: |
| 9461 | OS << "conversion from property failed" ; |
| 9462 | break; |
| 9463 | |
| 9464 | case FK_TooManyInitsForScalar: |
| 9465 | OS << "too many initializers for scalar" ; |
| 9466 | break; |
| 9467 | |
| 9468 | case FK_ParenthesizedListInitForScalar: |
| 9469 | OS << "parenthesized list init for reference" ; |
| 9470 | break; |
| 9471 | |
| 9472 | case FK_ReferenceBindingToInitList: |
| 9473 | OS << "referencing binding to initializer list" ; |
| 9474 | break; |
| 9475 | |
| 9476 | case FK_InitListBadDestinationType: |
| 9477 | OS << "initializer list for non-aggregate, non-scalar type" ; |
| 9478 | break; |
| 9479 | |
| 9480 | case FK_UserConversionOverloadFailed: |
| 9481 | OS << "overloading failed for user-defined conversion" ; |
| 9482 | break; |
| 9483 | |
| 9484 | case FK_ConstructorOverloadFailed: |
| 9485 | OS << "constructor overloading failed" ; |
| 9486 | break; |
| 9487 | |
| 9488 | case FK_DefaultInitOfConst: |
| 9489 | OS << "default initialization of a const variable" ; |
| 9490 | break; |
| 9491 | |
| 9492 | case FK_Incomplete: |
| 9493 | OS << "initialization of incomplete type" ; |
| 9494 | break; |
| 9495 | |
| 9496 | case FK_ListInitializationFailed: |
| 9497 | OS << "list initialization checker failure" ; |
| 9498 | break; |
| 9499 | |
| 9500 | case FK_VariableLengthArrayHasInitializer: |
| 9501 | OS << "variable length array has an initializer" ; |
| 9502 | break; |
| 9503 | |
| 9504 | case FK_PlaceholderType: |
| 9505 | OS << "initializer expression isn't contextually valid" ; |
| 9506 | break; |
| 9507 | |
| 9508 | case FK_ListConstructorOverloadFailed: |
| 9509 | OS << "list constructor overloading failed" ; |
| 9510 | break; |
| 9511 | |
| 9512 | case FK_ExplicitConstructor: |
| 9513 | OS << "list copy initialization chose explicit constructor" ; |
| 9514 | break; |
| 9515 | |
| 9516 | case FK_ParenthesizedListInitFailed: |
| 9517 | OS << "parenthesized list initialization failed" ; |
| 9518 | break; |
| 9519 | |
| 9520 | case FK_DesignatedInitForNonAggregate: |
| 9521 | OS << "designated initializer for non-aggregate type" ; |
| 9522 | break; |
| 9523 | } |
| 9524 | OS << '\n'; |
| 9525 | return; |
| 9526 | } |
| 9527 | |
| 9528 | case DependentSequence: |
| 9529 | OS << "Dependent sequence\n" ; |
| 9530 | return; |
| 9531 | |
| 9532 | case NormalSequence: |
| 9533 | OS << "Normal sequence: " ; |
| 9534 | break; |
| 9535 | } |
| 9536 | |
| 9537 | for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { |
| 9538 | if (S != step_begin()) { |
| 9539 | OS << " -> " ; |
| 9540 | } |
| 9541 | |
| 9542 | switch (S->Kind) { |
| 9543 | case SK_ResolveAddressOfOverloadedFunction: |
| 9544 | OS << "resolve address of overloaded function" ; |
| 9545 | break; |
| 9546 | |
| 9547 | case SK_CastDerivedToBasePRValue: |
| 9548 | OS << "derived-to-base (prvalue)" ; |
| 9549 | break; |
| 9550 | |
| 9551 | case SK_CastDerivedToBaseXValue: |
| 9552 | OS << "derived-to-base (xvalue)" ; |
| 9553 | break; |
| 9554 | |
| 9555 | case SK_CastDerivedToBaseLValue: |
| 9556 | OS << "derived-to-base (lvalue)" ; |
| 9557 | break; |
| 9558 | |
| 9559 | case SK_BindReference: |
| 9560 | OS << "bind reference to lvalue" ; |
| 9561 | break; |
| 9562 | |
| 9563 | case SK_BindReferenceToTemporary: |
| 9564 | OS << "bind reference to a temporary" ; |
| 9565 | break; |
| 9566 | |
| 9567 | case SK_FinalCopy: |
| 9568 | OS << "final copy in class direct-initialization" ; |
| 9569 | break; |
| 9570 | |
| 9571 | case SK_ExtraneousCopyToTemporary: |
| 9572 | OS << "extraneous C++03 copy to temporary" ; |
| 9573 | break; |
| 9574 | |
| 9575 | case SK_UserConversion: |
| 9576 | OS << "user-defined conversion via " << *S->Function.Function; |
| 9577 | break; |
| 9578 | |
| 9579 | case SK_QualificationConversionPRValue: |
| 9580 | OS << "qualification conversion (prvalue)" ; |
| 9581 | break; |
| 9582 | |
| 9583 | case SK_QualificationConversionXValue: |
| 9584 | OS << "qualification conversion (xvalue)" ; |
| 9585 | break; |
| 9586 | |
| 9587 | case SK_QualificationConversionLValue: |
| 9588 | OS << "qualification conversion (lvalue)" ; |
| 9589 | break; |
| 9590 | |
| 9591 | case SK_FunctionReferenceConversion: |
| 9592 | OS << "function reference conversion" ; |
| 9593 | break; |
| 9594 | |
| 9595 | case SK_AtomicConversion: |
| 9596 | OS << "non-atomic-to-atomic conversion" ; |
| 9597 | break; |
| 9598 | |
| 9599 | case SK_ConversionSequence: |
| 9600 | OS << "implicit conversion sequence (" ; |
| 9601 | S->ICS->dump(); // FIXME: use OS |
| 9602 | OS << ")" ; |
| 9603 | break; |
| 9604 | |
| 9605 | case SK_ConversionSequenceNoNarrowing: |
| 9606 | OS << "implicit conversion sequence with narrowing prohibited (" ; |
| 9607 | S->ICS->dump(); // FIXME: use OS |
| 9608 | OS << ")" ; |
| 9609 | break; |
| 9610 | |
| 9611 | case SK_ListInitialization: |
| 9612 | OS << "list aggregate initialization" ; |
| 9613 | break; |
| 9614 | |
| 9615 | case SK_UnwrapInitList: |
| 9616 | OS << "unwrap reference initializer list" ; |
| 9617 | break; |
| 9618 | |
| 9619 | case SK_RewrapInitList: |
| 9620 | OS << "rewrap reference initializer list" ; |
| 9621 | break; |
| 9622 | |
| 9623 | case SK_ConstructorInitialization: |
| 9624 | OS << "constructor initialization" ; |
| 9625 | break; |
| 9626 | |
| 9627 | case SK_ConstructorInitializationFromList: |
| 9628 | OS << "list initialization via constructor" ; |
| 9629 | break; |
| 9630 | |
| 9631 | case SK_ZeroInitialization: |
| 9632 | OS << "zero initialization" ; |
| 9633 | break; |
| 9634 | |
| 9635 | case SK_CAssignment: |
| 9636 | OS << "C assignment" ; |
| 9637 | break; |
| 9638 | |
| 9639 | case SK_StringInit: |
| 9640 | OS << "string initialization" ; |
| 9641 | break; |
| 9642 | |
| 9643 | case SK_ObjCObjectConversion: |
| 9644 | OS << "Objective-C object conversion" ; |
| 9645 | break; |
| 9646 | |
| 9647 | case SK_ArrayLoopIndex: |
| 9648 | OS << "indexing for array initialization loop" ; |
| 9649 | break; |
| 9650 | |
| 9651 | case SK_ArrayLoopInit: |
| 9652 | OS << "array initialization loop" ; |
| 9653 | break; |
| 9654 | |
| 9655 | case SK_ArrayInit: |
| 9656 | OS << "array initialization" ; |
| 9657 | break; |
| 9658 | |
| 9659 | case SK_GNUArrayInit: |
| 9660 | OS << "array initialization (GNU extension)" ; |
| 9661 | break; |
| 9662 | |
| 9663 | case SK_ParenthesizedArrayInit: |
| 9664 | OS << "parenthesized array initialization" ; |
| 9665 | break; |
| 9666 | |
| 9667 | case SK_PassByIndirectCopyRestore: |
| 9668 | OS << "pass by indirect copy and restore" ; |
| 9669 | break; |
| 9670 | |
| 9671 | case SK_PassByIndirectRestore: |
| 9672 | OS << "pass by indirect restore" ; |
| 9673 | break; |
| 9674 | |
| 9675 | case SK_ProduceObjCObject: |
| 9676 | OS << "Objective-C object retension" ; |
| 9677 | break; |
| 9678 | |
| 9679 | case SK_StdInitializerList: |
| 9680 | OS << "std::initializer_list from initializer list" ; |
| 9681 | break; |
| 9682 | |
| 9683 | case SK_StdInitializerListConstructorCall: |
| 9684 | OS << "list initialization from std::initializer_list" ; |
| 9685 | break; |
| 9686 | |
| 9687 | case SK_OCLSamplerInit: |
| 9688 | OS << "OpenCL sampler_t from integer constant" ; |
| 9689 | break; |
| 9690 | |
| 9691 | case SK_OCLZeroOpaqueType: |
| 9692 | OS << "OpenCL opaque type from zero" ; |
| 9693 | break; |
| 9694 | case SK_ParenthesizedListInit: |
| 9695 | OS << "initialization from a parenthesized list of values" ; |
| 9696 | break; |
| 9697 | } |
| 9698 | |
| 9699 | OS << " [" << S->Type << ']'; |
| 9700 | } |
| 9701 | |
| 9702 | OS << '\n'; |
| 9703 | } |
| 9704 | |
| 9705 | void InitializationSequence::dump() const { |
| 9706 | dump(OS&: llvm::errs()); |
| 9707 | } |
| 9708 | |
| 9709 | static void DiagnoseNarrowingInInitList(Sema &S, |
| 9710 | const ImplicitConversionSequence &ICS, |
| 9711 | QualType PreNarrowingType, |
| 9712 | QualType EntityType, |
| 9713 | const Expr *PostInit) { |
| 9714 | const StandardConversionSequence *SCS = nullptr; |
| 9715 | switch (ICS.getKind()) { |
| 9716 | case ImplicitConversionSequence::StandardConversion: |
| 9717 | SCS = &ICS.Standard; |
| 9718 | break; |
| 9719 | case ImplicitConversionSequence::UserDefinedConversion: |
| 9720 | SCS = &ICS.UserDefined.After; |
| 9721 | break; |
| 9722 | case ImplicitConversionSequence::AmbiguousConversion: |
| 9723 | case ImplicitConversionSequence::StaticObjectArgumentConversion: |
| 9724 | case ImplicitConversionSequence::EllipsisConversion: |
| 9725 | case ImplicitConversionSequence::BadConversion: |
| 9726 | return; |
| 9727 | } |
| 9728 | |
| 9729 | auto MakeDiag = [&](bool IsConstRef, unsigned DefaultDiagID, |
| 9730 | unsigned ConstRefDiagID, unsigned WarnDiagID) { |
| 9731 | unsigned DiagID; |
| 9732 | auto &L = S.getLangOpts(); |
| 9733 | if (L.CPlusPlus11 && !L.HLSL && |
| 9734 | (!L.MicrosoftExt || L.isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2015))) |
| 9735 | DiagID = IsConstRef ? ConstRefDiagID : DefaultDiagID; |
| 9736 | else |
| 9737 | DiagID = WarnDiagID; |
| 9738 | return S.Diag(PostInit->getBeginLoc(), DiagID) |
| 9739 | << PostInit->getSourceRange(); |
| 9740 | }; |
| 9741 | |
| 9742 | // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. |
| 9743 | APValue ConstantValue; |
| 9744 | QualType ConstantType; |
| 9745 | switch (SCS->getNarrowingKind(Context&: S.Context, Converted: PostInit, ConstantValue, |
| 9746 | ConstantType)) { |
| 9747 | case NK_Not_Narrowing: |
| 9748 | case NK_Dependent_Narrowing: |
| 9749 | // No narrowing occurred. |
| 9750 | return; |
| 9751 | |
| 9752 | case NK_Type_Narrowing: { |
| 9753 | // This was a floating-to-integer conversion, which is always considered a |
| 9754 | // narrowing conversion even if the value is a constant and can be |
| 9755 | // represented exactly as an integer. |
| 9756 | QualType T = EntityType.getNonReferenceType(); |
| 9757 | MakeDiag(T != EntityType, diag::ext_init_list_type_narrowing, |
| 9758 | diag::ext_init_list_type_narrowing_const_reference, |
| 9759 | diag::warn_init_list_type_narrowing) |
| 9760 | << PreNarrowingType.getLocalUnqualifiedType() |
| 9761 | << T.getLocalUnqualifiedType(); |
| 9762 | break; |
| 9763 | } |
| 9764 | |
| 9765 | case NK_Constant_Narrowing: { |
| 9766 | // A constant value was narrowed. |
| 9767 | MakeDiag(EntityType.getNonReferenceType() != EntityType, |
| 9768 | diag::ext_init_list_constant_narrowing, |
| 9769 | diag::ext_init_list_constant_narrowing_const_reference, |
| 9770 | diag::warn_init_list_constant_narrowing) |
| 9771 | << ConstantValue.getAsString(S.getASTContext(), ConstantType) |
| 9772 | << EntityType.getNonReferenceType().getLocalUnqualifiedType(); |
| 9773 | break; |
| 9774 | } |
| 9775 | |
| 9776 | case NK_Variable_Narrowing: { |
| 9777 | // A variable's value may have been narrowed. |
| 9778 | MakeDiag(EntityType.getNonReferenceType() != EntityType, |
| 9779 | diag::ext_init_list_variable_narrowing, |
| 9780 | diag::ext_init_list_variable_narrowing_const_reference, |
| 9781 | diag::warn_init_list_variable_narrowing) |
| 9782 | << PreNarrowingType.getLocalUnqualifiedType() |
| 9783 | << EntityType.getNonReferenceType().getLocalUnqualifiedType(); |
| 9784 | break; |
| 9785 | } |
| 9786 | } |
| 9787 | |
| 9788 | SmallString<128> StaticCast; |
| 9789 | llvm::raw_svector_ostream OS(StaticCast); |
| 9790 | OS << "static_cast<" ; |
| 9791 | if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { |
| 9792 | // It's important to use the typedef's name if there is one so that the |
| 9793 | // fixit doesn't break code using types like int64_t. |
| 9794 | // |
| 9795 | // FIXME: This will break if the typedef requires qualification. But |
| 9796 | // getQualifiedNameAsString() includes non-machine-parsable components. |
| 9797 | OS << *TT->getDecl(); |
| 9798 | } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) |
| 9799 | OS << BT->getName(Policy: S.getLangOpts()); |
| 9800 | else { |
| 9801 | // Oops, we didn't find the actual type of the variable. Don't emit a fixit |
| 9802 | // with a broken cast. |
| 9803 | return; |
| 9804 | } |
| 9805 | OS << ">(" ; |
| 9806 | S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) |
| 9807 | << PostInit->getSourceRange() |
| 9808 | << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) |
| 9809 | << FixItHint::CreateInsertion( |
| 9810 | S.getLocForEndOfToken(PostInit->getEndLoc()), ")" ); |
| 9811 | } |
| 9812 | |
| 9813 | static void CheckC23ConstexprInitConversion(Sema &S, QualType FromType, |
| 9814 | QualType ToType, Expr *Init) { |
| 9815 | assert(S.getLangOpts().C23); |
| 9816 | ImplicitConversionSequence ICS = S.TryImplicitConversion( |
| 9817 | From: Init->IgnoreParenImpCasts(), ToType, /*SuppressUserConversions*/ false, |
| 9818 | AllowExplicit: Sema::AllowedExplicit::None, |
| 9819 | /*InOverloadResolution*/ false, |
| 9820 | /*CStyle*/ false, |
| 9821 | /*AllowObjCWritebackConversion=*/false); |
| 9822 | |
| 9823 | if (!ICS.isStandard()) |
| 9824 | return; |
| 9825 | |
| 9826 | APValue Value; |
| 9827 | QualType PreNarrowingType; |
| 9828 | // Reuse C++ narrowing check. |
| 9829 | switch (ICS.Standard.getNarrowingKind( |
| 9830 | Context&: S.Context, Converted: Init, ConstantValue&: Value, ConstantType&: PreNarrowingType, |
| 9831 | /*IgnoreFloatToIntegralConversion*/ false)) { |
| 9832 | // The value doesn't fit. |
| 9833 | case NK_Constant_Narrowing: |
| 9834 | S.Diag(Init->getBeginLoc(), diag::err_c23_constexpr_init_not_representable) |
| 9835 | << Value.getAsString(S.Context, PreNarrowingType) << ToType; |
| 9836 | return; |
| 9837 | |
| 9838 | // Conversion to a narrower type. |
| 9839 | case NK_Type_Narrowing: |
| 9840 | S.Diag(Init->getBeginLoc(), diag::err_c23_constexpr_init_type_mismatch) |
| 9841 | << ToType << FromType; |
| 9842 | return; |
| 9843 | |
| 9844 | // Since we only reuse narrowing check for C23 constexpr variables here, we're |
| 9845 | // not really interested in these cases. |
| 9846 | case NK_Dependent_Narrowing: |
| 9847 | case NK_Variable_Narrowing: |
| 9848 | case NK_Not_Narrowing: |
| 9849 | return; |
| 9850 | } |
| 9851 | llvm_unreachable("unhandled case in switch" ); |
| 9852 | } |
| 9853 | |
| 9854 | static void CheckC23ConstexprInitStringLiteral(const StringLiteral *SE, |
| 9855 | Sema &SemaRef, QualType &TT) { |
| 9856 | assert(SemaRef.getLangOpts().C23); |
| 9857 | // character that string literal contains fits into TT - target type. |
| 9858 | const ArrayType *AT = SemaRef.Context.getAsArrayType(T: TT); |
| 9859 | QualType CharType = AT->getElementType(); |
| 9860 | uint32_t BitWidth = SemaRef.Context.getTypeSize(T: CharType); |
| 9861 | bool isUnsigned = CharType->isUnsignedIntegerType(); |
| 9862 | llvm::APSInt Value(BitWidth, isUnsigned); |
| 9863 | for (unsigned I = 0, N = SE->getLength(); I != N; ++I) { |
| 9864 | int64_t C = SE->getCodeUnitS(I, BitWidth: SemaRef.Context.getCharWidth()); |
| 9865 | Value = C; |
| 9866 | if (Value != C) { |
| 9867 | SemaRef.Diag(SemaRef.getLocationOfStringLiteralByte(SE, I), |
| 9868 | diag::err_c23_constexpr_init_not_representable) |
| 9869 | << C << CharType; |
| 9870 | return; |
| 9871 | } |
| 9872 | } |
| 9873 | } |
| 9874 | |
| 9875 | //===----------------------------------------------------------------------===// |
| 9876 | // Initialization helper functions |
| 9877 | //===----------------------------------------------------------------------===// |
| 9878 | bool |
| 9879 | Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, |
| 9880 | ExprResult Init) { |
| 9881 | if (Init.isInvalid()) |
| 9882 | return false; |
| 9883 | |
| 9884 | Expr *InitE = Init.get(); |
| 9885 | assert(InitE && "No initialization expression" ); |
| 9886 | |
| 9887 | InitializationKind Kind = |
| 9888 | InitializationKind::CreateCopy(InitLoc: InitE->getBeginLoc(), EqualLoc: SourceLocation()); |
| 9889 | InitializationSequence Seq(*this, Entity, Kind, InitE); |
| 9890 | return !Seq.Failed(); |
| 9891 | } |
| 9892 | |
| 9893 | ExprResult |
| 9894 | Sema::PerformCopyInitialization(const InitializedEntity &Entity, |
| 9895 | SourceLocation EqualLoc, |
| 9896 | ExprResult Init, |
| 9897 | bool TopLevelOfInitList, |
| 9898 | bool AllowExplicit) { |
| 9899 | if (Init.isInvalid()) |
| 9900 | return ExprError(); |
| 9901 | |
| 9902 | Expr *InitE = Init.get(); |
| 9903 | assert(InitE && "No initialization expression?" ); |
| 9904 | |
| 9905 | if (EqualLoc.isInvalid()) |
| 9906 | EqualLoc = InitE->getBeginLoc(); |
| 9907 | |
| 9908 | InitializationKind Kind = InitializationKind::CreateCopy( |
| 9909 | InitLoc: InitE->getBeginLoc(), EqualLoc, AllowExplicitConvs: AllowExplicit); |
| 9910 | InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); |
| 9911 | |
| 9912 | // Prevent infinite recursion when performing parameter copy-initialization. |
| 9913 | const bool ShouldTrackCopy = |
| 9914 | Entity.isParameterKind() && Seq.isConstructorInitialization(); |
| 9915 | if (ShouldTrackCopy) { |
| 9916 | if (llvm::is_contained(Range&: CurrentParameterCopyTypes, Element: Entity.getType())) { |
| 9917 | Seq.SetOverloadFailure( |
| 9918 | Failure: InitializationSequence::FK_ConstructorOverloadFailed, |
| 9919 | Result: OR_No_Viable_Function); |
| 9920 | |
| 9921 | // Try to give a meaningful diagnostic note for the problematic |
| 9922 | // constructor. |
| 9923 | const auto LastStep = Seq.step_end() - 1; |
| 9924 | assert(LastStep->Kind == |
| 9925 | InitializationSequence::SK_ConstructorInitialization); |
| 9926 | const FunctionDecl *Function = LastStep->Function.Function; |
| 9927 | auto Candidate = |
| 9928 | llvm::find_if(Range&: Seq.getFailedCandidateSet(), |
| 9929 | P: [Function](const OverloadCandidate &Candidate) -> bool { |
| 9930 | return Candidate.Viable && |
| 9931 | Candidate.Function == Function && |
| 9932 | Candidate.Conversions.size() > 0; |
| 9933 | }); |
| 9934 | if (Candidate != Seq.getFailedCandidateSet().end() && |
| 9935 | Function->getNumParams() > 0) { |
| 9936 | Candidate->Viable = false; |
| 9937 | Candidate->FailureKind = ovl_fail_bad_conversion; |
| 9938 | Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, |
| 9939 | InitE, |
| 9940 | Function->getParamDecl(i: 0)->getType()); |
| 9941 | } |
| 9942 | } |
| 9943 | CurrentParameterCopyTypes.push_back(Elt: Entity.getType()); |
| 9944 | } |
| 9945 | |
| 9946 | ExprResult Result = Seq.Perform(S&: *this, Entity, Kind, Args: InitE); |
| 9947 | |
| 9948 | if (ShouldTrackCopy) |
| 9949 | CurrentParameterCopyTypes.pop_back(); |
| 9950 | |
| 9951 | return Result; |
| 9952 | } |
| 9953 | |
| 9954 | /// Determine whether RD is, or is derived from, a specialization of CTD. |
| 9955 | static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, |
| 9956 | ClassTemplateDecl *CTD) { |
| 9957 | auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { |
| 9958 | auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: Candidate); |
| 9959 | return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); |
| 9960 | }; |
| 9961 | return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); |
| 9962 | } |
| 9963 | |
| 9964 | QualType Sema::DeduceTemplateSpecializationFromInitializer( |
| 9965 | TypeSourceInfo *TSInfo, const InitializedEntity &Entity, |
| 9966 | const InitializationKind &Kind, MultiExprArg Inits) { |
| 9967 | auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( |
| 9968 | TSInfo->getType()->getContainedDeducedType()); |
| 9969 | assert(DeducedTST && "not a deduced template specialization type" ); |
| 9970 | |
| 9971 | auto TemplateName = DeducedTST->getTemplateName(); |
| 9972 | if (TemplateName.isDependent()) |
| 9973 | return SubstAutoTypeSourceInfoDependent(TypeWithAuto: TSInfo)->getType(); |
| 9974 | |
| 9975 | // We can only perform deduction for class templates or alias templates. |
| 9976 | auto *Template = |
| 9977 | dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); |
| 9978 | TemplateDecl *LookupTemplateDecl = Template; |
| 9979 | if (!Template) { |
| 9980 | if (auto *AliasTemplate = dyn_cast_or_null<TypeAliasTemplateDecl>( |
| 9981 | TemplateName.getAsTemplateDecl())) { |
| 9982 | DiagCompat(Kind.getLocation(), diag_compat::ctad_for_alias_templates); |
| 9983 | LookupTemplateDecl = AliasTemplate; |
| 9984 | auto UnderlyingType = AliasTemplate->getTemplatedDecl() |
| 9985 | ->getUnderlyingType() |
| 9986 | .getCanonicalType(); |
| 9987 | // C++ [over.match.class.deduct#3]: ..., the defining-type-id of A must be |
| 9988 | // of the form |
| 9989 | // [typename] [nested-name-specifier] [template] simple-template-id |
| 9990 | if (const auto *TST = |
| 9991 | UnderlyingType->getAs<TemplateSpecializationType>()) { |
| 9992 | Template = dyn_cast_or_null<ClassTemplateDecl>( |
| 9993 | TST->getTemplateName().getAsTemplateDecl()); |
| 9994 | } else if (const auto *RT = UnderlyingType->getAs<RecordType>()) { |
| 9995 | // Cases where template arguments in the RHS of the alias are not |
| 9996 | // dependent. e.g. |
| 9997 | // using AliasFoo = Foo<bool>; |
| 9998 | if (const auto *CTSD = llvm::dyn_cast<ClassTemplateSpecializationDecl>( |
| 9999 | RT->getAsCXXRecordDecl())) |
| 10000 | Template = CTSD->getSpecializedTemplate(); |
| 10001 | } |
| 10002 | } |
| 10003 | } |
| 10004 | if (!Template) { |
| 10005 | Diag(Kind.getLocation(), |
| 10006 | diag::err_deduced_non_class_or_alias_template_specialization_type) |
| 10007 | << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; |
| 10008 | if (auto *TD = TemplateName.getAsTemplateDecl()) |
| 10009 | NoteTemplateLocation(Decl: *TD); |
| 10010 | return QualType(); |
| 10011 | } |
| 10012 | |
| 10013 | // Can't deduce from dependent arguments. |
| 10014 | if (Expr::hasAnyTypeDependentArguments(Exprs: Inits)) { |
| 10015 | Diag(TSInfo->getTypeLoc().getBeginLoc(), |
| 10016 | diag::warn_cxx14_compat_class_template_argument_deduction) |
| 10017 | << TSInfo->getTypeLoc().getSourceRange() << 0; |
| 10018 | return SubstAutoTypeSourceInfoDependent(TypeWithAuto: TSInfo)->getType(); |
| 10019 | } |
| 10020 | |
| 10021 | // FIXME: Perform "exact type" matching first, per CWG discussion? |
| 10022 | // Or implement this via an implied 'T(T) -> T' deduction guide? |
| 10023 | |
| 10024 | // Look up deduction guides, including those synthesized from constructors. |
| 10025 | // |
| 10026 | // C++1z [over.match.class.deduct]p1: |
| 10027 | // A set of functions and function templates is formed comprising: |
| 10028 | // - For each constructor of the class template designated by the |
| 10029 | // template-name, a function template [...] |
| 10030 | // - For each deduction-guide, a function or function template [...] |
| 10031 | DeclarationNameInfo NameInfo( |
| 10032 | Context.DeclarationNames.getCXXDeductionGuideName(TD: LookupTemplateDecl), |
| 10033 | TSInfo->getTypeLoc().getEndLoc()); |
| 10034 | LookupResult Guides(*this, NameInfo, LookupOrdinaryName); |
| 10035 | LookupQualifiedName(Guides, LookupTemplateDecl->getDeclContext()); |
| 10036 | |
| 10037 | // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't |
| 10038 | // clear on this, but they're not found by name so access does not apply. |
| 10039 | Guides.suppressDiagnostics(); |
| 10040 | |
| 10041 | // Figure out if this is list-initialization. |
| 10042 | InitListExpr *ListInit = |
| 10043 | (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) |
| 10044 | ? dyn_cast<InitListExpr>(Val: Inits[0]) |
| 10045 | : nullptr; |
| 10046 | |
| 10047 | // C++1z [over.match.class.deduct]p1: |
| 10048 | // Initialization and overload resolution are performed as described in |
| 10049 | // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] |
| 10050 | // (as appropriate for the type of initialization performed) for an object |
| 10051 | // of a hypothetical class type, where the selected functions and function |
| 10052 | // templates are considered to be the constructors of that class type |
| 10053 | // |
| 10054 | // Since we know we're initializing a class type of a type unrelated to that |
| 10055 | // of the initializer, this reduces to something fairly reasonable. |
| 10056 | OverloadCandidateSet Candidates(Kind.getLocation(), |
| 10057 | OverloadCandidateSet::CSK_Normal); |
| 10058 | OverloadCandidateSet::iterator Best; |
| 10059 | |
| 10060 | bool AllowExplicit = !Kind.isCopyInit() || ListInit; |
| 10061 | |
| 10062 | // Return true if the candidate is added successfully, false otherwise. |
| 10063 | auto addDeductionCandidate = [&](FunctionTemplateDecl *TD, |
| 10064 | CXXDeductionGuideDecl *GD, |
| 10065 | DeclAccessPair FoundDecl, |
| 10066 | bool OnlyListConstructors, |
| 10067 | bool AllowAggregateDeductionCandidate) { |
| 10068 | // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) |
| 10069 | // For copy-initialization, the candidate functions are all the |
| 10070 | // converting constructors (12.3.1) of that class. |
| 10071 | // C++ [over.match.copy]p1: (non-list copy-initialization from class) |
| 10072 | // The converting constructors of T are candidate functions. |
| 10073 | if (!AllowExplicit) { |
| 10074 | // Overload resolution checks whether the deduction guide is declared |
| 10075 | // explicit for us. |
| 10076 | |
| 10077 | // When looking for a converting constructor, deduction guides that |
| 10078 | // could never be called with one argument are not interesting to |
| 10079 | // check or note. |
| 10080 | if (GD->getMinRequiredArguments() > 1 || |
| 10081 | (GD->getNumParams() == 0 && !GD->isVariadic())) |
| 10082 | return; |
| 10083 | } |
| 10084 | |
| 10085 | // C++ [over.match.list]p1.1: (first phase list initialization) |
| 10086 | // Initially, the candidate functions are the initializer-list |
| 10087 | // constructors of the class T |
| 10088 | if (OnlyListConstructors && !isInitListConstructor(GD)) |
| 10089 | return; |
| 10090 | |
| 10091 | if (!AllowAggregateDeductionCandidate && |
| 10092 | GD->getDeductionCandidateKind() == DeductionCandidate::Aggregate) |
| 10093 | return; |
| 10094 | |
| 10095 | // C++ [over.match.list]p1.2: (second phase list initialization) |
| 10096 | // the candidate functions are all the constructors of the class T |
| 10097 | // C++ [over.match.ctor]p1: (all other cases) |
| 10098 | // the candidate functions are all the constructors of the class of |
| 10099 | // the object being initialized |
| 10100 | |
| 10101 | // C++ [over.best.ics]p4: |
| 10102 | // When [...] the constructor [...] is a candidate by |
| 10103 | // - [over.match.copy] (in all cases) |
| 10104 | if (TD) { |
| 10105 | |
| 10106 | // As template candidates are not deduced immediately, |
| 10107 | // persist the array in the overload set. |
| 10108 | MutableArrayRef<Expr *> TmpInits = |
| 10109 | Candidates.getPersistentArgsArray(N: Inits.size()); |
| 10110 | |
| 10111 | for (auto [I, E] : llvm::enumerate(First&: Inits)) { |
| 10112 | if (auto *DI = dyn_cast<DesignatedInitExpr>(Val: E)) |
| 10113 | TmpInits[I] = DI->getInit(); |
| 10114 | else |
| 10115 | TmpInits[I] = E; |
| 10116 | } |
| 10117 | |
| 10118 | AddTemplateOverloadCandidate( |
| 10119 | FunctionTemplate: TD, FoundDecl, /*ExplicitArgs=*/ExplicitTemplateArgs: nullptr, Args: TmpInits, CandidateSet&: Candidates, |
| 10120 | /*SuppressUserConversions=*/false, |
| 10121 | /*PartialOverloading=*/false, AllowExplicit, IsADLCandidate: ADLCallKind::NotADL, |
| 10122 | /*PO=*/{}, AggregateCandidateDeduction: AllowAggregateDeductionCandidate); |
| 10123 | } else { |
| 10124 | AddOverloadCandidate(GD, FoundDecl, Inits, Candidates, |
| 10125 | /*SuppressUserConversions=*/false, |
| 10126 | /*PartialOverloading=*/false, AllowExplicit); |
| 10127 | } |
| 10128 | }; |
| 10129 | |
| 10130 | bool FoundDeductionGuide = false; |
| 10131 | |
| 10132 | auto TryToResolveOverload = |
| 10133 | [&](bool OnlyListConstructors) -> OverloadingResult { |
| 10134 | Candidates.clear(CSK: OverloadCandidateSet::CSK_Normal); |
| 10135 | bool HasAnyDeductionGuide = false; |
| 10136 | |
| 10137 | auto SynthesizeAggrGuide = [&](InitListExpr *ListInit) { |
| 10138 | auto *Pattern = Template; |
| 10139 | while (Pattern->getInstantiatedFromMemberTemplate()) { |
| 10140 | if (Pattern->isMemberSpecialization()) |
| 10141 | break; |
| 10142 | Pattern = Pattern->getInstantiatedFromMemberTemplate(); |
| 10143 | } |
| 10144 | |
| 10145 | auto *RD = cast<CXXRecordDecl>(Pattern->getTemplatedDecl()); |
| 10146 | if (!(RD->getDefinition() && RD->isAggregate())) |
| 10147 | return; |
| 10148 | QualType Ty = Context.getRecordType(Decl: RD); |
| 10149 | SmallVector<QualType, 8> ElementTypes; |
| 10150 | |
| 10151 | InitListChecker CheckInitList(*this, Entity, ListInit, Ty, ElementTypes); |
| 10152 | if (!CheckInitList.HadError()) { |
| 10153 | // C++ [over.match.class.deduct]p1.8: |
| 10154 | // if e_i is of array type and x_i is a braced-init-list, T_i is an |
| 10155 | // rvalue reference to the declared type of e_i and |
| 10156 | // C++ [over.match.class.deduct]p1.9: |
| 10157 | // if e_i is of array type and x_i is a string-literal, T_i is an |
| 10158 | // lvalue reference to the const-qualified declared type of e_i and |
| 10159 | // C++ [over.match.class.deduct]p1.10: |
| 10160 | // otherwise, T_i is the declared type of e_i |
| 10161 | for (int I = 0, E = ListInit->getNumInits(); |
| 10162 | I < E && !isa<PackExpansionType>(Val: ElementTypes[I]); ++I) |
| 10163 | if (ElementTypes[I]->isArrayType()) { |
| 10164 | if (isa<InitListExpr, DesignatedInitExpr>(Val: ListInit->getInit(Init: I))) |
| 10165 | ElementTypes[I] = Context.getRValueReferenceType(T: ElementTypes[I]); |
| 10166 | else if (isa<StringLiteral>( |
| 10167 | Val: ListInit->getInit(Init: I)->IgnoreParenImpCasts())) |
| 10168 | ElementTypes[I] = |
| 10169 | Context.getLValueReferenceType(T: ElementTypes[I].withConst()); |
| 10170 | } |
| 10171 | |
| 10172 | if (FunctionTemplateDecl *TD = |
| 10173 | DeclareAggregateDeductionGuideFromInitList( |
| 10174 | Template: LookupTemplateDecl, ParamTypes: ElementTypes, |
| 10175 | Loc: TSInfo->getTypeLoc().getEndLoc())) { |
| 10176 | auto *GD = cast<CXXDeductionGuideDecl>(Val: TD->getTemplatedDecl()); |
| 10177 | addDeductionCandidate(TD, GD, DeclAccessPair::make(TD, AS_public), |
| 10178 | OnlyListConstructors, |
| 10179 | /*AllowAggregateDeductionCandidate=*/true); |
| 10180 | HasAnyDeductionGuide = true; |
| 10181 | } |
| 10182 | } |
| 10183 | }; |
| 10184 | |
| 10185 | for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { |
| 10186 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
| 10187 | if (D->isInvalidDecl()) |
| 10188 | continue; |
| 10189 | |
| 10190 | auto *TD = dyn_cast<FunctionTemplateDecl>(Val: D); |
| 10191 | auto *GD = dyn_cast_if_present<CXXDeductionGuideDecl>( |
| 10192 | TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(Val: D)); |
| 10193 | if (!GD) |
| 10194 | continue; |
| 10195 | |
| 10196 | if (!GD->isImplicit()) |
| 10197 | HasAnyDeductionGuide = true; |
| 10198 | |
| 10199 | addDeductionCandidate(TD, GD, I.getPair(), OnlyListConstructors, |
| 10200 | /*AllowAggregateDeductionCandidate=*/false); |
| 10201 | } |
| 10202 | |
| 10203 | // C++ [over.match.class.deduct]p1.4: |
| 10204 | // if C is defined and its definition satisfies the conditions for an |
| 10205 | // aggregate class ([dcl.init.aggr]) with the assumption that any |
| 10206 | // dependent base class has no virtual functions and no virtual base |
| 10207 | // classes, and the initializer is a non-empty braced-init-list or |
| 10208 | // parenthesized expression-list, and there are no deduction-guides for |
| 10209 | // C, the set contains an additional function template, called the |
| 10210 | // aggregate deduction candidate, defined as follows. |
| 10211 | if (getLangOpts().CPlusPlus20 && !HasAnyDeductionGuide) { |
| 10212 | if (ListInit && ListInit->getNumInits()) { |
| 10213 | SynthesizeAggrGuide(ListInit); |
| 10214 | } else if (Inits.size()) { // parenthesized expression-list |
| 10215 | // Inits are expressions inside the parentheses. We don't have |
| 10216 | // the parentheses source locations, use the begin/end of Inits as the |
| 10217 | // best heuristic. |
| 10218 | InitListExpr TempListInit(getASTContext(), Inits.front()->getBeginLoc(), |
| 10219 | Inits, Inits.back()->getEndLoc()); |
| 10220 | SynthesizeAggrGuide(&TempListInit); |
| 10221 | } |
| 10222 | } |
| 10223 | |
| 10224 | FoundDeductionGuide = FoundDeductionGuide || HasAnyDeductionGuide; |
| 10225 | |
| 10226 | return Candidates.BestViableFunction(S&: *this, Loc: Kind.getLocation(), Best); |
| 10227 | }; |
| 10228 | |
| 10229 | OverloadingResult Result = OR_No_Viable_Function; |
| 10230 | |
| 10231 | // C++11 [over.match.list]p1, per DR1467: for list-initialization, first |
| 10232 | // try initializer-list constructors. |
| 10233 | if (ListInit) { |
| 10234 | bool TryListConstructors = true; |
| 10235 | |
| 10236 | // Try list constructors unless the list is empty and the class has one or |
| 10237 | // more default constructors, in which case those constructors win. |
| 10238 | if (!ListInit->getNumInits()) { |
| 10239 | for (NamedDecl *D : Guides) { |
| 10240 | auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); |
| 10241 | if (FD && FD->getMinRequiredArguments() == 0) { |
| 10242 | TryListConstructors = false; |
| 10243 | break; |
| 10244 | } |
| 10245 | } |
| 10246 | } else if (ListInit->getNumInits() == 1) { |
| 10247 | // C++ [over.match.class.deduct]: |
| 10248 | // As an exception, the first phase in [over.match.list] (considering |
| 10249 | // initializer-list constructors) is omitted if the initializer list |
| 10250 | // consists of a single expression of type cv U, where U is a |
| 10251 | // specialization of C or a class derived from a specialization of C. |
| 10252 | Expr *E = ListInit->getInit(Init: 0); |
| 10253 | auto *RD = E->getType()->getAsCXXRecordDecl(); |
| 10254 | if (!isa<InitListExpr>(Val: E) && RD && |
| 10255 | isCompleteType(Loc: Kind.getLocation(), T: E->getType()) && |
| 10256 | isOrIsDerivedFromSpecializationOf(RD, Template)) |
| 10257 | TryListConstructors = false; |
| 10258 | } |
| 10259 | |
| 10260 | if (TryListConstructors) |
| 10261 | Result = TryToResolveOverload(/*OnlyListConstructor*/true); |
| 10262 | // Then unwrap the initializer list and try again considering all |
| 10263 | // constructors. |
| 10264 | Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); |
| 10265 | } |
| 10266 | |
| 10267 | // If list-initialization fails, or if we're doing any other kind of |
| 10268 | // initialization, we (eventually) consider constructors. |
| 10269 | if (Result == OR_No_Viable_Function) |
| 10270 | Result = TryToResolveOverload(/*OnlyListConstructor*/false); |
| 10271 | |
| 10272 | switch (Result) { |
| 10273 | case OR_Ambiguous: |
| 10274 | // FIXME: For list-initialization candidates, it'd usually be better to |
| 10275 | // list why they were not viable when given the initializer list itself as |
| 10276 | // an argument. |
| 10277 | Candidates.NoteCandidates( |
| 10278 | PartialDiagnosticAt( |
| 10279 | Kind.getLocation(), |
| 10280 | PDiag(diag::err_deduced_class_template_ctor_ambiguous) |
| 10281 | << TemplateName), |
| 10282 | *this, OCD_AmbiguousCandidates, Inits); |
| 10283 | return QualType(); |
| 10284 | |
| 10285 | case OR_No_Viable_Function: { |
| 10286 | CXXRecordDecl *Primary = |
| 10287 | cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); |
| 10288 | bool Complete = |
| 10289 | isCompleteType(Loc: Kind.getLocation(), T: Context.getTypeDeclType(Primary)); |
| 10290 | Candidates.NoteCandidates( |
| 10291 | PartialDiagnosticAt( |
| 10292 | Kind.getLocation(), |
| 10293 | PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable |
| 10294 | : diag::err_deduced_class_template_incomplete) |
| 10295 | << TemplateName << !Guides.empty()), |
| 10296 | *this, OCD_AllCandidates, Inits); |
| 10297 | return QualType(); |
| 10298 | } |
| 10299 | |
| 10300 | case OR_Deleted: { |
| 10301 | // FIXME: There are no tests for this diagnostic, and it doesn't seem |
| 10302 | // like we ever get here; attempts to trigger this seem to yield a |
| 10303 | // generic c'all to deleted function' diagnostic instead. |
| 10304 | Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) |
| 10305 | << TemplateName; |
| 10306 | NoteDeletedFunction(FD: Best->Function); |
| 10307 | return QualType(); |
| 10308 | } |
| 10309 | |
| 10310 | case OR_Success: |
| 10311 | // C++ [over.match.list]p1: |
| 10312 | // In copy-list-initialization, if an explicit constructor is chosen, the |
| 10313 | // initialization is ill-formed. |
| 10314 | if (Kind.isCopyInit() && ListInit && |
| 10315 | cast<CXXDeductionGuideDecl>(Val: Best->Function)->isExplicit()) { |
| 10316 | bool IsDeductionGuide = !Best->Function->isImplicit(); |
| 10317 | Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) |
| 10318 | << TemplateName << IsDeductionGuide; |
| 10319 | Diag(Best->Function->getLocation(), |
| 10320 | diag::note_explicit_ctor_deduction_guide_here) |
| 10321 | << IsDeductionGuide; |
| 10322 | return QualType(); |
| 10323 | } |
| 10324 | |
| 10325 | // Make sure we didn't select an unusable deduction guide, and mark it |
| 10326 | // as referenced. |
| 10327 | DiagnoseUseOfDecl(D: Best->FoundDecl, Locs: Kind.getLocation()); |
| 10328 | MarkFunctionReferenced(Loc: Kind.getLocation(), Func: Best->Function); |
| 10329 | break; |
| 10330 | } |
| 10331 | |
| 10332 | // C++ [dcl.type.class.deduct]p1: |
| 10333 | // The placeholder is replaced by the return type of the function selected |
| 10334 | // by overload resolution for class template deduction. |
| 10335 | QualType DeducedType = |
| 10336 | SubstAutoTypeSourceInfo(TypeWithAuto: TSInfo, Replacement: Best->Function->getReturnType()) |
| 10337 | ->getType(); |
| 10338 | Diag(TSInfo->getTypeLoc().getBeginLoc(), |
| 10339 | diag::warn_cxx14_compat_class_template_argument_deduction) |
| 10340 | << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; |
| 10341 | |
| 10342 | // Warn if CTAD was used on a type that does not have any user-defined |
| 10343 | // deduction guides. |
| 10344 | if (!FoundDeductionGuide) { |
| 10345 | Diag(TSInfo->getTypeLoc().getBeginLoc(), |
| 10346 | diag::warn_ctad_maybe_unsupported) |
| 10347 | << TemplateName; |
| 10348 | Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); |
| 10349 | } |
| 10350 | |
| 10351 | return DeducedType; |
| 10352 | } |
| 10353 | |