1 | //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for inline asm statements. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ExprCXX.h" |
14 | #include "clang/AST/GlobalDecl.h" |
15 | #include "clang/AST/RecordLayout.h" |
16 | #include "clang/AST/TypeLoc.h" |
17 | #include "clang/Basic/TargetInfo.h" |
18 | #include "clang/Lex/Preprocessor.h" |
19 | #include "clang/Sema/Initialization.h" |
20 | #include "clang/Sema/Lookup.h" |
21 | #include "clang/Sema/Scope.h" |
22 | #include "clang/Sema/ScopeInfo.h" |
23 | #include "clang/Sema/SemaInternal.h" |
24 | #include "llvm/ADT/ArrayRef.h" |
25 | #include "llvm/ADT/StringExtras.h" |
26 | #include "llvm/ADT/StringSet.h" |
27 | #include "llvm/MC/MCParser/MCAsmParser.h" |
28 | #include <optional> |
29 | using namespace clang; |
30 | using namespace sema; |
31 | |
32 | /// Remove the upper-level LValueToRValue cast from an expression. |
33 | static void removeLValueToRValueCast(Expr *E) { |
34 | Expr *Parent = E; |
35 | Expr *ExprUnderCast = nullptr; |
36 | SmallVector<Expr *, 8> ParentsToUpdate; |
37 | |
38 | while (true) { |
39 | ParentsToUpdate.push_back(Elt: Parent); |
40 | if (auto *ParenE = dyn_cast<ParenExpr>(Val: Parent)) { |
41 | Parent = ParenE->getSubExpr(); |
42 | continue; |
43 | } |
44 | |
45 | Expr *Child = nullptr; |
46 | CastExpr *ParentCast = dyn_cast<CastExpr>(Val: Parent); |
47 | if (ParentCast) |
48 | Child = ParentCast->getSubExpr(); |
49 | else |
50 | return; |
51 | |
52 | if (auto *CastE = dyn_cast<CastExpr>(Val: Child)) |
53 | if (CastE->getCastKind() == CK_LValueToRValue) { |
54 | ExprUnderCast = CastE->getSubExpr(); |
55 | // LValueToRValue cast inside GCCAsmStmt requires an explicit cast. |
56 | ParentCast->setSubExpr(ExprUnderCast); |
57 | break; |
58 | } |
59 | Parent = Child; |
60 | } |
61 | |
62 | // Update parent expressions to have same ValueType as the underlying. |
63 | assert(ExprUnderCast && |
64 | "Should be reachable only if LValueToRValue cast was found!" ); |
65 | auto ValueKind = ExprUnderCast->getValueKind(); |
66 | for (Expr *E : ParentsToUpdate) |
67 | E->setValueKind(ValueKind); |
68 | } |
69 | |
70 | /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension) |
71 | /// and fix the argument with removing LValueToRValue cast from the expression. |
72 | static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument, |
73 | Sema &S) { |
74 | if (!S.getLangOpts().HeinousExtensions) { |
75 | S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue) |
76 | << BadArgument->getSourceRange(); |
77 | } else { |
78 | S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue) |
79 | << BadArgument->getSourceRange(); |
80 | } |
81 | removeLValueToRValueCast(E: BadArgument); |
82 | } |
83 | |
84 | /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently |
85 | /// ignore "noop" casts in places where an lvalue is required by an inline asm. |
86 | /// We emulate this behavior when -fheinous-gnu-extensions is specified, but |
87 | /// provide a strong guidance to not use it. |
88 | /// |
89 | /// This method checks to see if the argument is an acceptable l-value and |
90 | /// returns false if it is a case we can handle. |
91 | static bool CheckAsmLValue(Expr *E, Sema &S) { |
92 | // Type dependent expressions will be checked during instantiation. |
93 | if (E->isTypeDependent()) |
94 | return false; |
95 | |
96 | if (E->isLValue()) |
97 | return false; // Cool, this is an lvalue. |
98 | |
99 | // Okay, this is not an lvalue, but perhaps it is the result of a cast that we |
100 | // are supposed to allow. |
101 | const Expr *E2 = E->IgnoreParenNoopCasts(Ctx: S.Context); |
102 | if (E != E2 && E2->isLValue()) { |
103 | emitAndFixInvalidAsmCastLValue(LVal: E2, BadArgument: E, S); |
104 | // Accept, even if we emitted an error diagnostic. |
105 | return false; |
106 | } |
107 | |
108 | // None of the above, just randomly invalid non-lvalue. |
109 | return true; |
110 | } |
111 | |
112 | /// isOperandMentioned - Return true if the specified operand # is mentioned |
113 | /// anywhere in the decomposed asm string. |
114 | static bool |
115 | isOperandMentioned(unsigned OpNo, |
116 | ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { |
117 | for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { |
118 | const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; |
119 | if (!Piece.isOperand()) |
120 | continue; |
121 | |
122 | // If this is a reference to the input and if the input was the smaller |
123 | // one, then we have to reject this asm. |
124 | if (Piece.getOperandNo() == OpNo) |
125 | return true; |
126 | } |
127 | return false; |
128 | } |
129 | |
130 | static bool CheckNakedParmReference(Expr *E, Sema &S) { |
131 | FunctionDecl *Func = dyn_cast<FunctionDecl>(Val: S.CurContext); |
132 | if (!Func) |
133 | return false; |
134 | if (!Func->hasAttr<NakedAttr>()) |
135 | return false; |
136 | |
137 | SmallVector<Expr*, 4> WorkList; |
138 | WorkList.push_back(Elt: E); |
139 | while (WorkList.size()) { |
140 | Expr *E = WorkList.pop_back_val(); |
141 | if (isa<CXXThisExpr>(Val: E)) { |
142 | S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref); |
143 | S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); |
144 | return true; |
145 | } |
146 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
147 | if (isa<ParmVarDecl>(Val: DRE->getDecl())) { |
148 | S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref); |
149 | S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); |
150 | return true; |
151 | } |
152 | } |
153 | for (Stmt *Child : E->children()) { |
154 | if (Expr *E = dyn_cast_or_null<Expr>(Child)) |
155 | WorkList.push_back(E); |
156 | } |
157 | } |
158 | return false; |
159 | } |
160 | |
161 | /// Returns true if given expression is not compatible with inline |
162 | /// assembly's memory constraint; false otherwise. |
163 | static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E, |
164 | TargetInfo::ConstraintInfo &Info, |
165 | bool is_input_expr) { |
166 | enum { |
167 | ExprBitfield = 0, |
168 | ExprVectorElt, |
169 | ExprGlobalRegVar, |
170 | ExprSafeType |
171 | } EType = ExprSafeType; |
172 | |
173 | // Bitfields, vector elements and global register variables are not |
174 | // compatible. |
175 | if (E->refersToBitField()) |
176 | EType = ExprBitfield; |
177 | else if (E->refersToVectorElement()) |
178 | EType = ExprVectorElt; |
179 | else if (E->refersToGlobalRegisterVar()) |
180 | EType = ExprGlobalRegVar; |
181 | |
182 | if (EType != ExprSafeType) { |
183 | S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint) |
184 | << EType << is_input_expr << Info.getConstraintStr() |
185 | << E->getSourceRange(); |
186 | return true; |
187 | } |
188 | |
189 | return false; |
190 | } |
191 | |
192 | // Extracting the register name from the Expression value, |
193 | // if there is no register name to extract, returns "" |
194 | static StringRef (const Expr *Expression, |
195 | const TargetInfo &Target) { |
196 | Expression = Expression->IgnoreImpCasts(); |
197 | if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Val: Expression)) { |
198 | // Handle cases where the expression is a variable |
199 | const VarDecl *Variable = dyn_cast<VarDecl>(Val: AsmDeclRef->getDecl()); |
200 | if (Variable && Variable->getStorageClass() == SC_Register) { |
201 | if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>()) |
202 | if (Target.isValidGCCRegisterName(Attr->getLabel())) |
203 | return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true); |
204 | } |
205 | } |
206 | return "" ; |
207 | } |
208 | |
209 | // Checks if there is a conflict between the input and output lists with the |
210 | // clobbers list. If there's a conflict, returns the location of the |
211 | // conflicted clobber, else returns nullptr |
212 | static SourceLocation |
213 | getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints, |
214 | StringLiteral **Clobbers, int NumClobbers, |
215 | unsigned NumLabels, |
216 | const TargetInfo &Target, ASTContext &Cont) { |
217 | llvm::StringSet<> InOutVars; |
218 | // Collect all the input and output registers from the extended asm |
219 | // statement in order to check for conflicts with the clobber list |
220 | for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) { |
221 | StringRef Constraint = Constraints[i]->getString(); |
222 | StringRef InOutReg = Target.getConstraintRegister( |
223 | Constraint, Expression: extractRegisterName(Expression: Exprs[i], Target)); |
224 | if (InOutReg != "" ) |
225 | InOutVars.insert(key: InOutReg); |
226 | } |
227 | // Check for each item in the clobber list if it conflicts with the input |
228 | // or output |
229 | for (int i = 0; i < NumClobbers; ++i) { |
230 | StringRef Clobber = Clobbers[i]->getString(); |
231 | // We only check registers, therefore we don't check cc and memory |
232 | // clobbers |
233 | if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind" ) |
234 | continue; |
235 | Clobber = Target.getNormalizedGCCRegisterName(Name: Clobber, ReturnCanonical: true); |
236 | // Go over the output's registers we collected |
237 | if (InOutVars.count(Key: Clobber)) |
238 | return Clobbers[i]->getBeginLoc(); |
239 | } |
240 | return SourceLocation(); |
241 | } |
242 | |
243 | StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, |
244 | bool IsVolatile, unsigned NumOutputs, |
245 | unsigned NumInputs, IdentifierInfo **Names, |
246 | MultiExprArg constraints, MultiExprArg Exprs, |
247 | Expr *asmString, MultiExprArg clobbers, |
248 | unsigned NumLabels, |
249 | SourceLocation RParenLoc) { |
250 | unsigned NumClobbers = clobbers.size(); |
251 | StringLiteral **Constraints = |
252 | reinterpret_cast<StringLiteral**>(constraints.data()); |
253 | StringLiteral *AsmString = cast<StringLiteral>(Val: asmString); |
254 | StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); |
255 | |
256 | SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; |
257 | |
258 | // The parser verifies that there is a string literal here. |
259 | assert(AsmString->isOrdinary()); |
260 | |
261 | FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: getCurLexicalContext()); |
262 | llvm::StringMap<bool> FeatureMap; |
263 | Context.getFunctionFeatureMap(FeatureMap, FD); |
264 | |
265 | for (unsigned i = 0; i != NumOutputs; i++) { |
266 | StringLiteral *Literal = Constraints[i]; |
267 | assert(Literal->isOrdinary()); |
268 | |
269 | StringRef OutputName; |
270 | if (Names[i]) |
271 | OutputName = Names[i]->getName(); |
272 | |
273 | TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); |
274 | if (!Context.getTargetInfo().validateOutputConstraint(Info) && |
275 | !(LangOpts.HIPStdPar && LangOpts.CUDAIsDevice)) { |
276 | targetDiag(Literal->getBeginLoc(), |
277 | diag::err_asm_invalid_output_constraint) |
278 | << Info.getConstraintStr(); |
279 | return new (Context) |
280 | GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, |
281 | NumInputs, Names, Constraints, Exprs.data(), AsmString, |
282 | NumClobbers, Clobbers, NumLabels, RParenLoc); |
283 | } |
284 | |
285 | ExprResult ER = CheckPlaceholderExpr(E: Exprs[i]); |
286 | if (ER.isInvalid()) |
287 | return StmtError(); |
288 | Exprs[i] = ER.get(); |
289 | |
290 | // Check that the output exprs are valid lvalues. |
291 | Expr *OutputExpr = Exprs[i]; |
292 | |
293 | // Referring to parameters is not allowed in naked functions. |
294 | if (CheckNakedParmReference(E: OutputExpr, S&: *this)) |
295 | return StmtError(); |
296 | |
297 | // Check that the output expression is compatible with memory constraint. |
298 | if (Info.allowsMemory() && |
299 | checkExprMemoryConstraintCompat(S&: *this, E: OutputExpr, Info, is_input_expr: false)) |
300 | return StmtError(); |
301 | |
302 | // Disallow bit-precise integer types, since the backends tend to have |
303 | // difficulties with abnormal sizes. |
304 | if (OutputExpr->getType()->isBitIntType()) |
305 | return StmtError( |
306 | Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type) |
307 | << OutputExpr->getType() << 0 /*Input*/ |
308 | << OutputExpr->getSourceRange()); |
309 | |
310 | OutputConstraintInfos.push_back(Elt: Info); |
311 | |
312 | // If this is dependent, just continue. |
313 | if (OutputExpr->isTypeDependent()) |
314 | continue; |
315 | |
316 | Expr::isModifiableLvalueResult IsLV = |
317 | OutputExpr->isModifiableLvalue(Ctx&: Context, /*Loc=*/nullptr); |
318 | switch (IsLV) { |
319 | case Expr::MLV_Valid: |
320 | // Cool, this is an lvalue. |
321 | break; |
322 | case Expr::MLV_ArrayType: |
323 | // This is OK too. |
324 | break; |
325 | case Expr::MLV_LValueCast: { |
326 | const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Ctx: Context); |
327 | emitAndFixInvalidAsmCastLValue(LVal, BadArgument: OutputExpr, S&: *this); |
328 | // Accept, even if we emitted an error diagnostic. |
329 | break; |
330 | } |
331 | case Expr::MLV_IncompleteType: |
332 | case Expr::MLV_IncompleteVoidType: |
333 | if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(), |
334 | diag::err_dereference_incomplete_type)) |
335 | return StmtError(); |
336 | [[fallthrough]]; |
337 | default: |
338 | return StmtError(Diag(OutputExpr->getBeginLoc(), |
339 | diag::err_asm_invalid_lvalue_in_output) |
340 | << OutputExpr->getSourceRange()); |
341 | } |
342 | |
343 | unsigned Size = Context.getTypeSize(T: OutputExpr->getType()); |
344 | if (!Context.getTargetInfo().validateOutputSize( |
345 | FeatureMap, Literal->getString(), Size)) { |
346 | targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size) |
347 | << Info.getConstraintStr(); |
348 | return new (Context) |
349 | GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, |
350 | NumInputs, Names, Constraints, Exprs.data(), AsmString, |
351 | NumClobbers, Clobbers, NumLabels, RParenLoc); |
352 | } |
353 | } |
354 | |
355 | SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; |
356 | |
357 | for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { |
358 | StringLiteral *Literal = Constraints[i]; |
359 | assert(Literal->isOrdinary()); |
360 | |
361 | StringRef InputName; |
362 | if (Names[i]) |
363 | InputName = Names[i]->getName(); |
364 | |
365 | TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); |
366 | if (!Context.getTargetInfo().validateInputConstraint(OutputConstraints: OutputConstraintInfos, |
367 | info&: Info)) { |
368 | targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint) |
369 | << Info.getConstraintStr(); |
370 | return new (Context) |
371 | GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, |
372 | NumInputs, Names, Constraints, Exprs.data(), AsmString, |
373 | NumClobbers, Clobbers, NumLabels, RParenLoc); |
374 | } |
375 | |
376 | ExprResult ER = CheckPlaceholderExpr(E: Exprs[i]); |
377 | if (ER.isInvalid()) |
378 | return StmtError(); |
379 | Exprs[i] = ER.get(); |
380 | |
381 | Expr *InputExpr = Exprs[i]; |
382 | |
383 | if (InputExpr->getType()->isMemberPointerType()) |
384 | return StmtError(Diag(InputExpr->getBeginLoc(), |
385 | diag::err_asm_pmf_through_constraint_not_permitted) |
386 | << InputExpr->getSourceRange()); |
387 | |
388 | // Referring to parameters is not allowed in naked functions. |
389 | if (CheckNakedParmReference(E: InputExpr, S&: *this)) |
390 | return StmtError(); |
391 | |
392 | // Check that the input expression is compatible with memory constraint. |
393 | if (Info.allowsMemory() && |
394 | checkExprMemoryConstraintCompat(S&: *this, E: InputExpr, Info, is_input_expr: true)) |
395 | return StmtError(); |
396 | |
397 | // Only allow void types for memory constraints. |
398 | if (Info.allowsMemory() && !Info.allowsRegister()) { |
399 | if (CheckAsmLValue(InputExpr, *this)) |
400 | return StmtError(Diag(InputExpr->getBeginLoc(), |
401 | diag::err_asm_invalid_lvalue_in_input) |
402 | << Info.getConstraintStr() |
403 | << InputExpr->getSourceRange()); |
404 | } else { |
405 | ExprResult Result = DefaultFunctionArrayLvalueConversion(E: Exprs[i]); |
406 | if (Result.isInvalid()) |
407 | return StmtError(); |
408 | |
409 | InputExpr = Exprs[i] = Result.get(); |
410 | |
411 | if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { |
412 | if (!InputExpr->isValueDependent()) { |
413 | Expr::EvalResult EVResult; |
414 | if (InputExpr->EvaluateAsRValue(Result&: EVResult, Ctx: Context, InConstantContext: true)) { |
415 | // For compatibility with GCC, we also allow pointers that would be |
416 | // integral constant expressions if they were cast to int. |
417 | llvm::APSInt IntResult; |
418 | if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), |
419 | Context)) |
420 | if (!Info.isValidAsmImmediate(IntResult)) |
421 | return StmtError( |
422 | Diag(InputExpr->getBeginLoc(), |
423 | diag::err_invalid_asm_value_for_constraint) |
424 | << toString(IntResult, 10) << Info.getConstraintStr() |
425 | << InputExpr->getSourceRange()); |
426 | } |
427 | } |
428 | } |
429 | } |
430 | |
431 | if (Info.allowsRegister()) { |
432 | if (InputExpr->getType()->isVoidType()) { |
433 | return StmtError( |
434 | Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input) |
435 | << InputExpr->getType() << Info.getConstraintStr() |
436 | << InputExpr->getSourceRange()); |
437 | } |
438 | } |
439 | |
440 | if (InputExpr->getType()->isBitIntType()) |
441 | return StmtError( |
442 | Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type) |
443 | << InputExpr->getType() << 1 /*Output*/ |
444 | << InputExpr->getSourceRange()); |
445 | |
446 | InputConstraintInfos.push_back(Elt: Info); |
447 | |
448 | const Type *Ty = Exprs[i]->getType().getTypePtr(); |
449 | if (Ty->isDependentType()) |
450 | continue; |
451 | |
452 | if (!Ty->isVoidType() || !Info.allowsMemory()) |
453 | if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(), |
454 | diag::err_dereference_incomplete_type)) |
455 | return StmtError(); |
456 | |
457 | unsigned Size = Context.getTypeSize(T: Ty); |
458 | if (!Context.getTargetInfo().validateInputSize(FeatureMap, |
459 | Literal->getString(), Size)) |
460 | return targetDiag(InputExpr->getBeginLoc(), |
461 | diag::err_asm_invalid_input_size) |
462 | << Info.getConstraintStr(); |
463 | } |
464 | |
465 | std::optional<SourceLocation> UnwindClobberLoc; |
466 | |
467 | // Check that the clobbers are valid. |
468 | for (unsigned i = 0; i != NumClobbers; i++) { |
469 | StringLiteral *Literal = Clobbers[i]; |
470 | assert(Literal->isOrdinary()); |
471 | |
472 | StringRef Clobber = Literal->getString(); |
473 | |
474 | if (!Context.getTargetInfo().isValidClobber(Name: Clobber)) { |
475 | targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name) |
476 | << Clobber; |
477 | return new (Context) |
478 | GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, |
479 | NumInputs, Names, Constraints, Exprs.data(), AsmString, |
480 | NumClobbers, Clobbers, NumLabels, RParenLoc); |
481 | } |
482 | |
483 | if (Clobber == "unwind" ) { |
484 | UnwindClobberLoc = Literal->getBeginLoc(); |
485 | } |
486 | } |
487 | |
488 | // Using unwind clobber and asm-goto together is not supported right now. |
489 | if (UnwindClobberLoc && NumLabels > 0) { |
490 | targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto); |
491 | return new (Context) |
492 | GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, |
493 | Names, Constraints, Exprs.data(), AsmString, NumClobbers, |
494 | Clobbers, NumLabels, RParenLoc); |
495 | } |
496 | |
497 | GCCAsmStmt *NS = |
498 | new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, |
499 | NumInputs, Names, Constraints, Exprs.data(), |
500 | AsmString, NumClobbers, Clobbers, NumLabels, |
501 | RParenLoc); |
502 | // Validate the asm string, ensuring it makes sense given the operands we |
503 | // have. |
504 | SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; |
505 | unsigned DiagOffs; |
506 | if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, C: Context, DiagOffs)) { |
507 | targetDiag(Loc: getLocationOfStringLiteralByte(SL: AsmString, ByteNo: DiagOffs), DiagID) |
508 | << AsmString->getSourceRange(); |
509 | return NS; |
510 | } |
511 | |
512 | // Validate constraints and modifiers. |
513 | for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { |
514 | GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; |
515 | if (!Piece.isOperand()) continue; |
516 | |
517 | // Look for the correct constraint index. |
518 | unsigned ConstraintIdx = Piece.getOperandNo(); |
519 | unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); |
520 | // Labels are the last in the Exprs list. |
521 | if (NS->isAsmGoto() && ConstraintIdx >= NumOperands) |
522 | continue; |
523 | // Look for the (ConstraintIdx - NumOperands + 1)th constraint with |
524 | // modifier '+'. |
525 | if (ConstraintIdx >= NumOperands) { |
526 | unsigned I = 0, E = NS->getNumOutputs(); |
527 | |
528 | for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) |
529 | if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { |
530 | ConstraintIdx = I; |
531 | break; |
532 | } |
533 | |
534 | assert(I != E && "Invalid operand number should have been caught in " |
535 | " AnalyzeAsmString" ); |
536 | } |
537 | |
538 | // Now that we have the right indexes go ahead and check. |
539 | StringLiteral *Literal = Constraints[ConstraintIdx]; |
540 | const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); |
541 | if (Ty->isDependentType() || Ty->isIncompleteType()) |
542 | continue; |
543 | |
544 | unsigned Size = Context.getTypeSize(T: Ty); |
545 | std::string SuggestedModifier; |
546 | if (!Context.getTargetInfo().validateConstraintModifier( |
547 | Literal->getString(), Piece.getModifier(), Size, |
548 | SuggestedModifier)) { |
549 | targetDiag(Exprs[ConstraintIdx]->getBeginLoc(), |
550 | diag::warn_asm_mismatched_size_modifier); |
551 | |
552 | if (!SuggestedModifier.empty()) { |
553 | auto B = targetDiag(Piece.getRange().getBegin(), |
554 | diag::note_asm_missing_constraint_modifier) |
555 | << SuggestedModifier; |
556 | SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); |
557 | B << FixItHint::CreateReplacement(RemoveRange: Piece.getRange(), Code: SuggestedModifier); |
558 | } |
559 | } |
560 | } |
561 | |
562 | // Validate tied input operands for type mismatches. |
563 | unsigned NumAlternatives = ~0U; |
564 | for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { |
565 | TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; |
566 | StringRef ConstraintStr = Info.getConstraintStr(); |
567 | unsigned AltCount = ConstraintStr.count(C: ',') + 1; |
568 | if (NumAlternatives == ~0U) { |
569 | NumAlternatives = AltCount; |
570 | } else if (NumAlternatives != AltCount) { |
571 | targetDiag(NS->getOutputExpr(i)->getBeginLoc(), |
572 | diag::err_asm_unexpected_constraint_alternatives) |
573 | << NumAlternatives << AltCount; |
574 | return NS; |
575 | } |
576 | } |
577 | SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(), |
578 | ~0U); |
579 | for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { |
580 | TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; |
581 | StringRef ConstraintStr = Info.getConstraintStr(); |
582 | unsigned AltCount = ConstraintStr.count(C: ',') + 1; |
583 | if (NumAlternatives == ~0U) { |
584 | NumAlternatives = AltCount; |
585 | } else if (NumAlternatives != AltCount) { |
586 | targetDiag(NS->getInputExpr(i)->getBeginLoc(), |
587 | diag::err_asm_unexpected_constraint_alternatives) |
588 | << NumAlternatives << AltCount; |
589 | return NS; |
590 | } |
591 | |
592 | // If this is a tied constraint, verify that the output and input have |
593 | // either exactly the same type, or that they are int/ptr operands with the |
594 | // same size (int/long, int*/long, are ok etc). |
595 | if (!Info.hasTiedOperand()) continue; |
596 | |
597 | unsigned TiedTo = Info.getTiedOperand(); |
598 | unsigned InputOpNo = i+NumOutputs; |
599 | Expr *OutputExpr = Exprs[TiedTo]; |
600 | Expr *InputExpr = Exprs[InputOpNo]; |
601 | |
602 | // Make sure no more than one input constraint matches each output. |
603 | assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range" ); |
604 | if (InputMatchedToOutput[TiedTo] != ~0U) { |
605 | targetDiag(NS->getInputExpr(i)->getBeginLoc(), |
606 | diag::err_asm_input_duplicate_match) |
607 | << TiedTo; |
608 | targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(), |
609 | diag::note_asm_input_duplicate_first) |
610 | << TiedTo; |
611 | return NS; |
612 | } |
613 | InputMatchedToOutput[TiedTo] = i; |
614 | |
615 | if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) |
616 | continue; |
617 | |
618 | QualType InTy = InputExpr->getType(); |
619 | QualType OutTy = OutputExpr->getType(); |
620 | if (Context.hasSameType(T1: InTy, T2: OutTy)) |
621 | continue; // All types can be tied to themselves. |
622 | |
623 | // Decide if the input and output are in the same domain (integer/ptr or |
624 | // floating point. |
625 | enum AsmDomain { |
626 | AD_Int, AD_FP, AD_Other |
627 | } InputDomain, OutputDomain; |
628 | |
629 | if (InTy->isIntegerType() || InTy->isPointerType()) |
630 | InputDomain = AD_Int; |
631 | else if (InTy->isRealFloatingType()) |
632 | InputDomain = AD_FP; |
633 | else |
634 | InputDomain = AD_Other; |
635 | |
636 | if (OutTy->isIntegerType() || OutTy->isPointerType()) |
637 | OutputDomain = AD_Int; |
638 | else if (OutTy->isRealFloatingType()) |
639 | OutputDomain = AD_FP; |
640 | else |
641 | OutputDomain = AD_Other; |
642 | |
643 | // They are ok if they are the same size and in the same domain. This |
644 | // allows tying things like: |
645 | // void* to int* |
646 | // void* to int if they are the same size. |
647 | // double to long double if they are the same size. |
648 | // |
649 | uint64_t OutSize = Context.getTypeSize(T: OutTy); |
650 | uint64_t InSize = Context.getTypeSize(T: InTy); |
651 | if (OutSize == InSize && InputDomain == OutputDomain && |
652 | InputDomain != AD_Other) |
653 | continue; |
654 | |
655 | // If the smaller input/output operand is not mentioned in the asm string, |
656 | // then we can promote the smaller one to a larger input and the asm string |
657 | // won't notice. |
658 | bool SmallerValueMentioned = false; |
659 | |
660 | // If this is a reference to the input and if the input was the smaller |
661 | // one, then we have to reject this asm. |
662 | if (isOperandMentioned(OpNo: InputOpNo, AsmStrPieces: Pieces)) { |
663 | // This is a use in the asm string of the smaller operand. Since we |
664 | // codegen this by promoting to a wider value, the asm will get printed |
665 | // "wrong". |
666 | SmallerValueMentioned |= InSize < OutSize; |
667 | } |
668 | if (isOperandMentioned(OpNo: TiedTo, AsmStrPieces: Pieces)) { |
669 | // If this is a reference to the output, and if the output is the larger |
670 | // value, then it's ok because we'll promote the input to the larger type. |
671 | SmallerValueMentioned |= OutSize < InSize; |
672 | } |
673 | |
674 | // If the smaller value wasn't mentioned in the asm string, and if the |
675 | // output was a register, just extend the shorter one to the size of the |
676 | // larger one. |
677 | if (!SmallerValueMentioned && InputDomain != AD_Other && |
678 | OutputConstraintInfos[TiedTo].allowsRegister()) { |
679 | // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen |
680 | // crash when the size larger than the register size. So we limit it here. |
681 | if (OutTy->isStructureType() && |
682 | Context.getIntTypeForBitwidth(DestWidth: OutSize, /*Signed*/ false).isNull()) { |
683 | targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg); |
684 | return NS; |
685 | } |
686 | |
687 | continue; |
688 | } |
689 | |
690 | // Either both of the operands were mentioned or the smaller one was |
691 | // mentioned. One more special case that we'll allow: if the tied input is |
692 | // integer, unmentioned, and is a constant, then we'll allow truncating it |
693 | // down to the size of the destination. |
694 | if (InputDomain == AD_Int && OutputDomain == AD_Int && |
695 | !isOperandMentioned(OpNo: InputOpNo, AsmStrPieces: Pieces) && |
696 | InputExpr->isEvaluatable(Ctx: Context)) { |
697 | CastKind castKind = |
698 | (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); |
699 | InputExpr = ImpCastExprToType(E: InputExpr, Type: OutTy, CK: castKind).get(); |
700 | Exprs[InputOpNo] = InputExpr; |
701 | NS->setInputExpr(i, E: InputExpr); |
702 | continue; |
703 | } |
704 | |
705 | targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types) |
706 | << InTy << OutTy << OutputExpr->getSourceRange() |
707 | << InputExpr->getSourceRange(); |
708 | return NS; |
709 | } |
710 | |
711 | // Check for conflicts between clobber list and input or output lists |
712 | SourceLocation ConstraintLoc = |
713 | getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers, |
714 | NumLabels, |
715 | Target: Context.getTargetInfo(), Cont&: Context); |
716 | if (ConstraintLoc.isValid()) |
717 | targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber); |
718 | |
719 | // Check for duplicate asm operand name between input, output and label lists. |
720 | typedef std::pair<StringRef , Expr *> NamedOperand; |
721 | SmallVector<NamedOperand, 4> NamedOperandList; |
722 | for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i) |
723 | if (Names[i]) |
724 | NamedOperandList.emplace_back( |
725 | Args: std::make_pair(x: Names[i]->getName(), y&: Exprs[i])); |
726 | // Sort NamedOperandList. |
727 | llvm::stable_sort(Range&: NamedOperandList, C: llvm::less_first()); |
728 | // Find adjacent duplicate operand. |
729 | SmallVector<NamedOperand, 4>::iterator Found = |
730 | std::adjacent_find(first: begin(cont&: NamedOperandList), last: end(cont&: NamedOperandList), |
731 | binary_pred: [](const NamedOperand &LHS, const NamedOperand &RHS) { |
732 | return LHS.first == RHS.first; |
733 | }); |
734 | if (Found != NamedOperandList.end()) { |
735 | Diag((Found + 1)->second->getBeginLoc(), |
736 | diag::error_duplicate_asm_operand_name) |
737 | << (Found + 1)->first; |
738 | Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name) |
739 | << Found->first; |
740 | return StmtError(); |
741 | } |
742 | if (NS->isAsmGoto()) |
743 | setFunctionHasBranchIntoScope(); |
744 | |
745 | CleanupVarDeclMarking(); |
746 | DiscardCleanupsInEvaluationContext(); |
747 | return NS; |
748 | } |
749 | |
750 | void Sema::FillInlineAsmIdentifierInfo(Expr *Res, |
751 | llvm::InlineAsmIdentifierInfo &Info) { |
752 | QualType T = Res->getType(); |
753 | Expr::EvalResult Eval; |
754 | if (T->isFunctionType() || T->isDependentType()) |
755 | return Info.setLabel(Res); |
756 | if (Res->isPRValue()) { |
757 | bool IsEnum = isa<clang::EnumType>(Val: T); |
758 | if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Val: Res)) |
759 | if (DRE->getDecl()->getKind() == Decl::EnumConstant) |
760 | IsEnum = true; |
761 | if (IsEnum && Res->EvaluateAsRValue(Result&: Eval, Ctx: Context)) |
762 | return Info.setEnum(Eval.Val.getInt().getSExtValue()); |
763 | |
764 | return Info.setLabel(Res); |
765 | } |
766 | unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); |
767 | unsigned Type = Size; |
768 | if (const auto *ATy = Context.getAsArrayType(T)) |
769 | Type = Context.getTypeSizeInChars(T: ATy->getElementType()).getQuantity(); |
770 | bool IsGlobalLV = false; |
771 | if (Res->EvaluateAsLValue(Result&: Eval, Ctx: Context)) |
772 | IsGlobalLV = Eval.isGlobalLValue(); |
773 | Info.setVar(decl: Res, isGlobalLV: IsGlobalLV, size: Size, type: Type); |
774 | } |
775 | |
776 | ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, |
777 | SourceLocation TemplateKWLoc, |
778 | UnqualifiedId &Id, |
779 | bool IsUnevaluatedContext) { |
780 | |
781 | if (IsUnevaluatedContext) |
782 | PushExpressionEvaluationContext( |
783 | NewContext: ExpressionEvaluationContext::UnevaluatedAbstract, |
784 | ReuseLambdaContextDecl); |
785 | |
786 | ExprResult Result = ActOnIdExpression(S: getCurScope(), SS, TemplateKWLoc, Id, |
787 | /*trailing lparen*/ HasTrailingLParen: false, |
788 | /*is & operand*/ IsAddressOfOperand: false, |
789 | /*CorrectionCandidateCallback=*/CCC: nullptr, |
790 | /*IsInlineAsmIdentifier=*/ true); |
791 | |
792 | if (IsUnevaluatedContext) |
793 | PopExpressionEvaluationContext(); |
794 | |
795 | if (!Result.isUsable()) return Result; |
796 | |
797 | Result = CheckPlaceholderExpr(E: Result.get()); |
798 | if (!Result.isUsable()) return Result; |
799 | |
800 | // Referring to parameters is not allowed in naked functions. |
801 | if (CheckNakedParmReference(E: Result.get(), S&: *this)) |
802 | return ExprError(); |
803 | |
804 | QualType T = Result.get()->getType(); |
805 | |
806 | if (T->isDependentType()) { |
807 | return Result; |
808 | } |
809 | |
810 | // Any sort of function type is fine. |
811 | if (T->isFunctionType()) { |
812 | return Result; |
813 | } |
814 | |
815 | // Otherwise, it needs to be a complete type. |
816 | if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { |
817 | return ExprError(); |
818 | } |
819 | |
820 | return Result; |
821 | } |
822 | |
823 | bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, |
824 | unsigned &Offset, SourceLocation AsmLoc) { |
825 | Offset = 0; |
826 | SmallVector<StringRef, 2> Members; |
827 | Member.split(A&: Members, Separator: "." ); |
828 | |
829 | NamedDecl *FoundDecl = nullptr; |
830 | |
831 | // MS InlineAsm uses 'this' as a base |
832 | if (getLangOpts().CPlusPlus && Base.equals(RHS: "this" )) { |
833 | if (const Type *PT = getCurrentThisType().getTypePtrOrNull()) |
834 | FoundDecl = PT->getPointeeType()->getAsTagDecl(); |
835 | } else { |
836 | LookupResult BaseResult(*this, &Context.Idents.get(Name: Base), SourceLocation(), |
837 | LookupOrdinaryName); |
838 | if (LookupName(R&: BaseResult, S: getCurScope()) && BaseResult.isSingleResult()) |
839 | FoundDecl = BaseResult.getFoundDecl(); |
840 | } |
841 | |
842 | if (!FoundDecl) |
843 | return true; |
844 | |
845 | for (StringRef NextMember : Members) { |
846 | const RecordType *RT = nullptr; |
847 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: FoundDecl)) |
848 | RT = VD->getType()->getAs<RecordType>(); |
849 | else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(Val: FoundDecl)) { |
850 | MarkAnyDeclReferenced(Loc: TD->getLocation(), D: TD, /*OdrUse=*/MightBeOdrUse: false); |
851 | // MS InlineAsm often uses struct pointer aliases as a base |
852 | QualType QT = TD->getUnderlyingType(); |
853 | if (const auto *PT = QT->getAs<PointerType>()) |
854 | QT = PT->getPointeeType(); |
855 | RT = QT->getAs<RecordType>(); |
856 | } else if (TypeDecl *TD = dyn_cast<TypeDecl>(Val: FoundDecl)) |
857 | RT = TD->getTypeForDecl()->getAs<RecordType>(); |
858 | else if (FieldDecl *TD = dyn_cast<FieldDecl>(Val: FoundDecl)) |
859 | RT = TD->getType()->getAs<RecordType>(); |
860 | if (!RT) |
861 | return true; |
862 | |
863 | if (RequireCompleteType(AsmLoc, QualType(RT, 0), |
864 | diag::err_asm_incomplete_type)) |
865 | return true; |
866 | |
867 | LookupResult FieldResult(*this, &Context.Idents.get(Name: NextMember), |
868 | SourceLocation(), LookupMemberName); |
869 | |
870 | if (!LookupQualifiedName(FieldResult, RT->getDecl())) |
871 | return true; |
872 | |
873 | if (!FieldResult.isSingleResult()) |
874 | return true; |
875 | FoundDecl = FieldResult.getFoundDecl(); |
876 | |
877 | // FIXME: Handle IndirectFieldDecl? |
878 | FieldDecl *FD = dyn_cast<FieldDecl>(Val: FoundDecl); |
879 | if (!FD) |
880 | return true; |
881 | |
882 | const ASTRecordLayout &RL = Context.getASTRecordLayout(D: RT->getDecl()); |
883 | unsigned i = FD->getFieldIndex(); |
884 | CharUnits Result = Context.toCharUnitsFromBits(BitSize: RL.getFieldOffset(FieldNo: i)); |
885 | Offset += (unsigned)Result.getQuantity(); |
886 | } |
887 | |
888 | return false; |
889 | } |
890 | |
891 | ExprResult |
892 | Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, |
893 | SourceLocation AsmLoc) { |
894 | |
895 | QualType T = E->getType(); |
896 | if (T->isDependentType()) { |
897 | DeclarationNameInfo NameInfo; |
898 | NameInfo.setLoc(AsmLoc); |
899 | NameInfo.setName(&Context.Idents.get(Name: Member)); |
900 | return CXXDependentScopeMemberExpr::Create( |
901 | Ctx: Context, Base: E, BaseType: T, /*IsArrow=*/false, OperatorLoc: AsmLoc, QualifierLoc: NestedNameSpecifierLoc(), |
902 | TemplateKWLoc: SourceLocation(), |
903 | /*FirstQualifierFoundInScope=*/nullptr, MemberNameInfo: NameInfo, /*TemplateArgs=*/nullptr); |
904 | } |
905 | |
906 | const RecordType *RT = T->getAs<RecordType>(); |
907 | // FIXME: Diagnose this as field access into a scalar type. |
908 | if (!RT) |
909 | return ExprResult(); |
910 | |
911 | LookupResult FieldResult(*this, &Context.Idents.get(Name: Member), AsmLoc, |
912 | LookupMemberName); |
913 | |
914 | if (!LookupQualifiedName(FieldResult, RT->getDecl())) |
915 | return ExprResult(); |
916 | |
917 | // Only normal and indirect field results will work. |
918 | ValueDecl *FD = dyn_cast<FieldDecl>(Val: FieldResult.getFoundDecl()); |
919 | if (!FD) |
920 | FD = dyn_cast<IndirectFieldDecl>(Val: FieldResult.getFoundDecl()); |
921 | if (!FD) |
922 | return ExprResult(); |
923 | |
924 | // Make an Expr to thread through OpDecl. |
925 | ExprResult Result = BuildMemberReferenceExpr( |
926 | Base: E, BaseType: E->getType(), OpLoc: AsmLoc, /*IsArrow=*/false, SS: CXXScopeSpec(), |
927 | TemplateKWLoc: SourceLocation(), FirstQualifierInScope: nullptr, R&: FieldResult, TemplateArgs: nullptr, S: nullptr); |
928 | |
929 | return Result; |
930 | } |
931 | |
932 | StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, |
933 | ArrayRef<Token> AsmToks, |
934 | StringRef AsmString, |
935 | unsigned NumOutputs, unsigned NumInputs, |
936 | ArrayRef<StringRef> Constraints, |
937 | ArrayRef<StringRef> Clobbers, |
938 | ArrayRef<Expr*> Exprs, |
939 | SourceLocation EndLoc) { |
940 | bool IsSimple = (NumOutputs != 0 || NumInputs != 0); |
941 | setFunctionHasBranchProtectedScope(); |
942 | |
943 | bool InvalidOperand = false; |
944 | for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) { |
945 | Expr *E = Exprs[I]; |
946 | if (E->getType()->isBitIntType()) { |
947 | InvalidOperand = true; |
948 | Diag(E->getBeginLoc(), diag::err_asm_invalid_type) |
949 | << E->getType() << (I < NumOutputs) |
950 | << E->getSourceRange(); |
951 | } else if (E->refersToBitField()) { |
952 | InvalidOperand = true; |
953 | FieldDecl *BitField = E->getSourceBitField(); |
954 | Diag(E->getBeginLoc(), diag::err_ms_asm_bitfield_unsupported) |
955 | << E->getSourceRange(); |
956 | Diag(BitField->getLocation(), diag::note_bitfield_decl); |
957 | } |
958 | } |
959 | if (InvalidOperand) |
960 | return StmtError(); |
961 | |
962 | MSAsmStmt *NS = |
963 | new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, |
964 | /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, |
965 | Constraints, Exprs, AsmString, |
966 | Clobbers, EndLoc); |
967 | return NS; |
968 | } |
969 | |
970 | LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, |
971 | SourceLocation Location, |
972 | bool AlwaysCreate) { |
973 | LabelDecl* Label = LookupOrCreateLabel(II: PP.getIdentifierInfo(Name: ExternalLabelName), |
974 | IdentLoc: Location); |
975 | |
976 | if (Label->isMSAsmLabel()) { |
977 | // If we have previously created this label implicitly, mark it as used. |
978 | Label->markUsed(Context); |
979 | } else { |
980 | // Otherwise, insert it, but only resolve it if we have seen the label itself. |
981 | std::string InternalName; |
982 | llvm::raw_string_ostream OS(InternalName); |
983 | // Create an internal name for the label. The name should not be a valid |
984 | // mangled name, and should be unique. We use a dot to make the name an |
985 | // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a |
986 | // unique label is generated each time this blob is emitted, even after |
987 | // inlining or LTO. |
988 | OS << "__MSASMLABEL_.${:uid}__" ; |
989 | for (char C : ExternalLabelName) { |
990 | OS << C; |
991 | // We escape '$' in asm strings by replacing it with "$$" |
992 | if (C == '$') |
993 | OS << '$'; |
994 | } |
995 | Label->setMSAsmLabel(OS.str()); |
996 | } |
997 | if (AlwaysCreate) { |
998 | // The label might have been created implicitly from a previously encountered |
999 | // goto statement. So, for both newly created and looked up labels, we mark |
1000 | // them as resolved. |
1001 | Label->setMSAsmLabelResolved(); |
1002 | } |
1003 | // Adjust their location for being able to generate accurate diagnostics. |
1004 | Label->setLocation(Location); |
1005 | |
1006 | return Label; |
1007 | } |
1008 | |