1 | //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | #include "clang/Tooling/Syntax/BuildTree.h" |
9 | #include "clang/AST/ASTFwd.h" |
10 | #include "clang/AST/Decl.h" |
11 | #include "clang/AST/DeclBase.h" |
12 | #include "clang/AST/DeclCXX.h" |
13 | #include "clang/AST/DeclarationName.h" |
14 | #include "clang/AST/Expr.h" |
15 | #include "clang/AST/ExprCXX.h" |
16 | #include "clang/AST/IgnoreExpr.h" |
17 | #include "clang/AST/OperationKinds.h" |
18 | #include "clang/AST/RecursiveASTVisitor.h" |
19 | #include "clang/AST/Stmt.h" |
20 | #include "clang/AST/TypeLoc.h" |
21 | #include "clang/AST/TypeLocVisitor.h" |
22 | #include "clang/Basic/LLVM.h" |
23 | #include "clang/Basic/SourceLocation.h" |
24 | #include "clang/Basic/SourceManager.h" |
25 | #include "clang/Basic/TokenKinds.h" |
26 | #include "clang/Lex/Lexer.h" |
27 | #include "clang/Lex/LiteralSupport.h" |
28 | #include "clang/Tooling/Syntax/Nodes.h" |
29 | #include "clang/Tooling/Syntax/TokenBufferTokenManager.h" |
30 | #include "clang/Tooling/Syntax/Tokens.h" |
31 | #include "clang/Tooling/Syntax/Tree.h" |
32 | #include "llvm/ADT/ArrayRef.h" |
33 | #include "llvm/ADT/DenseMap.h" |
34 | #include "llvm/ADT/PointerUnion.h" |
35 | #include "llvm/ADT/STLExtras.h" |
36 | #include "llvm/ADT/SmallVector.h" |
37 | #include "llvm/Support/Allocator.h" |
38 | #include "llvm/Support/Compiler.h" |
39 | #include "llvm/Support/FormatVariadic.h" |
40 | #include <map> |
41 | |
42 | using namespace clang; |
43 | |
44 | // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls |
45 | // generated by the compiler, as well as in implicit conversions like the one |
46 | // wrapping `1` in `X x = 1;`. |
47 | static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) { |
48 | if (auto *C = dyn_cast<CXXConstructExpr>(Val: E)) { |
49 | auto NumArgs = C->getNumArgs(); |
50 | if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(Val: C->getArg(Arg: 1)))) { |
51 | Expr *A = C->getArg(Arg: 0); |
52 | if (C->getParenOrBraceRange().isInvalid()) |
53 | return A; |
54 | } |
55 | } |
56 | return E; |
57 | } |
58 | |
59 | // In: |
60 | // struct X { |
61 | // X(int) |
62 | // }; |
63 | // X x = X(1); |
64 | // Ignores the implicit `CXXFunctionalCastExpr` that wraps |
65 | // `CXXConstructExpr X(1)`. |
66 | static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) { |
67 | if (auto *F = dyn_cast<CXXFunctionalCastExpr>(Val: E)) { |
68 | if (F->getCastKind() == CK_ConstructorConversion) |
69 | return F->getSubExpr(); |
70 | } |
71 | return E; |
72 | } |
73 | |
74 | static Expr *IgnoreImplicit(Expr *E) { |
75 | return IgnoreExprNodes(E, Fns&: IgnoreImplicitSingleStep, |
76 | Fns&: IgnoreImplicitConstructorSingleStep, |
77 | Fns&: IgnoreCXXFunctionalCastExprWrappingConstructor); |
78 | } |
79 | |
80 | LLVM_ATTRIBUTE_UNUSED |
81 | static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; } |
82 | |
83 | namespace { |
84 | /// Get start location of the Declarator from the TypeLoc. |
85 | /// E.g.: |
86 | /// loc of `(` in `int (a)` |
87 | /// loc of `*` in `int *(a)` |
88 | /// loc of the first `(` in `int (*a)(int)` |
89 | /// loc of the `*` in `int *(a)(int)` |
90 | /// loc of the first `*` in `const int *const *volatile a;` |
91 | /// |
92 | /// It is non-trivial to get the start location because TypeLocs are stored |
93 | /// inside out. In the example above `*volatile` is the TypeLoc returned |
94 | /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()` |
95 | /// returns. |
96 | struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> { |
97 | SourceLocation VisitParenTypeLoc(ParenTypeLoc T) { |
98 | auto L = Visit(TyLoc: T.getInnerLoc()); |
99 | if (L.isValid()) |
100 | return L; |
101 | return T.getLParenLoc(); |
102 | } |
103 | |
104 | // Types spelled in the prefix part of the declarator. |
105 | SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) { |
106 | return HandlePointer(T); |
107 | } |
108 | |
109 | SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) { |
110 | return HandlePointer(T); |
111 | } |
112 | |
113 | SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) { |
114 | return HandlePointer(T); |
115 | } |
116 | |
117 | SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) { |
118 | return HandlePointer(T); |
119 | } |
120 | |
121 | SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) { |
122 | return HandlePointer(T); |
123 | } |
124 | |
125 | // All other cases are not important, as they are either part of declaration |
126 | // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on |
127 | // existing declarators (e.g. QualifiedTypeLoc). They cannot start the |
128 | // declarator themselves, but their underlying type can. |
129 | SourceLocation VisitTypeLoc(TypeLoc T) { |
130 | auto N = T.getNextTypeLoc(); |
131 | if (!N) |
132 | return SourceLocation(); |
133 | return Visit(TyLoc: N); |
134 | } |
135 | |
136 | SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) { |
137 | if (T.getTypePtr()->hasTrailingReturn()) |
138 | return SourceLocation(); // avoid recursing into the suffix of declarator. |
139 | return VisitTypeLoc(T); |
140 | } |
141 | |
142 | private: |
143 | template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) { |
144 | auto L = Visit(T.getPointeeLoc()); |
145 | if (L.isValid()) |
146 | return L; |
147 | return T.getLocalSourceRange().getBegin(); |
148 | } |
149 | }; |
150 | } // namespace |
151 | |
152 | static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) { |
153 | auto FirstDefaultArg = |
154 | llvm::find_if(Range&: Args, P: [](auto It) { return isa<CXXDefaultArgExpr>(It); }); |
155 | return llvm::make_range(x: Args.begin(), y: FirstDefaultArg); |
156 | } |
157 | |
158 | static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) { |
159 | switch (E.getOperator()) { |
160 | // Comparison |
161 | case OO_EqualEqual: |
162 | case OO_ExclaimEqual: |
163 | case OO_Greater: |
164 | case OO_GreaterEqual: |
165 | case OO_Less: |
166 | case OO_LessEqual: |
167 | case OO_Spaceship: |
168 | // Assignment |
169 | case OO_Equal: |
170 | case OO_SlashEqual: |
171 | case OO_PercentEqual: |
172 | case OO_CaretEqual: |
173 | case OO_PipeEqual: |
174 | case OO_LessLessEqual: |
175 | case OO_GreaterGreaterEqual: |
176 | case OO_PlusEqual: |
177 | case OO_MinusEqual: |
178 | case OO_StarEqual: |
179 | case OO_AmpEqual: |
180 | // Binary computation |
181 | case OO_Slash: |
182 | case OO_Percent: |
183 | case OO_Caret: |
184 | case OO_Pipe: |
185 | case OO_LessLess: |
186 | case OO_GreaterGreater: |
187 | case OO_AmpAmp: |
188 | case OO_PipePipe: |
189 | case OO_ArrowStar: |
190 | case OO_Comma: |
191 | return syntax::NodeKind::BinaryOperatorExpression; |
192 | case OO_Tilde: |
193 | case OO_Exclaim: |
194 | return syntax::NodeKind::PrefixUnaryOperatorExpression; |
195 | // Prefix/Postfix increment/decrement |
196 | case OO_PlusPlus: |
197 | case OO_MinusMinus: |
198 | switch (E.getNumArgs()) { |
199 | case 1: |
200 | return syntax::NodeKind::PrefixUnaryOperatorExpression; |
201 | case 2: |
202 | return syntax::NodeKind::PostfixUnaryOperatorExpression; |
203 | default: |
204 | llvm_unreachable("Invalid number of arguments for operator"); |
205 | } |
206 | // Operators that can be unary or binary |
207 | case OO_Plus: |
208 | case OO_Minus: |
209 | case OO_Star: |
210 | case OO_Amp: |
211 | switch (E.getNumArgs()) { |
212 | case 1: |
213 | return syntax::NodeKind::PrefixUnaryOperatorExpression; |
214 | case 2: |
215 | return syntax::NodeKind::BinaryOperatorExpression; |
216 | default: |
217 | llvm_unreachable("Invalid number of arguments for operator"); |
218 | } |
219 | return syntax::NodeKind::BinaryOperatorExpression; |
220 | // Not yet supported by SyntaxTree |
221 | case OO_New: |
222 | case OO_Delete: |
223 | case OO_Array_New: |
224 | case OO_Array_Delete: |
225 | case OO_Coawait: |
226 | case OO_Subscript: |
227 | case OO_Arrow: |
228 | return syntax::NodeKind::UnknownExpression; |
229 | case OO_Call: |
230 | return syntax::NodeKind::CallExpression; |
231 | case OO_Conditional: // not overloadable |
232 | case NUM_OVERLOADED_OPERATORS: |
233 | case OO_None: |
234 | llvm_unreachable("Not an overloadable operator"); |
235 | } |
236 | llvm_unreachable("Unknown OverloadedOperatorKind enum"); |
237 | } |
238 | |
239 | /// Get the start of the qualified name. In the examples below it gives the |
240 | /// location of the `^`: |
241 | /// `int ^a;` |
242 | /// `int *^a;` |
243 | /// `int ^a::S::f(){}` |
244 | static SourceLocation getQualifiedNameStart(NamedDecl *D) { |
245 | assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && |
246 | "only DeclaratorDecl and TypedefNameDecl are supported."); |
247 | |
248 | auto DN = D->getDeclName(); |
249 | bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo(); |
250 | if (IsAnonymous) |
251 | return SourceLocation(); |
252 | |
253 | if (const auto *DD = dyn_cast<DeclaratorDecl>(Val: D)) { |
254 | if (DD->getQualifierLoc()) { |
255 | return DD->getQualifierLoc().getBeginLoc(); |
256 | } |
257 | } |
258 | |
259 | return D->getLocation(); |
260 | } |
261 | |
262 | /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl]. |
263 | /// `int a;` -> range of ``, |
264 | /// `int *a = nullptr` -> range of `= nullptr`. |
265 | /// `int a{}` -> range of `{}`. |
266 | /// `int a()` -> range of `()`. |
267 | static SourceRange getInitializerRange(Decl *D) { |
268 | if (auto *V = dyn_cast<VarDecl>(Val: D)) { |
269 | auto *I = V->getInit(); |
270 | // Initializers in range-based-for are not part of the declarator |
271 | if (I && !V->isCXXForRangeDecl()) |
272 | return I->getSourceRange(); |
273 | } |
274 | |
275 | return SourceRange(); |
276 | } |
277 | |
278 | /// Gets the range of declarator as defined by the C++ grammar. E.g. |
279 | /// `int a;` -> range of `a`, |
280 | /// `int *a;` -> range of `*a`, |
281 | /// `int a[10];` -> range of `a[10]`, |
282 | /// `int a[1][2][3];` -> range of `a[1][2][3]`, |
283 | /// `int *a = nullptr` -> range of `*a = nullptr`. |
284 | /// `int S::f(){}` -> range of `S::f()`. |
285 | /// FIXME: \p Name must be a source range. |
286 | static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T, |
287 | SourceLocation Name, |
288 | SourceRange Initializer) { |
289 | SourceLocation Start = GetStartLoc().Visit(TyLoc: T); |
290 | SourceLocation End = T.getEndLoc(); |
291 | if (Name.isValid()) { |
292 | if (Start.isInvalid()) |
293 | Start = Name; |
294 | // End of TypeLoc could be invalid if the type is invalid, fallback to the |
295 | // NameLoc. |
296 | if (End.isInvalid() || SM.isBeforeInTranslationUnit(LHS: End, RHS: Name)) |
297 | End = Name; |
298 | } |
299 | if (Initializer.isValid()) { |
300 | auto InitializerEnd = Initializer.getEnd(); |
301 | assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || |
302 | End == InitializerEnd); |
303 | End = InitializerEnd; |
304 | } |
305 | return SourceRange(Start, End); |
306 | } |
307 | |
308 | namespace { |
309 | /// All AST hierarchy roots that can be represented as pointers. |
310 | using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>; |
311 | /// Maintains a mapping from AST to syntax tree nodes. This class will get more |
312 | /// complicated as we support more kinds of AST nodes, e.g. TypeLocs. |
313 | /// FIXME: expose this as public API. |
314 | class ASTToSyntaxMapping { |
315 | public: |
316 | void add(ASTPtr From, syntax::Tree *To) { |
317 | assert(To != nullptr); |
318 | assert(!From.isNull()); |
319 | |
320 | bool Added = Nodes.insert(KV: {From, To}).second; |
321 | (void)Added; |
322 | assert(Added && "mapping added twice"); |
323 | } |
324 | |
325 | void add(NestedNameSpecifierLoc From, syntax::Tree *To) { |
326 | assert(To != nullptr); |
327 | assert(From.hasQualifier()); |
328 | |
329 | bool Added = NNSNodes.insert(KV: {From, To}).second; |
330 | (void)Added; |
331 | assert(Added && "mapping added twice"); |
332 | } |
333 | |
334 | syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(Val: P); } |
335 | |
336 | syntax::Tree *find(NestedNameSpecifierLoc P) const { |
337 | return NNSNodes.lookup(Val: P); |
338 | } |
339 | |
340 | private: |
341 | llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes; |
342 | llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes; |
343 | }; |
344 | } // namespace |
345 | |
346 | /// A helper class for constructing the syntax tree while traversing a clang |
347 | /// AST. |
348 | /// |
349 | /// At each point of the traversal we maintain a list of pending nodes. |
350 | /// Initially all tokens are added as pending nodes. When processing a clang AST |
351 | /// node, the clients need to: |
352 | /// - create a corresponding syntax node, |
353 | /// - assign roles to all pending child nodes with 'markChild' and |
354 | /// 'markChildToken', |
355 | /// - replace the child nodes with the new syntax node in the pending list |
356 | /// with 'foldNode'. |
357 | /// |
358 | /// Note that all children are expected to be processed when building a node. |
359 | /// |
360 | /// Call finalize() to finish building the tree and consume the root node. |
361 | class syntax::TreeBuilder { |
362 | public: |
363 | TreeBuilder(syntax::Arena &Arena, TokenBufferTokenManager& TBTM) |
364 | : Arena(Arena), |
365 | TBTM(TBTM), |
366 | Pending(Arena, TBTM.tokenBuffer()) { |
367 | for (const auto &T : TBTM.tokenBuffer().expandedTokens()) |
368 | LocationToToken.insert(KV: {T.location(), &T}); |
369 | } |
370 | |
371 | llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); } |
372 | const SourceManager &sourceManager() const { |
373 | return TBTM.sourceManager(); |
374 | } |
375 | |
376 | /// Populate children for \p New node, assuming it covers tokens from \p |
377 | /// Range. |
378 | void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) { |
379 | assert(New); |
380 | Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: Range, Node: New); |
381 | if (From) |
382 | Mapping.add(From, To: New); |
383 | } |
384 | |
385 | void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) { |
386 | // FIXME: add mapping for TypeLocs |
387 | foldNode(Range, New, From: nullptr); |
388 | } |
389 | |
390 | void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New, |
391 | NestedNameSpecifierLoc From) { |
392 | assert(New); |
393 | Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: Range, Node: New); |
394 | if (From) |
395 | Mapping.add(From, To: New); |
396 | } |
397 | |
398 | /// Populate children for \p New list, assuming it covers tokens from a |
399 | /// subrange of \p SuperRange. |
400 | void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New, |
401 | ASTPtr From) { |
402 | assert(New); |
403 | auto ListRange = Pending.shrinkToFitList(Range: SuperRange); |
404 | Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: ListRange, Node: New); |
405 | if (From) |
406 | Mapping.add(From, To: New); |
407 | } |
408 | |
409 | /// Notifies that we should not consume trailing semicolon when computing |
410 | /// token range of \p D. |
411 | void noticeDeclWithoutSemicolon(Decl *D); |
412 | |
413 | /// Mark the \p Child node with a corresponding \p Role. All marked children |
414 | /// should be consumed by foldNode. |
415 | /// When called on expressions (clang::Expr is derived from clang::Stmt), |
416 | /// wraps expressions into expression statement. |
417 | void markStmtChild(Stmt *Child, NodeRole Role); |
418 | /// Should be called for expressions in non-statement position to avoid |
419 | /// wrapping into expression statement. |
420 | void markExprChild(Expr *Child, NodeRole Role); |
421 | /// Set role for a token starting at \p Loc. |
422 | void markChildToken(SourceLocation Loc, NodeRole R); |
423 | /// Set role for \p T. |
424 | void markChildToken(const syntax::Token *T, NodeRole R); |
425 | |
426 | /// Set role for \p N. |
427 | void markChild(syntax::Node *N, NodeRole R); |
428 | /// Set role for the syntax node matching \p N. |
429 | void markChild(ASTPtr N, NodeRole R); |
430 | /// Set role for the syntax node matching \p N. |
431 | void markChild(NestedNameSpecifierLoc N, NodeRole R); |
432 | |
433 | /// Finish building the tree and consume the root node. |
434 | syntax::TranslationUnit *finalize() && { |
435 | auto Tokens = TBTM.tokenBuffer().expandedTokens(); |
436 | assert(!Tokens.empty()); |
437 | assert(Tokens.back().kind() == tok::eof); |
438 | |
439 | // Build the root of the tree, consuming all the children. |
440 | Pending.foldChildren(TBTM.tokenBuffer(), Tokens.drop_back(), |
441 | new (Arena.getAllocator()) syntax::TranslationUnit); |
442 | |
443 | auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize()); |
444 | TU->assertInvariantsRecursive(); |
445 | return TU; |
446 | } |
447 | |
448 | /// Finds a token starting at \p L. The token must exist if \p L is valid. |
449 | const syntax::Token *findToken(SourceLocation L) const; |
450 | |
451 | /// Finds the syntax tokens corresponding to the \p SourceRange. |
452 | ArrayRef<syntax::Token> getRange(SourceRange Range) const { |
453 | assert(Range.isValid()); |
454 | return getRange(First: Range.getBegin(), Last: Range.getEnd()); |
455 | } |
456 | |
457 | /// Finds the syntax tokens corresponding to the passed source locations. |
458 | /// \p First is the start position of the first token and \p Last is the start |
459 | /// position of the last token. |
460 | ArrayRef<syntax::Token> getRange(SourceLocation First, |
461 | SourceLocation Last) const { |
462 | assert(First.isValid()); |
463 | assert(Last.isValid()); |
464 | assert(First == Last || |
465 | TBTM.sourceManager().isBeforeInTranslationUnit(First, Last)); |
466 | return llvm::ArrayRef(findToken(L: First), std::next(x: findToken(L: Last))); |
467 | } |
468 | |
469 | ArrayRef<syntax::Token> |
470 | getTemplateRange(const ClassTemplateSpecializationDecl *D) const { |
471 | auto Tokens = getRange(Range: D->getSourceRange()); |
472 | return maybeAppendSemicolon(Tokens, D); |
473 | } |
474 | |
475 | /// Returns true if \p D is the last declarator in a chain and is thus |
476 | /// reponsible for creating SimpleDeclaration for the whole chain. |
477 | bool isResponsibleForCreatingDeclaration(const Decl *D) const { |
478 | assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && |
479 | "only DeclaratorDecl and TypedefNameDecl are supported."); |
480 | |
481 | const Decl *Next = D->getNextDeclInContext(); |
482 | |
483 | // There's no next sibling, this one is responsible. |
484 | if (Next == nullptr) { |
485 | return true; |
486 | } |
487 | |
488 | // Next sibling is not the same type, this one is responsible. |
489 | if (D->getKind() != Next->getKind()) { |
490 | return true; |
491 | } |
492 | // Next sibling doesn't begin at the same loc, it must be a different |
493 | // declaration, so this declarator is responsible. |
494 | if (Next->getBeginLoc() != D->getBeginLoc()) { |
495 | return true; |
496 | } |
497 | |
498 | // NextT is a member of the same declaration, and we need the last member to |
499 | // create declaration. This one is not responsible. |
500 | return false; |
501 | } |
502 | |
503 | ArrayRef<syntax::Token> getDeclarationRange(Decl *D) { |
504 | ArrayRef<syntax::Token> Tokens; |
505 | // We want to drop the template parameters for specializations. |
506 | if (const auto *S = dyn_cast<TagDecl>(Val: D)) |
507 | Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc()); |
508 | else |
509 | Tokens = getRange(Range: D->getSourceRange()); |
510 | return maybeAppendSemicolon(Tokens, D); |
511 | } |
512 | |
513 | ArrayRef<syntax::Token> getExprRange(const Expr *E) const { |
514 | return getRange(E->getSourceRange()); |
515 | } |
516 | |
517 | /// Find the adjusted range for the statement, consuming the trailing |
518 | /// semicolon when needed. |
519 | ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const { |
520 | auto Tokens = getRange(Range: S->getSourceRange()); |
521 | if (isa<CompoundStmt>(Val: S)) |
522 | return Tokens; |
523 | |
524 | // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and |
525 | // all statements that end with those. Consume this semicolon here. |
526 | if (Tokens.back().kind() == tok::semi) |
527 | return Tokens; |
528 | return withTrailingSemicolon(Tokens); |
529 | } |
530 | |
531 | private: |
532 | ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens, |
533 | const Decl *D) const { |
534 | if (isa<NamespaceDecl>(Val: D)) |
535 | return Tokens; |
536 | if (DeclsWithoutSemicolons.count(V: D)) |
537 | return Tokens; |
538 | // FIXME: do not consume trailing semicolon on function definitions. |
539 | // Most declarations own a semicolon in syntax trees, but not in clang AST. |
540 | return withTrailingSemicolon(Tokens); |
541 | } |
542 | |
543 | ArrayRef<syntax::Token> |
544 | withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const { |
545 | assert(!Tokens.empty()); |
546 | assert(Tokens.back().kind() != tok::eof); |
547 | // We never consume 'eof', so looking at the next token is ok. |
548 | if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi) |
549 | return llvm::ArrayRef(Tokens.begin(), Tokens.end() + 1); |
550 | return Tokens; |
551 | } |
552 | |
553 | void setRole(syntax::Node *N, NodeRole R) { |
554 | assert(N->getRole() == NodeRole::Detached); |
555 | N->setRole(R); |
556 | } |
557 | |
558 | /// A collection of trees covering the input tokens. |
559 | /// When created, each tree corresponds to a single token in the file. |
560 | /// Clients call 'foldChildren' to attach one or more subtrees to a parent |
561 | /// node and update the list of trees accordingly. |
562 | /// |
563 | /// Ensures that added nodes properly nest and cover the whole token stream. |
564 | struct Forest { |
565 | Forest(syntax::Arena &A, const syntax::TokenBuffer &TB) { |
566 | assert(!TB.expandedTokens().empty()); |
567 | assert(TB.expandedTokens().back().kind() == tok::eof); |
568 | // Create all leaf nodes. |
569 | // Note that we do not have 'eof' in the tree. |
570 | for (const auto &T : TB.expandedTokens().drop_back()) { |
571 | auto *L = new (A.getAllocator()) |
572 | syntax::Leaf(reinterpret_cast<TokenManager::Key>(&T)); |
573 | L->Original = true; |
574 | L->CanModify = TB.spelledForExpanded(Expanded: T).has_value(); |
575 | Trees.insert(position: Trees.end(), x: {&T, L}); |
576 | } |
577 | } |
578 | |
579 | void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) { |
580 | assert(!Range.empty()); |
581 | auto It = Trees.lower_bound(x: Range.begin()); |
582 | assert(It != Trees.end() && "no node found"); |
583 | assert(It->first == Range.begin() && "no child with the specified range"); |
584 | assert((std::next(It) == Trees.end() || |
585 | std::next(It)->first == Range.end()) && |
586 | "no child with the specified range"); |
587 | assert(It->second->getRole() == NodeRole::Detached && |
588 | "re-assigning role for a child"); |
589 | It->second->setRole(Role); |
590 | } |
591 | |
592 | /// Shrink \p Range to a subrange that only contains tokens of a list. |
593 | /// List elements and delimiters should already have correct roles. |
594 | ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) { |
595 | auto BeginChildren = Trees.lower_bound(x: Range.begin()); |
596 | assert((BeginChildren == Trees.end() || |
597 | BeginChildren->first == Range.begin()) && |
598 | "Range crosses boundaries of existing subtrees"); |
599 | |
600 | auto EndChildren = Trees.lower_bound(x: Range.end()); |
601 | assert( |
602 | (EndChildren == Trees.end() || EndChildren->first == Range.end()) && |
603 | "Range crosses boundaries of existing subtrees"); |
604 | |
605 | auto BelongsToList = [](decltype(Trees)::value_type KV) { |
606 | auto Role = KV.second->getRole(); |
607 | return Role == syntax::NodeRole::ListElement || |
608 | Role == syntax::NodeRole::ListDelimiter; |
609 | }; |
610 | |
611 | auto BeginListChildren = |
612 | std::find_if(first: BeginChildren, last: EndChildren, pred: BelongsToList); |
613 | |
614 | auto EndListChildren = |
615 | std::find_if_not(first: BeginListChildren, last: EndChildren, pred: BelongsToList); |
616 | |
617 | return ArrayRef<syntax::Token>(BeginListChildren->first, |
618 | EndListChildren->first); |
619 | } |
620 | |
621 | /// Add \p Node to the forest and attach child nodes based on \p Tokens. |
622 | void foldChildren(const syntax::TokenBuffer &TB, |
623 | ArrayRef<syntax::Token> Tokens, syntax::Tree *Node) { |
624 | // Attach children to `Node`. |
625 | assert(Node->getFirstChild() == nullptr && "node already has children"); |
626 | |
627 | auto *FirstToken = Tokens.begin(); |
628 | auto BeginChildren = Trees.lower_bound(x: FirstToken); |
629 | |
630 | assert((BeginChildren == Trees.end() || |
631 | BeginChildren->first == FirstToken) && |
632 | "fold crosses boundaries of existing subtrees"); |
633 | auto EndChildren = Trees.lower_bound(x: Tokens.end()); |
634 | assert( |
635 | (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) && |
636 | "fold crosses boundaries of existing subtrees"); |
637 | |
638 | for (auto It = BeginChildren; It != EndChildren; ++It) { |
639 | auto *C = It->second; |
640 | if (C->getRole() == NodeRole::Detached) |
641 | C->setRole(NodeRole::Unknown); |
642 | Node->appendChildLowLevel(Child: C); |
643 | } |
644 | |
645 | // Mark that this node came from the AST and is backed by the source code. |
646 | Node->Original = true; |
647 | Node->CanModify = |
648 | TB.spelledForExpanded(Expanded: Tokens).has_value(); |
649 | |
650 | Trees.erase(first: BeginChildren, last: EndChildren); |
651 | Trees.insert(x: {FirstToken, Node}); |
652 | } |
653 | |
654 | // EXPECTS: all tokens were consumed and are owned by a single root node. |
655 | syntax::Node *finalize() && { |
656 | assert(Trees.size() == 1); |
657 | auto *Root = Trees.begin()->second; |
658 | Trees = {}; |
659 | return Root; |
660 | } |
661 | |
662 | std::string str(const syntax::TokenBufferTokenManager &STM) const { |
663 | std::string R; |
664 | for (auto It = Trees.begin(); It != Trees.end(); ++It) { |
665 | unsigned CoveredTokens = |
666 | It != Trees.end() |
667 | ? (std::next(x: It)->first - It->first) |
668 | : STM.tokenBuffer().expandedTokens().end() - It->first; |
669 | |
670 | R += std::string( |
671 | formatv(Fmt: "- '{0}' covers '{1}'+{2} tokens\n", Vals: It->second->getKind(), |
672 | Vals: It->first->text(SM: STM.sourceManager()), Vals&: CoveredTokens)); |
673 | R += It->second->dump(SM: STM); |
674 | } |
675 | return R; |
676 | } |
677 | |
678 | private: |
679 | /// Maps from the start token to a subtree starting at that token. |
680 | /// Keys in the map are pointers into the array of expanded tokens, so |
681 | /// pointer order corresponds to the order of preprocessor tokens. |
682 | std::map<const syntax::Token *, syntax::Node *> Trees; |
683 | }; |
684 | |
685 | /// For debugging purposes. |
686 | std::string str() { return Pending.str(STM: TBTM); } |
687 | |
688 | syntax::Arena &Arena; |
689 | TokenBufferTokenManager& TBTM; |
690 | /// To quickly find tokens by their start location. |
691 | llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken; |
692 | Forest Pending; |
693 | llvm::DenseSet<Decl *> DeclsWithoutSemicolons; |
694 | ASTToSyntaxMapping Mapping; |
695 | }; |
696 | |
697 | namespace { |
698 | class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> { |
699 | public: |
700 | explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder) |
701 | : Builder(Builder), Context(Context) {} |
702 | |
703 | bool shouldTraversePostOrder() const { return true; } |
704 | |
705 | bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) { |
706 | return processDeclaratorAndDeclaration(D: DD); |
707 | } |
708 | |
709 | bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) { |
710 | return processDeclaratorAndDeclaration(D: TD); |
711 | } |
712 | |
713 | bool VisitDecl(Decl *D) { |
714 | assert(!D->isImplicit()); |
715 | Builder.foldNode(Range: Builder.getDeclarationRange(D), |
716 | New: new (allocator()) syntax::UnknownDeclaration(), From: D); |
717 | return true; |
718 | } |
719 | |
720 | // RAV does not call WalkUpFrom* on explicit instantiations, so we have to |
721 | // override Traverse. |
722 | // FIXME: make RAV call WalkUpFrom* instead. |
723 | bool |
724 | TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) { |
725 | if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C)) |
726 | return false; |
727 | if (C->isExplicitSpecialization()) |
728 | return true; // we are only interested in explicit instantiations. |
729 | auto *Declaration = |
730 | cast<syntax::SimpleDeclaration>(Val: handleFreeStandingTagDecl(C)); |
731 | foldExplicitTemplateInstantiation( |
732 | Range: Builder.getTemplateRange(D: C), |
733 | ExternKW: Builder.findToken(L: C->getExternKeywordLoc()), |
734 | TemplateKW: Builder.findToken(L: C->getTemplateKeywordLoc()), InnerDeclaration: Declaration, From: C); |
735 | return true; |
736 | } |
737 | |
738 | bool WalkUpFromTemplateDecl(TemplateDecl *S) { |
739 | foldTemplateDeclaration( |
740 | Builder.getDeclarationRange(S), |
741 | Builder.findToken(L: S->getTemplateParameters()->getTemplateLoc()), |
742 | Builder.getDeclarationRange(S->getTemplatedDecl()), S); |
743 | return true; |
744 | } |
745 | |
746 | bool WalkUpFromTagDecl(TagDecl *C) { |
747 | // FIXME: build the ClassSpecifier node. |
748 | if (!C->isFreeStanding()) { |
749 | assert(C->getNumTemplateParameterLists() == 0); |
750 | return true; |
751 | } |
752 | handleFreeStandingTagDecl(C); |
753 | return true; |
754 | } |
755 | |
756 | syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) { |
757 | assert(C->isFreeStanding()); |
758 | // Class is a declaration specifier and needs a spanning declaration node. |
759 | auto DeclarationRange = Builder.getDeclarationRange(C); |
760 | syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration; |
761 | Builder.foldNode(DeclarationRange, Result, nullptr); |
762 | |
763 | // Build TemplateDeclaration nodes if we had template parameters. |
764 | auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) { |
765 | const auto *TemplateKW = Builder.findToken(L: L.getTemplateLoc()); |
766 | auto R = llvm::ArrayRef(TemplateKW, DeclarationRange.end()); |
767 | Result = |
768 | foldTemplateDeclaration(Range: R, TemplateKW, TemplatedDeclaration: DeclarationRange, From: nullptr); |
769 | DeclarationRange = R; |
770 | }; |
771 | if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: C)) |
772 | ConsumeTemplateParameters(*S->getTemplateParameters()); |
773 | for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I) |
774 | ConsumeTemplateParameters(*C->getTemplateParameterList(i: I - 1)); |
775 | return Result; |
776 | } |
777 | |
778 | bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) { |
779 | // We do not want to call VisitDecl(), the declaration for translation |
780 | // unit is built by finalize(). |
781 | return true; |
782 | } |
783 | |
784 | bool WalkUpFromCompoundStmt(CompoundStmt *S) { |
785 | using NodeRole = syntax::NodeRole; |
786 | |
787 | Builder.markChildToken(Loc: S->getLBracLoc(), R: NodeRole::OpenParen); |
788 | for (auto *Child : S->body()) |
789 | Builder.markStmtChild(Child, Role: NodeRole::Statement); |
790 | Builder.markChildToken(Loc: S->getRBracLoc(), R: NodeRole::CloseParen); |
791 | |
792 | Builder.foldNode(Builder.getStmtRange(S), |
793 | new (allocator()) syntax::CompoundStatement, S); |
794 | return true; |
795 | } |
796 | |
797 | // Some statements are not yet handled by syntax trees. |
798 | bool WalkUpFromStmt(Stmt *S) { |
799 | Builder.foldNode(Range: Builder.getStmtRange(S), |
800 | New: new (allocator()) syntax::UnknownStatement, From: S); |
801 | return true; |
802 | } |
803 | |
804 | bool TraverseIfStmt(IfStmt *S) { |
805 | bool Result = [&, this]() { |
806 | if (S->getInit() && !TraverseStmt(S: S->getInit())) { |
807 | return false; |
808 | } |
809 | // In cases where the condition is an initialized declaration in a |
810 | // statement, we want to preserve the declaration and ignore the |
811 | // implicit condition expression in the syntax tree. |
812 | if (S->hasVarStorage()) { |
813 | if (!TraverseStmt(S: S->getConditionVariableDeclStmt())) |
814 | return false; |
815 | } else if (S->getCond() && !TraverseStmt(S->getCond())) |
816 | return false; |
817 | |
818 | if (S->getThen() && !TraverseStmt(S: S->getThen())) |
819 | return false; |
820 | if (S->getElse() && !TraverseStmt(S: S->getElse())) |
821 | return false; |
822 | return true; |
823 | }(); |
824 | WalkUpFromIfStmt(S); |
825 | return Result; |
826 | } |
827 | |
828 | bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) { |
829 | // We override to traverse range initializer as VarDecl. |
830 | // RAV traverses it as a statement, we produce invalid node kinds in that |
831 | // case. |
832 | // FIXME: should do this in RAV instead? |
833 | bool Result = [&, this]() { |
834 | if (S->getInit() && !TraverseStmt(S: S->getInit())) |
835 | return false; |
836 | if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable())) |
837 | return false; |
838 | if (S->getRangeInit() && !TraverseStmt(S->getRangeInit())) |
839 | return false; |
840 | if (S->getBody() && !TraverseStmt(S: S->getBody())) |
841 | return false; |
842 | return true; |
843 | }(); |
844 | WalkUpFromCXXForRangeStmt(S); |
845 | return Result; |
846 | } |
847 | |
848 | bool TraverseStmt(Stmt *S) { |
849 | if (auto *DS = dyn_cast_or_null<DeclStmt>(Val: S)) { |
850 | // We want to consume the semicolon, make sure SimpleDeclaration does not. |
851 | for (auto *D : DS->decls()) |
852 | Builder.noticeDeclWithoutSemicolon(D); |
853 | } else if (auto *E = dyn_cast_or_null<Expr>(Val: S)) { |
854 | return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E)); |
855 | } |
856 | return RecursiveASTVisitor::TraverseStmt(S); |
857 | } |
858 | |
859 | bool TraverseOpaqueValueExpr(OpaqueValueExpr *VE) { |
860 | // OpaqueValue doesn't correspond to concrete syntax, ignore it. |
861 | return true; |
862 | } |
863 | |
864 | // Some expressions are not yet handled by syntax trees. |
865 | bool WalkUpFromExpr(Expr *E) { |
866 | assert(!isImplicitExpr(E) && "should be handled by TraverseStmt"); |
867 | Builder.foldNode(Builder.getExprRange(E), |
868 | new (allocator()) syntax::UnknownExpression, E); |
869 | return true; |
870 | } |
871 | |
872 | bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) { |
873 | // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node |
874 | // referencing the location of the UDL suffix (`_w` in `1.2_w`). The |
875 | // UDL suffix location does not point to the beginning of a token, so we |
876 | // can't represent the UDL suffix as a separate syntax tree node. |
877 | |
878 | return WalkUpFromUserDefinedLiteral(S); |
879 | } |
880 | |
881 | syntax::UserDefinedLiteralExpression * |
882 | buildUserDefinedLiteral(UserDefinedLiteral *S) { |
883 | switch (S->getLiteralOperatorKind()) { |
884 | case UserDefinedLiteral::LOK_Integer: |
885 | return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; |
886 | case UserDefinedLiteral::LOK_Floating: |
887 | return new (allocator()) syntax::FloatUserDefinedLiteralExpression; |
888 | case UserDefinedLiteral::LOK_Character: |
889 | return new (allocator()) syntax::CharUserDefinedLiteralExpression; |
890 | case UserDefinedLiteral::LOK_String: |
891 | return new (allocator()) syntax::StringUserDefinedLiteralExpression; |
892 | case UserDefinedLiteral::LOK_Raw: |
893 | case UserDefinedLiteral::LOK_Template: |
894 | // For raw literal operator and numeric literal operator template we |
895 | // cannot get the type of the operand in the semantic AST. We get this |
896 | // information from the token. As integer and floating point have the same |
897 | // token kind, we run `NumericLiteralParser` again to distinguish them. |
898 | auto TokLoc = S->getBeginLoc(); |
899 | auto TokSpelling = |
900 | Builder.findToken(L: TokLoc)->text(SM: Context.getSourceManager()); |
901 | auto Literal = |
902 | NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(), |
903 | Context.getLangOpts(), Context.getTargetInfo(), |
904 | Context.getDiagnostics()); |
905 | if (Literal.isIntegerLiteral()) |
906 | return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; |
907 | else { |
908 | assert(Literal.isFloatingLiteral()); |
909 | return new (allocator()) syntax::FloatUserDefinedLiteralExpression; |
910 | } |
911 | } |
912 | llvm_unreachable("Unknown literal operator kind."); |
913 | } |
914 | |
915 | bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) { |
916 | Builder.markChildToken(Loc: S->getBeginLoc(), R: syntax::NodeRole::LiteralToken); |
917 | Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S); |
918 | return true; |
919 | } |
920 | |
921 | // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the |
922 | // `DependentTemplateSpecializationType` case. |
923 | /// Given a nested-name-specifier return the range for the last name |
924 | /// specifier. |
925 | /// |
926 | /// e.g. `std::T::template X<U>::` => `template X<U>::` |
927 | SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) { |
928 | auto SR = NNSLoc.getLocalSourceRange(); |
929 | |
930 | // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should* |
931 | // return the desired `SourceRange`, but there is a corner case. For a |
932 | // `DependentTemplateSpecializationType` this method returns its |
933 | // qualifiers as well, in other words in the example above this method |
934 | // returns `T::template X<U>::` instead of only `template X<U>::` |
935 | if (auto TL = NNSLoc.getTypeLoc()) { |
936 | if (auto DependentTL = |
937 | TL.getAs<DependentTemplateSpecializationTypeLoc>()) { |
938 | // The 'template' keyword is always present in dependent template |
939 | // specializations. Except in the case of incorrect code |
940 | // TODO: Treat the case of incorrect code. |
941 | SR.setBegin(DependentTL.getTemplateKeywordLoc()); |
942 | } |
943 | } |
944 | |
945 | return SR; |
946 | } |
947 | |
948 | syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) { |
949 | switch (NNS.getKind()) { |
950 | case NestedNameSpecifier::Global: |
951 | return syntax::NodeKind::GlobalNameSpecifier; |
952 | case NestedNameSpecifier::Namespace: |
953 | case NestedNameSpecifier::NamespaceAlias: |
954 | case NestedNameSpecifier::Identifier: |
955 | return syntax::NodeKind::IdentifierNameSpecifier; |
956 | case NestedNameSpecifier::TypeSpec: { |
957 | const auto *NNSType = NNS.getAsType(); |
958 | assert(NNSType); |
959 | if (isa<DecltypeType>(NNSType)) |
960 | return syntax::NodeKind::DecltypeNameSpecifier; |
961 | if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>( |
962 | NNSType)) |
963 | return syntax::NodeKind::SimpleTemplateNameSpecifier; |
964 | return syntax::NodeKind::IdentifierNameSpecifier; |
965 | } |
966 | default: |
967 | // FIXME: Support Microsoft's __super |
968 | llvm::report_fatal_error(reason: "We don't yet support the __super specifier", |
969 | gen_crash_diag: true); |
970 | } |
971 | } |
972 | |
973 | syntax::NameSpecifier * |
974 | buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) { |
975 | assert(NNSLoc.hasQualifier()); |
976 | auto NameSpecifierTokens = |
977 | Builder.getRange(Range: getLocalSourceRange(NNSLoc)).drop_back(); |
978 | switch (getNameSpecifierKind(NNS: *NNSLoc.getNestedNameSpecifier())) { |
979 | case syntax::NodeKind::GlobalNameSpecifier: |
980 | return new (allocator()) syntax::GlobalNameSpecifier; |
981 | case syntax::NodeKind::IdentifierNameSpecifier: { |
982 | assert(NameSpecifierTokens.size() == 1); |
983 | Builder.markChildToken(T: NameSpecifierTokens.begin(), |
984 | R: syntax::NodeRole::Unknown); |
985 | auto *NS = new (allocator()) syntax::IdentifierNameSpecifier; |
986 | Builder.foldNode(NameSpecifierTokens, NS, nullptr); |
987 | return NS; |
988 | } |
989 | case syntax::NodeKind::SimpleTemplateNameSpecifier: { |
990 | // TODO: Build `SimpleTemplateNameSpecifier` children and implement |
991 | // accessors to them. |
992 | // Be aware, we cannot do that simply by calling `TraverseTypeLoc`, |
993 | // some `TypeLoc`s have inside them the previous name specifier and |
994 | // we want to treat them independently. |
995 | auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier; |
996 | Builder.foldNode(NameSpecifierTokens, NS, nullptr); |
997 | return NS; |
998 | } |
999 | case syntax::NodeKind::DecltypeNameSpecifier: { |
1000 | const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>(); |
1001 | if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL)) |
1002 | return nullptr; |
1003 | auto *NS = new (allocator()) syntax::DecltypeNameSpecifier; |
1004 | // TODO: Implement accessor to `DecltypeNameSpecifier` inner |
1005 | // `DecltypeTypeLoc`. |
1006 | // For that add mapping from `TypeLoc` to `syntax::Node*` then: |
1007 | // Builder.markChild(TypeLoc, syntax::NodeRole); |
1008 | Builder.foldNode(NameSpecifierTokens, NS, nullptr); |
1009 | return NS; |
1010 | } |
1011 | default: |
1012 | llvm_unreachable("getChildKind() does not return this value"); |
1013 | } |
1014 | } |
1015 | |
1016 | // To build syntax tree nodes for NestedNameSpecifierLoc we override |
1017 | // Traverse instead of WalkUpFrom because we want to traverse the children |
1018 | // ourselves and build a list instead of a nested tree of name specifier |
1019 | // prefixes. |
1020 | bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) { |
1021 | if (!QualifierLoc) |
1022 | return true; |
1023 | for (auto It = QualifierLoc; It; It = It.getPrefix()) { |
1024 | auto *NS = buildNameSpecifier(It); |
1025 | if (!NS) |
1026 | return false; |
1027 | Builder.markChild(NS, syntax::NodeRole::ListElement); |
1028 | Builder.markChildToken(Loc: It.getEndLoc(), R: syntax::NodeRole::ListDelimiter); |
1029 | } |
1030 | Builder.foldNode(Range: Builder.getRange(Range: QualifierLoc.getSourceRange()), |
1031 | New: new (allocator()) syntax::NestedNameSpecifier, |
1032 | From: QualifierLoc); |
1033 | return true; |
1034 | } |
1035 | |
1036 | syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc, |
1037 | SourceLocation TemplateKeywordLoc, |
1038 | SourceRange UnqualifiedIdLoc, |
1039 | ASTPtr From) { |
1040 | if (QualifierLoc) { |
1041 | Builder.markChild(N: QualifierLoc, R: syntax::NodeRole::Qualifier); |
1042 | if (TemplateKeywordLoc.isValid()) |
1043 | Builder.markChildToken(Loc: TemplateKeywordLoc, |
1044 | R: syntax::NodeRole::TemplateKeyword); |
1045 | } |
1046 | |
1047 | auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId; |
1048 | Builder.foldNode(Range: Builder.getRange(Range: UnqualifiedIdLoc), New: TheUnqualifiedId, |
1049 | From: nullptr); |
1050 | Builder.markChild(N: TheUnqualifiedId, R: syntax::NodeRole::UnqualifiedId); |
1051 | |
1052 | auto IdExpressionBeginLoc = |
1053 | QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin(); |
1054 | |
1055 | auto *TheIdExpression = new (allocator()) syntax::IdExpression; |
1056 | Builder.foldNode( |
1057 | Builder.getRange(First: IdExpressionBeginLoc, Last: UnqualifiedIdLoc.getEnd()), |
1058 | TheIdExpression, From); |
1059 | |
1060 | return TheIdExpression; |
1061 | } |
1062 | |
1063 | bool WalkUpFromMemberExpr(MemberExpr *S) { |
1064 | // For `MemberExpr` with implicit `this->` we generate a simple |
1065 | // `id-expression` syntax node, beacuse an implicit `member-expression` is |
1066 | // syntactically undistinguishable from an `id-expression` |
1067 | if (S->isImplicitAccess()) { |
1068 | buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), |
1069 | SourceRange(S->getMemberLoc(), S->getEndLoc()), S); |
1070 | return true; |
1071 | } |
1072 | |
1073 | auto *TheIdExpression = buildIdExpression( |
1074 | S->getQualifierLoc(), S->getTemplateKeywordLoc(), |
1075 | SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr); |
1076 | |
1077 | Builder.markChild(TheIdExpression, syntax::NodeRole::Member); |
1078 | |
1079 | Builder.markExprChild(Child: S->getBase(), Role: syntax::NodeRole::Object); |
1080 | Builder.markChildToken(Loc: S->getOperatorLoc(), R: syntax::NodeRole::AccessToken); |
1081 | |
1082 | Builder.foldNode(Builder.getExprRange(S), |
1083 | new (allocator()) syntax::MemberExpression, S); |
1084 | return true; |
1085 | } |
1086 | |
1087 | bool WalkUpFromDeclRefExpr(DeclRefExpr *S) { |
1088 | buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), |
1089 | SourceRange(S->getLocation(), S->getEndLoc()), S); |
1090 | |
1091 | return true; |
1092 | } |
1093 | |
1094 | // Same logic as DeclRefExpr. |
1095 | bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) { |
1096 | buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), |
1097 | SourceRange(S->getLocation(), S->getEndLoc()), S); |
1098 | |
1099 | return true; |
1100 | } |
1101 | |
1102 | bool WalkUpFromCXXThisExpr(CXXThisExpr *S) { |
1103 | if (!S->isImplicit()) { |
1104 | Builder.markChildToken(Loc: S->getLocation(), |
1105 | R: syntax::NodeRole::IntroducerKeyword); |
1106 | Builder.foldNode(Builder.getExprRange(S), |
1107 | new (allocator()) syntax::ThisExpression, S); |
1108 | } |
1109 | return true; |
1110 | } |
1111 | |
1112 | bool WalkUpFromParenExpr(ParenExpr *S) { |
1113 | Builder.markChildToken(Loc: S->getLParen(), R: syntax::NodeRole::OpenParen); |
1114 | Builder.markExprChild(Child: S->getSubExpr(), Role: syntax::NodeRole::SubExpression); |
1115 | Builder.markChildToken(Loc: S->getRParen(), R: syntax::NodeRole::CloseParen); |
1116 | Builder.foldNode(Builder.getExprRange(S), |
1117 | new (allocator()) syntax::ParenExpression, S); |
1118 | return true; |
1119 | } |
1120 | |
1121 | bool WalkUpFromIntegerLiteral(IntegerLiteral *S) { |
1122 | Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken); |
1123 | Builder.foldNode(Builder.getExprRange(S), |
1124 | new (allocator()) syntax::IntegerLiteralExpression, S); |
1125 | return true; |
1126 | } |
1127 | |
1128 | bool WalkUpFromCharacterLiteral(CharacterLiteral *S) { |
1129 | Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken); |
1130 | Builder.foldNode(Builder.getExprRange(S), |
1131 | new (allocator()) syntax::CharacterLiteralExpression, S); |
1132 | return true; |
1133 | } |
1134 | |
1135 | bool WalkUpFromFloatingLiteral(FloatingLiteral *S) { |
1136 | Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken); |
1137 | Builder.foldNode(Builder.getExprRange(S), |
1138 | new (allocator()) syntax::FloatingLiteralExpression, S); |
1139 | return true; |
1140 | } |
1141 | |
1142 | bool WalkUpFromStringLiteral(StringLiteral *S) { |
1143 | Builder.markChildToken(Loc: S->getBeginLoc(), R: syntax::NodeRole::LiteralToken); |
1144 | Builder.foldNode(Builder.getExprRange(S), |
1145 | new (allocator()) syntax::StringLiteralExpression, S); |
1146 | return true; |
1147 | } |
1148 | |
1149 | bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) { |
1150 | Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken); |
1151 | Builder.foldNode(Builder.getExprRange(S), |
1152 | new (allocator()) syntax::BoolLiteralExpression, S); |
1153 | return true; |
1154 | } |
1155 | |
1156 | bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) { |
1157 | Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken); |
1158 | Builder.foldNode(Builder.getExprRange(S), |
1159 | new (allocator()) syntax::CxxNullPtrExpression, S); |
1160 | return true; |
1161 | } |
1162 | |
1163 | bool WalkUpFromUnaryOperator(UnaryOperator *S) { |
1164 | Builder.markChildToken(Loc: S->getOperatorLoc(), |
1165 | R: syntax::NodeRole::OperatorToken); |
1166 | Builder.markExprChild(Child: S->getSubExpr(), Role: syntax::NodeRole::Operand); |
1167 | |
1168 | if (S->isPostfix()) |
1169 | Builder.foldNode(Builder.getExprRange(S), |
1170 | new (allocator()) syntax::PostfixUnaryOperatorExpression, |
1171 | S); |
1172 | else |
1173 | Builder.foldNode(Builder.getExprRange(S), |
1174 | new (allocator()) syntax::PrefixUnaryOperatorExpression, |
1175 | S); |
1176 | |
1177 | return true; |
1178 | } |
1179 | |
1180 | bool WalkUpFromBinaryOperator(BinaryOperator *S) { |
1181 | Builder.markExprChild(Child: S->getLHS(), Role: syntax::NodeRole::LeftHandSide); |
1182 | Builder.markChildToken(Loc: S->getOperatorLoc(), |
1183 | R: syntax::NodeRole::OperatorToken); |
1184 | Builder.markExprChild(Child: S->getRHS(), Role: syntax::NodeRole::RightHandSide); |
1185 | Builder.foldNode(Builder.getExprRange(S), |
1186 | new (allocator()) syntax::BinaryOperatorExpression, S); |
1187 | return true; |
1188 | } |
1189 | |
1190 | /// Builds `CallArguments` syntax node from arguments that appear in source |
1191 | /// code, i.e. not default arguments. |
1192 | syntax::CallArguments * |
1193 | buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) { |
1194 | auto Args = dropDefaultArgs(Args: ArgsAndDefaultArgs); |
1195 | for (auto *Arg : Args) { |
1196 | Builder.markExprChild(Arg, syntax::NodeRole::ListElement); |
1197 | const auto *DelimiterToken = |
1198 | std::next(x: Builder.findToken(L: Arg->getEndLoc())); |
1199 | if (DelimiterToken->kind() == clang::tok::TokenKind::comma) |
1200 | Builder.markChildToken(T: DelimiterToken, R: syntax::NodeRole::ListDelimiter); |
1201 | } |
1202 | |
1203 | auto *Arguments = new (allocator()) syntax::CallArguments; |
1204 | if (!Args.empty()) |
1205 | Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(), |
1206 | (*(Args.end() - 1))->getEndLoc()), |
1207 | Arguments, nullptr); |
1208 | |
1209 | return Arguments; |
1210 | } |
1211 | |
1212 | bool WalkUpFromCallExpr(CallExpr *S) { |
1213 | Builder.markExprChild(Child: S->getCallee(), Role: syntax::NodeRole::Callee); |
1214 | |
1215 | const auto *LParenToken = |
1216 | std::next(Builder.findToken(L: S->getCallee()->getEndLoc())); |
1217 | // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed |
1218 | // the test on decltype desctructors. |
1219 | if (LParenToken->kind() == clang::tok::l_paren) |
1220 | Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); |
1221 | |
1222 | Builder.markChild(N: buildCallArguments(ArgsAndDefaultArgs: S->arguments()), |
1223 | R: syntax::NodeRole::Arguments); |
1224 | |
1225 | Builder.markChildToken(Loc: S->getRParenLoc(), R: syntax::NodeRole::CloseParen); |
1226 | |
1227 | Builder.foldNode(Builder.getRange(S->getSourceRange()), |
1228 | new (allocator()) syntax::CallExpression, S); |
1229 | return true; |
1230 | } |
1231 | |
1232 | bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) { |
1233 | // Ignore the implicit calls to default constructors. |
1234 | if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(Val: S->getArg(Arg: 0))) && |
1235 | S->getParenOrBraceRange().isInvalid()) |
1236 | return true; |
1237 | return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S); |
1238 | } |
1239 | |
1240 | bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) { |
1241 | // To construct a syntax tree of the same shape for calls to built-in and |
1242 | // user-defined operators, ignore the `DeclRefExpr` that refers to the |
1243 | // operator and treat it as a simple token. Do that by traversing |
1244 | // arguments instead of children. |
1245 | for (auto *child : S->arguments()) { |
1246 | // A postfix unary operator is declared as taking two operands. The |
1247 | // second operand is used to distinguish from its prefix counterpart. In |
1248 | // the semantic AST this "phantom" operand is represented as a |
1249 | // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this |
1250 | // operand because it does not correspond to anything written in source |
1251 | // code. |
1252 | if (child->getSourceRange().isInvalid()) { |
1253 | assert(getOperatorNodeKind(*S) == |
1254 | syntax::NodeKind::PostfixUnaryOperatorExpression); |
1255 | continue; |
1256 | } |
1257 | if (!TraverseStmt(child)) |
1258 | return false; |
1259 | } |
1260 | return WalkUpFromCXXOperatorCallExpr(S); |
1261 | } |
1262 | |
1263 | bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) { |
1264 | switch (getOperatorNodeKind(E: *S)) { |
1265 | case syntax::NodeKind::BinaryOperatorExpression: |
1266 | Builder.markExprChild(Child: S->getArg(0), Role: syntax::NodeRole::LeftHandSide); |
1267 | Builder.markChildToken(Loc: S->getOperatorLoc(), |
1268 | R: syntax::NodeRole::OperatorToken); |
1269 | Builder.markExprChild(Child: S->getArg(1), Role: syntax::NodeRole::RightHandSide); |
1270 | Builder.foldNode(Builder.getExprRange(S), |
1271 | new (allocator()) syntax::BinaryOperatorExpression, S); |
1272 | return true; |
1273 | case syntax::NodeKind::PrefixUnaryOperatorExpression: |
1274 | Builder.markChildToken(Loc: S->getOperatorLoc(), |
1275 | R: syntax::NodeRole::OperatorToken); |
1276 | Builder.markExprChild(Child: S->getArg(0), Role: syntax::NodeRole::Operand); |
1277 | Builder.foldNode(Builder.getExprRange(S), |
1278 | new (allocator()) syntax::PrefixUnaryOperatorExpression, |
1279 | S); |
1280 | return true; |
1281 | case syntax::NodeKind::PostfixUnaryOperatorExpression: |
1282 | Builder.markChildToken(Loc: S->getOperatorLoc(), |
1283 | R: syntax::NodeRole::OperatorToken); |
1284 | Builder.markExprChild(Child: S->getArg(0), Role: syntax::NodeRole::Operand); |
1285 | Builder.foldNode(Builder.getExprRange(S), |
1286 | new (allocator()) syntax::PostfixUnaryOperatorExpression, |
1287 | S); |
1288 | return true; |
1289 | case syntax::NodeKind::CallExpression: { |
1290 | Builder.markExprChild(Child: S->getArg(0), Role: syntax::NodeRole::Callee); |
1291 | |
1292 | const auto *LParenToken = |
1293 | std::next(Builder.findToken(L: S->getArg(0)->getEndLoc())); |
1294 | // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have |
1295 | // fixed the test on decltype desctructors. |
1296 | if (LParenToken->kind() == clang::tok::l_paren) |
1297 | Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); |
1298 | |
1299 | Builder.markChild(N: buildCallArguments(ArgsAndDefaultArgs: CallExpr::arg_range( |
1300 | S->arg_begin() + 1, S->arg_end())), |
1301 | R: syntax::NodeRole::Arguments); |
1302 | |
1303 | Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen); |
1304 | |
1305 | Builder.foldNode(Builder.getRange(S->getSourceRange()), |
1306 | new (allocator()) syntax::CallExpression, S); |
1307 | return true; |
1308 | } |
1309 | case syntax::NodeKind::UnknownExpression: |
1310 | return WalkUpFromExpr(S); |
1311 | default: |
1312 | llvm_unreachable("getOperatorNodeKind() does not return this value"); |
1313 | } |
1314 | } |
1315 | |
1316 | bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; } |
1317 | |
1318 | bool WalkUpFromNamespaceDecl(NamespaceDecl *S) { |
1319 | auto Tokens = Builder.getDeclarationRange(S); |
1320 | if (Tokens.front().kind() == tok::coloncolon) { |
1321 | // Handle nested namespace definitions. Those start at '::' token, e.g. |
1322 | // namespace a^::b {} |
1323 | // FIXME: build corresponding nodes for the name of this namespace. |
1324 | return true; |
1325 | } |
1326 | Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S); |
1327 | return true; |
1328 | } |
1329 | |
1330 | // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test |
1331 | // results. Find test coverage or remove it. |
1332 | bool TraverseParenTypeLoc(ParenTypeLoc L) { |
1333 | // We reverse order of traversal to get the proper syntax structure. |
1334 | if (!WalkUpFromParenTypeLoc(L)) |
1335 | return false; |
1336 | return TraverseTypeLoc(TL: L.getInnerLoc()); |
1337 | } |
1338 | |
1339 | bool WalkUpFromParenTypeLoc(ParenTypeLoc L) { |
1340 | Builder.markChildToken(Loc: L.getLParenLoc(), R: syntax::NodeRole::OpenParen); |
1341 | Builder.markChildToken(Loc: L.getRParenLoc(), R: syntax::NodeRole::CloseParen); |
1342 | Builder.foldNode(Builder.getRange(First: L.getLParenLoc(), Last: L.getRParenLoc()), |
1343 | new (allocator()) syntax::ParenDeclarator, L); |
1344 | return true; |
1345 | } |
1346 | |
1347 | // Declarator chunks, they are produced by type locs and some clang::Decls. |
1348 | bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) { |
1349 | Builder.markChildToken(Loc: L.getLBracketLoc(), R: syntax::NodeRole::OpenParen); |
1350 | Builder.markExprChild(Child: L.getSizeExpr(), Role: syntax::NodeRole::Size); |
1351 | Builder.markChildToken(Loc: L.getRBracketLoc(), R: syntax::NodeRole::CloseParen); |
1352 | Builder.foldNode(Builder.getRange(First: L.getLBracketLoc(), Last: L.getRBracketLoc()), |
1353 | new (allocator()) syntax::ArraySubscript, L); |
1354 | return true; |
1355 | } |
1356 | |
1357 | syntax::ParameterDeclarationList * |
1358 | buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) { |
1359 | for (auto *P : Params) { |
1360 | Builder.markChild(P, syntax::NodeRole::ListElement); |
1361 | const auto *DelimiterToken = std::next(Builder.findToken(L: P->getEndLoc())); |
1362 | if (DelimiterToken->kind() == clang::tok::TokenKind::comma) |
1363 | Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); |
1364 | } |
1365 | auto *Parameters = new (allocator()) syntax::ParameterDeclarationList; |
1366 | if (!Params.empty()) |
1367 | Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(), |
1368 | Params.back()->getEndLoc()), |
1369 | Parameters, nullptr); |
1370 | return Parameters; |
1371 | } |
1372 | |
1373 | bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) { |
1374 | Builder.markChildToken(Loc: L.getLParenLoc(), R: syntax::NodeRole::OpenParen); |
1375 | |
1376 | Builder.markChild(N: buildParameterDeclarationList(Params: L.getParams()), |
1377 | R: syntax::NodeRole::Parameters); |
1378 | |
1379 | Builder.markChildToken(Loc: L.getRParenLoc(), R: syntax::NodeRole::CloseParen); |
1380 | Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()), |
1381 | new (allocator()) syntax::ParametersAndQualifiers, L); |
1382 | return true; |
1383 | } |
1384 | |
1385 | bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) { |
1386 | if (!L.getTypePtr()->hasTrailingReturn()) |
1387 | return WalkUpFromFunctionTypeLoc(L); |
1388 | |
1389 | auto *TrailingReturnTokens = buildTrailingReturn(L); |
1390 | // Finish building the node for parameters. |
1391 | Builder.markChild(N: TrailingReturnTokens, R: syntax::NodeRole::TrailingReturn); |
1392 | return WalkUpFromFunctionTypeLoc(L); |
1393 | } |
1394 | |
1395 | bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) { |
1396 | // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds |
1397 | // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to |
1398 | // "(Y::*mp)" We thus reverse the order of traversal to get the proper |
1399 | // syntax structure. |
1400 | if (!WalkUpFromMemberPointerTypeLoc(L)) |
1401 | return false; |
1402 | return TraverseTypeLoc(TL: L.getPointeeLoc()); |
1403 | } |
1404 | |
1405 | bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) { |
1406 | auto SR = L.getLocalSourceRange(); |
1407 | Builder.foldNode(Builder.getRange(Range: SR), |
1408 | new (allocator()) syntax::MemberPointer, L); |
1409 | return true; |
1410 | } |
1411 | |
1412 | // The code below is very regular, it could even be generated with some |
1413 | // preprocessor magic. We merely assign roles to the corresponding children |
1414 | // and fold resulting nodes. |
1415 | bool WalkUpFromDeclStmt(DeclStmt *S) { |
1416 | Builder.foldNode(Range: Builder.getStmtRange(S), |
1417 | New: new (allocator()) syntax::DeclarationStatement, From: S); |
1418 | return true; |
1419 | } |
1420 | |
1421 | bool WalkUpFromNullStmt(NullStmt *S) { |
1422 | Builder.foldNode(Range: Builder.getStmtRange(S), |
1423 | New: new (allocator()) syntax::EmptyStatement, From: S); |
1424 | return true; |
1425 | } |
1426 | |
1427 | bool WalkUpFromSwitchStmt(SwitchStmt *S) { |
1428 | Builder.markChildToken(Loc: S->getSwitchLoc(), |
1429 | R: syntax::NodeRole::IntroducerKeyword); |
1430 | Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement); |
1431 | Builder.foldNode(Builder.getStmtRange(S), |
1432 | new (allocator()) syntax::SwitchStatement, S); |
1433 | return true; |
1434 | } |
1435 | |
1436 | bool WalkUpFromCaseStmt(CaseStmt *S) { |
1437 | Builder.markChildToken(S->getKeywordLoc(), |
1438 | syntax::NodeRole::IntroducerKeyword); |
1439 | Builder.markExprChild(Child: S->getLHS(), Role: syntax::NodeRole::CaseValue); |
1440 | Builder.markStmtChild(Child: S->getSubStmt(), Role: syntax::NodeRole::BodyStatement); |
1441 | Builder.foldNode(Builder.getStmtRange(S), |
1442 | new (allocator()) syntax::CaseStatement, S); |
1443 | return true; |
1444 | } |
1445 | |
1446 | bool WalkUpFromDefaultStmt(DefaultStmt *S) { |
1447 | Builder.markChildToken(Loc: S->getKeywordLoc(), |
1448 | R: syntax::NodeRole::IntroducerKeyword); |
1449 | Builder.markStmtChild(Child: S->getSubStmt(), Role: syntax::NodeRole::BodyStatement); |
1450 | Builder.foldNode(Range: Builder.getStmtRange(S), |
1451 | New: new (allocator()) syntax::DefaultStatement, From: S); |
1452 | return true; |
1453 | } |
1454 | |
1455 | bool WalkUpFromIfStmt(IfStmt *S) { |
1456 | Builder.markChildToken(Loc: S->getIfLoc(), R: syntax::NodeRole::IntroducerKeyword); |
1457 | Stmt *ConditionStatement = S->getCond(); |
1458 | if (S->hasVarStorage()) |
1459 | ConditionStatement = S->getConditionVariableDeclStmt(); |
1460 | Builder.markStmtChild(Child: ConditionStatement, Role: syntax::NodeRole::Condition); |
1461 | Builder.markStmtChild(Child: S->getThen(), Role: syntax::NodeRole::ThenStatement); |
1462 | Builder.markChildToken(Loc: S->getElseLoc(), R: syntax::NodeRole::ElseKeyword); |
1463 | Builder.markStmtChild(Child: S->getElse(), Role: syntax::NodeRole::ElseStatement); |
1464 | Builder.foldNode(Builder.getStmtRange(S), |
1465 | new (allocator()) syntax::IfStatement, S); |
1466 | return true; |
1467 | } |
1468 | |
1469 | bool WalkUpFromForStmt(ForStmt *S) { |
1470 | Builder.markChildToken(Loc: S->getForLoc(), R: syntax::NodeRole::IntroducerKeyword); |
1471 | Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement); |
1472 | Builder.foldNode(Range: Builder.getStmtRange(S), |
1473 | New: new (allocator()) syntax::ForStatement, From: S); |
1474 | return true; |
1475 | } |
1476 | |
1477 | bool WalkUpFromWhileStmt(WhileStmt *S) { |
1478 | Builder.markChildToken(Loc: S->getWhileLoc(), |
1479 | R: syntax::NodeRole::IntroducerKeyword); |
1480 | Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement); |
1481 | Builder.foldNode(Builder.getStmtRange(S), |
1482 | new (allocator()) syntax::WhileStatement, S); |
1483 | return true; |
1484 | } |
1485 | |
1486 | bool WalkUpFromContinueStmt(ContinueStmt *S) { |
1487 | Builder.markChildToken(Loc: S->getContinueLoc(), |
1488 | R: syntax::NodeRole::IntroducerKeyword); |
1489 | Builder.foldNode(Range: Builder.getStmtRange(S), |
1490 | New: new (allocator()) syntax::ContinueStatement, From: S); |
1491 | return true; |
1492 | } |
1493 | |
1494 | bool WalkUpFromBreakStmt(BreakStmt *S) { |
1495 | Builder.markChildToken(Loc: S->getBreakLoc(), |
1496 | R: syntax::NodeRole::IntroducerKeyword); |
1497 | Builder.foldNode(Range: Builder.getStmtRange(S), |
1498 | New: new (allocator()) syntax::BreakStatement, From: S); |
1499 | return true; |
1500 | } |
1501 | |
1502 | bool WalkUpFromReturnStmt(ReturnStmt *S) { |
1503 | Builder.markChildToken(Loc: S->getReturnLoc(), |
1504 | R: syntax::NodeRole::IntroducerKeyword); |
1505 | Builder.markExprChild(Child: S->getRetValue(), Role: syntax::NodeRole::ReturnValue); |
1506 | Builder.foldNode(Builder.getStmtRange(S), |
1507 | new (allocator()) syntax::ReturnStatement, S); |
1508 | return true; |
1509 | } |
1510 | |
1511 | bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) { |
1512 | Builder.markChildToken(Loc: S->getForLoc(), R: syntax::NodeRole::IntroducerKeyword); |
1513 | Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement); |
1514 | Builder.foldNode(Range: Builder.getStmtRange(S), |
1515 | New: new (allocator()) syntax::RangeBasedForStatement, From: S); |
1516 | return true; |
1517 | } |
1518 | |
1519 | bool WalkUpFromEmptyDecl(EmptyDecl *S) { |
1520 | Builder.foldNode(Builder.getDeclarationRange(S), |
1521 | new (allocator()) syntax::EmptyDeclaration, S); |
1522 | return true; |
1523 | } |
1524 | |
1525 | bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) { |
1526 | Builder.markExprChild(Child: S->getAssertExpr(), Role: syntax::NodeRole::Condition); |
1527 | Builder.markExprChild(Child: S->getMessage(), Role: syntax::NodeRole::Message); |
1528 | Builder.foldNode(Builder.getDeclarationRange(S), |
1529 | new (allocator()) syntax::StaticAssertDeclaration, S); |
1530 | return true; |
1531 | } |
1532 | |
1533 | bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) { |
1534 | Builder.foldNode(Builder.getDeclarationRange(S), |
1535 | new (allocator()) syntax::LinkageSpecificationDeclaration, |
1536 | S); |
1537 | return true; |
1538 | } |
1539 | |
1540 | bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) { |
1541 | Builder.foldNode(Builder.getDeclarationRange(S), |
1542 | new (allocator()) syntax::NamespaceAliasDefinition, S); |
1543 | return true; |
1544 | } |
1545 | |
1546 | bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) { |
1547 | Builder.foldNode(Builder.getDeclarationRange(S), |
1548 | new (allocator()) syntax::UsingNamespaceDirective, S); |
1549 | return true; |
1550 | } |
1551 | |
1552 | bool WalkUpFromUsingDecl(UsingDecl *S) { |
1553 | Builder.foldNode(Builder.getDeclarationRange(S), |
1554 | new (allocator()) syntax::UsingDeclaration, S); |
1555 | return true; |
1556 | } |
1557 | |
1558 | bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) { |
1559 | Builder.foldNode(Builder.getDeclarationRange(S), |
1560 | new (allocator()) syntax::UsingDeclaration, S); |
1561 | return true; |
1562 | } |
1563 | |
1564 | bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) { |
1565 | Builder.foldNode(Builder.getDeclarationRange(S), |
1566 | new (allocator()) syntax::UsingDeclaration, S); |
1567 | return true; |
1568 | } |
1569 | |
1570 | bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) { |
1571 | Builder.foldNode(Builder.getDeclarationRange(S), |
1572 | new (allocator()) syntax::TypeAliasDeclaration, S); |
1573 | return true; |
1574 | } |
1575 | |
1576 | private: |
1577 | /// Folds SimpleDeclarator node (if present) and in case this is the last |
1578 | /// declarator in the chain it also folds SimpleDeclaration node. |
1579 | template <class T> bool processDeclaratorAndDeclaration(T *D) { |
1580 | auto Range = getDeclaratorRange( |
1581 | Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(), |
1582 | getQualifiedNameStart(D), getInitializerRange(D)); |
1583 | |
1584 | // There doesn't have to be a declarator (e.g. `void foo(int)` only has |
1585 | // declaration, but no declarator). |
1586 | if (!Range.getBegin().isValid()) { |
1587 | Builder.markChild(N: new (allocator()) syntax::DeclaratorList, |
1588 | R: syntax::NodeRole::Declarators); |
1589 | Builder.foldNode(Builder.getDeclarationRange(D), |
1590 | new (allocator()) syntax::SimpleDeclaration, D); |
1591 | return true; |
1592 | } |
1593 | |
1594 | auto *N = new (allocator()) syntax::SimpleDeclarator; |
1595 | Builder.foldNode(Builder.getRange(Range), N, nullptr); |
1596 | Builder.markChild(N, R: syntax::NodeRole::ListElement); |
1597 | |
1598 | if (!Builder.isResponsibleForCreatingDeclaration(D)) { |
1599 | // If this is not the last declarator in the declaration we expect a |
1600 | // delimiter after it. |
1601 | const auto *DelimiterToken = std::next(Builder.findToken(L: Range.getEnd())); |
1602 | if (DelimiterToken->kind() == clang::tok::TokenKind::comma) |
1603 | Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); |
1604 | } else { |
1605 | auto *DL = new (allocator()) syntax::DeclaratorList; |
1606 | auto DeclarationRange = Builder.getDeclarationRange(D); |
1607 | Builder.foldList(SuperRange: DeclarationRange, New: DL, From: nullptr); |
1608 | |
1609 | Builder.markChild(N: DL, R: syntax::NodeRole::Declarators); |
1610 | Builder.foldNode(DeclarationRange, |
1611 | new (allocator()) syntax::SimpleDeclaration, D); |
1612 | } |
1613 | return true; |
1614 | } |
1615 | |
1616 | /// Returns the range of the built node. |
1617 | syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) { |
1618 | assert(L.getTypePtr()->hasTrailingReturn()); |
1619 | |
1620 | auto ReturnedType = L.getReturnLoc(); |
1621 | // Build node for the declarator, if any. |
1622 | auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType), |
1623 | ReturnedType.getEndLoc()); |
1624 | syntax::SimpleDeclarator *ReturnDeclarator = nullptr; |
1625 | if (ReturnDeclaratorRange.isValid()) { |
1626 | ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator; |
1627 | Builder.foldNode(Builder.getRange(ReturnDeclaratorRange), |
1628 | ReturnDeclarator, nullptr); |
1629 | } |
1630 | |
1631 | // Build node for trailing return type. |
1632 | auto Return = Builder.getRange(ReturnedType.getSourceRange()); |
1633 | const auto *Arrow = Return.begin() - 1; |
1634 | assert(Arrow->kind() == tok::arrow); |
1635 | auto Tokens = llvm::ArrayRef(Arrow, Return.end()); |
1636 | Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken); |
1637 | if (ReturnDeclarator) |
1638 | Builder.markChild(N: ReturnDeclarator, R: syntax::NodeRole::Declarator); |
1639 | auto *R = new (allocator()) syntax::TrailingReturnType; |
1640 | Builder.foldNode(Tokens, R, L); |
1641 | return R; |
1642 | } |
1643 | |
1644 | void foldExplicitTemplateInstantiation( |
1645 | ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW, |
1646 | const syntax::Token *TemplateKW, |
1647 | syntax::SimpleDeclaration *InnerDeclaration, Decl *From) { |
1648 | assert(!ExternKW || ExternKW->kind() == tok::kw_extern); |
1649 | assert(TemplateKW && TemplateKW->kind() == tok::kw_template); |
1650 | Builder.markChildToken(T: ExternKW, R: syntax::NodeRole::ExternKeyword); |
1651 | Builder.markChildToken(T: TemplateKW, R: syntax::NodeRole::IntroducerKeyword); |
1652 | Builder.markChild(N: InnerDeclaration, R: syntax::NodeRole::Declaration); |
1653 | Builder.foldNode( |
1654 | Range, New: new (allocator()) syntax::ExplicitTemplateInstantiation, From); |
1655 | } |
1656 | |
1657 | syntax::TemplateDeclaration *foldTemplateDeclaration( |
1658 | ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW, |
1659 | ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) { |
1660 | assert(TemplateKW && TemplateKW->kind() == tok::kw_template); |
1661 | Builder.markChildToken(T: TemplateKW, R: syntax::NodeRole::IntroducerKeyword); |
1662 | |
1663 | auto *N = new (allocator()) syntax::TemplateDeclaration; |
1664 | Builder.foldNode(Range, New: N, From); |
1665 | Builder.markChild(N, R: syntax::NodeRole::Declaration); |
1666 | return N; |
1667 | } |
1668 | |
1669 | /// A small helper to save some typing. |
1670 | llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); } |
1671 | |
1672 | syntax::TreeBuilder &Builder; |
1673 | const ASTContext &Context; |
1674 | }; |
1675 | } // namespace |
1676 | |
1677 | void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) { |
1678 | DeclsWithoutSemicolons.insert(V: D); |
1679 | } |
1680 | |
1681 | void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) { |
1682 | if (Loc.isInvalid()) |
1683 | return; |
1684 | Pending.assignRole(Range: *findToken(L: Loc), Role); |
1685 | } |
1686 | |
1687 | void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) { |
1688 | if (!T) |
1689 | return; |
1690 | Pending.assignRole(Range: *T, Role: R); |
1691 | } |
1692 | |
1693 | void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) { |
1694 | assert(N); |
1695 | setRole(N, R); |
1696 | } |
1697 | |
1698 | void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) { |
1699 | auto *SN = Mapping.find(P: N); |
1700 | assert(SN != nullptr); |
1701 | setRole(N: SN, R); |
1702 | } |
1703 | void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) { |
1704 | auto *SN = Mapping.find(P: NNSLoc); |
1705 | assert(SN != nullptr); |
1706 | setRole(N: SN, R); |
1707 | } |
1708 | |
1709 | void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) { |
1710 | if (!Child) |
1711 | return; |
1712 | |
1713 | syntax::Tree *ChildNode; |
1714 | if (Expr *ChildExpr = dyn_cast<Expr>(Val: Child)) { |
1715 | // This is an expression in a statement position, consume the trailing |
1716 | // semicolon and form an 'ExpressionStatement' node. |
1717 | markExprChild(Child: ChildExpr, Role: NodeRole::Expression); |
1718 | ChildNode = new (allocator()) syntax::ExpressionStatement; |
1719 | // (!) 'getStmtRange()' ensures this covers a trailing semicolon. |
1720 | Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: getStmtRange(S: Child), Node: ChildNode); |
1721 | } else { |
1722 | ChildNode = Mapping.find(P: Child); |
1723 | } |
1724 | assert(ChildNode != nullptr); |
1725 | setRole(N: ChildNode, R: Role); |
1726 | } |
1727 | |
1728 | void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) { |
1729 | if (!Child) |
1730 | return; |
1731 | Child = IgnoreImplicit(E: Child); |
1732 | |
1733 | syntax::Tree *ChildNode = Mapping.find(Child); |
1734 | assert(ChildNode != nullptr); |
1735 | setRole(N: ChildNode, R: Role); |
1736 | } |
1737 | |
1738 | const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const { |
1739 | if (L.isInvalid()) |
1740 | return nullptr; |
1741 | auto It = LocationToToken.find(Val: L); |
1742 | assert(It != LocationToToken.end()); |
1743 | return It->second; |
1744 | } |
1745 | |
1746 | syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A, |
1747 | TokenBufferTokenManager& TBTM, |
1748 | ASTContext &Context) { |
1749 | TreeBuilder Builder(A, TBTM); |
1750 | BuildTreeVisitor(Context, Builder).TraverseAST(AST&: Context); |
1751 | return std::move(Builder).finalize(); |
1752 | } |
1753 |
Definitions
- IgnoreImplicitConstructorSingleStep
- IgnoreCXXFunctionalCastExprWrappingConstructor
- IgnoreImplicit
- isImplicitExpr
- GetStartLoc
- VisitParenTypeLoc
- VisitPointerTypeLoc
- VisitMemberPointerTypeLoc
- VisitBlockPointerTypeLoc
- VisitReferenceTypeLoc
- VisitObjCObjectPointerTypeLoc
- VisitTypeLoc
- VisitFunctionProtoTypeLoc
- HandlePointer
- dropDefaultArgs
- getOperatorNodeKind
- getQualifiedNameStart
- getInitializerRange
- getDeclaratorRange
- ASTToSyntaxMapping
- add
- add
- find
- find
- TreeBuilder
- TreeBuilder
- allocator
- sourceManager
- foldNode
- foldNode
- foldNode
- foldList
- finalize
- getRange
- getRange
- getTemplateRange
- isResponsibleForCreatingDeclaration
- getDeclarationRange
- getExprRange
- getStmtRange
- maybeAppendSemicolon
- withTrailingSemicolon
- setRole
- Forest
- Forest
- assignRole
- shrinkToFitList
- foldChildren
- finalize
- str
- str
- BuildTreeVisitor
- BuildTreeVisitor
- shouldTraversePostOrder
- WalkUpFromDeclaratorDecl
- WalkUpFromTypedefNameDecl
- VisitDecl
- TraverseClassTemplateSpecializationDecl
- WalkUpFromTemplateDecl
- WalkUpFromTagDecl
- handleFreeStandingTagDecl
- WalkUpFromTranslationUnitDecl
- WalkUpFromCompoundStmt
- WalkUpFromStmt
- TraverseIfStmt
- TraverseCXXForRangeStmt
- TraverseStmt
- TraverseOpaqueValueExpr
- WalkUpFromExpr
- TraverseUserDefinedLiteral
- buildUserDefinedLiteral
- WalkUpFromUserDefinedLiteral
- getLocalSourceRange
- getNameSpecifierKind
- buildNameSpecifier
- TraverseNestedNameSpecifierLoc
- buildIdExpression
- WalkUpFromMemberExpr
- WalkUpFromDeclRefExpr
- WalkUpFromDependentScopeDeclRefExpr
- WalkUpFromCXXThisExpr
- WalkUpFromParenExpr
- WalkUpFromIntegerLiteral
- WalkUpFromCharacterLiteral
- WalkUpFromFloatingLiteral
- WalkUpFromStringLiteral
- WalkUpFromCXXBoolLiteralExpr
- WalkUpFromCXXNullPtrLiteralExpr
- WalkUpFromUnaryOperator
- WalkUpFromBinaryOperator
- buildCallArguments
- WalkUpFromCallExpr
- WalkUpFromCXXConstructExpr
- TraverseCXXOperatorCallExpr
- WalkUpFromCXXOperatorCallExpr
- WalkUpFromCXXDefaultArgExpr
- WalkUpFromNamespaceDecl
- TraverseParenTypeLoc
- WalkUpFromParenTypeLoc
- WalkUpFromArrayTypeLoc
- buildParameterDeclarationList
- WalkUpFromFunctionTypeLoc
- WalkUpFromFunctionProtoTypeLoc
- TraverseMemberPointerTypeLoc
- WalkUpFromMemberPointerTypeLoc
- WalkUpFromDeclStmt
- WalkUpFromNullStmt
- WalkUpFromSwitchStmt
- WalkUpFromCaseStmt
- WalkUpFromDefaultStmt
- WalkUpFromIfStmt
- WalkUpFromForStmt
- WalkUpFromWhileStmt
- WalkUpFromContinueStmt
- WalkUpFromBreakStmt
- WalkUpFromReturnStmt
- WalkUpFromCXXForRangeStmt
- WalkUpFromEmptyDecl
- WalkUpFromStaticAssertDecl
- WalkUpFromLinkageSpecDecl
- WalkUpFromNamespaceAliasDecl
- WalkUpFromUsingDirectiveDecl
- WalkUpFromUsingDecl
- WalkUpFromUnresolvedUsingValueDecl
- WalkUpFromUnresolvedUsingTypenameDecl
- WalkUpFromTypeAliasDecl
- processDeclaratorAndDeclaration
- buildTrailingReturn
- foldExplicitTemplateInstantiation
- foldTemplateDeclaration
- allocator
- noticeDeclWithoutSemicolon
- markChildToken
- markChildToken
- markChild
- markChild
- markChild
- markStmtChild
- markExprChild
- findToken
Learn to use CMake with our Intro Training
Find out more