1 | //===- ICF.cpp ------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // ICF is short for Identical Code Folding. This is a size optimization to |
10 | // identify and merge two or more read-only sections (typically functions) |
11 | // that happened to have the same contents. It usually reduces output size |
12 | // by a few percent. |
13 | // |
14 | // In ICF, two sections are considered identical if they have the same |
15 | // section flags, section data, and relocations. Relocations are tricky, |
16 | // because two relocations are considered the same if they have the same |
17 | // relocation types, values, and if they point to the same sections *in |
18 | // terms of ICF*. |
19 | // |
20 | // Here is an example. If foo and bar defined below are compiled to the |
21 | // same machine instructions, ICF can and should merge the two, although |
22 | // their relocations point to each other. |
23 | // |
24 | // void foo() { bar(); } |
25 | // void bar() { foo(); } |
26 | // |
27 | // If you merge the two, their relocations point to the same section and |
28 | // thus you know they are mergeable, but how do you know they are |
29 | // mergeable in the first place? This is not an easy problem to solve. |
30 | // |
31 | // What we are doing in LLD is to partition sections into equivalence |
32 | // classes. Sections in the same equivalence class when the algorithm |
33 | // terminates are considered identical. Here are details: |
34 | // |
35 | // 1. First, we partition sections using their hash values as keys. Hash |
36 | // values contain section types, section contents and numbers of |
37 | // relocations. During this step, relocation targets are not taken into |
38 | // account. We just put sections that apparently differ into different |
39 | // equivalence classes. |
40 | // |
41 | // 2. Next, for each equivalence class, we visit sections to compare |
42 | // relocation targets. Relocation targets are considered equivalent if |
43 | // their targets are in the same equivalence class. Sections with |
44 | // different relocation targets are put into different equivalence |
45 | // classes. |
46 | // |
47 | // 3. If we split an equivalence class in step 2, two relocations |
48 | // previously target the same equivalence class may now target |
49 | // different equivalence classes. Therefore, we repeat step 2 until a |
50 | // convergence is obtained. |
51 | // |
52 | // 4. For each equivalence class C, pick an arbitrary section in C, and |
53 | // merge all the other sections in C with it. |
54 | // |
55 | // For small programs, this algorithm needs 3-5 iterations. For large |
56 | // programs such as Chromium, it takes more than 20 iterations. |
57 | // |
58 | // This algorithm was mentioned as an "optimistic algorithm" in [1], |
59 | // though gold implements a different algorithm than this. |
60 | // |
61 | // We parallelize each step so that multiple threads can work on different |
62 | // equivalence classes concurrently. That gave us a large performance |
63 | // boost when applying ICF on large programs. For example, MSVC link.exe |
64 | // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output |
65 | // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a |
66 | // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still |
67 | // faster than MSVC or gold though. |
68 | // |
69 | // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding |
70 | // in the Gold Linker |
71 | // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf |
72 | // |
73 | //===----------------------------------------------------------------------===// |
74 | |
75 | #include "ICF.h" |
76 | #include "Config.h" |
77 | #include "InputFiles.h" |
78 | #include "LinkerScript.h" |
79 | #include "OutputSections.h" |
80 | #include "SymbolTable.h" |
81 | #include "Symbols.h" |
82 | #include "SyntheticSections.h" |
83 | #include "llvm/BinaryFormat/ELF.h" |
84 | #include "llvm/Support/Parallel.h" |
85 | #include "llvm/Support/TimeProfiler.h" |
86 | #include "llvm/Support/xxhash.h" |
87 | #include <algorithm> |
88 | #include <atomic> |
89 | |
90 | using namespace llvm; |
91 | using namespace llvm::ELF; |
92 | using namespace llvm::object; |
93 | using namespace lld; |
94 | using namespace lld::elf; |
95 | |
96 | namespace { |
97 | template <class ELFT> class ICF { |
98 | public: |
99 | ICF(Ctx &ctx) : ctx(ctx) {} |
100 | void run(); |
101 | |
102 | private: |
103 | void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant); |
104 | |
105 | template <class RelTy> |
106 | bool constantEq(const InputSection *a, Relocs<RelTy> relsA, |
107 | const InputSection *b, Relocs<RelTy> relsB); |
108 | |
109 | template <class RelTy> |
110 | bool variableEq(const InputSection *a, Relocs<RelTy> relsA, |
111 | const InputSection *b, Relocs<RelTy> relsB); |
112 | |
113 | bool equalsConstant(const InputSection *a, const InputSection *b); |
114 | bool equalsVariable(const InputSection *a, const InputSection *b); |
115 | |
116 | size_t findBoundary(size_t begin, size_t end); |
117 | |
118 | void forEachClassRange(size_t begin, size_t end, |
119 | llvm::function_ref<void(size_t, size_t)> fn); |
120 | |
121 | void parallelForEachClass(llvm::function_ref<void(size_t, size_t)> fn); |
122 | |
123 | Ctx &ctx; |
124 | SmallVector<InputSection *, 0> sections; |
125 | |
126 | // We repeat the main loop while `Repeat` is true. |
127 | std::atomic<bool> repeat; |
128 | |
129 | // The main loop counter. |
130 | int cnt = 0; |
131 | |
132 | // We have two locations for equivalence classes. On the first iteration |
133 | // of the main loop, Class[0] has a valid value, and Class[1] contains |
134 | // garbage. We read equivalence classes from slot 0 and write to slot 1. |
135 | // So, Class[0] represents the current class, and Class[1] represents |
136 | // the next class. On each iteration, we switch their roles and use them |
137 | // alternately. |
138 | // |
139 | // Why are we doing this? Recall that other threads may be working on |
140 | // other equivalence classes in parallel. They may read sections that we |
141 | // are updating. We cannot update equivalence classes in place because |
142 | // it breaks the invariance that all possibly-identical sections must be |
143 | // in the same equivalence class at any moment. In other words, the for |
144 | // loop to update equivalence classes is not atomic, and that is |
145 | // observable from other threads. By writing new classes to other |
146 | // places, we can keep the invariance. |
147 | // |
148 | // Below, `Current` has the index of the current class, and `Next` has |
149 | // the index of the next class. If threading is enabled, they are either |
150 | // (0, 1) or (1, 0). |
151 | // |
152 | // Note on single-thread: if that's the case, they are always (0, 0) |
153 | // because we can safely read the next class without worrying about race |
154 | // conditions. Using the same location makes this algorithm converge |
155 | // faster because it uses results of the same iteration earlier. |
156 | int current = 0; |
157 | int next = 0; |
158 | }; |
159 | } |
160 | |
161 | // Returns true if section S is subject of ICF. |
162 | static bool isEligible(InputSection *s) { |
163 | if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC)) |
164 | return false; |
165 | |
166 | // Don't merge writable sections. .data.rel.ro sections are marked as writable |
167 | // but are semantically read-only. |
168 | if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" && |
169 | !s->name.starts_with(Prefix: ".data.rel.ro." )) |
170 | return false; |
171 | |
172 | // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections, |
173 | // so we don't consider them for ICF individually. |
174 | if (s->flags & SHF_LINK_ORDER) |
175 | return false; |
176 | |
177 | // Don't merge synthetic sections as their Data member is not valid and empty. |
178 | // The Data member needs to be valid for ICF as it is used by ICF to determine |
179 | // the equality of section contents. |
180 | if (isa<SyntheticSection>(Val: s)) |
181 | return false; |
182 | |
183 | // .init and .fini contains instructions that must be executed to initialize |
184 | // and finalize the process. They cannot and should not be merged. |
185 | if (s->name == ".init" || s->name == ".fini" ) |
186 | return false; |
187 | |
188 | // A user program may enumerate sections named with a C identifier using |
189 | // __start_* and __stop_* symbols. We cannot ICF any such sections because |
190 | // that could change program semantics. |
191 | if (isValidCIdentifier(s: s->name)) |
192 | return false; |
193 | |
194 | return true; |
195 | } |
196 | |
197 | // Split an equivalence class into smaller classes. |
198 | template <class ELFT> |
199 | void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase, |
200 | bool constant) { |
201 | // This loop rearranges sections in [Begin, End) so that all sections |
202 | // that are equal in terms of equals{Constant,Variable} are contiguous |
203 | // in [Begin, End). |
204 | // |
205 | // The algorithm is quadratic in the worst case, but that is not an |
206 | // issue in practice because the number of the distinct sections in |
207 | // each range is usually very small. |
208 | |
209 | while (begin < end) { |
210 | // Divide [Begin, End) into two. Let Mid be the start index of the |
211 | // second group. |
212 | auto bound = |
213 | std::stable_partition(sections.begin() + begin + 1, |
214 | sections.begin() + end, [&](InputSection *s) { |
215 | if (constant) |
216 | return equalsConstant(a: sections[begin], b: s); |
217 | return equalsVariable(a: sections[begin], b: s); |
218 | }); |
219 | size_t mid = bound - sections.begin(); |
220 | |
221 | // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by |
222 | // updating the sections in [Begin, Mid). We use Mid as the basis for |
223 | // the equivalence class ID because every group ends with a unique index. |
224 | // Add this to eqClassBase to avoid equality with unique IDs. |
225 | for (size_t i = begin; i < mid; ++i) |
226 | sections[i]->eqClass[next] = eqClassBase + mid; |
227 | |
228 | // If we created a group, we need to iterate the main loop again. |
229 | if (mid != end) |
230 | repeat = true; |
231 | |
232 | begin = mid; |
233 | } |
234 | } |
235 | |
236 | // Compare two lists of relocations. |
237 | template <class ELFT> |
238 | template <class RelTy> |
239 | bool ICF<ELFT>::constantEq(const InputSection *secA, Relocs<RelTy> ra, |
240 | const InputSection *secB, Relocs<RelTy> rb) { |
241 | if (ra.size() != rb.size()) |
242 | return false; |
243 | auto rai = ra.begin(), rae = ra.end(), rbi = rb.begin(); |
244 | for (; rai != rae; ++rai, ++rbi) { |
245 | if (rai->r_offset != rbi->r_offset || |
246 | rai->getType(ctx.arg.isMips64EL) != rbi->getType(ctx.arg.isMips64EL)) |
247 | return false; |
248 | |
249 | uint64_t addA = getAddend<ELFT>(*rai); |
250 | uint64_t addB = getAddend<ELFT>(*rbi); |
251 | |
252 | Symbol &sa = secA->file->getRelocTargetSym(*rai); |
253 | Symbol &sb = secB->file->getRelocTargetSym(*rbi); |
254 | if (&sa == &sb) { |
255 | if (addA == addB) |
256 | continue; |
257 | return false; |
258 | } |
259 | |
260 | auto *da = dyn_cast<Defined>(Val: &sa); |
261 | auto *db = dyn_cast<Defined>(Val: &sb); |
262 | |
263 | // Placeholder symbols generated by linker scripts look the same now but |
264 | // may have different values later. |
265 | if (!da || !db || da->scriptDefined || db->scriptDefined) |
266 | return false; |
267 | |
268 | // When comparing a pair of relocations, if they refer to different symbols, |
269 | // and either symbol is preemptible, the containing sections should be |
270 | // considered different. This is because even if the sections are identical |
271 | // in this DSO, they may not be after preemption. |
272 | if (da->isPreemptible || db->isPreemptible) |
273 | return false; |
274 | |
275 | // Relocations referring to absolute symbols are constant-equal if their |
276 | // values are equal. |
277 | if (!da->section && !db->section && da->value + addA == db->value + addB) |
278 | continue; |
279 | if (!da->section || !db->section) |
280 | return false; |
281 | |
282 | if (da->section->kind() != db->section->kind()) |
283 | return false; |
284 | |
285 | // Relocations referring to InputSections are constant-equal if their |
286 | // section offsets are equal. |
287 | if (isa<InputSection>(Val: da->section)) { |
288 | if (da->value + addA == db->value + addB) |
289 | continue; |
290 | return false; |
291 | } |
292 | |
293 | // Relocations referring to MergeInputSections are constant-equal if their |
294 | // offsets in the output section are equal. |
295 | auto *x = dyn_cast<MergeInputSection>(Val: da->section); |
296 | if (!x) |
297 | return false; |
298 | auto *y = cast<MergeInputSection>(Val: db->section); |
299 | if (x->getParent() != y->getParent()) |
300 | return false; |
301 | |
302 | uint64_t offsetA = |
303 | sa.isSection() ? x->getOffset(offset: addA) : x->getOffset(offset: da->value) + addA; |
304 | uint64_t offsetB = |
305 | sb.isSection() ? y->getOffset(offset: addB) : y->getOffset(offset: db->value) + addB; |
306 | if (offsetA != offsetB) |
307 | return false; |
308 | } |
309 | |
310 | return true; |
311 | } |
312 | |
313 | // Compare "non-moving" part of two InputSections, namely everything |
314 | // except relocation targets. |
315 | template <class ELFT> |
316 | bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) { |
317 | if (a->flags != b->flags || a->getSize() != b->getSize() || |
318 | a->content() != b->content()) |
319 | return false; |
320 | |
321 | // If two sections have different output sections, we cannot merge them. |
322 | assert(a->getParent() && b->getParent()); |
323 | if (a->getParent() != b->getParent()) |
324 | return false; |
325 | |
326 | const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>(); |
327 | const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>(); |
328 | if (ra.areRelocsCrel() || rb.areRelocsCrel()) |
329 | return constantEq(a, ra.crels, b, rb.crels); |
330 | return ra.areRelocsRel() || rb.areRelocsRel() |
331 | ? constantEq(a, ra.rels, b, rb.rels) |
332 | : constantEq(a, ra.relas, b, rb.relas); |
333 | } |
334 | |
335 | // Compare two lists of relocations. Returns true if all pairs of |
336 | // relocations point to the same section in terms of ICF. |
337 | template <class ELFT> |
338 | template <class RelTy> |
339 | bool ICF<ELFT>::variableEq(const InputSection *secA, Relocs<RelTy> ra, |
340 | const InputSection *secB, Relocs<RelTy> rb) { |
341 | assert(ra.size() == rb.size()); |
342 | |
343 | auto rai = ra.begin(), rae = ra.end(), rbi = rb.begin(); |
344 | for (; rai != rae; ++rai, ++rbi) { |
345 | // The two sections must be identical. |
346 | Symbol &sa = secA->file->getRelocTargetSym(*rai); |
347 | Symbol &sb = secB->file->getRelocTargetSym(*rbi); |
348 | if (&sa == &sb) |
349 | continue; |
350 | |
351 | auto *da = cast<Defined>(Val: &sa); |
352 | auto *db = cast<Defined>(Val: &sb); |
353 | |
354 | // We already dealt with absolute and non-InputSection symbols in |
355 | // constantEq, and for InputSections we have already checked everything |
356 | // except the equivalence class. |
357 | if (!da->section) |
358 | continue; |
359 | auto *x = dyn_cast<InputSection>(Val: da->section); |
360 | if (!x) |
361 | continue; |
362 | auto *y = cast<InputSection>(Val: db->section); |
363 | |
364 | // Sections that are in the special equivalence class 0, can never be the |
365 | // same in terms of the equivalence class. |
366 | if (x->eqClass[current] == 0) |
367 | return false; |
368 | if (x->eqClass[current] != y->eqClass[current]) |
369 | return false; |
370 | }; |
371 | |
372 | return true; |
373 | } |
374 | |
375 | // Compare "moving" part of two InputSections, namely relocation targets. |
376 | template <class ELFT> |
377 | bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) { |
378 | const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>(); |
379 | const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>(); |
380 | if (ra.areRelocsCrel() || rb.areRelocsCrel()) |
381 | return variableEq(a, ra.crels, b, rb.crels); |
382 | return ra.areRelocsRel() || rb.areRelocsRel() |
383 | ? variableEq(a, ra.rels, b, rb.rels) |
384 | : variableEq(a, ra.relas, b, rb.relas); |
385 | } |
386 | |
387 | template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) { |
388 | uint32_t eqClass = sections[begin]->eqClass[current]; |
389 | for (size_t i = begin + 1; i < end; ++i) |
390 | if (eqClass != sections[i]->eqClass[current]) |
391 | return i; |
392 | return end; |
393 | } |
394 | |
395 | // Sections in the same equivalence class are contiguous in Sections |
396 | // vector. Therefore, Sections vector can be considered as contiguous |
397 | // groups of sections, grouped by the class. |
398 | // |
399 | // This function calls Fn on every group within [Begin, End). |
400 | template <class ELFT> |
401 | void ICF<ELFT>::forEachClassRange(size_t begin, size_t end, |
402 | llvm::function_ref<void(size_t, size_t)> fn) { |
403 | while (begin < end) { |
404 | size_t mid = findBoundary(begin, end); |
405 | fn(begin, mid); |
406 | begin = mid; |
407 | } |
408 | } |
409 | |
410 | // Call Fn on each equivalence class. |
411 | |
412 | template <class ELFT> |
413 | void ICF<ELFT>::parallelForEachClass( |
414 | llvm::function_ref<void(size_t, size_t)> fn) { |
415 | // If threading is disabled or the number of sections are |
416 | // too small to use threading, call Fn sequentially. |
417 | if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) { |
418 | forEachClassRange(begin: 0, end: sections.size(), fn); |
419 | ++cnt; |
420 | return; |
421 | } |
422 | |
423 | current = cnt % 2; |
424 | next = (cnt + 1) % 2; |
425 | |
426 | // Shard into non-overlapping intervals, and call Fn in parallel. |
427 | // The sharding must be completed before any calls to Fn are made |
428 | // so that Fn can modify the Chunks in its shard without causing data |
429 | // races. |
430 | const size_t numShards = 256; |
431 | size_t step = sections.size() / numShards; |
432 | size_t boundaries[numShards + 1]; |
433 | boundaries[0] = 0; |
434 | boundaries[numShards] = sections.size(); |
435 | |
436 | parallelFor(1, numShards, [&](size_t i) { |
437 | boundaries[i] = findBoundary(begin: (i - 1) * step, end: sections.size()); |
438 | }); |
439 | |
440 | parallelFor(1, numShards + 1, [&](size_t i) { |
441 | if (boundaries[i - 1] < boundaries[i]) |
442 | forEachClassRange(begin: boundaries[i - 1], end: boundaries[i], fn); |
443 | }); |
444 | ++cnt; |
445 | } |
446 | |
447 | // Combine the hashes of the sections referenced by the given section into its |
448 | // hash. |
449 | template <class RelTy> |
450 | static void combineRelocHashes(unsigned cnt, InputSection *isec, |
451 | Relocs<RelTy> rels) { |
452 | uint32_t hash = isec->eqClass[cnt % 2]; |
453 | for (RelTy rel : rels) { |
454 | Symbol &s = isec->file->getRelocTargetSym(rel); |
455 | if (auto *d = dyn_cast<Defined>(Val: &s)) |
456 | if (auto *relSec = dyn_cast_or_null<InputSection>(Val: d->section)) |
457 | hash += relSec->eqClass[cnt % 2]; |
458 | } |
459 | // Set MSB to 1 to avoid collisions with unique IDs. |
460 | isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31); |
461 | } |
462 | |
463 | // The main function of ICF. |
464 | template <class ELFT> void ICF<ELFT>::run() { |
465 | // Two text sections may have identical content and relocations but different |
466 | // LSDA, e.g. the two functions may have catch blocks of different types. If a |
467 | // text section is referenced by a .eh_frame FDE with LSDA, it is not |
468 | // eligible. This is implemented by iterating over CIE/FDE and setting |
469 | // eqClass[0] to the referenced text section from a live FDE. |
470 | // |
471 | // If two .gcc_except_table have identical semantics (usually identical |
472 | // content with PC-relative encoding), we will lose folding opportunity. |
473 | uint32_t uniqueId = 0; |
474 | for (Partition &part : ctx.partitions) |
475 | part.ehFrame->iterateFDEWithLSDA<ELFT>( |
476 | [&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; }); |
477 | |
478 | // Collect sections to merge. |
479 | for (InputSectionBase *sec : ctx.inputSections) { |
480 | auto *s = dyn_cast<InputSection>(Val: sec); |
481 | if (s && s->eqClass[0] == 0) { |
482 | if (isEligible(s)) |
483 | sections.push_back(Elt: s); |
484 | else |
485 | // Ineligible sections are assigned unique IDs, i.e. each section |
486 | // belongs to an equivalence class of its own. |
487 | s->eqClass[0] = s->eqClass[1] = ++uniqueId; |
488 | } |
489 | } |
490 | |
491 | // Initially, we use hash values to partition sections. |
492 | parallelForEach(sections, [&](InputSection *s) { |
493 | // Set MSB to 1 to avoid collisions with unique IDs. |
494 | s->eqClass[0] = xxh3_64bits(data: s->content()) | (1U << 31); |
495 | }); |
496 | |
497 | // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to |
498 | // reduce the average sizes of equivalence classes, i.e. segregate() which has |
499 | // a large time complexity will have less work to do. |
500 | for (unsigned cnt = 0; cnt != 2; ++cnt) { |
501 | parallelForEach(sections, [&](InputSection *s) { |
502 | const RelsOrRelas<ELFT> rels = s->template relsOrRelas<ELFT>(); |
503 | if (rels.areRelocsCrel()) |
504 | combineRelocHashes(cnt, s, rels.crels); |
505 | else if (rels.areRelocsRel()) |
506 | combineRelocHashes(cnt, s, rels.rels); |
507 | else |
508 | combineRelocHashes(cnt, s, rels.relas); |
509 | }); |
510 | } |
511 | |
512 | // From now on, sections in Sections vector are ordered so that sections |
513 | // in the same equivalence class are consecutive in the vector. |
514 | llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) { |
515 | return a->eqClass[0] < b->eqClass[0]; |
516 | }); |
517 | |
518 | // Compare static contents and assign unique equivalence class IDs for each |
519 | // static content. Use a base offset for these IDs to ensure no overlap with |
520 | // the unique IDs already assigned. |
521 | uint32_t eqClassBase = ++uniqueId; |
522 | parallelForEachClass(fn: [&](size_t begin, size_t end) { |
523 | segregate(begin, end, eqClassBase, constant: true); |
524 | }); |
525 | |
526 | // Split groups by comparing relocations until convergence is obtained. |
527 | do { |
528 | repeat = false; |
529 | parallelForEachClass(fn: [&](size_t begin, size_t end) { |
530 | segregate(begin, end, eqClassBase, constant: false); |
531 | }); |
532 | } while (repeat); |
533 | |
534 | Log(ctx) << "ICF needed " << cnt << " iterations" ; |
535 | |
536 | auto print = [&ctx = ctx]() -> ELFSyncStream { |
537 | return {ctx, ctx.arg.printIcfSections ? DiagLevel::Msg : DiagLevel::None}; |
538 | }; |
539 | // Merge sections by the equivalence class. |
540 | forEachClassRange(begin: 0, end: sections.size(), fn: [&](size_t begin, size_t end) { |
541 | if (end - begin == 1) |
542 | return; |
543 | print() << "selected section " << sections[begin]; |
544 | for (size_t i = begin + 1; i < end; ++i) { |
545 | print() << " removing identical section " << sections[i]; |
546 | sections[begin]->replace(other: sections[i]); |
547 | |
548 | // At this point we know sections merged are fully identical and hence |
549 | // we want to remove duplicate implicit dependencies such as link order |
550 | // and relocation sections. |
551 | for (InputSection *isec : sections[i]->dependentSections) |
552 | isec->markDead(); |
553 | } |
554 | }); |
555 | |
556 | // Change Defined symbol's section field to the canonical one. |
557 | auto fold = [](Symbol *sym) { |
558 | if (auto *d = dyn_cast<Defined>(Val: sym)) |
559 | if (auto *sec = dyn_cast_or_null<InputSection>(Val: d->section)) |
560 | if (sec->repl != d->section) { |
561 | d->section = sec->repl; |
562 | d->folded = true; |
563 | } |
564 | }; |
565 | for (Symbol *sym : ctx.symtab->getSymbols()) |
566 | fold(sym); |
567 | parallelForEach(ctx.objectFiles, [&](ELFFileBase *file) { |
568 | for (Symbol *sym : file->getLocalSymbols()) |
569 | fold(sym); |
570 | }); |
571 | |
572 | // InputSectionDescription::sections is populated by processSectionCommands(). |
573 | // ICF may fold some input sections assigned to output sections. Remove them. |
574 | for (SectionCommand *cmd : ctx.script->sectionCommands) |
575 | if (auto *osd = dyn_cast<OutputDesc>(Val: cmd)) |
576 | for (SectionCommand *subCmd : osd->osec.commands) |
577 | if (auto *isd = dyn_cast<InputSectionDescription>(Val: subCmd)) |
578 | llvm::erase_if(isd->sections, |
579 | [](InputSection *isec) { return !isec->isLive(); }); |
580 | } |
581 | |
582 | // ICF entry point function. |
583 | template <class ELFT> void elf::doIcf(Ctx &ctx) { |
584 | llvm::TimeTraceScope timeScope("ICF" ); |
585 | ICF<ELFT>(ctx).run(); |
586 | } |
587 | |
588 | template void elf::doIcf<ELF32LE>(Ctx &); |
589 | template void elf::doIcf<ELF32BE>(Ctx &); |
590 | template void elf::doIcf<ELF64LE>(Ctx &); |
591 | template void elf::doIcf<ELF64BE>(Ctx &); |
592 | |