1//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8#include "clang/Tooling/Syntax/BuildTree.h"
9#include "clang/AST/ASTFwd.h"
10#include "clang/AST/Decl.h"
11#include "clang/AST/DeclBase.h"
12#include "clang/AST/DeclCXX.h"
13#include "clang/AST/DeclarationName.h"
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/IgnoreExpr.h"
17#include "clang/AST/OperationKinds.h"
18#include "clang/AST/RecursiveASTVisitor.h"
19#include "clang/AST/Stmt.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/AST/TypeLocVisitor.h"
22#include "clang/Basic/LLVM.h"
23#include "clang/Basic/SourceLocation.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/Specifiers.h"
26#include "clang/Basic/TokenKinds.h"
27#include "clang/Lex/Lexer.h"
28#include "clang/Lex/LiteralSupport.h"
29#include "clang/Tooling/Syntax/Nodes.h"
30#include "clang/Tooling/Syntax/TokenBufferTokenManager.h"
31#include "clang/Tooling/Syntax/Tokens.h"
32#include "clang/Tooling/Syntax/Tree.h"
33#include "llvm/ADT/ArrayRef.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/PointerUnion.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/ScopeExit.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/Support/Allocator.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/Support/FormatVariadic.h"
43#include "llvm/Support/MemoryBuffer.h"
44#include "llvm/Support/raw_ostream.h"
45#include <cstddef>
46#include <map>
47
48using namespace clang;
49
50// Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
51// generated by the compiler, as well as in implicit conversions like the one
52// wrapping `1` in `X x = 1;`.
53static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
54 if (auto *C = dyn_cast<CXXConstructExpr>(Val: E)) {
55 auto NumArgs = C->getNumArgs();
56 if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(Val: C->getArg(Arg: 1)))) {
57 Expr *A = C->getArg(Arg: 0);
58 if (C->getParenOrBraceRange().isInvalid())
59 return A;
60 }
61 }
62 return E;
63}
64
65// In:
66// struct X {
67// X(int)
68// };
69// X x = X(1);
70// Ignores the implicit `CXXFunctionalCastExpr` that wraps
71// `CXXConstructExpr X(1)`.
72static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
73 if (auto *F = dyn_cast<CXXFunctionalCastExpr>(Val: E)) {
74 if (F->getCastKind() == CK_ConstructorConversion)
75 return F->getSubExpr();
76 }
77 return E;
78}
79
80static Expr *IgnoreImplicit(Expr *E) {
81 return IgnoreExprNodes(E, Fns&: IgnoreImplicitSingleStep,
82 Fns&: IgnoreImplicitConstructorSingleStep,
83 Fns&: IgnoreCXXFunctionalCastExprWrappingConstructor);
84}
85
86LLVM_ATTRIBUTE_UNUSED
87static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
88
89namespace {
90/// Get start location of the Declarator from the TypeLoc.
91/// E.g.:
92/// loc of `(` in `int (a)`
93/// loc of `*` in `int *(a)`
94/// loc of the first `(` in `int (*a)(int)`
95/// loc of the `*` in `int *(a)(int)`
96/// loc of the first `*` in `const int *const *volatile a;`
97///
98/// It is non-trivial to get the start location because TypeLocs are stored
99/// inside out. In the example above `*volatile` is the TypeLoc returned
100/// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
101/// returns.
102struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
103 SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
104 auto L = Visit(TyLoc: T.getInnerLoc());
105 if (L.isValid())
106 return L;
107 return T.getLParenLoc();
108 }
109
110 // Types spelled in the prefix part of the declarator.
111 SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
112 return HandlePointer(T);
113 }
114
115 SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
116 return HandlePointer(T);
117 }
118
119 SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
120 return HandlePointer(T);
121 }
122
123 SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
124 return HandlePointer(T);
125 }
126
127 SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
128 return HandlePointer(T);
129 }
130
131 // All other cases are not important, as they are either part of declaration
132 // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
133 // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
134 // declarator themselves, but their underlying type can.
135 SourceLocation VisitTypeLoc(TypeLoc T) {
136 auto N = T.getNextTypeLoc();
137 if (!N)
138 return SourceLocation();
139 return Visit(TyLoc: N);
140 }
141
142 SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
143 if (T.getTypePtr()->hasTrailingReturn())
144 return SourceLocation(); // avoid recursing into the suffix of declarator.
145 return VisitTypeLoc(T);
146 }
147
148private:
149 template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
150 auto L = Visit(T.getPointeeLoc());
151 if (L.isValid())
152 return L;
153 return T.getLocalSourceRange().getBegin();
154 }
155};
156} // namespace
157
158static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
159 auto FirstDefaultArg =
160 llvm::find_if(Range&: Args, P: [](auto It) { return isa<CXXDefaultArgExpr>(It); });
161 return llvm::make_range(x: Args.begin(), y: FirstDefaultArg);
162}
163
164static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
165 switch (E.getOperator()) {
166 // Comparison
167 case OO_EqualEqual:
168 case OO_ExclaimEqual:
169 case OO_Greater:
170 case OO_GreaterEqual:
171 case OO_Less:
172 case OO_LessEqual:
173 case OO_Spaceship:
174 // Assignment
175 case OO_Equal:
176 case OO_SlashEqual:
177 case OO_PercentEqual:
178 case OO_CaretEqual:
179 case OO_PipeEqual:
180 case OO_LessLessEqual:
181 case OO_GreaterGreaterEqual:
182 case OO_PlusEqual:
183 case OO_MinusEqual:
184 case OO_StarEqual:
185 case OO_AmpEqual:
186 // Binary computation
187 case OO_Slash:
188 case OO_Percent:
189 case OO_Caret:
190 case OO_Pipe:
191 case OO_LessLess:
192 case OO_GreaterGreater:
193 case OO_AmpAmp:
194 case OO_PipePipe:
195 case OO_ArrowStar:
196 case OO_Comma:
197 return syntax::NodeKind::BinaryOperatorExpression;
198 case OO_Tilde:
199 case OO_Exclaim:
200 return syntax::NodeKind::PrefixUnaryOperatorExpression;
201 // Prefix/Postfix increment/decrement
202 case OO_PlusPlus:
203 case OO_MinusMinus:
204 switch (E.getNumArgs()) {
205 case 1:
206 return syntax::NodeKind::PrefixUnaryOperatorExpression;
207 case 2:
208 return syntax::NodeKind::PostfixUnaryOperatorExpression;
209 default:
210 llvm_unreachable("Invalid number of arguments for operator");
211 }
212 // Operators that can be unary or binary
213 case OO_Plus:
214 case OO_Minus:
215 case OO_Star:
216 case OO_Amp:
217 switch (E.getNumArgs()) {
218 case 1:
219 return syntax::NodeKind::PrefixUnaryOperatorExpression;
220 case 2:
221 return syntax::NodeKind::BinaryOperatorExpression;
222 default:
223 llvm_unreachable("Invalid number of arguments for operator");
224 }
225 return syntax::NodeKind::BinaryOperatorExpression;
226 // Not yet supported by SyntaxTree
227 case OO_New:
228 case OO_Delete:
229 case OO_Array_New:
230 case OO_Array_Delete:
231 case OO_Coawait:
232 case OO_Subscript:
233 case OO_Arrow:
234 return syntax::NodeKind::UnknownExpression;
235 case OO_Call:
236 return syntax::NodeKind::CallExpression;
237 case OO_Conditional: // not overloadable
238 case NUM_OVERLOADED_OPERATORS:
239 case OO_None:
240 llvm_unreachable("Not an overloadable operator");
241 }
242 llvm_unreachable("Unknown OverloadedOperatorKind enum");
243}
244
245/// Get the start of the qualified name. In the examples below it gives the
246/// location of the `^`:
247/// `int ^a;`
248/// `int *^a;`
249/// `int ^a::S::f(){}`
250static SourceLocation getQualifiedNameStart(NamedDecl *D) {
251 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
252 "only DeclaratorDecl and TypedefNameDecl are supported.");
253
254 auto DN = D->getDeclName();
255 bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
256 if (IsAnonymous)
257 return SourceLocation();
258
259 if (const auto *DD = dyn_cast<DeclaratorDecl>(Val: D)) {
260 if (DD->getQualifierLoc()) {
261 return DD->getQualifierLoc().getBeginLoc();
262 }
263 }
264
265 return D->getLocation();
266}
267
268/// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
269/// `int a;` -> range of ``,
270/// `int *a = nullptr` -> range of `= nullptr`.
271/// `int a{}` -> range of `{}`.
272/// `int a()` -> range of `()`.
273static SourceRange getInitializerRange(Decl *D) {
274 if (auto *V = dyn_cast<VarDecl>(Val: D)) {
275 auto *I = V->getInit();
276 // Initializers in range-based-for are not part of the declarator
277 if (I && !V->isCXXForRangeDecl())
278 return I->getSourceRange();
279 }
280
281 return SourceRange();
282}
283
284/// Gets the range of declarator as defined by the C++ grammar. E.g.
285/// `int a;` -> range of `a`,
286/// `int *a;` -> range of `*a`,
287/// `int a[10];` -> range of `a[10]`,
288/// `int a[1][2][3];` -> range of `a[1][2][3]`,
289/// `int *a = nullptr` -> range of `*a = nullptr`.
290/// `int S::f(){}` -> range of `S::f()`.
291/// FIXME: \p Name must be a source range.
292static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
293 SourceLocation Name,
294 SourceRange Initializer) {
295 SourceLocation Start = GetStartLoc().Visit(TyLoc: T);
296 SourceLocation End = T.getEndLoc();
297 if (Name.isValid()) {
298 if (Start.isInvalid())
299 Start = Name;
300 // End of TypeLoc could be invalid if the type is invalid, fallback to the
301 // NameLoc.
302 if (End.isInvalid() || SM.isBeforeInTranslationUnit(LHS: End, RHS: Name))
303 End = Name;
304 }
305 if (Initializer.isValid()) {
306 auto InitializerEnd = Initializer.getEnd();
307 assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
308 End == InitializerEnd);
309 End = InitializerEnd;
310 }
311 return SourceRange(Start, End);
312}
313
314namespace {
315/// All AST hierarchy roots that can be represented as pointers.
316using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
317/// Maintains a mapping from AST to syntax tree nodes. This class will get more
318/// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
319/// FIXME: expose this as public API.
320class ASTToSyntaxMapping {
321public:
322 void add(ASTPtr From, syntax::Tree *To) {
323 assert(To != nullptr);
324 assert(!From.isNull());
325
326 bool Added = Nodes.insert(KV: {From, To}).second;
327 (void)Added;
328 assert(Added && "mapping added twice");
329 }
330
331 void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
332 assert(To != nullptr);
333 assert(From.hasQualifier());
334
335 bool Added = NNSNodes.insert(KV: {From, To}).second;
336 (void)Added;
337 assert(Added && "mapping added twice");
338 }
339
340 syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(Val: P); }
341
342 syntax::Tree *find(NestedNameSpecifierLoc P) const {
343 return NNSNodes.lookup(Val: P);
344 }
345
346private:
347 llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
348 llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
349};
350} // namespace
351
352/// A helper class for constructing the syntax tree while traversing a clang
353/// AST.
354///
355/// At each point of the traversal we maintain a list of pending nodes.
356/// Initially all tokens are added as pending nodes. When processing a clang AST
357/// node, the clients need to:
358/// - create a corresponding syntax node,
359/// - assign roles to all pending child nodes with 'markChild' and
360/// 'markChildToken',
361/// - replace the child nodes with the new syntax node in the pending list
362/// with 'foldNode'.
363///
364/// Note that all children are expected to be processed when building a node.
365///
366/// Call finalize() to finish building the tree and consume the root node.
367class syntax::TreeBuilder {
368public:
369 TreeBuilder(syntax::Arena &Arena, TokenBufferTokenManager& TBTM)
370 : Arena(Arena),
371 TBTM(TBTM),
372 Pending(Arena, TBTM.tokenBuffer()) {
373 for (const auto &T : TBTM.tokenBuffer().expandedTokens())
374 LocationToToken.insert(KV: {T.location(), &T});
375 }
376
377 llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
378 const SourceManager &sourceManager() const {
379 return TBTM.sourceManager();
380 }
381
382 /// Populate children for \p New node, assuming it covers tokens from \p
383 /// Range.
384 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
385 assert(New);
386 Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: Range, Node: New);
387 if (From)
388 Mapping.add(From, To: New);
389 }
390
391 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
392 // FIXME: add mapping for TypeLocs
393 foldNode(Range, New, From: nullptr);
394 }
395
396 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
397 NestedNameSpecifierLoc From) {
398 assert(New);
399 Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: Range, Node: New);
400 if (From)
401 Mapping.add(From, To: New);
402 }
403
404 /// Populate children for \p New list, assuming it covers tokens from a
405 /// subrange of \p SuperRange.
406 void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
407 ASTPtr From) {
408 assert(New);
409 auto ListRange = Pending.shrinkToFitList(Range: SuperRange);
410 Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: ListRange, Node: New);
411 if (From)
412 Mapping.add(From, To: New);
413 }
414
415 /// Notifies that we should not consume trailing semicolon when computing
416 /// token range of \p D.
417 void noticeDeclWithoutSemicolon(Decl *D);
418
419 /// Mark the \p Child node with a corresponding \p Role. All marked children
420 /// should be consumed by foldNode.
421 /// When called on expressions (clang::Expr is derived from clang::Stmt),
422 /// wraps expressions into expression statement.
423 void markStmtChild(Stmt *Child, NodeRole Role);
424 /// Should be called for expressions in non-statement position to avoid
425 /// wrapping into expression statement.
426 void markExprChild(Expr *Child, NodeRole Role);
427 /// Set role for a token starting at \p Loc.
428 void markChildToken(SourceLocation Loc, NodeRole R);
429 /// Set role for \p T.
430 void markChildToken(const syntax::Token *T, NodeRole R);
431
432 /// Set role for \p N.
433 void markChild(syntax::Node *N, NodeRole R);
434 /// Set role for the syntax node matching \p N.
435 void markChild(ASTPtr N, NodeRole R);
436 /// Set role for the syntax node matching \p N.
437 void markChild(NestedNameSpecifierLoc N, NodeRole R);
438
439 /// Finish building the tree and consume the root node.
440 syntax::TranslationUnit *finalize() && {
441 auto Tokens = TBTM.tokenBuffer().expandedTokens();
442 assert(!Tokens.empty());
443 assert(Tokens.back().kind() == tok::eof);
444
445 // Build the root of the tree, consuming all the children.
446 Pending.foldChildren(TBTM.tokenBuffer(), Tokens.drop_back(),
447 new (Arena.getAllocator()) syntax::TranslationUnit);
448
449 auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
450 TU->assertInvariantsRecursive();
451 return TU;
452 }
453
454 /// Finds a token starting at \p L. The token must exist if \p L is valid.
455 const syntax::Token *findToken(SourceLocation L) const;
456
457 /// Finds the syntax tokens corresponding to the \p SourceRange.
458 ArrayRef<syntax::Token> getRange(SourceRange Range) const {
459 assert(Range.isValid());
460 return getRange(First: Range.getBegin(), Last: Range.getEnd());
461 }
462
463 /// Finds the syntax tokens corresponding to the passed source locations.
464 /// \p First is the start position of the first token and \p Last is the start
465 /// position of the last token.
466 ArrayRef<syntax::Token> getRange(SourceLocation First,
467 SourceLocation Last) const {
468 assert(First.isValid());
469 assert(Last.isValid());
470 assert(First == Last ||
471 TBTM.sourceManager().isBeforeInTranslationUnit(First, Last));
472 return llvm::ArrayRef(findToken(L: First), std::next(x: findToken(L: Last)));
473 }
474
475 ArrayRef<syntax::Token>
476 getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
477 auto Tokens = getRange(Range: D->getSourceRange());
478 return maybeAppendSemicolon(Tokens, D);
479 }
480
481 /// Returns true if \p D is the last declarator in a chain and is thus
482 /// reponsible for creating SimpleDeclaration for the whole chain.
483 bool isResponsibleForCreatingDeclaration(const Decl *D) const {
484 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
485 "only DeclaratorDecl and TypedefNameDecl are supported.");
486
487 const Decl *Next = D->getNextDeclInContext();
488
489 // There's no next sibling, this one is responsible.
490 if (Next == nullptr) {
491 return true;
492 }
493
494 // Next sibling is not the same type, this one is responsible.
495 if (D->getKind() != Next->getKind()) {
496 return true;
497 }
498 // Next sibling doesn't begin at the same loc, it must be a different
499 // declaration, so this declarator is responsible.
500 if (Next->getBeginLoc() != D->getBeginLoc()) {
501 return true;
502 }
503
504 // NextT is a member of the same declaration, and we need the last member to
505 // create declaration. This one is not responsible.
506 return false;
507 }
508
509 ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
510 ArrayRef<syntax::Token> Tokens;
511 // We want to drop the template parameters for specializations.
512 if (const auto *S = dyn_cast<TagDecl>(Val: D))
513 Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
514 else
515 Tokens = getRange(Range: D->getSourceRange());
516 return maybeAppendSemicolon(Tokens, D);
517 }
518
519 ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
520 return getRange(E->getSourceRange());
521 }
522
523 /// Find the adjusted range for the statement, consuming the trailing
524 /// semicolon when needed.
525 ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
526 auto Tokens = getRange(Range: S->getSourceRange());
527 if (isa<CompoundStmt>(Val: S))
528 return Tokens;
529
530 // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
531 // all statements that end with those. Consume this semicolon here.
532 if (Tokens.back().kind() == tok::semi)
533 return Tokens;
534 return withTrailingSemicolon(Tokens);
535 }
536
537private:
538 ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
539 const Decl *D) const {
540 if (isa<NamespaceDecl>(Val: D))
541 return Tokens;
542 if (DeclsWithoutSemicolons.count(V: D))
543 return Tokens;
544 // FIXME: do not consume trailing semicolon on function definitions.
545 // Most declarations own a semicolon in syntax trees, but not in clang AST.
546 return withTrailingSemicolon(Tokens);
547 }
548
549 ArrayRef<syntax::Token>
550 withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
551 assert(!Tokens.empty());
552 assert(Tokens.back().kind() != tok::eof);
553 // We never consume 'eof', so looking at the next token is ok.
554 if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
555 return llvm::ArrayRef(Tokens.begin(), Tokens.end() + 1);
556 return Tokens;
557 }
558
559 void setRole(syntax::Node *N, NodeRole R) {
560 assert(N->getRole() == NodeRole::Detached);
561 N->setRole(R);
562 }
563
564 /// A collection of trees covering the input tokens.
565 /// When created, each tree corresponds to a single token in the file.
566 /// Clients call 'foldChildren' to attach one or more subtrees to a parent
567 /// node and update the list of trees accordingly.
568 ///
569 /// Ensures that added nodes properly nest and cover the whole token stream.
570 struct Forest {
571 Forest(syntax::Arena &A, const syntax::TokenBuffer &TB) {
572 assert(!TB.expandedTokens().empty());
573 assert(TB.expandedTokens().back().kind() == tok::eof);
574 // Create all leaf nodes.
575 // Note that we do not have 'eof' in the tree.
576 for (const auto &T : TB.expandedTokens().drop_back()) {
577 auto *L = new (A.getAllocator())
578 syntax::Leaf(reinterpret_cast<TokenManager::Key>(&T));
579 L->Original = true;
580 L->CanModify = TB.spelledForExpanded(Expanded: T).has_value();
581 Trees.insert(position: Trees.end(), x: {&T, L});
582 }
583 }
584
585 void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
586 assert(!Range.empty());
587 auto It = Trees.lower_bound(x: Range.begin());
588 assert(It != Trees.end() && "no node found");
589 assert(It->first == Range.begin() && "no child with the specified range");
590 assert((std::next(It) == Trees.end() ||
591 std::next(It)->first == Range.end()) &&
592 "no child with the specified range");
593 assert(It->second->getRole() == NodeRole::Detached &&
594 "re-assigning role for a child");
595 It->second->setRole(Role);
596 }
597
598 /// Shrink \p Range to a subrange that only contains tokens of a list.
599 /// List elements and delimiters should already have correct roles.
600 ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
601 auto BeginChildren = Trees.lower_bound(x: Range.begin());
602 assert((BeginChildren == Trees.end() ||
603 BeginChildren->first == Range.begin()) &&
604 "Range crosses boundaries of existing subtrees");
605
606 auto EndChildren = Trees.lower_bound(x: Range.end());
607 assert(
608 (EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
609 "Range crosses boundaries of existing subtrees");
610
611 auto BelongsToList = [](decltype(Trees)::value_type KV) {
612 auto Role = KV.second->getRole();
613 return Role == syntax::NodeRole::ListElement ||
614 Role == syntax::NodeRole::ListDelimiter;
615 };
616
617 auto BeginListChildren =
618 std::find_if(first: BeginChildren, last: EndChildren, pred: BelongsToList);
619
620 auto EndListChildren =
621 std::find_if_not(first: BeginListChildren, last: EndChildren, pred: BelongsToList);
622
623 return ArrayRef<syntax::Token>(BeginListChildren->first,
624 EndListChildren->first);
625 }
626
627 /// Add \p Node to the forest and attach child nodes based on \p Tokens.
628 void foldChildren(const syntax::TokenBuffer &TB,
629 ArrayRef<syntax::Token> Tokens, syntax::Tree *Node) {
630 // Attach children to `Node`.
631 assert(Node->getFirstChild() == nullptr && "node already has children");
632
633 auto *FirstToken = Tokens.begin();
634 auto BeginChildren = Trees.lower_bound(x: FirstToken);
635
636 assert((BeginChildren == Trees.end() ||
637 BeginChildren->first == FirstToken) &&
638 "fold crosses boundaries of existing subtrees");
639 auto EndChildren = Trees.lower_bound(x: Tokens.end());
640 assert(
641 (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
642 "fold crosses boundaries of existing subtrees");
643
644 for (auto It = BeginChildren; It != EndChildren; ++It) {
645 auto *C = It->second;
646 if (C->getRole() == NodeRole::Detached)
647 C->setRole(NodeRole::Unknown);
648 Node->appendChildLowLevel(Child: C);
649 }
650
651 // Mark that this node came from the AST and is backed by the source code.
652 Node->Original = true;
653 Node->CanModify =
654 TB.spelledForExpanded(Expanded: Tokens).has_value();
655
656 Trees.erase(first: BeginChildren, last: EndChildren);
657 Trees.insert(x: {FirstToken, Node});
658 }
659
660 // EXPECTS: all tokens were consumed and are owned by a single root node.
661 syntax::Node *finalize() && {
662 assert(Trees.size() == 1);
663 auto *Root = Trees.begin()->second;
664 Trees = {};
665 return Root;
666 }
667
668 std::string str(const syntax::TokenBufferTokenManager &STM) const {
669 std::string R;
670 for (auto It = Trees.begin(); It != Trees.end(); ++It) {
671 unsigned CoveredTokens =
672 It != Trees.end()
673 ? (std::next(x: It)->first - It->first)
674 : STM.tokenBuffer().expandedTokens().end() - It->first;
675
676 R += std::string(
677 formatv(Fmt: "- '{0}' covers '{1}'+{2} tokens\n", Vals: It->second->getKind(),
678 Vals: It->first->text(SM: STM.sourceManager()), Vals&: CoveredTokens));
679 R += It->second->dump(SM: STM);
680 }
681 return R;
682 }
683
684 private:
685 /// Maps from the start token to a subtree starting at that token.
686 /// Keys in the map are pointers into the array of expanded tokens, so
687 /// pointer order corresponds to the order of preprocessor tokens.
688 std::map<const syntax::Token *, syntax::Node *> Trees;
689 };
690
691 /// For debugging purposes.
692 std::string str() { return Pending.str(STM: TBTM); }
693
694 syntax::Arena &Arena;
695 TokenBufferTokenManager& TBTM;
696 /// To quickly find tokens by their start location.
697 llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken;
698 Forest Pending;
699 llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
700 ASTToSyntaxMapping Mapping;
701};
702
703namespace {
704class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
705public:
706 explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
707 : Builder(Builder), Context(Context) {}
708
709 bool shouldTraversePostOrder() const { return true; }
710
711 bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
712 return processDeclaratorAndDeclaration(D: DD);
713 }
714
715 bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
716 return processDeclaratorAndDeclaration(D: TD);
717 }
718
719 bool VisitDecl(Decl *D) {
720 assert(!D->isImplicit());
721 Builder.foldNode(Range: Builder.getDeclarationRange(D),
722 New: new (allocator()) syntax::UnknownDeclaration(), From: D);
723 return true;
724 }
725
726 // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
727 // override Traverse.
728 // FIXME: make RAV call WalkUpFrom* instead.
729 bool
730 TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
731 if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
732 return false;
733 if (C->isExplicitSpecialization())
734 return true; // we are only interested in explicit instantiations.
735 auto *Declaration =
736 cast<syntax::SimpleDeclaration>(Val: handleFreeStandingTagDecl(C));
737 foldExplicitTemplateInstantiation(
738 Range: Builder.getTemplateRange(D: C), ExternKW: Builder.findToken(L: C->getExternLoc()),
739 TemplateKW: Builder.findToken(L: C->getTemplateKeywordLoc()), InnerDeclaration: Declaration, From: C);
740 return true;
741 }
742
743 bool WalkUpFromTemplateDecl(TemplateDecl *S) {
744 foldTemplateDeclaration(
745 Builder.getDeclarationRange(S),
746 Builder.findToken(L: S->getTemplateParameters()->getTemplateLoc()),
747 Builder.getDeclarationRange(S->getTemplatedDecl()), S);
748 return true;
749 }
750
751 bool WalkUpFromTagDecl(TagDecl *C) {
752 // FIXME: build the ClassSpecifier node.
753 if (!C->isFreeStanding()) {
754 assert(C->getNumTemplateParameterLists() == 0);
755 return true;
756 }
757 handleFreeStandingTagDecl(C);
758 return true;
759 }
760
761 syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
762 assert(C->isFreeStanding());
763 // Class is a declaration specifier and needs a spanning declaration node.
764 auto DeclarationRange = Builder.getDeclarationRange(C);
765 syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
766 Builder.foldNode(DeclarationRange, Result, nullptr);
767
768 // Build TemplateDeclaration nodes if we had template parameters.
769 auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
770 const auto *TemplateKW = Builder.findToken(L: L.getTemplateLoc());
771 auto R = llvm::ArrayRef(TemplateKW, DeclarationRange.end());
772 Result =
773 foldTemplateDeclaration(Range: R, TemplateKW, TemplatedDeclaration: DeclarationRange, From: nullptr);
774 DeclarationRange = R;
775 };
776 if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: C))
777 ConsumeTemplateParameters(*S->getTemplateParameters());
778 for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
779 ConsumeTemplateParameters(*C->getTemplateParameterList(i: I - 1));
780 return Result;
781 }
782
783 bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
784 // We do not want to call VisitDecl(), the declaration for translation
785 // unit is built by finalize().
786 return true;
787 }
788
789 bool WalkUpFromCompoundStmt(CompoundStmt *S) {
790 using NodeRole = syntax::NodeRole;
791
792 Builder.markChildToken(Loc: S->getLBracLoc(), R: NodeRole::OpenParen);
793 for (auto *Child : S->body())
794 Builder.markStmtChild(Child, Role: NodeRole::Statement);
795 Builder.markChildToken(Loc: S->getRBracLoc(), R: NodeRole::CloseParen);
796
797 Builder.foldNode(Builder.getStmtRange(S),
798 new (allocator()) syntax::CompoundStatement, S);
799 return true;
800 }
801
802 // Some statements are not yet handled by syntax trees.
803 bool WalkUpFromStmt(Stmt *S) {
804 Builder.foldNode(Range: Builder.getStmtRange(S),
805 New: new (allocator()) syntax::UnknownStatement, From: S);
806 return true;
807 }
808
809 bool TraverseIfStmt(IfStmt *S) {
810 bool Result = [&, this]() {
811 if (S->getInit() && !TraverseStmt(S: S->getInit())) {
812 return false;
813 }
814 // In cases where the condition is an initialized declaration in a
815 // statement, we want to preserve the declaration and ignore the
816 // implicit condition expression in the syntax tree.
817 if (S->hasVarStorage()) {
818 if (!TraverseStmt(S: S->getConditionVariableDeclStmt()))
819 return false;
820 } else if (S->getCond() && !TraverseStmt(S->getCond()))
821 return false;
822
823 if (S->getThen() && !TraverseStmt(S: S->getThen()))
824 return false;
825 if (S->getElse() && !TraverseStmt(S: S->getElse()))
826 return false;
827 return true;
828 }();
829 WalkUpFromIfStmt(S);
830 return Result;
831 }
832
833 bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
834 // We override to traverse range initializer as VarDecl.
835 // RAV traverses it as a statement, we produce invalid node kinds in that
836 // case.
837 // FIXME: should do this in RAV instead?
838 bool Result = [&, this]() {
839 if (S->getInit() && !TraverseStmt(S: S->getInit()))
840 return false;
841 if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
842 return false;
843 if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
844 return false;
845 if (S->getBody() && !TraverseStmt(S: S->getBody()))
846 return false;
847 return true;
848 }();
849 WalkUpFromCXXForRangeStmt(S);
850 return Result;
851 }
852
853 bool TraverseStmt(Stmt *S) {
854 if (auto *DS = dyn_cast_or_null<DeclStmt>(Val: S)) {
855 // We want to consume the semicolon, make sure SimpleDeclaration does not.
856 for (auto *D : DS->decls())
857 Builder.noticeDeclWithoutSemicolon(D);
858 } else if (auto *E = dyn_cast_or_null<Expr>(Val: S)) {
859 return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
860 }
861 return RecursiveASTVisitor::TraverseStmt(S);
862 }
863
864 bool TraverseOpaqueValueExpr(OpaqueValueExpr *VE) {
865 // OpaqueValue doesn't correspond to concrete syntax, ignore it.
866 return true;
867 }
868
869 // Some expressions are not yet handled by syntax trees.
870 bool WalkUpFromExpr(Expr *E) {
871 assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
872 Builder.foldNode(Builder.getExprRange(E),
873 new (allocator()) syntax::UnknownExpression, E);
874 return true;
875 }
876
877 bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
878 // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
879 // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
880 // UDL suffix location does not point to the beginning of a token, so we
881 // can't represent the UDL suffix as a separate syntax tree node.
882
883 return WalkUpFromUserDefinedLiteral(S);
884 }
885
886 syntax::UserDefinedLiteralExpression *
887 buildUserDefinedLiteral(UserDefinedLiteral *S) {
888 switch (S->getLiteralOperatorKind()) {
889 case UserDefinedLiteral::LOK_Integer:
890 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
891 case UserDefinedLiteral::LOK_Floating:
892 return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
893 case UserDefinedLiteral::LOK_Character:
894 return new (allocator()) syntax::CharUserDefinedLiteralExpression;
895 case UserDefinedLiteral::LOK_String:
896 return new (allocator()) syntax::StringUserDefinedLiteralExpression;
897 case UserDefinedLiteral::LOK_Raw:
898 case UserDefinedLiteral::LOK_Template:
899 // For raw literal operator and numeric literal operator template we
900 // cannot get the type of the operand in the semantic AST. We get this
901 // information from the token. As integer and floating point have the same
902 // token kind, we run `NumericLiteralParser` again to distinguish them.
903 auto TokLoc = S->getBeginLoc();
904 auto TokSpelling =
905 Builder.findToken(L: TokLoc)->text(SM: Context.getSourceManager());
906 auto Literal =
907 NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
908 Context.getLangOpts(), Context.getTargetInfo(),
909 Context.getDiagnostics());
910 if (Literal.isIntegerLiteral())
911 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
912 else {
913 assert(Literal.isFloatingLiteral());
914 return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
915 }
916 }
917 llvm_unreachable("Unknown literal operator kind.");
918 }
919
920 bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
921 Builder.markChildToken(Loc: S->getBeginLoc(), R: syntax::NodeRole::LiteralToken);
922 Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
923 return true;
924 }
925
926 // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
927 // `DependentTemplateSpecializationType` case.
928 /// Given a nested-name-specifier return the range for the last name
929 /// specifier.
930 ///
931 /// e.g. `std::T::template X<U>::` => `template X<U>::`
932 SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
933 auto SR = NNSLoc.getLocalSourceRange();
934
935 // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
936 // return the desired `SourceRange`, but there is a corner case. For a
937 // `DependentTemplateSpecializationType` this method returns its
938 // qualifiers as well, in other words in the example above this method
939 // returns `T::template X<U>::` instead of only `template X<U>::`
940 if (auto TL = NNSLoc.getTypeLoc()) {
941 if (auto DependentTL =
942 TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
943 // The 'template' keyword is always present in dependent template
944 // specializations. Except in the case of incorrect code
945 // TODO: Treat the case of incorrect code.
946 SR.setBegin(DependentTL.getTemplateKeywordLoc());
947 }
948 }
949
950 return SR;
951 }
952
953 syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
954 switch (NNS.getKind()) {
955 case NestedNameSpecifier::Global:
956 return syntax::NodeKind::GlobalNameSpecifier;
957 case NestedNameSpecifier::Namespace:
958 case NestedNameSpecifier::NamespaceAlias:
959 case NestedNameSpecifier::Identifier:
960 return syntax::NodeKind::IdentifierNameSpecifier;
961 case NestedNameSpecifier::TypeSpecWithTemplate:
962 return syntax::NodeKind::SimpleTemplateNameSpecifier;
963 case NestedNameSpecifier::TypeSpec: {
964 const auto *NNSType = NNS.getAsType();
965 assert(NNSType);
966 if (isa<DecltypeType>(NNSType))
967 return syntax::NodeKind::DecltypeNameSpecifier;
968 if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
969 NNSType))
970 return syntax::NodeKind::SimpleTemplateNameSpecifier;
971 return syntax::NodeKind::IdentifierNameSpecifier;
972 }
973 default:
974 // FIXME: Support Microsoft's __super
975 llvm::report_fatal_error(reason: "We don't yet support the __super specifier",
976 gen_crash_diag: true);
977 }
978 }
979
980 syntax::NameSpecifier *
981 buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
982 assert(NNSLoc.hasQualifier());
983 auto NameSpecifierTokens =
984 Builder.getRange(Range: getLocalSourceRange(NNSLoc)).drop_back();
985 switch (getNameSpecifierKind(NNS: *NNSLoc.getNestedNameSpecifier())) {
986 case syntax::NodeKind::GlobalNameSpecifier:
987 return new (allocator()) syntax::GlobalNameSpecifier;
988 case syntax::NodeKind::IdentifierNameSpecifier: {
989 assert(NameSpecifierTokens.size() == 1);
990 Builder.markChildToken(T: NameSpecifierTokens.begin(),
991 R: syntax::NodeRole::Unknown);
992 auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
993 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
994 return NS;
995 }
996 case syntax::NodeKind::SimpleTemplateNameSpecifier: {
997 // TODO: Build `SimpleTemplateNameSpecifier` children and implement
998 // accessors to them.
999 // Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
1000 // some `TypeLoc`s have inside them the previous name specifier and
1001 // we want to treat them independently.
1002 auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
1003 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
1004 return NS;
1005 }
1006 case syntax::NodeKind::DecltypeNameSpecifier: {
1007 const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
1008 if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
1009 return nullptr;
1010 auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
1011 // TODO: Implement accessor to `DecltypeNameSpecifier` inner
1012 // `DecltypeTypeLoc`.
1013 // For that add mapping from `TypeLoc` to `syntax::Node*` then:
1014 // Builder.markChild(TypeLoc, syntax::NodeRole);
1015 Builder.foldNode(NameSpecifierTokens, NS, nullptr);
1016 return NS;
1017 }
1018 default:
1019 llvm_unreachable("getChildKind() does not return this value");
1020 }
1021 }
1022
1023 // To build syntax tree nodes for NestedNameSpecifierLoc we override
1024 // Traverse instead of WalkUpFrom because we want to traverse the children
1025 // ourselves and build a list instead of a nested tree of name specifier
1026 // prefixes.
1027 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
1028 if (!QualifierLoc)
1029 return true;
1030 for (auto It = QualifierLoc; It; It = It.getPrefix()) {
1031 auto *NS = buildNameSpecifier(It);
1032 if (!NS)
1033 return false;
1034 Builder.markChild(NS, syntax::NodeRole::ListElement);
1035 Builder.markChildToken(Loc: It.getEndLoc(), R: syntax::NodeRole::ListDelimiter);
1036 }
1037 Builder.foldNode(Range: Builder.getRange(Range: QualifierLoc.getSourceRange()),
1038 New: new (allocator()) syntax::NestedNameSpecifier,
1039 From: QualifierLoc);
1040 return true;
1041 }
1042
1043 syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
1044 SourceLocation TemplateKeywordLoc,
1045 SourceRange UnqualifiedIdLoc,
1046 ASTPtr From) {
1047 if (QualifierLoc) {
1048 Builder.markChild(N: QualifierLoc, R: syntax::NodeRole::Qualifier);
1049 if (TemplateKeywordLoc.isValid())
1050 Builder.markChildToken(Loc: TemplateKeywordLoc,
1051 R: syntax::NodeRole::TemplateKeyword);
1052 }
1053
1054 auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
1055 Builder.foldNode(Range: Builder.getRange(Range: UnqualifiedIdLoc), New: TheUnqualifiedId,
1056 From: nullptr);
1057 Builder.markChild(N: TheUnqualifiedId, R: syntax::NodeRole::UnqualifiedId);
1058
1059 auto IdExpressionBeginLoc =
1060 QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
1061
1062 auto *TheIdExpression = new (allocator()) syntax::IdExpression;
1063 Builder.foldNode(
1064 Builder.getRange(First: IdExpressionBeginLoc, Last: UnqualifiedIdLoc.getEnd()),
1065 TheIdExpression, From);
1066
1067 return TheIdExpression;
1068 }
1069
1070 bool WalkUpFromMemberExpr(MemberExpr *S) {
1071 // For `MemberExpr` with implicit `this->` we generate a simple
1072 // `id-expression` syntax node, beacuse an implicit `member-expression` is
1073 // syntactically undistinguishable from an `id-expression`
1074 if (S->isImplicitAccess()) {
1075 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1076 SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
1077 return true;
1078 }
1079
1080 auto *TheIdExpression = buildIdExpression(
1081 S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1082 SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
1083
1084 Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
1085
1086 Builder.markExprChild(Child: S->getBase(), Role: syntax::NodeRole::Object);
1087 Builder.markChildToken(Loc: S->getOperatorLoc(), R: syntax::NodeRole::AccessToken);
1088
1089 Builder.foldNode(Builder.getExprRange(S),
1090 new (allocator()) syntax::MemberExpression, S);
1091 return true;
1092 }
1093
1094 bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
1095 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1096 SourceRange(S->getLocation(), S->getEndLoc()), S);
1097
1098 return true;
1099 }
1100
1101 // Same logic as DeclRefExpr.
1102 bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
1103 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
1104 SourceRange(S->getLocation(), S->getEndLoc()), S);
1105
1106 return true;
1107 }
1108
1109 bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
1110 if (!S->isImplicit()) {
1111 Builder.markChildToken(Loc: S->getLocation(),
1112 R: syntax::NodeRole::IntroducerKeyword);
1113 Builder.foldNode(Builder.getExprRange(S),
1114 new (allocator()) syntax::ThisExpression, S);
1115 }
1116 return true;
1117 }
1118
1119 bool WalkUpFromParenExpr(ParenExpr *S) {
1120 Builder.markChildToken(Loc: S->getLParen(), R: syntax::NodeRole::OpenParen);
1121 Builder.markExprChild(Child: S->getSubExpr(), Role: syntax::NodeRole::SubExpression);
1122 Builder.markChildToken(Loc: S->getRParen(), R: syntax::NodeRole::CloseParen);
1123 Builder.foldNode(Builder.getExprRange(S),
1124 new (allocator()) syntax::ParenExpression, S);
1125 return true;
1126 }
1127
1128 bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
1129 Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken);
1130 Builder.foldNode(Builder.getExprRange(S),
1131 new (allocator()) syntax::IntegerLiteralExpression, S);
1132 return true;
1133 }
1134
1135 bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
1136 Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken);
1137 Builder.foldNode(Builder.getExprRange(S),
1138 new (allocator()) syntax::CharacterLiteralExpression, S);
1139 return true;
1140 }
1141
1142 bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
1143 Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken);
1144 Builder.foldNode(Builder.getExprRange(S),
1145 new (allocator()) syntax::FloatingLiteralExpression, S);
1146 return true;
1147 }
1148
1149 bool WalkUpFromStringLiteral(StringLiteral *S) {
1150 Builder.markChildToken(Loc: S->getBeginLoc(), R: syntax::NodeRole::LiteralToken);
1151 Builder.foldNode(Builder.getExprRange(S),
1152 new (allocator()) syntax::StringLiteralExpression, S);
1153 return true;
1154 }
1155
1156 bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
1157 Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken);
1158 Builder.foldNode(Builder.getExprRange(S),
1159 new (allocator()) syntax::BoolLiteralExpression, S);
1160 return true;
1161 }
1162
1163 bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
1164 Builder.markChildToken(Loc: S->getLocation(), R: syntax::NodeRole::LiteralToken);
1165 Builder.foldNode(Builder.getExprRange(S),
1166 new (allocator()) syntax::CxxNullPtrExpression, S);
1167 return true;
1168 }
1169
1170 bool WalkUpFromUnaryOperator(UnaryOperator *S) {
1171 Builder.markChildToken(Loc: S->getOperatorLoc(),
1172 R: syntax::NodeRole::OperatorToken);
1173 Builder.markExprChild(Child: S->getSubExpr(), Role: syntax::NodeRole::Operand);
1174
1175 if (S->isPostfix())
1176 Builder.foldNode(Builder.getExprRange(S),
1177 new (allocator()) syntax::PostfixUnaryOperatorExpression,
1178 S);
1179 else
1180 Builder.foldNode(Builder.getExprRange(S),
1181 new (allocator()) syntax::PrefixUnaryOperatorExpression,
1182 S);
1183
1184 return true;
1185 }
1186
1187 bool WalkUpFromBinaryOperator(BinaryOperator *S) {
1188 Builder.markExprChild(Child: S->getLHS(), Role: syntax::NodeRole::LeftHandSide);
1189 Builder.markChildToken(Loc: S->getOperatorLoc(),
1190 R: syntax::NodeRole::OperatorToken);
1191 Builder.markExprChild(Child: S->getRHS(), Role: syntax::NodeRole::RightHandSide);
1192 Builder.foldNode(Builder.getExprRange(S),
1193 new (allocator()) syntax::BinaryOperatorExpression, S);
1194 return true;
1195 }
1196
1197 /// Builds `CallArguments` syntax node from arguments that appear in source
1198 /// code, i.e. not default arguments.
1199 syntax::CallArguments *
1200 buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
1201 auto Args = dropDefaultArgs(Args: ArgsAndDefaultArgs);
1202 for (auto *Arg : Args) {
1203 Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
1204 const auto *DelimiterToken =
1205 std::next(x: Builder.findToken(L: Arg->getEndLoc()));
1206 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1207 Builder.markChildToken(T: DelimiterToken, R: syntax::NodeRole::ListDelimiter);
1208 }
1209
1210 auto *Arguments = new (allocator()) syntax::CallArguments;
1211 if (!Args.empty())
1212 Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
1213 (*(Args.end() - 1))->getEndLoc()),
1214 Arguments, nullptr);
1215
1216 return Arguments;
1217 }
1218
1219 bool WalkUpFromCallExpr(CallExpr *S) {
1220 Builder.markExprChild(Child: S->getCallee(), Role: syntax::NodeRole::Callee);
1221
1222 const auto *LParenToken =
1223 std::next(Builder.findToken(L: S->getCallee()->getEndLoc()));
1224 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
1225 // the test on decltype desctructors.
1226 if (LParenToken->kind() == clang::tok::l_paren)
1227 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1228
1229 Builder.markChild(N: buildCallArguments(ArgsAndDefaultArgs: S->arguments()),
1230 R: syntax::NodeRole::Arguments);
1231
1232 Builder.markChildToken(Loc: S->getRParenLoc(), R: syntax::NodeRole::CloseParen);
1233
1234 Builder.foldNode(Builder.getRange(S->getSourceRange()),
1235 new (allocator()) syntax::CallExpression, S);
1236 return true;
1237 }
1238
1239 bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
1240 // Ignore the implicit calls to default constructors.
1241 if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(Val: S->getArg(Arg: 0))) &&
1242 S->getParenOrBraceRange().isInvalid())
1243 return true;
1244 return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
1245 }
1246
1247 bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1248 // To construct a syntax tree of the same shape for calls to built-in and
1249 // user-defined operators, ignore the `DeclRefExpr` that refers to the
1250 // operator and treat it as a simple token. Do that by traversing
1251 // arguments instead of children.
1252 for (auto *child : S->arguments()) {
1253 // A postfix unary operator is declared as taking two operands. The
1254 // second operand is used to distinguish from its prefix counterpart. In
1255 // the semantic AST this "phantom" operand is represented as a
1256 // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
1257 // operand because it does not correspond to anything written in source
1258 // code.
1259 if (child->getSourceRange().isInvalid()) {
1260 assert(getOperatorNodeKind(*S) ==
1261 syntax::NodeKind::PostfixUnaryOperatorExpression);
1262 continue;
1263 }
1264 if (!TraverseStmt(child))
1265 return false;
1266 }
1267 return WalkUpFromCXXOperatorCallExpr(S);
1268 }
1269
1270 bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
1271 switch (getOperatorNodeKind(E: *S)) {
1272 case syntax::NodeKind::BinaryOperatorExpression:
1273 Builder.markExprChild(Child: S->getArg(0), Role: syntax::NodeRole::LeftHandSide);
1274 Builder.markChildToken(Loc: S->getOperatorLoc(),
1275 R: syntax::NodeRole::OperatorToken);
1276 Builder.markExprChild(Child: S->getArg(1), Role: syntax::NodeRole::RightHandSide);
1277 Builder.foldNode(Builder.getExprRange(S),
1278 new (allocator()) syntax::BinaryOperatorExpression, S);
1279 return true;
1280 case syntax::NodeKind::PrefixUnaryOperatorExpression:
1281 Builder.markChildToken(Loc: S->getOperatorLoc(),
1282 R: syntax::NodeRole::OperatorToken);
1283 Builder.markExprChild(Child: S->getArg(0), Role: syntax::NodeRole::Operand);
1284 Builder.foldNode(Builder.getExprRange(S),
1285 new (allocator()) syntax::PrefixUnaryOperatorExpression,
1286 S);
1287 return true;
1288 case syntax::NodeKind::PostfixUnaryOperatorExpression:
1289 Builder.markChildToken(Loc: S->getOperatorLoc(),
1290 R: syntax::NodeRole::OperatorToken);
1291 Builder.markExprChild(Child: S->getArg(0), Role: syntax::NodeRole::Operand);
1292 Builder.foldNode(Builder.getExprRange(S),
1293 new (allocator()) syntax::PostfixUnaryOperatorExpression,
1294 S);
1295 return true;
1296 case syntax::NodeKind::CallExpression: {
1297 Builder.markExprChild(Child: S->getArg(0), Role: syntax::NodeRole::Callee);
1298
1299 const auto *LParenToken =
1300 std::next(Builder.findToken(L: S->getArg(0)->getEndLoc()));
1301 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
1302 // fixed the test on decltype desctructors.
1303 if (LParenToken->kind() == clang::tok::l_paren)
1304 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
1305
1306 Builder.markChild(N: buildCallArguments(ArgsAndDefaultArgs: CallExpr::arg_range(
1307 S->arg_begin() + 1, S->arg_end())),
1308 R: syntax::NodeRole::Arguments);
1309
1310 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
1311
1312 Builder.foldNode(Builder.getRange(S->getSourceRange()),
1313 new (allocator()) syntax::CallExpression, S);
1314 return true;
1315 }
1316 case syntax::NodeKind::UnknownExpression:
1317 return WalkUpFromExpr(S);
1318 default:
1319 llvm_unreachable("getOperatorNodeKind() does not return this value");
1320 }
1321 }
1322
1323 bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
1324
1325 bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
1326 auto Tokens = Builder.getDeclarationRange(S);
1327 if (Tokens.front().kind() == tok::coloncolon) {
1328 // Handle nested namespace definitions. Those start at '::' token, e.g.
1329 // namespace a^::b {}
1330 // FIXME: build corresponding nodes for the name of this namespace.
1331 return true;
1332 }
1333 Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
1334 return true;
1335 }
1336
1337 // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
1338 // results. Find test coverage or remove it.
1339 bool TraverseParenTypeLoc(ParenTypeLoc L) {
1340 // We reverse order of traversal to get the proper syntax structure.
1341 if (!WalkUpFromParenTypeLoc(L))
1342 return false;
1343 return TraverseTypeLoc(TL: L.getInnerLoc());
1344 }
1345
1346 bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
1347 Builder.markChildToken(Loc: L.getLParenLoc(), R: syntax::NodeRole::OpenParen);
1348 Builder.markChildToken(Loc: L.getRParenLoc(), R: syntax::NodeRole::CloseParen);
1349 Builder.foldNode(Builder.getRange(First: L.getLParenLoc(), Last: L.getRParenLoc()),
1350 new (allocator()) syntax::ParenDeclarator, L);
1351 return true;
1352 }
1353
1354 // Declarator chunks, they are produced by type locs and some clang::Decls.
1355 bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
1356 Builder.markChildToken(Loc: L.getLBracketLoc(), R: syntax::NodeRole::OpenParen);
1357 Builder.markExprChild(Child: L.getSizeExpr(), Role: syntax::NodeRole::Size);
1358 Builder.markChildToken(Loc: L.getRBracketLoc(), R: syntax::NodeRole::CloseParen);
1359 Builder.foldNode(Builder.getRange(First: L.getLBracketLoc(), Last: L.getRBracketLoc()),
1360 new (allocator()) syntax::ArraySubscript, L);
1361 return true;
1362 }
1363
1364 syntax::ParameterDeclarationList *
1365 buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
1366 for (auto *P : Params) {
1367 Builder.markChild(P, syntax::NodeRole::ListElement);
1368 const auto *DelimiterToken = std::next(Builder.findToken(L: P->getEndLoc()));
1369 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1370 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1371 }
1372 auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
1373 if (!Params.empty())
1374 Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
1375 Params.back()->getEndLoc()),
1376 Parameters, nullptr);
1377 return Parameters;
1378 }
1379
1380 bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
1381 Builder.markChildToken(Loc: L.getLParenLoc(), R: syntax::NodeRole::OpenParen);
1382
1383 Builder.markChild(N: buildParameterDeclarationList(Params: L.getParams()),
1384 R: syntax::NodeRole::Parameters);
1385
1386 Builder.markChildToken(Loc: L.getRParenLoc(), R: syntax::NodeRole::CloseParen);
1387 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
1388 new (allocator()) syntax::ParametersAndQualifiers, L);
1389 return true;
1390 }
1391
1392 bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
1393 if (!L.getTypePtr()->hasTrailingReturn())
1394 return WalkUpFromFunctionTypeLoc(L);
1395
1396 auto *TrailingReturnTokens = buildTrailingReturn(L);
1397 // Finish building the node for parameters.
1398 Builder.markChild(N: TrailingReturnTokens, R: syntax::NodeRole::TrailingReturn);
1399 return WalkUpFromFunctionTypeLoc(L);
1400 }
1401
1402 bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1403 // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
1404 // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
1405 // "(Y::*mp)" We thus reverse the order of traversal to get the proper
1406 // syntax structure.
1407 if (!WalkUpFromMemberPointerTypeLoc(L))
1408 return false;
1409 return TraverseTypeLoc(TL: L.getPointeeLoc());
1410 }
1411
1412 bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
1413 auto SR = L.getLocalSourceRange();
1414 Builder.foldNode(Builder.getRange(Range: SR),
1415 new (allocator()) syntax::MemberPointer, L);
1416 return true;
1417 }
1418
1419 // The code below is very regular, it could even be generated with some
1420 // preprocessor magic. We merely assign roles to the corresponding children
1421 // and fold resulting nodes.
1422 bool WalkUpFromDeclStmt(DeclStmt *S) {
1423 Builder.foldNode(Range: Builder.getStmtRange(S),
1424 New: new (allocator()) syntax::DeclarationStatement, From: S);
1425 return true;
1426 }
1427
1428 bool WalkUpFromNullStmt(NullStmt *S) {
1429 Builder.foldNode(Range: Builder.getStmtRange(S),
1430 New: new (allocator()) syntax::EmptyStatement, From: S);
1431 return true;
1432 }
1433
1434 bool WalkUpFromSwitchStmt(SwitchStmt *S) {
1435 Builder.markChildToken(Loc: S->getSwitchLoc(),
1436 R: syntax::NodeRole::IntroducerKeyword);
1437 Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement);
1438 Builder.foldNode(Builder.getStmtRange(S),
1439 new (allocator()) syntax::SwitchStatement, S);
1440 return true;
1441 }
1442
1443 bool WalkUpFromCaseStmt(CaseStmt *S) {
1444 Builder.markChildToken(S->getKeywordLoc(),
1445 syntax::NodeRole::IntroducerKeyword);
1446 Builder.markExprChild(Child: S->getLHS(), Role: syntax::NodeRole::CaseValue);
1447 Builder.markStmtChild(Child: S->getSubStmt(), Role: syntax::NodeRole::BodyStatement);
1448 Builder.foldNode(Builder.getStmtRange(S),
1449 new (allocator()) syntax::CaseStatement, S);
1450 return true;
1451 }
1452
1453 bool WalkUpFromDefaultStmt(DefaultStmt *S) {
1454 Builder.markChildToken(Loc: S->getKeywordLoc(),
1455 R: syntax::NodeRole::IntroducerKeyword);
1456 Builder.markStmtChild(Child: S->getSubStmt(), Role: syntax::NodeRole::BodyStatement);
1457 Builder.foldNode(Range: Builder.getStmtRange(S),
1458 New: new (allocator()) syntax::DefaultStatement, From: S);
1459 return true;
1460 }
1461
1462 bool WalkUpFromIfStmt(IfStmt *S) {
1463 Builder.markChildToken(Loc: S->getIfLoc(), R: syntax::NodeRole::IntroducerKeyword);
1464 Stmt *ConditionStatement = S->getCond();
1465 if (S->hasVarStorage())
1466 ConditionStatement = S->getConditionVariableDeclStmt();
1467 Builder.markStmtChild(Child: ConditionStatement, Role: syntax::NodeRole::Condition);
1468 Builder.markStmtChild(Child: S->getThen(), Role: syntax::NodeRole::ThenStatement);
1469 Builder.markChildToken(Loc: S->getElseLoc(), R: syntax::NodeRole::ElseKeyword);
1470 Builder.markStmtChild(Child: S->getElse(), Role: syntax::NodeRole::ElseStatement);
1471 Builder.foldNode(Builder.getStmtRange(S),
1472 new (allocator()) syntax::IfStatement, S);
1473 return true;
1474 }
1475
1476 bool WalkUpFromForStmt(ForStmt *S) {
1477 Builder.markChildToken(Loc: S->getForLoc(), R: syntax::NodeRole::IntroducerKeyword);
1478 Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement);
1479 Builder.foldNode(Range: Builder.getStmtRange(S),
1480 New: new (allocator()) syntax::ForStatement, From: S);
1481 return true;
1482 }
1483
1484 bool WalkUpFromWhileStmt(WhileStmt *S) {
1485 Builder.markChildToken(Loc: S->getWhileLoc(),
1486 R: syntax::NodeRole::IntroducerKeyword);
1487 Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement);
1488 Builder.foldNode(Builder.getStmtRange(S),
1489 new (allocator()) syntax::WhileStatement, S);
1490 return true;
1491 }
1492
1493 bool WalkUpFromContinueStmt(ContinueStmt *S) {
1494 Builder.markChildToken(Loc: S->getContinueLoc(),
1495 R: syntax::NodeRole::IntroducerKeyword);
1496 Builder.foldNode(Range: Builder.getStmtRange(S),
1497 New: new (allocator()) syntax::ContinueStatement, From: S);
1498 return true;
1499 }
1500
1501 bool WalkUpFromBreakStmt(BreakStmt *S) {
1502 Builder.markChildToken(Loc: S->getBreakLoc(),
1503 R: syntax::NodeRole::IntroducerKeyword);
1504 Builder.foldNode(Range: Builder.getStmtRange(S),
1505 New: new (allocator()) syntax::BreakStatement, From: S);
1506 return true;
1507 }
1508
1509 bool WalkUpFromReturnStmt(ReturnStmt *S) {
1510 Builder.markChildToken(Loc: S->getReturnLoc(),
1511 R: syntax::NodeRole::IntroducerKeyword);
1512 Builder.markExprChild(Child: S->getRetValue(), Role: syntax::NodeRole::ReturnValue);
1513 Builder.foldNode(Builder.getStmtRange(S),
1514 new (allocator()) syntax::ReturnStatement, S);
1515 return true;
1516 }
1517
1518 bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
1519 Builder.markChildToken(Loc: S->getForLoc(), R: syntax::NodeRole::IntroducerKeyword);
1520 Builder.markStmtChild(Child: S->getBody(), Role: syntax::NodeRole::BodyStatement);
1521 Builder.foldNode(Range: Builder.getStmtRange(S),
1522 New: new (allocator()) syntax::RangeBasedForStatement, From: S);
1523 return true;
1524 }
1525
1526 bool WalkUpFromEmptyDecl(EmptyDecl *S) {
1527 Builder.foldNode(Builder.getDeclarationRange(S),
1528 new (allocator()) syntax::EmptyDeclaration, S);
1529 return true;
1530 }
1531
1532 bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
1533 Builder.markExprChild(Child: S->getAssertExpr(), Role: syntax::NodeRole::Condition);
1534 Builder.markExprChild(Child: S->getMessage(), Role: syntax::NodeRole::Message);
1535 Builder.foldNode(Builder.getDeclarationRange(S),
1536 new (allocator()) syntax::StaticAssertDeclaration, S);
1537 return true;
1538 }
1539
1540 bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
1541 Builder.foldNode(Builder.getDeclarationRange(S),
1542 new (allocator()) syntax::LinkageSpecificationDeclaration,
1543 S);
1544 return true;
1545 }
1546
1547 bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
1548 Builder.foldNode(Builder.getDeclarationRange(S),
1549 new (allocator()) syntax::NamespaceAliasDefinition, S);
1550 return true;
1551 }
1552
1553 bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
1554 Builder.foldNode(Builder.getDeclarationRange(S),
1555 new (allocator()) syntax::UsingNamespaceDirective, S);
1556 return true;
1557 }
1558
1559 bool WalkUpFromUsingDecl(UsingDecl *S) {
1560 Builder.foldNode(Builder.getDeclarationRange(S),
1561 new (allocator()) syntax::UsingDeclaration, S);
1562 return true;
1563 }
1564
1565 bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
1566 Builder.foldNode(Builder.getDeclarationRange(S),
1567 new (allocator()) syntax::UsingDeclaration, S);
1568 return true;
1569 }
1570
1571 bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
1572 Builder.foldNode(Builder.getDeclarationRange(S),
1573 new (allocator()) syntax::UsingDeclaration, S);
1574 return true;
1575 }
1576
1577 bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
1578 Builder.foldNode(Builder.getDeclarationRange(S),
1579 new (allocator()) syntax::TypeAliasDeclaration, S);
1580 return true;
1581 }
1582
1583private:
1584 /// Folds SimpleDeclarator node (if present) and in case this is the last
1585 /// declarator in the chain it also folds SimpleDeclaration node.
1586 template <class T> bool processDeclaratorAndDeclaration(T *D) {
1587 auto Range = getDeclaratorRange(
1588 Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
1589 getQualifiedNameStart(D), getInitializerRange(D));
1590
1591 // There doesn't have to be a declarator (e.g. `void foo(int)` only has
1592 // declaration, but no declarator).
1593 if (!Range.getBegin().isValid()) {
1594 Builder.markChild(N: new (allocator()) syntax::DeclaratorList,
1595 R: syntax::NodeRole::Declarators);
1596 Builder.foldNode(Builder.getDeclarationRange(D),
1597 new (allocator()) syntax::SimpleDeclaration, D);
1598 return true;
1599 }
1600
1601 auto *N = new (allocator()) syntax::SimpleDeclarator;
1602 Builder.foldNode(Builder.getRange(Range), N, nullptr);
1603 Builder.markChild(N, R: syntax::NodeRole::ListElement);
1604
1605 if (!Builder.isResponsibleForCreatingDeclaration(D)) {
1606 // If this is not the last declarator in the declaration we expect a
1607 // delimiter after it.
1608 const auto *DelimiterToken = std::next(Builder.findToken(L: Range.getEnd()));
1609 if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
1610 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
1611 } else {
1612 auto *DL = new (allocator()) syntax::DeclaratorList;
1613 auto DeclarationRange = Builder.getDeclarationRange(D);
1614 Builder.foldList(SuperRange: DeclarationRange, New: DL, From: nullptr);
1615
1616 Builder.markChild(N: DL, R: syntax::NodeRole::Declarators);
1617 Builder.foldNode(DeclarationRange,
1618 new (allocator()) syntax::SimpleDeclaration, D);
1619 }
1620 return true;
1621 }
1622
1623 /// Returns the range of the built node.
1624 syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
1625 assert(L.getTypePtr()->hasTrailingReturn());
1626
1627 auto ReturnedType = L.getReturnLoc();
1628 // Build node for the declarator, if any.
1629 auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
1630 ReturnedType.getEndLoc());
1631 syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
1632 if (ReturnDeclaratorRange.isValid()) {
1633 ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
1634 Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
1635 ReturnDeclarator, nullptr);
1636 }
1637
1638 // Build node for trailing return type.
1639 auto Return = Builder.getRange(ReturnedType.getSourceRange());
1640 const auto *Arrow = Return.begin() - 1;
1641 assert(Arrow->kind() == tok::arrow);
1642 auto Tokens = llvm::ArrayRef(Arrow, Return.end());
1643 Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
1644 if (ReturnDeclarator)
1645 Builder.markChild(N: ReturnDeclarator, R: syntax::NodeRole::Declarator);
1646 auto *R = new (allocator()) syntax::TrailingReturnType;
1647 Builder.foldNode(Tokens, R, L);
1648 return R;
1649 }
1650
1651 void foldExplicitTemplateInstantiation(
1652 ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
1653 const syntax::Token *TemplateKW,
1654 syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
1655 assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
1656 assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1657 Builder.markChildToken(T: ExternKW, R: syntax::NodeRole::ExternKeyword);
1658 Builder.markChildToken(T: TemplateKW, R: syntax::NodeRole::IntroducerKeyword);
1659 Builder.markChild(N: InnerDeclaration, R: syntax::NodeRole::Declaration);
1660 Builder.foldNode(
1661 Range, New: new (allocator()) syntax::ExplicitTemplateInstantiation, From);
1662 }
1663
1664 syntax::TemplateDeclaration *foldTemplateDeclaration(
1665 ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
1666 ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
1667 assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
1668 Builder.markChildToken(T: TemplateKW, R: syntax::NodeRole::IntroducerKeyword);
1669
1670 auto *N = new (allocator()) syntax::TemplateDeclaration;
1671 Builder.foldNode(Range, New: N, From);
1672 Builder.markChild(N, R: syntax::NodeRole::Declaration);
1673 return N;
1674 }
1675
1676 /// A small helper to save some typing.
1677 llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
1678
1679 syntax::TreeBuilder &Builder;
1680 const ASTContext &Context;
1681};
1682} // namespace
1683
1684void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
1685 DeclsWithoutSemicolons.insert(V: D);
1686}
1687
1688void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
1689 if (Loc.isInvalid())
1690 return;
1691 Pending.assignRole(Range: *findToken(L: Loc), Role);
1692}
1693
1694void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
1695 if (!T)
1696 return;
1697 Pending.assignRole(Range: *T, Role: R);
1698}
1699
1700void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
1701 assert(N);
1702 setRole(N, R);
1703}
1704
1705void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
1706 auto *SN = Mapping.find(P: N);
1707 assert(SN != nullptr);
1708 setRole(N: SN, R);
1709}
1710void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
1711 auto *SN = Mapping.find(P: NNSLoc);
1712 assert(SN != nullptr);
1713 setRole(N: SN, R);
1714}
1715
1716void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
1717 if (!Child)
1718 return;
1719
1720 syntax::Tree *ChildNode;
1721 if (Expr *ChildExpr = dyn_cast<Expr>(Val: Child)) {
1722 // This is an expression in a statement position, consume the trailing
1723 // semicolon and form an 'ExpressionStatement' node.
1724 markExprChild(Child: ChildExpr, Role: NodeRole::Expression);
1725 ChildNode = new (allocator()) syntax::ExpressionStatement;
1726 // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
1727 Pending.foldChildren(TB: TBTM.tokenBuffer(), Tokens: getStmtRange(S: Child), Node: ChildNode);
1728 } else {
1729 ChildNode = Mapping.find(P: Child);
1730 }
1731 assert(ChildNode != nullptr);
1732 setRole(N: ChildNode, R: Role);
1733}
1734
1735void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
1736 if (!Child)
1737 return;
1738 Child = IgnoreImplicit(E: Child);
1739
1740 syntax::Tree *ChildNode = Mapping.find(Child);
1741 assert(ChildNode != nullptr);
1742 setRole(N: ChildNode, R: Role);
1743}
1744
1745const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
1746 if (L.isInvalid())
1747 return nullptr;
1748 auto It = LocationToToken.find(Val: L);
1749 assert(It != LocationToToken.end());
1750 return It->second;
1751}
1752
1753syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A,
1754 TokenBufferTokenManager& TBTM,
1755 ASTContext &Context) {
1756 TreeBuilder Builder(A, TBTM);
1757 BuildTreeVisitor(Context, Builder).TraverseAST(AST&: Context);
1758 return std::move(Builder).finalize();
1759}
1760

source code of clang/lib/Tooling/Syntax/BuildTree.cpp