1 | //===-- DWARFExpression.cpp -----------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "lldb/Expression/DWARFExpression.h" |
10 | |
11 | #include <cinttypes> |
12 | |
13 | #include <optional> |
14 | #include <vector> |
15 | |
16 | #include "lldb/Core/Module.h" |
17 | #include "lldb/Core/Value.h" |
18 | #include "lldb/Core/dwarf.h" |
19 | #include "lldb/Utility/DataEncoder.h" |
20 | #include "lldb/Utility/LLDBLog.h" |
21 | #include "lldb/Utility/Log.h" |
22 | #include "lldb/Utility/RegisterValue.h" |
23 | #include "lldb/Utility/Scalar.h" |
24 | #include "lldb/Utility/StreamString.h" |
25 | #include "lldb/Utility/VMRange.h" |
26 | |
27 | #include "lldb/Host/Host.h" |
28 | #include "lldb/Utility/Endian.h" |
29 | |
30 | #include "lldb/Symbol/Function.h" |
31 | |
32 | #include "lldb/Target/ABI.h" |
33 | #include "lldb/Target/ExecutionContext.h" |
34 | #include "lldb/Target/Process.h" |
35 | #include "lldb/Target/RegisterContext.h" |
36 | #include "lldb/Target/StackFrame.h" |
37 | #include "lldb/Target/StackID.h" |
38 | #include "lldb/Target/Target.h" |
39 | #include "lldb/Target/Thread.h" |
40 | #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" |
41 | #include "llvm/DebugInfo/DWARF/DWARFExpression.h" |
42 | |
43 | #include "Plugins/SymbolFile/DWARF/DWARFUnit.h" |
44 | |
45 | using namespace lldb; |
46 | using namespace lldb_private; |
47 | using namespace lldb_private::dwarf; |
48 | using namespace lldb_private::plugin::dwarf; |
49 | |
50 | // DWARFExpression constructor |
51 | DWARFExpression::DWARFExpression() : m_data() {} |
52 | |
53 | DWARFExpression::(const DataExtractor &data) : m_data(data) {} |
54 | |
55 | // Destructor |
56 | DWARFExpression::~DWARFExpression() = default; |
57 | |
58 | bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; } |
59 | |
60 | void DWARFExpression::UpdateValue(uint64_t const_value, |
61 | lldb::offset_t const_value_byte_size, |
62 | uint8_t addr_byte_size) { |
63 | if (!const_value_byte_size) |
64 | return; |
65 | |
66 | m_data.SetData( |
67 | data_sp: DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size))); |
68 | m_data.SetByteOrder(endian::InlHostByteOrder()); |
69 | m_data.SetAddressByteSize(addr_byte_size); |
70 | } |
71 | |
72 | void DWARFExpression::DumpLocation(Stream *s, lldb::DescriptionLevel level, |
73 | ABI *abi) const { |
74 | auto *MCRegInfo = abi ? &abi->GetMCRegisterInfo() : nullptr; |
75 | auto GetRegName = [&MCRegInfo](uint64_t DwarfRegNum, |
76 | bool IsEH) -> llvm::StringRef { |
77 | if (!MCRegInfo) |
78 | return {}; |
79 | if (std::optional<unsigned> LLVMRegNum = |
80 | MCRegInfo->getLLVMRegNum(RegNum: DwarfRegNum, isEH: IsEH)) |
81 | if (const char *RegName = MCRegInfo->getName(RegNo: *LLVMRegNum)) |
82 | return llvm::StringRef(RegName); |
83 | return {}; |
84 | }; |
85 | llvm::DIDumpOptions DumpOpts; |
86 | DumpOpts.GetNameForDWARFReg = GetRegName; |
87 | llvm::DWARFExpression(m_data.GetAsLLVM(), m_data.GetAddressByteSize()) |
88 | .print(OS&: s->AsRawOstream(), DumpOpts, U: nullptr); |
89 | } |
90 | |
91 | RegisterKind DWARFExpression::GetRegisterKind() const { return m_reg_kind; } |
92 | |
93 | void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) { |
94 | m_reg_kind = reg_kind; |
95 | } |
96 | |
97 | |
98 | static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx, |
99 | lldb::RegisterKind reg_kind, |
100 | uint32_t reg_num, Status *error_ptr, |
101 | Value &value) { |
102 | if (reg_ctx == nullptr) { |
103 | if (error_ptr) |
104 | error_ptr->SetErrorString("No register context in frame.\n" ); |
105 | } else { |
106 | uint32_t native_reg = |
107 | reg_ctx->ConvertRegisterKindToRegisterNumber(kind: reg_kind, num: reg_num); |
108 | if (native_reg == LLDB_INVALID_REGNUM) { |
109 | if (error_ptr) |
110 | error_ptr->SetErrorStringWithFormat("Unable to convert register " |
111 | "kind=%u reg_num=%u to a native " |
112 | "register number.\n" , |
113 | reg_kind, reg_num); |
114 | } else { |
115 | const RegisterInfo *reg_info = |
116 | reg_ctx->GetRegisterInfoAtIndex(reg: native_reg); |
117 | RegisterValue reg_value; |
118 | if (reg_ctx->ReadRegister(reg_info, reg_value)) { |
119 | if (reg_value.GetScalarValue(scalar&: value.GetScalar())) { |
120 | value.SetValueType(Value::ValueType::Scalar); |
121 | value.SetContext(context_type: Value::ContextType::RegisterInfo, |
122 | p: const_cast<RegisterInfo *>(reg_info)); |
123 | if (error_ptr) |
124 | error_ptr->Clear(); |
125 | return true; |
126 | } else { |
127 | // If we get this error, then we need to implement a value buffer in |
128 | // the dwarf expression evaluation function... |
129 | if (error_ptr) |
130 | error_ptr->SetErrorStringWithFormat( |
131 | "register %s can't be converted to a scalar value" , |
132 | reg_info->name); |
133 | } |
134 | } else { |
135 | if (error_ptr) |
136 | error_ptr->SetErrorStringWithFormat("register %s is not available" , |
137 | reg_info->name); |
138 | } |
139 | } |
140 | } |
141 | return false; |
142 | } |
143 | |
144 | /// Return the length in bytes of the set of operands for \p op. No guarantees |
145 | /// are made on the state of \p data after this call. |
146 | static offset_t (const DataExtractor &data, |
147 | const lldb::offset_t data_offset, |
148 | const uint8_t op, const DWARFUnit *dwarf_cu) { |
149 | lldb::offset_t offset = data_offset; |
150 | switch (op) { |
151 | case DW_OP_addr: |
152 | case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3) |
153 | return data.GetAddressByteSize(); |
154 | |
155 | // Opcodes with no arguments |
156 | case DW_OP_deref: // 0x06 |
157 | case DW_OP_dup: // 0x12 |
158 | case DW_OP_drop: // 0x13 |
159 | case DW_OP_over: // 0x14 |
160 | case DW_OP_swap: // 0x16 |
161 | case DW_OP_rot: // 0x17 |
162 | case DW_OP_xderef: // 0x18 |
163 | case DW_OP_abs: // 0x19 |
164 | case DW_OP_and: // 0x1a |
165 | case DW_OP_div: // 0x1b |
166 | case DW_OP_minus: // 0x1c |
167 | case DW_OP_mod: // 0x1d |
168 | case DW_OP_mul: // 0x1e |
169 | case DW_OP_neg: // 0x1f |
170 | case DW_OP_not: // 0x20 |
171 | case DW_OP_or: // 0x21 |
172 | case DW_OP_plus: // 0x22 |
173 | case DW_OP_shl: // 0x24 |
174 | case DW_OP_shr: // 0x25 |
175 | case DW_OP_shra: // 0x26 |
176 | case DW_OP_xor: // 0x27 |
177 | case DW_OP_eq: // 0x29 |
178 | case DW_OP_ge: // 0x2a |
179 | case DW_OP_gt: // 0x2b |
180 | case DW_OP_le: // 0x2c |
181 | case DW_OP_lt: // 0x2d |
182 | case DW_OP_ne: // 0x2e |
183 | case DW_OP_lit0: // 0x30 |
184 | case DW_OP_lit1: // 0x31 |
185 | case DW_OP_lit2: // 0x32 |
186 | case DW_OP_lit3: // 0x33 |
187 | case DW_OP_lit4: // 0x34 |
188 | case DW_OP_lit5: // 0x35 |
189 | case DW_OP_lit6: // 0x36 |
190 | case DW_OP_lit7: // 0x37 |
191 | case DW_OP_lit8: // 0x38 |
192 | case DW_OP_lit9: // 0x39 |
193 | case DW_OP_lit10: // 0x3A |
194 | case DW_OP_lit11: // 0x3B |
195 | case DW_OP_lit12: // 0x3C |
196 | case DW_OP_lit13: // 0x3D |
197 | case DW_OP_lit14: // 0x3E |
198 | case DW_OP_lit15: // 0x3F |
199 | case DW_OP_lit16: // 0x40 |
200 | case DW_OP_lit17: // 0x41 |
201 | case DW_OP_lit18: // 0x42 |
202 | case DW_OP_lit19: // 0x43 |
203 | case DW_OP_lit20: // 0x44 |
204 | case DW_OP_lit21: // 0x45 |
205 | case DW_OP_lit22: // 0x46 |
206 | case DW_OP_lit23: // 0x47 |
207 | case DW_OP_lit24: // 0x48 |
208 | case DW_OP_lit25: // 0x49 |
209 | case DW_OP_lit26: // 0x4A |
210 | case DW_OP_lit27: // 0x4B |
211 | case DW_OP_lit28: // 0x4C |
212 | case DW_OP_lit29: // 0x4D |
213 | case DW_OP_lit30: // 0x4E |
214 | case DW_OP_lit31: // 0x4f |
215 | case DW_OP_reg0: // 0x50 |
216 | case DW_OP_reg1: // 0x51 |
217 | case DW_OP_reg2: // 0x52 |
218 | case DW_OP_reg3: // 0x53 |
219 | case DW_OP_reg4: // 0x54 |
220 | case DW_OP_reg5: // 0x55 |
221 | case DW_OP_reg6: // 0x56 |
222 | case DW_OP_reg7: // 0x57 |
223 | case DW_OP_reg8: // 0x58 |
224 | case DW_OP_reg9: // 0x59 |
225 | case DW_OP_reg10: // 0x5A |
226 | case DW_OP_reg11: // 0x5B |
227 | case DW_OP_reg12: // 0x5C |
228 | case DW_OP_reg13: // 0x5D |
229 | case DW_OP_reg14: // 0x5E |
230 | case DW_OP_reg15: // 0x5F |
231 | case DW_OP_reg16: // 0x60 |
232 | case DW_OP_reg17: // 0x61 |
233 | case DW_OP_reg18: // 0x62 |
234 | case DW_OP_reg19: // 0x63 |
235 | case DW_OP_reg20: // 0x64 |
236 | case DW_OP_reg21: // 0x65 |
237 | case DW_OP_reg22: // 0x66 |
238 | case DW_OP_reg23: // 0x67 |
239 | case DW_OP_reg24: // 0x68 |
240 | case DW_OP_reg25: // 0x69 |
241 | case DW_OP_reg26: // 0x6A |
242 | case DW_OP_reg27: // 0x6B |
243 | case DW_OP_reg28: // 0x6C |
244 | case DW_OP_reg29: // 0x6D |
245 | case DW_OP_reg30: // 0x6E |
246 | case DW_OP_reg31: // 0x6F |
247 | case DW_OP_nop: // 0x96 |
248 | case DW_OP_push_object_address: // 0x97 DWARF3 |
249 | case DW_OP_form_tls_address: // 0x9b DWARF3 |
250 | case DW_OP_call_frame_cfa: // 0x9c DWARF3 |
251 | case DW_OP_stack_value: // 0x9f DWARF4 |
252 | case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension |
253 | return 0; |
254 | |
255 | // Opcodes with a single 1 byte arguments |
256 | case DW_OP_const1u: // 0x08 1 1-byte constant |
257 | case DW_OP_const1s: // 0x09 1 1-byte constant |
258 | case DW_OP_pick: // 0x15 1 1-byte stack index |
259 | case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved |
260 | case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved |
261 | return 1; |
262 | |
263 | // Opcodes with a single 2 byte arguments |
264 | case DW_OP_const2u: // 0x0a 1 2-byte constant |
265 | case DW_OP_const2s: // 0x0b 1 2-byte constant |
266 | case DW_OP_skip: // 0x2f 1 signed 2-byte constant |
267 | case DW_OP_bra: // 0x28 1 signed 2-byte constant |
268 | case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3) |
269 | return 2; |
270 | |
271 | // Opcodes with a single 4 byte arguments |
272 | case DW_OP_const4u: // 0x0c 1 4-byte constant |
273 | case DW_OP_const4s: // 0x0d 1 4-byte constant |
274 | case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3) |
275 | return 4; |
276 | |
277 | // Opcodes with a single 8 byte arguments |
278 | case DW_OP_const8u: // 0x0e 1 8-byte constant |
279 | case DW_OP_const8s: // 0x0f 1 8-byte constant |
280 | return 8; |
281 | |
282 | // All opcodes that have a single ULEB (signed or unsigned) argument |
283 | case DW_OP_addrx: // 0xa1 1 ULEB128 index |
284 | case DW_OP_constu: // 0x10 1 ULEB128 constant |
285 | case DW_OP_consts: // 0x11 1 SLEB128 constant |
286 | case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend |
287 | case DW_OP_breg0: // 0x70 1 ULEB128 register |
288 | case DW_OP_breg1: // 0x71 1 ULEB128 register |
289 | case DW_OP_breg2: // 0x72 1 ULEB128 register |
290 | case DW_OP_breg3: // 0x73 1 ULEB128 register |
291 | case DW_OP_breg4: // 0x74 1 ULEB128 register |
292 | case DW_OP_breg5: // 0x75 1 ULEB128 register |
293 | case DW_OP_breg6: // 0x76 1 ULEB128 register |
294 | case DW_OP_breg7: // 0x77 1 ULEB128 register |
295 | case DW_OP_breg8: // 0x78 1 ULEB128 register |
296 | case DW_OP_breg9: // 0x79 1 ULEB128 register |
297 | case DW_OP_breg10: // 0x7a 1 ULEB128 register |
298 | case DW_OP_breg11: // 0x7b 1 ULEB128 register |
299 | case DW_OP_breg12: // 0x7c 1 ULEB128 register |
300 | case DW_OP_breg13: // 0x7d 1 ULEB128 register |
301 | case DW_OP_breg14: // 0x7e 1 ULEB128 register |
302 | case DW_OP_breg15: // 0x7f 1 ULEB128 register |
303 | case DW_OP_breg16: // 0x80 1 ULEB128 register |
304 | case DW_OP_breg17: // 0x81 1 ULEB128 register |
305 | case DW_OP_breg18: // 0x82 1 ULEB128 register |
306 | case DW_OP_breg19: // 0x83 1 ULEB128 register |
307 | case DW_OP_breg20: // 0x84 1 ULEB128 register |
308 | case DW_OP_breg21: // 0x85 1 ULEB128 register |
309 | case DW_OP_breg22: // 0x86 1 ULEB128 register |
310 | case DW_OP_breg23: // 0x87 1 ULEB128 register |
311 | case DW_OP_breg24: // 0x88 1 ULEB128 register |
312 | case DW_OP_breg25: // 0x89 1 ULEB128 register |
313 | case DW_OP_breg26: // 0x8a 1 ULEB128 register |
314 | case DW_OP_breg27: // 0x8b 1 ULEB128 register |
315 | case DW_OP_breg28: // 0x8c 1 ULEB128 register |
316 | case DW_OP_breg29: // 0x8d 1 ULEB128 register |
317 | case DW_OP_breg30: // 0x8e 1 ULEB128 register |
318 | case DW_OP_breg31: // 0x8f 1 ULEB128 register |
319 | case DW_OP_regx: // 0x90 1 ULEB128 register |
320 | case DW_OP_fbreg: // 0x91 1 SLEB128 offset |
321 | case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed |
322 | case DW_OP_GNU_addr_index: // 0xfb 1 ULEB128 index |
323 | case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index |
324 | data.Skip_LEB128(offset_ptr: &offset); |
325 | return offset - data_offset; |
326 | |
327 | // All opcodes that have a 2 ULEB (signed or unsigned) arguments |
328 | case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset |
329 | case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); |
330 | data.Skip_LEB128(offset_ptr: &offset); |
331 | data.Skip_LEB128(offset_ptr: &offset); |
332 | return offset - data_offset; |
333 | |
334 | case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size |
335 | // (DWARF4) |
336 | { |
337 | uint64_t block_len = data.Skip_LEB128(offset_ptr: &offset); |
338 | offset += block_len; |
339 | return offset - data_offset; |
340 | } |
341 | |
342 | case DW_OP_GNU_entry_value: |
343 | case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block |
344 | { |
345 | uint64_t subexpr_len = data.GetULEB128(offset_ptr: &offset); |
346 | return (offset - data_offset) + subexpr_len; |
347 | } |
348 | |
349 | default: |
350 | if (!dwarf_cu) { |
351 | return LLDB_INVALID_OFFSET; |
352 | } |
353 | return dwarf_cu->GetSymbolFileDWARF().GetVendorDWARFOpcodeSize( |
354 | data, data_offset, op); |
355 | } |
356 | } |
357 | |
358 | lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(const DWARFUnit *dwarf_cu, |
359 | bool &error) const { |
360 | error = false; |
361 | lldb::offset_t offset = 0; |
362 | while (m_data.ValidOffset(offset)) { |
363 | const uint8_t op = m_data.GetU8(offset_ptr: &offset); |
364 | |
365 | if (op == DW_OP_addr) |
366 | return m_data.GetAddress(offset_ptr: &offset); |
367 | if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) { |
368 | uint64_t index = m_data.GetULEB128(offset_ptr: &offset); |
369 | if (dwarf_cu) |
370 | return dwarf_cu->ReadAddressFromDebugAddrSection(index); |
371 | error = true; |
372 | break; |
373 | } |
374 | const offset_t op_arg_size = |
375 | GetOpcodeDataSize(data: m_data, data_offset: offset, op, dwarf_cu); |
376 | if (op_arg_size == LLDB_INVALID_OFFSET) { |
377 | error = true; |
378 | break; |
379 | } |
380 | offset += op_arg_size; |
381 | } |
382 | return LLDB_INVALID_ADDRESS; |
383 | } |
384 | |
385 | bool DWARFExpression::Update_DW_OP_addr(const DWARFUnit *dwarf_cu, |
386 | lldb::addr_t file_addr) { |
387 | lldb::offset_t offset = 0; |
388 | while (m_data.ValidOffset(offset)) { |
389 | const uint8_t op = m_data.GetU8(offset_ptr: &offset); |
390 | |
391 | if (op == DW_OP_addr) { |
392 | const uint32_t addr_byte_size = m_data.GetAddressByteSize(); |
393 | // We have to make a copy of the data as we don't know if this data is |
394 | // from a read only memory mapped buffer, so we duplicate all of the data |
395 | // first, then modify it, and if all goes well, we then replace the data |
396 | // for this expression |
397 | |
398 | // Make en encoder that contains a copy of the location expression data |
399 | // so we can write the address into the buffer using the correct byte |
400 | // order. |
401 | DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(), |
402 | m_data.GetByteOrder(), addr_byte_size); |
403 | |
404 | // Replace the address in the new buffer |
405 | if (encoder.PutAddress(offset, addr: file_addr) == UINT32_MAX) |
406 | return false; |
407 | |
408 | // All went well, so now we can reset the data using a shared pointer to |
409 | // the heap data so "m_data" will now correctly manage the heap data. |
410 | m_data.SetData(data_sp: encoder.GetDataBuffer()); |
411 | return true; |
412 | } |
413 | if (op == DW_OP_addrx) { |
414 | // Replace DW_OP_addrx with DW_OP_addr, since we can't modify the |
415 | // read-only debug_addr table. |
416 | // Subtract one to account for the opcode. |
417 | llvm::ArrayRef data_before_op = m_data.GetData().take_front(N: offset - 1); |
418 | |
419 | // Read the addrx index to determine how many bytes it needs. |
420 | const lldb::offset_t old_offset = offset; |
421 | m_data.GetULEB128(offset_ptr: &offset); |
422 | if (old_offset == offset) |
423 | return false; |
424 | llvm::ArrayRef data_after_op = m_data.GetData().drop_front(N: offset); |
425 | |
426 | DataEncoder encoder(m_data.GetByteOrder(), m_data.GetAddressByteSize()); |
427 | encoder.AppendData(data: data_before_op); |
428 | encoder.AppendU8(value: DW_OP_addr); |
429 | encoder.AppendAddress(addr: file_addr); |
430 | encoder.AppendData(data: data_after_op); |
431 | m_data.SetData(data_sp: encoder.GetDataBuffer()); |
432 | return true; |
433 | } |
434 | const offset_t op_arg_size = |
435 | GetOpcodeDataSize(data: m_data, data_offset: offset, op, dwarf_cu); |
436 | if (op_arg_size == LLDB_INVALID_OFFSET) |
437 | break; |
438 | offset += op_arg_size; |
439 | } |
440 | return false; |
441 | } |
442 | |
443 | bool DWARFExpression::ContainsThreadLocalStorage( |
444 | const DWARFUnit *dwarf_cu) const { |
445 | lldb::offset_t offset = 0; |
446 | while (m_data.ValidOffset(offset)) { |
447 | const uint8_t op = m_data.GetU8(offset_ptr: &offset); |
448 | |
449 | if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address) |
450 | return true; |
451 | const offset_t op_arg_size = |
452 | GetOpcodeDataSize(data: m_data, data_offset: offset, op, dwarf_cu); |
453 | if (op_arg_size == LLDB_INVALID_OFFSET) |
454 | return false; |
455 | offset += op_arg_size; |
456 | } |
457 | return false; |
458 | } |
459 | bool DWARFExpression::LinkThreadLocalStorage( |
460 | const DWARFUnit *dwarf_cu, |
461 | std::function<lldb::addr_t(lldb::addr_t file_addr)> const |
462 | &link_address_callback) { |
463 | const uint32_t addr_byte_size = m_data.GetAddressByteSize(); |
464 | // We have to make a copy of the data as we don't know if this data is from a |
465 | // read only memory mapped buffer, so we duplicate all of the data first, |
466 | // then modify it, and if all goes well, we then replace the data for this |
467 | // expression. |
468 | // Make en encoder that contains a copy of the location expression data so we |
469 | // can write the address into the buffer using the correct byte order. |
470 | DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(), |
471 | m_data.GetByteOrder(), addr_byte_size); |
472 | |
473 | lldb::offset_t offset = 0; |
474 | lldb::offset_t const_offset = 0; |
475 | lldb::addr_t const_value = 0; |
476 | size_t const_byte_size = 0; |
477 | while (m_data.ValidOffset(offset)) { |
478 | const uint8_t op = m_data.GetU8(offset_ptr: &offset); |
479 | |
480 | bool decoded_data = false; |
481 | switch (op) { |
482 | case DW_OP_const4u: |
483 | // Remember the const offset in case we later have a |
484 | // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address |
485 | const_offset = offset; |
486 | const_value = m_data.GetU32(offset_ptr: &offset); |
487 | decoded_data = true; |
488 | const_byte_size = 4; |
489 | break; |
490 | |
491 | case DW_OP_const8u: |
492 | // Remember the const offset in case we later have a |
493 | // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address |
494 | const_offset = offset; |
495 | const_value = m_data.GetU64(offset_ptr: &offset); |
496 | decoded_data = true; |
497 | const_byte_size = 8; |
498 | break; |
499 | |
500 | case DW_OP_form_tls_address: |
501 | case DW_OP_GNU_push_tls_address: |
502 | // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded |
503 | // by a file address on the stack. We assume that DW_OP_const4u or |
504 | // DW_OP_const8u is used for these values, and we check that the last |
505 | // opcode we got before either of these was DW_OP_const4u or |
506 | // DW_OP_const8u. If so, then we can link the value accordingly. For |
507 | // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file |
508 | // address of a structure that contains a function pointer, the pthread |
509 | // key and the offset into the data pointed to by the pthread key. So we |
510 | // must link this address and also set the module of this expression to |
511 | // the new_module_sp so we can resolve the file address correctly |
512 | if (const_byte_size > 0) { |
513 | lldb::addr_t linked_file_addr = link_address_callback(const_value); |
514 | if (linked_file_addr == LLDB_INVALID_ADDRESS) |
515 | return false; |
516 | // Replace the address in the new buffer |
517 | if (encoder.PutUnsigned(offset: const_offset, byte_size: const_byte_size, |
518 | value: linked_file_addr) == UINT32_MAX) |
519 | return false; |
520 | } |
521 | break; |
522 | |
523 | default: |
524 | const_offset = 0; |
525 | const_value = 0; |
526 | const_byte_size = 0; |
527 | break; |
528 | } |
529 | |
530 | if (!decoded_data) { |
531 | const offset_t op_arg_size = |
532 | GetOpcodeDataSize(data: m_data, data_offset: offset, op, dwarf_cu); |
533 | if (op_arg_size == LLDB_INVALID_OFFSET) |
534 | return false; |
535 | else |
536 | offset += op_arg_size; |
537 | } |
538 | } |
539 | |
540 | m_data.SetData(data_sp: encoder.GetDataBuffer()); |
541 | return true; |
542 | } |
543 | |
544 | static bool (std::vector<Value> &stack, |
545 | ExecutionContext *exe_ctx, |
546 | RegisterContext *reg_ctx, |
547 | const DataExtractor &opcodes, |
548 | lldb::offset_t &opcode_offset, |
549 | Status *error_ptr, Log *log) { |
550 | // DW_OP_entry_value(sub-expr) describes the location a variable had upon |
551 | // function entry: this variable location is presumed to be optimized out at |
552 | // the current PC value. The caller of the function may have call site |
553 | // information that describes an alternate location for the variable (e.g. a |
554 | // constant literal, or a spilled stack value) in the parent frame. |
555 | // |
556 | // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative): |
557 | // |
558 | // void child(int &sink, int x) { |
559 | // ... |
560 | // /* "x" gets optimized out. */ |
561 | // |
562 | // /* The location of "x" here is: DW_OP_entry_value($reg2). */ |
563 | // ++sink; |
564 | // } |
565 | // |
566 | // void parent() { |
567 | // int sink; |
568 | // |
569 | // /* |
570 | // * The callsite information emitted here is: |
571 | // * |
572 | // * DW_TAG_call_site |
573 | // * DW_AT_return_pc ... (for "child(sink, 123);") |
574 | // * DW_TAG_call_site_parameter (for "sink") |
575 | // * DW_AT_location ($reg1) |
576 | // * DW_AT_call_value ($SP - 8) |
577 | // * DW_TAG_call_site_parameter (for "x") |
578 | // * DW_AT_location ($reg2) |
579 | // * DW_AT_call_value ($literal 123) |
580 | // * |
581 | // * DW_TAG_call_site |
582 | // * DW_AT_return_pc ... (for "child(sink, 456);") |
583 | // * ... |
584 | // */ |
585 | // child(sink, 123); |
586 | // child(sink, 456); |
587 | // } |
588 | // |
589 | // When the program stops at "++sink" within `child`, the debugger determines |
590 | // the call site by analyzing the return address. Once the call site is found, |
591 | // the debugger determines which parameter is referenced by DW_OP_entry_value |
592 | // and evaluates the corresponding location for that parameter in `parent`. |
593 | |
594 | // 1. Find the function which pushed the current frame onto the stack. |
595 | if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) { |
596 | LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context" ); |
597 | return false; |
598 | } |
599 | |
600 | StackFrame *current_frame = exe_ctx->GetFramePtr(); |
601 | Thread *thread = exe_ctx->GetThreadPtr(); |
602 | if (!current_frame || !thread) { |
603 | LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread" ); |
604 | return false; |
605 | } |
606 | |
607 | Target &target = exe_ctx->GetTargetRef(); |
608 | StackFrameSP parent_frame = nullptr; |
609 | addr_t return_pc = LLDB_INVALID_ADDRESS; |
610 | uint32_t current_frame_idx = current_frame->GetFrameIndex(); |
611 | |
612 | for (uint32_t parent_frame_idx = current_frame_idx + 1;;parent_frame_idx++) { |
613 | parent_frame = thread->GetStackFrameAtIndex(idx: parent_frame_idx); |
614 | // If this is null, we're at the end of the stack. |
615 | if (!parent_frame) |
616 | break; |
617 | |
618 | // Record the first valid return address, even if this is an inlined frame, |
619 | // in order to look up the associated call edge in the first non-inlined |
620 | // parent frame. |
621 | if (return_pc == LLDB_INVALID_ADDRESS) { |
622 | return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(target: &target); |
623 | LLDB_LOG(log, |
624 | "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}" , |
625 | return_pc); |
626 | } |
627 | |
628 | // If we've found an inlined frame, skip it (these have no call site |
629 | // parameters). |
630 | if (parent_frame->IsInlined()) |
631 | continue; |
632 | |
633 | // We've found the first non-inlined parent frame. |
634 | break; |
635 | } |
636 | if (!parent_frame || !parent_frame->GetRegisterContext()) { |
637 | LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx" ); |
638 | return false; |
639 | } |
640 | |
641 | Function *parent_func = |
642 | parent_frame->GetSymbolContext(resolve_scope: eSymbolContextFunction).function; |
643 | if (!parent_func) { |
644 | LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function" ); |
645 | return false; |
646 | } |
647 | |
648 | // 2. Find the call edge in the parent function responsible for creating the |
649 | // current activation. |
650 | Function *current_func = |
651 | current_frame->GetSymbolContext(resolve_scope: eSymbolContextFunction).function; |
652 | if (!current_func) { |
653 | LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function" ); |
654 | return false; |
655 | } |
656 | |
657 | CallEdge *call_edge = nullptr; |
658 | ModuleList &modlist = target.GetImages(); |
659 | ExecutionContext parent_exe_ctx = *exe_ctx; |
660 | parent_exe_ctx.SetFrameSP(parent_frame); |
661 | if (!parent_frame->IsArtificial()) { |
662 | // If the parent frame is not artificial, the current activation may be |
663 | // produced by an ambiguous tail call. In this case, refuse to proceed. |
664 | call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target); |
665 | if (!call_edge) { |
666 | LLDB_LOG(log, |
667 | "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} " |
668 | "in parent frame {1}" , |
669 | return_pc, parent_func->GetName()); |
670 | return false; |
671 | } |
672 | Function *callee_func = call_edge->GetCallee(images&: modlist, exe_ctx&: parent_exe_ctx); |
673 | if (callee_func != current_func) { |
674 | LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, " |
675 | "can't find real parent frame" ); |
676 | return false; |
677 | } |
678 | } else { |
679 | // The StackFrameList solver machinery has deduced that an unambiguous tail |
680 | // call sequence that produced the current activation. The first edge in |
681 | // the parent that points to the current function must be valid. |
682 | for (auto &edge : parent_func->GetTailCallingEdges()) { |
683 | if (edge->GetCallee(images&: modlist, exe_ctx&: parent_exe_ctx) == current_func) { |
684 | call_edge = edge.get(); |
685 | break; |
686 | } |
687 | } |
688 | } |
689 | if (!call_edge) { |
690 | LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent " |
691 | "to current function" ); |
692 | return false; |
693 | } |
694 | |
695 | // 3. Attempt to locate the DW_OP_entry_value expression in the set of |
696 | // available call site parameters. If found, evaluate the corresponding |
697 | // parameter in the context of the parent frame. |
698 | const uint32_t subexpr_len = opcodes.GetULEB128(offset_ptr: &opcode_offset); |
699 | const void *subexpr_data = opcodes.GetData(offset_ptr: &opcode_offset, length: subexpr_len); |
700 | if (!subexpr_data) { |
701 | LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read" ); |
702 | return false; |
703 | } |
704 | |
705 | const CallSiteParameter *matched_param = nullptr; |
706 | for (const CallSiteParameter ¶m : call_edge->GetCallSiteParameters()) { |
707 | DataExtractor ; |
708 | if (!param.LocationInCallee.GetExpressionData(data&: param_subexpr_extractor)) |
709 | continue; |
710 | lldb::offset_t param_subexpr_offset = 0; |
711 | const void *param_subexpr_data = |
712 | param_subexpr_extractor.GetData(offset_ptr: ¶m_subexpr_offset, length: subexpr_len); |
713 | if (!param_subexpr_data || |
714 | param_subexpr_extractor.BytesLeft(offset: param_subexpr_offset) != 0) |
715 | continue; |
716 | |
717 | // At this point, the DW_OP_entry_value sub-expression and the callee-side |
718 | // expression in the call site parameter are known to have the same length. |
719 | // Check whether they are equal. |
720 | // |
721 | // Note that an equality check is sufficient: the contents of the |
722 | // DW_OP_entry_value subexpression are only used to identify the right call |
723 | // site parameter in the parent, and do not require any special handling. |
724 | if (memcmp(s1: subexpr_data, s2: param_subexpr_data, n: subexpr_len) == 0) { |
725 | matched_param = ¶m; |
726 | break; |
727 | } |
728 | } |
729 | if (!matched_param) { |
730 | LLDB_LOG(log, |
731 | "Evaluate_DW_OP_entry_value: no matching call site param found" ); |
732 | return false; |
733 | } |
734 | |
735 | // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value |
736 | // subexpresion whenever llvm does. |
737 | Value result; |
738 | const DWARFExpressionList ¶m_expr = matched_param->LocationInCaller; |
739 | if (!param_expr.Evaluate(exe_ctx: &parent_exe_ctx, |
740 | reg_ctx: parent_frame->GetRegisterContext().get(), |
741 | LLDB_INVALID_ADDRESS, |
742 | /*initial_value_ptr=*/nullptr, |
743 | /*object_address_ptr=*/nullptr, result, error_ptr)) { |
744 | LLDB_LOG(log, |
745 | "Evaluate_DW_OP_entry_value: call site param evaluation failed" ); |
746 | return false; |
747 | } |
748 | |
749 | stack.push_back(x: result); |
750 | return true; |
751 | } |
752 | |
753 | namespace { |
754 | /// The location description kinds described by the DWARF v5 |
755 | /// specification. Composite locations are handled out-of-band and |
756 | /// thus aren't part of the enum. |
757 | enum LocationDescriptionKind { |
758 | Empty, |
759 | Memory, |
760 | Register, |
761 | Implicit |
762 | /* Composite*/ |
763 | }; |
764 | /// Adjust value's ValueType according to the kind of location description. |
765 | void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu, |
766 | LocationDescriptionKind kind, |
767 | Value *value = nullptr) { |
768 | // Note that this function is conflating DWARF expressions with |
769 | // DWARF location descriptions. Perhaps it would be better to define |
770 | // a wrapper for DWARFExpression::Eval() that deals with DWARF |
771 | // location descriptions (which consist of one or more DWARF |
772 | // expressions). But doing this would mean we'd also need factor the |
773 | // handling of DW_OP_(bit_)piece out of this function. |
774 | if (dwarf_cu && dwarf_cu->GetVersion() >= 4) { |
775 | const char *log_msg = "DWARF location description kind: %s" ; |
776 | switch (kind) { |
777 | case Empty: |
778 | LLDB_LOGF(log, log_msg, "Empty" ); |
779 | break; |
780 | case Memory: |
781 | LLDB_LOGF(log, log_msg, "Memory" ); |
782 | if (value->GetValueType() == Value::ValueType::Scalar) |
783 | value->SetValueType(Value::ValueType::LoadAddress); |
784 | break; |
785 | case Register: |
786 | LLDB_LOGF(log, log_msg, "Register" ); |
787 | value->SetValueType(Value::ValueType::Scalar); |
788 | break; |
789 | case Implicit: |
790 | LLDB_LOGF(log, log_msg, "Implicit" ); |
791 | if (value->GetValueType() == Value::ValueType::LoadAddress) |
792 | value->SetValueType(Value::ValueType::Scalar); |
793 | break; |
794 | } |
795 | } |
796 | } |
797 | } // namespace |
798 | |
799 | /// Helper function to move common code used to resolve a file address and turn |
800 | /// into a load address. |
801 | /// |
802 | /// \param exe_ctx Pointer to the execution context |
803 | /// \param module_sp shared_ptr contains the module if we have one |
804 | /// \param error_ptr pointer to Status object if we have one |
805 | /// \param dw_op_type C-style string used to vary the error output |
806 | /// \param file_addr the file address we are trying to resolve and turn into a |
807 | /// load address |
808 | /// \param so_addr out parameter, will be set to load address or section offset |
809 | /// \param check_sectionoffset bool which determines if having a section offset |
810 | /// but not a load address is considerd a success |
811 | /// \returns std::optional containing the load address if resolving and getting |
812 | /// the load address succeed or an empty Optinal otherwise. If |
813 | /// check_sectionoffset is true we consider LLDB_INVALID_ADDRESS a |
814 | /// success if so_addr.IsSectionOffset() is true. |
815 | static std::optional<lldb::addr_t> |
816 | ResolveLoadAddress(ExecutionContext *exe_ctx, lldb::ModuleSP &module_sp, |
817 | Status *error_ptr, const char *dw_op_type, |
818 | lldb::addr_t file_addr, Address &so_addr, |
819 | bool check_sectionoffset = false) { |
820 | if (!module_sp) { |
821 | if (error_ptr) |
822 | error_ptr->SetErrorStringWithFormat( |
823 | "need module to resolve file address for %s" , dw_op_type); |
824 | return {}; |
825 | } |
826 | |
827 | if (!module_sp->ResolveFileAddress(vm_addr: file_addr, so_addr)) { |
828 | if (error_ptr) |
829 | error_ptr->SetErrorString("failed to resolve file address in module" ); |
830 | return {}; |
831 | } |
832 | |
833 | addr_t load_addr = so_addr.GetLoadAddress(target: exe_ctx->GetTargetPtr()); |
834 | |
835 | if (load_addr == LLDB_INVALID_ADDRESS && |
836 | (check_sectionoffset && !so_addr.IsSectionOffset())) { |
837 | if (error_ptr) |
838 | error_ptr->SetErrorString("failed to resolve load address" ); |
839 | return {}; |
840 | } |
841 | |
842 | return load_addr; |
843 | } |
844 | |
845 | /// Helper function to move common code used to load sized data from a uint8_t |
846 | /// buffer. |
847 | /// |
848 | /// \param addr_bytes uint8_t buffer containg raw data |
849 | /// \param size_addr_bytes how large is the underlying raw data |
850 | /// \param byte_order what is the byter order of the underlyig data |
851 | /// \param size How much of the underlying data we want to use |
852 | /// \return The underlying data converted into a Scalar |
853 | static Scalar (uint8_t *addr_bytes, |
854 | size_t size_addr_bytes, |
855 | ByteOrder byte_order, size_t size) { |
856 | DataExtractor addr_data(addr_bytes, size_addr_bytes, byte_order, size); |
857 | |
858 | lldb::offset_t addr_data_offset = 0; |
859 | if (size <= 8) |
860 | return addr_data.GetMaxU64(offset_ptr: &addr_data_offset, byte_size: size); |
861 | else |
862 | return addr_data.GetAddress(offset_ptr: &addr_data_offset); |
863 | } |
864 | |
865 | bool DWARFExpression::( |
866 | ExecutionContext *exe_ctx, RegisterContext *reg_ctx, |
867 | lldb::ModuleSP module_sp, const DataExtractor &opcodes, |
868 | const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind, |
869 | const Value *initial_value_ptr, const Value *object_address_ptr, |
870 | Value &result, Status *error_ptr) { |
871 | |
872 | if (opcodes.GetByteSize() == 0) { |
873 | if (error_ptr) |
874 | error_ptr->SetErrorString( |
875 | "no location, value may have been optimized out" ); |
876 | return false; |
877 | } |
878 | std::vector<Value> stack; |
879 | |
880 | Process *process = nullptr; |
881 | StackFrame *frame = nullptr; |
882 | Target *target = nullptr; |
883 | |
884 | if (exe_ctx) { |
885 | process = exe_ctx->GetProcessPtr(); |
886 | frame = exe_ctx->GetFramePtr(); |
887 | target = exe_ctx->GetTargetPtr(); |
888 | } |
889 | if (reg_ctx == nullptr && frame) |
890 | reg_ctx = frame->GetRegisterContext().get(); |
891 | |
892 | if (initial_value_ptr) |
893 | stack.push_back(x: *initial_value_ptr); |
894 | |
895 | lldb::offset_t offset = 0; |
896 | Value tmp; |
897 | uint32_t reg_num; |
898 | |
899 | /// Insertion point for evaluating multi-piece expression. |
900 | uint64_t op_piece_offset = 0; |
901 | Value pieces; // Used for DW_OP_piece |
902 | |
903 | Log *log = GetLog(mask: LLDBLog::Expressions); |
904 | // A generic type is "an integral type that has the size of an address and an |
905 | // unspecified signedness". For now, just use the signedness of the operand. |
906 | // TODO: Implement a real typed stack, and store the genericness of the value |
907 | // there. |
908 | auto to_generic = [&](auto v) { |
909 | bool is_signed = std::is_signed<decltype(v)>::value; |
910 | return Scalar(llvm::APSInt( |
911 | llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed), |
912 | !is_signed)); |
913 | }; |
914 | |
915 | // The default kind is a memory location. This is updated by any |
916 | // operation that changes this, such as DW_OP_stack_value, and reset |
917 | // by composition operations like DW_OP_piece. |
918 | LocationDescriptionKind dwarf4_location_description_kind = Memory; |
919 | |
920 | while (opcodes.ValidOffset(offset)) { |
921 | const lldb::offset_t op_offset = offset; |
922 | const uint8_t op = opcodes.GetU8(offset_ptr: &offset); |
923 | |
924 | if (log && log->GetVerbose()) { |
925 | size_t count = stack.size(); |
926 | LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:" , |
927 | (uint64_t)count); |
928 | for (size_t i = 0; i < count; ++i) { |
929 | StreamString new_value; |
930 | new_value.Printf(format: "[%" PRIu64 "]" , (uint64_t)i); |
931 | stack[i].Dump(strm: &new_value); |
932 | LLDB_LOGF(log, " %s" , new_value.GetData()); |
933 | } |
934 | LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s" , op_offset, |
935 | DW_OP_value_to_name(op)); |
936 | } |
937 | |
938 | switch (op) { |
939 | // The DW_OP_addr operation has a single operand that encodes a machine |
940 | // address and whose size is the size of an address on the target machine. |
941 | case DW_OP_addr: |
942 | stack.push_back(x: Scalar(opcodes.GetAddress(offset_ptr: &offset))); |
943 | if (target && |
944 | target->GetArchitecture().GetCore() == ArchSpec::eCore_wasm32) { |
945 | // wasm file sections aren't mapped into memory, therefore addresses can |
946 | // never point into a file section and are always LoadAddresses. |
947 | stack.back().SetValueType(Value::ValueType::LoadAddress); |
948 | } else { |
949 | stack.back().SetValueType(Value::ValueType::FileAddress); |
950 | } |
951 | break; |
952 | |
953 | // The DW_OP_addr_sect_offset4 is used for any location expressions in |
954 | // shared libraries that have a location like: |
955 | // DW_OP_addr(0x1000) |
956 | // If this address resides in a shared library, then this virtual address |
957 | // won't make sense when it is evaluated in the context of a running |
958 | // process where shared libraries have been slid. To account for this, this |
959 | // new address type where we can store the section pointer and a 4 byte |
960 | // offset. |
961 | // case DW_OP_addr_sect_offset4: |
962 | // { |
963 | // result_type = eResultTypeFileAddress; |
964 | // lldb::Section *sect = (lldb::Section |
965 | // *)opcodes.GetMaxU64(&offset, sizeof(void *)); |
966 | // lldb::addr_t sect_offset = opcodes.GetU32(&offset); |
967 | // |
968 | // Address so_addr (sect, sect_offset); |
969 | // lldb::addr_t load_addr = so_addr.GetLoadAddress(); |
970 | // if (load_addr != LLDB_INVALID_ADDRESS) |
971 | // { |
972 | // // We successfully resolve a file address to a load |
973 | // // address. |
974 | // stack.push_back(load_addr); |
975 | // break; |
976 | // } |
977 | // else |
978 | // { |
979 | // // We were able |
980 | // if (error_ptr) |
981 | // error_ptr->SetErrorStringWithFormat ("Section %s in |
982 | // %s is not currently loaded.\n", |
983 | // sect->GetName().AsCString(), |
984 | // sect->GetModule()->GetFileSpec().GetFilename().AsCString()); |
985 | // return false; |
986 | // } |
987 | // } |
988 | // break; |
989 | |
990 | // OPCODE: DW_OP_deref |
991 | // OPERANDS: none |
992 | // DESCRIPTION: Pops the top stack entry and treats it as an address. |
993 | // The value retrieved from that address is pushed. The size of the data |
994 | // retrieved from the dereferenced address is the size of an address on the |
995 | // target machine. |
996 | case DW_OP_deref: { |
997 | if (stack.empty()) { |
998 | if (error_ptr) |
999 | error_ptr->SetErrorString("Expression stack empty for DW_OP_deref." ); |
1000 | return false; |
1001 | } |
1002 | Value::ValueType value_type = stack.back().GetValueType(); |
1003 | switch (value_type) { |
1004 | case Value::ValueType::HostAddress: { |
1005 | void *src = (void *)stack.back().GetScalar().ULongLong(); |
1006 | intptr_t ptr; |
1007 | ::memcpy(dest: &ptr, src: src, n: sizeof(void *)); |
1008 | stack.back().GetScalar() = ptr; |
1009 | stack.back().ClearContext(); |
1010 | } break; |
1011 | case Value::ValueType::FileAddress: { |
1012 | auto file_addr = stack.back().GetScalar().ULongLong( |
1013 | LLDB_INVALID_ADDRESS); |
1014 | |
1015 | Address so_addr; |
1016 | auto maybe_load_addr = ResolveLoadAddress( |
1017 | exe_ctx, module_sp, error_ptr, dw_op_type: "DW_OP_deref" , file_addr, so_addr); |
1018 | |
1019 | if (!maybe_load_addr) |
1020 | return false; |
1021 | |
1022 | stack.back().GetScalar() = *maybe_load_addr; |
1023 | // Fall through to load address promotion code below. |
1024 | } |
1025 | [[fallthrough]]; |
1026 | case Value::ValueType::Scalar: |
1027 | // Promote Scalar to LoadAddress and fall through. |
1028 | stack.back().SetValueType(Value::ValueType::LoadAddress); |
1029 | [[fallthrough]]; |
1030 | case Value::ValueType::LoadAddress: |
1031 | if (exe_ctx) { |
1032 | if (process) { |
1033 | lldb::addr_t pointer_addr = |
1034 | stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); |
1035 | Status error; |
1036 | lldb::addr_t pointer_value = |
1037 | process->ReadPointerFromMemory(vm_addr: pointer_addr, error); |
1038 | if (pointer_value != LLDB_INVALID_ADDRESS) { |
1039 | if (ABISP abi_sp = process->GetABI()) |
1040 | pointer_value = abi_sp->FixCodeAddress(pc: pointer_value); |
1041 | stack.back().GetScalar() = pointer_value; |
1042 | stack.back().ClearContext(); |
1043 | } else { |
1044 | if (error_ptr) |
1045 | error_ptr->SetErrorStringWithFormat( |
1046 | "Failed to dereference pointer from 0x%" PRIx64 |
1047 | " for DW_OP_deref: %s\n" , |
1048 | pointer_addr, error.AsCString()); |
1049 | return false; |
1050 | } |
1051 | } else { |
1052 | if (error_ptr) |
1053 | error_ptr->SetErrorString("NULL process for DW_OP_deref.\n" ); |
1054 | return false; |
1055 | } |
1056 | } else { |
1057 | if (error_ptr) |
1058 | error_ptr->SetErrorString( |
1059 | "NULL execution context for DW_OP_deref.\n" ); |
1060 | return false; |
1061 | } |
1062 | break; |
1063 | |
1064 | case Value::ValueType::Invalid: |
1065 | if (error_ptr) |
1066 | error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n" ); |
1067 | return false; |
1068 | } |
1069 | |
1070 | } break; |
1071 | |
1072 | // OPCODE: DW_OP_deref_size |
1073 | // OPERANDS: 1 |
1074 | // 1 - uint8_t that specifies the size of the data to dereference. |
1075 | // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top |
1076 | // stack entry and treats it as an address. The value retrieved from that |
1077 | // address is pushed. In the DW_OP_deref_size operation, however, the size |
1078 | // in bytes of the data retrieved from the dereferenced address is |
1079 | // specified by the single operand. This operand is a 1-byte unsigned |
1080 | // integral constant whose value may not be larger than the size of an |
1081 | // address on the target machine. The data retrieved is zero extended to |
1082 | // the size of an address on the target machine before being pushed on the |
1083 | // expression stack. |
1084 | case DW_OP_deref_size: { |
1085 | if (stack.empty()) { |
1086 | if (error_ptr) |
1087 | error_ptr->SetErrorString( |
1088 | "Expression stack empty for DW_OP_deref_size." ); |
1089 | return false; |
1090 | } |
1091 | uint8_t size = opcodes.GetU8(offset_ptr: &offset); |
1092 | if (size > 8) { |
1093 | if (error_ptr) |
1094 | error_ptr->SetErrorStringWithFormat( |
1095 | "Invalid address size for DW_OP_deref_size: %d\n" , |
1096 | size); |
1097 | return false; |
1098 | } |
1099 | Value::ValueType value_type = stack.back().GetValueType(); |
1100 | switch (value_type) { |
1101 | case Value::ValueType::HostAddress: { |
1102 | void *src = (void *)stack.back().GetScalar().ULongLong(); |
1103 | intptr_t ptr; |
1104 | ::memcpy(dest: &ptr, src: src, n: sizeof(void *)); |
1105 | // I can't decide whether the size operand should apply to the bytes in |
1106 | // their |
1107 | // lldb-host endianness or the target endianness.. I doubt this'll ever |
1108 | // come up but I'll opt for assuming big endian regardless. |
1109 | switch (size) { |
1110 | case 1: |
1111 | ptr = ptr & 0xff; |
1112 | break; |
1113 | case 2: |
1114 | ptr = ptr & 0xffff; |
1115 | break; |
1116 | case 3: |
1117 | ptr = ptr & 0xffffff; |
1118 | break; |
1119 | case 4: |
1120 | ptr = ptr & 0xffffffff; |
1121 | break; |
1122 | // the casts are added to work around the case where intptr_t is a 32 |
1123 | // bit quantity; |
1124 | // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this |
1125 | // program. |
1126 | case 5: |
1127 | ptr = (intptr_t)ptr & 0xffffffffffULL; |
1128 | break; |
1129 | case 6: |
1130 | ptr = (intptr_t)ptr & 0xffffffffffffULL; |
1131 | break; |
1132 | case 7: |
1133 | ptr = (intptr_t)ptr & 0xffffffffffffffULL; |
1134 | break; |
1135 | default: |
1136 | break; |
1137 | } |
1138 | stack.back().GetScalar() = ptr; |
1139 | stack.back().ClearContext(); |
1140 | } break; |
1141 | case Value::ValueType::FileAddress: { |
1142 | auto file_addr = |
1143 | stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); |
1144 | Address so_addr; |
1145 | auto maybe_load_addr = |
1146 | ResolveLoadAddress(exe_ctx, module_sp, error_ptr, |
1147 | dw_op_type: "DW_OP_deref_size" , file_addr, so_addr, |
1148 | /*check_sectionoffset=*/true); |
1149 | |
1150 | if (!maybe_load_addr) |
1151 | return false; |
1152 | |
1153 | addr_t load_addr = *maybe_load_addr; |
1154 | |
1155 | if (load_addr == LLDB_INVALID_ADDRESS && so_addr.IsSectionOffset()) { |
1156 | uint8_t addr_bytes[8]; |
1157 | Status error; |
1158 | |
1159 | if (target && |
1160 | target->ReadMemory(addr: so_addr, dst: &addr_bytes, dst_len: size, error, |
1161 | /*force_live_memory=*/false) == size) { |
1162 | ObjectFile *objfile = module_sp->GetObjectFile(); |
1163 | |
1164 | stack.back().GetScalar() = DerefSizeExtractDataHelper( |
1165 | addr_bytes, size_addr_bytes: size, byte_order: objfile->GetByteOrder(), size); |
1166 | stack.back().ClearContext(); |
1167 | break; |
1168 | } else { |
1169 | if (error_ptr) |
1170 | error_ptr->SetErrorStringWithFormat( |
1171 | "Failed to dereference pointer for DW_OP_deref_size: " |
1172 | "%s\n" , |
1173 | error.AsCString()); |
1174 | return false; |
1175 | } |
1176 | } |
1177 | stack.back().GetScalar() = load_addr; |
1178 | // Fall through to load address promotion code below. |
1179 | } |
1180 | |
1181 | [[fallthrough]]; |
1182 | case Value::ValueType::Scalar: |
1183 | case Value::ValueType::LoadAddress: |
1184 | if (exe_ctx) { |
1185 | if (process) { |
1186 | lldb::addr_t pointer_addr = |
1187 | stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); |
1188 | uint8_t addr_bytes[sizeof(lldb::addr_t)]; |
1189 | Status error; |
1190 | if (process->ReadMemory(vm_addr: pointer_addr, buf: &addr_bytes, size, error) == |
1191 | size) { |
1192 | |
1193 | stack.back().GetScalar() = |
1194 | DerefSizeExtractDataHelper(addr_bytes, size_addr_bytes: sizeof(addr_bytes), |
1195 | byte_order: process->GetByteOrder(), size); |
1196 | stack.back().ClearContext(); |
1197 | } else { |
1198 | if (error_ptr) |
1199 | error_ptr->SetErrorStringWithFormat( |
1200 | "Failed to dereference pointer from 0x%" PRIx64 |
1201 | " for DW_OP_deref: %s\n" , |
1202 | pointer_addr, error.AsCString()); |
1203 | return false; |
1204 | } |
1205 | } else { |
1206 | if (error_ptr) |
1207 | error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n" ); |
1208 | return false; |
1209 | } |
1210 | } else { |
1211 | if (error_ptr) |
1212 | error_ptr->SetErrorString( |
1213 | "NULL execution context for DW_OP_deref_size.\n" ); |
1214 | return false; |
1215 | } |
1216 | break; |
1217 | |
1218 | case Value::ValueType::Invalid: |
1219 | if (error_ptr) |
1220 | error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n" ); |
1221 | return false; |
1222 | } |
1223 | |
1224 | } break; |
1225 | |
1226 | // OPCODE: DW_OP_xderef_size |
1227 | // OPERANDS: 1 |
1228 | // 1 - uint8_t that specifies the size of the data to dereference. |
1229 | // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at |
1230 | // the top of the stack is treated as an address. The second stack entry is |
1231 | // treated as an "address space identifier" for those architectures that |
1232 | // support multiple address spaces. The top two stack elements are popped, |
1233 | // a data item is retrieved through an implementation-defined address |
1234 | // calculation and pushed as the new stack top. In the DW_OP_xderef_size |
1235 | // operation, however, the size in bytes of the data retrieved from the |
1236 | // dereferenced address is specified by the single operand. This operand is |
1237 | // a 1-byte unsigned integral constant whose value may not be larger than |
1238 | // the size of an address on the target machine. The data retrieved is zero |
1239 | // extended to the size of an address on the target machine before being |
1240 | // pushed on the expression stack. |
1241 | case DW_OP_xderef_size: |
1242 | if (error_ptr) |
1243 | error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size." ); |
1244 | return false; |
1245 | // OPCODE: DW_OP_xderef |
1246 | // OPERANDS: none |
1247 | // DESCRIPTION: Provides an extended dereference mechanism. The entry at |
1248 | // the top of the stack is treated as an address. The second stack entry is |
1249 | // treated as an "address space identifier" for those architectures that |
1250 | // support multiple address spaces. The top two stack elements are popped, |
1251 | // a data item is retrieved through an implementation-defined address |
1252 | // calculation and pushed as the new stack top. The size of the data |
1253 | // retrieved from the dereferenced address is the size of an address on the |
1254 | // target machine. |
1255 | case DW_OP_xderef: |
1256 | if (error_ptr) |
1257 | error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef." ); |
1258 | return false; |
1259 | |
1260 | // All DW_OP_constXXX opcodes have a single operand as noted below: |
1261 | // |
1262 | // Opcode Operand 1 |
1263 | // DW_OP_const1u 1-byte unsigned integer constant |
1264 | // DW_OP_const1s 1-byte signed integer constant |
1265 | // DW_OP_const2u 2-byte unsigned integer constant |
1266 | // DW_OP_const2s 2-byte signed integer constant |
1267 | // DW_OP_const4u 4-byte unsigned integer constant |
1268 | // DW_OP_const4s 4-byte signed integer constant |
1269 | // DW_OP_const8u 8-byte unsigned integer constant |
1270 | // DW_OP_const8s 8-byte signed integer constant |
1271 | // DW_OP_constu unsigned LEB128 integer constant |
1272 | // DW_OP_consts signed LEB128 integer constant |
1273 | case DW_OP_const1u: |
1274 | stack.push_back(x: to_generic(opcodes.GetU8(offset_ptr: &offset))); |
1275 | break; |
1276 | case DW_OP_const1s: |
1277 | stack.push_back(x: to_generic((int8_t)opcodes.GetU8(offset_ptr: &offset))); |
1278 | break; |
1279 | case DW_OP_const2u: |
1280 | stack.push_back(x: to_generic(opcodes.GetU16(offset_ptr: &offset))); |
1281 | break; |
1282 | case DW_OP_const2s: |
1283 | stack.push_back(x: to_generic((int16_t)opcodes.GetU16(offset_ptr: &offset))); |
1284 | break; |
1285 | case DW_OP_const4u: |
1286 | stack.push_back(x: to_generic(opcodes.GetU32(offset_ptr: &offset))); |
1287 | break; |
1288 | case DW_OP_const4s: |
1289 | stack.push_back(x: to_generic((int32_t)opcodes.GetU32(offset_ptr: &offset))); |
1290 | break; |
1291 | case DW_OP_const8u: |
1292 | stack.push_back(x: to_generic(opcodes.GetU64(offset_ptr: &offset))); |
1293 | break; |
1294 | case DW_OP_const8s: |
1295 | stack.push_back(x: to_generic((int64_t)opcodes.GetU64(offset_ptr: &offset))); |
1296 | break; |
1297 | // These should also use to_generic, but we can't do that due to a |
1298 | // producer-side bug in llvm. See llvm.org/pr48087. |
1299 | case DW_OP_constu: |
1300 | stack.push_back(x: Scalar(opcodes.GetULEB128(offset_ptr: &offset))); |
1301 | break; |
1302 | case DW_OP_consts: |
1303 | stack.push_back(x: Scalar(opcodes.GetSLEB128(offset_ptr: &offset))); |
1304 | break; |
1305 | |
1306 | // OPCODE: DW_OP_dup |
1307 | // OPERANDS: none |
1308 | // DESCRIPTION: duplicates the value at the top of the stack |
1309 | case DW_OP_dup: |
1310 | if (stack.empty()) { |
1311 | if (error_ptr) |
1312 | error_ptr->SetErrorString("Expression stack empty for DW_OP_dup." ); |
1313 | return false; |
1314 | } else |
1315 | stack.push_back(x: stack.back()); |
1316 | break; |
1317 | |
1318 | // OPCODE: DW_OP_drop |
1319 | // OPERANDS: none |
1320 | // DESCRIPTION: pops the value at the top of the stack |
1321 | case DW_OP_drop: |
1322 | if (stack.empty()) { |
1323 | if (error_ptr) |
1324 | error_ptr->SetErrorString("Expression stack empty for DW_OP_drop." ); |
1325 | return false; |
1326 | } else |
1327 | stack.pop_back(); |
1328 | break; |
1329 | |
1330 | // OPCODE: DW_OP_over |
1331 | // OPERANDS: none |
1332 | // DESCRIPTION: Duplicates the entry currently second in the stack at |
1333 | // the top of the stack. |
1334 | case DW_OP_over: |
1335 | if (stack.size() < 2) { |
1336 | if (error_ptr) |
1337 | error_ptr->SetErrorString( |
1338 | "Expression stack needs at least 2 items for DW_OP_over." ); |
1339 | return false; |
1340 | } else |
1341 | stack.push_back(x: stack[stack.size() - 2]); |
1342 | break; |
1343 | |
1344 | // OPCODE: DW_OP_pick |
1345 | // OPERANDS: uint8_t index into the current stack |
1346 | // DESCRIPTION: The stack entry with the specified index (0 through 255, |
1347 | // inclusive) is pushed on the stack |
1348 | case DW_OP_pick: { |
1349 | uint8_t pick_idx = opcodes.GetU8(offset_ptr: &offset); |
1350 | if (pick_idx < stack.size()) |
1351 | stack.push_back(x: stack[stack.size() - 1 - pick_idx]); |
1352 | else { |
1353 | if (error_ptr) |
1354 | error_ptr->SetErrorStringWithFormat( |
1355 | "Index %u out of range for DW_OP_pick.\n" , pick_idx); |
1356 | return false; |
1357 | } |
1358 | } break; |
1359 | |
1360 | // OPCODE: DW_OP_swap |
1361 | // OPERANDS: none |
1362 | // DESCRIPTION: swaps the top two stack entries. The entry at the top |
1363 | // of the stack becomes the second stack entry, and the second entry |
1364 | // becomes the top of the stack |
1365 | case DW_OP_swap: |
1366 | if (stack.size() < 2) { |
1367 | if (error_ptr) |
1368 | error_ptr->SetErrorString( |
1369 | "Expression stack needs at least 2 items for DW_OP_swap." ); |
1370 | return false; |
1371 | } else { |
1372 | tmp = stack.back(); |
1373 | stack.back() = stack[stack.size() - 2]; |
1374 | stack[stack.size() - 2] = tmp; |
1375 | } |
1376 | break; |
1377 | |
1378 | // OPCODE: DW_OP_rot |
1379 | // OPERANDS: none |
1380 | // DESCRIPTION: Rotates the first three stack entries. The entry at |
1381 | // the top of the stack becomes the third stack entry, the second entry |
1382 | // becomes the top of the stack, and the third entry becomes the second |
1383 | // entry. |
1384 | case DW_OP_rot: |
1385 | if (stack.size() < 3) { |
1386 | if (error_ptr) |
1387 | error_ptr->SetErrorString( |
1388 | "Expression stack needs at least 3 items for DW_OP_rot." ); |
1389 | return false; |
1390 | } else { |
1391 | size_t last_idx = stack.size() - 1; |
1392 | Value old_top = stack[last_idx]; |
1393 | stack[last_idx] = stack[last_idx - 1]; |
1394 | stack[last_idx - 1] = stack[last_idx - 2]; |
1395 | stack[last_idx - 2] = old_top; |
1396 | } |
1397 | break; |
1398 | |
1399 | // OPCODE: DW_OP_abs |
1400 | // OPERANDS: none |
1401 | // DESCRIPTION: pops the top stack entry, interprets it as a signed |
1402 | // value and pushes its absolute value. If the absolute value can not be |
1403 | // represented, the result is undefined. |
1404 | case DW_OP_abs: |
1405 | if (stack.empty()) { |
1406 | if (error_ptr) |
1407 | error_ptr->SetErrorString( |
1408 | "Expression stack needs at least 1 item for DW_OP_abs." ); |
1409 | return false; |
1410 | } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) { |
1411 | if (error_ptr) |
1412 | error_ptr->SetErrorString( |
1413 | "Failed to take the absolute value of the first stack item." ); |
1414 | return false; |
1415 | } |
1416 | break; |
1417 | |
1418 | // OPCODE: DW_OP_and |
1419 | // OPERANDS: none |
1420 | // DESCRIPTION: pops the top two stack values, performs a bitwise and |
1421 | // operation on the two, and pushes the result. |
1422 | case DW_OP_and: |
1423 | if (stack.size() < 2) { |
1424 | if (error_ptr) |
1425 | error_ptr->SetErrorString( |
1426 | "Expression stack needs at least 2 items for DW_OP_and." ); |
1427 | return false; |
1428 | } else { |
1429 | tmp = stack.back(); |
1430 | stack.pop_back(); |
1431 | stack.back().ResolveValue(exe_ctx) = |
1432 | stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx); |
1433 | } |
1434 | break; |
1435 | |
1436 | // OPCODE: DW_OP_div |
1437 | // OPERANDS: none |
1438 | // DESCRIPTION: pops the top two stack values, divides the former second |
1439 | // entry by the former top of the stack using signed division, and pushes |
1440 | // the result. |
1441 | case DW_OP_div: |
1442 | if (stack.size() < 2) { |
1443 | if (error_ptr) |
1444 | error_ptr->SetErrorString( |
1445 | "Expression stack needs at least 2 items for DW_OP_div." ); |
1446 | return false; |
1447 | } else { |
1448 | tmp = stack.back(); |
1449 | if (tmp.ResolveValue(exe_ctx).IsZero()) { |
1450 | if (error_ptr) |
1451 | error_ptr->SetErrorString("Divide by zero." ); |
1452 | return false; |
1453 | } else { |
1454 | stack.pop_back(); |
1455 | Scalar divisor, dividend; |
1456 | divisor = tmp.ResolveValue(exe_ctx); |
1457 | dividend = stack.back().ResolveValue(exe_ctx); |
1458 | divisor.MakeSigned(); |
1459 | dividend.MakeSigned(); |
1460 | stack.back() = dividend / divisor; |
1461 | if (!stack.back().ResolveValue(exe_ctx).IsValid()) { |
1462 | if (error_ptr) |
1463 | error_ptr->SetErrorString("Divide failed." ); |
1464 | return false; |
1465 | } |
1466 | } |
1467 | } |
1468 | break; |
1469 | |
1470 | // OPCODE: DW_OP_minus |
1471 | // OPERANDS: none |
1472 | // DESCRIPTION: pops the top two stack values, subtracts the former top |
1473 | // of the stack from the former second entry, and pushes the result. |
1474 | case DW_OP_minus: |
1475 | if (stack.size() < 2) { |
1476 | if (error_ptr) |
1477 | error_ptr->SetErrorString( |
1478 | "Expression stack needs at least 2 items for DW_OP_minus." ); |
1479 | return false; |
1480 | } else { |
1481 | tmp = stack.back(); |
1482 | stack.pop_back(); |
1483 | stack.back().ResolveValue(exe_ctx) = |
1484 | stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx); |
1485 | } |
1486 | break; |
1487 | |
1488 | // OPCODE: DW_OP_mod |
1489 | // OPERANDS: none |
1490 | // DESCRIPTION: pops the top two stack values and pushes the result of |
1491 | // the calculation: former second stack entry modulo the former top of the |
1492 | // stack. |
1493 | case DW_OP_mod: |
1494 | if (stack.size() < 2) { |
1495 | if (error_ptr) |
1496 | error_ptr->SetErrorString( |
1497 | "Expression stack needs at least 2 items for DW_OP_mod." ); |
1498 | return false; |
1499 | } else { |
1500 | tmp = stack.back(); |
1501 | stack.pop_back(); |
1502 | stack.back().ResolveValue(exe_ctx) = |
1503 | stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx); |
1504 | } |
1505 | break; |
1506 | |
1507 | // OPCODE: DW_OP_mul |
1508 | // OPERANDS: none |
1509 | // DESCRIPTION: pops the top two stack entries, multiplies them |
1510 | // together, and pushes the result. |
1511 | case DW_OP_mul: |
1512 | if (stack.size() < 2) { |
1513 | if (error_ptr) |
1514 | error_ptr->SetErrorString( |
1515 | "Expression stack needs at least 2 items for DW_OP_mul." ); |
1516 | return false; |
1517 | } else { |
1518 | tmp = stack.back(); |
1519 | stack.pop_back(); |
1520 | stack.back().ResolveValue(exe_ctx) = |
1521 | stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx); |
1522 | } |
1523 | break; |
1524 | |
1525 | // OPCODE: DW_OP_neg |
1526 | // OPERANDS: none |
1527 | // DESCRIPTION: pops the top stack entry, and pushes its negation. |
1528 | case DW_OP_neg: |
1529 | if (stack.empty()) { |
1530 | if (error_ptr) |
1531 | error_ptr->SetErrorString( |
1532 | "Expression stack needs at least 1 item for DW_OP_neg." ); |
1533 | return false; |
1534 | } else { |
1535 | if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) { |
1536 | if (error_ptr) |
1537 | error_ptr->SetErrorString("Unary negate failed." ); |
1538 | return false; |
1539 | } |
1540 | } |
1541 | break; |
1542 | |
1543 | // OPCODE: DW_OP_not |
1544 | // OPERANDS: none |
1545 | // DESCRIPTION: pops the top stack entry, and pushes its bitwise |
1546 | // complement |
1547 | case DW_OP_not: |
1548 | if (stack.empty()) { |
1549 | if (error_ptr) |
1550 | error_ptr->SetErrorString( |
1551 | "Expression stack needs at least 1 item for DW_OP_not." ); |
1552 | return false; |
1553 | } else { |
1554 | if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) { |
1555 | if (error_ptr) |
1556 | error_ptr->SetErrorString("Logical NOT failed." ); |
1557 | return false; |
1558 | } |
1559 | } |
1560 | break; |
1561 | |
1562 | // OPCODE: DW_OP_or |
1563 | // OPERANDS: none |
1564 | // DESCRIPTION: pops the top two stack entries, performs a bitwise or |
1565 | // operation on the two, and pushes the result. |
1566 | case DW_OP_or: |
1567 | if (stack.size() < 2) { |
1568 | if (error_ptr) |
1569 | error_ptr->SetErrorString( |
1570 | "Expression stack needs at least 2 items for DW_OP_or." ); |
1571 | return false; |
1572 | } else { |
1573 | tmp = stack.back(); |
1574 | stack.pop_back(); |
1575 | stack.back().ResolveValue(exe_ctx) = |
1576 | stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx); |
1577 | } |
1578 | break; |
1579 | |
1580 | // OPCODE: DW_OP_plus |
1581 | // OPERANDS: none |
1582 | // DESCRIPTION: pops the top two stack entries, adds them together, and |
1583 | // pushes the result. |
1584 | case DW_OP_plus: |
1585 | if (stack.size() < 2) { |
1586 | if (error_ptr) |
1587 | error_ptr->SetErrorString( |
1588 | "Expression stack needs at least 2 items for DW_OP_plus." ); |
1589 | return false; |
1590 | } else { |
1591 | tmp = stack.back(); |
1592 | stack.pop_back(); |
1593 | stack.back().GetScalar() += tmp.GetScalar(); |
1594 | } |
1595 | break; |
1596 | |
1597 | // OPCODE: DW_OP_plus_uconst |
1598 | // OPERANDS: none |
1599 | // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 |
1600 | // constant operand and pushes the result. |
1601 | case DW_OP_plus_uconst: |
1602 | if (stack.empty()) { |
1603 | if (error_ptr) |
1604 | error_ptr->SetErrorString( |
1605 | "Expression stack needs at least 1 item for DW_OP_plus_uconst." ); |
1606 | return false; |
1607 | } else { |
1608 | const uint64_t uconst_value = opcodes.GetULEB128(offset_ptr: &offset); |
1609 | // Implicit conversion from a UINT to a Scalar... |
1610 | stack.back().GetScalar() += uconst_value; |
1611 | if (!stack.back().GetScalar().IsValid()) { |
1612 | if (error_ptr) |
1613 | error_ptr->SetErrorString("DW_OP_plus_uconst failed." ); |
1614 | return false; |
1615 | } |
1616 | } |
1617 | break; |
1618 | |
1619 | // OPCODE: DW_OP_shl |
1620 | // OPERANDS: none |
1621 | // DESCRIPTION: pops the top two stack entries, shifts the former |
1622 | // second entry left by the number of bits specified by the former top of |
1623 | // the stack, and pushes the result. |
1624 | case DW_OP_shl: |
1625 | if (stack.size() < 2) { |
1626 | if (error_ptr) |
1627 | error_ptr->SetErrorString( |
1628 | "Expression stack needs at least 2 items for DW_OP_shl." ); |
1629 | return false; |
1630 | } else { |
1631 | tmp = stack.back(); |
1632 | stack.pop_back(); |
1633 | stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx); |
1634 | } |
1635 | break; |
1636 | |
1637 | // OPCODE: DW_OP_shr |
1638 | // OPERANDS: none |
1639 | // DESCRIPTION: pops the top two stack entries, shifts the former second |
1640 | // entry right logically (filling with zero bits) by the number of bits |
1641 | // specified by the former top of the stack, and pushes the result. |
1642 | case DW_OP_shr: |
1643 | if (stack.size() < 2) { |
1644 | if (error_ptr) |
1645 | error_ptr->SetErrorString( |
1646 | "Expression stack needs at least 2 items for DW_OP_shr." ); |
1647 | return false; |
1648 | } else { |
1649 | tmp = stack.back(); |
1650 | stack.pop_back(); |
1651 | if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical( |
1652 | rhs: tmp.ResolveValue(exe_ctx))) { |
1653 | if (error_ptr) |
1654 | error_ptr->SetErrorString("DW_OP_shr failed." ); |
1655 | return false; |
1656 | } |
1657 | } |
1658 | break; |
1659 | |
1660 | // OPCODE: DW_OP_shra |
1661 | // OPERANDS: none |
1662 | // DESCRIPTION: pops the top two stack entries, shifts the former second |
1663 | // entry right arithmetically (divide the magnitude by 2, keep the same |
1664 | // sign for the result) by the number of bits specified by the former top |
1665 | // of the stack, and pushes the result. |
1666 | case DW_OP_shra: |
1667 | if (stack.size() < 2) { |
1668 | if (error_ptr) |
1669 | error_ptr->SetErrorString( |
1670 | "Expression stack needs at least 2 items for DW_OP_shra." ); |
1671 | return false; |
1672 | } else { |
1673 | tmp = stack.back(); |
1674 | stack.pop_back(); |
1675 | stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx); |
1676 | } |
1677 | break; |
1678 | |
1679 | // OPCODE: DW_OP_xor |
1680 | // OPERANDS: none |
1681 | // DESCRIPTION: pops the top two stack entries, performs the bitwise |
1682 | // exclusive-or operation on the two, and pushes the result. |
1683 | case DW_OP_xor: |
1684 | if (stack.size() < 2) { |
1685 | if (error_ptr) |
1686 | error_ptr->SetErrorString( |
1687 | "Expression stack needs at least 2 items for DW_OP_xor." ); |
1688 | return false; |
1689 | } else { |
1690 | tmp = stack.back(); |
1691 | stack.pop_back(); |
1692 | stack.back().ResolveValue(exe_ctx) = |
1693 | stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx); |
1694 | } |
1695 | break; |
1696 | |
1697 | // OPCODE: DW_OP_skip |
1698 | // OPERANDS: int16_t |
1699 | // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte |
1700 | // signed integer constant. The 2-byte constant is the number of bytes of |
1701 | // the DWARF expression to skip forward or backward from the current |
1702 | // operation, beginning after the 2-byte constant. |
1703 | case DW_OP_skip: { |
1704 | int16_t skip_offset = (int16_t)opcodes.GetU16(offset_ptr: &offset); |
1705 | lldb::offset_t new_offset = offset + skip_offset; |
1706 | // New offset can point at the end of the data, in this case we should |
1707 | // terminate the DWARF expression evaluation (will happen in the loop |
1708 | // condition). |
1709 | if (new_offset <= opcodes.GetByteSize()) |
1710 | offset = new_offset; |
1711 | else { |
1712 | if (error_ptr) |
1713 | error_ptr->SetErrorStringWithFormatv( |
1714 | format: "Invalid opcode offset in DW_OP_skip: {0}+({1}) > {2}" , args&: offset, |
1715 | args&: skip_offset, args: opcodes.GetByteSize()); |
1716 | return false; |
1717 | } |
1718 | } break; |
1719 | |
1720 | // OPCODE: DW_OP_bra |
1721 | // OPERANDS: int16_t |
1722 | // DESCRIPTION: A conditional branch. Its single operand is a 2-byte |
1723 | // signed integer constant. This operation pops the top of stack. If the |
1724 | // value popped is not the constant 0, the 2-byte constant operand is the |
1725 | // number of bytes of the DWARF expression to skip forward or backward from |
1726 | // the current operation, beginning after the 2-byte constant. |
1727 | case DW_OP_bra: |
1728 | if (stack.empty()) { |
1729 | if (error_ptr) |
1730 | error_ptr->SetErrorString( |
1731 | "Expression stack needs at least 1 item for DW_OP_bra." ); |
1732 | return false; |
1733 | } else { |
1734 | tmp = stack.back(); |
1735 | stack.pop_back(); |
1736 | int16_t bra_offset = (int16_t)opcodes.GetU16(offset_ptr: &offset); |
1737 | Scalar zero(0); |
1738 | if (tmp.ResolveValue(exe_ctx) != zero) { |
1739 | lldb::offset_t new_offset = offset + bra_offset; |
1740 | // New offset can point at the end of the data, in this case we should |
1741 | // terminate the DWARF expression evaluation (will happen in the loop |
1742 | // condition). |
1743 | if (new_offset <= opcodes.GetByteSize()) |
1744 | offset = new_offset; |
1745 | else { |
1746 | if (error_ptr) |
1747 | error_ptr->SetErrorStringWithFormatv( |
1748 | format: "Invalid opcode offset in DW_OP_bra: {0}+({1}) > {2}" , args&: offset, |
1749 | args&: bra_offset, args: opcodes.GetByteSize()); |
1750 | return false; |
1751 | } |
1752 | } |
1753 | } |
1754 | break; |
1755 | |
1756 | // OPCODE: DW_OP_eq |
1757 | // OPERANDS: none |
1758 | // DESCRIPTION: pops the top two stack values, compares using the |
1759 | // equals (==) operator. |
1760 | // STACK RESULT: push the constant value 1 onto the stack if the result |
1761 | // of the operation is true or the constant value 0 if the result of the |
1762 | // operation is false. |
1763 | case DW_OP_eq: |
1764 | if (stack.size() < 2) { |
1765 | if (error_ptr) |
1766 | error_ptr->SetErrorString( |
1767 | "Expression stack needs at least 2 items for DW_OP_eq." ); |
1768 | return false; |
1769 | } else { |
1770 | tmp = stack.back(); |
1771 | stack.pop_back(); |
1772 | stack.back().ResolveValue(exe_ctx) = |
1773 | stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx); |
1774 | } |
1775 | break; |
1776 | |
1777 | // OPCODE: DW_OP_ge |
1778 | // OPERANDS: none |
1779 | // DESCRIPTION: pops the top two stack values, compares using the |
1780 | // greater than or equal to (>=) operator. |
1781 | // STACK RESULT: push the constant value 1 onto the stack if the result |
1782 | // of the operation is true or the constant value 0 if the result of the |
1783 | // operation is false. |
1784 | case DW_OP_ge: |
1785 | if (stack.size() < 2) { |
1786 | if (error_ptr) |
1787 | error_ptr->SetErrorString( |
1788 | "Expression stack needs at least 2 items for DW_OP_ge." ); |
1789 | return false; |
1790 | } else { |
1791 | tmp = stack.back(); |
1792 | stack.pop_back(); |
1793 | stack.back().ResolveValue(exe_ctx) = |
1794 | stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx); |
1795 | } |
1796 | break; |
1797 | |
1798 | // OPCODE: DW_OP_gt |
1799 | // OPERANDS: none |
1800 | // DESCRIPTION: pops the top two stack values, compares using the |
1801 | // greater than (>) operator. |
1802 | // STACK RESULT: push the constant value 1 onto the stack if the result |
1803 | // of the operation is true or the constant value 0 if the result of the |
1804 | // operation is false. |
1805 | case DW_OP_gt: |
1806 | if (stack.size() < 2) { |
1807 | if (error_ptr) |
1808 | error_ptr->SetErrorString( |
1809 | "Expression stack needs at least 2 items for DW_OP_gt." ); |
1810 | return false; |
1811 | } else { |
1812 | tmp = stack.back(); |
1813 | stack.pop_back(); |
1814 | stack.back().ResolveValue(exe_ctx) = |
1815 | stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx); |
1816 | } |
1817 | break; |
1818 | |
1819 | // OPCODE: DW_OP_le |
1820 | // OPERANDS: none |
1821 | // DESCRIPTION: pops the top two stack values, compares using the |
1822 | // less than or equal to (<=) operator. |
1823 | // STACK RESULT: push the constant value 1 onto the stack if the result |
1824 | // of the operation is true or the constant value 0 if the result of the |
1825 | // operation is false. |
1826 | case DW_OP_le: |
1827 | if (stack.size() < 2) { |
1828 | if (error_ptr) |
1829 | error_ptr->SetErrorString( |
1830 | "Expression stack needs at least 2 items for DW_OP_le." ); |
1831 | return false; |
1832 | } else { |
1833 | tmp = stack.back(); |
1834 | stack.pop_back(); |
1835 | stack.back().ResolveValue(exe_ctx) = |
1836 | stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx); |
1837 | } |
1838 | break; |
1839 | |
1840 | // OPCODE: DW_OP_lt |
1841 | // OPERANDS: none |
1842 | // DESCRIPTION: pops the top two stack values, compares using the |
1843 | // less than (<) operator. |
1844 | // STACK RESULT: push the constant value 1 onto the stack if the result |
1845 | // of the operation is true or the constant value 0 if the result of the |
1846 | // operation is false. |
1847 | case DW_OP_lt: |
1848 | if (stack.size() < 2) { |
1849 | if (error_ptr) |
1850 | error_ptr->SetErrorString( |
1851 | "Expression stack needs at least 2 items for DW_OP_lt." ); |
1852 | return false; |
1853 | } else { |
1854 | tmp = stack.back(); |
1855 | stack.pop_back(); |
1856 | stack.back().ResolveValue(exe_ctx) = |
1857 | stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx); |
1858 | } |
1859 | break; |
1860 | |
1861 | // OPCODE: DW_OP_ne |
1862 | // OPERANDS: none |
1863 | // DESCRIPTION: pops the top two stack values, compares using the |
1864 | // not equal (!=) operator. |
1865 | // STACK RESULT: push the constant value 1 onto the stack if the result |
1866 | // of the operation is true or the constant value 0 if the result of the |
1867 | // operation is false. |
1868 | case DW_OP_ne: |
1869 | if (stack.size() < 2) { |
1870 | if (error_ptr) |
1871 | error_ptr->SetErrorString( |
1872 | "Expression stack needs at least 2 items for DW_OP_ne." ); |
1873 | return false; |
1874 | } else { |
1875 | tmp = stack.back(); |
1876 | stack.pop_back(); |
1877 | stack.back().ResolveValue(exe_ctx) = |
1878 | stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx); |
1879 | } |
1880 | break; |
1881 | |
1882 | // OPCODE: DW_OP_litn |
1883 | // OPERANDS: none |
1884 | // DESCRIPTION: encode the unsigned literal values from 0 through 31. |
1885 | // STACK RESULT: push the unsigned literal constant value onto the top |
1886 | // of the stack. |
1887 | case DW_OP_lit0: |
1888 | case DW_OP_lit1: |
1889 | case DW_OP_lit2: |
1890 | case DW_OP_lit3: |
1891 | case DW_OP_lit4: |
1892 | case DW_OP_lit5: |
1893 | case DW_OP_lit6: |
1894 | case DW_OP_lit7: |
1895 | case DW_OP_lit8: |
1896 | case DW_OP_lit9: |
1897 | case DW_OP_lit10: |
1898 | case DW_OP_lit11: |
1899 | case DW_OP_lit12: |
1900 | case DW_OP_lit13: |
1901 | case DW_OP_lit14: |
1902 | case DW_OP_lit15: |
1903 | case DW_OP_lit16: |
1904 | case DW_OP_lit17: |
1905 | case DW_OP_lit18: |
1906 | case DW_OP_lit19: |
1907 | case DW_OP_lit20: |
1908 | case DW_OP_lit21: |
1909 | case DW_OP_lit22: |
1910 | case DW_OP_lit23: |
1911 | case DW_OP_lit24: |
1912 | case DW_OP_lit25: |
1913 | case DW_OP_lit26: |
1914 | case DW_OP_lit27: |
1915 | case DW_OP_lit28: |
1916 | case DW_OP_lit29: |
1917 | case DW_OP_lit30: |
1918 | case DW_OP_lit31: |
1919 | stack.push_back(x: to_generic(op - DW_OP_lit0)); |
1920 | break; |
1921 | |
1922 | // OPCODE: DW_OP_regN |
1923 | // OPERANDS: none |
1924 | // DESCRIPTION: Push the value in register n on the top of the stack. |
1925 | case DW_OP_reg0: |
1926 | case DW_OP_reg1: |
1927 | case DW_OP_reg2: |
1928 | case DW_OP_reg3: |
1929 | case DW_OP_reg4: |
1930 | case DW_OP_reg5: |
1931 | case DW_OP_reg6: |
1932 | case DW_OP_reg7: |
1933 | case DW_OP_reg8: |
1934 | case DW_OP_reg9: |
1935 | case DW_OP_reg10: |
1936 | case DW_OP_reg11: |
1937 | case DW_OP_reg12: |
1938 | case DW_OP_reg13: |
1939 | case DW_OP_reg14: |
1940 | case DW_OP_reg15: |
1941 | case DW_OP_reg16: |
1942 | case DW_OP_reg17: |
1943 | case DW_OP_reg18: |
1944 | case DW_OP_reg19: |
1945 | case DW_OP_reg20: |
1946 | case DW_OP_reg21: |
1947 | case DW_OP_reg22: |
1948 | case DW_OP_reg23: |
1949 | case DW_OP_reg24: |
1950 | case DW_OP_reg25: |
1951 | case DW_OP_reg26: |
1952 | case DW_OP_reg27: |
1953 | case DW_OP_reg28: |
1954 | case DW_OP_reg29: |
1955 | case DW_OP_reg30: |
1956 | case DW_OP_reg31: { |
1957 | dwarf4_location_description_kind = Register; |
1958 | reg_num = op - DW_OP_reg0; |
1959 | |
1960 | if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, value&: tmp)) |
1961 | stack.push_back(x: tmp); |
1962 | else |
1963 | return false; |
1964 | } break; |
1965 | // OPCODE: DW_OP_regx |
1966 | // OPERANDS: |
1967 | // ULEB128 literal operand that encodes the register. |
1968 | // DESCRIPTION: Push the value in register on the top of the stack. |
1969 | case DW_OP_regx: { |
1970 | dwarf4_location_description_kind = Register; |
1971 | reg_num = opcodes.GetULEB128(offset_ptr: &offset); |
1972 | if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, value&: tmp)) |
1973 | stack.push_back(x: tmp); |
1974 | else |
1975 | return false; |
1976 | } break; |
1977 | |
1978 | // OPCODE: DW_OP_bregN |
1979 | // OPERANDS: |
1980 | // SLEB128 offset from register N |
1981 | // DESCRIPTION: Value is in memory at the address specified by register |
1982 | // N plus an offset. |
1983 | case DW_OP_breg0: |
1984 | case DW_OP_breg1: |
1985 | case DW_OP_breg2: |
1986 | case DW_OP_breg3: |
1987 | case DW_OP_breg4: |
1988 | case DW_OP_breg5: |
1989 | case DW_OP_breg6: |
1990 | case DW_OP_breg7: |
1991 | case DW_OP_breg8: |
1992 | case DW_OP_breg9: |
1993 | case DW_OP_breg10: |
1994 | case DW_OP_breg11: |
1995 | case DW_OP_breg12: |
1996 | case DW_OP_breg13: |
1997 | case DW_OP_breg14: |
1998 | case DW_OP_breg15: |
1999 | case DW_OP_breg16: |
2000 | case DW_OP_breg17: |
2001 | case DW_OP_breg18: |
2002 | case DW_OP_breg19: |
2003 | case DW_OP_breg20: |
2004 | case DW_OP_breg21: |
2005 | case DW_OP_breg22: |
2006 | case DW_OP_breg23: |
2007 | case DW_OP_breg24: |
2008 | case DW_OP_breg25: |
2009 | case DW_OP_breg26: |
2010 | case DW_OP_breg27: |
2011 | case DW_OP_breg28: |
2012 | case DW_OP_breg29: |
2013 | case DW_OP_breg30: |
2014 | case DW_OP_breg31: { |
2015 | reg_num = op - DW_OP_breg0; |
2016 | |
2017 | if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, |
2018 | value&: tmp)) { |
2019 | int64_t breg_offset = opcodes.GetSLEB128(offset_ptr: &offset); |
2020 | tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; |
2021 | tmp.ClearContext(); |
2022 | stack.push_back(x: tmp); |
2023 | stack.back().SetValueType(Value::ValueType::LoadAddress); |
2024 | } else |
2025 | return false; |
2026 | } break; |
2027 | // OPCODE: DW_OP_bregx |
2028 | // OPERANDS: 2 |
2029 | // ULEB128 literal operand that encodes the register. |
2030 | // SLEB128 offset from register N |
2031 | // DESCRIPTION: Value is in memory at the address specified by register |
2032 | // N plus an offset. |
2033 | case DW_OP_bregx: { |
2034 | reg_num = opcodes.GetULEB128(offset_ptr: &offset); |
2035 | |
2036 | if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, |
2037 | value&: tmp)) { |
2038 | int64_t breg_offset = opcodes.GetSLEB128(offset_ptr: &offset); |
2039 | tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; |
2040 | tmp.ClearContext(); |
2041 | stack.push_back(x: tmp); |
2042 | stack.back().SetValueType(Value::ValueType::LoadAddress); |
2043 | } else |
2044 | return false; |
2045 | } break; |
2046 | |
2047 | case DW_OP_fbreg: |
2048 | if (exe_ctx) { |
2049 | if (frame) { |
2050 | Scalar value; |
2051 | if (frame->GetFrameBaseValue(value, error_ptr)) { |
2052 | int64_t fbreg_offset = opcodes.GetSLEB128(offset_ptr: &offset); |
2053 | value += fbreg_offset; |
2054 | stack.push_back(x: value); |
2055 | stack.back().SetValueType(Value::ValueType::LoadAddress); |
2056 | } else |
2057 | return false; |
2058 | } else { |
2059 | if (error_ptr) |
2060 | error_ptr->SetErrorString( |
2061 | "Invalid stack frame in context for DW_OP_fbreg opcode." ); |
2062 | return false; |
2063 | } |
2064 | } else { |
2065 | if (error_ptr) |
2066 | error_ptr->SetErrorString( |
2067 | "NULL execution context for DW_OP_fbreg.\n" ); |
2068 | return false; |
2069 | } |
2070 | |
2071 | break; |
2072 | |
2073 | // OPCODE: DW_OP_nop |
2074 | // OPERANDS: none |
2075 | // DESCRIPTION: A place holder. It has no effect on the location stack |
2076 | // or any of its values. |
2077 | case DW_OP_nop: |
2078 | break; |
2079 | |
2080 | // OPCODE: DW_OP_piece |
2081 | // OPERANDS: 1 |
2082 | // ULEB128: byte size of the piece |
2083 | // DESCRIPTION: The operand describes the size in bytes of the piece of |
2084 | // the object referenced by the DWARF expression whose result is at the top |
2085 | // of the stack. If the piece is located in a register, but does not occupy |
2086 | // the entire register, the placement of the piece within that register is |
2087 | // defined by the ABI. |
2088 | // |
2089 | // Many compilers store a single variable in sets of registers, or store a |
2090 | // variable partially in memory and partially in registers. DW_OP_piece |
2091 | // provides a way of describing how large a part of a variable a particular |
2092 | // DWARF expression refers to. |
2093 | case DW_OP_piece: { |
2094 | LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind; |
2095 | // Reset for the next piece. |
2096 | dwarf4_location_description_kind = Memory; |
2097 | |
2098 | const uint64_t piece_byte_size = opcodes.GetULEB128(offset_ptr: &offset); |
2099 | |
2100 | if (piece_byte_size > 0) { |
2101 | Value curr_piece; |
2102 | |
2103 | if (stack.empty()) { |
2104 | UpdateValueTypeFromLocationDescription( |
2105 | log, dwarf_cu, kind: LocationDescriptionKind::Empty); |
2106 | // In a multi-piece expression, this means that the current piece is |
2107 | // not available. Fill with zeros for now by resizing the data and |
2108 | // appending it |
2109 | curr_piece.ResizeData(len: piece_byte_size); |
2110 | // Note that "0" is not a correct value for the unknown bits. |
2111 | // It would be better to also return a mask of valid bits together |
2112 | // with the expression result, so the debugger can print missing |
2113 | // members as "<optimized out>" or something. |
2114 | ::memset(s: curr_piece.GetBuffer().GetBytes(), c: 0, n: piece_byte_size); |
2115 | pieces.AppendDataToHostBuffer(rhs: curr_piece); |
2116 | } else { |
2117 | Status error; |
2118 | // Extract the current piece into "curr_piece" |
2119 | Value curr_piece_source_value(stack.back()); |
2120 | stack.pop_back(); |
2121 | UpdateValueTypeFromLocationDescription(log, dwarf_cu, kind: piece_locdesc, |
2122 | value: &curr_piece_source_value); |
2123 | |
2124 | const Value::ValueType curr_piece_source_value_type = |
2125 | curr_piece_source_value.GetValueType(); |
2126 | switch (curr_piece_source_value_type) { |
2127 | case Value::ValueType::Invalid: |
2128 | return false; |
2129 | case Value::ValueType::LoadAddress: |
2130 | if (process) { |
2131 | if (curr_piece.ResizeData(len: piece_byte_size) == piece_byte_size) { |
2132 | lldb::addr_t load_addr = |
2133 | curr_piece_source_value.GetScalar().ULongLong( |
2134 | LLDB_INVALID_ADDRESS); |
2135 | if (process->ReadMemory( |
2136 | vm_addr: load_addr, buf: curr_piece.GetBuffer().GetBytes(), |
2137 | size: piece_byte_size, error) != piece_byte_size) { |
2138 | if (error_ptr) |
2139 | error_ptr->SetErrorStringWithFormat( |
2140 | "failed to read memory DW_OP_piece(%" PRIu64 |
2141 | ") from 0x%" PRIx64, |
2142 | piece_byte_size, load_addr); |
2143 | return false; |
2144 | } |
2145 | } else { |
2146 | if (error_ptr) |
2147 | error_ptr->SetErrorStringWithFormat( |
2148 | "failed to resize the piece memory buffer for " |
2149 | "DW_OP_piece(%" PRIu64 ")" , |
2150 | piece_byte_size); |
2151 | return false; |
2152 | } |
2153 | } |
2154 | break; |
2155 | |
2156 | case Value::ValueType::FileAddress: |
2157 | case Value::ValueType::HostAddress: |
2158 | if (error_ptr) { |
2159 | lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong( |
2160 | LLDB_INVALID_ADDRESS); |
2161 | error_ptr->SetErrorStringWithFormat( |
2162 | "failed to read memory DW_OP_piece(%" PRIu64 |
2163 | ") from %s address 0x%" PRIx64, |
2164 | piece_byte_size, curr_piece_source_value.GetValueType() == |
2165 | Value::ValueType::FileAddress |
2166 | ? "file" |
2167 | : "host" , |
2168 | addr); |
2169 | } |
2170 | return false; |
2171 | |
2172 | case Value::ValueType::Scalar: { |
2173 | uint32_t bit_size = piece_byte_size * 8; |
2174 | uint32_t bit_offset = 0; |
2175 | Scalar &scalar = curr_piece_source_value.GetScalar(); |
2176 | if (!scalar.ExtractBitfield( |
2177 | bit_size, bit_offset)) { |
2178 | if (error_ptr) |
2179 | error_ptr->SetErrorStringWithFormat( |
2180 | "unable to extract %" PRIu64 " bytes from a %" PRIu64 |
2181 | " byte scalar value." , |
2182 | piece_byte_size, |
2183 | (uint64_t)curr_piece_source_value.GetScalar() |
2184 | .GetByteSize()); |
2185 | return false; |
2186 | } |
2187 | // Create curr_piece with bit_size. By default Scalar |
2188 | // grows to the nearest host integer type. |
2189 | llvm::APInt fail_value(1, 0, false); |
2190 | llvm::APInt ap_int = scalar.UInt128(fail_value); |
2191 | assert(ap_int.getBitWidth() >= bit_size); |
2192 | llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(), |
2193 | ap_int.getNumWords()}; |
2194 | curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf)); |
2195 | } break; |
2196 | } |
2197 | |
2198 | // Check if this is the first piece? |
2199 | if (op_piece_offset == 0) { |
2200 | // This is the first piece, we should push it back onto the stack |
2201 | // so subsequent pieces will be able to access this piece and add |
2202 | // to it. |
2203 | if (pieces.AppendDataToHostBuffer(rhs: curr_piece) == 0) { |
2204 | if (error_ptr) |
2205 | error_ptr->SetErrorString("failed to append piece data" ); |
2206 | return false; |
2207 | } |
2208 | } else { |
2209 | // If this is the second or later piece there should be a value on |
2210 | // the stack. |
2211 | if (pieces.GetBuffer().GetByteSize() != op_piece_offset) { |
2212 | if (error_ptr) |
2213 | error_ptr->SetErrorStringWithFormat( |
2214 | "DW_OP_piece for offset %" PRIu64 |
2215 | " but top of stack is of size %" PRIu64, |
2216 | op_piece_offset, pieces.GetBuffer().GetByteSize()); |
2217 | return false; |
2218 | } |
2219 | |
2220 | if (pieces.AppendDataToHostBuffer(rhs: curr_piece) == 0) { |
2221 | if (error_ptr) |
2222 | error_ptr->SetErrorString("failed to append piece data" ); |
2223 | return false; |
2224 | } |
2225 | } |
2226 | } |
2227 | op_piece_offset += piece_byte_size; |
2228 | } |
2229 | } break; |
2230 | |
2231 | case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); |
2232 | if (stack.size() < 1) { |
2233 | UpdateValueTypeFromLocationDescription(log, dwarf_cu, |
2234 | kind: LocationDescriptionKind::Empty); |
2235 | // Reset for the next piece. |
2236 | dwarf4_location_description_kind = Memory; |
2237 | if (error_ptr) |
2238 | error_ptr->SetErrorString( |
2239 | "Expression stack needs at least 1 item for DW_OP_bit_piece." ); |
2240 | return false; |
2241 | } else { |
2242 | UpdateValueTypeFromLocationDescription( |
2243 | log, dwarf_cu, kind: dwarf4_location_description_kind, value: &stack.back()); |
2244 | // Reset for the next piece. |
2245 | dwarf4_location_description_kind = Memory; |
2246 | const uint64_t piece_bit_size = opcodes.GetULEB128(offset_ptr: &offset); |
2247 | const uint64_t piece_bit_offset = opcodes.GetULEB128(offset_ptr: &offset); |
2248 | switch (stack.back().GetValueType()) { |
2249 | case Value::ValueType::Invalid: |
2250 | return false; |
2251 | case Value::ValueType::Scalar: { |
2252 | if (!stack.back().GetScalar().ExtractBitfield(bit_size: piece_bit_size, |
2253 | bit_offset: piece_bit_offset)) { |
2254 | if (error_ptr) |
2255 | error_ptr->SetErrorStringWithFormat( |
2256 | "unable to extract %" PRIu64 " bit value with %" PRIu64 |
2257 | " bit offset from a %" PRIu64 " bit scalar value." , |
2258 | piece_bit_size, piece_bit_offset, |
2259 | (uint64_t)(stack.back().GetScalar().GetByteSize() * 8)); |
2260 | return false; |
2261 | } |
2262 | } break; |
2263 | |
2264 | case Value::ValueType::FileAddress: |
2265 | case Value::ValueType::LoadAddress: |
2266 | case Value::ValueType::HostAddress: |
2267 | if (error_ptr) { |
2268 | error_ptr->SetErrorStringWithFormat( |
2269 | "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64 |
2270 | ", bit_offset = %" PRIu64 ") from an address value." , |
2271 | piece_bit_size, piece_bit_offset); |
2272 | } |
2273 | return false; |
2274 | } |
2275 | } |
2276 | break; |
2277 | |
2278 | // OPCODE: DW_OP_implicit_value |
2279 | // OPERANDS: 2 |
2280 | // ULEB128 size of the value block in bytes |
2281 | // uint8_t* block bytes encoding value in target's memory |
2282 | // representation |
2283 | // DESCRIPTION: Value is immediately stored in block in the debug info with |
2284 | // the memory representation of the target. |
2285 | case DW_OP_implicit_value: { |
2286 | dwarf4_location_description_kind = Implicit; |
2287 | |
2288 | const uint32_t len = opcodes.GetULEB128(offset_ptr: &offset); |
2289 | const void *data = opcodes.GetData(offset_ptr: &offset, length: len); |
2290 | |
2291 | if (!data) { |
2292 | LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data" ); |
2293 | LLDB_ERRORF(error_ptr, "Could not evaluate %s." , |
2294 | DW_OP_value_to_name(op)); |
2295 | return false; |
2296 | } |
2297 | |
2298 | Value result(data, len); |
2299 | stack.push_back(x: result); |
2300 | break; |
2301 | } |
2302 | |
2303 | case DW_OP_implicit_pointer: { |
2304 | dwarf4_location_description_kind = Implicit; |
2305 | LLDB_ERRORF(error_ptr, "Could not evaluate %s." , DW_OP_value_to_name(op)); |
2306 | return false; |
2307 | } |
2308 | |
2309 | // OPCODE: DW_OP_push_object_address |
2310 | // OPERANDS: none |
2311 | // DESCRIPTION: Pushes the address of the object currently being |
2312 | // evaluated as part of evaluation of a user presented expression. This |
2313 | // object may correspond to an independent variable described by its own |
2314 | // DIE or it may be a component of an array, structure, or class whose |
2315 | // address has been dynamically determined by an earlier step during user |
2316 | // expression evaluation. |
2317 | case DW_OP_push_object_address: |
2318 | if (object_address_ptr) |
2319 | stack.push_back(x: *object_address_ptr); |
2320 | else { |
2321 | if (error_ptr) |
2322 | error_ptr->SetErrorString("DW_OP_push_object_address used without " |
2323 | "specifying an object address" ); |
2324 | return false; |
2325 | } |
2326 | break; |
2327 | |
2328 | // OPCODE: DW_OP_call2 |
2329 | // OPERANDS: |
2330 | // uint16_t compile unit relative offset of a DIE |
2331 | // DESCRIPTION: Performs subroutine calls during evaluation |
2332 | // of a DWARF expression. The operand is the 2-byte unsigned offset of a |
2333 | // debugging information entry in the current compilation unit. |
2334 | // |
2335 | // Operand interpretation is exactly like that for DW_FORM_ref2. |
2336 | // |
2337 | // This operation transfers control of DWARF expression evaluation to the |
2338 | // DW_AT_location attribute of the referenced DIE. If there is no such |
2339 | // attribute, then there is no effect. Execution of the DWARF expression of |
2340 | // a DW_AT_location attribute may add to and/or remove from values on the |
2341 | // stack. Execution returns to the point following the call when the end of |
2342 | // the attribute is reached. Values on the stack at the time of the call |
2343 | // may be used as parameters by the called expression and values left on |
2344 | // the stack by the called expression may be used as return values by prior |
2345 | // agreement between the calling and called expressions. |
2346 | case DW_OP_call2: |
2347 | if (error_ptr) |
2348 | error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2." ); |
2349 | return false; |
2350 | // OPCODE: DW_OP_call4 |
2351 | // OPERANDS: 1 |
2352 | // uint32_t compile unit relative offset of a DIE |
2353 | // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF |
2354 | // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of |
2355 | // a debugging information entry in the current compilation unit. |
2356 | // |
2357 | // Operand interpretation DW_OP_call4 is exactly like that for |
2358 | // DW_FORM_ref4. |
2359 | // |
2360 | // This operation transfers control of DWARF expression evaluation to the |
2361 | // DW_AT_location attribute of the referenced DIE. If there is no such |
2362 | // attribute, then there is no effect. Execution of the DWARF expression of |
2363 | // a DW_AT_location attribute may add to and/or remove from values on the |
2364 | // stack. Execution returns to the point following the call when the end of |
2365 | // the attribute is reached. Values on the stack at the time of the call |
2366 | // may be used as parameters by the called expression and values left on |
2367 | // the stack by the called expression may be used as return values by prior |
2368 | // agreement between the calling and called expressions. |
2369 | case DW_OP_call4: |
2370 | if (error_ptr) |
2371 | error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4." ); |
2372 | return false; |
2373 | |
2374 | // OPCODE: DW_OP_stack_value |
2375 | // OPERANDS: None |
2376 | // DESCRIPTION: Specifies that the object does not exist in memory but |
2377 | // rather is a constant value. The value from the top of the stack is the |
2378 | // value to be used. This is the actual object value and not the location. |
2379 | case DW_OP_stack_value: |
2380 | dwarf4_location_description_kind = Implicit; |
2381 | if (stack.empty()) { |
2382 | if (error_ptr) |
2383 | error_ptr->SetErrorString( |
2384 | "Expression stack needs at least 1 item for DW_OP_stack_value." ); |
2385 | return false; |
2386 | } |
2387 | stack.back().SetValueType(Value::ValueType::Scalar); |
2388 | break; |
2389 | |
2390 | // OPCODE: DW_OP_convert |
2391 | // OPERANDS: 1 |
2392 | // A ULEB128 that is either a DIE offset of a |
2393 | // DW_TAG_base_type or 0 for the generic (pointer-sized) type. |
2394 | // |
2395 | // DESCRIPTION: Pop the top stack element, convert it to a |
2396 | // different type, and push the result. |
2397 | case DW_OP_convert: { |
2398 | if (stack.size() < 1) { |
2399 | if (error_ptr) |
2400 | error_ptr->SetErrorString( |
2401 | "Expression stack needs at least 1 item for DW_OP_convert." ); |
2402 | return false; |
2403 | } |
2404 | const uint64_t die_offset = opcodes.GetULEB128(offset_ptr: &offset); |
2405 | uint64_t bit_size; |
2406 | bool sign; |
2407 | if (die_offset == 0) { |
2408 | // The generic type has the size of an address on the target |
2409 | // machine and an unspecified signedness. Scalar has no |
2410 | // "unspecified signedness", so we use unsigned types. |
2411 | if (!module_sp) { |
2412 | if (error_ptr) |
2413 | error_ptr->SetErrorString("No module" ); |
2414 | return false; |
2415 | } |
2416 | sign = false; |
2417 | bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8; |
2418 | if (!bit_size) { |
2419 | if (error_ptr) |
2420 | error_ptr->SetErrorString("unspecified architecture" ); |
2421 | return false; |
2422 | } |
2423 | } else { |
2424 | // Retrieve the type DIE that the value is being converted to. This |
2425 | // offset is compile unit relative so we need to fix it up. |
2426 | const uint64_t abs_die_offset = die_offset + dwarf_cu->GetOffset(); |
2427 | // FIXME: the constness has annoying ripple effects. |
2428 | DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset: abs_die_offset); |
2429 | if (!die) { |
2430 | if (error_ptr) |
2431 | error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE" ); |
2432 | return false; |
2433 | } |
2434 | uint64_t encoding = |
2435 | die.GetAttributeValueAsUnsigned(attr: DW_AT_encoding, fail_value: DW_ATE_hi_user); |
2436 | bit_size = die.GetAttributeValueAsUnsigned(attr: DW_AT_byte_size, fail_value: 0) * 8; |
2437 | if (!bit_size) |
2438 | bit_size = die.GetAttributeValueAsUnsigned(attr: DW_AT_bit_size, fail_value: 0); |
2439 | if (!bit_size) { |
2440 | if (error_ptr) |
2441 | error_ptr->SetErrorString("Unsupported type size in DW_OP_convert" ); |
2442 | return false; |
2443 | } |
2444 | switch (encoding) { |
2445 | case DW_ATE_signed: |
2446 | case DW_ATE_signed_char: |
2447 | sign = true; |
2448 | break; |
2449 | case DW_ATE_unsigned: |
2450 | case DW_ATE_unsigned_char: |
2451 | sign = false; |
2452 | break; |
2453 | default: |
2454 | if (error_ptr) |
2455 | error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert" ); |
2456 | return false; |
2457 | } |
2458 | } |
2459 | Scalar &top = stack.back().ResolveValue(exe_ctx); |
2460 | top.TruncOrExtendTo(bits: bit_size, sign); |
2461 | break; |
2462 | } |
2463 | |
2464 | // OPCODE: DW_OP_call_frame_cfa |
2465 | // OPERANDS: None |
2466 | // DESCRIPTION: Specifies a DWARF expression that pushes the value of |
2467 | // the canonical frame address consistent with the call frame information |
2468 | // located in .debug_frame (or in the FDEs of the eh_frame section). |
2469 | case DW_OP_call_frame_cfa: |
2470 | if (frame) { |
2471 | // Note that we don't have to parse FDEs because this DWARF expression |
2472 | // is commonly evaluated with a valid stack frame. |
2473 | StackID id = frame->GetStackID(); |
2474 | addr_t cfa = id.GetCallFrameAddress(); |
2475 | if (cfa != LLDB_INVALID_ADDRESS) { |
2476 | stack.push_back(x: Scalar(cfa)); |
2477 | stack.back().SetValueType(Value::ValueType::LoadAddress); |
2478 | } else if (error_ptr) |
2479 | error_ptr->SetErrorString("Stack frame does not include a canonical " |
2480 | "frame address for DW_OP_call_frame_cfa " |
2481 | "opcode." ); |
2482 | } else { |
2483 | if (error_ptr) |
2484 | error_ptr->SetErrorString("Invalid stack frame in context for " |
2485 | "DW_OP_call_frame_cfa opcode." ); |
2486 | return false; |
2487 | } |
2488 | break; |
2489 | |
2490 | // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension |
2491 | // opcode, DW_OP_GNU_push_tls_address) |
2492 | // OPERANDS: none |
2493 | // DESCRIPTION: Pops a TLS offset from the stack, converts it to |
2494 | // an address in the current thread's thread-local storage block, and |
2495 | // pushes it on the stack. |
2496 | case DW_OP_form_tls_address: |
2497 | case DW_OP_GNU_push_tls_address: { |
2498 | if (stack.size() < 1) { |
2499 | if (error_ptr) { |
2500 | if (op == DW_OP_form_tls_address) |
2501 | error_ptr->SetErrorString( |
2502 | "DW_OP_form_tls_address needs an argument." ); |
2503 | else |
2504 | error_ptr->SetErrorString( |
2505 | "DW_OP_GNU_push_tls_address needs an argument." ); |
2506 | } |
2507 | return false; |
2508 | } |
2509 | |
2510 | if (!exe_ctx || !module_sp) { |
2511 | if (error_ptr) |
2512 | error_ptr->SetErrorString("No context to evaluate TLS within." ); |
2513 | return false; |
2514 | } |
2515 | |
2516 | Thread *thread = exe_ctx->GetThreadPtr(); |
2517 | if (!thread) { |
2518 | if (error_ptr) |
2519 | error_ptr->SetErrorString("No thread to evaluate TLS within." ); |
2520 | return false; |
2521 | } |
2522 | |
2523 | // Lookup the TLS block address for this thread and module. |
2524 | const addr_t tls_file_addr = |
2525 | stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); |
2526 | const addr_t tls_load_addr = |
2527 | thread->GetThreadLocalData(module: module_sp, tls_file_addr); |
2528 | |
2529 | if (tls_load_addr == LLDB_INVALID_ADDRESS) { |
2530 | if (error_ptr) |
2531 | error_ptr->SetErrorString( |
2532 | "No TLS data currently exists for this thread." ); |
2533 | return false; |
2534 | } |
2535 | |
2536 | stack.back().GetScalar() = tls_load_addr; |
2537 | stack.back().SetValueType(Value::ValueType::LoadAddress); |
2538 | } break; |
2539 | |
2540 | // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.) |
2541 | // OPERANDS: 1 |
2542 | // ULEB128: index to the .debug_addr section |
2543 | // DESCRIPTION: Pushes an address to the stack from the .debug_addr |
2544 | // section with the base address specified by the DW_AT_addr_base attribute |
2545 | // and the 0 based index is the ULEB128 encoded index. |
2546 | case DW_OP_addrx: |
2547 | case DW_OP_GNU_addr_index: { |
2548 | if (!dwarf_cu) { |
2549 | if (error_ptr) |
2550 | error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a " |
2551 | "compile unit being specified" ); |
2552 | return false; |
2553 | } |
2554 | uint64_t index = opcodes.GetULEB128(offset_ptr: &offset); |
2555 | lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index); |
2556 | stack.push_back(x: Scalar(value)); |
2557 | if (target && |
2558 | target->GetArchitecture().GetCore() == ArchSpec::eCore_wasm32) { |
2559 | // wasm file sections aren't mapped into memory, therefore addresses can |
2560 | // never point into a file section and are always LoadAddresses. |
2561 | stack.back().SetValueType(Value::ValueType::LoadAddress); |
2562 | } else { |
2563 | stack.back().SetValueType(Value::ValueType::FileAddress); |
2564 | } |
2565 | } break; |
2566 | |
2567 | // OPCODE: DW_OP_GNU_const_index |
2568 | // OPERANDS: 1 |
2569 | // ULEB128: index to the .debug_addr section |
2570 | // DESCRIPTION: Pushes an constant with the size of a machine address to |
2571 | // the stack from the .debug_addr section with the base address specified |
2572 | // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128 |
2573 | // encoded index. |
2574 | case DW_OP_GNU_const_index: { |
2575 | if (!dwarf_cu) { |
2576 | if (error_ptr) |
2577 | error_ptr->SetErrorString("DW_OP_GNU_const_index found without a " |
2578 | "compile unit being specified" ); |
2579 | return false; |
2580 | } |
2581 | uint64_t index = opcodes.GetULEB128(offset_ptr: &offset); |
2582 | lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index); |
2583 | stack.push_back(x: Scalar(value)); |
2584 | } break; |
2585 | |
2586 | case DW_OP_GNU_entry_value: |
2587 | case DW_OP_entry_value: { |
2588 | if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, opcode_offset&: offset, |
2589 | error_ptr, log)) { |
2590 | LLDB_ERRORF(error_ptr, "Could not evaluate %s." , |
2591 | DW_OP_value_to_name(op)); |
2592 | return false; |
2593 | } |
2594 | break; |
2595 | } |
2596 | |
2597 | default: |
2598 | if (dwarf_cu) { |
2599 | if (dwarf_cu->GetSymbolFileDWARF().ParseVendorDWARFOpcode( |
2600 | op, opcodes, offset, stack)) { |
2601 | break; |
2602 | } |
2603 | } |
2604 | if (error_ptr) |
2605 | error_ptr->SetErrorStringWithFormatv( |
2606 | format: "Unhandled opcode {0} in DWARFExpression" , args: LocationAtom(op)); |
2607 | return false; |
2608 | } |
2609 | } |
2610 | |
2611 | if (stack.empty()) { |
2612 | // Nothing on the stack, check if we created a piece value from DW_OP_piece |
2613 | // or DW_OP_bit_piece opcodes |
2614 | if (pieces.GetBuffer().GetByteSize()) { |
2615 | result = pieces; |
2616 | return true; |
2617 | } |
2618 | if (error_ptr) |
2619 | error_ptr->SetErrorString("Stack empty after evaluation." ); |
2620 | return false; |
2621 | } |
2622 | |
2623 | UpdateValueTypeFromLocationDescription( |
2624 | log, dwarf_cu, kind: dwarf4_location_description_kind, value: &stack.back()); |
2625 | |
2626 | if (log && log->GetVerbose()) { |
2627 | size_t count = stack.size(); |
2628 | LLDB_LOGF(log, |
2629 | "Stack after operation has %" PRIu64 " values:" , (uint64_t)count); |
2630 | for (size_t i = 0; i < count; ++i) { |
2631 | StreamString new_value; |
2632 | new_value.Printf(format: "[%" PRIu64 "]" , (uint64_t)i); |
2633 | stack[i].Dump(strm: &new_value); |
2634 | LLDB_LOGF(log, " %s" , new_value.GetData()); |
2635 | } |
2636 | } |
2637 | result = stack.back(); |
2638 | return true; // Return true on success |
2639 | } |
2640 | |
2641 | bool DWARFExpression::( |
2642 | const DWARFUnit *dwarf_cu, const DataExtractor &data, |
2643 | DWARFExpressionList *location_list) { |
2644 | location_list->Clear(); |
2645 | std::unique_ptr<llvm::DWARFLocationTable> loctable_up = |
2646 | dwarf_cu->GetLocationTable(data); |
2647 | Log *log = GetLog(mask: LLDBLog::Expressions); |
2648 | auto lookup_addr = |
2649 | [&](uint32_t index) -> std::optional<llvm::object::SectionedAddress> { |
2650 | addr_t address = dwarf_cu->ReadAddressFromDebugAddrSection(index); |
2651 | if (address == LLDB_INVALID_ADDRESS) |
2652 | return std::nullopt; |
2653 | return llvm::object::SectionedAddress{.Address: address}; |
2654 | }; |
2655 | auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) { |
2656 | if (!loc) { |
2657 | LLDB_LOG_ERROR(log, loc.takeError(), "{0}" ); |
2658 | return true; |
2659 | } |
2660 | auto buffer_sp = |
2661 | std::make_shared<DataBufferHeap>(args: loc->Expr.data(), args: loc->Expr.size()); |
2662 | DWARFExpression expr = DWARFExpression(DataExtractor( |
2663 | buffer_sp, data.GetByteOrder(), data.GetAddressByteSize())); |
2664 | location_list->AddExpression(base: loc->Range->LowPC, end: loc->Range->HighPC, expr); |
2665 | return true; |
2666 | }; |
2667 | llvm::Error error = loctable_up->visitAbsoluteLocationList( |
2668 | Offset: 0, BaseAddr: llvm::object::SectionedAddress{.Address: dwarf_cu->GetBaseAddress()}, |
2669 | LookupAddr: lookup_addr, Callback: process_list); |
2670 | location_list->Sort(); |
2671 | if (error) { |
2672 | LLDB_LOG_ERROR(log, std::move(error), "{0}" ); |
2673 | return false; |
2674 | } |
2675 | return true; |
2676 | } |
2677 | |
2678 | bool DWARFExpression::MatchesOperand( |
2679 | StackFrame &frame, const Instruction::Operand &operand) const { |
2680 | using namespace OperandMatchers; |
2681 | |
2682 | RegisterContextSP reg_ctx_sp = frame.GetRegisterContext(); |
2683 | if (!reg_ctx_sp) { |
2684 | return false; |
2685 | } |
2686 | |
2687 | DataExtractor opcodes(m_data); |
2688 | |
2689 | lldb::offset_t op_offset = 0; |
2690 | uint8_t opcode = opcodes.GetU8(offset_ptr: &op_offset); |
2691 | |
2692 | if (opcode == DW_OP_fbreg) { |
2693 | int64_t offset = opcodes.GetSLEB128(offset_ptr: &op_offset); |
2694 | |
2695 | DWARFExpressionList *fb_expr = frame.GetFrameBaseExpression(error_ptr: nullptr); |
2696 | if (!fb_expr) { |
2697 | return false; |
2698 | } |
2699 | |
2700 | auto recurse = [&frame, fb_expr](const Instruction::Operand &child) { |
2701 | return fb_expr->MatchesOperand(frame, operand: child); |
2702 | }; |
2703 | |
2704 | if (!offset && |
2705 | MatchUnaryOp(base: MatchOpType(type: Instruction::Operand::Type::Dereference), |
2706 | child: recurse)(operand)) { |
2707 | return true; |
2708 | } |
2709 | |
2710 | return MatchUnaryOp( |
2711 | base: MatchOpType(type: Instruction::Operand::Type::Dereference), |
2712 | child: MatchBinaryOp(base: MatchOpType(type: Instruction::Operand::Type::Sum), |
2713 | left: MatchImmOp(imm: offset), right: recurse))(operand); |
2714 | } |
2715 | |
2716 | bool dereference = false; |
2717 | const RegisterInfo *reg = nullptr; |
2718 | int64_t offset = 0; |
2719 | |
2720 | if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) { |
2721 | reg = reg_ctx_sp->GetRegisterInfo(reg_kind: m_reg_kind, reg_num: opcode - DW_OP_reg0); |
2722 | } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) { |
2723 | offset = opcodes.GetSLEB128(offset_ptr: &op_offset); |
2724 | reg = reg_ctx_sp->GetRegisterInfo(reg_kind: m_reg_kind, reg_num: opcode - DW_OP_breg0); |
2725 | } else if (opcode == DW_OP_regx) { |
2726 | uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(offset_ptr: &op_offset)); |
2727 | reg = reg_ctx_sp->GetRegisterInfo(reg_kind: m_reg_kind, reg_num); |
2728 | } else if (opcode == DW_OP_bregx) { |
2729 | uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(offset_ptr: &op_offset)); |
2730 | offset = opcodes.GetSLEB128(offset_ptr: &op_offset); |
2731 | reg = reg_ctx_sp->GetRegisterInfo(reg_kind: m_reg_kind, reg_num); |
2732 | } else { |
2733 | return false; |
2734 | } |
2735 | |
2736 | if (!reg) { |
2737 | return false; |
2738 | } |
2739 | |
2740 | if (dereference) { |
2741 | if (!offset && |
2742 | MatchUnaryOp(base: MatchOpType(type: Instruction::Operand::Type::Dereference), |
2743 | child: MatchRegOp(info: *reg))(operand)) { |
2744 | return true; |
2745 | } |
2746 | |
2747 | return MatchUnaryOp( |
2748 | base: MatchOpType(type: Instruction::Operand::Type::Dereference), |
2749 | child: MatchBinaryOp(base: MatchOpType(type: Instruction::Operand::Type::Sum), |
2750 | left: MatchRegOp(info: *reg), |
2751 | right: MatchImmOp(imm: offset)))(operand); |
2752 | } else { |
2753 | return MatchRegOp(info: *reg)(operand); |
2754 | } |
2755 | } |
2756 | |