1 | // Protocol Buffers - Google's data interchange format |
2 | // Copyright 2008 Google Inc. All rights reserved. |
3 | // https://developers.google.com/protocol-buffers/ |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without |
6 | // modification, are permitted provided that the following conditions are |
7 | // met: |
8 | // |
9 | // * Redistributions of source code must retain the above copyright |
10 | // notice, this list of conditions and the following disclaimer. |
11 | // * Redistributions in binary form must reproduce the above |
12 | // copyright notice, this list of conditions and the following disclaimer |
13 | // in the documentation and/or other materials provided with the |
14 | // distribution. |
15 | // * Neither the name of Google Inc. nor the names of its |
16 | // contributors may be used to endorse or promote products derived from |
17 | // this software without specific prior written permission. |
18 | // |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | |
31 | // Author: kenton@google.com (Kenton Varda) |
32 | // Based on original Protocol Buffers design by |
33 | // Sanjay Ghemawat, Jeff Dean, and others. |
34 | // |
35 | // This header is logically internal, but is made public because it is used |
36 | // from protocol-compiler-generated code, which may reside in other components. |
37 | |
38 | #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
39 | #define GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
40 | |
41 | #include <algorithm> |
42 | #include <cassert> |
43 | #include <map> |
44 | #include <string> |
45 | #include <utility> |
46 | #include <vector> |
47 | |
48 | #include <google/protobuf/stubs/common.h> |
49 | #include <google/protobuf/stubs/logging.h> |
50 | #include <google/protobuf/parse_context.h> |
51 | #include <google/protobuf/io/coded_stream.h> |
52 | #include <google/protobuf/port.h> |
53 | #include <google/protobuf/repeated_field.h> |
54 | #include <google/protobuf/wire_format_lite.h> |
55 | |
56 | #include <google/protobuf/port_def.inc> |
57 | |
58 | #ifdef SWIG |
59 | #error "You cannot SWIG proto headers" |
60 | #endif |
61 | |
62 | namespace google { |
63 | namespace protobuf { |
64 | class Arena; |
65 | class Descriptor; // descriptor.h |
66 | class FieldDescriptor; // descriptor.h |
67 | class DescriptorPool; // descriptor.h |
68 | class MessageLite; // message_lite.h |
69 | class Message; // message.h |
70 | class MessageFactory; // message.h |
71 | class UnknownFieldSet; // unknown_field_set.h |
72 | namespace internal { |
73 | class FieldSkipper; // wire_format_lite.h |
74 | } // namespace internal |
75 | } // namespace protobuf |
76 | } // namespace google |
77 | |
78 | namespace google { |
79 | namespace protobuf { |
80 | namespace internal { |
81 | |
82 | class InternalMetadata; |
83 | |
84 | // Used to store values of type WireFormatLite::FieldType without having to |
85 | // #include wire_format_lite.h. Also, ensures that we use only one byte to |
86 | // store these values, which is important to keep the layout of |
87 | // ExtensionSet::Extension small. |
88 | typedef uint8 FieldType; |
89 | |
90 | // A function which, given an integer value, returns true if the number |
91 | // matches one of the defined values for the corresponding enum type. This |
92 | // is used with RegisterEnumExtension, below. |
93 | typedef bool EnumValidityFunc(int number); |
94 | |
95 | // Version of the above which takes an argument. This is needed to deal with |
96 | // extensions that are not compiled in. |
97 | typedef bool EnumValidityFuncWithArg(const void* arg, int number); |
98 | |
99 | // Information about a registered extension. |
100 | struct ExtensionInfo { |
101 | inline ExtensionInfo() {} |
102 | inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked) |
103 | : type(type_param), |
104 | is_repeated(isrepeated), |
105 | is_packed(ispacked), |
106 | descriptor(NULL) {} |
107 | |
108 | FieldType type; |
109 | bool is_repeated; |
110 | bool is_packed; |
111 | |
112 | struct EnumValidityCheck { |
113 | EnumValidityFuncWithArg* func; |
114 | const void* arg; |
115 | }; |
116 | |
117 | struct MessageInfo { |
118 | const MessageLite* prototype; |
119 | }; |
120 | |
121 | union { |
122 | EnumValidityCheck enum_validity_check; |
123 | MessageInfo message_info; |
124 | }; |
125 | |
126 | // The descriptor for this extension, if one exists and is known. May be |
127 | // NULL. Must not be NULL if the descriptor for the extension does not |
128 | // live in the same pool as the descriptor for the containing type. |
129 | const FieldDescriptor* descriptor; |
130 | }; |
131 | |
132 | // Abstract interface for an object which looks up extension definitions. Used |
133 | // when parsing. |
134 | class PROTOBUF_EXPORT ExtensionFinder { |
135 | public: |
136 | virtual ~ExtensionFinder(); |
137 | |
138 | // Find the extension with the given containing type and number. |
139 | virtual bool Find(int number, ExtensionInfo* output) = 0; |
140 | }; |
141 | |
142 | // Implementation of ExtensionFinder which finds extensions defined in .proto |
143 | // files which have been compiled into the binary. |
144 | class PROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder { |
145 | public: |
146 | GeneratedExtensionFinder(const MessageLite* containing_type) |
147 | : containing_type_(containing_type) {} |
148 | ~GeneratedExtensionFinder() override {} |
149 | |
150 | // Returns true and fills in *output if found, otherwise returns false. |
151 | bool Find(int number, ExtensionInfo* output) override; |
152 | |
153 | private: |
154 | const MessageLite* containing_type_; |
155 | }; |
156 | |
157 | // A FieldSkipper used for parsing MessageSet. |
158 | class MessageSetFieldSkipper; |
159 | |
160 | // Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for |
161 | // finding extensions from a DescriptorPool. |
162 | |
163 | // This is an internal helper class intended for use within the protocol buffer |
164 | // library and generated classes. Clients should not use it directly. Instead, |
165 | // use the generated accessors such as GetExtension() of the class being |
166 | // extended. |
167 | // |
168 | // This class manages extensions for a protocol message object. The |
169 | // message's HasExtension(), GetExtension(), MutableExtension(), and |
170 | // ClearExtension() methods are just thin wrappers around the embedded |
171 | // ExtensionSet. When parsing, if a tag number is encountered which is |
172 | // inside one of the message type's extension ranges, the tag is passed |
173 | // off to the ExtensionSet for parsing. Etc. |
174 | class PROTOBUF_EXPORT ExtensionSet { |
175 | public: |
176 | ExtensionSet(); |
177 | explicit ExtensionSet(Arena* arena); |
178 | ~ExtensionSet(); |
179 | |
180 | // These are called at startup by protocol-compiler-generated code to |
181 | // register known extensions. The registrations are used by ParseField() |
182 | // to look up extensions for parsed field numbers. Note that dynamic parsing |
183 | // does not use ParseField(); only protocol-compiler-generated parsing |
184 | // methods do. |
185 | static void RegisterExtension(const MessageLite* containing_type, int number, |
186 | FieldType type, bool is_repeated, |
187 | bool is_packed); |
188 | static void RegisterEnumExtension(const MessageLite* containing_type, |
189 | int number, FieldType type, |
190 | bool is_repeated, bool is_packed, |
191 | EnumValidityFunc* is_valid); |
192 | static void RegisterMessageExtension(const MessageLite* containing_type, |
193 | int number, FieldType type, |
194 | bool is_repeated, bool is_packed, |
195 | const MessageLite* prototype); |
196 | |
197 | // ================================================================= |
198 | |
199 | // Add all fields which are currently present to the given vector. This |
200 | // is useful to implement Reflection::ListFields(). |
201 | void AppendToList(const Descriptor* containing_type, |
202 | const DescriptorPool* pool, |
203 | std::vector<const FieldDescriptor*>* output) const; |
204 | |
205 | // ================================================================= |
206 | // Accessors |
207 | // |
208 | // Generated message classes include type-safe templated wrappers around |
209 | // these methods. Generally you should use those rather than call these |
210 | // directly, unless you are doing low-level memory management. |
211 | // |
212 | // When calling any of these accessors, the extension number requested |
213 | // MUST exist in the DescriptorPool provided to the constructor. Otherwise, |
214 | // the method will fail an assert. Normally, though, you would not call |
215 | // these directly; you would either call the generated accessors of your |
216 | // message class (e.g. GetExtension()) or you would call the accessors |
217 | // of the reflection interface. In both cases, it is impossible to |
218 | // trigger this assert failure: the generated accessors only accept |
219 | // linked-in extension types as parameters, while the Reflection interface |
220 | // requires you to provide the FieldDescriptor describing the extension. |
221 | // |
222 | // When calling any of these accessors, a protocol-compiler-generated |
223 | // implementation of the extension corresponding to the number MUST |
224 | // be linked in, and the FieldDescriptor used to refer to it MUST be |
225 | // the one generated by that linked-in code. Otherwise, the method will |
226 | // die on an assert failure. The message objects returned by the message |
227 | // accessors are guaranteed to be of the correct linked-in type. |
228 | // |
229 | // These methods pretty much match Reflection except that: |
230 | // - They're not virtual. |
231 | // - They identify fields by number rather than FieldDescriptors. |
232 | // - They identify enum values using integers rather than descriptors. |
233 | // - Strings provide Mutable() in addition to Set() accessors. |
234 | |
235 | bool Has(int number) const; |
236 | int ExtensionSize(int number) const; // Size of a repeated extension. |
237 | int NumExtensions() const; // The number of extensions |
238 | FieldType ExtensionType(int number) const; |
239 | void ClearExtension(int number); |
240 | |
241 | // singular fields ------------------------------------------------- |
242 | |
243 | int32 GetInt32(int number, int32 default_value) const; |
244 | int64 GetInt64(int number, int64 default_value) const; |
245 | uint32 GetUInt32(int number, uint32 default_value) const; |
246 | uint64 GetUInt64(int number, uint64 default_value) const; |
247 | float GetFloat(int number, float default_value) const; |
248 | double GetDouble(int number, double default_value) const; |
249 | bool GetBool(int number, bool default_value) const; |
250 | int GetEnum(int number, int default_value) const; |
251 | const std::string& GetString(int number, |
252 | const std::string& default_value) const; |
253 | const MessageLite& GetMessage(int number, |
254 | const MessageLite& default_value) const; |
255 | const MessageLite& GetMessage(int number, const Descriptor* message_type, |
256 | MessageFactory* factory) const; |
257 | |
258 | // |descriptor| may be NULL so long as it is known that the descriptor for |
259 | // the extension lives in the same pool as the descriptor for the containing |
260 | // type. |
261 | #define desc const FieldDescriptor* descriptor // avoid line wrapping |
262 | void SetInt32(int number, FieldType type, int32 value, desc); |
263 | void SetInt64(int number, FieldType type, int64 value, desc); |
264 | void SetUInt32(int number, FieldType type, uint32 value, desc); |
265 | void SetUInt64(int number, FieldType type, uint64 value, desc); |
266 | void SetFloat(int number, FieldType type, float value, desc); |
267 | void SetDouble(int number, FieldType type, double value, desc); |
268 | void SetBool(int number, FieldType type, bool value, desc); |
269 | void SetEnum(int number, FieldType type, int value, desc); |
270 | void SetString(int number, FieldType type, std::string value, desc); |
271 | std::string* MutableString(int number, FieldType type, desc); |
272 | MessageLite* MutableMessage(int number, FieldType type, |
273 | const MessageLite& prototype, desc); |
274 | MessageLite* MutableMessage(const FieldDescriptor* descriptor, |
275 | MessageFactory* factory); |
276 | // Adds the given message to the ExtensionSet, taking ownership of the |
277 | // message object. Existing message with the same number will be deleted. |
278 | // If "message" is NULL, this is equivalent to "ClearExtension(number)". |
279 | void SetAllocatedMessage(int number, FieldType type, |
280 | const FieldDescriptor* descriptor, |
281 | MessageLite* message); |
282 | void UnsafeArenaSetAllocatedMessage(int number, FieldType type, |
283 | const FieldDescriptor* descriptor, |
284 | MessageLite* message); |
285 | MessageLite* ReleaseMessage(int number, const MessageLite& prototype); |
286 | MessageLite* UnsafeArenaReleaseMessage(int number, |
287 | const MessageLite& prototype); |
288 | |
289 | MessageLite* ReleaseMessage(const FieldDescriptor* descriptor, |
290 | MessageFactory* factory); |
291 | MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor, |
292 | MessageFactory* factory); |
293 | #undef desc |
294 | Arena* GetArena() const { return arena_; } |
295 | |
296 | // repeated fields ------------------------------------------------- |
297 | |
298 | // Fetches a RepeatedField extension by number; returns |default_value| |
299 | // if no such extension exists. User should not touch this directly; it is |
300 | // used by the GetRepeatedExtension() method. |
301 | const void* GetRawRepeatedField(int number, const void* default_value) const; |
302 | // Fetches a mutable version of a RepeatedField extension by number, |
303 | // instantiating one if none exists. Similar to above, user should not use |
304 | // this directly; it underlies MutableRepeatedExtension(). |
305 | void* MutableRawRepeatedField(int number, FieldType field_type, bool packed, |
306 | const FieldDescriptor* desc); |
307 | |
308 | // This is an overload of MutableRawRepeatedField to maintain compatibility |
309 | // with old code using a previous API. This version of |
310 | // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension. |
311 | // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.) |
312 | void* MutableRawRepeatedField(int number); |
313 | |
314 | int32 GetRepeatedInt32(int number, int index) const; |
315 | int64 GetRepeatedInt64(int number, int index) const; |
316 | uint32 GetRepeatedUInt32(int number, int index) const; |
317 | uint64 GetRepeatedUInt64(int number, int index) const; |
318 | float GetRepeatedFloat(int number, int index) const; |
319 | double GetRepeatedDouble(int number, int index) const; |
320 | bool GetRepeatedBool(int number, int index) const; |
321 | int GetRepeatedEnum(int number, int index) const; |
322 | const std::string& GetRepeatedString(int number, int index) const; |
323 | const MessageLite& GetRepeatedMessage(int number, int index) const; |
324 | |
325 | void SetRepeatedInt32(int number, int index, int32 value); |
326 | void SetRepeatedInt64(int number, int index, int64 value); |
327 | void SetRepeatedUInt32(int number, int index, uint32 value); |
328 | void SetRepeatedUInt64(int number, int index, uint64 value); |
329 | void SetRepeatedFloat(int number, int index, float value); |
330 | void SetRepeatedDouble(int number, int index, double value); |
331 | void SetRepeatedBool(int number, int index, bool value); |
332 | void SetRepeatedEnum(int number, int index, int value); |
333 | void SetRepeatedString(int number, int index, std::string value); |
334 | std::string* MutableRepeatedString(int number, int index); |
335 | MessageLite* MutableRepeatedMessage(int number, int index); |
336 | |
337 | #define desc const FieldDescriptor* descriptor // avoid line wrapping |
338 | void AddInt32(int number, FieldType type, bool packed, int32 value, desc); |
339 | void AddInt64(int number, FieldType type, bool packed, int64 value, desc); |
340 | void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc); |
341 | void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc); |
342 | void AddFloat(int number, FieldType type, bool packed, float value, desc); |
343 | void AddDouble(int number, FieldType type, bool packed, double value, desc); |
344 | void AddBool(int number, FieldType type, bool packed, bool value, desc); |
345 | void AddEnum(int number, FieldType type, bool packed, int value, desc); |
346 | void AddString(int number, FieldType type, std::string value, desc); |
347 | std::string* AddString(int number, FieldType type, desc); |
348 | MessageLite* AddMessage(int number, FieldType type, |
349 | const MessageLite& prototype, desc); |
350 | MessageLite* AddMessage(const FieldDescriptor* descriptor, |
351 | MessageFactory* factory); |
352 | void AddAllocatedMessage(const FieldDescriptor* descriptor, |
353 | MessageLite* new_entry); |
354 | #undef desc |
355 | |
356 | void RemoveLast(int number); |
357 | MessageLite* ReleaseLast(int number); |
358 | void SwapElements(int number, int index1, int index2); |
359 | |
360 | // ----------------------------------------------------------------- |
361 | // TODO(kenton): Hardcore memory management accessors |
362 | |
363 | // ================================================================= |
364 | // convenience methods for implementing methods of Message |
365 | // |
366 | // These could all be implemented in terms of the other methods of this |
367 | // class, but providing them here helps keep the generated code size down. |
368 | |
369 | void Clear(); |
370 | void MergeFrom(const ExtensionSet& other); |
371 | void Swap(ExtensionSet* other); |
372 | void SwapExtension(ExtensionSet* other, int number); |
373 | bool IsInitialized() const; |
374 | |
375 | // Parses a single extension from the input. The input should start out |
376 | // positioned immediately after the tag. |
377 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
378 | ExtensionFinder* extension_finder, |
379 | FieldSkipper* field_skipper); |
380 | |
381 | // Specific versions for lite or full messages (constructs the appropriate |
382 | // FieldSkipper automatically). |containing_type| is the default |
383 | // instance for the containing message; it is used only to look up the |
384 | // extension by number. See RegisterExtension(), above. Unlike the other |
385 | // methods of ExtensionSet, this only works for generated message types -- |
386 | // it looks up extensions registered using RegisterExtension(). |
387 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
388 | const MessageLite* containing_type); |
389 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
390 | const Message* containing_type, |
391 | UnknownFieldSet* unknown_fields); |
392 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
393 | const MessageLite* containing_type, |
394 | io::CodedOutputStream* unknown_fields); |
395 | |
396 | // Lite parser |
397 | const char* ParseField(uint64 tag, const char* ptr, |
398 | const MessageLite* containing_type, |
399 | internal::InternalMetadata* metadata, |
400 | internal::ParseContext* ctx); |
401 | // Full parser |
402 | const char* ParseField(uint64 tag, const char* ptr, |
403 | const Message* containing_type, |
404 | internal::InternalMetadata* metadata, |
405 | internal::ParseContext* ctx); |
406 | template <typename Msg> |
407 | const char* ParseMessageSet(const char* ptr, const Msg* containing_type, |
408 | InternalMetadata* metadata, |
409 | internal::ParseContext* ctx) { |
410 | struct MessageSetItem { |
411 | const char* _InternalParse(const char* ptr, ParseContext* ctx) { |
412 | return me->ParseMessageSetItem(ptr, containing_type, metadata, ctx); |
413 | } |
414 | ExtensionSet* me; |
415 | const Msg* containing_type; |
416 | InternalMetadata* metadata; |
417 | } item{this, containing_type, metadata}; |
418 | while (!ctx->Done(ptr: &ptr)) { |
419 | uint32 tag; |
420 | ptr = ReadTag(p: ptr, out: &tag); |
421 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
422 | if (tag == WireFormatLite::kMessageSetItemStartTag) { |
423 | ptr = ctx->ParseGroup(&item, ptr, tag); |
424 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
425 | } else { |
426 | if (tag == 0 || (tag & 7) == 4) { |
427 | ctx->SetLastTag(tag); |
428 | return ptr; |
429 | } |
430 | ptr = ParseField(tag, ptr, containing_type, metadata, ctx); |
431 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
432 | } |
433 | } |
434 | return ptr; |
435 | } |
436 | |
437 | // Parse an entire message in MessageSet format. Such messages have no |
438 | // fields, only extensions. |
439 | bool ParseMessageSetLite(io::CodedInputStream* input, |
440 | ExtensionFinder* extension_finder, |
441 | FieldSkipper* field_skipper); |
442 | bool ParseMessageSet(io::CodedInputStream* input, |
443 | ExtensionFinder* extension_finder, |
444 | MessageSetFieldSkipper* field_skipper); |
445 | |
446 | // Specific versions for lite or full messages (constructs the appropriate |
447 | // FieldSkipper automatically). |
448 | bool ParseMessageSet(io::CodedInputStream* input, |
449 | const MessageLite* containing_type, |
450 | std::string* unknown_fields); |
451 | bool ParseMessageSet(io::CodedInputStream* input, |
452 | const Message* containing_type, |
453 | UnknownFieldSet* unknown_fields); |
454 | |
455 | // Write all extension fields with field numbers in the range |
456 | // [start_field_number, end_field_number) |
457 | // to the output stream, using the cached sizes computed when ByteSize() was |
458 | // last called. Note that the range bounds are inclusive-exclusive. |
459 | void SerializeWithCachedSizes(int start_field_number, int end_field_number, |
460 | io::CodedOutputStream* output) const { |
461 | output->SetCur(_InternalSerialize(start_field_number, end_field_number, |
462 | target: output->Cur(), stream: output->EpsCopy())); |
463 | } |
464 | |
465 | // Same as SerializeWithCachedSizes, but without any bounds checking. |
466 | // The caller must ensure that target has sufficient capacity for the |
467 | // serialized extensions. |
468 | // |
469 | // Returns a pointer past the last written byte. |
470 | uint8* _InternalSerialize(int start_field_number, int end_field_number, |
471 | uint8* target, |
472 | io::EpsCopyOutputStream* stream) const; |
473 | |
474 | // Like above but serializes in MessageSet format. |
475 | void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const { |
476 | output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray( |
477 | target: output->Cur(), stream: output->EpsCopy())); |
478 | } |
479 | uint8* InternalSerializeMessageSetWithCachedSizesToArray( |
480 | uint8* target, io::EpsCopyOutputStream* stream) const; |
481 | |
482 | // For backward-compatibility, versions of two of the above methods that |
483 | // serialize deterministically iff SetDefaultSerializationDeterministic() |
484 | // has been called. |
485 | uint8* SerializeWithCachedSizesToArray(int start_field_number, |
486 | int end_field_number, |
487 | uint8* target) const; |
488 | uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const; |
489 | |
490 | // Returns the total serialized size of all the extensions. |
491 | size_t ByteSize() const; |
492 | |
493 | // Like ByteSize() but uses MessageSet format. |
494 | size_t MessageSetByteSize() const; |
495 | |
496 | // Returns (an estimate of) the total number of bytes used for storing the |
497 | // extensions in memory, excluding sizeof(*this). If the ExtensionSet is |
498 | // for a lite message (and thus possibly contains lite messages), the results |
499 | // are undefined (might work, might crash, might corrupt data, might not even |
500 | // be linked in). It's up to the protocol compiler to avoid calling this on |
501 | // such ExtensionSets (easy enough since lite messages don't implement |
502 | // SpaceUsed()). |
503 | size_t SpaceUsedExcludingSelfLong() const; |
504 | |
505 | // This method just calls SpaceUsedExcludingSelfLong() but it can not be |
506 | // inlined because the definition of SpaceUsedExcludingSelfLong() is not |
507 | // included in lite runtime and when an inline method refers to it MSVC |
508 | // will complain about unresolved symbols when building the lite runtime |
509 | // as .dll. |
510 | int SpaceUsedExcludingSelf() const; |
511 | |
512 | private: |
513 | // Interface of a lazily parsed singular message extension. |
514 | class PROTOBUF_EXPORT LazyMessageExtension { |
515 | public: |
516 | LazyMessageExtension() {} |
517 | virtual ~LazyMessageExtension() {} |
518 | |
519 | virtual LazyMessageExtension* New(Arena* arena) const = 0; |
520 | virtual const MessageLite& GetMessage( |
521 | const MessageLite& prototype) const = 0; |
522 | virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0; |
523 | virtual void SetAllocatedMessage(MessageLite* message) = 0; |
524 | virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message) = 0; |
525 | virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0; |
526 | virtual MessageLite* UnsafeArenaReleaseMessage( |
527 | const MessageLite& prototype) = 0; |
528 | |
529 | virtual bool IsInitialized() const = 0; |
530 | |
531 | PROTOBUF_DEPRECATED_MSG("Please use ByteSizeLong() instead" ) |
532 | virtual int ByteSize() const { return internal::ToIntSize(size: ByteSizeLong()); } |
533 | virtual size_t ByteSizeLong() const = 0; |
534 | virtual size_t SpaceUsedLong() const = 0; |
535 | |
536 | virtual void MergeFrom(const LazyMessageExtension& other) = 0; |
537 | virtual void Clear() = 0; |
538 | |
539 | virtual bool ReadMessage(const MessageLite& prototype, |
540 | io::CodedInputStream* input) = 0; |
541 | virtual const char* _InternalParse(const char* ptr, ParseContext* ctx) = 0; |
542 | virtual uint8* WriteMessageToArray( |
543 | int number, uint8* target, io::EpsCopyOutputStream* stream) const = 0; |
544 | |
545 | private: |
546 | virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable. |
547 | |
548 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension); |
549 | }; |
550 | struct Extension { |
551 | // The order of these fields packs Extension into 24 bytes when using 8 |
552 | // byte alignment. Consider this when adding or removing fields here. |
553 | union { |
554 | int32 int32_value; |
555 | int64 int64_value; |
556 | uint32 uint32_value; |
557 | uint64 uint64_value; |
558 | float float_value; |
559 | double double_value; |
560 | bool bool_value; |
561 | int enum_value; |
562 | std::string* string_value; |
563 | MessageLite* message_value; |
564 | LazyMessageExtension* lazymessage_value; |
565 | |
566 | RepeatedField<int32>* repeated_int32_value; |
567 | RepeatedField<int64>* repeated_int64_value; |
568 | RepeatedField<uint32>* repeated_uint32_value; |
569 | RepeatedField<uint64>* repeated_uint64_value; |
570 | RepeatedField<float>* repeated_float_value; |
571 | RepeatedField<double>* repeated_double_value; |
572 | RepeatedField<bool>* repeated_bool_value; |
573 | RepeatedField<int>* repeated_enum_value; |
574 | RepeatedPtrField<std::string>* repeated_string_value; |
575 | RepeatedPtrField<MessageLite>* repeated_message_value; |
576 | }; |
577 | |
578 | FieldType type; |
579 | bool is_repeated; |
580 | |
581 | // For singular types, indicates if the extension is "cleared". This |
582 | // happens when an extension is set and then later cleared by the caller. |
583 | // We want to keep the Extension object around for reuse, so instead of |
584 | // removing it from the map, we just set is_cleared = true. This has no |
585 | // meaning for repeated types; for those, the size of the RepeatedField |
586 | // simply becomes zero when cleared. |
587 | bool is_cleared : 4; |
588 | |
589 | // For singular message types, indicates whether lazy parsing is enabled |
590 | // for this extension. This field is only valid when type == TYPE_MESSAGE |
591 | // and !is_repeated because we only support lazy parsing for singular |
592 | // message types currently. If is_lazy = true, the extension is stored in |
593 | // lazymessage_value. Otherwise, the extension will be message_value. |
594 | bool is_lazy : 4; |
595 | |
596 | // For repeated types, this indicates if the [packed=true] option is set. |
597 | bool is_packed; |
598 | |
599 | // For packed fields, the size of the packed data is recorded here when |
600 | // ByteSize() is called then used during serialization. |
601 | // TODO(kenton): Use atomic<int> when C++ supports it. |
602 | mutable int cached_size; |
603 | |
604 | // The descriptor for this extension, if one exists and is known. May be |
605 | // NULL. Must not be NULL if the descriptor for the extension does not |
606 | // live in the same pool as the descriptor for the containing type. |
607 | const FieldDescriptor* descriptor; |
608 | |
609 | // Some helper methods for operations on a single Extension. |
610 | uint8* InternalSerializeFieldWithCachedSizesToArray( |
611 | int number, uint8* target, io::EpsCopyOutputStream* stream) const; |
612 | uint8* InternalSerializeMessageSetItemWithCachedSizesToArray( |
613 | int number, uint8* target, io::EpsCopyOutputStream* stream) const; |
614 | size_t ByteSize(int number) const; |
615 | size_t MessageSetItemByteSize(int number) const; |
616 | void Clear(); |
617 | int GetSize() const; |
618 | void Free(); |
619 | size_t SpaceUsedExcludingSelfLong() const; |
620 | bool IsInitialized() const; |
621 | }; |
622 | |
623 | // The Extension struct is small enough to be passed by value, so we use it |
624 | // directly as the value type in mappings rather than use pointers. We use |
625 | // sorted maps rather than hash-maps because we expect most ExtensionSets will |
626 | // only contain a small number of extension. Also, we want AppendToList and |
627 | // deterministic serialization to order fields by field number. |
628 | |
629 | struct KeyValue { |
630 | int first; |
631 | Extension second; |
632 | |
633 | struct FirstComparator { |
634 | bool operator()(const KeyValue& lhs, const KeyValue& rhs) const { |
635 | return lhs.first < rhs.first; |
636 | } |
637 | bool operator()(const KeyValue& lhs, int key) const { |
638 | return lhs.first < key; |
639 | } |
640 | bool operator()(int key, const KeyValue& rhs) const { |
641 | return key < rhs.first; |
642 | } |
643 | }; |
644 | }; |
645 | |
646 | typedef std::map<int, Extension> LargeMap; |
647 | |
648 | // Wrapper API that switches between flat-map and LargeMap. |
649 | |
650 | // Finds a key (if present) in the ExtensionSet. |
651 | const Extension* FindOrNull(int key) const; |
652 | Extension* FindOrNull(int key); |
653 | |
654 | // Helper-functions that only inspect the LargeMap. |
655 | const Extension* FindOrNullInLargeMap(int key) const; |
656 | Extension* FindOrNullInLargeMap(int key); |
657 | |
658 | // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or |
659 | // finds the already-existing Extension for that key (returns false). |
660 | // The Extension* will point to the new-or-found Extension. |
661 | std::pair<Extension*, bool> Insert(int key); |
662 | |
663 | // Grows the flat_capacity_. |
664 | // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap. |
665 | void GrowCapacity(size_t minimum_new_capacity); |
666 | static constexpr uint16 kMaximumFlatCapacity = 256; |
667 | bool is_large() const { return flat_capacity_ > kMaximumFlatCapacity; } |
668 | |
669 | // Removes a key from the ExtensionSet. |
670 | void Erase(int key); |
671 | |
672 | size_t Size() const { |
673 | return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_; |
674 | } |
675 | |
676 | // Similar to std::for_each. |
677 | // Each Iterator is decomposed into ->first and ->second fields, so |
678 | // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair. |
679 | template <typename Iterator, typename KeyValueFunctor> |
680 | static KeyValueFunctor ForEach(Iterator begin, Iterator end, |
681 | KeyValueFunctor func) { |
682 | for (Iterator it = begin; it != end; ++it) func(it->first, it->second); |
683 | return std::move(func); |
684 | } |
685 | |
686 | // Applies a functor to the <int, Extension&> pairs in sorted order. |
687 | template <typename KeyValueFunctor> |
688 | KeyValueFunctor ForEach(KeyValueFunctor func) { |
689 | if (PROTOBUF_PREDICT_FALSE(is_large())) { |
690 | return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); |
691 | } |
692 | return ForEach(flat_begin(), flat_end(), std::move(func)); |
693 | } |
694 | |
695 | // Applies a functor to the <int, const Extension&> pairs in sorted order. |
696 | template <typename KeyValueFunctor> |
697 | KeyValueFunctor ForEach(KeyValueFunctor func) const { |
698 | if (PROTOBUF_PREDICT_FALSE(is_large())) { |
699 | return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); |
700 | } |
701 | return ForEach(flat_begin(), flat_end(), std::move(func)); |
702 | } |
703 | |
704 | // Merges existing Extension from other_extension |
705 | void InternalExtensionMergeFrom(int number, const Extension& other_extension); |
706 | |
707 | // Returns true and fills field_number and extension if extension is found. |
708 | // Note to support packed repeated field compatibility, it also fills whether |
709 | // the tag on wire is packed, which can be different from |
710 | // extension->is_packed (whether packed=true is specified). |
711 | bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder, |
712 | int* field_number, ExtensionInfo* extension, |
713 | bool* was_packed_on_wire); |
714 | |
715 | // Returns true and fills extension if extension is found. |
716 | // Note to support packed repeated field compatibility, it also fills whether |
717 | // the tag on wire is packed, which can be different from |
718 | // extension->is_packed (whether packed=true is specified). |
719 | bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number, |
720 | ExtensionFinder* extension_finder, |
721 | ExtensionInfo* extension, |
722 | bool* was_packed_on_wire); |
723 | |
724 | // Parses a single extension from the input. The input should start out |
725 | // positioned immediately after the wire tag. This method is called in |
726 | // ParseField() after field number and was_packed_on_wire is extracted from |
727 | // the wire tag and ExtensionInfo is found by the field number. |
728 | bool ParseFieldWithExtensionInfo(int field_number, bool was_packed_on_wire, |
729 | const ExtensionInfo& extension, |
730 | io::CodedInputStream* input, |
731 | FieldSkipper* field_skipper); |
732 | |
733 | // Like ParseField(), but this method may parse singular message extensions |
734 | // lazily depending on the value of FLAGS_eagerly_parse_message_sets. |
735 | bool ParseFieldMaybeLazily(int wire_type, int field_number, |
736 | io::CodedInputStream* input, |
737 | ExtensionFinder* extension_finder, |
738 | MessageSetFieldSkipper* field_skipper); |
739 | |
740 | // Gets the extension with the given number, creating it if it does not |
741 | // already exist. Returns true if the extension did not already exist. |
742 | bool MaybeNewExtension(int number, const FieldDescriptor* descriptor, |
743 | Extension** result); |
744 | |
745 | // Gets the repeated extension for the given descriptor, creating it if |
746 | // it does not exist. |
747 | Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor); |
748 | |
749 | // Parse a single MessageSet item -- called just after the item group start |
750 | // tag has been read. |
751 | bool ParseMessageSetItemLite(io::CodedInputStream* input, |
752 | ExtensionFinder* extension_finder, |
753 | FieldSkipper* field_skipper); |
754 | // Parse a single MessageSet item -- called just after the item group start |
755 | // tag has been read. |
756 | bool ParseMessageSetItem(io::CodedInputStream* input, |
757 | ExtensionFinder* extension_finder, |
758 | MessageSetFieldSkipper* field_skipper); |
759 | |
760 | bool FindExtension(int wire_type, uint32 field, |
761 | const MessageLite* containing_type, |
762 | const internal::ParseContext* /*ctx*/, |
763 | ExtensionInfo* extension, bool* was_packed_on_wire) { |
764 | GeneratedExtensionFinder finder(containing_type); |
765 | return FindExtensionInfoFromFieldNumber(wire_type, field_number: field, extension_finder: &finder, |
766 | extension, was_packed_on_wire); |
767 | } |
768 | inline bool FindExtension(int wire_type, uint32 field, |
769 | const Message* containing_type, |
770 | const internal::ParseContext* ctx, |
771 | ExtensionInfo* extension, bool* was_packed_on_wire); |
772 | // Used for MessageSet only |
773 | const char* ParseFieldMaybeLazily(uint64 tag, const char* ptr, |
774 | const MessageLite* containing_type, |
775 | internal::InternalMetadata* metadata, |
776 | internal::ParseContext* ctx) { |
777 | // Lite MessageSet doesn't implement lazy. |
778 | return ParseField(tag, ptr, containing_type, metadata, ctx); |
779 | } |
780 | const char* ParseFieldMaybeLazily(uint64 tag, const char* ptr, |
781 | const Message* containing_type, |
782 | internal::InternalMetadata* metadata, |
783 | internal::ParseContext* ctx); |
784 | const char* ParseMessageSetItem(const char* ptr, |
785 | const MessageLite* containing_type, |
786 | internal::InternalMetadata* metadata, |
787 | internal::ParseContext* ctx); |
788 | const char* ParseMessageSetItem(const char* ptr, |
789 | const Message* containing_type, |
790 | internal::InternalMetadata* metadata, |
791 | internal::ParseContext* ctx); |
792 | |
793 | // Implemented in extension_set_inl.h to keep code out of the header file. |
794 | template <typename T> |
795 | const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire, |
796 | const ExtensionInfo& info, |
797 | internal::InternalMetadata* metadata, |
798 | const char* ptr, |
799 | internal::ParseContext* ctx); |
800 | template <typename Msg, typename T> |
801 | const char* ParseMessageSetItemTmpl(const char* ptr, |
802 | const Msg* containing_type, |
803 | internal::InternalMetadata* metadata, |
804 | internal::ParseContext* ctx); |
805 | |
806 | // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This |
807 | // friendship should automatically extend to ExtensionSet::Extension, but |
808 | // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this |
809 | // correctly. So, we must provide helpers for calling methods of that |
810 | // class. |
811 | |
812 | // Defined in extension_set_heavy.cc. |
813 | static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong( |
814 | RepeatedPtrFieldBase* field); |
815 | |
816 | KeyValue* flat_begin() { |
817 | assert(!is_large()); |
818 | return map_.flat; |
819 | } |
820 | const KeyValue* flat_begin() const { |
821 | assert(!is_large()); |
822 | return map_.flat; |
823 | } |
824 | KeyValue* flat_end() { |
825 | assert(!is_large()); |
826 | return map_.flat + flat_size_; |
827 | } |
828 | const KeyValue* flat_end() const { |
829 | assert(!is_large()); |
830 | return map_.flat + flat_size_; |
831 | } |
832 | |
833 | Arena* arena_; |
834 | |
835 | // Manual memory-management: |
836 | // map_.flat is an allocated array of flat_capacity_ elements. |
837 | // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix. |
838 | uint16 flat_capacity_; |
839 | uint16 flat_size_; |
840 | union AllocatedData { |
841 | KeyValue* flat; |
842 | |
843 | // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap, |
844 | // which guarantees O(n lg n) CPU but larger constant factors. |
845 | LargeMap* large; |
846 | } map_; |
847 | |
848 | static void DeleteFlatMap(const KeyValue* flat, uint16 flat_capacity); |
849 | |
850 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet); |
851 | }; |
852 | |
853 | // These are just for convenience... |
854 | inline void ExtensionSet::SetString(int number, FieldType type, |
855 | std::string value, |
856 | const FieldDescriptor* descriptor) { |
857 | MutableString(number, type, descriptor)->assign(str: std::move(value)); |
858 | } |
859 | inline void ExtensionSet::SetRepeatedString(int number, int index, |
860 | std::string value) { |
861 | MutableRepeatedString(number, index)->assign(str: std::move(value)); |
862 | } |
863 | inline void ExtensionSet::AddString(int number, FieldType type, |
864 | std::string value, |
865 | const FieldDescriptor* descriptor) { |
866 | AddString(number, type, descriptor)->assign(str: std::move(value)); |
867 | } |
868 | // =================================================================== |
869 | // Glue for generated extension accessors |
870 | |
871 | // ------------------------------------------------------------------- |
872 | // Template magic |
873 | |
874 | // First we have a set of classes representing "type traits" for different |
875 | // field types. A type traits class knows how to implement basic accessors |
876 | // for extensions of a particular type given an ExtensionSet. The signature |
877 | // for a type traits class looks like this: |
878 | // |
879 | // class TypeTraits { |
880 | // public: |
881 | // typedef ? ConstType; |
882 | // typedef ? MutableType; |
883 | // // TypeTraits for singular fields and repeated fields will define the |
884 | // // symbol "Singular" or "Repeated" respectively. These two symbols will |
885 | // // be used in extension accessors to distinguish between singular |
886 | // // extensions and repeated extensions. If the TypeTraits for the passed |
887 | // // in extension doesn't have the expected symbol defined, it means the |
888 | // // user is passing a repeated extension to a singular accessor, or the |
889 | // // opposite. In that case the C++ compiler will generate an error |
890 | // // message "no matching member function" to inform the user. |
891 | // typedef ? Singular |
892 | // typedef ? Repeated |
893 | // |
894 | // static inline ConstType Get(int number, const ExtensionSet& set); |
895 | // static inline void Set(int number, ConstType value, ExtensionSet* set); |
896 | // static inline MutableType Mutable(int number, ExtensionSet* set); |
897 | // |
898 | // // Variants for repeated fields. |
899 | // static inline ConstType Get(int number, const ExtensionSet& set, |
900 | // int index); |
901 | // static inline void Set(int number, int index, |
902 | // ConstType value, ExtensionSet* set); |
903 | // static inline MutableType Mutable(int number, int index, |
904 | // ExtensionSet* set); |
905 | // static inline void Add(int number, ConstType value, ExtensionSet* set); |
906 | // static inline MutableType Add(int number, ExtensionSet* set); |
907 | // This is used by the ExtensionIdentifier constructor to register |
908 | // the extension at dynamic initialization. |
909 | // template <typename ExtendeeT> |
910 | // static void Register(int number, FieldType type, bool is_packed); |
911 | // }; |
912 | // |
913 | // Not all of these methods make sense for all field types. For example, the |
914 | // "Mutable" methods only make sense for strings and messages, and the |
915 | // repeated methods only make sense for repeated types. So, each type |
916 | // traits class implements only the set of methods from this signature that it |
917 | // actually supports. This will cause a compiler error if the user tries to |
918 | // access an extension using a method that doesn't make sense for its type. |
919 | // For example, if "foo" is an extension of type "optional int32", then if you |
920 | // try to write code like: |
921 | // my_message.MutableExtension(foo) |
922 | // you will get a compile error because PrimitiveTypeTraits<int32> does not |
923 | // have a "Mutable()" method. |
924 | |
925 | // ------------------------------------------------------------------- |
926 | // PrimitiveTypeTraits |
927 | |
928 | // Since the ExtensionSet has different methods for each primitive type, |
929 | // we must explicitly define the methods of the type traits class for each |
930 | // known type. |
931 | template <typename Type> |
932 | class PrimitiveTypeTraits { |
933 | public: |
934 | typedef Type ConstType; |
935 | typedef Type MutableType; |
936 | typedef PrimitiveTypeTraits<Type> Singular; |
937 | |
938 | static inline ConstType Get(int number, const ExtensionSet& set, |
939 | ConstType default_value); |
940 | static inline void Set(int number, FieldType field_type, ConstType value, |
941 | ExtensionSet* set); |
942 | template <typename ExtendeeT> |
943 | static void Register(int number, FieldType type, bool is_packed) { |
944 | ExtensionSet::RegisterExtension(containing_type: &ExtendeeT::default_instance(), number, |
945 | type, is_repeated: false, is_packed); |
946 | } |
947 | }; |
948 | |
949 | template <typename Type> |
950 | class RepeatedPrimitiveTypeTraits { |
951 | public: |
952 | typedef Type ConstType; |
953 | typedef Type MutableType; |
954 | typedef RepeatedPrimitiveTypeTraits<Type> Repeated; |
955 | |
956 | typedef RepeatedField<Type> RepeatedFieldType; |
957 | |
958 | static inline Type Get(int number, const ExtensionSet& set, int index); |
959 | static inline void Set(int number, int index, Type value, ExtensionSet* set); |
960 | static inline void Add(int number, FieldType field_type, bool is_packed, |
961 | Type value, ExtensionSet* set); |
962 | |
963 | static inline const RepeatedField<ConstType>& GetRepeated( |
964 | int number, const ExtensionSet& set); |
965 | static inline RepeatedField<Type>* MutableRepeated(int number, |
966 | FieldType field_type, |
967 | bool is_packed, |
968 | ExtensionSet* set); |
969 | |
970 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
971 | template <typename ExtendeeT> |
972 | static void Register(int number, FieldType type, bool is_packed) { |
973 | ExtensionSet::RegisterExtension(containing_type: &ExtendeeT::default_instance(), number, |
974 | type, is_repeated: true, is_packed); |
975 | } |
976 | }; |
977 | |
978 | class PROTOBUF_EXPORT RepeatedPrimitiveDefaults { |
979 | private: |
980 | template <typename Type> |
981 | friend class RepeatedPrimitiveTypeTraits; |
982 | static const RepeatedPrimitiveDefaults* default_instance(); |
983 | RepeatedField<int32> default_repeated_field_int32_; |
984 | RepeatedField<int64> default_repeated_field_int64_; |
985 | RepeatedField<uint32> default_repeated_field_uint32_; |
986 | RepeatedField<uint64> default_repeated_field_uint64_; |
987 | RepeatedField<double> default_repeated_field_double_; |
988 | RepeatedField<float> default_repeated_field_float_; |
989 | RepeatedField<bool> default_repeated_field_bool_; |
990 | }; |
991 | |
992 | #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \ |
993 | template <> \ |
994 | inline TYPE PrimitiveTypeTraits<TYPE>::Get( \ |
995 | int number, const ExtensionSet& set, TYPE default_value) { \ |
996 | return set.Get##METHOD(number, default_value); \ |
997 | } \ |
998 | template <> \ |
999 | inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \ |
1000 | TYPE value, ExtensionSet* set) { \ |
1001 | set->Set##METHOD(number, field_type, value, NULL); \ |
1002 | } \ |
1003 | \ |
1004 | template <> \ |
1005 | inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \ |
1006 | int number, const ExtensionSet& set, int index) { \ |
1007 | return set.GetRepeated##METHOD(number, index); \ |
1008 | } \ |
1009 | template <> \ |
1010 | inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \ |
1011 | int number, int index, TYPE value, ExtensionSet* set) { \ |
1012 | set->SetRepeated##METHOD(number, index, value); \ |
1013 | } \ |
1014 | template <> \ |
1015 | inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \ |
1016 | int number, FieldType field_type, bool is_packed, TYPE value, \ |
1017 | ExtensionSet* set) { \ |
1018 | set->Add##METHOD(number, field_type, is_packed, value, NULL); \ |
1019 | } \ |
1020 | template <> \ |
1021 | inline const RepeatedField<TYPE>* \ |
1022 | RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \ |
1023 | return &RepeatedPrimitiveDefaults::default_instance() \ |
1024 | ->default_repeated_field_##TYPE##_; \ |
1025 | } \ |
1026 | template <> \ |
1027 | inline const RepeatedField<TYPE>& \ |
1028 | RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \ |
1029 | const ExtensionSet& set) { \ |
1030 | return *reinterpret_cast<const RepeatedField<TYPE>*>( \ |
1031 | set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \ |
1032 | } \ |
1033 | template <> \ |
1034 | inline RepeatedField<TYPE>* \ |
1035 | RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated( \ |
1036 | int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \ |
1037 | return reinterpret_cast<RepeatedField<TYPE>*>( \ |
1038 | set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); \ |
1039 | } |
1040 | |
1041 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32, Int32) |
1042 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64, Int64) |
1043 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32) |
1044 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64) |
1045 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float) |
1046 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double) |
1047 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool) |
1048 | |
1049 | #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE |
1050 | |
1051 | // ------------------------------------------------------------------- |
1052 | // StringTypeTraits |
1053 | |
1054 | // Strings support both Set() and Mutable(). |
1055 | class PROTOBUF_EXPORT StringTypeTraits { |
1056 | public: |
1057 | typedef const std::string& ConstType; |
1058 | typedef std::string* MutableType; |
1059 | typedef StringTypeTraits Singular; |
1060 | |
1061 | static inline const std::string& Get(int number, const ExtensionSet& set, |
1062 | ConstType default_value) { |
1063 | return set.GetString(number, default_value); |
1064 | } |
1065 | static inline void Set(int number, FieldType field_type, |
1066 | const std::string& value, ExtensionSet* set) { |
1067 | set->SetString(number, type: field_type, value, NULL); |
1068 | } |
1069 | static inline std::string* Mutable(int number, FieldType field_type, |
1070 | ExtensionSet* set) { |
1071 | return set->MutableString(number, type: field_type, NULL); |
1072 | } |
1073 | template <typename ExtendeeT> |
1074 | static void Register(int number, FieldType type, bool is_packed) { |
1075 | ExtensionSet::RegisterExtension(containing_type: &ExtendeeT::default_instance(), number, |
1076 | type, is_repeated: false, is_packed); |
1077 | } |
1078 | }; |
1079 | |
1080 | class PROTOBUF_EXPORT RepeatedStringTypeTraits { |
1081 | public: |
1082 | typedef const std::string& ConstType; |
1083 | typedef std::string* MutableType; |
1084 | typedef RepeatedStringTypeTraits Repeated; |
1085 | |
1086 | typedef RepeatedPtrField<std::string> RepeatedFieldType; |
1087 | |
1088 | static inline const std::string& Get(int number, const ExtensionSet& set, |
1089 | int index) { |
1090 | return set.GetRepeatedString(number, index); |
1091 | } |
1092 | static inline void Set(int number, int index, const std::string& value, |
1093 | ExtensionSet* set) { |
1094 | set->SetRepeatedString(number, index, value); |
1095 | } |
1096 | static inline std::string* Mutable(int number, int index, ExtensionSet* set) { |
1097 | return set->MutableRepeatedString(number, index); |
1098 | } |
1099 | static inline void Add(int number, FieldType field_type, bool /*is_packed*/, |
1100 | const std::string& value, ExtensionSet* set) { |
1101 | set->AddString(number, type: field_type, value, NULL); |
1102 | } |
1103 | static inline std::string* Add(int number, FieldType field_type, |
1104 | ExtensionSet* set) { |
1105 | return set->AddString(number, type: field_type, NULL); |
1106 | } |
1107 | static inline const RepeatedPtrField<std::string>& GetRepeated( |
1108 | int number, const ExtensionSet& set) { |
1109 | return *reinterpret_cast<const RepeatedPtrField<std::string>*>( |
1110 | set.GetRawRepeatedField(number, default_value: GetDefaultRepeatedField())); |
1111 | } |
1112 | |
1113 | static inline RepeatedPtrField<std::string>* MutableRepeated( |
1114 | int number, FieldType field_type, bool is_packed, ExtensionSet* set) { |
1115 | return reinterpret_cast<RepeatedPtrField<std::string>*>( |
1116 | set->MutableRawRepeatedField(number, field_type, packed: is_packed, NULL)); |
1117 | } |
1118 | |
1119 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
1120 | |
1121 | template <typename ExtendeeT> |
1122 | static void Register(int number, FieldType type, bool is_packed) { |
1123 | ExtensionSet::RegisterExtension(containing_type: &ExtendeeT::default_instance(), number, |
1124 | type, is_repeated: true, is_packed); |
1125 | } |
1126 | |
1127 | private: |
1128 | static void InitializeDefaultRepeatedFields(); |
1129 | static void DestroyDefaultRepeatedFields(); |
1130 | }; |
1131 | |
1132 | // ------------------------------------------------------------------- |
1133 | // EnumTypeTraits |
1134 | |
1135 | // ExtensionSet represents enums using integers internally, so we have to |
1136 | // static_cast around. |
1137 | template <typename Type, bool IsValid(int)> |
1138 | class EnumTypeTraits { |
1139 | public: |
1140 | typedef Type ConstType; |
1141 | typedef Type MutableType; |
1142 | typedef EnumTypeTraits<Type, IsValid> Singular; |
1143 | |
1144 | static inline ConstType Get(int number, const ExtensionSet& set, |
1145 | ConstType default_value) { |
1146 | return static_cast<Type>(set.GetEnum(number, default_value)); |
1147 | } |
1148 | static inline void Set(int number, FieldType field_type, ConstType value, |
1149 | ExtensionSet* set) { |
1150 | GOOGLE_DCHECK(IsValid(value)); |
1151 | set->SetEnum(number, type: field_type, value, NULL); |
1152 | } |
1153 | template <typename ExtendeeT> |
1154 | static void Register(int number, FieldType type, bool is_packed) { |
1155 | ExtensionSet::RegisterEnumExtension(containing_type: &ExtendeeT::default_instance(), number, |
1156 | type, is_repeated: false, is_packed, is_valid: IsValid); |
1157 | } |
1158 | }; |
1159 | |
1160 | template <typename Type, bool IsValid(int)> |
1161 | class RepeatedEnumTypeTraits { |
1162 | public: |
1163 | typedef Type ConstType; |
1164 | typedef Type MutableType; |
1165 | typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated; |
1166 | |
1167 | typedef RepeatedField<Type> RepeatedFieldType; |
1168 | |
1169 | static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
1170 | return static_cast<Type>(set.GetRepeatedEnum(number, index)); |
1171 | } |
1172 | static inline void Set(int number, int index, ConstType value, |
1173 | ExtensionSet* set) { |
1174 | GOOGLE_DCHECK(IsValid(value)); |
1175 | set->SetRepeatedEnum(number, index, value); |
1176 | } |
1177 | static inline void Add(int number, FieldType field_type, bool is_packed, |
1178 | ConstType value, ExtensionSet* set) { |
1179 | GOOGLE_DCHECK(IsValid(value)); |
1180 | set->AddEnum(number, type: field_type, packed: is_packed, value, NULL); |
1181 | } |
1182 | static inline const RepeatedField<Type>& GetRepeated( |
1183 | int number, const ExtensionSet& set) { |
1184 | // Hack: the `Extension` struct stores a RepeatedField<int> for enums. |
1185 | // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType> |
1186 | // so we need to do some casting magic. See message.h for similar |
1187 | // contortions for non-extension fields. |
1188 | return *reinterpret_cast<const RepeatedField<Type>*>( |
1189 | set.GetRawRepeatedField(number, default_value: GetDefaultRepeatedField())); |
1190 | } |
1191 | |
1192 | static inline RepeatedField<Type>* MutableRepeated(int number, |
1193 | FieldType field_type, |
1194 | bool is_packed, |
1195 | ExtensionSet* set) { |
1196 | return reinterpret_cast<RepeatedField<Type>*>( |
1197 | set->MutableRawRepeatedField(number, field_type, packed: is_packed, NULL)); |
1198 | } |
1199 | |
1200 | static const RepeatedFieldType* GetDefaultRepeatedField() { |
1201 | // Hack: as noted above, repeated enum fields are internally stored as a |
1202 | // RepeatedField<int>. We need to be able to instantiate global static |
1203 | // objects to return as default (empty) repeated fields on non-existent |
1204 | // extensions. We would not be able to know a-priori all of the enum types |
1205 | // (values of |Type|) to instantiate all of these, so we just re-use int32's |
1206 | // default repeated field object. |
1207 | return reinterpret_cast<const RepeatedField<Type>*>( |
1208 | RepeatedPrimitiveTypeTraits<int32>::GetDefaultRepeatedField()); |
1209 | } |
1210 | template <typename ExtendeeT> |
1211 | static void Register(int number, FieldType type, bool is_packed) { |
1212 | ExtensionSet::RegisterEnumExtension(containing_type: &ExtendeeT::default_instance(), number, |
1213 | type, is_repeated: true, is_packed, is_valid: IsValid); |
1214 | } |
1215 | }; |
1216 | |
1217 | // ------------------------------------------------------------------- |
1218 | // MessageTypeTraits |
1219 | |
1220 | // ExtensionSet guarantees that when manipulating extensions with message |
1221 | // types, the implementation used will be the compiled-in class representing |
1222 | // that type. So, we can static_cast down to the exact type we expect. |
1223 | template <typename Type> |
1224 | class MessageTypeTraits { |
1225 | public: |
1226 | typedef const Type& ConstType; |
1227 | typedef Type* MutableType; |
1228 | typedef MessageTypeTraits<Type> Singular; |
1229 | |
1230 | static inline ConstType Get(int number, const ExtensionSet& set, |
1231 | ConstType default_value) { |
1232 | return static_cast<const Type&>(set.GetMessage(number, default_value)); |
1233 | } |
1234 | static inline MutableType Mutable(int number, FieldType field_type, |
1235 | ExtensionSet* set) { |
1236 | return static_cast<Type*>(set->MutableMessage( |
1237 | number, field_type, Type::default_instance(), NULL)); |
1238 | } |
1239 | static inline void SetAllocated(int number, FieldType field_type, |
1240 | MutableType message, ExtensionSet* set) { |
1241 | set->SetAllocatedMessage(number, type: field_type, NULL, message); |
1242 | } |
1243 | static inline void UnsafeArenaSetAllocated(int number, FieldType field_type, |
1244 | MutableType message, |
1245 | ExtensionSet* set) { |
1246 | set->UnsafeArenaSetAllocatedMessage(number, type: field_type, NULL, message); |
1247 | } |
1248 | static inline MutableType Release(int number, FieldType /* field_type */, |
1249 | ExtensionSet* set) { |
1250 | return static_cast<Type*>( |
1251 | set->ReleaseMessage(number, Type::default_instance())); |
1252 | } |
1253 | static inline MutableType UnsafeArenaRelease(int number, |
1254 | FieldType /* field_type */, |
1255 | ExtensionSet* set) { |
1256 | return static_cast<Type*>( |
1257 | set->UnsafeArenaReleaseMessage(number, Type::default_instance())); |
1258 | } |
1259 | template <typename ExtendeeT> |
1260 | static void Register(int number, FieldType type, bool is_packed) { |
1261 | ExtensionSet::RegisterMessageExtension(containing_type: &ExtendeeT::default_instance(), |
1262 | number, type, is_repeated: false, is_packed, |
1263 | prototype: &Type::default_instance()); |
1264 | } |
1265 | }; |
1266 | |
1267 | // forward declaration |
1268 | class RepeatedMessageGenericTypeTraits; |
1269 | |
1270 | template <typename Type> |
1271 | class RepeatedMessageTypeTraits { |
1272 | public: |
1273 | typedef const Type& ConstType; |
1274 | typedef Type* MutableType; |
1275 | typedef RepeatedMessageTypeTraits<Type> Repeated; |
1276 | |
1277 | typedef RepeatedPtrField<Type> RepeatedFieldType; |
1278 | |
1279 | static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
1280 | return static_cast<const Type&>(set.GetRepeatedMessage(number, index)); |
1281 | } |
1282 | static inline MutableType Mutable(int number, int index, ExtensionSet* set) { |
1283 | return static_cast<Type*>(set->MutableRepeatedMessage(number, index)); |
1284 | } |
1285 | static inline MutableType Add(int number, FieldType field_type, |
1286 | ExtensionSet* set) { |
1287 | return static_cast<Type*>( |
1288 | set->AddMessage(number, field_type, Type::default_instance(), NULL)); |
1289 | } |
1290 | static inline const RepeatedPtrField<Type>& GetRepeated( |
1291 | int number, const ExtensionSet& set) { |
1292 | // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same |
1293 | // casting hack applies here, because a RepeatedPtrField<MessageLite> |
1294 | // cannot naturally become a RepeatedPtrType<Type> even though Type is |
1295 | // presumably a message. google::protobuf::Message goes through similar contortions |
1296 | // with a reinterpret_cast<>. |
1297 | return *reinterpret_cast<const RepeatedPtrField<Type>*>( |
1298 | set.GetRawRepeatedField(number, default_value: GetDefaultRepeatedField())); |
1299 | } |
1300 | static inline RepeatedPtrField<Type>* MutableRepeated(int number, |
1301 | FieldType field_type, |
1302 | bool is_packed, |
1303 | ExtensionSet* set) { |
1304 | return reinterpret_cast<RepeatedPtrField<Type>*>( |
1305 | set->MutableRawRepeatedField(number, field_type, packed: is_packed, NULL)); |
1306 | } |
1307 | |
1308 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
1309 | template <typename ExtendeeT> |
1310 | static void Register(int number, FieldType type, bool is_packed) { |
1311 | ExtensionSet::RegisterMessageExtension(containing_type: &ExtendeeT::default_instance(), |
1312 | number, type, is_repeated: true, is_packed, |
1313 | prototype: &Type::default_instance()); |
1314 | } |
1315 | }; |
1316 | |
1317 | template <typename Type> |
1318 | inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType* |
1319 | RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() { |
1320 | static auto instance = OnShutdownDelete(new RepeatedFieldType); |
1321 | return instance; |
1322 | } |
1323 | |
1324 | // ------------------------------------------------------------------- |
1325 | // ExtensionIdentifier |
1326 | |
1327 | // This is the type of actual extension objects. E.g. if you have: |
1328 | // extends Foo with optional int32 bar = 1234; |
1329 | // then "bar" will be defined in C++ as: |
1330 | // ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 5, false> bar(1234); |
1331 | // |
1332 | // Note that we could, in theory, supply the field number as a template |
1333 | // parameter, and thus make an instance of ExtensionIdentifier have no |
1334 | // actual contents. However, if we did that, then using an extension |
1335 | // identifier would not necessarily cause the compiler to output any sort |
1336 | // of reference to any symbol defined in the extension's .pb.o file. Some |
1337 | // linkers will actually drop object files that are not explicitly referenced, |
1338 | // but that would be bad because it would cause this extension to not be |
1339 | // registered at static initialization, and therefore using it would crash. |
1340 | |
1341 | template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type, |
1342 | bool is_packed> |
1343 | class ExtensionIdentifier { |
1344 | public: |
1345 | typedef TypeTraitsType TypeTraits; |
1346 | typedef ExtendeeType Extendee; |
1347 | |
1348 | ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value) |
1349 | : number_(number), default_value_(default_value) { |
1350 | Register(number); |
1351 | } |
1352 | inline int number() const { return number_; } |
1353 | typename TypeTraits::ConstType default_value() const { |
1354 | return default_value_; |
1355 | } |
1356 | |
1357 | static void Register(int number) { |
1358 | TypeTraits::template Register<ExtendeeType>(number, field_type, is_packed); |
1359 | } |
1360 | |
1361 | private: |
1362 | const int number_; |
1363 | typename TypeTraits::ConstType default_value_; |
1364 | }; |
1365 | |
1366 | // ------------------------------------------------------------------- |
1367 | // Generated accessors |
1368 | |
1369 | // This macro should be expanded in the context of a generated type which |
1370 | // has extensions. |
1371 | // |
1372 | // We use "_proto_TypeTraits" as a type name below because "TypeTraits" |
1373 | // causes problems if the class has a nested message or enum type with that |
1374 | // name and "_TypeTraits" is technically reserved for the C++ library since |
1375 | // it starts with an underscore followed by a capital letter. |
1376 | // |
1377 | // For similar reason, we use "_field_type" and "_is_packed" as parameter names |
1378 | // below, so that "field_type" and "is_packed" can be used as field names. |
1379 | #define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME) \ |
1380 | /* Has, Size, Clear */ \ |
1381 | template <typename _proto_TypeTraits, \ |
1382 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1383 | bool _is_packed> \ |
1384 | inline bool HasExtension( \ |
1385 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1386 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
1387 | return _extensions_.Has(id.number()); \ |
1388 | } \ |
1389 | \ |
1390 | template <typename _proto_TypeTraits, \ |
1391 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1392 | bool _is_packed> \ |
1393 | inline void ClearExtension( \ |
1394 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1395 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
1396 | _extensions_.ClearExtension(id.number()); \ |
1397 | } \ |
1398 | \ |
1399 | template <typename _proto_TypeTraits, \ |
1400 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1401 | bool _is_packed> \ |
1402 | inline int ExtensionSize( \ |
1403 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1404 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
1405 | return _extensions_.ExtensionSize(id.number()); \ |
1406 | } \ |
1407 | \ |
1408 | /* Singular accessors */ \ |
1409 | template <typename _proto_TypeTraits, \ |
1410 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1411 | bool _is_packed> \ |
1412 | inline typename _proto_TypeTraits::Singular::ConstType GetExtension( \ |
1413 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1414 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
1415 | return _proto_TypeTraits::Get(id.number(), _extensions_, \ |
1416 | id.default_value()); \ |
1417 | } \ |
1418 | \ |
1419 | template <typename _proto_TypeTraits, \ |
1420 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1421 | bool _is_packed> \ |
1422 | inline typename _proto_TypeTraits::Singular::MutableType MutableExtension( \ |
1423 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1424 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
1425 | return _proto_TypeTraits::Mutable(id.number(), _field_type, \ |
1426 | &_extensions_); \ |
1427 | } \ |
1428 | \ |
1429 | template <typename _proto_TypeTraits, \ |
1430 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1431 | bool _is_packed> \ |
1432 | inline void SetExtension( \ |
1433 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1434 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1435 | typename _proto_TypeTraits::Singular::ConstType value) { \ |
1436 | _proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_); \ |
1437 | } \ |
1438 | \ |
1439 | template <typename _proto_TypeTraits, \ |
1440 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1441 | bool _is_packed> \ |
1442 | inline void SetAllocatedExtension( \ |
1443 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1444 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1445 | typename _proto_TypeTraits::Singular::MutableType value) { \ |
1446 | _proto_TypeTraits::SetAllocated(id.number(), _field_type, value, \ |
1447 | &_extensions_); \ |
1448 | } \ |
1449 | template <typename _proto_TypeTraits, \ |
1450 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1451 | bool _is_packed> \ |
1452 | inline void UnsafeArenaSetAllocatedExtension( \ |
1453 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1454 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1455 | typename _proto_TypeTraits::Singular::MutableType value) { \ |
1456 | _proto_TypeTraits::UnsafeArenaSetAllocated(id.number(), _field_type, \ |
1457 | value, &_extensions_); \ |
1458 | } \ |
1459 | template <typename _proto_TypeTraits, \ |
1460 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1461 | bool _is_packed> \ |
1462 | inline typename _proto_TypeTraits::Singular::MutableType ReleaseExtension( \ |
1463 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1464 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
1465 | return _proto_TypeTraits::Release(id.number(), _field_type, \ |
1466 | &_extensions_); \ |
1467 | } \ |
1468 | template <typename _proto_TypeTraits, \ |
1469 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1470 | bool _is_packed> \ |
1471 | inline typename _proto_TypeTraits::Singular::MutableType \ |
1472 | UnsafeArenaReleaseExtension( \ |
1473 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1474 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
1475 | return _proto_TypeTraits::UnsafeArenaRelease(id.number(), _field_type, \ |
1476 | &_extensions_); \ |
1477 | } \ |
1478 | \ |
1479 | /* Repeated accessors */ \ |
1480 | template <typename _proto_TypeTraits, \ |
1481 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1482 | bool _is_packed> \ |
1483 | inline typename _proto_TypeTraits::Repeated::ConstType GetExtension( \ |
1484 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1485 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1486 | int index) const { \ |
1487 | return _proto_TypeTraits::Get(id.number(), _extensions_, index); \ |
1488 | } \ |
1489 | \ |
1490 | template <typename _proto_TypeTraits, \ |
1491 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1492 | bool _is_packed> \ |
1493 | inline typename _proto_TypeTraits::Repeated::MutableType MutableExtension( \ |
1494 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1495 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1496 | int index) { \ |
1497 | return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_); \ |
1498 | } \ |
1499 | \ |
1500 | template <typename _proto_TypeTraits, \ |
1501 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1502 | bool _is_packed> \ |
1503 | inline void SetExtension( \ |
1504 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1505 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1506 | int index, typename _proto_TypeTraits::Repeated::ConstType value) { \ |
1507 | _proto_TypeTraits::Set(id.number(), index, value, &_extensions_); \ |
1508 | } \ |
1509 | \ |
1510 | template <typename _proto_TypeTraits, \ |
1511 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1512 | bool _is_packed> \ |
1513 | inline typename _proto_TypeTraits::Repeated::MutableType AddExtension( \ |
1514 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1515 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
1516 | return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_); \ |
1517 | } \ |
1518 | \ |
1519 | template <typename _proto_TypeTraits, \ |
1520 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1521 | bool _is_packed> \ |
1522 | inline void AddExtension( \ |
1523 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1524 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1525 | typename _proto_TypeTraits::Repeated::ConstType value) { \ |
1526 | _proto_TypeTraits::Add(id.number(), _field_type, _is_packed, value, \ |
1527 | &_extensions_); \ |
1528 | } \ |
1529 | \ |
1530 | template <typename _proto_TypeTraits, \ |
1531 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1532 | bool _is_packed> \ |
1533 | inline const typename _proto_TypeTraits::Repeated::RepeatedFieldType& \ |
1534 | GetRepeatedExtension( \ |
1535 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1536 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
1537 | return _proto_TypeTraits::GetRepeated(id.number(), _extensions_); \ |
1538 | } \ |
1539 | \ |
1540 | template <typename _proto_TypeTraits, \ |
1541 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
1542 | bool _is_packed> \ |
1543 | inline typename _proto_TypeTraits::Repeated::RepeatedFieldType* \ |
1544 | MutableRepeatedExtension( \ |
1545 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
1546 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
1547 | return _proto_TypeTraits::MutableRepeated(id.number(), _field_type, \ |
1548 | _is_packed, &_extensions_); \ |
1549 | } |
1550 | |
1551 | } // namespace internal |
1552 | |
1553 | // Call this function to ensure that this extensions's reflection is linked into |
1554 | // the binary: |
1555 | // |
1556 | // google::protobuf::LinkExtensionReflection(Foo::my_extension); |
1557 | // |
1558 | // This will ensure that the following lookup will succeed: |
1559 | // |
1560 | // DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension"); |
1561 | // |
1562 | // This is often relevant for parsing extensions in text mode. |
1563 | // |
1564 | // As a side-effect, it will also guarantee that anything else from the same |
1565 | // .proto file will also be available for lookup in the generated pool. |
1566 | // |
1567 | // This function does not actually register the extension, so it does not need |
1568 | // to be called before the lookup. However it does need to occur in a function |
1569 | // that cannot be stripped from the binary (ie. it must be reachable from main). |
1570 | // |
1571 | // Best practice is to call this function as close as possible to where the |
1572 | // reflection is actually needed. This function is very cheap to call, so you |
1573 | // should not need to worry about its runtime overhead except in tight loops (on |
1574 | // x86-64 it compiles into two "mov" instructions). |
1575 | template <typename ExtendeeType, typename TypeTraitsType, |
1576 | internal::FieldType field_type, bool is_packed> |
1577 | void LinkExtensionReflection( |
1578 | const google::protobuf::internal::ExtensionIdentifier< |
1579 | ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) { |
1580 | internal::StrongReference(extension); |
1581 | } |
1582 | |
1583 | } // namespace protobuf |
1584 | } // namespace google |
1585 | |
1586 | #include <google/protobuf/port_undef.inc> |
1587 | |
1588 | #endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
1589 | |