1 | //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for initializers. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CheckExprLifetime.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/DeclObjC.h" |
16 | #include "clang/AST/Expr.h" |
17 | #include "clang/AST/ExprCXX.h" |
18 | #include "clang/AST/ExprObjC.h" |
19 | #include "clang/AST/IgnoreExpr.h" |
20 | #include "clang/AST/TypeLoc.h" |
21 | #include "clang/Basic/SourceManager.h" |
22 | #include "clang/Basic/Specifiers.h" |
23 | #include "clang/Basic/TargetInfo.h" |
24 | #include "clang/Lex/Preprocessor.h" |
25 | #include "clang/Sema/Designator.h" |
26 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
27 | #include "clang/Sema/Initialization.h" |
28 | #include "clang/Sema/Lookup.h" |
29 | #include "clang/Sema/Ownership.h" |
30 | #include "clang/Sema/SemaHLSL.h" |
31 | #include "clang/Sema/SemaObjC.h" |
32 | #include "llvm/ADT/APInt.h" |
33 | #include "llvm/ADT/FoldingSet.h" |
34 | #include "llvm/ADT/PointerIntPair.h" |
35 | #include "llvm/ADT/SmallVector.h" |
36 | #include "llvm/ADT/StringExtras.h" |
37 | #include "llvm/Support/ErrorHandling.h" |
38 | #include "llvm/Support/raw_ostream.h" |
39 | |
40 | using namespace clang; |
41 | |
42 | //===----------------------------------------------------------------------===// |
43 | // Sema Initialization Checking |
44 | //===----------------------------------------------------------------------===// |
45 | |
46 | /// Check whether T is compatible with a wide character type (wchar_t, |
47 | /// char16_t or char32_t). |
48 | static bool IsWideCharCompatible(QualType T, ASTContext &Context) { |
49 | if (Context.typesAreCompatible(T1: Context.getWideCharType(), T2: T)) |
50 | return true; |
51 | if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { |
52 | return Context.typesAreCompatible(T1: Context.Char16Ty, T2: T) || |
53 | Context.typesAreCompatible(T1: Context.Char32Ty, T2: T); |
54 | } |
55 | return false; |
56 | } |
57 | |
58 | enum StringInitFailureKind { |
59 | SIF_None, |
60 | SIF_NarrowStringIntoWideChar, |
61 | SIF_WideStringIntoChar, |
62 | SIF_IncompatWideStringIntoWideChar, |
63 | SIF_UTF8StringIntoPlainChar, |
64 | SIF_PlainStringIntoUTF8Char, |
65 | SIF_Other |
66 | }; |
67 | |
68 | /// Check whether the array of type AT can be initialized by the Init |
69 | /// expression by means of string initialization. Returns SIF_None if so, |
70 | /// otherwise returns a StringInitFailureKind that describes why the |
71 | /// initialization would not work. |
72 | static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, |
73 | ASTContext &Context) { |
74 | if (!isa<ConstantArrayType>(Val: AT) && !isa<IncompleteArrayType>(Val: AT)) |
75 | return SIF_Other; |
76 | |
77 | // See if this is a string literal or @encode. |
78 | Init = Init->IgnoreParens(); |
79 | |
80 | // Handle @encode, which is a narrow string. |
81 | if (isa<ObjCEncodeExpr>(Val: Init) && AT->getElementType()->isCharType()) |
82 | return SIF_None; |
83 | |
84 | // Otherwise we can only handle string literals. |
85 | StringLiteral *SL = dyn_cast<StringLiteral>(Val: Init); |
86 | if (!SL) |
87 | return SIF_Other; |
88 | |
89 | const QualType ElemTy = |
90 | Context.getCanonicalType(T: AT->getElementType()).getUnqualifiedType(); |
91 | |
92 | auto IsCharOrUnsignedChar = [](const QualType &T) { |
93 | const BuiltinType *BT = dyn_cast<BuiltinType>(Val: T.getTypePtr()); |
94 | return BT && BT->isCharType() && BT->getKind() != BuiltinType::SChar; |
95 | }; |
96 | |
97 | switch (SL->getKind()) { |
98 | case StringLiteralKind::UTF8: |
99 | // char8_t array can be initialized with a UTF-8 string. |
100 | // - C++20 [dcl.init.string] (DR) |
101 | // Additionally, an array of char or unsigned char may be initialized |
102 | // by a UTF-8 string literal. |
103 | if (ElemTy->isChar8Type() || |
104 | (Context.getLangOpts().Char8 && |
105 | IsCharOrUnsignedChar(ElemTy.getCanonicalType()))) |
106 | return SIF_None; |
107 | [[fallthrough]]; |
108 | case StringLiteralKind::Ordinary: |
109 | case StringLiteralKind::Binary: |
110 | // char array can be initialized with a narrow string. |
111 | // Only allow char x[] = "foo"; not char x[] = L"foo"; |
112 | if (ElemTy->isCharType()) |
113 | return (SL->getKind() == StringLiteralKind::UTF8 && |
114 | Context.getLangOpts().Char8) |
115 | ? SIF_UTF8StringIntoPlainChar |
116 | : SIF_None; |
117 | if (ElemTy->isChar8Type()) |
118 | return SIF_PlainStringIntoUTF8Char; |
119 | if (IsWideCharCompatible(T: ElemTy, Context)) |
120 | return SIF_NarrowStringIntoWideChar; |
121 | return SIF_Other; |
122 | // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: |
123 | // "An array with element type compatible with a qualified or unqualified |
124 | // version of wchar_t, char16_t, or char32_t may be initialized by a wide |
125 | // string literal with the corresponding encoding prefix (L, u, or U, |
126 | // respectively), optionally enclosed in braces. |
127 | case StringLiteralKind::UTF16: |
128 | if (Context.typesAreCompatible(T1: Context.Char16Ty, T2: ElemTy)) |
129 | return SIF_None; |
130 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
131 | return SIF_WideStringIntoChar; |
132 | if (IsWideCharCompatible(T: ElemTy, Context)) |
133 | return SIF_IncompatWideStringIntoWideChar; |
134 | return SIF_Other; |
135 | case StringLiteralKind::UTF32: |
136 | if (Context.typesAreCompatible(T1: Context.Char32Ty, T2: ElemTy)) |
137 | return SIF_None; |
138 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
139 | return SIF_WideStringIntoChar; |
140 | if (IsWideCharCompatible(T: ElemTy, Context)) |
141 | return SIF_IncompatWideStringIntoWideChar; |
142 | return SIF_Other; |
143 | case StringLiteralKind::Wide: |
144 | if (Context.typesAreCompatible(T1: Context.getWideCharType(), T2: ElemTy)) |
145 | return SIF_None; |
146 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
147 | return SIF_WideStringIntoChar; |
148 | if (IsWideCharCompatible(T: ElemTy, Context)) |
149 | return SIF_IncompatWideStringIntoWideChar; |
150 | return SIF_Other; |
151 | case StringLiteralKind::Unevaluated: |
152 | assert(false && "Unevaluated string literal in initialization"); |
153 | break; |
154 | } |
155 | |
156 | llvm_unreachable("missed a StringLiteral kind?"); |
157 | } |
158 | |
159 | static StringInitFailureKind IsStringInit(Expr *init, QualType declType, |
160 | ASTContext &Context) { |
161 | const ArrayType *arrayType = Context.getAsArrayType(T: declType); |
162 | if (!arrayType) |
163 | return SIF_Other; |
164 | return IsStringInit(Init: init, AT: arrayType, Context); |
165 | } |
166 | |
167 | bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { |
168 | return ::IsStringInit(Init, AT, Context) == SIF_None; |
169 | } |
170 | |
171 | /// Update the type of a string literal, including any surrounding parentheses, |
172 | /// to match the type of the object which it is initializing. |
173 | static void updateStringLiteralType(Expr *E, QualType Ty) { |
174 | while (true) { |
175 | E->setType(Ty); |
176 | E->setValueKind(VK_PRValue); |
177 | if (isa<StringLiteral>(Val: E) || isa<ObjCEncodeExpr>(Val: E)) |
178 | break; |
179 | E = IgnoreParensSingleStep(E); |
180 | } |
181 | } |
182 | |
183 | /// Fix a compound literal initializing an array so it's correctly marked |
184 | /// as an rvalue. |
185 | static void updateGNUCompoundLiteralRValue(Expr *E) { |
186 | while (true) { |
187 | E->setValueKind(VK_PRValue); |
188 | if (isa<CompoundLiteralExpr>(Val: E)) |
189 | break; |
190 | E = IgnoreParensSingleStep(E); |
191 | } |
192 | } |
193 | |
194 | static bool initializingConstexprVariable(const InitializedEntity &Entity) { |
195 | Decl *D = Entity.getDecl(); |
196 | const InitializedEntity *Parent = &Entity; |
197 | |
198 | while (Parent) { |
199 | D = Parent->getDecl(); |
200 | Parent = Parent->getParent(); |
201 | } |
202 | |
203 | if (const auto *VD = dyn_cast_if_present<VarDecl>(Val: D); VD && VD->isConstexpr()) |
204 | return true; |
205 | |
206 | return false; |
207 | } |
208 | |
209 | static void CheckC23ConstexprInitStringLiteral(const StringLiteral *SE, |
210 | Sema &SemaRef, QualType &TT); |
211 | |
212 | static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, |
213 | Sema &S, const InitializedEntity &Entity, |
214 | bool CheckC23ConstexprInit = false) { |
215 | // Get the length of the string as parsed. |
216 | auto *ConstantArrayTy = |
217 | cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); |
218 | uint64_t StrLength = ConstantArrayTy->getZExtSize(); |
219 | |
220 | if (CheckC23ConstexprInit) |
221 | if (const StringLiteral *SL = dyn_cast<StringLiteral>(Val: Str->IgnoreParens())) |
222 | CheckC23ConstexprInitStringLiteral(SE: SL, SemaRef&: S, TT&: DeclT); |
223 | |
224 | if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(Val: AT)) { |
225 | // C99 6.7.8p14. We have an array of character type with unknown size |
226 | // being initialized to a string literal. |
227 | llvm::APInt ConstVal(32, StrLength); |
228 | // Return a new array type (C99 6.7.8p22). |
229 | DeclT = S.Context.getConstantArrayType( |
230 | EltTy: IAT->getElementType(), ArySize: ConstVal, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
231 | updateStringLiteralType(E: Str, Ty: DeclT); |
232 | return; |
233 | } |
234 | |
235 | const ConstantArrayType *CAT = cast<ConstantArrayType>(Val: AT); |
236 | uint64_t ArrayLen = CAT->getZExtSize(); |
237 | |
238 | // We have an array of character type with known size. However, |
239 | // the size may be smaller or larger than the string we are initializing. |
240 | // FIXME: Avoid truncation for 64-bit length strings. |
241 | if (S.getLangOpts().CPlusPlus) { |
242 | if (StringLiteral *SL = dyn_cast<StringLiteral>(Val: Str->IgnoreParens())) { |
243 | // For Pascal strings it's OK to strip off the terminating null character, |
244 | // so the example below is valid: |
245 | // |
246 | // unsigned char a[2] = "\pa"; |
247 | if (SL->isPascal()) |
248 | StrLength--; |
249 | } |
250 | |
251 | // [dcl.init.string]p2 |
252 | if (StrLength > ArrayLen) |
253 | S.Diag(Str->getBeginLoc(), |
254 | diag::err_initializer_string_for_char_array_too_long) |
255 | << ArrayLen << StrLength << Str->getSourceRange(); |
256 | } else { |
257 | // C99 6.7.8p14. |
258 | if (StrLength - 1 > ArrayLen) |
259 | S.Diag(Str->getBeginLoc(), |
260 | diag::ext_initializer_string_for_char_array_too_long) |
261 | << Str->getSourceRange(); |
262 | else if (StrLength - 1 == ArrayLen) { |
263 | // If the entity being initialized has the nonstring attribute, then |
264 | // silence the "missing nonstring" diagnostic. If there's no entity, |
265 | // check whether we're initializing an array of arrays; if so, walk the |
266 | // parents to find an entity. |
267 | auto FindCorrectEntity = |
268 | [](const InitializedEntity *Entity) -> const ValueDecl * { |
269 | while (Entity) { |
270 | if (const ValueDecl *VD = Entity->getDecl()) |
271 | return VD; |
272 | if (!Entity->getType()->isArrayType()) |
273 | return nullptr; |
274 | Entity = Entity->getParent(); |
275 | } |
276 | |
277 | return nullptr; |
278 | }; |
279 | if (const ValueDecl *D = FindCorrectEntity(&Entity); |
280 | !D || !D->hasAttr<NonStringAttr>()) |
281 | S.Diag( |
282 | Str->getBeginLoc(), |
283 | diag::warn_initializer_string_for_char_array_too_long_no_nonstring) |
284 | << ArrayLen << StrLength << Str->getSourceRange(); |
285 | |
286 | // Always emit the C++ compatibility diagnostic. |
287 | S.Diag(Str->getBeginLoc(), |
288 | diag::warn_initializer_string_for_char_array_too_long_for_cpp) |
289 | << ArrayLen << StrLength << Str->getSourceRange(); |
290 | } |
291 | } |
292 | |
293 | // Set the type to the actual size that we are initializing. If we have |
294 | // something like: |
295 | // char x[1] = "foo"; |
296 | // then this will set the string literal's type to char[1]. |
297 | updateStringLiteralType(E: Str, Ty: DeclT); |
298 | } |
299 | |
300 | void emitUninitializedExplicitInitFields(Sema &S, const RecordDecl *R) { |
301 | for (const FieldDecl *Field : R->fields()) { |
302 | if (Field->hasAttr<ExplicitInitAttr>()) |
303 | S.Diag(Field->getLocation(), diag::note_entity_declared_at) << Field; |
304 | } |
305 | } |
306 | |
307 | //===----------------------------------------------------------------------===// |
308 | // Semantic checking for initializer lists. |
309 | //===----------------------------------------------------------------------===// |
310 | |
311 | namespace { |
312 | |
313 | /// Semantic checking for initializer lists. |
314 | /// |
315 | /// The InitListChecker class contains a set of routines that each |
316 | /// handle the initialization of a certain kind of entity, e.g., |
317 | /// arrays, vectors, struct/union types, scalars, etc. The |
318 | /// InitListChecker itself performs a recursive walk of the subobject |
319 | /// structure of the type to be initialized, while stepping through |
320 | /// the initializer list one element at a time. The IList and Index |
321 | /// parameters to each of the Check* routines contain the active |
322 | /// (syntactic) initializer list and the index into that initializer |
323 | /// list that represents the current initializer. Each routine is |
324 | /// responsible for moving that Index forward as it consumes elements. |
325 | /// |
326 | /// Each Check* routine also has a StructuredList/StructuredIndex |
327 | /// arguments, which contains the current "structured" (semantic) |
328 | /// initializer list and the index into that initializer list where we |
329 | /// are copying initializers as we map them over to the semantic |
330 | /// list. Once we have completed our recursive walk of the subobject |
331 | /// structure, we will have constructed a full semantic initializer |
332 | /// list. |
333 | /// |
334 | /// C99 designators cause changes in the initializer list traversal, |
335 | /// because they make the initialization "jump" into a specific |
336 | /// subobject and then continue the initialization from that |
337 | /// point. CheckDesignatedInitializer() recursively steps into the |
338 | /// designated subobject and manages backing out the recursion to |
339 | /// initialize the subobjects after the one designated. |
340 | /// |
341 | /// If an initializer list contains any designators, we build a placeholder |
342 | /// structured list even in 'verify only' mode, so that we can track which |
343 | /// elements need 'empty' initializtion. |
344 | class InitListChecker { |
345 | Sema &SemaRef; |
346 | bool hadError = false; |
347 | bool VerifyOnly; // No diagnostics. |
348 | bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. |
349 | bool InOverloadResolution; |
350 | InitListExpr *FullyStructuredList = nullptr; |
351 | NoInitExpr *DummyExpr = nullptr; |
352 | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr; |
353 | EmbedExpr *CurEmbed = nullptr; // Save current embed we're processing. |
354 | unsigned CurEmbedIndex = 0; |
355 | |
356 | NoInitExpr *getDummyInit() { |
357 | if (!DummyExpr) |
358 | DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); |
359 | return DummyExpr; |
360 | } |
361 | |
362 | void CheckImplicitInitList(const InitializedEntity &Entity, |
363 | InitListExpr *ParentIList, QualType T, |
364 | unsigned &Index, InitListExpr *StructuredList, |
365 | unsigned &StructuredIndex); |
366 | void CheckExplicitInitList(const InitializedEntity &Entity, |
367 | InitListExpr *IList, QualType &T, |
368 | InitListExpr *StructuredList, |
369 | bool TopLevelObject = false); |
370 | void CheckListElementTypes(const InitializedEntity &Entity, |
371 | InitListExpr *IList, QualType &DeclType, |
372 | bool SubobjectIsDesignatorContext, |
373 | unsigned &Index, |
374 | InitListExpr *StructuredList, |
375 | unsigned &StructuredIndex, |
376 | bool TopLevelObject = false); |
377 | void CheckSubElementType(const InitializedEntity &Entity, |
378 | InitListExpr *IList, QualType ElemType, |
379 | unsigned &Index, |
380 | InitListExpr *StructuredList, |
381 | unsigned &StructuredIndex, |
382 | bool DirectlyDesignated = false); |
383 | void CheckComplexType(const InitializedEntity &Entity, |
384 | InitListExpr *IList, QualType DeclType, |
385 | unsigned &Index, |
386 | InitListExpr *StructuredList, |
387 | unsigned &StructuredIndex); |
388 | void CheckScalarType(const InitializedEntity &Entity, |
389 | InitListExpr *IList, QualType DeclType, |
390 | unsigned &Index, |
391 | InitListExpr *StructuredList, |
392 | unsigned &StructuredIndex); |
393 | void CheckReferenceType(const InitializedEntity &Entity, |
394 | InitListExpr *IList, QualType DeclType, |
395 | unsigned &Index, |
396 | InitListExpr *StructuredList, |
397 | unsigned &StructuredIndex); |
398 | void CheckVectorType(const InitializedEntity &Entity, |
399 | InitListExpr *IList, QualType DeclType, unsigned &Index, |
400 | InitListExpr *StructuredList, |
401 | unsigned &StructuredIndex); |
402 | void CheckStructUnionTypes(const InitializedEntity &Entity, |
403 | InitListExpr *IList, QualType DeclType, |
404 | CXXRecordDecl::base_class_const_range Bases, |
405 | RecordDecl::field_iterator Field, |
406 | bool SubobjectIsDesignatorContext, unsigned &Index, |
407 | InitListExpr *StructuredList, |
408 | unsigned &StructuredIndex, |
409 | bool TopLevelObject = false); |
410 | void CheckArrayType(const InitializedEntity &Entity, |
411 | InitListExpr *IList, QualType &DeclType, |
412 | llvm::APSInt elementIndex, |
413 | bool SubobjectIsDesignatorContext, unsigned &Index, |
414 | InitListExpr *StructuredList, |
415 | unsigned &StructuredIndex); |
416 | bool CheckDesignatedInitializer(const InitializedEntity &Entity, |
417 | InitListExpr *IList, DesignatedInitExpr *DIE, |
418 | unsigned DesigIdx, |
419 | QualType &CurrentObjectType, |
420 | RecordDecl::field_iterator *NextField, |
421 | llvm::APSInt *NextElementIndex, |
422 | unsigned &Index, |
423 | InitListExpr *StructuredList, |
424 | unsigned &StructuredIndex, |
425 | bool FinishSubobjectInit, |
426 | bool TopLevelObject); |
427 | InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
428 | QualType CurrentObjectType, |
429 | InitListExpr *StructuredList, |
430 | unsigned StructuredIndex, |
431 | SourceRange InitRange, |
432 | bool IsFullyOverwritten = false); |
433 | void UpdateStructuredListElement(InitListExpr *StructuredList, |
434 | unsigned &StructuredIndex, |
435 | Expr *expr); |
436 | InitListExpr *createInitListExpr(QualType CurrentObjectType, |
437 | SourceRange InitRange, |
438 | unsigned ExpectedNumInits); |
439 | int numArrayElements(QualType DeclType); |
440 | int numStructUnionElements(QualType DeclType); |
441 | static RecordDecl *getRecordDecl(QualType DeclType); |
442 | |
443 | ExprResult PerformEmptyInit(SourceLocation Loc, |
444 | const InitializedEntity &Entity); |
445 | |
446 | /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. |
447 | void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, |
448 | bool UnionOverride = false, |
449 | bool FullyOverwritten = true) { |
450 | // Overriding an initializer via a designator is valid with C99 designated |
451 | // initializers, but ill-formed with C++20 designated initializers. |
452 | unsigned DiagID = |
453 | SemaRef.getLangOpts().CPlusPlus |
454 | ? (UnionOverride ? diag::ext_initializer_union_overrides |
455 | : diag::ext_initializer_overrides) |
456 | : diag::warn_initializer_overrides; |
457 | |
458 | if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { |
459 | // In overload resolution, we have to strictly enforce the rules, and so |
460 | // don't allow any overriding of prior initializers. This matters for a |
461 | // case such as: |
462 | // |
463 | // union U { int a, b; }; |
464 | // struct S { int a, b; }; |
465 | // void f(U), f(S); |
466 | // |
467 | // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For |
468 | // consistency, we disallow all overriding of prior initializers in |
469 | // overload resolution, not only overriding of union members. |
470 | hadError = true; |
471 | } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { |
472 | // If we'll be keeping around the old initializer but overwriting part of |
473 | // the object it initialized, and that object is not trivially |
474 | // destructible, this can leak. Don't allow that, not even as an |
475 | // extension. |
476 | // |
477 | // FIXME: It might be reasonable to allow this in cases where the part of |
478 | // the initializer that we're overriding has trivial destruction. |
479 | DiagID = diag::err_initializer_overrides_destructed; |
480 | } else if (!OldInit->getSourceRange().isValid()) { |
481 | // We need to check on source range validity because the previous |
482 | // initializer does not have to be an explicit initializer. e.g., |
483 | // |
484 | // struct P { int a, b; }; |
485 | // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; |
486 | // |
487 | // There is an overwrite taking place because the first braced initializer |
488 | // list "{ .a = 2 }" already provides value for .p.b (which is zero). |
489 | // |
490 | // Such overwrites are harmless, so we don't diagnose them. (Note that in |
491 | // C++, this cannot be reached unless we've already seen and diagnosed a |
492 | // different conformance issue, such as a mixture of designated and |
493 | // non-designated initializers or a multi-level designator.) |
494 | return; |
495 | } |
496 | |
497 | if (!VerifyOnly) { |
498 | SemaRef.Diag(NewInitRange.getBegin(), DiagID) |
499 | << NewInitRange << FullyOverwritten << OldInit->getType(); |
500 | SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) |
501 | << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) |
502 | << OldInit->getSourceRange(); |
503 | } |
504 | } |
505 | |
506 | // Explanation on the "FillWithNoInit" mode: |
507 | // |
508 | // Assume we have the following definitions (Case#1): |
509 | // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; |
510 | // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; |
511 | // |
512 | // l.lp.x[1][0..1] should not be filled with implicit initializers because the |
513 | // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". |
514 | // |
515 | // But if we have (Case#2): |
516 | // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; |
517 | // |
518 | // l.lp.x[1][0..1] are implicitly initialized and do not use values from the |
519 | // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". |
520 | // |
521 | // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" |
522 | // in the InitListExpr, the "holes" in Case#1 are filled not with empty |
523 | // initializers but with special "NoInitExpr" place holders, which tells the |
524 | // CodeGen not to generate any initializers for these parts. |
525 | void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, |
526 | const InitializedEntity &ParentEntity, |
527 | InitListExpr *ILE, bool &RequiresSecondPass, |
528 | bool FillWithNoInit); |
529 | void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
530 | const InitializedEntity &ParentEntity, |
531 | InitListExpr *ILE, bool &RequiresSecondPass, |
532 | bool FillWithNoInit = false); |
533 | void FillInEmptyInitializations(const InitializedEntity &Entity, |
534 | InitListExpr *ILE, bool &RequiresSecondPass, |
535 | InitListExpr *OuterILE, unsigned OuterIndex, |
536 | bool FillWithNoInit = false); |
537 | bool CheckFlexibleArrayInit(const InitializedEntity &Entity, |
538 | Expr *InitExpr, FieldDecl *Field, |
539 | bool TopLevelObject); |
540 | void CheckEmptyInitializable(const InitializedEntity &Entity, |
541 | SourceLocation Loc); |
542 | |
543 | Expr *HandleEmbed(EmbedExpr *Embed, const InitializedEntity &Entity) { |
544 | Expr *Result = nullptr; |
545 | // Undrestand which part of embed we'd like to reference. |
546 | if (!CurEmbed) { |
547 | CurEmbed = Embed; |
548 | CurEmbedIndex = 0; |
549 | } |
550 | // Reference just one if we're initializing a single scalar. |
551 | uint64_t ElsCount = 1; |
552 | // Otherwise try to fill whole array with embed data. |
553 | if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { |
554 | unsigned ArrIndex = Entity.getElementIndex(); |
555 | auto *AType = |
556 | SemaRef.Context.getAsArrayType(T: Entity.getParent()->getType()); |
557 | assert(AType && "expected array type when initializing array"); |
558 | ElsCount = Embed->getDataElementCount(); |
559 | if (const auto *CAType = dyn_cast<ConstantArrayType>(Val: AType)) |
560 | ElsCount = std::min(a: CAType->getSize().getZExtValue() - ArrIndex, |
561 | b: ElsCount - CurEmbedIndex); |
562 | if (ElsCount == Embed->getDataElementCount()) { |
563 | CurEmbed = nullptr; |
564 | CurEmbedIndex = 0; |
565 | return Embed; |
566 | } |
567 | } |
568 | |
569 | Result = new (SemaRef.Context) |
570 | EmbedExpr(SemaRef.Context, Embed->getLocation(), Embed->getData(), |
571 | CurEmbedIndex, ElsCount); |
572 | CurEmbedIndex += ElsCount; |
573 | if (CurEmbedIndex >= Embed->getDataElementCount()) { |
574 | CurEmbed = nullptr; |
575 | CurEmbedIndex = 0; |
576 | } |
577 | return Result; |
578 | } |
579 | |
580 | public: |
581 | InitListChecker( |
582 | Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, |
583 | bool VerifyOnly, bool TreatUnavailableAsInvalid, |
584 | bool InOverloadResolution = false, |
585 | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr); |
586 | InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, |
587 | QualType &T, |
588 | SmallVectorImpl<QualType> &AggrDeductionCandidateParamTypes) |
589 | : InitListChecker(S, Entity, IL, T, /*VerifyOnly=*/true, |
590 | /*TreatUnavailableAsInvalid=*/false, |
591 | /*InOverloadResolution=*/false, |
592 | &AggrDeductionCandidateParamTypes) {} |
593 | |
594 | bool HadError() { return hadError; } |
595 | |
596 | // Retrieves the fully-structured initializer list used for |
597 | // semantic analysis and code generation. |
598 | InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } |
599 | }; |
600 | |
601 | } // end anonymous namespace |
602 | |
603 | ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, |
604 | const InitializedEntity &Entity) { |
605 | InitializationKind Kind = InitializationKind::CreateValue(InitLoc: Loc, LParenLoc: Loc, RParenLoc: Loc, |
606 | isImplicit: true); |
607 | MultiExprArg SubInit; |
608 | Expr *InitExpr; |
609 | InitListExpr DummyInitList(SemaRef.Context, Loc, {}, Loc); |
610 | |
611 | // C++ [dcl.init.aggr]p7: |
612 | // If there are fewer initializer-clauses in the list than there are |
613 | // members in the aggregate, then each member not explicitly initialized |
614 | // ... |
615 | bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && |
616 | Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); |
617 | if (EmptyInitList) { |
618 | // C++1y / DR1070: |
619 | // shall be initialized [...] from an empty initializer list. |
620 | // |
621 | // We apply the resolution of this DR to C++11 but not C++98, since C++98 |
622 | // does not have useful semantics for initialization from an init list. |
623 | // We treat this as copy-initialization, because aggregate initialization |
624 | // always performs copy-initialization on its elements. |
625 | // |
626 | // Only do this if we're initializing a class type, to avoid filling in |
627 | // the initializer list where possible. |
628 | InitExpr = VerifyOnly ? &DummyInitList |
629 | : new (SemaRef.Context) |
630 | InitListExpr(SemaRef.Context, Loc, {}, Loc); |
631 | InitExpr->setType(SemaRef.Context.VoidTy); |
632 | SubInit = InitExpr; |
633 | Kind = InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: Loc); |
634 | } else { |
635 | // C++03: |
636 | // shall be value-initialized. |
637 | } |
638 | |
639 | InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); |
640 | // HACK: libstdc++ prior to 4.9 marks the vector default constructor |
641 | // as explicit in _GLIBCXX_DEBUG mode, so recover using the C++03 logic |
642 | // in that case. stlport does so too. |
643 | // Look for std::__debug for libstdc++, and for std:: for stlport. |
644 | // This is effectively a compiler-side implementation of LWG2193. |
645 | if (!InitSeq && EmptyInitList && |
646 | InitSeq.getFailureKind() == |
647 | InitializationSequence::FK_ExplicitConstructor && |
648 | SemaRef.getPreprocessor().NeedsStdLibCxxWorkaroundBefore(FixedVersion: 2014'04'22)) { |
649 | OverloadCandidateSet::iterator Best; |
650 | OverloadingResult O = |
651 | InitSeq.getFailedCandidateSet() |
652 | .BestViableFunction(S&: SemaRef, Loc: Kind.getLocation(), Best); |
653 | (void)O; |
654 | assert(O == OR_Success && "Inconsistent overload resolution"); |
655 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Val: Best->Function); |
656 | CXXRecordDecl *R = CtorDecl->getParent(); |
657 | |
658 | if (CtorDecl->getMinRequiredArguments() == 0 && |
659 | CtorDecl->isExplicit() && R->getDeclName() && |
660 | SemaRef.SourceMgr.isInSystemHeader(Loc: CtorDecl->getLocation())) { |
661 | bool IsInStd = false; |
662 | for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); |
663 | ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { |
664 | if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) |
665 | IsInStd = true; |
666 | } |
667 | |
668 | if (IsInStd && llvm::StringSwitch<bool>(R->getName()) |
669 | .Cases(S0: "basic_string", S1: "deque", S2: "forward_list", Value: true) |
670 | .Cases(S0: "list", S1: "map", S2: "multimap", S3: "multiset", Value: true) |
671 | .Cases(S0: "priority_queue", S1: "queue", S2: "set", S3: "stack", Value: true) |
672 | .Cases(S0: "unordered_map", S1: "unordered_set", S2: "vector", Value: true) |
673 | .Default(Value: false)) { |
674 | InitSeq.InitializeFrom( |
675 | S&: SemaRef, Entity, |
676 | Kind: InitializationKind::CreateValue(InitLoc: Loc, LParenLoc: Loc, RParenLoc: Loc, isImplicit: true), |
677 | Args: MultiExprArg(), /*TopLevelOfInitList=*/false, |
678 | TreatUnavailableAsInvalid); |
679 | // Emit a warning for this. System header warnings aren't shown |
680 | // by default, but people working on system headers should see it. |
681 | if (!VerifyOnly) { |
682 | SemaRef.Diag(CtorDecl->getLocation(), |
683 | diag::warn_invalid_initializer_from_system_header); |
684 | if (Entity.getKind() == InitializedEntity::EK_Member) |
685 | SemaRef.Diag(Entity.getDecl()->getLocation(), |
686 | diag::note_used_in_initialization_here); |
687 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) |
688 | SemaRef.Diag(Loc, diag::note_used_in_initialization_here); |
689 | } |
690 | } |
691 | } |
692 | } |
693 | if (!InitSeq) { |
694 | if (!VerifyOnly) { |
695 | InitSeq.Diagnose(S&: SemaRef, Entity, Kind, Args: SubInit); |
696 | if (Entity.getKind() == InitializedEntity::EK_Member) |
697 | SemaRef.Diag(Entity.getDecl()->getLocation(), |
698 | diag::note_in_omitted_aggregate_initializer) |
699 | << /*field*/1 << Entity.getDecl(); |
700 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { |
701 | bool IsTrailingArrayNewMember = |
702 | Entity.getParent() && |
703 | Entity.getParent()->isVariableLengthArrayNew(); |
704 | SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) |
705 | << (IsTrailingArrayNewMember ? 2 : /*array element*/0) |
706 | << Entity.getElementIndex(); |
707 | } |
708 | } |
709 | hadError = true; |
710 | return ExprError(); |
711 | } |
712 | |
713 | return VerifyOnly ? ExprResult() |
714 | : InitSeq.Perform(S&: SemaRef, Entity, Kind, Args: SubInit); |
715 | } |
716 | |
717 | void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, |
718 | SourceLocation Loc) { |
719 | // If we're building a fully-structured list, we'll check this at the end |
720 | // once we know which elements are actually initialized. Otherwise, we know |
721 | // that there are no designators so we can just check now. |
722 | if (FullyStructuredList) |
723 | return; |
724 | PerformEmptyInit(Loc, Entity); |
725 | } |
726 | |
727 | void InitListChecker::FillInEmptyInitForBase( |
728 | unsigned Init, const CXXBaseSpecifier &Base, |
729 | const InitializedEntity &ParentEntity, InitListExpr *ILE, |
730 | bool &RequiresSecondPass, bool FillWithNoInit) { |
731 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
732 | Context&: SemaRef.Context, Base: &Base, IsInheritedVirtualBase: false, Parent: &ParentEntity); |
733 | |
734 | if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { |
735 | ExprResult BaseInit = FillWithNoInit |
736 | ? new (SemaRef.Context) NoInitExpr(Base.getType()) |
737 | : PerformEmptyInit(Loc: ILE->getEndLoc(), Entity: BaseEntity); |
738 | if (BaseInit.isInvalid()) { |
739 | hadError = true; |
740 | return; |
741 | } |
742 | |
743 | if (!VerifyOnly) { |
744 | assert(Init < ILE->getNumInits() && "should have been expanded"); |
745 | ILE->setInit(Init, expr: BaseInit.getAs<Expr>()); |
746 | } |
747 | } else if (InitListExpr *InnerILE = |
748 | dyn_cast<InitListExpr>(Val: ILE->getInit(Init))) { |
749 | FillInEmptyInitializations(Entity: BaseEntity, ILE: InnerILE, RequiresSecondPass, |
750 | OuterILE: ILE, OuterIndex: Init, FillWithNoInit); |
751 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
752 | dyn_cast<DesignatedInitUpdateExpr>(Val: ILE->getInit(Init))) { |
753 | FillInEmptyInitializations(Entity: BaseEntity, ILE: InnerDIUE->getUpdater(), |
754 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, |
755 | /*FillWithNoInit =*/true); |
756 | } |
757 | } |
758 | |
759 | void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
760 | const InitializedEntity &ParentEntity, |
761 | InitListExpr *ILE, |
762 | bool &RequiresSecondPass, |
763 | bool FillWithNoInit) { |
764 | SourceLocation Loc = ILE->getEndLoc(); |
765 | unsigned NumInits = ILE->getNumInits(); |
766 | InitializedEntity MemberEntity |
767 | = InitializedEntity::InitializeMember(Member: Field, Parent: &ParentEntity); |
768 | |
769 | if (Init >= NumInits || !ILE->getInit(Init)) { |
770 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) |
771 | if (!RType->getDecl()->isUnion()) |
772 | assert((Init < NumInits || VerifyOnly) && |
773 | "This ILE should have been expanded"); |
774 | |
775 | if (FillWithNoInit) { |
776 | assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); |
777 | Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); |
778 | if (Init < NumInits) |
779 | ILE->setInit(Init, expr: Filler); |
780 | else |
781 | ILE->updateInit(C: SemaRef.Context, Init, expr: Filler); |
782 | return; |
783 | } |
784 | |
785 | if (!VerifyOnly && Field->hasAttr<ExplicitInitAttr>()) { |
786 | SemaRef.Diag(ILE->getExprLoc(), diag::warn_field_requires_explicit_init) |
787 | << /* Var-in-Record */ 0 << Field; |
788 | SemaRef.Diag(Field->getLocation(), diag::note_entity_declared_at) |
789 | << Field; |
790 | } |
791 | |
792 | // C++1y [dcl.init.aggr]p7: |
793 | // If there are fewer initializer-clauses in the list than there are |
794 | // members in the aggregate, then each member not explicitly initialized |
795 | // shall be initialized from its brace-or-equal-initializer [...] |
796 | if (Field->hasInClassInitializer()) { |
797 | if (VerifyOnly) |
798 | return; |
799 | |
800 | ExprResult DIE; |
801 | { |
802 | // Enter a default initializer rebuild context, then we can support |
803 | // lifetime extension of temporary created by aggregate initialization |
804 | // using a default member initializer. |
805 | // CWG1815 (https://wg21.link/CWG1815). |
806 | EnterExpressionEvaluationContext RebuildDefaultInit( |
807 | SemaRef, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
808 | SemaRef.currentEvaluationContext().RebuildDefaultArgOrDefaultInit = |
809 | true; |
810 | SemaRef.currentEvaluationContext().DelayedDefaultInitializationContext = |
811 | SemaRef.parentEvaluationContext() |
812 | .DelayedDefaultInitializationContext; |
813 | SemaRef.currentEvaluationContext().InLifetimeExtendingContext = |
814 | SemaRef.parentEvaluationContext().InLifetimeExtendingContext; |
815 | DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); |
816 | } |
817 | if (DIE.isInvalid()) { |
818 | hadError = true; |
819 | return; |
820 | } |
821 | SemaRef.checkInitializerLifetime(Entity: MemberEntity, Init: DIE.get()); |
822 | if (Init < NumInits) |
823 | ILE->setInit(Init, expr: DIE.get()); |
824 | else { |
825 | ILE->updateInit(C: SemaRef.Context, Init, expr: DIE.get()); |
826 | RequiresSecondPass = true; |
827 | } |
828 | return; |
829 | } |
830 | |
831 | if (Field->getType()->isReferenceType()) { |
832 | if (!VerifyOnly) { |
833 | // C++ [dcl.init.aggr]p9: |
834 | // If an incomplete or empty initializer-list leaves a |
835 | // member of reference type uninitialized, the program is |
836 | // ill-formed. |
837 | SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) |
838 | << Field->getType() |
839 | << (ILE->isSyntacticForm() ? ILE : ILE->getSyntacticForm()) |
840 | ->getSourceRange(); |
841 | SemaRef.Diag(Field->getLocation(), diag::note_uninit_reference_member); |
842 | } |
843 | hadError = true; |
844 | return; |
845 | } |
846 | |
847 | ExprResult MemberInit = PerformEmptyInit(Loc, Entity: MemberEntity); |
848 | if (MemberInit.isInvalid()) { |
849 | hadError = true; |
850 | return; |
851 | } |
852 | |
853 | if (hadError || VerifyOnly) { |
854 | // Do nothing |
855 | } else if (Init < NumInits) { |
856 | ILE->setInit(Init, expr: MemberInit.getAs<Expr>()); |
857 | } else if (!isa<ImplicitValueInitExpr>(Val: MemberInit.get())) { |
858 | // Empty initialization requires a constructor call, so |
859 | // extend the initializer list to include the constructor |
860 | // call and make a note that we'll need to take another pass |
861 | // through the initializer list. |
862 | ILE->updateInit(C: SemaRef.Context, Init, expr: MemberInit.getAs<Expr>()); |
863 | RequiresSecondPass = true; |
864 | } |
865 | } else if (InitListExpr *InnerILE |
866 | = dyn_cast<InitListExpr>(Val: ILE->getInit(Init))) { |
867 | FillInEmptyInitializations(Entity: MemberEntity, ILE: InnerILE, |
868 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, FillWithNoInit); |
869 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
870 | dyn_cast<DesignatedInitUpdateExpr>(Val: ILE->getInit(Init))) { |
871 | FillInEmptyInitializations(Entity: MemberEntity, ILE: InnerDIUE->getUpdater(), |
872 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, |
873 | /*FillWithNoInit =*/true); |
874 | } |
875 | } |
876 | |
877 | /// Recursively replaces NULL values within the given initializer list |
878 | /// with expressions that perform value-initialization of the |
879 | /// appropriate type, and finish off the InitListExpr formation. |
880 | void |
881 | InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, |
882 | InitListExpr *ILE, |
883 | bool &RequiresSecondPass, |
884 | InitListExpr *OuterILE, |
885 | unsigned OuterIndex, |
886 | bool FillWithNoInit) { |
887 | assert((ILE->getType() != SemaRef.Context.VoidTy) && |
888 | "Should not have void type"); |
889 | |
890 | // We don't need to do any checks when just filling NoInitExprs; that can't |
891 | // fail. |
892 | if (FillWithNoInit && VerifyOnly) |
893 | return; |
894 | |
895 | // If this is a nested initializer list, we might have changed its contents |
896 | // (and therefore some of its properties, such as instantiation-dependence) |
897 | // while filling it in. Inform the outer initializer list so that its state |
898 | // can be updated to match. |
899 | // FIXME: We should fully build the inner initializers before constructing |
900 | // the outer InitListExpr instead of mutating AST nodes after they have |
901 | // been used as subexpressions of other nodes. |
902 | struct UpdateOuterILEWithUpdatedInit { |
903 | InitListExpr *Outer; |
904 | unsigned OuterIndex; |
905 | ~UpdateOuterILEWithUpdatedInit() { |
906 | if (Outer) |
907 | Outer->setInit(Init: OuterIndex, expr: Outer->getInit(Init: OuterIndex)); |
908 | } |
909 | } UpdateOuterRAII = {.Outer: OuterILE, .OuterIndex: OuterIndex}; |
910 | |
911 | // A transparent ILE is not performing aggregate initialization and should |
912 | // not be filled in. |
913 | if (ILE->isTransparent()) |
914 | return; |
915 | |
916 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { |
917 | const RecordDecl *RDecl = RType->getDecl(); |
918 | if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) { |
919 | FillInEmptyInitForField(Init: 0, Field: ILE->getInitializedFieldInUnion(), ParentEntity: Entity, ILE, |
920 | RequiresSecondPass, FillWithNoInit); |
921 | } else { |
922 | assert((!RDecl->isUnion() || !isa<CXXRecordDecl>(RDecl) || |
923 | !cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) && |
924 | "We should have computed initialized fields already"); |
925 | // The fields beyond ILE->getNumInits() are default initialized, so in |
926 | // order to leave them uninitialized, the ILE is expanded and the extra |
927 | // fields are then filled with NoInitExpr. |
928 | unsigned NumElems = numStructUnionElements(DeclType: ILE->getType()); |
929 | if (!RDecl->isUnion() && RDecl->hasFlexibleArrayMember()) |
930 | ++NumElems; |
931 | if (!VerifyOnly && ILE->getNumInits() < NumElems) |
932 | ILE->resizeInits(Context: SemaRef.Context, NumInits: NumElems); |
933 | |
934 | unsigned Init = 0; |
935 | |
936 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { |
937 | for (auto &Base : CXXRD->bases()) { |
938 | if (hadError) |
939 | return; |
940 | |
941 | FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, |
942 | FillWithNoInit); |
943 | ++Init; |
944 | } |
945 | } |
946 | |
947 | for (auto *Field : RDecl->fields()) { |
948 | if (Field->isUnnamedBitField()) |
949 | continue; |
950 | |
951 | if (hadError) |
952 | return; |
953 | |
954 | FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, |
955 | FillWithNoInit); |
956 | if (hadError) |
957 | return; |
958 | |
959 | ++Init; |
960 | |
961 | // Only look at the first initialization of a union. |
962 | if (RDecl->isUnion()) |
963 | break; |
964 | } |
965 | } |
966 | |
967 | return; |
968 | } |
969 | |
970 | QualType ElementType; |
971 | |
972 | InitializedEntity ElementEntity = Entity; |
973 | unsigned NumInits = ILE->getNumInits(); |
974 | uint64_t NumElements = NumInits; |
975 | if (const ArrayType *AType = SemaRef.Context.getAsArrayType(T: ILE->getType())) { |
976 | ElementType = AType->getElementType(); |
977 | if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) |
978 | NumElements = CAType->getZExtSize(); |
979 | // For an array new with an unknown bound, ask for one additional element |
980 | // in order to populate the array filler. |
981 | if (Entity.isVariableLengthArrayNew()) |
982 | ++NumElements; |
983 | ElementEntity = InitializedEntity::InitializeElement(Context&: SemaRef.Context, |
984 | Index: 0, Parent: Entity); |
985 | } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { |
986 | ElementType = VType->getElementType(); |
987 | NumElements = VType->getNumElements(); |
988 | ElementEntity = InitializedEntity::InitializeElement(Context&: SemaRef.Context, |
989 | Index: 0, Parent: Entity); |
990 | } else |
991 | ElementType = ILE->getType(); |
992 | |
993 | bool SkipEmptyInitChecks = false; |
994 | for (uint64_t Init = 0; Init != NumElements; ++Init) { |
995 | if (hadError) |
996 | return; |
997 | |
998 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || |
999 | ElementEntity.getKind() == InitializedEntity::EK_VectorElement) |
1000 | ElementEntity.setElementIndex(Init); |
1001 | |
1002 | if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) |
1003 | return; |
1004 | |
1005 | Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); |
1006 | if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) |
1007 | ILE->setInit(Init, expr: ILE->getArrayFiller()); |
1008 | else if (!InitExpr && !ILE->hasArrayFiller()) { |
1009 | // In VerifyOnly mode, there's no point performing empty initialization |
1010 | // more than once. |
1011 | if (SkipEmptyInitChecks) |
1012 | continue; |
1013 | |
1014 | Expr *Filler = nullptr; |
1015 | |
1016 | if (FillWithNoInit) |
1017 | Filler = new (SemaRef.Context) NoInitExpr(ElementType); |
1018 | else { |
1019 | ExprResult ElementInit = |
1020 | PerformEmptyInit(Loc: ILE->getEndLoc(), Entity: ElementEntity); |
1021 | if (ElementInit.isInvalid()) { |
1022 | hadError = true; |
1023 | return; |
1024 | } |
1025 | |
1026 | Filler = ElementInit.getAs<Expr>(); |
1027 | } |
1028 | |
1029 | if (hadError) { |
1030 | // Do nothing |
1031 | } else if (VerifyOnly) { |
1032 | SkipEmptyInitChecks = true; |
1033 | } else if (Init < NumInits) { |
1034 | // For arrays, just set the expression used for value-initialization |
1035 | // of the "holes" in the array. |
1036 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) |
1037 | ILE->setArrayFiller(Filler); |
1038 | else |
1039 | ILE->setInit(Init, expr: Filler); |
1040 | } else { |
1041 | // For arrays, just set the expression used for value-initialization |
1042 | // of the rest of elements and exit. |
1043 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { |
1044 | ILE->setArrayFiller(Filler); |
1045 | return; |
1046 | } |
1047 | |
1048 | if (!isa<ImplicitValueInitExpr>(Val: Filler) && !isa<NoInitExpr>(Val: Filler)) { |
1049 | // Empty initialization requires a constructor call, so |
1050 | // extend the initializer list to include the constructor |
1051 | // call and make a note that we'll need to take another pass |
1052 | // through the initializer list. |
1053 | ILE->updateInit(C: SemaRef.Context, Init, expr: Filler); |
1054 | RequiresSecondPass = true; |
1055 | } |
1056 | } |
1057 | } else if (InitListExpr *InnerILE |
1058 | = dyn_cast_or_null<InitListExpr>(Val: InitExpr)) { |
1059 | FillInEmptyInitializations(Entity: ElementEntity, ILE: InnerILE, RequiresSecondPass, |
1060 | OuterILE: ILE, OuterIndex: Init, FillWithNoInit); |
1061 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
1062 | dyn_cast_or_null<DesignatedInitUpdateExpr>(Val: InitExpr)) { |
1063 | FillInEmptyInitializations(Entity: ElementEntity, ILE: InnerDIUE->getUpdater(), |
1064 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, |
1065 | /*FillWithNoInit =*/true); |
1066 | } |
1067 | } |
1068 | } |
1069 | |
1070 | static bool hasAnyDesignatedInits(const InitListExpr *IL) { |
1071 | for (const Stmt *Init : *IL) |
1072 | if (isa_and_nonnull<DesignatedInitExpr>(Val: Init)) |
1073 | return true; |
1074 | return false; |
1075 | } |
1076 | |
1077 | InitListChecker::InitListChecker( |
1078 | Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, |
1079 | bool VerifyOnly, bool TreatUnavailableAsInvalid, bool InOverloadResolution, |
1080 | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes) |
1081 | : SemaRef(S), VerifyOnly(VerifyOnly), |
1082 | TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), |
1083 | InOverloadResolution(InOverloadResolution), |
1084 | AggrDeductionCandidateParamTypes(AggrDeductionCandidateParamTypes) { |
1085 | if (!VerifyOnly || hasAnyDesignatedInits(IL)) { |
1086 | FullyStructuredList = |
1087 | createInitListExpr(CurrentObjectType: T, InitRange: IL->getSourceRange(), ExpectedNumInits: IL->getNumInits()); |
1088 | |
1089 | // FIXME: Check that IL isn't already the semantic form of some other |
1090 | // InitListExpr. If it is, we'd create a broken AST. |
1091 | if (!VerifyOnly) |
1092 | FullyStructuredList->setSyntacticForm(IL); |
1093 | } |
1094 | |
1095 | CheckExplicitInitList(Entity, IList: IL, T, StructuredList: FullyStructuredList, |
1096 | /*TopLevelObject=*/true); |
1097 | |
1098 | if (!hadError && !AggrDeductionCandidateParamTypes && FullyStructuredList) { |
1099 | bool RequiresSecondPass = false; |
1100 | FillInEmptyInitializations(Entity, ILE: FullyStructuredList, RequiresSecondPass, |
1101 | /*OuterILE=*/nullptr, /*OuterIndex=*/0); |
1102 | if (RequiresSecondPass && !hadError) |
1103 | FillInEmptyInitializations(Entity, ILE: FullyStructuredList, |
1104 | RequiresSecondPass, OuterILE: nullptr, OuterIndex: 0); |
1105 | } |
1106 | if (hadError && FullyStructuredList) |
1107 | FullyStructuredList->markError(); |
1108 | } |
1109 | |
1110 | int InitListChecker::numArrayElements(QualType DeclType) { |
1111 | // FIXME: use a proper constant |
1112 | int maxElements = 0x7FFFFFFF; |
1113 | if (const ConstantArrayType *CAT = |
1114 | SemaRef.Context.getAsConstantArrayType(T: DeclType)) { |
1115 | maxElements = static_cast<int>(CAT->getZExtSize()); |
1116 | } |
1117 | return maxElements; |
1118 | } |
1119 | |
1120 | int InitListChecker::numStructUnionElements(QualType DeclType) { |
1121 | RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); |
1122 | int InitializableMembers = 0; |
1123 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: structDecl)) |
1124 | InitializableMembers += CXXRD->getNumBases(); |
1125 | for (const auto *Field : structDecl->fields()) |
1126 | if (!Field->isUnnamedBitField()) |
1127 | ++InitializableMembers; |
1128 | |
1129 | if (structDecl->isUnion()) |
1130 | return std::min(a: InitializableMembers, b: 1); |
1131 | return InitializableMembers - structDecl->hasFlexibleArrayMember(); |
1132 | } |
1133 | |
1134 | RecordDecl *InitListChecker::getRecordDecl(QualType DeclType) { |
1135 | if (const auto *RT = DeclType->getAs<RecordType>()) |
1136 | return RT->getDecl(); |
1137 | if (const auto *Inject = DeclType->getAs<InjectedClassNameType>()) |
1138 | return Inject->getDecl(); |
1139 | return nullptr; |
1140 | } |
1141 | |
1142 | /// Determine whether Entity is an entity for which it is idiomatic to elide |
1143 | /// the braces in aggregate initialization. |
1144 | static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { |
1145 | // Recursive initialization of the one and only field within an aggregate |
1146 | // class is considered idiomatic. This case arises in particular for |
1147 | // initialization of std::array, where the C++ standard suggests the idiom of |
1148 | // |
1149 | // std::array<T, N> arr = {1, 2, 3}; |
1150 | // |
1151 | // (where std::array is an aggregate struct containing a single array field. |
1152 | |
1153 | if (!Entity.getParent()) |
1154 | return false; |
1155 | |
1156 | // Allows elide brace initialization for aggregates with empty base. |
1157 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
1158 | auto *ParentRD = |
1159 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); |
1160 | CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(Val: ParentRD); |
1161 | return CXXRD->getNumBases() == 1 && CXXRD->field_empty(); |
1162 | } |
1163 | |
1164 | // Allow brace elision if the only subobject is a field. |
1165 | if (Entity.getKind() == InitializedEntity::EK_Member) { |
1166 | auto *ParentRD = |
1167 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); |
1168 | if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: ParentRD)) { |
1169 | if (CXXRD->getNumBases()) { |
1170 | return false; |
1171 | } |
1172 | } |
1173 | auto FieldIt = ParentRD->field_begin(); |
1174 | assert(FieldIt != ParentRD->field_end() && |
1175 | "no fields but have initializer for member?"); |
1176 | return ++FieldIt == ParentRD->field_end(); |
1177 | } |
1178 | |
1179 | return false; |
1180 | } |
1181 | |
1182 | /// Check whether the range of the initializer \p ParentIList from element |
1183 | /// \p Index onwards can be used to initialize an object of type \p T. Update |
1184 | /// \p Index to indicate how many elements of the list were consumed. |
1185 | /// |
1186 | /// This also fills in \p StructuredList, from element \p StructuredIndex |
1187 | /// onwards, with the fully-braced, desugared form of the initialization. |
1188 | void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, |
1189 | InitListExpr *ParentIList, |
1190 | QualType T, unsigned &Index, |
1191 | InitListExpr *StructuredList, |
1192 | unsigned &StructuredIndex) { |
1193 | int maxElements = 0; |
1194 | |
1195 | if (T->isArrayType()) |
1196 | maxElements = numArrayElements(DeclType: T); |
1197 | else if (T->isRecordType()) |
1198 | maxElements = numStructUnionElements(DeclType: T); |
1199 | else if (T->isVectorType()) |
1200 | maxElements = T->castAs<VectorType>()->getNumElements(); |
1201 | else |
1202 | llvm_unreachable("CheckImplicitInitList(): Illegal type"); |
1203 | |
1204 | if (maxElements == 0) { |
1205 | if (!VerifyOnly) |
1206 | SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), |
1207 | diag::err_implicit_empty_initializer); |
1208 | ++Index; |
1209 | hadError = true; |
1210 | return; |
1211 | } |
1212 | |
1213 | // Build a structured initializer list corresponding to this subobject. |
1214 | InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( |
1215 | IList: ParentIList, Index, CurrentObjectType: T, StructuredList, StructuredIndex, |
1216 | InitRange: SourceRange(ParentIList->getInit(Init: Index)->getBeginLoc(), |
1217 | ParentIList->getSourceRange().getEnd())); |
1218 | unsigned StructuredSubobjectInitIndex = 0; |
1219 | |
1220 | // Check the element types and build the structural subobject. |
1221 | unsigned StartIndex = Index; |
1222 | CheckListElementTypes(Entity, IList: ParentIList, DeclType&: T, |
1223 | /*SubobjectIsDesignatorContext=*/false, Index, |
1224 | StructuredList: StructuredSubobjectInitList, |
1225 | StructuredIndex&: StructuredSubobjectInitIndex); |
1226 | |
1227 | if (StructuredSubobjectInitList) { |
1228 | StructuredSubobjectInitList->setType(T); |
1229 | |
1230 | unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); |
1231 | // Update the structured sub-object initializer so that it's ending |
1232 | // range corresponds with the end of the last initializer it used. |
1233 | if (EndIndex < ParentIList->getNumInits() && |
1234 | ParentIList->getInit(Init: EndIndex)) { |
1235 | SourceLocation EndLoc |
1236 | = ParentIList->getInit(Init: EndIndex)->getSourceRange().getEnd(); |
1237 | StructuredSubobjectInitList->setRBraceLoc(EndLoc); |
1238 | } |
1239 | |
1240 | // Complain about missing braces. |
1241 | if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && |
1242 | !ParentIList->isIdiomaticZeroInitializer(LangOpts: SemaRef.getLangOpts()) && |
1243 | !isIdiomaticBraceElisionEntity(Entity)) { |
1244 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), |
1245 | diag::warn_missing_braces) |
1246 | << StructuredSubobjectInitList->getSourceRange() |
1247 | << FixItHint::CreateInsertion( |
1248 | StructuredSubobjectInitList->getBeginLoc(), "{") |
1249 | << FixItHint::CreateInsertion( |
1250 | SemaRef.getLocForEndOfToken( |
1251 | StructuredSubobjectInitList->getEndLoc()), |
1252 | "}"); |
1253 | } |
1254 | |
1255 | // Warn if this type won't be an aggregate in future versions of C++. |
1256 | auto *CXXRD = T->getAsCXXRecordDecl(); |
1257 | if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
1258 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), |
1259 | diag::warn_cxx20_compat_aggregate_init_with_ctors) |
1260 | << StructuredSubobjectInitList->getSourceRange() << T; |
1261 | } |
1262 | } |
1263 | } |
1264 | |
1265 | /// Warn that \p Entity was of scalar type and was initialized by a |
1266 | /// single-element braced initializer list. |
1267 | static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, |
1268 | SourceRange Braces) { |
1269 | // Don't warn during template instantiation. If the initialization was |
1270 | // non-dependent, we warned during the initial parse; otherwise, the |
1271 | // type might not be scalar in some uses of the template. |
1272 | if (S.inTemplateInstantiation()) |
1273 | return; |
1274 | |
1275 | unsigned DiagID = 0; |
1276 | |
1277 | switch (Entity.getKind()) { |
1278 | case InitializedEntity::EK_VectorElement: |
1279 | case InitializedEntity::EK_ComplexElement: |
1280 | case InitializedEntity::EK_ArrayElement: |
1281 | case InitializedEntity::EK_Parameter: |
1282 | case InitializedEntity::EK_Parameter_CF_Audited: |
1283 | case InitializedEntity::EK_TemplateParameter: |
1284 | case InitializedEntity::EK_Result: |
1285 | case InitializedEntity::EK_ParenAggInitMember: |
1286 | // Extra braces here are suspicious. |
1287 | DiagID = diag::warn_braces_around_init; |
1288 | break; |
1289 | |
1290 | case InitializedEntity::EK_Member: |
1291 | // Warn on aggregate initialization but not on ctor init list or |
1292 | // default member initializer. |
1293 | if (Entity.getParent()) |
1294 | DiagID = diag::warn_braces_around_init; |
1295 | break; |
1296 | |
1297 | case InitializedEntity::EK_Variable: |
1298 | case InitializedEntity::EK_LambdaCapture: |
1299 | // No warning, might be direct-list-initialization. |
1300 | // FIXME: Should we warn for copy-list-initialization in these cases? |
1301 | break; |
1302 | |
1303 | case InitializedEntity::EK_New: |
1304 | case InitializedEntity::EK_Temporary: |
1305 | case InitializedEntity::EK_CompoundLiteralInit: |
1306 | // No warning, braces are part of the syntax of the underlying construct. |
1307 | break; |
1308 | |
1309 | case InitializedEntity::EK_RelatedResult: |
1310 | // No warning, we already warned when initializing the result. |
1311 | break; |
1312 | |
1313 | case InitializedEntity::EK_Exception: |
1314 | case InitializedEntity::EK_Base: |
1315 | case InitializedEntity::EK_Delegating: |
1316 | case InitializedEntity::EK_BlockElement: |
1317 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
1318 | case InitializedEntity::EK_Binding: |
1319 | case InitializedEntity::EK_StmtExprResult: |
1320 | llvm_unreachable("unexpected braced scalar init"); |
1321 | } |
1322 | |
1323 | if (DiagID) { |
1324 | S.Diag(Braces.getBegin(), DiagID) |
1325 | << Entity.getType()->isSizelessBuiltinType() << Braces |
1326 | << FixItHint::CreateRemoval(RemoveRange: Braces.getBegin()) |
1327 | << FixItHint::CreateRemoval(RemoveRange: Braces.getEnd()); |
1328 | } |
1329 | } |
1330 | |
1331 | /// Check whether the initializer \p IList (that was written with explicit |
1332 | /// braces) can be used to initialize an object of type \p T. |
1333 | /// |
1334 | /// This also fills in \p StructuredList with the fully-braced, desugared |
1335 | /// form of the initialization. |
1336 | void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, |
1337 | InitListExpr *IList, QualType &T, |
1338 | InitListExpr *StructuredList, |
1339 | bool TopLevelObject) { |
1340 | unsigned Index = 0, StructuredIndex = 0; |
1341 | CheckListElementTypes(Entity, IList, DeclType&: T, /*SubobjectIsDesignatorContext=*/true, |
1342 | Index, StructuredList, StructuredIndex, TopLevelObject); |
1343 | if (StructuredList) { |
1344 | QualType ExprTy = T; |
1345 | if (!ExprTy->isArrayType()) |
1346 | ExprTy = ExprTy.getNonLValueExprType(Context: SemaRef.Context); |
1347 | if (!VerifyOnly) |
1348 | IList->setType(ExprTy); |
1349 | StructuredList->setType(ExprTy); |
1350 | } |
1351 | if (hadError) |
1352 | return; |
1353 | |
1354 | // Don't complain for incomplete types, since we'll get an error elsewhere. |
1355 | if ((Index < IList->getNumInits() || CurEmbed) && !T->isIncompleteType()) { |
1356 | // We have leftover initializers |
1357 | bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || |
1358 | (SemaRef.getLangOpts().OpenCL && T->isVectorType()); |
1359 | hadError = ExtraInitsIsError; |
1360 | if (VerifyOnly) { |
1361 | return; |
1362 | } else if (StructuredIndex == 1 && |
1363 | IsStringInit(init: StructuredList->getInit(Init: 0), declType: T, Context&: SemaRef.Context) == |
1364 | SIF_None) { |
1365 | unsigned DK = |
1366 | ExtraInitsIsError |
1367 | ? diag::err_excess_initializers_in_char_array_initializer |
1368 | : diag::ext_excess_initializers_in_char_array_initializer; |
1369 | SemaRef.Diag(IList->getInit(Init: Index)->getBeginLoc(), DK) |
1370 | << IList->getInit(Init: Index)->getSourceRange(); |
1371 | } else if (T->isSizelessBuiltinType()) { |
1372 | unsigned DK = ExtraInitsIsError |
1373 | ? diag::err_excess_initializers_for_sizeless_type |
1374 | : diag::ext_excess_initializers_for_sizeless_type; |
1375 | SemaRef.Diag(IList->getInit(Init: Index)->getBeginLoc(), DK) |
1376 | << T << IList->getInit(Init: Index)->getSourceRange(); |
1377 | } else { |
1378 | int initKind = T->isArrayType() ? 0 : |
1379 | T->isVectorType() ? 1 : |
1380 | T->isScalarType() ? 2 : |
1381 | T->isUnionType() ? 3 : |
1382 | 4; |
1383 | |
1384 | unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers |
1385 | : diag::ext_excess_initializers; |
1386 | SemaRef.Diag(IList->getInit(Init: Index)->getBeginLoc(), DK) |
1387 | << initKind << IList->getInit(Init: Index)->getSourceRange(); |
1388 | } |
1389 | } |
1390 | |
1391 | if (!VerifyOnly) { |
1392 | if (T->isScalarType() && IList->getNumInits() == 1 && |
1393 | !isa<InitListExpr>(Val: IList->getInit(Init: 0))) |
1394 | warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); |
1395 | |
1396 | // Warn if this is a class type that won't be an aggregate in future |
1397 | // versions of C++. |
1398 | auto *CXXRD = T->getAsCXXRecordDecl(); |
1399 | if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
1400 | // Don't warn if there's an equivalent default constructor that would be |
1401 | // used instead. |
1402 | bool HasEquivCtor = false; |
1403 | if (IList->getNumInits() == 0) { |
1404 | auto *CD = SemaRef.LookupDefaultConstructor(Class: CXXRD); |
1405 | HasEquivCtor = CD && !CD->isDeleted(); |
1406 | } |
1407 | |
1408 | if (!HasEquivCtor) { |
1409 | SemaRef.Diag(IList->getBeginLoc(), |
1410 | diag::warn_cxx20_compat_aggregate_init_with_ctors) |
1411 | << IList->getSourceRange() << T; |
1412 | } |
1413 | } |
1414 | } |
1415 | } |
1416 | |
1417 | void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, |
1418 | InitListExpr *IList, |
1419 | QualType &DeclType, |
1420 | bool SubobjectIsDesignatorContext, |
1421 | unsigned &Index, |
1422 | InitListExpr *StructuredList, |
1423 | unsigned &StructuredIndex, |
1424 | bool TopLevelObject) { |
1425 | if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { |
1426 | // Explicitly braced initializer for complex type can be real+imaginary |
1427 | // parts. |
1428 | CheckComplexType(Entity, IList, DeclType, Index, |
1429 | StructuredList, StructuredIndex); |
1430 | } else if (DeclType->isScalarType()) { |
1431 | CheckScalarType(Entity, IList, DeclType, Index, |
1432 | StructuredList, StructuredIndex); |
1433 | } else if (DeclType->isVectorType()) { |
1434 | CheckVectorType(Entity, IList, DeclType, Index, |
1435 | StructuredList, StructuredIndex); |
1436 | } else if (const RecordDecl *RD = getRecordDecl(DeclType)) { |
1437 | auto Bases = |
1438 | CXXRecordDecl::base_class_const_range(CXXRecordDecl::base_class_const_iterator(), |
1439 | CXXRecordDecl::base_class_const_iterator()); |
1440 | if (DeclType->isRecordType()) { |
1441 | assert(DeclType->isAggregateType() && |
1442 | "non-aggregate records should be handed in CheckSubElementType"); |
1443 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
1444 | Bases = CXXRD->bases(); |
1445 | } else { |
1446 | Bases = cast<CXXRecordDecl>(Val: RD)->bases(); |
1447 | } |
1448 | CheckStructUnionTypes(Entity, IList, DeclType, Bases, Field: RD->field_begin(), |
1449 | SubobjectIsDesignatorContext, Index, StructuredList, |
1450 | StructuredIndex, TopLevelObject); |
1451 | } else if (DeclType->isArrayType()) { |
1452 | llvm::APSInt Zero( |
1453 | SemaRef.Context.getTypeSize(T: SemaRef.Context.getSizeType()), |
1454 | false); |
1455 | CheckArrayType(Entity, IList, DeclType, elementIndex: Zero, |
1456 | SubobjectIsDesignatorContext, Index, |
1457 | StructuredList, StructuredIndex); |
1458 | } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { |
1459 | // This type is invalid, issue a diagnostic. |
1460 | ++Index; |
1461 | if (!VerifyOnly) |
1462 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) |
1463 | << DeclType; |
1464 | hadError = true; |
1465 | } else if (DeclType->isReferenceType()) { |
1466 | CheckReferenceType(Entity, IList, DeclType, Index, |
1467 | StructuredList, StructuredIndex); |
1468 | } else if (DeclType->isObjCObjectType()) { |
1469 | if (!VerifyOnly) |
1470 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; |
1471 | hadError = true; |
1472 | } else if (DeclType->isOCLIntelSubgroupAVCType() || |
1473 | DeclType->isSizelessBuiltinType()) { |
1474 | // Checks for scalar type are sufficient for these types too. |
1475 | CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
1476 | StructuredIndex); |
1477 | } else if (DeclType->isDependentType()) { |
1478 | // C++ [over.match.class.deduct]p1.5: |
1479 | // brace elision is not considered for any aggregate element that has a |
1480 | // dependent non-array type or an array type with a value-dependent bound |
1481 | ++Index; |
1482 | assert(AggrDeductionCandidateParamTypes); |
1483 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
1484 | } else { |
1485 | if (!VerifyOnly) |
1486 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) |
1487 | << DeclType; |
1488 | hadError = true; |
1489 | } |
1490 | } |
1491 | |
1492 | void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, |
1493 | InitListExpr *IList, |
1494 | QualType ElemType, |
1495 | unsigned &Index, |
1496 | InitListExpr *StructuredList, |
1497 | unsigned &StructuredIndex, |
1498 | bool DirectlyDesignated) { |
1499 | Expr *expr = IList->getInit(Init: Index); |
1500 | |
1501 | if (ElemType->isReferenceType()) |
1502 | return CheckReferenceType(Entity, IList, DeclType: ElemType, Index, |
1503 | StructuredList, StructuredIndex); |
1504 | |
1505 | if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(Val: expr)) { |
1506 | if (SubInitList->getNumInits() == 1 && |
1507 | IsStringInit(init: SubInitList->getInit(Init: 0), declType: ElemType, Context&: SemaRef.Context) == |
1508 | SIF_None) { |
1509 | // FIXME: It would be more faithful and no less correct to include an |
1510 | // InitListExpr in the semantic form of the initializer list in this case. |
1511 | expr = SubInitList->getInit(Init: 0); |
1512 | } |
1513 | // Nested aggregate initialization and C++ initialization are handled later. |
1514 | } else if (isa<ImplicitValueInitExpr>(Val: expr)) { |
1515 | // This happens during template instantiation when we see an InitListExpr |
1516 | // that we've already checked once. |
1517 | assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && |
1518 | "found implicit initialization for the wrong type"); |
1519 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1520 | ++Index; |
1521 | return; |
1522 | } |
1523 | |
1524 | if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(Val: expr)) { |
1525 | // C++ [dcl.init.aggr]p2: |
1526 | // Each member is copy-initialized from the corresponding |
1527 | // initializer-clause. |
1528 | |
1529 | // FIXME: Better EqualLoc? |
1530 | InitializationKind Kind = |
1531 | InitializationKind::CreateCopy(InitLoc: expr->getBeginLoc(), EqualLoc: SourceLocation()); |
1532 | |
1533 | // Vector elements can be initialized from other vectors in which case |
1534 | // we need initialization entity with a type of a vector (and not a vector |
1535 | // element!) initializing multiple vector elements. |
1536 | auto TmpEntity = |
1537 | (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) |
1538 | ? InitializedEntity::InitializeTemporary(Type: ElemType) |
1539 | : Entity; |
1540 | |
1541 | if (TmpEntity.getType()->isDependentType()) { |
1542 | // C++ [over.match.class.deduct]p1.5: |
1543 | // brace elision is not considered for any aggregate element that has a |
1544 | // dependent non-array type or an array type with a value-dependent |
1545 | // bound |
1546 | assert(AggrDeductionCandidateParamTypes); |
1547 | |
1548 | // In the presence of a braced-init-list within the initializer, we should |
1549 | // not perform brace-elision, even if brace elision would otherwise be |
1550 | // applicable. For example, given: |
1551 | // |
1552 | // template <class T> struct Foo { |
1553 | // T t[2]; |
1554 | // }; |
1555 | // |
1556 | // Foo t = {{1, 2}}; |
1557 | // |
1558 | // we don't want the (T, T) but rather (T [2]) in terms of the initializer |
1559 | // {{1, 2}}. |
1560 | if (isa<InitListExpr, DesignatedInitExpr>(Val: expr) || |
1561 | !isa_and_present<ConstantArrayType>( |
1562 | Val: SemaRef.Context.getAsArrayType(T: ElemType))) { |
1563 | ++Index; |
1564 | AggrDeductionCandidateParamTypes->push_back(Elt: ElemType); |
1565 | return; |
1566 | } |
1567 | } else { |
1568 | InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, |
1569 | /*TopLevelOfInitList*/ true); |
1570 | // C++14 [dcl.init.aggr]p13: |
1571 | // If the assignment-expression can initialize a member, the member is |
1572 | // initialized. Otherwise [...] brace elision is assumed |
1573 | // |
1574 | // Brace elision is never performed if the element is not an |
1575 | // assignment-expression. |
1576 | if (Seq || isa<InitListExpr>(Val: expr)) { |
1577 | if (auto *Embed = dyn_cast<EmbedExpr>(Val: expr)) { |
1578 | expr = HandleEmbed(Embed, Entity); |
1579 | } |
1580 | if (!VerifyOnly) { |
1581 | ExprResult Result = Seq.Perform(S&: SemaRef, Entity: TmpEntity, Kind, Args: expr); |
1582 | if (Result.isInvalid()) |
1583 | hadError = true; |
1584 | |
1585 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1586 | expr: Result.getAs<Expr>()); |
1587 | } else if (!Seq) { |
1588 | hadError = true; |
1589 | } else if (StructuredList) { |
1590 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1591 | getDummyInit()); |
1592 | } |
1593 | if (!CurEmbed) |
1594 | ++Index; |
1595 | if (AggrDeductionCandidateParamTypes) |
1596 | AggrDeductionCandidateParamTypes->push_back(Elt: ElemType); |
1597 | return; |
1598 | } |
1599 | } |
1600 | |
1601 | // Fall through for subaggregate initialization |
1602 | } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { |
1603 | // FIXME: Need to handle atomic aggregate types with implicit init lists. |
1604 | return CheckScalarType(Entity, IList, DeclType: ElemType, Index, |
1605 | StructuredList, StructuredIndex); |
1606 | } else if (const ArrayType *arrayType = |
1607 | SemaRef.Context.getAsArrayType(T: ElemType)) { |
1608 | // arrayType can be incomplete if we're initializing a flexible |
1609 | // array member. There's nothing we can do with the completed |
1610 | // type here, though. |
1611 | |
1612 | if (IsStringInit(Init: expr, AT: arrayType, Context&: SemaRef.Context) == SIF_None) { |
1613 | // FIXME: Should we do this checking in verify-only mode? |
1614 | if (!VerifyOnly) |
1615 | CheckStringInit(Str: expr, DeclT&: ElemType, AT: arrayType, S&: SemaRef, Entity, |
1616 | CheckC23ConstexprInit: SemaRef.getLangOpts().C23 && |
1617 | initializingConstexprVariable(Entity)); |
1618 | if (StructuredList) |
1619 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1620 | ++Index; |
1621 | return; |
1622 | } |
1623 | |
1624 | // Fall through for subaggregate initialization. |
1625 | |
1626 | } else { |
1627 | assert((ElemType->isRecordType() || ElemType->isVectorType() || |
1628 | ElemType->isOpenCLSpecificType() || ElemType->isMFloat8Type()) && |
1629 | "Unexpected type"); |
1630 | |
1631 | // C99 6.7.8p13: |
1632 | // |
1633 | // The initializer for a structure or union object that has |
1634 | // automatic storage duration shall be either an initializer |
1635 | // list as described below, or a single expression that has |
1636 | // compatible structure or union type. In the latter case, the |
1637 | // initial value of the object, including unnamed members, is |
1638 | // that of the expression. |
1639 | ExprResult ExprRes = expr; |
1640 | if (SemaRef.CheckSingleAssignmentConstraints(LHSType: ElemType, RHS&: ExprRes, |
1641 | Diagnose: !VerifyOnly) != |
1642 | AssignConvertType::Incompatible) { |
1643 | if (ExprRes.isInvalid()) |
1644 | hadError = true; |
1645 | else { |
1646 | ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(E: ExprRes.get()); |
1647 | if (ExprRes.isInvalid()) |
1648 | hadError = true; |
1649 | } |
1650 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1651 | expr: ExprRes.getAs<Expr>()); |
1652 | ++Index; |
1653 | return; |
1654 | } |
1655 | ExprRes.get(); |
1656 | // Fall through for subaggregate initialization |
1657 | } |
1658 | |
1659 | // C++ [dcl.init.aggr]p12: |
1660 | // |
1661 | // [...] Otherwise, if the member is itself a non-empty |
1662 | // subaggregate, brace elision is assumed and the initializer is |
1663 | // considered for the initialization of the first member of |
1664 | // the subaggregate. |
1665 | // OpenCL vector initializer is handled elsewhere. |
1666 | if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || |
1667 | ElemType->isAggregateType()) { |
1668 | CheckImplicitInitList(Entity, ParentIList: IList, T: ElemType, Index, StructuredList, |
1669 | StructuredIndex); |
1670 | ++StructuredIndex; |
1671 | |
1672 | // In C++20, brace elision is not permitted for a designated initializer. |
1673 | if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) { |
1674 | if (InOverloadResolution) |
1675 | hadError = true; |
1676 | if (!VerifyOnly) { |
1677 | SemaRef.Diag(expr->getBeginLoc(), |
1678 | diag::ext_designated_init_brace_elision) |
1679 | << expr->getSourceRange() |
1680 | << FixItHint::CreateInsertion(expr->getBeginLoc(), "{") |
1681 | << FixItHint::CreateInsertion( |
1682 | SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}"); |
1683 | } |
1684 | } |
1685 | } else { |
1686 | if (!VerifyOnly) { |
1687 | // We cannot initialize this element, so let PerformCopyInitialization |
1688 | // produce the appropriate diagnostic. We already checked that this |
1689 | // initialization will fail. |
1690 | ExprResult Copy = |
1691 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: expr, |
1692 | /*TopLevelOfInitList=*/true); |
1693 | (void)Copy; |
1694 | assert(Copy.isInvalid() && |
1695 | "expected non-aggregate initialization to fail"); |
1696 | } |
1697 | hadError = true; |
1698 | ++Index; |
1699 | ++StructuredIndex; |
1700 | } |
1701 | } |
1702 | |
1703 | void InitListChecker::CheckComplexType(const InitializedEntity &Entity, |
1704 | InitListExpr *IList, QualType DeclType, |
1705 | unsigned &Index, |
1706 | InitListExpr *StructuredList, |
1707 | unsigned &StructuredIndex) { |
1708 | assert(Index == 0 && "Index in explicit init list must be zero"); |
1709 | |
1710 | // As an extension, clang supports complex initializers, which initialize |
1711 | // a complex number component-wise. When an explicit initializer list for |
1712 | // a complex number contains two initializers, this extension kicks in: |
1713 | // it expects the initializer list to contain two elements convertible to |
1714 | // the element type of the complex type. The first element initializes |
1715 | // the real part, and the second element intitializes the imaginary part. |
1716 | |
1717 | if (IList->getNumInits() < 2) |
1718 | return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
1719 | StructuredIndex); |
1720 | |
1721 | // This is an extension in C. (The builtin _Complex type does not exist |
1722 | // in the C++ standard.) |
1723 | if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) |
1724 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) |
1725 | << IList->getSourceRange(); |
1726 | |
1727 | // Initialize the complex number. |
1728 | QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); |
1729 | InitializedEntity ElementEntity = |
1730 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
1731 | |
1732 | for (unsigned i = 0; i < 2; ++i) { |
1733 | ElementEntity.setElementIndex(Index); |
1734 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
1735 | StructuredList, StructuredIndex); |
1736 | } |
1737 | } |
1738 | |
1739 | void InitListChecker::CheckScalarType(const InitializedEntity &Entity, |
1740 | InitListExpr *IList, QualType DeclType, |
1741 | unsigned &Index, |
1742 | InitListExpr *StructuredList, |
1743 | unsigned &StructuredIndex) { |
1744 | if (Index >= IList->getNumInits()) { |
1745 | if (!VerifyOnly) { |
1746 | if (SemaRef.getLangOpts().CPlusPlus) { |
1747 | if (DeclType->isSizelessBuiltinType()) |
1748 | SemaRef.Diag(IList->getBeginLoc(), |
1749 | SemaRef.getLangOpts().CPlusPlus11 |
1750 | ? diag::warn_cxx98_compat_empty_sizeless_initializer |
1751 | : diag::err_empty_sizeless_initializer) |
1752 | << DeclType << IList->getSourceRange(); |
1753 | else |
1754 | SemaRef.Diag(IList->getBeginLoc(), |
1755 | SemaRef.getLangOpts().CPlusPlus11 |
1756 | ? diag::warn_cxx98_compat_empty_scalar_initializer |
1757 | : diag::err_empty_scalar_initializer) |
1758 | << IList->getSourceRange(); |
1759 | } |
1760 | } |
1761 | hadError = |
1762 | SemaRef.getLangOpts().CPlusPlus && !SemaRef.getLangOpts().CPlusPlus11; |
1763 | ++Index; |
1764 | ++StructuredIndex; |
1765 | return; |
1766 | } |
1767 | |
1768 | Expr *expr = IList->getInit(Init: Index); |
1769 | if (InitListExpr *SubIList = dyn_cast<InitListExpr>(Val: expr)) { |
1770 | // FIXME: This is invalid, and accepting it causes overload resolution |
1771 | // to pick the wrong overload in some corner cases. |
1772 | if (!VerifyOnly) |
1773 | SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) |
1774 | << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); |
1775 | |
1776 | CheckScalarType(Entity, IList: SubIList, DeclType, Index, StructuredList, |
1777 | StructuredIndex); |
1778 | return; |
1779 | } else if (isa<DesignatedInitExpr>(Val: expr)) { |
1780 | if (!VerifyOnly) |
1781 | SemaRef.Diag(expr->getBeginLoc(), |
1782 | diag::err_designator_for_scalar_or_sizeless_init) |
1783 | << DeclType->isSizelessBuiltinType() << DeclType |
1784 | << expr->getSourceRange(); |
1785 | hadError = true; |
1786 | ++Index; |
1787 | ++StructuredIndex; |
1788 | return; |
1789 | } else if (auto *Embed = dyn_cast<EmbedExpr>(Val: expr)) { |
1790 | expr = HandleEmbed(Embed, Entity); |
1791 | } |
1792 | |
1793 | ExprResult Result; |
1794 | if (VerifyOnly) { |
1795 | if (SemaRef.CanPerformCopyInitialization(Entity, Init: expr)) |
1796 | Result = getDummyInit(); |
1797 | else |
1798 | Result = ExprError(); |
1799 | } else { |
1800 | Result = |
1801 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: expr->getBeginLoc(), Init: expr, |
1802 | /*TopLevelOfInitList=*/true); |
1803 | } |
1804 | |
1805 | Expr *ResultExpr = nullptr; |
1806 | |
1807 | if (Result.isInvalid()) |
1808 | hadError = true; // types weren't compatible. |
1809 | else { |
1810 | ResultExpr = Result.getAs<Expr>(); |
1811 | |
1812 | if (ResultExpr != expr && !VerifyOnly && !CurEmbed) { |
1813 | // The type was promoted, update initializer list. |
1814 | // FIXME: Why are we updating the syntactic init list? |
1815 | IList->setInit(Init: Index, expr: ResultExpr); |
1816 | } |
1817 | } |
1818 | |
1819 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr: ResultExpr); |
1820 | if (!CurEmbed) |
1821 | ++Index; |
1822 | if (AggrDeductionCandidateParamTypes) |
1823 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
1824 | } |
1825 | |
1826 | void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, |
1827 | InitListExpr *IList, QualType DeclType, |
1828 | unsigned &Index, |
1829 | InitListExpr *StructuredList, |
1830 | unsigned &StructuredIndex) { |
1831 | if (Index >= IList->getNumInits()) { |
1832 | // FIXME: It would be wonderful if we could point at the actual member. In |
1833 | // general, it would be useful to pass location information down the stack, |
1834 | // so that we know the location (or decl) of the "current object" being |
1835 | // initialized. |
1836 | if (!VerifyOnly) |
1837 | SemaRef.Diag(IList->getBeginLoc(), |
1838 | diag::err_init_reference_member_uninitialized) |
1839 | << DeclType << IList->getSourceRange(); |
1840 | hadError = true; |
1841 | ++Index; |
1842 | ++StructuredIndex; |
1843 | return; |
1844 | } |
1845 | |
1846 | Expr *expr = IList->getInit(Init: Index); |
1847 | if (isa<InitListExpr>(Val: expr) && !SemaRef.getLangOpts().CPlusPlus11) { |
1848 | if (!VerifyOnly) |
1849 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) |
1850 | << DeclType << IList->getSourceRange(); |
1851 | hadError = true; |
1852 | ++Index; |
1853 | ++StructuredIndex; |
1854 | return; |
1855 | } |
1856 | |
1857 | ExprResult Result; |
1858 | if (VerifyOnly) { |
1859 | if (SemaRef.CanPerformCopyInitialization(Entity,Init: expr)) |
1860 | Result = getDummyInit(); |
1861 | else |
1862 | Result = ExprError(); |
1863 | } else { |
1864 | Result = |
1865 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: expr->getBeginLoc(), Init: expr, |
1866 | /*TopLevelOfInitList=*/true); |
1867 | } |
1868 | |
1869 | if (Result.isInvalid()) |
1870 | hadError = true; |
1871 | |
1872 | expr = Result.getAs<Expr>(); |
1873 | // FIXME: Why are we updating the syntactic init list? |
1874 | if (!VerifyOnly && expr) |
1875 | IList->setInit(Init: Index, expr); |
1876 | |
1877 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1878 | ++Index; |
1879 | if (AggrDeductionCandidateParamTypes) |
1880 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
1881 | } |
1882 | |
1883 | void InitListChecker::CheckVectorType(const InitializedEntity &Entity, |
1884 | InitListExpr *IList, QualType DeclType, |
1885 | unsigned &Index, |
1886 | InitListExpr *StructuredList, |
1887 | unsigned &StructuredIndex) { |
1888 | const VectorType *VT = DeclType->castAs<VectorType>(); |
1889 | unsigned maxElements = VT->getNumElements(); |
1890 | unsigned numEltsInit = 0; |
1891 | QualType elementType = VT->getElementType(); |
1892 | |
1893 | if (Index >= IList->getNumInits()) { |
1894 | // Make sure the element type can be value-initialized. |
1895 | CheckEmptyInitializable( |
1896 | Entity: InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity), |
1897 | Loc: IList->getEndLoc()); |
1898 | return; |
1899 | } |
1900 | |
1901 | if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) { |
1902 | // If the initializing element is a vector, try to copy-initialize |
1903 | // instead of breaking it apart (which is doomed to failure anyway). |
1904 | Expr *Init = IList->getInit(Init: Index); |
1905 | if (!isa<InitListExpr>(Val: Init) && Init->getType()->isVectorType()) { |
1906 | ExprResult Result; |
1907 | if (VerifyOnly) { |
1908 | if (SemaRef.CanPerformCopyInitialization(Entity, Init)) |
1909 | Result = getDummyInit(); |
1910 | else |
1911 | Result = ExprError(); |
1912 | } else { |
1913 | Result = |
1914 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: Init->getBeginLoc(), Init, |
1915 | /*TopLevelOfInitList=*/true); |
1916 | } |
1917 | |
1918 | Expr *ResultExpr = nullptr; |
1919 | if (Result.isInvalid()) |
1920 | hadError = true; // types weren't compatible. |
1921 | else { |
1922 | ResultExpr = Result.getAs<Expr>(); |
1923 | |
1924 | if (ResultExpr != Init && !VerifyOnly) { |
1925 | // The type was promoted, update initializer list. |
1926 | // FIXME: Why are we updating the syntactic init list? |
1927 | IList->setInit(Init: Index, expr: ResultExpr); |
1928 | } |
1929 | } |
1930 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr: ResultExpr); |
1931 | ++Index; |
1932 | if (AggrDeductionCandidateParamTypes) |
1933 | AggrDeductionCandidateParamTypes->push_back(Elt: elementType); |
1934 | return; |
1935 | } |
1936 | |
1937 | InitializedEntity ElementEntity = |
1938 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
1939 | |
1940 | for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { |
1941 | // Don't attempt to go past the end of the init list |
1942 | if (Index >= IList->getNumInits()) { |
1943 | CheckEmptyInitializable(Entity: ElementEntity, Loc: IList->getEndLoc()); |
1944 | break; |
1945 | } |
1946 | |
1947 | ElementEntity.setElementIndex(Index); |
1948 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
1949 | StructuredList, StructuredIndex); |
1950 | } |
1951 | |
1952 | if (VerifyOnly) |
1953 | return; |
1954 | |
1955 | bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); |
1956 | const VectorType *T = Entity.getType()->castAs<VectorType>(); |
1957 | if (isBigEndian && (T->getVectorKind() == VectorKind::Neon || |
1958 | T->getVectorKind() == VectorKind::NeonPoly)) { |
1959 | // The ability to use vector initializer lists is a GNU vector extension |
1960 | // and is unrelated to the NEON intrinsics in arm_neon.h. On little |
1961 | // endian machines it works fine, however on big endian machines it |
1962 | // exhibits surprising behaviour: |
1963 | // |
1964 | // uint32x2_t x = {42, 64}; |
1965 | // return vget_lane_u32(x, 0); // Will return 64. |
1966 | // |
1967 | // Because of this, explicitly call out that it is non-portable. |
1968 | // |
1969 | SemaRef.Diag(IList->getBeginLoc(), |
1970 | diag::warn_neon_vector_initializer_non_portable); |
1971 | |
1972 | const char *typeCode; |
1973 | unsigned typeSize = SemaRef.Context.getTypeSize(T: elementType); |
1974 | |
1975 | if (elementType->isFloatingType()) |
1976 | typeCode = "f"; |
1977 | else if (elementType->isSignedIntegerType()) |
1978 | typeCode = "s"; |
1979 | else if (elementType->isUnsignedIntegerType()) |
1980 | typeCode = "u"; |
1981 | else if (elementType->isMFloat8Type()) |
1982 | typeCode = "mf"; |
1983 | else |
1984 | llvm_unreachable("Invalid element type!"); |
1985 | |
1986 | SemaRef.Diag(IList->getBeginLoc(), |
1987 | SemaRef.Context.getTypeSize(VT) > 64 |
1988 | ? diag::note_neon_vector_initializer_non_portable_q |
1989 | : diag::note_neon_vector_initializer_non_portable) |
1990 | << typeCode << typeSize; |
1991 | } |
1992 | |
1993 | return; |
1994 | } |
1995 | |
1996 | InitializedEntity ElementEntity = |
1997 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
1998 | |
1999 | // OpenCL and HLSL initializers allow vectors to be constructed from vectors. |
2000 | for (unsigned i = 0; i < maxElements; ++i) { |
2001 | // Don't attempt to go past the end of the init list |
2002 | if (Index >= IList->getNumInits()) |
2003 | break; |
2004 | |
2005 | ElementEntity.setElementIndex(Index); |
2006 | |
2007 | QualType IType = IList->getInit(Init: Index)->getType(); |
2008 | if (!IType->isVectorType()) { |
2009 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
2010 | StructuredList, StructuredIndex); |
2011 | ++numEltsInit; |
2012 | } else { |
2013 | QualType VecType; |
2014 | const VectorType *IVT = IType->castAs<VectorType>(); |
2015 | unsigned numIElts = IVT->getNumElements(); |
2016 | |
2017 | if (IType->isExtVectorType()) |
2018 | VecType = SemaRef.Context.getExtVectorType(VectorType: elementType, NumElts: numIElts); |
2019 | else |
2020 | VecType = SemaRef.Context.getVectorType(VectorType: elementType, NumElts: numIElts, |
2021 | VecKind: IVT->getVectorKind()); |
2022 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: VecType, Index, |
2023 | StructuredList, StructuredIndex); |
2024 | numEltsInit += numIElts; |
2025 | } |
2026 | } |
2027 | |
2028 | // OpenCL and HLSL require all elements to be initialized. |
2029 | if (numEltsInit != maxElements) { |
2030 | if (!VerifyOnly) |
2031 | SemaRef.Diag(IList->getBeginLoc(), |
2032 | diag::err_vector_incorrect_num_elements) |
2033 | << (numEltsInit < maxElements) << maxElements << numEltsInit |
2034 | << /*initialization*/ 0; |
2035 | hadError = true; |
2036 | } |
2037 | } |
2038 | |
2039 | /// Check if the type of a class element has an accessible destructor, and marks |
2040 | /// it referenced. Returns true if we shouldn't form a reference to the |
2041 | /// destructor. |
2042 | /// |
2043 | /// Aggregate initialization requires a class element's destructor be |
2044 | /// accessible per 11.6.1 [dcl.init.aggr]: |
2045 | /// |
2046 | /// The destructor for each element of class type is potentially invoked |
2047 | /// (15.4 [class.dtor]) from the context where the aggregate initialization |
2048 | /// occurs. |
2049 | static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, |
2050 | Sema &SemaRef) { |
2051 | auto *CXXRD = ElementType->getAsCXXRecordDecl(); |
2052 | if (!CXXRD) |
2053 | return false; |
2054 | |
2055 | CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Class: CXXRD); |
2056 | if (!Destructor) |
2057 | return false; |
2058 | |
2059 | SemaRef.CheckDestructorAccess(Loc, Destructor, |
2060 | SemaRef.PDiag(diag::err_access_dtor_temp) |
2061 | << ElementType); |
2062 | SemaRef.MarkFunctionReferenced(Loc, Destructor); |
2063 | return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); |
2064 | } |
2065 | |
2066 | static bool |
2067 | canInitializeArrayWithEmbedDataString(ArrayRef<Expr *> ExprList, |
2068 | const InitializedEntity &Entity, |
2069 | ASTContext &Context) { |
2070 | QualType InitType = Entity.getType(); |
2071 | const InitializedEntity *Parent = &Entity; |
2072 | |
2073 | while (Parent) { |
2074 | InitType = Parent->getType(); |
2075 | Parent = Parent->getParent(); |
2076 | } |
2077 | |
2078 | // Only one initializer, it's an embed and the types match; |
2079 | EmbedExpr *EE = |
2080 | ExprList.size() == 1 |
2081 | ? dyn_cast_if_present<EmbedExpr>(Val: ExprList[0]->IgnoreParens()) |
2082 | : nullptr; |
2083 | if (!EE) |
2084 | return false; |
2085 | |
2086 | if (InitType->isArrayType()) { |
2087 | const ArrayType *InitArrayType = InitType->getAsArrayTypeUnsafe(); |
2088 | StringLiteral *SL = EE->getDataStringLiteral(); |
2089 | return IsStringInit(SL, InitArrayType, Context) == SIF_None; |
2090 | } |
2091 | return false; |
2092 | } |
2093 | |
2094 | void InitListChecker::CheckArrayType(const InitializedEntity &Entity, |
2095 | InitListExpr *IList, QualType &DeclType, |
2096 | llvm::APSInt elementIndex, |
2097 | bool SubobjectIsDesignatorContext, |
2098 | unsigned &Index, |
2099 | InitListExpr *StructuredList, |
2100 | unsigned &StructuredIndex) { |
2101 | const ArrayType *arrayType = SemaRef.Context.getAsArrayType(T: DeclType); |
2102 | |
2103 | if (!VerifyOnly) { |
2104 | if (checkDestructorReference(ElementType: arrayType->getElementType(), |
2105 | Loc: IList->getEndLoc(), SemaRef)) { |
2106 | hadError = true; |
2107 | return; |
2108 | } |
2109 | } |
2110 | |
2111 | if (canInitializeArrayWithEmbedDataString(ExprList: IList->inits(), Entity, |
2112 | Context&: SemaRef.Context)) { |
2113 | EmbedExpr *Embed = cast<EmbedExpr>(Val: IList->inits()[0]); |
2114 | IList->setInit(0, Embed->getDataStringLiteral()); |
2115 | } |
2116 | |
2117 | // Check for the special-case of initializing an array with a string. |
2118 | if (Index < IList->getNumInits()) { |
2119 | if (IsStringInit(Init: IList->getInit(Init: Index), AT: arrayType, Context&: SemaRef.Context) == |
2120 | SIF_None) { |
2121 | // We place the string literal directly into the resulting |
2122 | // initializer list. This is the only place where the structure |
2123 | // of the structured initializer list doesn't match exactly, |
2124 | // because doing so would involve allocating one character |
2125 | // constant for each string. |
2126 | // FIXME: Should we do these checks in verify-only mode too? |
2127 | if (!VerifyOnly) |
2128 | CheckStringInit( |
2129 | Str: IList->getInit(Init: Index), DeclT&: DeclType, AT: arrayType, S&: SemaRef, Entity, |
2130 | CheckC23ConstexprInit: SemaRef.getLangOpts().C23 && initializingConstexprVariable(Entity)); |
2131 | if (StructuredList) { |
2132 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
2133 | expr: IList->getInit(Init: Index)); |
2134 | StructuredList->resizeInits(Context: SemaRef.Context, NumInits: StructuredIndex); |
2135 | } |
2136 | ++Index; |
2137 | if (AggrDeductionCandidateParamTypes) |
2138 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
2139 | return; |
2140 | } |
2141 | } |
2142 | if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(Val: arrayType)) { |
2143 | // Check for VLAs; in standard C it would be possible to check this |
2144 | // earlier, but I don't know where clang accepts VLAs (gcc accepts |
2145 | // them in all sorts of strange places). |
2146 | bool HasErr = IList->getNumInits() != 0 || SemaRef.getLangOpts().CPlusPlus; |
2147 | if (!VerifyOnly) { |
2148 | // C23 6.7.10p4: An entity of variable length array type shall not be |
2149 | // initialized except by an empty initializer. |
2150 | // |
2151 | // The C extension warnings are issued from ParseBraceInitializer() and |
2152 | // do not need to be issued here. However, we continue to issue an error |
2153 | // in the case there are initializers or we are compiling C++. We allow |
2154 | // use of VLAs in C++, but it's not clear we want to allow {} to zero |
2155 | // init a VLA in C++ in all cases (such as with non-trivial constructors). |
2156 | // FIXME: should we allow this construct in C++ when it makes sense to do |
2157 | // so? |
2158 | if (HasErr) |
2159 | SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), |
2160 | diag::err_variable_object_no_init) |
2161 | << VAT->getSizeExpr()->getSourceRange(); |
2162 | } |
2163 | hadError = HasErr; |
2164 | ++Index; |
2165 | ++StructuredIndex; |
2166 | return; |
2167 | } |
2168 | |
2169 | // We might know the maximum number of elements in advance. |
2170 | llvm::APSInt maxElements(elementIndex.getBitWidth(), |
2171 | elementIndex.isUnsigned()); |
2172 | bool maxElementsKnown = false; |
2173 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: arrayType)) { |
2174 | maxElements = CAT->getSize(); |
2175 | elementIndex = elementIndex.extOrTrunc(width: maxElements.getBitWidth()); |
2176 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
2177 | maxElementsKnown = true; |
2178 | } |
2179 | |
2180 | QualType elementType = arrayType->getElementType(); |
2181 | while (Index < IList->getNumInits()) { |
2182 | Expr *Init = IList->getInit(Init: Index); |
2183 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Val: Init)) { |
2184 | // If we're not the subobject that matches up with the '{' for |
2185 | // the designator, we shouldn't be handling the |
2186 | // designator. Return immediately. |
2187 | if (!SubobjectIsDesignatorContext) |
2188 | return; |
2189 | |
2190 | // Handle this designated initializer. elementIndex will be |
2191 | // updated to be the next array element we'll initialize. |
2192 | if (CheckDesignatedInitializer(Entity, IList, DIE, DesigIdx: 0, |
2193 | CurrentObjectType&: DeclType, NextField: nullptr, NextElementIndex: &elementIndex, Index, |
2194 | StructuredList, StructuredIndex, FinishSubobjectInit: true, |
2195 | TopLevelObject: false)) { |
2196 | hadError = true; |
2197 | continue; |
2198 | } |
2199 | |
2200 | if (elementIndex.getBitWidth() > maxElements.getBitWidth()) |
2201 | maxElements = maxElements.extend(width: elementIndex.getBitWidth()); |
2202 | else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) |
2203 | elementIndex = elementIndex.extend(width: maxElements.getBitWidth()); |
2204 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
2205 | |
2206 | // If the array is of incomplete type, keep track of the number of |
2207 | // elements in the initializer. |
2208 | if (!maxElementsKnown && elementIndex > maxElements) |
2209 | maxElements = elementIndex; |
2210 | |
2211 | continue; |
2212 | } |
2213 | |
2214 | // If we know the maximum number of elements, and we've already |
2215 | // hit it, stop consuming elements in the initializer list. |
2216 | if (maxElementsKnown && elementIndex == maxElements) |
2217 | break; |
2218 | |
2219 | InitializedEntity ElementEntity = InitializedEntity::InitializeElement( |
2220 | Context&: SemaRef.Context, Index: StructuredIndex, Parent: Entity); |
2221 | ElementEntity.setElementIndex(elementIndex.getExtValue()); |
2222 | |
2223 | unsigned EmbedElementIndexBeforeInit = CurEmbedIndex; |
2224 | // Check this element. |
2225 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
2226 | StructuredList, StructuredIndex); |
2227 | ++elementIndex; |
2228 | if ((CurEmbed || isa<EmbedExpr>(Val: Init)) && elementType->isScalarType()) { |
2229 | if (CurEmbed) { |
2230 | elementIndex = |
2231 | elementIndex + CurEmbedIndex - EmbedElementIndexBeforeInit - 1; |
2232 | } else { |
2233 | auto Embed = cast<EmbedExpr>(Val: Init); |
2234 | elementIndex = elementIndex + Embed->getDataElementCount() - |
2235 | EmbedElementIndexBeforeInit - 1; |
2236 | } |
2237 | } |
2238 | |
2239 | // If the array is of incomplete type, keep track of the number of |
2240 | // elements in the initializer. |
2241 | if (!maxElementsKnown && elementIndex > maxElements) |
2242 | maxElements = elementIndex; |
2243 | } |
2244 | if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { |
2245 | // If this is an incomplete array type, the actual type needs to |
2246 | // be calculated here. |
2247 | llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); |
2248 | if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { |
2249 | // Sizing an array implicitly to zero is not allowed by ISO C, |
2250 | // but is supported by GNU. |
2251 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); |
2252 | } |
2253 | |
2254 | DeclType = SemaRef.Context.getConstantArrayType( |
2255 | EltTy: elementType, ArySize: maxElements, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
2256 | } |
2257 | if (!hadError) { |
2258 | // If there are any members of the array that get value-initialized, check |
2259 | // that is possible. That happens if we know the bound and don't have |
2260 | // enough elements, or if we're performing an array new with an unknown |
2261 | // bound. |
2262 | if ((maxElementsKnown && elementIndex < maxElements) || |
2263 | Entity.isVariableLengthArrayNew()) |
2264 | CheckEmptyInitializable( |
2265 | Entity: InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity), |
2266 | Loc: IList->getEndLoc()); |
2267 | } |
2268 | } |
2269 | |
2270 | bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, |
2271 | Expr *InitExpr, |
2272 | FieldDecl *Field, |
2273 | bool TopLevelObject) { |
2274 | // Handle GNU flexible array initializers. |
2275 | unsigned FlexArrayDiag; |
2276 | if (isa<InitListExpr>(Val: InitExpr) && |
2277 | cast<InitListExpr>(Val: InitExpr)->getNumInits() == 0) { |
2278 | // Empty flexible array init always allowed as an extension |
2279 | FlexArrayDiag = diag::ext_flexible_array_init; |
2280 | } else if (!TopLevelObject) { |
2281 | // Disallow flexible array init on non-top-level object |
2282 | FlexArrayDiag = diag::err_flexible_array_init; |
2283 | } else if (Entity.getKind() != InitializedEntity::EK_Variable) { |
2284 | // Disallow flexible array init on anything which is not a variable. |
2285 | FlexArrayDiag = diag::err_flexible_array_init; |
2286 | } else if (cast<VarDecl>(Val: Entity.getDecl())->hasLocalStorage()) { |
2287 | // Disallow flexible array init on local variables. |
2288 | FlexArrayDiag = diag::err_flexible_array_init; |
2289 | } else { |
2290 | // Allow other cases. |
2291 | FlexArrayDiag = diag::ext_flexible_array_init; |
2292 | } |
2293 | |
2294 | if (!VerifyOnly) { |
2295 | SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) |
2296 | << InitExpr->getBeginLoc(); |
2297 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
2298 | << Field; |
2299 | } |
2300 | |
2301 | return FlexArrayDiag != diag::ext_flexible_array_init; |
2302 | } |
2303 | |
2304 | static bool isInitializedStructuredList(const InitListExpr *StructuredList) { |
2305 | return StructuredList && StructuredList->getNumInits() == 1U; |
2306 | } |
2307 | |
2308 | void InitListChecker::CheckStructUnionTypes( |
2309 | const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, |
2310 | CXXRecordDecl::base_class_const_range Bases, RecordDecl::field_iterator Field, |
2311 | bool SubobjectIsDesignatorContext, unsigned &Index, |
2312 | InitListExpr *StructuredList, unsigned &StructuredIndex, |
2313 | bool TopLevelObject) { |
2314 | const RecordDecl *RD = getRecordDecl(DeclType); |
2315 | |
2316 | // If the record is invalid, some of it's members are invalid. To avoid |
2317 | // confusion, we forgo checking the initializer for the entire record. |
2318 | if (RD->isInvalidDecl()) { |
2319 | // Assume it was supposed to consume a single initializer. |
2320 | ++Index; |
2321 | hadError = true; |
2322 | return; |
2323 | } |
2324 | |
2325 | if (RD->isUnion() && IList->getNumInits() == 0) { |
2326 | if (!VerifyOnly) |
2327 | for (FieldDecl *FD : RD->fields()) { |
2328 | QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); |
2329 | if (checkDestructorReference(ElementType: ET, Loc: IList->getEndLoc(), SemaRef)) { |
2330 | hadError = true; |
2331 | return; |
2332 | } |
2333 | } |
2334 | |
2335 | // If there's a default initializer, use it. |
2336 | if (isa<CXXRecordDecl>(Val: RD) && |
2337 | cast<CXXRecordDecl>(Val: RD)->hasInClassInitializer()) { |
2338 | if (!StructuredList) |
2339 | return; |
2340 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2341 | Field != FieldEnd; ++Field) { |
2342 | if (Field->hasInClassInitializer() || |
2343 | (Field->isAnonymousStructOrUnion() && |
2344 | Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { |
2345 | StructuredList->setInitializedFieldInUnion(*Field); |
2346 | // FIXME: Actually build a CXXDefaultInitExpr? |
2347 | return; |
2348 | } |
2349 | } |
2350 | llvm_unreachable("Couldn't find in-class initializer"); |
2351 | } |
2352 | |
2353 | // Value-initialize the first member of the union that isn't an unnamed |
2354 | // bitfield. |
2355 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2356 | Field != FieldEnd; ++Field) { |
2357 | if (!Field->isUnnamedBitField()) { |
2358 | CheckEmptyInitializable( |
2359 | Entity: InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity), |
2360 | Loc: IList->getEndLoc()); |
2361 | if (StructuredList) |
2362 | StructuredList->setInitializedFieldInUnion(*Field); |
2363 | break; |
2364 | } |
2365 | } |
2366 | return; |
2367 | } |
2368 | |
2369 | bool InitializedSomething = false; |
2370 | |
2371 | // If we have any base classes, they are initialized prior to the fields. |
2372 | for (auto I = Bases.begin(), E = Bases.end(); I != E; ++I) { |
2373 | auto &Base = *I; |
2374 | Expr *Init = Index < IList->getNumInits() ? IList->getInit(Init: Index) : nullptr; |
2375 | |
2376 | // Designated inits always initialize fields, so if we see one, all |
2377 | // remaining base classes have no explicit initializer. |
2378 | if (isa_and_nonnull<DesignatedInitExpr>(Val: Init)) |
2379 | Init = nullptr; |
2380 | |
2381 | // C++ [over.match.class.deduct]p1.6: |
2382 | // each non-trailing aggregate element that is a pack expansion is assumed |
2383 | // to correspond to no elements of the initializer list, and (1.7) a |
2384 | // trailing aggregate element that is a pack expansion is assumed to |
2385 | // correspond to all remaining elements of the initializer list (if any). |
2386 | |
2387 | // C++ [over.match.class.deduct]p1.9: |
2388 | // ... except that additional parameter packs of the form P_j... are |
2389 | // inserted into the parameter list in their original aggregate element |
2390 | // position corresponding to each non-trailing aggregate element of |
2391 | // type P_j that was skipped because it was a parameter pack, and the |
2392 | // trailing sequence of parameters corresponding to a trailing |
2393 | // aggregate element that is a pack expansion (if any) is replaced |
2394 | // by a single parameter of the form T_n.... |
2395 | if (AggrDeductionCandidateParamTypes && Base.isPackExpansion()) { |
2396 | AggrDeductionCandidateParamTypes->push_back( |
2397 | Elt: SemaRef.Context.getPackExpansionType(Pattern: Base.getType(), NumExpansions: std::nullopt)); |
2398 | |
2399 | // Trailing pack expansion |
2400 | if (I + 1 == E && RD->field_empty()) { |
2401 | if (Index < IList->getNumInits()) |
2402 | Index = IList->getNumInits(); |
2403 | return; |
2404 | } |
2405 | |
2406 | continue; |
2407 | } |
2408 | |
2409 | SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); |
2410 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
2411 | Context&: SemaRef.Context, Base: &Base, IsInheritedVirtualBase: false, Parent: &Entity); |
2412 | if (Init) { |
2413 | CheckSubElementType(Entity: BaseEntity, IList, ElemType: Base.getType(), Index, |
2414 | StructuredList, StructuredIndex); |
2415 | InitializedSomething = true; |
2416 | } else { |
2417 | CheckEmptyInitializable(Entity: BaseEntity, Loc: InitLoc); |
2418 | } |
2419 | |
2420 | if (!VerifyOnly) |
2421 | if (checkDestructorReference(ElementType: Base.getType(), Loc: InitLoc, SemaRef)) { |
2422 | hadError = true; |
2423 | return; |
2424 | } |
2425 | } |
2426 | |
2427 | // If structDecl is a forward declaration, this loop won't do |
2428 | // anything except look at designated initializers; That's okay, |
2429 | // because an error should get printed out elsewhere. It might be |
2430 | // worthwhile to skip over the rest of the initializer, though. |
2431 | RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2432 | size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) { |
2433 | return isa<FieldDecl>(Val: D) || isa<RecordDecl>(Val: D); |
2434 | }); |
2435 | bool HasDesignatedInit = false; |
2436 | |
2437 | llvm::SmallPtrSet<FieldDecl *, 4> InitializedFields; |
2438 | |
2439 | while (Index < IList->getNumInits()) { |
2440 | Expr *Init = IList->getInit(Init: Index); |
2441 | SourceLocation InitLoc = Init->getBeginLoc(); |
2442 | |
2443 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Val: Init)) { |
2444 | // If we're not the subobject that matches up with the '{' for |
2445 | // the designator, we shouldn't be handling the |
2446 | // designator. Return immediately. |
2447 | if (!SubobjectIsDesignatorContext) |
2448 | return; |
2449 | |
2450 | HasDesignatedInit = true; |
2451 | |
2452 | // Handle this designated initializer. Field will be updated to |
2453 | // the next field that we'll be initializing. |
2454 | bool DesignatedInitFailed = CheckDesignatedInitializer( |
2455 | Entity, IList, DIE, DesigIdx: 0, CurrentObjectType&: DeclType, NextField: &Field, NextElementIndex: nullptr, Index, |
2456 | StructuredList, StructuredIndex, FinishSubobjectInit: true, TopLevelObject); |
2457 | if (DesignatedInitFailed) |
2458 | hadError = true; |
2459 | |
2460 | // Find the field named by the designated initializer. |
2461 | DesignatedInitExpr::Designator *D = DIE->getDesignator(Idx: 0); |
2462 | if (!VerifyOnly && D->isFieldDesignator()) { |
2463 | FieldDecl *F = D->getFieldDecl(); |
2464 | InitializedFields.insert(Ptr: F); |
2465 | if (!DesignatedInitFailed) { |
2466 | QualType ET = SemaRef.Context.getBaseElementType(F->getType()); |
2467 | if (checkDestructorReference(ElementType: ET, Loc: InitLoc, SemaRef)) { |
2468 | hadError = true; |
2469 | return; |
2470 | } |
2471 | } |
2472 | } |
2473 | |
2474 | InitializedSomething = true; |
2475 | continue; |
2476 | } |
2477 | |
2478 | // Check if this is an initializer of forms: |
2479 | // |
2480 | // struct foo f = {}; |
2481 | // struct foo g = {0}; |
2482 | // |
2483 | // These are okay for randomized structures. [C99 6.7.8p19] |
2484 | // |
2485 | // Also, if there is only one element in the structure, we allow something |
2486 | // like this, because it's really not randomized in the traditional sense. |
2487 | // |
2488 | // struct foo h = {bar}; |
2489 | auto IsZeroInitializer = [&](const Expr *I) { |
2490 | if (IList->getNumInits() == 1) { |
2491 | if (NumRecordDecls == 1) |
2492 | return true; |
2493 | if (const auto *IL = dyn_cast<IntegerLiteral>(I)) |
2494 | return IL->getValue().isZero(); |
2495 | } |
2496 | return false; |
2497 | }; |
2498 | |
2499 | // Don't allow non-designated initializers on randomized structures. |
2500 | if (RD->isRandomized() && !IsZeroInitializer(Init)) { |
2501 | if (!VerifyOnly) |
2502 | SemaRef.Diag(InitLoc, diag::err_non_designated_init_used); |
2503 | hadError = true; |
2504 | break; |
2505 | } |
2506 | |
2507 | if (Field == FieldEnd) { |
2508 | // We've run out of fields. We're done. |
2509 | break; |
2510 | } |
2511 | |
2512 | // We've already initialized a member of a union. We can stop entirely. |
2513 | if (InitializedSomething && RD->isUnion()) |
2514 | return; |
2515 | |
2516 | // Stop if we've hit a flexible array member. |
2517 | if (Field->getType()->isIncompleteArrayType()) |
2518 | break; |
2519 | |
2520 | if (Field->isUnnamedBitField()) { |
2521 | // Don't initialize unnamed bitfields, e.g. "int : 20;" |
2522 | ++Field; |
2523 | continue; |
2524 | } |
2525 | |
2526 | // Make sure we can use this declaration. |
2527 | bool InvalidUse; |
2528 | if (VerifyOnly) |
2529 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
2530 | else |
2531 | InvalidUse = SemaRef.DiagnoseUseOfDecl( |
2532 | D: *Field, Locs: IList->getInit(Init: Index)->getBeginLoc()); |
2533 | if (InvalidUse) { |
2534 | ++Index; |
2535 | ++Field; |
2536 | hadError = true; |
2537 | continue; |
2538 | } |
2539 | |
2540 | if (!VerifyOnly) { |
2541 | QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); |
2542 | if (checkDestructorReference(ElementType: ET, Loc: InitLoc, SemaRef)) { |
2543 | hadError = true; |
2544 | return; |
2545 | } |
2546 | } |
2547 | |
2548 | InitializedEntity MemberEntity = |
2549 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
2550 | CheckSubElementType(Entity: MemberEntity, IList, ElemType: Field->getType(), Index, |
2551 | StructuredList, StructuredIndex); |
2552 | InitializedSomething = true; |
2553 | InitializedFields.insert(Ptr: *Field); |
2554 | if (RD->isUnion() && isInitializedStructuredList(StructuredList)) { |
2555 | // Initialize the first field within the union. |
2556 | StructuredList->setInitializedFieldInUnion(*Field); |
2557 | } |
2558 | |
2559 | ++Field; |
2560 | } |
2561 | |
2562 | // Emit warnings for missing struct field initializers. |
2563 | // This check is disabled for designated initializers in C. |
2564 | // This matches gcc behaviour. |
2565 | bool IsCDesignatedInitializer = |
2566 | HasDesignatedInit && !SemaRef.getLangOpts().CPlusPlus; |
2567 | if (!VerifyOnly && InitializedSomething && !RD->isUnion() && |
2568 | !IList->isIdiomaticZeroInitializer(LangOpts: SemaRef.getLangOpts()) && |
2569 | !IsCDesignatedInitializer) { |
2570 | // It is possible we have one or more unnamed bitfields remaining. |
2571 | // Find first (if any) named field and emit warning. |
2572 | for (RecordDecl::field_iterator it = HasDesignatedInit ? RD->field_begin() |
2573 | : Field, |
2574 | end = RD->field_end(); |
2575 | it != end; ++it) { |
2576 | if (HasDesignatedInit && InitializedFields.count(Ptr: *it)) |
2577 | continue; |
2578 | |
2579 | if (!it->isUnnamedBitField() && !it->hasInClassInitializer() && |
2580 | !it->getType()->isIncompleteArrayType()) { |
2581 | auto Diag = HasDesignatedInit |
2582 | ? diag::warn_missing_designated_field_initializers |
2583 | : diag::warn_missing_field_initializers; |
2584 | SemaRef.Diag(IList->getSourceRange().getEnd(), Diag) << *it; |
2585 | break; |
2586 | } |
2587 | } |
2588 | } |
2589 | |
2590 | // Check that any remaining fields can be value-initialized if we're not |
2591 | // building a structured list. (If we are, we'll check this later.) |
2592 | if (!StructuredList && Field != FieldEnd && !RD->isUnion() && |
2593 | !Field->getType()->isIncompleteArrayType()) { |
2594 | for (; Field != FieldEnd && !hadError; ++Field) { |
2595 | if (!Field->isUnnamedBitField() && !Field->hasInClassInitializer()) |
2596 | CheckEmptyInitializable( |
2597 | Entity: InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity), |
2598 | Loc: IList->getEndLoc()); |
2599 | } |
2600 | } |
2601 | |
2602 | // Check that the types of the remaining fields have accessible destructors. |
2603 | if (!VerifyOnly) { |
2604 | // If the initializer expression has a designated initializer, check the |
2605 | // elements for which a designated initializer is not provided too. |
2606 | RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() |
2607 | : Field; |
2608 | for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { |
2609 | QualType ET = SemaRef.Context.getBaseElementType(I->getType()); |
2610 | if (checkDestructorReference(ElementType: ET, Loc: IList->getEndLoc(), SemaRef)) { |
2611 | hadError = true; |
2612 | return; |
2613 | } |
2614 | } |
2615 | } |
2616 | |
2617 | if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || |
2618 | Index >= IList->getNumInits()) |
2619 | return; |
2620 | |
2621 | if (CheckFlexibleArrayInit(Entity, InitExpr: IList->getInit(Init: Index), Field: *Field, |
2622 | TopLevelObject)) { |
2623 | hadError = true; |
2624 | ++Index; |
2625 | return; |
2626 | } |
2627 | |
2628 | InitializedEntity MemberEntity = |
2629 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
2630 | |
2631 | if (isa<InitListExpr>(Val: IList->getInit(Init: Index)) || |
2632 | AggrDeductionCandidateParamTypes) |
2633 | CheckSubElementType(Entity: MemberEntity, IList, ElemType: Field->getType(), Index, |
2634 | StructuredList, StructuredIndex); |
2635 | else |
2636 | CheckImplicitInitList(Entity: MemberEntity, ParentIList: IList, T: Field->getType(), Index, |
2637 | StructuredList, StructuredIndex); |
2638 | |
2639 | if (RD->isUnion() && isInitializedStructuredList(StructuredList)) { |
2640 | // Initialize the first field within the union. |
2641 | StructuredList->setInitializedFieldInUnion(*Field); |
2642 | } |
2643 | } |
2644 | |
2645 | /// Expand a field designator that refers to a member of an |
2646 | /// anonymous struct or union into a series of field designators that |
2647 | /// refers to the field within the appropriate subobject. |
2648 | /// |
2649 | static void ExpandAnonymousFieldDesignator(Sema &SemaRef, |
2650 | DesignatedInitExpr *DIE, |
2651 | unsigned DesigIdx, |
2652 | IndirectFieldDecl *IndirectField) { |
2653 | typedef DesignatedInitExpr::Designator Designator; |
2654 | |
2655 | // Build the replacement designators. |
2656 | SmallVector<Designator, 4> Replacements; |
2657 | for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), |
2658 | PE = IndirectField->chain_end(); PI != PE; ++PI) { |
2659 | if (PI + 1 == PE) |
2660 | Replacements.push_back(Elt: Designator::CreateFieldDesignator( |
2661 | FieldName: (IdentifierInfo *)nullptr, DotLoc: DIE->getDesignator(Idx: DesigIdx)->getDotLoc(), |
2662 | FieldLoc: DIE->getDesignator(Idx: DesigIdx)->getFieldLoc())); |
2663 | else |
2664 | Replacements.push_back(Elt: Designator::CreateFieldDesignator( |
2665 | FieldName: (IdentifierInfo *)nullptr, DotLoc: SourceLocation(), FieldLoc: SourceLocation())); |
2666 | assert(isa<FieldDecl>(*PI)); |
2667 | Replacements.back().setFieldDecl(cast<FieldDecl>(Val: *PI)); |
2668 | } |
2669 | |
2670 | // Expand the current designator into the set of replacement |
2671 | // designators, so we have a full subobject path down to where the |
2672 | // member of the anonymous struct/union is actually stored. |
2673 | DIE->ExpandDesignator(C: SemaRef.Context, Idx: DesigIdx, First: &Replacements[0], |
2674 | Last: &Replacements[0] + Replacements.size()); |
2675 | } |
2676 | |
2677 | static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, |
2678 | DesignatedInitExpr *DIE) { |
2679 | unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; |
2680 | SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); |
2681 | for (unsigned I = 0; I < NumIndexExprs; ++I) |
2682 | IndexExprs[I] = DIE->getSubExpr(Idx: I + 1); |
2683 | return DesignatedInitExpr::Create(C: SemaRef.Context, Designators: DIE->designators(), |
2684 | IndexExprs, |
2685 | EqualOrColonLoc: DIE->getEqualOrColonLoc(), |
2686 | GNUSyntax: DIE->usesGNUSyntax(), Init: DIE->getInit()); |
2687 | } |
2688 | |
2689 | namespace { |
2690 | |
2691 | // Callback to only accept typo corrections that are for field members of |
2692 | // the given struct or union. |
2693 | class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { |
2694 | public: |
2695 | explicit FieldInitializerValidatorCCC(const RecordDecl *RD) |
2696 | : Record(RD) {} |
2697 | |
2698 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
2699 | FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); |
2700 | return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); |
2701 | } |
2702 | |
2703 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
2704 | return std::make_unique<FieldInitializerValidatorCCC>(args&: *this); |
2705 | } |
2706 | |
2707 | private: |
2708 | const RecordDecl *Record; |
2709 | }; |
2710 | |
2711 | } // end anonymous namespace |
2712 | |
2713 | /// Check the well-formedness of a C99 designated initializer. |
2714 | /// |
2715 | /// Determines whether the designated initializer @p DIE, which |
2716 | /// resides at the given @p Index within the initializer list @p |
2717 | /// IList, is well-formed for a current object of type @p DeclType |
2718 | /// (C99 6.7.8). The actual subobject that this designator refers to |
2719 | /// within the current subobject is returned in either |
2720 | /// @p NextField or @p NextElementIndex (whichever is appropriate). |
2721 | /// |
2722 | /// @param IList The initializer list in which this designated |
2723 | /// initializer occurs. |
2724 | /// |
2725 | /// @param DIE The designated initializer expression. |
2726 | /// |
2727 | /// @param DesigIdx The index of the current designator. |
2728 | /// |
2729 | /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), |
2730 | /// into which the designation in @p DIE should refer. |
2731 | /// |
2732 | /// @param NextField If non-NULL and the first designator in @p DIE is |
2733 | /// a field, this will be set to the field declaration corresponding |
2734 | /// to the field named by the designator. On input, this is expected to be |
2735 | /// the next field that would be initialized in the absence of designation, |
2736 | /// if the complete object being initialized is a struct. |
2737 | /// |
2738 | /// @param NextElementIndex If non-NULL and the first designator in @p |
2739 | /// DIE is an array designator or GNU array-range designator, this |
2740 | /// will be set to the last index initialized by this designator. |
2741 | /// |
2742 | /// @param Index Index into @p IList where the designated initializer |
2743 | /// @p DIE occurs. |
2744 | /// |
2745 | /// @param StructuredList The initializer list expression that |
2746 | /// describes all of the subobject initializers in the order they'll |
2747 | /// actually be initialized. |
2748 | /// |
2749 | /// @returns true if there was an error, false otherwise. |
2750 | bool |
2751 | InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, |
2752 | InitListExpr *IList, |
2753 | DesignatedInitExpr *DIE, |
2754 | unsigned DesigIdx, |
2755 | QualType &CurrentObjectType, |
2756 | RecordDecl::field_iterator *NextField, |
2757 | llvm::APSInt *NextElementIndex, |
2758 | unsigned &Index, |
2759 | InitListExpr *StructuredList, |
2760 | unsigned &StructuredIndex, |
2761 | bool FinishSubobjectInit, |
2762 | bool TopLevelObject) { |
2763 | if (DesigIdx == DIE->size()) { |
2764 | // C++20 designated initialization can result in direct-list-initialization |
2765 | // of the designated subobject. This is the only way that we can end up |
2766 | // performing direct initialization as part of aggregate initialization, so |
2767 | // it needs special handling. |
2768 | if (DIE->isDirectInit()) { |
2769 | Expr *Init = DIE->getInit(); |
2770 | assert(isa<InitListExpr>(Init) && |
2771 | "designator result in direct non-list initialization?"); |
2772 | InitializationKind Kind = InitializationKind::CreateDirectList( |
2773 | DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); |
2774 | InitializationSequence Seq(SemaRef, Entity, Kind, Init, |
2775 | /*TopLevelOfInitList*/ true); |
2776 | if (StructuredList) { |
2777 | ExprResult Result = VerifyOnly |
2778 | ? getDummyInit() |
2779 | : Seq.Perform(S&: SemaRef, Entity, Kind, Args: Init); |
2780 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
2781 | expr: Result.get()); |
2782 | } |
2783 | ++Index; |
2784 | if (AggrDeductionCandidateParamTypes) |
2785 | AggrDeductionCandidateParamTypes->push_back(Elt: CurrentObjectType); |
2786 | return !Seq; |
2787 | } |
2788 | |
2789 | // Check the actual initialization for the designated object type. |
2790 | bool prevHadError = hadError; |
2791 | |
2792 | // Temporarily remove the designator expression from the |
2793 | // initializer list that the child calls see, so that we don't try |
2794 | // to re-process the designator. |
2795 | unsigned OldIndex = Index; |
2796 | auto *OldDIE = |
2797 | dyn_cast_if_present<DesignatedInitExpr>(Val: IList->getInit(Init: OldIndex)); |
2798 | if (!OldDIE) |
2799 | OldDIE = DIE; |
2800 | IList->setInit(Init: OldIndex, expr: OldDIE->getInit()); |
2801 | |
2802 | CheckSubElementType(Entity, IList, ElemType: CurrentObjectType, Index, StructuredList, |
2803 | StructuredIndex, /*DirectlyDesignated=*/true); |
2804 | |
2805 | // Restore the designated initializer expression in the syntactic |
2806 | // form of the initializer list. |
2807 | if (IList->getInit(Init: OldIndex) != OldDIE->getInit()) |
2808 | OldDIE->setInit(IList->getInit(Init: OldIndex)); |
2809 | IList->setInit(OldIndex, OldDIE); |
2810 | |
2811 | return hadError && !prevHadError; |
2812 | } |
2813 | |
2814 | DesignatedInitExpr::Designator *D = DIE->getDesignator(Idx: DesigIdx); |
2815 | bool IsFirstDesignator = (DesigIdx == 0); |
2816 | if (IsFirstDesignator ? FullyStructuredList : StructuredList) { |
2817 | // Determine the structural initializer list that corresponds to the |
2818 | // current subobject. |
2819 | if (IsFirstDesignator) |
2820 | StructuredList = FullyStructuredList; |
2821 | else { |
2822 | Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? |
2823 | StructuredList->getInit(Init: StructuredIndex) : nullptr; |
2824 | if (!ExistingInit && StructuredList->hasArrayFiller()) |
2825 | ExistingInit = StructuredList->getArrayFiller(); |
2826 | |
2827 | if (!ExistingInit) |
2828 | StructuredList = getStructuredSubobjectInit( |
2829 | IList, Index, CurrentObjectType, StructuredList, StructuredIndex, |
2830 | InitRange: SourceRange(D->getBeginLoc(), DIE->getEndLoc())); |
2831 | else if (InitListExpr *Result = dyn_cast<InitListExpr>(Val: ExistingInit)) |
2832 | StructuredList = Result; |
2833 | else { |
2834 | // We are creating an initializer list that initializes the |
2835 | // subobjects of the current object, but there was already an |
2836 | // initialization that completely initialized the current |
2837 | // subobject, e.g., by a compound literal: |
2838 | // |
2839 | // struct X { int a, b; }; |
2840 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
2841 | // |
2842 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
2843 | // designated initializer re-initializes only its current object |
2844 | // subobject [0].b. |
2845 | diagnoseInitOverride(OldInit: ExistingInit, |
2846 | NewInitRange: SourceRange(D->getBeginLoc(), DIE->getEndLoc()), |
2847 | /*UnionOverride=*/false, |
2848 | /*FullyOverwritten=*/false); |
2849 | |
2850 | if (!VerifyOnly) { |
2851 | if (DesignatedInitUpdateExpr *E = |
2852 | dyn_cast<DesignatedInitUpdateExpr>(Val: ExistingInit)) |
2853 | StructuredList = E->getUpdater(); |
2854 | else { |
2855 | DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) |
2856 | DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), |
2857 | ExistingInit, DIE->getEndLoc()); |
2858 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); |
2859 | StructuredList = DIUE->getUpdater(); |
2860 | } |
2861 | } else { |
2862 | // We don't need to track the structured representation of a |
2863 | // designated init update of an already-fully-initialized object in |
2864 | // verify-only mode. The only reason we would need the structure is |
2865 | // to determine where the uninitialized "holes" are, and in this |
2866 | // case, we know there aren't any and we can't introduce any. |
2867 | StructuredList = nullptr; |
2868 | } |
2869 | } |
2870 | } |
2871 | } |
2872 | |
2873 | if (D->isFieldDesignator()) { |
2874 | // C99 6.7.8p7: |
2875 | // |
2876 | // If a designator has the form |
2877 | // |
2878 | // . identifier |
2879 | // |
2880 | // then the current object (defined below) shall have |
2881 | // structure or union type and the identifier shall be the |
2882 | // name of a member of that type. |
2883 | RecordDecl *RD = getRecordDecl(DeclType: CurrentObjectType); |
2884 | if (!RD) { |
2885 | SourceLocation Loc = D->getDotLoc(); |
2886 | if (Loc.isInvalid()) |
2887 | Loc = D->getFieldLoc(); |
2888 | if (!VerifyOnly) |
2889 | SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) |
2890 | << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; |
2891 | ++Index; |
2892 | return true; |
2893 | } |
2894 | |
2895 | FieldDecl *KnownField = D->getFieldDecl(); |
2896 | if (!KnownField) { |
2897 | const IdentifierInfo *FieldName = D->getFieldName(); |
2898 | ValueDecl *VD = SemaRef.tryLookupUnambiguousFieldDecl(ClassDecl: RD, MemberOrBase: FieldName); |
2899 | if (auto *FD = dyn_cast_if_present<FieldDecl>(Val: VD)) { |
2900 | KnownField = FD; |
2901 | } else if (auto *IFD = dyn_cast_if_present<IndirectFieldDecl>(Val: VD)) { |
2902 | // In verify mode, don't modify the original. |
2903 | if (VerifyOnly) |
2904 | DIE = CloneDesignatedInitExpr(SemaRef, DIE); |
2905 | ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IndirectField: IFD); |
2906 | D = DIE->getDesignator(Idx: DesigIdx); |
2907 | KnownField = cast<FieldDecl>(Val: *IFD->chain_begin()); |
2908 | } |
2909 | if (!KnownField) { |
2910 | if (VerifyOnly) { |
2911 | ++Index; |
2912 | return true; // No typo correction when just trying this out. |
2913 | } |
2914 | |
2915 | // We found a placeholder variable |
2916 | if (SemaRef.DiagRedefinedPlaceholderFieldDecl(Loc: DIE->getBeginLoc(), ClassDecl: RD, |
2917 | Name: FieldName)) { |
2918 | ++Index; |
2919 | return true; |
2920 | } |
2921 | // Name lookup found something, but it wasn't a field. |
2922 | if (DeclContextLookupResult Lookup = RD->lookup(FieldName); |
2923 | !Lookup.empty()) { |
2924 | SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) |
2925 | << FieldName; |
2926 | SemaRef.Diag(Lookup.front()->getLocation(), |
2927 | diag::note_field_designator_found); |
2928 | ++Index; |
2929 | return true; |
2930 | } |
2931 | |
2932 | // Name lookup didn't find anything. |
2933 | // Determine whether this was a typo for another field name. |
2934 | FieldInitializerValidatorCCC CCC(RD); |
2935 | if (TypoCorrection Corrected = SemaRef.CorrectTypo( |
2936 | DeclarationNameInfo(FieldName, D->getFieldLoc()), |
2937 | Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, |
2938 | CorrectTypoKind::ErrorRecovery, RD)) { |
2939 | SemaRef.diagnoseTypo( |
2940 | Corrected, |
2941 | SemaRef.PDiag(diag::err_field_designator_unknown_suggest) |
2942 | << FieldName << CurrentObjectType); |
2943 | KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); |
2944 | hadError = true; |
2945 | } else { |
2946 | // Typo correction didn't find anything. |
2947 | SourceLocation Loc = D->getFieldLoc(); |
2948 | |
2949 | // The loc can be invalid with a "null" designator (i.e. an anonymous |
2950 | // union/struct). Do our best to approximate the location. |
2951 | if (Loc.isInvalid()) |
2952 | Loc = IList->getBeginLoc(); |
2953 | |
2954 | SemaRef.Diag(Loc, diag::err_field_designator_unknown) |
2955 | << FieldName << CurrentObjectType << DIE->getSourceRange(); |
2956 | ++Index; |
2957 | return true; |
2958 | } |
2959 | } |
2960 | } |
2961 | |
2962 | unsigned NumBases = 0; |
2963 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
2964 | NumBases = CXXRD->getNumBases(); |
2965 | |
2966 | unsigned FieldIndex = NumBases; |
2967 | |
2968 | for (auto *FI : RD->fields()) { |
2969 | if (FI->isUnnamedBitField()) |
2970 | continue; |
2971 | if (declaresSameEntity(KnownField, FI)) { |
2972 | KnownField = FI; |
2973 | break; |
2974 | } |
2975 | ++FieldIndex; |
2976 | } |
2977 | |
2978 | RecordDecl::field_iterator Field = |
2979 | RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); |
2980 | |
2981 | // All of the fields of a union are located at the same place in |
2982 | // the initializer list. |
2983 | if (RD->isUnion()) { |
2984 | FieldIndex = 0; |
2985 | if (StructuredList) { |
2986 | FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); |
2987 | if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { |
2988 | assert(StructuredList->getNumInits() == 1 |
2989 | && "A union should never have more than one initializer!"); |
2990 | |
2991 | Expr *ExistingInit = StructuredList->getInit(Init: 0); |
2992 | if (ExistingInit) { |
2993 | // We're about to throw away an initializer, emit warning. |
2994 | diagnoseInitOverride( |
2995 | OldInit: ExistingInit, NewInitRange: SourceRange(D->getBeginLoc(), DIE->getEndLoc()), |
2996 | /*UnionOverride=*/true, |
2997 | /*FullyOverwritten=*/SemaRef.getLangOpts().CPlusPlus ? false |
2998 | : true); |
2999 | } |
3000 | |
3001 | // remove existing initializer |
3002 | StructuredList->resizeInits(Context: SemaRef.Context, NumInits: 0); |
3003 | StructuredList->setInitializedFieldInUnion(nullptr); |
3004 | } |
3005 | |
3006 | StructuredList->setInitializedFieldInUnion(*Field); |
3007 | } |
3008 | } |
3009 | |
3010 | // Make sure we can use this declaration. |
3011 | bool InvalidUse; |
3012 | if (VerifyOnly) |
3013 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
3014 | else |
3015 | InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); |
3016 | if (InvalidUse) { |
3017 | ++Index; |
3018 | return true; |
3019 | } |
3020 | |
3021 | // C++20 [dcl.init.list]p3: |
3022 | // The ordered identifiers in the designators of the designated- |
3023 | // initializer-list shall form a subsequence of the ordered identifiers |
3024 | // in the direct non-static data members of T. |
3025 | // |
3026 | // Note that this is not a condition on forming the aggregate |
3027 | // initialization, only on actually performing initialization, |
3028 | // so it is not checked in VerifyOnly mode. |
3029 | // |
3030 | // FIXME: This is the only reordering diagnostic we produce, and it only |
3031 | // catches cases where we have a top-level field designator that jumps |
3032 | // backwards. This is the only such case that is reachable in an |
3033 | // otherwise-valid C++20 program, so is the only case that's required for |
3034 | // conformance, but for consistency, we should diagnose all the other |
3035 | // cases where a designator takes us backwards too. |
3036 | if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && |
3037 | NextField && |
3038 | (*NextField == RD->field_end() || |
3039 | (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { |
3040 | // Find the field that we just initialized. |
3041 | FieldDecl *PrevField = nullptr; |
3042 | for (auto FI = RD->field_begin(); FI != RD->field_end(); ++FI) { |
3043 | if (FI->isUnnamedBitField()) |
3044 | continue; |
3045 | if (*NextField != RD->field_end() && |
3046 | declaresSameEntity(*FI, **NextField)) |
3047 | break; |
3048 | PrevField = *FI; |
3049 | } |
3050 | |
3051 | if (PrevField && |
3052 | PrevField->getFieldIndex() > KnownField->getFieldIndex()) { |
3053 | SemaRef.Diag(DIE->getInit()->getBeginLoc(), |
3054 | diag::ext_designated_init_reordered) |
3055 | << KnownField << PrevField << DIE->getSourceRange(); |
3056 | |
3057 | unsigned OldIndex = StructuredIndex - 1; |
3058 | if (StructuredList && OldIndex <= StructuredList->getNumInits()) { |
3059 | if (Expr *PrevInit = StructuredList->getInit(Init: OldIndex)) { |
3060 | SemaRef.Diag(PrevInit->getBeginLoc(), |
3061 | diag::note_previous_field_init) |
3062 | << PrevField << PrevInit->getSourceRange(); |
3063 | } |
3064 | } |
3065 | } |
3066 | } |
3067 | |
3068 | |
3069 | // Update the designator with the field declaration. |
3070 | if (!VerifyOnly) |
3071 | D->setFieldDecl(*Field); |
3072 | |
3073 | // Make sure that our non-designated initializer list has space |
3074 | // for a subobject corresponding to this field. |
3075 | if (StructuredList && FieldIndex >= StructuredList->getNumInits()) |
3076 | StructuredList->resizeInits(Context: SemaRef.Context, NumInits: FieldIndex + 1); |
3077 | |
3078 | // This designator names a flexible array member. |
3079 | if (Field->getType()->isIncompleteArrayType()) { |
3080 | bool Invalid = false; |
3081 | if ((DesigIdx + 1) != DIE->size()) { |
3082 | // We can't designate an object within the flexible array |
3083 | // member (because GCC doesn't allow it). |
3084 | if (!VerifyOnly) { |
3085 | DesignatedInitExpr::Designator *NextD |
3086 | = DIE->getDesignator(Idx: DesigIdx + 1); |
3087 | SemaRef.Diag(NextD->getBeginLoc(), |
3088 | diag::err_designator_into_flexible_array_member) |
3089 | << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); |
3090 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
3091 | << *Field; |
3092 | } |
3093 | Invalid = true; |
3094 | } |
3095 | |
3096 | if (!hadError && !isa<InitListExpr>(Val: DIE->getInit()) && |
3097 | !isa<StringLiteral>(Val: DIE->getInit())) { |
3098 | // The initializer is not an initializer list. |
3099 | if (!VerifyOnly) { |
3100 | SemaRef.Diag(DIE->getInit()->getBeginLoc(), |
3101 | diag::err_flexible_array_init_needs_braces) |
3102 | << DIE->getInit()->getSourceRange(); |
3103 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
3104 | << *Field; |
3105 | } |
3106 | Invalid = true; |
3107 | } |
3108 | |
3109 | // Check GNU flexible array initializer. |
3110 | if (!Invalid && CheckFlexibleArrayInit(Entity, InitExpr: DIE->getInit(), Field: *Field, |
3111 | TopLevelObject)) |
3112 | Invalid = true; |
3113 | |
3114 | if (Invalid) { |
3115 | ++Index; |
3116 | return true; |
3117 | } |
3118 | |
3119 | // Initialize the array. |
3120 | bool prevHadError = hadError; |
3121 | unsigned newStructuredIndex = FieldIndex; |
3122 | unsigned OldIndex = Index; |
3123 | IList->setInit(Init: Index, expr: DIE->getInit()); |
3124 | |
3125 | InitializedEntity MemberEntity = |
3126 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
3127 | CheckSubElementType(Entity: MemberEntity, IList, ElemType: Field->getType(), Index, |
3128 | StructuredList, StructuredIndex&: newStructuredIndex); |
3129 | |
3130 | IList->setInit(OldIndex, DIE); |
3131 | if (hadError && !prevHadError) { |
3132 | ++Field; |
3133 | ++FieldIndex; |
3134 | if (NextField) |
3135 | *NextField = Field; |
3136 | StructuredIndex = FieldIndex; |
3137 | return true; |
3138 | } |
3139 | } else { |
3140 | // Recurse to check later designated subobjects. |
3141 | QualType FieldType = Field->getType(); |
3142 | unsigned newStructuredIndex = FieldIndex; |
3143 | |
3144 | InitializedEntity MemberEntity = |
3145 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
3146 | if (CheckDesignatedInitializer(Entity: MemberEntity, IList, DIE, DesigIdx: DesigIdx + 1, |
3147 | CurrentObjectType&: FieldType, NextField: nullptr, NextElementIndex: nullptr, Index, |
3148 | StructuredList, StructuredIndex&: newStructuredIndex, |
3149 | FinishSubobjectInit, TopLevelObject: false)) |
3150 | return true; |
3151 | } |
3152 | |
3153 | // Find the position of the next field to be initialized in this |
3154 | // subobject. |
3155 | ++Field; |
3156 | ++FieldIndex; |
3157 | |
3158 | // If this the first designator, our caller will continue checking |
3159 | // the rest of this struct/class/union subobject. |
3160 | if (IsFirstDesignator) { |
3161 | if (Field != RD->field_end() && Field->isUnnamedBitField()) |
3162 | ++Field; |
3163 | |
3164 | if (NextField) |
3165 | *NextField = Field; |
3166 | |
3167 | StructuredIndex = FieldIndex; |
3168 | return false; |
3169 | } |
3170 | |
3171 | if (!FinishSubobjectInit) |
3172 | return false; |
3173 | |
3174 | // We've already initialized something in the union; we're done. |
3175 | if (RD->isUnion()) |
3176 | return hadError; |
3177 | |
3178 | // Check the remaining fields within this class/struct/union subobject. |
3179 | bool prevHadError = hadError; |
3180 | |
3181 | auto NoBases = |
3182 | CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), |
3183 | CXXRecordDecl::base_class_iterator()); |
3184 | CheckStructUnionTypes(Entity, IList, DeclType: CurrentObjectType, Bases: NoBases, Field, |
3185 | SubobjectIsDesignatorContext: false, Index, StructuredList, StructuredIndex&: FieldIndex); |
3186 | return hadError && !prevHadError; |
3187 | } |
3188 | |
3189 | // C99 6.7.8p6: |
3190 | // |
3191 | // If a designator has the form |
3192 | // |
3193 | // [ constant-expression ] |
3194 | // |
3195 | // then the current object (defined below) shall have array |
3196 | // type and the expression shall be an integer constant |
3197 | // expression. If the array is of unknown size, any |
3198 | // nonnegative value is valid. |
3199 | // |
3200 | // Additionally, cope with the GNU extension that permits |
3201 | // designators of the form |
3202 | // |
3203 | // [ constant-expression ... constant-expression ] |
3204 | const ArrayType *AT = SemaRef.Context.getAsArrayType(T: CurrentObjectType); |
3205 | if (!AT) { |
3206 | if (!VerifyOnly) |
3207 | SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) |
3208 | << CurrentObjectType; |
3209 | ++Index; |
3210 | return true; |
3211 | } |
3212 | |
3213 | Expr *IndexExpr = nullptr; |
3214 | llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; |
3215 | if (D->isArrayDesignator()) { |
3216 | IndexExpr = DIE->getArrayIndex(D: *D); |
3217 | DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(Ctx: SemaRef.Context); |
3218 | DesignatedEndIndex = DesignatedStartIndex; |
3219 | } else { |
3220 | assert(D->isArrayRangeDesignator() && "Need array-range designator"); |
3221 | |
3222 | DesignatedStartIndex = |
3223 | DIE->getArrayRangeStart(D: *D)->EvaluateKnownConstInt(Ctx: SemaRef.Context); |
3224 | DesignatedEndIndex = |
3225 | DIE->getArrayRangeEnd(D: *D)->EvaluateKnownConstInt(Ctx: SemaRef.Context); |
3226 | IndexExpr = DIE->getArrayRangeEnd(D: *D); |
3227 | |
3228 | // Codegen can't handle evaluating array range designators that have side |
3229 | // effects, because we replicate the AST value for each initialized element. |
3230 | // As such, set the sawArrayRangeDesignator() bit if we initialize multiple |
3231 | // elements with something that has a side effect, so codegen can emit an |
3232 | // "error unsupported" error instead of miscompiling the app. |
3233 | if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& |
3234 | DIE->getInit()->HasSideEffects(Ctx: SemaRef.Context) && !VerifyOnly) |
3235 | FullyStructuredList->sawArrayRangeDesignator(); |
3236 | } |
3237 | |
3238 | if (isa<ConstantArrayType>(Val: AT)) { |
3239 | llvm::APSInt MaxElements(cast<ConstantArrayType>(Val: AT)->getSize(), false); |
3240 | DesignatedStartIndex |
3241 | = DesignatedStartIndex.extOrTrunc(width: MaxElements.getBitWidth()); |
3242 | DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); |
3243 | DesignatedEndIndex |
3244 | = DesignatedEndIndex.extOrTrunc(width: MaxElements.getBitWidth()); |
3245 | DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); |
3246 | if (DesignatedEndIndex >= MaxElements) { |
3247 | if (!VerifyOnly) |
3248 | SemaRef.Diag(IndexExpr->getBeginLoc(), |
3249 | diag::err_array_designator_too_large) |
3250 | << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10) |
3251 | << IndexExpr->getSourceRange(); |
3252 | ++Index; |
3253 | return true; |
3254 | } |
3255 | } else { |
3256 | unsigned DesignatedIndexBitWidth = |
3257 | ConstantArrayType::getMaxSizeBits(Context: SemaRef.Context); |
3258 | DesignatedStartIndex = |
3259 | DesignatedStartIndex.extOrTrunc(width: DesignatedIndexBitWidth); |
3260 | DesignatedEndIndex = |
3261 | DesignatedEndIndex.extOrTrunc(width: DesignatedIndexBitWidth); |
3262 | DesignatedStartIndex.setIsUnsigned(true); |
3263 | DesignatedEndIndex.setIsUnsigned(true); |
3264 | } |
3265 | |
3266 | bool IsStringLiteralInitUpdate = |
3267 | StructuredList && StructuredList->isStringLiteralInit(); |
3268 | if (IsStringLiteralInitUpdate && VerifyOnly) { |
3269 | // We're just verifying an update to a string literal init. We don't need |
3270 | // to split the string up into individual characters to do that. |
3271 | StructuredList = nullptr; |
3272 | } else if (IsStringLiteralInitUpdate) { |
3273 | // We're modifying a string literal init; we have to decompose the string |
3274 | // so we can modify the individual characters. |
3275 | ASTContext &Context = SemaRef.Context; |
3276 | Expr *SubExpr = StructuredList->getInit(Init: 0)->IgnoreParenImpCasts(); |
3277 | |
3278 | // Compute the character type |
3279 | QualType CharTy = AT->getElementType(); |
3280 | |
3281 | // Compute the type of the integer literals. |
3282 | QualType PromotedCharTy = CharTy; |
3283 | if (Context.isPromotableIntegerType(T: CharTy)) |
3284 | PromotedCharTy = Context.getPromotedIntegerType(PromotableType: CharTy); |
3285 | unsigned PromotedCharTyWidth = Context.getTypeSize(T: PromotedCharTy); |
3286 | |
3287 | if (StringLiteral *SL = dyn_cast<StringLiteral>(Val: SubExpr)) { |
3288 | // Get the length of the string. |
3289 | uint64_t StrLen = SL->getLength(); |
3290 | if (cast<ConstantArrayType>(Val: AT)->getSize().ult(RHS: StrLen)) |
3291 | StrLen = cast<ConstantArrayType>(Val: AT)->getZExtSize(); |
3292 | StructuredList->resizeInits(Context, NumInits: StrLen); |
3293 | |
3294 | // Build a literal for each character in the string, and put them into |
3295 | // the init list. |
3296 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
3297 | llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); |
3298 | Expr *Init = new (Context) IntegerLiteral( |
3299 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
3300 | if (CharTy != PromotedCharTy) |
3301 | Init = ImplicitCastExpr::Create(Context, T: CharTy, Kind: CK_IntegralCast, |
3302 | Operand: Init, BasePath: nullptr, Cat: VK_PRValue, |
3303 | FPO: FPOptionsOverride()); |
3304 | StructuredList->updateInit(C: Context, Init: i, expr: Init); |
3305 | } |
3306 | } else { |
3307 | ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(Val: SubExpr); |
3308 | std::string Str; |
3309 | Context.getObjCEncodingForType(T: E->getEncodedType(), S&: Str); |
3310 | |
3311 | // Get the length of the string. |
3312 | uint64_t StrLen = Str.size(); |
3313 | if (cast<ConstantArrayType>(Val: AT)->getSize().ult(RHS: StrLen)) |
3314 | StrLen = cast<ConstantArrayType>(Val: AT)->getZExtSize(); |
3315 | StructuredList->resizeInits(Context, NumInits: StrLen); |
3316 | |
3317 | // Build a literal for each character in the string, and put them into |
3318 | // the init list. |
3319 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
3320 | llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); |
3321 | Expr *Init = new (Context) IntegerLiteral( |
3322 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
3323 | if (CharTy != PromotedCharTy) |
3324 | Init = ImplicitCastExpr::Create(Context, T: CharTy, Kind: CK_IntegralCast, |
3325 | Operand: Init, BasePath: nullptr, Cat: VK_PRValue, |
3326 | FPO: FPOptionsOverride()); |
3327 | StructuredList->updateInit(C: Context, Init: i, expr: Init); |
3328 | } |
3329 | } |
3330 | } |
3331 | |
3332 | // Make sure that our non-designated initializer list has space |
3333 | // for a subobject corresponding to this array element. |
3334 | if (StructuredList && |
3335 | DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) |
3336 | StructuredList->resizeInits(Context: SemaRef.Context, |
3337 | NumInits: DesignatedEndIndex.getZExtValue() + 1); |
3338 | |
3339 | // Repeatedly perform subobject initializations in the range |
3340 | // [DesignatedStartIndex, DesignatedEndIndex]. |
3341 | |
3342 | // Move to the next designator |
3343 | unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); |
3344 | unsigned OldIndex = Index; |
3345 | |
3346 | InitializedEntity ElementEntity = |
3347 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
3348 | |
3349 | while (DesignatedStartIndex <= DesignatedEndIndex) { |
3350 | // Recurse to check later designated subobjects. |
3351 | QualType ElementType = AT->getElementType(); |
3352 | Index = OldIndex; |
3353 | |
3354 | ElementEntity.setElementIndex(ElementIndex); |
3355 | if (CheckDesignatedInitializer( |
3356 | Entity: ElementEntity, IList, DIE, DesigIdx: DesigIdx + 1, CurrentObjectType&: ElementType, NextField: nullptr, |
3357 | NextElementIndex: nullptr, Index, StructuredList, StructuredIndex&: ElementIndex, |
3358 | FinishSubobjectInit: FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), |
3359 | TopLevelObject: false)) |
3360 | return true; |
3361 | |
3362 | // Move to the next index in the array that we'll be initializing. |
3363 | ++DesignatedStartIndex; |
3364 | ElementIndex = DesignatedStartIndex.getZExtValue(); |
3365 | } |
3366 | |
3367 | // If this the first designator, our caller will continue checking |
3368 | // the rest of this array subobject. |
3369 | if (IsFirstDesignator) { |
3370 | if (NextElementIndex) |
3371 | *NextElementIndex = DesignatedStartIndex; |
3372 | StructuredIndex = ElementIndex; |
3373 | return false; |
3374 | } |
3375 | |
3376 | if (!FinishSubobjectInit) |
3377 | return false; |
3378 | |
3379 | // Check the remaining elements within this array subobject. |
3380 | bool prevHadError = hadError; |
3381 | CheckArrayType(Entity, IList, DeclType&: CurrentObjectType, elementIndex: DesignatedStartIndex, |
3382 | /*SubobjectIsDesignatorContext=*/false, Index, |
3383 | StructuredList, StructuredIndex&: ElementIndex); |
3384 | return hadError && !prevHadError; |
3385 | } |
3386 | |
3387 | // Get the structured initializer list for a subobject of type |
3388 | // @p CurrentObjectType. |
3389 | InitListExpr * |
3390 | InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
3391 | QualType CurrentObjectType, |
3392 | InitListExpr *StructuredList, |
3393 | unsigned StructuredIndex, |
3394 | SourceRange InitRange, |
3395 | bool IsFullyOverwritten) { |
3396 | if (!StructuredList) |
3397 | return nullptr; |
3398 | |
3399 | Expr *ExistingInit = nullptr; |
3400 | if (StructuredIndex < StructuredList->getNumInits()) |
3401 | ExistingInit = StructuredList->getInit(Init: StructuredIndex); |
3402 | |
3403 | if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(Val: ExistingInit)) |
3404 | // There might have already been initializers for subobjects of the current |
3405 | // object, but a subsequent initializer list will overwrite the entirety |
3406 | // of the current object. (See DR 253 and C99 6.7.8p21). e.g., |
3407 | // |
3408 | // struct P { char x[6]; }; |
3409 | // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; |
3410 | // |
3411 | // The first designated initializer is ignored, and l.x is just "f". |
3412 | if (!IsFullyOverwritten) |
3413 | return Result; |
3414 | |
3415 | if (ExistingInit) { |
3416 | // We are creating an initializer list that initializes the |
3417 | // subobjects of the current object, but there was already an |
3418 | // initialization that completely initialized the current |
3419 | // subobject: |
3420 | // |
3421 | // struct X { int a, b; }; |
3422 | // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; |
3423 | // |
3424 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
3425 | // designated initializer overwrites the [0].b initializer |
3426 | // from the prior initialization. |
3427 | // |
3428 | // When the existing initializer is an expression rather than an |
3429 | // initializer list, we cannot decompose and update it in this way. |
3430 | // For example: |
3431 | // |
3432 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
3433 | // |
3434 | // This case is handled by CheckDesignatedInitializer. |
3435 | diagnoseInitOverride(OldInit: ExistingInit, NewInitRange: InitRange); |
3436 | } |
3437 | |
3438 | unsigned ExpectedNumInits = 0; |
3439 | if (Index < IList->getNumInits()) { |
3440 | if (auto *Init = dyn_cast_or_null<InitListExpr>(Val: IList->getInit(Init: Index))) |
3441 | ExpectedNumInits = Init->getNumInits(); |
3442 | else |
3443 | ExpectedNumInits = IList->getNumInits() - Index; |
3444 | } |
3445 | |
3446 | InitListExpr *Result = |
3447 | createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); |
3448 | |
3449 | // Link this new initializer list into the structured initializer |
3450 | // lists. |
3451 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); |
3452 | return Result; |
3453 | } |
3454 | |
3455 | InitListExpr * |
3456 | InitListChecker::createInitListExpr(QualType CurrentObjectType, |
3457 | SourceRange InitRange, |
3458 | unsigned ExpectedNumInits) { |
3459 | InitListExpr *Result = new (SemaRef.Context) InitListExpr( |
3460 | SemaRef.Context, InitRange.getBegin(), {}, InitRange.getEnd()); |
3461 | |
3462 | QualType ResultType = CurrentObjectType; |
3463 | if (!ResultType->isArrayType()) |
3464 | ResultType = ResultType.getNonLValueExprType(Context: SemaRef.Context); |
3465 | Result->setType(ResultType); |
3466 | |
3467 | // Pre-allocate storage for the structured initializer list. |
3468 | unsigned NumElements = 0; |
3469 | |
3470 | if (const ArrayType *AType |
3471 | = SemaRef.Context.getAsArrayType(T: CurrentObjectType)) { |
3472 | if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(Val: AType)) { |
3473 | NumElements = CAType->getZExtSize(); |
3474 | // Simple heuristic so that we don't allocate a very large |
3475 | // initializer with many empty entries at the end. |
3476 | if (NumElements > ExpectedNumInits) |
3477 | NumElements = 0; |
3478 | } |
3479 | } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { |
3480 | NumElements = VType->getNumElements(); |
3481 | } else if (CurrentObjectType->isRecordType()) { |
3482 | NumElements = numStructUnionElements(DeclType: CurrentObjectType); |
3483 | } else if (CurrentObjectType->isDependentType()) { |
3484 | NumElements = 1; |
3485 | } |
3486 | |
3487 | Result->reserveInits(C: SemaRef.Context, NumInits: NumElements); |
3488 | |
3489 | return Result; |
3490 | } |
3491 | |
3492 | /// Update the initializer at index @p StructuredIndex within the |
3493 | /// structured initializer list to the value @p expr. |
3494 | void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, |
3495 | unsigned &StructuredIndex, |
3496 | Expr *expr) { |
3497 | // No structured initializer list to update |
3498 | if (!StructuredList) |
3499 | return; |
3500 | |
3501 | if (Expr *PrevInit = StructuredList->updateInit(C: SemaRef.Context, |
3502 | Init: StructuredIndex, expr)) { |
3503 | // This initializer overwrites a previous initializer. |
3504 | // No need to diagnose when `expr` is nullptr because a more relevant |
3505 | // diagnostic has already been issued and this diagnostic is potentially |
3506 | // noise. |
3507 | if (expr) |
3508 | diagnoseInitOverride(OldInit: PrevInit, NewInitRange: expr->getSourceRange()); |
3509 | } |
3510 | |
3511 | ++StructuredIndex; |
3512 | } |
3513 | |
3514 | bool Sema::CanPerformAggregateInitializationForOverloadResolution( |
3515 | const InitializedEntity &Entity, InitListExpr *From) { |
3516 | QualType Type = Entity.getType(); |
3517 | InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, |
3518 | /*TreatUnavailableAsInvalid=*/false, |
3519 | /*InOverloadResolution=*/true); |
3520 | return !Check.HadError(); |
3521 | } |
3522 | |
3523 | /// Check that the given Index expression is a valid array designator |
3524 | /// value. This is essentially just a wrapper around |
3525 | /// VerifyIntegerConstantExpression that also checks for negative values |
3526 | /// and produces a reasonable diagnostic if there is a |
3527 | /// failure. Returns the index expression, possibly with an implicit cast |
3528 | /// added, on success. If everything went okay, Value will receive the |
3529 | /// value of the constant expression. |
3530 | static ExprResult |
3531 | CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { |
3532 | SourceLocation Loc = Index->getBeginLoc(); |
3533 | |
3534 | // Make sure this is an integer constant expression. |
3535 | ExprResult Result = |
3536 | S.VerifyIntegerConstantExpression(E: Index, Result: &Value, CanFold: AllowFoldKind::Allow); |
3537 | if (Result.isInvalid()) |
3538 | return Result; |
3539 | |
3540 | if (Value.isSigned() && Value.isNegative()) |
3541 | return S.Diag(Loc, diag::err_array_designator_negative) |
3542 | << toString(Value, 10) << Index->getSourceRange(); |
3543 | |
3544 | Value.setIsUnsigned(true); |
3545 | return Result; |
3546 | } |
3547 | |
3548 | ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, |
3549 | SourceLocation EqualOrColonLoc, |
3550 | bool GNUSyntax, |
3551 | ExprResult Init) { |
3552 | typedef DesignatedInitExpr::Designator ASTDesignator; |
3553 | |
3554 | bool Invalid = false; |
3555 | SmallVector<ASTDesignator, 32> Designators; |
3556 | SmallVector<Expr *, 32> InitExpressions; |
3557 | |
3558 | // Build designators and check array designator expressions. |
3559 | for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { |
3560 | const Designator &D = Desig.getDesignator(Idx); |
3561 | |
3562 | if (D.isFieldDesignator()) { |
3563 | Designators.push_back(Elt: ASTDesignator::CreateFieldDesignator( |
3564 | FieldName: D.getFieldDecl(), DotLoc: D.getDotLoc(), FieldLoc: D.getFieldLoc())); |
3565 | } else if (D.isArrayDesignator()) { |
3566 | Expr *Index = static_cast<Expr *>(D.getArrayIndex()); |
3567 | llvm::APSInt IndexValue; |
3568 | if (!Index->isTypeDependent() && !Index->isValueDependent()) |
3569 | Index = CheckArrayDesignatorExpr(S&: *this, Index, Value&: IndexValue).get(); |
3570 | if (!Index) |
3571 | Invalid = true; |
3572 | else { |
3573 | Designators.push_back(Elt: ASTDesignator::CreateArrayDesignator( |
3574 | Index: InitExpressions.size(), LBracketLoc: D.getLBracketLoc(), RBracketLoc: D.getRBracketLoc())); |
3575 | InitExpressions.push_back(Elt: Index); |
3576 | } |
3577 | } else if (D.isArrayRangeDesignator()) { |
3578 | Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); |
3579 | Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); |
3580 | llvm::APSInt StartValue; |
3581 | llvm::APSInt EndValue; |
3582 | bool StartDependent = StartIndex->isTypeDependent() || |
3583 | StartIndex->isValueDependent(); |
3584 | bool EndDependent = EndIndex->isTypeDependent() || |
3585 | EndIndex->isValueDependent(); |
3586 | if (!StartDependent) |
3587 | StartIndex = |
3588 | CheckArrayDesignatorExpr(S&: *this, Index: StartIndex, Value&: StartValue).get(); |
3589 | if (!EndDependent) |
3590 | EndIndex = CheckArrayDesignatorExpr(S&: *this, Index: EndIndex, Value&: EndValue).get(); |
3591 | |
3592 | if (!StartIndex || !EndIndex) |
3593 | Invalid = true; |
3594 | else { |
3595 | // Make sure we're comparing values with the same bit width. |
3596 | if (StartDependent || EndDependent) { |
3597 | // Nothing to compute. |
3598 | } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) |
3599 | EndValue = EndValue.extend(width: StartValue.getBitWidth()); |
3600 | else if (StartValue.getBitWidth() < EndValue.getBitWidth()) |
3601 | StartValue = StartValue.extend(width: EndValue.getBitWidth()); |
3602 | |
3603 | if (!StartDependent && !EndDependent && EndValue < StartValue) { |
3604 | Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) |
3605 | << toString(StartValue, 10) << toString(EndValue, 10) |
3606 | << StartIndex->getSourceRange() << EndIndex->getSourceRange(); |
3607 | Invalid = true; |
3608 | } else { |
3609 | Designators.push_back(Elt: ASTDesignator::CreateArrayRangeDesignator( |
3610 | Index: InitExpressions.size(), LBracketLoc: D.getLBracketLoc(), EllipsisLoc: D.getEllipsisLoc(), |
3611 | RBracketLoc: D.getRBracketLoc())); |
3612 | InitExpressions.push_back(Elt: StartIndex); |
3613 | InitExpressions.push_back(Elt: EndIndex); |
3614 | } |
3615 | } |
3616 | } |
3617 | } |
3618 | |
3619 | if (Invalid || Init.isInvalid()) |
3620 | return ExprError(); |
3621 | |
3622 | return DesignatedInitExpr::Create(C: Context, Designators, IndexExprs: InitExpressions, |
3623 | EqualOrColonLoc, GNUSyntax, |
3624 | Init: Init.getAs<Expr>()); |
3625 | } |
3626 | |
3627 | //===----------------------------------------------------------------------===// |
3628 | // Initialization entity |
3629 | //===----------------------------------------------------------------------===// |
3630 | |
3631 | InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, |
3632 | const InitializedEntity &Parent) |
3633 | : Parent(&Parent), Index(Index) |
3634 | { |
3635 | if (const ArrayType *AT = Context.getAsArrayType(T: Parent.getType())) { |
3636 | Kind = EK_ArrayElement; |
3637 | Type = AT->getElementType(); |
3638 | } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { |
3639 | Kind = EK_VectorElement; |
3640 | Type = VT->getElementType(); |
3641 | } else { |
3642 | const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); |
3643 | assert(CT && "Unexpected type"); |
3644 | Kind = EK_ComplexElement; |
3645 | Type = CT->getElementType(); |
3646 | } |
3647 | } |
3648 | |
3649 | InitializedEntity |
3650 | InitializedEntity::InitializeBase(ASTContext &Context, |
3651 | const CXXBaseSpecifier *Base, |
3652 | bool IsInheritedVirtualBase, |
3653 | const InitializedEntity *Parent) { |
3654 | InitializedEntity Result; |
3655 | Result.Kind = EK_Base; |
3656 | Result.Parent = Parent; |
3657 | Result.Base = {Base, IsInheritedVirtualBase}; |
3658 | Result.Type = Base->getType(); |
3659 | return Result; |
3660 | } |
3661 | |
3662 | DeclarationName InitializedEntity::getName() const { |
3663 | switch (getKind()) { |
3664 | case EK_Parameter: |
3665 | case EK_Parameter_CF_Audited: { |
3666 | ParmVarDecl *D = Parameter.getPointer(); |
3667 | return (D ? D->getDeclName() : DeclarationName()); |
3668 | } |
3669 | |
3670 | case EK_Variable: |
3671 | case EK_Member: |
3672 | case EK_ParenAggInitMember: |
3673 | case EK_Binding: |
3674 | case EK_TemplateParameter: |
3675 | return Variable.VariableOrMember->getDeclName(); |
3676 | |
3677 | case EK_LambdaCapture: |
3678 | return DeclarationName(Capture.VarID); |
3679 | |
3680 | case EK_Result: |
3681 | case EK_StmtExprResult: |
3682 | case EK_Exception: |
3683 | case EK_New: |
3684 | case EK_Temporary: |
3685 | case EK_Base: |
3686 | case EK_Delegating: |
3687 | case EK_ArrayElement: |
3688 | case EK_VectorElement: |
3689 | case EK_ComplexElement: |
3690 | case EK_BlockElement: |
3691 | case EK_LambdaToBlockConversionBlockElement: |
3692 | case EK_CompoundLiteralInit: |
3693 | case EK_RelatedResult: |
3694 | return DeclarationName(); |
3695 | } |
3696 | |
3697 | llvm_unreachable("Invalid EntityKind!"); |
3698 | } |
3699 | |
3700 | ValueDecl *InitializedEntity::getDecl() const { |
3701 | switch (getKind()) { |
3702 | case EK_Variable: |
3703 | case EK_Member: |
3704 | case EK_ParenAggInitMember: |
3705 | case EK_Binding: |
3706 | case EK_TemplateParameter: |
3707 | return Variable.VariableOrMember; |
3708 | |
3709 | case EK_Parameter: |
3710 | case EK_Parameter_CF_Audited: |
3711 | return Parameter.getPointer(); |
3712 | |
3713 | case EK_Result: |
3714 | case EK_StmtExprResult: |
3715 | case EK_Exception: |
3716 | case EK_New: |
3717 | case EK_Temporary: |
3718 | case EK_Base: |
3719 | case EK_Delegating: |
3720 | case EK_ArrayElement: |
3721 | case EK_VectorElement: |
3722 | case EK_ComplexElement: |
3723 | case EK_BlockElement: |
3724 | case EK_LambdaToBlockConversionBlockElement: |
3725 | case EK_LambdaCapture: |
3726 | case EK_CompoundLiteralInit: |
3727 | case EK_RelatedResult: |
3728 | return nullptr; |
3729 | } |
3730 | |
3731 | llvm_unreachable("Invalid EntityKind!"); |
3732 | } |
3733 | |
3734 | bool InitializedEntity::allowsNRVO() const { |
3735 | switch (getKind()) { |
3736 | case EK_Result: |
3737 | case EK_Exception: |
3738 | return LocAndNRVO.NRVO; |
3739 | |
3740 | case EK_StmtExprResult: |
3741 | case EK_Variable: |
3742 | case EK_Parameter: |
3743 | case EK_Parameter_CF_Audited: |
3744 | case EK_TemplateParameter: |
3745 | case EK_Member: |
3746 | case EK_ParenAggInitMember: |
3747 | case EK_Binding: |
3748 | case EK_New: |
3749 | case EK_Temporary: |
3750 | case EK_CompoundLiteralInit: |
3751 | case EK_Base: |
3752 | case EK_Delegating: |
3753 | case EK_ArrayElement: |
3754 | case EK_VectorElement: |
3755 | case EK_ComplexElement: |
3756 | case EK_BlockElement: |
3757 | case EK_LambdaToBlockConversionBlockElement: |
3758 | case EK_LambdaCapture: |
3759 | case EK_RelatedResult: |
3760 | break; |
3761 | } |
3762 | |
3763 | return false; |
3764 | } |
3765 | |
3766 | unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { |
3767 | assert(getParent() != this); |
3768 | unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; |
3769 | for (unsigned I = 0; I != Depth; ++I) |
3770 | OS << "`-"; |
3771 | |
3772 | switch (getKind()) { |
3773 | case EK_Variable: OS << "Variable"; break; |
3774 | case EK_Parameter: OS << "Parameter"; break; |
3775 | case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; |
3776 | break; |
3777 | case EK_TemplateParameter: OS << "TemplateParameter"; break; |
3778 | case EK_Result: OS << "Result"; break; |
3779 | case EK_StmtExprResult: OS << "StmtExprResult"; break; |
3780 | case EK_Exception: OS << "Exception"; break; |
3781 | case EK_Member: |
3782 | case EK_ParenAggInitMember: |
3783 | OS << "Member"; |
3784 | break; |
3785 | case EK_Binding: OS << "Binding"; break; |
3786 | case EK_New: OS << "New"; break; |
3787 | case EK_Temporary: OS << "Temporary"; break; |
3788 | case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; |
3789 | case EK_RelatedResult: OS << "RelatedResult"; break; |
3790 | case EK_Base: OS << "Base"; break; |
3791 | case EK_Delegating: OS << "Delegating"; break; |
3792 | case EK_ArrayElement: OS << "ArrayElement "<< Index; break; |
3793 | case EK_VectorElement: OS << "VectorElement "<< Index; break; |
3794 | case EK_ComplexElement: OS << "ComplexElement "<< Index; break; |
3795 | case EK_BlockElement: OS << "Block"; break; |
3796 | case EK_LambdaToBlockConversionBlockElement: |
3797 | OS << "Block (lambda)"; |
3798 | break; |
3799 | case EK_LambdaCapture: |
3800 | OS << "LambdaCapture "; |
3801 | OS << DeclarationName(Capture.VarID); |
3802 | break; |
3803 | } |
3804 | |
3805 | if (auto *D = getDecl()) { |
3806 | OS << " "; |
3807 | D->printQualifiedName(OS); |
3808 | } |
3809 | |
3810 | OS << " '"<< getType() << "'\n"; |
3811 | |
3812 | return Depth + 1; |
3813 | } |
3814 | |
3815 | LLVM_DUMP_METHOD void InitializedEntity::dump() const { |
3816 | dumpImpl(OS&: llvm::errs()); |
3817 | } |
3818 | |
3819 | //===----------------------------------------------------------------------===// |
3820 | // Initialization sequence |
3821 | //===----------------------------------------------------------------------===// |
3822 | |
3823 | void InitializationSequence::Step::Destroy() { |
3824 | switch (Kind) { |
3825 | case SK_ResolveAddressOfOverloadedFunction: |
3826 | case SK_CastDerivedToBasePRValue: |
3827 | case SK_CastDerivedToBaseXValue: |
3828 | case SK_CastDerivedToBaseLValue: |
3829 | case SK_BindReference: |
3830 | case SK_BindReferenceToTemporary: |
3831 | case SK_FinalCopy: |
3832 | case SK_ExtraneousCopyToTemporary: |
3833 | case SK_UserConversion: |
3834 | case SK_QualificationConversionPRValue: |
3835 | case SK_QualificationConversionXValue: |
3836 | case SK_QualificationConversionLValue: |
3837 | case SK_FunctionReferenceConversion: |
3838 | case SK_AtomicConversion: |
3839 | case SK_ListInitialization: |
3840 | case SK_UnwrapInitList: |
3841 | case SK_RewrapInitList: |
3842 | case SK_ConstructorInitialization: |
3843 | case SK_ConstructorInitializationFromList: |
3844 | case SK_ZeroInitialization: |
3845 | case SK_CAssignment: |
3846 | case SK_StringInit: |
3847 | case SK_ObjCObjectConversion: |
3848 | case SK_ArrayLoopIndex: |
3849 | case SK_ArrayLoopInit: |
3850 | case SK_ArrayInit: |
3851 | case SK_GNUArrayInit: |
3852 | case SK_ParenthesizedArrayInit: |
3853 | case SK_PassByIndirectCopyRestore: |
3854 | case SK_PassByIndirectRestore: |
3855 | case SK_ProduceObjCObject: |
3856 | case SK_StdInitializerList: |
3857 | case SK_StdInitializerListConstructorCall: |
3858 | case SK_OCLSamplerInit: |
3859 | case SK_OCLZeroOpaqueType: |
3860 | case SK_ParenthesizedListInit: |
3861 | break; |
3862 | |
3863 | case SK_ConversionSequence: |
3864 | case SK_ConversionSequenceNoNarrowing: |
3865 | delete ICS; |
3866 | } |
3867 | } |
3868 | |
3869 | bool InitializationSequence::isDirectReferenceBinding() const { |
3870 | // There can be some lvalue adjustments after the SK_BindReference step. |
3871 | for (const Step &S : llvm::reverse(C: Steps)) { |
3872 | if (S.Kind == SK_BindReference) |
3873 | return true; |
3874 | if (S.Kind == SK_BindReferenceToTemporary) |
3875 | return false; |
3876 | } |
3877 | return false; |
3878 | } |
3879 | |
3880 | bool InitializationSequence::isAmbiguous() const { |
3881 | if (!Failed()) |
3882 | return false; |
3883 | |
3884 | switch (getFailureKind()) { |
3885 | case FK_TooManyInitsForReference: |
3886 | case FK_ParenthesizedListInitForReference: |
3887 | case FK_ArrayNeedsInitList: |
3888 | case FK_ArrayNeedsInitListOrStringLiteral: |
3889 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
3890 | case FK_NarrowStringIntoWideCharArray: |
3891 | case FK_WideStringIntoCharArray: |
3892 | case FK_IncompatWideStringIntoWideChar: |
3893 | case FK_PlainStringIntoUTF8Char: |
3894 | case FK_UTF8StringIntoPlainChar: |
3895 | case FK_AddressOfOverloadFailed: // FIXME: Could do better |
3896 | case FK_NonConstLValueReferenceBindingToTemporary: |
3897 | case FK_NonConstLValueReferenceBindingToBitfield: |
3898 | case FK_NonConstLValueReferenceBindingToVectorElement: |
3899 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
3900 | case FK_NonConstLValueReferenceBindingToUnrelated: |
3901 | case FK_RValueReferenceBindingToLValue: |
3902 | case FK_ReferenceAddrspaceMismatchTemporary: |
3903 | case FK_ReferenceInitDropsQualifiers: |
3904 | case FK_ReferenceInitFailed: |
3905 | case FK_ConversionFailed: |
3906 | case FK_ConversionFromPropertyFailed: |
3907 | case FK_TooManyInitsForScalar: |
3908 | case FK_ParenthesizedListInitForScalar: |
3909 | case FK_ReferenceBindingToInitList: |
3910 | case FK_InitListBadDestinationType: |
3911 | case FK_DefaultInitOfConst: |
3912 | case FK_Incomplete: |
3913 | case FK_ArrayTypeMismatch: |
3914 | case FK_NonConstantArrayInit: |
3915 | case FK_ListInitializationFailed: |
3916 | case FK_VariableLengthArrayHasInitializer: |
3917 | case FK_PlaceholderType: |
3918 | case FK_ExplicitConstructor: |
3919 | case FK_AddressOfUnaddressableFunction: |
3920 | case FK_ParenthesizedListInitFailed: |
3921 | case FK_DesignatedInitForNonAggregate: |
3922 | return false; |
3923 | |
3924 | case FK_ReferenceInitOverloadFailed: |
3925 | case FK_UserConversionOverloadFailed: |
3926 | case FK_ConstructorOverloadFailed: |
3927 | case FK_ListConstructorOverloadFailed: |
3928 | return FailedOverloadResult == OR_Ambiguous; |
3929 | } |
3930 | |
3931 | llvm_unreachable("Invalid EntityKind!"); |
3932 | } |
3933 | |
3934 | bool InitializationSequence::isConstructorInitialization() const { |
3935 | return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; |
3936 | } |
3937 | |
3938 | void |
3939 | InitializationSequence |
3940 | ::AddAddressOverloadResolutionStep(FunctionDecl *Function, |
3941 | DeclAccessPair Found, |
3942 | bool HadMultipleCandidates) { |
3943 | Step S; |
3944 | S.Kind = SK_ResolveAddressOfOverloadedFunction; |
3945 | S.Type = Function->getType(); |
3946 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3947 | S.Function.Function = Function; |
3948 | S.Function.FoundDecl = Found; |
3949 | Steps.push_back(Elt: S); |
3950 | } |
3951 | |
3952 | void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, |
3953 | ExprValueKind VK) { |
3954 | Step S; |
3955 | switch (VK) { |
3956 | case VK_PRValue: |
3957 | S.Kind = SK_CastDerivedToBasePRValue; |
3958 | break; |
3959 | case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; |
3960 | case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; |
3961 | } |
3962 | S.Type = BaseType; |
3963 | Steps.push_back(Elt: S); |
3964 | } |
3965 | |
3966 | void InitializationSequence::AddReferenceBindingStep(QualType T, |
3967 | bool BindingTemporary) { |
3968 | Step S; |
3969 | S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; |
3970 | S.Type = T; |
3971 | Steps.push_back(Elt: S); |
3972 | } |
3973 | |
3974 | void InitializationSequence::AddFinalCopy(QualType T) { |
3975 | Step S; |
3976 | S.Kind = SK_FinalCopy; |
3977 | S.Type = T; |
3978 | Steps.push_back(Elt: S); |
3979 | } |
3980 | |
3981 | void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { |
3982 | Step S; |
3983 | S.Kind = SK_ExtraneousCopyToTemporary; |
3984 | S.Type = T; |
3985 | Steps.push_back(Elt: S); |
3986 | } |
3987 | |
3988 | void |
3989 | InitializationSequence::AddUserConversionStep(FunctionDecl *Function, |
3990 | DeclAccessPair FoundDecl, |
3991 | QualType T, |
3992 | bool HadMultipleCandidates) { |
3993 | Step S; |
3994 | S.Kind = SK_UserConversion; |
3995 | S.Type = T; |
3996 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3997 | S.Function.Function = Function; |
3998 | S.Function.FoundDecl = FoundDecl; |
3999 | Steps.push_back(Elt: S); |
4000 | } |
4001 | |
4002 | void InitializationSequence::AddQualificationConversionStep(QualType Ty, |
4003 | ExprValueKind VK) { |
4004 | Step S; |
4005 | S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning |
4006 | switch (VK) { |
4007 | case VK_PRValue: |
4008 | S.Kind = SK_QualificationConversionPRValue; |
4009 | break; |
4010 | case VK_XValue: |
4011 | S.Kind = SK_QualificationConversionXValue; |
4012 | break; |
4013 | case VK_LValue: |
4014 | S.Kind = SK_QualificationConversionLValue; |
4015 | break; |
4016 | } |
4017 | S.Type = Ty; |
4018 | Steps.push_back(Elt: S); |
4019 | } |
4020 | |
4021 | void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) { |
4022 | Step S; |
4023 | S.Kind = SK_FunctionReferenceConversion; |
4024 | S.Type = Ty; |
4025 | Steps.push_back(Elt: S); |
4026 | } |
4027 | |
4028 | void InitializationSequence::AddAtomicConversionStep(QualType Ty) { |
4029 | Step S; |
4030 | S.Kind = SK_AtomicConversion; |
4031 | S.Type = Ty; |
4032 | Steps.push_back(Elt: S); |
4033 | } |
4034 | |
4035 | void InitializationSequence::AddConversionSequenceStep( |
4036 | const ImplicitConversionSequence &ICS, QualType T, |
4037 | bool TopLevelOfInitList) { |
4038 | Step S; |
4039 | S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing |
4040 | : SK_ConversionSequence; |
4041 | S.Type = T; |
4042 | S.ICS = new ImplicitConversionSequence(ICS); |
4043 | Steps.push_back(Elt: S); |
4044 | } |
4045 | |
4046 | void InitializationSequence::AddListInitializationStep(QualType T) { |
4047 | Step S; |
4048 | S.Kind = SK_ListInitialization; |
4049 | S.Type = T; |
4050 | Steps.push_back(Elt: S); |
4051 | } |
4052 | |
4053 | void InitializationSequence::AddConstructorInitializationStep( |
4054 | DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, |
4055 | bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { |
4056 | Step S; |
4057 | S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall |
4058 | : SK_ConstructorInitializationFromList |
4059 | : SK_ConstructorInitialization; |
4060 | S.Type = T; |
4061 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
4062 | S.Function.Function = Constructor; |
4063 | S.Function.FoundDecl = FoundDecl; |
4064 | Steps.push_back(Elt: S); |
4065 | } |
4066 | |
4067 | void InitializationSequence::AddZeroInitializationStep(QualType T) { |
4068 | Step S; |
4069 | S.Kind = SK_ZeroInitialization; |
4070 | S.Type = T; |
4071 | Steps.push_back(Elt: S); |
4072 | } |
4073 | |
4074 | void InitializationSequence::AddCAssignmentStep(QualType T) { |
4075 | Step S; |
4076 | S.Kind = SK_CAssignment; |
4077 | S.Type = T; |
4078 | Steps.push_back(Elt: S); |
4079 | } |
4080 | |
4081 | void InitializationSequence::AddStringInitStep(QualType T) { |
4082 | Step S; |
4083 | S.Kind = SK_StringInit; |
4084 | S.Type = T; |
4085 | Steps.push_back(Elt: S); |
4086 | } |
4087 | |
4088 | void InitializationSequence::AddObjCObjectConversionStep(QualType T) { |
4089 | Step S; |
4090 | S.Kind = SK_ObjCObjectConversion; |
4091 | S.Type = T; |
4092 | Steps.push_back(Elt: S); |
4093 | } |
4094 | |
4095 | void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { |
4096 | Step S; |
4097 | S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; |
4098 | S.Type = T; |
4099 | Steps.push_back(Elt: S); |
4100 | } |
4101 | |
4102 | void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { |
4103 | Step S; |
4104 | S.Kind = SK_ArrayLoopIndex; |
4105 | S.Type = EltT; |
4106 | Steps.insert(I: Steps.begin(), Elt: S); |
4107 | |
4108 | S.Kind = SK_ArrayLoopInit; |
4109 | S.Type = T; |
4110 | Steps.push_back(Elt: S); |
4111 | } |
4112 | |
4113 | void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { |
4114 | Step S; |
4115 | S.Kind = SK_ParenthesizedArrayInit; |
4116 | S.Type = T; |
4117 | Steps.push_back(Elt: S); |
4118 | } |
4119 | |
4120 | void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, |
4121 | bool shouldCopy) { |
4122 | Step s; |
4123 | s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore |
4124 | : SK_PassByIndirectRestore); |
4125 | s.Type = type; |
4126 | Steps.push_back(Elt: s); |
4127 | } |
4128 | |
4129 | void InitializationSequence::AddProduceObjCObjectStep(QualType T) { |
4130 | Step S; |
4131 | S.Kind = SK_ProduceObjCObject; |
4132 | S.Type = T; |
4133 | Steps.push_back(Elt: S); |
4134 | } |
4135 | |
4136 | void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { |
4137 | Step S; |
4138 | S.Kind = SK_StdInitializerList; |
4139 | S.Type = T; |
4140 | Steps.push_back(Elt: S); |
4141 | } |
4142 | |
4143 | void InitializationSequence::AddOCLSamplerInitStep(QualType T) { |
4144 | Step S; |
4145 | S.Kind = SK_OCLSamplerInit; |
4146 | S.Type = T; |
4147 | Steps.push_back(Elt: S); |
4148 | } |
4149 | |
4150 | void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { |
4151 | Step S; |
4152 | S.Kind = SK_OCLZeroOpaqueType; |
4153 | S.Type = T; |
4154 | Steps.push_back(Elt: S); |
4155 | } |
4156 | |
4157 | void InitializationSequence::AddParenthesizedListInitStep(QualType T) { |
4158 | Step S; |
4159 | S.Kind = SK_ParenthesizedListInit; |
4160 | S.Type = T; |
4161 | Steps.push_back(Elt: S); |
4162 | } |
4163 | |
4164 | void InitializationSequence::AddUnwrapInitListInitStep( |
4165 | InitListExpr *Syntactic) { |
4166 | assert(Syntactic->getNumInits() == 1 && |
4167 | "Can only unwrap trivial init lists."); |
4168 | Step S; |
4169 | S.Kind = SK_UnwrapInitList; |
4170 | S.Type = Syntactic->getInit(Init: 0)->getType(); |
4171 | Steps.insert(I: Steps.begin(), Elt: S); |
4172 | } |
4173 | |
4174 | void InitializationSequence::RewrapReferenceInitList(QualType T, |
4175 | InitListExpr *Syntactic) { |
4176 | assert(Syntactic->getNumInits() == 1 && |
4177 | "Can only rewrap trivial init lists."); |
4178 | Step S; |
4179 | S.Kind = SK_UnwrapInitList; |
4180 | S.Type = Syntactic->getInit(Init: 0)->getType(); |
4181 | Steps.insert(I: Steps.begin(), Elt: S); |
4182 | |
4183 | S.Kind = SK_RewrapInitList; |
4184 | S.Type = T; |
4185 | S.WrappingSyntacticList = Syntactic; |
4186 | Steps.push_back(Elt: S); |
4187 | } |
4188 | |
4189 | void InitializationSequence::SetOverloadFailure(FailureKind Failure, |
4190 | OverloadingResult Result) { |
4191 | setSequenceKind(FailedSequence); |
4192 | this->Failure = Failure; |
4193 | this->FailedOverloadResult = Result; |
4194 | } |
4195 | |
4196 | //===----------------------------------------------------------------------===// |
4197 | // Attempt initialization |
4198 | //===----------------------------------------------------------------------===// |
4199 | |
4200 | /// Tries to add a zero initializer. Returns true if that worked. |
4201 | static bool |
4202 | maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, |
4203 | const InitializedEntity &Entity) { |
4204 | if (Entity.getKind() != InitializedEntity::EK_Variable) |
4205 | return false; |
4206 | |
4207 | VarDecl *VD = cast<VarDecl>(Val: Entity.getDecl()); |
4208 | if (VD->getInit() || VD->getEndLoc().isMacroID()) |
4209 | return false; |
4210 | |
4211 | QualType VariableTy = VD->getType().getCanonicalType(); |
4212 | SourceLocation Loc = S.getLocForEndOfToken(Loc: VD->getEndLoc()); |
4213 | std::string Init = S.getFixItZeroInitializerForType(T: VariableTy, Loc); |
4214 | if (!Init.empty()) { |
4215 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
4216 | Sequence.SetZeroInitializationFixit(Fixit: Init, L: Loc); |
4217 | return true; |
4218 | } |
4219 | return false; |
4220 | } |
4221 | |
4222 | static void MaybeProduceObjCObject(Sema &S, |
4223 | InitializationSequence &Sequence, |
4224 | const InitializedEntity &Entity) { |
4225 | if (!S.getLangOpts().ObjCAutoRefCount) return; |
4226 | |
4227 | /// When initializing a parameter, produce the value if it's marked |
4228 | /// __attribute__((ns_consumed)). |
4229 | if (Entity.isParameterKind()) { |
4230 | if (!Entity.isParameterConsumed()) |
4231 | return; |
4232 | |
4233 | assert(Entity.getType()->isObjCRetainableType() && |
4234 | "consuming an object of unretainable type?"); |
4235 | Sequence.AddProduceObjCObjectStep(T: Entity.getType()); |
4236 | |
4237 | /// When initializing a return value, if the return type is a |
4238 | /// retainable type, then returns need to immediately retain the |
4239 | /// object. If an autorelease is required, it will be done at the |
4240 | /// last instant. |
4241 | } else if (Entity.getKind() == InitializedEntity::EK_Result || |
4242 | Entity.getKind() == InitializedEntity::EK_StmtExprResult) { |
4243 | if (!Entity.getType()->isObjCRetainableType()) |
4244 | return; |
4245 | |
4246 | Sequence.AddProduceObjCObjectStep(T: Entity.getType()); |
4247 | } |
4248 | } |
4249 | |
4250 | /// Initialize an array from another array |
4251 | static void TryArrayCopy(Sema &S, const InitializationKind &Kind, |
4252 | const InitializedEntity &Entity, Expr *Initializer, |
4253 | QualType DestType, InitializationSequence &Sequence, |
4254 | bool TreatUnavailableAsInvalid) { |
4255 | // If source is a prvalue, use it directly. |
4256 | if (Initializer->isPRValue()) { |
4257 | Sequence.AddArrayInitStep(T: DestType, /*IsGNUExtension*/ false); |
4258 | return; |
4259 | } |
4260 | |
4261 | // Emit element-at-a-time copy loop. |
4262 | InitializedEntity Element = |
4263 | InitializedEntity::InitializeElement(Context&: S.Context, Index: 0, Parent: Entity); |
4264 | QualType InitEltT = |
4265 | S.Context.getAsArrayType(T: Initializer->getType())->getElementType(); |
4266 | OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, |
4267 | Initializer->getValueKind(), |
4268 | Initializer->getObjectKind()); |
4269 | Expr *OVEAsExpr = &OVE; |
4270 | Sequence.InitializeFrom(S, Entity: Element, Kind, Args: OVEAsExpr, |
4271 | /*TopLevelOfInitList*/ false, |
4272 | TreatUnavailableAsInvalid); |
4273 | if (Sequence) |
4274 | Sequence.AddArrayInitLoopStep(T: Entity.getType(), EltT: InitEltT); |
4275 | } |
4276 | |
4277 | static void TryListInitialization(Sema &S, |
4278 | const InitializedEntity &Entity, |
4279 | const InitializationKind &Kind, |
4280 | InitListExpr *InitList, |
4281 | InitializationSequence &Sequence, |
4282 | bool TreatUnavailableAsInvalid); |
4283 | |
4284 | /// When initializing from init list via constructor, handle |
4285 | /// initialization of an object of type std::initializer_list<T>. |
4286 | /// |
4287 | /// \return true if we have handled initialization of an object of type |
4288 | /// std::initializer_list<T>, false otherwise. |
4289 | static bool TryInitializerListConstruction(Sema &S, |
4290 | InitListExpr *List, |
4291 | QualType DestType, |
4292 | InitializationSequence &Sequence, |
4293 | bool TreatUnavailableAsInvalid) { |
4294 | QualType E; |
4295 | if (!S.isStdInitializerList(Ty: DestType, Element: &E)) |
4296 | return false; |
4297 | |
4298 | if (!S.isCompleteType(Loc: List->getExprLoc(), T: E)) { |
4299 | Sequence.setIncompleteTypeFailure(E); |
4300 | return true; |
4301 | } |
4302 | |
4303 | // Try initializing a temporary array from the init list. |
4304 | QualType ArrayType = S.Context.getConstantArrayType( |
4305 | EltTy: E.withConst(), |
4306 | ArySize: llvm::APInt(S.Context.getTypeSize(T: S.Context.getSizeType()), |
4307 | List->getNumInitsWithEmbedExpanded()), |
4308 | SizeExpr: nullptr, ASM: clang::ArraySizeModifier::Normal, IndexTypeQuals: 0); |
4309 | InitializedEntity HiddenArray = |
4310 | InitializedEntity::InitializeTemporary(Type: ArrayType); |
4311 | InitializationKind Kind = InitializationKind::CreateDirectList( |
4312 | List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); |
4313 | TryListInitialization(S, Entity: HiddenArray, Kind, InitList: List, Sequence, |
4314 | TreatUnavailableAsInvalid); |
4315 | if (Sequence) |
4316 | Sequence.AddStdInitializerListConstructionStep(T: DestType); |
4317 | return true; |
4318 | } |
4319 | |
4320 | /// Determine if the constructor has the signature of a copy or move |
4321 | /// constructor for the type T of the class in which it was found. That is, |
4322 | /// determine if its first parameter is of type T or reference to (possibly |
4323 | /// cv-qualified) T. |
4324 | static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, |
4325 | const ConstructorInfo &Info) { |
4326 | if (Info.Constructor->getNumParams() == 0) |
4327 | return false; |
4328 | |
4329 | QualType ParmT = |
4330 | Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); |
4331 | QualType ClassT = |
4332 | Ctx.getRecordType(Decl: cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); |
4333 | |
4334 | return Ctx.hasSameUnqualifiedType(T1: ParmT, T2: ClassT); |
4335 | } |
4336 | |
4337 | static OverloadingResult ResolveConstructorOverload( |
4338 | Sema &S, SourceLocation DeclLoc, MultiExprArg Args, |
4339 | OverloadCandidateSet &CandidateSet, QualType DestType, |
4340 | DeclContext::lookup_result Ctors, OverloadCandidateSet::iterator &Best, |
4341 | bool CopyInitializing, bool AllowExplicit, bool OnlyListConstructors, |
4342 | bool IsListInit, bool RequireActualConstructor, |
4343 | bool SecondStepOfCopyInit = false) { |
4344 | CandidateSet.clear(CSK: OverloadCandidateSet::CSK_InitByConstructor); |
4345 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
4346 | |
4347 | for (NamedDecl *D : Ctors) { |
4348 | auto Info = getConstructorInfo(ND: D); |
4349 | if (!Info.Constructor || Info.Constructor->isInvalidDecl()) |
4350 | continue; |
4351 | |
4352 | if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) |
4353 | continue; |
4354 | |
4355 | // C++11 [over.best.ics]p4: |
4356 | // ... and the constructor or user-defined conversion function is a |
4357 | // candidate by |
4358 | // - 13.3.1.3, when the argument is the temporary in the second step |
4359 | // of a class copy-initialization, or |
4360 | // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] |
4361 | // - the second phase of 13.3.1.7 when the initializer list has exactly |
4362 | // one element that is itself an initializer list, and the target is |
4363 | // the first parameter of a constructor of class X, and the conversion |
4364 | // is to X or reference to (possibly cv-qualified X), |
4365 | // user-defined conversion sequences are not considered. |
4366 | bool SuppressUserConversions = |
4367 | SecondStepOfCopyInit || |
4368 | (IsListInit && Args.size() == 1 && isa<InitListExpr>(Val: Args[0]) && |
4369 | hasCopyOrMoveCtorParam(Ctx&: S.Context, Info)); |
4370 | |
4371 | if (Info.ConstructorTmpl) |
4372 | S.AddTemplateOverloadCandidate( |
4373 | FunctionTemplate: Info.ConstructorTmpl, FoundDecl: Info.FoundDecl, |
4374 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, Args, CandidateSet, SuppressUserConversions, |
4375 | /*PartialOverloading=*/false, AllowExplicit); |
4376 | else { |
4377 | // C++ [over.match.copy]p1: |
4378 | // - When initializing a temporary to be bound to the first parameter |
4379 | // of a constructor [for type T] that takes a reference to possibly |
4380 | // cv-qualified T as its first argument, called with a single |
4381 | // argument in the context of direct-initialization, explicit |
4382 | // conversion functions are also considered. |
4383 | // FIXME: What if a constructor template instantiates to such a signature? |
4384 | bool AllowExplicitConv = AllowExplicit && !CopyInitializing && |
4385 | Args.size() == 1 && |
4386 | hasCopyOrMoveCtorParam(Ctx&: S.Context, Info); |
4387 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, |
4388 | CandidateSet, SuppressUserConversions, |
4389 | /*PartialOverloading=*/false, AllowExplicit, |
4390 | AllowExplicitConv); |
4391 | } |
4392 | } |
4393 | |
4394 | // FIXME: Work around a bug in C++17 guaranteed copy elision. |
4395 | // |
4396 | // When initializing an object of class type T by constructor |
4397 | // ([over.match.ctor]) or by list-initialization ([over.match.list]) |
4398 | // from a single expression of class type U, conversion functions of |
4399 | // U that convert to the non-reference type cv T are candidates. |
4400 | // Explicit conversion functions are only candidates during |
4401 | // direct-initialization. |
4402 | // |
4403 | // Note: SecondStepOfCopyInit is only ever true in this case when |
4404 | // evaluating whether to produce a C++98 compatibility warning. |
4405 | if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && |
4406 | !RequireActualConstructor && !SecondStepOfCopyInit) { |
4407 | Expr *Initializer = Args[0]; |
4408 | auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); |
4409 | if (SourceRD && S.isCompleteType(Loc: DeclLoc, T: Initializer->getType())) { |
4410 | const auto &Conversions = SourceRD->getVisibleConversionFunctions(); |
4411 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
4412 | NamedDecl *D = *I; |
4413 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
4414 | D = D->getUnderlyingDecl(); |
4415 | |
4416 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D); |
4417 | CXXConversionDecl *Conv; |
4418 | if (ConvTemplate) |
4419 | Conv = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
4420 | else |
4421 | Conv = cast<CXXConversionDecl>(Val: D); |
4422 | |
4423 | if (ConvTemplate) |
4424 | S.AddTemplateConversionCandidate( |
4425 | FunctionTemplate: ConvTemplate, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, |
4426 | CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, AllowExplicit, |
4427 | /*AllowResultConversion*/ false); |
4428 | else |
4429 | S.AddConversionCandidate(Conversion: Conv, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, |
4430 | ToType: DestType, CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, |
4431 | AllowExplicit, |
4432 | /*AllowResultConversion*/ false); |
4433 | } |
4434 | } |
4435 | } |
4436 | |
4437 | // Perform overload resolution and return the result. |
4438 | return CandidateSet.BestViableFunction(S, Loc: DeclLoc, Best); |
4439 | } |
4440 | |
4441 | /// Attempt initialization by constructor (C++ [dcl.init]), which |
4442 | /// enumerates the constructors of the initialized entity and performs overload |
4443 | /// resolution to select the best. |
4444 | /// \param DestType The destination class type. |
4445 | /// \param DestArrayType The destination type, which is either DestType or |
4446 | /// a (possibly multidimensional) array of DestType. |
4447 | /// \param IsListInit Is this list-initialization? |
4448 | /// \param IsInitListCopy Is this non-list-initialization resulting from a |
4449 | /// list-initialization from {x} where x is the same |
4450 | /// aggregate type as the entity? |
4451 | static void TryConstructorInitialization(Sema &S, |
4452 | const InitializedEntity &Entity, |
4453 | const InitializationKind &Kind, |
4454 | MultiExprArg Args, QualType DestType, |
4455 | QualType DestArrayType, |
4456 | InitializationSequence &Sequence, |
4457 | bool IsListInit = false, |
4458 | bool IsInitListCopy = false) { |
4459 | assert(((!IsListInit && !IsInitListCopy) || |
4460 | (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && |
4461 | "IsListInit/IsInitListCopy must come with a single initializer list " |
4462 | "argument."); |
4463 | InitListExpr *ILE = |
4464 | (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Val: Args[0]) : nullptr; |
4465 | MultiExprArg UnwrappedArgs = |
4466 | ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; |
4467 | |
4468 | // The type we're constructing needs to be complete. |
4469 | if (!S.isCompleteType(Loc: Kind.getLocation(), T: DestType)) { |
4470 | Sequence.setIncompleteTypeFailure(DestType); |
4471 | return; |
4472 | } |
4473 | |
4474 | bool RequireActualConstructor = |
4475 | !(Entity.getKind() != InitializedEntity::EK_Base && |
4476 | Entity.getKind() != InitializedEntity::EK_Delegating && |
4477 | Entity.getKind() != |
4478 | InitializedEntity::EK_LambdaToBlockConversionBlockElement); |
4479 | |
4480 | bool CopyElisionPossible = false; |
4481 | auto ElideConstructor = [&] { |
4482 | // Convert qualifications if necessary. |
4483 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
4484 | if (ILE) |
4485 | Sequence.RewrapReferenceInitList(T: DestType, Syntactic: ILE); |
4486 | }; |
4487 | |
4488 | // C++17 [dcl.init]p17: |
4489 | // - If the initializer expression is a prvalue and the cv-unqualified |
4490 | // version of the source type is the same class as the class of the |
4491 | // destination, the initializer expression is used to initialize the |
4492 | // destination object. |
4493 | // Per DR (no number yet), this does not apply when initializing a base |
4494 | // class or delegating to another constructor from a mem-initializer. |
4495 | // ObjC++: Lambda captured by the block in the lambda to block conversion |
4496 | // should avoid copy elision. |
4497 | if (S.getLangOpts().CPlusPlus17 && !RequireActualConstructor && |
4498 | UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() && |
4499 | S.Context.hasSameUnqualifiedType(T1: UnwrappedArgs[0]->getType(), T2: DestType)) { |
4500 | if (ILE && !DestType->isAggregateType()) { |
4501 | // CWG2311: T{ prvalue_of_type_T } is not eligible for copy elision |
4502 | // Make this an elision if this won't call an initializer-list |
4503 | // constructor. (Always on an aggregate type or check constructors first.) |
4504 | |
4505 | // This effectively makes our resolution as follows. The parts in angle |
4506 | // brackets are additions. |
4507 | // C++17 [over.match.list]p(1.2): |
4508 | // - If no viable initializer-list constructor is found <and the |
4509 | // initializer list does not consist of exactly a single element with |
4510 | // the same cv-unqualified class type as T>, [...] |
4511 | // C++17 [dcl.init.list]p(3.6): |
4512 | // - Otherwise, if T is a class type, constructors are considered. The |
4513 | // applicable constructors are enumerated and the best one is chosen |
4514 | // through overload resolution. <If no constructor is found and the |
4515 | // initializer list consists of exactly a single element with the same |
4516 | // cv-unqualified class type as T, the object is initialized from that |
4517 | // element (by copy-initialization for copy-list-initialization, or by |
4518 | // direct-initialization for direct-list-initialization). Otherwise, > |
4519 | // if a narrowing conversion [...] |
4520 | assert(!IsInitListCopy && |
4521 | "IsInitListCopy only possible with aggregate types"); |
4522 | CopyElisionPossible = true; |
4523 | } else { |
4524 | ElideConstructor(); |
4525 | return; |
4526 | } |
4527 | } |
4528 | |
4529 | const RecordType *DestRecordType = DestType->getAs<RecordType>(); |
4530 | assert(DestRecordType && "Constructor initialization requires record type"); |
4531 | CXXRecordDecl *DestRecordDecl |
4532 | = cast<CXXRecordDecl>(Val: DestRecordType->getDecl()); |
4533 | |
4534 | // Build the candidate set directly in the initialization sequence |
4535 | // structure, so that it will persist if we fail. |
4536 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
4537 | |
4538 | // Determine whether we are allowed to call explicit constructors or |
4539 | // explicit conversion operators. |
4540 | bool AllowExplicit = Kind.AllowExplicit() || IsListInit; |
4541 | bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; |
4542 | |
4543 | // - Otherwise, if T is a class type, constructors are considered. The |
4544 | // applicable constructors are enumerated, and the best one is chosen |
4545 | // through overload resolution. |
4546 | DeclContext::lookup_result Ctors = S.LookupConstructors(Class: DestRecordDecl); |
4547 | |
4548 | OverloadingResult Result = OR_No_Viable_Function; |
4549 | OverloadCandidateSet::iterator Best; |
4550 | bool AsInitializerList = false; |
4551 | |
4552 | // C++11 [over.match.list]p1, per DR1467: |
4553 | // When objects of non-aggregate type T are list-initialized, such that |
4554 | // 8.5.4 [dcl.init.list] specifies that overload resolution is performed |
4555 | // according to the rules in this section, overload resolution selects |
4556 | // the constructor in two phases: |
4557 | // |
4558 | // - Initially, the candidate functions are the initializer-list |
4559 | // constructors of the class T and the argument list consists of the |
4560 | // initializer list as a single argument. |
4561 | if (IsListInit) { |
4562 | AsInitializerList = true; |
4563 | |
4564 | // If the initializer list has no elements and T has a default constructor, |
4565 | // the first phase is omitted. |
4566 | if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(Class: DestRecordDecl))) |
4567 | Result = ResolveConstructorOverload( |
4568 | S, DeclLoc: Kind.getLocation(), Args, CandidateSet, DestType, Ctors, Best, |
4569 | CopyInitializing: CopyInitialization, AllowExplicit, |
4570 | /*OnlyListConstructors=*/true, IsListInit, RequireActualConstructor); |
4571 | |
4572 | if (CopyElisionPossible && Result == OR_No_Viable_Function) { |
4573 | // No initializer list candidate |
4574 | ElideConstructor(); |
4575 | return; |
4576 | } |
4577 | } |
4578 | |
4579 | // C++11 [over.match.list]p1: |
4580 | // - If no viable initializer-list constructor is found, overload resolution |
4581 | // is performed again, where the candidate functions are all the |
4582 | // constructors of the class T and the argument list consists of the |
4583 | // elements of the initializer list. |
4584 | if (Result == OR_No_Viable_Function) { |
4585 | AsInitializerList = false; |
4586 | Result = ResolveConstructorOverload( |
4587 | S, DeclLoc: Kind.getLocation(), Args: UnwrappedArgs, CandidateSet, DestType, Ctors, |
4588 | Best, CopyInitializing: CopyInitialization, AllowExplicit, |
4589 | /*OnlyListConstructors=*/false, IsListInit, RequireActualConstructor); |
4590 | } |
4591 | if (Result) { |
4592 | Sequence.SetOverloadFailure( |
4593 | Failure: IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed |
4594 | : InitializationSequence::FK_ConstructorOverloadFailed, |
4595 | Result); |
4596 | |
4597 | if (Result != OR_Deleted) |
4598 | return; |
4599 | } |
4600 | |
4601 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
4602 | |
4603 | // In C++17, ResolveConstructorOverload can select a conversion function |
4604 | // instead of a constructor. |
4605 | if (auto *CD = dyn_cast<CXXConversionDecl>(Val: Best->Function)) { |
4606 | // Add the user-defined conversion step that calls the conversion function. |
4607 | QualType ConvType = CD->getConversionType(); |
4608 | assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && |
4609 | "should not have selected this conversion function"); |
4610 | Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, |
4611 | HadMultipleCandidates); |
4612 | if (!S.Context.hasSameType(T1: ConvType, T2: DestType)) |
4613 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
4614 | if (IsListInit) |
4615 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: ILE); |
4616 | return; |
4617 | } |
4618 | |
4619 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Val: Best->Function); |
4620 | if (Result != OR_Deleted) { |
4621 | if (!IsListInit && |
4622 | (Kind.getKind() == InitializationKind::IK_Default || |
4623 | Kind.getKind() == InitializationKind::IK_Direct) && |
4624 | !(CtorDecl->isCopyOrMoveConstructor() && CtorDecl->isImplicit()) && |
4625 | DestRecordDecl->isAggregate() && |
4626 | DestRecordDecl->hasUninitializedExplicitInitFields()) { |
4627 | S.Diag(Kind.getLocation(), diag::warn_field_requires_explicit_init) |
4628 | << /* Var-in-Record */ 1 << DestRecordDecl; |
4629 | emitUninitializedExplicitInitFields(S, DestRecordDecl); |
4630 | } |
4631 | |
4632 | // C++11 [dcl.init]p6: |
4633 | // If a program calls for the default initialization of an object |
4634 | // of a const-qualified type T, T shall be a class type with a |
4635 | // user-provided default constructor. |
4636 | // C++ core issue 253 proposal: |
4637 | // If the implicit default constructor initializes all subobjects, no |
4638 | // initializer should be required. |
4639 | // The 253 proposal is for example needed to process libstdc++ headers |
4640 | // in 5.x. |
4641 | if (Kind.getKind() == InitializationKind::IK_Default && |
4642 | Entity.getType().isConstQualified()) { |
4643 | if (!CtorDecl->getParent()->allowConstDefaultInit()) { |
4644 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
4645 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
4646 | return; |
4647 | } |
4648 | } |
4649 | |
4650 | // C++11 [over.match.list]p1: |
4651 | // In copy-list-initialization, if an explicit constructor is chosen, the |
4652 | // initializer is ill-formed. |
4653 | if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { |
4654 | Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); |
4655 | return; |
4656 | } |
4657 | } |
4658 | |
4659 | // [class.copy.elision]p3: |
4660 | // In some copy-initialization contexts, a two-stage overload resolution |
4661 | // is performed. |
4662 | // If the first overload resolution selects a deleted function, we also |
4663 | // need the initialization sequence to decide whether to perform the second |
4664 | // overload resolution. |
4665 | // For deleted functions in other contexts, there is no need to get the |
4666 | // initialization sequence. |
4667 | if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy) |
4668 | return; |
4669 | |
4670 | // Add the constructor initialization step. Any cv-qualification conversion is |
4671 | // subsumed by the initialization. |
4672 | Sequence.AddConstructorInitializationStep( |
4673 | FoundDecl: Best->FoundDecl, Constructor: CtorDecl, T: DestArrayType, HadMultipleCandidates, |
4674 | FromInitList: IsListInit | IsInitListCopy, AsInitList: AsInitializerList); |
4675 | } |
4676 | |
4677 | static void TryOrBuildParenListInitialization( |
4678 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
4679 | ArrayRef<Expr *> Args, InitializationSequence &Sequence, bool VerifyOnly, |
4680 | ExprResult *Result = nullptr); |
4681 | |
4682 | /// Attempt to initialize an object of a class type either by |
4683 | /// direct-initialization, or by copy-initialization from an |
4684 | /// expression of the same or derived class type. This corresponds |
4685 | /// to the first two sub-bullets of C++2c [dcl.init.general] p16.6. |
4686 | /// |
4687 | /// \param IsAggrListInit Is this non-list-initialization being done as |
4688 | /// part of a list-initialization of an aggregate |
4689 | /// from a single expression of the same or |
4690 | /// derived class type (C++2c [dcl.init.list] p3.2)? |
4691 | static void TryConstructorOrParenListInitialization( |
4692 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
4693 | MultiExprArg Args, QualType DestType, InitializationSequence &Sequence, |
4694 | bool IsAggrListInit) { |
4695 | // C++2c [dcl.init.general] p16.6: |
4696 | // * Otherwise, if the destination type is a class type: |
4697 | // * If the initializer expression is a prvalue and |
4698 | // the cv-unqualified version of the source type is the same |
4699 | // as the destination type, the initializer expression is used |
4700 | // to initialize the destination object. |
4701 | // * Otherwise, if the initialization is direct-initialization, |
4702 | // or if it is copy-initialization where the cv-unqualified |
4703 | // version of the source type is the same as or is derived from |
4704 | // the class of the destination type, constructors are considered. |
4705 | // The applicable constructors are enumerated, and the best one |
4706 | // is chosen through overload resolution. Then: |
4707 | // * If overload resolution is successful, the selected |
4708 | // constructor is called to initialize the object, with |
4709 | // the initializer expression or expression-list as its |
4710 | // argument(s). |
4711 | TryConstructorInitialization(S, Entity, Kind, Args, DestType, DestArrayType: DestType, |
4712 | Sequence, /*IsListInit=*/false, IsInitListCopy: IsAggrListInit); |
4713 | |
4714 | // * Otherwise, if no constructor is viable, the destination type |
4715 | // is an aggregate class, and the initializer is a parenthesized |
4716 | // expression-list, the object is initialized as follows. [...] |
4717 | // Parenthesized initialization of aggregates is a C++20 feature. |
4718 | if (S.getLangOpts().CPlusPlus20 && |
4719 | Kind.getKind() == InitializationKind::IK_Direct && Sequence.Failed() && |
4720 | Sequence.getFailureKind() == |
4721 | InitializationSequence::FK_ConstructorOverloadFailed && |
4722 | Sequence.getFailedOverloadResult() == OR_No_Viable_Function && |
4723 | (IsAggrListInit || DestType->isAggregateType())) |
4724 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence, |
4725 | /*VerifyOnly=*/true); |
4726 | |
4727 | // * Otherwise, the initialization is ill-formed. |
4728 | } |
4729 | |
4730 | static bool |
4731 | ResolveOverloadedFunctionForReferenceBinding(Sema &S, |
4732 | Expr *Initializer, |
4733 | QualType &SourceType, |
4734 | QualType &UnqualifiedSourceType, |
4735 | QualType UnqualifiedTargetType, |
4736 | InitializationSequence &Sequence) { |
4737 | if (S.Context.getCanonicalType(T: UnqualifiedSourceType) == |
4738 | S.Context.OverloadTy) { |
4739 | DeclAccessPair Found; |
4740 | bool HadMultipleCandidates = false; |
4741 | if (FunctionDecl *Fn |
4742 | = S.ResolveAddressOfOverloadedFunction(AddressOfExpr: Initializer, |
4743 | TargetType: UnqualifiedTargetType, |
4744 | Complain: false, Found, |
4745 | pHadMultipleCandidates: &HadMultipleCandidates)) { |
4746 | Sequence.AddAddressOverloadResolutionStep(Function: Fn, Found, |
4747 | HadMultipleCandidates); |
4748 | SourceType = Fn->getType(); |
4749 | UnqualifiedSourceType = SourceType.getUnqualifiedType(); |
4750 | } else if (!UnqualifiedTargetType->isRecordType()) { |
4751 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
4752 | return true; |
4753 | } |
4754 | } |
4755 | return false; |
4756 | } |
4757 | |
4758 | static void TryReferenceInitializationCore(Sema &S, |
4759 | const InitializedEntity &Entity, |
4760 | const InitializationKind &Kind, |
4761 | Expr *Initializer, |
4762 | QualType cv1T1, QualType T1, |
4763 | Qualifiers T1Quals, |
4764 | QualType cv2T2, QualType T2, |
4765 | Qualifiers T2Quals, |
4766 | InitializationSequence &Sequence, |
4767 | bool TopLevelOfInitList); |
4768 | |
4769 | static void TryValueInitialization(Sema &S, |
4770 | const InitializedEntity &Entity, |
4771 | const InitializationKind &Kind, |
4772 | InitializationSequence &Sequence, |
4773 | InitListExpr *InitList = nullptr); |
4774 | |
4775 | /// Attempt list initialization of a reference. |
4776 | static void TryReferenceListInitialization(Sema &S, |
4777 | const InitializedEntity &Entity, |
4778 | const InitializationKind &Kind, |
4779 | InitListExpr *InitList, |
4780 | InitializationSequence &Sequence, |
4781 | bool TreatUnavailableAsInvalid) { |
4782 | // First, catch C++03 where this isn't possible. |
4783 | if (!S.getLangOpts().CPlusPlus11) { |
4784 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
4785 | return; |
4786 | } |
4787 | // Can't reference initialize a compound literal. |
4788 | if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { |
4789 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
4790 | return; |
4791 | } |
4792 | |
4793 | QualType DestType = Entity.getType(); |
4794 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4795 | Qualifiers T1Quals; |
4796 | QualType T1 = S.Context.getUnqualifiedArrayType(T: cv1T1, Quals&: T1Quals); |
4797 | |
4798 | // Reference initialization via an initializer list works thus: |
4799 | // If the initializer list consists of a single element that is |
4800 | // reference-related to the referenced type, bind directly to that element |
4801 | // (possibly creating temporaries). |
4802 | // Otherwise, initialize a temporary with the initializer list and |
4803 | // bind to that. |
4804 | if (InitList->getNumInits() == 1) { |
4805 | Expr *Initializer = InitList->getInit(Init: 0); |
4806 | QualType cv2T2 = S.getCompletedType(E: Initializer); |
4807 | Qualifiers T2Quals; |
4808 | QualType T2 = S.Context.getUnqualifiedArrayType(T: cv2T2, Quals&: T2Quals); |
4809 | |
4810 | // If this fails, creating a temporary wouldn't work either. |
4811 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, SourceType&: cv2T2, UnqualifiedSourceType&: T2, |
4812 | UnqualifiedTargetType: T1, Sequence)) |
4813 | return; |
4814 | |
4815 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4816 | Sema::ReferenceCompareResult RefRelationship |
4817 | = S.CompareReferenceRelationship(Loc: DeclLoc, T1: cv1T1, T2: cv2T2); |
4818 | if (RefRelationship >= Sema::Ref_Related) { |
4819 | // Try to bind the reference here. |
4820 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
4821 | T1Quals, cv2T2, T2, T2Quals, Sequence, |
4822 | /*TopLevelOfInitList=*/true); |
4823 | if (Sequence) |
4824 | Sequence.RewrapReferenceInitList(T: cv1T1, Syntactic: InitList); |
4825 | return; |
4826 | } |
4827 | |
4828 | // Update the initializer if we've resolved an overloaded function. |
4829 | if (Sequence.step_begin() != Sequence.step_end()) |
4830 | Sequence.RewrapReferenceInitList(T: cv1T1, Syntactic: InitList); |
4831 | } |
4832 | // Perform address space compatibility check. |
4833 | QualType cv1T1IgnoreAS = cv1T1; |
4834 | if (T1Quals.hasAddressSpace()) { |
4835 | Qualifiers T2Quals; |
4836 | (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals); |
4837 | if (!T1Quals.isAddressSpaceSupersetOf(other: T2Quals, Ctx: S.getASTContext())) { |
4838 | Sequence.SetFailed( |
4839 | InitializationSequence::FK_ReferenceInitDropsQualifiers); |
4840 | return; |
4841 | } |
4842 | // Ignore address space of reference type at this point and perform address |
4843 | // space conversion after the reference binding step. |
4844 | cv1T1IgnoreAS = |
4845 | S.Context.getQualifiedType(T: T1, Qs: T1Quals.withoutAddressSpace()); |
4846 | } |
4847 | // Not reference-related. Create a temporary and bind to that. |
4848 | InitializedEntity TempEntity = |
4849 | InitializedEntity::InitializeTemporary(Type: cv1T1IgnoreAS); |
4850 | |
4851 | TryListInitialization(S, Entity: TempEntity, Kind, InitList, Sequence, |
4852 | TreatUnavailableAsInvalid); |
4853 | if (Sequence) { |
4854 | if (DestType->isRValueReferenceType() || |
4855 | (T1Quals.hasConst() && !T1Quals.hasVolatile())) { |
4856 | if (S.getLangOpts().CPlusPlus20 && |
4857 | isa<IncompleteArrayType>(Val: T1->getUnqualifiedDesugaredType()) && |
4858 | DestType->isRValueReferenceType()) { |
4859 | // C++20 [dcl.init.list]p3.10: |
4860 | // List-initialization of an object or reference of type T is defined as |
4861 | // follows: |
4862 | // ..., unless T is “reference to array of unknown bound of U”, in which |
4863 | // case the type of the prvalue is the type of x in the declaration U |
4864 | // x[] H, where H is the initializer list. |
4865 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK: clang::VK_PRValue); |
4866 | } |
4867 | Sequence.AddReferenceBindingStep(T: cv1T1IgnoreAS, |
4868 | /*BindingTemporary=*/true); |
4869 | if (T1Quals.hasAddressSpace()) |
4870 | Sequence.AddQualificationConversionStep( |
4871 | Ty: cv1T1, VK: DestType->isRValueReferenceType() ? VK_XValue : VK_LValue); |
4872 | } else |
4873 | Sequence.SetFailed( |
4874 | InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); |
4875 | } |
4876 | } |
4877 | |
4878 | /// Attempt list initialization (C++0x [dcl.init.list]) |
4879 | static void TryListInitialization(Sema &S, |
4880 | const InitializedEntity &Entity, |
4881 | const InitializationKind &Kind, |
4882 | InitListExpr *InitList, |
4883 | InitializationSequence &Sequence, |
4884 | bool TreatUnavailableAsInvalid) { |
4885 | QualType DestType = Entity.getType(); |
4886 | |
4887 | if (S.getLangOpts().HLSL && !S.HLSL().transformInitList(Entity, Init: InitList)) |
4888 | return; |
4889 | |
4890 | // C++ doesn't allow scalar initialization with more than one argument. |
4891 | // But C99 complex numbers are scalars and it makes sense there. |
4892 | if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && |
4893 | !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { |
4894 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); |
4895 | return; |
4896 | } |
4897 | if (DestType->isReferenceType()) { |
4898 | TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, |
4899 | TreatUnavailableAsInvalid); |
4900 | return; |
4901 | } |
4902 | |
4903 | if (DestType->isRecordType() && |
4904 | !S.isCompleteType(Loc: InitList->getBeginLoc(), T: DestType)) { |
4905 | Sequence.setIncompleteTypeFailure(DestType); |
4906 | return; |
4907 | } |
4908 | |
4909 | // C++20 [dcl.init.list]p3: |
4910 | // - If the braced-init-list contains a designated-initializer-list, T shall |
4911 | // be an aggregate class. [...] Aggregate initialization is performed. |
4912 | // |
4913 | // We allow arrays here too in order to support array designators. |
4914 | // |
4915 | // FIXME: This check should precede the handling of reference initialization. |
4916 | // We follow other compilers in allowing things like 'Aggr &&a = {.x = 1};' |
4917 | // as a tentative DR resolution. |
4918 | bool IsDesignatedInit = InitList->hasDesignatedInit(); |
4919 | if (!DestType->isAggregateType() && IsDesignatedInit) { |
4920 | Sequence.SetFailed( |
4921 | InitializationSequence::FK_DesignatedInitForNonAggregate); |
4922 | return; |
4923 | } |
4924 | |
4925 | // C++11 [dcl.init.list]p3, per DR1467 and DR2137: |
4926 | // - If T is an aggregate class and the initializer list has a single element |
4927 | // of type cv U, where U is T or a class derived from T, the object is |
4928 | // initialized from that element (by copy-initialization for |
4929 | // copy-list-initialization, or by direct-initialization for |
4930 | // direct-list-initialization). |
4931 | // - Otherwise, if T is a character array and the initializer list has a |
4932 | // single element that is an appropriately-typed string literal |
4933 | // (8.5.2 [dcl.init.string]), initialization is performed as described |
4934 | // in that section. |
4935 | // - Otherwise, if T is an aggregate, [...] (continue below). |
4936 | if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1 && |
4937 | !IsDesignatedInit) { |
4938 | if (DestType->isRecordType() && DestType->isAggregateType()) { |
4939 | QualType InitType = InitList->getInit(Init: 0)->getType(); |
4940 | if (S.Context.hasSameUnqualifiedType(T1: InitType, T2: DestType) || |
4941 | S.IsDerivedFrom(Loc: InitList->getBeginLoc(), Derived: InitType, Base: DestType)) { |
4942 | InitializationKind SubKind = |
4943 | Kind.getKind() == InitializationKind::IK_DirectList |
4944 | ? InitializationKind::CreateDirect(InitLoc: Kind.getLocation(), |
4945 | LParenLoc: InitList->getLBraceLoc(), |
4946 | RParenLoc: InitList->getRBraceLoc()) |
4947 | : Kind; |
4948 | Expr *InitListAsExpr = InitList; |
4949 | TryConstructorOrParenListInitialization( |
4950 | S, Entity, Kind: SubKind, Args: InitListAsExpr, DestType, Sequence, |
4951 | /*IsAggrListInit=*/true); |
4952 | return; |
4953 | } |
4954 | } |
4955 | if (const ArrayType *DestAT = S.Context.getAsArrayType(T: DestType)) { |
4956 | Expr *SubInit[1] = {InitList->getInit(Init: 0)}; |
4957 | |
4958 | // C++17 [dcl.struct.bind]p1: |
4959 | // ... If the assignment-expression in the initializer has array type A |
4960 | // and no ref-qualifier is present, e has type cv A and each element is |
4961 | // copy-initialized or direct-initialized from the corresponding element |
4962 | // of the assignment-expression as specified by the form of the |
4963 | // initializer. ... |
4964 | // |
4965 | // This is a special case not following list-initialization. |
4966 | if (isa<ConstantArrayType>(Val: DestAT) && |
4967 | Entity.getKind() == InitializedEntity::EK_Variable && |
4968 | isa<DecompositionDecl>(Val: Entity.getDecl())) { |
4969 | assert( |
4970 | S.Context.hasSameUnqualifiedType(SubInit[0]->getType(), DestType) && |
4971 | "Deduced to other type?"); |
4972 | assert(Kind.getKind() == clang::InitializationKind::IK_DirectList && |
4973 | "List-initialize structured bindings but not " |
4974 | "direct-list-initialization?"); |
4975 | TryArrayCopy(S, |
4976 | Kind: InitializationKind::CreateDirect(InitLoc: Kind.getLocation(), |
4977 | LParenLoc: InitList->getLBraceLoc(), |
4978 | RParenLoc: InitList->getRBraceLoc()), |
4979 | Entity, Initializer: SubInit[0], DestType, Sequence, |
4980 | TreatUnavailableAsInvalid); |
4981 | if (Sequence) |
4982 | Sequence.AddUnwrapInitListInitStep(Syntactic: InitList); |
4983 | return; |
4984 | } |
4985 | |
4986 | if (!isa<VariableArrayType>(Val: DestAT) && |
4987 | IsStringInit(Init: SubInit[0], AT: DestAT, Context&: S.Context) == SIF_None) { |
4988 | InitializationKind SubKind = |
4989 | Kind.getKind() == InitializationKind::IK_DirectList |
4990 | ? InitializationKind::CreateDirect(InitLoc: Kind.getLocation(), |
4991 | LParenLoc: InitList->getLBraceLoc(), |
4992 | RParenLoc: InitList->getRBraceLoc()) |
4993 | : Kind; |
4994 | Sequence.InitializeFrom(S, Entity, Kind: SubKind, Args: SubInit, |
4995 | /*TopLevelOfInitList*/ true, |
4996 | TreatUnavailableAsInvalid); |
4997 | |
4998 | // TryStringLiteralInitialization() (in InitializeFrom()) will fail if |
4999 | // the element is not an appropriately-typed string literal, in which |
5000 | // case we should proceed as in C++11 (below). |
5001 | if (Sequence) { |
5002 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: InitList); |
5003 | return; |
5004 | } |
5005 | } |
5006 | } |
5007 | } |
5008 | |
5009 | // C++11 [dcl.init.list]p3: |
5010 | // - If T is an aggregate, aggregate initialization is performed. |
5011 | if ((DestType->isRecordType() && !DestType->isAggregateType()) || |
5012 | (S.getLangOpts().CPlusPlus11 && |
5013 | S.isStdInitializerList(Ty: DestType, Element: nullptr) && !IsDesignatedInit)) { |
5014 | if (S.getLangOpts().CPlusPlus11) { |
5015 | // - Otherwise, if the initializer list has no elements and T is a |
5016 | // class type with a default constructor, the object is |
5017 | // value-initialized. |
5018 | if (InitList->getNumInits() == 0) { |
5019 | CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); |
5020 | if (S.LookupDefaultConstructor(Class: RD)) { |
5021 | TryValueInitialization(S, Entity, Kind, Sequence, InitList); |
5022 | return; |
5023 | } |
5024 | } |
5025 | |
5026 | // - Otherwise, if T is a specialization of std::initializer_list<E>, |
5027 | // an initializer_list object constructed [...] |
5028 | if (TryInitializerListConstruction(S, List: InitList, DestType, Sequence, |
5029 | TreatUnavailableAsInvalid)) |
5030 | return; |
5031 | |
5032 | // - Otherwise, if T is a class type, constructors are considered. |
5033 | Expr *InitListAsExpr = InitList; |
5034 | TryConstructorInitialization(S, Entity, Kind, Args: InitListAsExpr, DestType, |
5035 | DestArrayType: DestType, Sequence, /*InitListSyntax*/IsListInit: true); |
5036 | } else |
5037 | Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); |
5038 | return; |
5039 | } |
5040 | |
5041 | if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && |
5042 | InitList->getNumInits() == 1) { |
5043 | Expr *E = InitList->getInit(Init: 0); |
5044 | |
5045 | // - Otherwise, if T is an enumeration with a fixed underlying type, |
5046 | // the initializer-list has a single element v, and the initialization |
5047 | // is direct-list-initialization, the object is initialized with the |
5048 | // value T(v); if a narrowing conversion is required to convert v to |
5049 | // the underlying type of T, the program is ill-formed. |
5050 | auto *ET = DestType->getAs<EnumType>(); |
5051 | if (S.getLangOpts().CPlusPlus17 && |
5052 | Kind.getKind() == InitializationKind::IK_DirectList && |
5053 | ET && ET->getDecl()->isFixed() && |
5054 | !S.Context.hasSameUnqualifiedType(T1: E->getType(), T2: DestType) && |
5055 | (E->getType()->isIntegralOrUnscopedEnumerationType() || |
5056 | E->getType()->isFloatingType())) { |
5057 | // There are two ways that T(v) can work when T is an enumeration type. |
5058 | // If there is either an implicit conversion sequence from v to T or |
5059 | // a conversion function that can convert from v to T, then we use that. |
5060 | // Otherwise, if v is of integral, unscoped enumeration, or floating-point |
5061 | // type, it is converted to the enumeration type via its underlying type. |
5062 | // There is no overlap possible between these two cases (except when the |
5063 | // source value is already of the destination type), and the first |
5064 | // case is handled by the general case for single-element lists below. |
5065 | ImplicitConversionSequence ICS; |
5066 | ICS.setStandard(); |
5067 | ICS.Standard.setAsIdentityConversion(); |
5068 | if (!E->isPRValue()) |
5069 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
5070 | // If E is of a floating-point type, then the conversion is ill-formed |
5071 | // due to narrowing, but go through the motions in order to produce the |
5072 | // right diagnostic. |
5073 | ICS.Standard.Second = E->getType()->isFloatingType() |
5074 | ? ICK_Floating_Integral |
5075 | : ICK_Integral_Conversion; |
5076 | ICS.Standard.setFromType(E->getType()); |
5077 | ICS.Standard.setToType(Idx: 0, T: E->getType()); |
5078 | ICS.Standard.setToType(Idx: 1, T: DestType); |
5079 | ICS.Standard.setToType(Idx: 2, T: DestType); |
5080 | Sequence.AddConversionSequenceStep(ICS, T: ICS.Standard.getToType(Idx: 2), |
5081 | /*TopLevelOfInitList*/true); |
5082 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: InitList); |
5083 | return; |
5084 | } |
5085 | |
5086 | // - Otherwise, if the initializer list has a single element of type E |
5087 | // [...references are handled above...], the object or reference is |
5088 | // initialized from that element (by copy-initialization for |
5089 | // copy-list-initialization, or by direct-initialization for |
5090 | // direct-list-initialization); if a narrowing conversion is required |
5091 | // to convert the element to T, the program is ill-formed. |
5092 | // |
5093 | // Per core-24034, this is direct-initialization if we were performing |
5094 | // direct-list-initialization and copy-initialization otherwise. |
5095 | // We can't use InitListChecker for this, because it always performs |
5096 | // copy-initialization. This only matters if we might use an 'explicit' |
5097 | // conversion operator, or for the special case conversion of nullptr_t to |
5098 | // bool, so we only need to handle those cases. |
5099 | // |
5100 | // FIXME: Why not do this in all cases? |
5101 | Expr *Init = InitList->getInit(Init: 0); |
5102 | if (Init->getType()->isRecordType() || |
5103 | (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { |
5104 | InitializationKind SubKind = |
5105 | Kind.getKind() == InitializationKind::IK_DirectList |
5106 | ? InitializationKind::CreateDirect(InitLoc: Kind.getLocation(), |
5107 | LParenLoc: InitList->getLBraceLoc(), |
5108 | RParenLoc: InitList->getRBraceLoc()) |
5109 | : Kind; |
5110 | Expr *SubInit[1] = { Init }; |
5111 | Sequence.InitializeFrom(S, Entity, Kind: SubKind, Args: SubInit, |
5112 | /*TopLevelOfInitList*/true, |
5113 | TreatUnavailableAsInvalid); |
5114 | if (Sequence) |
5115 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: InitList); |
5116 | return; |
5117 | } |
5118 | } |
5119 | |
5120 | InitListChecker CheckInitList(S, Entity, InitList, |
5121 | DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); |
5122 | if (CheckInitList.HadError()) { |
5123 | Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); |
5124 | return; |
5125 | } |
5126 | |
5127 | // Add the list initialization step with the built init list. |
5128 | Sequence.AddListInitializationStep(T: DestType); |
5129 | } |
5130 | |
5131 | /// Try a reference initialization that involves calling a conversion |
5132 | /// function. |
5133 | static OverloadingResult TryRefInitWithConversionFunction( |
5134 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
5135 | Expr *Initializer, bool AllowRValues, bool IsLValueRef, |
5136 | InitializationSequence &Sequence) { |
5137 | QualType DestType = Entity.getType(); |
5138 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
5139 | QualType T1 = cv1T1.getUnqualifiedType(); |
5140 | QualType cv2T2 = Initializer->getType(); |
5141 | QualType T2 = cv2T2.getUnqualifiedType(); |
5142 | |
5143 | assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && |
5144 | "Must have incompatible references when binding via conversion"); |
5145 | |
5146 | // Build the candidate set directly in the initialization sequence |
5147 | // structure, so that it will persist if we fail. |
5148 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
5149 | CandidateSet.clear(CSK: OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
5150 | |
5151 | // Determine whether we are allowed to call explicit conversion operators. |
5152 | // Note that none of [over.match.copy], [over.match.conv], nor |
5153 | // [over.match.ref] permit an explicit constructor to be chosen when |
5154 | // initializing a reference, not even for direct-initialization. |
5155 | bool AllowExplicitCtors = false; |
5156 | bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); |
5157 | |
5158 | const RecordType *T1RecordType = nullptr; |
5159 | if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && |
5160 | S.isCompleteType(Loc: Kind.getLocation(), T: T1)) { |
5161 | // The type we're converting to is a class type. Enumerate its constructors |
5162 | // to see if there is a suitable conversion. |
5163 | CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(Val: T1RecordType->getDecl()); |
5164 | |
5165 | for (NamedDecl *D : S.LookupConstructors(Class: T1RecordDecl)) { |
5166 | auto Info = getConstructorInfo(ND: D); |
5167 | if (!Info.Constructor) |
5168 | continue; |
5169 | |
5170 | if (!Info.Constructor->isInvalidDecl() && |
5171 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { |
5172 | if (Info.ConstructorTmpl) |
5173 | S.AddTemplateOverloadCandidate( |
5174 | FunctionTemplate: Info.ConstructorTmpl, FoundDecl: Info.FoundDecl, |
5175 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, Args: Initializer, CandidateSet, |
5176 | /*SuppressUserConversions=*/true, |
5177 | /*PartialOverloading*/ false, AllowExplicit: AllowExplicitCtors); |
5178 | else |
5179 | S.AddOverloadCandidate( |
5180 | Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, |
5181 | /*SuppressUserConversions=*/true, |
5182 | /*PartialOverloading*/ false, AllowExplicitCtors); |
5183 | } |
5184 | } |
5185 | } |
5186 | if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) |
5187 | return OR_No_Viable_Function; |
5188 | |
5189 | const RecordType *T2RecordType = nullptr; |
5190 | if ((T2RecordType = T2->getAs<RecordType>()) && |
5191 | S.isCompleteType(Loc: Kind.getLocation(), T: T2)) { |
5192 | // The type we're converting from is a class type, enumerate its conversion |
5193 | // functions. |
5194 | CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(Val: T2RecordType->getDecl()); |
5195 | |
5196 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
5197 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
5198 | NamedDecl *D = *I; |
5199 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
5200 | if (isa<UsingShadowDecl>(Val: D)) |
5201 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
5202 | |
5203 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D); |
5204 | CXXConversionDecl *Conv; |
5205 | if (ConvTemplate) |
5206 | Conv = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
5207 | else |
5208 | Conv = cast<CXXConversionDecl>(Val: D); |
5209 | |
5210 | // If the conversion function doesn't return a reference type, |
5211 | // it can't be considered for this conversion unless we're allowed to |
5212 | // consider rvalues. |
5213 | // FIXME: Do we need to make sure that we only consider conversion |
5214 | // candidates with reference-compatible results? That might be needed to |
5215 | // break recursion. |
5216 | if ((AllowRValues || |
5217 | Conv->getConversionType()->isLValueReferenceType())) { |
5218 | if (ConvTemplate) |
5219 | S.AddTemplateConversionCandidate( |
5220 | FunctionTemplate: ConvTemplate, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, |
5221 | CandidateSet, |
5222 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit: AllowExplicitConvs); |
5223 | else |
5224 | S.AddConversionCandidate( |
5225 | Conversion: Conv, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, CandidateSet, |
5226 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit: AllowExplicitConvs); |
5227 | } |
5228 | } |
5229 | } |
5230 | if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) |
5231 | return OR_No_Viable_Function; |
5232 | |
5233 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
5234 | |
5235 | // Perform overload resolution. If it fails, return the failed result. |
5236 | OverloadCandidateSet::iterator Best; |
5237 | if (OverloadingResult Result |
5238 | = CandidateSet.BestViableFunction(S, Loc: DeclLoc, Best)) |
5239 | return Result; |
5240 | |
5241 | FunctionDecl *Function = Best->Function; |
5242 | // This is the overload that will be used for this initialization step if we |
5243 | // use this initialization. Mark it as referenced. |
5244 | Function->setReferenced(); |
5245 | |
5246 | // Compute the returned type and value kind of the conversion. |
5247 | QualType cv3T3; |
5248 | if (isa<CXXConversionDecl>(Val: Function)) |
5249 | cv3T3 = Function->getReturnType(); |
5250 | else |
5251 | cv3T3 = T1; |
5252 | |
5253 | ExprValueKind VK = VK_PRValue; |
5254 | if (cv3T3->isLValueReferenceType()) |
5255 | VK = VK_LValue; |
5256 | else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) |
5257 | VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; |
5258 | cv3T3 = cv3T3.getNonLValueExprType(Context: S.Context); |
5259 | |
5260 | // Add the user-defined conversion step. |
5261 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
5262 | Sequence.AddUserConversionStep(Function, FoundDecl: Best->FoundDecl, T: cv3T3, |
5263 | HadMultipleCandidates); |
5264 | |
5265 | // Determine whether we'll need to perform derived-to-base adjustments or |
5266 | // other conversions. |
5267 | Sema::ReferenceConversions RefConv; |
5268 | Sema::ReferenceCompareResult NewRefRelationship = |
5269 | S.CompareReferenceRelationship(Loc: DeclLoc, T1, T2: cv3T3, Conv: &RefConv); |
5270 | |
5271 | // Add the final conversion sequence, if necessary. |
5272 | if (NewRefRelationship == Sema::Ref_Incompatible) { |
5273 | assert(Best->HasFinalConversion && !isa<CXXConstructorDecl>(Function) && |
5274 | "should not have conversion after constructor"); |
5275 | |
5276 | ImplicitConversionSequence ICS; |
5277 | ICS.setStandard(); |
5278 | ICS.Standard = Best->FinalConversion; |
5279 | Sequence.AddConversionSequenceStep(ICS, T: ICS.Standard.getToType(Idx: 2)); |
5280 | |
5281 | // Every implicit conversion results in a prvalue, except for a glvalue |
5282 | // derived-to-base conversion, which we handle below. |
5283 | cv3T3 = ICS.Standard.getToType(Idx: 2); |
5284 | VK = VK_PRValue; |
5285 | } |
5286 | |
5287 | // If the converted initializer is a prvalue, its type T4 is adjusted to |
5288 | // type "cv1 T4" and the temporary materialization conversion is applied. |
5289 | // |
5290 | // We adjust the cv-qualifications to match the reference regardless of |
5291 | // whether we have a prvalue so that the AST records the change. In this |
5292 | // case, T4 is "cv3 T3". |
5293 | QualType cv1T4 = S.Context.getQualifiedType(T: cv3T3, Qs: cv1T1.getQualifiers()); |
5294 | if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) |
5295 | Sequence.AddQualificationConversionStep(Ty: cv1T4, VK); |
5296 | Sequence.AddReferenceBindingStep(T: cv1T4, BindingTemporary: VK == VK_PRValue); |
5297 | VK = IsLValueRef ? VK_LValue : VK_XValue; |
5298 | |
5299 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
5300 | Sequence.AddDerivedToBaseCastStep(BaseType: cv1T1, VK); |
5301 | else if (RefConv & Sema::ReferenceConversions::ObjC) |
5302 | Sequence.AddObjCObjectConversionStep(T: cv1T1); |
5303 | else if (RefConv & Sema::ReferenceConversions::Function) |
5304 | Sequence.AddFunctionReferenceConversionStep(Ty: cv1T1); |
5305 | else if (RefConv & Sema::ReferenceConversions::Qualification) { |
5306 | if (!S.Context.hasSameType(T1: cv1T4, T2: cv1T1)) |
5307 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK); |
5308 | } |
5309 | |
5310 | return OR_Success; |
5311 | } |
5312 | |
5313 | static void CheckCXX98CompatAccessibleCopy(Sema &S, |
5314 | const InitializedEntity &Entity, |
5315 | Expr *CurInitExpr); |
5316 | |
5317 | /// Attempt reference initialization (C++0x [dcl.init.ref]) |
5318 | static void TryReferenceInitialization(Sema &S, const InitializedEntity &Entity, |
5319 | const InitializationKind &Kind, |
5320 | Expr *Initializer, |
5321 | InitializationSequence &Sequence, |
5322 | bool TopLevelOfInitList) { |
5323 | QualType DestType = Entity.getType(); |
5324 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
5325 | Qualifiers T1Quals; |
5326 | QualType T1 = S.Context.getUnqualifiedArrayType(T: cv1T1, Quals&: T1Quals); |
5327 | QualType cv2T2 = S.getCompletedType(E: Initializer); |
5328 | Qualifiers T2Quals; |
5329 | QualType T2 = S.Context.getUnqualifiedArrayType(T: cv2T2, Quals&: T2Quals); |
5330 | |
5331 | // If the initializer is the address of an overloaded function, try |
5332 | // to resolve the overloaded function. If all goes well, T2 is the |
5333 | // type of the resulting function. |
5334 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, SourceType&: cv2T2, UnqualifiedSourceType&: T2, |
5335 | UnqualifiedTargetType: T1, Sequence)) |
5336 | return; |
5337 | |
5338 | // Delegate everything else to a subfunction. |
5339 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
5340 | T1Quals, cv2T2, T2, T2Quals, Sequence, |
5341 | TopLevelOfInitList); |
5342 | } |
5343 | |
5344 | /// Determine whether an expression is a non-referenceable glvalue (one to |
5345 | /// which a reference can never bind). Attempting to bind a reference to |
5346 | /// such a glvalue will always create a temporary. |
5347 | static bool isNonReferenceableGLValue(Expr *E) { |
5348 | return E->refersToBitField() || E->refersToVectorElement() || |
5349 | E->refersToMatrixElement(); |
5350 | } |
5351 | |
5352 | /// Reference initialization without resolving overloaded functions. |
5353 | /// |
5354 | /// We also can get here in C if we call a builtin which is declared as |
5355 | /// a function with a parameter of reference type (such as __builtin_va_end()). |
5356 | static void TryReferenceInitializationCore(Sema &S, |
5357 | const InitializedEntity &Entity, |
5358 | const InitializationKind &Kind, |
5359 | Expr *Initializer, |
5360 | QualType cv1T1, QualType T1, |
5361 | Qualifiers T1Quals, |
5362 | QualType cv2T2, QualType T2, |
5363 | Qualifiers T2Quals, |
5364 | InitializationSequence &Sequence, |
5365 | bool TopLevelOfInitList) { |
5366 | QualType DestType = Entity.getType(); |
5367 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
5368 | |
5369 | // Compute some basic properties of the types and the initializer. |
5370 | bool isLValueRef = DestType->isLValueReferenceType(); |
5371 | bool isRValueRef = !isLValueRef; |
5372 | Expr::Classification InitCategory = Initializer->Classify(Ctx&: S.Context); |
5373 | |
5374 | Sema::ReferenceConversions RefConv; |
5375 | Sema::ReferenceCompareResult RefRelationship = |
5376 | S.CompareReferenceRelationship(Loc: DeclLoc, T1: cv1T1, T2: cv2T2, Conv: &RefConv); |
5377 | |
5378 | // C++0x [dcl.init.ref]p5: |
5379 | // A reference to type "cv1 T1" is initialized by an expression of type |
5380 | // "cv2 T2" as follows: |
5381 | // |
5382 | // - If the reference is an lvalue reference and the initializer |
5383 | // expression |
5384 | // Note the analogous bullet points for rvalue refs to functions. Because |
5385 | // there are no function rvalues in C++, rvalue refs to functions are treated |
5386 | // like lvalue refs. |
5387 | OverloadingResult ConvOvlResult = OR_Success; |
5388 | bool T1Function = T1->isFunctionType(); |
5389 | if (isLValueRef || T1Function) { |
5390 | if (InitCategory.isLValue() && !isNonReferenceableGLValue(E: Initializer) && |
5391 | (RefRelationship == Sema::Ref_Compatible || |
5392 | (Kind.isCStyleOrFunctionalCast() && |
5393 | RefRelationship == Sema::Ref_Related))) { |
5394 | // - is an lvalue (but is not a bit-field), and "cv1 T1" is |
5395 | // reference-compatible with "cv2 T2," or |
5396 | if (RefConv & (Sema::ReferenceConversions::DerivedToBase | |
5397 | Sema::ReferenceConversions::ObjC)) { |
5398 | // If we're converting the pointee, add any qualifiers first; |
5399 | // these qualifiers must all be top-level, so just convert to "cv1 T2". |
5400 | if (RefConv & (Sema::ReferenceConversions::Qualification)) |
5401 | Sequence.AddQualificationConversionStep( |
5402 | Ty: S.Context.getQualifiedType(T: T2, Qs: T1Quals), |
5403 | VK: Initializer->getValueKind()); |
5404 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
5405 | Sequence.AddDerivedToBaseCastStep(BaseType: cv1T1, VK: VK_LValue); |
5406 | else |
5407 | Sequence.AddObjCObjectConversionStep(T: cv1T1); |
5408 | } else if (RefConv & Sema::ReferenceConversions::Qualification) { |
5409 | // Perform a (possibly multi-level) qualification conversion. |
5410 | Sequence.AddQualificationConversionStep(Ty: cv1T1, |
5411 | VK: Initializer->getValueKind()); |
5412 | } else if (RefConv & Sema::ReferenceConversions::Function) { |
5413 | Sequence.AddFunctionReferenceConversionStep(Ty: cv1T1); |
5414 | } |
5415 | |
5416 | // We only create a temporary here when binding a reference to a |
5417 | // bit-field or vector element. Those cases are't supposed to be |
5418 | // handled by this bullet, but the outcome is the same either way. |
5419 | Sequence.AddReferenceBindingStep(T: cv1T1, BindingTemporary: false); |
5420 | return; |
5421 | } |
5422 | |
5423 | // - has a class type (i.e., T2 is a class type), where T1 is not |
5424 | // reference-related to T2, and can be implicitly converted to an |
5425 | // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible |
5426 | // with "cv3 T3" (this conversion is selected by enumerating the |
5427 | // applicable conversion functions (13.3.1.6) and choosing the best |
5428 | // one through overload resolution (13.3)), |
5429 | // If we have an rvalue ref to function type here, the rhs must be |
5430 | // an rvalue. DR1287 removed the "implicitly" here. |
5431 | if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && |
5432 | (isLValueRef || InitCategory.isRValue())) { |
5433 | if (S.getLangOpts().CPlusPlus) { |
5434 | // Try conversion functions only for C++. |
5435 | ConvOvlResult = TryRefInitWithConversionFunction( |
5436 | S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, |
5437 | /*IsLValueRef*/ isLValueRef, Sequence); |
5438 | if (ConvOvlResult == OR_Success) |
5439 | return; |
5440 | if (ConvOvlResult != OR_No_Viable_Function) |
5441 | Sequence.SetOverloadFailure( |
5442 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
5443 | Result: ConvOvlResult); |
5444 | } else { |
5445 | ConvOvlResult = OR_No_Viable_Function; |
5446 | } |
5447 | } |
5448 | } |
5449 | |
5450 | // - Otherwise, the reference shall be an lvalue reference to a |
5451 | // non-volatile const type (i.e., cv1 shall be const), or the reference |
5452 | // shall be an rvalue reference. |
5453 | // For address spaces, we interpret this to mean that an addr space |
5454 | // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". |
5455 | if (isLValueRef && |
5456 | !(T1Quals.hasConst() && !T1Quals.hasVolatile() && |
5457 | T1Quals.isAddressSpaceSupersetOf(other: T2Quals, Ctx: S.getASTContext()))) { |
5458 | if (S.Context.getCanonicalType(T: T2) == S.Context.OverloadTy) |
5459 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
5460 | else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
5461 | Sequence.SetOverloadFailure( |
5462 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
5463 | Result: ConvOvlResult); |
5464 | else if (!InitCategory.isLValue()) |
5465 | Sequence.SetFailed( |
5466 | T1Quals.isAddressSpaceSupersetOf(other: T2Quals, Ctx: S.getASTContext()) |
5467 | ? InitializationSequence:: |
5468 | FK_NonConstLValueReferenceBindingToTemporary |
5469 | : InitializationSequence::FK_ReferenceInitDropsQualifiers); |
5470 | else { |
5471 | InitializationSequence::FailureKind FK; |
5472 | switch (RefRelationship) { |
5473 | case Sema::Ref_Compatible: |
5474 | if (Initializer->refersToBitField()) |
5475 | FK = InitializationSequence:: |
5476 | FK_NonConstLValueReferenceBindingToBitfield; |
5477 | else if (Initializer->refersToVectorElement()) |
5478 | FK = InitializationSequence:: |
5479 | FK_NonConstLValueReferenceBindingToVectorElement; |
5480 | else if (Initializer->refersToMatrixElement()) |
5481 | FK = InitializationSequence:: |
5482 | FK_NonConstLValueReferenceBindingToMatrixElement; |
5483 | else |
5484 | llvm_unreachable("unexpected kind of compatible initializer"); |
5485 | break; |
5486 | case Sema::Ref_Related: |
5487 | FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; |
5488 | break; |
5489 | case Sema::Ref_Incompatible: |
5490 | FK = InitializationSequence:: |
5491 | FK_NonConstLValueReferenceBindingToUnrelated; |
5492 | break; |
5493 | } |
5494 | Sequence.SetFailed(FK); |
5495 | } |
5496 | return; |
5497 | } |
5498 | |
5499 | // - If the initializer expression |
5500 | // - is an |
5501 | // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or |
5502 | // [1z] rvalue (but not a bit-field) or |
5503 | // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" |
5504 | // |
5505 | // Note: functions are handled above and below rather than here... |
5506 | if (!T1Function && |
5507 | (RefRelationship == Sema::Ref_Compatible || |
5508 | (Kind.isCStyleOrFunctionalCast() && |
5509 | RefRelationship == Sema::Ref_Related)) && |
5510 | ((InitCategory.isXValue() && !isNonReferenceableGLValue(E: Initializer)) || |
5511 | (InitCategory.isPRValue() && |
5512 | (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || |
5513 | T2->isArrayType())))) { |
5514 | ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue; |
5515 | if (InitCategory.isPRValue() && T2->isRecordType()) { |
5516 | // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the |
5517 | // compiler the freedom to perform a copy here or bind to the |
5518 | // object, while C++0x requires that we bind directly to the |
5519 | // object. Hence, we always bind to the object without making an |
5520 | // extra copy. However, in C++03 requires that we check for the |
5521 | // presence of a suitable copy constructor: |
5522 | // |
5523 | // The constructor that would be used to make the copy shall |
5524 | // be callable whether or not the copy is actually done. |
5525 | if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) |
5526 | Sequence.AddExtraneousCopyToTemporary(T: cv2T2); |
5527 | else if (S.getLangOpts().CPlusPlus11) |
5528 | CheckCXX98CompatAccessibleCopy(S, Entity, CurInitExpr: Initializer); |
5529 | } |
5530 | |
5531 | // C++1z [dcl.init.ref]/5.2.1.2: |
5532 | // If the converted initializer is a prvalue, its type T4 is adjusted |
5533 | // to type "cv1 T4" and the temporary materialization conversion is |
5534 | // applied. |
5535 | // Postpone address space conversions to after the temporary materialization |
5536 | // conversion to allow creating temporaries in the alloca address space. |
5537 | auto T1QualsIgnoreAS = T1Quals; |
5538 | auto T2QualsIgnoreAS = T2Quals; |
5539 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
5540 | T1QualsIgnoreAS.removeAddressSpace(); |
5541 | T2QualsIgnoreAS.removeAddressSpace(); |
5542 | } |
5543 | QualType cv1T4 = S.Context.getQualifiedType(T: cv2T2, Qs: T1QualsIgnoreAS); |
5544 | if (T1QualsIgnoreAS != T2QualsIgnoreAS) |
5545 | Sequence.AddQualificationConversionStep(Ty: cv1T4, VK: ValueKind); |
5546 | Sequence.AddReferenceBindingStep(T: cv1T4, BindingTemporary: ValueKind == VK_PRValue); |
5547 | ValueKind = isLValueRef ? VK_LValue : VK_XValue; |
5548 | // Add addr space conversion if required. |
5549 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
5550 | auto T4Quals = cv1T4.getQualifiers(); |
5551 | T4Quals.addAddressSpace(space: T1Quals.getAddressSpace()); |
5552 | QualType cv1T4WithAS = S.Context.getQualifiedType(T: T2, Qs: T4Quals); |
5553 | Sequence.AddQualificationConversionStep(Ty: cv1T4WithAS, VK: ValueKind); |
5554 | cv1T4 = cv1T4WithAS; |
5555 | } |
5556 | |
5557 | // In any case, the reference is bound to the resulting glvalue (or to |
5558 | // an appropriate base class subobject). |
5559 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
5560 | Sequence.AddDerivedToBaseCastStep(BaseType: cv1T1, VK: ValueKind); |
5561 | else if (RefConv & Sema::ReferenceConversions::ObjC) |
5562 | Sequence.AddObjCObjectConversionStep(T: cv1T1); |
5563 | else if (RefConv & Sema::ReferenceConversions::Qualification) { |
5564 | if (!S.Context.hasSameType(T1: cv1T4, T2: cv1T1)) |
5565 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK: ValueKind); |
5566 | } |
5567 | return; |
5568 | } |
5569 | |
5570 | // - has a class type (i.e., T2 is a class type), where T1 is not |
5571 | // reference-related to T2, and can be implicitly converted to an |
5572 | // xvalue, class prvalue, or function lvalue of type "cv3 T3", |
5573 | // where "cv1 T1" is reference-compatible with "cv3 T3", |
5574 | // |
5575 | // DR1287 removes the "implicitly" here. |
5576 | if (T2->isRecordType()) { |
5577 | if (RefRelationship == Sema::Ref_Incompatible) { |
5578 | ConvOvlResult = TryRefInitWithConversionFunction( |
5579 | S, Entity, Kind, Initializer, /*AllowRValues*/ true, |
5580 | /*IsLValueRef*/ isLValueRef, Sequence); |
5581 | if (ConvOvlResult) |
5582 | Sequence.SetOverloadFailure( |
5583 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
5584 | Result: ConvOvlResult); |
5585 | |
5586 | return; |
5587 | } |
5588 | |
5589 | if (RefRelationship == Sema::Ref_Compatible && |
5590 | isRValueRef && InitCategory.isLValue()) { |
5591 | Sequence.SetFailed( |
5592 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
5593 | return; |
5594 | } |
5595 | |
5596 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
5597 | return; |
5598 | } |
5599 | |
5600 | // - Otherwise, a temporary of type "cv1 T1" is created and initialized |
5601 | // from the initializer expression using the rules for a non-reference |
5602 | // copy-initialization (8.5). The reference is then bound to the |
5603 | // temporary. [...] |
5604 | |
5605 | // Ignore address space of reference type at this point and perform address |
5606 | // space conversion after the reference binding step. |
5607 | QualType cv1T1IgnoreAS = |
5608 | T1Quals.hasAddressSpace() |
5609 | ? S.Context.getQualifiedType(T: T1, Qs: T1Quals.withoutAddressSpace()) |
5610 | : cv1T1; |
5611 | |
5612 | InitializedEntity TempEntity = |
5613 | InitializedEntity::InitializeTemporary(Type: cv1T1IgnoreAS); |
5614 | |
5615 | // FIXME: Why do we use an implicit conversion here rather than trying |
5616 | // copy-initialization? |
5617 | ImplicitConversionSequence ICS |
5618 | = S.TryImplicitConversion(From: Initializer, ToType: TempEntity.getType(), |
5619 | /*SuppressUserConversions=*/false, |
5620 | AllowExplicit: Sema::AllowedExplicit::None, |
5621 | /*FIXME:InOverloadResolution=*/InOverloadResolution: false, |
5622 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
5623 | /*AllowObjCWritebackConversion=*/false); |
5624 | |
5625 | if (ICS.isBad()) { |
5626 | // FIXME: Use the conversion function set stored in ICS to turn |
5627 | // this into an overloading ambiguity diagnostic. However, we need |
5628 | // to keep that set as an OverloadCandidateSet rather than as some |
5629 | // other kind of set. |
5630 | if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
5631 | Sequence.SetOverloadFailure( |
5632 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
5633 | Result: ConvOvlResult); |
5634 | else if (S.Context.getCanonicalType(T: T2) == S.Context.OverloadTy) |
5635 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
5636 | else |
5637 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); |
5638 | return; |
5639 | } else { |
5640 | Sequence.AddConversionSequenceStep(ICS, T: TempEntity.getType(), |
5641 | TopLevelOfInitList); |
5642 | } |
5643 | |
5644 | // [...] If T1 is reference-related to T2, cv1 must be the |
5645 | // same cv-qualification as, or greater cv-qualification |
5646 | // than, cv2; otherwise, the program is ill-formed. |
5647 | unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); |
5648 | unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); |
5649 | if (RefRelationship == Sema::Ref_Related && |
5650 | ((T1CVRQuals | T2CVRQuals) != T1CVRQuals || |
5651 | !T1Quals.isAddressSpaceSupersetOf(other: T2Quals, Ctx: S.getASTContext()))) { |
5652 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
5653 | return; |
5654 | } |
5655 | |
5656 | // [...] If T1 is reference-related to T2 and the reference is an rvalue |
5657 | // reference, the initializer expression shall not be an lvalue. |
5658 | if (RefRelationship >= Sema::Ref_Related && !isLValueRef && |
5659 | InitCategory.isLValue()) { |
5660 | Sequence.SetFailed( |
5661 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
5662 | return; |
5663 | } |
5664 | |
5665 | Sequence.AddReferenceBindingStep(T: cv1T1IgnoreAS, /*BindingTemporary=*/true); |
5666 | |
5667 | if (T1Quals.hasAddressSpace()) { |
5668 | if (!Qualifiers::isAddressSpaceSupersetOf( |
5669 | A: T1Quals.getAddressSpace(), B: LangAS::Default, Ctx: S.getASTContext())) { |
5670 | Sequence.SetFailed( |
5671 | InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); |
5672 | return; |
5673 | } |
5674 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK: isLValueRef ? VK_LValue |
5675 | : VK_XValue); |
5676 | } |
5677 | } |
5678 | |
5679 | /// Attempt character array initialization from a string literal |
5680 | /// (C++ [dcl.init.string], C99 6.7.8). |
5681 | static void TryStringLiteralInitialization(Sema &S, |
5682 | const InitializedEntity &Entity, |
5683 | const InitializationKind &Kind, |
5684 | Expr *Initializer, |
5685 | InitializationSequence &Sequence) { |
5686 | Sequence.AddStringInitStep(T: Entity.getType()); |
5687 | } |
5688 | |
5689 | /// Attempt value initialization (C++ [dcl.init]p7). |
5690 | static void TryValueInitialization(Sema &S, |
5691 | const InitializedEntity &Entity, |
5692 | const InitializationKind &Kind, |
5693 | InitializationSequence &Sequence, |
5694 | InitListExpr *InitList) { |
5695 | assert((!InitList || InitList->getNumInits() == 0) && |
5696 | "Shouldn't use value-init for non-empty init lists"); |
5697 | |
5698 | // C++98 [dcl.init]p5, C++11 [dcl.init]p7: |
5699 | // |
5700 | // To value-initialize an object of type T means: |
5701 | QualType T = Entity.getType(); |
5702 | assert(!T->isVoidType() && "Cannot value-init void"); |
5703 | |
5704 | // -- if T is an array type, then each element is value-initialized; |
5705 | T = S.Context.getBaseElementType(QT: T); |
5706 | |
5707 | if (const RecordType *RT = T->getAs<RecordType>()) { |
5708 | if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) { |
5709 | bool NeedZeroInitialization = true; |
5710 | // C++98: |
5711 | // -- if T is a class type (clause 9) with a user-declared constructor |
5712 | // (12.1), then the default constructor for T is called (and the |
5713 | // initialization is ill-formed if T has no accessible default |
5714 | // constructor); |
5715 | // C++11: |
5716 | // -- if T is a class type (clause 9) with either no default constructor |
5717 | // (12.1 [class.ctor]) or a default constructor that is user-provided |
5718 | // or deleted, then the object is default-initialized; |
5719 | // |
5720 | // Note that the C++11 rule is the same as the C++98 rule if there are no |
5721 | // defaulted or deleted constructors, so we just use it unconditionally. |
5722 | CXXConstructorDecl *CD = S.LookupDefaultConstructor(Class: ClassDecl); |
5723 | if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) |
5724 | NeedZeroInitialization = false; |
5725 | |
5726 | // -- if T is a (possibly cv-qualified) non-union class type without a |
5727 | // user-provided or deleted default constructor, then the object is |
5728 | // zero-initialized and, if T has a non-trivial default constructor, |
5729 | // default-initialized; |
5730 | // The 'non-union' here was removed by DR1502. The 'non-trivial default |
5731 | // constructor' part was removed by DR1507. |
5732 | if (NeedZeroInitialization) |
5733 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
5734 | |
5735 | // C++03: |
5736 | // -- if T is a non-union class type without a user-declared constructor, |
5737 | // then every non-static data member and base class component of T is |
5738 | // value-initialized; |
5739 | // [...] A program that calls for [...] value-initialization of an |
5740 | // entity of reference type is ill-formed. |
5741 | // |
5742 | // C++11 doesn't need this handling, because value-initialization does not |
5743 | // occur recursively there, and the implicit default constructor is |
5744 | // defined as deleted in the problematic cases. |
5745 | if (!S.getLangOpts().CPlusPlus11 && |
5746 | ClassDecl->hasUninitializedReferenceMember()) { |
5747 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); |
5748 | return; |
5749 | } |
5750 | |
5751 | // If this is list-value-initialization, pass the empty init list on when |
5752 | // building the constructor call. This affects the semantics of a few |
5753 | // things (such as whether an explicit default constructor can be called). |
5754 | Expr *InitListAsExpr = InitList; |
5755 | MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); |
5756 | bool InitListSyntax = InitList; |
5757 | |
5758 | // FIXME: Instead of creating a CXXConstructExpr of array type here, |
5759 | // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. |
5760 | return TryConstructorInitialization( |
5761 | S, Entity, Kind, Args, DestType: T, DestArrayType: Entity.getType(), Sequence, IsListInit: InitListSyntax); |
5762 | } |
5763 | } |
5764 | |
5765 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
5766 | } |
5767 | |
5768 | /// Attempt default initialization (C++ [dcl.init]p6). |
5769 | static void TryDefaultInitialization(Sema &S, |
5770 | const InitializedEntity &Entity, |
5771 | const InitializationKind &Kind, |
5772 | InitializationSequence &Sequence) { |
5773 | assert(Kind.getKind() == InitializationKind::IK_Default); |
5774 | |
5775 | // C++ [dcl.init]p6: |
5776 | // To default-initialize an object of type T means: |
5777 | // - if T is an array type, each element is default-initialized; |
5778 | QualType DestType = S.Context.getBaseElementType(QT: Entity.getType()); |
5779 | |
5780 | // - if T is a (possibly cv-qualified) class type (Clause 9), the default |
5781 | // constructor for T is called (and the initialization is ill-formed if |
5782 | // T has no accessible default constructor); |
5783 | if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { |
5784 | TryConstructorInitialization(S, Entity, Kind, Args: {}, DestType, |
5785 | DestArrayType: Entity.getType(), Sequence); |
5786 | return; |
5787 | } |
5788 | |
5789 | // - otherwise, no initialization is performed. |
5790 | |
5791 | // If a program calls for the default initialization of an object of |
5792 | // a const-qualified type T, T shall be a class type with a user-provided |
5793 | // default constructor. |
5794 | if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { |
5795 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
5796 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
5797 | return; |
5798 | } |
5799 | |
5800 | // If the destination type has a lifetime property, zero-initialize it. |
5801 | if (DestType.getQualifiers().hasObjCLifetime()) { |
5802 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
5803 | return; |
5804 | } |
5805 | } |
5806 | |
5807 | static void TryOrBuildParenListInitialization( |
5808 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
5809 | ArrayRef<Expr *> Args, InitializationSequence &Sequence, bool VerifyOnly, |
5810 | ExprResult *Result) { |
5811 | unsigned EntityIndexToProcess = 0; |
5812 | SmallVector<Expr *, 4> InitExprs; |
5813 | QualType ResultType; |
5814 | Expr *ArrayFiller = nullptr; |
5815 | FieldDecl *InitializedFieldInUnion = nullptr; |
5816 | |
5817 | auto HandleInitializedEntity = [&](const InitializedEntity &SubEntity, |
5818 | const InitializationKind &SubKind, |
5819 | Expr *Arg, Expr **InitExpr = nullptr) { |
5820 | InitializationSequence IS = InitializationSequence( |
5821 | S, SubEntity, SubKind, |
5822 | Arg ? MultiExprArg(Arg) : MutableArrayRef<Expr *>()); |
5823 | |
5824 | if (IS.Failed()) { |
5825 | if (!VerifyOnly) { |
5826 | IS.Diagnose(S, Entity: SubEntity, Kind: SubKind, |
5827 | Args: Arg ? ArrayRef(Arg) : ArrayRef<Expr *>()); |
5828 | } else { |
5829 | Sequence.SetFailed( |
5830 | InitializationSequence::FK_ParenthesizedListInitFailed); |
5831 | } |
5832 | |
5833 | return false; |
5834 | } |
5835 | if (!VerifyOnly) { |
5836 | ExprResult ER; |
5837 | ER = IS.Perform(S, Entity: SubEntity, Kind: SubKind, |
5838 | Args: Arg ? MultiExprArg(Arg) : MutableArrayRef<Expr *>()); |
5839 | |
5840 | if (ER.isInvalid()) |
5841 | return false; |
5842 | |
5843 | if (InitExpr) |
5844 | *InitExpr = ER.get(); |
5845 | else |
5846 | InitExprs.push_back(Elt: ER.get()); |
5847 | } |
5848 | return true; |
5849 | }; |
5850 | |
5851 | if (const ArrayType *AT = |
5852 | S.getASTContext().getAsArrayType(T: Entity.getType())) { |
5853 | uint64_t ArrayLength; |
5854 | // C++ [dcl.init]p16.5 |
5855 | // if the destination type is an array, the object is initialized as |
5856 | // follows. Let x1, . . . , xk be the elements of the expression-list. If |
5857 | // the destination type is an array of unknown bound, it is defined as |
5858 | // having k elements. |
5859 | if (const ConstantArrayType *CAT = |
5860 | S.getASTContext().getAsConstantArrayType(T: Entity.getType())) { |
5861 | ArrayLength = CAT->getZExtSize(); |
5862 | ResultType = Entity.getType(); |
5863 | } else if (const VariableArrayType *VAT = |
5864 | S.getASTContext().getAsVariableArrayType(T: Entity.getType())) { |
5865 | // Braced-initialization of variable array types is not allowed, even if |
5866 | // the size is greater than or equal to the number of args, so we don't |
5867 | // allow them to be initialized via parenthesized aggregate initialization |
5868 | // either. |
5869 | const Expr *SE = VAT->getSizeExpr(); |
5870 | S.Diag(SE->getBeginLoc(), diag::err_variable_object_no_init) |
5871 | << SE->getSourceRange(); |
5872 | return; |
5873 | } else { |
5874 | assert(Entity.getType()->isIncompleteArrayType()); |
5875 | ArrayLength = Args.size(); |
5876 | } |
5877 | EntityIndexToProcess = ArrayLength; |
5878 | |
5879 | // ...the ith array element is copy-initialized with xi for each |
5880 | // 1 <= i <= k |
5881 | for (Expr *E : Args) { |
5882 | InitializedEntity SubEntity = InitializedEntity::InitializeElement( |
5883 | Context&: S.getASTContext(), Index: EntityIndexToProcess, Parent: Entity); |
5884 | InitializationKind SubKind = InitializationKind::CreateForInit( |
5885 | Loc: E->getExprLoc(), /*isDirectInit=*/DirectInit: false, Init: E); |
5886 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
5887 | return; |
5888 | } |
5889 | // ...and value-initialized for each k < i <= n; |
5890 | if (ArrayLength > Args.size() || Entity.isVariableLengthArrayNew()) { |
5891 | InitializedEntity SubEntity = InitializedEntity::InitializeElement( |
5892 | Context&: S.getASTContext(), Index: Args.size(), Parent: Entity); |
5893 | InitializationKind SubKind = InitializationKind::CreateValue( |
5894 | InitLoc: Kind.getLocation(), LParenLoc: Kind.getLocation(), RParenLoc: Kind.getLocation(), isImplicit: true); |
5895 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr, &ArrayFiller)) |
5896 | return; |
5897 | } |
5898 | |
5899 | if (ResultType.isNull()) { |
5900 | ResultType = S.Context.getConstantArrayType( |
5901 | EltTy: AT->getElementType(), ArySize: llvm::APInt(/*numBits=*/32, ArrayLength), |
5902 | /*SizeExpr=*/nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
5903 | } |
5904 | } else if (auto *RT = Entity.getType()->getAs<RecordType>()) { |
5905 | bool IsUnion = RT->isUnionType(); |
5906 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
5907 | if (RD->isInvalidDecl()) { |
5908 | // Exit early to avoid confusion when processing members. |
5909 | // We do the same for braced list initialization in |
5910 | // `CheckStructUnionTypes`. |
5911 | Sequence.SetFailed( |
5912 | clang::InitializationSequence::FK_ParenthesizedListInitFailed); |
5913 | return; |
5914 | } |
5915 | |
5916 | if (!IsUnion) { |
5917 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
5918 | InitializedEntity SubEntity = InitializedEntity::InitializeBase( |
5919 | Context&: S.getASTContext(), Base: &Base, IsInheritedVirtualBase: false, Parent: &Entity); |
5920 | if (EntityIndexToProcess < Args.size()) { |
5921 | // C++ [dcl.init]p16.6.2.2. |
5922 | // ...the object is initialized is follows. Let e1, ..., en be the |
5923 | // elements of the aggregate([dcl.init.aggr]). Let x1, ..., xk be |
5924 | // the elements of the expression-list...The element ei is |
5925 | // copy-initialized with xi for 1 <= i <= k. |
5926 | Expr *E = Args[EntityIndexToProcess]; |
5927 | InitializationKind SubKind = InitializationKind::CreateForInit( |
5928 | Loc: E->getExprLoc(), /*isDirectInit=*/DirectInit: false, Init: E); |
5929 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
5930 | return; |
5931 | } else { |
5932 | // We've processed all of the args, but there are still base classes |
5933 | // that have to be initialized. |
5934 | // C++ [dcl.init]p17.6.2.2 |
5935 | // The remaining elements...otherwise are value initialzed |
5936 | InitializationKind SubKind = InitializationKind::CreateValue( |
5937 | InitLoc: Kind.getLocation(), LParenLoc: Kind.getLocation(), RParenLoc: Kind.getLocation(), |
5938 | /*IsImplicit=*/isImplicit: true); |
5939 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) |
5940 | return; |
5941 | } |
5942 | EntityIndexToProcess++; |
5943 | } |
5944 | } |
5945 | |
5946 | for (FieldDecl *FD : RD->fields()) { |
5947 | // Unnamed bitfields should not be initialized at all, either with an arg |
5948 | // or by default. |
5949 | if (FD->isUnnamedBitField()) |
5950 | continue; |
5951 | |
5952 | InitializedEntity SubEntity = |
5953 | InitializedEntity::InitializeMemberFromParenAggInit(FD); |
5954 | |
5955 | if (EntityIndexToProcess < Args.size()) { |
5956 | // ...The element ei is copy-initialized with xi for 1 <= i <= k. |
5957 | Expr *E = Args[EntityIndexToProcess]; |
5958 | |
5959 | // Incomplete array types indicate flexible array members. Do not allow |
5960 | // paren list initializations of structs with these members, as GCC |
5961 | // doesn't either. |
5962 | if (FD->getType()->isIncompleteArrayType()) { |
5963 | if (!VerifyOnly) { |
5964 | S.Diag(E->getBeginLoc(), diag::err_flexible_array_init) |
5965 | << SourceRange(E->getBeginLoc(), E->getEndLoc()); |
5966 | S.Diag(FD->getLocation(), diag::note_flexible_array_member) << FD; |
5967 | } |
5968 | Sequence.SetFailed( |
5969 | InitializationSequence::FK_ParenthesizedListInitFailed); |
5970 | return; |
5971 | } |
5972 | |
5973 | InitializationKind SubKind = InitializationKind::CreateForInit( |
5974 | E->getExprLoc(), /*isDirectInit=*/false, E); |
5975 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
5976 | return; |
5977 | |
5978 | // Unions should have only one initializer expression, so we bail out |
5979 | // after processing the first field. If there are more initializers then |
5980 | // it will be caught when we later check whether EntityIndexToProcess is |
5981 | // less than Args.size(); |
5982 | if (IsUnion) { |
5983 | InitializedFieldInUnion = FD; |
5984 | EntityIndexToProcess = 1; |
5985 | break; |
5986 | } |
5987 | } else { |
5988 | // We've processed all of the args, but there are still members that |
5989 | // have to be initialized. |
5990 | if (!VerifyOnly && FD->hasAttr<ExplicitInitAttr>()) { |
5991 | S.Diag(Kind.getLocation(), diag::warn_field_requires_explicit_init) |
5992 | << /* Var-in-Record */ 0 << FD; |
5993 | S.Diag(FD->getLocation(), diag::note_entity_declared_at) << FD; |
5994 | } |
5995 | |
5996 | if (FD->hasInClassInitializer()) { |
5997 | if (!VerifyOnly) { |
5998 | // C++ [dcl.init]p16.6.2.2 |
5999 | // The remaining elements are initialized with their default |
6000 | // member initializers, if any |
6001 | ExprResult DIE = S.BuildCXXDefaultInitExpr( |
6002 | Kind.getParenOrBraceRange().getEnd(), FD); |
6003 | if (DIE.isInvalid()) |
6004 | return; |
6005 | S.checkInitializerLifetime(SubEntity, DIE.get()); |
6006 | InitExprs.push_back(DIE.get()); |
6007 | } |
6008 | } else { |
6009 | // C++ [dcl.init]p17.6.2.2 |
6010 | // The remaining elements...otherwise are value initialzed |
6011 | if (FD->getType()->isReferenceType()) { |
6012 | Sequence.SetFailed( |
6013 | InitializationSequence::FK_ParenthesizedListInitFailed); |
6014 | if (!VerifyOnly) { |
6015 | SourceRange SR = Kind.getParenOrBraceRange(); |
6016 | S.Diag(SR.getEnd(), diag::err_init_reference_member_uninitialized) |
6017 | << FD->getType() << SR; |
6018 | S.Diag(FD->getLocation(), diag::note_uninit_reference_member); |
6019 | } |
6020 | return; |
6021 | } |
6022 | InitializationKind SubKind = InitializationKind::CreateValue( |
6023 | Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true); |
6024 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) |
6025 | return; |
6026 | } |
6027 | } |
6028 | EntityIndexToProcess++; |
6029 | } |
6030 | ResultType = Entity.getType(); |
6031 | } |
6032 | |
6033 | // Not all of the args have been processed, so there must've been more args |
6034 | // than were required to initialize the element. |
6035 | if (EntityIndexToProcess < Args.size()) { |
6036 | Sequence.SetFailed(InitializationSequence::FK_ParenthesizedListInitFailed); |
6037 | if (!VerifyOnly) { |
6038 | QualType T = Entity.getType(); |
6039 | int InitKind = T->isArrayType() ? 0 : T->isUnionType() ? 3 : 4; |
6040 | SourceRange ExcessInitSR(Args[EntityIndexToProcess]->getBeginLoc(), |
6041 | Args.back()->getEndLoc()); |
6042 | S.Diag(Kind.getLocation(), diag::err_excess_initializers) |
6043 | << InitKind << ExcessInitSR; |
6044 | } |
6045 | return; |
6046 | } |
6047 | |
6048 | if (VerifyOnly) { |
6049 | Sequence.setSequenceKind(InitializationSequence::NormalSequence); |
6050 | Sequence.AddParenthesizedListInitStep(T: Entity.getType()); |
6051 | } else if (Result) { |
6052 | SourceRange SR = Kind.getParenOrBraceRange(); |
6053 | auto *CPLIE = CXXParenListInitExpr::Create( |
6054 | C&: S.getASTContext(), Args: InitExprs, T: ResultType, NumUserSpecifiedExprs: Args.size(), |
6055 | InitLoc: Kind.getLocation(), LParenLoc: SR.getBegin(), RParenLoc: SR.getEnd()); |
6056 | if (ArrayFiller) |
6057 | CPLIE->setArrayFiller(ArrayFiller); |
6058 | if (InitializedFieldInUnion) |
6059 | CPLIE->setInitializedFieldInUnion(InitializedFieldInUnion); |
6060 | *Result = CPLIE; |
6061 | S.Diag(Kind.getLocation(), |
6062 | diag::warn_cxx17_compat_aggregate_init_paren_list) |
6063 | << Kind.getLocation() << SR << ResultType; |
6064 | } |
6065 | } |
6066 | |
6067 | /// Attempt a user-defined conversion between two types (C++ [dcl.init]), |
6068 | /// which enumerates all conversion functions and performs overload resolution |
6069 | /// to select the best. |
6070 | static void TryUserDefinedConversion(Sema &S, |
6071 | QualType DestType, |
6072 | const InitializationKind &Kind, |
6073 | Expr *Initializer, |
6074 | InitializationSequence &Sequence, |
6075 | bool TopLevelOfInitList) { |
6076 | assert(!DestType->isReferenceType() && "References are handled elsewhere"); |
6077 | QualType SourceType = Initializer->getType(); |
6078 | assert((DestType->isRecordType() || SourceType->isRecordType()) && |
6079 | "Must have a class type to perform a user-defined conversion"); |
6080 | |
6081 | // Build the candidate set directly in the initialization sequence |
6082 | // structure, so that it will persist if we fail. |
6083 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
6084 | CandidateSet.clear(CSK: OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
6085 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
6086 | |
6087 | // Determine whether we are allowed to call explicit constructors or |
6088 | // explicit conversion operators. |
6089 | bool AllowExplicit = Kind.AllowExplicit(); |
6090 | |
6091 | if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { |
6092 | // The type we're converting to is a class type. Enumerate its constructors |
6093 | // to see if there is a suitable conversion. |
6094 | CXXRecordDecl *DestRecordDecl |
6095 | = cast<CXXRecordDecl>(Val: DestRecordType->getDecl()); |
6096 | |
6097 | // Try to complete the type we're converting to. |
6098 | if (S.isCompleteType(Loc: Kind.getLocation(), T: DestType)) { |
6099 | for (NamedDecl *D : S.LookupConstructors(Class: DestRecordDecl)) { |
6100 | auto Info = getConstructorInfo(ND: D); |
6101 | if (!Info.Constructor) |
6102 | continue; |
6103 | |
6104 | if (!Info.Constructor->isInvalidDecl() && |
6105 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { |
6106 | if (Info.ConstructorTmpl) |
6107 | S.AddTemplateOverloadCandidate( |
6108 | FunctionTemplate: Info.ConstructorTmpl, FoundDecl: Info.FoundDecl, |
6109 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, Args: Initializer, CandidateSet, |
6110 | /*SuppressUserConversions=*/true, |
6111 | /*PartialOverloading*/ false, AllowExplicit); |
6112 | else |
6113 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, |
6114 | Initializer, CandidateSet, |
6115 | /*SuppressUserConversions=*/true, |
6116 | /*PartialOverloading*/ false, AllowExplicit); |
6117 | } |
6118 | } |
6119 | } |
6120 | } |
6121 | |
6122 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
6123 | |
6124 | if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { |
6125 | // The type we're converting from is a class type, enumerate its conversion |
6126 | // functions. |
6127 | |
6128 | // We can only enumerate the conversion functions for a complete type; if |
6129 | // the type isn't complete, simply skip this step. |
6130 | if (S.isCompleteType(Loc: DeclLoc, T: SourceType)) { |
6131 | CXXRecordDecl *SourceRecordDecl |
6132 | = cast<CXXRecordDecl>(Val: SourceRecordType->getDecl()); |
6133 | |
6134 | const auto &Conversions = |
6135 | SourceRecordDecl->getVisibleConversionFunctions(); |
6136 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
6137 | NamedDecl *D = *I; |
6138 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
6139 | if (isa<UsingShadowDecl>(Val: D)) |
6140 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
6141 | |
6142 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D); |
6143 | CXXConversionDecl *Conv; |
6144 | if (ConvTemplate) |
6145 | Conv = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
6146 | else |
6147 | Conv = cast<CXXConversionDecl>(Val: D); |
6148 | |
6149 | if (ConvTemplate) |
6150 | S.AddTemplateConversionCandidate( |
6151 | FunctionTemplate: ConvTemplate, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, |
6152 | CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, AllowExplicit); |
6153 | else |
6154 | S.AddConversionCandidate(Conversion: Conv, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, |
6155 | ToType: DestType, CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, |
6156 | AllowExplicit); |
6157 | } |
6158 | } |
6159 | } |
6160 | |
6161 | // Perform overload resolution. If it fails, return the failed result. |
6162 | OverloadCandidateSet::iterator Best; |
6163 | if (OverloadingResult Result |
6164 | = CandidateSet.BestViableFunction(S, Loc: DeclLoc, Best)) { |
6165 | Sequence.SetOverloadFailure( |
6166 | Failure: InitializationSequence::FK_UserConversionOverloadFailed, Result); |
6167 | |
6168 | // [class.copy.elision]p3: |
6169 | // In some copy-initialization contexts, a two-stage overload resolution |
6170 | // is performed. |
6171 | // If the first overload resolution selects a deleted function, we also |
6172 | // need the initialization sequence to decide whether to perform the second |
6173 | // overload resolution. |
6174 | if (!(Result == OR_Deleted && |
6175 | Kind.getKind() == InitializationKind::IK_Copy)) |
6176 | return; |
6177 | } |
6178 | |
6179 | FunctionDecl *Function = Best->Function; |
6180 | Function->setReferenced(); |
6181 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
6182 | |
6183 | if (isa<CXXConstructorDecl>(Val: Function)) { |
6184 | // Add the user-defined conversion step. Any cv-qualification conversion is |
6185 | // subsumed by the initialization. Per DR5, the created temporary is of the |
6186 | // cv-unqualified type of the destination. |
6187 | Sequence.AddUserConversionStep(Function, FoundDecl: Best->FoundDecl, |
6188 | T: DestType.getUnqualifiedType(), |
6189 | HadMultipleCandidates); |
6190 | |
6191 | // C++14 and before: |
6192 | // - if the function is a constructor, the call initializes a temporary |
6193 | // of the cv-unqualified version of the destination type. The [...] |
6194 | // temporary [...] is then used to direct-initialize, according to the |
6195 | // rules above, the object that is the destination of the |
6196 | // copy-initialization. |
6197 | // Note that this just performs a simple object copy from the temporary. |
6198 | // |
6199 | // C++17: |
6200 | // - if the function is a constructor, the call is a prvalue of the |
6201 | // cv-unqualified version of the destination type whose return object |
6202 | // is initialized by the constructor. The call is used to |
6203 | // direct-initialize, according to the rules above, the object that |
6204 | // is the destination of the copy-initialization. |
6205 | // Therefore we need to do nothing further. |
6206 | // |
6207 | // FIXME: Mark this copy as extraneous. |
6208 | if (!S.getLangOpts().CPlusPlus17) |
6209 | Sequence.AddFinalCopy(T: DestType); |
6210 | else if (DestType.hasQualifiers()) |
6211 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
6212 | return; |
6213 | } |
6214 | |
6215 | // Add the user-defined conversion step that calls the conversion function. |
6216 | QualType ConvType = Function->getCallResultType(); |
6217 | Sequence.AddUserConversionStep(Function, FoundDecl: Best->FoundDecl, T: ConvType, |
6218 | HadMultipleCandidates); |
6219 | |
6220 | if (ConvType->getAs<RecordType>()) { |
6221 | // The call is used to direct-initialize [...] the object that is the |
6222 | // destination of the copy-initialization. |
6223 | // |
6224 | // In C++17, this does not call a constructor if we enter /17.6.1: |
6225 | // - If the initializer expression is a prvalue and the cv-unqualified |
6226 | // version of the source type is the same as the class of the |
6227 | // destination [... do not make an extra copy] |
6228 | // |
6229 | // FIXME: Mark this copy as extraneous. |
6230 | if (!S.getLangOpts().CPlusPlus17 || |
6231 | Function->getReturnType()->isReferenceType() || |
6232 | !S.Context.hasSameUnqualifiedType(T1: ConvType, T2: DestType)) |
6233 | Sequence.AddFinalCopy(T: DestType); |
6234 | else if (!S.Context.hasSameType(T1: ConvType, T2: DestType)) |
6235 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
6236 | return; |
6237 | } |
6238 | |
6239 | // If the conversion following the call to the conversion function |
6240 | // is interesting, add it as a separate step. |
6241 | assert(Best->HasFinalConversion); |
6242 | if (Best->FinalConversion.First || Best->FinalConversion.Second || |
6243 | Best->FinalConversion.Third) { |
6244 | ImplicitConversionSequence ICS; |
6245 | ICS.setStandard(); |
6246 | ICS.Standard = Best->FinalConversion; |
6247 | Sequence.AddConversionSequenceStep(ICS, T: DestType, TopLevelOfInitList); |
6248 | } |
6249 | } |
6250 | |
6251 | /// The non-zero enum values here are indexes into diagnostic alternatives. |
6252 | enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; |
6253 | |
6254 | /// Determines whether this expression is an acceptable ICR source. |
6255 | static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, |
6256 | bool isAddressOf, bool &isWeakAccess) { |
6257 | // Skip parens. |
6258 | e = e->IgnoreParens(); |
6259 | |
6260 | // Skip address-of nodes. |
6261 | if (UnaryOperator *op = dyn_cast<UnaryOperator>(Val: e)) { |
6262 | if (op->getOpcode() == UO_AddrOf) |
6263 | return isInvalidICRSource(C, e: op->getSubExpr(), /*addressof*/ isAddressOf: true, |
6264 | isWeakAccess); |
6265 | |
6266 | // Skip certain casts. |
6267 | } else if (CastExpr *ce = dyn_cast<CastExpr>(Val: e)) { |
6268 | switch (ce->getCastKind()) { |
6269 | case CK_Dependent: |
6270 | case CK_BitCast: |
6271 | case CK_LValueBitCast: |
6272 | case CK_NoOp: |
6273 | return isInvalidICRSource(C, e: ce->getSubExpr(), isAddressOf, isWeakAccess); |
6274 | |
6275 | case CK_ArrayToPointerDecay: |
6276 | return IIK_nonscalar; |
6277 | |
6278 | case CK_NullToPointer: |
6279 | return IIK_okay; |
6280 | |
6281 | default: |
6282 | break; |
6283 | } |
6284 | |
6285 | // If we have a declaration reference, it had better be a local variable. |
6286 | } else if (isa<DeclRefExpr>(Val: e)) { |
6287 | // set isWeakAccess to true, to mean that there will be an implicit |
6288 | // load which requires a cleanup. |
6289 | if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
6290 | isWeakAccess = true; |
6291 | |
6292 | if (!isAddressOf) return IIK_nonlocal; |
6293 | |
6294 | VarDecl *var = dyn_cast<VarDecl>(Val: cast<DeclRefExpr>(Val: e)->getDecl()); |
6295 | if (!var) return IIK_nonlocal; |
6296 | |
6297 | return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); |
6298 | |
6299 | // If we have a conditional operator, check both sides. |
6300 | } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(Val: e)) { |
6301 | if (InvalidICRKind iik = isInvalidICRSource(C, e: cond->getLHS(), isAddressOf, |
6302 | isWeakAccess)) |
6303 | return iik; |
6304 | |
6305 | return isInvalidICRSource(C, e: cond->getRHS(), isAddressOf, isWeakAccess); |
6306 | |
6307 | // These are never scalar. |
6308 | } else if (isa<ArraySubscriptExpr>(Val: e)) { |
6309 | return IIK_nonscalar; |
6310 | |
6311 | // Otherwise, it needs to be a null pointer constant. |
6312 | } else { |
6313 | return (e->isNullPointerConstant(Ctx&: C, NPC: Expr::NPC_ValueDependentIsNull) |
6314 | ? IIK_okay : IIK_nonlocal); |
6315 | } |
6316 | |
6317 | return IIK_nonlocal; |
6318 | } |
6319 | |
6320 | /// Check whether the given expression is a valid operand for an |
6321 | /// indirect copy/restore. |
6322 | static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { |
6323 | assert(src->isPRValue()); |
6324 | bool isWeakAccess = false; |
6325 | InvalidICRKind iik = isInvalidICRSource(C&: S.Context, e: src, isAddressOf: false, isWeakAccess); |
6326 | // If isWeakAccess to true, there will be an implicit |
6327 | // load which requires a cleanup. |
6328 | if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) |
6329 | S.Cleanup.setExprNeedsCleanups(true); |
6330 | |
6331 | if (iik == IIK_okay) return; |
6332 | |
6333 | S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) |
6334 | << ((unsigned) iik - 1) // shift index into diagnostic explanations |
6335 | << src->getSourceRange(); |
6336 | } |
6337 | |
6338 | /// Determine whether we have compatible array types for the |
6339 | /// purposes of GNU by-copy array initialization. |
6340 | static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, |
6341 | const ArrayType *Source) { |
6342 | // If the source and destination array types are equivalent, we're |
6343 | // done. |
6344 | if (Context.hasSameType(T1: QualType(Dest, 0), T2: QualType(Source, 0))) |
6345 | return true; |
6346 | |
6347 | // Make sure that the element types are the same. |
6348 | if (!Context.hasSameType(T1: Dest->getElementType(), T2: Source->getElementType())) |
6349 | return false; |
6350 | |
6351 | // The only mismatch we allow is when the destination is an |
6352 | // incomplete array type and the source is a constant array type. |
6353 | return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); |
6354 | } |
6355 | |
6356 | static bool tryObjCWritebackConversion(Sema &S, |
6357 | InitializationSequence &Sequence, |
6358 | const InitializedEntity &Entity, |
6359 | Expr *Initializer) { |
6360 | bool ArrayDecay = false; |
6361 | QualType ArgType = Initializer->getType(); |
6362 | QualType ArgPointee; |
6363 | if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(T: ArgType)) { |
6364 | ArrayDecay = true; |
6365 | ArgPointee = ArgArrayType->getElementType(); |
6366 | ArgType = S.Context.getPointerType(T: ArgPointee); |
6367 | } |
6368 | |
6369 | // Handle write-back conversion. |
6370 | QualType ConvertedArgType; |
6371 | if (!S.ObjC().isObjCWritebackConversion(FromType: ArgType, ToType: Entity.getType(), |
6372 | ConvertedType&: ConvertedArgType)) |
6373 | return false; |
6374 | |
6375 | // We should copy unless we're passing to an argument explicitly |
6376 | // marked 'out'. |
6377 | bool ShouldCopy = true; |
6378 | if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Val: Entity.getDecl())) |
6379 | ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
6380 | |
6381 | // Do we need an lvalue conversion? |
6382 | if (ArrayDecay || Initializer->isGLValue()) { |
6383 | ImplicitConversionSequence ICS; |
6384 | ICS.setStandard(); |
6385 | ICS.Standard.setAsIdentityConversion(); |
6386 | |
6387 | QualType ResultType; |
6388 | if (ArrayDecay) { |
6389 | ICS.Standard.First = ICK_Array_To_Pointer; |
6390 | ResultType = S.Context.getPointerType(T: ArgPointee); |
6391 | } else { |
6392 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
6393 | ResultType = Initializer->getType().getNonLValueExprType(Context: S.Context); |
6394 | } |
6395 | |
6396 | Sequence.AddConversionSequenceStep(ICS, T: ResultType); |
6397 | } |
6398 | |
6399 | Sequence.AddPassByIndirectCopyRestoreStep(type: Entity.getType(), shouldCopy: ShouldCopy); |
6400 | return true; |
6401 | } |
6402 | |
6403 | static bool TryOCLSamplerInitialization(Sema &S, |
6404 | InitializationSequence &Sequence, |
6405 | QualType DestType, |
6406 | Expr *Initializer) { |
6407 | if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || |
6408 | (!Initializer->isIntegerConstantExpr(Ctx: S.Context) && |
6409 | !Initializer->getType()->isSamplerT())) |
6410 | return false; |
6411 | |
6412 | Sequence.AddOCLSamplerInitStep(T: DestType); |
6413 | return true; |
6414 | } |
6415 | |
6416 | static bool IsZeroInitializer(const Expr *Init, ASTContext &Ctx) { |
6417 | std::optional<llvm::APSInt> Value = Init->getIntegerConstantExpr(Ctx); |
6418 | return Value && Value->isZero(); |
6419 | } |
6420 | |
6421 | static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, |
6422 | InitializationSequence &Sequence, |
6423 | QualType DestType, |
6424 | Expr *Initializer) { |
6425 | if (!S.getLangOpts().OpenCL) |
6426 | return false; |
6427 | |
6428 | // |
6429 | // OpenCL 1.2 spec, s6.12.10 |
6430 | // |
6431 | // The event argument can also be used to associate the |
6432 | // async_work_group_copy with a previous async copy allowing |
6433 | // an event to be shared by multiple async copies; otherwise |
6434 | // event should be zero. |
6435 | // |
6436 | if (DestType->isEventT() || DestType->isQueueT()) { |
6437 | if (!IsZeroInitializer(Init: Initializer, Ctx&: S.getASTContext())) |
6438 | return false; |
6439 | |
6440 | Sequence.AddOCLZeroOpaqueTypeStep(T: DestType); |
6441 | return true; |
6442 | } |
6443 | |
6444 | // We should allow zero initialization for all types defined in the |
6445 | // cl_intel_device_side_avc_motion_estimation extension, except |
6446 | // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. |
6447 | if (S.getOpenCLOptions().isAvailableOption( |
6448 | Ext: "cl_intel_device_side_avc_motion_estimation", LO: S.getLangOpts()) && |
6449 | DestType->isOCLIntelSubgroupAVCType()) { |
6450 | if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || |
6451 | DestType->isOCLIntelSubgroupAVCMceResultType()) |
6452 | return false; |
6453 | if (!IsZeroInitializer(Init: Initializer, Ctx&: S.getASTContext())) |
6454 | return false; |
6455 | |
6456 | Sequence.AddOCLZeroOpaqueTypeStep(T: DestType); |
6457 | return true; |
6458 | } |
6459 | |
6460 | return false; |
6461 | } |
6462 | |
6463 | InitializationSequence::InitializationSequence( |
6464 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
6465 | MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) |
6466 | : FailedOverloadResult(OR_Success), |
6467 | FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { |
6468 | InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, |
6469 | TreatUnavailableAsInvalid); |
6470 | } |
6471 | |
6472 | /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the |
6473 | /// address of that function, this returns true. Otherwise, it returns false. |
6474 | static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { |
6475 | auto *DRE = dyn_cast<DeclRefExpr>(Val: E); |
6476 | if (!DRE || !isa<FunctionDecl>(Val: DRE->getDecl())) |
6477 | return false; |
6478 | |
6479 | return !S.checkAddressOfFunctionIsAvailable( |
6480 | Function: cast<FunctionDecl>(Val: DRE->getDecl())); |
6481 | } |
6482 | |
6483 | /// Determine whether we can perform an elementwise array copy for this kind |
6484 | /// of entity. |
6485 | static bool canPerformArrayCopy(const InitializedEntity &Entity) { |
6486 | switch (Entity.getKind()) { |
6487 | case InitializedEntity::EK_LambdaCapture: |
6488 | // C++ [expr.prim.lambda]p24: |
6489 | // For array members, the array elements are direct-initialized in |
6490 | // increasing subscript order. |
6491 | return true; |
6492 | |
6493 | case InitializedEntity::EK_Variable: |
6494 | // C++ [dcl.decomp]p1: |
6495 | // [...] each element is copy-initialized or direct-initialized from the |
6496 | // corresponding element of the assignment-expression [...] |
6497 | return isa<DecompositionDecl>(Val: Entity.getDecl()); |
6498 | |
6499 | case InitializedEntity::EK_Member: |
6500 | // C++ [class.copy.ctor]p14: |
6501 | // - if the member is an array, each element is direct-initialized with |
6502 | // the corresponding subobject of x |
6503 | return Entity.isImplicitMemberInitializer(); |
6504 | |
6505 | case InitializedEntity::EK_ArrayElement: |
6506 | // All the above cases are intended to apply recursively, even though none |
6507 | // of them actually say that. |
6508 | if (auto *E = Entity.getParent()) |
6509 | return canPerformArrayCopy(Entity: *E); |
6510 | break; |
6511 | |
6512 | default: |
6513 | break; |
6514 | } |
6515 | |
6516 | return false; |
6517 | } |
6518 | |
6519 | static const FieldDecl *getConstField(const RecordDecl *RD) { |
6520 | assert(!isa<CXXRecordDecl>(RD) && "Only expect to call this in C mode"); |
6521 | for (const FieldDecl *FD : RD->fields()) { |
6522 | // If the field is a flexible array member, we don't want to consider it |
6523 | // as a const field because there's no way to initialize the FAM anyway. |
6524 | const ASTContext &Ctx = FD->getASTContext(); |
6525 | if (Decl::isFlexibleArrayMemberLike( |
6526 | Context: Ctx, D: FD, Ty: FD->getType(), |
6527 | StrictFlexArraysLevel: Ctx.getLangOpts().getStrictFlexArraysLevel(), |
6528 | /*IgnoreTemplateOrMacroSubstitution=*/true)) |
6529 | continue; |
6530 | |
6531 | QualType QT = FD->getType(); |
6532 | if (QT.isConstQualified()) |
6533 | return FD; |
6534 | if (const auto *RD = QT->getAsRecordDecl()) { |
6535 | if (const FieldDecl *FD = getConstField(RD)) |
6536 | return FD; |
6537 | } |
6538 | } |
6539 | return nullptr; |
6540 | } |
6541 | |
6542 | void InitializationSequence::InitializeFrom(Sema &S, |
6543 | const InitializedEntity &Entity, |
6544 | const InitializationKind &Kind, |
6545 | MultiExprArg Args, |
6546 | bool TopLevelOfInitList, |
6547 | bool TreatUnavailableAsInvalid) { |
6548 | ASTContext &Context = S.Context; |
6549 | |
6550 | // Eliminate non-overload placeholder types in the arguments. We |
6551 | // need to do this before checking whether types are dependent |
6552 | // because lowering a pseudo-object expression might well give us |
6553 | // something of dependent type. |
6554 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
6555 | if (Args[I]->getType()->isNonOverloadPlaceholderType()) { |
6556 | // FIXME: should we be doing this here? |
6557 | ExprResult result = S.CheckPlaceholderExpr(E: Args[I]); |
6558 | if (result.isInvalid()) { |
6559 | SetFailed(FK_PlaceholderType); |
6560 | return; |
6561 | } |
6562 | Args[I] = result.get(); |
6563 | } |
6564 | |
6565 | // C++0x [dcl.init]p16: |
6566 | // The semantics of initializers are as follows. The destination type is |
6567 | // the type of the object or reference being initialized and the source |
6568 | // type is the type of the initializer expression. The source type is not |
6569 | // defined when the initializer is a braced-init-list or when it is a |
6570 | // parenthesized list of expressions. |
6571 | QualType DestType = Entity.getType(); |
6572 | |
6573 | if (DestType->isDependentType() || |
6574 | Expr::hasAnyTypeDependentArguments(Exprs: Args)) { |
6575 | SequenceKind = DependentSequence; |
6576 | return; |
6577 | } |
6578 | |
6579 | // Almost everything is a normal sequence. |
6580 | setSequenceKind(NormalSequence); |
6581 | |
6582 | QualType SourceType; |
6583 | Expr *Initializer = nullptr; |
6584 | if (Args.size() == 1) { |
6585 | Initializer = Args[0]; |
6586 | if (S.getLangOpts().ObjC) { |
6587 | if (S.ObjC().CheckObjCBridgeRelatedConversions( |
6588 | Loc: Initializer->getBeginLoc(), DestType, SrcType: Initializer->getType(), |
6589 | SrcExpr&: Initializer) || |
6590 | S.ObjC().CheckConversionToObjCLiteral(DstType: DestType, SrcExpr&: Initializer)) |
6591 | Args[0] = Initializer; |
6592 | } |
6593 | if (!isa<InitListExpr>(Val: Initializer)) |
6594 | SourceType = Initializer->getType(); |
6595 | } |
6596 | |
6597 | // - If the initializer is a (non-parenthesized) braced-init-list, the |
6598 | // object is list-initialized (8.5.4). |
6599 | if (Kind.getKind() != InitializationKind::IK_Direct) { |
6600 | if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Val: Initializer)) { |
6601 | TryListInitialization(S, Entity, Kind, InitList, Sequence&: *this, |
6602 | TreatUnavailableAsInvalid); |
6603 | return; |
6604 | } |
6605 | } |
6606 | |
6607 | if (!S.getLangOpts().CPlusPlus && |
6608 | Kind.getKind() == InitializationKind::IK_Default) { |
6609 | if (RecordDecl *Rec = DestType->getAsRecordDecl()) { |
6610 | VarDecl *Var = dyn_cast_or_null<VarDecl>(Val: Entity.getDecl()); |
6611 | if (Rec->hasUninitializedExplicitInitFields()) { |
6612 | if (Var && !Initializer) { |
6613 | S.Diag(Var->getLocation(), diag::warn_field_requires_explicit_init) |
6614 | << /* Var-in-Record */ 1 << Rec; |
6615 | emitUninitializedExplicitInitFields(S, R: Rec); |
6616 | } |
6617 | } |
6618 | // If the record has any members which are const (recursively checked), |
6619 | // then we want to diagnose those as being uninitialized if there is no |
6620 | // initializer present. However, we only do this for structure types, not |
6621 | // union types, because an unitialized field in a union is generally |
6622 | // reasonable, especially in C where unions can be used for type punning. |
6623 | if (Var && !Initializer && !Rec->isUnion() && !Rec->isInvalidDecl()) { |
6624 | if (const FieldDecl *FD = getConstField(RD: Rec)) { |
6625 | unsigned DiagID = diag::warn_default_init_const_field_unsafe; |
6626 | if (Var->getStorageDuration() == SD_Static || |
6627 | Var->getStorageDuration() == SD_Thread) |
6628 | DiagID = diag::warn_default_init_const_field; |
6629 | |
6630 | bool EmitCppCompat = !S.Diags.isIgnored( |
6631 | diag::warn_cxx_compat_hack_fake_diagnostic_do_not_emit, |
6632 | Var->getLocation()); |
6633 | |
6634 | S.Diag(Var->getLocation(), DiagID) << Var->getType() << EmitCppCompat; |
6635 | S.Diag(FD->getLocation(), diag::note_default_init_const_member) << FD; |
6636 | } |
6637 | } |
6638 | } |
6639 | } |
6640 | |
6641 | // - If the destination type is a reference type, see 8.5.3. |
6642 | if (DestType->isReferenceType()) { |
6643 | // C++0x [dcl.init.ref]p1: |
6644 | // A variable declared to be a T& or T&&, that is, "reference to type T" |
6645 | // (8.3.2), shall be initialized by an object, or function, of type T or |
6646 | // by an object that can be converted into a T. |
6647 | // (Therefore, multiple arguments are not permitted.) |
6648 | if (Args.size() != 1) |
6649 | SetFailed(FK_TooManyInitsForReference); |
6650 | // C++17 [dcl.init.ref]p5: |
6651 | // A reference [...] is initialized by an expression [...] as follows: |
6652 | // If the initializer is not an expression, presumably we should reject, |
6653 | // but the standard fails to actually say so. |
6654 | else if (isa<InitListExpr>(Val: Args[0])) |
6655 | SetFailed(FK_ParenthesizedListInitForReference); |
6656 | else |
6657 | TryReferenceInitialization(S, Entity, Kind, Initializer: Args[0], Sequence&: *this, |
6658 | TopLevelOfInitList); |
6659 | return; |
6660 | } |
6661 | |
6662 | // - If the initializer is (), the object is value-initialized. |
6663 | if (Kind.getKind() == InitializationKind::IK_Value || |
6664 | (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { |
6665 | TryValueInitialization(S, Entity, Kind, Sequence&: *this); |
6666 | return; |
6667 | } |
6668 | |
6669 | // Handle default initialization. |
6670 | if (Kind.getKind() == InitializationKind::IK_Default) { |
6671 | TryDefaultInitialization(S, Entity, Kind, Sequence&: *this); |
6672 | return; |
6673 | } |
6674 | |
6675 | // - If the destination type is an array of characters, an array of |
6676 | // char16_t, an array of char32_t, or an array of wchar_t, and the |
6677 | // initializer is a string literal, see 8.5.2. |
6678 | // - Otherwise, if the destination type is an array, the program is |
6679 | // ill-formed. |
6680 | // - Except in HLSL, where non-decaying array parameters behave like |
6681 | // non-array types for initialization. |
6682 | if (DestType->isArrayType() && !DestType->isArrayParameterType()) { |
6683 | const ArrayType *DestAT = Context.getAsArrayType(T: DestType); |
6684 | if (Initializer && isa<VariableArrayType>(Val: DestAT)) { |
6685 | SetFailed(FK_VariableLengthArrayHasInitializer); |
6686 | return; |
6687 | } |
6688 | |
6689 | if (Initializer) { |
6690 | switch (IsStringInit(Init: Initializer, AT: DestAT, Context)) { |
6691 | case SIF_None: |
6692 | TryStringLiteralInitialization(S, Entity, Kind, Initializer, Sequence&: *this); |
6693 | return; |
6694 | case SIF_NarrowStringIntoWideChar: |
6695 | SetFailed(FK_NarrowStringIntoWideCharArray); |
6696 | return; |
6697 | case SIF_WideStringIntoChar: |
6698 | SetFailed(FK_WideStringIntoCharArray); |
6699 | return; |
6700 | case SIF_IncompatWideStringIntoWideChar: |
6701 | SetFailed(FK_IncompatWideStringIntoWideChar); |
6702 | return; |
6703 | case SIF_PlainStringIntoUTF8Char: |
6704 | SetFailed(FK_PlainStringIntoUTF8Char); |
6705 | return; |
6706 | case SIF_UTF8StringIntoPlainChar: |
6707 | SetFailed(FK_UTF8StringIntoPlainChar); |
6708 | return; |
6709 | case SIF_Other: |
6710 | break; |
6711 | } |
6712 | } |
6713 | |
6714 | if (S.getLangOpts().HLSL && Initializer && isa<ConstantArrayType>(Val: DestAT)) { |
6715 | QualType SrcType = Entity.getType(); |
6716 | if (SrcType->isArrayParameterType()) |
6717 | SrcType = |
6718 | cast<ArrayParameterType>(Val&: SrcType)->getConstantArrayType(Ctx: Context); |
6719 | if (S.Context.hasSameUnqualifiedType(T1: DestType, T2: SrcType)) { |
6720 | TryArrayCopy(S, Kind, Entity, Initializer, DestType, Sequence&: *this, |
6721 | TreatUnavailableAsInvalid); |
6722 | return; |
6723 | } |
6724 | } |
6725 | |
6726 | // Some kinds of initialization permit an array to be initialized from |
6727 | // another array of the same type, and perform elementwise initialization. |
6728 | if (Initializer && isa<ConstantArrayType>(Val: DestAT) && |
6729 | S.Context.hasSameUnqualifiedType(T1: Initializer->getType(), |
6730 | T2: Entity.getType()) && |
6731 | canPerformArrayCopy(Entity)) { |
6732 | TryArrayCopy(S, Kind, Entity, Initializer, DestType, Sequence&: *this, |
6733 | TreatUnavailableAsInvalid); |
6734 | return; |
6735 | } |
6736 | |
6737 | // Note: as an GNU C extension, we allow initialization of an |
6738 | // array from a compound literal that creates an array of the same |
6739 | // type, so long as the initializer has no side effects. |
6740 | if (!S.getLangOpts().CPlusPlus && Initializer && |
6741 | isa<CompoundLiteralExpr>(Val: Initializer->IgnoreParens()) && |
6742 | Initializer->getType()->isArrayType()) { |
6743 | const ArrayType *SourceAT |
6744 | = Context.getAsArrayType(T: Initializer->getType()); |
6745 | if (!hasCompatibleArrayTypes(Context&: S.Context, Dest: DestAT, Source: SourceAT)) |
6746 | SetFailed(FK_ArrayTypeMismatch); |
6747 | else if (Initializer->HasSideEffects(Ctx: S.Context)) |
6748 | SetFailed(FK_NonConstantArrayInit); |
6749 | else { |
6750 | AddArrayInitStep(T: DestType, /*IsGNUExtension*/true); |
6751 | } |
6752 | } |
6753 | // Note: as a GNU C++ extension, we allow list-initialization of a |
6754 | // class member of array type from a parenthesized initializer list. |
6755 | else if (S.getLangOpts().CPlusPlus && |
6756 | Entity.getKind() == InitializedEntity::EK_Member && |
6757 | isa_and_nonnull<InitListExpr>(Val: Initializer)) { |
6758 | TryListInitialization(S, Entity, Kind, InitList: cast<InitListExpr>(Val: Initializer), |
6759 | Sequence&: *this, TreatUnavailableAsInvalid); |
6760 | AddParenthesizedArrayInitStep(T: DestType); |
6761 | } else if (S.getLangOpts().CPlusPlus20 && !TopLevelOfInitList && |
6762 | Kind.getKind() == InitializationKind::IK_Direct) |
6763 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence&: *this, |
6764 | /*VerifyOnly=*/true); |
6765 | else if (DestAT->getElementType()->isCharType()) |
6766 | SetFailed(FK_ArrayNeedsInitListOrStringLiteral); |
6767 | else if (IsWideCharCompatible(T: DestAT->getElementType(), Context)) |
6768 | SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); |
6769 | else |
6770 | SetFailed(FK_ArrayNeedsInitList); |
6771 | |
6772 | return; |
6773 | } |
6774 | |
6775 | // Determine whether we should consider writeback conversions for |
6776 | // Objective-C ARC. |
6777 | bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && |
6778 | Entity.isParameterKind(); |
6779 | |
6780 | if (TryOCLSamplerInitialization(S, Sequence&: *this, DestType, Initializer)) |
6781 | return; |
6782 | |
6783 | // We're at the end of the line for C: it's either a write-back conversion |
6784 | // or it's a C assignment. There's no need to check anything else. |
6785 | if (!S.getLangOpts().CPlusPlus) { |
6786 | assert(Initializer && "Initializer must be non-null"); |
6787 | // If allowed, check whether this is an Objective-C writeback conversion. |
6788 | if (allowObjCWritebackConversion && |
6789 | tryObjCWritebackConversion(S, Sequence&: *this, Entity, Initializer)) { |
6790 | return; |
6791 | } |
6792 | |
6793 | if (TryOCLZeroOpaqueTypeInitialization(S, Sequence&: *this, DestType, Initializer)) |
6794 | return; |
6795 | |
6796 | // Handle initialization in C |
6797 | AddCAssignmentStep(T: DestType); |
6798 | MaybeProduceObjCObject(S, Sequence&: *this, Entity); |
6799 | return; |
6800 | } |
6801 | |
6802 | assert(S.getLangOpts().CPlusPlus); |
6803 | |
6804 | // - If the destination type is a (possibly cv-qualified) class type: |
6805 | if (DestType->isRecordType()) { |
6806 | // - If the initialization is direct-initialization, or if it is |
6807 | // copy-initialization where the cv-unqualified version of the |
6808 | // source type is the same class as, or a derived class of, the |
6809 | // class of the destination, constructors are considered. [...] |
6810 | if (Kind.getKind() == InitializationKind::IK_Direct || |
6811 | (Kind.getKind() == InitializationKind::IK_Copy && |
6812 | (Context.hasSameUnqualifiedType(T1: SourceType, T2: DestType) || |
6813 | (Initializer && S.IsDerivedFrom(Initializer->getBeginLoc(), |
6814 | SourceType, DestType))))) { |
6815 | TryConstructorOrParenListInitialization(S, Entity, Kind, Args, DestType, |
6816 | Sequence&: *this, /*IsAggrListInit=*/false); |
6817 | } else { |
6818 | // - Otherwise (i.e., for the remaining copy-initialization cases), |
6819 | // user-defined conversion sequences that can convert from the |
6820 | // source type to the destination type or (when a conversion |
6821 | // function is used) to a derived class thereof are enumerated as |
6822 | // described in 13.3.1.4, and the best one is chosen through |
6823 | // overload resolution (13.3). |
6824 | assert(Initializer && "Initializer must be non-null"); |
6825 | TryUserDefinedConversion(S, DestType, Kind, Initializer, Sequence&: *this, |
6826 | TopLevelOfInitList); |
6827 | } |
6828 | return; |
6829 | } |
6830 | |
6831 | assert(Args.size() >= 1 && "Zero-argument case handled above"); |
6832 | |
6833 | // For HLSL ext vector types we allow list initialization behavior for C++ |
6834 | // constructor syntax. This is accomplished by converting initialization |
6835 | // arguments an InitListExpr late. |
6836 | if (S.getLangOpts().HLSL && Args.size() > 1 && DestType->isExtVectorType() && |
6837 | (SourceType.isNull() || |
6838 | !Context.hasSameUnqualifiedType(T1: SourceType, T2: DestType))) { |
6839 | |
6840 | llvm::SmallVector<Expr *> InitArgs; |
6841 | for (auto *Arg : Args) { |
6842 | if (Arg->getType()->isExtVectorType()) { |
6843 | const auto *VTy = Arg->getType()->castAs<ExtVectorType>(); |
6844 | unsigned Elm = VTy->getNumElements(); |
6845 | for (unsigned Idx = 0; Idx < Elm; ++Idx) { |
6846 | InitArgs.emplace_back(Args: new (Context) ArraySubscriptExpr( |
6847 | Arg, |
6848 | IntegerLiteral::Create( |
6849 | Context, llvm::APInt(Context.getIntWidth(T: Context.IntTy), Idx), |
6850 | Context.IntTy, SourceLocation()), |
6851 | VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(), |
6852 | SourceLocation())); |
6853 | } |
6854 | } else |
6855 | InitArgs.emplace_back(Args&: Arg); |
6856 | } |
6857 | InitListExpr *ILE = new (Context) InitListExpr( |
6858 | S.getASTContext(), SourceLocation(), InitArgs, SourceLocation()); |
6859 | Args[0] = ILE; |
6860 | AddListInitializationStep(T: DestType); |
6861 | return; |
6862 | } |
6863 | |
6864 | // The remaining cases all need a source type. |
6865 | if (Args.size() > 1) { |
6866 | SetFailed(FK_TooManyInitsForScalar); |
6867 | return; |
6868 | } else if (isa<InitListExpr>(Val: Args[0])) { |
6869 | SetFailed(FK_ParenthesizedListInitForScalar); |
6870 | return; |
6871 | } |
6872 | |
6873 | // - Otherwise, if the source type is a (possibly cv-qualified) class |
6874 | // type, conversion functions are considered. |
6875 | if (!SourceType.isNull() && SourceType->isRecordType()) { |
6876 | assert(Initializer && "Initializer must be non-null"); |
6877 | // For a conversion to _Atomic(T) from either T or a class type derived |
6878 | // from T, initialize the T object then convert to _Atomic type. |
6879 | bool NeedAtomicConversion = false; |
6880 | if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { |
6881 | if (Context.hasSameUnqualifiedType(T1: SourceType, T2: Atomic->getValueType()) || |
6882 | S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, |
6883 | Atomic->getValueType())) { |
6884 | DestType = Atomic->getValueType(); |
6885 | NeedAtomicConversion = true; |
6886 | } |
6887 | } |
6888 | |
6889 | TryUserDefinedConversion(S, DestType, Kind, Initializer, Sequence&: *this, |
6890 | TopLevelOfInitList); |
6891 | MaybeProduceObjCObject(S, Sequence&: *this, Entity); |
6892 | if (!Failed() && NeedAtomicConversion) |
6893 | AddAtomicConversionStep(Ty: Entity.getType()); |
6894 | return; |
6895 | } |
6896 | |
6897 | // - Otherwise, if the initialization is direct-initialization, the source |
6898 | // type is std::nullptr_t, and the destination type is bool, the initial |
6899 | // value of the object being initialized is false. |
6900 | if (!SourceType.isNull() && SourceType->isNullPtrType() && |
6901 | DestType->isBooleanType() && |
6902 | Kind.getKind() == InitializationKind::IK_Direct) { |
6903 | AddConversionSequenceStep( |
6904 | ICS: ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, |
6905 | NeedLValToRVal: Initializer->isGLValue()), |
6906 | T: DestType); |
6907 | return; |
6908 | } |
6909 | |
6910 | // - Otherwise, the initial value of the object being initialized is the |
6911 | // (possibly converted) value of the initializer expression. Standard |
6912 | // conversions (Clause 4) will be used, if necessary, to convert the |
6913 | // initializer expression to the cv-unqualified version of the |
6914 | // destination type; no user-defined conversions are considered. |
6915 | |
6916 | ImplicitConversionSequence ICS |
6917 | = S.TryImplicitConversion(From: Initializer, ToType: DestType, |
6918 | /*SuppressUserConversions*/true, |
6919 | AllowExplicit: Sema::AllowedExplicit::None, |
6920 | /*InOverloadResolution*/ false, |
6921 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
6922 | AllowObjCWritebackConversion: allowObjCWritebackConversion); |
6923 | |
6924 | if (ICS.isStandard() && |
6925 | ICS.Standard.Second == ICK_Writeback_Conversion) { |
6926 | // Objective-C ARC writeback conversion. |
6927 | |
6928 | // We should copy unless we're passing to an argument explicitly |
6929 | // marked 'out'. |
6930 | bool ShouldCopy = true; |
6931 | if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Val: Entity.getDecl())) |
6932 | ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
6933 | |
6934 | // If there was an lvalue adjustment, add it as a separate conversion. |
6935 | if (ICS.Standard.First == ICK_Array_To_Pointer || |
6936 | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { |
6937 | ImplicitConversionSequence LvalueICS; |
6938 | LvalueICS.setStandard(); |
6939 | LvalueICS.Standard.setAsIdentityConversion(); |
6940 | LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(Idx: 0)); |
6941 | LvalueICS.Standard.First = ICS.Standard.First; |
6942 | AddConversionSequenceStep(ICS: LvalueICS, T: ICS.Standard.getToType(Idx: 0)); |
6943 | } |
6944 | |
6945 | AddPassByIndirectCopyRestoreStep(type: DestType, shouldCopy: ShouldCopy); |
6946 | } else if (ICS.isBad()) { |
6947 | if (DeclAccessPair Found; |
6948 | Initializer->getType() == Context.OverloadTy && |
6949 | !S.ResolveAddressOfOverloadedFunction(AddressOfExpr: Initializer, TargetType: DestType, |
6950 | /*Complain=*/false, Found)) |
6951 | SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
6952 | else if (Initializer->getType()->isFunctionType() && |
6953 | isExprAnUnaddressableFunction(S, E: Initializer)) |
6954 | SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); |
6955 | else |
6956 | SetFailed(InitializationSequence::FK_ConversionFailed); |
6957 | } else { |
6958 | AddConversionSequenceStep(ICS, T: DestType, TopLevelOfInitList); |
6959 | |
6960 | MaybeProduceObjCObject(S, Sequence&: *this, Entity); |
6961 | } |
6962 | } |
6963 | |
6964 | InitializationSequence::~InitializationSequence() { |
6965 | for (auto &S : Steps) |
6966 | S.Destroy(); |
6967 | } |
6968 | |
6969 | //===----------------------------------------------------------------------===// |
6970 | // Perform initialization |
6971 | //===----------------------------------------------------------------------===// |
6972 | static AssignmentAction getAssignmentAction(const InitializedEntity &Entity, |
6973 | bool Diagnose = false) { |
6974 | switch(Entity.getKind()) { |
6975 | case InitializedEntity::EK_Variable: |
6976 | case InitializedEntity::EK_New: |
6977 | case InitializedEntity::EK_Exception: |
6978 | case InitializedEntity::EK_Base: |
6979 | case InitializedEntity::EK_Delegating: |
6980 | return AssignmentAction::Initializing; |
6981 | |
6982 | case InitializedEntity::EK_Parameter: |
6983 | if (Entity.getDecl() && |
6984 | isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) |
6985 | return AssignmentAction::Sending; |
6986 | |
6987 | return AssignmentAction::Passing; |
6988 | |
6989 | case InitializedEntity::EK_Parameter_CF_Audited: |
6990 | if (Entity.getDecl() && |
6991 | isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) |
6992 | return AssignmentAction::Sending; |
6993 | |
6994 | return !Diagnose ? AssignmentAction::Passing |
6995 | : AssignmentAction::Passing_CFAudited; |
6996 | |
6997 | case InitializedEntity::EK_Result: |
6998 | case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. |
6999 | return AssignmentAction::Returning; |
7000 | |
7001 | case InitializedEntity::EK_Temporary: |
7002 | case InitializedEntity::EK_RelatedResult: |
7003 | // FIXME: Can we tell apart casting vs. converting? |
7004 | return AssignmentAction::Casting; |
7005 | |
7006 | case InitializedEntity::EK_TemplateParameter: |
7007 | // This is really initialization, but refer to it as conversion for |
7008 | // consistency with CheckConvertedConstantExpression. |
7009 | return AssignmentAction::Converting; |
7010 | |
7011 | case InitializedEntity::EK_Member: |
7012 | case InitializedEntity::EK_ParenAggInitMember: |
7013 | case InitializedEntity::EK_Binding: |
7014 | case InitializedEntity::EK_ArrayElement: |
7015 | case InitializedEntity::EK_VectorElement: |
7016 | case InitializedEntity::EK_ComplexElement: |
7017 | case InitializedEntity::EK_BlockElement: |
7018 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
7019 | case InitializedEntity::EK_LambdaCapture: |
7020 | case InitializedEntity::EK_CompoundLiteralInit: |
7021 | return AssignmentAction::Initializing; |
7022 | } |
7023 | |
7024 | llvm_unreachable("Invalid EntityKind!"); |
7025 | } |
7026 | |
7027 | /// Whether we should bind a created object as a temporary when |
7028 | /// initializing the given entity. |
7029 | static bool shouldBindAsTemporary(const InitializedEntity &Entity) { |
7030 | switch (Entity.getKind()) { |
7031 | case InitializedEntity::EK_ArrayElement: |
7032 | case InitializedEntity::EK_Member: |
7033 | case InitializedEntity::EK_ParenAggInitMember: |
7034 | case InitializedEntity::EK_Result: |
7035 | case InitializedEntity::EK_StmtExprResult: |
7036 | case InitializedEntity::EK_New: |
7037 | case InitializedEntity::EK_Variable: |
7038 | case InitializedEntity::EK_Base: |
7039 | case InitializedEntity::EK_Delegating: |
7040 | case InitializedEntity::EK_VectorElement: |
7041 | case InitializedEntity::EK_ComplexElement: |
7042 | case InitializedEntity::EK_Exception: |
7043 | case InitializedEntity::EK_BlockElement: |
7044 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
7045 | case InitializedEntity::EK_LambdaCapture: |
7046 | case InitializedEntity::EK_CompoundLiteralInit: |
7047 | case InitializedEntity::EK_TemplateParameter: |
7048 | return false; |
7049 | |
7050 | case InitializedEntity::EK_Parameter: |
7051 | case InitializedEntity::EK_Parameter_CF_Audited: |
7052 | case InitializedEntity::EK_Temporary: |
7053 | case InitializedEntity::EK_RelatedResult: |
7054 | case InitializedEntity::EK_Binding: |
7055 | return true; |
7056 | } |
7057 | |
7058 | llvm_unreachable("missed an InitializedEntity kind?"); |
7059 | } |
7060 | |
7061 | /// Whether the given entity, when initialized with an object |
7062 | /// created for that initialization, requires destruction. |
7063 | static bool shouldDestroyEntity(const InitializedEntity &Entity) { |
7064 | switch (Entity.getKind()) { |
7065 | case InitializedEntity::EK_Result: |
7066 | case InitializedEntity::EK_StmtExprResult: |
7067 | case InitializedEntity::EK_New: |
7068 | case InitializedEntity::EK_Base: |
7069 | case InitializedEntity::EK_Delegating: |
7070 | case InitializedEntity::EK_VectorElement: |
7071 | case InitializedEntity::EK_ComplexElement: |
7072 | case InitializedEntity::EK_BlockElement: |
7073 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
7074 | case InitializedEntity::EK_LambdaCapture: |
7075 | return false; |
7076 | |
7077 | case InitializedEntity::EK_Member: |
7078 | case InitializedEntity::EK_ParenAggInitMember: |
7079 | case InitializedEntity::EK_Binding: |
7080 | case InitializedEntity::EK_Variable: |
7081 | case InitializedEntity::EK_Parameter: |
7082 | case InitializedEntity::EK_Parameter_CF_Audited: |
7083 | case InitializedEntity::EK_TemplateParameter: |
7084 | case InitializedEntity::EK_Temporary: |
7085 | case InitializedEntity::EK_ArrayElement: |
7086 | case InitializedEntity::EK_Exception: |
7087 | case InitializedEntity::EK_CompoundLiteralInit: |
7088 | case InitializedEntity::EK_RelatedResult: |
7089 | return true; |
7090 | } |
7091 | |
7092 | llvm_unreachable("missed an InitializedEntity kind?"); |
7093 | } |
7094 | |
7095 | /// Get the location at which initialization diagnostics should appear. |
7096 | static SourceLocation getInitializationLoc(const InitializedEntity &Entity, |
7097 | Expr *Initializer) { |
7098 | switch (Entity.getKind()) { |
7099 | case InitializedEntity::EK_Result: |
7100 | case InitializedEntity::EK_StmtExprResult: |
7101 | return Entity.getReturnLoc(); |
7102 | |
7103 | case InitializedEntity::EK_Exception: |
7104 | return Entity.getThrowLoc(); |
7105 | |
7106 | case InitializedEntity::EK_Variable: |
7107 | case InitializedEntity::EK_Binding: |
7108 | return Entity.getDecl()->getLocation(); |
7109 | |
7110 | case InitializedEntity::EK_LambdaCapture: |
7111 | return Entity.getCaptureLoc(); |
7112 | |
7113 | case InitializedEntity::EK_ArrayElement: |
7114 | case InitializedEntity::EK_Member: |
7115 | case InitializedEntity::EK_ParenAggInitMember: |
7116 | case InitializedEntity::EK_Parameter: |
7117 | case InitializedEntity::EK_Parameter_CF_Audited: |
7118 | case InitializedEntity::EK_TemplateParameter: |
7119 | case InitializedEntity::EK_Temporary: |
7120 | case InitializedEntity::EK_New: |
7121 | case InitializedEntity::EK_Base: |
7122 | case InitializedEntity::EK_Delegating: |
7123 | case InitializedEntity::EK_VectorElement: |
7124 | case InitializedEntity::EK_ComplexElement: |
7125 | case InitializedEntity::EK_BlockElement: |
7126 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
7127 | case InitializedEntity::EK_CompoundLiteralInit: |
7128 | case InitializedEntity::EK_RelatedResult: |
7129 | return Initializer->getBeginLoc(); |
7130 | } |
7131 | llvm_unreachable("missed an InitializedEntity kind?"); |
7132 | } |
7133 | |
7134 | /// Make a (potentially elidable) temporary copy of the object |
7135 | /// provided by the given initializer by calling the appropriate copy |
7136 | /// constructor. |
7137 | /// |
7138 | /// \param S The Sema object used for type-checking. |
7139 | /// |
7140 | /// \param T The type of the temporary object, which must either be |
7141 | /// the type of the initializer expression or a superclass thereof. |
7142 | /// |
7143 | /// \param Entity The entity being initialized. |
7144 | /// |
7145 | /// \param CurInit The initializer expression. |
7146 | /// |
7147 | /// \param IsExtraneousCopy Whether this is an "extraneous" copy that |
7148 | /// is permitted in C++03 (but not C++0x) when binding a reference to |
7149 | /// an rvalue. |
7150 | /// |
7151 | /// \returns An expression that copies the initializer expression into |
7152 | /// a temporary object, or an error expression if a copy could not be |
7153 | /// created. |
7154 | static ExprResult CopyObject(Sema &S, |
7155 | QualType T, |
7156 | const InitializedEntity &Entity, |
7157 | ExprResult CurInit, |
7158 | bool IsExtraneousCopy) { |
7159 | if (CurInit.isInvalid()) |
7160 | return CurInit; |
7161 | // Determine which class type we're copying to. |
7162 | Expr *CurInitExpr = (Expr *)CurInit.get(); |
7163 | CXXRecordDecl *Class = nullptr; |
7164 | if (const RecordType *Record = T->getAs<RecordType>()) |
7165 | Class = cast<CXXRecordDecl>(Val: Record->getDecl()); |
7166 | if (!Class) |
7167 | return CurInit; |
7168 | |
7169 | SourceLocation Loc = getInitializationLoc(Entity, Initializer: CurInit.get()); |
7170 | |
7171 | // Make sure that the type we are copying is complete. |
7172 | if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) |
7173 | return CurInit; |
7174 | |
7175 | // Perform overload resolution using the class's constructors. Per |
7176 | // C++11 [dcl.init]p16, second bullet for class types, this initialization |
7177 | // is direct-initialization. |
7178 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
7179 | DeclContext::lookup_result Ctors = S.LookupConstructors(Class); |
7180 | |
7181 | OverloadCandidateSet::iterator Best; |
7182 | switch (ResolveConstructorOverload( |
7183 | S, DeclLoc: Loc, Args: CurInitExpr, CandidateSet, DestType: T, Ctors, Best, |
7184 | /*CopyInitializing=*/false, /*AllowExplicit=*/true, |
7185 | /*OnlyListConstructors=*/false, /*IsListInit=*/false, |
7186 | /*RequireActualConstructor=*/false, |
7187 | /*SecondStepOfCopyInit=*/true)) { |
7188 | case OR_Success: |
7189 | break; |
7190 | |
7191 | case OR_No_Viable_Function: |
7192 | CandidateSet.NoteCandidates( |
7193 | PartialDiagnosticAt( |
7194 | Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() |
7195 | ? diag::ext_rvalue_to_reference_temp_copy_no_viable |
7196 | : diag::err_temp_copy_no_viable) |
7197 | << (int)Entity.getKind() << CurInitExpr->getType() |
7198 | << CurInitExpr->getSourceRange()), |
7199 | S, OCD_AllCandidates, CurInitExpr); |
7200 | if (!IsExtraneousCopy || S.isSFINAEContext()) |
7201 | return ExprError(); |
7202 | return CurInit; |
7203 | |
7204 | case OR_Ambiguous: |
7205 | CandidateSet.NoteCandidates( |
7206 | PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) |
7207 | << (int)Entity.getKind() |
7208 | << CurInitExpr->getType() |
7209 | << CurInitExpr->getSourceRange()), |
7210 | S, OCD_AmbiguousCandidates, CurInitExpr); |
7211 | return ExprError(); |
7212 | |
7213 | case OR_Deleted: |
7214 | S.Diag(Loc, diag::err_temp_copy_deleted) |
7215 | << (int)Entity.getKind() << CurInitExpr->getType() |
7216 | << CurInitExpr->getSourceRange(); |
7217 | S.NoteDeletedFunction(FD: Best->Function); |
7218 | return ExprError(); |
7219 | } |
7220 | |
7221 | bool HadMultipleCandidates = CandidateSet.size() > 1; |
7222 | |
7223 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Val: Best->Function); |
7224 | SmallVector<Expr*, 8> ConstructorArgs; |
7225 | CurInit.get(); // Ownership transferred into MultiExprArg, below. |
7226 | |
7227 | S.CheckConstructorAccess(Loc, D: Constructor, FoundDecl: Best->FoundDecl, Entity, |
7228 | IsCopyBindingRefToTemp: IsExtraneousCopy); |
7229 | |
7230 | if (IsExtraneousCopy) { |
7231 | // If this is a totally extraneous copy for C++03 reference |
7232 | // binding purposes, just return the original initialization |
7233 | // expression. We don't generate an (elided) copy operation here |
7234 | // because doing so would require us to pass down a flag to avoid |
7235 | // infinite recursion, where each step adds another extraneous, |
7236 | // elidable copy. |
7237 | |
7238 | // Instantiate the default arguments of any extra parameters in |
7239 | // the selected copy constructor, as if we were going to create a |
7240 | // proper call to the copy constructor. |
7241 | for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { |
7242 | ParmVarDecl *Parm = Constructor->getParamDecl(I); |
7243 | if (S.RequireCompleteType(Loc, Parm->getType(), |
7244 | diag::err_call_incomplete_argument)) |
7245 | break; |
7246 | |
7247 | // Build the default argument expression; we don't actually care |
7248 | // if this succeeds or not, because this routine will complain |
7249 | // if there was a problem. |
7250 | S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); |
7251 | } |
7252 | |
7253 | return CurInitExpr; |
7254 | } |
7255 | |
7256 | // Determine the arguments required to actually perform the |
7257 | // constructor call (we might have derived-to-base conversions, or |
7258 | // the copy constructor may have default arguments). |
7259 | if (S.CompleteConstructorCall(Constructor, DeclInitType: T, ArgsPtr: CurInitExpr, Loc, |
7260 | ConvertedArgs&: ConstructorArgs)) |
7261 | return ExprError(); |
7262 | |
7263 | // C++0x [class.copy]p32: |
7264 | // When certain criteria are met, an implementation is allowed to |
7265 | // omit the copy/move construction of a class object, even if the |
7266 | // copy/move constructor and/or destructor for the object have |
7267 | // side effects. [...] |
7268 | // - when a temporary class object that has not been bound to a |
7269 | // reference (12.2) would be copied/moved to a class object |
7270 | // with the same cv-unqualified type, the copy/move operation |
7271 | // can be omitted by constructing the temporary object |
7272 | // directly into the target of the omitted copy/move |
7273 | // |
7274 | // Note that the other three bullets are handled elsewhere. Copy |
7275 | // elision for return statements and throw expressions are handled as part |
7276 | // of constructor initialization, while copy elision for exception handlers |
7277 | // is handled by the run-time. |
7278 | // |
7279 | // FIXME: If the function parameter is not the same type as the temporary, we |
7280 | // should still be able to elide the copy, but we don't have a way to |
7281 | // represent in the AST how much should be elided in this case. |
7282 | bool Elidable = |
7283 | CurInitExpr->isTemporaryObject(Ctx&: S.Context, TempTy: Class) && |
7284 | S.Context.hasSameUnqualifiedType( |
7285 | T1: Best->Function->getParamDecl(i: 0)->getType().getNonReferenceType(), |
7286 | T2: CurInitExpr->getType()); |
7287 | |
7288 | // Actually perform the constructor call. |
7289 | CurInit = S.BuildCXXConstructExpr( |
7290 | ConstructLoc: Loc, DeclInitType: T, FoundDecl: Best->FoundDecl, Constructor, Elidable, Exprs: ConstructorArgs, |
7291 | HadMultipleCandidates, |
7292 | /*ListInit*/ IsListInitialization: false, |
7293 | /*StdInitListInit*/ IsStdInitListInitialization: false, |
7294 | /*ZeroInit*/ RequiresZeroInit: false, ConstructKind: CXXConstructionKind::Complete, ParenRange: SourceRange()); |
7295 | |
7296 | // If we're supposed to bind temporaries, do so. |
7297 | if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) |
7298 | CurInit = S.MaybeBindToTemporary(E: CurInit.getAs<Expr>()); |
7299 | return CurInit; |
7300 | } |
7301 | |
7302 | /// Check whether elidable copy construction for binding a reference to |
7303 | /// a temporary would have succeeded if we were building in C++98 mode, for |
7304 | /// -Wc++98-compat. |
7305 | static void CheckCXX98CompatAccessibleCopy(Sema &S, |
7306 | const InitializedEntity &Entity, |
7307 | Expr *CurInitExpr) { |
7308 | assert(S.getLangOpts().CPlusPlus11); |
7309 | |
7310 | const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); |
7311 | if (!Record) |
7312 | return; |
7313 | |
7314 | SourceLocation Loc = getInitializationLoc(Entity, Initializer: CurInitExpr); |
7315 | if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) |
7316 | return; |
7317 | |
7318 | // Find constructors which would have been considered. |
7319 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
7320 | DeclContext::lookup_result Ctors = |
7321 | S.LookupConstructors(Class: cast<CXXRecordDecl>(Val: Record->getDecl())); |
7322 | |
7323 | // Perform overload resolution. |
7324 | OverloadCandidateSet::iterator Best; |
7325 | OverloadingResult OR = ResolveConstructorOverload( |
7326 | S, DeclLoc: Loc, Args: CurInitExpr, CandidateSet, DestType: CurInitExpr->getType(), Ctors, Best, |
7327 | /*CopyInitializing=*/false, /*AllowExplicit=*/true, |
7328 | /*OnlyListConstructors=*/false, /*IsListInit=*/false, |
7329 | /*RequireActualConstructor=*/false, |
7330 | /*SecondStepOfCopyInit=*/true); |
7331 | |
7332 | PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) |
7333 | << OR << (int)Entity.getKind() << CurInitExpr->getType() |
7334 | << CurInitExpr->getSourceRange(); |
7335 | |
7336 | switch (OR) { |
7337 | case OR_Success: |
7338 | S.CheckConstructorAccess(Loc, D: cast<CXXConstructorDecl>(Val: Best->Function), |
7339 | FoundDecl: Best->FoundDecl, Entity, PDiag: Diag); |
7340 | // FIXME: Check default arguments as far as that's possible. |
7341 | break; |
7342 | |
7343 | case OR_No_Viable_Function: |
7344 | CandidateSet.NoteCandidates(PA: PartialDiagnosticAt(Loc, Diag), S, |
7345 | OCD: OCD_AllCandidates, Args: CurInitExpr); |
7346 | break; |
7347 | |
7348 | case OR_Ambiguous: |
7349 | CandidateSet.NoteCandidates(PA: PartialDiagnosticAt(Loc, Diag), S, |
7350 | OCD: OCD_AmbiguousCandidates, Args: CurInitExpr); |
7351 | break; |
7352 | |
7353 | case OR_Deleted: |
7354 | S.Diag(Loc, Diag); |
7355 | S.NoteDeletedFunction(FD: Best->Function); |
7356 | break; |
7357 | } |
7358 | } |
7359 | |
7360 | void InitializationSequence::PrintInitLocationNote(Sema &S, |
7361 | const InitializedEntity &Entity) { |
7362 | if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) { |
7363 | if (Entity.getDecl()->getLocation().isInvalid()) |
7364 | return; |
7365 | |
7366 | if (Entity.getDecl()->getDeclName()) |
7367 | S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) |
7368 | << Entity.getDecl()->getDeclName(); |
7369 | else |
7370 | S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); |
7371 | } |
7372 | else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && |
7373 | Entity.getMethodDecl()) |
7374 | S.Diag(Entity.getMethodDecl()->getLocation(), |
7375 | diag::note_method_return_type_change) |
7376 | << Entity.getMethodDecl()->getDeclName(); |
7377 | } |
7378 | |
7379 | /// Returns true if the parameters describe a constructor initialization of |
7380 | /// an explicit temporary object, e.g. "Point(x, y)". |
7381 | static bool isExplicitTemporary(const InitializedEntity &Entity, |
7382 | const InitializationKind &Kind, |
7383 | unsigned NumArgs) { |
7384 | switch (Entity.getKind()) { |
7385 | case InitializedEntity::EK_Temporary: |
7386 | case InitializedEntity::EK_CompoundLiteralInit: |
7387 | case InitializedEntity::EK_RelatedResult: |
7388 | break; |
7389 | default: |
7390 | return false; |
7391 | } |
7392 | |
7393 | switch (Kind.getKind()) { |
7394 | case InitializationKind::IK_DirectList: |
7395 | return true; |
7396 | // FIXME: Hack to work around cast weirdness. |
7397 | case InitializationKind::IK_Direct: |
7398 | case InitializationKind::IK_Value: |
7399 | return NumArgs != 1; |
7400 | default: |
7401 | return false; |
7402 | } |
7403 | } |
7404 | |
7405 | static ExprResult |
7406 | PerformConstructorInitialization(Sema &S, |
7407 | const InitializedEntity &Entity, |
7408 | const InitializationKind &Kind, |
7409 | MultiExprArg Args, |
7410 | const InitializationSequence::Step& Step, |
7411 | bool &ConstructorInitRequiresZeroInit, |
7412 | bool IsListInitialization, |
7413 | bool IsStdInitListInitialization, |
7414 | SourceLocation LBraceLoc, |
7415 | SourceLocation RBraceLoc) { |
7416 | unsigned NumArgs = Args.size(); |
7417 | CXXConstructorDecl *Constructor |
7418 | = cast<CXXConstructorDecl>(Val: Step.Function.Function); |
7419 | bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; |
7420 | |
7421 | // Build a call to the selected constructor. |
7422 | SmallVector<Expr*, 8> ConstructorArgs; |
7423 | SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) |
7424 | ? Kind.getEqualLoc() |
7425 | : Kind.getLocation(); |
7426 | |
7427 | if (Kind.getKind() == InitializationKind::IK_Default) { |
7428 | // Force even a trivial, implicit default constructor to be |
7429 | // semantically checked. We do this explicitly because we don't build |
7430 | // the definition for completely trivial constructors. |
7431 | assert(Constructor->getParent() && "No parent class for constructor."); |
7432 | if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && |
7433 | Constructor->isTrivial() && !Constructor->isUsed(false)) { |
7434 | S.runWithSufficientStackSpace(Loc, Fn: [&] { |
7435 | S.DefineImplicitDefaultConstructor(CurrentLocation: Loc, Constructor); |
7436 | }); |
7437 | } |
7438 | } |
7439 | |
7440 | ExprResult CurInit((Expr *)nullptr); |
7441 | |
7442 | // C++ [over.match.copy]p1: |
7443 | // - When initializing a temporary to be bound to the first parameter |
7444 | // of a constructor that takes a reference to possibly cv-qualified |
7445 | // T as its first argument, called with a single argument in the |
7446 | // context of direct-initialization, explicit conversion functions |
7447 | // are also considered. |
7448 | bool AllowExplicitConv = |
7449 | Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && |
7450 | hasCopyOrMoveCtorParam(Ctx&: S.Context, |
7451 | Info: getConstructorInfo(ND: Step.Function.FoundDecl)); |
7452 | |
7453 | // A smart pointer constructed from a nullable pointer is nullable. |
7454 | if (NumArgs == 1 && !Kind.isExplicitCast()) |
7455 | S.diagnoseNullableToNonnullConversion( |
7456 | DstType: Entity.getType(), SrcType: Args.front()->getType(), Loc: Kind.getLocation()); |
7457 | |
7458 | // Determine the arguments required to actually perform the constructor |
7459 | // call. |
7460 | if (S.CompleteConstructorCall(Constructor, DeclInitType: Step.Type, ArgsPtr: Args, Loc, |
7461 | ConvertedArgs&: ConstructorArgs, AllowExplicit: AllowExplicitConv, |
7462 | IsListInitialization)) |
7463 | return ExprError(); |
7464 | |
7465 | if (isExplicitTemporary(Entity, Kind, NumArgs)) { |
7466 | // An explicitly-constructed temporary, e.g., X(1, 2). |
7467 | if (S.DiagnoseUseOfDecl(D: Step.Function.FoundDecl, Locs: Loc)) |
7468 | return ExprError(); |
7469 | |
7470 | if (Kind.getKind() == InitializationKind::IK_Value && |
7471 | Constructor->isImplicit()) { |
7472 | auto *RD = Step.Type.getCanonicalType()->getAsCXXRecordDecl(); |
7473 | if (RD && RD->isAggregate() && RD->hasUninitializedExplicitInitFields()) { |
7474 | unsigned I = 0; |
7475 | for (const FieldDecl *FD : RD->fields()) { |
7476 | if (I >= ConstructorArgs.size() && FD->hasAttr<ExplicitInitAttr>()) { |
7477 | S.Diag(Loc, diag::warn_field_requires_explicit_init) |
7478 | << /* Var-in-Record */ 0 << FD; |
7479 | S.Diag(FD->getLocation(), diag::note_entity_declared_at) << FD; |
7480 | } |
7481 | ++I; |
7482 | } |
7483 | } |
7484 | } |
7485 | |
7486 | TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
7487 | if (!TSInfo) |
7488 | TSInfo = S.Context.getTrivialTypeSourceInfo(T: Entity.getType(), Loc); |
7489 | SourceRange ParenOrBraceRange = |
7490 | (Kind.getKind() == InitializationKind::IK_DirectList) |
7491 | ? SourceRange(LBraceLoc, RBraceLoc) |
7492 | : Kind.getParenOrBraceRange(); |
7493 | |
7494 | CXXConstructorDecl *CalleeDecl = Constructor; |
7495 | if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( |
7496 | Val: Step.Function.FoundDecl.getDecl())) { |
7497 | CalleeDecl = S.findInheritingConstructor(Loc, BaseCtor: Constructor, DerivedShadow: Shadow); |
7498 | } |
7499 | S.MarkFunctionReferenced(Loc, CalleeDecl); |
7500 | |
7501 | CurInit = S.CheckForImmediateInvocation( |
7502 | CXXTemporaryObjectExpr::Create( |
7503 | Ctx: S.Context, Cons: CalleeDecl, |
7504 | Ty: Entity.getType().getNonLValueExprType(Context: S.Context), TSI: TSInfo, |
7505 | Args: ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, |
7506 | ListInitialization: IsListInitialization, StdInitListInitialization: IsStdInitListInitialization, |
7507 | ZeroInitialization: ConstructorInitRequiresZeroInit), |
7508 | CalleeDecl); |
7509 | } else { |
7510 | CXXConstructionKind ConstructKind = CXXConstructionKind::Complete; |
7511 | |
7512 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
7513 | ConstructKind = Entity.getBaseSpecifier()->isVirtual() |
7514 | ? CXXConstructionKind::VirtualBase |
7515 | : CXXConstructionKind::NonVirtualBase; |
7516 | } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { |
7517 | ConstructKind = CXXConstructionKind::Delegating; |
7518 | } |
7519 | |
7520 | // Only get the parenthesis or brace range if it is a list initialization or |
7521 | // direct construction. |
7522 | SourceRange ParenOrBraceRange; |
7523 | if (IsListInitialization) |
7524 | ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); |
7525 | else if (Kind.getKind() == InitializationKind::IK_Direct) |
7526 | ParenOrBraceRange = Kind.getParenOrBraceRange(); |
7527 | |
7528 | // If the entity allows NRVO, mark the construction as elidable |
7529 | // unconditionally. |
7530 | if (Entity.allowsNRVO()) |
7531 | CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, |
7532 | Step.Function.FoundDecl, |
7533 | Constructor, /*Elidable=*/true, |
7534 | ConstructorArgs, |
7535 | HadMultipleCandidates, |
7536 | IsListInitialization, |
7537 | IsStdInitListInitialization, |
7538 | ConstructorInitRequiresZeroInit, |
7539 | ConstructKind, |
7540 | ParenOrBraceRange); |
7541 | else |
7542 | CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, |
7543 | Step.Function.FoundDecl, |
7544 | Constructor, |
7545 | ConstructorArgs, |
7546 | HadMultipleCandidates, |
7547 | IsListInitialization, |
7548 | IsStdInitListInitialization, |
7549 | ConstructorInitRequiresZeroInit, |
7550 | ConstructKind, |
7551 | ParenOrBraceRange); |
7552 | } |
7553 | if (CurInit.isInvalid()) |
7554 | return ExprError(); |
7555 | |
7556 | // Only check access if all of that succeeded. |
7557 | S.CheckConstructorAccess(Loc, D: Constructor, FoundDecl: Step.Function.FoundDecl, Entity); |
7558 | if (S.DiagnoseUseOfDecl(D: Step.Function.FoundDecl, Locs: Loc)) |
7559 | return ExprError(); |
7560 | |
7561 | if (const ArrayType *AT = S.Context.getAsArrayType(T: Entity.getType())) |
7562 | if (checkDestructorReference(ElementType: S.Context.getBaseElementType(VAT: AT), Loc, SemaRef&: S)) |
7563 | return ExprError(); |
7564 | |
7565 | if (shouldBindAsTemporary(Entity)) |
7566 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
7567 | |
7568 | return CurInit; |
7569 | } |
7570 | |
7571 | void Sema::checkInitializerLifetime(const InitializedEntity &Entity, |
7572 | Expr *Init) { |
7573 | return sema::checkInitLifetime(SemaRef&: *this, Entity, Init); |
7574 | } |
7575 | |
7576 | static void DiagnoseNarrowingInInitList(Sema &S, |
7577 | const ImplicitConversionSequence &ICS, |
7578 | QualType PreNarrowingType, |
7579 | QualType EntityType, |
7580 | const Expr *PostInit); |
7581 | |
7582 | static void CheckC23ConstexprInitConversion(Sema &S, QualType FromType, |
7583 | QualType ToType, Expr *Init); |
7584 | |
7585 | /// Provide warnings when std::move is used on construction. |
7586 | static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, |
7587 | bool IsReturnStmt) { |
7588 | if (!InitExpr) |
7589 | return; |
7590 | |
7591 | if (S.inTemplateInstantiation()) |
7592 | return; |
7593 | |
7594 | QualType DestType = InitExpr->getType(); |
7595 | if (!DestType->isRecordType()) |
7596 | return; |
7597 | |
7598 | unsigned DiagID = 0; |
7599 | if (IsReturnStmt) { |
7600 | const CXXConstructExpr *CCE = |
7601 | dyn_cast<CXXConstructExpr>(Val: InitExpr->IgnoreParens()); |
7602 | if (!CCE || CCE->getNumArgs() != 1) |
7603 | return; |
7604 | |
7605 | if (!CCE->getConstructor()->isCopyOrMoveConstructor()) |
7606 | return; |
7607 | |
7608 | InitExpr = CCE->getArg(Arg: 0)->IgnoreImpCasts(); |
7609 | } |
7610 | |
7611 | // Find the std::move call and get the argument. |
7612 | const CallExpr *CE = dyn_cast<CallExpr>(Val: InitExpr->IgnoreParens()); |
7613 | if (!CE || !CE->isCallToStdMove()) |
7614 | return; |
7615 | |
7616 | const Expr *Arg = CE->getArg(Arg: 0)->IgnoreImplicit(); |
7617 | |
7618 | if (IsReturnStmt) { |
7619 | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Arg->IgnoreParenImpCasts()); |
7620 | if (!DRE || DRE->refersToEnclosingVariableOrCapture()) |
7621 | return; |
7622 | |
7623 | const VarDecl *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()); |
7624 | if (!VD || !VD->hasLocalStorage()) |
7625 | return; |
7626 | |
7627 | // __block variables are not moved implicitly. |
7628 | if (VD->hasAttr<BlocksAttr>()) |
7629 | return; |
7630 | |
7631 | QualType SourceType = VD->getType(); |
7632 | if (!SourceType->isRecordType()) |
7633 | return; |
7634 | |
7635 | if (!S.Context.hasSameUnqualifiedType(T1: DestType, T2: SourceType)) { |
7636 | return; |
7637 | } |
7638 | |
7639 | // If we're returning a function parameter, copy elision |
7640 | // is not possible. |
7641 | if (isa<ParmVarDecl>(VD)) |
7642 | DiagID = diag::warn_redundant_move_on_return; |
7643 | else |
7644 | DiagID = diag::warn_pessimizing_move_on_return; |
7645 | } else { |
7646 | DiagID = diag::warn_pessimizing_move_on_initialization; |
7647 | const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); |
7648 | if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType()) |
7649 | return; |
7650 | } |
7651 | |
7652 | S.Diag(CE->getBeginLoc(), DiagID); |
7653 | |
7654 | // Get all the locations for a fix-it. Don't emit the fix-it if any location |
7655 | // is within a macro. |
7656 | SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); |
7657 | if (CallBegin.isMacroID()) |
7658 | return; |
7659 | SourceLocation RParen = CE->getRParenLoc(); |
7660 | if (RParen.isMacroID()) |
7661 | return; |
7662 | SourceLocation LParen; |
7663 | SourceLocation ArgLoc = Arg->getBeginLoc(); |
7664 | |
7665 | // Special testing for the argument location. Since the fix-it needs the |
7666 | // location right before the argument, the argument location can be in a |
7667 | // macro only if it is at the beginning of the macro. |
7668 | while (ArgLoc.isMacroID() && |
7669 | S.getSourceManager().isAtStartOfImmediateMacroExpansion(Loc: ArgLoc)) { |
7670 | ArgLoc = S.getSourceManager().getImmediateExpansionRange(Loc: ArgLoc).getBegin(); |
7671 | } |
7672 | |
7673 | if (LParen.isMacroID()) |
7674 | return; |
7675 | |
7676 | LParen = ArgLoc.getLocWithOffset(Offset: -1); |
7677 | |
7678 | S.Diag(CE->getBeginLoc(), diag::note_remove_move) |
7679 | << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) |
7680 | << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); |
7681 | } |
7682 | |
7683 | static void CheckForNullPointerDereference(Sema &S, const Expr *E) { |
7684 | // Check to see if we are dereferencing a null pointer. If so, this is |
7685 | // undefined behavior, so warn about it. This only handles the pattern |
7686 | // "*null", which is a very syntactic check. |
7687 | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E->IgnoreParenCasts())) |
7688 | if (UO->getOpcode() == UO_Deref && |
7689 | UO->getSubExpr()->IgnoreParenCasts()-> |
7690 | isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNotNull)) { |
7691 | S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
7692 | S.PDiag(diag::warn_binding_null_to_reference) |
7693 | << UO->getSubExpr()->getSourceRange()); |
7694 | } |
7695 | } |
7696 | |
7697 | MaterializeTemporaryExpr * |
7698 | Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, |
7699 | bool BoundToLvalueReference) { |
7700 | auto MTE = new (Context) |
7701 | MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); |
7702 | |
7703 | // Order an ExprWithCleanups for lifetime marks. |
7704 | // |
7705 | // TODO: It'll be good to have a single place to check the access of the |
7706 | // destructor and generate ExprWithCleanups for various uses. Currently these |
7707 | // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, |
7708 | // but there may be a chance to merge them. |
7709 | Cleanup.setExprNeedsCleanups(false); |
7710 | if (isInLifetimeExtendingContext()) |
7711 | currentEvaluationContext().ForRangeLifetimeExtendTemps.push_back(Elt: MTE); |
7712 | return MTE; |
7713 | } |
7714 | |
7715 | ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { |
7716 | // In C++98, we don't want to implicitly create an xvalue. C11 added the |
7717 | // same rule, but C99 is broken without this behavior and so we treat the |
7718 | // change as applying to all C language modes. |
7719 | // FIXME: This means that AST consumers need to deal with "prvalues" that |
7720 | // denote materialized temporaries. Maybe we should add another ValueKind |
7721 | // for "xvalue pretending to be a prvalue" for C++98 support. |
7722 | if (!E->isPRValue() || |
7723 | (!getLangOpts().CPlusPlus11 && getLangOpts().CPlusPlus)) |
7724 | return E; |
7725 | |
7726 | // C++1z [conv.rval]/1: T shall be a complete type. |
7727 | // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? |
7728 | // If so, we should check for a non-abstract class type here too. |
7729 | QualType T = E->getType(); |
7730 | if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) |
7731 | return ExprError(); |
7732 | |
7733 | return CreateMaterializeTemporaryExpr(T: E->getType(), Temporary: E, BoundToLvalueReference: false); |
7734 | } |
7735 | |
7736 | ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, |
7737 | ExprValueKind VK, |
7738 | CheckedConversionKind CCK) { |
7739 | |
7740 | CastKind CK = CK_NoOp; |
7741 | |
7742 | if (VK == VK_PRValue) { |
7743 | auto PointeeTy = Ty->getPointeeType(); |
7744 | auto ExprPointeeTy = E->getType()->getPointeeType(); |
7745 | if (!PointeeTy.isNull() && |
7746 | PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) |
7747 | CK = CK_AddressSpaceConversion; |
7748 | } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { |
7749 | CK = CK_AddressSpaceConversion; |
7750 | } |
7751 | |
7752 | return ImpCastExprToType(E, Type: Ty, CK, VK, /*BasePath=*/nullptr, CCK); |
7753 | } |
7754 | |
7755 | ExprResult InitializationSequence::Perform(Sema &S, |
7756 | const InitializedEntity &Entity, |
7757 | const InitializationKind &Kind, |
7758 | MultiExprArg Args, |
7759 | QualType *ResultType) { |
7760 | if (Failed()) { |
7761 | Diagnose(S, Entity, Kind, Args); |
7762 | return ExprError(); |
7763 | } |
7764 | if (!ZeroInitializationFixit.empty()) { |
7765 | const Decl *D = Entity.getDecl(); |
7766 | const auto *VD = dyn_cast_or_null<VarDecl>(Val: D); |
7767 | QualType DestType = Entity.getType(); |
7768 | |
7769 | // The initialization would have succeeded with this fixit. Since the fixit |
7770 | // is on the error, we need to build a valid AST in this case, so this isn't |
7771 | // handled in the Failed() branch above. |
7772 | if (!DestType->isRecordType() && VD && VD->isConstexpr()) { |
7773 | // Use a more useful diagnostic for constexpr variables. |
7774 | S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init) |
7775 | << VD |
7776 | << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, |
7777 | ZeroInitializationFixit); |
7778 | } else { |
7779 | unsigned DiagID = diag::err_default_init_const; |
7780 | if (S.getLangOpts().MSVCCompat && D && D->hasAttr<SelectAnyAttr>()) |
7781 | DiagID = diag::ext_default_init_const; |
7782 | |
7783 | S.Diag(Kind.getLocation(), DiagID) |
7784 | << DestType << (bool)DestType->getAs<RecordType>() |
7785 | << FixItHint::CreateInsertion(InsertionLoc: ZeroInitializationFixitLoc, |
7786 | Code: ZeroInitializationFixit); |
7787 | } |
7788 | } |
7789 | |
7790 | if (getKind() == DependentSequence) { |
7791 | // If the declaration is a non-dependent, incomplete array type |
7792 | // that has an initializer, then its type will be completed once |
7793 | // the initializer is instantiated. |
7794 | if (ResultType && !Entity.getType()->isDependentType() && |
7795 | Args.size() == 1) { |
7796 | QualType DeclType = Entity.getType(); |
7797 | if (const IncompleteArrayType *ArrayT |
7798 | = S.Context.getAsIncompleteArrayType(T: DeclType)) { |
7799 | // FIXME: We don't currently have the ability to accurately |
7800 | // compute the length of an initializer list without |
7801 | // performing full type-checking of the initializer list |
7802 | // (since we have to determine where braces are implicitly |
7803 | // introduced and such). So, we fall back to making the array |
7804 | // type a dependently-sized array type with no specified |
7805 | // bound. |
7806 | if (isa<InitListExpr>(Val: (Expr *)Args[0])) |
7807 | *ResultType = S.Context.getDependentSizedArrayType( |
7808 | EltTy: ArrayT->getElementType(), |
7809 | /*NumElts=*/nullptr, ASM: ArrayT->getSizeModifier(), |
7810 | IndexTypeQuals: ArrayT->getIndexTypeCVRQualifiers()); |
7811 | } |
7812 | } |
7813 | if (Kind.getKind() == InitializationKind::IK_Direct && |
7814 | !Kind.isExplicitCast()) { |
7815 | // Rebuild the ParenListExpr. |
7816 | SourceRange ParenRange = Kind.getParenOrBraceRange(); |
7817 | return S.ActOnParenListExpr(L: ParenRange.getBegin(), R: ParenRange.getEnd(), |
7818 | Val: Args); |
7819 | } |
7820 | assert(Kind.getKind() == InitializationKind::IK_Copy || |
7821 | Kind.isExplicitCast() || |
7822 | Kind.getKind() == InitializationKind::IK_DirectList); |
7823 | return ExprResult(Args[0]); |
7824 | } |
7825 | |
7826 | // No steps means no initialization. |
7827 | if (Steps.empty()) |
7828 | return ExprResult((Expr *)nullptr); |
7829 | |
7830 | if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && |
7831 | Args.size() == 1 && isa<InitListExpr>(Val: Args[0]) && |
7832 | !Entity.isParamOrTemplateParamKind()) { |
7833 | // Produce a C++98 compatibility warning if we are initializing a reference |
7834 | // from an initializer list. For parameters, we produce a better warning |
7835 | // elsewhere. |
7836 | Expr *Init = Args[0]; |
7837 | S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) |
7838 | << Init->getSourceRange(); |
7839 | } |
7840 | |
7841 | if (S.getLangOpts().MicrosoftExt && Args.size() == 1 && |
7842 | isa<PredefinedExpr>(Val: Args[0]) && Entity.getType()->isArrayType()) { |
7843 | // Produce a Microsoft compatibility warning when initializing from a |
7844 | // predefined expression since MSVC treats predefined expressions as string |
7845 | // literals. |
7846 | Expr *Init = Args[0]; |
7847 | S.Diag(Init->getBeginLoc(), diag::ext_init_from_predefined) << Init; |
7848 | } |
7849 | |
7850 | // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope |
7851 | QualType ETy = Entity.getType(); |
7852 | bool HasGlobalAS = ETy.hasAddressSpace() && |
7853 | ETy.getAddressSpace() == LangAS::opencl_global; |
7854 | |
7855 | if (S.getLangOpts().OpenCLVersion >= 200 && |
7856 | ETy->isAtomicType() && !HasGlobalAS && |
7857 | Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { |
7858 | S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) |
7859 | << 1 |
7860 | << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); |
7861 | return ExprError(); |
7862 | } |
7863 | |
7864 | QualType DestType = Entity.getType().getNonReferenceType(); |
7865 | // FIXME: Ugly hack around the fact that Entity.getType() is not |
7866 | // the same as Entity.getDecl()->getType() in cases involving type merging, |
7867 | // and we want latter when it makes sense. |
7868 | if (ResultType) |
7869 | *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : |
7870 | Entity.getType(); |
7871 | |
7872 | ExprResult CurInit((Expr *)nullptr); |
7873 | SmallVector<Expr*, 4> ArrayLoopCommonExprs; |
7874 | |
7875 | // HLSL allows vector initialization to function like list initialization, but |
7876 | // use the syntax of a C++-like constructor. |
7877 | bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() && |
7878 | isa<InitListExpr>(Val: Args[0]); |
7879 | (void)IsHLSLVectorInit; |
7880 | |
7881 | // For initialization steps that start with a single initializer, |
7882 | // grab the only argument out the Args and place it into the "current" |
7883 | // initializer. |
7884 | switch (Steps.front().Kind) { |
7885 | case SK_ResolveAddressOfOverloadedFunction: |
7886 | case SK_CastDerivedToBasePRValue: |
7887 | case SK_CastDerivedToBaseXValue: |
7888 | case SK_CastDerivedToBaseLValue: |
7889 | case SK_BindReference: |
7890 | case SK_BindReferenceToTemporary: |
7891 | case SK_FinalCopy: |
7892 | case SK_ExtraneousCopyToTemporary: |
7893 | case SK_UserConversion: |
7894 | case SK_QualificationConversionLValue: |
7895 | case SK_QualificationConversionXValue: |
7896 | case SK_QualificationConversionPRValue: |
7897 | case SK_FunctionReferenceConversion: |
7898 | case SK_AtomicConversion: |
7899 | case SK_ConversionSequence: |
7900 | case SK_ConversionSequenceNoNarrowing: |
7901 | case SK_ListInitialization: |
7902 | case SK_UnwrapInitList: |
7903 | case SK_RewrapInitList: |
7904 | case SK_CAssignment: |
7905 | case SK_StringInit: |
7906 | case SK_ObjCObjectConversion: |
7907 | case SK_ArrayLoopIndex: |
7908 | case SK_ArrayLoopInit: |
7909 | case SK_ArrayInit: |
7910 | case SK_GNUArrayInit: |
7911 | case SK_ParenthesizedArrayInit: |
7912 | case SK_PassByIndirectCopyRestore: |
7913 | case SK_PassByIndirectRestore: |
7914 | case SK_ProduceObjCObject: |
7915 | case SK_StdInitializerList: |
7916 | case SK_OCLSamplerInit: |
7917 | case SK_OCLZeroOpaqueType: { |
7918 | assert(Args.size() == 1 || IsHLSLVectorInit); |
7919 | CurInit = Args[0]; |
7920 | if (!CurInit.get()) return ExprError(); |
7921 | break; |
7922 | } |
7923 | |
7924 | case SK_ConstructorInitialization: |
7925 | case SK_ConstructorInitializationFromList: |
7926 | case SK_StdInitializerListConstructorCall: |
7927 | case SK_ZeroInitialization: |
7928 | case SK_ParenthesizedListInit: |
7929 | break; |
7930 | } |
7931 | |
7932 | // Promote from an unevaluated context to an unevaluated list context in |
7933 | // C++11 list-initialization; we need to instantiate entities usable in |
7934 | // constant expressions here in order to perform narrowing checks =( |
7935 | EnterExpressionEvaluationContext Evaluated( |
7936 | S, EnterExpressionEvaluationContext::InitList, |
7937 | isa_and_nonnull<InitListExpr>(Val: CurInit.get())); |
7938 | |
7939 | // C++ [class.abstract]p2: |
7940 | // no objects of an abstract class can be created except as subobjects |
7941 | // of a class derived from it |
7942 | auto checkAbstractType = [&](QualType T) -> bool { |
7943 | if (Entity.getKind() == InitializedEntity::EK_Base || |
7944 | Entity.getKind() == InitializedEntity::EK_Delegating) |
7945 | return false; |
7946 | return S.RequireNonAbstractType(Kind.getLocation(), T, |
7947 | diag::err_allocation_of_abstract_type); |
7948 | }; |
7949 | |
7950 | // Walk through the computed steps for the initialization sequence, |
7951 | // performing the specified conversions along the way. |
7952 | bool ConstructorInitRequiresZeroInit = false; |
7953 | for (step_iterator Step = step_begin(), StepEnd = step_end(); |
7954 | Step != StepEnd; ++Step) { |
7955 | if (CurInit.isInvalid()) |
7956 | return ExprError(); |
7957 | |
7958 | QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); |
7959 | |
7960 | switch (Step->Kind) { |
7961 | case SK_ResolveAddressOfOverloadedFunction: |
7962 | // Overload resolution determined which function invoke; update the |
7963 | // initializer to reflect that choice. |
7964 | S.CheckAddressOfMemberAccess(OvlExpr: CurInit.get(), FoundDecl: Step->Function.FoundDecl); |
7965 | if (S.DiagnoseUseOfDecl(D: Step->Function.FoundDecl, Locs: Kind.getLocation())) |
7966 | return ExprError(); |
7967 | CurInit = S.FixOverloadedFunctionReference(CurInit, |
7968 | FoundDecl: Step->Function.FoundDecl, |
7969 | Fn: Step->Function.Function); |
7970 | // We might get back another placeholder expression if we resolved to a |
7971 | // builtin. |
7972 | if (!CurInit.isInvalid()) |
7973 | CurInit = S.CheckPlaceholderExpr(E: CurInit.get()); |
7974 | break; |
7975 | |
7976 | case SK_CastDerivedToBasePRValue: |
7977 | case SK_CastDerivedToBaseXValue: |
7978 | case SK_CastDerivedToBaseLValue: { |
7979 | // We have a derived-to-base cast that produces either an rvalue or an |
7980 | // lvalue. Perform that cast. |
7981 | |
7982 | CXXCastPath BasePath; |
7983 | |
7984 | // Casts to inaccessible base classes are allowed with C-style casts. |
7985 | bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); |
7986 | if (S.CheckDerivedToBaseConversion( |
7987 | SourceType, Step->Type, CurInit.get()->getBeginLoc(), |
7988 | CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) |
7989 | return ExprError(); |
7990 | |
7991 | ExprValueKind VK = |
7992 | Step->Kind == SK_CastDerivedToBaseLValue |
7993 | ? VK_LValue |
7994 | : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue |
7995 | : VK_PRValue); |
7996 | CurInit = ImplicitCastExpr::Create(Context: S.Context, T: Step->Type, |
7997 | Kind: CK_DerivedToBase, Operand: CurInit.get(), |
7998 | BasePath: &BasePath, Cat: VK, FPO: FPOptionsOverride()); |
7999 | break; |
8000 | } |
8001 | |
8002 | case SK_BindReference: |
8003 | // Reference binding does not have any corresponding ASTs. |
8004 | |
8005 | // Check exception specifications |
8006 | if (S.CheckExceptionSpecCompatibility(From: CurInit.get(), ToType: DestType)) |
8007 | return ExprError(); |
8008 | |
8009 | // We don't check for e.g. function pointers here, since address |
8010 | // availability checks should only occur when the function first decays |
8011 | // into a pointer or reference. |
8012 | if (CurInit.get()->getType()->isFunctionProtoType()) { |
8013 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CurInit.get()->IgnoreParens())) { |
8014 | if (auto *FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl())) { |
8015 | if (!S.checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true, |
8016 | Loc: DRE->getBeginLoc())) |
8017 | return ExprError(); |
8018 | } |
8019 | } |
8020 | } |
8021 | |
8022 | CheckForNullPointerDereference(S, E: CurInit.get()); |
8023 | break; |
8024 | |
8025 | case SK_BindReferenceToTemporary: { |
8026 | // Make sure the "temporary" is actually an rvalue. |
8027 | assert(CurInit.get()->isPRValue() && "not a temporary"); |
8028 | |
8029 | // Check exception specifications |
8030 | if (S.CheckExceptionSpecCompatibility(From: CurInit.get(), ToType: DestType)) |
8031 | return ExprError(); |
8032 | |
8033 | QualType MTETy = Step->Type; |
8034 | |
8035 | // When this is an incomplete array type (such as when this is |
8036 | // initializing an array of unknown bounds from an init list), use THAT |
8037 | // type instead so that we propagate the array bounds. |
8038 | if (MTETy->isIncompleteArrayType() && |
8039 | !CurInit.get()->getType()->isIncompleteArrayType() && |
8040 | S.Context.hasSameType( |
8041 | T1: MTETy->getPointeeOrArrayElementType(), |
8042 | T2: CurInit.get()->getType()->getPointeeOrArrayElementType())) |
8043 | MTETy = CurInit.get()->getType(); |
8044 | |
8045 | // Materialize the temporary into memory. |
8046 | MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( |
8047 | T: MTETy, Temporary: CurInit.get(), BoundToLvalueReference: Entity.getType()->isLValueReferenceType()); |
8048 | CurInit = MTE; |
8049 | |
8050 | // If we're extending this temporary to automatic storage duration -- we |
8051 | // need to register its cleanup during the full-expression's cleanups. |
8052 | if (MTE->getStorageDuration() == SD_Automatic && |
8053 | MTE->getType().isDestructedType()) |
8054 | S.Cleanup.setExprNeedsCleanups(true); |
8055 | break; |
8056 | } |
8057 | |
8058 | case SK_FinalCopy: |
8059 | if (checkAbstractType(Step->Type)) |
8060 | return ExprError(); |
8061 | |
8062 | // If the overall initialization is initializing a temporary, we already |
8063 | // bound our argument if it was necessary to do so. If not (if we're |
8064 | // ultimately initializing a non-temporary), our argument needs to be |
8065 | // bound since it's initializing a function parameter. |
8066 | // FIXME: This is a mess. Rationalize temporary destruction. |
8067 | if (!shouldBindAsTemporary(Entity)) |
8068 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
8069 | CurInit = CopyObject(S, Step->Type, Entity, CurInit, |
8070 | /*IsExtraneousCopy=*/false); |
8071 | break; |
8072 | |
8073 | case SK_ExtraneousCopyToTemporary: |
8074 | CurInit = CopyObject(S, Step->Type, Entity, CurInit, |
8075 | /*IsExtraneousCopy=*/true); |
8076 | break; |
8077 | |
8078 | case SK_UserConversion: { |
8079 | // We have a user-defined conversion that invokes either a constructor |
8080 | // or a conversion function. |
8081 | CastKind CastKind; |
8082 | FunctionDecl *Fn = Step->Function.Function; |
8083 | DeclAccessPair FoundFn = Step->Function.FoundDecl; |
8084 | bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; |
8085 | bool CreatedObject = false; |
8086 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: Fn)) { |
8087 | // Build a call to the selected constructor. |
8088 | SmallVector<Expr*, 8> ConstructorArgs; |
8089 | SourceLocation Loc = CurInit.get()->getBeginLoc(); |
8090 | |
8091 | // Determine the arguments required to actually perform the constructor |
8092 | // call. |
8093 | Expr *Arg = CurInit.get(); |
8094 | if (S.CompleteConstructorCall(Constructor, DeclInitType: Step->Type, |
8095 | ArgsPtr: MultiExprArg(&Arg, 1), Loc, |
8096 | ConvertedArgs&: ConstructorArgs)) |
8097 | return ExprError(); |
8098 | |
8099 | // Build an expression that constructs a temporary. |
8100 | CurInit = S.BuildCXXConstructExpr( |
8101 | Loc, Step->Type, FoundFn, Constructor, ConstructorArgs, |
8102 | HadMultipleCandidates, |
8103 | /*ListInit*/ false, |
8104 | /*StdInitListInit*/ false, |
8105 | /*ZeroInit*/ false, CXXConstructionKind::Complete, SourceRange()); |
8106 | if (CurInit.isInvalid()) |
8107 | return ExprError(); |
8108 | |
8109 | S.CheckConstructorAccess(Loc: Kind.getLocation(), D: Constructor, FoundDecl: FoundFn, |
8110 | Entity); |
8111 | if (S.DiagnoseUseOfDecl(D: FoundFn, Locs: Kind.getLocation())) |
8112 | return ExprError(); |
8113 | |
8114 | CastKind = CK_ConstructorConversion; |
8115 | CreatedObject = true; |
8116 | } else { |
8117 | // Build a call to the conversion function. |
8118 | CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Val: Fn); |
8119 | S.CheckMemberOperatorAccess(Loc: Kind.getLocation(), ObjectExpr: CurInit.get(), ArgExpr: nullptr, |
8120 | FoundDecl: FoundFn); |
8121 | if (S.DiagnoseUseOfDecl(D: FoundFn, Locs: Kind.getLocation())) |
8122 | return ExprError(); |
8123 | |
8124 | CurInit = S.BuildCXXMemberCallExpr(Exp: CurInit.get(), FoundDecl: FoundFn, Method: Conversion, |
8125 | HadMultipleCandidates); |
8126 | if (CurInit.isInvalid()) |
8127 | return ExprError(); |
8128 | |
8129 | CastKind = CK_UserDefinedConversion; |
8130 | CreatedObject = Conversion->getReturnType()->isRecordType(); |
8131 | } |
8132 | |
8133 | if (CreatedObject && checkAbstractType(CurInit.get()->getType())) |
8134 | return ExprError(); |
8135 | |
8136 | CurInit = ImplicitCastExpr::Create( |
8137 | Context: S.Context, T: CurInit.get()->getType(), Kind: CastKind, Operand: CurInit.get(), BasePath: nullptr, |
8138 | Cat: CurInit.get()->getValueKind(), FPO: S.CurFPFeatureOverrides()); |
8139 | |
8140 | if (shouldBindAsTemporary(Entity)) |
8141 | // The overall entity is temporary, so this expression should be |
8142 | // destroyed at the end of its full-expression. |
8143 | CurInit = S.MaybeBindToTemporary(E: CurInit.getAs<Expr>()); |
8144 | else if (CreatedObject && shouldDestroyEntity(Entity)) { |
8145 | // The object outlasts the full-expression, but we need to prepare for |
8146 | // a destructor being run on it. |
8147 | // FIXME: It makes no sense to do this here. This should happen |
8148 | // regardless of how we initialized the entity. |
8149 | QualType T = CurInit.get()->getType(); |
8150 | if (const RecordType *Record = T->getAs<RecordType>()) { |
8151 | CXXDestructorDecl *Destructor |
8152 | = S.LookupDestructor(Class: cast<CXXRecordDecl>(Val: Record->getDecl())); |
8153 | S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, |
8154 | S.PDiag(diag::err_access_dtor_temp) << T); |
8155 | S.MarkFunctionReferenced(Loc: CurInit.get()->getBeginLoc(), Func: Destructor); |
8156 | if (S.DiagnoseUseOfDecl(D: Destructor, Locs: CurInit.get()->getBeginLoc())) |
8157 | return ExprError(); |
8158 | } |
8159 | } |
8160 | break; |
8161 | } |
8162 | |
8163 | case SK_QualificationConversionLValue: |
8164 | case SK_QualificationConversionXValue: |
8165 | case SK_QualificationConversionPRValue: { |
8166 | // Perform a qualification conversion; these can never go wrong. |
8167 | ExprValueKind VK = |
8168 | Step->Kind == SK_QualificationConversionLValue |
8169 | ? VK_LValue |
8170 | : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue |
8171 | : VK_PRValue); |
8172 | CurInit = S.PerformQualificationConversion(E: CurInit.get(), Ty: Step->Type, VK); |
8173 | break; |
8174 | } |
8175 | |
8176 | case SK_FunctionReferenceConversion: |
8177 | assert(CurInit.get()->isLValue() && |
8178 | "function reference should be lvalue"); |
8179 | CurInit = |
8180 | S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, CK: CK_NoOp, VK: VK_LValue); |
8181 | break; |
8182 | |
8183 | case SK_AtomicConversion: { |
8184 | assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic"); |
8185 | CurInit = S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, |
8186 | CK: CK_NonAtomicToAtomic, VK: VK_PRValue); |
8187 | break; |
8188 | } |
8189 | |
8190 | case SK_ConversionSequence: |
8191 | case SK_ConversionSequenceNoNarrowing: { |
8192 | if (const auto *FromPtrType = |
8193 | CurInit.get()->getType()->getAs<PointerType>()) { |
8194 | if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { |
8195 | if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && |
8196 | !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { |
8197 | // Do not check static casts here because they are checked earlier |
8198 | // in Sema::ActOnCXXNamedCast() |
8199 | if (!Kind.isStaticCast()) { |
8200 | S.Diag(CurInit.get()->getExprLoc(), |
8201 | diag::warn_noderef_to_dereferenceable_pointer) |
8202 | << CurInit.get()->getSourceRange(); |
8203 | } |
8204 | } |
8205 | } |
8206 | } |
8207 | Expr *Init = CurInit.get(); |
8208 | CheckedConversionKind CCK = |
8209 | Kind.isCStyleCast() ? CheckedConversionKind::CStyleCast |
8210 | : Kind.isFunctionalCast() ? CheckedConversionKind::FunctionalCast |
8211 | : Kind.isExplicitCast() ? CheckedConversionKind::OtherCast |
8212 | : CheckedConversionKind::Implicit; |
8213 | ExprResult CurInitExprRes = S.PerformImplicitConversion( |
8214 | Init, Step->Type, *Step->ICS, getAssignmentAction(Entity), CCK); |
8215 | if (CurInitExprRes.isInvalid()) |
8216 | return ExprError(); |
8217 | |
8218 | S.DiscardMisalignedMemberAddress(T: Step->Type.getTypePtr(), E: Init); |
8219 | |
8220 | CurInit = CurInitExprRes; |
8221 | |
8222 | if (Step->Kind == SK_ConversionSequenceNoNarrowing && |
8223 | S.getLangOpts().CPlusPlus) |
8224 | DiagnoseNarrowingInInitList(S, ICS: *Step->ICS, PreNarrowingType: SourceType, EntityType: Entity.getType(), |
8225 | PostInit: CurInit.get()); |
8226 | |
8227 | break; |
8228 | } |
8229 | |
8230 | case SK_ListInitialization: { |
8231 | if (checkAbstractType(Step->Type)) |
8232 | return ExprError(); |
8233 | |
8234 | InitListExpr *InitList = cast<InitListExpr>(Val: CurInit.get()); |
8235 | // If we're not initializing the top-level entity, we need to create an |
8236 | // InitializeTemporary entity for our target type. |
8237 | QualType Ty = Step->Type; |
8238 | bool IsTemporary = !S.Context.hasSameType(T1: Entity.getType(), T2: Ty); |
8239 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Type: Ty); |
8240 | InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; |
8241 | InitListChecker PerformInitList(S, InitEntity, |
8242 | InitList, Ty, /*VerifyOnly=*/false, |
8243 | /*TreatUnavailableAsInvalid=*/false); |
8244 | if (PerformInitList.HadError()) |
8245 | return ExprError(); |
8246 | |
8247 | // Hack: We must update *ResultType if available in order to set the |
8248 | // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. |
8249 | // Worst case: 'const int (&arref)[] = {1, 2, 3};'. |
8250 | if (ResultType && |
8251 | ResultType->getNonReferenceType()->isIncompleteArrayType()) { |
8252 | if ((*ResultType)->isRValueReferenceType()) |
8253 | Ty = S.Context.getRValueReferenceType(T: Ty); |
8254 | else if ((*ResultType)->isLValueReferenceType()) |
8255 | Ty = S.Context.getLValueReferenceType(T: Ty, |
8256 | SpelledAsLValue: (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); |
8257 | *ResultType = Ty; |
8258 | } |
8259 | |
8260 | InitListExpr *StructuredInitList = |
8261 | PerformInitList.getFullyStructuredList(); |
8262 | CurInit.get(); |
8263 | CurInit = shouldBindAsTemporary(Entity: InitEntity) |
8264 | ? S.MaybeBindToTemporary(StructuredInitList) |
8265 | : StructuredInitList; |
8266 | break; |
8267 | } |
8268 | |
8269 | case SK_ConstructorInitializationFromList: { |
8270 | if (checkAbstractType(Step->Type)) |
8271 | return ExprError(); |
8272 | |
8273 | // When an initializer list is passed for a parameter of type "reference |
8274 | // to object", we don't get an EK_Temporary entity, but instead an |
8275 | // EK_Parameter entity with reference type. |
8276 | // FIXME: This is a hack. What we really should do is create a user |
8277 | // conversion step for this case, but this makes it considerably more |
8278 | // complicated. For now, this will do. |
8279 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
8280 | Type: Entity.getType().getNonReferenceType()); |
8281 | bool UseTemporary = Entity.getType()->isReferenceType(); |
8282 | assert(Args.size() == 1 && "expected a single argument for list init"); |
8283 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
8284 | S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) |
8285 | << InitList->getSourceRange(); |
8286 | MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); |
8287 | CurInit = PerformConstructorInitialization(S, Entity: UseTemporary ? TempEntity : |
8288 | Entity, |
8289 | Kind, Args: Arg, Step: *Step, |
8290 | ConstructorInitRequiresZeroInit, |
8291 | /*IsListInitialization*/true, |
8292 | /*IsStdInitListInit*/IsStdInitListInitialization: false, |
8293 | LBraceLoc: InitList->getLBraceLoc(), |
8294 | RBraceLoc: InitList->getRBraceLoc()); |
8295 | break; |
8296 | } |
8297 | |
8298 | case SK_UnwrapInitList: |
8299 | CurInit = cast<InitListExpr>(Val: CurInit.get())->getInit(Init: 0); |
8300 | break; |
8301 | |
8302 | case SK_RewrapInitList: { |
8303 | Expr *E = CurInit.get(); |
8304 | InitListExpr *Syntactic = Step->WrappingSyntacticList; |
8305 | InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, |
8306 | Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); |
8307 | ILE->setSyntacticForm(Syntactic); |
8308 | ILE->setType(E->getType()); |
8309 | ILE->setValueKind(E->getValueKind()); |
8310 | CurInit = ILE; |
8311 | break; |
8312 | } |
8313 | |
8314 | case SK_ConstructorInitialization: |
8315 | case SK_StdInitializerListConstructorCall: { |
8316 | if (checkAbstractType(Step->Type)) |
8317 | return ExprError(); |
8318 | |
8319 | // When an initializer list is passed for a parameter of type "reference |
8320 | // to object", we don't get an EK_Temporary entity, but instead an |
8321 | // EK_Parameter entity with reference type. |
8322 | // FIXME: This is a hack. What we really should do is create a user |
8323 | // conversion step for this case, but this makes it considerably more |
8324 | // complicated. For now, this will do. |
8325 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
8326 | Type: Entity.getType().getNonReferenceType()); |
8327 | bool UseTemporary = Entity.getType()->isReferenceType(); |
8328 | bool IsStdInitListInit = |
8329 | Step->Kind == SK_StdInitializerListConstructorCall; |
8330 | Expr *Source = CurInit.get(); |
8331 | SourceRange Range = Kind.hasParenOrBraceRange() |
8332 | ? Kind.getParenOrBraceRange() |
8333 | : SourceRange(); |
8334 | CurInit = PerformConstructorInitialization( |
8335 | S, Entity: UseTemporary ? TempEntity : Entity, Kind, |
8336 | Args: Source ? MultiExprArg(Source) : Args, Step: *Step, |
8337 | ConstructorInitRequiresZeroInit, |
8338 | /*IsListInitialization*/ IsStdInitListInit, |
8339 | /*IsStdInitListInitialization*/ IsStdInitListInit, |
8340 | /*LBraceLoc*/ Range.getBegin(), |
8341 | /*RBraceLoc*/ Range.getEnd()); |
8342 | break; |
8343 | } |
8344 | |
8345 | case SK_ZeroInitialization: { |
8346 | step_iterator NextStep = Step; |
8347 | ++NextStep; |
8348 | if (NextStep != StepEnd && |
8349 | (NextStep->Kind == SK_ConstructorInitialization || |
8350 | NextStep->Kind == SK_ConstructorInitializationFromList)) { |
8351 | // The need for zero-initialization is recorded directly into |
8352 | // the call to the object's constructor within the next step. |
8353 | ConstructorInitRequiresZeroInit = true; |
8354 | } else if (Kind.getKind() == InitializationKind::IK_Value && |
8355 | S.getLangOpts().CPlusPlus && |
8356 | !Kind.isImplicitValueInit()) { |
8357 | TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
8358 | if (!TSInfo) |
8359 | TSInfo = S.Context.getTrivialTypeSourceInfo(T: Step->Type, |
8360 | Loc: Kind.getRange().getBegin()); |
8361 | |
8362 | CurInit = new (S.Context) CXXScalarValueInitExpr( |
8363 | Entity.getType().getNonLValueExprType(Context: S.Context), TSInfo, |
8364 | Kind.getRange().getEnd()); |
8365 | } else { |
8366 | CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); |
8367 | // Note the return value isn't used to return a ExprError() when |
8368 | // initialization fails . For struct initialization allows all field |
8369 | // assignments to be checked rather than bailing on the first error. |
8370 | S.BoundsSafetyCheckInitialization(Entity, Kind, |
8371 | Action: AssignmentAction::Initializing, |
8372 | LHSType: Step->Type, RHSExpr: CurInit.get()); |
8373 | } |
8374 | break; |
8375 | } |
8376 | |
8377 | case SK_CAssignment: { |
8378 | QualType SourceType = CurInit.get()->getType(); |
8379 | Expr *Init = CurInit.get(); |
8380 | |
8381 | // Save off the initial CurInit in case we need to emit a diagnostic |
8382 | ExprResult InitialCurInit = Init; |
8383 | ExprResult Result = Init; |
8384 | AssignConvertType ConvTy = S.CheckSingleAssignmentConstraints( |
8385 | LHSType: Step->Type, RHS&: Result, Diagnose: true, |
8386 | DiagnoseCFAudited: Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); |
8387 | if (Result.isInvalid()) |
8388 | return ExprError(); |
8389 | CurInit = Result; |
8390 | |
8391 | // If this is a call, allow conversion to a transparent union. |
8392 | ExprResult CurInitExprRes = CurInit; |
8393 | if (!S.IsAssignConvertCompatible(ConvTy) && Entity.isParameterKind() && |
8394 | S.CheckTransparentUnionArgumentConstraints( |
8395 | ArgType: Step->Type, RHS&: CurInitExprRes) == AssignConvertType::Compatible) |
8396 | ConvTy = AssignConvertType::Compatible; |
8397 | if (CurInitExprRes.isInvalid()) |
8398 | return ExprError(); |
8399 | CurInit = CurInitExprRes; |
8400 | |
8401 | if (S.getLangOpts().C23 && initializingConstexprVariable(Entity)) { |
8402 | CheckC23ConstexprInitConversion(S, FromType: SourceType, ToType: Entity.getType(), |
8403 | Init: CurInit.get()); |
8404 | |
8405 | // C23 6.7.1p6: If an object or subobject declared with storage-class |
8406 | // specifier constexpr has pointer, integer, or arithmetic type, any |
8407 | // explicit initializer value for it shall be null, an integer |
8408 | // constant expression, or an arithmetic constant expression, |
8409 | // respectively. |
8410 | Expr::EvalResult ER; |
8411 | if (Entity.getType()->getAs<PointerType>() && |
8412 | CurInit.get()->EvaluateAsRValue(Result&: ER, Ctx: S.Context) && |
8413 | !ER.Val.isNullPointer()) { |
8414 | S.Diag(Kind.getLocation(), diag::err_c23_constexpr_pointer_not_null); |
8415 | } |
8416 | } |
8417 | |
8418 | // Note the return value isn't used to return a ExprError() when |
8419 | // initialization fails. For struct initialization this allows all field |
8420 | // assignments to be checked rather than bailing on the first error. |
8421 | S.BoundsSafetyCheckInitialization(Entity, Kind, |
8422 | Action: getAssignmentAction(Entity, Diagnose: true), |
8423 | LHSType: Step->Type, RHSExpr: InitialCurInit.get()); |
8424 | |
8425 | bool Complained; |
8426 | if (S.DiagnoseAssignmentResult(ConvTy, Loc: Kind.getLocation(), |
8427 | DstType: Step->Type, SrcType: SourceType, |
8428 | SrcExpr: InitialCurInit.get(), |
8429 | Action: getAssignmentAction(Entity, Diagnose: true), |
8430 | Complained: &Complained)) { |
8431 | PrintInitLocationNote(S, Entity); |
8432 | return ExprError(); |
8433 | } else if (Complained) |
8434 | PrintInitLocationNote(S, Entity); |
8435 | break; |
8436 | } |
8437 | |
8438 | case SK_StringInit: { |
8439 | QualType Ty = Step->Type; |
8440 | bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType(); |
8441 | CheckStringInit(Str: CurInit.get(), DeclT&: UpdateType ? *ResultType : Ty, |
8442 | AT: S.Context.getAsArrayType(T: Ty), S, Entity, |
8443 | CheckC23ConstexprInit: S.getLangOpts().C23 && |
8444 | initializingConstexprVariable(Entity)); |
8445 | break; |
8446 | } |
8447 | |
8448 | case SK_ObjCObjectConversion: |
8449 | CurInit = S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, |
8450 | CK: CK_ObjCObjectLValueCast, |
8451 | VK: CurInit.get()->getValueKind()); |
8452 | break; |
8453 | |
8454 | case SK_ArrayLoopIndex: { |
8455 | Expr *Cur = CurInit.get(); |
8456 | Expr *BaseExpr = new (S.Context) |
8457 | OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), |
8458 | Cur->getValueKind(), Cur->getObjectKind(), Cur); |
8459 | Expr *IndexExpr = |
8460 | new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); |
8461 | CurInit = S.CreateBuiltinArraySubscriptExpr( |
8462 | Base: BaseExpr, LLoc: Kind.getLocation(), Idx: IndexExpr, RLoc: Kind.getLocation()); |
8463 | ArrayLoopCommonExprs.push_back(Elt: BaseExpr); |
8464 | break; |
8465 | } |
8466 | |
8467 | case SK_ArrayLoopInit: { |
8468 | assert(!ArrayLoopCommonExprs.empty() && |
8469 | "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); |
8470 | Expr *Common = ArrayLoopCommonExprs.pop_back_val(); |
8471 | CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, |
8472 | CurInit.get()); |
8473 | break; |
8474 | } |
8475 | |
8476 | case SK_GNUArrayInit: |
8477 | // Okay: we checked everything before creating this step. Note that |
8478 | // this is a GNU extension. |
8479 | S.Diag(Kind.getLocation(), diag::ext_array_init_copy) |
8480 | << Step->Type << CurInit.get()->getType() |
8481 | << CurInit.get()->getSourceRange(); |
8482 | updateGNUCompoundLiteralRValue(E: CurInit.get()); |
8483 | [[fallthrough]]; |
8484 | case SK_ArrayInit: |
8485 | // If the destination type is an incomplete array type, update the |
8486 | // type accordingly. |
8487 | if (ResultType) { |
8488 | if (const IncompleteArrayType *IncompleteDest |
8489 | = S.Context.getAsIncompleteArrayType(T: Step->Type)) { |
8490 | if (const ConstantArrayType *ConstantSource |
8491 | = S.Context.getAsConstantArrayType(T: CurInit.get()->getType())) { |
8492 | *ResultType = S.Context.getConstantArrayType( |
8493 | EltTy: IncompleteDest->getElementType(), ArySize: ConstantSource->getSize(), |
8494 | SizeExpr: ConstantSource->getSizeExpr(), ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
8495 | } |
8496 | } |
8497 | } |
8498 | break; |
8499 | |
8500 | case SK_ParenthesizedArrayInit: |
8501 | // Okay: we checked everything before creating this step. Note that |
8502 | // this is a GNU extension. |
8503 | S.Diag(Kind.getLocation(), diag::ext_array_init_parens) |
8504 | << CurInit.get()->getSourceRange(); |
8505 | break; |
8506 | |
8507 | case SK_PassByIndirectCopyRestore: |
8508 | case SK_PassByIndirectRestore: |
8509 | checkIndirectCopyRestoreSource(S, src: CurInit.get()); |
8510 | CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( |
8511 | CurInit.get(), Step->Type, |
8512 | Step->Kind == SK_PassByIndirectCopyRestore); |
8513 | break; |
8514 | |
8515 | case SK_ProduceObjCObject: |
8516 | CurInit = ImplicitCastExpr::Create( |
8517 | Context: S.Context, T: Step->Type, Kind: CK_ARCProduceObject, Operand: CurInit.get(), BasePath: nullptr, |
8518 | Cat: VK_PRValue, FPO: FPOptionsOverride()); |
8519 | break; |
8520 | |
8521 | case SK_StdInitializerList: { |
8522 | S.Diag(CurInit.get()->getExprLoc(), |
8523 | diag::warn_cxx98_compat_initializer_list_init) |
8524 | << CurInit.get()->getSourceRange(); |
8525 | |
8526 | // Materialize the temporary into memory. |
8527 | MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( |
8528 | T: CurInit.get()->getType(), Temporary: CurInit.get(), |
8529 | /*BoundToLvalueReference=*/false); |
8530 | |
8531 | // Wrap it in a construction of a std::initializer_list<T>. |
8532 | CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); |
8533 | |
8534 | if (!Step->Type->isDependentType()) { |
8535 | QualType ElementType; |
8536 | [[maybe_unused]] bool IsStdInitializerList = |
8537 | S.isStdInitializerList(Ty: Step->Type, Element: &ElementType); |
8538 | assert(IsStdInitializerList && |
8539 | "StdInitializerList step to non-std::initializer_list"); |
8540 | const CXXRecordDecl *Record = |
8541 | Step->Type->getAsCXXRecordDecl()->getDefinition(); |
8542 | assert(Record && Record->isCompleteDefinition() && |
8543 | "std::initializer_list should have already be " |
8544 | "complete/instantiated by this point"); |
8545 | |
8546 | auto InvalidType = [&] { |
8547 | S.Diag(Record->getLocation(), |
8548 | diag::err_std_initializer_list_malformed) |
8549 | << Step->Type.getUnqualifiedType(); |
8550 | return ExprError(); |
8551 | }; |
8552 | |
8553 | if (Record->isUnion() || Record->getNumBases() != 0 || |
8554 | Record->isPolymorphic()) |
8555 | return InvalidType(); |
8556 | |
8557 | RecordDecl::field_iterator Field = Record->field_begin(); |
8558 | if (Field == Record->field_end()) |
8559 | return InvalidType(); |
8560 | |
8561 | // Start pointer |
8562 | if (!Field->getType()->isPointerType() || |
8563 | !S.Context.hasSameType(Field->getType()->getPointeeType(), |
8564 | ElementType.withConst())) |
8565 | return InvalidType(); |
8566 | |
8567 | if (++Field == Record->field_end()) |
8568 | return InvalidType(); |
8569 | |
8570 | // Size or end pointer |
8571 | if (const auto *PT = Field->getType()->getAs<PointerType>()) { |
8572 | if (!S.Context.hasSameType(PT->getPointeeType(), |
8573 | ElementType.withConst())) |
8574 | return InvalidType(); |
8575 | } else { |
8576 | if (Field->isBitField() || |
8577 | !S.Context.hasSameType(Field->getType(), S.Context.getSizeType())) |
8578 | return InvalidType(); |
8579 | } |
8580 | |
8581 | if (++Field != Record->field_end()) |
8582 | return InvalidType(); |
8583 | } |
8584 | |
8585 | // Bind the result, in case the library has given initializer_list a |
8586 | // non-trivial destructor. |
8587 | if (shouldBindAsTemporary(Entity)) |
8588 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
8589 | break; |
8590 | } |
8591 | |
8592 | case SK_OCLSamplerInit: { |
8593 | // Sampler initialization have 5 cases: |
8594 | // 1. function argument passing |
8595 | // 1a. argument is a file-scope variable |
8596 | // 1b. argument is a function-scope variable |
8597 | // 1c. argument is one of caller function's parameters |
8598 | // 2. variable initialization |
8599 | // 2a. initializing a file-scope variable |
8600 | // 2b. initializing a function-scope variable |
8601 | // |
8602 | // For file-scope variables, since they cannot be initialized by function |
8603 | // call of __translate_sampler_initializer in LLVM IR, their references |
8604 | // need to be replaced by a cast from their literal initializers to |
8605 | // sampler type. Since sampler variables can only be used in function |
8606 | // calls as arguments, we only need to replace them when handling the |
8607 | // argument passing. |
8608 | assert(Step->Type->isSamplerT() && |
8609 | "Sampler initialization on non-sampler type."); |
8610 | Expr *Init = CurInit.get()->IgnoreParens(); |
8611 | QualType SourceType = Init->getType(); |
8612 | // Case 1 |
8613 | if (Entity.isParameterKind()) { |
8614 | if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { |
8615 | S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) |
8616 | << SourceType; |
8617 | break; |
8618 | } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Init)) { |
8619 | auto Var = cast<VarDecl>(Val: DRE->getDecl()); |
8620 | // Case 1b and 1c |
8621 | // No cast from integer to sampler is needed. |
8622 | if (!Var->hasGlobalStorage()) { |
8623 | CurInit = ImplicitCastExpr::Create( |
8624 | Context: S.Context, T: Step->Type, Kind: CK_LValueToRValue, Operand: Init, |
8625 | /*BasePath=*/nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride()); |
8626 | break; |
8627 | } |
8628 | // Case 1a |
8629 | // For function call with a file-scope sampler variable as argument, |
8630 | // get the integer literal. |
8631 | // Do not diagnose if the file-scope variable does not have initializer |
8632 | // since this has already been diagnosed when parsing the variable |
8633 | // declaration. |
8634 | if (!Var->getInit() || !isa<ImplicitCastExpr>(Val: Var->getInit())) |
8635 | break; |
8636 | Init = cast<ImplicitCastExpr>(Val: const_cast<Expr*>( |
8637 | Var->getInit()))->getSubExpr(); |
8638 | SourceType = Init->getType(); |
8639 | } |
8640 | } else { |
8641 | // Case 2 |
8642 | // Check initializer is 32 bit integer constant. |
8643 | // If the initializer is taken from global variable, do not diagnose since |
8644 | // this has already been done when parsing the variable declaration. |
8645 | if (!Init->isConstantInitializer(Ctx&: S.Context, ForRef: false)) |
8646 | break; |
8647 | |
8648 | if (!SourceType->isIntegerType() || |
8649 | 32 != S.Context.getIntWidth(T: SourceType)) { |
8650 | S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) |
8651 | << SourceType; |
8652 | break; |
8653 | } |
8654 | |
8655 | Expr::EvalResult EVResult; |
8656 | Init->EvaluateAsInt(Result&: EVResult, Ctx: S.Context); |
8657 | llvm::APSInt Result = EVResult.Val.getInt(); |
8658 | const uint64_t SamplerValue = Result.getLimitedValue(); |
8659 | // 32-bit value of sampler's initializer is interpreted as |
8660 | // bit-field with the following structure: |
8661 | // |unspecified|Filter|Addressing Mode| Normalized Coords| |
8662 | // |31 6|5 4|3 1| 0| |
8663 | // This structure corresponds to enum values of sampler properties |
8664 | // defined in SPIR spec v1.2 and also opencl-c.h |
8665 | unsigned AddressingMode = (0x0E & SamplerValue) >> 1; |
8666 | unsigned FilterMode = (0x30 & SamplerValue) >> 4; |
8667 | if (FilterMode != 1 && FilterMode != 2 && |
8668 | !S.getOpenCLOptions().isAvailableOption( |
8669 | "cl_intel_device_side_avc_motion_estimation", S.getLangOpts())) |
8670 | S.Diag(Kind.getLocation(), |
8671 | diag::warn_sampler_initializer_invalid_bits) |
8672 | << "Filter Mode"; |
8673 | if (AddressingMode > 4) |
8674 | S.Diag(Kind.getLocation(), |
8675 | diag::warn_sampler_initializer_invalid_bits) |
8676 | << "Addressing Mode"; |
8677 | } |
8678 | |
8679 | // Cases 1a, 2a and 2b |
8680 | // Insert cast from integer to sampler. |
8681 | CurInit = S.ImpCastExprToType(E: Init, Type: S.Context.OCLSamplerTy, |
8682 | CK: CK_IntToOCLSampler); |
8683 | break; |
8684 | } |
8685 | case SK_OCLZeroOpaqueType: { |
8686 | assert((Step->Type->isEventT() || Step->Type->isQueueT() || |
8687 | Step->Type->isOCLIntelSubgroupAVCType()) && |
8688 | "Wrong type for initialization of OpenCL opaque type."); |
8689 | |
8690 | CurInit = S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, |
8691 | CK: CK_ZeroToOCLOpaqueType, |
8692 | VK: CurInit.get()->getValueKind()); |
8693 | break; |
8694 | } |
8695 | case SK_ParenthesizedListInit: { |
8696 | CurInit = nullptr; |
8697 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence&: *this, |
8698 | /*VerifyOnly=*/false, Result: &CurInit); |
8699 | if (CurInit.get() && ResultType) |
8700 | *ResultType = CurInit.get()->getType(); |
8701 | if (shouldBindAsTemporary(Entity)) |
8702 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
8703 | break; |
8704 | } |
8705 | } |
8706 | } |
8707 | |
8708 | Expr *Init = CurInit.get(); |
8709 | if (!Init) |
8710 | return ExprError(); |
8711 | |
8712 | // Check whether the initializer has a shorter lifetime than the initialized |
8713 | // entity, and if not, either lifetime-extend or warn as appropriate. |
8714 | S.checkInitializerLifetime(Entity, Init); |
8715 | |
8716 | // Diagnose non-fatal problems with the completed initialization. |
8717 | if (InitializedEntity::EntityKind EK = Entity.getKind(); |
8718 | (EK == InitializedEntity::EK_Member || |
8719 | EK == InitializedEntity::EK_ParenAggInitMember) && |
8720 | cast<FieldDecl>(Val: Entity.getDecl())->isBitField()) |
8721 | S.CheckBitFieldInitialization(InitLoc: Kind.getLocation(), |
8722 | Field: cast<FieldDecl>(Val: Entity.getDecl()), Init); |
8723 | |
8724 | // Check for std::move on construction. |
8725 | CheckMoveOnConstruction(S, InitExpr: Init, |
8726 | IsReturnStmt: Entity.getKind() == InitializedEntity::EK_Result); |
8727 | |
8728 | return Init; |
8729 | } |
8730 | |
8731 | /// Somewhere within T there is an uninitialized reference subobject. |
8732 | /// Dig it out and diagnose it. |
8733 | static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, |
8734 | QualType T) { |
8735 | if (T->isReferenceType()) { |
8736 | S.Diag(Loc, diag::err_reference_without_init) |
8737 | << T.getNonReferenceType(); |
8738 | return true; |
8739 | } |
8740 | |
8741 | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
8742 | if (!RD || !RD->hasUninitializedReferenceMember()) |
8743 | return false; |
8744 | |
8745 | for (const auto *FI : RD->fields()) { |
8746 | if (FI->isUnnamedBitField()) |
8747 | continue; |
8748 | |
8749 | if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { |
8750 | S.Diag(Loc, diag::note_value_initialization_here) << RD; |
8751 | return true; |
8752 | } |
8753 | } |
8754 | |
8755 | for (const auto &BI : RD->bases()) { |
8756 | if (DiagnoseUninitializedReference(S, Loc: BI.getBeginLoc(), T: BI.getType())) { |
8757 | S.Diag(Loc, diag::note_value_initialization_here) << RD; |
8758 | return true; |
8759 | } |
8760 | } |
8761 | |
8762 | return false; |
8763 | } |
8764 | |
8765 | |
8766 | //===----------------------------------------------------------------------===// |
8767 | // Diagnose initialization failures |
8768 | //===----------------------------------------------------------------------===// |
8769 | |
8770 | /// Emit notes associated with an initialization that failed due to a |
8771 | /// "simple" conversion failure. |
8772 | static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, |
8773 | Expr *op) { |
8774 | QualType destType = entity.getType(); |
8775 | if (destType.getNonReferenceType()->isObjCObjectPointerType() && |
8776 | op->getType()->isObjCObjectPointerType()) { |
8777 | |
8778 | // Emit a possible note about the conversion failing because the |
8779 | // operand is a message send with a related result type. |
8780 | S.ObjC().EmitRelatedResultTypeNote(E: op); |
8781 | |
8782 | // Emit a possible note about a return failing because we're |
8783 | // expecting a related result type. |
8784 | if (entity.getKind() == InitializedEntity::EK_Result) |
8785 | S.ObjC().EmitRelatedResultTypeNoteForReturn(destType); |
8786 | } |
8787 | QualType fromType = op->getType(); |
8788 | QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType(); |
8789 | QualType destPointeeType = destType.getCanonicalType()->getPointeeType(); |
8790 | auto *fromDecl = fromType->getPointeeCXXRecordDecl(); |
8791 | auto *destDecl = destType->getPointeeCXXRecordDecl(); |
8792 | if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord && |
8793 | destDecl->getDeclKind() == Decl::CXXRecord && |
8794 | !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() && |
8795 | !fromDecl->hasDefinition() && |
8796 | destPointeeType.getQualifiers().compatiblyIncludes( |
8797 | fromPointeeType.getQualifiers(), S.getASTContext())) |
8798 | S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion) |
8799 | << S.getASTContext().getTagDeclType(fromDecl) |
8800 | << S.getASTContext().getTagDeclType(destDecl); |
8801 | } |
8802 | |
8803 | static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, |
8804 | InitListExpr *InitList) { |
8805 | QualType DestType = Entity.getType(); |
8806 | |
8807 | QualType E; |
8808 | if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(Ty: DestType, Element: &E)) { |
8809 | QualType ArrayType = S.Context.getConstantArrayType( |
8810 | EltTy: E.withConst(), |
8811 | ArySize: llvm::APInt(S.Context.getTypeSize(T: S.Context.getSizeType()), |
8812 | InitList->getNumInits()), |
8813 | SizeExpr: nullptr, ASM: clang::ArraySizeModifier::Normal, IndexTypeQuals: 0); |
8814 | InitializedEntity HiddenArray = |
8815 | InitializedEntity::InitializeTemporary(Type: ArrayType); |
8816 | return diagnoseListInit(S, Entity: HiddenArray, InitList); |
8817 | } |
8818 | |
8819 | if (DestType->isReferenceType()) { |
8820 | // A list-initialization failure for a reference means that we tried to |
8821 | // create a temporary of the inner type (per [dcl.init.list]p3.6) and the |
8822 | // inner initialization failed. |
8823 | QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); |
8824 | diagnoseListInit(S, Entity: InitializedEntity::InitializeTemporary(Type: T), InitList); |
8825 | SourceLocation Loc = InitList->getBeginLoc(); |
8826 | if (auto *D = Entity.getDecl()) |
8827 | Loc = D->getLocation(); |
8828 | S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; |
8829 | return; |
8830 | } |
8831 | |
8832 | InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, |
8833 | /*VerifyOnly=*/false, |
8834 | /*TreatUnavailableAsInvalid=*/false); |
8835 | assert(DiagnoseInitList.HadError() && |
8836 | "Inconsistent init list check result."); |
8837 | } |
8838 | |
8839 | bool InitializationSequence::Diagnose(Sema &S, |
8840 | const InitializedEntity &Entity, |
8841 | const InitializationKind &Kind, |
8842 | ArrayRef<Expr *> Args) { |
8843 | if (!Failed()) |
8844 | return false; |
8845 | |
8846 | QualType DestType = Entity.getType(); |
8847 | |
8848 | // When we want to diagnose only one element of a braced-init-list, |
8849 | // we need to factor it out. |
8850 | Expr *OnlyArg; |
8851 | if (Args.size() == 1) { |
8852 | auto *List = dyn_cast<InitListExpr>(Val: Args[0]); |
8853 | if (List && List->getNumInits() == 1) |
8854 | OnlyArg = List->getInit(Init: 0); |
8855 | else |
8856 | OnlyArg = Args[0]; |
8857 | |
8858 | if (OnlyArg->getType() == S.Context.OverloadTy) { |
8859 | DeclAccessPair Found; |
8860 | if (FunctionDecl *FD = S.ResolveAddressOfOverloadedFunction( |
8861 | AddressOfExpr: OnlyArg, TargetType: DestType.getNonReferenceType(), /*Complain=*/false, |
8862 | Found)) { |
8863 | if (Expr *Resolved = |
8864 | S.FixOverloadedFunctionReference(E: OnlyArg, FoundDecl: Found, Fn: FD).get()) |
8865 | OnlyArg = Resolved; |
8866 | } |
8867 | } |
8868 | } |
8869 | else |
8870 | OnlyArg = nullptr; |
8871 | |
8872 | switch (Failure) { |
8873 | case FK_TooManyInitsForReference: |
8874 | // FIXME: Customize for the initialized entity? |
8875 | if (Args.empty()) { |
8876 | // Dig out the reference subobject which is uninitialized and diagnose it. |
8877 | // If this is value-initialization, this could be nested some way within |
8878 | // the target type. |
8879 | assert(Kind.getKind() == InitializationKind::IK_Value || |
8880 | DestType->isReferenceType()); |
8881 | bool Diagnosed = |
8882 | DiagnoseUninitializedReference(S, Loc: Kind.getLocation(), T: DestType); |
8883 | assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); |
8884 | (void)Diagnosed; |
8885 | } else // FIXME: diagnostic below could be better! |
8886 | S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) |
8887 | << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); |
8888 | break; |
8889 | case FK_ParenthesizedListInitForReference: |
8890 | S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) |
8891 | << 1 << Entity.getType() << Args[0]->getSourceRange(); |
8892 | break; |
8893 | |
8894 | case FK_ArrayNeedsInitList: |
8895 | S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; |
8896 | break; |
8897 | case FK_ArrayNeedsInitListOrStringLiteral: |
8898 | S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; |
8899 | break; |
8900 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
8901 | S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; |
8902 | break; |
8903 | case FK_NarrowStringIntoWideCharArray: |
8904 | S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); |
8905 | break; |
8906 | case FK_WideStringIntoCharArray: |
8907 | S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); |
8908 | break; |
8909 | case FK_IncompatWideStringIntoWideChar: |
8910 | S.Diag(Kind.getLocation(), |
8911 | diag::err_array_init_incompat_wide_string_into_wchar); |
8912 | break; |
8913 | case FK_PlainStringIntoUTF8Char: |
8914 | S.Diag(Kind.getLocation(), |
8915 | diag::err_array_init_plain_string_into_char8_t); |
8916 | S.Diag(Args.front()->getBeginLoc(), |
8917 | diag::note_array_init_plain_string_into_char8_t) |
8918 | << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); |
8919 | break; |
8920 | case FK_UTF8StringIntoPlainChar: |
8921 | S.Diag(Kind.getLocation(), diag::err_array_init_utf8_string_into_char) |
8922 | << DestType->isSignedIntegerType() << S.getLangOpts().CPlusPlus20; |
8923 | break; |
8924 | case FK_ArrayTypeMismatch: |
8925 | case FK_NonConstantArrayInit: |
8926 | S.Diag(Kind.getLocation(), |
8927 | (Failure == FK_ArrayTypeMismatch |
8928 | ? diag::err_array_init_different_type |
8929 | : diag::err_array_init_non_constant_array)) |
8930 | << DestType.getNonReferenceType() |
8931 | << OnlyArg->getType() |
8932 | << Args[0]->getSourceRange(); |
8933 | break; |
8934 | |
8935 | case FK_VariableLengthArrayHasInitializer: |
8936 | S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) |
8937 | << Args[0]->getSourceRange(); |
8938 | break; |
8939 | |
8940 | case FK_AddressOfOverloadFailed: { |
8941 | DeclAccessPair Found; |
8942 | S.ResolveAddressOfOverloadedFunction(AddressOfExpr: OnlyArg, |
8943 | TargetType: DestType.getNonReferenceType(), |
8944 | Complain: true, |
8945 | Found); |
8946 | break; |
8947 | } |
8948 | |
8949 | case FK_AddressOfUnaddressableFunction: { |
8950 | auto *FD = cast<FunctionDecl>(Val: cast<DeclRefExpr>(Val: OnlyArg)->getDecl()); |
8951 | S.checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true, |
8952 | Loc: OnlyArg->getBeginLoc()); |
8953 | break; |
8954 | } |
8955 | |
8956 | case FK_ReferenceInitOverloadFailed: |
8957 | case FK_UserConversionOverloadFailed: |
8958 | switch (FailedOverloadResult) { |
8959 | case OR_Ambiguous: |
8960 | |
8961 | FailedCandidateSet.NoteCandidates( |
8962 | PartialDiagnosticAt( |
8963 | Kind.getLocation(), |
8964 | Failure == FK_UserConversionOverloadFailed |
8965 | ? (S.PDiag(diag::err_typecheck_ambiguous_condition) |
8966 | << OnlyArg->getType() << DestType |
8967 | << Args[0]->getSourceRange()) |
8968 | : (S.PDiag(diag::err_ref_init_ambiguous) |
8969 | << DestType << OnlyArg->getType() |
8970 | << Args[0]->getSourceRange())), |
8971 | S, OCD_AmbiguousCandidates, Args); |
8972 | break; |
8973 | |
8974 | case OR_No_Viable_Function: { |
8975 | auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD: OCD_AllCandidates, Args); |
8976 | if (!S.RequireCompleteType(Kind.getLocation(), |
8977 | DestType.getNonReferenceType(), |
8978 | diag::err_typecheck_nonviable_condition_incomplete, |
8979 | OnlyArg->getType(), Args[0]->getSourceRange())) |
8980 | S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) |
8981 | << (Entity.getKind() == InitializedEntity::EK_Result) |
8982 | << OnlyArg->getType() << Args[0]->getSourceRange() |
8983 | << DestType.getNonReferenceType(); |
8984 | |
8985 | FailedCandidateSet.NoteCandidates(S, Args, Cands); |
8986 | break; |
8987 | } |
8988 | case OR_Deleted: { |
8989 | OverloadCandidateSet::iterator Best; |
8990 | OverloadingResult Ovl |
8991 | = FailedCandidateSet.BestViableFunction(S, Loc: Kind.getLocation(), Best); |
8992 | |
8993 | StringLiteral *Msg = Best->Function->getDeletedMessage(); |
8994 | S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) |
8995 | << OnlyArg->getType() << DestType.getNonReferenceType() |
8996 | << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef()) |
8997 | << Args[0]->getSourceRange(); |
8998 | if (Ovl == OR_Deleted) { |
8999 | S.NoteDeletedFunction(FD: Best->Function); |
9000 | } else { |
9001 | llvm_unreachable("Inconsistent overload resolution?"); |
9002 | } |
9003 | break; |
9004 | } |
9005 | |
9006 | case OR_Success: |
9007 | llvm_unreachable("Conversion did not fail!"); |
9008 | } |
9009 | break; |
9010 | |
9011 | case FK_NonConstLValueReferenceBindingToTemporary: |
9012 | if (isa<InitListExpr>(Val: Args[0])) { |
9013 | S.Diag(Kind.getLocation(), |
9014 | diag::err_lvalue_reference_bind_to_initlist) |
9015 | << DestType.getNonReferenceType().isVolatileQualified() |
9016 | << DestType.getNonReferenceType() |
9017 | << Args[0]->getSourceRange(); |
9018 | break; |
9019 | } |
9020 | [[fallthrough]]; |
9021 | |
9022 | case FK_NonConstLValueReferenceBindingToUnrelated: |
9023 | S.Diag(Kind.getLocation(), |
9024 | Failure == FK_NonConstLValueReferenceBindingToTemporary |
9025 | ? diag::err_lvalue_reference_bind_to_temporary |
9026 | : diag::err_lvalue_reference_bind_to_unrelated) |
9027 | << DestType.getNonReferenceType().isVolatileQualified() |
9028 | << DestType.getNonReferenceType() |
9029 | << OnlyArg->getType() |
9030 | << Args[0]->getSourceRange(); |
9031 | break; |
9032 | |
9033 | case FK_NonConstLValueReferenceBindingToBitfield: { |
9034 | // We don't necessarily have an unambiguous source bit-field. |
9035 | FieldDecl *BitField = Args[0]->getSourceBitField(); |
9036 | S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) |
9037 | << DestType.isVolatileQualified() |
9038 | << (BitField ? BitField->getDeclName() : DeclarationName()) |
9039 | << (BitField != nullptr) |
9040 | << Args[0]->getSourceRange(); |
9041 | if (BitField) |
9042 | S.Diag(BitField->getLocation(), diag::note_bitfield_decl); |
9043 | break; |
9044 | } |
9045 | |
9046 | case FK_NonConstLValueReferenceBindingToVectorElement: |
9047 | S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) |
9048 | << DestType.isVolatileQualified() |
9049 | << Args[0]->getSourceRange(); |
9050 | break; |
9051 | |
9052 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
9053 | S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element) |
9054 | << DestType.isVolatileQualified() << Args[0]->getSourceRange(); |
9055 | break; |
9056 | |
9057 | case FK_RValueReferenceBindingToLValue: |
9058 | S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) |
9059 | << DestType.getNonReferenceType() << OnlyArg->getType() |
9060 | << Args[0]->getSourceRange(); |
9061 | break; |
9062 | |
9063 | case FK_ReferenceAddrspaceMismatchTemporary: |
9064 | S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) |
9065 | << DestType << Args[0]->getSourceRange(); |
9066 | break; |
9067 | |
9068 | case FK_ReferenceInitDropsQualifiers: { |
9069 | QualType SourceType = OnlyArg->getType(); |
9070 | QualType NonRefType = DestType.getNonReferenceType(); |
9071 | Qualifiers DroppedQualifiers = |
9072 | SourceType.getQualifiers() - NonRefType.getQualifiers(); |
9073 | |
9074 | if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( |
9075 | SourceType.getQualifiers(), S.getASTContext())) |
9076 | S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) |
9077 | << NonRefType << SourceType << 1 /*addr space*/ |
9078 | << Args[0]->getSourceRange(); |
9079 | else if (DroppedQualifiers.hasQualifiers()) |
9080 | S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) |
9081 | << NonRefType << SourceType << 0 /*cv quals*/ |
9082 | << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) |
9083 | << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); |
9084 | else |
9085 | // FIXME: Consider decomposing the type and explaining which qualifiers |
9086 | // were dropped where, or on which level a 'const' is missing, etc. |
9087 | S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) |
9088 | << NonRefType << SourceType << 2 /*incompatible quals*/ |
9089 | << Args[0]->getSourceRange(); |
9090 | break; |
9091 | } |
9092 | |
9093 | case FK_ReferenceInitFailed: |
9094 | S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) |
9095 | << DestType.getNonReferenceType() |
9096 | << DestType.getNonReferenceType()->isIncompleteType() |
9097 | << OnlyArg->isLValue() |
9098 | << OnlyArg->getType() |
9099 | << Args[0]->getSourceRange(); |
9100 | emitBadConversionNotes(S, entity: Entity, op: Args[0]); |
9101 | break; |
9102 | |
9103 | case FK_ConversionFailed: { |
9104 | QualType FromType = OnlyArg->getType(); |
9105 | PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) |
9106 | << (int)Entity.getKind() |
9107 | << DestType |
9108 | << OnlyArg->isLValue() |
9109 | << FromType |
9110 | << Args[0]->getSourceRange(); |
9111 | S.HandleFunctionTypeMismatch(PDiag, FromType, ToType: DestType); |
9112 | S.Diag(Kind.getLocation(), PDiag); |
9113 | emitBadConversionNotes(S, entity: Entity, op: Args[0]); |
9114 | break; |
9115 | } |
9116 | |
9117 | case FK_ConversionFromPropertyFailed: |
9118 | // No-op. This error has already been reported. |
9119 | break; |
9120 | |
9121 | case FK_TooManyInitsForScalar: { |
9122 | SourceRange R; |
9123 | |
9124 | auto *InitList = dyn_cast<InitListExpr>(Val: Args[0]); |
9125 | if (InitList && InitList->getNumInits() >= 1) { |
9126 | R = SourceRange(InitList->getInit(Init: 0)->getEndLoc(), InitList->getEndLoc()); |
9127 | } else { |
9128 | assert(Args.size() > 1 && "Expected multiple initializers!"); |
9129 | R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); |
9130 | } |
9131 | |
9132 | R.setBegin(S.getLocForEndOfToken(Loc: R.getBegin())); |
9133 | if (Kind.isCStyleOrFunctionalCast()) |
9134 | S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) |
9135 | << R; |
9136 | else |
9137 | S.Diag(Kind.getLocation(), diag::err_excess_initializers) |
9138 | << /*scalar=*/2 << R; |
9139 | break; |
9140 | } |
9141 | |
9142 | case FK_ParenthesizedListInitForScalar: |
9143 | S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) |
9144 | << 0 << Entity.getType() << Args[0]->getSourceRange(); |
9145 | break; |
9146 | |
9147 | case FK_ReferenceBindingToInitList: |
9148 | S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) |
9149 | << DestType.getNonReferenceType() << Args[0]->getSourceRange(); |
9150 | break; |
9151 | |
9152 | case FK_InitListBadDestinationType: |
9153 | S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) |
9154 | << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); |
9155 | break; |
9156 | |
9157 | case FK_ListConstructorOverloadFailed: |
9158 | case FK_ConstructorOverloadFailed: { |
9159 | SourceRange ArgsRange; |
9160 | if (Args.size()) |
9161 | ArgsRange = |
9162 | SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); |
9163 | |
9164 | if (Failure == FK_ListConstructorOverloadFailed) { |
9165 | assert(Args.size() == 1 && |
9166 | "List construction from other than 1 argument."); |
9167 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
9168 | Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); |
9169 | } |
9170 | |
9171 | // FIXME: Using "DestType" for the entity we're printing is probably |
9172 | // bad. |
9173 | switch (FailedOverloadResult) { |
9174 | case OR_Ambiguous: |
9175 | FailedCandidateSet.NoteCandidates( |
9176 | PartialDiagnosticAt(Kind.getLocation(), |
9177 | S.PDiag(diag::err_ovl_ambiguous_init) |
9178 | << DestType << ArgsRange), |
9179 | S, OCD_AmbiguousCandidates, Args); |
9180 | break; |
9181 | |
9182 | case OR_No_Viable_Function: |
9183 | if (Kind.getKind() == InitializationKind::IK_Default && |
9184 | (Entity.getKind() == InitializedEntity::EK_Base || |
9185 | Entity.getKind() == InitializedEntity::EK_Member || |
9186 | Entity.getKind() == InitializedEntity::EK_ParenAggInitMember) && |
9187 | isa<CXXConstructorDecl>(Val: S.CurContext)) { |
9188 | // This is implicit default initialization of a member or |
9189 | // base within a constructor. If no viable function was |
9190 | // found, notify the user that they need to explicitly |
9191 | // initialize this base/member. |
9192 | CXXConstructorDecl *Constructor |
9193 | = cast<CXXConstructorDecl>(Val: S.CurContext); |
9194 | const CXXRecordDecl *InheritedFrom = nullptr; |
9195 | if (auto Inherited = Constructor->getInheritedConstructor()) |
9196 | InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); |
9197 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
9198 | S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) |
9199 | << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) |
9200 | << S.Context.getTypeDeclType(Constructor->getParent()) |
9201 | << /*base=*/0 |
9202 | << Entity.getType() |
9203 | << InheritedFrom; |
9204 | |
9205 | RecordDecl *BaseDecl |
9206 | = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() |
9207 | ->getDecl(); |
9208 | S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) |
9209 | << S.Context.getTagDeclType(BaseDecl); |
9210 | } else { |
9211 | S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) |
9212 | << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) |
9213 | << S.Context.getTypeDeclType(Constructor->getParent()) |
9214 | << /*member=*/1 |
9215 | << Entity.getName() |
9216 | << InheritedFrom; |
9217 | S.Diag(Entity.getDecl()->getLocation(), |
9218 | diag::note_member_declared_at); |
9219 | |
9220 | if (const RecordType *Record |
9221 | = Entity.getType()->getAs<RecordType>()) |
9222 | S.Diag(Record->getDecl()->getLocation(), |
9223 | diag::note_previous_decl) |
9224 | << S.Context.getTagDeclType(Record->getDecl()); |
9225 | } |
9226 | break; |
9227 | } |
9228 | |
9229 | FailedCandidateSet.NoteCandidates( |
9230 | PartialDiagnosticAt( |
9231 | Kind.getLocation(), |
9232 | S.PDiag(diag::err_ovl_no_viable_function_in_init) |
9233 | << DestType << ArgsRange), |
9234 | S, OCD_AllCandidates, Args); |
9235 | break; |
9236 | |
9237 | case OR_Deleted: { |
9238 | OverloadCandidateSet::iterator Best; |
9239 | OverloadingResult Ovl |
9240 | = FailedCandidateSet.BestViableFunction(S, Loc: Kind.getLocation(), Best); |
9241 | if (Ovl != OR_Deleted) { |
9242 | S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) |
9243 | << DestType << ArgsRange; |
9244 | llvm_unreachable("Inconsistent overload resolution?"); |
9245 | break; |
9246 | } |
9247 | |
9248 | // If this is a defaulted or implicitly-declared function, then |
9249 | // it was implicitly deleted. Make it clear that the deletion was |
9250 | // implicit. |
9251 | if (S.isImplicitlyDeleted(FD: Best->Function)) |
9252 | S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) |
9253 | << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) |
9254 | << DestType << ArgsRange; |
9255 | else { |
9256 | StringLiteral *Msg = Best->Function->getDeletedMessage(); |
9257 | S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) |
9258 | << DestType << (Msg != nullptr) |
9259 | << (Msg ? Msg->getString() : StringRef()) << ArgsRange; |
9260 | } |
9261 | |
9262 | // If it's a default constructed member, but it's not in the |
9263 | // constructor's initializer list, explicitly note where the member is |
9264 | // declared so the user can see which member is erroneously initialized |
9265 | // with a deleted default constructor. |
9266 | if (Kind.getKind() == InitializationKind::IK_Default && |
9267 | (Entity.getKind() == InitializedEntity::EK_Member || |
9268 | Entity.getKind() == InitializedEntity::EK_ParenAggInitMember)) { |
9269 | S.Diag(Entity.getDecl()->getLocation(), |
9270 | diag::note_default_constructed_field) |
9271 | << Entity.getDecl(); |
9272 | } |
9273 | S.NoteDeletedFunction(FD: Best->Function); |
9274 | break; |
9275 | } |
9276 | |
9277 | case OR_Success: |
9278 | llvm_unreachable("Conversion did not fail!"); |
9279 | } |
9280 | } |
9281 | break; |
9282 | |
9283 | case FK_DefaultInitOfConst: |
9284 | if (Entity.getKind() == InitializedEntity::EK_Member && |
9285 | isa<CXXConstructorDecl>(Val: S.CurContext)) { |
9286 | // This is implicit default-initialization of a const member in |
9287 | // a constructor. Complain that it needs to be explicitly |
9288 | // initialized. |
9289 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Val: S.CurContext); |
9290 | S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) |
9291 | << (Constructor->getInheritedConstructor() ? 2 : |
9292 | Constructor->isImplicit() ? 1 : 0) |
9293 | << S.Context.getTypeDeclType(Constructor->getParent()) |
9294 | << /*const=*/1 |
9295 | << Entity.getName(); |
9296 | S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) |
9297 | << Entity.getName(); |
9298 | } else if (const auto *VD = dyn_cast_if_present<VarDecl>(Val: Entity.getDecl()); |
9299 | VD && VD->isConstexpr()) { |
9300 | S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init) |
9301 | << VD; |
9302 | } else { |
9303 | S.Diag(Kind.getLocation(), diag::err_default_init_const) |
9304 | << DestType << (bool)DestType->getAs<RecordType>(); |
9305 | } |
9306 | break; |
9307 | |
9308 | case FK_Incomplete: |
9309 | S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, |
9310 | diag::err_init_incomplete_type); |
9311 | break; |
9312 | |
9313 | case FK_ListInitializationFailed: { |
9314 | // Run the init list checker again to emit diagnostics. |
9315 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
9316 | diagnoseListInit(S, Entity, InitList); |
9317 | break; |
9318 | } |
9319 | |
9320 | case FK_PlaceholderType: { |
9321 | // FIXME: Already diagnosed! |
9322 | break; |
9323 | } |
9324 | |
9325 | case FK_ExplicitConstructor: { |
9326 | S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) |
9327 | << Args[0]->getSourceRange(); |
9328 | OverloadCandidateSet::iterator Best; |
9329 | OverloadingResult Ovl |
9330 | = FailedCandidateSet.BestViableFunction(S, Loc: Kind.getLocation(), Best); |
9331 | (void)Ovl; |
9332 | assert(Ovl == OR_Success && "Inconsistent overload resolution"); |
9333 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Val: Best->Function); |
9334 | S.Diag(CtorDecl->getLocation(), |
9335 | diag::note_explicit_ctor_deduction_guide_here) << false; |
9336 | break; |
9337 | } |
9338 | |
9339 | case FK_ParenthesizedListInitFailed: |
9340 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence&: *this, |
9341 | /*VerifyOnly=*/false); |
9342 | break; |
9343 | |
9344 | case FK_DesignatedInitForNonAggregate: |
9345 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
9346 | S.Diag(Kind.getLocation(), diag::err_designated_init_for_non_aggregate) |
9347 | << Entity.getType() << InitList->getSourceRange(); |
9348 | break; |
9349 | } |
9350 | |
9351 | PrintInitLocationNote(S, Entity); |
9352 | return true; |
9353 | } |
9354 | |
9355 | void InitializationSequence::dump(raw_ostream &OS) const { |
9356 | switch (SequenceKind) { |
9357 | case FailedSequence: { |
9358 | OS << "Failed sequence: "; |
9359 | switch (Failure) { |
9360 | case FK_TooManyInitsForReference: |
9361 | OS << "too many initializers for reference"; |
9362 | break; |
9363 | |
9364 | case FK_ParenthesizedListInitForReference: |
9365 | OS << "parenthesized list init for reference"; |
9366 | break; |
9367 | |
9368 | case FK_ArrayNeedsInitList: |
9369 | OS << "array requires initializer list"; |
9370 | break; |
9371 | |
9372 | case FK_AddressOfUnaddressableFunction: |
9373 | OS << "address of unaddressable function was taken"; |
9374 | break; |
9375 | |
9376 | case FK_ArrayNeedsInitListOrStringLiteral: |
9377 | OS << "array requires initializer list or string literal"; |
9378 | break; |
9379 | |
9380 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
9381 | OS << "array requires initializer list or wide string literal"; |
9382 | break; |
9383 | |
9384 | case FK_NarrowStringIntoWideCharArray: |
9385 | OS << "narrow string into wide char array"; |
9386 | break; |
9387 | |
9388 | case FK_WideStringIntoCharArray: |
9389 | OS << "wide string into char array"; |
9390 | break; |
9391 | |
9392 | case FK_IncompatWideStringIntoWideChar: |
9393 | OS << "incompatible wide string into wide char array"; |
9394 | break; |
9395 | |
9396 | case FK_PlainStringIntoUTF8Char: |
9397 | OS << "plain string literal into char8_t array"; |
9398 | break; |
9399 | |
9400 | case FK_UTF8StringIntoPlainChar: |
9401 | OS << "u8 string literal into char array"; |
9402 | break; |
9403 | |
9404 | case FK_ArrayTypeMismatch: |
9405 | OS << "array type mismatch"; |
9406 | break; |
9407 | |
9408 | case FK_NonConstantArrayInit: |
9409 | OS << "non-constant array initializer"; |
9410 | break; |
9411 | |
9412 | case FK_AddressOfOverloadFailed: |
9413 | OS << "address of overloaded function failed"; |
9414 | break; |
9415 | |
9416 | case FK_ReferenceInitOverloadFailed: |
9417 | OS << "overload resolution for reference initialization failed"; |
9418 | break; |
9419 | |
9420 | case FK_NonConstLValueReferenceBindingToTemporary: |
9421 | OS << "non-const lvalue reference bound to temporary"; |
9422 | break; |
9423 | |
9424 | case FK_NonConstLValueReferenceBindingToBitfield: |
9425 | OS << "non-const lvalue reference bound to bit-field"; |
9426 | break; |
9427 | |
9428 | case FK_NonConstLValueReferenceBindingToVectorElement: |
9429 | OS << "non-const lvalue reference bound to vector element"; |
9430 | break; |
9431 | |
9432 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
9433 | OS << "non-const lvalue reference bound to matrix element"; |
9434 | break; |
9435 | |
9436 | case FK_NonConstLValueReferenceBindingToUnrelated: |
9437 | OS << "non-const lvalue reference bound to unrelated type"; |
9438 | break; |
9439 | |
9440 | case FK_RValueReferenceBindingToLValue: |
9441 | OS << "rvalue reference bound to an lvalue"; |
9442 | break; |
9443 | |
9444 | case FK_ReferenceInitDropsQualifiers: |
9445 | OS << "reference initialization drops qualifiers"; |
9446 | break; |
9447 | |
9448 | case FK_ReferenceAddrspaceMismatchTemporary: |
9449 | OS << "reference with mismatching address space bound to temporary"; |
9450 | break; |
9451 | |
9452 | case FK_ReferenceInitFailed: |
9453 | OS << "reference initialization failed"; |
9454 | break; |
9455 | |
9456 | case FK_ConversionFailed: |
9457 | OS << "conversion failed"; |
9458 | break; |
9459 | |
9460 | case FK_ConversionFromPropertyFailed: |
9461 | OS << "conversion from property failed"; |
9462 | break; |
9463 | |
9464 | case FK_TooManyInitsForScalar: |
9465 | OS << "too many initializers for scalar"; |
9466 | break; |
9467 | |
9468 | case FK_ParenthesizedListInitForScalar: |
9469 | OS << "parenthesized list init for reference"; |
9470 | break; |
9471 | |
9472 | case FK_ReferenceBindingToInitList: |
9473 | OS << "referencing binding to initializer list"; |
9474 | break; |
9475 | |
9476 | case FK_InitListBadDestinationType: |
9477 | OS << "initializer list for non-aggregate, non-scalar type"; |
9478 | break; |
9479 | |
9480 | case FK_UserConversionOverloadFailed: |
9481 | OS << "overloading failed for user-defined conversion"; |
9482 | break; |
9483 | |
9484 | case FK_ConstructorOverloadFailed: |
9485 | OS << "constructor overloading failed"; |
9486 | break; |
9487 | |
9488 | case FK_DefaultInitOfConst: |
9489 | OS << "default initialization of a const variable"; |
9490 | break; |
9491 | |
9492 | case FK_Incomplete: |
9493 | OS << "initialization of incomplete type"; |
9494 | break; |
9495 | |
9496 | case FK_ListInitializationFailed: |
9497 | OS << "list initialization checker failure"; |
9498 | break; |
9499 | |
9500 | case FK_VariableLengthArrayHasInitializer: |
9501 | OS << "variable length array has an initializer"; |
9502 | break; |
9503 | |
9504 | case FK_PlaceholderType: |
9505 | OS << "initializer expression isn't contextually valid"; |
9506 | break; |
9507 | |
9508 | case FK_ListConstructorOverloadFailed: |
9509 | OS << "list constructor overloading failed"; |
9510 | break; |
9511 | |
9512 | case FK_ExplicitConstructor: |
9513 | OS << "list copy initialization chose explicit constructor"; |
9514 | break; |
9515 | |
9516 | case FK_ParenthesizedListInitFailed: |
9517 | OS << "parenthesized list initialization failed"; |
9518 | break; |
9519 | |
9520 | case FK_DesignatedInitForNonAggregate: |
9521 | OS << "designated initializer for non-aggregate type"; |
9522 | break; |
9523 | } |
9524 | OS << '\n'; |
9525 | return; |
9526 | } |
9527 | |
9528 | case DependentSequence: |
9529 | OS << "Dependent sequence\n"; |
9530 | return; |
9531 | |
9532 | case NormalSequence: |
9533 | OS << "Normal sequence: "; |
9534 | break; |
9535 | } |
9536 | |
9537 | for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { |
9538 | if (S != step_begin()) { |
9539 | OS << " -> "; |
9540 | } |
9541 | |
9542 | switch (S->Kind) { |
9543 | case SK_ResolveAddressOfOverloadedFunction: |
9544 | OS << "resolve address of overloaded function"; |
9545 | break; |
9546 | |
9547 | case SK_CastDerivedToBasePRValue: |
9548 | OS << "derived-to-base (prvalue)"; |
9549 | break; |
9550 | |
9551 | case SK_CastDerivedToBaseXValue: |
9552 | OS << "derived-to-base (xvalue)"; |
9553 | break; |
9554 | |
9555 | case SK_CastDerivedToBaseLValue: |
9556 | OS << "derived-to-base (lvalue)"; |
9557 | break; |
9558 | |
9559 | case SK_BindReference: |
9560 | OS << "bind reference to lvalue"; |
9561 | break; |
9562 | |
9563 | case SK_BindReferenceToTemporary: |
9564 | OS << "bind reference to a temporary"; |
9565 | break; |
9566 | |
9567 | case SK_FinalCopy: |
9568 | OS << "final copy in class direct-initialization"; |
9569 | break; |
9570 | |
9571 | case SK_ExtraneousCopyToTemporary: |
9572 | OS << "extraneous C++03 copy to temporary"; |
9573 | break; |
9574 | |
9575 | case SK_UserConversion: |
9576 | OS << "user-defined conversion via "<< *S->Function.Function; |
9577 | break; |
9578 | |
9579 | case SK_QualificationConversionPRValue: |
9580 | OS << "qualification conversion (prvalue)"; |
9581 | break; |
9582 | |
9583 | case SK_QualificationConversionXValue: |
9584 | OS << "qualification conversion (xvalue)"; |
9585 | break; |
9586 | |
9587 | case SK_QualificationConversionLValue: |
9588 | OS << "qualification conversion (lvalue)"; |
9589 | break; |
9590 | |
9591 | case SK_FunctionReferenceConversion: |
9592 | OS << "function reference conversion"; |
9593 | break; |
9594 | |
9595 | case SK_AtomicConversion: |
9596 | OS << "non-atomic-to-atomic conversion"; |
9597 | break; |
9598 | |
9599 | case SK_ConversionSequence: |
9600 | OS << "implicit conversion sequence ("; |
9601 | S->ICS->dump(); // FIXME: use OS |
9602 | OS << ")"; |
9603 | break; |
9604 | |
9605 | case SK_ConversionSequenceNoNarrowing: |
9606 | OS << "implicit conversion sequence with narrowing prohibited ("; |
9607 | S->ICS->dump(); // FIXME: use OS |
9608 | OS << ")"; |
9609 | break; |
9610 | |
9611 | case SK_ListInitialization: |
9612 | OS << "list aggregate initialization"; |
9613 | break; |
9614 | |
9615 | case SK_UnwrapInitList: |
9616 | OS << "unwrap reference initializer list"; |
9617 | break; |
9618 | |
9619 | case SK_RewrapInitList: |
9620 | OS << "rewrap reference initializer list"; |
9621 | break; |
9622 | |
9623 | case SK_ConstructorInitialization: |
9624 | OS << "constructor initialization"; |
9625 | break; |
9626 | |
9627 | case SK_ConstructorInitializationFromList: |
9628 | OS << "list initialization via constructor"; |
9629 | break; |
9630 | |
9631 | case SK_ZeroInitialization: |
9632 | OS << "zero initialization"; |
9633 | break; |
9634 | |
9635 | case SK_CAssignment: |
9636 | OS << "C assignment"; |
9637 | break; |
9638 | |
9639 | case SK_StringInit: |
9640 | OS << "string initialization"; |
9641 | break; |
9642 | |
9643 | case SK_ObjCObjectConversion: |
9644 | OS << "Objective-C object conversion"; |
9645 | break; |
9646 | |
9647 | case SK_ArrayLoopIndex: |
9648 | OS << "indexing for array initialization loop"; |
9649 | break; |
9650 | |
9651 | case SK_ArrayLoopInit: |
9652 | OS << "array initialization loop"; |
9653 | break; |
9654 | |
9655 | case SK_ArrayInit: |
9656 | OS << "array initialization"; |
9657 | break; |
9658 | |
9659 | case SK_GNUArrayInit: |
9660 | OS << "array initialization (GNU extension)"; |
9661 | break; |
9662 | |
9663 | case SK_ParenthesizedArrayInit: |
9664 | OS << "parenthesized array initialization"; |
9665 | break; |
9666 | |
9667 | case SK_PassByIndirectCopyRestore: |
9668 | OS << "pass by indirect copy and restore"; |
9669 | break; |
9670 | |
9671 | case SK_PassByIndirectRestore: |
9672 | OS << "pass by indirect restore"; |
9673 | break; |
9674 | |
9675 | case SK_ProduceObjCObject: |
9676 | OS << "Objective-C object retension"; |
9677 | break; |
9678 | |
9679 | case SK_StdInitializerList: |
9680 | OS << "std::initializer_list from initializer list"; |
9681 | break; |
9682 | |
9683 | case SK_StdInitializerListConstructorCall: |
9684 | OS << "list initialization from std::initializer_list"; |
9685 | break; |
9686 | |
9687 | case SK_OCLSamplerInit: |
9688 | OS << "OpenCL sampler_t from integer constant"; |
9689 | break; |
9690 | |
9691 | case SK_OCLZeroOpaqueType: |
9692 | OS << "OpenCL opaque type from zero"; |
9693 | break; |
9694 | case SK_ParenthesizedListInit: |
9695 | OS << "initialization from a parenthesized list of values"; |
9696 | break; |
9697 | } |
9698 | |
9699 | OS << " ["<< S->Type << ']'; |
9700 | } |
9701 | |
9702 | OS << '\n'; |
9703 | } |
9704 | |
9705 | void InitializationSequence::dump() const { |
9706 | dump(OS&: llvm::errs()); |
9707 | } |
9708 | |
9709 | static void DiagnoseNarrowingInInitList(Sema &S, |
9710 | const ImplicitConversionSequence &ICS, |
9711 | QualType PreNarrowingType, |
9712 | QualType EntityType, |
9713 | const Expr *PostInit) { |
9714 | const StandardConversionSequence *SCS = nullptr; |
9715 | switch (ICS.getKind()) { |
9716 | case ImplicitConversionSequence::StandardConversion: |
9717 | SCS = &ICS.Standard; |
9718 | break; |
9719 | case ImplicitConversionSequence::UserDefinedConversion: |
9720 | SCS = &ICS.UserDefined.After; |
9721 | break; |
9722 | case ImplicitConversionSequence::AmbiguousConversion: |
9723 | case ImplicitConversionSequence::StaticObjectArgumentConversion: |
9724 | case ImplicitConversionSequence::EllipsisConversion: |
9725 | case ImplicitConversionSequence::BadConversion: |
9726 | return; |
9727 | } |
9728 | |
9729 | auto MakeDiag = [&](bool IsConstRef, unsigned DefaultDiagID, |
9730 | unsigned ConstRefDiagID, unsigned WarnDiagID) { |
9731 | unsigned DiagID; |
9732 | auto &L = S.getLangOpts(); |
9733 | if (L.CPlusPlus11 && !L.HLSL && |
9734 | (!L.MicrosoftExt || L.isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2015))) |
9735 | DiagID = IsConstRef ? ConstRefDiagID : DefaultDiagID; |
9736 | else |
9737 | DiagID = WarnDiagID; |
9738 | return S.Diag(PostInit->getBeginLoc(), DiagID) |
9739 | << PostInit->getSourceRange(); |
9740 | }; |
9741 | |
9742 | // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. |
9743 | APValue ConstantValue; |
9744 | QualType ConstantType; |
9745 | switch (SCS->getNarrowingKind(Context&: S.Context, Converted: PostInit, ConstantValue, |
9746 | ConstantType)) { |
9747 | case NK_Not_Narrowing: |
9748 | case NK_Dependent_Narrowing: |
9749 | // No narrowing occurred. |
9750 | return; |
9751 | |
9752 | case NK_Type_Narrowing: { |
9753 | // This was a floating-to-integer conversion, which is always considered a |
9754 | // narrowing conversion even if the value is a constant and can be |
9755 | // represented exactly as an integer. |
9756 | QualType T = EntityType.getNonReferenceType(); |
9757 | MakeDiag(T != EntityType, diag::ext_init_list_type_narrowing, |
9758 | diag::ext_init_list_type_narrowing_const_reference, |
9759 | diag::warn_init_list_type_narrowing) |
9760 | << PreNarrowingType.getLocalUnqualifiedType() |
9761 | << T.getLocalUnqualifiedType(); |
9762 | break; |
9763 | } |
9764 | |
9765 | case NK_Constant_Narrowing: { |
9766 | // A constant value was narrowed. |
9767 | MakeDiag(EntityType.getNonReferenceType() != EntityType, |
9768 | diag::ext_init_list_constant_narrowing, |
9769 | diag::ext_init_list_constant_narrowing_const_reference, |
9770 | diag::warn_init_list_constant_narrowing) |
9771 | << ConstantValue.getAsString(S.getASTContext(), ConstantType) |
9772 | << EntityType.getNonReferenceType().getLocalUnqualifiedType(); |
9773 | break; |
9774 | } |
9775 | |
9776 | case NK_Variable_Narrowing: { |
9777 | // A variable's value may have been narrowed. |
9778 | MakeDiag(EntityType.getNonReferenceType() != EntityType, |
9779 | diag::ext_init_list_variable_narrowing, |
9780 | diag::ext_init_list_variable_narrowing_const_reference, |
9781 | diag::warn_init_list_variable_narrowing) |
9782 | << PreNarrowingType.getLocalUnqualifiedType() |
9783 | << EntityType.getNonReferenceType().getLocalUnqualifiedType(); |
9784 | break; |
9785 | } |
9786 | } |
9787 | |
9788 | SmallString<128> StaticCast; |
9789 | llvm::raw_svector_ostream OS(StaticCast); |
9790 | OS << "static_cast<"; |
9791 | if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { |
9792 | // It's important to use the typedef's name if there is one so that the |
9793 | // fixit doesn't break code using types like int64_t. |
9794 | // |
9795 | // FIXME: This will break if the typedef requires qualification. But |
9796 | // getQualifiedNameAsString() includes non-machine-parsable components. |
9797 | OS << *TT->getDecl(); |
9798 | } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) |
9799 | OS << BT->getName(Policy: S.getLangOpts()); |
9800 | else { |
9801 | // Oops, we didn't find the actual type of the variable. Don't emit a fixit |
9802 | // with a broken cast. |
9803 | return; |
9804 | } |
9805 | OS << ">("; |
9806 | S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) |
9807 | << PostInit->getSourceRange() |
9808 | << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) |
9809 | << FixItHint::CreateInsertion( |
9810 | S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); |
9811 | } |
9812 | |
9813 | static void CheckC23ConstexprInitConversion(Sema &S, QualType FromType, |
9814 | QualType ToType, Expr *Init) { |
9815 | assert(S.getLangOpts().C23); |
9816 | ImplicitConversionSequence ICS = S.TryImplicitConversion( |
9817 | From: Init->IgnoreParenImpCasts(), ToType, /*SuppressUserConversions*/ false, |
9818 | AllowExplicit: Sema::AllowedExplicit::None, |
9819 | /*InOverloadResolution*/ false, |
9820 | /*CStyle*/ false, |
9821 | /*AllowObjCWritebackConversion=*/false); |
9822 | |
9823 | if (!ICS.isStandard()) |
9824 | return; |
9825 | |
9826 | APValue Value; |
9827 | QualType PreNarrowingType; |
9828 | // Reuse C++ narrowing check. |
9829 | switch (ICS.Standard.getNarrowingKind( |
9830 | Context&: S.Context, Converted: Init, ConstantValue&: Value, ConstantType&: PreNarrowingType, |
9831 | /*IgnoreFloatToIntegralConversion*/ false)) { |
9832 | // The value doesn't fit. |
9833 | case NK_Constant_Narrowing: |
9834 | S.Diag(Init->getBeginLoc(), diag::err_c23_constexpr_init_not_representable) |
9835 | << Value.getAsString(S.Context, PreNarrowingType) << ToType; |
9836 | return; |
9837 | |
9838 | // Conversion to a narrower type. |
9839 | case NK_Type_Narrowing: |
9840 | S.Diag(Init->getBeginLoc(), diag::err_c23_constexpr_init_type_mismatch) |
9841 | << ToType << FromType; |
9842 | return; |
9843 | |
9844 | // Since we only reuse narrowing check for C23 constexpr variables here, we're |
9845 | // not really interested in these cases. |
9846 | case NK_Dependent_Narrowing: |
9847 | case NK_Variable_Narrowing: |
9848 | case NK_Not_Narrowing: |
9849 | return; |
9850 | } |
9851 | llvm_unreachable("unhandled case in switch"); |
9852 | } |
9853 | |
9854 | static void CheckC23ConstexprInitStringLiteral(const StringLiteral *SE, |
9855 | Sema &SemaRef, QualType &TT) { |
9856 | assert(SemaRef.getLangOpts().C23); |
9857 | // character that string literal contains fits into TT - target type. |
9858 | const ArrayType *AT = SemaRef.Context.getAsArrayType(T: TT); |
9859 | QualType CharType = AT->getElementType(); |
9860 | uint32_t BitWidth = SemaRef.Context.getTypeSize(T: CharType); |
9861 | bool isUnsigned = CharType->isUnsignedIntegerType(); |
9862 | llvm::APSInt Value(BitWidth, isUnsigned); |
9863 | for (unsigned I = 0, N = SE->getLength(); I != N; ++I) { |
9864 | int64_t C = SE->getCodeUnitS(I, BitWidth: SemaRef.Context.getCharWidth()); |
9865 | Value = C; |
9866 | if (Value != C) { |
9867 | SemaRef.Diag(SemaRef.getLocationOfStringLiteralByte(SE, I), |
9868 | diag::err_c23_constexpr_init_not_representable) |
9869 | << C << CharType; |
9870 | return; |
9871 | } |
9872 | } |
9873 | } |
9874 | |
9875 | //===----------------------------------------------------------------------===// |
9876 | // Initialization helper functions |
9877 | //===----------------------------------------------------------------------===// |
9878 | bool |
9879 | Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, |
9880 | ExprResult Init) { |
9881 | if (Init.isInvalid()) |
9882 | return false; |
9883 | |
9884 | Expr *InitE = Init.get(); |
9885 | assert(InitE && "No initialization expression"); |
9886 | |
9887 | InitializationKind Kind = |
9888 | InitializationKind::CreateCopy(InitLoc: InitE->getBeginLoc(), EqualLoc: SourceLocation()); |
9889 | InitializationSequence Seq(*this, Entity, Kind, InitE); |
9890 | return !Seq.Failed(); |
9891 | } |
9892 | |
9893 | ExprResult |
9894 | Sema::PerformCopyInitialization(const InitializedEntity &Entity, |
9895 | SourceLocation EqualLoc, |
9896 | ExprResult Init, |
9897 | bool TopLevelOfInitList, |
9898 | bool AllowExplicit) { |
9899 | if (Init.isInvalid()) |
9900 | return ExprError(); |
9901 | |
9902 | Expr *InitE = Init.get(); |
9903 | assert(InitE && "No initialization expression?"); |
9904 | |
9905 | if (EqualLoc.isInvalid()) |
9906 | EqualLoc = InitE->getBeginLoc(); |
9907 | |
9908 | InitializationKind Kind = InitializationKind::CreateCopy( |
9909 | InitLoc: InitE->getBeginLoc(), EqualLoc, AllowExplicitConvs: AllowExplicit); |
9910 | InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); |
9911 | |
9912 | // Prevent infinite recursion when performing parameter copy-initialization. |
9913 | const bool ShouldTrackCopy = |
9914 | Entity.isParameterKind() && Seq.isConstructorInitialization(); |
9915 | if (ShouldTrackCopy) { |
9916 | if (llvm::is_contained(Range&: CurrentParameterCopyTypes, Element: Entity.getType())) { |
9917 | Seq.SetOverloadFailure( |
9918 | Failure: InitializationSequence::FK_ConstructorOverloadFailed, |
9919 | Result: OR_No_Viable_Function); |
9920 | |
9921 | // Try to give a meaningful diagnostic note for the problematic |
9922 | // constructor. |
9923 | const auto LastStep = Seq.step_end() - 1; |
9924 | assert(LastStep->Kind == |
9925 | InitializationSequence::SK_ConstructorInitialization); |
9926 | const FunctionDecl *Function = LastStep->Function.Function; |
9927 | auto Candidate = |
9928 | llvm::find_if(Range&: Seq.getFailedCandidateSet(), |
9929 | P: [Function](const OverloadCandidate &Candidate) -> bool { |
9930 | return Candidate.Viable && |
9931 | Candidate.Function == Function && |
9932 | Candidate.Conversions.size() > 0; |
9933 | }); |
9934 | if (Candidate != Seq.getFailedCandidateSet().end() && |
9935 | Function->getNumParams() > 0) { |
9936 | Candidate->Viable = false; |
9937 | Candidate->FailureKind = ovl_fail_bad_conversion; |
9938 | Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, |
9939 | InitE, |
9940 | Function->getParamDecl(i: 0)->getType()); |
9941 | } |
9942 | } |
9943 | CurrentParameterCopyTypes.push_back(Elt: Entity.getType()); |
9944 | } |
9945 | |
9946 | ExprResult Result = Seq.Perform(S&: *this, Entity, Kind, Args: InitE); |
9947 | |
9948 | if (ShouldTrackCopy) |
9949 | CurrentParameterCopyTypes.pop_back(); |
9950 | |
9951 | return Result; |
9952 | } |
9953 | |
9954 | /// Determine whether RD is, or is derived from, a specialization of CTD. |
9955 | static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, |
9956 | ClassTemplateDecl *CTD) { |
9957 | auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { |
9958 | auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: Candidate); |
9959 | return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); |
9960 | }; |
9961 | return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); |
9962 | } |
9963 | |
9964 | QualType Sema::DeduceTemplateSpecializationFromInitializer( |
9965 | TypeSourceInfo *TSInfo, const InitializedEntity &Entity, |
9966 | const InitializationKind &Kind, MultiExprArg Inits) { |
9967 | auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( |
9968 | TSInfo->getType()->getContainedDeducedType()); |
9969 | assert(DeducedTST && "not a deduced template specialization type"); |
9970 | |
9971 | auto TemplateName = DeducedTST->getTemplateName(); |
9972 | if (TemplateName.isDependent()) |
9973 | return SubstAutoTypeSourceInfoDependent(TypeWithAuto: TSInfo)->getType(); |
9974 | |
9975 | // We can only perform deduction for class templates or alias templates. |
9976 | auto *Template = |
9977 | dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); |
9978 | TemplateDecl *LookupTemplateDecl = Template; |
9979 | if (!Template) { |
9980 | if (auto *AliasTemplate = dyn_cast_or_null<TypeAliasTemplateDecl>( |
9981 | TemplateName.getAsTemplateDecl())) { |
9982 | DiagCompat(Kind.getLocation(), diag_compat::ctad_for_alias_templates); |
9983 | LookupTemplateDecl = AliasTemplate; |
9984 | auto UnderlyingType = AliasTemplate->getTemplatedDecl() |
9985 | ->getUnderlyingType() |
9986 | .getCanonicalType(); |
9987 | // C++ [over.match.class.deduct#3]: ..., the defining-type-id of A must be |
9988 | // of the form |
9989 | // [typename] [nested-name-specifier] [template] simple-template-id |
9990 | if (const auto *TST = |
9991 | UnderlyingType->getAs<TemplateSpecializationType>()) { |
9992 | Template = dyn_cast_or_null<ClassTemplateDecl>( |
9993 | TST->getTemplateName().getAsTemplateDecl()); |
9994 | } else if (const auto *RT = UnderlyingType->getAs<RecordType>()) { |
9995 | // Cases where template arguments in the RHS of the alias are not |
9996 | // dependent. e.g. |
9997 | // using AliasFoo = Foo<bool>; |
9998 | if (const auto *CTSD = llvm::dyn_cast<ClassTemplateSpecializationDecl>( |
9999 | RT->getAsCXXRecordDecl())) |
10000 | Template = CTSD->getSpecializedTemplate(); |
10001 | } |
10002 | } |
10003 | } |
10004 | if (!Template) { |
10005 | Diag(Kind.getLocation(), |
10006 | diag::err_deduced_non_class_or_alias_template_specialization_type) |
10007 | << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; |
10008 | if (auto *TD = TemplateName.getAsTemplateDecl()) |
10009 | NoteTemplateLocation(Decl: *TD); |
10010 | return QualType(); |
10011 | } |
10012 | |
10013 | // Can't deduce from dependent arguments. |
10014 | if (Expr::hasAnyTypeDependentArguments(Exprs: Inits)) { |
10015 | Diag(TSInfo->getTypeLoc().getBeginLoc(), |
10016 | diag::warn_cxx14_compat_class_template_argument_deduction) |
10017 | << TSInfo->getTypeLoc().getSourceRange() << 0; |
10018 | return SubstAutoTypeSourceInfoDependent(TypeWithAuto: TSInfo)->getType(); |
10019 | } |
10020 | |
10021 | // FIXME: Perform "exact type" matching first, per CWG discussion? |
10022 | // Or implement this via an implied 'T(T) -> T' deduction guide? |
10023 | |
10024 | // Look up deduction guides, including those synthesized from constructors. |
10025 | // |
10026 | // C++1z [over.match.class.deduct]p1: |
10027 | // A set of functions and function templates is formed comprising: |
10028 | // - For each constructor of the class template designated by the |
10029 | // template-name, a function template [...] |
10030 | // - For each deduction-guide, a function or function template [...] |
10031 | DeclarationNameInfo NameInfo( |
10032 | Context.DeclarationNames.getCXXDeductionGuideName(TD: LookupTemplateDecl), |
10033 | TSInfo->getTypeLoc().getEndLoc()); |
10034 | LookupResult Guides(*this, NameInfo, LookupOrdinaryName); |
10035 | LookupQualifiedName(Guides, LookupTemplateDecl->getDeclContext()); |
10036 | |
10037 | // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't |
10038 | // clear on this, but they're not found by name so access does not apply. |
10039 | Guides.suppressDiagnostics(); |
10040 | |
10041 | // Figure out if this is list-initialization. |
10042 | InitListExpr *ListInit = |
10043 | (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) |
10044 | ? dyn_cast<InitListExpr>(Val: Inits[0]) |
10045 | : nullptr; |
10046 | |
10047 | // C++1z [over.match.class.deduct]p1: |
10048 | // Initialization and overload resolution are performed as described in |
10049 | // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] |
10050 | // (as appropriate for the type of initialization performed) for an object |
10051 | // of a hypothetical class type, where the selected functions and function |
10052 | // templates are considered to be the constructors of that class type |
10053 | // |
10054 | // Since we know we're initializing a class type of a type unrelated to that |
10055 | // of the initializer, this reduces to something fairly reasonable. |
10056 | OverloadCandidateSet Candidates(Kind.getLocation(), |
10057 | OverloadCandidateSet::CSK_Normal); |
10058 | OverloadCandidateSet::iterator Best; |
10059 | |
10060 | bool AllowExplicit = !Kind.isCopyInit() || ListInit; |
10061 | |
10062 | // Return true if the candidate is added successfully, false otherwise. |
10063 | auto addDeductionCandidate = [&](FunctionTemplateDecl *TD, |
10064 | CXXDeductionGuideDecl *GD, |
10065 | DeclAccessPair FoundDecl, |
10066 | bool OnlyListConstructors, |
10067 | bool AllowAggregateDeductionCandidate) { |
10068 | // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) |
10069 | // For copy-initialization, the candidate functions are all the |
10070 | // converting constructors (12.3.1) of that class. |
10071 | // C++ [over.match.copy]p1: (non-list copy-initialization from class) |
10072 | // The converting constructors of T are candidate functions. |
10073 | if (!AllowExplicit) { |
10074 | // Overload resolution checks whether the deduction guide is declared |
10075 | // explicit for us. |
10076 | |
10077 | // When looking for a converting constructor, deduction guides that |
10078 | // could never be called with one argument are not interesting to |
10079 | // check or note. |
10080 | if (GD->getMinRequiredArguments() > 1 || |
10081 | (GD->getNumParams() == 0 && !GD->isVariadic())) |
10082 | return; |
10083 | } |
10084 | |
10085 | // C++ [over.match.list]p1.1: (first phase list initialization) |
10086 | // Initially, the candidate functions are the initializer-list |
10087 | // constructors of the class T |
10088 | if (OnlyListConstructors && !isInitListConstructor(GD)) |
10089 | return; |
10090 | |
10091 | if (!AllowAggregateDeductionCandidate && |
10092 | GD->getDeductionCandidateKind() == DeductionCandidate::Aggregate) |
10093 | return; |
10094 | |
10095 | // C++ [over.match.list]p1.2: (second phase list initialization) |
10096 | // the candidate functions are all the constructors of the class T |
10097 | // C++ [over.match.ctor]p1: (all other cases) |
10098 | // the candidate functions are all the constructors of the class of |
10099 | // the object being initialized |
10100 | |
10101 | // C++ [over.best.ics]p4: |
10102 | // When [...] the constructor [...] is a candidate by |
10103 | // - [over.match.copy] (in all cases) |
10104 | if (TD) { |
10105 | |
10106 | // As template candidates are not deduced immediately, |
10107 | // persist the array in the overload set. |
10108 | MutableArrayRef<Expr *> TmpInits = |
10109 | Candidates.getPersistentArgsArray(N: Inits.size()); |
10110 | |
10111 | for (auto [I, E] : llvm::enumerate(First&: Inits)) { |
10112 | if (auto *DI = dyn_cast<DesignatedInitExpr>(Val: E)) |
10113 | TmpInits[I] = DI->getInit(); |
10114 | else |
10115 | TmpInits[I] = E; |
10116 | } |
10117 | |
10118 | AddTemplateOverloadCandidate( |
10119 | FunctionTemplate: TD, FoundDecl, /*ExplicitArgs=*/ExplicitTemplateArgs: nullptr, Args: TmpInits, CandidateSet&: Candidates, |
10120 | /*SuppressUserConversions=*/false, |
10121 | /*PartialOverloading=*/false, AllowExplicit, IsADLCandidate: ADLCallKind::NotADL, |
10122 | /*PO=*/{}, AggregateCandidateDeduction: AllowAggregateDeductionCandidate); |
10123 | } else { |
10124 | AddOverloadCandidate(GD, FoundDecl, Inits, Candidates, |
10125 | /*SuppressUserConversions=*/false, |
10126 | /*PartialOverloading=*/false, AllowExplicit); |
10127 | } |
10128 | }; |
10129 | |
10130 | bool FoundDeductionGuide = false; |
10131 | |
10132 | auto TryToResolveOverload = |
10133 | [&](bool OnlyListConstructors) -> OverloadingResult { |
10134 | Candidates.clear(CSK: OverloadCandidateSet::CSK_Normal); |
10135 | bool HasAnyDeductionGuide = false; |
10136 | |
10137 | auto SynthesizeAggrGuide = [&](InitListExpr *ListInit) { |
10138 | auto *Pattern = Template; |
10139 | while (Pattern->getInstantiatedFromMemberTemplate()) { |
10140 | if (Pattern->isMemberSpecialization()) |
10141 | break; |
10142 | Pattern = Pattern->getInstantiatedFromMemberTemplate(); |
10143 | } |
10144 | |
10145 | auto *RD = cast<CXXRecordDecl>(Pattern->getTemplatedDecl()); |
10146 | if (!(RD->getDefinition() && RD->isAggregate())) |
10147 | return; |
10148 | QualType Ty = Context.getRecordType(Decl: RD); |
10149 | SmallVector<QualType, 8> ElementTypes; |
10150 | |
10151 | InitListChecker CheckInitList(*this, Entity, ListInit, Ty, ElementTypes); |
10152 | if (!CheckInitList.HadError()) { |
10153 | // C++ [over.match.class.deduct]p1.8: |
10154 | // if e_i is of array type and x_i is a braced-init-list, T_i is an |
10155 | // rvalue reference to the declared type of e_i and |
10156 | // C++ [over.match.class.deduct]p1.9: |
10157 | // if e_i is of array type and x_i is a string-literal, T_i is an |
10158 | // lvalue reference to the const-qualified declared type of e_i and |
10159 | // C++ [over.match.class.deduct]p1.10: |
10160 | // otherwise, T_i is the declared type of e_i |
10161 | for (int I = 0, E = ListInit->getNumInits(); |
10162 | I < E && !isa<PackExpansionType>(Val: ElementTypes[I]); ++I) |
10163 | if (ElementTypes[I]->isArrayType()) { |
10164 | if (isa<InitListExpr, DesignatedInitExpr>(Val: ListInit->getInit(Init: I))) |
10165 | ElementTypes[I] = Context.getRValueReferenceType(T: ElementTypes[I]); |
10166 | else if (isa<StringLiteral>( |
10167 | Val: ListInit->getInit(Init: I)->IgnoreParenImpCasts())) |
10168 | ElementTypes[I] = |
10169 | Context.getLValueReferenceType(T: ElementTypes[I].withConst()); |
10170 | } |
10171 | |
10172 | if (FunctionTemplateDecl *TD = |
10173 | DeclareAggregateDeductionGuideFromInitList( |
10174 | Template: LookupTemplateDecl, ParamTypes: ElementTypes, |
10175 | Loc: TSInfo->getTypeLoc().getEndLoc())) { |
10176 | auto *GD = cast<CXXDeductionGuideDecl>(Val: TD->getTemplatedDecl()); |
10177 | addDeductionCandidate(TD, GD, DeclAccessPair::make(TD, AS_public), |
10178 | OnlyListConstructors, |
10179 | /*AllowAggregateDeductionCandidate=*/true); |
10180 | HasAnyDeductionGuide = true; |
10181 | } |
10182 | } |
10183 | }; |
10184 | |
10185 | for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { |
10186 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
10187 | if (D->isInvalidDecl()) |
10188 | continue; |
10189 | |
10190 | auto *TD = dyn_cast<FunctionTemplateDecl>(Val: D); |
10191 | auto *GD = dyn_cast_if_present<CXXDeductionGuideDecl>( |
10192 | TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(Val: D)); |
10193 | if (!GD) |
10194 | continue; |
10195 | |
10196 | if (!GD->isImplicit()) |
10197 | HasAnyDeductionGuide = true; |
10198 | |
10199 | addDeductionCandidate(TD, GD, I.getPair(), OnlyListConstructors, |
10200 | /*AllowAggregateDeductionCandidate=*/false); |
10201 | } |
10202 | |
10203 | // C++ [over.match.class.deduct]p1.4: |
10204 | // if C is defined and its definition satisfies the conditions for an |
10205 | // aggregate class ([dcl.init.aggr]) with the assumption that any |
10206 | // dependent base class has no virtual functions and no virtual base |
10207 | // classes, and the initializer is a non-empty braced-init-list or |
10208 | // parenthesized expression-list, and there are no deduction-guides for |
10209 | // C, the set contains an additional function template, called the |
10210 | // aggregate deduction candidate, defined as follows. |
10211 | if (getLangOpts().CPlusPlus20 && !HasAnyDeductionGuide) { |
10212 | if (ListInit && ListInit->getNumInits()) { |
10213 | SynthesizeAggrGuide(ListInit); |
10214 | } else if (Inits.size()) { // parenthesized expression-list |
10215 | // Inits are expressions inside the parentheses. We don't have |
10216 | // the parentheses source locations, use the begin/end of Inits as the |
10217 | // best heuristic. |
10218 | InitListExpr TempListInit(getASTContext(), Inits.front()->getBeginLoc(), |
10219 | Inits, Inits.back()->getEndLoc()); |
10220 | SynthesizeAggrGuide(&TempListInit); |
10221 | } |
10222 | } |
10223 | |
10224 | FoundDeductionGuide = FoundDeductionGuide || HasAnyDeductionGuide; |
10225 | |
10226 | return Candidates.BestViableFunction(S&: *this, Loc: Kind.getLocation(), Best); |
10227 | }; |
10228 | |
10229 | OverloadingResult Result = OR_No_Viable_Function; |
10230 | |
10231 | // C++11 [over.match.list]p1, per DR1467: for list-initialization, first |
10232 | // try initializer-list constructors. |
10233 | if (ListInit) { |
10234 | bool TryListConstructors = true; |
10235 | |
10236 | // Try list constructors unless the list is empty and the class has one or |
10237 | // more default constructors, in which case those constructors win. |
10238 | if (!ListInit->getNumInits()) { |
10239 | for (NamedDecl *D : Guides) { |
10240 | auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); |
10241 | if (FD && FD->getMinRequiredArguments() == 0) { |
10242 | TryListConstructors = false; |
10243 | break; |
10244 | } |
10245 | } |
10246 | } else if (ListInit->getNumInits() == 1) { |
10247 | // C++ [over.match.class.deduct]: |
10248 | // As an exception, the first phase in [over.match.list] (considering |
10249 | // initializer-list constructors) is omitted if the initializer list |
10250 | // consists of a single expression of type cv U, where U is a |
10251 | // specialization of C or a class derived from a specialization of C. |
10252 | Expr *E = ListInit->getInit(Init: 0); |
10253 | auto *RD = E->getType()->getAsCXXRecordDecl(); |
10254 | if (!isa<InitListExpr>(Val: E) && RD && |
10255 | isCompleteType(Loc: Kind.getLocation(), T: E->getType()) && |
10256 | isOrIsDerivedFromSpecializationOf(RD, Template)) |
10257 | TryListConstructors = false; |
10258 | } |
10259 | |
10260 | if (TryListConstructors) |
10261 | Result = TryToResolveOverload(/*OnlyListConstructor*/true); |
10262 | // Then unwrap the initializer list and try again considering all |
10263 | // constructors. |
10264 | Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); |
10265 | } |
10266 | |
10267 | // If list-initialization fails, or if we're doing any other kind of |
10268 | // initialization, we (eventually) consider constructors. |
10269 | if (Result == OR_No_Viable_Function) |
10270 | Result = TryToResolveOverload(/*OnlyListConstructor*/false); |
10271 | |
10272 | switch (Result) { |
10273 | case OR_Ambiguous: |
10274 | // FIXME: For list-initialization candidates, it'd usually be better to |
10275 | // list why they were not viable when given the initializer list itself as |
10276 | // an argument. |
10277 | Candidates.NoteCandidates( |
10278 | PartialDiagnosticAt( |
10279 | Kind.getLocation(), |
10280 | PDiag(diag::err_deduced_class_template_ctor_ambiguous) |
10281 | << TemplateName), |
10282 | *this, OCD_AmbiguousCandidates, Inits); |
10283 | return QualType(); |
10284 | |
10285 | case OR_No_Viable_Function: { |
10286 | CXXRecordDecl *Primary = |
10287 | cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); |
10288 | bool Complete = |
10289 | isCompleteType(Loc: Kind.getLocation(), T: Context.getTypeDeclType(Primary)); |
10290 | Candidates.NoteCandidates( |
10291 | PartialDiagnosticAt( |
10292 | Kind.getLocation(), |
10293 | PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable |
10294 | : diag::err_deduced_class_template_incomplete) |
10295 | << TemplateName << !Guides.empty()), |
10296 | *this, OCD_AllCandidates, Inits); |
10297 | return QualType(); |
10298 | } |
10299 | |
10300 | case OR_Deleted: { |
10301 | // FIXME: There are no tests for this diagnostic, and it doesn't seem |
10302 | // like we ever get here; attempts to trigger this seem to yield a |
10303 | // generic c'all to deleted function' diagnostic instead. |
10304 | Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) |
10305 | << TemplateName; |
10306 | NoteDeletedFunction(FD: Best->Function); |
10307 | return QualType(); |
10308 | } |
10309 | |
10310 | case OR_Success: |
10311 | // C++ [over.match.list]p1: |
10312 | // In copy-list-initialization, if an explicit constructor is chosen, the |
10313 | // initialization is ill-formed. |
10314 | if (Kind.isCopyInit() && ListInit && |
10315 | cast<CXXDeductionGuideDecl>(Val: Best->Function)->isExplicit()) { |
10316 | bool IsDeductionGuide = !Best->Function->isImplicit(); |
10317 | Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) |
10318 | << TemplateName << IsDeductionGuide; |
10319 | Diag(Best->Function->getLocation(), |
10320 | diag::note_explicit_ctor_deduction_guide_here) |
10321 | << IsDeductionGuide; |
10322 | return QualType(); |
10323 | } |
10324 | |
10325 | // Make sure we didn't select an unusable deduction guide, and mark it |
10326 | // as referenced. |
10327 | DiagnoseUseOfDecl(D: Best->FoundDecl, Locs: Kind.getLocation()); |
10328 | MarkFunctionReferenced(Loc: Kind.getLocation(), Func: Best->Function); |
10329 | break; |
10330 | } |
10331 | |
10332 | // C++ [dcl.type.class.deduct]p1: |
10333 | // The placeholder is replaced by the return type of the function selected |
10334 | // by overload resolution for class template deduction. |
10335 | QualType DeducedType = |
10336 | SubstAutoTypeSourceInfo(TypeWithAuto: TSInfo, Replacement: Best->Function->getReturnType()) |
10337 | ->getType(); |
10338 | Diag(TSInfo->getTypeLoc().getBeginLoc(), |
10339 | diag::warn_cxx14_compat_class_template_argument_deduction) |
10340 | << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; |
10341 | |
10342 | // Warn if CTAD was used on a type that does not have any user-defined |
10343 | // deduction guides. |
10344 | if (!FoundDeductionGuide) { |
10345 | Diag(TSInfo->getTypeLoc().getBeginLoc(), |
10346 | diag::warn_ctad_maybe_unsupported) |
10347 | << TemplateName; |
10348 | Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); |
10349 | } |
10350 | |
10351 | return DeducedType; |
10352 | } |
10353 |
Definitions
- IsWideCharCompatible
- StringInitFailureKind
- IsStringInit
- IsStringInit
- IsStringInit
- updateStringLiteralType
- updateGNUCompoundLiteralRValue
- initializingConstexprVariable
- CheckStringInit
- emitUninitializedExplicitInitFields
- InitListChecker
- getDummyInit
- diagnoseInitOverride
- HandleEmbed
- InitListChecker
- HadError
- getFullyStructuredList
- PerformEmptyInit
- CheckEmptyInitializable
- FillInEmptyInitForBase
- FillInEmptyInitForField
- FillInEmptyInitializations
- hasAnyDesignatedInits
- InitListChecker
- numArrayElements
- numStructUnionElements
- getRecordDecl
- isIdiomaticBraceElisionEntity
- CheckImplicitInitList
- warnBracedScalarInit
- CheckExplicitInitList
- CheckListElementTypes
- CheckSubElementType
- CheckComplexType
- CheckScalarType
- CheckReferenceType
- CheckVectorType
- checkDestructorReference
- canInitializeArrayWithEmbedDataString
- CheckArrayType
- CheckFlexibleArrayInit
- isInitializedStructuredList
- CheckStructUnionTypes
- ExpandAnonymousFieldDesignator
- CloneDesignatedInitExpr
- FieldInitializerValidatorCCC
- FieldInitializerValidatorCCC
- ValidateCandidate
- clone
- CheckDesignatedInitializer
- getStructuredSubobjectInit
- createInitListExpr
- UpdateStructuredListElement
- CanPerformAggregateInitializationForOverloadResolution
- CheckArrayDesignatorExpr
- ActOnDesignatedInitializer
- InitializedEntity
- InitializeBase
- getName
- getDecl
- allowsNRVO
- dumpImpl
- dump
- Destroy
- isDirectReferenceBinding
- isAmbiguous
- isConstructorInitialization
- AddAddressOverloadResolutionStep
- AddDerivedToBaseCastStep
- AddReferenceBindingStep
- AddFinalCopy
- AddExtraneousCopyToTemporary
- AddUserConversionStep
- AddQualificationConversionStep
- AddFunctionReferenceConversionStep
- AddAtomicConversionStep
- AddConversionSequenceStep
- AddListInitializationStep
- AddConstructorInitializationStep
- AddZeroInitializationStep
- AddCAssignmentStep
- AddStringInitStep
- AddObjCObjectConversionStep
- AddArrayInitStep
- AddArrayInitLoopStep
- AddParenthesizedArrayInitStep
- AddPassByIndirectCopyRestoreStep
- AddProduceObjCObjectStep
- AddStdInitializerListConstructionStep
- AddOCLSamplerInitStep
- AddOCLZeroOpaqueTypeStep
- AddParenthesizedListInitStep
- AddUnwrapInitListInitStep
- RewrapReferenceInitList
- SetOverloadFailure
- maybeRecoverWithZeroInitialization
- MaybeProduceObjCObject
- TryArrayCopy
- TryInitializerListConstruction
- hasCopyOrMoveCtorParam
- ResolveConstructorOverload
- TryConstructorInitialization
- TryConstructorOrParenListInitialization
- ResolveOverloadedFunctionForReferenceBinding
- TryReferenceListInitialization
- TryListInitialization
- TryRefInitWithConversionFunction
- TryReferenceInitialization
- isNonReferenceableGLValue
- TryReferenceInitializationCore
- TryStringLiteralInitialization
- TryValueInitialization
- TryDefaultInitialization
- TryOrBuildParenListInitialization
- TryUserDefinedConversion
- InvalidICRKind
- isInvalidICRSource
- checkIndirectCopyRestoreSource
- hasCompatibleArrayTypes
- tryObjCWritebackConversion
- TryOCLSamplerInitialization
- IsZeroInitializer
- TryOCLZeroOpaqueTypeInitialization
- InitializationSequence
- isExprAnUnaddressableFunction
- canPerformArrayCopy
- getConstField
- InitializeFrom
- ~InitializationSequence
- getAssignmentAction
- shouldBindAsTemporary
- shouldDestroyEntity
- getInitializationLoc
- CopyObject
- CheckCXX98CompatAccessibleCopy
- PrintInitLocationNote
- isExplicitTemporary
- PerformConstructorInitialization
- checkInitializerLifetime
- CheckMoveOnConstruction
- CheckForNullPointerDereference
- CreateMaterializeTemporaryExpr
- TemporaryMaterializationConversion
- PerformQualificationConversion
- Perform
- DiagnoseUninitializedReference
- emitBadConversionNotes
- diagnoseListInit
- Diagnose
- dump
- dump
- DiagnoseNarrowingInInitList
- CheckC23ConstexprInitConversion
- CheckC23ConstexprInitStringLiteral
- CanPerformCopyInitialization
- PerformCopyInitialization
- isOrIsDerivedFromSpecializationOf
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more