1 | //===- Writer.cpp ---------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "Writer.h" |
10 | #include "AArch64ErrataFix.h" |
11 | #include "ARMErrataFix.h" |
12 | #include "CallGraphSort.h" |
13 | #include "Config.h" |
14 | #include "InputFiles.h" |
15 | #include "LinkerScript.h" |
16 | #include "MapFile.h" |
17 | #include "OutputSections.h" |
18 | #include "Relocations.h" |
19 | #include "SymbolTable.h" |
20 | #include "Symbols.h" |
21 | #include "SyntheticSections.h" |
22 | #include "Target.h" |
23 | #include "lld/Common/Arrays.h" |
24 | #include "lld/Common/CommonLinkerContext.h" |
25 | #include "lld/Common/Filesystem.h" |
26 | #include "lld/Common/Strings.h" |
27 | #include "llvm/ADT/STLExtras.h" |
28 | #include "llvm/ADT/StringMap.h" |
29 | #include "llvm/Support/BLAKE3.h" |
30 | #include "llvm/Support/Parallel.h" |
31 | #include "llvm/Support/RandomNumberGenerator.h" |
32 | #include "llvm/Support/TimeProfiler.h" |
33 | #include "llvm/Support/xxhash.h" |
34 | #include <climits> |
35 | |
36 | #define DEBUG_TYPE "lld" |
37 | |
38 | using namespace llvm; |
39 | using namespace llvm::ELF; |
40 | using namespace llvm::object; |
41 | using namespace llvm::support; |
42 | using namespace llvm::support::endian; |
43 | using namespace lld; |
44 | using namespace lld::elf; |
45 | |
46 | namespace { |
47 | // The writer writes a SymbolTable result to a file. |
48 | template <class ELFT> class Writer { |
49 | public: |
50 | LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
51 | |
52 | Writer() : buffer(errorHandler().outputBuffer) {} |
53 | |
54 | void run(); |
55 | |
56 | private: |
57 | void addSectionSymbols(); |
58 | void sortSections(); |
59 | void resolveShfLinkOrder(); |
60 | void finalizeAddressDependentContent(); |
61 | void optimizeBasicBlockJumps(); |
62 | void sortInputSections(); |
63 | void sortOrphanSections(); |
64 | void finalizeSections(); |
65 | void checkExecuteOnly(); |
66 | void setReservedSymbolSections(); |
67 | |
68 | SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); |
69 | void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, |
70 | unsigned pFlags); |
71 | void assignFileOffsets(); |
72 | void assignFileOffsetsBinary(); |
73 | void setPhdrs(Partition &part); |
74 | void checkSections(); |
75 | void fixSectionAlignments(); |
76 | void openFile(); |
77 | void writeTrapInstr(); |
78 | void writeHeader(); |
79 | void writeSections(); |
80 | void writeSectionsBinary(); |
81 | void writeBuildId(); |
82 | |
83 | std::unique_ptr<FileOutputBuffer> &buffer; |
84 | |
85 | void addRelIpltSymbols(); |
86 | void addStartEndSymbols(); |
87 | void addStartStopSymbols(OutputSection &osec); |
88 | |
89 | uint64_t fileSize; |
90 | uint64_t ; |
91 | }; |
92 | } // anonymous namespace |
93 | |
94 | template <class ELFT> void elf::writeResult() { |
95 | Writer<ELFT>().run(); |
96 | } |
97 | |
98 | static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { |
99 | auto it = std::stable_partition( |
100 | first: phdrs.begin(), last: phdrs.end(), pred: [&](const PhdrEntry *p) { |
101 | if (p->p_type != PT_LOAD) |
102 | return true; |
103 | if (!p->firstSec) |
104 | return false; |
105 | uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; |
106 | return size != 0; |
107 | }); |
108 | |
109 | // Clear OutputSection::ptLoad for sections contained in removed |
110 | // segments. |
111 | DenseSet<PhdrEntry *> removed(it, phdrs.end()); |
112 | for (OutputSection *sec : outputSections) |
113 | if (removed.count(V: sec->ptLoad)) |
114 | sec->ptLoad = nullptr; |
115 | phdrs.erase(CS: it, CE: phdrs.end()); |
116 | } |
117 | |
118 | void elf::copySectionsIntoPartitions() { |
119 | SmallVector<InputSectionBase *, 0> newSections; |
120 | const size_t ehSize = ctx.ehInputSections.size(); |
121 | for (unsigned part = 2; part != partitions.size() + 1; ++part) { |
122 | for (InputSectionBase *s : ctx.inputSections) { |
123 | if (!(s->flags & SHF_ALLOC) || !s->isLive() || s->type != SHT_NOTE) |
124 | continue; |
125 | auto *copy = make<InputSection>(args&: cast<InputSection>(Val&: *s)); |
126 | copy->partition = part; |
127 | newSections.push_back(Elt: copy); |
128 | } |
129 | for (size_t i = 0; i != ehSize; ++i) { |
130 | assert(ctx.ehInputSections[i]->isLive()); |
131 | auto *copy = make<EhInputSection>(args&: *ctx.ehInputSections[i]); |
132 | copy->partition = part; |
133 | ctx.ehInputSections.push_back(Elt: copy); |
134 | } |
135 | } |
136 | |
137 | ctx.inputSections.insert(I: ctx.inputSections.end(), From: newSections.begin(), |
138 | To: newSections.end()); |
139 | } |
140 | |
141 | static Defined *addOptionalRegular(StringRef name, SectionBase *sec, |
142 | uint64_t val, uint8_t stOther = STV_HIDDEN) { |
143 | Symbol *s = symtab.find(name); |
144 | if (!s || s->isDefined() || s->isCommon()) |
145 | return nullptr; |
146 | |
147 | s->resolve(other: Defined{ctx.internalFile, StringRef(), STB_GLOBAL, stOther, |
148 | STT_NOTYPE, val, |
149 | /*size=*/0, sec}); |
150 | s->isUsedInRegularObj = true; |
151 | return cast<Defined>(Val: s); |
152 | } |
153 | |
154 | // The linker is expected to define some symbols depending on |
155 | // the linking result. This function defines such symbols. |
156 | void elf::addReservedSymbols() { |
157 | if (config->emachine == EM_MIPS) { |
158 | auto addAbsolute = [](StringRef name) { |
159 | Symbol *sym = |
160 | symtab.addSymbol(newSym: Defined{ctx.internalFile, name, STB_GLOBAL, |
161 | STV_HIDDEN, STT_NOTYPE, 0, 0, nullptr}); |
162 | sym->isUsedInRegularObj = true; |
163 | return cast<Defined>(Val: sym); |
164 | }; |
165 | // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer |
166 | // so that it points to an absolute address which by default is relative |
167 | // to GOT. Default offset is 0x7ff0. |
168 | // See "Global Data Symbols" in Chapter 6 in the following document: |
169 | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
170 | ElfSym::mipsGp = addAbsolute("_gp" ); |
171 | |
172 | // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between |
173 | // start of function and 'gp' pointer into GOT. |
174 | if (symtab.find(name: "_gp_disp" )) |
175 | ElfSym::mipsGpDisp = addAbsolute("_gp_disp" ); |
176 | |
177 | // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' |
178 | // pointer. This symbol is used in the code generated by .cpload pseudo-op |
179 | // in case of using -mno-shared option. |
180 | // https://sourceware.org/ml/binutils/2004-12/msg00094.html |
181 | if (symtab.find(name: "__gnu_local_gp" )) |
182 | ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp" ); |
183 | } else if (config->emachine == EM_PPC) { |
184 | // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't |
185 | // support Small Data Area, define it arbitrarily as 0. |
186 | addOptionalRegular(name: "_SDA_BASE_" , sec: nullptr, val: 0, stOther: STV_HIDDEN); |
187 | } else if (config->emachine == EM_PPC64) { |
188 | addPPC64SaveRestore(); |
189 | } |
190 | |
191 | // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which |
192 | // combines the typical ELF GOT with the small data sections. It commonly |
193 | // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both |
194 | // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to |
195 | // represent the TOC base which is offset by 0x8000 bytes from the start of |
196 | // the .got section. |
197 | // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the |
198 | // correctness of some relocations depends on its value. |
199 | StringRef gotSymName = |
200 | (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_" ; |
201 | |
202 | if (Symbol *s = symtab.find(name: gotSymName)) { |
203 | if (s->isDefined()) { |
204 | error(msg: toString(f: s->file) + " cannot redefine linker defined symbol '" + |
205 | gotSymName + "'" ); |
206 | return; |
207 | } |
208 | |
209 | uint64_t gotOff = 0; |
210 | if (config->emachine == EM_PPC64) |
211 | gotOff = 0x8000; |
212 | |
213 | s->resolve(other: Defined{ctx.internalFile, StringRef(), STB_GLOBAL, STV_HIDDEN, |
214 | STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); |
215 | ElfSym::globalOffsetTable = cast<Defined>(Val: s); |
216 | } |
217 | |
218 | // __ehdr_start is the location of ELF file headers. Note that we define |
219 | // this symbol unconditionally even when using a linker script, which |
220 | // differs from the behavior implemented by GNU linker which only define |
221 | // this symbol if ELF headers are in the memory mapped segment. |
222 | addOptionalRegular(name: "__ehdr_start" , sec: Out::elfHeader, val: 0, stOther: STV_HIDDEN); |
223 | |
224 | // __executable_start is not documented, but the expectation of at |
225 | // least the Android libc is that it points to the ELF header. |
226 | addOptionalRegular(name: "__executable_start" , sec: Out::elfHeader, val: 0, stOther: STV_HIDDEN); |
227 | |
228 | // __dso_handle symbol is passed to cxa_finalize as a marker to identify |
229 | // each DSO. The address of the symbol doesn't matter as long as they are |
230 | // different in different DSOs, so we chose the start address of the DSO. |
231 | addOptionalRegular(name: "__dso_handle" , sec: Out::elfHeader, val: 0, stOther: STV_HIDDEN); |
232 | |
233 | // If linker script do layout we do not need to create any standard symbols. |
234 | if (script->hasSectionsCommand) |
235 | return; |
236 | |
237 | auto add = [](StringRef s, int64_t pos) { |
238 | return addOptionalRegular(name: s, sec: Out::elfHeader, val: pos, stOther: STV_DEFAULT); |
239 | }; |
240 | |
241 | ElfSym::bss = add("__bss_start" , 0); |
242 | ElfSym::end1 = add("end" , -1); |
243 | ElfSym::end2 = add("_end" , -1); |
244 | ElfSym::etext1 = add("etext" , -1); |
245 | ElfSym::etext2 = add("_etext" , -1); |
246 | ElfSym::edata1 = add("edata" , -1); |
247 | ElfSym::edata2 = add("_edata" , -1); |
248 | } |
249 | |
250 | static void demoteDefined(Defined &sym, DenseMap<SectionBase *, size_t> &map) { |
251 | if (map.empty()) |
252 | for (auto [i, sec] : llvm::enumerate(First: sym.file->getSections())) |
253 | map.try_emplace(Key: sec, Args&: i); |
254 | // Change WEAK to GLOBAL so that if a scanned relocation references sym, |
255 | // maybeReportUndefined will report an error. |
256 | uint8_t binding = sym.isWeak() ? uint8_t(STB_GLOBAL) : sym.binding; |
257 | Undefined(sym.file, sym.getName(), binding, sym.stOther, sym.type, |
258 | /*discardedSecIdx=*/map.lookup(Val: sym.section)) |
259 | .overwrite(sym); |
260 | // Eliminate from the symbol table, otherwise we would leave an undefined |
261 | // symbol if the symbol is unreferenced in the absence of GC. |
262 | sym.isUsedInRegularObj = false; |
263 | } |
264 | |
265 | // If all references to a DSO happen to be weak, the DSO is not added to |
266 | // DT_NEEDED. If that happens, replace ShardSymbol with Undefined to avoid |
267 | // dangling references to an unneeded DSO. Use a weak binding to avoid |
268 | // --no-allow-shlib-undefined diagnostics. Similarly, demote lazy symbols. |
269 | // |
270 | // In addition, demote symbols defined in discarded sections, so that |
271 | // references to /DISCARD/ discarded symbols will lead to errors. |
272 | static void demoteSymbolsAndComputeIsPreemptible() { |
273 | llvm::TimeTraceScope timeScope("Demote symbols" ); |
274 | DenseMap<InputFile *, DenseMap<SectionBase *, size_t>> sectionIndexMap; |
275 | for (Symbol *sym : symtab.getSymbols()) { |
276 | if (auto *d = dyn_cast<Defined>(Val: sym)) { |
277 | if (d->section && !d->section->isLive()) |
278 | demoteDefined(sym&: *d, map&: sectionIndexMap[d->file]); |
279 | } else { |
280 | auto *s = dyn_cast<SharedSymbol>(Val: sym); |
281 | if (sym->isLazy() || (s && !cast<SharedFile>(Val: s->file)->isNeeded)) { |
282 | uint8_t binding = sym->isLazy() ? sym->binding : uint8_t(STB_WEAK); |
283 | Undefined(ctx.internalFile, sym->getName(), binding, sym->stOther, |
284 | sym->type) |
285 | .overwrite(sym&: *sym); |
286 | sym->versionId = VER_NDX_GLOBAL; |
287 | } |
288 | } |
289 | |
290 | if (config->hasDynSymTab) |
291 | sym->isPreemptible = computeIsPreemptible(sym: *sym); |
292 | } |
293 | } |
294 | |
295 | static OutputSection *findSection(StringRef name, unsigned partition = 1) { |
296 | for (SectionCommand *cmd : script->sectionCommands) |
297 | if (auto *osd = dyn_cast<OutputDesc>(Val: cmd)) |
298 | if (osd->osec.name == name && osd->osec.partition == partition) |
299 | return &osd->osec; |
300 | return nullptr; |
301 | } |
302 | |
303 | // The main function of the writer. |
304 | template <class ELFT> void Writer<ELFT>::run() { |
305 | // Now that we have a complete set of output sections. This function |
306 | // completes section contents. For example, we need to add strings |
307 | // to the string table, and add entries to .got and .plt. |
308 | // finalizeSections does that. |
309 | finalizeSections(); |
310 | checkExecuteOnly(); |
311 | |
312 | // If --compressed-debug-sections is specified, compress .debug_* sections. |
313 | // Do it right now because it changes the size of output sections. |
314 | for (OutputSection *sec : outputSections) |
315 | sec->maybeCompress<ELFT>(); |
316 | |
317 | if (script->hasSectionsCommand) |
318 | script->allocateHeaders(phdrs&: mainPart->phdrs); |
319 | |
320 | // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a |
321 | // 0 sized region. This has to be done late since only after assignAddresses |
322 | // we know the size of the sections. |
323 | for (Partition &part : partitions) |
324 | removeEmptyPTLoad(phdrs&: part.phdrs); |
325 | |
326 | if (!config->oFormatBinary) |
327 | assignFileOffsets(); |
328 | else |
329 | assignFileOffsetsBinary(); |
330 | |
331 | for (Partition &part : partitions) |
332 | setPhdrs(part); |
333 | |
334 | // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections() |
335 | // because the files may be useful in case checkSections() or openFile() |
336 | // fails, for example, due to an erroneous file size. |
337 | writeMapAndCref(); |
338 | |
339 | // Handle --print-memory-usage option. |
340 | if (config->printMemoryUsage) |
341 | script->printMemoryUsage(os&: lld::outs()); |
342 | |
343 | if (config->checkSections) |
344 | checkSections(); |
345 | |
346 | // It does not make sense try to open the file if we have error already. |
347 | if (errorCount()) |
348 | return; |
349 | |
350 | { |
351 | llvm::TimeTraceScope timeScope("Write output file" ); |
352 | // Write the result down to a file. |
353 | openFile(); |
354 | if (errorCount()) |
355 | return; |
356 | |
357 | if (!config->oFormatBinary) { |
358 | if (config->zSeparate != SeparateSegmentKind::None) |
359 | writeTrapInstr(); |
360 | writeHeader(); |
361 | writeSections(); |
362 | } else { |
363 | writeSectionsBinary(); |
364 | } |
365 | |
366 | // Backfill .note.gnu.build-id section content. This is done at last |
367 | // because the content is usually a hash value of the entire output file. |
368 | writeBuildId(); |
369 | if (errorCount()) |
370 | return; |
371 | |
372 | if (auto e = buffer->commit()) |
373 | fatal(msg: "failed to write output '" + buffer->getPath() + |
374 | "': " + toString(E: std::move(e))); |
375 | |
376 | if (!config->cmseOutputLib.empty()) |
377 | writeARMCmseImportLib<ELFT>(); |
378 | } |
379 | } |
380 | |
381 | template <class ELFT, class RelTy> |
382 | static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, |
383 | llvm::ArrayRef<RelTy> rels) { |
384 | for (const RelTy &rel : rels) { |
385 | Symbol &sym = file->getRelocTargetSym(rel); |
386 | if (sym.isLocal()) |
387 | sym.used = true; |
388 | } |
389 | } |
390 | |
391 | // The function ensures that the "used" field of local symbols reflects the fact |
392 | // that the symbol is used in a relocation from a live section. |
393 | template <class ELFT> static void markUsedLocalSymbols() { |
394 | // With --gc-sections, the field is already filled. |
395 | // See MarkLive<ELFT>::resolveReloc(). |
396 | if (config->gcSections) |
397 | return; |
398 | for (ELFFileBase *file : ctx.objectFiles) { |
399 | ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); |
400 | for (InputSectionBase *s : f->getSections()) { |
401 | InputSection *isec = dyn_cast_or_null<InputSection>(Val: s); |
402 | if (!isec) |
403 | continue; |
404 | if (isec->type == SHT_REL) |
405 | markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); |
406 | else if (isec->type == SHT_RELA) |
407 | markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); |
408 | } |
409 | } |
410 | } |
411 | |
412 | static bool shouldKeepInSymtab(const Defined &sym) { |
413 | if (sym.isSection()) |
414 | return false; |
415 | |
416 | // If --emit-reloc or -r is given, preserve symbols referenced by relocations |
417 | // from live sections. |
418 | if (sym.used && config->copyRelocs) |
419 | return true; |
420 | |
421 | // Exclude local symbols pointing to .ARM.exidx sections. |
422 | // They are probably mapping symbols "$d", which are optional for these |
423 | // sections. After merging the .ARM.exidx sections, some of these symbols |
424 | // may become dangling. The easiest way to avoid the issue is not to add |
425 | // them to the symbol table from the beginning. |
426 | if (config->emachine == EM_ARM && sym.section && |
427 | sym.section->type == SHT_ARM_EXIDX) |
428 | return false; |
429 | |
430 | if (config->discard == DiscardPolicy::None) |
431 | return true; |
432 | if (config->discard == DiscardPolicy::All) |
433 | return false; |
434 | |
435 | // In ELF assembly .L symbols are normally discarded by the assembler. |
436 | // If the assembler fails to do so, the linker discards them if |
437 | // * --discard-locals is used. |
438 | // * The symbol is in a SHF_MERGE section, which is normally the reason for |
439 | // the assembler keeping the .L symbol. |
440 | if (sym.getName().starts_with(Prefix: ".L" ) && |
441 | (config->discard == DiscardPolicy::Locals || |
442 | (sym.section && (sym.section->flags & SHF_MERGE)))) |
443 | return false; |
444 | return true; |
445 | } |
446 | |
447 | bool lld::elf::includeInSymtab(const Symbol &b) { |
448 | if (auto *d = dyn_cast<Defined>(Val: &b)) { |
449 | // Always include absolute symbols. |
450 | SectionBase *sec = d->section; |
451 | if (!sec) |
452 | return true; |
453 | assert(sec->isLive()); |
454 | |
455 | if (auto *s = dyn_cast<MergeInputSection>(Val: sec)) |
456 | return s->getSectionPiece(offset: d->value).live; |
457 | return true; |
458 | } |
459 | return b.used || !config->gcSections; |
460 | } |
461 | |
462 | // Scan local symbols to: |
463 | // |
464 | // - demote symbols defined relative to /DISCARD/ discarded input sections so |
465 | // that relocations referencing them will lead to errors. |
466 | // - copy eligible symbols to .symTab |
467 | static void demoteAndCopyLocalSymbols() { |
468 | llvm::TimeTraceScope timeScope("Add local symbols" ); |
469 | for (ELFFileBase *file : ctx.objectFiles) { |
470 | DenseMap<SectionBase *, size_t> sectionIndexMap; |
471 | for (Symbol *b : file->getLocalSymbols()) { |
472 | assert(b->isLocal() && "should have been caught in initializeSymbols()" ); |
473 | auto *dr = dyn_cast<Defined>(Val: b); |
474 | if (!dr) |
475 | continue; |
476 | |
477 | if (dr->section && !dr->section->isLive()) |
478 | demoteDefined(sym&: *dr, map&: sectionIndexMap); |
479 | else if (in.symTab && includeInSymtab(b: *b) && shouldKeepInSymtab(sym: *dr)) |
480 | in.symTab->addSymbol(sym: b); |
481 | } |
482 | } |
483 | } |
484 | |
485 | // Create a section symbol for each output section so that we can represent |
486 | // relocations that point to the section. If we know that no relocation is |
487 | // referring to a section (that happens if the section is a synthetic one), we |
488 | // don't create a section symbol for that section. |
489 | template <class ELFT> void Writer<ELFT>::addSectionSymbols() { |
490 | for (SectionCommand *cmd : script->sectionCommands) { |
491 | auto *osd = dyn_cast<OutputDesc>(Val: cmd); |
492 | if (!osd) |
493 | continue; |
494 | OutputSection &osec = osd->osec; |
495 | InputSectionBase *isec = nullptr; |
496 | // Iterate over all input sections and add a STT_SECTION symbol if any input |
497 | // section may be a relocation target. |
498 | for (SectionCommand *cmd : osec.commands) { |
499 | auto *isd = dyn_cast<InputSectionDescription>(Val: cmd); |
500 | if (!isd) |
501 | continue; |
502 | for (InputSectionBase *s : isd->sections) { |
503 | // Relocations are not using REL[A] section symbols. |
504 | if (isStaticRelSecType(type: s->type)) |
505 | continue; |
506 | |
507 | // Unlike other synthetic sections, mergeable output sections contain |
508 | // data copied from input sections, and there may be a relocation |
509 | // pointing to its contents if -r or --emit-reloc is given. |
510 | if (isa<SyntheticSection>(Val: s) && !(s->flags & SHF_MERGE)) |
511 | continue; |
512 | |
513 | isec = s; |
514 | break; |
515 | } |
516 | } |
517 | if (!isec) |
518 | continue; |
519 | |
520 | // Set the symbol to be relative to the output section so that its st_value |
521 | // equals the output section address. Note, there may be a gap between the |
522 | // start of the output section and isec. |
523 | in.symTab->addSymbol(sym: makeDefined(args&: isec->file, args: "" , args: STB_LOCAL, /*stOther=*/args: 0, |
524 | args: STT_SECTION, |
525 | /*value=*/args: 0, /*size=*/args: 0, args: &osec)); |
526 | } |
527 | } |
528 | |
529 | // Today's loaders have a feature to make segments read-only after |
530 | // processing dynamic relocations to enhance security. PT_GNU_RELRO |
531 | // is defined for that. |
532 | // |
533 | // This function returns true if a section needs to be put into a |
534 | // PT_GNU_RELRO segment. |
535 | static bool isRelroSection(const OutputSection *sec) { |
536 | if (!config->zRelro) |
537 | return false; |
538 | if (sec->relro) |
539 | return true; |
540 | |
541 | uint64_t flags = sec->flags; |
542 | |
543 | // Non-allocatable or non-writable sections don't need RELRO because |
544 | // they are not writable or not even mapped to memory in the first place. |
545 | // RELRO is for sections that are essentially read-only but need to |
546 | // be writable only at process startup to allow dynamic linker to |
547 | // apply relocations. |
548 | if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) |
549 | return false; |
550 | |
551 | // Once initialized, TLS data segments are used as data templates |
552 | // for a thread-local storage. For each new thread, runtime |
553 | // allocates memory for a TLS and copy templates there. No thread |
554 | // are supposed to use templates directly. Thus, it can be in RELRO. |
555 | if (flags & SHF_TLS) |
556 | return true; |
557 | |
558 | // .init_array, .preinit_array and .fini_array contain pointers to |
559 | // functions that are executed on process startup or exit. These |
560 | // pointers are set by the static linker, and they are not expected |
561 | // to change at runtime. But if you are an attacker, you could do |
562 | // interesting things by manipulating pointers in .fini_array, for |
563 | // example. So they are put into RELRO. |
564 | uint32_t type = sec->type; |
565 | if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || |
566 | type == SHT_PREINIT_ARRAY) |
567 | return true; |
568 | |
569 | // .got contains pointers to external symbols. They are resolved by |
570 | // the dynamic linker when a module is loaded into memory, and after |
571 | // that they are not expected to change. So, it can be in RELRO. |
572 | if (in.got && sec == in.got->getParent()) |
573 | return true; |
574 | |
575 | // .toc is a GOT-ish section for PowerPC64. Their contents are accessed |
576 | // through r2 register, which is reserved for that purpose. Since r2 is used |
577 | // for accessing .got as well, .got and .toc need to be close enough in the |
578 | // virtual address space. Usually, .toc comes just after .got. Since we place |
579 | // .got into RELRO, .toc needs to be placed into RELRO too. |
580 | if (sec->name.equals(RHS: ".toc" )) |
581 | return true; |
582 | |
583 | // .got.plt contains pointers to external function symbols. They are |
584 | // by default resolved lazily, so we usually cannot put it into RELRO. |
585 | // However, if "-z now" is given, the lazy symbol resolution is |
586 | // disabled, which enables us to put it into RELRO. |
587 | if (sec == in.gotPlt->getParent()) |
588 | return config->zNow; |
589 | |
590 | if (in.relroPadding && sec == in.relroPadding->getParent()) |
591 | return true; |
592 | |
593 | // .dynamic section contains data for the dynamic linker, and |
594 | // there's no need to write to it at runtime, so it's better to put |
595 | // it into RELRO. |
596 | if (sec->name == ".dynamic" ) |
597 | return true; |
598 | |
599 | // Sections with some special names are put into RELRO. This is a |
600 | // bit unfortunate because section names shouldn't be significant in |
601 | // ELF in spirit. But in reality many linker features depend on |
602 | // magic section names. |
603 | StringRef s = sec->name; |
604 | return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || |
605 | s == ".dtors" || s == ".jcr" || s == ".eh_frame" || |
606 | s == ".fini_array" || s == ".init_array" || |
607 | s == ".openbsd.randomdata" || s == ".preinit_array" ; |
608 | } |
609 | |
610 | // We compute a rank for each section. The rank indicates where the |
611 | // section should be placed in the file. Instead of using simple |
612 | // numbers (0,1,2...), we use a series of flags. One for each decision |
613 | // point when placing the section. |
614 | // Using flags has two key properties: |
615 | // * It is easy to check if a give branch was taken. |
616 | // * It is easy two see how similar two ranks are (see getRankProximity). |
617 | enum RankFlags { |
618 | RF_NOT_ADDR_SET = 1 << 27, |
619 | RF_NOT_ALLOC = 1 << 26, |
620 | RF_PARTITION = 1 << 18, // Partition number (8 bits) |
621 | RF_NOT_SPECIAL = 1 << 17, |
622 | RF_LARGE_ALT = 1 << 15, |
623 | RF_WRITE = 1 << 14, |
624 | RF_EXEC_WRITE = 1 << 13, |
625 | RF_EXEC = 1 << 12, |
626 | RF_RODATA = 1 << 11, |
627 | RF_LARGE = 1 << 10, |
628 | RF_NOT_RELRO = 1 << 9, |
629 | RF_NOT_TLS = 1 << 8, |
630 | RF_BSS = 1 << 7, |
631 | }; |
632 | |
633 | static unsigned getSectionRank(OutputSection &osec) { |
634 | unsigned rank = osec.partition * RF_PARTITION; |
635 | |
636 | // We want to put section specified by -T option first, so we |
637 | // can start assigning VA starting from them later. |
638 | if (config->sectionStartMap.count(Key: osec.name)) |
639 | return rank; |
640 | rank |= RF_NOT_ADDR_SET; |
641 | |
642 | // Allocatable sections go first to reduce the total PT_LOAD size and |
643 | // so debug info doesn't change addresses in actual code. |
644 | if (!(osec.flags & SHF_ALLOC)) |
645 | return rank | RF_NOT_ALLOC; |
646 | |
647 | if (osec.type == SHT_LLVM_PART_EHDR) |
648 | return rank; |
649 | if (osec.type == SHT_LLVM_PART_PHDR) |
650 | return rank | 1; |
651 | |
652 | // Put .interp first because some loaders want to see that section |
653 | // on the first page of the executable file when loaded into memory. |
654 | if (osec.name == ".interp" ) |
655 | return rank | 2; |
656 | |
657 | // Put .note sections at the beginning so that they are likely to be included |
658 | // in a truncate core file. In particular, .note.gnu.build-id, if available, |
659 | // can identify the object file. |
660 | if (osec.type == SHT_NOTE) |
661 | return rank | 3; |
662 | |
663 | rank |= RF_NOT_SPECIAL; |
664 | |
665 | // Sort sections based on their access permission in the following |
666 | // order: R, RX, RXW, RW(RELRO), RW(non-RELRO). |
667 | // |
668 | // Read-only sections come first such that they go in the PT_LOAD covering the |
669 | // program headers at the start of the file. |
670 | // |
671 | // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro |
672 | // .bss.rel.ro) | .data .bss), where | marks where page alignment happens. |
673 | // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro |
674 | // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment |
675 | // places. |
676 | bool isExec = osec.flags & SHF_EXECINSTR; |
677 | bool isWrite = osec.flags & SHF_WRITE; |
678 | |
679 | if (!isWrite && !isExec) { |
680 | // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to |
681 | // alleviate relocation overflow pressure. Large special sections such as |
682 | // .dynstr and .dynsym can be away from .text. |
683 | if (osec.type == SHT_PROGBITS) |
684 | rank |= RF_RODATA; |
685 | // Among PROGBITS sections, place .lrodata further from .text. |
686 | // For -z lrodata-after-bss, place .lrodata after .lbss like GNU ld. This |
687 | // layout has one extra PT_LOAD, but alleviates relocation overflow |
688 | // pressure for absolute relocations referencing small data from -fno-pic |
689 | // relocatable files. |
690 | if (osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64) |
691 | rank |= config->zLrodataAfterBss ? RF_LARGE_ALT : 0; |
692 | else |
693 | rank |= config->zLrodataAfterBss ? 0 : RF_LARGE; |
694 | } else if (isExec) { |
695 | rank |= isWrite ? RF_EXEC_WRITE : RF_EXEC; |
696 | } else { |
697 | rank |= RF_WRITE; |
698 | // The TLS initialization block needs to be a single contiguous block. Place |
699 | // TLS sections directly before the other RELRO sections. |
700 | if (!(osec.flags & SHF_TLS)) |
701 | rank |= RF_NOT_TLS; |
702 | if (isRelroSection(sec: &osec)) |
703 | osec.relro = true; |
704 | else |
705 | rank |= RF_NOT_RELRO; |
706 | // Place .ldata and .lbss after .bss. Making .bss closer to .text |
707 | // alleviates relocation overflow pressure. |
708 | // For -z lrodata-after-bss, place .lbss/.lrodata/.ldata after .bss. |
709 | // .bss/.lbss being adjacent reuses the NOBITS size optimization. |
710 | if (osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64) { |
711 | rank |= config->zLrodataAfterBss |
712 | ? (osec.type == SHT_NOBITS ? 1 : RF_LARGE_ALT) |
713 | : RF_LARGE; |
714 | } |
715 | } |
716 | |
717 | // Within TLS sections, or within other RelRo sections, or within non-RelRo |
718 | // sections, place non-NOBITS sections first. |
719 | if (osec.type == SHT_NOBITS) |
720 | rank |= RF_BSS; |
721 | |
722 | // Some architectures have additional ordering restrictions for sections |
723 | // within the same PT_LOAD. |
724 | if (config->emachine == EM_PPC64) { |
725 | // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections |
726 | // that we would like to make sure appear is a specific order to maximize |
727 | // their coverage by a single signed 16-bit offset from the TOC base |
728 | // pointer. |
729 | StringRef name = osec.name; |
730 | if (name == ".got" ) |
731 | rank |= 1; |
732 | else if (name == ".toc" ) |
733 | rank |= 2; |
734 | } |
735 | |
736 | if (config->emachine == EM_MIPS) { |
737 | if (osec.name != ".got" ) |
738 | rank |= 1; |
739 | // All sections with SHF_MIPS_GPREL flag should be grouped together |
740 | // because data in these sections is addressable with a gp relative address. |
741 | if (osec.flags & SHF_MIPS_GPREL) |
742 | rank |= 2; |
743 | } |
744 | |
745 | if (config->emachine == EM_RISCV) { |
746 | // .sdata and .sbss are placed closer to make GP relaxation more profitable |
747 | // and match GNU ld. |
748 | StringRef name = osec.name; |
749 | if (name == ".sdata" || (osec.type == SHT_NOBITS && name != ".sbss" )) |
750 | rank |= 1; |
751 | } |
752 | |
753 | return rank; |
754 | } |
755 | |
756 | static bool compareSections(const SectionCommand *aCmd, |
757 | const SectionCommand *bCmd) { |
758 | const OutputSection *a = &cast<OutputDesc>(Val: aCmd)->osec; |
759 | const OutputSection *b = &cast<OutputDesc>(Val: bCmd)->osec; |
760 | |
761 | if (a->sortRank != b->sortRank) |
762 | return a->sortRank < b->sortRank; |
763 | |
764 | if (!(a->sortRank & RF_NOT_ADDR_SET)) |
765 | return config->sectionStartMap.lookup(Key: a->name) < |
766 | config->sectionStartMap.lookup(Key: b->name); |
767 | return false; |
768 | } |
769 | |
770 | void PhdrEntry::add(OutputSection *sec) { |
771 | lastSec = sec; |
772 | if (!firstSec) |
773 | firstSec = sec; |
774 | p_align = std::max(a: p_align, b: sec->addralign); |
775 | if (p_type == PT_LOAD) |
776 | sec->ptLoad = this; |
777 | } |
778 | |
779 | // A statically linked position-dependent executable should only contain |
780 | // IRELATIVE relocations and no other dynamic relocations. Encapsulation symbols |
781 | // __rel[a]_iplt_{start,end} will be defined for .rel[a].dyn, to be |
782 | // processed by the libc runtime. Other executables or DSOs use dynamic tags |
783 | // instead. |
784 | template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { |
785 | if (config->isPic) |
786 | return; |
787 | |
788 | // __rela_iplt_{start,end} are initially defined relative to dummy section 0. |
789 | // We'll override Out::elfHeader with relaDyn later when we are sure that |
790 | // .rela.dyn will be present in the output. |
791 | ElfSym::relaIpltStart = addOptionalRegular( |
792 | name: config->isRela ? "__rela_iplt_start" : "__rel_iplt_start" , |
793 | sec: Out::elfHeader, val: 0, stOther: STV_HIDDEN); |
794 | |
795 | ElfSym::relaIpltEnd = addOptionalRegular( |
796 | name: config->isRela ? "__rela_iplt_end" : "__rel_iplt_end" , |
797 | sec: Out::elfHeader, val: 0, stOther: STV_HIDDEN); |
798 | } |
799 | |
800 | // This function generates assignments for predefined symbols (e.g. _end or |
801 | // _etext) and inserts them into the commands sequence to be processed at the |
802 | // appropriate time. This ensures that the value is going to be correct by the |
803 | // time any references to these symbols are processed and is equivalent to |
804 | // defining these symbols explicitly in the linker script. |
805 | template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { |
806 | if (ElfSym::globalOffsetTable) { |
807 | // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually |
808 | // to the start of the .got or .got.plt section. |
809 | InputSection *sec = in.gotPlt.get(); |
810 | if (!target->gotBaseSymInGotPlt) |
811 | sec = in.mipsGot ? cast<InputSection>(Val: in.mipsGot.get()) |
812 | : cast<InputSection>(Val: in.got.get()); |
813 | ElfSym::globalOffsetTable->section = sec; |
814 | } |
815 | |
816 | // .rela_iplt_{start,end} mark the start and the end of .rel[a].dyn. |
817 | if (ElfSym::relaIpltStart && mainPart->relaDyn->isNeeded()) { |
818 | ElfSym::relaIpltStart->section = mainPart->relaDyn.get(); |
819 | ElfSym::relaIpltEnd->section = mainPart->relaDyn.get(); |
820 | ElfSym::relaIpltEnd->value = mainPart->relaDyn->getSize(); |
821 | } |
822 | |
823 | PhdrEntry *last = nullptr; |
824 | OutputSection *lastRO = nullptr; |
825 | auto isLarge = [](OutputSection *osec) { |
826 | return config->emachine == EM_X86_64 && osec->flags & SHF_X86_64_LARGE; |
827 | }; |
828 | for (Partition &part : partitions) { |
829 | for (PhdrEntry *p : part.phdrs) { |
830 | if (p->p_type != PT_LOAD) |
831 | continue; |
832 | last = p; |
833 | if (!(p->p_flags & PF_W) && p->lastSec && !isLarge(p->lastSec)) |
834 | lastRO = p->lastSec; |
835 | } |
836 | } |
837 | |
838 | if (lastRO) { |
839 | // _etext is the first location after the last read-only loadable segment |
840 | // that does not contain large sections. |
841 | if (ElfSym::etext1) |
842 | ElfSym::etext1->section = lastRO; |
843 | if (ElfSym::etext2) |
844 | ElfSym::etext2->section = lastRO; |
845 | } |
846 | |
847 | if (last) { |
848 | // _edata points to the end of the last non-large mapped initialized |
849 | // section. |
850 | OutputSection *edata = nullptr; |
851 | for (OutputSection *os : outputSections) { |
852 | if (os->type != SHT_NOBITS && !isLarge(os)) |
853 | edata = os; |
854 | if (os == last->lastSec) |
855 | break; |
856 | } |
857 | |
858 | if (ElfSym::edata1) |
859 | ElfSym::edata1->section = edata; |
860 | if (ElfSym::edata2) |
861 | ElfSym::edata2->section = edata; |
862 | |
863 | // _end is the first location after the uninitialized data region. |
864 | if (ElfSym::end1) |
865 | ElfSym::end1->section = last->lastSec; |
866 | if (ElfSym::end2) |
867 | ElfSym::end2->section = last->lastSec; |
868 | } |
869 | |
870 | if (ElfSym::bss) { |
871 | // On RISC-V, set __bss_start to the start of .sbss if present. |
872 | OutputSection *sbss = |
873 | config->emachine == EM_RISCV ? findSection(name: ".sbss" ) : nullptr; |
874 | ElfSym::bss->section = sbss ? sbss : findSection(name: ".bss" ); |
875 | } |
876 | |
877 | // Setup MIPS _gp_disp/__gnu_local_gp symbols which should |
878 | // be equal to the _gp symbol's value. |
879 | if (ElfSym::mipsGp) { |
880 | // Find GP-relative section with the lowest address |
881 | // and use this address to calculate default _gp value. |
882 | for (OutputSection *os : outputSections) { |
883 | if (os->flags & SHF_MIPS_GPREL) { |
884 | ElfSym::mipsGp->section = os; |
885 | ElfSym::mipsGp->value = 0x7ff0; |
886 | break; |
887 | } |
888 | } |
889 | } |
890 | } |
891 | |
892 | // We want to find how similar two ranks are. |
893 | // The more branches in getSectionRank that match, the more similar they are. |
894 | // Since each branch corresponds to a bit flag, we can just use |
895 | // countLeadingZeros. |
896 | static int getRankProximity(OutputSection *a, SectionCommand *b) { |
897 | auto *osd = dyn_cast<OutputDesc>(Val: b); |
898 | return (osd && osd->osec.hasInputSections) |
899 | ? llvm::countl_zero(Val: a->sortRank ^ osd->osec.sortRank) |
900 | : -1; |
901 | } |
902 | |
903 | // When placing orphan sections, we want to place them after symbol assignments |
904 | // so that an orphan after |
905 | // begin_foo = .; |
906 | // foo : { *(foo) } |
907 | // end_foo = .; |
908 | // doesn't break the intended meaning of the begin/end symbols. |
909 | // We don't want to go over sections since findOrphanPos is the |
910 | // one in charge of deciding the order of the sections. |
911 | // We don't want to go over changes to '.', since doing so in |
912 | // rx_sec : { *(rx_sec) } |
913 | // . = ALIGN(0x1000); |
914 | // /* The RW PT_LOAD starts here*/ |
915 | // rw_sec : { *(rw_sec) } |
916 | // would mean that the RW PT_LOAD would become unaligned. |
917 | static bool shouldSkip(SectionCommand *cmd) { |
918 | if (auto *assign = dyn_cast<SymbolAssignment>(Val: cmd)) |
919 | return assign->name != "." ; |
920 | return false; |
921 | } |
922 | |
923 | // We want to place orphan sections so that they share as much |
924 | // characteristics with their neighbors as possible. For example, if |
925 | // both are rw, or both are tls. |
926 | static SmallVectorImpl<SectionCommand *>::iterator |
927 | findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, |
928 | SmallVectorImpl<SectionCommand *>::iterator e) { |
929 | OutputSection *sec = &cast<OutputDesc>(Val: *e)->osec; |
930 | |
931 | // As a special case, place .relro_padding before the SymbolAssignment using |
932 | // DATA_SEGMENT_RELRO_END, if present. |
933 | if (in.relroPadding && sec == in.relroPadding->getParent()) { |
934 | auto i = std::find_if(first: b, last: e, pred: [=](SectionCommand *a) { |
935 | if (auto *assign = dyn_cast<SymbolAssignment>(Val: a)) |
936 | return assign->dataSegmentRelroEnd; |
937 | return false; |
938 | }); |
939 | if (i != e) |
940 | return i; |
941 | } |
942 | |
943 | // Find the first element that has as close a rank as possible. |
944 | auto i = std::max_element(first: b, last: e, comp: [=](SectionCommand *a, SectionCommand *b) { |
945 | return getRankProximity(a: sec, b: a) < getRankProximity(a: sec, b); |
946 | }); |
947 | if (i == e) |
948 | return e; |
949 | if (!isa<OutputDesc>(Val: *i)) |
950 | return e; |
951 | auto foundSec = &cast<OutputDesc>(Val: *i)->osec; |
952 | |
953 | // Consider all existing sections with the same proximity. |
954 | int proximity = getRankProximity(a: sec, b: *i); |
955 | unsigned sortRank = sec->sortRank; |
956 | if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) |
957 | // Prevent the orphan section to be placed before the found section. If |
958 | // custom program headers are defined, that helps to avoid adding it to a |
959 | // previous segment and changing flags of that segment, for example, making |
960 | // a read-only segment writable. If memory regions are defined, an orphan |
961 | // section should continue the same region as the found section to better |
962 | // resemble the behavior of GNU ld. |
963 | sortRank = std::max(a: sortRank, b: foundSec->sortRank); |
964 | for (; i != e; ++i) { |
965 | auto *curSecDesc = dyn_cast<OutputDesc>(Val: *i); |
966 | if (!curSecDesc || !curSecDesc->osec.hasInputSections) |
967 | continue; |
968 | if (getRankProximity(a: sec, b: curSecDesc) != proximity || |
969 | sortRank < curSecDesc->osec.sortRank) |
970 | break; |
971 | } |
972 | |
973 | auto isOutputSecWithInputSections = [](SectionCommand *cmd) { |
974 | auto *osd = dyn_cast<OutputDesc>(Val: cmd); |
975 | return osd && osd->osec.hasInputSections; |
976 | }; |
977 | auto j = |
978 | std::find_if(first: std::make_reverse_iterator(i: i), last: std::make_reverse_iterator(i: b), |
979 | pred: isOutputSecWithInputSections); |
980 | i = j.base(); |
981 | |
982 | // As a special case, if the orphan section is the last section, put |
983 | // it at the very end, past any other commands. |
984 | // This matches bfd's behavior and is convenient when the linker script fully |
985 | // specifies the start of the file, but doesn't care about the end (the non |
986 | // alloc sections for example). |
987 | auto nextSec = std::find_if(first: i, last: e, pred: isOutputSecWithInputSections); |
988 | if (nextSec == e) |
989 | return e; |
990 | |
991 | while (i != e && shouldSkip(cmd: *i)) |
992 | ++i; |
993 | return i; |
994 | } |
995 | |
996 | // Adds random priorities to sections not already in the map. |
997 | static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { |
998 | if (config->shuffleSections.empty()) |
999 | return; |
1000 | |
1001 | SmallVector<InputSectionBase *, 0> matched, sections = ctx.inputSections; |
1002 | matched.reserve(N: sections.size()); |
1003 | for (const auto &patAndSeed : config->shuffleSections) { |
1004 | matched.clear(); |
1005 | for (InputSectionBase *sec : sections) |
1006 | if (patAndSeed.first.match(S: sec->name)) |
1007 | matched.push_back(Elt: sec); |
1008 | const uint32_t seed = patAndSeed.second; |
1009 | if (seed == UINT32_MAX) { |
1010 | // If --shuffle-sections <section-glob>=-1, reverse the section order. The |
1011 | // section order is stable even if the number of sections changes. This is |
1012 | // useful to catch issues like static initialization order fiasco |
1013 | // reliably. |
1014 | std::reverse(first: matched.begin(), last: matched.end()); |
1015 | } else { |
1016 | std::mt19937 g(seed ? seed : std::random_device()()); |
1017 | llvm::shuffle(first: matched.begin(), last: matched.end(), g); |
1018 | } |
1019 | size_t i = 0; |
1020 | for (InputSectionBase *&sec : sections) |
1021 | if (patAndSeed.first.match(S: sec->name)) |
1022 | sec = matched[i++]; |
1023 | } |
1024 | |
1025 | // Existing priorities are < 0, so use priorities >= 0 for the missing |
1026 | // sections. |
1027 | int prio = 0; |
1028 | for (InputSectionBase *sec : sections) { |
1029 | if (order.try_emplace(Key: sec, Args&: prio).second) |
1030 | ++prio; |
1031 | } |
1032 | } |
1033 | |
1034 | // Builds section order for handling --symbol-ordering-file. |
1035 | static DenseMap<const InputSectionBase *, int> buildSectionOrder() { |
1036 | DenseMap<const InputSectionBase *, int> sectionOrder; |
1037 | // Use the rarely used option --call-graph-ordering-file to sort sections. |
1038 | if (!config->callGraphProfile.empty()) |
1039 | return computeCallGraphProfileOrder(); |
1040 | |
1041 | if (config->symbolOrderingFile.empty()) |
1042 | return sectionOrder; |
1043 | |
1044 | struct SymbolOrderEntry { |
1045 | int priority; |
1046 | bool present; |
1047 | }; |
1048 | |
1049 | // Build a map from symbols to their priorities. Symbols that didn't |
1050 | // appear in the symbol ordering file have the lowest priority 0. |
1051 | // All explicitly mentioned symbols have negative (higher) priorities. |
1052 | DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; |
1053 | int priority = -config->symbolOrderingFile.size(); |
1054 | for (StringRef s : config->symbolOrderingFile) |
1055 | symbolOrder.insert(KV: {CachedHashStringRef(s), {.priority: priority++, .present: false}}); |
1056 | |
1057 | // Build a map from sections to their priorities. |
1058 | auto addSym = [&](Symbol &sym) { |
1059 | auto it = symbolOrder.find(Val: CachedHashStringRef(sym.getName())); |
1060 | if (it == symbolOrder.end()) |
1061 | return; |
1062 | SymbolOrderEntry &ent = it->second; |
1063 | ent.present = true; |
1064 | |
1065 | maybeWarnUnorderableSymbol(sym: &sym); |
1066 | |
1067 | if (auto *d = dyn_cast<Defined>(Val: &sym)) { |
1068 | if (auto *sec = dyn_cast_or_null<InputSectionBase>(Val: d->section)) { |
1069 | int &priority = sectionOrder[cast<InputSectionBase>(Val: sec)]; |
1070 | priority = std::min(a: priority, b: ent.priority); |
1071 | } |
1072 | } |
1073 | }; |
1074 | |
1075 | // We want both global and local symbols. We get the global ones from the |
1076 | // symbol table and iterate the object files for the local ones. |
1077 | for (Symbol *sym : symtab.getSymbols()) |
1078 | addSym(*sym); |
1079 | |
1080 | for (ELFFileBase *file : ctx.objectFiles) |
1081 | for (Symbol *sym : file->getLocalSymbols()) |
1082 | addSym(*sym); |
1083 | |
1084 | if (config->warnSymbolOrdering) |
1085 | for (auto orderEntry : symbolOrder) |
1086 | if (!orderEntry.second.present) |
1087 | warn(msg: "symbol ordering file: no such symbol: " + orderEntry.first.val()); |
1088 | |
1089 | return sectionOrder; |
1090 | } |
1091 | |
1092 | // Sorts the sections in ISD according to the provided section order. |
1093 | static void |
1094 | sortISDBySectionOrder(InputSectionDescription *isd, |
1095 | const DenseMap<const InputSectionBase *, int> &order, |
1096 | bool executableOutputSection) { |
1097 | SmallVector<InputSection *, 0> unorderedSections; |
1098 | SmallVector<std::pair<InputSection *, int>, 0> orderedSections; |
1099 | uint64_t unorderedSize = 0; |
1100 | uint64_t totalSize = 0; |
1101 | |
1102 | for (InputSection *isec : isd->sections) { |
1103 | if (executableOutputSection) |
1104 | totalSize += isec->getSize(); |
1105 | auto i = order.find(Val: isec); |
1106 | if (i == order.end()) { |
1107 | unorderedSections.push_back(Elt: isec); |
1108 | unorderedSize += isec->getSize(); |
1109 | continue; |
1110 | } |
1111 | orderedSections.push_back(Elt: {isec, i->second}); |
1112 | } |
1113 | llvm::sort(C&: orderedSections, Comp: llvm::less_second()); |
1114 | |
1115 | // Find an insertion point for the ordered section list in the unordered |
1116 | // section list. On targets with limited-range branches, this is the mid-point |
1117 | // of the unordered section list. This decreases the likelihood that a range |
1118 | // extension thunk will be needed to enter or exit the ordered region. If the |
1119 | // ordered section list is a list of hot functions, we can generally expect |
1120 | // the ordered functions to be called more often than the unordered functions, |
1121 | // making it more likely that any particular call will be within range, and |
1122 | // therefore reducing the number of thunks required. |
1123 | // |
1124 | // For example, imagine that you have 8MB of hot code and 32MB of cold code. |
1125 | // If the layout is: |
1126 | // |
1127 | // 8MB hot |
1128 | // 32MB cold |
1129 | // |
1130 | // only the first 8-16MB of the cold code (depending on which hot function it |
1131 | // is actually calling) can call the hot code without a range extension thunk. |
1132 | // However, if we use this layout: |
1133 | // |
1134 | // 16MB cold |
1135 | // 8MB hot |
1136 | // 16MB cold |
1137 | // |
1138 | // both the last 8-16MB of the first block of cold code and the first 8-16MB |
1139 | // of the second block of cold code can call the hot code without a thunk. So |
1140 | // we effectively double the amount of code that could potentially call into |
1141 | // the hot code without a thunk. |
1142 | // |
1143 | // The above is not necessary if total size of input sections in this "isd" |
1144 | // is small. Note that we assume all input sections are executable if the |
1145 | // output section is executable (which is not always true but supposed to |
1146 | // cover most cases). |
1147 | size_t insPt = 0; |
1148 | if (executableOutputSection && !orderedSections.empty() && |
1149 | target->getThunkSectionSpacing() && |
1150 | totalSize >= target->getThunkSectionSpacing()) { |
1151 | uint64_t unorderedPos = 0; |
1152 | for (; insPt != unorderedSections.size(); ++insPt) { |
1153 | unorderedPos += unorderedSections[insPt]->getSize(); |
1154 | if (unorderedPos > unorderedSize / 2) |
1155 | break; |
1156 | } |
1157 | } |
1158 | |
1159 | isd->sections.clear(); |
1160 | for (InputSection *isec : ArrayRef(unorderedSections).slice(N: 0, M: insPt)) |
1161 | isd->sections.push_back(Elt: isec); |
1162 | for (std::pair<InputSection *, int> p : orderedSections) |
1163 | isd->sections.push_back(Elt: p.first); |
1164 | for (InputSection *isec : ArrayRef(unorderedSections).slice(N: insPt)) |
1165 | isd->sections.push_back(Elt: isec); |
1166 | } |
1167 | |
1168 | static void sortSection(OutputSection &osec, |
1169 | const DenseMap<const InputSectionBase *, int> &order) { |
1170 | StringRef name = osec.name; |
1171 | |
1172 | // Never sort these. |
1173 | if (name == ".init" || name == ".fini" ) |
1174 | return; |
1175 | |
1176 | // Sort input sections by priority using the list provided by |
1177 | // --symbol-ordering-file or --shuffle-sections=. This is a least significant |
1178 | // digit radix sort. The sections may be sorted stably again by a more |
1179 | // significant key. |
1180 | if (!order.empty()) |
1181 | for (SectionCommand *b : osec.commands) |
1182 | if (auto *isd = dyn_cast<InputSectionDescription>(Val: b)) |
1183 | sortISDBySectionOrder(isd, order, executableOutputSection: osec.flags & SHF_EXECINSTR); |
1184 | |
1185 | if (script->hasSectionsCommand) |
1186 | return; |
1187 | |
1188 | if (name == ".init_array" || name == ".fini_array" ) { |
1189 | osec.sortInitFini(); |
1190 | } else if (name == ".ctors" || name == ".dtors" ) { |
1191 | osec.sortCtorsDtors(); |
1192 | } else if (config->emachine == EM_PPC64 && name == ".toc" ) { |
1193 | // .toc is allocated just after .got and is accessed using GOT-relative |
1194 | // relocations. Object files compiled with small code model have an |
1195 | // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. |
1196 | // To reduce the risk of relocation overflow, .toc contents are sorted so |
1197 | // that sections having smaller relocation offsets are at beginning of .toc |
1198 | assert(osec.commands.size() == 1); |
1199 | auto *isd = cast<InputSectionDescription>(Val: osec.commands[0]); |
1200 | llvm::stable_sort(Range&: isd->sections, |
1201 | C: [](const InputSection *a, const InputSection *b) -> bool { |
1202 | return a->file->ppc64SmallCodeModelTocRelocs && |
1203 | !b->file->ppc64SmallCodeModelTocRelocs; |
1204 | }); |
1205 | } |
1206 | } |
1207 | |
1208 | // If no layout was provided by linker script, we want to apply default |
1209 | // sorting for special input sections. This also handles --symbol-ordering-file. |
1210 | template <class ELFT> void Writer<ELFT>::sortInputSections() { |
1211 | // Build the order once since it is expensive. |
1212 | DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); |
1213 | maybeShuffle(order); |
1214 | for (SectionCommand *cmd : script->sectionCommands) |
1215 | if (auto *osd = dyn_cast<OutputDesc>(Val: cmd)) |
1216 | sortSection(osec&: osd->osec, order); |
1217 | } |
1218 | |
1219 | template <class ELFT> void Writer<ELFT>::sortSections() { |
1220 | llvm::TimeTraceScope timeScope("Sort sections" ); |
1221 | |
1222 | // Don't sort if using -r. It is not necessary and we want to preserve the |
1223 | // relative order for SHF_LINK_ORDER sections. |
1224 | if (config->relocatable) { |
1225 | script->adjustOutputSections(); |
1226 | return; |
1227 | } |
1228 | |
1229 | sortInputSections(); |
1230 | |
1231 | for (SectionCommand *cmd : script->sectionCommands) |
1232 | if (auto *osd = dyn_cast<OutputDesc>(Val: cmd)) |
1233 | osd->osec.sortRank = getSectionRank(osec&: osd->osec); |
1234 | if (!script->hasSectionsCommand) { |
1235 | // OutputDescs are mostly contiguous, but may be interleaved with |
1236 | // SymbolAssignments in the presence of INSERT commands. |
1237 | auto mid = std::stable_partition( |
1238 | script->sectionCommands.begin(), script->sectionCommands.end(), |
1239 | [](SectionCommand *cmd) { return isa<OutputDesc>(Val: cmd); }); |
1240 | std::stable_sort(script->sectionCommands.begin(), mid, compareSections); |
1241 | } |
1242 | |
1243 | // Process INSERT commands and update output section attributes. From this |
1244 | // point onwards the order of script->sectionCommands is fixed. |
1245 | script->processInsertCommands(); |
1246 | script->adjustOutputSections(); |
1247 | |
1248 | if (script->hasSectionsCommand) |
1249 | sortOrphanSections(); |
1250 | |
1251 | script->adjustSectionsAfterSorting(); |
1252 | } |
1253 | |
1254 | template <class ELFT> void Writer<ELFT>::sortOrphanSections() { |
1255 | // Orphan sections are sections present in the input files which are |
1256 | // not explicitly placed into the output file by the linker script. |
1257 | // |
1258 | // The sections in the linker script are already in the correct |
1259 | // order. We have to figuere out where to insert the orphan |
1260 | // sections. |
1261 | // |
1262 | // The order of the sections in the script is arbitrary and may not agree with |
1263 | // compareSections. This means that we cannot easily define a strict weak |
1264 | // ordering. To see why, consider a comparison of a section in the script and |
1265 | // one not in the script. We have a two simple options: |
1266 | // * Make them equivalent (a is not less than b, and b is not less than a). |
1267 | // The problem is then that equivalence has to be transitive and we can |
1268 | // have sections a, b and c with only b in a script and a less than c |
1269 | // which breaks this property. |
1270 | // * Use compareSectionsNonScript. Given that the script order doesn't have |
1271 | // to match, we can end up with sections a, b, c, d where b and c are in the |
1272 | // script and c is compareSectionsNonScript less than b. In which case d |
1273 | // can be equivalent to c, a to b and d < a. As a concrete example: |
1274 | // .a (rx) # not in script |
1275 | // .b (rx) # in script |
1276 | // .c (ro) # in script |
1277 | // .d (ro) # not in script |
1278 | // |
1279 | // The way we define an order then is: |
1280 | // * Sort only the orphan sections. They are in the end right now. |
1281 | // * Move each orphan section to its preferred position. We try |
1282 | // to put each section in the last position where it can share |
1283 | // a PT_LOAD. |
1284 | // |
1285 | // There is some ambiguity as to where exactly a new entry should be |
1286 | // inserted, because Commands contains not only output section |
1287 | // commands but also other types of commands such as symbol assignment |
1288 | // expressions. There's no correct answer here due to the lack of the |
1289 | // formal specification of the linker script. We use heuristics to |
1290 | // determine whether a new output command should be added before or |
1291 | // after another commands. For the details, look at shouldSkip |
1292 | // function. |
1293 | |
1294 | auto i = script->sectionCommands.begin(); |
1295 | auto e = script->sectionCommands.end(); |
1296 | auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { |
1297 | if (auto *osd = dyn_cast<OutputDesc>(Val: cmd)) |
1298 | return osd->osec.sectionIndex == UINT32_MAX; |
1299 | return false; |
1300 | }); |
1301 | |
1302 | // Sort the orphan sections. |
1303 | std::stable_sort(nonScriptI, e, compareSections); |
1304 | |
1305 | // As a horrible special case, skip the first . assignment if it is before any |
1306 | // section. We do this because it is common to set a load address by starting |
1307 | // the script with ". = 0xabcd" and the expectation is that every section is |
1308 | // after that. |
1309 | auto firstSectionOrDotAssignment = |
1310 | std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); |
1311 | if (firstSectionOrDotAssignment != e && |
1312 | isa<SymbolAssignment>(**firstSectionOrDotAssignment)) |
1313 | ++firstSectionOrDotAssignment; |
1314 | i = firstSectionOrDotAssignment; |
1315 | |
1316 | while (nonScriptI != e) { |
1317 | auto pos = findOrphanPos(i, nonScriptI); |
1318 | OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec; |
1319 | |
1320 | // As an optimization, find all sections with the same sort rank |
1321 | // and insert them with one rotate. |
1322 | unsigned rank = orphan->sortRank; |
1323 | auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { |
1324 | return cast<OutputDesc>(Val: cmd)->osec.sortRank != rank; |
1325 | }); |
1326 | std::rotate(pos, nonScriptI, end); |
1327 | nonScriptI = end; |
1328 | } |
1329 | } |
1330 | |
1331 | static bool compareByFilePosition(InputSection *a, InputSection *b) { |
1332 | InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; |
1333 | InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; |
1334 | // SHF_LINK_ORDER sections with non-zero sh_link are ordered before |
1335 | // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. |
1336 | if (!la || !lb) |
1337 | return la && !lb; |
1338 | OutputSection *aOut = la->getParent(); |
1339 | OutputSection *bOut = lb->getParent(); |
1340 | |
1341 | if (aOut != bOut) |
1342 | return aOut->addr < bOut->addr; |
1343 | return la->outSecOff < lb->outSecOff; |
1344 | } |
1345 | |
1346 | template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { |
1347 | llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER" ); |
1348 | for (OutputSection *sec : outputSections) { |
1349 | if (!(sec->flags & SHF_LINK_ORDER)) |
1350 | continue; |
1351 | |
1352 | // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated |
1353 | // this processing inside the ARMExidxsyntheticsection::finalizeContents(). |
1354 | if (!config->relocatable && config->emachine == EM_ARM && |
1355 | sec->type == SHT_ARM_EXIDX) |
1356 | continue; |
1357 | |
1358 | // Link order may be distributed across several InputSectionDescriptions. |
1359 | // Sorting is performed separately. |
1360 | SmallVector<InputSection **, 0> scriptSections; |
1361 | SmallVector<InputSection *, 0> sections; |
1362 | for (SectionCommand *cmd : sec->commands) { |
1363 | auto *isd = dyn_cast<InputSectionDescription>(Val: cmd); |
1364 | if (!isd) |
1365 | continue; |
1366 | bool hasLinkOrder = false; |
1367 | scriptSections.clear(); |
1368 | sections.clear(); |
1369 | for (InputSection *&isec : isd->sections) { |
1370 | if (isec->flags & SHF_LINK_ORDER) { |
1371 | InputSection *link = isec->getLinkOrderDep(); |
1372 | if (link && !link->getParent()) |
1373 | error(msg: toString(isec) + ": sh_link points to discarded section " + |
1374 | toString(link)); |
1375 | hasLinkOrder = true; |
1376 | } |
1377 | scriptSections.push_back(Elt: &isec); |
1378 | sections.push_back(Elt: isec); |
1379 | } |
1380 | if (hasLinkOrder && errorCount() == 0) { |
1381 | llvm::stable_sort(Range&: sections, C: compareByFilePosition); |
1382 | for (int i = 0, n = sections.size(); i != n; ++i) |
1383 | *scriptSections[i] = sections[i]; |
1384 | } |
1385 | } |
1386 | } |
1387 | } |
1388 | |
1389 | static void finalizeSynthetic(SyntheticSection *sec) { |
1390 | if (sec && sec->isNeeded() && sec->getParent()) { |
1391 | llvm::TimeTraceScope timeScope("Finalize synthetic sections" , sec->name); |
1392 | sec->finalizeContents(); |
1393 | } |
1394 | } |
1395 | |
1396 | // We need to generate and finalize the content that depends on the address of |
1397 | // InputSections. As the generation of the content may also alter InputSection |
1398 | // addresses we must converge to a fixed point. We do that here. See the comment |
1399 | // in Writer<ELFT>::finalizeSections(). |
1400 | template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { |
1401 | llvm::TimeTraceScope timeScope("Finalize address dependent content" ); |
1402 | ThunkCreator tc; |
1403 | AArch64Err843419Patcher a64p; |
1404 | ARMErr657417Patcher a32p; |
1405 | script->assignAddresses(); |
1406 | // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they |
1407 | // do require the relative addresses of OutputSections because linker scripts |
1408 | // can assign Virtual Addresses to OutputSections that are not monotonically |
1409 | // increasing. |
1410 | for (Partition &part : partitions) |
1411 | finalizeSynthetic(sec: part.armExidx.get()); |
1412 | resolveShfLinkOrder(); |
1413 | |
1414 | // Converts call x@GDPLT to call __tls_get_addr |
1415 | if (config->emachine == EM_HEXAGON) |
1416 | hexagonTLSSymbolUpdate(outputSections); |
1417 | |
1418 | uint32_t pass = 0, assignPasses = 0; |
1419 | for (;;) { |
1420 | bool changed = target->needsThunks ? tc.createThunks(pass, outputSections) |
1421 | : target->relaxOnce(pass); |
1422 | ++pass; |
1423 | |
1424 | // With Thunk Size much smaller than branch range we expect to |
1425 | // converge quickly; if we get to 30 something has gone wrong. |
1426 | if (changed && pass >= 30) { |
1427 | error(msg: target->needsThunks ? "thunk creation not converged" |
1428 | : "relaxation not converged" ); |
1429 | break; |
1430 | } |
1431 | |
1432 | if (config->fixCortexA53Errata843419) { |
1433 | if (changed) |
1434 | script->assignAddresses(); |
1435 | changed |= a64p.createFixes(); |
1436 | } |
1437 | if (config->fixCortexA8) { |
1438 | if (changed) |
1439 | script->assignAddresses(); |
1440 | changed |= a32p.createFixes(); |
1441 | } |
1442 | |
1443 | finalizeSynthetic(sec: in.got.get()); |
1444 | if (in.mipsGot) |
1445 | in.mipsGot->updateAllocSize(); |
1446 | |
1447 | for (Partition &part : partitions) { |
1448 | changed |= part.relaDyn->updateAllocSize(); |
1449 | if (part.relrDyn) |
1450 | changed |= part.relrDyn->updateAllocSize(); |
1451 | if (part.memtagGlobalDescriptors) |
1452 | changed |= part.memtagGlobalDescriptors->updateAllocSize(); |
1453 | } |
1454 | |
1455 | const Defined *changedSym = script->assignAddresses(); |
1456 | if (!changed) { |
1457 | // Some symbols may be dependent on section addresses. When we break the |
1458 | // loop, the symbol values are finalized because a previous |
1459 | // assignAddresses() finalized section addresses. |
1460 | if (!changedSym) |
1461 | break; |
1462 | if (++assignPasses == 5) { |
1463 | errorOrWarn(msg: "assignment to symbol " + toString(*changedSym) + |
1464 | " does not converge" ); |
1465 | break; |
1466 | } |
1467 | } |
1468 | } |
1469 | if (!config->relocatable) |
1470 | target->finalizeRelax(passes: pass); |
1471 | |
1472 | if (config->relocatable) |
1473 | for (OutputSection *sec : outputSections) |
1474 | sec->addr = 0; |
1475 | |
1476 | // If addrExpr is set, the address may not be a multiple of the alignment. |
1477 | // Warn because this is error-prone. |
1478 | for (SectionCommand *cmd : script->sectionCommands) |
1479 | if (auto *osd = dyn_cast<OutputDesc>(Val: cmd)) { |
1480 | OutputSection *osec = &osd->osec; |
1481 | if (osec->addr % osec->addralign != 0) |
1482 | warn(msg: "address (0x" + Twine::utohexstr(Val: osec->addr) + ") of section " + |
1483 | osec->name + " is not a multiple of alignment (" + |
1484 | Twine(osec->addralign) + ")" ); |
1485 | } |
1486 | } |
1487 | |
1488 | // If Input Sections have been shrunk (basic block sections) then |
1489 | // update symbol values and sizes associated with these sections. With basic |
1490 | // block sections, input sections can shrink when the jump instructions at |
1491 | // the end of the section are relaxed. |
1492 | static void fixSymbolsAfterShrinking() { |
1493 | for (InputFile *File : ctx.objectFiles) { |
1494 | parallelForEach(R: File->getSymbols(), Fn: [&](Symbol *Sym) { |
1495 | auto *def = dyn_cast<Defined>(Val: Sym); |
1496 | if (!def) |
1497 | return; |
1498 | |
1499 | const SectionBase *sec = def->section; |
1500 | if (!sec) |
1501 | return; |
1502 | |
1503 | const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(Val: sec); |
1504 | if (!inputSec || !inputSec->bytesDropped) |
1505 | return; |
1506 | |
1507 | const size_t OldSize = inputSec->content().size(); |
1508 | const size_t NewSize = OldSize - inputSec->bytesDropped; |
1509 | |
1510 | if (def->value > NewSize && def->value <= OldSize) { |
1511 | LLVM_DEBUG(llvm::dbgs() |
1512 | << "Moving symbol " << Sym->getName() << " from " |
1513 | << def->value << " to " |
1514 | << def->value - inputSec->bytesDropped << " bytes\n" ); |
1515 | def->value -= inputSec->bytesDropped; |
1516 | return; |
1517 | } |
1518 | |
1519 | if (def->value + def->size > NewSize && def->value <= OldSize && |
1520 | def->value + def->size <= OldSize) { |
1521 | LLVM_DEBUG(llvm::dbgs() |
1522 | << "Shrinking symbol " << Sym->getName() << " from " |
1523 | << def->size << " to " << def->size - inputSec->bytesDropped |
1524 | << " bytes\n" ); |
1525 | def->size -= inputSec->bytesDropped; |
1526 | } |
1527 | }); |
1528 | } |
1529 | } |
1530 | |
1531 | // If basic block sections exist, there are opportunities to delete fall thru |
1532 | // jumps and shrink jump instructions after basic block reordering. This |
1533 | // relaxation pass does that. It is only enabled when --optimize-bb-jumps |
1534 | // option is used. |
1535 | template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { |
1536 | assert(config->optimizeBBJumps); |
1537 | SmallVector<InputSection *, 0> storage; |
1538 | |
1539 | script->assignAddresses(); |
1540 | // For every output section that has executable input sections, this |
1541 | // does the following: |
1542 | // 1. Deletes all direct jump instructions in input sections that |
1543 | // jump to the following section as it is not required. |
1544 | // 2. If there are two consecutive jump instructions, it checks |
1545 | // if they can be flipped and one can be deleted. |
1546 | for (OutputSection *osec : outputSections) { |
1547 | if (!(osec->flags & SHF_EXECINSTR)) |
1548 | continue; |
1549 | ArrayRef<InputSection *> sections = getInputSections(os: *osec, storage); |
1550 | size_t numDeleted = 0; |
1551 | // Delete all fall through jump instructions. Also, check if two |
1552 | // consecutive jump instructions can be flipped so that a fall |
1553 | // through jmp instruction can be deleted. |
1554 | for (size_t i = 0, e = sections.size(); i != e; ++i) { |
1555 | InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; |
1556 | InputSection &sec = *sections[i]; |
1557 | numDeleted += target->deleteFallThruJmpInsn(is&: sec, file: sec.file, nextIS: next); |
1558 | } |
1559 | if (numDeleted > 0) { |
1560 | script->assignAddresses(); |
1561 | LLVM_DEBUG(llvm::dbgs() |
1562 | << "Removing " << numDeleted << " fall through jumps\n" ); |
1563 | } |
1564 | } |
1565 | |
1566 | fixSymbolsAfterShrinking(); |
1567 | |
1568 | for (OutputSection *osec : outputSections) |
1569 | for (InputSection *is : getInputSections(os: *osec, storage)) |
1570 | is->trim(); |
1571 | } |
1572 | |
1573 | // In order to allow users to manipulate linker-synthesized sections, |
1574 | // we had to add synthetic sections to the input section list early, |
1575 | // even before we make decisions whether they are needed. This allows |
1576 | // users to write scripts like this: ".mygot : { .got }". |
1577 | // |
1578 | // Doing it has an unintended side effects. If it turns out that we |
1579 | // don't need a .got (for example) at all because there's no |
1580 | // relocation that needs a .got, we don't want to emit .got. |
1581 | // |
1582 | // To deal with the above problem, this function is called after |
1583 | // scanRelocations is called to remove synthetic sections that turn |
1584 | // out to be empty. |
1585 | static void removeUnusedSyntheticSections() { |
1586 | // All input synthetic sections that can be empty are placed after |
1587 | // all regular ones. Reverse iterate to find the first synthetic section |
1588 | // after a non-synthetic one which will be our starting point. |
1589 | auto start = |
1590 | llvm::find_if(Range: llvm::reverse(C&: ctx.inputSections), P: [](InputSectionBase *s) { |
1591 | return !isa<SyntheticSection>(Val: s); |
1592 | }).base(); |
1593 | |
1594 | // Remove unused synthetic sections from ctx.inputSections; |
1595 | DenseSet<InputSectionBase *> unused; |
1596 | auto end = |
1597 | std::remove_if(first: start, last: ctx.inputSections.end(), pred: [&](InputSectionBase *s) { |
1598 | auto *sec = cast<SyntheticSection>(Val: s); |
1599 | if (sec->getParent() && sec->isNeeded()) |
1600 | return false; |
1601 | unused.insert(V: sec); |
1602 | return true; |
1603 | }); |
1604 | ctx.inputSections.erase(CS: end, CE: ctx.inputSections.end()); |
1605 | |
1606 | // Remove unused synthetic sections from the corresponding input section |
1607 | // description and orphanSections. |
1608 | for (auto *sec : unused) |
1609 | if (OutputSection *osec = cast<SyntheticSection>(Val: sec)->getParent()) |
1610 | for (SectionCommand *cmd : osec->commands) |
1611 | if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd)) |
1612 | llvm::erase_if(C&: isd->sections, P: [&](InputSection *isec) { |
1613 | return unused.count(V: isec); |
1614 | }); |
1615 | llvm::erase_if(C&: script->orphanSections, P: [&](const InputSectionBase *sec) { |
1616 | return unused.count(V: sec); |
1617 | }); |
1618 | } |
1619 | |
1620 | // Create output section objects and add them to OutputSections. |
1621 | template <class ELFT> void Writer<ELFT>::finalizeSections() { |
1622 | if (!config->relocatable) { |
1623 | Out::preinitArray = findSection(name: ".preinit_array" ); |
1624 | Out::initArray = findSection(name: ".init_array" ); |
1625 | Out::finiArray = findSection(name: ".fini_array" ); |
1626 | |
1627 | // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop |
1628 | // symbols for sections, so that the runtime can get the start and end |
1629 | // addresses of each section by section name. Add such symbols. |
1630 | addStartEndSymbols(); |
1631 | for (SectionCommand *cmd : script->sectionCommands) |
1632 | if (auto *osd = dyn_cast<OutputDesc>(Val: cmd)) |
1633 | addStartStopSymbols(osec&: osd->osec); |
1634 | |
1635 | // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. |
1636 | // It should be okay as no one seems to care about the type. |
1637 | // Even the author of gold doesn't remember why gold behaves that way. |
1638 | // https://sourceware.org/ml/binutils/2002-03/msg00360.html |
1639 | if (mainPart->dynamic->parent) { |
1640 | Symbol *s = symtab.addSymbol(newSym: Defined{ |
1641 | ctx.internalFile, "_DYNAMIC" , STB_WEAK, STV_HIDDEN, STT_NOTYPE, |
1642 | /*value=*/0, /*size=*/0, mainPart->dynamic.get()}); |
1643 | s->isUsedInRegularObj = true; |
1644 | } |
1645 | |
1646 | // Define __rel[a]_iplt_{start,end} symbols if needed. |
1647 | addRelIpltSymbols(); |
1648 | |
1649 | // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol |
1650 | // should only be defined in an executable. If .sdata does not exist, its |
1651 | // value/section does not matter but it has to be relative, so set its |
1652 | // st_shndx arbitrarily to 1 (Out::elfHeader). |
1653 | if (config->emachine == EM_RISCV) { |
1654 | ElfSym::riscvGlobalPointer = nullptr; |
1655 | if (!config->shared) { |
1656 | OutputSection *sec = findSection(name: ".sdata" ); |
1657 | addOptionalRegular( |
1658 | name: "__global_pointer$" , sec: sec ? sec : Out::elfHeader, val: 0x800, stOther: STV_DEFAULT); |
1659 | // Set riscvGlobalPointer to be used by the optional global pointer |
1660 | // relaxation. |
1661 | if (config->relaxGP) { |
1662 | Symbol *s = symtab.find(name: "__global_pointer$" ); |
1663 | if (s && s->isDefined()) |
1664 | ElfSym::riscvGlobalPointer = cast<Defined>(Val: s); |
1665 | } |
1666 | } |
1667 | } |
1668 | |
1669 | if (config->emachine == EM_386 || config->emachine == EM_X86_64) { |
1670 | // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a |
1671 | // way that: |
1672 | // |
1673 | // 1) Without relaxation: it produces a dynamic TLSDESC relocation that |
1674 | // computes 0. |
1675 | // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address |
1676 | // in the TLS block). |
1677 | // |
1678 | // 2) is special cased in @tpoff computation. To satisfy 1), we define it |
1679 | // as an absolute symbol of zero. This is different from GNU linkers which |
1680 | // define _TLS_MODULE_BASE_ relative to the first TLS section. |
1681 | Symbol *s = symtab.find(name: "_TLS_MODULE_BASE_" ); |
1682 | if (s && s->isUndefined()) { |
1683 | s->resolve(other: Defined{ctx.internalFile, StringRef(), STB_GLOBAL, |
1684 | STV_HIDDEN, STT_TLS, /*value=*/0, 0, |
1685 | /*section=*/nullptr}); |
1686 | ElfSym::tlsModuleBase = cast<Defined>(Val: s); |
1687 | } |
1688 | } |
1689 | |
1690 | // This responsible for splitting up .eh_frame section into |
1691 | // pieces. The relocation scan uses those pieces, so this has to be |
1692 | // earlier. |
1693 | { |
1694 | llvm::TimeTraceScope timeScope("Finalize .eh_frame" ); |
1695 | for (Partition &part : partitions) |
1696 | finalizeSynthetic(sec: part.ehFrame.get()); |
1697 | } |
1698 | } |
1699 | |
1700 | demoteSymbolsAndComputeIsPreemptible(); |
1701 | |
1702 | if (config->copyRelocs && config->discard != DiscardPolicy::None) |
1703 | markUsedLocalSymbols<ELFT>(); |
1704 | demoteAndCopyLocalSymbols(); |
1705 | |
1706 | if (config->copyRelocs) |
1707 | addSectionSymbols(); |
1708 | |
1709 | // Change values of linker-script-defined symbols from placeholders (assigned |
1710 | // by declareSymbols) to actual definitions. |
1711 | script->processSymbolAssignments(); |
1712 | |
1713 | if (!config->relocatable) { |
1714 | llvm::TimeTraceScope timeScope("Scan relocations" ); |
1715 | // Scan relocations. This must be done after every symbol is declared so |
1716 | // that we can correctly decide if a dynamic relocation is needed. This is |
1717 | // called after processSymbolAssignments() because it needs to know whether |
1718 | // a linker-script-defined symbol is absolute. |
1719 | ppc64noTocRelax.clear(); |
1720 | scanRelocations<ELFT>(); |
1721 | reportUndefinedSymbols(); |
1722 | postScanRelocations(); |
1723 | |
1724 | if (in.plt && in.plt->isNeeded()) |
1725 | in.plt->addSymbols(); |
1726 | if (in.iplt && in.iplt->isNeeded()) |
1727 | in.iplt->addSymbols(); |
1728 | |
1729 | if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { |
1730 | auto diagnose = |
1731 | config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError |
1732 | ? errorOrWarn |
1733 | : warn; |
1734 | // Error on undefined symbols in a shared object, if all of its DT_NEEDED |
1735 | // entries are seen. These cases would otherwise lead to runtime errors |
1736 | // reported by the dynamic linker. |
1737 | // |
1738 | // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker |
1739 | // to catch more cases. That is too much for us. Our approach resembles |
1740 | // the one used in ld.gold, achieves a good balance to be useful but not |
1741 | // too smart. |
1742 | // |
1743 | // If a DSO reference is resolved by a SharedSymbol, but the SharedSymbol |
1744 | // is overridden by a hidden visibility Defined (which is later discarded |
1745 | // due to GC), don't report the diagnostic. However, this may indicate an |
1746 | // unintended SharedSymbol. |
1747 | for (SharedFile *file : ctx.sharedFiles) { |
1748 | bool allNeededIsKnown = |
1749 | llvm::all_of(file->dtNeeded, [&](StringRef needed) { |
1750 | return symtab.soNames.count(Val: CachedHashStringRef(needed)); |
1751 | }); |
1752 | if (!allNeededIsKnown) |
1753 | continue; |
1754 | for (Symbol *sym : file->requiredSymbols) { |
1755 | if (sym->dsoDefined) |
1756 | continue; |
1757 | if (sym->isUndefined() && !sym->isWeak()) { |
1758 | diagnose("undefined reference: " + toString(*sym) + |
1759 | "\n>>> referenced by " + toString(f: file) + |
1760 | " (disallowed by --no-allow-shlib-undefined)" ); |
1761 | } else if (sym->isDefined() && sym->computeBinding() == STB_LOCAL) { |
1762 | diagnose("non-exported symbol '" + toString(*sym) + "' in '" + |
1763 | toString(f: sym->file) + "' is referenced by DSO '" + |
1764 | toString(f: file) + "'" ); |
1765 | } |
1766 | } |
1767 | } |
1768 | } |
1769 | } |
1770 | |
1771 | { |
1772 | llvm::TimeTraceScope timeScope("Add symbols to symtabs" ); |
1773 | // Now that we have defined all possible global symbols including linker- |
1774 | // synthesized ones. Visit all symbols to give the finishing touches. |
1775 | for (Symbol *sym : symtab.getSymbols()) { |
1776 | if (!sym->isUsedInRegularObj || !includeInSymtab(b: *sym)) |
1777 | continue; |
1778 | if (!config->relocatable) |
1779 | sym->binding = sym->computeBinding(); |
1780 | if (in.symTab) |
1781 | in.symTab->addSymbol(sym); |
1782 | |
1783 | if (sym->includeInDynsym()) { |
1784 | partitions[sym->partition - 1].dynSymTab->addSymbol(sym); |
1785 | if (auto *file = dyn_cast_or_null<SharedFile>(Val: sym->file)) |
1786 | if (file->isNeeded && !sym->isUndefined()) |
1787 | addVerneed(ss: sym); |
1788 | } |
1789 | } |
1790 | |
1791 | // We also need to scan the dynamic relocation tables of the other |
1792 | // partitions and add any referenced symbols to the partition's dynsym. |
1793 | for (Partition &part : MutableArrayRef<Partition>(partitions).slice(N: 1)) { |
1794 | DenseSet<Symbol *> syms; |
1795 | for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) |
1796 | syms.insert(V: e.sym); |
1797 | for (DynamicReloc &reloc : part.relaDyn->relocs) |
1798 | if (reloc.sym && reloc.needsDynSymIndex() && |
1799 | syms.insert(V: reloc.sym).second) |
1800 | part.dynSymTab->addSymbol(sym: reloc.sym); |
1801 | } |
1802 | } |
1803 | |
1804 | if (in.mipsGot) |
1805 | in.mipsGot->build(); |
1806 | |
1807 | removeUnusedSyntheticSections(); |
1808 | script->diagnoseOrphanHandling(); |
1809 | script->diagnoseMissingSGSectionAddress(); |
1810 | |
1811 | sortSections(); |
1812 | |
1813 | // Create a list of OutputSections, assign sectionIndex, and populate |
1814 | // in.shStrTab. |
1815 | for (SectionCommand *cmd : script->sectionCommands) |
1816 | if (auto *osd = dyn_cast<OutputDesc>(Val: cmd)) { |
1817 | OutputSection *osec = &osd->osec; |
1818 | outputSections.push_back(Elt: osec); |
1819 | osec->sectionIndex = outputSections.size(); |
1820 | osec->shName = in.shStrTab->addString(s: osec->name); |
1821 | } |
1822 | |
1823 | // Prefer command line supplied address over other constraints. |
1824 | for (OutputSection *sec : outputSections) { |
1825 | auto i = config->sectionStartMap.find(Key: sec->name); |
1826 | if (i != config->sectionStartMap.end()) |
1827 | sec->addrExpr = [=] { return i->second; }; |
1828 | } |
1829 | |
1830 | // With the outputSections available check for GDPLT relocations |
1831 | // and add __tls_get_addr symbol if needed. |
1832 | if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { |
1833 | Symbol *sym = |
1834 | symtab.addSymbol(newSym: Undefined{ctx.internalFile, "__tls_get_addr" , |
1835 | STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); |
1836 | sym->isPreemptible = true; |
1837 | partitions[0].dynSymTab->addSymbol(sym); |
1838 | } |
1839 | |
1840 | // This is a bit of a hack. A value of 0 means undef, so we set it |
1841 | // to 1 to make __ehdr_start defined. The section number is not |
1842 | // particularly relevant. |
1843 | Out::elfHeader->sectionIndex = 1; |
1844 | Out::elfHeader->size = sizeof(typename ELFT::Ehdr); |
1845 | |
1846 | // Binary and relocatable output does not have PHDRS. |
1847 | // The headers have to be created before finalize as that can influence the |
1848 | // image base and the dynamic section on mips includes the image base. |
1849 | if (!config->relocatable && !config->oFormatBinary) { |
1850 | for (Partition &part : partitions) { |
1851 | part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() |
1852 | : createPhdrs(part); |
1853 | if (config->emachine == EM_ARM) { |
1854 | // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME |
1855 | addPhdrForSection(part, shType: SHT_ARM_EXIDX, pType: PT_ARM_EXIDX, pFlags: PF_R); |
1856 | } |
1857 | if (config->emachine == EM_MIPS) { |
1858 | // Add separate segments for MIPS-specific sections. |
1859 | addPhdrForSection(part, shType: SHT_MIPS_REGINFO, pType: PT_MIPS_REGINFO, pFlags: PF_R); |
1860 | addPhdrForSection(part, shType: SHT_MIPS_OPTIONS, pType: PT_MIPS_OPTIONS, pFlags: PF_R); |
1861 | addPhdrForSection(part, shType: SHT_MIPS_ABIFLAGS, pType: PT_MIPS_ABIFLAGS, pFlags: PF_R); |
1862 | } |
1863 | if (config->emachine == EM_RISCV) |
1864 | addPhdrForSection(part, shType: SHT_RISCV_ATTRIBUTES, pType: PT_RISCV_ATTRIBUTES, |
1865 | pFlags: PF_R); |
1866 | } |
1867 | Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); |
1868 | |
1869 | // Find the TLS segment. This happens before the section layout loop so that |
1870 | // Android relocation packing can look up TLS symbol addresses. We only need |
1871 | // to care about the main partition here because all TLS symbols were moved |
1872 | // to the main partition (see MarkLive.cpp). |
1873 | for (PhdrEntry *p : mainPart->phdrs) |
1874 | if (p->p_type == PT_TLS) |
1875 | Out::tlsPhdr = p; |
1876 | } |
1877 | |
1878 | // Some symbols are defined in term of program headers. Now that we |
1879 | // have the headers, we can find out which sections they point to. |
1880 | setReservedSymbolSections(); |
1881 | |
1882 | { |
1883 | llvm::TimeTraceScope timeScope("Finalize synthetic sections" ); |
1884 | |
1885 | finalizeSynthetic(sec: in.bss.get()); |
1886 | finalizeSynthetic(sec: in.bssRelRo.get()); |
1887 | finalizeSynthetic(sec: in.symTabShndx.get()); |
1888 | finalizeSynthetic(sec: in.shStrTab.get()); |
1889 | finalizeSynthetic(sec: in.strTab.get()); |
1890 | finalizeSynthetic(sec: in.got.get()); |
1891 | finalizeSynthetic(sec: in.mipsGot.get()); |
1892 | finalizeSynthetic(sec: in.igotPlt.get()); |
1893 | finalizeSynthetic(sec: in.gotPlt.get()); |
1894 | finalizeSynthetic(sec: in.relaPlt.get()); |
1895 | finalizeSynthetic(sec: in.plt.get()); |
1896 | finalizeSynthetic(sec: in.iplt.get()); |
1897 | finalizeSynthetic(sec: in.ppc32Got2.get()); |
1898 | finalizeSynthetic(sec: in.partIndex.get()); |
1899 | |
1900 | // Dynamic section must be the last one in this list and dynamic |
1901 | // symbol table section (dynSymTab) must be the first one. |
1902 | for (Partition &part : partitions) { |
1903 | if (part.relaDyn) { |
1904 | part.relaDyn->mergeRels(); |
1905 | // Compute DT_RELACOUNT to be used by part.dynamic. |
1906 | part.relaDyn->partitionRels(); |
1907 | finalizeSynthetic(sec: part.relaDyn.get()); |
1908 | } |
1909 | if (part.relrDyn) { |
1910 | part.relrDyn->mergeRels(); |
1911 | finalizeSynthetic(sec: part.relrDyn.get()); |
1912 | } |
1913 | |
1914 | finalizeSynthetic(sec: part.dynSymTab.get()); |
1915 | finalizeSynthetic(sec: part.gnuHashTab.get()); |
1916 | finalizeSynthetic(sec: part.hashTab.get()); |
1917 | finalizeSynthetic(sec: part.verDef.get()); |
1918 | finalizeSynthetic(sec: part.ehFrameHdr.get()); |
1919 | finalizeSynthetic(sec: part.verSym.get()); |
1920 | finalizeSynthetic(sec: part.verNeed.get()); |
1921 | finalizeSynthetic(sec: part.dynamic.get()); |
1922 | } |
1923 | } |
1924 | |
1925 | if (!script->hasSectionsCommand && !config->relocatable) |
1926 | fixSectionAlignments(); |
1927 | |
1928 | // This is used to: |
1929 | // 1) Create "thunks": |
1930 | // Jump instructions in many ISAs have small displacements, and therefore |
1931 | // they cannot jump to arbitrary addresses in memory. For example, RISC-V |
1932 | // JAL instruction can target only +-1 MiB from PC. It is a linker's |
1933 | // responsibility to create and insert small pieces of code between |
1934 | // sections to extend the ranges if jump targets are out of range. Such |
1935 | // code pieces are called "thunks". |
1936 | // |
1937 | // We add thunks at this stage. We couldn't do this before this point |
1938 | // because this is the earliest point where we know sizes of sections and |
1939 | // their layouts (that are needed to determine if jump targets are in |
1940 | // range). |
1941 | // |
1942 | // 2) Update the sections. We need to generate content that depends on the |
1943 | // address of InputSections. For example, MIPS GOT section content or |
1944 | // android packed relocations sections content. |
1945 | // |
1946 | // 3) Assign the final values for the linker script symbols. Linker scripts |
1947 | // sometimes using forward symbol declarations. We want to set the correct |
1948 | // values. They also might change after adding the thunks. |
1949 | finalizeAddressDependentContent(); |
1950 | |
1951 | // All information needed for OutputSection part of Map file is available. |
1952 | if (errorCount()) |
1953 | return; |
1954 | |
1955 | { |
1956 | llvm::TimeTraceScope timeScope("Finalize synthetic sections" ); |
1957 | // finalizeAddressDependentContent may have added local symbols to the |
1958 | // static symbol table. |
1959 | finalizeSynthetic(sec: in.symTab.get()); |
1960 | finalizeSynthetic(sec: in.debugNames.get()); |
1961 | finalizeSynthetic(sec: in.ppc64LongBranchTarget.get()); |
1962 | finalizeSynthetic(sec: in.armCmseSGSection.get()); |
1963 | } |
1964 | |
1965 | // Relaxation to delete inter-basic block jumps created by basic block |
1966 | // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps |
1967 | // can relax jump instructions based on symbol offset. |
1968 | if (config->optimizeBBJumps) |
1969 | optimizeBasicBlockJumps(); |
1970 | |
1971 | // Fill other section headers. The dynamic table is finalized |
1972 | // at the end because some tags like RELSZ depend on result |
1973 | // of finalizing other sections. |
1974 | for (OutputSection *sec : outputSections) |
1975 | sec->finalize(); |
1976 | |
1977 | script->checkFinalScriptConditions(); |
1978 | |
1979 | if (config->emachine == EM_ARM && !config->isLE && config->armBe8) { |
1980 | addArmInputSectionMappingSymbols(); |
1981 | sortArmMappingSymbols(); |
1982 | } |
1983 | } |
1984 | |
1985 | // Ensure data sections are not mixed with executable sections when |
1986 | // --execute-only is used. --execute-only make pages executable but not |
1987 | // readable. |
1988 | template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { |
1989 | if (!config->executeOnly) |
1990 | return; |
1991 | |
1992 | SmallVector<InputSection *, 0> storage; |
1993 | for (OutputSection *osec : outputSections) |
1994 | if (osec->flags & SHF_EXECINSTR) |
1995 | for (InputSection *isec : getInputSections(os: *osec, storage)) |
1996 | if (!(isec->flags & SHF_EXECINSTR)) |
1997 | error(msg: "cannot place " + toString(isec) + " into " + |
1998 | toString(s: osec->name) + |
1999 | ": --execute-only does not support intermingling data and code" ); |
2000 | } |
2001 | |
2002 | // The linker is expected to define SECNAME_start and SECNAME_end |
2003 | // symbols for a few sections. This function defines them. |
2004 | template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { |
2005 | // If a section does not exist, there's ambiguity as to how we |
2006 | // define _start and _end symbols for an init/fini section. Since |
2007 | // the loader assume that the symbols are always defined, we need to |
2008 | // always define them. But what value? The loader iterates over all |
2009 | // pointers between _start and _end to run global ctors/dtors, so if |
2010 | // the section is empty, their symbol values don't actually matter |
2011 | // as long as _start and _end point to the same location. |
2012 | // |
2013 | // That said, we don't want to set the symbols to 0 (which is |
2014 | // probably the simplest value) because that could cause some |
2015 | // program to fail to link due to relocation overflow, if their |
2016 | // program text is above 2 GiB. We use the address of the .text |
2017 | // section instead to prevent that failure. |
2018 | // |
2019 | // In rare situations, the .text section may not exist. If that's the |
2020 | // case, use the image base address as a last resort. |
2021 | OutputSection *Default = findSection(name: ".text" ); |
2022 | if (!Default) |
2023 | Default = Out::elfHeader; |
2024 | |
2025 | auto define = [=](StringRef start, StringRef end, OutputSection *os) { |
2026 | if (os && !script->isDiscarded(sec: os)) { |
2027 | addOptionalRegular(name: start, sec: os, val: 0); |
2028 | addOptionalRegular(name: end, sec: os, val: -1); |
2029 | } else { |
2030 | addOptionalRegular(name: start, sec: Default, val: 0); |
2031 | addOptionalRegular(name: end, sec: Default, val: 0); |
2032 | } |
2033 | }; |
2034 | |
2035 | define("__preinit_array_start" , "__preinit_array_end" , Out::preinitArray); |
2036 | define("__init_array_start" , "__init_array_end" , Out::initArray); |
2037 | define("__fini_array_start" , "__fini_array_end" , Out::finiArray); |
2038 | |
2039 | if (OutputSection *sec = findSection(name: ".ARM.exidx" )) |
2040 | define("__exidx_start" , "__exidx_end" , sec); |
2041 | } |
2042 | |
2043 | // If a section name is valid as a C identifier (which is rare because of |
2044 | // the leading '.'), linkers are expected to define __start_<secname> and |
2045 | // __stop_<secname> symbols. They are at beginning and end of the section, |
2046 | // respectively. This is not requested by the ELF standard, but GNU ld and |
2047 | // gold provide the feature, and used by many programs. |
2048 | template <class ELFT> |
2049 | void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) { |
2050 | StringRef s = osec.name; |
2051 | if (!isValidCIdentifier(s)) |
2052 | return; |
2053 | addOptionalRegular(name: saver().save(S: "__start_" + s), sec: &osec, val: 0, |
2054 | stOther: config->zStartStopVisibility); |
2055 | addOptionalRegular(name: saver().save(S: "__stop_" + s), sec: &osec, val: -1, |
2056 | stOther: config->zStartStopVisibility); |
2057 | } |
2058 | |
2059 | static bool needsPtLoad(OutputSection *sec) { |
2060 | if (!(sec->flags & SHF_ALLOC)) |
2061 | return false; |
2062 | |
2063 | // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is |
2064 | // responsible for allocating space for them, not the PT_LOAD that |
2065 | // contains the TLS initialization image. |
2066 | if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) |
2067 | return false; |
2068 | return true; |
2069 | } |
2070 | |
2071 | // Adjust phdr flags according to certain options. |
2072 | static uint64_t computeFlags(uint64_t flags) { |
2073 | if (config->omagic) |
2074 | return PF_R | PF_W | PF_X; |
2075 | if (config->executeOnly && (flags & PF_X)) |
2076 | return flags & ~PF_R; |
2077 | return flags; |
2078 | } |
2079 | |
2080 | // Decide which program headers to create and which sections to include in each |
2081 | // one. |
2082 | template <class ELFT> |
2083 | SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { |
2084 | SmallVector<PhdrEntry *, 0> ret; |
2085 | auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { |
2086 | ret.push_back(Elt: make<PhdrEntry>(args&: type, args&: flags)); |
2087 | return ret.back(); |
2088 | }; |
2089 | |
2090 | unsigned partNo = part.getNumber(); |
2091 | bool isMain = partNo == 1; |
2092 | |
2093 | // Add the first PT_LOAD segment for regular output sections. |
2094 | uint64_t flags = computeFlags(flags: PF_R); |
2095 | PhdrEntry *load = nullptr; |
2096 | |
2097 | // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly |
2098 | // PT_LOAD. |
2099 | if (!config->nmagic && !config->omagic) { |
2100 | // The first phdr entry is PT_PHDR which describes the program header |
2101 | // itself. |
2102 | if (isMain) |
2103 | addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); |
2104 | else |
2105 | addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); |
2106 | |
2107 | // PT_INTERP must be the second entry if exists. |
2108 | if (OutputSection *cmd = findSection(name: ".interp" , partition: partNo)) |
2109 | addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); |
2110 | |
2111 | // Add the headers. We will remove them if they don't fit. |
2112 | // In the other partitions the headers are ordinary sections, so they don't |
2113 | // need to be added here. |
2114 | if (isMain) { |
2115 | load = addHdr(PT_LOAD, flags); |
2116 | load->add(sec: Out::elfHeader); |
2117 | load->add(sec: Out::programHeaders); |
2118 | } |
2119 | } |
2120 | |
2121 | // PT_GNU_RELRO includes all sections that should be marked as |
2122 | // read-only by dynamic linker after processing relocations. |
2123 | // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give |
2124 | // an error message if more than one PT_GNU_RELRO PHDR is required. |
2125 | PhdrEntry *relRo = make<PhdrEntry>(args: PT_GNU_RELRO, args: PF_R); |
2126 | bool inRelroPhdr = false; |
2127 | OutputSection *relroEnd = nullptr; |
2128 | for (OutputSection *sec : outputSections) { |
2129 | if (sec->partition != partNo || !needsPtLoad(sec)) |
2130 | continue; |
2131 | if (isRelroSection(sec)) { |
2132 | inRelroPhdr = true; |
2133 | if (!relroEnd) |
2134 | relRo->add(sec); |
2135 | else |
2136 | error(msg: "section: " + sec->name + " is not contiguous with other relro" + |
2137 | " sections" ); |
2138 | } else if (inRelroPhdr) { |
2139 | inRelroPhdr = false; |
2140 | relroEnd = sec; |
2141 | } |
2142 | } |
2143 | relRo->p_align = 1; |
2144 | |
2145 | for (OutputSection *sec : outputSections) { |
2146 | if (!needsPtLoad(sec)) |
2147 | continue; |
2148 | |
2149 | // Normally, sections in partitions other than the current partition are |
2150 | // ignored. But partition number 255 is a special case: it contains the |
2151 | // partition end marker (.part.end). It needs to be added to the main |
2152 | // partition so that a segment is created for it in the main partition, |
2153 | // which will cause the dynamic loader to reserve space for the other |
2154 | // partitions. |
2155 | if (sec->partition != partNo) { |
2156 | if (isMain && sec->partition == 255) |
2157 | addHdr(PT_LOAD, computeFlags(flags: sec->getPhdrFlags()))->add(sec); |
2158 | continue; |
2159 | } |
2160 | |
2161 | // Segments are contiguous memory regions that has the same attributes |
2162 | // (e.g. executable or writable). There is one phdr for each segment. |
2163 | // Therefore, we need to create a new phdr when the next section has |
2164 | // incompatible flags or is loaded at a discontiguous address or memory |
2165 | // region using AT or AT> linker script command, respectively. |
2166 | // |
2167 | // As an exception, we don't create a separate load segment for the ELF |
2168 | // headers, even if the first "real" output has an AT or AT> attribute. |
2169 | // |
2170 | // In addition, NOBITS sections should only be placed at the end of a LOAD |
2171 | // segment (since it's represented as p_filesz < p_memsz). If we have a |
2172 | // not-NOBITS section after a NOBITS, we create a new LOAD for the latter |
2173 | // even if flags match, so as not to require actually writing the |
2174 | // supposed-to-be-NOBITS section to the output file. (However, we cannot do |
2175 | // so when hasSectionsCommand, since we cannot introduce the extra alignment |
2176 | // needed to create a new LOAD) |
2177 | uint64_t newFlags = computeFlags(flags: sec->getPhdrFlags()); |
2178 | // When --no-rosegment is specified, RO and RX sections are compatible. |
2179 | uint32_t incompatible = flags ^ newFlags; |
2180 | if (config->singleRoRx && !(newFlags & PF_W)) |
2181 | incompatible &= ~PF_X; |
2182 | if (incompatible) |
2183 | load = nullptr; |
2184 | |
2185 | bool sameLMARegion = |
2186 | load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; |
2187 | if (load && sec != relroEnd && |
2188 | sec->memRegion == load->firstSec->memRegion && |
2189 | (sameLMARegion || load->lastSec == Out::programHeaders) && |
2190 | (script->hasSectionsCommand || sec->type == SHT_NOBITS || |
2191 | load->lastSec->type != SHT_NOBITS)) { |
2192 | load->p_flags |= newFlags; |
2193 | } else { |
2194 | load = addHdr(PT_LOAD, newFlags); |
2195 | flags = newFlags; |
2196 | } |
2197 | |
2198 | load->add(sec); |
2199 | } |
2200 | |
2201 | // Add a TLS segment if any. |
2202 | PhdrEntry *tlsHdr = make<PhdrEntry>(args: PT_TLS, args: PF_R); |
2203 | for (OutputSection *sec : outputSections) |
2204 | if (sec->partition == partNo && sec->flags & SHF_TLS) |
2205 | tlsHdr->add(sec); |
2206 | if (tlsHdr->firstSec) |
2207 | ret.push_back(Elt: tlsHdr); |
2208 | |
2209 | // Add an entry for .dynamic. |
2210 | if (OutputSection *sec = part.dynamic->getParent()) |
2211 | addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); |
2212 | |
2213 | if (relRo->firstSec) |
2214 | ret.push_back(Elt: relRo); |
2215 | |
2216 | // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. |
2217 | if (part.ehFrame->isNeeded() && part.ehFrameHdr && |
2218 | part.ehFrame->getParent() && part.ehFrameHdr->getParent()) |
2219 | addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) |
2220 | ->add(part.ehFrameHdr->getParent()); |
2221 | |
2222 | // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes |
2223 | // the dynamic linker fill the segment with random data. |
2224 | if (OutputSection *cmd = findSection(name: ".openbsd.randomdata" , partition: partNo)) |
2225 | addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); |
2226 | |
2227 | if (config->zGnustack != GnuStackKind::None) { |
2228 | // PT_GNU_STACK is a special section to tell the loader to make the |
2229 | // pages for the stack non-executable. If you really want an executable |
2230 | // stack, you can pass -z execstack, but that's not recommended for |
2231 | // security reasons. |
2232 | unsigned perm = PF_R | PF_W; |
2233 | if (config->zGnustack == GnuStackKind::Exec) |
2234 | perm |= PF_X; |
2235 | addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; |
2236 | } |
2237 | |
2238 | // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable |
2239 | // is expected to perform W^X violations, such as calling mprotect(2) or |
2240 | // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on |
2241 | // OpenBSD. |
2242 | if (config->zWxneeded) |
2243 | addHdr(PT_OPENBSD_WXNEEDED, PF_X); |
2244 | |
2245 | if (OutputSection *cmd = findSection(name: ".note.gnu.property" , partition: partNo)) |
2246 | addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); |
2247 | |
2248 | // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the |
2249 | // same alignment. |
2250 | PhdrEntry *note = nullptr; |
2251 | for (OutputSection *sec : outputSections) { |
2252 | if (sec->partition != partNo) |
2253 | continue; |
2254 | if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { |
2255 | if (!note || sec->lmaExpr || note->lastSec->addralign != sec->addralign) |
2256 | note = addHdr(PT_NOTE, PF_R); |
2257 | note->add(sec); |
2258 | } else { |
2259 | note = nullptr; |
2260 | } |
2261 | } |
2262 | return ret; |
2263 | } |
2264 | |
2265 | template <class ELFT> |
2266 | void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, |
2267 | unsigned pType, unsigned pFlags) { |
2268 | unsigned partNo = part.getNumber(); |
2269 | auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { |
2270 | return cmd->partition == partNo && cmd->type == shType; |
2271 | }); |
2272 | if (i == outputSections.end()) |
2273 | return; |
2274 | |
2275 | PhdrEntry *entry = make<PhdrEntry>(args&: pType, args&: pFlags); |
2276 | entry->add(sec: *i); |
2277 | part.phdrs.push_back(Elt: entry); |
2278 | } |
2279 | |
2280 | // Place the first section of each PT_LOAD to a different page (of maxPageSize). |
2281 | // This is achieved by assigning an alignment expression to addrExpr of each |
2282 | // such section. |
2283 | template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { |
2284 | const PhdrEntry *prev; |
2285 | auto pageAlign = [&](const PhdrEntry *p) { |
2286 | OutputSection *cmd = p->firstSec; |
2287 | if (!cmd) |
2288 | return; |
2289 | cmd->alignExpr = [align = cmd->addralign]() { return align; }; |
2290 | if (!cmd->addrExpr) { |
2291 | // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid |
2292 | // padding in the file contents. |
2293 | // |
2294 | // When -z separate-code is used we must not have any overlap in pages |
2295 | // between an executable segment and a non-executable segment. We align to |
2296 | // the next maximum page size boundary on transitions between executable |
2297 | // and non-executable segments. |
2298 | // |
2299 | // SHT_LLVM_PART_EHDR marks the start of a partition. The partition |
2300 | // sections will be extracted to a separate file. Align to the next |
2301 | // maximum page size boundary so that we can find the ELF header at the |
2302 | // start. We cannot benefit from overlapping p_offset ranges with the |
2303 | // previous segment anyway. |
2304 | if (config->zSeparate == SeparateSegmentKind::Loadable || |
2305 | (config->zSeparate == SeparateSegmentKind::Code && prev && |
2306 | (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || |
2307 | cmd->type == SHT_LLVM_PART_EHDR) |
2308 | cmd->addrExpr = [] { |
2309 | return alignToPowerOf2(Value: script->getDot(), Align: config->maxPageSize); |
2310 | }; |
2311 | // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, |
2312 | // it must be the RW. Align to p_align(PT_TLS) to make sure |
2313 | // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if |
2314 | // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) |
2315 | // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not |
2316 | // be congruent to 0 modulo p_align(PT_TLS). |
2317 | // |
2318 | // Technically this is not required, but as of 2019, some dynamic loaders |
2319 | // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and |
2320 | // x86-64) doesn't make runtime address congruent to p_vaddr modulo |
2321 | // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same |
2322 | // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS |
2323 | // blocks correctly. We need to keep the workaround for a while. |
2324 | else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) |
2325 | cmd->addrExpr = [] { |
2326 | return alignToPowerOf2(Value: script->getDot(), Align: config->maxPageSize) + |
2327 | alignToPowerOf2(Value: script->getDot() % config->maxPageSize, |
2328 | Align: Out::tlsPhdr->p_align); |
2329 | }; |
2330 | else |
2331 | cmd->addrExpr = [] { |
2332 | return alignToPowerOf2(Value: script->getDot(), Align: config->maxPageSize) + |
2333 | script->getDot() % config->maxPageSize; |
2334 | }; |
2335 | } |
2336 | }; |
2337 | |
2338 | for (Partition &part : partitions) { |
2339 | prev = nullptr; |
2340 | for (const PhdrEntry *p : part.phdrs) |
2341 | if (p->p_type == PT_LOAD && p->firstSec) { |
2342 | pageAlign(p); |
2343 | prev = p; |
2344 | } |
2345 | } |
2346 | } |
2347 | |
2348 | // Compute an in-file position for a given section. The file offset must be the |
2349 | // same with its virtual address modulo the page size, so that the loader can |
2350 | // load executables without any address adjustment. |
2351 | static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { |
2352 | // The first section in a PT_LOAD has to have congruent offset and address |
2353 | // modulo the maximum page size. |
2354 | if (os->ptLoad && os->ptLoad->firstSec == os) |
2355 | return alignTo(Value: off, Align: os->ptLoad->p_align, Skew: os->addr); |
2356 | |
2357 | // File offsets are not significant for .bss sections other than the first one |
2358 | // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically |
2359 | // increasing rather than setting to zero. |
2360 | if (os->type == SHT_NOBITS && |
2361 | (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) |
2362 | return off; |
2363 | |
2364 | // If the section is not in a PT_LOAD, we just have to align it. |
2365 | if (!os->ptLoad) |
2366 | return alignToPowerOf2(Value: off, Align: os->addralign); |
2367 | |
2368 | // If two sections share the same PT_LOAD the file offset is calculated |
2369 | // using this formula: Off2 = Off1 + (VA2 - VA1). |
2370 | OutputSection *first = os->ptLoad->firstSec; |
2371 | return first->offset + os->addr - first->addr; |
2372 | } |
2373 | |
2374 | template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { |
2375 | // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. |
2376 | auto needsOffset = [](OutputSection &sec) { |
2377 | return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; |
2378 | }; |
2379 | uint64_t minAddr = UINT64_MAX; |
2380 | for (OutputSection *sec : outputSections) |
2381 | if (needsOffset(*sec)) { |
2382 | sec->offset = sec->getLMA(); |
2383 | minAddr = std::min(a: minAddr, b: sec->offset); |
2384 | } |
2385 | |
2386 | // Sections are laid out at LMA minus minAddr. |
2387 | fileSize = 0; |
2388 | for (OutputSection *sec : outputSections) |
2389 | if (needsOffset(*sec)) { |
2390 | sec->offset -= minAddr; |
2391 | fileSize = std::max(a: fileSize, b: sec->offset + sec->size); |
2392 | } |
2393 | } |
2394 | |
2395 | static std::string rangeToString(uint64_t addr, uint64_t len) { |
2396 | return "[0x" + utohexstr(X: addr) + ", 0x" + utohexstr(X: addr + len - 1) + "]" ; |
2397 | } |
2398 | |
2399 | // Assign file offsets to output sections. |
2400 | template <class ELFT> void Writer<ELFT>::assignFileOffsets() { |
2401 | Out::programHeaders->offset = Out::elfHeader->size; |
2402 | uint64_t off = Out::elfHeader->size + Out::programHeaders->size; |
2403 | |
2404 | PhdrEntry *lastRX = nullptr; |
2405 | for (Partition &part : partitions) |
2406 | for (PhdrEntry *p : part.phdrs) |
2407 | if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) |
2408 | lastRX = p; |
2409 | |
2410 | // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC |
2411 | // will not occupy file offsets contained by a PT_LOAD. |
2412 | for (OutputSection *sec : outputSections) { |
2413 | if (!(sec->flags & SHF_ALLOC)) |
2414 | continue; |
2415 | off = computeFileOffset(os: sec, off); |
2416 | sec->offset = off; |
2417 | if (sec->type != SHT_NOBITS) |
2418 | off += sec->size; |
2419 | |
2420 | // If this is a last section of the last executable segment and that |
2421 | // segment is the last loadable segment, align the offset of the |
2422 | // following section to avoid loading non-segments parts of the file. |
2423 | if (config->zSeparate != SeparateSegmentKind::None && lastRX && |
2424 | lastRX->lastSec == sec) |
2425 | off = alignToPowerOf2(Value: off, Align: config->maxPageSize); |
2426 | } |
2427 | for (OutputSection *osec : outputSections) |
2428 | if (!(osec->flags & SHF_ALLOC)) { |
2429 | osec->offset = alignToPowerOf2(Value: off, Align: osec->addralign); |
2430 | off = osec->offset + osec->size; |
2431 | } |
2432 | |
2433 | sectionHeaderOff = alignToPowerOf2(Value: off, Align: config->wordsize); |
2434 | fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); |
2435 | |
2436 | // Our logic assumes that sections have rising VA within the same segment. |
2437 | // With use of linker scripts it is possible to violate this rule and get file |
2438 | // offset overlaps or overflows. That should never happen with a valid script |
2439 | // which does not move the location counter backwards and usually scripts do |
2440 | // not do that. Unfortunately, there are apps in the wild, for example, Linux |
2441 | // kernel, which control segment distribution explicitly and move the counter |
2442 | // backwards, so we have to allow doing that to support linking them. We |
2443 | // perform non-critical checks for overlaps in checkSectionOverlap(), but here |
2444 | // we want to prevent file size overflows because it would crash the linker. |
2445 | for (OutputSection *sec : outputSections) { |
2446 | if (sec->type == SHT_NOBITS) |
2447 | continue; |
2448 | if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) |
2449 | error(msg: "unable to place section " + sec->name + " at file offset " + |
2450 | rangeToString(addr: sec->offset, len: sec->size) + |
2451 | "; check your linker script for overflows" ); |
2452 | } |
2453 | } |
2454 | |
2455 | // Finalize the program headers. We call this function after we assign |
2456 | // file offsets and VAs to all sections. |
2457 | template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { |
2458 | for (PhdrEntry *p : part.phdrs) { |
2459 | OutputSection *first = p->firstSec; |
2460 | OutputSection *last = p->lastSec; |
2461 | |
2462 | // .ARM.exidx sections may not be within a single .ARM.exidx |
2463 | // output section. We always want to describe just the |
2464 | // SyntheticSection. |
2465 | if (part.armExidx && p->p_type == PT_ARM_EXIDX) { |
2466 | p->p_filesz = part.armExidx->getSize(); |
2467 | p->p_memsz = part.armExidx->getSize(); |
2468 | p->p_offset = first->offset + part.armExidx->outSecOff; |
2469 | p->p_vaddr = first->addr + part.armExidx->outSecOff; |
2470 | p->p_align = part.armExidx->addralign; |
2471 | if (part.elfHeader) |
2472 | p->p_offset -= part.elfHeader->getParent()->offset; |
2473 | |
2474 | if (!p->hasLMA) |
2475 | p->p_paddr = first->getLMA() + part.armExidx->outSecOff; |
2476 | return; |
2477 | } |
2478 | |
2479 | if (first) { |
2480 | p->p_filesz = last->offset - first->offset; |
2481 | if (last->type != SHT_NOBITS) |
2482 | p->p_filesz += last->size; |
2483 | |
2484 | p->p_memsz = last->addr + last->size - first->addr; |
2485 | p->p_offset = first->offset; |
2486 | p->p_vaddr = first->addr; |
2487 | |
2488 | // File offsets in partitions other than the main partition are relative |
2489 | // to the offset of the ELF headers. Perform that adjustment now. |
2490 | if (part.elfHeader) |
2491 | p->p_offset -= part.elfHeader->getParent()->offset; |
2492 | |
2493 | if (!p->hasLMA) |
2494 | p->p_paddr = first->getLMA(); |
2495 | } |
2496 | } |
2497 | } |
2498 | |
2499 | // A helper struct for checkSectionOverlap. |
2500 | namespace { |
2501 | struct SectionOffset { |
2502 | OutputSection *sec; |
2503 | uint64_t offset; |
2504 | }; |
2505 | } // namespace |
2506 | |
2507 | // Check whether sections overlap for a specific address range (file offsets, |
2508 | // load and virtual addresses). |
2509 | static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, |
2510 | bool isVirtualAddr) { |
2511 | llvm::sort(C&: sections, Comp: [=](const SectionOffset &a, const SectionOffset &b) { |
2512 | return a.offset < b.offset; |
2513 | }); |
2514 | |
2515 | // Finding overlap is easy given a vector is sorted by start position. |
2516 | // If an element starts before the end of the previous element, they overlap. |
2517 | for (size_t i = 1, end = sections.size(); i < end; ++i) { |
2518 | SectionOffset a = sections[i - 1]; |
2519 | SectionOffset b = sections[i]; |
2520 | if (b.offset >= a.offset + a.sec->size) |
2521 | continue; |
2522 | |
2523 | // If both sections are in OVERLAY we allow the overlapping of virtual |
2524 | // addresses, because it is what OVERLAY was designed for. |
2525 | if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) |
2526 | continue; |
2527 | |
2528 | errorOrWarn(msg: "section " + a.sec->name + " " + name + |
2529 | " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + |
2530 | " range is " + rangeToString(addr: a.offset, len: a.sec->size) + "\n>>> " + |
2531 | b.sec->name + " range is " + |
2532 | rangeToString(addr: b.offset, len: b.sec->size)); |
2533 | } |
2534 | } |
2535 | |
2536 | // Check for overlapping sections and address overflows. |
2537 | // |
2538 | // In this function we check that none of the output sections have overlapping |
2539 | // file offsets. For SHF_ALLOC sections we also check that the load address |
2540 | // ranges and the virtual address ranges don't overlap |
2541 | template <class ELFT> void Writer<ELFT>::checkSections() { |
2542 | // First, check that section's VAs fit in available address space for target. |
2543 | for (OutputSection *os : outputSections) |
2544 | if ((os->addr + os->size < os->addr) || |
2545 | (!ELFT::Is64Bits && os->addr + os->size > uint64_t(UINT32_MAX) + 1)) |
2546 | errorOrWarn(msg: "section " + os->name + " at 0x" + utohexstr(X: os->addr) + |
2547 | " of size 0x" + utohexstr(X: os->size) + |
2548 | " exceeds available address space" ); |
2549 | |
2550 | // Check for overlapping file offsets. In this case we need to skip any |
2551 | // section marked as SHT_NOBITS. These sections don't actually occupy space in |
2552 | // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat |
2553 | // binary is specified only add SHF_ALLOC sections are added to the output |
2554 | // file so we skip any non-allocated sections in that case. |
2555 | std::vector<SectionOffset> fileOffs; |
2556 | for (OutputSection *sec : outputSections) |
2557 | if (sec->size > 0 && sec->type != SHT_NOBITS && |
2558 | (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) |
2559 | fileOffs.push_back(x: {.sec: sec, .offset: sec->offset}); |
2560 | checkOverlap(name: "file" , sections&: fileOffs, isVirtualAddr: false); |
2561 | |
2562 | // When linking with -r there is no need to check for overlapping virtual/load |
2563 | // addresses since those addresses will only be assigned when the final |
2564 | // executable/shared object is created. |
2565 | if (config->relocatable) |
2566 | return; |
2567 | |
2568 | // Checking for overlapping virtual and load addresses only needs to take |
2569 | // into account SHF_ALLOC sections since others will not be loaded. |
2570 | // Furthermore, we also need to skip SHF_TLS sections since these will be |
2571 | // mapped to other addresses at runtime and can therefore have overlapping |
2572 | // ranges in the file. |
2573 | std::vector<SectionOffset> vmas; |
2574 | for (OutputSection *sec : outputSections) |
2575 | if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) |
2576 | vmas.push_back(x: {.sec: sec, .offset: sec->addr}); |
2577 | checkOverlap(name: "virtual address" , sections&: vmas, isVirtualAddr: true); |
2578 | |
2579 | // Finally, check that the load addresses don't overlap. This will usually be |
2580 | // the same as the virtual addresses but can be different when using a linker |
2581 | // script with AT(). |
2582 | std::vector<SectionOffset> lmas; |
2583 | for (OutputSection *sec : outputSections) |
2584 | if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) |
2585 | lmas.push_back(x: {.sec: sec, .offset: sec->getLMA()}); |
2586 | checkOverlap(name: "load address" , sections&: lmas, isVirtualAddr: false); |
2587 | } |
2588 | |
2589 | // The entry point address is chosen in the following ways. |
2590 | // |
2591 | // 1. the '-e' entry command-line option; |
2592 | // 2. the ENTRY(symbol) command in a linker control script; |
2593 | // 3. the value of the symbol _start, if present; |
2594 | // 4. the number represented by the entry symbol, if it is a number; |
2595 | // 5. the address 0. |
2596 | static uint64_t getEntryAddr() { |
2597 | // Case 1, 2 or 3 |
2598 | if (Symbol *b = symtab.find(name: config->entry)) |
2599 | return b->getVA(); |
2600 | |
2601 | // Case 4 |
2602 | uint64_t addr; |
2603 | if (to_integer(S: config->entry, Num&: addr)) |
2604 | return addr; |
2605 | |
2606 | // Case 5 |
2607 | if (config->warnMissingEntry) |
2608 | warn(msg: "cannot find entry symbol " + config->entry + |
2609 | "; not setting start address" ); |
2610 | return 0; |
2611 | } |
2612 | |
2613 | static uint16_t getELFType() { |
2614 | if (config->isPic) |
2615 | return ET_DYN; |
2616 | if (config->relocatable) |
2617 | return ET_REL; |
2618 | return ET_EXEC; |
2619 | } |
2620 | |
2621 | template <class ELFT> void Writer<ELFT>::() { |
2622 | writeEhdr<ELFT>(Out::bufferStart, *mainPart); |
2623 | writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); |
2624 | |
2625 | auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); |
2626 | eHdr->e_type = getELFType(); |
2627 | eHdr->e_entry = getEntryAddr(); |
2628 | eHdr->e_shoff = sectionHeaderOff; |
2629 | |
2630 | // Write the section header table. |
2631 | // |
2632 | // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum |
2633 | // and e_shstrndx fields. When the value of one of these fields exceeds |
2634 | // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and |
2635 | // use fields in the section header at index 0 to store |
2636 | // the value. The sentinel values and fields are: |
2637 | // e_shnum = 0, SHdrs[0].sh_size = number of sections. |
2638 | // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. |
2639 | auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); |
2640 | size_t num = outputSections.size() + 1; |
2641 | if (num >= SHN_LORESERVE) |
2642 | sHdrs->sh_size = num; |
2643 | else |
2644 | eHdr->e_shnum = num; |
2645 | |
2646 | uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; |
2647 | if (strTabIndex >= SHN_LORESERVE) { |
2648 | sHdrs->sh_link = strTabIndex; |
2649 | eHdr->e_shstrndx = SHN_XINDEX; |
2650 | } else { |
2651 | eHdr->e_shstrndx = strTabIndex; |
2652 | } |
2653 | |
2654 | for (OutputSection *sec : outputSections) |
2655 | sec->writeHeaderTo<ELFT>(++sHdrs); |
2656 | } |
2657 | |
2658 | // Open a result file. |
2659 | template <class ELFT> void Writer<ELFT>::openFile() { |
2660 | uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; |
2661 | if (fileSize != size_t(fileSize) || maxSize < fileSize) { |
2662 | std::string msg; |
2663 | raw_string_ostream s(msg); |
2664 | s << "output file too large: " << Twine(fileSize) << " bytes\n" |
2665 | << "section sizes:\n" ; |
2666 | for (OutputSection *os : outputSections) |
2667 | s << os->name << ' ' << os->size << "\n" ; |
2668 | error(msg: s.str()); |
2669 | return; |
2670 | } |
2671 | |
2672 | unlinkAsync(path: config->outputFile); |
2673 | unsigned flags = 0; |
2674 | if (!config->relocatable) |
2675 | flags |= FileOutputBuffer::F_executable; |
2676 | if (!config->mmapOutputFile) |
2677 | flags |= FileOutputBuffer::F_no_mmap; |
2678 | Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = |
2679 | FileOutputBuffer::create(FilePath: config->outputFile, Size: fileSize, Flags: flags); |
2680 | |
2681 | if (!bufferOrErr) { |
2682 | error(msg: "failed to open " + config->outputFile + ": " + |
2683 | llvm::toString(E: bufferOrErr.takeError())); |
2684 | return; |
2685 | } |
2686 | buffer = std::move(*bufferOrErr); |
2687 | Out::bufferStart = buffer->getBufferStart(); |
2688 | } |
2689 | |
2690 | template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { |
2691 | parallel::TaskGroup tg; |
2692 | for (OutputSection *sec : outputSections) |
2693 | if (sec->flags & SHF_ALLOC) |
2694 | sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); |
2695 | } |
2696 | |
2697 | static void fillTrap(uint8_t *i, uint8_t *end) { |
2698 | for (; i + 4 <= end; i += 4) |
2699 | memcpy(dest: i, src: &target->trapInstr, n: 4); |
2700 | } |
2701 | |
2702 | // Fill the last page of executable segments with trap instructions |
2703 | // instead of leaving them as zero. Even though it is not required by any |
2704 | // standard, it is in general a good thing to do for security reasons. |
2705 | // |
2706 | // We'll leave other pages in segments as-is because the rest will be |
2707 | // overwritten by output sections. |
2708 | template <class ELFT> void Writer<ELFT>::writeTrapInstr() { |
2709 | for (Partition &part : partitions) { |
2710 | // Fill the last page. |
2711 | for (PhdrEntry *p : part.phdrs) |
2712 | if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) |
2713 | fillTrap(i: Out::bufferStart + |
2714 | alignDown(Value: p->firstSec->offset + p->p_filesz, Align: 4), |
2715 | end: Out::bufferStart + |
2716 | alignToPowerOf2(Value: p->firstSec->offset + p->p_filesz, |
2717 | Align: config->maxPageSize)); |
2718 | |
2719 | // Round up the file size of the last segment to the page boundary iff it is |
2720 | // an executable segment to ensure that other tools don't accidentally |
2721 | // trim the instruction padding (e.g. when stripping the file). |
2722 | PhdrEntry *last = nullptr; |
2723 | for (PhdrEntry *p : part.phdrs) |
2724 | if (p->p_type == PT_LOAD) |
2725 | last = p; |
2726 | |
2727 | if (last && (last->p_flags & PF_X)) |
2728 | last->p_memsz = last->p_filesz = |
2729 | alignToPowerOf2(Value: last->p_filesz, Align: config->maxPageSize); |
2730 | } |
2731 | } |
2732 | |
2733 | // Write section contents to a mmap'ed file. |
2734 | template <class ELFT> void Writer<ELFT>::writeSections() { |
2735 | llvm::TimeTraceScope timeScope("Write sections" ); |
2736 | |
2737 | { |
2738 | // In -r or --emit-relocs mode, write the relocation sections first as in |
2739 | // ELf_Rel targets we might find out that we need to modify the relocated |
2740 | // section while doing it. |
2741 | parallel::TaskGroup tg; |
2742 | for (OutputSection *sec : outputSections) |
2743 | if (isStaticRelSecType(type: sec->type)) |
2744 | sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); |
2745 | } |
2746 | { |
2747 | parallel::TaskGroup tg; |
2748 | for (OutputSection *sec : outputSections) |
2749 | if (!isStaticRelSecType(type: sec->type)) |
2750 | sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg); |
2751 | } |
2752 | |
2753 | // Finally, check that all dynamic relocation addends were written correctly. |
2754 | if (config->checkDynamicRelocs && config->writeAddends) { |
2755 | for (OutputSection *sec : outputSections) |
2756 | if (isStaticRelSecType(type: sec->type)) |
2757 | sec->checkDynRelAddends(bufStart: Out::bufferStart); |
2758 | } |
2759 | } |
2760 | |
2761 | // Computes a hash value of Data using a given hash function. |
2762 | // In order to utilize multiple cores, we first split data into 1MB |
2763 | // chunks, compute a hash for each chunk, and then compute a hash value |
2764 | // of the hash values. |
2765 | static void |
2766 | computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, |
2767 | llvm::ArrayRef<uint8_t> data, |
2768 | std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { |
2769 | std::vector<ArrayRef<uint8_t>> chunks = split(arr: data, chunkSize: 1024 * 1024); |
2770 | const size_t hashesSize = chunks.size() * hashBuf.size(); |
2771 | std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]); |
2772 | |
2773 | // Compute hash values. |
2774 | parallelFor(Begin: 0, End: chunks.size(), Fn: [&](size_t i) { |
2775 | hashFn(hashes.get() + i * hashBuf.size(), chunks[i]); |
2776 | }); |
2777 | |
2778 | // Write to the final output buffer. |
2779 | hashFn(hashBuf.data(), ArrayRef(hashes.get(), hashesSize)); |
2780 | } |
2781 | |
2782 | template <class ELFT> void Writer<ELFT>::writeBuildId() { |
2783 | if (!mainPart->buildId || !mainPart->buildId->getParent()) |
2784 | return; |
2785 | |
2786 | if (config->buildId == BuildIdKind::Hexstring) { |
2787 | for (Partition &part : partitions) |
2788 | part.buildId->writeBuildId(buf: config->buildIdVector); |
2789 | return; |
2790 | } |
2791 | |
2792 | // Compute a hash of all sections of the output file. |
2793 | size_t hashSize = mainPart->buildId->hashSize; |
2794 | std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]); |
2795 | MutableArrayRef<uint8_t> output(buildId.get(), hashSize); |
2796 | llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)}; |
2797 | |
2798 | // Fedora introduced build ID as "approximation of true uniqueness across all |
2799 | // binaries that might be used by overlapping sets of people". It does not |
2800 | // need some security goals that some hash algorithms strive to provide, e.g. |
2801 | // (second-)preimage and collision resistance. In practice people use 'md5' |
2802 | // and 'sha1' just for different lengths. Implement them with the more |
2803 | // efficient BLAKE3. |
2804 | switch (config->buildId) { |
2805 | case BuildIdKind::Fast: |
2806 | computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) { |
2807 | write64le(P: dest, V: xxh3_64bits(data: arr)); |
2808 | }); |
2809 | break; |
2810 | case BuildIdKind::Md5: |
2811 | computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { |
2812 | memcpy(dest: dest, src: BLAKE3::hash<16>(Data: arr).data(), n: hashSize); |
2813 | }); |
2814 | break; |
2815 | case BuildIdKind::Sha1: |
2816 | computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { |
2817 | memcpy(dest: dest, src: BLAKE3::hash<20>(Data: arr).data(), n: hashSize); |
2818 | }); |
2819 | break; |
2820 | case BuildIdKind::Uuid: |
2821 | if (auto ec = llvm::getRandomBytes(Buffer: buildId.get(), Size: hashSize)) |
2822 | error(msg: "entropy source failure: " + ec.message()); |
2823 | break; |
2824 | default: |
2825 | llvm_unreachable("unknown BuildIdKind" ); |
2826 | } |
2827 | for (Partition &part : partitions) |
2828 | part.buildId->writeBuildId(buf: output); |
2829 | } |
2830 | |
2831 | template void elf::writeResult<ELF32LE>(); |
2832 | template void elf::writeResult<ELF32BE>(); |
2833 | template void elf::writeResult<ELF64LE>(); |
2834 | template void elf::writeResult<ELF64BE>(); |
2835 | |