1 | //===- Relocations.cpp ----------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains platform-independent functions to process relocations. |
10 | // I'll describe the overview of this file here. |
11 | // |
12 | // Simple relocations are easy to handle for the linker. For example, |
13 | // for R_X86_64_PC64 relocs, the linker just has to fix up locations |
14 | // with the relative offsets to the target symbols. It would just be |
15 | // reading records from relocation sections and applying them to output. |
16 | // |
17 | // But not all relocations are that easy to handle. For example, for |
18 | // R_386_GOTOFF relocs, the linker has to create new GOT entries for |
19 | // symbols if they don't exist, and fix up locations with GOT entry |
20 | // offsets from the beginning of GOT section. So there is more than |
21 | // fixing addresses in relocation processing. |
22 | // |
23 | // ELF defines a large number of complex relocations. |
24 | // |
25 | // The functions in this file analyze relocations and do whatever needs |
26 | // to be done. It includes, but not limited to, the following. |
27 | // |
28 | // - create GOT/PLT entries |
29 | // - create new relocations in .dynsym to let the dynamic linker resolve |
30 | // them at runtime (since ELF supports dynamic linking, not all |
31 | // relocations can be resolved at link-time) |
32 | // - create COPY relocs and reserve space in .bss |
33 | // - replace expensive relocs (in terms of runtime cost) with cheap ones |
34 | // - error out infeasible combinations such as PIC and non-relative relocs |
35 | // |
36 | // Note that the functions in this file don't actually apply relocations |
37 | // because it doesn't know about the output file nor the output file buffer. |
38 | // It instead stores Relocation objects to InputSection's Relocations |
39 | // vector to let it apply later in InputSection::writeTo. |
40 | // |
41 | //===----------------------------------------------------------------------===// |
42 | |
43 | #include "Relocations.h" |
44 | #include "Config.h" |
45 | #include "InputFiles.h" |
46 | #include "LinkerScript.h" |
47 | #include "OutputSections.h" |
48 | #include "SymbolTable.h" |
49 | #include "Symbols.h" |
50 | #include "SyntheticSections.h" |
51 | #include "Target.h" |
52 | #include "Thunks.h" |
53 | #include "lld/Common/ErrorHandler.h" |
54 | #include "lld/Common/Memory.h" |
55 | #include "llvm/ADT/SmallSet.h" |
56 | #include "llvm/BinaryFormat/ELF.h" |
57 | #include "llvm/Demangle/Demangle.h" |
58 | #include "llvm/Support/Endian.h" |
59 | #include <algorithm> |
60 | |
61 | using namespace llvm; |
62 | using namespace llvm::ELF; |
63 | using namespace llvm::object; |
64 | using namespace llvm::support::endian; |
65 | using namespace lld; |
66 | using namespace lld::elf; |
67 | |
68 | static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) { |
69 | for (SectionCommand *cmd : script->sectionCommands) |
70 | if (auto *assign = dyn_cast<SymbolAssignment>(Val: cmd)) |
71 | if (assign->sym == &sym) |
72 | return assign->location; |
73 | return std::nullopt; |
74 | } |
75 | |
76 | static std::string getDefinedLocation(const Symbol &sym) { |
77 | const char msg[] = "\n>>> defined in " ; |
78 | if (sym.file) |
79 | return msg + toString(f: sym.file); |
80 | if (std::optional<std::string> loc = getLinkerScriptLocation(sym)) |
81 | return msg + *loc; |
82 | return "" ; |
83 | } |
84 | |
85 | // Construct a message in the following format. |
86 | // |
87 | // >>> defined in /home/alice/src/foo.o |
88 | // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) |
89 | // >>> /home/alice/src/bar.o:(.text+0x1) |
90 | static std::string getLocation(InputSectionBase &s, const Symbol &sym, |
91 | uint64_t off) { |
92 | std::string msg = getDefinedLocation(sym) + "\n>>> referenced by " ; |
93 | std::string src = s.getSrcMsg(sym, offset: off); |
94 | if (!src.empty()) |
95 | msg += src + "\n>>> " ; |
96 | return msg + s.getObjMsg(offset: off); |
97 | } |
98 | |
99 | void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, |
100 | int64_t min, uint64_t max) { |
101 | ErrorPlace errPlace = getErrorPlace(loc); |
102 | std::string hint; |
103 | if (rel.sym) { |
104 | if (!rel.sym->isSection()) |
105 | hint = "; references '" + lld::toString(*rel.sym) + '\''; |
106 | else if (auto *d = dyn_cast<Defined>(Val: rel.sym)) |
107 | hint = ("; references section '" + d->section->name + "'" ).str(); |
108 | |
109 | if (config->emachine == EM_X86_64 && rel.type == R_X86_64_PC32 && |
110 | rel.sym->getOutputSection() && |
111 | (rel.sym->getOutputSection()->flags & SHF_X86_64_LARGE)) { |
112 | hint += "; R_X86_64_PC32 should not reference a section marked " |
113 | "SHF_X86_64_LARGE" ; |
114 | } |
115 | } |
116 | if (!errPlace.srcLoc.empty()) |
117 | hint += "\n>>> referenced by " + errPlace.srcLoc; |
118 | if (rel.sym && !rel.sym->isSection()) |
119 | hint += getDefinedLocation(sym: *rel.sym); |
120 | |
121 | if (errPlace.isec && errPlace.isec->name.starts_with(Prefix: ".debug" )) |
122 | hint += "; consider recompiling with -fdebug-types-section to reduce size " |
123 | "of debug sections" ; |
124 | |
125 | errorOrWarn(msg: errPlace.loc + "relocation " + lld::toString(type: rel.type) + |
126 | " out of range: " + v.str() + " is not in [" + Twine(min).str() + |
127 | ", " + Twine(max).str() + "]" + hint); |
128 | } |
129 | |
130 | void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, |
131 | const Twine &msg) { |
132 | ErrorPlace errPlace = getErrorPlace(loc); |
133 | std::string hint; |
134 | if (!sym.getName().empty()) |
135 | hint = |
136 | "; references '" + lld::toString(sym) + '\'' + getDefinedLocation(sym); |
137 | errorOrWarn(msg: errPlace.loc + msg + " is out of range: " + Twine(v) + |
138 | " is not in [" + Twine(llvm::minIntN(N: n)) + ", " + |
139 | Twine(llvm::maxIntN(N: n)) + "]" + hint); |
140 | } |
141 | |
142 | // Build a bitmask with one bit set for each 64 subset of RelExpr. |
143 | static constexpr uint64_t buildMask() { return 0; } |
144 | |
145 | template <typename... Tails> |
146 | static constexpr uint64_t buildMask(int head, Tails... tails) { |
147 | return (0 <= head && head < 64 ? uint64_t(1) << head : 0) | |
148 | buildMask(tails...); |
149 | } |
150 | |
151 | // Return true if `Expr` is one of `Exprs`. |
152 | // There are more than 64 but less than 128 RelExprs, so we divide the set of |
153 | // exprs into [0, 64) and [64, 128) and represent each range as a constant |
154 | // 64-bit mask. Then we decide which mask to test depending on the value of |
155 | // expr and use a simple shift and bitwise-and to test for membership. |
156 | template <RelExpr... Exprs> static bool oneof(RelExpr expr) { |
157 | assert(0 <= expr && (int)expr < 128 && |
158 | "RelExpr is too large for 128-bit mask!" ); |
159 | |
160 | if (expr >= 64) |
161 | return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...); |
162 | return (uint64_t(1) << expr) & buildMask(Exprs...); |
163 | } |
164 | |
165 | static RelType getMipsPairType(RelType type, bool isLocal) { |
166 | switch (type) { |
167 | case R_MIPS_HI16: |
168 | return R_MIPS_LO16; |
169 | case R_MIPS_GOT16: |
170 | // In case of global symbol, the R_MIPS_GOT16 relocation does not |
171 | // have a pair. Each global symbol has a unique entry in the GOT |
172 | // and a corresponding instruction with help of the R_MIPS_GOT16 |
173 | // relocation loads an address of the symbol. In case of local |
174 | // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold |
175 | // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 |
176 | // relocations handle low 16 bits of the address. That allows |
177 | // to allocate only one GOT entry for every 64 KBytes of local data. |
178 | return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; |
179 | case R_MICROMIPS_GOT16: |
180 | return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; |
181 | case R_MIPS_PCHI16: |
182 | return R_MIPS_PCLO16; |
183 | case R_MICROMIPS_HI16: |
184 | return R_MICROMIPS_LO16; |
185 | default: |
186 | return R_MIPS_NONE; |
187 | } |
188 | } |
189 | |
190 | // True if non-preemptable symbol always has the same value regardless of where |
191 | // the DSO is loaded. |
192 | static bool isAbsolute(const Symbol &sym) { |
193 | if (sym.isUndefWeak()) |
194 | return true; |
195 | if (const auto *dr = dyn_cast<Defined>(Val: &sym)) |
196 | return dr->section == nullptr; // Absolute symbol. |
197 | return false; |
198 | } |
199 | |
200 | static bool isAbsoluteValue(const Symbol &sym) { |
201 | return isAbsolute(sym) || sym.isTls(); |
202 | } |
203 | |
204 | // Returns true if Expr refers a PLT entry. |
205 | static bool needsPlt(RelExpr expr) { |
206 | return oneof<R_PLT, R_PLT_PC, R_PLT_GOTREL, R_PLT_GOTPLT, R_GOTPLT_GOTREL, |
207 | R_GOTPLT_PC, R_LOONGARCH_PLT_PAGE_PC, R_PPC32_PLTREL, |
208 | R_PPC64_CALL_PLT>(expr); |
209 | } |
210 | |
211 | bool lld::elf::needsGot(RelExpr expr) { |
212 | return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, |
213 | R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT, |
214 | R_AARCH64_GOT_PAGE, R_LOONGARCH_GOT, R_LOONGARCH_GOT_PAGE_PC>( |
215 | expr); |
216 | } |
217 | |
218 | // True if this expression is of the form Sym - X, where X is a position in the |
219 | // file (PC, or GOT for example). |
220 | static bool isRelExpr(RelExpr expr) { |
221 | return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_ARM_PCA, R_MIPS_GOTREL, |
222 | R_PPC64_CALL, R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, |
223 | R_RELAX_GOT_PC, R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC, |
224 | R_LOONGARCH_PAGE_PC>(expr); |
225 | } |
226 | |
227 | static RelExpr toPlt(RelExpr expr) { |
228 | switch (expr) { |
229 | case R_LOONGARCH_PAGE_PC: |
230 | return R_LOONGARCH_PLT_PAGE_PC; |
231 | case R_PPC64_CALL: |
232 | return R_PPC64_CALL_PLT; |
233 | case R_PC: |
234 | return R_PLT_PC; |
235 | case R_ABS: |
236 | return R_PLT; |
237 | case R_GOTREL: |
238 | return R_PLT_GOTREL; |
239 | default: |
240 | return expr; |
241 | } |
242 | } |
243 | |
244 | static RelExpr fromPlt(RelExpr expr) { |
245 | // We decided not to use a plt. Optimize a reference to the plt to a |
246 | // reference to the symbol itself. |
247 | switch (expr) { |
248 | case R_PLT_PC: |
249 | case R_PPC32_PLTREL: |
250 | return R_PC; |
251 | case R_LOONGARCH_PLT_PAGE_PC: |
252 | return R_LOONGARCH_PAGE_PC; |
253 | case R_PPC64_CALL_PLT: |
254 | return R_PPC64_CALL; |
255 | case R_PLT: |
256 | return R_ABS; |
257 | case R_PLT_GOTPLT: |
258 | return R_GOTPLTREL; |
259 | case R_PLT_GOTREL: |
260 | return R_GOTREL; |
261 | default: |
262 | return expr; |
263 | } |
264 | } |
265 | |
266 | // Returns true if a given shared symbol is in a read-only segment in a DSO. |
267 | template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { |
268 | using Elf_Phdr = typename ELFT::Phdr; |
269 | |
270 | // Determine if the symbol is read-only by scanning the DSO's program headers. |
271 | const auto &file = cast<SharedFile>(Val&: *ss.file); |
272 | for (const Elf_Phdr &phdr : |
273 | check(file.template getObj<ELFT>().program_headers())) |
274 | if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && |
275 | !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && |
276 | ss.value < phdr.p_vaddr + phdr.p_memsz) |
277 | return true; |
278 | return false; |
279 | } |
280 | |
281 | // Returns symbols at the same offset as a given symbol, including SS itself. |
282 | // |
283 | // If two or more symbols are at the same offset, and at least one of |
284 | // them are copied by a copy relocation, all of them need to be copied. |
285 | // Otherwise, they would refer to different places at runtime. |
286 | template <class ELFT> |
287 | static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { |
288 | using Elf_Sym = typename ELFT::Sym; |
289 | |
290 | const auto &file = cast<SharedFile>(Val&: *ss.file); |
291 | |
292 | SmallSet<SharedSymbol *, 4> ret; |
293 | for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { |
294 | if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || |
295 | s.getType() == STT_TLS || s.st_value != ss.value) |
296 | continue; |
297 | StringRef name = check(s.getName(file.getStringTable())); |
298 | Symbol *sym = symtab.find(name); |
299 | if (auto *alias = dyn_cast_or_null<SharedSymbol>(Val: sym)) |
300 | ret.insert(Ptr: alias); |
301 | } |
302 | |
303 | // The loop does not check SHT_GNU_verneed, so ret does not contain |
304 | // non-default version symbols. If ss has a non-default version, ret won't |
305 | // contain ss. Just add ss unconditionally. If a non-default version alias is |
306 | // separately copy relocated, it and ss will have different addresses. |
307 | // Fortunately this case is impractical and fails with GNU ld as well. |
308 | ret.insert(Ptr: &ss); |
309 | return ret; |
310 | } |
311 | |
312 | // When a symbol is copy relocated or we create a canonical plt entry, it is |
313 | // effectively a defined symbol. In the case of copy relocation the symbol is |
314 | // in .bss and in the case of a canonical plt entry it is in .plt. This function |
315 | // replaces the existing symbol with a Defined pointing to the appropriate |
316 | // location. |
317 | static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value, |
318 | uint64_t size) { |
319 | Symbol old = sym; |
320 | Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value, |
321 | size, &sec) |
322 | .overwrite(sym); |
323 | |
324 | sym.versionId = old.versionId; |
325 | sym.exportDynamic = true; |
326 | sym.isUsedInRegularObj = true; |
327 | // A copy relocated alias may need a GOT entry. |
328 | sym.flags.store(i: old.flags.load(m: std::memory_order_relaxed) & NEEDS_GOT, |
329 | m: std::memory_order_relaxed); |
330 | } |
331 | |
332 | // Reserve space in .bss or .bss.rel.ro for copy relocation. |
333 | // |
334 | // The copy relocation is pretty much a hack. If you use a copy relocation |
335 | // in your program, not only the symbol name but the symbol's size, RW/RO |
336 | // bit and alignment become part of the ABI. In addition to that, if the |
337 | // symbol has aliases, the aliases become part of the ABI. That's subtle, |
338 | // but if you violate that implicit ABI, that can cause very counter- |
339 | // intuitive consequences. |
340 | // |
341 | // So, what is the copy relocation? It's for linking non-position |
342 | // independent code to DSOs. In an ideal world, all references to data |
343 | // exported by DSOs should go indirectly through GOT. But if object files |
344 | // are compiled as non-PIC, all data references are direct. There is no |
345 | // way for the linker to transform the code to use GOT, as machine |
346 | // instructions are already set in stone in object files. This is where |
347 | // the copy relocation takes a role. |
348 | // |
349 | // A copy relocation instructs the dynamic linker to copy data from a DSO |
350 | // to a specified address (which is usually in .bss) at load-time. If the |
351 | // static linker (that's us) finds a direct data reference to a DSO |
352 | // symbol, it creates a copy relocation, so that the symbol can be |
353 | // resolved as if it were in .bss rather than in a DSO. |
354 | // |
355 | // As you can see in this function, we create a copy relocation for the |
356 | // dynamic linker, and the relocation contains not only symbol name but |
357 | // various other information about the symbol. So, such attributes become a |
358 | // part of the ABI. |
359 | // |
360 | // Note for application developers: I can give you a piece of advice if |
361 | // you are writing a shared library. You probably should export only |
362 | // functions from your library. You shouldn't export variables. |
363 | // |
364 | // As an example what can happen when you export variables without knowing |
365 | // the semantics of copy relocations, assume that you have an exported |
366 | // variable of type T. It is an ABI-breaking change to add new members at |
367 | // end of T even though doing that doesn't change the layout of the |
368 | // existing members. That's because the space for the new members are not |
369 | // reserved in .bss unless you recompile the main program. That means they |
370 | // are likely to overlap with other data that happens to be laid out next |
371 | // to the variable in .bss. This kind of issue is sometimes very hard to |
372 | // debug. What's a solution? Instead of exporting a variable V from a DSO, |
373 | // define an accessor getV(). |
374 | template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { |
375 | // Copy relocation against zero-sized symbol doesn't make sense. |
376 | uint64_t symSize = ss.getSize(); |
377 | if (symSize == 0 || ss.alignment == 0) |
378 | fatal(msg: "cannot create a copy relocation for symbol " + toString(ss)); |
379 | |
380 | // See if this symbol is in a read-only segment. If so, preserve the symbol's |
381 | // memory protection by reserving space in the .bss.rel.ro section. |
382 | bool isRO = isReadOnly<ELFT>(ss); |
383 | BssSection *sec = |
384 | make<BssSection>(args: isRO ? ".bss.rel.ro" : ".bss" , args&: symSize, args&: ss.alignment); |
385 | OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); |
386 | |
387 | // At this point, sectionBases has been migrated to sections. Append sec to |
388 | // sections. |
389 | if (osec->commands.empty() || |
390 | !isa<InputSectionDescription>(Val: osec->commands.back())) |
391 | osec->commands.push_back(Elt: make<InputSectionDescription>(args: "" )); |
392 | auto *isd = cast<InputSectionDescription>(Val: osec->commands.back()); |
393 | isd->sections.push_back(Elt: sec); |
394 | osec->commitSection(isec: sec); |
395 | |
396 | // Look through the DSO's dynamic symbol table for aliases and create a |
397 | // dynamic symbol for each one. This causes the copy relocation to correctly |
398 | // interpose any aliases. |
399 | for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) |
400 | replaceWithDefined(sym&: *sym, sec&: *sec, value: 0, size: sym->size); |
401 | |
402 | mainPart->relaDyn->addSymbolReloc(dynType: target->copyRel, isec&: *sec, offsetInSec: 0, sym&: ss); |
403 | } |
404 | |
405 | // .eh_frame sections are mergeable input sections, so their input |
406 | // offsets are not linearly mapped to output section. For each input |
407 | // offset, we need to find a section piece containing the offset and |
408 | // add the piece's base address to the input offset to compute the |
409 | // output offset. That isn't cheap. |
410 | // |
411 | // This class is to speed up the offset computation. When we process |
412 | // relocations, we access offsets in the monotonically increasing |
413 | // order. So we can optimize for that access pattern. |
414 | // |
415 | // For sections other than .eh_frame, this class doesn't do anything. |
416 | namespace { |
417 | class OffsetGetter { |
418 | public: |
419 | OffsetGetter() = default; |
420 | explicit OffsetGetter(InputSectionBase &sec) { |
421 | if (auto *eh = dyn_cast<EhInputSection>(Val: &sec)) { |
422 | cies = eh->cies; |
423 | fdes = eh->fdes; |
424 | i = cies.begin(); |
425 | j = fdes.begin(); |
426 | } |
427 | } |
428 | |
429 | // Translates offsets in input sections to offsets in output sections. |
430 | // Given offset must increase monotonically. We assume that Piece is |
431 | // sorted by inputOff. |
432 | uint64_t get(uint64_t off) { |
433 | if (cies.empty()) |
434 | return off; |
435 | |
436 | while (j != fdes.end() && j->inputOff <= off) |
437 | ++j; |
438 | auto it = j; |
439 | if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) { |
440 | while (i != cies.end() && i->inputOff <= off) |
441 | ++i; |
442 | if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off) |
443 | fatal(msg: ".eh_frame: relocation is not in any piece" ); |
444 | it = i; |
445 | } |
446 | |
447 | // Offset -1 means that the piece is dead (i.e. garbage collected). |
448 | if (it[-1].outputOff == -1) |
449 | return -1; |
450 | return it[-1].outputOff + (off - it[-1].inputOff); |
451 | } |
452 | |
453 | private: |
454 | ArrayRef<EhSectionPiece> cies, fdes; |
455 | ArrayRef<EhSectionPiece>::iterator i, j; |
456 | }; |
457 | |
458 | // This class encapsulates states needed to scan relocations for one |
459 | // InputSectionBase. |
460 | class RelocationScanner { |
461 | public: |
462 | template <class ELFT> void scanSection(InputSectionBase &s); |
463 | |
464 | private: |
465 | InputSectionBase *sec; |
466 | OffsetGetter getter; |
467 | |
468 | // End of relocations, used by Mips/PPC64. |
469 | const void *end = nullptr; |
470 | |
471 | template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const; |
472 | template <class ELFT, class RelTy> |
473 | int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const; |
474 | bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, |
475 | uint64_t relOff) const; |
476 | void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym, |
477 | int64_t addend) const; |
478 | template <class ELFT, class RelTy> void scanOne(RelTy *&i); |
479 | template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels); |
480 | }; |
481 | } // namespace |
482 | |
483 | // MIPS has an odd notion of "paired" relocations to calculate addends. |
484 | // For example, if a relocation is of R_MIPS_HI16, there must be a |
485 | // R_MIPS_LO16 relocation after that, and an addend is calculated using |
486 | // the two relocations. |
487 | template <class ELFT, class RelTy> |
488 | int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr, |
489 | bool isLocal) const { |
490 | if (expr == R_MIPS_GOTREL && isLocal) |
491 | return sec->getFile<ELFT>()->mipsGp0; |
492 | |
493 | // The ABI says that the paired relocation is used only for REL. |
494 | // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
495 | if (RelTy::IsRela) |
496 | return 0; |
497 | |
498 | RelType type = rel.getType(config->isMips64EL); |
499 | uint32_t pairTy = getMipsPairType(type, isLocal); |
500 | if (pairTy == R_MIPS_NONE) |
501 | return 0; |
502 | |
503 | const uint8_t *buf = sec->content().data(); |
504 | uint32_t symIndex = rel.getSymbol(config->isMips64EL); |
505 | |
506 | // To make things worse, paired relocations might not be contiguous in |
507 | // the relocation table, so we need to do linear search. *sigh* |
508 | for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri) |
509 | if (ri->getType(config->isMips64EL) == pairTy && |
510 | ri->getSymbol(config->isMips64EL) == symIndex) |
511 | return target->getImplicitAddend(buf: buf + ri->r_offset, type: pairTy); |
512 | |
513 | warn(msg: "can't find matching " + toString(type: pairTy) + " relocation for " + |
514 | toString(type)); |
515 | return 0; |
516 | } |
517 | |
518 | // Custom error message if Sym is defined in a discarded section. |
519 | template <class ELFT> |
520 | static std::string maybeReportDiscarded(Undefined &sym) { |
521 | auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); |
522 | if (!file || !sym.discardedSecIdx) |
523 | return "" ; |
524 | ArrayRef<typename ELFT::Shdr> objSections = |
525 | file->template getELFShdrs<ELFT>(); |
526 | |
527 | std::string msg; |
528 | if (sym.type == ELF::STT_SECTION) { |
529 | msg = "relocation refers to a discarded section: " ; |
530 | msg += CHECK( |
531 | file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); |
532 | } else { |
533 | msg = "relocation refers to a symbol in a discarded section: " + |
534 | toString(sym); |
535 | } |
536 | msg += "\n>>> defined in " + toString(file); |
537 | |
538 | Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; |
539 | if (elfSec.sh_type != SHT_GROUP) |
540 | return msg; |
541 | |
542 | // If the discarded section is a COMDAT. |
543 | StringRef signature = file->getShtGroupSignature(objSections, elfSec); |
544 | if (const InputFile *prevailing = |
545 | symtab.comdatGroups.lookup(Val: CachedHashStringRef(signature))) { |
546 | msg += "\n>>> section group signature: " + signature.str() + |
547 | "\n>>> prevailing definition is in " + toString(f: prevailing); |
548 | if (sym.nonPrevailing) { |
549 | msg += "\n>>> or the symbol in the prevailing group had STB_WEAK " |
550 | "binding and the symbol in a non-prevailing group had STB_GLOBAL " |
551 | "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding " |
552 | "signature is not supported" ; |
553 | } |
554 | } |
555 | return msg; |
556 | } |
557 | |
558 | namespace { |
559 | // Undefined diagnostics are collected in a vector and emitted once all of |
560 | // them are known, so that some postprocessing on the list of undefined symbols |
561 | // can happen before lld emits diagnostics. |
562 | struct UndefinedDiag { |
563 | Undefined *sym; |
564 | struct Loc { |
565 | InputSectionBase *sec; |
566 | uint64_t offset; |
567 | }; |
568 | std::vector<Loc> locs; |
569 | bool isWarning; |
570 | }; |
571 | |
572 | std::vector<UndefinedDiag> undefs; |
573 | std::mutex relocMutex; |
574 | } |
575 | |
576 | // Check whether the definition name def is a mangled function name that matches |
577 | // the reference name ref. |
578 | static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { |
579 | llvm::ItaniumPartialDemangler d; |
580 | std::string name = def.str(); |
581 | if (d.partialDemangle(MangledName: name.c_str())) |
582 | return false; |
583 | char *buf = d.getFunctionName(Buf: nullptr, N: nullptr); |
584 | if (!buf) |
585 | return false; |
586 | bool ret = ref == buf; |
587 | free(ptr: buf); |
588 | return ret; |
589 | } |
590 | |
591 | // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns |
592 | // the suggested symbol, which is either in the symbol table, or in the same |
593 | // file of sym. |
594 | static const Symbol *getAlternativeSpelling(const Undefined &sym, |
595 | std::string &pre_hint, |
596 | std::string &post_hint) { |
597 | DenseMap<StringRef, const Symbol *> map; |
598 | if (sym.file && sym.file->kind() == InputFile::ObjKind) { |
599 | auto *file = cast<ELFFileBase>(Val: sym.file); |
600 | // If sym is a symbol defined in a discarded section, maybeReportDiscarded() |
601 | // will give an error. Don't suggest an alternative spelling. |
602 | if (file && sym.discardedSecIdx != 0 && |
603 | file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) |
604 | return nullptr; |
605 | |
606 | // Build a map of local defined symbols. |
607 | for (const Symbol *s : sym.file->getSymbols()) |
608 | if (s->isLocal() && s->isDefined() && !s->getName().empty()) |
609 | map.try_emplace(Key: s->getName(), Args&: s); |
610 | } |
611 | |
612 | auto suggest = [&](StringRef newName) -> const Symbol * { |
613 | // If defined locally. |
614 | if (const Symbol *s = map.lookup(Val: newName)) |
615 | return s; |
616 | |
617 | // If in the symbol table and not undefined. |
618 | if (const Symbol *s = symtab.find(name: newName)) |
619 | if (!s->isUndefined()) |
620 | return s; |
621 | |
622 | return nullptr; |
623 | }; |
624 | |
625 | // This loop enumerates all strings of Levenshtein distance 1 as typo |
626 | // correction candidates and suggests the one that exists as a non-undefined |
627 | // symbol. |
628 | StringRef name = sym.getName(); |
629 | for (size_t i = 0, e = name.size(); i != e + 1; ++i) { |
630 | // Insert a character before name[i]. |
631 | std::string newName = (name.substr(Start: 0, N: i) + "0" + name.substr(Start: i)).str(); |
632 | for (char c = '0'; c <= 'z'; ++c) { |
633 | newName[i] = c; |
634 | if (const Symbol *s = suggest(newName)) |
635 | return s; |
636 | } |
637 | if (i == e) |
638 | break; |
639 | |
640 | // Substitute name[i]. |
641 | newName = std::string(name); |
642 | for (char c = '0'; c <= 'z'; ++c) { |
643 | newName[i] = c; |
644 | if (const Symbol *s = suggest(newName)) |
645 | return s; |
646 | } |
647 | |
648 | // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is |
649 | // common. |
650 | if (i + 1 < e) { |
651 | newName[i] = name[i + 1]; |
652 | newName[i + 1] = name[i]; |
653 | if (const Symbol *s = suggest(newName)) |
654 | return s; |
655 | } |
656 | |
657 | // Delete name[i]. |
658 | newName = (name.substr(Start: 0, N: i) + name.substr(Start: i + 1)).str(); |
659 | if (const Symbol *s = suggest(newName)) |
660 | return s; |
661 | } |
662 | |
663 | // Case mismatch, e.g. Foo vs FOO. |
664 | for (auto &it : map) |
665 | if (name.equals_insensitive(RHS: it.first)) |
666 | return it.second; |
667 | for (Symbol *sym : symtab.getSymbols()) |
668 | if (!sym->isUndefined() && name.equals_insensitive(RHS: sym->getName())) |
669 | return sym; |
670 | |
671 | // The reference may be a mangled name while the definition is not. Suggest a |
672 | // missing extern "C". |
673 | if (name.starts_with(Prefix: "_Z" )) { |
674 | std::string buf = name.str(); |
675 | llvm::ItaniumPartialDemangler d; |
676 | if (!d.partialDemangle(MangledName: buf.c_str())) |
677 | if (char *buf = d.getFunctionName(Buf: nullptr, N: nullptr)) { |
678 | const Symbol *s = suggest(buf); |
679 | free(ptr: buf); |
680 | if (s) { |
681 | pre_hint = ": extern \"C\" " ; |
682 | return s; |
683 | } |
684 | } |
685 | } else { |
686 | const Symbol *s = nullptr; |
687 | for (auto &it : map) |
688 | if (canSuggestExternCForCXX(ref: name, def: it.first)) { |
689 | s = it.second; |
690 | break; |
691 | } |
692 | if (!s) |
693 | for (Symbol *sym : symtab.getSymbols()) |
694 | if (canSuggestExternCForCXX(ref: name, def: sym->getName())) { |
695 | s = sym; |
696 | break; |
697 | } |
698 | if (s) { |
699 | pre_hint = " to declare " ; |
700 | post_hint = " as extern \"C\"?" ; |
701 | return s; |
702 | } |
703 | } |
704 | |
705 | return nullptr; |
706 | } |
707 | |
708 | static void reportUndefinedSymbol(const UndefinedDiag &undef, |
709 | bool correctSpelling) { |
710 | Undefined &sym = *undef.sym; |
711 | |
712 | auto visibility = [&]() -> std::string { |
713 | switch (sym.visibility()) { |
714 | case STV_INTERNAL: |
715 | return "internal " ; |
716 | case STV_HIDDEN: |
717 | return "hidden " ; |
718 | case STV_PROTECTED: |
719 | return "protected " ; |
720 | default: |
721 | return "" ; |
722 | } |
723 | }; |
724 | |
725 | std::string msg; |
726 | switch (config->ekind) { |
727 | case ELF32LEKind: |
728 | msg = maybeReportDiscarded<ELF32LE>(sym); |
729 | break; |
730 | case ELF32BEKind: |
731 | msg = maybeReportDiscarded<ELF32BE>(sym); |
732 | break; |
733 | case ELF64LEKind: |
734 | msg = maybeReportDiscarded<ELF64LE>(sym); |
735 | break; |
736 | case ELF64BEKind: |
737 | msg = maybeReportDiscarded<ELF64BE>(sym); |
738 | break; |
739 | default: |
740 | llvm_unreachable("" ); |
741 | } |
742 | if (msg.empty()) |
743 | msg = "undefined " + visibility() + "symbol: " + toString(sym); |
744 | |
745 | const size_t maxUndefReferences = 3; |
746 | size_t i = 0; |
747 | for (UndefinedDiag::Loc l : undef.locs) { |
748 | if (i >= maxUndefReferences) |
749 | break; |
750 | InputSectionBase &sec = *l.sec; |
751 | uint64_t offset = l.offset; |
752 | |
753 | msg += "\n>>> referenced by " ; |
754 | // In the absence of line number information, utilize DW_TAG_variable (if |
755 | // present) for the enclosing symbol (e.g. var in `int *a[] = {&undef};`). |
756 | Symbol *enclosing = sec.getEnclosingSymbol(offset); |
757 | std::string src = sec.getSrcMsg(sym: enclosing ? *enclosing : sym, offset); |
758 | if (!src.empty()) |
759 | msg += src + "\n>>> " ; |
760 | msg += sec.getObjMsg(offset); |
761 | i++; |
762 | } |
763 | |
764 | if (i < undef.locs.size()) |
765 | msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times" ) |
766 | .str(); |
767 | |
768 | if (correctSpelling) { |
769 | std::string pre_hint = ": " , post_hint; |
770 | if (const Symbol *corrected = |
771 | getAlternativeSpelling(sym, pre_hint, post_hint)) { |
772 | msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; |
773 | if (corrected->file) |
774 | msg += "\n>>> defined in: " + toString(f: corrected->file); |
775 | } |
776 | } |
777 | |
778 | if (sym.getName().starts_with(Prefix: "_ZTV" )) |
779 | msg += |
780 | "\n>>> the vtable symbol may be undefined because the class is missing " |
781 | "its key function (see https://lld.llvm.org/missingkeyfunction)" ; |
782 | if (config->gcSections && config->zStartStopGC && |
783 | sym.getName().starts_with(Prefix: "__start_" )) { |
784 | msg += "\n>>> the encapsulation symbol needs to be retained under " |
785 | "--gc-sections properly; consider -z nostart-stop-gc " |
786 | "(see https://lld.llvm.org/ELF/start-stop-gc)" ; |
787 | } |
788 | |
789 | if (undef.isWarning) |
790 | warn(msg); |
791 | else |
792 | error(msg, tag: ErrorTag::SymbolNotFound, args: {sym.getName()}); |
793 | } |
794 | |
795 | void elf::reportUndefinedSymbols() { |
796 | // Find the first "undefined symbol" diagnostic for each diagnostic, and |
797 | // collect all "referenced from" lines at the first diagnostic. |
798 | DenseMap<Symbol *, UndefinedDiag *> firstRef; |
799 | for (UndefinedDiag &undef : undefs) { |
800 | assert(undef.locs.size() == 1); |
801 | if (UndefinedDiag *canon = firstRef.lookup(Val: undef.sym)) { |
802 | canon->locs.push_back(x: undef.locs[0]); |
803 | undef.locs.clear(); |
804 | } else |
805 | firstRef[undef.sym] = &undef; |
806 | } |
807 | |
808 | // Enable spell corrector for the first 2 diagnostics. |
809 | for (const auto &[i, undef] : llvm::enumerate(First&: undefs)) |
810 | if (!undef.locs.empty()) |
811 | reportUndefinedSymbol(undef, correctSpelling: i < 2); |
812 | undefs.clear(); |
813 | } |
814 | |
815 | // Report an undefined symbol if necessary. |
816 | // Returns true if the undefined symbol will produce an error message. |
817 | static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec, |
818 | uint64_t offset) { |
819 | std::lock_guard<std::mutex> lock(relocMutex); |
820 | // If versioned, issue an error (even if the symbol is weak) because we don't |
821 | // know the defining filename which is required to construct a Verneed entry. |
822 | if (sym.hasVersionSuffix) { |
823 | undefs.push_back(x: {.sym: &sym, .locs: {{.sec: &sec, .offset: offset}}, .isWarning: false}); |
824 | return true; |
825 | } |
826 | if (sym.isWeak()) |
827 | return false; |
828 | |
829 | bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT; |
830 | if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) |
831 | return false; |
832 | |
833 | // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc |
834 | // which references a switch table in a discarded .rodata/.text section. The |
835 | // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF |
836 | // spec says references from outside the group to a STB_LOCAL symbol are not |
837 | // allowed. Work around the bug. |
838 | // |
839 | // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible |
840 | // because .LC0-.LTOC is not representable if the two labels are in different |
841 | // .got2 |
842 | if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc" )) |
843 | return false; |
844 | |
845 | bool isWarning = |
846 | (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || |
847 | config->noinhibitExec; |
848 | undefs.push_back(x: {.sym: &sym, .locs: {{.sec: &sec, .offset: offset}}, .isWarning: isWarning}); |
849 | return !isWarning; |
850 | } |
851 | |
852 | // MIPS N32 ABI treats series of successive relocations with the same offset |
853 | // as a single relocation. The similar approach used by N64 ABI, but this ABI |
854 | // packs all relocations into the single relocation record. Here we emulate |
855 | // this for the N32 ABI. Iterate over relocation with the same offset and put |
856 | // theirs types into the single bit-set. |
857 | template <class RelTy> |
858 | RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const { |
859 | RelType type = 0; |
860 | uint64_t offset = rel->r_offset; |
861 | |
862 | int n = 0; |
863 | while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset) |
864 | type |= (rel++)->getType(config->isMips64EL) << (8 * n++); |
865 | return type; |
866 | } |
867 | |
868 | template <bool shard = false> |
869 | static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec, |
870 | Symbol &sym, int64_t addend, RelExpr expr, |
871 | RelType type) { |
872 | Partition &part = isec.getPartition(); |
873 | |
874 | if (sym.isTagged()) { |
875 | std::lock_guard<std::mutex> lock(relocMutex); |
876 | part.relaDyn->addRelativeReloc(dynType: target->relativeRel, isec, offsetInSec, sym, |
877 | addend, addendRelType: type, expr); |
878 | // With MTE globals, we always want to derive the address tag by `ldg`-ing |
879 | // the symbol. When we have a RELATIVE relocation though, we no longer have |
880 | // a reference to the symbol. Because of this, when we have an addend that |
881 | // puts the result of the RELATIVE relocation out-of-bounds of the symbol |
882 | // (e.g. the addend is outside of [0, sym.getSize()]), the AArch64 MemtagABI |
883 | // says we should store the offset to the start of the symbol in the target |
884 | // field. This is described in further detail in: |
885 | // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative |
886 | if (addend < 0 || static_cast<uint64_t>(addend) >= sym.getSize()) |
887 | isec.relocations.push_back(Elt: {.expr: expr, .type: type, .offset: offsetInSec, .addend: addend, .sym: &sym}); |
888 | return; |
889 | } |
890 | |
891 | // Add a relative relocation. If relrDyn section is enabled, and the |
892 | // relocation offset is guaranteed to be even, add the relocation to |
893 | // the relrDyn section, otherwise add it to the relaDyn section. |
894 | // relrDyn sections don't support odd offsets. Also, relrDyn sections |
895 | // don't store the addend values, so we must write it to the relocated |
896 | // address. |
897 | if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) { |
898 | isec.addReloc(r: {.expr: expr, .type: type, .offset: offsetInSec, .addend: addend, .sym: &sym}); |
899 | if (shard) |
900 | part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back( |
901 | Elt: {.inputSec: &isec, .offsetInSec: offsetInSec}); |
902 | else |
903 | part.relrDyn->relocs.push_back(Elt: {.inputSec: &isec, .offsetInSec: offsetInSec}); |
904 | return; |
905 | } |
906 | part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec, |
907 | sym, addend, type, expr); |
908 | } |
909 | |
910 | template <class PltSection, class GotPltSection> |
911 | static void addPltEntry(PltSection &plt, GotPltSection &gotPlt, |
912 | RelocationBaseSection &rel, RelType type, Symbol &sym) { |
913 | plt.addEntry(sym); |
914 | gotPlt.addEntry(sym); |
915 | rel.addReloc({type, &gotPlt, sym.getGotPltOffset(), |
916 | sym.isPreemptible ? DynamicReloc::AgainstSymbol |
917 | : DynamicReloc::AddendOnlyWithTargetVA, |
918 | sym, 0, R_ABS}); |
919 | } |
920 | |
921 | void elf::addGotEntry(Symbol &sym) { |
922 | in.got->addEntry(sym); |
923 | uint64_t off = sym.getGotOffset(); |
924 | |
925 | // If preemptible, emit a GLOB_DAT relocation. |
926 | if (sym.isPreemptible) { |
927 | mainPart->relaDyn->addReloc(reloc: {target->gotRel, in.got.get(), off, |
928 | DynamicReloc::AgainstSymbol, sym, 0, R_ABS}); |
929 | return; |
930 | } |
931 | |
932 | // Otherwise, the value is either a link-time constant or the load base |
933 | // plus a constant. |
934 | if (!config->isPic || isAbsolute(sym)) |
935 | in.got->addConstant(r: {.expr: R_ABS, .type: target->symbolicRel, .offset: off, .addend: 0, .sym: &sym}); |
936 | else |
937 | addRelativeReloc(isec&: *in.got, offsetInSec: off, sym, addend: 0, expr: R_ABS, type: target->symbolicRel); |
938 | } |
939 | |
940 | static void addTpOffsetGotEntry(Symbol &sym) { |
941 | in.got->addEntry(sym); |
942 | uint64_t off = sym.getGotOffset(); |
943 | if (!sym.isPreemptible && !config->shared) { |
944 | in.got->addConstant(r: {.expr: R_TPREL, .type: target->symbolicRel, .offset: off, .addend: 0, .sym: &sym}); |
945 | return; |
946 | } |
947 | mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( |
948 | dynType: target->tlsGotRel, sec&: *in.got, offsetInSec: off, sym, addendRelType: target->symbolicRel); |
949 | } |
950 | |
951 | // Return true if we can define a symbol in the executable that |
952 | // contains the value/function of a symbol defined in a shared |
953 | // library. |
954 | static bool canDefineSymbolInExecutable(Symbol &sym) { |
955 | // If the symbol has default visibility the symbol defined in the |
956 | // executable will preempt it. |
957 | // Note that we want the visibility of the shared symbol itself, not |
958 | // the visibility of the symbol in the output file we are producing. |
959 | if (!sym.dsoProtected) |
960 | return true; |
961 | |
962 | // If we are allowed to break address equality of functions, defining |
963 | // a plt entry will allow the program to call the function in the |
964 | // .so, but the .so and the executable will no agree on the address |
965 | // of the function. Similar logic for objects. |
966 | return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || |
967 | (sym.isObject() && config->ignoreDataAddressEquality)); |
968 | } |
969 | |
970 | // Returns true if a given relocation can be computed at link-time. |
971 | // This only handles relocation types expected in processAux. |
972 | // |
973 | // For instance, we know the offset from a relocation to its target at |
974 | // link-time if the relocation is PC-relative and refers a |
975 | // non-interposable function in the same executable. This function |
976 | // will return true for such relocation. |
977 | // |
978 | // If this function returns false, that means we need to emit a |
979 | // dynamic relocation so that the relocation will be fixed at load-time. |
980 | bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type, |
981 | const Symbol &sym, |
982 | uint64_t relOff) const { |
983 | // These expressions always compute a constant |
984 | if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE, |
985 | R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, |
986 | R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, |
987 | R_PLT_PC, R_PLT_GOTREL, R_PLT_GOTPLT, R_GOTPLT_GOTREL, R_GOTPLT_PC, |
988 | R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, |
989 | R_AARCH64_GOT_PAGE, R_LOONGARCH_PLT_PAGE_PC, R_LOONGARCH_GOT, |
990 | R_LOONGARCH_GOT_PAGE_PC>(expr: e)) |
991 | return true; |
992 | |
993 | // These never do, except if the entire file is position dependent or if |
994 | // only the low bits are used. |
995 | if (e == R_GOT || e == R_PLT) |
996 | return target->usesOnlyLowPageBits(type) || !config->isPic; |
997 | |
998 | // R_AARCH64_AUTH_ABS64 requires a dynamic relocation. |
999 | if (sym.isPreemptible || e == R_AARCH64_AUTH) |
1000 | return false; |
1001 | if (!config->isPic) |
1002 | return true; |
1003 | |
1004 | // Constant when referencing a non-preemptible symbol. |
1005 | if (e == R_SIZE || e == R_RISCV_LEB128) |
1006 | return true; |
1007 | |
1008 | // For the target and the relocation, we want to know if they are |
1009 | // absolute or relative. |
1010 | bool absVal = isAbsoluteValue(sym); |
1011 | bool relE = isRelExpr(expr: e); |
1012 | if (absVal && !relE) |
1013 | return true; |
1014 | if (!absVal && relE) |
1015 | return true; |
1016 | if (!absVal && !relE) |
1017 | return target->usesOnlyLowPageBits(type); |
1018 | |
1019 | assert(absVal && relE); |
1020 | |
1021 | // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol |
1022 | // in PIC mode. This is a little strange, but it allows us to link function |
1023 | // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). |
1024 | // Normally such a call will be guarded with a comparison, which will load a |
1025 | // zero from the GOT. |
1026 | if (sym.isUndefWeak()) |
1027 | return true; |
1028 | |
1029 | // We set the final symbols values for linker script defined symbols later. |
1030 | // They always can be computed as a link time constant. |
1031 | if (sym.scriptDefined) |
1032 | return true; |
1033 | |
1034 | error(msg: "relocation " + toString(type) + " cannot refer to absolute symbol: " + |
1035 | toString(sym) + getLocation(s&: *sec, sym, off: relOff)); |
1036 | return true; |
1037 | } |
1038 | |
1039 | // The reason we have to do this early scan is as follows |
1040 | // * To mmap the output file, we need to know the size |
1041 | // * For that, we need to know how many dynamic relocs we will have. |
1042 | // It might be possible to avoid this by outputting the file with write: |
1043 | // * Write the allocated output sections, computing addresses. |
1044 | // * Apply relocations, recording which ones require a dynamic reloc. |
1045 | // * Write the dynamic relocations. |
1046 | // * Write the rest of the file. |
1047 | // This would have some drawbacks. For example, we would only know if .rela.dyn |
1048 | // is needed after applying relocations. If it is, it will go after rw and rx |
1049 | // sections. Given that it is ro, we will need an extra PT_LOAD. This |
1050 | // complicates things for the dynamic linker and means we would have to reserve |
1051 | // space for the extra PT_LOAD even if we end up not using it. |
1052 | void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset, |
1053 | Symbol &sym, int64_t addend) const { |
1054 | // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT |
1055 | // indirection. |
1056 | const bool isIfunc = sym.isGnuIFunc(); |
1057 | if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) { |
1058 | if (expr != R_GOT_PC) { |
1059 | // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call |
1060 | // stub type. It should be ignored if optimized to R_PC. |
1061 | if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) |
1062 | addend &= ~0x8000; |
1063 | // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into |
1064 | // call __tls_get_addr even if the symbol is non-preemptible. |
1065 | if (!(config->emachine == EM_HEXAGON && |
1066 | (type == R_HEX_GD_PLT_B22_PCREL || |
1067 | type == R_HEX_GD_PLT_B22_PCREL_X || |
1068 | type == R_HEX_GD_PLT_B32_PCREL_X))) |
1069 | expr = fromPlt(expr); |
1070 | } else if (!isAbsoluteValue(sym)) { |
1071 | expr = |
1072 | target->adjustGotPcExpr(type, addend, loc: sec->content().data() + offset); |
1073 | // If the target adjusted the expression to R_RELAX_GOT_PC, we may end up |
1074 | // needing the GOT if we can't relax everything. |
1075 | if (expr == R_RELAX_GOT_PC) |
1076 | in.got->hasGotOffRel.store(i: true, m: std::memory_order_relaxed); |
1077 | } |
1078 | } |
1079 | |
1080 | // We were asked not to generate PLT entries for ifuncs. Instead, pass the |
1081 | // direct relocation on through. |
1082 | if (LLVM_UNLIKELY(isIfunc) && config->zIfuncNoplt) { |
1083 | std::lock_guard<std::mutex> lock(relocMutex); |
1084 | sym.exportDynamic = true; |
1085 | mainPart->relaDyn->addSymbolReloc(dynType: type, isec&: *sec, offsetInSec: offset, sym, addend, addendRelType: type); |
1086 | return; |
1087 | } |
1088 | |
1089 | if (needsGot(expr)) { |
1090 | if (config->emachine == EM_MIPS) { |
1091 | // MIPS ABI has special rules to process GOT entries and doesn't |
1092 | // require relocation entries for them. A special case is TLS |
1093 | // relocations. In that case dynamic loader applies dynamic |
1094 | // relocations to initialize TLS GOT entries. |
1095 | // See "Global Offset Table" in Chapter 5 in the following document |
1096 | // for detailed description: |
1097 | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
1098 | in.mipsGot->addEntry(file&: *sec->file, sym, addend, expr); |
1099 | } else if (!sym.isTls() || config->emachine != EM_LOONGARCH) { |
1100 | // Many LoongArch TLS relocs reuse the R_LOONGARCH_GOT type, in which |
1101 | // case the NEEDS_GOT flag shouldn't get set. |
1102 | sym.setFlags(NEEDS_GOT); |
1103 | } |
1104 | } else if (needsPlt(expr)) { |
1105 | sym.setFlags(NEEDS_PLT); |
1106 | } else if (LLVM_UNLIKELY(isIfunc)) { |
1107 | sym.setFlags(HAS_DIRECT_RELOC); |
1108 | } |
1109 | |
1110 | // If the relocation is known to be a link-time constant, we know no dynamic |
1111 | // relocation will be created, pass the control to relocateAlloc() or |
1112 | // relocateNonAlloc() to resolve it. |
1113 | // |
1114 | // The behavior of an undefined weak reference is implementation defined. For |
1115 | // non-link-time constants, we resolve relocations statically (let |
1116 | // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic |
1117 | // relocations for -pie and -shared. |
1118 | // |
1119 | // The general expectation of -no-pie static linking is that there is no |
1120 | // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for |
1121 | // -shared matches the spirit of its -z undefs default. -pie has freedom on |
1122 | // choices, and we choose dynamic relocations to be consistent with the |
1123 | // handling of GOT-generating relocations. |
1124 | if (isStaticLinkTimeConstant(e: expr, type, sym, relOff: offset) || |
1125 | (!config->isPic && sym.isUndefWeak())) { |
1126 | sec->addReloc(r: {.expr: expr, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1127 | return; |
1128 | } |
1129 | |
1130 | // Use a simple -z notext rule that treats all sections except .eh_frame as |
1131 | // writable. GNU ld does not produce dynamic relocations in .eh_frame (and our |
1132 | // SectionBase::getOffset would incorrectly adjust the offset). |
1133 | // |
1134 | // For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel |
1135 | // conversion. We still emit a dynamic relocation. |
1136 | bool canWrite = (sec->flags & SHF_WRITE) || |
1137 | !(config->zText || |
1138 | (isa<EhInputSection>(Val: sec) && config->emachine != EM_MIPS)); |
1139 | if (canWrite) { |
1140 | RelType rel = target->getDynRel(type); |
1141 | if (oneof<R_GOT, R_LOONGARCH_GOT>(expr) || |
1142 | (rel == target->symbolicRel && !sym.isPreemptible)) { |
1143 | addRelativeReloc<true>(isec&: *sec, offsetInSec: offset, sym, addend, expr, type); |
1144 | return; |
1145 | } |
1146 | if (rel != 0) { |
1147 | if (config->emachine == EM_MIPS && rel == target->symbolicRel) |
1148 | rel = target->relativeRel; |
1149 | std::lock_guard<std::mutex> lock(relocMutex); |
1150 | Partition &part = sec->getPartition(); |
1151 | if (config->emachine == EM_AARCH64 && type == R_AARCH64_AUTH_ABS64) { |
1152 | // For a preemptible symbol, we can't use a relative relocation. For an |
1153 | // undefined symbol, we can't compute offset at link-time and use a |
1154 | // relative relocation. Use a symbolic relocation instead. |
1155 | if (sym.isPreemptible) { |
1156 | part.relaDyn->addSymbolReloc(dynType: type, isec&: *sec, offsetInSec: offset, sym, addend, addendRelType: type); |
1157 | } else { |
1158 | part.relaDyn->addReloc(reloc: {R_AARCH64_AUTH_RELATIVE, sec, offset, |
1159 | DynamicReloc::AddendOnlyWithTargetVA, sym, |
1160 | addend, R_ABS}); |
1161 | } |
1162 | return; |
1163 | } |
1164 | part.relaDyn->addSymbolReloc(dynType: rel, isec&: *sec, offsetInSec: offset, sym, addend, addendRelType: type); |
1165 | |
1166 | // MIPS ABI turns using of GOT and dynamic relocations inside out. |
1167 | // While regular ABI uses dynamic relocations to fill up GOT entries |
1168 | // MIPS ABI requires dynamic linker to fills up GOT entries using |
1169 | // specially sorted dynamic symbol table. This affects even dynamic |
1170 | // relocations against symbols which do not require GOT entries |
1171 | // creation explicitly, i.e. do not have any GOT-relocations. So if |
1172 | // a preemptible symbol has a dynamic relocation we anyway have |
1173 | // to create a GOT entry for it. |
1174 | // If a non-preemptible symbol has a dynamic relocation against it, |
1175 | // dynamic linker takes it st_value, adds offset and writes down |
1176 | // result of the dynamic relocation. In case of preemptible symbol |
1177 | // dynamic linker performs symbol resolution, writes the symbol value |
1178 | // to the GOT entry and reads the GOT entry when it needs to perform |
1179 | // a dynamic relocation. |
1180 | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 |
1181 | if (config->emachine == EM_MIPS) |
1182 | in.mipsGot->addEntry(file&: *sec->file, sym, addend, expr); |
1183 | return; |
1184 | } |
1185 | } |
1186 | |
1187 | // When producing an executable, we can perform copy relocations (for |
1188 | // STT_OBJECT) and canonical PLT (for STT_FUNC) if sym is defined by a DSO. |
1189 | // Copy relocations/canonical PLT entries are unsupported for |
1190 | // R_AARCH64_AUTH_ABS64. |
1191 | if (!config->shared && sym.isShared() && |
1192 | !(config->emachine == EM_AARCH64 && type == R_AARCH64_AUTH_ABS64)) { |
1193 | if (!canDefineSymbolInExecutable(sym)) { |
1194 | errorOrWarn(msg: "cannot preempt symbol: " + toString(sym) + |
1195 | getLocation(s&: *sec, sym, off: offset)); |
1196 | return; |
1197 | } |
1198 | |
1199 | if (sym.isObject()) { |
1200 | // Produce a copy relocation. |
1201 | if (auto *ss = dyn_cast<SharedSymbol>(Val: &sym)) { |
1202 | if (!config->zCopyreloc) |
1203 | error(msg: "unresolvable relocation " + toString(type) + |
1204 | " against symbol '" + toString(*ss) + |
1205 | "'; recompile with -fPIC or remove '-z nocopyreloc'" + |
1206 | getLocation(s&: *sec, sym, off: offset)); |
1207 | sym.setFlags(NEEDS_COPY); |
1208 | } |
1209 | sec->addReloc(r: {.expr: expr, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1210 | return; |
1211 | } |
1212 | |
1213 | // This handles a non PIC program call to function in a shared library. In |
1214 | // an ideal world, we could just report an error saying the relocation can |
1215 | // overflow at runtime. In the real world with glibc, crt1.o has a |
1216 | // R_X86_64_PC32 pointing to libc.so. |
1217 | // |
1218 | // The general idea on how to handle such cases is to create a PLT entry and |
1219 | // use that as the function value. |
1220 | // |
1221 | // For the static linking part, we just return a plt expr and everything |
1222 | // else will use the PLT entry as the address. |
1223 | // |
1224 | // The remaining problem is making sure pointer equality still works. We |
1225 | // need the help of the dynamic linker for that. We let it know that we have |
1226 | // a direct reference to a so symbol by creating an undefined symbol with a |
1227 | // non zero st_value. Seeing that, the dynamic linker resolves the symbol to |
1228 | // the value of the symbol we created. This is true even for got entries, so |
1229 | // pointer equality is maintained. To avoid an infinite loop, the only entry |
1230 | // that points to the real function is a dedicated got entry used by the |
1231 | // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, |
1232 | // R_386_JMP_SLOT, etc). |
1233 | |
1234 | // For position independent executable on i386, the plt entry requires ebx |
1235 | // to be set. This causes two problems: |
1236 | // * If some code has a direct reference to a function, it was probably |
1237 | // compiled without -fPIE/-fPIC and doesn't maintain ebx. |
1238 | // * If a library definition gets preempted to the executable, it will have |
1239 | // the wrong ebx value. |
1240 | if (sym.isFunc()) { |
1241 | if (config->pie && config->emachine == EM_386) |
1242 | errorOrWarn(msg: "symbol '" + toString(sym) + |
1243 | "' cannot be preempted; recompile with -fPIE" + |
1244 | getLocation(s&: *sec, sym, off: offset)); |
1245 | sym.setFlags(NEEDS_COPY | NEEDS_PLT); |
1246 | sec->addReloc(r: {.expr: expr, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1247 | return; |
1248 | } |
1249 | } |
1250 | |
1251 | errorOrWarn(msg: "relocation " + toString(type) + " cannot be used against " + |
1252 | (sym.getName().empty() ? "local symbol" |
1253 | : "symbol '" + toString(sym) + "'" ) + |
1254 | "; recompile with -fPIC" + getLocation(s&: *sec, sym, off: offset)); |
1255 | } |
1256 | |
1257 | // This function is similar to the `handleTlsRelocation`. MIPS does not |
1258 | // support any relaxations for TLS relocations so by factoring out MIPS |
1259 | // handling in to the separate function we can simplify the code and do not |
1260 | // pollute other `handleTlsRelocation` by MIPS `ifs` statements. |
1261 | // Mips has a custom MipsGotSection that handles the writing of GOT entries |
1262 | // without dynamic relocations. |
1263 | static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, |
1264 | InputSectionBase &c, uint64_t offset, |
1265 | int64_t addend, RelExpr expr) { |
1266 | if (expr == R_MIPS_TLSLD) { |
1267 | in.mipsGot->addTlsIndex(file&: *c.file); |
1268 | c.addReloc(r: {.expr: expr, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1269 | return 1; |
1270 | } |
1271 | if (expr == R_MIPS_TLSGD) { |
1272 | in.mipsGot->addDynTlsEntry(file&: *c.file, sym); |
1273 | c.addReloc(r: {.expr: expr, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1274 | return 1; |
1275 | } |
1276 | return 0; |
1277 | } |
1278 | |
1279 | // Notes about General Dynamic and Local Dynamic TLS models below. They may |
1280 | // require the generation of a pair of GOT entries that have associated dynamic |
1281 | // relocations. The pair of GOT entries created are of the form GOT[e0] Module |
1282 | // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of |
1283 | // symbol in TLS block. |
1284 | // |
1285 | // Returns the number of relocations processed. |
1286 | static unsigned handleTlsRelocation(RelType type, Symbol &sym, |
1287 | InputSectionBase &c, uint64_t offset, |
1288 | int64_t addend, RelExpr expr) { |
1289 | if (expr == R_TPREL || expr == R_TPREL_NEG) { |
1290 | if (config->shared) { |
1291 | errorOrWarn(msg: "relocation " + toString(type) + " against " + toString(sym) + |
1292 | " cannot be used with -shared" + getLocation(s&: c, sym, off: offset)); |
1293 | return 1; |
1294 | } |
1295 | return 0; |
1296 | } |
1297 | |
1298 | if (config->emachine == EM_MIPS) |
1299 | return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); |
1300 | bool isRISCV = config->emachine == EM_RISCV; |
1301 | |
1302 | if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, |
1303 | R_TLSDESC_GOTPLT>(expr) && |
1304 | config->shared) { |
1305 | // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} reference a label. Do not |
1306 | // set NEEDS_TLSDESC on the label. |
1307 | if (expr != R_TLSDESC_CALL) { |
1308 | if (!isRISCV || type == R_RISCV_TLSDESC_HI20) |
1309 | sym.setFlags(NEEDS_TLSDESC); |
1310 | c.addReloc(r: {.expr: expr, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1311 | } |
1312 | return 1; |
1313 | } |
1314 | |
1315 | // ARM, Hexagon, LoongArch and RISC-V do not support GD/LD to IE/LE |
1316 | // optimizations. |
1317 | // RISC-V supports TLSDESC to IE/LE optimizations. |
1318 | // For PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable |
1319 | // optimization as well. |
1320 | bool execOptimize = |
1321 | !config->shared && config->emachine != EM_ARM && |
1322 | config->emachine != EM_HEXAGON && config->emachine != EM_LOONGARCH && |
1323 | !(isRISCV && expr != R_TLSDESC_PC && expr != R_TLSDESC_CALL) && |
1324 | !c.file->ppc64DisableTLSRelax; |
1325 | |
1326 | // If we are producing an executable and the symbol is non-preemptable, it |
1327 | // must be defined and the code sequence can be optimized to use Local-Exec. |
1328 | // |
1329 | // ARM and RISC-V do not support any relaxations for TLS relocations, however, |
1330 | // we can omit the DTPMOD dynamic relocations and resolve them at link time |
1331 | // because them are always 1. This may be necessary for static linking as |
1332 | // DTPMOD may not be expected at load time. |
1333 | bool isLocalInExecutable = !sym.isPreemptible && !config->shared; |
1334 | |
1335 | // Local Dynamic is for access to module local TLS variables, while still |
1336 | // being suitable for being dynamically loaded via dlopen. GOT[e0] is the |
1337 | // module index, with a special value of 0 for the current module. GOT[e1] is |
1338 | // unused. There only needs to be one module index entry. |
1339 | if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(expr)) { |
1340 | // Local-Dynamic relocs can be optimized to Local-Exec. |
1341 | if (execOptimize) { |
1342 | c.addReloc(r: {.expr: target->adjustTlsExpr(type, expr: R_RELAX_TLS_LD_TO_LE), .type: type, |
1343 | .offset: offset, .addend: addend, .sym: &sym}); |
1344 | return target->getTlsGdRelaxSkip(type); |
1345 | } |
1346 | if (expr == R_TLSLD_HINT) |
1347 | return 1; |
1348 | ctx.needsTlsLd.store(i: true, m: std::memory_order_relaxed); |
1349 | c.addReloc(r: {.expr: expr, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1350 | return 1; |
1351 | } |
1352 | |
1353 | // Local-Dynamic relocs can be optimized to Local-Exec. |
1354 | if (expr == R_DTPREL) { |
1355 | if (execOptimize) |
1356 | expr = target->adjustTlsExpr(type, expr: R_RELAX_TLS_LD_TO_LE); |
1357 | c.addReloc(r: {.expr: expr, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1358 | return 1; |
1359 | } |
1360 | |
1361 | // Local-Dynamic sequence where offset of tls variable relative to dynamic |
1362 | // thread pointer is stored in the got. This cannot be optimized to |
1363 | // Local-Exec. |
1364 | if (expr == R_TLSLD_GOT_OFF) { |
1365 | sym.setFlags(NEEDS_GOT_DTPREL); |
1366 | c.addReloc(r: {.expr: expr, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1367 | return 1; |
1368 | } |
1369 | |
1370 | if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, |
1371 | R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, |
1372 | R_LOONGARCH_TLSGD_PAGE_PC>(expr)) { |
1373 | if (!execOptimize) { |
1374 | sym.setFlags(NEEDS_TLSGD); |
1375 | c.addReloc(r: {.expr: expr, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1376 | return 1; |
1377 | } |
1378 | |
1379 | // Global-Dynamic/TLSDESC can be optimized to Initial-Exec or Local-Exec |
1380 | // depending on the symbol being locally defined or not. |
1381 | // |
1382 | // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} reference a non-preemptible |
1383 | // label, so the LE optimization will be categorized as |
1384 | // R_RELAX_TLS_GD_TO_LE. We fix the categorization in RISCV::relocateAlloc. |
1385 | if (sym.isPreemptible) { |
1386 | sym.setFlags(NEEDS_TLSGD_TO_IE); |
1387 | c.addReloc(r: {.expr: target->adjustTlsExpr(type, expr: R_RELAX_TLS_GD_TO_IE), .type: type, |
1388 | .offset: offset, .addend: addend, .sym: &sym}); |
1389 | } else { |
1390 | c.addReloc(r: {.expr: target->adjustTlsExpr(type, expr: R_RELAX_TLS_GD_TO_LE), .type: type, |
1391 | .offset: offset, .addend: addend, .sym: &sym}); |
1392 | } |
1393 | return target->getTlsGdRelaxSkip(type); |
1394 | } |
1395 | |
1396 | if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, |
1397 | R_LOONGARCH_GOT_PAGE_PC, R_GOT_OFF, R_TLSIE_HINT>(expr)) { |
1398 | ctx.hasTlsIe.store(i: true, m: std::memory_order_relaxed); |
1399 | // Initial-Exec relocs can be optimized to Local-Exec if the symbol is |
1400 | // locally defined. This is not supported on SystemZ. |
1401 | if (execOptimize && isLocalInExecutable && config->emachine != EM_S390) { |
1402 | c.addReloc(r: {.expr: R_RELAX_TLS_IE_TO_LE, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1403 | } else if (expr != R_TLSIE_HINT) { |
1404 | sym.setFlags(NEEDS_TLSIE); |
1405 | // R_GOT needs a relative relocation for PIC on i386 and Hexagon. |
1406 | if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type)) |
1407 | addRelativeReloc<true>(isec&: c, offsetInSec: offset, sym, addend, expr, type); |
1408 | else |
1409 | c.addReloc(r: {.expr: expr, .type: type, .offset: offset, .addend: addend, .sym: &sym}); |
1410 | } |
1411 | return 1; |
1412 | } |
1413 | |
1414 | return 0; |
1415 | } |
1416 | |
1417 | template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) { |
1418 | const RelTy &rel = *i; |
1419 | uint32_t symIndex = rel.getSymbol(config->isMips64EL); |
1420 | Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex); |
1421 | RelType type; |
1422 | if constexpr (ELFT::Is64Bits) { |
1423 | type = rel.getType(config->isMips64EL); |
1424 | ++i; |
1425 | } else { |
1426 | if (config->mipsN32Abi) { |
1427 | type = getMipsN32RelType(i); |
1428 | } else { |
1429 | type = rel.getType(config->isMips64EL); |
1430 | ++i; |
1431 | } |
1432 | } |
1433 | // Get an offset in an output section this relocation is applied to. |
1434 | uint64_t offset = getter.get(off: rel.r_offset); |
1435 | if (offset == uint64_t(-1)) |
1436 | return; |
1437 | |
1438 | RelExpr expr = target->getRelExpr(type, s: sym, loc: sec->content().data() + offset); |
1439 | int64_t addend = RelTy::IsRela |
1440 | ? getAddend<ELFT>(rel) |
1441 | : target->getImplicitAddend( |
1442 | buf: sec->content().data() + rel.r_offset, type); |
1443 | if (LLVM_UNLIKELY(config->emachine == EM_MIPS)) |
1444 | addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal()); |
1445 | else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) |
1446 | addend += getPPC64TocBase(); |
1447 | |
1448 | // Ignore R_*_NONE and other marker relocations. |
1449 | if (expr == R_NONE) |
1450 | return; |
1451 | |
1452 | // Error if the target symbol is undefined. Symbol index 0 may be used by |
1453 | // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. |
1454 | if (sym.isUndefined() && symIndex != 0 && |
1455 | maybeReportUndefined(sym&: cast<Undefined>(Val&: sym), sec&: *sec, offset)) |
1456 | return; |
1457 | |
1458 | if (config->emachine == EM_PPC64) { |
1459 | // We can separate the small code model relocations into 2 categories: |
1460 | // 1) Those that access the compiler generated .toc sections. |
1461 | // 2) Those that access the linker allocated got entries. |
1462 | // lld allocates got entries to symbols on demand. Since we don't try to |
1463 | // sort the got entries in any way, we don't have to track which objects |
1464 | // have got-based small code model relocs. The .toc sections get placed |
1465 | // after the end of the linker allocated .got section and we do sort those |
1466 | // so sections addressed with small code model relocations come first. |
1467 | if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS) |
1468 | sec->file->ppc64SmallCodeModelTocRelocs = true; |
1469 | |
1470 | // Record the TOC entry (.toc + addend) as not relaxable. See the comment in |
1471 | // InputSectionBase::relocateAlloc(). |
1472 | if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(Val: sym) && |
1473 | cast<Defined>(Val&: sym).section->name == ".toc" ) |
1474 | ppc64noTocRelax.insert(V: {&sym, addend}); |
1475 | |
1476 | if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) || |
1477 | (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) { |
1478 | if (i == end) { |
1479 | errorOrWarn(msg: "R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last " |
1480 | "relocation" + |
1481 | getLocation(s&: *sec, sym, off: offset)); |
1482 | return; |
1483 | } |
1484 | |
1485 | // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case, |
1486 | // so we can discern it later from the toc-case. |
1487 | if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) |
1488 | ++offset; |
1489 | } |
1490 | } |
1491 | |
1492 | // If the relocation does not emit a GOT or GOTPLT entry but its computation |
1493 | // uses their addresses, we need GOT or GOTPLT to be created. |
1494 | // |
1495 | // The 5 types that relative GOTPLT are all x86 and x86-64 specific. |
1496 | if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT, |
1497 | R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) { |
1498 | in.gotPlt->hasGotPltOffRel.store(i: true, m: std::memory_order_relaxed); |
1499 | } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE, |
1500 | R_PPC64_RELAX_TOC>(expr)) { |
1501 | in.got->hasGotOffRel.store(i: true, m: std::memory_order_relaxed); |
1502 | } |
1503 | |
1504 | // Process TLS relocations, including TLS optimizations. Note that |
1505 | // R_TPREL and R_TPREL_NEG relocations are resolved in processAux. |
1506 | // |
1507 | // Some RISCV TLSDESC relocations reference a local NOTYPE symbol, |
1508 | // but we need to process them in handleTlsRelocation. |
1509 | if (sym.isTls() || oneof<R_TLSDESC_PC, R_TLSDESC_CALL>(expr)) { |
1510 | if (unsigned processed = |
1511 | handleTlsRelocation(type, sym, c&: *sec, offset, addend, expr)) { |
1512 | i += processed - 1; |
1513 | return; |
1514 | } |
1515 | } |
1516 | |
1517 | processAux(expr, type, offset, sym, addend); |
1518 | } |
1519 | |
1520 | // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for |
1521 | // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is |
1522 | // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the |
1523 | // instructions are generated by very old IBM XL compilers. Work around the |
1524 | // issue by disabling GD/LD to IE/LE relaxation. |
1525 | template <class RelTy> |
1526 | static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) { |
1527 | // Skip if sec is synthetic (sec.file is null) or if sec has been marked. |
1528 | if (!sec.file || sec.file->ppc64DisableTLSRelax) |
1529 | return; |
1530 | bool hasGDLD = false; |
1531 | for (const RelTy &rel : rels) { |
1532 | RelType type = rel.getType(false); |
1533 | switch (type) { |
1534 | case R_PPC64_TLSGD: |
1535 | case R_PPC64_TLSLD: |
1536 | return; // Found a marker |
1537 | case R_PPC64_GOT_TLSGD16: |
1538 | case R_PPC64_GOT_TLSGD16_HA: |
1539 | case R_PPC64_GOT_TLSGD16_HI: |
1540 | case R_PPC64_GOT_TLSGD16_LO: |
1541 | case R_PPC64_GOT_TLSLD16: |
1542 | case R_PPC64_GOT_TLSLD16_HA: |
1543 | case R_PPC64_GOT_TLSLD16_HI: |
1544 | case R_PPC64_GOT_TLSLD16_LO: |
1545 | hasGDLD = true; |
1546 | break; |
1547 | } |
1548 | } |
1549 | if (hasGDLD) { |
1550 | sec.file->ppc64DisableTLSRelax = true; |
1551 | warn(msg: toString(f: sec.file) + |
1552 | ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without " |
1553 | "R_PPC64_TLSGD/R_PPC64_TLSLD relocations" ); |
1554 | } |
1555 | } |
1556 | |
1557 | template <class ELFT, class RelTy> |
1558 | void RelocationScanner::scan(ArrayRef<RelTy> rels) { |
1559 | // Not all relocations end up in Sec->Relocations, but a lot do. |
1560 | sec->relocations.reserve(N: rels.size()); |
1561 | |
1562 | if (config->emachine == EM_PPC64) |
1563 | checkPPC64TLSRelax<RelTy>(*sec, rels); |
1564 | |
1565 | // For EhInputSection, OffsetGetter expects the relocations to be sorted by |
1566 | // r_offset. In rare cases (.eh_frame pieces are reordered by a linker |
1567 | // script), the relocations may be unordered. |
1568 | // On SystemZ, all sections need to be sorted by r_offset, to allow TLS |
1569 | // relaxation to be handled correctly - see SystemZ::getTlsGdRelaxSkip. |
1570 | SmallVector<RelTy, 0> storage; |
1571 | if (isa<EhInputSection>(Val: sec) || config->emachine == EM_S390) |
1572 | rels = sortRels(rels, storage); |
1573 | |
1574 | end = static_cast<const void *>(rels.end()); |
1575 | for (auto i = rels.begin(); i != end;) |
1576 | scanOne<ELFT>(i); |
1577 | |
1578 | // Sort relocations by offset for more efficient searching for |
1579 | // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. |
1580 | if (config->emachine == EM_RISCV || |
1581 | (config->emachine == EM_PPC64 && sec->name == ".toc" )) |
1582 | llvm::stable_sort(sec->relocs(), |
1583 | [](const Relocation &lhs, const Relocation &rhs) { |
1584 | return lhs.offset < rhs.offset; |
1585 | }); |
1586 | } |
1587 | |
1588 | template <class ELFT> void RelocationScanner::scanSection(InputSectionBase &s) { |
1589 | sec = &s; |
1590 | getter = OffsetGetter(s); |
1591 | const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>(); |
1592 | if (rels.areRelocsRel()) |
1593 | scan<ELFT>(rels.rels); |
1594 | else |
1595 | scan<ELFT>(rels.relas); |
1596 | } |
1597 | |
1598 | template <class ELFT> void elf::scanRelocations() { |
1599 | // Scan all relocations. Each relocation goes through a series of tests to |
1600 | // determine if it needs special treatment, such as creating GOT, PLT, |
1601 | // copy relocations, etc. Note that relocations for non-alloc sections are |
1602 | // directly processed by InputSection::relocateNonAlloc. |
1603 | |
1604 | // Deterministic parallellism needs sorting relocations which is unsuitable |
1605 | // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable |
1606 | // for parallelism. |
1607 | bool serial = !config->zCombreloc || config->emachine == EM_MIPS || |
1608 | config->emachine == EM_PPC64; |
1609 | parallel::TaskGroup tg; |
1610 | for (ELFFileBase *f : ctx.objectFiles) { |
1611 | auto fn = [f]() { |
1612 | RelocationScanner scanner; |
1613 | for (InputSectionBase *s : f->getSections()) { |
1614 | if (s && s->kind() == SectionBase::Regular && s->isLive() && |
1615 | (s->flags & SHF_ALLOC) && |
1616 | !(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM)) |
1617 | scanner.template scanSection<ELFT>(*s); |
1618 | } |
1619 | }; |
1620 | tg.spawn(f: fn, Sequential: serial); |
1621 | } |
1622 | |
1623 | tg.spawn(f: [] { |
1624 | RelocationScanner scanner; |
1625 | for (Partition &part : partitions) { |
1626 | for (EhInputSection *sec : part.ehFrame->sections) |
1627 | scanner.template scanSection<ELFT>(*sec); |
1628 | if (part.armExidx && part.armExidx->isLive()) |
1629 | for (InputSection *sec : part.armExidx->exidxSections) |
1630 | if (sec->isLive()) |
1631 | scanner.template scanSection<ELFT>(*sec); |
1632 | } |
1633 | }); |
1634 | } |
1635 | |
1636 | static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) { |
1637 | // Handle a reference to a non-preemptible ifunc. These are special in a |
1638 | // few ways: |
1639 | // |
1640 | // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have |
1641 | // a fixed value. But assuming that all references to the ifunc are |
1642 | // GOT-generating or PLT-generating, the handling of an ifunc is |
1643 | // relatively straightforward. We create a PLT entry in Iplt, which is |
1644 | // usually at the end of .plt, which makes an indirect call using a |
1645 | // matching GOT entry in igotPlt, which is usually at the end of .got.plt. |
1646 | // The GOT entry is relocated using an IRELATIVE relocation in relaDyn, |
1647 | // which is usually at the end of .rela.dyn. |
1648 | // |
1649 | // - Despite the fact that an ifunc does not have a fixed value, compilers |
1650 | // that are not passed -fPIC will assume that they do, and will emit |
1651 | // direct (non-GOT-generating, non-PLT-generating) relocations to the |
1652 | // symbol. This means that if a direct relocation to the symbol is |
1653 | // seen, the linker must set a value for the symbol, and this value must |
1654 | // be consistent no matter what type of reference is made to the symbol. |
1655 | // This can be done by creating a PLT entry for the symbol in the way |
1656 | // described above and making it canonical, that is, making all references |
1657 | // point to the PLT entry instead of the resolver. In lld we also store |
1658 | // the address of the PLT entry in the dynamic symbol table, which means |
1659 | // that the symbol will also have the same value in other modules. |
1660 | // Because the value loaded from the GOT needs to be consistent with |
1661 | // the value computed using a direct relocation, a non-preemptible ifunc |
1662 | // may end up with two GOT entries, one in .got.plt that points to the |
1663 | // address returned by the resolver and is used only by the PLT entry, |
1664 | // and another in .got that points to the PLT entry and is used by |
1665 | // GOT-generating relocations. |
1666 | // |
1667 | // - The fact that these symbols do not have a fixed value makes them an |
1668 | // exception to the general rule that a statically linked executable does |
1669 | // not require any form of dynamic relocation. To handle these relocations |
1670 | // correctly, the IRELATIVE relocations are stored in an array which a |
1671 | // statically linked executable's startup code must enumerate using the |
1672 | // linker-defined symbols __rela?_iplt_{start,end}. |
1673 | if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt) |
1674 | return false; |
1675 | // Skip unreferenced non-preemptible ifunc. |
1676 | if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC))) |
1677 | return true; |
1678 | |
1679 | sym.isInIplt = true; |
1680 | |
1681 | // Create an Iplt and the associated IRELATIVE relocation pointing to the |
1682 | // original section/value pairs. For non-GOT non-PLT relocation case below, we |
1683 | // may alter section/value, so create a copy of the symbol to make |
1684 | // section/value fixed. |
1685 | // |
1686 | // Prior to Android V, there was a bug that caused RELR relocations to be |
1687 | // applied after packed relocations. This meant that resolvers referenced by |
1688 | // IRELATIVE relocations in the packed relocation section would read |
1689 | // unrelocated globals with RELR relocations when |
1690 | // --pack-relative-relocs=android+relr is enabled. Work around this by placing |
1691 | // IRELATIVE in .rela.plt. |
1692 | auto *directSym = makeDefined(args&: cast<Defined>(Val&: sym)); |
1693 | directSym->allocateAux(); |
1694 | auto &dyn = config->androidPackDynRelocs ? *in.relaPlt : *mainPart->relaDyn; |
1695 | addPltEntry(plt&: *in.iplt, gotPlt&: *in.igotPlt, rel&: dyn, type: target->iRelativeRel, sym&: *directSym); |
1696 | sym.allocateAux(); |
1697 | symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx; |
1698 | |
1699 | if (flags & HAS_DIRECT_RELOC) { |
1700 | // Change the value to the IPLT and redirect all references to it. |
1701 | auto &d = cast<Defined>(Val&: sym); |
1702 | d.section = in.iplt.get(); |
1703 | d.value = d.getPltIdx() * target->ipltEntrySize; |
1704 | d.size = 0; |
1705 | // It's important to set the symbol type here so that dynamic loaders |
1706 | // don't try to call the PLT as if it were an ifunc resolver. |
1707 | d.type = STT_FUNC; |
1708 | |
1709 | if (flags & NEEDS_GOT) |
1710 | addGotEntry(sym); |
1711 | } else if (flags & NEEDS_GOT) { |
1712 | // Redirect GOT accesses to point to the Igot. |
1713 | sym.gotInIgot = true; |
1714 | } |
1715 | return true; |
1716 | } |
1717 | |
1718 | void elf::postScanRelocations() { |
1719 | auto fn = [](Symbol &sym) { |
1720 | auto flags = sym.flags.load(m: std::memory_order_relaxed); |
1721 | if (handleNonPreemptibleIfunc(sym, flags)) |
1722 | return; |
1723 | |
1724 | if (sym.isTagged() && sym.isDefined()) |
1725 | mainPart->memtagGlobalDescriptors->addSymbol(sym); |
1726 | |
1727 | if (!sym.needsDynReloc()) |
1728 | return; |
1729 | sym.allocateAux(); |
1730 | |
1731 | if (flags & NEEDS_GOT) |
1732 | addGotEntry(sym); |
1733 | if (flags & NEEDS_PLT) |
1734 | addPltEntry(plt&: *in.plt, gotPlt&: *in.gotPlt, rel&: *in.relaPlt, type: target->pltRel, sym); |
1735 | if (flags & NEEDS_COPY) { |
1736 | if (sym.isObject()) { |
1737 | invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym)); |
1738 | // NEEDS_COPY is cleared for sym and its aliases so that in |
1739 | // later iterations aliases won't cause redundant copies. |
1740 | assert(!sym.hasFlag(NEEDS_COPY)); |
1741 | } else { |
1742 | assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT)); |
1743 | if (!sym.isDefined()) { |
1744 | replaceWithDefined(sym, sec&: *in.plt, |
1745 | value: target->pltHeaderSize + |
1746 | target->pltEntrySize * sym.getPltIdx(), |
1747 | size: 0); |
1748 | sym.setFlags(NEEDS_COPY); |
1749 | if (config->emachine == EM_PPC) { |
1750 | // PPC32 canonical PLT entries are at the beginning of .glink |
1751 | cast<Defined>(Val&: sym).value = in.plt->headerSize; |
1752 | in.plt->headerSize += 16; |
1753 | cast<PPC32GlinkSection>(Val&: *in.plt).canonical_plts.push_back(Elt: &sym); |
1754 | } |
1755 | } |
1756 | } |
1757 | } |
1758 | |
1759 | if (!sym.isTls()) |
1760 | return; |
1761 | bool isLocalInExecutable = !sym.isPreemptible && !config->shared; |
1762 | GotSection *got = in.got.get(); |
1763 | |
1764 | if (flags & NEEDS_TLSDESC) { |
1765 | got->addTlsDescEntry(sym); |
1766 | mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( |
1767 | dynType: target->tlsDescRel, sec&: *got, offsetInSec: got->getTlsDescOffset(sym), sym, |
1768 | addendRelType: target->tlsDescRel); |
1769 | } |
1770 | if (flags & NEEDS_TLSGD) { |
1771 | got->addDynTlsEntry(sym); |
1772 | uint64_t off = got->getGlobalDynOffset(b: sym); |
1773 | if (isLocalInExecutable) |
1774 | // Write one to the GOT slot. |
1775 | got->addConstant(r: {.expr: R_ADDEND, .type: target->symbolicRel, .offset: off, .addend: 1, .sym: &sym}); |
1776 | else |
1777 | mainPart->relaDyn->addSymbolReloc(dynType: target->tlsModuleIndexRel, isec&: *got, offsetInSec: off, |
1778 | sym); |
1779 | |
1780 | // If the symbol is preemptible we need the dynamic linker to write |
1781 | // the offset too. |
1782 | uint64_t offsetOff = off + config->wordsize; |
1783 | if (sym.isPreemptible) |
1784 | mainPart->relaDyn->addSymbolReloc(dynType: target->tlsOffsetRel, isec&: *got, offsetInSec: offsetOff, |
1785 | sym); |
1786 | else |
1787 | got->addConstant(r: {.expr: R_ABS, .type: target->tlsOffsetRel, .offset: offsetOff, .addend: 0, .sym: &sym}); |
1788 | } |
1789 | if (flags & NEEDS_TLSGD_TO_IE) { |
1790 | got->addEntry(sym); |
1791 | mainPart->relaDyn->addSymbolReloc(dynType: target->tlsGotRel, isec&: *got, |
1792 | offsetInSec: sym.getGotOffset(), sym); |
1793 | } |
1794 | if (flags & NEEDS_GOT_DTPREL) { |
1795 | got->addEntry(sym); |
1796 | got->addConstant( |
1797 | r: {.expr: R_ABS, .type: target->tlsOffsetRel, .offset: sym.getGotOffset(), .addend: 0, .sym: &sym}); |
1798 | } |
1799 | |
1800 | if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE)) |
1801 | addTpOffsetGotEntry(sym); |
1802 | }; |
1803 | |
1804 | GotSection *got = in.got.get(); |
1805 | if (ctx.needsTlsLd.load(m: std::memory_order_relaxed) && got->addTlsIndex()) { |
1806 | static Undefined dummy(ctx.internalFile, "" , STB_LOCAL, 0, 0); |
1807 | if (config->shared) |
1808 | mainPart->relaDyn->addReloc( |
1809 | reloc: {target->tlsModuleIndexRel, got, got->getTlsIndexOff()}); |
1810 | else |
1811 | got->addConstant( |
1812 | r: {.expr: R_ADDEND, .type: target->symbolicRel, .offset: got->getTlsIndexOff(), .addend: 1, .sym: &dummy}); |
1813 | } |
1814 | |
1815 | assert(symAux.size() == 1); |
1816 | for (Symbol *sym : symtab.getSymbols()) |
1817 | fn(*sym); |
1818 | |
1819 | // Local symbols may need the aforementioned non-preemptible ifunc and GOT |
1820 | // handling. They don't need regular PLT. |
1821 | for (ELFFileBase *file : ctx.objectFiles) |
1822 | for (Symbol *sym : file->getLocalSymbols()) |
1823 | fn(*sym); |
1824 | } |
1825 | |
1826 | static bool mergeCmp(const InputSection *a, const InputSection *b) { |
1827 | // std::merge requires a strict weak ordering. |
1828 | if (a->outSecOff < b->outSecOff) |
1829 | return true; |
1830 | |
1831 | // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection. |
1832 | if (a->outSecOff == b->outSecOff && a != b) { |
1833 | auto *ta = dyn_cast<ThunkSection>(Val: a); |
1834 | auto *tb = dyn_cast<ThunkSection>(Val: b); |
1835 | |
1836 | // Check if Thunk is immediately before any specific Target |
1837 | // InputSection for example Mips LA25 Thunks. |
1838 | if (ta && ta->getTargetInputSection() == b) |
1839 | return true; |
1840 | |
1841 | // Place Thunk Sections without specific targets before |
1842 | // non-Thunk Sections. |
1843 | if (ta && !tb && !ta->getTargetInputSection()) |
1844 | return true; |
1845 | } |
1846 | |
1847 | return false; |
1848 | } |
1849 | |
1850 | // Call Fn on every executable InputSection accessed via the linker script |
1851 | // InputSectionDescription::Sections. |
1852 | static void forEachInputSectionDescription( |
1853 | ArrayRef<OutputSection *> outputSections, |
1854 | llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { |
1855 | for (OutputSection *os : outputSections) { |
1856 | if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) |
1857 | continue; |
1858 | for (SectionCommand *bc : os->commands) |
1859 | if (auto *isd = dyn_cast<InputSectionDescription>(Val: bc)) |
1860 | fn(os, isd); |
1861 | } |
1862 | } |
1863 | |
1864 | // Thunk Implementation |
1865 | // |
1866 | // Thunks (sometimes called stubs, veneers or branch islands) are small pieces |
1867 | // of code that the linker inserts inbetween a caller and a callee. The thunks |
1868 | // are added at link time rather than compile time as the decision on whether |
1869 | // a thunk is needed, such as the caller and callee being out of range, can only |
1870 | // be made at link time. |
1871 | // |
1872 | // It is straightforward to tell given the current state of the program when a |
1873 | // thunk is needed for a particular call. The more difficult part is that |
1874 | // the thunk needs to be placed in the program such that the caller can reach |
1875 | // the thunk and the thunk can reach the callee; furthermore, adding thunks to |
1876 | // the program alters addresses, which can mean more thunks etc. |
1877 | // |
1878 | // In lld we have a synthetic ThunkSection that can hold many Thunks. |
1879 | // The decision to have a ThunkSection act as a container means that we can |
1880 | // more easily handle the most common case of a single block of contiguous |
1881 | // Thunks by inserting just a single ThunkSection. |
1882 | // |
1883 | // The implementation of Thunks in lld is split across these areas |
1884 | // Relocations.cpp : Framework for creating and placing thunks |
1885 | // Thunks.cpp : The code generated for each supported thunk |
1886 | // Target.cpp : Target specific hooks that the framework uses to decide when |
1887 | // a thunk is used |
1888 | // Synthetic.cpp : Implementation of ThunkSection |
1889 | // Writer.cpp : Iteratively call framework until no more Thunks added |
1890 | // |
1891 | // Thunk placement requirements: |
1892 | // Mips LA25 thunks. These must be placed immediately before the callee section |
1893 | // We can assume that the caller is in range of the Thunk. These are modelled |
1894 | // by Thunks that return the section they must precede with |
1895 | // getTargetInputSection(). |
1896 | // |
1897 | // ARM interworking and range extension thunks. These thunks must be placed |
1898 | // within range of the caller. All implemented ARM thunks can always reach the |
1899 | // callee as they use an indirect jump via a register that has no range |
1900 | // restrictions. |
1901 | // |
1902 | // Thunk placement algorithm: |
1903 | // For Mips LA25 ThunkSections; the placement is explicit, it has to be before |
1904 | // getTargetInputSection(). |
1905 | // |
1906 | // For thunks that must be placed within range of the caller there are many |
1907 | // possible choices given that the maximum range from the caller is usually |
1908 | // much larger than the average InputSection size. Desirable properties include: |
1909 | // - Maximize reuse of thunks by multiple callers |
1910 | // - Minimize number of ThunkSections to simplify insertion |
1911 | // - Handle impact of already added Thunks on addresses |
1912 | // - Simple to understand and implement |
1913 | // |
1914 | // In lld for the first pass, we pre-create one or more ThunkSections per |
1915 | // InputSectionDescription at Target specific intervals. A ThunkSection is |
1916 | // placed so that the estimated end of the ThunkSection is within range of the |
1917 | // start of the InputSectionDescription or the previous ThunkSection. For |
1918 | // example: |
1919 | // InputSectionDescription |
1920 | // Section 0 |
1921 | // ... |
1922 | // Section N |
1923 | // ThunkSection 0 |
1924 | // Section N + 1 |
1925 | // ... |
1926 | // Section N + K |
1927 | // Thunk Section 1 |
1928 | // |
1929 | // The intention is that we can add a Thunk to a ThunkSection that is well |
1930 | // spaced enough to service a number of callers without having to do a lot |
1931 | // of work. An important principle is that it is not an error if a Thunk cannot |
1932 | // be placed in a pre-created ThunkSection; when this happens we create a new |
1933 | // ThunkSection placed next to the caller. This allows us to handle the vast |
1934 | // majority of thunks simply, but also handle rare cases where the branch range |
1935 | // is smaller than the target specific spacing. |
1936 | // |
1937 | // The algorithm is expected to create all the thunks that are needed in a |
1938 | // single pass, with a small number of programs needing a second pass due to |
1939 | // the insertion of thunks in the first pass increasing the offset between |
1940 | // callers and callees that were only just in range. |
1941 | // |
1942 | // A consequence of allowing new ThunkSections to be created outside of the |
1943 | // pre-created ThunkSections is that in rare cases calls to Thunks that were in |
1944 | // range in pass K, are out of range in some pass > K due to the insertion of |
1945 | // more Thunks in between the caller and callee. When this happens we retarget |
1946 | // the relocation back to the original target and create another Thunk. |
1947 | |
1948 | // Remove ThunkSections that are empty, this should only be the initial set |
1949 | // precreated on pass 0. |
1950 | |
1951 | // Insert the Thunks for OutputSection OS into their designated place |
1952 | // in the Sections vector, and recalculate the InputSection output section |
1953 | // offsets. |
1954 | // This may invalidate any output section offsets stored outside of InputSection |
1955 | void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { |
1956 | forEachInputSectionDescription( |
1957 | outputSections, fn: [&](OutputSection *os, InputSectionDescription *isd) { |
1958 | if (isd->thunkSections.empty()) |
1959 | return; |
1960 | |
1961 | // Remove any zero sized precreated Thunks. |
1962 | llvm::erase_if(C&: isd->thunkSections, |
1963 | P: [](const std::pair<ThunkSection *, uint32_t> &ts) { |
1964 | return ts.first->getSize() == 0; |
1965 | }); |
1966 | |
1967 | // ISD->ThunkSections contains all created ThunkSections, including |
1968 | // those inserted in previous passes. Extract the Thunks created this |
1969 | // pass and order them in ascending outSecOff. |
1970 | std::vector<ThunkSection *> newThunks; |
1971 | for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) |
1972 | if (ts.second == pass) |
1973 | newThunks.push_back(x: ts.first); |
1974 | llvm::stable_sort(Range&: newThunks, |
1975 | C: [](const ThunkSection *a, const ThunkSection *b) { |
1976 | return a->outSecOff < b->outSecOff; |
1977 | }); |
1978 | |
1979 | // Merge sorted vectors of Thunks and InputSections by outSecOff |
1980 | SmallVector<InputSection *, 0> tmp; |
1981 | tmp.reserve(N: isd->sections.size() + newThunks.size()); |
1982 | |
1983 | std::merge(first1: isd->sections.begin(), last1: isd->sections.end(), |
1984 | first2: newThunks.begin(), last2: newThunks.end(), result: std::back_inserter(x&: tmp), |
1985 | comp: mergeCmp); |
1986 | |
1987 | isd->sections = std::move(tmp); |
1988 | }); |
1989 | } |
1990 | |
1991 | static int64_t getPCBias(RelType type) { |
1992 | if (config->emachine != EM_ARM) |
1993 | return 0; |
1994 | switch (type) { |
1995 | case R_ARM_THM_JUMP19: |
1996 | case R_ARM_THM_JUMP24: |
1997 | case R_ARM_THM_CALL: |
1998 | return 4; |
1999 | default: |
2000 | return 8; |
2001 | } |
2002 | } |
2003 | |
2004 | // Find or create a ThunkSection within the InputSectionDescription (ISD) that |
2005 | // is in range of Src. An ISD maps to a range of InputSections described by a |
2006 | // linker script section pattern such as { .text .text.* }. |
2007 | ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, |
2008 | InputSection *isec, |
2009 | InputSectionDescription *isd, |
2010 | const Relocation &rel, |
2011 | uint64_t src) { |
2012 | // See the comment in getThunk for -pcBias below. |
2013 | const int64_t pcBias = getPCBias(type: rel.type); |
2014 | for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { |
2015 | ThunkSection *ts = tp.first; |
2016 | uint64_t tsBase = os->addr + ts->outSecOff - pcBias; |
2017 | uint64_t tsLimit = tsBase + ts->getSize(); |
2018 | if (target->inBranchRange(type: rel.type, src, |
2019 | dst: (src > tsLimit) ? tsBase : tsLimit)) |
2020 | return ts; |
2021 | } |
2022 | |
2023 | // No suitable ThunkSection exists. This can happen when there is a branch |
2024 | // with lower range than the ThunkSection spacing or when there are too |
2025 | // many Thunks. Create a new ThunkSection as close to the InputSection as |
2026 | // possible. Error if InputSection is so large we cannot place ThunkSection |
2027 | // anywhere in Range. |
2028 | uint64_t thunkSecOff = isec->outSecOff; |
2029 | if (!target->inBranchRange(type: rel.type, src, |
2030 | dst: os->addr + thunkSecOff + rel.addend)) { |
2031 | thunkSecOff = isec->outSecOff + isec->getSize(); |
2032 | if (!target->inBranchRange(type: rel.type, src, |
2033 | dst: os->addr + thunkSecOff + rel.addend)) |
2034 | fatal(msg: "InputSection too large for range extension thunk " + |
2035 | isec->getObjMsg(offset: src - (os->addr + isec->outSecOff))); |
2036 | } |
2037 | return addThunkSection(os, isd, off: thunkSecOff); |
2038 | } |
2039 | |
2040 | // Add a Thunk that needs to be placed in a ThunkSection that immediately |
2041 | // precedes its Target. |
2042 | ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { |
2043 | ThunkSection *ts = thunkedSections.lookup(Val: isec); |
2044 | if (ts) |
2045 | return ts; |
2046 | |
2047 | // Find InputSectionRange within Target Output Section (TOS) that the |
2048 | // InputSection (IS) that we need to precede is in. |
2049 | OutputSection *tos = isec->getParent(); |
2050 | for (SectionCommand *bc : tos->commands) { |
2051 | auto *isd = dyn_cast<InputSectionDescription>(Val: bc); |
2052 | if (!isd || isd->sections.empty()) |
2053 | continue; |
2054 | |
2055 | InputSection *first = isd->sections.front(); |
2056 | InputSection *last = isd->sections.back(); |
2057 | |
2058 | if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) |
2059 | continue; |
2060 | |
2061 | ts = addThunkSection(os: tos, isd, off: isec->outSecOff); |
2062 | thunkedSections[isec] = ts; |
2063 | return ts; |
2064 | } |
2065 | |
2066 | return nullptr; |
2067 | } |
2068 | |
2069 | // Create one or more ThunkSections per OS that can be used to place Thunks. |
2070 | // We attempt to place the ThunkSections using the following desirable |
2071 | // properties: |
2072 | // - Within range of the maximum number of callers |
2073 | // - Minimise the number of ThunkSections |
2074 | // |
2075 | // We follow a simple but conservative heuristic to place ThunkSections at |
2076 | // offsets that are multiples of a Target specific branch range. |
2077 | // For an InputSectionDescription that is smaller than the range, a single |
2078 | // ThunkSection at the end of the range will do. |
2079 | // |
2080 | // For an InputSectionDescription that is more than twice the size of the range, |
2081 | // we place the last ThunkSection at range bytes from the end of the |
2082 | // InputSectionDescription in order to increase the likelihood that the |
2083 | // distance from a thunk to its target will be sufficiently small to |
2084 | // allow for the creation of a short thunk. |
2085 | void ThunkCreator::createInitialThunkSections( |
2086 | ArrayRef<OutputSection *> outputSections) { |
2087 | uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); |
2088 | |
2089 | forEachInputSectionDescription( |
2090 | outputSections, fn: [&](OutputSection *os, InputSectionDescription *isd) { |
2091 | if (isd->sections.empty()) |
2092 | return; |
2093 | |
2094 | uint32_t isdBegin = isd->sections.front()->outSecOff; |
2095 | uint32_t isdEnd = |
2096 | isd->sections.back()->outSecOff + isd->sections.back()->getSize(); |
2097 | uint32_t lastThunkLowerBound = -1; |
2098 | if (isdEnd - isdBegin > thunkSectionSpacing * 2) |
2099 | lastThunkLowerBound = isdEnd - thunkSectionSpacing; |
2100 | |
2101 | uint32_t isecLimit; |
2102 | uint32_t prevIsecLimit = isdBegin; |
2103 | uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; |
2104 | |
2105 | for (const InputSection *isec : isd->sections) { |
2106 | isecLimit = isec->outSecOff + isec->getSize(); |
2107 | if (isecLimit > thunkUpperBound) { |
2108 | addThunkSection(os, isd, off: prevIsecLimit); |
2109 | thunkUpperBound = prevIsecLimit + thunkSectionSpacing; |
2110 | } |
2111 | if (isecLimit > lastThunkLowerBound) |
2112 | break; |
2113 | prevIsecLimit = isecLimit; |
2114 | } |
2115 | addThunkSection(os, isd, off: isecLimit); |
2116 | }); |
2117 | } |
2118 | |
2119 | ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, |
2120 | InputSectionDescription *isd, |
2121 | uint64_t off) { |
2122 | auto *ts = make<ThunkSection>(args&: os, args&: off); |
2123 | ts->partition = os->partition; |
2124 | if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && |
2125 | !isd->sections.empty()) { |
2126 | // The errata fixes are sensitive to addresses modulo 4 KiB. When we add |
2127 | // thunks we disturb the base addresses of sections placed after the thunks |
2128 | // this makes patches we have generated redundant, and may cause us to |
2129 | // generate more patches as different instructions are now in sensitive |
2130 | // locations. When we generate more patches we may force more branches to |
2131 | // go out of range, causing more thunks to be generated. In pathological |
2132 | // cases this can cause the address dependent content pass not to converge. |
2133 | // We fix this by rounding up the size of the ThunkSection to 4KiB, this |
2134 | // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, |
2135 | // which means that adding Thunks to the section does not invalidate |
2136 | // errata patches for following code. |
2137 | // Rounding up the size to 4KiB has consequences for code-size and can |
2138 | // trip up linker script defined assertions. For example the linux kernel |
2139 | // has an assertion that what LLD represents as an InputSectionDescription |
2140 | // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. |
2141 | // We use the heuristic of rounding up the size when both of the following |
2142 | // conditions are true: |
2143 | // 1.) The OutputSection is larger than the ThunkSectionSpacing. This |
2144 | // accounts for the case where no single InputSectionDescription is |
2145 | // larger than the OutputSection size. This is conservative but simple. |
2146 | // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent |
2147 | // any assertion failures that an InputSectionDescription is < 4 KiB |
2148 | // in size. |
2149 | uint64_t isdSize = isd->sections.back()->outSecOff + |
2150 | isd->sections.back()->getSize() - |
2151 | isd->sections.front()->outSecOff; |
2152 | if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) |
2153 | ts->roundUpSizeForErrata = true; |
2154 | } |
2155 | isd->thunkSections.push_back(Elt: {ts, pass}); |
2156 | return ts; |
2157 | } |
2158 | |
2159 | static bool isThunkSectionCompatible(InputSection *source, |
2160 | SectionBase *target) { |
2161 | // We can't reuse thunks in different loadable partitions because they might |
2162 | // not be loaded. But partition 1 (the main partition) will always be loaded. |
2163 | if (source->partition != target->partition) |
2164 | return target->partition == 1; |
2165 | return true; |
2166 | } |
2167 | |
2168 | std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, |
2169 | Relocation &rel, uint64_t src) { |
2170 | std::vector<Thunk *> *thunkVec = nullptr; |
2171 | // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled |
2172 | // out in the relocation addend. We compensate for the PC bias so that |
2173 | // an Arm and Thumb relocation to the same destination get the same keyAddend, |
2174 | // which is usually 0. |
2175 | const int64_t pcBias = getPCBias(type: rel.type); |
2176 | const int64_t keyAddend = rel.addend + pcBias; |
2177 | |
2178 | // We use a ((section, offset), addend) pair to find the thunk position if |
2179 | // possible so that we create only one thunk for aliased symbols or ICFed |
2180 | // sections. There may be multiple relocations sharing the same (section, |
2181 | // offset + addend) pair. We may revert the relocation back to its original |
2182 | // non-Thunk target, so we cannot fold offset + addend. |
2183 | if (auto *d = dyn_cast<Defined>(Val: rel.sym)) |
2184 | if (!d->isInPlt() && d->section) |
2185 | thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value}, |
2186 | keyAddend}]; |
2187 | if (!thunkVec) |
2188 | thunkVec = &thunkedSymbols[{rel.sym, keyAddend}]; |
2189 | |
2190 | // Check existing Thunks for Sym to see if they can be reused |
2191 | for (Thunk *t : *thunkVec) |
2192 | if (isThunkSectionCompatible(source: isec, target: t->getThunkTargetSym()->section) && |
2193 | t->isCompatibleWith(*isec, rel) && |
2194 | target->inBranchRange(type: rel.type, src, |
2195 | dst: t->getThunkTargetSym()->getVA(addend: -pcBias))) |
2196 | return std::make_pair(x&: t, y: false); |
2197 | |
2198 | // No existing compatible Thunk in range, create a new one |
2199 | Thunk *t = addThunk(isec: *isec, rel); |
2200 | thunkVec->push_back(x: t); |
2201 | return std::make_pair(x&: t, y: true); |
2202 | } |
2203 | |
2204 | // Return true if the relocation target is an in range Thunk. |
2205 | // Return false if the relocation is not to a Thunk. If the relocation target |
2206 | // was originally to a Thunk, but is no longer in range we revert the |
2207 | // relocation back to its original non-Thunk target. |
2208 | bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { |
2209 | if (Thunk *t = thunks.lookup(Val: rel.sym)) { |
2210 | if (target->inBranchRange(type: rel.type, src, dst: rel.sym->getVA(addend: rel.addend))) |
2211 | return true; |
2212 | rel.sym = &t->destination; |
2213 | rel.addend = t->addend; |
2214 | if (rel.sym->isInPlt()) |
2215 | rel.expr = toPlt(expr: rel.expr); |
2216 | } |
2217 | return false; |
2218 | } |
2219 | |
2220 | // Process all relocations from the InputSections that have been assigned |
2221 | // to InputSectionDescriptions and redirect through Thunks if needed. The |
2222 | // function should be called iteratively until it returns false. |
2223 | // |
2224 | // PreConditions: |
2225 | // All InputSections that may need a Thunk are reachable from |
2226 | // OutputSectionCommands. |
2227 | // |
2228 | // All OutputSections have an address and all InputSections have an offset |
2229 | // within the OutputSection. |
2230 | // |
2231 | // The offsets between caller (relocation place) and callee |
2232 | // (relocation target) will not be modified outside of createThunks(). |
2233 | // |
2234 | // PostConditions: |
2235 | // If return value is true then ThunkSections have been inserted into |
2236 | // OutputSections. All relocations that needed a Thunk based on the information |
2237 | // available to createThunks() on entry have been redirected to a Thunk. Note |
2238 | // that adding Thunks changes offsets between caller and callee so more Thunks |
2239 | // may be required. |
2240 | // |
2241 | // If return value is false then no more Thunks are needed, and createThunks has |
2242 | // made no changes. If the target requires range extension thunks, currently |
2243 | // ARM, then any future change in offset between caller and callee risks a |
2244 | // relocation out of range error. |
2245 | bool ThunkCreator::createThunks(uint32_t pass, |
2246 | ArrayRef<OutputSection *> outputSections) { |
2247 | this->pass = pass; |
2248 | bool addressesChanged = false; |
2249 | |
2250 | if (pass == 0 && target->getThunkSectionSpacing()) |
2251 | createInitialThunkSections(outputSections); |
2252 | |
2253 | // Create all the Thunks and insert them into synthetic ThunkSections. The |
2254 | // ThunkSections are later inserted back into InputSectionDescriptions. |
2255 | // We separate the creation of ThunkSections from the insertion of the |
2256 | // ThunkSections as ThunkSections are not always inserted into the same |
2257 | // InputSectionDescription as the caller. |
2258 | forEachInputSectionDescription( |
2259 | outputSections, fn: [&](OutputSection *os, InputSectionDescription *isd) { |
2260 | for (InputSection *isec : isd->sections) |
2261 | for (Relocation &rel : isec->relocs()) { |
2262 | uint64_t src = isec->getVA(offset: rel.offset); |
2263 | |
2264 | // If we are a relocation to an existing Thunk, check if it is |
2265 | // still in range. If not then Rel will be altered to point to its |
2266 | // original target so another Thunk can be generated. |
2267 | if (pass > 0 && normalizeExistingThunk(rel, src)) |
2268 | continue; |
2269 | |
2270 | if (!target->needsThunk(expr: rel.expr, relocType: rel.type, file: isec->file, branchAddr: src, |
2271 | s: *rel.sym, a: rel.addend)) |
2272 | continue; |
2273 | |
2274 | Thunk *t; |
2275 | bool isNew; |
2276 | std::tie(args&: t, args&: isNew) = getThunk(isec, rel, src); |
2277 | |
2278 | if (isNew) { |
2279 | // Find or create a ThunkSection for the new Thunk |
2280 | ThunkSection *ts; |
2281 | if (auto *tis = t->getTargetInputSection()) |
2282 | ts = getISThunkSec(isec: tis); |
2283 | else |
2284 | ts = getISDThunkSec(os, isec, isd, rel, src); |
2285 | ts->addThunk(t); |
2286 | thunks[t->getThunkTargetSym()] = t; |
2287 | } |
2288 | |
2289 | // Redirect relocation to Thunk, we never go via the PLT to a Thunk |
2290 | rel.sym = t->getThunkTargetSym(); |
2291 | rel.expr = fromPlt(expr: rel.expr); |
2292 | |
2293 | // On AArch64 and PPC, a jump/call relocation may be encoded as |
2294 | // STT_SECTION + non-zero addend, clear the addend after |
2295 | // redirection. |
2296 | if (config->emachine != EM_MIPS) |
2297 | rel.addend = -getPCBias(type: rel.type); |
2298 | } |
2299 | |
2300 | for (auto &p : isd->thunkSections) |
2301 | addressesChanged |= p.first->assignOffsets(); |
2302 | }); |
2303 | |
2304 | for (auto &p : thunkedSections) |
2305 | addressesChanged |= p.second->assignOffsets(); |
2306 | |
2307 | // Merge all created synthetic ThunkSections back into OutputSection |
2308 | mergeThunks(outputSections); |
2309 | return addressesChanged; |
2310 | } |
2311 | |
2312 | // The following aid in the conversion of call x@GDPLT to call __tls_get_addr |
2313 | // hexagonNeedsTLSSymbol scans for relocations would require a call to |
2314 | // __tls_get_addr. |
2315 | // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. |
2316 | bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) { |
2317 | bool needTlsSymbol = false; |
2318 | forEachInputSectionDescription( |
2319 | outputSections, fn: [&](OutputSection *os, InputSectionDescription *isd) { |
2320 | for (InputSection *isec : isd->sections) |
2321 | for (Relocation &rel : isec->relocs()) |
2322 | if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { |
2323 | needTlsSymbol = true; |
2324 | return; |
2325 | } |
2326 | }); |
2327 | return needTlsSymbol; |
2328 | } |
2329 | |
2330 | void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) { |
2331 | Symbol *sym = symtab.find(name: "__tls_get_addr" ); |
2332 | if (!sym) |
2333 | return; |
2334 | bool needEntry = true; |
2335 | forEachInputSectionDescription( |
2336 | outputSections, fn: [&](OutputSection *os, InputSectionDescription *isd) { |
2337 | for (InputSection *isec : isd->sections) |
2338 | for (Relocation &rel : isec->relocs()) |
2339 | if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { |
2340 | if (needEntry) { |
2341 | sym->allocateAux(); |
2342 | addPltEntry(plt&: *in.plt, gotPlt&: *in.gotPlt, rel&: *in.relaPlt, type: target->pltRel, |
2343 | sym&: *sym); |
2344 | needEntry = false; |
2345 | } |
2346 | rel.sym = sym; |
2347 | } |
2348 | }); |
2349 | } |
2350 | |
2351 | template void elf::scanRelocations<ELF32LE>(); |
2352 | template void elf::scanRelocations<ELF32BE>(); |
2353 | template void elf::scanRelocations<ELF64LE>(); |
2354 | template void elf::scanRelocations<ELF64BE>(); |
2355 | |