| 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2008 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | // Author: kenton@google.com (Kenton Varda) |
| 32 | // Based on original Protocol Buffers design by |
| 33 | // Sanjay Ghemawat, Jeff Dean, and others. |
| 34 | // |
| 35 | // This header is logically internal, but is made public because it is used |
| 36 | // from protocol-compiler-generated code, which may reside in other components. |
| 37 | |
| 38 | #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
| 39 | #define GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
| 40 | |
| 41 | #include <algorithm> |
| 42 | #include <cassert> |
| 43 | #include <map> |
| 44 | #include <string> |
| 45 | #include <utility> |
| 46 | #include <vector> |
| 47 | |
| 48 | #include <google/protobuf/stubs/common.h> |
| 49 | #include <google/protobuf/stubs/logging.h> |
| 50 | #include <google/protobuf/parse_context.h> |
| 51 | #include <google/protobuf/io/coded_stream.h> |
| 52 | #include <google/protobuf/port.h> |
| 53 | #include <google/protobuf/repeated_field.h> |
| 54 | #include <google/protobuf/wire_format_lite.h> |
| 55 | |
| 56 | #include <google/protobuf/port_def.inc> |
| 57 | |
| 58 | #ifdef SWIG |
| 59 | #error "You cannot SWIG proto headers" |
| 60 | #endif |
| 61 | |
| 62 | namespace google { |
| 63 | namespace protobuf { |
| 64 | class Arena; |
| 65 | class Descriptor; // descriptor.h |
| 66 | class FieldDescriptor; // descriptor.h |
| 67 | class DescriptorPool; // descriptor.h |
| 68 | class MessageLite; // message_lite.h |
| 69 | class Message; // message.h |
| 70 | class MessageFactory; // message.h |
| 71 | class UnknownFieldSet; // unknown_field_set.h |
| 72 | namespace internal { |
| 73 | class FieldSkipper; // wire_format_lite.h |
| 74 | } // namespace internal |
| 75 | } // namespace protobuf |
| 76 | } // namespace google |
| 77 | |
| 78 | namespace google { |
| 79 | namespace protobuf { |
| 80 | namespace internal { |
| 81 | |
| 82 | class InternalMetadata; |
| 83 | |
| 84 | // Used to store values of type WireFormatLite::FieldType without having to |
| 85 | // #include wire_format_lite.h. Also, ensures that we use only one byte to |
| 86 | // store these values, which is important to keep the layout of |
| 87 | // ExtensionSet::Extension small. |
| 88 | typedef uint8 FieldType; |
| 89 | |
| 90 | // A function which, given an integer value, returns true if the number |
| 91 | // matches one of the defined values for the corresponding enum type. This |
| 92 | // is used with RegisterEnumExtension, below. |
| 93 | typedef bool EnumValidityFunc(int number); |
| 94 | |
| 95 | // Version of the above which takes an argument. This is needed to deal with |
| 96 | // extensions that are not compiled in. |
| 97 | typedef bool EnumValidityFuncWithArg(const void* arg, int number); |
| 98 | |
| 99 | // Information about a registered extension. |
| 100 | struct ExtensionInfo { |
| 101 | inline ExtensionInfo() {} |
| 102 | inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked) |
| 103 | : type(type_param), |
| 104 | is_repeated(isrepeated), |
| 105 | is_packed(ispacked), |
| 106 | descriptor(NULL) {} |
| 107 | |
| 108 | FieldType type; |
| 109 | bool is_repeated; |
| 110 | bool is_packed; |
| 111 | |
| 112 | struct EnumValidityCheck { |
| 113 | EnumValidityFuncWithArg* func; |
| 114 | const void* arg; |
| 115 | }; |
| 116 | |
| 117 | struct MessageInfo { |
| 118 | const MessageLite* prototype; |
| 119 | }; |
| 120 | |
| 121 | union { |
| 122 | EnumValidityCheck enum_validity_check; |
| 123 | MessageInfo message_info; |
| 124 | }; |
| 125 | |
| 126 | // The descriptor for this extension, if one exists and is known. May be |
| 127 | // NULL. Must not be NULL if the descriptor for the extension does not |
| 128 | // live in the same pool as the descriptor for the containing type. |
| 129 | const FieldDescriptor* descriptor; |
| 130 | }; |
| 131 | |
| 132 | // Abstract interface for an object which looks up extension definitions. Used |
| 133 | // when parsing. |
| 134 | class PROTOBUF_EXPORT ExtensionFinder { |
| 135 | public: |
| 136 | virtual ~ExtensionFinder(); |
| 137 | |
| 138 | // Find the extension with the given containing type and number. |
| 139 | virtual bool Find(int number, ExtensionInfo* output) = 0; |
| 140 | }; |
| 141 | |
| 142 | // Implementation of ExtensionFinder which finds extensions defined in .proto |
| 143 | // files which have been compiled into the binary. |
| 144 | class PROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder { |
| 145 | public: |
| 146 | GeneratedExtensionFinder(const MessageLite* containing_type) |
| 147 | : containing_type_(containing_type) {} |
| 148 | ~GeneratedExtensionFinder() override {} |
| 149 | |
| 150 | // Returns true and fills in *output if found, otherwise returns false. |
| 151 | bool Find(int number, ExtensionInfo* output) override; |
| 152 | |
| 153 | private: |
| 154 | const MessageLite* containing_type_; |
| 155 | }; |
| 156 | |
| 157 | // A FieldSkipper used for parsing MessageSet. |
| 158 | class MessageSetFieldSkipper; |
| 159 | |
| 160 | // Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for |
| 161 | // finding extensions from a DescriptorPool. |
| 162 | |
| 163 | // This is an internal helper class intended for use within the protocol buffer |
| 164 | // library and generated classes. Clients should not use it directly. Instead, |
| 165 | // use the generated accessors such as GetExtension() of the class being |
| 166 | // extended. |
| 167 | // |
| 168 | // This class manages extensions for a protocol message object. The |
| 169 | // message's HasExtension(), GetExtension(), MutableExtension(), and |
| 170 | // ClearExtension() methods are just thin wrappers around the embedded |
| 171 | // ExtensionSet. When parsing, if a tag number is encountered which is |
| 172 | // inside one of the message type's extension ranges, the tag is passed |
| 173 | // off to the ExtensionSet for parsing. Etc. |
| 174 | class PROTOBUF_EXPORT ExtensionSet { |
| 175 | public: |
| 176 | ExtensionSet(); |
| 177 | explicit ExtensionSet(Arena* arena); |
| 178 | ~ExtensionSet(); |
| 179 | |
| 180 | // These are called at startup by protocol-compiler-generated code to |
| 181 | // register known extensions. The registrations are used by ParseField() |
| 182 | // to look up extensions for parsed field numbers. Note that dynamic parsing |
| 183 | // does not use ParseField(); only protocol-compiler-generated parsing |
| 184 | // methods do. |
| 185 | static void RegisterExtension(const MessageLite* containing_type, int number, |
| 186 | FieldType type, bool is_repeated, |
| 187 | bool is_packed); |
| 188 | static void RegisterEnumExtension(const MessageLite* containing_type, |
| 189 | int number, FieldType type, |
| 190 | bool is_repeated, bool is_packed, |
| 191 | EnumValidityFunc* is_valid); |
| 192 | static void RegisterMessageExtension(const MessageLite* containing_type, |
| 193 | int number, FieldType type, |
| 194 | bool is_repeated, bool is_packed, |
| 195 | const MessageLite* prototype); |
| 196 | |
| 197 | // ================================================================= |
| 198 | |
| 199 | // Add all fields which are currently present to the given vector. This |
| 200 | // is useful to implement Reflection::ListFields(). |
| 201 | void AppendToList(const Descriptor* containing_type, |
| 202 | const DescriptorPool* pool, |
| 203 | std::vector<const FieldDescriptor*>* output) const; |
| 204 | |
| 205 | // ================================================================= |
| 206 | // Accessors |
| 207 | // |
| 208 | // Generated message classes include type-safe templated wrappers around |
| 209 | // these methods. Generally you should use those rather than call these |
| 210 | // directly, unless you are doing low-level memory management. |
| 211 | // |
| 212 | // When calling any of these accessors, the extension number requested |
| 213 | // MUST exist in the DescriptorPool provided to the constructor. Otherwise, |
| 214 | // the method will fail an assert. Normally, though, you would not call |
| 215 | // these directly; you would either call the generated accessors of your |
| 216 | // message class (e.g. GetExtension()) or you would call the accessors |
| 217 | // of the reflection interface. In both cases, it is impossible to |
| 218 | // trigger this assert failure: the generated accessors only accept |
| 219 | // linked-in extension types as parameters, while the Reflection interface |
| 220 | // requires you to provide the FieldDescriptor describing the extension. |
| 221 | // |
| 222 | // When calling any of these accessors, a protocol-compiler-generated |
| 223 | // implementation of the extension corresponding to the number MUST |
| 224 | // be linked in, and the FieldDescriptor used to refer to it MUST be |
| 225 | // the one generated by that linked-in code. Otherwise, the method will |
| 226 | // die on an assert failure. The message objects returned by the message |
| 227 | // accessors are guaranteed to be of the correct linked-in type. |
| 228 | // |
| 229 | // These methods pretty much match Reflection except that: |
| 230 | // - They're not virtual. |
| 231 | // - They identify fields by number rather than FieldDescriptors. |
| 232 | // - They identify enum values using integers rather than descriptors. |
| 233 | // - Strings provide Mutable() in addition to Set() accessors. |
| 234 | |
| 235 | bool Has(int number) const; |
| 236 | int ExtensionSize(int number) const; // Size of a repeated extension. |
| 237 | int NumExtensions() const; // The number of extensions |
| 238 | FieldType ExtensionType(int number) const; |
| 239 | void ClearExtension(int number); |
| 240 | |
| 241 | // singular fields ------------------------------------------------- |
| 242 | |
| 243 | int32 GetInt32(int number, int32 default_value) const; |
| 244 | int64 GetInt64(int number, int64 default_value) const; |
| 245 | uint32 GetUInt32(int number, uint32 default_value) const; |
| 246 | uint64 GetUInt64(int number, uint64 default_value) const; |
| 247 | float GetFloat(int number, float default_value) const; |
| 248 | double GetDouble(int number, double default_value) const; |
| 249 | bool GetBool(int number, bool default_value) const; |
| 250 | int GetEnum(int number, int default_value) const; |
| 251 | const std::string& GetString(int number, |
| 252 | const std::string& default_value) const; |
| 253 | const MessageLite& GetMessage(int number, |
| 254 | const MessageLite& default_value) const; |
| 255 | const MessageLite& GetMessage(int number, const Descriptor* message_type, |
| 256 | MessageFactory* factory) const; |
| 257 | |
| 258 | // |descriptor| may be NULL so long as it is known that the descriptor for |
| 259 | // the extension lives in the same pool as the descriptor for the containing |
| 260 | // type. |
| 261 | #define desc const FieldDescriptor* descriptor // avoid line wrapping |
| 262 | void SetInt32(int number, FieldType type, int32 value, desc); |
| 263 | void SetInt64(int number, FieldType type, int64 value, desc); |
| 264 | void SetUInt32(int number, FieldType type, uint32 value, desc); |
| 265 | void SetUInt64(int number, FieldType type, uint64 value, desc); |
| 266 | void SetFloat(int number, FieldType type, float value, desc); |
| 267 | void SetDouble(int number, FieldType type, double value, desc); |
| 268 | void SetBool(int number, FieldType type, bool value, desc); |
| 269 | void SetEnum(int number, FieldType type, int value, desc); |
| 270 | void SetString(int number, FieldType type, std::string value, desc); |
| 271 | std::string* MutableString(int number, FieldType type, desc); |
| 272 | MessageLite* MutableMessage(int number, FieldType type, |
| 273 | const MessageLite& prototype, desc); |
| 274 | MessageLite* MutableMessage(const FieldDescriptor* descriptor, |
| 275 | MessageFactory* factory); |
| 276 | // Adds the given message to the ExtensionSet, taking ownership of the |
| 277 | // message object. Existing message with the same number will be deleted. |
| 278 | // If "message" is NULL, this is equivalent to "ClearExtension(number)". |
| 279 | void SetAllocatedMessage(int number, FieldType type, |
| 280 | const FieldDescriptor* descriptor, |
| 281 | MessageLite* message); |
| 282 | void UnsafeArenaSetAllocatedMessage(int number, FieldType type, |
| 283 | const FieldDescriptor* descriptor, |
| 284 | MessageLite* message); |
| 285 | MessageLite* ReleaseMessage(int number, const MessageLite& prototype); |
| 286 | MessageLite* UnsafeArenaReleaseMessage(int number, |
| 287 | const MessageLite& prototype); |
| 288 | |
| 289 | MessageLite* ReleaseMessage(const FieldDescriptor* descriptor, |
| 290 | MessageFactory* factory); |
| 291 | MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor, |
| 292 | MessageFactory* factory); |
| 293 | #undef desc |
| 294 | Arena* GetArena() const { return arena_; } |
| 295 | |
| 296 | // repeated fields ------------------------------------------------- |
| 297 | |
| 298 | // Fetches a RepeatedField extension by number; returns |default_value| |
| 299 | // if no such extension exists. User should not touch this directly; it is |
| 300 | // used by the GetRepeatedExtension() method. |
| 301 | const void* GetRawRepeatedField(int number, const void* default_value) const; |
| 302 | // Fetches a mutable version of a RepeatedField extension by number, |
| 303 | // instantiating one if none exists. Similar to above, user should not use |
| 304 | // this directly; it underlies MutableRepeatedExtension(). |
| 305 | void* MutableRawRepeatedField(int number, FieldType field_type, bool packed, |
| 306 | const FieldDescriptor* desc); |
| 307 | |
| 308 | // This is an overload of MutableRawRepeatedField to maintain compatibility |
| 309 | // with old code using a previous API. This version of |
| 310 | // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension. |
| 311 | // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.) |
| 312 | void* MutableRawRepeatedField(int number); |
| 313 | |
| 314 | int32 GetRepeatedInt32(int number, int index) const; |
| 315 | int64 GetRepeatedInt64(int number, int index) const; |
| 316 | uint32 GetRepeatedUInt32(int number, int index) const; |
| 317 | uint64 GetRepeatedUInt64(int number, int index) const; |
| 318 | float GetRepeatedFloat(int number, int index) const; |
| 319 | double GetRepeatedDouble(int number, int index) const; |
| 320 | bool GetRepeatedBool(int number, int index) const; |
| 321 | int GetRepeatedEnum(int number, int index) const; |
| 322 | const std::string& GetRepeatedString(int number, int index) const; |
| 323 | const MessageLite& GetRepeatedMessage(int number, int index) const; |
| 324 | |
| 325 | void SetRepeatedInt32(int number, int index, int32 value); |
| 326 | void SetRepeatedInt64(int number, int index, int64 value); |
| 327 | void SetRepeatedUInt32(int number, int index, uint32 value); |
| 328 | void SetRepeatedUInt64(int number, int index, uint64 value); |
| 329 | void SetRepeatedFloat(int number, int index, float value); |
| 330 | void SetRepeatedDouble(int number, int index, double value); |
| 331 | void SetRepeatedBool(int number, int index, bool value); |
| 332 | void SetRepeatedEnum(int number, int index, int value); |
| 333 | void SetRepeatedString(int number, int index, std::string value); |
| 334 | std::string* MutableRepeatedString(int number, int index); |
| 335 | MessageLite* MutableRepeatedMessage(int number, int index); |
| 336 | |
| 337 | #define desc const FieldDescriptor* descriptor // avoid line wrapping |
| 338 | void AddInt32(int number, FieldType type, bool packed, int32 value, desc); |
| 339 | void AddInt64(int number, FieldType type, bool packed, int64 value, desc); |
| 340 | void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc); |
| 341 | void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc); |
| 342 | void AddFloat(int number, FieldType type, bool packed, float value, desc); |
| 343 | void AddDouble(int number, FieldType type, bool packed, double value, desc); |
| 344 | void AddBool(int number, FieldType type, bool packed, bool value, desc); |
| 345 | void AddEnum(int number, FieldType type, bool packed, int value, desc); |
| 346 | void AddString(int number, FieldType type, std::string value, desc); |
| 347 | std::string* AddString(int number, FieldType type, desc); |
| 348 | MessageLite* AddMessage(int number, FieldType type, |
| 349 | const MessageLite& prototype, desc); |
| 350 | MessageLite* AddMessage(const FieldDescriptor* descriptor, |
| 351 | MessageFactory* factory); |
| 352 | void AddAllocatedMessage(const FieldDescriptor* descriptor, |
| 353 | MessageLite* new_entry); |
| 354 | #undef desc |
| 355 | |
| 356 | void RemoveLast(int number); |
| 357 | MessageLite* ReleaseLast(int number); |
| 358 | void SwapElements(int number, int index1, int index2); |
| 359 | |
| 360 | // ----------------------------------------------------------------- |
| 361 | // TODO(kenton): Hardcore memory management accessors |
| 362 | |
| 363 | // ================================================================= |
| 364 | // convenience methods for implementing methods of Message |
| 365 | // |
| 366 | // These could all be implemented in terms of the other methods of this |
| 367 | // class, but providing them here helps keep the generated code size down. |
| 368 | |
| 369 | void Clear(); |
| 370 | void MergeFrom(const ExtensionSet& other); |
| 371 | void Swap(ExtensionSet* other); |
| 372 | void SwapExtension(ExtensionSet* other, int number); |
| 373 | bool IsInitialized() const; |
| 374 | |
| 375 | // Parses a single extension from the input. The input should start out |
| 376 | // positioned immediately after the tag. |
| 377 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
| 378 | ExtensionFinder* extension_finder, |
| 379 | FieldSkipper* field_skipper); |
| 380 | |
| 381 | // Specific versions for lite or full messages (constructs the appropriate |
| 382 | // FieldSkipper automatically). |containing_type| is the default |
| 383 | // instance for the containing message; it is used only to look up the |
| 384 | // extension by number. See RegisterExtension(), above. Unlike the other |
| 385 | // methods of ExtensionSet, this only works for generated message types -- |
| 386 | // it looks up extensions registered using RegisterExtension(). |
| 387 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
| 388 | const MessageLite* containing_type); |
| 389 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
| 390 | const Message* containing_type, |
| 391 | UnknownFieldSet* unknown_fields); |
| 392 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
| 393 | const MessageLite* containing_type, |
| 394 | io::CodedOutputStream* unknown_fields); |
| 395 | |
| 396 | // Lite parser |
| 397 | const char* ParseField(uint64 tag, const char* ptr, |
| 398 | const MessageLite* containing_type, |
| 399 | internal::InternalMetadata* metadata, |
| 400 | internal::ParseContext* ctx); |
| 401 | // Full parser |
| 402 | const char* ParseField(uint64 tag, const char* ptr, |
| 403 | const Message* containing_type, |
| 404 | internal::InternalMetadata* metadata, |
| 405 | internal::ParseContext* ctx); |
| 406 | template <typename Msg> |
| 407 | const char* ParseMessageSet(const char* ptr, const Msg* containing_type, |
| 408 | InternalMetadata* metadata, |
| 409 | internal::ParseContext* ctx) { |
| 410 | struct MessageSetItem { |
| 411 | const char* _InternalParse(const char* ptr, ParseContext* ctx) { |
| 412 | return me->ParseMessageSetItem(ptr, containing_type, metadata, ctx); |
| 413 | } |
| 414 | ExtensionSet* me; |
| 415 | const Msg* containing_type; |
| 416 | InternalMetadata* metadata; |
| 417 | } item{this, containing_type, metadata}; |
| 418 | while (!ctx->Done(ptr: &ptr)) { |
| 419 | uint32 tag; |
| 420 | ptr = ReadTag(p: ptr, out: &tag); |
| 421 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| 422 | if (tag == WireFormatLite::kMessageSetItemStartTag) { |
| 423 | ptr = ctx->ParseGroup(&item, ptr, tag); |
| 424 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| 425 | } else { |
| 426 | if (tag == 0 || (tag & 7) == 4) { |
| 427 | ctx->SetLastTag(tag); |
| 428 | return ptr; |
| 429 | } |
| 430 | ptr = ParseField(tag, ptr, containing_type, metadata, ctx); |
| 431 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| 432 | } |
| 433 | } |
| 434 | return ptr; |
| 435 | } |
| 436 | |
| 437 | // Parse an entire message in MessageSet format. Such messages have no |
| 438 | // fields, only extensions. |
| 439 | bool ParseMessageSetLite(io::CodedInputStream* input, |
| 440 | ExtensionFinder* extension_finder, |
| 441 | FieldSkipper* field_skipper); |
| 442 | bool ParseMessageSet(io::CodedInputStream* input, |
| 443 | ExtensionFinder* extension_finder, |
| 444 | MessageSetFieldSkipper* field_skipper); |
| 445 | |
| 446 | // Specific versions for lite or full messages (constructs the appropriate |
| 447 | // FieldSkipper automatically). |
| 448 | bool ParseMessageSet(io::CodedInputStream* input, |
| 449 | const MessageLite* containing_type, |
| 450 | std::string* unknown_fields); |
| 451 | bool ParseMessageSet(io::CodedInputStream* input, |
| 452 | const Message* containing_type, |
| 453 | UnknownFieldSet* unknown_fields); |
| 454 | |
| 455 | // Write all extension fields with field numbers in the range |
| 456 | // [start_field_number, end_field_number) |
| 457 | // to the output stream, using the cached sizes computed when ByteSize() was |
| 458 | // last called. Note that the range bounds are inclusive-exclusive. |
| 459 | void SerializeWithCachedSizes(int start_field_number, int end_field_number, |
| 460 | io::CodedOutputStream* output) const { |
| 461 | output->SetCur(_InternalSerialize(start_field_number, end_field_number, |
| 462 | target: output->Cur(), stream: output->EpsCopy())); |
| 463 | } |
| 464 | |
| 465 | // Same as SerializeWithCachedSizes, but without any bounds checking. |
| 466 | // The caller must ensure that target has sufficient capacity for the |
| 467 | // serialized extensions. |
| 468 | // |
| 469 | // Returns a pointer past the last written byte. |
| 470 | uint8* _InternalSerialize(int start_field_number, int end_field_number, |
| 471 | uint8* target, |
| 472 | io::EpsCopyOutputStream* stream) const; |
| 473 | |
| 474 | // Like above but serializes in MessageSet format. |
| 475 | void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const { |
| 476 | output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray( |
| 477 | target: output->Cur(), stream: output->EpsCopy())); |
| 478 | } |
| 479 | uint8* InternalSerializeMessageSetWithCachedSizesToArray( |
| 480 | uint8* target, io::EpsCopyOutputStream* stream) const; |
| 481 | |
| 482 | // For backward-compatibility, versions of two of the above methods that |
| 483 | // serialize deterministically iff SetDefaultSerializationDeterministic() |
| 484 | // has been called. |
| 485 | uint8* SerializeWithCachedSizesToArray(int start_field_number, |
| 486 | int end_field_number, |
| 487 | uint8* target) const; |
| 488 | uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const; |
| 489 | |
| 490 | // Returns the total serialized size of all the extensions. |
| 491 | size_t ByteSize() const; |
| 492 | |
| 493 | // Like ByteSize() but uses MessageSet format. |
| 494 | size_t MessageSetByteSize() const; |
| 495 | |
| 496 | // Returns (an estimate of) the total number of bytes used for storing the |
| 497 | // extensions in memory, excluding sizeof(*this). If the ExtensionSet is |
| 498 | // for a lite message (and thus possibly contains lite messages), the results |
| 499 | // are undefined (might work, might crash, might corrupt data, might not even |
| 500 | // be linked in). It's up to the protocol compiler to avoid calling this on |
| 501 | // such ExtensionSets (easy enough since lite messages don't implement |
| 502 | // SpaceUsed()). |
| 503 | size_t SpaceUsedExcludingSelfLong() const; |
| 504 | |
| 505 | // This method just calls SpaceUsedExcludingSelfLong() but it can not be |
| 506 | // inlined because the definition of SpaceUsedExcludingSelfLong() is not |
| 507 | // included in lite runtime and when an inline method refers to it MSVC |
| 508 | // will complain about unresolved symbols when building the lite runtime |
| 509 | // as .dll. |
| 510 | int SpaceUsedExcludingSelf() const; |
| 511 | |
| 512 | private: |
| 513 | // Interface of a lazily parsed singular message extension. |
| 514 | class PROTOBUF_EXPORT LazyMessageExtension { |
| 515 | public: |
| 516 | LazyMessageExtension() {} |
| 517 | virtual ~LazyMessageExtension() {} |
| 518 | |
| 519 | virtual LazyMessageExtension* New(Arena* arena) const = 0; |
| 520 | virtual const MessageLite& GetMessage( |
| 521 | const MessageLite& prototype) const = 0; |
| 522 | virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0; |
| 523 | virtual void SetAllocatedMessage(MessageLite* message) = 0; |
| 524 | virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message) = 0; |
| 525 | virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0; |
| 526 | virtual MessageLite* UnsafeArenaReleaseMessage( |
| 527 | const MessageLite& prototype) = 0; |
| 528 | |
| 529 | virtual bool IsInitialized() const = 0; |
| 530 | |
| 531 | PROTOBUF_DEPRECATED_MSG("Please use ByteSizeLong() instead" ) |
| 532 | virtual int ByteSize() const { return internal::ToIntSize(size: ByteSizeLong()); } |
| 533 | virtual size_t ByteSizeLong() const = 0; |
| 534 | virtual size_t SpaceUsedLong() const = 0; |
| 535 | |
| 536 | virtual void MergeFrom(const LazyMessageExtension& other) = 0; |
| 537 | virtual void Clear() = 0; |
| 538 | |
| 539 | virtual bool ReadMessage(const MessageLite& prototype, |
| 540 | io::CodedInputStream* input) = 0; |
| 541 | virtual const char* _InternalParse(const char* ptr, ParseContext* ctx) = 0; |
| 542 | virtual uint8* WriteMessageToArray( |
| 543 | int number, uint8* target, io::EpsCopyOutputStream* stream) const = 0; |
| 544 | |
| 545 | private: |
| 546 | virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable. |
| 547 | |
| 548 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension); |
| 549 | }; |
| 550 | struct Extension { |
| 551 | // The order of these fields packs Extension into 24 bytes when using 8 |
| 552 | // byte alignment. Consider this when adding or removing fields here. |
| 553 | union { |
| 554 | int32 int32_value; |
| 555 | int64 int64_value; |
| 556 | uint32 uint32_value; |
| 557 | uint64 uint64_value; |
| 558 | float float_value; |
| 559 | double double_value; |
| 560 | bool bool_value; |
| 561 | int enum_value; |
| 562 | std::string* string_value; |
| 563 | MessageLite* message_value; |
| 564 | LazyMessageExtension* lazymessage_value; |
| 565 | |
| 566 | RepeatedField<int32>* repeated_int32_value; |
| 567 | RepeatedField<int64>* repeated_int64_value; |
| 568 | RepeatedField<uint32>* repeated_uint32_value; |
| 569 | RepeatedField<uint64>* repeated_uint64_value; |
| 570 | RepeatedField<float>* repeated_float_value; |
| 571 | RepeatedField<double>* repeated_double_value; |
| 572 | RepeatedField<bool>* repeated_bool_value; |
| 573 | RepeatedField<int>* repeated_enum_value; |
| 574 | RepeatedPtrField<std::string>* repeated_string_value; |
| 575 | RepeatedPtrField<MessageLite>* repeated_message_value; |
| 576 | }; |
| 577 | |
| 578 | FieldType type; |
| 579 | bool is_repeated; |
| 580 | |
| 581 | // For singular types, indicates if the extension is "cleared". This |
| 582 | // happens when an extension is set and then later cleared by the caller. |
| 583 | // We want to keep the Extension object around for reuse, so instead of |
| 584 | // removing it from the map, we just set is_cleared = true. This has no |
| 585 | // meaning for repeated types; for those, the size of the RepeatedField |
| 586 | // simply becomes zero when cleared. |
| 587 | bool is_cleared : 4; |
| 588 | |
| 589 | // For singular message types, indicates whether lazy parsing is enabled |
| 590 | // for this extension. This field is only valid when type == TYPE_MESSAGE |
| 591 | // and !is_repeated because we only support lazy parsing for singular |
| 592 | // message types currently. If is_lazy = true, the extension is stored in |
| 593 | // lazymessage_value. Otherwise, the extension will be message_value. |
| 594 | bool is_lazy : 4; |
| 595 | |
| 596 | // For repeated types, this indicates if the [packed=true] option is set. |
| 597 | bool is_packed; |
| 598 | |
| 599 | // For packed fields, the size of the packed data is recorded here when |
| 600 | // ByteSize() is called then used during serialization. |
| 601 | // TODO(kenton): Use atomic<int> when C++ supports it. |
| 602 | mutable int cached_size; |
| 603 | |
| 604 | // The descriptor for this extension, if one exists and is known. May be |
| 605 | // NULL. Must not be NULL if the descriptor for the extension does not |
| 606 | // live in the same pool as the descriptor for the containing type. |
| 607 | const FieldDescriptor* descriptor; |
| 608 | |
| 609 | // Some helper methods for operations on a single Extension. |
| 610 | uint8* InternalSerializeFieldWithCachedSizesToArray( |
| 611 | int number, uint8* target, io::EpsCopyOutputStream* stream) const; |
| 612 | uint8* InternalSerializeMessageSetItemWithCachedSizesToArray( |
| 613 | int number, uint8* target, io::EpsCopyOutputStream* stream) const; |
| 614 | size_t ByteSize(int number) const; |
| 615 | size_t MessageSetItemByteSize(int number) const; |
| 616 | void Clear(); |
| 617 | int GetSize() const; |
| 618 | void Free(); |
| 619 | size_t SpaceUsedExcludingSelfLong() const; |
| 620 | bool IsInitialized() const; |
| 621 | }; |
| 622 | |
| 623 | // The Extension struct is small enough to be passed by value, so we use it |
| 624 | // directly as the value type in mappings rather than use pointers. We use |
| 625 | // sorted maps rather than hash-maps because we expect most ExtensionSets will |
| 626 | // only contain a small number of extension. Also, we want AppendToList and |
| 627 | // deterministic serialization to order fields by field number. |
| 628 | |
| 629 | struct KeyValue { |
| 630 | int first; |
| 631 | Extension second; |
| 632 | |
| 633 | struct FirstComparator { |
| 634 | bool operator()(const KeyValue& lhs, const KeyValue& rhs) const { |
| 635 | return lhs.first < rhs.first; |
| 636 | } |
| 637 | bool operator()(const KeyValue& lhs, int key) const { |
| 638 | return lhs.first < key; |
| 639 | } |
| 640 | bool operator()(int key, const KeyValue& rhs) const { |
| 641 | return key < rhs.first; |
| 642 | } |
| 643 | }; |
| 644 | }; |
| 645 | |
| 646 | typedef std::map<int, Extension> LargeMap; |
| 647 | |
| 648 | // Wrapper API that switches between flat-map and LargeMap. |
| 649 | |
| 650 | // Finds a key (if present) in the ExtensionSet. |
| 651 | const Extension* FindOrNull(int key) const; |
| 652 | Extension* FindOrNull(int key); |
| 653 | |
| 654 | // Helper-functions that only inspect the LargeMap. |
| 655 | const Extension* FindOrNullInLargeMap(int key) const; |
| 656 | Extension* FindOrNullInLargeMap(int key); |
| 657 | |
| 658 | // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or |
| 659 | // finds the already-existing Extension for that key (returns false). |
| 660 | // The Extension* will point to the new-or-found Extension. |
| 661 | std::pair<Extension*, bool> Insert(int key); |
| 662 | |
| 663 | // Grows the flat_capacity_. |
| 664 | // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap. |
| 665 | void GrowCapacity(size_t minimum_new_capacity); |
| 666 | static constexpr uint16 kMaximumFlatCapacity = 256; |
| 667 | bool is_large() const { return flat_capacity_ > kMaximumFlatCapacity; } |
| 668 | |
| 669 | // Removes a key from the ExtensionSet. |
| 670 | void Erase(int key); |
| 671 | |
| 672 | size_t Size() const { |
| 673 | return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_; |
| 674 | } |
| 675 | |
| 676 | // Similar to std::for_each. |
| 677 | // Each Iterator is decomposed into ->first and ->second fields, so |
| 678 | // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair. |
| 679 | template <typename Iterator, typename KeyValueFunctor> |
| 680 | static KeyValueFunctor ForEach(Iterator begin, Iterator end, |
| 681 | KeyValueFunctor func) { |
| 682 | for (Iterator it = begin; it != end; ++it) func(it->first, it->second); |
| 683 | return std::move(func); |
| 684 | } |
| 685 | |
| 686 | // Applies a functor to the <int, Extension&> pairs in sorted order. |
| 687 | template <typename KeyValueFunctor> |
| 688 | KeyValueFunctor ForEach(KeyValueFunctor func) { |
| 689 | if (PROTOBUF_PREDICT_FALSE(is_large())) { |
| 690 | return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); |
| 691 | } |
| 692 | return ForEach(flat_begin(), flat_end(), std::move(func)); |
| 693 | } |
| 694 | |
| 695 | // Applies a functor to the <int, const Extension&> pairs in sorted order. |
| 696 | template <typename KeyValueFunctor> |
| 697 | KeyValueFunctor ForEach(KeyValueFunctor func) const { |
| 698 | if (PROTOBUF_PREDICT_FALSE(is_large())) { |
| 699 | return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); |
| 700 | } |
| 701 | return ForEach(flat_begin(), flat_end(), std::move(func)); |
| 702 | } |
| 703 | |
| 704 | // Merges existing Extension from other_extension |
| 705 | void InternalExtensionMergeFrom(int number, const Extension& other_extension); |
| 706 | |
| 707 | // Returns true and fills field_number and extension if extension is found. |
| 708 | // Note to support packed repeated field compatibility, it also fills whether |
| 709 | // the tag on wire is packed, which can be different from |
| 710 | // extension->is_packed (whether packed=true is specified). |
| 711 | bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder, |
| 712 | int* field_number, ExtensionInfo* extension, |
| 713 | bool* was_packed_on_wire); |
| 714 | |
| 715 | // Returns true and fills extension if extension is found. |
| 716 | // Note to support packed repeated field compatibility, it also fills whether |
| 717 | // the tag on wire is packed, which can be different from |
| 718 | // extension->is_packed (whether packed=true is specified). |
| 719 | bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number, |
| 720 | ExtensionFinder* extension_finder, |
| 721 | ExtensionInfo* extension, |
| 722 | bool* was_packed_on_wire); |
| 723 | |
| 724 | // Parses a single extension from the input. The input should start out |
| 725 | // positioned immediately after the wire tag. This method is called in |
| 726 | // ParseField() after field number and was_packed_on_wire is extracted from |
| 727 | // the wire tag and ExtensionInfo is found by the field number. |
| 728 | bool ParseFieldWithExtensionInfo(int field_number, bool was_packed_on_wire, |
| 729 | const ExtensionInfo& extension, |
| 730 | io::CodedInputStream* input, |
| 731 | FieldSkipper* field_skipper); |
| 732 | |
| 733 | // Like ParseField(), but this method may parse singular message extensions |
| 734 | // lazily depending on the value of FLAGS_eagerly_parse_message_sets. |
| 735 | bool ParseFieldMaybeLazily(int wire_type, int field_number, |
| 736 | io::CodedInputStream* input, |
| 737 | ExtensionFinder* extension_finder, |
| 738 | MessageSetFieldSkipper* field_skipper); |
| 739 | |
| 740 | // Gets the extension with the given number, creating it if it does not |
| 741 | // already exist. Returns true if the extension did not already exist. |
| 742 | bool MaybeNewExtension(int number, const FieldDescriptor* descriptor, |
| 743 | Extension** result); |
| 744 | |
| 745 | // Gets the repeated extension for the given descriptor, creating it if |
| 746 | // it does not exist. |
| 747 | Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor); |
| 748 | |
| 749 | // Parse a single MessageSet item -- called just after the item group start |
| 750 | // tag has been read. |
| 751 | bool ParseMessageSetItemLite(io::CodedInputStream* input, |
| 752 | ExtensionFinder* extension_finder, |
| 753 | FieldSkipper* field_skipper); |
| 754 | // Parse a single MessageSet item -- called just after the item group start |
| 755 | // tag has been read. |
| 756 | bool ParseMessageSetItem(io::CodedInputStream* input, |
| 757 | ExtensionFinder* extension_finder, |
| 758 | MessageSetFieldSkipper* field_skipper); |
| 759 | |
| 760 | bool FindExtension(int wire_type, uint32 field, |
| 761 | const MessageLite* containing_type, |
| 762 | const internal::ParseContext* /*ctx*/, |
| 763 | ExtensionInfo* extension, bool* was_packed_on_wire) { |
| 764 | GeneratedExtensionFinder finder(containing_type); |
| 765 | return FindExtensionInfoFromFieldNumber(wire_type, field_number: field, extension_finder: &finder, |
| 766 | extension, was_packed_on_wire); |
| 767 | } |
| 768 | inline bool FindExtension(int wire_type, uint32 field, |
| 769 | const Message* containing_type, |
| 770 | const internal::ParseContext* ctx, |
| 771 | ExtensionInfo* extension, bool* was_packed_on_wire); |
| 772 | // Used for MessageSet only |
| 773 | const char* ParseFieldMaybeLazily(uint64 tag, const char* ptr, |
| 774 | const MessageLite* containing_type, |
| 775 | internal::InternalMetadata* metadata, |
| 776 | internal::ParseContext* ctx) { |
| 777 | // Lite MessageSet doesn't implement lazy. |
| 778 | return ParseField(tag, ptr, containing_type, metadata, ctx); |
| 779 | } |
| 780 | const char* ParseFieldMaybeLazily(uint64 tag, const char* ptr, |
| 781 | const Message* containing_type, |
| 782 | internal::InternalMetadata* metadata, |
| 783 | internal::ParseContext* ctx); |
| 784 | const char* ParseMessageSetItem(const char* ptr, |
| 785 | const MessageLite* containing_type, |
| 786 | internal::InternalMetadata* metadata, |
| 787 | internal::ParseContext* ctx); |
| 788 | const char* ParseMessageSetItem(const char* ptr, |
| 789 | const Message* containing_type, |
| 790 | internal::InternalMetadata* metadata, |
| 791 | internal::ParseContext* ctx); |
| 792 | |
| 793 | // Implemented in extension_set_inl.h to keep code out of the header file. |
| 794 | template <typename T> |
| 795 | const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire, |
| 796 | const ExtensionInfo& info, |
| 797 | internal::InternalMetadata* metadata, |
| 798 | const char* ptr, |
| 799 | internal::ParseContext* ctx); |
| 800 | template <typename Msg, typename T> |
| 801 | const char* ParseMessageSetItemTmpl(const char* ptr, |
| 802 | const Msg* containing_type, |
| 803 | internal::InternalMetadata* metadata, |
| 804 | internal::ParseContext* ctx); |
| 805 | |
| 806 | // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This |
| 807 | // friendship should automatically extend to ExtensionSet::Extension, but |
| 808 | // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this |
| 809 | // correctly. So, we must provide helpers for calling methods of that |
| 810 | // class. |
| 811 | |
| 812 | // Defined in extension_set_heavy.cc. |
| 813 | static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong( |
| 814 | RepeatedPtrFieldBase* field); |
| 815 | |
| 816 | KeyValue* flat_begin() { |
| 817 | assert(!is_large()); |
| 818 | return map_.flat; |
| 819 | } |
| 820 | const KeyValue* flat_begin() const { |
| 821 | assert(!is_large()); |
| 822 | return map_.flat; |
| 823 | } |
| 824 | KeyValue* flat_end() { |
| 825 | assert(!is_large()); |
| 826 | return map_.flat + flat_size_; |
| 827 | } |
| 828 | const KeyValue* flat_end() const { |
| 829 | assert(!is_large()); |
| 830 | return map_.flat + flat_size_; |
| 831 | } |
| 832 | |
| 833 | Arena* arena_; |
| 834 | |
| 835 | // Manual memory-management: |
| 836 | // map_.flat is an allocated array of flat_capacity_ elements. |
| 837 | // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix. |
| 838 | uint16 flat_capacity_; |
| 839 | uint16 flat_size_; |
| 840 | union AllocatedData { |
| 841 | KeyValue* flat; |
| 842 | |
| 843 | // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap, |
| 844 | // which guarantees O(n lg n) CPU but larger constant factors. |
| 845 | LargeMap* large; |
| 846 | } map_; |
| 847 | |
| 848 | static void DeleteFlatMap(const KeyValue* flat, uint16 flat_capacity); |
| 849 | |
| 850 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet); |
| 851 | }; |
| 852 | |
| 853 | // These are just for convenience... |
| 854 | inline void ExtensionSet::SetString(int number, FieldType type, |
| 855 | std::string value, |
| 856 | const FieldDescriptor* descriptor) { |
| 857 | MutableString(number, type, descriptor)->assign(str: std::move(value)); |
| 858 | } |
| 859 | inline void ExtensionSet::SetRepeatedString(int number, int index, |
| 860 | std::string value) { |
| 861 | MutableRepeatedString(number, index)->assign(str: std::move(value)); |
| 862 | } |
| 863 | inline void ExtensionSet::AddString(int number, FieldType type, |
| 864 | std::string value, |
| 865 | const FieldDescriptor* descriptor) { |
| 866 | AddString(number, type, descriptor)->assign(str: std::move(value)); |
| 867 | } |
| 868 | // =================================================================== |
| 869 | // Glue for generated extension accessors |
| 870 | |
| 871 | // ------------------------------------------------------------------- |
| 872 | // Template magic |
| 873 | |
| 874 | // First we have a set of classes representing "type traits" for different |
| 875 | // field types. A type traits class knows how to implement basic accessors |
| 876 | // for extensions of a particular type given an ExtensionSet. The signature |
| 877 | // for a type traits class looks like this: |
| 878 | // |
| 879 | // class TypeTraits { |
| 880 | // public: |
| 881 | // typedef ? ConstType; |
| 882 | // typedef ? MutableType; |
| 883 | // // TypeTraits for singular fields and repeated fields will define the |
| 884 | // // symbol "Singular" or "Repeated" respectively. These two symbols will |
| 885 | // // be used in extension accessors to distinguish between singular |
| 886 | // // extensions and repeated extensions. If the TypeTraits for the passed |
| 887 | // // in extension doesn't have the expected symbol defined, it means the |
| 888 | // // user is passing a repeated extension to a singular accessor, or the |
| 889 | // // opposite. In that case the C++ compiler will generate an error |
| 890 | // // message "no matching member function" to inform the user. |
| 891 | // typedef ? Singular |
| 892 | // typedef ? Repeated |
| 893 | // |
| 894 | // static inline ConstType Get(int number, const ExtensionSet& set); |
| 895 | // static inline void Set(int number, ConstType value, ExtensionSet* set); |
| 896 | // static inline MutableType Mutable(int number, ExtensionSet* set); |
| 897 | // |
| 898 | // // Variants for repeated fields. |
| 899 | // static inline ConstType Get(int number, const ExtensionSet& set, |
| 900 | // int index); |
| 901 | // static inline void Set(int number, int index, |
| 902 | // ConstType value, ExtensionSet* set); |
| 903 | // static inline MutableType Mutable(int number, int index, |
| 904 | // ExtensionSet* set); |
| 905 | // static inline void Add(int number, ConstType value, ExtensionSet* set); |
| 906 | // static inline MutableType Add(int number, ExtensionSet* set); |
| 907 | // This is used by the ExtensionIdentifier constructor to register |
| 908 | // the extension at dynamic initialization. |
| 909 | // template <typename ExtendeeT> |
| 910 | // static void Register(int number, FieldType type, bool is_packed); |
| 911 | // }; |
| 912 | // |
| 913 | // Not all of these methods make sense for all field types. For example, the |
| 914 | // "Mutable" methods only make sense for strings and messages, and the |
| 915 | // repeated methods only make sense for repeated types. So, each type |
| 916 | // traits class implements only the set of methods from this signature that it |
| 917 | // actually supports. This will cause a compiler error if the user tries to |
| 918 | // access an extension using a method that doesn't make sense for its type. |
| 919 | // For example, if "foo" is an extension of type "optional int32", then if you |
| 920 | // try to write code like: |
| 921 | // my_message.MutableExtension(foo) |
| 922 | // you will get a compile error because PrimitiveTypeTraits<int32> does not |
| 923 | // have a "Mutable()" method. |
| 924 | |
| 925 | // ------------------------------------------------------------------- |
| 926 | // PrimitiveTypeTraits |
| 927 | |
| 928 | // Since the ExtensionSet has different methods for each primitive type, |
| 929 | // we must explicitly define the methods of the type traits class for each |
| 930 | // known type. |
| 931 | template <typename Type> |
| 932 | class PrimitiveTypeTraits { |
| 933 | public: |
| 934 | typedef Type ConstType; |
| 935 | typedef Type MutableType; |
| 936 | typedef PrimitiveTypeTraits<Type> Singular; |
| 937 | |
| 938 | static inline ConstType Get(int number, const ExtensionSet& set, |
| 939 | ConstType default_value); |
| 940 | static inline void Set(int number, FieldType field_type, ConstType value, |
| 941 | ExtensionSet* set); |
| 942 | template <typename ExtendeeT> |
| 943 | static void Register(int number, FieldType type, bool is_packed) { |
| 944 | ExtensionSet::RegisterExtension(containing_type: &ExtendeeT::default_instance(), number, |
| 945 | type, is_repeated: false, is_packed); |
| 946 | } |
| 947 | }; |
| 948 | |
| 949 | template <typename Type> |
| 950 | class RepeatedPrimitiveTypeTraits { |
| 951 | public: |
| 952 | typedef Type ConstType; |
| 953 | typedef Type MutableType; |
| 954 | typedef RepeatedPrimitiveTypeTraits<Type> Repeated; |
| 955 | |
| 956 | typedef RepeatedField<Type> RepeatedFieldType; |
| 957 | |
| 958 | static inline Type Get(int number, const ExtensionSet& set, int index); |
| 959 | static inline void Set(int number, int index, Type value, ExtensionSet* set); |
| 960 | static inline void Add(int number, FieldType field_type, bool is_packed, |
| 961 | Type value, ExtensionSet* set); |
| 962 | |
| 963 | static inline const RepeatedField<ConstType>& GetRepeated( |
| 964 | int number, const ExtensionSet& set); |
| 965 | static inline RepeatedField<Type>* MutableRepeated(int number, |
| 966 | FieldType field_type, |
| 967 | bool is_packed, |
| 968 | ExtensionSet* set); |
| 969 | |
| 970 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
| 971 | template <typename ExtendeeT> |
| 972 | static void Register(int number, FieldType type, bool is_packed) { |
| 973 | ExtensionSet::RegisterExtension(containing_type: &ExtendeeT::default_instance(), number, |
| 974 | type, is_repeated: true, is_packed); |
| 975 | } |
| 976 | }; |
| 977 | |
| 978 | class PROTOBUF_EXPORT RepeatedPrimitiveDefaults { |
| 979 | private: |
| 980 | template <typename Type> |
| 981 | friend class RepeatedPrimitiveTypeTraits; |
| 982 | static const RepeatedPrimitiveDefaults* default_instance(); |
| 983 | RepeatedField<int32> default_repeated_field_int32_; |
| 984 | RepeatedField<int64> default_repeated_field_int64_; |
| 985 | RepeatedField<uint32> default_repeated_field_uint32_; |
| 986 | RepeatedField<uint64> default_repeated_field_uint64_; |
| 987 | RepeatedField<double> default_repeated_field_double_; |
| 988 | RepeatedField<float> default_repeated_field_float_; |
| 989 | RepeatedField<bool> default_repeated_field_bool_; |
| 990 | }; |
| 991 | |
| 992 | #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \ |
| 993 | template <> \ |
| 994 | inline TYPE PrimitiveTypeTraits<TYPE>::Get( \ |
| 995 | int number, const ExtensionSet& set, TYPE default_value) { \ |
| 996 | return set.Get##METHOD(number, default_value); \ |
| 997 | } \ |
| 998 | template <> \ |
| 999 | inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \ |
| 1000 | TYPE value, ExtensionSet* set) { \ |
| 1001 | set->Set##METHOD(number, field_type, value, NULL); \ |
| 1002 | } \ |
| 1003 | \ |
| 1004 | template <> \ |
| 1005 | inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \ |
| 1006 | int number, const ExtensionSet& set, int index) { \ |
| 1007 | return set.GetRepeated##METHOD(number, index); \ |
| 1008 | } \ |
| 1009 | template <> \ |
| 1010 | inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \ |
| 1011 | int number, int index, TYPE value, ExtensionSet* set) { \ |
| 1012 | set->SetRepeated##METHOD(number, index, value); \ |
| 1013 | } \ |
| 1014 | template <> \ |
| 1015 | inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \ |
| 1016 | int number, FieldType field_type, bool is_packed, TYPE value, \ |
| 1017 | ExtensionSet* set) { \ |
| 1018 | set->Add##METHOD(number, field_type, is_packed, value, NULL); \ |
| 1019 | } \ |
| 1020 | template <> \ |
| 1021 | inline const RepeatedField<TYPE>* \ |
| 1022 | RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \ |
| 1023 | return &RepeatedPrimitiveDefaults::default_instance() \ |
| 1024 | ->default_repeated_field_##TYPE##_; \ |
| 1025 | } \ |
| 1026 | template <> \ |
| 1027 | inline const RepeatedField<TYPE>& \ |
| 1028 | RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \ |
| 1029 | const ExtensionSet& set) { \ |
| 1030 | return *reinterpret_cast<const RepeatedField<TYPE>*>( \ |
| 1031 | set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \ |
| 1032 | } \ |
| 1033 | template <> \ |
| 1034 | inline RepeatedField<TYPE>* \ |
| 1035 | RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated( \ |
| 1036 | int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \ |
| 1037 | return reinterpret_cast<RepeatedField<TYPE>*>( \ |
| 1038 | set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); \ |
| 1039 | } |
| 1040 | |
| 1041 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32, Int32) |
| 1042 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64, Int64) |
| 1043 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32) |
| 1044 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64) |
| 1045 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float) |
| 1046 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double) |
| 1047 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool) |
| 1048 | |
| 1049 | #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE |
| 1050 | |
| 1051 | // ------------------------------------------------------------------- |
| 1052 | // StringTypeTraits |
| 1053 | |
| 1054 | // Strings support both Set() and Mutable(). |
| 1055 | class PROTOBUF_EXPORT StringTypeTraits { |
| 1056 | public: |
| 1057 | typedef const std::string& ConstType; |
| 1058 | typedef std::string* MutableType; |
| 1059 | typedef StringTypeTraits Singular; |
| 1060 | |
| 1061 | static inline const std::string& Get(int number, const ExtensionSet& set, |
| 1062 | ConstType default_value) { |
| 1063 | return set.GetString(number, default_value); |
| 1064 | } |
| 1065 | static inline void Set(int number, FieldType field_type, |
| 1066 | const std::string& value, ExtensionSet* set) { |
| 1067 | set->SetString(number, type: field_type, value, NULL); |
| 1068 | } |
| 1069 | static inline std::string* Mutable(int number, FieldType field_type, |
| 1070 | ExtensionSet* set) { |
| 1071 | return set->MutableString(number, type: field_type, NULL); |
| 1072 | } |
| 1073 | template <typename ExtendeeT> |
| 1074 | static void Register(int number, FieldType type, bool is_packed) { |
| 1075 | ExtensionSet::RegisterExtension(containing_type: &ExtendeeT::default_instance(), number, |
| 1076 | type, is_repeated: false, is_packed); |
| 1077 | } |
| 1078 | }; |
| 1079 | |
| 1080 | class PROTOBUF_EXPORT RepeatedStringTypeTraits { |
| 1081 | public: |
| 1082 | typedef const std::string& ConstType; |
| 1083 | typedef std::string* MutableType; |
| 1084 | typedef RepeatedStringTypeTraits Repeated; |
| 1085 | |
| 1086 | typedef RepeatedPtrField<std::string> RepeatedFieldType; |
| 1087 | |
| 1088 | static inline const std::string& Get(int number, const ExtensionSet& set, |
| 1089 | int index) { |
| 1090 | return set.GetRepeatedString(number, index); |
| 1091 | } |
| 1092 | static inline void Set(int number, int index, const std::string& value, |
| 1093 | ExtensionSet* set) { |
| 1094 | set->SetRepeatedString(number, index, value); |
| 1095 | } |
| 1096 | static inline std::string* Mutable(int number, int index, ExtensionSet* set) { |
| 1097 | return set->MutableRepeatedString(number, index); |
| 1098 | } |
| 1099 | static inline void Add(int number, FieldType field_type, bool /*is_packed*/, |
| 1100 | const std::string& value, ExtensionSet* set) { |
| 1101 | set->AddString(number, type: field_type, value, NULL); |
| 1102 | } |
| 1103 | static inline std::string* Add(int number, FieldType field_type, |
| 1104 | ExtensionSet* set) { |
| 1105 | return set->AddString(number, type: field_type, NULL); |
| 1106 | } |
| 1107 | static inline const RepeatedPtrField<std::string>& GetRepeated( |
| 1108 | int number, const ExtensionSet& set) { |
| 1109 | return *reinterpret_cast<const RepeatedPtrField<std::string>*>( |
| 1110 | set.GetRawRepeatedField(number, default_value: GetDefaultRepeatedField())); |
| 1111 | } |
| 1112 | |
| 1113 | static inline RepeatedPtrField<std::string>* MutableRepeated( |
| 1114 | int number, FieldType field_type, bool is_packed, ExtensionSet* set) { |
| 1115 | return reinterpret_cast<RepeatedPtrField<std::string>*>( |
| 1116 | set->MutableRawRepeatedField(number, field_type, packed: is_packed, NULL)); |
| 1117 | } |
| 1118 | |
| 1119 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
| 1120 | |
| 1121 | template <typename ExtendeeT> |
| 1122 | static void Register(int number, FieldType type, bool is_packed) { |
| 1123 | ExtensionSet::RegisterExtension(containing_type: &ExtendeeT::default_instance(), number, |
| 1124 | type, is_repeated: true, is_packed); |
| 1125 | } |
| 1126 | |
| 1127 | private: |
| 1128 | static void InitializeDefaultRepeatedFields(); |
| 1129 | static void DestroyDefaultRepeatedFields(); |
| 1130 | }; |
| 1131 | |
| 1132 | // ------------------------------------------------------------------- |
| 1133 | // EnumTypeTraits |
| 1134 | |
| 1135 | // ExtensionSet represents enums using integers internally, so we have to |
| 1136 | // static_cast around. |
| 1137 | template <typename Type, bool IsValid(int)> |
| 1138 | class EnumTypeTraits { |
| 1139 | public: |
| 1140 | typedef Type ConstType; |
| 1141 | typedef Type MutableType; |
| 1142 | typedef EnumTypeTraits<Type, IsValid> Singular; |
| 1143 | |
| 1144 | static inline ConstType Get(int number, const ExtensionSet& set, |
| 1145 | ConstType default_value) { |
| 1146 | return static_cast<Type>(set.GetEnum(number, default_value)); |
| 1147 | } |
| 1148 | static inline void Set(int number, FieldType field_type, ConstType value, |
| 1149 | ExtensionSet* set) { |
| 1150 | GOOGLE_DCHECK(IsValid(value)); |
| 1151 | set->SetEnum(number, type: field_type, value, NULL); |
| 1152 | } |
| 1153 | template <typename ExtendeeT> |
| 1154 | static void Register(int number, FieldType type, bool is_packed) { |
| 1155 | ExtensionSet::RegisterEnumExtension(containing_type: &ExtendeeT::default_instance(), number, |
| 1156 | type, is_repeated: false, is_packed, is_valid: IsValid); |
| 1157 | } |
| 1158 | }; |
| 1159 | |
| 1160 | template <typename Type, bool IsValid(int)> |
| 1161 | class RepeatedEnumTypeTraits { |
| 1162 | public: |
| 1163 | typedef Type ConstType; |
| 1164 | typedef Type MutableType; |
| 1165 | typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated; |
| 1166 | |
| 1167 | typedef RepeatedField<Type> RepeatedFieldType; |
| 1168 | |
| 1169 | static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
| 1170 | return static_cast<Type>(set.GetRepeatedEnum(number, index)); |
| 1171 | } |
| 1172 | static inline void Set(int number, int index, ConstType value, |
| 1173 | ExtensionSet* set) { |
| 1174 | GOOGLE_DCHECK(IsValid(value)); |
| 1175 | set->SetRepeatedEnum(number, index, value); |
| 1176 | } |
| 1177 | static inline void Add(int number, FieldType field_type, bool is_packed, |
| 1178 | ConstType value, ExtensionSet* set) { |
| 1179 | GOOGLE_DCHECK(IsValid(value)); |
| 1180 | set->AddEnum(number, type: field_type, packed: is_packed, value, NULL); |
| 1181 | } |
| 1182 | static inline const RepeatedField<Type>& GetRepeated( |
| 1183 | int number, const ExtensionSet& set) { |
| 1184 | // Hack: the `Extension` struct stores a RepeatedField<int> for enums. |
| 1185 | // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType> |
| 1186 | // so we need to do some casting magic. See message.h for similar |
| 1187 | // contortions for non-extension fields. |
| 1188 | return *reinterpret_cast<const RepeatedField<Type>*>( |
| 1189 | set.GetRawRepeatedField(number, default_value: GetDefaultRepeatedField())); |
| 1190 | } |
| 1191 | |
| 1192 | static inline RepeatedField<Type>* MutableRepeated(int number, |
| 1193 | FieldType field_type, |
| 1194 | bool is_packed, |
| 1195 | ExtensionSet* set) { |
| 1196 | return reinterpret_cast<RepeatedField<Type>*>( |
| 1197 | set->MutableRawRepeatedField(number, field_type, packed: is_packed, NULL)); |
| 1198 | } |
| 1199 | |
| 1200 | static const RepeatedFieldType* GetDefaultRepeatedField() { |
| 1201 | // Hack: as noted above, repeated enum fields are internally stored as a |
| 1202 | // RepeatedField<int>. We need to be able to instantiate global static |
| 1203 | // objects to return as default (empty) repeated fields on non-existent |
| 1204 | // extensions. We would not be able to know a-priori all of the enum types |
| 1205 | // (values of |Type|) to instantiate all of these, so we just re-use int32's |
| 1206 | // default repeated field object. |
| 1207 | return reinterpret_cast<const RepeatedField<Type>*>( |
| 1208 | RepeatedPrimitiveTypeTraits<int32>::GetDefaultRepeatedField()); |
| 1209 | } |
| 1210 | template <typename ExtendeeT> |
| 1211 | static void Register(int number, FieldType type, bool is_packed) { |
| 1212 | ExtensionSet::RegisterEnumExtension(containing_type: &ExtendeeT::default_instance(), number, |
| 1213 | type, is_repeated: true, is_packed, is_valid: IsValid); |
| 1214 | } |
| 1215 | }; |
| 1216 | |
| 1217 | // ------------------------------------------------------------------- |
| 1218 | // MessageTypeTraits |
| 1219 | |
| 1220 | // ExtensionSet guarantees that when manipulating extensions with message |
| 1221 | // types, the implementation used will be the compiled-in class representing |
| 1222 | // that type. So, we can static_cast down to the exact type we expect. |
| 1223 | template <typename Type> |
| 1224 | class MessageTypeTraits { |
| 1225 | public: |
| 1226 | typedef const Type& ConstType; |
| 1227 | typedef Type* MutableType; |
| 1228 | typedef MessageTypeTraits<Type> Singular; |
| 1229 | |
| 1230 | static inline ConstType Get(int number, const ExtensionSet& set, |
| 1231 | ConstType default_value) { |
| 1232 | return static_cast<const Type&>(set.GetMessage(number, default_value)); |
| 1233 | } |
| 1234 | static inline MutableType Mutable(int number, FieldType field_type, |
| 1235 | ExtensionSet* set) { |
| 1236 | return static_cast<Type*>(set->MutableMessage( |
| 1237 | number, field_type, Type::default_instance(), NULL)); |
| 1238 | } |
| 1239 | static inline void SetAllocated(int number, FieldType field_type, |
| 1240 | MutableType message, ExtensionSet* set) { |
| 1241 | set->SetAllocatedMessage(number, type: field_type, NULL, message); |
| 1242 | } |
| 1243 | static inline void UnsafeArenaSetAllocated(int number, FieldType field_type, |
| 1244 | MutableType message, |
| 1245 | ExtensionSet* set) { |
| 1246 | set->UnsafeArenaSetAllocatedMessage(number, type: field_type, NULL, message); |
| 1247 | } |
| 1248 | static inline MutableType Release(int number, FieldType /* field_type */, |
| 1249 | ExtensionSet* set) { |
| 1250 | return static_cast<Type*>( |
| 1251 | set->ReleaseMessage(number, Type::default_instance())); |
| 1252 | } |
| 1253 | static inline MutableType UnsafeArenaRelease(int number, |
| 1254 | FieldType /* field_type */, |
| 1255 | ExtensionSet* set) { |
| 1256 | return static_cast<Type*>( |
| 1257 | set->UnsafeArenaReleaseMessage(number, Type::default_instance())); |
| 1258 | } |
| 1259 | template <typename ExtendeeT> |
| 1260 | static void Register(int number, FieldType type, bool is_packed) { |
| 1261 | ExtensionSet::RegisterMessageExtension(containing_type: &ExtendeeT::default_instance(), |
| 1262 | number, type, is_repeated: false, is_packed, |
| 1263 | prototype: &Type::default_instance()); |
| 1264 | } |
| 1265 | }; |
| 1266 | |
| 1267 | // forward declaration |
| 1268 | class RepeatedMessageGenericTypeTraits; |
| 1269 | |
| 1270 | template <typename Type> |
| 1271 | class RepeatedMessageTypeTraits { |
| 1272 | public: |
| 1273 | typedef const Type& ConstType; |
| 1274 | typedef Type* MutableType; |
| 1275 | typedef RepeatedMessageTypeTraits<Type> Repeated; |
| 1276 | |
| 1277 | typedef RepeatedPtrField<Type> RepeatedFieldType; |
| 1278 | |
| 1279 | static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
| 1280 | return static_cast<const Type&>(set.GetRepeatedMessage(number, index)); |
| 1281 | } |
| 1282 | static inline MutableType Mutable(int number, int index, ExtensionSet* set) { |
| 1283 | return static_cast<Type*>(set->MutableRepeatedMessage(number, index)); |
| 1284 | } |
| 1285 | static inline MutableType Add(int number, FieldType field_type, |
| 1286 | ExtensionSet* set) { |
| 1287 | return static_cast<Type*>( |
| 1288 | set->AddMessage(number, field_type, Type::default_instance(), NULL)); |
| 1289 | } |
| 1290 | static inline const RepeatedPtrField<Type>& GetRepeated( |
| 1291 | int number, const ExtensionSet& set) { |
| 1292 | // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same |
| 1293 | // casting hack applies here, because a RepeatedPtrField<MessageLite> |
| 1294 | // cannot naturally become a RepeatedPtrType<Type> even though Type is |
| 1295 | // presumably a message. google::protobuf::Message goes through similar contortions |
| 1296 | // with a reinterpret_cast<>. |
| 1297 | return *reinterpret_cast<const RepeatedPtrField<Type>*>( |
| 1298 | set.GetRawRepeatedField(number, default_value: GetDefaultRepeatedField())); |
| 1299 | } |
| 1300 | static inline RepeatedPtrField<Type>* MutableRepeated(int number, |
| 1301 | FieldType field_type, |
| 1302 | bool is_packed, |
| 1303 | ExtensionSet* set) { |
| 1304 | return reinterpret_cast<RepeatedPtrField<Type>*>( |
| 1305 | set->MutableRawRepeatedField(number, field_type, packed: is_packed, NULL)); |
| 1306 | } |
| 1307 | |
| 1308 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
| 1309 | template <typename ExtendeeT> |
| 1310 | static void Register(int number, FieldType type, bool is_packed) { |
| 1311 | ExtensionSet::RegisterMessageExtension(containing_type: &ExtendeeT::default_instance(), |
| 1312 | number, type, is_repeated: true, is_packed, |
| 1313 | prototype: &Type::default_instance()); |
| 1314 | } |
| 1315 | }; |
| 1316 | |
| 1317 | template <typename Type> |
| 1318 | inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType* |
| 1319 | RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() { |
| 1320 | static auto instance = OnShutdownDelete(new RepeatedFieldType); |
| 1321 | return instance; |
| 1322 | } |
| 1323 | |
| 1324 | // ------------------------------------------------------------------- |
| 1325 | // ExtensionIdentifier |
| 1326 | |
| 1327 | // This is the type of actual extension objects. E.g. if you have: |
| 1328 | // extends Foo with optional int32 bar = 1234; |
| 1329 | // then "bar" will be defined in C++ as: |
| 1330 | // ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 5, false> bar(1234); |
| 1331 | // |
| 1332 | // Note that we could, in theory, supply the field number as a template |
| 1333 | // parameter, and thus make an instance of ExtensionIdentifier have no |
| 1334 | // actual contents. However, if we did that, then using an extension |
| 1335 | // identifier would not necessarily cause the compiler to output any sort |
| 1336 | // of reference to any symbol defined in the extension's .pb.o file. Some |
| 1337 | // linkers will actually drop object files that are not explicitly referenced, |
| 1338 | // but that would be bad because it would cause this extension to not be |
| 1339 | // registered at static initialization, and therefore using it would crash. |
| 1340 | |
| 1341 | template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type, |
| 1342 | bool is_packed> |
| 1343 | class ExtensionIdentifier { |
| 1344 | public: |
| 1345 | typedef TypeTraitsType TypeTraits; |
| 1346 | typedef ExtendeeType Extendee; |
| 1347 | |
| 1348 | ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value) |
| 1349 | : number_(number), default_value_(default_value) { |
| 1350 | Register(number); |
| 1351 | } |
| 1352 | inline int number() const { return number_; } |
| 1353 | typename TypeTraits::ConstType default_value() const { |
| 1354 | return default_value_; |
| 1355 | } |
| 1356 | |
| 1357 | static void Register(int number) { |
| 1358 | TypeTraits::template Register<ExtendeeType>(number, field_type, is_packed); |
| 1359 | } |
| 1360 | |
| 1361 | private: |
| 1362 | const int number_; |
| 1363 | typename TypeTraits::ConstType default_value_; |
| 1364 | }; |
| 1365 | |
| 1366 | // ------------------------------------------------------------------- |
| 1367 | // Generated accessors |
| 1368 | |
| 1369 | // This macro should be expanded in the context of a generated type which |
| 1370 | // has extensions. |
| 1371 | // |
| 1372 | // We use "_proto_TypeTraits" as a type name below because "TypeTraits" |
| 1373 | // causes problems if the class has a nested message or enum type with that |
| 1374 | // name and "_TypeTraits" is technically reserved for the C++ library since |
| 1375 | // it starts with an underscore followed by a capital letter. |
| 1376 | // |
| 1377 | // For similar reason, we use "_field_type" and "_is_packed" as parameter names |
| 1378 | // below, so that "field_type" and "is_packed" can be used as field names. |
| 1379 | #define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME) \ |
| 1380 | /* Has, Size, Clear */ \ |
| 1381 | template <typename _proto_TypeTraits, \ |
| 1382 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1383 | bool _is_packed> \ |
| 1384 | inline bool HasExtension( \ |
| 1385 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1386 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
| 1387 | return _extensions_.Has(id.number()); \ |
| 1388 | } \ |
| 1389 | \ |
| 1390 | template <typename _proto_TypeTraits, \ |
| 1391 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1392 | bool _is_packed> \ |
| 1393 | inline void ClearExtension( \ |
| 1394 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1395 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
| 1396 | _extensions_.ClearExtension(id.number()); \ |
| 1397 | } \ |
| 1398 | \ |
| 1399 | template <typename _proto_TypeTraits, \ |
| 1400 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1401 | bool _is_packed> \ |
| 1402 | inline int ExtensionSize( \ |
| 1403 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1404 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
| 1405 | return _extensions_.ExtensionSize(id.number()); \ |
| 1406 | } \ |
| 1407 | \ |
| 1408 | /* Singular accessors */ \ |
| 1409 | template <typename _proto_TypeTraits, \ |
| 1410 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1411 | bool _is_packed> \ |
| 1412 | inline typename _proto_TypeTraits::Singular::ConstType GetExtension( \ |
| 1413 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1414 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
| 1415 | return _proto_TypeTraits::Get(id.number(), _extensions_, \ |
| 1416 | id.default_value()); \ |
| 1417 | } \ |
| 1418 | \ |
| 1419 | template <typename _proto_TypeTraits, \ |
| 1420 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1421 | bool _is_packed> \ |
| 1422 | inline typename _proto_TypeTraits::Singular::MutableType MutableExtension( \ |
| 1423 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1424 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
| 1425 | return _proto_TypeTraits::Mutable(id.number(), _field_type, \ |
| 1426 | &_extensions_); \ |
| 1427 | } \ |
| 1428 | \ |
| 1429 | template <typename _proto_TypeTraits, \ |
| 1430 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1431 | bool _is_packed> \ |
| 1432 | inline void SetExtension( \ |
| 1433 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1434 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| 1435 | typename _proto_TypeTraits::Singular::ConstType value) { \ |
| 1436 | _proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_); \ |
| 1437 | } \ |
| 1438 | \ |
| 1439 | template <typename _proto_TypeTraits, \ |
| 1440 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1441 | bool _is_packed> \ |
| 1442 | inline void SetAllocatedExtension( \ |
| 1443 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1444 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| 1445 | typename _proto_TypeTraits::Singular::MutableType value) { \ |
| 1446 | _proto_TypeTraits::SetAllocated(id.number(), _field_type, value, \ |
| 1447 | &_extensions_); \ |
| 1448 | } \ |
| 1449 | template <typename _proto_TypeTraits, \ |
| 1450 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1451 | bool _is_packed> \ |
| 1452 | inline void UnsafeArenaSetAllocatedExtension( \ |
| 1453 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1454 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| 1455 | typename _proto_TypeTraits::Singular::MutableType value) { \ |
| 1456 | _proto_TypeTraits::UnsafeArenaSetAllocated(id.number(), _field_type, \ |
| 1457 | value, &_extensions_); \ |
| 1458 | } \ |
| 1459 | template <typename _proto_TypeTraits, \ |
| 1460 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1461 | bool _is_packed> \ |
| 1462 | inline typename _proto_TypeTraits::Singular::MutableType ReleaseExtension( \ |
| 1463 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1464 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
| 1465 | return _proto_TypeTraits::Release(id.number(), _field_type, \ |
| 1466 | &_extensions_); \ |
| 1467 | } \ |
| 1468 | template <typename _proto_TypeTraits, \ |
| 1469 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1470 | bool _is_packed> \ |
| 1471 | inline typename _proto_TypeTraits::Singular::MutableType \ |
| 1472 | UnsafeArenaReleaseExtension( \ |
| 1473 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1474 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
| 1475 | return _proto_TypeTraits::UnsafeArenaRelease(id.number(), _field_type, \ |
| 1476 | &_extensions_); \ |
| 1477 | } \ |
| 1478 | \ |
| 1479 | /* Repeated accessors */ \ |
| 1480 | template <typename _proto_TypeTraits, \ |
| 1481 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1482 | bool _is_packed> \ |
| 1483 | inline typename _proto_TypeTraits::Repeated::ConstType GetExtension( \ |
| 1484 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1485 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| 1486 | int index) const { \ |
| 1487 | return _proto_TypeTraits::Get(id.number(), _extensions_, index); \ |
| 1488 | } \ |
| 1489 | \ |
| 1490 | template <typename _proto_TypeTraits, \ |
| 1491 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1492 | bool _is_packed> \ |
| 1493 | inline typename _proto_TypeTraits::Repeated::MutableType MutableExtension( \ |
| 1494 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1495 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| 1496 | int index) { \ |
| 1497 | return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_); \ |
| 1498 | } \ |
| 1499 | \ |
| 1500 | template <typename _proto_TypeTraits, \ |
| 1501 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1502 | bool _is_packed> \ |
| 1503 | inline void SetExtension( \ |
| 1504 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1505 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| 1506 | int index, typename _proto_TypeTraits::Repeated::ConstType value) { \ |
| 1507 | _proto_TypeTraits::Set(id.number(), index, value, &_extensions_); \ |
| 1508 | } \ |
| 1509 | \ |
| 1510 | template <typename _proto_TypeTraits, \ |
| 1511 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1512 | bool _is_packed> \ |
| 1513 | inline typename _proto_TypeTraits::Repeated::MutableType AddExtension( \ |
| 1514 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1515 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
| 1516 | return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_); \ |
| 1517 | } \ |
| 1518 | \ |
| 1519 | template <typename _proto_TypeTraits, \ |
| 1520 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1521 | bool _is_packed> \ |
| 1522 | inline void AddExtension( \ |
| 1523 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1524 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
| 1525 | typename _proto_TypeTraits::Repeated::ConstType value) { \ |
| 1526 | _proto_TypeTraits::Add(id.number(), _field_type, _is_packed, value, \ |
| 1527 | &_extensions_); \ |
| 1528 | } \ |
| 1529 | \ |
| 1530 | template <typename _proto_TypeTraits, \ |
| 1531 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1532 | bool _is_packed> \ |
| 1533 | inline const typename _proto_TypeTraits::Repeated::RepeatedFieldType& \ |
| 1534 | GetRepeatedExtension( \ |
| 1535 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1536 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
| 1537 | return _proto_TypeTraits::GetRepeated(id.number(), _extensions_); \ |
| 1538 | } \ |
| 1539 | \ |
| 1540 | template <typename _proto_TypeTraits, \ |
| 1541 | ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \ |
| 1542 | bool _is_packed> \ |
| 1543 | inline typename _proto_TypeTraits::Repeated::RepeatedFieldType* \ |
| 1544 | MutableRepeatedExtension( \ |
| 1545 | const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ |
| 1546 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
| 1547 | return _proto_TypeTraits::MutableRepeated(id.number(), _field_type, \ |
| 1548 | _is_packed, &_extensions_); \ |
| 1549 | } |
| 1550 | |
| 1551 | } // namespace internal |
| 1552 | |
| 1553 | // Call this function to ensure that this extensions's reflection is linked into |
| 1554 | // the binary: |
| 1555 | // |
| 1556 | // google::protobuf::LinkExtensionReflection(Foo::my_extension); |
| 1557 | // |
| 1558 | // This will ensure that the following lookup will succeed: |
| 1559 | // |
| 1560 | // DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension"); |
| 1561 | // |
| 1562 | // This is often relevant for parsing extensions in text mode. |
| 1563 | // |
| 1564 | // As a side-effect, it will also guarantee that anything else from the same |
| 1565 | // .proto file will also be available for lookup in the generated pool. |
| 1566 | // |
| 1567 | // This function does not actually register the extension, so it does not need |
| 1568 | // to be called before the lookup. However it does need to occur in a function |
| 1569 | // that cannot be stripped from the binary (ie. it must be reachable from main). |
| 1570 | // |
| 1571 | // Best practice is to call this function as close as possible to where the |
| 1572 | // reflection is actually needed. This function is very cheap to call, so you |
| 1573 | // should not need to worry about its runtime overhead except in tight loops (on |
| 1574 | // x86-64 it compiles into two "mov" instructions). |
| 1575 | template <typename ExtendeeType, typename TypeTraitsType, |
| 1576 | internal::FieldType field_type, bool is_packed> |
| 1577 | void LinkExtensionReflection( |
| 1578 | const google::protobuf::internal::ExtensionIdentifier< |
| 1579 | ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) { |
| 1580 | internal::StrongReference(extension); |
| 1581 | } |
| 1582 | |
| 1583 | } // namespace protobuf |
| 1584 | } // namespace google |
| 1585 | |
| 1586 | #include <google/protobuf/port_undef.inc> |
| 1587 | |
| 1588 | #endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
| 1589 | |