1//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for inline asm statements.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ExprCXX.h"
14#include "clang/AST/RecordLayout.h"
15#include "clang/AST/TypeLoc.h"
16#include "clang/Basic/TargetInfo.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/Lookup.h"
20#include "clang/Sema/Ownership.h"
21#include "clang/Sema/Scope.h"
22#include "clang/Sema/ScopeInfo.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/StringSet.h"
26#include "llvm/MC/MCParser/MCAsmParser.h"
27#include <optional>
28using namespace clang;
29using namespace sema;
30
31/// Remove the upper-level LValueToRValue cast from an expression.
32static void removeLValueToRValueCast(Expr *E) {
33 Expr *Parent = E;
34 Expr *ExprUnderCast = nullptr;
35 SmallVector<Expr *, 8> ParentsToUpdate;
36
37 while (true) {
38 ParentsToUpdate.push_back(Elt: Parent);
39 if (auto *ParenE = dyn_cast<ParenExpr>(Val: Parent)) {
40 Parent = ParenE->getSubExpr();
41 continue;
42 }
43
44 Expr *Child = nullptr;
45 CastExpr *ParentCast = dyn_cast<CastExpr>(Val: Parent);
46 if (ParentCast)
47 Child = ParentCast->getSubExpr();
48 else
49 return;
50
51 if (auto *CastE = dyn_cast<CastExpr>(Val: Child))
52 if (CastE->getCastKind() == CK_LValueToRValue) {
53 ExprUnderCast = CastE->getSubExpr();
54 // LValueToRValue cast inside GCCAsmStmt requires an explicit cast.
55 ParentCast->setSubExpr(ExprUnderCast);
56 break;
57 }
58 Parent = Child;
59 }
60
61 // Update parent expressions to have same ValueType as the underlying.
62 assert(ExprUnderCast &&
63 "Should be reachable only if LValueToRValue cast was found!");
64 auto ValueKind = ExprUnderCast->getValueKind();
65 for (Expr *E : ParentsToUpdate)
66 E->setValueKind(ValueKind);
67}
68
69/// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension)
70/// and fix the argument with removing LValueToRValue cast from the expression.
71static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument,
72 Sema &S) {
73 S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue)
74 << BadArgument->getSourceRange();
75 removeLValueToRValueCast(E: BadArgument);
76}
77
78/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
79/// ignore "noop" casts in places where an lvalue is required by an inline asm.
80/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
81/// provide a strong guidance to not use it.
82///
83/// This method checks to see if the argument is an acceptable l-value and
84/// returns false if it is a case we can handle.
85static bool CheckAsmLValue(Expr *E, Sema &S) {
86 // Type dependent expressions will be checked during instantiation.
87 if (E->isTypeDependent())
88 return false;
89
90 if (E->isLValue())
91 return false; // Cool, this is an lvalue.
92
93 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
94 // are supposed to allow.
95 const Expr *E2 = E->IgnoreParenNoopCasts(Ctx: S.Context);
96 if (E != E2 && E2->isLValue()) {
97 emitAndFixInvalidAsmCastLValue(LVal: E2, BadArgument: E, S);
98 // Accept, even if we emitted an error diagnostic.
99 return false;
100 }
101
102 // None of the above, just randomly invalid non-lvalue.
103 return true;
104}
105
106/// isOperandMentioned - Return true if the specified operand # is mentioned
107/// anywhere in the decomposed asm string.
108static bool
109isOperandMentioned(unsigned OpNo,
110 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
111 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
112 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
113 if (!Piece.isOperand())
114 continue;
115
116 // If this is a reference to the input and if the input was the smaller
117 // one, then we have to reject this asm.
118 if (Piece.getOperandNo() == OpNo)
119 return true;
120 }
121 return false;
122}
123
124static bool CheckNakedParmReference(Expr *E, Sema &S) {
125 FunctionDecl *Func = dyn_cast<FunctionDecl>(Val: S.CurContext);
126 if (!Func)
127 return false;
128 if (!Func->hasAttr<NakedAttr>())
129 return false;
130
131 SmallVector<Expr*, 4> WorkList;
132 WorkList.push_back(Elt: E);
133 while (WorkList.size()) {
134 Expr *E = WorkList.pop_back_val();
135 if (isa<CXXThisExpr>(Val: E)) {
136 S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref);
137 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
138 return true;
139 }
140 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
141 if (isa<ParmVarDecl>(Val: DRE->getDecl())) {
142 S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref);
143 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
144 return true;
145 }
146 }
147 for (Stmt *Child : E->children()) {
148 if (Expr *E = dyn_cast_or_null<Expr>(Child))
149 WorkList.push_back(E);
150 }
151 }
152 return false;
153}
154
155/// Returns true if given expression is not compatible with inline
156/// assembly's memory constraint; false otherwise.
157static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
158 TargetInfo::ConstraintInfo &Info,
159 bool is_input_expr) {
160 enum {
161 ExprBitfield = 0,
162 ExprVectorElt,
163 ExprGlobalRegVar,
164 ExprSafeType
165 } EType = ExprSafeType;
166
167 // Bitfields, vector elements and global register variables are not
168 // compatible.
169 if (E->refersToBitField())
170 EType = ExprBitfield;
171 else if (E->refersToVectorElement())
172 EType = ExprVectorElt;
173 else if (E->refersToGlobalRegisterVar())
174 EType = ExprGlobalRegVar;
175
176 if (EType != ExprSafeType) {
177 S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint)
178 << EType << is_input_expr << Info.getConstraintStr()
179 << E->getSourceRange();
180 return true;
181 }
182
183 return false;
184}
185
186// Extracting the register name from the Expression value,
187// if there is no register name to extract, returns ""
188static StringRef extractRegisterName(const Expr *Expression,
189 const TargetInfo &Target) {
190 Expression = Expression->IgnoreImpCasts();
191 if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Val: Expression)) {
192 // Handle cases where the expression is a variable
193 const VarDecl *Variable = dyn_cast<VarDecl>(Val: AsmDeclRef->getDecl());
194 if (Variable && Variable->getStorageClass() == SC_Register) {
195 if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>())
196 if (Target.isValidGCCRegisterName(Attr->getLabel()))
197 return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true);
198 }
199 }
200 return "";
201}
202
203// Checks if there is a conflict between the input and output lists with the
204// clobbers list. If there's a conflict, returns the location of the
205// conflicted clobber, else returns nullptr
206static SourceLocation
207getClobberConflictLocation(MultiExprArg Exprs, Expr **Constraints,
208 Expr **Clobbers, int NumClobbers, unsigned NumLabels,
209 const TargetInfo &Target, ASTContext &Cont) {
210 llvm::StringSet<> InOutVars;
211 // Collect all the input and output registers from the extended asm
212 // statement in order to check for conflicts with the clobber list
213 for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) {
214 std::string Constraint =
215 GCCAsmStmt::ExtractStringFromGCCAsmStmtComponent(E: Constraints[i]);
216 StringRef InOutReg = Target.getConstraintRegister(
217 Constraint, Expression: extractRegisterName(Expression: Exprs[i], Target));
218 if (InOutReg != "")
219 InOutVars.insert(key: InOutReg);
220 }
221 // Check for each item in the clobber list if it conflicts with the input
222 // or output
223 for (int i = 0; i < NumClobbers; ++i) {
224 std::string Clobber =
225 GCCAsmStmt::ExtractStringFromGCCAsmStmtComponent(E: Clobbers[i]);
226 // We only check registers, therefore we don't check cc and memory
227 // clobbers
228 if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind")
229 continue;
230 Clobber = Target.getNormalizedGCCRegisterName(Name: Clobber, ReturnCanonical: true);
231 // Go over the output's registers we collected
232 if (InOutVars.count(Key: Clobber))
233 return Clobbers[i]->getBeginLoc();
234 }
235 return SourceLocation();
236}
237
238ExprResult Sema::ActOnGCCAsmStmtString(Expr *Expr, bool ForAsmLabel) {
239 if (!Expr)
240 return ExprError();
241
242 if (auto *SL = dyn_cast<StringLiteral>(Val: Expr)) {
243 assert(SL->isOrdinary());
244 if (ForAsmLabel && SL->getString().empty()) {
245 Diag(Expr->getBeginLoc(), diag::err_asm_operand_empty_string)
246 << SL->getSourceRange();
247 }
248 return SL;
249 }
250 if (DiagnoseUnexpandedParameterPack(E: Expr))
251 return ExprError();
252 if (Expr->getDependence() != ExprDependence::None)
253 return Expr;
254 APValue V;
255 if (!EvaluateAsString(Message: Expr, Result&: V, Ctx&: getASTContext(), EvalContext: StringEvaluationContext::Asm,
256 /*ErrorOnInvalid=*/ErrorOnInvalidMessage: true))
257 return ExprError();
258
259 if (ForAsmLabel && V.getArrayInitializedElts() == 0) {
260 Diag(Expr->getBeginLoc(), diag::err_asm_operand_empty_string);
261 }
262
263 ConstantExpr *Res = ConstantExpr::Create(Context: getASTContext(), E: Expr,
264 Storage: ConstantResultStorageKind::APValue);
265 Res->SetResult(Value: V, Context: getASTContext());
266 return Res;
267}
268
269StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
270 bool IsVolatile, unsigned NumOutputs,
271 unsigned NumInputs, IdentifierInfo **Names,
272 MultiExprArg constraints, MultiExprArg Exprs,
273 Expr *asmString, MultiExprArg clobbers,
274 unsigned NumLabels,
275 SourceLocation RParenLoc) {
276 unsigned NumClobbers = clobbers.size();
277
278 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
279
280 FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: getCurLexicalContext());
281 llvm::StringMap<bool> FeatureMap;
282 Context.getFunctionFeatureMap(FeatureMap, FD);
283
284 auto CreateGCCAsmStmt = [&] {
285 return new (Context)
286 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
287 Names, constraints.data(), Exprs.data(), asmString,
288 NumClobbers, clobbers.data(), NumLabels, RParenLoc);
289 };
290
291 if (asmString->getDependence() != ExprDependence::None ||
292 llvm::any_of(
293 Range&: constraints,
294 P: [](Expr *E) { return E->getDependence() != ExprDependence::None; }) ||
295 llvm::any_of(Range&: clobbers, P: [](Expr *E) {
296 return E->getDependence() != ExprDependence::None;
297 }))
298 return CreateGCCAsmStmt();
299
300 for (unsigned i = 0; i != NumOutputs; i++) {
301 Expr *Constraint = constraints[i];
302 StringRef OutputName;
303 if (Names[i])
304 OutputName = Names[i]->getName();
305
306 std::string ConstraintStr =
307 GCCAsmStmt::ExtractStringFromGCCAsmStmtComponent(E: Constraint);
308
309 TargetInfo::ConstraintInfo Info(ConstraintStr, OutputName);
310 if (!Context.getTargetInfo().validateOutputConstraint(Info) &&
311 !(LangOpts.HIPStdPar && LangOpts.CUDAIsDevice)) {
312 targetDiag(Constraint->getBeginLoc(),
313 diag::err_asm_invalid_output_constraint)
314 << Info.getConstraintStr();
315 return CreateGCCAsmStmt();
316 }
317
318 ExprResult ER = CheckPlaceholderExpr(E: Exprs[i]);
319 if (ER.isInvalid())
320 return StmtError();
321 Exprs[i] = ER.get();
322
323 // Check that the output exprs are valid lvalues.
324 Expr *OutputExpr = Exprs[i];
325
326 // Referring to parameters is not allowed in naked functions.
327 if (CheckNakedParmReference(E: OutputExpr, S&: *this))
328 return StmtError();
329
330 // Check that the output expression is compatible with memory constraint.
331 if (Info.allowsMemory() &&
332 checkExprMemoryConstraintCompat(S&: *this, E: OutputExpr, Info, is_input_expr: false))
333 return StmtError();
334
335 // Disallow bit-precise integer types, since the backends tend to have
336 // difficulties with abnormal sizes.
337 if (OutputExpr->getType()->isBitIntType())
338 return StmtError(
339 Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type)
340 << OutputExpr->getType() << 0 /*Input*/
341 << OutputExpr->getSourceRange());
342
343 OutputConstraintInfos.push_back(Elt: Info);
344
345 // If this is dependent, just continue.
346 if (OutputExpr->isTypeDependent())
347 continue;
348
349 Expr::isModifiableLvalueResult IsLV =
350 OutputExpr->isModifiableLvalue(Ctx&: Context, /*Loc=*/nullptr);
351 switch (IsLV) {
352 case Expr::MLV_Valid:
353 // Cool, this is an lvalue.
354 break;
355 case Expr::MLV_ArrayType:
356 // This is OK too.
357 break;
358 case Expr::MLV_LValueCast: {
359 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Ctx: Context);
360 emitAndFixInvalidAsmCastLValue(LVal, BadArgument: OutputExpr, S&: *this);
361 // Accept, even if we emitted an error diagnostic.
362 break;
363 }
364 case Expr::MLV_IncompleteType:
365 case Expr::MLV_IncompleteVoidType:
366 if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(),
367 diag::err_dereference_incomplete_type))
368 return StmtError();
369 [[fallthrough]];
370 default:
371 return StmtError(Diag(OutputExpr->getBeginLoc(),
372 diag::err_asm_invalid_lvalue_in_output)
373 << OutputExpr->getSourceRange());
374 }
375
376 unsigned Size = Context.getTypeSize(T: OutputExpr->getType());
377 if (!Context.getTargetInfo().validateOutputSize(
378 FeatureMap,
379 GCCAsmStmt::ExtractStringFromGCCAsmStmtComponent(E: Constraint),
380 Size)) {
381 targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size)
382 << Info.getConstraintStr();
383 return CreateGCCAsmStmt();
384 }
385 }
386
387 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
388
389 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
390 Expr *Constraint = constraints[i];
391
392 StringRef InputName;
393 if (Names[i])
394 InputName = Names[i]->getName();
395
396 std::string ConstraintStr =
397 GCCAsmStmt::ExtractStringFromGCCAsmStmtComponent(E: Constraint);
398
399 TargetInfo::ConstraintInfo Info(ConstraintStr, InputName);
400 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraints: OutputConstraintInfos,
401 info&: Info)) {
402 targetDiag(Constraint->getBeginLoc(),
403 diag::err_asm_invalid_input_constraint)
404 << Info.getConstraintStr();
405 return CreateGCCAsmStmt();
406 }
407
408 ExprResult ER = CheckPlaceholderExpr(E: Exprs[i]);
409 if (ER.isInvalid())
410 return StmtError();
411 Exprs[i] = ER.get();
412
413 Expr *InputExpr = Exprs[i];
414
415 if (InputExpr->getType()->isMemberPointerType())
416 return StmtError(Diag(InputExpr->getBeginLoc(),
417 diag::err_asm_pmf_through_constraint_not_permitted)
418 << InputExpr->getSourceRange());
419
420 // Referring to parameters is not allowed in naked functions.
421 if (CheckNakedParmReference(E: InputExpr, S&: *this))
422 return StmtError();
423
424 // Check that the input expression is compatible with memory constraint.
425 if (Info.allowsMemory() &&
426 checkExprMemoryConstraintCompat(S&: *this, E: InputExpr, Info, is_input_expr: true))
427 return StmtError();
428
429 // Only allow void types for memory constraints.
430 if (Info.allowsMemory() && !Info.allowsRegister()) {
431 if (CheckAsmLValue(InputExpr, *this))
432 return StmtError(Diag(InputExpr->getBeginLoc(),
433 diag::err_asm_invalid_lvalue_in_input)
434 << Info.getConstraintStr()
435 << InputExpr->getSourceRange());
436 } else {
437 ExprResult Result = DefaultFunctionArrayLvalueConversion(E: Exprs[i]);
438 if (Result.isInvalid())
439 return StmtError();
440
441 InputExpr = Exprs[i] = Result.get();
442
443 if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
444 if (!InputExpr->isValueDependent()) {
445 Expr::EvalResult EVResult;
446 if (InputExpr->EvaluateAsRValue(Result&: EVResult, Ctx: Context, InConstantContext: true)) {
447 // For compatibility with GCC, we also allow pointers that would be
448 // integral constant expressions if they were cast to int.
449 llvm::APSInt IntResult;
450 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
451 Context))
452 if (!Info.isValidAsmImmediate(IntResult))
453 return StmtError(
454 Diag(InputExpr->getBeginLoc(),
455 diag::err_invalid_asm_value_for_constraint)
456 << toString(IntResult, 10) << Info.getConstraintStr()
457 << InputExpr->getSourceRange());
458 }
459 }
460 }
461 }
462
463 if (Info.allowsRegister()) {
464 if (InputExpr->getType()->isVoidType()) {
465 return StmtError(
466 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input)
467 << InputExpr->getType() << Info.getConstraintStr()
468 << InputExpr->getSourceRange());
469 }
470 }
471
472 if (InputExpr->getType()->isBitIntType())
473 return StmtError(
474 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type)
475 << InputExpr->getType() << 1 /*Output*/
476 << InputExpr->getSourceRange());
477
478 InputConstraintInfos.push_back(Elt: Info);
479
480 const Type *Ty = Exprs[i]->getType().getTypePtr();
481 if (Ty->isDependentType())
482 continue;
483
484 if (!Ty->isVoidType() || !Info.allowsMemory())
485 if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(),
486 diag::err_dereference_incomplete_type))
487 return StmtError();
488
489 unsigned Size = Context.getTypeSize(T: Ty);
490 if (!Context.getTargetInfo().validateInputSize(FeatureMap, ConstraintStr,
491 Size))
492 return targetDiag(InputExpr->getBeginLoc(),
493 diag::err_asm_invalid_input_size)
494 << Info.getConstraintStr();
495 }
496
497 std::optional<SourceLocation> UnwindClobberLoc;
498
499 // Check that the clobbers are valid.
500 for (unsigned i = 0; i != NumClobbers; i++) {
501 Expr *ClobberExpr = clobbers[i];
502
503 std::string Clobber =
504 GCCAsmStmt::ExtractStringFromGCCAsmStmtComponent(E: ClobberExpr);
505
506 if (!Context.getTargetInfo().isValidClobber(Name: Clobber)) {
507 targetDiag(ClobberExpr->getBeginLoc(),
508 diag::err_asm_unknown_register_name)
509 << Clobber;
510 return new (Context) GCCAsmStmt(
511 Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names,
512 constraints.data(), Exprs.data(), asmString, NumClobbers,
513 clobbers.data(), NumLabels, RParenLoc);
514 }
515
516 if (Clobber == "unwind") {
517 UnwindClobberLoc = ClobberExpr->getBeginLoc();
518 }
519 }
520
521 // Using unwind clobber and asm-goto together is not supported right now.
522 if (UnwindClobberLoc && NumLabels > 0) {
523 targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto);
524 return CreateGCCAsmStmt();
525 }
526
527 GCCAsmStmt *NS = CreateGCCAsmStmt();
528 // Validate the asm string, ensuring it makes sense given the operands we
529 // have.
530
531 auto GetLocation = [this](const Expr *Str, unsigned Offset) {
532 if (auto *SL = dyn_cast<StringLiteral>(Val: Str))
533 return getLocationOfStringLiteralByte(SL, ByteNo: Offset);
534 return Str->getBeginLoc();
535 };
536
537 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
538 unsigned DiagOffs;
539 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, C: Context, DiagOffs)) {
540 targetDiag(GetLocation(asmString, DiagOffs), DiagID)
541 << asmString->getSourceRange();
542 return NS;
543 }
544
545 // Validate constraints and modifiers.
546 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
547 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
548 if (!Piece.isOperand()) continue;
549
550 // Look for the correct constraint index.
551 unsigned ConstraintIdx = Piece.getOperandNo();
552 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
553 // Labels are the last in the Exprs list.
554 if (NS->isAsmGoto() && ConstraintIdx >= NumOperands)
555 continue;
556 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
557 // modifier '+'.
558 if (ConstraintIdx >= NumOperands) {
559 unsigned I = 0, E = NS->getNumOutputs();
560
561 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
562 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
563 ConstraintIdx = I;
564 break;
565 }
566
567 assert(I != E && "Invalid operand number should have been caught in "
568 " AnalyzeAsmString");
569 }
570
571 // Now that we have the right indexes go ahead and check.
572 Expr *Constraint = constraints[ConstraintIdx];
573 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
574 if (Ty->isDependentType() || Ty->isIncompleteType())
575 continue;
576
577 unsigned Size = Context.getTypeSize(T: Ty);
578 std::string SuggestedModifier;
579 if (!Context.getTargetInfo().validateConstraintModifier(
580 GCCAsmStmt::ExtractStringFromGCCAsmStmtComponent(E: Constraint),
581 Piece.getModifier(), Size, SuggestedModifier)) {
582 targetDiag(Exprs[ConstraintIdx]->getBeginLoc(),
583 diag::warn_asm_mismatched_size_modifier);
584
585 if (!SuggestedModifier.empty()) {
586 auto B = targetDiag(Piece.getRange().getBegin(),
587 diag::note_asm_missing_constraint_modifier)
588 << SuggestedModifier;
589 if (isa<StringLiteral>(Val: Constraint)) {
590 SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
591 B << FixItHint::CreateReplacement(RemoveRange: Piece.getRange(),
592 Code: SuggestedModifier);
593 }
594 }
595 }
596 }
597
598 // Validate tied input operands for type mismatches.
599 unsigned NumAlternatives = ~0U;
600 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
601 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
602 StringRef ConstraintStr = Info.getConstraintStr();
603 unsigned AltCount = ConstraintStr.count(C: ',') + 1;
604 if (NumAlternatives == ~0U) {
605 NumAlternatives = AltCount;
606 } else if (NumAlternatives != AltCount) {
607 targetDiag(NS->getOutputExpr(i)->getBeginLoc(),
608 diag::err_asm_unexpected_constraint_alternatives)
609 << NumAlternatives << AltCount;
610 return NS;
611 }
612 }
613 SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
614 ~0U);
615 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
616 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
617 StringRef ConstraintStr = Info.getConstraintStr();
618 unsigned AltCount = ConstraintStr.count(C: ',') + 1;
619 if (NumAlternatives == ~0U) {
620 NumAlternatives = AltCount;
621 } else if (NumAlternatives != AltCount) {
622 targetDiag(NS->getInputExpr(i)->getBeginLoc(),
623 diag::err_asm_unexpected_constraint_alternatives)
624 << NumAlternatives << AltCount;
625 return NS;
626 }
627
628 // If this is a tied constraint, verify that the output and input have
629 // either exactly the same type, or that they are int/ptr operands with the
630 // same size (int/long, int*/long, are ok etc).
631 if (!Info.hasTiedOperand()) continue;
632
633 unsigned TiedTo = Info.getTiedOperand();
634 unsigned InputOpNo = i+NumOutputs;
635 Expr *OutputExpr = Exprs[TiedTo];
636 Expr *InputExpr = Exprs[InputOpNo];
637
638 // Make sure no more than one input constraint matches each output.
639 assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
640 if (InputMatchedToOutput[TiedTo] != ~0U) {
641 targetDiag(NS->getInputExpr(i)->getBeginLoc(),
642 diag::err_asm_input_duplicate_match)
643 << TiedTo;
644 targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(),
645 diag::note_asm_input_duplicate_first)
646 << TiedTo;
647 return NS;
648 }
649 InputMatchedToOutput[TiedTo] = i;
650
651 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
652 continue;
653
654 QualType InTy = InputExpr->getType();
655 QualType OutTy = OutputExpr->getType();
656 if (Context.hasSameType(T1: InTy, T2: OutTy))
657 continue; // All types can be tied to themselves.
658
659 // Decide if the input and output are in the same domain (integer/ptr or
660 // floating point.
661 enum AsmDomain {
662 AD_Int, AD_FP, AD_Other
663 } InputDomain, OutputDomain;
664
665 if (InTy->isIntegerType() || InTy->isPointerType())
666 InputDomain = AD_Int;
667 else if (InTy->isRealFloatingType())
668 InputDomain = AD_FP;
669 else
670 InputDomain = AD_Other;
671
672 if (OutTy->isIntegerType() || OutTy->isPointerType())
673 OutputDomain = AD_Int;
674 else if (OutTy->isRealFloatingType())
675 OutputDomain = AD_FP;
676 else
677 OutputDomain = AD_Other;
678
679 // They are ok if they are the same size and in the same domain. This
680 // allows tying things like:
681 // void* to int*
682 // void* to int if they are the same size.
683 // double to long double if they are the same size.
684 //
685 uint64_t OutSize = Context.getTypeSize(T: OutTy);
686 uint64_t InSize = Context.getTypeSize(T: InTy);
687 if (OutSize == InSize && InputDomain == OutputDomain &&
688 InputDomain != AD_Other)
689 continue;
690
691 // If the smaller input/output operand is not mentioned in the asm string,
692 // then we can promote the smaller one to a larger input and the asm string
693 // won't notice.
694 bool SmallerValueMentioned = false;
695
696 // If this is a reference to the input and if the input was the smaller
697 // one, then we have to reject this asm.
698 if (isOperandMentioned(OpNo: InputOpNo, AsmStrPieces: Pieces)) {
699 // This is a use in the asm string of the smaller operand. Since we
700 // codegen this by promoting to a wider value, the asm will get printed
701 // "wrong".
702 SmallerValueMentioned |= InSize < OutSize;
703 }
704 if (isOperandMentioned(OpNo: TiedTo, AsmStrPieces: Pieces)) {
705 // If this is a reference to the output, and if the output is the larger
706 // value, then it's ok because we'll promote the input to the larger type.
707 SmallerValueMentioned |= OutSize < InSize;
708 }
709
710 // If the input is an integer register while the output is floating point,
711 // or vice-versa, there is no way they can work together.
712 bool FPTiedToInt = (InputDomain == AD_FP) ^ (OutputDomain == AD_FP);
713
714 // If the smaller value wasn't mentioned in the asm string, and if the
715 // output was a register, just extend the shorter one to the size of the
716 // larger one.
717 if (!SmallerValueMentioned && !FPTiedToInt && InputDomain != AD_Other &&
718 OutputConstraintInfos[TiedTo].allowsRegister()) {
719
720 // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen
721 // crash when the size larger than the register size. So we limit it here.
722 if (OutTy->isStructureType() &&
723 Context.getIntTypeForBitwidth(DestWidth: OutSize, /*Signed*/ false).isNull()) {
724 targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg);
725 return NS;
726 }
727
728 continue;
729 }
730
731 // Either both of the operands were mentioned or the smaller one was
732 // mentioned. One more special case that we'll allow: if the tied input is
733 // integer, unmentioned, and is a constant, then we'll allow truncating it
734 // down to the size of the destination.
735 if (InputDomain == AD_Int && OutputDomain == AD_Int &&
736 !isOperandMentioned(OpNo: InputOpNo, AsmStrPieces: Pieces) &&
737 InputExpr->isEvaluatable(Ctx: Context)) {
738 CastKind castKind =
739 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
740 InputExpr = ImpCastExprToType(E: InputExpr, Type: OutTy, CK: castKind).get();
741 Exprs[InputOpNo] = InputExpr;
742 NS->setInputExpr(i, E: InputExpr);
743 continue;
744 }
745
746 targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types)
747 << InTy << OutTy << OutputExpr->getSourceRange()
748 << InputExpr->getSourceRange();
749 return NS;
750 }
751
752 // Check for conflicts between clobber list and input or output lists
753 SourceLocation ConstraintLoc = getClobberConflictLocation(
754 Exprs, Constraints: constraints.data(), Clobbers: clobbers.data(), NumClobbers, NumLabels,
755 Target: Context.getTargetInfo(), Cont&: Context);
756 if (ConstraintLoc.isValid())
757 targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber);
758
759 // Check for duplicate asm operand name between input, output and label lists.
760 typedef std::pair<StringRef , Expr *> NamedOperand;
761 SmallVector<NamedOperand, 4> NamedOperandList;
762 for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i)
763 if (Names[i])
764 NamedOperandList.emplace_back(
765 Args: std::make_pair(x: Names[i]->getName(), y&: Exprs[i]));
766 // Sort NamedOperandList.
767 llvm::stable_sort(Range&: NamedOperandList, C: llvm::less_first());
768 // Find adjacent duplicate operand.
769 SmallVector<NamedOperand, 4>::iterator Found =
770 std::adjacent_find(first: begin(cont&: NamedOperandList), last: end(cont&: NamedOperandList),
771 binary_pred: [](const NamedOperand &LHS, const NamedOperand &RHS) {
772 return LHS.first == RHS.first;
773 });
774 if (Found != NamedOperandList.end()) {
775 Diag((Found + 1)->second->getBeginLoc(),
776 diag::error_duplicate_asm_operand_name)
777 << (Found + 1)->first;
778 Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name)
779 << Found->first;
780 return StmtError();
781 }
782 if (NS->isAsmGoto())
783 setFunctionHasBranchIntoScope();
784
785 CleanupVarDeclMarking();
786 DiscardCleanupsInEvaluationContext();
787 return NS;
788}
789
790void Sema::FillInlineAsmIdentifierInfo(Expr *Res,
791 llvm::InlineAsmIdentifierInfo &Info) {
792 QualType T = Res->getType();
793 Expr::EvalResult Eval;
794 if (T->isFunctionType() || T->isDependentType())
795 return Info.setLabel(Res);
796 if (Res->isPRValue()) {
797 bool IsEnum = isa<clang::EnumType>(Val: T);
798 if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Val: Res))
799 if (DRE->getDecl()->getKind() == Decl::EnumConstant)
800 IsEnum = true;
801 if (IsEnum && Res->EvaluateAsRValue(Result&: Eval, Ctx: Context))
802 return Info.setEnum(Eval.Val.getInt().getSExtValue());
803
804 return Info.setLabel(Res);
805 }
806 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
807 unsigned Type = Size;
808 if (const auto *ATy = Context.getAsArrayType(T))
809 Type = Context.getTypeSizeInChars(T: ATy->getElementType()).getQuantity();
810 bool IsGlobalLV = false;
811 if (Res->EvaluateAsLValue(Result&: Eval, Ctx: Context))
812 IsGlobalLV = Eval.isGlobalLValue();
813 Info.setVar(decl: Res, isGlobalLV: IsGlobalLV, size: Size, type: Type);
814}
815
816ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
817 SourceLocation TemplateKWLoc,
818 UnqualifiedId &Id,
819 bool IsUnevaluatedContext) {
820
821 if (IsUnevaluatedContext)
822 PushExpressionEvaluationContext(
823 NewContext: ExpressionEvaluationContext::UnevaluatedAbstract,
824 ReuseLambdaContextDecl);
825
826 ExprResult Result = ActOnIdExpression(S: getCurScope(), SS, TemplateKWLoc, Id,
827 /*trailing lparen*/ HasTrailingLParen: false,
828 /*is & operand*/ IsAddressOfOperand: false,
829 /*CorrectionCandidateCallback=*/CCC: nullptr,
830 /*IsInlineAsmIdentifier=*/ true);
831
832 if (IsUnevaluatedContext)
833 PopExpressionEvaluationContext();
834
835 if (!Result.isUsable()) return Result;
836
837 Result = CheckPlaceholderExpr(E: Result.get());
838 if (!Result.isUsable()) return Result;
839
840 // Referring to parameters is not allowed in naked functions.
841 if (CheckNakedParmReference(E: Result.get(), S&: *this))
842 return ExprError();
843
844 QualType T = Result.get()->getType();
845
846 if (T->isDependentType()) {
847 return Result;
848 }
849
850 // Any sort of function type is fine.
851 if (T->isFunctionType()) {
852 return Result;
853 }
854
855 // Otherwise, it needs to be a complete type.
856 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
857 return ExprError();
858 }
859
860 return Result;
861}
862
863bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
864 unsigned &Offset, SourceLocation AsmLoc) {
865 Offset = 0;
866 SmallVector<StringRef, 2> Members;
867 Member.split(A&: Members, Separator: ".");
868
869 NamedDecl *FoundDecl = nullptr;
870
871 // MS InlineAsm uses 'this' as a base
872 if (getLangOpts().CPlusPlus && Base == "this") {
873 if (const Type *PT = getCurrentThisType().getTypePtrOrNull())
874 FoundDecl = PT->getPointeeType()->getAsTagDecl();
875 } else {
876 LookupResult BaseResult(*this, &Context.Idents.get(Name: Base), SourceLocation(),
877 LookupOrdinaryName);
878 if (LookupName(R&: BaseResult, S: getCurScope()) && BaseResult.isSingleResult())
879 FoundDecl = BaseResult.getFoundDecl();
880 }
881
882 if (!FoundDecl)
883 return true;
884
885 for (StringRef NextMember : Members) {
886 const RecordType *RT = nullptr;
887 if (VarDecl *VD = dyn_cast<VarDecl>(Val: FoundDecl))
888 RT = VD->getType()->getAs<RecordType>();
889 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(Val: FoundDecl)) {
890 MarkAnyDeclReferenced(Loc: TD->getLocation(), D: TD, /*OdrUse=*/MightBeOdrUse: false);
891 // MS InlineAsm often uses struct pointer aliases as a base
892 QualType QT = TD->getUnderlyingType();
893 if (const auto *PT = QT->getAs<PointerType>())
894 QT = PT->getPointeeType();
895 RT = QT->getAs<RecordType>();
896 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(Val: FoundDecl))
897 RT = TD->getTypeForDecl()->getAs<RecordType>();
898 else if (FieldDecl *TD = dyn_cast<FieldDecl>(Val: FoundDecl))
899 RT = TD->getType()->getAs<RecordType>();
900 if (!RT)
901 return true;
902
903 if (RequireCompleteType(AsmLoc, QualType(RT, 0),
904 diag::err_asm_incomplete_type))
905 return true;
906
907 LookupResult FieldResult(*this, &Context.Idents.get(Name: NextMember),
908 SourceLocation(), LookupMemberName);
909
910 if (!LookupQualifiedName(FieldResult, RT->getDecl()))
911 return true;
912
913 if (!FieldResult.isSingleResult())
914 return true;
915 FoundDecl = FieldResult.getFoundDecl();
916
917 // FIXME: Handle IndirectFieldDecl?
918 FieldDecl *FD = dyn_cast<FieldDecl>(Val: FoundDecl);
919 if (!FD)
920 return true;
921
922 const ASTRecordLayout &RL = Context.getASTRecordLayout(D: RT->getDecl());
923 unsigned i = FD->getFieldIndex();
924 CharUnits Result = Context.toCharUnitsFromBits(BitSize: RL.getFieldOffset(FieldNo: i));
925 Offset += (unsigned)Result.getQuantity();
926 }
927
928 return false;
929}
930
931ExprResult
932Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member,
933 SourceLocation AsmLoc) {
934
935 QualType T = E->getType();
936 if (T->isDependentType()) {
937 DeclarationNameInfo NameInfo;
938 NameInfo.setLoc(AsmLoc);
939 NameInfo.setName(&Context.Idents.get(Name: Member));
940 return CXXDependentScopeMemberExpr::Create(
941 Ctx: Context, Base: E, BaseType: T, /*IsArrow=*/false, OperatorLoc: AsmLoc, QualifierLoc: NestedNameSpecifierLoc(),
942 TemplateKWLoc: SourceLocation(),
943 /*FirstQualifierFoundInScope=*/nullptr, MemberNameInfo: NameInfo, /*TemplateArgs=*/nullptr);
944 }
945
946 const RecordType *RT = T->getAs<RecordType>();
947 // FIXME: Diagnose this as field access into a scalar type.
948 if (!RT)
949 return ExprResult();
950
951 LookupResult FieldResult(*this, &Context.Idents.get(Name: Member), AsmLoc,
952 LookupMemberName);
953
954 if (!LookupQualifiedName(FieldResult, RT->getDecl()))
955 return ExprResult();
956
957 // Only normal and indirect field results will work.
958 ValueDecl *FD = dyn_cast<FieldDecl>(Val: FieldResult.getFoundDecl());
959 if (!FD)
960 FD = dyn_cast<IndirectFieldDecl>(Val: FieldResult.getFoundDecl());
961 if (!FD)
962 return ExprResult();
963
964 // Make an Expr to thread through OpDecl.
965 ExprResult Result = BuildMemberReferenceExpr(
966 Base: E, BaseType: E->getType(), OpLoc: AsmLoc, /*IsArrow=*/false, SS: CXXScopeSpec(),
967 TemplateKWLoc: SourceLocation(), FirstQualifierInScope: nullptr, R&: FieldResult, TemplateArgs: nullptr, S: nullptr);
968
969 return Result;
970}
971
972StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
973 ArrayRef<Token> AsmToks,
974 StringRef AsmString,
975 unsigned NumOutputs, unsigned NumInputs,
976 ArrayRef<StringRef> Constraints,
977 ArrayRef<StringRef> Clobbers,
978 ArrayRef<Expr*> Exprs,
979 SourceLocation EndLoc) {
980 bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
981 setFunctionHasBranchProtectedScope();
982
983 bool InvalidOperand = false;
984 for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) {
985 Expr *E = Exprs[I];
986 if (E->getType()->isBitIntType()) {
987 InvalidOperand = true;
988 Diag(E->getBeginLoc(), diag::err_asm_invalid_type)
989 << E->getType() << (I < NumOutputs)
990 << E->getSourceRange();
991 } else if (E->refersToBitField()) {
992 InvalidOperand = true;
993 FieldDecl *BitField = E->getSourceBitField();
994 Diag(E->getBeginLoc(), diag::err_ms_asm_bitfield_unsupported)
995 << E->getSourceRange();
996 Diag(BitField->getLocation(), diag::note_bitfield_decl);
997 }
998 }
999 if (InvalidOperand)
1000 return StmtError();
1001
1002 MSAsmStmt *NS =
1003 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
1004 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
1005 Constraints, Exprs, AsmString,
1006 Clobbers, EndLoc);
1007 return NS;
1008}
1009
1010LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
1011 SourceLocation Location,
1012 bool AlwaysCreate) {
1013 LabelDecl* Label = LookupOrCreateLabel(II: PP.getIdentifierInfo(Name: ExternalLabelName),
1014 IdentLoc: Location);
1015
1016 if (Label->isMSAsmLabel()) {
1017 // If we have previously created this label implicitly, mark it as used.
1018 Label->markUsed(Context);
1019 } else {
1020 // Otherwise, insert it, but only resolve it if we have seen the label itself.
1021 std::string InternalName;
1022 llvm::raw_string_ostream OS(InternalName);
1023 // Create an internal name for the label. The name should not be a valid
1024 // mangled name, and should be unique. We use a dot to make the name an
1025 // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a
1026 // unique label is generated each time this blob is emitted, even after
1027 // inlining or LTO.
1028 OS << "__MSASMLABEL_.${:uid}__";
1029 for (char C : ExternalLabelName) {
1030 OS << C;
1031 // We escape '$' in asm strings by replacing it with "$$"
1032 if (C == '$')
1033 OS << '$';
1034 }
1035 Label->setMSAsmLabel(OS.str());
1036 }
1037 if (AlwaysCreate) {
1038 // The label might have been created implicitly from a previously encountered
1039 // goto statement. So, for both newly created and looked up labels, we mark
1040 // them as resolved.
1041 Label->setMSAsmLabelResolved();
1042 }
1043 // Adjust their location for being able to generate accurate diagnostics.
1044 Label->setLocation(Location);
1045
1046 return Label;
1047}
1048

Provided by KDAB

Privacy Policy
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more

source code of clang/lib/Sema/SemaStmtAsm.cpp