1//===- InputSection.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "InputSection.h"
10#include "Config.h"
11#include "InputFiles.h"
12#include "OutputSections.h"
13#include "Relocations.h"
14#include "SymbolTable.h"
15#include "Symbols.h"
16#include "SyntheticSections.h"
17#include "Target.h"
18#include "lld/Common/CommonLinkerContext.h"
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/Compression.h"
21#include "llvm/Support/Endian.h"
22#include "llvm/Support/xxhash.h"
23#include <algorithm>
24#include <mutex>
25#include <optional>
26#include <vector>
27
28using namespace llvm;
29using namespace llvm::ELF;
30using namespace llvm::object;
31using namespace llvm::support;
32using namespace llvm::support::endian;
33using namespace llvm::sys;
34using namespace lld;
35using namespace lld::elf;
36
37DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;
38
39// Returns a string to construct an error message.
40std::string lld::toString(const InputSectionBase *sec) {
41 return (toString(f: sec->file) + ":(" + sec->name + ")").str();
42}
43
44template <class ELFT>
45static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
46 const typename ELFT::Shdr &hdr) {
47 if (hdr.sh_type == SHT_NOBITS)
48 return ArrayRef<uint8_t>(nullptr, hdr.sh_size);
49 return check(file.getObj().getSectionContents(hdr));
50}
51
52InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
53 uint32_t type, uint64_t entsize,
54 uint32_t link, uint32_t info,
55 uint32_t addralign, ArrayRef<uint8_t> data,
56 StringRef name, Kind sectionKind)
57 : SectionBase(sectionKind, name, flags, entsize, addralign, type, info,
58 link),
59 file(file), content_(data.data()), size(data.size()) {
60 // In order to reduce memory allocation, we assume that mergeable
61 // sections are smaller than 4 GiB, which is not an unreasonable
62 // assumption as of 2017.
63 if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX)
64 error(msg: toString(sec: this) + ": section too large");
65
66 // The ELF spec states that a value of 0 means the section has
67 // no alignment constraints.
68 uint32_t v = std::max<uint32_t>(a: addralign, b: 1);
69 if (!isPowerOf2_64(Value: v))
70 fatal(msg: toString(sec: this) + ": sh_addralign is not a power of 2");
71 this->addralign = v;
72
73 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
74 // longer supported.
75 if (flags & SHF_COMPRESSED)
76 invokeELFT(parseCompressedHeader,);
77}
78
79// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
80// SHF_GROUP is a marker that a section belongs to some comdat group.
81// That flag doesn't make sense in an executable.
82static uint64_t getFlags(uint64_t flags) {
83 flags &= ~(uint64_t)SHF_INFO_LINK;
84 if (!config->relocatable)
85 flags &= ~(uint64_t)SHF_GROUP;
86 return flags;
87}
88
89template <class ELFT>
90InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
91 const typename ELFT::Shdr &hdr,
92 StringRef name, Kind sectionKind)
93 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type,
94 hdr.sh_entsize, hdr.sh_link, hdr.sh_info,
95 hdr.sh_addralign, getSectionContents(file, hdr), name,
96 sectionKind) {
97 // We reject object files having insanely large alignments even though
98 // they are allowed by the spec. I think 4GB is a reasonable limitation.
99 // We might want to relax this in the future.
100 if (hdr.sh_addralign > UINT32_MAX)
101 fatal(toString(&file) + ": section sh_addralign is too large");
102}
103
104size_t InputSectionBase::getSize() const {
105 if (auto *s = dyn_cast<SyntheticSection>(Val: this))
106 return s->getSize();
107 return size - bytesDropped;
108}
109
110template <class ELFT>
111static void decompressAux(const InputSectionBase &sec, uint8_t *out,
112 size_t size) {
113 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_);
114 auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize)
115 .slice(N: sizeof(typename ELFT::Chdr));
116 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
117 ? compression::zlib::decompress(Input: compressed, Output: out, UncompressedSize&: size)
118 : compression::zstd::decompress(Input: compressed, Output: out, UncompressedSize&: size))
119 fatal(msg: toString(sec: &sec) +
120 ": decompress failed: " + llvm::toString(E: std::move(e)));
121}
122
123void InputSectionBase::decompress() const {
124 uint8_t *uncompressedBuf;
125 {
126 static std::mutex mu;
127 std::lock_guard<std::mutex> lock(mu);
128 uncompressedBuf = bAlloc().Allocate<uint8_t>(Num: size);
129 }
130
131 invokeELFT(decompressAux, *this, uncompressedBuf, size);
132 content_ = uncompressedBuf;
133 compressed = false;
134}
135
136template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const {
137 if (relSecIdx == 0)
138 return {};
139 RelsOrRelas<ELFT> ret;
140 typename ELFT::Shdr shdr =
141 cast<ELFFileBase>(Val: file)->getELFShdrs<ELFT>()[relSecIdx];
142 if (shdr.sh_type == SHT_REL) {
143 ret.rels = ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(
144 file->mb.getBufferStart() + shdr.sh_offset),
145 shdr.sh_size / sizeof(typename ELFT::Rel));
146 } else {
147 assert(shdr.sh_type == SHT_RELA);
148 ret.relas = ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(
149 file->mb.getBufferStart() + shdr.sh_offset),
150 shdr.sh_size / sizeof(typename ELFT::Rela));
151 }
152 return ret;
153}
154
155uint64_t SectionBase::getOffset(uint64_t offset) const {
156 switch (kind()) {
157 case Output: {
158 auto *os = cast<OutputSection>(Val: this);
159 // For output sections we treat offset -1 as the end of the section.
160 return offset == uint64_t(-1) ? os->size : offset;
161 }
162 case Regular:
163 case Synthetic:
164 return cast<InputSection>(Val: this)->outSecOff + offset;
165 case EHFrame: {
166 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
167 // crtbeginT.o may reference the start of an empty .eh_frame to identify the
168 // start of the output .eh_frame. Just return offset.
169 //
170 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
171 // discarded due to GC/ICF. We should compute the output section offset.
172 const EhInputSection *es = cast<EhInputSection>(Val: this);
173 if (!es->content().empty())
174 if (InputSection *isec = es->getParent())
175 return isec->outSecOff + es->getParentOffset(offset);
176 return offset;
177 }
178 case Merge:
179 const MergeInputSection *ms = cast<MergeInputSection>(Val: this);
180 if (InputSection *isec = ms->getParent())
181 return isec->outSecOff + ms->getParentOffset(offset);
182 return ms->getParentOffset(offset);
183 }
184 llvm_unreachable("invalid section kind");
185}
186
187uint64_t SectionBase::getVA(uint64_t offset) const {
188 const OutputSection *out = getOutputSection();
189 return (out ? out->addr : 0) + getOffset(offset);
190}
191
192OutputSection *SectionBase::getOutputSection() {
193 InputSection *sec;
194 if (auto *isec = dyn_cast<InputSection>(Val: this))
195 sec = isec;
196 else if (auto *ms = dyn_cast<MergeInputSection>(Val: this))
197 sec = ms->getParent();
198 else if (auto *eh = dyn_cast<EhInputSection>(Val: this))
199 sec = eh->getParent();
200 else
201 return cast<OutputSection>(Val: this);
202 return sec ? sec->getParent() : nullptr;
203}
204
205// When a section is compressed, `rawData` consists with a header followed
206// by zlib-compressed data. This function parses a header to initialize
207// `uncompressedSize` member and remove the header from `rawData`.
208template <typename ELFT> void InputSectionBase::parseCompressedHeader() {
209 flags &= ~(uint64_t)SHF_COMPRESSED;
210
211 // New-style header
212 if (content().size() < sizeof(typename ELFT::Chdr)) {
213 error(msg: toString(sec: this) + ": corrupted compressed section");
214 return;
215 }
216
217 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data());
218 if (hdr->ch_type == ELFCOMPRESS_ZLIB) {
219 if (!compression::zlib::isAvailable())
220 error(msg: toString(sec: this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is "
221 "not built with zlib support");
222 } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) {
223 if (!compression::zstd::isAvailable())
224 error(msg: toString(sec: this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is "
225 "not built with zstd support");
226 } else {
227 error(msg: toString(sec: this) + ": unsupported compression type (" +
228 Twine(hdr->ch_type) + ")");
229 return;
230 }
231
232 compressed = true;
233 compressedSize = size;
234 size = hdr->ch_size;
235 addralign = std::max<uint32_t>(hdr->ch_addralign, 1);
236}
237
238InputSection *InputSectionBase::getLinkOrderDep() const {
239 assert(flags & SHF_LINK_ORDER);
240 if (!link)
241 return nullptr;
242 return cast<InputSection>(Val: file->getSections()[link]);
243}
244
245// Find a symbol that encloses a given location.
246Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset,
247 uint8_t type) const {
248 if (file->isInternal())
249 return nullptr;
250 for (Symbol *b : file->getSymbols())
251 if (Defined *d = dyn_cast<Defined>(Val: b))
252 if (d->section == this && d->value <= offset &&
253 offset < d->value + d->size && (type == 0 || type == d->type))
254 return d;
255 return nullptr;
256}
257
258// Returns an object file location string. Used to construct an error message.
259std::string InputSectionBase::getLocation(uint64_t offset) const {
260 std::string secAndOffset =
261 (name + "+0x" + Twine::utohexstr(Val: offset) + ")").str();
262
263 // We don't have file for synthetic sections.
264 if (file == nullptr)
265 return (config->outputFile + ":(" + secAndOffset).str();
266
267 std::string filename = toString(f: file);
268 if (Defined *d = getEnclosingFunction(offset))
269 return filename + ":(function " + toString(*d) + ": " + secAndOffset;
270
271 return filename + ":(" + secAndOffset;
272}
273
274// This function is intended to be used for constructing an error message.
275// The returned message looks like this:
276//
277// foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
278//
279// Returns an empty string if there's no way to get line info.
280std::string InputSectionBase::getSrcMsg(const Symbol &sym,
281 uint64_t offset) const {
282 return file->getSrcMsg(sym, sec: *this, offset);
283}
284
285// Returns a filename string along with an optional section name. This
286// function is intended to be used for constructing an error
287// message. The returned message looks like this:
288//
289// path/to/foo.o:(function bar)
290//
291// or
292//
293// path/to/foo.o:(function bar) in archive path/to/bar.a
294std::string InputSectionBase::getObjMsg(uint64_t off) const {
295 std::string filename = std::string(file->getName());
296
297 std::string archive;
298 if (!file->archiveName.empty())
299 archive = (" in archive " + file->archiveName).str();
300
301 // Find a symbol that encloses a given location. getObjMsg may be called
302 // before ObjFile::initSectionsAndLocalSyms where local symbols are
303 // initialized.
304 if (Defined *d = getEnclosingSymbol(offset: off))
305 return filename + ":(" + toString(*d) + ")" + archive;
306
307 // If there's no symbol, print out the offset in the section.
308 return (filename + ":(" + name + "+0x" + utohexstr(X: off) + ")" + archive)
309 .str();
310}
311
312InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
313
314InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
315 uint32_t addralign, ArrayRef<uint8_t> data,
316 StringRef name, Kind k)
317 : InputSectionBase(f, flags, type,
318 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign, data,
319 name, k) {
320 assert(f || this == &InputSection::discarded);
321}
322
323template <class ELFT>
324InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
325 StringRef name)
326 : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
327
328// Copy SHT_GROUP section contents. Used only for the -r option.
329template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
330 // ELFT::Word is the 32-bit integral type in the target endianness.
331 using u32 = typename ELFT::Word;
332 ArrayRef<u32> from = getDataAs<u32>();
333 auto *to = reinterpret_cast<u32 *>(buf);
334
335 // The first entry is not a section number but a flag.
336 *to++ = from[0];
337
338 // Adjust section numbers because section numbers in an input object files are
339 // different in the output. We also need to handle combined or discarded
340 // members.
341 ArrayRef<InputSectionBase *> sections = file->getSections();
342 DenseSet<uint32_t> seen;
343 for (uint32_t idx : from.slice(1)) {
344 OutputSection *osec = sections[idx]->getOutputSection();
345 if (osec && seen.insert(V: osec->sectionIndex).second)
346 *to++ = osec->sectionIndex;
347 }
348}
349
350InputSectionBase *InputSection::getRelocatedSection() const {
351 if (file->isInternal() || !isStaticRelSecType(type))
352 return nullptr;
353 ArrayRef<InputSectionBase *> sections = file->getSections();
354 return sections[info];
355}
356
357template <class ELFT, class RelTy>
358void InputSection::copyRelocations(uint8_t *buf) {
359 if (config->relax && !config->relocatable &&
360 (config->emachine == EM_RISCV || config->emachine == EM_LOONGARCH)) {
361 // On LoongArch and RISC-V, relaxation might change relocations: copy
362 // from internal ones that are updated by relaxation.
363 InputSectionBase *sec = getRelocatedSection();
364 copyRelocations<ELFT, RelTy>(buf, llvm::make_range(x: sec->relocations.begin(),
365 y: sec->relocations.end()));
366 } else {
367 // Convert the raw relocations in the input section into Relocation objects
368 // suitable to be used by copyRelocations below.
369 struct MapRel {
370 const ObjFile<ELFT> &file;
371 Relocation operator()(const RelTy &rel) const {
372 // RelExpr is not used so set to a dummy value.
373 return Relocation{R_NONE, rel.getType(config->isMips64EL), rel.r_offset,
374 getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)};
375 }
376 };
377
378 using RawRels = ArrayRef<RelTy>;
379 using MapRelIter =
380 llvm::mapped_iterator<typename RawRels::iterator, MapRel>;
381 auto mapRel = MapRel{*getFile<ELFT>()};
382 RawRels rawRels = getDataAs<RelTy>();
383 auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel),
384 MapRelIter(rawRels.end(), mapRel));
385 copyRelocations<ELFT, RelTy>(buf, rels);
386 }
387}
388
389// This is used for -r and --emit-relocs. We can't use memcpy to copy
390// relocations because we need to update symbol table offset and section index
391// for each relocation. So we copy relocations one by one.
392template <class ELFT, class RelTy, class RelIt>
393void InputSection::copyRelocations(uint8_t *buf,
394 llvm::iterator_range<RelIt> rels) {
395 const TargetInfo &target = *elf::target;
396 InputSectionBase *sec = getRelocatedSection();
397 (void)sec->contentMaybeDecompress(); // uncompress if needed
398
399 for (const Relocation &rel : rels) {
400 RelType type = rel.type;
401 const ObjFile<ELFT> *file = getFile<ELFT>();
402 Symbol &sym = *rel.sym;
403
404 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
405 buf += sizeof(RelTy);
406
407 if (RelTy::IsRela)
408 p->r_addend = rel.addend;
409
410 // Output section VA is zero for -r, so r_offset is an offset within the
411 // section, but for --emit-relocs it is a virtual address.
412 p->r_offset = sec->getVA(offset: rel.offset);
413 p->setSymbolAndType(in.symTab->getSymbolIndex(sym), type,
414 config->isMips64EL);
415
416 if (sym.type == STT_SECTION) {
417 // We combine multiple section symbols into only one per
418 // section. This means we have to update the addend. That is
419 // trivial for Elf_Rela, but for Elf_Rel we have to write to the
420 // section data. We do that by adding to the Relocation vector.
421
422 // .eh_frame is horribly special and can reference discarded sections. To
423 // avoid having to parse and recreate .eh_frame, we just replace any
424 // relocation in it pointing to discarded sections with R_*_NONE, which
425 // hopefully creates a frame that is ignored at runtime. Also, don't warn
426 // on .gcc_except_table and debug sections.
427 //
428 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
429 auto *d = dyn_cast<Defined>(Val: &sym);
430 if (!d) {
431 if (!isDebugSection(sec: *sec) && sec->name != ".eh_frame" &&
432 sec->name != ".gcc_except_table" && sec->name != ".got2" &&
433 sec->name != ".toc") {
434 uint32_t secIdx = cast<Undefined>(Val&: sym).discardedSecIdx;
435 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx];
436 warn("relocation refers to a discarded section: " +
437 CHECK(file->getObj().getSectionName(sec), file) +
438 "\n>>> referenced by " + getObjMsg(off: p->r_offset));
439 }
440 p->setSymbolAndType(0, 0, false);
441 continue;
442 }
443 SectionBase *section = d->section;
444 assert(section->isLive());
445
446 int64_t addend = rel.addend;
447 const uint8_t *bufLoc = sec->content().begin() + rel.offset;
448 if (!RelTy::IsRela)
449 addend = target.getImplicitAddend(buf: bufLoc, type);
450
451 if (config->emachine == EM_MIPS &&
452 target.getRelExpr(type, s: sym, loc: bufLoc) == R_MIPS_GOTREL) {
453 // Some MIPS relocations depend on "gp" value. By default,
454 // this value has 0x7ff0 offset from a .got section. But
455 // relocatable files produced by a compiler or a linker
456 // might redefine this default value and we must use it
457 // for a calculation of the relocation result. When we
458 // generate EXE or DSO it's trivial. Generating a relocatable
459 // output is more difficult case because the linker does
460 // not calculate relocations in this mode and loses
461 // individual "gp" values used by each input object file.
462 // As a workaround we add the "gp" value to the relocation
463 // addend and save it back to the file.
464 addend += sec->getFile<ELFT>()->mipsGp0;
465 }
466
467 if (config->emachine == EM_LOONGARCH && type == R_LARCH_ALIGN)
468 // LoongArch psABI v2.30, the R_LARCH_ALIGN requires symbol index.
469 // If it use the section symbol, the addend should not be changed.
470 p->r_addend = addend;
471 else if (RelTy::IsRela)
472 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
473 // For SHF_ALLOC sections relocated by REL, append a relocation to
474 // sec->relocations so that relocateAlloc transitively called by
475 // writeSections will update the implicit addend. Non-SHF_ALLOC sections
476 // utilize relocateNonAlloc to process raw relocations and do not need
477 // this sec->relocations change.
478 else if (config->relocatable && (sec->flags & SHF_ALLOC) &&
479 type != target.noneRel)
480 sec->addReloc(r: {.expr: R_ABS, .type: type, .offset: rel.offset, .addend: addend, .sym: &sym});
481 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
482 p->r_addend >= 0x8000 && sec->file->ppc32Got2) {
483 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
484 // indicates that r30 is relative to the input section .got2
485 // (r_addend>=0x8000), after linking, r30 should be relative to the output
486 // section .got2 . To compensate for the shift, adjust r_addend by
487 // ppc32Got->outSecOff.
488 p->r_addend += sec->file->ppc32Got2->outSecOff;
489 }
490 }
491}
492
493// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
494// references specially. The general rule is that the value of the symbol in
495// this context is the address of the place P. A further special case is that
496// branch relocations to an undefined weak reference resolve to the next
497// instruction.
498static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
499 uint32_t p) {
500 switch (type) {
501 // Unresolved branch relocations to weak references resolve to next
502 // instruction, this will be either 2 or 4 bytes on from P.
503 case R_ARM_THM_JUMP8:
504 case R_ARM_THM_JUMP11:
505 return p + 2 + a;
506 case R_ARM_CALL:
507 case R_ARM_JUMP24:
508 case R_ARM_PC24:
509 case R_ARM_PLT32:
510 case R_ARM_PREL31:
511 case R_ARM_THM_JUMP19:
512 case R_ARM_THM_JUMP24:
513 return p + 4 + a;
514 case R_ARM_THM_CALL:
515 // We don't want an interworking BLX to ARM
516 return p + 5 + a;
517 // Unresolved non branch pc-relative relocations
518 // R_ARM_TARGET2 which can be resolved relatively is not present as it never
519 // targets a weak-reference.
520 case R_ARM_MOVW_PREL_NC:
521 case R_ARM_MOVT_PREL:
522 case R_ARM_REL32:
523 case R_ARM_THM_ALU_PREL_11_0:
524 case R_ARM_THM_MOVW_PREL_NC:
525 case R_ARM_THM_MOVT_PREL:
526 case R_ARM_THM_PC12:
527 return p + a;
528 // p + a is unrepresentable as negative immediates can't be encoded.
529 case R_ARM_THM_PC8:
530 return p;
531 }
532 llvm_unreachable("ARM pc-relative relocation expected\n");
533}
534
535// The comment above getARMUndefinedRelativeWeakVA applies to this function.
536static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
537 switch (type) {
538 // Unresolved branch relocations to weak references resolve to next
539 // instruction, this is 4 bytes on from P.
540 case R_AARCH64_CALL26:
541 case R_AARCH64_CONDBR19:
542 case R_AARCH64_JUMP26:
543 case R_AARCH64_TSTBR14:
544 return p + 4;
545 // Unresolved non branch pc-relative relocations
546 case R_AARCH64_PREL16:
547 case R_AARCH64_PREL32:
548 case R_AARCH64_PREL64:
549 case R_AARCH64_ADR_PREL_LO21:
550 case R_AARCH64_LD_PREL_LO19:
551 case R_AARCH64_PLT32:
552 return p;
553 }
554 llvm_unreachable("AArch64 pc-relative relocation expected\n");
555}
556
557static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
558 switch (type) {
559 case R_RISCV_BRANCH:
560 case R_RISCV_JAL:
561 case R_RISCV_CALL:
562 case R_RISCV_CALL_PLT:
563 case R_RISCV_RVC_BRANCH:
564 case R_RISCV_RVC_JUMP:
565 case R_RISCV_PLT32:
566 return p;
567 default:
568 return 0;
569 }
570}
571
572// ARM SBREL relocations are of the form S + A - B where B is the static base
573// The ARM ABI defines base to be "addressing origin of the output segment
574// defining the symbol S". We defined the "addressing origin"/static base to be
575// the base of the PT_LOAD segment containing the Sym.
576// The procedure call standard only defines a Read Write Position Independent
577// RWPI variant so in practice we should expect the static base to be the base
578// of the RW segment.
579static uint64_t getARMStaticBase(const Symbol &sym) {
580 OutputSection *os = sym.getOutputSection();
581 if (!os || !os->ptLoad || !os->ptLoad->firstSec)
582 fatal(msg: "SBREL relocation to " + sym.getName() + " without static base");
583 return os->ptLoad->firstSec->addr;
584}
585
586// For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
587// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
588// is calculated using PCREL_HI20's symbol.
589//
590// This function returns the R_RISCV_PCREL_HI20 relocation from
591// R_RISCV_PCREL_LO12's symbol and addend.
592static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
593 const Defined *d = cast<Defined>(Val: sym);
594 if (!d->section) {
595 errorOrWarn(msg: "R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
596 sym->getName());
597 return nullptr;
598 }
599 InputSection *isec = cast<InputSection>(Val: d->section);
600
601 if (addend != 0)
602 warn(msg: "non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
603 isec->getObjMsg(off: d->value) + " is ignored");
604
605 // Relocations are sorted by offset, so we can use std::equal_range to do
606 // binary search.
607 Relocation r;
608 r.offset = d->value;
609 auto range =
610 std::equal_range(first: isec->relocs().begin(), last: isec->relocs().end(), val: r,
611 comp: [](const Relocation &lhs, const Relocation &rhs) {
612 return lhs.offset < rhs.offset;
613 });
614
615 for (auto it = range.first; it != range.second; ++it)
616 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
617 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
618 return &*it;
619
620 errorOrWarn(msg: "R_RISCV_PCREL_LO12 relocation points to " +
621 isec->getObjMsg(off: d->value) +
622 " without an associated R_RISCV_PCREL_HI20 relocation");
623 return nullptr;
624}
625
626// A TLS symbol's virtual address is relative to the TLS segment. Add a
627// target-specific adjustment to produce a thread-pointer-relative offset.
628static int64_t getTlsTpOffset(const Symbol &s) {
629 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
630 if (&s == ElfSym::tlsModuleBase)
631 return 0;
632
633 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
634 // while most others use Variant 1. At run time TP will be aligned to p_align.
635
636 // Variant 1. TP will be followed by an optional gap (which is the size of 2
637 // pointers on ARM/AArch64, 0 on other targets), followed by alignment
638 // padding, then the static TLS blocks. The alignment padding is added so that
639 // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
640 //
641 // Variant 2. Static TLS blocks, followed by alignment padding are placed
642 // before TP. The alignment padding is added so that (TP - padding -
643 // p_memsz) is congruent to p_vaddr modulo p_align.
644 PhdrEntry *tls = Out::tlsPhdr;
645 switch (config->emachine) {
646 // Variant 1.
647 case EM_ARM:
648 case EM_AARCH64:
649 return s.getVA(addend: 0) + config->wordsize * 2 +
650 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
651 case EM_MIPS:
652 case EM_PPC:
653 case EM_PPC64:
654 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
655 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
656 // data and 0xf000 of the program's TLS segment.
657 return s.getVA(addend: 0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
658 case EM_LOONGARCH:
659 case EM_RISCV:
660 return s.getVA(addend: 0) + (tls->p_vaddr & (tls->p_align - 1));
661
662 // Variant 2.
663 case EM_HEXAGON:
664 case EM_S390:
665 case EM_SPARCV9:
666 case EM_386:
667 case EM_X86_64:
668 return s.getVA(addend: 0) - tls->p_memsz -
669 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
670 default:
671 llvm_unreachable("unhandled Config->EMachine");
672 }
673}
674
675uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
676 int64_t a, uint64_t p,
677 const Symbol &sym, RelExpr expr) {
678 switch (expr) {
679 case R_ABS:
680 case R_DTPREL:
681 case R_RELAX_TLS_LD_TO_LE_ABS:
682 case R_RELAX_GOT_PC_NOPIC:
683 case R_AARCH64_AUTH:
684 case R_RISCV_ADD:
685 case R_RISCV_LEB128:
686 return sym.getVA(addend: a);
687 case R_ADDEND:
688 return a;
689 case R_RELAX_HINT:
690 return 0;
691 case R_ARM_SBREL:
692 return sym.getVA(addend: a) - getARMStaticBase(sym);
693 case R_GOT:
694 case R_RELAX_TLS_GD_TO_IE_ABS:
695 return sym.getGotVA() + a;
696 case R_LOONGARCH_GOT:
697 // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc type
698 // for their page offsets. The arithmetics are different in the TLS case
699 // so we have to duplicate some logic here.
700 if (sym.hasFlag(bit: NEEDS_TLSGD) && type != R_LARCH_TLS_IE_PC_LO12)
701 // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value.
702 return in.got->getGlobalDynAddr(b: sym) + a;
703 return getRelocTargetVA(file, type, a, p, sym, expr: R_GOT);
704 case R_GOTONLY_PC:
705 return in.got->getVA() + a - p;
706 case R_GOTPLTONLY_PC:
707 return in.gotPlt->getVA() + a - p;
708 case R_GOTREL:
709 case R_PPC64_RELAX_TOC:
710 return sym.getVA(addend: a) - in.got->getVA();
711 case R_GOTPLTREL:
712 return sym.getVA(addend: a) - in.gotPlt->getVA();
713 case R_GOTPLT:
714 case R_RELAX_TLS_GD_TO_IE_GOTPLT:
715 return sym.getGotVA() + a - in.gotPlt->getVA();
716 case R_TLSLD_GOT_OFF:
717 case R_GOT_OFF:
718 case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
719 return sym.getGotOffset() + a;
720 case R_AARCH64_GOT_PAGE_PC:
721 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
722 return getAArch64Page(expr: sym.getGotVA() + a) - getAArch64Page(expr: p);
723 case R_AARCH64_GOT_PAGE:
724 return sym.getGotVA() + a - getAArch64Page(expr: in.got->getVA());
725 case R_GOT_PC:
726 case R_RELAX_TLS_GD_TO_IE:
727 return sym.getGotVA() + a - p;
728 case R_GOTPLT_GOTREL:
729 return sym.getGotPltVA() + a - in.got->getVA();
730 case R_GOTPLT_PC:
731 return sym.getGotPltVA() + a - p;
732 case R_LOONGARCH_GOT_PAGE_PC:
733 if (sym.hasFlag(bit: NEEDS_TLSGD))
734 return getLoongArchPageDelta(dest: in.got->getGlobalDynAddr(b: sym) + a, pc: p, type);
735 return getLoongArchPageDelta(dest: sym.getGotVA() + a, pc: p, type);
736 case R_MIPS_GOTREL:
737 return sym.getVA(addend: a) - in.mipsGot->getGp(f: file);
738 case R_MIPS_GOT_GP:
739 return in.mipsGot->getGp(f: file) + a;
740 case R_MIPS_GOT_GP_PC: {
741 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
742 // is _gp_disp symbol. In that case we should use the following
743 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
744 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
745 // microMIPS variants of these relocations use slightly different
746 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
747 // to correctly handle less-significant bit of the microMIPS symbol.
748 uint64_t v = in.mipsGot->getGp(f: file) + a - p;
749 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
750 v += 4;
751 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
752 v -= 1;
753 return v;
754 }
755 case R_MIPS_GOT_LOCAL_PAGE:
756 // If relocation against MIPS local symbol requires GOT entry, this entry
757 // should be initialized by 'page address'. This address is high 16-bits
758 // of sum the symbol's value and the addend.
759 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(f: file, s: sym, addend: a) -
760 in.mipsGot->getGp(f: file);
761 case R_MIPS_GOT_OFF:
762 case R_MIPS_GOT_OFF32:
763 // In case of MIPS if a GOT relocation has non-zero addend this addend
764 // should be applied to the GOT entry content not to the GOT entry offset.
765 // That is why we use separate expression type.
766 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(f: file, s: sym, addend: a) -
767 in.mipsGot->getGp(f: file);
768 case R_MIPS_TLSGD:
769 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(f: file, s: sym) -
770 in.mipsGot->getGp(f: file);
771 case R_MIPS_TLSLD:
772 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(f: file) -
773 in.mipsGot->getGp(f: file);
774 case R_AARCH64_PAGE_PC: {
775 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(addend: a);
776 return getAArch64Page(expr: val) - getAArch64Page(expr: p);
777 }
778 case R_RISCV_PC_INDIRECT: {
779 if (const Relocation *hiRel = getRISCVPCRelHi20(sym: &sym, addend: a))
780 return getRelocTargetVA(file, type: hiRel->type, a: hiRel->addend, p: sym.getVA(),
781 sym: *hiRel->sym, expr: hiRel->expr);
782 return 0;
783 }
784 case R_LOONGARCH_PAGE_PC:
785 return getLoongArchPageDelta(dest: sym.getVA(addend: a), pc: p, type);
786 case R_PC:
787 case R_ARM_PCA: {
788 uint64_t dest;
789 if (expr == R_ARM_PCA)
790 // Some PC relative ARM (Thumb) relocations align down the place.
791 p = p & 0xfffffffc;
792 if (sym.isUndefined()) {
793 // On ARM and AArch64 a branch to an undefined weak resolves to the next
794 // instruction, otherwise the place. On RISC-V, resolve an undefined weak
795 // to the same instruction to cause an infinite loop (making the user
796 // aware of the issue) while ensuring no overflow.
797 // Note: if the symbol is hidden, its binding has been converted to local,
798 // so we just check isUndefined() here.
799 if (config->emachine == EM_ARM)
800 dest = getARMUndefinedRelativeWeakVA(type, a, p);
801 else if (config->emachine == EM_AARCH64)
802 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a;
803 else if (config->emachine == EM_PPC)
804 dest = p;
805 else if (config->emachine == EM_RISCV)
806 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a;
807 else
808 dest = sym.getVA(addend: a);
809 } else {
810 dest = sym.getVA(addend: a);
811 }
812 return dest - p;
813 }
814 case R_PLT:
815 return sym.getPltVA() + a;
816 case R_PLT_PC:
817 case R_PPC64_CALL_PLT:
818 return sym.getPltVA() + a - p;
819 case R_LOONGARCH_PLT_PAGE_PC:
820 return getLoongArchPageDelta(dest: sym.getPltVA() + a, pc: p, type);
821 case R_PLT_GOTPLT:
822 return sym.getPltVA() + a - in.gotPlt->getVA();
823 case R_PLT_GOTREL:
824 return sym.getPltVA() + a - in.got->getVA();
825 case R_PPC32_PLTREL:
826 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
827 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
828 // target VA computation.
829 return sym.getPltVA() - p;
830 case R_PPC64_CALL: {
831 uint64_t symVA = sym.getVA(addend: a);
832 // If we have an undefined weak symbol, we might get here with a symbol
833 // address of zero. That could overflow, but the code must be unreachable,
834 // so don't bother doing anything at all.
835 if (!symVA)
836 return 0;
837
838 // PPC64 V2 ABI describes two entry points to a function. The global entry
839 // point is used for calls where the caller and callee (may) have different
840 // TOC base pointers and r2 needs to be modified to hold the TOC base for
841 // the callee. For local calls the caller and callee share the same
842 // TOC base and so the TOC pointer initialization code should be skipped by
843 // branching to the local entry point.
844 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(stOther: sym.stOther);
845 }
846 case R_PPC64_TOCBASE:
847 return getPPC64TocBase() + a;
848 case R_RELAX_GOT_PC:
849 case R_PPC64_RELAX_GOT_PC:
850 return sym.getVA(addend: a) - p;
851 case R_RELAX_TLS_GD_TO_LE:
852 case R_RELAX_TLS_IE_TO_LE:
853 case R_RELAX_TLS_LD_TO_LE:
854 case R_TPREL:
855 // It is not very clear what to return if the symbol is undefined. With
856 // --noinhibit-exec, even a non-weak undefined reference may reach here.
857 // Just return A, which matches R_ABS, and the behavior of some dynamic
858 // loaders.
859 if (sym.isUndefined())
860 return a;
861 return getTlsTpOffset(s: sym) + a;
862 case R_RELAX_TLS_GD_TO_LE_NEG:
863 case R_TPREL_NEG:
864 if (sym.isUndefined())
865 return a;
866 return -getTlsTpOffset(s: sym) + a;
867 case R_SIZE:
868 return sym.getSize() + a;
869 case R_TLSDESC:
870 return in.got->getTlsDescAddr(sym) + a;
871 case R_TLSDESC_PC:
872 return in.got->getTlsDescAddr(sym) + a - p;
873 case R_TLSDESC_GOTPLT:
874 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA();
875 case R_AARCH64_TLSDESC_PAGE:
876 return getAArch64Page(expr: in.got->getTlsDescAddr(sym) + a) - getAArch64Page(expr: p);
877 case R_TLSGD_GOT:
878 return in.got->getGlobalDynOffset(b: sym) + a;
879 case R_TLSGD_GOTPLT:
880 return in.got->getGlobalDynAddr(b: sym) + a - in.gotPlt->getVA();
881 case R_TLSGD_PC:
882 return in.got->getGlobalDynAddr(b: sym) + a - p;
883 case R_LOONGARCH_TLSGD_PAGE_PC:
884 return getLoongArchPageDelta(dest: in.got->getGlobalDynAddr(b: sym) + a, pc: p, type);
885 case R_TLSLD_GOTPLT:
886 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
887 case R_TLSLD_GOT:
888 return in.got->getTlsIndexOff() + a;
889 case R_TLSLD_PC:
890 return in.got->getTlsIndexVA() + a - p;
891 default:
892 llvm_unreachable("invalid expression");
893 }
894}
895
896// This function applies relocations to sections without SHF_ALLOC bit.
897// Such sections are never mapped to memory at runtime. Debug sections are
898// an example. Relocations in non-alloc sections are much easier to
899// handle than in allocated sections because it will never need complex
900// treatment such as GOT or PLT (because at runtime no one refers them).
901// So, we handle relocations for non-alloc sections directly in this
902// function as a performance optimization.
903template <class ELFT, class RelTy>
904void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
905 const unsigned bits = sizeof(typename ELFT::uint) * 8;
906 const TargetInfo &target = *elf::target;
907 const auto emachine = config->emachine;
908 const bool isDebug = isDebugSection(sec: *this);
909 const bool isDebugLine = isDebug && name == ".debug_line";
910 std::optional<uint64_t> tombstone;
911 if (isDebug) {
912 if (name == ".debug_loc" || name == ".debug_ranges")
913 tombstone = 1;
914 else if (name == ".debug_names")
915 tombstone = UINT64_MAX; // tombstone value
916 else
917 tombstone = 0;
918 }
919 for (const auto &patAndValue : llvm::reverse(C&: config->deadRelocInNonAlloc))
920 if (patAndValue.first.match(S: this->name)) {
921 tombstone = patAndValue.second;
922 break;
923 }
924
925 const InputFile *f = this->file;
926 for (auto it = rels.begin(), end = rels.end(); it != end; ++it) {
927 const RelTy &rel = *it;
928 const RelType type = rel.getType(config->isMips64EL);
929 const uint64_t offset = rel.r_offset;
930 uint8_t *bufLoc = buf + offset;
931 int64_t addend = getAddend<ELFT>(rel);
932 if (!RelTy::IsRela)
933 addend += target.getImplicitAddend(buf: bufLoc, type);
934
935 Symbol &sym = f->getRelocTargetSym(rel);
936 RelExpr expr = target.getRelExpr(type, s: sym, loc: bufLoc);
937 if (expr == R_NONE)
938 continue;
939 auto *ds = dyn_cast<Defined>(Val: &sym);
940
941 if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) {
942 if (++it != end &&
943 it->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 &&
944 it->r_offset == offset) {
945 uint64_t val;
946 if (!ds && tombstone) {
947 val = *tombstone;
948 } else {
949 val = sym.getVA(addend) -
950 (f->getRelocTargetSym(*it).getVA(0) + getAddend<ELFT>(*it));
951 }
952 if (overwriteULEB128(bufLoc, val) >= 0x80)
953 errorOrWarn(msg: getLocation(offset) + ": ULEB128 value " + Twine(val) +
954 " exceeds available space; references '" +
955 lld::toString(sym) + "'");
956 continue;
957 }
958 errorOrWarn(msg: getLocation(offset) +
959 ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128");
960 return;
961 }
962
963 if (tombstone && (expr == R_ABS || expr == R_DTPREL)) {
964 // Resolve relocations in .debug_* referencing (discarded symbols or ICF
965 // folded section symbols) to a tombstone value. Resolving to addend is
966 // unsatisfactory because the result address range may collide with a
967 // valid range of low address, or leave multiple CUs claiming ownership of
968 // the same range of code, which may confuse consumers.
969 //
970 // To address the problems, we use -1 as a tombstone value for most
971 // .debug_* sections. We have to ignore the addend because we don't want
972 // to resolve an address attribute (which may have a non-zero addend) to
973 // -1+addend (wrap around to a low address).
974 //
975 // R_DTPREL type relocations represent an offset into the dynamic thread
976 // vector. The computed value is st_value plus a non-negative offset.
977 // Negative values are invalid, so -1 can be used as the tombstone value.
978 //
979 // If the referenced symbol is relative to a discarded section (due to
980 // --gc-sections, COMDAT, etc), it has been converted to a Undefined.
981 // `ds->folded` catches the ICF folded case. However, resolving a
982 // relocation in .debug_line to -1 would stop debugger users from setting
983 // breakpoints on the folded-in function, so exclude .debug_line.
984 //
985 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
986 // (base address selection entry), use 1 (which is used by GNU ld for
987 // .debug_ranges).
988 //
989 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
990 // value. Enable -1 in a future release.
991 if (!ds || (ds->folded && !isDebugLine)) {
992 // If -z dead-reloc-in-nonalloc= is specified, respect it.
993 uint64_t value = SignExtend64<bits>(*tombstone);
994 // For a 32-bit local TU reference in .debug_names, X86_64::relocate
995 // requires that the unsigned value for R_X86_64_32 is truncated to
996 // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit
997 // absolute relocations and do not need this change.
998 if (emachine == EM_X86_64 && type == R_X86_64_32)
999 value = static_cast<uint32_t>(value);
1000 target.relocateNoSym(loc: bufLoc, type, val: value);
1001 continue;
1002 }
1003 }
1004
1005 // For a relocatable link, content relocated by RELA remains unchanged and
1006 // we can stop here, while content relocated by REL referencing STT_SECTION
1007 // needs updating implicit addends.
1008 if (config->relocatable && (RelTy::IsRela || sym.type != STT_SECTION))
1009 continue;
1010
1011 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
1012 // sections.
1013 if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL ||
1014 expr == R_RISCV_ADD) {
1015 target.relocateNoSym(loc: bufLoc, type, val: SignExtend64<bits>(sym.getVA(addend)));
1016 continue;
1017 }
1018
1019 if (expr == R_SIZE) {
1020 target.relocateNoSym(loc: bufLoc, type,
1021 val: SignExtend64<bits>(sym.getSize() + addend));
1022 continue;
1023 }
1024
1025 std::string msg = getLocation(offset) + ": has non-ABS relocation " +
1026 toString(type) + " against symbol '" + toString(sym) +
1027 "'";
1028 if (expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC)) {
1029 errorOrWarn(msg);
1030 return;
1031 }
1032
1033 // If the control reaches here, we found a PC-relative relocation in a
1034 // non-ALLOC section. Since non-ALLOC section is not loaded into memory
1035 // at runtime, the notion of PC-relative doesn't make sense here. So,
1036 // this is a usage error. However, GNU linkers historically accept such
1037 // relocations without any errors and relocate them as if they were at
1038 // address 0. For bug-compatibility, we accept them with warnings. We
1039 // know Steel Bank Common Lisp as of 2018 have this bug.
1040 //
1041 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
1042 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in
1043 // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to
1044 // keep this bug-compatible code for a while.
1045 warn(msg);
1046 target.relocateNoSym(
1047 loc: bufLoc, type,
1048 val: SignExtend64<bits>(sym.getVA(addend: addend - offset - outSecOff)));
1049 }
1050}
1051
1052template <class ELFT>
1053void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
1054 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack))
1055 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
1056
1057 if (flags & SHF_ALLOC) {
1058 target->relocateAlloc(sec&: *this, buf);
1059 return;
1060 }
1061
1062 auto *sec = cast<InputSection>(Val: this);
1063 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable
1064 // locations with tombstone values.
1065 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
1066 if (rels.areRelocsRel())
1067 sec->relocateNonAlloc<ELFT>(buf, rels.rels);
1068 else
1069 sec->relocateNonAlloc<ELFT>(buf, rels.relas);
1070}
1071
1072// For each function-defining prologue, find any calls to __morestack,
1073// and replace them with calls to __morestack_non_split.
1074static void switchMorestackCallsToMorestackNonSplit(
1075 DenseSet<Defined *> &prologues,
1076 SmallVector<Relocation *, 0> &morestackCalls) {
1077
1078 // If the target adjusted a function's prologue, all calls to
1079 // __morestack inside that function should be switched to
1080 // __morestack_non_split.
1081 Symbol *moreStackNonSplit = symtab.find(name: "__morestack_non_split");
1082 if (!moreStackNonSplit) {
1083 error(msg: "mixing split-stack objects requires a definition of "
1084 "__morestack_non_split");
1085 return;
1086 }
1087
1088 // Sort both collections to compare addresses efficiently.
1089 llvm::sort(C&: morestackCalls, Comp: [](const Relocation *l, const Relocation *r) {
1090 return l->offset < r->offset;
1091 });
1092 std::vector<Defined *> functions(prologues.begin(), prologues.end());
1093 llvm::sort(C&: functions, Comp: [](const Defined *l, const Defined *r) {
1094 return l->value < r->value;
1095 });
1096
1097 auto it = morestackCalls.begin();
1098 for (Defined *f : functions) {
1099 // Find the first call to __morestack within the function.
1100 while (it != morestackCalls.end() && (*it)->offset < f->value)
1101 ++it;
1102 // Adjust all calls inside the function.
1103 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1104 (*it)->sym = moreStackNonSplit;
1105 ++it;
1106 }
1107 }
1108}
1109
1110static bool enclosingPrologueAttempted(uint64_t offset,
1111 const DenseSet<Defined *> &prologues) {
1112 for (Defined *f : prologues)
1113 if (f->value <= offset && offset < f->value + f->size)
1114 return true;
1115 return false;
1116}
1117
1118// If a function compiled for split stack calls a function not
1119// compiled for split stack, then the caller needs its prologue
1120// adjusted to ensure that the called function will have enough stack
1121// available. Find those functions, and adjust their prologues.
1122template <class ELFT>
1123void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1124 uint8_t *end) {
1125 DenseSet<Defined *> prologues;
1126 SmallVector<Relocation *, 0> morestackCalls;
1127
1128 for (Relocation &rel : relocs()) {
1129 // Ignore calls into the split-stack api.
1130 if (rel.sym->getName().starts_with(Prefix: "__morestack")) {
1131 if (rel.sym->getName().equals(RHS: "__morestack"))
1132 morestackCalls.push_back(Elt: &rel);
1133 continue;
1134 }
1135
1136 // A relocation to non-function isn't relevant. Sometimes
1137 // __morestack is not marked as a function, so this check comes
1138 // after the name check.
1139 if (rel.sym->type != STT_FUNC)
1140 continue;
1141
1142 // If the callee's-file was compiled with split stack, nothing to do. In
1143 // this context, a "Defined" symbol is one "defined by the binary currently
1144 // being produced". So an "undefined" symbol might be provided by a shared
1145 // library. It is not possible to tell how such symbols were compiled, so be
1146 // conservative.
1147 if (Defined *d = dyn_cast<Defined>(Val: rel.sym))
1148 if (InputSection *isec = cast_or_null<InputSection>(Val: d->section))
1149 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1150 continue;
1151
1152 if (enclosingPrologueAttempted(offset: rel.offset, prologues))
1153 continue;
1154
1155 if (Defined *f = getEnclosingFunction(offset: rel.offset)) {
1156 prologues.insert(V: f);
1157 if (target->adjustPrologueForCrossSplitStack(loc: buf + f->value, end,
1158 stOther: f->stOther))
1159 continue;
1160 if (!getFile<ELFT>()->someNoSplitStack)
1161 error(msg: lld::toString(sec: this) + ": " + f->getName() +
1162 " (with -fsplit-stack) calls " + rel.sym->getName() +
1163 " (without -fsplit-stack), but couldn't adjust its prologue");
1164 }
1165 }
1166
1167 if (target->needsMoreStackNonSplit)
1168 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1169}
1170
1171template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1172 if (LLVM_UNLIKELY(type == SHT_NOBITS))
1173 return;
1174 // If -r or --emit-relocs is given, then an InputSection
1175 // may be a relocation section.
1176 if (LLVM_UNLIKELY(type == SHT_RELA)) {
1177 copyRelocations<ELFT, typename ELFT::Rela>(buf);
1178 return;
1179 }
1180 if (LLVM_UNLIKELY(type == SHT_REL)) {
1181 copyRelocations<ELFT, typename ELFT::Rel>(buf);
1182 return;
1183 }
1184
1185 // If -r is given, we may have a SHT_GROUP section.
1186 if (LLVM_UNLIKELY(type == SHT_GROUP)) {
1187 copyShtGroup<ELFT>(buf);
1188 return;
1189 }
1190
1191 // If this is a compressed section, uncompress section contents directly
1192 // to the buffer.
1193 if (compressed) {
1194 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_);
1195 auto compressed = ArrayRef<uint8_t>(content_, compressedSize)
1196 .slice(N: sizeof(typename ELFT::Chdr));
1197 size_t size = this->size;
1198 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
1199 ? compression::zlib::decompress(Input: compressed, Output: buf, UncompressedSize&: size)
1200 : compression::zstd::decompress(Input: compressed, Output: buf, UncompressedSize&: size))
1201 fatal(msg: toString(sec: this) +
1202 ": decompress failed: " + llvm::toString(E: std::move(e)));
1203 uint8_t *bufEnd = buf + size;
1204 relocate<ELFT>(buf, bufEnd);
1205 return;
1206 }
1207
1208 // Copy section contents from source object file to output file
1209 // and then apply relocations.
1210 memcpy(dest: buf, src: content().data(), n: content().size());
1211 relocate<ELFT>(buf, buf + content().size());
1212}
1213
1214void InputSection::replace(InputSection *other) {
1215 addralign = std::max(a: addralign, b: other->addralign);
1216
1217 // When a section is replaced with another section that was allocated to
1218 // another partition, the replacement section (and its associated sections)
1219 // need to be placed in the main partition so that both partitions will be
1220 // able to access it.
1221 if (partition != other->partition) {
1222 partition = 1;
1223 for (InputSection *isec : dependentSections)
1224 isec->partition = 1;
1225 }
1226
1227 other->repl = repl;
1228 other->markDead();
1229}
1230
1231template <class ELFT>
1232EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1233 const typename ELFT::Shdr &header,
1234 StringRef name)
1235 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1236
1237SyntheticSection *EhInputSection::getParent() const {
1238 return cast_or_null<SyntheticSection>(Val: parent);
1239}
1240
1241// .eh_frame is a sequence of CIE or FDE records.
1242// This function splits an input section into records and returns them.
1243template <class ELFT> void EhInputSection::split() {
1244 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>();
1245 // getReloc expects the relocations to be sorted by r_offset. See the comment
1246 // in scanRelocs.
1247 if (rels.areRelocsRel()) {
1248 SmallVector<typename ELFT::Rel, 0> storage;
1249 split<ELFT>(sortRels(rels.rels, storage));
1250 } else {
1251 SmallVector<typename ELFT::Rela, 0> storage;
1252 split<ELFT>(sortRels(rels.relas, storage));
1253 }
1254}
1255
1256template <class ELFT, class RelTy>
1257void EhInputSection::split(ArrayRef<RelTy> rels) {
1258 ArrayRef<uint8_t> d = content();
1259 const char *msg = nullptr;
1260 unsigned relI = 0;
1261 while (!d.empty()) {
1262 if (d.size() < 4) {
1263 msg = "CIE/FDE too small";
1264 break;
1265 }
1266 uint64_t size = endian::read32<ELFT::Endianness>(d.data());
1267 if (size == 0) // ZERO terminator
1268 break;
1269 uint32_t id = endian::read32<ELFT::Endianness>(d.data() + 4);
1270 size += 4;
1271 if (LLVM_UNLIKELY(size > d.size())) {
1272 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
1273 // but we do not support that format yet.
1274 msg = size == UINT32_MAX + uint64_t(4)
1275 ? "CIE/FDE too large"
1276 : "CIE/FDE ends past the end of the section";
1277 break;
1278 }
1279
1280 // Find the first relocation that points to [off,off+size). Relocations
1281 // have been sorted by r_offset.
1282 const uint64_t off = d.data() - content().data();
1283 while (relI != rels.size() && rels[relI].r_offset < off)
1284 ++relI;
1285 unsigned firstRel = -1;
1286 if (relI != rels.size() && rels[relI].r_offset < off + size)
1287 firstRel = relI;
1288 (id == 0 ? cies : fdes).emplace_back(Args: off, Args: this, Args&: size, Args&: firstRel);
1289 d = d.slice(N: size);
1290 }
1291 if (msg)
1292 errorOrWarn(msg: "corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " +
1293 getObjMsg(off: d.data() - content().data()));
1294}
1295
1296// Return the offset in an output section for a given input offset.
1297uint64_t EhInputSection::getParentOffset(uint64_t offset) const {
1298 auto it = partition_point(
1299 Range: fdes, P: [=](EhSectionPiece p) { return p.inputOff <= offset; });
1300 if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) {
1301 it = partition_point(
1302 Range: cies, P: [=](EhSectionPiece p) { return p.inputOff <= offset; });
1303 if (it == cies.begin()) // invalid piece
1304 return offset;
1305 }
1306 if (it[-1].outputOff == -1) // invalid piece
1307 return offset - it[-1].inputOff;
1308 return it[-1].outputOff + (offset - it[-1].inputOff);
1309}
1310
1311static size_t findNull(StringRef s, size_t entSize) {
1312 for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1313 const char *b = s.begin() + i;
1314 if (std::all_of(first: b, last: b + entSize, pred: [](char c) { return c == 0; }))
1315 return i;
1316 }
1317 llvm_unreachable("");
1318}
1319
1320// Split SHF_STRINGS section. Such section is a sequence of
1321// null-terminated strings.
1322void MergeInputSection::splitStrings(StringRef s, size_t entSize) {
1323 const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1324 const char *p = s.data(), *end = s.data() + s.size();
1325 if (!std::all_of(first: end - entSize, last: end, pred: [](char c) { return c == 0; }))
1326 fatal(msg: toString(sec: this) + ": string is not null terminated");
1327 if (entSize == 1) {
1328 // Optimize the common case.
1329 do {
1330 size_t size = strlen(s: p);
1331 pieces.emplace_back(Args: p - s.begin(), Args: xxh3_64bits(data: StringRef(p, size)), Args: live);
1332 p += size + 1;
1333 } while (p != end);
1334 } else {
1335 do {
1336 size_t size = findNull(s: StringRef(p, end - p), entSize);
1337 pieces.emplace_back(Args: p - s.begin(), Args: xxh3_64bits(data: StringRef(p, size)), Args: live);
1338 p += size + entSize;
1339 } while (p != end);
1340 }
1341}
1342
1343// Split non-SHF_STRINGS section. Such section is a sequence of
1344// fixed size records.
1345void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1346 size_t entSize) {
1347 size_t size = data.size();
1348 assert((size % entSize) == 0);
1349 const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1350
1351 pieces.resize_for_overwrite(N: size / entSize);
1352 for (size_t i = 0, j = 0; i != size; i += entSize, j++)
1353 pieces[j] = {i, (uint32_t)xxh3_64bits(data: data.slice(N: i, M: entSize)), live};
1354}
1355
1356template <class ELFT>
1357MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1358 const typename ELFT::Shdr &header,
1359 StringRef name)
1360 : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1361
1362MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1363 uint64_t entsize, ArrayRef<uint8_t> data,
1364 StringRef name)
1365 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1366 /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1367
1368// This function is called after we obtain a complete list of input sections
1369// that need to be linked. This is responsible to split section contents
1370// into small chunks for further processing.
1371//
1372// Note that this function is called from parallelForEach. This must be
1373// thread-safe (i.e. no memory allocation from the pools).
1374void MergeInputSection::splitIntoPieces() {
1375 assert(pieces.empty());
1376
1377 if (flags & SHF_STRINGS)
1378 splitStrings(s: toStringRef(Input: contentMaybeDecompress()), entSize: entsize);
1379 else
1380 splitNonStrings(data: contentMaybeDecompress(), entSize: entsize);
1381}
1382
1383SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) {
1384 if (content().size() <= offset)
1385 fatal(msg: toString(sec: this) + ": offset is outside the section");
1386 return partition_point(
1387 Range&: pieces, P: [=](SectionPiece p) { return p.inputOff <= offset; })[-1];
1388}
1389
1390// Return the offset in an output section for a given input offset.
1391uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1392 const SectionPiece &piece = getSectionPiece(offset);
1393 return piece.outputOff + (offset - piece.inputOff);
1394}
1395
1396template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1397 StringRef);
1398template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1399 StringRef);
1400template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1401 StringRef);
1402template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1403 StringRef);
1404
1405template void InputSection::writeTo<ELF32LE>(uint8_t *);
1406template void InputSection::writeTo<ELF32BE>(uint8_t *);
1407template void InputSection::writeTo<ELF64LE>(uint8_t *);
1408template void InputSection::writeTo<ELF64BE>(uint8_t *);
1409
1410template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const;
1411template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const;
1412template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const;
1413template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const;
1414
1415template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1416 const ELF32LE::Shdr &, StringRef);
1417template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1418 const ELF32BE::Shdr &, StringRef);
1419template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1420 const ELF64LE::Shdr &, StringRef);
1421template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1422 const ELF64BE::Shdr &, StringRef);
1423
1424template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1425 const ELF32LE::Shdr &, StringRef);
1426template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1427 const ELF32BE::Shdr &, StringRef);
1428template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1429 const ELF64LE::Shdr &, StringRef);
1430template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1431 const ELF64BE::Shdr &, StringRef);
1432
1433template void EhInputSection::split<ELF32LE>();
1434template void EhInputSection::split<ELF32BE>();
1435template void EhInputSection::split<ELF64LE>();
1436template void EhInputSection::split<ELF64BE>();
1437

Provided by KDAB

Privacy Policy
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more

source code of lld/ELF/InputSection.cpp