| 1 | //===- LoongArch.cpp ------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "InputFiles.h" |
| 10 | #include "OutputSections.h" |
| 11 | #include "Symbols.h" |
| 12 | #include "SyntheticSections.h" |
| 13 | #include "Target.h" |
| 14 | #include "llvm/BinaryFormat/ELF.h" |
| 15 | #include "llvm/Support/LEB128.h" |
| 16 | |
| 17 | using namespace llvm; |
| 18 | using namespace llvm::object; |
| 19 | using namespace llvm::support::endian; |
| 20 | using namespace llvm::ELF; |
| 21 | using namespace lld; |
| 22 | using namespace lld::elf; |
| 23 | |
| 24 | namespace { |
| 25 | class LoongArch final : public TargetInfo { |
| 26 | public: |
| 27 | LoongArch(Ctx &); |
| 28 | uint32_t calcEFlags() const override; |
| 29 | int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
| 30 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| 31 | void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
| 32 | void writePltHeader(uint8_t *buf) const override; |
| 33 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 34 | uint64_t pltEntryAddr) const override; |
| 35 | RelType getDynRel(RelType type) const override; |
| 36 | RelExpr getRelExpr(RelType type, const Symbol &s, |
| 37 | const uint8_t *loc) const override; |
| 38 | bool usesOnlyLowPageBits(RelType type) const override; |
| 39 | void relocate(uint8_t *loc, const Relocation &rel, |
| 40 | uint64_t val) const override; |
| 41 | bool relaxOnce(int pass) const override; |
| 42 | void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; |
| 43 | void finalizeRelax(int passes) const override; |
| 44 | }; |
| 45 | } // end anonymous namespace |
| 46 | |
| 47 | namespace { |
| 48 | enum Op { |
| 49 | SUB_W = 0x00110000, |
| 50 | SUB_D = 0x00118000, |
| 51 | BREAK = 0x002a0000, |
| 52 | SRLI_W = 0x00448000, |
| 53 | SRLI_D = 0x00450000, |
| 54 | ADDI_W = 0x02800000, |
| 55 | ADDI_D = 0x02c00000, |
| 56 | ANDI = 0x03400000, |
| 57 | ORI = 0x03800000, |
| 58 | LU12I_W = 0x14000000, |
| 59 | PCADDI = 0x18000000, |
| 60 | PCADDU12I = 0x1c000000, |
| 61 | LD_W = 0x28800000, |
| 62 | LD_D = 0x28c00000, |
| 63 | JIRL = 0x4c000000, |
| 64 | B = 0x50000000, |
| 65 | BL = 0x54000000, |
| 66 | }; |
| 67 | |
| 68 | enum Reg { |
| 69 | R_ZERO = 0, |
| 70 | R_RA = 1, |
| 71 | R_TP = 2, |
| 72 | R_T0 = 12, |
| 73 | R_T1 = 13, |
| 74 | R_T2 = 14, |
| 75 | R_T3 = 15, |
| 76 | }; |
| 77 | } // namespace |
| 78 | |
| 79 | // Mask out the input's lowest 12 bits for use with `pcalau12i`, in sequences |
| 80 | // like `pcalau12i + addi.[wd]` or `pcalau12i + {ld,st}.*` where the `pcalau12i` |
| 81 | // produces a PC-relative intermediate value with the lowest 12 bits zeroed (the |
| 82 | // "page") for the next instruction to add in the "page offset". (`pcalau12i` |
| 83 | // stands for something like "PC ALigned Add Upper that starts from the 12th |
| 84 | // bit, Immediate".) |
| 85 | // |
| 86 | // Here a "page" is in fact just another way to refer to the 12-bit range |
| 87 | // allowed by the immediate field of the addi/ld/st instructions, and not |
| 88 | // related to the system or the kernel's actual page size. The semantics happen |
| 89 | // to match the AArch64 `adrp`, so the concept of "page" is borrowed here. |
| 90 | static uint64_t getLoongArchPage(uint64_t p) { |
| 91 | return p & ~static_cast<uint64_t>(0xfff); |
| 92 | } |
| 93 | |
| 94 | static uint32_t lo12(uint32_t val) { return val & 0xfff; } |
| 95 | |
| 96 | // Calculate the adjusted page delta between dest and PC. |
| 97 | uint64_t elf::getLoongArchPageDelta(uint64_t dest, uint64_t pc, RelType type) { |
| 98 | // Note that if the sequence being relocated is `pcalau12i + addi.d + lu32i.d |
| 99 | // + lu52i.d`, they must be adjacent so that we can infer the PC of |
| 100 | // `pcalau12i` when calculating the page delta for the other two instructions |
| 101 | // (lu32i.d and lu52i.d). Compensate all the sign-extensions is a bit |
| 102 | // complicated. Just use psABI recommended algorithm. |
| 103 | uint64_t pcalau12i_pc; |
| 104 | switch (type) { |
| 105 | case R_LARCH_PCALA64_LO20: |
| 106 | case R_LARCH_GOT64_PC_LO20: |
| 107 | case R_LARCH_TLS_IE64_PC_LO20: |
| 108 | case R_LARCH_TLS_DESC64_PC_LO20: |
| 109 | pcalau12i_pc = pc - 8; |
| 110 | break; |
| 111 | case R_LARCH_PCALA64_HI12: |
| 112 | case R_LARCH_GOT64_PC_HI12: |
| 113 | case R_LARCH_TLS_IE64_PC_HI12: |
| 114 | case R_LARCH_TLS_DESC64_PC_HI12: |
| 115 | pcalau12i_pc = pc - 12; |
| 116 | break; |
| 117 | default: |
| 118 | pcalau12i_pc = pc; |
| 119 | break; |
| 120 | } |
| 121 | uint64_t result = getLoongArchPage(p: dest) - getLoongArchPage(p: pcalau12i_pc); |
| 122 | if (dest & 0x800) |
| 123 | result += 0x1000 - 0x1'0000'0000; |
| 124 | if (result & 0x8000'0000) |
| 125 | result += 0x1'0000'0000; |
| 126 | return result; |
| 127 | } |
| 128 | |
| 129 | static uint32_t hi20(uint32_t val) { return (val + 0x800) >> 12; } |
| 130 | |
| 131 | static uint32_t insn(uint32_t op, uint32_t d, uint32_t j, uint32_t k) { |
| 132 | return op | d | (j << 5) | (k << 10); |
| 133 | } |
| 134 | |
| 135 | // Extract bits v[begin:end], where range is inclusive. |
| 136 | static uint32_t (uint64_t v, uint32_t begin, uint32_t end) { |
| 137 | return begin == 63 ? v >> end : (v & ((1ULL << (begin + 1)) - 1)) >> end; |
| 138 | } |
| 139 | |
| 140 | static uint32_t getD5(uint64_t v) { return extractBits(v, begin: 4, end: 0); } |
| 141 | |
| 142 | static uint32_t getJ5(uint64_t v) { return extractBits(v, begin: 9, end: 5); } |
| 143 | |
| 144 | static uint32_t setD5k16(uint32_t insn, uint32_t imm) { |
| 145 | uint32_t immLo = extractBits(v: imm, begin: 15, end: 0); |
| 146 | uint32_t immHi = extractBits(v: imm, begin: 20, end: 16); |
| 147 | return (insn & 0xfc0003e0) | (immLo << 10) | immHi; |
| 148 | } |
| 149 | |
| 150 | static uint32_t setD10k16(uint32_t insn, uint32_t imm) { |
| 151 | uint32_t immLo = extractBits(v: imm, begin: 15, end: 0); |
| 152 | uint32_t immHi = extractBits(v: imm, begin: 25, end: 16); |
| 153 | return (insn & 0xfc000000) | (immLo << 10) | immHi; |
| 154 | } |
| 155 | |
| 156 | static uint32_t setJ20(uint32_t insn, uint32_t imm) { |
| 157 | return (insn & 0xfe00001f) | (extractBits(v: imm, begin: 19, end: 0) << 5); |
| 158 | } |
| 159 | |
| 160 | static uint32_t setJ5(uint32_t insn, uint32_t imm) { |
| 161 | return (insn & 0xfffffc1f) | (extractBits(v: imm, begin: 4, end: 0) << 5); |
| 162 | } |
| 163 | |
| 164 | static uint32_t setK12(uint32_t insn, uint32_t imm) { |
| 165 | return (insn & 0xffc003ff) | (extractBits(v: imm, begin: 11, end: 0) << 10); |
| 166 | } |
| 167 | |
| 168 | static uint32_t setK16(uint32_t insn, uint32_t imm) { |
| 169 | return (insn & 0xfc0003ff) | (extractBits(v: imm, begin: 15, end: 0) << 10); |
| 170 | } |
| 171 | |
| 172 | static bool isJirl(uint32_t insn) { |
| 173 | return (insn & 0xfc000000) == JIRL; |
| 174 | } |
| 175 | |
| 176 | static void handleUleb128(Ctx &ctx, uint8_t *loc, uint64_t val) { |
| 177 | const uint32_t maxcount = 1 + 64 / 7; |
| 178 | uint32_t count; |
| 179 | const char *error = nullptr; |
| 180 | uint64_t orig = decodeULEB128(p: loc, n: &count, end: nullptr, error: &error); |
| 181 | if (count > maxcount || (count == maxcount && error)) |
| 182 | Err(ctx) << getErrorLoc(ctx, loc) << "extra space for uleb128" ; |
| 183 | uint64_t mask = count < maxcount ? (1ULL << 7 * count) - 1 : -1ULL; |
| 184 | encodeULEB128(Value: (orig + val) & mask, p: loc, PadTo: count); |
| 185 | } |
| 186 | |
| 187 | LoongArch::LoongArch(Ctx &ctx) : TargetInfo(ctx) { |
| 188 | // The LoongArch ISA itself does not have a limit on page sizes. According to |
| 189 | // the ISA manual, the PS (page size) field in MTLB entries and CSR.STLBPS is |
| 190 | // 6 bits wide, meaning the maximum page size is 2^63 which is equivalent to |
| 191 | // "unlimited". |
| 192 | // However, practically the maximum usable page size is constrained by the |
| 193 | // kernel implementation, and 64KiB is the biggest non-huge page size |
| 194 | // supported by Linux as of v6.4. The most widespread page size in use, |
| 195 | // though, is 16KiB. |
| 196 | defaultCommonPageSize = 16384; |
| 197 | defaultMaxPageSize = 65536; |
| 198 | write32le(P: trapInstr.data(), V: BREAK); // break 0 |
| 199 | |
| 200 | copyRel = R_LARCH_COPY; |
| 201 | pltRel = R_LARCH_JUMP_SLOT; |
| 202 | relativeRel = R_LARCH_RELATIVE; |
| 203 | iRelativeRel = R_LARCH_IRELATIVE; |
| 204 | |
| 205 | if (ctx.arg.is64) { |
| 206 | symbolicRel = R_LARCH_64; |
| 207 | tlsModuleIndexRel = R_LARCH_TLS_DTPMOD64; |
| 208 | tlsOffsetRel = R_LARCH_TLS_DTPREL64; |
| 209 | tlsGotRel = R_LARCH_TLS_TPREL64; |
| 210 | tlsDescRel = R_LARCH_TLS_DESC64; |
| 211 | } else { |
| 212 | symbolicRel = R_LARCH_32; |
| 213 | tlsModuleIndexRel = R_LARCH_TLS_DTPMOD32; |
| 214 | tlsOffsetRel = R_LARCH_TLS_DTPREL32; |
| 215 | tlsGotRel = R_LARCH_TLS_TPREL32; |
| 216 | tlsDescRel = R_LARCH_TLS_DESC32; |
| 217 | } |
| 218 | |
| 219 | gotRel = symbolicRel; |
| 220 | |
| 221 | // .got.plt[0] = _dl_runtime_resolve, .got.plt[1] = link_map |
| 222 | gotPltHeaderEntriesNum = 2; |
| 223 | |
| 224 | pltHeaderSize = 32; |
| 225 | pltEntrySize = 16; |
| 226 | ipltEntrySize = 16; |
| 227 | } |
| 228 | |
| 229 | static uint32_t getEFlags(Ctx &ctx, const InputFile *f) { |
| 230 | if (ctx.arg.is64) |
| 231 | return cast<ObjFile<ELF64LE>>(Val: f)->getObj().getHeader().e_flags; |
| 232 | return cast<ObjFile<ELF32LE>>(Val: f)->getObj().getHeader().e_flags; |
| 233 | } |
| 234 | |
| 235 | static bool inputFileHasCode(const InputFile *f) { |
| 236 | for (const auto *sec : f->getSections()) |
| 237 | if (sec && sec->flags & SHF_EXECINSTR) |
| 238 | return true; |
| 239 | |
| 240 | return false; |
| 241 | } |
| 242 | |
| 243 | uint32_t LoongArch::calcEFlags() const { |
| 244 | // If there are only binary input files (from -b binary), use a |
| 245 | // value of 0 for the ELF header flags. |
| 246 | if (ctx.objectFiles.empty()) |
| 247 | return 0; |
| 248 | |
| 249 | uint32_t target = 0; |
| 250 | const InputFile *targetFile; |
| 251 | for (const InputFile *f : ctx.objectFiles) { |
| 252 | // Do not enforce ABI compatibility if the input file does not contain code. |
| 253 | // This is useful for allowing linkage with data-only object files produced |
| 254 | // with tools like objcopy, that have zero e_flags. |
| 255 | if (!inputFileHasCode(f)) |
| 256 | continue; |
| 257 | |
| 258 | // Take the first non-zero e_flags as the reference. |
| 259 | uint32_t flags = getEFlags(ctx, f); |
| 260 | if (target == 0 && flags != 0) { |
| 261 | target = flags; |
| 262 | targetFile = f; |
| 263 | } |
| 264 | |
| 265 | if ((flags & EF_LOONGARCH_ABI_MODIFIER_MASK) != |
| 266 | (target & EF_LOONGARCH_ABI_MODIFIER_MASK)) |
| 267 | ErrAlways(ctx) << f |
| 268 | << ": cannot link object files with different ABI from " |
| 269 | << targetFile; |
| 270 | |
| 271 | // We cannot process psABI v1.x / object ABI v0 files (containing stack |
| 272 | // relocations), unlike ld.bfd. |
| 273 | // |
| 274 | // Instead of blindly accepting every v0 object and only failing at |
| 275 | // relocation processing time, just disallow interlink altogether. We |
| 276 | // don't expect significant usage of object ABI v0 in the wild (the old |
| 277 | // world may continue using object ABI v0 for a while, but as it's not |
| 278 | // binary-compatible with the upstream i.e. new-world ecosystem, it's not |
| 279 | // being considered here). |
| 280 | // |
| 281 | // There are briefly some new-world systems with object ABI v0 binaries too. |
| 282 | // It is because these systems were built before the new ABI was finalized. |
| 283 | // These are not supported either due to the extremely small number of them, |
| 284 | // and the few impacted users are advised to simply rebuild world or |
| 285 | // reinstall a recent system. |
| 286 | if ((flags & EF_LOONGARCH_OBJABI_MASK) != EF_LOONGARCH_OBJABI_V1) |
| 287 | ErrAlways(ctx) << f << ": unsupported object file ABI version" ; |
| 288 | } |
| 289 | |
| 290 | return target; |
| 291 | } |
| 292 | |
| 293 | int64_t LoongArch::getImplicitAddend(const uint8_t *buf, RelType type) const { |
| 294 | switch (type) { |
| 295 | default: |
| 296 | InternalErr(ctx, buf) << "cannot read addend for relocation " << type; |
| 297 | return 0; |
| 298 | case R_LARCH_32: |
| 299 | case R_LARCH_TLS_DTPMOD32: |
| 300 | case R_LARCH_TLS_DTPREL32: |
| 301 | case R_LARCH_TLS_TPREL32: |
| 302 | return SignExtend64<32>(x: read32le(P: buf)); |
| 303 | case R_LARCH_64: |
| 304 | case R_LARCH_TLS_DTPMOD64: |
| 305 | case R_LARCH_TLS_DTPREL64: |
| 306 | case R_LARCH_TLS_TPREL64: |
| 307 | return read64le(P: buf); |
| 308 | case R_LARCH_RELATIVE: |
| 309 | case R_LARCH_IRELATIVE: |
| 310 | return ctx.arg.is64 ? read64le(P: buf) : read32le(P: buf); |
| 311 | case R_LARCH_NONE: |
| 312 | case R_LARCH_JUMP_SLOT: |
| 313 | // These relocations are defined as not having an implicit addend. |
| 314 | return 0; |
| 315 | case R_LARCH_TLS_DESC32: |
| 316 | return read32le(P: buf + 4); |
| 317 | case R_LARCH_TLS_DESC64: |
| 318 | return read64le(P: buf + 8); |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | void LoongArch::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| 323 | if (ctx.arg.is64) |
| 324 | write64le(P: buf, V: ctx.in.plt->getVA()); |
| 325 | else |
| 326 | write32le(P: buf, V: ctx.in.plt->getVA()); |
| 327 | } |
| 328 | |
| 329 | void LoongArch::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
| 330 | if (ctx.arg.writeAddends) { |
| 331 | if (ctx.arg.is64) |
| 332 | write64le(P: buf, V: s.getVA(ctx)); |
| 333 | else |
| 334 | write32le(P: buf, V: s.getVA(ctx)); |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | void LoongArch::(uint8_t *buf) const { |
| 339 | // The LoongArch PLT is currently structured just like that of RISCV. |
| 340 | // Annoyingly, this means the PLT is still using `pcaddu12i` to perform |
| 341 | // PC-relative addressing (because `pcaddu12i` is the same as RISCV `auipc`), |
| 342 | // in contrast to the AArch64-like page-offset scheme with `pcalau12i` that |
| 343 | // is used everywhere else involving PC-relative operations in the LoongArch |
| 344 | // ELF psABI v2.00. |
| 345 | // |
| 346 | // The `pcrel_{hi20,lo12}` operators are illustrative only and not really |
| 347 | // supported by LoongArch assemblers. |
| 348 | // |
| 349 | // pcaddu12i $t2, %pcrel_hi20(.got.plt) |
| 350 | // sub.[wd] $t1, $t1, $t3 |
| 351 | // ld.[wd] $t3, $t2, %pcrel_lo12(.got.plt) ; t3 = _dl_runtime_resolve |
| 352 | // addi.[wd] $t1, $t1, -pltHeaderSize-12 ; t1 = &.plt[i] - &.plt[0] |
| 353 | // addi.[wd] $t0, $t2, %pcrel_lo12(.got.plt) |
| 354 | // srli.[wd] $t1, $t1, (is64?1:2) ; t1 = &.got.plt[i] - &.got.plt[0] |
| 355 | // ld.[wd] $t0, $t0, Wordsize ; t0 = link_map |
| 356 | // jr $t3 |
| 357 | uint32_t offset = ctx.in.gotPlt->getVA() - ctx.in.plt->getVA(); |
| 358 | uint32_t sub = ctx.arg.is64 ? SUB_D : SUB_W; |
| 359 | uint32_t ld = ctx.arg.is64 ? LD_D : LD_W; |
| 360 | uint32_t addi = ctx.arg.is64 ? ADDI_D : ADDI_W; |
| 361 | uint32_t srli = ctx.arg.is64 ? SRLI_D : SRLI_W; |
| 362 | write32le(P: buf + 0, V: insn(op: PCADDU12I, d: R_T2, j: hi20(val: offset), k: 0)); |
| 363 | write32le(P: buf + 4, V: insn(op: sub, d: R_T1, j: R_T1, k: R_T3)); |
| 364 | write32le(P: buf + 8, V: insn(op: ld, d: R_T3, j: R_T2, k: lo12(val: offset))); |
| 365 | write32le(P: buf + 12, |
| 366 | V: insn(op: addi, d: R_T1, j: R_T1, k: lo12(val: -ctx.target->pltHeaderSize - 12))); |
| 367 | write32le(P: buf + 16, V: insn(op: addi, d: R_T0, j: R_T2, k: lo12(val: offset))); |
| 368 | write32le(P: buf + 20, V: insn(op: srli, d: R_T1, j: R_T1, k: ctx.arg.is64 ? 1 : 2)); |
| 369 | write32le(P: buf + 24, V: insn(op: ld, d: R_T0, j: R_T0, k: ctx.arg.wordsize)); |
| 370 | write32le(P: buf + 28, V: insn(op: JIRL, d: R_ZERO, j: R_T3, k: 0)); |
| 371 | } |
| 372 | |
| 373 | void LoongArch::writePlt(uint8_t *buf, const Symbol &sym, |
| 374 | uint64_t pltEntryAddr) const { |
| 375 | // See the comment in writePltHeader for reason why pcaddu12i is used instead |
| 376 | // of the pcalau12i that's more commonly seen in the ELF psABI v2.0 days. |
| 377 | // |
| 378 | // pcaddu12i $t3, %pcrel_hi20(f@.got.plt) |
| 379 | // ld.[wd] $t3, $t3, %pcrel_lo12(f@.got.plt) |
| 380 | // jirl $t1, $t3, 0 |
| 381 | // nop |
| 382 | uint32_t offset = sym.getGotPltVA(ctx) - pltEntryAddr; |
| 383 | write32le(P: buf + 0, V: insn(op: PCADDU12I, d: R_T3, j: hi20(val: offset), k: 0)); |
| 384 | write32le(P: buf + 4, |
| 385 | V: insn(op: ctx.arg.is64 ? LD_D : LD_W, d: R_T3, j: R_T3, k: lo12(val: offset))); |
| 386 | write32le(P: buf + 8, V: insn(op: JIRL, d: R_T1, j: R_T3, k: 0)); |
| 387 | write32le(P: buf + 12, V: insn(op: ANDI, d: R_ZERO, j: R_ZERO, k: 0)); |
| 388 | } |
| 389 | |
| 390 | RelType LoongArch::getDynRel(RelType type) const { |
| 391 | return type == ctx.target->symbolicRel ? type |
| 392 | : static_cast<RelType>(R_LARCH_NONE); |
| 393 | } |
| 394 | |
| 395 | RelExpr LoongArch::getRelExpr(const RelType type, const Symbol &s, |
| 396 | const uint8_t *loc) const { |
| 397 | switch (type) { |
| 398 | case R_LARCH_NONE: |
| 399 | case R_LARCH_MARK_LA: |
| 400 | case R_LARCH_MARK_PCREL: |
| 401 | return R_NONE; |
| 402 | case R_LARCH_32: |
| 403 | case R_LARCH_64: |
| 404 | case R_LARCH_ABS_HI20: |
| 405 | case R_LARCH_ABS_LO12: |
| 406 | case R_LARCH_ABS64_LO20: |
| 407 | case R_LARCH_ABS64_HI12: |
| 408 | return R_ABS; |
| 409 | case R_LARCH_PCALA_LO12: |
| 410 | // We could just R_ABS, but the JIRL instruction reuses the relocation type |
| 411 | // for a different purpose. The questionable usage is part of glibc 2.37 |
| 412 | // libc_nonshared.a [1], which is linked into user programs, so we have to |
| 413 | // work around it for a while, even if a new relocation type may be |
| 414 | // introduced in the future [2]. |
| 415 | // |
| 416 | // [1]: https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=9f482b73f41a9a1bbfb173aad0733d1c824c788a |
| 417 | // [2]: https://github.com/loongson/la-abi-specs/pull/3 |
| 418 | return isJirl(insn: read32le(P: loc)) ? R_PLT : R_ABS; |
| 419 | case R_LARCH_TLS_DTPREL32: |
| 420 | case R_LARCH_TLS_DTPREL64: |
| 421 | return R_DTPREL; |
| 422 | case R_LARCH_TLS_TPREL32: |
| 423 | case R_LARCH_TLS_TPREL64: |
| 424 | case R_LARCH_TLS_LE_HI20: |
| 425 | case R_LARCH_TLS_LE_HI20_R: |
| 426 | case R_LARCH_TLS_LE_LO12: |
| 427 | case R_LARCH_TLS_LE_LO12_R: |
| 428 | case R_LARCH_TLS_LE64_LO20: |
| 429 | case R_LARCH_TLS_LE64_HI12: |
| 430 | return R_TPREL; |
| 431 | case R_LARCH_ADD6: |
| 432 | case R_LARCH_ADD8: |
| 433 | case R_LARCH_ADD16: |
| 434 | case R_LARCH_ADD32: |
| 435 | case R_LARCH_ADD64: |
| 436 | case R_LARCH_ADD_ULEB128: |
| 437 | case R_LARCH_SUB6: |
| 438 | case R_LARCH_SUB8: |
| 439 | case R_LARCH_SUB16: |
| 440 | case R_LARCH_SUB32: |
| 441 | case R_LARCH_SUB64: |
| 442 | case R_LARCH_SUB_ULEB128: |
| 443 | // The LoongArch add/sub relocs behave like the RISCV counterparts; reuse |
| 444 | // the RelExpr to avoid code duplication. |
| 445 | return RE_RISCV_ADD; |
| 446 | case R_LARCH_32_PCREL: |
| 447 | case R_LARCH_64_PCREL: |
| 448 | case R_LARCH_PCREL20_S2: |
| 449 | return R_PC; |
| 450 | case R_LARCH_B16: |
| 451 | case R_LARCH_B21: |
| 452 | case R_LARCH_B26: |
| 453 | case R_LARCH_CALL36: |
| 454 | return R_PLT_PC; |
| 455 | case R_LARCH_GOT_PC_HI20: |
| 456 | case R_LARCH_GOT64_PC_LO20: |
| 457 | case R_LARCH_GOT64_PC_HI12: |
| 458 | case R_LARCH_TLS_IE_PC_HI20: |
| 459 | case R_LARCH_TLS_IE64_PC_LO20: |
| 460 | case R_LARCH_TLS_IE64_PC_HI12: |
| 461 | return RE_LOONGARCH_GOT_PAGE_PC; |
| 462 | case R_LARCH_GOT_PC_LO12: |
| 463 | case R_LARCH_TLS_IE_PC_LO12: |
| 464 | return RE_LOONGARCH_GOT; |
| 465 | case R_LARCH_TLS_LD_PC_HI20: |
| 466 | case R_LARCH_TLS_GD_PC_HI20: |
| 467 | return RE_LOONGARCH_TLSGD_PAGE_PC; |
| 468 | case R_LARCH_PCALA_HI20: |
| 469 | // Why not RE_LOONGARCH_PAGE_PC, majority of references don't go through |
| 470 | // PLT anyway so why waste time checking only to get everything relaxed back |
| 471 | // to it? |
| 472 | // |
| 473 | // This is again due to the R_LARCH_PCALA_LO12 on JIRL case, where we want |
| 474 | // both the HI20 and LO12 to potentially refer to the PLT. But in reality |
| 475 | // the HI20 reloc appears earlier, and the relocs don't contain enough |
| 476 | // information to let us properly resolve semantics per symbol. |
| 477 | // Unlike RISCV, our LO12 relocs *do not* point to their corresponding HI20 |
| 478 | // relocs, hence it is nearly impossible to 100% accurately determine each |
| 479 | // HI20's "flavor" without taking big performance hits, in the presence of |
| 480 | // edge cases (e.g. HI20 without pairing LO12; paired LO12 placed so far |
| 481 | // apart that relationship is not certain anymore), and programmer mistakes |
| 482 | // (e.g. as outlined in https://github.com/loongson/la-abi-specs/pull/3). |
| 483 | // |
| 484 | // Ideally we would scan in an extra pass for all LO12s on JIRL, then mark |
| 485 | // every HI20 reloc referring to the same symbol differently; this is not |
| 486 | // feasible with the current function signature of getRelExpr that doesn't |
| 487 | // allow for such inter-pass state. |
| 488 | // |
| 489 | // So, unfortunately we have to again workaround this quirk the same way as |
| 490 | // BFD: assuming every R_LARCH_PCALA_HI20 is potentially PLT-needing, only |
| 491 | // relaxing back to RE_LOONGARCH_PAGE_PC if it's known not so at a later |
| 492 | // stage. |
| 493 | return RE_LOONGARCH_PLT_PAGE_PC; |
| 494 | case R_LARCH_PCALA64_LO20: |
| 495 | case R_LARCH_PCALA64_HI12: |
| 496 | return RE_LOONGARCH_PAGE_PC; |
| 497 | case R_LARCH_GOT_HI20: |
| 498 | case R_LARCH_GOT_LO12: |
| 499 | case R_LARCH_GOT64_LO20: |
| 500 | case R_LARCH_GOT64_HI12: |
| 501 | case R_LARCH_TLS_IE_HI20: |
| 502 | case R_LARCH_TLS_IE_LO12: |
| 503 | case R_LARCH_TLS_IE64_LO20: |
| 504 | case R_LARCH_TLS_IE64_HI12: |
| 505 | return R_GOT; |
| 506 | case R_LARCH_TLS_LD_HI20: |
| 507 | return R_TLSLD_GOT; |
| 508 | case R_LARCH_TLS_GD_HI20: |
| 509 | return R_TLSGD_GOT; |
| 510 | case R_LARCH_TLS_LE_ADD_R: |
| 511 | case R_LARCH_RELAX: |
| 512 | return ctx.arg.relax ? R_RELAX_HINT : R_NONE; |
| 513 | case R_LARCH_ALIGN: |
| 514 | return R_RELAX_HINT; |
| 515 | case R_LARCH_TLS_DESC_PC_HI20: |
| 516 | case R_LARCH_TLS_DESC64_PC_LO20: |
| 517 | case R_LARCH_TLS_DESC64_PC_HI12: |
| 518 | return RE_LOONGARCH_TLSDESC_PAGE_PC; |
| 519 | case R_LARCH_TLS_DESC_PC_LO12: |
| 520 | case R_LARCH_TLS_DESC_LD: |
| 521 | case R_LARCH_TLS_DESC_HI20: |
| 522 | case R_LARCH_TLS_DESC_LO12: |
| 523 | case R_LARCH_TLS_DESC64_LO20: |
| 524 | case R_LARCH_TLS_DESC64_HI12: |
| 525 | return R_TLSDESC; |
| 526 | case R_LARCH_TLS_DESC_CALL: |
| 527 | return R_TLSDESC_CALL; |
| 528 | case R_LARCH_TLS_LD_PCREL20_S2: |
| 529 | return R_TLSLD_PC; |
| 530 | case R_LARCH_TLS_GD_PCREL20_S2: |
| 531 | return R_TLSGD_PC; |
| 532 | case R_LARCH_TLS_DESC_PCREL20_S2: |
| 533 | return R_TLSDESC_PC; |
| 534 | |
| 535 | // Other known relocs that are explicitly unimplemented: |
| 536 | // |
| 537 | // - psABI v1 relocs that need a stateful stack machine to work, and not |
| 538 | // required when implementing psABI v2; |
| 539 | // - relocs that are not used anywhere (R_LARCH_{ADD,SUB}_24 [1], and the |
| 540 | // two GNU vtable-related relocs). |
| 541 | // |
| 542 | // [1]: https://web.archive.org/web/20230709064026/https://github.com/loongson/LoongArch-Documentation/issues/51 |
| 543 | default: |
| 544 | Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v |
| 545 | << ") against symbol " << &s; |
| 546 | return R_NONE; |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | bool LoongArch::usesOnlyLowPageBits(RelType type) const { |
| 551 | switch (type) { |
| 552 | default: |
| 553 | return false; |
| 554 | case R_LARCH_PCALA_LO12: |
| 555 | case R_LARCH_GOT_LO12: |
| 556 | case R_LARCH_GOT_PC_LO12: |
| 557 | case R_LARCH_TLS_IE_PC_LO12: |
| 558 | case R_LARCH_TLS_DESC_LO12: |
| 559 | case R_LARCH_TLS_DESC_PC_LO12: |
| 560 | return true; |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | void LoongArch::relocate(uint8_t *loc, const Relocation &rel, |
| 565 | uint64_t val) const { |
| 566 | switch (rel.type) { |
| 567 | case R_LARCH_32_PCREL: |
| 568 | checkInt(ctx, loc, v: val, n: 32, rel); |
| 569 | [[fallthrough]]; |
| 570 | case R_LARCH_32: |
| 571 | case R_LARCH_TLS_DTPREL32: |
| 572 | write32le(P: loc, V: val); |
| 573 | return; |
| 574 | case R_LARCH_64: |
| 575 | case R_LARCH_TLS_DTPREL64: |
| 576 | case R_LARCH_64_PCREL: |
| 577 | write64le(P: loc, V: val); |
| 578 | return; |
| 579 | |
| 580 | // Relocs intended for `pcaddi`. |
| 581 | case R_LARCH_PCREL20_S2: |
| 582 | case R_LARCH_TLS_LD_PCREL20_S2: |
| 583 | case R_LARCH_TLS_GD_PCREL20_S2: |
| 584 | case R_LARCH_TLS_DESC_PCREL20_S2: |
| 585 | checkInt(ctx, loc, v: val, n: 22, rel); |
| 586 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
| 587 | write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: val >> 2)); |
| 588 | return; |
| 589 | |
| 590 | case R_LARCH_B16: |
| 591 | checkInt(ctx, loc, v: val, n: 18, rel); |
| 592 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
| 593 | write32le(P: loc, V: setK16(insn: read32le(P: loc), imm: val >> 2)); |
| 594 | return; |
| 595 | |
| 596 | case R_LARCH_B21: |
| 597 | checkInt(ctx, loc, v: val, n: 23, rel); |
| 598 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
| 599 | write32le(P: loc, V: setD5k16(insn: read32le(P: loc), imm: val >> 2)); |
| 600 | return; |
| 601 | |
| 602 | case R_LARCH_B26: |
| 603 | checkInt(ctx, loc, v: val, n: 28, rel); |
| 604 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
| 605 | write32le(P: loc, V: setD10k16(insn: read32le(P: loc), imm: val >> 2)); |
| 606 | return; |
| 607 | |
| 608 | case R_LARCH_CALL36: { |
| 609 | // This relocation is designed for adjacent pcaddu18i+jirl pairs that |
| 610 | // are patched in one time. Because of sign extension of these insns' |
| 611 | // immediate fields, the relocation range is [-128G - 0x20000, +128G - |
| 612 | // 0x20000) (of course must be 4-byte aligned). |
| 613 | if (((int64_t)val + 0x20000) != llvm::SignExtend64(X: val + 0x20000, B: 38)) |
| 614 | reportRangeError(ctx, loc, rel, v: Twine(val), min: llvm::minIntN(N: 38) - 0x20000, |
| 615 | max: llvm::maxIntN(N: 38) - 0x20000); |
| 616 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
| 617 | // Since jirl performs sign extension on the offset immediate, adds (1<<17) |
| 618 | // to original val to get the correct hi20. |
| 619 | uint32_t hi20 = extractBits(v: val + (1 << 17), begin: 37, end: 18); |
| 620 | // Despite the name, the lower part is actually 18 bits with 4-byte aligned. |
| 621 | uint32_t lo16 = extractBits(v: val, begin: 17, end: 2); |
| 622 | write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: hi20)); |
| 623 | write32le(P: loc + 4, V: setK16(insn: read32le(P: loc + 4), imm: lo16)); |
| 624 | return; |
| 625 | } |
| 626 | |
| 627 | // Relocs intended for `addi`, `ld` or `st`. |
| 628 | case R_LARCH_PCALA_LO12: |
| 629 | // We have to again inspect the insn word to handle the R_LARCH_PCALA_LO12 |
| 630 | // on JIRL case: firstly JIRL wants its immediate's 2 lowest zeroes |
| 631 | // removed by us (in contrast to regular R_LARCH_PCALA_LO12), secondly |
| 632 | // its immediate slot width is different too (16, not 12). |
| 633 | // In this case, process like an R_LARCH_B16, but without overflow checking |
| 634 | // and only taking the value's lowest 12 bits. |
| 635 | if (isJirl(insn: read32le(P: loc))) { |
| 636 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
| 637 | val = SignExtend64<12>(x: val); |
| 638 | write32le(P: loc, V: setK16(insn: read32le(P: loc), imm: val >> 2)); |
| 639 | return; |
| 640 | } |
| 641 | [[fallthrough]]; |
| 642 | case R_LARCH_ABS_LO12: |
| 643 | case R_LARCH_GOT_PC_LO12: |
| 644 | case R_LARCH_GOT_LO12: |
| 645 | case R_LARCH_TLS_LE_LO12: |
| 646 | case R_LARCH_TLS_IE_PC_LO12: |
| 647 | case R_LARCH_TLS_IE_LO12: |
| 648 | case R_LARCH_TLS_LE_LO12_R: |
| 649 | case R_LARCH_TLS_DESC_PC_LO12: |
| 650 | case R_LARCH_TLS_DESC_LO12: |
| 651 | write32le(P: loc, V: setK12(insn: read32le(P: loc), imm: extractBits(v: val, begin: 11, end: 0))); |
| 652 | return; |
| 653 | |
| 654 | // Relocs intended for `lu12i.w` or `pcalau12i`. |
| 655 | case R_LARCH_ABS_HI20: |
| 656 | case R_LARCH_PCALA_HI20: |
| 657 | case R_LARCH_GOT_PC_HI20: |
| 658 | case R_LARCH_GOT_HI20: |
| 659 | case R_LARCH_TLS_LE_HI20: |
| 660 | case R_LARCH_TLS_IE_PC_HI20: |
| 661 | case R_LARCH_TLS_IE_HI20: |
| 662 | case R_LARCH_TLS_LD_PC_HI20: |
| 663 | case R_LARCH_TLS_LD_HI20: |
| 664 | case R_LARCH_TLS_GD_PC_HI20: |
| 665 | case R_LARCH_TLS_GD_HI20: |
| 666 | case R_LARCH_TLS_DESC_PC_HI20: |
| 667 | case R_LARCH_TLS_DESC_HI20: |
| 668 | write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: extractBits(v: val, begin: 31, end: 12))); |
| 669 | return; |
| 670 | case R_LARCH_TLS_LE_HI20_R: |
| 671 | write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: extractBits(v: val + 0x800, begin: 31, end: 12))); |
| 672 | return; |
| 673 | |
| 674 | // Relocs intended for `lu32i.d`. |
| 675 | case R_LARCH_ABS64_LO20: |
| 676 | case R_LARCH_PCALA64_LO20: |
| 677 | case R_LARCH_GOT64_PC_LO20: |
| 678 | case R_LARCH_GOT64_LO20: |
| 679 | case R_LARCH_TLS_LE64_LO20: |
| 680 | case R_LARCH_TLS_IE64_PC_LO20: |
| 681 | case R_LARCH_TLS_IE64_LO20: |
| 682 | case R_LARCH_TLS_DESC64_PC_LO20: |
| 683 | case R_LARCH_TLS_DESC64_LO20: |
| 684 | write32le(P: loc, V: setJ20(insn: read32le(P: loc), imm: extractBits(v: val, begin: 51, end: 32))); |
| 685 | return; |
| 686 | |
| 687 | // Relocs intended for `lu52i.d`. |
| 688 | case R_LARCH_ABS64_HI12: |
| 689 | case R_LARCH_PCALA64_HI12: |
| 690 | case R_LARCH_GOT64_PC_HI12: |
| 691 | case R_LARCH_GOT64_HI12: |
| 692 | case R_LARCH_TLS_LE64_HI12: |
| 693 | case R_LARCH_TLS_IE64_PC_HI12: |
| 694 | case R_LARCH_TLS_IE64_HI12: |
| 695 | case R_LARCH_TLS_DESC64_PC_HI12: |
| 696 | case R_LARCH_TLS_DESC64_HI12: |
| 697 | write32le(P: loc, V: setK12(insn: read32le(P: loc), imm: extractBits(v: val, begin: 63, end: 52))); |
| 698 | return; |
| 699 | |
| 700 | case R_LARCH_ADD6: |
| 701 | *loc = (*loc & 0xc0) | ((*loc + val) & 0x3f); |
| 702 | return; |
| 703 | case R_LARCH_ADD8: |
| 704 | *loc += val; |
| 705 | return; |
| 706 | case R_LARCH_ADD16: |
| 707 | write16le(P: loc, V: read16le(P: loc) + val); |
| 708 | return; |
| 709 | case R_LARCH_ADD32: |
| 710 | write32le(P: loc, V: read32le(P: loc) + val); |
| 711 | return; |
| 712 | case R_LARCH_ADD64: |
| 713 | write64le(P: loc, V: read64le(P: loc) + val); |
| 714 | return; |
| 715 | case R_LARCH_ADD_ULEB128: |
| 716 | handleUleb128(ctx, loc, val); |
| 717 | return; |
| 718 | case R_LARCH_SUB6: |
| 719 | *loc = (*loc & 0xc0) | ((*loc - val) & 0x3f); |
| 720 | return; |
| 721 | case R_LARCH_SUB8: |
| 722 | *loc -= val; |
| 723 | return; |
| 724 | case R_LARCH_SUB16: |
| 725 | write16le(P: loc, V: read16le(P: loc) - val); |
| 726 | return; |
| 727 | case R_LARCH_SUB32: |
| 728 | write32le(P: loc, V: read32le(P: loc) - val); |
| 729 | return; |
| 730 | case R_LARCH_SUB64: |
| 731 | write64le(P: loc, V: read64le(P: loc) - val); |
| 732 | return; |
| 733 | case R_LARCH_SUB_ULEB128: |
| 734 | handleUleb128(ctx, loc, val: -val); |
| 735 | return; |
| 736 | |
| 737 | case R_LARCH_MARK_LA: |
| 738 | case R_LARCH_MARK_PCREL: |
| 739 | // no-op |
| 740 | return; |
| 741 | |
| 742 | case R_LARCH_TLS_LE_ADD_R: |
| 743 | case R_LARCH_RELAX: |
| 744 | return; // Ignored (for now) |
| 745 | |
| 746 | case R_LARCH_TLS_DESC_LD: |
| 747 | return; // nothing to do. |
| 748 | case R_LARCH_TLS_DESC32: |
| 749 | write32le(P: loc + 4, V: val); |
| 750 | return; |
| 751 | case R_LARCH_TLS_DESC64: |
| 752 | write64le(P: loc + 8, V: val); |
| 753 | return; |
| 754 | |
| 755 | default: |
| 756 | llvm_unreachable("unknown relocation" ); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | static bool relaxable(ArrayRef<Relocation> relocs, size_t i) { |
| 761 | return i + 1 < relocs.size() && relocs[i + 1].type == R_LARCH_RELAX; |
| 762 | } |
| 763 | |
| 764 | static bool isPairRelaxable(ArrayRef<Relocation> relocs, size_t i) { |
| 765 | return relaxable(relocs, i) && relaxable(relocs, i: i + 2) && |
| 766 | relocs[i].offset + 4 == relocs[i + 2].offset; |
| 767 | } |
| 768 | |
| 769 | // Relax code sequence. |
| 770 | // From: |
| 771 | // pcalau12i $a0, %pc_hi20(sym) | %ld_pc_hi20(sym) | %gd_pc_hi20(sym) |
| 772 | // | %desc_pc_hi20(sym) |
| 773 | // addi.w/d $a0, $a0, %pc_lo12(sym) | %got_pc_lo12(sym) | %got_pc_lo12(sym) |
| 774 | // | %desc_pc_lo12(sym) |
| 775 | // To: |
| 776 | // pcaddi $a0, %pc_lo12(sym) | %got_pc_lo12(sym) | %got_pc_lo12(sym) |
| 777 | // | %desc_pcrel_20(sym) |
| 778 | // |
| 779 | // From: |
| 780 | // pcalau12i $a0, %got_pc_hi20(sym_got) |
| 781 | // ld.w/d $a0, $a0, %got_pc_lo12(sym_got) |
| 782 | // To: |
| 783 | // pcaddi $a0, %got_pc_hi20(sym_got) |
| 784 | static void relaxPCHi20Lo12(Ctx &ctx, const InputSection &sec, size_t i, |
| 785 | uint64_t loc, Relocation &rHi20, Relocation &rLo12, |
| 786 | uint32_t &remove) { |
| 787 | // check if the relocations are relaxable sequences. |
| 788 | if (!((rHi20.type == R_LARCH_PCALA_HI20 && |
| 789 | rLo12.type == R_LARCH_PCALA_LO12) || |
| 790 | (rHi20.type == R_LARCH_GOT_PC_HI20 && |
| 791 | rLo12.type == R_LARCH_GOT_PC_LO12) || |
| 792 | (rHi20.type == R_LARCH_TLS_GD_PC_HI20 && |
| 793 | rLo12.type == R_LARCH_GOT_PC_LO12) || |
| 794 | (rHi20.type == R_LARCH_TLS_LD_PC_HI20 && |
| 795 | rLo12.type == R_LARCH_GOT_PC_LO12) || |
| 796 | (rHi20.type == R_LARCH_TLS_DESC_PC_HI20 && |
| 797 | rLo12.type == R_LARCH_TLS_DESC_PC_LO12))) |
| 798 | return; |
| 799 | |
| 800 | // GOT references to absolute symbols can't be relaxed to use pcaddi in |
| 801 | // position-independent code, because these instructions produce a relative |
| 802 | // address. |
| 803 | // Meanwhile skip undefined, preemptible and STT_GNU_IFUNC symbols, because |
| 804 | // these symbols may be resolve in runtime. |
| 805 | if (rHi20.type == R_LARCH_GOT_PC_HI20 && |
| 806 | (!rHi20.sym->isDefined() || rHi20.sym->isPreemptible || |
| 807 | rHi20.sym->isGnuIFunc() || |
| 808 | (ctx.arg.isPic && !cast<Defined>(Val&: *rHi20.sym).section))) |
| 809 | return; |
| 810 | |
| 811 | uint64_t dest = 0; |
| 812 | if (rHi20.expr == RE_LOONGARCH_PLT_PAGE_PC) |
| 813 | dest = rHi20.sym->getPltVA(ctx); |
| 814 | else if (rHi20.expr == RE_LOONGARCH_PAGE_PC || |
| 815 | rHi20.expr == RE_LOONGARCH_GOT_PAGE_PC) |
| 816 | dest = rHi20.sym->getVA(ctx); |
| 817 | else if (rHi20.expr == RE_LOONGARCH_TLSGD_PAGE_PC) |
| 818 | dest = ctx.in.got->getGlobalDynAddr(b: *rHi20.sym); |
| 819 | else if (rHi20.expr == RE_LOONGARCH_TLSDESC_PAGE_PC) |
| 820 | dest = ctx.in.got->getTlsDescAddr(sym: *rHi20.sym); |
| 821 | else { |
| 822 | Err(ctx) << getErrorLoc(ctx, loc: (const uint8_t *)loc) << "unknown expr (" |
| 823 | << rHi20.expr << ") against symbol " << rHi20.sym |
| 824 | << "in relaxPCHi20Lo12" ; |
| 825 | return; |
| 826 | } |
| 827 | dest += rHi20.addend; |
| 828 | |
| 829 | const int64_t displace = dest - loc; |
| 830 | // Check if the displace aligns 4 bytes or exceeds the range of pcaddi. |
| 831 | if ((displace & 0x3) != 0 || !isInt<22>(x: displace)) |
| 832 | return; |
| 833 | |
| 834 | // Note: If we can ensure that the .o files generated by LLVM only contain |
| 835 | // relaxable instruction sequences with R_LARCH_RELAX, then we do not need to |
| 836 | // decode instructions. The relaxable instruction sequences imply the |
| 837 | // following constraints: |
| 838 | // * For relocation pairs related to got_pc, the opcodes of instructions |
| 839 | // must be pcalau12i + ld.w/d. In other cases, the opcodes must be pcalau12i + |
| 840 | // addi.w/d. |
| 841 | // * The destination register of pcalau12i is guaranteed to be used only by |
| 842 | // the immediately following instruction. |
| 843 | const uint32_t currInsn = read32le(P: sec.content().data() + rHi20.offset); |
| 844 | const uint32_t nextInsn = read32le(P: sec.content().data() + rLo12.offset); |
| 845 | // Check if use the same register. |
| 846 | if (getD5(v: currInsn) != getJ5(v: nextInsn) || getJ5(v: nextInsn) != getD5(v: nextInsn)) |
| 847 | return; |
| 848 | |
| 849 | sec.relaxAux->relocTypes[i] = R_LARCH_RELAX; |
| 850 | if (rHi20.type == R_LARCH_TLS_GD_PC_HI20) |
| 851 | sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_GD_PCREL20_S2; |
| 852 | else if (rHi20.type == R_LARCH_TLS_LD_PC_HI20) |
| 853 | sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_LD_PCREL20_S2; |
| 854 | else if (rHi20.type == R_LARCH_TLS_DESC_PC_HI20) |
| 855 | sec.relaxAux->relocTypes[i + 2] = R_LARCH_TLS_DESC_PCREL20_S2; |
| 856 | else |
| 857 | sec.relaxAux->relocTypes[i + 2] = R_LARCH_PCREL20_S2; |
| 858 | sec.relaxAux->writes.push_back(Elt: insn(op: PCADDI, d: getD5(v: nextInsn), j: 0, k: 0)); |
| 859 | remove = 4; |
| 860 | } |
| 861 | |
| 862 | // Relax code sequence. |
| 863 | // From: |
| 864 | // pcaddu18i $ra, %call36(foo) |
| 865 | // jirl $ra, $ra, 0 |
| 866 | // To: |
| 867 | // b/bl foo |
| 868 | static void relaxCall36(Ctx &ctx, const InputSection &sec, size_t i, |
| 869 | uint64_t loc, Relocation &r, uint32_t &remove) { |
| 870 | const uint64_t dest = |
| 871 | (r.expr == R_PLT_PC ? r.sym->getPltVA(ctx) : r.sym->getVA(ctx)) + |
| 872 | r.addend; |
| 873 | |
| 874 | const int64_t displace = dest - loc; |
| 875 | // Check if the displace aligns 4 bytes or exceeds the range of b[l]. |
| 876 | if ((displace & 0x3) != 0 || !isInt<28>(x: displace)) |
| 877 | return; |
| 878 | |
| 879 | const uint32_t nextInsn = read32le(P: sec.content().data() + r.offset + 4); |
| 880 | if (getD5(v: nextInsn) == R_RA) { |
| 881 | // convert jirl to bl |
| 882 | sec.relaxAux->relocTypes[i] = R_LARCH_B26; |
| 883 | sec.relaxAux->writes.push_back(Elt: insn(op: BL, d: 0, j: 0, k: 0)); |
| 884 | remove = 4; |
| 885 | } else if (getD5(v: nextInsn) == R_ZERO) { |
| 886 | // convert jirl to b |
| 887 | sec.relaxAux->relocTypes[i] = R_LARCH_B26; |
| 888 | sec.relaxAux->writes.push_back(Elt: insn(op: B, d: 0, j: 0, k: 0)); |
| 889 | remove = 4; |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | // Relax code sequence. |
| 894 | // From: |
| 895 | // lu12i.w $rd, %le_hi20_r(sym) |
| 896 | // add.w/d $rd, $rd, $tp, %le_add_r(sym) |
| 897 | // addi/ld/st.w/d $rd, $rd, %le_lo12_r(sym) |
| 898 | // To: |
| 899 | // addi/ld/st.w/d $rd, $tp, %le_lo12_r(sym) |
| 900 | static void relaxTlsLe(Ctx &ctx, const InputSection &sec, size_t i, |
| 901 | uint64_t loc, Relocation &r, uint32_t &remove) { |
| 902 | uint64_t val = r.sym->getVA(ctx, addend: r.addend); |
| 903 | // Check if the val exceeds the range of addi/ld/st. |
| 904 | if (!isInt<12>(x: val)) |
| 905 | return; |
| 906 | uint32_t currInsn = read32le(P: sec.content().data() + r.offset); |
| 907 | switch (r.type) { |
| 908 | case R_LARCH_TLS_LE_HI20_R: |
| 909 | case R_LARCH_TLS_LE_ADD_R: |
| 910 | sec.relaxAux->relocTypes[i] = R_LARCH_RELAX; |
| 911 | remove = 4; |
| 912 | break; |
| 913 | case R_LARCH_TLS_LE_LO12_R: |
| 914 | sec.relaxAux->writes.push_back(Elt: setJ5(insn: currInsn, imm: R_TP)); |
| 915 | sec.relaxAux->relocTypes[i] = R_LARCH_TLS_LE_LO12_R; |
| 916 | break; |
| 917 | } |
| 918 | } |
| 919 | |
| 920 | static bool relax(Ctx &ctx, InputSection &sec) { |
| 921 | const uint64_t secAddr = sec.getVA(); |
| 922 | const MutableArrayRef<Relocation> relocs = sec.relocs(); |
| 923 | auto &aux = *sec.relaxAux; |
| 924 | bool changed = false; |
| 925 | ArrayRef<SymbolAnchor> sa = ArrayRef(aux.anchors); |
| 926 | uint64_t delta = 0; |
| 927 | |
| 928 | std::fill_n(first: aux.relocTypes.get(), n: relocs.size(), value: R_LARCH_NONE); |
| 929 | aux.writes.clear(); |
| 930 | for (auto [i, r] : llvm::enumerate(First: relocs)) { |
| 931 | const uint64_t loc = secAddr + r.offset - delta; |
| 932 | uint32_t &cur = aux.relocDeltas[i], remove = 0; |
| 933 | switch (r.type) { |
| 934 | case R_LARCH_ALIGN: { |
| 935 | const uint64_t addend = |
| 936 | r.sym->isUndefined() ? Log2_64(Value: r.addend) + 1 : r.addend; |
| 937 | const uint64_t allBytes = (1ULL << (addend & 0xff)) - 4; |
| 938 | const uint64_t align = 1ULL << (addend & 0xff); |
| 939 | const uint64_t maxBytes = addend >> 8; |
| 940 | const uint64_t off = loc & (align - 1); |
| 941 | const uint64_t curBytes = off == 0 ? 0 : align - off; |
| 942 | // All bytes beyond the alignment boundary should be removed. |
| 943 | // If emit bytes more than max bytes to emit, remove all. |
| 944 | if (maxBytes != 0 && curBytes > maxBytes) |
| 945 | remove = allBytes; |
| 946 | else |
| 947 | remove = allBytes - curBytes; |
| 948 | // If we can't satisfy this alignment, we've found a bad input. |
| 949 | if (LLVM_UNLIKELY(static_cast<int32_t>(remove) < 0)) { |
| 950 | Err(ctx) << getErrorLoc(ctx, loc: (const uint8_t *)loc) |
| 951 | << "insufficient padding bytes for " << r.type << ": " |
| 952 | << allBytes << " bytes available for " |
| 953 | << "requested alignment of " << align << " bytes" ; |
| 954 | remove = 0; |
| 955 | } |
| 956 | break; |
| 957 | } |
| 958 | case R_LARCH_PCALA_HI20: |
| 959 | case R_LARCH_GOT_PC_HI20: |
| 960 | case R_LARCH_TLS_GD_PC_HI20: |
| 961 | case R_LARCH_TLS_LD_PC_HI20: |
| 962 | case R_LARCH_TLS_DESC_PC_HI20: |
| 963 | // The overflow check for i+2 will be carried out in isPairRelaxable. |
| 964 | if (isPairRelaxable(relocs, i)) |
| 965 | relaxPCHi20Lo12(ctx, sec, i, loc, rHi20&: r, rLo12&: relocs[i + 2], remove); |
| 966 | break; |
| 967 | case R_LARCH_CALL36: |
| 968 | if (relaxable(relocs, i)) |
| 969 | relaxCall36(ctx, sec, i, loc, r, remove); |
| 970 | break; |
| 971 | case R_LARCH_TLS_LE_HI20_R: |
| 972 | case R_LARCH_TLS_LE_ADD_R: |
| 973 | case R_LARCH_TLS_LE_LO12_R: |
| 974 | if (relaxable(relocs, i)) |
| 975 | relaxTlsLe(ctx, sec, i, loc, r, remove); |
| 976 | break; |
| 977 | case R_LARCH_TLS_IE_PC_HI20: |
| 978 | if (relaxable(relocs, i) && r.expr == R_RELAX_TLS_IE_TO_LE && |
| 979 | isUInt<12>(x: r.sym->getVA(ctx, addend: r.addend))) |
| 980 | remove = 4; |
| 981 | break; |
| 982 | } |
| 983 | |
| 984 | // For all anchors whose offsets are <= r.offset, they are preceded by |
| 985 | // the previous relocation whose `relocDeltas` value equals `delta`. |
| 986 | // Decrease their st_value and update their st_size. |
| 987 | for (; sa.size() && sa[0].offset <= r.offset; sa = sa.slice(N: 1)) { |
| 988 | if (sa[0].end) |
| 989 | sa[0].d->size = sa[0].offset - delta - sa[0].d->value; |
| 990 | else |
| 991 | sa[0].d->value = sa[0].offset - delta; |
| 992 | } |
| 993 | delta += remove; |
| 994 | if (delta != cur) { |
| 995 | cur = delta; |
| 996 | changed = true; |
| 997 | } |
| 998 | } |
| 999 | |
| 1000 | for (const SymbolAnchor &a : sa) { |
| 1001 | if (a.end) |
| 1002 | a.d->size = a.offset - delta - a.d->value; |
| 1003 | else |
| 1004 | a.d->value = a.offset - delta; |
| 1005 | } |
| 1006 | // Inform assignAddresses that the size has changed. |
| 1007 | if (!isUInt<32>(x: delta)) |
| 1008 | Fatal(ctx) << "section size decrease is too large: " << delta; |
| 1009 | sec.bytesDropped = delta; |
| 1010 | return changed; |
| 1011 | } |
| 1012 | |
| 1013 | // Convert TLS IE to LE in the normal or medium code model. |
| 1014 | // Original code sequence: |
| 1015 | // * pcalau12i $a0, %ie_pc_hi20(sym) |
| 1016 | // * ld.d $a0, $a0, %ie_pc_lo12(sym) |
| 1017 | // |
| 1018 | // The code sequence converted is as follows: |
| 1019 | // * lu12i.w $a0, %le_hi20(sym) # le_hi20 != 0, otherwise NOP |
| 1020 | // * ori $a0, src, %le_lo12(sym) # le_hi20 != 0, src = $a0, |
| 1021 | // # otherwise, src = $zero |
| 1022 | // |
| 1023 | // When relaxation enables, redundant NOPs can be removed. |
| 1024 | static void tlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) { |
| 1025 | assert(isInt<32>(val) && |
| 1026 | "val exceeds the range of medium code model in tlsIeToLe" ); |
| 1027 | |
| 1028 | bool isUInt12 = isUInt<12>(x: val); |
| 1029 | const uint32_t currInsn = read32le(P: loc); |
| 1030 | switch (rel.type) { |
| 1031 | case R_LARCH_TLS_IE_PC_HI20: |
| 1032 | if (isUInt12) |
| 1033 | write32le(P: loc, V: insn(op: ANDI, d: R_ZERO, j: R_ZERO, k: 0)); // nop |
| 1034 | else |
| 1035 | write32le(P: loc, V: insn(op: LU12I_W, d: getD5(v: currInsn), j: extractBits(v: val, begin: 31, end: 12), |
| 1036 | k: 0)); // lu12i.w $a0, %le_hi20 |
| 1037 | break; |
| 1038 | case R_LARCH_TLS_IE_PC_LO12: |
| 1039 | if (isUInt12) |
| 1040 | write32le(P: loc, V: insn(op: ORI, d: getD5(v: currInsn), j: R_ZERO, |
| 1041 | k: val)); // ori $a0, $zero, %le_lo12 |
| 1042 | else |
| 1043 | write32le(P: loc, V: insn(op: ORI, d: getD5(v: currInsn), j: getJ5(v: currInsn), |
| 1044 | k: lo12(val))); // ori $a0, $a0, %le_lo12 |
| 1045 | break; |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | void LoongArch::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { |
| 1050 | const unsigned bits = ctx.arg.is64 ? 64 : 32; |
| 1051 | uint64_t secAddr = sec.getOutputSection()->addr; |
| 1052 | if (auto *s = dyn_cast<InputSection>(Val: &sec)) |
| 1053 | secAddr += s->outSecOff; |
| 1054 | else if (auto *ehIn = dyn_cast<EhInputSection>(Val: &sec)) |
| 1055 | secAddr += ehIn->getParent()->outSecOff; |
| 1056 | bool isExtreme = false, isRelax = false; |
| 1057 | const MutableArrayRef<Relocation> relocs = sec.relocs(); |
| 1058 | for (size_t i = 0, size = relocs.size(); i != size; ++i) { |
| 1059 | Relocation &rel = relocs[i]; |
| 1060 | uint8_t *loc = buf + rel.offset; |
| 1061 | uint64_t val = SignExtend64( |
| 1062 | X: sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset), B: bits); |
| 1063 | |
| 1064 | switch (rel.expr) { |
| 1065 | case R_RELAX_HINT: |
| 1066 | continue; |
| 1067 | case R_RELAX_TLS_IE_TO_LE: |
| 1068 | if (rel.type == R_LARCH_TLS_IE_PC_HI20) { |
| 1069 | // LoongArch does not support IE to LE optimization in the extreme code |
| 1070 | // model. In this case, the relocs are as follows: |
| 1071 | // |
| 1072 | // * i -- R_LARCH_TLS_IE_PC_HI20 |
| 1073 | // * i+1 -- R_LARCH_TLS_IE_PC_LO12 |
| 1074 | // * i+2 -- R_LARCH_TLS_IE64_PC_LO20 |
| 1075 | // * i+3 -- R_LARCH_TLS_IE64_PC_HI12 |
| 1076 | isExtreme = |
| 1077 | (i + 2 < size && relocs[i + 2].type == R_LARCH_TLS_IE64_PC_LO20); |
| 1078 | } |
| 1079 | if (isExtreme) { |
| 1080 | rel.expr = getRelExpr(type: rel.type, s: *rel.sym, loc); |
| 1081 | val = SignExtend64(X: sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset), |
| 1082 | B: bits); |
| 1083 | relocateNoSym(loc, type: rel.type, val); |
| 1084 | } else { |
| 1085 | isRelax = relaxable(relocs, i); |
| 1086 | if (isRelax && rel.type == R_LARCH_TLS_IE_PC_HI20 && isUInt<12>(x: val)) |
| 1087 | continue; |
| 1088 | tlsIeToLe(loc, rel, val); |
| 1089 | } |
| 1090 | continue; |
| 1091 | default: |
| 1092 | break; |
| 1093 | } |
| 1094 | relocate(loc, rel, val); |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | // When relaxing just R_LARCH_ALIGN, relocDeltas is usually changed only once in |
| 1099 | // the absence of a linker script. For call and load/store R_LARCH_RELAX, code |
| 1100 | // shrinkage may reduce displacement and make more relocations eligible for |
| 1101 | // relaxation. Code shrinkage may increase displacement to a call/load/store |
| 1102 | // target at a higher fixed address, invalidating an earlier relaxation. Any |
| 1103 | // change in section sizes can have cascading effect and require another |
| 1104 | // relaxation pass. |
| 1105 | bool LoongArch::relaxOnce(int pass) const { |
| 1106 | if (ctx.arg.relocatable) |
| 1107 | return false; |
| 1108 | |
| 1109 | if (pass == 0) |
| 1110 | initSymbolAnchors(ctx); |
| 1111 | |
| 1112 | SmallVector<InputSection *, 0> storage; |
| 1113 | bool changed = false; |
| 1114 | for (OutputSection *osec : ctx.outputSections) { |
| 1115 | if (!(osec->flags & SHF_EXECINSTR)) |
| 1116 | continue; |
| 1117 | for (InputSection *sec : getInputSections(os: *osec, storage)) |
| 1118 | changed |= relax(ctx, sec&: *sec); |
| 1119 | } |
| 1120 | return changed; |
| 1121 | } |
| 1122 | |
| 1123 | void LoongArch::finalizeRelax(int passes) const { |
| 1124 | Log(ctx) << "relaxation passes: " << passes; |
| 1125 | SmallVector<InputSection *, 0> storage; |
| 1126 | for (OutputSection *osec : ctx.outputSections) { |
| 1127 | if (!(osec->flags & SHF_EXECINSTR)) |
| 1128 | continue; |
| 1129 | for (InputSection *sec : getInputSections(os: *osec, storage)) { |
| 1130 | RelaxAux &aux = *sec->relaxAux; |
| 1131 | if (!aux.relocDeltas) |
| 1132 | continue; |
| 1133 | |
| 1134 | MutableArrayRef<Relocation> rels = sec->relocs(); |
| 1135 | ArrayRef<uint8_t> old = sec->content(); |
| 1136 | size_t newSize = old.size() - aux.relocDeltas[rels.size() - 1]; |
| 1137 | size_t writesIdx = 0; |
| 1138 | uint8_t *p = ctx.bAlloc.Allocate<uint8_t>(Num: newSize); |
| 1139 | uint64_t offset = 0; |
| 1140 | int64_t delta = 0; |
| 1141 | sec->content_ = p; |
| 1142 | sec->size = newSize; |
| 1143 | sec->bytesDropped = 0; |
| 1144 | |
| 1145 | // Update section content: remove NOPs for R_LARCH_ALIGN and rewrite |
| 1146 | // instructions for relaxed relocations. |
| 1147 | for (size_t i = 0, e = rels.size(); i != e; ++i) { |
| 1148 | uint32_t remove = aux.relocDeltas[i] - delta; |
| 1149 | delta = aux.relocDeltas[i]; |
| 1150 | if (remove == 0 && aux.relocTypes[i] == R_LARCH_NONE) |
| 1151 | continue; |
| 1152 | |
| 1153 | // Copy from last location to the current relocated location. |
| 1154 | Relocation &r = rels[i]; |
| 1155 | uint64_t size = r.offset - offset; |
| 1156 | memcpy(dest: p, src: old.data() + offset, n: size); |
| 1157 | p += size; |
| 1158 | |
| 1159 | int64_t skip = 0; |
| 1160 | if (RelType newType = aux.relocTypes[i]) { |
| 1161 | switch (newType) { |
| 1162 | case R_LARCH_RELAX: |
| 1163 | break; |
| 1164 | case R_LARCH_PCREL20_S2: |
| 1165 | skip = 4; |
| 1166 | write32le(P: p, V: aux.writes[writesIdx++]); |
| 1167 | // RelExpr is needed for relocating. |
| 1168 | r.expr = r.sym->hasFlag(bit: NEEDS_PLT) ? R_PLT_PC : R_PC; |
| 1169 | break; |
| 1170 | case R_LARCH_B26: |
| 1171 | case R_LARCH_TLS_LE_LO12_R: |
| 1172 | skip = 4; |
| 1173 | write32le(P: p, V: aux.writes[writesIdx++]); |
| 1174 | break; |
| 1175 | case R_LARCH_TLS_GD_PCREL20_S2: |
| 1176 | // Note: R_LARCH_TLS_LD_PCREL20_S2 must also use R_TLSGD_PC instead |
| 1177 | // of R_TLSLD_PC due to historical reasons. In fact, right now TLSLD |
| 1178 | // behaves exactly like TLSGD on LoongArch. |
| 1179 | // |
| 1180 | // This reason has also been mentioned in mold commit: |
| 1181 | // https://github.com/rui314/mold/commit/5dfa1cf07c03bd57cb3d493b652ef22441bcd71c |
| 1182 | case R_LARCH_TLS_LD_PCREL20_S2: |
| 1183 | skip = 4; |
| 1184 | write32le(P: p, V: aux.writes[writesIdx++]); |
| 1185 | r.expr = R_TLSGD_PC; |
| 1186 | break; |
| 1187 | case R_LARCH_TLS_DESC_PCREL20_S2: |
| 1188 | skip = 4; |
| 1189 | write32le(P: p, V: aux.writes[writesIdx++]); |
| 1190 | r.expr = R_TLSDESC_PC; |
| 1191 | break; |
| 1192 | default: |
| 1193 | llvm_unreachable("unsupported type" ); |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | p += skip; |
| 1198 | offset = r.offset + skip + remove; |
| 1199 | } |
| 1200 | memcpy(dest: p, src: old.data() + offset, n: old.size() - offset); |
| 1201 | |
| 1202 | // Subtract the previous relocDeltas value from the relocation offset. |
| 1203 | // For a pair of R_LARCH_XXX/R_LARCH_RELAX with the same offset, decrease |
| 1204 | // their r_offset by the same delta. |
| 1205 | delta = 0; |
| 1206 | for (size_t i = 0, e = rels.size(); i != e;) { |
| 1207 | uint64_t cur = rels[i].offset; |
| 1208 | do { |
| 1209 | rels[i].offset -= delta; |
| 1210 | if (aux.relocTypes[i] != R_LARCH_NONE) |
| 1211 | rels[i].type = aux.relocTypes[i]; |
| 1212 | } while (++i != e && rels[i].offset == cur); |
| 1213 | delta = aux.relocDeltas[i - 1]; |
| 1214 | } |
| 1215 | } |
| 1216 | } |
| 1217 | } |
| 1218 | |
| 1219 | void elf::setLoongArchTargetInfo(Ctx &ctx) { |
| 1220 | ctx.target.reset(p: new LoongArch(ctx)); |
| 1221 | } |
| 1222 | |